
 
 

 
 
 
 

     
DISSERTATION 

 
 

Titel der Dissertation 
 

A microscopic screen for mutations affecting synaptonemal 
complex formation in Budding yeast 

 
 

Mag. Jean Mbogning 
 
 

Angestrebter akademischer Grad 
 

Doktor der Naturwissenschaften (Dr.rer.nat.) 
 
 
 
 
 
Wien, 2011 
 
 
 
 
Studienkennzahl lt. Studienblatt:  A 091 441 
 
Dissertationsgebiet lt.Studienblatt: Genetik-Mikrobiologie (Stzw) 
 
Betreuerin / Betreuer:    Uni.-Prof.Dr. Franz Klein    
 
 

  
 



Table of contents 

 
1 Introduction ............................................................................................... 5	  

1.1 Meiosis – an overview .......................................................................................................... 5	  
1.2 Commitment to meiosis and the pre-meiotic S-phase ....................................................... 7	  
1.3 Chromosomal morphogenesis during the meiotic prophase I ......................................... 9	  
1.4 Meiotic recombination: DSB formation and repair ........................................................ 12	  
1.5 The synapsis initiation complex ........................................................................................ 19	  
I.6 The synaptonemal complex (SC) ....................................................................................... 23	  
I.7 Checkpoint control: surveillance mechanisms of the meiotic divisions ......................... 28	  
1.8 Aims of this study ............................................................................................................... 31	  

2 Materials and Methods ........................................................................... 32	  
2.1 Media and Solutions ........................................................................................................... 32	  

2.1.1 Solid Media ................................................................................................................................. 32	  
2.1.2 Liquid media ............................................................................................................................... 38	  
2.1.3 LB-bacterial culture media .......................................................................................................... 40	  

2.2 Manipulating Yeast and E.coli strains ............................................................................. 41	  
2.2.1 Growth and long term storage of Yeast strains ........................................................................... 41	  
2.2.2 Tetrads dissection and single spores production ......................................................................... 41	  
2.2.3 Picking zygotes and meiotic time-course experiments ............................................................... 42	  
2.2.4 Transformation of S.cerevisiae ................................................................................................... 43	  
2.2.5 Preparation and transformation of competent E.coli ................................................................... 44	  
2.2.6 Flow Cytometric analysis of yeast cells ...................................................................................... 45	  

2.3 DNA protocols .................................................................................................................... 47	  
2.3.1 Preparation of Yeast genomic DNA ........................................................................................... 47	  
2.3.2 Plasmid preparation from E.coli ................................................................................................. 51	  
2.3.3 Agarose gel electrophoresis ........................................................................................................ 53	  
2.3.4 Gel extraction of DNA fragments ............................................................................................... 55	  
2.3.5 PCR mediated gene targeting in yeast ........................................................................................ 55	  
2.3.6 Southern blotting ......................................................................................................................... 56	  
2.3.7 DNA restriction digest and electrophoresis ................................................................................ 56	  
2.3.8 Agarose gel electrophoresis for southern .................................................................................... 57	  
2.3.9 DNA transfer onto a nylon membrane ........................................................................................ 57	  
2.3.10 DNA probe labelling, hybridization and detection ................................................................... 58	  

2.4 Protein protocols ................................................................................................................ 63	  
2.4.1 TCA protein extracts of S.cerevisiae .......................................................................................... 63	  
2.4.2 SDS-Polyacrylamide gel electrophoresis .................................................................................... 64	  
2.4.3 Western blot ................................................................................................................................ 66	  

2. 5 Chromatin Immunoprecipitation (ChIP) ....................................................................... 70	  
2.5.1 ChIP procedure ........................................................................................................................... 70	  
2.5.2 Real-Time PCR evaluation of ChIP samples .............................................................................. 72	  
2.5.3 ChIP hybridized into High resolution Microarray ...................................................................... 74	  

2.6 Cytological Methods ........................................................................................................... 81	  



2.6.1 DAPI staining of yeast chromatin ............................................................................................... 81	  
2.6.2 Spreading and Immunostaining of yeast nuclei .......................................................................... 82	  
2.6.3 In situ immunostaining of whole yeast cell ................................................................................ 86	  
2.6.4 Microscopy technique ................................................................................................................. 89	  

2.7 Generating a Sk1/BY hybrid library ................................................................................ 89	  
2.7.1 Screening strategy ....................................................................................................................... 90	  

3 RESULTS ................................................................................................. 92	  
3.1 Primary screen: SK1/BY hybrid mutants ........................................................................ 92	  

3.1.1 Candidates unable to induce meiosis .......................................................................................... 94	  
3.1.2 Candidates displaying Zip1 foci and/or polycomplexes, but no elongated synaptic stretches ... 98	  
3.1.3 Candidates exhibiting both, foci and short stretches of Zip1, but no long stretches of synapsis
 ............................................................................................................................................................ 101	  
3.1.4 Candidates displaying long stretches of Zip1, but incomplete synapsis ................................... 108	  
3.1.6 Candidates with reduced SC formation .................................................................................... 113	  
3.1.7 Candidates displaying increased levels of complete SC ........................................................... 114	  

3.2 Secondary screen: SK1 mutants ..................................................................................... 115	  
3.2.1 phenotype of candidates in SK1 ................................................................................................ 115	  

3.3 Characterization of pilot screen genes ........................................................................... 125	  
3.4 PP4 phosphatase complex acts in the ZMM pathway to antagonize Pch2 and Fpr3 130	  

3.4.1 Phenotypes of mutants in the PP4 complex .............................................................................. 130	  
3.4.2 Inefficient restoration of synapsis in pph3∆ H2A-S129A ......................................................... 132	  
3.4.3 Deletion of the SWR chromatin remodeling complex subunit SWC2 restores synapsis in pph3∆ 
mutants. .............................................................................................................................................. 133	  
3.4.4 Restoration of synapsis in pph3∆, pch2∆ mutant ..................................................................... 136	  
3.4.5 Deletion of FPR3 or MEK1, but not of MEC1 bypasses the meiotic arrest of pph3∆. ............. 137	  
3.4.6 Restoration of nearly wild type meiosis in pph3∆, pch2∆, fpr3∆ triple mutants ...................... 139	  
3.4.7 Removal of phosphorylated H2A-S129 in pph3∆, pch2∆, fpr3∆ triple mutants ...................... 140	  

3.5 Crosstalk between Histones promotes synapsis ............................................................ 141	  
3.5.1 H2B-K123 monoubiquitination promotes synapsis .................................................................. 141	  
3.5.2 H3K4 trimethylation defective cells proceed further in synapsis than H2B-K123R mutants .. 143	  

4. DISCUSSION ........................................................................................ 145	  
4.1 A sensitive screen for genes involved in synapsis ....................................................................... 145	  
4.2 H2B monoubiquitination modulates chromosome synapsis ........................................................ 146	  
4.3 Delayed synapsis in the absence of COMPASS .......................................................................... 147	  
4.4 Suppressing the meiotic defects of PP4 mutants. ........................................................................ 147	  
4.5 Repair or checkpoint factor: the meiotic context is paramount ................................................... 150	  

Figure legends ........................................................................................... 152	  
Tables ......................................................................................................... 159	  

Table 13: list of antibodies used in this study .................................................................................... 160	  
Table 14: list of oligonucleotides used in this study .......................................................................... 161	  
Table 15: yeast strains used in this study ........................................................................................... 165	  
Additional phenotypes of candidates in pure SK1 ............................................................................. 170	  
The chromatin localization map of Top2 ........................................................................................... 181	  

Summary ................................................................................................................................. 182	  
Zusammenfassung .................................................................................................................. 185	  

References .................................................................................................. 188	  



Curriculum vitae ....................................................................................... 203	  
Acknowledgements ................................................................................... 205	  



1 Introduction 

1.1 Meiosis – an overview 

 
Sexual reproduction requires the formation of specialized germ cells by 

meiosis. Meiosis consists of two consecutive rounds of chromosome 

segregation, preceded by a single phase of DNA replication (Figure 1). Central to 

meiosis is a process of recombination between paternal and maternal 

chromosomes, which increases the genetic diversity of progeny and ensures 

proper homologous chromosome segregation (Szekvolgyi and Nicolas, 2010).  

The first meiotic division (MI) is preceded by a special and prolonged 

prophase, during which homologous chromosomes align and pair. Pairing of 

homologs is initiated during leptotene, progresses during zygotene and is 

complete in pachytene nuclei. Subsequently, synapsis between the chromosomal 

axes of the paired homologous chromosomes is achieved by the formation of the 

synaptonemal complex (SC). During the initial phase of chromosome pairing in 

both yeast and mammals, all telomeres cluster on the nuclear membrane, while 

the chromosomal arms loop towards the center of the nucleus, forming the 

transient bouquet stage. The formation of this configuration and the associated 

chromosomal movements are required for correct chromosome synapsis 

(Kosaka et al., 2008; Koszul et al., 2008; Koszul and Kleckner, 2009).  

In many species, including yeast and mammals, homologous chromosome 

pairing requires formation and repair of meiosis-specific DNA double-strand 

breaks (DSBs) catalyzed by the topoisomerase II-like enzyme Spo11 (Keeney et 

al., 1997a; Keeney and Neale, 2006; Pan et al., 2011). But homolog pairing 

occurs normally in Caenorhabditis elegans and in Drosophila melanogaster 

females in the complete absence of DSBs (Dernburg et al., 1998; McKim et al., 

1998; MacQueen et al., 2002b). 

 In yeast and mouse, the formation and repair of meiotic DSBs, leading to 

the formation of crossovers, is directly required for proper pairing, synapsis and 

the segregation of homologous chromosomes during the first meiotic division. 



 In addition to a physical linkage established between homologs (named 

chiasmata) and sister chromatids arms cohesion, proper reductional segregation 

of the homologs in meiosis I requires that the homologous kinetochores capture 

microtubules from opposite poles of the spindle, reviewed in (Bardhan et al., 

2010). 

During the second or equational meiotic division (MII) the sister chromatids 

are then segregated into haploid gametes (Figure 1). In somatic cells, DSBs may 

arise due to exogenous and endogenous DNA damage. In contrast to meiosis, a 

single round of DNA replication is followed by only one round of chromosome 

segregation, resulting in the transfer of the complete genetic information into two 

genetically identical daughter cells during vegetative growth (Petronczki et al., 

2003).  

In yeast, gametogenesis is referred to as sporulation and the four final 

meiotic products which are packed into an ascus are termed spores. In this form 

yeast is highly resistant to a wide range of environmental conditions and upon 

favorable conditions spores will germinate and eventually fuse to form diploid 

cells. 



 1.2 Commitment to meiosis and the pre-meiotic S-phase  

  
 Unicellular organisms such as the budding yeast Saccharomyces 

cerevisiae have evolved to survive constant variations in their external 

environments by adapting their internal systems to meet the challenges of each 

new environment. The hemi-ascomycete S.cerevisiae exists in both diploid and 

haploid states of the chromosome complement.  

Two different developmental pathways control the onset of meiosis. Two 

haploid cells of the corresponding opposite mating type (Mata and Matα) must 

fuse to form a diploid zygote; which, upon nutrient deprivation (especially glucose 

and nitrogen starvation) and in the presence of a non-fermentable carbon source, 

usually acetate; resumes the developmental program of meiosis or sporulation 

(Lee and Amon, 2001; Jambhekar and Amon, 2008).  

Nutritional signaling cascade result in the transcription of two master 

regulators of meiosis: Ime1 and Ime2. Ime1 is a transcription factor that activates 

the transcription of early meiotic genes and is therefore required for entry into 

meiosis (Honigberg and Purnapatre, 2003; Jambhekar and Amon, 2008). One 

important target of Ime1 is Ime2, which is a meiosis-specific kinase with multiple 

functions in regulating entry into meiosis. Ime2 regulates entry into meiosis by 

stimulating the degradation of the S-phase CDK inhibitor Sic1 and stabilisation of 

B-type cyclins through the inhibition of the anaphase-promoting complex/ 

cyclosome (APC/C) (Guttmann-Raviv et al., 2001; Bolte et al., 2002). 

 Although, meiotic and mitotic DNA replication share many components and 

characteristics; such as a common evolutionary origin of replication (Collins and 

Newlon, 1994; Murakami and Nurse, 2001; Ofir et al., 2004), the same S-phase 

B-type cyclins: Clb5 and Clb6 (Dirick et al., 1998; Stuart and Wittenberg, 1998); 

there are some differences in regulation as demonstrated by the identification of 

meiosis-specific S-phase factors such as : CSM1 and MUM2 (Davis et al., 2001; 

Wysocka et al., 2004). But also, pre-meiotic S-phase is significantly longer 

compared to mitotic S-phase in all organisms analysed so far, taking up to 3 



times longer than normal mitotic DNA replication in budding yeast (Cha et al., 

2000). Importantly, the length of the pre-meiotic S-phase is modulated by 

recombination factors such as Spo11, Mer2 and the cohesion complex subunit 

Rec8 (Jiao et al., 1999; Cha et al., 2000), indicating a function of these proteins 

already at the time of DNA replication. 

 It has been shown that pre-meiotic DNA replication is required for the 

establishment of interhomologue interactions such as pairing, DSB formation and 

SC assembly (Borde et al., 2000a; Smith et al., 2001b; Matos et al., 2008; Wan 

et al., 2008a). Replication-deficient meiotic cells are defective in chromosome 

morphology. This defect in chromosome synapsis can partially be explained by 

reduced levels of chromatin-bound cohesion, which in turn causes improper 

chromosomes axes formation (Smith and Nicolas, 1998; Klein et al., 1999).  

All together, available data to date strongly support the idea that pre-meiotic 

DNA replication is required to establish a chromatin conformation, which allows 

the promotion of homologous recombination during meiosis I and the completion 

of the meiotic program.  

Commitment to meiosis is a stepwise process, yeast cells undergoing 

sporulation are fully committed to meiosis when they can no longer return to the 

vegetative growth (once they are unable to divide mitotically when inoculated in 

rich medium), this corresponds to the end of prophase I, prior to the first meiotic 

division (Simchen, 2009). 

 

 

 

 



1.3 Chromosomal morphogenesis during the meiotic prophase I  

  
The chromatin of meiotic chromosomes is organized in a series of loops 

emanating from meiotic axis (Kleckner, 2006; Novak et al., 2008). Chromosomal 

morphogenesis during meiotic prophaseI culminates by the formation of a 

peptidic scaffold termed synaptonemal complex (SC), which holds homologs 

together until meiotic recombination and genetic exchange have taken place. 

Chromosome dynamics during meiotic prohase I involves several processes 

(Figure 2) such as:  

A physical linkage established between sister chromatids during pre-meiotic 

S phase;  

Homologous chromosomes recognition and pairing;  

Programmed variations in molecular composition and compaction of bulk 

chromatin. 

 

In eukaryotic cells, cohesion between sister chromatids is mediated by a 

highly conserved multisubunit complex called cohesin (Guacci et al., 1997). In 

Saccharomyces cerevisiae, the cohesin complex comprises at least four core 

subunits: two Smc (Structural Maintenance of Chromosomes) proteins, Smc1 

and Smc3, and two non-Smc proteins, Scc1/Mcd1 (replaced by Rec8 in meiosis) 

and Scc3 (= Irr1). An accessory protein termed Pds5 binds loosely to the cohesin 

complex and is required for the maintenance of functional cohesion (Panizza et 

al., 2000). 

A separate complex containing the Scc2 and Scc4 proteins plays an 

essential role in cohesin´s association with chromosomes. Like Scc2 and Scc4, 

an acetyl transferase named Eco1 is also required to establish cohesion during 

S-phase (Nasmyth and Haering, 2009). 

In additon to these proteins, essential for sister chromatid cohesion many 

other factors merely necessary to improve the efficiency of sister chromatid 



cohesion have been identified. In budding yeast these proteins include a factor 

known as Ctf4 which forms a complex with various DNA-replication proteins such 

as Cdc45, Mrc1, Csm3 (Gambus et al., 2006) but with also a Replication Factor 

C (RFC) complex containing the Ctf1-like protein Ctf18 and the additional 

subunits Dcc1 and Ctf8 (Mayer et al., 2001). 

 First demonstrated to be involved in meiosis in C.elegans (Hagstrom et al., 

2002), another Smc complex namely the condensin complex is also involved in 

chromosome compaction and resolution. Interestingly, this complex has been 

implicated in the recruitment of meiosis-specific axial element (AE) proteins Hop1 

and Red1, thereby promoting the assembly of SC in yeast (Yu and Koshland, 

2003a). In budding yeast, large scale chromosome movements accompagny the 

individual steps of meiotic recombination. 

Prior to DSB formation, chromosomes undergo a series of homology-

independent interactions that are thought to reduce the search space required for 

homology identification. These interactions include non-homologous centromeres 

pairing mediated by Zip1 which is progressively replaced by homologous 

interactions upon DSBs formation (Falk et al., 2010a; Obeso and Dawson, 2010). 

As DSB repair progresses, namely at zygotene, telomeres cluster in one area of 

the spindle pole body (SPB) forming the so called chromosomal bouquet 

configuration also thought to promote chromosome synapsis (Zickler and 

Kleckner, 1998; Scherthan and Schonborn, 2001). 

But as the bouquet formation occurs very late in the pairing process (that is 

at zygotene), it is likely not the primary mediator of homology search. Recently it 

was shown that the csm4 null mutation is not completely defective in 

chromosome synapsis. Cells lacking CSM4 showed zygotene-like nuclei with 

fragments of SC on chromosome spreads (Kosaka et al., 2008; Koszul and 

Kleckner, 2009). Csm4 is a meiosis-specific protein required for telomere 

clustering, csm4 mutant is deficient in bouquet formation. However, it has been 

proposed that telomere-led movement of meiotic chromosome (including the 

bouquet stage) produces in combination with compaction and expansion of 



chromatin, an overall dynamic whose primary role is regularization of topological 

relationships among pairing chromosomes (Koszul et al., 2008).  

Chromatin structure modifications (epigenome modifications) occuring 

during the meiotic prophase I also contribute to the synaptonemal complex 

formation (SC). These modifications include a post-translational histone covalent 

modifications (acetylation, phosphorylation, methylation, ubiquitination) as well as 

ATP-dependent chromatin remodeling. 

Chromosomes likely begin a search for their homologous counterpart during 

pre-meiotic S phase, this early homology search could be mediated by DNA 

transcription as evidenced by EM (electron microscopy) observations, showing 

the presence of lampbrush (chromatin loops associated with ribonucleo particles) 

structures which progressively associate between them in guinea pig 

spermatogonia during pre-meiotic S phase (Vazquez-Nin et al., 2003). 

Chromatin is diffuse during pre-meiotic S phase. This relaxed chromatin 

status is associated with specific epigenetic marks such as histone H4 

acetylation, histone H3 lysine 9 acetylation (H3K9ac) which are considered to as 

open chromatin marks (euchromatic marks) (Webster et al., 2005). But 

repressive chromatin marks such as (H4K20 trimethylation, H3K9 trimethylation) 

are present in centromeres, telomeres and nearby chromatin throughout pre-

meiotic S phase and remained until late pachytene in mammals (Peters et al., 

2001). These repressive histone marks are thought to be required for regulating 

incorporation and preservation of telomeric and centromeric chromatin in the 

synaptonemal complex. Chromatin dynamics during pre-leptotene is further 

manisfested by histone H3 serine10 phosphorylation (H3S10P), a histone mark 

associated with chromosome relaxation and compaction. H3S10P first appears 

during pre-leptotene, decreases during leptotene and is diffusely detected at 

zygotene, indicating that this histone mark is needed for prophase progression 

(Kleckner et al., 2004). It was shown that partial histone replacement such as 

H2A exchanged by H2AX that occurs during the pre-leptotene stage in mouse 



and rat, is required for further chromatin modification (Baarends and Grootegoed, 

2003). 

The monoubiquitination of histone H2B at lysine 123 by Rad6-Bre1 allows 

allows histone H3 lysine 4 and 79 trimethylation by COMPASS (Set1) and Dot1 

respectively, this crosstalk between histones is thought to promote chromatin 

remodeling and DSBs formation (Yamashita et al., 2004; Rousseaux et al., 2005; 

Dehe and Geli, 2006). Furthermore, the histone variant H2A.X (H2A in budding 

yeast) is phosphorylated upon DSBs formation by ATR/ATM (Mec1/Tel1). This 

epigenetic mark is thought to promote the recruitment of recombination enzymes 

to the DSB sites (Baarends and Grootegoed, 2003; Fink et al., 2007). 

During branch migration, the ATP-dependent chromatin remodeling activity 

of Rad54 is required to unwind duplex DNA, thereby promoting DSB repair 

(Baarends and Grootegoed, 2003).  

 

1.4 Meiotic recombination: DSB formation and repair 

 
Meiotic recombination is initiated by a self-inflicting introduction of 

programmed DSBs during the early stage of meiotic prophaseI in budding yeast 

(Figure 3). The distribution of DSB across chromosomes is not a random event, 

as some regions are more susceptible to DSB formation than others; respectively 

termed hospots and coldspots (Baudat and Nicolas, 1997; Wahls, 1998; Pan et 

al., 2011). 

In S.cerevisiae, at least ten proteins are absolutely required for DSBs 

formation during meiosis. 



 

Rec102, Rec104, Ski8 and Spo11 subcomplex  

  
Spo11 is a highly conserved catalytic subunit of the DSB forming machinery 

(Keeney et al., 1997a; Neale et al., 2005) and is structurally related to the Top6A 

subunit of the archeal type-IIB topoisomerase, TopoVI. This structural 

relationship provides key insights into Spo11 biochemical properties (Diaz et al., 

2002) and evidence suggests that Spo11-dependent cleavage of both strands 

occurs by a transesterification mechanism analogous to type-II topoisomerases. 

Though Spo11 is likely incapable of catalyzing a classical two-gate DNA-passage 

mechanism (Corbett and Berger, 2003).  

 It was shown by Immunofluorescence studies that, the localization of 

Spo11 to meiotic chromosomes required two other proteins essential for DSB 

formation: Rec102, Rec104 and probably Ski8/Rec103 (Storlazzi et al., 2003; 

Prieler et al., 2005). The Spo11 subcomplex (Spo11. Rec102, Rec104 and Ski8) 

likely interacts with other subcomplexes of the DSB forming machinery (Mei4-

Mer2-Rec114, Mre11-Rad50-Xrs2), as a strong interaction between Rec104 and 

Rec114 has been reported (Arora et al., 2004).  

Ski8/Rec103 is a conserved protein containing multiple copies of the ∼40 

amino-acid WD-repeat, this structure is thought to simultaneously interact with 

multiple proteins to coordinate their interaction. Ski8 may interact with other 

components of the Spo11 complex, namely Rec114, Mer2 and Rec104 as 

suggested by two-hybrid data (Arora et al., 2004). Unlike Ski8, Rec102 and 

Rec104 appear not to be conserved outside of Saccharomyces and closely 

related yeasts. Rec104 shows a strong interaction with Rec114 (Arora et al., 

2004). 



 

 

Mei4, Mer2 and Rec114 subcomplex 
 

Rec114, Mer2 and Mei4 form a dynamic subcomplex (Li et al., 2006) and 

these three proteins are poorly conserved outside of the saccharomyces and 

closely related yeasts. Cyclin-dependent Kinase (Cdk1-Clb5/6) directly 

phosphorylates Mer2 at two consensus target sites, serine 30 and serine 271 

(Henderson et al., 2006). The replication-origin activating Kinase, Cdc7 is also 

required for Mer2 phosphorylation. Phosphorylation of Mer2, mainly at serine 30 

not only promotes Mer2-Mer2 self-interaction, Mer2-Rec114 and Mer2-Xrs2 

interactions but is also essential for DSB formation. Notably, mutation of this site 

causes phenotypes indistinguishable from the mer2 null mutant (Henderson et 

al., 2006; Wan et al., 2008a). Phosphorylation of Mer2 at serine 271 appears 

also to be important for self-interaction and interaction with Xrs2. 

 

Mre11, Rad50, and Xrs2 subcomplex 
 

The MRX complex (Mre11, Rad50 and Xrs2) plays central roles in DNA 

damage signaling and repair. 

Mre11 is a structure selective nuclease comprising a metallo-

phosphoesterase nuclease domain and a DNA binding domain (Hopfner et al., 

2001). The DNA binding domain of Mre11 is essential for DSB formation but not 

its nuclease activity (Furuse et al., 1998; Hopfner et al., 2001). The binding of 

Mre11 to chromatin does not require DSB formation but all other Spo11 complex 

proteins excepting Rad50 (Borde et al., 2004). 

Rad50 is an SMC-family protein with an extended coiled-coil, upon ATP 

binding, this protein dimerizes to create a DNA binding domain. MRX is able to 

tether two bound DNA molecules via intermolecular interactions between 

(Rad50)2-(Mre11)2 heterotetramers (Hopfner et al., 2002; Moreno-Herrero et al., 



2005) and this feature of the MRX complex is required for DSB formation 

(Wiltzius et al., 2005). 

The third component of the MRX subcomplex, Xrs2 contains FHA and 

tandem BRCT domains which mediate its interaction with phospho-proteins 

(Becker et al., 2006). Xrs2 is thought to help target MRX to DNA ends and other 

DNA structures (Trujillo et al., 2003). 

The MRX complex has a number of inter-related functions in DNA repair 

including: sensing and signaling of DNA damage by binding to DSBs and 

activation of Tel1/Mec1 kinases (ATM and ATR in vertebrates), processing of 

DSB-ends and ATP-dependent DNA unwinding (Usui et al., 1998; Chen et al., 

2005). 

Besides the above proteins that are essential for DSB formation, other 

factors such as chromatin composition (intergenic GC rich sequences), 

accessibility and modifications (influenced by ATP-dependent chromatin 

remodelers and post-translational histones modifications) also contribute to DSB 

formation and repair. And chromosomal axes proteins (Red1, Hop1 and Mek1) 

are also required for wild type levels of DSBs.  

Following DSB formation, 5`- strands of the DSB-ends are resected to 

provide a 3`- single-stranded tails which are substrates of recombinases Rad51 

and Dmc1 to promote pairing and strand exchange with the homologous duplex. 

 

Resection of 5´- DSB ends 
 

The MRX complex cooperates with the Sae2/Com1 protein for the initial 

removal of Spo11 from the 5-DSB-ends. It was shown that Spo11 is removed 

from DSB-ends as an oligonucleotide-bound covalent complex (Neale et al., 

2005). Separation of function alleles of MRE11, RAD50 respectively mre11S, 

rad50S and null alleles of COM1/SAE2 allow DSB formation but block removal of 

Spo11 (Cao et al., 1990; Keeney et al., 1997b; Nairz and Klein, 1997; Prinz et al., 



1997; Moreau et al., 1999). The 5`-ends of DSBs are further resected by several 

hundred of nucleotides and Mre11, Exo1 but also Com1 are likely candidate 

nucleases. 

  

Formation of Rad51 and Dmc1 nucleoprotein filaments 
 
The 3´ssDNA tails produced by the MRX complex and/or the 5`-3` 

exonuclease are coated by RPA to eliminate secondary structures (Sung, 1997), 

Rad52 protein interacts directly with RPA and Rad51 and recruits Rad51 to the 

RPA-ssDNA complex. 

The Rad51 nucleoprotein filament formation is further mediated by 

Rad55/Rad57 and RPA is displaced. Once the homologous donor sequence is 

located, strand invasion (annealing) between donor DNA and the incoming 

Rad51 nucleoprotein filament is facilitated by the chromatin remodeling, DNA 

unwinding activities of Rad54 protein, yielding a heteroduplex DNA intermediate 

often referred to as a joint molecule.A dual side-by-side foci localization of Rad51 

and Dmc1 has been observed in a subset of wild type nuclei during meiosis 

(Shinohara et al., 2000), suggesting that the two recombinases assemble onto 

opposite DSB-ends.  

Dmc1 is a meiosis specific protein required for normal homolog pairing and 

SC formation. The assembly of Dmc1 nucleoprotein filament requires a lower-

order oligomer of Rad51 (Gasior et al., 2001) and is strictly dependent on the 

meiosis specific Mei5-Sae3 complex (Hayase et al., 2004). The requirement of 

Mei5-Sae3 complex for the assembly of Dmc1 has also been tested in vitro 

(Ferrari et al., 2009).  

As well as Rad51, Tid1/Rdh4 and Rad54 DNA translocases also promote 

strand-exchange reactions by biasing the assembly of Dmc1–filaments onto 

single-stranded DSB tails (Holzen et al., 2006). But homolog pairing and strand-

exchange completely fail in the absence of the conserved Hop2 and Mnd1 

proteins in budding yeast. It has been proposed that Hop2-Mnd1 binds along 



chromosomes and /or at the branch point created during nascent D-loop 

formation and facilitates recombination (Zierhut et al., 2004; Petukhova et al., 

2005; Henry et al., 2006).  

 

Formation and resolution of double Holliday Junctions 

(dHJs) (pro-crossover factors) 
  
The Rad51 and Dmc1 nucleoprotein filaments serve to find a 

complementary sequence within a homologous chromosome, at which they 

instigate single-end strand invasions to generate the D-loop recombination 

intermediates. If the primary invasion step is stabilized (SEIs) and the second 

end of the original DSB captured, a double Holliday junction (dHJs) is formed, 

which can be resolved to generate either a non-crossover or an interhomologue 

crossover (Schwacha and Kleckner, 1995; Allers and Lichten, 2001a; Bishop and 

Zickler, 2004) (Figure 3).  

 In contrast, when the strand invasion is transient and when only a limited 

amount of DNA synthesis occurs before the invaded strand dissociates and 

anneals to its partner strand(annealing of the two DSB-ends), as in mitotic 

synthesis-dependent strand annealing (SDSA), non-crossover is formed. But, 

using an elegant ectopic recombination system, Allers and Lichten have 

demonstrated that in budding yeast, SEIs and dHJs are exclusively crossover 

intermediates and that non-crossover heteroduplex products are formed with the 

same timing as dHJs, consistent with the idea that crossover and non-crossover 

are formed through distinct pathways (Allers and Lichten, 2001a).  

 Analysis of ZMM mutants (discussed in section I.5) further indicates that 

the decision between crossover and non-crossover is very early at or prior to the 

establishment of a stable single-end invasion intermediate, that is at the 

leptotene–zygotene transition (Bishop and Zickler, 2004; (Hunter and Kleckner, 

2001; Borner et al., 2004). In addition to ZMM proteins which promote the major 

crossover pathway in budding yeast, probably by facilitating the stable formation 



of recombination intermediates, the structure-specific endonuclease complex 

between mutagenesis sensitive 81 (Mus81) and Mms4 (Mus81/Mms4 complex) 

is responsible for generating a subset of crossovers (de los Santos et al., 2003; 

Argueso et al., 2004).  

Recently, a number of resolvases that also possess the biochemical activity 

to resolve Holliday junctions have been identified in various organisms. The 

human resolvase XPG-like endonuclease1 (GEN1), and its budding yeast 

orthologue Yen1 have been shown to have a symmetrical cleavage activity on 

Holliday junctions (Ip et al., 2008); furthermore Blanco and coworkers have also 

demonstrated that Yen1 has functional overlap with Mus81 (Blanco et al., 2010).  

A role in resolving Holliday junctions has also been reported for the 

Drosophila protein Mus312. orthologous of the synthetic lethal of unknown 

function 4 (SLX4) protein. Slx4 interacts with Slx1, and the Slx4-Slx1 complex 

was shown to possess a robust Holliday junction cleavage activity in vitro (Fekairi 

et al., 2009; Svendsen et al., 2009), these authors proposed that Slx4 could acts 

as a platform for different structure-specific endonucleases that are most likely to 

serve both in meiosis and in DNA repair. 

 

Crossover suppressors (anti-crossover factors)  
 

 In contrast to factors described above, that promote crossover 

recombination, several proteins such as the Sgs1 helicase, suppresses the 

formation of multi-chromatid joint molecules during meiosis; thereby preventing 

the formation of aberrant crossing over (Oh et al., 2007), Jessop and coworkers 

have proposed that Sgs1 is normally antagonized by the ZMM proteins (Jessop 

et al., 2006). In addition to Sgs1, it has also been reported that Mph1 possess 

biochemical abilities (Prakash et al., 2009) similar to the C. elegans anti-

recombinase RTEL-1 which has the ability to disrupt D-loop recombination 

intermediates in vitro (Barber et al., 2008; Youds et al., 2010).  



 

Inter-homologue bias 
 

The stable recombination intermediate must have engaged the homologous 

duplex and not the sister chromatid for proper chromosome segregation. Several 

proteins participate in the barrier to intersister recombination.  

In budding yeast, phosphorylation of the axial element protein Hop1 by 

Mec1/ Tel1 (Carballo et al., 2008), triggers the dimerization of Mek1 kinase which 

then phosphorylates its target proteins that prevent the repair of DSBs using the 

sister chromatid as a template (Niu et al., 2005b). The meiosis-specific cohesin 

subunit Rec8 promotes sister bias at the very early stage of meiotic prophase I, 

and Red1/Mek1 promote homolog bias by counteracting this effect (Kim et al., 

2010).  

 Importantly, the axial element Red1 can bind SUMO (small ubiquitin like 

modifier) polymeric chains.The Red1-SUMO interaction is essential for Hop1 

phosphorylation by Mec1/Tel1 (Lin et al., 2010). Mek1 also inhibits Rad51 activity 

by attenuating the formation of the Rad51-Rad54 complex; and it is thought that 

with less active Rad51, the activity of Dmc1 is favoured (Niu et al., 2009). 

  

1.5 The synapsis initiation complex 
  

Chromosome synapsis culminates in the formation of the synaptonemal 

complex (SC) during meiotic prophase I (von Wettstein et al., 1984). Prior to SC 

formation, each homolog begins to develop a dense, proteinaceous core called 

an axial element.  

In budding yeast, synapsis initiates at one or more sites on each homolog 

pair before the chromosomes have developed full-length axial cores (Padmore et 

al., 1991). The Zip1 protein serves as the major building block of the SC central 

region (Sym et al., 1993). In zip1 mutant, axial cores are formed and are 

homologously paired (closely connected at multiple sites termed axial 



associations) but not intimately synapsed. It has been shown that the formation 

of axial associations depends on meiotic recombination and that proteins 

involved in the initiation of chromosome synapsis localize to axial associtions; 

suggesting that these connections are also the sites where synapsis initiates 

(Scherthan et al., 1992; Rockmill et al., 1995; Chua and Roeder, 1998; 

Tsubouchi et al., 2006). 

But Tsubouchi and coworkers have recently shown that centromeres are 

preferred sites for the initiation of synapsis in budding yeast and that initiation of 

synapsis at centromeres is independent of the Zip3 protein, which plays a major 

role in synapsis initiation events at noncentromeric locations (Tsubouchi et al., 

2008). Polymerization of Zip1 along the lengths of homologs required a protein 

assembly referred to as the Synapsis Initiation Complex (SIC), SIC components 

include; Zip2, Zip3, Zip4/Spo22, Spo16, Mer3 and Msh4-Msh5 (Shinohara et al., 

2008)  

 

Zip1 
 

Zip1 is the major building block of the transverse filament of the 

synaptonemal complex (SC) in budding yeast (Sym et al., 1993).. At the 

sequence level, transverse filaments are poorly conserved but share a broadly 

similar secondary structure; a long coiled-coil flanked by globular C- and N-

termini (Dong and Roeder, 2000). Zip1 protein contains three potential coiled-coil 

domains and is phosphorylated at serine75 (Zip1-S75) by the ATR-like 

checkpoint kinase Mec1 (Falk et al., 2010b). Importantly, Zip1-S75 

phosphorylation does not affect chromosome synapsis or DSB repair, instead, 

this phosphorylation event is required to destabilize early homology-independent 

centromere pairing in response to the initiation of meiotic recombination (Falk et 

al., 2010a). Zip1 polymerization along the lengths of homologs required its 

selective interaction with the small ubiquitin-like modifier (SUMO) polymer as a 



non-null allele of UBC9 gene, which encodes the SUMO-conjugating 

enzyme,impairs chromosome synapsis (Hooker and Roeder, 2006)  

 

Zip2 
 

The meiosis specific Zip2 protein localizes to discrete foci on meiotic 

chromosomes and these foci correspond to axial associations sites, which 

closely connected pair of homolog. Zip2 localization to chromosomes required 

the initiation of meiotic recombination. Zip1 protein fails to localize to 

chromosomes in zip2 mutant (Chua and Roeder, 1998). 

Zip2 is a poorly conserved WD-like repeat protein and could serve as the 

platform for protein–protein interaction or more specifically could bind multiple 

substrates simultaneously (Voegtli et al., 2003; Perry et al., 2005a). It was shown 

by 2-hybrid analysis, that Zip2 interacts with Zip3 and Cdc53, the cullin 

component of SCF-type (Skp1-Cullin-F box) ubiquitin E3 ligase (Willems et al., 

2004); these results have led to the proposal that Zip2, Zip3 and Zip4 comprise a 

multisubunit ubiquitin E3 ligase (Perry et al., 2005b).  

 

Zip4/Spo22 
 

Zip4/Spo22 is a meiosis specific protein required for synapsis. Unlike in zip2 

mutant, Zip1 localizes to meiotic chromosomes in the absence of Zip4 (in zip4 

mutant) but fails to elongate. Localization of Zip4 to chromosomes is partially 

dependent on Zip3. Zip2 and Zip4 proteins are mutually dependent for their 

localization on meiotic chromosomes; suggesting that these two proteins may 

work as a functional unit (Tsubouchi et al., 2006). 

Zip4/Spo22 encodes a conserved large TPR-repeat protein (Tetratrico- 

peptide repeat). These TPR-repeats are thought to mediate protein-protein 



interactions required for the assembly of multiprotein complexes (Perry et al., 

2005b). 

Zip3 
 

Zip3 protein is a SUMO E3 ligase required for the assembly of the 

synaptonemal complex (SC). Sumoylation of target proteins is required for timely 

SC formation.  

Synapsis is delayed significantly in ubc9-t which is a non-null allele of the 

essential SUMO E2 conjugating enzyme UBC9 in budding yeast. Localization of 

Zip2 and Zip4/Spo22 to meiotic chromosomes depend on Zip3 and it has been 

proposed that Zip3 acts upstream of the other SIC proteins to promote synapsis 

at non-centromeric sites (Agarwal and Roeder, 2000; Hooker and Roeder, 2006; 

Cheng et al., 2006) but initiation of synapsis at centromeres is independent of 

Zip3 (Tsubouchi et al., 2008). Recently, MacQueen and Roeder have shown that 

Zip3 and the proline isomerase Fpr3 ensure that SC formation is dependent upon 

recombination initiation (Macqueen and Roeder, 2009a; Macqueen and Roeder, 

2009b). 

Zip3 is a conserved RING-finger protein which interacts with several SC 

and recombination proteins, including Zip1, Zip2, Msh5, Mre11 and Rad57 

Agarwal and Roeder, 2000 ; Jantsch et al., 2004; Perry et al., 2005b) 

Spo16 
 

Spo16 is a meiosis-specific protein required for SC formation. In spo16 

mutant, crossover formation and chromosome synapsis are impaired. But unlike 

other ZMM mutants, the residual crossovers formed in spo16 and zip4/spo22 

mutants show interference comparable to that in the wild type. In addition, the 

assembly of the MutS homologs Msh4 and Msh5 occurs in the absence of Spo16 

and Spo22 (Shinohara et al., 2008). 



 

Mer3, Msh4 and Msh5 
 

Meiotic recombination 3 (Mer3) and mismatch repair defective 4 and 5 

(Msh4 and Msh5, respectively), as other ZMM members also promote crossovers 

by probably facilitating the stable formation of recombination intermediates 

(Ross-Macdonald and Roeder, 1994; Hollingsworth et al., 1995). Snowden and 

coworkers have proposed that Msh4-Msh5 heterodimer acts as a clamp to hold 

homologous chromosomes together, stabilising thereby the Holliday junction and 

facilitating crossing over (Snowden et al., 2004).  

Mer3 is an ATP dependent 3´-5´ DNA helicase that stimulates Rad51-

mediated DNA heteroduplex extension, thereby promoting the formation of SEIs 

and dHJs (Nakagawa and Ogawa, 1999; Borner et al., 2004; Mazina et al., 

2004). Mer3, Msh4 and Mlh1 have recently been shown to play additional roles in 

homologous chromosome pairing, by avoiding entanglements (interlocks) of 

homologs during alignment and their resolution respectively (Storlazzi et al., 

2010a).  

 

 

I.6 The synaptonemal complex (SC) 
 

The synaptonemal complex(SC) is a tripartite proteinaceous structure that 

connects paired of homologous chromosomes in most organisms. The SC 

consists of two axial elements (derived from axial elements) connected by a 

central region (element) or transverse filaments.  

 

The axial elements (AE)  
 



The axial element constitutes the rod-like homologue axis along which the 

chromatin loops of sister chromatids are organized (Figure 4). Evidence supports 

the hypothesis that the cohesin complex function in LE formation by forming an 

axial chromosome core on which LE proteins bind and assemble (Klein et al., 

1999). The isolation of a meiosis-specific allele of YCS4 that is defective in 

recruiting SC proteins, chromosome pairing has also involved the condensin 

complex in LE assembly (Yu and Koshland, 2003b). 

In S.cerevisiae, a normal SC does not form in hop1 and red1 mutants. The 

fact that, only fragments of LEs can be form in hop1 mutant or that LEs are 

completely absent in red1 mutant, implicated these proteins in the assembly of 

LEs (Rockmill and Roeder, 1990; Loidl et al., 1994). A physical interaction of 

Red1 with Mek1 further involved Mek1 kinase in normal assembly of synapsis 

(Rockmill and Roeder, 1991). 

 

The transverse filaments 
 

Proteins that form the transverse filaments of the SC have been identified in 

several species. These proteins include : C(3)G, SCP1, Zip1, SYP-1 and SYP-2 

respectively in Drosophila melanogaster (Page and Hawley, 2001), in 

mammalian species (Meuwissen et al., 1992), in S.cerevisiae (Sym et al., 1993), 

and in C.elegans (MacQueen et al., 2002a). The common feature of these 

proteins is that they all share a predicted coiled coils secondary structure 

eventhough they differ greatly at the primary amino acid sequences level (Page 

and Hawley, 2004). 

Immunolocalization by EM has suggested that Zip1 protein forms parallel 

dimers through its coiled coil regions and align between homologous 

chromosomes with the C termini along the LEs and with the N-termini from 

opposing dimers interacting in an antiparallel manner across the center of the SC 

to form the transverse filaments (Dong and Roeder, 2000) (Figure 4). 



Accordingly, deletion of 34 amino acids (791-824) within the C-terminal globular 

domain of Zip1 prevents the protein from assembly onto the chromosome, and 

similarly an in-frame deletion that removes the N-terminal half of the coiled coil 

domain also prevents synapsis. Importantly, partial deletions that remove the C-

terminal half of the coiled coil domain or the N-terminal globular domain of Zip1 

do not affect synapsis (Tung and Roeder, 1998).  

 

Mechanism of SC formation 
 

In budding yeast, SC initiation occurs at centromeric as well as at non 

centromeric locations (Tsubouchi et al., 2008). It has been shown that the protein 

Red1 can binds Smt3 chains (the yeast small ubiquitin-like modifier (SUMO)) like 

Zip1 the major SC central element component. The Red1-Smt3 interaction then 

facilitates firstly the recruitment of Zip1 and Zip3 for SC initiation and secondly 

promotes the phosphorylation of Hop1 by Mec1/Tel1 upon DSB formation. Hop1 

phosphorylation prevents inter-sister recombination to ensure interhomologue 

recombination (Lin et al., 2010).  

SC initiation at centromeric sites is independent of the SUMO E3 ligase 

Zip3 (Tsubouchi et al., 2008). Other SUMO E3 ligases such as Siz1, Siz2 or 

Mms21 have been involved in Zip1-Smt3 interaction at centromere (Cheng et al., 

2006). After the initiation of SC, other ZMM proteins have been proposed to act 

as chaperone-like machinery to promote the perpendicular alignment of Zip1 

along two axial elements during SC elongation (Cheng et al., 2006). SC 

elongation might involve an interaction between the Red1-Smt3 chains and Zip1 

C-termini globular domains (Cheng et al., 2006; Hooker and Roeder, 2006; Lin et 

al., 2010).  

 

Roles of the synaptonemal complex (SC)  
 



In most organisms including the budding yeast, mutants that fail to form the 

mature SC are also defective in crossover formation suggesting that the full 

length SC plays a role in the maturation of recombination intermediates (SEIs to 

dHJs, dHJs to crossovers) to crossovers (Blat et al., 2002). 

It has also been shown that the full length SC is required to maintain or 

stabilize the initial pairing of homologs in C.elegans as cell progresses through 

meiosis (MacQueen et al., 2002a). In order to ensure the segregation of 

achiasmate homologs in some organisms such as the Bombyx mori females, a 

modified form of the SC is maintained until the separation of homolog at 

anaphase I (Zickler, 1999). 

 

Evolutionary conservation of the SC 
 

The synaptonemal complex (SC) is a highly conserved feature of meiosis. 

But in several organisms including S.pombe, Drosophila melanogaster males 

and Aspergillus nidulans, homologous chromosomes pairing occurs normally but 

a typical tripartite proteinaceous SC structure is not formed.  

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 



 
 
 



I.7 Checkpoint control: surveillance mechanisms of the meiotic 
divisions 

  
DNA breakage is required to connect homologous chromosomes during 

meiosis. In the absence of interhomolog crossovers, homologous chromosomes 

segregate randomly during the first meiotic division (MI) and the resulting 

aneuploidies cause lethality. In rare cases, a disomic germ cell can progress to 

yield a individual carrying a trisomy. In humans most trisomies are embryonic 

lethal, but trisomy 21 is the most frequent congenital source of mental retardation 

in humans. Various surveillance mechanisms function also during meiosis to 

coordinate the formation and repair of DSBs with the cell cycle progression.  

 

Double-Strand-Breaks are coordinated with premeiotic 
replication  

 
The intra S-phase checkpoint monitors fork stalling and other irregularities 

during replication and reacts by downregulating Ddk and Cdc45, in effect slowing 

down further replication. In the presence of stalled replication forks as a result of 

hydroxyurea treatment or mutations in ribonucleotide reductase, DSBs are not 

formed (Borde et al., 2000b; Smith et al., 2001a; Tonami et al., 2005). This is a 

local phenomenon as a delay in DNA replication on one arm of chromosome III 

specifically delayed DSB formation on that arm but not on other chromosomes 

(Borde et al., 2000a).  

However, replication is not absolutely required for DSB formation, as 

inactivation of CDC6 in meiosis blocks the firing of origins of replication, but 

allows DSB formation (Hochwagen and Amon, 2006). The activity of S-phase 

CDKs (Clb5/6-CDK) is required to couple the completion of DNA replication to 

DSB formation (Smith et al., 2001a). Accordingly, it has also been shown that 

pre-meiotic DNA replication is coupled to DSB formation by a sequential 

phosphorylation of Mer2 protein on the adjacent serines S30 and S29 

respectively by Cdc28-Clb5 and Cdc7-Dbf4 kinases (Henderson et al., 2006; 



Wan et al., 2008b). It was proposed that the coupling between S-phase and DSB 

formation occurs during passage of the replication fork, which recruits Cdk and 

Ddk to phosphorylate and activate Mer2 (Murakami and Keeney, 2008). Recently 

it was shown that Mer2 indeed binds to its chromosomal sites independent of 

replication, but only is able to recruit the rest of the DSB machinery upon 

activation by these kinases (Panizza et al., 2011). Activation in the absence of 

replication is explained by diffusion of kinases, which will eventually also activate 

the DSB machine. 

 

The pachytene checkpoint 
 
In meiotic prophase a typical consequence of a checkpoint arrest or delay is 

inhibition of Ndt80 expression. This will delay or suppress pachytene exit and is 

the reason for the name of this checkpoint. Typical lesions that elicit such a 

response can be unprocessed DSBs, single stranded DNA termini or lesions left 

over from S-phase. Unresolved joint molecules do not elicit such a response. 

Also, even though proposed multiple times, there is no indication that unpaired 

chromosomes can trigger a checkpoint response.  

A number of mutations, which allow the initiation of meiotic recombination 

but block the processing of recombination intermediates have been 

characterized. These include a set of non-null alleles of RAD50 (rad50S) (Alani 

et al., 1990), a null mutation of COM1/SAE2 (Prinz et al., 1997)(McKee and 

Kleckner, 1997), and mre11S (Nairz and Klein, 1997). In these mutants, Spo11 

remains covalently bound to the DSBs ends and breaks are not resected.  

It has been suggested that the MRX complex (Mre11/Rad50/Xrs2) and Tel1 

are the primary sensors of this checkpoint (Usui et al., 2001), and the signal is 

then relayed through Rad9 and Mek1 to downstream targets.  

Mutants that are defective in the initial strand-invasion step of meiotic repair 

such as dmc1 (Bishop et al., 1992), hop2 or mnd1 (Zierhut et al., 2004), 

accumulated hyperresected DSBs that leads to large amounts of Rad51-coated 



ssDNA. It has been suggested that the Rad51 nucleoprotein filament may 

constitute a signal recognised by the recombination checkpoint. Tel1 and Rad9 

are not essential for this checkpoint (Lydall and Weinert, 1996), however cells 

lacking HOP1, RED1 or MEK1 are completely defective in this checkpoint 

response (Hochwagen and Amon, 2006). And the checkpoint response is also 

reduced in cells lacking DOT1 (San-Segundo and Roeder, 2000a). The meiotic 

recombination checkpoint delay is brought about by the inhibition of CDK and by 

preventing Ndt80 expression. The activity of the phosphatase PP1/Glc7 would 

allow cells to bypass the checkpoint delay (Roeder and Bailis, 2000), if not for its 

inhibitor, the FK506 binding protein Fpr3. Fpr3 associates with and antagonizes 

the phosphatase PP1/Glc7 function during meiotic recombination (Hochwagen et 

al., 2005b).  

In ZMM mutants (at both 23°C and 33°C), cells undergo a temperature-

dependent delay during meiotic recombination (Sym et al., 1993; Chua and 

Roeder, 1998; Agarwal and Roeder, 2000; Borner et al., 2004). Although, it is not 

known what may constitute the signal recognised by the zip1 checkpoint, it has 

been demonstrated that the ATPase Pch2 is required, as the inactivation of Pch2 

eliminates the cell-cycle delay of zip1∆, zip2∆ mutants (San-Segundo and 

Roeder, 1999). 

 



1.8 Aims of this study 
 
During meiotic prohase I, homologous chromosomes must align. The 

molecular mechanism(s) of homologs pairing is not completely understood. 

Initiation of meiotic recombination is a prerequisite for chromosome alignment 

and synapsis in budding yeast. Chromosome synapsis initiates at the sites of 

crossing over as well as at centromeres. A subset of protein assembly referred to 

as the synapsis initiation complex (SIC) or ZMM proteins is required for 

polymerization of Zip1 along the lengths of chromosomes, but Zip3 is 

dispensable for synapsis initiation at centromeres (Chua and Roeder, 1998; 

Tsubouchi et al., 2006; Tsubouchi et al., 2008). 

It has been proposed that Zip1 polymerization along the entire length of 

homologs requires its interaction with the Red1-Smt3 (Red1-SUMO polychain) 

complex and that other SIC proteins act as chaperone-like machinery to promote 

SC elongation (Hooker and Roeder, 2006; Lin et al., 2010). However, the 

detailed molecular mechanism(s) of SC initiation and elongation remains 

unknown. The role of SC formation is still debated and enigmatic. Synapsis might 

provide a means to prevent chromosome interlocking. Several lines of evidences 

suggest that CO formation and interference between them are not absolutely 

dependent on SC formation, even though they depend on ZMM factors, which 

also promote synapsis. 

We set out to determine the role of all non-essential genes in SC-formation 

and elongation. To this end, we have analyzed strains deleted for 3600 non-

essential ORFs in budding yeast for their requirement in synapsis. We modified 

the BY-based deletion library, by introducing the well sporulating SK1 strain 

background and the Rec8-HA epitope tag to visualize chromosome axes. We 

used IF-staining of chromosome spreads at a single time point to systematically 

analyze synapsis and categorized the mutants by the extent of their ability to 

synapse.  

 



2 Materials and Methods 
 

2.1 Media and Solutions 
 

All media, solutions and equipments detailed in this chapter were sterilized 

by autoclaving at 121°C at 1.5bar for 15-25 minutes or by baking at 180°C for 3 

hours. Heat unstable Media and solutions (e.g. amino acid solutions) were 

sterilized by filtration using sterile 0.20 µm filter (Iwaki/Asahi Technoglass #2052-

025) and a sterile 50 ml syringe (Sarstedt, #62 547 254).  

2.1.1 Solid Media 

Bacteriological Agar (Agar; Oxoid, # LP0011) was always put directly into 

glass bottles containing a magnetic stir bar. The premixed medium was then 

added and the bottles were autoclaved. After autoclaving, the bottle was kept on 

a magnetic stirrer to cool down below 65°C and it was poured into sterile petri 

dishes (Sarstedt petridishes 8.4cm #821473) and left for about 2 days at room 

temperature to dry. The plates were then stored at 4°C.  

YPD plates  
 

  2% (w/v) Agar (Agar; Oxoid, # LP0011) 

  Then add mixed with deionized water: 

  1% (w/v) Yeast extract (Oxoid, # LP0021) 

  2% (w/v) D(+) - glucose monohydrate (Fluka, # 49159) 

  2% (w/v) Neutralized bacteriological peptone (Oxoid, # LP0034)  

 

 
 
 
G418 (Geneticin) plates 
 



G418 plates are used to select for the heterozygous dominant marker 

KanMX (kanamycin) cassette that confers resistance to G418 by coding for an 

aminoglycoside phosphotransferase which interferes with ribosome function and 

protein synthesis in eukaryote and procaryote.  

Follow the YPD plate recipe. 

After autoclaving and cooling the medium to 65°C, add 1 ml per liter 

medium of the G418 stock solution (200 mg/ml, G418 sulphate, Calbiochem, # 

345810) and mixed well.  

 
ClonNAT (nourseothricin) plates 
 

Nourseothricin is an antibiotic that can be used to select for the presence of 

NatMX marker cassettes, encoding a nourseothricin N-acetyle transferase which 

confers resistance to the antibiotic. 

 
Follow the YPD plate recipe. 

After autoclaving and cooling the medium to 65°C, add 0.5-1 ml per liter 

medium of the ClonNAT stock solution (200 mg/ml, ClonNAT, dihydrogen 

sulphate, Werner BioAgents #5.0000) and mixed well.  

 
Cycloheximide plates 
 

Cycloheximide is an antibiotic that can be used to select for mutants who 

carry a recessive mutation (cyh2 mutant) in the CYH2 gene encoding for the L29 

ribosomal subunit. Cycloheximide binds to wild type ribosomes and blocks further 

elongation of nascent polypeptide chains, blocking protein synthesis altogether. 

Because of these properties, the CYH2 gene can be used as a dominant 

negative marker in the presence of cycloheximide. 

  

Follow the YPD plate recipe. 



After autoclaving and cooling the medium to 65°C, add the cycloheximide 

stock solution (10 mg/ml, Sigma, # C-1988) to a final concentration of 5-10mg 

per litre medium and mixed well. 

 
5-FOA (5-Fluoro-Orotic acid) plates 
 

5-FOA can be used to select for mutants who fail to utilize orotic acid as the 

source of the pyrimidine ring. Wild type cells would convert 5-FOA to 

fluorodeoxyuridine which is quite toxic to the cell. Both ura3 and ura5 null 

mutants can grow on 5-FOA containing medium, but in practice, only ura3 mutant 

appears to be uracil auxotroph. 

 

2% (w/v) Agar (Agar; Oxoid, # LP0011) 

Mix with one half amounts of water, autoclave and cool to 65°C. 

Then mix following ingredients with second half of water, filter sterilize and 

add to autoclaved agar: 

0.17% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o  

ammonium sulfate (Difco, # 233520 [ 0335-15 ]) 

0.50% (w/v) Ammonium sulfate (Calbiochem, # 168356) 

2% (w/v) D(+)-glucose monohydrate (Fluka, # 491591) 

50 mg Uracil (Sigma, # U-0750) per litre 

1% URA- drop out mix (see table 1)  

0.10% 5-FOA (5-Fluoro-Orotic acid, BTS Bio Vectra, # 1555) 

adjust to pH 4.8 with NaOH 

 

 
 
ADE-,TRP-,and URA- drop out plates 



 
Drop out media allows testing of yeast strains for specific auxotrophie 

(auxotrophic markers). A specific media composition is used in which each of the 

exhibited auxotrophies is supplemented except the one of interest (the drop out 

marker). 

 
2% (w/v) Agar (Agar; Oxoid,, # LP0011) 

Then add mixed with water: 

0.17% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o ammonium 

sulfate (Difco, # 233520 [ 0335-15 ]) 

0.5% (w/v) ammonium sulfate (Calbiochem,, # 168356) 

2% (w/v) D(+)-glucose monohydrate (Fluka,, # 491591) 

1.10% (w/v) Bacto-casamino acids(Difco, # 223120 [ 0231-17 ]) 

Add then: 
50 mg L-tyrosine (Sigma, # T-3754) per litre 

50 mg Adenine (Sigma,# A-3159) per litre; (Not added for ADE- plates) 

50 mg Uracil (Sigma, # U-0750) per litre; (Not added for URA- plates) 

Adjust to pH 5.8 with NaOH 

 
After autoclaving and cooling the medium to 65°C, 
 

5 ml of sterile 1% (w/v) L-Leucin (Sigma, # L-8000) 

5 ml of sterile 1% (w/v) L-Tryptophan (Sigma, # T-0254); (Not added for 

TRP- plates)  

are added per litre and mixed well. 

 
 
 
 
HIS-,LYS-, LEU-, and ARG- drop-out plates 



 
2% (w/v) Agar (Agar; Oxoid, # LP0011) 

Then add mixed with water: 

2% (w/v) D(+)-glucose monohydrate (Fluka, # 491591) 

0.30% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o ammonium 

sulfate (Difco, # 233520 [0335-15]) 

0.50% (w/v) Ammonium sulfate (Calbiochem, # 168356) 

 
Add then: 

60 mg Adenine (Sigma, # A-3159) per litre 

60 mg Tyrosine (Sigma, # T-3754) per litre 

60 mg Uracil (Sigma, # U-0750) per litre 

adjust to pH 5.8 with NaOH 

 
After autoclaving and cooling the medium to 65°C, 10 ml of the sterile 100x 

HIS-, LYS-, LEU-, or ARG- drop-out mix (see Table 1) were added per litre of the 

medium and mixed well. 

Table 1: Recipe for 100x drop-out mix. 
 
  Amino acid   Amount in mg/ml 

L-Adenine (Sigma, # A-3159) 
L-Arginine (Sigma, # A-5131) 
L-Histidine (Sigma, # H-8125) 
L-Isoleucine (Sigma, # H-8125) 
L-Leucine (Sigma, # L-8000) 
L-Lysine (Sigma, # L-5751) 
L-Methionine(Sigma, # M-9625) 
L-Threonine (Sigma, # T-8625) 
L-Tryptophan(Sigma, # T-0254) 
L-Uracil (Sigma, # U-0750)  

                 2.0 
2.0 
1.0 
6.0 
6.0 
4.0 
1.0 
5.0 
4.0 
2.0 

 



Each specific drop-out solutions has the appropriate amino acid omitted. 

after dissolving the ingredients in distilled water, the drop-out solution was filter 

sterilized (0.2 µm filter) and stored at 4°C in the dark. 

 
SPM plates 
 

2%(w/v) Agar (Agar; Oxoid, #LP0011) 

Then add mixed with water: 

1% (w/v) Potassium acetate (Merck, #104820) 

adjust to pH 7.0 with acetic acid (Not really required) and autoclave. 

 
When setting the meiotic time course experiment, the SPM liquid medium is 

supplemented with aminoacids (1/5 of the usual amount) and 0.1% (v/v) of a 1% 

polypropylene glycol stock (1%(v/v) polypropylene glycol P2000, Fluka #81380 in 

distilled water then autoclave and store at room temperature). Amino acids stock 

(1.5% Lys, 2% His, 2% Arg, 1% Leu, 0.2% Ura. 1% Trp) filter-sterilized and 

stored in the dark at +4°C. Use 320µl of amino acids stock per 100ml SPM 

media. 

 
YPG plates 
 

YPG is a complex medium containing a non-fermentable carbon source 

(glycerol) which can not support the growth of respiratory deficient mutants such 

as pet- (petite) mutants. 

2% (w/v) Agar (Agar; Oxoid, #LP0011) 

Then add mixed with water: 

3% (v/v) Glycerol (100%; Sigma, #G7757) 

1% (w/v) Yeast extract (Oxoid, #LP0021) 

2% (w/v) Neutralized bacteriological peptone (Oxoid, #LP0034) 



 
 
SM plates 
 

SM is a synthetic minimal medium containing all ingredients ; salts, trace 

elements, vitamins, a nitrogen and carbon sources; but amino acids. Therefore, 

only prototrophic cells can grow on SM plates. 

2% (w/v) Agar (Agar; Oxoid. #LP0011) 

then add mixed with water: 

0.17% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o ammonium 

sulfate (Difco, #233520 [ 0335-15 ]) 

0.50% (w/v) Ammonium sulfate (Calbiochem, #168356) 

2% (w/v) D(+)-glucose monohydrate (Fluka, #491591) 

adjust to pH 7.0 with NaOH 

 

2.1.2 Liquid media 

For all yeast liquid media, Bacteriological agar (Oxoid, #LP0011) is omitted 

(see section 2.1.1).  

GNA pre-sporulation medium 
 

This medium is for pre-sporulation growth boost in the BY-SK1 K.O. library 

screen.  

1% (w/v) Yeast extract (Oxoid, #LP0021) 

5% (w/v) D(+)-glucose monohydrate (Fluka, #491591) 

0.17% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o ammonium 

sulfate (Difco, #233520 [ 0335-15 ]) 



0.1 - 0.25% (w/v) L-Glutamic acid monosodium salt monohydrate (MSG; 

Sigma, # G283-4) 

adjust to pH 5.8 with NaOH 

 
 
BY-SK1 hybrid drop-out medium 
 

This medium is used in the BY-SK1 hybrid screen for the selection of the 

desired genetic marker combinations of sporulated diploid hybrid strains.  

Mix following ingredients with water and filter sterilize or autoclave. 
 

0.17% (w/v) Bacto-yeast nitrogen base w/o amino acids and w/o ammonium 

sulfate (Difco, #233520 [ 0335-15 ]) 

0.25% (w/v) L-Glutamic acid monosodium salt monohydrate (MSG; Sigma, 

# G283-4) 

2% (w/v) D(+)-glucose monohydrate (Fluka, #491591) 

50 mg Uracil (Sigma, # U-0750) per litre 

Add amino acids according to desired selection 

adjust to pH 5.8 with NaOH 

Add antibiotic and chemical to desired selection (always after autoclaving 

the media and cooling down to 65°C):  

0.30% Cycloheximide (Sigma, # C-7698) 

0.10% 5-FOA (5-Fluoro-Orotic acid, BTS Bio Vectra, # 1555) 

0.10% G418 (G418 sulphate, Calbiochem, #345810) 

 
Antibiotics stocks are prepared using deionized water, 
filter-sterilized and stored at -20°C. 
 
 
 



SPS pre-sporulation medium 
 

This medium is used to prepare yeast cells for sporulation, when a high 

efficiency of synchrony is needed during sporulation, 

 
0.5%(w/v) Yeast extract (Oxoid, #LP0021) 

1% (w/v) Peptone (Oxoid, #LP0034) 

0.17% (w/v) Yeast nitrogen base w/o amino acids and w/o ammonium 

sulphate (Difco, #233520) 

1% (wiv) Potassium acetate (Merck, #104820) 

0.5% (w/v) Ammonium sulphate (Merck, #101217) 

0.05M Potassium biphtalate (10.2g/liter) (Merck, #104874) 

adjust to pH 5.5 with KOH 

 
Optionally, a drop of anti-foam is added to prevent excessive foam 

formation, when setting up the yeast pre-sporulation culture (Antifoam A 

concentrate, Sigma #A5633-25G).  

 
 

2.1.3 LB-bacterial culture media 

This complex medium is widely for cultivating Escherichia.Coli bacteria at 

37°C. 

1% (w/v) Peptone (Oxoid, #LP0034) 

0.5% (w/v) Yeast extract (Oxoid, #LP0021) 

1% (w/v) Sodium chloride (Merck, #106404) 

Add 2% (w/v) Bacteriological agar (Oxoid, #LP0011) for solid media  

 



To select for resistance to ampicillin (E.coli carrying the ampicillin marker), 

add to the media 100mg/liter ampicillin (Ampicillin sodium salt, Sigma-Aldrich, 

#A9518). Ampicillin stock concentration of 100mg/ml (in deionized water) is 

prepared, filter-sterilized and stored at -20°C. 

 

2.2 Manipulating Yeast and E.coli strains 
 

2.2.1 Growth and long term storage of Yeast strains 

Yeast cells were grown in liquid culture while agitated (at 200 rpm) or on 

plates at 30°C, or at the indicated temperature for temperature sensitive mutants 

and were harvested and stored in 1:1 glycerol/YPD mix at -80°C. A stock of 1:1 

glycerol/YPD mix is prepared, filter-sterilized and kept at room temperature until 

needed.  

2.2.2 Tetrads dissection and single spores production 

After sporulation at 30°C, cells were suspended in 92µl of sterile water and 

4µl of 0.5M DTT (Sigma, #D-9779) and 4µl of Zymolyase 20T (stock 

concenration: 10mg/ml, Seikagaku, #120491) were added. This mixture was 

incubated at 37°C for 30-60mn; and 1ml of distilled water was added to the 

suspension to stop the reaction and the digested tetrads were then cooled on ice. 

Subsequently, 25µl of the mixture were pipetted onto the upper middle area of a 

YPD plate and the small cell suspension droplet was then forced by gravity to run 

down the agar surface leaving trail of zymolyase digested tetrads. After drying 

the plate for 5 minutes at room temperature, the spores of defined, full tetrads 

were individually separated utilizing a Leitz micromanipulator and the plates were 

incubated at 30°C for 2-3 days before the analysis of individual segregants was 

carried out. 

 

 



When a large number of individual spores is needed or when an homothalic 

yeast strain has to be crossed to haploid yeast, the production of single spores is 

required. After sporulation and tetrads digestion, single spores are produced by 

sonication at lower power. 1.5ml Eppendorf tube containing the digested asci 

was stacked on top of a plastic tube filled with ice and water, cooling the cell 

suspension. The sonicator horn was then sterilized by repeated flaming and the 

spore suspension was sonicated for 5 sec at lower power followed by a 5 sec 

pause (= cooling step). This cycle was repeated until 95% single spores were 

produced.  

2.2.3 Picking zygotes and meiotic time-course experiments  

Meiotic experiments are performed using diploid strains. To produce a 

diploid yeast strain, two haploid strains of opposite mating type were thoroughly 

mixed on a YPD plate and incubated at 30°C for 4-6 hours, single zygotes were 

isolated from the mating mix using a Leitz micromanipulator and this is possible 

because zygotes exhibit a distinct characteristic morphology (dumb-bell shape, 

three-lobes shape). The diploid status was confirmed by testing their ability to 

sporulate and their inability to mate to haploid tester strains (FKY515 and 

FKY516 see appendix). 

To analyse the chronological contiguity of meiotic events, meiotic time-

course experiments were conducted. An aliquot of on -80°C stored diploid yeast 

strain was streaked out on YPD plate for single colonies and left growing for 2-3 

days. A large colony was then streaked onto a YPG plate to test its proficiency 

for respiratory growth and was used to inoculate a 4-5 ml YPD culture which is 

grown for about 24 hours under vigorous agitation (200rpm). 

On the next day, cells were spun down at 3000 rpm for 3 minutes and 

resuspended in 2-5ml of SPS medium and were used to inoculate a desired 

volume of SPS or GNA media to a starting OD660 of 0.1-0.2 which correspond to 

0.2 to 0.4x107 cells per ml culture. The SPS or GNA culture which should not fill 

more than 1/10th of the flask´s volume; was grown for about 13-16 hours under 



vigorous shaking at 200 rpm to reach a cell density of 4x107 cells/ml (OD660 of 

1.1). 

The cells were then spun down and washed once with 1% potassium 

acetate and were finally inoculated in 1% potassium acetate supplemented with 

amino acids mix (320µl/100ml culture) and PPG (polypropylene glycol P2000: 

100µl/100ml culture), to a final density of 4x107 cells/ml (OD660 of 1.1), and this 

corresponds to time point 0-hour of the time course.  

As for the SPS or GNA culture, the SPM culture should not fill more than 

1/10th of the flask´s volume and the time course is carried out under maximal 

shaking (200 rpm) at the desired temperature usually 30°C. 

 2.2.4 Transformation of S.cerevisiae 

One single colony of the strain which should be transformed was grown 

overnight in 50 ml of YPD medium. On the next day the cells were diluted to an 

OD660 of 0.1-0.2 and grown until the cell suspension reached an OD660 of 0.6-0.8 

(= exponential growth range) and were harvested by centrifuging (3mn at 3000 

rpm). The cells were then washed twice with 1ml of 1M Lithium acetate and 

finally transferred in 350µl of 1M Lithium acetate and left incubating for 10-15 

minutes at room temperature. Pipetting for the transformation was carried out in 

the following order: 

 
12µl of the DNA (100-300ng plasmid, 2-5µg PCR generated fragments)  

24µl of the competent yeast cells 

90µl of 50% (w/v) PEG 3350  

8µl of boiled Salmon sperm DNA (10mg/ml, low MW, Fluka 

/BioChemika #31149) 

 
Gently finger flicking was employed to mix all components and the 

suspension was incubated for 35 min at 25°C before adding 6µl of 60%(v/v) 



glycerol (Sigma-Aldrich, #G7757). After another 35 mn incubation at 25°C, the 

cells were heat shocked for 15 minutes at 42°C and plated immediately onto two 

appropriate selection plates or incubated overnight in 1ml YPD medium if the 

construct is carrying a resistance marker (KanMX, NatMX). A second 

transformation procedure was performed in parallel using sterile water in place of 

the used DNA as a negative control.  

Lithium acetate(LiAc) 

1M Lithium acetate (Sigma, #L6883) in deionized H2O 

adjust to pH 7 with acetic acid and filter sterilize 

stored at -20°C 

 

50% PEG 3350 (Polyethyleneglycol)  

1.0g PEG 3350 (Sigma, #P3640) 

2.0 ml deionized H2O 

freshly prepared and filter sterilized 

 

1x TE  

10mM Tris buffer grade (Applichen, #A1086) 

1mM EDTA (Titriplex; Merck, #108417) 

adjust to pH 8 with HCl (Merck, #100319) and filter sterilize 

 
 

2.2.5 Preparation and transformation of competent E.coli  

An overnight culture of E.coli was diluted to 1:200 in 50 ml fresh LB medium 

and grown at 37°C until an OD600 of 0.3-0.6. The cells were collected by 

centrifugation at 3500rpm for 10mn at 4°C and cooled on ice for 5 min. The pellet 



was resuspended in 25 ml of cold sterile 0.1M CaCl2 and incubated on ice for 30 

min. The cells were pelleted at 3500rpm for 10mn at 4°C and resuspended in 2-

5ml ice-cold 0.1M CaCl2. The now competent E.coli cells were mixed 2:1 with 

glycerol, aliquoted in 100µl, frozen in liquid nitrogen and stored at -80°C for up to 

6 months. 

Competent E.coli cells were thawed slowly on ice, 3-5µl plasmid DNA was 

added to 100µl of competent cells and the suspension was mixed by gently finger 

flicking. After 30mn incubation on ice, a 42°C heatshock was applied for 2 min. 1 

ml of LB medium was added and the mixture was incubated for 60min (Ampicillin 

selection) or 3hours (Kanamycin selection) at 37°C under agitation on a 

thermomixer. Cells were then collected by centrifugation for 3 min at 6000rpm, 

the pellet was resuspended in 100µl LB medium and plated onto two appropriate 

selection plates in a ratio of 10:1.  

CaCl2 solution 

0.1M calcium chloride (Merck, #102382) 

15% (v/v) Glycerol (Sigma-Aldrich, #G7757) 

10mM PIPES 

adjust to pH 7.0 

 

2.2.6 Flow Cytometric analysis of yeast cells 

Approximately 1.107 cells (usually 2ml of SPM culture at OD660 :1:100 were 

harvested at indicated meiotic time point and spun down at 3000rpm for 3 

minutes. The pellet was resuspended in 1.5ml ddH2O, 3.5ml of 96% ethanol was 

added, the cells suspension was gently mixed and incubated overnight at 4°C. 

Fixed cells were pelleted at 3000rpm for 3minutes, washed once with 1.5ml 

ddH2O and resuspended in 0.5ml of freshly prepared RNase A solution and 

incubated at 37°C for 6-12 hours. Cells were harvested at 6000rpm for 2minutes 



and resuspended in 200µl of protease solution and digested for 15-20 minutes at 

37°C. Cells were pelleted at 6000rpm for 2 minutes and resuspended in 0.5ml of 

50mM Tris pH 7.5 (after this step cells can be stored at 4°C for a few days (but 

not more than 5 days) or analysed immediately). 

50µl of cells suspension was added to 1ml of Sytox green solution, then 

sonicated at lower power for 15 seconds and analyzed within 3 hours. Before 

each measurement, samples were vortexed thoroughly.  

     

     RNase A solution 

RnaseA (Roche, #10109169001) was prepared at the final concentration of 

2mg/ml in (50mM Tris pH 8.0, 15mM NaCl) solution, boiled for 15mn and cooled 

down slowly at room temperature and stored at -20°C. 

 

     Protease solution 

5mg/ml pepsin 

4.5µl/ml of 32% HCl 

ddH2O to the desired volume 

 

Sytox Green solution 

1µM of Sytox green in 50mM Tris pH 7.5 

 

 



2.3 DNA protocols 

2.3.1 Preparation of Yeast genomic DNA 

«Quick and dirty» DNA preparation for genotyping 
 

5ml of YPD medium was inoculated with a single yeast colony and grown 

overnight at 30°C under shaking (200rpm). On the next day, cells were harvested 

at 3000 rpm for 3mn and resuspended in 200µl of buffer A, 200µl of sterile glass 

beads (Sartoriusstedim #BBI-8541701, 0.4-0.6mm) and 200µl of PCI were 

added. After vortexing at maximum speed for 7mn at 4°C, 200µl of TE buffer 

were added and the cell suspension was again vortexed for 7mn. 

The cell suspension was centrifuged down for 5mn at maximum speed and 

1ml of 96% ethanol was added to the upper phase, after 5mn incubation on ice, 

the precipitated nucleic acid was pelleted at maximum speed for 5mn and 

resuspended in 200µl of TE buffer. RNA was digested by addition of 4µl of 

10mg/ml boiled RNaseA (Roche Applied Science, #109169) and incubation at 

37°C for 30-60mn. 200µl of CI and 200µl of TE buffer were then added and after 

spinning down at maximum speed for 5mn, 20µl of 5M potassium acetate 

(Merck, #106267) and 800µl of 96% ethanol were added to the upper phase, 

after 5mn incubation on ice, the precipitated DNA was pelleted at maximum 

speed for 5mn, washed twice with 70% ethanol, dried and resuspended in 50µl of 

TE buffer. 

     Buffer A 

2% Triton X-100 

1% SDS (Merck, #113760) 

100mM NaCl 

10mM Tris-HCl pH 8.0 

1mM EDTA pH 8.0 

Store at room temperature 



 
Phenol:Chloroform:Isoamylalcohol (PCI) (25:24:1) 

50% (v/v) Phenol, liquefied and Tris saturated pH>7.6 (Biomol, #50734) 

48% (v/v) Chloroform (Merck, #102445) 

2% (v/v) Isoamylalcohol (Merck, #100979) 

Store in the dark at +4°C 

 

Chloroform-Isoamylalcohol (CI) (24:1) 

48% (v/v) Chloroform (Merck, #102445) 

2% (v/v) Isoamylalcohol (Merck, #100979) 

Store in the dark at +4°C 

 
 

Yeast genomic DNA preparation for southern blotting 
 

8ml of 50% glycerol was added to 35-50ml of meiotic culture and mixed 

well. The sample was centrifuged down at 4000rpm for 3mimutes at 4°C and the 

pellet resuspended in 1ml of spheroplasting solution containing 20% glycerol, 

transferred into 2ml Eppendorf tube and spun down for 3minutes at 4000rpm and 

4°C. The cells were frozen in liquid nitrogen or directly stored at -80°C until 

needed. 

The cells were washed with 1ml of ice cold spheroplasting solution, spun 

down at 6000rpm for 3minutes and resuspended in 400µl of Zymolyase solution. 

The cells were digested at 37°C for about 10-20minutes until the large majority 

was spheroplasted, controlled by phase contrast microscopy. The spheroplasts 

were pelleted at 1500g for 3minutes at room temperature and resuspended by 

gently vortexing in 350µl of Tris/EDTA solution, to which, 50µl of 10% SDS 

(Merck, #113760), 12.5µl of 20mg/ml Proteinase K (Roche, #03 115 828 001) 

and 7-8µl of 10mg/ml boiled RNase A were added. The tube was inverted 



several times to mix and finally incubated for 30-60minutes at 55°C. Then after 

adding 350µl of 5M potassium acetate (Merck, #104820) the tube was again 

inverted several times and incubated on ice for 30 minutes (or longer). The 

precipitate was centrifuged down at maximum speed for 10 minutes and the 

supernatant transferred into a new 2ml eppendorf tube. 1 volume of fresh PCI 

was added, vortexed for 5 seconds at full speed, left rotating on a wheel for 10 

minutes and finally spun down for 5 minutes at full speed. The aqueous phase 

was transferred into a new 1.5ml eppendorf tube and 120µl of 3M sodium acetate 

(Merck, #106267) and 1.2ml of 96% ethanol (Merck, #100971) were added to 

precipitate the DNA, the tube was inverted several times and kept on ice for 

30minutes (or longer), then centrifuged down at full speed for 20 seconds. Finally 

the pellet was washed twice with 1ml of 70% ethanol, dried and resuspended in 

50µl 1xTE. 

10x Tris/EDTA solution pH 8.0  

500mM Tris (AppliChen, #A1086) 

200mM EDTA (Merck, #108417) 

pH 8.0 using NaOH (Merck, #106498)  

 

1xTE buffer pH 8.0 

10mM Tris (AppliChem, #A1086) 

1mM EDTA (Merck, #108417) 

pH 8.0 with HCl (Merck, #100319)  

 

Proteinase K (20mg/ml) 

20mg proteinaseK (Roche Applied Science, #03115879001) 

10µl 1M Tris/HCl pH 7.5 

20µl 1M CaCl2 (Merck, #102382) 



500µl glycerol (Sigma-Aldrich, #G7757) 

470µl dH2O 

filter sterilized the solution before adding to proteinase K 

stored at -20°C 

 

Spheroplasting solution with 20% glycerol 

1M sorbitol (Merck, #107758) 

50mM KPO4 buffer pH 7.5 

50mM EDTA pH 7.5 

20% (v/v) glycerol (Sigma-Aldrich, #G7757) 

filter sterilized and stored at 4°C 

 
 

Spheroplasting solution 

1M sorbitol (Merck, #107758) 

50mM KPO4 buffer pH 7.5 

50mM EDTA pH 7.5 

filter sterilized and stored at 4°C 

 

Zymolyase solution 

400µl spheroplasting solution 

6µl ß-mercaptoethanol (Sigma-Aldrich, #M3148) 

100µg 100T zymolyase (Seikagaku, #120493) 

prepared fresh 



 

2.3.2 Plasmid preparation from E.coli 

Plasmid Midi preparation 
 

An E.coli strain carrying a plasmid was grown overnight at 37°C in 50ml LB 

medium supplemented with antibiotic according to the selection marker on the 

plasmid. On the next day, the cells were collected by centrifugation at 3500rpm 

for 20mn and resuspended in 2.5ml of solution 1. 2.5ml of solution 2 was slowly 

added and after 5mn incubation on ice, 2.5ml of solution 3 was added and the 

mix was left for another 5mn on ice. 

The precipitate was then centrifuged down at 3500 rpm for 10mn and the 

supernatant transferred through a funnel of Kim-Wipe (Kimtech science tissue 

wipers, kimberly-clark Professional, #05511) into a new 50ml tube. Nucleic acids 

were precipitated by addition of 20ml isopropanol (Merck, #109634) and 

centrifugation at 3500rpm for 15mn at 4°C. The pellet was resuspended in 750µl 

of 1xTE buffer and the RNA precipitated by addition of 1ml of 5M lithium chloride 

(Merck, #105679), after 5mn incubation on ice, the precipitate was centrifuged 

down at 3500 rpm for 10mn and the supernatant containing the plasmid 

transferred into a new 15ml tube. 

The plasmid DNA was collected by addition of 4ml -20°C cold 96% ethanol 

and centrifugation at 3500 rpm for 10mn. The pellet was resuspended in 300µl 

1xTE and 50µg of boiled RNase A (Roche, #109169) added, incubated for 60mn 

at 37°C. 1 volume of PCI was added and the mix centrifuged down at maximum 

speed for 5mn, the upper phase was transferred into a new 1.5ml tube to which, 

1/10 volume of 3M sodium acetate (Merck, #106267) and 2 volumes of -20°C 

cold 96% ethanol were added. After 30mn incubation at -20°C, the plasmid DNA 

was collected by centrifugation at maximum speed for 10mn at 4°C, washed 

twice with 70% ethanol, dried and resuspended in 100µl 1x TE.  

 



Plasmid Mini preparation 
 

 5ml of LB medium supplemented with the appropriate antibiotic, according 

to the selection marker on the plasmid and containing the E.coli strain was grown 

overnight. On the next day, the cells were spun down at 3500rpm for 10 minutes 

and the pellet resuspended in 200µl of solution1. 60µg of boiled RNase A (Roche 

Applied Science. #109169) and 400µl of solution2 were added and the 

suspension mixed well by inversion without vortexing and incubated at room 

temperature for 5minutes. Then after adding 300µl of solution3 and incubation for 

5 minutes on ice, the precipitate was spun down at maximum speed for 10 

minutes at room temperature and the supernatant transferred to a new 1.5ml 

eppendorf tube. 

Precipitation of the DNA was carried out by addition of 700µl isopropanol 

(Merck, #109634) and centrifugation at maximum speed for 5minutes at 4°C in a 

microcentrifuge. The pellet was resuspended in 300µl 1xTE and 1 volume of PCI 

was added, vortexed and finally spun down at maximum speed for 5 minutes at 

4°C. The upper phase containing the plasmid DNA transferred to a new 1.5ml 

Eppendorf tube and 1/10 volume of 3M sodium acetate (Merck, #106267) and 2 

volumes of cold 96% ethanol added, left for 30minutes at -20°C and the DNA 

collected by centrifuging at maximum speed for 10minutes at 4°C. The DNA 

pellet was washed twice with 70% ethanol, dried and resuspended in 50µl 1x TE. 

 

 
Solution 1 

50mM glucose (Fluka/Biochemika, #49159) 

10mM EDTA pH 8.0 (Merck, #108417) 

25mM Tris/HCl pH 8.0 (AppliChem, #A1086; Merck, #100319) 

filter sterilized and stored at 4°C 

 



Solution 2 

1% (w/v) SDS (Merck, #113760) 

0.2M sodium hydroxide (Merck, #106498) 

prepared fresh every 2 months and stored at room temperature. 

 
Solution 3 

2.6M potassium acetate (Merck, #104820) 

10% (v/v) acetic acid (Merck, #100063) 

stored at 4°C 

 

1x TE buffer pH 8.0 

10mM Tris (AppliChem, #A1086) 

1mM EDTA (Merck, #108417) 

pH 8.0 with HCl (Merck, #100319) 

 

2.3.3 Agarose gel electrophoresis 

When DNA molecules are exposed to an electric field in a gel matrix, their 

mobility is dependent mainly on their size and shape. Taking then the size of the 

expected DNA fragments into account, 1xTAE gels consisting of 0.5 to 2.5% 

(w/v) agarose (low electroendosmosis promega, #V3125) were prepared. Pre-

weighted agarose was mixed with 1xTAE and melted thoroughly in a microwave 

oven. After cooling to 65°C, ethidium bromide (final concentration: 100 mg/l) was 

added to visualize the separated DNA by UV-Light. The agarose was poured into 

the appropriate gel tray and transferred after polymerization into a 

electrophoresis chamber. The chamber was filled with 1xTAE optionally 

supplemented with ethidium bromide (final concentration: of 100 mg/l). 



The DNA to be separated was mixed with 6x DNA loading buffer and 

loaded into the gel slots. A DNA size marker was loaded beside the samples to 

allow a size estimation of the separated fragments after electrophoresis. Gels 

were run at 2-10V per cm gel length for approximately 30 – 90 minutes. 

 
50xTAE electrophoresis buffer stock solution 

2M Tris (AppliChem, #A1086) 

0.1M EDTA (Merck, #108417) 

pH 8.5 using 57.1ml acetic acid per litre (Merck, #100063) 

 

6x Orange G loading buffer 

40% (w/v) sucrose (Merck, #107654) 

75mg Orange G (Sigma-Aldrich, #03756) 

60mM EDTA (Merck, #108417) 

10mM Tris/HCl pH 8.0 

in 50ml, filter sterilized and stored at -20°C 

 

GeneRuler 1kb DNA ladder (Fermentas, #SM0311) 

GeneRuler 50bp DNA ladder (Fermentas, #SM0371) 

 

Ethidium bromide 

Stock concentration: 0.5 g/l in distilled H2O  

Store light protected at +4°C  

 



2.3.4 Gel extraction of DNA fragments 

After the separation of a mix of DNA fragments on an agarose gel, specific 

DNA fragments could be isolated. The band of interest was excised from an 

ethidium bromide stained agarose gel using illumination of a UV light box. The 

gel piece was then treated according to the instructions in the kit. Finally, the 

DNA could be concentrated by addition of 1/10 volume of 3M sodium acetate and 

2 volumes of 96% cold ethanol, left for 30minutes (or longer) at -20°C and spun 

down at maximum speed for 10-15minutes at 4°C, washed twice with 70% 

ethanol, dried and resuspended in 1xTE. 

 
 
QIAquick Gel Extraction kit (Qiagen, #28704) 
 
E.Z.N.A Gel Extraction kit (Peqlab, #12-2501-02) 
 

2.3.5 PCR mediated gene targeting in yeast 

Gene K.O.s or C-terminal protein tagging were carried out using a PCR-

mediated one-step gene targeting method (Wach A., 1996; Goldstein and 

McCusker, 1999). 

K.O.-cassettes and tagging-cassettes were amplified by PCR using specific 

plasmids (see appendix) or strains already carrying the gene K.O. or gene tag of 

interest as template. 

The primers were designed to contain 38-42bp short flanking homology 

(SFH) to the gene of interest and a universal sequence designed to amplify 

various selectable markers from plasmid templates.  

 If a strain already carrying the gene K.O. or gene tag of interest is used as 

template, a 18-22 bp primer pairs was engineered in such a way that the 

amplicon (K.O. cassette) contains approximately 200-500bp long flanking 

homology (LFH) which offer a higher recombination rate. 



After PCR amplification, the specific PCR product was gel purified and 

approximately 1-3µg were transformed into the appropriate yeast strain.  

Stable integration at the targeted region via homologous recombination 

results in growth of the transformants on appropriate selective media (for 

example YPD medium plus the antibiotic geneticin to select for resistance to 

kanamycin). 

After restreaking the grown individual clones on selective plates, PCR or 

southern blot were employed to evaluate the site specific insertion of the 

construct. Fused C-terminal tags were additionally confirmed by Western blotting. 

 

2.3.6 Southern blotting 

After agarose gel electrophoresis, DNA fragments were transferred onto a 

rigid support, a nylon membrane (Amersham Hybond-N+, GE Healthcare 

RPN303B) to subsequently probe for specific DNA sequences. The integration of 

the K.O. cassette at the correct locus and replacement of the targeted gene of 

interest was verified using this technique. This method was also used to assess 

the proficiency of some mutant cells on meiotic DSB formation and the formation 

of crossover and noncrossover recombination products. 

An ectopic recombination system engineered and implemented by Thorsten 

Allers in the laboratory of Michael Lichten was used to monitor the entire process 

of meiotic recombination (Allers and Lichten, 2001).  

2.3.7 DNA restriction digest and electrophoresis 

The genomic DNA was carefully quantified by fluorometry or 

spectrophotometry and digestion conditions were chosen according to the 

instructions of the enzyme supplier. In a typical reaction setup, 0.3 – 3ug of DNA 

was digested with 5 –10U of the desired restriction endonuclease in a total 

volume of 30- 50ul for 1-3hours at the indicated temperature, usually 37°C. For 



the recombination assay the genomic DNA was digested in a volume of 30µl with 

XhoI and XhoI/EcoRI for 2hours at 37°C.  

2.3.8 Agarose gel electrophoresis for southern 

About 500ng to 1µg of the digested DNA was loaded per lane of a 25 cm 

long agarose gel. The agarose gel concentration was 0.5% and a thickness of 

about 5-7mm, no ethidium bromide was present in the gel and the running buffer 

during the separation. The electrophoresis was performed at low voltage 

(1.35V/cm) overnight at 4°C (can also be done at RT). During the 

electrophoresis, the running buffer was recycled using the peristaltic pump, 

moving running buffer from the buffer reservoir of the anode (+) to the cathode (-

). 

6x Bromophenol blue, Xylene cyanol FF loading buffer + MgCl2 

15% (w/v) Ficoll 400 (Fluka/BioChemika, #46324) 

25mM MgCl2 (Merck, #105833) 

0.25mM EDTA pH 8 

0.25% (w/v) bromophenol blue (Sigma-Aldrich, #B8026) 

0.25% (w/v) xylene cyanol F (Sigma-Aldrich, #X4126) 

filter sterilized and stored at room temperature 

 

2.3.9 DNA transfer onto a nylon membrane 

The agarose gel was stained for 30minutes in 1litre of 0.5µg/ml ethidium 

bromide solution in water to assess the quality of DNA loading and digest under 

UV. The MgCl2 was removed by washing the gel twice in 1litre of 10mM EDTA 

pH 8 for 20minutes each. The agarose gel was washed for 15minutes in dH2O, 

followed by acid nicking of the DNA in 1litre of 0.25M HCl for 20minutes, excess 

of HCl was subsequently removed by two times washes in 1litre of dH2O for 5 

minutes each. 



The DNA was transferred onto a nylon membrane using the VacuGene XL 

blotting system (GE Healthcare, #80 1266 24, #80 1265 15). The porous support 

of the vaccuum chamber and its gasket were pre-wetted with alkaline transfer 

buffer, the membrane (Amersham Hybond-N+, GE Healthcare RPN303B) was 

cut to an appropriate size, pre-wetted in alkaline transfer buffer and placed onto 

the porous support of the vaccuum chamber. A sealing mask of the transfer 

system, containing a window according to the area of the gel was carefully 

placed on top (avoiding air bubbles). The gel was carefully slipped from its 

casting tray over the window of the sealing mask. The frame of the vaccuum 

chamber was then put in place over the gasket and fixed while applying slight 

pressure. The pump was turned on and the DNA was transferred at 50mbar of 

vaccuum for 1-2 hours. 

Once the transfer was completed, the membrane was recovered washed for 

5 minutes in 500ml of (0.5M Tris/HCl pH 7.5, 1M NaCl), followed by two rinses in 

250ml of 2x SSPE for 2 minutes. The DNA was UV cross-linked to the 

membrane by two rounds of irradiation with 120mJ/cm2 (UV Stratalinker 2400, 

Stratagene). The prehybridization was performed immediately, if not, the 

membrane was dessicated and stored in a hybridization bag or alternatively 

between two sheets of whatman filter paper until needed.  

 

Alkaline transfer buffer 

1.5M sodium chloride (Merck. #106404) 

0.5M sodium hydroxide (Merck, #106498) 

freshly prepared 

 

2.3.10 DNA probe labelling, hybridization and detection 

Alpha 32P dATP random primed labelling of probe DNA 
 



50ng of template DNA in 7µl dH2O was denatured by heating to 95°C for 

5minutes and subsequent chilling on ice, 3µl of a dCTP/dGTP/dTTP mix (170µM 

each nucleotide) and 6µl of alpha-32P dATP (10µCi/µl, 6000Ci/mmol, 1.7µM; 

Amershan Biosciences AA0074) were added. The reaction was initiated by 

adding 4µl High Prime enzyme and random primer mix (High prime DNA 

Labelling kit, Roche Applied Science, #11585584001) and incubated at 37°C for 

10-15 minutes. The reaction was stopped by addition of 180µl of Tris/EDTA to 

the reaction mix (approximately 20mM final EDTA concentration).  

Radioactive PCR of HisU probe using alpha-32P dATP  
 

Radioactive PCR was performed when small probes below 300 nucleotides 

were used as for Lichten´s recombination assay. 

The HisU probe (163 nucleotides in length) was labelled in the presence of 

alpha-32P dATP (10µCi/µl, 6000Ci/mmol,1.7µM; Amersham Biosciences AA0074) 

with VentR (exo-) thermostable DNA polymerase as follows: 

 
Table 2: HisU PCR conditions 

PCR reaction composition Cycling 

3µl 10x Buffer  1x 94°C 4min 

3µl DCTP, dGTP, dTTP(40µM)  

3.6µl MgCl2 (25mM) 94°C 1min 

1µl HisU PCR product(25ng/µl) 10x 58°C 30sec  

1.5µl Primer 1965/1966(10pmol/µl) 72°C 1min50sec 

0.5µ ddH2O  

16.5µl alpha-32P dATP (1.7 µM) 1x 72°C 4min 

0.9µl VentR  

 



 

Sephadex G-50 column purification of labelled probe 
 

After the radioactive labelling of probe DNA, unincorporated nucleotides 

were removed by filtration through a G-50 sephadex column. Small nucleotides 

will enter into the pores of the sephadex and will be strongly retarded, while the 

large molecules (the probe) will elute straight out of the column not penetrating 

the matrix. 

A stock of G-50 sephadex slurry was prepared by equilibrating 5g of G-50 

sephadex in 100ml ddH2O at 37°C for 2hours under gentle shaking. 

Subsequently, the sephadex slurry was washed twice with 100ml of ddH2O to 

remove soluble resin and resuspended in 100ml of TE buffer pH 8.0 and 

autoclaved at 0.7bar for 15 – 20 minutes. 

1ml syringes (B.Braun, Omnifix-F 0.01ml/1ml) mounted into 15ml falcon 

tubes, were used to prepare the G-50 Sephadex columns. The syringe was 

blocked at the bottom with autoclaved glass wool and was filled completely with 

G-50 sephadex slurry and centrifuged down at 1500 rpm for 2 minutes, the 

procedure was repeated until 2/3 to 3/4 of the syringe was filled. 

The probe was added directly on top of the resin in a volume of 200µl and 

the column centrifuged down at 1500 rpm for 3 minutes in a new 15 ml falcon 

tube to collect the probe freed of unincorporated nucleotides.  

Hybridization of labelled probe to DNA immobilized on the 
membrane 
 

Unspecific binding sites were first blocked on the membrane prior to the 

hybridization of the probe to immobilized DNA. 50ml of prehybridization solution 

was pre-warmed to 50°C, and 1ml of a 10mg/ml salmon sperm DNA 

(Fluka/BioChemika, #31149) denatured by heating to 95°C for 7minutes and 

subsequently chilled on ice for 5minutes was added. The prehybridization was 

performed at 65°C for at least 5 hours. After prehybridization, the labelled probe 



was added to 1ml of salmon sperm DNA (10mg/ml) and denatured at 95°C for 

7minutes and subsequently chilled on ice for 5minutes. The denatured probe was 

then added to 40ml of pre-warmed (50°C) hybridization solution. The 

prehybridization solution was exchanged for the hybridization solution, and 

hybridization was performed for 20-24hours at 65°C while gentle shaking. 

After hybridization, unspecifically bound probes were removed. The 

hybridization buffer was discarded and the membrane transferred into a large 

plastic tray and subjected to following washes while shaking: 5 minutes in 500 ml 

2x SSPE and 0.5% SDS at RT, 20minutes in 500 ml 2x SSPE and 0.5%SDS at 

RT, 30minutes in 500 ml 0.2x SSPE and 0.5% SDS at RT, 30 minutes in 500ml 

0.2xSSPE and 0.5% SDS at 65°C and 5 minutes in 500 ml 0.2x SSPE at RT. 

The 65°C wash step was omitted for short probe (HisU probe). The surplus of 

liquid was removed from the membrane by blotting off on a sheet of Whatman 

paper and the membrane was tightly wrapped into saran wrap paper 

for signal detection.  

 
20x SSPE hybridization buffer pH 7.4 

3M sodium chloride (Merck, #106404) 

20mM EDTA pH 7.4 

154.8mM di-sodium hydogen phosphate (Merck, #106586) 

45.2mM sodium dihydrogen phosphate dihydrate (Merck #106342) 

autoclaved 

 

     50x Denhardt´s 

1% (w/v) Ficoll 400 (Fluka/BioChemika, #46324) 

1% (w/v) PVP360 (Sigma-Aldrich, #PVP360) 

1% (w/v) BSA (Fraction V) (Sigma-Aldrich, #A9647) 



in dH2O and stored at -20°C 

      

     Prehybridization solution 

2 - 6 x SSPE (2x is default, 6x should be for probes <200nt) 

1% (w/v) SDS (Merck, #113760) 

5x Denhardt´s 

freshly prepared and heated to 50°C 

 

Hybridization solution 

2 - 6 x SSPE (2x is default, 6x should be for probes <200nt) 

1% (w/v) SDS (Merck, #113760) 

5% (w/v) dextran sulphate 500 kDa (GE Healthcare/USB, #70796) 

freshly prepared and heated to 50°C 

 

Detection of radioactive signals from the membrane 
 

Detection of radioactive signals on membranes from 32P southern 

hybridizations was performed by exposure on storage phosphor screens 

(unmounted for general purpose, GE Healthcare/Molecular Dynamics, 

#63003486).  

Before and after the exposure, the screens were erased by exposure to a 

high intensity light photo screen for 15 minutes (e.g, Storage phosphor screen 

eraser from BIO-RAD). The image generated on the phosphor screen was 

digitalized through a phosphor imager (Molecular Imager FX Pro Plus from BIO-

RAD) using a scanning laser wavelength of 532 nm and a broad pass emission 

filter at 390 nm, and corresponding software (QuantityOne 4.6.1, BIO-RAD). 

 



2.4 Protein protocols 

2.4.1 TCA protein extracts of S.cerevisiae 

About 5-10ml of yeast cells (4 x 107 cells/ml) were put directly into 15ml 

tube containing ice-cold 100% TCA (final concentration 20% (v/v) TCA) at the 

desired time points (optionally, cells from a complex medium for example YPD 

medium can be washed once with dH2O before adding TCA). The cells were 

then harvested by centrifugation at 4000rpm and 4°C for 5min. The resulting 

pellet was then resuspended in 1ml ice-cold 10% (v/v) TCA and transferred to a 

1.5 ml eppendorf tube. The harvested cells can then either be frozen in liquid 

nitrogen and stored at -80°C or processed immediately. 

The TCA fixed cells were resuspended in 200µl of cold 10% TCA and 200µl 

of acid-washed and baked glass beads (diameter 0.40-0.60mm; Sartorius BBI-

8541701) was added for subsequent breakage of the cells on a Vibrax (IKA 

VIBRAX-VXR) at maximum speed at 4°C for 40minutes. The protein extract was 

transferred to a 1.5 ml eppendorf tube and stored on ice. The beads were 

subsequently washed 3-5 times with 200µl of 10% TCA and the extract and all 

washes were pooled in one vial. 

The protein sample was spun down for 10minutes at 5000 rpm at 4°C in a 

microcentrifuge and resuspended in 100-200µl GSD loading buffer, neutralized 

by addition of 20-35µl of 1M Tris (AppliChem, #A1086). The protein sample was 

heated for 10min at 95°C and subsequently centrifuged for 10 min at 5000rpm 

before loading onto a SDS-Polyacrylamide gel. The protein extracts can be 

stored at -20°C.  

Trichloroacetic acid (TCA),100% stock solution 

100% (w/v) trichloroacetic acid (Sigma-Aldrich, #T9159) 

dissolved in dH2O and stored at 4°C 

 

 



1x GSD protein loading buffer 

50mM Tris/HCl pH 6.8 

8M Urea (Amresco, #0378) 

2-3% (w/v) SDS (Merck, #113760) 

0.1mM EDTA (Titriplex, Merck, #108417) 

2-3% (v/v) ß-mercaptoethanol (Sigma-Aldrich, #M3148) 

0.03-0.1% bromophenol blue (Sigma-Aldrich, #B8026) 

4-5% (v/v) glycerol (Sigma-Aldrich, #G7757) 

stored at -20°C 

 
 

2.4.2 SDS-Polyacrylamide gel electrophoresis 

Proteins bind the detergent SDS to negatively loaded SDS protein 

complexes with a constant charge-to-mass ratio (1.4g SDS/g protein 1% SDS 

solutions). SDS denatures the proteins and prevents protein-to-protein 

interactions thereby allowing their separation by molecular weight in a 

polyacrylamide gel matrix. 

The glass plates of the SDS-PAGE unit (Biorad, Mini Protean II) were 

cleaned with 70% ethanol and distilled water. The apparatus was assembled and 

the components of the separation gel were mixed (Table 3) and pipetted between 

the glass plates, leaving 1.5cm space for the stacking gel. The liquid was then 

overlaid with 96% ethanol until complete polymerization at room temperature and 

then removed. The remaining was removed with Whatman 3MM paper. The 

ingredients of the stacking gel were mixed (Table 4) and poured on top of the 

solid separating gel to completely fill the gel mould. A clean Teflon comb was 

then inserted without producing any air bubbles. After the stacking gel had 

completely solidified, the gel apparatus was transferred into the running tank and 

filled with 1xSDS running buffer. The comb was removed carefully and the slots 



flushed with running buffer to remove any unpolymerized acrylamide. Boiled and 

centrifuged protein samples, as well as molecular weight protein markers were 

loaded.  

The gels were run at 15V/cm gel for 1-3 hours depending both on the size 

of the protein to be detected as well as the percentage of the acrylamide gel. 

 
Table 3: Composition of separating gels with different concentrations of 
polyacrylamide (for 2 Bio-Rad Mini-Protean gels). 
 
Separating gel 4% 6% 7% 8% 9% 10% 12% 15% 
 dH2O (ml) 
 AA/BA (ml) 
(3.3%C,40%T) 
1M Tris/HCl (ml) 
 pH 8.8  
 10% SDS (µl) 
 10% APS (µl) 
 TEMED (µl) 

6.8 
1.75 
 
5.2 
 
140 
100 
10 

6.45 
2.10 
 
5.2 
 
140 
100 
10 

6.10 
2.45 
 
5.2 
 
140 
100 
10 

5.75 
2.8 
 
5.2 
 
140 
100 
10 

5.40 
3.15 
 
5.2 
 
140 
100 
10 

5.05 
3.5 
 
5.2 
 
140 
100 
10 

4.35 
4.2 
 
5.2 
 
140 
100 
10 

3.30 
5.25 
 
5.2 
 
140 
100 
10 

Approx.linear 
separation (kDa) 

100- 
250 

48- 
155 

40- 
108 

32- 
85 

26- 
80 

20- 
72 

12- 
58 

10- 
43 

 
 
Table 4: composition of 10ml stacking gel (for 4 Bio-Rad Mini-Protean gels) 
 

 dH2O (ml) 
 AA/BA (ml) 
(3.3%C,40%T) 
0.5M Tris/HCl (ml) 
 pH 6.8  
 10% SDS (µl) 
 10% APS (µl) 
 TEMED (µl) 

   6.55 
   1.0 
    
   2.5 
    
 
  100 
   60 
   9 

 
Acrylamide/Bisacrylamide solution (29:1, 3.3%C), 40%T 
  (Bio-Rad, #161-0146), stored at 4°C 
 
 
 
 
 



10X SDS-PAGE running buffer 

250mM Tris (AppliChem, #A1086) 

1.9M Glycine (AppliChem, #A1067) 

1% (w/v) SDS (Merck, #113760) 

Store at room temperature 

 PageRuler Prestained Protein Ladder (Fermentas, #SM0671) 

      

 Ammonium persulphate, 10% stock solution 

10% (w/v) ammonium persulphate (Sigma-Aldrich, #A3678) 

stored at -20°C 

 

TEMED, N,N,N,N-Tetramethylethylenediamine 

  (Sigma-Aldrich, #T9281), stored at 4°C 

 

2.4.3 Western blot 

Protein transfer on a membrane 
 

After separation by SDS polyacrylamide gel electrophoresis, proteins were 

transferred onto a gel-sized sheet of PVDF membrane (Amersham Hybond-P, 

GE Healthcare, #RPN303F), for immuno-detection. The gel unit was 

disassembled and the stacking gel was removed. the transfer sandwich was 

assembled on the plastic support clamp in following order:  

1x fibre pad pre-soaked in transfer buffer 

2x sheets of 3MM whatman filter paper pre-soaked in transfer buffer  



1x gel 

1x methanol activated PVDF membrane 

2x sheets of 3MM whatman filter paper pre-soaked in transfer buffer  

1x fibre pad pre-soaked in transfer buffer 

 
 Air bubbles between gel and membrane were removed using a glass rod. 

The setup was inserted into the transfer apparatus (Mini Trans-Blot Cell, Bio-

Rad), with the gel side oriented to the minus pole. The transfer unit was then 

filled with ice cold transfer buffer. A pre-cooled cooling unit (-20°C) was inserted 

and the transfer was performed at 100V for 1-2hours under buffer circulation (by 

using a stirring bar and a magnetic stirrer). Optionally, the protein transfer was 

verified by reversible protein staining using the red dye Ponceau S and 

destaining was performed in 1xTBS for several minutes.  

 

Ponceau S solution 

0.5% (w/v) Ponceau S 8 Sigma, #P-3504) 

1% (v/v) Acetic acid (Merck, #100063) 

prepared fresh every 3 month 

 

5x Transfer buffer 

125mM Tris (AppliChem, #A1086) 

0.95M Glycine (AppliChem, #1067) 

1x Transfer buffer was freshly prepared with 10-20% (v/v) methanol 

(NEUBER, #441992). 



Antibody incubation of the membrane   
 

After the blocking of non-specific epitopes contained on the membrane by 

incubation with non-fat dry milk for 20-60mn at room temperature while gentle 

agitated, the blot was incubated in blocking buffer diluted primary antibody for 

90minutes at room temperature or overnight at 4°C on a belly dancer. After 

incubation with the primary antibody, the blot was washed 3 times for 10minutes 

each with fresh blocking buffer. The secondary antibody was then diluted in 

blocking buffer and applied for 60-90minutes at room temperature. The blot was 

then washed 3 times for 10minutes each in 1x TBS-T (or with dH2O). The blot 

can be detected immediately or stored in 1x TBS-T at 4°C for a few days. 

 
10x TBS (Tris buffered saline) pH 7,5 

100mM Tris (AppliChem, #A1086) 

1.5M sodium chloride (Merck, #106404) 

pH 7.5 with HCl (Merck, #100319) 

 

1x TBS-Tween 

1xTBS 

0.1% (v/v) Tween 20 (Sigma-Aldrich, #P1379) 

freshly prepared 

 

Blocking solution 

3-5% (w/v) non-fat dry milk powder (Fixmilch Instant, fat<1.5%, Maresi) 

in 1x TBS-Tween 

 
 



Immunodetection of proteins 
 

proteins bound to the membrane were detected using secondary antibodies 

coupled with horseradish peroxidase (HRP)-conjugated (see Appendix) and 

subsequently visualized by application of the „Enhanced Chemi-Luminescence 

(ECL) Advanced Western Blotting Reagents (GE Healthcare, #RPN2132). The 

visualization is catalyzed by HRP by the chemiluminescent turnover of a supplied 

substrate. 

The detection procedure was carried out as suggested by the manufacturer. 

The volume of detection reagent used was 2ml ECL Plus solution for a mini-gel 

sized membrane (freshly prepared by mixing ECL Plus solution A and Solution B 

in a ratio of 40:1, kept protected from light, mixed by vortexing and used 

immediately). The blot was incubated for 5minutes at room temperature and 

excess detection reagent was removed (optionally by blotting off between two 

sheets of whatmam paper) and the membrane was wrapped protein side facing 

upwards into a fresh piece of Saran Wrap. The blot was then transferred into a 

film cassette and X-ray films (Fuji Medical X-Ray Film 100NIF (13x18cm), 

FujiFilm Super HR-E30) were exposed for different time interval to the light 

generated by the ECL process.  

 

Stripping of antibodies from PVDF membranes 
 

To remove primary and secondary antibodies from Western blots that had 

already been detected, the blot was washed 3 times for 10 minutes each in 1x 

TBS-T at room temperature while shaking (do not skip this step). The blot was 

then incubated in stripping solution for 20-45minutes at 70°C under shaking 

conditions. The blot was then washed 3 times in 1x TBS-T for 10minutes each 

and any unspecific antibody sites were again blocked with Blocking Buffer for 20-

60minutes at room temperature. The blot is now ready for a new antibody 

detection.  



 
Stripping solution 

0.7% (v/v) ß-mercaptoethanol (Sigma-Aldrich, #M3148) 

2% (w/v) SDS (Merck, #113760) 

62.5 mM Tris/HCl pH 6.8 

  
 
 
 

2. 5 Chromatin Immunoprecipitation (ChIP) 
 

2.5.1 ChIP procedure 

This technique is used to identify the binding sites of specific proteins on the 

chromatin.  

Yeast extract preparation 
 

50ml of meiotic time course culture was sampled and incubated with 

formaldehyde (1% final concentration) for 30 minutes while shaking under a fume 

hood. The proteins-DNA cross-linking process was then stopped by adding 

glycine to a final concentration of 131mM and shaking for 5minutes. Cells were 

collected by centrifugation at 4000rpm for 4minutes and 4°C, then washed twice 

with ice cold 1xTBS and finally aliquoted in four 1.5ml screw-cap tubes, snap 

frozen in liquid nitrogen and stored at -80°C. 

The cell pellet (10ml = 5x 108 cells) was resuspended in 400µl lysis buffer 

complete and 600µl of glass beads (diameter, 0.40-0.60 mm) was added, cells 

disruption was performed by placing the tube into the multibeads shocker 

(YASUI-KIKAI, Osaka, 2500rpm, 30sec ON and 30sec OFF, for 10minutes at 

4°C). The breakage efficiency was monitored by phase contrast microscopy. 



After breakage, a small hole was poked into the cap of the screw-cap tube, 

and the tube was placed in an inverted orientation into a 15ml falcon tube, the 

tube was then spun down at 4000rpm for 4minutes and 4°C, and the cell extract 

was transferred into a new 1.5ml eppendorf tube. To shear the chromatin, the 

cell extract was sonicated 5 times at 37% power for 25 seconds each. 

After sonication, the yeast extract was centrifuged for 10min at maximum 

speed and 4°C and the supernatant (cell lysate) transferred to a new 1.5ml 

eppendorf tube, 20µl was removed to prepare whole cell extract (WCE), and kept 

at 4°C. 

Chromatin Immunoprecipitation 
 

200µl blocking buffer (supplied with Adem beads kit) was added into 15µl 

beads (Adem beads, #04240) and incubated at room temperature for 15minutes 

while gently agitated. The beads were washed 3 times with 400µl PBS/BSA 

(beads were fixed at the wall of the tube with the magnet). And finally 

resupended in 220µl of PBS/BSA, 80µl of primary antibody (e.g., anti-HA 

antibody for IP against the HA epitope) was added to the beads and incubated 

for at least 3hours or overnight at 4°C with constant rotation. 

The antibody-bound beads were washed 3 times with 400µl (PBS/BSA) and 

resuspended with cell lysate; and subsequently incubated for 3 hours at 4°C with 

constant rotation. Beads were then washed; 3 times with 400µl washing buffer, 3 

times with 400µl deoxycholate buffer and 1 time with 400µl TE. 

Samples were spun down at 1000rpm for 10 seconds and the supernatant 

was discarded, 200µl of elution buffer was added and incubated at 65°C for 45 

minutes under gently shaking. The tube was centrifuged at maximum speed for 1 

minute and the supernatant transferred into a new 1.5ml eppendorf tube 

containing 200µl of TE/1%SDS. 380µl of TE/1%SDS was added to the WCE 

(20µl), and all samples were incubated overnight at 65°C to reverse the cross-

linking.  

 



DNA purification 
 

3µl RNaseA (DNase free, Roche, #) was added to each sample and 

incubated at 37°C for 30-60 minutes. Then 8µl proteinase K (20mg/ml) was 

added and incubated for 1 hour at 55°C.  

An equal volume of phenol/chloroform/isoamylalcohol (PCI) was added, 

vortexed briefly and spun down at maximum speed for 5 minutes and the upper 

phase was recovered carefully to avoid contamination from the interphase. An 

equal volume of chloroform/isoamylalcohol (24:1) was added to the upper phase, 

vortexed briefly and centrifuged at maximum speed for 5 minutes and the upper 

phase transferred to a new 1.5ml eppendorf tube. The recovered phase was 

supplemented with NaCl (final concentration, 200mM), 2 volumes of 96% ethanol 

and 2µl of 10mg/ml glycogen, vortexed briefly and incubated at -20°C for at least 

30 minutes. The DNA was collected by centrifugation at maximum speed for 30 

minutes and 4°C, washed twice with 70% ice-cold ethanol, dried, resuspended in 

25µl ddH2O and stored at -20°C until analysed. 

  

2.5.2 Real-Time PCR evaluation of ChIP samples 

For real-time analysis of the precipitated DNA, different protocols and 

reagents are available.Because,it provides a wide dynamic range for monitoring 

the exponential amplification phase, we used the MESA Green (Eurogentec, 

#RT-SY2X-03+WOUFL) method. The instrument used was an iQ5 (Biorad).  

For DNA quantification of a sample, the instrument needs a minimal series 

of 3 dilutions of a standard of known concentration and all measurements will be 

expressed relative to this standard. We used the DNA purified from the WCE as 

the standard. And in order to obtain meaningful results, ChIP was performed in 

parallel using the same conditions on cells lacking the tag (as negative control), 

because only the difference in signals between tagged and untagged is regarded 

as specific.  



Quantitative Real-Time PCR was performed as follows: 

A series of four 10-fold dilutions of the WCE sample (e.g., 1/30, 1/300, 

1/3000, 1/30000) were prepared for the standard curve.  

 
PCR mix per sample (25µl): 

     12.5µl MESA Green Mix 

2.5µl Primer oligo mix (2µM) 

2µl ddH2O 

8µl DNA sample (IP sample or WCE dilution) 

 

IP sample was prepared by adding 0.8µl of IP sample into 7.8µl ddH2O. 

One master mix was prepared for all samples per each primer pair and in 

duplicate. The master mix was first pipetted into the wells of an optical 96-well 

plate, followed by the DNA samples. A sealing film was placed over the 96-well 

plate to avoid evaporation and the plate was centrifuged for 1 minute at 500rpm 

and 4°C, and placed into the real-time thermocycler. 

 
The qPCR was run with the following setting: 
 

Cycle1:(1x) 

     Step 1:   94.0°C   for 3min 

     Cycle 2:(40x) 

     Step1:   94.0°C   for 15 sec 

Step2:   60.0°C   for 1min 

Data collection and real-time analysis enabled 

Step3:   72.0°C   for 1min 

Cycle 3:(1x) 



 

Step1:   94.0°C   for 1min 

     Cycle 4:(1x) 

     Step1:   60.0°C   for 1min 

     Cycle 5:(71x) 

     Step 1:   60.0°C – 95.0°C for 30 sec 

     Increase set point temperature after cycle 2 by 0.5°C 

Melting curve data collection and analysis enabled. 

 
For data interpretation, the amount of chromatin immunoprecipitated 

relative to the standard curve established for the WCE samples and the fold 

enrichment obtained for the region of interest and the cold-spot region were 

evaluated.  

 

2.5.3 ChIP hybridized into High resolution Microarray  

  DNA-chips (ChIP on chip)  
 

The immunoprecipitated DNA was amplified, fragmented, labeled and 

hybridized to S.cerevisiae Affymetrix Tiling arrays having 25 bp oligo probes with 

an average probe overlap of 20 nucleotides (currently termed a 5 nucleotides 

resolution array). This method is used to determine protein-chromatin 

interactions in a genome wide scale.  

 
 
 
 
 
 



Random PCR amplification 
 

A PCR amplification step is required because the amount of 

immunoprecipitated DNA is very low (below the sensitivity range of the Nanodrop 

spectrophotometer, which is 2 ng/µl) to be directly detected by hybridization onto 

a DNA microarray chip.  

 
Round A: Linear amplification  
 

To introduce the consensus sequence into the immunoprecipitated DNA 

two rounds of linear amplification were performed using a random primer A which 

contains a consensus sequence at the 5´-end.  

Primer A: GTTTCCCAGTCACGATCNNNNNNNNN 
 

Setup: 

7µl DNA IP (or 5µl for wce) 

2µl Sequenase buffer 5x 

1µl Primer A (40µM) 

 

     Reaction mix: 

Prepare a reaction mix per sample as follows: 

1µl Sequenase buffer 5x 

1.5µl dNTPs (3mM) 

0.75µl DTT (0.1M) 

1.5µl BSA (500µg/ml) 

0.3µl Sequenase 

............................................... 

Total volume = 5.05µl 



 

Furthermore, dilute a sequenase sample as follows (1/4 dilution): 

     3.6µl sequenase dilution buffer 

1.2µl sequenase 

    . .................................. 

Total volume = 4.8µl 

The setup mix was 

incubated at 94°C for 2 

minutes, then at 10°C for 

5minutes. During this period of time,the reaction mix (5.05µl) was added, 

followed by incubation at 37°C for 8 minutes, 94°C for 2 minutes, 10°C for 5 

minutes. During the 10°C hold, 1.2µl of diluted sequenase was added and the 

reaction was incubated at 37°C for 8 minutes. Finally, 2µl Exo1 buffer and 1.75µl 

Exo1 were added and the reaction was incubated at 37°C for 20 minutes and 

then at 95°C for 5 minutes. 

In order to proceed with the exponential amplification, sample was 

dissolved in ddH2O for a final volume of 78µl (add 61.75µl).  

 

Round B: Exponential amplification 

The exponential amplification was performed in the presence of the 

consensus primer B which anneals with the consensus sequence introduced 

during round A. 

 
  
 
 
 
 
 
 
 

1 95°C 5 min  
2 98°C 20 sec  
3 40°C 30 sec  
4 50°C 30 sec  
5 72°C 3 min go to step2 

31x 
6 72°C 7 min  
7 4°C hold  



78µl DNA (from round A)    

10µl KOD-XL 10x buffer 

1µl Primer B (100pmol/µl) 

10µl dNTPs (2mM each) 

1µl KOD-XL polymerase 

.......................................... 

Total volume= 100µl 

2.5µl of the amplification product were loaded onto a 1% agarose gel. The 

amplification product appeared as smear between 300-2000 bp with an average 

of 500-1000bp (the IP sample presented a broader smear than wce). The 

remaining sample was purified and concentrated to a volume of 42µl with the 

microcon columns (MILIPORE YM-100 6000rpm, 15 minutes at room 

temperature) and the total amount of DNA was estimated with the Nanodrop 

spectrophotometer. For microarray DNA hybridization, at least 5µg of amplified 

material is required, eventhough up to 7 to 10µg of DNA per sample can be used. 

 
DNA fragmentation 
 

In order to perform the microarry hybridization, the DNA must be 

fragmented to an average length of 50-100 bp. This was carried out using a 

DNAse treatment. 

 
DNase setup: 

2µl DNase I (1U/µl) 

2µl One-phor-all-buffer plus (10x) 

1.2µl CoCl2 (25mM) 

8µl ddH2O 

 



Reaction mix: 

40.75µl amplified DNA 

2.9µl CoCl2 (25mM) 

4.85µl One-phor-all-buffer plus (10x) 

1.5µl DNase setup (added when the PCR block has reached 37°C) 

     37°C 2 minutes, 95°C 15 minutes 

 
2.5µl of digested sample were loaded onto a 2% agarose gel which was run 

briefly (10-15 minutes). The procedure was repeated (by adding 1µl of DNaseI 

into the remaining DNase setup and then adding 1.5µl of DNase setup into the 

reaction mix), until the average fragment size was approximately 100 bp. 

 
Fragmented DNA labelling  
 

Once fragmented, the DNA was labelled at the 5´-ends by using terminal 

transferase and a biotinylated-N11-ddATP. 

 
47.5µl fragmented DNA (from DNase treatment) 

1µl Biotin-N11-ddATP (1nmol/µl, Perkin Elmer NEL 508) 

12µl Terminal transferase buffer 5x 

1µl Terminal transferase (Roche, #220582) 

The reaction was incubated at 37°C during 1 hour 

 
Affymetrix microarray DNA chip hybridization 
 

Once the DNA was 5´-end labelled with Biotinylated ddATP, a hybridization 

cocktail was prepared as following:The number of microarrays to be hybridized 

was first equilibrated at room temperature during at least 15 minutes, and 250µl 

of 1x hybridization buffer were loaded into the microarray and prehybridized at 



42°C for at least 15 minutes with constant rotation.During the prehybridization 

step, the following hybridization cocktail was prepared. 

 

60µl labeled DNA 

3.3µl Oligo B2 controls (3nM) 

2µl Herring Sperm DNA (10mg/ml) 

60µl SSPE 20X      

10µl Triton-X 100 (0.1%) or 

64.7µl ddH2O 

............................................................ 

200µl total volume 

 
The mix was incubated at 99°C for 10minutes,then chilled on ice for 5 

minutes and spun down at maximum speed during 5 minutes in order to 

precipitate insoluble particles. The prehybridization cocktail was removed and 

200 µl of hybridization cocktail were loaded into the chip and hybridized at 42°C 

during 16 hours with constant rotation (80 rpm). On the next day, the 

hybridization cocktail was removed and kept at -20°C, as it can be rehybridized 

at least two times). The chip was filled with 250µl of washing bufferA and kept at 

room temperature until the washing step. 

 
Microarray chips washing and staining procedure 

 

The washing station requires two samples containing thje solution mix 

(SAPE). And one antibody amplification sample (Ab solution mix). 

 
 

 



 

SAPE (for two microarrays): 

1260µl 2 x staining buffer 

1134µl dH2O 

108µl BSA 

25.2µl SAPE (= Streptavidin/ R-phycoerythrin, 1mg/ml) 

................................................. 

2527.2µl total volume(split in 4 eppendorfs,light protected) 

 

Antibody solution (for two microarrays): 

630µl 2x staining buffer 

560µl dH2O 

50µl BSA (50mg/ml) 

12.6µl IgG (10mg/ml) 

7.6µl vector (= biotinylated anti-streptavidin, 0.5mg/ml) 

.................................................. 

1260.2µl total volume (split in two eppendorfs) 



Table 5: Fluidic station protocol for washing S.cerevisiae 1.0R Tiling arrays 
 
The washing protocol used is called EuKGE-WS2v5 and was performed on the 
Affymetrix Fluidic station 450. 

Automated steps performed 
into the fluidic station 450 

EuKGE-WS2v5 protocol 

Post Hyb Wash #1 10 cycles of 2 mixes/cycle with 
Wash buffer A at 30°C 

Post Hyb Wash #1 6 cycles of 15 mixes/cycle with 
Wash buffer B at 50°C 

Stain  Stain the probe array for 10minutes 
in SAPE at 35°C 

Post Stain Wash 10 cycles of 4 mixes/cycle with 
Wash buffer A at 30°C 

2nd Stain  Stain the probe array for 5minutes 
in antibody solution at 35°C 

3rd Stain  Stain the probe array for 5minutes 
in SAPE at 35°C 

Final Wash 15 cycles of 4 mixes/cycle with 
Wash buffer A at 35°C. The holding 
temperature is 25°C 

Holding buffer  Buffer A loaded in the final was his 
kept for scanning 

 
Microarray chips scanning 
 

The hybridized microarray DNA chips were scanned using the GeneChip 

scanner 3000 TG controlled by GeneChip Operating Software (GCOS). The 

scanning was performed as indicated in the Affymetrix instruction manual 

(Affymetrix, 2005-2006). 

2.6 Cytological Methods  
 

2.6.1 DAPI staining of yeast chromatin 

DAPI (4´,6-diamidino-2-phenylindole) is a fluorescent dye, binds specifically 

to DNA. The excitation maximum of the DAPI-DNA complex is at 364nm and the 

emission maximum is at 454nm. 

To stain the chromatin of whole yeast cells, 100ul of liquid sporulation 

culture was sampled into 500ul of 96% ethanol. The cells were then centrifuged 



at maximum speed for 30 sec, after completely discarding the supernatant, the 

cells pellet was resuspended in 25ul of DAPI working solution and the resulting 

suspension was sonicated for 1sec at lower power. The cells were ready for 

fluoroscence microscope analysis. To monitor the cells progress through the 

meiotic program during a time course experiment, the fraction of mono-, bi- and 

tetranucleated cells was counted (n= 100 cells) at indicated time points.  

 

DAPI stock solution 

1mg/ml DAPI (Sigma-Aldrich, #D9542) 

in dH2O, stored light protected, frozen at -20°C 

 

DAPI working solution 

0.2µg/ml DAPI (Sigma-Aldrich, #D9542) 

in dH2O, stored light protected at +4°C 

 

2.6.2 Spreading and Immunostaining of yeast nuclei 

  Spreading of yeast nuclei 
 

Yeast nuclei were spread on glass-slides and subsequently stained with the 

appropriate antibodies to visualize chromatin-associated proteins.  

A 1ml aliquot of the sporulating culture was harvested per time point. The 

cells were pelleted by centrifugation at 6000rpm for 3min and resuspended in 

100µl of Digestion Mix. This suspension was incubated at 37°C for 10-25mn. The 

efficiency of the cell wall digest was checked periodically by phase contrast 

microscopy by mixing an 5µl aliquot of the sample with 5µl of 1% Sarcosyl 

solution. Upon addition of Sarcosyl solution, completely digested cells should 



burst open and release the nucleus. First check was after 10 min and this check 

was repeated at 5 minute intervals afterwards until at least 95% of the 

spheroplasts lysed upon contact with Sarcosyl. 

 The digest was stopped by placing the sample on ice. For the spreading 

procedure, 10µl of the digested cells were pipetted on a glass slide placed on an 

even surface and 100µl of the spreading solution was gently pipetted directly on 

top of the spheroplasts droplet and the resulting puddle was left to dry for at least 

2hours at room temperature. The spreads were frozen at -80°C or used 

immediately for immunostaining. 

  

Immunostaining of spreads 
 

The glass slides were either first thawed at room temperature (slides from -

80°C) or if fresh placed directly in 1x PBS for 5-10minutes to wash away the 

existing sucrose layer. Unspecific antibody binding epitopes were blocked by 

incubation of the slide with 50µl of Blocking Buffer under a coverslip for 15-

30minutes in a moist chamber. The glass cover slip and excess Blocking buffer 

were rinsed off and 30µl of the primary antibody diluted in blocking buffer was 

applied to the slide on a coverslip. The slide was transferred into a moist 

chamber and incubated for either 2-3hours at 30°C or at 4°C overnight. 

 The cover slip was rinsed off carefully with 1xPBS and the slide placed into 

a cuvette containing 1xPBS for 10minutes to wash away excess primary 

antibody. Then, 30µl of the secondary antibody dilution in blocking buffer was 

applied to the glass slide on a coverslip and incubated for another 2hours in a 

moist chamber at 30°C. 

The coverslip was rinsed off and the slide washed in 1xPBS for 10minutes. 

5µl of Vectashield DAPI solution was applied to the slide on a coverslip to stain 

the chromatin and protect the fluorescent dyes coupled to the secondary 

antibodies from fading. The immunostained spreads could now be directly 

evaluated using a fluorescence microscope or stored frozen at -80°C or –20°C.  



 

Solution 1 

1M D(-)-Sorbitol (sorbitol extrapure, Merck, #1.07758) in DMEM 

filter sterilized and stored at +4°C 

 

Zymolyase 100T Stock 

10 mg/ml Zymolyase (Seikagaku, #120493) in 1M Sorbitol 

stored at -20°C (Not filter sterilized) 

 

Digestion Mix 

100µl Solution 1 

2µl 0.5M DTT (Dithiothreitol, Sigma, #D-9779) in distilled water 

2µl Zymolyase 100T Stock 

 freshly prepared 

 

Sarcosyl solution 

1.0% (w/v) N-lauroyl-sarcosine (Sigma, #L-5125) in distilled H2O 

     Fixative solution 

2.95% (w/v) Sucrose (Merck, #107687) 

3.75% (w/v) Paraformaldehyde (Merck, #104005) 

Store in the dark at +4°C. 

 

Paraformaldehyde was liquefied at 65-75°C for 4-6hours under shaking. 

The sucrose was added and the solution filter sterilized (optionally a small drop 



of NaOH can be added if after 4-6hrs the paraformaldehyde is not completely 

dissolved).  

 
Spreading solution 

30µl Fixative solution 

18µl1% (v/v) Lipsol(LIP., Tel.(0274)593411) in ddH2O 

2-4µl 1% Sarcosyl solution 

prepared fresh and kept on ice 

 

     Blocking buffer 

0.5% (w/v) Bovine Serum Albumin, fraction V (Sigma, #A9647) 

0.2% (w/v) Gelatin (Sigma-Aldrich, #G7041-100G) 

dissolve in 1x PBS pH 7.25 and store frozen at -20°C; cannot be filter 

sterilized. 

 

  

Vectashield DAPI Solution 

Vectashield antifade buffer (Vector Laboratories, Sigma-Aldrich, #H1200) 

0.3-0.5µg/ml DAPI (stored at +4°C) 

 

 10x PBS (Phosphate buffered saline, pH 7.25) 

1.3M Sodium chloride (Merck, #106404) 

70mM di-sodium hydrogen phosphate (Merck, #106586) 

30mM sodiumdihydrogen phosphate dihydrate (Merck, #106342) 

Autoclaved 



 

2.6.3 In situ immunostaining of whole yeast cell 

This method is used to identify the cellular localization of specific proteins. 

300-500µl of 37% formaldehyde (Merck, #104003) was added to a 3-5ml aliquot 

of cell culture, mixed well, left for 5minutes at room temperature and finally stored 

at 4°C for up to five days. The cells were harvested by centrifugation for 

3minutes at 3000rpm and the pellet washed twice with 1ml buffer I and once with 

1ml of buffer II. The digestion of the cell walls was carried out in a digestion mix 

consisting of 145µl Buffer II + 35µl 0.5M DTT (Sigma-Aldrich, #D9779) + 17µl 

Zymolyase 20T (Seikagaku, #120491) for 10-25minutes at 37°C. The digest was 

verified by phase contrast microscopy and was stopped by placing the cells on 

ice when at least 95% of the cells lost their bright refractive halo. Optionally, 

spheroplasted cells were washed again twice with buffer II and resuspended in 

100µl of buffer II. 

10-well containing slides were first coated with 0.1% (w/v) polylysine (poly-

L-lysine, Sigma, #P8920) dissolved in dH2O. This is necessary, as the 

spheroplasts would normally not adhere to the blank glass surface. 5µl of 

polylysine was added to each well to be used and incubated for 5minutes at 

room temperature. The remaining liquid polylysine was then carefully aspirated 

off and the slide was left to dry for at least 5minutes at room temperature. 

About 3-5µl of spheroplasts was transferred into the polylysine treated wells 

and the slides were incubated for 6-10minutes in a moist-chamber, allowing the 

cells to settle. During the procedure drying out of the cells was avoided. The cells 

were dehydrated by plunging the slides into a cuvette containing -20°C cold 

methanol (Neuber, #441992) for 3minutes and subsequently into -20°C cold 

acetone (Merck, #100014) for 10seconds. To avoid the contamination of wells 

below, the slides were placed into the cuvette in an angle, with the cell carrying 

side facing downwards. 



The slide was removed and put onto a workbench face up until the acetone 

was evaporated away. 15µl of blocking buffer was pipetted into each well to block 

unspecific antibody binding epitopes and the slide was incubated in a moist 

chamber for 10-20minutes at room temperature. The coverslip was gently rinsed 

off by placing the slide in 1xPBS, 3-7µl of the primary antibody solution diluted in 

blocking buffer was added to the wells and the slide was incubated for 2-3 hours 

at 30°C or alternatively at 4°C overnight in a moist chamber. 

Afterwards, the coverslip was rinsed off and the slides were placed in 

1xPBS for 10minutes while gently agitated and 3-7µl of the secondary antibody 

was applied and incubated in a moist chamber for 2-3 hours at 30°C. 

The slides were then placed again in 1XPBS for 10minutes while gently 

agitated. Afterwards, the cells were mounted in a drop of vectashield DAPI 

solution to stain the chromatin and to protect the fluorescent dyes coupled to the 

secondary antibodies from fading. The cells were ready for fluorescence 

microscope analysis. Long-term storage of immunostained slides can be 

achieved at -80°C (or –20°C). 

 

 

 
Buffer I (0.1M potassium phosphate pH 6.4) 

27.8mM di-Potassium hydrogen phosphate trihydrate  

(Merck, #105099) 

72.2mM Potassium dihydrogen phosphate (Merck, #104873) 

0.5mM Magnesium chloride (Merck, #105833) 

(do not need to filter-sterilize) 

 

 

 



Buffer II (0.1M potassium phosphate pH 7.4) 

1.2M Sorbitol (Merck, #107758) 

80.2mM di-Potassium hydrogen phosphate trihydrate 

(Merck, #105099) 

19.8mM Potassium dihydrogen phosphate (Merck, #104873) 

0.5mM Magnesium chloride (Merck, #105833) 

 

 Blocking buffer 

0.5% (w/v) Bovine serum albumin, fraction V (Sigma,#A9647) 

0.2% (w/v) Gelatin, from cold water fish skin (Sigma, #G7041-100G) 

in 1x PBS pH 7.25 

do not filter sterilize, stored at -20°C 

 



2.6.4 Microscopy technique 

A Zeiss Axioskop epifluorescence microscope equipped with single band 

pass filters for the excitation of blue (DAPI), red (CY3) and green (both GFP and 

FITC) and a 100W mercury lamp with an Attoarc regulator was used to carry out 

cytological analysis of yeast chromatin. The magnified images were obtained 

while employing a cooled digital black and white CCD camera (Photometrics 

CH250A).  

The acquisition of pictures was controlled by the IPLab 3.0 software (Signal 

Analytics) and the resulting black and white pictures were then transformed into 

multi-channel false colour pictures using the IPLab 3.0 software. All images were 

captured using a 100x objective and a 2.5x eye piece magnification unless 

otherwise noted. 

 
 
 

2.7 Generating a Sk1/BY hybrid library 
 

In order to identify new genes required for chromosome synapsis, we have 

performed a genome-wide screen in SK1/BY hybrid background. A start-to stop-

codon deletion of most non-essential (4800) ORFs in the yeast genome was 

carried out in BY strain (Winzeler et al., 1999b).  

Because BY strains do not sporulate synchronously, a screening strategy 

that includes bulk mating of the BY haploid deletion collection to a rapidly 

sporulates SK1 strain background that carries the genetic markers required for 

further selection and to monitor chromosome morphology (query strain) was 

developed.  



 

2.7.1 Screening strategy 

A diploid SK1/BY hybrid strain, heterozygous of the deletion of interest, was 

generated by mating of the BY Matalpha haploid that carries the deletion of the 

gene of interest to a Mata SK1 query strain that carries several markers 

(HO::HIS3, ste4ts::LYS2, cyh2) needed for the selection of homozygous diploid of 

the desired genotype. The query strain carries in addition the meiosis-specific 

cohesin subunit Rec8 tagged at its C-terminal end with 3xHA epitope (REC8-

HA3::ura3::LEU2, URA3) to visualize chromosomes axes (Figure 5). 

 

Mating and selection of the heterozygous diploid 
 

The SK1 query strain was incubated on YPD plate at 35°C for 3-4 days. 

30mg of query strain cells were dissolved in 50ml of the mating medium (SM + 

12% YPD) pre-warmed to 35°C (query strain suspension). 155µl of query strain 

suspension were pipetted into a new 96-well microtiter plate using a 12 channel 

pipette and 6.4µl of each candidates (from a BY haploid deletion collection) were 

added on its corresponding well and mixed thoroughly by pipetting up and down. 

The mating mix was incubated successively at 20°C and 25°C for two days each. 

For selection of the heterozygous hybrid diploid, 4µl of the mating 

suspension were transferred into 160µl of a freshly prepared SM medium 

supplemented with G418 at a final concentration of 500µg/ml. The plate was 

incubated at 30°C for 24hours. The selection procedure was repeated 3 times.  

Sporulation of heterozygous hybrid diploids 
 

After the selection, 5µl of heterozygous hybrid diploid were transferred into 

160µl of pre-sporulation medium (GNA medium) and incubated at 30°C for 24 

hours. 10µl of cells suspension from the pre-sporulation medium were pipetted 

into 150µl of sporulation medium (SPM medium) supplemented with amino acid 



mix (320µl amino acid mix/100 ml SPM medium) and 1%PPG (100µl of 

1%PPG/100ml SPM medium). The plate was incubated at 30°C for 5-7 days 

while shaking (200rpm).  

Selection against unsporulated diploids and for correct 
segregated markers 
 

After sporulation, unsporulated vegetative cells were killed by ether 

treatment. 100µl of the sporulation culture were pipetted into a 1.2ml 96-well 

glass plate (Grace Vydac) and 400µl of Diethyl ether were added. The plate was 

tightly sealed and incubated at room temperature while shaking for 25minutes 

and under the fume hood. After ether killing, 70µl of cells suspension were 

carefully transferred into a new microtiter plate containing 200µl of SM medium 

pre-warmed to 35°C and supplemented with G418 (at a final concentration of 

500µg/ml) and cycloheximide (at a final concentration of 3µg/ml): (SM+G418 

+Cycloheximide medium).  

The plate was incubated at 35°C with open lid for 20minutes and overnight 

with closed lid. On the next day, 4µl of cells were transferred into 200µl of 

SM+G418+Cycloheximede medium freshly prepared and pre-warmed to 35°C. 

The plate was then incubated for 2 days at 35°C.  

Generation of homozygous hybrid diploids  
 

Cells were stamped from the selection medium (SM+ G418 + 

cycloheximide) onto YPD plate supplemented with G418 and were allowed to 

mate at 20°C for 2 days and at 25°C for another 2 days. Homozygous hybrid 

diploids cells were finally stamped onto YPG plate and incubated at 30°C for 2-3 

days to select against respiratory deficient cells. Cells were ready for cytology, 

the analysis was carried out immediately or within 10days. 

 
 
 
 



3 RESULTS 

3.1 Primary screen: SK1/BY hybrid mutants 
 

Chromosome pairing culminates by the formation of a proteinaceous 

structure called synaptonemal complex (SC); the SC is morphologically 

conserved across a wide variety of species (von Wettstein et al., 1984) and it is 

thought that the SC may control the distribution of crossovers along and between 

chromosomes and may ensures wild type levels of crossing over (Zickler and 

Kleckner, 1999). In addition it may serve to avoid entangling of chromosomes 

during the homology search period (Zickler and Kleckner, 1999; Storlazzi et al., 

2010b). The so called ZMM proteins (Zip1, 2, 3, 4, Spo16, Msh4, 5, Mer3) are 

defined by showing a specific defect in both SC and crossover formation, 

reviewed in (Page and Hawley, 2004), suggesting, but not proving, that full SC is 

required for wild type level of crossover formation. The molecular mechanism of 

SC formation is not fully understood, but at the start of this work it was 

recognized that some of the ZMM proteins interact to form a SUMO (or Ubiquitin) 

E3-ligase (Chen et al., 2004; Perry et al., 2005b). Also, the function of the SC is 

not fully understood. It became clear through the phenotype of synapsis mutants, 

that synapsis defects often don’t produce spore lethality. Therefore spore lethality 

based genetic screens may have failed to discover parts of the synapsis 

pathway. In order to contribute to a better understanding of this process of 

chromosome synapsis, we set out to perform a systematic cytological screen to 

evaluate the role of all non-essential genes for meiotic SC-formation in 

Saccharomyces cerevisiae, based on the yeast gene deletion library (Winzeler et 

al., 1999a). 

In the yeast gene deletion library almost all non-essential open reading 

frames (ORFs) of Saccharomyces cerevisiae have been deleted and replaced by 

the kanamycin cassette KanMX4, that confers resistance to the eukaryote 

specific antibiotic geneticin (G418) in the BY strain background. Unfortunately, 

the BY strain background is not suitable to study meiosis, because cells 

sporulate slowly, asynchronously and inefficiently. Only about 50% of asci can be 



recovered after 5 days of sporulation under optimal conditions. Therefore the 

screening strategy involves crossing of all 4.800 mutants of the collection to the 

well sporulating SK1 background. The screen was then performed in SK1/BY 

hybrids homozygous for the desired mutation. The technical details of this 

operation was developed in the lab by a number of previous lab members (Marc 

Berlinger, Martin Xaver and Alexander Woglar) with the most critical contributions 

from A. Woglar, who also provided a proof of principle (A. Woglar, master Thesis 

2008).  

The resulting diploids (each homozygous for a different deletion) were 

individually synchronized for meiosis and subjected to hypotonic surface 

spreading (Loidl et al., 1998). The SC-phenotype was then scored under the 

fluorescence microscope after immunostaining for a synapsis-specific protein 

(Zip1) and for a protein of the chromosome axis (Rec8-HA3). The technical 

details of how we obtained diploid hybrid strains homozygous for the desired 

mutations and for the procedure of synchronization, spreading and staining are 

described in the Method section. Of the 4800 non-essential ORFs, 3630 have 

been screened and analyzed within this work. For each candidate, 50 Rec8 

positive nuclei were evaluated and classified according to the extent of Zip1 

polymerization between homologous axes (and Method section).  

Details on the synapsis phentotypes of all 3630 candidates are available as 

a filemaker database, however here we will concentrate on the categories 

comprising mutants strongly defective in chromosome synapsis or entry into the 

meiotic program.  



3.1.1 Candidates unable to induce meiosis 

We classified candidates as unable to undergo meiosis, if both meiosis 

specific marker proteins, Rec8 and Zip1, were found nearly absent on nuclear 

spreads at 6 hours in SPM. Such mutants produced >90% empty nuclei, with a 

few percent showing unorganized staining or very weak foci. By this criterion, 

132/3630 deletions screened did not undergo meiosis (Table 6, Figure 6A).  

The largest group of genes required to undergo meiosis was genes involved 

in aerobic respiration (39 ORFs, 30% of identified ORFs) and/or are located in 

the mitochondrium (Figure 6A). This is expected, as aerobic respiration is known 

to be important for meiosis and sporulation (Simchen et al., 1972; Treinin and 

Simchen, 1993; Jambhekar and Amon, 2008). These studies suggest that 

respiration acts at multiple levels, but also that a respiration sensing pathway 

may exist that downregulates meiosis in the absence of respiration. The precise 

mechanism, how respiration and mitochondrial function impinge on meiotic 

induction is not understood. So this may be the first comprehensive list of genes, 

required for both, normal respiration and induction of meiosis. It is important to 

note here, that also other strongly defective mutant categories, such as Only Zip1 

foci contain a large fraction of mitochondrial/respiratory mutations. Thus, different 

mutations of this class cause phenotypes with gradually differing severity. 

Our assignment of ORFs to the group mitochondrial/respiratory was 

performed manually, on the basis of biological process description and of the 

protein localization description of the SGD (http://www.yeastgenome.org). GO 

terms were usually found to be too specific and insufficiently curated, to use them 

for grouping. For example 61 genes possess the GO term aerobic respiration, 12 

genes the term mitochondrial electron transport and 321 the term mitochondrium 

as manually curated cellular component. Against expectation, only 7 out of the 12 

genes listed for mitochondrial electron transport are also part of aerobic 

respiration. But even more surprisingly, none of the 12 is listed with cellular 

component mitochondrium. Therefore, we chose to make our own GO term list, 

based on text description, and on whether mitochondrial localization or 



respiratory functions are mentioned in the gene-descriptions. In the absence of a 

precise number of genes involved in respiration we can’t estimate precisely the 

fraction that is also required for meiosis. However, of the 39 genes we defined as 

mitochondrial/respiratory mutants only 4 have the GO term aerobic respiration or 

mitochondrial electron transport (together 66 entries), this is 4/66 (6%). This 

suggests that 90% of the mutations with these GO terms had initiated meiosis 

(based on the analysis of 75% of the non-essential genes). On the other 

extreme, 34 of the 39 (87%) genes identified in our screen have the GO term 

mitochondrium – as high throughput cellular component (915 entries). This 

means, only 34/915 (3.7%) of proteins tentatively localized to mitochondria are 

meiosis deficient. These preliminary results show that only a small set of 

mitochondrial/respiratory functions are essential for meiotic induction in the 

BY/SK1 hybrid background. Another set, in the next category, is at least severely 

compromised with the formation of meiosis specific chromosome structures. 

The second largest group (23 genes, 17% of identified candidates) are 

mutants affecting metabolism (metabolic pathways, ribosome biogenesis, 

autophagy, Table 6, Figure 6A). Not surprisingly, these processes are involved in 

meiotic induction. Among the metabolic pathways that affect meiotic induction 

are nitrogen metabolism and uptake, acetate uptake, gluconeogenesis, nutrient 

sensing and others. 7 mutants involved either in ribosome biogenesis or in 

control of protein synthesis with a location at the ribosome, were identified. This 

small number suggests that also for this category only a small, specific set of 

genes is essential for meiotic induction. Only 2 genes required for autophagy 

were identified in this category (in the first 75% of the screen), even though 

autophagy is an important aspect of meiosis. Meiosis is a response to starvation 

in yeast and therefore requires autophagy and extensive recycling of cellular 

components. Some of these functions are linked with the vacuole and the Golgi, 

which are in the third largest category, detected. 

The third largest group (20 genes, 15% of identified candidates) are deleted 

for proteins associated with the Golgi apparatus, the ER, the vacuole or the 

plasmamembrane (Table 6, Figure 6A). In general, we believe that these mutants 



are defective in either catabolic activities (e.g. vacuole) or anabolic activities (e.g. 

ER), which are necessary for the major metabolic transitions between mitotic and 

meiotic states. Transmembrane ATPases or the regulation thereof hint at 

processes to generate energy by generating gradients across membranes. 

Certainly, meiosis and spore formation is a very energy consuming process, 

especially difficult to carry out under starvation conditions. 

Dubious and uncharacterized ORFs together make 17 (13%) of the 

candidates (Table 6, Figure 6A). Completely uncharacterizd ORFs is a class that 

is shrinking rapidly. We believe that it is not absolutely necessary to produce a 

protein in order to affect meiotic induction. ncRNA may play important regulatory 

roles, that could be uncovered by deleting these dubious ORFs. Because diverse 

biological processes are required for meiotic induction, it is impossible to predict, 

in which of those processes the newly characterized ORFs are exactly involved. 

However, the phenotype – no meiotic induction – is certainly a strong, robust 

phenotype. If confirmed by a second method, this may constitute the first strong 

phenotype for these mutants. 

A small group of mutants hints at the role of the cytoskeleton for meiotic 

induction, presenting mutants involved in karyogamy (not surprising, as 

karyogamy should be a prerequisite for meiosis), in spindle positioning and actin 

bundling (Table 6, Figure 6A). The role of pseudohyphae formation (1 mutant) is 

less obvious and might be considered preliminary. 

We identified the most important positive regulators of meiotic induction, 

Ime1, Ime2 and Ume6 in our screen (Table 6, Figure 6A). In addition we also 

found the known meiotic regulator Snf1, thus reidentifying 4 known inducers of 

the meiotic transcriptional program. Another group of genes known to be involved 

in DNA metabolism or repair (9, 7%) is somewhat suspicious. Genes like Sgs1, 

Pph3, Bre1 are known to undergo meiosis in the SK1 background, although 

being strongly defective. It is therefore likely that the very sensitive BY/SK1 

background is responsible for this possible overestimation of their phenotype. 

Clearly, however, these mutants are strongly defective in meiosis, but if any of 



them do indeed not enter the meiotic program can only be determined in a pure 

SK1 background. 

Another 7 genes (5%) are involved in RNA metabolism/transcription. Their 

roles might be to assist in promoting the transcriptional changes during meiotic 

differentiation. One gene detected is involved in salt stress. Hsp82, a very 

abundant chaperone, seems required for meiotic induction.  

Two mutations are listed as false positives. Deletion of the mating factor 

should have caused them to drop out during selection. A failure to sporulate 

might be due to the presence of largely haploid cells in these cultures. It is 

unclear, why the gal4∆ mutant did not undergo meiosis. The presence of at least 

some false positives stresses the importance of repeating the results in an 

independent experiment, before drawing final conclusions. Also, any 

experimental failure could cause an occasional drop out and prevent sporulation 

of a culture. The following chapters describe phenotypes that are better internally 

controlled, because Zip1 figures were taken only from Rec8 positive cells. 

However, because our primary goal was to identify synapsis mutants, we did not 

follow up and confirm all the meiosis induction mutants. These results therefore 

remain preliminary until final confirmation. 



3.1.2 Candidates displaying Zip1 foci and/or polycomplexes, but no 

elongated synaptic stretches 

Mutants of this category did initiate the meiotic program and expressed Zip1 

and Rec8 in at least a subset of cells. However, at the analyzed time point (6 

hours in SPM) no continuous stretches of synapsis were detected in 50 Rec8 

positive spreads. Instead a dot-like pattern of Zip1 staining termed foci and/or 

Zip1 aggregate (s) called polycomplexes (PCs) were observed. Polycomplexes 

occur by self-assembly of Zip1, which is expressed faster than it can be 

incorporated into synapsing chromosomes. Most mutants with defective synapsis 

show increased numbers of PCs. 90 of the 3630 ORFs screened exhibit this 

phenotype (Table 7 Figure 6B) 

We have identified in this category 9 of 12 genes, the deletion of which was 

previously described to be essential for DSB formation. 2 of these (Mer1 and 

Nam8) are required for the correct splicing of transcripts of DSB promoting 

genes, such as for the Mer2 transcript. 2 of the known DSB essential genes were 

missed (Mei4, Xrs2 and Ski8, the latter appearing in the short Zip1 stretches 

category). The mei4∆ repeatedly gave rise to synapsed chromosomes 

suggesting that the mutants were either wrongly assigned, contaminated with 

MEI4 wild type or inefficiently deleted. Absence of Ski8 may cause a milder 

phenotype in BY strains than in SK1. 9 more candidates were identified that were 

previously described with strong synapsis defects. Of the non-essential axial 

element components, Rec8, Mek1 and Red1 were identified, while Hop1 was not 

included in the collection. While this observation on Rec8 and Red1 confirms 

reports of others (Rockmill and Roeder, 1990; Klein et al., 1999), that these 

factors are essential for synapsis, mek1∆ mutants have previously been shown 

to be able to produce partial synapsis (Rockmill and Roeder, 1991). To 

reconciliate the two findings, we have analyzed synapsis in mek1∆ in pure SK1 

and found a maximum of 1% short stretches at 4 hours and 3% at 5 and 6 hours 

in SPM. This confirms a very strong, though not complete, requirement for Mek1 



for synapsis in SK1. We attribute the slightly stronger phenotype to the SK1/BY 

hybrid background with its generally lower propensity to synapse. 

Of the known ZMM pathway components, we identified Zip3 and Mer3 in 

this class, Zip1 and Zip2 are not included in the analyzed set yet, while Spo16 is 

in the short Zip1 stretches and Zip4, Msh4 are in the long stretches only 

category. Msh5 showed reduced SC formation (either >80% foci or >92% short 

SC).  

Other mutants classified in the Zip1 foci category were those involved in 

meiotic DSB repair. 4 genes were identified: Dmc1 and its loading factor Mei5 

(the other loading factor, Sae3, was not analyzed yet), Tid1(Rdh54) and Shu2 

(subunit of the Shu complex, together with Shu1, Psy3 and Csm2). Of the other 

Shu complex subunits, Psy3 was analyzed in this screen and found defective 

(category long Zip1 stretches), while Shu1 did not show any synapsis phenotype. 

Csm2, however, was identified in the diploma work of A. Woglar as defective in 

synapsis. Shu2, Csm2 and Psy3 were still (partially) defective in synapsis when 

transferred to a pure SK1 genetic background. We presume that the phenotype 

in mutants defective in DSB repair may be more severe in the BY/SK1 hybrid 

background, than in pure SK1 or could represent a strong delay. Not detecting 

SC after 6 hours in SPM in the hybrid of course does not preclude later SC 

formation. In contrast to DSB formation, DSB repair is not essential for synapsis. 

Besides these genes already associated with strong meiotic phenotypes, 11 

genes were identified, previously associated with chromatin modification or DNA 

metabolism. 6 candidates are linked to chromatin modification, 2 to methylation 

(Rtf1, Cdc73 – both part of the paf1 transcription elongation complex, Paf1 not 

yet analyzed) 3 to acetylation (Ngg1, Ygl262w interact with SAGA), Ard1 

interacts with Nat1 (which was categorized in short Zip1 stretches. 1 candidate is 

a histone deacetylase, Hst4. (Another deacetylase (Hst1) is in long Zip1 

stretches). The other candidates are Rtt107, a mediator protein interacting also 

with Smc5/6 (not required for synapsis), Ubc13 (a ubiquitin E2 interacting with 

Mms2 – not analyzed), Apn1 (involved in apurinic repair and ROS (reactive 



oxygen species) resistance), Ddr2 (induced in repair), Irc18 (controls mitotic 

Rad52 foci). 

4 genes were identified that are linked to ubiquitin transfer, protein cleavage 

or protein degradation. Irc25 is a chaperone required for proteasome assembly, 

YOL057 is a dipeptyl-peptidase, Ubp15 a ubiquitin isopeptidase and YLR352 

might be a putative novel F-box protein interacting with SCF-ubiquitin ligase. 

Similar to the no meiotic induction class, also in Zip1 foci respiratory 

functions were abundantly identified with 10 candidates and ribosome biogenesis 

with 7 candidates. The mechanism of these genes might be related to those 

listed in no meiotic induction, except that they might be less severe. The meiotic 

program requires a lot of energy and new protein synthesis, and cells 

compromized in these general, basic functions may either not be able to express 

the meiotic program at all (no meiotic induction) or not fully (Zip1 foci). This is the 

most likely explanation, but of course more specific roles for selected candidates 

is possible. Similarly general roles are possible for the 4 candidates in 

Metabolism (sugar, nitrogen and lipid metabolism), Golgi/ER (3), Vacuole (3), 

Autophagy (1) and Membrane (3) classes. However, we expect more specific 

roles in genes involved in RNA metabolism (Mer1, Nam8 are essential for DSB 

formation through splicing Mer2 and other important RNAs), Cwc15, Npl3 have 

also roles in splicing of yet unknown substrates and Dcs1 does decapping of 

mRNAs. 

Proteins involved in transcription may also regulate DSB formation, or may 

act through regulating important prophase genes. 1 transcription factor (Rtg1) 

and 2 repressors Maf1 and Rdr1 were found. 2 factors organizing the actin 

skeleton, Bag7 and Rom1, point at the role of actin for timely synapsis. 4 genes 

associated with various stress responses were found, such as Sip18, Ypr1, Hal5 

and Aha1, the latter activating Hsp82, confirming the role of Hsp82, which is 

listed under no meiotic induction. Meiosis is carried out under stress conditions, 

but how exactly these genes contribute to successful meiosis is unclear. One 

protein, Dbf2, is localized in the nucleolus and is thought to control the activity 



and sequestering of Cdc14 phosphatase there. Such mechanism also plays a 

role in meiosis, for instance in sequestering monopolins until the end of prophase 

I.  

Here again, previously uncharacterized (8) or dubious (3) ORFs were 

identified. These are of special interest, if confirmed. 4 candidates seem quite 

unlikely to be real, based on previous characterization. Cts2 chitinase should 

only affect spore wall formation (however even in pure SK1 this gene was still 

partially defective in synapsis, see Appendix), His5, Gap1 and Prs5 should make 

their strains auxotrophic for aminoacids that were selected for. Ideally, they 

should have dropped out of the screen. Perhaps, in these strains, mating was 

defective. 

 

3.1.3 Candidates exhibiting both, foci and short stretches of Zip1, but 

no long stretches of synapsis 

In order to differentiate further between nuclei of different degree of 

synapsis, we defined 3 categories of nuclei containing synapsed chromosomes, 

short Zip1, long Zip1 and fully synapsed. The category short Zip1 comprises 

cells, where the total length of synapsis was estimated to be below 25% of a 

completely synapsed nucleus. The relatively low limit of 25% was chosen to have 

a strict criterium, which should reduce the number of false positives. Similarly 

strict, the border between long Zip1 and fully synapsed nuclei was chosen as 

50% or at least 8 fully synapsed chromosomes. These definitions are rather 

conservative to avoid finding too many mutants with weak or borderline 

phenotypes (Table 8 Figure 6C). 

102 candidates were classified as having short Zip1 stretches. These 

mutants include 7 well known factors previously characterized for their 

requirement for meiotic recombination and/or SC formation: Ski8/Rec103, 

Sae2/Com1, Hop2 (Mnd1 NA) and the 9-1-1 complex DNA damage sensors 

Mec3, Ddc1 (Rad17, Rad24 NA) (Table 8). Of the synapsis formation pathway 



(ZMM), only Spo16 was categorized here and Rmr1, which was identified in a 

previous screen in the lab as being reduced for synapsis and COs (Jordan et al., 

2007), while another potential ZMM mutation, def1∆ (Jordan et al., 2007) did not 

produce a phenotype here. The other ZMM mutations were more severe (Zip3, 

Mer3), not analyzed (Zip1, Zip2) or showed weaker phenotypes (Zip4, Msh4, 

Msh5).  

We found 11 novel candidates annotated before as related to DNA repair 

(7) or histone modification/chromatin remodelling (4). Interestingly, we found 

Rad26, which is essential for TCR (transcription coupled repair) and is thought to 

work in combination with Def1 (previously found to be required for synapsis. The 

two factors are thought to mediate Pol II ubiquitination and degradation, perhaps 

to enable access for repair enzymes. Whether the role in synapsis is mediated 

through the control of ubiquitination or, whether TCR itself is required for 

synapsis will require further studies.  

Another novel candidate is Rev7, an accessory subunit of DNA Pol-zeta, 

involved in translesion synthesis (TLS). However, Rev7s role in TLS seems not 

to be important, because the main TLS polymerase (Rev3) has no role in 

synapsis. However, Rev7 is known to interact with the 9-1-1 complex, whose 

deletions give the same phenotype as Rev7 mutants. Therefore, this result 

strengthens the importance of this interaction. Also the identification of AMP-

deaminase Amd1 is an important novel finding. This protein is involved in DNA 

repair by its interaction with crucial kinases like Dbf2 (Zip1 foci) or Hrr25 and 

Rad53 (both essential, but known to be involved in various meiotic processes). 

The other four DNA repair candidates were previously largely 

uncharacterized. Their role in repair was only inferred from large scale studies, 

such as being required for reducing Rad52 foci in mitosis (Irc4, Irc11) (Alvaro et 

al., 2007), for interacting with Rad9 (YBR259W, (Giaever et al., 2002)) or for 

being induced by MMS (YPL068C, (Lee et al., 2007)). 

Of the 4 chromatin modification factors identified, 2 (Sds3, Sif2) comprize 

subunits of HDACs (histone deacetylase complexes), one (Sgf29) is a subunit of 



a HAT (histone acetyl transferase) and one (Swc2) is a subunit of the Swr1 

chromatin remodeling complex.  

Sds3 is a component of the Rpd3p/Sin3p deacetylase complex (Rpd3, Sin3 

NA), which deacetylates H3 and H4 and antagonizes different forms of 

transcriptional silencing. Sif2 is part of Set3C histone deacetylase complex (with 

Hst1, Hos2), which represses early/middle sporulation genes (Pijnappel et al., 

2001). It is unlikely that this known role in repression of meiotic genes is 

responsible for synapsis. Interestingly, Sif2’s partner Hst1, was found with almost 

the exact same phenotype, although falling into long Zip1 category, because of 

one single nucleus containing long Zip1 stretches. Hos2 did not show a defect, 

showing that not all subunits are of equal importance. Sgf29 is part of the 

HAT/Core module of several chromatin remodelling complexes, such as SAGA 

and SLIK (along with Gcn5 (NA), Ngg1 (Zip1 foci) and Ada2 (no phenotype)). 

The SAGA complex is implicated by a number of different hits such as (Cti6 

(recruits SAGA to silenced chromatin, no meiotic induction), Ngg1 (SAGA-HAT 

core component, Zip1 foci), YGL262W (uncharacterized Sgf29 interacting 

protein, Zip1 foci), Rpd17 (SAGA-HAT core component, low SC). In summary, it 

seems likely that histone acetylation/deacetylation, or recognition of acetylated 

histones may have a direct role in DSB formation or synapsis. 

Swc2 is part of a chromatin remodeling complex that exchanges H2AZ for 

H2A at damaged sites. This protein was analyzed in some detail for its 

discovered genetic interaction with Pph3 in chapter 3.4.3. 

9 novel candidates representing 8 different activities in post translational 

modification were identified. Among them is a SUMO E3 (Siz2), thought to 

sumoylate telomeric Ku70/Ku80. Interestingly both its interactors were also 

identified, although in different categories (Ecm11 long Zip1 and Gis1 high SC). 

Another novel candidate, Lag2, negatively regulates the SCF (Liu et al., 2009), a 

ubiquitin E3. It prevents its activation by inhibiting neddylation of the cullin 

subunit Cdc53. The SCF is required for synapsis, as shown by meiotic specific 

knock down of Cdc53 (A. Shinohara, personal communication). In addition 



Rad52 accumulates in mitotic lag2∆ mutants (Alvaro et al., 2007), suggesting 

accumulation of repair intermediates. Vps7 is a aspartic acid protease so far only 

implicated in Cell wall morphogenesis and now first implicated in meiotic SC 

formation. Sam2 is a S-adenosylmethionine and its product AdoMet is involved in 

the methylation of proteins. A differentially regulated isozyme (SAM1) did not 

produce a phenotype upon deletion. Last not least 2 Ser/Thr kinases were 

identified, Yak1 and Ksp1, which until now, also had been implicated in unrelated 

processes. Yak1 substrates, it regulates mRNA deadenylation, gave no 

phenotype, when analyzed (Table 8). 

8 novel candidates were summarized in a somewhat heterogeneous group 

as affecting metabolism. Most interestingly, one candidate represents the only 

non-essential subunit of the proteasome, PRE9. It is the alpha 3 subunit of the 

20S subcomplex, which apparently is not essential, because it can partially be 

replaced by the alpha 4 (PRE6) subunit. Given that we also identified Poc3 (Zip1 

foci) and Poc4 (long Zip1), which are involved in proteasome assembly, and 

ECM29 (>92% short SC, tethers 19S and 20S proteasome subunits) this makes 

a strong case for the importance of the proteasome in synapsis. In addition, we 

found a hitherto nearly uncharacterized ORF, YDR179W-A, which was reported 

to interact with Pup1, an essential Beta-SU of the proteasome. Taken together 

our results predict a prominent role of the proteasome in synapsis.  

2 genes, DLD3 and ZWF1, are somehow involved in energy metabolism. 

Importantly, Zwf1, a glucose-6-phosphate dehydrogenase, interacts with Dbf2 

kinase (Zip1 foci), which is implicated in DNA repair and Cdc14 activation. 4 

genes (including ZWF1) are all interfering with the use of nitrogen, but it is 

questionable, whether this is the reason for the SC defect (DAL4, TRK1, UGA4). 

Oxp1 is a 5-Oxoprolinase, which is required for making glutathione. Similar to the 

proteasome, also the glutathione metabolism was hit several times by our screen 

(YCF1, GLO2 (TRX1 interacting with GLO2), GRX3), pointing to the importance 

of glutathione and protection against oxidative stress for synapsis. Glutathione is 

important during oxidative stress and for the chemical detoxification of the cells. 

The last protein of this class is FSH3, a putative serine hydrolase. 



3 genes known to mediate stress resistance and one novel ORF also 

implicated in stress resistance were identified in this category. Interestingly, 

HYR1 and YJL206C mediate resistance to oxidative stress. This emphasizes the 

above results on the glutathione metabolism and may hint at important functions 

for ROS management during meiosis. One gene, ATC1, is involved in cationic 

stress response and another one, HOT1, in osmotic stress. 

11 genes were found which are involved in RNA metabolism and/or 

transcription. Among the RNA metabolic proteins there is Ski8, a component of 

the pre-DSB complex that also interacts with Spo11. This mutant was actually 

expected in the Zip1 foci category. One mutant is defective for respiratory 

growth, RSF1, likely explaining its defect. One mutant highlights the role of the 

nuclear pore: Nup42. It is not the only nuclear pore component identified – also 

NUP170 and NUP60 as well as SOY1. At least Nup170 and Nup60 have been 

implicated in biological processes like chromosome segregation and DNA repair, 

in addition to mRNA transport across the pore.  

For the genes involved in transcription it is always difficult to separate a role 

in regulating expression of meiotic genes from a more direct function, as for 

instance in DSB formation. Several components of RNA polymerase I were 

identified. RPA49 (short Zip1), RPA12 (>80% foci) and RPA34 (weak SC 

formation), illustrating a role of this polymerase, which exclusively deals with 

rDNA transcription. We propose that it exerts its role via ribosome biogenesis, as 

we also identified 5 other genes in this class (short Zip1), annotated with roles in 

ribosomal biogenesis. Tup1 is a repressor, thought to be involved in establishing 

repressive heterochromatin marks via H3 and H4 modification. This could directly 

effect DSB formation. Swi6 is a TF proposed to regulate genes important for 

synapsis such as RNR1, CLB5, RAD53. RDS1 and ASG1 are Zinc cluster 

transcripton factors (like Gal4), which can bind DNA in a sequence specific 

manner. 

9 genes are annotated with being required for respiration or mitochondria. 

The largest group affects the respiratory chain. Among this is, Pet122, a 



translational activator for Cox3. Cox1, Cox2 and Cox3 are essential subunits of 

cytochrome C oxidase and thus not included in the screen. However, genes 

involved in their activation are discovered in various categories, emphasizing 

their importance in synapsis. This is further discussed in the next chapter (long 

Zip1). Pet122 acts together with Pet54 (Zip1 foci) and Pet494 (not analyzed). 4 

other genes affect the respiratory chain, from the delivery of electrons (GUT2, 

glycerol-3-phosphate dehydrogenase) via Cox8 (subunit of cytochrome C 

oxidase) and QCR7 (cytochrome reductase) to ATP22 an activator of F1F0 ATP 

synthase. These results underscore that synapsis is a particularly strongly 

energy consuming process, which partially derails, or is delayed when ATP runs 

out. Recently it was shown that after pachytene release inhibition of F1F0 ATP 

synthase will not interrupt the divisions. This emphasizes that the truly hard and 

energy consuming part of meiosis in yeast is the identification and connection of 

homologs, including synapsis formation, while after that it just goes downhill. 

SDH3 is Succinate dehydrogenase and required to feed the Krebs cycle. 

MDM31 is required for stable mitochondrial inheritance, while TRX3 is required 

for redox homeostasis. 

5 candidates involved in Golgi/ER processes and 4 candidates affecting 

vacuolar processes underscore the importance of these organelles and are in 

line with similar numbers in the Zip1 foci and Long Zip1 categories. 

One gene of the category cytoskeleton, MLP2, which is myosin-like, was 

linked to telomere tethering before. This suggests a role in chromosome 

movement, which is required for synapsis.  

Of 3 candidates affecting the cell cycle Cdh1 probably is required for proper 

B cyclin degradation during the G1 phase preceding meiosis. Vhs2 has a role in 

G1/S transition and might affect premeiotic S-phase. Sfp1 has also been noted 

for a role in DNA damage response and might be the most interesting of these 3. 

7 candidates are membrane associated, 2 mannoproteins and one 

mannosylphosphate transferase. These are 3 of a total of 9 genes representing 

either mannoproteins or mannosyl-metabolizing enzymes. Mannose has so far 



been known for its role in the cell wall. The multiple hits in our survey suggest 

prominent role of mannosylation also in meiotic prophase. This parallels the 

situation with N-glycosylation, where three genes were identified, EOS2 and 

OST3, which mediate N-terminal glycosylation and YND1, an apyrase, which 

indirectly helps with glycosylation. The very clear and prominent role of 

mannosylation and glycosylation for synapsis is a very interesting and 

unexpected result. This could be the basis of new investigations, into whether 

this effects recombination via Golgi vesicle transport or whether glycosylated, 

mannosylated proteins are more directly involved in synapsis. 

We also detected 21 largely uncharacterized ORFs, of which 9 are listed as 

dubious in respect to coding for a protein. Among those 9 dubious ORFs one has 

been termed Irc11, because its deletion resulted in increased numbers of Rad52 

foci in vegetative cells. Another ORF (YDR134C) is annotated as interacting with 

Cdc28, Dbf2 (Zip1 foci) and Mek1; all proteins that play important roles in 

synapsis.  

Of the 12 novel bona fide ORFs, some isolated pieces of information are 

available. Very interestingly, 1 candidate interacts with the proteasome, one with 

the DNA damage effector Rad9, one with the DNA ligase Cdc9, one with SUMO 

and two are induced by exposure to the alkylating DNA damaging agent MMS 

(methyl methane sulfonate). 

These candidates showed a phenotype in SK1/BY hybrids. For selected 

candidates, SK1 K.O.s were produced. These usually showed a somewhat 

milder phenotype. Therefore we believe that the hybrid background represents 

the more sensitive system to test effects on synapsis. For 4 candidates we 

suspect they may be false positives, as Ura10 and the partially sterile Lrg1 

mutants should have dropped out of the selection. Also Gal80 and dytyrosine 

transporter Dtr1 are not expected to affect synapsis. However, further analysis is 

required to rule out that one or more of them indeed also have an unexpected 

role in chromosome biology. 

 



3.1.4 Candidates displaying long stretches of Zip1, but incomplete 

synapsis 

Mutants of this category comprises cells, where the total length of synapsis 

was estimated to be between 25% and 50% of a completely synapsed nucleus or 

where less than 8 fully synapsed chromosomes were detected. According to this 

criterion, 200 mutants displaying long Zip1 stretches on nuclear spreads were 

identified (Table 9 Figure 6D). Of these, 9% (18/200 of identified ORFs) were 

factors required for various mitochondrial functions such as 3 mitochondrial 

genome maintenance genes (AIM41, IMG1, MDM32), 3 metal metabolism 

genes, 3 genes affecting mitochondrial tRNAs and 1 with an unknown function in 

respiration (Table 9). The largest group of these 18 candidates (8/18) are genes 

encoding for functions implicated in the electron transport chain at the inner 

membrane of mitochondria. This electron transport chain is also called 

respiratory chain and is a multistep process that couples electron transfer from 

an electron donor molecule (NADH and succinate for mitochondria) to an 

electron acceptor molecule (molecular oxygen O2) with the transfer of protons (H+ 

ions) across the inner membrane of mitochondria to generate ATP using F0F1 

ATP synthase complex. In eukaryotes, the cytochrome oxidase is the terminal 

enzymatic complex of the respiration chain. In budding yeast cytochrome c 

oxidase comprises three core subunits (COX1, COX2, COX3) encoded by the 

mitochondrial genome. The three core subunits are not in the yeast deletion 

library but we have identified three factors that are required for the normal 

expression of these three core subunits in categories that fail to produce 

complete SCs: QRI5 which is required for the accumulation of spliced Cox1 

mRNA, PET111 is a translational activator for the Cox2 mRNA, PET122 which is 

the mitochondrial translational activator specific for the Cox3 mRNA appeared in 

the short Zip1 category. It was shown that the treatment of budding yeast cells 

with sodium azide an inhibitor of cytochrome c oxidase, prevents Ime1 

production and meiotic induction even in the presence of a non-fermentable 

carbon source (Jambhekar and Amon, 2008). Thus, cytochrome c oxidase 



activity is crucial for meiotic induction. Our observations suggest that 

downregulation of cytochrome c oxidase core components may effect 

chromosome synapsis without blocking entry into meiosis.  

1 gene, RIM11, which encodes a protein kinase required for signal 

transduction during entry into the meiotic program and promotes the interaction 

between Ime1 and Ume6 was identified. As Ime1/Ume6 complex is a 

transcriptional activator of meiotic genes, a failure in this process may result in a 

deficit of DSBs, or their repair, which may translate into reduced synapsis. In this 

category, there are two poorly characterized ORFs, YIR016W and YLR445W, 

whose expression depends on Ume6 (Williams et al., 2002). Ume6 deletion 

causes a problem with entry into the meiotic program, but its deregulation may 

cause more subtle defects, which may also be caused by failure to express these 

two uncharacterized ORFs. 

5 other genes known to be required during meiosis were also identified in 

this class. MSH4 and ZIP4/SPO22 are components of the ZMM pathway and 1 

gene, NDJ1 is required for bouquet formation (Conrad et al., 1997) and telomere 

led chromosome dynamics in zygotene together with Mps3 (essential) and Csm4 

(no phenotype) (Kosaka et al., 2008; Wanat et al., 2008). Importantly, these 

dynamics depend on underlying actin cables, requiring the integrity of actin 

filaments, which provides a possible link to several mutants affecting actin 

filaments, described further below in this chapter..  

One subunit of the Shu complex (Shu2, Csm2, Psy3, (Shu1)), PSY3, was 

identified in this group, while Shu2 gave a more severe defect (Zip1 foci) while 

Csm2 was not yet analyzed. SHU1 deletion did not yield a phenotype. The Shu 

complex was shown to promote the formation of recombination intermediates 

(Mankouri et al., 2007) and stimulates Rad51 filament formation in vitro (A. 

Shinohara, personal Communication). In our lab Shu2, Csm2, Psy3 had been 

analyzed in a pilot screen, had been identified and reanalyzed in SK1 

background (Woglar A, master Thesis). In SK1, all three mutants finally produced 

synapsis after a delay, but have reduced spore viability and in at least one case 



(csm2∆), chromosome missegregation (Rabitsch et al., 2001). We have also 

identified a DNA- structure specific endonuclease MMS4 in this class. The 

Mus81-Mms4 endonuclease generates interference independent crossovers in 

budding yeast (MUS81/SLX3, NA), but was so far not described to affect 

synapsis. 

8.6% (17/200 identified ORFs) were previously assigned to DNA repair 

and/or chromatin remodeling and modification. Among these are checkpoint 

factors DCC1 a subunit of the alternative RFC, interacting with CTF8 and CTF18 

(no phenotypes) required for 100% sister chromatid cohesion (Mayer et al., 

2001). If confirmed this shows a CTF-independent function of Dcc1, probably 

different from the RFC function. MRC1, a component of the fork pausing 

complex, is also a S-phase checkpoint factor associated with the DNA 

polymerase epsilon. MRC1 acts in complex with TOF1 (no phenotype) and 

CSM3 (reduced SC). We also identified HPR1, a subunit of the THO/TREX 

complexes. The THO complex comprises four subunits (HPR1, THO2(no 

phenotype), THP1(no phenotype), MFT1(NA)) and is part of the TREX complex 

that is implicated in coupling transcription to export of mRNAs to the cytoplasm. 

HPR1 interacts also with SAC3 in the TREX-2 complex. The TREX-2 complex 

has 4 subunits (SAC3 (Zip1 foci), THP1 (no phenotype), SUS1 and CDC31 (both 

not in library). HPR1 is also a component of the PAF1 (NA) complex that 

associates with RNA polymerase II and is implicated in both transcriptional 

initiation and elongation. The mixed results for members of the same protein 

complexes may suggest that Hpr1 exerts its function outside of THO/TREX 

complexes. 

We identified RAD30, the DNA polymerase eta which is involved in 

translesion synthesis. Together with REV7 (Short Zip1 stretches), an accessory 

subunit of DNA polymerase zeta also implicated in translesion synthesis, this 

result hints at a role of this process in synapsis, however REV3 the catalytic 

subunit of DNA pol zeta showed only slightly reduced full SC formation (4%), 

indicating that at least DNA pol zeta is not critical for synapsis. Rev7 may well 

have Rev3-independent functions, as it is known to interact with the 9-1-1 subunit 



Ddc1/Mec3, which shows a similar phenotype. More experiments need to be 

done to see whether it is the translesion synthesis function of Rad30, that is 

responsible for the phenotype. 

6% (12/200) identified ORFs are genes previously assigned to transcription 

and 4.5% (9/200) previously implicated in RNA metabolism. One subunit of the 

elongator complex which comprises 7 SU (ATS1 (no meiotic induction, ELP2 

(reduced SC), ELP4 (NA), ELP6 (92% short SC), ELP3 (no phenotype), IKI1 (not 

in library), IKI3 (NA), KTI12 (long Zip1 stretches)) was identified in this category. 

The elongator complex is involved in the modification of wobble nucleosides in 

tRNA and also displays histones H3 and H4 acetyltransferase activity. The only 

subunit of the elongator complex that exhibits histone acetyltransferase activity, 

ELP3 seems not to be required for chromosome synapsis, suggesting that the 

elongator complex may affect synapsis through a different mechanism, although 

histone acetylation clearly plays a pivotal role in DSB formation and meiotic gene 

expression. 

4.5% (9/200 identified ORFs) are genes involved in various post 

translational modifications. These candidates include histone deacetylases 

(HOS1, HST1, SET3), but also factors required for the assembly of the 

proteasome (Poc4, Rpn10). We also identified FPR4, a proline isomerase, 

catalyzing isomerization of proline residues in histones H3 and H4. This affects 

their lysine methylation. Histone methylation is known to regulate DSB formation 

(Merker et al., 2008; Borde et al., 2009) and we have identified methyl-

transferase in all our categories. FPR4 interacts with FPR3, another proline 

isomerase, which prevents premature activation of PP1 (Glc7 phosphatase) and 

whose deletion restores meiotic divisions in pph3∆ mutants (section 3.4.5). 

As in previous categories, mutants associated with ribosomal biogenesis 

(8/200 genes), the ER and the Golgi apparatus (7/200), vacuole and peroxisome 

biogenesis (13/200 genes) and functions involved in transmembrane transport or 

cell wall organization (14/200 genes) were identified.  



16% of identified ORFs, the largest group of genes identified in the long 

Zip1 category, are factors previously implicated in various metabolic pathways. 2 

of these are involved in biotin biosynthesis, BIO5 and BIO2 (biotin synthase). 

This result is complicated by the observation that Bio4, which catalyzes step 2 in 

biotin synthesis, doesn’t show a phenotype (Bio3 NA). 

The second largest group of genes identified in this class (29 genes, 15% of 

identified ORFs) are deleted for proteins of unknown function (19 genes) or 

dubious ORFs (10 ORFs). 4 genes involved in stress response and 7 genes 

involved in autophagy were also identified. Meiosis is a response to hunger in 

budding yeast and requires processes such as autophagy, which is of crucial 

importance for starving cells as it permits the reallocation of nutrients to 

processes that are essential for cell survival under stress (for example, 

ascospore formation in yeast). It is well known that during zygotene, yeast cells 

undergo nuclear and chromosomal movements, directed by actin filaments, 

connected with the inside of the nucleus via Sun/Kash domain protein (Mps3 in 

yeast). These movements are thought to facilitiate partner matching and 

therefore synapsis, but are not essential for these processes in budding yeast. 

Therefore it is not unexpected that 4 out of 5 mutations affecting the cytoskeleton 

actually affect actin fibers.  

Surprisingly 3 genes required for ascospore wall assembly were identified, 

which, if confirmed, would point to additional roles of these genes. Another 5 

genes summarized as being involved in cell cycle regulation were identified. 

Rmd6 was previously found to fail meiotic nuclear divisions in a high throughput 

analysis (Enyenihi and Saunders, 2003), but went undetected in the Thesis of A. 

Woglar in our lab. Here it is represented with a somewhat mild phenotype in 

synapsis. We identified Spo12 and Bns1, a Spo12 related protein that is also 

partially redundant with Spo12 and was reported to interact with the Srs2 

helicase, an important negative regulator of recombination (Grether and 

Herskowitz, 1999). Spo12 is known to regulate Cdc14 release from the 

nucleolus, but this process occurs after synapsis. In this group are also two 

phosphatases, PPZ1 and PPH21. Ppz1 is a serine/threonine phosphatase, which 



has a paralog, PPZ2, and both together share overlapping functions with PP1 

(Glc7) in vegetative cells. The relatively mild phenotype of Ppz1 probably reflects 

partial redundance with Ppz2. Interestingly, a physical interaction between Ppz1 

and Rvs167 was reported. Rvs167 has been identified in the Thesis of A. 

Woglar, with a strong synapsis defect, however that phenotype could not be 

reproduced in this work. Similarl to Ppz1, also Pph21 a subunit of Pp2A has a 

paralog called Pph22. Again, we expect that the full phenotype only will 

materialize in the double mutants, where both paralogs are eliminated. 

In addition, 19 uncharacterized ORFs and 10 dubious ORFs were sorted 

into this category of long Zip1 stretches. Because of the relatively subtle 

phenotype in this chapter, confirmation of the candidates by an independent 

experiment is particularly critical. 

 

3.1.6 Candidates with reduced SC formation 

Making us of a database (created with the program Filemaker), we realized, that 

a number of interesting mutants had very low levels of synapsis, even though 

one, or a small number of complete SCs were observed. We decided to compile 

a list of mutants with reduced SC formation by one of two criteria. Mutants 

displaying at least 80% Zip1 foci only represent the lowest 8% percentile (299) of 

observed mutants. After subtraction of mutants falling into the previous 

categories 105 ORFs were collected in this category (Table 10). SPO13 and 

LGE1 fall into this group. This category may contain factors potentially important 

for synapsis, which clearly can only be supportive, not essential. Spo13 governs 

the type of chromosome segregation and normally ensures that the first meiotic 

division is reductional (Sharon and Simchen, 1990). Lge1 interacts physically 

with Rad6/Bre1 in a high throughput study (Krogan et al., 2006), the latter 

mediating histone H2B-K123 monoubiquitination and being essential for DSB 

formation (Yamashita et al., 2004) and synapsis, in SK1 (A. Woglar, Master 

Thesis).  



Mutants exhibiting less than 5 nuclei with long or complete Zip1 stretches 

represent the lowest 17% percentile of observed mutants. 171 ORFs were not 

listed in the previous categories and fall exclusively into this group. Some well 

known genes such as Slx1, Psy2, Dnl4, Msh5 and Rad52 were recovered in this 

group (Table 8).  

We expect mutants, which are not essential, but still important for normal 

levels of SC formation to be represented in such groups. However, as the system 

is very sensitive and prone to fluctuations, verification of these ORFs is 

particularly important.  

3.1.7 Candidates displaying increased levels of complete SC 

Besides mutants that did not induce meiosis or were defective in SC 

formation, 67 (1,8% of analyzed ORFS) showed elevated levels of nuclei with 

long Zip1 stretches or fully synapsed chromosomes (Table 12). Candidates listed 

in Table 12 were chosen if exhibiting at least 46% of nuclei with long Zip1 

stretches or complete SC. The wild type SK1/BY hybrid control strains (ade2∆, 

lys2∆) fluctuated between 5 and 30% in about 50 repeats by this criterion, so that 

46% seems well separated from these random fluctuations. Two factors known to 

accumulate a high levels of fully synapsed nuclei in SK1 background, Pch2 a 

AAA-ATPase and Ndt80, a transcription factor required for exit from pachytene 

showed only wild type behavior in this assay in the SK1/BY hybrid background. 

ndt80∆ had 7% long plus complete SC and pch2∆ 12%. Possibly the analyzed 

timepoint is too early as to allow a significant accumulation of SC in these 

mutants. This would suggest that the mutants obtained are, if confirmed, 

accumulating SCs very fast, perhaps in part prematurely. This may also explain 

why this category is relatively small compared to the others that score reduction 

of SC. 

 



3.2 Secondary screen: SK1 mutants 

3.2.1 phenotype of candidates in SK1 

As an effort to verify the phenotypes observed we deleted 30 candidate 

genes in pure SK1 strains, also as a control for the constructs in the collection. 

These 30 ORFs include mostly uncharacterized ORFs from the four major 

categories described in the primary screen (No meiotic induction, Zip1 foci, short 

and long stretches of Zip1). In contrast to the primary screen, the analysis was 

now more thorough, comprising SC formation (Zip1), DSB turnover (Rad51 foci) 

and meiotic progression (DAPI) at 4, 5, 6, 7, 8, 10 hours in SPM, instead of a 

single time point. Of course, this time-resolved analysis is better suited to 

differentiate between an inability phenotype and a delay. Such time resolved 

analysis was unfortunately not feasible with the primary screen. Because pre-

meiotic DNA replication is intimately linked to DSB formation (Borde et al., 2000), 

all candidates displaying a significant decrease in chromosome synapsis as 

compared to wild type, were systematically analyzed by FACs to assess the 

efficiency of pre-meiotic DNA synThesis. An analysis of meiotic progression by 

spindle staining (tubulin) was performed only for rim4∆ mutants. Detailed 

phenotypic description of some of the 30 selected candidates in SK1 is depicted 

below. 

In summary the SK1 background produced a meiotic phenotype for most of 

the mutants identified. Usually, but not always, this phenotype was less severe 

than in the BY/SK1 hybrid background. Of the 30 mutants which were analyzed 

in SK1 in parallel, xxx were unable to undergo any synapsis, xxx were unable to 

accomplish long zip1 regions, and xxx had no or reduced numbers of complete 

SC. Xxx SK1 mutants did not show any significant meiotic defect. Xxx/xxx had 

problems in pre-meiotic S-phase. One possibility is, that SK1 cells, which 

induced the meiotic program very robustly, are less likely to fail in meiosis, 

because the strong protein expression can balance some of the errors. This 

opens the possibility to identify partially redundant functions in the sensitized 

system of the SK1/BY hybrid. In addition, hybrids are sensitized, because their 



homology between homologous chromosomes is reduced. Thus small defects 

will have a stronger impact in this background. We propose, that many of the 

identified genes with partial defects are in fact absolutely required for meiosis, 

but have partner proteins with partially overlapping functions. 

Wild type SK1 
 

In wild type SK1, Zip1 protein first appears as a dot-like staining termed 

foci. This corresponds to the leptotene stage of meiotic prophase I (leptotene) 

(Figure 7A). Chromosome synapsis begins at zygotene when Zip1 starts to be 

polymerized between homologs axes. At zygotene, linear stretches of Zip1 

staining are detected on nuclear spreads (short Zip1 stretches at the early 

zygotene and long stretches at the end of zygotene) (Figure 7B). As prophase I 

proceeds, Zip1 is polymerized along the entire length of all chromosomes. This 

marks the pachytene stage and on nuclear spreads sixteen pairs of homologous 

chromosomes can be observed (Figure 7C, full SC). Between 8 to 26% of nuclei 

display fully synapsed chromosomes 4 to 6 hours after meiotic induction in wild 

type SK1 (n=50 independent timecourses).  

In wild type SK1, an average of 17 Rad51 immunostaining foci per nucleus 

were detected 4 hours after induction of meiosis. This average may vary between 

15 and 19 foci in different time courses. The number of Rad51 foci then 

decreases progressively and almost disappears after 8 hours in SPM (a few 

residual foci remain, on average 2±1 per nucleus) (Figure 8B). Nuclear division 

as assayed by DAPI staining is almost completed after 8 hours in liquid SPM (88 

- 96% of wild type have passed at least one meiotic division). Wild type yields 90 

to 99% viable spores (Figure 8C), depending on possible tagged meiotic 

proteins. In situ labeling of the spindle with antibody against tubulin showed that 

more than 60% of meiotic cells have passed the first meiotic division 6 hours 

after induction of meiosis in wild type SK1 as quantified by the percentage of 

nuclei displaying an elongated bipolar spindle (anaphase I) and two bipolars 

spindle (metaphase II, anaphase II) (Figure 10E).  



 

YDR446W/ECM11 
 

Ecm11 has been reported to localize to the nucleus, to show reduced spore 

viability and a reduction of CO, but not of NCOs (Zavec et al., 2004). In our 

primary screen ecm11∆ mutants showed no complete SCs and a reduced 

number of nuclei with long fragments of SC (3/50 of nuclei displayed long 

stretches of Zip1). In pure SK1 ecm11∆ cells sporulated with almost wild type 

timing, however chromosome synapsis was strongly reduced (almost no 

complete synapsis was observed, (only 1%), Figure 8A). In contrast to 

ymr196w∆, ydr333c∆, oxp1∆, which accumulate nuclei with Zip1 foci, this mutant 

showed a lot of short and long SC at 5 and 6 hours in SPM. So while the other 

mutants fail in the first step of synapsis initiation, ecm1∆ cells fail at the 

elongation step. A significant increase of Rad51 focus formation was detected in 

ecm11∆ mutants (27 Rad51 foci per nucleus compared to 17 foci for the wild 

type, Figure 8B). These foci disappeared very slowly and were still enhanced 

several fold over wild type at 8 hours in SPM. This is clear evidence for a 

problem in Rad51 filament turnover and defines ecm11∆ as repair defective 

mutant. Nuclear division was delayed for 1 hour (Figure 8C), Different from the 

published results of (Zavec et al., 2004), pre-meiotic DNA replication occured 

with almost wild type kinetics in our hands (Figure 8D) and spore viability also 

reached wild type levels (93%, n=20 tetrads dissected). So, while we find a less 

severe phenotype than (Zavec et al., 2004) for S-phase and spore viability, we 

have clear evidence for the involvement of this gene in DSB repair.  

YMR196W 
 

The function of YMR196W gene product is unknown. ymr196w∆ mutants 

showed only Zip1 foci on nuclear spreads at 6 hours in SPM in the primary 

screen. In pure SK1, ymr196w∆ cells displayed a very strong decrease in 

chromosome synapsis. Both classes, long and complete SCs were almost 



eliminated (2% of nuclei with fully synapsed chromosomes at 4 hours in SPM, 

Figure 8A). The average number of Rad51 foci per nucleus reached nearly wild 

type levels (15 foci per nucleus) and decreased with a slight delay relatively to 

wild type (Figure 8B). The spore viability was slightly reduced (77% n=20 tetrads 

dissected). Pre-meiotic DNA replication was not altered and nuclear divisions 

occurred on time (Figure 8C,D). The random pattern of spore death (only 3 

tetrads with 2 viable and 2 dead spores) that is no increase of 2 or 0 -viable 

tetrads, argue against chromosome non-disjunction as the primary cause of 

spore death in this mutant. In summary this mutants suffers from a prominent 

defect in the progression of synapsis for unknown reasons. This may be 

accompanied by a slight DSB repair problem. 

 

YDR333C  
 

ydr333c∆ represents an uncharacterized ORF, which only showed Zip1 foci 

on nuclear spreads, but failed to undergo synapses at 6h in SK1/BY. In pure 

SK1, deletion of YDR333C caused a strong decrease in chromosome synapsis 

(only 3% of nuclei with fully synapsed chromosomes, Figure 8A). Short, long and 

complete synapsis were all significantly reduced, while the Zip1 foci class was 

dramatically increased at the 4, 5 and 6 hour timepoints. Pre-meiotic DNA 

replication and nuclear division occurred with wild type timing, Figure 8C,D). The 

sporulation efficiency (96%) and spore viability (94% n=20 tetrads dissected) 

were similar to wild type after 24 hours. A slightly reduced number of 13 Rad51 

foci accumulated per nucleus at 4 hours in SPM.. The number of foci started to 

decrease only at 6 hours (wild type at 5 hours) but disappeared at later time 

points with wild type kinetics, Figure 8B). This slight reduction in Rad51 focus 

formation suggests either a slight decrease in DSB formation or a less 

synchronous formation of DSBs (that is a partial delay) in ydr333c∆, which could 

contribute to the decrease in chromosome synapsis. 

 



YDR457W/TOM1 
 

Tom1 is an ubiquitin E3 ligase that is involved in the turnover of histones 

and plays a role in mRNA export from the nucleus (Duncan et al., 2000; Singh et 

al., 2009). tom1∆ mutant showed long fragments of SC (1/50 of nuclei displayed 

long stretches of Zip1) in the SK1/BY hybrid background. In the absence of 

TOM1 in pure SK1, pre-meiotic DNA replication was impaired (Figure 8D), 

nuclear division was delayed and reduced (65% of tom1∆ cells have completed 

M1 after 10 hours in SPM, Figure 8C). However, chromosome synapsis reached 

wild type levels (Figure 8A). The average number of Rad51 foci per nucleus (10 

foci at 4 hours in SPM) and the spore viability (77% n=20 tetrads dissected) were 

reduced in tom1∆ cells compared to the wild type (Figure 8B). These 

observations hint at a role of Tom1 in histone turnover for pre-meiotic DNA 

replication and possibly for wild type levels of DSB formation. Alternatively, the 

protein may function only during DNA replication, and all the meiotic defects 

could be a consequence of impaired pre-meiotic DNA replication. It was shown 

that if DNA replication is delayed in a certain area of a chromosome, DSB 

formation is also specifically delayed in the same area for about the same time, 

indicating that the two processes are intimately linked (Borde et al., 2000a). 

 

YKL215C/OXP1 
 

Oxp1 is an ATP-dependent 5-oxoprolinase (Kumar and Bachhawat, 2010) 

with a known role in glutathione synThesis, which is used in detoxification. In the 

SK1/BY hybrid background oxp1∆ mutant displayed a severe defect in 

chromosome synapsis with no elongated synapsis at 6 hours in SPM (4/50 nuclei 

with short Zip1 stretches). In pure SK1, oxp1∆ mutants underwent meiotic 

nuclear division and sporulated with wild type timing (Figure 8C). Chromosome 

synapsis was reduced for all long SC classes, while Zip1 foci class was strongly 

elevated (4% complete SCs at 6 hours in SPM, Figure 8A). Rad51 foci numbers 



were slightly increased (∼20 foci per nucleus at 4 hours in SPM compared to 17 

foci for the wild type, Figure 8B). Pre-meiotic DNA replication occured with wild 

type kinetics and efficiency (Figure 8D). These observations suggest a slight 

defect in the processing of early recombination intermediates in the absence of 

OXP1.  

YGL021W/ALK1 
 

Alk1 is a cell cycle regulated kinase and APC substrate (Nespoli et al., 2006), 

has a paralog (Alk2) and is phosphorylated in response to DNA damage. alk1∆ 

mutants showed a strong reduction of nuclei with fully synapsed chromosomes 

(1/50 nuclei) in the SK1/BY hybrid background. In pure SK1 background, a much 

milder decrease in complete chromosome synapsis (5% of nuclei) was observed 

(Figure 8A). Nuclear division and spore viability (87% n= 20 tetrads dissected) 

were similar to wild type (Figure 8C). The average number of Rad51 foci was 

reduced (10 and 12 foci per nucleus at 4 and 5 hours in SPM, respectively, 

Figure 8B). This result suggests that DSB formation might be reduced or the 

turnover of Rad51 nucleoprotein filament might be enhanced in alk1∆ mutants. 

YLR352W 
 

F-box protein of unknown function, YLR352W protein interacts with Skp1 

and Cdc53 proteins. The ylr352w∆ mutant did induce meiosis in SK1/BY hybrid 

background but only Zip1 foci were detected on nuclear spreads. In pure SK1 

background, ylr352w∆ mutant showed only a 1 hour delay in chromosome 

synapsis (Figure 8A). Nuclear division was delayed of about 2 hours and reduced 

(86% of ylr352w∆ cells have executed M1 at 10 hours after transfer to SPM). 11 

Rad51 foci (compared to 17 for wild type at 4 hours in SPM) were found per 

nucleus and were slowly turned over (Figure 8B). Consistently, crossovers and 

non-crossovers recombination products appeared with 2 hours delay (Figure 



16A), These results suggests a role of the SCF in DSB formation and 

chromosome synapsis.  

YNL035C 
 

YNL035C is an uncharacterized ORFs containing three WD-40 repeats 

(citation) reported to interact with SUMO. In the SK1/BY hybrid background 

ynl035c∆ had no long SC at 6 hours in SPM (9/50 nuclei with short Zip1 

stretches). In SK1 ynl035c∆ cells sporulated with wild type timing and showed 

only a weak decrease and delay in chromosome synapsis (7% of nuclei with fully 

synapsed chromosomes after 6 hours in SPM, Figure 8A). Rad51 foci (~ 12 foci 

per nucleus) were reduced compared to wild type (Figure 8B). Pre-meiotic DNA 

replication and spore viability (97%) were not affected by the deletion of 

YNL035C (Figure 8D). 



YDR485C/VPS72/SWC2 
 

Swc2 is a subunit of the SWR1 chromatin remodeling complex that binds 

the histone variant H2A.Z (HTZ1 in yeast) and is essential for H2A.Z exhanges 

for chromatin bound histone H2A (Wu et al., 2005). In the SK1/BY hybrid 

background swc2∆ mutant showed no long SC at 6 hours (6/50 nuclei with short 

Zip1 stretches). In SK1 background, chromosome synapsis and nuclear division 

were delayed by about 1-2 hours, particularly obvious by the dramatic elevation 

of the Zip1 foci class at 4 and 5 hours in SPM. SCs eventually reached wild type 

levels at 6 hours, but remained until 8 hours (Figure 9A, C). High levels of Zip1 

polycomplexes were observed (see section 3.4.3 for more details on this gene). 

The average number of Rad51 foci (17 per nucleus) was similar to wild type 

(Figure 9B). swc2∆ mutant displayed wild type level of spore viability (97% n=20 

tetrads dissected), but about 25% of spores exhibited a slow growth phenotype. 

 

YOL052C-A/DDR2 
 

Ddr2 is expressed in response to a variety of environmental and 

physiological stresses, but its molecular function is still unknown. ddr2∆ mutants 

failed to undergo synapsis, but formed Zip1 foci at 6 hours in the primary screen. 

In SK1, ddr2∆ cells sporulated with wild type timing, but displayed a weak 

decrease in chromosome synapsis (6% of nuclei with fully synapsed 

chromosmes after 6 hours in SPM, Figure 9A). The average number of Rad51 

foci (11 foci per nucleus) was reduced in ddr2∆ mutant compared to the wild type 

(Figure 9B). This result suggests that Ddr2 might be required for wild type levels 

of DSBs. 



YOR296W 
 

YOR296W is an uncharacterized ORF. yor296w∆ mutant showed long 

fragments of SC (4/50 nuclei displayed long stretches of Zip1) in the SK1/BY 

hybrid background. No pre-meiotic DNA replication was detected in this mutant in 

two different experiments (Figure 8D). However, in a separate experiment DNA 

replication must have occurred at some point, as spores were formed and had 

90% spore viability. In pure SK1, yor296w∆ cells exhibited a strong reduction of 

synapsis (about 2% of nuclei with fully synapsed chromosomes at 4 hours in 

SPM). Nuclear division was delayed ~ 4 hours and reduced (only 56% were past 

M1 after 10 hours in SPM, Figure 9A,C). The spore viability (90% n=20 tetrads 

dissected) was similar to wild type, of those cells that had formed tetrads (50%). 

Rad51 foci accumulated to wild type levels (17) and disappeared with similar 

kinetics as in wild type (Figure 9B). S-phase in this mutant seems to be defective 

and this might be the primary reason for meiotic defects. How much S-phase is in 

fact necessary in this strain for initiating synapsis needs to be determined.  

 

YPR068C/HOS1 
 

Hos1 is a class1 histone deacetylase (HDAC) that deacetylates the cohesin 

subunit Smc3 at the onset of anaphase (Borges et al., 2010; Xiong et al., 2010). 

Hos1 is the ortholog of human HDAC8, which has recently been shown to be 

responsible for CdL (Cornelia de Lange Syndrome) a severe condition with 

malformation of limbs and face. Removal of the acetylation of Smc3 is important 

to guarantee proper degradation of the kleisin of cohesion after its cleavage by 

separase. The failure results in prolonged residence of cohesion on chromatin 

and a delay in anaphase in human cell cultures (derived of CdL patients) (K. 

Shirahige, personal communication). In the SK1/BY hybrid background hos1∆ 

mutants failed to form complete SC (only 4/50 of nuclei showed long fragments 



of SC). In SK1 a clear delay in chromosome synapsis was observed (1-2 hours, 

10% complete SC at 7 hours, Figure 9A). Nuclear division was delayed by 2-3 

hours (Figure 9C). normal levels of Rad51 foci (15) per nucleus were found 

(Figure 9B). Whether Hos1 exerts its effects on yeast meiotic prophase via 

regulation of Smc3-acetylation, or via histone deacetylation is unclear, but based 

on studies in mouse and humans, the cohesion deacetylation is very important. It 

will be very interesting to determine, whether this property can explain the 

synapsis defect. 

 

YHL024W/RIM4 
 

Rim4 is an RNA binding protein required for the expression of early and 

middle sporulation genes (Soushko and Mitchell, 2000; Deng and Saunders, 

2001) and is polyubiquitinated by Rsp5 (Kus et al., 2005). Pre-meiotic DNA 

synThesis and chromosome segregation were described as defective in rim4∆ 

mutants (Deng and Saunders, 2001).  

rim4∆ mutant was scored as unable to initiate meiosis in the SK1/BY hybrid 

bacground. In SK1, rim4∆ mutants displayed a dramatic defect in chromosome 

synapsis. Initial Zip1 foci formed as in the wild type, but Zip1 elongation was 

completely abolished (Figure 10A). Nuclear division and sporulation were absent 

(Figure 10C). The average number of Rad51 foci (12 foci per nucleus at 4 hours 

in SPM) accumulated to a greater levels (23 foci per nucleus) and remained 

constantly high after 6 hours in SPM (Figure 10B). In situ immunolabeling of the 

meiotic spindle revealed the presence of a prophase I spindle (monopolar 

spindle) until 10 hours in SPM, documenting a solid prophase I arrest, usually 

caused by DNA damage. A bipolar spindle was never observed (Figure 10E). 

Rim4-HA3 (obtained from Alain Nicolas, Institute Curie, Paris for collaboration) 

localized exclusively to the cytoplasm during meiosis (Figure 10D), pointing to a 

role of Rim4 for the expression of critical prophase genes via mRNA stability, 

splicing or translational activation. 



 

3.3 Characterization of pilot screen genes 
 

A pioneer screen of 264 candidates carried out in our laboratory by 

Alexander Woglar (Woglar A, master Thesis) identified 35 genes required for 

normal levels of synapsis in the SK1/BY background, 28 of which also showed a 

defect or a delay in pure SK1. 

In an attempt to characterize their phenotype in more detail, I repeated 

FACS analysis of pre-meiotic DNA replication and attempted physical analysis of 

recombination intermediates using a system developed in Michael Lichten´s 

laboratory (Figure 12 (Allers and Lichten, 2001b). This system allows to measure 

the formation of DSBs, crossover and non-crossovers recombination products. I 

performed it on 12 of the 28 genes.  

The Shu complex (SHU2, CSM2, PSY3) 
 

The budding yeast RecQ helicase Sgs1 interacts with Top3 and the two 

proteins act in concert in vivo in regulating homologous recombination during 

DNA replication. The deletion of TOP3 gene results in a phenotype of slow 

growth, DNA damage sensitivity, meiotic defects and hyper-recombination 

(Wallis et al.,1989; Chakraverty et al., 2001). Mutants of the shu complex (shu1∆, 

shu2∆, csm2∆, psy3∆) were found because they suppress various sgs1 and top3 

mutant phenotypes (Shor et al., 2005). Previous studies have proposed that the 

Shu proteins may act to promote the formation of homologous recombination 

repair intermediates that are processed by the Sgs1-Rmi1-Top3 complex 

(Mankouri et al., 2007; Ball et al., 2009). 

Chromosome synapsis is delayed for 2 to 4 hours in shu mutants (Woglar A 

Master Thesis). We show here that pre-meiotic DNA replication occurs without 

delay in all three mutants, and was even slightly faster than wild type in psy3∆ 

and csm2∆ (Figure 11A). The average number of Rad51 foci per nucleus was 

reduced in shu mutants compared to the wild type. 12 foci in shu2∆, 10 foci in 



csm2∆ and 8 foci in psy3∆ at 4 hours in SPM (Figure 11B). Rad51 foci turnover 

was similar to wild type in shu2∆ and csm2∆ mutants, but faster in psy3∆ mutant 

(Figure 11B). The reduction of Rad51 foci in shu mutants suggests either a 

decrease in DSB formation or the inefficiency of Rad51 loading on broken 

chromosome ends (ssDNA) or the instability of Rad51 nucleoprotein filament in 

the absence of these proteins. In the psy3∆ mutant, crossovers and 

noncrossovers appeared with a delay of about 2 hours, and were strongly 

reduced (Figure 13A,B). These results point at a central role of Psy3 in stabilizing 

meiotic nucleoprotein filaments formation. 

 

IRC25/POC3 
 

Irc25 is a chaperone component of the 20S proteasome. The 20S 

proteasome is the catalytic core of the 26S proteasome, the major proteolytic 

system in the cytosol and nucleus of all eukaryotic cells. Deletion of IRC25 as 

well as of five other epistatic group of genes (POC1, POC2, POC4, UMP1 and 

PRE9) suppresses the growth defect of a conditional dominant lethal allele of 

RAD53 (RAD53-DL), indicating a role of these proteins in a common pathway of 

DNA damage response (Le Tallec et al., 2007). Although not essential for normal 

growth, the deletion of IRC25 leads to inefficient assembly of the 20S 

proteasome (Yashiroda et al., 2008). 

irc25∆ mutants exhibit wild type timing in pre-meiotic DNA replication and a 

severe reduction in chromosome synapsis (1% of nuclei with fully synapsed 

chromosomes), nuclear division is reduced (only 59% of irc25∆ cells have 

passed M1 after 10 hours in SPM. The spore viability is unaffected (Woglar A 

master Thesis). In the physical recombination assay crossovers and non-

crossovers products were detected from the initial time point zero on in the 

irc25∆ mutant indicating that cells had started meiosis prematurely. It is possible, 

but not sure at this point, that this premature initiation is part of the irc25∆ 

phenotype. The irc25∆ mutant displayed a specific reduction in crossovers 



(~50% of wild type levels) whereas noncrossovers accumulated to almost wild 

type levels (Figure13A,B). Thus irc25∆ showed a specific defect in chromosome 

synapsis and crossover control, reminiscent of the ZMM phenotype. The SC 

defect of irc25∆ is shared by pre9∆ the only non-essential subunit of the 

proteasome. We propose an important role of the proteasome in the ZMM 

pathway. This essential role is different from promoting Rec8 cleavage, which is 

neither necessary for synapsis nor for proper CO levels.  

  

UBC13, RAD33 and YOR029W 
 

Ubc13 is a ubiquitin conjugating enzyme which cooperates with Mms2 and 

Rad5 proteins in the assembly of polyubiquitin chains on target substrates such 

as PCNA. Polyubiquitination of PCNA is required for error-free post-replication 

DNA repair (Brusky et al., 2000; Halas et al., 2011).  

Rad33 functions along with the Rad4-Rad23 complex in mediating the initial 

damage recognition of the Nucleotide Excision Repair (NER) pathway. The role 

of Rad33 in the Rad4-Rad23 complex seems to be conserved in human (Dulk et 

al., 2006; 2008).  

YOR029W is an uncharaterized dubious ORFs. 

ubc13∆, rad33∆ and yor029w∆ mutants display a slight accumulation of 

nuclei with fully synapsed chromosomes 6 hours after induction of meiosis (28%, 

29% and 31% respectively) compared to a maximum of 26% rarely detected in 

wild type cells. Nuclear division is slightly delayed in these three mutants, but the 

spore viability is similar to wild type (Woglar A master Thesis). 

Pre-meiotic DNA replication occured with wild type kinetics in the yor029w∆ 

mutant (Figure 14A). DSB formation was reduced and delayed for ~1hour, but 

the average number of Rad51 foci per nucleus (32 foci) was higher than in the 

wild type (Figure 14B), suggesting a delay in repair. Only a slight reduction and 

delay of crossovers was detected while non-crossover levels remained 



unaffected (Figure 14C,D). Interestingly, the timing of NCO was advanced 

relative to CO, as compared to the wild type. 

rad33∆ mutants showed a delay and reduction in DSB formation and a 

reduction of both, crossover and non-crossover levels compared to the wild type 

(Figure 15A, B). This observation together with the accumulation of synapsis 

detected in the absence of RAD33 (Woglar A Master Thesis) may suggest the 

transient activation of the pachytene checkpoint, that is, a delay in Ndt80 

activation. Analysis of Ndt80 levels and of Cdc5/polo kinase activation might 

shed more light on this mechanism. In the SK1/BY hybrid screen, Rad33 

interacting partners, Rad23 and Rad4 showed a strong reduction of synapsis for 

rad23∆ mutant (1/50 nucleus with fully synapsed chromosomes) and almost no 

phenotype for rad4∆ (3/50 nuclei with fully synapsed chromosomes).  

 Ubc13∆ displayed a similar delay and reduction of crossover and 

noncrossover (Figure 16A) 

 

RVS167 
Rvs167 is the yeast homolog of the mammalian amphiphysin, which is 

enriched in a brain, where it is believed to mediate the recruitment of dynamin (is 

a kinase) to sites of clathrin-mediated endocytosis. In yeast Rvs167 interacts with 

Rvs161 and both proteins are involved in the regulation of the actin cytoskeleton 

and endocytosis (Bauer et al., 1993; Lombardi et al., 2001). Rvs161 and Rvs167 

function as an obligatory heterodimer in vivo and share similar roles in cell 

polarity, cell integrity, cell wall synthesis and vesicle trafficking (Friezen et al., 

2006). Notably, rvs161∆ mutant is more defective in endocytosis and 

morphogenesis than rvs167∆ mutant and both mutations contribute to the 

virulence of the human fungal pathogen Candida albicans (Douglas et al., 2009). 

In the absence of RVS167 pre-meiotic DNA replication occurs with wild type 

efficiency, while chromosome synapsis and nuclear divisions were almost 

completely absent (Woglar A Master Thesis). To our surprise, crossover and 



non-crossover recombination products were detected and even accumulated to a 

substantial amount in rvs167∆ mutant (Figure 15A,B).  

 

YGL101W  
 

YGL101W is an uncharaterized ORFs. Chromosome synapsis appears with 

wild type kinetics in ygl101w∆ mutant, nuclear division is slightly delayed and 

reduced (86% of ygl101w∆ cells have undergone M1 10hours upon meiotic 

induction) (Woglar A Master Thesis). We found that pre-meiotic DNA replication 

is delayed for ~2hours (Figure 8D) and that crossover and non-crossover 

recombination products were similarly delayed in ygl101w∆ mutant compared to 

wild type (Figure 16A).  

 

HNT3  
 

Hnt3 is a homolog of the human Aprataxin. Aprataxin was identified as a 

gene mutated in the neurodegenerative syndrome ataxia oculomotor apraxia 

type1 (Morara et al., 2001). Aprataxin catalyzes the removal of adenosine 

monophosphate (AMP) from the 5´-ends of damaged DNA strands, thereby 

preparing the SSB for ligation. It was also shown that at higher concentrations 

aprataxin possesses a 3´-processing activity (Takahashi et al., 2007). Deletion of 

HNT3, partially rescued rad51∆ and rad52∆ mutants while sensitizing rad50∆ 

yeast cells to the DNA damaging agent H2O2.  

H2O2 (hydrogen peroxide) creates strand breaks with blocked 3´-termini, 

such as 3´-phosphate; which could cause abortive ligation if a 5´-phosphate is 

present. As Rad50 is required for DSBs ends resection, a synthetic sensitivity in 

hnt3∆, rad50∆ double mutant could be explained by the loss of two parallel 

pathways for 5´AMP removal suggesting that Hnt3 may be required to commit 

DSB to repair by recombination (Daley et al., 2010). 



Chromosome synapsis and nuclear division are delayed in hnt3∆ mutant for 

about 1 hour. A delay of synapsis is further manisfested by an accumulation of 

SC component (Zip1 polycomplexes) in 52% of nuclei, the spore viability and 

sporulation efficiency are both delayed and reduced to 65% (Woglar A master 

Thesis). In this study, we show that the average number of Rad51 foci per 

nucleus (27 foci at 4 hours in SPM) is higher than in the wild type. Remarkably, 

numerous Rad51 foci persisted until very late time points (Figure 17B), 

suggesting a delay in the repair of recombination intermediates. Consistently, 

crossover and non-crossover recombination products were delayed to ~2 hours 

and reduced (Figure 17A).  

 

3.4 PP4 phosphatase complex acts in the ZMM pathway to 
antagonize Pch2 and Fpr3 

 

3.4.1 Phenotypes of mutants in the PP4 complex 

The yeast homolog of the protein phosphatase 4 complex (PP4) of higher 

eukaryotes consists of two components: the catalytic subunit Pph3 and Psy2. A 

third protein, Psy4, was shown to physically associate with Pph3 and to be 

required for dephosphorylation of one of PP4’s subtrates, histone H2A (Keogh et 

al., 2006), but not for another important substrate, Rad53 (O´Neill et al., 2007). In 

response to DNA double-strand breaks (DSBs), ATM/ATR (Tel1/Mec1 in budding 

yeast) phosphorylate severals substrates including histone H2A at serine 129 in 

yeast, Rad53 (Chk2 kinase homologue) and single-strand DNA binding protein 

RPA. Pph3-dependent dephosphorylation of H2A, Rad53 and hRPA2 is required 

for checkpoint recovery from G2 phase arrest (Keogh et al., 2006; O´Neill et al., 

2007; Lee et al., 2010) and to facilitate DSB repair via homologous 

recombination. 

Recently, in parallel to this work, Pph3 was reported to be required in 

meiosis for full synapsis (Falk et al., 2010) and for resolution of homology-

independent centromere-coupling by dephosphorylation of Zip1’s critical residue 



Serine 75 (Falk et al., 2010). In addition, the pph3∆ mutant was found to be 

delayed in pre-meiotic DNA replication, in DSB repair and a strong delay in 

spindle pole body (SPB) separation, and to display reduced crossovers (Falk et 

al., 2010). The meiotic defects of PP4 components were also independently 

described in our laboratory: We found pre-meiotic DNA replication strongly 

delayed in the pph3∆ mutant, but occurs slightly delayed in psy2∆ and with 

almost wild type kinetics in psy4∆ (Figure 18A, see also A. Woglar, master 

Thesis). Nuclear division is strongly delayed and reduced in all three mutants. 

~25% of pph3∆ cells completed at least one of the two meiotic divisions 10 hours 

after transfer into the sporulation medium, compared to ~50% for psy2∆, 67% for 

psy4∆ and 98% for the wild type (Figure 18B). Chromosome synapsis reaches 

wild type levels in the absence of PSY4 albeit a slight delay, whereas only 1% of 

fully synapsed chromosomes is detected on nuclear spreads in psy2∆ mutants. 

This synapsis defect is further exacerbated in pph3∆ mutant background where 

only long fragments of SC are detected (Woglar A master Thesis, shown in 

Figure 18D). Rad51 foci accumulate to high levels in the absence of any of the 

PP4 complex subunits and decrease slower than in the wild type (Figure 18C). 

The pph3∆, and psy2∆ mutants show a specific reduction in crossover formation, 

while noncrossovers are unaffected, a hallmark of ZMM mutants. On the other 

hand the psy4∆ mutant displays only a delay affecting crossover and 

noncrossover formation equally (Figure 18E, F), suggesting that this regulator of 

Pph3 is not involved in the ZMM functions of the phosphatase. Consistently, the 

spore viability of psy4∆ is similar to wild type, but pph3∆ and psy2∆ show a 

decrease in spore viability, 57% for pph3∆ (20 tetrads, with non-random 

distribution of dead spores (5 tetrads missing, 6 tetrads with two viable spores, 3 

tetrads with three viable spores and 6 tetrads with four viable spores; strain 

FKY4571) and 75% for psy2∆ (10 tetrads). To gain further insights into the 

mechanism by which synapsis is affected by the PPH3 deletion, we set out to 

identify suppressors for the synapsis defect of the pph3∆ mutant.  

 



3.4.2 Inefficient restoration of synapsis in pph3∆ H2A-S129A 

Phosphorylation of histone H2AX is one of the earliest marks of DSBs in 

most organisms. Phosphorylation of Serine 129 of yeast histone H2A (H2A-

S129-P), serves as a platform for the recruitment of various repair factors at the 

DSB sites. Following DSB repair, Pph3-dependent dephosphorylation of H2A-

S129-P permits the recovery from checkpoint arrest (Keogh et al., 2006). 

To determine wether H2A-S129-P is responsible for the synapsis defect of 

pph3∆ mutant, a non-phosphorylatable mutant of histone H2A (kindly provided by 

Michael Lichten and Rob Shroff, FKY4058, FKY4059), where S129 is replaced 

by Alanine, was combined with pph3∆.  

Indeed, a first strain received from the Lichten lab and transformed to 

become a pph3∆, hta1, 2-S129A triple mutant (FKY4063, FKY4064, FKY4065) 

displayed wild type levels of nuclei with fully synapsed chromosomes (Figure 

19A). However, unexpectedly, the diploid hta1, 2-S129A strain (FKY4118, 

generated from FKY4058 and FKY4059) showed a synapsis defect (only short 

Zip1 stretches on chromosome spreads) and a very low spore viability (11.5% 20 

tetrads). As this result is in stark contrast to the high spore viability (100%) 

previously observed in Michael Lichten´s lab for this mutant, this called into 

question, whether the suppression was due to the hta1, 2-S129A mutations. It 

suggests that suppression also involves the presence of an uncharacterized 

alteration in the genetic background of these strains. 

A second set of strains were provided by the Lichten lab (FKY4420, 

FKY4421). This time the diploid generated from these haploids (FKY4433) had 

wild type spore viability. However, when combined with the pph3∆ mutation, the 

suppression of the pph3∆ phenotype in the triple mutant pph3∆, hta1, 2-S129A 

(FKY4450) was of a much smaller magnitude. Only 0.1% of nuclei displayed fully 

synapsed chromosomes on nuclear spreads and also the fraction of nuclei 

displaying partial SC was much reduced compared to the strains analyzed first 

(Figure 19A,B,C). To make sure the analyzed strains contain the correct 

mutations, a region of HTA1 and one of HTA2 containing position +389 (S129A) 



was amplified by PCR (using primers 2356, 2357 for HTA1 and primers 2415, 

2416 for HTA2) and subjected to sequencing. Strains FKY4058, FKY4059, 

FKY4063, FKY4064 and FKY4450 were sequenced and confirmed. FKY4450 is 

a homozygous diploid obtained from FKY4444, and it shows reduced 

suppression of the phenotype of pph3∆.  

Therefore we conclude that the suppression of the SC phenotype in strain 

FKY4065 is not due to the S129A mutations alone, but to the presence of at least 

one more suppressor. The fact that also strain FKY4450 shows some level of 

suppression suggests that the S129A mutation may contribute to the restoration 

of the SC in the pph3∆ mutant background. In order to characterize this unknown 

suppressor, we crossed one haploid containing the suppressor and the pph3∆ 

mutation (FKY4063) with one haploid containing only the S129A mutations, but 

no suppressors (FKY4421). Of the four segregants of a complete tetrad, two 

were pph3∆ and PPH3 was knocked out in the other two. Then all four 

segregants were made diploid by transformation with an HO containing plasmid 

(p40) and will be tested for their ability to form SC. It is also planned to sequence 

the four segregants in order to identify sequence variants that correlate with the 

suppression phenotype. 

 

3.4.3 Deletion of the SWR chromatin remodeling complex subunit 

SWC2 restores synapsis in pph3∆ mutants.  

Swc2, a subunit of the SWR chromatin remodeling complex that binds to 

the histone variant H2A.Z (Htz1 in yeast) mediates the replacement of chromatin 

bound histone H2A with the DNA damage specific histone variant H2A.Z upon 

DSB formation (van Attikum et al., 2007). In htz1∆ mutants, ssDNA formation 

was found to be significantly delayed and the DNA damage checkpoint is partially 

defective (Kalocsay et al., 2010). 

Because hta1.2-S129A mutant showed some suppression of the pph3∆ 

synapsis phenotype and because some H2A is exchanged to H2A.Z in response 



to DSB damage in vegetative cells, we asked whether deletion of histone variant 

H2A.Z might restore synapsis in pph3∆. To address this question, htz1∆ and 

pph3∆, htz1∆ double mutants were constructed by PCR mediated gene 

replacement and analyzed. The htz1∆ single mutant showed wild type synapsis 

and a slight delay in nuclear division. The synapsis phenotype of the pph3∆, 

htz1∆ double mutant was indistinguishable from that of the pph3∆ single mutant, 

indicating that HTZ1 is not responsible for the synapsis defect of pph3∆ mutant 

(Figure 20B),  

In parallel we asked whether the Htz1 binding component of the SWR 

complex, Swc2, is involved in the defective synapsis of pph3∆ mutants. The 

swc2∆ mutant exhibited a defect in chromosome synapsis in the SK1/BY hybrid 

primary screen, but when deleted in SK1, the swc2∆ mutant behaved as the wild 

type and displayed only a modest delay in chromosome synapsis and nuclear 

division (see section 3.2.1). To examine the effect of SWC2 on pph3∆ mutant, we 

constructed a pph3∆, swc2∆ double mutant and analyzed it by nuclear spreads. 

Surprinsingly, chromosome synapsis was fully restored in pph3∆, swc2∆ double 

mutants albeit with a delay, moreover the spore inviability of pph3∆ single mutant 

(60% 20 tetrads) was also rescued (90% spore viability in pph3∆, swc2∆ 20 

tetrads, Figure 20A B)). As in the swc2∆ single mutant, the synapsis delay of 

pph3∆, swc2∆ double mutant is further manifested by an accumulation of SC 

component (Zip1 polycomplexes) in the majority of cells. These data identify 

SWC2 as a mediator of the pph3∆ chromosome morphology defect. 

This result raised the possibility that a chromatin remodeling complex 

containing Swc2 interferes with synapsis by binding to chromatin in the absence 

of Pph3. To determine whether Swc2 is a target of Pph3, a functional version of 

Swc2 tagged with the hemagglutinin (3HA) epitope was used to compare the 

localization of the protein on the chromosomes in pph3∆ and wild type cells (by 

chromosome spreading and by ChIP-chip).  

First we established the localization of Swc2 in wild type cells. Swc2 

localizes periodically all along the chromosomes, with no particular enrichment at 



centromeres (Figure 20D). When compared to Rec8, there is a good overlap 

between peaks at 1kb resolution, establishing a tendency of Swc2 to bind to 

chromosomal axis sites (Figure 20D). No overlap was found with DSB signals as 

defined by (Pan et al. 2010; Figure 20E).  

Interestingly, in the pph3∆ mutant the Swc2 profile was strongly reduced (by 

a factor of 3 to 4) (Figure 20F). However, signal to background ratio was much 

less affected, still signal to noise ratio was 20 to 50% higher in the wild type. At 

this stage this result is to be considered preliminary. The reduction of Swc2 

binding on chromosomes in the absence of PPH3 was confirmed in an 

independent ChIP-qPCR experiment as shown on Figure 20G. Why would Swc2 

then affect synapsis negatively in the pph3∆ mutant, if much less of it bound to 

chromatin? The simplest explanation is that a chromatin unbound form of Swc2 

interferes with synapsis, which also helps to explain, why other components of 

the Swr1 chromatin remodeling complex do not show this phenotype (see 

below). 

In addition to SWC2 we also analyzed other components of the SWR 

complex for their ability to suppresss the pph3∆ synapsis defect. It is interesting 

and puzzling that the synapsis phenotype of pph3∆, ldb7∆ and pph3∆, swr1∆ is 

indistinguishable from that of pph3∆ single mutants (Figure 20B,C). Ldb7 and 

Swr1 are subunits of the RSC and SWR chromatin remodeling complexes 

respectively, implying that the simple disruption of these complexes is not the 

reason for suppression. Either Swc2 is part of a different complex in meiosis, 

which needs to be antagonized by Pph3 to allow synapsis, or perhaps, Swc2 

acts independently of its role in a remodelling complex to mediate signalling of 

DSB damage. Pph3 would then be required to localize it efficiently on the 

chromosome, which may inactivate the signalling.  

 



3.4.4 Restoration of synapsis in pph3∆, pch2∆ mutant 

Pch2 is an AAA+ ATPase family member conserved in evolution between 

yeast and man, that plays important roles during meiosis. It was found as being 

required for checkpoint arrest of zip1∆ mutant (San-Segundo and Roeder, 1999). 

In pch2∆ single mutants DSBs persist longer and both crossover and 

noncrossover formation are delayed (Hochwagen et al., 2005; Borner et al., 

2008; Zanders et al., 2009). pch2∆ is also defective in suppressing intersister 

repair (Zanders et al., 2011). Pch2 probably monitores the progress of DSB 

repair and delays pachytene exit upon repair problems. It also negatively 

regulates axis formation and synapsis (Borner et al., 2008; Joshs et al., 2009; 

Roig et al., 2010), but how these processes are regulated is unknown. 

Because Pch2 is a negative regulator of synapsis, we tested wether Pch2 

mediates the synapsis defect of pph3∆. The pch2∆ single mutant progresses 

through meiosis with wild type kinetics and accumulates fully synapsed 

chromosomes (29% of fully synapsed nuclei compared to typically 10-18% in wild 

type cells at 5-6 hours in SPM, Figure 21A,B). Disassembly of the SC occurs with 

normal timing relative to wild type.  

Interestingly, synapsis is fully restored in pph3∆, pch2∆ double mutant and 

accumulates above wild type levels similar to the pch2∆ single mutant (29% of 

nuclei with fully synapsed chromosomes at 6 hours in SPM, Figure 21A, B). This 

indicates that pch2∆ is epistatic over pph3∆ concerning the ability to synapse. 

However formation of synapsis is slightly delayed (1-2 hours) in the double 

mutant compared to both, the pch2∆ single mutant and wild type.  

The defect of pph3∆ mutant in meiotic progression is slightly alleviated by 

the pch2∆ mutation (~61% of pph3∆, pch2∆ mutant cells have undergone at least 

one meiotic division after 10 hours in SPM medium as compared to ~25% in 

pph3∆ single mutant; Figure 21C), indicating that another factor inhibits cell cycle 

progression in the absence of PP4. Despite restoration of synapsis, spore 

viability is dramatically reduced in pph3∆, pch2∆ double mutant, down to 22.5% 

(n= 20 tetrads) from 60% (n= 20) in the pph3∆ single mutant. Tetrads contained 



preferentially 0, 2 or 4 viable spores (10, 5, 1 tetrads, respectively), indicating 

increased chromosome missegregation caused by a shortage in crossovers and 

chiasmata. These results identify Pch2 as the key mediator of pph3∆ synapsis 

defect and suggest that the main role of PP4 in synapsis is to downregulate 

Pch2.  

Similar to Pch2, the silencing factors Sir2 and Dot1 also affect the meiotic 

arrest of the zip1∆ mutant (San-Segundo and Roeder, 1999; 2000). However, as 

shown in Figure 21B,C, the phenotype of the pph3∆, dot1∆ double mutant is 

similar to that of the pph3∆ single mutant, indicating that DOT1 is not required for 

mediating the synapsis defect of pph3∆ mutant.  

 

3.4.5 Deletion of FPR3 or MEK1, but not of MEC1 bypasses the 

meiotic arrest of pph3∆. 

The proline isomerase Fpr3 is involved in the meiotic recombination 

checkpoint, by preventing premature adaptation to chromosomal damage by 

inhibiting PP1 (Glc7) (Hochwagen et al., 2005). Fpr3 impedes SC assembly in 

the absence of DSBs and in the absence of SUMO E3 ligase Zip3 (MacQueen et 

al., 2009). Fpr3 is phosphorylated in response to meiotic DSBs, but the 

phosphomodification is only seen for molecules interacting with Glc7, after co-

immunoprecipitation (Hochwagen et al., 2005). In our hands no phosphoshift was 

visible after Western blotting, consistent with these earlier results. 

The fpr3∆ single mutant progresses through meiosis with wild type synapis, 

wild type kinetics and yields viable spores. However, in contrast to Pch2, deletion 

of Fpr3 restores synapsis only to a limited extent (4% fully synapsed nuclei at 6 

hours, Figure 22B). On the other hand the meiotic arrest of the pph3∆ mutant is 

largely alleviated by the deletion of FPR3, although a 1-2 hour delay relative to 

wild type remains (Figure 22A). 



The pph3∆, fpr3∆ double mutant sporulates with almost the same efficiency 

as wild type (97% after 24hours in SPM) and yields mostly inviable spores (22% 

20 tetrads) compared to 60% for the pph3∆ single mutant (20 tetrads) and the 

fpr3∆ single mutant (93%, 20 tetrads). The number of 0, 2 and 4 viable spore 

tetrads was (14,3,2), respectively, indicating that, as in the pch2∆, pph3∆ double 

mutant, lack of crossovers may be causing spore lethality here. The kinetics of 

Rad51 focus formation suggests that DSBs are generated normally in pph3∆, 

fpr3∆ double mutant and are repaired with wild type timing (Figure 22A). This 

observation suggests that the reason for a lack of sufficient numbers of 

crossovers may come from a) a defect in designating sufficient crossover 

numbers or b) a defect in maintaining crossover designation. Because pph3∆ 

behaves like a ZMM mutant (reduced synapsis, normal NCOs, reduced COs), the 

reduced crossover numbers in the pph3∆, fpr3∆ double mutant may imply that 

Fpr3 may help buffering the ZMM defect of pph3∆ cells. We canʼt rule out that 

Fpr3ʼs interaction with PP1, which inhibits PP1 is controlled by Fpr3 

phosphorylation, which might in turn be controlled by Pph3. 

Mek1 is required for normal levels of DSBs and for continuous synapsis. 

Mek1 is a meiosis-specific kinase activated via Hop1 phosphorylation and Red1 

(Niu H, et al., 2005). After DSB formation Mek1 acts to downregulate inter-sister 

repair, upon Hop1 and Red1 dimerization following the phosphorylation of Hop1 

by Mec1/Tel1 (ATR/ATM). To determine whether mek1∆ or mec1-1 or rad54∆ 

suppresses the meiotic defects (chromosome synapsis, nuclear division) of 

pph3∆ cells, the pph3∆, mek1∆ ; pph3∆, mec1-1 and pph3∆, rad54∆ double 

mutants were analyzed. Chromosome synapsis is not rescued in pph3∆, mek1∆, 

however Rad51 focus formation is dramatically reduced, both in the mek1∆ 

single mutant and in the pph3∆, mek1∆ double mutant (Figure 22A,B), consistent 

with the requirement of Mek1 for wild type levels of DSB formation.  

The progression through meiosis is vastly improved compared to the pph3∆ 

single mutant and yields inviable spores (0% 40 tetrads) strongly suggesting that 

the attenuation of DSB formation in the mek1∆ background leads to an 



attenuation of the kinase response, which in turn leads to a reduced requirement 

for the phosphatase PP4 (Figure 22A). Preliminary results of pph3∆, mec1-1 

double mutant showed that neither chromosome synapsis, nor nuclear division 

defects of pph3∆ mutant was improved in the absence of MEC1 (Figure 22A,B). 

Nuclear division as well as the synapsis defect of pph3∆ were not restored by 

RAD54 deletion as suggested by pph3∆, mek1∆ double mutant synapsis 

phenotype (Figure 22A,B). 

 

3.4.6 Restoration of nearly wild type meiosis in pph3∆, pch2∆, fpr3∆ 

triple mutants 

We find that PCH2 and SWC2 inhibit synapsis in the pph3∆ mutant, while 

FPR3 prevents meiotic progression. In order to determine whether these factors 

are the only ones preventing normal meiosis in the pph3∆ background, pph3∆, 

pch2∆, fpr3∆ and pph3∆, swc2∆, fpr3∆ triple mutants were constructed and 

analyzed. 

Indeed, the pph3∆, pch2∆, fpr3∆ triple mutant shows high levels of nuclei 

with completely synapsed chromosomes (20% at 6 hours in SPM), progresses 

through meiosis with strongly improved kinetics and generates viable spores 

(95%, 40 tetrads, Figure 23A, B, C). The average number of Rad51 foci per 

nucleus decreases similar to wild type but with a slight delay (1-2 hours) 

indicating that DSB formation and repair are largely restored (Figure 23C).  

The pph3∆, swc2∆, fpr3∆ triple mutant only shows weak suppression of the 

synapsis defect (1% of nuclei with fully synapsed chromosomes). However, 

progression through meiosis is much improved and very similar to the pph3∆, 

fpr3∆ double mutant. Like the double mutant, this triple mutant generates mostly 

inviable spores (20% spore viability, 40 tetrads, with high numbers of 0, 2 and 4 

viable spore tetrads). The kinetics of Rad51 focus formation is similar to the 

pph3∆, pch2∆, fpr3∆ triple mutant (Figure 23A, B, C). That suppression of the 



synapsis defect is slightly weaker than for the pph3∆, swc2∆ double mutant is 

surprising, but may be explained by the faster progression in the fpr3∆ 

background. The fact that swc2∆ does not improve the suppression in the fpr3∆ 

background, suggests that Swc2 acts in the same pathway as Fpr3, in contrast to 

Pch2, which clearly acts in a separate pathway. Apparently activation of PP1 via 

deletion of Fpr3 is sufficient to antagonize the negative effects of Swc2 in a 

pph3∆ mutant background. 

 

3.4.7 Removal of phosphorylated H2A-S129 in pph3∆, pch2∆, fpr3∆ 

triple mutants 

To understand better the mechanism of suppression of the pph3∆ 

phenotype by pch2∆ and fpr3∆ we asked whether the accumulation of H2A-

S129-P is also abolished, together with the restoration of SC and meiotic 

progression. Indeed, the abnormal accumulation of H2A-S129-P, observed in 

Western blots of pph3∆ cells is completely removed in the triple mutant (Figure 

23D). This opens the question, whether deletion of PCH2 or of FPR3 is sufficient 

to remove H2A-S129-P, particularly because deletion of FPR3 is thought to 

prematurely activate PP1 (Glc7), which could target H2A-S129-P. Surprisingly, 

deletion of either one was not sufficient to prevent H2A-S129-P accumulation 

(Figure 23D). Deletion of PCH2 lead to a somewhat decreased accumulation of 

H2A-S129-P at 10hours in SPM, while deletion of FPR3 surprisingly had no 

effect at all. Therefore it seems that pch2∆ and fpr3∆ are synthetic concerning 

the dephosphorylation of H2A-S129-P, suggesting that they may have partially 

overlapping roles in transducing and maintaining the Mec1/Tel1 checkpoint 

signal.  

Because also swc2∆ partially improved the pph3∆ synapsis phenotype and 

spore viability, we also investigated the pph3∆, swc2∆, fpr3∆. However, no 

change of H2A-S129-P levels compared to pph3∆ single mutants were observed 



(Figure 23D), suggesting that the suppression of the synapsis defect by swc2∆ 

occurs by a fundamentally different mechanism than that by pch2∆. 

 

 

3.5 Crosstalk between Histones promotes synapsis 

 3.5.1 H2B-K123 monoubiquitination promotes synapsis  

Rad6, Bre1 and Lge1 form a complex that is required for histone H2B 

monoubiquitination on lysine123 in budding yeast (Robzyk et al., 2000). Rad6 is 

a ubiquitin conjugating enzyme (E2), Bre1 is a ubiquitin ligase (E3) and Lge1 

promotes H2B monoubiquitination by controlling the interaction between Bre1 

and Ubp8, a ubiquitin specific protease. 

rad6∆, bre1∆ and lge1∆ mutants were included in a pilot screen (Alexander 

Woglar, master Thesis) where they were identified with strongly defective 

chromosome synapsis. This result is in agreement with an earlier report about a 

decrease in DSB formation in rad6∆ and bre1∆ mutants (Yamashita et al., 2004). 

The synapsis defects of bre1∆ and lge1∆ were also found in a parallel work 

carried out in our lab (Jordan et al., 2007). 

In summary rad6∆ and bre1∆ cells showed only Zip1 foci and 

polycomplexes and no partial synapsis (Figure 24A, B). In contrast lge1∆ cells 

had a milder phenotype, producing reduced numbers of nuclei with partial 

synapsis and even 1% of nuclei with fully synapsed chromosomes after a delay 

(at 8 hours after induction of meiosis, Figure 24A, B). Nuclear division is almost 

absent 10 hours after incubation in SPM and FACs analysis reveals a delay in 

pre-meiotic DNA replication in all three mutants (Woglar A, master thesis). An 

average of 5 Rad51 foci per nucleus was detected in the bre1∆ mutant after 4 

and 5 hours in SPM and a maximum of 12 foci at 6 hours, compared to ~18 foci 

in the wild type where the maximum is at 4 hours (Figure 24C). This confirms a 

reduction in DSB formation in the bre1∆ mutant and agrees with data from the 



Shinohara lab (Yamashita et al., 2004). The reduction in DSBs observed by us 

(Figure 16A) and by the Shinohara lab (Yamashita et al., 2004) doesnʼt fully 

explain the complete absence of synapsis observed in rad6∆ and bre1∆ mutants. 

This hints at an additional function of these two genes in promoting synapsis, 

independent of promoting DSB formation. The formation of crossovers and 

noncrossovers was almost undetectable until 10 hours in SPM in rad6∆ mutant 

(Figure 16A) consistent with the result obtained in the Shinohara lab (Yamashita 

et al., 2004). 

To determine whether Rad6, Bre1 and Lge1 dependent monoubiquitination 

of H2B-K123 is fully responsible for the synapsis defects in rad6∆ and bre1∆ 

mutants, the H2B-K123R mutant (htb1-K123R and htb2-K123R), which prevents 

H2B monoubiquitination was obtained from A. Shinohara and analyzed.  

Indeed, the H2B-K123R mutant exhibits a strong defect in chromosome 

synapsis and nuclear division, however not quite as severe as rad6∆ and bre1∆. 

Rather they are more similar to lge1∆, as small numbers of nuclei with partial SC 

and even occasional ones with almost complete synapsis were found (Figure 

24A, B). Nevertheless, this shows that H2B-K123R ubiquitination plays the major 

role in promoting synapsis. Rad6 and Bre1 seem to have additional targets of 

minor importance that also promote synapsis. The fact that DSBs are formed, 

although at reduced numbers suggest that also the ubiquitination of H2B 

promotes synapsis, also beyond promoting normal DSB formation. Clearly Rad6 

and Bre1 have important roles for synapsis, beyond DSB formation. 

Meiotic progression was found similarly delayed by bre1∆ and by H2B-

K123R by us, consistent with (Yamashita et al., 2004). Given the prominent 

defects in synapsis, the mild spore lethality of all of these mutants, except rad6∆, 

which hardly forms any spores, may seem surprising, but more and more 

evidence accumulates, showing that synapsis is not essential for spore viability. 

Spore viability of H2B-K123R mutants was nearly wild type after producing 52% 

tetrads in 24 hours in liquid SPM. bre1∆ and lge1∆ also produce high spore 

viability (75% and 52%, respectively, Woglar A, master Thesis). In terms of 



promoting meiotic progression Rad6 is most important, followed by Bre1 and 

Lge1 and finally H2B-monoubiquitination in our hands. 

 

3.5.2 H3K4 trimethylation defective cells proceed further in synapsis 

than H2B-K123R mutants 

H2B-K123 monoubiquitination is required for the trimethylation of histone 

H3K4 by COMPASS (a complex containing Set1 methyltransferase and 7 other 

subunits) (and H3K79 by Dot1 methyltransferase (Dover et al., 2002: Nakanishi 

et al., 2009). 

The crosstalk between monoubiquitylated histone H2B and trimethylated histone 

H3K4, H3K79 prompted us to ask, whether H2B-K123 monoubiquitination works 

through trimethylation of H3K4 and/or H3K79 is required for synapsis. To 

address this question, set1∆, dot1∆ single mutants and set1∆, dot1∆ double 

mutant were generated and analyzed. The deletion of SET1 causes a slight 

delay in chromosome synapsis and Zip1 ploycomplexes are more prominent in 

set1∆ mutant cells compared to the wild type. Nuclear division is delayed and 

reduced in set1∆ (85% of cells have passed at least one meiotic division 10 

hours after transferred into the sporulation medium compared to 95% in wild type 

cells after 8 hours in SPM). About 8.5 (4 hours) and 11 (5 hours) Rad51 foci per 

nucleus are detected in cells lacking SET1 compared to an average of 18 (4 

hours) foci in wild type cells (Figure 24B, C). The spore viability is the same for 

set1∆ and wild type cells, These observations indicate a decrease and a delay in 

DSB formation in set1∆ mutant cells and are consistent with reports by the 

Nicolas lab (Borde V et al., 2008). 

In contrast, cells lacking DOT1 behave as the wild type during meiosis, 

indicating that Dot1 is not required during meiosis in an otherwise wild type strain 

in budding yeast (thus, trimethylation of H3K79 is not essential for normal levels 

of DSB formation, chromosome synapsis and nuclear division in budding yeast 

meiosis). 



To investigate, whether H3K4 and H3K79 methylation might be partially 

redundant we examined the set1∆, dot1∆ double mutant. The delays observed in 

the set1∆ single mutant were further exacerbated in the set1∆, dot1∆ double 

mutant. The average number of Rad51 foci was dramatically reduced to 4 foci at 

4 hours in SPM, but went up to 14 foci per nucleus with a 1hour delay. 

Chromosome synapsis was delayed for about 2hours in the double mutants 

compared to wild type (Figure 24A, B, C). Nuclear divisions were slightly delayed 

relative to set1∆ (73% of cells have completed the first meiotic division after 10 

hours in SPM compared to 85% in set1∆ single mutant). 

In summary the deletion of SET1 causes a reduction and a delay in DSB 

formation and a delay in chromosome synapsis, which nevertheless reaches wild 

type levels. Thus, H3K4 trimethylation may be required for wild type levels of 

DSBs and possibly for timely processing of recombination intermediates. 84% of 

the DSB sites display a significant reduction of DSB frequency in the absence of 

SET1 (Borde V et al., 2008). The meiotic defects of set1∆ are further 

exacerbated in set1∆, dot1∆ double mutants, indicating that in the absence of 

SET1 the DSB- and synapsis-relevant function of Set1 can to some extent be 

carried out by Dot1. The double mutant shows extensive, but usually incomplete 

synapsis and is thus less severely affected than the htb1,2-K123R mutant. We 

conclude that a function of histone H2B-monoubiquitination other than the 

recruitment of Set1 and Dot1 is responsible for the stronger synapsis defect in 

htb1,2-K123R. 



4. DISCUSSION 
4.1 A sensitive screen for genes involved in synapsis 

By employing a sensitive screen protocol, we have identified mutants 

affecting meiotic chromosome synapsis from a collection representing precise 

ORFs deletions of almost all non-essential genes of the yeast Saccharomyces 

cerevisiae. Of the 3630 ORFs screened, 132 candidates were unable to induce 

the meiotic program and 392 candidates (11%) displayed Zip1 foci or fragments 

of SC in the SK1/BY hybrid background. These 524 candidates include, genes 

well described for their roles in the activation of meiosis such as (IME1, IME2, 

UME6); 10/12 genes essential for DSB formation and synapsis (MEI4 and XRS2 

missed); genes of known synapsis roles such as (SPO16, MSH4, MSH5). We 

found genes from almost all cellular processes involved in meiotic chromosome 

synapsis, although to varying degrees (Figure 6, A, B, C, D). Our results 

document the fact that, rather than being an isolated process within the cell´s 

nucleus, synapsis rquires the correct execution of a large number of intertwined 

biological processes within the nucleus, in the cytosol and even the cell´s 

surrounding. Almost all genes initially contained in the set of 3630 ORFs 

screened, known to be required for meiotic recombination and/or SC formation 

were re-identified, arguing for the sensitivity of the screen.  

In interpreting the results of this screen, we acknowledge that many 

biological processes need to function seamlessly, to guarantee normal levels and 

kinetics of synapsis. These are: Induction of the meiotic program, pre-meiotic S-

phase, correct expression of meiotic genes, DSB formation, DNA-repair, 

chromosome morphogenesis and finally the ZMM pathway (specific pathway that 

carries out synapsis). As defects in premeiotic S-phase may cause a 

compromised onset of meiotic recombination, we are aware that a fraction of our 

mutants actually may not affect meiotic recombination in a strict sense. We have 

tried to measure the execution of S-phase using FACS analysis in a more 

detailed analysis, but the best way to differentiate prophase from S-phase 

defects would be to study meiotic knockdown constructs, such as genes put 



under a mitosis specific promoter (e.g. pCLB2), or to eliminate proteins using the 

anchor away technology (Haruki et al., 2008). 

When a subset of 30 of the identified ORFs were deleted in the SK1 strain 

background, the phenotypes could be evaluated in more detail in time courses. 

All but 4 of the resulting mutants showed clear differences to wild type 

concerning the extent or the timing of synapsis, or they show an aberrant 

progression through the different stages of synapsis. Only one candidate was 

completely devoid of synapsis (rim4∆) and 3 candidates (ecm11∆, ymr196∆, and 

yor296∆) had very few if any cells showing complete synapsis. We attribute the 

discrepancy between SK1 and BY/SK1 hybrid phenotypes to the more extensive 

analysis in the secondary screen (time course!), which uncovers delayed 

synapsis and to the more robust expression of the meiotic program in SK1 cells. 

However, we also consider, that some candidates may have been selected 

because of statistical fluctuations, even though the thresholds were set up to 

avoid picking up such fluctuations.  

 

4.2 H2B monoubiquitination modulates chromosome synapsis  

We have shown that various processes including pre-meiotic DNA 

replication, DSB formation, chromosome synapsis and nuclear division are 

strongly impaired or delayed in rad6∆, bre1∆ and lge1∆ cells. Similar results were 

reported for bre1∆ and lge1∆ from an independent screen in our lab (Jordan et 

al., 2007). Also, rad6∆ and bre1∆ were reported to be strongly defective for DSB 

formation, before, but had not been analyzed for SC formation (Yamashita et al., 

2004). These three mutants are components of the cellular machinery required 

for histone H2B-K123 monoubiquitination (Nakanishi et al., 2009). We find that 

the meiotic defects of the H2B-K123R mutant is very similar, although slightly 

less severe, to that of rad6∆, bre1∆ or lge1∆ mutants, which are required for 

H2B-K123 monoubiquitylation. Therefore H2B-K123 monoubiquitination appears 

to be the major pathway through which Rad6, Bre1 and Lge1 modulate 



chromosome synapsis, but there seems to be a minor pathway through which 

they can promote some delayed, residual synapsis without monoubiquitinylating 

H2B. 

 

4.3 Delayed synapsis in the absence of COMPASS 

Our results show that DOT1 (H3K79 trimethylation) is dispensable for 

normal chromosome synapsis. In contrast, synapsis and nuclear divisions are 

delayed and reduced in set1∆ and set1∆, dot1∆ double mutants. Rad51 focus 

formation is also reduced in set1∆ and set1∆, dot1∆ double mutants. These 

results are in line with earlier results of others, which showed that COMPASS 

(H3K4 trimethylation) is required for efficient DSB formation (Borde et al., 2009). 

This function is likely conserved as the mammalian homologue of COMPASS 

(PRMD9) has also been shown to be an important determinant of meiotic 

recombination initiation sites, thus in promoting DSB formation (Baudat et al., 

2010; Berg et al., 2010). If, as published, global DSB formation is really strongly 

reduced in set1∆ mutants, then finding extensive synapsis in this mutant reveals 

the presence of a buffering system, were a small fraction of DSBs are sufficient 

to trigger synapsis, albeit with a delay. Clearly, set1∆, dot1∆ double mutants do 

much better than H2B-K123R, arguing for an unidentified role of H2B 

monoubiquitination beyond the recruitment of a methyltransferase.  

4.4 Suppressing the meiotic defects of PP4 mutants. 

Previous studies in our and other laboratories (Alexander Woglar, Master 

Thesis) (Keogh et al., 2006; Falk et al., 2010a) identified the PP4 complex (Pph3, 

Psy2) as required for several meiotic processes. Here we found independently 

that Pph3 is required for proper pre-meiotic DNA replication, DSB repair, and 

crossovers formation. Chromosome synapsis and nuclear divisions are nearly 

completely abolished. We show that the synapsis defect of pph3∆ is very mildly 

improved in the hta1, 2-S129A background. Phospho-H2A-S129 is an important 

and conserved histone modification in response to DNA damage. It is known that 



PP4 dephosphorylates various ATM, ATR substrates including Phospho-H2A-

S129 and Rad53, thereby allowing recovery from checkpoint-induced arrest 

(Keogh et al., 2006; O'Neill et al., 2007). However, mutating H2A-S129 to alanine 

does not show severe consequences in yeast meiotic recombination. 

We could restore synapsis in pph3∆ mutant by deleting the SWR complex 

component SWC2. The role of the SWR complex has been reported to be the 

exchange of H2A with the histone variant H2A.Z (encoded by the HTZ1 gene in 

yeast). Surprizingly, deletion of HTZ1 has no effect on the pph3∆ phenotypes. In 

vegetative DNA repair swc2∆ and htz1∆ mutants are both defective in timely 

resection of DSB ends (van Attikum et al., 2007; Kalocsay et al., 2009) and the 

recruitment of H2A.Z to the break sites is strictly dependent on SWC2 (Kalocsay 

et al., 2009). Other known binding partners of Swc2, such as swr1∆ or ldb7∆ did 

not show suppression of the pph3∆ synapsis defects. We therefore believe that 

deletion of SWC2 suppresses by a mechanism independent of its chromatin 

remodeling activity. Also, we observed by ChIP that Swc2 protein requires Pph3 

for high steady state levels of interaction with chromatin, and that only in PPH3 

cells Swc2 protein is modified at about 5 hours in SPM. These observations 

argue for a mechanism, in which free Swc2 (unbound to chromatin) is 

responsible for the synapsis defect. 

Our main result, illuminating the role of PP4 is a strikingly strong epistatic 

interaction with Pch2 concerning chromosome synapsis. Intriguingly, pch2∆, 

which accumulates synapsis to higher levels than wild type, is epistatic over 

pph3∆ for the synapsis defect. However, while synapsis reaches very high levels 

in the double mutant, a 1-2 hour delay relative to the pch2∆ single mutant was 

observed. This delay could stem from problems of the pph3∆ mutant causing a 

delay in premeiotic S-phase. Still, this identifies Pch2 as a key target of PP4 

function. We propose that Pch2 anatagonizes synapsis in response to certain 

phosphorylation events, which signal the presence of unrepaired DNA damage. 

In this way, Pch2 could coordinate SC formation with repair and make sure that 

synapsis does not occur prematurely, before the homology check has been 

successfully concluded. However, Pch2 requires inactivation upon decrease of 



checkpoint signaling, which seems to be the key role in synapsis of PP4. 

Although pph3∆, pch2∆ double mutants show higher than wild type levels of 

synapsis, nuclear divisions remain only partially improved (40% past M1 at t=10 

hours, instead of 25%) and spore viability is strongly reduced (22.5% compared 

to 60% in the pph3∆ single mutant). pph3∆, pch2∆ double mutant might be 

reduced for crossovers, judging from the high proportions of tetrads with 2 or 

zero viable spores. Checkpoint functions of Pch2 during meiosis have been 

described: pch2∆ improves meiotic progression of zip1∆, zip2∆, and dmc1∆ 

mutants. In these cases meiosis commences without synapsis and spore viability 

is further reduced compared to the single mutants (San-Segundo and Roeder, 

1999). Our results are strikingly different from these observations, in that pch2∆ 

improves synapsis, but does not affect cell cycle progression very much. In 

addition a function of Pch2 in promoting timely and efficient recombination have 

been reported (Borner et al., 2008; Roig et al., 2010; Zanders et al., 2011). 

Deletion of DOT1 bypasses the arrest of zip1∆ and dmc1∆ mutants and 

allows the repair of meiotic DSBs by a Rad54-dependent recombination pathway 

between sister chromatid (San-Segundo and Roeder, 2000b). These authors 

proposed that Dot1, Pch2, Sir2 act at the same step in the pachytene checkpoint. 

In contrast, we found that the deletion of DOT1 and of RAD54 have no effect on 

pph3∆. 

Interestingly, we found that deletion of the proline isomerase protein FPR3 

almost completely suppresses the meiotic arrest of pph3∆ single mutant, pph3∆, 

pch2∆ and pph3∆, swc2∆. The double and triple mutants display almost wild type 

sporulation frequencies. While spore viability in the pph3∆, fpr3∆ double mutant 

was only 20%, unexpectedly, the spore viability of the triple mutant pph3∆, fpr3∆, 

pch2∆, (but not of pph3∆, fpr3∆, swc2∆) was almost wild type. We suggest that in 

the pph3∆, pch2∆ double mutant, synapsis is uncoupled from the maturation of 

important recombination intermediates. This maturation is impaired by the 

phosphor-status of a (unknown) substrate, which may become dephosphorylated 

upon premature activation of PP1 (in fpr3∆). But also, pph3∆, fpr3∆ mutants have 



a problem, because dephosphorylation of that (unknown) substrate in the 

presence of Pch2 does neither restore synapsis nor spore viability. 

Moreover, the accumulation of phospho-H2A-S129 observed in pph3∆ 

mutant completely disappears in the pph3∆, fpr3∆, pch2∆ triple mutant, but not in 

either double mutants (pph3∆, fpr3∆ and pph3∆, pch2∆), although a slight 

decrease in phospho-H2A-S129 levels was observed at 10hours in SPM 

compared to the pph3∆ single mutant. An unknown phosphatase might be 

activated in the pph3∆, fpr3∆, pch2∆ triple mutant that dephosphorylates 

phospho-H2A-S129. Thus, the meiotic defects of pph3∆ mutant are almost 

completely relieved in pph3∆, fpr3∆, pch2∆ triple mutant. 

 

4.5 Repair or checkpoint factor: the meiotic context is paramount 

We show that the meiotic prophase I arrest of pph3∆ mutant is completely 

relieved by deletion of FPR3, MEK1 but not by the point mutant mec1-1. This 

relief of the meiotic block is not due to the suppression of all the meiotic defects 

of pph3∆ mutants as exemplified by the severe reduction in spore viability in 

pph3∆, fpr3∆ and pph3∆, mek1∆ compared to pph3∆ single mutant. The lower 

spore viability in the double mutants points to a disruption of checkpoint 

functions. FPR3 and MEK1 were shown to have checkpoint functions 

(Hochwagen et al., 2005a; Niu et al., 2005a). The pph3∆, mec1-1 double mutant 

showed a synthetic phenotype manisfested by almost a complete lack of nuclear 

division and sporulation. This argues strongly against Pph3’s main role being an 

antagonist to Mec1. 

In the course of this work, we found that deletion of PCH2 fully restores 

synapsis in the pph3∆ mutant, but has little effect on the meiotic arrest, while 

additional deletion of FPR3 restores everything. These observations suggest that 

Pch2 monitors a repair-intermediate to couple its turnover with synapsis (not with 

cell cycle progression). Fpr3, in contrast, monitors another product to couple its 

turnover with cell cycle progression. Uncoupling of both surveillance mechanisms 



leads to restoration of largely normal meiosis with high spore viability. I believe 

that further investigations along these lines will continue to greatly improve our 

understanding of the role of these factors in meiotic recombination. Because 

these factors are conserved, this should be illuminating, eventually, also for 

better understanding human meiosis. 



Figure legends 
 
Figure 1: Stages of Mitosis and Meiosis. 

a) Mitosis: a1 diploid mother cell, a2 DNA replication, a3 Metaphase, a4 2 

identical diploid daughter cells.  

b) Meiosis: b1 diploid mother cell, b2 DNA replication, b3 crossover 

formation, b4 segregation of homolog (M1), b5 Metaphase II, b6 segregation of 

sister chromatids into haploid gametes (modified from Brar and Amon, 2008). 

 

Figure 2: Morphogenesis of chromosomes during meiosis (from Interphase until 

Telophase II; kindly provided by Prof. Joseph Loidl, University of Vienna, 

Austria).  

 

Figure 3: Relationships between meiotic recombination and the synaptonemal 

complex formation from leptotene to diplotene (modified from Hunter, 2006; 

Martin Xaver (chromosome spreads). 

 DSBs: DNA double strand breaks 

 ND: Nascent D-loop 

 SDSA: Synthesis dependent strand annealing 

 SEI: Single invasion 

 DHJs: Double Holliday junctions 

 

 

 

Figure 4: Model of the SC assembly;  

LE: Lateral elements (refers to axial element) (in blue ovals: cohesin & 

condensin, in green ovals: Red1, Hop1). 



CE: Central region (forms by antiparallel association of Zip1 dimers in the 

N-terminal region) (Page and Hawley, 2004). 

 

Figure 5: Scheme of the SK1/BY screening procedure to generate homozygous 

diploids of ORFs deleted in the BY strain background. 

Y: Rec8-HA3::ura3::LEU2 

Xi: Gene of interest or ORF deleted and replaced by the kanamycin 

cassette in the BY strain background. 

HO: HO endonuclease which is responsible for mating type switching 

ste4ts: Temperature sensitive allele of the sterility gene STE4 

cyh2R: Recessive allele of the CYH2 gene that confers resistance to 

cycloheximide. 

 

Figure 6: A, B, C, D: Candidate ORFs were sorted categorized based on GO 

terms listed in the Saccharomyces genome database (SGD). Information 

contained in this database was used to improve this assignment manually for 

each ORF. 

 

Figure 7: A, B, C: Zip1 and Rad51 staining during the leptotene, zygotene and 

pachytene stages of the meiotic prophase 1 in the wild type SK1. A meiotic 

timecourse experiment was carried out and sampled after 4, 5 and 6 hours in 

SPM, followed by chromosome spreading and immunostaining with antibodies 

against Zip1 and Rad51. The spread and labeled chromosomes were analyzed 

by fluorescence microscopy. Figures represent examples for the different 

categories used to classify nuclei. See also experimental procedures (2.2.6). 

 



Figure 8: A) Column diagrams showing the frequency of nuclei categorized 

based on Zip1 appearance on chromosome spreads for each of the indicated 

mutants. Meiotic timecourse experiments were performed and sampled after 0, 2, 

4, 5, 6, 7, 8 and 10 hours in SPM for chromosome spreads, followed by 

immunolabeling of the SC central component Zip1 and the recombinase Rad51. 

For each of the candidates, 100 cells were evaluated for Zip1 morphology and 

classified according to the extent of Zip1 staining of synapsed regions at each 

timepoint (No Zip1, Zip1 foci, Zip1 short stretches, Zip1 long stretches and 

almost complete SC). B) Average Rad51 foci per nucleus:  50 nuclei were 

counted for Rad51 staining (dot-like staining termed foci) and the average 

number of foci per nucleus plotted as shown on the figure. C) At each timepoint 

ethanol-fixed, DAPI stained cells containing 1, 2 or 4 nuclei were counted 

(mononucleates, binucleates, tetranucleates). The graph shows the sum of the 

percentage of bi- and tetranucleate cells per timepoint, corresponding to the 

number of cells that have undergone at least the first meiotic division. D) 

Diagrams displaying the efficiency of pre-meiotic DNA replication. Samples were 

taken at indicated time points (top right) and subjected to FACs analysis (section 

2.2.6). 2C and 4C refer to DNA content (before and after DNA replication).   

 

Figures: 9A,B,C ; 10A,B,C ; The experimental procedures were as described in 

Figure 8. 

  

Figures 10 D,E: D) Formaldehyde fixed whole cells (taken after 4 hours in SPM) 

were stained with antibodies against the HA epitope of Rim4-HA3 (see section 

2.6.3) and analyzed under Fluorescence microscopy. 

E) Formaldehyde fixed whole cells (sampled at different timepoints; 2, 4, 5, 

6, 7, 8 and 10 hours in SPM) were immunostained with antibodies to yeast 

tubulin to visualize the meiotic spindle with the fluorescent microscope. The 

different morphologies of the spindle were scored (Monopolar or prophase I 



spindle = duplicated but unseparated spindle pole body; Bipolar (duplicated and 

separated spindle pole body); Two bipolars and Post-anaphase II spindle). 

 

Figure 11: A) Diagrams displaying the efficiency of pre-meiotic DNA replication 

in wild type and shu mutants. Samples were taken at indicated time points and 

subjected to FACs. 2C and 4C are the percentage of cells with 2C and 4C DNA 

content at each time point. B): Average number of Rad51 foci per nucleus at 

indicated timepoints in wild type and (shu2∆, csm2∆ and psy3∆) mutants.  

 

Figure 12: Ectopic Recombination System (hotspot locus) used to assay DNA 

double strand breaks (DSBs), crossovers (CO) and noncrossovers (NCO). A 3.5 

Kb URA3-ARG4 and URA3-arg4-Ecpal9 constructs insert on the left arm of 

chromosome III, respectively in the LEU2 locus (leu2::URA3-ARG4) on one 

homologue (mom, P1) and in the HIS4 locus (his4::URA3-arg4-EcPal9) on the 

other homologous chromosome (dad, P2). The palindrome at +9 of the ARG4 

coding sequence is indicated by a lollipop (see P2). During meiosis, DSBs occur 

upstream of URA3 (DSB1) and an upstream of ARG4 (DSB2) coding sequences 

and the two inserts frequently recombine. For this study: EcoRI / XhoI digest 

(bottom panel) was probed with HIS4 sequence (HISU probe) for the detection of 

CO, NCO and DSBs (modified from Clyne et al., 2003) 

 



Figure 13: A,B: Southern blots showing DSBs, CO and NCO signals in the wild 

type SK1, irc25∆/poc3 and psy3∆ mutants. Meiotic time course experiments were 

performed and sampled at different timepoints (0, 2, 3, 5, 4, 5, 6, 7, 8, 10 hours in 

SPM) for genomic DNA preparation, followed by EcoRI / XhoI restriction digest 

and electrophoresis (see section 2.3). The HisU probe was for the diagnostic of 

DSBs, CO and NCO, and signals were quantified using the Image Gauge 

software. 

 

Figure 14: A,B,C,D: Phenotypes of yor029w∆ mutants. Experimental procedures 

were as described in Figures 8 and 13. 

 

Figures 15 A,B; 16 A and 17 A,B; Experimental procedures were as described 

in Figures 8 and 13. 

 

Figure 18: A,B,C,D,E,F: Meiotic phenotypes of the PP4 complex, all the 

experimental procedures were as in Figures 8 and 13. 

 

Figures 19 and 20 A, B,C: Suppresion of the SC defects of pph3∆ mutants by 

SWC2 deletion (see Figures 8 for experimental procedures). 

 

Figure 20: D, E, F, G: Chromatin localization of Swc2-HA3. A meiotic time 

course experiment was conducted and sampled after 4hours in SPM for 

chromosome spreads and chromatin immunoprecipitation. D) The spreads was 

stained with antibodies directed to the HA epitope of Swc2-HA3 and analyzed by 

Fluorescence microscopy. Immunoprecipitated DNA fragments with HA antibody 

were amplified with specific primers (FK2858, FK2859) for the diagnostic of 

Swc2-HA3 binding at specific chromosomal locus or hybridzed to a tailing array 

for a genome-wide mapping of the protein. The example of chromosome III map 



of Swc2-HA3 (in green) compared to Rec8 binding sites (in black) and to Swc2-

HA3, pph3∆ (in red) is shown. E) Swc2-HA3 and Swc2-HA3, pph3∆ 

chromosomal binding sites were compared to DSBs sites (in blue, Pan et al., 

2011). F) Swc2-HA3 (in green) and Swc2-HA3, pph3∆ (in red) chromosomal 

enrichment were compared. G) qPCR showing the efficiency of DNA binding of 

Swc2-HA3 in the absence of PPH3 at position 230.870-230.993 on chromosome 

III, primer pairs Fk2858 and FK2859 were used to amplify the DNA binding 

region of interest. And western blot displaying the phosphoshift of Swc2-HA3 in 

wild type cells: a meiotic time course was carried out and samples taken after 0, 

2, 3, 4, 5 and 6 hours in SPM for TCA-proteins extract and subsequent 

immunoblotting (see section 2.4).  

 

Figure 21: A,B,C; Restoration of synapsis in pph3∆ mutants by the deletion of 

PCH2. The experimental procedures were as described in Figure 8. 

 

Figure 22: A,B; Bypasses of the meiotic arrests of pp4 mutants by FPR3 and 

MEK1 deletion. Experimental procedures as previously described in Figure 8. 

Figure 23: A, B, C, D; Wild type like pp4 mutants. Restoration of synapsis, 

meiotic progression and spore viability in pp4 mutants by PCH2 and FPR3 

double deletion. D) western blotting showing phospho-H2A-S129 

dephosphorylation in the absence of PPH3. Meiotic time course experiments 

were performed and sampled at indicated time points for TCA-proteins extract, 

followed by immunoblotting with antibodies specific to the phosphorylated form of 

histone H2A at serine 129, and with antibodies to histone H2A as loading 

controls. 

 

Figure 24: A, B, C; Synapsis phenotypes of rad6∆, bre1∆, lge1∆, H2B-K123R, 

set1∆, dot1∆, and set1∆, dot1∆ double mutants. All the experiments were 

conducted as described in Figure 8. 



 

Figure 25 and Figure 26: Synapsis phenotypes in a pure SK1 strain background 

of additional mutants characterized in this work. Experimental procedures were 

as in Figure 8. 

Figure 27: Meiotic progression and Rad51 foci of indicated mutants. The 

experimental set up were as previously described in Figure 8. 

 

Figure 28: Top2 and Zip1 focus formation during meiotic prophase I. Meiotic time 

course experiments were performed and sampled after 0, 2, 3, 4, 5, 6, 7, 8 hours 

in SPM for subsequent chromosomes spreading. The spreads were stained with 

antibodies against Zip1 and the Myc epitope for Top2-Myc9 and analyzed with 

Fluorescence microscopy. 

 

Figure 29: Example of nuclei showing Zip1 and Top2-Myc9 staining on 

chromosomes after 3 and 4 hours in SPM. Experimental procedures were as in 

Figure 28. 

 

Figure 30: Colocalization of Top2-Myc9 and many DSBs sites. A meiotic time 

course were carried out and samples taken after 4hours in SPM, for chromatin 

immunoprecipitation with antibodies against the myc-epitope of Top2-Myc9, 

Immunoprecipitated DNA fragments were hybridized to a yeast tailing array to 

determine the DNA binding sites of Top2-Myc9. Chromosomal binding map of 

Top2-Myc9 (in red) was compared to DSBs map (in blue; Pan et al., 2011) and 

Rec8 sites (in green). Top2-Myc9 chromosomal binding sites overlap with many 

DSBs sites as shown for Chromosomes 3, 5, and 9.  



Tables 
 

Tables 6 through 12 contain large datasets. They are provided here for 

completeness, however, because of the small print, it is recommended to access 

these data in electronic form, in the accompanying CD (e-Appendix). The data 

there are represented in form of a filemaker database called “SK1BY_SCscreen 

Part1”. The compilation of data, that correspond to Table 6 through 12 can be 

accessed in an Excel file called “Table 6 to 12.xls”.  
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Table 9: Long Zip1

Total number of ORFs 200

Meiotic recombination    5                         DNA metabolism/chromatin 
remodelling/chromatin         modification                      
17

Mitochondrial/aerobic respiration 18 Metabolism                            31 Metabolism        31                   Vacuole/peroxisome             13

MSH4 (synapsis), forms a heterodimer 
with MSH5, MSH5 showed reduced SC

CDC40 (Pre-mRNA splicing factor, 
required for DNA synthesis during mitosis 
and meiosis)

ATP11 (electron transport chain, 
oxidative phosphorylation, chaperone 
required for mitochondrial F1F0 ATP 
synthase assembly)

FRM2 (NAD(P)H nitroreductase, negative 
regulation of fatty acid metabolic process, 
cell cycle, interacts with PUB1)

    
  

   

MET22 (Bisphosphate-3'-nucleotidase, 
involved in salt tolerance and methionine 
biogenesis, interacts with MAK5)

PRB1 (vacuolar proteinase B, required for 
protein degradation in vacuole and during 
sporulation),interacts with CDC53, 
MMS19, RAD59,SKP1, UBP10..), MMS19 
(long Zip1), RAD59 (reduced SC)

NDJ1 (bouquet formation, synapsis) DCC1 (SU of a complex with CTF8 and 
CTF18, required for sister chromatid 
cohesion and chromosome segregation) 
CTF8 and CTF18  showed a reduced 
synapsis phenotype.

COA1 (electron transport chain, 
mitochondrial inner membrane protein 
required for assembly of the cytochrome c 
oxidase complex (complex IV))

YHI9 (involved in a membrane regulation 
metabolic pathway, interacts with 
ribosomal proteins and SPP1 (no meiotic 
induction))

MLS1 (Malate synthase, interacts with 
KSS1, FMP48, IKS1, utilization of carbon 
source absent)

YHL008C (unknown function, transporter, 
localizes to vacuole)

 PSY3 (strand invasion, interacts with 
SHU1, SHU2, CSM2), SHU1 (no 
phenotype), SHU2 (Zip1 foci) and CSM2 
NA

ECM11 ( chromatin structure, interacts 
with CDC6, SIZ2, SMT3), CDC6 essential, 
SIZ2 (short Zip1 stretches) 

CMC1 (electron transport chain, may 
be involved in delivering copper from the 
matrix to the cytochrome c oxidase 
complex in mitochondria)

YML082W (uncharacterized, predicted to 
have carbon-sulfur lyase activity, interacts 
with GIS2 and MET30)

SDH1 (succinate dehydrogenase (Sdh1p, 
Sdh2p, Sdh3p, Sdh4p), respiratory growth 
decreased or absent, 

YOR223W (unknown function, localized 
to ER and vacuole, interacts with GIS2 
and LAG1))

ZIP4 (synapsis) MRC1 (SU of the Fork pausing Complex, 
S-phase checkpoint kinase (TOF1-MRC1-
CSM3) tethered to Pol Epsilon), CSM3 
(reduced synapsis) and TOF1 (no 
phenotype)

PET100 (electron transport chain, 
Chaperone that specifically facilitates the 
assembly of cytochrome c oxidase)

YNL108C (uncharacterized, possibly 
involved in glucose metabolism, shows 
similarity to TFC7, interacts with RPN11 
(SU of 19S regulatory particle of the 26S 
proteasome)

PHM8 (Lysophosphatidic acid (LPA) 
phosphatase, cellular response to 
phosphate starvation)

HHY1 (Dubious ORF, hypersensitive to 
hygromycin B indicative of defects in 
vacuolar trafficking)

YBR098W/SLX2/MMS4 (structure 
specific endonuclease)

APN2 (endonuclease, removes 
3'phosphates in DNA repair, interacts with 
HTL1 (RSC complex), POL30 (PCNA 
complex), RIM1 (ssDNA binding)

PET111 (electron transport chain, 
Mitochondrial translational activator 
specific for the COX2 mRNA)

DAP1 (heme binding protein, damage 
responsive, telomeres, mitochondria, 
sterol biosynthesis)

PRO2 (Gamma-glutamyl phosphate 
reductase, catalyzes the second step in 
proline biosynthesis, interacts with MSH2)

IST1 (late endosome to vacuole transport 
via multivesicular body sorting pathway, 
function with DID2, interacts with BUB1, 
MEC1, TEL1)

RNA metabolism                      7 DUN1 (Chk2 paralog, like Rad53 and 
Mek1, needs Rad53 phosphorylation and 
binding for its own activation.)

PET191 (electron transport chain, 
Protein required for assembly of 
cytochrome c oxidase)

ADO1 (Adenosine kinase, required for the 
utilization of S-adenosylmethionine 
(AdoMet)), interacts with HRR25,SPO12 
(long Zip1), SSB1(no meiotic induction) 
AdoMet is involved in the methylation  of 
proteins!, 

SER33 (3-phosphoglycerate 
dehydrogenase, catalyzes the first step in 
serine and glycine biosynthesis, isozyme 
with SER3)

PCD1 (Peroxisomal nudix 
pyrophosphatase, may function to remove 
potentially toxic oxidized CoA disulfide 
from peroxisomes , resistance to MMS 
decreased)

STP3 (Zinc-finger, sequence specific 
DNA binding, pre-tRNA splicing )

HHO1 (linker histone H1, suppresses DNA 
repair involving homologous 
recombination)

QCR10 (electron transport chain, SU 
of the ubiqunol-cytochrome c 
oxidoreductase complex, part of the 
mitochondrial respiratory chain)

ARO10 (Phenylpyruvate decarboxylase, 
catalyzes the first specific step in the 
Ehrlich pathway(production of fusel acids 
& fusel alcolols from branched-chain 
amino acids, aromatic amino acids & 
methionine) 

TKL2 (Transketolase, similar to TKL1, 
involved in pentose phosphate 
pathway,needed for synthesis of aromatic 
amino acids)

PCS60 (Peroxisomal protein that binds 
AMP and mRNA, interacts with IPL1, 
PTC1, ASH1) 

KTI12 ( plays a role with elongator 
complex in modification of wobble 
nucleosides in tRNA, interacts with ELP2, 
ELP3 (normal SC)

HPR1 (SU of THO/TREX complexes that 
couple transcription elongation with 
mitotic recombination and with mRNA 
metabolism and export, interacts with 
AHA1(Zip1 foci), CSE4, PAF1, SAC3 
(Zip1 foci),SSB1...)

QRI5 (electron transport chain, 
required for accumulation of spliced COX1 
mRNA)

ATG26 (sterol 3-beta-glucosyltransferase, 
not involved in autophagy, plays a role in 
cell cycle progression)

TRP3 (Bifunctional enzyme exhibiting 
both indole-3-glycerol-phosphate 
synthase and anthranilate synthase 
activities, tryptophan biosynthesis, 
interacts with AHA1, DBF2, DMC1, 
GCN5, SPO12, TUB3)

PEP7 (Golgi to vacuole transport, 
phosphatidylinositol-3-phosphate binding, 
Golgi to endosome transport, UV 
resistance decreased, sporulation absent 
and respiratory growth decreased, 
interacts with MEK1, HSP82(no meiotic 
induction), PHO85, PEP12(long Zip1)) 

LSM6 (mRNA decay, RNA processing, 
LSM1(reduced SC) and LSM2-8, NA)

IRC3 (ATP-dependent RNA helicase, 
increased levels of spontaneous RAD52 
foci)  

   

SOV1 (mitochondrial protein of unknown 
function, respiratory growth decreased 
or absent)

BDH1 (NAD-dependent (R,R)-butanediol 
dehydrogenase, interacts with BDH2, 
PHO85

YBR139W (serine hydrolase, serine-type 
carboxypeptidase, phytochelatin 
biosynthesis, interacts with GCN5)

PEX12 (C3HC4-type RING-finger peroxin 
and E3 ubiquitin ligase, required for 
peroxisome biogenesis)

TOM1 (E3 ubiquitin ligase,involved in 
mRNA export from the nucleus and 
degradation of excess histones.interacts 
with HSP82(no induction), NGG1(Zip1 
foci), RAD53, (E), SPT5 (E), STP1 (no 
phenotype)

IRC5 (putative ATPase, increased levels 
of spontaneous RAD52 foci, interacts with 
KSS1 (MAPK kinase, normal SC), 
SWE1(kinase that inhibits CDC28, normal 
SC), TPK1 (long Zip1), ATG1 (no pht) 

MDM32 (required for normal 
mitochondrial morphology and 
inheritance)

BIO5 (BIO5 is in a cluster of 3 genes 
(BIO3, BIO4, and BIO5) that mediate 
biotin synthesis, 

YPL113C (Glyoxylate reductase; acts on 
glyoxylate and hydroxypyruvate 
substrates, interacts with WHI3)

PEX21 (Peroxin required for targeting of 
peroxisomal matrix proteins containing 
PTS2,redundant with PEX18, interacts 
with SES1)

TUM1 (Rhodanese domain sulfur 
transferase, accepts persulfite from Nfs1p 
and transfers it to Uba4p in the pathway 
for 2-thiolation of the wobble uridine base 
of tRNAs), interacts with PHO85 (>91% 
short)

KIN3/YAR018C (kinase, possible role in 
DNA damage, interacts with LGE1(reduced 
SC), which interacts with Rad6/Bre1

AIM41 (uncharaterized, mitochondrial 
genome maintenance, interacts with 
DMA1(spindle positioning and orientation) 
and HRR25 (regulation of chromosome 
segregation))

BIO2 (Biotin synthase, conversion of 
dethiobiotin to biotin, 

PGS1 (Phosphatidylglycerolphosphate 
synthase, cardiolipin biosynthesis, 
respiratory growth absent, inviable) 

PEX27 (control peroxisome size and 
number, interacts with PEX25,interacts 
with SPC1)

MOD5 (tRNA isopentenyl transferase, 
tRNA dimethylallyltransferase)

MMS19/MET18 (DNA repair and TFIIH 
regulator, required for both nucleotide 
excision repair (NER) and Pol II 
transcription)

IMG1 (required for respiration and 
maintenance of mitochondrial 
genome)

BNA3 (Kynurenine aminotransferase, 
biosynthesis of nicotinic acid, chromosome 
maintenance decreased, interacts with 
CDC28, MAD2, 

GRX3 (Hydroperoxide and superoxide-
radical responsive glutathione-
dependent oxidoreductase, along with 
GRX4 and GRX5; protects cells from 
oxidative damage)

SPS19 (Peroxisomal 2,4-dienoyl-CoA 
reductase, ascospore formation, interacts 
with CHS1(chitin synthase 1))

HUB1 (Ubiquitin-like protein modifier; 
promotes alternative splicing of SRC1 
pre-mRNA, interacts with HBT1 (>91% 
short) )

RAD7 (SU of nucleotide excision repair 
factor 4 (NEF4) and the Elongin-Cullin-
Socs (ECS) ligase complex.Binds the DNA 
with Rad16 (no phenotype)

ISA2 (required for maturation of 
mitochondrial and cytosolic Fe/S proteins, 
localizes to the mitochondrial 
intermembrane space)

ERG5 (C-22 sterol desaturase, ergosterol 
biosynthesis,respiratory growth absent)  

HMG1 (One of two isozymes of HMG-CoA 
reductase that catalyzes the conversion of 
HMG-CoA to mevalonate, which is a rate-
limiting step in sterol 
biosynthesis,interacts with CSE4, RAD51, 
SPO75)

YCK3 (vacuolar membrane-localized 
casein kinase I isoform, hares essential 
functions with HRR25, vesicle-mediated 
transport, interacts with GAL7, YCK1) 

Cytoskeleton                         5 RIF1 (binds RAP1 c-terminus, acts 
synergistically with RIF2 (NA) in 
telomere capping and silencing 
(maintenance))

PRD1 (Zinc metalloendopeptidase, with 
CYM1, involved in degradation of 
mitochondrial proteins)

GCY1 (Putative NADP(+) coupled 
glycerol dehydrogenase, glycerol 
catabolism, mRNA binding, oxidative 
stress response, interacts with ASH1, 
PRP6)

ARK1 (ser/thr kinase,involved in 
regulation of the cortical actin 
cytoskeleton, interacts with BMH2, 

RTT101 (Cullin SU of a ROC1 dependent 
ubiquitin E3 ligase, plays a role in 
anaphase progression, MMS22 dependent 
DNA repair, and with MMS1 in 
nonfunctional rRNA decay, modified by 
RUB1)

MRS4 (iron transporter across the inner 
mitochondrial membrane)

GLO2 (Cytoplasmic glyoxalase II, 
catalyzes the hydrolysis of S-D-
lactoylglutathione into glutathione and D-
lactate, interacts with TRX1)

GIM4 (SU of the cochaperone prefoldin 
complex(GIM3, GIM5, PAC10, PFD1, 
YKE2), binds specifically to cytosolic 
chaperonin and transfers target proteins 
to it , tubulin assembly, 

IRC13 (dubious ORF, null mutant displays 
increased levels of spontaneous Rad52 
foci)

SLM3 (mitochondrial tRNA thio-
modification)

GLT1 (NAD(+)-dependent glutamate 
synthase (GOGAT), interacts with CSE4, 
MCM2, SPC24) 

HSP42 (heat shock protein with 
chaperone activity,involved in 
cytoskeleton reorganization after heat 
shock, interacts with CDC14, CSE4, 
DBF2, ORC1, SRS2, TUB2)

RAD30 (DNA polymerase Eta, involved 
in translesion synthesis during post-
replication repair, interacts with SNF4 
(Zip1 foci), SNF1(no induction), POL30)

MST1 ( Mitochondrial threonyl-tRNA 
synthetase)

GLY1 (Threonine aldolase, glycine 
biosynthesis from threonine, interacts 
with DBF2(Zip1 foci), HHF1(histoneH4), 
SMC3) 

RGA1 (GTPase-activating protein for the 
polarity-establishment protein Cdc42p, 
actin filament organization, interacts 
with ClN2, LGE1)

PTH1 (peptidyl-tRNA hydrolases, required 
for respiratory growth on minimal 
medium)

GPD1 (NAD-dependent glycerol-3-
phosphate dehydrogenase, key 
enzyme of glycerol synthesis, interacts 
with RAD1)

ABP140 (AdoMet-dependent tRNA 
methyltransferase and actin binding 
protein, actin filament bundle assembly, 
interacts with IME2, YCK2, YCK1..)
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FPR4 (proline isomerase, catalyzes 
isomerization of proline residues in 
histones H3 and H4, which affects lysine 
methylation of those histones, interacts 
with FPR3, GCN5, GLC7, HTA2, HTZ1...)

WTM1 (Transcriptional modulator 
involved in regulation of 
meiosis,expression of RNR genes)

YET2 (unknown function, colocalizes with 
ribosomes)

PNS1 (enriched in plasma membrane 
fraction)

SPR6 interacts with CDC28 YMR031W-A (partially overlaps 
YMR031C, may be involved in telomere 
maintenance)

JHD2 (H3K4 specific demethylase) CAT8 (Zinc cluster transcriptional 
activator, sequence specific DNA binding)

ARX1 (Shuttling pre-60S factor, ribosomal 
large subunit biogenesis)

AST1 (protein targeting to the plasma 
membrane,interacts with CBK1, KSP1 

GFD2 (high-copy suppressor of a dbp5 
mutation, interacts with GIS2 and 
RVS167 (Zip1 foci in SK1))

YBR116C (partially overlaps TKL2)

HOS1 (HDAC, deacetylates SMC3 on 
lysine 112 & 113 residues at the onset of 
anaphase) Cornelia de Lange syndrome in 
human.

GTS1 (involved in Arf3 regulation and in 
transcription regulation, interacts with 
BMH1 (14-3-3 protein), SLA1, SSA1, 
SSA2...)

RPL17B (ribosomal protein,interacts with 
HMO1)

DNF2 (Aminophospholipid translocase 
(flippase),involved in intracellular protein 
transport, cell polarity, interacts with 
CDC28, TOR1, TOR2)

YDL121C (localizes to ER interacts with 
GIS2)

YCL023C (partially overlaps KCC4)

HST1 (HDAC, SU of the 
(SUM1/RFM1/HST1) complex, which 
represses middle sporulation specific 
genes, SUM1 (reduced SC), RFM1 NA,  
and of the SET3 complex (CPR1,HOS2, 
HOS4, HST1, SNT1, SIF2, SET3), SET3 
(long Zip1), SIF2 (short Zip1), CPR1, 
HOS2 (normal SC)

HAP5 (SU of the heme-activated, glucose-
repressed Hap2/3/4/5 CCAAT-binding 
complex, a transcriptional activator and 
global regulator of respiratory gene 
expression, DNA binding,interacts with 
DOC1, GAL4, SPC24 (SU of NDC80 
complex)...)

RPL31B (ribosomal protein, interacts with 
ORC1, BRE5)

ECM33 (GPI-anchored protein of unknown 
function, fungal-type cell wall 
organization)

YDL206W YER067C-A (partially overlaps YER067W)

SET3 (HDAC, meiosis specific repressor of 
sporulating genes, acts in complex with 
CPR1, HOS2, HOS4, SIF2, 
SNT1,HST1,see above)

MTH1 (Negative regulator of the glucose-
sensing signal transduction pathway, 
required for repression of transcription by 
Rgt1p, interacts with RGT1, SNF3 and 
RGT2 glucose sensors)

RPP2B (Ribosomal protein P2 beta, 
involved in the interaction between 
translational elongation factors and the 
ribosome)

MMP1 (High-affinity S-methylmethionine 
permease, required for utilization of S-
methylmethionine as a sulfur source)

YDL241W YER119C-A (deletion mutation blocks 
replication of Brome mosaic virus in S. 
cerevisiae, but this is likely due to effects 
on the overlapping gene SCS2)

YNG1 (SU of NuA3 HAT,acetylates histone 
H3) 

PDR8 (transcription factor, targets include 
genes involved in the pleiotropic drug 
resistance, interacts with CTF19, SFH5, 
RPC19)

RPS10B (ribosomal protein of small 
subunit)

MOG1 (Ran GTPase binding, protein 
import into nucleus)

RTR2 YJL135W (partially overlaps  
YJL134W/LCB3)

POC4 (heterodimeric Poc4p-Irc25p 
chaperone involved in assembly of alpha 
subunits into the 20S proteasome, 
POC3 shows a reduced SC in SK1

PHD1 (transcription activator, regulates 
expression of FLO11, pseudohyphal 
growth, interacts with CDC28, CYC8, 
SMT3, TUP1)

RPS14B (Ribosomal protein 59 of the 
small subunit, required for ribosome 
assembly and 20S pre-rRNA processing)

PKH3 (kinase, MAPKKK cascade involved 
in cell wall biogenesis, reconstituted 
complex (SHP1, RTR1, RNR4, RIM4, 
PRS1, PAC10, OCA1, MFT1, JJJ3, FRS1, 
DRS1, CSM3,CCT6, BUD27, ATG19, ARP8)

PAL1 (interacts with  BMH2, CDC28, 
RSP5, SGF29)

YKL118W (partially overlaps  VPH2)

RPN10 (Non-ATPase base SU of the 19S 
regulatory particle (RP) of the 26S 
proteasome, binds selectively to 
polyubiquitin chains) 

SPT8 (SU of SAGA transcriptional 
regulatory complex, required for SAGA 
mediated repression of some promoters)

TMA108 (involved in ribosome 
biogenesis)

PMP2 (Proteolipid associated with plasma 
membrane H(+)-ATPase (Pma1p), cation 
transpor)

YER130C/COM2 (sequence specific DNA 
binding)

YML035C-A

RIM11 (Kinase, phosphorylates Ime1 to 
repress meiosis under glucose conditions 
by regulating IME1-UME6 complex 
formation )

SWI4 (SU of the SBF complex (SWI4-
SWI6(short Zip1)), a transcriptional 
activator that regulates late G1 specific 
transcription of targets including cyclins 
and genes required for DNA synthesis and 
repair in concert with MBF complex 
(MBP1-SWI6)

MRT4 (Protein involved in mRNA turnover 
and ribosome assembly, interacts with 
several factors including HTA2, UBP3...)

PRM3 (Pheromone-regulated protein 
required for nuclear envelope fusion 
during karyogamy, interacts with 
CDC5(E))

YHL008C (localizes to vacuole, chloride 
transport, interacts with LSM5, RVS167 
(Zip1 foci in SK1) WHI3 NA)

YNL198C

PTC4 (Cytoplasmic type 2C protein 
phosphatase (PP2C), interacts with 
GIN4, HAT1, HRR25, SSB1)

WHI5 (repressor of G1 transcription that 
binds to SCB binding factor (SBF), 
interacts with HOS1(long Zip1), 
HSP82(no induction), ...)

NSR1 (required for pre-rRNA processing 
and ribosome biogenesis, interacts with 
ORC1(E), SGF2, UBP3..)

SAT4/HAL4 (Ser/Thr Kinase, involved in 
salt tolerance, funtions in regulation of 
Trk1p-Trk2p potassium transporter; 
partially redundant with HAL5(Zip1 foci); 
has similarity to NPR1(no phenotype)), 
interacts with RVS161,RVS167(Zip1 foci 
in SK1)

YHR140W YOR248W

YOX1 (repressor of transcription, binds to 
Mcm1p and to early cell cycle boxes 
(ECBs) in the promoters of cell cycle-
regulated genes expressed in M/G1 
phase,interacts with CDC28.. 

SNF3 (Plasma membrane low glucose 
sensor that regulates glucose transport, 
negative regulation of meiosis, interacts 
with GCN5(NA), TAF5(E))

YHR162W Stress response                    4

Autophagy                            7 RTR1 (dephosphorylation of RNA 
polymerase II C-terminal domain, shuttles 
between the nucleus and cytoplasm, 
interacts with BIK1)

Golgi/ER                               7 STE23 (Metalloprotease,involved with 
homolog AXL1 in peptide pheromone 
maturation)

YIL055C ALD3 (aldehyde dehydrogenase, involved 
in beta-alanine synthesis, induced by 
stress and repressed by glucose), 
interacts with ALD2

YIL165C (putative nitrilase, autophagy 
and mitophagy decrease. interacts with 
KIN1, likely constitute a single ORF with 
YIL164C)

Cell cycle                             6 COG5 (SU of the  Golgi complex, involved 
in protein trafficking to mediate fusion of 
transport vesicles to Golgi compartments) 
intaracts with HSP82

PRM7 (Pheromone-regulated protein, 
predicted to have one transmembrane 
segment, interacts with HAL5, YCK2)

YJL132W (interacts with PRE1) DOT5 (Nuclear thiol peroxidase, cellular 
response to oxidative stress, interacts 
with CMK1, IPL1, PHO85) 

YML018C (uncharacterized, interacts with 
ATG27, suggesting a role in autophagy)

SPO12 (involved in regulating release of 
Cdc14p from the nucleolus in early 
anaphase)

ERV25 (in complex with ERP1(Zip1 foci), 
ERP2, and EMP24), ER to golgi transport, 
member of the p24 family)

RTT10 (Cytoplasmic protein involved in 
endosomal recycling and in the regulation 
of Ty1 transposition, interacts with RAD1, 
SSB1)

YLR445W (transcription is regulated by 
Ume6p and induced in response to alpha 
factor)

PST2 (induced by oxidative stress, 
interacts with CDC7, DUN1, SNF4, XRS2, 
YKU80)

ATG10 (Conserved E2-like conjugating 
enzyme that mediates formation of the 
Atg12p-Atg5p conjugate, which is a 
critical step in autophagy)

BNS1/YGR230W (Protein with some 
similarity to Spo12p; overexpression 
bypasses need for Spo12p, but not 
required for meiosis , interacts with SRS2

EUG1 (disulfide isomerase, function 
overlaps with that of PDI1)

YNL193W (interacts with DOC1 
(substrate recognition factor of APC/C)

TPK1 (cAMP-dependent protein kinase 
catalytic subunit, partially redundant with 
TPK2 and TPK3, predicted stress response 
and cell cycle,interacts with CDC20)

ATG21 (phosphatidylinositol binding, 
autophagy decreased, interacts with 
MEK1, PHO85, ATG1 (no pht) , TPK1 
(long Zip1))

YIR016W (uncharacterized, expression 
regulated by UME6, interacts with CBK1 
kinase and its activator MOB2)

FLC3 (Putative FAD transporter, similar to 
FLC1 and FLC2) 

Sporulation                             3 YOL131W (interacts with SWI6 (short 
Zip1 foci)

CCZ1 (involved in vacuolar assembly, 
essential for autophagy and the cytoplasm-
to-vacuole pathway, interacts with SGF29

PPH21 (SU of protein phosphatase 2A 
(pp2A), involved in signal transduction 
and regulation of mitosis, redundant 
with PPH22)

MPD1 (protein disulfide isomerase,inhibits 
thechaperone activity of CNE1(involved in  
folding and quality control of ER 
glycoproteins) interacts with IPL1, GIN4, 
MPS3, ORC1, TPK1(long Zip1))

DIT2 (N-formyltyrosine oxidase, required 
for spore wall formation)

YOL159C (deletion mutants show 
elevated levels of Ty1 retrotransposition 
and Ty1 cDNA)

Suspected false positive          2

ATG32 (mitochondrial transmembrane 
receptor, essential for mitophagy (the 
selective vacuolar degradation of 
mitochondria in response to starvation)

PPZ1 (Serine/threonine protein 
phosphatase Z, isoform of Ppz2p, 
involved in regulation of potassium 
transport, which affects osmotic stability, 
cell cycle progression, and halotolerance), 
interacts with RVS167, SDS22, SMT3..)

VPS27 (required for recycling Golgi 
proteins, forms a complex with HSE1)

FKS3 (ascospore wall assembly, FKS1 no 
phenotype and GSC2 NA

YOR296W (sporulation, interacts with 
SUS1, PFK26, HEK29)

ADE1 (required for 'de novo' purine 
nucleotide biosynthesis)

PEP12 (Golgi to vacuole transport, 
autophagy and mitophagy absent), 
interacts with SPO20, HSP82, PEP7(long 
Zip1))

RMD6 (meiotic nuclear division, interacts 
with RDS1 (short Zip1)

YOS9 (ER quality-control lectin, ER-
associated protein catabolism) 

SSP2 (ascospore wall assembly) YIR016W AFR1 (required for pheromone-induced 
projection (shmoo) formation, has an 
RVXF motif that mediates targeting of 
GLC7 to mating projections), interacts 
with CDC12...



Table 10: At least 80% non-SC

Total number of ORFs: 133 4

RNA metabolism               4
DNA metabolism/chromatin     13 
remodelling/chromatin modification Mitochondrial/aerobic respiration 10 Metabolism         18 Golgi/ER            2 Function unknown    10

BRR1 (snRNP protein component of 
spliceosomal snRNPs, required for pre-
mRNA splicing and snRNP biogenesis)

WSP1 (uncharacterized, induced in 
response to MMS)

ISF1 (respiration) BNA6 (de novo biosynthesis of NAD from tryptophan via kynurenine)BST1/PER17 (GPI inositol 
deacylase)

YBR090C

ELP2 (SU of Elongator complex, tRNA 
wobble uridine modification)

LGE1 (H2B monoubiquitination)
 PKP2 (kinase kinase that negatively 
regulates activity of the pyruvate 
dehydrogenase complex)

SCT1 (glycerol-3-phosphate O-
acyltransferase)

DSS4 (guanyl-nucleotide exchange 
factor, post-Golgi vesicle-mediated 
transport )

YGL015C

SYF2/NTC31 ( nuclear mRNA 
splicing, via spliceosome)

MCM21/CTF5 (component of the 
COMA complex (Ctf19p, Okp1p, 
Mcm21p, Ame1p) that bridges 
kinetochore subunits that are in 
contact with centromeric DNA and the 
subunits bound to microtubules )

ATP20 (SU g of the mitochondrial 
F1F0 ATP synthase9

SNO4 (chaperone and cysteine 
protease,pyridoxine metabolism)

Vacuole                3

YGR273C

LSM1 (forms heteroheptameric 
complex (with Lsm2p, Lsm3p, Lsm4p, 
Lsm5p, Lsm6p, and Lsm7p) involved 
in degradation of cytoplasmic mRNAs)

HTA1 (histone H2A, chromatin 
assembly, DNA repair)

MRPL39 (Mitochondrial ribosomal 
protein)

AAD3 (Putative aryl-alcohol 
dehydrogenase)

VAM10 (vacuole morphogenesis) YLR283W

Ribosome biogenesis    3

ACK1 (induced in response to the 
DNA-damaging agent MMS, cell cycle 
progression abnormal)

COX18 (membrane insertase, protein 
insertion into mitochondrial 
membrane from inner side)

ARG4 (Argininosuccinate lyase, 
arginine biosynthesis)

PMC1 (vacuolar calcium-transporting 
ATPase,  calcium ion homeostasis)

YDR444W

SSD1 (translational repressor) LOH1 (unknown function, genome 
maintenance, sporulation)

RMD9 (role in delivering 
mitochondrial mRNAs to ribosomes, 
respiratory growth absent, 
sporulation absent)

PUS4 (Pseudouridine synthase, 
formation of pseudouridine-55 
(Psi55))

VPS62 (Vacuolar protein sorting 
(VPS) protein required for cytoplasm 
to vacuole targeting of proteins)

YJL070C (similar to AMP 
deaminases)

RPL41A (protein L47 of the large 
(60S) ribosomal subunit)

HHT2 (histone H3, chromatin 
assembly or disassembly, nucleotide 
excision repair)

MRPL16 (Mitochondrial ribosomal 
protein, respiratory growth absent)

GLG2 (glucosyltransferase, glycogen 
biosynthesis9

Membrane          8

YDR370C

YAR1 (link ribosome biogenesis and 
adaptation to osmotic and oxidative 
stress)

TOF2 (involved in rDNA silencing and 
mitotic rDNA condensation, 
stimulates Cdc14p phosphatase 
activity, required for condensin 
recruitment to the replication fork 
barrier site)

COX5B (Subunit Vb of cytochrome c 
oxidase, mitochondrial electron 
transport, cytochrome c to oxygen)

STE24 (Highly conserved zinc 
metalloprotease, involved in a-factor 
maturation, mating decreased)

YHR048W (uncharaterized, drug 
transpor)

YPL216W

Transcription/Translation    7

SUM1 (Transcriptional repressor 
required for mitotic repression of 
middle sporulation-specific genes, 
involved in telomere maintenance, 
chromatin silencing; regulated by 
pachytene checkpoint )

GEP3/FMP38/AIM40 (Unknown 
function, defective in respiration)

MET13 (Major isozyme of 
methylenetetrahydrofolate reductase, 
methionine biosynthesis)

AGP3 (Low-affinity amino acid 
permease, supply the cell with amino 
acids as nitrogen source in nitrogen-
poor conditions)

YML002W (uncharacterized, 
expresiom induced by heat and 
calcium shortages)

CCR4 (Component of the CCR4-NOT 
transcriptional complex, regulation of 
gene expression) 

NUP170 (SU of the nuclear pore 
complex involved in RNA export from 
nucleus, chromosome segregation)

IMP1 (mitochondrial inner membrane 
peptidase complex, required for 
maturation of mitochondrial proteins 
of the intermembrane space; complex 
contains Imp1p and IMP2 (both 
catalytic subunits), and SOM1)

ADI1 (Acireductone dioxygenease, L-
methionine salvage from 
methylthioadenosine)

PEX32 (negative regulation of 
peroxisome size; partially functionally 
redundant with PEX31, acts 
downstream of PEX28, PEX29)

YML033W/YML034W (merged 
ORFs)

STB5 (transcription factor, regulates 
multidrug resistance and oxidative 
stress response)

SIM1 (Protein of the SUN family 
(Sim1p, Uth1p, Nca3p, Sun4p) that 
may participate in DNA replication)

Post translational modifications   9

YMR1 (Phosphatidylinositol 3-
phosphate (PI3P) phosphatase; 
involved in various protein sorting 
pathways)

YGL114W (uncharateized, 
oligopeptide transporter activity) 

Dubious                  10
RPA12/RRN4 (RNA polymerase I 
subunit A12.2, termination of RNA 
polymerase I transcription)

SPO13 (involved in maintaining 
sister chromatid cohesion during 
meiosis I as well as promoting proper 
attachment of kinetochores to the 
spindle during meiosis I and meiosis 
II)

PAA1 (Polyamine acetyltransferase) BNA5 (de novo NAD biosynthetic 
process from tryptophan)

LRE1 (control of cell wall structure 
and stress response)

YPL102C

TIF4632 (Translation initiation factor 
eIF4G, SU of the mRNA cap-binding 
protein complex (eIF4F))

NUP60 (SU of the nuclear pore 
complex, nvolved in nuclear export 
and cytoplasmic localization of 
specific mRNAs such as ASH1 and in 
DSBs repair)

UBP5 (ubiquitin protease, protein 
deubiquitination)

TGL1 (Steryl ester 
hydrolase(triglyceride lipase), acts in 
complex with (YEH1, YEH2)

PEX25 (regulation of peroxisome size 
and maintenance)

YIL059C (overlaps YIL060W)

NCL1 (S-adenosyl-L-methionine-
dependent tRNA, tRNA methylation)

Cell cycle    2

HPM1 (Histidine Protein 
Methyltransferase, methylation of 
ribosomal protein Rpl3, decreased 
sprorulation efficiency)

MUQ1 (Ethanolamine-phosphate 
cytidylyltransferase, 
phosphatidylethanolamine 
biosynthesis)

DAL5 (Allantoate permease; 
ureidosuccinate permease,dipeptide 
transport)

YGR226C (overlaps 
AMA1/YGR225W)

UME1 (required for repression of a 
subset of meiotic genes during 
vegetative growth, binding of histone 
deacetylase Rpd3p required for 
activity)

RNQ1 ([PIN(+)] prion, involved in 
cell cycle)

SIP1 (alternate beta SU of the Snf1p 
kinase complex, protein 
phosphorylation, protein complex 
assembly, signal transduction)

SCS3 (involved in triglyceride droplet 
biosynthesis)

RTN2 (Reticulon homolog, possibly 
endomembrane establishment)

YGR069W

ABP140/TRM140 ((S-adenosyl-L-
methionine)AdoMet-dependent tRNA 
methyltransferase, tRNA methylation)

RRD2 (Activator of the 
phosphotyrosyl phosphatase activity 
of PP2A,peptidyl-prolyl cis/trans-
isomerase, mitotic spindle 
organization)

RKM3 (Ribosomal lysine 
methyltransferase specific for 
monomethylation of Rpl42ap and 
Rpl42bp (lysine 40))

OSH3 (oxysterol-binding protein, 
sterol metabolism)

Budding             3

YDL050C

Apoptosis         2 Stress response      4

PIB1 (RING-type ubiquitin ligase of 
the endosomal and vacuolar 
membranes, binds 
phosphatidylinositol(3)-phosphate, 
replicative lifespan increase)

YHL012W (uncharacterized, 
glycogen biosynthesis)

BUD28 (budding pattern 
abnormal,98% of ORF overlaps the 
verified gene RPL22A)

YOR121C (overlaps GCY1/YOR120W)

YMR074C (overexpression promotes 
H2O2-induced apoptosis)

ATX1 (copper transporter, cellular 
response to oxidative stress)

PMT5 (Protein O-
mannosyltransferase, transfers 
mannose residues from dolichyl 
phosphate-D-mannose to protein 
serine/threonine residues, acts in 
complex with PMT3 or PMT2)

TCB1 (unknown function, lipid 
binding protein)

BUD25 (budding pattern ) YER188W 

NMA111 (Serine protease and 
general molecular chaperone; 
involved in response to heat stress 
and promotion of apoptosis, 
sporulation normal)

PSR2 (plasma membrane 
phosphatase involved in the general 
stress response, redundant with 
PSR1)

RXT2/RAF60 (SU of the histone 
deacetylase Rpd3L complex)

BUD30 (diploid displays a weak 
budding pattern phenotype, positive 
regulation of PolII transcription, 96% 
of ORF overlaps the verified gene 
RPC53)

YDR433W

Cytoskeleton       1

PAU7 (seripauperin, active during 
alcoholic fermentation, stress 
response)

MAK10/NAA35 (Non-catalytic 
subunit of N-terminal 
acetyltransferase of the NatC type, 
N-terminal protein amino acid 
acetylation)

Suspected false positive    1

YBL095W (uncharaterized, invasive 
growth absent)

ACF2/ENG2/ PCA1 (Intracellular 
beta-1,3-endoglucanase, cortical 
actin cytoskeleton assembly)

PAU11 (uncharacterized, 
seripauperin)

STE11 (Signal transducing MEK 
kinase involved in pheromone 
response, sterile)

YNL057W
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Table 13: list of antibodies used in this study 

 
AB-ID antigen dilution source supplier  product 

number 
conjugate
d to 

FKα14 Mouse cytology 
1:500 

Goat Jackson 
ImmunoR
esearch 

115-165-
146 

CY3 

FKα17 Rabbit cytology 
1:300 

Goat Sigma-
Aldrich 

F9887 FITC 

FKα18 Rat cytology 
1:100 

Rabbit Sigma-
Aldrich 

F-1763  

FKα26 yeast 
Tubulin 

cytology 
1:200 

Rat Serotec MCA78S  

FKα65 
(9E10) 

MYC cytology 
1:50 
Western 
1:300 

Mouse  Cell line 
9E10 

 

FKα75 Mouse Western 
1:100000 

Goat Pierce 31444 HRP 

FKα79 Rabbit Western 
1:60000 

Swine Daco  HRP 

FKα97 HA 
(16B12) 

cytology 
1:8000 
Western 
1:10000 

Mouse Ralf Hess MMS-
101R 

 

FKα133 Swi6 Western 
1:10000 

Rabbit    

FKα160 Rad51 cytology 
1:75 

Mouse Neomarke
rs 
Fremont 

  

FKα214 Zip1 cytology 
1:400 

Rabbit  20.7.2000 
final bleed 

 

FKα231 yeast 
phospho-
H2A-S129 

Western 
1:40000 

Rabbit Upstate 07-745  

FKα234 Histone 
H2A 

cytology 
1:40000 

Rabbit Upstate 39235  

FKα244 Fpr3 C-
terminus(2
81-413) 

Western 
1:10000 

Rabbit Thorner 
lab 

1138  

 



Table 14: list of oligonucleotides used in this study 

number sequence (5`-------3`) purpose 
FK749 ccaactcctcaggacgtgac amplication of 

threonine hotspot 
(DSB1) 

FK750 caaccacctgcgtgagtgtg amplication of 
threonine hotspot 
(DSB1) 

FK794 GGTGATGATTGCTCTCTGCC amplification of 
ADP1 (coldspot) 

FK795 CGTCACAATTGATCCCTCCC amplification of 
ADP1 (coldspot) 

FK1965 TGGTCTCCAAGTGGCAAAATCC amplification of 
HISU probe  

FK1966 GGTCGTGGCGTTTATTATTCTCG amplification of 
HISU probe  

FK2011 GAATTTCCCGCACATCTTTG amplification of 
DSB3 (chrIII) 

FK2012 CTAATTTGCCGTGCTTCGTC amplification of 
DSB3 (chrIII) 

FK2015 TGGATGGCAACTGAAGGAGC amplification of 
Core1(chrIII) 

FK2016 CAGCCAGGAAAATTCACCAC amplification of 
Core1(chrIII) 

FK2165 aaatgcgaggcggttaaaagagagtgacaacaatttcatacgtacgctgcaggtc
gac 

for PCH2 K.O. 

FK2166 gaaagtatgctacatgagtatgagacaaaagaaagaagcgaaatcgatgaattc
gagctc 

for PCH2 K.O. 

FK2167 TAGATTTGCCGTTGACAATAAG checking PCH2 
K.O. 

FK2168 taagcatgaaagcgagcaac checking PCH2 
K.O. 

FK2356 TGCCAAACATCCATCAAA checking HTA1-
S129A 

FK2357 GCAACAGTGCCCAATGAA checking HTA1-
S129A 

FK2415 GCCCAAGGTGGTGTTTTG checking HTA2-
S129A 

FK2416 TGCGAGATCGAGGGAAAA checking HTA2-
S129A 

FK2498 TTTCAACTGGCTTGCTTCCT for FPR3 K.O. 
FK2499 CGACCATCCAGTAGCACTCA for FPR3 K.O. 
FK2549 CCCGGAGAAAAGAGCTTAGG for HTZ1 K.O. 
FK2550 TTTCCGGGTATGCAAAGTTC for HTZ1 K.O. 
FK2551 TGCAAGAAGTCTTGGCAATG for SWC2 K.O. 
FK2552 TACGAAAGTTGCGAATGACG for SWC2 K.O. 
FK2614 CTAGATAAGACCCAAAGCATTCGATTACTGCATTTGAGA

G cgtacgctgcaggtcgac 
for SWR1 K.O. 

FK2615 GAGTACATTACCATAAAAACCAAGAGGCGATAGTGTTGT
C atcgatgaattcgagctc 

for SWR1 K.O. 

FK2616 GATTTAAGTCAAAGACCTGCAAAAGGTGTTCCTGAAGGA
TTTTCCGGTTCTGCTGCTAG 

C-terminal SWC2 
tagging with 3XHA 



FK2617 CGTATAAAGTATATTTTTATGTAAAATGATCTTTATGATT
CCTCGAGGCCAGAAGAC 

C-terminal SWC2 
tagging with 3XHA 

FK2618 CTTGAAGAAAGAGTGCAAAGG checking SWR1 
K.O. 

FK2619 TGTTCAATGGAATCTTGCTC checking SWR1 
K.O. 

FK2621 AGTTGAAGCTTTCACCAGAA checking SWC2 
tagging (reverse 
primer) 

FK2659 GATCGAAGACCGTCAAATCC checking SWR1 
K.O. (used with 
FK2619) 

FK2671 GTCTAATGAATACAAATAGAAGTGAAACCGAAGCAAATT
C cgtacgctgcaggtcgac 

for SWC2 K.O. 
(NatMX cassette) 

FK2672 GTCTAATGAATACAAATAGAAGTGAAACCGAAGCAAATT
C cgtacgctgcaggtcgac 

for SWC2 K.O. 
(NatMX cassette) 

FK2673 CTTTGCTGGTAAGCCAAAAT checking SWC2 
K.O. (forward 
primer) 

FK2681 ACAATGATTAAGGCGGAACA for IES2 K.O. 
FK2682 GTCTGCCTTACGTGGTTCTG for IES2 K.O. 
FK2742 TTGGTTCCCTTCCCGTTATT for ALK1 K.O. 
FK2743 TTGACTCCCAAAATGGAAGC for ALK1 K.O. 
FK2744 AGGGTTTGACAAGTTGAACGA for CMR3 K.O. 
FK2745 CGTCTTTGTGCGTCCAAGTA for CMR3 K.O. 
FK2746 TTCTTTTCCCCTGTTTCCAT for DDR2 K.O. 
FK2747 AGAGACGAACTGGAAGAAGAGA for DDR2 K.O. 
FK2748 CGTCATCGACACTGCTCACT for ECM11 K.O. 
FK2749 AACGTTTCCGCTCAAAGAGA for ECM11 K.O. 
FK2750 TTTGCCATTCCTTTTTCGTC for FMP41 K.O. 
FK2751 TCCCTTGACCTCGAGATTTG for FMP41 K.O. 
FK2752 AATTGGTGGCTCCAAACAAG for HAL5 K.O 
FK2753 TCCATGCCTCTACATTACATCG for HAL5 K.O  
FK2754 GTTCTGAAGTTTTCCCAGTTGC for HOS1 K.O. 
FK2755 TGTCACGGTTTCCAGTACAATC for HOS1 K.O. 
FK2782 TGTGGTTCATGCTGAGAGGA for IRC3 K.O. 
FK2783 TCAGAAAGGGTGTGATCCAA for IRC3 K.O. 
FK2784 GCCTAATTGAAGCAGGCAAA for IRC4 K.O 
FK2785 TGAGGCTATGGTAAGCGTAAGA for IRC4 K.O 
FK2786 TCCTCCCAAATGAAGATCAA for IRC18 K.O. 
FK2787 CAAAAGGGTGGGTATGTTTG for IRC18 K.O. 
FK2788 TGAGACTCAACGTAACATGC for PAI3 K.O. 
FK2789 TGAGACTCAACGTAACATGC for PAI3 K.O. 
FK2790 GGAGAAGATGGAAGCTGTCTTG for YJL049W K.O. 
FK2791 TTCTCAATTGCGACAAAACG for YJL049W K.O. 
FK2792 TCCCGTATCGTGCGATAAAT for RDR1 K.O. 
FK2793 GCAATTTGCATTTGGTTCAG for RDR1 K.O. 
FK2794 TCATCTACCTTTGGTGGAAC for RTC1 K.O. 
FK2795 ACCACGACTCAGATTTATCG for RTC1 K.O. 
FK2796 TAAAACCTAATGTTGGAAAGAAAGAGCTACGTCAGCAAG

AGcgtacgctgcaggtcgac 
for RTT102 K.O. 

FK2797 AATATATAAATATATATATATATATATATATATATATATGat
cgatgaattcgagctc 

for RTT102 K.O. 

FK2798 GGCGATAAAACCTAATGTTGGA checking RTT102 



K.O. 
FK2799 GGGTGGTGTAGCATCCTTTACT checking RTT102 

K.O. 
FK2800 CGAGACCTCAACTTCACCTCA for TMA20 K.O. 
FK2801 AGAAGGTTAACAGCCCATCG for TMA20 K.O. 
FK2802 TGCCGCTTTGTGATAATGAG for TOM1 K.O. 
FK2803 CTTCCTTGGGCAAGTGTTGT for TOM1 K.O. 
FK2804 GGTATATGAACTCAGTTTTAAGGTGTAGTTTATTTTATAG

TCCGTACGCTGCAGGTCGAC 
for YBR259W K.O. 

FK2805 TACAAAACTTGCTAAGGTCCAACTCCCTGTCTTCACGGT
TGATCGATGAATTCGAGCTCG 

for YBR259W K.O. 

FK2806 CTGTGTTTCAGCTTCGCTAAAT checking 
YBR259W K.O. 

FK2807 TCCAAGCAACCTTCCATGA checking 
YBR259W K.O. 

FK2808 CTTCGTGGTTCAAACAGTGC for YDR220C K.O. 
FK2809 CCAGCGGCATCTGTACACTA for YDR220C K.O. 
FK2810 AACGCCACCGAAAAATCTTA for YDR333C K.O. 
FK2811 GTAAACGTCGGACCACTCGT for YDR333C K.O. 
FK2812 GGTGCTTTAGATGGAGTTGC for YGL262W K.O. 
FK2813 TCCAAGGACGGTATCTACAC for YGL262W K.O. 
FK2814 GCTGGTACGTAGCGTAGCTT for YJL213W K.O. 
FK2815 CCTCCTTGAGGTGTTCTATT for YJL213W K.O. 
FK2816 CGTGGTGTTGAAGAAAGAATG for OXP1 K.O. 
FK2817 CGAAACATTGTTAAGTGCCTGT for OXP1 K.O. 
FK2818 GTGTACCCTCCCCTCCTCAT for YLR352 K.O. 
FK2819 TTCGTTTCCGAAAAGTCTGG for YLR352 K.O. 
FK2824 ATCAAGCCTTCGTCAGCATT for YLR445W K.O. 
FK2825 CCGAGTAATAAGGCCAGTTG for YLR445W K.O. 
FK2826 GGCAAGCCAAGAAAACCTGC for YMR196W 

K.O. 
FK2827 ATGCCATTATCGCAGTCCTT for YMR196W 

K.O. 
FK2828 AAGGCACCGTGCTAATAACG for YNL035C K.O. 
FK2829 GTTCTGCCGAAATCTCTTGC for YNL035C K.O. 
FK2830 GCATTGGTGGACGTAAGAGC for YNL046W K.O. 
FK2831 GAAGCGTGGGCAGGTAAATA for YNL046W K.O. 
FK2832 CACAGGTGCATCTGCTTGTT for YOR111W 

K.O. 
FK2833 AAGGCCTTTTTGAAGGTGAA for YOR111W 

K.O. 
FK2834 CTCCATTACCCGGAGTTGAA for YOR223W 

K.O. 
FK2835 TTGATTCGTCGTTAGCAGCA for YOR223W 

K.O. 
FK2836 TTAACATTCCCGGGTGAAAA for YOR296W 

K.O. 
FK2837 GACGCTCAAATATAGGGTGGA for YOR296W 

K.O. 
FK2838 TCAGCATGCCAAAATGCTAC for YPL068C K.O. 
FK2839 AGGCGAAGCAAAGAAAAATG for YPL068C K.O. 
FK2840 TGGAAGCAAGTTCTCCTTATCC for YPL150W K.O. 
FK2841 TCGCGAGTTCATACAGATGC for YPL150W K.O. 
FK2842 TGAAAGCATTCCTGGGATTT for YPR078C K.O. 



FK2843 CAGGACAATGGGGCATTATT for YPR078C K.O. 
FK2844 GATATCGAGAGTCTATCATGCCCTTTGCACAACAAAACT

ACGTACGCTGCAGGTCGAC       
for RMD6 K.O 

FK2845 CCTACAGTTTATTCAAATAGAGTGTGTACGGGACTATAC
CAATCGATGAATTCGAGCTCG 

for RMD6 K.O 

FK2846 CTTGGTCGTGATTGAAAACG checking RMD6 
K.O 

FK2847 TTGCAGCAAAACAAGGAACC checking RMD6 
K.O 

FK2848 CTTGAGGAGGCGAGAAAATG checking TOM1 
K.O. (used with 
FK2802) 

FK2858 GGCGTGGATGTTTATTCTGT for SWC2 qPCR 
(enrichment on 
ChrIII) 

FK2859 ATTACCGCTATCGTTGGAAG for SWC2 qPCR 
(enrichment on 
ChrIII) 

FK2886 CCAGTAATTGTGCGCTTTGGTTACATTTTGTTGTACAGT
Acgtacgctgcaggtcgac 

for DOT1 K.O. 

FK2887 TAGTTATTCATACTCATCGTTAAAAGCCGTTCAAAGTGC
Catcgatgaattcgagctc 

for DOT1 K.O. 

 
 



Table 15: yeast strains used in this study 

Strain Relevant genotype 
FKY1 Mat a/alpha, HO 
FKY515  MATalpha, his7, hom3, spo13 
FKY516  MATa, his7, hom3, spo13 
FKY1084 Mat a/alpha, REC8-HA3::URA3, ura3 
          REC8-HA3::URA3, ura3 
FKY3091 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned],  REC8-HA3::URA3 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691),REC8-HA3::URA3 
FKY3108 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned],  
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691) 
FKY3391 Mat a/alpha, TOP2∆C-9Myc-TRP1, Rec8-3HA::URA3, trp1::hisG 
          TOP2∆C-9Myc-TRP1, Rec8-3HA::URA3, trp1::hisG 
FKY3484 Mat a/alpha, TOP2::3HA-TRP1, trp1::hisG 
          TOP2::3HA-TRP1, trp1::hisG  
FKY3593 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], irc25::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), irc25::KanMX 
FKY3596 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], rad33::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), rad33::KanMX 
FKY3598 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], psy2::KanMX 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), psy2::KanMX 
FKY3601 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ynl196c::KanMX 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ynl196c::KanMX 
FKY3604 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], yor029w::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), yor029w::KanMX 
FKY3607 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], arp8::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), arp8::KanMX 
FKY3610 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], hnt3::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), hnt3::KanMX 
FKY3628 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], csm2::KanMX 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), csm2::KanMXX 
FKY3634 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 



[ARG4cloned], ldb7::KanMX 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ldb7::KanMXX 
FKY3336 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], psy4::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), psy4::KanMXX            
FKY3639  Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], bre1::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), bre1::KanMXX 
FKY3645 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], shu2::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), shu2::KanMXX 
FKY3648 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ubc13::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ubc13::KanMXX 
FKY3651 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], rvs167::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), rvs167::KanMXX 
FKY3654 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], rad6::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), rad6::KanMXX 
FKY3657 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ygl101w::KanMX 
  arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ygl101w::KanMXX 
FKY3660 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ybr090c::KanMX 
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ybr090c::KanMXX 
FKY3663 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ynr068c::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ynr068c::KanMX 
FKY3666 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ctf8::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ctf8::KanMX 
FKY3672 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], psy3::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), psy3::KanMX 
FKY3677 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], taf14::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), taf14::KanMX 
FKY3766 Mat a/alpha, rim4∆::KanMX 
          rim4∆::KanMX 
FKY3800 Mat a/alpha, REC8-HA3::URA3, ura3 
          REC8-HA3::URA3, ura3 



FKY3819 Mat a/alpha, pch2∆1::KanMX4 
          pch2∆1::KanMX4 
FKY4065 Mat a/alpha, hta1-S129A hta2-S129A, pph3:KanMX4 
          hta1-S129A hta2-S129A, pph3:KanMX4 
FKY4073 Mat a/alpha, htb1-K123R::KlURA3, htb2-K123R::kanMX6 
          htb1-K123R::KlURA3, htb2-K123R::kanMX6 
FKY4102 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], hos1::KanMX  
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), hos1::KanMX 
FKY4105 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ylr352w::KanMX  
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ylr352w::KanMX 
FKY4118 Mat a/alpha, hta1-S129A, hta2-S129A (related to FKY406, old sending from 

lichten´s lab) 
          hta1-S129A, hta2-S129A 
FKY4134 Mat a/alpha,  arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ydr333c::KanMX  
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ydr333c::KanMX 
FKY4137 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ykl215c::KanMX  
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ykl215c::KanMX 
FKY4140 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], ymr196w::KanMX  
           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691), ymr196w::KanMX 
FKY Mat a/alpha,  
FKY4150 Mat a/alpha, set1∆::KanMX4, dot1∆::NatMX4            
         set1∆::KanMX4, dot1∆::NatMX4 
FKY4240 Mat a/alpha, dot1∆::NatMX4  
          dot1∆::NatMX4  
FKY4257 Mat a/alpha, fpr3∆::KanMX4 
          fpr3∆::KanMX4 
FKY4275 Mat a/alpha, set1∆::KanMX4 
          set1∆::KanMX4 
FKY4287 Mat a/alpha, pph3∆::KanMX4, fpr3∆::KanMX4 
          pph3∆::KanMX4, fpr3∆::KanMX4 
FKY4295 Mat a/alpha, htz1∆::KanMX 
          htz1∆::KanMX 
FKY4358 Mat a/alpha, pph3∆::kanMX4, pch2∆1::KanMX4 
          pph3∆::kanMX4, pch2∆1::KanMX4 
FKY4433 Mat a/alpha, hta1-S129A hta2-S129A (new sending from lichten´s lab) 
           hta1-S129A hta2-S129A 
FKY4450 Mat a/alpha, hta1-S129A hta2-S129A, pph3::KanMX 
            hta1-S129A hta2-S129A, pph3::KanMX 
FKY4456 Mat a/alpha, pph3∆::KanMX, htz1∆::KanMX,  
          pph3∆::KanMX, htz1∆::KanMX,  
FKY4570 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 

[ARG4cloned], pph3::KanMX 
          arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-

EcPal(1691) pph3::KanMX 



FKY4471 Mat a/alpha, arg4∆(eco47III-hpa1), leu2-RV::URA3-(Sma1-Eco47III)- 
[ARG4cloned], pph3::KanMX 

           arg4∆(eco47III-hpa1),his4∆(Sal1-Cla1)::URA3-∆(Sma1-Eco47III)-arg4-
EcPal(1691) pph3::KanMX 

FKY4479 Mat a/alpha, mek1::LYS2, lys2 
          mek1::LYS2, lys2 
FKY4572 Mat a/alpha, shp1::KanMX6::pCLB2-HA3-SHP1 
          shp1::KanMX6::pCLB2-HA3-SHP1 
FKY4580 Mat a/alpha, pph3∆::KanMX, swr1∆::NatMX4 
          pph3∆::KanMX, swr1∆::NatMX4 
FKY4590 Mat a/alpha, pph3∆::KanMX4, ldb7::KanMX4 
          pph3∆::KanMX4, ldb7::KanMX4 
FKY4622 Mat a/alpha, swc2∆::NatMx4 
          swc2∆::NatMx4 
FKY4623 Mat a/alpha, pph3∆::KanMX, swc2∆::NatMX4 
          pph3∆::KanMX, swc2∆::NatMX4 
FKY4634 Mat a/alpha, Swc2-3HA::TRP1, trp1::hisG 
          Swc2-3HA::TRP1, trp1::hisG 
FKY4657 Mat a/alpha, pph3∆::KanMX4, Swc2-3HA::KTRP1, trp1::hisG 
          pph3∆::KanMX4, Swc2-3HA::KTRP1, trp1::hisG 
FKY4702 Mat a/alpha, RIM4-HA3::KanMX6 
           RIM4-HA3::KanMX6 
FKY4758 Mat a/alpha, ies2∆::KanMX4 
          ies2∆::KanMX4 
FKY4799 Mat a/alpha, dot1∆::NatMX4, pph3∆::KanMX4 
          dot1∆::NatMX4, pph3∆::KanMX4 
FKY4809 Mat a/alpha, pph3∆::KanMX4, rad54∆::KanMX4,  
          pph3∆::KanMX4, rad54∆::KanMX4, 
FKY4812 Mat a/alpha, pph3∆::KanMX4, fpr3∆::KanMX4, swc2∆::NatMX4 
          pph3∆::KanMX4, fpr3∆::KanMX4, swc2∆::NatMX4 
FKY4824 Mat a/alpha, pph3∆::KanMX4, fpr3∆::KanMX4, pch2∆::NatMX4  
          pph3∆::KanMX4, fpr3∆::KanMX4, pch2∆::NatMX4 
FKY4838 Mat a/alpha, mek1∆::LYS2. pph3∆::KanMX4, lys2 
  
          mek1∆::LYS2. pph3∆::KanMX4, lys2 
FKY4850 Mat a/alpha, hal5∆::KanMX4 
          hal5∆::KanMX4 
FKY4853 Mat a/alpha, ynl035c∆::KanMX4 
          ynl035c∆::KanMX4 
FKY4856 Mat a/alpha, ynl046w∆::KanMX4 
           ynl046w∆::KanMX4 
FKY4859 Mat a/alpha, cmr3∆::KanMX4 
          cmr3∆::KanMX4 
FKY4862 Mat a/alpha, alk1∆::KanMX4 
          alk1∆::KanMX4 
FKY4865 Mat a/alpha, fmp41∆::KanMX4 
          fmp41∆::KanMX4 
FKY4868 Mat a/alpha, tma20∆::KanMX4, 
          tma20∆::KanMX4, 
FKY4871 Mat a/alpha, ypl150w∆::KanMX4 
          ypl150w∆::KanMX4 
FKY4874 Mat a/alpha, cts2∆::KanMX4 
          cts2∆::KanMX4 
FKY4877 Mat a/alpha, irc3∆::KanMX4 



          irc3∆::KanMX4 
FKY4880 Mat a/alpha, ddr2∆::KanMX4 
          ddr2∆::KanMX4 
FKY4883 Mat a/alpha, yor111w∆::KanMX4, 
          yor111w∆::KanMX4, 
FKY4886 Mat a/alpha, irc4∆::KanMX4 
          irc4∆::KanMX4 
FKY4889 Mat a/alpha, ydr220c∆::KanMX4 
          ydr220c∆::KanMX4 
FKY4892 Mat a/alpha, rdr1∆::KanMX4 
          rdr1∆::KanMX4 
FKY4895 Mat a/alpha, ypl068c∆::KanMX4 
          ypl068c∆::KanMX4 
FKY4901 Mat a/alpha, yor296w∆::KanMX4 
          yor296w∆::KanMX4 
FKY4907 Mat a/alpha, irc18∆::KanMX4 
          irc18∆::KanMX4 
FKY4910 Mat a/alpha, ecm11∆::KanMX4 
          ecm11∆::KanMX4 
FKY4913 Mat a/alpha, yjl049w∆::KanMX4, 
          yjl049w∆::KanMX4, 
FKY4916 Mat a/alpha, tom1∆::KanMX4            
          tom1∆::KanMX4 
FKY4919 Mat a/alpha, rtc1∆::KanMX4, 
          rtc1∆::KanMX4, 
FKY4922 Mat a/alpha, ybr259w∆::KanMX4 
          ybr259w∆::KanMX4 
FKY4925 Mat a/alpha, ypr078c∆::KanMX4 
          ypr078c∆::KanMX4 
FKY4958 Mat a/alpha, mec1-1, slmX, pph3∆::KanMX4  
          mec1-1, slmX, pph3∆::KanMX4 

 



Additional phenotypes of candidates in pure SK1 

 
YDR540C/IRC4: (see also Figures 25, 26 and 27) 
       
       Nuclear division                        Rad51 foci (50 nuclei counted) 

 
                       Synapsis: Zip1 staining 

hours in 
SPM 

No Zip1 Zip1 foci Short 
stretches 

long 
stretches 

Almost full 
SC 

4 10 27 30 22 12 
5 29 21 17 21 12 
6 46 11 12 15 16 
7 54 19 16 9 2 
8 77 8 10 5 0 
10 91 5 3 1 0 

 

Spore viability: 57/60 

 
 

 

 

hoursinSPM mono- bi- tetra- Rad51 
positive 

totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 39 850 17,0 21,8 
5 87 13 0 29 839 16,8 28,9 
6 46 14 40 18 389 7,8 21,6 
7 25 11 64 20 360 7,2 18,0 
8 23 4 73 12 158 3,2 13,2 
10 12 1 88 8 85 1,7 10,6 



YJL037W/IRC18 
           Nuclear division         Rad51 foci (50 nuclei counted) 

hoursinSPM mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 45 898 18,0 20,0 
5 98 2 0 30 454 9,1 15,1 
6 60 27 13 17 222 4,4 13,1 
7 28 5 67 23 349 7,0 15,2 
8 10 2 88 22 288 5,8 13,1 
10 9 0 91 27 233 4,7 8,6 

 

                    Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 10 43 28 13 6 
5 24 17 23 29 7 
6 42 10 17 20 11 
7 49 34 11 6 0 
8 47 28 19 6 0 
10 37 51 10 2 0 

 

Spore viability: 50/60 
 
YBL058W/SHP1 
 
   Nuclear division (DAPI staining)      Rad51 foci (50 nuclei counted)  
 
hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 44 889 17,8 20,2 
5 99 1 0 34 547 10,9 16,1 
6 68 31 1 27 456 9,1 16,9 
7 40 15 45 15 217 4,3 14,5 
8 18 11 72     
10 7 2 91     



 
                 Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 10 67 18 5 0 
5 16 47 21 15 1 
6 47 30 10 10 3 
7 51 22 10 12 5 
8 82 7 8 2 1 
10      
 
YDR220C/Dubious 
 
     Nuclear division: DAPI staining      Rad51 foci (50 nuclei counted) 

 

hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 31 745 14.9 24.0 
5 82 18 0 23 502 10.0 21.8 
6 26 27 47 28 522 10.4 18.6 
7 17 2 81 21 332 6.6 15.8 
8 7 3 90 9 56 1.1 6.2 
10        
 

         Synapsis : Zip1 staining 

 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 17 22 30 26 6 
5 35 22 18 13 12 

hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 31 745 14,9 24,0 
5 82 18 0 23 502 10,0 21,8 
6 26 27 47 28 522 10,4 18,6 
7 17 2 81 21 332 6,6 15,8 
8 7 3 90 9 56 1,1 6,2 
10          



6 32 15 9 22 22 
7 46 38 13 3 0 
8 53 33 12 2 0 
10 66 30 3 1 0 
 
Spore viability: 56/60 
 
YPR078C 
 
    Nuclear division: DAPI staining        Rad51 foci (50 nuclei counted) 
 
hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 32 669 13,4 20,9 
5 80 20 0 24 495 9,9 20,6 
6 52 21 27 22 391 7,8 17,8 
7 11 2 88 13 134 2,7 10,3 
8 8 2 90 10 93 1,9 9,3 
10        
 
          Synapsis: Zip1 staining  
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 8 17 24 27 24 
5 38 14 18 16 14 
6 34 25 15 16 10 
7 48 40 12 0 0 
8 40 47 13 0 0 
10      

 

Spore viability: 55/56 

 



YOR380W/RDR1 
 
   Nuclear division : DAPI staining    Rad51 foci (50 nuclei counted) 

 

       Synapsis : Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 4 28 21 35 12 
5 25 35 20 14 6 
6 39 38 10 11 2 
7 40 50 6 3 1 
8 48 38 11 3 0 
10      

 

Spore viability: 50/56 
 

 

hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 41 736 14,7 18,0 
5 95 5 0 25 410 8,2 16,4 
6 54 26 20 27 294 5,9 10,9 
7 23 7 70 20 199 4,0 10,0 
8 10 0 90 19 166 3,3 8,7 
10        



YNL046W 
 Nuclear division: DAPI staining         Rad51 foci (50 nuclei staining) 
 
 
 
 

 
         Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 14 59 13 11 3 
5 50 40 3 4 3 
6 47 19 7 16 11 
7 53 18 14 12 4 
8 65 22 4 7 2 
10      
 
 
 
 Spore viability: 56/60 
 
 
 
 
 
 
 

hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 29 590 11,8 20,3 
5 69 29 2 10 356 7,1 35,6 
6 28 13 59 26 431 8,6 16,6 
7 9 3 88 27 252 5,0 9,3 
8 5 0 95 20 185 3,7 9,3 
10        



YPL165C/HAL5 
   Nuclear division: DAPI staining         Rad51 foci (50 nuclei counted) 
 
hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 40 657 13,1 16,4 
5 77 23 0 23 318 6,4 13,8 
6 50 13 37 25 383 7,7 15,3 
7 18 7 75 12 115 2,3 9,6 
8 13 2 85 8 130 2,6 16,3 
10        

 

       Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 9 45 21 15 10 
5 30 31 18 12 9 
6 30 24 20 19 7 
7 57 17 13 9 4 
8 74 17 5 4 1 
10      

 

Spore viability: 59/60 

 

 



YOL138C/RTC1/SEA2 
 
    Nuclear division: DAPI staining           Rad51 foci (50 nuclei counted) 

 

                     Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 14 29 19 21 19 
5 25 26 11 24 14 
6 36 24 12 14 14 
7 46 26 15 11 2 
8 73 14 4 7 2 
10      

 

Spore viability: 58/60 

hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

average 
of 
Rad51 
positive 

4 100 0 0 39 644 12,9 16,5 
5 67 33 0 25 426 8,5 17,0 
6 22 14 64 22 302 6,0 13,7 
7 9 0 91 9 100 2,0 11,1 
8 4 0 96 15 189 3,8 12,6 
10        



YBR259W 
 
Nuclear division: DAPI staining         Rad51 foci (50 nuclei counted) 
 
hours in 
SPM 

mono- bi- tetra- fill totalfoci total 
average 

4 100 0 0  251 5,0 
5 93 7 0  234 4,7 
6 45 29 26  106 2,1 
7 24 12 64  62 1,2 
8 17 3 80   0,0 
10 10 0 90    
 
 

           Synapsis: Zip1 staining 

 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4 28 47 20 5 0 
5 48 27 13 6 4 
6 69 11 3 10 6 
7 69 30 0 1 0 
8 98 2 0 0 0 
10      

 



YDR371W/CTS2 
 
     Nuclear division: DAPI staining  
 
hours in SPM mono- bi- tetra- 
4 100 0 0 
5 63 37 0 
6 32 35 33 
7 18 10 72 
8 10 10 80 
10 3 1 96 

 

                  Synapsis: Zip1 staining 
 
hours in 
SPM 

No Zip1 Zip1 foci short 
stretches 

long 
stretches 

almost 
complete  

4  53 24 19 4 
5  63 22 13 2 
6  52 26 18 4 
7  95 5 0 0 
8      



YER007C-A/TMA20 
 

     Nuclear division: DAPI staining 

hours in SPM mono- bi- tetra- 
4 100 0 0 
5 91 9 0 
6 75 23 2 
7 33 57 10 
8 11 16 73 
10 6 3 91 

 

                Synapsis: Zip1 staining 
 
hours in SPM Zip1 foci short 

stretches 
long stretches almost 

complete 
4 78 22 0 0 
5 46 20 4 0 
6 57 29 13 2 
7 77 15 7 2 
8 58 30 11 0 
10 87 6 6 1 

 

Spore viability: 52/60 



The chromatin localization map of Top2 

 

In yeast, a temperature sensitive allele of the DNA topoisomeraseII (top2ts) 

was shown to display a dramatic spore lethality at a restrictive temperature. The 

spore inviability was suppressed or prevented by nocodazole treatment (Holm et 

al., 1985). Kinetics of pre-meiotic DNA synthesis of top2ts mutants was shown to 

be similar to wild type, but recombined chromosomes were unable to segregate 

during the first meitic division (Rose and Holm, 1990). It was also shown that the 

SUMO (Smt3) isopeptidase smt4∆ mutant exhibits an increased frequency of 

precocious centromere separation and notably fails to maintain cohesion at 

centromere proximal regions that normally do not disjoin prior to anaphase 

(Bachant et al., 2002); and top2-SNM mutant that is resistant to Smt3 

modification was found to suppress the smt4∆ cohesion defects (Bachant et al., 

2002). 

 

We set out to investigate the chromatin localization pattern of DNA 

topoisomerase II, a tagged version of Top2 (Top2-Myc9) was analyzed by ChIP 

on chip. Interstingly, we found a striking overlap between many DSB hotspots 

and the Top2 signals, as illustrated in Figure 30. This is an unusual case, as very 

few proteins so far are labelling the DSB sites in our hands. Further analysis is 

required to see whether this localization is dependent on DSB formation and 

recombination. 



Summary 
 

During the meiotic cell cycle, one round of DNA replication is followed by 

two rounds of chromosome segregation in which the two pairs of homologous 

sister centromeres segregate from each other during the first division while sister 

centromeres are partitioned in the second division. Hereby, the chromosome set 

of a diploid cell is reduced to half and four haploid cells are generated as 

precursors of gametes. A highly conserved meiosis-specific chromosomal 

structure called synaptonemal complex (SC) is formed during meiotic prophase I, 

connecting the axes of paired homologous chromosomes. The SC has a tripartite 

proteinaceous structure consisting of two axial elements connected by a central 

region called transverse filament. In most organisms including the budding yeast 

Saccharomyces cerevisiae, mutants that fail to form mature SC are also 

defective in crossover formation between the homologous chromosomes, which 

is required for accurate segregation of the homologs during the first meiotic 

division (Börner et al, 2004). The molecular mechanism of SC formation is not 

understood very well. 

In order to identify a comprehensive set of genes required for chromosome 

synapsis, I have performed a systematic, genome-wide visual screen for 

mutations affecting chromosome morphology. Of the 4800 non-essential ORFs 

represented in the deletion library, I have analyzed 3630 in a primary round. 

Nearly 14.5% (524) of the deletions affected synapsis or were unable to induce 

the meiotic program. Nearly all mutants previously known to be essential for 

meiotic recombination and SC formation were re-identified, if analyzed. Of the 

524 identified mutants with strong phenotypes, 132 were unable to initiate the 

meiotic program, 90 failed to undergo synapsis, 102 only underwent exclusively 

very short synapsis and 200 failed to form complete or nearly complete SC. The 

identified ORFs had been annotated with a wide variety of biological processes, 

such as respiration, RNA and DNA metabolism, membrane biology or meiosis. 

For closer characterization, a set of 30 identified ORFs from various classes 

were deleted in the SK1 strain background. The respective mutants were 



characterized for chromosome synapsis during a meiotic time course and 

selected mutants were subjected to FACS analysis and to physical 

recombination assays. Only one of these (rim4∆) is unable to synapse at all, 

whereas 3 (ecm11∆, ymr196∆, and yor296∆) show nearly no complete synapsis. 

All other ORFs, show complete synapsis in SK1, but either in too few nuclei, or 

they show an aberrant progression through the different stages of synapsis. Only 

4 deletions behaved very similar to wild type (irc4∆, hal5∆, rtc1∆, ynl046∆), 

although not perfectly identical. 

I also contributed to the characterization of 22 mutants, which were 

previously identified in a pilot screen carried out in our lab by A. Woglar (master 

thesis 2008). Rad6 and Bre1 are required for the monoubiquitination of histone 

H2B at lysine 123. (Robzyk et al., 2000). I showed that the synapsis defect in 

htb1-K123R, htb2-K123R double mutants is similar to, but not as rigorous as, in 

bre1∆ and rad6∆, or lge1 mutants. This indicates a major role of histone H2B-

K123 ubiquitination in synapsis, but also hints at additional roles of Rad6/Bre1. 

H2B-K123 monoubiquitination is required for histone H3K4 and H3K79 

trimethylation by COMPASS (Set1) and Dot1 (Nakanishi et al., 2009) 

respectively. Interestingly, elimination of both, SET1 and DOT1, which should 

eliminate H3K4 and H3K79 trimethylation, does not eliminate extensive synapsis, 

although it causes ca. a 2 hours delay. These observations suggest that H2B-

K123 monoubiquitination may promote synapsis through an additional pathway, 

other than H3K4,K79 trimethylation. 

The PP4 phosphatase complex anatagonizes the phosphorylation of 

various targets by he checkpoint kinases ATM/ATR (Tel1/Mec1) including 

histone H2A-S129, enabling checkpoint recovery after DNA damage (Keogh et 

al, 2006). We found pph3∆ to be defective in pre-meiotic DNA replication, 

chromosome synapsis, crossover formation and nuclear division (Woglar A, 

master thesis; this work), observations also made by others (Falk et al., 2010a). 

Interestingly, pch2∆ is epistatic to pph3∆ concerning synapsis, overcompensating 

the synapsis defect. Also deletion of SWC2 can restore extensive synapsis in 

pph3∆ mutants. In contrast deletion of MEK1 or of FPR3 suppressed the nuclear 



division defects of pph3∆ mutants. Interestingly, the triple mutant pph3∆, pch2∆, 

fpr3∆ progressed through meiosis almost normally, underwent synapsis and 

produced viable spores. We conclude, that Pch2 prevents synapsis in response 

to the ATM, ATR mediated checkpoint response, and that the role of PP4 is to 

downregulate that signal upon repair, to inactivate Pch2 and to allow synapsis. 

We propose that this constitutes a module to coordinate synapsis with 

completion of DSB repair. Fpr3 rather is an inhibitor of an alternative way to 

antagonize ATM/ATR, that is PP1 (Glc7-phosphatase), normally only activated 

shortly before the division. 

 



 Zusammenfassung 
 

Im meiotischen Zellzyklus folgen einer Runde DNA-Replikation zwei 

Runden Chromosomensegregation in denen zunächst in der ersten Zellteilung 

die zwei Paare homologer Schwesterzentromere von einander segregieren, 

währen die Schwesterzentromere in der zweiten Teilung separiert werden. Als 

Folge wird der Chromosomensatz halbiert und aus einer diploiden Zelle gehen 

vier Zellen mit einem nun haploiden Genom hervor, als Vorläufer der Gameten. 

Im Laufe der meiotischen Prophase 1 bildet sich eine meiosespezifische, hoch 

konservierten Struktur aus, der sogenannte Synaptonemale Komplex (SC), 

welcher die Axen gepaarter homologer Chromosomen verbindet. Der SC hat 

eine dreigliedrige proteinöse Struktur, bestehend aus zwei seitlichen axialen 

Elementen, verbunden durch eine zentrale Region, dem Transversalfilament. In 

den meisten Organismen, einschließlich der Hefe Saccharomyces cerevisiae 

weisen Mutanten, die an der Bildung eines normalen SC scheitern ebenfalls 

Defekte in der Bildung von Crossovern zwischen den homologen Chromosomen 

auf, welche notwendig für die korrekte Aufteilung der Homologen während der 

ersten meiotischen Teilung sind (Börner et al, 2004). Über die molekularen 

Mechanismen der SC-Bildung besteht bisher nur sehr geringe Kenntnis. 

Mit dem Ziel jene Gene, welche für die Synapsis der Chromosomen in 

Saccharomyces cerevisiae erforderlich sind umfassend zu identifizieren, habe 

ich in einem systematischen Screen genomweit, unter Zuhilfenahme visuell-

mikroskopischer Methoden, nach Mutationen gesucht, welche die 

Chromosomenmorphologie beeinträchtigen. 

Von den 4800 nicht essentiellen Genen, repräsentiert durch eine 

Gendeletionsbibliothek, habe ich 3630 in einem ersten Lauf analysiert. Nahezu 

14.5% (524) der Gendeletionen beeinträchtigten Synapsis, oder führten zum 

Unvermögen das meiotische Programm in Gang zu setzen. Beinahe alle 

Mutanten von Genen – so denn analysiert –, die bereits zuvor als essentiell für 

meiotische Rekombination und SC-Bildung bekannt waren, konnten erneut 



identifiziert werden. Von den 524 gefundenen Mutanten mit ausgeprägtem 

Phenotyp waren 132 nicht in der Lage das meiotische Programm zu initiieren, 90 

konnten keinen SC bilden, 102 waren ausschliesslich zu sehr kurzer Synapsis 

befähigt, und 200 konnten keinen vollständigen oder ausgedehnten SC bilden. 

Die identifizierten Gene sind breitgefächert vielen verschiedenen biologischer 

Prozessen zugeordnet, wie zum Beispiel der Zellatmung, dem RNA und DNA 

Metabolismus, dem Membranaufbau, oder der Meiose. 

Für eine genauere Charakterisierung wurden 30 der identifizierten Gene, 

einer breiten Auswahl unterschiedlicher Klassen, in einem reinen SK1 

Stammhintergrund deletiert. Die resultierenden Mutanten wurden charakterisiert 

anhand ihrer Chromosomensynapsis in einer Zeitserie durch die Meiose, und 

ausgewählte Mutanten wurden zudem einer FACS-Analyse und einer physischen 

Rekombinationsmessung unterzogen. Nur eine dieser Mutanten (rim4∆) ist dabei 

überhaupt nicht in der Lage SCs zu bilden, wohingegen drei (ecm11∆, ymr196∆, 

und yor296∆) im wesentlichen keine vollständige Synapsis zustande bringen. 

Alle anderen Mutanten zeigen in SK1 vollständige Synapsis, jedoch entweder in 

zu wenigen Kernen, oder unter aberrantem Verlauf durch die verschiedenen 

Stadien der Synapsis. Nur vier Deletionen (irc4∆, hal5∆, rtc1∆, and ynl046∆) 

verhielten sich sehr ähnlich zum Wildtyp, wenn auch nicht völlig identisch. 

Ebenso habe ich zu der Charakterisierung 22 weiterer Mutanten 

beigetragen, welche zuvor in einem Pilot-Screen identifiziert wurden, 

durchgeführt in unserem Labor durch A. Woglar (Diplomarbeit, 2008). Rad6 und 

Bre1 werden für die Monoubiquitinierung von Histon H2B an Lysin 123 (K123) 

benötigt (Robzyk et al., 2000). Ich konnte zeigen, dass der Synapsisdefekt einer 

htb1-K123R htb2-K123R Doppelmutante, bre1∆ und rad6∆, oder lge1∆ ähnlich, 

jedoch nicht so ausgeprägt ist. Dies weist auf eine wesentliche Rolle von Histon 

H2B-K123 Ubiquitinierung für Synapsis hin, deutet aber auch zusätzliche 

Funktionen von Rad6/Bre1 an. Monoubiquitinierung von H2B-K123 ist wiederum 

notwendig für Trimenthylierung von Histon H3K4 durch COMPASS (Set1), 

beziehungsweise H3K79 durch Dot1 (Nakanishi et al., 2009). Interessanterweise 

führt die gemeinsame Eliminierung von SET1 und DOT1, welche auch H3K4 und 



H3K79 Trimethylierung eliminieren sollte, nicht zum Verlust von ausgedehnter 

Synapsis, obgleich es zu einer Verzögerung von ungefähr zwei Stunden kommt. 

Diese Beobachtungen legen nahe, dass H2B-K123 Monoubiquitinierung über 

einen anderen Weg als H3K4/K79 Trimethylierung an Synapsis beteiligt ist. 

Der PP4 Phosphatasekomplex (Pph3, Psy2 und Psy4) wirkt der 

Phosphorylierung zahlreicher Substrate der Checkpointkinasen ATM/ATR 

(Tel1/Mec1) entgegen, inklusive Histon H2A Serin 129 (S129), und erlaubt somit 

den Austritt aus dem Checkpointarrest nach erfolgter Reparatur von DNA-

Schäden (Keogh et al, 2006). Wir haben für pph3∆ Defekte in der pre-

meiotischen DNA Replikation, Synapsis, der Bildung von Crossovern, und den 

meiotischen Kernteilungen gefunden (Woglar A., Diplomarbeit; diese Arbeit), 

welche auch durch andere nachgewiesen wurden (Falk et al., 2010). 

Interessanterweise beobachteten wir, dass pch2∆ bezüglich Synapsis epistatisch 

über pph3∆ ist, und in pph3∆ Synapsis unter Überkompensierung wieder 

herstellt. Auch die Deletion von SWC2 erlaubt wieder ausgedehnte Synapsis in 

pph3∆ Mutanten. Dagegen bewirkt eine Deletion von MEK1 oder FPR3 die 

Suppression des Kernteilungsdefektes der pph3∆ Mutanten. 

Bemerkenswerterweise liessen sich in der Tripelmutante pph3∆ pch2∆ fpr3∆ die 

meiotischen Defekte der pph3Δ Mutante praktisch vollständig aufheben. pph3∆ 

pch2∆ fpr3∆ durchläuft nahezu normal das meiotische Programm, hat Synapsis, 

und produziert lebensfähige Sporen. Wir schliessen daraus, dass Pch2 

Chromosomensynapsis als Antwort auf ATM/ATR Checkpointkinasenaktivität 

verhindert, und dass PP4 die Funktion einnimmt dieses Checkpointsignal nach 

erfolgter DNA-Reparatur zu eliminieren um Pch2 zu inaktivieren und Synapsis zu 

erlauben. Wir legen damit nahe, dass es sich hierbei um ein funktionelles Modul 

handelt, welches Synapsis mit der Vervollständigung der DNA-Reparatur 

koordiniert. Fpr3 hingegen wirkt als Inhibitor auf einen anderen Antagonisten von 

ATM/ATR, PP1 (Glc7-Phosphatase), welche normalerweise erst kurz vor der 

Kernteilung aktiviert wird. 
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In pachytene of wild type SK1 nuclei show  
a maximum of synapsis 

Fig 7C 
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hours in SPM 

ecm11∆, ymr196w∆, oxp1∆ and ydr333c∆  
display a significant decrease in chromosome synapsis. 

Fig 8A 
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Meiotic progression is delayed in tom1∆ and ylr352w∆,  
and ecm11∆ shows increased numbers of Rad51 foci 

Fig 8B,C 
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tom1∆ and yor296w∆ are defective in pre-meiotic DNA replication  Fig 8D 
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Synapsis is reduced in yor296w∆, ddr2∆  
and delayed in hos1∆, swc2∆ 

Fig:9A 
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Meiotic progression is delayed in hos1∆, yor296w∆ and swc2∆. 
Fig 9B,C 
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DAPI Fig 10A,B,C rim4∆ is nearly devoid of synapsis,  
shows no meiotic progression and impaired Rad51 turnover 
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Mutants of the Shu complex undergo premeiotic S-phase,  
but display reduced numbers of Rad51 foci 

Fig 11A,B 
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Fig 12 Scheme of CO, NCO detection system.   
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hours in SPM 

CO and NCO are delayed and reduced in psy3∆,  
while irc25∆/poc3∆ is specifically reduced for CO 

Fig 13A,B 
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C) A) 

yor029w∆ shows a delay in DSB formation,  
 increased Rad51 foci levels and a mild reduction in COs  
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rad33∆ rvs167∆ 

hrs in SPM 

rad33∆ shows a slight reduction in CO and NCO,  
rvs167∆ shows a reduction in NCO  

Fig 15A,B 
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30 7 85 642 10 30 7 85 642 10 

ylr352w∆ rad6∆ 

rad6∆ is defective in CO and NCO,  
ylr352w∆ shows a delay in CO and NCO 

Fig 16A 
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hnt3∆"

hrs in SPM 

hnt3∆ displays a reduction in CO and NCO, and a 
delay in Rad51 foci turnover 

Fig  17A,B 
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F) 
30 7 85 642 10 hrs in SPM 

Fig 18E,F 

E) 

psy2∆ shows a specific reduction in COs,  
while COs and NCOs appear with a delay and a reduction in psy4∆. 
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hta1.2-S129A mutations mildly alleviate the synapsis defect of pph3∆ Fig 19A 
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hta1.2-S129A mutations mildly alleviate the synapsis defect of pph3∆ 
Fig 19B 
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pph3∆ and hta1,2-S129A mutations are additive concerning nuclear 
division delay  

Fig 19C 
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Deletion of SWC2 , HTZ1, LDB7 or SWR1 reduced Rad51 foci,  
but did not affect nuclear progression in the pph3∆ background 

Fig 20C 
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Fig 20D 
Swc2 chromosomal binding sites overlap with those of Rec8, without 

showing any preference for centromeres. 
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Fig 20E            Like Rec8, Swc2 sites on chromosomes do not overlap 

                                       with DSB hotspots 
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Fig 20F Swc2 binding along chromosomes is reduced in pph3∆ mutant. 
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Fig 20G Swc2 binding along chromosomes is reduced in pph3∆ mutant. 
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Deletion of PCH2 suppresses the synapsis defect of pph3∆ mutants Fig 21A 
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Rad51 foci are reduced to wild type levels and meiotic 
 progression is  slightly advanced in pph3∆ cells in the absence of PCH2. 
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alleviated the meiotic arrest of pph3∆ mutants. 
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Fig: 24B Synapsis is strongly reduced in htb1,2-K123R, 
but is only delayed in set1∆, dot1∆ double mutants 

%
 n

uc
le

i p
er

 c
la

ss
 

%
 n

uc
le

i p
er

 c
la

ss
 

%
 n

uc
le

i p
er

 c
la

ss
 

hours in SPM hours in SPM hours in SPM 

Long stretches of Zip1 Almost complete SC 
No Zip1 Short stretches of Zip1 
Zip1 foci 



                

Av
er

ag
e 

R
ad

51
 fo

ci
 / 

nu
cl

eu
s 

0

10

20

30

40

4 5 6 8 10

wild type

bre1

H2B -K123R

set1

set1 dot1

dot1

Rad51 foci 

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10

wild type

bre1

H2B -K123R

set1

set1 dot1

dot1

lge1

Nuclear division 

hours in SPM 

hours in SPM 

Fig: 24C Meiotic progression and Rad51 focus formation are delayed and   
reduced in bre1∆, H2B-K123R, lge1∆, set1∆ and set1∆, dot1∆ double mutants. 
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tma20∆ and cts2∆ showed a decrease in synapsis 



Fig: 27 tma20∆ and shp1∆ show a weak delay in 
meiotic progression 
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Fig: 28 
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Fig: 29 Top2 does not colocalize with Zip1 or Rec8 
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