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Chapter 1

Quantum computation

1.1 Introduction

When Richard Feynman first introduced the concept of a quantum computer [1]
his motivation was a different one than what should lead to its popularization. He
suggested that the difficult task of simulating generic quantum systems might be
better suited to a machine operating on the quantum level itself, than it is to a
classical computer. But with the beginning coherent control of quantum systems
the focus had drifted to a different direction. A series of proof of principle imple-
mentations of quantum algorithms that had been developed in the meantime was
initiated [2, 3, 4]. Their potential speedup over classical programs, albeit arguably
of any practical value here, is most visible in Deutsch’s algorithm [5]. Public interest,
however, is incited by the opportunities offered through Shor’s factoring algorithm
[6], the Grover search algorithm [7] and more recently Lloyd’s algorithm for systems
of linear equations [8].

Sensation has dulled a little as it became clear that practical implementations
require resources beyond what quantum systems can offer presently. It is still unclear
which system will provide the basis for future applications. Photons, for instance,
struggle with the lack of strong nonlinearities that imposes the use of linear optics,
but at the same time offer desirable features found in none of the competing quan-
tum systems. Photonic qubits can be manipulated at room temperature, together
with their speed and low decoherence, this makes them the obvious candidate for
combining aspects of computation and communication. It should be considered that
classical computers have found a variety of new applications with the advent of net-
works, most prominently the Internet. Blind quantum computation [9], for instance,
is a procedure that allows to securely, i.e. without revealing the content, perform a
(quantum) computation on a remote server.

All quantum system are confronted with the urge of being scalable. KLM [10]
have addressed this question with a proposal that shows a path to near-deterministic
quantum circuits. Though several refinements [11, 12, 13] the resource requirements
remain demanding. Most implementations of photonic circuits therefore rely on a
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2 Chapter 1 : Quantum computation

clever use of interference and a measurement-induced nonlinearity. That is, to sift the
observed detection events by some indication of success, e.g. a coincidence detection.
Fast, efficient and photon-number resolving detectors are required to distinguish the
individual outcomes. For miniaturization and to improve the interferometric stabil-
ity, free-space optics experiments are replaced by chips with integrated waveguides
[14, 15, 16].

Currently, the most pressing problem concerns the deterministic creation of single
photons. The standard spontaneous parametric down-conversion source [17] impedes
the transition from a handful to hundreds and more qubits due to their probabilistic
nature and insufficient efficiency.

A new perspective is offered by the one-way computational scheme [18]. Until
then quantum computation followed the methodology of the circuit model [19, 20].
The quantum circuit model mimics a proven concept of classical computing. Any
quantum algorithm– some unitary operation –is decomposed into a universal set
of logic gates. In the one-way computational scheme an entangled state, typically
a cluster state [21], serves as an initial resource. Being separated from the actual
computation it may be created by probabilistic means without interrupting the pro-
cess [22]. An algorithm is executed by performing a certain sequence of single-qubit
measurements on the cluster qubits. The concept was readily adopted with photons
[23]. The required error-correction, a consequence inseparably tied to the nonunitary
evolution through measurements, was also demonstrated [24].

Recently, the view has shifted again [25] to Feynman’s original intent of using
quantum computers to simulate physical systems. In [26] this idea has been con-
cretized by showing how to approximately simulate the unitary evolution of a time-
independent Hamiltonian with a quantum circuit. In particular the field of quantum
chemistry has attended to this concept [27, 28]. Later the repertoire was extended
by a quantum version of the ubiquitous Metropolis algorithm that allows to simulate
the equilibrium and static properties of quantum systems [29].

This work is intended to increase the computational depth of photonic quantum
systems for both quantum computation and simulation by laying the basis for a
universal two-qubit quantum computer.

1.2 Photonic qubits

The quantum analogue to a classical bit is a qubit [30], a two-level system that
can live in any superposition of these discrete states. Single photons can serve as a
physical body to a qubit. Both its internal (polarization, orbital angular momentum,
etc.) and external (spacial path, arrival time, etc.) degrees of freedom can be utilized.
It is also possible to use a combination of these which helps to increase the number
of available qubits [31, 32]. Most common are polarization encoding in which a hori-
zontally polarized photon represents the logical value of 0 and a vertically polarized
photon is a logical 1; and path encoding, where the presence of a single photon in
one of two paths is mapped to a logical 0 and 1, respectively.
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A single-qubit state has a graphical representation as a vector on the Bloch sphere
(see Figure 1.1).

Figure 1.1: Bloch sphere. Any pure single-qubit state can be written as a superposition
of the computational basis states: |φ〉 = η |H〉 + ν |V 〉, where the amplitudes, η and ν, are
complex numbers restricted by the normalization constraint |η|2+ |ν|2 = 1. A general density
matrix ρ = 1

2 (1+~b~σ) can be described by a Bloch vector ~b, where ~σ is the vector of the Pauli
matrices x, y and z. Pure states lie on the surface, while mixed states are situated in the
body of the sphere.





Chapter 2

The quantum optics toolbox

This chapter briefly introduces the tools available to linear optics quantum compu-
tation (LOQC) [33].

2.1 Single-photon source

The interaction of an electromagnetic field induces dipole moments in a dielectric
medium. The macroscopic sum thereof is the polarization ~P . Expansion with respect
to the field ~E yields [34]

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ... , (2.1)

where the coupling to the field is described by χ(n) the n-th order susceptibility
tensor and i, j, k, l = {1, 2, 3}. In most materials the nonlinear χ(n>1) are small and
the presence of a strong incident pump light field is necessary to observe higher-order
effects. That way a medium with a nonvanishing χ(2)-term can show spontaneous
parametric down-conversion (SPDC) [35]. A pump photon with energy, h̄ωp, and
momentum, h̄~kp, spontaneously converts into two photons1 with energies, h̄ωs and
h̄ωi, and momenta, h̄~ks and h̄~ki. To see a significant contribution a phase matching
condition

~kp = ~ks + ~ki (2.2)

and energy conservation ωp = ωs + ωi have to be satisfied simultaneously. This can
be achieved by setting a specific angle between the pump beam and the orientation
of the optical axis in the birefringent crystal [36]. With type-II phase matching [37]
signal and idler photon are orthogonally polarized as defined by the orientation of
the optical axis. Figure 2.1 explains how to align a crystal such that ordinary and
extraordinary axis correspond to H/V polarization, respectively. The correlation in
the polarization degree of freedom can be used to generate entangled states [17]. For

1They are historically referred to as signal and idler, as they always appear in pairs. The
detection of the signal photon implies the presence of its partner, the idler.
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6 Chapter 2 : The quantum optics toolbox

the purpose of quantum computation this feature is often unnecessary, but here the
fact that pairs of photons are created in distinct time intervals is appreciated.

Figure 2.1: Aligning a nonlinear crystal to be used for SPDC. The crystal is mounted
such that it can be rotated in the plain perpendicular to the incident, horizontally polarized
light. (a) By convention H is supposed to travel along the ordinary axis. (b) Ordinary
and extraordinary axis can be distinguished by rotating the mount. The intensity wanders
between two spots. One remains at the same position (ordinary), while the other prescribes
a circle around it (extraordinary). (c) Change to D-polarized light to place both spots above
each other. (d) Send in V -polarized light to verify that it is aligned to the extraordinary axis.

The conversion process can occur at random along the length of the medium
causing a horizontal walk-off effect. Likewise, the crystal’s birefringence is responsible
for a transversal walk-off in the extraordinary beam. Both effects can be compensated
by another nonlinear crystal with half the thickness [36, 38].

To increase the probability for a coherent multi-pair emission the high energy
density of pulsed lasers can be used. Coherence between the pairs is preserved when
the pulse length that limits the temporal uncertainty associated with the creation
time of the photon pairs is smaller than their coherence time. A shorter pulse
duration, however, leads to a broader spectral bandwidth of the pump beam. As
a consequence the overlap between energy conservation and the phase matching
condition (2.2) increases and a larger range of frequencies is found in the down-
converted beams. On the other hand, the coherence time can be extended by spectral
filtering. Both the pulse length and the bandwidth of the filter should be adjusted to
optimize the count rates. Due to an asymmetry in the phase matching function one
of the down-converted spectra grows more quickly than the other [39]. Accordingly,
filtering is asymmetric as the spectral bandwidth of ordinarily and extraordinarily
polarized photons differ. Therefore an imbalance between H and V is observed.
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For the experiments described in this work a femto-second pulsed laser at 789nm
was frequency-doubled to pump a 2mm beta-barium borate (BBO) crystal in a non-
colinear type-II configuration. In addition filters of 3nm bandwidth were used.

2.2 Wave plates

The polarization state of photons can be manipulated with wave plates. Commonly
made of uniaxial birefringent crystals, they induce a relative phase shift between
the (linear) polarization component aligned with the ordinary and the extraordinary
axis [40]

∆ϕ =
2π

λ
d(|no − ne|) , (2.3)

where the thickness d can be set. Note that there is a dependence on the wavelength
limiting the intended effect to a certain spectral range. Mostly, two kinds of wave
plates are used: half-wave plates (hwp) and quarter-wave plates (qwp); introducing
a phase shift of ∆ϕ = π and ∆ϕ = π

2 , respectively.
Rotating the wave plate in the plain perpendicular to the incident light corre-

sponds to a change in basis and affects how the polarization amplitudes are split.
The effect of hwp and qwp can be written as unitary operators [41]

Uhwp(θ) = ei
π
2

(
cos 2θ sin 2θ
sin 2θ −cos 2θ

)
, (2.4)

Uqwp(θ) =
1√
2

(
1 + i cos 2θ i sin 2θ
i sin 2θ 1− i cos 2θ

)
, (2.5)

where the angle θ denotes the orientation of the optical axis with respect to horizontal
polarization. For some common angles the effect of hwp and qwp on the standard
bases states is listed in Tables A.1 and A.2 in the appendix.

Their property to alter the polarization state of a photon makes them suitable
for implementing single-qubit unitaries. An arbitrary single-qubit unitary operation
U– a rotation on the Bloch sphere2 –can be decomposed into a combination of three
wave plates [41]

U = Uqwp(γ) Uhwp(β) Uqwp(α) . (2.6)

To transform any polarization state to H or V , two wave plates, a qwp and a
hwp, are enough

U→H/V = Uhwp(β) Uqwp(α) . (2.7)

The qwp brings a potentially elliptical state to the x-z plane, where states with
linear polarization are situated. For these states applying a hwp corresponds to a

2U = eiδ R~b(ω), where R~b(ω) is a rotation of ω about the axis defined by the unit Bloch vector
~b. The global phase eiδ is usually ignored. The remaining three free parameters are set by the wave
plate angles α, β and γ.



8 Chapter 2 : The quantum optics toolbox

rotation about the y axis and can thus map any such state to H/V . Table 2.1 lists
the required angles for some common polarizations.

Input → qwp hwp → Output
H/V 0◦ 0◦ H/V
D/A 45◦ 22.5◦ H/V
R/L 45◦ 45◦ H/V

Table 2.1: How to transform standard bases to the H/V basis using a qwp and a hwp.
Note that qwp and hwp do not commute, so the angles are specific to the given order.

Before a wave plate can be used the position of the optical axis needs to be determined
(Figure 2.2).

Figure 2.2: Aligning a wave plate. Place an unknown wave plate between two polarizing
beam splitters and monitor the intensity, while rotating it in the plain perpendicular to the in-
cident light. For some angle the intensity reaches a minimum: (hwp) when the polarization
is flipped from H to V ; (qwp) the linear polarization is transformed to circular polarization.
Refer to Tables A.1 and A.2 to determine the axis position from this information. Attention
must be given that all qwps are aligned to the same axis, ordinary or extraordinary. Use
a reference qwp: two qwps aligned to the same axis will act as an effective hwp, while
compensating each other when not.

2.3 Beamsplitters

A beam splitter (BS) is a probabilistic device mediating between two spacial input
and output modes. It is characterized by its transmission (reflection) probability T
(R). The most common configuration is a 50/50 beam splitter with T

R = 1.
Beam splitters can be designed to have different properties with respect to the

polarization of the incident light, then called polarizing beam splitters (PBS). The
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usual setting is that a PBS transmits H- and reflects V -polarized light. By sand-
wiching a PBS between a set of wave plates it can be changed to operate in a basis
other than the default H/V (Figure 2.3a). Moreover, it can be used to translate from
a polarization encoded qubit to a path encoded qubit and vice versa (Figure 2.3b).

A subclass of polarizing beam splitters are polarization-dependent beam splitters
(PDBS) that behave asymmetrically for H and V . PDBSs form a crucial component
of the two-qubit gate presented in Chapter 4. The variant to be used there, transmits
all H-polarized light, while a V -polarized photon passes through in one third and is
reflected in the remaining two thirds of the cases.

Occasionally, both input modes of a beam splitter are used to produce a Hong-Ou-
Mandel two-photon interferometer type effect [42]. For a pair of photons, originating
from a SPDC source, one is fed into the BS from either side. When the paths are
shifted towards equal lengths, a decrease in the coincidence count rates is observed.
The counts drop to a minimum when the difference is within the coherence length
of the photons.

It is tempting to conclusively picture this as the result of interference between
two individual photons indistinguishable at the BS. It was however clarified [43] that
not the indistinguishability of the single photons at the BS, but of the two-photon
amplitudes describing the various alternatives leading to a coincident count at the
detectors is decisive. In the BS scenario four such alternatives exist: two cases where
the photons exit at the same port, one transmitted one reflected (t-r & r-t), and two
cases where they split up (r-r & t-t). When the paths are of exactly the same length,
the cases t-t and r-r are indistinguishable and happen to interfere destructively in
correspondence with the observed coincidence count rates.

A slightly modified experiment can rule out the single-photon interpretation (Fig-
ure 2.4). A relative delay is introduced such that the photons no longer arrive at
the same time at the beam splitter. This clearly eliminates the first interpreta-
tion. But when the delay is compensated afterwards, producing the same relative
time difference at the detectors for both alternatives, t-t and r-r, which makes them
indistinguishable again, the dip in coincidence count rates returns.

2.4 Mirrors, fibres and free space

It is a common situation that two distinct parts of a setup need to be connected.
Usually, the experimenter wants the state of the quantum system to remain the
same before and after the passage. In contrast to other quantum systems photons
are mostly unaffected by the environment. However, there are certain pitfalls to be
avoided.

Frequently, light travels in free space. Dust particles floating in the air can cause
deformations in the (Gaussian) beam profile of high-intensity laser beams. To recover
a clean Gaussian shape the following procedure can be employed:

1. Assuming the incident laser beam to be collimated. Use a convex lens to focus
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(a) Polarizing beam splitters are usually manufactured to operate on
H/V polarization. Using wave plates an arbitrary basis PBS can be
emulated. Before the photons enter the PBS they pass through a hwp
and qwp with angles set such that they transform from the desired op-
eration basis to the H/V basis. The procedure is reversed at the output
ports of the PBS.

(b) Converting between polarization encoding and path encoding of a
photonic qubit. A PBS separates H and V components into distinct
paths faithful to their respective amplitudes. To make them indistin-
guishable by the polarization degree of freedom a hwp at 45◦ transforms
|V 〉 ↔ |H〉. Backtransformation is feasible by reversing the order of the
components.

Figure 2.3: Some applications of wave plates and beam splitters.
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Figure 2.4: Postponed compensation experiment [43]. One of two photons is delayed (in-
dicated by the dashed line), so they no longer meet at the beam splitter. An additional delay
for the t-t case assures that detector D2 fires first in both situations. As the relative time
difference stays constant r-r and t-t become indistinguishable. Accordingly, the dip in the
coincidence count rates is observed, despite the single-photon interference interpretation no
longer applicable.

the beam and calculate the beam waist at the focal point.

2. The image at the focal point is the Fourier transform of the image at the
object-side focal point [40]. Finer details, like deformations, require higher
spatial frequencies to be resolved. The higher the frequency, the further off
the corresponding amplitude lies from the centre of the Fourier image [44].
With a suitable iris the outer parts containing the frequency information of
the deformations can be cut away.

3. Use another identical lens to undo the Fourier transform and collimate the
beam again.

When the beam shape has become elliptical, e.g. after the up-conversion process
in a LBO crystal [45], the sequence of two cylindrical lenses can be used to correct
it back to a circular form. See [46] for instructions on how to select the ratio of their
focal lengths.

To change the propagation direction of a laser beam mirrors are used. It is impor-
tant to respect the mirror’s angle of incident (AOI) specification. One discriminates
between mirrors (AOI = 0◦) and turning mirrors (AOI = 45◦). When the polar-
ization of photons is an issue a mirror is no longer a neutral element, but has the
effect of a half-wave plate set to 0◦, hence it flips D/A → A/D and R/L → L/R.
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Whenever there is an unbalanced number of mirrors3 in the setup this has to be com-
pensated for, e.g. with a half-wave plate. Additionally, most mirrors have different
reflection coefficients for H- and V -polarized light. This means that the amplitudes
are treated unequally and a drift in the polarization is observed.

When light is coupled into an optical fibre, again its polarization state needs
to be controlled. In an ideal fibre each polarization mode would propagate with
identical velocity. Slight asymmetries in the fibre core cross-section and external
stresses applied on the fibre such as bending alter the refractive index along the
fibre. Differing velocities between the polarization modes in the fibre introduce a
relative phase shift between them. This leads to a change in polarization.

The stress-induced birefringence of the fibre can also be used to compensate for
these effects. In most cases the intermediate polarization state of the light in the
fibre is unimportant as long as there is no effective change in the output state. Fibre
polarization controllers (FPC) are used to intentionally apply stress on the fibre. To
perform an arbitrary single-qubit operation the usual qwp-hwp-qwp combination
of a free-space setting is replaced by three fibre coils inlaid in the FPC paddles.
Coiling the fibre induces stress, producing birefringence inversely proportional to the
square of the coils’ diameters [47]. The number of turns specifies the wave plate’s
type. One turn corresponds to a qwp, two to a hwp. Adjusting the paddles rotates
the fast axis of the fibre, which lies in the plane specified by the paddle.

To build a polarization conserving fibre path it is necessary to pinpoint both
angles, θ and ϕ, that define a single-qubit state with respect to the Bloch sphere. A
common choice is to fix |H〉 and |D〉. Obviously, one cannot align them simultane-
ously, so the procedure has to be carried out iteratively in general. Note that fixing
the orthogonal states |H〉 and |V 〉 is not sufficient, as this imposes no constraint on
the azimuthal angle ϕ.

2.5 Single-photon detection

An important part in linear optics quantum computation falls to the detection sys-
tem, as most implementations rely on a measurement-induced nonlinearity through
postselection. What are the properties of a good detector?

• Capability to detect single photons

• High detection efficiency

• Low dark count rates

• Fast recovery time

• Photon-number resolving

3Note that this may also apply to the reflected arm of a beam splitter.
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The experiments presented here use avalanche photodiodes (APD) that are fast
and can resolve single photons, but cannot distinguish between one and many and
have a rather low detection efficiency of about 40%. This is a serious downside as it
further lowers the observed count rates, especially since one is usually interested in
coincidence detections4. For a twofold-coincidence the detection probability degrades
already to about 16% with these detectors. Many new developments in this field
offer considerable improvements. An overview of current single-photon detection
architectures is found in [48].

In general detectors do not distinguish between photons of different polarizations.
This is, however, a common requirement in many applications, e.g. quantum state
tomography (see Section 4.4.1). Figure 2.5 describes how to experimentally measure
the polarization state of a photon in an arbitrary basis using wave plates, polarizing
beam splitters and single photon detectors.

Figure 2.5: Polarization analysis of light in an arbitrary basis follows a general procedure:
The state of the incoming photon is considered to be decomposed with respect to the desired
measurement basis. The basis vectors of this basis are then mapped to the H/V basis (vectors)
by applying a qwp and a hwp with specific angle settings, α and β (cf. (2.7)). Next a PBS
is used to separate H- and V -polarization. Finally, each output is fed into a single photon
detector. A click at the detector for horizontally polarized photons reveals the photon to have
carried the polarization determined by the chosen map. To measure in the D/A basis, for
example, the map (wave plate setting) needs to transform |D〉 → |H〉 and |A〉 → |V 〉. When
the detector for |H〉 is triggered, one can deduce that the photon carried polarization |D〉.

4A coincidence is the simultaneous detection of single photons at different detectors. To achieve
nonzero count rates, a time window shorter than the gap between two successive pulses from the
source is defined to characterize simultaneous events.





Chapter 3

Arbitrary single-qubit unitaries
with wave plates

With photons single-qubit unitaries are generally considered the easy part. The
main challenges come with the implementation of two-qubit gates (see Section 4).
In principle this is true; applying single-qubit gates is a solved problem and can
be accomplished by the use birefringent elements; typically wave plates. A few
common single-qubit gates, along with the corresponding wave plate setting for their
implementation, are listed in Table 3.1.

Single-qubit gate Symbol Wave plate setting
Identity 1 qwp(0) · hwp(0) · qwp(0)
Pauli-X x hwp(π4 )
Pauli-Y y hwp(π4 ) · hwp(0)
Pauli-Z z hwp(0)

Hadamard h hwp(π8 )

X-rotation Rx(θ) qwp(π2 ) · hwp(− θ
4) · qwp(π2 )

Y-rotation Ry(θ) qwp(π2 + θ
2) · hwp( θ4) · qwp(π2 )

Z-rotation Rz(θ) qwp(π4 ) · hwp(−π
4 −

θ
4) · qwp(π4 )

Table 3.1: Single-qubit gates and how to experimentally realize them using wave plates.
Note that any gate may also introduce a global phase. The angle θ specifies the rotation as
observed on the Bloch sphere, while the arguments of hwp and qwp are the corresponding
physical angle settings of the wave plates.

There is, however, an easily overlooked aspect that needs to be considered. The
operation of half and quarter-wave plate do not translate directly into rotations on
the Bloch sphere. For general unitaries and with the interest of keeping the number of
wave plates small1 this property becomes manifest. For each particular single-qubit

1It would be possible to use the known patterns of Rx(θ), Ry(θ) and Rz(θ) to apply some
arbitrary rotation, but this would lead to an inefficient use of wave plates.

15
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gate the angle settings of the wave plates need to be determined.

3.1 Implementation with wave plates

Scenario I: One-way computational model

In the one-way computational model [18] an algorithm is defined by the shape of
the entangled resource– a cluster state [21] –and a specific pattern of single-qubit
measurements in directions along the x-y plane of the Bloch sphere. This includes,
apart from the standard D/A and R/L, all states in between: |±ϕ〉 = 1√

2
(|H〉 ±

eiϕ |V 〉). In view of the polarization analysis setup described in Figure 2.5 a hwp
and a qwp are needed

hwp(β) qwp(α) |±ϕ〉 −→ |H〉 / |V 〉 . (3.1)

To successfully perform this transformation we need the angles α and β. This is not
as simple a task as it might seem at first sight. The wave plates perform nontrivial
operations on the Bloch sphere. They introduce a global phase, which might have
no effect in the experiment, but complicates the computational task of finding the
correct angles. Additionally, the elements of the unitary matrices corresponding to
the wave plates (cf. (2.4) and (2.5)) are trigonometric functions and thus α and
β are given only implicitly. Nonetheless, it appears there is a simple relation for
determining the angles in this case

α =
π

4
, (3.2)

β =
π

8
+
ϕ

4
. (3.3)

Scenario II: Arbitrary measurement basis

Measuring in the x-y plane is only a subproblem of the more general problem to
perform measurements in an arbitrary basis. Again, we have to determine the angles
for the wave plates. Rewriting the problem in matrix form

hwp(β) qwp(α)

(
s′1
s′2

)
≡
(
s1
s2

)
= |s〉 −→

(
1

0

)
= |H〉 or

(
0

1

)
= |V 〉 (3.4)

provides a helpful insight. One component of the column vector representation of
both |H〉 and |V 〉 is zero. If we manage to find a transformation such that one
component of |s〉 is zero or at least smaller than a given threshold, we have found
a solution regardless of the global phase factor. A simple numerical implementation
of this strategy delivers correct results [49].

After a series of manipulations we also arrive at an analytical formula

α = arctan
(

tan θ cos
ϕ

2

)
, (3.5)

β =
1

2

arctan
(
cos θ sin 2α cos 2α+ sin θ (cosϕ (sin 2α)2 + sinϕ cos 2α

)
1 + cos θ (cos 2α)2 + sin θ sin 2α (cos 2α cosϕ− sinϕ)

, (3.6)
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with Bloch sphere angles θ and ϕ defined by

~s′(θ, ϕ) = cos
θ

2
|H〉+ eiϕ sin

θ

2
|V 〉 . (3.7)

Scenario III: Arbitrary to arbitrary single-qubit transformation

Apparently, the numerical procedure of Scenario II works only on the special cases–
|H〉 or |V 〉 –where the target state vector |t〉 has one zero component. What about
transformations from some arbitrary to another arbitrary single-qubit state? From
(2.6) we know that three wave plates should suffice

qwp(γ) hwp(β) qwp(α)

(
s′1
s′2

)
≡
(
s1
s2

)
= |s〉 −→

(
t1
t2

)
= |t〉 . (3.8)

Let us try to adopt the previous numerical approach to this problem. When the
corresponding components, s1 = t1 and s2 = t2, are the equal, |s〉 and |t〉 represent
the same state. Minimizing the sum of the absolute values of the differences

min
α,β,γ

|s1 − t1|+ |s2 − t2| (3.9)

would give a valid solution. But the potential global phase factor complicates the
situation. Suppose that |t〉 = |D〉 = 1√

2

(
1
1

)
; a set of angles {α, β, γ}, producing

|s〉 = 1√
2

(
i
i

)
is a correct solution. However, the minimization (3.9) returns∣∣∣∣ i√2

− 1√
2

∣∣∣∣+

∣∣∣∣ i√2
− 1√

2

∣∣∣∣ = 2 . (3.10)

This solution is likely to be missed as many wrong angles lead to smaller values. To
ensure a trustworthy result one would require (3.9) to be less than some threshold,
certainly smaller than 2.

The problem is obviously due to a different global phase in |s〉 and |t〉. To cope
with it we must bring them into a standardized form. One component of |s〉 can
always be made a real number by multiplying it with κ = e−arg(s1). This has the
effect of setting a default phase factor of +1. Without loss of generality we can
assume |t〉 also to have this form, as it is chosen by the experimenter. The adapted
method

min
α,β,γ

|κs1 − t1|+ |κs2 − t2| (3.11)

returns valid solutions for all but a single case. When |t〉 = |V 〉, the described phase
problem persists2. Fortunately, this issue is easy to resolve, as we can fall back to
the solution of scenario II whenever this happens.

2For s1 = 0 the introduced global phase is hidden and κ is unable to bring |s′〉 to the standard
form with phase +1.
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The closed-form solution we found for measuring in an arbitrary basis suggests
that one can also find a solution for this problem. From (3.6) we know how to use a
qwp to transform a general state to a linear-polarization state. When we apply this
technique from both ends, |s′〉 and |t〉, we receive two states located in the x-z plane
of the Bloch sphere. The intermediate hwp can map two such states onto each other.
Appendix B contains a Mathematica3 implementation of the outlined strategy.

3.2 A demonstration

We have acquired the means to perform any single-qubit transformation with just
three wave plates. For each case, the initially unknown angles, α, β and γ, can be
determined.

This calls for a demonstration. Consider two randomly chosen states

|s′〉 =

(
0.979

−0.142− 0.148i

)
α,β,γ−→ |t〉 =

(
0.892

0.404− 0.202i

)
,

scattered around the Bloch sphere; see Figure 3.1a and 3.1d. We find

α = 90.8036, β = 18.2966 and γ = 18.8240 .

It is instructive to visualize each step of the transformation individually. Figure 3.1
shows the intermediate Bloch vector after the application of each wave plate.

To confirm the correctness of the angles, the experimentally obtained density
matrices of the input state, |s′〉, and the final state are compared in Figure 3.2
and 3.3. Note the nonvanishing imaginary parts also in the theoretical values (cones).
The state fidelities FS between experimental and theoretical data4

|s′〉 : FS = 99.3%, [98.8; 99.7] and |t〉 : FS = 99.6%, [98.0; 99.9]

express a high level of agreement.

3http://www.wolfram.com/mathematica/
4The fidelity is restricted to the interval [0; 1]. Close to the boundaries its distribution is

insufficiently described by a Gaussian fit. Instead, a bounded Johnson distribution [50] was used.
A confidence interval containing approximately 68% of the values is given in brackets.
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(a) Input state: |s′〉 →

(b) Intermediate state 1: after qwp(α) → (c) Intermediate state 2: after hwp(β) →

(d) Final state

Figure 3.1: The transformation process visualized on the Bloch sphere. For each step the
resulting Bloch vector is shown.
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ÈH\XHÈ

ÈH\XVÈ

ÈV\XHÈ

ÈV\XVÈ
0.0

0.5

(a) Input state density matrix - Real

ÈH\XHÈ

ÈH\XVÈ

ÈV\XHÈ
ÈV\XVÈ

-0.1

0.0

0.1

(b) Input state density matrix - Imaginary

Figure 3.2: Theoretical (cones) and experimental (bars) density matrices of input state |s′〉.
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ÈH\XHÈ

ÈH\XVÈ

ÈV\XHÈ

ÈV\XVÈ
0.0

0.2

0.4

0.6
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(a) Final state density matrix - Real

ÈH\XHÈ

ÈH\XVÈ

ÈV\XHÈ
ÈV\XVÈ

-0.1

0.0

0.1

0.2

(b) Final state density matrix - Imaginary

Figure 3.3: Theoretical (cones) and experimental (bars) density matrices of the state after
applying Uqhq = qwp(γ) hwp(β) qwp(α) to |s′〉. The angles α, β and γ were determined by
the described method.





Chapter 4

Experimental realization of a
Controlled-not gate

Inspired by its classical counterpart a circuit model for quantum computation was
developed [19, 20]. In this scheme an algorithm is implemented via unitary transfor-
mation of a quantum state representing the input register. In analogy to a classical
computer– e.g. nand –a set of operations (gates) is sufficient to construct a uni-
versal quantum computer capable of implementing generic quantum algorithms. As
explained in more detail in [51] the set of all single-qubit unitaries together with
a two-qubit gate1– e.g. cnot –is universal for quantum computation. In brief; a
quantum process on an input register of N qubits may be decomposed into smaller
entities, because the corresponding multi-qubit unitary can be written as a product
of operators that each act non-trivially only on a two-dimensional subspace. Single-
qubit and cnot gates, on the other hand, suffice to implement any such two-level
unitary operation.

4.1 Properties of the cnot gate

A controlled two-qubit operation assigns different roles to either qubit. One qubit
(usually the first) is referred to as control qubit. Its state– a superposition of
|H〉 : |0〉 : false and |V 〉 : |1〉 : true –controls the operation applied to the other
qubit, the target qubit. Apart from the already mentioned cnot, we look at an-
other controlled gate called2 csign. Their operation can be written as 4× 4 unitary
matrices

1Single qubit unitaries alone are not enough because some sort of interaction is needed to
create entanglement between qubits. Interestingly the mere presence of entanglement is not enough
to gain the exponential speedup of some quantum algorithms either. As can be inferred from
the Gottesman-Knill theorem [52] it is necessary to include gates outside the Clifford group for an
algorithm not to be efficiently simulable on a classical computer, i.e. in the stabilizer formalism [53].

2sometimes cphase

23
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csign =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (4.1)

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.2)

or visualized in BraKet notation:

|ψ〉 = cHH |H1H2〉 + cHV |H1V2〉 + cV H |V1H2〉 + cV V |V1V2〉

csign |ψ〉 = cHH |H1H2〉 + cHV |H1V2〉 + cV H |V1H2〉 − cV V |V1V2〉 (4.3)

The csign gate inflicts a sign flip on the amplitude cV V and acts as an identity
operation on the other components.

|ψ〉 = cHH |H1H2〉 + cHV |H1V2〉 + cV H |V1H2〉 + cV V |V1V2〉

cnot |ψ〉 = cHH |H1H2〉 + cHV |H1V2〉 + cV V |V1H2〉 + cV H |V1V2〉 (4.4)

The cnot gate interchanges the amplitudes cV H and cV V , while leaving cHH and
cHV in place.

A different naming convention refers to csign and cnot by cz and cx, re-
spectively, as they apply controlled Pauli z and x operations on the target qubit.
This almost immediately lets us understand the identity relation established by local
Hadamard gates3

where the symbol on the left hand side corresponds to a cnot in the circuit repre-
sentation.

With photons any experimental implementation of one of them, is equally suitable
to obtain the other. Transformation is a simple matter of adding a pair of wave plates.

4.1.1 Implementation scheme

A compact scheme for a csign gate has been formulated in [54, 55, 56]. Sec-
tion 5.2 compares several existing architectures and explains the advantages of this
choice. The working principle of the gate unfolds by looking at the properties of a

3The Hadamard gate h = 1√
2
(x + z) transforms between the H/V and D/A basis.
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Figure 4.1: Basic idea for the implementation of a csign gate. Two photons entering a
PDBS can exhibit four possible exit configurations. Postselecting for coincidence detections
from both arms hides the spurious r-t and t-r cases. Below each scenario the possible coin-
cidences are listed. As reflected photons pick up a phase factor, the V V term from r-r and
t-t have opposite signs.

polarization-dependent beam splitter (Figure 4.1). When a pair of photons, one at
each input port, is subjected to a PDBS four possible scenarios occur:

r-t : The first photon is reflected and the second is transmitted.

t-r : The first photon is transmitted and the second is reflected.

r-r : Both photons are reflected.

t-t : Both photons are transmitted.

A few important observations can be made. Firstly, the cases r-t and t-r lead to a
different detection pattern than r-r and t-t. Assuming that both output ports are fed
into separate detectors, the former cases will never trigger a simultaneous detection
as both photons exit through the same output port. For the latter, the situation is
reversed, it will always lead to a coincident detection.

Secondly, due to the asymmetric behaviour of a PDBS– H-polarized photons are
transmitted, while V -polarized photons have a certain chance of being reflected –the
r-r case can only occur when both photons have a nonzero V -polarization amplitude.
Additionally, the reflected photons pick up a phase shift. This selectively applies a
minus sign to the |V V 〉 term of the corresponding two-photon state, as it is expected
from a csign gate.

A V V coincidence without the phase change can, however, also happen in the
course of a t-t event. When both cases– r-r and t-t –interfere the effective amplitude
can be tuned by setting the V -polarization transmission probability of the (main)
PDBS. The r-t and t-r events do not contribute to coincidence detections.

Another aspect that we will have to consider is that due to the interference the
amplitudes of |HH〉 , |HV 〉 , |V H〉 and |V V 〉 are different. To faithfully implement a
csign operation they have to stay equal. Accordingly, we must use some component
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that can selectively attenuate the amplitudes. This can be done by another two
(attenuation) PDBS placed in each arm of the setup.

4.1.2 Optimal components

Starting from a general two-qubit state |ψ〉 = cHH |H1H2〉+cHV |H1V2〉+cV H |V1H2〉+
cV V |V1V2〉, where the index suggests that the photons are in two separate modes, 1
and 2, a first PDBS (main) has the following effect

|H1〉 −→ τH |H1〉 + i κH |H2〉
|H2〉 −→ τH |H2〉 + i κH |H1〉
|V1〉 −→ τV |V1〉 + i κV |V2〉
|V2〉 −→ τV |V2〉 + i κV |V1〉

τX ≡
√
TX , κX ≡

√
RX with X = {H,V }

where TX/RX is the corresponding transmission/reflection probability forX-polarized
light. Characteristic to a measurement-induced nonlinearity is that we choose to only
look at coincidence detections, i.e. when there is a simultaneous click at both the
control and the target arm4. With any term containing two identical indices already
sifted out, the calculation yields5

|ψ′〉 = (cHH τHτH − cHH κHκH) |H1H2〉
+(cHV τHτV − cV H κHκV ) |H1V2〉
+(cV H τHτV − cHV κHκV ) |V1H2〉
+(cV V τV τV − cV V κV κV ) |V1V2〉 (4.5)

This is of course only possible as soon as no further element in the setup can transfer
a photon from one arm to the other.

Each arm is then subjected to another PDBS (attenuator), of which the reflected
port is committed to a beam dump. Whenever one photon on either side suffers
this fate no coincidence can occur and the corresponding terms can be left out. In
general the transmission/reflection amplitudes of these PDBS can be different from
the first, hence we prime them

|ψ′′〉 = (cHH τHτHτ
′
Hτ
′
H − cHH κHκHτ ′Hτ ′H) |H1H2〉

+(cHV τHτV τ
′
Hτ
′
V − cV H κHκV τ ′Hτ ′V ) |H1V2〉

+(cV H τHτV τ
′
Hτ
′
V − cHV κHκV τ ′Hτ ′V ) |V1H2〉

+(cV V τV τV τ
′
V τ
′
V − cV V κV κV τ ′V τ ′V ) |V1V2〉 . (4.6)

4When a polarization-aware detector setting (cf. Figure 2.5) is used, this corresponds to the
situation when one and only one detector of each arm is firing.

5As was mentioned beforehand, the two cases r-r and t-t must interfere for the scheme to work.
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As can be seen from (4.3) a csign scales (the modulus of) all amplitudes equally for
any cHH , cHV , cV H and cV V . The only nontrivial solutions require either κV = 0 or
κH = 0. Choosing the latter the transmission/reflection amplitudes must fulfil the
following condition

τHτHτ
′
Hτ
′
H

!
= τHτV τ

′
Hτ
′
V

!
= −(τV τV τ

′
V τ
′
V − κV κV τ ′V τ ′V ) (4.7)

apart from the restrictions due to the transmission/reflection probabilities: 0 <
TX , RX ≤ 1 and TX + RX ≤ 1. Note the additional minus sign in front of the
last term forming the csign operation. κH = 0 already implies τH = 1, leaving
0 < τ ′H ≤

1√
3
, τV = 1√

3
and τ ′V =

√
3τ ′H .

What value should we choose for τ ′H? To answer this question we must first
determine what an optimal value should do. Scaling the amplitudes in (4.3) by a
constant factor f means that only a fraction of the photons is observed at the control
and target outputs. This reduces the probability of a successful gate operation by
the square of that factor

ρ
csign−→ (f × csign) ρ (f × csign)† = f2 × (csign ρcsign†), (4.8)

where ρ is the density matrix of some two-qubit state. The optimal value would
therefore be f = 1. From (4.7) we see that f(τ ′H) = τ ′2H , therefore τ ′H = 1√

3
⇒ f = 1

3

is our best option. Accordingly, the setup is expected to apply a successful csgin
operation in one ninth of the cases (= 11.1̄%).

This is another consequence of the measurement-induced nonlinearity scheme.
In most cases the desired operation can only be realized with a certain chance; the
gate becomes probabilistic. Fortunately, there is a clear distinction between correct
and incorrect runs. A successful gate operation is unambiguously indicated by a
coincidence detection.

In Table 4.1 the transmission and reflection probabilities corresponding to f = 1
3

are given,

|ψ′′〉f= 1
3

=
1

3
|H1H2〉+

1

3
|H1V2〉+

1

3
|V1H2〉 −

1

3
|V1V2〉 . (4.9)

4.1.3 Modelling imperfect components

Now that we know what properties ideal components should have, it is advisable to
study the impact of deviations from these values on the gate. Let us therefore review
the gate’s performance under the influence of imperfect components.

Considering the transmission probability TV of the main PDBS as a free param-
eter affects the operation of csign on an arbitrary input state ρ in the following way
(cf. (4.6))
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Main PDBS:
TH = 100% TV = 33.3̇%

RH = 0% RV = 66.6̇%

Attenuation PDBS:
T ′H = 33.3̇% T ′V = 100%

R′H = 66.6̇% R′V = 0%

Table 4.1: Optimal values of transmission and reflection probabilities for the PDBS to be
used in the csign setup.

ρ −→ W ρW †, where W (TV ) =


1
3 0 0 0

0
√

TV
3 0 0

0 0
√

TV
3 0

0 0 0 2TV − 1

 . (4.10)

This model is equally valid for a cnot gate implemented by (1⊗H) ·csign ·(1⊗H),
where the single-qubit Hadamard is assumed to be perfect.

The process fidelity Fp is a suitable benchmark parameter6 to quantify the per-
formance of a gate. In Figure 4.2 its dependence on the transmission probability
of the main PDBS is shown. The simulation verifies the ideal value of TV = 1

3 we
derived earlier. Apart from that it prognoses a moderate degradation when the ratio
deviates from that value.

Similar considerations can be given to the influence of the attenuating PDBS.
Here the roles of H- and V -polarized light are interchanged. The effect of a variable

6for a definition see (4.30)
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Figure 4.2: Simulating the cnot process fidelity for a varying transmission probability TV
of the main PDBS.

transmission probability T ′H is modelled by

ρ −→ W ′ ρW ′†, where W ′(T ′H) =


T ′H 0 0 0

0

√
T ′H
3 0 0

0 0

√
T ′H
3 0

0 0 0 −1
3

 . (4.11)

The required precision of these components are less demanding (see Figure 4.3).
In particular a transmission probability greater than 1

3 only gradually lowers the
gate’s performance.

In Figure 4.4 imperfect transmission probabilities for either PDBS are considered
(axes). A lighter shading corresponds to a higher cnot process fidelity. The contour
lines represent a lower bound for Fp inside the enclosed region.

4.1.4 Modelling imperfect interference

Until now we tacitly assumed that interference is perfect. In an experimental sit-
uation partial mode overlap and distinguishability between the possibilities t-t and
r-r is expected to cause undesired behaviour. Let us swap the viewpoint and take
this aspect into account. Both cases– t-t and r-r –can be described individually
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Figure 4.3: Simulating the cnot process fidelity for a varying transmission probability TH
of the attenuation PDBS.

by [55, 37, 57]

Mtt =


1
3 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3

 (4.12)

Mrr =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

3

 (4.13)

In the domain of interference both matrices add up, i.e. interaction happens on
amplitude level and the correct csign operation is performed. Distinguishability
leads to an incoherent mixture of Mtt and Mrr

ρ −→ M ρM † = Q (Mtt +Mrr) ρ (Mtt +Mrr)
†

+ (1−Q) (Mtt ρM
†
tt +Mrr ρM

†
rr) . (4.14)

The probability of each event is determined by Q, a factor that quantifies the amount
of distinguishability introduced in Section 4.2.2. We immediately make two obser-
vations: (i) the terms |HH〉 , |HV 〉 and |V H〉 are not affected by Q. The gate will
continue to operate as an identity gate. Here the photons are always transmitted
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Figure 4.4: A simulation of the effect of imperfect PDBS on the cnot process fidelity.
The transmission probability, TV , of the main PDBS and, TH , of the attenuation PDBS
are varied simultaneously. The labels denote the process fidelity in the enclosed region for
a given TV and TH . A lighter shading corresponds to a better process fidelity. For either
parameter the ideal value is 1

3 .
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and interference plays no role. (ii) For |V V 〉 the situation is quite different: When
Q = 0 there is a chance of |13 |

2 + |− 2
3 |

2 = 5
9 for a V V -coincidence, while for Q = 1 it

is reduced to |13 −
2
3 |

2 = 1
9 . Hence, in contrast to the ideal csign, in this model pure

states will in general be mapped to mixed states. Regarding the previous section,
Figure 4.5 simulates the effect of Q on the process fidelity FP .
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Figure 4.5: A simulation of the cnot process fidelity based on the model (4.14) for partial
interference.

4.2 Experimental realization

A comprehensive description of how to build this type of gate is found in [57]. Some
additional comments specific to our implementation are given in the following section.

4.2.1 Construction notes

Coupler stability

Approximately place two input couplers and four output couplers for polarization
analysis on a breadboard as depicted in Figure 4.6. During the initial steps of
alignment a diode laser with the correct wavelength can be used. At this moment
it is a good idea to shine the laser through each of the six couplers and focus the
beam at a wall a few metres away. By that the beam is equally collimated among
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Figure 4.6: A detailed sketch of the PDBS-based cnot gate. One of the input couplers
is attached to a motorized translation stage for adjusting the path length. Half-wave plates
at 22.5◦ apply a Hadamard gate on the target qubit. This changes the gate operation from
csign to cnot. Both input beams are superimposed at the main PDBS. The reflected modes
of a second pair of PDBS (attenuation) are committed to beam dumps. Four detectors are
used for efficient polarization measurements.
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the couplers, which considerably eases coupling and later on will lead to good mode
overlap.

One of the input couplers is mounted on a motorized stage providing the freedom
to translate along the beam direction. The intensity should stay as constant as
possible, while moving the motorized stage from one end to the other (Figure 4.7).
Once this is achieved the motorized input coupler should not be moved anymore.
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Figure 4.7: Moving the motorized coupler from on end to the other. The intensity should
not change considerably over this period. The vertical grid lines mark bins of 0.4mm. This
is approximately the spacial extension of the HOM-dip as can be seen in Figure 4.9.

Placing the main PDBS

Now it is time to insert the main polarization-dependent beam splitter (see Ta-
ble 4.1). Both input beams will be superimposed at its position. We can use it
to align the remaining couplers. First send the laser beam through the motorized
coupler and optimize each output coupler. Then use the second input coupler. It
is important to remember that the output coupler cannot be moved, as this would
destroy the coupling with the first coupler. Therefore only adjust the second input
coupler to increase coupling. If necessary repeat both steps iteratively. Hereafter
the transmitted part of one and the reflected part of the other input beam should
be overlapping.

To assure the correct reflection/transmission probability ratio of the PDBS (RVTV =
2) make sure the laser beam is vertically polarized and check the output intensities
of each side. If the PDBS does not show the optimal ratio by default it can be tuned
by slightly rotating it about the z axis [57]. Keep in mind that this destroys the
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orthogonal placement of couplers. Switch to the second input coupler; the PDBS
must have the correct splitting ratio for both input couplers simultaneously.

Placing the attenuation PDBS

Two more PDBS, one in each arm, are used to equalize the amplitudes of H- and
V -polarized light. Therefore the roles of H and V must be interchanged, either by
prepending a hwp set to 45◦ or, alternatively, rotating the whole PDBS by 90◦.
Obviously, the ratio of the attenuation PDBS cannot be set directly. To align them
send in D-polarized light and adjust their position such that the combination of main
and attenuation PDBS leaves D-polarized light unchanged [57].

Single-photon source

The laser diode must now be exchanged with a single photon source as described
in Section 2.1. Usually, it is necessary to overhaul the coupling at this point. If
not already done so, any additional elements that will be required in the final setup
should be added now. In particular you would not want to put in any components
that cause a phase shift afterwards.

Finding the Hong-Ou-Mandel dip

The functioning of the gate is based on a second-order interference between the
cases of t-t, both photons transmitted, and r-r, both photons reflected. The indistin-
guishability of these two alternatives can be set by monitoring the V V -coincidence
count rate. While there is no interference the chance of getting a V V -coincidence
is 5

9 . Translating the motorized input coupler changes the relative phase difference
between both inputs. Once the r-r and t-t case start interfering a decrease in the V V
counting rate is observed (see Figure 4.9), reaching a minimum for perfect indistin-
guishability. At the optimal position V V -coincidences occur only with a 1

9 chance;
the HOM-dip visibility

Vhom = 1− min
max

= 1−
1
9
5
9

=
4

5
= 80% (4.15)

reaches its maximum of 80%. If the dip position lies not within the range of the
motorized translation stage there are two options: (i) translate the position of the
other input coupler or (ii) deliberately induce a phase shift by placing additional
components in one arm. It is also possible to utilize differences in the introduced
phase shifts between symmetric components already present in the setup, e.g. swap
two wave plates.

To optimize interference send in D-polarized light to both arms. Then try to
slightly deadjust the output couplers such that they see only the part of the beam
that overlaps. When done correctly the number of HH and V V coincidences, corre-
sponding to the t-t and r-r case, respectively, will equalize. Note that while this has
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a positive effect on the HOM-dip visibility, it might cause a decrease in the overall
count rates.

This concludes the alignment process. A picture of the fully assembled setup is
shown in Figure 4.8.

Figure 4.8: A picture of the completed setup.

4.2.2 Components

It is useful for later analysis to assess the quality of the individual components.

Polarization-dependent beam splitters

In Section 4.1.2 the optimal reflection/transmission probability ratio of the PDBS
RV
TV

= 2 ↔ TV = 1
3 , RV = 2

3 was determined. In general such components are avail-
able for purchase. Depending on the specified wavelength it might be necessary to
rotate the PDBS about the z axis to achieve the desired ratio. While the transmission
probability is quite unaffected by the angle of incident, a small change is observed
for the reflection probability. During alignment with a diode laser the ratio can be
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determined

RV
TV

= 1.99± 0.03

⇒ TV = 0.334± 0.05 .

Unfortunately, later on, when using a single-photon source, searching for the HOM-
dip may require changing the angle of the input couplers. With all components at
their places, several error sources– detectors, wave plates, attenuation PDBS, etc. –
make it difficult to reliably readjust the ratio.

Hong-Ou-Mandel dip

A motorized translation stage can be utilized to move one of the input couplers along
the direction of the beam path. By changing the position the relative phase difference
between the input modes is varied. Figure 4.9 shows the expected behaviour of the
V V -coincidence counting rate n. The dip-function is described by [57]

n(x) = const.×
(

1− Vhom e
−
(
x−x0
L

)2)
, (4.16)

where Vhom is the HOM-dip visibility (cf. (4.15)), x the coupler position and L the
FWHM of the dip. We further define the HOM-dip quality factor

Q ≡ Vhom

0.8
, (4.17)

taking into account the maximal visibility Vhom = 80%.
Note that the number of spurious multi-pair emissions greatly influences the

HOM-dip visibility. Figure 4.10 plots Vhom against the pump laser power that sets
the probability of such events: increasing power increases the chance.

For the characterization of the gate the pulsed pump laser was set to an average
power of I = 0.15W , resulting in

Vhom = 75.1± 0.5%

⇒ Q = 93.9± 0.7% .

4.3 Testing the gate: Indicative measures

During alignment it is necessary to repeatedly check the current status of the gate
to evaluate the progress. A full quantum process tomography, as described in Sec-
tion 4.5.1, involves an increasingly large number of measurements. Though it is
the only comprehensive analysis of a gate’s properties, some insight can already be
gained by looking at simpler measures.



38 Chapter 4 : Experimental realization of a Controlled-not gate

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3
0

2000

4000

6000

8000

10 000

Position @mmD

C
oi

nc
id

en
ce

s

Figure 4.9: Experimentally determined HOM-dip in V V coincidence counting rate.
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Figure 4.10: Influence of the SPDC pump laser power on the HOM-dip quality factor.
Increasing power increases the number of spurious higher-order emissions that wash out the
visibility of the dip.



4.3. Testing the gate: Indicative measures 39

4.3.1 Truth table

A good starting point for any gate is to evaluate its truth table. A truth table lists
the output of a given operation for each basis state. Table 4.2 and 4.3 show the truth
tables of csign and cnot, respectively. Experimentally the best approximation to
a truth table is to make a statistic and calculate output state probabilities for each
input. Obviously this makes some truth tables less suitable than others. For instance
the sign flip in the csign truth table is lost, whereas the cnot remains conclusive.

csign Output
|HH〉 |HV 〉 |V H〉 |V V 〉

In
p
u
t |HH〉 1 0 0 0

|HV 〉 0 1 0 0
|V H〉 0 0 1 0
|V V 〉 0 0 0 -1

Table 4.2: csign truth table

cnot Output
|HH〉 |HV 〉 |V H〉 |V V 〉

In
p
u
t |HH〉 1 0 0 0

|HV 〉 0 1 0 0
|V H〉 0 0 0 1
|V V 〉 0 0 1 0

Table 4.3: cnot truth table

For the cnot gate the experimental results are shown in Figure 4.11 with num-
bers given in Table 4.4. A first observation yields that there is a certain chance that
the cnot is replaced by an identity operation, visible in the terms where the control
qubit is set to |V 〉.

The inquisition I [58]

I =
Tr[Texp T Tid ]

Tr[Tid T Tid ]
(4.18)

is a measure of the overlap between the ideal Tid and the experimental Texp truth
table– cnot: I = 92.5± 0.3%.

A truth table is by no means a complete description of a gate operation. A
general two-qubit input can live in an arbitrary superposition of the basis states or
a mixture of these. An interesting feature is that for certain (product state) inputs
a cnot outputs a maximally entangled state, e.g.

|A〉 ⊗ |V 〉 cnot−→ = |ψ−〉 =
1√
2

(|HV 〉 − |V H〉). (4.19)



40 Chapter 4 : Experimental realization of a Controlled-not gate

cnot Output
|HH〉 |HV 〉 |V H〉 |V V 〉

In
p
u
t |HH〉 0.980 0.005 0.012 0.003

|HV 〉 0.000 0.982 0.000 0.018
|V H〉 0.001 0.001 0.111 0.887
|V V 〉 0.001 0.008 0.853 0.138

Table 4.4: Experimental cnot truth table. Errors are less than 0.003.

ÈVV\ ÈVH\ ÈHV\ ÈHH\

(a) Input: |HH〉

ÈHH\ ÈVH\ ÈVV\ ÈHV\

(b) Input: |HV 〉

ÈHH\ ÈHV\ ÈVH\ ÈVV\

(c) Input: |V H〉

ÈHH\ ÈHV\ ÈVV\ ÈVH\

(d) Input: |V V 〉

Figure 4.11: Experimentally determined cnot truth table. In each graph (a)-(d) a different
computational basis state is used as input. The observed fractions after the cnot operation
are shown in the pie chart. The white slice always corresponds to the theoretically expected
output, whereas the gray parts belong to spurious outcomes as labelled below each subfigure.
Numbers are given in Table 4.4.
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This procedure can also be reversed, hence a cnot gate is a fully capable Bell state
analyser [59, 54].

4.3.2 Bell state visibility

Entanglement production is with no doubt one of the hardest tasks a quantum gate
must perform and can thus be prolonged as a good indication of the gate’s general
performance. Entangled states express nonclassical correlations; ideally a |ψ−〉 will
only trigger HV and V H coincidence detections. A quick way of checking is to look
at the Bell state visibility

VB =
(−1)ψ (CHH − CHV − CV H + CV V )

CHH + CHV + CV H + CV V
, (4.20)

where ψ = 0(1) if the input Bell state is |φ±〉 (|ψ±〉) and CXY is the number of
clicks belonging to a XY coincidence, X,Y = {H,V }. Unity visibility characterizes
an ideal cnot gate. A commendable test is also to compute VB for other bases.
Table A.3 in the appendix lists the correlations of the four Bell states in the D/A
and R/L basis. In Table 4.5, below, the average visibilities of all Bell state outputs
from the cnot are given.

H/V D/A R/L

VB 85± 6% 83± 2% 78± 9%

Table 4.5: Bell state visibility in the standard bases.

4.4 Testing the gate: State measures

A more quantitative picture of the output states’ properties can be made, once we
have assembled a full description of these states.

4.4.1 Quantum state tomography

The purpose of quantum state tomography (QST) is to reconstruct the density matrix
ρ of an unknown quantum state. That is to gain a complete representation of the
state and its properties. The theoretical foundation of this procedure is described in
[51, 41] and can be adopted to many quantum systems, including photonic qubits.
In Figure 4.12 the idea of QST is depicted schematically.

From the no-cloning theorem [60] it is apparent that this technique requires more
than a single copy of a state to function. In general the tomographic set for a N -qubit
state consists of 4N measurements and, consequently, at least that many copies of a
state are needed. For example the polarization degree of freedom of a photon can
be reconstructed by 4 measurements, e.g. in H,V,D and R direction [61]. However,
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Figure 4.12: A schematic drawing of quantum state tomography. For an unknown input
state, the density matrix can be reconstructed by performing a tomographic set of measure-
ments.

in the lab, when applied to experimental data, this method typically fails to deliver
a physical7 density matrix. The observed finite counting statistic does not always
belong to a valid state. To avoid this problem one can employ a maximum likelihood
strategy8. The approach differs in that rather to algebraically compute ρ, it attempts
to answer the question: What is the physical density matrix most likely to yield a
set of measurements outcomes? Physicality is enforced by parametrizing ρ(~t) such
that it automatically fulfils its requirements [61]. The search is limited to only this
set of density matrices.

How can the above question be translated into a mathematical form? If one can
assume that the underlying set of data {nb}, e.g. the number of clicks at the detector
for each measurement basis Mb, was collected independently and forms a sufficiently
large statistic9, the probability of obtaining a certain measurement result is approx-
imately Gaussian distributed. The standard deviation, σnb '

√
nb, can be estimated

by the Poisson error. The joint probability of the whole set of measurements is then
the product of the probabilities of all independent submeasurements

P~t(nb) =
∏
b

exp[−(nb − n̄b)2

2σ2nb
] . (4.21)

The parameters ~t are included via n̄b = N × Tr[Mb ρ(~t)] and N is the total number
of counts in a measurement setting. The set ~t that maximizes the likelihood function
(4.21) specifies the density matrix ρ(~t) closest to the observed measurement data.
From the viewpoint of implementation it is favourable to minimize the negative
logarithm of the likelihood function instead, which has no effect on the optimal
parameters ~t.

7A density matrix ρ is physical, i.e. a normalized, Hermitian, positive-semidefinit operator, if it
fulfils the conditions: Tr ρ = 1, ρ = ρ†,Eigenvalues : 0 ≤ λ ≤ 1 and Σλ = 1.

8It is not without difficulties either: while the experimental data leads to an unphysical density
matrix of questionable value, the valid one, returned by this method, can only be a fit to the original
data.

9According to the central limit theorem the Poisson distribution f(x;n) = nxe−n

x!
becomes

approximately normal for large values of n, the mean value.
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As a final remark to this section Table A.4 and A.5 in the appendix list an efficient
setting for overcomplete10 two-qubit QST that requires to change only the angle of
a single wave plate between measurements. For details see the tables’ captions.

4.4.2 State measures

Quantum state tomography provides us with a density matrix ρ reconstructed from
experimental data. We can use this representation to further analyse the properties
of the states created by the cnot process.

An ideal cnot operation maps pure states onto pure states. It is instructive to
test this attribute for the experimental gate. A suitable measure is linear entropy

SL(ρ) =
N

N − 1
Tr[ρ2]. (4.22)

For a two-qubit state the dimension N = 4. Linear entropy is a simplified version
of the von Neumann entropy and as such a measure of the degree of mixedness in a
quantum state. A totally mixed state has SL = 1, while a pure state computes to
SL = 0.

The other important aspect we want to review again is the creation of entangle-
ment. There are several measures that quantify entanglement and a comprehensive
summary of their differences can be found in [62]. Representative to them, we con-
sider entanglement of formation EF which has a closed form in the two-qubit case
[63] and is suitable to pure and mixed states likewise.

As an intuitive reference, Figure 4.13 shows a simulation of both linear entropy
and entanglement of formation for the Werner states

ρW (k) = (1− k)
ρ1
4

+ k ρψ− , k ∈ [0, 1]. (4.23)

The Werner states, parametrized by k, gradually transform from k = 0, a totally
mixed state ρ1, staying separable until k = 1

3 , to a pure, maximally entangled Bell
state ρψ− when k = 1. As is required from any general entanglement measure,
entanglement of formation is zero for separable states and nonzero when there is en-
tanglement present. Furthermore, it reaches its maximum for the maximal entangled
Bell states.

Finally, as a simple measure of the overlap between the expected and the mea-
sured output states, we look at the state fidelity expressed in its general form for
two density operators [64]

FS(ρ, σ) = Tr
[√√

ρ σ
√
ρ

]2
. (4.24)

10The quality of the fit benefits from using 6N instead of the minimal 4N measurement set-
tings [41].
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Figure 4.13: Simulation of linear entropy (dashed) and entanglement of formation (solid)
for the Werner states. k = 1 is a totally mixed state, SL = 1, with no entanglement. k = 0
is a pure, SL = 1, maximally entangled state.

Input Output FS SL EF

|HH〉 |HH〉 97.3± 0.2% 4.3± 0.6% 2.8± 0.6%
|DD〉 |DD〉 97.3± 0.2% 4.6± 0.6% 2.7± 0.7%
|DV 〉 |ψ+〉 85.3± 0.5% 28± 1% 78± 2%

|DR〉 (
σy+σz√

2
⊗ 1) |φ−〉 86.6± 0.6% 23± 1% 77± 1%

Table 4.6: Experimental values of fidelity, linear entropy and entanglement of formation
for some exemplary states produced by the cnot gate.

Unsurprisingly, the gate works a lot better for inputs that are only subjected to an
identity transformation (see Table 4.6). The increased linear entropy suggests the
presence of the mixing effect due to imperfect interference as prognosed by the model
of Section 4.1.4.

4.4.3 Error estimation

The errors for all measures were estimated by Monte Carlo simulation. To model a
photon counting statistic the procedure is outlined below:

1. Calculate the Poisson standard deviation,
√
nb, for each data point, nb, corre-

sponding to the number of clicks.
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2. Generate a random sample, i, of fluctuated data points, ñb, from a Gaussian
distribution with standard deviation σb =

√
nb.

3. Perform a maximum likelihood QST for the fluctuated data to gain ρ̃i.

4. Calculate any relevant physical quantity, f(ρ̃i), using the reconstructed density
matrix and save the result.

5. Repeat steps 2. to 4. a large number, M , times.

6. For the set of M simulations evaluate the standard deviation and use it as an
error estimate for the physical quantity f .

As QST is a computationally intensive task an immediate question arises: What is
a sufficient value for M? In [41] it was concluded that 200 is– independent of the
system size –an adequate number of samples to achieve good convergence for the
error estimate. Ideally, convergence should be verified for each measure individually.

Furthermore, it is important to ask what error sources this estimate accounts
for? The number of photons that are collected by a detector varies, and follows a
Poisson distribution, which describes the occurrence of independent random events,
such as the detection of single photons [34]. By randomly selecting the fluctuated
samples from a Poisson distribution the error attributed to the counting statistic is
simulated.

4.5 Testing the gate: Process measures

The measures introduced in the previous sections provide useful insight in the func-
tioning of the studied gate. However, to fully characterize a quantum gate for ar-
bitrary inputs, a complete description of the process itself is needed. This is where
quantum process tomography (QPT) comes into play. As the name already suggests
QST and QPT are two related procedures with similar objectives. It turns out that
QST is used as a subroutine in QPT. Figure 4.14 shows a schematic representation
of QPT. The reader is encouraged to compare it to Figure 4.12 to understand the
differences of both scenarios.

4.5.1 Quantum process tomography

Any quantum process E on an arbitrary input state ρ can be written in the operator-
sum representation (or Kraus representation) as [51]:

ρout ≡ E(ρ) =
∑
k

EkρE
†
k . (4.25)

The operation elements (or Kraus operators)Ek adhere to the condition ΣjE
†
jEj ≤

1, where equality is met by trace preserving maps. For a given process the operator-
sum representation is not unique, yet any valid set {Ek} completely characterizes
the operation.
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Figure 4.14: A schematic drawing of quantum process tomography. For an unknown quan-
tum process, the process matrix χ can be reconstructed by performing QST on each state of
a tomographic set of input states.

To relate different processes to each other it is convenient to choose a fixed
operator basis11 {Ẽj}. By the transformation rule Ei = ΣmaimẼm, we get

E(ρ) =
∑
m,n

χmnẼmρẼ
†
n, . (4.26)

where χmn = Σiaima
∗
in is a completely positive12 Hermitian matrix that describes

the process in the chosen basis. Hence χmn is commonly referred to as process matrix.
The operation elements Ek may be reconstructed from it. Since χmn is positive, it
can be brought to diagonal form χ = UDU † by some unitary operator U . Then

Ek =
√
Dkk

∑
m

UmkẼm (4.27)

are operation elements for E [51].
As was pointed out in Figure 4.14 the setting of QPT contains an initially un-

known process– a black box –which can be studied only by observing its effect on an
arbitrarily chosen input. A basis of linear independent states13, {ρ̃i}, suggests itself
as a reasonable choice. Performing QST on the output E(ρi) of each basis state ρi
contains all necessary information to find

E(ρ) = E(
∑
i

µiρ̃i) =
∑
i

µiE(ρ̃i) , (4.28)

for an arbitrary input. The process matrix can then be inferred by solving a system
of linear equations [51, 58].

11A common choice is the Pauli basis, consisting of mutual tensor products of the Pauli operators
{1,x,y, z}.

12A completely positive map transforms a positive operator, e.g. a density operator, to another
positive operator. In contrast to a positive map this holds true also when acting nontrivially only
on a subspace of the whole system.

13In this context also referred to as a tomographic set of input states.
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Precise implementation of this procedure will run into the same problems already
encountered for QST; the resulting process matrix is likely to be malformed, predict-
ing unphysical states. Alternatively, we can pursue a maximum likelihood strategy.
At this point there seem to be two valid options to proceed:

(i) Use the measured data to reconstruct physical states via maximum likelihood
QST. Then calculate the process matrix algebraically as outlined above.

(ii) Use the measured data to directly infer a physical process matrix in an adapted
maximum likelihood search.

Option (i) comes with the benefit that we can repurpose the implementation
used for QST. A closer look reveals, however, that (i) delivers an unphysical process
matrix:

Eigenvalues@cnotpmI
{-0.0861267, -0.0570671, -0.0462674 , -0.0408027 ,
-0.0250175, -0.019107 , -0.00161173, 0.00698909,
0.0107476, 0.0286284, 0.0383255 , 0.0472131 ,
0.0648666, 0.086464 , 0.122097 , 0.870669 }

Some of the eigenvalues are negative. This is not case for (ii)

Eigenvalues@cnotpmII
{ 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 ,
0 , 0 , 0.00050129, 0.00148846,
0.0087337, 0.0189628, 0.09772420, 0.87259000 },

or the theoretical cnot process matrix

Eigenvalues@cnotpmIDEAL
{ 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 1 }.

Why does method (i) fail? It makes the implicit assumption that any set of physical
output states is related by a physical and consistent process matrix. This seems14 not
to be the case. By performing the maximum likelihood reconstructions independently
for each input, the resulting states randomly drift apart leaving the boundaries of a
consistent set. In (ii) this problem is avoided by obtaining the process reconstruction
in a single unified procedure that restricts its solutions to only completely positive
process matrices.

The downside of any physical process matrix reconstruction is that it yields only
an approximation to the experimental process. Initially, there is no information
about how faithfully it describes the raw data.

14Private discussion with J. Kofler, N. K. Langford and S. Ramelow
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A first attempt is to compare the output states predicted by the reconstructed
process matrix with the experimentally determined output states of the tomographic
set. This returns an average fidelity of 97 ± 2%. However, to be able to compute
the fidelity we used the density matrices of the experimental states. This implicitly
included a maximum likelihood search. So the average fidelity is more a measure
of how much the output states are drifted apart from a consistent set, than it is a
measure of how close the process matrix is to the experimental data.

We need to relate the predictions of the reconstructed process matrix χ̃ directly
to the measurement outcomes. One option is to calculate the residuals

∆ab = pab − Tr[Mb E(ρa)] =

= pab −
∑
m,n

〈b| P̃m |a〉 〈a| P̃n |b〉 χ̃mn . (4.29)

Given the experimentally determined measurement probabilities pab, they contain
the differences between them and the corresponding probabilities predicted from χ̃.
The process, E , represented in the Pauli basis, P̃m, acts on a set of input states,
{ρa}, while a measurement setting, Mb, is applied. A histogram of the residuals is
shown in Figure 4.15. The width of the distribution, σ(∆ab) = 0.044 ± 0.005, gives
an idea of how close the predictions of the process matrix are to the raw data.
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Figure 4.15: A histogram of the differences between measurement probabilities predicted by
χ̃ and those observed in the experiment. The width of the distribution provides information
about the proximity of χ̃ to the data.
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4.5.2 Process measures

Proximity of χ̃ to the experimental data is one part, now we want to study how
well the gate implements the intended cnot operation. We can again evaluate the
average fidelity of the tomographic set. In this case comparing the experimental and
theoretical output states: 90± 7%.

But since we have obtained a description of the process itself, we want to use it
for characterizing the gate. In [65] a set of measures suited for this purpose have
been identified, along with a catalogue of requirements: Most importantly it should
(i) be a metric; (ii) be easy to calculate; (iii) be easy to measure; and (iv) have a
nice physical interpretation.

The process fidelity
Fp(χ̃, χ) ≡ Tr[χ̃ · χ] (4.30)

and the process distance

Dp(χ̃, χ) ≡ Tr[|χ̃− χ|]
2

(4.31)

both match the above criteria. Their physical interpretation is that they bound on
the average probability of error P̄e, i.e. a calculation performed with the gate is opt
fail15 on average less than P̄e,

P̄e ≤ 1− Fp(χ̃, χ), (4.32)
P̄e ≤ Dp(χ̃, χ). (4.33)

These measures evaluated for the cnot gate are

Fp = 86.0± 0.3% ⇒ P̄e ≤ 14.0± 0.3%

Dp = 22.9± 0.6% ⇒ P̄e ≤ 22.9± 0.6% .

Figure 4.16 compares χ̃ to the theoretical process matrix. The ideal cnot with
respect to the Pauli operator basis is real and has 16 nonzero matrix elements. In
Figure 4.17 the relative size of the corresponding elements in χ̃ is shown.

It is difficult to directly interpret the process matrix in an intuitive way, as it
makes sense only in conjunction with the chosen operator basis and for a specific
input state. The size of the χ11 element indicates the increased tendency of the gate
to act as an identity operation

ρout =
∑
m,n

P̃m ρin P̃n χ̃mn (4.34)

m,n=1−→ (1⊗ 1) ρin (1⊗ 1)χ̃11 . (4.35)

15This assumes that a probabilistic gate has successfully functioned in the first place. In our
case this chance is 1/9 and indicated by a coincidence detection.
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Figure 4.16: Comparing the ideal cnot process matrix (wireframe) to the one reconstructed
from experimental data (solid bars). The matrix is represented in the Pauli operator basis
and only the real part is shown. Imaginary parts are smaller than 0.03.
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Figure 4.17: Relative size of ideally nonzero elements in the experimental cnot process
matrix.
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4.5.3 Error analysis

Do these results line up with our expectations? We previously identified two critical
components that are likely to disturb the process: (i) the TV transmission probability
for vertically polarized light of the PDBS and (ii) the HOM-dip visibility, which is
affected by the mode overlap, multiple-pair emissions and how indistinguishable the
cases both photons reflected/transmitted are. The effect of either error source on
the process fidelity Fp has been simulated in Figure 4.2 and 4.5, where the quality of
the latter is expected to have a much greater impact. In Section 4.2.2 we measured
TV = 33.4± 0.5% and evaluated the HOM-dip quality factor to be Q = 93.9± 0.7%.

By virtue of the maximum likelihood technique used for QPT we can determine
the model closest to the data. Instead of parametrizing the process matrix χ̃ such
that it is physical, an already physical model16 χ̃(Q̃) based on the HOM-dip quality
factor is applied. The adapted likelihood function is maximized for Q̃ = 94.001%,
which is in good agreement to the experimentally determined value.

But to assess the validity of this result, we must first examine how close this
model actually is to the data? We can repurpose the earlier approach of calculating
the residuals (4.29) that contain the change in measurement probabilities compared
to the raw data. The width of the distribution (Figure 4.18) is σQ̃(∆) = 0.06± 0.01.
As expected it is higher than the width σ(∆) = 0.044 ± 0.005 corresponding to χ̃
of the QPT maximum likelihood reconstruction (cf. Figure 4.15). Nevertheless, the
model appears to hold a good description of the observed process.
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Figure 4.18: A histogram of the differences between measurement probabilities predicted by
χ̃(Q̃) and those observed in the experiment. The width of the distribution is an estimate of
how close the model describes the raw data.

16see (4.14)





Chapter 5

Increasing the
computational depth

5.1 Universal two-qubit quantum computer

A universal two-qubit quantum computer is a device that can implement any 4× 4
unitary operation U ∈ U(4). It is widely known [66, 67, 68] for a general U to be
decomposable into three cnot gates together with single-qubit unitaries wi

The above circuit is not uniquely determined. Each wi has three free parameters,
making it 24 in total. In contrast, the 4 × 4 unitary matrix we seek to implement,
is characterized by only 16. Any U ∈ U(4) may additionally be transformed to
SU(4) by multiplying it with a global phase (detU)−1/4. The additional constraint,
detU = 1, fixes another parameter, leaving 15 unset. Using this freedom we choose

another valid decomposition. For a particular algorithm the single-qubit unitaries
a, b, c, d as well as the angles α, β, γ for the Bloch rotations Rx and Rz must be com-

53
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puted. The procedure is described in [69]. Refer to Chapter 3 for how to implement
the unitaries with wave plates.

We can try to further lower the resources required on the quantum side. In order
for an algorithm to be useful it must have some return value. The output is obtained
from a measurement on the final state.

We can assume that the measurement will take place in the computational basis
H/V . If otherwise, the basis change can be incorporated into U and the total
matrix decomposed again. This justifies our earlier choice for the wi. A rotation
about the z axis of the Bloch sphere leaves the result of a projective z measurement
unchanged. The final Rz is obsolete and can be removed. The third cnot operation
is now immediately followed by the readout. Prior to this cnot the state of the
computation– some two-qubit state –can be written as |ψ〉 = cHH |HH〉+cHV |HV 〉+
cV H |V H〉+cV V |V V 〉. Measuring control and target qubit in the computational basis
does nothing else than projecting onto one of these four terms. From its truth table
(cf. Table 4.3) we know that the effect of a cnot is to interchange the amplitudes
cV H and cV V . But this operation can be performed in a classical postprocessing
step. Whenever |V H〉 is observed it is counted as |V V 〉 and vice versa. In circuit
language the following holds true

and applied to the full circuit brings us

This is a considerable relaxation to the requirements of a universal two-qubit
quantum computer [69].
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5.2 Towards an experimental implementation

There exist several cnot gate architectures for linear optics [70, 71, 72, 73, 74, 54,
55, 56] shown in Figures 5.2 to 5.5. The working principle of each gate is explained
in the caption. All symbols appearing in the schematic drawings are labelled in
Figure 5.1.

Figure 5.1: The optical elements used in the various cnot architectures.

Figure 5.2: Setup A — is a simple implementation of a destructive cnot that uses only a
PBS operating in D/A basis. The gate’s success is conditioned to the detection of the control
qubit in a specific state [70].

Table 5.1 holds a side-by-side comparison of important features found in the
different cnot gate architectures.

As much as the cnot gates play a crucial part in the universal two-qubit quan-
tum computer, it is necessary to uphold the freedom to perform single-qubit gates in
between. All gate architectures rely on measurement-based nonlinearities and thus
apply some kind of postselection on the detected events. The type of success noti-
fication becomes relevant: single-qubit unitaries in succession to the gate operation
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Figure 5.3: Setup B — temporarily converts control and target qubit to path encoding
[73]. An interferometric structure of BS with transmission probability 2

3 applies a csign
conditioned on a coincidence detection [72, 74]. The gate operation can be changed to cnot
by appending half-wave plates to the target arm (not shown).

Figure 5.4: Setup C — is the cnot gate already presented in Chapter 4. The gate makes
use of PDBSs and a two-photon interference effect to achieve the controlled operation [54,
55, 56].



5.2. Towards an experimental implementation 57

Figure 5.5: Setup D — combines three smaller entities to a feed-forwardable cnot [70, 71].
The parity-check uses a PBS to transfer the value of the qubit in mode cin into mode cout,
provided that its value is the same as that of the second input qubit in mode a. A pair of
ancilla qubits, |φ+〉, assures that the value of the control qubit is also encoded to mode b.
Together with the target qubit it is committed to the destructive cnot of setup A.

alter the state of the qubits. In case of setup A this conflicts with requirement to
detect a specific state to indicate a successful run. A must therefore be removed
from the list of suitable candidates. Note that although setup D is based on the
same postselection method, it applies only to the ancilla qubits whose state remains
unchanged. The coincidence detection based scheme of setup B and C is robust
against further single-qubit operations.

Basically, their design is very similar. The most notable difference is the use
of path and polarization encoding of the qubits. While it is possible to convert
one into the other, the required additional interferometric paths in B are a source
of instability, particularly, in free space implementations. In terms of stability C
is also favourable to the more complicated architecture of gate D. The conclusion
should therefore be to use cnot gates of type C to implement the universal quantum
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A B C D

Qubits 2 2 2 2+2

Encoding pol. path pol. pol.

Interferometric elem. one multiple one multiple

Nonlinearity — measurement-induced —

Success indication state coinc. coinc. state (ancilla)

Destructive yes yes yes no

Table 5.1: A side-by-side comparison of linear optics two-qubit gates.

computer scheme. But when concatenating C, a new problem emerges: The spurious
events related to two photons ending up in the same mode after the operation of the
first gate, previously sifted out by filtering for coincidences, suddenly can lead to false
positive events. The two photons regain the opportunity to distribute themselves
during the operation of the second cnot. A simultaneous detection in target and
control arm is no longer an unambiguous indication of a successful run. Gate C
is not feed-forwardable, the immediate detection of the logical qubits is mandatory,
i.e. its attribute to be destructive.

In D this problem is compensated by introducing another pair of photons (an-
cilla). The gate operation is monitored by the state of these ancilla photons. The
photons corresponding to control and target qubit can pass through unhindered and
are available for further processing. However, this happens at the cost of an ad-
ditional two ancilla photons per cnot. While six-photon experiments have been
carried out [75, 76] the they suffer from low count rates leading to exceedingly long
measurement times.

With present technology this approach seems unsuitable. A closer look reveals
that feed-forwardability is required only for the first of the two cnot. A combination
of C and D, requiring only four photons, may serve as an alternative. Starting with
a gate of type D, the output can be feed-forwarded to C being used as an endpiece.
Figure 5.6 combines both setups to an universal two-qubit quantum computer. A
fourfold-coincidence at detectors D1-D4 confirms a successful run.
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Figure 5.6: Experimental implementation of a universal two-qubit quantum computer. The
setup is a combination of C and D. In addition to the control and target qubit, two ancilla
qubits are needed in the first cnot. A successful run is indicated by a fourfold-coincidence at
detectors D1-D4. Not shown is the concluding cnot applied through classical postprocessing.
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5.3 Possible issues

A problem inherited from setup D is due to the probabilistic nature of the SPDC
photon source. To properly function one pair must exit the nonlinear crystal in for-
ward direction, while the other is created on the return pass. That way two photons
are in the control/target arm and two more occupy the ancillary Bell state modes.
It is, however, equally likely that both pairs are produced in a single pass [77]. This
may disturb the success indication required for postselection. Let us examine each
case individually: When two |φ+〉-pairs are created in the ancillary arm a fourfold-
coincidence in detectors D1-D4 is impossible. This is obvious when both photons
are either reflected or transmitted at the PBS before D3. The other possibility– the
photons split up at this PBS –implies that they have different polarizations. A quick
calculation

H4V4 =
1

2
(D4l +A4l)(D4l −A4l) =

1

2
(D4lD4l −D4lA4l +A4lD4l −A4lA4l)

=
1√
2

(D4lD4l −A4lA4l)

PBSD/A−→ 1√
2

(D4′D4′ +A2A2) (5.1)

confirms that the photons will take the same path at the lower PBS, which again
excludes a fourfold-coincidence.

The situation is less comfortable when the double-pair emission is directed to-
wards the logical arm. A universal quantum computer needs to process arbitrary
inputs. This includes cases where the four photons end up in all four detector modes
1’-4’, usually expected to indicate a successful gate operation. The contribution of
this error source depends on the particular input state, see Figure 5.7. When we
assume the input to be a product state a double-pair emission in the logical arm
yields on the control side (3l)

(ηcH + νcV )⊗ (ηcH + νcV ) = η2c HH + ν2c V V︸ ︷︷ ︸
neutral

+ ηcνcHV + ηcνc V H︸ ︷︷ ︸
unwanted

(5.2)

and on the target side (4l)

(ηtH + νtV )⊗ (ηtH + νtV ) = (
η2t
2

+ ηtνt +
ν2t
2

)DD + (
η2t
2
− ηtνt +

ν2t
2

)AA︸ ︷︷ ︸
neutral

+ (
η2t
2
− ν2t

2
)DA+ (

η2t
2
− ν2t

2
)AD︸ ︷︷ ︸

unwanted

. (5.3)

If the control qubit is either |V3l〉 or |H3l〉, i.e. ηc = {0, 1}, no spurious fourfold
coincidences occur1. The same holds true when on the target side ηt = 1/

√
2.

1We recall that the amplitudes are related by normalization |η|2 + |ν|2 = 1.
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Differently, if the two-qubit input is of the kind |D3lH4l〉, meaning that ηc = 1/
√

2
and ηt = 1, 1

16 of the double-pair emissions trigger a false success notification. Quite
notably regarding the same 1

16 chance of the gate to truthfully succeed. Note that
due to the PBSs in both the control and target arm the spurious state after the cnot
gate is always |H1D2〉. So the effective impact of the four-photon noise depends on
the input state2

FS( ρin(ηc, ηt), |HD〉 〈HD| ) . (5.4)

Furthermore, the ratio between neutral and unwanted events is not constant
either, see (5.2) and (5.3).

A way to reduce the impact of this error is by deliberately attenuating or defo-
cusing the pump beam on the return trip. Assuming that p (q) is the probability for
pair creation event on the first (second) pass, the chances for the three four-photon
emissions scale like:

• p2 : both in the first pass (neutral)

• pq : one in each pass (desired)

• q2 : both in the second pass (unwanted)

By lowering q as described, the signal-to-noise ratio, p/q, can be set appropriately,
so that the contribution of the unwanted events becomes negligible. It should be
noted that the previous discussion is irrespective of the concatenation with setup C.

Another challenge is constituted by higher-order emissions. Three or more photon
pairs completely erode the reliability of the coincidence success indicator. Unless
number resolving detectors are used, the only way to cope with them is to limit
the introduced noise by reducing the pump beam power. The setup also looses its
immunity against noise from the ancilla arm when subjected to multi-pair emissions.
Thus improving the signal-to-noise ratio, p/q, necessarily means lowering q rather
than increasing p.

2It is possible to consider the input state here as the fidelity is invariant under unitary trans-
formation: FS(U ρU†, U σ U†) = FS(ρ, σ). Also, cnot |HD〉 = |HD〉.
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Figure 5.7: Simulating the impact of four-photon noise on the output state fidelity for
arbitrary product state inputs. The weights, ηc and ηt (axes), define the input state of control
and target qubit, respectively. The labels denote the output state fidelity in the enclosed
region, where a lighter shading corresponds to a better fidelity. In this plot the signal-to-
noise ratio, p/q, is set to 1 and the cnot is assumed to be ideal.
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5.4 Applications

We propose two applications adapted to the two-qubit quantum computer: A version
of the algorithm for solving systems of linear equations [8] and a circuit for simulating
the quantum Heisenberg XY model in a transverse magnetic field.

5.4.1 Quantum algorithm for systems of linear equations

The algorithm for solving systems of linear equations is a versatile addition to list
of quantum algorithms that achieve an exponential speedup over their best known
classical counterparts.

Reviewing the algorithm

The solution to a system of linear equations, represented by matrix A and a vector
b, is given by

x = A−1b (5.5)

We intend to implement this procedure on a quantum computer, therefore the reg-
isters x and b must be valid quantum states and A a Hermitian operator3. Without
loss of generality they can be rescaled to have ||b|| = ||x|| = 1. Then, given |b〉, we
seek

|x〉 =
A−1 |b〉
||A−1 |b〉 ||

(5.6)

In the eigenbasis of A, |u1〉 , ..., |uN 〉 with eigenvalues λ1, ..., λN

|b〉 =

N∑
i=1

βi |ui〉 , (5.7)

and using the spectral decomposition

A−1 =

N∑
j=1

1

λj
|uj〉 〈uj | , (5.8)

the solution is, up to normalization,

|x〉 =
N∑

i,j=1

1

λj
βi |uj〉 〈uj |ui〉 =

N∑
j=1

=
1

λj
βj |uj〉 . (5.9)

To prepare this state we apply the phase estimation algorithm [78, 79] to |b〉 using
the the unitary U = e2πiA and add an empty register for storing the eigenvalue |λi〉

N∑
j=1

βj |uj〉 |λj〉 . (5.10)

3A should also be sparse and well-conditioned, see [8] for full list of requirements.
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This implies that the eigenvalues of A lie in the interval (0; 1), which is always
achievable by rescaling. To bring it into the desired form (5.9) we need to implement
the nonunitary map |λj〉 → 1

λj
|λj〉. This operation can be accomplished with the

help of an ancilla qubit and postselection. A controlled rotation

Ry(θ) = e−iYθ/2 =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
(5.11)

conditioned on the value of |λj〉 transforms the ancilla register |0〉 into

cos
θ

2
|0〉+ sin

θ

2
|1〉 . (5.12)

For our purposes we want

sin
θ

2

!
=
C

λj
≤ 1 ⇒ θ = 2 arcsin

(
C

λj

)
, (5.13)

such that
N∑
j=1

βj |uj〉 |λj〉

(√
1− C2

λ2j
|0〉+

C

λj
|1〉

)
. (5.14)

The factor
√

1− C2

λ2j
is due to normalization. We then undo the phase estimation.

A measurement on the ancilla qubit returning |1〉, indicates that the state register
has taken the form of the solution vector |x〉. To optimize the success probability we
choose C as large as the normalization constraint allows, i.e. C = min

j
λj .

It should be noted that reading out all the components of |x〉 would require
the procedure to be performed at least N times which annihilates the exponential
speedup. However, if not |x〉 itself is of interest, but some expectation value 〈x|M |x〉
the algorithm remains applicable. For the particular case we seek to implement this
has no implication, as the input state |b〉 is a single qubit.

The simplest case

An implementation on a two-qubit quantum computer restricts A to be a 2 × 2
matrix. Furthermore, its eigenvalues λj must be distinguishable by a single bit. The
simplest case is to choose λ1 = 0.10 and λ2 = 0.11, corresponding to 0.5 and 0.75
in decimal. The phase estimation then needs to read out the second digit, i.e. by
applying U = e4πiA instead of U = e2πiA, which would give the first. For λ1 = 1

2 the
rotation is

Ry(2 arcsin
C

λ1
) = Ry(π) = −iy with C = min

j
λj =

1

2
. (5.15)

Since −iy |0〉 = |1〉, we can initialize the ancilla as |1〉 making the rotation obsolete.
The map reduces to an identity operation when the eigenvalue qubit is |0〉 and a
Ry(−2 arccos 2

3) when it is |1〉. In other words we need to implement a controlled
Ry(−2 arccos 2

3). In a circuit picture it looks like this



5.4. Applications 65

where the first line corresponds to the state qubit, the second to the eigenvalue qubit
and the third to the ancilla qubit.

We required A to be Hermitian, so there is a unitary R that diagonalizes it

A = R†

(
1
2 0

0 3
4

)
R and U = e4πiA = R†

(
1 0

0 −1

)
R = R†zR . (5.16)

Substituting the controlled version of U

brings us to

where the identity relation between csign and cnot was used. The circuit can be
further simplified by noting that the control qubit for Ry can be directly obtained
from the input line
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What remains is a two-qubit unitary operation. Hence it can be decomposed into a
form suitable for the universal two-qubit quantum computer

Comments on the implementation
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Figure 5.8: Simulation of the output state fidelity for an arbitrary control qubit ηc |H〉 +
νc |V 〉 and several signal-to-noise ratios, p : q. Only the noise introduced from four-photon
events is considered. The actual cnot operation is assumed to be ideal and the target qubit
is set to |V 〉 as required by the circuit. For a 1:1 ratio the fidelity greatly depends on the
input state. By increasing it the noise contribution can become arbitrarily small. However,
this will result in lower count rates.
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From Figure 5.7 we know that independent of the actual quality of the cnot
gate, the input state does have a considerable influence on the output state fidelity
due to spurious four-photon emissions. The proposed demonstration of the algorithm
for systems of linear equations could avoid this behaviour by choosing the state of
the control qubit R |b〉 ≈ |H〉 or |V 〉. In this way the effect of the four-photon noise
can be limited. Alternatively, a better fidelity is achieved by adjusting the signal-
to-noise ratio, p/q, yet at the expense of a lower count rate. Figure 5.8 compares
several ratios with the target qubit set to |1〉 = |V 〉 as found in the circuit. Another
aspect that will contribute beneficially is to consider that the cnot gate suggested
for this experiment is less error-prone when the control qubit is |H〉 and the applied
operation is the identity.

5.4.2 Simulating the two-qubit Heisenberg XY model

The Hamiltonian of a two-qubit Heisenberg XY model in a transverse field B is

H = Jx σx ⊗ σx + Jy σy ⊗ σy +
1

2
B (1⊗ σz + σz ⊗ 1), (5.17)

where Jx and Jy describe the spin coupling.
In [80] a method for obtaining a unitary transformation U that takes a Hamil-

tonian to diagonal (noninteracting) form is presented. For the explicit case of the
two-qubit XY model, the unitary is

U =


cos x2 0 0 sin x

2

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0

− sin x
2 0 0 cos x2

 (5.18)

with tanx =
Jx−Jy
B . U maps (5.17) to the free-particle Hamiltonian H̃ = UHU † =

ω1 1 ⊗ σz + ω2 σz ⊗ 1, where ω1 = 1
2(E1 − E2) and ω2 = 1

2(E1 + E2) are the
quasi-particle energies.

This opens up a number of interesting opportunities: The transformation pre-
serves the complete physical content of H. With the knowledge of U we gain access
to all– ground and excited –eigenstates of H |ψi〉 = Ei |ψi〉, by applying it to the
computational basis states

|ψ1〉 = U |00〉 , (5.19)
|ψ2〉 = U |01〉 , (5.20)
|ψ3〉 = U |10〉 , (5.21)
|ψ4〉 = U |11〉 . (5.22)
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They are

|ψ1〉 = cos
x

2
|00〉+ sin

x

2
|11〉 , E1 =

√
B2 + (Jx − Jy)2 (5.23)

|ψ2〉 =
1√
2

(|01〉 − |10〉) , E2 = −Jx − Jy (5.24)

|ψ3〉 =
1√
2

(|01〉+ |10〉) , E3 = Jx + Jy (5.25)

|ψ4〉 = − sin
x

2
|00〉+ cos

x

2
|11〉 , E4 = −

√
B2 + (Jx − Jy)2 . (5.26)

Without the presence of an external field B the eigenstates are formally equivalent to
Bell states. At the same time we gain a procedure of how to experimentally prepare
these states with a quantum computer– implement U . Moreover, by bringing H into
diagonal form, the external field B, present in the parameter x, can be controlled
by single-qubit gates. In particular we can find a decomposition applicable to the
universal two-qubit quantum computer [69]

The same circuit can be used to produce superpositions of |ψi〉 and also the thermal
state

ρth = e−
H
kT = U e−

H̃
kT U † (5.27)

by using a mixture of product states as input [80].

Comments on the implementation

When we attempt to use the above circuit for preparing the eigenstates of H, i.e. by
applying it to the computational basis states, we are confronted with the difficulty
that the single-qubit unitaries in front of the first cnot map them to states that are
particularly susceptible to the discussed four-photon noise (cf. Figure 5.7)

(y h⊗ x) |HH〉 = |AV 〉 , (5.28)
(y h⊗ x) |HV 〉 = |AH〉 , (5.29)
(y h⊗ x) |V H〉 = |DV 〉 , (5.30)
(y h⊗ x) |V V 〉 = |DH〉 . (5.31)

It possible to reduce the impact by increasing the signal-to-noise ratio p/q as shown
in Figure 5.9.
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Figure 5.9: Simulation of the output state fidelity for computational basis states inputs.
Again, only the noise introduced from four-photon events is considered and the underlying
cnot and single-qubit operations are assumed to be ideal. Increasing the signal-to-noise
ratio can attenuate the noise contribution at the expense of a lower count rate.

Another option reveals itself when we proceed to the next element in the circuit. We
realize that the subsequent cnot transforms these states into the four Bell states,

cnot |AV 〉 = |ψ−〉 . (5.32)

and hence we may skip the entire part including the first cnot by directly using the
entangled states of the SPDC source.

The asterisk (*) is to remind us that this simplification is valid only for certain
inputs.





Chapter 6

Conclusion and outlook

In the experimental work accompanying this thesis we have realized a scheme for
an interferometric two-qubit gate [54, 55, 56]. Our main objective was to reproduce
this gate with attention to quality and stability to be able to later combine it with
another two-qubit gate [70, 71], eventually forming a universal two-qubit quantum
computer.

After construction, we subjected the gate to a series of tests including a process
tomography. We have identified imperfect interference to be the primary source of
error for this type of gate. Future optimization will benefit from this knowledge as
this aspect can be tested with less effort than required for a full process tomogra-
phy. Furthermore, the described tests can be adopted as a guideline for evaluating
quantum gates in general.

From our discussion in Chapter 5 it is clear that the task of building two consecu-
tive two-qubit gates cannot be reduced to simply duplicating a setup. Many existing
architectures prove to be incompatible, which is mostly related to the probabilistic
nature of current photon sources, gate architectures and detection devices. In many
cases the techniques used to indicate successful operation become unreliable when
the setup is extended. All gates are designed to work with a specific number of
photons. While a number smaller than the intended is usually innocuous, erratic
behaviour stems from supernumerary photons. Possible solutions to these problems
lie at both ends of a quantum circuit. Apparently, a deterministic source emitting a
precise number of photons would dispose of most of the difficulties. But also detec-
tors that accurately register the number of photons would mean a huge leap forward
as they would help to set aside successful from incorrect runs.

Nonetheless, we have argued that a functional two-qubit quantum computer is
feasible with current technology.

A notable deficit of the proposed scheme is that the quality of the circuit depends
on the input state. For some inputs almost no additional errors are introduced by
concatenation, while in other cases the impact will be substantial. We have outlined
a way to mitigate this effect by increasing the signal-to-noise ratio, but this path is
only applicable if interference is close to perfect.
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72 Chapter 6 : Conclusion and outlook

At the end of this thesis we have compiled two interesting applications suitable for
this setup. To provide a basis for their implementation we have included a detailed
investigation of the expected errors for both experiments.
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Useful tables

HWP(α) → 0◦(0) 22.5◦(π8 ) 45◦(π4 ) 67.5◦(3π8 ) 90◦(π2 )

|H〉 = ( 1
0 ) |H〉 |D〉 |V 〉 |A〉 |H〉

|V 〉 = ( 0
1 ) |V 〉 |A〉 |H〉 |D〉 |V 〉

|D〉 = 1√
2

( 1
1 ) |A〉 |H〉 |D〉 |V 〉 |A〉

|A〉 = 1√
2

(
1
−1
)
|D〉 |V 〉 |A〉 |H〉 |D〉

|R〉 = 1√
2

( 1
i ) |L〉 |L〉 |L〉 |L〉 |L〉

|L〉 = 1√
2

(
1
−i
)
|R〉 |R〉 |R〉 |R〉 |R〉

Table A.1: The effect of rotating the optical axis of a half wave plate in the plain perpen-
dicular to the beam direction with respect to horizontally polarized light.

QWP(β) → 0◦(0) 45◦(π4 ) 90◦(π2 ) 135◦(3π4 ) 180◦(π)

|H〉 = ( 1
0 ) |H〉 |R〉 |H〉 |L〉 |H〉

|V 〉 = ( 0
1 ) |V 〉 |L〉 |V 〉 |R〉 |V 〉

|D〉 = 1√
2

( 1
1 ) |L〉 |D〉 |R〉 |D〉 |L〉

|A〉 = 1√
2

(
1
−1
)
|R〉 |A〉 |L〉 |A〉 |R〉

|R〉 = 1√
2

( 1
i ) |D〉 |V 〉 |A〉 |H〉 |D〉

|L〉 = 1√
2

(
1
−i
)
|A〉 |H〉 |D〉 |V 〉 |A〉

Table A.2: The effect of a quarter wave plate.
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H/V D/A R/L

|ψ−〉 |ψ−〉 |ψ−〉
|ψ+〉 |φ−〉 |φ−〉
|φ−〉 |ψ+〉 |φ+〉
|φ+〉 |φ+〉 |ψ+〉

Table A.3: Bell states in different computational bases.

1:2 HWP1 QWP1 HWP2 QWP2
ZZ 0 0 0 0
ZY 0 0 0 45
XY 22.5 0 0 45
XZ 22.5 0 0 0
XX 22.5 0 22.5 0
ZX 0 0 22.5 0
YX 0 45 22.5 0
YZ 0 45 0 0
YY 0 45 0 45

Table A.4: An efficient wave plate setting for overcomplete two-qubit QST. It is assumed
that both outputs of the measurement setup in Figure 2.5 are used. All angles are given in
degrees ◦.

1:2 H1H2 H1V2 V1H2 V1V2
ZZ HH HV VH VV
ZY HR HL VR VL
XY DR DL AR AL
XZ DH DV AH AV
XX DD DA AD AA
ZX HD HA VD VA
YX RD RA LD LA
YZ RH RV LH LV
YY RR RL LR LL

Table A.5: Using the wave plate settings of Table A.4 the observed counts correspond to
the measurement settings given in this table. When taken as a list from left to right and top
to bottom the permutation P = [1, 2, 21, 22, 5, 6, 3, 4, 23, 24, 7, 8, 13, 14, 17, 18, 9, 10,
15, 16, 19, 20, 11, 12, 29, 30, 25, 26, 33, 34, 31, 32, 27, 28, 35, 36] rearranges the counts
into the standard form: HH, HV, HD, HA, HR, HL, VH, ..., RR.
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Source code

Copyright 2011 Yannick Ole Lipp

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

(* ------------------------------------------------------------------------ *)
(* arbitrarymeasurementbasis.nb (Mathematica):
:: returns quarter and half wave plate angles for a measurement
:: along an arbitrary direction on the Bloch sphere, defined by
::
:: (theta, phi) -> cos(theta/2) |H> + exp(i Pi phi) sin(theta/2) |V>
::
:: Experimental setup:
:: |input> --> (QWP)(a) --> (HWP)(b) --> [PBS]
*)
(* ------------------------------------------------------------------------ *)
arbitrarymeasurementbasis[ {theta_, phi_},

indegrees_:False ] := Module[
{thetarad, phirad, hwpangle, qwpangle},

If[indegrees,
thetarad = Pi*theta/180; phirad = Pi*phi/180; ,
thetarad = theta; phirad = phi;

];

Switch[thetarad,
(* V *)
Pi, qwpangle = 0; hwpangle = Pi/4,
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(* XY plane *)
Pi/2, qwpangle = Pi/4; hwpangle = Pi/8 + phirad/4,

(* General case *)
_,
qwpangle = Limit[ArcTan[Tan[x] Cos[phirad]]/2, x -> thetarad];

hwpangle = 2/4 * ArcTan[
(Cos[thetarad] Sin[2 qwpangle] Cos[2 qwpangle] +
Sin[thetarad] (Cos[phirad] Sin[2 qwpangle]^2 +
Sin[phirad] Cos[2 qwpangle]) ) /

(1 + Cos[thetarad] Cos[2 qwpangle]^2 +
Sin[thetarad] Sin[2 qwpangle]
(Cos[2 qwpangle] Cos[phirad] - Sin[phirad]) )

];
];

(* Map to positive angles *)
qwpangle = Mod[qwpangle, 2 Pi];
hwpangle = Mod[hwpangle, 2 Pi];

(* Output *)
If[indegrees,
{a -> 180*qwpangle/Pi, b -> 180*hwpangle/Pi},
{a -> qwpangle, b -> hwpangle}]

]//N;
(* ------------------------------------------------------------------------ *)
(* ^ arbitrarymeasurementbasis.nb *)
(* ------------------------------------------------------------------------ *)



77

(* ------------------------------------------------------------------------ *)
(* arbitrarytoarbitarystate.nb (Mathematica):
:: returns wave plate angles for transforming an arbitrary state
:: to another arbitrary state on the Bloch sphere, defined by
::
:: (theta, phi) -> cos(theta/2) |H> + exp(i Pi phi) sin(theta/2) |V>
::
:: Experimental setup:
:: |input> --> (QWP)(a) --> (HWP)(b) --> (QWP)(c) --> |target>
*)
(* ------------------------------------------------------------------------ *)
arbitrarytoarbitarystate[ {thetainput_, phiinput_},

{thetatarget_, phitarget_},
indegrees_:False ] := Module[

{thetainputrad, phiinputrad, thetatargetrad, phitargetrad,
aangle, intermediatea, bangle, cangle, intermediatec},

If[indegrees,
thetainputrad = Pi*thetainput/180; phiinputrad = Pi*phiinput/180;
thetatargetrad = Pi*thetatarget/180; phitargetrad = Pi*phitarget/180; ,
thetainputrad = thetainput; phiinputrad = phiinput;
thetatargetrad = thetatarget; phitargetrad = phitarget;

];

Switch[thetainputrad,
(* V *)
Pi, aangle = 0; intermediatea = Pi;,

(* General case *)
_,
aangle = Limit[ArcTan[Tan[x] Cos[phiinputrad]]/2, x -> thetainputrad];

intermediatea = 2 * ArcTan[
(Cos[thetainputrad] Sin[2 aangle] Cos[2 aangle] +
Sin[thetainputrad] (Cos[phiinputrad] Sin[2 aangle]^2 +
Sin[phiinputrad] Cos[2 aangle]) ) /

(1 + Cos[thetainputrad] Cos[2 aangle]^2 +
Sin[thetainputrad] Sin[2 aangle]
(Cos[2 aangle] Cos[phiinputrad] - Sin[phiinputrad]) )

];
];

Switch[thetatargetrad,
(* V *)
Pi, cangle = 0; intermediatec = Pi;,

(* General case *)
_,
cangle = Limit[ArcTan[Tan[x] Cos[phitargetrad]]/2, x -> thetatargetrad];

intermediatec = 2 * ArcTan[
(Cos[thetatargetrad] Sin[2 cangle] Cos[2 cangle] +
Sin[thetatargetrad] (Cos[phitargetrad] Sin[2 cangle]^2 -
Sin[phitargetrad] Cos[2 cangle]) ) /

(1 + Cos[thetatargetrad] Cos[2 cangle]^2 +
Sin[thetatargetrad] Sin[2 cangle]
(Cos[2 cangle] Cos[phitargetrad] + Sin[phitargetrad]) )

];
];

bangle = (intermediatea + intermediatec)/4;
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(* Map to positive angles *)
aangle = Mod[aangle, 2 Pi];
bangle = Mod[bangle, 2 Pi];
cangle = Mod[cangle, 2 Pi];

(* Output *)
If[indegrees,
{a -> 180*aangle/Pi, b -> 180*bangle/Pi, c -> 180*cangle/Pi},
{a -> aangle, b -> bangle, c -> 180*cangle}]

]//N;
(* ------------------------------------------------------------------------ *)
(* ^ arbitrarytoarbitarystate.nb *)
(* ------------------------------------------------------------------------ *)
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Experimental realization of an interferometric quantum circuit
to increase the computational depth

Abstract

A quantum computer is a versatile tool whose applications extend beyond the
field of physics. In this work we describe a scheme and realize missing building
blocks of a universal two-qubit quantum computer within the framework of linear
optics and photonic qubits.

To this end we compare several existing two-qubit gate architectures and ex-
amine their suitability for concatenation. We discuss experimental challenges and
motivate the reasons for our choice. Simultaneously, we find methods to minimize
the required resources on the quantum part without compromising the universality
of the approach.

Elaborating on existing infrastructure in our lab, we complete the list of required
components and perform extensive characterization thereof. In particular a quantum
process tomography of a Controlled-not gate is shown.

Furthermore we present applications that can be realized with our setup. To
the prospect of quantum computation we outline a minimal implementation of the
algorithm for solving systems of linear equations. On the simulation side, we explain
how to use our quantum computer to simulate a two-qubit Heisenberg XY model in a
transverse field. The quantum simulator allows to prepare ground and excited states
as well as superpositions and thermal states. Moreover, the system parameters are
controllable by single-qubit operations only.
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Experimentelle Realisierung eines interferometrischen
Quantengatters zur Erweiterung der Berechnungsmöglichkeiten

Zusammenfassung

Ein Quantencomputer bietet Anwendungsmöglichkeiten über das Feld der Phy-
sik hinaus. In dieser Arbeit beschreiben wir ein Konzept und realisieren fehlende
Bestandteile eines universellen Zwei-Qubit-Quantencomputers mit den Möglichkei-
ten von linearer Optik und Photonen als Qubits.

Hierzu vergleichen wir verschiedene existierende Realisierungen von Zwei-Qubit-
Gattern und untersuchen die Möglichkeit mehrere davon hintereinander zu setzen.
Wir betrachten die experimentellen Schwierigkeiten und argumentieren unsere Wahl.
Gleichzeitig suchen wir nach Wegen, wie die benötigten Resourcen auf der Quanten-
Seite minimiert werden können, ohne dadurch die Universalität des Ansatzes zu
beeinträchtigen.

Aufbauend auf der bestehenden Infrastruktur in unserem Labor vervollständigen
wir die Liste der notwendigen Bauteile und führen eine umfassende Analyse die-
ser durch. Insbesondere machen wir eine Prozess-Tomografie eines Controlled-not
Gatters.

Im Anschluss daran eröffnen wir Anwendungen, die sich mit diesem Quantencom-
puter bewerkstelligen lassen. Im Rahmen von „Quantum Computation“ beschreiben
wir eine minimale Implementierung des Algorithmus zur Lösung von linearen Glei-
chungssystemen. Auf dem Gebiet der Simulation zeigen wir, wie der Quantencompu-
ter dazu verwendet werden kann das Zwei-Qubit Heisenberg XY Model bei Vorhan-
densein eines transversalen Feldes zu simulieren. Dies ermöglicht es den Grundzu-
stand und die angeregeten Zustände zu präparieren, aber auch Superpositionen die-
ser und thermische Zustände. Außerdem können die Systemparameter allein durch
Ein-Qubit-Gatter kontrolliert werden.
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