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“Whereas the beautiful is limited, the sublime is limitless, 

so that the mind in the presence of the sublime,  

attempting to imagine what it cannot,  

has pain in the failure but pleasure  

in contemplating the immensity of the attempt.”   

 

Immanuel Kant
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1. Introduction 
 

1.1 Systems Biology 

 

Systems Biology refers to a field in molecular biosciences that aims to understand 

molecular mechanisms of cells, tissues, or organisms by integrative analysis of multiple 

molecular and cellular components. However, since a system is not only the mere 

assembly of its components, a system-level understanding cannot be achieved by the 

study of singular molecules one by one and the focus of research has shifted from 

single elements to networks, from matters to states, and from structures to dynamics 

[1].  

 

The following sections provide an overview of the different aspects and concepts of 

Systems Biology that build the basis for the concepts and methods used in the studies 

presented in this thesis. 

 

 

1.1.1 The Evolution of High-throughput Technologies 

 

The idea of understanding biological entities as dynamic systems is not new, but the 

availability of methods for investigating them as such led to a tremendous increase of 

research in this field as seen over the last decades. Along with the technical progress, 

the advance of high-throughput technologies opened up possibilities for a more global 

view on cellular processes. Large-scale data generation triggered the advent of a new 

domain which can be embraced by the term ―omics‖, and refers to the comprehensive 

analysis of a biological system on the respective level of observation, including 

genomics, transcriptomics, proteomics and many more (an overview of the different 

omics technologies is given in section 1.2.1). The enormous increase in data amounts 

is illustrated in figure 1 referencing the number of available sequences provided in the 

NCBI RefSeq database between 2004 and 2011 (available at 

ftp://ftp.ncbi.nih.gov/refseq/release/release-statistics/). 
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Figure 1: The histograms show the increase in number of accessions available in the 
NCBI RefSeq database between 2004 and 2011 for genomic, RNA, and protein 
sequences respectively. 
 

 

 

The progress of high-throughput technologies has also implicated a shift from a 

traditional hypothesis-driven to a data-driven research. Data-driven or ―top-down‖ 

approaches make use of an iterative cycle that starts with experimental data, followed 
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by data analysis and data integration, and ends with the formulation of hypotheses [2]. 

However, the ‗traditional‘ way to define a hypothesis and design experiments for 

hypothesis testing cannot be completely replaced by data-driven approaches. Rüegg 

and colleagues [3] described a rather complementary relationship between omics data 

and hypothesis-driven research due to three major reasons: (i) profiles of omics-based 

studies have intrinsic limitations because of their descriptive nature, (ii) the integration 

of multi-level omics datasets has the potential to feed hypothesis-driven research, (iii) 

omics approaches may generate unexpected results that could not have been 

anticipated by hypothesis-driven research.  

 

Certainly, the knowledge on the identity of the entirety of cellular components on a 

respective level of observation, as, for example achieved with the completion of 

sequencing of the human genome, has significantly contributed to advances in cellular 

biology. Nevertheless, the human genome has surprisingly few genes compared to far 

simpler organisms like C. elegans, opening the question where the difference in 

biological complexity comes from. Answers standing to reason are the interactions 

between genes, proteins and their regulatory mechanisms and can be addressed by 

the integration of data from different levels of observation. With the increase of data 

amounts and the rise in complexity of analysis strategies, the use of informatics 

techniques became necessary. 

 

 

 

1.1.2 Computational Systems Biology 

 

An important issue that arises from the generation of large quantities of data is their 

appropriate handling which concerns analysis, collection, classification, visualization, 

manipulation, storage, as well as dissemination of the acquired information. Thus, the 

integration of experimental and computational approaches became necessary and led 

to the emergence of the sub-discipline computational Systems Biology. To this point 

the need of interdisciplinary work became evident.  

Basically, one can divide two groups of research in Systems Biology. One is the 

research on tools and algorithms for system-level studies. The other is research on 

system properties of specific biology, using the tools and algorithms developed. [1]. At 

a first glance, the former group is exclusively taken by computer scientists whereas the 

second one occupies the biologists. Nevertheless, scientists have to engage in 

interdisciplinary research collaborations to meet the demands of systems biology. At 
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minimum, computer scientists should acquaint themselves with the language of biology 

and biologists should understand the language of mathematics and computer modeling 

[4] in order to successfully take advantage of the possibilities that are provided by the 

integration of both disciplines. 

 

Achievements of these combined efforts are reflected by the long list of bioinformatics 

tools that emerged during the last decades, ranging from statistical data processing to 

data annotation, data integration, and data management services. Remaining 

challenges concern the development of tools for automated workflow processing, 

allowing the use of multiple tools and the integration of data from different sources.   

 

 

 

1.1.3 Network Biology 

 

A major challenge in Systems Biology which inevitably demands a computational 

approach is the modeling of complex biological systems, for example the 

representation of relationships between cellular components as networks. The 

development of high-throughput techniques has allowed for the simultaneous 

interrogation of the status of cellular components [5], resulting in the emergence of 

comprehensive networks describing protein-protein interactions, metabolic reactions, 

signal transduction, and transcriptional regulation. Starting from the identification of 

small regulatory units (network motifs), networks can be built up to functional modules 

and in the end to large-scale organizational networks. The recognition of the modularity 

of many biological systems has brought remarkable insights into cellular organization. 

Since modules are defined as relatively small units with functional separation from 

other modules, they are manageable to undergo characterization. Higher-level 

properties of cells, such as their ability to integrate information from multiple sources, 

can be described by the pattern of connections among their functional modules [6].  

 

Here again, in view of the temporally and spatially dynamic properties of biological 

systems, as well as of the obvious dependencies between the different types of 

networks, the need of integration of data from different levels of observation, including 

genes, proteins, or metabolites, becomes evident. Thus, the combination of the 

currently mostly separate layers of information in networks is demanded to enhance 

the understanding of cellular function [7]. In the course of our analyses towards 
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molecular characterization of kidney diseases, we made use of an integrated network 

approach that included parameters derived from multiple omics data and functional 

characteristics [8] (see section 2.1, 2.2, 2.3, 2.4, 2.5). 

 

 

 

1.1.4 Systems Biology in Disease 

 

Systems biology has also found its way into translational clinical research. Hallmarks of 

the emerging domain ―systems medicine‖ are the establishment of new links between 

genes, biological functions, and a wide range of human diseases, thereby providing 

signatures of pathological biology and links to clinical research and drug discovery [9].  

The use of high-throughput techniques is nowadays a common procedure for the 

identification of disease specific molecular signatures. Either directly linked to clinical 

outcomes or unsupervised processed and subsequently assessed for clinical trends, 

such signatures can serve as reference points for the identification of novel biomarker 

candidates. Since changes in gene or protein expression can often be detected before 

clinical symptoms arise, molecular markers have the potential for significantly 

improving risk assessment, diagnostic, and prognostic capabilities.   

 

Unquestionably, genome-wide approaches had a significant impact on the 

development of analysis strategies and workflows for biomarker and drug target 

discovery.  A prominent example is the ―Human Disease Network‖ [10], a conceptual 

framework linking all genetic disorders (the human ―disease phenome‖) with the 

complete list of disease genes (the ―disease genome‖). This combined set of all known 

disease-gene associations provides a global view of the ―diseasome‖ that significantly 

expands the traditional single-gene to single-disease approach (see Figure 2). 

 

An insufficient understanding of the complex pathophysiology of many human 

diseases, including kidney dysfunction, is often the cause for a lack of early diagnosis 

strategies and efficient therapies. In response of this situation that points towards the 

need of a systems level understanding, the studies presented in this thesis aim to 

identify multiple aspects of diseases mechanisms by the integration of data from 

different sources that will described in the following section.   
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Figure 2: An excerpt of the ―Human Disease Network‖ [10]. 
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1.2 Data Sources 

 

1.2.1 Omics Technologies 

 

As outlined in section 1.1, the advent of high-throughput technologies has significantly 

contributed to advances in cellular biology. The generation of large amounts of 

unbiased data covering the totality of features on a respective level of observation 

allowed distinguishing more details of the cellular system. Each of the various ―omes‖ 

listed in Table1 refers to one of these levels and is subject of study of the respective 

―omics‖ field. 

 

Terms  Description  
# Articles in 

Pubmed  
(April 2011) 

First Year in 
Pubmed 

Genome  
The full complement of genetic information 
both coding and non coding in the organism  

752488 1932 

Transcriptome 
The population of mRNA transcripts in the 
cell, weighted by their expression levels  

62903 1997 

Proteome  The protein-coding regions of the genome  18469 1995 

Metabolome  
The quantitative complement of all the small 
molecules present in a cell in a specific 
physiological state  

1549 1998 

Interactome  
List of interactions between all 
macromolecules in a cell  

750 1999 

Secretome  
The population of gene products that are 
secreted from the cell  

464 2000 

Glycome  
The population of carbohydrate molecules in 
the cell  

163 1999 

Phenome  
Qualitative identification of the form and 
function derived from genes, but lacking a 
quantitative, integrative definition  

152 1995 

Physiome  
Quantitative description of the physiological 
dynamics or functions of the whole organism  

108 1997 

Orfeome  
The sum total of open reading frames in the 
genome, without regard to whether or not 
they code; a subset of this is the proteome  

67 2002 

Cellome  
The entire complement of molecules and 
their interactions within a cell  

36 2002 

Fluxome  
The population of proteins weighted by their 
fluxes  

34 1999 

Regulome  Genome-wide regulatory network of the cell  20 2004 

Translatome  
The population of mRNA transcripts in the 
cell, weighted by their expression levels  

9 2001 

Transportome  
The population of the gene products that are 
transported; this includes the secretome  

9 2004 

Localizome  
The localization of various proteins, both in 
terms of cell type and subcellular 
compartments  

6 2001 
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Ribonome  
The population of RNA-coding regions of the 
genome  

4 2002 

Morphome  

The quantitative description of anatomical 
structure, biochemical and chemical 
composition of an intact organism, including 
its genome, proteome, cell, tissue and organ 
structures  

3 1996 

Operome  
The characterization of proteins with unkown 
biological function  

1 2002 

Functome  
The population of gene products classified 
by their functions  

1 2001 

Foldome  
The population of gene products classified 
by their tertiary structure  

1 2009 

Pseudome  The population of pseudgenes in the cell  0 - 

Unknome  Genes of unkown function  0 - 

 

Table 1: List of the different ―omes‖. Given are the descriptions, the number of articles 
found in Pubmed and the year of its first appearance. (The table is an updated version 
of the ―Omes Table‖ available at http://bioinfo.mbb.yale.edu/what-is-
it/omes/omes.html.) 
 

 

Along with the explosion of omics data amounts, a multitude of public databases 

providing data of different omics tracks came up and the need for standards for data 

annotation and exchange arose. The next sections provide an overview on the most 

common omics technologies, together with examples of available databases and 

standards used. 

 

 

Genomics 

 

Genomics is classically divided into two areas, namely structural and functional 

genomics. Whereas the target of research in the former is DNA, functional genomics, 

or the ―post-genomic area‖, deals with functional aspects of DNA and also includes 

transcripts, proteins and metabolites which will be discussed later. Structural genomics 

includes DNA sequencing, as well as studies on DNA complexity, DNA variability, DNA 

genotyping, DNA organization within the cell, and DNA modification [11]. 

 

Sequencing methods were the first high-throughput techniques developed and the first 

genome, a single-stranded bacteriophage, was completely sequenced in 1977 [12]. 

Today, the NCBI Genome Project database (http://www.ncbi.nlm.nih.gov/genomes) 

holds 1014 completed genome sequencing projects, and further 938 projects are in 

progress (status April 2011). 
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The currently available sequencing methods were recently reviewed by Kircher et al. 

and include Sanger capillary sequencing, pyrosequencing, reversible terminator 

chemistry, sequencing-by-ligation, and virtual terminator chemistry [13]. 

 

The effective use of large scale data requires the establishment of standardized 

methods that support exchange, annotation, archiving, and mining of existing data sets. 

In the last years, considerable efforts were made by the scientific community 

concerning this matter and resulted in a number of standards with different scopes, 

ranging from reporting, data exchange, terminology to physical and data analysis 

standards, developed by several institutions. In case of genomics, the most common 

reporting standards include MIGS/MIMS (Minimum Information about a 

Genome/Metagenomic Sequence/Sample, developed by the Genomic Standards 

Consortium), or MINSEQE (Minimum Information about a high-throughput Nucleotide 

Sequencing Experiment, developed by the Microarray Gene Expression Data Society).   

 

A list of common publicly available genomic sequence databases is provided in table 2. 

 

 

Name Web Link 

NCBI Genome database  http://www.ncbi.nlm.nih.gov/genome  

NCBI Reference Sequence database http://www.ncbi.nlm.nih.gov/RefSeq/ 

EMBL Nucleotide Sequence database http://www.ebi.ac.uk/embl/ 

Ensembl Genomes http://www.ensemblgenomes.org/ 

 

Table 2: Common publicly available genome sequence databases. 

 

 

 

Transcriptomics 

 

Transcriptomics usually refers to the large scale analysis of gene expression patterns. 

The first lines of transcriptomic studies can be dated back to 1965 where the sequence 

of the first RNA molecule was determined [14]. Further milestones were the 

introduction of Northern blots, Real-time PCR, and differential display with relatively low 

experimental throughput. In the nineties, the development of SAGE (Serial Analysis of 

Gene Expression) and microarrays has sounded the bell for the era of genome-wide 

transcriptomics, in practice covering the protein coding genome. Over the years, gene 

expression profiling techniques have continuously advanced. Tiling and exon arrays 

http://www.ncbi.nlm.nih.gov/genome
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are available and the advent of next-generation sequencing offered the possibility of 

large scale transcriptomics at a single nucleotide resolution [15].   

 

However, the most prominent transcriptomis technologies are still DNA microarrays. 

The basic principle of microarrays is base-pairing which is experimentally achieved by 

the hybridization of targets to gene specific sequences that are immobilized on a solid 

state matrix.  Basically, all arrays employ the same four components: (i) target labeling, 

(ii) target-probe hybridization, (iii) detection and (iv) data analysis [16]. The type of 

targets to use is determined by the immobilized probes which are mostly cDNA 

sequences or oligonucleotides. Furthermore, DNA arrays can be classified into one-

channel and two-channel arrays, reflecting the difference of hybridization of both 

samples to be compared on one array or on two arrays. Former provides absolute 

values on mRNA concentration whereas signals of two-channel arrays represent 

relative measurement of gene expression. 

A description of microarray data processing and analysis is partly given in section 1.3 

and in great detail in section 2.1.  

 

The most common reporting standard for microarray experiments is MIAME (Minimum 

Information About a Microarray Experiment, developed by the Microarray Gene 

Expression Data Society). It aims to enable the interpretation of the results of an 

experiment unambiguously and potentially to reproduce the experiment. The six most 

critical elements contributing towards MIAME are: (i) raw data, (ii) processed data, (iii) 

sample annotation including experimental factors, (iv) experimental design, (v) array 

annotation and (vi) laboratory and data processing protocols [17]. 

Most of the common databases for microarray data are compliant with the MIAME 

standards. Table 3 provides a list of public repositories.   

 

 

Name Web Link 

NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/  

EMBL Array Express http://www.ebi.ac.uk/arrayexpress/ 

Oncomine (cancer transcriptome profiles) https://www.oncomine.org/  

Nephromine (kidney transcriptome profiles) http://www.nephromine.org/  

 

Table 3: Common microarray data repositories. 

 

 

 

http://www.ncbi.nlm.nih.gov/geo/
https://www.oncomine.org/
http://www.nephromine.org/
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Proteomics 

 

Proteomics comprises the systematic functional and structural analysis of proteins. 

Since the completion of the human genome project, scientists aim to annotate the 

genome with protein-level information [18,19]. Considering the large number of factors 

that determine individual protein concentrations, the challenges of these projects 

become evident. These include the controls on the transcription of genes, the codon 

usage, the rates and extent of post-translational modification, nature and abundance of 

proteins with which the gene product interacts, substrate levels and rates of proteolytic 

degradation [20]. Actually because of the inadequate prediction of protein abundance 

from mRNA concentrations, the direct measurement of protein expression is 

demanded. 

 

Identification and quantification of proteins is usually a two-step procedure, starting with 

the separation of the isolated protein mixtures, followed by the quantification and 

identification of the individual components using mass spectrometry or similar 

approaches. The classical method which is still most widely used for protein separation 

is two-dimensional gel electrophoreses (2DE). In 2DE, proteins are first separated by 

isoelectric focusing and then further resolved by mass using SDS–PAGE. Additional 

strategies commonly in use are chromatographic purification methods that separate 

proteins based on their physiochemical properties. Methods for quantification of 

proteins include comparative 2DE approaches, in vivo metabolic labeling, or isotope-

coded affinity tagging (ICAT) [21]. Mass spectrometry can provide quantitative, as well 

as qualitative information. By definition, a mass spectrometer consists of an ion source, 

a mass analyser that measures the mass-to-charge ratio (m/z) of the ionized analytes, 

and a detector that registers the number of ions at each m/z value [22]. Coupled MS 

including protein fragmentation determines the molecular m/z ratio of peptides, which 

are then used to identify the predicated proteins using web-based search engines such 

as MASCOT and PROFOUND [23]. 

As biological functionality is largely driven by the interaction of biologically active 

molecules, the identification of protein—protein interactions poses a further important 

field in proteomics research. Commonly used methods for protein interaction 

determination include the yeast two hybrid systems, protein arrays and affinity 

chromatography.  

 

In analogy to the MIAME standard for microarrays, the Human Proteome Organization 

Proteomics Standards Initiative (HUPO-PSI) has introduced the MIAPE standard for 
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reporting proteomic experiments. HUPO-PSI also defines, among others, a standard 

for the documentation of protein interactions called MIF (Molecular Interaction Format). 

 

Table 4 provides an excerpt of the list of the variety of publicly available data 

repositories and resources holding protein related information as sequence, structure, 

or interaction data. Comprehensive databases on tissue or disease specific proteins 

are comparably rare which may be due to modest numbers of samples and the 

difficulty of merging data from more than one study across different analytical 

platforms. One example is the Human Urinary Proteome database [24] that was in this 

thesis used for the extraction of chronic kidney disease specific proteins for the cross-

omics study presented in section 2.4. This database holds the information about 

protein abundance of 3687 human urine samples (status as of September 2009) that 

were collected from patients covering a wide spectrum of different pathophysiological 

conditions, among them renal disorders, as well as from healthy controls. 

 

 

Name Web Link 

Sequence 

NCBI Protein database  http://www.ncbi.nlm.nih.gov/protein/  

NCBI Reference Sequence database http://www.ncbi.nlm.nih.gov/RefSeq/ 

UniProtKB Protein knowledgebase http://www.uniprot.org/ 

Structure 

RSCB Protein Databank http://www.pdb.org/  

ExPASy Database of annotated 3D Images http://expasy.org/sw3d/ 

Protein Interactions 

EMBL Protein Interaction Database http://www.ebi.ac.uk/intact/ 

Online Predicted Human Interaction Database http://ophid.utoronto.ca/ 

Biomolecular Interaction Network Database  http://bind.ca/ 

 

Table 4: Common publicly available proteomic databases 

 

 

 

Metabolomics 

 

The Human Metabolome Project started in 2004 and, although the Human Metabolite 

Database holds nearly 8600 compounds, the identification of the human metabolome is 

still far from complete [25,26]. One of the great challenges towards completeness is the 

analytical bias due to chemical properties of different compound classes. Metabolic 

http://www.ncbi.nlm.nih.gov/protein/
http://www.pdb.org/
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profiling by contrast focuses at the quantitative analysis of a set of pre-defined 

metabolites belonging to a class of compounds or members of particular pathways. A 

further subsection of metabolomic analyses is target oriented and aims at a quantitative 

analysis of substrate or product metabolites of a single target protein [27]. 

 

The basic principles of metabolite identification and quantification are similar to those of 

proteomics. Separation methods are mostly chromatographic or electrophoretic 

techniques. Mass spectrometry or Nuclear Magnetic Resonance (NMR) spectroscopy 

are usually the methods of choice for the detection of the metabolites.  

 

The CIMR (Core Information for Metabolomics Reporting) standard specifies the 

minimal guidelines reporting metabolomics work and was introduced by the 

Metabolomics Standards Initiative (MSI). 

Beside of the Human Metabolome Database which is currently the most complete and 

comprehensive curated collection of human metabolite data, there exist a number of 

resources containing information on small molecules. Examples are given in table 5. 

 

 

Name Web Link 

Human Metabolome Database http://www.hmdb.ca/ 

KEGG Ligand database http://www.genome.jp/kegg/ligand.html 

NCBI PubChem http://pubchem.ncbi.nlm.nih.gov/ 

 

Table 5: Examples for public repositories of small molecules. 

 

 

 

1.2.2 Literature Mining 

 

Text-mining in molecular biology is defined as the automatic extraction of information 

about genes, proteins and their functional relationships from text documents [28]. 

The increasing number of electronically accessible publications has opened the door 

for efficiently taking advantage of the results from the combined efforts of the scientific 

community that are provided within the literature.  

 

Basic resources for biomedical literature mining tools are databases like PubMed which 

currently holds about 20 million abstracts. The development of textual databases and 
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ontologies that catalog and organize terms to assist authors in consistent use of 

domain specific terminology has significantly improved text mining approaches. 

Furthermore, databases providing training text collections for machine learning 

approaches have been constructed [29].  

 

Of special interest in the context of gene-disease associations is the co-appearance of 

disease concepts and gene names within one and the same publication which gives 

information about relevant genes for a certain disease phenotype. Publications indexed 

in PubMed are annotated with Medical Subject Headings (MeSH) maintained by the 

U.S. Library of Medicine which are organized in a hierarchical structure of sub- and 

super-categories. Thus, the MeSH terms in the disease category can be used for a 

paper-disease mapping. Unfortunately, this framework has one considerable drawback. 

Diseases that are not part of the MeSH universe, for example the cardiorenal 

syndrome, cannot be handled and a paper-disease mapping must be obtained by free-

text search. A subsequent paper-gene mapping can be obtained, for example, from a 

NCBI curated file (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz), that 

represents the logical equivalent of what is reported as Gene/PubMed links available in 

Gene's and PubMed's links menus on the NCBI homepage. Further tools for the 

automatic detection of protein and gene mentions from the literature include the 

GAPSCORE [30] or ABGENE [31] systems. 

 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
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1.3 Analysis Workflows 

 

The basic goal of analysis workflows applied to any forms of omics data is to transform 

raw data sets into interpretable information and knowledge on a biological level [32]. In 

the studies presented in this thesis, we made use of sequential analysis procedures, as 

well as of integrated approaches with focus on protein interaction networks. Section 2.1 

provides a detailed description of both forms of workflows together with a list of 

available resources and tools, supplemented with an example workflow on a gene 

expression dataset. An overview on the principle concepts of transcriptomics data 

analysis is given in the following.  

 

 

1.3.1 Sequential Workflows 

 

A sequential analysis workflow follows a step-by-step procedure starting from the raw 

datasets and ending in a functional interpretation where identified features are 

embedded in their biological context, allowing the generation of hypotheses. The main 

steps are usually (i) raw data processing, (ii) statistical analysis, and (iii) functional 

analysis. 

 

 

 Data Preprocessing 

 

The need of microarray data preprocessing arises from the fact that intensity values not 

only reflect actual mRNA concentrations but are influenced by several non-biological 

factors. Examples are variations in the array manufacturing process, the preparation of 

the biological sample, the hybridization of the sample to the array, or the quantification 

of the spot intensities [33]. In order to ensure the comparability of arrays within an 

experiment, removal of the estimated background signal and normalization between 

arrays are usually performed. The application of filter routines, e.g. based on the 

number of missing values or marginally expressed genes, leads to a reasonable 

reduction in complexity of microarray data in terms of gaining usable information at 

least from a statistical perspective. 
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Statistical Analysis 

 

Most of the microarray experiments aim at the detection of quantitative differences in 

gene expression between two groups of samples representing two conditions (e.g. 

case/control). A first impression of array grouping can be obtained by the visualization 

of array clustering based on their proximity (defined by a distance function) to each 

other following unsupervised clustering approaches. Resulting dendrograms that reflect 

the initially considered grouping give a lead to a succeeded experiment whereas 

controversial outcomes may indicate a systemic bias that can be due to experimental 

issues as, for example, different sample preparation, uneven hybridization, or different 

array batches. 

 

The next step is the identification of differentially expressed genes between the sample 

groups. A simple method is the calculation of fold-changes, but it has been shown that 

the fold-change criterion alone is unreliable because statistical variability is not taken 

into account [34,35]. More sophisticated procedures involve test statistics that assign a 

statistical significance score (p-value) to each gene. Considering the large number of 

comparisons that are made for each probe on the array, a correction for multiple testing 

is indispensable for the reduction of false positive findings. Furthermore, a p-value cut-

off above which biologically meaningful information is expected has to be defined. 

Depending on the chosen cut-off, a more or less manageable list of differentially 

expressed list is available for interpretation in the given biological context. 

 

 

Functional Analysis 

 

A decisive step that ensures the proper mapping of genes to functional categories is 

their consistent annotation to unique identifiers. The list of already established 

biological identifiers is long and different functional annotation tools often require 

different identifiers.  

The identification of statistically enriched or depleted functional categories follows the 

principal foundation that if a biological process is perturbated in a given study, the 

functionally linked genes (on the level of proteins as effector molecules) should have a 

higher potential to be selected as a relevant group by the high-throughput screening 

technologies [36]. This assumption can be expanded to different levels of functional 

relationships including molecular functions or pathways.  
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Further approaches for functional analysis are, among others, protein interaction 

networks, the detection of co-regulation, tissue specific expression, or protein 

subcellular location.    

 

 

 

1.3.2 Integrated Workflows 

 

Following the rationale that the cell is an integrated system and its biological 

mechanisms cannot be fully described by the observation of single layers, the 

approach of integrating multiple omics data and different functional characteristics into 

analysis procedures reflects the spirit of Systems Biology and became increasingly 

popular along with the advent of suitable technologies.  

Major challenges in the field of integrative bioinformatics address the usability of 

heterogeneous data since most data sources still exist in isolation where each source 

has its own specialization and focus. In many cases, databases lack links to each 

other, even when they are providing data about the same entities [37,38]. 

 

Many of the integrated approaches are based on interaction networks that represent 

functional dependencies derived from the input of multi-level data. In addition to 

physical interactions between biological entities, such networks include indirect 

associations such as co-regulation or shared pathway memberships that are equally 

important for a complete understanding of biological systems [39-41].  
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1.4 Applications 

 

In the present thesis, the concepts discussed in the previous sections were applied on 

various forms of kidney disease, spanning from acute renal failure in the transplant 

situation, further to chronic kidney disease, and finally to cross-organ analysis, namely 

the cardiorenal syndrome. 

A short summary of the basic facts on kidney function and structure are given in the 

following: 

 

Basically, the kidney performs two main functions: (i) the organ participates in the 

maintenance of a constant extracellular environment by the excretion of metabolic 

waste products, electrolytes and water, and (ii) the organ secretes hormones involved 

in hemodynamic regulation, production of erythrocytes, and mineral bone metabolism 

[42].  

The functional unit of the kidney is the nephron which consists of the renal corpulus 

(glomerulus and bowman‘s capsule) which is responsible for filtering and the renal 

tubule (proximal tubule, loop of Henle, distal tubule) functioning as absorption and 

secretion apparatus.  

 

The following sections provide an overview on the pathophysiology of different types of 

kidney disease, namely acute renal failure, chronic kidney disease, and the cardiorenal 

syndrome. 

 

 

1.4.1 Acute Renal Failure/Transplantation 

 

Acute renal failure (ARF) is characterized by the abrupt decline in glomerular filtration 

rate [43] as a result of vasoconstriction, hypoxia, ischemia, or the usage of nephrotoxic 

substances. It affects 25% - 30% of patients in the intensive care unit and 3% - 7% of 

patients admitted to the hospital [44]. 

Until a few years ago, a consensus definition of ARF was lacking. In 2004, the ADQI 

(Acute Dialysis Quality Initiative) group proposed the RIFLE criteria for staging ARF 

patients, the initials reflecting the terms Risk, Injury, Failure, Loss and End Stage in 

relation to kidney function [45]. 

The traditional etiological classification divides in prerenal, intrarenal, and postrenal 

causes. Prerenal ARF is the most common type and can be caused by volume loss, 
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decreased cardiac output, neurogenic dysfunction, or vessel diseases. Intrarenal ARF 

is intrinsic and a response to tubular, glomerular, interstitial, or vascular injury. 

Postrenal ARF refers to the consequences of the obstruction of outflow tracts of the 

kidney [46]. 

 

ARF frequently appears in the post-transplant situation in context of a delayed graft 

function. Risk factors include donor age and cause of death or the duration of cold 

ischemia with consequences leading to a reduced long-term allograft survival. Since 

intrinsic donor factors are among the main contributors to post-transplant ARF, 

including the autonomous cytokine storm after brain death and hemodynamic 

instability, the use of cadaveric donor organs has significant impacts on graft function. 

Several studies report a highly increased risk for post-transplant ARF in this patient 

group [47,48]. Changes in gene expression that distinguish living and cadaveric donor 

organs could be found in the functional categories  inflammation, complement and 

coagulation, apoptosis, and cell adhesion [49]. The results of a double-blinded, 

randomized, controlled trial of steroid or placebo infusion into deceased donors and the 

consequences on graft function are presented in section 2.3. 

Tubular and vascular damage in the donor organ after cold ischemia but before 

transplantation is associated with subsequent ischemic reperfusion injury (IRI) and an 

additional contributor to delayed graft function. Biomarkers for the detection of early 

injury, determination of graft quality, and prediction of graft outcome are demanded.  

 

A routinely used marker for the diagnosis of ARF is the concentration of creatinine in 

blood which rises with the progression of glomerular filtration deficiency. This has been 

the method of choice for ARF diagnosis for nearly 60 years, but its limitations regarding 

the delayed rise in serum creatinine with respect to the decrease of the glomerular 

filtration rate, and the lack of specificity and sensitivity are evident [50,51]. Alternative 

biomarker candidates include Cystatin C, Neutrophil Gelatinase-Associated Lipocalin 

(NGAL), Interleukin-18 (IL18), and the Kidney Injury Molecule 1 (KIM1) [52,53], but 

further validation and trials are required to substantiate the utility of these markers. A 

review on biomarkers in renal transplantation IRI is provided in section 2.2 of this 

thesis. 
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1.4.2 Chronic Kidney Disease 

 

The prevalence of chronic kidney diseases (CKD) in the general population is 

dramatically high with 11% of adults suffering from a reduced kidney function [54]. 

Loosely speaking, CKD is the progressive loss of kidney function over a period of 

months or years. According to the guidelines of the Kidney Disease Outcome Quality 

Initiative (KDOQI), CKD can be divided into 5 stages with respect to the decline in 

glomerular filtration rate, ranging from normal to relatively high GFR (stage 1) to kidney 

failure and the need of renal replacement therapy (stage 5) [54]. 

 

The most common causes for reaching a chronic state of kidney diseases include 

diabetes mellitus, hypertension, glomerulonephritis, interstitial nephritis, and low flow 

states (hypoperfusion) [55]. However, independent of the origin, most of the renal 

diseases that are the starting point for CKD begin with glomerular dysfunction. With 

ongoing disease progression, the glomerular injury expands to the tubulointerstitum, 

the connective tissue surrounding the renal tubule, leading to nephron loss and fibrotic 

lesions. The loss of functioning nephrons in turn causes an increased workload for the 

remaining nephrons with glomerular hypotension as consequence, thereby generating 

an ongoing vicious circle of progressive kidney damage [56]. 

 

An independent marker of worsening of kidney function is the loss of proteins in the 

urine that can be either due to a reduced glomerular filtration or a low absorption of the 

proximal tubulus. Unfortunately, the increased passage of proteins across the 

glomerular capillary barrier is not solely a consequence of renal injury but contributes to 

further disease progression. The exposure of tubular cells to plasma proteins further 

induces damage by the stimulation tubular chemokine expression and complement 

activation, leading to inflammatory cell infiltration in the interstitium and subsequent 

fibrogenesis [57]. Moreover, an increased excretion of albumin may result in 

hypoalbuminaemia which can be linked to an impairment of immune function.  

In view of the fact that the estimation of the glomerular filtration rate by measuring the 

creatinine clearance is limited in its diagnostic and prognostic value (see 1.4.1), several 

efforts have been made to identify more accurate markers. Examples include 

Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule 1 (KIM1), 

Urinary liver-type fatty acid binding protein (urinary L-FABP), connective tissue growth 

factor (CTGF), transforming growth factor β (TGFβ), or urinary mRNAs [52,58].  Next to 

the identification of single molecular biomarkers, approaches tending to find whole 

panels of markers, not least owing to advantages of high-throughput technologies, 
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promise more specificity for future diagnosis and prognosis of CKD. Section 2.4 

presents an integrated approach for characterizing CKD mechanisms by the joint 

interpretation of transcriptomics and proteomics datasets.  

 

It is known that mortality in patients with CKD is mainly due to adverse outcomes rather 

than to the kidney failure per se, with the leading causes of death being cardiovascular 

diseases. The next section discusses the pathophysiological connection between the 

kidney and the cardiovascular system, referring to the cardiorenal syndrome.   

 

 

 

1.4.3 Cardiorenal Syndrome 

 

Chronic kidney disease is encountered by a significant increase of cardiovascular 

complications. In dialysis patients the prevalence of cardiovascular disease (CVD) and 

the mortality due to CVD is around 10 to 30 times higher than in the general population 

[59]. The pathophysiological state of combined kidney and cardiovascular dysfunction 

is termed the cardiorenal syndrome. 

 

Basically, the CRS can be classified into 5 subtypes, depending on the origin of 

damage (either the cardiovascular system or the kidney) and the course of disease 

(either acute or chronic) [60,61]. Figure 3 provides an overview on interactions referring 

to CRS types 2 an 4 (chronic cardiorenal syndrome and chronic renocardiac 

syndrome). 

As can be seen, the significant impact of consequences of renal impairment on 

cardiovascular function, including the development of anemia, a fluid overload and the 

systemic presence of uremic toxins, become already evident in early stages of CKD. 

However, the main risk factors for cardiovascular events, like hypertension, 

dyslipidemia, or chronic inflammation, appear in the course of progressed CKD and are 

significantly increased in the cohort of patients on dialysis treatment [63-65]. In turn, 

low cardiac output, possibly coupled to genetic or acquired risk factors, has negative 

effects on kidney function and, if reaching a chronic state, leads to sclerosis and 

fibrosis.  

Hormone mediated hemodynamic dysregulation also plays a decisive role in CRS 

formation. The renin-angiotensin and natriuretic peptide system have counterbalancing 

effects on renal and cardiovascular function through their opposing actions on vascular 

tone and sodium and water balance as well as cellular hypertrophy and fibrosis. 
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Angiotensin-converting enzyme or vasopeptidase inhibitors were shown to provide 

important end-organ protection in CRS [66].  

 

 

 
Figure 3: Overview on cardio-renal interactors and risk factors, taken from [62]. 
 
 
 
 

The complex characteristics of the CRS impose a new challenge in identifying and 

treating patients with CVD in early stages of CKD towards improving outcome. So far 

there is no clear understanding of the molecular pathways interlinking kidney failure 

and cardiovascular complications, concomitantly impeding the identification of 

biomarkers for identifying the risk of CVD in CKD patients. Sections 2.5 and 2.6 

present two integrative studies analyzing proteins, pathways and the molecular 

crosstalk on the interface between the kidney and the cardiovascular system. 
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ABSTRACT 

 

Progress in experimental procedures has led to rapid availability of Omics profiles. 

Various open-access as well as commercial tools have been developed for storage, 

analysis, and interpretation of transcriptomics, proteomics as well as metabolomics 

data. Generally, major analysis steps include data storage, retrieval, preprocessing and 

normalization, followed by identification of differentially expressed features, functional 

annotation on the level of biological processes and molecular pathways, as well as 

interpretation of gene lists in the context of protein-protein interaction networks. In this 

chapter we discuss a sequential transcriptomics data analysis workflow utilizing open-

source tools, specifically exemplified on a gene expression dataset on familial 

hypercholesterolemia. 

 

Key Words: Omics data analysis; bioinformatics workflow; transcription factor; protein 

network; data interpretation. 
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1. INTRODUCTION 

 

High-throughput methods in molecular biology research, and in particular microarray 

technologies and  mass spectrometry have led to the quantitative assessment of 

thousands of features on the level of the genome, transcriptome, proteome, and 

metabolome, resulting in the accumulation of a massive amount of data. Microarray 

technologies, initially restricted to applications in research, have in the meantime found 

its way into the clinic, e.g. referring to the MammaPrint microarray-based test system 

cleared by the FDA in early 2007 for the prognosis of breast cancer patients [1]. Next to 

basic research and molecular diagnostics, Omics procedures are also used for 

toxicological profiling as well as for drug discovery research in the hunt for novel 

therapeutic targets, just to give examples.  

With these well established methodologies and standardized protocols for experimental 

processing in hand the emphasis of research in recent years has been on the analysis 

of high-throughput data and results interpretation [2]. Analyses steps include data 

storage, data annotation, data preprocessing and normalization, followed by 

explorative and statistical analyses, functional interpretation, and hypothesis 

generation. For all these different steps open-source tools are available and databases 

storing Omics raw data have been vigorously populated. 

 

In this chapter we address computational analysis workflows for the interpretation of 

Omics data. We provide links to databases, tools and websites, discuss their 

applicability, and navigate through the analysis process on a given example dataset on 

gene expression profiles of monocytes from patients with familial hypercholesterolemia. 
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2. MATERIALS 

 

2.1. Omics Data Repositories 

Public databases provide genomics and proteomics data for a wide range of cells, 

tissues and diseases (Table 1A). Open-access repositories for microarray data are e.g. 

the ArrayExpressDB hosted by European Bioinformatics Institute (EBI) [3], the Gene 

Expression Omnibus developed at the National Center for Biotechnology Information 

(NCBI) [4], or the Stanford Microarray Database (SMD) [5]. One of the most 

comprehensive collections of proteomics data is provided by SWISS 2-D PAGE hosted 

by the Swiss Institute of Bioinformatics [6,7] (see Note 1). 

Standards for data annotation and exchange of microarray data have been introduced 

by the Microarray Gene Expression Data (MGED) Society. The Minimum Information 

About a Microarray Experiment (MIAME) guidelines describe the minimum information 

needed for revising and interpreting results of a microarray-based experiment palpably 

[8]. 

 

2.2. Data Preprocessing 

A sequence of data preprocessing steps is required for the analysis of abundance data 

e.g. from gene expression or protein profiling (Table 1B). Background correction and 

normalization of the data are the first steps to clear the impact of non-biological 

influences potentially arising from different array batches used or from varying 

intensities of different dyes. Frequently used background correction methods are the 

Robust Multi-array Average (RMA) method [9] or MAS 5.0 from the Affymetrix 

Microarray Suite [10]. Normalization techniques are Quantile Normalization (RMA), 

Invariant Difference Selection (IDS) [11], and dChip [12]. Further preprocessing is 

particularly important for gene expression data to achieve a reduction of data 

complexity. Filter routines focus on the elimination of entries which are probably invalid 

and will not contribute to informative results. One possible filter is to remove all objects 

for which the number of missing values over all experiments (arrays) performed 

exceeds a certain threshold. Missing values may be a problem caused by improper 

resolution, image corruption, or physical defects. Methods for handling missing values 

span from simple row average estimates to more sophisticated approaches e.g. based 
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on K-nearest-neighbor replacement [13], Bayesian variable selection [14], least 

squares replacement [15], or a combination of above mentioned procedures [16].  

Preprocessing of proteomic MS data aims to identify a list of m/z peak values to be 

directly used for further analyses. Analyses steps include background correction, 

filtering, noise estimation, peak detection and spectral alignment algorithms [17-22]. 

Nie et al summarized current applications of statistics in several stages of global gel-

free proteomic analysis by mass spectrometry [23]. For protein identification based on 

m/z data several resources are available as e.g. MASCOT [17]. 

After normalization issues are resolved the annotation of Omics features is essential. 

The SOURCE tool from the Stanford Genomics Facility [18] or the GeneCards system 

from the Weizmann Institute of Science [19] are commonly used annotation 

databases/tools for DNA/mRNA and protein sequences.  

 

2.3. Identification of Differentially Expressed Genes and Proteins 

For the evaluation of differentially expressed genes/proteins several methods based on 

test statistics are in use (Table 1C). A straightforward method is the Student‘s t-test 

determining the significance of differences between distributions of expression levels 

combined with computation of the fold change. The correction for multiple testing is 

pivotal for the analysis of Omics data in order to reduce the number of false positive 

findings. A very stringent correction method is the Bonferroni correction, whereas less 

conservative methods are based on permutations e.g. realized by the maxT and minP 

method as described by Westfall and Young [20]. Such permutation and resampling 

methods are described in detail by Dudoit et al. [21] and Ge et al. [22]. Implementations 

of these algorithms can be found in the multtest Bioconductor package of the R 

statistics environment [24,25]. Bootstrap and Jackknife procedures, both using 

randomly drawn subsets of the whole dataset, further strengthen the statistical findings 

and lower the susceptibility to outliers [26]. Significance Analysis of Micorarrays (SAM) 

is also based on data permutation but controls the false discovery rate (FDR), defined 

as the percentage of genes identified as significant with respect to the number of 

features identified as relevant by chance [27]. This method is widely accepted in 

microarray analysis. SAM is available as stand-alone package and is also implemented 

in the MultiExperiment Viewer (MeV) developed at The Institute for Genomic Research 

(TIGR) [28]. 
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2.4. Functional Annotation and Pathway Enrichment Analysis 

One approach for functional grouping of genes or proteins identified as relevant from a 

statistical viewpoint is realized by utilizing gene ontologies (GO), categorizing proteins 

according to their molecular functions, cellular components, and biological processes  

(Table 1D). Another classification system is the PANTHER (Protein ANalysis THrough 

Evolutionary Relationships) ontology [29]. Generally, ontologies are controlled 

vocabularies and can be represented as acyclic, directed graphs where each ontology 

category can have one or more parent and sub terms. Statistical tools exist to identify 

enriched or depleted categories for a list of genes or proteins of interest [30]. One of 

these tools is DAVID (Database for Annotation, Visualization and Integrated Discovery) 

[31]. 

Pathway databases like the one from the Kyoto Encyclopedia of Genes and Genome 

(KEGG) [32] complement the functional ontologies and can give even more information 

on the interplay of gene and proteins. Other pathway databases describing metabolic 

networks and signaling transduction cascades are the BioCarta, the PANTHER 

pathway database [29], or Reactome [33]. KEGG spider provides a robust analytical 

framework for interpretation of gene lists in the context of a global gene metabolic 

network [34] (Table 1E). 

 

2.5. In-silico Promoter Analysis 

Transcription factors are key elements in the regulation of transcription exerting their 

function by binding to the promoter region of a gene as well as to regulatory elements 

further away from the transcription start site (Table 1F). JASPAR is a database holding 

binding site matrices for specific transcription factors which can be used by pattern 

matching algorithms in order to scan genomic sequences for potential transcription 

factor binding sites (TFBS) [35]. The JASPAR Core database provides a curated, non-

redundant set of binding profiles from experimentally defined transcription factor 

binding sites for eukaryotes reported in the literature.  

For a given list of differentially regulated genes or proteins the search for enriched 

TFBS in the regulatory regions becomes feasible. oPOSSUM is a database that 

contains pre-calculated transcription factor binding sites in the regulatory regions of 

human genes that can be used in order to identify enriched transcription factors in a set 

of deregulated genes [36]. The regulatory regions of human genes are identified 

searching for conserved regions in the mouse genome (phylogenetic footprinting) using 
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different stringency criteria. The oPOSSUM tool uses transcription factor binding sites 

as stored in the JASPAR database. 

 

2.6. Integrated Approaches 

Besides sequential workflows following a step-by-step analysis several integrated 

approaches exist (Table 1G). One example is STRING, provided by the European 

Bioinformatics Institue (EBI) which aims to present genes directly or indirectly related to 

a query gene [37,38]. The basis of STRING is a protein network obtained from 

integrating high-confidence data, high-throughput experiments, and computationally 

derived data for more than 2.5 million proteins occurring in 630 organisms. Information 

is integrated over organisms and the respective proteins are represented as clusters of 

orthologous groups. STRING currently integrates protein interactions, co-expression 

data, literature co-occurrences, genomic context encoded by conserved genomic 

neighborhoods, gene fusion events, and phylogenetic co-occurrences. For each pair of 

proteins STRING pre-computes a detailed measure of evidence based on each 

available data source for describing the association between the two proteins. These 

sub-scores are combined to represent an evidence score. A STRING query is 

performed by entering a gene name, protein name or a protein sequence, or a list of 

identifiers or sequences. As a result STRING shows an integrated, interactively 

expandable view of the network context of the input proteins enriched with biological 

information associated with these proteins. 

The routine FunCoup globally reconstructs protein networks in human and other 

eukaryotes from comprehensive data integration, namely protein-protein interactions, 

mRNA expression, subcellular location, phylogenetic profiles, miRNA-mRNA targeting, 

transcription factor binding sites, protein expression, and domain-domain interactions 

[39]. The software utilizes InParanoid to transfer information between species. In the 

course of visualization the user is provided with the option to group networks by spatial 

subcellular position of proteins, their membership - relation to pathways, or as a force-

directed layout. Furthermore, where possible, a detailed description of the type of 

association between the proteins is supported (direct physical interaction, protein 

complex members, metabolic reaction, regulatory/signaling).  

omicsNET is another data integration framework supporting researchers throughout the 

process of the analysis of disease specific data in identifying and selecting potential 

diagnostic markers or therapeutic targets [40]. Pairwise dependencies between human 
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proteins are calculated based on the following data sources: gene expression profiles 

in normal human tissues, functional gene annotation based on gene ontologies as well 

as on pathway information, shared transcription factor binding site as well as miRNA 

profiles, information on subcellular protein localization, protein-protein interaction data, 

and shared protein domains. Based on these dependencies a protein network is 

contructed which is easily extendable and is embedded in a fully automatic 

downloading and importing framework capable of following the fast update cycles of 

scientific data repositories and data formats. Objects are centered around a general 

definition of biological entities based on international protein index (IPI) IDs presently 

covering about 68k protein sequences [41]. 

A: Omics repositories 

ArrayExpress www.ebi.ac.uk/microarray-as/ae [3] 

Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo [4] 

Stanford Microarray Database http://smd.stanford.edu [5] 

Proteomics database www.expasy.ch/ch2d [6] 

B: Data preprocessing 

RMA http://rmaexpress.bmbolstad.com [9] 

MAS5   [10] 

dChip http://www.dchip.org [12] 

C: Explorative analysis routines 

Bioconductor www.bioconductor.org [25] 

SAM http://rmaexpress.bmbolstad.com [27] 

TIGR MeV www.tm4.org/mev.html [28] 

Functional annotation 

DAVID http://david.abcc.ncifcrf.gov [31] 

PANTHER www.pantherdb.org [29] 

D: Pathway analysis 

KEGG www.genome.jp/kegg/pathway.html [32] 

PANTHER www.pantherdb.org [29] 

KEGG spider http://mips.helmholtz-muenchen.de/proj/keggspider [34] 

E: In-silico promoter analysis 

JASPAR http://jaspar.genereg.net [35] 

oPOSSUM www.cisreg.ca/cgi-bin/oPOSSUM/opossum [36] 

F: Interaction network analysis 

STRING http://string.embl.de [37] 

FunCoup http://funcoup.sbc.su.se [39] 

 

Table 1: Listing of Omics repositories, web-resources and analysis tools discussed in 
this chapter. 
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3. METHODS 

 

In the following section the tools described above will be exemplarily applied on a 

publicly available gene expression dataset. Mosig and colleagues profiled the gene 

expression of monocytes of patients with familial hypercholesterolemia (FH) [42]. In this 

study microarray gene expression experiments were performed using Affymetrix HG-

U133 Plus 2.0 GeneChips, each holding 54,675 unique transcripts. 

 

3.1. Omics Data Repositories and Data Retrieval 

The example dataset is deposited in the public Gene Expression Omnibus (GEO) 

database (www.ncbi.nlm.nih.gov/geo) hosted by NCBI reachable via the GEO 

accession number 'GSE6054'. The summary page of this specific record holds a short 

summary of the study, the experiment type, samples used in the experiment, as well as 

contributors. The contact details of the corresponding author as well as the date of 

submission are furthermore provided. 

The raw data files are provided as zipped archive which includes 23 Affymetrix CEL 

files providing the basis for further preprocessing and analysis (see Note 2). 

 

3.2. Data Preprocessing  

Main data preprocessing steps involve background correction and data normalization. 

One tool capable of handling both tasks in a user friendly way is CARMAweb, 

developed at the Technical University of Graz (https://carmaweb.genome.tugraz.at) 

[43]. Creating an account in CARMAweb allows the user storing of files and results for 

further analysis at a later time. CARMAweb supports a number of file formats 

generated by the scanner software of different platforms including Affymetrix, Applied 

Biosystems as well as two-color systems. When using Affymetrix data the CEL files 

have to be uploaded to the system in order to start the preprocessing procedure as 

described step by step below (see Note 3 for a detailed discussion on input parameters 

and resulting plots): 
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1. choose New Analysis from the tool bar 

2. select Perform an Affymetrix GeneChip analysis 

3. upload the raw data CEL files for the analysis 

4. select the preprocessing method 'mas5' 

5. scale the values to 200 

6. check the boxes for drawing additional plots from the raw and normalized data 

7. check the box Save the normalized expression values to a text file 

8. skip the replicate handling step as there are no replicated arrays in this example 

data set 

9. start the analysis 

 

Id GenBank UniGene Description LocusLink Symbol GSM140232.CEL GSM140233.CEL 

1007_s_at U48705 Hs.631988 

discoidin 
domain 
receptor 
family, 
member 1 

780 DDR1 133,1116888 129,7100459 

1053_at M87338 Hs.647062 

replication 
factor C 
(activator 1) 
2, 40kDa 

5982 RFC2 217,6610085 239,3148494 

117_at X51757 Hs.654614 

heat shock 
70kDa 
protein 6 
(HSP70B') 

3310 HSPA6 781,1669739 465,5422967 

121_at X69699 Hs.469728 paired box 8 7849 PAX8 204,6355705 281,2443974 

1255_g_at L36861 Hs.92858 

guanylate 
cyclase 
activator 1A 
(retina) 

2978 GUCA1A 5,5138363 12,3289051 

1294_at L13852 Hs.16695 

ubiquitin-
activating 
enzyme E1-
like 

7318 UBE1L 766,9258871 742,6529846 

1316_at X55005 Hs.724 

thyroid 
hormone 
receptor, 
alpha  

7067 THRA 53,9216242 79,9992657 

1320_at X79510 Hs.437040 

protein 
tyrosine 
phosphatase, 
non-receptor 
type 21 

11099 PTPN21 7,5285511 6,9065730 
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1405_i_at M21121 Hs.514821 
chemokine 
(C-C motif) 
ligand 5 

6352 CCL5 5625,3812000 5054,0114760 

1431_at J02843 Hs.12907 

cytochrome 
P450, family 
2, subfamily 
E, 
polypeptide 
1 

1571 CYP2E1 37,9592864 31,5216112 

1438_at X75208 Hs.2913 
EPH receptor 
B3 

2049 EPHB3 15,6320131 14,0352867 

1487_at L38487 Hs.110849 

estrogen-
related 
receptor 
alpha 

2101 ESRRA 510,4666229 430,1333161 

1494_f_at M33318 Hs.439056 

cytochrome 
P450, family 
2, subfamily 
A, 
polypeptide 
6 

1548 CYP2A6 72,2235171 79,3025924 

1552256_a_at NM_005505 Hs.520348 

scavenger 
receptor 
class B, 
member 1 

949 SCARB1 294,3431947 239,6201050 

1552257_a_at NM_015140 Hs.517670 

tubulin 
tyrosine 
ligase-like 
family, 
member 12 

23170 TTLL12 483,2240522 425,4874463 

1552258_at NM_052871 Hs.652166 

chromosome 
2 open 
reading 
frame 59 

112597 C2orf59 17,1870075 24,8940935 

1552261_at NM_080735 Hs.2719 
WAP four-
disulfide core 
domain 2 

10406 WFDC2 35,7236355 52,4366549 

1552263_at NM_138957 Hs.431850 

mitogen-
activated 
protein 
kinase 1 

5594 MAPK1 872,2548451 604,3554185 

1552264_a_at NM_138957 Hs.431850 

mitogen-
activated 
protein 
kinase 1 

5594 MAPK1 676,0495879 887,2818401 

1552266_at NM_145004 Hs.521545 

ADAM 
metallopepti
dase domain 
32 

203102 ADAM32 40,0241198 37,3786065 

 

Table 2: Excerpt of the file ―ExpressionValues.txt‖ resulting from CARMAweb 
preprocessing. 

The first six columns hold the main identifiers for all of the 54675 transcripts included 
on the Affymetrix HG-U133 Plus 2.0 GeneChip. The seventh column provides a short 
description of the gene, and the last columns hold the normalized expression values for 
each array (the values of the first two arrays are exemplarily shown). 
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Results as well as the analysis protocols are accessible after the preprocessing steps 

are completed. The analysis report contains a summary of the performed analysis 

steps as well as plots for checking the quality of given array data. The normalized 

expression data set that will be used for further analysis is denoted as 

'ExpressionValues.txt' and can be downloaded to a local machine (Table 2). Features 

are annotated with their respective NCBI GenBank accession number, NCBI UniGene 

Cluster ID, NCBI Entrez Gene ID (LocusLink ID), NCBI Gene Symbol, as well as a 

short summary. Result files can be downloaded separately or as a compressed 

archive. 

 

3.3. Identification of Differentially Expressed Genes 

The preprocessed and normalized data file ―ExpressionValues.txt‖ is the basis for the 

identification of differentially expressed genes (DEGs). Main interest in our study is the 

identification of genes that show differential expression between subjects with familial 

hypercholesterolemia and healthy controls. Various open-source as well as commercial 

tools exist for this task as outlined in the Materials section. One open-source tool that 

we consider very intuitive to use is the Multi Experiment Viewer (MeV) developed at 

The Institute for Genomic Research (TIGR) (www.tm4.org/mev.html).  

MeV is perfectly capable of handling tab-delimited text files holding expression 

datasets such as our normalized file 'ExpressionValues.txt'. Various statistical tests are 

implemented in the MeV software package, among them the t-test, the Analysis of 

Variance (ANOVA) for multi-group comparisons, or the Statistical Analysis of 

Microarrays (SAM) method controlling the False Discovery Rate. The following steps 

result in a list of significantly differentially expressed transcripts using the SAM method 

(see Note 4 for a detailed discussion on input parameters): 

 

1. select Load Data from the MeV file menu 

2. check Single-color Array in the Expression File Loader dialog box 

3. load the file 'ExpressionValues.txt' 

4. select Significance Analysis for Microarrays from the Statistics tab 

5. select the Two-class unpaired tab 
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6. assign diseased samples to group A and healthy control samples to group B 

7. set the number of permutations to 500 

8. select S0 using Tusher et. al method  

9. check no for calculating q-values 

10. select K-nearest neighbors impute as Imputation Engine with 10 neighbors 

11. start analysis 

 

Once the analysis has finished, the resulting SAM graph is displayed reporting the 

number of significantly differentially regulated genes regarding the group comparison 

as well as the median number of genes being false positives at a given delta threshold 

level (Fig. 1). The slider for controlling the delta value at the bottom of the graph can be 

used to set the false discovery rate (FDR), representing the fraction of false positive 

genes among the total number of all genes indicated as being differentially regulated. 

Usually values in the range of 5% to 10% are acceptable. In our experiment setting, a 

delta value of 1.156 results in 1016 significant genes and a median number of falsely 

significant genes of 50. Please note that these results may slightly vary due to the 

sequence of random permutations used in the analysis. The list of 1016 significant 

genes can be displayed by selecting the node Table Views/All Significant Genes in the 

folder Analysis Results / SAM on the left of the MeV navigation window. The table of 

the significant genes can be downloaded through selecting Save cluster from the 

menu.  

Using the fold change criterion can further reduce the list of interesting genes to be 

considered for further analysis. The fold change determines how many times the 

expression levels for a given transcript are increased or decreased in the diseased 

samples as compared to the healthy individuals. Focusing on genes showing at least a 

two-fold change in either direction further reduces the dataset from 1016 DEGs to 97 

DEGs. 
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Figure 1: Example output graph resulting from a SAM analysis. The two dotted lines 
represent the region within +/- delta units (set to 1.156) from the observed to expected 
line. The genes whose plot values are within +/- delta units are considered non-
significant, those above + delta units are considered as significantly upregulated, and 
the ones below – delta units are considered as significantly downregulated. 

 

 

3.4. Functional Annotation and Pathway Enrichment Analysis 

Differentially expressed genes can be linked to gene ontology categories in order to 

identify enriched or depleted biological processes as implemented in the DAVID tool 

(http://david.abcc.ncifcrf.gov). Input is a list of NCBI Gene IDs of e.g. differentially 

expressed genes or more generally speaking genes of interest that can either be 

pasted into the data input field provided by the application or uploaded as a simple text 

file. The following steps are necessary to complete the analysis: 

1. select Start Analysis from the tool bar 

2. paste the list of identifiers into 'box A' or upload the identifiers from a text file 

3. select ENTREZ_GENE_ID as Identifier 

4. select Gene List as List Type 

5. submit list 
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6. choose HOMO SAPIENS as species in the 'List Manager' 

 

DAVID integrates several tools for data annotation and in a first step we assign GO 

terms and KEGG pathways to the individual genes: 

1. select Functional Annotation Table 

2. check the boxes GOTERM_BP_ALL, GOTERM_CC_ALL, and 

GOTERM_MF_ALL from the Gene Ontology node and KEGG_PATHWAY from 

the Pathways node on the Annotation Summary Results Page 

3. select Functional Annotation Table 

4. a separate window opens showing a table with all submitted Entrez Gene IDs 

and their functional categories (Fig. 2) 

5. download the table as a text file by clicking the download symbol on the upper 

right corner of the given window   

 

 

Figure 2: Example analysis output when the DAVID routine is applied. Given are the 
gene ontology terms for two differentially expressed genes. 

 

Another web tool for categorizing genes by their biological function is PANTHER 

(www.pantherdb.org). To analyze the genes differentially expressed between FH and 

healthy monocytes (as given for our example case) in terms of functional enrichment 

when compared to the whole NCBI H. sapiens gene list, the following steps have to be 

performed: 
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1. select Tools from the tool bar 

2. choose Gene Expression Data Analysis and Compare gene lists 

3. select Gene ID as identifier and upload the list of Entrez Gene IDs for the 

differentially expressed genes 

4. finish selecting lists 

5. select NCBI: H. sapiens genes as reference list   

6. check Biological Processes 

7. launch analysis 

8. download the results table by clicking the Export button on the upper left corner 

on the results page (Fig. 3) 

 

 

Figure 3: PANTHER analysis example output. The second and third column hold the 
number of genes in the reference and FH list mapping to the PANTHER classification 
category in the first column. The expected number of genes in the respective category 
is listed in column four. A plus or minus sign in the fifth column indicates over- or 
under-representation of features for a given category. The last column of the results 
table holds the p-values indicating the significance of deviation of the identified number 
of features with respect to the number of features present in a particular category when 
following a chi-square test. 
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3.5. In-silico Promoter Analysis 

Transcription factors with enriched binding sites in a set of genes or proteins can be 

identified with the oPOSSUM tool (http://www.cisreg.ca/cgi-bin/oPOSSUM/opossum). 

Gene as well as protein identifiers are accepted by the analysis tool such as Ensembl 

IDs, HUGO Gene Symbols or aliases, RefSeq IDs, or Entrez Gene IDs. 

The following steps are necessary to obtain transcription factors with enriched binding 

sites. For a discussion of input parameters see Note 5. 

1. select as organism either human or mouse 

2. select the type of identifier and upload your list of IDs 

3. select all JASPAR Core profiles with a specificity of 10 bits 

4. set the level of conservation to the top 10% of conserved regions and the matrix 

match threshold to 85% 

5. define the region in respect to the transcription start site to be searched for 

binding sites 

6. focus on significantly enriched transcription factors by setting the Z-score >= 5 

and the p-value of the Fisher‘s exact test to <= 0.05 

 

In our example the transcription factor NR2F1 is found to be significantly enriched with 

a p-value of < 0.001 and a Z-score of 8.069 when searching 2000 base pairs upstream 

of the transcription start sites of all upregulated genes. Next to the statistics the counts 

of transcription factor binding sites in our gene set as well as in the background gene 

set is given along with the transcription factor class and supergroup the transcription 

factor belongs to. A detailed view of the predicted binding sites in the analysis dataset 

is accessible via the link in the field of target gene hits. 

 

3.6. Integrated Approaches 

The STRING tool (http://string.embl.de) for the generation of protein interaction 

networks accepts both, protein identifiers or protein sequences as input. To retrieve 

protein identifiers from the list of differentially expressed genes, the DAVID tool can be 

used. The procedure is the same as described in 3.4. for the assignment of GO terms 
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and pathways, but the box UNIPROT_ACCESSION from the Main Accession node has 

to be selected. The following steps lead to a STRING network of proteins from the 

differentially expressed genes:  

1. select the multiple names tab from the search box 

2. paste the list of protein identifiers in the respective box 

3. choose Homo sapiens as organism 

4. start the analysis 

5. review the list of input proteins and continue 

 

 

 

Figure 4: Subgraph extracted from the STRING protein network. Edge colors indicate 
the type of interaction. Olive edges: interaction based on textmining; Pink edges: 
experimental interaction evidence; Blue edges: information from other databases. 

 

http://string.embl.de/
http://string.embl.de/
http://string.embl.de/
http://string.embl.de/
http://string.embl.de/
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The resulting network holds the uploaded proteins and can be further expanded with 

additional interacting partners by selecting the more button below the graphics. The 

default network view is the evidence view, where nodes represent proteins and edge 

color indicates the type of evidence for the association. Further views can be selected 

on the bottom of the results page.   

Fig. 4 shows a resulting subgraph when expanding the entire network of differentially 

expressed genes by adding ten additional partners with the highest evidence score. 

For the given example most of the members are involved in mRNA transcription 
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4. NOTES 

 

1. A listing of databases, web-based resources and tools discussed in this work is 

given in Table 1. 

2. Next to the zipped CEL files, the GEO accession summary page provides links to 

three additional files holding information on metadata and the normalized expression 

values. The SOFT formatted family file and the MINiML formatted family file include 

information about the family of the specific accession in text or XML format, 

respectively. Family implies all records related to the accession, including platform, 

sample, and series records. The third file is called ‗Series Matrix File‘ and is a text file, 

holding expression values for all samples in matrix format. The header of these files 

contains all relevant metadata including the abstract, contributors, sample hybridization 

protocol, processing method, etc., and can be used as input for analysis software 

packages like the TIGR MeV tool. 

3. CARMAweb provides several different methods for preprocessing, including MAS5, 

RMA, and additionally custom normalization can be defined. The custom normalization 

allows the user to select from various methods for the consecutive steps of the 

preprocessing procedure. In order to make arrays comparable, the expression values 

are scaled up or down using a pre-defined intensity value, which is by default set to 

200 when using MAS5 in CARMAweb. A histogram and a boxplot of the raw data as 

well as of the normalized data are drawn after checking the respective box. These plots 

can give a first impression of the data and array quality. If a dataset includes array 

replicates, they can be merged by calculating the mean expression values across the 

replicates. 

4. SAM is implemented for two-class unpaired, two-class paired, multi-class, censored 

survival, and one-class group comparisons. Because the FH dataset used in the given 

example case consists of two groups (diseased and healthy) and no pairing of samples 

is available, we choose the two-class unpaired design. For our dataset we consider 

500 permutations to be sufficient for reaching robust results. This number however can 

be increased up to the point where all possible permutations are performed. If a 

number higher than the possible number of unique permutations is entered the user is 

asked whether to use all possible permutations. The S0 constant minimizes the 

coefficient of variation of the relative difference in gene expression and is computed as 

a percentile based on alpha, which indicates the probability of false positive results. Q-
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values can be computed to indicate the lowest false discovery rate at which the 

transcript is denoted as significant. For imputation of missing values, SAM provides two 

methods, namely the K-nearest neighbor algorithm and the row average method. The 

K-nearest neighbor algorithm replaces missing values with the k nearest neighbors 

according to the Euclidean distance, whereas the row average method simply uses the 

mean of the expression values for the respective transcript over all arrays. 

5. In order to reduce the number of false positive predictions the use of more stringent 

input parameters is advised. We only use transcription factor binding matrices with a 

minimum specificity of 10 bits and a matrix match threshold of 85%. Additionally, only 

the top 10% of conserved regions with a minimum conservation of 70% are used. 
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2.1.1 The Thesis Author’s Contribution 

 

The author of the thesis designed the bioinformatics and data workflow for this 

methodological concept paper and conducted the specific data retrieval and analysis 

steps of this work. 

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Retrieval of the gene expression dataset on familial hypercholesterolemia from 

the Gene Expression Omnibus database 

 Preprocessing of the dataset including background correction and raw data 

normalization using the CARMAweb tool 

 Identification of differentially expressed genes using the SAM (Significance 

Analysis for Microarrays) provided by the TIGRMeV software 

 Functional annotation and enrichment analysis using the DAVID tool 

 Functional annotation and enrichment analysis using the PANTHER 

classification tool 

 Converting gene identifiers to protein identifiers using the DAVID tool 

 Generation of protein interaction networks according to the STRING tool 

 Writing and preparation of the text describing the performed analysis steps  

 Preparation of tables and figures presented in the Methods section 

 Lead in preparing the manuscript draft 
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SUMMARY 

 

Ischemia reperfusion injury (IRI) is a choreographed process leading to delayed graft 

function (DGF) and reduced long term patency of the transplanted organ. Early 

identification of recipients of grafts at risk would allow modification of the post 

transplant management, and thereby potentially improve short and long term 

outcomes.  

The recently emerged ‗omics‘ technologies together with bioinformatics work-up have 

allowed the integration and analysis of IRI-associated molecular profiles in the context 

of DGF. Such a systems biology approach promises qualitative information about 

interdependencies of complex processes such as IRI regulation, rather than offering 

descriptive tables of differentially regulated features on a transcriptome, proteome or 

metabolome level leaking the functional, biological framework.  

In deceased donor kidney transplantation as the primary etiology resulting in IRI and 

DGF, a distinct signature and choreography of molecular events in the graft before 

harvesting appears to be associated with subsequent DGF. A systems biology 

assessment of these molecular changes suggests that processes along inflammation 

are of pivotal importance for the early stage of IRI. The causal proof of this association 

has been tested by a double-blinded RCT of steroid or placebo infusion into deceased 

donors before the organs were harvested. Thorough systems biology analysis revealed 

a panel of biomarkers with excellent discrimination. 

In summary, integrated analysis of omics data has brought forward biomarker 

candidates and candidate panels which promise early assessment of IRI. The clinical 

utility of these markers, however, still needs to be established in prospective trials in 

independent patient populations.  
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INTRODUCTION 

Renal transplantation is the treatment of choice for end stage renal disease but this 

option is limited by the availability of donor organs. Deceased donor transplantation 

accounts for the majority of transplants performed in most parts of Europe and the 

United States, however the short and long term outcomes are worse compared to live 

donor kidney transplantation. There are several explanations for this phenomenon, but 

certainly the autonomous cytokine storm after brain death in the donor characterized by 

central diabetes insipidus and subsequent hemodynamic instability heavily contributes 

to this incident. In comparison, kidneys from live donors almost never show signs of 

inflammation and acute tubular damage as evidenced from biopsies obtained after 

harvest but before engraftment [1]. Tubular and vascular damage in the donor organ 

after cold ischemia but before transplantation is highly associated with subsequent 

ischemic reperfusion injury (IRI) and delayed graft function (DGF). In fact according to 

large registries such as the UNOS/SRTR, recipients of standard criteria deceased 

donor organs experience DGF defined as more than one post-transplant dialysis in 

roughly 20% of cases. Recipients of organs from extended criteria donors, or donors 

with cardiac death exhibit an even higher rate of up to 50% primary non-function [2]. 

Graft survival of organs with DGF is dramatically impaired compared to primary 

functioning kidney grafts. The relative risk of graft failure is 1.5 to 2.5 fold higher in DGF 

compared to primary functioning grafts [2-4].  By appreciating this dramatic impact of 

DGF on outcomes it becomes obvious that acute renal failure is in fact not a ‘cute‘ 

renal injury but a rather devastating condition which needs to be prevented by all 

means. Prevention requires identification of subjects at risk before the event occurred. 

Thus we were set out over the last decade to search for potential biomarkers for IRI 

and DGF in donor kidneys on a genome wide basis. 

 

The performance characteristics and validity of such biomarkers, however, is difficult to 

assess since this process requires the analysis of the derived markers with 

morphological grading of the allograft as gold standard for tissue injury. Furthermore, 

thorough clinical follow up of recipients of these allografts is mandatory. And lastly, the 

predictive values of these biomarker tests depend on the incidence of IRI. So far no 

kidney biomarker exists that exhibits adequate discrimination and calibration for useful 

clinical application. It is likely that a panel of a few, rather than single biomarkers will be 

used in the future to identify subjects at risk for IRI and DGF.  
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If subjects at risk could be identified with adequate precision, prophylactic measures 

would be feasible potentially leading to a reduced rate and severity of IRI - and 

hopefully longer graft patency. The next paragraphs provide an overview on biomarker 

discovery and verification for the prediction of IRI, and their utility for clinical use. 

 

HUMAN STUDIES 

A number of studies have been performed utilizing animal models of IRI [5-7]. 

Supavekin and colleagues report on expression analyses using cDNA microarrays in a 

mouse model identifying 91 upregulated and 156 downregulated genes after ARF 

induction with a significant number involved in apoptotic processes [7]. Yoshida et al. 

identified 109 differentially expressed genes in a mouse model with ischemia 

reperfusion injury induced ARF [6]. In a similar setting in a rat model the same group 

reported 18 genes as being differentially expressed after IRI induced ARF [5]. 

However, a shortcoming of these animal trials is their unclear resemblance of the 

human situation. Comparing e.g. differential gene expression profiles from the studies 

mentioned above provided only partial overlap on the level of involved features [8]. 

The first genome wide gene expression studies in human donor kidney biopsies were 

performed more then five years ago. Hauser and colleagues showed that genes 

participating in the functional ontologies of inflammation and immune response were 

the primary predictors of subsequent IRI and DGF [9]. These data were confirmed on 

the protein level for selected candidates of these GO families such as the adhesion 

molecules ICAM-1, VCAM and ELAM [10]. The immunohistochemistry studies showed, 

as expected, varying expression of protein markers of inflammation in different 

compartments of the kidney such as the tubulointerstitium, the vessels and the 

glomerular capillary loops. Thus subsequent studies used laser capture 

microdissection to separate the functional units of the nephron before analyzing 

compartment specific differential gene expression using live donor kidney biopsies 

obtained immediately before transplantation as controls. Kainz and colleagues 

demonstrated that gene expression profiles are distinctly different not only between the 

compartments, i.e. glomeruli and the tubulointerstitium, but also between deceased 

and live donor kidneys. Again, members of the inflammation and immune response 

family were the main discriminators between the compartments and organ sources. 
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Mueller et al. also analyzed the transcriptome of zero hour donor kidney biopsies and 

reported a gene set consisting of 1051 transcripts differentially expressed between a 

group of organs from deceased donors with greater incidence of delayed graft function 

as compared to a group of organs from deceased donors with primary function [11]. 

Mas and colleagues identified 36 candidate genes associated with delayed graft 

function in deceased donor kidney biopsies with a large fraction being involved in 

inflammatory responses [12]. 

A summary of biomarker candidates presently discussed in the literature in the context 

of IRI and DGF is given in Table 1. 

Gene Name Gene Symbol References 

actin, alpha 2, smooth muscle, aorta ACTA2 Badid et al. [13] 

uromodulin UMOD 
Lynn and Marshall [14]; 
Zimmerhackl [15] 

lectin, galactoside-binding, soluble, 3 LGALS3 Nishiyama et al. [16] 

spermidine/spermine N1-acetyltransferase 1 SAT1 Zahedi et al. [17] 

hepatitis A virus cellular receptor 1 HAVCR1 
Ichimura et al.[18];         
Hong et al. [19];            
Vaidya [20] 

chemokine (C-X-C motif) ligand 1 CXCL1 Molls et al.[21] 

annexin A2 ANXA2 Cheng et al. [22] 

S100 calcium binding protein A6 S100A6 Cheng et al. [22] 

cysteine-rich, angiogenic inducer, 61 CYR61 Muramatsu et al. [23] 

S100 calcium binding protein B  S100B Pelinka et al. [24] 

alpha-1-microglobulin/bikunin precursor AMBP Herget-Rosenthal et al. [25] 

lipocalin 2 LCN2 Mishra et al. [26] 

complement component 3 C3 Farrar et al. [27] 

fatty acid binding protein 1, liver FABP1 
Yamamoto et al. [28]; 
Pelsers et al. [29] 

activating transcription factor 3 ATF3 
Zhou et al. [30];         
Yoshida et al. [31] 

Netrin 1 NTN1 Reeves et al. [32] 

endoglin ENG Docherty et al. [33] 

guanylyl cyclase G GUCY2G Lin et al. [34] 

BH3 interacting domain death antagonist BID Wei et al. [35] 

B-Cell CLL/lymphoma 2 BCL2 
Valdes et al. [36];           
Waller et al. [37] 

BCL2-associated X protein BAX 
Valdes et al. [36];          
Waller et al. [37] 

Prostaglandin-endoperoxide synthase 2 PTGS2 
Villanueva et al. [38]; 
Matsuyama et al. [39] 

ADAM metallopeptidase with 
thrombospondin type 1 motif, 1 

ADAMTS1 Basile et al. [40] 

Cyclin-dependent kinase inhibitor CDKN1A 
Chkhotua et al. [41]; 
Hochegger et al. [42] 
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Collagen, type XVIII, alpha 1 COL18A1 Bellini et al. [43] 

 

Table 1: Biomarker candidates in the context of IRI and DGF as reported in the 
literature. Provided is the gene name, the gene symbol, and the respective scientific 
references. 

 

Most of the omics studies performed so far reported features differentially regulated on 

the transcriptome or proteome level. However, such descriptive lists are hardly 

amenable for a functional interpretation with respect to associated processes and 

pathways. For addressing this issue, subsequent approaches in that very field were 

designed to enhance the understanding of the choreographed processes by using 

extended bioinformatics [44]. Systems biology is one means where information 

characterizing IRI on different cellular layers as genome wide gene expression or 

proteomics are incorporated in the data analysis to better identify functionally 

interlinked molecular processes (instead of descriptive feature lists), and on this basis 

an improved identification of biomarkers which potentially predict biological events such 

as IRI and DGF [45,46] might become feasible.  

 

Effects of IRI on medium term graft function as well as other related outcomes such as 

ESA use in the first year after engraftment were recently studied by such approaches 

[47,48]. Perco and colleagues, as well as Wilflingseder and coworkers identified 

molecular predictors in the donor kidney biopsy supporting the prediction of the graft 

status one year after implantation. The accuracy of this approach provided an 

explanation of 28% of the variability of one year serum creatinine using a biomarker 

panel, whereas morphological criteria (CADI score) together with clinical variables 

performed much poorer (adjusted R2 of 14%). The main predictors came from the NLR 

protein family, pyrin domain containing 2 (NLRP2), immunoglobulin J polypeptide (IGJ), 

and the regulator of G-protein signaling 5 (RGS5), again indicating the central role of 

immune response signaling [47]. 

 

Similarly, the use of ESA requirement in the first year after engraftment is more 

prevalent in subjects who experience IRI and subsequent DGF. Wilflingseder and 

colleagues [49] found that regulators of immunity and inflammation may be used as 

biomarkers for IRI and subsequent ESA dependency even when adjusted for variables 

known to be associated with anemia including donor age, biopsy confirmed acute 
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rejection, serum CRP levels or GFR. The AUC of the ROC curve for the prediction of 

ESA dependency was 0.93 in the molecular predictor model but only 0.84 in the model 

of clinical variables [49].  The authors found three specific genes SPRR2C (small 

proline-rich protein 2C pseudogene), B3GALTL (beta-1,3-galactosyltransferase-like), 

and GSTT1 (glutathione S-transferase theta 1), which are now further evaluated as 

biomarkers for ESA dependency. 

 

The usefulness of the information in terms of biomarker utility has certainly improved 

over the last years by providing qualitative information on IRI and DGF associated 

molecular processes. Nevertheless, the assessment accuracy on the basis of the 

presently given biomarker spectrum is still rather poor. This finding might be grounded 

on the considerable false positive rate of omics results, partially based on experimental 

heterogeneity as well as on shortcomings of applied statistical analysis procedures. 

Therefore we set out to incorporate given IRI associated omics profiles in a fully 

integrated systems biology framework. 

 

THE ‘omicsNET’ DATA INTEGRATION APPROACH 

Hauser and colleagues performed a transcriptomics study comparing live and diseased 

kidney donor organs, and identified 90 genes as differentially regulated [9]. As outlined 

above, the incidence of postischemic acute transplant kidney failure is significantly 

increased when implanting donor organs from deceased subjects. The main functional 

roles of the corresponding genes according to the PANTHER (Protein ANalysis 

THrough Evolutionary Relationship) Classification System (http://www.pantherdb.org) 

were immunity and defense as well as metabolism, as presented in Table 2A. 

Significant categories were identified using chi-square test statistics of assigned genes 

as compared to a reference gene set of all assigned human genes. 

 

We further analyzed this data set in a computational systems biology framework 

following an interaction network analysis: The methodological basis of this approach is 

computational delineation of dependencies between human genes and proteins which 

are derived by inclusion of a broad omics data spectrum: Each gene/protein is 

represented as object (node in the interaction network) and characterized by 

associated functional annotation terms (stemming from e.g. gene ontologies), the given 

http://www.pantherdb.org/
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genes‘ reference expression as determined for 32 tissues, experimentally derived 

interaction data of encoded proteins, as well as the proteins‘ subcellular location. On 

the basis of this object annotation we computed pair-wise object-object dependencies 

(representing edges between the nodes) applying a functional utilizing the annotation 

data as parameters. The resulting reference graph therefore encodes an estimate on 

the (functional) dependencies between genes and proteins. We then mapped the 90 

features found to be differentially regulated between live and diseased donor organs on 

the corresponding gene objects of the reference graph, and computed the shortest 

paths between these nodes. The resulting subgraph is given in Figure 1. 

 

The subgraph (holding in total 84 gene/protein nodes) derived on the basis of the gene 

expression profile holds all genes being statistically significantly differentially expressed 

(blue), includes all genes/proteins interconnecting the expression profile 

representatives (grey), and identifies the interconnecting nodes belonging to the 

functional category inflammation, given in orange. Obvious is the significant enrichment 

of inflammation-associated genes encoded in this subgraph, as also found when 

computing significantly enriched biological processes as provided in Table 2B.  

 

biological process p-value 

(A) statistical analysis   

  Immunity and defense 1.8E-04 

  Proteolysis 1.1E-04 

  Lipid metabolism 9.4E-03 

  Amino acid metabolism 1.2E-02 

  Complement-mediated immunity 1.3E-02 

(B) dependency graph analysis   

  Immunity and defense 3.2E-32 

  Signal transduction 6.0E-29 

  Cell proliferation 7.5E-28 

  Blood clotting 2.6E-18 

  Protein phosphorylation 4.3E-18 

 

Table 2: PANTHER biological processes and their significance of population 
expressed as p-value following a chi-square test for (A) statistical analysis of the gene 
expression data alone and (B) analysis of the 84 nodes (107 edges) as defined in the 
context of the dependency graph (Figure 1). 
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As mentioned above, several studies identified markers of inflammation in the donor 

kidney as being associated with DGF but a causal proof was never done as this would 

require testing the suppression of inflammation in the donor. Two nodes of the 

subgraph are of particular interest, namely NFKB1 and NR3C1, as these are targets of 

corticosteroids. Supported by this analysis we designed a double blinded RCT to test 

the hypothesis whether suppression of inflammation in the donor would ameliorate IRI 

and subsequently reduce the rate of DGF. This study is presently ongoing. 

 

 

 

 

 

Figure 1: Subgraph interlinking significantly differentially regulated genes 
characterizing DGF as determined by analyzing biopsy samples of live and diseased 
donor kidneys. Nodes represent genes/proteins, and edges indicate dependencies 
between nodes. Blue colored nodes indicate genes identified as significantly 
differentially regulated, grey colored nodes resemble members of shortest paths 
connecting experimentally identified nodes, and orange colored nodes being members 
of the functional category inflammation. Red squares indicate the corticosteroid targets 
NR3C1 and NFKB1. 
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We repeated this dependency graph analysis approach utilizing the biomarker 

candidate list given in Table 1, and the results are shown in Table 3. 

 

biological process p-value 

(A) statistical analysis   

  Angiogenesis 4.19E-05 

  Oncogenesis 1.66E-04 

  Mesoderm development 1.86E-03 

  Developmental processes 4.00E-02 

  Cell proliferation and differentiation 1.23E-02 

(B) dependency graph analysis   

  Cell proliferation and differentiation 3.31E-15 

  Signal transduction 6.79E-14 

  Oncogenesis 8.04E-11 

  Immunity and defense 5.59E-10 

  Protein phosphorylation 6.74E-10 

 

Table 3: PANTHER biological processes and their significance of population 
expressed as p-value following a chi-square test for (A) statistical analysis of the 
candidate biomarkers alone and (B) analysis of the 262 nodes (411 edges) found when 
identifying the candidate biomarker-associated dependency subgraph. 

 

On the basis of the public domain candidate list, inflammation events as represented 

by immunity and defense mechanisms is not over-represented, as no respective 

entries are given in Table 3A. Top ranked category is angiogenesis with the majority of 

genes being anti-angiogenic. This is interesting since hypoxia following ischemia 

reperfusion injury would suggest an upregulation of pro-angiogenic factors. Basile and 

colleagues investigated angiogenesis related genes in the context of ischemia 

reperfusion injury in more detail in a microarray study and identified ADAMTS1, a 

secreted VEGF inhibitor, as being highly upregulated after IRI [40]. Rudnicki et al. 

deciphered the connection between the VEGF pathway and hypoxia in the setting of 

chronic kidney disease, and found a decreased expression of VEGF although hypoxia 

inducible factors were highly upregulated in patients with a progressive course of 

disease [50]. Other processes identified involve developmental events and apoptosis.  

 

After mapping the 25 biomarker candidates on the dependency reference graph and 

determining the shortest paths interlinking the candidates, 237 additional nodes were 
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found in the subgraph. Computing the biological processes over-represented on this 

level ranks cell proliferation and differentiation as most prominent process, and 

immunity and defense also emerges as being relevant categories (Table 3B). 

 

CLINICAL APPLICATION 

A number of studies have been carried out recently to evaluate the role of the most 

promising biomarkers in the prediction of clinical outcomes in acute renal failure (ARF). 

Liangos et al. conducted a cohort study of 198 hospitalized patients with ARF, 37% 

among them with an ischemic cause. They showed that HAVCR1 (KIM-1) levels are 

associated with measurements of disease severity [51].  

However, the clinical utility of markers as KIM1 and NGAL in the context of DGF still 

has to be demonstrated. We have started a clinical study for evaluating the impact of 

inflammation on DGF. This clinical study includes steroid pretreatment of the deceased 

organ donor to detect a reduction in the rate of IRI and DGF from the current 25% to 

12.5% with adequate power (Current Controlled Trials Registration ISRCTN78828338). 

The trial with a calculated sample size of 420 required a protocol donor kidney biopsy 

which was subjected to genomics and Systems Biology analyses.  As of the end of 

2008 all subjects have been enrolled and most of the analysis performed. The interim 

analysis after half of the sample size has been enrolled was presented at the annual 

American Society of Nephrology meeting in 2008 [52]. This analysis showed nice 

suppression of inflammation in the steroid group and perfect discrimination by 

treatment. The effect on the clinical endpoint DGF however was not affected in a way 

that would have allowed stopping the trial by the pre-specified alpha error boundaries 

which were set according to the Lan DeMets extension of the O‘Brian Fleming criteria. 

The analysis of the full data set will be presented in a full paper in 2009, then providing 

more evidence on the potential role of inflammation in IRI and DGF. 

 

Besides the causal proof of molecular features which are associated with early graft 

dysfunction, validation of candidate biomarkers in an independent sample and different 

types of accessible body fluids such as blood or urine is required. These requests 

suggest that the identified molecular feature on the mRNA level cause also a 

differential abundance of respective protein(s). These protein(s) need to be secreted 

from injured renal cells of any compartment whatsoever and have to have certain 

kinetics, i.e. a half life of few hours which would allow detection of dynamic chances. 
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Finally, even before the test characteristics can be checked, a reliable measurement of 

the concentration of this(ese) protein(s) need to be established e.g. utilizing ELISA 

other approaches.  

 

CONCLUSION 

Novel biomarker candidates for assessment of IRI emerged recently, and omics 

techniques have provided a major contribution to these discoveries. However, so far 

there is no clear ‗best‘ predictive marker that has been validated in independent 

samples neither on mRNA nor on protein level. Novel analysis procedures as systems 

biology approaches might provide further insight into the cellular processes 

characterizing IRI, which in turn will allow selection of superior biomarker candidates.  

Following the present data status inflammation events may be early stage indicators of 

IRI, triggering subsequent events along cell proliferation and apoptosis. 
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2.2.1 The Thesis Author’s Contribution 

 

The thesis author contributed to the study design. Moreover, the author performed the 

literature research on biomarkers associated with Ischemia Reperfusion Injury and 

Delayed Graft Function, as well as the functional analyses steps for the literature and 

transcritomics datasets. Interpretation and discussion of the results were carried out in 

collaboration between all authors of the publication. 

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Review and analysis of the selection of keywords used for the literature 

research, as well as selection of bioinformatics analyses tools 

 Performance of the literature research in PubMed  

 Functional annotation and enrichment analyses of the literature derived 

biomarker candidates and differentially expressed genes in deceased donor 

kidneys (obtained from Hauser et al. [9]) using the PANTHER classification tool 

 Functional annotation and enrichment analyses of those genes that derived 

from the interaction network analyses using the PANTHER classification tool  

 Contributions to the discussion of biomarker candidates and their clinical 

applications 

 Lead in preparing the manuscript draft 
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ABSTRACT 

Background 

We recently showed in a randomized control trial that steroid pre-treatment of the 

deceased organ donor suppressed inflammation in the transplant organ but did not 

reduce the rate or duration of delayed graft function (DGF). The present study sought 

to elucidate what factors caused DGF in the steroid treated subjects. 

Methods 

Genome-wide gene expression profiles were used from twenty steroid pre-treated 

donor organs and were analyzed on the level of regulatory protein-protein interaction 

networks.  

Results 

Significance analysis of microarrays yielded 63 significantly down-regulated sequences 

associated with DGF that could be functionally categorized according to PANTHER 

ontologies into two main biological processes: transport (p<0.001) and metabolism 

(p<0.001). The identified genes suggest hypoxia as cause of DGF which cannot be 

counterbalanced by steroid treatment.  

Conclusions 

Our data showed that molecular pathways affected by ischemia such as transport and 

metabolism are associated with DGF. Potential interventional targeted therapy based 

on these findings includes PPAR-agonists or caspase inhibitors.  

 

KEYWORDS: bioinformatics, delayed graft function, renal transplantation, system 

biology, transcriptome 
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INTRODUCTION 

Kidney transplantation is the preferred treatment of end stage renal disease because it 

is considerably cheaper than dialysis and allows for an almost normal life. One of the 

main reasons of graft failure is delayed graft function (DGF), a form of acute renal 

failure resulting in post-transplantation oliguria, increased allograft immunogenicity and 

risk of acute rejection episodes, and decreased long-term survival [1]. Roughly one 

third of transplant patients receiving an organ from a deceased donor develop DGF 

and have to be treated by dialysis until the engrafted organ resumes function. The 

hazard ratio for graft failure is almost twice as high in recipients who experienced DGF 

compared to those without initial complications [2]. Factors which contribute to DGF 

can be divided into donor-related and recipient-related factors. Donor-related factors 

include donor age, diseases such as hypertension, brain death associated causes such 

as hemodynamic instability, massive cytokine release and vasopressor use. A 

thorough discussion of donor and recipient factors contributing to DGF was published 

by Schwarz et al [3]. The fact that DGF is a rare exception in live kidney transplantation 

suggests that donor factors rather than the transplant procedure itself mainly contribute 

to DGF. 

Next to the histopathological examination of renal biopsies the determination of gene 

expression profiles in donor organs poses an option to determine graft quality and even 

predict transplant outcome to a certain extent [4,5]. In a recent study from our group we 

reported a number of differentially regulated genes when comparing donor organs from 

living and deceased donor organs. Upregulated genes in tissue samples from 

deceased donors were mainly involved in inflammatory processes, complement 

activation, apoptosis and cell adhesion [6].  

Based on these findings we initiated a randomized, double blinded, placebo controlled 

trial to elucidate whether pretreatment of deceased organ donors with corticosteroids 

(1g methylprednisolone) before organ retrieval will reduce inflammation and 

subsequently the rate of DGF after engraftment. One main finding of this study with 

447 renal allograft recipients was that steroid pretreatment caused a reduction of 

inflammatory signatures in the donor kidney as monitored on the level of gene 

expression profiles. However neither rate nor the duration of delayed graft function was 

different in the treatment and placebo group. We therefore hypothesize that additional 

pathways next to inflammation are involved in the development of DGF. Thus the 

analysis of the steroid treatment arm provides a unique opportunity to investigate 

molecular mechanisms other than inflammation which contribute to DGF.  
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Brain death is associated with rapid swings in blood pressure, hypo- and hypertension, 

coagulopathies, pulmonary changes, hypothermia and electrolyte aberrations [7-9]. 

Therefore donor brain death does not only result in increased inflammation but also 

leads to hypoperfusion and hypoxia of the donor organ [10]. 

The main objective of the present work was to elucidate molecular causes of DGF that 

were not abolished by the steroid donor pretreatment. Specifically we compared the 

molecular signature of kidney biopsies from steroid treated donors with primary graft 

function to kidneys with DGF. We sought to identify potential new targets for 

intervention which ultimately may reduce the current high rate of DGF. 

 

 

MATERIAL AND METHODS 

 

Donor and recipient characteristics: 

Out of the 238 recipients of steroid pretreated donor kidneys we randomly identified ten 

of 52 who developed DGF and matched an equal number of primary graft kidneys. 

Matching variables of controls were cause of donor death (stroke vs trauma) and 

calliper matching of donors‘ last creatinine and donor age.  

The rationale behind the sample size was that based on previous data twenty biopsies 

would be sufficient to detect a more than twofold difference in the expression of 30 

predefined genes at an adjusted p-value of <0.05 using the Bonferroni Holm method 

[6,11]. 

 

Trial design  

Details on the multicenter trial may be found elsewhere (http://www.controlled-

trials.com/ISRCTN78828338 and Kainz & Wilflingseder et al. [12]. In brief 269 donors 

stratified for age were equally randomized in blocks of four to 1000mg of corticosteroid 

or placebo injection six hours before organ recovery. Before transplantation, kidney 

wedge biopsies were obtained and subjected to genomics analyses. The 

posttransplant clinical course was monitored.  

http://www.controlled-trials.com/ISRCTN78828338
http://www.controlled-trials.com/ISRCTN78828338
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The study protocol was approved by the Institutional Review Board (Ethical Committee 

of the Medical University of Vienna # EK-067/2005, to be found at 

http://ohrp.cit.nih.gov/search/asearch.asp) and the EUROTRANSPLANT kidney 

advisory committee (#6021KAC06) at each study site and conducted according to IRB 

standards at each institution. DGF was defined as the need for more than one dialysis 

treatment within the first week after transplantation or creatinine values above 3mg/dl 

during the first week after transplantation.  

 

Laboratory procedures and biostatistical analyses 

Donor kidney biopsy specimen, RNA isolation and amplification 

All organs were perfused with a histidine-tryptophan-ketoglutarat cold preservation 

solution at 4°C during organ procurement [13]. The cold ischemic time was not longer 

than 24 hours. Wedge biopsies of each kidney were taken under sterile conditions at 

the end of the cold ischemic time right before transplantation. The biopsy specimens 

were immediately submerged in RNAlaterÔ (Ambion, Austin, Texas) and stored at 4°C.  

Total RNA was isolated and purified using chloroform and trizol reagent (Invitrogen, 

Carlsbad, California). RNA yield and quality was checked with the Agilent 2100 

Bioanalyzer and RNA6000 LabChip  kit (Agilent, Palo Alto, California). Stratagene 

Universal human reference RNA was used as reference (Stratagene, La Jolla, 

California).  

Two micrograms of isolated total RNA were amplified using the RiboAmp RNA 

amplification kit (Arcturus, Mountain View, California). The amplified RNA was 

inspected on an ethidium bromide stained 1% agarose gel and on the Agilent 2100 

Bioanalyzer. For the twenty zero-hour kidney biopsies the RNA was of sufficient quality 

to proceed with microarray analysis.  

 

Microarray hybridization and scanning 

cDNA microarrays holding 41,421 (batch: SHEO) features were obtained from the 

Stanford University Functional Genomics core facility. All microarray experiments were 

performed as described earlier [14]. The detailed protocols are available at 

http://genome-www.stanford.edu/. Using a type II experimental setup, 1 µg of sample 

and standard Stratagene Universal human reference aRNA were labeled with CyScribe 

http://ohrp.cit.nih.gov/search/asearch.asp


80 
 

cDNA post labeling kit (Amersham Pharmacia Biotech, Buckinghamshire, UK) in a two-

step procedure. 

Samples were loaded onto arrays and incubated for 18 hours in a 65°C water bath. 

After three washing steps, the fluorescence images of the hybridized microarrays were 

examined using a GenePix 4100A scanner (Axon Instruments, Union City, California). 

The GenePix Pro 6.0 software was used to grid images and to calculate spot 

intensities. Arrays were numbered according to the anonymous organ donor ID, and 

were processed in random order. Image-, grid- and data-files were submitted to the 

Stanford Microarray Database (http://genome-www5.stanford.edu/MicroArray/SMD/) 

and follow MIAME guidelines for arrays experiments [15,16]. Raw datafiles as well as 

the MIAME checklist are available at our laboratory webpage at 

http://www.meduniwien.ac.at/nephrogene/data/DGF/.  

 

Microarray data analysis 

The microarray dataset consisted of 41,421 cDNA features. 41,025 of those held a 

UniGene Cluster ID (27,442 unique genes), 396 were expressed sequence tags 

(ESTs) not assigned to a UniGene Cluster. Mean sector and printing plate ANOVA R2-

values of the microarray experiments were on average 4.5x10-2 and 3.1x10-2 

respectively, suggesting no dependency of results on spatial location or plate printing 

procedures. In a first pre-processing step a quality filter was applied on the dataset by 

considering only genes and ESTs with spot intensities of at least 1.5-fold over 

background in either channel 1 or 2 of the microarray thus leaving 32,588 cDNA 

features in the dataset. Only genes and ESTs with at least 80% of valid entries were 

considered for successive analysis steps thus further reducing the dataset to 24,624 

cDNA features. The remaining missing data points were substituted applying a k-

nearest-neighbor algorithm, where the number of neighbors, k, was set to ten [17]. No 

correction for a putative batch bias was necessary because only one array batch was 

used in the whole analysis for all arrays. We used the SAM methods as well as the 

student‘s t-test in order to find differentially regulated genes (DEGs) between patients 

experiencing DGF and the control group with primary functioning grafts [18]. The p-

value threshold was set to < 0.05 with fold-change values greater than two. The 

number of permutations in the significance analysis of microarrays (SAM) method was 

set to twenty-thousand and a false discovery rate of 2.5% was selected. Differentially 

expressed genes were hierarchically clustered and graphically represented using the 

MultiExperiment Viewer developed at The Institute for Genomic Research [19]. The 

http://www.meduniwien.ac.at/nephrogene/data/DGF/


81 
 

cosine correlation and complete linkage were used as distance measure and linkage 

rule in the hierarchical cluster algorithm, respectively [19,20].  

 

Functional data enrichment 

DEGs were furthermore analyzed with respect to their molecular functions, associated 

biological processes, and cellular locations using gene ontology terms (GO-Terms) as 

provided by the Gene Ontology Consortium [21]. The SOURCE tool from the Stanford 

Genomics Facility was used for linking GO-Terms to the genes of interest [22]. 

Functional grouping of genes was based on GO-Terms, Protein ANalysis THrough 

Evolutionary Relationships (PANTHER) ontologies, and information derived from the 

protein data retrieval system iHOP [23,24]. 

 

Regulatory network analysis 

All identified DEGs were mapped on a molecular dependency graph holding about 

70,000 annotated human proteins [25]. Each graph node codes for a particular protein 

and edges between nodes encode pairwise dependencies. Dependencies were 

computed based on protein-protein interaction information, similarity in gene 

expression, conjoint regulatory patterns on the level of transcription factors and 

microRNAs, as well as assignment to functional ontologies. Subnetworks holding at 

least two DEGs were retrieved and further analyzed on a functional level. 

 

Statistical analysis 

Continuous data were analyzed by Wilcoxon rank-sum tests, categorical data by chi-

square tests or Fisher‘s exact tests when appropriate. A p-value less than 0.05 was 

considered statistically significant. For all analyses SAS for Windows 9.2 (The SAS 

Institute, Inc., Cary, North Carolina, USA) was used. 
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RESULTS 

 

Demographic data on transplant donors and recipients are provided in Table 1. 

  PF group DGF group p-value 

Number of donors 16 na 

Number of donor organs 10 10 na 

Donor age (years) 52.5 ( 45.0, 58.0) 62.5  (55.0, 72.0) 0.045 

Donor sex (f/m) 4/6 7/3 0.370* 

Last creatinine of donor (mg/dl) 1.00  (0.71,  1.20) 0.70  (0.60,  1.00) 0.254 

Vasopressors used (n/y) 2/8 0/10 0.136 

Multiorgan donors (n/y) 7/3 8/2 1.000* 

Cause of death (trauma / intracranial 
hemorrhage / cardiac arrest / else)  

1/8/1/0 0/9/0/1 0.383 

Number of recipients 10 10 na 

Recipient age (years) 57.3  (51.6,  62.2) 59.1  (46.3,  67.1) 0.734 

Recipient sex (f/m) 3/7 3/7 1000 

Transplant number (1/2) 9/1 9/1 1.000* 

Cold ischemic time (hours) 9.9  (7.0,  15.0) 12.7  (10.3,  4.4) 0.308 

PRA latest (%) 0.0  (0.0, 2.0) 0.0  (0.0, 2.0) 1000 

Sum of HLA mismatches (0/1/2/3/4/5/6) 0/1/4/1/1/0/0 0/0/1/3/1/5/0 0.076* 

Number of dialysis treatment (0/1/2/3/4) 10/0/0/0/0 3/5/0/1/1 0.003* 

Immunosuppression (CNI/else)  8/2 9/1 1.000* 

Induction therapy (none/antiCD25/ATG) 6/4/0 7/3/0 0.639 

na ... not applicable, * Fisher‘s exact test 

Table 1: Demographic data of transplant donors and recipients stratified by treatment 
assignment. Continuous data are provided as median (1st, 3rd quartile), categorical data 
are shown as counts.  

 

 

Molecular signatures separating DGF from primary function (PF) in steroid 

treated donor organs 

Using the SAM method sixty-three transcripts could be identified as significantly 

differentially regulated. Both gene lists are provided in the supplementary material 

(tables S1 and S2) sorted by fold–change values.  
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In total 147 features showed fold-change values greater than two and p-values smaller 

than 0.05 following a t-test. The majority of features were suppressed with only ten 

genes being upregulated in the DGF as compared to the PF group. 

An expression profile based clustering resulted in an almost complete discrimination 

between DGF and PF samples as given in figure 1.  

 

Figure 1: Dendrogram derived by unsupervised hierarchical clustering of gene 
expression profiles dichotomizing DGF group (orange bar) from PF (blue bar), all 
received steroid pretreatment. Red spots indicate upregulated transcripts, whereas 
green spots indicate downregulated transcripts relative to the reference RNA used. The 
differentially regulated genes associated with DGF could be categorized according to 
GO-terms mainly into Transport and Metabolism. 
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Functional analysis 

Thirty-nine out of the 63 transcripts (SAM, 41 unique genes) and eighty-four out of the 

135 downregulated transcripts (t-test, 91 unique genes) and could be mapped to 

PANTHER IDs. Significantly enriched or depleted biological processes with at least two 

members are given in table 2 (p-value < 0.05 given by a chi-square test when 

comparing the number of genes associated to the category with the total number of 

genes belonging to this particular process). Enriched processes mainly include genes 

involved in transport and metabolism. DGF-associated downregulated genes include 

many transcripts encoding solute carries (ion, amino acid and glucose transporters) in 

the plasma membrane and other transporters in the cytoplasma and extracellular 

space. Prominent members are the organic anion transporter (SLC22A8), neutral 

amino acid transporter (SLC6A19), the sodium/glucose cotransporter (SLC5A12), 

lipocalin 2 (LCN2), and apolipoprotein D (APOD). Proteins involved in metabolism, 

including lipid, fatty acid, and steroid metabolism, were predominantly downregulated in 

DGF samples. Depleted processes are nucleoside and protein metabolism, mRNA 

transcription and intracellular protein traffic. Upregulated transcripts (t-test, nine unique 

genes) were mainly associated with blood clotting as well as immunity and defense. 

 

  t-test (n=84) SAM (n=39) 

Biological Process 
number of 

genes 
p-value 

number of 
genes 

p-value 

DEGs down-regulated in DGF/enriched processes 

Transport 20 <0.001 8 0.001 

Lipid, fatty acid and steroid 
metabolism 

12 <0.001 5 0.006 

Amino acid metabolism 7 <0.001 2 0.049 

Steroid hormone metabolism 4 <0.001 2 0.002 

Steroid metabolism 6 <0.001 3 0.003 

Ion transport 9 <0.001 - - 

Coenzyme and prosthetic 
group metabolism 

5 <0.001 3 0.003 

Amino acid transport 3 0.001 - - 

Carbohydrate metabolism 8 0.001 - - 

Fatty acid metabolism 4 0.004 - - 

Other amino acid metabolism 2 0.005 - - 

Cation transport 6 0.005 - - 

Electron transport 4 0.010 - - 

Vitamin/cofactor transport 2 0.011 - - 
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Other polysaccharide 
metabolism 

3 0.012 - - 

Cell adhesion 6 0.017 - - 

Homeostasis 3 0.028 - - 

Extracellular transport and 
import 

2 0.028 - - 

Anion transport 2 0.034 - - 

Sulfur metabolism 2 0.035 - - 

Proteolysis 7 0.036 - - 

Other developmental process 2 0.042 - - 

DEGs down-regulated in DGF/depleted processes 

Nucleoside, nucleotide and 
nucleic acid metabolism 

5 0.042 - - 

Intracellular protein traffic 0 0.043 - - 

mRNA transcription 2 0.047 - - 

 
t-Test (n=9) SAM (n=0) 

DEGs up-regulated in DGF/enriched proceses 

Blood circulation and gas 
exchange 

2 <0.001 - - 

Blood clotting 2 <0.001 - - 

Immunity and defense 3 0.009 - - 

 

Table 2: Functional classification of DEGs using PANTHER ontologies: Enriched or 
depleted biological processes separating DGF and PF as derived on the level of 
differential gene expression by t-test and SAM. Categories are ranked by the p-value 
(comparison of expected number of genes and observed number of genes in each 
biological process) indicating the relevance of a particular process. 

 

Interactome Analysis 

We retrieved in total seven networks holding at least two of the differentially regulated 

genes (figure 2). Members of network cluster 1 holding 13 proteins are mainly involved 

in blood clotting with fibrinogen gamma (FGG), fibrinogen alpha (FGA), and the frizzled 

homology 8 being upregulated in patient samples experiencing DGF. Hypoxia and an 

older donor age might lead to the activation of fibrotic pathways which contribute to 

DGF. The central protein of network cluster two is the suppressor of cytokine signalling 

3 (SOCS3) that shows higher expression values in the group of patients with DGF post 

transplant. The other network clusters contain mainly downregulated genes with 

members of cluster 6 being involved in steroid metabolism and members of clusters 4 

and 7 being involved in lipid and fatty acid metabolism (figure 2). 
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Figure 2: Seven identified networks with at least two differentially regulated genes 
between DGF and PF samples. Red nodes depict upregulated genes in DGF samples 
whereas green nodes depict downregulated genes. Differentially expressed proteins 
showed a high connectivity in these networks, thus indicating concerted interaction and 
relevance in the development of DGF. 

 

 

 

DISCUSSION 

 

In the present study we elucidated molecular mechanisms associated with delayed 

graft function after renal transplantation in zero-hour donor kidney biopsies pretreated 

with corticosteroids. Based on our findings poor initial function can be explained by a 

partial shutdown of metabolism and transport activity on a molecular level. 

One possible explanation of reduced transport and metabolism is hypoxia. In the 

absence of oxygen severe energy depletion, i.e. less production of ATP and 

subsequent activation of number of critical alterations in metabolism, occurs [26]. The 

effects of limited oxygen supply are aggravated by the higher demand associated with 

the high tubular oxygen consumption necessary for solute exchange [27] and the high 

rate of aerobic glycolysis [28]. Hypoxia is also a profibrogenic stimulus for tubular cells, 

interstitial fibroblasts, and renal microvascular endothelial cells. Hypoxia can also 

activate fibroblasts and change the extracellular matrix metabolism of resident renal 

cells [29,30] and was shown to play a role in the progression of chronic kidney disease 
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[31]. Therefore, the use of effective preservation solutions and reduction of cold 

ischaemia times may improve kidney function after transplantation [32].  

The downregulation of many transporters is probably caused by less oxygen supply 

and subsequent energy depletion. The solute carrier family 4, sodium bicarbonate 

cotransporter, member 4 (SLC4A4) built a small cluster with the carbonic anhydrase IV 

(CA4) and is involved in the regulation of bicarbonate secretion and absorption and 

intracellular pH suggesting tubular acidosis (figure 2). Protein-protein interactions of 

transporters in the molecular dependency graph are rare suggesting that these 

pathways are under-represented in the interactome analysis.  

Lipid metabolism, fatty acid metabolism and steroid metabolism are downregulated in 

DGF samples and are  the most enriched functional categories next to transport 

function (figure 2, network clusters 4, 6, 7). Although the hydroxyprostaglandin 

dehydrogenase 15-(NAD) (HPGD), the sulfotransferase family, cytosolic, 1C, member 

2 (SULT1C2), and the three glucuronosyltransferase 2 family polypeptides UGT2B15, 

UGT2B4, UGT2B7 are members of the steroid metabolism they cannot be linked 

directly to methylprednisolone treatment. Another prominent gene, the suppressor of 

cytokine signaling 3 (SOCS3), belongs to a family of negative-feedback regulators of 

cytokine signaling. This regulator is induced by its corresponding cytokines leading to 

the subsequent shutdown of the respective signaling cascade [33]. SOCS3 is involved 

in the JAK/STAT-dependent cytokine signaling pathways and is linked to the 

downregulated prolactin receptor (PRLR). On the other side SOCS3 is linked over 

IRS2 (insulin receptor substrate 2) to the downregulated insulin receptor (INSR) (figure 

2, cluster 2).  

Reduced transport activity and metabolism indicating poorer quality of renal grafts was 

also reported by other trancriptomics studies of donor kidney biopsies developing DGF 

[6,34,35]. Roughly one third of reported downregulated genes by Mueller et. al. was 

also identified in our study strengthening the validity of obtained results. The common 

theme of inflammation and immune response in the context of DGF was delineated in 

all three studies. The suppression of inflammation with corticosteroids in our study lead 

to the identification of novel molecular mechanisms besides inflammation and 

complement activation associated with the development of DGF, namely limited 

transport capabilities and decreased metabolic activity of the renal organ. However, 

one cluster in the dependency graph with the down-regulated major histocompatibility 

complex, class II, DR beta 3 (HLA-DRB1) and the up-regulated CD3d molecule, delta 

(CD3-TCR complex) (CD3D) belongs to immunity response.  
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A fair number of induced genes in DGF samples could be linked to blood clotting with 

fibrinogen gamma and fibrinogen alpha being two prominent members. This might in 

part be explained by the older donors in the DGF group. Donor age is a well known risk 

factor of DGF but not all grafts from old donors have necessarily poor graft function. 

Determination of the graft quality based on demographic/clinical and molecular risk 

factors probably provides a much better forecast model [4]. Especially the shortage of 

donor organs makes an expansion of donor criteria to include older and non-heart 

beating donors necessary with the risk of higher rates of DGF. Therefore a better 

understanding of molecular mechanisms leading to DGF is of great interest and new 

strategies and better donor management is of great importance for the prevention of 

this disease. 

 

A limitation of the present study is probably the use of cDNA arrays which cannot 

discriminate between different splice variants in the measurement of expression levels. 

Nonetheless we could identify genes mainly involved in transport and lipid, glucose 

metabolism associated with delayed graft function in renal transplants. 

Based on these results the activation of lipid and glucose metabolism may prevent the 

graft from developing acute renal failure. One possible treatment strategy is the 

administration with peroxisome proliferator-activated receptor (PPAR) agonists. The 

PPARs are ligand-activated transcription factors that control lipid and glucose 

metabolism. Activation of PPARs negatively regulates the expression of genes induced 

by cerebral ischemia/reperfusion injury and was shown to prevent post-ischemic 

inflammation and neuronal damage in several in vitro and in vivo models [36].  

Another possible strategy to revert the effects of hypoxia is the treatment with caspase 

inhibitors. The administration of caspase inhibitors in vivo was demonstrated to protect 

against cell death in animal models of ischemic acute renal failure [37]. The 

pancaspase inhibitor Q-VD-OPH prevents the rise in caspase activity and apoptosis 

[38]. Therefore PPAR-agonists and caspase inhibitors may be adopted in the donor 

pretreatment to prevent ischemic/reperfusion injury in the kidney. Donor pretreatment 

has great advantages for the recipient because improved long-term survival could thus 

be achieved cost-efficiently and without great effort or side effects.  

 

In summary our analyses provide novel insight into biological processes that are 

associated with postischemic DGF. Based on our findings prospective trials with 
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targeted therapy, including PPAR-agonists or caspase inhibitors, may be designed to 

elucidate the causal inference of these risk markers of DGF. 
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SUPPLEMENTAL DATA 

Accession 
No. 

Gensymbol Name Biological Process 
Fold 

change 

AI017691 TMEM174 
Transmembrane protein 
174 

  -3.49 

AA962549 SLC6A19 
Solute carrier family 6 
(neutral amino acid 
transporter), member 19 

Transport, Amino acid 
metabolism 

-3.48 

AA743923   
CDNA FLJ32283 fis, clone 
PROST2000212 

  -3.34 

AA878637   Transcribed locus   -3.29 

AA864848 TMEM174 
Transmembrane protein 
174 

  -3.20 

AA962194 UGT2B7 
UDP 
glucuronosyltransferase 2 
family, polypeptide B7 

Steroid hormone 
metabolism, Steroid 
metabolism, Lipid, fatty acid 
and steroid metabolism  

-3.19 

H93381 GLYATL1 
Glycine-N-acyltransferase-
like 1 

Lipid, fatty acid and 
steroid metabolism 

-3.10 

AA872711 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -2.98 

AI253164   Transcribed locus   -2.90 

AA988580 GPR155 
G protein-coupled receptor 
155 

  -2.85 

R86241 SULT1C2 
Sulfotransferase family, 
cytosolic, 1C, member 2 

Steroid hormone 
metabolism, Steroid 
metabolism, Lipid, fatty acid 
and steroid metabolism  

-2.74 

http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
http://www.pantherdb.org/panther/category.do?categoryAcc=BP00299
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AA456975 APOD Apolipoprotein D 
Transport, Coenzyme and 
prosthetic group 
metabolism 

-2.62 

AA917550   Transcribed locus   -2.41 

N68871   
CDNA FLJ43400 fis, clone 
OCBBF2010281 

  -2.35 

AA994816 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -2.31 

AA496149 HMGCS2 
3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 2 
(mitochondrial) 

Coenzyme and prosthetic 
group metabolism, 
Steroid metabolism, Lipid, 
fatty acid and steroid 
metabolism 

-2.27 

AA705032   Transcribed locus   -2.20 

AA894763 MGAM 
Maltase-glucoamylase 
(alpha-glucosidase) 

  -2.19 

R15785 PREPL Prolyl endopeptidase-like 
Protein metabolism and 
modification 

-2.18 

AI792934 LOC155006 
Hypothetical protein 
LOC155006 

  -2.17 

W85883 SLC47A1 
Solute carrier family 47, 
member 1 

  -2.15 

AA973279 AMN 
Amnionless homolog 
(mouse) 

Transport, Lipid, fatty acid 
and steroid metabolism 

-2.14 

N69913 CRIP3 Cysteine-rich protein 3   -2.14 

R40400 CHL1 
Cell adhesion molecule 
with homology to L1CAM 
(close homolog of L1) 

Determination of 
dorsal/ventral axis 

-2.13 

H02884 CDH5 
Cadherin 5, type 2, VE-
cadherin (vascular 
epithelium) 

  -2.11 

H38650 SLC2A5 
Solute carrier family 2 
(facilitated glucose/fructose 
transporter), member 5 

Transport -2.11 

AA999881 LOC202051 
Hypothetical protein 
LOC202051 

  -2.07 

AA972434 SLC39A5 
Solute carrier family 39 
(metal ion transporter), 
member 5 

Transport -2.05 

AA058341 FAHD1 
Fumarylacetoacetate 
hydrolase domain 
containing 1 

Amino acid metabolism -2.03 

AA879452   
CDNA clone 
IMAGE:5270438 

  -2.03 

W35369 PRLR Prolactin receptor 
Lactation, mammary 
development 

-2.01 

AI989344 USH1C 
Usher syndrome 1C 
(autosomal recessive, 
severe) 

  -2.01 

N29639 CMAH 

Cytidine monophosphate-
N-acetylneuraminic acid 
hydroxylase (CMP-N-
acetylneuraminate 
monooxygenase) 
pseudogene 

  -1.97 
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AA975301 CALCRL Calcitonin receptor-like   -1.96 

AA917621   Transcribed locus   -1.95 

AI264620 LOC201229 
Hypothetical protein 
LOC201229 

  -1.89 

AA458652   Transcribed locus   -1.87 

R06256   Transcribed locus   -1.85 

AA496110   

Transcribed locus, strongly 
similar to NP_115821.1 
multiple EGF-like-domains 
11 [Homo sapiens] 

  -1.84 

T99793 CTAGE5 CTAGE family, member 5   -1.83 

AA705720 ALAD 
Aminolevulinate, delta-, 
dehydratase 

Coenzyme and prosthetic 
group metabolism, 
Porphyrin metabolism 

-1.81 

AA182796 RHOBTB1 
Rho-related BTB domain 
containing 1 

  -1.80 

AA009593 MPP7 
Membrane protein, 
palmitoylated 7 (MAGUK 
p55 subfamily member 7) 

Asymmetric protein 
localization 

-1.79 

R09729 SDPR 

Serum deprivation 
response 
(phosphatidylserine 
binding protein) 

mRNA transcription 
termination 

-1.78 

AI123255 DHRSX 
Dehydrogenase/reductase 
(SDR family) X-linked 

  -1.78 

AA450353 ELMOD1 
ELMO/CED-12 domain 
containing 1 

  -1.75 

AI668706   Transcribed locus   -1.75 

T49816 LOC643008 PP12104   -1.73 

R85643   Data not found   -1.72 

H62009   Transcribed locus   -1.72 

N66734 EMCN Endomucin   -1.72 

AA983558 SLC12A1 
Solute carrier family 12 
(sodium/potassium/chloride 
transporters), member 1 

Transport -1.72 

AA233564 PDE8A Phosphodiesterase 8A   -1.70 

AA862485   Data not found   -1.70 

N79823 LCN2 Lipocalin 2 Transport -1.65 

AA058566   Data not found   -1.65 

H67900   

Transcribed locus, 
moderately similar to 
XP_001372821.1 
PREDICTED: similar to 
Choline/ethanolamine 
phosphotransferase 1 
[Monodelphis domestica] 

  -1.64 

H90761 IL17RB Interleukin 17 receptor B   -1.63 

AA188785 KIAA1549 KIAA1549   -1.62 

H73410   Data not found   -1.62 
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W37841   
CDNA clone 
IMAGE:4902949 

  -1.57 

N35894   Data not found   -1.56 

AA399405 SNX30 
Sorting nexin family 
member 30 

  -1.50 

 

Table S1. Sixty-three differentially regulated transcripts computed with the Significance 

Analysis of Microarrays (SAM) method sorted by fold–change values. The number of 

permutations in the SAM method was set to twenty-thousand and a false discovery rate 

of 2.5% was selected.  

 

 

 

Accession 
No. 

Gensymbol Name Biological Process 
Fold 

change 

T94626  FGG Fibrinogen gamma chain 

Blood circulation and gas 
exchange, Blood clotting, 
Immunity and defense, Cell 
proliferation and 
differentiation 

4.92 

 AA865707  FGA Fibrinogen alpha chain 

Blood circulation and gas 
exchange, Blood clotting, 
Immunity and defense, Cell 
proliferation and 
differentiation 

3.19 

 R14976   Data not found   3.16 

AA704242  SERPINA3 

Serpin peptidase inhibitor, 
clade A (alpha-1 
antiproteinase, antitrypsin), 
member 3 

  2.84 

 T72915  SOCS3 
Suppressor of cytokine 
signaling 3 

JAK-STAT cascade, 
Inhibition of apoptosis 

2.72 

 AA457138  FZD8 
Frizzled homolog 8 
(Drosophila) 

  2.54 

 AI003775  LOC387763 Hypothetical LOC387763   2.48 

 H53340 MT1G Metallothionein 1G   2.44 

AW029498  SERPINA3 

Serpin peptidase inhibitor, 
clade A (alpha-1 
antiproteinase, antitrypsin), 
member 3 

  2.42 

 AI922872  SOCS3 
Suppressor of cytokine 
signaling 3 

  2.42 

 AA055946 CD3D 
CD3d molecule, delta (CD3-
TCR complex) 

Immunity and defense 2.12 

 AA678021  SNRPE 
Small nuclear ribonucleoprotein 
polypeptide E 

  2.01 
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 AA704995  GLYAT Glycine-N-acyltransferase 
Lipid, fatty acid and steroid 
metabolism, Fatty acid 
metabolism 

-4.71 

 AI253049 TINAG 
Tubulointerstitial nephritis 
antigen 

Cell adhesion -4.01 

 AA932134   
CDNA FLJ32283 fis, clone 
PROST2000212 

  -3.90 

 R97050   CDNA clone IMAGE:4610527   -3.78 

 AA994816 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -3.68 

 AA877253 RNF186 Ring finger protein 186 Proteolysis -3.63 

 AA885603   Transcribed locus   -3.52 

 AI017691 TMEM174 Transmembrane protein 174   -3.50 

 AA962549 SLC6A19 
Solute carrier family 6 (neutral 
amino acid transporter), 
member 19 

Transport, Amino acid 
metabolism, Amino acid 
transport 

-3.48 

 W85851  ACSM2B 
Acyl-CoA synthetase medium-
chain family member 2B 

  -3.38 

 AA743923   
CDNA FLJ32283 fis, clone 
PROST2000212 

  -3.34 

 AA878637    Transcribed locus   -3.29 

 AA864848 TMEM174 Transmembrane protein 174   -3.21 

 AA919149  HAO2 
Hydroxyacid oxidase 2 (long 
chain) 

Carbohydrate metabolism -3.20 

 AA962194 UGT2B7 
UDP glucuronosyltransferase 2 
family, polypeptide B7 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-3.19 

 N74025 DIO1 
Deiodinase, iodothyronine, type 
I 

  -3.17 

 AI017796 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -3.15 

 H93381 GLYATL1 
Glycine-N-acyltransferase-like 
1 

Lipid, fatty acid and steroid 
metabolism, Fatty acid 
metabolism 

-3.09 

 H88329 CALB1 Calbindin 1, 28kDa Homeostasis -3.04 

 AA872711 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -2.98 

 AI017796 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -2.96 

 AI335086  ANGPTL3 Angiopoietin-like 3   -2.93 
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 AI245843    

Transcribed locus, strongly 
similar to NP_001011880.1 
hypothetical protein 
LOC497190 [Homo sapiens] 

  -2.91 

 AI253164   Transcribed locus   -2.90 

 AI264674 SLC16A12 
Solute carrier family 16, 
member 12 (monocarboxylic 
acid transporter 12) 

Transport, Ion transport, 
Cation transport 

-2.88 

 AA988580 GPR155 G protein-coupled receptor 155   -2.85 

 R08178  LOC100129488 
Hypothetical protein 
LOC100129488 

  -2.85 

 AA864183  RHCG Rh family, C glycoprotein Transport -2.82 

 AA928710  SLC6A19 
Solute carrier family 6 (neutral 
amino acid transporter), 
member 19 

Transport, Amino acid 
metabolism, Amino acid 
transport 

-2.74 

R86241  SULT1C2 
Sulfotransferase family, 
cytosolic, 1C, member 2 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, Sulfur 
metabolism 

-2.74 

 AA456001  NOX4 NADPH oxidase 4 Electron transport -2.70 

 N36136 EMCN Endomucin Cell adhesion -2.69 

 AA416585 ACE2 
Angiotensin I converting 
enzyme (peptidyl-dipeptidase 
A) 2 

Proteolysis -2.68 

 AI241028    Data not found   -2.68 

 AA994857 ZNF552 Zinc finger protein 552 
Nucleoside, nucleotide and 
nucleic acid metabolism, 
mRNA transcription 

-2.67 

 AA514359 RNF186 Ring finger protein 186 Proteolysis -2.66 

 AA456975 APOD Apolipoprotein D 

Transport, Coenzyme and 
prosthetic group 
metabolism, 
Vitamin/cofactor transport 

-2.62 

 AI301528  HNF4A 
Hepatocyte nuclear factor 4, 
alpha 

  -2.60 

 T70353 ACMSD 
Aminocarboxymuconate 
semialdehyde decarboxylase 

  -2.58 

 N53031 UGT2B4 
UDP glucuronosyltransferase 2 
family, polypeptide B4 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-2.57 

 W81603   Data not found   -2.56 

 AA902897   Transcribed locus   -2.53 

 R16259   Data not found   -2.53 

H44449 LRP2 
Low density lipoprotein-related 
protein 2 

  -2.51 

 AA878939   Transcribed locus   -2.51 
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 R63647 PRLR Prolactin receptor 
Lactation, mammary 
development 

-2.49 

 H18608 SLC22A8 
Solute carrier family 22 
(organic anion transporter), 
member 8 

Transport, Ion transport, 
Extracellular transport and 
import, Anion transport 

-2.45 

 AI245812  KCNJ15 
Potassium inwardly-rectifying 
channel, subfamily J, member 
15 

Transport, Ion transport, 
Cation transport 

-2.42 

 AA918008 SLC28A1 
Solute carrier family 28 
(sodium-coupled nucleoside 
transporter), member 1 

Transport, Ion transport, 
Cation transport, 
Nucleoside, nucleotide and 
nucleic acid metabolism 

-2.42 

 AA932134   
CDNA FLJ32283 fis, clone 
PROST2000212 

  -2.42 

 AA932135   Transcribed locus   -2.41 

 AA917550   Transcribed locus   -2.41 

 AI015991  CLDN2 Claudin 2   -2.40 

 AA746229 UGT2B7 
UDP glucuronosyltransferase 2 
family, polypeptide B7 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-2.40 

T50951  UGT2B15 
UDP glucuronosyltransferase 2 
family, polypeptide B15 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-2.39 

 N53031 UGT2B4 
UDP glucuronosyltransferase 2 
family, polypeptide B4 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-2.38 

 AI222515 BBOX1 

Butyrobetaine (gamma), 2-
oxoglutarate dioxygenase 
(gamma-butyrobetaine 
hydroxylase) 1 

Coenzyme and prosthetic 
group metabolism 

-2.37 

 AI264674 SLC16A12 
Solute carrier family 16, 
member 12 (monocarboxylic 
acid transporter 12) 

Transport, Ion transport, 
Cation transport 

-2.35 

 N68871   
CDNA FLJ43400 fis, clone 
OCBBF2010281 

  -2.35 

 R98936 MME 
Membrane metallo-
endopeptidase 

Proteolysis -2.34 

 AI261833  SLC7A9 
Solute carrier family 7 (cationic 
amino acid transporter, y+ 
system), member 9 

Transport, Amino acid 
metabolism, Amino acid 
transport 

-2.34 

 AA878391  GPC5 Glypican 5 Cell adhesion -2.31 
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 AA994816 SLC5A12 
Solute carrier family 5 
(sodium/glucose 
cotransporter), member 12 

Transport -2.31 

 R43597   Data not found   -2.31 

 AA918729    Transcribed locus   -2.30 

 R08912   Data not found   -2.30 

 AA703222    
CDNA FLJ12088 fis, clone 
HEMBB1002545 

  -2.30 

 AA676742  DMGDH 
Dimethylglycine 
dehydrogenase 

Electron transport -2.27 

 AA496149 HMGCS2 
3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 2 
(mitochondrial) 

Lipid, fatty acid and steroid 
metabolism, Steroid 
metabolism, Coenzyme 
and prosthetic group 
metabolism 

-2.27 

 W56753 KIAA1276 KIAA1276 protein   -2.27 

 AA947621 ATP6V1G3 
ATPase, H+ transporting, 
lysosomal 13kDa, V1 subunit 
G3 

Transport, Ion transport, 
Cation transport, 
Nucleoside, nucleotide and 
nucleic acid metabolism 

-2.26 

 AA858019 SLC13A1 
Solute carrier family 13 
(sodium/sulfate symporters), 
member 1 

Transport, Ion transport, 
Cation transport 

-2.26 

 AA862436  FAM151A 
Family with sequence similarity 
151, member A 

  -2.25 

 R10885 ACY3 
Aspartoacylase (aminocyclase) 
3 

Amino acid metabolism, 
Other amino acid 
metabolism 

-2.24 

 AA287032 TBC1D8B 
TBC1 domain family, member 
8B (with GRAM domain) 

  -2.24 

 R98070   Data not found   -2.23 

 R40176 CXCL14 
Chemokine (C-X-C motif) 
ligand 14 

  -2.22 

 AA971563  SGSM3 
Small G protein signaling 
modulator 3 

  -2.22 

 AA026754 SNTA1 
Syntrophin, alpha 1 
(dystrophin-associated protein 
A1, 59kDa, acidic component) 

  -2.22 

 AI253036   Transcribed locus   -2.20 

 AA705032    Transcribed locus   -2.20 

 AA894763 MGAM 
Maltase-glucoamylase (alpha-
glucosidase) 

  -2.19 

 AI344372  SLC26A7 
Solute carrier family 26, 
member 7 

Transport, Ion transport, 
Extracellular transport and 
import, Anion transport, 
Sulfur metabolism 

-2.19 

 T47312 INSR Insulin receptor 

Carbohydrate metabolism, 
Regulation of carbohydrate 
metabolism, Other 
developmental process 

-2.18 
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AI792934  LOC155006 
Hypothetical protein 
LOC155006 

  -2.18 

 AA705112  MOCS1 
Molybdenum cofactor synthesis 
1 

Coenzyme and prosthetic 
group metabolism, Pterin 
metabolism 

-2.18 

 R15785  PREPL Prolyl endopeptidase-like Proteolysis -2.18 

 AI015652 SLC13A1 
Solute carrier family 13 
(sodium/sulfate symporters), 
member 1 

Transport, Ion transport, 
Cation transport 

-2.18 

 W85883 SLC47A1 
Solute carrier family 47, 
member 1 

  -2.15 

 AA971425  USP2 Ubiquitin specific peptidase 2 Proteolysis -2.15 

 AA973279 AMN Amnionless homolog (mouse) 
Transport, Lipid, fatty acid 
and steroid metabolism 

-2.14 

 AA677185  ANK3 
Ankyrin 3, node of Ranvier 
(ankyrin G) 

  -2.14 

AI733138 BHMT2 
Betaine-homocysteine 
methyltransferase 2 

Amino acid metabolism -2.14 

 AA886349    Data not found   -2.14 

R66006 ACADL 
Acyl-Coenzyme A 
dehydrogenase, long chain 

Lipid, fatty acid and steroid 
metabolism, Fatty acid 
metabolism, Electron 
transport 

-2.13 

 R40400 CHL1 
Cell adhesion molecule with 
homology to L1CAM (close 
homolog of L1) 

Cell adhesion -2.13 

 N69913 CRIP3 Cysteine-rich protein 3   -2.13 

 N92901 FABP4 
Fatty acid binding protein 4, 
adipocyte 

Transport, Lipid, fatty acid 
and steroid metabolism, 
Coenzyme and prosthetic 
group metabolism, 
Vitamin/cofactor transport 

-2.13 

 H50623 HLA-DRB1 
Major histocompatibility 
complex, class II, DR beta 3 

  -2.13 

 H27752  AQP7 Aquaporin 7 Transport, Homeostasis -2.12 

 AA256291   Transcribed locus   -2.12 

 AI263210   Transcribed locus   -2.12 

 H02884 CDH5 
Cadherin 5, type 2, VE-
cadherin (vascular epithelium) 

Cell adhesion -2.11 

 H38650 SLC2A5 
Solute carrier family 2 
(facilitated glucose/fructose 
transporter), member 5 

Transport, Carbohydrate 
metabolism 

-2.11 

 AA865572    Transcribed locus   -2.11 

 AA111975 CMBL 
Carboxymethylenebutenolidase 
homolog (Pseudomonas) 

Carbohydrate metabolism -2.10 

 AA775223  HPGD 
Hydroxyprostaglandin 
dehydrogenase 15-(NAD) 

Lipid, fatty acid and steroid 
metabolism, Steroid 
metabolism 

-2.10 

 AA485893 RNASE1 
Ribonuclease, RNase A family, 
1 (pancreatic) 

Nucleoside, nucleotide and 
nucleic acid metabolism 

-2.10 
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 AI815076  SLC7A7 
Solute carrier family 7 (cationic 
amino acid transporter, y+ 
system), member 7 

Transport, Amino acid 
metabolism, Amino acid 
transport 

-2.10 

 W72294 CXCL14 
Chemokine (C-X-C motif) 
ligand 14 

  -2.09 

 H78003 IYD Iodotyrosine deiodinase Electron transport -2.09 

 H18456 LOC644662 Similar to hCG2042541   -2.09 

 AA682293  PAH Phenylalanine hydroxylase 
Amino acid metabolism, 
Other amino acid 
metabolism 

-2.09 

 R07484   Data not found   -2.09 

 AA452278  SLC4A4 
Solute carrier family 4, sodium 
bicarbonate cotransporter, 
member 4 

Transport, Ion transport, 
Cation transport, 
Homeostasis 

-2.08 

 AA677050  AFM Afamin Transport -2.07 

 AA999881  LOC202051 
Hypothetical protein 
LOC202051 

  -2.07 

 AI279830  PPP1R16B 
Protein phosphatase 1, 
regulatory (inhibitor) subunit 
16B 

  -2.07 

 AA855158  CA4 Carbonic anhydrase IV   -2.06 

 AI383171  LDB3 LIM domain binding 3 

Nucleoside, nucleotide and 
nucleic acid metabolism, 
mRNA transcription, Other 
developmental process 

-2.06 

 AA452826 PCP4 Purkinje cell protein 4   -2.06 

 AA972434  SLC39A5 
Solute carrier family 39 (metal 
ion transporter), member 5 

Transport, Ion transport -2.05 

 AI300876  FAM150B 
Family with sequence similarity 
150, member B 

  -2.04 

 AA058341 FAHD1 
Fumarylacetoacetate hydrolase 
domain containing 1 

Amino acid metabolism -2.03 

 AA932696  FAM107A 
Family with sequence similarity 
107, member A 

  -2.03 

 AA872397  LGALS2 
Lectin, galactoside-binding, 
soluble, 2 

Cell adhesion -2.03 

 AI000188  UGT2B7 
UDP glucuronosyltransferase 2 
family, polypeptide B7 

Lipid, fatty acid and steroid 
metabolism, Steroid 
hormone metabolism, 
Steroid metabolism, 
Carbohydrate metabolism, 
Other polysaccharide 
metabolism 

-2.03 

 W35369 PRLR Prolactin receptor 
Lactation, mammary 
development 

-2.02 

 AA680349  PROZ 
Protein Z, vitamin K-dependent 
plasma glycoprotein 

Proteolysis -2.02 

 AA879452    CDNA clone IMAGE:5270438   -2.02 
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 H99932  CRYL1 Crystallin, lambda 1 

Lipid, fatty acid and steroid 
metabolism, Carbohydrate 
metabolism, Fatty acid 
metabolism 

-2.01 

 H02824 LYVE1 
Lymphatic vessel endothelial 
hyaluronan receptor 1 

  -2.01 

 AA579186 TMPRSS2 
Transmembrane protease, 
serine 2 

Proteolysis -2.01 

 R68997 PRLR Prolactin receptor 
Lactation, mammary 
development 

-2.00 

 AI989344  USH1C 
Usher syndrome 1C 
(autosomal recessive, severe) 

  -2.00 

 

Table S2. 147 differentially regulated transcripts computed with the student‘s t-Test 

sorted by fold-change values. The p-value threshold was set to < 0.05 with fold-change 

values greater than two.  
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2.3.1 The Thesis Author’s Contribution 

 

The thesis author performed parts of the functional enrichment analysis of differentially 

expressed genes in kidney grafts after steroid pretreatment and contributed to the 

selection of relevant functional categories. The discussion of results from the network 

analysis was jointly conducted by all of the authors. 

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Functional classification of differentially expressed genes with respect to 

biological processes using the PANTHER classification tool 

 Contributions to the interpretation of results derived from the bioinformatics 

analyses, namely enriched biological processes and protein networks 

 Provision of bioinformatics-specific methods and results sections to the 

manuscript draft 
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2.4 Linking transcriptomic and proteomic data on the level of protein 

interaction networks. Electrophoresis. 2010 
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LIST OF ABBREVIATIONS 

 

2D-PAGE – Two Dimensional Poly Acrylamid Gel Electrophoresis 

CE – Capillary Electrophoresis 

CKD – chronic kidney disease 

DAVID – Database for Annotation, Visualization, and Integrated Discovery 

ECM – extracellular matrix 

HPLC – High Performance Liquid Chromatography 

HUPDB – Human Urinary Proteome Database 

KEGG – Kyoto Encyclopedia of Genes and Genomes 

MAPPER – Multi-genome Analysis of Positions and Patterns of Elements of Regulation 

PANTHER – Protein Analysis THrough Evolutionary Relationships 

PRIDE – Proteomics IDEntification database 
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ABSTRACT 

 

Integration and joint analysis of omics profiles derived on the genome, transcriptome, 

proteome and metabolome level is a natural next step in realizing a Systems Biology 

view of cellular processes. However, merging e.g. mRNA concentration and protein 

abundance profiles is not straight forward, as a direct overlap of differentially 

regulated/abundant features resulting from transcriptomics and proteomics is for 

various reasons limited. We present procedures for integrating omics profiles at the 

level of protein interaction networks, exemplified by using transcriptomics and 

proteomics data sets characterizing chronic kidney disease.  

On the level of direct feature overlap only a limited number of genes and proteins were 

found to be significantly affected following a separate transcript and protein profile 

analysis, including a collagen subtype and uromodulin, both being described in the 

context of renal failure. On the level of protein pathway and process categories this 

minor overlap increases substantially, identifying cell structure, cell adhesion, as well 

as immunity and defense mechanisms as jointly populated with features individually 

identified as relevant in transcriptomics and proteomics experiments. 

Mapping diverse data sources characterizing a given phenotype under analysis on 

directed but also undirected protein interaction networks serves in joint functional 

interpretation of omics data sets. 
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 INTRODUCTION 

 

High-throughput transcriptomics and proteomics experiments have paved the way in 

molecular biology research to study thousands of cellular components in parallel [1-3]. 

Gene Chips from e.g. Affymetrix cover roughly 29,000 human open reading frames. 

Gene expression profiles for over 340,000 samples are currently stored in the Gene 

Expression Omnibus, a microarray repository hosted by the National Center for 

Biotechnology Information [4]. In proteomics comparable steps have been made 

towards large scale analysis. Here, reduction of sample complexity by separation 

techniques has been elaborated, mainly including HPLC, CE, and 2D-PAGE. 

Subsequently mass spectrometric techniques, together with computational analysis 

have been applied for protein identification and quantitation. Proteomics repositories 

have been established as e.g. PRIDE (www.ebi.ac.uk/pride), and both, proteomics as 

well as transcriptomics data repositories follow data standards for enabling 

standardized retrieval and analysis. 

However, most analysis performed is ‗within a domain‘, i.e. transcriptomics and 

proteomics analysis follows established workflows aimed at deriving abundance 

profiles where the features are ranked by statistical criteria as the significance of a fold 

change in a group comparison. Tackling a given hypothesis by both, transcriptomics 

and proteomics in parallel (ideally using the same sample source), is unfortunately 

done less frequent. However, utilizing resources as the Gene Expression Omnibus and 

PRIDE allows extracting both data levels for a number of cellular conditions, in principal 

enabling joint analysis of both profiles characterizing a specific phenotype. Certainly, 

intrinsic heterogeneity has to be respected by such an approach including deviating 

phenotype definition regarding cases and controls, and intrinsic experimental biases. 

The general question regarding the correlation between mRNA abundance and the 

concentration on the protein level has been heavily discussed in the literature. One of 

the first studies to compare mRNA levels and protein concentrations on a global level 

was conducted by Gygi and colleagues in 1999 using Saccharomyces cerevisiae as 

model organism [5]. By comparing serial analysis of gene expression mRNA counts 

with levels of protein abundance as derived by 2D-PAGE the authors concluded that a 

simple deduction of protein concentrations from mRNA transcript analysis is 

insufficient. As major reasons for the poor correlation regulatory mechanisms during 

the gene expression process, post-translational modifications and protein degradation, 

as well as mechanisms independent of the gene expression process were identified.   
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Koji and colleagues found a positive correlation but concluded that mRNA abundance 

is not a predictor of protein abundance, as a number of high abundant transcripts were 

not detected on the protein level [6]. More specific numbers are provided by Lu and 

colleagues, reporting that 73% of the variance in yeast protein abundance is explained 

by mRNA concentration [7]. In a recent study by Shankavaram and colleagues utilizing 

a large NCI-60 cancer cell panel, around 65% of the genes in the dataset showed 

statistically significant transcript-protein correlation [8]. Rogers and colleagues 

developed a probabilistic clustering model and analyzed time-series of transcriptomics 

and proteomics data from a human breast epithelial cell line [9]. They found that high 

correlations are mainly found in specific molecular machines as cell adhesion and 

protein folding complexes. 

 

Reasons for a poor correlation between mRNA and protein abundance are manifold, 

including regulatory mechanisms in the course of gene expression (e.g. miRNA 

interactions), as well as post-translational modifications altering protein half-life. On top 

pathophysiological mechanisms can result in high amount of protein in specific tissues 

although the protein synthesis rate in this specific tissue is not altered [10]. A 

prototypical example is the prevalence of protein in urine in chronic kidney disease 

caused by leakage in the tubular barrier function of the kidney.  

Furthermore, depending on the detection method used, technical bias and noise in 

high-throughput experiments can have significant influences, as outlined by 

Greenbaum and colleagues who reported a correlation coefficient of 0.66 when 

analyzing merged proteomics and transcriptomics datasets [11]. The same group 

reported higher correlation coefficients of up to 0.8 for specific subsets of genes based 

on subcellular location or functional grouping instead of analyzing on the level of 

individual genes [11,12]. 

 

In summary, next to the mRNA abundance level various other factors influence 

effective protein concentration. With respect to the above mentioned reasons, a simple 

correlation between quantities of individual mRNAs and proteins is insufficient to 

explain the causative dependencies of these two entities. However, features identified 

on either transcript or protein level may at least share the same functional context. 

From this, the analysis of transcriptomics and proteomics data on the level of protein 

interaction networks (PIN) may be a way for identifying the link between such profiles. 
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PINs are either directed graphs as given in KEGG [13], or undirected graphs as e.g. 

provided in OPHID [14]. Mapping omics profiles on such graphs may identify up- or 

downstream links between a change in transcript abundance and consequential, non-

direct change in abundance of a protein.  

However, information on links between proteins is far from complete. KEGG e.g. 

presently represents 4756 unique genes. For overcoming this limitation we have 

recently developed omicsNET aimed at linking gene/protein lists resulting from omics 

experiments on the level of a complete protein dependency network [15]. This protein 

dependency graph holds pair-wise dependencies for all presently annotated human 

protein-coding genes. 

 

In the current study we compare and analyze transcriptomics and proteomics profiles 

reported in the context of chronic kidney disease (CKD). 

Chronic kidney disease is a major clinical issue with around 10% of the population in 

western industrialized countries being affected according to recent reports [16]. CKD is 

classified into stages based on the level of the glomerular filtration rate (GFR), which 

normally is approximately 120 - 130 ml/min/1.73 m2 with considerable variation 

between and even within individuals. Below 60 ml/min/1.73 m2 the rate of 

complications based on filtration inefficiency increases, and the risk of cardiovascular 

events is elevated even at earlier stages. The most severe form of CKD is end stage 

renal disease, resulting in dialysis or transplantation as only therapy options. 

Transcriptomics as well as proteomics methodologies have significantly contributed 

towards unraveling molecular mechanisms leading to CKD [17-19], and linking 

available omics profiles promises further understanding of this disease. 

 

 

MATERIALS AND METHODS 

 

Data sets 

We used three publicly available microarray studies on chronic kidney disease for 

identifying deregulated features on the mRNA level, all using kidney tissue biopsy 
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material. Two studies focused on differences in mRNA expression in diabetic 

nephropathy using Affymetrix Gene Chips. In a first study Schmid and colleagues 

compared mRNA levels in the tubulointerstitial compartment of thirteen diseased 

patients and seven healthy control subjects. The list of differentially expressed genes is 

provided as supplementary material with the publication [20]. The second dataset can 

be accessed through the Gene Expression Omnibus database (GSE1009) and was 

published by Baelde and colleagues. It holds transcripts differentially expressed 

between cells of glomeruli from diseased and morphologically normal kidneys [21]. The 

third study by performed by Rudnicki and colleagues on cDNA arrays identified 

transcripts differentially expressed between renal proximal tubular epithelial cells from 

biopsies of patients with nondiabetic nephropathies (IgA-nephritis, focal segmental 

glomerulosclerosis, and minimal-change disease) and healthy controls, respective 

relevant features are provided in [17]. 

 

The proteomics dataset was extracted from the Human Urinary Proteome Database 

v2.0 (HUPDB v2.0) available at http://mosaiques-

diagnostics.de/diapatpcms/mosaiquescms/front_content.php?idcat=257, database 

status as of September 2009. This database holds information on protein abundance of 

currently 3687 human urine samples as detected by capillary electrophoresis – mass 

spectrometry (CE-MS) [22].  The samples were derived from patients covering a wide 

spectrum of different pathophysiological conditions, among them renal disorders, as 

well as from healthy controls. For our analysis we extracted a total of 192 samples 

associated with diabetic nephropathy (n=67), IgA nephropathy (n=44), membranous 

glomerulonephritis (n=31), focal segmental glomerulosclerosis (n=25), and minimal 

change disease (n=25). Experimental identification of these features was following high 

resolution capillary electrophoresis coupled with mass spectrometry. Certainly, chronic 

kidney disease itself shows various etiologies, but it is speculated that independent of 

the primary cause for kidney damage unified molecular processes may be seen with 

altered tubules. Still, numerous features identified for the 192 samples included appear 

sporadic (patient specific), and we decided to only select features present in at least 

30% of diseased samples as being relevant. Further single proteomics studies for the 

given phenotype are available in the literature; however, we decided to only include 

samples retrieved from the HUPD as single source for not further increasing 

heterogeneity of data sets based on different experimental procedures used. 
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Analysis procedures 

Differentially regulated transcripts and proteins were mapped to their respective NCBI 

Gene Symbols for aligning the transcriptomics and the proteomics name spaces. Since 

HUPD uses Swissprot names as identifier, the mapping procedure from proteins to 

Gene Symbols was performed using the annotation tool provided by Swissprot [23]. 

In a first analysis step those features present in both, the transcriptomics and 

proteomics list were identified. In successive analyses the overlap of lists was 

interpreted on the level of functional annotation, molecular pathways and protein 

dependency networks. 

 

Functional annotation 

Enriched biological processes based on both the transcriptomics and the proteomics 

list were identified using the PANTHER (Protein Analysis THrough Evolutionary 

Relationships) Classification System [24]. In the PANTHER ontology proteins are 

classified into families and subfamilies of shared function, which are further assigned to 

specific ontology terms in the two main categories ‗biological process‘ and ‗molecular 

function‘. A chi-square test was used in order to identify significantly enriched or 

depleted biological categories when using the fully annotated set of human genes as 

reference dataset. Biological processes showing p-values below 0.05 were considered 

as statistically significant. 

 

Pathway analysis 

Pathway analysis was performed using the DAVID (Database for Annotation, 

Visualization, and Integrated Discovery) tool which provides gene-specific functional 

data mining tools and methods for functional category enrichment analysis [25][26]. 

The enrichment of transcripts and proteins in Kyoto Encyclopedia of Gene and 

Genomes (KEGG) pathways was calculated using a modified Fisher exact test. 

Pathways with p-values below 0.05 were considered as statistically significant. 
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omicsNET protein dependency network 

The protein dependency analysis framework omicsNET was additionally used to link 

transcripts and proteins [15]. The current version of the network holds 23947 nodes, 

each coding for a particular protein (a canonical sequence ensemble is used instead of 

explicitly representing splice variants). Edges between nodes represent pairwise 

dependencies which were calculated by integrating similarity and functional 

dependency measures. A metafunction was used for computing the dependency 

between nodes resulting in a pair-wise weight matrix, where the weight defines the 

strength of a dependency. The measures entering the metafunction include each 

node‘s tissue specific reference gene expression, conjoint regulation on the level of 

transcription factors as well as miRNAs, assignment to functional ontologies, 

subcellular localization, conjoint pathways, as well as protein interaction information. 

Data sources used for computing the dependency measures included the Gene 

Expression Omnibus Human Body Map for describing tissue specific gene expression, 

the MicroCosm database organizing miRNA-target relations, Gene Ontology data on 

molecular processes and function, PANTHER, KEGG, OPHID, and IntAct database for 

retrieving protein-protein interactions, complemented by experimentally derived as well 

as predicted joint transcription factor regulation and subcellular location information.  

We used omicsNET in order to identify dependencies between transcripts and proteins 

thus showing edge weights of two or above (where the edge weights scaled in-between 

-1.8 and 5.4, where a value of 5.4 represents maximum dependency of a given pair). 

Based on functional analysis of the given transcriptomics and proteomics features we 

specifically focused on the blood coagulation cascade. 

Additionally, the shortest paths on the omicsNET protein interaction network were 

calculated between all members of the transcriptomics dataset, the proteomics dataset, 

as well as between all transcripts and all proteins in both datasets.  

 

Transcription factors 

The MAPPER (Multi-genome Analysis of Positions and Patterns of Elements of 

Regulation) database was used to identify potential direct relationships between 

transcription factors in the transcriptomics dataset and target genes in the proteomics 

dataset. MAPPER is a database holding information on putative transcription factor 

binding sites in the regulatory regions of genes in various species [27]. 
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 Kidney tissue expression 

Data on immunohistochemical staining in renal tissue were retrieved from the Human 

Protein Atlas. This source provides a collection of expression and localization data of 

proteins in normal human tissues, cancer cells and cell lines based on 

immunohistochemistry and immunofluorescence confocal microscopy images [28]. 

Data are represented in a semi-quantitative measure with four staining intensities, 

namely ―negative‖, ―weak‖, ―moderate‖, or ―strong‖. Staining intensities in the 

glomerular and the tubular compartments were retrieved from the Human Protein Atlas.  

In order to determine mRNA expression levels in kidney tissue, counts of expressed 

sequence tags were extracted from UniGene EST profiles which show gene expression 

patterns inferred from EST counts and cDNA library sources. For each tissue and 

gene, the expression intensity is specified as the occurrence of respective ESTs 

compared to the total number of reported ESTs in this tissue [29]. 

 

 

 RESULTS 

 

Differentially expressed genes and proteins 

The transcriptomics dataset consisted of 697 differentially regulated genes, among 

which 327 showed an upregulation in the diseased state, 355 genes were 

downregulated, and 15 genes were found to be upregulated in one dataset and 

downregulated in another dataset. In the 192 urine samples 37 proteins were found in 

different concentrations when comparing the diseased state and controls.  

The genes of four out of the 37 proteins identified as relevant in urine were also 

differentially expressed in the transcriptomics dataset. The features identified include 

the collagen, type XV, alpha 1 (COL15A1), and uromodulin (UMOD), as well as the 

prostaglandin D2 synthase 21kDa (PTGDS) and the apolipoprotein A-I (APOA1)    

(Table 1). 
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Symbol Gene Name Transcript Protein 

COL15A1 collagen, type XV, alpha 1 up down 

UMOD uromodulin up up 

PTGDS prostaglandin D2 synthase 21kDa down up 

APOA1 apolipoprotein A-I down up 

 

Table 1: Direct overlap of differentially abundant omics features. The table holds gene 
symbol and name of features being affected at the transcript or protein level, 
furthermore providing the direct of regulation when comparing diseased and control 
samples. 

 

Functional overlap 

The PANTHER Classification System was used in order to identify enriched biological 

processes as found on the level of deregulated genes and proteins. Here not the direct 

feature overlap is determined, but the involvement of transcriptomics and proteomics 

features in the same pathways and processes. Overall, the biological process of 

―protein metabolism and modification‖ was identified as the most significantly enriched, 

with 153 transcripts assigned to this category but not holding features from proteomics. 

In contrast, five proteins could be assigned to the biological category ―blood circulation 

and gas exchange‖ resulting in a p-value smaller than 0.01, without identifying a 

feature from transcriptomics in this particular functional group.  

The four categories that were found to be enriched in both the transcriptomics and 

proteomics dataset were ―cell structure‖, ―cell structure and motility‖, ―cell adhesion‖, 

and ―immunity and defense‖, as listed in Table 2.  

 

Biological Process 
# of 

members 
total 

# of 
transcripts 

p-value 
# of 

proteins 
p-value 

Protein metabolism and 
modification 3040 153 < 0.001 - - 

Blood circulation and gas exchange 89 - - 5 < 0.001 

Cell structure and motility 1148 78 < 0.001 8 0.0042 

Developmental processes 2152 116 < 0.001 - - 

Immunity and defense 1318 80 < 0.001 9 0.0017 

Protein modification 1157 70 < 0.001 - - 

Signal transduction 3406 147 < 0.001 - - 

Cell structure 687 48 < 0.001 8 < 0.001 
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Cell motility 352 31 < 0.001 - - 

Intracellular protein traffic 1008 57 < 0.001 - - 

Cell cycle 1009 57 < 0.001 - - 

Cell adhesion 622 41 < 0.001 5 0.0478 

Cell communication 1213 66 < 0.001 - - 

Intracellular signaling cascade 871 49 < 0.001 - - 

Mesoderm development 551 36 < 0.001 - - 

Mitosis 382 28 < 0.001 - - 

Ectoderm development 692 40 0.0011 - - 

Protein phosphorylation 660 39 0.0011 - - 

Blood clotting 92 12 0.0015 - - 

Cell proliferation and differentiation 1028 50 0.0016 - - 

Cell cycle control 418 28 0.002 - - 

Neurogenesis 587 35 0.0028 - - 

Homeostasis 196 16 0.0034 - - 

Interferon-mediated immunity 63 9 0.0095 - - 

Angiogenesis 54 8 0.0255 - - 

Chromosome segregation 121 12 0.0272 - - 

Apoptosis 531 27 0.0445 - - 

 

Table 2: PANTHER biological processes overlap. The table lists biological processes 
identified as relevant on the basis of given transcriptomics and proteomics data sets. 
Given is the name of the process, the total number of members in the respective 
process, the number of features involved as found in transcriptomics and proteomics, 
as well as the p-values regarding the significance of enrichment. Where no p-value is 
provided the enrichment is not significant for the particular data set. Processes given in 
bold are significantly enriched by both, transcriptomics and proteomics features. 

 

Joint pathway analysis 

Three pathways could be identified as significantly enriched in deregulated transcripts 

as well as proteins using the KEGG pathway database as repository. Thirteen 

transcripts and five proteins could be assigned to the ―extracellular matrix (ECM)-

receptor interaction pathway‖, with 18 transcripts and five proteins belonging to the 

―focal adhesion‖ pathway (Table 3).  
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Pathway 
# of 

members 
total 

# of 
transcripts 

p-value 
# of 

proteins 
p-value 

Cell Communication 136 - - 6 < 0.001 

ECM-receptor 
interaction 

88 13 < 0.001 5 < 0.001 

p53 signaling pathway 68 10 0.01 - - 

Complement and 
coagulation cascades 

69 10 0.01 4 < 0.001 

Tight junction 132 16 0.01 - - 

Regulation of actin 
cytoskeleton 

214 20 0.02 - - 

Focal adhesion 199 18 0.05 5 < 0.001 

 

Table 3: KEGG pathways overlap. The table lists pathway names, total number of 
members in the respective pathway, number of involved features from transcriptomics 
and proteomics, as well as significance of enrichment as found for the respective 
number of features. Pathways given in bold are enriched by both, transcriptomics and 
proteomics features. 

In addition the ―complement and coagulation cascade‖ was enriched in deregulated 

features with ten transcripts and four proteins being members of this specific pathway. 

The coagulation pathway is schematically given in Figure 1.  

 

Figure 1: KEGG coagulation pathway. The figure displays a schematic representation 
of the coagulation pathway as provided by the KEGG pathway database. Transcripts 
are depicted as oval nodes whereas proteins are given as hexagons.  
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Protein dependency graph analysis 

We identified 65 strong dependencies between features of transcriptomics and 

proteomics in omicsNET. These dependencies were formed between 21 proteins, 21 

transcripts and two features, namely APOA1 and COL15A1, which were found in both 

omics profiles (figure 2). A large fraction of features was involved in blood coagulation 

with another highly interconnected subgraph consisting of cell structure and cell 

adhesion molecules, mainly collagens along with fibronectin 1 (FN1), laminin gamma 3 

(LAMC3), and the thrombospondins 1 and 3 (THBS1 and THBS3).  

 

 

Figure 2: OmicsNET dependencies between transcriptomics and proteomics. The 
figure displays strong dependencies between transcripts and proteins as derived from 
omicsNET. Grey nodes represent identified proteins while white nodes represent 
identified transcripts. The two square nodes represent APOA1 and COL15A1 found 
with differential abundance in both omics profiles. 
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Features involved in the blood coagulation cascade according to gene ontology terms 

were separately analyzed in omicsNET at different cutoff values of computed 

dependencies (figure 3). 32 edges could be extracted connecting 15 nodes (10 

transcripts and 5 proteins) using an omicsNET edge weight of 1. The proteins 

fibrinogen alpha chain (FGA) and fibrinogen beta chain (FGB), as well as the two 

serine peptidase inhibitors clade A member 1 (SERPINA1) and clade C member 1 

(SERPINC1) all had seven connections to deregulated transcripts. When using an 

edge weight cutoff of two or above, twelve of the fifteen molecules remained in the 

network having at least one edge. In total thirteen edge weights had values of two and 

above with the serine peptidase inhibitor clade C1 (SERPINC1) showing four edges to 

the coagulation factors II (F2, thrombin), III (F3, thromboplastin), and X (F10) as well as 

SERPING1. 

 

Figure 3: OmicsNET subgraphs of members involved in blood coagulation. The figure 
shows dependencies as derived from omicsNET analyzing transcripts and proteins 
involved in the blood coagulation cascade. Figure 3A (edge weight cutoff 1.0) holds 15 
nodes and 32 edges, the corresponding number of nodes and edges for a cutoff of 1.5 
is 13/19 (3B), and for a cutoff of 2.0 the numbers are 12/13 (3C). 

 

The distribution of shortest paths between members of the transcriptomics list and 

between members of the transcriptomics and proteomics list were found to be 

equivalent, again indicating a strong functional link between these two feature lists 

(figure 4). The distribution of shortest paths was shifted to even shorter values for the 
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proteomics dataset, partly caused by functional paralogs prevalent in the proteomics 

dataset. 

 

 

Figure 4: OmicsNET shortest paths distribution. The figure shows the distribution of 
shortest paths between members of the transcriptomics and the proteomics list as well 
as between members of the transcriptomics and the proteomics list. Given is the 
number of nodes connecting two given features (shortest path length) and the number 
of paths at a certain length represented as density. 

 

Direct edges between transcripts and proteins 

Transcription factor binding sites of the factors SP3, IRF9, STAT1, and VDR were 

identified in the open reading frame regulatory regions of the 37 features from the 

proteomics dataset. SP3 and ISGF3G were upregulated on the mRNA level whereas 

VDR and STAT1 showed downregulation. Thirteen proteins had on the gene level a 

binding site for at least one of the four transcription factors listed above. COL2A1 had 

binding sites for IRF9 and SP3, A1BG showed binding sites for IRF9 and STAT1, and 

VGF had binding sites for SP3 and STAT1. 
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Tissue specific protein expression 

Protein expressions levels in renal tissues were determined using data from the 

publicly available Human Protein Atlas for the proteins given in our dataset. Data were 

available for 25 out of the 37 proteins of the proteomics set. About 75% of the proteins 

did show at least weak staining in the tubular compartment, whereas 40% of the 

proteins did show positive staining in the glomerular compartment (figure 5). Four 

proteins were neither positive in the tubular nor in the glomerular compartment 

following the immunohistochemical staining. On the other hand uromodulin (UMOD) 

and the prostaglandin D2 synthase 21kDa (PTGDS), two proteins also deregulated on 

the mRNA level, were among the proteins showing the strongest staining in the tubular 

compartment. The other two proteins also found in the transcriptomics dataset, namely 

the apolipoprotein A1 (APOA1) and the collagen type XV alpha 1 (COL15A1), did show 

weak to moderate staining in both, the tubular and the glomerular compartment. 

 

 

Figure 5: Protein tissue staining. The figure displays semi-quantitative tissue staining 
results in the glomerular (G) and tubular (T) compartment for 25 out of the 37 proteins 
found in proteomics and also present in the Human Protein Atlas. Staining intensity 
values range from negative, weak, moderate, and strong as indicates by the different 
grey shadings. No staining results were available for 12 proteins indicated by ―X‖. 
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DISCUSSION AND CONCLUSION 

 

Large scale, public domain omics data repositories have been established covering 

various cellular phenotypes. These data sets allow the analysis of a particular cellular 

state separately on e.g. the transcript or protein level. However, as these repositories 

grow the chance of identifying multiple omics levels covering a given analysis question 

continuously increases. 

Joint analysis of transcriptomics and proteomics profiles appears obvious following the 

general assumption that a change on the mRNA level leads to a change on the protein 

level. Various studies demonstrate the overall correctness of this assumption but still 

showing a significant deviation of transcriptome and proteome profiles measured for 

the very same cellular system. Next to intrinsic biological effects as e.g. variable life 

time of mRNA and encoded protein following posttranslational modification also other 

effects are relevant, as e.g. imposed by experimental biases found for both, 

microarrays as well as proteomics procedures. 

This paper analyzed transcriptomics and proteomics profiles derived in the context of 

chronic kidney disease. Available gene expression data from kidney biopsies resulted 

in 697 differentially regulated features, proteomics profiles from urine showed 37 

proteins as being differentially abundant when comparing chronic kidney disease and 

healthy reference. This large difference is certainly driven by the different sample 

matrix analyzed, as even in the presence of chronic kidney disease only a limited 

number of proteins is released into the urine. 

The overlap of transcriptomics and proteomics features is low and ambivalent. The 

disease associated feature UMOD is found in both data sets as upregulated, whereas 

three other jointly found features differ in their regulation. PTGDS is mainly expressed 

in heart and brain tissue and its urinary excretion is closely associated with vascular 

injury and the following damage of renal interstitial regions [30]. Thus, high PTGDS 

concentration in urine is not necessarily a consequence of elevated mRNA expression 

levels in kidney tissue but rather a consequence of damaged vessels and an increased 

permeability of the kidney filtration barrier.  

As reported by Attmann and colleagues, diabetic nephropathy is accompanied with 

dyslipidemia and, in contrast to most of the other apolipoproteins, decreased plasma 

levels of APOA1 [31]. These decreased levels in plasma may be due to increased 
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levels in urine because of a reduced re-absorption from tubules and to low expression 

levels in kidney tissue. 

The deposition of collagens in the extracellular matrix is reported as associated with 

renal fibrosis [32]. Hagg and colleagues detected high concentration of COL15A1 in 

kidney biopsies taken from patients suffering from glomerular diseases with interstitial 

fibrosis [33]. The accumulation of COL15A1 in kidney tissue may lead to a decreased 

COL15A1 excretion and thus, to decreased COL15A1 levels in urine. 

 

Based on these results the correlation between mRNA and protein abundance on the 

mere feature level appears limited. In the given case the different sample matrices 

used for profiling may contribute to this finding. Altered protein abundance resulting 

from differential gene expression in kidney tissue will not necessarily be reflected by a 

change of the very same proteins in urine. High concentration of proteins in urine can 

be caused by an increased permeability of the glomerular filtration barrier for 

macromolecules. During the progression of chronic kidney disease, a rearrangement of 

the actin cytoskeleton of glomerular epithelial cells can be observed subsequently 

leading to proteinuria.  

Nevertheless, differential gene expression in chronic kidney disease reflects changes 

in particular molecular processes and pathways. In turn, features being players in these 

pathophysiological processes may well be found as proteins in urine. For testing this 

hypothesis we used directed as well as undirected protein interaction networks for joint 

analysis of transcriptomics and proteomics features. Directed interaction graphs were 

drawn from KEGG and PANTHER, and transcriptomics as well as proteomics features 

were mapped on these graphs. The subsequent analysis focused on the question if 

dedicated pathways were found to be significantly populated by transcriptomics or 

proteomics features, or both. Numerous pathways were found affected on the basis of 

the transcriptomics features, and in PANTHER the processes ‗Cell structure and 

motility‘, ‗Immunity and defense‘, ‗Cell structure‘ as well as ‗Cell adhesion‘ were 

significantly populated by features from both data sources.  For KEGG the pathways 

‗ECM-receptor interaction‘, ‗Complement and coagulation cascade‘ and ‗Focal 

adhesion‘ were identified on the basis of both sources. Most of the pathways and 

biological processes reported in the context of CKD are associated with inflammation, 

cell structure, and cell adhesion. Perco and colleagues presented a list of 11 protein 

markers of CKD and although the direct overlap between this list and the protein 

dataset derived from HUPDB consists of only two features (COL3A1, PTGDS), the two 
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important biological processes 'immunity and defense' and 'cell structure and motility' 

were found to be enriched in both of the lists [34].  

 

Another functional category found to be overpopulated by transcriptomics and 

proteomics features is the coagulation pathway. It is frequently reported that patients 

with CKD exhibit features of a hypercoagulable state which is also a main contributor to 

subsequent cardiovascular diseases. Eight features of the coagulation pathway seem 

to be deregulated in case of CKD, including the platelet-vessel wall mediator von 

Willebrand factor (VWF) and the two plasma protease inhibitors SERPINC1 and 

SERPINA5. The mRNA expression of some of the coagulation factors (F2, F3, F10) is 

downregulated which may reflect a regulatory mechanism of the cell to counterbalance 

high concentrations of pro-coagulation factors in the surrounding kidney tissue.  

 

Mapping omics features on KEGG or PANTHER has its limitations of coverage. Of the 

697 features resulting from transcriptomics 233 were found in KEGG and 681 in 

PANTHER; the corresponding numbers for the 37 proteins are 14 and 35. For 

overcoming these limitations we used the undirected interaction network omicsNET 

which covers all presently annotated protein coding genes. Strong edges with edge 

weight over 2 were identified between 22 members from the transcriptomics and 25 

members from proteomics list. Features could be mainly assigned to the functional 

classes of 'blood clotting', 'cell structure', 'cell adhesion', and 'immunity and defense'. 

Twelve members of the network spanned by the 22 transcripts and 25 proteins could 

be assigned to the GO term 'coagulation' and thus, the resulting subgraph represents 

an extended interaction network of factors involved in the process of coagulation when 

compared to the coagulation pathway from the KEGG database. When slightly 

decreasing the cutoff for edge weights, fifteen members of the coagulation cascade 

could be identified as strongly interconnected. These results indicate the crucial role of 

hypercoagulability in CKD. 

Further validation of the link of the proteomics data set measured in urine and protein 

abundance given in kidney compartments was performed on the protein level. The 

glomerular and tubular abundance of 25 out of the 37 proteins identified in proteomics 

were available as immunohistochemical staining from the Human Protein Atlas. Six out 

of the 25 were found in substantial concentration in either glomeruli or tubuli, 15 were 

found as weak or moderate, and only four were not identified in kidney tissue at all, 
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namely A1BG, COL18A1, COL2A1 and PCSK1N. Following the UniGene EST profiles 

however, high mRNA levels of COL18A1, COL2A1, and PCSK1N can be found in 

kidney tissues. ESTs of A1BG mRNA could not be detected in kidney tissues so far. 

 

Integrated analysis of omics profiles provides only moderate add-on information when 

solely aimed at identifying and subsequently correlating joint features. This fact already 

becomes evident within omics domains, as exemplified in meta-analyses of e.g. gene 

expression profiles on cancer and becomes even clearer when spanning different 

omics levels e.g. involving transcriptomics and proteomics [15,34].  

Mapping of heterogeneous omics profiles on protein interaction networks provides an 

alternative for joint omics feature analysis. From such a joint analysis view pathways 

and processes characteristic for the phenotype under analysis may become evident.  
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2.4.1 The Thesis Author’s Contribution 

 

The thesis author was primarily responsible for the selection of the transcriptomics and 

proteomics datasets, as well as for the functional analyses. Furthermore, the author 

contributed to the study design and the interpretation of the results. 

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Contributions to selection of transcriptomics and proteomics datasets, as well 

as of appropriate bioinformatics tools 

 Retrieval of publicly available transcriptomics datasets on diabetic nephropathy 

[20,21] and non-diabetic nephropathies [17] from the Gene Expression 

Omnibus database and respective publications 

 Extraction of proteins associated with chronic kidney diseases from the Human 

Urinary Proteome Database 

 Accomplishment of the pathway enrichment analysis using the PANTHER 

classification tool 

 Extraction of kidney specific protein tissue expression from the Human Protein 

Atlas 

 Contributions to the interpretation of results from the functional interaction 

analyses  

 Visualization of the pathway and networks 

 Provision of bioinformatics-specific methods and results sections to the 

manuscript draft 
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ABSTRACT 

 

The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular 

disease, where cardiovascular events are the most common cause of death in patients 

with chronic kidney disease. Both, cardiovascular as well as kidney diseases have 

been extensively analyzed on a molecular level, resulting in molecular features and 

associated processes indicating a cross-talk of the two disease etiologies on a 

pathophysiological level. 

In order to gain a comprehensive picture of molecular factors contributing to the 

bidirectional interplay between kidney and cardiovascular system, we mined the 

scientific literature for molecular features reported as associated with the cardiorenal 

syndrome, resulting in 280 unique genes/proteins. These features were then analyzed 

on the level of molecular processes and pathways utilizing various types of protein 

interaction networks. 

Next to well established molecular features associated with the renin-angiotensin 

system numerous proteins involved in signal transduction and cell communication were 

found, involving specific molecular functions covering receptor binding with natriuretic 

peptide receptor and ligands as well known example. An integrated analysis of all 

identified features pinpointed a protein interaction network involving mediators of 

hemodynamic change and an accumulation of features associated with the endothelin 

signaling and VEGF signaling pathway. Some of these features may function as novel 

therapeutic targets. 
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INTRODUCTION  

 

The risk of developing cardiovascular disease (CVD) is dramatically increased in 

patients with chronic kidney diseases (CKD). Mortality as a consequence of 

cardiovascular events is 10 to 30 times higher in patients on dialysis treatment than in 

the general population [1]. Due to this recognition of CVD as the leading cause of 

morbidity and mortality in patients with reduced kidney function, a growing body of 

literature has become available regarding this link of CKD and CVD, termed as 

cardiorenal syndrome (CRS).  

CRS can be classified into five subtypes depending on the origin of damage (either the 

cardiovascular system or the kidney) and the course of disease (either acute or 

chronic) [2,3]. Major mechanisms leading to CRS1 and CRS2 (acute and chronic 

cardio-renal syndrome) include hemodynamically mediated damage, hormonal factors, 

immune mediated damage, low cardiac output, endothelial dysfunction, and chronic 

hypoperfusion. Hallmarks of kidney dysfunction leading to CRS3 and CRS4 (acute and 

chronic reno-cardiac syndrome) on the other hand are volume expansion, drop of the 

glomerular filtration rate, humoral signaling, anemia, uremic toxins, and inflammation. 

The fifth subtype of the cardiorenal syndrome (CRS5) describes the secondary cardio-

renal syndrome which refers to systemic diseases such as diabetes that ultimately lead 

to simultaneous cardiovascular and kidney dysfunction. 

The multitude of cardiac risk factors in patients with chronic kidney disease are 

complex and increase with age, the stage of kidney disease, and the level of 

proteinuria. Another powerful risk factor is hypertension which goes along with sodium 

retention, and activation of the renin-angiotensin system. Atherosclerosis results from 

an impairment of endothelial function which, in turn, is associated with albuminuria. 

Changes in blood-lipid composition and oxidative stress as a consequence of 

inflammation due to renal dysfunction also contribute to endothelial dysfunction and 

subsequent CVD [4]. 

Management and therapy of the CRS is challenging since drugs in use for the 

treatment of cardiovascular diseases may go along with impairment of kidney function 

and vice versa. Examples include diuretics, ionotropes, angiotensin-converting enzyme 

inhibitors, angiotensin receptor blockers, or natriuretic peptides but treatment decision 

must be based on a combination of individual patient information and understanding of 

individual treatment options [5].  
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Biomarkers of relevance in the context of the CRS mainly hold proteins known either in 

the field of nephrology or cardiology, for the latter including e.g. the family of natriuretic 

peptides and troponins, whereas frequently reported renal specific markers include 

neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM1), 

Cystatin C, interleukin 18 (IL18), and N-acetyl-β-D-glucosaminidase [6]. Levels of 

circulating fibroblast growth factor 23 (FGF-23) for example have been shown to be 

independently associated with left ventricular mass index and left ventricular 

hypertrophy in patients with CKD [7]. Chung and colleagues described the relationship 

between activation of matrix metalloproteinase 2 (MMP2) and elastic fiber 

degeneration, stiffening, medial calcification, and vasomotor dysfunction in 

macroarterial vasculature of dialyzed CKD patients [8]. Next to these proteins a 

multitude of other molecular features is mentioned in the literature in the context of the 

cardiorenal syndrome. Perco et al. reported a list of 31 CVD biomarkers that were 

extracted from literature and characterized with respect to biological function, gene 

expression in CKD, and known protein–protein interactions [9]. 

Literature mining approaches have the potential to reveal such biomarkers, thus 

providing a more global picture on genes, proteins, and metabolites associated with a 

specific disease. The biomedical literature can be seen as the condensed result of the 

combined effort of the scientific community. As such, it represents the primary resource 

upon which further investigations may be based on. PubMed, for instance, presently 

holds close to 20 million abstracts. Thus, computational literature mining tools assisting 

researchers in keeping pace with this ever-growing amount of fast changing 

information became indispensable [10,11]. 

In the context of drug discovery, the most prevailing approach is based on concept co-

occurrence [12]: Here, a disease profile consisting of the concepts (e.g. drugs, genes, 

etc.) which are frequently mentioned together with the disease under analysis can be 

derived via text mining. Likewise, literature based profiles for drugs or genes can be 

generated. Next to conveniently reaching an overview on biomarkers this information 

base may additionally be used to gain hints about yet undiscovered dependencies 

between diseases, drugs, and potential drug targets. 

To further enhance text mining efforts, several ―controlled vocabularies‖ (―ontologies‖) 

have been developed to allow a precise definition of the employed concepts [13]. The 

most popular ones are maintained by the U.S. Library of Medicine, namely the Unified 

Medical Language System (UMLS) and the Medical Subject Headings (MeSH). Given 

that the majority of PubMed articles are indexed with MeSH, a fast and accurate 
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extraction of biomedical concepts has become feasible [14,15]. With the advent of 

literature mining approaches also in combination with high-throughput Omics 

experiments, a number of bioinformatics tools and ontologies have been developed for 

the analysis of resulting large sets of genes or proteins. Analyzing extended sets of 

biomarker candidates on the level of molecular pathways and processes, represented 

as protein interaction networks, add another layer of information for the interpretation of 

molecular feature (biomarker) sets. 

A recent review by Lusis and colleagues summarized studies dealing with network 

analyses in cardiovascular disease [16]. Networks based on prior knowledge, such as 

existing pathway sources, literature co-citations or other correlation measures as co-

expression and sequence similarity were outlined by Ashley et al. [17], who mapped 

genes being differentially regulated between patients suffering from de-novo 

atherosclerosis and in-stent restenosis on a co-citation network obtained by literature 

mining of Medline abstracts. Similar concepts can be followed by utilizing networks 

derived from physical protein interactions, or networks generated from measuring the 

response to experimental perturbations. Further approaches include system genetics 

and detailed analyses at the level of dynamic systems such as flux balance analyses 

which are often used to characterize enzymatic reactions in dynamic models of 

metabolism. Some of these approaches, especially highly abstracted network models 

on the level of phenotypes, managed to predict co-morbidity patterns for myocardial 

infarction using a ‗human disease network‘ thus closing the gap to clinical applications 

[18]. 

Diez et al. presented another application of the network paradigm to reveal the 

mechanisms of cardiovascular disease, identifying a set of differentially expressed 

genes separating asymptomatic from symptomatic carotid stenosis patients [19]. Based 

on these transcriptomics data a correlation network was generated. Furthermore an 

association network of the differentially regulated genes was derived by mining the 

literature for gene associations thus resulting in an interaction network combining 

Omics data and associated features extracted from literature. Sub-networks were 

identified, characterized by enriched lipid-, immune-, and atherogenesis related 

pathways and gene ontology terms. On this level of representation the interplay of 

APOC1 (a gene that is linked to coronary heart disease) became evident. Weiss et al. 

investigated networks on cardiovascular metabolism pointing out aspects of network 

structure, namely differences between designed networks in engineering and networks 

having undergone an evolutionary process [20]. Based on the level of abstraction three 

types of network on cardiovascular metabolism were proposed: First, on the very 



136 
 

abstract level of nodes and edges, metabolite networks described by using topological 

characteristics [21,22], second physical, spatially compartmentalized networks 

including the description of energy fluxes in the network [23,24], and on a third level 

dynamic networks [25-27]. 

The present knowledge regarding mechanisms leading to the formation of the CRS 

suggests a critical role for hemodynamic changes, originating either from the kidney or 

the cardiovascular system. In the following analysis we used a literature mining 

approach to extract genes and proteins reported in the context of the cardiorenal 

syndrome, and analyzed these features on the level of protein interaction networks. 

Specific focus was laid on secreted proteins being specifically expressed in either renal 

or vascular tissue with the aim to identify molecular mediators potentially contributing to 

the cross-talk between the kidney and the cardiovascular system for allowing 

identification of novel therapeutic targets addressing both systems. 
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MATERIALS AND METHODS 

 

The general analysis strategy applied in this work is outlined in figure 1. Major 

components include feature extraction via literature mining, followed by a range of 

bioinformatics analysis procedures for deciphering characteristics of individual features 

as well as joint interpretation on the level of protein interaction networks. 

 

 

 

 

Figure 1: Overview scheme on the analysis workflow: Literature mining was applied for 
identifying unique proteins associated with CRS. Bioinformatics included feature 
characterization as well as network analysis. 
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Literature mining 

The strength but also the challenge of biomedical text mining relies on the fact that the 

scientific literature embraces a variety of concepts (genes, drugs, diseases, etc.) which 

in turn are inter-related in a variety of ways. Thus, carefully designed text mining 

methods are needed to extract ―meaningful‖ information and reduce the amount of 

noise present in the final results.  

In general, text mining consists of two steps: Information Retrieval (IR) and Information 

Extraction (IE) [10]. The first consists in identifying documents which are of relevance 

for a certain research objective (e.g. a PubMed query for ―cardiorenal‖), whereas the 

later is used to extract facts from these documents. Named Entity Recognition (NER) 

can be seen as the most prevalent type of IE used in real world applications, aiming at 

the identification of biological entities like genes, cell types or drugs.  

Even though the concept of NER might appear almost trivial at a first glance, it actually 

represents a challenging computational problem as the existence of over fifty available 

tools demonstrates [28]. The key obstacle that needs to be addressed when extracting 

genes or proteins from free text relies in the term ambiguity present at multiple levels. 

Some genes are spelled like normal English words (e.g. ―WAS‖ with the NCBI GeneID: 

7454) and even a gene with the official Gene Symbol ―T‖ exists (NCBI GeneID: 6862). 

The same gene may additionally be referred to in various ways due to different naming 

conventions. 

Ultimately, this ambiguities lead to two different types of errors which all methods are 

confronted with: erratically assuming that a certain gene was mentioned in a paper 

(false positive) or erratically assuming that it was not mentioned, even though it actually 

was given (false negative) [29]. Based on the trade-off between these two types of 

errors, the precision of a method (i.e. how much of the predicted genes were actually 

mentioned in the document) and its recall (i.e. how much of all actually mentioned 

genes were also identified as such) are determined.  

 

We chose a method favoring precision over recall for mining genes/proteins in Medline 

/ PubMed abstracts. The Fast Automated Biomedical Literature Extraction (FABLE) tool 

available at http://fable.chop.edu was used in order to fulfill this task. The algorithm 

basically consists of two steps: First, a statistical classifier was used to train a 

probabilistic model, which served as basis for gene tagging, i.e. to identify possible 

occurrences of a gene, taking the textual context into account. Given that such an 
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occurrence exhibits a sufficient likelihood of actually representing a gene, this 

occurrence was normalized in a second step to the official Gene Symbol. This 

normalization step was based on gene synonym lists, which were compared to the 

predicted occurrence using both exact and relaxed pattern matching procedures. It has 

been shown that this approach is competitive to alternative methods such as standard 

information extraction techniques and direct pattern matching both in terms of precision 

and recall [30,31]. We applied this procedures for all papers retrieved from PubMed 

associated with ―cardiorenal‖ (PubMed status as of March 2010). 

 

Functional annotation of identified genes/proteins 

The list of genes and proteins identified on the basis of the literature mining approach 

was in a first step annotated using the Stanford Source tool [32]. The set of genes was 

assigned to biological processes, pathways, and molecular functions using the 

PANTHER (Protein Analysis THrough Evolutionary Relationships) Classification 

System [33,34]. Significantly enriched categories were identified using the whole 

human genome as reference dataset. Biological processes, pathways, and molecular 

functions showing p-values below 0.0001 were considered as statistically significant in 

terms of feature enrichment. 

 

The subcellular location of proteins was determined using experimental data provided 

by SwissProt [35]. For proteins not covered in SwissProt in-silico predictions using 

WoLF PSORT were done [36].  WoLF PSORT computes probabilities based on the 

protein sequence of a given protein for ten subcellular locations. Subcellular location 

tags from SwissProt were mapped to the ten locations defined by WoLF PSORT. Only 

assignments that were either reported in SwissProt or showed a probability value of 1 

according to WoLF PSORT were considered for subcellular location enrichment 

analysis. Based on a reference dataset of 45,008 proteins assigned to one of the WoLF 

PSORT categories, the significance of enrichment was calculated using the Fisher's 

exact test. P-values below 0.01 were considered as statistically significant. 

 

Information on tissue specific expression patterns was extracted from NCBI UniGene 

EST profiles. EST counts of in total 45 tissues were extracted for each gene. Tissue 
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specific expression patterns for each single tissue for each single gene were calculated 

based on the normalized transcripts per million counts as provided by UniGene [37]. 

 

Network analysis framework 

For network analysis we used an extended version of the protein dependency network 

―omicsNET‖ as described in Bernthaler et al. [38]. The network is comprised of 

information from protein-protein interactions, tissue specific reference co-expression, 

shared pathway information, gene ontology distance, and subcellular co-localization, 

and was extended by networks generated from shared transcription factor binding sites 

and shared miRNA target sites. In omicsNET these sources were consolidated into a 

single human protein reference interaction network, where edges represent pairwise 

dependencies between proteins. 

 

Protein-protein dependencies were calculated between proteins in the list resulting 

from the literature mining approach. Furthermore, highly connected subgraphs were 

identified and functionally annotated. We only considered dependencies with high 

confidence in the network construction process and focused on genes reported at least 

twice in the scientific literature in the context of the cardiorenal syndrome in order to 

reduce the number of false positive assignments. 

 

Identification of drug targets 

Drug targets were identified in our set of 280 literature derived proteins using 

information from DrugBank [39,40]. DrugBank combines information on drugs and their 

molecular targets and currently contains around 4800 drug entities with more than 

1350 FDA-approved small molecule drugs and more than 2500 protein drug targets. 
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RESULTS AND DISCUSSION 

Literature mining 

825 papers associated with the term ―cardiorenal‖ were identified in PubMed. In this set 

of 825 papers 280 genes could be extracted utilizing FABLE, with 132 genes being 

reported at least twice. The top ranked gene, mentioned in 156 articles, was the 

aspartyl protease renin (REN), followed by the natriuretic peptide precurser A (NPPA) 

and angiotensinogen (AGT), with 122 and 64 reports, respectively.  

The list of 54 genes mentioned in at least 5 articles along with the term cardiorenal is 

provided in Table 1 (see supplementary Table 1 for the total list of 280 genes, available 

at http://www.sage-hindawi.com/journals/ijn/2011/809378/sup/). Next to the number of 

articles, the relative expression levels in the four tissues blood, heart, vascular, and 

kidney are provided based on data from the UniGene expressed sequence tag counts. 

 

Symbol Articles 
expression 

in blood 
(%) 

expression  
in heart  

(%) 

expression 
in vascular 

(%) 

expression  
in kidney 

(%) 
max. expression (%) 

REN 156 0 0 0 19,27 39,58 intestine 

NPPA 122 88,04 0 0 0 88,04 heart 

AGT 64 1,79 18,54 0 5,71 29,74 liver 

ADM 55 0,95 1,38 1,09 3,11 15,3 adipose tissue 

ACE 39 0,86 2,37 4,09 4,53 15,63 parathyroid 

EDN1 39 0 4,12 15,82 2,77 32,68 umbilical cord 

NPPB 31 85,93 0 0 1,2 85,93 heart 

RAPGEF5 28 0 0 0 0,76 76,62 parathyroid 

NOS3 27 3,92 2,69 2,33 2,2 20,32 spleen 

EPO 22 0 0 0 0 58,82 prostate 

CNP 21 0,85 1,74 3,58 5,4 18,03 brain 

TGFB1 20 8,67 0,99 0 1,79 17,67 salivary gland 

MME 19 0,26 3,59 0 11,63 12,06 lymph node 

PTGS2 19 16,39 0 29,1 0,59 29,1 vascular 

INS 18 0 0 0 0 100 pancreas 

NPR1 17 0 1,32 2,29 2,83 23,69 mammary gland 

NOS2 13 4,23 0 0 0 25,4 pharynx 

DDR1 13 0 0,94 0 0,46 20,12 trachea 

KNG1 10 0 0 0 33,18 57,18 liver 

PLEK 10 11,02 0,34 1,77 0,87 16,81 lymph 

NCF1 10 10,88 0 0 0,76 32,38 lymph node 
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HESX1 10 0 0 0 0 43,18 ovary 

FOS 9 19,04 2,09 4,31 0,77 19,04 blood 

CALCA 9 0 0 0 0 100 prostate 

S100A6 9 1,2 0,87 5,16 1,18 20,08 umbilical cord 

NOS1 8 0 0 0 1,68 65,97 muscle 

AVP 8 0 0 0 80 80 kidney 

RHOA 7 2,5 1,57 2,02 1,72 5,28 cervix 

CYBB 7 19,44 0 2,55 3,15 27,68 lymph node 

MAPK1 7 1,84 1,35 2,36 1,44 10,94 mouth 

AKT1 7 1,14 1,57 0,45 1,51 13,52 salivary gland 

ICAM1 7 3,19 0,55 2,39 1,62 15,19 spleen 

CALCRL 7 0 2,55 14,85 1,39 25,06 trachea 

SERPINE1 7 0,17 0,12 14,5 0,69 27,77 umbilical cord 

EDNRA 7 0 6,4 2,21 1,63 10,94 uterus 

SHBG 7 0 0 0 0 36,84 eye 

RAMP2 7 5,09 0 0 1,85 28,7 thyroid 

UTS2 7 0 0 0 3,88 35,92 spleen 

OLR1 6 1,23 0 0 2,15 81,05 esophagus 

AGTR1 6 0 5,19 0 3,3 19,1 larynx 

NFKB1 6 4,69 0,76 0,66 1,62 8,69 nerve 

UTS2R 6 0 0 0 0 100 ovary 

NR3C2 6 0 0 6,41 7,08 20,74 stomach 

EPHB2 6 6,73 0 0 2,85 14,78 umbilical cord 

ISYNA1 6 1,49 0,43 0,52 3,31 17,72 umbilical cord 

GPR182 5 0 0 0 0 38,67 adrenal gland 

COX8A 5 0,77 11,02 1,48 0,98 11,02 heart 

CPOX 5 9,24 3,63 0 5,28 11,06 liver 

EGFR 5 0 2,2 1,69 2,49 14,89 mouth 

COX5A 5 0 0 0 0 100 muscle 

CCL2 5 0 0 0 0 100 placenta 

PPARG 5 0 1,46 2,52 3,72 12,08 placenta 

CYBA 5 2,25 6,82 1,67 3,43 15,46 tonsil 

RAMP3 5 7,76 0 0 2,54 21,44 adipose tissue 

 

Table 1: List of identified genes/proteins, number of articles identified for cardiorenal, 
and relative expression levels based on UniGene EST counts for blood, heart, vascular 
and kidney, and tissue showing maximum expression of a specific feature. 

 

The top ranked feature in the list of 280 literature derived genes is renin (REN) which is 

secreted by cells of the juxtaglomerular apparatus of the kidney and plays a key role in 
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the blood pressure and water balance-regulating renin-angiotensin system (RAS). The 

connection between CRS and an increased activity of this hormone system was first 

reported in 1971 [41] and its consequences like renal hypoxia, vasoconstriction, 

intraglomerular hypertension, glomerulosclerosis, tubulointerstitial fibrosis, and 

proteinuria continue to be demonstrated in clinical practice. Conservative therapy for 

blocking the RAS activity is the administration of angiotensin-converting enzyme 

inhibitors and angiotensin receptor blockers, but recent studies demonstrate the benefit 

of a combination with direct renin inhibitors [42]. 

 

Further genes frequently reported in association with CRS are the components of the 

natriuretic peptide system (NPS) NPPA and NPPB, as well as their receptors NPR1, 

NPR2, and NPR3.  Functions of the NPS include the counter-regulation of RAS, and it 

is suggested that its activation provides organ protection in cardiorenal disease, 

especially in diabetic patients [43]. 

 

Functional annotation 

According to the PANTHER Classification System, the biological processes of ―signal 

transduction‖ and ―cell communication‖ were identified as most significantly enriched, 

with 135 and 136 genes assigned to these categories, respectively. In total, 28 

processes showed a p-value > 0.0001 in terms of enrichment, including ―blood 

circulation‖, ―regulation of vasoconstriction‖, and ―angiogenesis‖. The most significantly 

enriched molecular functions are ―receptor binding‖ and ―protein binding‖ (Table 2). 

 

Biological Process 
No. genes 

total 
No. genes 

CRS 

No. genes 
CRS 

expected 
P-value 

signal transduction 4191 135 57,67 4.55E-25 

cell communication 4365 136 60,07 6.84E-24 

cell surface receptor linked signal 
transduction 

2235 91 30,76 3.80E-22 

immune system process 2628 97 36,16 9.70E-21 

blood circulation 210 28 2,89 5.11E-19 

regulation of biological process 59 18 0,81 1.01E-18 

regulation of vasoconstriction 59 18 0,81 1.01E-18 
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Molecular Function 
No. genes 

total 
No. genes 

CRS 

No. genes 
CRS 

expected 
P-value 

receptor binding 1233 64 16,97 2.46E-20 

protein binding 3157 103 43,44 2.71E-18 

catalytic activity 5336 128 73,43 1.44E-12 

oxidoreductase activity 703 33 9,67 1.21E-09 

binding 6751 140 92,9 3.65E-09 

kinase activity 695 28 9,56 5.18E-07 

 

Table 2: List of enriched biological processes and molecular functions. Given is the 
total number of genes assigned to a process/function, the number of genes assigned 
as derived from literature mining, the number of genes expected from a statistical 
perspective, and the significance level of enrichment. 

 

The two enriched categories ―receptor binding‖ and ―receptor activity‖ indicate that 

numerous receptors and ligands are involved in the cardiorenal syndrome. These 

receptors form the first line of molecules in a number of signaling cascades, which as 

such is another category enriched in genes associated with the cardiorenal syndrome. 

We therefore took a closer look at receptor-ligand interactions. We searched for 

receptors mainly expressed in the cardiovascular system having ligands predominantly 

secreted by the renal tissue, and vice versa. 

The natriuretic peptide receptor NPR3 showed high expression in kidney tissue, 

whereas the ligands NPPA and NPPB were found to be almost exclusively expressed 

in the heart. Thus, a deregulation of blood pressure maintenance and extracellular fluid 

volume by heart derived ligands of the natriuretic peptide system directly affect the 

kidney and may contribute to the formation of CRS. 

Enrichment of the process ―regulation of vasoconstriction‖ reflects the consequences of 

impaired heart function including a decreased cardiac output, and thus the 

hypoperfusion of organs. Since glomerular filtration is controlled by blood pressure, 

hypoperfusion of the kidney leads to the activation of the RAS and subsequent 

vasoconstriction, which, in turn, causes systemic hypertension and an increased heart 

preload [2]. 

22 PANTHER pathways could be identified as significantly enriched in the list of 280 

literature derived genes. 28 genes could be assigned to ―angiogenesis‖, 21 genes to 

―endothelin mediated signaling‖, and 15 genes to the ―VEGF signaling pathway‖ (Table 

3).  
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Pathway 
No. genes 

total 
No. genes 

CRS 

No. genes 
CRS 

expected 
P-value 

Angiogenesis 191 28 2,63 4.51E-20 

Endothelin signaling pathway 91 21 1,25 3.33E-19 

VEGF signaling pathway 75 15 1,03 3.33E-13 

Inflammation mediated by 
chemokine and cytokine 
signaling pathway 

283 24 3,89 2.76E-12 

PDGF signaling pathway 159 18 2,19 1.68E-11 

T cell activation 102 14 1,4 2.72E-10 

Apoptosis signaling pathway 123 15 1,69 3.10E-10 

 

Table 3: List of enriched biological pathways. Given is the total number of genes 
assigned to a process/function, the number of genes assigned as derived from 
literature mining for CRS, the number of genes expected from a statistical perspective, 
and the significance level of enrichment. 

 

The connection between angiogenic processes and cardiovascular disorders is well 

understood, since decreased cardiac output goes along with decreased organ 

perfusion, and vascularization is the natural response to diminution of blood supply. 

Apart from negative effects on organ function due to hypoperfusion, 

microvascularization is extensively performed at sites of inflammation which explains 

the role of angiogenesis in diseased kidney tissue. On the other hand, decreased 

vascularization and loss of capillaries lead to kidney fibrosis. However, deregulation of 

angiogenesis seems to be crucial for kidney function and a key regulatory mechanism 

of angiogenic processes is the VEGF signaling pathway [44-46]. A third enriched 

pathway is the ―endothelin signaling pathway‖ which is known to regulate the renin-

angiotensin system thus being a further player in the hemodynamic crosstalk between 

the kidney and the cardiovascular system. 

Following the rationale that features secreted from kidney cells may lead to damage in 

vessels and vice versa, literature derived proteins were classified in terms of 

subcellular location. The most significantly enriched compartment was ―extracellular, 

including cell wall‖ with 81 genes being assigned to this category, whereas ―nuclear‖ 

was significantly depleted with 48 genes as indicated in Figure 2. 
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Figure 2: Subcellular location of literature derived proteins. Presented are categories of 
subcellular location, the expected number of proteins in a particular category using the 
total set of human proteins, and the actual number of proteins found as being 
associated with CRS. 

 

 

The list of 81 secreted genes included components of the renin-angiotensin system 

(REN, AGT, ACE) and the natriuretic peptide system (NPPA, NPPB), as well as some 

other regulators of vasoconstriction. Kininogen 1 (KNG1) for example is essential for 

the assembly of the blood pressure regulating kallikrein-kinin system. Another molecule 

serving as a vasodilator is the peptide hormone calcitonin-related polypeptide alpha 

(CALCA). 

 

Network analysis 

A subset of 40 proteins out of the list of 132 proteins mentioned in at least two 

publications in the context of the cardiorenal syndrome formed a highly connected 

protein interaction network as given in Figure 3. The main components of this protein 

network are mediators of hemodynamic change. An accumulation of features involved 

in previously described signaling pathways like the endothelin signaling pathway or the 

VEGF signaling pathway is evident. Next to these two pathways, a number of members 
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of the blood pressure regulating kallikrein-kinin system and the renin-angiotensin 

system are part of this network. 

 

Figure 3: Protein interaction network of highly connected proteins associated with the 
cardiorenal syndrome. Nodes represent genes (gene symbols), edges indicate 
functional associations. Highlighted nodes represent proteins that are specific for either 
the VEGF signaling, the leukocyte transendothelial migration, or the endothelin 
signaling pathway. 

 

Another highly connected cluster holds genes associated with leukocyte 

transendothelial migration. The process of leukocyte migration from blood into tissues 

is vital for inflammation, and it is known that inflammation is an important cardiorenal 

connector and a hallmark of kidney and heart diseases [5].  

 

Identification of drug targets 

116 out of the 280 proteins associated with the CRS were listed as drug target for at 

least one drug in DrugBank (see supplementary Table 1). The proteins with the most 

number of drugs were PTGS1, PTGS2, and NOS3 with 49, 43, and 41 drugs 

associated. The drug with the most drug targets in our list of 280 proteins was NADH.  
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Standard therapeutic regimes in the context of cardiovascular and kidney disease 

included aliskiren, irbesartan, or ramipril. Another drug candidate is nesiritide, a 

recombinant B-type natriuretic peptide that counter-regulates the RAS, as used in the 

treatment of acute decompensated heart failure (ADHF). However, on the basis of a 

prospective, randomized, double-blinded, placebo-controlled clinical trial Witteles et al. 

concluded that nesiritide therapy does not impact renal function in patients with ADHF 

and pre-existing renal dysfunction [47]. 

It is known that reducing blood pressure has beneficial effects on renal function and 

there is a multitude of antihypertensive agents acting on the RAS. Administration of 

angiotensin receptor antagonists in combination with angiotensin-converting enzyme 

inhibitors showed a significant reduction of urine albumin creatinine ratio in patients 

with hypertension and microalbuminuria and thus, a reduction of the risk for myocardial 

infarction [48]. 

Further potential targets for regulation of hemodynamics are members of the 

endothelin signaling pathway. Endothelin receptor antagonists are used in the 

treatment of a variety of cardiovascular conditions but less is known about the effects 

on combined kidney dysfunction. Ding et al. showed in animal models that chronic 

endothelin receptor blockade with endothelin receptor antagonists is beneficial in the 

treatment of progressive renal dysfunction and sodium retention associated with 

chronic heart failure [49]. Studies in humans are required to fully elucidate the effects 

and risks of endothelin receptor antagonist treatment in patients with CRS. 

 

 

CONCLUSIONS 

 

In this work we provide a comprehensive list of genes/proteins associated with the 

cardiorenal syndrome identified on the basis of a literature mining approach. On the 

basis of 825 articles identified in the context of CRS, 280 unique genes could be 

identified and were further characterized with respect to molecular function, biological 

processes, cellular pathways, subcellular location, tissue specific expression, as well 

as on the level of protein interaction networks. 

The most frequently reported genes are involved in blood pressure regulating systems, 

particularly in the renin-angiotensin system (REN, AGT, ACE), as well as in the 
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antagonistic natriuretic peptide system (NPPA, NPPB). Enriched molecular functions 

include ―receptor binding‖ and ―receptor activity‖. Of special note in this context are 

again players of the natriuretic peptide system, namely the two ligands NPPA and 

NPPB and its receptor NPR3. Tissue specific expression patterns of these molecules 

showed that NPPA and NPPB are mainly expressed in the heart, whereas their 

receptor NPR3 is highly expressed in kidney tissue, suggesting that this regulatory 

system is part of the crosstalk between the kidney and the cardiovascular system.  

Therapy of the CRS is largely focused on natriuretic peptides or the renin-angiotensin 

system with a number of other molecular targets like the endothelin signaling pathway 

holding promise for future therapeutic strategies. 

 

Altogether, the results of the present study strongly indicate the critical role of 

hemodynamic changes, blood pressure regulating hormone systems, and inflammatory 

processes in the formation of the CRS. Our analyses led to a comprehensive picture of 

molecular features involved in the functional interplay between the kidney and the 

cardiovascular system. One limitation of this automated literature mining approach is 

that we do not have experimental data on the expression levels of the reported 

molecules in the process of disease development. An obvious next step would 

therefore be to integrate the findings of this work with Omics datasets on kidney 

disease as well as vascular diseases. Such a combined approach has the potential to 

identify deregulated features for potentially identifying novel players for diagnostic or 

therapeutic approaches in the field of kidney and cardiovascular disease. 
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2.5.1 The Thesis Author’s Contribution 

 

Study design was predominantly the thesis author‘s responsibility. The thesis author 

further carried out the functional annotation and the analysis of the interaction network. 

Discussion and data interpretation were jointly done by all of the authors. 

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Design of the analysis workflow in consultation with other authors 

 Selection of appropriate bioinformatics tools 

 Functional annotation of genes derived from the literature mining approach, 

including biological process, molecular function and pathway enrichment 

analyses 

 Extraction of tissue specific gene expression from the Unigene database 

 Selection of relevant subgraphs resulting from the interaction analysis 

 Discussion of genes frequently reported as associated with the cardiorenal 

syndrome, functional categories, relevant subgraphs and drug targets in 

collaboration with the other authors 

 Visualization of subcellular location data and the protein interaction network 

 Drafting the manuscript in cooperation with other authors 
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2.6 Molecular pathways and crosstalk characterizing the cardiorenal 

syndrome. submitted to J Cell Mol Med. 

 

Molecular pathways and crosstalk 
characterizing the cardiorenal 
syndrome  
 

 

Irmgard Mühlberger1, Konrad Mönks1, Raul Fechete1, Gert Mayer2, Rainer 

Oberbauer3,4, Bernd Mayer1,5, and Paul Perco1,4 * 

 

 

1 emergentec biodevelopment GmbH, Gersthofer Strasse 29-31, 1180 Vienna, Austria 

2 Medical University of Innsbruck, Department of Internal Medicine IV, Anichstrasse 35, 
6020 Innsbruck, Austria 

3 Krankenhaus der Elisabethinen Linz, Fadingerstrasse 1, 4020 Linz, Austria 

4 Medical University of Vienna, Department of Internal Medicine III, Waehringer Guertel 
18-20, 1090 Vienna, Austria 

5 Institute for Theoretical Chemistry, University of Vienna, Waehringer Strasse 17, 1090 
Vienna, Austria 

 

 

* Corresponding author: 

Dr. Paul Perco 
emergentec biodevelopment GmbH 
Gersthofer Strasse 29-31 
1180 Vienna, Austria 
phone: +43-1-4034966 
fax: +43-1-4034966-19 
e-mail: paul.perco@emergentec.com 
 
 
 
 

Submitted to: J Cell Mol Med. April 2011. 

mailto:paul.perco@emergentec.com


156 
 

ABSTRACT 

 

The risk of developing cardiovascular diseases (CVD) is dramatically increased in 

patients with chronic kidney diseases (CKD). Mechanisms leading to this cardiorenal 

syndrome (CRS) are multifactorial, and combined analyses of both failing organs may 

provide routes towards developing strategies for early risk assessment, prognosis, and 

consequently effective therapy.  

In order to identify molecular mechanisms involved in the crosstalk between the 

diseased cardiovascular system and kidney, we analyzed tissue specific Omics profiles 

on atherosclerosis and diabetic nephropathy together with literature derived gene sets 

associated with cardiovascular and chronic kidney diseases. We focused on enriched 

molecular pathways and highlight molecular interactions found within as well as 

between affected pathways identified for the two organs.  

Analysis on the level of molecular pathways points out the role of PPAR signaling, 

coagulation, inflammation, and focal adhesion pathways in formation and progression 

of the CRS. The proteins apolipoprotein A1 (APOA1) and albumin (ALB) turned out to 

be of particular importance in context of dyslipidemia, one of the major risk factors for 

the development of CVD. 

In summary, our analyses highlight mechanisms associated with dyslipidemia, 

hemodynamic regulation, and inflammation on the interface between the 

cardiovascular and the renal system.  

 

 

KEYWORDS: cardiorenal syndrome, chronic kidney disease, cardiovascular disease, 

literature mining, transcriptomics, pathways, protein interactions 
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INTRODUCTION 

 

Patients suffering from chronic kidney disease are at high risk for developing 

cardiovascular complications. This fact already becomes evident for subjects with no or 

minor decrease in glomerular filtration rate (GFR) but showing protein excretion in urine 

with albuminuria being a strong predictor for cardiovascular complications. In end stage 

renal disease this relation becomes even more evident, with cardiovascular mortality 

being 10 to 30 times higher for patients on dialysis treatment compared to a matched 

general population with normal kidney function [1]. The clinical manifestations of 

cardiovascular disease in patients with kidney dysfunction are mainly atherosclerotic 

vascular disease and left ventricular hypertrophy [2]. A number of studies show that the 

prevalence of atherosclerosis is dramatically increased in dialysis patients and 

progressive over a range of reduced GFR [3-5]. Accelerated atherosclerosis can be 

frequently observed in diabetic nephropathy, being the leading cause of end-stage 

renal disease [6]. 

 

The pathophysiological state of combined kidney and cardiovascular dysfunction is 

described as cardiorenal syndrome (CRS), where the organ suffering in the first place 

can either be the cardiovascular system or the kidney. Further categorization 

depending on the origin of damage and the course of disease (either acute or chronic) 

has been established and discussed by Ronco and colleagues [7,8]. CRS 1 and 2 

denote the acute or chronic cardio-renal syndrome respectively, whereas CRS 3 and 4 

refer to reno-cardiac syndromes where the primary failing organ is the kidney. The fifth 

subtype characterizes cardio- and renal dysfunctions due to preceding systemic 

disorders such as sepsis or diabetes. 

The mechanisms leading to all types of CRS are multifactorial and not restricted to 

changes of hemodynamic parameters like extracellular fluid volume, cardiac output, or 

arterial pressure only. Bongartz and colleagues outlined the four major cardiorenal 

connectors, namely increased activity of the renin-angiotensin system, oxidative stress, 

inflammation, and increased activity of the sympathetic nervous system [9]. Cardiac 

risk factors commonly associated with chronic kidney diseases, however, are complex 

and increase with age, the stage of kidney disease, and the level of proteinuria. Further 

factors include hypertension, diabetes, and dyslipidemia, and their appropriate 

treatment is certainly vital to reduce cardiovascular complications [10]. 
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Early risk assessment and prognosis are key factors for effective and tailored 

treatment, particularly since management and therapy of severe cardiorenal syndrome 

is challenging. Therapeutic benefits of standard regimes are often achieved for one 

organ only or even worse, drugs in use for the treatment of cardiovascular diseases 

may go along with impairment of kidney function and vice versa. Further complications 

in treatment approaches leading to an increasing concern about novel strategies derive 

from the development of resistance to many standard therapies such as diuretics and 

inotropes [11]. So far, an effective therapy is lacking and further research, including the 

identification of biomarkers along with a better understanding of the underlying 

pathophysiological mechanisms to stratify CRS subtypes, is needed to develop 

selective therapeutic strategies. 

 

In the last years, a significant number of genomics, transcriptomics, proteomics as well 

as metabolomics studies became available for characterizing altered kidney or 

cardiovascular function, but combined analyses of both failing organs on any omics 

level have been rare. One example is the gene expression analysis of aortic tissue 

from patients with or without chronic kidney disease scheduled for a coronary artery 

bypass graft, identifying diffential expression of genes implicated in collagen 

fibrillogenesis and vascular smooth muscle cell migration [12].  

An alternative approach for gaining a more global picture on disease mechanisms is 

the systematic extraction of information on genes and diseases as provided within the 

scientific literature. In particular, integrating results originating from different fields of 

research, such as e.g. cardiovascular disorders and kidney disease, represents a 

challenging task that can be facilitated by suitable literature mining methods. In this 

context, the most prevailing approach is based on concept co-occurrence as a 

measure for the relatedness of biomedical concepts (genes and associated diseases). 

We recently applied extensive literature mining on the CRS, identifying 280 unique 

genes/proteins discussed in this context. Analyzing these features on the level of 

protein interaction networks identified mediators of hemodynamic change as well as 

the endothelin and VEGF signaling pathway as centrally involved in the 

pathophysiology of CRS [13].   

 

We in this work extend this literature mining approach by also including tissue specific 

Omics data sets. Transcriptomics profiles characterizing cardiovascular as well as 
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renal damage allow an integration of tissue-specific changes coupled with also 

systemic alterations covered by literature extraction methods. Specifically, we are 

interested in identifying pathways being jointly affected on the level of both organs for 

delineating molecular features potentially involved in molecular crosstalk of the 

cardiorenal syndrome. 

 

 

METHODS 

 

Data sets 

Based on a catalogue of NCBI Medical Subject Headings (MeSH) specifying 

cardiovascular disease, renal disease, as well as the cardiorenal syndrome we 

extracted associated publications from Medline (database status as of April 2010). 

Subsequently, all genes associated with these publications were retrieved utilizing the 

gene-to-pubmed mapping file as provided by NCBI at 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz, status as of April 2010. For 

identifying the significance of an association of a gene to a specific disease category 

we applied a Fisher´s exact test using the number of associations of a given gene to a 

given disease category and the background distribution of gene-to-disease 

assignments as basis. Only genes showing a significant association with one of the 

diseases in focus (p-value ≤ 0.05) were further considered. 

Organ specific differentially expressed transcripts in chronic kidney disease and 

cardiovascular complications were extracted from two publicly available transcriptomics 

datasets. A first dataset published by Volger and colleagues provided profiles of human 

endothelial cells isolated from large arteries of patients with early and advanced 

atherosclerosis as compared to healthy controls. The list of differentially expressed 

genes of both, early and advanced atherosclerotic samples, as compared to control 

samples was retrieved from the supplementary material of the respective publication 

[14]. For generating a list of deregulated genes in chronic kidney disease we did make 

use of a publicly available dataset published by Schmid and colleagues on gene 

expression changes in human tubulointerstitial renal cells comparing patients with 

diabetic nephropathy and healthy controls [15]. This dataset was accessed through the 

Nephromine database (http://www.nephromine.org). 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
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Next to the four described datasets, we included the literature-derived set of 280 

proteins related to the cardiorenal syndrome as previously annotated and characterized 

in great detail by our group [13]. Molecular features identified as relevant via literature 

search and via Omics profile analysis were mapped to Entrez Gene IDs for allowing 

further joint analyses. 

 

Protein interaction and pathway analysis 

Protein-protein interactions (PPIs) between identified features were extracted from the 

IntAct database [16]. Feature sets were further mapped to extended KEGG pathways 

thus allowing an interpretation on a functional level [17]. Of the 214 pathways presently 

encoded in KEGG, 151 generic pathways were used, excluding all pathways 

specifically assigned to a disease phenotype. Pathways were extended as described in 

[18] to increase the coverage of genes assigned with these pathways, yielding a 

representation of 17,995 proteins.  

For computing the enrichment of features assigned to cardiovascular or renal disease 

on the level of specific pathways a Fisher‘s exact test was used resting on the number 

of features assigned to a pathway and the number of features being identified as 

relevant for a given disease phenotype. 

 

Molecular function and cellular component 

Molecular features were annotated with respect to their molecular function and 

subcellular location according to the gene ontology database [19]. We specifically 

focused on the terms ―receptor activity‖ and ―extracellular space‖ for delineating the 

crosstalk between the two organs under study. 
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RESULTS 

 

Identified molecular features 

In total we identified 2,019 unique molecular features as being assigned to 

cardiovascular disorder, chronic kidney disease, and the cardiorenal syndrome. Table 

1 provides an overview on the datasets and the numbers of molecular features 

identified. 

 

dataset Description # features 

LIT-CVD 
literature dataset based on cardiovascular 
MeSH terms 

306 

1386 

2019 

OMICS-CVD 
deregulated transcripts derived from the 
atherosclerosis dataset 

1096 

LIT-CKD 
literature dataset based on chronic renal 
disease MeSH terms 

183 

540 

OMICS-CKD 
deregulated transcripts derived from the 
diabetic nephropathy dataset 

354 

CRS 
literature dataset using the search term 
―cardiorenal‖ 

280 

 

Table 1: Overview on datasets for cardiovascular disease (CVD) and chronic kidney 
disease (CKD) on the basis of literature extraction (LIT) and Omics data set analysis 
(OMICS). 

 

The cardiovascular datasets held 306 (LIT-CVD) and 1,096 (OMICS-CVD) proteins 

respectively, with an overlap of 16 features (see figure 1A). From the 540 kidney 

disease specific features, 183 resulted from the literature mining approach (LIT-CKD) 

and 354 were part of the transcriptomics set (OMICS-CKD) (see figure 1B). Seven 

features were identified in both datasets, which is again a weak overlap but apparently 

not surprising, as the omics datasets are tissue specific, whereas literature mining also 

includes a systemic view on the different disease entities. 

When merging literature and omics derived datasets, 101 features were found to be 

associated with kidney (CKD) and cardiovascular (CVD) diseases, and among these 

30 features were also reported in the context of the cardiorenal syndrome (see figure 

1C). 
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Furthermore, figure 1C gives information about organ-specific contributions. 43 genes 

assigned to cardiovascular complications and being part of the cardiorenal dataset 

appear not affected in kidney disease according to the CKD dataset. In turn, 13 

members of the CRS dataset could be found in the kidney specific dataset but not in 

CVD specific profiles. 

 

 

 

Figure 1: Venn diagrams showing the feature overlaps between (A) LIT-CVD and 
OMICS-CVD, (B) LIT-CKD and OMICS-CKD, and (C) CVD, CKD and CRS datasets. 

 

 

Pathway analysis 

Comparing the diseases on the level of affected pathways provided a more 

comprehensive picture than comparing individual features as such. We identified 29 

enriched KEGG pathways for the literature and omics combined CVD and CKD 

features lists (see table 2). Joint pathways of both lists included the renin-angiotensin 

system, the complement and coagulation cascade, cytokine-cytokine receptor 

interactions, as well as the PPAR signaling, all of which were also significantly enriched 

by features of the CRS dataset. Three additional pathways were found to be coherently 

enriched within the CVD and CRS datasets, namely tyrosine metabolism, the 

adipocytokine signaling pathway, and vasopressin regulated water reabsorption. Focal 

adhesion was the only pathway jointly enriched by CKD and CRS specific genes.  
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pathway # genes 

name 
# genes 

total 
CVD CKD CRS 

renin-angiotensin system 50 8* 6* 5* 

complement and coagulation 
cascades 

180 38* 16* 9* 

one carbon pool by folate 19 3* 1* 0 

cytokine-cytokine receptor 
interaction 

300 31* 16* 11* 

PPAR signaling pathway 175 29* 10* 8* 

glutathione metabolism 63 6* 1 2 

purine metabolism 277 20* 5 6 

glycosaminoglycan degradation 22 4* 1 0 

tyrosine metabolism 34 2* 1 2* 

circadian rhythm - mammal 36 3* 0 0 

leukocyte transendothelial 
migration 

59 7* 1 0 

ubiquitin mediated proteolysis 662 39* 16 6 

ABC transporters 97 11* 1 1 

adipocytokine signaling pathway 126 15* 3 4* 

hematopoietic cell lineage 65 4* 2 3 

valine, leucine and isoleucine 
degradation 

46 8* 1 0 

gastric acid secretion 60 9* 0 3 

vasopressin-regulated water 
reabsorption 

152 14* 4 5* 

lipoic acid metabolism 7 2* 0 0 

mismatch repair 29 4* 2 0 

arachidonic acid metabolism 58 11* 1 3 

cardiac muscle contraction 35 10* 2 0 

focal adhesion 149 13 9* 6* 

pyruvate metabolism 37 1 3* 2 

terpenoid backbone biosynthesis 28 1 1* 1 

histidine metabolism 34 1 3* 0 

O-Glycan biosynthesis 40 3 5* 0 

chemokine signaling pathway 240 19 12* 5 

ECM-receptor interaction 137 11 11* 3 

 

Table 2: Enrichment of extended KEGG pathways for the CVD, CKD, and CRS 
datasets. Given is the pathway name, the total number of features assigned to the 
pathway following our extended pathway assignment, the number of features identified 
as relevant for CKD, CVD and CRS datasets, and significant enrichment for specific 
pathways and specific datasets (*). 

 



164 
 

Molecular crosstalk 

Next to comparing CKD and CVD on the level of individual features as well as on the 

level of molecular pathways we analyzed evidence for specific protein interactions 

between members identified for CKD and CVD by mining the IntAct protein-protein 

interaction database. This procedure provided 284 protein-protein interactions 

identified for features associated with CVD or CKD. We specifically analyzed 

interactions between proteins that were assigned to enriched pathways in at least one 

of the two datasets, individually studying crosstalk i) between pathways enriched in 

both, CKD and CVD, ii) between pathways enriched in either CKD or CVD, and iii) 

within pathways enriched in both disease entities. Furthermore, information on the 

subcellular location of these proteins was added with particular focus on secreted 

proteins naturally being the most promising members when investigating the crosstalk 

between the two organs under study. The majority of interactors could actually be 

assigned to the GO category ―extracellular space‖. Proteins belonging to the GO 

molecular function category ―receptor activity‖ were additionally marked. 

 

For the crosstalk between pathways being enriched in both, CKD and CVD the 

complement and coagulation cascades and PPAR signaling were the two pathways 

showing the largest numbers of interconnected proteins. Key molecules of this 

crosstalk are apolipoprotein A1 (APOA1), being a known marker for cardiovascular 

disorders and apparently also affected in kidney diseases, as well as albumin (ALB). 

Albumin as a member of the CKD dataset interacts with the serpin peptidase inhibitor 

G1 (SERPING1), the coagulation factors II (F2) and VII (F7), and fibrinogen alpha 

(FGA), all members of the CVD dataset (see figure 2A), showing a further interaction to 

AHSG (Alpha2-HS glycoprotein) being assigned to the renin-angiotensin system. 

 

Next, crosstalk between pathways exclusively enriched in either the cardiovascular or 

the kidney dataset was identified, holding proteins involved in ubiquitin mediated 

proteolysis, focal adhesion, and the complement and coagulation cascades, as outlined 

in figures 2B and 2C. Here a member of the ubiquitin mediated proteolysis (CVD 

enriched) links to focal adhesion (CKD enriched) as well as to a member situated in the 

complement and coagulation cascades (being enriched in both, CVD and CKD). PPAR 

signaling holds two members which on the one hand link to cardiac muscle contraction 

(CVD enriched) and on the other hand to focal adhesion (CKD enriched). 
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Figure 2: Inter-pathway links based on physical protein interactions for members from 
the CVD and CKD datasets. (A) Interactions of features found in pathways enriched by 
CVD as well as CKD features, (B) Interactions between features of pathways exclusively 
enriched by either the CVD (grey) or CKD (dark grey) dataset, and (C) links between 
pathways enriched by CVD as well as CKD features and pathways exclusively enriched 
by either the CVD or CKD dataset. ‗S‘ and ‗R‘ depicts secreted and receptor, 
respectively. 

 

Looking at the intra-pathway protein interactions for pathways affected in both, CVD 

and CKD, a crosstalk between members of the CVD and CKD datasets was found for 

three pathways, namely PPAR signaling, the complement and coagulation cascade, as 

well as cytokine-cytokine receptor interactions (figure 3).  
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Figure 3: Intra-pathway links based on physical interactions found for members from 
the CVD and CKD datasets for pathways being affected in both, CVD and CKD. ‗S‘ and 
‗R‘ depicts secreted and receptor, respectively. 

 

Key players in the PPAR signaling pathway are found to be apolipoprotein A1 and 

albumin, showing in total fourteen links to other deregulated molecules. A receptor-

ligand interaction in the complement and coagulation cascade was identified between 

the coagulation factor II and its binding partner thrombomodulin. Another receptor-

ligand interaction between cardiovascular and kidney specific features was found in the 

context of cytokine-cytokine receptor interactions between the tumor necrosis factor 

receptor superfamily, member 6B (TNFRSF6B) and the tumor necrosis factor 

superfamily, member 14 (TNFSF14). 
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DISCUSSION 

 

In the present paper we combined transcriptomics and scientific literature-derived 

datasets on chronic kidney disease and cardiovascular disease for characterizing the 

cardiorenal syndrome on a molecular pathway level. Following the scientific literature 

280 features are directly reported in the context of CRS, and our integration of 

transcriptomics and literature data resulted in 1,386 features being linked with CVD, 

and 540 features linked with CKD. As frequently seen for such datasets on both, 

literature mining but in particular Omics datasets the overlap on the level of features is 

minor. This is, however, not surprising as e.g. the transcriptomics studies analyzed in 

this work are per definition tissue specific and analyze a specific clinical phenotype, 

which when combined with a more systems view on the disease as represented by 

scientific literature results in minor overlap. Going beyond the pure feature comparison 

to a more functional representation of disease pathology, as expressed by molecular 

pathways, frequently changes this picture. 

We consequently investigated specifically whether dedicated pathways are found to be 

significantly populated by either kidney or cardiovascular disease specific features or 

both. Here we used a modified KEGG pathway set, where we on the one hand 

removed disease phenotype specific pathways as provided by KEGG, and on the other 

hand assigned proteins not embedded in KEGG according to a molecular relations 

approach. The resulting pathway map therefore focuses on key cellular processes 

further allowing an extended assignment of features given in our Omics- and literature-

derived feature lists to such pathways. 

 

Pathways affected in disease development in both organs were found as (i) the renin-

angiotensin system, (ii) the complement and coagulation cascade, (iii) cytokine-

cytokine receptor interactions, as well as (iv) the PPAR signaling pathway. These 

findings on the pathway level are in line with previously reported analysis results solely 

utilizing literature derived features associated specifically with the cardiorenal 

syndrome [13]. The connection between CRS and an increased activity of the blood 

pressure and water balance-regulating renin-angiotensin system was first reported in 

1971 [20], and its consequences like renal hypoxia, vasoconstriction, intraglomerular 

hypertension, tubulointerstitial fibrosis, and proteinuria continue to be demonstrated in 

clinical practice. Members of the blood coagulation cascade are also heavily discussed 
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in the context of cardiovascular risk and renal diseases [21-24] also posing medical 

treatment options for both diseases [25]. A hypercoagulable state, often found in 

nephrotic CKD patients, is a major contributor to subsequent atherosclerosis and 

cardiovascular complications [26]. The recognition of cardiovascular, as well as renal 

protective properties of key players of the PPAR signaling pathway opens up further 

treatment options for the CRS. Next to the regulation of lipid concentrations in the 

blood, PPARα/γ agonists exert anti-inflammatory and antioxidant actions [27]. They are 

widely used for the treatment of dyslipidemia as well as insulin resistance, and their 

beneficial effect on reducing arterial stiffness has been demonstrated in several clinical 

trials [28,29]. The positive effect of PPAR agonists on kidney function has so far been 

shown in animal models [30,31]. 

Altogether, jointly enriched pathways reflect several aspects of the pathophysiology of 

the CRS, including the dysregulation of hemodynamics, dyslipidemia, inflammation, 

and increased blood clotting, processes that are mainly addressed by current 

therapeutic strategies for the management of the CRS. 

 

Next to the above discussed pathways that are affected in both organs we were 

interested in pathways exclusively enriched in either cardiovascular or renal datasets in 

order to draw conclusions on the organ specific contributions to the CRS. Pathways 

enriched in cardiovascular disease are found as associated with metabolism, 

hemodynamic regulation, vasopressin regulated water reabsorption, cardiac muscle 

contraction, as well as inflammation including the adipocytokine signaling pathway. 

Adipocytokine signaling is closely linked to the renin-angiotensin system and PPAR 

signaling pathways, as angiotensin II receptor blockers and PPARα ligands improve 

the dysregulation of adipocytokine production, thereby reducing inflammation mediated 

changes [32,33]. Regulation of water reabsorption by vasopressin is achieved, among 

others, through fluid retention and activation of angiotensin II, thereby stimulating 

myocardial hypertrophy [34]. The beneficial effect of vasopressin antagonists on heart 

function without renal impairment has been reported recently [11].  

Deregulated pathways in the renal system include cell adhesion, communication, as 

well as inflammation including the chemokine signaling pathway. Inflammation of renal 

tissue stimulates the expression of adhesion molecules in endothelial cells which, in 

turn, leads to the deposition of immune complexes and vascular stiffening in kidney 

disease [35]. 
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A large number of the in total 27 protein-protein interactions found for features being 

associated with enriched pathways for cardiovascular and renal disease were detected 

within the PPAR signaling pathway as well as between members of the PPAR signaling 

pathways and members of the complement and coagulation cascade. Of major interest 

are those interactions where at least one of the interacting partners is secreted thus 

potentially mediating a direct cross-talk with the other organ. Major interactors of the 

PPAR signaling pathway are apolipoprotein A1 (APOA1) and albumin (ALB). Diabetic 

nephropathy is accompanied with dyslipidemia and, in contrast to most of the other 

apolipoproteins, decreased plasma levels of APOA1 [36]. Moreover, APOA1 values, 

particularly in relation to apolipoprotein B values, are used as estimates of 

cardiovascular risk [37]. APOA1 seems to be affected in both diseases and interacts 

with the complement component C1q (C1QA), which was found to be associated with 

chronic kidney disease. C1QA deficiency is associated with glomerular nephritis [38], 

but the relevance of the interactions of these proteins in the context of the CRS has not 

been evaluated yet. More is known about the interaction between APOA1 and the 

fibrinogen alpha chain (FGA). Studies in animal models outlined that the binding of 

apolipoprotein A to vessel walls via fibrinogen participates in the generation of 

atherosclerosis [39]. The direct interaction between APOA1 and fibronectin 1 (FN1), a 

member of the focal adhesion pathway, poses another interesting starting point for 

future research. 

Albumin as the second major interactor derives from the CKD dataset and has a 

number of important functions. Hypoalbuminemia as a consequence of inflammation or 

loss in the urine in nephrotic kidney diseases has several consequences that can be 

associated with an increased cardiovascular risk, including a low osmotic pressure, an 

increased thromboembolic risk, and the accumulation of free fatty acids in the blood 

followed by an increased fibrinogen expression [40]. The strong connection between 

ALB and members of the coagulation cascade in the context of the CRS became 

evident by our findings. ALB and APOA1 also interact with a number of proteins 

associated with cardiovascular complications being also members of the PPAR 

signaling pathway. Therapeutically addressing the PPAR signaling appears promising 

for improving cardiovascular and chronic kidney disease.  

Another interaction worth mentioning is found for the receptor TNFRSF6B and one of 

its ligands, TNFSF14, both members of the cytokine-cytokine receptor pathway. 

TNFSF14 associated signaling pathways are known to promote atherogenesis and are 
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suggested to be involved in chronic heart failure [41]. TNFRSF6B, which was found as 

associated to chronic kidney disease in our datasets is mainly reported in the context of 

cancer, and evaluating its role in kidney diseases and the relevance of TNFSF14 

binding for formation or progression of the CRS requires further studies. 

 

In a previous work on 280 literature derived proteins associated with the cardiorenal 

syndrome we identified hemodynamic changes, blood pressure regulating hormone 

systems, and inflammatory processes as central elements in the formation of the CRS, 

with a particular focus on the natriuretic peptide system, the renin-angiotensin system, 

and the endothelin signaling pathway [13]. In the present work we extended literature 

based datasets with transcriptomics profiles on kidney, as well as cardiovascular 

disease and could shed light on additional concepts like dyslipidemia and deregulated 

coagulation contributing to the CRS pathophysiology. 

In summary, the consolidated analysis of tissue-specific changes together with 

systemic alterations covered by literature extraction methods for characterizing 

cardiovascular and kidney specific contributions to the CRS led to the identification of 

pathways relevant for disease formation and progression. Affected pathways are 

mainly associated with inflammation, cell adhesion, dyslipidemia, and hemodynamic 

regulation. First and foremost, PPAR signaling and the complement and coagulation 

cascade turned out to be significantly involved in disease mechanisms and thus, may 

be potential targets of therapeutic interventions. On a molecular level, our findings 

highlight the role of APOA1 and ALB as important molecules on the interface between 

the cardiovascular and the renal system. 
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2.6.1 The Thesis Author’s Contribution 

 

The thesis author designed the study in collaboration with other authors. Moreover, the 

author contributed to the data collection and performed functional analyses. Discussion 

and conclusions were due to the joint efforts of all of the authors.  

 

In detail, the following contributions are due to the thesis author‘s efforts: 

 

 Selection of transcriptomics datasets on diabetic nephropathy [15] and 

atherosclerosis [14]  in consultation with other authors 

 Development of the analysis workflow with the collaboration of other authors 

 Selection of MeSH terms used for the extraction of genes from the literature 

 Retrieval of transcriptomics datasets from the Nephromine database and 

respective publication 

 Annotation of features with respect to their molecular function and subcellular 

location 

 Identification and visualization of the direct feature overlap between the 

datasets 

 Visualization of inter- and intra-pathway relationships  based on protein 

interaction information from the IntAct database 

 Discussion and interpretation of the results in communication with the other 

authors 

 Lead in drafting the manuscript in cooperation with other authors 
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3. Discussion 
 

3.1 Major Findings 

 

The following sections summarize and discuss the major findings of the presented 

studies with a special focus on the results due to the thesis author‘s contributions.   

 

3.1.1 Omics Workflows 

 

Section 2.1 provides a detailed description of major omics data analysis steps covering 

data storage, retrieval, preprocessing, identification of differentially expressed features, 

functional annotation on the level of biological processes and molecular pathways, and 

interpretation of gene lists in the context of protein–protein interaction networks, as well 

as their exemplary application on a publicly available gene expression dataset on 

familial hypercholesterolemia.  

 

The described workflows, including sequential, as well as integrated approaches were, 

among others, used for the analyses of different kidney diseases. A summary of the 

major findings resulting from the studies provided in sections 2.2 – 2.6 is given in the 

following chapters.  

 

 

3.1.2 Acute Renal Failure/Transplantation 

 

The studies presented in sections 2.2 and 2.3 cover the issue of ARF in the post-

transplant situation.  

 

Biomarkers derived from donor organs before engraftment may indicate the risk for 

developing ischemia reperfusion injury (IRI) and subsequent delayed graft function 

(DGF). Since graft failure is significantly more frequent after DGF compared to primary 

functioning grafts, the identification of subjects at risk before the event occurred is 

essential. The review ―Biomarkers in Renal Transplantation Ischemia Reperfusion 

Injury‖ provides an overview on biomarker discovery and verification for the prediction 

of IRI and their utility for clinical use. An extensive literature search revealed 25 
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biomarker candidates presently discussed in the literature in the context of IRI and 

DGF, including Uromodulin (UMOD), hepatitis A virus cellular receptor 1 (HAVCR1, 

also known as kidney injury molecule 1 KIM1), and Cyclin-dependent kinase inhibitor 

(CDKN1A). Significantly enriched biological processes within the candidate list are, 

among others, angiogenesis and cell proliferation and differentiation. The latter, as well 

as processes associated with immunity and defense, were also found to be 

overpopulated by features lying on the shortest paths between the biomarker 

candidates in the protein interaction network omicsNet [39]. 

The same analysis procedure was repeated with a list of differentially expressed genes 

resulting from a transcriptomics study comparing live and deceased kidney donor 

organs. Immunity and defense processes were found to be significantly enriched by 

members of the original list of 90 differentially expressed genes, as well as by 

members of the subgraph representing the shortest paths between the differentially 

expressed genes according to omicsNet. Of particular interest are the subgraph 

members nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) 

and nuclear receptor subfamily 3, group C, member 1 (NR3C1), as these are targets 

for corticosteroids.    

 

In order to test the hypothesis whether suppression of inflammation in the donor organ 

by steroids would ameliorate IRI and subsequently reduce the rate of DGF, a double-

blinded, randomized, controlled trial was started. The outcomes of in total 455 

transplant recipients receiving donor organs treated with either steroids or placebo 

showed no significant reduction in the incidence of DGF after steroid pretreatment 

[Kainz2010]. However, the functional enrichment analysis of differentially expressed 

genes in 20 steroid treated biopsies identified the up-regulation of inflammatory 

processes, limited transport capabilities, and a decreased metabolic activity of DGF 

organs compared to grafts with primary function. These results suggest a crucial role of 

hypoxia and it can be hypothesized that the activation of lipid and glucose metabolism 

may prevent the graft from developing ARF. Possible treatment strategies are the 

administration of peroxisome proliferator-activated receptor (PPAR) agonists or 

caspase inhibitors but further clinical trials are demanded to elucidate their beneficial 

effects on transplant outcome.  

 

In summary, following the present data status inflammation events may be early stage 

indicators of IRI, triggering subsequent events along cell proliferation and apoptosis. 

However, a significant decrease of DGF could not be achieved by a steroid 

pretreatment of the donor organ. On a molecular level, inflammatory processes as well 
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as impaired transport and metabolic activities seem to distinguish delayed from primary 

functioning grafts.  

 

3.1.3 Chronic Kidney Disease 

 

The aim of the study presented in section 2.4 was the detection of coherences and 

differences between CKD specific kidney tissue transcriptomics and urine proteomics 

signatures. 

 

Based on three transcriptomics and one proteomics dataset derived from urine, a 

number of analyses steps were performed on the level of direct feature overlap, 

biological processes, pathways, transcription factors, tissue expression, and interaction 

networks. The heterogeneity of the datasets became already evident when looking at 

the number of identified features, being 697 on part of the transcripts and 37 proteins.  

This large difference is certainly driven by the different sample matrix analyzed, as 

even in the presence of CKD only a limited number of proteins are released into the 

urine. Moreover, mRNA expression levels do not necessarily correlate with the 

respective protein abundance due to several reasons as regulatory mechanisms, post-

translational modifications, pathophysiological conditions and so on. In view of these 

facts, the sparse overlap of only four features found when comparing transcriptomics 

and proteomics datasets is not surprising and leads to the assumption that an 

integrated analysis of omics profiles provides only moderate add-on information when 

solely aimed at identifying and subsequently correlating joint features. 

However, the picture changes when going to the level of processes and pathways 

instead of comparing individual features as such. Of particular interest are the 

processes ―cell structure and motility‖ and ―immunity and defense‖, as well as the 

pathways ―ECM-receptor interaction‖, ―complement and coagulation cascades‖, and 

―focal adhesion‖, all of them found to be significantly enriched in both datasets. On the 

level of the omicsNet network, the role of hypercoagulability in disease formation could 

be further substantiated. Twelve members of the network spanned by 22 transcripts 

and 25 proteins showing strong inter-dependencies could be assigned to the GO term 

‗‗coagulation‘‘, including the serpin peptidase inhibitor C1 (SERPINC1) and the 

coagulation factors F2, F3, and F10. It is frequently reported that patients with CKD 

exhibit features of a hypercoagulable state which is also a main contributor to 

subsequent cardiovascular diseases. 
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3.1.4 Cardiorenal Syndrome 

 

The high clinical relevance of the CRS due to the recognition of cardiovascular events 

as the leading cause of mortality in patients with chronic kidney diseases has driven a 

number of studies aiming at the identification of kidney-cardiovascular connectors. This 

rise in efforts is reflected by the growing number of publications associated with the 

keyword ‗cardiorenal‘. 

 

The results of the analysis of 280 genes derived from 825 publications associated with 

the CRS are presented in section 2.5. The most frequently reported genes were found 

to be involved in blood pressure regulating systems, particularly in the renin-

angiotensin system (renin REN, angiotensinogen AGT, angiotensin converting enzyme 

ACE), as well as in the antagonistic natriuretic peptide system NPS (natriuretic peptide 

A NPPA, natriuretic peptide B NPPB). 

Enriched functional categories within the total set of 280 genes included ―receptor 

binding‖ and ―receptor activity‖. Following the assumption that CKD specific molecular 

features lead to alterations of the cardiovascular system and vice versa, the most 

probably scenario is the involvement of secretory features triggering receptor mediated 

downstream events in one of the affected organs. Actually, the classification of features 

in terms of subcellular location revealed ―extracellular, including cell wall‖ as the most 

significantly enriched compartment. A specific example that perfectly matches the 

criteria for realizing the above mentioned scenario is the interplay between the 

natriuretic peptide receptor C (NPR3) and its ligands NPPA and NPPB. Tissue specific 

expression patterns of these molecules showed that NPPA and NPPB are mainly 

expressed in the heart, whereas their receptor NPR3 is highly expressed in kidney 

tissue.  

The literature derived dataset covered the targets for most of the standard therapeutic 

regimes for the CRS to a great extend. Next to members of the RAS and NPS, features 

involved in the endothelin signaling pathway pose potential targets for drugs regulating 

hemodynamics.  

 

In a next step, this literature mining approach was extended by also including tissue 

specific omics datasets (see section 2.6). Particularly, genes from publications that are 

tagged with CKD and CVD associated MeSH terms were extracted and combined with 

transcriptomics dataset on diabetic nephropathy and atherosclerosis.  

Pathways identified as overpopulated by features specific for both diseases reflect 

several aspects of the pathophysiology of the CRS, including the dysregulation of 
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hemodynamics, dyslipidemia, inflammation, and increased blood clotting. Contributions 

on part of the cardiovascular system turned out to be mainly associated with 

hemodynamics and adipocytokine signaling, whereas the CKD specific signatures 

pointed towards the crucial role of impaired focal adhesion, chemokine signaling, and 

metabolic pathways in formation and progression of the CRS. 

The investigation of inter- and intra-pathway relationships based on physical interaction 

information between CVD and CKD specific proteins showed an extensive organ 

crosstalk within the PPAR signaling pathway, as well as between members of the 

PPAR signaling pathway and the complement and coagulation cascade. Major 

interactors in this regard are, first and foremost, apolipoprotein A1 (APOA1) and 

albumin (ALB), as well as the complement component C1q (C1QA) and the fibrinogen 

alpha chain (FGA).  

Therapeutically addressing the PPAR signaling system in case of dyslipidemia, insulin 

resistance or arterial stiffening is common, but its beneficial effect for specific treatment 

of the CRS needs further validation.  

 

In summary, the literature mining approach has identified mediators of hemodynamic 

change, as well as the endothelin signaling pathway as centrally involved in the 

disease mechanisms of the CRS. Transcriptomics profiles characterizing 

cardiovascular as well as renal damage allowed an integration of tissue-specific 

changes coupled with also systemic alterations covered by literature extraction 

methods. This integrated approach could shed light on additional concepts like 

dyslipidemia and deregulated coagulation, contributing to CRS pathophysiology. 
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3.2 Outlook 

 

Omics technologies have brought significant benefits in analysis and identification of 

molecular disease mechanisms, and opened up new opportunities for disease 

prediction, prevention, diagnosis, and treatment. Nevertheless, there are still a number 

of limitations in terms of technology, experimental design, statistical and functional 

analysis, validation, and clinical application that have to be seriously taken into account 

in order to obtain biologically meaningful results.   

 

Until recently, the detection of splice variants by the usage of common microarray 

technologies was impossible. With regard to the high percentage of human genes that 

exhibit alternative splicing, the probability that a target sequence on the chip is not 

present in all forms of the respective transcript has to be considered. With the 

introduction of exon arrays which are designed to detect individual exons of a gene, 

possibilities for a quantitative assessment of transcripts comprehensively covering the 

human protein coding genome came up. One drawback of this new technology is 

certainly the availability of efficient tools for processing and analyzing the highly 

complex data. A further upcoming technology is tiling arrays. In fact, 60% of the 

transcriptional active regions in the human genome do not correspond to known exons. 

For example, non protein coding RNAs (ncRNAs), including structural RNAs (tRNAs, 

rRNAs, and snRNAs) and more recently discovered regulatory RNAs (e.g. 

microRNAs), fulfill a variety of important functions and were also found to be implicated 

in human diseases [67]. By offering the complete physical readout of a genome, tiling 

arrays can provide information outside of the boundaries of known protein coding 

genes. 

 

Pivotal for any experiment is its reasoned design concerning collection and preparation 

of samples, as well as consideration of appropriate statistics.  

First of all, omics studies in particular in translational clinical research should be done 

on precisely defined patient samples, and clinical parameters should be well matched 

in case/control designs. The same is true for cross-omics studies ideally to be done on 

the same patient status and, at best, on the same samples to assure maximum 

comparability. In this sense, collaborative efforts of research groups across different 

omics fields are demanded. One example is the large-scale integrating European 

project SysKid (Systems Biology towards Novel Chronic Kidney Disease Diagnosis and 

Treatment) which started in January 2010. SysKid integrates clinicians, statisticians, 

epidemiologists, molecular researchers across all omics fields, and bioinformaticians. 
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This interdisciplinary approach aims at understanding the pathophysiology of chronic 

kidney disease in order to provide tools both for identifying persons at risk for 

developing the disease, as well as for the development of novel therapy approaches 

(http://www.syskid.eu). 

Another important issue to be considered in experimental design is the calculation of 

sample size. Omics experiments are often performed with a small number of samples 

due to their limited availability. However, only the inclusion of a sufficient number of 

independent samples provides the statistical power for the detection of true positive 

results.  

 

The still improvable reproducibility of omics experiments, reflected by a usually weak 

overlap of results of individual studies on the very same study design, is frequently 

reported and can be attributed, next to variability in patient characteristics and weak 

statistical power due to small sample sizes, to several other factors. These include the 

use of different technical platforms, experimental variance including lack of uniform 

protocols, and the selection of different tools for data processing and statistical analysis 

[68]. 

Moreover, the validity of results can be influenced by sample heterogeneity that may 

lead to a high variability in gene expression measurements since expression can vary 

substantially among cell types. Thus, isolating specific cells of interest is an important 

step in sample preparation to prevent the detection of differences that may be 

unrelated to the biological question under study. Microdissection of e.g. kidney biopsy 

samples for specifically analyzing compartments of the kidney are an example. 

 

Basically, the statistical analysis of omics data proceeds on the assumption that a 

maximal differential abundance of biological entities correlates with biological 

relevance. Particularly for regulatory elements like transcription factors, already minor 

changes in concentration may have significant impact on biological processes. Thus, 

such elements are less likely detected from a statistical perspective. 

Concerning the functional analysis, the most limiting factor is certainly the 

incompleteness of existing annotation databases. This is particularly true for pathway 

data, as for example encoded by KEGG, that are far from being complete. An approach 

for computationally bypassing this issue was recently presented by Fechete et al. [69]. 

Functional enrichment analyses always have a certain annotation bias. If more data 

about a specific biological category is available, it is more likely to appear as significant 

than the others.  

 

http://www.syskid.eu/
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Molecular profiling via genomics, transcriptomics, proteomics or metabolomics has 

rapidly become the method of choice for biomarker discovery. However, despite 

promising results, only few novel biomarkers are yet used in clinical practice which is 

due to the long path from candidate discovery to qualification, verification, clinical 

validation, and finally commercialization. Not surprisingly, candidate biomarker 

discovery now commonly outruns the rate at which the candidates are being validated 

[70]. All the more so, the quality of candidate markers that are moved forward to the 

validation stage has to be ensured and can only be achieved by a profound data basis.   

 

Even though several limitations of omics data generation, processing, analysis, and 

application exist, a large-scale approach on a Systems Biology level has the potential 

to provide insights in molecular processes contributing to kidney and cardiovascular 

disease formation and progression, as well as for the identification of biomarker 

candidates. Further advancements in sample work up, experimental technology, and 

analysis strategies, together with the establishment of collaborative networks and 

shared infrastructures for data and tools, will evolve our understanding of complex 

pathophysiological mechanisms, thereby assisting in the generation of hypothesis and 

leading to a more fundamental understanding of disease providing the basis for testing 

novel risk assessment, diagnosis, prognosis, and therapy options. 
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Abstract 

 

Kidney diseases represent a significant health burden with a number of currently unmet 

clinical needs in both, diagnosis/prognosis as well as therapy. Epidemiological studies 

show that about 10% of the general population suffers from early stages of reduced 

kidney function, contributing to bone metabolism disorders and cardiovascular 

complications. In the realm of ‗omics‘ approaches a significant number studies have 

been driven by various groups for characterizing altered kidney function, and singular 

analyses of such profiles have provided insight into processes of inflammation and 

hemodynamic regulation as central elements for contributing to the pathophysiology of 

kidney diseases. However, an integrated analysis of kidney diseases in the spirit of 

Systems Biology is still in its infancy. 

 

Following the evident clinical needs and methodological shortcomings on analyzing 

and understanding diseases of the kidney, this thesis addresses sequential analysis 

procedures from data processing to functional analyses of large scale transcriptomics 

data, as well as integrated workflows for handling and cross-linking multi-level omics 

data primarily in the context of protein interaction networks. Conceptual development in 

this area was then tested by using available omics data on various forms of kidney 

disease. 

 

The combined analysis of literature- and transcriptomics-based genes shed light on 

molecular links between the cardiovascular system and chronic diseased kidneys and 

thus, allowed the identification of potential novel therapeutic targets addressing the 

cardiorenal syndrome. Further analysis concerning end-stage renal diseases, 

particularly the post-transplant situation, revealed a set of biomarker candidates that 

promise early risk assessment of a delayed graft function, including VEGF and 

CDKN1A. On a molecular level, inflammation events turned out to be early-stage 

indicators for kidney function. However, results of a randomized control trial showed no 

reduction of the rate of delayed graft function after steroid pretreatment of donor 

organs.  

 

An integrated analysis workflow following a Systems Biology approach, as exemplified 

in this thesis, has the potential for identifying molecular processes contributing to 

disease formation and progression, biomarker candidates for diagnosis and risk 

assessment, as well as for generating hypothesis leading to a more fundamental 
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understanding of disease mechanisms providing the basis for testing novel therapy 

options.  
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Zusammenfassung 

 

Nierenerkrankungen stellen eine erhebliche gesundheitliche Belastung dar, und 

Verbesserung in Diagnose, Prognose und Therapie sind zentrale Elemente. 

Epidemiologische Studien zeigen, dass etwa 10% der Gesamtbevölkerung an den 

ersten Zeichen einer eingeschränkten Nierenfunktion leidet, und dies wiederum erhöht 

das Risiko für  Knochenstoffwechselerkrankungen und Herz-Kreislauf-Komplikationen. 

In den letzten Jahren gab es eine Vielzahl an Studien die das Ziel hatten, mit Hilfe von 

Omics-Technologien die Veränderung der Nierenfunktion zu charakterisieren. Die 

Ergebnisse aus den Analysen von einzelnen Omics-Profilen lassen darauf schließen, 

dass ein maßgeblicher Beitrag zur Pathophysiologie der Nierenerkrankung von 

entzündlichen Prozessen und hämodynamischer Fehlregulation stammt. Integrative 

Analysen im Sinne der Systembiologie stecken allerdings noch in den Anfängen. 

 

Diese vorliegende Arbeit umfasst sequentielle und integrative Analyseverfahren von 

Omics-Daten zu verschiedenen Arten der Nierenerkrankung um sowohl 

methodologisch wie auch klinisch zu den gegebenen Fragestellungen beizutragen. 

Diese beinhallten das Prozessieren und die funktionale Analyse von 

Genexpressionsdaten, bis hin zur Handhabung und Verknüpfung von heterogenen 

Omics-Daten auf der Basis von Proteininteraktionsnetzwerken. 

 

Ergebnisse aus der Analyse von relevanten Genen aus Literatur und aus 

Genexpressionsdaten zeigten molekulare Verbindungen zwischen dem Herz-Kreislauf- 

System und der chronischen Nierenerkrankung auf („Kardiorenales Syndrom―), die des 

Weiteren auch zur Identifikation von potentiellen neuen Angriffspunkten für 

therapeutische Maßnahmen führten. Durch weitere Analysen zu Nierenerkrankungen 

im Endstadium, fokussiert auf die Post-Transplant-Situation, konnten eine Reihe von 

Biomarker Kandidaten abgeleitet werden, die eine frühe Risikoabschätzung hinsichtlich 

verzögerter Transplantatfunktion versprechen, darunter VEGF und CDKN1A. 

Grundsätzlich zeigen die Analysen, dass Entzündungsprozesse auf molekularer Ebene 

sehr frühe Indikatoren hinsichtlich einer Einschränkung der Nierenfunktion darstellen. 

Eine randomisierte, kontrollierte Studie konnte allerdings keine Abnahme der Zahl an 

Transplantaten mit verzögerter Funktion nach Vorbehandlung des Spenderorgans mit 

Steroiden bestätigen. 
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Integrative Analyseabläufe in einem systembiologischen Ansatz, so wie in dieser Arbeit 

beschrieben, haben das Potential molekulare Prozesse zu identifizieren die an 

Krankheitsentstehung und Progression beteiligt sind, Biomarkerkandidaten für 

Diagnose und Risikoabschätzung hervorzubringen, und Hypothesen zu generieren, die 

zu einem besseren Verständnis der Krankheitsmechanismen führen und somit die 

Basis für das Testen von neuen Therapieoptionen darstellen. 
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