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Introduction 

 

 1.1. Angiogenesis 

 

Angiogenesis is the physiological process involving vasculogenesis, intussuseption, 

bridging and/or enlargement of capillaries from pre-existing ones, whereas 

arteriogenesis means the remodeling of arteriolar anastomoses to functional arteries. 

Lymphangiogenesis is the generation of new lymphatic vessels from pre-existing 

lymphatic vessel [1]. The process of angiogenesis is involved in embryogenesis, 

growth and development, as well as in inflammation and wound healing. Additionally, 

it is also a fundamental step in tumor growth and their transition of from benign to 

malignant tumours. Small blood vessels consist exclusively of endothelial cells, lager 

vessels by contrast are surrounded by smooth muscle cells. Numerous factors such 

as vascular endothelial growth factor (VEGF), pigmeth epthelium derived factor 

(PEDF), placental growth factor (PIGF), angiopoetin (Ang) -1 and interleukin- 8 (IL-8) 

influence vascular growth.  

 

1.1.1. Angiogenesis during adipose tissue developme nt 

 

Angiogenesis, increased number and/or size of blood vessels, is essential to supply 

growing adipose tissue with oxygen and nutrients. Adipogenesis is highly associated 

with angiogenesis in the early stages of adipose tissue development. In vitro studies 

showed that adipose tissue explants and adipocytes differentiation induce blood 

vessel formation [2,3]. Additionally in several studies it was demonstrated that 

angiogenesis inhibitors in mice have a negative impact on adipose tissue growth [4]. 

Numerous factors are involved in adipogenesis regulation in adipose tissue including 

placental growth factor (PlGF), basic fibroblast growth factor (FGF-2), angiopoetin -2 

(Ang-2), leptin, thrombospondin 1 (TSP-1), osteonectin, adiponectin, resistin, tissue 

factor (TF), tumour necrosis factor alpha (TNF-α), insulin-like growth factor (IGF), 

hepatocyte growth factor (HGF) etc. Nevertheless VEGF mRNA level is not markedly 

modulated by obesity in mice, it is expressed at a high level during adipocytes 

differentiation and in expanding adipose tissue [5] [6]. Generally it is assumed that 

the VEGF/ vascular endothelial growth factor receptor (VEGFR) system accounts for 
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most of the angiogenic activity in adipose tissue, making it an attractive target to 

reduce obesity [5]. 

 

 

 

1.2. Obesity 

 

Obesity is a growing worldwide metabolic disorder, because overweight persons are 

at higher risk of developing a range of diseases such as cardiovascular disorders 

(e.g. artherosclerosis), cancer, insulin resistance, hypertension and diabetes type 2 

meaning reduced life expectancy and which have a huge economic and societal 

consequences. But the exact mechanisms linking obesity to various diseases are 

poorly understood. Obesity is a medical condition in which adipose tissue mass, size 

and number of mature adipocytes is increased and is defined by the Body mass 

index (BMI) which is a value that is calculated as the body weight (kg) divided by the 

square of the height (m²) and is used as a measurement of body fat in clinical an 

epidemiological studies. The BMI values are divided into four main categories: 

underweight (BMI < 18.5 kg/m²), normal weight (BMI 18.5- 24.9 kg/m²), overweight 

(BMI 25.0- 29.9 kg/m²), obese (Class I) (BMI 30- 34.9 kg/m²), obese (Class II) (BMI 

35- 39.9 kg/m²), obese (Class III) (BMI > 40 kg/m²) (Table 1). The BMI criteria for 

Asia and Oceania are slightly different: overweight (BMI > 23 kg/m²) and obesity (BMI 

>25 kg/m²)  

 

 

 

Table 1 Classifications for weight status based on Body Mass Index (BMI). 
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Figure 1 Worldwide change in prevalence of obesity in men (A) and women (B) 

between 1980 and 2008 [7].  

 

1.2.1. The growing epidemic of obesity  

In 2008, according to a study of the World Health Organisation (WHO) 1.5 billion 

adults over 20 years were overweight, 200 million of men and 300 million of women 

were obese and in 2010 about 43 million of children under 5 years were overweight 

[8] (Figure 1). Obesity is no longer just a problem of the Western industrialised world; 

the largest increases in obesity are seen in low and middle income countries [7,9]. A 

sharp increase of the total calorie intake was observed in the last decades (Figure 2). 

Commonly obesity is caused by a combination of excessive and energy-dense food 

intake, lack of physical activity and genetic susceptibility, in rare cases obesity is 

primarily caused by genes, endocrine disorders, medication or physical illness but the 

biology of obesity is very complex and not yet totally understood. Thus there is urgent 

need for understanding the pathophysiology of excess adiposity. 

 

 

 



  4 

 

 

Figure 2 Worldwide estimates of average caloric intake in 1980 (A) and 2008 (B) [8]. 

 

1.2.2. Obesity treatment 

Dieting, physical exercise and other lifestyle modifications are mainstays in obesity 

prevention and treatment. However, epidemiological studies have shown that it is 

very difficult to loose weight and the recidivism rate for regain weight after weight loss 

is very high [10]. Anti-obesity medication is largely ineffective and associated with 

strong adverse reactions; even obesity surgery cannot prevent weight regain livelong 

[11]. Surgical therapy for obesity (bariatric surgery) can be an effective therapeutic 

modality for subjects with morbid obesity to enable substantial, clinical significant 

weight loss. Evidence shows that bariatric surgery paired with healthy food choices 

and regular exercise results in improvement or resolution of morbidities associated 

with sever obesity [12]. The International Federation for Surgery of Obesity (I.F.S.O.) 
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has developed guidelines for appropriate selection of candidates for bariatric surgery 

(Table 2). The criteria for bariatric surgery include patients with a BMI greater than 40 

kg/m² above the age/sex-defined weight. To justify bariatric surgery in subjects with a 

BMI between 35 and 40 kg/m² obesity associated comorbidities must be present and 

conservative weight management must have failed [13]. Surgical therapy for obesity 

can be classified as malabsorptive, restrictive and as a combination of the two. 

Currently the standard bariatric surgeries are Roux-en-Y gastric bypass, laparoscopic 

gastric band, biliopancreatic bypass and the sleeve gastrectomy [13].  

1.2.3. The Roux-en-Y gastric bypass 

In Europe the laparoscopic Roux-en-Y gastric bypass is the most commonly 

performed bariatric surgery.  The laparoscopic Roux-en-Y gastric bypass is a 

combination of restrictive and malabsorptive components. A small stomach pouch is 

created transecting the upper part of the stomach, next the pouch is attached to a Y-

shaped section of the small intestine bypassing the lower stomach, the duodenum 

and the first portion of the jejunum. As a result the Roux-en-Y gastric bypass restricts 

food intake and reduces the absorption of nutrients.  

 
 

Table 2 Criteria for bariatric surgery establish by the International Federation for the 

Surgery of Obesity (IFSO)  
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1.2.4. Adipose tissue and inflammation 

 

Half a century ago initial assessments pointed to the involvement of inflammation in 

obesity, including a report that described increased fibrinogen plasma level in obese 

patients [14]. The inflammatory concept attracted great interest of the scientific 

community when the enhanced expression of tumour necrosis factor alpha (TNF-α) 

in adipose tissue of obese rodents was demonstrated in the 1990s [15]. Since then 

several groups demonstrated the secretion and production of various cytokines, 

chemokines, hormones, and other inflammatory factors referred to as adipokines, 

identifying adipose tissue as one of the greatest endocrine organs in the body [16]. 

Beside TNF-α macrophage chemoattractant protein-1(MCP-1), interleukin-6 (IL-6), 

leptin, and resistin are highly expressed adipokines by obese adipose tissue and are 

suspected to be fundamental for the pathophysiology of obesity [17,18]. It is now well 

established that adipose tissue, beside its role in energy storage, also functions as 

an important endocrine organ that secretes a variety of cytokines, hormones and 

other proteins such as, interleukin-6 (IL-6), IL-8, leptin, resistin and plasminogen 

activator inhibitor-1 (PAI-1)[19] referred to as adipokines [17,18]. Obesity is causally 

linked to a low-grade inflammation state [11,14] which is involved in the development 

of obesity-linked disorders, in particular metabolic dysfunctions. Excess adiposity and 

adipocytes dysfunction engender an unregulated expression and secretion of 

adipokines which has been linked to the development of various disease processes 

through altered immune response (Figure 3). According to this there is considerable 

interest to develop a better understanding of the immunoregulatory function of 

adipose tissue. Adipokines have been identified to either contribute to the resolution 

of inflammation or promote inflammatory response and metabolic dysfunction. 

Therefore it is assumed that an imbalance of pro- and anti-inflammatory adipokines 

secreted by adipocytes entail metabolic dysfunctions. Lately much attention has been 

paid to developing a better understanding of the immunoregulatory function of 

adipocytes and adipose tissue. New adipokines have been identified to either cause 

inflammatory responses and metabolic dysfunction or contribute to the removal of 

inflammation and have positive effects on obesity linked disorders [20]. These 

insights suggest that an imbalance of pro- and anti-inflammatory adipokines 

contributes to the development of metabolic dysfunction. 
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Figure 3 Linkage between metabolism and immunity [21]. 

 

1.2.5. Categories of adipose tissue 

Adipose tissue can be categorized in three different categories: lean with normal 

metabolic function, obese with light metabolic dysfunction and obese with complete 

metabolic dysfunction. As adipose tissue growths, adipocytes undergo hypertrophy 

increasing their triglyceride storage. With mild obesity, adipose tissue maintains 

relatively normal metabolic function, low levels of immune cell activation and 

sufficient vascular function. However, expansion of adipose tissue promotes the 

transition to a metabolically dysfunctional phenotype. M2 type macrophages are 

mainly found in lean adipose tissue, whereas in states of obesity adipose tissue M1 

macrophages and T cells are accumulated. Anti-inflammatory adipokines are mainly 

produced by lean adipose tissue; a great number of proinflammatory factors are 

secreted by adipose tissue in obese patients [22]. 
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Figure 4 Phenotypic modulation of adipose tissue [22]. 

 

1.2.6. Clinical observations 

 

Especially increased visceral fatty tissue (Figure 4) in obese patients leads to a 

chronic low grade inflammatory state [14,15] which has a crucial role in pathogenesis 

of obesity-induced disorders. Excess adiposity - in particular visceral adiposity- and 

adipocytes dysfunction result in deregulated expression of adipokines and has been 

linked to development of various diseases processes through varied immune 

response. Clinical and epidemiological studies have described a considerably 

connection between the development of low grad inflammation and metabolic 

diseases, especially in the field of obesity and type 2 diabetes. Obese individuals 

demonstrate an increased level of the pro-inflammatory marker C- reactive protein 

(CRP) in the blood [23].  An increased CRP and IL-6 level is a sign for the 

development of type 2 diabetes in various populations [16,17]. In addition weight loss 

leads to a reduction of the pro-inflammatory adipokines [24].  
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Figure 5 Components of adipose tissue [22]. 

 

1.2.7. The adipokine concept 

 

Adipose tissue is a very complex and highly active metabolic and endocrine organ. 

Besides adipocytes, adipose tissue contains preadipocytes, fibroblasts, nerve tissue, 

immune cells, connective tissue and vascular cells (Figure 5). as described above 

adipose tissue was originally considered as an energy storage organ but it was 

recently detected that it also expresses and secretes factors with important endocrine 

functions the so-called adipokines [17,18]. Following the onset of obesity, the cellular 

composition of adipose tissue can be modified including changes in localization, 

number an phenotype of cells resulting in a difference of the adipokine secretion 

status. The expression pattern of adipokines is depended on the site of the adipose 

tissue depot. Visceral and subcutaneous adipose tissue represent the most important 

fat depot and produce a different adipokine composition [25,26] (Figure 6). A recent 

study showed that subcutaneous adipose tissue has significant higher mRNA 

expression of leptin, TNF-α and NFκB. In contrast visceral adipose tissue has higher 

expression of complement factor C3. No differences were observed for the 

expression of IL-8 and IL-1β [25]. 
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Figure 6 Adipose tissue depots in human body [22]. 

 

1.3. Biology of the pigment epithelium-derived fact or  (PEDF)  

 
The pigment epithelium-derived factor (PEDF), member of the serpins (serin 

protease inhibitors), is a non-inhibitory, multifunctional protein with neurotrophic, 

antiangiogenic, antitumorigenic, anti-inflammatory, antioxidant and antithrombic 

properties [27,28]. The glycoprotein PEDF was initially detected by Joycs Tombran-

Tink and Lincoln Johnsonn in conditioned medium from fetal human retinal pigment 

epithelium (RPE) cells as a factor with effective neuronal differentiation property [29].  

 

1.3.1. Human PEDF gene and protein 

 

The human PEDF is encoded by the 15.6kb SERPINF1 gene [30], which is localized 

on chromosome 17p13.1. The SERPINF1 gene is composed of 8 exons and 7 

introns [31]. A 200bp promoter is localized upstream of the PEDF gene which is the 

suggested binding site for the transcription factors HNF4, CHOP and USF [32]. PEDF 

is a single chain protein, consisting of 418 amino acid residues, it reveals a high 

proportion of structural homology comparing the amino acid sequences with other 

serin protease inhibitors [30]. However, it does not display any protease inhibitor 
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features [33]. PEDF is not exclusively expressed in the eye but in various tissues 

such as the spinal cord, brain, skeletal muscles [34], adipose tissue [35], bone [36], 

heart [37] and liver [38] and  also in human plasma high concentrations of PEDF 

were found. Although  PEDF is expressed in many tissues, it has no influence on 

viability as PEDF null mice are viable and fertile [39]. Investigating which cells 

express PEDF retinal pigment epithelial cells [29], hepatocytes [40,41] , Müller cells 

[42], smooth muscle cells macrophages [42,43] , various tumor cells [43], cardic 

myocytes and fibroblasts [44] and adipose tissue [45] have so far been described as 

cellular source of PEDF. Famulla et al. identified adipocytes as the main source of 

PEDF, moreover they demonstrated that increasing PEDF protein expression and 

secretion positively correlates with the differentiation stage of adipocytes [45]. 

Furthermore two other studies found a connection between human obesity and PEDF 

plasma concentration, suggesting adipocytes as the main source of PEDF [46,47].  

The human SERPINF1 gene encodes for a 418 amino acids peptide with a molecular 

weight of 50 kDa, secreted as a monomeric glycoprotein [48]. The N-terminus of the 

PEDF protein contains a leader sequence (residues 1-19) inducing protein secretion 

out of the cell [49]. Two PEDF epitopes with distinct functions were identified: the 34 

amino acid peptide (residues 24-57) acts on endothelial cells, induces apoptosis and 

thereby has antiangiogenic properties; a 44 amino acid peptide (residues 58-101) is 

suggested to be responsible for the neurotrophic properties of PEDF [49].  The 34 

amino acid epitope binds the non-integrin 37/67 kDa laminin receptor procuring the 

PEDF induced inhibition of angiogenesis [50]. Additionally the 80 kDa phospholipase-

linked membrane protein independent phospholipase A2 (PLA2)/ adipose triglyceride 

lipase (ATGL) was identified as a PEDF receptor. The enzymatic activity of the 

receptor is stimulated by binding PEDF whereby survival and differentiation of 

neurons is promoted through inducing lipid metabolism on neuronal surfaces [51]. 
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1.3.2. Crystal structure of PEDF 

 

Simonovic et al. solved the crystal structure of human glycosylated PEDF. The three-

dimensional structure includes 3 beta sheets and 10 alpha helices. (Figure 7) 

Furthermore the structure reveals a noteworthy asymmetric charge distribution with a 

high density of acid residues concentrated on the one site of the molecule and basic 

residues on the opposite side resulting in a polar 3D structure. The heparin- and 

proteoglycan-binding sites are supposed to be located on the basic side of the 

protein [52]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Stereoscopic model of glycosylated PEDF [52]; α-Helices are shown in 

magenta (hA, hD-F, hl), strands of β-sheets are shown in cyan (sA-C), NAG are 

represented as ball-and-sticks. The reactive center loop is labeled as RCL, and N-

acetylglucosamine is labeled as NAG. 

 

1.3.3. PEDF as an antiangiogenic factor 

 

As mentioned above PEDF is a multifunctional pleiotropic protein with antiangiogenic, 

antitumorigenic, anti-inflammatory, antioxidant and antithrombic properties [27,28] 

and has a widespread expression throughout various human tissues such as the 

adipose tissue, liver, bone, skeletal muscle and plasma. PEDF is a protein with 

strong antiangiogenic features; it has a stronger antiangiogenic impact than other 

antiangiogenic factors such as thrombospondin, angiostatin or endostatin [43].  

PEDF oppresses ischemia-induced angiogenesis and VEGF- and basic (b) FGF- 
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induced migration and proliferation of endothelial cells [53]. Additionally PEDF inhibits 

angiogenesis interacting with vascular endothelial growth factor VEGF signalling [53-

55]. Various findings suggest that the antiangiogenic activity of PEDF is interceded 

via two different mechanisms; via the onset of apoptosis in endothelial cells and via 

disturbence of the pro- and antiangiogenic factors balance.  

PEDF induces apoptosis exclusively in activated endothelial cells of newly formed 

vessels but not in pre-existing vessels by activating the FAS-FAS ligand death 

pathway. Activated endothelial cells under the influence of pro-angiogenic factors 

solely express the FAS receptor and are sensitized toward Fas-mediated apoptosis. 

Endothelial cells stimulated with PEDF display increased FASL expression leading to 

caspase-dependent induction of apoptosis [56]. In cultured endothelial cells PEDF 

induces apoptosis by activating p38 MAPK-dependent cleavage of caspase 3, 8 and 

9 [57] and by sequential induction of PPAR and p53 [58]. Furthermore PEDF 

counteracts the effect of VEGF enhancing the cleavage of VEGF receptor 1 by the 

gamma secretase, resulting in inhibition of VEGF-induced angiogenesis [59]. There is 

convincing evidence that the expression of PEDF is regulated by hypoxia. Under 

anoxic conditions mRNA and protein expression was reduced up to 50 % in human 

cardial fibroblasts and myocytes [44]. As a consequence of low oxygen concentration 

the hypoxia-inducible transcription factor (HIF) is stabilized and transported into the 

nucleus [60]. Under hypoxic conditions PEDF production decreased in 

retinoblastoma and retinal pigment epithelium cells, but solely at the protein level and 

not at the mRNA level [43,61]. Notari et al suggested that PEDF is a substrate for 

matrix metalloproteinase (MMPs), MMP-2 and -9, which are hypoxia-activated and by 

proteolytically degrading of PEDF influence its posttranslational regulation [61]. Many 

indications suggest that the expression of the proangiogenic factor VEGF is 

upregulated under hypoxic conditions [60]. As well as in human cardiac fibroblasts 

and myocytes as in the retina and retinoblastoma cells anoxic conditions not only 

result in increased expression of the proangiogenic factor VEGF but also in decrease 

of antiangiogenic PEDF expression [43,44]. 
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1.3.4. PEDF as an antioxidant, antithrombotic and a nti-inflammatory factor 

 

Recently it became evident that PEDF protects endothelial cell against inflammatory 

activation and injury, which is pivotal for the development of atherosclerosis, by 

inhibiting TNF alpha induced IL-6 expression via suppression of reactive oxygen 

species (ROS) generation by NADPH oxygenase  [62,63]. Recently Park et al. 

identified PEDF as an endogenous inhibitor of the canonical Wnt pathway [64] 

[Figure 8]. The canonical Wnt signalling pathway is a highly conserved pathway. The 

intracellular signalling cascade is initiated by the binding of a Wnt ligand to the 

coreceptor complex consisting of the Frizzled (Fz) receptor and the low-density 

lipoprotein receptor related protein 5 (LRP5) or LRP6, causing the activation of the 

Dishevelled (Dsh) protein. The activated Dsh inhibits a second complex of proteins 

that includes axin, glycogen synthase kinase 3 (GSK-3), and the protein 

adenomatous polyposis coli (APC). The axin/GSK-3/APC complex normally promotes 

the proteolytic degradation of the β-catenin intracellular signalling molecule. After this 

the GSK-3 is no longer able to phosphorilate β-catenin, releasing it for the 

axin/GSK3/APC complex and leading to β-catenin accumulation and migration to the 

nucleus. The nuclear β-catenin interacts with the T-cell factor (TCF) and thereby the 

transcription factors of multiple target genes including genes relevant for 

angiogenesis, inflammation and fibrosis are activated. PEDF inhibits the Wnt/ β-

catenin pathway by binding to the LRP6, a Wnt coreceptor, with high affinity and in 

this way blocks the Wnt signalling induced by Wnt ligand [64]. Additionally it was 

observed that PEDF plays a causal role in evolution of insulin resistance [45].  
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Figure 8 A model of the Wnt activation of the β-catenin signalling pathway. 

(Molecular Biology of the Cell, 4th edition, Bruce Alberts). 

 

 
1.4. Vascular endothelial growth factor (VEGF) 

 

The vascular endothelial growth factor (VEGF) family represents important signaling 

molecules, involved in the modulation of various pathophysiological processes in the 

vasculature. They regulate vasculogenesis during embryonic development and 

angiogenesis and vascular maintenance in adults. VEGFs are involved in 

cardiovascular biology, tissue regeneration, ovarian angiogenesis, endochondrial 

ossification, survival of haematopoetic stem cells and erythropoietin regulation and 

are important regulators of tumor angiogenesis, psoriasis and retinal 

neovascularization [65-67]. 
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1.4.1. Biology of the VEGF family 

 

The VEGF gene family consists of numerous members including VEGF-A, -B, -C, -D, 

-E, -F and PlGF (placental growth factor) (Figure 9). In 1989 VEGF-A (also called 

VEGF) was the first VEGF family member to be discovered, subsequently four other 

members of the human VEGF family (VEGF -B, -C, -D and PlGF) have been 

identified [68,69]. Additionally viral VEGF homologues called VEGF-E and snake 

venom VEGFs (VEGF-F) have been detected [70,71]. VEGF is a homodimeric 

glycoprotein consisting of two identical 23kDa subunits [67]. All members of the 

VEGF family regulate downstream signaling by binding to 3 different tyrosine kinase 

receptors (VEGF receptor, VEGFR 1-3) on cell surface, causing them to dimerize 

and become activated through transphosphorylation [72]. Neuropilin-1 (NRP1) is a 

membrane-bound coreceptor for VEGF tyrosine kinase receptors [73]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 The VEGF family and its receptors [67]. 

 

1.4.2. Expression and regulation of VEGF 

 

VEGF in adults is expressed in every vascularised tissue particularly in large blood 

vessels in skeletal muscle, fenestrated and sinusoidal blood vessels and in secretory 

and endocrine organs. Therefore low physiological VEGF level is assumed to be 
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essential for the maintenance of vascular homeostasis [74].  Much higher levels of 

VEGF are crucial for vasculogenesis and angiogenic mechanisms [72]. VEGF is a 

central stimulator of angiogenesis, its binding to VEGF receptors promotes 

endothelial cell migration and proliferation, two key features required for 

angiogenesis [75]. 

Expression, availability and activity of VEGF is strictly regulated through a large 

number of stimuli and by diverse mechanisms such as hypoxia, transcription factors, 

oncogenes, inflammatory cytokines, mechanical forces and cell stretch [66]. Hypoxia 

stimulates the secretion of VEGF via up-regulation of hypoxia inducible factor-1 α 

(HIF-1α) [76,77]. Numerous growth factors and cytokines such as TNF-α, IL-6, IL-1, 

platelet-derived growth factor-BB (PDGF-BB), PlGF, HGF, TGF-β, FGF, IGF-1 up-

regulate VEGF-A expression [76,78]. Under normal conditions VEGF synthesis is 

regulated by the Hippel-Landau tumor suppressor protein, which under normal 

conditions ubiquitinates the most important transcriptional activators HIF-1α and 

thereby causes its degeneration [79,80]. 

 

 

1.5. Interleukin-8 

 

The chemokine IL-8  is a member of the CXC chemokine subfamily and is encoded 

by the IL-8 gene, located on chromosome 4q13–q21 in humans, composed of four 

exons, three introns, and a promoter region [81]. The chemokine is secreted by 

several cell types such as macrophages, epithelial cells and endothelial cells; 

endothelial cells store IL-8 in the Weible-Plade bodies [82]. IL-8 is expressed in 

numerous normal and tumor cells and its main function is to initiate and amplify acute 

inflammatory reactions [83]. There is increasing evidence that IL-8 plays an important 

role in the pathogenesis of cancer by modulating angiogenesis, tumor growth, and 

metastasis [84-88]. One of the pivotal roles of IL-8 is the induction of chemotaxis in 

neutrophiles and lymphocytes but many different cell types (macrophages, mast 

cells, keratinocytes and endothelial cells) also respond to the chemokine [89,90]. IL-8 

binds to the high- affinity receptors CXCR1 and CXCR2 belonging to CXC chemokine 

receptors, a large family of G protein-linked receptors, capable of inducing 

angiogenic behavior in endothelial cells [91,92]. A great number of molecular 

pathways are involved in the IL-8-induced angiogenic behavioral responses in ECs 
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(e.g., survival, migration, generation of a branching morphogenesis and proliferation 

of EC) and are relatively unexplored. Mechanisms involved in IL-8 mediated 

angiogenesis include activation of MMPs and differential expression of antiapoptotic 

genes [93], Rac-dependent cell retraction and gap formation [94], RhoA-dependent 

gap formation, CXCR2-mediated VEGFR transactivation [95] and EGFR 

transactivation [94]. Recently it has been shown that PEDF downregulates IL-8 

production in hormone-refractory prostate cancer cells (HRPC) through inactivation of 

NF-κB  and  up-regulation of PPARγ (Figure 10) [96].   

 

 

 

Figure 10 Model established by Hirsch et al for PEDF signaling in human hormone-

refractory prostate cancer cells (HRPC). In HRPC, NFκB transcription factor up-

regulates IL8 expression (Left panel). IL8 binds the CXCR2 receptor and induces 

proliferation of HRPC. PEDF interacts with PEDFR and up-regulates PPARγ (Right 

panel). PPARγ inhibits transcriptional activity of NFκB resulting in repressed IL8 

expression and reduced cell proliferation [96]. 
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1.6. Aims of the project  

 

The aim of the study was to investigate the regulation and autokrine function of PEDF 

in human visceral and subcutaneous preadipocytes/adipocytes and to determine the 

parakrine effects on cells that are involved in angiogenesis such as HCASMC and 

HUVEC. Recently it has been demonstrated that PEDF is massively expressed in 

human adipose tissue and increases during adipogenesis [45]. The aim of this 

project was to comprehend the significance of PEDF for angiogenesis and adipositas 

progression in more detail. Further studies could lead to a new and effective therapy 

which blocks the progression of adiposity.  The aims of the present project consist of 

several parts as follows:  

 

Part I: The aim of this project was to investigate a possible role of PEDF in obesity. In 

a first step we studied the regulation of the expression of PEDF in human visceral 

and subcutaneous preadipocytes and adipocytes isolated out of adipose tissue. 

Part II: As obesity is associated with a generalized inflammatory state we tested 

whether inflammatory mediators affect the expression of PEDF in preadipocytes and 

adipocytes.  

Part III: Considering that adipose tissue in vivo is always exposed to an inflammatory 

hypoxic milieu and as anoxia is a critical modulator in various organs and tissues 

modulating angiogenesis we studied a possible influence of anoxia on the expression 

of PEDF in preadipocytes, adipocytes and adipose tissue.  

Part IV: In a further step, we investigated whether the stimulation of human coronary 

artery smooth muscle cells (HCASMC) with PEDF (400ng/ml) affects the expression 

and protein level of VEGF.  

Part V: It has been shown that PEDF downregulates IL-8 production in hormone-

refractory prostate cancer cells (HRPC) through PEDF receptor/phospholipase A2 

induced inactivation of NF-κB and up-regulation of PPARγ The third aim of the 

project was to study a possible effect of PEDF on IL-8 mRNA expression and protein 

production in HUVEC. 
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1. Materials and Methods 
 

1.1. Cell culture 

2.1.1. Standard growth conditions  

All cell lines were grown in 75 cm² and 225cm² tissue culture flasks (Iwaki) or in 24 

well cell-culture plates in a humidified incubator (Thermo Scientific Heraeus 

Cytoperm 2) under the conditions of 37°C and 5% CO 2. 24-well-plates were obtained 

from Greiner Bio One. 

2.1.2. Splitting and cell counting  

For cell splitting, medium was aspirated and cells were shortly washed with PBS 

without Ca and Mg. Cells were then incubated for 2 to 6 minutes with trypsin at 37°C 

and resuspended in the appropriate medium. Cells were spun down for 5 minutes at 

1500 rpm. The resulting cell pellet was resuspended in the appropriate medium. Cell 

concentrations were determined with a Neubauer counting chamber.   

2.1.3. Isolation and cultivation of human preadipoc ytes  

Visceral and subcutaneous adipose tissue was obtained from patients undergoing a 

laparoscopic Roux-en-Y gastric bypass surgery. All subjects were of Caucasian 

origin and did not suffer from acute acute infection, cancer or any other consuming 

disease. All human material was obtained and processed according to the 

recommendations of the hospital’s Ethics Committee and Security Board, which 

included obtaining informed consent.  

Primary cultures of human preadipocytes were prepared from adipose tissue of 

subcutaneous and visceral origin obtained as described above. Tissue was dissected 

from skin, visible blood vessels, and fibrous material, minced into small pieces (1 to 2 

mm), and digested in Hanks’ balanced salt solution containing 0.1% collagenase type 

IV (both from Sigma) for 60 minutes at 37°C in a shaking incubator (WTB Binder 

BFED-53). After they were filtered through a 70-µm nylon mesh (BD Falcon), cells 

were centrifuged for 10 minutes at 1000 rpm, washed once with DMEM/F-12 

containing 20% fetal calf serum (Biochrom), passed through a 40-µm nylon mesh (BD 
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Falcon), and centrifuged for 5 minutes at 1500 rpm. The isolated sedimented cell 

fraction was incubated with erythrocyte lysis buffer containing 154 mmol/L NH4Cl, 10 

mmol/L KHCO3, and 0.1 mmol/L EDTA (all from Merck) for 10 minutes at room 

temperature. After centrifugation for 5 minutes at 1500 rpm the resulting cell pellet 

was resuspended in DMEM/F-12 containing 20% fetal calf serum. Cell concentration 

was determined with a Neubauer counting chamber and cells were seeded into 24-

well plates. All cells were grown in a humidified incubator (Thermo Scientific Heraeus 

Cytoperm2) under the conditions of 37°C and 5% CO2.  After cell adhesion for 24 

hours, preadipocytes exhibited the characteristic fibroblast like shape (Figure 11). 

Medium was replaced every other day.   

2.1.4. Adipocyte differentiation  

After adhesion of preadipocytes for 24 hours, adipose differentiation was induced 

with serum-free DMEM/F-12 containing 33 µmol/L biotin, 17 µmol/L pantothenate, 1 

nmol/L triiodothyronine, 100 nmol/L dexamethasone, 500 nmol/L insulin, 1 µmol/L 

pioglitazone, and 0.25 µmol/L isobutyl-methylxanthine, for the first 3 days, (all from 

Sigma). Half of the medium was replaced every other day; differentiation was verified 

by staining with Sudan III, in which differentiated adipocytes were defined as cells 

whose cytoplasm was filled completely with lipid droplets (Figure 12). Only cultures 

with >90% adipocytes were used for further adipocyte experiments. All cell culture 

media and buffers contained 100 U/mL penicillin, 100 U/mL streptomycin, 0.25 µg/mL 

fungizone, and 2 mmol/L L-glutamine (all from Cambrex).    
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Figure 11 Phase contrast micrographs of human subcutaneous preadipocytes. 

 

 

 

 

 

 

 

 

Figure 12 Phase contrast micrographs of human subcutaneous adipocytes. 

2.1.5. Principles of adipocyte differentiation  

Committed preadipocytes undergo growth arrest and consequently terminal 

differentiation into adipocytes, which is associated with an increase in expression of 

adipocytes genes, lipid- metabolizing protein and adipocyte fatty acid binding protein. 



  24 

During the growth phase, preadipocytes are morphologically similar to fibroblasts, 

when they are treated with a combination of isobutyl-methylxanthine (IBMX), 

dexamethasone and insulin, cells undergo a drastic cell shape change, start to adopt 

a rounded phenotype. Within 4-8 days preadipocytes begin to accumulate lipids in 

form of intracellular lipid droplets and subsequently acquire the morphological and 

biochemical characteristics of mature white adipocytes. Treatment of cells with 

dexamethasone activates CCAAT/enhancer-binding protein β (C/EBPβ) transcription 

factor, which plays a key role in the complex transcriptional cascade of adipocyte 

differentiation. IBMX inhibits soluble cyclic nucleotide phosphodiesterases, resulting 

in increased intracellular cyclic adenosine monophosphate (cAMP) levels. At the 

nuclear level, treatment with IBMX results in activation of the transcription factor 

C/EBP δ which induces transcription of C/EBP α and peroxisome proliferator-

activated receptor-γ (PPAR-γ). C/EBPα, β and δ are members of a transcription 

factors family that interact with the CCAAT (cytidine-cytidine-adenosine-adenosine-

thymidine) box motif, which occurs in several gene promoters [97]. PPAR-γ is a 

ligand-activated transcription factor which shares structural homology with the 

nuclear hormone receptor superfamily. PPARs induced transcriptional regulation 

requires heterodimerization with the retinoid X receptor (RXR). When activated by a 

ligand, the dimer increases transcription by binding to specific DNA sequence 

elements called peroxisome proliferator response element (PPRE) in the promoter 

region of target genes [98]. Within 3 days of exposure to inducers, the cells undergo 

two rounds of mitosis, and then mitotic clonal expansion is termed, which is required 

for differentiation. Insulin or insulin-like growth factor-1 promotes adipocyte 

differentiation by activating PI3-kinase and Akt activity. Modulation of the activity of 

the forkhead transcription factor Foxo1 appears to be necessary for insulin to 

promote adipocyte differentiation. C/EBP α and PPAR direct the final phase of 

adipogenesis by activating expression of adipocyte-specific genes, such as fatty acid 

synthetase, fatty acid binding protein, leptin and adiponectin. Biotin is a coenzyme in 

the metabolism of fatty acids and leucine, and it plays a role in gluconeogenesis [99]. 

Pantothenic acid is an essential nutrient required to synthesize coenzyme-A (CoA), 

as well as to synthesize and metabolize proteins, carbohydrates, and fats [100]. 

Triiodothyronine increases the production of the Na+/K+-ATPase and, in general, 

increases the turnover of different endogenous macromolecules by increasing their 

synthesis and degradation [101]. Pioglitazone stimulates the nuclear receptor 
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peroxisome proliferator-activated receptor gamma (PPAR-γ) and to a lesser extent 

PPAR-α. It modulates transcription of insulin-sensitive genes involved in lipid 

metabolism control in adipose tissue, muscle and liver [102]. 

2.1.6. Staining of human adipocytes with Sudan III 

Saturated (approximately 1%) stock solution of oil red O in 99% isopropanol was 

prepared. 60 ml of stock solution was diluted with 40 ml 1% dextrin. Solution was left 

to stand over night and then filtered.  

Adipocytes were washed 3 times with PBS. Then cells were fixed with 7.5% 

formaldehyde for 30 min, after that cells were again washed 3 times with PBS and 3 

times with 50% ethanol. Thereafter cells were stained for 40 min with Sudan III 

solution and washed three times with 50% ethanol and washed two times with tap 

water. (Figure 13) 

 

 

 

 

 

 

 

 

Figure 13 Phase contrast micrographs of human adipocytes stained with Sudan III. 

 

 

 



  26 

2.1.7. Stimulation of human preadipocytes and adipo cytes 

Preadipocytes and adipocytes were incubated in serum-free DMEM/F-12 for 24 hours 

before treatment with the cytokines. Thereafter, the medium was replaced with fresh 

DMEM/F-12 and recombinant human (rh) OSM (R&D Systems), rhIL-6 (Invitrogen), 

rhIL-8 (Invirtogen), TNF-α (R&D Systems), SFRP5 (R&D Systems), rhIL-10 

(Invitorgen), rhIL-4 (R&D Systems), rhIL-18 (Invitorgen), rhIL-33 (Biovison), rh-Leptin 

(Prospec) was added at the concentrations indicated. After incubation for 4, 24 and 

48h culture supernatants were collected and used immediately or stored at –20°C. 

Cells were lysed for mRNA isolation. 

 

Table 3 Used cytokines and concentrations for stimulation of primary HVPAC, HVAC, 

HSPAC and HVAC. 

2.2. Isolation and cultivation of human coronary ar tery smooth muscle cells 

(HCASMC) 

Human coronary artery smooth muscle cells (HCASMC) (Figure 14) were derived 

from tunica intima and tunica media of normal coronary arteries, obtained from 

patients undergoing heart transplantation. HCASMC were isolated by explant 

techniqueas described below. Human coronary artery was cut in small pieces and 

placed on a petri dish coated with 1% gelatine. Tissue pieces were covered with  
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minimal essential medium ( M199; Sigma) containing 20% fetal calf serum (FCS), 20 

ng/ml endothelial cell growth supplement (ECGS), 100 U/ml penicillin, 100U/ ml 

streptomycin, 0,25µg/ml fungizone and 2 mM L-gluatin (all Cambrex) and incubated 

at 37°C in a humidified atmosphere of 5% CO²: 95% a ir for one to four weeks. After 

cell attachment the pieces were removed. Cells were cultured in cell culture flasks 

coated with 1% gelatine in M199 containing 20% FCS 100 U/ml penicillin, 100U/ ml 

streptomycin, 0,25µg/ml fungizone and 2 mM L-glutamin at 37°C in humidified 

atmosphere of 5% CO²:95% air. Cells were used at low passages. For anoxia 

experiments cells were cultivated in Anaerocult® IS special incubation bags (Merck). 

2.2.1. Stimulation of human coronary artery smooth muscle cells (HCASMC) 

24 hours (h) before treatment with the respective cytokine HCASMC were incubated 

in M199 containing 0.1% bovine serum albumin (BSA; Sigma). Thereafter medium 

was replaced with fresh M199 containing 0.1% BSA and recombinant human PEDF 

obtained from Millipore (Bedford) at the indicated concentrations for time periods 

between 4h and 72h. For anoxia experiments cells were cultivated in Anaerocult® IS 

special incubation bags (Merck). 

 

Figure 14 Phase contrast micrographs of human coronary artery smooth muscle cells 

(HCASMC). 
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2.3. Isolation and cultivation  of human umbilical vein endothelial cells (HUVEC) 

HUVECs (Figure 15) were isolated from normal human umbilical cords. An adaptor 

was inserted into the lumen of umbilical cord vessel vein and fixed with sterilized 

cable-binder. A 20ml-syringe filled with HBSS (Sigma) was connected to the adaptor 

and the vessel was flushed with 20ml HBSS. Another syringe filled with collagenase 

solution was connected to the adaptor. The vessel was slowly filled with collagenase 

solution (collagenase type IV (Sigma), 2mg/ml in HBSS modified) until it leaked out at 

the other end of the vessel, then the other end of the vessel was closed with a 

haemostat and filling of the vessel was continued. The umbilical cord vessel was 

incubated 50 minutes at room temperature; the haemostat was opened after placing 

the vessel over a centrifuge tube to collect the perfusate. The vessel was flushed with 

20ml HBSS, which was and added it to the perfusate. This was then centrifuged for 5 

minutes at 1500 rpm. The supernatant was carefully discarded and the pellet was 

resuspended in M199 (Sigma) containing antibiotics, 20% FCS, 5U/ml heparin, 

5µg/ml endothelial cell growth supplement ECGS. Resuspended cells were 

transferred into an appropriate tissue culture flask, coated with 1% Gelatine and 

incubated at 37°C, 5% CO 2. Medium was changed after 24 hours. 

2.3.1. Stimulation of human umbilical vein endothel ial cells (HUVEC) 

For stimulation M199 containing 20% FCS was replaced with fresh M199 containing 

1.25% FCS and recombinant human PEDF obtained from Millipore (Bedford) at the 

indicated concentrations for time periods between 4h and 72h. For anoxia 

experiments cells were cultivated in Anaerocult® IS special incubation bags (Merck). 
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Figure 15 Phase contrast micrographs of human umbilical vein endothelial cells 

(HUVEC). 

2.4. RNA analysis  

2.4.1. mRNA purification and determination of RNA c oncentration 

Cells were stimulated as described above, supernatant was removed, and mRNA 

was isolated with the High Pure RNA Isolation Kit (Roche) according to the 

manufacturer’s instructions. Briefly cells were lysed with a mixture of lysis/binding 

buffer and PBS. The entire sample was pipetted into the High Pure filter tube and 

centrifuged. The filter tube was removed from the collection tube, the flow-through 

was discarded and the filter tube was again combined with the collection tube. The 

samples were incubated for 15 min at RT with a mixture of DNAse incubation buffer 

and DNAse I working solution, thereafter samples were washed once with wash 

buffer I and twice with wash buffer II always followed by centrifugation after each 

washing step. After the last washing step the filter tube was removed from the 

Collection tube, combined to a nuclease free, sterile microcentrifungation tube and 

elution buffer was added. The tube was centrifuged for 1 min at 8000 rpm, afterwards 

the filter was removed and the RNA containing tube was stored at -80°C. For 

determination of RNA concentration, 1µl of each RNA sample was examined on the 

NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific). 



  30 

2.4.2. Synthesis of complementary DNA by reverse tr anscription 

mRNA was transcribed into cDNA using the Transcriptor First Strand cDNA 

Synthesis Kit (Roche, Basel, Switzerland). After determination of RNA concentration, 

the appropriate volume for 1µg of RNA was calculated. The RNA was prepared in 

Eppendorf cups and filled up with nuclease-free water to 10 µl. 2.0µl Random 

Hexamer Primer and 1.0µl Anchored-oligo(dT)18 Primer  were added per sample 

and incubated 10 min at 65°C for annealing. Masterm ix was prepared according to 

Table 4 and was then added to the RNA samples and the program (10 minutes on 

25°C, 1 hour on 50°C, 5 minutes on 85°C) was starte d. 

 

 

 

Table 4 Mastermix for cDNA synthesis 

 

2.4.3. Quantitative Real-Time PCR 

The general principle of a hydrolysis probe assay (Figure 16) is basically the same as 

for standard PCR: cDNA is denaturated, annealed with primers and a desired 

fragment within the gene of interest is amplified. In addition, real-time PCR exactly 

quantifies the amount of PCR product in real time, simultaneously to the 

amplification. This is possible by addition of a short nucleotide probe labelled with a 

fluorescent reporter as well as a quencher. The 3´-end of the probe is 

phosphorylated, so that it can not be extended during PCR. When the probe is intact 

the quencher molecule is close enough to the reporter to suppress the reporter 

fluorescent signal. As the primers bind and are extended 5´- nuclease activity of the 

Taq polymerase cleaves the hydrolysis probe and reporter and quencher are 
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released separately. In the cleaved probe the dye is able to emit fluorescence, 

correlating to the amount of PCR product. Consequently, the total amount of PCR 

product can be measured at every time point during the process. Upon comparison 

with a housekeeping gene e.g. human glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) the exact amount of the gene of interest expressed in the cell population 

can be determined.   

 

Figure 16 Mechanism of hydrolysis probe assay (Roche) 

Specific mRNA levels for PEDF VEGF IL-8 and GAPDH were determined by real 

time PCR. Samples were analyzed in triplicates on a 96-well reaction plate (Roche, 

Basel, Switzerland) applying the real-time LightCycler Probe Master, LightCycler 

TaqMan Master UniversalProbeLibrary kit (Table 5). Real-time polymerase chain 

reaction (PCR) was performed with the LightCycler 480 Real-Time PCR. Primers, 

shown in Table 6, were designed using the Roche Universal ProbeLibrary Assay 

Design Centre (http://www.universalprobelibrary.com). Thermal program shown in 

Table 7 was used. The amplification conditions consisted of an initial incubation at 

95°C for 10 minutes, followed by 70 cycles of 95°C for 10 seconds, the respective 

annealing temperature of 60°C for 20 seconds and 72 °C for 20 seconds and a final 
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cooling to 40°C. Data was analyzed using LightCycle r 480 Software Version 1.5 

Service Pack 3 (Roche). 

 

 

Table 5 Real-time PCR master mix 

 

 

Table 6 Primer sequences for quantitative Real-time PCR  
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Table 7 Thermal cycling program for qRT-PCR 

 

2.5. Antigen assays 

2.5.1. Enzyme-linked immunosorbent assays  

IL8 and VEGF-A antigen in culture supernatants were measured by enzyme-linked 

immunosorbent assay (ELISA) using monoclonal antibodies against human VEGF-A 

(Quantikine Immunoassay; eBioscience.) and human IL8 (Quantikine ELISA kit; R&D 

Systems), respectively. All measurements were performed in triplicates.  

2.5.2. VEGF ELISA 

VEGF antigen was determined by a specific ELISA (Figure 17) with a standard range 

from 15.6 to 1000 pg/ml according to manufacturer’s instructions. In short the pre-

coated microwell strips were washed twice with wash buffer. Samples and standards 

were properly diluted with sample diluent, added to the wells and incubated at room 

temperature for 2 hours, on a microplate shaker set at 100 rpm. Test wells were 

empted and the plate was washed, the VEGF conjugate was added to the wells, 

incubated for 2 hour. Following a washing step substrate solution for colour 

development was applied for 20 min and the reaction was stopped by adding 50 µL 

of stop solution to each well. The ELISA was read using a TECAN Sunrise microplate 

reader (Tecan) at 450nm and analysed with deltaSoft (Tecan). VEGF-A 

concentrations read from the standard curve were multiplied by the dilution factor. 
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Figure 17 Principles of the VEGF-A ELISA (eBioscience) 
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2.5.3. IL-8 ELISA 

IL-8 antigen was detected in cell conditioned media using the human IL8 Quantikine 

ELISA kit (R&D Systems). This ELISA has a standard range from 31.2 to 2000 pg/ml 

according to manufacturer’s instructions. Samples and standards were properly 

diluted with assay diluent, added to the wells and incubated at room temperature for 

2 hours. Test wells were emptied and the plate was washed 4 times with wash buffer, 

the IL-8 conjugate was added to the wells, incubated for 1 hour. Following a washing 

step 200 µl of substrate solution for colour development was applied for 30 min and 

the reaction was stopped by adding 50 µL of stop solution to each well. The ELISA 

was read using a TECAN Sunrise microplate reader (Tecan) at 450nm and analysed 

with deltaSoft (Tecan). IL-8 concentrations read from the standard curve were 

multiplied by the dilution factor. 

 

2.6. Statistical analysis  

Data was compared statistically by t-test and ANOVA. Values of P<0.05 were 

considered significant.  
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3. Results 

 

3.1. Part I: Basal expression of PEDF in human visc eral and subcutaneous 

adipocytes.  

 

Human visceral adipocytes derived from human visceral fat expressed 24% more 

mRNA for PEDF than human visceral preadipocytes (Figure 18). Whereas human 

subcutaneous adipocytes derived from human subcutaneous fat expressed just 5% 

more mRNA for PEDF than human subcutaneous preadipocytes. The examined 

visceral and subcutaneous adipose tissue derived from 14 overweight donors (BMI > 

35kg/m²). The differences between PEDF expression in HVAC and HVPAC was 

statistically significant, using t-test for paired samples (p<0.03), one-way ANOVA 

revealed a significant difference (* p<0.01). Differences between PEDF expression in 

HSAC and HSPAC was statistically significant, using one-way ANOVA (* p<0.05). 
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Figure 18 Basal PEDF mRNA expression level in HSADI, HVADI (A), HSPAC and 

HVPAC (B). RNA was prepared from confluent monolayers of untreated HSADI, 

HVADI, HSPAC and HVPAC. PEDF mRNA expression of was analyzed by 

quantitative real-time PCR using glyceraldehyde-3-phosphate dehydrogenase as 

housekeeping gene as described in METHODS AND MATERIALS. Results are 

calculated as x-fold of HVPAC, HSPAC respectively which was set as 1 fold.  Values 

represent means +/- SD of 14 determinations with cells obtained from 14 different 

donors and gave similar results. (* p<0.05) 

 

. 
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3.2. Part II: Effect of inflammatory cytokines on P EDF expression. 

 

 

HSADI, HVADI, HSPAC and HVPAC were treated with different cytokines at the 

indicated concentrations (Table 3) for 4, 24, and 48 h. RNA was prepared from 

confluent monolayers of untreated and treated HSADI, HVADI, HSPAC and HVPAC 

and RT-PCR using specific primer for PEDF and GAPDH as performed as described 

in METHODS AND MATERIALS. 

Treatment of the HSAC, HVAC, HSPAC and HVPAC with the indicated inflammatory 

cytokines (Table 3) for 4, 24 and 48h did not result in a significant change of the 

PEDF mRNA-expression. (Data not shown) 

 

3.3. Part III: Influence of stimulation with PEDF o n VEGF production in visceral 

adipocytes.  

 

Effect of PEDF on VEGF expression in visceral adipo cytes under normoxic 

conditions.  

 

Under normoxic conditions PEDF treatment increased VEGF expression significantly 

in human visceral adipocytes. If cells were treated with PEDF at a concentration of 

400 ng/ml for 24, 48 or 72 hours, VEGF expression was increased up to 6 fold 

(Figure 19). 

 

 

 

Figure 19 VEGF mRNA expression in human primary adipocytes cultivated under 

normoxic conditions. Confluent monolayers of HVADI were incubated for 24, 48, or 
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72 h in absences or in presence of PEDF at a concentration of 400 ng/ml. Whole 

cells were lysed, mRNA was prepared and analysed by RealTime-PCR with primers 

specific for VEGF and GAPDH as described in METHODS AND MATERIALS. VEGF 

mRNA level was normalized according to the respective GAPDH. mRNA levels are 

given as fold of control which was set as 1-fold. Experiments were performed 3-times 

with cells obtained from 3 different donors and gave similar results. A representative 

experiment is shown. Values represent the mean value +/- SD. (* p<0.5) 

 

Effect of PEDF on VEGF protein production in viscer al adipocytes under 

normoxic conditions.  

 

Under normoxic conditions PEDF increased VEGF protein production significantly in 

human visceral adipocytes. If cells were treated with PEDF at a concentration of 400 

ng/ml for 24, 48 or 72 hours, VEGF production was increased up to a third (Figure 

20). 

 

 

 

Figure 20 Secretion of VEGF in human primary adipocytes cultivated under normoxic 

conditions. Confluent monolayers of HVADI were incubated for 24, 48, or 72 h in 

absences or in presence of PEDF at a concentration of 400 ng/ml. Conditioned 

media were collected and VEGF antigen was determined by ELISA as described in 

MATERIALS AND METHODS. Experiments were performed 3-times with cells 

obtained from 3 different donors and gave similar results. A representative 

experiment is shown.  Values represent the mean value +/- SD (* p<0.005). 

Effect of PEDF on VEGF expression in visceral adipo cytes under anoxic 

conditions.  
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Under anoxic conditions PEDF treatment did not influence VEGF expression 

significantly in human visceral adipocytes after 24 and 72h incubations but after 48h 

PEDF treatment did influence VEGF expression significantly (Figure 21). 

 

 

 

 

Figure 21 Expression of VEGF in human primary adipocytes treated with 400 ng/ml 

PEDF for 24, 48, 72 hours cultivated under anoxic conditions.  Confluent monolayers 

of HVADI were incubated for 24, 48, or 72 h in absences or in presence of PEDF at a 

concentration of 400 ng/ml. Whole cells were lysed, mRNA was prepared and 

analysed by RealTime-PCR with primers specific for VEGF and GAPDH as described 

in METHODS AND MATERIALS. Experiments were performed 3-times with cells 

obtained from 3 different donors and gave similar results. A representative 

experiment is shown. VEGF mRNA levels was normalized according to the 

respective GAPDH. mRNA levels are given as fold of control which was set as 1-fold. 

Values represent the mean value +/- SD (* p<0.05). 
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Effect of PEDF on VEGF protein production in viscer al adipocytes under anoxic 

conditions.  

 

Under hypoxic conditions VEGF protein production in control cells was the same as 

in PEDF treated cells. Hypoxia increased VEGF production in control cells and in 

cells treated with PEDF (400 ng/ml) in comparison with PEDF treated cells under 

normoxic conditions and normoxic control cells (Figure 22).  

 

 

 

 

 

Figure 22 Secretion of VEGF in human primary adipocytes treated with 400 ng/ml 

PEDF for 24, 48, 72 hours cultivated under normoxic and hypoxic conditions.  

Confluent monolayers of HVADI were incubated for 24, 48, or 72 h in absences or in 

presence of PEDF at a concentration of 400 ng/ml. Conditioned media were collected 

and VEGF antigen was determined by ELISA as described in MATERIALS AND 

METHODS. Experiments were performed 3-times with cells obtained from 3 different 

donors and gave similar results. A representative experiment is shown.  Values 

represent the mean value +/- SD. (* p<0.05) 
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3.4. Part IV: Effect of PEDF on expression and prot ein level of VEGF in 

HCASMC. 

 

Effect of PEDF on mRNA expression level of VEGF in HCASMC under normoxic 

conditions  

 

When HCASMC under normoxic conditions were treated with PEDF at a 

concentration of 4, 40, 400, 800 ng/ml for time period of 4, 24, 48 and 72h a dose 

and time dependent effect on VEGF mRNA production was observed (Figure 23). 

 

 

 

Figure 23 Decrease of VEGF mRNA expression by human coronary artery smooth 

muscle cells treated with PEDF is dose and time dependant. Confluent monolayers of 

HCASMC were incubated for 12, 24, 48, or 72 h in absences or in presence of PEDF 

at a concentration of (A) 4, (B) 40, (C) 400 or (D) 800 ng/ml. Whole cells were lysed, 

mRNA was prepared and analysed by RealTime-PCR with primers specific for VEGF 

and GAPDH as described in METHODS AND MATERIALS. Experiments were 

performed 5-times with cells obtained from 5 different donors and gave similar 

results. A representative experiment is shown. VEGF mRNA level was normalized 

according to the respective GAPDH. mRNA levels and are given as fold of control 

witch was set as 1-fold. Values represent the mean value +/- SD (* p<0.01). 
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Effect of PEDF on VEGF protein level in HCASMC unde r normoxic conditions is 

dose and time dependant. 

 

VEGF ELISA revealed that stimulation of HCASMC with PEDF decreases VEGF 

protein production. When  HCASMC were incubated with PEDF 4 ng/ml under 

normoxic conditions the protein level of VEGF was only slightly diminished, but 

treatment with 40, 400 or 800 ng/ml revealed a significant dose and time dependant 

decrease of VEGF production. If HCASMC were incubated with 40, 400, 800 ng 

PEDF for 48 hours VEGF level was inhibited by 14% (4 ng/ml), 26% (40 ng/ml), 27% 

(400 ng/ml), and 41% (800 ng/ml) (Figure 24). 

 

 

 

Figure 24 Effect of PEDF on VEGF protein production level in human coronary artery 

smooth muscle cells is dose-and time-dependent. Control is shown in blue, PEDF 

treated cells in pink. (F=7.60, p<0.05). Confluent monolayers of HCASMC were 

incubated for 12, 24, 48, or 72 h in absences or in presence of PEDF at a 

concentration of (A) 4, (B) 40, (C) 400 or (D) 800 ng/ml. Conditioned media were 

collected and VEGF antigen was determined by ELISA as described in MATERIALS 
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AND METHODS. Experiments were performed 5-times with cells obtained from 5 

different donors and gave similar results. A representative experiment is shown. 

VEGF concentrations are given as fold of control witch was set as 1-fold. Values 

represent the mean value +/- SD (* p<0.05). 

 

 
Effect of PEDF on VEGF protein level in HCASMC unde r hypoxic conditions. 

 

When HCASMC under hypoxic conditions were treated with PEDF at a concentration 

of 400 ng/ml, VEGF protein production after 48 h was equal to the level in not treated 

cells. However, VEGF protein in both, hypoxic PEDF treated and not treated cells 

was significantly higher than in normoxic PEDF treated cells (Figure 25). 

 

 

 

 

Figure 25 Effect of 400 ng PEDF and hypoxia for time periods of 4, 24 and 48h on 

VEGF protein production level in human coronary artery smooth muscle cells. 

Combination of PEDF and hypoxia induced VEGF upregulation. Confluent 

monolayers of HCASMC were incubated for 12, 24 or 48 h in absences or in 

presence of PEDF at a concentration of 400 or ng/ml, under normoxic  (pink) and 

hypoxic (yellow, blue) conditions. Conditioned media were collected and VEGF 

antigen was determined as described in MATERIALS AND METHODS. . 

Experiments were performed 3-times with cells obtained from 3 different donors and 

gave similar results. A representative experiment is shown.  Values represent the 

mean value +/- SD. (* p<0.001) 
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Effect of PEDF on mRNA expression level of IL-8 in HCASMC  

 

When HCASMC were treated with PEDF at a concentration of 400 ng/ml IL-8 mRNA 

production was diminished up to 78% (Figure 26) 

 

  

 

Figure 26 Effect of PEDF stimulation on IL-8 expression in HCASMC. Confluent 

monolayers of HCASMC were incubated for 4, 8, 16, 24 or 48 h  in absence or in 

presence of PEDF at a concentration of 400 ng/ml. Whole cells were lysed, mRNA 

was prepared and analysed by RealTime-PCR with primers specific for IL-8 and 

GAPDH as described in METHODS AND MATERIALS. Experiments were performed 

3-times with cells obtained from 3 different donors and gave similar results. A 

representative experiment is shown. IL-8 mRNA level was normalized according to 

the respective GAPDH. mRNA levels are given as fold of control witch was set as 1-

fold. Values represent the mean value +/- SD. (* p<0.05) 
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Effect of PEDF on IL-8 protein production level in HCASMC 

 

When HCASMC were treated with PEDF at a concentration of 400 ng/ml IL-8 protein 

production was diminished up to 37% (Figure 27) 

 

 

 

 

 

Figure 27 Effect of PEDF stimulation on IL-8 secretion after 4, 8, 16, 24 and 48 hours 

in HCASMC. Confluent monolayers of HCASMC were incubated for 4, 8, 16, 24 or 48 

h in absences or in presence of PEDF at a concentration of 400 ng/ml. Conditioned 

media were collected and IL-8 antigen was determined by ELISA as described in 

MATERIALS AND METHODS. Experiments were performed 3-times with cells 

obtained from 3 different donors and gave similar results. A representative 

experiment is shown. Values represent the mean value +/- SD. (* p<0.05) 
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3.5. Part V: Effect of PEDF on IL-8 expression and protein production in 

HUVEC. 

 

Effect of PEDF on the IL-8 m RNA level in HUVEC  

 

A significant decrease in IL8 mRNA was observed in HUVEC treated with 400ng/ml 

human recombinant PEDF (Figure 28).  

 

 

 

Figure 28 IL-8 mRNA expression decreases after stimulation with 400ng PEDF for 4, 

8, 24 and 48h in HUVEC. Confluent monolayers of HUVEC were incubated for 4, 8, 

24 or 48 h in absences or in presence of PEDF at a concentration of 400 or ng/ml, 

under normoxic conditions. Whole cells were lysed, mRNA was prepared and 

analysed by RealTime-PCR with primers specific for IL-8 and glyeraldehyd-3-

phosphate (GAPDH) as described in METHODS AND MATERIALS. Experiments 

were performed 3-times with cells obtained from 3 different donors and gave similar 

results. A representative experiment is shown. IL-8 mRNA level was normalized 

according to the respective GAPDH. mRNA level and are given as fold of control 

witch was set as 1-fold. Values represent the mean value +/- SD. (* p<0.05) 
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Effect of PEDF on the IL-8 protein production level  in HUVEC  

 

A significant decrease in IL8 protein production was observed in HUVEC treated with 

400ng/ml human recombinant PEDF (Figure 29).  

 

 

 

 

 

 

Figure 29 IL-8 mRNA expression decreases after stimulation with 400ng PEDF for 4, 

8, 24 and 48h in HUVEC. Confluent monolayers of HUVEC were incubated for 4, 8, 

24 or 48 h in absences or in presence of PEDF at a concentration of 400 or ng/ml, 

under normoxic conditions. Conditioned media were collected and IL-8 antigen was 

determined by ELISA as described in MATERIALS AND METHODS. Experiments 

were performed 3-times with cells obtained from 3 different donors and gave similar 

results. A representative experiment is shown. Values represent the mean value +/- 

SD. (* p< 0.05) 
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4. Discussion 

 

In context of obesity adipose tissue secretes a variety of inflammatory adipokines 

such as IL-6, PAI-1 and TNF- α. A novel adipokine is PEDF, which has been shown 

to be expressed and secreted by adipocytes, differentiated out of human 

mesenchymal stem cells [103] and 3T3-L1 mouse adipocytes [104,105]. Recent 

studies revealed PEDF as one of the most abundant adipokines in supernatant of 

3T3-L1 adipocytes and a significant increase in expression and secretion of PEDF 

during differentiation of human adipocytes was shown. Since Crowe et al. [104] 

demonstrated that PEDF expression in mice correlates with obesity the role of 

adipose tissue in PEDF secretion became evident. Furthermore PEDF protein levels 

are positively regulated with oxygen tension in anoxic cardiac myocytes as well as in 

hypoxic retinal glia cells [37,41]. Famulla et al. could show that in adipocytes hypoxia 

negatively regulates PEDF expression and release [45]. PEDF is involved in many 

physiological and pathological processes of the human organism. However, little is 

known about the regulation of PEDF expression and secretion and its impact on 

angiogenesis. These aspects, which were the focus of the present work, will be 

discussed in the following. 

 

 

Basal PEDF expression in human visceral and subcuta neous preadipocytes 

and adipocytes. 

 

The expression pattern of PEDF during differentiation from human preadipocytes to 

adipocytes is not yet understood in detail. A number of studies point to a decrease in 

PEDF mRNA expression during differentiation in 3T3-L1 cells [84,105], whereas 

other studies showed a differentiation dependant increase of PEDF mRNA in human 

adipocytes [103,106]. Famulla et al showed that in primary human adipocytes 

isolated out of subcutaneous adipose tissue from lean or moderately overweight 

women PEDF secretion and expression increased significantly during differentiation 

process [45]. Crowe et al demonstrated in mice that PEDF secretion in adipose 

tissue correlates with obesity and diabetes [104]. In contrast to other systems we 

didn’t examine whole-tissue PEDF expression which does not account for the 

heterogeneous cellular composition of adipose tissue. The number of dendritic cells 
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increases in adipose tissue with overall body fat mass, which seems to be a source 

of PEDF [107] therefore further processing of adipose tissue is essential for accurate 

results. In our system of in vitro differentiated adipocytes we used subcutaneous and 

visceral preadipocytes isolated out of adipose tissue from patients undergoing gastric 

surgery who had a BMI over 35 kg/m². In the present study PEDF expression in 

human visceral adipocytes, preadipocytes has been characterized in detail. Visceral 

adipocytes expressed 24% more PEDF mRNA than visceral preadipocytes whereas 

subcutaneous adipocytes expressed just 5% more PEDF mRNA than subcutaneous 

preadipocytes. Additionally, two other studies could show that PEDF plasma levels in 

human correlate with obesity [104]. We showed in our study that the PEDF mRNA 

level in subcutaneous preadipocytes and adipocytes differs slightly and that visceral 

adipocytes express a higher PEDF mRNA level than visceral preadipocytes. Famulla 

et al were able to show that subcutaneous adipocytes derived from in lean people 

express significantly more PEDF than subcutaneous preadipocytes, leading to the 

suggestion that in overweight patients subcutaneous preadipocytes are an important 

PEDF source and possible are responsible for the higher PEDF level in obesity [45]. 

 

 

Effect of inflammatory cytokines on PEDF expression   

 

Treatment of the HSAC, HVAC, HSPAC and HVPAC with the inflammatory cytokines 

did not affect PEDF expression in human adipose tissue. Although visceral and 

subcutaneous adipocytes express gp130, the receptor for all gp130 ligands, none of 

the gp130 cytokines used in our study resulted in a significant change in PEDF 

expression. Further studies should be conducted to verify these results also on the 

protein level. 

 

 

Influence of PEDF on VEGF expression in visceral ad ipocytes 

 

Modulation of angiogenesis in adipose tissue may constitute a strategy to affect 

obesity [2]. In the present study we demonstrated that PEDF treatment under 

normoxic conditions increases VEGF expression and protein production in human 

visceral adipocytes. This was in contrast to treatment with PEDF under hypoxia 
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where production the of angiogenic stimulator VEGF was not influenced. We 

observed that VEGF protein secretion in visceral adipocytes treated under hypoxic 

conditions was 20% higher than under normoxic conditions. This was in contrast to 

our results Wree et al. recently published that in white adipocytes VEGF expression 

does not change upon hypoxic stimulation [108]. PEDF expression and production by 

adipocytes are elevated in rodent obesity models, also in human overweight patients 

adipose tissue releases PEDF, leading to a higher PEDF level in the bloodstream. 

Adipocytes used for this investigation were isolated from adipose tissue derived from 

overweight patients and therefore probably were exposed to a higher PEDF level. In 

further investigations VEGF expression and production in adipocytes treated with 

PEDF derived from lean patients should be used as comparison. 

 

Effect of PEDF stimulation on VEGF mRNA and protein  level in  HCASMC  

 

There are many inhibitors and stimulators of angiogenesis and among them, VEGF 

appears as a primary angiogenic stimulator [109]. Several studies showed that PEDF 

can induce differentiation and inhibition of angiogenesis in several tumors and 

disrupts the balance between pro- and anti-angiogenic triggers. Guan et al initially 

demonstrated that PEDF is involved in tumor angiogenesis, by downregulation of 

VEGF and bFGF and enhanced the expression of angiogenic inhibitor 

thrombospondin 1 (TSP-1) [110]. It was demonstrated in mice that substances 

inhibiting the angiogenic effect of VEGF also inhibited the growth of adipose 

tissue.[47] Therefore it seems warranted to acquire more information on the 

expression and functional role of pro- and antiangiogenic factors. In this study, we 

explore whether PEDF as angiogenic factor could be a possible target in the 

regulation of adipose tissue growth. The general aim of this project was to 

comprehend the significance of PEDF for adiposity and angiogenesis. The 

antiangiogenic action of PEDF was identified by Dawson and colleagues [43]. In the 

eye it was demonstrated that PEDF is a major inhibitor of development of vascular 

network counteracting the proangiogenic effect of VEGF [111-114]. Additionally 

antioxidant, anti-inflammatory and anticancer activities of PEDF have been shown 

[48,63,115]. Signalling pathways mediating the broad activities of PEDF have not yet 

been identified. Previous studies demonstrated that VEGF is highly expressed in 

HCASMC. The present study under normoxic conditions identified PEDF as an in 
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vitro inhibitor of proangiogenic factors VEGF in HCASMC, as well on mRNA level as 

on protein production level. We observed a reduction of VEGF production in a dose- 

and time dependant manner. PEDF mediated signalling in HCASMC may lead to 

inhibition of angiogenesis. Interestingly under hypoxic conditions VEGF protein level 

in HCASMC was not influenced by treatment with PEDF. It remains to be elucidated 

whether the unchanged VEGF secretion under hypoxic conditions occurs by a ROS- 

dependent mechanism. 

 

 

Effect of PEDF on IL-8 mRNA expression and secretio n in HCASMC and 

HUVEC. 

 

Recently a study from HO et al showed that PEDF induces apoptosis in primary 

macrophages and endothelial cells by increasing PPARγ expression and 

transcriptional activity [58]. Hirsch et al were able to show that PEDF treatment 

inhibits production of IL-8 mRNA and protein in human hormone-refractory cancer 

cells [96]. They demonstrated that PEDF limits IL-8 production through inactivation of 

NFκB and activation of PPARγ. PPAR γ is a nuclear fatty acid receptors with ligand-

dependent transcriptional activity, regulating various aspects of energy homeostasis 

[58]. In the present study we examined the in vitro effect of PEDF on IL-8 production 

in HCASMC and HUVEC and were able to demonstrate a significant decrease in 

mRNA expression and secretion decrease in both cell types. Decreased IL-8 

production is probably involved in the antiangiogenic impact of PEDF. Further 

investigations are needed to test if in HACSMC and HUVEC PPARγ upregulation and 

suppressed NFκB-mediated transcription are the involved pathways in reduced 

production of IL-8 as it was shown in human refractory prostate cancer cells [58,96].  
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Conclusion and outlook  

 

The present study confirms the importance of PEDF for various mechanisms of 

angiogenesis. Our study demonstrated that under normoxic conditions PEDF 

increased VEGF mRNA and protein production significantly in human visceral 

adipocytes whereas in HCASMC treated with PEDF a dose and time dependent 

decrease of VEGF mRNA and protein production was observed. These results 

suggest a cell-specific effect of PEDF that needs further investigations. Also, PEDF 

reduces the expression of IL-8, another antiangiogenic factor. IL-8 mRNA and protein 

production was diminished after PEDF treatment as well in HCASMC as in HUVEC. 

Our results indicate that PEDF may play a role in obesity progression. Furthermore in 

adipose tissue PEDF secretion may lead to upregulation of proangiogenic factor 

VEGF. Further research is required to estimate whether blockade of PEDF signalling 

may be a promising tool for obesity therapy.  
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5.  Abstract  

  
5.1. Summary 
 
Introduction  The proportion of overweight and obese people has increased 

significantly over the last few decades, nowadays one of three adults is overweight 

and one of ten is obese [8]. Overweight and obese patients are at higher risk of 

developing a number of diseases such as cardiovascular diseases such as 

arthrosclerosis,  diabetes mellitus, high blood pressure and cancer and have an 

increased risk of premature mortality [116]. Today overweight and obesity is the fifth 

most frequent cause of death worldwide [8]. Adipose tissue, besides its role in energy 

storage, is now also seen as an important endocrine organ that produces and 

secretes a variety of cytokines, hormones and other proteins [117]. Elevated plasma 

levels of adipose tissue derived factors, called adipokines, are found in obese 

patients and are associated with the development and progression of cardiovascular 

diseases [118,119]. Recently it has been shown that the protein pigment epithelium 

derived factor (PEDF) a 50kDa member of the serpin family is expressed by 

adipocytes. PEDF is a multifunctional protein with antiangiogenic, antithrombotic, 

neuroprotective, antitumorigenic and antiinflammatory properties [103]. It has been 

demonstrated that PEDF is massively expressed in human adipose tissue, 

expression level increases significantly during adipogenesis and  its plasma level is 

elevated in overweight patients [45].  

Aim  It is the aim of this project to characterize the possible role of PEDF in obesity 

and to investigate the parakrine effects of PEDF on cell types involved in modulation 

of angiogenesis such as human coronary artery smooth muscle cells (HCASMC) and 

human umbilical vein endothelial cells (HUVEC).  

Methods  (I) The first step was to study the regulation of PEDF expression in human 

visceral and subcutaneous preadipocytes and adipocytes. (II) As obesity is 

associated with a generalized inflammatory state we tested whether inflammatory 

mediators affect the expression of PEDF in preadipocytes and adipocytes. (III) As 

anoxia is a critical modulator in various organs and tissues, modulating angiogenesis 

we also studied a possible influence of PEDF in combination with anoxia on the 

expression patterns of adipocytes. (IV) Further on we stimulated human coronary 

artery smooth muscle cells (HCASMC) with PEDF to investigate the inhibition of 

VEGF on RNA and protein level. (V)In addition it was aim of our project to study a 
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possible correlation between PEDF level and Interleukin 8 (IL-8) in HUVEC and 

HCASMC. 

Results PEDF mRNA expression was significantly increased during adipogenesis of 

primary visceral adipocytes. Stimulation of visceral and subcutaneous preadipocytes 

and adipocytes with inflammatory cytokines showed no effect on the PEDF mRNA 

level. Furthermore, PEDF significantly increased VEGF expression and secretion in 

human visceral adipocytes. In visceral adipocytes treated with PEDF under normoxic 

conditions, protein expression was significantly increased in parallel with PEDF 

secretion. In contrast to VEGF increase in adipocytes, VEGF secretion was 

significantly reduced by PEDF in HUVEC and HCASMC. Additionally in HCASMC 

and HUVEC PEDF reduced secretion and expression of IL-8. 

Conclusion PEDF is one of the most abundant secreted cytokines by adipose tissue 

and regulates angiogenic processes by influencing VEGF production in HUVEC, 

HCASMC and HVADI as well as IL-8 secretion in HUVEC and HCASMC. Because of 

these various actions, PEDF seems to be an important adipokine significantly 

involved in the modulation of angiogenesis, obesity progression and obesity-related 

disorders.  
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5.2. Zusammenfassung  

 

Einleitung  Der Anteil übergewichtige und adipöser Menschen ist in den 

vergangenen Jahrzehnten stark angestiegen, mittlerweile ist bereits jeder dritte 

Erwachsene übergewichtig und jeder zehnte sogar adipös [8]. Übergewicht und 

Adipositas begünstigen die Entwicklung einer ganzen Reihe von Krankheiten wie 

Herz-Kreislauf-Erkrankungen z.B. Artherosklerose, Diabetes mellitus, Bluthochdruck, 

Krebs und erhöhen das Risiko eines vorzeitigen Todes [116]. Übergewicht und 

Adipositas stellen mittlerweile die fünfthäufigsten Todesursache weltweit dar [8]. 

Fettgewebe ist nicht nur ein Speicherorgan für Energie, sondern wirkt auch als 

aktives endokrines Organ, das eine Vielzahl von Zytokinen, Hormonen und anderen 

Proteinen sezerniert [117]. Die vom Fettgewebe ausgeschütteten Faktoren werden 

Adipokine genannt, kommen im Plasma adipöser Patienten in erhöhter Konzentration 

vor und werden mit der Entstehung und Progression von Herz-Kreislauf-

Erkrankungen in Verbindung gebracht [118,119]. Eines der von Adipozyten 

exprimierten Proteine ist der pigment epithelium derived factor (PEDF), ein 50kDa 

gorßes Mitglied der Serpin Familie. PEDF ist ein pleiotropes Protein mit 

antiangiogenen, antithrombotischen, neuroprotektiven, antitumorigenen und 

antiinflammatorischen Eigenschaften [103]. Erst kürzlich wurde gezeigt, dass PEDF 

im humanen Fettgewebe massiv exprimiert wird, die Expression des PEDF während 

der Adipogenese signifikant ansteigt und dass PEDF im Plasma übergewichtiger 

Menschen in erhöhter Konzentration vorkommt  [45].  

Ziel  Ziel dieses Projekt ist es eine mögliche Rolle von PEDF bei Adipositas zu 

charakterisieren und die parakrine Wirkungen von PEDF auf, an der Angiogenese 

beteiligte Zelltypen, wie human coronary artery smooth muscle cells (HCASMC) und 

auf human umbilical vein endothelial cells (HUVEC), zu untersuchen.  

Methoden  (I) Zu diesem Zweck wurde die Expression von PEDF in, aus viszeralem 

und subkutanem  Fettgewebe isolierten Präadipozyten und Adipozyten untersucht. 

(II) Zusätzlich wurde untersucht, ob die Expression des PEDF in Präadipozyten und 

Adipozyten durch inflammatorische Zytokine beeinflusst wird. (III) In vivo herrscht im 

Fettgewebe ein entzündliches, mit Sauerstoff minderversorgtes Milieu deshalb wurde 

untersucht ob PEDF unter hypoxische Bedingungen das  Expressionsmuster von 

Adipozyten beeinflusst. (IV) Weiters wurden HCASMC mit PEDF stimuliert um die 

Hemmung der Genexpression von Vascular Endothelial Growth Factor (VEGF) auf 



  57 

RNA- und Proteinebene zu untersuchen. (V) Ebenso sollte untersucht werden ob die 

Expression von IL-8 in HUVEC durch Stimulation mit PEDF beeinflusst wird. 

Ergebnisse Die PEDF Expression ist während der Adipogenese von primären 

visceralen Adipozyten signifikant angestiegen. Die Stimulation von humanen 

visceralen und subkutanen Preadipozyten und Adipozyten mit inflammatorischen 

Zytokinen führte zu keiner signifikanten Veränderung der Expression von PEDF auf 

mRNA Niveau. Expression und Sekretion des VEGF in humanen visceralen 

Adipozyten sind nach Inkubation mit PEDF unter normoxischen Bedingungen 

signifikant angestiegen. Im Gegensatz zum dem Anstieg der VEGF Expression in 

Adipozyten wurde die VEGF Expression und Sekretion  in HUVEC und HCASMC 

durch Behandlung mit PEDF signifikant reduziert. Zusätzlich konnte gezeigt werden, 

dass in HCASMC und HUVEC als Folge von PEDF Stimulation die Expression und 

Sekretion  von IL-8 abfällt.  

Schlussfolgerung  PEDF ist eines von Fettgewebe in hohen Konzentrationen 

ausgeschüttetes Zytokin, das an der Regulation der Angiogenese beteiligt ist. In   

HUVEC, HCASMC and HVADI beeinflusst PEDF die Produktion von VEGF und 

außerdem die Sekretion von IL-8 in HUVEC und HCASMC. Durch seine zahlreichen 

Wirkungsweisen könnte der PEDF in der Modulation der Angiogenese von 

Bedeutung sein, ebenso könnte der PEDF eine wichtige Rolle haben bei der 

Progression von Adipositas und von Erkrankungen die im Zusammenhang mit 

Übergewicht stehen. 
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 6.3. Abbreviations 
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IGF   insulin-like growth factor 

IL-1   interleukin 1 
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PAI-1   plasminogen activator inhibitor 1  

PBS   phosphate buffered saline 

PCR    polymerase chain reaction  

PEDF   pigment epithelium derived factor  

PlGF    placental growth factor 

PLA2   phospholipase A2  

PPARγ  peroxisome proliferator-activated receptors 
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VEGF   vascular endothelial growth factor  

VEGFR  vascular endothelial growth factor receptor 

USF ubiquitous basic helix–loop–helix-leucine zipper transcription 

factor 
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