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Abstract

This thesis is focused on AU-rich elements (ARE) and AU-rich binding proteins

(AUBPs). AU-rich elements can be found in the 3’ untranslated region of mes-

senger RNAs (mRNAs). They are RNA sequence motifs and their interacting

proteins play a a major role for regulation of mRNA stability.

Various layers of regulation exist in an organism that allow it to regulate the

level of gene expression according to it’s needs. One of those layers is the reg-

ulation of mRNA stability, which allows an organism to regulate the amount

of protein levels very fast and effective. A well known example for this type of

control is the interaction of AU-rich binding proteins and their target mRNA.

This proteins can bind to ARE sequence motifs in the mRNAs 3’ untranslated

region and stabilize or destabilize their target as a function of the type and

amount of AUBPs bound and agonistic or antagonistic effects by other AUBPs

or RNA binding factors.

As regulation of gene expression via mRNA stability is a very fast and pre-

cise method, these proteins and their targets are attracting the attention of

researchers in various fields, from cancer research to synthetic biology. The

main goal of this thesis is a better understanding of ARE motifs that mark

mRNAs as AUBP targets and in the following the prediction of novel AUBP

targets with bioinformatical analysis. To analyze these RNA binding proteins,

a database was generated, that contains human and mouse transcripts which

where annotated for the presence of ARE motifs. Information on the accessibil-

ity and fold-enrichment, as well as on phylogenetic conservation of this motifs

in known one-to-one orthologs was added by in silico folding of the mRNA 3’

UTRs, the generation of multiple alignments and analyzation of the nucleotide

composition in the 3’ UTR with an order-0 and an order-1 markov model . A

second database containing literature about the effects of AUBPs on experimen-

tally validated AUBP targets was produced as well. The webserver ’AREsite’

has been built and published (1), combining both databases as backends and

making the generated information freely accessible, thereby presenting a tool

that can be used to examine known, or to predicted novel AUBP targets.

Part of this thesis was the analyzation of information provided by this webser-

vice for the prediction of novel AUBP targets.

The results of this analysis are presented in the section 5. The generated web-

server ’AREsite’ is avaliable at http://rna.tbi.univie.ac.at/AREsite and

has already been used as tool for the analysis of AUBP targets (2).



iv

Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Rolle von AU-reichen Elementen

(ARE) und an sie bindende Proteine (AUBPs). AU-reiche Elemente finden sich

in der 3’ untranslatierten Region von messenger RNAs(mRNAs). Sie sind RNA

Sequenz Motife und die mit ihnen interagierenden AUBPs spielen eine wichtige

Rolle in der Regulation der Stabilität von mRNA. In einem Organismus finden

sich viele Möglichkeiten die Expression von Genen in Abhaängigkeit des Bedarfs

zu regulieren. Eine sehr schnelle und effektive Möglichkeiten stellt die genannte

Regulation der mRNA Stabilität dar. Unter den bekannten Mechanismen für

diese Art der Regulation finden sich die Interaktionen von AUBPs mit der zu

regulierenden mRNA. Diese Proteine binden an AU-reiche Sequenzabschnitte

in der 3’ untranslatierten Region von mRNAs und können ihre Stabilität in

Abhängigkeit ihrer Art und Anzahl, sowie agonistischer oder antagonistischer

Effekte von weiteren AUBPs oder RNA bindenden Faktoren, regulieren.

Die Tatsache der schnellen und effektiven Regulation der Genexpression durch

mRNA De-/Stabilisierung lässt diese Proteine und durch sie regulierte mR-

NAs vermehrt in den Fokus wissenschaftlicher Arbeiten in Bereichen von der

Krebsforschung bis hin zur synthetischen Biologie rücken. Das entwickeln eines

besseren Verständnisses von ARE Motifen die tatsächlich von AUBPs gebun-

den werden sowie im Folgenden die Vorhersage neuer durch AUBP regulierter

mRNAs mit Hilfe bioinformatischer Methoden waren Ziele dieser Diplomarbeit.

Zu diesem Zwecke wurde eine Datenbank generiert, die Transkripte von Maus

und Mensch mit von uns annotierten ARE Motifen beinhaltet. Des weit-

eren enthält die Datenbank Informationen über die Zugänglichkeit und Über-

representation dieser Motife, sowie phylogenetische Information, welche Alle-

samt durch das Anwenden von in silico Methoden wie RNA Faltung, der Er-

stellung multipler Alignments und der Analyse der Nukleotidanreicherung mit-

tels Markov Modellen der Ordnung 0 und 1, erzeugt wurden. Eine zweite

Datenbank die Literatur bezueglich der Effekte von AUPBs auf experimentell

untersuchte Zielen dieser Proteine enthält wurde ebenfalls aufgebaut. Beide

Datenbanken wurden anschliessend vereint um einen Webserver namens ’ARE-

site’ herzustellen.

Dieser Webserver wurde bereits publiziert (1) und ist ein frei zugängliches

Werkzeug zur Untersuchung von bekannten sowie der Vorhersage bisher un-

bekannter mRNAs unter AUPB Regulation.
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Die Analyse der über den Webserver verfügbaren Information zur Vorhersage

neuer AUPB Ziele war Teil dieser Diplomarbeit und die Resultate dieser Anal-

yse sind im Bereich 5 beschrieben. Der Webserver ’AREsite’ ist unter der

Adresse http://rna.tbi.univie.ac.at/AREsite erreichbar und wurde bere-

its erfolgreich zur Analyse von AUPB Zielen herangezogen (2).
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1 Introduction

This thesis is focused on AU-rich elements (ARE) and their interaction prob-

abilities with AU-rich binding proteins (AUBP). AU-rich elements are RNA

sequence motifs rich in adenine and uracile. They were identified during the

1980’s as key players for the stability of certain mRNAs. Located in the 3’

untranslated region of these mRNAs, they allow various AUBPs to bind and

interact with them. Depending on the kind of AUBP and where in the cell

these interactions occur, they can have stabilizing or destabilizing influence on

the mRNA. This provides the cell with a fast response mechanism to changes in

it’s environment, by influencing the gene expression levels via direct interaction

between AUBPs and their target mRNAs.

1.1 Subjects of this thesis

The aim of this thesis was the annotation of ARE motifs in the available tran-

scriptome of human and mouse, and the analysis of their role for mRNA stability

on transcript and genomic level, producing information about conservation, ac-

cessibility and over-representation of ARE motifs in the annotated transcripts.

Evolutionary conservation is always a hint for functionality, as something of

functional importance is often being reused and conserved during evolution.

Accessibility of a motif is a measure for functionality, as only accessible RNA

motifs allow interaction with proteins, although accessibility can be changed by

interaction of RNA molecules with each other or proteins for example, and a

functional motif does not necessarily have to be accessible in its native state.

Over-representation can act as a measure of motif function and importance

for regulation, as the ARE core motif ’AUUUA’ can sometimes be found in

a 3’UTR by pure chance. On the other hand functional motifs should occur

in a higher number as expected by chance, given the according 3’ UTR sequence.

To analyze above mentioned criteria, a database has been created, which con-

tains all annotated transcripts of human and mouse as well as those of their

known one to one orthologs. Latter transcripts and further data were used

to analyze phylogenetic conservation of annotated motifs in human and mouse

3



1 Introduction

on transcript and genomic level via the generation of multiple alignments. An

analysis of the accessibility in terms of opening energy of annotated ARE motifs

was conducted by the application of RNA folding algorithms. To get informa-

tion about over-represented ARE motifs, annotated 3’ UTRs were analyzed

using an order-0 and an order-1 Markov model, that returns information on

the fold-enrichment of analyzed motifs. Results of those analysis steps were

used to filter for transcripts that are predicted to be under strong regulation

of ARE motifs. These results were compared to the results of an extensive

expert literature search for known AUBP targets and are discussed as part of

this thesis. Finally a combination of accessibility and over-representation was

used as method for the prediction of novel AUBP targets.

A detailed overview on DNA and RNA, RNA structure and sequence motifs and

RNA binding proteins and their role inside cells as well as a section on RNA

bioinformatics and the tools that have been used during this thesis is following

this short introduction.

4



2 Background

2.1 RNA synthesis and regulation and the role of RNA binding pro-

teins

2.1.1 Nucleic acids, Transcription and Translation

DNA and RNA Live is based on the information stored at the level of nucleic

acids. There are two kinds of these acids available in known live forms, deoxyri-

bonucleic acid (DNA) and ribonucleic acid (RNA). For many years now, it has

been known that nucleic acids are used to store information in form of genes,

which are passed on from generation to generation via reproduction. During

evolution a lot of this information has been and will be altered via insertions,

multiplications, random or directed mutations as well as transpositions. Some

information has been lost due to deletion events. These alterations happen

by pure chance or can be seen as response of organisms to their environment.

Changes may have no effect at all but changing the wrong part of information

may turn out to be lethal. Very complex regulating steps are required to get

things under control and to make it possible for a live form to evolve and to

survive.

This regulating processes can occur on different stages and layers during the

process of gene expression. One of these processes is the regulation of mRNA

stability through the interaction of AU-rich binding proteins with AU-rich el-

ements in the 3’ UTR of these mRNAs, which is the main topic of this thesis.

However, to get a deeper understanding of the regulatory influence of this in-

teractions, this section begins with background information on nucleic acids

and the events during gene expression and ends with a detailed description of

AU-rich elements, their binding proteins and their regulatory role.

For almost all live forms, DNA provides the genetic information, but in some

viruses RNA is used as genetic material. Even though both nucleic acids work

as storage for genetic information and have a lot of similarities, there are also

a lot of differences between them. One difference can be found in the bases,

contained in the nucleic acids. For DNA these are the purines adenine and

guanine as well as the pyrimidines cytosine and thymine. In RNA we can find

adenine, guanine and cytosine as well, but instead of thymine we find the base

uracil which is chemically almost identical to thymine, but lacks a methyl-group

at the C5 position, see figure 1.

5



2 Background

Fig. 1. The nucleobases of RNA and DNA. Whereas DNA has thymine, one can
find uracile in RNA.

The use of thymine in DNA is part of a mechanism protecting it from uncon-

trolled deamination (3; 4). Via deamination, cytosine is metabolized to uracile.

As Uracile is usually not found in DNA, it can be used as marker for DNA

repair mechanisms. Once uracile is found in DNA, it is immediately exchanged

with thymine by cell intern DNA repair mechanisms, restoring the DNA chain

to its prior form. This is not possible in RNA as uracile can be found all over

the nucleic acid sequence. However, DNA is mostly used as genetic storage

material and has a much longer half-life than RNA. Whereas DNA is repro-

duced and proliferated via semi-conservative replication, a process where one

DNA strands acts as template for DNA polymerases to produce the according

anti-sense strand, RNA is produced via the process of transcription, which will

be explained in more detailed later on. DNA acts as a template during this

process, so mutations in DNA can have a more extensive effect on the cell than

mutations in RNA.

Similarities between RNA and DNA can be found by taking a closer look at their

building blocks and the structures they form inside the cell (3; 4). The building

blocks of both nucleic acids are nucleotides. Purines or a Pyrimidines connected

to a sugar are termed nucleosides and become nucleotides when bound together

via phosphate ester bonds, see figure 2. In a more detailed view the N9 atom

6



2.1 RNA synthesis, regulation and RNA binding proteins

of a purine or the N1 atom of a pyrimidine are connected via a β -glycosidic

bond to the C1 atom of the corresponding ribose or deoxyribose to build up

a nucleoside. If connected to one or more phosphate groups, the molecule is

called nucleotide and acts as building block for a nucleic acid. To produce a

nucleic acid, these blocks are connected to each other, whereby the 5’ hydroxy

end is bound to a phosphate group, and the 3’ OH-end is bound to the phos-

phate group of the next nucleotide via phosphodiesterbonds. This leads to a

polarity along the nucleic acid, from the 5’ phosphate start to the 3’ hydroxy

end. The phosphate groups between the nucleosides are negatively charged and

provide the whole DNA or RNA backbone with a negative charge which plays

an important role in the interaction of binding proteins with their nucleic acid

target, as discussed later. Fitting their names, DNA has a deoxyribose - phos-

phate backbone and RNA a ribose - phosphate backbone, see figure 3.

Due to the lack of an oxy-group on the 2’ carbon atom in deoxyribose, DNA is

better protected against nucleophilic attacks than RNA.

Fig. 2. A nucleoside consists of purine or pyrimidine base, connected via a β

-glycosidic bond to the corresponding ribose or deoxyribose.
A nucleotide is a nucleoside bond to one or more phosphate groups via ester bonds.
A nucleic acid is build up by nucleotides connected via 3’ – 5’ – phosphodiester-
bonds.

7



2 Background

Fig. 3. Ribose is used to build up RNA nucleotides, Deoxyribose is used to build
up DNA nucleotides. One can see the missing -OH group in Deoxyribose, giving
it its name.

Ribose and Deoxyribose have a slight structural twist and are therefore not

planar and called sugar - pucker. Depending on the kind of pucker structure

(C2-endo, or C3-endo, see figure 4), a nucleic acid can take different helical

shapes (5).

Fig. 4. A nucleic acid can take different helical shapes depending on the sugar-
pucker structure (C2-endo, or C3-endo) of Ribose and Deoxyribose.

DNA as well as RNA can be found to take up diverse structures inside cells,

as nucleic acids in aqueous solution are under a pressure to form energetically

favorable structures.

Thanks to Watson and Crick and based on the work of Pauling and Corey we

know that DNA forms a double helical structure, the B-form helix (6), see fig-

ure 5. Bases are arranged to each other with a distance of 0.34nm, to perform

a full 360◦ turn after 10 bases or 3.4nm. Two grooves, one called minor and the

bigger one called major groove exist in this B-form helix, allowing base-specific

interactions with proteins.

8



2.1 RNA synthesis, regulation and RNA binding proteins

RNA forms a more dense structured A-form helix with a deep and narrow

groove which is not as easily accessible by proteins (7), see figure 5.

Fig. 5. From left to right, this figure shows the typical RNA A-form helix and the
typical DNA B-from helix. Figure adopted from http://upload.wikimedia.

org/wikipedia/commons/b/b1/A-DNA\%2C_B-DNA_and_Z-DNA.png

The double helical form and the almost perfect stacking of bases inside the

DNA or RNA helix make it possible for the weak Van-der-Waals forces to act

between bases and additively contribute with a stabilizing effect. Stacking al-

lows electrons in the aromatic heterocyclic rings of the bases to interact and

stabilize the structure. The arrangement of hydrophobic pyrimidine or purine

bases on the inside of the helix and the hydrophilic groups on the outside add a

hydrophobic effect. It occurs inside the helix and is further stabilizing the struc-

ture. Hydrogen bonds between the Watson-Crick nucleotide pairs A:T as well

as G:C (see figure 6) stabilize the double helix too (8). This bonding effects are

true for RNA helices as well, but the C2 - endo sugar - pucker makes the RNA

helical structure more dense. In difference to DNA helices which usually form

along the whole DNA strand length of two DNA molecules, RNA helices often

occur along short complementary regions of RNA molecules, and are mostly

generated intramolecular. In eukaryotes double stranded RNA is very unusual

and recognized as pathogen RNA and degraded, an effect that is extensively

used in molecular biology and known as knockdown or RNA-interference (9)

and its discoverers have even been awarded with a Nobel prize.

9



2 Background

RNA is able to form versatile other structural motifs besides helices. These

motifs and their function will be addressed later on.

Fig. 6. Hydrogen bonds between adenine and thymine or guanine and cytosine
stabilize the double helical structure of DNA. As a G-C basepair is bond via three
hydrogen bonds instead of two for A-T basepairs, G-C contributes with a stronger
stabilizing effect.

Beside Watson-Crick hydrogen bonds, DNA but mostly RNA structures can be

further stabilized by non - Watson-Crick base pairs. These non-canonical base

pairs form RNA structure motifs and play a role in RNA-RNA interaction and

the generation of 3D structures. Among the non - Watson-Crick base pairs, we

can find wobble base pairs, the most prominent one is G:U, see figure 7.

The so called wobble position plays an important role in codon - anticodon

recognition during the process of translation. A codon is defined as a triplet of

DNA nucleotides that codes for a certain amino acid, and the anticodon is the

region of tRNA (transfer RNA) that recognizes this triplet. The role of tRNA

for translation will be explained later on, but to understand the necessity of

wobble bases one has to know about codons. It is not necessary for all three

nucleotides to exactly match the nucleotides of the anticodon to allow bonding.

The third position of the codon can alter and was termed wobble position.

10



2.1 RNA synthesis, regulation and RNA binding proteins

Fig. 7. The G:U Wobble base pair.

Fig. 8. The Inosine Wobble base pairs are of special interest in tRNA.

11



2 Background

As the same counts for all other forms of base pairing, the wobble base pairs

enable a molecule of DNA or RNA to introduce bonds even if the corresponding

partner nucleotide does not match exactly.

Of special interest in RNA are the wobble pairs with Inosine, see figure 8.

Inosine is a nucleobase derived from adenine via the post-transcriptional en-

zymatic process A-to-I-editing (for more information on this topic refer for

example to (10)), and has a series of possible pairing partners. It can pair with

adenine, uracile and cytosine and is an essential part of tRNA anticodons, en-

abling tRNA to create wobble pairs (11).

Furthermore we can find Hoogsteen and sugar-edge base pairs, allowing even

more than two nucleotides to interact with each other via non-canonical base

pairing, see figure 9 . Hoogsteen as well as sugar edge base pairs form hydrogen

bonds between their according edges of purines and pyrimidines and take part

in helix stabilization as well as tertiary and quaternary structures of RNA (12).

Changes in sequence can occur without influencing the 3D structure of a nucleic

acid if affected bases are replaced via compensatory mutations. This effect is

based on the isostericity of Watson-Crick and non-canonical base pairs. Single

base mutations as well as mutations concerning a base pair can be compen-

sated if the affected base pair is replaced by an isosteric base pair, which has

to display similar distances between the bases and a similar orientation of its

glycosidic bond.

Fig. 9. The interacting edges of purines and pyrimidines. The Watson - Crick
edge, the Sugar edge and the CH - edge of pyrimidines which is similar to the
Hoogsteen edge in purines.

An interplay between some proteins and DNA and/or RNA has been shown.

For example, DNA is packed by interaction with histones, structural proteins

that can bind to DNA and allow it to wrap around them, forming chromatin.
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This leads to the formation of two types of chromatin. First, euchromatin,

which consists of active DNA, meaning it is a region of active transcription.

And second, heterochromatin, which is densely packed and not accessible for

the transcription machinery. A lot of modifications have been discovered that

regulate the active state of DNA, for example methylation of chromatin, making

DNA accessible or condensing its structure. By introducing modifications on

chromatin, the cell can actively regulate the level of gene expression. The term

”gene expression” contains all processes that lead from DNA to the final gene

product in defined amount and activity. The interaction with histones allows

DNA to take a very densely packed structure inside the nucleus of a cell, the

chromosome. This dense packing of DNA allows the simultaneous regulation of

gene expression for a group of genes at once by packing or unpacking the strand

of DNA where they are located, thereby restricting or relieving the access of the

transcription machinery to the regulated genes as a function of the metabolic

state of an organism for example.

Summing up, DNA is due to its double helical structure and the lack of an oxy -

group, a stable and chemically well suited molecule to store genetic information.

Through histones, it can become highly condensed and modifications of histones

provide the cell with a regulatory mechanism for gene expression. Therefore

it may have been established as genetic storage material instead of RNA in

most organisms (13). The current hypothesis is that DNA has replaced RNA

as information storage over time, as some hints to a former RNA world exist,

where RNA molecules built the base of life without the help of DNA or proteins,

see (14).

However, information is not found everywhere along a DNA strand. DNA is

divided in different sections with varying function. The current consensus in

the community is that a section of DNA coding for a functional product can be

seen as gene (15). Eukaryotic genes are divided in intronic and exonic regions.

Exons are the sections containing information for the final product. Introns

define the boundaries of exonic regions. They can not be found in the mature

RNA product, as they become spliced out during RNA processing, a topic that

will be discussed later, but can lead to different isoforms of RNA, highlighting

its importance. The region of a gene that codes for one amino acid is called

codon, as mentioned before.

As amino acids are the building blocks of proteins and influence protein - RNA

interaction, a short insertion introducing amino acids follows. Today 22 amino

acids are known to act as building blocks for proteins, see figure 10. The

generic formula for an amino acid is H2NCHRCOOH, where R is replaced by

13
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an organic substituent, depending on the type of the amino acid.

Fig. 10. The 21 common amino acids, figure adopted from:"http://en.
wikipedia.org/wiki/File:Amino_Acids.svg.

Amino acids play a crucial role in the metabolism and as building blocks for

proteins and the amino acid composition of a protein directly affects the inter-

play with nucleic acids. As mentioned, nucleic acids have a negatively charged

phosphate backbone, which allows proteins to interact according to their polar-

ity and charge. Jones et al. (16) presents a full list of amino acid propensities in

RNA, ssDNA and dsDNA binding proteins. This bias is strong enough to allow

prediction of RNA binding probabilities from amino-acid sequence alone (17).

RNA binding proteins will be discussed in detail later. For a more complete

picture of amino acids and their function see for example (18), this thesis now
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returns to the discussion of the sections in DNA.

In addition to introns and exons, an eukaryotic gene (see figure 11) can contain

regulatory elements. Latter can for example interact with the transcription

machinery and play a role in gene expression regulation.

A region, shared by almost all genes in all kingdoms, is called promoter and can

contain elements like the TATA box, which can be found in about 24% of hu-

man genes, or GC-rich and other elements (19). These elements are recognized

by RNA - polymerases or other interacting molecules like transcription factors

and are therefore essential for transcription. Especially in eukaryotes one can

find a lot of other regulatory regions, like upstream or downstream activators

or repressors of gene expression. The whole machinery of gene expression reg-

ulation is far from being fully understood, but a lot of information is already

accessible, providing us with an idea of its complexity.

Fig. 11. Selected sections of a typically eucaryotic gene. Upstream regulatory
elements are found upstream of the promoter region. The promoter region can
contain a TATA - box. The transcription start site marks the first nucleotide
which is transcribed into RNA, followed by introns, and exons which later form
the coding sequence. Regulatory elements or enhancers can be found upstream
of the promoter region or downstream, which means inside the gene sequence.
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Decades ago the central dogma of molecular biology: ”DNA makes RNA makes

protein” was proclaimed by F. Crick (8) and published in 1970 (20). While the

core of this dogma, the unidirectional flow of information from DNA to protein,

remains almost undisputed (21), the role of RNA as simple intermediate has

changed completely. Today it is known that there is much more behind nucleic

acids, proteins and transcriptional and translational processes than what was

thought in the beginning. More information is going to be revealed using new

techniques like high throughput sequencing and it can be expected that addi-

tional layers of gene expression will be uncovered and existing models are going

to be verified or new models will arise.

The topic of this thesis is the interaction of RNA binding proteins (with focus

on AU-rich binding proteins) and RNA (here mRNA). The next sections will

discuss the cellular processes that lead to the generation of RNA and proteins

in eukaryotic cells, as it is necessary to understand how these molecules are

synthesized to discuss the role of their interplay for an organism.

Transcription A cell depends on proteins to maintain its own function. To

produce these proteins, a cell has to perform several, highly regulated steps.

The first among them is transcription of DNA into RNA via enzymes like RNA

- Polymerase. This process occurs in eukaryotes as well as prokaryotes. Topoi-

somerases, several initiation factors, elongation factors and more are required

to initialize and control it. Even subgroups of the mentioned kingdoms do differ

in type and amount of factors involved. However, the product of transcription

is in all cases RNA.

The focus of this section is on RNA polymerase II transcription in the nucleus

of eukaryotes, which produces mRNA that is both, a template for proteins and

a target of the RNA binding proteins discussed here.

Whereas one can only find one polymerase for all transcriptional products in

prokaryotes, three RNA polymerases exist in eukaryotes with RNA polymerase

II as the key player in mRNA transcription, see table 1.
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Name Found in Product
RNA Polymerase I (Pol I, Pol
A)

nucleolus 47S precursor of rRNA subunits
28S, 18S, 5.8S

RNA Polymerase II (Pol II, Pol
B)

nucleus mRNA, miRNA, snRNA and
some ncRNAs

RNA Polymerase III (Pol III,
Pol C)

nucleus tRNA and miRNAs snRNAs,
5S rRNA subunit and several
repeated sequences (e.g. Alu el-
ements)

Tab. 1. The three RNA polymerases as found in eukaryotes.

The discovery of RNA polymerase in the 1950’s provided insights into the first

steps of gene expression, a topic which is still not fully understood (22).

Transcription in eucaryotes can be divided into five steps according to (23; 24;

25).

• Pre - initiation: Binding of transcription factor subunits, e.g. TBF(TATA-

Binding Protein) to a core promoter region of DNA (30, 75 and 90 base

pairs upstream from the transcription start site TSS), in the case of TBF

the TATA box, which is found 25 to 30 base pairs upstream from the

TSS. Recruitment of a series of other transcription factors and RNA poly-

merase, forming the pre-initiation complex.

• Initiation: After the pre-initiation complex has attached to the promoter,

the carboxy-terminal region of RNA polymerase II becomes phosphory-

lated. Together with recruitment of activating and repressing factors as

well as DNA helicases (that unwind the DNA double helix) transcription

starts.

• Promoter clearance: After the first RNA nucleotides are produced and due

to phosphorylation of serine 5 in the carboxy-terminal region of RNA poly-

merase II by transcription factor IIH, resulting in conformational changes

of this highly flexible part of the polymerase, the promoter is cleared,

giving other molecules of polymerase II the possibility to bind. Release of

the RNA transcript during clearance results in truncated transcripts and

is called abortive initiation, known in eukaryotes and prokaryotes.

• Elongation: RNA polymerase slides along the template strand of DNA in

3’ end to 5’ end direction, producing more and more RNA product from

5’ end to 3’ end, which results in a RNA copy of the DNA coding strand.

This step can be done by more than one polymerase simultaneously, giv-

ing the cell the possibility to produce vast amounts of RNA in a short
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time. RNA polymerase II has proofreading activity, which prevents the

synthesizing of RNA strands that do not match the DNA coding strand.

• Termination: After polyadenylation and several other mRNA process-

ing steps occurred, RNA polymerase is released from the DNA template.

Thereby releasing a product called pre-mRNA, which undergoes further

processing steps to become a so called mature mRNA.

Figure 12 shows a schematic view on transcription in eukaryotes.

Fig. 12. A simplified model of transcription, showing RNA - polymerase II docking
at the promoter region and synthesizing a strand of RNA, with a view inside the
transcription bubble.
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Several mRNA processing steps happen in parallel to transcription. These

so called co-transcriptional processing steps directly influence the speed and

effectivity of RNA synthesis (26; 27), as can be seen in figure 13. Among the

most important steps are the 5’ capping, splicing and the 3’ poly-adenylation,

as these modifications are necessary for mRNA stabilization and export of the

mRNA from the nucleus in the cytosol where translation of the mRNA takes

place. In the following, this processing steps will be explained in more detail,

as described by (26; 28; 29).

• 5’ capping: After RNA polymerase II has transcribed the first 25-30 nu-

cleotides, RNA-triphosphatase removes the γ-phosphate from the 5’ end of

the nascent RNA strand. Guanylyl-transferase then transfers a guanosine-

monophosphate derived from guanosine-triphosphate to form a GpppN

end, where N stands for the former 5’-end nucleotide of the RNA. 7-

methyl-transferase then methylates the guanine at position 7 of its purine

ring. A capping enzyme fulfills the roles of the RNA-triphosphatase and

the guanylyl-transferase in mammals. The 5’ cap is important for the

stability and translation of the mRNA.

• Splicing: Removing the introns and joining exons in a pre-mRNA is

termed splicing. In human and yeast a protein complex consisting of the

U1, U2, U4, U5 and U6 small nuclear Ribonucleoproteins (snRNPs), the

spliceosome, together with a large number of additional proteins catalyzes

this step. Two trans-esterification reactions are necessary to join two ex-

ons. The first forms a lariat intermediate resulting from a nucleolytic

attack of the 2’-OH of a branch point nucleotide on the first nucleotide

of the adjacent intron. The second reaction is conducted by a nucleolytic

attack between the 3’-OH from the free exon on the last nucleotide of the

adjacent intron. Thereby joining the exons and splicing out the intron.

This process can occur on different sites and provides the cell with a mech-

anism termed alternative splicing. Through alternative splicing, different

isoforms can be generated out of a single transcript, increasing the band-

width of possible transcription products and adding another layer of gene

expression regulation to the repertoire of a cell. As this step has to be

under strict regulation, a vast number of enhancers, silencers and other

regulatory factors exist.

• 3’ poly-adenylation: Endonucleolytic cleavage is the last step of tran-

scription. It occurs 1030 nucleotides downstream of the poly-A signal

sequence, a conserved AAUAAA sequence motif in mammals. In mam-
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mals cleavage/polyadenylation specificity factor (CPSF), cleavage stim-

ulation factor (CstF), and two cleavage factors (CFIm and CFIIm) are

necessary to conduct this step. This step is followed by poly(A) addition

via Poly(A)polymerase (PAP) at the cleaved the 3’ end. The poly(A)

tail is important for the stability and export, as well as translation of the

mRNA.

Fig. 13. This figure shows which co-transcriptional steps occur during transcrip-
tion, at which step they happen and some of the involved factors according to (26).

The product of transcription and processing of a protein coding gene is a ma-

ture mRNA molecule, which can be functionally grouped into three regions, see

figure 14. From the 5’ to 3’ end this are the 5’ untranslated region (5’UTR),

followed by the coding sequence (CDS) which is the sequence where the ac-

tual protein coding information is stored, and then the 3’ untranslated region

(3’UTR).

The mature CDS of a mRNA is also known as open reading frame (ORF). In

a mature eukaryotic mRNA, ORF and CDS can be used as synonyms, as they

both contain the whole protein coding information. An ORF begins with the

start codon (in eukaryotes, AUG, ACG or CUG, which are coding for the amino

acid methionine are always the start codons for translation) and ends at the

first stop codon (UAA, UAG or UGA are codons where the no tRNA provides

fitting anti-codons and therefore stops translation) found downstream.

Untranslated regions, as their name implies, are not translated. They play a

major role for mRNA stability and influence the machinery for transcription

and translation. 3’ UTR’s, their sequence motifs and consequences for mRNAs

containing these motifs are the central topic of this thesis and will be discussed

in more detail later on.

However, not every product of transcription leads to an RNA that codes for a

protein. Those that do not are therefore termed non-coding RNAs (ncRNAs).

These ncRNAs were first found in bakers yeast in the 1950’s, where alanine
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Fig. 14. A typical mature mRNA, with the 5’-cap, the 5’-UTR, the CDS, the
3’-UTR and the poly-A tail.

tRNA was found (30). Since then, more and more types of ncRNAs and their

functions have been revealed.

Among the largest projects addressing functional elements in the human genome

is the Encyclopedia of DNA Elements (ENCODE) pilot project (31) and the

GENCODE project (32). Funded by the National Human Genome Research

Institute (NHGRI), its goal is to build a full list of functional elements in the

genome of human, and recently, mouse. This list includes elements that act

at the protein and RNA levels, as well as elements that regulate the active

state of genes. First results of the ENCODE pilot-project, addressing 1% of

the human genome, showed that the majority of bases can be associated with

transcripts (31). Other projects following the same goals have been funded, an

example are the Functional Annotation of the Mammalian Genome (FANTOM)

projects, projects I to IV already completed and project V in planning, for more

information see (33).

Together with the rising number of identified ncRNAs we begin to get more and

more insights in the complexity of regulation of gene expression. As mentioned

before very complex regulatory steps are a must for cells and organisms to

survive in the highly competitive fight for survival and evolution. Each cell

has unique requirements, depending on its environment like neighboring cells

or other organisms in close proximity, as well as selective pressure like nutrient

shortage and more.

Thus it is no surprise that numerous layers of regulating steps evolved over

time, making it possible, to get fast response to changes in the need of proteins,

enzymes and other factors. For a long time it was thought that regulation of

these steps mainly depends on functional protein products. Today it is known

that a lot of ncRNAs play a functional role as well, if not even the major role.

RNAs that form highly structured ribonucleic acid chains and have catalytic

functions are called ribozymes. Ribosomes are one example for ribozymes,

consisting of RNA - protein complexes, where the RNA part is catalyzing the

peptidyl transferase activity which forms the amino acid chains (34).

Messenger or mRNA, transcript or tRNA, and ribosomal or rRNA and the right

enzymes and factors are required to start the next step on the way to proteins,

translation.
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Translation During this process mRNA works as a template for the genera-

tion of amino acid chains that can then fold to fully functional proteins either

by themselves or with the help of other proteins and enzymes. A tRNA is used

as a carrier to transport the respective amino acid to the place of its need and

rRNA is coding for ribosomal protein subunits which form ribosomes, the ac-

tual protein factories of the cell.

The ribosome’s role in translation can be compared to the role of RNA-polymerase

in transcription. Simplified, reading the information on the nucleic acid tem-

plate and producing a chain of product, ribosomes bind to mRNA, recruit

tRNAs loaded with amino acids and connect the latter, releasing an amino acid

chain which can then fold into a functional protein product.

According to (25; 35; 36) the process of translation can be divided into four

steps:

• Activation: In this step a tRNA covalently binds to the correct amino

acid via an ester bond between the carboxyl group of the amino acid and

the 3’OH end of the tRNA.

• Initiation: The start site for translation is always the codon for methio-

nine, AUG or alternatives like ACG or CUG. So methionine is the first

amino acid of the newly synthesized poly-peptide product. The 5’ cap of

eukaryotic mRNA plays a major role in connection of the 40S ribosomal

subunit to the mRNA template in vivo. How exactly the 40S subunit finds

a start codon and initiates translation is still unclear. Several initiation-

and other- factors are needed to get translation up and running.

• Elongation: As the ribosome slides along the mRNA template, amino

acids are added to the growing peptide chain, until the ribosome faces a

stop codon like UAA, UAG or UGA in the nucleic acid chain.

• Termination: As no tRNA is able to bind to one of these stop codons,

the ribosome pauses. This is followed by binding of a release factor that

helps disassembling the ribosome - RNA complex.

Again a lot of regulatory steps occur during translation and give the cell a layer

of regulation for gene expression. This starts with trans-acting factors, that

can interact with the ribosome or the mRNA, to cis-acting regulatory elements

or structures on the mRNA itself and, of course, the number of ribosomes that

have access to a certain mRNA. Figure 15 shows a schematic view on the pro-

cess of translation in eukaryotes.
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Fig. 15. A simplified view on a charged tRNA, entering the ribosome and binding
to a specific position on the mRNA. The ribosome attaches the amino acid to the
poly-peptide chain and releases the unloaded tRNA.

After finishing translation, the poly-peptide product can undergo a lot of mod-

ifications (phosphorylation, glycosylation, acetylation, see for example (37)) to

become the protein of need, be it a membrane protein or a part of a multi-

protein enzyme complex. An important modification for RNA binding proteins

is for example the methylation of Arginine, which effects the ability of a protein

to recognize other proteins or RNA (38)
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2.1.2 RNA types and structures

Throughout the cell a lot of different types of RNA exist, each with different

functions and often with a well-defined structure. The following section will

show what types of RNA are known in eukaryotic cells and to what purpose

they are produced. So far three types of RNA: mRNA, tRNA and rRNA have

been mentioned. A lot of other non-coding RNAs have been discovered during

the last decades, more to be revealed, see for example reference (39) and table 2.

As versatile as the types of RNA which can be found in a cell may be, the

structural possibilities for a single molecule are immense. Nevertheless, many

RNAs, like for example tRNA have a typical, characteristic structure, see fig-

ure 16.

Fig. 16. The typical secondary and tertiary structure of tRNA, figures adopted
from:http://en.wikipedia.org/wiki/Transfer_RNA.

To go further into detail, we have to distinguish between primary, secondary,

tertiary and quaternary structures of RNA.

The primary structure is no real structure, instead it is defined by the nu-

cleotide sequence of an RNA.

Secondary structures are formed by introducing intramolecular base pairs

(described previously) into an RNA strand, following the laws of thermody-

namics. Functional RNA molecules like tRNA usually have a characteristic

structure, which is conserved among different species. Structure thus seems

to be more important for function than the sequence of an RNA. To fold into
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Type of
RNA

Found in Length Function

tRNA Eukaryotes, Prokaryotes,
Archaea

∼ 70-110 Protein synthesis

rRNA Eukaryotes, Prokaryotes,
Archaea

∼ 120-4500 Protein synthesis

miRNAs Eukaryotes ∼ 21-23 Regulation of
gene expression

snRNAs
(U1-U6)

Eukaryotes ∼ 110-120 Splicing of pre-mRNA

Processing of rRNAs
(U3)

snoRNA Eukaryotes, Archaea ∼ 50-250 Processing and modifi-
cation of rRNAs; Reg-
ulation of gene expres-
sion

Telomerase
RNA

Eukaryotes ∼ 400 DNA synthesis at chro-
mosomal ends

RNaseP Eukaryotes, Prokaryotes,
Archaea

∼ 400 Processing of tRNA

7SL RNA Eukaryotes ∼ 300 Protein secretion

Xist RNA Eukaryotes 17kb X - chromosome inacti-
vation

BC200
RNA

Eukaryotes (Primates) ∼ 200 Regulation of transla-
tion in dentrites ?

BC1 RNA Eukaryotes (Rodents) ∼ 152 Regulation of transla-
tion in dentrites ?

MRP RNA Eukaryotes ∼ 270 RNA processing

Lin-4 RNA Eukaryotes 22 Regulation of transla-
tion of mRNAs

OxyS RNA Prokaryotes 110 Regulation of transla-
tion of mRNAs

DsrA RNA Prokaryotes 86 Regulation of transla-
tion of mRNAs

tmRNA Prokaryotes ∼ 350 Degradation of short-
ened proteins

6S RNA Prokaryotes ∼ 180 Regulation of transcrip-
tion

Tab. 2. Types of RNA, their estimated length and their functions
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its characteristic structure a molecule of RNA undergoes diverse steps of fold-

ing and unfolding until a structure with a sufficiently deep energy minimum

is found. This can correlate with a maximization of base pairs, introducing a

number of structural motifs into the RNA sequence. Secondary structure for-

mation does interfere with RNA binding probabilities. If a secondary structure

is found in a target region for RNA binding proteins, this structures may pre-

vent the protein from binding, or render it possible. To predict sequence motifs

like the ARE motifs as binding sites for RNA binding proteins, this has to be

taken into account. Therefore it is necessary to calculate the accessibility of a

sequence motif, as has been done for all ARE motifs (see section 2.1.4) that

have been annotated during this thesis. Section 2.2 presents the approach that

was used for accessibility prediction and section 3 includes more information

on the motif annotation process. The influence of secondary structures on the

action of AU-rich binding proteins is discussed in section 2.1.4 and has also been

shown for miRNAs or snoRNAs that bind their targets in a sequence specific

manner (40).

This paragraph describes common secondary structures that can be observed

for RNA. As mentioned, base pairs stacking onto each other form the A-type

double helical structure. Common RNA secondary structures motifs that are

formed if some bases do not take part on Watson-Crick base pairs or if helices

fork (see figure 17) include:

• Hairpin stemloops: They are of special interest for RNA secondary struc-

tures as they allow an RNA strand to bend back on itself and form an

intramolecular duplex.

• Internal loops: Present motifs, that form where both RNA strands have

unpaired bases followed by a region of complementarity.

• Bulges: Can form in regions of non-complementarity on one RNA strand.

• Junctions: Can act as intersections to link helices together.

• Multiloops: A section of nucleotides that contains multiple loop structures

with an closing base pair.

RNA structure prediction is of importance as it often is the structure that de-

fines the function of a molecule and not the sequence alone, e.g. codon-anticodon

recognition by tRNA only works if tRNA is properly folded. This has in fact led

to the design of various experimental approaches, for example a genome wide

scan for RNA secondary structures in yeast, as done by Kertesz et al. (41).

The bioinformatical prediction of RNA secondary structures is discussed in the
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Fig. 17. Common RNA secondary structure motifs.

chapter RNA Bioinformatics.

Positively charged Metal ions like Mg2+ influence RNA secondary and tertiary

structure formation. They help to minimize the distance between strands by

antagonizing the negative charge along the phosphate backbone or even interact

directly with the backbone (42).

Even more diverse is the field of RNA tertiary structures. Three main strate-

gies are used to assemble these (43):

• Coaxial stacking: Helices are stacked on each other to give more stable

helical structures.

• Hydrogen bonding: Whereas Watson-Crick bonds are usually found within

RNA double helices, the previously discussed non-Watson-Crick base pairs

are used to build up tertiary structures by creating base triples.

Ribose zippers on the other hand, are interactions where the 2’-OH group

of ribose is projected outside of RNA helices and can form hydrogen bonds

with adjacent RNA strands. They can join together neighboring strands

of RNA.

• Metal ions: As described earlier positively charged metal ions can help to

stick RNA secondary structures together or bring them into close prox-

imity, to form tertiary structures.
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Among tertiary structural motifs one can find pseudoknots like kissing hair-

pins (44), see figure 18.
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Fig. 18. Common RNA tertiary motifs.

• Pseudoknots form between loops and unpaired regions outside of this

loops, again either intra- or intermolecular.

• Kissing loops are formed by hydrogen bonding between two loop regions

and can be either intra- or intermolecular.

Correct formation of tertiary structures is necessary to provide an RNA molecule

with e.g. catalytical function or for tRNA to function in translation.

Higher order quaternary structures can be introduced by interactions be-

tween the mentioned secondary and/or tertiary structures. They are of impor-

tance for intermolecular interactions of RNA molecules or interactions between

RNA and proteins.

Folding of RNA can for example lead to the generation of aptamers, which

are shaped RNAs that can bind selectively to ligands like charged molecules,

amino acids or nucleotides. They are applicable as biosensors or for future

therapeutic strategies by specifically binding a target protein and e.g. alter or

block its active- or binding-site. One prominent example for RNA aptamers

are riboswitches, which are structured RNA molecules that play an important

role in gene expression of prokaryotes (45; 46). Only very few examples for ri-

boswitches in eukaryotes are known and their role in eukaryotic gene expression

still remains to be investigated. A review on RNA structures, methods to find

and analyze them in vivo, in vitro and in silico and their role for organisms is

available from Wan et al. (47).
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miRNAs

Although this thesis is focused on the interactions between AREs and AUBPs,

the interplay of AREs and miRNAs is a crucial point in gene expression regula-

tion. Therefore this short section will introduce miRNAs and their influence on

ARE containing transcripts. This paragraph is inspired by (48; 49; 50; 51; 52)

Short, single stranded RNA molecules of 20-23nt length are termed miRNAs.

They are endogenously expressed in three steps. First a pri-miRNA is tran-

scribed by RNA polymerase II at a miRNA gene locus. This pri-miRNA un-

dergo the same processing steps as protein coding mRNAs, namely 5’ capping

and 3’ poly-adenylation.

Stem loops inside the pri-miRNA mark it as target for the microprocessor com-

plex. Part of this multi-protein complex is the endonuclease DROSHA, that

cleaves the pri-mRNA. An alternative is the splicing of mRNAs, which can lead

to miRNAs that are part of introns, as proposed by (53).

However, the resulting 70nt long precursor (pre-) mRNA forms secondary

structures that are recognized by export proteins. In a Ran-GTP dependent

manner, the pre-miRNA is exported into the cytoplasm, where an other dsRNA

specific RNAse, DICER, cuts the pre-miRNA into the final mature 22nt long

miRNA product.

By loading this miRNA into a member of the Argonaute (AGO) protein family,

the latter can specifically bind to targets of the loaded miRNA and degrade

them as part of the RNA-induced silencing complex (RISC).

MiRNAs play an important role for the regulation of gene expression. They can

have (partially) complementarity to the 3’UTRs of mammal mRNAs, and cause

degradation of their targets if latter are accessible for binding. This can inter-

fere with the binding of AUBPs to their targets, increasing or decreasing their

effects. A discussion of this topic follows in section 7.3 and more information

can be found for example in (51).

2.1.3 RNA binding proteins

Regulation of gene expression often occurs co- and post-transcriptionally and

allows the cell to quickly respond to changes in needs and environment.

This is in fact faster than changing the current set of transcription factors, and

has a broad bandwidth of possible targets for regulation . The cell has different

layers where regulation can take place. Alternative splicing is one example that

makes it possible to produce more than one product out of a single mRNA.

Polyadenylation, 5’-capping, splicing, RNA editing and RNA degradation are
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known examples of internal regulation mechanisms (54; 55). RNA-binding pro-

teins (RBP) take on a central role in this processes, see figure 19. The in-

teraction or competition with miRNAs is another way of mRNA processing

regulation (56). In addition, different RBPs interact with short RNAs to form

ribonucleoprotein (RNP) complexes. RNPs have a functional role in various

cellular processes like DNA replication, histone gene expression regulation and

transcription and translation control processes (57).

Fig. 19. This figure shows post-transcriptional gene expression regulation as a
crucial role of mRNA-binding proteins. Regulation of mRNA splicing, editing,
poly-adenylation, export, translation and decay is under control of RBPs. This
figure was reprinted from (57) with permission from Elsevier.
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RBP can bind to RNA in a sequence specific manner and with varying affinity.

The development of versatile RNA binding domains allows these proteins to act

on a broad variety of RNA motifs and structures. These domains can interact

with single or double stranded RNA and recognize its primary, secondary as

well as tertiary structures. Table 2.1.3 shows eleven RNA-binding domains and

their properties as excerpt. This table and the following section are inspired by

the review from Lunde (58).

One can see that a variety of domains for protein-RNA interactions have been

found, each with specific motifs and function. Eukaryotic genomes where

scanned for RBP motifs with bioinformatical methods. 5-8% of yeast and 2%

of C. elegans and Drosophila protein coding genes where predicted to code for

RBPs (59; 60; 61).

Among the best characterized RNA binding domains is the RRM, the RNA

recognition motif. Referring to Maris (62), a total of 6056 RRM motifs have

been identified in 3541 different proteins in the year 2005, mostly functioning in

post-transcriptional processes regulating gene expression. Composed of 80-90

amino acids (63), often multiple copies of these motifs can be found along a

single protein.

This modular architecture is common for RNA-binding proteins. Sometimes

more of these proteins have to act together to bind a certain target specifically.

Interaction between RNA and RRM containing proteins occurs via three con-

served arginine or lysine residues that form salt bridges to the phosphodiester

backbone and two aromatic residues, that introduce stacking interactions to the

nucleobases of the RNA target, establish the sequence specificity in most cases.
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Domain Topology RNA-recognition sur-

face

Protein RNA interactions

RRM αβ Surface of beta-sheet Interacts with about four nucleotides
of ssRNA through stacking, electro-
statics and hydrogen bonding

KH
(type I
and type
II)

αβ between
β2, β3 and
GXXG loop.
Type II: same
as type I,
except vari-
able loop is
between α2
and β2

Hydrophobic cleft formed
by variable residues and the
bases from the GXXG loop
and hydrogen bonding to
bases

Recognizes about four nucleotides
of ssRNA loop through hydropho-
bic interactions between nonaromatic
sugar-phosphate backbone contacts

dsRBD αβ Helix α1, N-terminal por-
tion of helix alpha2 and loop
between β1 and β2

Shape-specific recognition of the mi-
normajor minor groove pattern of
dsRNA through contacts to the
sugar-phosphate backbone; specific
contacts from the N-terminal alpha-
helix to RNA in some proteins

ZnF-
CCHH

αβ Primarily residues in alpha-
helices

Protein side chain contacts to bulged
bases in loops and through elec-
trostatic interactions between side
chains and the RNA backbone

ZnF-
CCCH

Little regular
secondary
structures

Aromatic side chains form
hydrophobic binding pock-
ets for bases that make di-
rect hydrogen bonds to pro-
tein backbone

Stacking interactions between aro-
matic residues and bases create a kink
in RNA that allows for the direct
recognition of WatsonCrick edges of
the bases by the protein backbone

S1 β Core formed by two beta-
strands with contributions
from surrounding loops

Stacking interactions between bases
and aromatic residues and hydrogen
bonding to the bases

PAZ αβ Hydrophobic pocket formed
by OB-like beta-barrel and
small αβ motif

Recognizes single-stranded 3’ over-
hangs of siRNA through stacking in-
teractions and hydrogen bonds

PIWI αβ Highly conserved pocket, in-
cluding a metal ion that is
bound to the exposed C-
terminal carboxylate

Recognizes the defining 5’ phosphate
group in the siRNA guide strand with
a highly conserved binding pocket
that includes a metal ion

TRAP β Edges of beta-sheets be-
tween each of the 11 sub-
units that form the entire
protein structure

Recognizes the GAG triplet through
stacking interactions and hydrogen
bonding to bases; limited contacts to
the backbone

Pumilio α Two repeats combine to
form binding pocket for
individual bases; helix
α2 provides specificity-
determining residues

Binding pockets for bases provided by
stacking interactions; specificity dic-
tated by hydrogen bonds to the Wat-
sonCrick face of a base by two amino
acids in helix α2

SAM α Hydrophobic cavity be-
tween three helices sur-
rounded by an electroposi-
tive region

Shape-dependent recognition of RNA
stemloop, mainly through interac-
tions with the sugar-phosphate back-
bone and a single base in the loop

Tab. 3. Legend:

dsRBD double-stranded RNA-binding domain KH K-homology
OB-like oligonucleotide/oligosaccharide binding-like RRM RNA-recognition motif
ssRNA single-stranded RNA ZnF zinc finger

Table adopted by permission from Macmillan Publishers Ltd: Nature reviews.
Molecular cell biology (58), copyright (2007).
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One RNA-binding protein containing an RRM is the poly-A binding protein,

one of the key proteins for post-transcriptional processing. It has the ability

to bind the poly-A tail of nascent mRNA, thereby protecting the RNA from

degradation and tagging it for further steps like transport to the cytoplasm or

initiation of translation (64).

Of special interest to this thesis are zinc finger proteins, as they are able to

bind ARE motifs. Classically DNA binding, they have been identified to bind

RNA as well. Multiple copies of zinc finger domains, classified by the residues

that are used to coordinate the core zinc ion, are usually present in multiple

repeats in a protein. A family of RNA-binding zinc fingers containing the zinc

coordinating motif CCCH is known to bind to AU-rich elements, see figure 20.

Sequence specificity is thereby established through hydrogen bonding between

the protein sidechains and the Watson-Crick edges of the bases (65).

Fig. 20. Sketch of a tandem CCCH-zinc finger domain of TTP in contact with a
class II AU-rich element (PDB: 1RGO). The nucleic acid is shown in blue and the
two zinc ligands are shown in orange.
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2.1.4 UTRs, AREs and ARE binding proteins

As described earlier, mRNAs do not only contain the region that codes for a

protein. Beside this CDS, a typical eukaryotic mRNA contains a 5’ as well as

a 3’ untranslated region (UTR).

These regions play a major role in translation and mRNA stability and de-

cay (66; 67; 41).

The 5’UTR is defined as the region between the mRNA-cap and the start-codon.

This region is known to play a role in translational control. In prokaryotes one

can find the Shine-Dalgarno sequence inside the 5’UTR, in eukaryotes sequence

elements like ribosome binding sites (RBS) and internal ribosomal entry sites

(IRES) can be found here. The more regulation is needed, the longer the 5’UTR

and the more stable secondary structures can be found here (66).

The 3’UTR is defined as the region between the end of the CDS and the poly-

A tail. It is known to contain more regulatory elements and is longer as an

usual 5’UTR. The 3’ UTR plays a role in transcription and translation control.

Elements like AU-rich elements, the iron response elements (IRE) and the pre-

viously mentioned poly-A signal can be found here (66).

Both regions, the 3’UTR as well as the 5’UTR are processed during or after

transcription as mentioned previously and these processing steps are very im-

portant for the fate of the mRNA, see for example (28; 67).

The following list presents an overview of the regulatory elements mentioned

above as found in (68; 69; 70), not including AU-rich elements, as they will

be discussed in more detail in the next section. While SINEs, LINEs and Alu

elements are per definition transposable elements, they can contain regulatory

motifs and elements, and are common targets of editing effects (69) and have

therefore been included in this list.

• Riboswitches: Mostly found in the 5’ UTR of prokaryotic mRNAs this

regulatory elements effect transcription attenuation as well as transla-

tion initiation. Regulation of riboswitches can occur through metal ions,

catabolites or trans-acting partially complementary RNAs. Binding to

a region of the riboswitch leads to conformational changes and opens or

closes the regulated region, making it accessible for, or preventing binding

of, interacting molecules.

• IRE: Iron response elements contain a 23- to 27-bp stem with a mis-

matched C and a 6-nucleotide loop with C at its 5’ end. They function by
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binding an iron-regulatory protein (IRP or IRE-BP for IRE-binding pro-

tein) and effect the mRNA of the transferrin receptor and ferritin, both

regulating iron homeostasis in mammalian cells.

• RBS: The eucaryotic ribosome binding site usually includes the 5’-cap.

Regulation of translation can occur here for example by masking the bind-

ing site via secondary structures or factors that bind this region and block

the RBS for the ribosome.

• IRES: Internal ribosome entry sites are usually found in viral RNAs but

can also be found in eukaryotes. These binding sites are 5’-cap indepen-

dent influence the expression of highly regulated genes like genes coding

for stress response proteins.

• poly-A signal: The consensus sequence AAUAAA is found in the 3’ UTR

of eukaryotic mRNAs. This sequence acts as signal for cleavage of the

nascent mRNA product 10 to 30 nucleotides downstream of this signal.

Cleavage is followed by addition of a poly-A tail by poly-A-polymerase.

Often more than one signal exist along the 3’ UTR, making it possible

for the cell to produce various transcript isoforms. The poly-A tail plays

an important role in mRNA stability and processing, as well as export.

• SINE: Short interspersed nuclear elements, are repetitive elements like

mobile elements or pseudogenes. With a length of less than 500bp, their

main representative are Alu elements.

• LINE: Like SINEs, long interspersed nuclear elements are repetitive el-

ements. Their length is more than 500bp, and they encode their own

reverse transcriptase, essential for their amplification. They also contain

a poly-A tail, which has, together with the transcriptase, influence on

their mobility.

• Alu element: Repeated sequences containing a recognition site for the re-

striction enzyme AluI. With a full length of about 300bp they belong to

the family of SINEs. They can usually be found in gene rich regions, and

comprise up to 10% mass of the human genome. Easy to identify by their

highly conserved sequence, this mobile elements act on gene expression
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regulation in various ways. They can act as regions for modifications like

methylation and through their mobility, be inserted into genomic regions

that are to be regulated.

There are many more regulatory elements involved in regulation of gene expres-

sion, see for example (71). However, the focus here lies on regulation of gene

expression via AU-rich elements, which will be discussed in the next chapter

followed by a section concerning proteins that bind to these regions and their

functions.

AU-rich elements

Regulation of gene expression can occur on different stages. One of them is

by control of mRNA stability (72). This post-transcriptional regulation step is

often controlled by regulatory elements that can be found in the untranslated

regions of mRNAs as previously described. Among these elements the most

important for mRNA stability regulation are the cis-acting AU-rich elements,

short AREs. They where first discovered in the 1980’s, when it was seen that

c-fos could transform cultured cells after removing a specific sequence from its

3’-UTR, changing its stability (73).

A destabilizing effect of these elements has been confirmed by inserting a

51-nucleotide long AU-rich sequence, from the 3’- UTR of the granulocyte-

macrophage colony stimulating factor (GM-CSF) mRNA, into the 3’-UTR of

β-globin mRNA, resulting in a profoundly shortened half-life of the target

mRNA (74).

AU-rich elements are found in the 3’ UTR of approximately 8% of human pro-

tein coding genes. Their products play a role in various important processes

like: ”immune responses, cell cycle/proliferation, inflammation and coagula-

tion, angiogenesis, metabolism, energy, DNA binding and transcription, nutri-

ent transportation and ionic homeostasis, protein synthesis, cellular biogenesis,

signal transduction, and apoptosis” (75), highlighting their importance.

36



2.1 RNA synthesis, regulation and RNA binding proteins

A first arbitrary definition of AREs into three classes was proposed by (76).

• Class I ARE contain several dispersed copies of the AUUUA motif within

U-rich regions.

• Class II ARE contain at least 2 overlapping UUAUUUA(U/A)(U/A) non-

amers.

• Class III ARE are U-rich regions that do not contain the AUUUA pen-

tamere.

Though this characterization by sequence motif only may not be perfect and a

characterization of AREs according to their biological function would be more

interesting, it has been established and will be used throughout this thesis.

Down to the present day, no real consensus sequence has been discovered and

ARE motifs reach from the pentamer AUUUA to multiple adjacent copies of

the WWWUAUUUAUWWW tridecamer, where W stands for A or U.

As already mentioned, AREs are cis-acting regulatory elements, which means

that they affect the molecule of mRNA where they are present. They enable so

called AU-rich binding proteins (AUBP) to interact with the mRNA, causing

stabilization or decay of their target. These effects do not always have to be

actively executed by the AUBP. One can imagine that binding to an ARE alone

can effectively prevent other factors like the poly-A polymerase to bind to the

mRNA, if both sequence motifs can be found in close proximity, thereby influ-

encing the mRNAs stability and processing, depending on the cell compartment

in which the ARE targeting molecule can be found (77; 78).

Degradation of an AU-rich binding protein targeted mRNA is thought to begin

with deadenylation. Deadenylation can be induced for example by proteins of

the TIS11 family, like TTP (79). A missing poly-A tail would prevent trans-

lation of a mRNA, as the poly-A binding protein can no longer bind to the

mRNA, which leaves the RNA exposed to exonucleolytic attacks. This step

followed by decapping and the attack of a 3’-5’ exonuclease-complex, the exo-

some, or 5’-3’ exonucleases via processing-bodies (p-bodies) would degrade the

AUBP target.

In the case of stabilization, a blocking of binding sites for degrading proteins

may be sufficient to prolong the mRNA lifetime.

The exact mechanism of mRNA degradation initialized by AUBPs remains un-

clear, but it is fact that regulation of mRNA stability via ARE motifs is an

important mechanism for gene expression regulation (80; 81; 82; 55; 79).
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AU-rich binding proteins

Active regulation of mRNA stability is possible through interaction between

an AU-rich element and an AUBP. According to (65), all zinc finger contain-

ing AUBPs have in common that they bind single stranded RNA, the same is

thought of other AUBPs. Previously mentioned was the influence of RNA sec-

ondary structures on the action of AU-rich binding proteins. One can imagine

that an ARE motif that is embedded in a sequence rich in secondary struc-

tures can be less accessible for AUBPs than a motif that is found in a longer

single stranded sequence or even exposed to the outside of an RNA molecule

when found in the loop region of a stem loop for example. Previous work has

highlighted the influence of secondary structures on the ARE-AUBP interplay.

Meisner et.al presented a molecular switch that allows to regulate the binding

of HuR to its target mRNA by introducing a secondary structure containing

the HuR target ARE motif which prevents HuR from interaction or breaking

up this structure, leaving the ARE motif in a single stranded RNA sequence

which was bound by HuR (83).

A lot of AUBP exist, among them, three are of outstanding interest for this

thesis, due to the huge amount of data available on their targets and regulatory

functions. The focus of this thesis lies on three AUBPs, namely:

TTP: Tristetraprolin is known to have a destabilizing effect on its mRNA tar-

get and is predominantly found in the cytoplasm (81). Its tandem zinc finger

domain can bind to class II AREs and promote deadenylation and degradation

of its target mRNA. TTP can induce deadenylation and is in contact with the

mRNA decapping and degradation machinery, after binding the core UUAUU-

UAUU ARE motif of its target (79). Two CCCH-zinc fingers can bind in a sym-

metrical fashion to adjacent 5-UAUU-3 subsites on the single-stranded RNA.

They combine electrostatic and hydrogen-bonding interactions with stacking

between conserved aromatic side chains and the RNA bases (65). A maximum

turnover of target mRNA could be observed when two TTP molecules are at-

tached simultaneously (84). TTP was found to regulate its own expression via

a negative feedback loop, binding an ARE present in its own mRNA and pro-

moting decay (85). The most prominent target of TTP is the tumor necrosis

factor alpha, short TNF-α, which, if not down regulated by TTP, can accu-

mulate inside the cell and lead to cancer (86). Proteins of the TIS11 family

(e.g. TTP, BRF1) seem to be able to cross regulate their mRNA targets, a hint

on their importance in regulation of inflammatory processes (87) and leuke-

mogenesis (88). Interaction between TTP and a class II ARE can be seen at

figure 21C.
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AUF1: AUF1 (A+U rich RNA-binding factor1, heterogeneous nuclear ribonu-

cleoprotein D) occurs in four proteins isoforms, p37, p40, p42 and p45. Des-

ignated by their molecular masses, these isoforms are spliced from a single

transcript and play a role in mRNA decay and translation control (89). AUF1

can bind to class I and class II AREs, and can shuttle between the cytoplasm

and the nucleus (81). It has been found to have a destabilizing effect, which can

change if influenced by heat-shock processes and (de-)phopshorylation (90). As

four isoforms of AUF1 have been discovered, it remains hard to link destabilizing

or stabilizing effects to one of them (91). Like TTP and HuR, AUF1 is known

to interact with other RBPs to increase its effect on a target or to compete for

target sites. Among AUF1 targets one can find a lot of proto-oncogenes like

c-myc or c-fos (92) and it is known as key player in the regulation of hematopoe-

sis (88). A scetch of the c-terminal RNA binding motif of Auf1 can be seen at

figure 21A, for a more detailed analysis of this region refer to (93).

HuR: HuR is an ELAV (embryonic lethal, abnormal vision ) like protein.

ELAVL1/HuR is known to act as post-transcriptional gene expression regu-

lator for transcripts containing AU-rich elements (94), in particular the nine

nucleotide long sequence ’NNUUNNUUU’. Ubiquitously expressed and pre-

dominantly nuclear localized, this protein has the ability to shuttle to the

cytoplasm and back to the nucleus, which is different to the other members

of the Hu-protein family, as they are restricted to neurons (95). HuR contains

three RRM motifs, two N-terminal binding to ARE motifs and the remaining

C-terminal motif binding to poly-A tails and stabilizing the RNA-protein com-

plex (96; 97; 98). Although an affinity for U-rich regions exists, a complex

between HuR and ARE motifs remains more stable if all RRM motifs and the

hinge region are involved (99). The three RRM motifs, as well as the link-

ing hinge region help HuR to bind ARE motifs in a length-dependent manner

by forming multimers (94). As HuR and AuF1 have been found in the same

tissues, these two AUBPs seem to have some kind of interplay in regulating

mRNA turnover (100). TTP seems to play a role in the autoregulation of HuR

expression levels. High levels of HuR in the nucleus influence the usage of al-

ternative polyadenylation sites of HuR mRNA, which leads to the expression

of a longer, ARE containing version of this mRNA, resulting in a high degree

of degradation of HuR mRNA via TTP (78). This would mean that the lo-

calization of HuR has influence on its role in mRNA stabilization/decay and

displays an other example of autoregulation of RBP expression levels. Targets

of HuR seem to overlap with TTP or AuF1, with the difference that HuR has

a stabilizing effect on its mRNA targets in most cases. A scetch of the RRM1
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of HuR can be seen at figure 21B, for a more detailed analysis of this region

refer to (101).

Fig. 21. A) Shows a sketch of the c-terminal RNA binding motif of AUF1 in
interaction with a nucleic acid strand (in blue) (PDB-ID: 1WTB)
B) Shows a sketch of the first two tandem RRMs (RRM1) of HuR that is known
to bind ARE motifs(PDB-ID: 3HI9)
C) Shows a sketch of a tandem CCCH-zinc finger domain of TTP in contact with
a class II AU-rich element (PDB: 1RGO). The nucleic acid is shown in blue and
the two zinc ligands are shown in orange.

All three AU-rich binding proteins can be found to compete with each other

for single stranded target sites, sometimes having an agonistic and sometimes

an antagonistic effect on the stability of their targets. They can have a great

influence on the half-life of mRNAs, providing the cell with a fast response

mechanism to environmental or developmental conditions (81; 102). The com-

plex interplay of AUBPs with each other or other RBPs as well as their broad

spectrum of targets leaves room for a lot of investigations.

Interactions or cross reactions of AUBPs and miRNAs are also known and

present further roles of AUBPs in translational control and mRNA decay (51).

Summing up all actions of AUBPS is an almost impossible task, but this

overview presents main findings of their role in the cell and highlights the large

area of functional properties that can be targeted by future scientific analysis.
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2.2 Bioinformatics

The combined application of computer science and information technology to

the field of (molecular) biology is termed bioinformatics.

Creating algorithms and databases as well as using statistical and computa-

tional approaches, the primary goal of bioinformatics is to identify fundamental

principals of biological processes. Resulting knowledge may be used to predict

data instead of just observing data in the further course.

Bioinformatics is a fast growing field, further stimulated by the explosion in

available computing power. Beginning with genomics and proteomics followed

by drug design as well as synthetic biology, computational methods are of grow-

ing importance. The possibility to search for new drugs in a virtual lab can

reduce costs and time compared to wet lab work, a point very important in

all fields of research. Some of these fields would not even be possible without

computational help. Deep sequencing or all sorts of -omics produce data on

large scale, making it absolutely necessary to use computational approaches for

analyzing these datasets.

The generation of a database, containing the annotated protein coding tran-

scripts of human and mouse as well as their analysis where part of this thesis.

Alignments of ARE containing transcripts where generated to get conservation

information for ARE motifs among different species. Furthermore the analy-

sis includes prediction of secondary structures inside the 3’ UTRs, leading to

information about the accessibility of present ARE motifs. The database and

the results of above mentioned analysis steps were then used to generate a

webserver that allows to screen for ARE motifs in the 3’ UTR of human and

mouse transcripts. This tool was named ’AREsite’ and can be used to analyze

known ARE motifs or screen for novel targets of AUBPs, as will be discussed

in section 5.

The next section is inspired by the textbook ”Biological sequence analysis” (103)

and will focus on alignment algorithms and the programs used to analyze the

dataset in the database, followed by a section about folding algorithms and the

implementation RNAplfold that was used to calculate ARE motif accessibility.
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2.2.1 Methods to generate alignments of ARE containing transcripts

ARE motifs have a known functional role. Their conservation among different

species helps do distinguish between ARE motifs that can be found by chance

in an A+U rich 3’ UTR and motifs that actually have a regulatory function.

Comparison of biological sequences is one of the most important operations in

computational biology, as sequence (see definition 1) similarity implies similarity

in structure and function.

A sequence x is defined as:

x = x1...xnx ∈ A where



















DNA : A = {A, T, C, G}

RNA : A = {A,U,C,G}

Protein : A = {see figure 10}

(1)

What biologists are searching for is a measure of sequence homology to gain

information about sequence conservation.

Whereas sequence similarity means that compared sequences are similar in mat-

ters of their nucleotide composition, homology implicates similarity in function.

A homologue is a gene or protein found in different species with a common an-

cestor and often similar structure and function. There are special types of

homologues, orthologues and paralogues. An orthologue is a gene or protein

with same function but found in an other organism due to a speciation event

in the common ancestor, whereas a paralogue is derived by a gene duplication

event and results in two copies of a gene on different loci of the same genome

with not necessarily the same function. No matter what kind of homology a

researcher is looking for, sequence comparison will give a clue about the con-

servation of an appointed sequence or sequence motif.

Naive pairwise sequence comparison is done by placing two sequences one above

the other, thereby placing identical or similar bases in the same column and

inserting gaps in form of dashes opposite a non-complementary base, a process

called pairwise alignment of two sequences.

To get information about the analogy of these two sequences, one has three

possible options, comparison by Hamming distance dH , by edit distance dedit

or by similarity S.

Hamming distance dH (see definition 2) simply counts the number of different

characters δ, among two sequences placed one above the other. This is very in-

tuitive, but of limited use if sequences differ by more than just single characters

(as introduced by point mutations). Hamming distance is thus not related to
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real live processes.

Edit distance dedit (see definition 3) is a measure for the minimal amount of

operations necessary to transform sequence x into sequence y. This leads to

more complex calculations to extract edit distance, but gives results that are

more similar to real biological processes.

dH : The Hamming distance for sequence x and sequence y

dH(x, y) =
n

∑

i=1

δ(xi, yi) δ(xi, yi) =







1 if xi 6= yi

0 (else)
(2)

dedit: The edit distance for sequence x and sequence y,

given edit operations Replace (R), Insert (I) or Delete (D) with different oper-

ation costs:

dedit(x;y) =
n

∑

i=1

δ(xi, yi)δ(xi, yi) = min



















R(xi; yi)

I(xi; yi)

D(xi; yi)

(3)

While Edit and Hamming distance are a measure for relatedness of two se-

quences, a measure for similarity can be retrieved, by assigning a similarity

score to each pair of characters which allows to fine tune an alignment.

Below the recursion for calculating similarity S of sequence x and sequence y

with linear gap costs can be seen, where δ(xi,yj) is the similarity score for the

given pair of characters and g is the gapcost:

Si,j = max































0

S(i−1,j−1) + δ(xi,yj)

S(i−1,j) + g

S(i,j−1) + g

(4)

The arising question is, given two sequences can be aligned in various ways,

which alignment is the best one to retrieve as much conservation information

as possible.

In order to evaluate this, a scoring scheme is needed. Such a scheme has to

incorporate various mutational processes, for example insertions or deletions,

which will now be referred to as InDels. Other mutations include substitutions

(which are point mutations), as well as duplications, inversions and combina-

tions thereof.
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The introduction of gaps into an alignment was already mentioned, wherever

a InDel or other mutation leads to missing character in the opposite sequence.

Gap scores or gap penalties, as they usually contribute with a negative score,

can be linear or affine. Linear means that opening of gaps and elongation of

gaps add the same score, which can be problematic if one thinks of long in-

sertions or deletions that are the case in many biological processes, as the gap

costs would grow very fast. Affine gap costs consist of two scores, a larger one

for opening gaps, and one for elongating them, the latter always smaller than

the first. As InDels often concern more than one nucleotide, affine gap costs

can simulate real live processes more effective than linear gap costs, with rising

costs for computational speed and memory usage. One can see that it is very

important to use or create a scoring scheme that fits the problem one wants to

investigate, or it may lead to suboptimal or in the worst case wrong results.

Substitutions are a special case of mutations and require a special scoring

scheme. Depending on the substitution that occurred and the position in the

alignment where it was found, the scoring scheme has to differ between mu-

tations that have influence on structure/function and mutations that do not.

Substitution matrices like the BLOSUM (BLOcks of amino acid SUbstitution

Matrix) matrix for amino acids or the PAM (Point Accepted Mutation) ma-

trix exist for this case and are used in the alignment programs utilized for the

analysis of ARE motif conservation. These matrices are built up by taking into

account which amino acid or nucleotide can act as substituent for an other,

depending on their properties like charge or hydropathy and the probabilities

for observing such pairs in real alignments. If amino acids or nucleotides are

very similar, they get a positive score, and otherwise a negative score.

Once a scoring scheme is established, an algorithm for prediction of possible

and/or optimal alignments has to be found.

To get an optimal alignment, an algorithm has to maximize the number of

positive scored pairs while minimizing costs for gaps and mismatches. Due to

the huge amount of possible alignments even for short sequences, dynamic pro-

gramming algorithms are used to find optimal alignments or subsets thereof in

an acceptable time frame. The idea behind dynamic programming algorithms

is to break down problems into smaller subproblems which can be solved faster,

thereby storing results for this subproblems and simply load them if they re-

occur during processing instead of recalculating them. As subproblems usually

occur more than once during alignment operations, a dynamic programming

approach is efficiently saving time and computational power.

Even faster methods use Heuristics, making additional assumptions and sac-
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rificing accuracy for time. The big disadvantage of heuristical methods is the

possibility of not finding a real optimal alignment for certain sequence pairs.

Extensively used and modified algorithms for a variety of bioinformatical imple-

mentations concerning alignment operations, including the programs that have

been used during this thesis, follows this short introduction.

Global Alignment Algorithm In 1970 Needleman and Wunsch introduced an

algorithm for finding optimal global alignments between two sequences (104).

It fills a matrix with the best score S, depending on the positions i and j in the

alignment of sequence x and sequence y where δ(xi,yj) is the similarity score for

the given pair of characters and g is the gapcost (see equation 5).

Si,j = max



















S(i−1,j−1) + δ(xi,yj)

S(i−1,j) + g

S(i,j−1) + g

(5)

For each position of sequence x aligned with each position of sequence y, a score

and a pointer to the cell where the score was derived from, is stored in the ma-

trix. The first row and column of this matrix are filled with values that are

derived by aligning each position of the sequences against gaps. The upper left

position in the matrix is filled with a zero, marking the start position. Moving

to the first position of sequence x, the best score for all possible actions (match,

mismatch or gap) and a pointer to the cell where the value was derived from, is

stored for alignments with all positions of sequence y by simply calculating the

maximum value for each action. This procedure is repeated until the matrix

has been filled, see figure 22.

Once the matrix is filled row by row from top left to bottom right, a process

termed traceback is conducted, starting at the last position for sequence x and

y. This position holds, by definition, the best score for the alignment of the two

sequences as the scoring scheme is additive. Moving back to the start of the

matrix, always following the pointers to the cells where the last maximum value

was derived from, gives the resulting optimal alignment. This algorithm was

modified by Gotoh, making it faster and more efficient (105) and with slight

modifications, it can give a whole set of optimal or even suboptimal alignments

as result.
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Fig. 22. An implementation of the scoring matrix created by the Needleman -
Wunsch algorithm. For each position of the two sequences, the maximum value,
and a pointer (grey arrows) to the cell where it was derived from, is stored in
the matrix. The backtracing algorithms leads to the best global alignment (green
arrow) by following the optimal pointers (red arrows) from the lower right cell
where the best score for the alignment is stored, to the beginning of the alignment
in the upper left cell.

Local Alignment Algorithm When comparing protein domains, or sections of

DNA sequences like promoter regions or in our case ARE motifs, it is of limited

use to get optimal global alignments. Analyzing the conservation of a subse-

quence among other sequences is done by using a local alignment algorithm.

The most prominent algorithm was implemented by and named after Smith

and Waterman (106).

The big difference to the Needleman-Wunsch algorithm is the possibility of in-

serting zeros anywhere in the matrix, where the otherwise calculated maximum

value would be lower than the value in the source cell or zero. This means, that

instead of introducing bad scores into an existing alignment for gaps at the end

of a local alignment, one simply starts a new alignment, see equation 6.

Like using the algorithm for global alignments, the best scored operation O for

position i,j in the alignment of sequence x and sequence y, but in any case a

higher score than the one before is retrieved, or a new alignment is started by

inserting 0. Again δ(xi,yj) is the similarity score for the given pair of characters

and g is the gapcost:
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Oi,j = max































0

O(i−1,j−1) + δ(xi,yj)

O(i−1,j) + g

O(i,j−1) + g

(6)

Using edit distance is not productive in this case, therefore similarity is used

to evaluate the best alignments, see equation 4. The traceback process can not

simply begin at the lower right corner, but has to start at the highest value

inside the matrix and ends at the next zero on the way back, indicating the

best local alignment inside the matrix. This process can be altered, so that

all local alignments can be found instead of just the optimal one, which can

be used to screen for conservation in organisms that are no closely related or

divided by a large timespan.

To do this, all values contained in the first local alignment are set to zero, and

necessary recalculation processes are done, a process known as deblocking. To

guarantee that local alignments are not masked by longer non-optimal or global

alignments with higher scores, the scoring scheme has to be adapted, so that

only very good matches give positive scores. This requires advanced scoring

schemes as well as techniques to develop them. Both will not be addressed in

this thesis, but can be found among more advanced alignment methods or ad-

vanced methods to construct a scoring scheme by analyzing statistical datasets

and more in (103).

Heuristic Alignment Methods As mentioned previously, a possibility to speed

up the process of finding optimal alignments is to use heuristics. Using this

techniques can be a powerful method where exhaustive search would be too

expensive, as can be the case when screening large 3’ UTRs. This section will

introduce two algorithms that use heuristics to speed up the alignment process

and are extensively used throughout the community.

FASTA

The FASTA (107) algorithm searches for matches between a given string and

strings in a database, by finding the most similar local regions in a dynamic

programming matrix. To speed up this search, FASTA is splitting the search

string in smaller substrings and looks for exact matches (hot-spots) between
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this substring and the database substrings. Thereby FASTA simply tries to

find the searched substring inside its database. Once hot-spots are found, they

are scored according to an adequate scoring matrix. The ten best hot-spots

are re-scored with shorter subsequences using a match score matrix like PAM

and the best scoring sub-alignments are extracted. These sub-alignments are

then combined into one larger alignment, introducing gaps if necessary. Finally

a Smith-Waterman algorithm is used to produce an optimal local alignment,

even though this is only a highest scoring region and may not be the best pos-

sible alignment.

The corresponding FASTA format is among the most used sequence formats

one will encounter if working with bioinformatic tools and databases. A typical

FASTA file begins with a ’>’ followed by one or more identifiers for the protein

or nucleic acid sequence separated by ’|’. The sequence itself is written in single-

letter code below the header and can be easily parsed by scripting languages

like Perl or text processing tools or converted to other file formats. Because of

its ease of use the FASTA format became a standard in bioinformatics very soon.

BLAST The Basic Local Alignment Search Tool (108) is the most widely used

bioinformatical program implemented until now. Again, a heuristic is looking

for local alignments between a search string and strings in a database. With the

parameters, word length, a given word similarity threshold, and the minimum

match score, BLAST computes high-scoring segment pairs (HSPs) between two

sequences. A HSP describes a locally maximal segment alignment, which means

its score is above the minimum score threshold and can not be improved by

shortening or extending the segment pair. To find these HSPs, BLAST uses

a heuristic similar to the Smith-Waterman algorithm, see equation 6. Step by

step BLAST generates substrings of a given length and calculates scores with

all possible sequences of same length. Those having a score greater than the

threshold are now compared to sequences in a database for exact matches. If

they can be found, a scoring matrix like BLOSUM50 is used to score the sur-

rounding character-pairs and again those with a score greater than the given

threshold are saved. Neighboring perfect matches are clustered together and

when the scoring is completed, the HSPs found are compared to scores that

would be expected if random sequences would be compared. This returns E-

and P- values for the resulting alignment. The P-value is the probability to get

a score greater or equal to the score of the random sequences, and the E-value

or expectation value provides information about how often such a P-value can

be expected in a random query of the database. With this information the user
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can rate whether or not the resulting alignment is satisfying his needs.

Multiple Alignments For phylogenetic predictions of a certain subsequence

like the ARE motifs, pairwise alignments are simply not enough. It requires

more than two sequences to determine the level of conservation. The next sec-

tion will introduce methods to generate multiple sequence alignments and will

end with a brief overview of the programs that were used to generate align-

ments for a phylogenetic analysis of ARE motifs, which has been included in

the webserver ’AREsite’.

Whenever more than two sequences are compared to each other by alignment

methods, we speak of a multiple alignment. The challenge in producing mul-

tiple alignments, is again to find and score the optimal alignment(s). As more

than two sequences have to be compared, the usual way of using scoring matri-

ces is no longer feasible. One way to handle this problem is to use the sum of

pairs score. Here the alignment is produced by dividing a multiple alignment

into all pairwise alignments and scoring each one of them, building the optimal

multiple alignment with the best scored pairwise alignments as anchors.

An elaborated version hereof is to produce a weighted sum of pair score, where

sequences get a weight according to their appearance in the alignment. This

helps to circumvent a scoring problem if alignments contain more sequences

from species A than B, as otherwise sequences derived from species A would

get a better score than appropriate.

As no algorithm can solve the multiple alignment problem for growing numbers

and length of sequences in an acceptable time-span, the established programs

use heuristics to circumvent limitations in CPU power and memory. An example

is the progressive alignments heuristic, were smaller multiple alignments

are produced and combined to the final large multiple alignment. Beginning

with pairwise alignments, sequences with close relationship are combined to

a multiple alignment and later again combined to related multiple alignments

and so on. To do so, first of all a guide tree, containing the degree of relation-

ship between sequences is produced which is later on it is used to combine the

alignments according to this relationship. Afterwards a new guide tree can be

calculated and if better than the first, it is used for further alignment steps.

As the calculation of sum of pair scores for high numbers of sequences becomes

very complex, predefined profiles containing the probability or frequency of all

possible characters are used for easier scoring. To further improve this tech-

nique, iterative methods can be used. Thereby an existing alignment is divided
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and realigned as long as better alignments are possible, to get the best possible

multiple alignment for given sequences.

The following section focuses on programs used during this thesis to produce

alignments of ARE containing transcripts in human or mouse with transcripts in

other species, leading to information about the conservation of the ARE motifs.

ClustalW This section is inspired by (109), where detailed information can

be found. ClustalW’s ancestor was written in the 1980’s and rewritten and

modified over the years to become today’s ClustalW, which was first intro-

duced 1994. ClustalW incorporates a position-specific scoring scheme and the

name giving Weighting scheme for down weighting over-represented sequence

groups. Alignments can be produced by using a faster heuristical approach

for pairwise alignments and the calculation of a distance matrix, or taking the

slower but more precise route of calculating pairwise alignments with a dy-

namic programming approach and affine gap costs. In both cases a guide tree

is build up with the distance matrix calculated, followed by progressive multi-

ple alignment. To get the resulting multiple alignment, improvement steps are

introduced, modifying sequence weighting, gap penalties, similarity, divergence

and length dependence of the sequences as well as the weight matrices (PAM

or BLOSUM) used.

The final alignment does not have to be the optimal alignment, but improve-

ments in sensitivity and accuracy are routine implementations. ClustalW was

used during this thesis for its fast and easy handling.

DIALIGN The program DIALIGN (110) is using an internal database of local

fragment alignments to search for statistical significant similarity with frag-

ments of the query sequence or the whole sequence if possible. This approach is

similar to FASTA or BLAST, but here multiple sequences are compared from

begin on. An interesting feature is the possibility to use alignment anchors,

forcing the program to align anchored positions to each other. This approach

was used when locally aligning ARE motifs found in different species. Providing

the options to use various heuristics or combinations with other tools to speed

up the alignment process, DIALIGN can be used to align multiple sequences

fast and with high precision.

MAFFT In this program, nucleic acid sequences are converted to sequences

of four-dimensional vectors, containing the frequencies of the occurring bases.
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Fast Fourier transformation (FFT) is used to calculate the correlation of se-

quences. Homologous regions show a peak in their correlation, and these peaks

are used to align the sequences. Using a sliding window approach with window

size 30, the sequences are scanned for peaks in correlation, and if segments

are identified as homologous segments, they are combined. A modified PAM

similarity matrix with a special gap cost and other modifications is used to

produce the optimal alignment, segment by segment. MAFFT is a tool that

provides various possibilities to calculate and score optimal alignments, as was

done during this thesis. Further information can be found at (111).

TBA and MULTIZ The Threaded Blockset Aligner (TBA) (112) is an ap-

proach to circumvent exclusion problems in the typical genomic sequence align-

ment approach. Typically, multiple genomic alignments use one genomic se-

quence as reference, which means that the other alignments are projected on

this sequence, and sequence blocks that are contained by the reference are lost.

TBA produces a set of blocks (for example, local alignments of some or all

of the given sequences), which contain each position in the given set of se-

quences exactly once. Assuming that the matching regions occur in the same

order and orientation in the whole set, detected matches are represented among

this blocks. MULTIZ is the dynamic- programming alignment program inside

the TBA program collection. It can be used for sequences containing inversions

and duplications, or sequences that are fragmented. MULTIZ was used to build

whole-genome alignments for the UCSC Genome Browser (113), which where

used during this thesis to extract ARE motif conservation.
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2.2.2 RNA folding algorithms as methods for motif accessibility prediction

In section 2.1.2 the types of secondary structures found in RNA molecules were

introduced. These structures are very important in the prediction of possible

protein binding sites along a RNA molecule. If a very stable structure is found

in a protein binding region, this structure may prevent interactions between

protein and RNA. The more stable a structure, the more energy has to be

provided to open this structure and allow interaction. This strategy can be

used for regulation of translation and transcription by e.g. RBPs, miRNAs, or

riboswitches, as mentioned previously.

As the interaction of AUBPs with AREs is the main topic of this thesis and

AUBPs are single stranded RNA binding proteins, it was a logical step to have

a look at the secondary structuredness of ARE containing transcripts.

Folding RNA In silico does not come without problems. The first restric-

tion is that tertiary structures are almost impossible to predict except for se-

lected cases. Secondary structures on the other hand are predicted routinely

in bioinformatical analysis, where a secondary structure has to fulfill certain

constraints. The constraints for a secondary structure (defined as a set of base

pairs Ω on a sequence S), cited from (114) are:

• A base cannot participate in more than one base pair, i.e., Ω is a matching

on the set of sequence positions (excludes non-canonical base pairs).

• Bases that are paired with each other must be separated by at least 3

(unpaired) bases (RNA backbone can not bend too sharply).

• No two base pairs (i;j) and (k;l) ∈ Ω ”cross” in the sense that i < k < j <

l. Matchings that contain no crossing edges are known as loop matchings

or circular matchings (excludes pseudoknots).

The first efficient algorithm to predict single stranded RNA secondary struc-

tures was introduced by Nussinov in 1980 (115). This algorithm produces a

secondary structure with a maximum of introduced base pairs. Similar to

alignment algorithms a matrix is filled with all possible base pairs and via

a backtracking routine the structure with the maximum number of base pairs

is received. A:U and G:C base pair energy contributions are seen as equal and

contributions of stacking or destabilizing effects are not regarded in this algo-

rithm.

In vivo the thermodynamic stability of RNA secondary structures is a pre-

requisite. Based on the work of Nussinov (116) and Waterman&Smith (117),

whose model incorporates stacking and destabilizing effects, Zuker introduced
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the loop-based energy model (118), where total free energy contributions come

from loop regions only, depending on their size and type (interior loops, bulges

and multi-branched loops) in 1981 (nearest neighbour model). This is the first

approach to divide an RNA sequence in loop- and non-loop regions (loop de-

composition). The total free energies F (S) of a secondary structure S is seen

as sum of the energy contributions FL of all loop regions L ∈ S along an RNA

molecule, see equation 7.

F (S) =
∑

L∈S

FL (7)

Zuker presented a dynamic programming approach based on this model to solve

the RNA folding problem in an acceptable time scale of O(n3). The energy con-

tributions for some loop types have been measured experimentally by the group

of Douglas Turner and are used in programs for secondary structure prediction,

e.g. (119).

Based on this loop model is the minimum free energy (MFE) approach. Here

the RNA sequence is again divided in loop- and non-loop regions. In a first

step, the MFE of all loop regions is calculated in the forward recursion, and

via a backtracing routine, the actual base pair pattern is retrieved in step two.

The outcome of this pattern is a MFE structure, but it does not have to be the

only, or the best one for the given sequence.

Coupling this method to the partition function of an RNA sequence leads to

the probability of a given MFE structure among the ensemble of all possible

structures. The partition function encodes the statistical properties of a system

in thermodynamic equilibrium. A dynamic programming algorithm to compute

the equilibrium partition function followed by the base pairing probabilities of

a given RNA molecule was introduced by McCaskill in 1990 (120).

Calculation of the accessibility of certain RNA sequence intervals is done by

calculating the probability that a sequence of nucleotides is found unpaired.

Mathematically this is equivalent to the amount of energy needed to make this

sequence single stranded, thus to open all structural motifs (121). As ARE

binding proteins can only bind to an accessible ARE motif, calculations of mo-

tif accessibility have been conducted for all ARE motifs present in the database,

using RNAplfold (122).
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RNAplfold RNAplfold (122) (part of the Vienna RNA package (123)) is a

thermodynamic RNA folding program that calculates local base-pairing prob-

abilities, as well as the probability that stretches of nucleotides are unpaired,

which is directly related to the energy needed to open all secondary structures

in the respective stretch of nucleotides (opening energy) in cubic time (124). It

is based on McCaskills dynamic programming algorithm for calculation of the

partition function.

The RNAplfold approach allows to set a fixed window size to derive the av-

erage equilibrium base pairing probability over all possible sequence windows

of this size. As part of the analysis of annotated ARE motifs was to calculate

their accessibility to mark them as possible targets for AUBPs, RNAplfold was

used to calculate the accessibility in form of probabilities of being unpaired or

opening energy of these motifs.

This output has been integrated in the ’AREsite’ webserver and presents a

substantial contribution to the screening for novel AUBP targets. Accessibil-

ity extracted from RNAplfold has been used to generate a P-value that ranks

annotated transcripts for their importance as AUBP binding sites, according

to the P-value estimation described in section 4. The runtime parameters and

the implementation of RNAplfold results in the web service are discussed in

section 3.

2.2.3 Markov chains

An order-0 (for mononucleotides) and an order-1 (for dinucleotides) Markov

chain were used during this thesis to calculate the fold enrichment of the ARE

motifs of all transcripts in the database.

The fold-enrichment was calculated by extracting the frequency of mono- or

dinucleotides in the annotated motifs, divided by their theoretically frequency

which was derived from the Markov chains.

A Markov chain is a sequence X of variables x whose present state xk is inde-

pendent of the future xk+m and past xk−m states , see definition 8. Markov

chains can be of order-0 to order-m, where m has to be finite.

P (xk|x1 . . . xk−m) = P (xk) (8)
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An order-0 Markov chain represents a sequence of states where the probability of

the current state xk is independent of all past states x1 . . . xk−1, see definition 9.

P (xk|x1 . . . xk−1) = P (xk) (9)

For DNA or RNA sequences an order-0 Markov chain can be used to describe

the probability of the sequence X of length L as product of the probabilities of

the mononucleotides x found along this sequence, see equation 10.

P (X) =
L

∏

k=1

Pxk (10)

An example for an order-0 Markov chain for a sequence consisting of the charac-

ters A and B can be found in figure 23. The Markov chain defines probabilities

p for a change from A to B, pAB and vice versa pBA and the probability for

staying in the current state, defined as 1 − pAB and 1 − pBA respectively for a

two state Markov model.

Fig. 23. An order-0 Markov model for a hypothetical sequence consisting of
characters A’s and B’s, where pAB describes the probability for a change from
state A to state B and pBA the probability for a change from state B to state A.
pA and pB respectively is the probability to stay in the current state.

In an order-1 Markov chain (for definition see equation 11) the probability for

a given state depends on the current state and the one state before, see 24.

P (xk|x1 . . . xk−2) = P (xk|xk−1 × P (xk−1)) (11)

This can be used to screen for statistically significant dependence of dinucleotide

enrichment, by comparing the frequencies of state A (P (A)) and B (P (B)) de-

rived from an order-0 and the frequencies of A following B and vice versa derived

from an order-1 Markov model.
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Fig. 24. An order-1 Markov model for a hypothetical sequence consisting of
characters A’s and B’s, where pAA−AB describes the probability to change from
state AA to state AB and pAB−BB the probability to change from state AB to
state BB and so on. pAA, pBB and so on are the probabilities to stay in the
current state.

Equation 12 shows an example where the probabilities for state A and B de-

rived from an order-0 Markov model and the probabilities for A followed by B

derived from an order-1 Markov Model are roughly the same and can be seen

as independent, thus no statistical significant discrepancy between both models

exists.

P (A) × P (B) ∼= P (A|B) × P (B) ∀A,B (12)

If the probabilities are not independent, the occurrence of A followed by B shows

significance. This was used to compare the fold-enrichment of ARE motifs in

the 3’ UTR of transcripts in our database based on mono- and dinucleotide

probabilities.

2.2.4 Databases

The term database refers to an digital collection of data, managed by a database

management system (DBMS) software. This chapter is adopted from the text-

books (125) and (126).

Databases evolved since the 1960s together with Database management systems

(DBMSs). The first generation of databases were navigational, meaning that

the user has to follow a given path to get to the database entry of interest. To-

day the most used database system follow the relational model. First proposed

in the 1970s, a relational database allows to search for data by content rather
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than paths.

The relational database management system (RDBMS) used in this thesis are

MySQL and SQlite.MySQL is a free relational database system, running as a

server, therefore providing multiple users access to the generated databases.

As it is well documented and easy to handle, once the SQL(Structured Query

Language) syntax is understood, this database system was chosen to store and

manage the data retrieved from the Ensembl database. This data was analyzed

and a flat-file database containing annotated transcripts amongst other things

was built up as backend of the web server discussed later.

SQlite is an embedded relational database management system, which means

that it does not provide a stand alone server version of its database. It uses a

simplified SQL syntax and was chosen for the literature database backend of

the web server, that is discussed in the next chapter.
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3 The AREsite webserver

This section is based on the article (1) and passages taken from this article are

used throughout this section without further notice.

Aim of this thesis is the analysis of human and mouse transcript 3’UTRs, for

the presence or absence of ARE motifs that are potentially bound by AUBPs.

Besides annotation of ARE motifs in these transcripts, analysis of their ac-

cessibility seemed a logical steps, due to the fact that AUBPs bind to single

stranded RNA. As already mentioned, a hint for significance of AREs is their

conservation among different species. Therefore analysis of ARE conservation

was a second crucial step during this thesis.

Databases containing ARE motifs in human and other organisms are already

available, see for example ARED (75) and its successors. However, these

databases contain no additional information like the results of the above-mentioned

analysis steps. To investigate as many types of ARE motifs as possible and an-

alyze their potential function on mRNA stability and make the results of our

analysis available to other researchers, the decision was to create a new database

instead of using the present ones.

This has led to the generation of a websuite named AREsite. As first ARE-

focused database, AREsite combines sequence annotation of AREs with the

prediction of the accessibility and evolutionary conservation of the motif site.

To circumvent restrictions in motif composition, a total of eight different con-

sensus motifs, starting with the plain AUUUA pentamer up to the WWWWAU-

UUAWWWW 13-mer, which resembles the core motif embedded in a stretch

of A/U residues, can be screened using this websuite. Information from exten-

sive expert literature search has been incorporated into a second database that

runs as backend for the wenservice and experimentally validated targets of the

ARE-binding proteins TTP, HuR and Auf1 are listed.

The database has been published in Nucleic Acids Research (NAR) (1), and

is accessible online at http://rna.tbi.univie.ac.at/cgi-bin/AREsite.cgi

as part of the Vienna RNA websuite (127).
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In cooperation with a research team working on tristetraprolin, a lot of data

concerning the influcence of TTP on mRNA stability has been included into

the database. HuR and AuF1 have been chosen as AUBPs due to the large

amount of data, concerning their function and targets, that is freely accessible.

3.1 The developement of the ’AREsite’ webserver

3.1.1 Generation of the database

Ensembl release 56 (ftp://ftp.ensembl.org/pub/release-56/) was used as

data basis for AREsite in its current version. Following the description at http:

//www.ensembl.org/info/docs/webcode/install/ensembl-data.html, the

Ensembl release 56 was embedded in the MySQL backhand of the websuite.

Any protein coding gene with a transcript that contains at least one ARE mo-

tif in its 3’UTR has been added to the internal database.

Furthermore, the database contains all transcripts, one to one orthologous, to

the human and mouse transcripts found in following species:

• Anolis carolinensis

• Bos taurus

• Callithrix jacchus

• Callithrix jacchus

• Canis familiaris

• Cavia porcellus

• Danio rerio

• Equus caballus

• Gasterosteus aculeatus

• Macaca mulatta

• Monodelphis domestica

• Ornithorhynchus anatinus

• Oryzias latipes

• Pan troglodytes

• Rattus norvegicus

• Sus scrofa

• Taeniopygia guttata

• Takifugu rubripes

• Tetraodon nigroviridis

• Xenopus tropicalis

59



3 The AREsite webserver

Results of an extensive expert literature search where incorporated into a sep-

arate database. This database contains all publications concerning the effects

of AUBPs on mRNA targets, classified by five criteria, including the results of

our cooperating research team working on TTP:

• Direct binding of the protein to the mRNA or its 3’ UTR has been shown

• An independent reporter assay confirmed the functionality of the putative

binding site

• The loss or overexpression of the ARE-binding protein affects the level of

the target mRNA

• The loss or overexpression of the ARE-binding protein affects the protein

level of the target mRNA

• The stability of the target mRNA is affected by the lack or excess of the

ARE-binding protein

This database can easily be updated as new (scientific) findings emerge, whereas

updates of the main database require additional effort and computation time.

3.1.2 Generation of alignments from transcripts

Using data from the Ensembl gene orthology pipeline, alignments of orthologous

transcripts were generated. For each gene database entry, all orthologous genes

from other species that have a strict one to one relation where collected, fol-

lowed by a screen for transcripts that have an annotated 3’ UTR. Among those,

the one that showed the best coverage (at least 75%) of the reference species

3’ UTR where selected. Using CLUSTALW multiple species, whole transcript

alignments were then generated.

Finally, the region containing the motif site plus five flanking nucleotides on

each side from the alignments was extracted to investigate the sequence con-

servation of the motif site. Each alignment sequence was then searched with

the corresponding consensus ARE motif. Using DIALIGN with the detected

motifs as sequence anchors, the sequences were realigned. The same procedure

was applied to the processed and filtered genomic alignments.
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3.1.3 Generation of genomic alignments

Comparative data at the level of transcripts is still limited. Therefore data

from genome-wide alignments was incorporated, to get a more refined picture

of the conservation pattern of located motifs. Since there is no guarantee that

the aligned sequences from other species really belong to the gene of interest,

the interpretation of this data has to be done with caution. To circumvent this

situation, filtering strategies have been introduced, that ensure that aligned se-

quences are homologous over a longer stretch of nucleotides than just the motif

site.

The UCSC genome browser (113) provides genomic alignments in MAF format,

generated using MULTIZ (112), that were obtained for each UTR sequence.

Alignments, corresponding to human, were extracted from 46 species multiple

alignments based on the human genome assembly hg19. Those correspond-

ing to mouse were extracted from 30 species multiple alignments based on the

assembly mm9. A MAF processing and filtering pipeline was developed, as

the obtained alignment blocks were often too short for any practical use. The

pipeline merges adjacent MAFblocks to longer ones and returns alignment win-

dows of 120 nt and a step size of 30 nt. Using CLUSTALW, these alignments

were realigned and filtered for sequences that have at least 50% of the sequence

length of the reference species.

3.1.4 Quantifying motif site accessibility

RNAplfold (see section 2.2.2 for a description) was used for the calculation of

the motif site accessibility in terms of opening energies and probabilities of be-

ing unpaired, as mentioned before. To model the effects of cotranscriptional

folding, the parameter set W=80, L=40 m has been used. These parameters

have previously been used to predict siRNA binding to mRNAs (128). Results

with a different parameter setting (W=240, L=120), provided by the author

of (128) are also included in AREsite. These settings consider longer base pair

spans and show improved results on siRNA binding as well as on RNA - RNA

interaction, and as AUBPs are single stranded RNA binding proteins and an

improvement for the prediction of ARE binding protein targets is possible, these

results were incoporated into the webservice, but are not included in this thesis.
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3 The AREsite webserver

3.2 AREsite output

The AREsite welcome page provides several choices for the user, see figure 25.

First of all, a unique identifier of the gene or transcript of interest has to be

inserted (here IL6 for the interleukin-6 precursor). Then the user can choose in

which organism and to which type of ARE motif the analysis pipeline should be

applied to (here homo sapiens and the ARE core motif AUUUA). By default,

the analysis will only be conducted for the representing transcript, which is the

one with the most ARE motifs in the 3’ UTR.

Fig. 25. At the AREsite welcome page, the user can input a unique identifier
for the gene of interest and choose the ARE motif he wants to analyze and the
organism to look at.
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3.2 AREsite output

Alternatively the user can choose to conduct a literature search by clicking on

”Browse for publication”. This opens a window, see figure 26, where the user

can choose a publication of interest, sorted by year, and will get a result page

for the gene or transcript mentioned in this publication.

Fig. 26. At the ”Browse by publication” page where, the user can conduct a
literature search by choosing a publication of interest and will get a result page
for the gene or transcript mentioned in this publication.

For users that are interested in all results concerning a certain ARE motif, a

click on ”Bulk download” opens a window, where all results for this motiv can

be downloaded as .zip archive containing annotated Genbank files, see figure 27.
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3 The AREsite webserver

Fig. 27. At the ”Bulk download” page, the user can download a .zip archive
containing annotated Genbank files for all transcripts containing the ARE motif
of interest.

Except for the bulk download, the user will be provided with a result page (in

the given example for Interleukin-6) after finishing the input and submitting

the query.

The first part of the result page, see figure 28, provides the user with informa-

tion concerning the number of protein-coding transcripts corresponding to the

submitted identifier, the representative transcript, the total number of distinct

positions containing the selected motif and literature corresponding the effects

of the motif.
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3.2 AREsite output

Fig. 28. The first part of the result page for Interleukin-6 shows the number
of protein-coding transcripts corresponding to the submitted sequence identifier,
five in this example. The representative transcript (= transcript with the highest
number of ATTTA motifs), in this example ENST00000258743. The total number
of distinct positions containing the selected motif ATTTA, seven in this example.
Published evidence for regulation of this mRNA by the RNA-binding proteins TTP,
HuR or AUF1, classified by the five criteria mentioned above and the corresponding
literature.
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3 The AREsite webserver

The second part of the result page, see figure 29, begins with a plot. It shows

the representing transcript in grey and all other transcripts related to the gene

of interest and marks the positions of ARE motifs along the sequence. Below

this plot is a simple statistics output, showing the length of the 3’ UTR, the

A/T content and the fold enrichment derived from the Markov models. Fur-

thermore the user can have a look at the RNAplfold output for all transcripts

and download the annotated Genbank file for the query. The last part of the

figure shows detailed results for each ARE motif and the 3’ UTR sequence, with

the possibility to highlight ARE motifs and poly-A signals.

For each Motif a sequence logo representing the conservation of the motif, the

RNAplfold output as accessibility plot and the alignments can be examined.

The accessibility values (u=5) for the core AUUUA pentamer for both param-

eter settings (short range, mid range) are presented here too.
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3.2 AREsite output

Fig. 29. The second part of the result page provides the user with a figure
showing the positions of ARE motifs along the transcripts sequences, with the
representing transcript highlighted in grey. Furthermore a simple statistic output
is provided, presenting information on the length, the A/T content and the fold
enrichment of the 3’ UTR. The user can have a look at the RNAplfold output and
download the annotated Genbank file for this query. A sequence logo representing
the conservation of the motif, the RNAplfold output as accessibility plot and the
alignments can be examined here.

67



3 The AREsite webserver

Furthermore, results are visualized in an interactive SVG plot, see figure 30

that allows the user to explore different parameter settings (u = 1 to 13) for

the RNAplfold output.

Fig. 30. Results are visualized in an interactive SVG plot, that allows the user to
explore different parameter settings (u = 1 to 13) for the RNAplfold output
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3.2 AREsite output

The last part of the result page shows a phylogenetic tree, see figure 31, where

the conservation patterns of the detected ARE motifs are summarized.

Fig. 31. This phylogenetic tree shows summarized the conservation pattern of the
detected ARE motifs. Circles indicate that the motif has been found in genomic
MAF alignments, while boxes indicate that the motif was found in transcript
alignments. Signs in grey indicate that the sequence is present in the alignment,
but the corresponding ARE pattern was not detected.
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4 Methods

4.1 Analyzation of ARE motifs as AUBP target sites

In August 2010 Maŕın and Vańıcek introduced a new method for the effi-

cient use of accessibility for miRNA target prediction (129). MiRNAs bind

single stranded, partially complementary, accessible regions of RNAs (see sec-

tion 2.1.2). As the AUBPs investigated in this thesis are also known to bind

single stranded RNA molecules, it appeared consequentially to use this new

ranking method on the dataset that was generated during this thesis.

In nature two strategies guarantee that a regulatory active sequence motif is

bound by the corresponding binding protein. On the one hand such a motif can

be made accessible for a protein by embedding it into a structural context that

presents the motif at the outside of an RNA structure where a protein can easily

interact with it. On the other hand, if this is not possible (e.g. due to the high

structuredness of a sequence), or more than one protein has to interact with a

sequence motif at the same time in order to regulate the target mRNA or one

protein has to bind to more than one target sites for full functionality, a strategy

is to make multiple copies of this sequence motif available. This results in an

over-representation of the target site in comparison to other motifs in the same

sequence and is where the here discussed method can be used to rank predicted

target sites. Instead of ranking target predictions according to hybridization

energies or total free energies, like earlier approaches, the here presented algo-

rithm ranks target sites according to their over-representation (fold-enrichment)

and accessibility in terms of a P-value, which can be in the range from one (not

over-represented) to zero (extremely over-represented). This method was called

’Prediction of Accessible MicroRNA Targets (PACMIT)’ (129).

The algorithm computes a single-hypothesis P-value (PSH) for each potential

miRNA target site c, based on its over-representation, according to equation 13,

where l is the length of the 3 ’UTR, n is the number of nucleotides in the seed

and P is the probability to find a given n-mer by chance at any particular

position in the 3’ UTR which is computed using an order-1 Markov model (in-

troduced in section 2.2.3). The lower the PSH value derived for a target site,

the higher its over-representation. A low P-value means that the motif can be

found more often than expected by chance, given the analyzed sequence, which

indicates a functional role as mentioned previously.
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4.1 Analyzation of ARE motifs as AUBP target sites

PSH =
l−n+1
∑

i=c

(

l − n + 1

i

)

P i(1 − P )l−n+1−i (13)

This approach can be adopted to calculate a single-hypothesis p-value for ac-

cessible motifs only (PSHacc), again the lower the PSHacc, the higher is the

chance of having found a functional target. Instead of counting all potential

target sites c, only (partially) accessible target sites caccess are counted, and

instead of taking the length l of the whole 3’ UTR into account, the total num-

ber of accessible sites in the 3’ UTR taccess is used (see equation 14). This

leads to a list of accessible sequence motifs that are ranked according to their

over-representation in the analyzed 3’ UTR sequences.

PSHacc =

taccess
∑

i=caccess

(

taccess

i

)

P i(1 − P )taccess−i (14)

To adopt this equation for the use with ARE motifs and AUBPs, certain changes

were introduced into this approach. caccess is calculated by counting accessible

sequence motifs in the 3’ UTR, for example the ”AUUUA” ARE core motif, with

cutoffs of 0.5, 1, 2 and 3kcal/mol opening energy and without any cutoff. These

cutoffs where estimations based on the mean accessibility of all motifs of length

five in all transcripts (0.94013691 kcal/mol) and the accessibility distribution

in known AUBP targets which can be seen in section 5.

taccess is derived by counting the total number of accessible nucleotides in the 3’

UTR of a transcript, with and without the above mentioned cutoffs. Section 5

presents the PSHacc value distribution for known AUBP targets as well as a

list of handpicked AUBP targets, that where ranked using this method. A

discussion of the chosen cutoffs and this method as tool for the prediction of

novel AUBP binding sides follows in section 6.2.
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5 Results

5.1 General

During this thesis the webserver ’AREsite’ was created, as described in sec-

tion 3. This webserver contains annotated ARE motifs in transcripts extracted

from the Ensembl database. However, the reason for the generation of the

database that works as backend for the webserver was not just to present the

annotated motifs, but to act as tool for the analysis of experimentally validated

and in the following the prediction of novel AUBP targets that have not yet

been examined experimentally.

The webserver provides information on the accessibility and fold-enrichment of

annotated ARE motifs. As the fold-enrichment gives clues about whether a

certain motif is expected by chance in a 3’ UTR or not, it can be used as indi-

cator of a functional role. The higher the enrichment the higher the chance of

having found a regulative active motif. This approach is of course limited in its

applicability if a 3’ UTR is very AU rich and even a high fold-enrichment is no

guarantee for functionality, thus it can only be used as additional information

for a screen.

Accessibility prediction has been used in combination with wet-lab data to suc-

cessfully predict RNA binding protein target sites (see e.g. (130; 131)) . This

information is included for all ARE motifs in all annotated transcripts and has

been used as filtering method for the prediction of regulatory motifs. However,

the applicability of accessibility as screening method is limited, as a low ac-

cessibility does not exclude a sequence motif from being a target for binding

proteins, and high accessibility does not necessarily imply regulative function.

This section presents the finding, that accessibility alone can not be used as

filtering technique during a screen for regulative active ARE core motifs.

Section 4 introduced a method that uses information on over-representation of

accessible target sites in form of the PSHacc-value for miRNA target predic-

tion. This method has been applied, with already discussed changes, to the

generated dataset, as the AUBPs covered in this thesis are like miRNAs known

to bind single stranded RNA motifs. Its application did indeed lead to better

predictions of regulative active ARE motifs compared to the usage of accessi-

bility as only filtering criteria.
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5.2 Results with annotated human transcripts

The main goal of this thesis was to find methods that allow to extract ARE

motifs with regulatory function from the set of annotated motifs. This was

accomplished by comparison of the distributions of motif accessibility in terms

of opening energies in the transcripts coupled with an analysis of their PSHacc

value distributions, which acts as indicator for the over-representation of the

analyzed motifs. To see at which cutoffs the PSHacc value or the accessibility

of a motif give clues about the importance of an ARE motif as regulatory ele-

ment, known AUBP targets where extracted from the dataset by screening the

publication database, that runs as second backend of the ’AREsite’ webserver,

for known targets of the AUBPs AuF1, HuR and TTP. This dataset of known

targets and ”random” pentamers (which were produced for each 3’ UTR specific

by using a sliding window approach that extracted all pentamers of the given

3’ UTR sequence) was used to compare the accessibility and PSHacc value dis-

tribution for known targets, new annotated transcripts and other (”random”)

pentamers in transcripts containing the ARE core motif, to extract cutoffs that

allow to distinguish regulatory active core motifs from the rest.

The following sections presents the results of the ARE motif analysis, conducted

according to the P-value estimation introduced by Maŕın and Vańıcek (see sec-

tion 4), together with the results of the motif annotation, accessibility and motif

enrichment calculations included in the webserver ’AREsite’. Although many

analysis steps have been accomplished with the DNA sequences that code for

the ARE containing transcripts, the ARE core motif is presented here as ’AU-

UUA’ and not ’ATTTA’.

5.2 Results with annotated human transcripts

The ’AREsite’ webserver contains annotated transcripts for human and mouse.

This thesis discusses only results for the human genome, as the principle work-

flow remains unchanged for an analysis of the mouse genome and the amount

of known targets in mouse is far below the amount of known targets in human.

Thus it is very hard to extract parameters that allow a distinction between

regulatory functional and non-functional ARE motifs in the mouse dataset.
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5.2.1 Whole human transcript set analysis

The Ensembl database release 56 contains 20,469 known protein coding genes

for the human genome. This section presents an overview of the total number

of genes and transcripts, containing ARE core motifs at certain opening energy

cutoffs to get a first impression on the available dataset.

12,298 protein coding genes have been annotated to have a 3’ UTR containing

the ’AUUUA’ ARE core motif with an accessibility in terms of opening energy

of up to 3kcal/mol. This corresponds to ∼ 60% of the protein coding genes in

the Ensembl database.

8,941 genes have been annotated to have a 3’ UTR containing the ’AUUUA’

ARE core motif with an accessibility in terms of opening energy of up to

0.5kcal/mol, which still corresponds to ∼ 44% of the protein coding genes in

the Ensembl database and 1514 of those genes are known targets of AUBP ac-

cording to literature included in the webserver ’AREsite’.

The generated flat-file database that acts as backend for the ’AREsite’ web-

server contains the following entries for the human genome:

• 20,469 genes coding for proteins (number of annotated genes in the En-

sembl database)

• Genes coding for proteins with an annotated 3’ UTR

– 19,692 in total

– Genes coding for proteins with an annotated 3’ UTR containing the

’AUUUA’ core motif

∗ 12,298 with an opening energy of up to 3kcal/mol

∗ 12,237 with an opening energy of up to 2kcal/mol

∗ 11,570 with an opening energy of up to 1kcal/mol

∗ 8,941 with an opening energy of up to 0.5kcal/mol

• Transcripts with an annotated 3’ UTR

– 66,969 in total

– Transcripts with an annotated 3’ UTR containing the ’AUUUA’ core

motif

∗ 28,769 with an opening energy of up to 3kcal/mol

∗ 28,528 with an opening energy of up to 2kcal/mol

∗ 26,803 with an opening energy of up to 1kcal/mol

∗ 19,855 with an opening energy of up to 0.5kcal/mol
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5.2 Results with annotated human transcripts

However, the presence of an accessible ARE motif does not necessarily mean

that a given gene is under expression control of this motif or the according

AUBP respectively.

As can be seen the total numbers of transcripts with annotated motifs is com-

paratively large, so very restrictive cutoffs are necessary to filter for significant

hits without loosing too many possible targets.

The next sections presents methods that were used to get cutoffs that fulfill

both requirements. It includes a distribution analysis of opening energies and

over-representation in terms of the calculated PSHacc values for annotated tran-

scripts and a detailed analysis of known AUBP targets, including some AUBPs

themselves, as they have been shown to act autoregulatory and ends with pre-

dicted AUPB targets according to their PSHacc values at given cutoffs and a

summary of the presented results.

Comparison of opening energy distribution of the ’AUUUA’ ARE core motif

in known AUBP targets and in all annotated transcripts

To get a hint on a useful cutoff for the accessibility of motifs, an analysis of

the opening energy distribution of the ARE core motif ’AUUUA’ in known

AUBP targets and in transcripts annotated for the ’AREsite’ webserver was

conducted.

Figure 32 shows almost no differences in the opening energy distribution of

ARE motifs in known targets and newly annotated ARE motifs.

Although the total number of ’AUUUA’ motifs in known targets is with 8.729

only a small part of the 124.393 annotated motifs in all transcripts, their open-

ing energy distribution differs only marginally. If the opening energy would be

taken as the only measure for the regulatory function of an ARE motif, this

would mean that every annotated motif must be classified as an active site for

AUBP binding. As this is very unlikely, opening energy alone has to be consid-

ered as a poor method for AUBP target prediction.

Nonetheless the comparison of opening energy distributions of all pentamers in

an ARE containing transcript was compared to the opening energy of the ’AU-

UUA’ ARE core motif, to see whether or not the core motif is more accessible

than other pentamers in the same 3’ UTR of a transcript. The next paragraph

presents the results of this analysis.
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Opening Energy of ’AUUUA’ motifs in known targets

opening Energy kcal/mol

pr
ob

ab
ilit

y D
en

sit
y

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Opening Energy of all annotated ’AUUUA’ motifs
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Fig. 32. A plot of the opening energy distribution in transcripts containing the
’AUUUA’ ARE core motif that are known targets of AUBPs (green) and of newly
annotated ARE core motifs (red).

Analysis of the opening energy distribution of ’AUUUA’ compared to ”ran-

dom” pentamers in the same 3’ UTR

Figure 33 shows a histogram of the opening energy distribution for all pen-

tamers and for the ’AUUUA’ ARE core motif of annotated transcripts in the

database. As the opening energy cutoff directly influences the count of mo-

tifs that are characterized as accessible, this analysis step was conducted to

condense the dataset for a detailed analysis without discriminating ARE mo-

tifs that were found in the 3’ UTR of annotated transcripts more than necessary.

It can be seen that the opening energy of the ’AUUUA’ ARE core motif is

lower or equal to one in most cases. The opening energy of other pentamers is

in most cases above one. As the relative frequency of ’AUUUA’s with an open-

ing energy of ∼ 0.5kcal/mol is higher than for the other pentamers, this value

has been chosen as a cutoff for the analysis of the PSHacc value distribution in

ARE motifs from length seven to thirteen (shown later), as without this very

restrictive cutoff the amount of data would have been too large to get results

in an acceptable time scale.

For the other analysis steps an opening energy cutoff of 3kcal/mol was taken,
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Opening Energy of ’AUUUA’ pentamers
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Opening Energy of all pentamers
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Fig. 33. This histogram shows the opening energy distribution for other pentamers
(green) and for the ’AUUUA’ ARE core motif (red) of transcripts in the database.

which excludes almost no annotated ARE motifs and reduces the size of the

”random” motif dataset at the same time to a quantity that allows a detailed

analysis according to the P-value estimation, which is later on used to filter for

novel AUBP targets.

Comparison of the PSHacc value distribution of the ’AUUUA’ ARE core

motif in all annotated transcripts and in known AUBP targets to the distri-

bution of ”random” pentamers

The first step was again to compare the ’AUUUA’ PSHacc value distribution

in known AUBP targets with the distribution in all annotated transcripts, to

screen for a possible cutoff that excludes ARE motifs that are not targeted

by AUBPS. Figure 34 shows the PSHacc value distribution in known AUBP

targets and the ARE core motifs ’AUUUA’.

As can be seen in figure 34, the PSHacc value for the ARE core motif in known

targets shows a similar distribution pattern than the PSHacc value of ’AU-

UUA’ in all annotated transcripts. In both cases, we can find a peak at low

PSHacc values which shows that both, known targets as well as annotated tran-

scripts, contain over-represented ’AUUUA’ ARE core motifs in their 3’ UTR.

This finding indicates that over-representation is a possible filtering technique
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PSHacc distribution of ’AUUUA’ in KnownTargets
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PSHacc distribution of all ’AUUUA’ motifs
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Fig. 34. The PSHacc distribution of the ARE core motif ’AUUUA’ in known
targets compared to the distribution in all annotated transcripts.

when screening for regulatory active ARE motifs.

Although known targets contain ’AUUUA’ motifs that are not over-represented

in their 3’ UTR as well, which means that the ARE core motif does not neces-

sarily have to be over-represented to act as binding site of AUBPs and further

analysis steps are necessary to characterize annotated ARE motifs of this type.

Over all, known targets contain more motifs with log PSHacc values in a range

between -5 and -10, and a peak at low PSHacc values shows that regulative

active ARE motifs that are over-represented are enriched. To see whether low

PSHacc values are descriptive for the ARE core motif or if ”random” pentamers

show a comparable distribution, a comparison with the PSHacc value distribu-

tion of other pentamers in the annotated transcripts has been conducted, as

can be seen in figure 35.

Comparing both distributions it can be seen that the ARE core motif shows a

higher tendency to be over-represented in a 3’ UTR than the ”random” pen-

tamers. When looking at the PSHacc value distribution for other pentamers

in annotated transcripts (see figure 35), it can be seen that some ”random”

pentamers with low PSHacc values exist, which means that over-represented

pentamers exist throughout the annotated transcripts. An analysis of this re-

gion shows that the AU content in motifs found here is about 0.65, which
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PSHacc distribution of all annotated ’AUUUA’ motifs
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PSHacc distribution of all ’pentamers
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Fig. 35. The PSHacc distribution of the ARE core motif ’AUUUA’ compared to
the distribution of ”random” pentamers in annotated transcripts.

indicates that the peak at about 10−13 exists due to a high number of AU-rich

elements with PSHacc values between 10−13 and 10−14. Visual interpretation

of this region indeed shows the presence of many AU-rich elements, which can

partially be identified as motifs that usually occur in the flanking regions of the

ARE core motif. This leads to the conclusion, that the presence of ARE core

motifs with low PSHacc values, indicating their over-representation given the

analyzed 3’ UTR, can indeed be used as a ranking method for the categoriza-

tion of regulatory active ARE core motifs.

A detailed analysis of ARE core motif flanking regions has not yet been done,

but would be very interesting for the analysis of the previously described peak

in the P-value distribution. However, the next section presents PSHacc value

distributions in ARE motifs from length seven to thirteen compared to the ARE

core motif of same length, but with different flanking regions, in the annotated

3’ UTR with an opening energy cutoff of 0.5kcal/mol, due to the previously

mentioned high amount of data.

Analysis of the PSHacc value distribution in transcripts containing ARE mo-

tifs of length seven to thirteen with an opening energy cutoff of 0.5kcal/mol

The following figures ( 36, 37, 38, 39) show the PSHacc value distribution for

all seven to thirteen nucleotide long ARE motif containing transcripts in the
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database with an opening energy cutoff of 0.5kcal/mol. The distribution shown

in the figures compares the ARE motifs with one to four flanking ’W’ nucleotides

(W stands for T or A) and all other motifs containing the ARE core motif ’AU-

UUA’ flanked by one to four ’N’ nucleotides (N stands for A,T,C or G).

Figure 36 shows the PSHacc value distribution for motifs containing the ’WAU-

UUAW’ ARE motif compared to ’NAUUUAN’ heptamers.

The relative peak for the ARE motif can be found above a log PSHAcc value

of -4, whereas the peak for the heptamers is slightly below this value. For a

majority of heptamers, the PSHacc value estimation predicts a higher over-

representation than for the ARE motifs, but with decreasing PSHacc, the dis-

tribution shows a higher relative frequency of ARE heptamers, which means

that heptamers with a low PSHacc value are preferentially ’WAUUUAW’ ARE

motifs.

’NAUUUAN’ containing transcripts
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’WAUUUAW’ motif
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Fig. 36. A plot of the mean PSHacc value of all heptamers in transcripts con-
taining the ’NAUUUAN’ ARE motif (green) and the PSHacc values of the ’WAU-
UUAW’ motifs (red) with a cutoff of 0.5kcal/mol opening energy.
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5.2 Results with annotated human transcripts

Figure 37 shows the PSHacc value distribution for motifs containing the ’WWAU-

UUAWW’ ARE motif compared to the ’NNAUUUANN’ nonamers.

Particularly striking is that almost no motifs with a log PSHacc value above -5

can be seen in the distribution. Again the majority of nonamers has its peak

at a lower PSHacc value than the ARE nonamer motifs, but with decreasing

PSHacc, the distribution shows again a higher relative frequency of ARE non-

amers, which means that similar to heptamers, nonamers with a low PSHacc

value are preferentially ’WWAUUUAWW’ ARE motifs.
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’WWAUUUAWW’ motif
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Fig. 37. A plot of the mean PSHacc value of all nonamers in transcripts containing
a ’NNAUUUANN’ ARE motif (green) and the PSHacc values of the ’WWAUU-
UAWW’ motifs (red) with a cutoff of 0.5kcal/mol opening energy.

Figure 38 shows the log PSHacc value distribution for motifs containing the

’WWWAUUUAWWW’ ARE motif compared to the ’NNNAUUUANNN’ un-

decamers.

No motifs with a log PSHacc value above -6 can be seen and the striking find-

ing in this figure is that a higher number of ARE undecamer motifs with a low

PSHacc value compared to other undecamers can be seen, whereas the peak

is in both cases at a log PSHacc value of below -8, indicating a high over-

representation for both kinds of motifs.

Figure 39 shows the log PSHacc value distribution for motifs containing the

’WWWWAUUUAWWWW’ ARE motif compared to the ’NNNNAUUUANNNN’
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’NNNAUUUANNN’ containing transcripts
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Fig. 38. A plot of the mean PSHacc value of all undecamers in transcripts
containing a ’NNNAUUUANNN’ ARE motif (green) and the PSHacc values of the
’WWWAUUUAWWW’ motifs (red) with a cutoff of 0.5kcal/mol opening energy.

tridecamers.

It is particularly noticeable that motifs of length thirteen are in both cases al-

most equally distributed around their peak. However, the peak for ARE motifs

is again at a higher log PSHacc value than that for the other tridecamers and

the relative frequency of ARE motifs at decreasing PSHacc is for the first time

higher for the other tridecamers, showing a higher over-representation of ”ran-

dom” tridecamers than ARE motifs.

Summing up the observations of these distributions, ARE motifs, up to the

length of eleven, are more over-represented than the other motifs, although the

distribution peak is usually found at a lower PSHacc for the other motifs. This

means that strong over-representation can be seen as a feature of ARE motifs,

although this seems to change at a length of thirteen nucleotides. As ARE mo-

tifs are usually characterized as multiple copies of the ARE core motif ’AUUUA’

in close proximity, if seems more promising to focus on the over-representation of

shorter ARE motifs than extending one ARE sequence above a length of eleven.

To cautiously set this in relation to the biological role of ARE motifs, it could

indicate that ARE motifs, if present in a transcript but not used for AUBP

binding, have to be less over-represented than other motifs, or that preceding
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Fig. 39. A plot of the mean PSHacc value of all tridecamers in transcripts
containing a ’NNNNAUUUANNNN’ ARE motif (green) and the PSHacc values of
the ’WWWWAUUUAWWWW’ motifs (red) with a cutoff of 0.5kcal/mol opening
energy.

regulatory steps are necessary to make these ARE motifs accessible for their

binding proteins, which would decrease their PSHacc value. However, a de-

tailed analysis of ARE motif flanking regions in known targets and annotated

transcripts remains to be done and is an inevitable task to get more contextual

information about the motifs and possible influences on their regulative roles,

as the analysis presented here shows no differences that are strong enough to

be used as filtering techniques.

5.2.2 Analysis of the PSHacc value distribution in handpicked AUBP targets

Some known targets of the AUBPs HuR, TTP and AuF1 were analyzed in de-

tail to test if these targets would have been found when over-representation in

form of the PSHacc value is used as filter method.

The following section presents the PSHacc value distribution of pentamers in-

cluding the ’AUUUA’ ARE core motif in the 3’ UTR of the representing tran-

scripts (= transcript with the highest number of AUUUA motifs) in annotated

targets, together with information that is part of the ’AREsite’ webserver.
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TNF-α

Tumor necrosis factor alpha (TNF, cachexin, cachectin, TNF-α) is a cytokine

involved in systemic inflammation. Its role as a key mediator of inflammation

is well known and TNF-α plays a crucial role in the early phase of the host

response to bacterial, viral and parasitic infections (132). High levels of TNF-α

due to a systemic release can lead to vascular decompensation and death(133).

As described in (134) the TNF-α ARE motif is a very strong motif, meaning

that it triggers a dramatic decrease of protein level and has therefore been cho-

sen for this detailed analysis.

According to the webserver ’AREsite’, the TNF-α representing transcript

ENST00000449264 contains a 3’ UTR of 799nt length with an AU content

of 0.53 and following ARE motifs:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WUAUUUAUW

UUAUUUAUU

WWWAUUUAWWW

WWUAUUUAUWW

WWWWAUUUAWWWW

WWWUAUUUAUWWW

9

5

5

5

5

5

4

4

8.35

1,780.03

59.63

401,086.32

213.54

7,830,760.57

764.72

34,732,964.59

213.77

5,338,794.22

765.52

104,233,968.85

613.06

56,851,050.94

2,195.41

1,109,953,002.63

It can be seen that the TNf-α mRNA contains multiple AUBP binding sites

in forms of ’AUUUA’ to ’WWWUAUUUAUWWW’. The dinucleotide based

fold enrichment for this motifs shows that they are not to be expected by pure

chance in this 3’ UTR, which indicates a functional role.

Furthermore ’AREsite’ lists experimental evidence that this mRNA is a target

of two AUBPs according to eight hits in its publication database backend (86;

135; 136; 137; 138; 139; 140; 87).

Type of evidence that this mRNA is a target of TTP:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

- An independent reporter assay confirmed the functionality of the putative

binding site
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- The loss or overexpression of the ARE-binding protein affects the level of

the target mRNA

- The loss or overexpression of the ARE-binding protein affects the protein

level of the target mRNA

- The stability of the target mRNA is affected by the lack or excess of the

ARE-binding protein

Type of evidence that this mRNA is a target of HuR:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

- An independent reporter assay confirmed the functionality of the putative

binding site

To see if the PSHacc value can be used to identify the ARE core motif ’AU-

UUA’ in this AUBP target as functional, the distribution of PSHacc values of

all pentamers in the 3’ UTR has been analyzed. Following Graph representa-

tion (figure 40) shows this distribution in the TNF-α representing transcript

ENST00000449264 with a cutoff for the PSHacc value at 10−12 for better visu-

alization of motifs with low PSHacc’s.

Fig. 40. The PSHacc distribution of all pentamers in the TNF-α representing
transcript ENST00000449264 with a PSHacc cutoff of 10−12 for better visualiza-
tion. The ’AUUUA’ ARE core motif has been highlighted with a red frame, its
PSHacc value has been added to the plot.
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As can be seen in figure 40, the ’AUUUA’ core motif is among the pentamers

with a very low PSHacc value, even though it has not the best PSHacc of

all motifs. But motifs with comparative PSHacc value are ’AU’ rich as well

(’UAUUU’,’UUAUU’ and ’UUUAU’) and may present flanking regions of the

ARE core motif. In this example, the PSHacc value estimation presents four

’AU’ rich motifs in the top five pentamers, indicating a regulatory role for these

motifs, which is consistent to the experimental evidence listed for this AUBP

target. This can be seen as positive example for target prediction via PSHacc

values.

HuR

HuR is one of the three AUBPs discussed in detail in this thesis, please refer

to section 2.1.4 for a detailed description. It is known to act on ARE motifs in

its own 3’ UTR, thereby autoregulating its expression and has therefore been

chosen as target for a more detailed analysis.

The HuR representing transcript ENST00000351593 contains a 3’ UTR of

4.909nt length with an AU content of 0.56 and following ARE motifs as pre-

sented by ’AREsite’:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WUAUUUAUW

UUAUUUAUU

WWWAUUUAWWW

WWWWAUUUAWWWW

13

3

2

1

1

1

1.40

243.12

3.27

14,141.80

7.05

191,891.60

11.42

342,254.09

3.46

47,837.04

10.98

485,450.69

The HuR mRNA contains thirteen AUBP binding sites in forms of ’AUUUA’

which is an extraordinary high number. Although not as high as in TNF-α, the

dinucleotide based fold enrichment for these motifs indicates clearly that they

are not to be expected by pure chance in this 3’ UTR and indicate a functional

role.

Furthermore ’AREsite’ lists experimental evidence that this mRNA is a target of

two AUBPs according to two hits in its publication database backend (141; 142).
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Type of evidence that this mRNA is a target of HuR:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

Type of evidence that this mRNA is a target of AUF1:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

- The loss or overexpression of the ARE-binding protein affects the protein

level of the target mRNA

To see if the PSHacc value can be used to rank the ARE core motif ’AU-

UUA’ in this AUBP target, the distribution of PSHacc values of all pen-

tamers in the 3’ UTR has been analyzed. The Graph representation (figure 41)

shows this distribution for all pentamers in the HuR representing transcript

ENST00000351593, with a cutoff for the PSHacc value at 10−12 for better vi-

sualization of motifs with low PSHacc’s.

Fig. 41. The PSHacc distribution of all pentamers in the HuR representing tran-
script ENST00000351593 with a PSHacc cutoff of 10−12 for better visualization.
The ’AUUUA’ ARE core motif has been highlighted with a red frame, its PSHacc
value has been added to the plot. Although the ARE core motif if not among
the top ten over-represented motifs, it is among the 8% of motifs with a PSHacc
value lower or equal to 10−13.

Figure 41 shows that the ’AUUUA’ core motif is among the pentamers with a

very low PSHacc value, but it is not in the top ten of motifs with the lowest
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PSHacc. GC containing motifs can be found here, some of them with better

PSHacc values than the ARE core motif, which is not what would be expected

considering the high number of ARE core motifs in the 3’ UTR. However, HuR

is known to autoregulate its own expression in combination with Auf1, thus pre-

ceding steps may be necessary to make the ARE motif accessible for HuR, as

strong regulation is expected for autoregulatory processes. Competitive binding

of more than one AUBP at once would also explain the high number of ARE

core motifs found in this 3’ UTR. In fact it has been shown that HuR requires

single stranded ARE motifs to stabilize its target mRNA, and that HuR can

bind to more than one ARE motif in a length dependent manner simultane-

ously (83; 94). It would also be interesting to have a look at the effects of Auf1

binding on the mRNA structure to see whether or not preceding binding of Auf1

is amplifying or weakening interactions of HuR on its own mRNA, as will be

discussed in section refsec:accessibility. This example shows that the PSHacc

value alone is not enough to classify ARE motifs in AUBP targets under strong

regulation as functionally active.

IL6

IL-6 is a cytokine that regulates the development of the nervous and hematopoi-

etic systems, acute-phase responses, inflammation, immune responses and other

biological processes (143). According to (144) ARE motifs present in the 3’

UTR of IL6 can be found in proximity of an AU-rich regulatory stem-loop re-

gion and are both required for the decay of the mRNA. Some, but not all of the

present ARE motifs seem to influence the regulatory function of the stem-loop

structure which was a reason to analyze this AUBP target in more detail.

According to the webserver ’AREsite’, the IL6 representing transcript

ENST00000258743 contains a 3’ UTR of 415nt length with an AU content

of 0.71 and following ARE motifs:
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Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WUAUUUAUW

UUAUUUAUU

WWWAUUUAWWW

WWUAUUUAUWW

WWWWAUUUAWWWW

WWWUAUUUAUWWW

7

4

2

1

3

1

3

1

2.32

112.14

5.96

2,392.96

9.72

13,430.60

11.42

342,254.09

8.79

6,749.40

9.55

25,254.22

17.29

25,382.47

18.77

94,973.53

The IL6 mRNA contains multiple AUBP binding sites in forms of ’AUUUA’ to

’WWWUAUUUAUWWW’. The dinucleotide based fold enrichment for these

motifs it by far not as high as in TNF-α, but shows they are not to be expected

by pure chance in this 3’ UTR, which again indicates a functional role.

Furthermore ’AREsite’ lists experimental evidence that this mRNA is a target of

all three AUBPs discussed in this thesis, according to eight hits in its publication

database backend (145; 146; 144; 147; 148; 138; 140; 149).

Type of evidence that this mRNA is a target of TTP:

- An independent reporter assay confirmed the functionality of the putative

binding site

- The loss or overexpression of the ARE-binding protein affects the level of

the target mRNA

- The loss or overexpression of the ARE-binding protein affects the protein

level of the target mRNA

- The stability of the target mRNA is affected by the lack or excess of the

ARE-binding protein

Type of evidence that this mRNA is a target of HuR:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown
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Type of evidence that this mRNA is a target of AUF1:

- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

- An independent reporter assay confirmed the functionality of the putative

binding site

To see if the PSHacc value can be used to characterize the ARE core motif ’AU-

UUA’ in this AUBP target as regulatory relevant, the distribution of PSHacc

values of all pentamers in the 3’ UTR has been analyzed. Following Graph

representation (figure 42) shows this distribution for all pentamers in the IL6

representing transcript ENST00000258743, with a cutoff for the PSHacc value

at 10−6 for better visualization of motifs with low PSHacc’s.

Fig. 42. The PSHacc distribution of all pentamers in the IL6 representing tran-
script ENST00000258743 with a PSHacc cutoff of 10−6 for better visualization.
The ’AUUUA’ ARE core motif has been highlighted with a red frame, its PSHacc
value has been added to the plot.

The ARE core motif ’AUUUA’ shown in figure 42 is among the pentamers with

outstanding PSHacc values. Among the top ten ranked motifs, seven AU-rich

elements (UAUUU, UUUAU, AUAUU, AUUUA, UUUUA, UUAAU, UUAUA)

can be found. As the previously mentioned regulatory stem-loop that has been

identified in this transcript is AU-rich as well, ranking by PSHacc value may

have led to the identification of the ARE core motif, flanking regions and AU-
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rich motifs in the stem-loop structure as regulatory elements, but this needs

further investigation. This is a nice example for a successful filtering of regula-

tory motifs in a known AUBP target.

Bcl-2

Bcl-2 is an apoptosis regulating protein. The overexpression of Bcl-2 plays a

role in multiple cancers and is associated with resistance to chemotherapy. For

the Bcl-2 ARE motifs an antagonistic effect of AuF1 (destabilizing) and Nucle-

olin (stabilizing) bonding has been reported (150) and it was therefore analyzed

in detail.

The Bcl-2 representing transcript ENST00000333681 contains a 3’ UTR of

5.279nt length with an AU content of 0.59 and following ARE motifs as pre-

sented by ’AREsite’:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WUAUUUAUW

UUAUUUAUU

WWWAUUUAWWW

WWUAUUUAUWW

WWWWAUUUAWWWW

WWWUAUUUAUWWW

13

2

1

1

1

1

1

1

1.05

159.77

1.29

3,441.16

2.52

42,654.12

9.86

228,502.30

1.83

14,333.45

7.14

355,334.10

5.18

119406.12

20.22

2,960,143.71

It can be seen that the Bcl2 mRNA contains 13 AUBP binding sites in forms of

’AUUUA’, which is similar to what was shown for the HuR mRNA previously.

The dinucleotide based fold enrichment for this motif may not be as high as

for other AUBP targets, but it is sufficient to show that they are not to be

expected by pure chance in this 3’ UTR, which is a hint on a functional role of

this motifs.

Furthermore ’AREsite’ lists experimental evidence that this mRNA is a target

of AUF1, according to two hits in its publication database backend (151; 152).

Type of evidence that this mRNA is a target of AUF1:
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- Direct binding of the protein to the mRNA or its 3’ UTR has been shown

- An independent reporter assay confirmed the functionality of the putative

binding site

- The loss or overexpression of the ARE-binding protein affects the protein

level of the target mRNA

The distribution of PSHacc values of all pentamers in the 3’ UTR has been

analyzed to see if the PSHacc value can be used to rank the ARE core mo-

tif ’AUUUA’ in this AUBP target. The Graph representation in figure 43

shows this distribution for all pentamers in the Bcl2 representing transcript

ENST00000333681, with a cutoff for the PSHacc value at 10−12 for better vi-

sualization of motifs with low PSHacc’s.

Fig. 43. The PSHacc distribution of all pentamers in the Bcl2 representing tran-
script ENST00000333681 with a PSHacc cutoff of 10−12 for better visualization.
The ’AUUUA’ ARE core motif has been highlighted with a red frame, its PSHacc
value has been added to the plot. Although the ARE core motif can be found in
the top ten over-represented motifs, it is among the 17% of motifs with a PSHacc
value lower or equal to 10−12.5

Figure 43 shows that the ’AUUUA’ core motif is not among the pentamers with

a very low PSHacc value, although some other A+U rich motifs can be found

there. Bcl2 is known to be regulated by AuF1 and Nucleoline, so preceding

steps may be necessary to make the ARE motif site accessible for binding pro-
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teins, as competitive regulation includes binding of more than one protein to

the target mRNA. As for HuR, competitive binding of more than one RNA

binding protein at once would explain the high number of ARE core motifs

found in this 3’ UTR and may even be used as indicator for transcripts that

are under control of more than one AUBP.

Although in the two shown cases, especially where high competitive binding

to an mRNA target occurs, not only ARE motifs are over-represented, the

PSHacc value calculation has been successfully applied as filtering method for

the prediction of known AUBP targets. To see if the prediction of novel AUBP

targets using this method is possible, the next section presents an analysis of

transcripts that were chosen, with the exception of TTP, because they show to

an extraordinary low PSHacc value for the ARE core motif and no literature

concerning their regulation by AUBPs is present in the ’AREsite’ literature

database.

93



5 Results

5.2.3 Analysis of handpicked AUBP targets according to their PSHacc val-

ues

TTP

TTP is one of the three AUBPs already described in this thesis, please refer to

section 2.1.4 for a detailed description. It is known to act as tumor repressor

with targets like the TNF-α mRNA (79) and shows self regulatory funtion by

binding to an ARE motif in its own 3’ UTR (85) and was therefore chosen for a

more detailed analysis. This AUBP is listed in the section of novel AUBP tar-

gets, as currently no reference for experimental evidence for its function on its

own 3’ UTR is listed by ’AREsite’, but ARE core motifs with very low PSHacc

have been found.

According to the webserver ’AREsite’, the TTP representing transcript

ENST00000248673 contains a 3’ UTR of 674nt length with an AU content

of 0.56 and following ARE motifs:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WUAUUUAUW

UUAUUUAUU

5

1

1

1

3.95

522.08

7.98

16,837.29

25.86

234,137.40

83.78

1,465,349.70

The TTP mRNA contains only 5 AUBP binding sites in forms of the ’AUUUA’

core motif, but the dinucleotide based fold enrichment for this motif highlights

that it is not to be expected by pure chance in this 3’ UTR, which is a hint on

a functional role.

In its current state, AREsite lists no entries for publications that provide ex-

perimental evidence for effects of an AUBP on this target. However, literature

exists (see e.g. (85)) and will be added to a future release of the webserver.

The distribution of PSHacc values of all pentamers in the 3’ UTR of this tran-

script have been analyzed to see if the ARE core motif is the only pentamer

with a low PSHacc value or if this can be seen as common for pentamers in

this transcript. The Graph representation in figure 44 shows this distribution

for all pentamers in the TTP representing transcript ENST00000248673, with

a cutoff for the PSHacc value at 10−12 for better visualization of motifs with

low PSHacc’s.
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Fig. 44. The PSHacc distribution of all pentamers in the TTP representing
transcript ENST00000248673 with a PSHacc value cutoff at 10−12 for better
visualization. The ’AUUUA’ ARE core motif has been highlighted with a red
frame, its PSHacc value has been added to the plot.

Figure 44 shows that the ’AUUUA’ core motif is among the top four pentamers

with a very low PSHacc value. Although the A+U content in the 3’ UTR is

only 0.56, which is similar to the A+U content in HuR, almost only A+U rich

pentamers can be found found among the top ten motifs with very low PSHacc

values (UAUUU, UUUAU, AUAUA, AUUUA, UUUUU, UCUCC, AAUAU,

UAAUA, AUAUU, UUAUA).

TTP is like HuR known to autoregulate its own expression and contains two

zinc finger motifs that can bind their target simultaneously, which means that

more than one ARE motif has to be accessible at the same time. Five ’AU-

UUA’ ARE motifs have been annotated for this transcript, so if two or three of

them are not well accessible per se this would influence the PSHacc value only

marginal, but could in fact be enough to control the autoregulatory effect.

SUMO-specific protease SENP1

The SUMO deconjugation enzymes (SENPs) play an important role in regu-

lation of protein activity by actively regulation their state of SUMOylation.

Accoring to (153), SUMO (small ubiquitin-related modifier) proteins are ap-
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proximately 10-kD polypeptides that function as reversible post-translational

protein modifiers. Sumoylation alters the molecular interactions of modified

target proteins by masking or adding interaction surfaces, that can lead to

changes in localization, activity and protein stability. Xu et al. (154) shows

that SENP1 influences colon cancer cell growth.

Due to it’s extraordinary low PSHacc value and a comparably high number of

ARE motifs, SENP1 has been chosen for a more detailed analysis.

The webserver ’AREsite’, the SENP1 representing transcript ENST00000004980

contains a 3’ UTR of 2.424nt length with an AU content of 0.60 and following

ARE motifs as presented by ’AREsite’:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA 12 1.54 178.08

It can be seen that the SENP1 mRNA contains twelve AUBP binding site in

form of the ’AUUUA’ ARE core motif which is almost as much as in HuR or

Bcl-2. The dinucleotide based fold enrichment for this motif is pretty low com-

pared to the known AUBP targets discussed so far, indicating that the motif

may be expected by pure chance in this 3’ UTR, which relativizes the occurence

of twelve core motifs in reference to their functional role.

In its current state, AREsite lists no entries for publications that provide exper-

imental evidence for effects of an AUBP on this target, and so far no literature

concerning these effects has been found.

The distribution of PSHacc values of all pentamers in the 3’ UTR of this tran-

script have been analyzed to see if the ARE core motif is the only pentamer with

a low PSHacc value or if this can be seen as common for pentamers in this tran-

script. Following Graph representation (figure 45) shows this distribution for

all pentamers in the SENP1 representing transcript ENST00000004980, with a

cutoff for the PSHacc value at 10−9 for better visualization of motifs with low

PSHacc’s.
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Fig. 45. The PSHacc distribution of all pentamers in the SUMO1 representing
transcript ENST00000004980 with a PSHacc value cutoff at 10−9 for better visu-
alization. The ’AUUUA’ ARE core motif has been highlighted with a red frame,
its PSHacc value has been added to the plot.

Figure 45 shows that the ’AUUUA’ core motif is the pentamer with the lowest

PSHacc value found in this transcript, which was not to be expected according

to the relatively low fold-enrichment. Although the A+U content in the 3’ UTR

is relatively high with 0.69, C+G rich motifs can be found among the top ten

motifs with very low PSHacc values (AUUUA, ACACA, CAAAG, UUCCU,

GGACC, UCUCU, AAAAA, UUUUU, AGGAA, AAACU).

As so far no experimental evidence for the regulation of SENP1 mRNA via

AUBPs exists, this mRNA would represent a good target for further investiga-

tion in this direction.

MAGUK p55 subfamily member 7

MAGUK p55 subfamily member 7 is involved in the assembly of protein com-

plexes at sites of cell-cell contact and acts as an important adapter that pro-

motes epithelial cell polarity and tight junction formation via its interaction

with DLG1 (155). Due to it’s extraordinary low PSHacc value and a high num-

ber of ARE motifs, MAGUK has been chosen for a more detailed analysis.
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According to the webserver ’AREsite’, the MAGUK p55 subfamily member 7

representing transcript ENST00000337532 contains a 3’ UTR of 3.072nt length

with an AU content of 0.66 and following ARE motifs:

Motif Count Mono- and Dinucleotide

fold-enrichment

AUUUA

WWAUUUAWW

WWWAUUUAWWW

WWWWAUUUAWWWW

13

4

3

3

1.03

94.19

1.64

1,671.35

2.79

6,687.58

6.36

35,678.60

The MAGUK p55 subfamily member 7 mRNA contains thirteen AUBP binding

sites in form of the ’AUUUA’ ARE core motif, again a very high number, sim-

ilar to HuR and Bcl-2. The dinucleotide based fold enrichment for this motif

indicates that the motif is not to be expected by pure chance in this 3’ UTR,

which gives a direct hint on a functional role.

In its current state, AREsite lists no entries for publications that provide exper-

imental evidence for effects of an AUBP on this target, and so far no literature

concerning these effects has been found.

The distribution of PSHacc values of all pentamers in the 3’ UTR of this tran-

script have been analyzed to see if the ARE core motif is the only pentamer

with a low PSHacc value or if this can be seen as common for pentamers

in this transcript. The Graph representation in figure 46 shows this distri-

bution for all pentamers in the MAGUK p55 subfamily member 7 transcript

ENST00000337532, with a cutoff for the PSHacc value at 10−12 for better vi-

sualization of motifs with low PSHacc’s.
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5.2 Results with annotated human transcripts

Fig. 46. The PSHacc distribution of all pentamers in the MAGUK p55 sub-
family member 7 representing transcript ENST00000337532 with a PSHacc value
cutoff at 10−12 for better visualization. The ’AUUUA’ ARE core motif has been
highlighted with a red frame, its PSHacc value has been added to the plot.

Figure 46 shows that the ’AUUUA’ core motif is not the only pentamer with

the lowest PSHacc value found in this transcript. The A+U content in the 3’

UTR is relatively high with 0.66 and almost only AU-rich motifs can be found

among the top ten motifs with very low PSHacc values (AAAAA, AAAUC,

AAAUU, AAUAU, AUAAU, AUAUU, AUUAU, AUUUA, GAAAU, UUUUU),

which may be flanking regions of the ARE core motif.

As so far no experimental evidence for the regulation of MAGUK p55 subfamily

member 7 mRNA via AUBPs exists, this mRNA would represent a good target

for further investigation in this direction.
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6 Conclusion and Discussion

6.1 Conclusion

”In its current state AREsite reports 3275 human protein coding genes which

have at least one occurrence of the consensus motif WUAUUUAUW in their

3’ UTR sequences. This corresponds to ∼ 16% of the human protein cod-

ing genes.” (1). Summarizing the results of section 5, ∼ 60% of the protein

coding genes in the Ensembl database have a 3’ UTR containing the ’AU-

UUA’ ARE core motif with an accessibility in terms of opening energy of up to

3kcal/mol. This does of course not mean that all of those genes are under con-

trol of AUBP’s, as the chance of finding the ’AUUUA’ pentamer in a random

sequence of the length of a common human 3’ UTR is comparatively high but

in its current state ’AREsite’ lists 1514 genes that are validated as targets of

AU-rich binding proteins, which leaves us with 1761 genes representing poten-

tial targets of AUBPs.

As discussed previously the ’AREsite’ webserver and the databases that work in

background have not been created to present annotated transcripts, but more

to act as tools for the analysis of AU-rich binding protein targets. Some fil-

tering methods were applied to screen the database for regulatory active ARE

core motifs. The first approach was to filter annotated transcripts by their ac-

cessibility in terms of opening energy. Summing up the results of this analysis,

it has been shown that the opening energy alone is an insufficient measure for

the regulative role of an ARE motif. A sequence like ’AUUUA’ alone can not

fold into any kind of RNA secondary structure and is therefore expected to be

accessible, which makes accessibility a poor filtering method for this analysis

from begin on.

The calculation of over-representation of the annotated ARE motifs in form of

the PSHacc value, as presented in (129) and described in section 4 has led to

better results. This P-value provides information on how often a sequence motif

can be found compared to the expected occurrence of this method in a given

sequence. Comparison of the PSHacc value distribution of the ARE core motif

in known targets and annotated transcripts showed that the ’AUUUA’ motif is

over-represented in both cases with a peak at a PSHacc value of 10−13. The

PSHacc value distribution of annotated ’AUUUA’s has been compared with the
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distribution of other pentamers and displayed a stronger over-representation of

’AUUUA’s. A peak in the distribution of the other pentamers at PSHacc val-

ues between 10−13 and 10−14 has been analyzed in detail and showed ∼ 65%

AU content. By visual inspection of this region many AU-rich elements have

been found and could partially be identified as motifs that usually occur in the

flanking regions of the ARE core motif. Analysis by PSHacc value have so far

shown that the ARE core motif ’AUUUA’ as well as ARE flanking regions are

over-represented in the analyzed transcripts.

To further test this method, a list of handpicked known AUBP targets (HuR,

TNF-α, IL6, Bcl2, TTP, SENP1, MAGUK) has been analyzed in detail. HuR,

TNF-α, IL6 and Bcl2 are targets that have been chosen due to a relatively large

amount of available literature on their role as ARE regulated proteins for the

human organism. The ’AUUUA’ motif in their representing transcripts is in all

cases significantly enriched, although the ARE core motif in HuR and Bcl2 was

not among the top ten of motifs with the lowest PSHacc values.

Analysis of TTP, which is also a known target but was not listed in the reference

database of the ’AREsite’ webserver, presented the ’AUUUA’ motif among the

top four over-represented motifs and nine AU-rich motifs in the top ten. With

a cutoff for the PSHacc value of 10−12 all known ARE targets analyzed here

would have been found during a screening, which fits the peak at the distribu-

tion of ’AUUUA’s in known targets at 10−13.

To see if the very restrictive approach of taking the lowest found PSHacc value

with 10−16 as cutoff would lead to the identification of other ARE targets, two

transcripts with such a low PSHacc value were extracted and analyzed in detail.

The SUMO-specific protease SENP1 (SENP1) and the MAGUK p55 subfamily

member 7 (MAGUK) both show an over-representation of the ’AUUUA’ core

motif and AU-rich regions in the top ten motifs with lowest PSHacc values.

Unfortunately no literature describing their regulation by AU-rich binding pro-

teins was found, but the phylogenetic analysis provided by ’AREsite’ shows

a conservation of the over-represented ’AUUUA’ motif and is another strong

indicator for a regulation of their mRNA stability by AUBPs. Both proteins

should be analyzed experimentally for effects of AUBPs on their expression to

validate this analysis.
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Recapitulating the screening methods used for the database analysis it can be

said that the analysis of over-representation of ARE core motifs produced some

promising results. Further analysis is required to filter real targets from the

rest, as a cutoff for the PSHacc value at 10−12 would have included a lot of

false positives.

Combining this method with the information provided by the webserver ’ARE-

site’, which includes phylogenetic analysis, motif fold-enrichment, detailed in-

formation on the location of the annotated motifs and literature if available,

can result in a very effective method to predict novel AU-rich binding protein

targets.

To further improve the screening, more information on the structural context

of the ARE motifs is necessary, as is a detailed analysis of flanking regions and

ARE motifs that do not exactly match the discussed ’AUUUA’ ARE core motif.

6.2 Discussion

Regulation of gene expression is a complex system. The same is true for the

regulation of mRNA stability, where many factors are involved that often show

a combined set of targets. This is a fact that has to be taken into account when

predicting novel targets of AU-rich binding proteins.

’AREsite’ is a webserver that does not only present the results of sequence

annotation, but contains additional information that can be used to analyze

AUBP targets. Ghosh et al. have already published work where this has been

done (2). Approaches to filter the presented dataset by the application of fil-

tering methods like the PSHacc value distribution show some promising results

although the analysis is not yet complete. So far only the ’AUUUA’ ARE core

motif has been analyzed. However, the mentioned techniques and ARE motifs

as well as their binding proteins are usually not restricted to this core region

alone. In fact one ’AUUUA’ core motif alone is usually not sufficient for the

interaction of known AU-rich binding proteins with their targets. HuR has been

shown to require the nine nucleotide long U-rich region ’NNUUNNUUU’ more

than AU-rich regions for its actions (83) for example. Nonetheless the analysis

of the core motif is a first step in a successful prediction of novel AUBP targets.

Together with further analysis approaches more information on the require-

ments for regulative active ARE-AUBP interactions will be revealed and used

for more precise predictions. This section discusses the already used approaches

for their potential as techniques for the prediction of novel AU-rich binding pro-

tein targets and presents methods to enhance their prediction capability. The
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section 7 presents methods that will be used for further investigations.

6.2.1 Prediction of target sites using information on their accessibility and

over-representation

The analysis of ARE core motif accessibility did not lead to measures that can

be used to distinguish regulatory active from inactive motifs so far. As this

approach was constricted to the very short region of the ’AUUUA’ ARE core

motif, this finding was no surprise. However, accessibility of a sequence plays

a role in the interaction of AU-rich binding proteins and their targets, which is

even increased by the fact that the so far known AUBPs are thought to bind to

single stranded RNA sequences which was validated for zinc finger containing

AU-rich binding proteins,see (65). The first enhancement using this approach

can be done, by taking ARE flanking regions into account. This regions have

also been found to be over-represented in ARE containing transcripts (see 5) and

information on their accessibility gives clues about the structural context that

embeds the ARE motifs. Preceding work on the influence of RNA secondary

structures on AUBP binding has shown that their regulatory actions can in the

case of HuR be switched off and on by embedding of the according ARE motif

into a secondary structure or breaking down this structure (83). Experimen-

tal evidence for the existence of AU-rich elements in loop regions of regulatory

RNA structures is already available (144) and points out the importance of the

structural context for regulation. An analysis of the structural context in which

ARE motifs can be found could lead to a more precise categorization of motif

and action. Depending on whether the motif can be found in interior loops or

the stem or the loop region of a stem-loop can influence the binding probabili-

ties of an AU-rich binding protein. To model this, a lot of information on the

AUBP itself, according the region that interacts with the RNA, the footprint of

the whole AUBP, the type of RNA binding motif, the number of proteins that

interact and distances between binding motifs and proteins, if more than one

bind at once, is required. This information has to be collected from literature

search and can then be combined with information from secondary structure

prediction to get a detailed view on interaction characteristics and mechanisms.

Such an approach could even lead to characteristics that can be used to dis-

tinguish between certain AU-rich binding proteins in their choice of target, or

reveal motifs that are required for up- or down-regulation of mRNA stability

respectively.
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A lot of AU-rich binding protein targets are known to be regulated by more

than one AUBP or the latter have to compete with other RNA binding factors

for their target sites (refer to section 2.1.4 for detailed information). Influence

of the changes in motif accessibility before and after binding of a factor up- or

downstream of an ARE motif can be calculated. Given the information where

an AUBP or other RBP binds, restrictions can be introduced when folding the

target 3’ UTR in silico that can give information on accessibility changes at

the motif site. The program RNAup (121) can be used to fold RNA sequences

with constraints and can be used to model these changes in accessibility. It can

even give information on the kind of secondary structure that embeds the ARE

motif and will be used for further investigations.

As has been shown the combination of motif accessibility and over-representation

to the PSHacc value can be used to filter regulative active ARE motifs. The

PSHacc distribution can be applied to the database to screen for transcripts

where accessible ’AUUUA’ ARE core motifs are over-represented. Although

over-representation is only a hint for regulatory function and known targets do

contain multiple copies of ’AUUUA’s, previously mentioned additional informa-

tion can be used to improve screening results. Information on the numbers of

ARE motifs that are bound by a single AU-rich binding protein can be used to

calculate cutoffs which allows the prediction of targets for each AUBP specif-

ically. TTP, for example, is known to contain two zinc finger motifs that can

simultaneously bind to RNA. Extracting information on the number of TTPs

that have to bind a target at the same time for regulatory function would give

a minimal number of accessible ARE motifs required for action. This informa-

tion can be used to extract mRNAs that contain at least this minimum number

of motifs and then be analyzed in detail. Information on the footprint of an

AU-rich binding protein can be used to extract motifs that are masked if an

ARE motif in proximity is bound by this AUBP. The masked ARE motif is

not available for other AU-rich binding proteins or RBPs, so a minimal over-

representation of this motif has to be guaranteed to allow concurrent binding

of other factors. This can again be used to extract mRNAs that contain a cer-

tain amount of ARE motifs if they are regulated by multiple AU-rich binding

proteins or RBPs at once. Summing up, this method has been validated with

some known AUBP targets, but for a prediction of novel targets or research on

the mechanisms of mRNA regulation by ARE motifs, further information has

to be combined with this method.
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7.1 Further investigations using the existing ARE motif database

As discussed, the results of the first analysis of annotated transcripts leave

room for further investigation. So far, the analysis of ARE motif containing

transcripts was limited to accessibility and over-representation of the ARE core

motif ’AUUUA’.

AUBPs are thought to bind single stranded regions containing their target

motifs, which are often longer than just the core ’AUUUA’. Following this, it

would give a hint on the regulative role of a motif to look at its flanking regions.

This includes prediction of accessibility of these regions, as well as information

on the structural context in which the motif is embedded. For a comprehensive

analysis, ARE flanking regions, the structural context and the conservation of

ARE motifs have to be included, as will be discussed in more detail in this

section.

7.1.1 Analysis of ARE flanking regions and further approaches for the iden-

tification of AUBP targets and the underlying mechanisms

ARE flanking regions

As mentioned previously, ARE flanking regions influence the interaction of

AUBPs with their targets. The most important task for future analysis is

to analyze these regions and extract the structural context that embeds an

ARE (core) motif. Rabani et al. (156) present results for the secondary struc-

ture prediction of two ARE containing mRNAs that are targeted by RBPs but

decay with different rates. The ARE motifs are predicted to be embedded

in structurally different loop regions which may be the reason for the decay

speed differences. Following this example, the analysis of the structural con-

text of the annotated motifs in the database can be conducted, for example

with the program RNAup (121). RNAup was discussed in section 6.2.1 as

tool to calculate changes in motif accessibility given prior binding of proteins

or factors and predict different types of RNA secondary structures which can

embed the ARE motifs. The program allows to distinguish between being in

a hairpin-loop, interior-loop, exterior-loop or multi-loop, which can influence

the interaction probability of an AUBP with the target mRNA. While an ARE
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motif presented in a hairpin loop is easily accessible for an AUBP, interior- or

multi-loops as well as exterior-loop regions in close proximity of an other loop

structure can hinder a protein from interaction with the sequence motif. This

does depend on the type of AUBP and the size of the RNA region that is re-

quired for interaction and information on the type of secondary structure that

allows or restricts an AUBP from binding to the ARE motif can be used to

screen for other sequences with similar structures and analyze their probability

of being a target of this AUBP. Concluding this discussion, the next step in

analyzing AU-rich elements as gene expression regulator would be to analyze

their proximity to secondary structures and find a way to combine the avail-

able information provided by the webserver ’AREsite’ and the analysis already

conducted to a measure that can be used as de novo filtering method for novel

AUBP targets. Together with results from the experimental analysis of already

predicted targets and literature search, it may be possible to fine tune cutoffs

for certain AUBP characteristics. A detailed analysis of known targets for each

AUBP may reveal properties that allow to predict targets specifically for each

AUBP.

Analysis by distance

Previously mentioned was the influence of the distance between ARE motifs on

their functionality. AUBPs that contain more than one ARE binding motif have

the capability to interact on multiple sites at once. Extracted information on

the exact binding properties of AUBPs from literature can be used to screen for

motifs that are found in distances equally to the distances of the protein binding

motifs. This information is hard to gather as only little is known about the exact

mechanism underlying AUBP binding. Comparing the distances between ARE

motifs in known targets of certain AUBPs could lead to the identification of

characteristics that are typical for an AUBP or even for actions of AUBPs on

their targets.

TTP is one example where an AUBP can bind to more than one ARE motif at

once. Using information about the distance of the binding sites in the protein

and comparing it with the distance of ARE motifs on annotated transcripts

could lead to successful predictions of novel TTP targets. This task is not

easily done by counting the number of nucleotides which separate two ARE

motifs, but has to be conducted together with information on the structural

context of these motifs, as distances in a folded RNA molecule can of course

differ from the distances along the (unfolded) RNA sequence.
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7.2 Experimental validation of novel AUBP targets

Results retrieved from the ARE motif analysis have to be validated experimen-

tally. On the one hand, only experimental approaches can show if a predicted

target really is influenced by the presence of AUBPs, and on the other hand

these experiments allow to extract new parameters that help to improve the

target prediction.

A common, well established approach is the reporter gene assay with firefly

luciferase.

By cloning luciferase with the whole 3’ UTR, or segments containing the an-

notated ARE motifs, of an predicted target (see figure 47) into a vector and

transfecting it into an established cell line, it can easily be seen whether this

3’ UTR marks the luciferase as target for AUBPs. If this is the case, luciferase

will be expressed in higher or lower amounts, depending on the AUBP that

binds, than a comparable luciferase without this 3’ UTR.

Fig. 47. The firefly luciferase as used for reporter gene assays, with the 3’ UTR of
a predicted AUPB target. The upper luciferase 3’UTR contains the ARE sequence
motifs, that tags it as target for AUBPs, and the lower version is used as control
and contains a 3’ UTR without the ARE motifs.

This approach has been used many times to validate the actions of AUPBs

on a mRNA target, see for example (157; 158; 159; 160) and many more. It

can be used comparatively easy to verify or falsify the regulative role of newly

annotated ARE motifs.
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7.3 Interplay of AUBPs and miRNA

MiRNAs are known to play a major role in gene expression regulation as shown

for example in (56). Therapeutic approach of mRNA stability regulation by

miRNAs are already being discussed (161). More and more information on

the interplay of RNA binding proteins and miRNAs is being revealed and as

mentioned in the section 2 this can interfere with the binding of AUBPs to their

targets, increasing or decreasing their regulatory effects. A first approach would

be to analyze known miRNA binding sites in the annotated transcripts, to see

whether or not these binding sites overlap with ARE motifs. If this is the case

the binding of a miRNA would sterically prevent interaction of an AUBP with

its target site and vice versa. Influence on the accessibility of ARE motifs could

also be influences by a prior interaction of a miRNA with the AUBP target and

could be analyzed as discussed in section 6.2.1 Extracted information of the

distance between RNA binding motifs in AUBPs can be used in combination

with the annotation of miRNA binding sites to analyze if such a miRNA target

site can be found between the ARE motifs required for the AUBP function, as

this would again interfere with both interactions. MiRNAs are in the focus of a

growing number of research groups which leads to a lot of available information

that can be used to model the influence of miRNAs on AUBP binding and vice

versa with the presented methods.
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A Predicted AUBP targets in human and mouse

A Predicted AUBP targets in human and mouse

This section contains human and mouse transcripts (see tables 4, 5) with a

PSHacc of e−16, which marks them as possible targets for AUBPs according

to the over-representation and accessibility of the ARE core motif ’AUUUA’ in

their 3’ UTR. Targets mentioned in this section are suggested for lab experi-

ments (see section 7.2 for an example) that could validate their role as AUBP

targets.

A.1 Predicted AUBP targets in human

Table 4 presents information extracted from the webserver ’AREsite’ according

to the predicted AUPB targets in human, that were not part of an detailed

analysis so far.

As the extraordinary low PSHacc values shows that the ARE core motif ’AU-

UUA’ in this transcripts is highly over-represented as well as accessible, this

transcripts would make good targets for experimental validation of their regu-

lation by AUBPS.
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A.1 Predicted AUBP targets in human

Gene Transcript AKA PSHacc

ENSG00000120215 ENST00000381477 MLANA-001: melan-A 1.11022302462516e-16
ENSG00000124172 ENST00000243997 ATP5E: ATP synthase 2.22044604925031e-16
ENSG00000129625 ENST00000379638 REEP5-001: receptor

accessory protein 5
8.88178419700125e-16

ENSG00000130513 ENST00000252809 GDF15-201: growth
differentiation factor 15

1.11022302462516e-16

ENSG00000136541 ENST00000410096 ERMN-002: ermin,
ERM-like protein

6.66133814775094e-16

ENSG00000136709 ENST00000322313 WDR33-001: WD re-
peat domain 33

1.11022302462516e-16

ENSG00000156030 ENST00000428145 C14orf43-
005:chromosome 14
open reading frame 43

2.22044604925031e-16

ENSG00000167005 ENST00000300291 NUDT21-001:nudix
(nucleoside diphos-
phate linked moiety
X)-type motif 21

6.66133814775094e-16

ENSG00000178425 ENST00000319550 NT5DC1-002: 5’-
nucleotidase domain
containing 1

5.55111512312578e-16

ENSG00000183475 ENST00000332783 ASB7-001: ankyrin re-
peat and SOCS box-
containing 7

8.88178419700125e-16

ENSG00000183695 ENST00000329773 MRGPRX2-001: MAS-
related GPR, member
X2

6.66133814775094e-16

ENSG00000188906 ENST00000430804 LRRK2-005: leucine-
rich repeat kinase 2

5.55111512312578e-16

ENSG00000203685 ENST00000366788 C1orf95-201: chromo-
some 1 open reading
frame 95

4.44089209850063e-16

Tab. 4. This table shows predicted AUBP targets in human according to an
extraordinary low PSHacc value.
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A Predicted AUBP targets in human and mouse

A.2 Predicted AUBP targets in mouse

Table 5 presents information extracted from the webserver ’AREsite’ according

to the predicted AUPB targets in mouse, that were not part of an detailed

analysis so far.

The extraordinary low PSHacc values shows that the ARE core motif ’AU-

UUA’ in this transcripts is highly over-represented as well as accessible, this

transcripts would make good targets for experimental validation of their regu-

lation by AUBPS.

Gene Transcript AKA PSHacc

ENSMUSG00000029050 ENSMUST00000030917 Ski-001 ski
sarcoma vi-
ral oncogene
homolog (avian)

5.55111512312578e-16

ENSMUSG00000030148 ENSMUST00000041779 Clec4a2-001 C-
type lectin do-
main family 4,
member a2

2.22044604925031e-16

ENSMUSG00000031644 ENSMUST00000034065 Nek1-001 NIMA
(never in mitosis
gene a)-related
expressed kinase
1

3.33066907387547e-16

ENSMUSG00000032727 ENSMUST00000109272 Mier3-001 meso-
derm induction
early response 1,
family member 3

2.22044604925031e-16

ENSMUSG00000049764 ENSMUST00000061617 Zfp280b-201 3.33066907387547e-16
ENSMUSG00000058589 ENSMUST00000078569 Anks1b-201

ankyrin repeat
and sterile alpha
motif domain
containing 1B
Gene

3.33066907387547e-16

Tab. 5. This table shows predicted AUBP targets in mouse according to an
extraordinary low PSHacc value.
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B Usage statistics

AREsite visitors have been logged after publication of the websuite and table 6

shows traffic from all over the world, indicating the importance of web brows-

able tools for the modern scientist.

IP Queries Organization

131.111.189.78 5028 University of Cambridge

202.127.20.33 2257 China Science & Technology Network

149.155.96.6 202 Biotechnology And Biological Science Research

Council

149.155.96.5 191 Biotechnology And Biological Science Research

Council

138.26.45.133 178 University of Alabama at Birmingham - Univer-

sity Computer Center

133.45.137.205 148 National University Corporation, Nagasaki Uni-

versity

193.51.157.40 147 Universite Montpellier 1

133.1.239.242 117 Osaka University

140.251.50.169 113 Joan and Sanford I. Weill Medical College and

Graduate School of Medical Sciences of Cornell

University

129.96.252.195 111 Flinders University

193.174.111.250 110 Medizinische Hochschule Hannover

18.4.1.146 102 Massachusetts Institute of Technology

132.239.77.249 102 University of California, San Diego

192.55.208.10 100 St. Jude Children’s Research Hospital

115.156.249.82 99 East-Zone for Huazhong University of Science

and Technology

204.187.34.100 82 Ottawa General Hospital

129.25.15.197 78 The Drexel University Campus

142.150.92.120 75 University of Toronto

130.223.210.101 75 University of Lausanne

129.125.135.99 71 Rijks Universiteit Groningen
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B Usage statistics

Top ten genes

Gene identifier Number of queries

ENSMUSG00000028492 667

ENSG00000136244 283

ENSMUSG00000020691 130

ENSG00000232810 68

ENSMUSG00000025746 52

ENSG00000141510 52

ENSG00000171791 41

ENSG00000073756 39

ENSMUSG00000024401 39

ENSG00000169429 36

Top ten visits at one day

Day Number of queries

Wed Mar 9 2011 2095

Fri Feb 18 2011 1603

Tue Mar 8 2011 1386

Tue Dec 21 2010 1104

Mon Dec 20 2010 793

Mon Jan 10 2011 279

Sun Nov 14 2010 192

Tue Jul 26 2011 171

Thu Dec 23 2010 170

Tue Jan 18 2011 166

Tab. 6. This table shows an excerpt of the top 20 visitors of the

webserver ’AREsite’ from all over the world, listed with IP, number of

queries and the name of the organization filtered via its IP address.

If the IP address could not be matched to an organization, the entry

was excluded from the list. Following are shown the top 10 genes that

were analyzed using the webserver and the top 10 days of usage.
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