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Abstract

Based on the work of my advisor Gandalf Lechner [L1, L2] we extend the algebraic
construction and classi�cation of Quatum Field Theories on 1+1 dimensional
Minkowski space, applying principles of inverse scattering theory with factorizing
S-matrices to models with several particle species. We construct a Borchers triple
(M, U,H), and show that the local net, obtained from a von Neumann algebra
constructed from two di�erent wedge-local �elds, is a covariant standard right
wedge algebra. Moreover, we show that its generators are polarization-free and
temperate. We work out the underlying scattering theory following [H1, BBS1]
and solve the inverse scattering problem on the two-particle level. This results
in the matrix-valued scattering function, initially de�ning the symmetry of the
model, to be the (2 → 2) S-matrix. A proof of asymptotic completeness of
the space of (2 → 2) scattering states is given. Stating the general solution to
the inverse scattering problem in form of a total expression is not contained in
this work, because a complete set of solutions to the Yang-Baxter equation has
not been found so far. This complication is due to the matrix character of the
scattering matrix, in contrast to the scalar setting where a solution can be given.
Therefore some examples e.g. Sigma models are discussed.

Zusammenfassung

In der vorliegenden Arbeit wird aufbauend auf jener meines Betreuers Gandalf
Lechner [L1, L2] die algebraische Konstruktion und Klassi�kation von 1+1 dimen-
sionalen Quantenfeldtheorien mittels inverser Streutheorie auf Vielteilchensys-
teme erweitert. Es wird gezeigt, dass zwei zueinander keillokale Felder existieren,
welche benutzt werden um ein lokales Netz von Feldalgebren zu de�nieren. Weit-
ers wird gezeigt, dass das somit gewonnene Borchers Tripel eine kovariante �stan-
dard right wedge algebra� ist, und dass die Feldoperatoren temperierte polarisa-
tionsfreie Generatoren sind. Weiters wird [H1, BBS1] die Streutheorie der Felder
ausgearbeitet und asymptotische Vollständigkeit des Hilbertraumes der (2 → 2)
Streuzustände bewiesen. Es zeigt sich, dass die anfänglich als die Symmetrie des
Modells de�nierende Streufunktion auch die (2→ 2) Streumatrix ist. Eine allge-
meine Lösung als geschlossene Formel wurde nicht gefunden, da keine allgemeine
Lösung der Yang-Baxter Gleichung bekannt ist. Es werden deshalb Beispiele
(z.B. Sigma Modelle) besprochen, welche den Bedingungen an die Streumatrix
genügen.
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1 Introduction

In the long endeavor of �nding interacting Quantum Field Theories (QFTs), a lot
of intelligence has been invested in the last decades. However, it is still an open
problem to �nd such QFTs in more than three space time dimensions.
This problem turned out to be so di�cult that a tool was worked out to analyze
which type of �eld theory the most promising would be. This mechanism, the
renormalization group �ow analysis, provided indications on how QFTs could be
formulated to have the necessary convergence properties at least in two and three
spacetime dimensions.
Before that, a description of scattering processes in terms of creation operators
acting on the vacuum and representing incoming and outgoing n-particle states
of increasing and decreasing rapidities, respectively has been investigated in the
form factor program [BF1]. There the local quantum �elds are characterized
in terms of their form factors. But these form factors have a very complicated
structure, and no viable one-particle generators can be obtained. Therefore the
description of collision processes can not be deduced from the theory but has to
be assumed.
A di�erent approach has been initiated by Haag and Kastler [HK1], who for-
mulated a framework for QFTs in an axiomatic setting, using the formalism of
operator algebras and the work of E. Wigner [W1] for irreducible positive energy
representations of the Poincaré group. By this algebraic approach it is possible to
categorize and formulate general properties of QFTs without having to dwell on
the analytic properties of �elds for each single theory. The motivation for this al-
gebraic approach arose from the special relativistic principle of locality, implying
that no causal interaction of any kind is possible over spacelike separated dis-
tances. This principle inherently contains a Minkowski space like structure and
the feature that operators, representing physical entities are localized in some
region in Minkowski space. The operators make up the local operator algebras
A which give the local net O 7→ A(O) for a region O in Minkowski space. The
con�guration of the local net in terms of these operators is the crucial point and
contains the physical properties of a QFT.
In the present work we will follow the approach by G. Lechner [L1], motivated
by B. Schroer [S1, S2], of constructing quantum �eld theories in 1 + 1 spacetime
dimensions by the underlying scattering matrices in an inverse scattering picture.
This will be done by de�ning a class S of so called �matrix-valued scattering
functions� which will be interpreted in the beginning as the fundamental objects,
de�ning the symmetry and statistics of the theory. The work in [L2] is extended
by us, allowing for an arbitrary �nite number of particle species.
A Fock space is constructed, with a matrix-valued scattering function de�ning
its symmetry, and a representation of the proper orthochronous Poincaré group
is given.
In sight of the relative wedge locality in the single particle case of the two �elds
de�ned there [L2], we proceed analogously by de�ning a second �eld via a TCP
re�ection operator from the initial �eld and prove relative wedge locality of these
for an arbitrary �nite number of particle species.
To obtain �physical quantities�, following [H1, R1] the �elds are smeared with
special test functions, allowing for asymptotic states and the interpretation of
�incoming� and �outgoing� particles, described by a multi-particle factorizing
scattering function. We will show that this scattering function coincides with
the initially de�ned class of �matrix-valued scattering functions� S used for de�n-
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ing the structure of the underlying Fock space. Factorizing means here that the
scattering matrix for arbitrary n→ m scattering processes splits up into a prod-
uct of 2→ 2 scattering matrices. In absence of particle production this is always
the case [I1] in 1 + 1 dimensions.
To illustrate the generality and wide applicability of this algebraic approach, we
give known examples (e.g. Sigma models) contained in the class of matrix-valued
scattering functions de�ned in this work, by checking whether the scattering
matrices given in [J1, LM1, AA1] comply. By virtue of allowing for an arbitrary
number of particle species, the matrix form of the scattering function gives rise to
additional constraints on the matrix valued scattering function S. Despite these
additional constraints, the lack of a complete set of solutions of the Yang-Baxter
equation [PA1], makes it impossible to explicitly state the class of matrix-valued
scattering functions. However, a physically interesting set of solutions has been
worked out in the case of Toda systems [J1] and sigma models [AA1]. We will
pick out some of them and show that they comply with the assumptions we made
on S.
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2 Inverse scattering theory

In inverse scattering theory we assume a factorizing scattering function (i.e. that
a function describing the scattering of arbitrary incoming and outgoing particles
can be decomposed into a product of 2 → 2 scattering matrices) [A2], and the
particle spectrum to be given.
For the construction of a class of QFTs from these given objects in the algebraic
approach, we will require the �elds and local net to ful�ll the Haag-Kastler ax-
ioms [HK1]. Thereby the scattering function is severely constrained by the mass
spectrum of the theory, Lorentz invariance, and additional constraints such as
crossing symmetry, which these axioms impose (cf. 3.3).

2.1 The scattering function

We exclude particle production from our 1+1 dimensional models (which cannot
be done in higher dimensions as in an interacting relativistic QFT the particle
number is not conserved) and therefore the scattering matrix factorizes into a
product of two particle scattering functions [I1, A2].
Our aim is to construct multi-particle quantum �eld theories in which we assume
the particle spectrum to be given. This causes constraints on the scattering func-
tion as we will see later on when we restrain a representation of the Poincaré
group to the space of symmetric wave functions. Moreover, as we want to de�ne
a model including di�erent particle species, the two-particle scattering functions
will be matrix-valued.

Let K be a separable Hilbert space, then we will de�ne the matrix-valued two-
particle scattering function to map the rapidity parameter θ ∈ R to the space of
bounded operators B(K �K).
The rapidity θ is a reparametrization of the speed of an object in a given frame of
reference, given by θ = tanh−1(v/c) where v is the velocity of the object and c the
speed of light. In 1 + 1 dimensions, the rapidity gives a linear parametrization,
i.e. rapidities can be simply added, even at relativistic velocities.
The Lorentz boost with rapidity θ ∈ R acts as a velocity transformation via

x 7−→ Λθx =

(
cosh θ sinh θ
sinh θ cosh θ

)
x, (2.1)

and satis�es ΛθΛθ′ = Λθ+θ′ ∀θ, θ′ ∈ R.

Before we can de�ne the matrix valued scattering function, we introduce the �ip
operator F : K �K → K �K. On tensor products we set

F (ψ ⊗ ϕ) := ϕ� ψ, (2.2)

and extend F by linearity and continuity to a bounded, unitary operator on
K �K, with F 2 = id.
As we are working with matrix-valued functions, index notation can be useful (in
fact it is hardly avoidable). Therefore we choose an orthonormal basis {eα} for
K where the sub- or superscript position of the index is of no formal relevance.
So, for a vector Ψn ∈ K�n = K �...�︸ ︷︷ ︸

n times

K and M ∈ B(K�n) we write

Ψα1...αn
n := 〈eα1 � ...� eαn ,Ψn〉

Mα1...αn
β1...βn

:= 〈eα1 � ...� eαn ,M eβ1 � ...� eβn〉. (2.3)
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Another short hand notation we introduce for convenience is, for M ∈ B(K�2)

Mk := 1k−1 �M � 1n−k−1 n ≥ 2, k = 1, ..., n− 1. (2.4)

Here 1j denotes the identity on K�j , and Mk ∈ B(K�n).

As we aim at the construction of multi-particle theories with mass spectrum
mα ∈ {m1, ...,mN | mi ≥ 0, N = dim(K)}; antiparticles have to be contained
in the theory. Therefore we introduce the notion of writing an antiparticle in-
dex as α where α is the order of the charge-conjugated particle spectrum, i.e.
{1...N} 3 α 7→ α ∈ {1...N} is a permutation that satis�es α = α and mα = mα,
i.e. the antiparticle and particle have the same mass.
Moreover, we introduce the abbreviated notation θ := (θ1, ..., θn) and α :=
(α1...αn).

De�nition 2.1. A continuous, bounded function S: ξ ∈ C =: {S(0, π) : 0 <
Im(ξ) < π} → B(K�K) that is analytic in the open strip S(0, π), and for a given
mass spectrum mα ∈ {m1, ...,mN | mi ≥ 0, N = dim(K)} satis�es,

S(θ)∗ = S(θ)−1 = F S(−θ)F, (2.5a)

Sα1α2

β1β2
(θ) = Sβ1β2α1α2

(θ), (2.5b)

(FS(θ) � 1) (1� FS(θ′)) (FS(θ′ − θ) � 1)

= (1� FS(θ′ − θ)) (FS(θ′) � 1)(1� FS(θ)), (2.5c)

Sαβγδ (iπ − θ) = Sβγδα (θ) (2.5d)

and
Sα1α2
β1β2

(θ) = 0 if (mα1 6= mβ1 or mα2 6= mβ2), (2.5e)

will be called matrix-valued scattering function.

The set of all functions ful�lling the above De�nition will be denoted S. The
�rst equation (2.5a) and the so called Yang-Baxter equation (2.5c), are necessary
to be able to construct a representation of the permutation group. This will be
used later on where we will de�ne the action of the transposition operator Dn as
a representation of the permutation group, where it will be necessary to require
Dn to ful�ll the Yang Baxter equation [ZA1].
Condition (2.5b) will be used to de�ne a PCT operators, it is an additional as-
sumption which is necessary only in the multi-particle case. Equation (2.5d) is
called crossing symmetry and is needed to construct �wedge local �elds� i.e. �elds
localized in a wedge shaped region of spacetime.
In relativistic theories, crossing corresponds to the substitution of an incoming
particle of momentum p by an outgoing antiparticle with momentum −p. With
the Mandelstam variable s = (pi + pj)

2 = m2
i + m2

j + 2mimj cosh θ this substi-
tution corresponds to s → 4m2 − s or θ → iπ − θ. Hence the analyticity region
of the scattering function is transformed from the real line with an interval to
the region S(0, π). Equation (2.5e) guarantees the compliance of the scattering
function with the mass spectrum and can be seen after having scattering theory
available, to represent momentum conservation. In our setting it will be needed to
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restrict the representation of the Poincaré group to the S-symmetric Fock space.
Conditions (2.5a) and (2.5c) written in index notation can be found in Appendix
(A.5), (A.6).
We would like to make a remark on the point of view that is represented by the
analyticity condition on S. In classical �eld theory, bound states are obtained
from the poles of the scattering function, see e.g. [AA1] for a rich discussion of
that topic. So we exclude these bound states here.

The matrix valued scattering function S could also be called two-particle scat-
tering function, but this might be misleading since this name is usually reserved
for two-particle scattering functions not being matrix valued. However, in the
following we will omit the term �matrix valued� and simply call this function S
the scattering function, except for section 5 where we will focus on scattering
processes.
From De�nition 2.1 one can see that S depends on the chosen basis of K. In
the case of K = C we get the two-particle scattering function for a single mas-
sive �eld, as described by G. Lechner in [L2]. For a discussion of examples of
scattering functions see section 6.

2.2 Construction of a Hilbert space

Our aim is the construction of a Hilbert space H, and a representation of transla-
tions U ′ on H. Further on, we will also de�ne a �wedge algebra� M, completing
what is needed for a so called associated Borchers triple (M, U ′,H)S , providing
us with the basic ingredients of a QFT.
In analogy to the usual Fock space representation, we de�ne the Hilbert spaces

H1 := L2(R→ K, dθ) ' L2(R, dθ) �K, (2.6a)

H�n
1 := H1 � ...�H1︸ ︷︷ ︸

n times

' L2(Rn) �K⊗n. (2.6b)

The space H�n
1 is much too �large�, it still contains all equivalent vectors with the

arguments permuted. To single out these sets of equivalent vectors we construct
a projector acting on H�n

1 . This is done via a transposition operator Dn(τk)
generating transpositions τk of components of vectors ψn ∈ H�n

1 . Here τk ∈ Sn

�ips the kth and (k+ 1)th entry of such vectors, Sn is the group of permutations
of n elements and k ∈ {1, 2, ...n− 1}.

De�nition 2.2. Let n ∈ N and k ∈ {1, ..., n − 1}. We de�ne the transposition
operator Dn(τk) ∈ B(H⊗n1 ) as, ψn ∈ H⊗n1

[Dn(τk)ψ]n (θ1, ..., θn) := FkSk(θk+1 − θk) ψn(θ1, ..., θk+1, θk, ..., θn). (2.7)

It consists of the �ip operator F which is a representation of transpositions
on the Hilbert space, and the two-particle scattering function Sk(θ) which adds
a term to account for the �ip.
Again, this de�nition of the action of the transposition operator in index notation
can be found in Appendix (A.4).

For Dn to be a representation of the permutation group, it must allow for
any permutation π as an argument. So far we have only de�ned Dn for trans-
positions τk, but the extension is straightforward since every permutation can be
decomposed into a product of transpositions.

11



De�nition 2.3. For an arbitrary permutation π = τα1 ...ταk ∈ Sn, ταi being
transpositions, we de�ne

Dn(π) := Dn(τα1)...Dn(ταi). (2.8)

Lemma 2.1. Dn is a unitary representation of Sn on H�n
1 .

Proof. As every permutation π ∈ Sn can be written as a product of transpositions
τk, it is su�cient to verify the following three conditions for k, j ∈ {1, ..., n − 1}
a) Dn(τk)

2 = id,
b) Dn(τk)Dn(τj) = Dn(τj)Dn(τk) for |k − j| ≥ 2,
c) Dn(τk+1)Dn(τk)Dn(τk+1) = Dn(τk)Dn(τk+1)Dn(τk).

a) Let ψn ∈ H�n
1 .

[Dn(τk)
2ψ]n(θ1, ..., θn)

= FkSk(θk+1 − θk)[Dn(τk)ψ]n (θ1, ..., θk+1, θk..., θn)

= FkSk(θk+1 − θk)Fk Sk(θk − θk+1)︸ ︷︷ ︸
=id since S(θ)−1=F S(−θ)F see (2.5a)

ψn (θ1, ...θk, θk+1, ..., θn)

= ψn(θ1, ..., θn).

b) For |k − j| ≥ 2, w.l.o.g. assume k < j

[Dn(τk)Dn(τj)ψ]n(θ1, ..., θn)

= FkSk(θk+1 − θk)Fj Sj(θj+1 − θj)ψn(θ1, ...θk+1, θk, ...θj+1, θj , ...θn)

since |k − j| ≥ 2, FkSk(θk+1 − θk) and FjSj(θj+1 − θj) act independently,
they commute:

= [Dn(τj)Dn(τk)ψ]n (θ1, ..., θn).

c)

[Dn(τk+1)Dn(τk)Dn(τk+1)ψ]n(θ1, ..., θn)

= (1k−1 � (1� FS(θk+2 − θk+1)) � 1n−k−2)

× [Dn(τk)Dn(τk+1)ψ]n(θ1, ..., θk, θk+2, θk+1..., θn)

= (1k−1 � (1� FS(θk+2 − θk+1)) (FS(θk+2 − θk) � 1) � 1n−k−2)

× [Dn(τk+1)ψ]n(θ1, ..., θk+2, θk, θk+1..., θn)

= (1k−1 � (1� FS(θk+2 − θk+1)) (FS(θk+2 − θk) � 1)

� (1� FS(θk+1 − θk))1n−k−2)ψn(θ1, ..., θk+2, θk+1, θk..., θn),

which can be rewritten, using (2.5c) as

= (1k−1 � (FS(θk+1 − θk) � 1) (1� FS(θk+2 − θk))
× (FS(θk+2 − θk+1) � 1) � 1n−k−2)ψn(θ1, ..., θk+2, θk+1, θk..., θn)

= [Dn(τk)Dn(τk+1)Dn(τk)ψ]n (θ1, ..., θn).

Finally, unitarity of Dn is obvious since in (2.5a) we have assumed unitarity for
S(θ), F ∗ = F−1 since it is a transposition operator, and a composition of unitary
operators is again unitary.

For the construction of an S-symmetric Hilbert space we de�ne the projection
operator Pn as

Pn =
1

n!

∑
π∈Sn

Dn(π), (2.9)

12



with P ∗n = Pn, and P 2
n = Pn since card(Sn) = n!.

By means of this projection operator we can de�ne the S-symmetrized Hilbert
spaces

Hn := PnH�n
1 for n ≥ 1, and H0 := C. (2.10)

Now we are ready to de�ne the S-symmetrized Fock space H containing
vectors Ψ = (Ψ0,Ψ1, ...) of arbitrary order n:

H :=
∞⊕
n=0

Hn =
∞⊕
n=0

PnH�n
1 (2.11)

with Pn projecting on the S-symmetric subspace Hn whose elements Ψn satisfy
the symmetry

Ψn(θ1, ..., θn) = FkSk(θk+1 − θk) Ψn(θ1, ..., θk+1, θk, ..., θn). (2.12)

Alternatively, with all the indices (cf. (2.3)):

Ψα1...αn
n (θ1, ..., θn) = S(θk+1 − θk)

αk+1αk
βk+1βk

Ψ
α1...βk+1βk...αn
n (θ1, ..., θk+1, θk, ..., θn).

NB. summation convention for multiple indices is used from now on, and we use
upper case Greek letters (e.g. Ψ) for elements of symmetrized Hilbert spaces,
and lower case Greek (e.g. ψ) for elements of unsymmetrized ones. The scalar
product and norm for elements Ψ, Φ ∈ H are given by the underlying L2 space
scalar product and norm

〈Ψ,Φ〉H :=
∞∑
n=0

〈Ψn,Φn〉H�n
1

=
∞∑
n=0

∫
Rn
〈Ψn(θ),Φn(θ)〉K�n dnθ, (2.13)

‖Ψ‖ = 〈Ψ,Ψ〉1/2H . (2.14)

The Hilbert space H can be interpreted as a direct sum over all possible n-
particle spaces Hn, and H1 = L2(R, dθ)�K can be interpreted as the one-particle
space with reparametrized on-shell Lebesgue measure dθ as we will show below in
Theorem 5.1. Moreover, it will be shown in Lemma 2.3 that in H0 a unit vector
Ω = 1⊕ 0⊕ 0⊕ ... representing the vacuum can be uniquely chosen.
The action of the projector Pn : H�n

1 → Hn can be extended to
⊕∞

n=0H
⊗n
1 in

the obvious way by de�ning

P :=

∞⊕
n=1

Pn. (2.15)

2.3 Representation of the Poincaré group

In 1 + 1 dimensions the Poincaré group can be parametrized by a shift a ∈ R2

and the rapidity λ ∈ R, as a linear parametrization of a Lorentz boost.
To de�ne a representation U of the (proper, orthochronous) Poincaré group, it is
again necessary to choose an orthonormal basis {eα} for K, like in (2.3).

De�nition 2.4. Let a ∈ R2, λ ∈ R. On the unsymmetrized space
⊕∞

n=0H
⊗n
1 ,

for a family of masses {m1, ...,mN | mi ≥ 0, N = dim(K)}, the operator U(a, λ)
is de�ned as

[U(a, λ)Ψ]α1...αn
n (θ) := exp(i

n∑
k=1

mαkp(θk) · a) Ψα1...αn
n (θ − λ), (2.16)
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where p(θk) :=
(

cosh θk
sinh θk

)
, and (θ−λ) is to be understood as λ being subtracted from

every entry of θ.

The · will always denote the Minkowski inner product in the following.

Lemma 2.2. The operator U(a, λ) can be restricted to the S-symmetric Hilbert
space H.
Proof. To restrict U(a, λ) to

⊕∞
n=0 PnH

�n
1 we need [U(a, λ), P ] = 0 ∀a ∈ R2,

λ ∈ R. This can be seen as follows:
Since Pn = 1

n!

∑
π∈Sn Dn(π), and Sn is generated by the transpositions τk, it is

su�cient to do this calculation for Dn(τk) (for more details on index notation,
see Appendix A).

[U(a, λ)Dn(τk)Ψ]α1...αn
n (θ) (2.17)

= ei
∑n
k=1 mαkp(θk)·aS

αk+1αk
βk+1βk

(θk+1 − θk)

×Ψ
α1...βk+1βk...αn
n (θ1 − λ, ..., θk+1 − λ, θk − λ, ..., θn − λ)

which should equal

[Dn(τk)U(a, λ)Ψ]α1...αn
n (θ) (2.18)

= S
αk+1αk
βk+1βk

(θk+1 − θk) ei(mα1p(θ1)+...+mβk+1
p(θk+1)+mβkp(θk)+...+mαnp(θn))·a

×Ψ
α1...βk+1βk...αn
n (θ1 − λ, ..., θk+1 − λ, θk − λ, ..., θn − λ).

Now, comparing (2.17) and (2.18) one can see that for all αi except αk and αk+1

this condition represents no restriction on S, and it can be reduced to

S
αk+1αk
βk+1βk

(θk+1 − θk)ei(mαk+1
p(θk+1)+mαkp(θk))·a

= S
αk+1αk
βk+1βk

(θk+1 − θk)ei(mβk+1
p(θk+1)+mβkp(θk))·a

, (2.19)

which can be rewritten as the condition

Sα1α2
β1β2

(θ) = 0 if (mα1 6= mβ1 or mα2 6= mβ2). (2.20)

Recalling De�nition 2.1 we see that this property of S is included there already
in equation (2.5e).

Lemma 2.3. U as de�ned in (2.16) is a unitary, positive energy representa-

tion of the proper orthochronous Poincaré group P↑+ and strongly continuous for
translations U(a, 0) with the (up to a phase) unique invariant (vacuum) vector
Ω = 1⊕ 0⊕ 0⊕ ... ∈ H.
Proof. We begin by showing that U is a representation of P↑+ on

⊕∞
n=0H

⊗n
1 by

verifying the multiplication law U(a, λ)U(a′, λ′) = U(Λλa
′ + a, λ + λ′), which

gives the inverse U(a, λ)−1 = U(−Λ−λa,−λ) as well:

[U(a, λ)U(a′, λ′)Ψ]α1...αn
n (θ1, ..., θn)

= exp(i
n∑
l=1

mαl

(
cosh θl
sinh θl

)
· a) exp(i

n∑
i=1

mαi

(
cosh(θi − λ)

sinh(θi − λ)

)
· a′)

×Ψα1...αn
n (θ − λ− λ′)

= exp(i

n∑
l=1

mαl

((
cosh θl
sinh θl

)
· a+

(
cosh(θl − λ)

sinh(θl − λ)

)
· a′
)

︸ ︷︷ ︸
(Λλa′+a)·(cosh θlsinh θl

)

)Ψα
n(θ − λ− λ′︸ ︷︷ ︸

−(λ+λ′)

)

= [U(Λλa
′ + a, λ+ λ′)Ψ]α1...αn

n (θ1, ..., θn).

14



Here Λλ denotes the boost with rapidity λ, cf. (2.1).
Unitarity of U can be seen from its de�nition:

〈UΨ, UΦ〉H =
∞∑
n=0

∫
dnθ exp(−i

n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) Ψ

α
n(θ − λ)

× exp(i
n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) Φα

n(θ − λ)

=
∞∑
n=0

∫
〈Ψn(θ − λ) , Φn(θ − λ)〉K�n dnθ = 〈Ψ,Φ〉H.

At this point we have shown that U is a unitary representation of P↑+ on
⊕∞

n=0H
⊗n
1 .

It was shown in Lemma 2.2 that it can be restricted to the S-symmetric subspace
H already.
In order to be able to apply Stone's Theorem, i.e. writing U(a, 0) as an exponen-
tial, strong continuity of the translations U(a, 0) is necessary.
Therefore we look at

lim
a→0
〈U(a, 0) Ψ,Φ〉H

=
∞∑
n=0

∫
Rn

lim
a→0

exp(−i
n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) Ψ

α
n(θ)Φα

n(θ) dnθ

= 〈Ψ,Φ〉H.

Pulling the limit into the integral is legitimated by Lebesgue's Theorem of dom-
inated convergence, stating that for a sequence {fn} of measurable functions on
a measure space (M,µ) converging pointwise to a function f which is dominated
by some integrable function g (i.e. |fn| ≤ g ∀n), the limiting function f is inte-

grable, and lim
n→∞

∫
s
fndµ =

∫
s
fdµ, since we can estimate the oscillating function

| exp(i
∑n

l=1 mαl

(
cosh θl
sinh θl

)
· a)| = 1.

To show the existence of a unique invariant vector Ω ∈ H, invariance under U
has to be shown. This corresponds to Ω ful�lling U(a, λ)Ω = Ω ∀λ ∈ R, ∀a ∈ R2.
Written out, what we want is

[U(a, λ)Ω]αn(θ) = exp(i
n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) Ωα

n(θ − λ)
!

= Ωα
n(θ),

∀ θ, α, n, λ, a. This is a very strong restriction, since for a function not being
altered by translations of its arguments, it has to be constant. Hence not ∈ L2,
except for the possibility of being zero everywhere. This yields Ω = 0 for all n
except n = 0. But as U acting on Ω ∈ H0 = C leaves this constant invariant
(because of the constant function having no argument, hence no subtraction of
λ, and the sum in the exponential of U no phase) the statement is shown.
For U(a, 0) to be a positive energy representation, we need the joint spectrum of
the generators of the energy and momentum operators P0, P1 to be contained in
the closed forward light cone V

+
= {p ∈ R2 : p2 ≥ 0, p0 ≥ 0}, which is equivalent

to P0 and P 2
0 − P 2

1 both being positive1. Therefore we note that the generators
P0 and P1 multiply with

∑
k(mαk cosh θk) and

∑
k(mαk sinh θk) respectively on

1For details on spectra see [RS2] Chap IX.8.
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Hn, and check:

|
∑
k

mαk sinh θk| ≤
∑
k

mαk | sinh θk| =
∑
k

mαk sinh |θk|

≤
∑
k

mαk cosh |θk| =
∑
k

mαk cosh θk,

where in the �rst inequality the triangle inequality has been applied and we made
use of the claim that mk ≥ 0 ∀ k. So, taking into account the positivity of cosh θ,
we have shown that both P0 and P 2

0 − P 2
1 are positive.

2.3.1 The PCT operator

In the following, we will make use of a spacetime re�ection operator IST , which
can be seen as extending the representation U of P↑+ to the proper Poincaré group
P+. This re�ection operator will be important for our subsequent discussion of
wedge-local �elds. Therefore we give the following

De�nition 2.5. A spacetime re�ection operator on Hn is given by

[ISTΨ]α1...αn
n (θ1, ..., θn) := Ψαn...α1

n (θn, ..., θ1), Ψ ∈ D. (2.21)

NB. reversed order of indices and arguments. The whole PCT operation can be
formulated by including the

De�nition 2.6. of a charge conjugation operator C,

[CΨ]α1...αn
n (θ1, ..., θn) := Ψα1...αn

n (θ1, ..., θn), Ψ ∈ D. (2.22)

Here α is the charge conjugated particle spectrum, i.e. {1...N} 3 α→ α ∈ {1...N}
is a permutation that satis�es α = α. Obviously, C2 =id.

From De�nition 2.1 we know that mα = mα, i.e. the antiparticle has the same
mass as the particle. Combining De�nitions 2.5 and 2.6 gives the PCT operator

J := IST C = C IST . (2.23)

Lemma 2.4. The PCT operator J is an anti-unitary involution and commutes
with P . Moreover J extends U via JU(a, λ)J = U(−a, λ)∀a, λ to a representation
of the proper Poincaré group P+.

Proof. We begin with anti-unitarity of J :

〈JΨ, JΦ〉H =

∞∑
n=0

∫
[JΨ]α1...αn

n (θ)[JΦ]α1...αn
n (θ) dnθ

=

∞∑
n=0

∫
Ψαn...α1
n (θn...θ1) Φαn...α1

n (θn...θ1)dnθ

= 〈Ψ,Φ〉H = 〈Φ,Ψ〉H.

The last equation holds true because α 7→ α is a bijection. Next, we will
calculate the commutation relation of J and P where it is again su�cient, as

16



Pn = 1
n!

∑
π∈Sn Dn(π) to do it for Dn(τk):

[JDn(τk)Ψ]α1..αn
n (θ1, ..., θk, θk+1, ..., θn)

= [Dn(τk)Ψ]
αn...αn−k+1αn−k...α1
n (θn, ..., θn−k+1, θn−k, ..., θ1)

= S
αn−k αn−k+1

βn−k βn−k+1
(θn−k − θn−k+1) Ψ

αn...βn−k βn−k+1...α1
n (θn, ..., θn−k, θn−k+1, ..., θ1),

using (2.5a) in the form of (A.5), and (2.5b),

= S
αn−k+1 αn−k
βn−k+1 βn−k

(θn−k+1 − θn−k)Ψ
αn...βn−k βn−k+1...α1
n (θn, ..., θn−k, θn−k+1, ..., θ1)

= S
αn−k+1 αn−k
βn−k+1 βn−k

(θn−k+1 − θn−k) [JΨ]
α1...βn−k+1βn−k...αn
n (θ1, ..., θn−k+1, θn−k, ..., θn)

= [Dn(τn−k)JΨ]α1..αn
n (θ),

where from the third line on Dn(τk) acts as Fn−kSn−k because the kth argument
is θn−k, e.g. for k = 2, in {5, (4, 3), 2, 1} 4 and 3 �ips, hence in {1, 2, (3, 4), 5} to
�ip 3 and 4 the transposition has to act on the 5− 2 = 3rd position.
As Pn contains all permutations, these shifted transpositions generate again Pn,
leading to [J, Pn] = 0.
It is seen that J extends U from a representation of P↑+ to P+ as follows

[JU(a, λ)JΨ]α1...αn
n (θ) (2.24)

= exp(i

n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) [JΨ]αn...α1

n (θn − λ, ..., θ1 − λ)

= exp(−i
n∑
k=1

mαk

(
cosh θk
sinh θk

)
· a) Ψα1...αn

n (θ − λ)

= [U(−a, λ)Ψ]α1...αn
n (θ), (2.25)

where in the second equation we have used mα = mα.
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3 Fields

So far we have de�ned a S-symmetric �Fock� space H and a representation of
the proper Poincaré group. In order to de�ne �eld operators on H with the
usually claimed properties, we start with the de�nition of the following creation
and annihilation operators.

De�nition 3.1. We de�ne the unsymmetrized annihilation and creation opera-
tors a(ϕ) and a†(ϕ) for ϕ ∈ H1, Ψn ∈ D, on the subspace D ⊂ H of �nite particle
number as

[a(ϕ)Ψ]α1...αn
n (θ1...θn) :=

√
n+ 1

∫
dθ′ϕα0(θ′)Ψα0α1...αn

n+1 (θ′, θ1...θn), n ∈ N0,

(3.1a)

[a†(ϕ)Ψ]α1...αn
n (θ1...θn) :=

√
n ϕα1(θ1) Ψα2...αn

n−1 (θ2...θn), n 6= 0, (3.1b)

[a†(ϕ)Ψ]0 := 0.

These operators obey

〈Ψ, a(ϕ)Φ〉H =

∞∑
n=0

∫
dnθ〈Ψn(θ), [a(ϕ)Φ]n(θ)〉K⊗n

=
∞∑
n=0

√
n+ 1

∫
dnθ Ψα1...αn

n (θ1, ..., θn)

∫
dθ0 ϕ

α0(θ0)Φα0...αn
n+1 (θ0, ..., θn),

by renaming n→ n+ 1,

=

∞∑
n=1

√
n

∫
dθ0...dθn−1 ϕ

α0(θ0)Ψ
α1...αn−1

n−1 (θ1, ..., θn−1)Φα0...αn−1
n (θ0, ..., θn−1)

= 〈a†(ϕ)Ψ,Φ〉, since [a†(ϕ)Ψ]0 = 0, (3.2)

i.e. a(ϕ)∗ ⊃ a†(ϕ), where we use the symbol † if the hermitian adjoint ∗ only acts
on the operator, but not on its argument.
Choosing ϕ ∈ S (R) ⊗ K ⊂ H1, S being the Schwartz space of test functions
(i.e. decreasing faster than any exponential), one can rewrite these operators as
operator valued distributions, by de�ning a#

α (θ) as distributional integral kernels
of

a(ϕ) =:

∫
aα(θ)ϕα(θ)dθ, a†(ϕ) =:

∫
a†α(θ)ϕα(θ)dθ. (3.3)

From now on ϕ ∈ S (R) � K, which implies a restriction because S (R) � K ⊂
H1 = L2(R, dθ) �K.

3.1 S-symmetric �elds

So far the operators a and a† applied to Ψ ∈ D do not obey the S-symmetry of H.
More exactly, only the creation operator does not. In this section we will de�ne
creation and annihilation operators adhering to the S-symmetric structure of H.

From (2.7) and (2.8) it is clear that for each π ∈ Sn, we have [Dn(π)Ψn](θ) =
Sπ(θ)Ψn(θπ(1), ..., θπ(n)) with some tensor Sπ(θ) ∈ B(K⊗n). In the following we
will need the special permutation σk(1, 2, ..., k, ...n) := (k, 1, 2, ..., k̂, ..., n) where
the hat on k indicates that this variable is omitted, repeatedly and therefore
compute Sσk .
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[Dn(σk)Ψn(θ)]α = [Dn(τk−1) · · ·Dn(τ1)Ψn](θ)α

= S(θk − θk−1)
αkαk−1
ρkρk−1 [Dn(τk−2) · · ·Dn(τ1)Ψn(θ1, ..., θk, θk−1, ..., θn)]α1...ρkρk−1...αn

= S(θk − θk−1)
αkαk−1
ρkρk−1 S(θk − θk−2)

ρkαk−2
πkπk−2

× [Dn(τk−3) · · ·Dn(τ1)Ψn(θ1, ..., θk, θk−2, θk−1, ..., θn)]α1...πkπk−2ρk−1...αn

...

= S(θk − θk−1)
αkαk−1
ρkρk−1 S(θk − θk−2)

ρkαk−2
πkπk−2 ...S(θk − θ2)δkα2

τkτ2
S(θk − θ1)τkα1

µkµ1
,

×Ψ
µkµ1τ2...πk−2ρk−1αk+1...αn
n (θk, θ1, ..., θ̂k, ..., θn).

By renaming indices this product can be rewritten as follows:

=
∑
ξ1...ξk

δαkξk δ
βk
ξ1

1∏
l=k−1

S
ξl+1αl
ξlβl

(θk − θl)Ψ
βkβ1...βk−1αk+1...αn
n (θk, θ1, ...θ̂k, ..., θn)

= [Sσk(θ)]
αkα1...αk−1

βkβ1...βk−1
Ψ
βkβ1...βk−1αk+1...αn
n (θk, θ1, ...θ̂k, ..., θn). (3.4)

The notation of the product running from l = k− 1 to 1 is chosen to indicate the
order of transpositions, albeit not of formal relevance due to index notation.
We will now state the creation and annihilation operators for the S-symmetric
space H.

Theorem 3.1. For Ψ ∈ D, and ϕ ∈ S (R)�K, the operators z†(ϕ)Ψ := Pa†(ϕ)Ψ
and z(ϕ)Ψ := Pa(ϕ)Ψ are given by

[z(ϕ)Ψ]α1...αn
n (θ1, ..., θn) =

√
n+ 1

∫
dθ′ϕβ(θ′)Ψβα1...αn

n+1 (θ′, θ1...θn), (3.5a)

[z†(ϕ)Ψ]α1...αn
n (θ1, ..., θn) =

1√
n

n∑
k=1

[Sσk(θ)]
αkα1...αk−1

βkβ1...βk−1
ϕβk(θk)

×Ψ
β1...βk−1αk+1...αn
n−1 (θ1, ..., θ̂k, ..., θn) for n ≥ 1, (3.5b)

[z†(ϕ)Ψ]0 = 0.

They obey 〈Ψ, z(ϕ)Φ〉 = 〈z†(ϕ)Ψ,Φ〉, i.e. z(ϕ)∗ ⊃ z†(ϕ), and can be estimated
by

‖z(ϕ)Ψ‖ ≤ ‖ϕ‖‖N1/2Ψ‖, ‖z†(ϕ)Ψ‖ ≤ ‖ϕ‖‖(N + 1)1/2Ψ‖, (3.6)

where N is the particle number operator de�ned by

[NΨ]n := nΨn. (3.7)

Proof. For z(ϕ) the statement is clearly ful�lled since it annihilates an argument
of an element of the S-symmetric space, so z(ϕ)Hn ⊂ Hn−1. For z†(ϕ) note that
in Pn(ϕ⊗Ψ), Ψ ∈ Hn−1 is already S-symmetric, and a permutation π ∈ Sn can be
rewritten as π = σk·ρ with σk ∈ Sn and ρ ∈ Sn−1 acting on {2, ..., n} ⊂ {1, ..., n}.
σk = τk−1τk−2 · ... · τ1, k ∈ {1, ..., n}, σ1 = id, τi being transpositions. Hence the
projector Pn can be written as

Pn =
1

n!

n∑
k=1

∑
ρ∈Sn−1

Dn(σk)(1⊗Dn−1(ρ)) =
1

n

n∑
k=1

Dn(σk)(1⊗ Pn−1).
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The form of Sσk of Dn(σk) is given in equation (3.4).
For the bounds on z†(ϕ) consider

‖z†(ϕ)Ψ‖2H =

∞∑
n=0

‖[z†(ϕ)Ψ]n‖2Hn =

∞∑
n=1

‖
√
nPn(ϕ⊗Ψn−1)‖2Hn

≤
∞∑
n=1

n‖ϕ⊗Ψn−1‖2 =

∞∑
n=0

(n+ 1)‖ϕ‖2H1
‖Ψn‖2Hn

= ‖ϕ‖2H‖(N + 1)1/2Ψ‖2H.

For z(ϕ) the same calculation applies, except that in the estimate a (n− 1) due
to the particle number enters, giving the N1/2. The inclusion z(ϕ)∗ ⊃ z†(ϕ) can
be seen from (3.2) and the fact that the projector P is selfadjoint: For Ψ,Φ ∈ D,
we have

〈Ψ, z†(ϕ)Φ〉 = 〈Ψ, Pa†(ϕ)Φ〉 = 〈a(ϕ) P Ψ︸︷︷︸
Ψ

,Φ〉 = 〈 a(ϕ)Ψ︸ ︷︷ ︸
S−symmetric

,Φ〉 = 〈z(ϕ)Ψ,Φ〉.

We will also work with the distributional kernels z#
α (θ) (the wild-card # im-

plies both the annihilation and the creation operator) in analogy to the non-
symmetric case (3.3), related to the operators z#(ϕ) for ϕ ∈ S (R)⊗K ⊂ H1 by
the formal integrals

z#(ϕ) =:

∫
ϕα(θ)z#

α (θ)dθ. (3.8)

The action of z#
α (θ) can be obtained from Theorem 3.1 by formally setting

ϕβ(θ) = δαβ δ(θ
′ − θ), with α and θ �xed (implying that the particle type α is

chosen). This yields

[zγ(θ′)Ψ]αn(θ) =
√
n+ 1Ψγα1...αn

n+1 (θ′, θ1...θn), (3.9a)

[z†γ(θ′)Ψ]αn(θ) =
1√
n

n∑
k=1

[Sσk(θ)]
αkα1...αk−1

γβ1...βk−1
δ(θk − θ′)Ψβ1...α̂k...αn

n−1 (θ1, ..., θ̂k, ..., θn).

(3.9b)

Lemma 3.2. The commutation relations of the operators z†α(θ) and zβ(θ) are
given by

zβ(θ′)zρ(θ
′′) − Sβραγ(θ′ − θ′′)zγ(θ′′)zα(θ′) = 0,

z†β(θ′)z†ρ(θ
′′) − Sαγβρ (θ′′ − θ′)z†γ(θ′′)z†α(θ′) = 0, (3.10)

zβ(θ′)z†ρ(θ
′′) − Sγβρα (θ′′ − θ′)z†γ(θ′′)zα(θ′) = δβρδ(θ′ − θ′′)1,

∀ θ′, θ′′ ∈ R, de�ning a Zamolodchikov algebra [ZA1].

Proof. First we calculate the commutation relation of two annihilation operators.
Let Ψ ∈ D be continuous wave functions.

[zβ(θ′)zρ(θ
′′)Ψ]α1...αn

n (θ) =
√
n+ 1[zρ(θ

′′)Ψ]β α1...αn
n+1 (θ′, θ1, .., θn)

=
√

(n+ 1)(n+ 2)Ψρβ α1...αn
n+2 (θ′′, θ′, θ1, .., θn)

=
√

(n+ 1)(n+ 2)Sβρα γ(θ′ − θ′′)Ψαγ α1...αn
n+2 (θ′, θ′′, θ1, .., θn)

= [Sβραγ(θ′ − θ′′)zγ(θ′′)zα(θ′)Ψ]α1...αn
n (θ1, .., θn).
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Here no �ip operator F appears due to the index notation and the order of
arguments, giving it explicitly. By conjugation, one obtains (making use of (A.5))
the analogous result for the creation operators:

0 = [zβ(θ′)zρ(θ
′′)− Sβραγ(θ′ − θ′′)zγ(θ′′)zα(θ′)]∗

= zρ(θ
′′)∗zβ(θ′)∗ − Sγαρβ (θ′′ − θ′)zα(θ′)∗zγ(θ′′)∗

= z†ρ(θ
′′)z†β(θ′)− Sγαρβ (θ′′ − θ′)z†α(θ′)z†γ(θ′′).

In the mixed case we again compute each term of the commutator separately
using (3.9b),

[z†γ(θ′′)zβ0(θ0)Ψ]αn(θ1, ..., θn)

=
1√
n

n∑
k=1

[Sσk(θ)]
αkα1...αk−1

γβ1...βk−1
[zβ0(θ0)Ψ]

β1...βk−1α̂k...αn
n−1 (θ1, ..., θ̂k, ..., θn)

=

n∑
k=1

[Sσk(θ)]
αkα1...αk−1

γβ1...βk−1
δ(θk − θ′′)Ψ

β0...βk−1αk+1...αn
n (θ0, ..., θ̂k, ..., θn)

=
n∑
k=1

∑
ε1...εk

δαkεk δ
ε1
γ

1∏
l=k−1

S
εl+1αl
εlβl

(θk − θl)δ(θk − θ′′)Ψβ0...α̂k...αn
n (θ0, ..., θ̂k, ..., θn).

(3.11)

The �ipped situation yields

[zα0(θ0)z†ρ(θ
′′)Ψ]α1...αn

n (θ1, ..., θn)

=
√
n+ 1 [z†ρ(θ

′′)Ψ]α0...αn
n+1 (θ0, ..., θn)

=

n∑
k=0

[Sσk(θ′′, θ)]
αkα0...αk−1

ρβ0...βk−1
Ψ
β0...βk−1αk+1...αn
n (θ0, θ1, ..., θ̂k, ..., θn)

=
n∑
k=0

∑
ε0...εk

δαkεk δ
ε0
βk

0∏
l=k−1

S
εl+1αl
εlβl

(θk − θl)δβkρ δ(θk − θ′′)Ψβ0...α̂k...αn
n (θ0, ..., θ̂k, ..., θn).

(3.12)

The di�erence between (3.12) and (3.11) is the sum, in (3.12) starting at k = 0

which adds δβ0ρ δ(θ′− θ′′) (and no S-factor, see De�nition (3.4)), and the product
[Sσk(θ)]

εkα1...αk−1

ε1β1...βk−1
in (3.11) starting to act on the second index of Ψ, hence having

one factor less in each summand than in (3.12). Therefore, by plugging (3.12)
into (3.11) and re-expressing it in terms of z(θ) and z†(θ), we obtain

zα0(θ′)z†ρ(θ
′′) = δα0

ρ δ(θ′ − θ′′)1

+ Sαkα0

βkβ0
(θ′′ − θ0)δαkγ δβkρ [

n∑
k=1

∑
ε2...εk−1

1∏
l=k−1

S
εl+1αl
εlβl

(θk − θl)]δ(θk − θ′′)zβ0(θ′),

where one can read o� the extra Sγα0

ρβ0
.

Having now symmetric creation and annihilation operators at hand, we can
de�ne a �eld in the usual way as a linear combination of these creation and
annihilation operators with test functions supported on the positive and negative
mass shell as arguments, respectively.
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De�nition 3.2. For f ∈ S (R2)⊗K, we de�ne the �eld as a Segal-type operator

φ(f) := z†(f+) + z(Cf−), (3.13)

with the Fourier transform

f±α (θ) :=
1

2π

∫
fα(±x)eimαp(θ)·xd2x. (3.14)

Here p(θ) =
(

sinh θ
cosh θ

)
, as de�ned in (2.16).

Remark: f∗± = Jf∓, as we will see in the following theorem, by using f± = f
∓
.

Theorem 3.3. Properties of the �eld operator φ(f):

1. From the bounds of the creation and annihilation operators we obtain the
bounds for the �eld, Ψ ∈ D,

‖φ(f)Ψ‖ ≤ (‖f+‖+ ‖f−‖) ‖(N + 1)1/2Ψ‖. (3.15)

2. For Ψ ∈ D, the adjoint �eld is given by

φ(f)∗Ψ = φ(f∗)Ψ, with the adjoint �eld f∗(x) := Cf(x) (3.16)

All vectors in D are entirely analytic for φ(f). If for f ∈ S (R2) � K
f = f∗ = Cf holds, φ(f) is essentially selfadjoint on D.

3. φ(f) transforms covariantly under the representation U of P↑+:

U(a, λ)φ(f)U(a, λ)∗ = φ(f(a,λ)), (3.17)

fα(a,λ)(x) = fα(Λ−1
λ (x− a)), x, a ∈ R2, λ ∈ R,

where Λλ denotes the boost with rapidity λ.

4. The vacuum vector Ω is cyclic for the �eld φ, i.e. for any open set O ⊂ R2,
the subspace

DO := span{φ(f1)...φ(fn)Ω : f1, ..., fn ∈ S (O)⊗K, n ∈ N0}

is dense in H.
5. φ is local if and only if S = 1.

We will see in Theorem 4.4 that φ is relatively �wedge-local� to another one.
Nevertheless we will be able to work with this weaker locality.

Proof. 1. By inserting the previously given bounds (3.6) on z† and z, this is
straightforward:

‖φ(f)Ψ‖ ≤ ‖f+‖‖(N + 1)1/2Ψ‖+ ‖Cf−‖‖N1/2Ψ‖
≤ (‖f+‖+ ‖f−‖) ‖(N + 1)1/2Ψ‖.

2. First, we observe

f±α (θ) =
1

2π

∫
fα(∓x)eimαp(θ)·xd2x = f

∓
α (θ),

and

f∗∓α (θ) =
1

2π

∫
fα(∓x)eimαp(θ)·xd2x = (f)∓α (θ) = [Jf±](θ),
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which we use to show φ(f)∗Ψ = φ(f∗)Ψ:

φ(f)∗Ψ = (z†(f+) + z(Cf−))∗Ψ = (z†(Cf−) + z(f+))Ψ

= (z†(Cf
+

) + z(f
−

))Ψ = (z†(f∗+) + z(Cf∗−)))Ψ = φ(f∗)Ψ.

To see that φ(f) is essentially selfadjoint, i.e. that φ(f) has a unique self-
adjoint extension, we proceed analogously to [L1]. Let Ψn ∈ Hn, and
cf := ‖f+‖ + ‖f−‖. In view of the bound in 1., we have the estimates
‖φ(f)Ψn‖ ≤

√
n+ 1cf‖Ψn‖ and

‖φ(f)kΨn‖ ≤
√
n+ k cf ‖φ(f)k−1Ψn‖ ≤

√
n+ k...

√
n+ 1ckf‖Ψn‖, k ∈ N.

Thus, for arbitrary ξ ∈ C there holds (by the ratio criterion for k →∞)

∞∑
k=0

|ξ|k

k!
‖φ(f)kΨn‖ ≤ ‖Ψn‖

∞∑
k=0

√
(n+ k)!

n!

1

k!
(|ξ|cf )k <∞.

This shows that every Ψ ∈ D is an entirely analytic vector for φ(f). Since D
is dense inH, we can use Nelson's Theorem, stating that for a symmetric (i.e.
f∗ = f) operator on a Hilbert space whose domain of de�nition contains a
total set of analytic vectors is essentially selfadjoint [RS2]. In the following,
we will use the same symbol φ(f) for the operator and its selfadjoint closure.

3. Here we use the fact that U commutes with Pn from Lemma 2.2:

[U(a, λ)z†(ϕ)U(a, λ)∗Ψ]n =
√
nU(a, λ)Pn(ϕ� U(a, λ)∗Ψn−1)

=
√
nPn(U(a, λ)ϕ� Ψn−1) = [z†(U(a, λ)ϕ)Ψ]n.

Next, with the de�nition of U (2.16),

U(a, λ)z(ϕ)U(a, λ)∗ = (U(a, λ)z†(ϕ)U(a, λ)∗)∗

= z(U(a, λ)ϕ) = z(U(−a, λ)ϕ).

In view of the de�nition of f± (3.14), we observe that U(±a, λ)f± = f±(a,λ),
and conclude (using [U,C] = 0),

U(a, λ)φ(f)U(a, λ)−1 = z†(U(a, λ)f+) + z(CU(−a, λ)f−) = φ(f(a,λ)).

4. Choosing f ∈ S (R2)⊗K such that supp fα∩H−mα = ∅ ∀α with H−mα being
the negative mass shell of the mass mα), we have z†(f+) ∈ P(R2), where
P(R2) is the algebra generated by all polynomials in the �eld φ(f) with
test functions f ∈ S (R2) ⊗ K. Varying f gives a dense set of f+ in H1,
implying that Ω is cyclic for P(R2).
Now, to extend this construction for Ω to be cyclic for test functions f ∈
S (O) � K, O an open set in R2, we need to employ the Reeh-Schlieder
Theorem [SW1, Thm. 4-2], stating that for an open set O of spacetime, a
vector Ω is cyclic for P(O) if it is a cyclic vector for P(R2).
In the case of a narrower localization area (we will see in Theorem 4.4
that the �elds are wedge-local), it is seen that the Reeh-Schlieder theorem
can still be applied, as follows: The Fourier transform of the tempered
distribution F de�ned there [SW1, Thm. 4-2] as F (−x1, x1 − x2, ...xn−1 −
xn) = (Ψ, φ(x1), ...φ(xn)Ω) vanishes unless each xi lies in the closed forward
light cone. This statement is independent of the type of localization of the
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�elds. Therefore F can be analytically continued to a holomorphic function
in the tube T = {x + iy : y ∈ R+}, and by the Edge of the Wedge
Theorem it vanishes. This shows that for Ψ orthogonal to all vectors of
the form

∑
j φ(f1), ...φ(fj)Ω with suppfk,α ⊂ O, it is also orthogonal to

such vectors with suppfk,α ⊂ R, i.e. Ψ is orthogonal to P(R2)Ω and hence
Ψ = 0.

5. For S = 1, φ(f) is the local free �eld by de�nition (2.11), as H is the Bose-
Fock space then. To see the non-locality of φ(f) for f, g ∈ S (R2) ⊗ K in
the case S 6= 1 we take a look at

[P2[φ(f), φ(g)]Ω]αβ(θ1, θ2) =
1√
2

(f+
α (θ1)g+

β (θ2) + Sβαεγ (θ2 − θ1)g+
ε (θ1)f+

γ (θ2)

− g+
α (θ2)f+

β (θ1)− Sβαεγ (θ2 − θ1)f+
ε (θ1)g+

γ (θ2)).

This expression vanishes for arbitrary spacelike separated test functions f
and g if and only if S = 1.

We will see later in Theorem 4.5 that φ and φ′ are so called polarization-
free generators (this term was introduced by Schroer, and further investigated by
Borchers, Buchholz and Schroer [BBS1]), see De�nition 4.3.
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4 Finding a local algebra

Our interest lies in the localization properties of �elds. Therefore the following
subset of Minkowski space is de�ned, and will be used extensively.

De�nition 4.1. In 1 + 1 dimensional Minkowski space, the region

WR := {x ∈ R2|x1 > |x0|} (4.1)

will be called right wedge. This also de�nes a left wedge, by WL := −WR.

We will denote the commutant of a set A ⊂ B(H) as A′ := {B ∈ B(H) :
[A,B] = 0 ∀A ∈ A}, which enables us to state regions in Minkowski space in a
rather implicit way, and by taking the double commutant providing a convenient
notion for the closure in the weak operator topology [BR1].

The previously de�ned �eld φ does not have the usual locality properties but,
as was shown by Schroer [S1, S2], is localized in a wedge shaped region WL in
Minkowski space. But with the PCT operator J (2.23), it is possible to de�ne a
second �re�ected� �eld that will be localized in the opposite wedge WR.

4.1 A second �eld

The main purpose of introducing the TCP Operator J was not to get a rep-
resentation of the proper Poincaré group, but we use it now to de�ne another
�eld:

De�nition 4.2.

φ′(f) := Jφ(f j)J, f j(x) := f(−x), or, equivalently f j± = f±. (4.2)

It is relatively wedge-local to the previously de�ned φ, as we will show in
Theorem 4.4.
In the de�nition the �eld φ′ we did not make use of the creation and annihilation
operators for this new �eld, but as we will need them to investigate the locality
properties of φ′, we state them here:

z(ψ)′ := Jz(ψ)J, z†(ψ)′ := Jz†(ψ)J. (4.3)

These operators again form a Zamolodchikov algebra like the one generated by z
and z† in Lemma 3.2. The re�ected �eld can be written as a linear combination
of creation and annihilation operators

φ′(f) = J(z†(f j+) + z(Cf j−))J = J(z†(f+) + z(Cf−))J = z†(f+)′ + z(Cf−)′.

It will become clear that this �eld di�ers from the previously de�ned one when
we state the relative localization properties of φ and φ′. There we will see that
this new �eld is localized in the opposite wedge, and φ′ = φ⇔ S = 1.

Lemma 4.1. For Ψ ∈ D, we have

(z†(ϕ)′)∗Ψ = z(ϕ)′Ψ. (4.4)

Proof. By making us of (3.2), this is seen easily:

(z†(ϕ)′)∗Ψ = J∗(z†(ϕ))∗J∗Ψ = Jz(ϕ)JΨ = z(ϕ)′Ψ.
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Theorem 4.2. The �eld φ′ has the same properties as φ stated in Theorem 3.3:

1. The bounds for the �eld are

‖φ′(f)Ψ‖ ≤ (‖f+‖+ ‖f−‖) ‖(N + 1)1/2Ψ‖. (4.5)

2. For Ψ ∈ D, the adjoint �eld is given by

φ′(f)∗ = φ′(f∗). (4.6)

All vectors in D are entirely analytic for φ(f). If, for f ∈ S (R2) � K
f∗ = f , φ(f) is essentially selfadjoint on D.

3. φ′(f) transforms covariantly under the representation U of P↑+ (2.16)

U(a, λ)φ′(f)U(a, λ)−1 = φ(f(a,λ)), (4.7)

fα(a,λ)(x) = fα(Λ−1
λ (x− a)), x ∈ R2, λ ∈ R, (4.8)

where Λλ denotes the boost with rapidity λ.

4. The vacuum vector Ω is cyclic for the �eld φ′, i.e. for an open set O ⊂ R2,
the subspace

DO := span{φ(f1)...φ(fn)Ω : f1, ..., fn ∈ S (O)⊗K, n ∈ N0} (4.9)

is dense in H.
5. φ′ is local if and only if S = 1.

Proof. As the statements have been shown for φ in the proof of Theorem 3.3
already, we will only focus on the di�erences. Let again Ψ ∈ D.
1. Here we have the operator J appearing, which has to be estimated, and f j

instead of f . But from its action (2.23) it is clear that ‖J‖ = 1, as well as
‖f j±‖ = ‖f±‖ = ‖f±‖.

2. In this case J does not alter the argument as it is selfadjoint:

φ′(f)∗Ψ = J∗(φ(f j))∗J∗Ψ = Jφ(f j∗)JΨ = φ′(f∗j)Ψ = φ′(f∗)Ψ.

The proof of φ′(f) being essentially selfadjoint is the same as the one given
in Theorem 3.3 as the bounds on φ′(f) are the same as shown in 1.

3. Here we use the fact that U(a, λ)JΨ = JU(−a, λ)Ψ (Lemma 2.4):

[U(a, λ) z†(ϕ)′ U(a, λ)∗Ψ]n = [U(a, λ) Jz†(ϕ)J U(a, λ)∗Ψ]n

= [JU(−a, λ) z†(ϕ)U(−a, λ)∗JΨ]n = [z†(U(−a, λ)ϕ)′Ψ]n.

For the annihilation operator, this gives

U(a, λ) z(ϕ)′ U(a, λ)∗Ψ = (U(a, λ)z†(ϕ)′U(a, λ)∗)∗Ψ = (z†(U(−a, λ)ϕ)′)∗Ψ

= z(U(a, λ)ϕ)′Ψ.

Recalling the de�nition of f± (3.14), we observe that U(±a, λ)f± = f±(a,λ),
and obtain

U(a, λ)φ(f)′U(a, λ)−1 = z†(U(−a, λ)f+)′ + z(CU(a, λ)f−)′ = φ(f(a,λ))
′.

4. and 5. Again, the arguments of the proof of Theorem 3.3 can be used in
the same way in this context.
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In Lemma 3.2 we stated the Zamolodchikov algebra generated by z and z†. In
order to show the relative wedge-locality of φ and φ′, we need the mixed commu-
tator relations of z# and z′# as well. In view of the relations needed then, we will
state these in a rather peculiar way including the charge conjugation operator.

Lemma 4.3. For ψ1, ψ2 ∈ H1, the commutation relations of the �re�ected�
Zamolodchikov operators with the original ones are given by,

[z(ψ1)′, z(ψ2)] = 0, [z†(ψ1)′, z†(ψ2)] = 0, (4.10a)

[[z(Cψ1)′, z†(ψ2)]Ψ]n =: BCψ1 ψ2
n Ψn,

[BCψ1 ψ2
n (θ)]α1...αn

β1...βn
=

∫
ψ
αn+1

1 (θ′)[Sσn+1(θ, θ′)]
αn+1α1...αn
βn+1β1...βn

ψ
βn+1

2 (θ′) dθ′,

(4.10b)

[[z†(Cψ1)′, z(ψ2)]Ψ]n =: GCψ1 ψ2
n Ψn,

[GCψ1ψ2
n (θ)]α1...αn

β1...βn
= −

∫
ψ
αn+1

1 (θ′) [Sσ−1
n+1

(θ, θ′)]
α1...αnαn+1

β1...βnβn+1
ψ
βn+1

2 (θ′) dθ′.

(4.10c)

From this de�nition one can see that BCψ1 ψ2
n and GCψ1ψ2

n act as multiplication
operators on Ψ. The explicit form of Sσ−1

n+1
is given in equation (4.18).

Proof. Before showing the commutator relations, we calculate the action of the
re�ected annihilation operator:

[z(Cψ)′Ψ]α1...αn
n (θ)

= [z(Cψ)JΨ]αn...α1
n (θn, ..., θ1)

=
√
n+ 1

∫
ψβ(θ′)[JΨ]βαn...α1

n+1 (θ′, θn, ..., θ1) dθ′

=
√
n+ 1

∫
ψβ(θ′)Ψα1...αnβ

n+1 (θ1, ..., θn, θ
′) dθ′

=
√
n+ 1

∫
ψβ(θ′)Ψα1...αnβ

n+1 (θ1, ..., θn, θ
′) dθ′, (4.11)

where in the last equation, we used that the map α 7→ α is bijective, hence∑
α φ

αψα =
∑

α φ
αψα. So no α appears in the index notation of z(Cψ)′Ψ. Like

in (3.8), one can integrate out ψβ(θ′) by choosing ψβ(θ′) = δ
αn+1

β δ(θ′ − θ), with
�xed αn+1 and θ:

[zβ(θ′)Ψ]αn(θ) =
√
n+ 1 Ψα1...αnβ

n+1 (θ1, ..., θn, θ
′). (4.12)

To calculate the action of the creation operator is not necessary for the proof as
we will get the other commutators from adjoining the �rst ones. However, since
it might be interesting though, it can be found in Appendix (B.3).
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Now to the �rst commutation relation:

[[zβ(θ)′, zγ(θ0)]Ψ]α1...αn
n (θ)

=
√
n+ 1[zγ(θ0)Ψ]α1...αnβ

n+1 (θ1, ..., θn, θ)

−
√
n+ 1[zβ(θ)′Ψ]γα1...αn

n+1 (θ0, θ1, ..., θn)

=
√
n+ 1

√
n+ 2Ψγα1...αnβ

n+2 (θ0, θ1, ..., θn, θ)

−
√
n+ 1

√
n+ 2Ψγα1...αnβ

n+2 (θ0, θ1, ..., θn, θ)

= 0. (4.13)

For the action of the creation operators we take the adjoint of the commutator
of the annihilation operators (4.13):

0 = −[z(ψ1)′, z(ψ2)]∗ = [Jz(ψ1)∗J, z(ψ2)∗]

= [Jz†(ψ1)J, z†(ψ2)] = [z†(ψ1)′, z†(ψ2)]. (4.14)

In the third commutator BCψ1 ψ2
n Ψn, the notation de�ned in (3.4) will be used

for the k-fold products of matrix valued functions.

[[z(Cψ1)′, z†(ψ2)]Ψ]αn(θ)

=
√
n+ 1

∫
dθn+1ψ

αn+1

1 (θn+1)[z†(ψ2)Ψ]
α1...αn+1

n+1 (θ1, ..., θn, θn+1)

− 1√
n

n∑
k=1

[Sσk(θ)]
αkα1...αk−1

βkβ1...βk−1
ψβk2 (θk)[z(Cψ1)′Ψ]

β1...βk−1αk+1...αn
n−1 (θ1, ..., θ̂k, ..., θn)

=

∫
dθn+1ψ

αn+1

1 (θn+1)
n+1∑
k=1

[Sσk(θ)]
αkα1...αk−1

βkβ1...βk−1
ψβk2 (θk)

×Ψ
β1...βk−1...αn+1
n (θ1, ..., θ̂k, ..., θn+1)

−
n∑
k=1

[Sσk(θ)]
αkα1...αk−1

βkβ1...βk−1
ψβk2 (θk)

∫
dθn+1ψ

αn+1

1 (θn+1)

×Ψ
β1...βk−1...αn+1
n (θ1, ..., θ̂k, ..., θn+1)

=

∫
dθn+1 ψ

αn+1

1 (θn+1)[Sσn+1(θ)]
αn+1α1...αn
βn+1β1...βn

ψ
βn+1

2 (θn+1) Ψβ1...βn
n (θ)

= [BCψ1 ψ2
n (θ)]

α
βΨ

β
n(θ) (4.15)

where from the second to the third equation all terms except the (n+1)th canceled
out. So this commutator acts via annihilation in the last, and creation in the
�rst position. Moreover, it also does not involve a �ip of any arguments of Ψ and
therefore acts as a multiplication operator, multiplying with a tensor.
To obtain the fourth commutator we adjoin equation (4.10b):(

−BCψ1 ψ2

)∗
= −[z(Cψ1)′, z†(ψ2)]∗ = [Jz(Cψ1)∗J, z†(ψ2)∗]

= [Jz†(Cψ1)J, z(ψ2)] = [z†(Cψ1)′, z(ψ2)] = GCψ1 ψ2 . (4.16)

So we have
(
−BCψ1 ψ2

n

)∗
= GCψ1 ψ2

n , giving an important hint for later on, how

BCψ1 ψ2
n and GCψ1 ψ2

n are connected, which provides us the fourth commutator,
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completing the proof:

[GCψ1 ψ2
n (θ)]

α
β = −[

(
BCψ1 ψ2
n (θ)

)∗
]
α
β = −[BCψ1 ψ2

n (θ)]
β
α

= −
∫
dθ′ ψ

βn+1

1 (θ′)
∑

ξ1...ξn+1

δ
αn+1

ξ1
δ
βn+1

ξn+1

1∏
l=n

Sαlξlβlξl+1
(θl − θ′) ψ

αn+1

2 (θ′),

(4.17)

where unitarity (2.5a) in the notation of (A.5) has been used in the second line.
The product of scattering functions in the last line of the above equation is
unhandy, which is why we will denote it from now on as

[Sσ−1
n+1

(θ, θ′)]
α1...αnαn+1

β1...βnβn+1
=

∑
ξ1...ξn+1

δ
αn+1

ξ1
δ
βn+1

ξn+1

1∏
l=n

Sαlξlβlξl+1
(θl − θ′). (4.18)

Note that Sσ−1
k

corresponds to Dn(σ−1
k ). This can be seen by writing down the

product of scattering functions corresponding to Dn(σ−1
k ), with σ−1

k (1, 2, ..., n)
:= (2, ..., k − 1, 1, k, ..., n). A more detailed argument for the shape of Sσ−1

n+1
can

be found in Appendix (B.1).
So (4.17) can be rewritten as

[GCψ1 ψ2
n ]

α
β = −

∫
dθ′ ψ

βn+1

1 (θ′)
∑

ξ1...ξn+1

δ
αn+1

ξ1
δ
βn+1

ξn+1
[Sσ−1

n+1
(θ, θ′)]

α1...αnξn+1

β1...βnξn+1
ψ
αn+1

2 (θ′),

Alternatively, one can get Sσ−1
n+1

as follows: Dn is a unitary representation

of Sn. This carries over to (Fσn+1Sσn+1)∗ as it was constructed from unitary
matrices (2.2).
We highlight this fact by adding a −1 to σ, emphasizing the inverse action:

(Fσn+1Sσn+1)∗ = Sσ−1
n+1

. (4.19)

4.2 Relative wedge-locality of the �elds and a local net

Having the mixed commutation relations of Lemma 4.3 at hand, we can proceed
in analyzing the locality properties of φ and φ′, essentially by proving the follow-
ing Theorem 4.4.
Before doing so, we recall that in De�nition 2.1 we have claimed the matrix-
valued scattering function to be analytic in the region {ξ ∈ C : 0 < Im(ξ) < π},
and that it has the so called crossing symmetry Sαβγδ (iπ−θ) = Sβγδα (θ). These two
assumptions are essential to prove

Theorem 4.4. The �eld operators φ and φ′ are relatively wedge-local to each
other, i.e for f ∈ S (WR) �K, g ∈ S (WL) �K,

[φ′(f), φ(g)]Ψ = 0, Ψ ∈ D. (4.20)

One should keep in mind that for f ∈ S (WL)�K, g ∈ S (WR)�K this statement
is in general wrong (except for S = ±1). So the localization region of the �elds
can not be chosen arbitrarily, but is already contained in their de�nition to be
either in the left or right wedge. Therefore Theorem 4.4 implies that the �eld φ′

is located in WR and φ in WL.
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Proof. By plugging in de�nitions and observing that f± = f
∓
and g± = g∓,

what needs to be shown reduces by Lemma 4.3 to

[φ′(f), φ(g)]Ψn = [z†(f j+)′ + z(Cf j−)′, z†(g+) + z(Cg−)]Ψn

= [z†(f+)′ + z(Cf−)′, z†(g+) + z(Cg−)]Ψn

= [z†(f+)′, z(Cg−)]Ψn + [z(Cf−)′, z†(g+)]Ψn

= (Gf
+ Cg−
n +BCf− g+

n )Ψn. (4.21)

In order to show (Gf
+ Cg−
n + BCf− g+

n )Ψn = 0, we compare the commutators of
Lemma 4.3. There we noted that BCψ1 ψ2

n and GCψ1 ψ2
n are multiplication opera-

tors, not altering Ψn itself. So we can proceed without paying attention to the
action on Ψ. The charge conjugation operator C, in Lemma 4.3 acting on ψ1 in
GCψ1 ψ2
n represents a di�erence tough.

By the bounds on φ and φ′ from (3.15) and (4.5), for Ψ,Φ ∈ D, (f, g) 7→
〈Φ, [φ(f), φ′(g)]Ψ〉 is a tempered distribution in f and g. Hence it is su�-
cient to treat the case of f ∈ C∞0 (WR) � K, g ∈ C∞0 (WL) � K because if
the product vanishes on S (WR) � K × S (WL) � K, it also vanishes on
C∞0 (WR) �K × C∞0 (WL) �K.
We note that in f±α (θ + iπ) the hyperbolic trigonometric functions change sign
due to the added iπ in the argument:

f±α (θ + iπ) =
1

2π

∫
fα(x) exp{± imα

(
cosh(θ + iπ)

sinh(θ + iπ)

)
· x} dx

=
1

2π

∫
fα(x) exp{∓ imα

(
cosh θ

sinh θ

)
· x} dx

= f∓α (θ), (4.22)

and since g is de�ned the same way, this argument holds for it as well. This
equality is what brings up the idea of proving Theorem 4.4 by analytic continua-
tion to the complex plane and shifting the integration path from the real axis to
θ + iπ.
Therefore we have to check the analyticity of f and g when continued to the
complex plane, in order to employ Cauchy's theorem. For analyticity of BCf− g+

n ,
the real part of the exponential of f is the crucial object. For 0 < η < π we have

f±α (θ+ iη) =
1

2π

∫
fα(x) exp{±imα cos η

(
cosh θ

sinh θ

)
·x∓mα sin η

(
sinh θ

cosh θ

)
·x} dx,

(4.23)
where cosh(x+ iy) = coshx cos y+ i sinhx sin iy, and sinh(x+ iy) = sinhx cos y+
i coshx sin y has been used.
Now we have to consider the real part of the exponent of f− and g+:
First, for f− to be bounded it is necessary to have a negative product

(
sinh θ
cosh θ

)
· x

in the second term of the exponent in (4.23), since sinη > 0 for 0 < η < π. The
�rst term is oscillating and does not disturb convergence.

(
sinh θ
cosh θ

)
∈ WR because

coshθ > |sinhθ|. Therefore we need x ∈WR, which implies fα ∈ S (WR).
Secondly, for g+, by applying the same line of thought, we demand a positive
product

(
cosh θ
sinh θ

)
· x leading to x ∈ WL which implies gβ ∈ S (WL). This legiti-

mates our choice of f ∈ S (WR) �K, g ∈ S (WL) �K.
Because supp g and supp f were chosen to be compact, it follows (cf. [RS1, Thm.
IX.14]) that g+ and f− are bounded on S(0, π), and |g+

α (R+iη)| and |f−α (R+iη)|
converge exponentially to zero for �xed η as R→ ±∞.
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With crossing symmetry (2.5d), analyticity in {ξ| 0 <Im(ξ) < π} and bounded-
ness of S, f and g, we can proceed by shifting integration variables from R to
R + iη in

[BCf− g+
n (θ)]α1..αn

β1...βn

=

∫
dθ′ (f−)αn+1(θ′ + iη)δ

αn+1

ξn+1
[Sσn+1(θ + iη)]

ξn+1α1...αn
ξ1β1...βn

δ
βn+1

ξ1
(g+)βn+1(θ′ + iη)

=

∫
dθ′ (f−)αn+1(θ′ + iη)

∑
ξ1...ξn+1

δ
αn+1

ξn+1
δ
βn+1

ξ1

n∏
l=1

S
ξl+1αl
ξlβl

(θ′ − θl + iη)

× (g+)βn+1(θ′ + iη).

By using crossing symmetry (2.5d), (4.22), and setting η = π, this gives

=

∫
dθ′ (f+)αn+1(θ′)

∑
ξ1...ξn+1

δ
αn+1

ξn+1
δ
βn+1

ξ1

1∏
l=n

Sαlξl
βlξl+1

(θl − θ′) (g−)βn+1(θ′)

=

∫
dθ′ (f+)αn+1(θ′) [Sσ−1

n+1
(θ, θ′)]

α1...αnαn+1

β1...βnβn+1
(g−)β1(θ′)

= −[Gf
+ Cg−
n (θ)]β1...βnα1..αn , (4.24)

and arrive at the desired result. In the last equation we used the fact that
α = α.

In view of bound states in the spectra in some Sigma models and the poles in
S(0, π) they originate from, it would be pleasing to have an extension of Theo-
rem 4.4 for meromorphic scattering functions. Also regarding the symmetries we
claimed in the beginning, one might think this could be possible to prove. But
as it turns out this is not the case. We will brie�y outline the arguments here.
To extend the proof of Theorem 4.4 to meromorphic scattering functions, one
would make use of the Residue Theorem. Then, the residues of the poles of S
in the strip S(0, π) might cancel out each other due to one of the symmetries of
S. One �nds that crossing symmetry does not help as it represents a crossover
re�ection in the strip S(0, π), hence it does not reverse the orientation of the
integration path around the re�ected pole.
The second symmetry S(−θ) = S(θ) for which one has to additionally claim
S(θ) = S(θ) in the multi-particle case, does the job pretty well as it only re�ects
about the imaginary axis, hence reverses the orientation of the integration path
around the symmetric pole. Therefore all residues would cancel.
But as the essence is to show that (Gf

+ Cg−
n +BCf− g+

n )Ψn = 0, which is done by
continuation to the complex plane in the proof of Theorem 4.4, not only S needs
to be symmetric, but f− and g+ as well. Which they are not, as one can see
by considering the de�nition of f± (3.2). There, the Fourier transform acts via
p(θ) = (sinh θ, cosh θ) and the hyperbolic trigonometric functions do not possess
this symmetry for Re θ 6= 0. In the case of Re θ = 0 the residua do not cancel as
there are only single poles without any symmetric partner.
Also rewriting the product of the Fourier transforms of f and g in BCf− g+

n as
convolution does not provide a compensation of the non-symmetric sinh terms in
the p1 component of the exponential.

In the following, the set of all wedges will be denoted by

W := PWR = {WL + x : x ∈ R2} ∪ {WR + x : x ∈ R2}, (4.25)
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with a Poincaré transformation g ∈ P. The second equation holds true because
WR and WR are invariant under the action of a boost Λ(θ) (2.1), since the eigen-
vectors are light like.

De�nition 4.3. A polarization-free generator G is a closed operator, satisfying
the following conditions:

a) G is a�liated with a wedge algebra A(W ) for W ∈ W.

b) The vacuum vector Ω is contained in the domains of G and G∗.

c) The vectors GΩ and G∗Ω lie in the one-particle space.

A polarization-free generator is called temperate if there exists a dense, translation
invariant subspace D of its domain such that the functions x 7→ GU(x)Ψ are
strongly continuous and polynomially bounded for Ψ ∈ D, and the same holds
true for its adjoint G∗.

So far we have developed �elds for two-dimensional quantum �eld theories
by means of inverse scattering methods. Now we are going to complete the so
called Borchers triple (A, U,H)S by de�ning a local net W → A(W ). With
the representation of the proper orthochronous Poincaré group U (2.3) and the
Hilbert space H (2.11), we already have two of the elements of the triple.

De�nition 4.4. We will call

A(WL + x) := {eiφ(f) : f ∈ S (WL + x) �K f = f∗}′′, (4.26a)

a left wedge algebra and

A(WR + x) := {eiφ′(f) : f ∈ S (WR + x) �K f = f∗}′′, (4.26b)

a right wedge algebra. A local net is de�ned via the von Neumann algebras

W 7→ A(W ), (4.27)

acting on the S symmetric Fock space H.

Taking the �elds as exponentials will be legitimated in Theorem 4.5 by show-
ing that φ and φ′ are temperate polarization-free generators. Moreover, Theorem
4.5 states that the constructed triple (A, U,H)S has all the necessary properties
the Haag Kastler axioms [HK1] demand.

Theorem 4.5. Properties of the Borchers triple (A(WR), U,H).

a) The map W 7→ A(W ) with W ∈ W is a local net of von Neumann algebras
which transforms covariantly under the action of the representation U of the
proper Poincaré group.

b) The triple (A(W ), U,H) is a standard right wedge algebra, i.e. there holds

1) U is strongly continuous and unitary, the joint spectrum is contained in
the closed forward light cone, and there exists a unique (up to a phase)
vector Ω ∈ H which is invariant under the action of U.

2) Ω is cyclic and separating for A.
3) For each x ∈ WR the adjoint action of U(x) induces endomorphisms

on A:
A(x) := U(x)AU(x)−1 ⊂ A, x ∈WR. (4.28)

32



c) With respect to the net W → A(W ), the �elds φ(f) and φ′(f) are temperate
polarization-free generators in the sense of De�nition 4.3, a�liated with
A((WL+supp f)′′) and A((WR+supp f)′′), respectively.

Proof. We will only prove this for analytic vectors f .

a) Regarding the covariance properties (3.17) of φ, the exponentiated �eld
operator transforms as U(a, λ)eiφ(f)U(a, λ)−1 = eiφ(f(a,λ)). This can be seen
by expanding the exponential

U(a, λ)eiφ(f)U(a, λ)−1 = U(a, λ)

∞∑
k=0

ik

k!
φ(f)kU(a, λ)−1,

where in U(a, λ)φ(f)kU(a, λ)−1 we can, for all k, insert U(a, λ)−1U(a, λ) =
1, giving U(a, λ)φ(f)U(a, λ)−1U(a, λ)φ(f)U(a, λ)−1...U(a, λ)φ(f)U(a, λ)−1,
hence φ(f(a,λ))

k. Moreover, for f∗ = f , for the PCT re�ection operator J
the �eld transforms according to Jφ(f)J = φ′(f−1), f−1(x) = f(−x). The
same holds true for eiφ

′(f), as it transforms covariantly as well, cf. Theorem
4.2. As the algebras A(W ) are generated by eiφ(f) and since for g ∈ P+,
supp(fg) = g supp(f), they transform accordingly, i.e. U(g)A(W )U(g)−1 =
A(gW ).
To show locality of the algebras we refer to Theorem 4.4 where we have
proven the relative wedge-locality of φ and φ′. Here we need to extend this
to the exponentiated �elds. Therefore we apply Theorem 3.1 et seq. from
[DF1] stating that for selfadjoint operators φ, φ′ ful�lling

‖φ(f)(1 +H)−1‖ <∞ and ‖φ′(g)(1 +H)−1‖ <∞,

all bounded functions commute.
Bounds on φ and φ′ were already given in Theorem 3.3 and Theorem 4.2
respectively. Regarding the Hamiltonian, we have the general bound H ≤
supα(mα · N), hence ‖(1 + H)−1‖ < ∞. This implies A(WR) ⊂ A(WL)′,
and so locality of the net follows by covariance.

b) 1) has been shown in the proof of Lemma 2.3.
2) has been shown for f ∈ S (W ) in [L1] and poses no di�erence to the
present situation which is why we are brief about it. The argumenta-
tion there follows the arguments of [BW1]. For f1...fn ∈ S (WL) and the
spectral projection Ek(t) of the selfadjoint operator φ(fk) corresponding to
spectral values in [−t, t], we de�ne Fk(f) := Ek(t)φ(fk) ∈ A(WL) for all
t ∈ R. Fk(t) → φ(fk) strongly on the domain of φ as t → ∞. Hence
F1(t)...Fn(t)Ω → φ(f1)...φ(fn)Ω as t → ∞, and we conclude the cyclicity
of Ω for A(WL) from the cyclicity of Ω for φ from Theorem 3.3. The same
argument can be applied to φ′ as well, yielding the cyclicity of Ω for A(WR).
Moreover, as A(WL) and A(WR) commute, it follows that Ω is cyclic and
separating for these algebras. By covariance of A and the invariance of Ω
under U , this statement carries over to all wedge algebras.
3) has already been shown in a).

c) By the Theorem of Driessler and Fröhlich, already used for the proof of 1) it
follows that φ(f) commutes with allA(WR+x) ifWR+x and (WL+supp f)′′

are space-like separated, i.e. φ(f) and its adjoint φ(f)∗ are a�liated with
A((WL+supp f)′′). By construction, φ(f)Ω = f+ and φ(f)∗Ω = f∗+ are
single particle states, implying that φ(f) is a polarization-free generator.
Temperateness is seen as follows: The bounds on φ have been stated in
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Theorem 3.3 already, and the fact that D is dense inH follows from cyclicity
of Ω from b)1). Finally, as the bounds in Theorem 4.2 hold for φ′(f) as well
as for φ′(f)∗ if f is selfadjoint, i.e. Cf = f , the same holds true for φ′(f).
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5 Scattering Theory

So far we understood the matrix-valued scattering function S as the de�ning
quantity of the symmetry of the theory. In this chapter, the aim is to construct
scattering states and formulate a scattering theory providing a scattering matrix
Ŝ as well. As it turns out [L1] that in the scalar case (by �scalar� we mean
N = 1, i.e. only one uncharged particle species), the scattering matrix is strictly
determined by the scattering function. Our interest lies in proving this result for
N > 1 as well.
The construction of scattering states will be done by employing Haag-Ruelle
scattering theory [H2, R1, A2] in the special case of φ, φ′ being polarization-free
generators as worked out in [BBS1]. This will give us the necessary time evolution
parameters to de�ne asymptotic incoming and outgoing states. We will proceed
analogously to [L1].

5.1 Two-particle scattering states

We start this chapter with the construction of two-particle states. This suggests
itself as from the wedge-shaped localization regions of the so far de�ned �elds φ
and φ′ it is clear that it is not possible to causally separate more than two wedges.
If one shows the existence of such compactly loclized states, it is indeed possible
to describe (n→ m) scattering states for n,m ∈ N0. See the discussion in section
5.2 and [L2] for more details on that topic. For the de�nition of a time evolution
of the �elds it is necessary to introduce certain time-dependent momentum-space
wave functions:

fαt (x) :=
1

2π

∫
f̃α(p0, p1)ei(p0−ωp,α)te−ipx d2p, ωp,α := (m2

α + p2
1)1/2, (5.1)

with f ∈ S (R2) �K, t ∈ R.
For describing the asymptotic behavior of the �elds φ′(ft), φ(ft) it is helpful to
formally de�ne the velocity support V of a test function fα ∈ S (R2) as

V(fα) := {(1, p1/ωp,α) : (p0, p1) ∈ supp(f̃α)}. (5.2)

As shown in [H3, BBS1], supp(fαt ) is essentially contained in tV(fα) for t→ ±∞.
This can be seen by de�ning the function

χ(x) :=

{
1 for x ∈ V(fα),
0 for x /∈ a slightly larger region than V(fα),

(5.3)

and smooth in between. Then f̂αt (x) := χ(x/t)fαt (x) is the asymptotically dom-
inant part of fαt , i.e. f

α
t − f̂αt → 0 for t→ ±∞ in the topology of S (R2).

Via the velocity support (5.2) we can de�ne the �precursor� called ordering rela-
tion

fα ≺ gβ if V(gβ)− V(fα) ⊂ {0} × (0,∞), (5.4a)

as well as
f ≺ g if fα ≺ gβ ∀α, β ∈ {1, ..., N}. (5.4b)

For momentum space wave functions f̃ , g̃ with disjoint support on all the mass
shells H+

mα and f ≺ g, the operators φ(ft) and φ′(gt) are essentially localized in
WL + tV(f) and WR + tV(g), respectively. For t→ +∞, the spatial distance of
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the velocity supports of ft and gt increases. Thus, the outgoing two-particle state
(f+ × g+)out is de�ned via the limit

lim
t→∞

φ(ft)φ
′(gt)Ω =: (f+ × g+)out, f ≺ g. (5.5)

Here, the symbol × introduced by R. Haag in [H1] is used in the sense of a prod-
uct of incoming or outgoing particle states, in contrast to the symbol � de�ned
as tensor product of Hilbert spaces, both being bilinear operations.

For the incoming state (f × g)in, the precursor relation between ft and gt has
to be reversed since for t → −∞ the spatial distance of the velocity supports
of ft and gt only then increases, as φ(gt) and φ′(ft) are essentially localized in
WL + tV(g) and WR + tV(f), respectively. Hence we can de�ne the incoming
state

lim
t→−∞

φ(ft)φ
′(gt)Ω =: (f+ × g+)in g ≺ f. (5.6)

These incoming and outgoing states are asymptotically symmetric in the limit.
For smooth one-particle functions ψ1, ψ2 ∈ H1 with compact support and
supp(ψβ2 )−supp(ψα1 ) ⊂ (0,∞), we can �nd f , g ∈ S (R2)�K such that f+ = ψ1,
g+ = ψ2 and with V (fα), V (gβ) replaced by suppΨα

1 , suppΨβ
2 respectively, such

that f ≺ g. Therefore De�nition (5.4a) will be used for wave functions ψ1,
ψ2 ∈ H1 as well. The important result that the matrix-valued scattering function
S introduced as a factor de�ning the symmetry of the theory can be interpreted
as (2→ 2) scattering matrix is formulated in the following

Theorem 5.1. Given a matrix-valued scattering function θ 7→ S(θ) ∈ B(K�K),
the associated quantum �eld theory de�ned in terms of the wedge local �elds φ
(3.2), φ′ (4.2) and S is asymptotically complete at the two-particle level, i.e.
there exist total sets of incoming and outgoing two-particle states in the subspace
H2 ⊂ H.
These states have the explicit forms

(ψ1 × ψ2)out =
√

2P2(ψ1 ⊗ ψ2), ψ1 ≺ ψ2, (5.7a)

(ψ1 × ψ2)in =
√

2P2(ψ2 ⊗ ψ1), ψ1 ≺ ψ2. (5.7b)

The two-particle S-matrix S2,2 is given by the underlying matrix-valued scattering
function.

[S2,2Ψ+
2 ]α1α2(θ1, θ2) =

{
Sα2α1
β2β1

(θ2 − θ1) : θ1 ≤ θ2

Sα1α2
β1β2

(θ1 − θ2) : θ1 > θ2
Ψ+β1β2

2 (θ1, θ2), Ψ+
2 ∈ H

+
2 .

(5.8)

The interpretation of H2 as �two-particle space� is justi�ed by Theorem 5.1
because any Ψ2 ∈ H2 can be written as a superposition of incoming and outgoing
two-particle collision states.

Proof. As f is chosen such that the support of f̃α does not intersect with the
lower mass shell H−mα for all α, we have f−t = 0, f = f∗, ft− f̂t → 0 in S (R2)�K
as t → ±∞ and from the bounds in (3.15) on f it follows that f 7→ φ(f)Ψ is a
vector valued distribution. Hence we have

φ(f)Ψ = φ(ft)Ψ = lim
t→∞

φ(f̂t)Ψ, Ψ ∈ D. (5.9)
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Due to the strong convergence φ(f̂t)Ψ→ φ(f)Ψ for t→∞ the time dependence
drops out and the incoming and outgoing states are

(f+ × g+)in = lim
t→−∞

φ(gt)φ
′(ft)Ω = lim

t→−∞
z†(g+

t )z†(f+
t )′Ω =

√
2P2(g+ ⊗ f+),

f ≺ g,
(f+ × g+)out = lim

t→+∞
φ(ft)φ

′(gt)Ω = lim
t→+∞

z†(t+t )z†(g+
t )′Ω =

√
2P2(f+ ⊗ g+).

(5.10a)

Varying f and g within the limitations given by the claimed support properties
and the condition f ≺ g, we obtain total sets of incoming and outgoing two-
particle states on H1 �H1.
Moreover, every smooth function with compact support in R := {(θ1, θ2) : θ1 ≤
θ2} can be approximated by linear combinations of functions of the form ψα1 �ψβ2
with ψα1 ≺ ψβ2 . But the projection P2 : L2(R, dθ1dθ2) � K → H2 is linear, con-
tinuous and onto, implying that the scattering states (5.7a) both form total sets
in H2.

For the two-particle scattering matrix S2,2, we start by constructing Møller

operators V (2)
in , V

(2)
out : H+

2 → H2, S2,2 := V
(2)∗
out V

(2)
in : H+

2 → H
+
2 . H

+
2 denotes the

symmetric two-particle subspace of the Bose-Fock space H+ over L2(R)�K, (i.e.
S = 1).
The bosonic scattering states (5.7a) are represented in H+

2 by the vectors (cf.
[H1, Ch.II, Sec. 3])

V
(2)∗
out (ψ1 × ψ2)out =

√
2P+

2 (ψ1 ⊗ ψ2), ψ1 ≺ ψ2,

V
(2)∗
in (ψ1 × ψ2)in =

√
2P+

2 (ψ1 ⊗ ψ2), ψ2 ≺ ψ1.

Plugging (5.7a) into the left hand side, and as on H+
2 S = 1, V (2)∗

out acts according
to

V
(2)∗
out (ψ1 � ψ2 +D2(τ1)(ψ1 � ψ2)) = (ψ1 � ψ2 + ψ2 � ψ1), ψ1 ≺ ψ2.

Writing out this action in index notation gives, θ1 > θ2

(V
(2)∗
out )α1α2

β1β2
(θ1, θ2) (D2(τ1)(ψ1 � ψ2))β1β2(θ1, θ2) = (ψ2 � ψ1)α1α2(θ1, θ2)

(V
(2)∗
out )α1α2

β1β2
(θ1, θ2) Sβ2β1γ2γ1 (θ2 − θ1)ψγ22 (θ1)ψγ11 (θ2) = ψα1

2 (θ1)ψα2
1 (θ2).

Therefore, and from the support properties of ψ1 ≺ ψ2 as seen above, we deduce
that V (2)∗

out is a multiplication operator, multiplying with

V
(2)∗
out (θ1, θ2) =

{
S(θ1 − θ2) : θ1 > θ2

1 : θ1 ≤ θ2,
(5.11)

where we have used S(θ)−1 = F S(−θ)F (2.5a). In index notation, we have
(V

(2)∗
out )α1α2

β1β2
(θ1, θ2) = (S−1(θ2− θ1))α1α2

β1β2
= Sβ2β1α2α1(θ1− θ2). Analogously, from the

action of V (2)∗
in

V
(2)∗
in (ψ2 � ψ1 +D2(τ1)(ψ2 � ψ1)) = (ψ2 � ψ1 + ψ1 � ψ2), ψ1 ≺ ψ2, (5.12)

we infer the action of V ∗(2)
in to be given by

V
∗(2)
in (θ1, θ2) =

{
S(θ1 − θ2) : θ1 ≤ θ2

1 : θ1 > θ2.
(5.13)
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Here we have used S(θ)∗ = S(θ)−1 (2.5a) (twice), �rst to take the inverse and
then adjoin V

(2)∗
in to get V (2)

in . Combining (5.13) and (5.11), we see that the

two-particle S-matrix S2,2 = V
(2)∗
out V

(2)
in is given by the symmetric matrix-valued

function (θ1, θ2) 7→ S(|θ1 − θ2|), θ1,θ2 ∈ R

[S2,2Ψ+
2 ]α1α2(θ1, θ2) =

{
Sα2α1
β2β1

(θ2 − θ1) : θ1 ≤ θ2

Sα1α2
β1β2

(θ1 − θ2) : θ1 > θ2
Ψ+β1β2

2 (θ1, θ2), Ψ+
2 ∈ H

+
2 ,

and it is determined by the matrix-valued scattering function de�ned at the be-
ginning.

5.2 General scattering states

In general it is not possible to describe n-particle scattering states with the theory
developed so far because of the wedge-localization of the �elds φ and φ′. In order
to have n space like separated �elds, they have to be localized in double cones,
that is regions in Minkowski space consisting of intersections of two overlapping
opposite wedges, (cf. De�nition 5.15). By proving the existence of observables
compactly localized in double cones, it is possible to de�ne multi-particle scat-
tering states. Therefore one has to show that the wedge Algebras that generate
the Algebra of �elds localized in double cones have the so called split property
[L1, Sec. 2.2]. An inclusionM1 ⊂ M2 of two von Neumann algebrasM1,M2,
is called split, if there exists an type I factor N such thatM1 ⊂ N ⊂M2

Parts of the result of Theorem 5.1 can be generalized to n-particle scattering
states if the domain of localization of the �elds can be narrowed into double
cones. The existence of such �elds is not shown here, but could probably be
achieved by proving the wedge algebra to obey the modular nuclearity condition
[L2].

Recalling Section 2.2, where in equation (2.9) we de�ned Pn = 1
n!

∑
π∈Sn Dn(π),

we will call the scattering function for an arbitrary permutation π Sπn .

[PnΨ]α(θ) =
1

n!

∑
π∈Sn

[Dn(π)Ψn]α(θ) =
1

n!

∑
π∈Sn

Sπn(θ)
α
βΨ

β
n(θπ(1), ..., θπ(n)). (5.14)

An explicit form of Sπn would be nice to have, but as π ∈ Sn is arbitrary, the
summation indices in the product stated explicitly would be rather confusing.
This lack of an explicit expression is the reason why we object from stating the
n→ n scattering matrix explicitly.

De�nition 5.1. We will call the intersection of two opposite wedges WL, and
WR a double cone

O := (WR + x) ∩ (WL + y), (5.15)

for some x− y ∈WL.

Theorem 5.2. Let S be a matrix valued scattering function and assume that Ω
is cyclic for a double cone algebra A(O) := A(WR + x) ∩ A(WL + y). Then the
associated quantum �eld theory is asymptotically complete, i.e. there exist total
sets of incoming and outgoing states in the subspace Hn ⊂ H, given by

(ψ1 × ...× ψn)out = z†(ψ1)...z†(ψn)Ω, ψ1 ≺ ... ≺ ψn, (5.16a)

(ψ1 × ...× ψ2)in = z†(ψ1)...z†(ψn)Ω, ψn ≺ ... ≺ ψ1. (5.16b)
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The statement that the theory is asymptotically complete is a very strong one
as asymptotic completeness has to be taken as a prerequisite in most theories and
does not follow from initial assumptions.
Sketch of a proof:
Here we can build on the work we have already done in the proof of Theorem 5.1.
In order to extend it to the case of n particles we chose the method of induction
in n. For the induction hypothesis for n = 1, we have

φ(f)Ω = f+ = f+
out = f+

in,

since f+ is a single-particle state. For the induction step from n to n + 1,
let A1, ..., An ∈ A(O) be operators localized in O. We aim at establishing
commutation relations between φ(f) and creation operators Ak(gk)out, where
f ≺ g1 ≺ ... ≺ gk. From equation (5.9) we obtain the form of the product of n
creation operators with a �eld φ(f):

〈φ(f)∗Ψ, (A1(g1)Ω× ...×An(gn)Ω)out〉 = lim
t→∞
〈φ(f̂

∗
t )Ψ, A1(ĝ1,t)Ω...An(ĝn,t)Ω〉.

Analogously to the case of n = 2, f̂αt and ĝβk,t shall have for t → ±∞ supports

for all α, β, in small neighborhoods of tV (fα) and tV (gβk ) respectively. Hence
for large enough t > 0, these regions are spacelike separated and their distance
increases linearly with t. As φ(f̂ t) is a�liated with A(WL(ft)), it follows that
this operator commutes with Ak(ĝk,t), k = 1, ..., n. Hence

〈φ(f)Ψ, (A1(g1)Ω× ...×An(gn)Ω)out〉 = lim
t→∞
〈Ψ, A1(ĝ1,t)...An(ĝn,t)φ(f̂t)Ω〉

= lim
t→∞
〈Ψ, A1(ĝ1,t)...An(ĝn,t)f̂

+
t 〉,

with f̂+
t → f+, and Âk,t → Ak by the arguments of [L2, eqn. (6.1.11) et seq.]

= 〈Ψ, A1(g1)out...An(gn)outf
+〉

= 〈Ψ, (A1(g1)Ω× ...×An(gn)Ω× f+)out〉
= 〈Ψ, (f+ ×A1(g1)Ω× ...×An(gn)Ω)out〉,

where in the last equation Bose symmetry of the scattering states has been used.
By the Reeh-Schlieder property of A(O), f+

k can be approximated with Ak(gk)Ω,
i.e. ∃ε: ‖f+

k −Ak(gk)Ω‖ < ε, k = 1, ...n. Hence

〈Ψ(f)Ψ, (f+
1 × ...× f

+
n )out〉 = 〈Ψ, (f+ × f+

1 × ...× f
+
n )out〉.

As Ψ ∈ D was arbitrary and D ⊂ H dense, this implies via the induction hypoth-
esis that for f ≺ f1 ≺ ... ≺ fn

φ(f)φ(f1)...φ(fn)Ω = φ(fn)(f+
1 × ...× f

+
n )out = (f+ × f+

1 × ...× f
+
n )out.

In the case of incoming particle states the same argument holds true except for
the order of the velocity supports of f1, ..., fn sinceWL+tV (f1) becomes spacelike
separated from O + tV (fk) for t→ −∞ if fk ≺ f .
By continuity of (5.16a), and (5.16b) in f+

1 , ..., f
+
n , we get n-particle scattering

states of the form

(ψ1 × ...× ψn)out = z†(ψ1)...z†(ψn)Ω =
√
n!Pn(ψ1 � ...� ψn), ψ1 ≺ ... ≺ ψn,

(5.17a)

(ψ1 × ...× ψn)in = z†(ψn)...z†(ψ1)Ω =
√
n!Pn(ψn � ...� ψ1), ψ1 ≺ ... ≺ ψn.

(5.17b)

39



To prove that both incoming and outgoing states form total sets inH, we �rst note
that the functions ψ1�...�ψn, ψ1 ≺ ... ≺ ψn, form a total set in L2(En, d

nθ)�K⊗n
with En = {(θ1, ..., θn) ∈ Rn : θ1 ≤ ... ≤ θn}. Since Pn : L2(En, d

nθ)⊗n → Hn
is linear, continuous and surjective, totality of the constructed outgoing state
follows. To show that the incoming states form a total set as well, the same
arguments can be applied. Moreover, as D is dense in H, and any vector Ψ ∈ H
can be approximated by linear combinations of in- and outgoing states the theory
is asymptotically complete.

It would be pleasing to have an analogous result as in the one-particle case
[L1], where an explicit form for the general n → n scattering matrix Sπn can be
formulated, and the scattering matrix Ŝ reads Ŝ(θ) =

∏
1≤l<k≤n S2(|θk − θl|).

We give here the necessary steps for such a proof as far as one gets.
Let H+ =

⊕∞
n=0H+

n again be the symmetric Bose-Fock space over
H1 = L2(R, dθ)�K spanned by the asymptotic states, and let P+

n be the orthog-
onal projection onto H+

n . From (5.17a) and (5.17b), we deduce that the Møller
operators have the form

VoutP
+
n (ψ1 � ...� ψn) = Pn(ψ1 � ...� ψn), ψ1 ≺ ... ≺ ψn, (5.18a)

VinP
+
n (ψn � ...� ψ1) = Pn(ψn � ...� ψ1), ψ1 ≺ ... ≺ ψn. (5.18b)

These equations determine Vin and Vout uniquely, as ‖P+
n (ψ1 � ... � ψn)‖ =

‖Pn(ψ1 � ...� ψn)‖ =
√
n!‖ψ1‖...‖ψn‖ are isometries, mapping H+ onto H.

Inserting (5.14) into (5.17a) yields

V ∗out
∑
π∈Sn

(ψπ−1(1) � ...� ψπ−1(n)) =
∑
π∈Sn

[Sπn (ψπ−1(1) � ...� ψπ−1(n))],

where F π acts as F π(e1�...�en) := eπ(1)�...�eπ(n). As above in the two-particle
case, from the support properties of ψ1 ≺ ... ≺ ψn, we see that the action of V ∗out
is given by a multiplication with the tensor

V
(n)∗
out (θ1, ..., θn) = Sπ(θ1, ..., θn)−1, θπ(1) ≤ ... ≤ θπ(n). (5.19a)

Analogously, we have for Vin

V
(n)
in (θ1, ..., θn) = Sπι(θ1, ..., θn), θπ(1) ≤ ... ≤ θπ(n), (5.19b)

where ι(k) := n−k+1 is the total inversion permutation due to the inverse order
of rapidities in (5.19b). Therefore the n→ n scattering matrix Ŝn = V

∗(n)
out Vin(n)

also acts as a multiplication operator Sn on H+
n , according to (5.19a), (5.19b):

Ŝn(θ) = Sπn(θ)−1 · Sπιn (θ), θπ(1) ≤ ... ≤ θπ(n). (5.20)

From De�nition 2.8, one can see that we can rewrite

Sπιn (θ)Ψn(θπι(1), ..., θπι(n)) = [Dn(πι)Ψn](θ) = [Dn(π)Dn(ι)Ψn](θ)

= Sπn(θ)Sιn(θπ(1), ..., θπ(n))Ψn(θπι(1), ..., θπι(n)).

Therefore, equation (5.20) can be reduced to, θπ(1) ≤ ... ≤ θπ(n),

Ŝn(θ) = Sπn(θ1, ..., θn)−1 · Sπιn (θ1, ..., θn) = Sι(θπ(1), ..., θπ(n)). (5.21)
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In order to give Ŝn for arbitrary n, we would need to compute the product
of n(n + 1)/2 scattering functions. This would give a rather confusing index
appellation. Instead we state

Ŝ3(θ1, θ2, θ3)α3α2α1
β3β2β1

= Sγ2γ1α2α1
(θ21) Sγ3β1α3γ1(θ31) Sβ3β2γ3γ2 (θ32), (5.22)

with θ1 ≤ θ2 ≤ θ3, θij = θi − θj , which is the same expression as in the Yang-
Baxter equation (A.6).
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6 Examples of scattering functions

In the following we will give examples of scattering matrices from various sources
[AA1, J1, L2, LM1, ZA1] and show that they comply with the constraints we
imposed on the scattering function in De�nition 2.1.

6.1 Scalar scattering functions

The case of dim K = N = 1 and α = α, i.e. of only one uncharged particle species,
is the setting worked out in [L2]. There, it is possible to state the general form
of the class of scattering functions S0 (not being matrix-valued due to N = 1),
and the multi-particle scattering matrix explicitly.

S0 =

{
ξ 7→ ε · eia sinh ξ ·

∏
k

sinhβk − sinh ξ

sinhβk + sinh ξ
: ε = ±1, a ≥ 0, {βk} ∈ Z

}
, (6.1)

where the family Z consists of the �nite or in�nite sequences {βk} ⊂ C satisfying
the following conditions:

i) 0 <Imβk ≤ π/2,
ii) βk and −βk appear the same (�nite) number of times in the sequence {βk},
iii) {βk} has no �nite limit point,

iv)
∑

kIm
1

sinhβk
<∞.

The 2→ 2 scattering matrix Ŝ2,2 : H+
2 → H

+
2 acts as a multiplication operator

and has the form

[Ŝ2,2Ψ2](θ1, θ2) = S(|θ1 − θ2|) ·Ψ2(θ1, θ2), Ψ+
2 ∈ H

+
2 . (6.2)

It is even possible to prove the existence of n → n asymptotic states [L2] by
restricting the allowed set of scattering functions, which is achieved by claiming
that they must be bounded and analytic in a larger region S(−κ, π + κ), compare
the remarks in the beginning of section 5.2. Here κ(S) := inf {Im ξ : ξ ∈
S(0, π/2), S(ξ) = 0} > 0. The now smaller family of so called regular scattering
functions has the form

S(ξ) = ±
M∏
k=1

sinhβk − sinh ξ

sinhβk + sinh ξ
, 0 < Imβ1, ..., ImβM ≤

π

2
.

The n → n scattering matrix Sn,n : H+
n → H+

n again acts as a multiplication
operator, and has the form

[Ŝn,nΨ+
n ](θ1, ..., θn) =

∏
1≤l<k≤n

S(|θl − θk|) ·Ψ+
n (θ1, ..., θn). (6.3)

We refrain from proving that this class of scattering functions obeys De�nition
2.1 because for the whole class it is a rather lengthy task and we are focusing on
matrix-valued scattering functions in this work. However, in [L1] this is worked
out thoroughly.
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6.2 Diagonal examples

A class of non-scalar solutions to the constraints originating from Toda systems
can be found in [J1]. These solutions also �t into our framework, but are tedious
to compute explicitly, as there the work is performed in a purely algebraic setting
and the Lie algebraic solution spaces have a high number of dimensions.
A less high dimensional but similar solution is presented in the following, inspired
by the one given in [LM1, page 293 eqn. (51)].

The setting of the model is given as follows: N ∈ N0, a neutral (α = α) particle
spectrum mα = m, and functions σαβ : S(0, π) = {ξ ∈ C : 0 < Im(ξ) < π} → C
bounded on S(0, π) and analytic in S(0, π), and obeying, θ ∈ R

|σαβ(θ)|2 = 1 (6.4a)

σαβ(θ) = σβα(iπ − θ) (6.4b)

σαβ(θ) = σαβ(−θ). (6.4c)

The scattering matrix is given by

SLM (θ)αβγε = σαβ(θ)δαγδβε. (6.5)

Condition (6.4a) ensures unitarity, and condition (6.4b) (added by us) crossing
symmetry. The explicit form of σαβ is not given in [LM1].

The S-matrix (6.5) ful�lls the assumptions of De�nition 2.1 in this setting, as we
will show now.
The Yang-Baxter equation (2.5c) is clearly ful�lled by δαγ δ

β
ε , as can be seen in

detail in the next section 6.3.
Crossing symmetry (2.5d) which for this model is given by,

σαβ (θ)δαγδβε = σβα(iπ − θ) δβεδαγ

= δβεδαγ ,

hold by (6.4b), and unitarity

σαβ(θ) δαξδβζ σγε(θ) δ
γξδεζ = σαβ(θ)σαβ(θ) δαγδβε

⇔ (6.4a),

as well as S∗ = FS(−θ)F (2.5a)

σαβ(θ) δαγδβε = Fαγττ ′ στξ(−θ) δ
ττ ′δξξ

′
F ξξ

′

βε

= σαβ(−θ) δγαδεβ ⇔ (6.4c)

are ful�lled by (6.4a) � (6.4c).

The condition of σαβ being bounded on S(0, π) is not easy to ful�ll as the
example

σαβ(θ) = ea sinh(θ)

shows. In view of crossing symmetry this special choice yields

|σαβ(iη − θ)| = |eia(cos η sinh θ+i sin η cosh θ)| = e−a(sin η cosh θ),

which is not bounded for negative a.

The simplest example is to chose a scalar function σ of the form (6.1) in section
6.1, and put σαβ(θ) := σ(θ) for all α, β. Then one gets S(θ) = σ(θ) · 1.
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6.3 Sigma models

The last model we discuss is an O(N) (i.e. (MT ⊗MT )S(θ)(M ⊗M) = S(θ),
M ∈ O(N)) invariant (non-linear) Sigma model. In [ZA1], Zamolodchikov and
Zamolodchikov state the following O(N) invariant solution of the conditions they
impose on S.

For a given number of neutral (α = α, α = 1, ..., N) particle species N > 2,
all having the same mass mα = m, the scattering matrix is given by

SZ(θ)c1c2d1d2
:= σ1(θ)δc1c2δd1d2 + σ2(θ)δc1d1δc2d2 + σ3(θ)δc1d2δd1c2 , (6.6)

where the upper or lower position of indices at Kronecker delta symbols is of no
formal relevance, and the functions σ1, σ2 and σ3 are de�ned as

σ2(θ) := Q(θ)Q(iπ − θ), with Q(θ) :=
Γ( 1

N−2 − i
θ

2π )Γ(1
2 − i

θ
2π )

Γ(1
2 + 1

N−2 − i
θ

2π )Γ(−i θ2π )
, (6.7a)

σ1(θ) := − iλ

iπ − θ
σ2(θ), λ :=

2π

N − 2
, (6.7b)

σ3(θ) := σ1(iπ − θ) = − iλ
θ
σ2(θ). (6.7c)

The conditions (except for O(N) symmetry) Zamolodchikov and Zamolod-
chikov impose on S coincide with (2.5a, 2.5c, 2.5d, 2.5e) albeit being motivated
by a di�erent, more heuristic approach to scattering theory.
We regard this as a nice aspect of the rigorous inverse scattering approach we
undertake here. It shows that the rather mathematically motivated constraints
on S we imposed (originating from the de�nition of the representation of the
permutation group via S, crossing symmetry from the proof of relative wedge
locality of φ and φ′, and unitarity) can also be physically motivated in a more
intuitive way.
We want to stress that this is a solution for the constraints imposed on S and
O(N) symmetry, and remark that Zamolodchikov and Zamolodchikov state a
second solution, di�ering from the one above by a CCD pole, [AW1]

σCCD2 (θ) =
sinh θ + i sinλ

sinh θ − i sinλ
σ2(θ).

But as this solution has poles in S(0, π), it does not comply with our De�nition
2.1 of S. For the case of S not being analytic in S(0, π), see the discussion
following the proof of Theorem 4.4.

Proposition 6.1. SZ , as de�ned above, is a matrix-valued scattering function
according to De�nition 2.1.

Proof. We will omit the index Z and the argument θ of S in the calculation where
confusion is unlikely to arise.
First we show unitarity (A.7):

[S(θ)∗]c1c2d1d2
S(θ)d1d2k1k2

= S(θ)d1d2c1c2 S(θ)d1d2k1k2

= δc1c2δk1k2(|σ1|2N + σ1σ2 + σ1σ3 + σ2σ1 + σ3σ1)

+ δc1k1δc2k2(|σ2
2|+ |σ2

3|)
+ δc1k2δc2k1(σ2σ3 + σ3σ2).
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For this expression to be unitary it is necessary that (|σ1|2N+σ1σ2+σ1σ3+σ2σ1+
σ3σ1) = 0, (|σ2|2 + |σ3|2) = 1, and (σ2σ3 +σ3σ2) = 0. This is checked by plugging
in (6.7a)� (6.7b) where we make use of the general relation Γ(z) = Γ(z), z ∈ C
for the Gamma function, providing the relation σi(−θ) = σi(θ), θ ∈ S(0, π), for
i = 1, 2, 3.

|σ2|2 + |σ3|2 = 1⇐⇒ |σ2|2 =
1

1 + | 2iπ
N−2 |2

1
θ2

=
θ2

θ2 + λ2
,

|σ1|2N + σ1σ2 + σ2σ1 + σ1σ3 + σ3σ1

= |σ2|2
(
N − iπ − θ

λ
+
−iπ − θ

λ
+
iπ − θ
θ

+
−iπ − θ

θ

)
= |σ2|2

(
N − 2π

λ
− 2

)
= 0

σ2σ3 + σ3σ2 = |σ2|2
(

2iπ

(N − 2)θ
− 2iπ

(N − 2)θ

)
= 0.

The �rst equation imposes a condition on σ2 and the remaining two hold true
independently of σ2.
In the following we are going to check whether this condition is ful�lled by σ2,
where we will omit those functions in the product of |Q(θ)Q(iπ−θ)|2 that cancel
out immediately.

|σ2(θ)|2 = |Q(θ)Q(iπ − θ)|2

=
Γ(+ λ

2π −
iθ
2π )Γ(1 + iθ

2π )Γ(+ λ
2π + iθ

2π )Γ(1− iθ
2π )

Γ(− iθ
2π )Γ(1 + λ

2π + iθ
2π )Γ( iθ2π )Γ(1 + λ

2π −
iθ
2π )

=

(
iθ
2π

) (
− iθ

2π

)(
λ
2π + iθ

2π

) (
λ
2π −

iθ
2π

) =
θ2

θ2 + λ2
.

Condition (2.5b), Sα1α2

β1β2
(θ) = Sβ1β2α1α2(θ) is ful�lled as SZ is de�ned via Kronecker

delta symbols always �ipping both upper and lower indices symmetrically, and
the fact that α = α in this model. The same holds true for the second equation
in (2.5a): SZ is invariant under a left-right and up-down �ip of indices, and from
Γ(z) = Γ(z) we get σ2(θ) = σ2(−θ).
Now to the Yang-Baxter equation: The upper line of (A.6) reads

Sγ2γ1α2α1
(θij) S

γ3β1
α3γ1(θik) S

β3β2
γ3γ2 (θjk)

= [σ1(θij)δ
γ1γ2δα1α2 + σ2(θij)δ

γ1α1δγ2α2 + σ3(θij)δ
γ1α2δα1γ2 ]

× [σ1(θik)δ
β1γ3δγ1α3 + σ2(θik)δ

β1γ1δγ3α3 + σ3(θik)δ
β1α3δγ1γ3 ]

× [σ1(θjk)δ
β2β3δγ2γ3 + σ2(θjk)δ

β2γ2δβ3γ3 + σ3(θjk)δ
β2γ3δγ2β3 ],

and the lower line

Sγ3γ2α3α2
(θjk) S

β3γ1
γ3α1

(θik) S
β2β1
γ2γ1 (θij)

= [σ1(θjk)δ
γ3γ2δα3α2 + σ2(θjk)δ

α2γ2δα3γ3 + σ3(θjk)δ
γ3α2δγ2α3 ]

× [σ1(θik)δ
β3γ1δγ3α1 + σ2(θik)δ

β3γ3δα1γ3 + σ3(θik)δ
α1β1δγ1α3 ]

× [σ1(θij)δ
β2β1δγ2γ1 + σ2(θij)δ

β1γ1δγ2β2 + σ3(θij)δ
β2γ1δβ1γ2 ].

Multiplying out these two equations gives 15 terms (for 15 possible, non-identical
permutations of the indices on the delta symbols) each. Comparing coe�cients
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gives

δα1β1δα2β3δα3β2 : σ2(θ)σ2(θ − θ′)σ3(θ′) = σ3(θ′)σ2(θ − θ′)σ2(θ),

δα1β1δα2β2δα3β3 : σ2σ2σ2 = σ2σ2σ2,

δα1β2δα2β1δα3β3 : σ3σ2σ2 = σ2σ2σ3,

δα1α3δα2β2δβ1β3 : σ2σ1σ2 = σ2σ1σ2,

δα1β2δα2α3δβ1β3 : σ3σ1σ2 = σ1σ1σ2 + σ1σ2σ3, (a)

δα1α3δα2β3δβ1β2 : σ2σ1σ3 = σ2σ1σ1 + σ3σ2σ1,

δα1β3δα2β1δα3β2 : σ3σ2σ3 = σ3σ3σ2 + σ2σ3σ3, (6.8a)

δα1α2δα3β2δβ1β3 : σ1σ1σ2 + σ1σ2σ3 = σ3σ1σ2,

δα1β2δα2β3δα3β1 : σ3σ3σ2 + σ2σ3σ3 = σ3σ2σ3,

δα1α3δα2β1δβ2β3 : σ2σ1σ1 + σ3σ2σ1 = σ3σ1σ2, (6.8b)

δα1β1δα2α3δβ2β3 : σ3σ1σ1 + σ2σ2σ1 = σ1σ1σ3 + σ1σ3σ3,

δα1α2δα3β3δβ1β2 : σ1σ2σ2 + σ1σ1σ3 = σ3σ1σ1 + σ2σ2σ1,

δα1β3δα2β2δα3β1 : σ3σ3σ3 + σ2σ3σ2 = σ2σ3σ2 + σ3σ3σ3,

δα1α2δα3β1δβ2β3 : σ1σ1σ1 + σ1σ2σ1 +Nσ1σ3σ1 + σ2σ3σ1 + σ3σ3σ1

+ σ1σ3σ2 + σ1σ3σ3 = σ3σ1σ3,

δα1β3δα2α3δβ1β2 : σ3σ1σ3 = σ1σ1σ1 + σ1σ2σ1 +Nσ1σ3σ1 + σ2σ3σ1

+ σ3σ3σ1 + σ1σ3σ2 + σ1σ3σ3, (6.8c)

where from the second line on, the arguments of σi have been omitted, as they
are the same in all lines. N (the number of di�erent particle species) originates
from summation over Kronecker delta symbols.
The �rst four equations are trivially ful�lled as the arguments of the left hand
side of each function σi are the same as on the right hand side. Of the remaining
eleven equations many are redundant except for (6.8a), (6.8b) and (6.8c). As an
example we consider the equivalence of (a) to (6.8b):
The left side of (a) is a cyclic permutation of the right side of (6.8b) and hence
they are equal. The same holds true for the reversed sides of (a) and (6.8b). In
all other cases the situation is analogous.
For the veri�cation of (6.8a), (6.8b) and (6.8c) we give the algebraic manipula-
tions Zamolodchikov and Zamolodchikov have performed in [ZA1] to solve them,
instead of just plugging in and multiplying out:
For (6.8a) it is convenient to introduce the ratio h(θ) = σ2(θ)/σ3(θ), giving

h(θ) + h(θ′) = h(θ + θ′),

hence

σ3(θ) = −iλ
θ
σ2(θ), (6.9)

where λ is an arbitrary real parameter. Substitution of (6.9) into (6.8b) leads to

ρ(θ + θ′)ρ(θ′) =
iλ

θ
[ρ(θ′)− ρ(θ − θ′)], (6.10)

where ρ(θ) = σ1(θ)/σ2(θ). The solution of (6.10) is

ρ(θ) = − iλ

iκ− θ
,
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where κ is another real parameter. Now equation (6.8c) leads to the restriction

κ = i
N − 2

2
λ,

giving (6.7b) and (6.7c).
Concerning crossing symmetry, we plug (6.6) into (2.5d), giving

Sc1c2d1d2
(iπ − θ) = σ3(θ)δc1c2δd1d2 + σ2(θ)δc1d1δc2d2 + σ1(θ)δc1d2δd1c2

!
= Sc2d1d2c1

(θ) = σ1(θ)δc2d1δd2c1 + σ2(θ)δc2d2δd1c1 + σ3(θ)δc2c1δd1d2 .

If θ in (6.7b) is replaced by iπ − θ it gives (6.7c), where crossing symmetry for
σ2(θ) can be seen from its De�nition (6.7a).
What remains to be shown is analyticity in the open strip S(0, π)
= {ξ ∈ C : 0 < Im(ξ) < π}, and boundedness on S(0, π).
The fractions appearing in the de�nitions of σ1 and σ3 are analytic for θ 6= iπ
and θ 6= 0 respectively, as N > 2. As σ2 is de�ned via the meromorphic1 Gamma
function it is analytic as well, as in {ξ ∈ C : 0 < Im(ξ) < π} the argument can
not be zero or have vanishing imaginary part.This can be seen from investigating
the poles of σ2, which are poles of the Gamma functions in the numerator and
zeros in the denominator. As the Gamma function has no zeros we only need to
look at the argument of the two Gamma functions in the numerator by setting
them to a negative integer −k, k ∈ N0,

1

N − 2
− i θ

2π
= −k ⇔ θ = −2πi

(
1

N − 2
+ k

)
/∈ S(0, π),

1

2
− i θ

2π
= −k ⇔ θ = −2πi

(
1

2
+ k

)
/∈ S(0, π).

The case θ → iπ − θ does not give any poles as for θ ∈ S(0, π) as it is already
covered by the preceding discussion by the symmetry of σ2.
For the bounds on SZ on S(0, π) we have to consider Im θ ∈ [0, π]. In view of
the crossing symmetry implemented in σ2 it is su�cient to consider Q(θ). From
[O1, eqns. 5.6.7, and 5.6.9] we have the following lower and upper bounds for the
Gamma function Γ(z), z = x+ iy

(sech(πy))1/2 Γ(x) ≤ |Γ(z)| ≤ (2π)1/2|z|x−1/2e−π|y|/2 exp

(
1

6
|z|−1

)
, x ≥ 1

2
,

(6.11)

where sechz = 1
cosh z is the hyperbolic secant, and the identity [O1, eqn. 5.4.3]

|Γ(iy)| =
√

π

y sinh(πy)
.

We now use the lower and upper bounds (6.11) to estimate the denominator and
numerator of Q respectively, x := 1/(N − 2), y := −θ/(2π).

|Q(θ)| =

∣∣∣∣∣Γ(x+ iy)Γ(1
2 + iy)

Γ(1
2 + x+ iy)Γ(iy)

∣∣∣∣∣
≤ 2π

(x2 + y2)x/2−1/4 exp(−π|y|
2 + 1

6(x2 + y2)−1/2) exp(−π|y|
2 + 1

6(1
4 + y2)−1/2)√

sech(πy)Γ(1
2 + x)

√
π

y sinh(πy)

.

(6.12)

1i.e. holomorphic except in a countable set of points which are the non-positive integers.
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Using the lower bound [O1, eqn. 5.6.1] Γ(x) >
√

2π xx−
1
2 e−x for Γ(1

2 + x) in the
denominator of (6.12) gives for |Q(θ)| the upper bound

√
2πe

(x2 + y2)x/2−1/4 exp(−π|y|+ 1
6(x2 + y2)−1/2 + 1

6(1
4 + y2)−1/2)

√
y sinh(πy)√

sech(πy) (1
2 + x)x e−

1
2
−x √π

.

(6.13)

With
√

sinh(πy)
π sech(πy) =

√
sinh(2πy)√

2π
, and estimating the exponential term in the nu-

merator ≤ e3/2, we have

|Q(θ)| ≤
√

e

2π

(x2 + y2)x−1/2
√

sinh(2πy)
√
y

(1
2 + x)x

e3/2.

Now, regarding the parameter N we observe that x = 1/(N − 2) has its largest
value for small N , i.e N = 3 and vice versa x → 0 as N → ∞. As we are
interested in bounds for �xed N we use this fact, setting x = 1 in the numerator,
and x = 0 in the denominator, giving

|Q(θ)| ≤ e2

√
2π

(1 + y2)1/4
√

sinh(2πy)
√
y, (6.14)

where we have used that (1
2 +x)x → 1 as x→ 0. This expression is monotonously

increasing proportional to y3/2. It would be su�cient to be polynomially bounded,
since by the maximum principle (cf. [R1, Thm. 12.9]) a function
|f(z)| <exp(Aeα|x|) with α < 1, A < ∞, and continuous on a strip S(0, π) =
{x+ iy : y ≤ π} that is bounded on the closure of that strip by |f(x± iπ)| ≤ 1
is bounded for all z ∈ S(0, π) by |f(z)| ≤ 1.
Hence |Q(θ)| ≤ 1 ∀θ ∈ S(0, π). Regarding σ3, we have |σ3| ≤ c as in the
limit θ → 0, the Gamma function in σ2 compensates the diverging 1/θ, as
lim
θ→0

1/(θ Γ(θ))→ 1.

For θ = iπ in σ1, the same argument as for σ3 can be applied as the 1/(iπ − θ)
term is compensated by Γ(−i(iπ − θ)/(2π)) from Q(iπ − θ) in σ2.
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7 Conclusions

We have constructed a Borchers triple (A, U,H), and given the (incomplete) proof
that the netW 7→ A(W ) is a standard right wedge algebra. The de�ning quantity
for that was the scattering function S. We have proven in Theorem 5.1 that the
class of scattering functions from De�nition 2.1 allows for an exact solution of the
inverse scattering problem for two-particle scattering states. Moreover we could
show asymptotic completeness of the space of two-particle scattering states.
The discussion of general n-particle scattering states showed that it is in principle
possible to state the (n→ m) S-matrix, and that, given �eld operators localized
in spatially separated double cones, the space of n-particle scattering states is
complete. These are to our knowledge new results as it was not possible in the
form factor program to give expedient one-particle generators in the multi-particle
case. The strong indication that the space of scattering states is asymptotic
complete is new as well, as to our knowledge this was not shown so far at all for
interacting multi-particle theories.
The presented examples of S-matrices represent interesting elements of the family
of scattering functions and show that many of the heuristically motivated model
theories �t in this framework.
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Appendices

A Index notation

Recalling section 2 where we chose an orthonormal basis {eα} for K and wrote a
vector Ψn(θ) ∈ K � ...�K and a matrix-valued function S(θ) ∈ B(K �K) as

Ψα1...αn
n (θ1, ..., θn) := 〈eα1 � ...� eαn |Ψn(θ1, ..., θn) 〉

Sα1α2
β1β2

(θ) := 〈eα1 � eα2 |S(θ) eβ1 � eβ2〉, (A.1)

we can state the de�ning conditions of S as follows:

[S(θ)∗]α1α2
β1β2

= 〈eα1 � eα2 |S(θ)∗ eβ1 � eβ2〉 = 〈S(θ) eα1 � eα2 |eβ1 � eβ2〉 = Sβ1β2α1α2(θ),
(A.2)

where the complex conjugation is due to the hermiticity of the scalar product
since K is a complex vector space. For the index �ip operator F , we get

Fα1α2
β1β2

= 〈eα1 � eα2 |F eβ1 � eβ2︸ ︷︷ ︸
=eβ2�eβ1

〉 = δα1
β2
δα2
β1
. (A.3)

The transposition operator Dn with transposition τk and scattering matrix S(θ)
acts on H�n

1 3 ψn : Rn → K�n as

[Dn(τk)ψ]α1...αn
n (θ) = S

αk+1αk
βk+1βk

(θk+1 − θk)ψ
α1...βk+1βk...αk
n (θ1, ..., θk+1, θk, ..., θn).

(A.4)
Here it is important to note that the order of the indices on S is �ipped. This
stems from the �ipped arguments of Ψ, keeping �their� indices, which is accounted
for in the notation without indices by the �ip operator F.

Now we will state equations (2.5a) � (2.5c) from De�nition2.1 in index nota-
tion where we will denote (θi − θj) as θij , �rst S(θ)∗ = F S(−θ)F (2.5a):

[S(θ)∗]α1α2
β1β2

= Sβ1β2α1α2(θ) = [FS(−θ)F ]α1α2
β1β2

= Sα2α1
β2β1

(−θ). (A.5)

Expressing the left hand side of the Yang-Baxter equation (2.5c) in index notation
gives

〈eα1 � eα2 � eα3 |F1S1(θ21)F2S2(θ3 − θ1)F1S1(θ32) |eβ1 � eβ2 � eβ3〉
= Sγ2γ1β2β1

(θ21) Sγ3α1

β3γ1
(θ31) Sα3α2

γ3γ2 (θ32).

Analogously the right hand side of (2.5c)

〈eα1 � eα2 � eα3 |F2S2(θ32)F1S1(θ31)F2S2(θ21) |eβ1 � eβ2 � eβ3〉
= Sγ3γ2β3β2

(θ32) Sα3γ1
γ3β1

(θ31) Sα2α1
γ2γ1 (θ21),

giving together the Yang-Baxter equation in index notation

Sγ2γ1β2β1
(θ21) Sγ3α1

β3γ1
(θ31) Sα3α2

γ3γ2 (θ32) = Sγ3γ2β3β2
(θ32) Sα3γ1

γ3β1
(θ31) Sα2α1

γ2γ1 (θ21). (A.6)

Unitarity of S in index notation has the following form:

[S(θ)∗]α1α2
γ1γ2 Sγ1γ2β2β1

(θ) = S(θ)γ1γ2α1α2 S
γ1γ2
β2β1

(θ) = δα1
β2
δα2
β1
. (A.7)
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B Action of the S-matrix

In this section we give calculations which were not needed in the proof of Theorem
4.4 but for the sake of completeness might be interesting.
The conjugation of FσkSσk follows the proof of Lemma 2.1 using (A.5) and the
fact that F ∗ = F (2.2). It is su�cient to just conjugate the product formula (3.4)
when the order of transpositions is reversed as well, i.e. for Sn 3 π = τα1 ...ταi ,
ταi being transpositions, π−1 = ταi ...τα1 . We write this out in more detail:

[Dn(σk)
∗Φ(θ)]α1...αn

n

= [Dn(τ1)...Dn(τk−1)Φ(θ)]α1...αn
n

= [(FσkSσk)∗Φ(θ2, ..., θk−1, θ1, θk, ..., θn)]α2...α1...αn
n

=
∑

ξ1...ξn+1

δαkξk δ
βk
ξ1

1∏
l=k−1

Sαlξlβlξl+1
(θl − θ′)Φβ1...βk...αn

n (θ2, ..., θk−1, θ1, θk, ..., θn)

=
∑

ξ1...ξn+1

[Sσ−1
n+1

(θ, θ′)]
α1...αnαn+1

β1...βnβn+1
Φβ1...βk...αn
n (θ2, ..., θk−1, θ1, θk, ..., θn)

= [Dn(σ−1
k )Φ(θ)]ξ1α2...αn

n . (B.1)

From this equation one can see that if FσkSσk makes up for pulling the kth

argument to the �rst position, it is (FσkSσk)∗ which compensates for pushing the
�rst argument to the kth position. The matrices are again unitary which is clear
since Dn is a unitary representation of the permutation group Sn, de�ned via
unitary matrices S and F .
We will highlight this fact by adding a −1 to sigma, emphasizing the inverse
action.

[FσkSσk(θk − θ)]∗ = S∗
σ−1
k

F ∗
σ−1
k

(θ − θk). (B.2)

The action of the re�ected creation operator in the proof of Theorem 4.4 which
was not explicitly needed to calculate the commutation relation [z†(ψ1)′, z(ψ2)]
(4.10b) is presented in the following:

[z†(ψ)′Ψ]α1...αn
n (θ)

= [z†(ψ)JΨ]αn...α1
n (θn, ..., θn−k+1, ..., θ1) l := n− k + 1

=
1√
n

1∑
l=n

∑
ξ1...ξn

δαlξn δ
βl
ξl

n−1∏
j=l

S
ξj+1αj
ξjβj

(θj − θ′)ψβl(θl)[JΨ]
βn...β̂l...α1

n−1 (θn, ..., θ̂l, ..., θ1),

now, using (A.5) gives,

=
1√
n

1∑
l=n

∑
ξ1...ξn

δαlξn δ
βl
ξl

n−1∏
j=l

S
βjξj
αjξj+1

(θ′ − θj)ψβl(θl)Ψ
α1...αl−1βl+1...βn
n−1 (θ1, ..., θ̂l, ..., θn)

=
1√
n

n∑
l=1

[Sσ−1
l

(θ)]
αl+1...αnαl
βl+1...βnβl

ψβl(θl)Ψ
α1...αl−1βl+1...βn
n−1 (θ1, ..., θ̂l, ..., θn). (B.3)
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The second commutator in Lemma 4.3, calculated explicitly (again l = n−k+1)
reads

[z†(Cψ1)′, z(ψ2)]Ψα1...αn
n (θ)

=
1√
n

n∑
l=1

[Sσ−1
l

(θ)]
αl+1...αnαl
βl+1...βnβl

ψβl1 (θl)[z(ψ2)Ψ]
α1...αl−1βl+1...βn
n−1 (θ1, ..., θ̂l, ..., θn)

−
√
n+ 1

∫
dθ0ψ

α0
2 (θ0)[z†(Cψ1)′Ψ]α0...αn

n+1 (θ0, ..., θn)

=
n∑
l=1

[Sσ−1
l

(θ)]
αl+1...αnαl
βl+1...βnβl

ψβl1 (θl)

∫
dθ0ψ

α0
2 (θ0)Ψ

α1...αl−1βl+1...βn
n (θ0, ..., θ̂l, ..., θn)

−
∫
dθ0ψ

α0
2 (θ0)

n∑
l=0

[Sσ−1
l

(θ)]
αl+1...αnαl
βl+1...βnβl

ψβl1 (θl)Ψ
α1...β̂l...βn
n (θ0, ..., θ̂l, ..., θn)

= −
∫
dθ0ψ

α0
2 (θ0)[Sσ−1

0
(θ0, θ)]

α1...αnα0
β1...βnβ0

ψβ01 (θ0)Ψβ1...βn
n (θ1...θn)

= [GCψ1ψ2
n (θ)]α1..αn

β1...βn
Ψ
β
n(θ). (B.4)

This commutator annihilates the �rst entry of the �eld Ψ and creates one in the
last position, where again all terms except for the (n+ 1)th cancel.
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