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“Whereas the beautiful is limited, the sublime is limitless,
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1. Introduction

1.1 Systems Biology

Systems Biology refers to a field in molecular biosciences that aims to understand
molecular mechanisms of cells, tissues, or organisms by integrative analysis of multiple
molecular and cellular components. However, since a system is not only the mere
assembly of its components, a system-level understanding cannot be achieved by the
study of singular molecules one by one and the focus of research has shifted from

single elements to networks, from matters to states, and from structures to dynamics

[1].

The following sections provide an overview of the different aspects and concepts of
Systems Biology that build the basis for the concepts and methods used in the studies
presented in this thesis.

1.1.1 The Evolution of High-throughput Technologies

The idea of understanding biological entities as dynamic systems is not new, but the
availability of methods for investigating them as such led to a tremendous increase of
research in this field as seen over the last decades. Along with the technical progress,
the advance of high-throughput technologies opened up possibilities for a more global
view on cellular processes. Large-scale data generation triggered the advent of a new
domain which can be embraced by the term “omics”, and refers to the comprehensive
analysis of a biological system on the respective level of observation, including
genomics, transcriptomics, proteomics and many more (an overview of the different
omics technologies is given in section 1.2.1). The enormous increase in data amounts
is illustrated in figure 1 referencing the number of available sequences provided in the
NCBI RefSeq database between 2004 and 2011 (available at

ftp://ftp.ncbi.nih.gov/refseqg/release/release-statistics/).
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Figure 1: The histograms show the increase in number of accessions available in the
NCBI RefSeq database between 2004 and 2011 for genomic, RNA, and protein
sequences respectively.

The progress of high-throughput technologies has also implicated a shift from a

traditional hypothesis-driven to a data-driven research. Data-driven or “top-down’
approaches make use of an iterative cycle that starts with experimental data, followed
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by data analysis and data integration, and ends with the formulation of hypotheses [2].
However, the ‘traditional’ way to define a hypothesis and design experiments for
hypothesis testing cannot be completely replaced by data-driven approaches. Rilegg
and colleagues [3] described a rather complementary relationship between omics data
and hypothesis-driven research due to three major reasons: (i) profiles of omics-based
studies have intrinsic limitations because of their descriptive nature, (ii) the integration
of multi-level omics datasets has the potential to feed hypothesis-driven research, (iii)
omics approaches may generate unexpected results that could not have been

anticipated by hypothesis-driven research.

Certainly, the knowledge on the identity of the entirety of cellular components on a
respective level of observation, as, for example achieved with the completion of
sequencing of the human genome, has significantly contributed to advances in cellular
biology. Nevertheless, the human genome has surprisingly few genes compared to far
simpler organisms like C. elegans, opening the question where the difference in
biological complexity comes from. Answers standing to reason are the interactions
between genes, proteins and their regulatory mechanisms and can be addressed by
the integration of data from different levels of observation. With the increase of data
amounts and the rise in complexity of analysis strategies, the use of informatics

techniques became necessary.

1.1.2 Computational Systems Biology

An important issue that arises from the generation of large quantities of data is their
appropriate handling which concerns analysis, collection, classification, visualization,
manipulation, storage, as well as dissemination of the acquired information. Thus, the
integration of experimental and computational approaches became necessary and led
to the emergence of the sub-discipline computational Systems Biology. To this point
the need of interdisciplinary work became evident.

Basically, one can divide two groups of research in Systems Biology. One is the
research on tools and algorithms for system-level studies. The other is research on
system properties of specific biology, using the tools and algorithms developed. [1]. At
a first glance, the former group is exclusively taken by computer scientists whereas the
second one occupies the biologists. Nevertheless, scientists have to engage in

interdisciplinary research collaborations to meet the demands of systems biology. At
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minimum, computer scientists should acquaint themselves with the language of biology
and biologists should understand the language of mathematics and computer modeling
[4] in order to successfully take advantage of the possibilities that are provided by the
integration of both disciplines.

Achievements of these combined efforts are reflected by the long list of bioinformatics
tools that emerged during the last decades, ranging from statistical data processing to
data annotation, data integration, and data management services. Remaining
challenges concern the development of tools for automated workflow processing,

allowing the use of multiple tools and the integration of data from different sources.

1.1.3 Network Biology

A major challenge in Systems Biology which inevitably demands a computational
approach is the modeling of complex biological systems, for example the
representation of relationships between cellular components as networks. The
development of high-throughput techniques has allowed for the simultaneous
interrogation of the status of cellular components [5], resulting in the emergence of
comprehensive networks describing protein-protein interactions, metabolic reactions,
signal transduction, and transcriptional regulation. Starting from the identification of
small regulatory units (network motifs), networks can be built up to functional modules
and in the end to large-scale organizational networks. The recognition of the modularity
of many biological systems has brought remarkable insights into cellular organization.
Since modules are defined as relatively small units with functional separation from
other modules, they are manageable to undergo characterization. Higher-level
properties of cells, such as their ability to integrate information from multiple sources,

can be described by the pattern of connections among their functional modules [6].

Here again, in view of the temporally and spatially dynamic properties of biological
systems, as well as of the obvious dependencies between the different types of
networks, the need of integration of data from different levels of observation, including
genes, proteins, or metabolites, becomes evident. Thus, the combination of the
currently mostly separate layers of information in networks is demanded to enhance

the understanding of cellular function [7]. In the course of our analyses towards
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molecular characterization of kidney diseases, we made use of an integrated network
approach that included parameters derived from multiple omics data and functional
characteristics [8] (see section 2.1, 2.2, 2.3, 2.4, 2.5).

1.1.4 Systems Biology in Disease

Systems biology has also found its way into translational clinical research. Hallmarks of
the emerging domain “systems medicine” are the establishment of new links between
genes, biological functions, and a wide range of human diseases, thereby providing
signatures of pathological biology and links to clinical research and drug discovery [9].
The use of high-throughput techniques is nowadays a common procedure for the
identification of disease specific molecular signatures. Either directly linked to clinical
outcomes or unsupervised processed and subsequently assessed for clinical trends,
such signatures can serve as reference points for the identification of novel biomarker
candidates. Since changes in gene or protein expression can often be detected before
clinical symptoms arise, molecular markers have the potential for significantly
improving risk assessment, diagnostic, and prognostic capabilities.

Unquestionably, genome-wide approaches had a significant impact on the
development of analysis strategies and workflows for biomarker and drug target
discovery. A prominent example is the “Human Disease Network” [10], a conceptual
framework linking all genetic disorders (the human “disease phenome”) with the
complete list of disease genes (the “disease genome”). This combined set of all known
disease-gene associations provides a global view of the “diseasome” that significantly

expands the traditional single-gene to single-disease approach (see Figure 2).

An insufficient understanding of the complex pathophysiology of many human
diseases, including kidney dysfunction, is often the cause for a lack of early diagnosis
strategies and efficient therapies. In response of this situation that points towards the
need of a systems level understanding, the studies presented in this thesis aim to
identify multiple aspects of diseases mechanisms by the integration of data from

different sources that will described in the following section.
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Figure 2: An excerpt of the “Human Disease Network” [10].
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1.2 Data Sources

1.2.1 Omics Technologies

As outlined in section 1.1, the advent of high-throughput technologies has significantly
contributed to advances in cellular biology. The generation of large amounts of
unbiased data covering the totality of features on a respective level of observation
allowed distinguishing more details of the cellular system. Each of the various “omes”

listed in Tablel refers to one of these levels and is subject of study of the respective

“‘omics” field.
# Articles in . .
Terms Description Pubmed F'LSJJrﬁz(rjm
(April 2011)
Genome The full qomplement of ggne_uc |nformat|_on 750488 1932
both coding and non coding in the organism
Transcriptome The populanon of mRNA transpnpts in the 62903 1997
cell, weighted by their expression levels
Proteome The protein-coding regions of the genome 18469 1995
The quantitative complement of all the small
Metabolome | molecules present in a cell in a specific 1549 1998

physiological state
List of interactions between all

Interactome ; 750 1999
macromolecules in a cell

The population of gene products that are

Secretome 464 2000
secreted from the cell

Glycome The population of carbohydrate molecules in 163 1999
the cell
Qualitative identification of the form and

Phenome function derived from genes, but lacking a 152 1995
quantitative, integrative definition

Physiome Quantitative description of the physiological 108 1997

dynamics or functions of the whole organism

The sum total of open reading frames in the
Orfeome genome, without regard to whether or not 67 2002
they code; a subset of this is the proteome

The entire complement of molecules and

Cellome their interactions within a cell 36 2002

Fluxome The population of proteins weighted by their 34 1999
fluxes

Regulome Genome-wide regulatory network of the cell 20 2004

Translatome The populauon of mRNA transcripts in the 9 2001
cell, weighted by their expression levels

Transportome The populat.|on_ of the gene products that are 9 2004
transported,; this includes the secretome
The localization of various proteins, both in

Localizome terms of cell type and subcellular 6 2001

compartments
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Ribonome The population of RNA-coding regions of the 4 2002
genome
The quantitative description of anatomical
structure, biochemical and chemical

Morphome composition of an intact organism, including 3 1996
its genome, proteome, cell, tissue and organ
structures

Operome T.he characten;aﬂon of proteins with unkown 1 2002
biological function

Functome The pqpula‘uqn of gene products classified 1 2001
by their functions

Foldome The pqpula‘luon of gene products classified 1 2009
by their tertiary structure

Pseudome The population of pseudgenes in the cell 0 -

Unknome Genes of unkown function 0 -

Table 1. List of the different “omes”. Given are the descriptions, the number of articles
found in Pubmed and the year of its first appearance. (The table is an updated version
of the “Omes Table” available at http://bioinfo.mbb.yale.edu/what-is-
itfomes/omes.html.)

Along with the explosion of omics data amounts, a multitude of public databases
providing data of different omics tracks came up and the need for standards for data
annotation and exchange arose. The next sections provide an overview on the most
common omics technologies, together with examples of available databases and

standards used.

Genomics

Genomics is classically divided into two areas, namely structural and functional
genomics. Whereas the target of research in the former is DNA, functional genomics,
or the “post-genomic area”, deals with functional aspects of DNA and also includes
transcripts, proteins and metabolites which will be discussed later. Structural genomics
includes DNA sequencing, as well as studies on DNA complexity, DNA variability, DNA

genotyping, DNA organization within the cell, and DNA modification [11].

Sequencing methods were the first high-throughput techniques developed and the first
genome, a single-stranded bacteriophage, was completely sequenced in 1977 [12].
Today, the NCBI Genome Project database (http://www.ncbi.nim.nih.gov/genomes)
holds 1014 completed genome sequencing projects, and further 938 projects are in

progress (status April 2011).
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The currently available sequencing methods were recently reviewed by Kircher et al.
and include Sanger capillary sequencing, pyrosequencing, reversible terminator
chemistry, sequencing-by-ligation, and virtual terminator chemistry [13].

The effective use of large scale data requires the establishment of standardized
methods that support exchange, annotation, archiving, and mining of existing data sets.
In the last years, considerable efforts were made by the scientific community
concerning this matter and resulted in a number of standards with different scopes,
ranging from reporting, data exchange, terminology to physical and data analysis
standards, developed by several institutions. In case of genomics, the most common
reporting standards include MIGS/MIMS (Minimum Information about a
Genome/Metagenomic Sequence/Sample, developed by the Genomic Standards
Consortium), or MINSEQE (Minimum Information about a high-throughput Nucleotide

Sequencing Experiment, developed by the Microarray Gene Expression Data Society).

A list of common publicly available genomic sequence databases is provided in table 2.

Name Web Link
NCBI Genome database http://www.ncbi.nim.nih.gov/genome

NCBI Reference Sequence database | http://www.ncbi.nlm.nih.gov/RefSeq/
EMBL Nucleotide Sequence database | http://www.ebi.ac.uk/embl/
Ensembl Genomes http://www.ensemblgenomes.org/

Table 2: Common publicly available genome sequence databases.

Transcriptomics

Transcriptomics usually refers to the large scale analysis of gene expression patterns.
The first lines of transcriptomic studies can be dated back to 1965 where the sequence
of the first RNA molecule was determined [14]. Further milestones were the
introduction of Northern blots, Real-time PCR, and differential display with relatively low
experimental throughput. In the nineties, the development of SAGE (Serial Analysis of
Gene Expression) and microarrays has sounded the bell for the era of genome-wide
transcriptomics, in practice covering the protein coding genome. Over the years, gene

expression profiling techniques have continuously advanced. Tiling and exon arrays
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are available and the advent of next-generation sequencing offered the possibility of

large scale transcriptomics at a single nucleotide resolution [15].

However, the most prominent transcriptomis technologies are still DNA microarrays.
The basic principle of microarrays is base-pairing which is experimentally achieved by
the hybridization of targets to gene specific sequences that are immobilized on a solid
state matrix. Basically, all arrays employ the same four components: (i) target labeling,
(ii) target-probe hybridization, (iii) detection and (iv) data analysis [16]. The type of
targets to use is determined by the immobilized probes which are mostly cDNA
sequences or oligonucleotides. Furthermore, DNA arrays can be classified into one-
channel and two-channel arrays, reflecting the difference of hybridization of both
samples to be compared on one array or on two arrays. Former provides absolute
values on mRNA concentration whereas signals of two-channel arrays represent
relative measurement of gene expression.

A description of microarray data processing and analysis is partly given in section 1.3

and in great detail in section 2.1.

The most common reporting standard for microarray experiments is MIAME (Minimum
Information About a Microarray Experiment, developed by the Microarray Gene
Expression Data Society). It aims to enable the interpretation of the results of an
experiment unambiguously and potentially to reproduce the experiment. The six most
critical elements contributing towards MIAME are: (i) raw data, (ii) processed data, (iii)
sample annotation including experimental factors, (iv) experimental design, (v) array
annotation and (vi) laboratory and data processing protocols [17].

Most of the common databases for microarray data are compliant with the MIAME

standards. Table 3 provides a list of public repositories.

Name Web Link

NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/
EMBL Array Express http://www.ebi.ac.uk/arrayexpress/
Oncomine (cancer transcriptome profiles) https://www.oncomine.org/
Nephromine (kidney transcriptome profiles) http://www.nephromine.org/

Table 3: Common microarray data repositories.
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Proteomics

Proteomics comprises the systematic functional and structural analysis of proteins.
Since the completion of the human genome project, scientists aim to annotate the
genome with protein-level information [18,19]. Considering the large number of factors
that determine individual protein concentrations, the challenges of these projects
become evident. These include the controls on the transcription of genes, the codon
usage, the rates and extent of post-translational modification, nature and abundance of
proteins with which the gene product interacts, substrate levels and rates of proteolytic
degradation [20]. Actually because of the inadequate prediction of protein abundance
from mRNA concentrations, the direct measurement of protein expression is

demanded.

Identification and quantification of proteins is usually a two-step procedure, starting with
the separation of the isolated protein mixtures, followed by the quantification and
identification of the individual components using mass spectrometry or similar
approaches. The classical method which is still most widely used for protein separation
is two-dimensional gel electrophoreses (2DE). In 2DE, proteins are first separated by
isoelectric focusing and then further resolved by mass using SDS—-PAGE. Additional
strategies commonly in use are chromatographic purification methods that separate
proteins based on their physiochemical properties. Methods for quantification of
proteins include comparative 2DE approaches, in vivo metabolic labeling, or isotope-
coded affinity tagging (ICAT) [21]. Mass spectrometry can provide quantitative, as well
as qualitative information. By definition, a mass spectrometer consists of an ion source,
a mass analyser that measures the mass-to-charge ratio (m/z) of the ionized analytes,
and a detector that registers the number of ions at each m/z value [22]. Coupled MS
including protein fragmentation determines the molecular m/z ratio of peptides, which
are then used to identify the predicated proteins using web-based search engines such
as MASCOT and PROFOUND [23].

As biological functionality is largely driven by the interaction of biologically active
molecules, the identification of protein—protein interactions poses a further important
field in proteomics research. Commonly used methods for protein interaction
determination include the yeast two hybrid systems, protein arrays and affinity

chromatography.

In analogy to the MIAME standard for microarrays, the Human Proteome Organization
Proteomics Standards Initiative (HUPO-PSI) has introduced the MIAPE standard for
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reporting proteomic experiments. HUPO-PSI also defines, among others, a standard

for the documentation of protein interactions called MIF (Molecular Interaction Format).

Table 4 provides an excerpt of the list of the variety of publicly available data
repositories and resources holding protein related information as sequence, structure,
or interaction data. Comprehensive databases on tissue or disease specific proteins
are comparably rare which may be due to modest numbers of samples and the
difficulty of merging data from more than one study across different analytical
platforms. One example is the Human Urinary Proteome database [24] that was in this
thesis used for the extraction of chronic kidney disease specific proteins for the cross-
omics study presented in section 2.4. This database holds the information about
protein abundance of 3687 human urine samples (status as of September 2009) that
were collected from patients covering a wide spectrum of different pathophysiological

conditions, among them renal disorders, as well as from healthy controls.

Name Web Link

Sequence
NCBI Protein database http://www.ncbi.nim.nih.gov/protein/
NCBI Reference Sequence database http://www.nchi.nlm.nih.gov/RefSeq/
UniProtKB Protein knowledgebase http://www.uniprot.org/

Structure
RSCB Protein Databank http://www.pdb.org/
ExPASy Database of annotated 3D Images http://expasy.org/sw3d/

Protein Interactions

EMBL Protein Interaction Database http://www.ebi.ac.uk/intact/

Online Predicted Human Interaction Database | http://ophid.utoronto.ca/

Biomolecular Interaction Network Database http://bind.ca/

Table 4: Common publicly available proteomic databases

Metabolomics

The Human Metabolome Project started in 2004 and, although the Human Metabolite
Database holds nearly 8600 compounds, the identification of the human metabolome is
still far from complete [25,26]. One of the great challenges towards completeness is the

analytical bias due to chemical properties of different compound classes. Metabolic
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profiling by contrast focuses at the quantitative analysis of a set of pre-defined
metabolites belonging to a class of compounds or members of particular pathways. A
further subsection of metabolomic analyses is target oriented and aims at a quantitative
analysis of substrate or product metabolites of a single target protein [27].

The basic principles of metabolite identification and quantification are similar to those of
proteomics. Separation methods are mostly chromatographic or electrophoretic
techniques. Mass spectrometry or Nuclear Magnetic Resonance (NMR) spectroscopy

are usually the methods of choice for the detection of the metabolites.

The CIMR (Core Information for Metabolomics Reporting) standard specifies the
minimal guidelines reporting metabolomics work and was introduced by the
Metabolomics Standards Initiative (MSI).

Beside of the Human Metabolome Database which is currently the most complete and
comprehensive curated collection of human metabolite data, there exist a number of

resources containing information on small molecules. Examples are given in table 5.

Name Web Link

Human Metabolome Database http://mwww.hmdb.ca/

KEGG Ligand database http://www.genome.jp/kegg/ligand.html
NCBI PubChem http://pubchem.ncbi.nim.nih.gov/

Table 5: Examples for public repositories of small molecules.

1.2.2 Literature Mining

Text-mining in molecular biology is defined as the automatic extraction of information
about genes, proteins and their functional relationships from text documents [28].

The increasing number of electronically accessible publications has opened the door
for efficiently taking advantage of the results from the combined efforts of the scientific

community that are provided within the literature.

Basic resources for biomedical literature mining tools are databases like PubMed which

currently holds about 20 million abstracts. The development of textual databases and
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ontologies that catalog and organize terms to assist authors in consistent use of
domain specific terminology has significantly improved text mining approaches.
Furthermore, databases providing training text collections for machine learning
approaches have been constructed [29].

Of special interest in the context of gene-disease associations is the co-appearance of
disease concepts and gene names within one and the same publication which gives
information about relevant genes for a certain disease phenotype. Publications indexed
in PubMed are annotated with Medical Subject Headings (MeSH) maintained by the
U.S. Library of Medicine which are organized in a hierarchical structure of sub- and
super-categories. Thus, the MeSH terms in the disease category can be used for a
paper-disease mapping. Unfortunately, this framework has one considerable drawback.
Diseases that are not part of the MeSH universe, for example the cardiorenal
syndrome, cannot be handled and a paper-disease mapping must be obtained by free-
text search. A subsequent paper-gene mapping can be obtained, for example, from a
NCBI curated file (ftp://ftp.ncbi.nim.nih.gov/gene/DATA/gene2pubmed.gz), that
represents the logical equivalent of what is reported as Gene/PubMed links available in
Gene's and PubMed's links menus on the NCBI homepage. Further tools for the
automatic detection of protein and gene mentions from the literature include the
GAPSCORE [30] or ABGENE [31] systems.
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1.3 Analysis Workflows

The basic goal of analysis workflows applied to any forms of omics data is to transform
raw data sets into interpretable information and knowledge on a biological level [32]. In
the studies presented in this thesis, we made use of sequential analysis procedures, as
well as of integrated approaches with focus on protein interaction networks. Section 2.1
provides a detailed description of both forms of workflows together with a list of
available resources and tools, supplemented with an example workflow on a gene
expression dataset. An overview on the principle concepts of transcriptomics data

analysis is given in the following.

1.3.1 Sequential Workflows

A sequential analysis workflow follows a step-by-step procedure starting from the raw
datasets and ending in a functional interpretation where identified features are
embedded in their biological context, allowing the generation of hypotheses. The main
steps are usually (i) raw data processing, (ii) statistical analysis, and (iii) functional
analysis.

Data Preprocessing

The need of microarray data preprocessing arises from the fact that intensity values not
only reflect actual mMRNA concentrations but are influenced by several non-biological
factors. Examples are variations in the array manufacturing process, the preparation of
the biological sample, the hybridization of the sample to the array, or the quantification
of the spot intensities [33]. In order to ensure the comparability of arrays within an
experiment, removal of the estimated background signal and normalization between
arrays are usually performed. The application of filter routines, e.g. based on the
number of missing values or marginally expressed genes, leads to a reasonable
reduction in complexity of microarray data in terms of gaining usable information at

least from a statistical perspective.
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Statistical Analysis

Most of the microarray experiments aim at the detection of quantitative differences in
gene expression between two groups of samples representing two conditions (e.g.
case/control). A first impression of array grouping can be obtained by the visualization
of array clustering based on their proximity (defined by a distance function) to each
other following unsupervised clustering approaches. Resulting dendrograms that reflect
the initially considered grouping give a lead to a succeeded experiment whereas
controversial outcomes may indicate a systemic bias that can be due to experimental
issues as, for example, different sample preparation, uneven hybridization, or different

array batches.

The next step is the identification of differentially expressed genes between the sample
groups. A simple method is the calculation of fold-changes, but it has been shown that
the fold-change criterion alone is unreliable because statistical variability is not taken
into account [34,35]. More sophisticated procedures involve test statistics that assign a
statistical significance score (p-value) to each gene. Considering the large number of
comparisons that are made for each probe on the array, a correction for multiple testing
is indispensable for the reduction of false positive findings. Furthermore, a p-value cut-
off above which biologically meaningful information is expected has to be defined.

Depending on the chosen cut-off, a more or less manageable list of differentially

expressed list is available for interpretation in the given biological context.

Functional Analysis

A decisive step that ensures the proper mapping of genes to functional categories is
their consistent annotation to unique identifiers. The list of already established
biological identifiers is long and different functional annotation tools often require
different identifiers.

The identification of statistically enriched or depleted functional categories follows the
principal foundation that if a biological process is perturbated in a given study, the
functionally linked genes (on the level of proteins as effector molecules) should have a
higher potential to be selected as a relevant group by the high-throughput screening
technologies [36]. This assumption can be expanded to different levels of functional

relationships including molecular functions or pathways.
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Further approaches for functional analysis are, among others, protein interaction
networks, the detection of co-regulation, tissue specific expression, or protein

subcellular location.

1.3.2 Integrated Workflows

Following the rationale that the cell is an integrated system and its biological
mechanisms cannot be fully described by the observation of single layers, the
approach of integrating multiple omics data and different functional characteristics into
analysis procedures reflects the spirit of Systems Biology and became increasingly
popular along with the advent of suitable technologies.

Major challenges in the field of integrative bioinformatics address the usability of
heterogeneous data since most data sources still exist in isolation where each source
has its own specialization and focus. In many cases, databases lack links to each
other, even when they are providing data about the same entities [37,38].

Many of the integrated approaches are based on interaction networks that represent
functional dependencies derived from the input of multi-level data. In addition to
physical interactions between biological entities, such networks include indirect
associations such as co-regulation or shared pathway memberships that are equally

important for a complete understanding of biological systems [39-41].
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1.4 Applications

In the present thesis, the concepts discussed in the previous sections were applied on
various forms of kidney disease, spanning from acute renal failure in the transplant
situation, further to chronic kidney disease, and finally to cross-organ analysis, namely
the cardiorenal syndrome.

A short summary of the basic facts on kidney function and structure are given in the
following:

Basically, the kidney performs two main functions: (i) the organ participates in the
maintenance of a constant extracellular environment by the excretion of metabolic
waste products, electrolytes and water, and (ii) the organ secretes hormones involved
in hemodynamic regulation, production of erythrocytes, and mineral bone metabolism
[42].

The functional unit of the kidney is the nephron which consists of the renal corpulus
(glomerulus and bowman’s capsule) which is responsible for filtering and the renal
tubule (proximal tubule, loop of Henle, distal tubule) functioning as absorption and

secretion apparatus.

The following sections provide an overview on the pathophysiology of different types of
kidney disease, namely acute renal failure, chronic kidney disease, and the cardiorenal

syndrome.

1.4.1 Acute Renal Failure/Transplantation

Acute renal failure (ARF) is characterized by the abrupt decline in glomerular filtration
rate [43] as a result of vasoconstriction, hypoxia, ischemia, or the usage of nephrotoxic
substances. It affects 25% - 30% of patients in the intensive care unit and 3% - 7% of
patients admitted to the hospital [44].

Until a few years ago, a consensus definition of ARF was lacking. In 2004, the ADQI
(Acute Dialysis Quality Initiative) group proposed the RIFLE criteria for staging ARF
patients, the initials reflecting the terms Risk, Injury, Failure, Loss and End Stage in
relation to kidney function [45].

The traditional etiological classification divides in prerenal, intrarenal, and postrenal

causes. Prerenal ARF is the most common type and can be caused by volume loss,
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decreased cardiac output, neurogenic dysfunction, or vessel diseases. Intrarenal ARF
is intrinsic and a response to tubular, glomerular, interstitial, or vascular injury.
Postrenal ARF refers to the consequences of the obstruction of outflow tracts of the
kidney [46].

ARF frequently appears in the post-transplant situation in context of a delayed graft
function. Risk factors include donor age and cause of death or the duration of cold
ischemia with consequences leading to a reduced long-term allograft survival. Since
intrinsic donor factors are among the main contributors to post-transplant ARF,
including the autonomous cytokine storm after brain death and hemodynamic
instability, the use of cadaveric donor organs has significant impacts on graft function.
Several studies report a highly increased risk for post-transplant ARF in this patient
group [47,48]. Changes in gene expression that distinguish living and cadaveric donor
organs could be found in the functional categories inflammation, complement and
coagulation, apoptosis, and cell adhesion [49]. The results of a double-blinded,
randomized, controlled trial of steroid or placebo infusion into deceased donors and the
consequences on graft function are presented in section 2.3.

Tubular and vascular damage in the donor organ after cold ischemia but before
transplantation is associated with subsequent ischemic reperfusion injury (IRI) and an
additional contributor to delayed graft function. Biomarkers for the detection of early
injury, determination of graft quality, and prediction of graft outcome are demanded.

A routinely used marker for the diagnosis of ARF is the concentration of creatinine in
blood which rises with the progression of glomerular filtration deficiency. This has been
the method of choice for ARF diagnosis for nearly 60 years, but its limitations regarding
the delayed rise in serum creatinine with respect to the decrease of the glomerular
filtration rate, and the lack of specificity and sensitivity are evident [50,51]. Alternative
biomarker candidates include Cystatin C, Neutrophil Gelatinase-Associated Lipocalin
(NGAL), Interleukin-18 (IL18), and the Kidney Injury Molecule 1 (KIM1) [52,53], but
further validation and trials are required to substantiate the utility of these markers. A
review on biomarkers in renal transplantation IRI is provided in section 2.2 of this

thesis.
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1.4.2 Chronic Kidney Disease

The prevalence of chronic kidney diseases (CKD) in the general population is
dramatically high with 11% of adults suffering from a reduced kidney function [54].
Loosely speaking, CKD is the progressive loss of kidney function over a period of
months or years. According to the guidelines of the Kidney Disease Outcome Quality
Initiative (KDOQI), CKD can be divided into 5 stages with respect to the decline in
glomerular filtration rate, ranging from normal to relatively high GFR (stage 1) to kidney
failure and the need of renal replacement therapy (stage 5) [54].

The most common causes for reaching a chronic state of kidney diseases include
diabetes mellitus, hypertension, glomerulonephritis, interstitial nephritis, and low flow
states (hypoperfusion) [55]. However, independent of the origin, most of the renal
diseases that are the starting point for CKD begin with glomerular dysfunction. With
ongoing disease progression, the glomerular injury expands to the tubulointerstitum,
the connective tissue surrounding the renal tubule, leading to nephron loss and fibrotic
lesions. The loss of functioning nephrons in turn causes an increased workload for the
remaining nephrons with glomerular hypotension as consequence, thereby generating

an ongoing vicious circle of progressive kidney damage [56].

An independent marker of worsening of kidney function is the loss of proteins in the
urine that can be either due to a reduced glomerular filtration or a low absorption of the
proximal tubulus. Unfortunately, the increased passage of proteins across the
glomerular capillary barrier is not solely a consequence of renal injury but contributes to
further disease progression. The exposure of tubular cells to plasma proteins further
induces damage by the stimulation tubular chemokine expression and complement
activation, leading to inflammatory cell infiltration in the interstitium and subsequent
fiborogenesis [57]. Moreover, an increased excretion of albumin may result in
hypoalbuminaemia which can be linked to an impairment of immune function.

In view of the fact that the estimation of the glomerular filtration rate by measuring the
creatinine clearance is limited in its diagnostic and prognostic value (see 1.4.1), several
efforts have been made to identify more accurate markers. Examples include
Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule 1 (KIM1),
Urinary liver-type fatty acid binding protein (urinary L-FABP), connective tissue growth
factor (CTGF), transforming growth factor 3 (TGF), or urinary mRNAs [52,58]. Next to
the identification of single molecular biomarkers, approaches tending to find whole

panels of markers, not least owing to advantages of high-throughput technologies,
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promise more specificity for future diagnosis and prognosis of CKD. Section 2.4
presents an integrated approach for characterizing CKD mechanisms by the joint
interpretation of transcriptomics and proteomics datasets.

It is known that mortality in patients with CKD is mainly due to adverse outcomes rather
than to the kidney failure per se, with the leading causes of death being cardiovascular
diseases. The next section discusses the pathophysiological connection between the

kidney and the cardiovascular system, referring to the cardiorenal syndrome.

1.4.3 Cardiorenal Syndrome

Chronic kidney disease is encountered by a significant increase of cardiovascular
complications. In dialysis patients the prevalence of cardiovascular disease (CVD) and
the mortality due to CVD is around 10 to 30 times higher than in the general population
[59]. The pathophysiological state of combined kidney and cardiovascular dysfunction

is termed the cardiorenal syndrome.

Basically, the CRS can be classified into 5 subtypes, depending on the origin of
damage (either the cardiovascular system or the kidney) and the course of disease
(either acute or chronic) [60,61]. Figure 3 provides an overview on interactions referring
to CRS types 2 an 4 (chronic cardiorenal syndrome and chronic renocardiac
syndrome).

As can be seen, the significant impact of consequences of renal impairment on
cardiovascular function, including the development of anemia, a fluid overload and the
systemic presence of uremic toxins, become already evident in early stages of CKD.
However, the main risk factors for cardiovascular events, like hypertension,
dyslipidemia, or chronic inflammation, appear in the course of progressed CKD and are
significantly increased in the cohort of patients on dialysis treatment [63-65]. In turn,
low cardiac output, possibly coupled to genetic or acquired risk factors, has negative
effects on kidney function and, if reaching a chronic state, leads to sclerosis and
fibrosis.

Hormone mediated hemodynamic dysregulation also plays a decisive role in CRS
formation. The renin-angiotensin and natriuretic peptide system have counterbalancing
effects on renal and cardiovascular function through their opposing actions on vascular

tone and sodium and water balance as well as cellular hypertrophy and fibrosis.
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Angiotensin-converting enzyme or vasopeptidase inhibitors were shown to provide
important end-organ protection in CRS [66].
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Figure 3: Overview on cardio-renal interactors and risk factors, taken from [62].

The complex characteristics of the CRS impose a new challenge in identifying and
treating patients with CVD in early stages of CKD towards improving outcome. So far
there is no clear understanding of the molecular pathways interlinking kidney failure
and cardiovascular complications, concomitantly impeding the identification of
biomarkers for identifying the risk of CVD in CKD patients. Sections 2.5 and 2.6
present two integrative studies analyzing proteins, pathways and the molecular
crosstalk on the interface between the kidney and the cardiovascular system.
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ABSTRACT

Progress in experimental procedures has led to rapid availability of Omics profiles.
Various open-access as well as commercial tools have been developed for storage,
analysis, and interpretation of transcriptomics, proteomics as well as metabolomics
data. Generally, major analysis steps include data storage, retrieval, preprocessing and
normalization, followed by identification of differentially expressed features, functional
annotation on the level of biological processes and molecular pathways, as well as
interpretation of gene lists in the context of protein-protein interaction networks. In this
chapter we discuss a sequential transcriptomics data analysis workflow utilizing open-
source tools, specifically exemplified on a gene expression dataset on familial
hypercholesterolemia.

Key Words: Omics data analysis; bioinformatics workflow; transcription factor; protein

network; data interpretation.
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1. INTRODUCTION

High-throughput methods in molecular biology research, and in particular microarray
technologies and mass spectrometry have led to the quantitative assessment of
thousands of features on the level of the genome, transcriptome, proteome, and
metabolome, resulting in the accumulation of a massive amount of data. Microarray
technologies, initially restricted to applications in research, have in the meantime found
its way into the clinic, e.g. referring to the MammaPrint microarray-based test system
cleared by the FDA in early 2007 for the prognosis of breast cancer patients [1]. Next to
basic research and molecular diagnostics, Omics procedures are also used for
toxicological profiling as well as for drug discovery research in the hunt for novel
therapeutic targets, just to give examples.

With these well established methodologies and standardized protocols for experimental
processing in hand the emphasis of research in recent years has been on the analysis
of high-throughput data and results interpretation [2]. Analyses steps include data
storage, data annotation, data preprocessing and normalization, followed by
explorative and statistical analyses, functional interpretation, and hypothesis
generation. For all these different steps open-source tools are available and databases
storing Omics raw data have been vigorously populated.

In this chapter we address computational analysis workflows for the interpretation of
Omics data. We provide links to databases, tools and websites, discuss their
applicability, and navigate through the analysis process on a given example dataset on

gene expression profiles of monocytes from patients with familial hypercholesterolemia.
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2. MATERIALS

2.1. Omics Data Repositories

Public databases provide genomics and proteomics data for a wide range of cells,
tissues and diseases (Table 1A). Open-access repositories for microarray data are e.g.
the ArrayExpressDB hosted by European Bioinformatics Institute (EBI) [3], the Gene
Expression Omnibus developed at the National Center for Biotechnology Information
(NCBI) [4], or the Stanford Microarray Database (SMD) [5]. One of the most
comprehensive collections of proteomics data is provided by SWISS 2-D PAGE hosted
by the Swiss Institute of Bioinformatics [6,7] (see Note 1).

Standards for data annotation and exchange of microarray data have been introduced
by the Microarray Gene Expression Data (MGED) Society. The Minimum Information
About a Microarray Experiment (MIAME) guidelines describe the minimum information

needed for revising and interpreting results of a microarray-based experiment palpably

[8].

2.2. Data Preprocessing

A sequence of data preprocessing steps is required for the analysis of abundance data
e.g. from gene expression or protein profiling (Table 1B). Background correction and
normalization of the data are the first steps to clear the impact of non-biological
influences potentially arising from different array batches used or from varying
intensities of different dyes. Frequently used background correction methods are the
Robust Multi-array Average (RMA) method [9] or MAS 5.0 from the Affymetrix
Microarray Suite [10]. Normalization techniques are Quantile Normalization (RMA),
Invariant Difference Selection (IDS) [11], and dChip [12]. Further preprocessing is
particularly important for gene expression data to achieve a reduction of data
complexity. Filter routines focus on the elimination of entries which are probably invalid
and will not contribute to informative results. One possible filter is to remove all objects
for which the number of missing values over all experiments (arrays) performed
exceeds a certain threshold. Missing values may be a problem caused by improper
resolution, image corruption, or physical defects. Methods for handling missing values

span from simple row average estimates to more sophisticated approaches e.g. based
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on K-nearest-neighbor replacement [13], Bayesian variable selection [14], least

squares replacement [15], or a combination of above mentioned procedures [16].

Preprocessing of proteomic MS data aims to identify a list of m/z peak values to be
directly used for further analyses. Analyses steps include background correction,
filtering, noise estimation, peak detection and spectral alignment algorithms [17-22].
Nie et al summarized current applications of statistics in several stages of global gel-
free proteomic analysis by mass spectrometry [23]. For protein identification based on
m/z data several resources are available as e.g. MASCOT [17].

After normalization issues are resolved the annotation of Omics features is essential.
The SOURCE tool from the Stanford Genomics Facility [18] or the GeneCards system
from the Weizmann Institute of Science [19] are commonly used annotation

databases/tools for DNA/mRNA and protein sequences.

2.3. Identification of Differentially Expressed Genes and Proteins

For the evaluation of differentially expressed genes/proteins several methods based on
test statistics are in use (Table 1C). A straightforward method is the Student’s t-test
determining the significance of differences between distributions of expression levels
combined with computation of the fold change. The correction for multiple testing is
pivotal for the analysis of Omics data in order to reduce the number of false positive
findings. A very stringent correction method is the Bonferroni correction, whereas less
conservative methods are based on permutations e.g. realized by the maxT and minP
method as described by Westfall and Young [20]. Such permutation and resampling
methods are described in detail by Dudoit et al. [21] and Ge et al. [22]. Implementations
of these algorithms can be found in the multtest Bioconductor package of the R
statistics environment [24,25]. Bootstrap and Jackknife procedures, both using
randomly drawn subsets of the whole dataset, further strengthen the statistical findings
and lower the susceptibility to outliers [26]. Significance Analysis of Micorarrays (SAM)
is also based on data permutation but controls the false discovery rate (FDR), defined
as the percentage of genes identified as significant with respect to the number of
features identified as relevant by chance [27]. This method is widely accepted in
microarray analysis. SAM is available as stand-alone package and is also implemented
in the MultiExperiment Viewer (MeV) developed at The Institute for Genomic Research
(TIGR) [28].
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2.4. Functional Annotation and Pathway Enrichment Analysis

One approach for functional grouping of genes or proteins identified as relevant from a
statistical viewpoint is realized by utilizing gene ontologies (GO), categorizing proteins
according to their molecular functions, cellular components, and biological processes
(Table 1D). Another classification system is the PANTHER (Protein ANalysis THrough
Evolutionary Relationships) ontology [29]. Generally, ontologies are controlled
vocabularies and can be represented as acyclic, directed graphs where each ontology
category can have one or more parent and sub terms. Statistical tools exist to identify
enriched or depleted categories for a list of genes or proteins of interest [30]. One of
these tools is DAVID (Database for Annotation, Visualization and Integrated Discovery)
[31].

Pathway databases like the one from the Kyoto Encyclopedia of Genes and Genome
(KEGG) [32] complement the functional ontologies and can give even more information
on the interplay of gene and proteins. Other pathway databases describing metabolic
networks and signaling transduction cascades are the BioCarta, the PANTHER
pathway database [29], or Reactome [33]. KEGG spider provides a robust analytical
framework for interpretation of gene lists in the context of a global gene metabolic
network [34] (Table 1E).

2.5. In-silico Promoter Analysis

Transcription factors are key elements in the regulation of transcription exerting their
function by binding to the promoter region of a gene as well as to regulatory elements
further away from the transcription start site (Table 1F). JASPAR is a database holding
binding site matrices for specific transcription factors which can be used by pattern
matching algorithms in order to scan genomic sequences for potential transcription
factor binding sites (TFBS) [35]. The JASPAR Core database provides a curated, non-
redundant set of binding profiles from experimentally defined transcription factor

binding sites for eukaryotes reported in the literature.

For a given list of differentially regulated genes or proteins the search for enriched
TFBS in the regulatory regions becomes feasible. oPOSSUM is a database that
contains pre-calculated transcription factor binding sites in the regulatory regions of
human genes that can be used in order to identify enriched transcription factors in a set
of deregulated genes [36]. The regulatory regions of human genes are identified

searching for conserved regions in the mouse genome (phylogenetic footprinting) using
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different stringency criteria. The o0POSSUM tool uses transcription factor binding sites
as stored in the JASPAR database.

2.6. Integrated Approaches

Besides sequential workflows following a step-by-step analysis several integrated
approaches exist (Table 1G). One example is STRING, provided by the European
Bioinformatics Institue (EBI) which aims to present genes directly or indirectly related to
a query gene [37,38]. The basis of STRING is a protein network obtained from
integrating high-confidence data, high-throughput experiments, and computationally
derived data for more than 2.5 million proteins occurring in 630 organisms. Information
is integrated over organisms and the respective proteins are represented as clusters of
orthologous groups. STRING currently integrates protein interactions, co-expression
data, literature co-occurrences, genomic context encoded by conserved genomic
neighborhoods, gene fusion events, and phylogenetic co-occurrences. For each pair of
proteins STRING pre-computes a detailed measure of evidence based on each
available data source for describing the association between the two proteins. These
sub-scores are combined to represent an evidence score. A STRING query is
performed by entering a gene name, protein name or a protein sequence, or a list of
identifiers or sequences. As a result STRING shows an integrated, interactively
expandable view of the network context of the input proteins enriched with biological

information associated with these proteins.

The routine FunCoup globally reconstructs protein networks in human and other
eukaryotes from comprehensive data integration, namely protein-protein interactions,
MRNA expression, subcellular location, phylogenetic profiles, miRNA-mRNA targeting,
transcription factor binding sites, protein expression, and domain-domain interactions
[39]. The software utilizes InParanoid to transfer information between species. In the
course of visualization the user is provided with the option to group networks by spatial
subcellular position of proteins, their membership - relation to pathways, or as a force-
directed layout. Furthermore, where possible, a detailed description of the type of
association between the proteins is supported (direct physical interaction, protein

complex members, metabolic reaction, regulatory/signaling).

omicsNET is another data integration framework supporting researchers throughout the
process of the analysis of disease specific data in identifying and selecting potential

diagnostic markers or therapeutic targets [40]. Pairwise dependencies between human
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proteins are calculated based on the following data sources: gene expression profiles
in normal human tissues, functional gene annotation based on gene ontologies as well
as on pathway information, shared transcription factor binding site as well as miRNA
profiles, information on subcellular protein localization, protein-protein interaction data,
and shared protein domains. Based on these dependencies a protein network is
contructed which is easily extendable and is embedded in a fully automatic
downloading and importing framework capable of following the fast update cycles of
scientific data repositories and data formats. Objects are centered around a general
definition of biological entities based on international protein index (IPI) IDs presently

covering about 68k protein sequences [41].

A: Omics repositories

ArrayExpress www.ebi.ac.uk/microarray-as/ae [3]
Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo [4]
Stanford Microarray Database | http://smd.stanford.edu [5]
Proteomics database www.expasy.ch/ch2d [6]
B: Data preprocessing
RMA http://rmaexpress.bmbolstad.com [9]
MAS5 [10]
dChip http://www.dchip.org [12]
C: Explorative analysis routines
Bioconductor www.bioconductor.org [25]
SAM http://rmaexpress.bmbolstad.com [27]
TIGR MeV www.tm4.org/mev.htmi [28]
Functional annotation
DAVID http://david.abcc.ncifcrf.gov [31]
PANTHER www.pantherdb.org [29]
D: Pathway analysis
KEGG www.genome.jp/kegg/pathway.html [32]
PANTHER www.pantherdb.org [29]
KEGG spider http://mips.helmholtz-muenchen.de/proj/keggspider |[34]
E: In-silico promoter analysis
JASPAR http://jaspar.genereg.net [35]
oPOSSUM WWW.cisreg.ca/cgi-bin/oPOSSUM/opossum [36]
F: Interaction network analysis
STRING http://string.embl.de [37]
FunCoup http://funcoup.sbc.su.se [39]

Table 1: Listing of Omics repositories, web-resources and analysis tools discussed in
this chapter.
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3. METHODS

In the following section the tools described above will be exemplarily applied on a
publicly available gene expression dataset. Mosig and colleagues profiled the gene
expression of monocytes of patients with familial hypercholesterolemia (FH) [42]. In this
study microarray gene expression experiments were performed using Affymetrix HG-
U133 Plus 2.0 GeneChips, each holding 54,675 unique transcripts.

3.1. Omics Data Repositories and Data Retrieval

The example dataset is deposited in the public Gene Expression Omnibus (GEO)
database (www.ncbi.nim.nih.gov/geo) hosted by NCBI reachable via the GEO
accession humber 'GSE6054'. The summary page of this specific record holds a short
summary of the study, the experiment type, samples used in the experiment, as well as
contributors. The contact details of the corresponding author as well as the date of

submission are furthermore provided.

The raw data files are provided as zipped archive which includes 23 Affymetrix CEL

files providing the basis for further preprocessing and analysis (see Note 2).

3.2. Data Preprocessing

Main data preprocessing steps involve background correction and data normalization.
One tool capable of handling both tasks in a user friendly way is CARMAweb,
developed at the Technical University of Graz (https://carmaweb.genome.tugraz.at)
[43]. Creating an account in CARMAweb allows the user storing of files and results for
further analysis at a later time. CARMAweb supports a number of file formats
generated by the scanner software of different platforms including Affymetrix, Applied
Biosystems as well as two-color systems. When using Affymetrix data the CEL files
have to be uploaded to the system in order to start the preprocessing procedure as
described step by step below (see Note 3 for a detailed discussion on input parameters

and resulting plots):
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1. choose New Analysis from the tool bar

2. select Perform an Affymetrix GeneChip analysis

3. upload the raw data CEL files for the analysis

4. select the preprocessing method 'mas5'

5. scale the values to 200

6. check the boxes for drawing additional plots from the raw and normalized data

7. check the box Save the normalized expression values to a text file

8. skip the replicate handling step as there are no replicated arrays in this example

data set

9. start the analysis

GenBank

UniGene

Description

LocusLink

Symbol

GSM140232.CEL

GSM140233.CEL

1007_s_at

U48705

Hs.631988

discoidin
domain
receptor
family,
member 1

780

DDR1

133,1116888

129,7100459

1053_at

M87338

Hs.647062

replication
factor C
(activator 1)
2, 40kDa

5982

RFC2

217,6610085

239,3148494

117_at

X51757

Hs.654614

heat shock
70kDa
protein 6
(HSP70B')

3310

HSPAG6

781,1669739

465,5422967

121_at

X69699

Hs.469728

paired box 8

7849

PAX8

204,6355705

281,2443974

1255_g at

136861

Hs.92858

guanylate
cyclase
activator 1A
(retina)

2978

GUCA1A

5,5138363

12,3289051

1294 _at

113852

Hs.16695

ubiquitin-
activating
enzyme E1-
like

7318

UBE1L

766,9258871

742,6529846

1316_at

X55005

Hs.724

thyroid
hormone
receptor,
alpha

7067

THRA

53,9216242

79,9992657

1320_at

X79510

Hs.437040

protein
tyrosine
phosphatase,
non-receptor
type 21

11099

PTPN21

7,5285511

6,9065730
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1405_j_at

M21121

Hs.514821

chemokine
(C-C motif)
ligand 5

6352

CCL5

5625,3812000

5054,0114760

1431_at

102843

Hs.12907

cytochrome
P450, family
2, subfamily
E,
polypeptide
1

1571

CYP2E1

37,9592864

31,5216112

1438 _at

X75208

Hs.2913

EPH receptor
B3

2049

EPHB3

15,6320131

14,0352867

1487 _at

138487

Hs.110849

estrogen-
related
receptor
alpha

2101

ESRRA

510,4666229

430,1333161

1494 _f at

M33318

Hs.439056

cytochrome
P450, family
2, subfamily
A,
polypeptide
6

1548

CYP2A6

72,2235171

79,3025924

1552256_a_at

NM_005505

Hs.520348

scavenger
receptor
class B,
member 1

949

SCARB1

294,3431947

239,6201050

1552257 a_at

NM_015140

Hs.517670

tubulin
tyrosine
ligase-like
family,
member 12

23170

TTLL12

483,2240522

425,4874463

1552258_at

NM_052871

Hs.652166

chromosome
2 open
reading
frame 59

112597

C20rf59

17,1870075

24,8940935

1552261 _at

NM_080735

Hs.2719

WAP four-
disulfide core
domain 2

10406

WEFDC2

35,7236355

52,4366549

1552263_at

NM_138957

Hs.431850

mitogen-
activated
protein
kinase 1

5594

MAPK1

872,2548451

604,3554185

1552264 _a_at

NM_138957

Hs.431850

mitogen-
activated
protein
kinase 1

5594

MAPK1

676,0495879

887,2818401

1552266_at

NM_145004

Hs.521545

ADAM
metallopepti
dase domain
32

203102

ADAM32

40,0241198

37,3786065

Table 2: Excerpt of the file
preprocessing.

“‘ExpressionValues.txt” resulting from CARMAweb

The first six columns hold the main identifiers for all of the 54675 transcripts included
on the Affymetrix HG-U133 Plus 2.0 GeneChip. The seventh column provides a short
description of the gene, and the last columns hold the normalized expression values for
each array (the values of the first two arrays are exemplarily shown).
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Results as well as the analysis protocols are accessible after the preprocessing steps
are completed. The analysis report contains a summary of the performed analysis
steps as well as plots for checking the quality of given array data. The normalized
expression data set that will be used for further analysis is denoted as
'ExpressionValues.txt' and can be downloaded to a local machine (Table 2). Features
are annotated with their respective NCBI GenBank accession number, NCBI UniGene
Cluster ID, NCBI Entrez Gene ID (LocusLink ID), NCBI Gene Symbol, as well as a
short summary. Result files can be downloaded separately or as a compressed

archive.

3.3. Identification of Differentially Expressed Genes

The preprocessed and normalized data file “ExpressionValues.txt” is the basis for the
identification of differentially expressed genes (DEGSs). Main interest in our study is the
identification of genes that show differential expression between subjects with familial
hypercholesterolemia and healthy controls. Various open-source as well as commercial
tools exist for this task as outlined in the Materials section. One open-source tool that
we consider very intuitive to use is the Multi Experiment Viewer (MeV) developed at
The Institute for Genomic Research (TIGR) (www.tm4.org/mev.html).

MeV is perfectly capable of handling tab-delimited text files holding expression
datasets such as our normalized file 'ExpressionValues.txt'. Various statistical tests are
implemented in the MeV software package, among them the t-test, the Analysis of
Variance (ANOVA) for multi-group comparisons, or the Statistical Analysis of
Microarrays (SAM) method controlling the False Discovery Rate. The following steps
result in a list of significantly differentially expressed transcripts using the SAM method

(see Note 4 for a detailed discussion on input parameters):

1. select Load Data from the MeV file menu

2. check Single-color Array in the Expression File Loader dialog box
3. load the file 'ExpressionValues.txt'

4. select Significance Analysis for Microarrays from the Statistics tab

5. select the Two-class unpaired tab
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6. assign diseased samples to group A and healthy control samples to group B
7. set the number of permutations to 500

8. select SO using Tusher et. al method

9. check no for calculating g-values

10. select K-nearest neighbors impute as Imputation Engine with 10 neighbors

11. start analysis

Once the analysis has finished, the resulting SAM graph is displayed reporting the
number of significantly differentially regulated genes regarding the group comparison
as well as the median number of genes being false positives at a given delta threshold
level (Fig. 1). The slider for controlling the delta value at the bottom of the graph can be
used to set the false discovery rate (FDR), representing the fraction of false positive
genes among the total number of all genes indicated as being differentially regulated.
Usually values in the range of 5% to 10% are acceptable. In our experiment setting, a
delta value of 1.156 results in 1016 significant genes and a median number of falsely
significant genes of 50. Please note that these results may slightly vary due to the
sequence of random permutations used in the analysis. The list of 1016 significant
genes can be displayed by selecting the node Table Views/All Significant Genes in the
folder Analysis Results / SAM on the left of the MeV navigation window. The table of
the significant genes can be downloaded through selecting Save cluster from the

menu.

Using the fold change criterion can further reduce the list of interesting genes to be
considered for further analysis. The fold change determines how many times the
expression levels for a given transcript are increased or decreased in the diseased
samples as compared to the healthy individuals. Focusing on genes showing at least a
two-fold change in either direction further reduces the dataset from 1016 DEGs to 97
DEGs.
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X axis = Expected, Y axis = Observed

Figure 1. Example output graph resulting from a SAM analysis. The two dotted lines
represent the region within +/- delta units (set to 1.156) from the observed to expected
line. The genes whose plot values are within +/- delta units are considered non-
significant, those above + delta units are considered as significantly upregulated, and
the ones below — delta units are considered as significantly downregulated.

3.4. Functional Annotation and Pathway Enrichment Analysis

Differentially expressed genes can be linked to gene ontology categories in order to
identify enriched or depleted biological processes as implemented in the DAVID tool
(http://david.abcc.ncifcrf.gov). Input is a list of NCBI Gene IDs of e.g. differentially
expressed genes or more generally speaking genes of interest that can either be
pasted into the data input field provided by the application or uploaded as a simple text

file. The following steps are necessary to complete the analysis:
1. select Start Analysis from the tool bar
2. paste the list of identifiers into 'box A" or upload the identifiers from a text file
3. select ENTREZ_GENE_ID as ldentifier
4. select Gene List as List Type

5. submit list
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6. choose HOMO SAPIENS as species in the 'List Manager'

DAVID integrates several tools for data annotation and in a first step we assign GO
terms and KEGG pathways to the individual genes:

1. select Functional Annotation Table

2. check the boxes GOTERM_BP_ALL, GOTERM_CC_ALL, and
GOTERM_MF_ALL from the Gene Ontology node and KEGG_PATHWAY from
the Pathways node on the Annotation Summary Results Page

3. select Functional Annotation Table

4. a separate window opens showing a table with all submitted Entrez Gene IDs
and their functional categories (Fig. 2)

5. download the table as a text file by clicking the download symbol on the upper
right corner of the given window

DAVID Bioinformatics Resources 2008

National Institute of Allergy and Infectious Diseases (NIAID), NIH

Functional Annotation Table
Current Gene List: DEGs FH dataset
95 DAVID IDs

86 records B Download File
o it fomsiGonee | Homosens |

GOTERM_CC_ALL intracelukar, cell, nuckus, organelle, membrane-bound organelke, intracelular organelle, intrace lular membrane-bound arganell, intracellular part, cell part,

GOTERM_MF_ALL nuckic acid binding, DMA binding. binding, cakium ion binding. ion binding, cation binding, metalion binding,

o resmemcosssectomboboor | femeiGoes | Homesen |

GOTERM_CC_ALL intrace lukar, cell. cytoplasm, intrace lukr part, cell part.

GOTERM_BP_ALL cell communication. signal transduction, intracelular signaling cascade. protein kinase cascade. |-kappaB kinase/NF-kappaB cascade. cellular process.

GOTERM_MF_ALL binding, protein binding, zinc ion binding. ion binding. cation binding. metal ion binding, ition metal ion binding,

Figure 2: Example analysis output when the DAVID routine is applied. Given are the
gene ontology terms for two differentially expressed genes.

Another web tool for categorizing genes by their biological function is PANTHER
(www.pantherdb.org). To analyze the genes differentially expressed between FH and
healthy monocytes (as given for our example case) in terms of functional enrichment
when compared to the whole NCBI H. sapiens gene list, the following steps have to be
performed:
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1. select Tools from the tool bar
2. choose Gene Expression Data Analysis and Compare gene lists

3. select Gene ID as identifier and upload the list of Entrez Gene IDs for the

differentially expressed genes
4. finish selecting lists
5. select NCBI: H. sapiens genes as reference list
6. check Biological Processes
7. launch analysis

8. download the results table by clicking the Export button on the upper left corner
on the results page (Fig. 3)

PANTHER

Classification System

LOGIN  RESISTER OONTACTUS HEP

T s —

Expression Analysis | HMM scoring | cSNPanalysis | Downloads

Results ':?:'

Reference list | DEGs-FH-DATASET.csv
Mapped IDs: 25431 83
Unmapped IDs: 0 4

PNl View: [ Please sekcta chart to display -- 7 |

MCEBI: H. sapiens genes (REF) DEGs-FH-DATASET.csv
Biological Process # # expected +/- A Pwalue
Biological process unclassified 11321 26  41.40 - 7.51E-04
Mesoderm development 551 7 2.01 + 4,19E-03
Other intracellular signaling cascade 225 4 82 + 9.58E-03
Receptor protein serinefthreonine kinase signaling pathwa 40 2 15 + 9.63E-03
Cell adhesion-mediated signaling 379 5 1.39 +  1.30E-02
Protein targeting and localization 253 4 .93 +  1.42E-02

Figure 3: PANTHER analysis example output. The second and third column hold the
number of genes in the reference and FH list mapping to the PANTHER classification
category in the first column. The expected number of genes in the respective category
is listed in column four. A plus or minus sign in the fifth column indicates over- or
under-representation of features for a given category. The last column of the results
table holds the p-values indicating the significance of deviation of the identified number
of features with respect to the number of features present in a particular category when
following a chi-square test.
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3.5. In-silico Promoter Analysis

Transcription factors with enriched binding sites in a set of genes or proteins can be
identified with the oPOSSUM tool (http://www.cisreg.ca/cgi-binf/oPOSSUM/opossum).
Gene as well as protein identifiers are accepted by the analysis tool such as Ensembl
IDs, HUGO Gene Symbols or aliases, RefSeq IDs, or Entrez Gene IDs.

The following steps are necessary to obtain transcription factors with enriched binding

sites. For a discussion of input parameters see Note 5.
1. select as organism either human or mouse
2. select the type of identifier and upload your list of IDs
3. select all JASPAR Core profiles with a specificity of 10 bits

4. set the level of conservation to the top 10% of conserved regions and the matrix
match threshold to 85%

5. define the region in respect to the transcription start site to be searched for

binding sites

6. focus on significantly enriched transcription factors by setting the Z-score >= 5

and the p-value of the Fisher’s exact test to <= 0.05

In our example the transcription factor NR2F1 is found to be significantly enriched with
a p-value of < 0.001 and a Z-score of 8.069 when searching 2000 base pairs upstream
of the transcription start sites of all upregulated genes. Next to the statistics the counts
of transcription factor binding sites in our gene set as well as in the background gene
set is given along with the transcription factor class and supergroup the transcription
factor belongs to. A detailed view of the predicted binding sites in the analysis dataset

is accessible via the link in the field of target gene hits.

3.6. Integrated Approaches

The STRING tool (http://string.embl.de) for the generation of protein interaction
networks accepts both, protein identifiers or protein sequences as input. To retrieve
protein identifiers from the list of differentially expressed genes, the DAVID tool can be

used. The procedure is the same as described in 3.4. for the assignment of GO terms
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and pathways, but the box UNIPROT_ACCESSION from the Main Accession node has
to be selected. The following steps lead to a STRING network of proteins from the

differentially expressed genes:
1. select the multiple names tab from the search box
2. paste the list of protein identifiers in the respective box
3. choose Homo sapiens as organism
4. start the analysis

5. review the list of input proteins and continue

EIF3S8

&

HDAC7
CALN

ZNF160

®

Figure 4: Subgraph extracted from the STRING protein network. Edge colors indicate
the type of interaction. Olive edges: interaction based on textmining; Pink edges:
experimental interaction evidence; Blue edges: information from other databases.
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The resulting network holds the uploaded proteins and can be further expanded with
additional interacting partners by selecting the more button below the graphics. The
default network view is the evidence view, where nodes represent proteins and edge
color indicates the type of evidence for the association. Further views can be selected
on the bottom of the results page.

Fig. 4 shows a resulting subgraph when expanding the entire network of differentially
expressed genes by adding ten additional partners with the highest evidence score.

For the given example most of the members are involved in mRNA transcription
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4. NOTES

1. A listing of databases, web-based resources and tools discussed in this work is

given in Table 1.

2. Next to the zipped CEL files, the GEO accession summary page provides links to
three additional files holding information on metadata and the normalized expression
values. The SOFT formatted family file and the MINIML formatted family file include
information about the family of the specific accession in text or XML format,
respectively. Family implies all records related to the accession, including platform,
sample, and series records. The third file is called ‘Series Matrix File’ and is a text file,
holding expression values for all samples in matrix format. The header of these files
contains all relevant metadata including the abstract, contributors, sample hybridization
protocol, processing method, etc., and can be used as input for analysis software
packages like the TIGR MeV tool.

3. CARMAweb provides several different methods for preprocessing, including MAS5,
RMA, and additionally custom normalization can be defined. The custom normalization
allows the user to select from various methods for the consecutive steps of the
preprocessing procedure. In order to make arrays comparable, the expression values
are scaled up or down using a pre-defined intensity value, which is by default set to
200 when using MAS5 in CARMAweb. A histogram and a boxplot of the raw data as
well as of the normalized data are drawn after checking the respective box. These plots
can give a first impression of the data and array quality. If a dataset includes array
replicates, they can be merged by calculating the mean expression values across the

replicates.

4. SAM is implemented for two-class unpaired, two-class paired, multi-class, censored
survival, and one-class group comparisons. Because the FH dataset used in the given
example case consists of two groups (diseased and healthy) and no pairing of samples
is available, we choose the two-class unpaired design. For our dataset we consider
500 permutations to be sufficient for reaching robust results. This number however can
be increased up to the point where all possible permutations are performed. If a
number higher than the possible number of unique permutations is entered the user is
asked whether to use all possible permutations. The SO constant minimizes the
coefficient of variation of the relative difference in gene expression and is computed as

a percentile based on alpha, which indicates the probability of false positive results. Q-
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values can be computed to indicate the lowest false discovery rate at which the
transcript is denoted as significant. For imputation of missing values, SAM provides two
methods, namely the K-nearest neighbor algorithm and the row average method. The
K-nearest neighbor algorithm replaces missing values with the k nearest neighbors
according to the Euclidean distance, whereas the row average method simply uses the

mean of the expression values for the respective transcript over all arrays.

5. In order to reduce the number of false positive predictions the use of more stringent
input parameters is advised. We only use transcription factor binding matrices with a
minimum specificity of 10 bits and a matrix match threshold of 85%. Additionally, only

the top 10% of conserved regions with a minimum conservation of 70% are used.

51



REFERENCES

1. Wittner BS, Sgroi DC, Ryan PD, et al. Analysis of the MammaPrint breast cancer
assay in a predominantly postmenopausal cohort. Clin. Cancer Res 2008;
14:2988-2993.

2. Perco P, Rapberger R, Siehs C, et al. Transforming omics data into context:
bioinformatics on genomics and proteomics raw data. Electrophoresis 2006;
27:2659-2675.

3. Parkinson H, Kapushesky M, Shojatalab M, et al. ArrayExpress--a public
database of microarray experiments and gene expression profiles. Nucleic Acids
Res 2007; 35:D747-750.

4. Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for high-throughput
functional genomic data. Nucleic Acids Res 2009; 37:D885-890.

5. Demeter J, Beauheim C, Gollub J, et al. The Stanford Microarray Database:
implementation of new analysis tools and open source release of software.
Nucleic Acids Res 2007; 35:D766-770.

6. Hoogland C, Mostaguir K, Sanchez J-C, Hochstrasser DF, Appel RD. SWISS-
2DPAGE, ten years later. Proteomics 2004; 4:2352-2356.

7. Smolka M, Zhou H, Aebersold R. Quantitative protein profiling using two-
dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass
spectrometry. Mol. Cell Proteomics 2002; 1:19-29.

8. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a
microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet
2001; 29:365-371.

9. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of
high density oligonucleotide array probe level data. Biostatistics 2003; 4:249-264.

10. Statistical Algorithms Reference Guide. http://www.affymetrix.
com/support/technical/technotes/statistical_reference_guide.pdf. 2001; Available
at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.8642.

11. Schadt EE, Li C, Ellis B, Wong WH. Feature extraction and normalization
algorithms for high-density oligonucleotide gene expression array data. J. Cell.
Biochem. Suppl 2001; Suppl 37:120-125.

12. LiC, Hung Wong W. Model-based analysis of oligonucleotide arrays: model
validation, design issues and standard error application. Genome Biol 2001,
2:RESEARCHO0032.

13. Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods
for DNA microarrays. Bioinformatics 2001; 17:520-525.

14. Zhou X, Wang X, Dougherty ER. Missing-value estimation using linear and non-

linear regression with Bayesian gene selection. Bioinformatics 2003; 19:2302-
2307.

52



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bg TH, Dysvik B, Jonassen |. LSimpute: accurate estimation of missing values in
microarray data with least squares methods. Nucleic Acids Res 2004; 32:e34.

Jornsten R, Wang H-Y, Welsh WJ, Ouyang M. DNA microarray data imputation
and significance analysis of differential expression. Bioinformatics 2005; 21:4155-
4161.

Grosse-Coosmann F, Boehm AM, Sickmann A. Efficient analysis and extraction of
MS/MS result data from Mascot result files. BMC Bioinformatics 2005; 6:290.

Diehn M, Sherlock G, Binkley G, et al. SOURCE: a unified genomic resource of
functional annotations, ontologies, and gene expression data. Nucleic Acids Res
2003; 31:219-223.

Safran M, Chalifa-Caspi V, Shmueli O, et al. Human Gene-Centric Databases at
the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE.
Nucleic Acids Res 2003; 31:142-146.

Westfall PH, Young SS. Resampling-based multiple testing: examples and
methods for p-value adjustment. In: Wiley series in probability and mathematical
statistics. Wiley, 1993.

Dudoit S, Shaffer JP, Boldrick JC. Multiple Hypothesis Testing in Microarray
Experiments. Statist. Sci 2003; 18:71-103.

Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data
analysis. Test 2003; 12:1-77.

Nie L, Wu G, Zhang W. Statistical application and challenges in global gel-free
proteomic analysis by mass spectrometry. Crit. Rev. Biotechnol 2008; 28:297-
307.

van der Laan MJ, Dudoit S, Pollard KS. Multiple testing. Part Il. Step-down
procedures for control of the family-wise error rate. Stat Appl Genet Mol Biol 2004;
3:Articlel4.

Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol 2004;
5:R80.

Efron B, Tibshirani R. An Introduction to the Bootstrap (Chapman & Hall/CRC
Monographs on Statistics & Applied Probability). Chapman and Hall/CRC, 1994.
Available at: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20&path=ASIN/0412042312.

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to
the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A 2001; 98:5116-5121.

Saeed Al, Sharov V, White J, et al. TM4: a free, open-source system for
microarray data management and analysis. BioTechniques 2003; 34:374-378.

Mi H, Lazareva-Ulitsky B, Loo R, et al. The PANTHER database of protein

families, subfamilies, functions and pathways. Nucleic Acids Res 2005; 33:D0284-
288.

53



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

54

Khatri P, Draghici S. Ontological analysis of gene expression data: current tools,
limitations, and open problems. Bioinformatics 2005; 21:3587-3595.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4:44-57.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 2000; 28:27-30.

Joshi-Tope G, Gillespie M, Vastrik I, et al. Reactome: a knowledgebase of
biological pathways. Nucleic Acids Res 2005; 33:D428-432.

Antonov AV, Dietmann S, Mewes HW. KEGG spider: interpretation of genomics
data in the context of the global gene metabolic network. Genome Biol 2008;
9:R179.

Portales-Casamar E, Thongjuea S, Kwon AT, et al. JASPAR 2010: the greatly
expanded open-access database of transcription factor binding profiles. Nucleic
Acids Res 2010; 38:D105-110.

Ho Sui SJ, Mortimer JR, Arenillas DJ, et al. oPOSSUM: identification of over-
represented transcription factor binding sites in co-expressed genes. Nucleic
Acids Res 2005; 33:3154-3164.

von Mering C, Jensen LJ, Kuhn M, et al. STRING 7--recent developments in the
integration and prediction of protein interactions. Nucleic Acids Res 2007;
35:D358-362.

Jensen LJ, Kuhn M, Stark M, et al. STRING 8--a global view on proteins and their
functional interactions in 630 organisms. Nucleic Acids Research 2009; 37:D412-
D416.

Alexeyenko A, Sonnhammer ELL. Global networks of functional coupling in
eukaryotes from comprehensive data integration. Genome Res 2009; 19:1107-
1116.

Bernthaler A, Mihlberger |, Fechete R, Perco P, Lukas A, Mayer B. A
dependency graph approach for the analysis of differential gene expression
profiles. Mol Biosyst 2009; 5:1720-1731.

Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R. The
International Protein Index: an integrated database for proteomics experiments.
Proteomics 2004; 4:1985-1988.

Mosig S, Rennert K, Bittner P, et al. Monocytes of patients with familial
hypercholesterolemia show alterations in cholesterol metabolism. BMC Med
Genomics 2008; 1:60.

Rainer J, Sanchez-Cabo F, Stocker G, Sturn A, Trajanoski Z. CARMAweb:
comprehensive R- and bioconductor-based web service for microarray data
analysis. Nucleic Acids Res 2006; 34:W498-503.



2.1.1 The Thesis Author’s Contribution

The author of the thesis designed the bioinformatics and data workflow for this
methodological concept paper and conducted the specific data retrieval and analysis
steps of this work.

In detail, the following contributions are due to the thesis author’s efforts:

¢ Retrieval of the gene expression dataset on familial hypercholesterolemia from
the Gene Expression Omnibus database

o Preprocessing of the dataset including background correction and raw data
normalization using the CARMAweb tool

o Identification of differentially expressed genes using the SAM (Significance
Analysis for Microarrays) provided by the TIGRMeV software

e Functional annotation and enrichment analysis using the DAVID tool

e Functional annotation and enrichment analysis using the PANTHER
classification tool

e Converting gene identifiers to protein identifiers using the DAVID tool

e Generation of protein interaction networks according to the STRING tool

e Writing and preparation of the text describing the performed analysis steps

e Preparation of tables and figures presented in the Methods section

e Lead in preparing the manuscript draft
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SUMMARY

Ischemia reperfusion injury (IRI) is a choreographed process leading to delayed graft
function (DGF) and reduced long term patency of the transplanted organ. Early
identification of recipients of grafts at risk would allow modification of the post
transplant management, and thereby potentially improve short and long term

outcomes.

The recently emerged ‘omics’ technologies together with bioinformatics work-up have
allowed the integration and analysis of IRI-associated molecular profiles in the context
of DGF. Such a systems biology approach promises qualitative information about
interdependencies of complex processes such as IRl regulation, rather than offering
descriptive tables of differentially regulated features on a transcriptome, proteome or

metabolome level leaking the functional, biological framework.

In deceased donor kidney transplantation as the primary etiology resulting in IRl and
DGF, a distinct signature and choreography of molecular events in the graft before
harvesting appears to be associated with subsequent DGF. A systems biology
assessment of these molecular changes suggests that processes along inflammation
are of pivotal importance for the early stage of IRI. The causal proof of this association
has been tested by a double-blinded RCT of steroid or placebo infusion into deceased
donors before the organs were harvested. Thorough systems biology analysis revealed

a panel of biomarkers with excellent discrimination.

In summary, integrated analysis of omics data has brought forward biomarker
candidates and candidate panels which promise early assessment of IRI. The clinical
utility of these markers, however, still needs to be established in prospective trials in

independent patient populations.
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INTRODUCTION

Renal transplantation is the treatment of choice for end stage renal disease but this
option is limited by the availability of donor organs. Deceased donor transplantation
accounts for the majority of transplants performed in most parts of Europe and the
United States, however the short and long term outcomes are worse compared to live
donor kidney transplantation. There are several explanations for this phenomenon, but
certainly the autonomous cytokine storm after brain death in the donor characterized by
central diabetes insipidus and subsequent hemodynamic instability heavily contributes
to this incident. In comparison, kidneys from live donors almost never show signs of
inflammation and acute tubular damage as evidenced from biopsies obtained after
harvest but before engraftment [1]. Tubular and vascular damage in the donor organ
after cold ischemia but before transplantation is highly associated with subsequent
ischemic reperfusion injury (IRI) and delayed graft function (DGF). In fact according to
large registries such as the UNOS/SRTR, recipients of standard criteria deceased
donor organs experience DGF defined as more than one post-transplant dialysis in
roughly 20% of cases. Recipients of organs from extended criteria donors, or donors
with cardiac death exhibit an even higher rate of up to 50% primary non-function [2].
Graft survival of organs with DGF is dramatically impaired compared to primary
functioning kidney grafts. The relative risk of graft failure is 1.5 to 2.5 fold higher in DGF
compared to primary functioning grafts [2-4]. By appreciating this dramatic impact of
DGF on outcomes it becomes obvious that acute renal failure is in fact not a 'cute’
renal injury but a rather devastating condition which needs to be prevented by all
means. Prevention requires identification of subjects at risk before the event occurred.
Thus we were set out over the last decade to search for potential biomarkers for IRI

and DGF in donor kidneys on a genome wide basis.

The performance characteristics and validity of such biomarkers, however, is difficult to
assess since this process requires the analysis of the derived markers with
morphological grading of the allograft as gold standard for tissue injury. Furthermore,
thorough clinical follow up of recipients of these allografts is mandatory. And lastly, the
predictive values of these biomarker tests depend on the incidence of IRI. So far no
kidney biomarker exists that exhibits adequate discrimination and calibration for useful
clinical application. It is likely that a panel of a few, rather than single biomarkers will be

used in the future to identify subjects at risk for IRl and DGF.
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If subjects at risk could be identified with adequate precision, prophylactic measures
would be feasible potentially leading to a reduced rate and severity of IRl - and
hopefully longer graft patency. The next paragraphs provide an overview on biomarker
discovery and verification for the prediction of IRI, and their utility for clinical use.

HUMAN STUDIES

A number of studies have been performed utilizing animal models of IRI [5-7].
Supavekin and colleagues report on expression analyses using cDNA microarrays in a
mouse model identifying 91 upregulated and 156 downregulated genes after ARF
induction with a significant number involved in apoptotic processes [7]. Yoshida et al.
identified 109 differentially expressed genes in a mouse model with ischemia
reperfusion injury induced ARF [6]. In a similar setting in a rat model the same group
reported 18 genes as being differentially expressed after IRl induced ARF [5].
However, a shortcoming of these animal trials is their unclear resemblance of the
human situation. Comparing e.g. differential gene expression profiles from the studies

mentioned above provided only partial overlap on the level of involved features [8].

The first genome wide gene expression studies in human donor kidney biopsies were
performed more then five years ago. Hauser and colleagues showed that genes
participating in the functional ontologies of inflammation and immune response were
the primary predictors of subsequent IRl and DGF [9]. These data were confirmed on
the protein level for selected candidates of these GO families such as the adhesion
molecules ICAM-1, VCAM and ELAM [10]. The immunohistochemistry studies showed,
as expected, varying expression of protein markers of inflammation in different
compartments of the kidney such as the tubulointerstitium, the vessels and the
glomerular capillary loops. Thus subsequent studies used laser capture
microdissection to separate the functional units of the nephron before analyzing
compartment specific differential gene expression using live donor kidney biopsies
obtained immediately before transplantation as controls. Kainz and colleagues
demonstrated that gene expression profiles are distinctly different not only between the
compartments, i.e. glomeruli and the tubulointerstitium, but also between deceased
and live donor kidneys. Again, members of the inflammation and immune response

family were the main discriminators between the compartments and organ sources.
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Mueller et al. also analyzed the transcriptome of zero hour donor kidney biopsies and

reported a gene set consisting of 1051 transcripts differentially expressed between a

group of organs from deceased donors with greater incidence of delayed graft function

as compared to a group of organs from deceased donors with primary function [11].

Mas and colleagues identified 36 candidate genes associated with delayed graft

function in deceased donor kidney biopsies with a large fraction being involved in

inflammatory responses [12].

A summary of biomarker candidates presently discussed in the literature in the context

of IRl and DGF is given in Table 1.

Gene Name Gene Symbol |References
actin, alpha 2, smooth muscle, aorta ACTA2 Badid et al. [13]

. Lynn and Marshall [14];
uromodulin UMOD Zimmerhackl [15]
lectin, galactoside-binding, soluble, 3 LGALS3 Nishiyama et al. [16]
spermidine/spermine N1-acetyltransferase 1 | SAT1 Zahedi et al. [17]

Ichimura et al.[18];
hepatitis A virus cellular receptor 1 HAVCR1 Hong et al. [19];

Vaidya [20]
chemokine (C-X-C motif) ligand 1 CXCL1 Molls et al.[21]
annexin A2 ANXA2 Cheng et al. [22]
S100 calcium binding protein A6 S100A6 Cheng et al. [22]
cysteine-rich, angiogenic inducer, 61 CYR61 Muramatsu et al. [23]
S100 calcium binding protein B S100B Pelinka et al. [24]
alpha-1-microglobulin/bikunin precursor AMBP Herget-Rosenthal et al. [25]
lipocalin 2 LCN2 Mishra et al. [26]
complement component 3 C3 Farrar et al. [27]

e . . Yamamoto et al. [28];
fatty acid binding protein 1, liver FABP1 Pelsers et al. [29]
R i Zhou et al. [30];

activating transcription factor 3 ATF3 Yoshida et al. [31]
Netrin 1 NTN1 Reeves et al. [32]
endoglin ENG Docherty et al. [33]
guanylyl cyclase G GUCY2G Lin et al. [34]
BH3 interacting domain death antagonist BID Wei et al. [35]

Valdes et al. [36];
B-Cell CLL/lymphoma 2 BCL2 Waller et al. [37]

. : Valdes et al. [36];
BCL2-associated X protein BAX Waller et al. [37]

: : Villanueva et al. [38];
Prostaglandin-endoperoxide synthase 2 PTGS2 Matsuyama et al. [39]
ADAM metallopeptidase with :
thrombospondin type 1 motif, 1 ADAMTS1 Basile et al. [40]
Cyclin-dependent kinase inhibitor CDKN1A Chkhotua et al. [41]

Hochegger et al. [42]
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Collagen, type XVIII, alpha 1 COL18A1 Bellini et al. [43]

Table 1: Biomarker candidates in the context of IRl and DGF as reported in the
literature. Provided is the gene name, the gene symbol, and the respective scientific
references.

Most of the omics studies performed so far reported features differentially regulated on
the transcriptome or proteome level. However, such descriptive lists are hardly
amenable for a functional interpretation with respect to associated processes and
pathways. For addressing this issue, subsequent approaches in that very field were
designed to enhance the understanding of the choreographed processes by using
extended bioinformatics [44]. Systems biology is one means where information
characterizing IRl on different cellular layers as genome wide gene expression or
proteomics are incorporated in the data analysis to better identify functionally
interlinked molecular processes (instead of descriptive feature lists), and on this basis
an improved identification of biomarkers which potentially predict biological events such
as IRl and DGF [45,46] might become feasible.

Effects of IRl on medium term graft function as well as other related outcomes such as
ESA use in the first year after engraftment were recently studied by such approaches
[47,48]. Perco and colleagues, as well as Wilflingseder and coworkers identified
molecular predictors in the donor kidney biopsy supporting the prediction of the graft
status one year after implantation. The accuracy of this approach provided an
explanation of 28% of the variability of one year serum creatinine using a biomarker
panel, whereas morphological criteria (CADI score) together with clinical variables
performed much poorer (adjusted R? of 14%). The main predictors came from the NLR
protein family, pyrin domain containing 2 (NLRPZ2), immunoglobulin J polypeptide (IGJ),
and the regulator of G-protein signaling 5 (RGS5), again indicating the central role of

immune response signaling [47].

Similarly, the use of ESA requirement in the first year after engraftment is more
prevalent in subjects who experience IRl and subsequent DGF. Wilflingseder and
colleagues [49] found that regulators of immunity and inflammation may be used as
biomarkers for IRl and subsequent ESA dependency even when adjusted for variables

known to be associated with anemia including donor age, biopsy confirmed acute
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rejection, serum CRP levels or GFR. The AUC of the ROC curve for the prediction of
ESA dependency was 0.93 in the molecular predictor model but only 0.84 in the model
of clinical variables [49]. The authors found three specific genes SPRR2C (small
proline-rich protein 2C pseudogene), B3GALTL (beta-1,3-galactosyltransferase-like),
and GSTT1 (glutathione S-transferase theta 1), which are now further evaluated as
biomarkers for ESA dependency.

The usefulness of the information in terms of biomarker utility has certainly improved
over the last years by providing qualitative information on IRl and DGF associated
molecular processes. Nevertheless, the assessment accuracy on the basis of the
presently given biomarker spectrum is still rather poor. This finding might be grounded
on the considerable false positive rate of omics results, partially based on experimental
heterogeneity as well as on shortcomings of applied statistical analysis procedures.
Therefore we set out to incorporate given IRI associated omics profiles in a fully
integrated systems biology framework.

THE ‘omicsNET’ DATA INTEGRATION APPROACH

Hauser and colleagues performed a transcriptomics study comparing live and diseased
kidney donor organs, and identified 90 genes as differentially regulated [9]. As outlined
above, the incidence of postischemic acute transplant kidney failure is significantly
increased when implanting donor organs from deceased subjects. The main functional
roles of the corresponding genes according to the PANTHER (Protein ANalysis
THrough Evolutionary Relationship) Classification System (http://www.pantherdb.org)
were immunity and defense as well as metabolism, as presented in Table 2A.
Significant categories were identified using chi-square test statistics of assigned genes

as compared to a reference gene set of all assigned human genes.

We further analyzed this data set in a computational systems biology framework
following an interaction network analysis: The methodological basis of this approach is
computational delineation of dependencies between human genes and proteins which
are derived by inclusion of a broad omics data spectrum: Each gene/protein is
represented as object (node in the interaction network) and characterized by

associated functional annotation terms (stemming from e.g. gene ontologies), the given
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genes’ reference expression as determined for 32 tissues, experimentally derived
interaction data of encoded proteins, as well as the proteins’ subcellular location. On
the basis of this object annotation we computed pair-wise object-object dependencies
(representing edges between the nodes) applying a functional utilizing the annotation
data as parameters. The resulting reference graph therefore encodes an estimate on
the (functional) dependencies between genes and proteins. We then mapped the 90
features found to be differentially regulated between live and diseased donor organs on
the corresponding gene objects of the reference graph, and computed the shortest

paths between these nodes. The resulting subgraph is given in Figure 1.

The subgraph (holding in total 84 gene/protein nodes) derived on the basis of the gene
expression profile holds all genes being statistically significantly differentially expressed
(blue), includes all genes/proteins interconnecting the expression profile
representatives (grey), and identifies the interconnecting nodes belonging to the
functional category inflammation, given in orange. Obvious is the significant enrichment
of inflammation-associated genes encoded in this subgraph, as also found when
computing significantly enriched biological processes as provided in Table 2B.

biological process p-value
(A) statistical analysis
Immunity and defense 1.8E-04
Proteolysis 1.1E-04
Lipid metabolism 9.4E-03
Amino acid metabolism 1.2E-02
Complement-mediated immunity 1.3E-02
(B) dependency graph analysis
Immunity and defense 3.2E-32
Signal transduction 6.0E-29
Cell proliferation 7.5E-28
Blood clotting 2.6E-18
Protein phosphorylation 4.3E-18

Table 2: PANTHER biological processes and their significance of population
expressed as p-value following a chi-square test for (A) statistical analysis of the gene
expression data alone and (B) analysis of the 84 nodes (107 edges) as defined in the
context of the dependency graph (Figure 1).
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As mentioned above, several studies identified markers of inflammation in the donor
kidney as being associated with DGF but a causal proof was never done as this would
require testing the suppression of inflammation in the donor. Two nodes of the
subgraph are of particular interest, namely NFKB1 and NR3C1, as these are targets of
corticosteroids. Supported by this analysis we designed a double blinded RCT to test
the hypothesis whether suppression of inflammation in the donor would ameliorate IRI
and subsequently reduce the rate of DGF. This study is presently ongoing.
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Figure 1: Subgraph interlinking significantly differentially regulated genes
characterizing DGF as determined by analyzing biopsy samples of live and diseased
donor kidneys. Nodes represent genes/proteins, and edges indicate dependencies
between nodes. Blue colored nodes indicate genes identified as significantly
differentially regulated, grey colored nodes resemble members of shortest paths
connecting experimentally identified nodes, and orange colored nodes being members
of the functional category inflammation. Red squares indicate the corticosteroid targets
NR3C1 and NFKBL1.
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We repeated this dependency graph analysis approach utilizing the biomarker

candidate list given in Table 1, and the results are shown in Table 3.

biological process p-value

(A) statistical analysis
Angiogenesis 4.19E-05
Oncogenesis 1.66E-04
Mesoderm development 1.86E-03
Developmental processes 4.00E-02

Cell proliferation and differentiation 1.23E-02
(B) dependency graph analysis
Cell proliferation and differentiation 3.31E-15

Signal transduction 6.79E-14
Oncogenesis 8.04E-11
Immunity and defense 5.59E-10
Protein phosphorylation 6.74E-10

Table 3: PANTHER biological processes and their significance of population
expressed as p-value following a chi-square test for (A) statistical analysis of the
candidate biomarkers alone and (B) analysis of the 262 nodes (411 edges) found when
identifying the candidate biomarker-associated dependency subgraph.

On the basis of the public domain candidate list, inflammation events as represented
by immunity and defense mechanisms is not over-represented, as no respective
entries are given in Table 3A. Top ranked category is angiogenesis with the majority of
genes being anti-angiogenic. This is interesting since hypoxia following ischemia
reperfusion injury would suggest an upregulation of pro-angiogenic factors. Basile and
colleagues investigated angiogenesis related genes in the context of ischemia
reperfusion injury in more detail in a microarray study and identified ADAMTS1, a
secreted VEGF inhibitor, as being highly upregulated after IRI [40]. Rudnicki et al.
deciphered the connection between the VEGF pathway and hypoxia in the setting of
chronic kidney disease, and found a decreased expression of VEGF although hypoxia
inducible factors were highly upregulated in patients with a progressive course of

disease [50]. Other processes identified involve developmental events and apoptosis.

After mapping the 25 biomarker candidates on the dependency reference graph and

determining the shortest paths interlinking the candidates, 237 additional nodes were
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found in the subgraph. Computing the biological processes over-represented on this
level ranks cell proliferation and differentiation as most prominent process, and
immunity and defense also emerges as being relevant categories (Table 3B).

CLINICAL APPLICATION

A number of studies have been carried out recently to evaluate the role of the most
promising biomarkers in the prediction of clinical outcomes in acute renal failure (ARF).
Liangos et al. conducted a cohort study of 198 hospitalized patients with ARF, 37%
among them with an ischemic cause. They showed that HAVCR1 (KIM-1) levels are

associated with measurements of disease severity [51].

However, the clinical utility of markers as KIM1 and NGAL in the context of DGF still
has to be demonstrated. We have started a clinical study for evaluating the impact of
inflammation on DGF. This clinical study includes steroid pretreatment of the deceased
organ donor to detect a reduction in the rate of IRl and DGF from the current 25% to
12.5% with adequate power (Current Controlled Trials Registration ISRCTN78828338).
The trial with a calculated sample size of 420 required a protocol donor kidney biopsy
which was subjected to genomics and Systems Biology analyses. As of the end of
2008 all subjects have been enrolled and most of the analysis performed. The interim
analysis after half of the sample size has been enrolled was presented at the annual
American Society of Nephrology meeting in 2008 [52]. This analysis showed nice
suppression of inflammation in the steroid group and perfect discrimination by
treatment. The effect on the clinical endpoint DGF however was not affected in a way
that would have allowed stopping the trial by the pre-specified alpha error boundaries
which were set according to the Lan DeMets extension of the O’Brian Fleming criteria.
The analysis of the full data set will be presented in a full paper in 2009, then providing
more evidence on the potential role of inflammation in IRI and DGF-.

Besides the causal proof of molecular features which are associated with early graft
dysfunction, validation of candidate biomarkers in an independent sample and different
types of accessible body fluids such as blood or urine is required. These requests
suggest that the identified molecular feature on the mRNA level cause also a
differential abundance of respective protein(s). These protein(s) need to be secreted
from injured renal cells of any compartment whatsoever and have to have certain

kinetics, i.e. a half life of few hours which would allow detection of dynamic chances.
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Finally, even before the test characteristics can be checked, a reliable measurement of
the concentration of this(ese) protein(s) need to be established e.g. utilizing ELISA
other approaches.

CONCLUSION

Novel biomarker candidates for assessment of IRl emerged recently, and omics
techniques have provided a major contribution to these discoveries. However, so far
there is no clear ‘best’ predictive marker that has been validated in independent
samples neither on mRNA nor on protein level. Novel analysis procedures as systems
biology approaches might provide further insight into the cellular processes
characterizing IRI, which in turn will allow selection of superior biomarker candidates.
Following the present data status inflammation events may be early stage indicators of

IRI, triggering subsequent events along cell proliferation and apoptosis.
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2.2.1 The Thesis Author’s Contribution

The thesis author contributed to the study design. Moreover, the author performed the
literature research on biomarkers associated with Ischemia Reperfusion Injury and
Delayed Graft Function, as well as the functional analyses steps for the literature and
transcritomics datasets. Interpretation and discussion of the results were carried out in

collaboration between all authors of the publication.

In detail, the following contributions are due to the thesis author’s efforts:

e Review and analysis of the selection of keywords used for the literature
research, as well as selection of bioinformatics analyses tools

e Performance of the literature research in PubMed

e Functional annotation and enrichment analyses of the literature derived
biomarker candidates and differentially expressed genes in deceased donor
kidneys (obtained from Hauser et al. [9]) using the PANTHER classification tool
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ABSTRACT
Background

We recently showed in a randomized control trial that steroid pre-treatment of the
deceased organ donor suppressed inflammation in the transplant organ but did not
reduce the rate or duration of delayed graft function (DGF). The present study sought

to elucidate what factors caused DGF in the steroid treated subjects.
Methods

Genome-wide gene expression profiles were used from twenty steroid pre-treated
donor organs and were analyzed on the level of regulatory protein-protein interaction

networks.
Results

Significance analysis of microarrays yielded 63 significantly down-regulated sequences
associated with DGF that could be functionally categorized according to PANTHER
ontologies into two main biological processes: transport (p<0.001) and metabolism
(p<0.001). The identified genes suggest hypoxia as cause of DGF which cannot be
counterbalanced by steroid treatment.

Conclusions

Our data showed that molecular pathways affected by ischemia such as transport and
metabolism are associated with DGF. Potential interventional targeted therapy based

on these findings includes PPAR-agonists or caspase inhibitors.

KEYWORDS: bioinformatics, delayed graft function, renal transplantation, system

biology, transcriptome
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INTRODUCTION

Kidney transplantation is the preferred treatment of end stage renal disease because it
is considerably cheaper than dialysis and allows for an almost normal life. One of the
main reasons of graft failure is delayed graft function (DGF), a form of acute renal
failure resulting in post-transplantation oliguria, increased allograft immunogenicity and
risk of acute rejection episodes, and decreased long-term survival [1]. Roughly one
third of transplant patients receiving an organ from a deceased donor develop DGF
and have to be treated by dialysis until the engrafted organ resumes function. The
hazard ratio for graft failure is almost twice as high in recipients who experienced DGF
compared to those without initial complications [2]. Factors which contribute to DGF
can be divided into donor-related and recipient-related factors. Donor-related factors
include donor age, diseases such as hypertension, brain death associated causes such
as hemodynamic instability, massive cytokine release and vasopressor use. A
thorough discussion of donor and recipient factors contributing to DGF was published
by Schwarz et al [3]. The fact that DGF is a rare exception in live kidney transplantation
suggests that donor factors rather than the transplant procedure itself mainly contribute
to DGF.

Next to the histopathological examination of renal biopsies the determination of gene
expression profiles in donor organs poses an option to determine graft quality and even
predict transplant outcome to a certain extent [4,5]. In a recent study from our group we
reported a number of differentially regulated genes when comparing donor organs from
living and deceased donor organs. Upregulated genes in tissue samples from
deceased donors were mainly involved in inflammatory processes, complement

activation, apoptosis and cell adhesion [6].

Based on these findings we initiated a randomized, double blinded, placebo controlled
trial to elucidate whether pretreatment of deceased organ donors with corticosteroids
(g methylprednisolone) before organ retrieval will reduce inflammation and
subsequently the rate of DGF after engraftment. One main finding of this study with
447 renal allograft recipients was that steroid pretreatment caused a reduction of
inflammatory signatures in the donor kidney as monitored on the level of gene
expression profiles. However neither rate nor the duration of delayed graft function was
different in the treatment and placebo group. We therefore hypothesize that additional
pathways next to inflammation are involved in the development of DGF. Thus the
analysis of the steroid treatment arm provides a unique opportunity to investigate

molecular mechanisms other than inflammation which contribute to DGF.
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Brain death is associated with rapid swings in blood pressure, hypo- and hypertension,
coagulopathies, pulmonary changes, hypothermia and electrolyte aberrations [7-9].
Therefore donor brain death does not only result in increased inflammation but also
leads to hypoperfusion and hypoxia of the donor organ [10].

The main objective of the present work was to elucidate molecular causes of DGF that
were not abolished by the steroid donor pretreatment. Specifically we compared the
molecular signature of kidney biopsies from steroid treated donors with primary graft
function to kidneys with DGF. We sought to identify potential new targets for
intervention which ultimately may reduce the current high rate of DGF.

MATERIAL AND METHODS

Donor and recipient characteristics:

Out of the 238 recipients of steroid pretreated donor kidneys we randomly identified ten
of 52 who developed DGF and matched an equal number of primary graft kidneys.
Matching variables of controls were cause of donor death (stroke vs trauma) and

calliper matching of donors’ last creatinine and donor age.

The rationale behind the sample size was that based on previous data twenty biopsies
would be sufficient to detect a more than twofold difference in the expression of 30
predefined genes at an adjusted p-value of <0.05 using the Bonferroni Holm method
[6,11].

Trial design

Details on the multicenter trial may be found elsewhere (http://www.controlled-
trials.com/ISRCTN78828338 and Kainz & Wilflingseder et al. [12]. In brief 269 donors
stratified for age were equally randomized in blocks of four to 1000mg of corticosteroid
or placebo injection six hours before organ recovery. Before transplantation, kidney
wedge biopsies were obtained and subjected to genomics analyses. The

posttransplant clinical course was monitored.
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The study protocol was approved by the Institutional Review Board (Ethical Committee
of the Medical University of Vienna # EK-067/2005, to be found at
http://ohrp.cit.nih.gov/search/asearch.asp) and the EUROTRANSPLANT kidney
advisory committee (#6021KACO06) at each study site and conducted according to IRB
standards at each institution. DGF was defined as the need for more than one dialysis
treatment within the first week after transplantation or creatinine values above 3mg/dl

during the first week after transplantation.

Laboratory procedures and biostatistical analyses
Donor kidney biopsy specimen, RNA isolation and amplification

All organs were perfused with a histidine-tryptophan-ketoglutarat cold preservation
solution at 4°C during organ procurement [13]. The cold ischemic time was not longer
than 24 hours. Wedge biopsies of each kidney were taken under sterile conditions at
the end of the cold ischemic time right before transplantation. The biopsy specimens

were immediately submerged in RNAlater® (Ambion, Austin, Texas) and stored at 4°C.

Total RNA was isolated and purified using chloroform and trizol reagent (Invitrogen,
Carlsbad, California). RNA yield and quality was checked with the Agilent 2100
Bioanalyzer and RNA6000 LabChip" kit (Agilent, Palo Alto, California). Stratagene
Universal human reference RNA was used as reference (Stratagene, La Jolla,

California).

Two micrograms of isolated total RNA were amplified using the RiboAmp RNA
amplification kit (Arcturus, Mountain View, California). The amplified RNA was
inspected on an ethidium bromide stained 1% agarose gel and on the Agilent 2100
Bioanalyzer. For the twenty zero-hour kidney biopsies the RNA was of sufficient quality

to proceed with microarray analysis.

Microarray hybridization and scanning

cDNA microarrays holding 41,421 (batch: SHEO) features were obtained from the
Stanford University Functional Genomics core facility. All microarray experiments were
performed as described earlier [14]. The detailed protocols are available at
http://genome-www.stanford.edu/. Using a type Il experimental setup, 1 pg of sample

and standard Stratagene Universal human reference aRNA were labeled with CyScribe
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cDNA post labeling kit (Amersham Pharmacia Biotech, Buckinghamshire, UK) in a two-

step procedure.

Samples were loaded onto arrays and incubated for 18 hours in a 65°C water bath.
After three washing steps, the fluorescence images of the hybridized microarrays were
examined using a GenePix 4100A scanner (Axon Instruments, Union City, California).
The GenePix Pro 6.0 software was used to grid images and to calculate spot
intensities. Arrays were numbered according to the anonymous organ donor ID, and
were processed in random order. Image-, grid- and data-files were submitted to the
Stanford Microarray Database (http://genome-wwwb5.stanford.edu/MicroArray/SMD/)
and follow MIAME guidelines for arrays experiments [15,16]. Raw datafiles as well as
the MIAME checklist are available at our Ilaboratory webpage at
http://www.meduniwien.ac.at/nephrogene/data/DGF/.

Microarray data analysis

The microarray dataset consisted of 41,421 cDNA features. 41,025 of those held a
UniGene Cluster ID (27,442 unique genes), 396 were expressed sequence tags
(ESTs) not assigned to a UniGene Cluster. Mean sector and printing plate ANOVA R?-
values of the microarray experiments were on average 4.5x10% and 3.1x107?
respectively, suggesting no dependency of results on spatial location or plate printing
procedures. In a first pre-processing step a quality filter was applied on the dataset by
considering only genes and ESTs with spot intensities of at least 1.5-fold over
background in either channel 1 or 2 of the microarray thus leaving 32,588 cDNA
features in the dataset. Only genes and ESTs with at least 80% of valid entries were
considered for successive analysis steps thus further reducing the dataset to 24,624
cDNA features. The remaining missing data points were substituted applying a k-
nearest-neighbor algorithm, where the number of neighbors, k, was set to ten [17]. No
correction for a putative batch bias was necessary because only one array batch was
used in the whole analysis for all arrays. We used the SAM methods as well as the
student’s t-test in order to find differentially regulated genes (DEGSs) between patients
experiencing DGF and the control group with primary functioning grafts [18]. The p-
value threshold was set to < 0.05 with fold-change values greater than two. The
number of permutations in the significance analysis of microarrays (SAM) method was
set to twenty-thousand and a false discovery rate of 2.5% was selected. Differentially
expressed genes were hierarchically clustered and graphically represented using the

MultiExperiment Viewer developed at The Institute for Genomic Research [19]. The
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cosine correlation and complete linkage were used as distance measure and linkage

rule in the hierarchical cluster algorithm, respectively [19,20].

Functional data enrichment

DEGs were furthermore analyzed with respect to their molecular functions, associated
biological processes, and cellular locations using gene ontology terms (GO-Terms) as
provided by the Gene Ontology Consortium [21]. The SOURCE tool from the Stanford
Genomics Facility was used for linking GO-Terms to the genes of interest [22].
Functional grouping of genes was based on GO-Terms, Protein ANalysis THrough
Evolutionary Relationships (PANTHER) ontologies, and information derived from the

protein data retrieval system iHOP [23,24].

Regulatory network analysis

All identified DEGs were mapped on a molecular dependency graph holding about
70,000 annotated human proteins [25]. Each graph node codes for a particular protein
and edges between nodes encode pairwise dependencies. Dependencies were
computed based on protein-protein interaction information, similarity in gene
expression, conjoint regulatory patterns on the level of transcription factors and
microRNAs, as well as assignment to functional ontologies. Subnetworks holding at

least two DEGs were retrieved and further analyzed on a functional level.

Statistical analysis

Continuous data were analyzed by Wilcoxon rank-sum tests, categorical data by chi-
square tests or Fisher's exact tests when appropriate. A p-value less than 0.05 was
considered statistically significant. For all analyses SAS for Windows 9.2 (The SAS

Institute, Inc., Cary, North Carolina, USA) was used.
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RESULTS

Demographic data on transplant donors and recipients are provided in Table 1.

PF group |DGF group p-value

Number of donors 16 na
Number of donor organs 10 10 na
Donor age (years) 52.5(45.0,58.0) |62.5 (55.0,72.0) [0.045
Donor sex (f/m) 4/6 713 0.370*
Last creatinine of donor (mg/dl) 1.00 (0.71, 1.20) {0.70 (0.60, 1.00) [0.254
Vasopressors used (n/y) 2/8 0/10 0.136
Multiorgan donors (n/y) 713 8/2 1.000*
hemorthage | carciac arrest cise) | V80 0/9/0/1 0383
Number of recipients 10 10 na
Recipient age (years) 57.3 (51.6, 62.2) |59.1 (46.3, 67.1) (0.734
Recipient sex (f/m) 3/7 3/7 1000
Transplant number (1/2) 9/1 9/1 1.000*
Cold ischemic time (hours) 9.9 (7.0, 15.0) 12.7 (10.3, 4.4) 0.308
PRA latest (%) 0.0 (0.0, 2.0) 0.0 (0.0, 2.0) 1000
Sum of HLA mismatches (0/1/2/3/4/5/6) |0/1/4/1/1/0/0 0/0/1/3/1/5/0 0.076*
Number of dialysis treatment (0/1/2/3/4) |10/0/0/0/0 3/5/0/1/1 0.003*
Immunosuppression (CNl/else) 8/2 9/1 1.000*
Induction therapy (none/antiCD25/ATG) | 6/4/0 7/3/0 0.639

na ... not applicable, * Fisher’s exact test

Table 1: Demographic data of transplant donors and recipients stratified by treatment

assignment. Continuous data are provided as median (1%, 3" quartile), categorical data

are shown as counts.

Molecular signatures separating DGF from primary function (PF) in steroid

treated donor organs

Using the SAM method sixty-three transcripts could be identified as significantly

differentially regulated. Both gene lists are provided in the supplementary material

(tables S1 and S2) sorted by fold—change values.
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In total 147 features showed fold-change values greater than two and p-values smaller
than 0.05 following a t-test. The majority of features were suppressed with only ten
genes being upregulated in the DGF as compared to the PF group.

An expression profile based clustering resulted in an almost complete discrimination

between DGF and PF samples as given in figure 1.

DGF-C195R
DGF-C113L
DGF-C113R
DGF-C101R
DGF-C198L
DGF-C172R
DGF-C198R
DGF-C106R
DGF-C501R
DGF-C168R
PF-C124L
PF-C134L
PF-C145R
PFC157L
PF-C184L
PF-C139R
PF-C124R
PF-C139L
PF-C386L
PF-C389L

DHRSX

KIAA1549
64 PDEBA

CMAH
LOC201229
LCN2

SLCeA19
RHOBTB1

49 HMGCS2
PRLR

301 CALCRL
CHL1
SDPR
UGT2B7
SLCATA1
EMCN
LOC202051
LOC155006
AMN
C2A5
580 GPR155
CDH5
SNX30

Figure 1: Dendrogram derived by unsupervised hierarchical clustering of gene
expression profiles dichotomizing DGF group (orange bar) from PF (blue bar), all
received steroid pretreatment. Red spots indicate upregulated transcripts, whereas
green spots indicate downregulated transcripts relative to the reference RNA used. The
differentially regulated genes associated with DGF could be categorized according to
GO-terms mainly into Transport and Metabolism.
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Functional analysis

Thirty-nine out of the 63 transcripts (SAM, 41 unique genes) and eighty-four out of the
135 downregulated transcripts (t-test, 91 unique genes) and could be mapped to
PANTHER IDs. Significantly enriched or depleted biological processes with at least two
members are given in table 2 (p-value < 0.05 given by a chi-square test when
comparing the number of genes associated to the category with the total number of
genes belonging to this particular process). Enriched processes mainly include genes
involved in transport and metabolism. DGF-associated downregulated genes include
many transcripts encoding solute carries (ion, amino acid and glucose transporters) in
the plasma membrane and other transporters in the cytoplasma and extracellular
space. Prominent members are the organic anion transporter (SLC22A8), neutral
amino acid transporter (SLC6A19), the sodium/glucose cotransporter (SLC5A12),
lipocalin 2 (LCN2), and apolipoprotein D (APOD). Proteins involved in metabolism,
including lipid, fatty acid, and steroid metabolism, were predominantly downregulated in
DGF samples. Depleted processes are nucleoside and protein metabolism, mRNA
transcription and intracellular protein traffic. Upregulated transcripts (t-test, nine unique

genes) were mainly associated with blood clotting as well as immunity and defense.

t-test (n=84) SAM (n=39)
Biological Process MLTLEEL O p-value ML BEN Of p-value
genes genes

DEGs down-regulated in DGF/enriched processes
Transport 20 <0.001 8 0.001
kqizit(;,bﬁtsymacid and steroid 12 <0.001 5 0.006
Amino acid metabolism 7 <0.001 2 0.049
Steroid hormone metabolism 4 <0.001 2 0.002
Steroid metabolism 6 <0.001 3 0.003
lon transport 9 <0.001 - -
e T R B
Amino acid transport 3 0.001 - -
Carbohydrate metabolism 8 0.001 - -
Fatty acid metabolism 4 0.004 - -
Other amino acid metabolism 2 0.005 - -
Cation transport 6 0.005 - -
Electron transport 4 0.010 - -
Vitamin/cofactor transport 2 0.011 - -
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Other polysaccharide

metabolism 3 0.012 i i
Cell adhesion 6 0.017 - -
Homeostasis 3 0.028 - -
ﬁgggellular transport and 2 0.028 i i
Anion transport 2 0.034 - -
Sulfur metabolism 2 0.035 - -
Proteolysis 7 0.036 - -
Other developmental process 2 0.042 - -

DEGs down-regulated in DGF/depleted processes

Nucleoside, nucleotide and

nucleic acid metabolism 5 0.042 i i
Intracellular protein traffic 0 0.043 - -
MRNA transcription 2 0.047 - -
t-Test (n=9) SAM (n=0)
DEGs up-regulated in DGF/enriched proceses
S)I((zcr)]c;rfggulation and gas > <0.001 i i
Blood clotting 2 <0.001 - -
Immunity and defense 3 0.009 - -

Table 2: Functional classification of DEGs using PANTHER ontologies: Enriched or
depleted biological processes separating DGF and PF as derived on the level of
differential gene expression by t-test and SAM. Categories are ranked by the p-value
(comparison of expected number of genes and observed number of genes in each
biological process) indicating the relevance of a particular process.

Interactome Analysis

We retrieved in total seven networks holding at least two of the differentially regulated
genes (figure 2). Members of network cluster 1 holding 13 proteins are mainly involved
in blood clotting with fibrinogen gamma (FGG), fibrinogen alpha (FGA), and the frizzled
homology 8 being upregulated in patient samples experiencing DGF. Hypoxia and an
older donor age might lead to the activation of fibrotic pathways which contribute to
DGF. The central protein of network cluster two is the suppressor of cytokine signalling
3 (SOCS3) that shows higher expression values in the group of patients with DGF post
transplant. The other network clusters contain mainly downregulated genes with
members of cluster 6 being involved in steroid metabolism and members of clusters 4

and 7 being involved in lipid and fatty acid metabolism (figure 2).
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Figure 2. Seven identified networks with at least two differentially regulated genes
between DGF and PF samples. Red nodes depict upregulated genes in DGF samples
whereas green nodes depict downregulated genes. Differentially expressed proteins
showed a high connectivity in these networks, thus indicating concerted interaction and
relevance in the development of DGF.
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DISCUSSION

In the present study we elucidated molecular mechanisms associated with delayed
graft function after renal transplantation in zero-hour donor kidney biopsies pretreated
with corticosteroids. Based on our findings poor initial function can be explained by a

partial shutdown of metabolism and transport activity on a molecular level.

One possible explanation of reduced transport and metabolism is hypoxia. In the
absence of oxygen severe energy depletion, i.e. less production of ATP and
subsequent activation of number of critical alterations in metabolism, occurs [26]. The
effects of limited oxygen supply are aggravated by the higher demand associated with
the high tubular oxygen consumption necessary for solute exchange [27] and the high
rate of aerobic glycolysis [28]. Hypoxia is also a profibrogenic stimulus for tubular cells,
interstitial fibroblasts, and renal microvascular endothelial cells. Hypoxia can also
activate fibroblasts and change the extracellular matrix metabolism of resident renal

cells [29,30] and was shown to play a role in the progression of chronic kidney disease
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[31]. Therefore, the use of effective preservation solutions and reduction of cold

ischaemia times may improve kidney function after transplantation [32].

The downregulation of many transporters is probably caused by less oxygen supply
and subsequent energy depletion. The solute carrier family 4, sodium bicarbonate
cotransporter, member 4 (SLC4A4) built a small cluster with the carbonic anhydrase IV
(CA4) and is involved in the regulation of bicarbonate secretion and absorption and
intracellular pH suggesting tubular acidosis (figure 2). Protein-protein interactions of
transporters in the molecular dependency graph are rare suggesting that these
pathways are under-represented in the interactome analysis.

Lipid metabolism, fatty acid metabolism and steroid metabolism are downregulated in
DGF samples and are the most enriched functional categories next to transport
function (figure 2, network clusters 4, 6, 7). Although the hydroxyprostaglandin
dehydrogenase 15-(NAD) (HPGD), the sulfotransferase family, cytosolic, 1C, member
2 (SULT1C2), and the three glucuronosyltransferase 2 family polypeptides UGT2B15,
UGT2B4, UGT2B7 are members of the steroid metabolism they cannot be linked
directly to methylprednisolone treatment. Another prominent gene, the suppressor of
cytokine signaling 3 (SOCS3), belongs to a family of negative-feedback regulators of
cytokine signaling. This regulator is induced by its corresponding cytokines leading to
the subsequent shutdown of the respective signaling cascade [33]. SOCS3 is involved
in the JAK/STAT-dependent cytokine signaling pathways and is linked to the
downregulated prolactin receptor (PRLR). On the other side SOCS3 is linked over
IRS2 (insulin receptor substrate 2) to the downregulated insulin receptor (INSR) (figure

2, cluster 2).

Reduced transport activity and metabolism indicating poorer quality of renal grafts was
also reported by other trancriptomics studies of donor kidney biopsies developing DGF
[6,34,35]. Roughly one third of reported downregulated genes by Mueller et. al. was
also identified in our study strengthening the validity of obtained results. The common
theme of inflammation and immune response in the context of DGF was delineated in
all three studies. The suppression of inflammation with corticosteroids in our study lead
to the identification of novel molecular mechanisms besides inflammation and
complement activation associated with the development of DGF, namely limited
transport capabilities and decreased metabolic activity of the renal organ. However,
one cluster in the dependency graph with the down-regulated major histocompatibility
complex, class Il, DR beta 3 (HLA-DRB1) and the up-regulated CD3d molecule, delta
(CD3-TCR complex) (CD3D) belongs to immunity response.
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A fair number of induced genes in DGF samples could be linked to blood clotting with
fibrinogen gamma and fibrinogen alpha being two prominent members. This might in
part be explained by the older donors in the DGF group. Donor age is a well known risk
factor of DGF but not all grafts from old donors have necessarily poor graft function.
Determination of the graft quality based on demographic/clinical and molecular risk
factors probably provides a much better forecast model [4]. Especially the shortage of
donor organs makes an expansion of donor criteria to include older and non-heart
beating donors necessary with the risk of higher rates of DGF. Therefore a better
understanding of molecular mechanisms leading to DGF is of great interest and new
strategies and better donor management is of great importance for the prevention of

this disease.

A limitation of the present study is probably the use of cDNA arrays which cannot
discriminate between different splice variants in the measurement of expression levels.
Nonetheless we could identify genes mainly involved in transport and lipid, glucose
metabolism associated with delayed graft function in renal transplants.

Based on these results the activation of lipid and glucose metabolism may prevent the
graft from developing acute renal failure. One possible treatment strategy is the
administration with peroxisome proliferator-activated receptor (PPAR) agonists. The
PPARs are ligand-activated transcription factors that control lipid and glucose
metabolism. Activation of PPARs negatively regulates the expression of genes induced
by cerebral ischemia/reperfusion injury and was shown to prevent post-ischemic

inflammation and neuronal damage in several in vitro and in vivo models [36].

Another possible strategy to revert the effects of hypoxia is the treatment with caspase
inhibitors. The administration of caspase inhibitors in vivo was demonstrated to protect
against cell death in animal models of ischemic acute renal failure [37]. The
pancaspase inhibitor Q-VD-OPH prevents the rise in caspase activity and apoptosis
[38]. Therefore PPAR-agonists and caspase inhibitors may be adopted in the donor
pretreatment to prevent ischemic/reperfusion injury in the kidney. Donor pretreatment
has great advantages for the recipient because improved long-term survival could thus

be achieved cost-efficiently and without great effort or side effects.

In summary our analyses provide novel insight into biological processes that are

associated with postischemic DGF. Based on our findings prospective trials with
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targeted therapy, including PPAR-agonists or caspase inhibitors, may be designed to

elucidate the causal inference of these risk markers of DGF.
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SUPPLEMENTAL DATA

NS Gensymbol | Name Biological Process ol
No. change
AI017691 | TMEM174 I;i”smembra”e protein -3.49
Solute carrier family 6 Transport. Amino acid
AA962549 SLC6A19 (neutral amino acid port, -3.48
metabolism
transporter), member 19
CDNA FLJ32283 fis, clone
AAT43923 PROST2000212 334
AA878637 Transcribed locus -3.29
AAS64848 | TMEM174 I;i”smembra”e protein -3.20
idh
UDP metabolism, Seroi
AA962194 UGT2B7 glucuronosyltransferase 2 o . -3.19
family, polypeptide B7 metabolism, Lipid, fatty acid
' and steroid metabolism
H93381 GLYATL1 (_3IyC|ne-N-acyItransferase- L|p|d,_ fatty acid _and 310
like 1 steroid metabolism
Solute carrier family 5
AA872711 SLC5A12 (sodium/glucose Transport -2.98
cotransporter), member 12
Al253164 Transcribed locus -2.90
AA988580 GPR155 fsgroteln-coupled receptor 285
Steroid hormone
R86241 SULTLC2 Sulfotransferase family, metabolism, Steroid 274

cytosolic, 1C, member 2

metabolism, Lipid, fatty acid
and steroid metabolism
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Transport, Coenzyme and

AA456975 APOD Apolipoprotein D prosthetic group -2.62
metabolism
AA917550 Transcribed locus -2.41
CDNA FLJ43400 fis, clone
N68871 OCBBF2010281 235
Solute carrier family 5
AA994816 SLC5A12 (sodium/glucose Transport -2.31
cotransporter), member 12
Coenzyme and prosthetic
3-hydroxy-3-methylglutaryl- | group metabolism,
AA496149 HMGCS2 Coenzyme A synthase 2 Steroid metabolism, Lipid, -2.27
(mitochondrial) fatty acid and steroid
metabolism
AA705032 Transcribed locus -2.20
AAB94763 MGAM Maltase-gluco_amylase 219
(alpha-glucosidase)
R15785 PREPL Prolyl endopeptidase-like | PrOtéin metabolism and 218
modification
Hypothetical protein )
Al792934 LOC155006 LOC155006 2.17
\W85883 SLCA7AL Solute carrier family 47, 215
member 1
Amnionless homolog Transport, Lipid, fatty acid i
AAIT3279 AMN (mouse) and steroid metabolism 214
N69913 CRIP3 Cysteine-rich protein 3 -2.14
Cell adhesion molecule Determination of
R40400 CHL1 with homology to LLCAM . -2.13
dorsal/ventral axis
(close homolog of L1)
Cadherin 5, type 2, VE-
H02884 CDH5 cadherin (vascular -2.11
epithelium)
Solute carrier family 2
H38650 SLC2A5 (facilitated glucose/fructose | Transport -2.11
transporter), member 5
Hypothetical protein )
AA999881 LOC202051 LOC202051 2.07
Solute carrier family 39
AA972434 SLC39A5 (metal ion transporter), Transport -2.05
member 5
Fumarylacetoacetate
AA058341 FAHD1 hydrolase domain Amino acid metabolism -2.03
containing 1
CDNA clone
AAB79452 IMAGE:5270438 -2.03
W35369 PRLR Prolactin receptor Lactation, mammary 2.01
development
Usher syndrome 1C
Al989344 USH1C (autosomal recessive, -2.01
severe)
Cytidine monophosphate-
N-acetylneuraminic acid
N29639 CMAH hydroxylase (CMP-N- -1.97

acetylneuraminate
monooxygenase)
pseudogene
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AA975301 CALCRL Calcitonin receptor-like -1.96
AA917621 Transcribed locus -1.95
Hypothetical protein
Al264620 LOC201229 LOC201229 -1.89
AA458652 Transcribed locus -1.87
R06256 Transcribed locus -1.85
Transcribed locus, strongly
similar to NP_115821.1
AA496110 multiple EGF-like-domains -1.84
11 [Homo sapiens]
T99793 CTAGE5 CTAGE family, member 5 -1.83
) . Coenzyme and prosthetic
AA705720 | ALAD Aminolevulinate, delta-, | o\ | metabolism, -1.81
dehydratase : .
Porphyrin metabolism
AA182796 |RHOBTB1 |Rho-related BTB domain -1.80
containing 1
Membrane protein, Asymmetric protein
AA009593 | MPP7 palmitoylated 7 (MAGUK Ioc);lization P -1.79
p55 subfamily member 7)
Serum deprivation
R09729 SDPR response _ mRNA transcrlptlon 178
(phosphatidylserine termination
binding protein)
Dehydrogenase/reductase
Al123255 DHRSX (SDR family) X-linked -1.78
AA450353 |ELmop1 | ELMO/CED-12 domain 175
containing 1
Al668706 Transcribed locus -1.75
T49816 LOC643008 |PP12104 -1.73
R85643 Data not found -1.72
H62009 Transcribed locus -1.72
N66734 EMCN Endomucin -1.72
Solute carrier family 12
AA983558 SLC12A1 (sodium/potassium/chloride | Transport -1.72
transporters), member 1
AA233564 PDESA Phosphodiesterase 8A -1.70
AAB62485 Data not found -1.70
N79823 LCN2 Lipocalin 2 Transport -1.65
AA058566 Data not found -1.65
Transcribed locus,
moderately similar to
XP_001372821.1
H67900 PREDICTED: similar to -1.64
Choline/ethanolamine
phosphotransferase 1
[Monodelphis domestica]
H90761 ILL7RB Interleukin 17 receptor B -1.63
AA188785 KIAA1549 KIAA1549 -1.62
H73410 Data not found -1.62
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CDNA clone
W3r8al IMAGE:4902949 -1.57
N35894 Data not found -1.56
AA399405 SNX30 Sorting nexin family 150
member 30

Table S1. Sixty-three differentially regulated transcripts computed with the Significance
Analysis of Microarrays (SAM) method sorted by fold—change values. The number of

permutations in the SAM method was set to twenty-thousand and a false discovery rate
of 2.5% was selected.

AEREEEIR Gensymbol Name Biological Process =l
No. change
Blood circulation and gas
exchange, Blood clotting,
T94626 FGG Fibrinogen gamma chain Immunity and defense, Cell 4.92
proliferation and
differentiation
Blood circulation and gas
exchange, Blood clotting,
AA865707 | FGA Fibrinogen alpha chain Immunity and defense, Cell 3.19
proliferation and
differentiation
R14976 Data not found 3.16
Serpin peptidase inhibitor,
AA704242 | SERPINA3 clade A (alpha-1 2.84
antiproteinase, antitrypsin),
member 3
T72915 SOCS3 S_uppr_essor of cytokine JAI_(-_S_TAT cascade,_ 272
signaling 3 Inhibition of apoptosis
AA457138 | EZD8 Frizzled homolog 8 254
(Drosophila)
AI003775 |LOC387763 Hypothetical LOC387763 2.48
H53340 MT1G Metallothionein 1G 2.44
Serpin peptidase inhibitor,
AW029498 | SERPINAZ  |Clade A(alpha-l 2.42
antiproteinase, antitrypsin),
member 3
Al922872 |socs3 Suppressor of cytokine 2.42
signaling 3
AA055946 | CD3D €D3d molecule, delta (CD3- |}, ity and defense 2.12
TCR complex)
AA678021 | SNRPE Small nu.clear ribonucleoprotein 201
polypeptide E
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Lipid, fatty acid and steroid

AA704995 | GLYAT Glycine-N-acyltransferase metabolism, Fatty acid -4.71
metabolism
AI253049 | TINAG Tubulointerstitial nephritis Cell adhesion 4.01
antigen
CDNA FLJ32283 fis, clone
AA932134 PROST2000212 -3.90
R97050 CDNA clone IMAGE:4610527 -3.78
Solute carrier family 5
AA994816 [ SLC5A12 (sodium/glucose Transport -3.68
cotransporter), member 12
AA877253 | RNF186 Ring finger protein 186 Proteolysis -3.63
AA885603 Transcribed locus -3.52
AI017691 | TMEM174 Transmembrane protein 174 -3.50
Solute carrier family 6 (neutral | Transport, Amino acid
AA962549 | SLC6A19 amino acid transporter), metabolism, Amino acid -3.48
member 19 transport
\W85851 ACSM2B Acy_I-CoA _synthetase medium- 3.38
chain family member 2B
CDNA FLJ32283 fis, clone
AAT43923 PROST2000212 -3.34
AA878637 Transcribed locus -3.29
AA864848 | TMEM174 Transmembrane protein 174 -3.21
AA919149 |HAO2 CHr)]/:i;gxyaC|d oxidase 2 (long Carbohydrate metabolism -3.20
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormone metabolism,
AA962194 | UGT2B7 famil 9 olvne tige B7 Steroid metabolism, -3.19
Y. polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
N74025 DIO1 IDelodlnase, iodothyronine, type 317
Solute carrier family 5
Al017796 |SLC5A12 (sodium/glucose Transport -3.15
cotransporter), member 12
. . Lipid, fatty acid and steroid
H93381 |GLYATL1 f'yc'ne'N'acy'tra”Sferase"'ke metabolism, Fatty acid -3.09
metabolism
H88329 CALB1 Calbindin 1, 28kDa Homeostasis -3.04
Solute carrier family 5
AA872711 | SLC5A12 (sodium/glucose Transport -2.98
cotransporter), member 12
Solute carrier family 5
Al017796 |[SLC5A12 (sodium/glucose Transport -2.96
cotransporter), member 12
AI335086 | ANGPTL3 Angiopoietin-like 3 -2.93
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Transcribed locus, strongly
similar to NP_001011880.1

Al245843 : . -2.91
hypothetical protein
LOC497190 [Homo sapiens]
Al253164 Transcribed locus -2.90
Solute carrier family 16, Transport. lon transport
Al264674 |SLC16A12 member 12 (monocarboxylic Cati port, port, -2.88
X ation transport
acid transporter 12)
AA988580 | GPR155 G protein-coupled receptor 155 -2.85
Hypothetical protein i
R08178 LOC100129488 LOC100129488 2.85
AA864183 | RHCG Rh family, C glycoprotein Transport -2.82
Solute carrier family 6 (neutral | Transport, Amino acid
AA928710 | SLC6A19 amino acid transporter), metabolism, Amino acid -2.74
member 19 transport
Lipid, fatty acid and steroid
Sulfotransferase famil metabolism, Steroid
R86241 SULT1C2 cytosolic, 1C membery,z hormone metabolism, -2.74
T Steroid metabolism, Sulfur
metabolism
AA456001 | NOX4 NADPH oxidase 4 Electron transport -2.70
N36136 EMCN Endomucin Cell adhesion -2.69
Angiotensin | converting
AA416585 | ACE2 enzyme (peptidyl-dipeptidase | Proteolysis -2.68
A) 2
Al241028 Data not found -2.68
Nucleoside, nucleotide and
AA994857 | ZNF552 Zinc finger protein 552 nucleic acid metabolism, -2.67
MRNA transcription
AA514359 [ RNF186 Ring finger protein 186 Proteolysis -2.66
Transport, Coenzyme and
AA456975 | APOD Apolipoprotein D prosthetic group 2.62
metabolism,
Vitamin/cofactor transport
AI301528 | HNF4A Hepatocyte nuclear factor 4, 260
alpha
Aminocarboxymuconate
70353 ACMSD semialdehyde decarboxylase -2.58
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormone metabolism,
N53031 |UGT2B4 e boNoente B Steroid metabolism, -2.57
Y, polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
W81603 Data not found -2.56
AA902897 Transcribed locus -2.53
R16259 Data not found -2.53
HA4449 LRP?2 Low qlensny lipoprotein-related 251
protein 2
AA878939 Transcribed locus -2.51
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Lactation, mammary

R63647 PRLR Prolactin receptor -2.49
development
Solute carrier family 22 Transport, lon transport,
H18608 SLC22A8 (organic anion transporter), Extracellular transport and -2.45
member 8 import, Anion transport
Potassium inwardly-rectifying Transoort. lon transport
Al245812 |KCNJ15 channel, subfamily J, member nsport, port, -2.42
15 Cation transport
Solute carrier family 28 '(I;g[?osrf)(t)rratlhlsonogansport,
AA918008 | SLC28A1 (sodium-coupled nucleoside ansport, -2.42
Nucleoside, nucleotide and
transporter), member 1 . ) )
nucleic acid metabolism
CDNA FLJ32283 fis, clone
AA932134 PROST2000212 242
AA932135 Transcribed locus -2.41
AA917550 Transcribed locus -2.41
Al015991 [CLDN2 Claudin 2 -2.40
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormone metabolism,
AA746229 |UGT2B7 familv. polvoentide B7 Steroid metabolism, -2.40
Y. polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormone metabolism,
T50951 UGT2B15 famil 9 olvpe tige B15 Steroid metabolism, -2.39
Y. Polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormgne metabplism,
N53031 UGT2B4 familv. polvpeptide B4 Steroid metabolism, -2.38
Y. Polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
Butyrobetaine (gamma), 2-
AI222515 | BBOX1 oxoglutarate d|oxyg(_anase Coenzyme anc_j prosthetic 237
(gamma-butyrobetaine group metabolism
hydroxylase) 1
Solute carrier family 16, Transport. lon transport
AI264674 |SLC16A12 member 12 (monocarboxylic nsport, port, -2.35
. Cation transport
acid transporter 12)
CDNA FLJ43400 fis, clone
N68871 OCBBF2010281 235
R98936 |MME Membrane metallo- Proteolysis 2.34
endopeptidase
Solute carrier family 7 (cationic | Transport, Amino acid
Al261833 |SLC7A9 amino acid transporter, y+ metabolism, Amino acid -2.34
system), member 9 transport
AA878391 | GPC5 Glypican 5 Cell adhesion -2.31

95



Solute carrier family 5

AA994816 [ SLC5A12 (sodium/glucose Transport -2.31
cotransporter), member 12
R43597 Data not found -2.31
AA918729 Transcribed locus -2.30
R08912 Data not found -2.30
CDNA FLJ12088 fis, clone
AAT03222 HEMBB1002545 230
AAG76742 | DMGDH Dimethylglycine Electron transport 227
dehydrogenase
Lipid, fatty acid and steroid
3-hydroxy-3-methylglutaryl- metabolism, Steroid
AA496149 [HMGCS2 Coenzyme A synthase 2 metabolism, Coenzyme -2.27
(mitochondrial) and prosthetic group
metabolism
W56753 KIAA1276 KIAA1276 protein -2.27
ATPase, H+ transporting, E;?()Sr??rghlsonogamport’
AA947621 | ATPBV1G3 lysosomal 13kDa, V1 subunit ansport, -2.26
G3 Nuclep&d_e, nucleotuje and
nucleic acid metabolism
Solute carrier family 13 Transport. lon transport
AA858019 | SLC13A1 (sodium/sulfate symporters), nsport, port, -2.26
Cation transport
member 1
AAB62436 | EAM151A Family with sequence similarity 295
151, member A
Aspartoacylase (aminocyclase) Amino acid metabolism,
R10885 |ACY3 P y y Other amino acid -2.24
metabolism
TBC1 domain family, member
AA287032 | TBC1D8B 8B (with GRAM domain) -2.24
R98070 Data not found -2.23
R40176 |CXCL14 Chemokine (C-X-C motif) 2.22
ligand 14
AA971563 | SGSM3 Small G protein signaling 299
modulator 3
Syntrophin, alpha 1
AA026754 | SNTAL (dystrophin-associated protein -2.22
Al, 59kDa, acidic component)
Al253036 Transcribed locus -2.20
AA705032 Transcribed locus -2.20
AAB94763 | MGAM Maltas_e-glucoamylase (alpha- 219
glucosidase)
Transport, lon transport,
Al344372 | sLC26A7 Solute carrier family 26, _Extracellul_ar transport and 219
member 7 import, Anion transport,
Sulfur metabolism
Carbohydrate metabolism,
T47312 INSR Insulin receptor Regulation of carbohydrate -2.18

metabolism, Other
developmental process
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Hypothetical protein

Al792934 [LOC155006 LOC155006 -2.18
Molybdenum cofactor synthesis Coenzyme and prosthetic
AA705112 | MOCS1 1 group metabolism, Pterin -2.18
metabolism
R15785 PREPL Prolyl endopeptidase-like Proteolysis -2.18
Solute carrier family 13 Transport. lon transport
Al015652 [SLC13A1 (sodium/sulfate symporters), Cati port, port, -2.18
ation transport
member 1
\W85883 SLCA7AL Solute carrier family 47, 215
member 1
AA971425 [USP2 Ubiquitin specific peptidase 2 Proteolysis -2.15
AA973279 | AMN Amnionless homolog (mouse) | |/ansport, Lipid, fatty acid |,
and steroid metabolism
AA677185 | ANK3 Ankyrln 3, node of Ranvier 214
(ankyrin G)
AI733138 |BHMT2 Betaine-homocysteine Amino acid metabolism 2.14
methyltransferase 2
AA886349 Data not found -2.14
Lipid, fatty acid and steroid
R66006 ACADL Acyl-Coenzyme A _ metabol!sm, Fatty acid 213
dehydrogenase, long chain metabolism, Electron
transport
Cell adhesion molecule with
R40400 CHL1 homology to LLCAM (close Cell adhesion -2.13
homolog of L1)
N69913 CRIP3 Cysteine-rich protein 3 -2.13
Transport, Lipid, fatty acid
Fatty acid binding protein 4 and steroid metabolism,
N92901 FABP4 1y 9p ' Coenzyme and prosthetic -2.13
adipocyte .
group metabolism,
Vitamin/cofactor transport
H50623 HLA-DRB1 Major histocompatibility 213
complex, class Il, DR beta 3
H27752 AQP7 Aquaporin 7 Transport, Homeostasis -2.12
AA256291 Transcribed locus -2.12
Al263210 Transcribed locus -2.12
H02884 | CDH5 Cadherin 5, type 2, VE- Cell adhesion 211
cadherin (vascular epithelium)
Solute carrier family 2
H38650 SLC2A5 (facilitated glucose/fructose Transpo.rt, Carbohydrate -2.11
metabolism
transporter), member 5
AAB65572 Transcribed locus -2.11
AA111975 [ CMBL Carboxymethylenebutenolidase Carbohydrate metabolism -2.10
homolog (Pseudomonas)
Hvdroxvorostaalandin Lipid, fatty acid and steroid
AA775223 |HPGD y yp 9 metabolism, Steroid -2.10
dehydrogenase 15-(NAD) .
metabolism
AA485893 | RNASE1L Ribonuclease, RNase A family, | Nucleoside, nucleotide and 210

1 (pancreatic)

nucleic acid metabolism
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Solute carrier family 7 (cationic

Transport, Amino acid

Al815076 |[SLC7A7 amino acid transporter, y+ metabolism, Amino acid -2.10
system), member 7 transport
W72294 |CXCL14 Chemokine (C-X-C motif) 2.09
ligand 14
H78003 IYD lodotyrosine deiodinase Electron transport -2.09
H18456 LOC644662 Similar to hCG2042541 -2.09
Amino acid metabolism,
AA682293 | PAH Phenylalanine hydroxylase Other amino acid -2.09
metabolism
R07484 Data not found -2.09
Solute carrier family 4, sodium | Transport, lon transport,
AA452278 | SLC4A4 bicarbonate cotransporter, Cation transport, -2.08
member 4 Homeostasis
AA677050 | AFM Afamin Transport -2.07
Hypothetical protein i
AA999881 [LOC202051 LOC202051 2.07
Protein phosphatase 1,
AlI279830 |PPP1R16B regulatory (inhibitor) subunit -2.07
16B
AA855158 | CA4 Carbonic anhydrase IV -2.06
Nucleoside, nucleotide and
S nucleic acid metabolism,
AI383171 |LDB3 LIM domain binding 3 mRNA transcription, Other -2.06
developmental process
AA452826 | PCP4 Purkinje cell protein 4 -2.06
AA972434 |SLC39A5 Solute carrier family 39 (metal | o101t 1on transport 2.05
ion transporter), member 5
AI300876 | EAM150B Family with sequence similarity 204
150, member B
Fumarylacetoacetate hydrolase . . .
AA058341 | FAHD1 domain containing 1 Amino acid metabolism -2.03
AA932696 | EAM107A Family with sequence similarity 203
107, member A
AAB72397 |LGALS2 Lectin, galactoside-binding, | ¢y aghesion 2.03
soluble, 2
Lipid, fatty acid and steroid
metabolism, Steroid
UDP glucuronosyltransferase 2 hormone metabolism,
AI000188 |UGT2B7 famil 9 olvne tige B7 Steroid metabolism, -2.03
Y. polypep Carbohydrate metabolism,
Other polysaccharide
metabolism
W35369 |PRLR Prolactin receptor Lactation, mammary 2.02
development
AAG80349 | PROZ Protein Z, vitamin K-dependent | b0,y sis 2.02
plasma glycoprotein
AA879452 CDNA clone IMAGE:5270438 -2.02
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Lipid, fatty acid and steroid
metabolism, Carbohydrate

H99932 CRYL1 Crystallin, lambda 1 metabolism, Fatty acid -2.01
metabolism
H02824 LYVE1L Lymphatic vessel endothelial 201
hyaluronan receptor 1
AA579186 | TMPRSS2 Transmembrane protease, Proteolysis -2.01
serine 2
R68997 |PRLR Prolactin receptor Lactation, mammary -2.00
development
AI989344 |USH1C Usher syndrome 1C -2.00

(autosomal recessive, severe)

Table S2. 147 differentially regulated transcripts computed with the student’s t-Test
sorted by fold-change values. The p-value threshold was set to < 0.05 with fold-change

values greater than two.
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2.3.1 The Thesis Author’s Contribution

The thesis author performed parts of the functional enrichment analysis of differentially
expressed genes in kidney grafts after steroid pretreatment and contributed to the
selection of relevant functional categories. The discussion of results from the network
analysis was jointly conducted by all of the authors.

In detail, the following contributions are due to the thesis author’s efforts:

e Functional classification of differentially expressed genes with respect to
biological processes using the PANTHER classification tool

e Contributions to the interpretation of results derived from the bioinformatics
analyses, namely enriched biological processes and protein networks

e Provision of bioinformatics-specific methods and results sections to the
manuscript draft
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LIST OF ABBREVIATIONS

2D-PAGE - Two Dimensional Poly Acrylamid Gel Electrophoresis

CE - Capillary Electrophoresis

CKD - chronic kidney disease

DAVID — Database for Annotation, Visualization, and Integrated Discovery

ECM — extracellular matrix

HPLC — High Performance Liquid Chromatography

HUPDB — Human Urinary Proteome Database

KEGG — Kyoto Encyclopedia of Genes and Genomes

MAPPER — Multi-genome Analysis of Positions and Patterns of Elements of Regulation

PANTHER - Protein Analysis THrough Evolutionary Relationships

PRIDE — Proteomics IDEntification database
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ABSTRACT

Integration and joint analysis of omics profiles derived on the genome, transcriptome,
proteome and metabolome level is a natural next step in realizing a Systems Biology
view of cellular processes. However, merging e.g. mMRNA concentration and protein
abundance profiles is not straight forward, as a direct overlap of differentially
regulated/abundant features resulting from transcriptomics and proteomics is for
various reasons limited. We present procedures for integrating omics profiles at the
level of protein interaction networks, exemplified by using transcriptomics and

proteomics data sets characterizing chronic kidney disease.

On the level of direct feature overlap only a limited number of genes and proteins were
found to be significantly affected following a separate transcript and protein profile
analysis, including a collagen subtype and uromodulin, both being described in the
context of renal failure. On the level of protein pathway and process categories this
minor overlap increases substantially, identifying cell structure, cell adhesion, as well
as immunity and defense mechanisms as jointly populated with features individually

identified as relevant in transcriptomics and proteomics experiments.

Mapping diverse data sources characterizing a given phenotype under analysis on
directed but also undirected protein interaction networks serves in joint functional

interpretation of omics data sets.
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INTRODUCTION

High-throughput transcriptomics and proteomics experiments have paved the way in
molecular biology research to study thousands of cellular components in parallel [1-3].
Gene Chips from e.g. Affymetrix cover roughly 29,000 human open reading frames.
Gene expression profiles for over 340,000 samples are currently stored in the Gene
Expression Omnibus, a microarray repository hosted by the National Center for
Biotechnology Information [4]. In proteomics comparable steps have been made
towards large scale analysis. Here, reduction of sample complexity by separation
techniques has been elaborated, mainly including HPLC, CE, and 2D-PAGE.
Subsequently mass spectrometric technigues, together with computational analysis
have been applied for protein identification and quantitation. Proteomics repositories
have been established as e.g. PRIDE (www.ebi.ac.uk/pride), and both, proteomics as
well as transcriptomics data repositories follow data standards for enabling
standardized retrieval and analysis.

However, most analysis performed is ‘within a domain’, i.e. transcriptomics and
proteomics analysis follows established workflows aimed at deriving abundance
profiles where the features are ranked by statistical criteria as the significance of a fold
change in a group comparison. Tackling a given hypothesis by both, transcriptomics
and proteomics in parallel (ideally using the same sample source), is unfortunately
done less frequent. However, utilizing resources as the Gene Expression Omnibus and
PRIDE allows extracting both data levels for a number of cellular conditions, in principal
enabling joint analysis of both profiles characterizing a specific phenotype. Certainly,
intrinsic heterogeneity has to be respected by such an approach including deviating

phenotype definition regarding cases and controls, and intrinsic experimental biases.

The general question regarding the correlation between mRNA abundance and the
concentration on the protein level has been heavily discussed in the literature. One of
the first studies to compare mRNA levels and protein concentrations on a global level
was conducted by Gygi and colleagues in 1999 using Saccharomyces cerevisiae as
model organism [5]. By comparing serial analysis of gene expression mRNA counts
with levels of protein abundance as derived by 2D-PAGE the authors concluded that a
simple deduction of protein concentrations from mMRNA transcript analysis is
insufficient. As major reasons for the poor correlation regulatory mechanisms during
the gene expression process, post-translational modifications and protein degradation,

as well as mechanisms independent of the gene expression process were identified.
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Koji and colleagues found a positive correlation but concluded that mRNA abundance
is not a predictor of protein abundance, as a number of high abundant transcripts were
not detected on the protein level [6]. More specific numbers are provided by Lu and
colleagues, reporting that 73% of the variance in yeast protein abundance is explained
by mRNA concentration [7]. In a recent study by Shankavaram and colleagues utilizing
a large NCI-60 cancer cell panel, around 65% of the genes in the dataset showed
statistically significant transcript-protein correlation [8]. Rogers and colleagues
developed a probabilistic clustering model and analyzed time-series of transcriptomics
and proteomics data from a human breast epithelial cell line [9]. They found that high
correlations are mainly found in specific molecular machines as cell adhesion and

protein folding complexes.

Reasons for a poor correlation between mRNA and protein abundance are manifold,
including regulatory mechanisms in the course of gene expression (e.g. miRNA
interactions), as well as post-translational modifications altering protein half-life. On top
pathophysiological mechanisms can result in high amount of protein in specific tissues
although the protein synthesis rate in this specific tissue is not altered [10]. A
prototypical example is the prevalence of protein in urine in chronic kidney disease

caused by leakage in the tubular barrier function of the kidney.

Furthermore, depending on the detection method used, technical bias and noise in
high-throughput experiments can have significant influences, as outlined by
Greenbaum and colleagues who reported a correlation coefficient of 0.66 when
analyzing merged proteomics and transcriptomics datasets [11]. The same group
reported higher correlation coefficients of up to 0.8 for specific subsets of genes based
on subcellular location or functional grouping instead of analyzing on the level of

individual genes [11,12].

In summary, next to the mRNA abundance level various other factors influence
effective protein concentration. With respect to the above mentioned reasons, a simple
correlation between quantities of individual mMRNAs and proteins is insufficient to
explain the causative dependencies of these two entities. However, features identified
on either transcript or protein level may at least share the same functional context.
From this, the analysis of transcriptomics and proteomics data on the level of protein

interaction networks (PIN) may be a way for identifying the link between such profiles.
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PINs are either directed graphs as given in KEGG [13], or undirected graphs as e.g.
provided in OPHID [14]. Mapping omics profiles on such graphs may identify up- or
downstream links between a change in transcript abundance and consequential, non-

direct change in abundance of a protein.

However, information on links between proteins is far from complete. KEGG e.g.
presently represents 4756 unique genes. For overcoming this limitation we have
recently developed omicsNET aimed at linking gene/protein lists resulting from omics
experiments on the level of a complete protein dependency network [15]. This protein
dependency graph holds pair-wise dependencies for all presently annotated human
protein-coding genes.

In the current study we compare and analyze transcriptomics and proteomics profiles

reported in the context of chronic kidney disease (CKD).

Chronic kidney disease is a major clinical issue with around 10% of the population in
western industrialized countries being affected according to recent reports [16]. CKD is
classified into stages based on the level of the glomerular filtration rate (GFR), which
normally is approximately 120 - 130 ml/min/1.73 m? with considerable variation
between and even within individuals. Below 60 ml/min/1.73 m? the rate of
complications based on filtration inefficiency increases, and the risk of cardiovascular
events is elevated even at earlier stages. The most severe form of CKD is end stage
renal disease, resulting in dialysis or transplantation as only therapy options.
Transcriptomics as well as proteomics methodologies have significantly contributed
towards unraveling molecular mechanisms leading to CKD [17-19], and linking

available omics profiles promises further understanding of this disease.

MATERIALS AND METHODS

Data sets

We used three publicly available microarray studies on chronic kidney disease for

identifying deregulated features on the mRNA level, all using kidney tissue biopsy
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material. Two studies focused on differences in mMRNA expression in diabetic
nephropathy using Affymetrix Gene Chips. In a first study Schmid and colleagues
compared mRNA levels in the tubulointerstitial compartment of thirteen diseased
patients and seven healthy control subjects. The list of differentially expressed genes is
provided as supplementary material with the publication [20]. The second dataset can
be accessed through the Gene Expression Omnibus database (GSE1009) and was
published by Baelde and colleagues. It holds transcripts differentially expressed
between cells of glomeruli from diseased and morphologically normal kidneys [21]. The
third study by performed by Rudnicki and colleagues on cDNA arrays identified
transcripts differentially expressed between renal proximal tubular epithelial cells from
biopsies of patients with nondiabetic nephropathies (IgA-nephritis, focal segmental
glomerulosclerosis, and minimal-change disease) and healthy controls, respective

relevant features are provided in [17].

The proteomics dataset was extracted from the Human Urinary Proteome Database
v2.0 (HUPDB v2.0) available at http://mosaiques-
diagnostics.de/diapatpcms/mosaiquescms/front_content.php?idcat=257, database
status as of September 2009. This database holds information on protein abundance of
currently 3687 human urine samples as detected by capillary electrophoresis — mass
spectrometry (CE-MS) [22]. The samples were derived from patients covering a wide
spectrum of different pathophysiological conditions, among them renal disorders, as
well as from healthy controls. For our analysis we extracted a total of 192 samples
associated with diabetic nephropathy (n=67), IgA nephropathy (n=44), membranous
glomerulonephritis (n=31), focal segmental glomerulosclerosis (n=25), and minimal
change disease (n=25). Experimental identification of these features was following high
resolution capillary electrophoresis coupled with mass spectrometry. Certainly, chronic
kidney disease itself shows various etiologies, but it is speculated that independent of
the primary cause for kidney damage unified molecular processes may be seen with
altered tubules. Still, numerous features identified for the 192 samples included appear
sporadic (patient specific), and we decided to only select features present in at least
30% of diseased samples as being relevant. Further single proteomics studies for the
given phenotype are available in the literature; however, we decided to only include
samples retrieved from the HUPD as single source for not further increasing

heterogeneity of data sets based on different experimental procedures used.

111



Analysis procedures

Differentially regulated transcripts and proteins were mapped to their respective NCBI
Gene Symbols for aligning the transcriptomics and the proteomics name spaces. Since
HUPD uses Swissprot names as identifier, the mapping procedure from proteins to
Gene Symbols was performed using the annotation tool provided by Swissprot [23].

In a first analysis step those features present in both, the transcriptomics and
proteomics list were identified. In successive analyses the overlap of lists was
interpreted on the level of functional annotation, molecular pathways and protein

dependency networks.

Functional annotation

Enriched biological processes based on both the transcriptomics and the proteomics
list were identified using the PANTHER (Protein Analysis THrough Evolutionary
Relationships) Classification System [24]. In the PANTHER ontology proteins are
classified into families and subfamilies of shared function, which are further assigned to
specific ontology terms in the two main categories ‘biological process’ and ‘molecular
function’. A chi-square test was used in order to identify significantly enriched or
depleted biological categories when using the fully annotated set of human genes as
reference dataset. Biological processes showing p-values below 0.05 were considered

as statistically significant.

Pathway analysis

Pathway analysis was performed using the DAVID (Database for Annotation,
Visualization, and Integrated Discovery) tool which provides gene-specific functional
data mining tools and methods for functional category enrichment analysis [25][26].
The enrichment of transcripts and proteins in Kyoto Encyclopedia of Gene and
Genomes (KEGG) pathways was calculated using a modified Fisher exact test.

Pathways with p-values below 0.05 were considered as statistically significant.
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omicsNET protein dependency network

The protein dependency analysis framework omicsNET was additionally used to link
transcripts and proteins [15]. The current version of the network holds 23947 nodes,
each coding for a particular protein (a canonical sequence ensemble is used instead of
explicitly representing splice variants). Edges between nodes represent pairwise
dependencies which were calculated by integrating similarity and functional
dependency measures. A metafunction was used for computing the dependency
between nodes resulting in a pair-wise weight matrix, where the weight defines the
strength of a dependency. The measures entering the metafunction include each
node’s tissue specific reference gene expression, conjoint regulation on the level of
transcription factors as well as miRNAs, assignment to functional ontologies,
subcellular localization, conjoint pathways, as well as protein interaction information.
Data sources used for computing the dependency measures included the Gene
Expression Omnibus Human Body Map for describing tissue specific gene expression,
the MicroCosm database organizing miRNA-target relations, Gene Ontology data on
molecular processes and function, PANTHER, KEGG, OPHID, and IntAct database for
retrieving protein-protein interactions, complemented by experimentally derived as well

as predicted joint transcription factor regulation and subcellular location information.

We used omicsNET in order to identify dependencies between transcripts and proteins
thus showing edge weights of two or above (where the edge weights scaled in-between
-1.8 and 5.4, where a value of 5.4 represents maximum dependency of a given pair).
Based on functional analysis of the given transcriptomics and proteomics features we

specifically focused on the blood coagulation cascade.

Additionally, the shortest paths on the omicsNET protein interaction network were
calculated between all members of the transcriptomics dataset, the proteomics dataset,

as well as between all transcripts and all proteins in both datasets.

Transcription factors

The MAPPER (Multi-genome Analysis of Positions and Patterns of Elements of
Regulation) database was used to identify potential direct relationships between
transcription factors in the transcriptomics dataset and target genes in the proteomics
dataset. MAPPER is a database holding information on putative transcription factor

binding sites in the regulatory regions of genes in various species [27].
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Kidney tissue expression

Data on immunohistochemical staining in renal tissue were retrieved from the Human
Protein Atlas. This source provides a collection of expression and localization data of
proteins in normal human tissues, cancer cells and cell lines based on
immunohistochemistry and immunofluorescence confocal microscopy images [28].
Data are represented in a semi-quantitative measure with four staining intensities,
namely “negative”, “weak”, “moderate”, or “strong”. Staining intensities in the

glomerular and the tubular compartments were retrieved from the Human Protein Atlas.

In order to determine mMRNA expression levels in kidney tissue, counts of expressed
sequence tags were extracted from UniGene EST profiles which show gene expression
patterns inferred from EST counts and cDNA library sources. For each tissue and
gene, the expression intensity is specified as the occurrence of respective ESTs
compared to the total number of reported ESTSs in this tissue [29].

RESULTS

Differentially expressed genes and proteins

The transcriptomics dataset consisted of 697 differentially regulated genes, among
which 327 showed an upregulation in the diseased state, 355 genes were
downregulated, and 15 genes were found to be upregulated in one dataset and
downregulated in another dataset. In the 192 urine samples 37 proteins were found in

different concentrations when comparing the diseased state and controls.

The genes of four out of the 37 proteins identified as relevant in urine were also
differentially expressed in the transcriptomics dataset. The features identified include
the collagen, type XV, alpha 1 (COL15A1), and uromodulin (UMOD), as well as the
prostaglandin D2 synthase 21kDa (PTGDS) and the apolipoprotein A-I (APOA1)
(Table 1).
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Symbol Gene Name Transcript Protein
COL15A1 |collagen, type XV, alpha 1 up down
UMOD uromodulin up up
PTGDS prostaglandin D2 synthase 21kDa down up
APOA1 apolipoprotein A-I down up

Table 1: Direct overlap of differentially abundant omics features. The table holds gene
symbol and name of features being affected at the transcript or protein level,
furthermore providing the direct of regulation when comparing diseased and control
samples.

Functional overlap

The PANTHER Classification System was used in order to identify enriched biological
processes as found on the level of deregulated genes and proteins. Here not the direct
feature overlap is determined, but the involvement of transcriptomics and proteomics
features in the same pathways and processes. Overall, the biological process of
“protein metabolism and modification” was identified as the most significantly enriched,
with 153 transcripts assigned to this category but not holding features from proteomics.
In contrast, five proteins could be assigned to the biological category “blood circulation
and gas exchange” resulting in a p-value smaller than 0.01, without identifying a

feature from transcriptomics in this particular functional group.

The four categories that were found to be enriched in both the transcriptomics and

LT

proteomics dataset were “cell structure”,

cell structure and motility”, “cell adhesion”,

and “immunity and defense”, as listed in Table 2.

# of
. . # of # of
Biological Process members ; p-value . p-value
transcripts proteins

total
Protein metabolism and
modification 3040 153 < 0.001 - -
Blood circulation and gas exchange 89 - - 5 < 0.001
Cell structure and motility 1148 78 < 0.001 8 0.0042
Developmental processes 2152 116 < 0.001 - -
Immunity and defense 1318 80 < 0.001 9 0.0017
Protein modification 1157 70 < 0.001 - -
Signal transduction 3406 147 < 0.001 - -
Cell structure 687 48 < 0.001 8 < 0.001
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Cell motility 352 31 < 0.001 -
Intracellular protein traffic 1008 57 < 0.001 -
Cell cycle 1009 57 < 0.001 -
Cell adhesion 622 41 < 0.001 0.0478
Cell communication 1213 66 < 0.001 -
Intracellular signaling cascade 871 49 < 0.001 -
Mesoderm development 551 36 < 0.001 -
Mitosis 382 28 < 0.001 -
Ectoderm development 692 40 0.0011 -
Protein phosphorylation 660 39 0.0011 -
Blood clotting 92 12 0.0015 -
Cell proliferation and differentiation 1028 50 0.0016 -
Cell cycle control 418 28 0.002 -
Neurogenesis 587 35 0.0028 -
Homeostasis 196 16 0.0034 -
Interferon-mediated immunity 63 0.0095 -
Angiogenesis 54 0.0255 -
Chromosome segregation 121 12 0.0272 -
Apoptosis 531 27 0.0445 -

Table 2: PANTHER biological processes overlap. The table lists biological processes
identified as relevant on the basis of given transcriptomics and proteomics data sets.
Given is the name of the process, the total number of members in the respective
process, the number of features involved as found in transcriptomics and proteomics,
as well as the p-values regarding the significance of enrichment. Where no p-value is
provided the enrichment is not significant for the particular data set. Processes given in
bold are significantly enriched by both, transcriptomics and proteomics features.

Joint pathway analysis

Three pathways could be identified as significantly enriched in deregulated transcripts
as well as proteins using the KEGG pathway database as repository. Thirteen
transcripts and five proteins could be assigned to the “extracellular matrix (ECM)-
receptor interaction pathway”, with 18 transcripts and five proteins belonging to the

“focal adhesion” pathway (Table 3).
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# of
# of # of
Pathway members . p-value ; p-value
transcripts proteins

total
Cell Communication 136 - - 6 <0.001
ECM-receptor
interaction 88 13 <0.001 5 <0.001
p53 signaling pathway 68 10 0.01 - -
Complement and 69 10 0.01 4 <0.001
coagulation cascades
Tight junction 132 16 0.01 - -
Regulation of actin 214 20 0.02 i i
cytoskeleton
Focal adhesion 199 18 0.05 5 <0.001

Table 3: KEGG pathways overlap. The table lists pathway names, total number of
members in the respective pathway, number of involved features from transcriptomics
and proteomics, as well as significance of enrichment as found for the respective
number of features. Pathways given in bold are enriched by both, transcriptomics and
proteomics features.

In addition the “complement and coagulation cascade” was enriched in deregulated
features with ten transcripts and four proteins being members of this specific pathway.

The coagulation pathway is schematically given in Figure 1.

down

-
=
=

Figure 1: KEGG coagulation pathway. The figure displays a schematic representation
of the coagulation pathway as provided by the KEGG pathway database. Transcripts
are depicted as oval nodes whereas proteins are given as hexagons.
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Protein dependency graph analysis

We identified 65 strong dependencies between features of transcriptomics and
proteomics in omicsNET. These dependencies were formed between 21 proteins, 21
transcripts and two features, namely APOA1 and COL15A1, which were found in both
omics profiles (figure 2). A large fraction of features was involved in blood coagulation
with another highly interconnected subgraph consisting of cell structure and cell
adhesion molecules, mainly collagens along with fibronectin 1 (FN1), laminin gamma 3
(LAMC3), and the thrombospondins 1 and 3 (THBS1 and THBS3).
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Figure 2: OmicsNET dependencies between transcriptomics and proteomics. The
figure displays strong dependencies between transcripts and proteins as derived from
omicsNET. Grey nodes represent identified proteins while white nodes represent
identified transcripts. The two square nodes represent APOA1 and COL15A1 found
with differential abundance in both omics profiles.
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Features involved in the blood coagulation cascade according to gene ontology terms
were separately analyzed in omicsNET at different cutoff values of computed
dependencies (figure 3). 32 edges could be extracted connecting 15 nodes (10
transcripts and 5 proteins) using an omicsNET edge weight of 1. The proteins
fibrinogen alpha chain (FGA) and fibrinogen beta chain (FGB), as well as the two
serine peptidase inhibitors clade A member 1 (SERPINA1) and clade C member 1
(SERPINC1) all had seven connections to deregulated transcripts. When using an
edge weight cutoff of two or above, twelve of the fifteen molecules remained in the
network having at least one edge. In total thirteen edge weights had values of two and
above with the serine peptidase inhibitor clade C1 (SERPINC1) showing four edges to
the coagulation factors Il (F2, thrombin), 11l (F3, thromboplastin), and X (F10) as well as
SERPINGL.

A) edge weight > 1 B) edge weight > 1.5 C) edge weight > 2
SERPING1 SERPINC1 F3 SERPING1 SERPINC1 F3 SERPING1 SERPINC1 F3
{ ™ ™ N N AT TN ' 45
Sy
CD40LG SERPINAL F10 SERPINAL F10 SERPINAT F10
) PN .
ITGB3 FGB F2 ITGB3 FGB F2 FGB F2
VWF, FGA SERPINAS VWF FGA SERPINAS VWF FGA SERPINAS
| | | { {
> N A N

V'

THBS1 COL3AL F2R THBS1 COL3A1 THBS1 COL3A1

Figure 3: OmicsNET subgraphs of members involved in blood coagulation. The figure
shows dependencies as derived from omicsNET analyzing transcripts and proteins
involved in the blood coagulation cascade. Figure 3A (edge weight cutoff 1.0) holds 15
nodes and 32 edges, the corresponding number of nodes and edges for a cutoff of 1.5
is 13/19 (3B), and for a cutoff of 2.0 the numbers are 12/13 (3C).

The distribution of shortest paths between members of the transcriptomics list and
between members of the transcriptomics and proteomics list were found to be
equivalent, again indicating a strong functional link between these two feature lists

(figure 4). The distribution of shortest paths was shifted to even shorter values for the
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proteomics dataset, partly caused by functional paralogs prevalent in the proteomics

dataset.
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Figure 4: OmicsNET shortest paths distribution. The figure shows the distribution of
shortest paths between members of the transcriptomics and the proteomics list as well
as between members of the transcriptomics and the proteomics list. Given is the
number of nodes connecting two given features (shortest path length) and the number
of paths at a certain length represented as density.

Direct edges between transcripts and proteins

Transcription factor binding sites of the factors SP3, IRF9, STAT1, and VDR were
identified in the open reading frame regulatory regions of the 37 features from the
proteomics dataset. SP3 and ISGF3G were upregulated on the mRNA level whereas
VDR and STAT1 showed downregulation. Thirteen proteins had on the gene level a
binding site for at least one of the four transcription factors listed above. COL2A1 had
binding sites for IRF9 and SP3, A1BG showed binding sites for IRF9 and STAT1, and
VGF had binding sites for SP3 and STAT1.
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Tissue specific protein expression

Protein expressions levels in renal tissues were determined using data from the
publicly available Human Protein Atlas for the proteins given in our dataset. Data were
available for 25 out of the 37 proteins of the proteomics set. About 75% of the proteins
did show at least weak staining in the tubular compartment, whereas 40% of the
proteins did show positive staining in the glomerular compartment (figure 5). Four
proteins were neither positive in the tubular nor in the glomerular compartment
following the immunohistochemical staining. On the other hand uromodulin (UMOD)
and the prostaglandin D2 synthase 21kDa (PTGDS), two proteins also deregulated on
the mRNA level, were among the proteins showing the strongest staining in the tubular
compartment. The other two proteins also found in the transcriptomics dataset, namely
the apolipoprotein A1 (APOA1) and the collagen type XV alpha 1 (COL15A1), did show

weak to moderate staining in both, the tubular and the glomerular compartment.
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Figure 5: Protein tissue staining. The figure displays semi-quantitative tissue staining
results in the glomerular (G) and tubular (T) compartment for 25 out of the 37 proteins
found in proteomics and also present in the Human Protein Atlas. Staining intensity
values range from negative, weak, moderate, and strong as indicates by the different
grey shadings. No staining results were available for 12 proteins indicated by “X”.

121



DISCUSSION AND CONCLUSION

Large scale, public domain omics data repositories have been established covering
various cellular phenotypes. These data sets allow the analysis of a particular cellular
state separately on e.g. the transcript or protein level. However, as these repositories
grow the chance of identifying multiple omics levels covering a given analysis question

continuously increases.

Joint analysis of transcriptomics and proteomics profiles appears obvious following the
general assumption that a change on the mRNA level leads to a change on the protein
level. Various studies demonstrate the overall correctness of this assumption but still
showing a significant deviation of transcriptome and proteome profiles measured for
the very same cellular system. Next to intrinsic biological effects as e.g. variable life
time of mMRNA and encoded protein following posttranslational modification also other
effects are relevant, as e.g. imposed by experimental biases found for both,

microarrays as well as proteomics procedures.

This paper analyzed transcriptomics and proteomics profiles derived in the context of
chronic kidney disease. Available gene expression data from kidney biopsies resulted
in 697 differentially regulated features, proteomics profiles from urine showed 37
proteins as being differentially abundant when comparing chronic kidney disease and
healthy reference. This large difference is certainly driven by the different sample
matrix analyzed, as even in the presence of chronic kidney disease only a limited

number of proteins is released into the urine.

The overlap of transcriptomics and proteomics features is low and ambivalent. The
disease associated feature UMOD is found in both data sets as upregulated, whereas
three other jointly found features differ in their regulation. PTGDS is mainly expressed
in heart and brain tissue and its urinary excretion is closely associated with vascular
injury and the following damage of renal interstitial regions [30]. Thus, high PTGDS
concentration in urine is not necessarily a consequence of elevated mRNA expression
levels in kidney tissue but rather a consequence of damaged vessels and an increased

permeability of the kidney filtration barrier.

As reported by Attmann and colleagues, diabetic nephropathy is accompanied with
dyslipidemia and, in contrast to most of the other apolipoproteins, decreased plasma

levels of APOA1 [31]. These decreased levels in plasma may be due to increased
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levels in urine because of a reduced re-absorption from tubules and to low expression

levels in kidney tissue.

The deposition of collagens in the extracellular matrix is reported as associated with
renal fibrosis [32]. Hagg and colleagues detected high concentration of COL15A1 in
kidney biopsies taken from patients suffering from glomerular diseases with interstitial
fibrosis [33]. The accumulation of COL15A1 in kidney tissue may lead to a decreased
COL15A1 excretion and thus, to decreased COL15A1 levels in urine.

Based on these results the correlation between mRNA and protein abundance on the
mere feature level appears limited. In the given case the different sample matrices
used for profiling may contribute to this finding. Altered protein abundance resulting
from differential gene expression in kidney tissue will not necessarily be reflected by a
change of the very same proteins in urine. High concentration of proteins in urine can
be caused by an increased permeability of the glomerular filtration barrier for
macromolecules. During the progression of chronic kidney disease, a rearrangement of
the actin cytoskeleton of glomerular epithelial cells can be observed subsequently
leading to proteinuria.

Nevertheless, differential gene expression in chronic kidney disease reflects changes
in particular molecular processes and pathways. In turn, features being players in these
pathophysiological processes may well be found as proteins in urine. For testing this
hypothesis we used directed as well as undirected protein interaction networks for joint
analysis of transcriptomics and proteomics features. Directed interaction graphs were
drawn from KEGG and PANTHER, and transcriptomics as well as proteomics features
were mapped on these graphs. The subsequent analysis focused on the question if
dedicated pathways were found to be significantly populated by transcriptomics or
proteomics features, or both. Numerous pathways were found affected on the basis of
the transcriptomics features, and in PANTHER the processes ‘Cell structure and
motility’, ‘Immunity and defense’, ‘Cell structure’ as well as ‘Cell adhesion’ were
significantly populated by features from both data sources. For KEGG the pathways
‘ECM-receptor interaction’, ‘Complement and coagulation cascade’ and ‘Focal
adhesion’ were identified on the basis of both sources. Most of the pathways and
biological processes reported in the context of CKD are associated with inflammation,
cell structure, and cell adhesion. Perco and colleagues presented a list of 11 protein
markers of CKD and although the direct overlap between this list and the protein
dataset derived from HUPDB consists of only two features (COL3A1, PTGDS), the two
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important biological processes 'immunity and defense' and 'cell structure and motility'

were found to be enriched in both of the lists [34].

Another functional category found to be overpopulated by transcriptomics and
proteomics features is the coagulation pathway. It is frequently reported that patients
with CKD exhibit features of a hypercoagulable state which is also a main contributor to
subsequent cardiovascular diseases. Eight features of the coagulation pathway seem
to be deregulated in case of CKD, including the platelet-vessel wall mediator von
Willebrand factor (VWF) and the two plasma protease inhibitors SERPINC1 and
SERPINAS. The mRNA expression of some of the coagulation factors (F2, F3, F10) is
downregulated which may reflect a regulatory mechanism of the cell to counterbalance
high concentrations of pro-coagulation factors in the surrounding kidney tissue.

Mapping omics features on KEGG or PANTHER has its limitations of coverage. Of the
697 features resulting from transcriptomics 233 were found in KEGG and 681 in
PANTHER; the corresponding numbers for the 37 proteins are 14 and 35. For
overcoming these limitations we used the undirected interaction network omicsNET
which covers all presently annotated protein coding genes. Strong edges with edge
weight over 2 were identified between 22 members from the transcriptomics and 25
members from proteomics list. Features could be mainly assigned to the functional
classes of 'blood clotting', 'cell structure’, 'cell adhesion', and 'immunity and defense'.
Twelve members of the network spanned by the 22 transcripts and 25 proteins could
be assigned to the GO term 'coagulation’ and thus, the resulting subgraph represents
an extended interaction network of factors involved in the process of coagulation when
compared to the coagulation pathway from the KEGG database. When slightly
decreasing the cutoff for edge weights, fifteen members of the coagulation cascade
could be identified as strongly interconnected. These results indicate the crucial role of

hypercoagulability in CKD.

Further validation of the link of the proteomics data set measured in urine and protein
abundance given in kidney compartments was performed on the protein level. The
glomerular and tubular abundance of 25 out of the 37 proteins identified in proteomics
were available as immunohistochemical staining from the Human Protein Atlas. Six out
of the 25 were found in substantial concentration in either glomeruli or tubuli, 15 were

found as weak or moderate, and only four were not identified in kidney tissue at all,
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namely A1BG, COL18A1, COL2A1 and PCSK1N. Following the UniGene EST profiles
however, high mRNA levels of COL18A1, COL2Al, and PCSK1N can be found in
kidney tissues. ESTs of A1IBG mRNA could not be detected in kidney tissues so far.

Integrated analysis of omics profiles provides only moderate add-on information when
solely aimed at identifying and subsequently correlating joint features. This fact already
becomes evident within omics domains, as exemplified in meta-analyses of e.g. gene
expression profiles on cancer and becomes even clearer when spanning different

omics levels e.g. involving transcriptomics and proteomics [15,34].

Mapping of heterogeneous omics profiles on protein interaction networks provides an
alternative for joint omics feature analysis. From such a joint analysis view pathways

and processes characteristic for the phenotype under analysis may become evident.
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2.4.1 The Thesis Author’s Contribution

The thesis author was primarily responsible for the selection of the transcriptomics and
proteomics datasets, as well as for the functional analyses. Furthermore, the author
contributed to the study design and the interpretation of the results.

In detail, the following contributions are due to the thesis author’s efforts:

e Contributions to selection of transcriptomics and proteomics datasets, as well
as of appropriate bioinformatics tools

¢ Retrieval of publicly available transcriptomics datasets on diabetic nephropathy
[20,21] and non-diabetic nephropathies [17] from the Gene Expression
Omnibus database and respective publications

e Extraction of proteins associated with chronic kidney diseases from the Human
Urinary Proteome Database

e Accomplishment of the pathway enrichment analysis using the PANTHER
classification tool

e Extraction of kidney specific protein tissue expression from the Human Protein
Atlas

e Contributions to the interpretation of results from the functional interaction
analyses

e Visualization of the pathway and networks

e Provision of bioinformatics-specific methods and results sections to the

manuscript draft

129



130



2.5 Integrative bioinformatics analysis of proteins associated with
the cardiorenal syndrome. Int J Nephrol. 2010

Integrative bioinformatics analysis of
proteins associated with the
cardiorenal syndrome

Irmgard Miihlberger*, Konrad Moenks?, Andreas Bernthaler?,
Christine Jandrasits®, Bernd Mayer', Gert Mayer?, Rainer Oberbauer**, and

Paul Perco'*”

! emergentec biodevelopment GmbH, Gersthofer Strasse 29-31, 1180 Vienna, Austria

* Medical University of Innsbruck, Department of Internal Medicine IV, Anichstrasse 35,

6020 Innsbruck, Austria

® KH Elisabethinen Linz, Fadingerstrasse 1, 4020 Linz, Austria

“ Medical University of Vienna, Department of Internal Medicine 11l, Waehringer Guertel

18-20, 1090 Vienna, Austria

* Corresponding author:

Dr. Paul Perco

emergentec biodevelopment GmbH
Gersthofer Strasse 29-31

1180 Vienna, Austria

phone: +43-1-4034966

fax: +43-1-4034966-19

e-mail: paul.perco@emergentec.com

Published in: Int J Nephrol. 2010 Oct 21;2011:809378.

131


mailto:paul.perco@emergentec.com

ABSTRACT

The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular
disease, where cardiovascular events are the most common cause of death in patients
with chronic kidney disease. Both, cardiovascular as well as kidney diseases have
been extensively analyzed on a molecular level, resulting in molecular features and
associated processes indicating a cross-talk of the two disease etiologies on a

pathophysiological level.

In order to gain a comprehensive picture of molecular factors contributing to the
bidirectional interplay between kidney and cardiovascular system, we mined the
scientific literature for molecular features reported as associated with the cardiorenal
syndrome, resulting in 280 unique genes/proteins. These features were then analyzed
on the level of molecular processes and pathways utilizing various types of protein

interaction networks.

Next to well established molecular features associated with the renin-angiotensin
system numerous proteins involved in signal transduction and cell communication were
found, involving specific molecular functions covering receptor binding with natriuretic
peptide receptor and ligands as well known example. An integrated analysis of all
identified features pinpointed a protein interaction network involving mediators of
hemodynamic change and an accumulation of features associated with the endothelin
signaling and VEGF signaling pathway. Some of these features may function as novel

therapeutic targets.
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INTRODUCTION

The risk of developing cardiovascular disease (CVD) is dramatically increased in
patients with chronic kidney diseases (CKD). Mortality as a consequence of
cardiovascular events is 10 to 30 times higher in patients on dialysis treatment than in
the general population [1]. Due to this recognition of CVD as the leading cause of
morbidity and mortality in patients with reduced kidney function, a growing body of
literature has become available regarding this link of CKD and CVD, termed as

cardiorenal syndrome (CRS).

CRS can be classified into five subtypes depending on the origin of damage (either the
cardiovascular system or the kidney) and the course of disease (either acute or
chronic) [2,3]. Major mechanisms leading to CRS1 and CRS2 (acute and chronic
cardio-renal syndrome) include hemodynamically mediated damage, hormonal factors,
immune mediated damage, low cardiac output, endothelial dysfunction, and chronic
hypoperfusion. Hallmarks of kidney dysfunction leading to CRS3 and CRS4 (acute and
chronic reno-cardiac syndrome) on the other hand are volume expansion, drop of the
glomerular filtration rate, humoral signaling, anemia, uremic toxins, and inflammation.
The fifth subtype of the cardiorenal syndrome (CRS5) describes the secondary cardio-
renal syndrome which refers to systemic diseases such as diabetes that ultimately lead

to simultaneous cardiovascular and kidney dysfunction.

The multitude of cardiac risk factors in patients with chronic kidney disease are
complex and increase with age, the stage of kidney disease, and the level of
proteinuria. Another powerful risk factor is hypertension which goes along with sodium
retention, and activation of the renin-angiotensin system. Atherosclerosis results from
an impairment of endothelial function which, in turn, is associated with albuminuria.
Changes in blood-lipid composition and oxidative stress as a consequence of
inflammation due to renal dysfunction also contribute to endothelial dysfunction and
subsequent CVD [4].

Management and therapy of the CRS is challenging since drugs in use for the
treatment of cardiovascular diseases may go along with impairment of kidney function
and vice versa. Examples include diuretics, ionotropes, angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, or natriuretic peptides but treatment decision
must be based on a combination of individual patient information and understanding of

individual treatment options [5].
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Biomarkers of relevance in the context of the CRS mainly hold proteins known either in
the field of nephrology or cardiology, for the latter including e.g. the family of natriuretic
peptides and troponins, whereas frequently reported renal specific markers include
neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM1),
Cystatin C, interleukin 18 (IL18), and N-acetyl-B-D-glucosaminidase [6]. Levels of
circulating fibroblast growth factor 23 (FGF-23) for example have been shown to be
independently associated with left ventricular mass index and left ventricular
hypertrophy in patients with CKD [7]. Chung and colleagues described the relationship
between activation of matrix metalloproteinase 2 (MMP2) and elastic fiber
degeneration, stiffening, medial calcification, and vasomotor dysfunction in
macroarterial vasculature of dialyzed CKD patients [8]. Next to these proteins a
multitude of other molecular features is mentioned in the literature in the context of the
cardiorenal syndrome. Perco et al. reported a list of 31 CVD biomarkers that were
extracted from literature and characterized with respect to biological function, gene

expression in CKD, and known protein—protein interactions [9].

Literature mining approaches have the potential to reveal such biomarkers, thus
providing a more global picture on genes, proteins, and metabolites associated with a
specific disease. The biomedical literature can be seen as the condensed result of the
combined effort of the scientific community. As such, it represents the primary resource
upon which further investigations may be based on. PubMed, for instance, presently
holds close to 20 million abstracts. Thus, computational literature mining tools assisting
researchers in keeping pace with this ever-growing amount of fast changing

information became indispensable [10,11].

In the context of drug discovery, the most prevailing approach is based on concept co-
occurrence [12]: Here, a disease profile consisting of the concepts (e.g. drugs, genes,
etc.) which are frequently mentioned together with the disease under analysis can be
derived via text mining. Likewise, literature based profiles for drugs or genes can be
generated. Next to conveniently reaching an overview on biomarkers this information
base may additionally be used to gain hints about yet undiscovered dependencies

between diseases, drugs, and potential drug targets.

To further enhance text mining efforts, several “controlled vocabularies” (“ontologies”)
have been developed to allow a precise definition of the employed concepts [13]. The
most popular ones are maintained by the U.S. Library of Medicine, namely the Unified
Medical Language System (UMLS) and the Medical Subject Headings (MeSH). Given

that the majority of PubMed articles are indexed with MeSH, a fast and accurate
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extraction of biomedical concepts has become feasible [14,15]. With the advent of
literature mining approaches also in combination with high-throughput Omics
experiments, a number of bioinformatics tools and ontologies have been developed for
the analysis of resulting large sets of genes or proteins. Analyzing extended sets of
biomarker candidates on the level of molecular pathways and processes, represented
as protein interaction networks, add another layer of information for the interpretation of

molecular feature (biomarker) sets.

A recent review by Lusis and colleagues summarized studies dealing with network
analyses in cardiovascular disease [16]. Networks based on prior knowledge, such as
existing pathway sources, literature co-citations or other correlation measures as co-
expression and sequence similarity were outlined by Ashley et al. [17], who mapped
genes being differentially regulated between patients suffering from de-novo
atherosclerosis and in-stent restenosis on a co-citation network obtained by literature
mining of Medline abstracts. Similar concepts can be followed by utilizing networks
derived from physical protein interactions, or networks generated from measuring the
response to experimental perturbations. Further approaches include system genetics
and detailed analyses at the level of dynamic systems such as flux balance analyses
which are often used to characterize enzymatic reactions in dynamic models of
metabolism. Some of these approaches, especially highly abstracted network models
on the level of phenotypes, managed to predict co-morbidity patterns for myocardial
infarction using a ‘human disease network’ thus closing the gap to clinical applications
[18].

Diez et al. presented another application of the network paradigm to reveal the
mechanisms of cardiovascular disease, identifying a set of differentially expressed
genes separating asymptomatic from symptomatic carotid stenosis patients [19]. Based
on these transcriptomics data a correlation network was generated. Furthermore an
association network of the differentially regulated genes was derived by mining the
literature for gene associations thus resulting in an interaction network combining
Omics data and associated features extracted from literature. Sub-networks were
identified, characterized by enriched lipid-, immune-, and atherogenesis related
pathways and gene ontology terms. On this level of representation the interplay of
APOC1 (a gene that is linked to coronary heart disease) became evident. Weiss et al.
investigated networks on cardiovascular metabolism pointing out aspects of network
structure, namely differences between designed networks in engineering and networks
having undergone an evolutionary process [20]. Based on the level of abstraction three

types of network on cardiovascular metabolism were proposed: First, on the very
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abstract level of nodes and edges, metabolite networks described by using topological
characteristics [21,22], second physical, spatially compartmentalized networks
including the description of energy fluxes in the network [23,24], and on a third level
dynamic networks [25-27].

The present knowledge regarding mechanisms leading to the formation of the CRS
suggests a critical role for hemodynamic changes, originating either from the kidney or
the cardiovascular system. In the following analysis we used a literature mining
approach to extract genes and proteins reported in the context of the cardiorenal
syndrome, and analyzed these features on the level of protein interaction networks.
Specific focus was laid on secreted proteins being specifically expressed in either renal
or vascular tissue with the aim to identify molecular mediators potentially contributing to
the cross-talk between the kidney and the cardiovascular system for allowing

identification of novel therapeutic targets addressing both systems.
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MATERIALS AND METHODS

The general analysis strategy applied in this work is outlined in figure 1. Major
components include feature extraction via literature mining, followed by a range of
bioinformatics analysis procedures for deciphering characteristics of individual features

as well as joint interpretation on the level of protein interaction networks.

I'\\

PubMed search ,,cardiorena

825 articles

Fable (Fast
automated biomedical
literature retrieval)

biological 280 proteins subcellular

pathways locations
biological tissue specific
processes expressions

- o’ b o

molecular protein
functions networks

LS ) L )

‘ drug targets ‘

" J

Figure 1. Overview scheme on the analysis workflow: Literature mining was applied for
identifying unique proteins associated with CRS. Bioinformatics included feature
characterization as well as network analysis.
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Literature mining

The strength but also the challenge of biomedical text mining relies on the fact that the
scientific literature embraces a variety of concepts (genes, drugs, diseases, etc.) which
in turn are inter-related in a variety of ways. Thus, carefully designed text mining
methods are needed to extract “meaningful” information and reduce the amount of

noise present in the final results.

In general, text mining consists of two steps: Information Retrieval (IR) and Information
Extraction (IE) [10]. The first consists in identifying documents which are of relevance
for a certain research objective (e.g. a PubMed query for “cardiorenal”), whereas the
later is used to extract facts from these documents. Named Entity Recognition (NER)
can be seen as the most prevalent type of IE used in real world applications, aiming at
the identification of biological entities like genes, cell types or drugs.

Even though the concept of NER might appear almost trivial at a first glance, it actually
represents a challenging computational problem as the existence of over fifty available
tools demonstrates [28]. The key obstacle that needs to be addressed when extracting
genes or proteins from free text relies in the term ambiguity present at multiple levels.
Some genes are spelled like normal English words (e.g. “WAS” with the NCBI GenelD:
7454) and even a gene with the official Gene Symbol “T” exists (NCBI GenelD: 6862).
The same gene may additionally be referred to in various ways due to different naming

conventions.

Ultimately, this ambiguities lead to two different types of errors which all methods are
confronted with: erratically assuming that a certain gene was mentioned in a paper
(false positive) or erratically assuming that it was not mentioned, even though it actually
was given (false negative) [29]. Based on the trade-off between these two types of
errors, the precision of a method (i.e. how much of the predicted genes were actually
mentioned in the document) and its recall (i.e. how much of all actually mentioned

genes were also identified as such) are determined.

We chose a method favoring precision over recall for mining genes/proteins in Medline
/ PubMed abstracts. The Fast Automated Biomedical Literature Extraction (FABLE) tool
available at http://fable.chop.edu was used in order to fulfill this task. The algorithm
basically consists of two steps: First, a statistical classifier was used to train a
probabilistic model, which served as basis for gene tagging, i.e. to identify possible

occurrences of a gene, taking the textual context into account. Given that such an
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occurrence exhibits a sufficient likelihood of actually representing a gene, this
occurrence was normalized in a second step to the official Gene Symbol. This
normalization step was based on gene synonym lists, which were compared to the
predicted occurrence using both exact and relaxed pattern matching procedures. It has
been shown that this approach is competitive to alternative methods such as standard
information extraction techniques and direct pattern matching both in terms of precision
and recall [30,31]. We applied this procedures for all papers retrieved from PubMed

associated with “cardiorenal” (PubMed status as of March 2010).

Functional annotation of identified genes/proteins

The list of genes and proteins identified on the basis of the literature mining approach
was in a first step annotated using the Stanford Source tool [32]. The set of genes was
assigned to biological processes, pathways, and molecular functions using the
PANTHER (Protein Analysis THrough Evolutionary Relationships) Classification
System [33,34]. Significantly enriched categories were identified using the whole
human genome as reference dataset. Biological processes, pathways, and molecular
functions showing p-values below 0.0001 were considered as statistically significant in

terms of feature enrichment.

The subcellular location of proteins was determined using experimental data provided
by SwissProt [35]. For proteins not covered in SwissProt in-silico predictions using
WoLF PSORT were done [36]. WoLF PSORT computes probabilities based on the
protein sequence of a given protein for ten subcellular locations. Subcellular location
tags from SwissProt were mapped to the ten locations defined by WoLF PSORT. Only
assignments that were either reported in SwissProt or showed a probability value of 1
according to WoLF PSORT were considered for subcellular location enrichment
analysis. Based on a reference dataset of 45,008 proteins assigned to one of the WoLF
PSORT categories, the significance of enrichment was calculated using the Fisher's

exact test. P-values below 0.01 were considered as statistically significant.

Information on tissue specific expression patterns was extracted from NCBI UniGene

EST profiles. EST counts of in total 45 tissues were extracted for each gene. Tissue
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specific expression patterns for each single tissue for each single gene were calculated

based on the normalized transcripts per million counts as provided by UniGene [37].

Network analysis framework

For network analysis we used an extended version of the protein dependency network
‘omicsNET” as described in Bernthaler et al. [38]. The network is comprised of
information from protein-protein interactions, tissue specific reference co-expression,
shared pathway information, gene ontology distance, and subcellular co-localization,
and was extended by networks generated from shared transcription factor binding sites
and shared miRNA target sites. In omicsNET these sources were consolidated into a
single human protein reference interaction network, where edges represent pairwise

dependencies between proteins.

Protein-protein dependencies were calculated between proteins in the list resulting
from the literature mining approach. Furthermore, highly connected subgraphs were
identified and functionally annotated. We only considered dependencies with high
confidence in the network construction process and focused on genes reported at least
twice in the scientific literature in the context of the cardiorenal syndrome in order to

reduce the number of false positive assignments.

Identification of drug targets

Drug targets were identified in our set of 280 literature derived proteins using
information from DrugBank [39,40]. DrugBank combines information on drugs and their
molecular targets and currently contains around 4800 drug entities with more than

1350 FDA-approved small molecule drugs and more than 2500 protein drug targets.
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RESULTS AND DISCUSSION

Literature mining

825 papers associated with the term “cardiorenal” were identified in PubMed. In this set

of 825 papers 280 genes could be extracted utilizing FABLE, with 132 genes being

reported at least twice. The top ranked gene, mentioned in 156 articles, was the

aspartyl protease renin (REN), followed by the natriuretic peptide precurser A (NPPA)

and angiotensinogen (AGT), with 122 and 64 reports, respectively.

The list of 54 genes mentioned in at least 5 articles along with the term cardiorenal is

provided in Table 1 (see supplementary Table 1 for the total list of 280 genes, available

at http://www.sage-hindawi.com/journals/ijn/2011/809378/sup/). Next to the number of

articles, the relative expression levels in the four tissues blood, heart, vascular, and

kidney are provided based on data from the UniGene expressed sequence tag counts.

expression | expression | expression | expression
Symbol | Articles | in blood in heart in vascular | in kidney max. expression (%)
% % % %
REN 156 0 0 0 19,27 39,58 intestine
NPPA 122 88,04 0 0 0 88,04 heart
AGT 64 1,79 18,54 0 5,71 29,74 liver
ADM 55 0,95 1,38 1,09 3,11 15,3 adipose tissue
ACE 39 0,86 2,37 4,09 4,53 15,63 parathyroid
EDN1 39 0 4,12 1582 2,77 32,68 umbilical cord
NPPB 31 85,93 0 0 1,2 85,93 heart
RAPGEF5 28 0 0 0 0,76 76,62 parathyroid
NOS3 27 3,92 2,69 2,33 2,2 20,32 spleen
EPO 22 0 0 0 0 58,82 prostate
CNP 21 0,85 1,74 3,58 5,4 18,03 brain
TGFB1 20 8,67 0,99 0 1,79 17,67 salivary gland
MME 19 0,26 3,59 0 1163 12,06 lymph node
PTGS2 19 16,39 0 29,1 0,59 29,1 vascular
INS 18 0 0 0 0 100 pancreas
NPR1 17 0 1,32 2,29 2,83 23,69 | mammary gland
NOS2 13 4,23 0 0 0 25,4 pharynx
DDR1 13 0 0,94 0 0,46 20,12 trachea
KNG1 10 0 0 33,18 57,18 liver
PLEK 10 11,02 0,34 1,77 0,87 16,81 lymph
NCF1 10 10,88 0 0 0,76 32,38 lymph node
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HESX1 10 0 0 0 0 43,18 ovary
FOS 9 19,04 2,09 4,31 0,77 19,04 blood
CALCA 9 0 0 0 0 100 prostate
S100A6 9 1,2 0,87 5,16 1,18 20,08 umbilical cord
NOS1 8 0 0 0 1,68 65,97 muscle
AVP 8 0 0 0 80 80 kidney
RHOA 7 2,5 1,57 2,02 1,72 5,28 cervix
CYBB 7 19,44 0 2,55 3,15 27,68 lymph node
MAPK1 7 1,84 1,35 2,36 1,44 10,94 mouth
AKT1 7 1,14 1,57 0,45 1,51 13,52 salivary gland
ICAM1 7 3,19 0,55 2,39 1,62 15,19 spleen
CALCRL 7 0 2,55 14,85 1,39 25,06 trachea
SERPINE1 7 0,17 0,12 145 0,69 27,77 umbilical cord
EDNRA 7 0 6,4 2,21 1,63 10,94 uterus
SHBG 7 0 0 0 0 36,84 eye
RAMP2 7 5,09 0 0 1,85 28,7 thyroid
UTS2 7 0 0 0 3,88 35,92 spleen
OLR1 6 1,23 0 0 2,15 81,05 esophagus
AGTR1 6 0 5,19 0 3,3 19,1 larynx
NFKB1 6 4,69 0,76 0,66 1,62 8,69 nerve
UTS2R 6 0 0 0 0 100 ovary
NR3C2 6 0 0 6,41 7,08 20,74 stomach
EPHB2 6 6,73 0 0 2,85 14,78 umbilical cord
ISYNAL 6 1,49 0,43 0,52 3,31 17,72 umbilical cord
GPR182 5 0 0 0 0 38,67 adrenal gland
COX8A 5 0,77 1102 1,48 0,98 11,02 heart
CPOX 5 9,24 3,63 0 5,28 11,06 liver
EGFR 5 0 2,2 1,69 2,49 14,89 mouth
COX5A 5 0 0 0 0 100 muscle
CCL2 5 0 0 0 0 100 placenta
PPARG 5 0 1,46 2,52 3,72 12,08 placenta
CYBA 5 2,25 6,82 1,67 3,43 15,46 tonsil
RAMP3 5 7,76 0 0 2,54 21,44 adipose tissue

Table 1: List of identified genes/proteins, number of articles identified for cardiorenal,
and relative expression levels based on UniGene EST counts for blood, heart, vascular
and kidney, and tissue showing maximum expression of a specific feature.

The top ranked feature in the list of 280 literature derived genes is renin (REN) which is

secreted by cells of the juxtaglomerular apparatus of the kidney and plays a key role in
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the blood pressure and water balance-regulating renin-angiotensin system (RAS). The
connection between CRS and an increased activity of this hormone system was first
reported in 1971 [41] and its consequences like renal hypoxia, vasoconstriction,
intraglomerular hypertension, glomerulosclerosis, tubulointerstitial fibrosis, and
proteinuria continue to be demonstrated in clinical practice. Conservative therapy for
blocking the RAS activity is the administration of angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers, but recent studies demonstrate the benefit

of a combination with direct renin inhibitors [42].

Further genes frequently reported in association with CRS are the components of the
natriuretic peptide system (NPS) NPPA and NPPB, as well as their receptors NPR1,
NPR2, and NPR3. Functions of the NPS include the counter-regulation of RAS, and it
is suggested that its activation provides organ protection in cardiorenal disease,
especially in diabetic patients [43].

Functional annotation

According to the PANTHER Classification System, the biological processes of “signal
transduction” and “cell communication” were identified as most significantly enriched,
with 135 and 136 genes assigned to these categories, respectively. In total, 28
processes showed a p-value > 0.0001 in terms of enrichment, including “blood

circulation”, “regulation of vasoconstriction”, and “angiogenesis”. The most significantly

enriched molecular functions are “receptor binding” and “protein binding” (Table 2).

No. genes | No. genes No. genes
Biological Process i(?tal CgRS CRS P-value
expected
signal transduction 4191 135 57,67 4.55E-25
cell communication 4365 136 60,07 6.84E-24
cell surfa(_:e receptor linked signal 2935 91 30.76 3.80E-22
transduction
immune system process 2628 97 36,16 9.70E-21
blood circulation 210 28 2,89 5.11E-19
regulation of biological process 59 18 0,81 1.01E-18
regulation of vasoconstriction 59 18 0,81 1.01E-18
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. No. genes | No. genes N (EEES
Molecular Function total CRS CRS P-value
expected
receptor binding 1233 64 16,97 2.46E-20
protein binding 3157 103 43,44 2.71E-18
catalytic activity 5336 128 73,43 1.44E-12
oxidoreductase activity 703 33 9,67 1.21E-09
binding 6751 140 92,9 3.65E-09
kinase activity 695 28 9,56 5.18E-07

Table 2: List of enriched biological processes and molecular functions. Given is the
total number of genes assigned to a process/function, the number of genes assigned
as derived from literature mining, the number of genes expected from a statistical
perspective, and the significance level of enrichment.

The two enriched categories “receptor binding” and “receptor activity” indicate that
numerous receptors and ligands are involved in the cardiorenal syndrome. These
receptors form the first line of molecules in a number of signaling cascades, which as
such is another category enriched in genes associated with the cardiorenal syndrome.
We therefore took a closer look at receptor-ligand interactions. We searched for
receptors mainly expressed in the cardiovascular system having ligands predominantly

secreted by the renal tissue, and vice versa.

The natriuretic peptide receptor NPR3 showed high expression in kidney tissue,
whereas the ligands NPPA and NPPB were found to be almost exclusively expressed
in the heart. Thus, a deregulation of blood pressure maintenance and extracellular fluid
volume by heart derived ligands of the natriuretic peptide system directly affect the
kidney and may contribute to the formation of CRS.

Enrichment of the process “regulation of vasoconstriction” reflects the consequences of
impaired heart function including a decreased cardiac output, and thus the
hypoperfusion of organs. Since glomerular filtration is controlled by blood pressure,
hypoperfusion of the kidney leads to the activation of the RAS and subsequent
vasoconstriction, which, in turn, causes systemic hypertension and an increased heart

preload [2].

22 PANTHER pathways could be identified as significantly enriched in the list of 280
literature derived genes. 28 genes could be assigned to “angiogenesis”, 21 genes to
“endothelin mediated signaling”, and 15 genes to the “VEGF signaling pathway” (Table
3).
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No. genes | No. genes No. genes

Pathway -9 -9 CRS P-value
total CRS
expected

Angiogenesis 191 28 2,63 4.51E-20
Endothelin signaling pathway 91 21 1,25 3.33E-19
VEGF signaling pathway 75 15 1,03 3.33E-13
Inflammation mediated by
chemokine and cytokine 283 24 3,89 2.76E-12
signaling pathway
PDGF signaling pathway 159 18 2,19 1.68E-11
T cell activation 102 14 1.4 2.72E-10
Apoptosis signaling pathway 123 15 1,69 3.10E-10

Table 3: List of enriched biological pathways. Given is the total number of genes
assigned to a process/function, the number of genes assigned as derived from
literature mining for CRS, the number of genes expected from a statistical perspective,
and the significance level of enrichment.

The connection between angiogenic processes and cardiovascular disorders is well
understood, since decreased cardiac output goes along with decreased organ
perfusion, and vascularization is the natural response to diminution of blood supply.
Apart from negative effects on organ function due to hypoperfusion,
microvascularization is extensively performed at sites of inflammation which explains
the role of angiogenesis in diseased kidney tissue. On the other hand, decreased
vascularization and loss of capillaries lead to kidney fibrosis. However, deregulation of
angiogenesis seems to be crucial for kidney function and a key regulatory mechanism
of angiogenic processes is the VEGF signaling pathway [44-46]. A third enriched
pathway is the “endothelin signaling pathway” which is known to regulate the renin-
angiotensin system thus being a further player in the hemodynamic crosstalk between

the kidney and the cardiovascular system.

Following the rationale that features secreted from kidney cells may lead to damage in
vessels and vice versa, literature derived proteins were classified in terms of
subcellular location. The most significantly enriched compartment was “extracellular,
including cell wall” with 81 genes being assigned to this category, whereas “nuclear”

was significantly depleted with 48 genes as indicated in Figure 2.
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Figure 2: Subcellular location of literature derived proteins. Presented are categories of
subcellular location, the expected number of proteins in a particular category using the
total set of human proteins, and the actual number of proteins found as being
associated with CRS.

The list of 81 secreted genes included components of the renin-angiotensin system
(REN, AGT, ACE) and the natriuretic peptide system (NPPA, NPPB), as well as some
other regulators of vasoconstriction. Kininogen 1 (KNG1) for example is essential for
the assembly of the blood pressure regulating kallikrein-kinin system. Another molecule
serving as a vasodilator is the peptide hormone calcitonin-related polypeptide alpha
(CALCA).

Network analysis

A subset of 40 proteins out of the list of 132 proteins mentioned in at least two
publications in the context of the cardiorenal syndrome formed a highly connected
protein interaction network as given in Figure 3. The main components of this protein
network are mediators of hemodynamic change. An accumulation of features involved
in previously described signaling pathways like the endothelin signaling pathway or the

VEGEF signaling pathway is evident. Next to these two pathways, a number of members
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of the blood pressure regulating kallikrein-kinin system and the renin-angiotensin

system are part of this network.

«es| Leukocyte transendothelial migration

NCF2 NCF4 |

0y
VEGF signaling | vesra (/ \. Endothelin signaling

Figure 3: Protein interaction network of highly connected proteins associated with the
cardiorenal syndrome. Nodes represent genes (gene symbols), edges indicate
functional associations. Highlighted nodes represent proteins that are specific for either
the VEGF signaling, the leukocyte transendothelial migration, or the endothelin
signaling pathway.

Another highly connected cluster holds genes associated with leukocyte
transendothelial migration. The process of leukocyte migration from blood into tissues
is vital for inflammation, and it is known that inflammation is an important cardiorenal

connector and a hallmark of kidney and heart diseases [5].

Identification of drug targets

116 out of the 280 proteins associated with the CRS were listed as drug target for at
least one drug in DrugBank (see supplementary Table 1). The proteins with the most
number of drugs were PTGS1, PTGS2, and NOS3 with 49, 43, and 41 drugs

associated. The drug with the most drug targets in our list of 280 proteins was NADH.
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Standard therapeutic regimes in the context of cardiovascular and kidney disease
included aliskiren, irbesartan, or ramipril. Another drug candidate is nesiritide, a
recombinant B-type natriuretic peptide that counter-regulates the RAS, as used in the
treatment of acute decompensated heart failure (ADHF). However, on the basis of a
prospective, randomized, double-blinded, placebo-controlled clinical trial Witteles et al.
concluded that nesiritide therapy does not impact renal function in patients with ADHF

and pre-existing renal dysfunction [47].

It is known that reducing blood pressure has beneficial effects on renal function and
there is a multitude of antihypertensive agents acting on the RAS. Administration of
angiotensin receptor antagonists in combination with angiotensin-converting enzyme
inhibitors showed a significant reduction of urine albumin creatinine ratio in patients
with hypertension and microalbuminuria and thus, a reduction of the risk for myocardial

infarction [48].

Further potential targets for regulation of hemodynamics are members of the
endothelin signaling pathway. Endothelin receptor antagonists are used in the
treatment of a variety of cardiovascular conditions but less is known about the effects
on combined kidney dysfunction. Ding et al. showed in animal models that chronic
endothelin receptor blockade with endothelin receptor antagonists is beneficial in the
treatment of progressive renal dysfunction and sodium retention associated with
chronic heart failure [49]. Studies in humans are required to fully elucidate the effects

and risks of endothelin receptor antagonist treatment in patients with CRS.

CONCLUSIONS

In this work we provide a comprehensive list of genes/proteins associated with the
cardiorenal syndrome identified on the basis of a literature mining approach. On the
basis of 825 articles identified in the context of CRS, 280 unique genes could be
identified and were further characterized with respect to molecular function, biological
processes, cellular pathways, subcellular location, tissue specific expression, as well

as on the level of protein interaction networks.

The most frequently reported genes are involved in blood pressure regulating systems,

particularly in the renin-angiotensin system (REN, AGT, ACE), as well as in the
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antagonistic natriuretic peptide system (NPPA, NPPB). Enriched molecular functions
include “receptor binding” and “receptor activity”. Of special note in this context are
again players of the natriuretic peptide system, namely the two ligands NPPA and
NPPB and its receptor NPR3. Tissue specific expression patterns of these molecules
showed that NPPA and NPPB are mainly expressed in the heart, whereas their
receptor NPR3 is highly expressed in kidney tissue, suggesting that this regulatory

system is part of the crosstalk between the kidney and the cardiovascular system.

Therapy of the CRS is largely focused on natriuretic peptides or the renin-angiotensin
system with a number of other molecular targets like the endothelin signaling pathway
holding promise for future therapeutic strategies.

Altogether, the results of the present study strongly indicate the critical role of
hemodynamic changes, blood pressure regulating hormone systems, and inflammatory
processes in the formation of the CRS. Our analyses led to a comprehensive picture of
molecular features involved in the functional interplay between the kidney and the
cardiovascular system. One limitation of this automated literature mining approach is
that we do not have experimental data on the expression levels of the reported
molecules in the process of disease development. An obvious next step would
therefore be to integrate the findings of this work with Omics datasets on kidney
disease as well as vascular diseases. Such a combined approach has the potential to
identify deregulated features for potentially identifying novel players for diagnostic or
therapeutic approaches in the field of kidney and cardiovascular disease.
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2.5.1 The Thesis Author’s Contribution

Study design was predominantly the thesis author’s responsibility. The thesis author

further carried out the functional annotation and the analysis of the interaction network.

Discussion and data interpretation were jointly done by all of the authors.

In detail, the following contributions are due to the thesis author’s efforts:
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Design of the analysis workflow in consultation with other authors

Selection of appropriate bioinformatics tools

Functional annotation of genes derived from the literature mining approach,
including biological process, molecular function and pathway enrichment
analyses

Extraction of tissue specific gene expression from the Unigene database
Selection of relevant subgraphs resulting from the interaction analysis
Discussion of genes frequently reported as associated with the cardiorenal
syndrome, functional categories, relevant subgraphs and drug targets in
collaboration with the other authors

Visualization of subcellular location data and the protein interaction network

Drafting the manuscript in cooperation with other authors
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ABSTRACT

The risk of developing cardiovascular diseases (CVD) is dramatically increased in
patients with chronic kidney diseases (CKD). Mechanisms leading to this cardiorenal
syndrome (CRS) are multifactorial, and combined analyses of both failing organs may
provide routes towards developing strategies for early risk assessment, prognosis, and

consequently effective therapy.

In order to identify molecular mechanisms involved in the crosstalk between the
diseased cardiovascular system and kidney, we analyzed tissue specific Omics profiles
on atherosclerosis and diabetic nephropathy together with literature derived gene sets
associated with cardiovascular and chronic kidney diseases. We focused on enriched
molecular pathways and highlight molecular interactions found within as well as

between affected pathways identified for the two organs.

Analysis on the level of molecular pathways points out the role of PPAR signaling,
coagulation, inflammation, and focal adhesion pathways in formation and progression
of the CRS. The proteins apolipoprotein A1 (APOA1) and albumin (ALB) turned out to
be of particular importance in context of dyslipidemia, one of the major risk factors for
the development of CVD.

In summary, our analyses highlight mechanisms associated with dyslipidemia,
hemodynamic regulation, and inflammation on the interface between the

cardiovascular and the renal system.

KEYWORDS: cardiorenal syndrome, chronic kidney disease, cardiovascular disease,

literature mining, transcriptomics, pathways, protein interactions
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INTRODUCTION

Patients suffering from chronic kidney disease are at high risk for developing
cardiovascular complications. This fact already becomes evident for subjects with no or
minor decrease in glomerular filtration rate (GFR) but showing protein excretion in urine
with albuminuria being a strong predictor for cardiovascular complications. In end stage
renal disease this relation becomes even more evident, with cardiovascular mortality
being 10 to 30 times higher for patients on dialysis treatment compared to a matched
general population with normal kidney function [1]. The clinical manifestations of
cardiovascular disease in patients with kidney dysfunction are mainly atherosclerotic
vascular disease and left ventricular hypertrophy [2]. A number of studies show that the
prevalence of atherosclerosis is dramatically increased in dialysis patients and
progressive over a range of reduced GFR [3-5]. Accelerated atherosclerosis can be
frequently observed in diabetic nephropathy, being the leading cause of end-stage
renal disease [6].

The pathophysiological state of combined kidney and cardiovascular dysfunction is
described as cardiorenal syndrome (CRS), where the organ suffering in the first place
can either be the cardiovascular system or the kidney. Further categorization
depending on the origin of damage and the course of disease (either acute or chronic)
has been established and discussed by Ronco and colleagues [7,8]. CRS 1 and 2
denote the acute or chronic cardio-renal syndrome respectively, whereas CRS 3 and 4
refer to reno-cardiac syndromes where the primary failing organ is the kidney. The fifth
subtype characterizes cardio- and renal dysfunctions due to preceding systemic

disorders such as sepsis or diabetes.

The mechanisms leading to all types of CRS are multifactorial and not restricted to
changes of hemodynamic parameters like extracellular fluid volume, cardiac output, or
arterial pressure only. Bongartz and colleagues outlined the four major cardiorenal
connectors, namely increased activity of the renin-angiotensin system, oxidative stress,
inflammation, and increased activity of the sympathetic nervous system [9]. Cardiac
risk factors commonly associated with chronic kidney diseases, however, are complex
and increase with age, the stage of kidney disease, and the level of proteinuria. Further
factors include hypertension, diabetes, and dyslipidemia, and their appropriate

treatment is certainly vital to reduce cardiovascular complications [10].
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Early risk assessment and prognosis are key factors for effective and tailored
treatment, particularly since management and therapy of severe cardiorenal syndrome
is challenging. Therapeutic benefits of standard regimes are often achieved for one
organ only or even worse, drugs in use for the treatment of cardiovascular diseases
may go along with impairment of kidney function and vice versa. Further complications
in treatment approaches leading to an increasing concern about novel strategies derive
from the development of resistance to many standard therapies such as diuretics and
inotropes [11]. So far, an effective therapy is lacking and further research, including the
identification of biomarkers along with a better understanding of the underlying
pathophysiological mechanisms to stratify CRS subtypes, is needed to develop

selective therapeutic strategies.

In the last years, a significant number of genomics, transcriptomics, proteomics as well
as metabolomics studies became available for characterizing altered kidney or
cardiovascular function, but combined analyses of both failing organs on any omics
level have been rare. One example is the gene expression analysis of aortic tissue
from patients with or without chronic kidney disease scheduled for a coronary artery
bypass graft, identifying diffential expression of genes implicated in collagen

fibrillogenesis and vascular smooth muscle cell migration [12].

An alternative approach for gaining a more global picture on disease mechanisms is
the systematic extraction of information on genes and diseases as provided within the
scientific literature. In particular, integrating results originating from different fields of
research, such as e.g. cardiovascular disorders and kidney disease, represents a
challenging task that can be facilitated by suitable literature mining methods. In this
context, the most prevailing approach is based on concept co-occurrence as a
measure for the relatedness of biomedical concepts (genes and associated diseases).
We recently applied extensive literature mining on the CRS, identifying 280 unique
genes/proteins discussed in this context. Analyzing these features on the level of
protein interaction networks identified mediators of hemodynamic change as well as
the endothelin and VEGF signaling pathway as centrally involved in the

pathophysiology of CRS [13].

We in this work extend this literature mining approach by also including tissue specific

Omics data sets. Transcriptomics profiles characterizing cardiovascular as well as
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renal damage allow an integration of tissue-specific changes coupled with also
systemic alterations covered by literature extraction methods. Specifically, we are
interested in identifying pathways being jointly affected on the level of both organs for
delineating molecular features potentially involved in molecular crosstalk of the

cardiorenal syndrome.

METHODS

Data sets

Based on a catalogue of NCBI Medical Subject Headings (MeSH) specifying
cardiovascular disease, renal disease, as well as the cardiorenal syndrome we
extracted associated publications from Medline (database status as of April 2010).
Subsequently, all genes associated with these publications were retrieved utilizing the
gene-to-pubmed mapping file as provided by NCBI at
ftp://ftp.ncbi.nim.nih.gov/gene/DATA/gene2pubmed.gz, status as of April 2010. For
identifying the significance of an association of a gene to a specific disease category
we applied a Fisher’s exact test using the number of associations of a given gene to a
given disease category and the background distribution of gene-to-disease
assignments as basis. Only genes showing a significant association with one of the

diseases in focus (p-value < 0.05) were further considered.

Organ specific differentially expressed transcripts in chronic kidney disease and
cardiovascular complications were extracted from two publicly available transcriptomics
datasets. A first dataset published by Volger and colleagues provided profiles of human
endothelial cells isolated from large arteries of patients with early and advanced
atherosclerosis as compared to healthy controls. The list of differentially expressed
genes of both, early and advanced atherosclerotic samples, as compared to control
samples was retrieved from the supplementary material of the respective publication
[14]. For generating a list of deregulated genes in chronic kidney disease we did make
use of a publicly available dataset published by Schmid and colleagues on gene
expression changes in human tubulointerstitial renal cells comparing patients with
diabetic nephropathy and healthy controls [15]. This dataset was accessed through the

Nephromine database (http://www.nephromine.org).
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Next to the four described datasets, we included the literature-derived set of 280
proteins related to the cardiorenal syndrome as previously annotated and characterized
in great detail by our group [13]. Molecular features identified as relevant via literature
search and via Omics profile analysis were mapped to Entrez Gene IDs for allowing
further joint analyses.

Protein interaction and pathway analysis

Protein-protein interactions (PPIs) between identified features were extracted from the
IntAct database [16]. Feature sets were further mapped to extended KEGG pathways
thus allowing an interpretation on a functional level [17]. Of the 214 pathways presently
encoded in KEGG, 151 generic pathways were used, excluding all pathways
specifically assigned to a disease phenotype. Pathways were extended as described in
[18] to increase the coverage of genes assigned with these pathways, yielding a

representation of 17,995 proteins.

For computing the enrichment of features assigned to cardiovascular or renal disease
on the level of specific pathways a Fisher’'s exact test was used resting on the number
of features assigned to a pathway and the number of features being identified as

relevant for a given disease phenotype.

Molecular function and cellular component

Molecular features were annotated with respect to their molecular function and
subcellular location according to the gene ontology database [19]. We specifically
focused on the terms “receptor activity” and “extracellular space” for delineating the

crosstalk between the two organs under study.
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RESULTS

Identified molecular features

In total we identified 2,019 unique molecular features as being assigned to
cardiovascular disorder, chronic kidney disease, and the cardiorenal syndrome. Table
1 provides an overview on the datasets and the numbers of molecular features
identified.

dataset Description # features

LIT-CVD literature dataset based on cardiovascular 306
MeSH terms

deregulated transcripts derived from the
atherosclerosis dataset
literature dataset based on chronic renal

LIT-CKD disease MeSH terms 183 2019

1386

OMICS-CVD 1096

540
deregulated transcripts derived from the
OMICS-CKD diabetic nephropathy dataset 354
CRS literature dataset using the search term 280

“cardiorenal”

Table 1: Overview on datasets for cardiovascular disease (CVD) and chronic kidney
disease (CKD) on the basis of literature extraction (LIT) and Omics data set analysis
(OMICS).

The cardiovascular datasets held 306 (LIT-CVD) and 1,096 (OMICS-CVD) proteins
respectively, with an overlap of 16 features (see figure 1A). From the 540 kidney
disease specific features, 183 resulted from the literature mining approach (LIT-CKD)
and 354 were part of the transcriptomics set (OMICS-CKD) (see figure 1B). Seven
features were identified in both datasets, which is again a weak overlap but apparently
not surprising, as the omics datasets are tissue specific, whereas literature mining also

includes a systemic view on the different disease entities.

When merging literature and omics derived datasets, 101 features were found to be
associated with kidney (CKD) and cardiovascular (CVD) diseases, and among these
30 features were also reported in the context of the cardiorenal syndrome (see figure
1C).
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Furthermore, figure 1C gives information about organ-specific contributions. 43 genes
assigned to cardiovascular complications and being part of the cardiorenal dataset
appear not affected in kidney disease according to the CKD dataset. In turn, 13
members of the CRS dataset could be found in the kidney specific dataset but not in
CVD specific profiles.

(A) LIT-CVD OMICS-CVD LIT-CKD OMICS-CKD
1080 (
(C) v CKD

194

CRS

Figure 1: Venn diagrams showing the feature overlaps between (A) LIT-CVD and
OMICS-CVD, (B) LIT-CKD and OMICS-CKD, and (C) CVD, CKD and CRS datasets.

Pathway analysis

Comparing the diseases on the level of affected pathways provided a more
comprehensive picture than comparing individual features as such. We identified 29
enriched KEGG pathways for the literature and omics combined CVD and CKD
features lists (see table 2). Joint pathways of both lists included the renin-angiotensin
system, the complement and coagulation cascade, cytokine-cytokine receptor
interactions, as well as the PPAR signaling, all of which were also significantly enriched
by features of the CRS dataset. Three additional pathways were found to be coherently
enriched within the CVD and CRS datasets, namely tyrosine metabolism, the
adipocytokine signaling pathway, and vasopressin regulated water reabsorption. Focal

adhesion was the only pathway jointly enriched by CKD and CRS specific genes.
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pathway # genes
name Fgenss | cvp | ckp | crs
renin-angiotensin system 50 8* 6* 5*
ggg]cgllsg;ent and coagulation 180 38+ 16+ g*
one carbon pool by folate 19 3* 1* 0
_cytoking—cytokine receptor 300 31* 16+ 11*
interaction
PPAR signaling pathway 175 29* 10* 8*
glutathione metabolism 63 6* 1 2
purine metabolism 277 20* 5 6
glycosaminoglycan degradation 22 4* 1 0
tyrosine metabolism 34 2% 1 2*
circadian rhythm - mammal 36 3* 0 0
Iniiugkrzct:iyotr? transendothelial 59 7 1 0
ubiquitin mediated proteolysis 662 39* 16 6
ABC transporters 97 11~ 1 1
adipocytokine signaling pathway 126 15* 3 4*
hematopoietic cell lineage 65 4* 2 3
valine, Ie_ucine and isoleucine 46 g 1 0
degradation
gastric acid secretion 60 9* 0 3
\r/:asgé)cr)(re;tsi(i)r:]—regulated water 152 14* 4 5
lipoic acid metabolism 7 2% 0 0
mismatch repair 29 4* 2 0
arachidonic acid metabolism 58 11* 1 3
cardiac muscle contraction 35 10* 2 0
focal adhesion 149 13 9* 6*
pyruvate metabolism 37 1 3* 2
terpenoid backbone biosynthesis 28 1 1* 1
histidine metabolism 34 1 3* 0
O-Glycan biosynthesis 40 3 5* 0
chemokine signaling pathway 240 19 12* 5
ECM-receptor interaction 137 11 11* 3

Table 2: Enrichment of extended KEGG pathways for the CVD, CKD, and CRS
datasets. Given is the pathway name, the total number of features assigned to the
pathway following our extended pathway assignment, the number of features identified
as relevant for CKD, CVD and CRS datasets, and significant enrichment for specific
pathways and specific datasets (*).
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Molecular crosstalk

Next to comparing CKD and CVD on the level of individual features as well as on the
level of molecular pathways we analyzed evidence for specific protein interactions
between members identified for CKD and CVD by mining the IntAct protein-protein
interaction database. This procedure provided 284 protein-protein interactions
identified for features associated with CVD or CKD. We specifically analyzed
interactions between proteins that were assigned to enriched pathways in at least one
of the two datasets, individually studying crosstalk i) between pathways enriched in
both, CKD and CVD, ii) between pathways enriched in either CKD or CVD, and iii)
within pathways enriched in both disease entities. Furthermore, information on the
subcellular location of these proteins was added with particular focus on secreted
proteins naturally being the most promising members when investigating the crosstalk
between the two organs under study. The majority of interactors could actually be
assigned to the GO category “extracellular space”. Proteins belonging to the GO

molecular function category “receptor activity” were additionally marked.

For the crosstalk between pathways being enriched in both, CKD and CVD the
complement and coagulation cascades and PPAR signaling were the two pathways
showing the largest numbers of interconnected proteins. Key molecules of this
crosstalk are apolipoprotein A1 (APOAL1), being a known marker for cardiovascular
disorders and apparently also affected in kidney diseases, as well as albumin (ALB).
Albumin as a member of the CKD dataset interacts with the serpin peptidase inhibitor
G1 (SERPING1), the coagulation factors 1l (F2) and VIl (F7), and fibrinogen alpha
(FGA), all members of the CVD dataset (see figure 2A), showing a further interaction to
AHSG (Alpha2-HS glycoprotein) being assigned to the renin-angiotensin system.

Next, crosstalk between pathways exclusively enriched in either the cardiovascular or
the kidney dataset was identified, holding proteins involved in ubiquitin mediated
proteolysis, focal adhesion, and the complement and coagulation cascades, as outlined
in figures 2B and 2C. Here a member of the ubiquitin mediated proteolysis (CVD
enriched) links to focal adhesion (CKD enriched) as well as to a member situated in the
complement and coagulation cascades (being enriched in both, CVD and CKD). PPAR
signaling holds two members which on the one hand link to cardiac muscle contraction
(CVD enriched) and on the other hand to focal adhesion (CKD enriched).
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Figure 2: Inter-pathway links based on physical protein interactions for members from
the CVD and CKD datasets. (A) Interactions of features found in pathways enriched by
CVD as well as CKD features, (B) Interactions between features of pathways exclusively
enriched by either the CVD (grey) or CKD (dark grey) dataset, and (C) links between
pathways enriched by CVD as well as CKD features and pathways exclusively enriched
by either the CVD or CKD dataset. ‘S’ and ‘R’ depicts secreted and receptor,

respectively.

Looking at the intra-pathway protein interactions for pathways affected in both, CVD

and CKD, a crosstalk between members of the CVD and CKD datasets was found for

three pathways, namely PPAR signaling, the complement and coagulation cascade, as

well as cytokine-cytokine receptor interactions (figure 3).
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Figure 3: Intra-pathway links based on physical interactions found for members from
the CVD and CKD datasets for pathways being affected in both, CVD and CKD. ‘S’ and
‘R’ depicts secreted and receptor, respectively.

Key players in the PPAR signaling pathway are found to be apolipoprotein A1 and
albumin, showing in total fourteen links to other deregulated molecules. A receptor-
ligand interaction in the complement and coagulation cascade was identified between
the coagulation factor Il and its binding partner thrombomodulin. Another receptor-
ligand interaction between cardiovascular and kidney specific features was found in the
context of cytokine-cytokine receptor interactions between the tumor necrosis factor
receptor superfamily, member 6B (TNFRSF6B) and the tumor necrosis factor
superfamily, member 14 (TNFSF14).
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DISCUSSION

In the present paper we combined transcriptomics and scientific literature-derived
datasets on chronic kidney disease and cardiovascular disease for characterizing the
cardiorenal syndrome on a molecular pathway level. Following the scientific literature
280 features are directly reported in the context of CRS, and our integration of
transcriptomics and literature data resulted in 1,386 features being linked with CVD,
and 540 features linked with CKD. As frequently seen for such datasets on both,
literature mining but in particular Omics datasets the overlap on the level of features is
minor. This is, however, not surprising as e.g. the transcriptomics studies analyzed in
this work are per definition tissue specific and analyze a specific clinical phenotype,
which when combined with a more systems view on the disease as represented by
scientific literature results in minor overlap. Going beyond the pure feature comparison
to a more functional representation of disease pathology, as expressed by molecular
pathways, frequently changes this picture.

We consequently investigated specifically whether dedicated pathways are found to be
significantly populated by either kidney or cardiovascular disease specific features or
both. Here we used a modified KEGG pathway set, where we on the one hand
removed disease phenotype specific pathways as provided by KEGG, and on the other
hand assigned proteins not embedded in KEGG according to a molecular relations
approach. The resulting pathway map therefore focuses on key cellular processes
further allowing an extended assignment of features given in our Omics- and literature-

derived feature lists to such pathways.

Pathways affected in disease development in both organs were found as (i) the renin-
angiotensin system, (ii) the complement and coagulation cascade, (iii) cytokine-
cytokine receptor interactions, as well as (iv) the PPAR signaling pathway. These
findings on the pathway level are in line with previously reported analysis results solely
utilizing literature derived features associated specifically with the cardiorenal
syndrome [13]. The connection between CRS and an increased activity of the blood
pressure and water balance-regulating renin-angiotensin system was first reported in
1971 [20], and its consequences like renal hypoxia, vasoconstriction, intraglomerular
hypertension, tubulointerstitial fibrosis, and proteinuria continue to be demonstrated in

clinical practice. Members of the blood coagulation cascade are also heavily discussed
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in the context of cardiovascular risk and renal diseases [21-24] also posing medical
treatment options for both diseases [25]. A hypercoagulable state, often found in
nephrotic CKD patients, is a major contributor to subsequent atherosclerosis and
cardiovascular complications [26]. The recognition of cardiovascular, as well as renal
protective properties of key players of the PPAR signaling pathway opens up further
treatment options for the CRS. Next to the regulation of lipid concentrations in the
blood, PPARa/y agonists exert anti-inflammatory and antioxidant actions [27]. They are
widely used for the treatment of dyslipidemia as well as insulin resistance, and their
beneficial effect on reducing arterial stiffness has been demonstrated in several clinical
trials [28,29]. The positive effect of PPAR agonists on kidney function has so far been

shown in animal models [30,31].

Altogether, jointly enriched pathways reflect several aspects of the pathophysiology of
the CRS, including the dysregulation of hemodynamics, dyslipidemia, inflammation,
and increased blood clotting, processes that are mainly addressed by current

therapeutic strategies for the management of the CRS.

Next to the above discussed pathways that are affected in both organs we were
interested in pathways exclusively enriched in either cardiovascular or renal datasets in
order to draw conclusions on the organ specific contributions to the CRS. Pathways
enriched in cardiovascular disease are found as associated with metabolism,
hemodynamic regulation, vasopressin regulated water reabsorption, cardiac muscle
contraction, as well as inflammation including the adipocytokine signaling pathway.
Adipocytokine signaling is closely linked to the renin-angiotensin system and PPAR
signaling pathways, as angiotensin Il receptor blockers and PPARa ligands improve
the dysregulation of adipocytokine production, thereby reducing inflammation mediated
changes [32,33]. Regulation of water reabsorption by vasopressin is achieved, among
others, through fluid retention and activation of angiotensin Il, thereby stimulating
myocardial hypertrophy [34]. The beneficial effect of vasopressin antagonists on heart

function without renal impairment has been reported recently [11].

Deregulated pathways in the renal system include cell adhesion, communication, as
well as inflammation including the chemokine signaling pathway. Inflammation of renal
tissue stimulates the expression of adhesion molecules in endothelial cells which, in
turn, leads to the deposition of immune complexes and vascular stiffening in kidney
disease [35].
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A large number of the in total 27 protein-protein interactions found for features being
associated with enriched pathways for cardiovascular and renal disease were detected
within the PPAR signaling pathway as well as between members of the PPAR signaling
pathways and members of the complement and coagulation cascade. Of major interest
are those interactions where at least one of the interacting partners is secreted thus
potentially mediating a direct cross-talk with the other organ. Major interactors of the
PPAR signaling pathway are apolipoprotein A1 (APOA1) and albumin (ALB). Diabetic
nephropathy is accompanied with dyslipidemia and, in contrast to most of the other
apolipoproteins, decreased plasma levels of APOAL [36]. Moreover, APOA1 values,
particularly in relation to apolipoprotein B values, are used as estimates of
cardiovascular risk [37]. APOA1 seems to be affected in both diseases and interacts
with the complement component C1g (C1QA), which was found to be associated with
chronic kidney disease. C1QA deficiency is associated with glomerular nephritis [38],
but the relevance of the interactions of these proteins in the context of the CRS has not
been evaluated yet. More is known about the interaction between APOAL and the
fibrinogen alpha chain (FGA). Studies in animal models outlined that the binding of
apolipoprotein A to vessel walls via fibrinogen participates in the generation of
atherosclerosis [39]. The direct interaction between APOAL and fibronectin 1 (FN1), a
member of the focal adhesion pathway, poses another interesting starting point for

future research.

Albumin as the second major interactor derives from the CKD dataset and has a
number of important functions. Hypoalbuminemia as a consequence of inflammation or
loss in the urine in nephrotic kidney diseases has several consequences that can be
associated with an increased cardiovascular risk, including a low osmotic pressure, an
increased thromboembolic risk, and the accumulation of free fatty acids in the blood
followed by an increased fibrinogen expression [40]. The strong connection between
ALB and members of the coagulation cascade in the context of the CRS became
evident by our findings. ALB and APOAL also interact with a number of proteins
associated with cardiovascular complications being also members of the PPAR
signaling pathway. Therapeutically addressing the PPAR signaling appears promising

for improving cardiovascular and chronic kidney disease.

Another interaction worth mentioning is found for the receptor TNFRSF6B and one of
its ligands, TNFSF14, both members of the cytokine-cytokine receptor pathway.

TNFSF14 associated signaling pathways are known to promote atherogenesis and are
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suggested to be involved in chronic heart failure [41]. TNFRSF6B, which was found as
associated to chronic kidney disease in our datasets is mainly reported in the context of
cancer, and evaluating its role in kidney diseases and the relevance of TNFSF14
binding for formation or progression of the CRS requires further studies.

In a previous work on 280 literature derived proteins associated with the cardiorenal
syndrome we identified hemodynamic changes, blood pressure regulating hormone
systems, and inflammatory processes as central elements in the formation of the CRS,
with a particular focus on the natriuretic peptide system, the renin-angiotensin system,
and the endothelin signaling pathway [13]. In the present work we extended literature
based datasets with transcriptomics profiles on kidney, as well as cardiovascular
disease and could shed light on additional concepts like dyslipidemia and deregulated
coagulation contributing to the CRS pathophysiology.

In summary, the consolidated analysis of tissue-specific changes together with
systemic alterations covered by literature extraction methods for characterizing
cardiovascular and kidney specific contributions to the CRS led to the identification of
pathways relevant for disease formation and progression. Affected pathways are
mainly associated with inflammation, cell adhesion, dyslipidemia, and hemodynamic
regulation. First and foremost, PPAR signaling and the complement and coagulation
cascade turned out to be significantly involved in disease mechanisms and thus, may
be potential targets of therapeutic interventions. On a molecular level, our findings
highlight the role of APOA1 and ALB as important molecules on the interface between

the cardiovascular and the renal system.
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2.6.1 The Thesis Author’s Contribution

The thesis author designed the study in collaboration with other authors. Moreover, the

author contributed to the data collection and performed functional analyses. Discussion

and conclusions were due to the joint efforts of all of the authors.

In detail, the following contributions are due to the thesis author’s efforts:
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Selection of transcriptomics datasets on diabetic nephropathy [15] and
atherosclerosis [14] in consultation with other authors

Development of the analysis workflow with the collaboration of other authors
Selection of MeSH terms used for the extraction of genes from the literature
Retrieval of transcriptomics datasets from the Nephromine database and
respective publication

Annotation of features with respect to their molecular function and subcellular
location

Identification and visualization of the direct feature overlap between the
datasets

Visualization of inter- and intra-pathway relationships based on protein
interaction information from the IntAct database

Discussion and interpretation of the results in communication with the other
authors

Lead in drafting the manuscript in cooperation with other authors



3. Discussion

3.1 Major Findings

The following sections summarize and discuss the major findings of the presented

studies with a special focus on the results due to the thesis author’s contributions.

3.1.1 Omics Workflows

Section 2.1 provides a detailed description of major omics data analysis steps covering
data storage, retrieval, preprocessing, identification of differentially expressed features,
functional annotation on the level of biological processes and molecular pathways, and
interpretation of gene lists in the context of protein—protein interaction networks, as well
as their exemplary application on a publicly available gene expression dataset on
familial hypercholesterolemia.

The described workflows, including sequential, as well as integrated approaches were,
among others, used for the analyses of different kidney diseases. A summary of the
major findings resulting from the studies provided in sections 2.2 — 2.6 is given in the

following chapters.

3.1.2 Acute Renal Failure/Transplantation

The studies presented in sections 2.2 and 2.3 cover the issue of ARF in the post-

transplant situation.

Biomarkers derived from donor organs before engraftment may indicate the risk for
developing ischemia reperfusion injury (IRI) and subsequent delayed graft function
(DGF). Since gratft failure is significantly more frequent after DGF compared to primary
functioning grafts, the identification of subjects at risk before the event occurred is
essential. The review “Biomarkers in Renal Transplantation Ischemia Reperfusion
Injury” provides an overview on biomarker discovery and verification for the prediction

of IRl and their utility for clinical use. An extensive literature search revealed 25
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biomarker candidates presently discussed in the literature in the context of IRl and
DGF, including Uromodulin (UMOD), hepatitis A virus cellular receptor 1 (HAVCR1,
also known as kidney injury molecule 1 KIM1), and Cyclin-dependent kinase inhibitor
(CDKN1A). Significantly enriched biological processes within the candidate list are,
among others, angiogenesis and cell proliferation and differentiation. The latter, as well
as processes associated with immunity and defense, were also found to be
overpopulated by features lying on the shortest paths between the biomarker
candidates in the protein interaction network omicsNet [39].

The same analysis procedure was repeated with a list of differentially expressed genes
resulting from a transcriptomics study comparing live and deceased kidney donor
organs. Immunity and defense processes were found to be significantly enriched by
members of the original list of 90 differentially expressed genes, as well as by
members of the subgraph representing the shortest paths between the differentially
expressed genes according to omicsNet. Of particular interest are the subgraph
members nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1)
and nuclear receptor subfamily 3, group C, member 1 (NR3C1), as these are targets
for corticosteroids.

In order to test the hypothesis whether suppression of inflammation in the donor organ
by steroids would ameliorate IRl and subsequently reduce the rate of DGF, a double-
blinded, randomized, controlled trial was started. The outcomes of in total 455
transplant recipients receiving donor organs treated with either steroids or placebo
showed no significant reduction in the incidence of DGF after steroid pretreatment
[Kainz2010]. However, the functional enrichment analysis of differentially expressed
genes in 20 steroid treated biopsies identified the up-regulation of inflammatory
processes, limited transport capabilities, and a decreased metabolic activity of DGF
organs compared to grafts with primary function. These results suggest a crucial role of
hypoxia and it can be hypothesized that the activation of lipid and glucose metabolism
may prevent the graft from developing ARF. Possible treatment strategies are the
administration of peroxisome proliferator-activated receptor (PPAR) agonists or
caspase inhibitors but further clinical trials are demanded to elucidate their beneficial

effects on transplant outcome.

In summary, following the present data status inflammation events may be early stage
indicators of IRI, triggering subsequent events along cell proliferation and apoptosis.
However, a significant decrease of DGF could not be achieved by a steroid

pretreatment of the donor organ. On a molecular level, inflammatory processes as well
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as impaired transport and metabolic activities seem to distinguish delayed from primary

functioning grafts.

3.1.3 Chronic Kidney Disease

The aim of the study presented in section 2.4 was the detection of coherences and
differences between CKD specific kidney tissue transcriptomics and urine proteomics

signatures.

Based on three transcriptomics and one proteomics dataset derived from urine, a
number of analyses steps were performed on the level of direct feature overlap,
biological processes, pathways, transcription factors, tissue expression, and interaction
networks. The heterogeneity of the datasets became already evident when looking at
the number of identified features, being 697 on part of the transcripts and 37 proteins.
This large difference is certainly driven by the different sample matrix analyzed, as
even in the presence of CKD only a limited number of proteins are released into the
urine. Moreover, mMRNA expression levels do not necessarily correlate with the
respective protein abundance due to several reasons as regulatory mechanisms, post-
translational modifications, pathophysiological conditions and so on. In view of these
facts, the sparse overlap of only four features found when comparing transcriptomics
and proteomics datasets is not surprising and leads to the assumption that an
integrated analysis of omics profiles provides only moderate add-on information when
solely aimed at identifying and subsequently correlating joint features.

However, the picture changes when going to the level of processes and pathways
instead of comparing individual features as such. Of particular interest are the
processes “cell structure and motility” and “immunity and defense”, as well as the
pathways “ECM-receptor interaction”, “complement and coagulation cascades”, and
“focal adhesion”, all of them found to be significantly enriched in both datasets. On the
level of the omicsNet network, the role of hypercoagulability in disease formation could
be further substantiated. Twelve members of the network spanned by 22 transcripts
and 25 proteins showing strong inter-dependencies could be assigned to the GO term
“coagulation”, including the serpin peptidase inhibitor C1 (SERPINC1) and the
coagulation factors F2, F3, and F10. It is frequently reported that patients with CKD
exhibit features of a hypercoagulable state which is also a main contributor to

subsequent cardiovascular diseases.
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3.1.4 Cardiorenal Syndrome

The high clinical relevance of the CRS due to the recognition of cardiovascular events
as the leading cause of mortality in patients with chronic kidney diseases has driven a
number of studies aiming at the identification of kidney-cardiovascular connectors. This
rise in efforts is reflected by the growing number of publications associated with the
keyword ‘cardiorenal’.

The results of the analysis of 280 genes derived from 825 publications associated with
the CRS are presented in section 2.5. The most frequently reported genes were found
to be involved in blood pressure regulating systems, particularly in the renin-
angiotensin system (renin REN, angiotensinogen AGT, angiotensin converting enzyme
ACE), as well as in the antagonistic natriuretic peptide system NPS (natriuretic peptide
A NPPA, natriuretic peptide B NPPB).

Enriched functional categories within the total set of 280 genes included “receptor
binding” and “receptor activity”. Following the assumption that CKD specific molecular
features lead to alterations of the cardiovascular system and vice versa, the most
probably scenario is the involvement of secretory features triggering receptor mediated
downstream events in one of the affected organs. Actually, the classification of features
in terms of subcellular location revealed “extracellular, including cell wall” as the most
significantly enriched compartment. A specific example that perfectly matches the
criteria for realizing the above mentioned scenario is the interplay between the
natriuretic peptide receptor C (NPR3) and its ligands NPPA and NPPB. Tissue specific
expression patterns of these molecules showed that NPPA and NPPB are mainly
expressed in the heart, whereas their receptor NPR3 is highly expressed in kidney
tissue.

The literature derived dataset covered the targets for most of the standard therapeutic
regimes for the CRS to a great extend. Next to members of the RAS and NPS, features
involved in the endothelin signaling pathway pose potential targets for drugs regulating

hemodynamics.

In a next step, this literature mining approach was extended by also including tissue
specific omics datasets (see section 2.6). Particularly, genes from publications that are
tagged with CKD and CVD associated MeSH terms were extracted and combined with
transcriptomics dataset on diabetic nephropathy and atherosclerosis.

Pathways identified as overpopulated by features specific for both diseases reflect

several aspects of the pathophysiology of the CRS, including the dysregulation of
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hemodynamics, dyslipidemia, inflammation, and increased blood clotting. Contributions
on part of the cardiovascular system turned out to be mainly associated with
hemodynamics and adipocytokine signaling, whereas the CKD specific signatures
pointed towards the crucial role of impaired focal adhesion, chemokine signaling, and
metabolic pathways in formation and progression of the CRS.

The investigation of inter- and intra-pathway relationships based on physical interaction
information between CVD and CKD specific proteins showed an extensive organ
crosstalk within the PPAR signaling pathway, as well as between members of the
PPAR signaling pathway and the complement and coagulation cascade. Major
interactors in this regard are, first and foremost, apolipoprotein A1 (APOA1l) and
albumin (ALB), as well as the complement component C1q (C1QA) and the fibrinogen
alpha chain (FGA).

Therapeutically addressing the PPAR signaling system in case of dyslipidemia, insulin
resistance or arterial stiffening is common, but its beneficial effect for specific treatment

of the CRS needs further validation.

In summary, the literature mining approach has identified mediators of hemodynamic
change, as well as the endothelin signaling pathway as centrally involved in the
disease mechanisms of the CRS. Transcriptomics profiles characterizing
cardiovascular as well as renal damage allowed an integration of tissue-specific
changes coupled with also systemic alterations covered by literature extraction
methods. This integrated approach could shed light on additional concepts like
dyslipidemia and deregulated coagulation, contributing to CRS pathophysiology.
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3.2 Outlook

Omics technologies have brought significant benefits in analysis and identification of
molecular disease mechanisms, and opened up new opportunities for disease
prediction, prevention, diagnosis, and treatment. Nevertheless, there are still a number
of limitations in terms of technology, experimental design, statistical and functional
analysis, validation, and clinical application that have to be seriously taken into account

in order to obtain biologically meaningful results.

Until recently, the detection of splice variants by the usage of common microarray
technologies was impossible. With regard to the high percentage of human genes that
exhibit alternative splicing, the probability that a target sequence on the chip is not
present in all forms of the respective transcript has to be considered. With the
introduction of exon arrays which are designed to detect individual exons of a gene,
possibilities for a quantitative assessment of transcripts comprehensively covering the
human protein coding genome came up. One drawback of this new technology is
certainly the availability of efficient tools for processing and analyzing the highly
complex data. A further upcoming technology is tiling arrays. In fact, 60% of the
transcriptional active regions in the human genome do not correspond to known exons.
For example, non protein coding RNAs (ncRNAs), including structural RNAs (tRNAs,
rRNAs, and snRNAs) and more recently discovered regulatory RNAs (e.g.
microRNAS), fulfill a variety of important functions and were also found to be implicated
in human diseases [67]. By offering the complete physical readout of a genome, tiling
arrays can provide information outside of the boundaries of known protein coding

genes.

Pivotal for any experiment is its reasoned design concerning collection and preparation
of samples, as well as consideration of appropriate statistics.

First of all, omics studies in particular in translational clinical research should be done
on precisely defined patient samples, and clinical parameters should be well matched
in case/control designs. The same is true for cross-omics studies ideally to be done on
the same patient status and, at best, on the same samples to assure maximum
comparability. In this sense, collaborative efforts of research groups across different
omics fields are demanded. One example is the large-scale integrating European
project SysKid (Systems Biology towards Novel Chronic Kidney Disease Diagnosis and
Treatment) which started in January 2010. SysKid integrates clinicians, statisticians,

epidemiologists, molecular researchers across all omics fields, and bioinformaticians.
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This interdisciplinary approach aims at understanding the pathophysiology of chronic
kidney disease in order to provide tools both for identifying persons at risk for
developing the disease, as well as for the development of novel therapy approaches
(http://www.syskid.eu).

Another important issue to be considered in experimental design is the calculation of
sample size. Omics experiments are often performed with a small number of samples
due to their limited availability. However, only the inclusion of a sufficient number of
independent samples provides the statistical power for the detection of true positive

results.

The still improvable reproducibility of omics experiments, reflected by a usually weak
overlap of results of individual studies on the very same study design, is frequently
reported and can be attributed, next to variability in patient characteristics and weak
statistical power due to small sample sizes, to several other factors. These include the
use of different technical platforms, experimental variance including lack of uniform
protocols, and the selection of different tools for data processing and statistical analysis
[68].

Moreover, the validity of results can be influenced by sample heterogeneity that may
lead to a high variability in gene expression measurements since expression can vary
substantially among cell types. Thus, isolating specific cells of interest is an important
step in sample preparation to prevent the detection of differences that may be
unrelated to the biological question under study. Microdissection of e.g. kidney biopsy

samples for specifically analyzing compartments of the kidney are an example.

Basically, the statistical analysis of omics data proceeds on the assumption that a
maximal differential abundance of biological entities correlates with biological
relevance. Particularly for regulatory elements like transcription factors, already minor
changes in concentration may have significant impact on biological processes. Thus,
such elements are less likely detected from a statistical perspective.

Concerning the functional analysis, the most limiting factor is certainly the
incompleteness of existing annotation databases. This is particularly true for pathway
data, as for example encoded by KEGG, that are far from being complete. An approach
for computationally bypassing this issue was recently presented by Fechete et al. [69].
Functional enrichment analyses always have a certain annotation bias. If more data
about a specific biological category is available, it is more likely to appear as significant

than the others.
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Molecular profiling via genomics, transcriptomics, proteomics or metabolomics has
rapidly become the method of choice for biomarker discovery. However, despite
promising results, only few novel biomarkers are yet used in clinical practice which is
due to the long path from candidate discovery to qualification, verification, clinical
validation, and finally commercialization. Not surprisingly, candidate biomarker
discovery now commonly outruns the rate at which the candidates are being validated
[70]. All the more so, the quality of candidate markers that are moved forward to the

validation stage has to be ensured and can only be achieved by a profound data basis.

Even though several limitations of omics data generation, processing, analysis, and
application exist, a large-scale approach on a Systems Biology level has the potential
to provide insights in molecular processes contributing to kidney and cardiovascular
disease formation and progression, as well as for the identification of biomarker
candidates. Further advancements in sample work up, experimental technology, and
analysis strategies, together with the establishment of collaborative networks and
shared infrastructures for data and tools, will evolve our understanding of complex
pathophysiological mechanisms, thereby assisting in the generation of hypothesis and
leading to a more fundamental understanding of disease providing the basis for testing
novel risk assessment, diagnosis, prognosis, and therapy options.

184



4. Appendix

References

10.

11.

12.

13.

14.

15.

Kitano H. Looking beyond the details: a rise in system-oriented approaches in
genetics and molecular biology. Curr. Genet 2002; 41:1-10.

Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol
2007; 15:45-50.

Ruegg C, Tissot J-D, Farmer P, Mariotti A. Omics meets hypothesis-driven
research. Partnership for innovative discoveries in vascular biology and
angiogenesis. Thromb. Haemost 2008; 100:738-746.

Strange K. The end of “naive reductionism”. rise of systems biology or
renaissance of physiology? Am. J. Physiol., Cell Physiol 2005; 288:C968-974.

Barabéasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional
organization. Nat. Rev. Genet 2004; 5:101-113.

Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell
biology. Nature 1999; 402:C47-52.

Almaas E. Biological impacts and context of network theory. J. Exp. Biol 2007,
210:1548-1558.

Bernthaler A, Mihlberger |, Fechete R, Perco P, Lukas A, Mayer B. A
dependency graph approach for the analysis of differential gene expression
profiles. Mol Biosyst 2009; 5:1720-1731.

Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics
and healthcare. Genome Med 2009; 1:2.

Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L. The human
disease network. Proc. Natl. Acad. Sci. U.S.A 2007; 104:8685-8690.

Hocquette JF. Where are we in genomics? J. Physiol. Pharmacol 2005; 56 Suppl
3:37-70.

Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi
X174 DNA. Nature 1977; 265:687-695.

Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations.
Bioessays 2010; 32:524-536.

Holley RW, Apgar J, Everett GA, et al. Structure of a ribonucleic acid. Science
1965; 147:1462-1465.

Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for
transcriptome analysis. Annu Rev Genomics Hum Genet 2009; 10:135-151.

185



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

186

Freeman WM, Robertson DJ, Vrana KE. Fundamentals of DNA hybridization
arrays for gene expression analysis. BioTechniques 2000; 29:1042-1046, 1048-
1055.

Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a
microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet
2001; 29:365-371.

Desiere F, Deutsch EW, Nesvizhskii Al, et al. Integration with the human genome
of peptide sequences obtained by high-throughput mass spectrometry. Genome
Biol 2005; 6:R9.

The call of the human proteome. Nat. Methods 2010; 7:661.

Cobon GS, Verrills N, Papakostopoulos P, Eastwood H, Linnane AW. The
proteomics of ageing. Biogerontology 2002; 3:133-136.

Hunter T, Andon N, Koller A, Yates J, Haynes P. The functional proteomics
toolbox: methods and applications. Journal of Chromatography B 2002; 782:165-
181.

Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;
422:198-207.

Dhingra V, Gupta M, Andacht T, Fu Z. New frontiers in proteomics research: A
perspective. International Journal of Pharmaceutics 2005; 299:1-18.

Coon JJ, Ziurbig P, Dakna M, et al. CE-MS analysis of the human urinary
proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl
2008; 2:964.

Wishart DS, Knox C, Guo AC, et al. HMDB: a knowledgebase for the human
metabolome. Nucleic Acids Res 2009; 37:D603-610.

Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database.
Nucleic Acids Res 2007; 35:D521-526.

Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C. Metabolomics:
current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol
2007; 76:495-511.

Krallinger M, Valencia A. Text-mining and information-retrieval services for
molecular biology. Genome Biol 2005; 6:224.

Krallinger M, Valencia A, Hirschman L. Linking genes to literature: text mining,
information extraction, and retrieval applications for biology. Genome Biol 2008; 9
Suppl 2:S8.

Chang JT, Schitze H, Altman RB. GAPSCORE: finding gene and protein names
one word at a time. Bioinformatics 2004; 20:216-225.

Tanabe L, Wilbur WJ. Tagging gene and protein names in biomedical text.
Bioinformatics 2002; 18:1124-1132.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Perco P, Rapberger R, Siehs C, et al. Transforming omics data into context:
bioinformatics on genomics and proteomics raw data. Electrophoresis 2006;
27:2659-2675.

Do JH, Choi D-K. Normalization of microarray data: single-labeled and dual-
labeled arrays. Mol. Cells 2006; 22:254-261.

Pan W. A comparative review of statistical methods for discovering differentially
expressed genes in replicated microarray experiments. Bioinformatics 2002;
18:546-554.

Chen Y. Ratio-based decisions and the quantitative analysis of cDNA microarray
images. J. Biomed. Opt. 1997, 2:364.

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids
Res 2009, 37:1-13.

Stein L. Creating a bioinformatics nation. Nature 2002; 417:119-120.

Weile J, Pocock M, Cockell SJ, et al. Customizable views on semantically
integrated networks for systems biology. Bioinformatics 2011; 27:1299-1306.

Bernthaler A, Muhlberger |, Fechete R, Perco P, Lukas A, Mayer B. A
dependency graph approach for the analysis of differential gene expression
profiles. Mol Biosyst 2009; 5:1720-1731.

von Mering C, Jensen LJ, Kuhn M, et al. STRING 7--recent developments in the
integration and prediction of protein interactions. Nucleic Acids Res 2007,
35:D358-362.

Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011:
functional interaction networks of proteins, globally integrated and scored. Nucleic
Acids Res 2011; 39:D561-D568.

Rennke HG, Denker BM, Rose BD. Renal pathophysiology: the essentials.
Lippincott Williams & Wilkins, 2007.

Nissenson AR. Acute renal failure: definition and pathogenesis. Kidney Int. Suppl
1998; 66:S7-10.

Brenner BM. Brenner and Rector’s the Kidney. Philadelphia: Saunders W B Co,
2007.

Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure -
definition, outcome measures, animal models, fluid therapy and information
technology needs: the Second International Consensus Conference of the Acute
Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8:R204-212.

Needham E. Management of acute renal failure. Am Fam Physician 2005;
72:1739-1746.

Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL. Delayed graft function: risk

factors and implications for renal allograft survival. Transplantation 1997; 63:968-
974.

187



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

188

Kainz A, Mitterbauer C, Hauser P, et al. Alterations in gene expression in
cadaveric vs. live donor kidneys suggest impaired tubular counterbalance of
oxidative stress at implantation. Am. J. Transplant 2004; 4:1595-1604.

Hauser P, Schwarz C, Mitterbauer C, et al. Genome-wide gene-expression
patterns of donor kidney biopsies distinguish primary allograft function. Lab. Invest
2004, 84:353-361.

Dennen P, Parikh CR. Biomarkers of acute kidney injury: can we replace serum
creatinine? Clin. Nephrol 2007; 68:269-278.

Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood
Purif 2010; 29:357-365.

Perco P, Pleban C, Kainz A, et al. Protein biomarkers associated with acute renal
failure and chronic kidney disease. Eur. J. Clin. Invest 2006; 36:753-763.

Soni SS, Ronco C, Katz N, Cruz DN. Early diagnosis of acute kidney injury: the
promise of novel biomarkers. Blood Purif 2009; 28:165-174.

Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines
for chronic kidney disease: evaluation, classification, and stratification. Ann.
Intern. Med 2003; 139:137-147.

Snyder S, Pendergraph B. Detection and evaluation of chronic kidney disease.
Am Fam Physician 2005; 72:1723-1732.

Theilig F. Spread of glomerular to tubulointerstitial disease with a focus on
proteinuria. Ann. Anat 2010; 192:125-132.

Abbate M, Zoja C, Remuzzi G. How Does Proteinuria Cause Progressive Renal
Damage? Journal of the American Society of Nephrology 2006; 17:2974-2984.

Liu B-C, LU L-L. Novel biomarkers for progression of chronic kidney disease.
Chin. Med. J 2010; 123:1789-1792.

Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for
development of cardiovascular disease: a statement from the American Heart
Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure
Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension
2003; 42:1050-1065.

Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome.
J. Am. Coll. Cardiol 2008; 52:1527-1539.

Ronco C, McCullough PA, Anker SD, et al. Cardiorenal syndromes: an executive
summary from the consensus conference of the Acute Dialysis Quality Initiative
(ADQI). Contrib Nephrol 2010; 165:54-67.

Breidthardt T, Mebazaa A, Mueller CE. Predicting progression in nondiabetic
kidney disease: the importance of cardiorenal interactions. Kidney Int 2009;
75:253-255.

Garcia-Lopez E, Carrero JJ, Suliman ME, Lindholm B, Stenvinkel P. Risk factors
for cardiovascular disease in patients undergoing peritoneal dialysis. Perit Dial Int
2007; 27 Suppl 2:5205-209.



64.

65.

66.

67.

68.

69.

70.

Liu Y, Berthier-Schaad Y, Fallin MD, et al. IL-6 haplotypes, inflammation, and risk
for cardiovascular disease in a multiethnic dialysis cohort. J. Am. Soc. Nephrol
2006; 17:863-870.

Mcintyre CW. Effects of hemodialysis on cardiac function. Kidney Int 2009;
76:371-375.

McFarlane Sl, Winer N, Sowers JR. Role of the natriuretic peptide system in
cardiorenal protection. Arch. Intern. Med 2003; 163:2696-2704.

Zhang Z, Pang AWC, Gerstein M. Comparative analysis of genome tiling array
data reveals many novel primate-specific functional RNAs in human. BMC Evol.
Biol 2007; 7 Suppl 1:S14.

Weintraub LA, Sarwal MM. Microarrays: a monitoring tool for transplant patients?
Transpl. Int 2006; 19:775-788.

Fechete R, Heinzel A, Perco P, et al. Mapping of molecular pathways, biomarkers
and drug targets for diabeticnephropathy. Proteomics Clin Appl 2011; [in press].

Lin D, Hollander Z, Meredith A, McManus BM. Searching for “omic” biomarkers.
Can J Cardiol 2009; 25 Suppl A:9A-14A.

189



190



Abstract

Kidney diseases represent a significant health burden with a number of currently unmet
clinical needs in both, diagnosis/prognosis as well as therapy. Epidemiological studies
show that about 10% of the general population suffers from early stages of reduced
kidney function, contributing to bone metabolism disorders and cardiovascular
complications. In the realm of ‘omics’ approaches a significant number studies have
been driven by various groups for characterizing altered kidney function, and singular
analyses of such profiles have provided insight into processes of inflammation and
hemodynamic regulation as central elements for contributing to the pathophysiology of
kidney diseases. However, an integrated analysis of kidney diseases in the spirit of

Systems Biology is still in its infancy.

Following the evident clinical needs and methodological shortcomings on analyzing
and understanding diseases of the kidney, this thesis addresses sequential analysis
procedures from data processing to functional analyses of large scale transcriptomics
data, as well as integrated workflows for handling and cross-linking multi-level omics
data primarily in the context of protein interaction networks. Conceptual development in
this area was then tested by using available omics data on various forms of kidney

disease.

The combined analysis of literature- and transcriptomics-based genes shed light on
molecular links between the cardiovascular system and chronic diseased kidneys and
thus, allowed the identification of potential novel therapeutic targets addressing the
cardiorenal syndrome. Further analysis concerning end-stage renal diseases,
particularly the post-transplant situation, revealed a set of biomarker candidates that
promise early risk assessment of a delayed graft function, including VEGF and
CDKNZ1A. On a molecular level, inflammation events turned out to be early-stage
indicators for kidney function. However, results of a randomized control trial showed no
reduction of the rate of delayed graft function after steroid pretreatment of donor

organs.

An integrated analysis workflow following a Systems Biology approach, as exemplified
in this thesis, has the potential for identifying molecular processes contributing to
disease formation and progression, biomarker candidates for diagnosis and risk

assessment, as well as for generating hypothesis leading to a more fundamental
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understanding of disease mechanisms providing the basis for testing novel therapy

options.
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Zusammenfassung

Nierenerkrankungen stellen eine erhebliche gesundheitliche Belastung dar, und
Verbesserung in Diagnose, Prognose und Therapie sind zentrale Elemente.
Epidemiologische Studien zeigen, dass etwa 10% der Gesamtbevdlkerung an den
ersten Zeichen einer eingeschrankten Nierenfunktion leidet, und dies wiederum erhoht
das Risiko fur Knochenstoffwechselerkrankungen und Herz-Kreislauf-Komplikationen.
In den letzten Jahren gab es eine Vielzahl an Studien die das Ziel hatten, mit Hilfe von
Omics-Technologien die Veranderung der Nierenfunktion zu charakterisieren. Die
Ergebnisse aus den Analysen von einzelnen Omics-Profilen lassen darauf schlie3en,
dass ein maligeblicher Beitrag zur Pathophysiologie der Nierenerkrankung von
entzundlichen Prozessen und hamodynamischer Fehlregulation stammt. Integrative

Analysen im Sinne der Systembiologie stecken allerdings noch in den Anfangen.

Diese vorliegende Arbeit umfasst sequentielle und integrative Analyseverfahren von
Omics-Daten zu verschiedenen Arten der Nierenerkrankung um  sowohl
methodologisch wie auch klinisch zu den gegebenen Fragestellungen beizutragen.
Diese Dbeinhallten das Prozessieren und die funktionale Analyse von
Genexpressionsdaten, bis hin zur Handhabung und Verknipfung von heterogenen

Omics-Daten auf der Basis von Proteininteraktionsnetzwerken.

Ergebnisse aus der Analyse von relevanten Genen aus Literatur und aus
Genexpressionsdaten zeigten molekulare Verbindungen zwischen dem Herz-Kreislauf-
System und der chronischen Nierenerkrankung auf (,Kardiorenales Syndrom®), die des
Weiteren auch zur Identifikation von potentiellen neuen Angriffspunkten fir
therapeutische Maflinahmen fihrten. Durch weitere Analysen zu Nierenerkrankungen
im Endstadium, fokussiert auf die Post-Transplant-Situation, konnten eine Reihe von
Biomarker Kandidaten abgeleitet werden, die eine friilhe Risikoabschatzung hinsichtlich
verzogerter Transplantatfunktion versprechen, darunter VEGF und CDKNI1A.
Grundsatzlich zeigen die Analysen, dass Entziindungsprozesse auf molekularer Ebene
sehr frihe Indikatoren hinsichtlich einer Einschrankung der Nierenfunktion darstellen.
Eine randomisierte, kontrollierte Studie konnte allerdings keine Abnahme der Zahl an
Transplantaten mit verzogerter Funktion nach Vorbehandlung des Spenderorgans mit

Steroiden bestatigen.
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Integrative Analyseablaufe in einem systembiologischen Ansatz, so wie in dieser Arbeit
beschrieben, haben das Potential molekulare Prozesse zu identifizieren die an
Krankheitsentstehung und Progression beteiligt sind, Biomarkerkandidaten fir
Diagnose und Risikoabschéatzung hervorzubringen, und Hypothesen zu generieren, die
zu einem besseren Verstandnis der Krankheitsmechanismen fiihren und somit die

Basis fur das Testen von neuen Therapieoptionen darstellen.
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