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Abstract

The microscopic time evolution of a classical many-particle system is described by a trajectory

in a high-dimensional state (phase) space, which is spanned by the position and momentum

components of all particles. Due to the convex surface of atoms or molecules, this phase-space

trajectory is highly Lyapunov unstable, which means that a tiny (infinitesimal) perturbation

grows or shrinks exponentially with time. This instability is characterized by a set of exponential

rate constants, the Lyapunov exponents. They are computed by following the time evolution of

an associated bundle of perturbation vectors in tangent space. The number of these vectors is

equal to the dimension D of the phase space. In the classical algorithm these vectors are artificially

forced to stay orthonormal with a Gram-Schmidt procedure, and the Lyapunov exponents are

deduced from the time evolution of all d-dimensional volume elements (d ≤ D). The local (in

phase space) Lyapunov exponents depend on the instantaneous directions of these orthonormal

vectors and do not reflect the time-reversal invariance property of the original system.

In a recent publication (F. Ginelli et al., Phys. Rev. Lett. 99, 130601 (2007)) another set of

vectors, the so-called covariant vectors, was considered, which is not orthonormal and follows

the natural bundle dynamics in tangent space. At any instant of time these vectors provide a

spanning set for the tangent space, and from the rate of change of their norms the Lyapunov

exponents follow directly. The algorithm is more complex, since it still requires the computation

of the Gram-Schmidt vectors in the forward direction of time, followed by an iteration in the

backward direction to obtain the covariant vectors.

To establish and maintain a system in a non-equilibrium stationary state, computer thermostats

are required. They are used to control the local temperature and/or to extract the irreversibly

generated heat due to the work done on the system by the “driving”. Here, we test novel

thermostated boundaries suggested by van Beijeren (Chapter 1), which consist of a non-trivial

time-reversible map relating the incoming velocity vector of a particle colliding with the thermo-

stat wall with the outgoing velocity of the same particle. This map obeys detailed balance and is

shown to generate velocity distributions in front of the thermostating wall which are very close

v



vi Abstract

to the Maxwell-Boltzmann distributions for the specified temperatures. Interestingly, almost no

temperature jumps occur at the boundary. This method is used to study heat conduction for

a two-dimensional hard-disk gas (Chapter 1), and for a modified periodic Lorentz gas (Chap-

ter 2), for which the scatterer particles may rotate and are “rough” to allow energy exchange

between the translational degrees of freedom of a gas of point particles and the rotational de-

grees of freedom of the disk scatterers. Since the “driving” and thermosetting is a non-stochastic

and dynamical process, it allows the computation of the full Lyapunov spectrum for stationary

non-equilibrium conditions.

The overwhelming part of this dissertation (Chapters 3 to 8) is devoted to the study of the

covariant Lyapunov vectors and associated local exponents. It includes the first application of

this algorithm to many-particle systems. The method is first applied to a gas of rigid hard disks

(Chapter 3), where the emphasis is on the localized and delocalized Lyapunov modes appearing

for large and small exponents, respectively. The hyperbolic properties are also studied. Similar

investigations are carried out for the classical Lorentz gas (Chapter 4). Next, the symmetry

properties of the Gram-Schmidt vectors and of the covariant vectors are studied in detail for

a simple one-dimensional heat conducting oscillator in a temperature field varying in space

(Chapter 5 and 6). We find that the local Lyapunov exponents vary smoothly in directions

parallel to the phase flow, but display a fractal behavior for directions transversal to the flow.

We demonstrate also that the covariant vectors nicely reflect the time reversal symmetry of the

original motion equations, whereas the Gram-Schmidt vectors do not.

Finally, we study in more detail the convergence of the Lyapunov spectrum and the entanglement

of local Lyapunov exponents averaged over a finite time interval (Chapter 7). Focussing on a

system of rough-hard-disk particles, we demonstrate that the conservation of energy and of phase

volume does not prevent this system to loose its symplectic nature due to the rotation of the

particles (Chapter 8).



Zusammenfassung

Die mikroskopische Zeitentwicklung in einem klassischen Vielteilchen-System wird durch eine

Trajektorie in einem hochdimensionalen, von den Impuls und Ortskomponenten aller Partikel

aufgespannten, Zustands- oder Phasenraum beschrieben. Aufgrund der konvexen Oberfläche von

Atomen und Molekülen weist die Trajektorie im Phasenraum eine hohe Lyapunov-Instabilität

auf. Das bedeutet, dass kleine (infinitesimale) Störungen mit der Zeit exponentiell wachsen

oder schrumpfen. Diese Instabilität ist durch exponentielle Änderungsraten, die Lyapunov-

Exponenten, charakterisiert. Sie werden berechnet, indem man dem Zeitverlauf von assoziierten

Bündeln von Störungsvektoren im Tangentialraum folgt, wobei die Anzahl der Vektoren der Di-

mension D des Phasenraums entspricht. Im klassischen Algorithmus wird die Orthonormalität der

Vektoren durch das Gram-Schmidtsche Orthogonalisierungsverfahren künstlich erzwungen, und

die Lyapunov-Exponenten ergeben sich aus der Zeitentwicklung aller d-dimensionalen Volums-

elemente (d ≤ D). Die im Phasenraum lokalen Lyapunov-Exponenten hängen von den momen-

tanen Richtungen der orthonormalen Vektoren ab und spiegeln nicht die Zeitumkehrinvarianz

des ursprünglichen Systems wider.

Eine neuere Arbeit (F. Ginelli et al., Phys. Rev. Lett. 99, 130601 (2007)) betrachtet zum er-

sten Mal so genannte kovariante Vektoren, die nicht orthonormal sind und die der natürlichen

Dynamik des Bündels im Tangentialraum folgen. Diese Vektoren spannen zu jedem Zeitpunkt

den Tangentialraum auf, und die Lyapunov-Exponenten folgen direkt aus der Änderungsrate

ihrer Normen. Dieser Algorithmus ist komplexer, da die Gram-Schmidt Vektoren weiterhin in

Vorwärtsrichtung berechnet werden, und danach, in einer Iteration in Rückwärtsrichtung, die

kovarianten Vektoren bestimmt werden.

Zur Computersimulation von dynamischen Systemen im stationären Nichtgleichgewicht benötigt

man virtuelle Thermostaten. Thermostaten werden verwendet um die lokale Temperatur zu kon-

trollieren und/oder um die Wärme abzuführen, die durch den Antrieb des Systems irreversibel

erzeugt wird. Im ersten Teil dieser Dissertation testen wir eine neue thermostatisierende Rand-

bedingungen, die von van Beijeren vorgeschlagen wurde. Sie bestehen aus nicht trivialen, zeitum-

vii



viii Zusammenfassung

kehrinvarianten Abbildungen, die dem Geschwindigkeitsvektor eines Teilchens unmittelbar vor

einer Kollision mit der Thermostatwand einen Geschwindigkeitsvektor nach der Kollision zuord-

nen und gewisse Gleichgewichtsbedingungen erfüllen. Die Abbildung gehorcht einem genau defi-

nierten Gleichgewicht, und es wurde gezeigt, dass die von ihr erzeugten Geschwindigkeitsvertei-

lungen in der Nähe der Thermostatenwand annähernd den Maxwell-Boltzmann-Verteilungen für

die definierten Temperaturen entsprechen. Interessanterweise treten kaum Temperatursprünge

an der Grenzfläche auf. Die Methode wurde zur Berechnung der Wärmeleitung eines zweidimen-

sionalen Gases harter Scheiben angewandt (Kapitel 1). Ähnliche Simulationen wurden auch für

ein modifiziertes Lorentz-Gas angestellt (Kapitel 2), bei dem zentrale Streukörper mit rauher

Oberfläche Rotationsenergie mit der Translationsenergie eines Punktgases austauschen. Da dies

keinen stochastischen sondern einen dynamischen Prozess darstellt, ermöglicht er die Berechnung

vollständiger Lyapunov-Spektren auch für stationäre Nichtgleichgewichtszustände.

Das Schwergewicht dieser Dissertation (Kapitel 3-8) liegt auf der Berechnung lokaler Lyapunov-

Exponenten und deren kovarianten Lyapunov-Vektoren. Erstmals wird dieses Verfahren auf Viel-

teilchensysteme angewendet. Die Methode wurde zuerst für ein Gas aus harten Scheiben ange-

wandt (Kapitel 3), wobei lokalisierte und delokalisierte Lyapunov-Moden untersucht werden,

die für kleine beziehungsweise große Exponenten auftreten. Die hyperbolischen Eigenschaften

werden ebenfalls betrachtet. Ähnliche Untersuchungen werden auch für das klassische Lorentz-

Gas angestellt (Kapitel 4). Die Symmetrieeigenschaften von Gram-Schmidt und kovarianten

Lyapunov-Vektoren werden am Beispiel eines eindimensionalen, wärmeleitenden Oszillators, der

an ein räumlich variierendes Temperaturfeld gekoppelt ist, studiert (Kapitel 5 und 6). Während

die lokalen kovarianten Exponenten in Richtung des Phasenflusses glatte Funktionen sind, finden

wir transversal zum Fluss ein fraktales Verhalten. Wir zeigen auch, dass die kovarianten Vekto-

ren die Zeitumkehrsymmetrie der ursprünglichen Bewegungsgleichungen widerspiegeln, während

dies für die Gram-Schmidt Vektoren nicht der Fall ist.

Weiters untersuchen wir die Konvergenzeigenschaften von Lyapunov-Spektren und die Ver-

schränkung lokaler, über ein endliches Zeitintervall gemittelter Lyapunov-Exponenten (Kapi-

tel 7). Anhand eines Systems von rauhen harten Scheiben wird gezeigt, dass der symplektische

Charakter des Systems verloren geht, wenn es zu einem Energieaustausch zwischen translatori-

schen und rotatorischen Freiheitsgraden kommt (Kapitel 8).



Notation and Acronyms

Vector and space notation

In the two- or three-dimensional physical space

• Vectors are denoted with small letters with an arrow, e.g. ~q for the positions and ~p for the

momenta of the particles.

• Their associated perturbations are labeled by adding the prefix δ, i.e. δ~q and δ~p.

In the phase space (of dimension D):

• The phase point is identified by Γ.

• The associated perturbed states are denoted {δΓi}Di=1.

In the tangent space:

• The subspaces are denoted by bold capital letters, U for the Gram-Schmidt subspaces and

E for the covariant subspaces.

• The spanning vectors are identified by g for the Gram-Schmidt vectors, and v for the

covariant vectors.

List of acronyms

GS Gram-Schmidt

SHDS Smooth hard disk system

RHDS Rough hard disk system
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Introduction

One of the great success stories of modern science has been the development of kinetic theory

by Clausius, Maxwell, Boltzmann [1], and others. It provides the basis of our understanding of

macroscopic matter in terms of the microscopic dynamics of atoms and molecules. It is based

on classical mechanics, but Boltzmann soon realized the necessity to incorporate the concept

of probability [2]. He was also the first to introduce the concept of the microcanonical and

canonical ensembles [3], which is sometimes incorrectly accredited to Gibbs [4]. It makes use

of the principle of equal a priory probability for all accessible states in the phase space. This

principle is intimately connected with the assumption of ergodicity for many body systems,

which states that the phase-space trajectory of a system visits the neighborhood of any point in

the accessible phase space within a finite time. This assumption has been very difficult to prove

even for the most simple systems such as a gas of hard disks [5]. For this particular model, the

mathematical prove believed to hold without reproach has been accomplished only very recently

[5, 6]. Although originally developed only for rarefied gases, the kinetic theory was soon extended

to dense systems and mixtures by Chapman and Enskog [7].

In thermodynamic equilibrium the probability distribution in phase space for many body sys-

tems is a smooth, differentiable function. The Maxwell-Boltzmann distribution may serve as an

example in the single-particle phase space of a gas. If a system is driven out of equilibrium into

a stationary non-equilibrium state, this smoothness is not generally preserved. If the state is

made stationary with the help of dynamical time-reversible thermostats, the probability distri-

bution collapses onto a fractal attractor [8, 9, 10], which in some cases has been identified with

the Sinai-Ruelle-Bowen measure studied by mathematical physicists [11]. The existence of this

fractal probability distribution was facilitated by two instances:

i) The use of large-scale numerical computation. The numerical solution of the motion equa-

tions allows for a natural and powerful extension of the ideas of Boltzmann to complicated

many body systems, which otherwise would not be accessible by analytical theory. It is,

of course, futile to speculate, whether non-equilibrium statistical mechanics would have

1



2 Introduction

developed even faster, if Boltzmann had been in a position to use a modern computer

[12].

ii) The application of dynamical systems theory, which not only studies the trajectory of a

system in the phase space but also asks for the instability of this trajectory with respect

to tiny perturbations [13, 14, 15]. If the trajectory is unstable, the system is said to be

chaotic. Chaotic dynamical systems are characterized by an exponential growth of small

perturbations of the initial conditions.

We consider a linearly independent set of perturbation vectors {δΓi(0); i = 1, . . . , D} at an

initial time (t = 0) in phase space, which are commonly referred to as “Lyapunov vectors” (e.g.

[16, 17, 18]). The number of vectors equals the dimension D of the phase space. The Lyapunov

vector set, which points in all directions, corresponds to a perturbation vector set following the

(phase-space) bundle trajectory. The snapshot space (affiliated to a phase point) spanned by

this vector set is called the “tangent space”, and its continuous dynamical evolution is referred

to as “tangent bundle”. The (long-time) evolution of the vector set allows to estimate the chaos

of the system by the evaluation of the so-called (global) Lyapunov exponents λi :

λi = lim
t→∞

1
t

ln
‖δΓi(t)‖
‖δΓi(0)‖

.

The global Lyapunov exponents correspond to the time-averaged rates of exponential divergence

(λi > 0) and convergence (λi < 0) of neighboring phase-space trajectories with respect to

the reference trajectory. For conservative systems, the sum
∑D

i=1 λi is equal to zero, which

indicates that any infinitesimal phase space volume is conserved by the dynamics. For dissipative

systems the sum is negative. Several experimental studies for many-particle systems [19, 20,

21, 22, 23] as well as theoretical work [24] strongly suggest that the Lyapunov spectrum for

particle systems with a repulsive pair potential converges to a finite limiting spectrum in the

thermodynamic limit. Besides, the local evolution of the perturbation vectors reveals other very

important properties of the systems, as will be discussed in the following.

This thesis is concerned with the Lyapunov instability of many body systems, which include

hard disk fluids in two dimensions and various versions of planar Lorentz gases. It basically

consists of two parts. In Part I, which may be summarized as “Transport phenomena and

Lyapunov instability” and which incorporates Chapters 1 and 2, we provide the groundwork

for the following chapters. Here we introduce the basic tools such as a dynamical thermostat

suited for the study of heat conduction in non-equilibrium stationary state. The main part of

thesis includes the Chapters 3 to 8 and may be summarized under the heading “Tangent bundle

dynamics and its consequences”. The thesis is concluded with a short Outlook.



3

Part I : Transport phenomena and Lyapunov instability

Non-equilibrium systems are dissipative. If a stationary system far from equilibrium is consid-

ered, where stationarity is acquired with a dynamical thermostat, a contraction of the phase-

space density onto a multifractal attractor takes place. This fact explains why such systems

are macroscopically irreversible as specified by the Second Law of thermodynamics, despite the

time-reversible nature of the equations of motion [8, 21]. Generally, the transport coefficient

of a driven thermostated non-equilibrium system may be expressed in terms of the sum of all

Lyapunov exponents. For a certain subclass of systems, it is in principle possible to determine

transport coefficients with the knowledge of one single conjugate pair of exponents – the most

positive and the most negative [25].

In Chapter 2, we consider a modified Lorentz gas, which consists of a set of point-particles of mass

mmoving around hard-disk scatterers of diameter σ in a two-dimensional space. Energy exchange

between disks and particles is allowed, but no point-particle collisions take place (similar to a

photon gas in a crystal). The center of the scatterers are fixed on a triangular lattice, but

each disk rotates with an angular velocity ωi and has a moment of inertia I. The particle-disk

reflections are governed by “rough collisions”. The energy exchange between the point particles

occurs via collisions with the rotating disk scatterers, which act as local energy storage devices.

It is common to use a finite horizon to avoid the flight of particles through the box without

undergoing collisions.

The Lorentz gas is confined to a box with periodic boundaries parallel to the horizontal direction.

To the left and right, two thermostats delimit the box (see Fig. 1), one at temperature T1, the

other at temperature T2 6= T1. The zig-zag form of the thermostat walls excludes the possibility

of particles crossing the box in the vertical direction without collision. The velocity distribution

of the particles reflected by the thermostats follows the Boltzmann distribution. Deterministic

thermostats instead of stochastic ones are used for the computation of the Lyapunov spectrum.

The system is driven away from equilibrium by setting the left and right temperature to different

values. As a consequence, heat flows from the warm to the cold reservoir, which defines the heat

current and the heat conductivity. The heat flow is “normal” [26, 27] in the sense that it is finite

in the thermodynamic limit, although the temperature profile is not linear. We established the

relation between the Lyapunov spectrum and the heat flux for various temperature gradients.

The corresponding shape of the Lyapunov spectrum depends on T2 − T1, on the moment of

inertia I of the scatterers, and on the number of point particles.

The deterministic thermostat we use for the reservoirs is the topic of Chapter 1, where it is

tested for a simple two-dimensional smooth-hard-disk gas. For this purpose, thermodynamically
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Figure 1 : A typical arrangement of disks (diameter σ = 1) on a triangular array is shown. For the
temperatures of the thermostats we have T1 < T2. The lines visualize the trajectory of a single particle
of the gas consisting of 25 particles. The arrows on the disks are proportional to the initial disk velocity.

relevant quantities (e.g. the velocity distribution at the surface of the thermostats, the temper-

ature profile, the density profile, the heat flux and the heat conductivity) and chaos quantifiers

(based on the Lyapunov spectra) are calculated. The heat conductivity, which is the only trans-

port coefficient relevant in this case, is determined experimentally using Fourier’s law of heat

conduction and is compared to the theoretical value obtained from the Enskog theory [28, 29].

Good agreement between the experimental and the theoretical values is found for the present

model.

Part II : Tangent bundle dynamics and its consequences

The study of Lyapunov exponents provides a new theoretical tool for the understanding of

dynamical properties of a system in and out of thermodynamic equilibrium:

i) In equilibrium systems the Lyapunov vectors associated with the large exponents are

localized in physical space [30, 31], whereas the vectors belonging to the smallest positive

exponents are coherently spread out in space and display wave-like structures, which are

referred to as “Lyapunov modes” (e.g. [32, 33, 34, 35]). Lyapunov modes have been

characterized in detail by Eckmann et al. [36]. They are found in hard-disk and hard-

sphere systems in two and three dimensions, but also in systems with smooth particle

interactions. However, as shown in the last chapter of this thesis, the existence of modes

is restricted to Hamiltonian systems. For example, the present Lorentz gas (Fig. 1) is not

a Hamiltonian system and no Lyapunov modes exist even in equilibrium.

ii) In stationary non-equilibrium systems, the Lyapunov spectrum is asymmetric,∑D
i=1 λi < 0 ,

and provides a good estimate for the dimension of the multifractal attractor.
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Figure 2 : For any phase-space point Γ (at any time τn) the covariant Lyapunov vectors (blue lines)
parallel to the unstable manifold and the covariant Lyapunov vectors (red lines) parallel to the stable
manifold are shown.

The Lyapunov vectors in the tangent space have the tendency to reorient over time towards the

most unstable direction of the phase space. In order to avoid this characteristic in a numerical

algorithm, it is common to use the Gram-Schmidt re-orthonormalization procedure at periodic

time intervals, as was proposed by Benettin et al. [37, 38] and Shimada and Nagashima [39].

The Lyapunov vectors obtained with this approach, which are referred to as “Gram-Schmidt

Lyapunov vectors”, are pairwise orthogonal but in general not covariant: their direction is not

only determined by the microscopic dynamics of the linearized motion equations, but also by

the periodic re-orthonormalization. As a consequence, the Gram-Schmidt vectors do not display

time-reversibility, whereas the “covariant Lyapunov vectors” do. A vector set is covariant if, at

a given phase-space point, it can be mapped by the linearized dynamics into the vector set asso-

ciated with the phase-space point the system occupies at a later instant of time [36]. In simple

terms, the covariant Lyapunov vectors correspond to the intrinsic local expanding/contracting

directions in phase space strictly associated with the respective Lyapunov exponents. We can

thus study the transversality (intersection of manifolds) and/or the degree of hyperbolicity

(which determines whether stable and unstable manifolds are everywhere transversal or not)

[40] in chaotic systems.

Based on the general theory of dynamical systems established by Ruelle [15], a general method

for the construction of the covariant Lyapunov vectors has been introduced by Ginelli et al.

[41]. This algorithm is based on storing the Gram-Schmidt vector set in the forward direction of

the simulation, and using this information to find the covariant vectors in a time-reversed phase

of the simulation. The stable subspace in the forward direction corresponds to the unstable

subspace in the backward direction.
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To demonstrate this method with a simple example, we show in Fig. 2 the famous Hénon

attractor [42] as an example for a dissipative system. It is a two-dimensional map, and the

attractor is given by the black full line. The attractor itself is identical to its unstable manifold

in the phase space, whereas the stable directions are (approximately) indicated by the black

dotted lines (stable manifold). If the two covariant Lyapunov vectors are computed for this

model, one of them is aligned with the attractor (left panel), the other with the stable manifold

(right panel).

In the work leading to this thesis, we provided the first computation of covariant Lyapunov

vectors for various many-body systems. The Lyapunov spectrum (calculated with this new vector

set) is identical with that obtained by the classical method, but the Lyapunov vector projections

onto various subspaces now display the expected symmetries not present in the Gram-Schmidt

approach.

In Chapter 3, the algorithm was first applied to a smooth-hard-disk system. We are especially in-

terested in a comparison of the different properties associated with the Gram-Schmidt Lyapunov

vectors and the covariant Lyapunov vectors, namely, the Lyapunov modes, the “localization

width” [43], and the orientation in tangent space of the stable and the unstable directions [44].

Furthermore for the same kind of model, in Chapter 7 we investigated the convergence of the

Lyapunov spectrum, considering computations at different time scales. In particular, we observe

a strong dependence of the transversality property between covariant Lyapunov vectors (i.e.

angles between covariant vectors) on the position of their associated exponents in the Lyapunov

spectrum.

In Chapter 4 we study the covariant vectors for the simple Lorentz gas [45]. This model is

simpler than the modified version introduced in Chapter 2 insofar as the scatterer disks do not

rotate on their location in the lattice, and only a single point particle is followed in time and

is elastically scattered off the disks. Periodic boundary conditions are applied. It is interesting

to note that Fourier’s law of heat conduction for the simple periodic Lorentz gas was found to

hold by D. Alonso et al. [46]. This, however, was contested by A. Dhar and D. Dhar [47], who

assert that the standard Lorentz gas does not develop local thermal equilibrium (even in the

limit of large system size) due to the existence of an infinity of local conservation laws. As a

consequence, Fourier’s law would not exist. We did not study this particular point in further

detail. Such simple billiards have been the subject of many studies in chaos theory (e.g. the Sinai

billiard [48]). Dellago et al. were the first to study the Lyapunov exponents for this model [49].

We investigated the orientation of the covariant vectors and found a characteristic symmetry

for some projections of these vectors as well as a strong hyperbolicity (i.e. the stable and the

unstable directions are everywhere transversal to each other) in accordance with theoretical
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considerations [5].

The covariant Lyapunov vectors are a new tool of dynamical system theory, which offers fur-

ther insight concerning the intricate structure of the phase space of equilibrium systems. Its

application to non-equilibrium systems is the topic of Chapters 5 and 6, where we investigate

the time-reversibility of the covariant Lyapunov vectors for simple particle models in and out of

thermal equilibrium, with particular attention given to the local Lyapunov exponents.

Finally, Chap. 8 is devoted to the rough-hard-disk gas [50], where we prove that the rotations

break the Hamiltonian character of this model.

How collisions affect the tangent bundle

Lyapunov exponents were originally defined only for linear systems [51]. In nonlinear systems

they are introduced via a linearization about the bundle trajectory. Benettin et al. [37, 38]

derived an algorithm for computing the full Lyapunov spectra for smooth dynamical systems,

which became the standard approach. These authors follow the time evolution of the reference

trajectory and of a complete set of perturbation vectors by solving the corresponding linearized

equations of motion. Dellago et al. [21] introduced a generalization for rigid-body systems,

where the time-continuous streaming is interrupted by particle collisions. Here, we review this

approach since it forms the basis of our numerical work with hard particle systems in the

following chapters.

For a system with instantaneous collisions, the initial phase point Γ(0) is transformed to a final

phase point Γ(τ), at a later time τ , via successive periods of time-continuous streaming (free

flight in the simplest case) interrupted by instantaneous collision events. The latter consist of

an instantaneous collision map M connecting the phase point immediately before the collision

to that immediately after the collision. The streaming consists of a smooth flow determined by

the equation of motion

Γ̇ = F(Γ) . (1)

An infinitesimal perturbation vector δΓ connects the reference trajectory in the phase space, Γ,

to a slightly shifted satellite trajectory,

(S)Γ = Γ + δΓ . (2)

Between two successive collisions, the time evolution of the perturbation vector is obtained by



8 Introduction

linearizing Eq. (1),

δΓ̇ = DΓ δΓ +O (δΓ)2 , (3)

where DΓ ≡ ∂F/∂Γ is the Jacobi matrix for the smooth flow.

Let us consider the instantaneous time τc, at which a collision takes place for the reference

trajectory. For the satellite trajectory, the associated collision takes place at the instant τc +δτc,

which may be earlier or later (δτc ≥ 0 or δτc ≤ 0),

Γ ′
τc

= M (Γτc) , (4)

(S)Γ ′
τc+δτc

= M
(

(S)Γτc+δτc

)
. (5)

In the following, the unprimed quantities (Γ and δΓ) refer to the states immediately before

the collision event, whereas the primed quantities refer to the states immediately after. Since

δτc is proportional to components of δΓ, a first-order time approximation is tantamount to a

first-order perturbation-vector approximation: the terms (δτc)
2, (δΓ)2, and (δΓ δτc) (as well as

the higher order terms) are discarded.

Connecting Eqs. (2) and (5) yields

Γ ′
τc+δτc

+ δΓ ′
τc+δτc

= M (Γτc+δτc + δΓτc+δτc) . (6)

For the phase point, the time linearization of Eq. (1) directly suggests that

Γτc+δτc = Γτc + F (Γτc) δτc +O (δτc)
2 and Γ ′

τc+δτc
= Γ ′

τc
+ F

(
Γ ′

τc

)
δτc +O (δτc)

2 . (7)

For the perturbation vector δΓ, the time linearization of Eq. (3) yields

δΓτc+δτc = δΓτc +
(
DΓτc

δΓτc

)
δτc +O (δτc)

2 +O (δΓτc)
2 . (8)

Considering an arbitrary infinitesimal perturbation vector δΓ corresponding to the phase point

Γ, the linearization of the transformation map M is expressed as

M(Γ + δΓ) = M(Γ) + LΓ δΓ +O (δΓ)2 , (9)

where LΓ ≡ ∂M/∂Γ is the Jacobi matrix for the collision map. According to Eq. (6) and the
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linear time approximations (7) and (8), one has

Γ ′
τc

+ F
(
Γ ′

τc

)
δτc + δΓ ′

τc+δτc
= M

(
Γτc + δΓτc + F (Γτc) δτc +DΓτc

δΓτcδτc

)
+ O (δτc)

2 +O (δΓτc)
2 . (10)

Using Eqs. (4) and (9) in Eq. (10), we can finally write the first-order approximation of the

perturbation vector immediately after a collision event, δΓ ′
τc+δτc

, as a function of Γτc , δΓτc , and

δτc:

δΓ ′
τc+δτc

= LΓτc
δΓτc +

[
LΓτc

F (Γτc)−F ◦M (Γτc)
]
δτc

+ O (δτc)
2 +O (δΓτc)

2 +O (δΓτc δτc) . (11)

In general, the state vector Γ = {~qi, ~pi}N
i=1 contains spatial and momentum components {~qi}N

i=1

and {~pi}N
i=1, respectively, and so does the perturbation vector δΓ = {δ~qi, δ~pi}N

i=1. If a collision

between the particles k and ` takes place, then the infinitesimal time delay δτc is given by

δτc = − (δ~qk − δ~q`) · ~n(
~pk

mk
− ~p`

m`

)
· ~n

,

where ~n is a unit vector normal to the collision surface at the collision point, and mi is the mass

of the i-th particle. The transformation (11) is completely general [21] and forms the basis for

the algorithms used in this thesis.
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1.1 Introduction

Let us consider two initial (t = 0) phase points infinitesimally close to each other. For chaotic

systems these two points can either (exponentially) converge or diverge during the time evolution

(for t > 0). According to the Oseledec theorem [1], this unpredictable behavior of the systems

for long times is revealed by the so-called Lyapunov exponents {λi; i = 1, . . . , D}. Here D is the

phase-space dimension. The ordered set of Lyapunov exponents, λ1 ≥ · · · ≥ λD, is referred to as

Lyapunov spectrum, which gives rise, in particular, to a hierarchical arrangement of the phase-

space directions. For equilibrium systems, an arbitrary D-dimensional small region surrounding

the phase point does not change its volume during the dynamics, even though it will undergo

deformations. For stationary non-equilibrium systems thermostated with a dynamical thermo-

15
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stat, however, the phase volume decreases. In this case, the sum of all Lyapunov exponents is

negative and the phase space distribution collapses onto a multifractal strange attractor [2]. Its

fractal dimension can be calculated according to Kaplan and Yorke [3, 4] as

DKY = d+
∑d

i=1 λi

|λd+1|
,

where d is the largest integer satisfying
∑d

i=1 λl ≥ 0. DKY provides a good estimate of the

information dimension D1 of the multifractal attractors.

We are interested to drive gaseous systems away from equilibrium by setting two opposite

thermostat walls to different temperatures T1 and T2. As a consequence, the phase volume of

such systems decreases due to the collisions of the particles with the thermostats. One might

think of using a stochastic thermostat for that purpose. However, for such a thermostat one

cannot unambiguously construct the time evolution (deformation) of a phase-volume element

δV due to a particle-thermostat wall collision. During such a collision the exchanged heat ∆Q

is related to the change of an infinitesimal phase volume element δV by:

δV ′ = δV exp
(

∆Q
kBT

)
,

where the prime superscript refers to the time immediately after the instantaneous collision, and

the absence of the superscript refers to the time immediately before. Here, kB is the Boltzmann’s

constant and T is the thermostat temperature. In one dimensional systems, this equation suffices

to construct the Lyapunov vectors immediately after the collision without additional assumptions

[5]. In two or three physical dimensions, this is not possible.

Hoover and Evans were the first to make use of deterministic thermostats in molecular dynamics

simulations, by introducing a damping term in the equations of motion, which is automatically

adjusted to keep the kinetic energy [6] or the internal energy [7] exactly constant. This scheme

is based on Gauss’ principle of least constraint and is referred to as Gauss’ isokinetic or isoener-

getic thermostat. For equilibrium systems, it generates trajectories consistent with an ensemble

intermediate between the microcanonical (for the kinetic energy) and canonical (for the potential

energy) ensemble, respectively. However, the thermostat receiving the largest attention is the

Nosé-Hoover thermostat [8, 9]. This class of deterministic thermostats preserves the Hamilto-

nian structure of the system in a suitably enlarged phase space [10]. In equilibrium it is capable

to generate trajectories consistent with a canonical ensemble [11].

Our aim is to conceive deterministic thermostat walls, that generate a non-trivial map relating

the pre-collision momentum of a particle to its post-collision momentum in a deterministic time-
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reversible way. They should act through the collisions at the boundary and should not affect

the equations of motion of the particles once they leave the vicinity of the thermostat wall.

Furthermore, the detailed balance condition should be obeyed.

One of the first thermostats of this type was introduced by Chernov and Lebowitz [2, 12],

and was applied to study planar Couette flow of hard disks. Energy-preserving reflection rules

of a particle reflected by the thermostat wall, which simultaneously drive the system out of

equilibrium into a stationary non-equilibrium state, allow the computation of the full Lyapunov

spectrum of such systems [13]. Interestingly, the conjugate pairing rule is not obeyed here due

to the inhomogeneous nature of the thermostat.

Here, we implement another algorithm that is based on the Boltzmann equation and which

was invented by van Beijeren [14]. The thermostat consists of a map converting pre-collisional

momenta, ~p, into post-collisional momenta, ~p ′, with detailed balance conditions fulfilled. In

Sec. 1.2, the implementation of this deterministic thermostat is explicitly shown for the phase-

space dynamics as well as for the tangent bundle. The two momenta cannot always be related

by an elementary analytical function. In such a case, ~p ′ is numerically obtained by solving a

transcendental equation with an efficient Newton-Raphson method. For very small/large particle

speeds allowed by the Maxwell-Boltzmann distribution a simplified treatment is used. In such a

case the thermostat action is computed from an empirical analytical function.

The thermostat is introduced in Sec. 1.2, where the relation between the incoming and outgoing

momenta is determined. In Sec. 1.3 two such thermostats with different temperature T1 and T2

are applied to a planar gas of smooth hard disks, and the heat flux and other chaos relevant

quantities (based on the Lyapunov spectra) are computed. The temperature and density profiles

are the topic of Sect 1.4. In Sec. 1.5, the heat conductivity, which is the only transport coefficient

relevant in this case, is determined experimentally, using Fourier’s law of heat conduction. It is

compared to the theoretical value obtained from the Enskog theory [15, 12]. Good agreement is

found for the present model. For a short remark concerning the existence of the heat conductivity

for this model we refer to the Outlook at the end of this thesis.

1.2 The van Beijeren thermostat

The kinetic theory of gases, which attempts to explain the macroscopic behavior of a gas by

considering the motion of molecules, frequently uses the distribution function f(~q,~v, t) in the

single-particle phase space. It allows, in particular, to give a microscopic interpretation of ther-

modynamic quantities. The distribution function gives the probability of a particle to be in an
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infinitesimal volume element about the position ~q and with a velocity included in the range

[~v,~v + d~v].

1.2.1 Collision map and kinetic theory

The van Beijeren thermostat [14] is a non-trivial time-reversible map of the incoming velocity

~v of a particle, hitting the thermostat wall, onto an outgoing velocity ~v ′, where it is assumed

that at the thermostat boundary ~v and ~v ′ are distributed according to the equilibrium Maxwell-

Boltzmann distribution for the thermostat temperature T .

i) Let us consider the simplest case first, where only the velocity component normal to the

thermostat surface is thermostated, whereas the parallel component (in R2 or R3) is not affected.

If ~n denotes a normal unit vector at the collision point ~qw on the surface, the incoming and the

outgoing normal velocities are given by vn = ~v · ~n and v ′n = ~v ′ · ~n, respectively, where vn < 0

and v ′n > 0. At the surface, the probability distribution in the one-particle phase space obeys

the kinetic equation

∂f

∂t
∝ −vn δ(~q − ~qw) f(vn) dvn − v ′n δ(~q − ~qw) f(v ′n) dv ′n , (1.1)

where the first term on the right-hand side is the loss term (negative, due to the probability flow

into the thermostat), and the second term is the gain term (positive, due to the probability flow

back into the system). In the stationary state, the detailed balance equation becomes

−v ′n f(v ′n) dv ′n = vn f(vn) dvn > 0 .

Insertion of the equilibrium distribution and using the notation

X =
√

m

2kBT
vn , X ′ =

√
m

2kBT
v ′n ,

gives

X ′e−X′ 2
dX ′ = −X e−X2

dX ,

which may be readily integrated to give

e−X′ 2
= C − e−X2

.

The integration constant C = 1 is fixed by requiring, that the map v ′n = g(vn) maps the positive

real line onto itself, such that vn = 0 is mapped into v ′n → ∞ and vn → ∞ is mapped into
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→’
v

→
v

T

Figure 1.1 : Deterministic transformation of the disk’s velocity at the collision with the thermostat wall
(which is at a temperature T ). Here, ‖~v ‖ and ‖~v ′‖, the absolute values of the velocities immediately
before and after the collision, respect the Maxwell-Boltzmann distribution.

v ′n = 0. The thermostat map thus becomes

X ′ =
√
− ln

(
1− e−X2

)
.

This map is monotonous, dv ′n/dvn < 0, and reversible, g(v ′n) = g(g(vn)) = vn.

ii) Of more interest for this thesis is the case in R2 of disks colliding with a thermostat wall,

such that the outgoing velocity direction is the same as for an elastic collision, but the speed is

changed according to v ′ = g(v). As before, v = ‖~v ‖ and v ′ = ‖~v ′‖ are the absolute values of

the incoming and outgoing velocities, respectively. The kinetic equation analogous to Eq. (1.1)

becomes
∂f

∂t
∝ −v δ(~q − ~qw) f(v) dv − v ′ δ(~q − ~qw) f(v ′) dv ′

(see Fig. 1.1). The Maxwell-Boltzmann distribution for v now becomes

f(v) =
m

kBT
v e−mv2/2kBT ,

and similarly for v ′. Using the abbreviations

X =
√

m

2kBT
v , X ′ =

√
m

2kBT
v ′ ,

the detailed balance condition now becomes

X ′ 2 dX ′ e−X′ 2
= −X2 dX e−X2

,
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Figure 1.2 : v ′ versus v for small values of v ′. One observes the empirical extension for v > d2 ≈ 8.86
(see note ∗).

which is integrated to give

X ′ e−X′ 2 −
√
π

2
erf(X ′) = C −X e−X2

+
√
π

2
erf(X) . (1.2)

As before, the integration constant, C =
√
π/2, is determined by requiring the map v ′ = g(v) to

map 0 into ∞ and vice versa (Fig. 1.2 shows the form of v ′ = g(v) for small values of v ′). For

given X, there is no analytic expression for X ′. However, Eq. (1.2), can be easily solved by fast

iteration routines ∗. The thermostat action thus consists in multiplying the elastically reflected

particle velocity by a factor v ′/v = g(v)/v. Furthermore, from Eq. (1.2) we have

dv ′

dv
= − v2

v ′ 2
e−m(v2−v ′ 2)/2kBT < 0 . (1.3)

This procedure is used below.

∗Remark concerning the case in R2: We use the Newton-Raphson method [16] to solve Eq. (1.2) numer-
ically for the outgoing speed v ′, as long as the incoming speed v is within the interval [d1, d2]:

d1 =

r
kBT

m
7.786074 · 10−6 ,

d2 =

r
kBT

m
8.861285 .

Outside of this interval we use the following empirical function (Fig. 1.2)

v ′ =
d1

v − d2 + 1
if v > d2 ,

v ′ =
d1

v
+ d2 − 1 if v < d1 ,

which provides a smooth extrapolation to very small/large speeds. Fig. 1.2 shows a plot of the outgoing v ′ as a
function of the incoming v for a gas of density ρ = 0.6 composed of N = 40 hard disks moving in a box with an
aspect ratio A = 0.4. The thermostat temperature T = 1.
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iii) For completeness, we also mention the case in R3 of a sphere colliding with a thermostat

plane. With the same notation as before, the Maxwell-Boltzmann distribution in three dimen-

sions is

f(v) =
(

m

kBT

) 3
2

v2 e−mv2/2kBT ,

and the detailed balance condition becomes

X ′ 3 dX ′ e−X′ 2
= −X3 dX e−X2

.

Integration gives (
1 +X ′ 2

)
e−X′ 2

= C −
(
1 +X2

)
e−X2

,

where the integration constant C = 1 follows as before.

1.2.2 Phase-space dynamics and tangent bundle

Now we turn to the thermostat action on the trajectory in the phase space as well as on the

tangent bundle. The state of the system is given by the coordinates and momenta of all the

particles,

Γ = {~qn, ~pn; n = 1, · · · , N}.

Similarly, any perturbation vector δΓ consists of the respective coordinate and momentum per-

turbations,

δΓ = {δ~qn, δ~pn; n = 1, · · · , N}. (1.4)

Let us consider the collision event of an arbitrary particle k with a thermostat wall. Only the

components ~qk and ~pk of the state vector and of the perturbation vector – pertaining to the

particle k – undergo changes during the collision event. According to Sec. 1.2, one has

~q ′k = ~qk , (1.5)

~p ′k =
g(‖~pk‖)
‖~pk‖

(~pk − 2 (~pk · ~n)~n) , (1.6)

where ~n is the unit vector perpendicular to the thermostat wall at the collision point and

g(‖~pk‖) / ‖~pk‖ is the thermostat factor introduced in the previous section. As usual, the mass m

is unity in our reduced units. Linearizing Eqs. (1.5) and (1.6) (following Dellago et al. [17] as

mentioned in the Introduction, see p. 7) we find for the components of the perturbation vector
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after the thermostat-wall collision

δ~q ′k = δ~qk − (~p ′k − ~pk)δτc ,

δ~p ′k =
(
∂~p ′k
∂~pk

)
δ~pk ,

where

δτc = − (δ~qk · ~n)
(~pk/m · ~n)

is the (positive or negative) delay time between the reference trajectory and the (infinitesimally)

perturbed trajectory of the collision. From now on we omit the particle index k to simplify the

notation. The 2× 2 Jacobian matrix (∂~p ′/∂~p) is found from Eq. (1.6),

∂~p ′

∂~p
=


− p ′

p
− px

2

p

∂

∂p

(
p ′

p

)
− pxpy

p

∂

∂p

(
p ′

p

)
pxpy

p

∂

∂p

(
p ′

p

)
p ′

p
+

py
2

p

∂

∂p

(
p ′

p

)
 ,

where, as before, p and p ′ are the absolute particle momenta before and after the wall collision.

According to Eq. (1.3), one has

∂

∂p

(
p ′

p

)
= − p

′

p 2
− p

p ′ 2
exp

(
− p 2 − p ′ 2

2mkBT

)
.

Considering the thermostat-particle collision maps, as well as the inter-particle collision maps

and the free-flight maps (between the successive collisions), which all affect the time evolution

of the perturbation-vector set {δΓi , i = 1, . . . , D}, the full Lyapunov spectrum can be com-

puted.

1.3 Planar gas of hard disks

To test the behavior of the two-dimensional deterministic van Beijeren thermostat, we use a

simple two-dimensional gas. It consists of N (smooth) hard disks, where the inter-particle col-

lisions are considered elastic (without roughness). The gas is confined to a rectangular box of

dimension (Lx, Ly). The vertical box boundaries are two thermostats at two different temper-

atures, T1 on the left-hand side, and T2 = T1 + ∆T on the right-hand side. Periodic boundary

conditions are used in the y-direction. By definition, the thermostat on the right hand side has

the higher temperature. We stipulate that a disk hits a thermostat when its centre does. We

consider reduced units for which the particle diameter σ and the particle mass m are unity.
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Figure 1.3 : We consider a system of N = 80 disks moving in a rectangular box with an aspect ratio
A = 0.2, and a number density ρ = 0.4. Left panel: momentum distribution f(p) for both thermostat walls
(whose respective temperatures are T1 = 2 and T2 = 4). The empty squares correspond to the incoming
particles and the full circles to the outgoing ones. The red solid lines give the theoretical two-dimensional
Maxwell-Boltzmann distribution. Right panel: plot of the map p ′ = g(p) of the outgoing particle for the
two thermostats.

Lyapunov exponents are given in units of
√
〈K〉/(Nmσ2). Here, 〈K〉 is the time-averaged ki-

netic energy. Our standard system consists of N = 80 particles enclosed in a box, with an

aspect-ratio of A ≡ Ly/Lx = 0.2, for which we consider three different possible area densities

ρ ≡ (Nπσ2)/(4V ) = {0.1, 0.4, 0.7}, where V ≡ LxLy is the volume of the simulation box. Note

that ρ differs from the number density by a factor of πσ2/4.

The left panel of Fig. 1.3 shows the incoming and the outgoing Maxwell-Boltzmann momentum

distributions of the particles, which collide with the hot and the cold thermostat for a system

with a density ρ = 0.4 and with the nominal thermostat temperatures T1 = 2 and T2 = 4. They

are close to the theoretical two-dimensional Maxwell-Boltzmann distributions (smooth lines in

red). Moreover, as could be expected, the mean value of the post-collision distribution is slightly

shifted towards smaller (higher) speeds compared to the pre-collision distribution for the cold

(hot) thermostat.

In the right panel, the outgoing momentum p ′ is plotted as a function of the incoming mo-

mentum p . This graph illustrates the bijective and symmetric behavior with respect to the first

bisectrix of the map p ′ = g(p).

Next, we compute the heat flux J generated by ∆T > 0. J is determined from the energy per

unit time transferred from the hot thermostat into the gas, as well as, from the heat per unit

time extracted by the cold thermostat. Due to stationarity, the heat flux does not depend on

the position in the box, which was verified experimentally. Fig. 1.4 shows the heat flux J as a

function of the temperature difference ∆T , for the three different densities ρ = {0.1, 0.4, 0.7}.
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Figure 1.4 : Heat flux J as a function of the temperature differences ∆T of the two thermostats for
various densities ρ.

The function J(∆T ) shows almost a straight line (with only a slight concavity) with a slope

that strongly depends on the gas density and grows with it.

The Lyapunov spectra for non-equilibrium systems differ only slightly from the equilibrium

spectra of the same model. As an example we show in the left panel of Fig. 1.5 three spectra

for three densities: ρ = {0.1, 0.4, 0.7}, with the boundary temperatures T1 = 1 and T2 = 5.

The sums of the exponents are negative, although this cannot be easily observed in the figure

shown. With the Kaplan-Yorke formula the information dimension D1 of the underlying strange

attractor in phase space may be computed. The dimensionality reduction, ∆D = D −D1, as a

function of the heat flux, is shown in the right panel of Fig. 1.5. For small fluxes a parabolic

behavior is obtained as expected.
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Figure 1.5 : Left panel: Lyapunov spectra for boundary temperatures T1 = 1 and T2 = 5, and the
densities (a) ρ = 0.1, (b) ρ = 0.4 and (c) ρ = 0.7. The sum over all exponents is negative. Right panel:
Dimensionality reduction ∆D for three different densities as a function of the heat flux J .

In Table 1.1, typical results for the Lyapunov spectra are shown. The maximum Lyapunov

exponent, λ1, and the sum of all exponents,
∑4N

i=1 λi, are listed as a function of the density and
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of the temperature difference ∆T = T2−T1. For each density, the maximum Lyapunov exponent

λ1 has almost the same value for all temperature differences, only a slight reduction is observed

when ∆T is increased. For ∆T > 0, the sum of all Lyapunov exponents is negative due to the

particle collisions with the thermostats, and thus a multifractal attractor in the phase space is

expected to exist.

Table 1.1 : For three different densities ρ, the maximum Lyapunov exponent λ1 and the sum over all
exponents

∑4N
i=1 λi are listed as function of the temperature differences ∆T , for non-equilibrium gas of

N = 80 hard disks moving in a box with an aspect ratio A = 0.2. The nominal mean temperature of the
thermostat (T1 + T2)/2 is taken equal to 3 (in units of K /NkB).

ρ = 0.1 ρ = 0.4 ρ = 0.7
∆T λ1

∑
i λi λ1

∑
i λi λ1

∑
i λi

1 2.161 -0.045 4.910 -0.094 8.557 -0.258
2 2.141 -0.192 4.863 -0.407 8.462 -1.111
3 2.104 -0.505 4.773 -1.071 8.287 -2.888
4 2.047 -1.190 4.635 -2.505 8.004 -6.654

1.4 Temperature and density profiles

To compute the temperature profile (i.e. the local temperatures), we have to determine the local

densities and energies. We partition the channel into disjoint slices of width ∆x. Each slice is

delimited by the boundaries x−∆x/2 and x+ ∆x/2, and its local particle number is computed

as the time average

n(x) =
1
T

∫ T

0
dt

∫ Lx

0
dx

N∑
k=1

χ∆x(xk(t)− x) ,

where xk(t) is the x-position of the particle k at the time t. The indicator function χ∆x(xk(t)−x)

is equal to unity, if the particle k is in the slice around x, and zero otherwise. Analogously, the

local energy included in the interval [x−∆x/2, x+ ∆x/2] is computed as the time average

E(x) =
1
T

∫ T

0
dt

∫ Lx

0
dx

N∑
k=1

‖~pk(xk, t)‖2

2m
χ∆x(xk(t)− x) ,

where pk(xk, t) is the momentum of the k-th particle at time t and position xk. The local

temperature is then given by

T (x) =
E(x)
n(x)

.

Fig. 1.6 gives the profiles obtained for the densities ρ = {0.1, 0.4, 0.7} in a simulation, where

∆T ∈ {1, 2, 3, 4} and (T1 + T2)/2 fixed to 3. The particle-number density profile (left panels)
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Figure 1.6 : Left panels: density profile n(x)/Vs. Right panels: temperature profile T (x). The profiles are
shown for systems of N = 80 particles at various temperature differences between the two thermostats
∆T = T2 − T1 = {1, 2, 3, 4}. The medial temperature is T ∗ = (T1 + T2)/2 = 3. We consider three (area)
densities ρ = {0.1, 0.4, 0.7} for a box with an aspect ratio of A = 0.2. The total number density, N/V , is
related to the area density by ρ = πN / 4V (since σ = 1).
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is defined as n(x)/Vs , where Vs = Ly ∆x is the area of a slice. The width of the slice is small,

∆x = Lx/200, such that the densities become insensitive to ∆x.

Near the thermostat walls the number density oscillates (panels on the left-hand side) indicating

a layered arrangement of the particles. This is particularly strong near the cold wall. A similar

behavior is observed for the energy density E(x) / Ly ∆x (not shown). The local temperature,

however, is totally free of these oscillations (panels on the right-hand side) as required. Note that

the local temperature is the ratio of the energy and number densities. Outside of the layered

regions the density profile converges towards a straight line for growing density ρ. Furthermore,

all local density profiles intersect more or less at a single point. Also the temperature profiles

depicted in the right-hand panels of Fig. 1.6 seem to intersect at a single point.

Since the thermostat wall constitutes a deterministic constraint, no temperature jumps are

observed: the temperatures inside the fluid in the vicinity of the thermostat walls smoothly

approach the imposed boundary temperatures. In contrast, for stochastic thermostats [18, 19]

a temperature discontinuity (the “boundary resistance”) near the cold (hot) thermostat wall is

observed. The boundary resistance is referred to as “Kapitza resistance”, and is explained by the

“phonon mismatch” between the solid and the fluid. It was experimentally observed for helium-

solid interfaces [20] and was afterwards used to describe any thermal boundary resistance [21]. It

is expressed in terms of the collision rate (i.e. the mean free path) and of the small temperature

difference between the measured and imposed temperatures [21, 12]. Here, the advantage of

using a deterministic thermostat obeying detailed balance becomes apparent.

1.5 Heat conduction

When the system is not in equilibrium, the distribution function satisfies the Boltzmann integro-

differential equation. Usually, one is interested in the properties of gases for conditions only

slightly away from equilibrium. Then, the Boltzmann equation can be solved by means of a

perturbation method developed by Enskog [22]. The resulting solutions are used to obtain

expressions for the transport coefficients such as the heat conductivity. First, we define the

experimental effective conductivity κF according to Fourier’s law, and compare this result to

the “effective conductivity” κE according to Enskog’s theory.

As is evident from the temperature profiles on the right-hand side of Fig. 1.6, the slope of the

profiles varies considerably with x. This is a strong indication that we are far from the linear
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regime. A näıve application of Fourier’s law,

κF = − JLx

∆T
,

only gives an effective conductivity κF , which constitutes an average over the conductivities over

all thermodynamic states present in the simulation cell.

To see this we assume local thermodynamics equilibrium and compute the local conductivity

κ(x) by Enskog’s theory [15],

κ(x) = 1.029
2κB

Dχ(ρA)

(
κBT

mπ

)[
1 +

3
2
(2ρAχ(ρA)) + 0.8718(2ρAχ(ρA))2

]
, (1.7)

where ρA(x) = πσ2n(x) / 4Vs is the local area density, T (x) is the local temperature, and χ is

the pair correlation function at contact [23]:

χ(ρA) =
1− (7/16)ρA

(1− ρA)2
.

For each thin slice of width ∆x, Fourier’s law requires

δT (x)
∆x

= − J

κ(x)
,

where J is the heat flux, which does not depend on x, δT (x) is the temperature difference for the

slice located at x. Integration over the length of the cell provides an expression for the effective

heat conductivity from the Enskog theory,

κE = Lx

(∫ Lx

0

1
κ(x)

dx

)−1

.

Taking T (x) and ρA(x) from the experimental profiles of Fig. 1.6, the effective Enskog conduc-

tivity κE may be obtained.

A comparison with the simulation data is provided in Fig. 1.7 for three different global densities

ρ. The agreement for the intermediate density ρ = 0.4 is excellent. The comparatively large

differences for low density gases is not completely understood. The same computations were

repeated for a system of N = 400 particles and an aspect ratio of A = 1 (not shown). We

obtained almost the same results, which shows that the local equilibrium is not significantly

affected by the rather small aspect ratio A ≡ Ly/Lx = 0.2 of our first series of simulations.
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Figure 1.7 : Conductivities κF and κE (in units: kB(K/mσ2)1/2) versus the temperature difference,
∆T , between the two thermostats, where the medial temperature T ∗ = 3.

1.6 Summary

In this section we studied the performance of the van Beijeren thermostat and tested its appli-

cability for subsequent simulations of heat conduction. The thermostat is time reversible and

deterministic, and provides a good coupling of the gas with the heat bath without any tem-

perature jumps at the thermostat wall. It is interesting to note that temperature jumps were

experimentally found by E. Warburg in the 1870s and were experimentally and theoretical ex-

plained by M. von Smoluchowski [24, 25]. Our simulations of the heat conductivity of a hard-disk

gas under fairly large driving agrees rather well with the prediction of the Enskog theory for

hard disks.
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2.1 Introduction

A first important step in the analysis of how phenomenological transport equations can be

understood in terms of the microscopic dynamics of a system, is the connection of transport

phenomena with the chaotic properties. Fourier’s law [1] is an example of a phenomenologically

simple process, that is still not entirely understood on a microscopic scale. Various models

have been studied in detail to unravel the connection between the (time-reversible) microscopic

dynamics and the macroscopic irreversible behavior. The simple Lorentz gas is a deterministic

billiard, which consists of point-particles moving freely among, and colliding with, motionless

circular obstacles. The field-driven dynamically thermostated Lorentz gas has been the object

of several studies for the investigation of transport phenomena [2, 3, 4, 5]. Other thermostated

versions (imposing stochastic boundary conditions at opposite sides of the box containing the

system) have also been used to study heat conduction: Lebowitz and Spohn [6, 7] have shown

31
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that the Fourier’s law is well satisfied in this system in the Boltzmann-Grad limit (for which

the average density of randomly distributed scatterers goes to infinity and their radius to zero).

Since no energy exchange takes place between the point particles, the local thermal equilibrium

is not satisfied and the physical significance of temperature is difficult to interpret. Finally, the

Lorentz gas was modified [8, 9] to introduce roughness to disks, which are allowed to rotate at

their fixed position. Thus, the point-particles can indirectly exchange energy in this case and

may establish local thermal equilibrium.

Such systems are macroscopically irreversible, as specified by the Second Law of thermody-

namics, even if the equations of motion are time-reversible [10, 11]. Generally, the transport

coefficient of a thermostated non-equilibrium system may be expressed in terms of the sum of

all Lyapunov exponents in this case [12, 13, 14].

The main emphasis of this chapter is not the study of this particular model but the test of novel

thermostating boundary conditions due to van Beijeren [15], which were introduced in Chap. 1.

Such a thermostating boundary consists of a non-trivial dynamical and time-reversible map

for the velocity of the point particles hitting the boundary. This map obeys detailed balance.

Because of the dynamical nature of the boundary, we may compute the full spectrum of the

Lyapunov exponents. Thus, we may establish a link between the chaotic properties and heat

conduction in this case. The time evolution of the tangent bundle furnishes further information

on the phase space structure, which is not accessible by the sole analysis of the phase space

dynamics. For example, the non-Hamiltonian character of the system may be checked by the

calculation of local (time-dependent) Lyapunov exponents (see Chap. 8).

The chapter is organized as follows: In Sec. 2.2 the thermostated modified Lorentz gas is in-

troduced. We summarize in Sec. 2.3 the results concerning thermodynamics quantities, where

we make use of the deterministic boundary conditions due to van Beijeren (see Chap. 1 and

Ref. [15]). These results are consistent with early studies obtained for stochastic boundary

thermostats [9]. We show that the assumption of local equilibrium is valid and that the heat

transport is normal. An exhaustive study of the Lyapunov spectra is the topic of Sec. 2.4. Some

results connecting chaos and transport phenomena are listed in Sec. 2.5. Sec. 2.6 is devoted to

the understanding of the manner in which the translational and rotational parts are related.

In Sec. 2.7 we conclude that the equations governing the collision do not derive from a sym-

plectic process. For completeness, we give in the Appendix (Sec. 2.8) the collision map for the

three-dimensional version of this model governing the collision of a point particle with a rough

hard sphere. We also derive the linearized map for the dynamics in the tangent space for this

case.
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2.2 Model

In the simplest version, the planar periodic Lorentz gas consists of on infinite array of fixed disks

(the “scatterers”) arranged on a triangular lattice. In the accessible volume between the disks,

point particles (the “wanderer”) with unit mass move freely with constant speed. They collide

elastically with the scatterers, but do not interact with each other. We consider only the case

of a finite horizon, where the disk radii are large enough to prevent any wanderer particle from

escaping to infinity without collisions with the scatterer disks.

Variants of the model use a random arrangement of disks (“random Lorentz gas”) with or

without disk overlap, e.g. [6, 16, 17]. Here, we do not consider this case.

The model is driven into a non-equilibrium stationary state by the use of thermostated walls at

two opposite sides of the simulation box. We study the modified Lorentz gas model introduced

by Mej́ıa-Monasterio et al. [8, 9], which consists of N1 wandering point-particles of mass m and

momentum ~p, and of N2 hard rough disks of diameter σ on a triangular lattice (see Fig. 2.1),

which may rotate around the (fixed) lattice points with angular velocity ω, and which have

a moment of inertia I. Energy exchange between scatterers and wanderers is allowed, but no

inter-wanderer collisions take place (the model is similar to a photon gas in a crystal). When a

wanderer particle k hits a scatterer `, energy is exchanged by a “rough” hard collision such that

the total energy and the total angular momentum (with respect to the center of the scatterer)

are conserved. If the outgoing transversal momentum ~p ′k of the point particle k and the angular

velocity ω`
′ of the disk `, immediately after the collision, are expressed in terms of the incoming

quantities [8] (see also the Appendix, Sec. 2.8), one finds for the collision rules

pn
k
′ = −pn

k , (2.1)

pt
k
′ = pt

k −
2η

1 + η
(pt

k −mRω`) , (2.2)

mRω`
′ = mRω` +

2
1 + η

(
pt

k −mRω`

)
. (2.3)

The superscripts n and t correspond, respectively, to the normal and tangential components of

the particle momentum with respect to the surface of the disk ` at the collision point. Here, R =

σ/2 is the scatterer radius. I is the moment of inertia of the scatterer disks. The dimensionless

parameter η = 4I/mσ2 controls the coupling between translational and rotational degrees of

freedom. Its range is included in ]0,∞[. Both extreme values stand for peculiar situations:

• If η → 0, the translational and rotational degrees of freedom decouple and the rough hard

disk model is reduced to a smooth hard disk model, if all ωs are discarded.
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T1 T2

0 1 x/Lx

Figure 2.1 : Geometry of the modified Lorentz gas. The temperatures of the thermostats are T1 and
T2. The lines visualize the trajectory of one single wanderer. The length of each arrow on a disk is
proportional to the initial disk angular velocity.

• If η → ∞, the angular velocities of the disks never change during the simulation and the

energies of the disks are not affected by the collisions.

Both limiting cases are not considered here. For η = 1, the tangential component of the wanderer

velocity, pt
k/m, and the rotational surface velocity, σ

2ω`, of the disk are simply interchanged. In

the following, we consider various coupling parameters between η = 0.1 and η = 20.

We drive this system away from equilibrium by applying two deterministic van Beijeren ther-

mostats on opposite walls separated in x-direction, which are at different temperatures: T1 and

T2 = T1 + ∆T (where ∆T > 0). Conventionally, the thermostat on the right-hand side always is

at the higher temperature. In the y-direction periodic boundary conditions are used. Unlike in

Ref. [8, 9], we consider only heat flow and no simultaneous mass transport. Our main emphasis

is on the properties of the tangent space.

Initially, the wanderers are positioned on a lattice shifted by σ in the x-direction relative to the

one used for the scatterers. The initial angular and translation velocities are randomly chosen

according to a linear temperature profile.

Fig. 2.1 shows the geometry of the modified Lorentz gas. The zig-zag thermostat walls are

arranged such that a periodic boundary condition also in the x-direction may be implemented

without difficulty. This arrangement of the thermostat walls slightly, but significantly, blurs the

definition of the local fields such as the local density or temperature.

The zig-zag form of the thermostat walls and the finite horizon (due to the size and arrangement

of the scatterers) exclude the possibility of particles crossing through the box in the y-direction

without a collision. The triangular lattice on which the disks are positioned is such that the crite-

rion for the critical horizon is met. It is enough to consider only two rows of scatterers to prevent

the possibility that a wanderer consecutively collides with the same scatterer (Fig. 2.1). For most
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of this study we restrict to this case. Only in Sec. 2.6 much wider systems are considered.

In spite of the system’s complexity, the total energy K still has a simple form and is given

directly by the translational and rotational kinetic energies,

K =
m

2

N1∑
k=1

(~pk)2︸ ︷︷ ︸
K1

+
I

2

N2∑
`=1

(ω`)2︸ ︷︷ ︸
K2

. (2.4)

We have verified in our simulations that the translational and rotational kinetic temperatures

agree reasonably well:

〈K1〉/N1 ≈ 2〈K2〉/N2 .

For equilibrium systems, for which ∆T = 0, this becomes an identity and equal to the thermostat

temperature T1 = T2.

In the remainder of this chapter we choose to set the medial temperature T ∗ ≡ (T1 +T2)/2 = 3.

For our numerical work we use reduced units, for which the scatterer diameter σ, the mass of the

wanderer m, and the Boltzmann constant kB are taken equal to unity. The only free parameters

are the length of the box L, the number N1 of the wanderers, the nominal temperature difference

∆T between the two thermostats and the moment of inertia I (respective the coupling parameter

η = 4I). The nodes of the the triangular lattice are separated by
√

4/3σ, which corresponds to

the critical scatterer geometry separating the finite horizon case from the infinite horizon case.

The length of the box in x-direction is specified by L = Nxσ, where Nx is the number of columns

of scatterers parallel to the y-direction. L = 10 in Fig. 2.1.

2.3 Local equilibrium and normal transport

In this section we study how a system reaches the stationary non-equilibrium state for a given

coupling parameter η and a fixed temperature difference ∆T between the two thermostats. Most

results have already been established in previous work introducing this problem [9]. The novel

aspect is the use of a deterministic thermostat. We verify that the system indeed reaches local

equilibrium and that the heat transport is normal.

First, we show in Fig. 2.2 the distribution functions of the transversal momentum, f1(p) of the

wanderers, and of the rotational velocity, f2(ω) of the scatterers, for a system in equilibrium

(the two thermostats are set to the temperature T1 = T2 = T ∗ = 3). These results agree very

well with the theoretical two- and one-dimensional Maxwell distributions, which allows us to

relate the time-averaged energy of the particles, or of the disks, to the imposed temperature T ∗
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Figure 2.2 : Translational velocity distribution f1(v) of the wanderer particles and disks angular velocity
f2(ω) of the disk scatterers for an equilibrium system of 40 disks of diameter σ = 1 and 50 particles in a
box of length L = 20. The temperature imposed by the thermostats is T1 = T2 = T ∗ = 3.

of the system.

The local temperature and the local density are revealed by the corresponding profiles. We

partition the box in disjoint slices of width ∆x. Each slice is delimited by the boundaries x−∆x/2

and x+ ∆x/2, and its local particle number is computed as the time average

n(x) =
1
T

∫ T

0
dt

∫ Lx

0
dx

N∑
k=1

χ∆x(xk(t)− x) ,

where xk(t) is the x-position of the wanderer k at the time t, and χ∆x(xk(t)−x) is the indicator

function (which allows us to select the wanderers pertaining to the slice [x−∆x/2, x+ ∆x/2]).

Analogously, the local energy included in the region [x −∆x/2, x + ∆x/2] is computed as the

time average

E(x) =
1
T

∫ T

0
dt

∫ Lx

0
dx

N∑
k=1

‖~pk(xk, t)‖2

2m
χ∆x(xk(t)− x) ,

where pk(xk, t) is the momentum of the k-th wanderer at time t at the position xk. Consequently,

the temperature profile of the wanderers is defined as

T (x) =
E(x)
n(x)

,

whereas the temperature profile of the scatterers is directly related to their time-averaged rota-

tional energy. The wanderer density is given by

ρ(x) =
n(x)
Va(x)

,

where Va(x) is the accessible volume in a slice at a position x, which corresponds to the volume
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Figure 2.3 : The accessible volume Va(x) in narrow slices as a function of the x-position in the box.
This function depends on the width of the box (in y-direction) and, of course, on the width ∆x of the
slices. We can see the boundary effects due to the geometry of the left and right box boundary.

of the slice minus the sections of disks in this slice, also taking into account the zig-zag geometry

of the thermostats on both sides. The profile of the accessible volume is plotted in Fig. 2.3.

We now consider the temperature and density profiles of the wanderers. The profiles are shown

in Figs. 2.4 and 2.6 for various ∆T with η = 1, and in Figs. 2.5 and 2.7 for various η with

∆T = 4. η is the coupling parameter between translational and rotational degrees of freedom.

We observe that the temperature profiles are almost linear and that the slight concavity (or

convexity) of the profile depends on η. The wavelike structure of the gradient is correlated with

the position of the disks. The density profiles show how the wanderers accumulate in the vicinity

of the cold thermostat. The density profiles for large η tend to a plateau extending almost over

the whole length of the box.

It has already been observed that, considering a fixed temperature difference between the two

thermostats, for one-dimensional systems, the flow of heat is inversely proportional to system

size, whereas in two dimensions the heat flow stays constant, and in three dimensions it increases

[12]. That is intimately related to the Fourier’s law. The Lorentz gas studied here behaves like

a one-dimensional model. This is due to the narrow box in y-direction, which is kept constant

when the system size is increased. Increasing the size, our model approaches local equilibrium

and the dissipation decreases [12]. Consequently, the reduction in phase-space dimensionality is

largest for small systems, hence, it is interesting to consider also small systems to investigate

heat transport phenomena.

In non-equilibrium physics, the heat conduction is usually well described by Fourier’s law. The

heat flux J is related to the temperature gradient as follows

J = −κ ∆T
L

,
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Figure 2.4 : The lines represent the temper-
ature profile of the wanderers, and the circles
represent the temperature of the scatterers taken
at their x-position, considering various tempera-
ture differences: ∆T ∈ {0, 1, 2, 3, 4}, where T ∗ =
3 and η = 1.

Figure 2.5 : Temperature profile of the wan-
derers when the scatterers rotate with various
moments of inertia: η ∈ {0.1, 2, 4, 10, 20}, where
∆T = 4 and T ∗ = 3. (The circles on the abscissa
represent the position of the scatterers.)
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Figure 2.6 : Density profiles of the wander-
ers for various temperature differences: ∆T ∈
{0, 1, 2, 3, 4}, where the nominal medial temper-
ature T ∗ = 3, and the parameter η = 1. (The
circles on the abscissa represent the position of
the scatterers.)

Figure 2.7 : Density profiles of the wanderers
when the scatterers rotate with various moments
of inertia: η ∈ {0.1, 0.5, 1, 2, 3, 5, 10, 20}, where
∆T = 4 and the nominal medial temperature
T ∗ = 3. (The circles on the abscissa represent
the position of the scatterers.)
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Figure 2.8 : Size dependence of the heat flux for a fixed temperature difference ∆T = 4 with T ∗ = 3,
for a system of N2 = 2L disks of diameter σ = 1 and N1 = 5/2L particles in a box of length L. Using
logarithmic scales on both axis, we can assume the following dependence: J(L) = ςL−ν . ς and ν were
calculated by means of a linear regression: ν = 0.9639 ± 0.0044.

where κ is the thermal conductivity. We see in Fig. 2.8 that J and L are related by the following

formula:

log J(L) = −ν log(L− 10) + log J(10) .

In our model simulation we find a value of ν ≈ 0.96, close to ν = 1 as predicted by linear hydro-

dynamics. Mej́ıa-Monasterio et al. [8] found exactly the same value as we did for simulations in

a narrow channel box with 2 disks in the vertical direction. We have thus verified that the linear

hydrodynamic laws are respected in our model, and so we pass on to the study of the chaotic

properties.

2.4 Lyapunov instability

The computation of the Lyapunov instability reveals and characterizes the chaotic behavior of

our system. The assumption of the existence of local equilibrium, which is an essential point

for the analysis of transport phenomena, is reasonable because of the chaotic character of our

model.

For the computation of the (4N1 +N2) Lyapunov exponents, Benettin et al. [18, 19] and Shi-

mada et al. [20] proposed an algorithm that is applicable to smooth bundles. Concomitantly

to the phase-space dynamics, the time evolution of a complete set of (4N1 + N2) orthonormal

(perturbation) Lyapunov vectors is followed with motion equations obtained by linearizing the

phase-space equations of motion. Periodically, a Gram-Schmidt re-orthonormalization procedure

is used in order to avoid the tendency of the Lyapunov vectors to collapse toward the unstable

direction of the phase space. We adapt the classical algorithm for our system taking into ac-
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count the wanderer-scatterer and wanderer-thermostat collisions, as was proposed by Dellago et

al. [11]. The transformation map, which governs the collision in the phase space, are also lin-

earized in order to find the associated transformation map of the tangent bundle. The outgoing

Lyapunov vectors depend on the incoming Lyapunov vectors as well as on the incoming and

outgoing state vectors. It is not possible to use a stochastic thermostat, such as in [8, 9]. All

results are obtained by using the deterministic van Beijeren thermostat, which was introduced

and tested in the previous chapter (Chap. 1). This thermostat is deterministic and generates

Maxwell-Boltzmann distributions for the reflected velocity of the wanderer, and gives rise to

well defined Lyapunov spectra.

Although we use here a two-dimensional modified version of the Lorentz gas (on the xy-plane),

the transformation map of wanderer-scatterer collisions (in the phase space as well as in the

tangent space) is first computed for the three-dimensional model. The details of this derivation

are given in the Appendix (Sec. 2.8): the phase-space transformations consist of Eqs. (2.9) -

(2.11), and the tangent-space transformations consist of Eqs. (2.15) - (2.17). All equations remain

valid in the two-dimensional case, with all position vectors {~qn}N1
n=1 and transversal momentum

vectors {~pn}N1
n=1 of the wanderers being considered in the xy-plane, and all angular velocity

vectors {~ωs}N2
s=1 being perpendicular to this plane. Thus, only a single component, {ωs}N2

s=1, of

the latter remains for each disk. All superfluous components (the orientation angles of scatterers)

are discarded (see also [21]).

The state of the system is given by the positions and the momenta of all point-particles, as well

as by the angular velocities of all disk scatterers,

Γ = {~qn , ~pn , ωs ; n = 1, . . . , N1 ; s = 1, . . . , N2} .

Similarly, an arbitrary (perturbation) Lyapunov vector is given by all associated perturbation

components,

δΓ = {δ~qn , δ~pn , δωs ; n = 1, . . . , N1 ; s = 1, . . . , N2} .

The time-averaged exponential growth (or decay) of the whole Lyapunov vectors gives rise to

a full set of ordered Lyapunov exponents, λ1 ≥ · · · ≥ λD, where D = 4N1 + N2 corresponds to

the phase-space dimension. The positive exponents of the Lyapunov spectrum constitute the

unstable branch, whereas the negative exponents constitute the stable branch. Fig. 2.9 shows

the Lyapunov spectra for a system of N1 = 10 wanderers and N2 = 40 disk scatterers, where the

length of the box L = 20 and the temperature difference ∆T = 0. Since for the case ∆T = 0 the

spectra yield always conjugate pairing exponents (i.e. λi+λD+1−i, ∀i ∈ {1, . . . , D}), we show only

the positive, unstable, branch of the spectra. One observes a strong influence of the coupling
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Figure 2.9 : Lyapunov spectrum in equilibrium (∆T = 0) for the modified Lorentz system (N1 = 10
wanderers and N2 = 40 disk scatterers, where the length of the box L = 20). Reduced Lyapunov indices
2i/D are used on the abscissa, where D = 4N1 +N2 is the phase-space dimension. η is the reduced moment
of inertia of the scatterers.

parameter η on the spectra, and this indicates that the scatterers and wanderers have a priori

certain assigned roles in the Lyapunov spectrum. In particular, the N1 first exponents seem to

be most strongly influenced by the wanderers. One notes a fast drop between the two exponents

λN1 and λN1+1.

The vanishing exponents are a consequence of the fundamental continuous symmetries that leave

the Lagrangian and, hence, the motion equations invariant. According to Nöther’s theorem, each

continuous symmetry corresponds to a constant of the motion [22]. Each continuous symmetry

is associated with two vanishing Lyapunov exponents. However, it is still possible to obtain an

odd number of vanishing Lyapunov exponents, because this number depends on the number N1

of the wanderers. This reveals a peculiarity of the system, which is due to the fact that the

wanderers do not interact directly with each other (and similarly, the scatterers do not interact

directly with each other). The modified Lorentz gas operates like a hybrid system: even though

one obtains a smooth decreasing Lyapunov spectrum involving all wanderers and all scatterers,

which brings out a certain coupling between all protagonists, it behaves more like two slightly

interacting subsystems. We are not able to give the fundamental reason why the number of

vanishing exponents depends on the number of wanderers. It will be useful to investigate more

specifically how the null subspace, associated with these Lyapunov exponents, is spanned by the

“covariant vectors” (Part II and Ref. [23, 24, 25]).

To specify the null subspace, we may say that for an even number of wanderers and an even

number of scatterers the vanishing exponents belong to Lyapunov indices included in [(3N1 +

N2)/2 + 1, (5N1 +N2)/2].
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Figure 2.10 : Maximum Lyapunov exponent λ1 as a function of the number of wanderers N1 for the
modified Lorentz gas at equilibrium, where the length of the box L = 10 (the number of scatterers
N2 = 20). The coupling parameter η ∈ {0.1, 1, 10}. The number of wanderers is shown on a logarithmic
scale.

2.4.1 Behavior of specific Lyapunov exponents

To investigate how the disks and the wanderers affect the spectrum, we first consider some

specific Lyapunov exponents {λ1, λN1 , λN1+1, λ(3N1+N2)/2}, which may be taken to characterize

the whole Lyapunov spectrum. We analyze the behavior of these exponents in relation to the

coupling parameter and the temperature difference between the two thermostats. We use a

system with N2 = 20 disk scatterers in a box of length L = 10, and with N1 = 10 point-

particles.

The maximum Lyapunov exponent λ1 serves as an indicator for the strength of dynamical chaos,

and the Kolmogorov-Sinai entropy hKS determines the time for the phase-space mixing [26].

Phase points that are initially confined to a small segment of phase space will spread and,

after a sufficiently long time, occupy homogeneously the whole energy hypersurface. The mixing

time is defined as D/hKS [27, 28]. The entire set of positive Lyapunov exponents completely

characterizes the asymptotic unstable expansion rate present in the dynamical system. According

to Pesin’s entropy formula [29], hKS is equal to the sum of the positive exponents. For the

modified Lorentz gas, we verified that the Kolmogorov-Sinai entropy per wanderer, hKS/N1,

remains constant for different values of N1 and for fixed N2 (not shown). It is interesting to

show how the maximum expansion is influenced by N1. In Fig. 2.10, we plot λ1 as a function of

N1 for the modified Lorentz gas in equilibrium, where the length of the box is fixed to L = 10.
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Figure 2.11 : Behavior of the Kolmogorov-Sinai entropy per wanderer, hKS/N1, and of selected Lya-
punov exponents as a function of η for a small system (N1 = 10 wanderers, N2 = 40 disk scatterers, and
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Not unexpectedly, λ1 strongly depends on the coupling parameter η.

To show more clearly the dependence of the Lyapunov spectrum on the parameter η, the system

is studied in equilibrium, ∆T = 0. We show in Fig. 2.11 the behavior of the Kolmogorov-Sinai

entropy per wanderer, hKS/N1, as well as of the Lyapunov exponents selected above. All other

exponents pertaining to the same branch (unstable or stable) behave in a similar manner.

To show the violation of conjugate pairing for ∆T > 0, we plot the value of selected Lyapunov

exponents as well as their conjugate exponents in Fig. 2.12. The conjugate pairing symmetry is

significantly violated for the exponents mostly affected by the scatterer rotation, {λ11, . . . , λ25},

whereas the large exponents, mostly affected by the wanderer particles, do not show a significant

deviation.

2.4.2 Vanishing Lyapunov exponents and conjugate pairing relation

To determine the dependence of the vanishing Lyapunov exponents on the number of wanderers,

we performed a series of simulations with a small number of wanderers, N1 ∈ {1, . . . , 6} for the

thermostated model with ∆T ∈ {0, 4}. For this purpose, it is advantageous to use only few

wanderers (N2 = 12). The parameter η is set to unity. Fig. 2.13 shows an enlargement of the

Lyapunov spectra around the vanishing exponents. To illustrate the conjugate pairing symmetry

λi = λD+1−i for equilibrium systems, we plot conjugate exponent pairs with the same index i for

conjugate pairs on the abscissa, where now i ∈ {1, . . . , D/2}. At i = D/2, two vanishing Lyapunov

exponents are superposed.

We found a different behavior for systems involving either an even or odd number of wander-

ers:

• For an even number of wanderers (the two left-hand panels in Fig. 2.13), it can be seen

that the number of vanishing exponents is equal to the number of wanderers in the system.

In particular, at the equilibrium state (∆T = 0) the spectra are symmetric. As expected,

the symmetry is broken for the non-equilibrium state (∆T = 4).

• For an odd number of wanderers (the two right-hand panels in Fig. 2.13), in the non-

equilibrium state (∆T = 4), the symmetry is also broken and the number of vanishing

exponents is equal to the number of wanderers. By contrast, for equilibrium systems (∆T =

0), a competition between the conjugate pairing symmetry (λi = λD+1−i) and the number

of wanderers occurs. Manifestly in this case, the symmetry prevails (since the number

of vanishing exponents does not equal the number of wanderers, as can be seen on the

right-hand panel in the figure). We note a second surprising point for the equilibrium case:
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Figure 2.13 : Enlargement of the Lyapunov spectra for the thermostated modified Lorentz gas (with
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the number N1 of wanderers; for an odd number of wanderers (right-hand side): the number of vanishing
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- If we consider only one wanderer we observe two null exponents (which is in line with

Nöther’s theorem).

- If we consider three wanderers we observe also two null exponents, and for five wan-

derers we find four null exponents. The adjacent positive and negative exponents are,

however, close to zero.

We performed analogous simulations with periodic boundary conditions also in the hor-

izontal direction (instead of thermostat walls parallel to the y-axis), where the energy is

now conserved and set to (N1 +N2/2)kBT
∗. For the case of an even number of wanderers

(left panel in Fig. 2.14) the same result is observed as for the thermostated system at

equilibrium (∆T = 0): the number of vanishing exponents equals the number of the wan-

derers. For the cases of an odd number of wanderers (right panel in Fig. 2.14) we observe

a different behavior:

- If we consider only one wanderer we observe two vanishing exponents (as above).

- But if we consider three wanderers we observe four vanishing exponents, and for five

wanderers we find six null exponents.

The experimental result for the number of vanishing exponents is very complicated indeed and

not completely understood. The fact that this number agrees (more or less) with the number of

wanderer particles points to a phase-space constraint, which we have not been able to identify.

The computation of covariant Lyapunov vectors may possibly help and will be carried out in

the future.

2.5 Chaos and transport

The Lyapunov spectra for non-equilibrium conditions are only slightly shifted from those of

the equilibrium system. For ∆T > 0 the sum of all Lyapunov exponents is negative due to

the collisions of wanderers with the thermostats, and thus a multifractal attractor in the phase

space appears. We characterize this phenomenon by computing the dimensionality reduction

∆D = D−DKY , where DKY is the Kaplan-Yorke dimension [30]. We show in Fig. 2.15 that ∆D

for a given ∆T varies inversely proportional to the length L of the box. The simulations have

been performed for systems of N2 = 2L disk scatterers and N1 = 5L/2 wanderers. In Sec. 2.3,

it has been observed that the heat flux J is also proportional to 1/L, and we find that ∆D is

proportional to J .

In Table 2.1, some of our results are collected for the modified Lorentz gas model consisting of



2.5. Chaos and transport 47

0.00

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.02  0.04  0.06  0.08  0.1
∆D

1 / L

Figure 2.15 : Dimensionality reduction ∆D as a function of the inverse of the box length, 1/L. The
number N2 of disk scatterers is equal to 2L, and the number N1 of wanderers is equal to 5L/2. The
boundary-temperature difference ∆T = 4, whereas the medial temperature T ∗ ≡ (T1 + T2)/2 is fixed to
3. The coupling parameter η = 1.

N1 = 10 wanderers andN2 = 20 scatterers. We give the heat fluxQ, the dimensionality reduction

∆D, the sum of the full Lyapunov exponents
∑D

i=1 λi, the maximum Lyapunov exponent λ1,

the Kolmogorov-Sinai entropy per point-particle hKS/N1 (only for equilibrium), the energy per

point-particle 〈K1〉/N1, and twice the energy per disk-scatterer 2〈K2〉/N2. The dependence of

these quantities on the coupling parameter η and on the temperature difference between the two

thermostats ∆T = T2 − T1 is indicated. T ∗ ≡ (T1 + T2)/2 is fixed to 3.

Table 2.1 : Simulation results for the thermostated modified Lorentz gas of N1 = 10 wanderers and
N2 = 20 rotating scatterers, which is shown in Fig. 2.5. The parameter η is dimensionless. The difference
between the right and the left boundary temperatures, ∆T , is given in units of K/kB , where K is the
energy of our system, and J is the heat flux. λ1 is the maximum Lyapunov exponent [units: (K/mσ2)1/2],∑4N

i=1 λk is the sum over all exponents, and hKS/N1 is the Kolmogorov-Sinai entropy per point-particle.
∆D = D−DKY is the dimensionality reduction, where DKY is the Kaplan-Yorke (information) dimension
and D the phase-space dimension of the system.

η ∆T Q ∆D
∑D

i=1 λi λ1 hKS/N1

0 0.0000 0.00000 0.0000 7.610 6.915
1 0.0234 0.00079 −0.0062 7.789

0.5 2 0.0459 0.00337 −0.0265 7.861
3 0.0672 0.00868 −0.0689 7.947
4 0.0854 0.01972 −0.1577 8.006
0 0.0000 0.00000 0.0000 6.087 4.227
1 0.0205 0.00089 −0.0054 6.118

1.0 2 0.0405 0.00377 −0.0233 6.197
3 0.0593 0.00968 −0.0608 6.293
4 0.0757 0.02197 −0.1399 6.375
0 0.0000 0.00000 0.0000 1.582 1.050
1 0.0053 0.00088 −0.0014 1.592

20.0 2 0.0106 0.00377 −0.0061 1.622
3 0.0158 0.00977 −0.0163 1.667
4 0.0209 0.02532 −0.0387 1.717
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2.6 Localization for large systems in microcanonical equilib-

rium

Another interesting point is the understanding of the manner how the translational part (per-

taining to the wanderers) and the rotational part (due to the scatterers) are related. The strength

of the coupling between the two parts gives an estimate to what extent the tangent space can

be divided into two distinct parts. In this section, periodic boundary conditions are used also

in the x-direction in order to discard the effect of the thermostat walls. We consider a system

consisting of N1 = 200 wanderers and N2 = 200 scatterers, where the length L of the box is

equal to 10. The energy of the system is set to (N1 +N2/2)kBT
∗, where T ∗ = 3.

It is well known for momentum-conserving systems [31] that only a small percentage of wanderers

(or scatterers) contributes to the maximum exponential growth, and the perturbation is therefore

confined to a small subdomain of space. This localization gets even more pronounced for larger

systems until the thermodynamic limit is reached. In contrast, the perturbations belonging to

the smallest non-vanishing exponents are spread out on the entire physical space. For a specific

class of systems (i.e. smooth hard disks and smooth hard spheres), the small non-vanishing

exponents form orthogonal periodic structures in space, the Lyapunov modes, if a sufficiently

large number of particles is considered. The Lyapunov modes are a consequence of the existence

of the “central manifold” (see Chap. 8). For this specific class of systems, the central manifold is

always orthogonal to the stable and unstable subspaces, i.e. the non-exponentially growing (or

decaying) perturbation vectors of the tangent space stay always orthogonal to the exponentially

growing (or decaying) perturbation vectors during the time evolution. Note that this property

is lost if the particles are allowed to rotate as for rough hard disks. This will be treated in

Chap. 8.

In Fig. 2.16 we plot, as a snapshot, the projection of the maximum perturbation vector onto the

subspaces spanned by the phase variables pertaining to each wanderer n, δ~qn2+δ~pn
2, and for each

scatterer s, δωs
2. The snapshot is taken of a well-relaxed system to ensure that initial conditions

do not interfere. We observe that the maximum Lyapunov exponent is strongly localized for

both the wanderers and the scatterers, and, in addition, they are both independent from each

other. If instead of a snapshot, one follows the projections of Fig 2.16 during the time evolution,

the two localized peaks deform and move around in the entire accessible physical space.

To measure the localization property of a system, it is common to use the following definition

[32] : First, the contribution of an individual wanderer n to a particular perturbation vector is
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Figure 2.16 : For a modified Lorentz gas consisting of N1 = 200 wanderers and N2 = 200 scatterers
(the length of box L = 10), where the coupling parameter η = 1, and with periodic boundary conditions,
we show the localization of the rotational and transversal components in the physical xy-plane, for the
maximum Lyapunov exponent.

defined as the square of the projection of δΓ onto the subspace pertaining to this wanderer,

µn =
δ~qn

2 + δ~pn
2∑N1

k=1

(
δ~qk

2 + δ~pk
2
) .

This quantity acts like a probability measure of the wanderer n contributing to the perturbation

δΓ. The localization measure W (q,p) (to which for simplicity we shall refer to as “localization”)

is defined according to the time-averaged Shannon entropy for the “probability” distributions

µn:

W (q,p) =
1
N1

exp

[
−

〈
N1∑
n=1

µn lnµn

〉]
, and 1/N1 ≤W (q,p) ≤ 1 ,

where the lower and upper bounds apply to complete localization and delocalization, respectively.

In the same way we define the contribution of an individual disk-scatterer s to a particular

perturbation vector as the square of the projection of δΓ onto the subspace pertaining to this

disk scatterer,

µs =
δωs

2∑N2
k=1 δωk

2
.

The localization W (ω) is thus defined as

W (ω) =
1
N2

exp

[
−

〈
N2∑
s=1

µs lnµs

〉]
, and 1/N2 ≤W (ω) ≤ 1 .
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Figure 2.17 : Normalized localizationW for the full perturbation vector set, as function of the normalized
Lyapunov index 2i/D, for the same model described in Fig. 2.16, for the coupling parameters η ∈ {1, 10}.

In Fig. 2.17, we show the localizations W (q,p) and W (ω) as a function of the normalized Lyapunov

indices 2i/D, for two different values of the parameter η. One observes that the transversal part

of the perturbation vectors is strongly localized for the large Lyapunov exponents (1) and is

relatively well spread out on the entire physical space for the small (2) and null (3) exponents.

Even though we observe the same general form for the rotational part, it seems that this part

is more or less strongly localized for all Lyapunov indices (note the scale in Fig. 2.17). In

Fig. 2.9, we observed a jump between the Lyapunov exponents λN1 and λN1+1, which disappears

progressively for growing coupling parameter η. Concomitantly, one notes in Fig. 2.17 that, for

large η, the localization becomes a monotonic increasing (decreasing) function of the Lyapunov

index i for positive (negative) Lyapunov exponents.

2.7 Conclusion

Our results are well in line with those reported by Mej́ıa-Monasterio et al. [8, 9] who originally

introduced the modified Lorentz gas. The model has been investigated more recently focussing

on the mathematical description [33, 34, 35, 36]. These studies assume a Hamiltonian character

of the wanderer-scatterer collisions, in which case the Boltzmann master equation is derived from

the Liouville equation.

In order to test that the wanderer-scatterer collisions derive from a Hamiltonian description,

we considered the modified Lorentz gas with periodic boundary conditions in both directions to

eliminate the influence of the thermostat. The equations that govern the collisions comply with

the conservation of energy and of angular momentum. We found that the localization spectra

(Fig. 2.17) are not symmetric (W (q,p)
D+1−i 6= W

(q,p)
i ), which is a clear indication for the non-
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Hamiltonian character of the system. We shall come back to this point in the last chapter of this

thesis. The rough-hard-disk system of Chap. 8 shows similar asymmetries and was analyzed in

more detail. We indeed show there that the Hamiltonian character is broken due to the rotational

degrees of freedom. Its equations derive from the conservation of energy and angular momentum,

as is the case for the modified Lorentz gas, and in addition from the conservation of transversal

momentum. However, the conservation of the transversal momentum does not influence the

Hamiltonian character of a system. We suggest that the non-Hamiltonian character is due to

the angular momentum constraint. This can be seen as a (non-holonomic) constraint implying a

“mixing” of the position and of the velocity of the particles, which breaks down the symplectic

structure of the tangent space. Our observations corroborate the remark of Gaspard and Gilbert

concerning the modified Lorentz gas [37, p. 3].
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2.8 Appendix: Wanderer-scatterer collisions for the three-

dimensional modified Lorentz gas

To determine the transformation map of wanderer-scatterer collisions in the phase space as well

as the respective linearized map in the tangent space, we first consider the three-dimensional

modified Lorentz gas, and then reduce it to the two-dimensional model.

If the N1 wanderers, which are located at {~qn}N1
n=1, move with transversal momenta {~pn}N1

n=1, and

if the N2 spherical scatterers rotate with angular velocities {~ωs}N2
s=1, the state vector is written

as

Γ =
(
{~qn}N1

n=1 , {~pn}N1
n=1 , {~ωs}N2

s=1

)
,

where the angular positions of the spherical scatterers do not appear because of their isotropy. In

the same way, considering the associated perturbation vectors {δ~qn}N1
n=1, {δ~pn}N1

n=1 and {δ~ωs}N2
s=1,

an arbitrary Lyapunov vector is written as

δΓ =
(
{δ~qn}N1

n=1 , {δ~pn}N1
n=1 , {δ~ωs}N2

s=1

)
.

Let us consider the collision event of a wandering point-particle k of mass m with a spherical

scatterer ` of diameter σ (which is fixed in its center and is allowed to rotate with a moment of

inertia I). The phase point Γ and an arbitrary tangent vector δΓ of the system undergo changes

only in their components belonging to the wanderer k and to the scatterer `.

2.8.1 Phase space dynamics

Unlike in Ref. [21], we cannot use directly the transformation rule for two rough spheres of

Chapman et al. (Sec. 11.6 of Ref. [38]), because the transversal momentum is not conserved.

However, we operate in a similar manner, using the conservation laws of energy and of total

angular momentum.

To determine the three-dimensional “rough-hard-collision” rule between a wanderer k and a scat-

terer `, we express the outgoing transversal momentum ~p ′k and the angular velocity ~ω ′
` as function

of the incoming quantities, ~pk and ~ω`. For that purpose, we introduce the quantities:

∆~pk = ~p ′k − ~pk ; ∆~ω` = ~ω ′
` − ~ω` .
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Hence, the conservation of the energy is written as follows

∆~pk

m
· (∆~pk + 2 ~pk) + I∆~ω` · (∆~ω` + 2 ~ω`) = 0 . (2.5)

According to the total-angular-momentum conservation, ∆~ω` = 2/(mση) (∆~pk × ~n) (where the

unit vector ~n = 2/σ (~qk − ~q`) and the coupling parameter η = 4I/mσ2), each part of Eq. (2.5)

can be expressed solely in terms of ∆~pk:

∆~ω` ·∆~ω` =
(

2
mση

)2 [
∆~pk − (~n ·∆~pk)~n

]
·∆~pk , (2.6)

∆~ω` · ~ω` =
2

mση
(~n× ~ω`) ·∆~pk . (2.7)

Since ∆~pk 6= ~0, Eqs. (2.5), (2.6) and (2.7) yield(
1 +

1
η

)
∆~pk −

1
η

(~n ·∆~pk)~n+ 2
(
~pk +

σ

2
(~n× ~ω`)

)
= ~0 . (2.8)

If we project Eq. (2.8) onto the unit vector ~n, we find ~n ·∆~pk = −2~n · ~pk, which gives

~q ′k = ~qk , (2.9)

~p ′k = ~pk − 2mγ~g − 2β(~n · ~pk)~n , (2.10)

~ω ′
` = ~ω` +

4β
σ

(~n× ~g) , (2.11)

where the constant parameters γ = η/(1 + η) and β = 1/(1 + η), and where

~g =
~pk

m
+
σ

2
(~n× ~ω`) ,

which corresponds to the velocity of the impact point on the surface of the scatterer.

From Eqs. (2.9) - (2.11) in three dimensions, the respective collision map for the rough scatterer-

wanderer collision in two dimensions (Eqs. (2.1) - (2.3) on p. 33) follow immediately.

2.8.2 Tangent space dynamics

For the sake of simplicity we define by

δΓk` =
(
δ~qk, δ~pk, δ~ω`

)
,

the part of an arbitrary perturbation vector δΓ, which undergoes changes due to the collision.

According to [11] (as mentioned in the Introduction, see p. 7), we can express, by linearization,
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the new components of δΓ ′
k` as follows

δ~q ′k =
∂~q ′k
∂Γk`

δΓk` +
1
m

(
∂~q ′k
∂~qk

~pkδτc − ~p ′kδτc

)
, (2.12)

δ~p ′k =
∂~p ′k
∂Γk`

δΓk` +
1
m

(
∂~p ′k
∂~qk

~pkδτc

)
, (2.13)

δ~ω ′
` =

∂~ω ′
`

∂Γk`
δΓk` +

1
m

(
∂~ω ′

`

∂~qk
~pkδτc

)
, (2.14)

where, δτc = −(δ~qk ·~n)/(~pk ·~n) is the infinitesimal time shift between the collision of the reference

and the perturbed trajectories. Using directly the results of Eqs. (2.9) - (2.11), it yields

∂~q ′k
∂Γk`

δΓk` = δ~qk ,

∂~p ′k
∂Γk`

δΓk` = δ~pk − 2mγδ~g − 2β
[(
δ~n · ~pk + ~n · δ~pk

)
~n+ (~n · ~pk)δ~n

]
,

∂~ω ′
`

∂Γk`
δΓk` = δ~ω` +

4β
σ

(
δ~n× ~g + ~n× δ~g

)
.

The second terms of the Eqs. (2.12) - (2.14) are given by

∂~q ′k
∂~qk

~pkδτc − ~p ′kδτc =
[
2mγ~g + 2β(~n · ~pk)~n

]
δτc ,

∂~p ′k
∂~qk

~pkδτc = −2mγ
∂~g

∂~qk
~pkδτc

−2β
[{(

∂~n

∂~qk
~pkδτc

)
· ~pk

}
~n+ (~n · ~pk)

(
∂~n

∂~qk
~pkδτc

)]
,

∂~ω ′
`

∂~qk
~pkδτc =

4β
σ

[(
∂~n

∂~qk
~pkδτc

)
× ~g + ~n×

(
∂~g

∂~qk
~pkδτc

)]
.

Here,
∂~n

∂~qk
~pkδτc =

2
σ
~pkδτc ,

∂~g

∂~qk
~pkδτc =

(
~pkδτc

)
× ~ω` ,

δ~n =
2
σ
δ~qk , δ~g =

δ~pk

m
+ δ~qk × ~ω` +

σ

2
~n× δ~ω` .

We define

δ~qc = δ~qk +
~pk

m
δτc , δ~gc =

δ~pk

m
+ δ~qc × ~ω` +

σ

2
~n× δ~ω` ,

where δ~qc corresponds to the shift in configuration space between the collision points of the

reference and of the satellite trajectories, and δ~gc follows from δ~g by replacing δ~q by δ~qc. We

thus obtain for the post-collisional components of the perturbation vector for the wanderer k



References 55

and the spherical scatterer `

δ~q ′k = δ~qk +
[
γ~g +

2β
m

(~n · ~pk)~n
]
δτc , (2.15)

δ~p ′k = δ~pk − 2mγδ~gc −
4β
σ

[
(δ~qc · ~pk)~n+

σ

2
(~n · δ~pk

)
~n+ (~n · ~pk)δ~qc

]
, (2.16)

δ~ω ′
` = δ~ω` +

4β
σ2

[
δ~qc × ~g +

σ

2
(~n× δ~gc)

]
. (2.17)

If the moment of inertia is set to zero (i.e. γ = 0 and β = 1), the linearized collision map of

the simple Lorentz gas is recovered, with the important requirement that the angular velocity

perturbations are discarded.

Restricting these linearized collision maps to the two-dimensional case of a wanderer collision

with a disk, one obtains the equations which we used for the computation of the Lyapunov

spectrum of the modified Lorentz gas in Sec. 2.4.
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Abstract

We carry out extensive computer simulations to study the Lyapunov instability of a two-

dimensional hard-disk system in a rectangular box with periodic boundary conditions. The

system is large enough to allow the formation of Lyapunov modes parallel to the x-axis of

the box. The Oseledec splitting into covariant subspaces of the tangent space is considered

by computing the full set of covariant perturbation vectors co-moving with the flow in tan-

gent space. These vectors are shown to be transversal, but generally not orthogonal to each

other. Only the angle between covariant vectors associated with immediate adjacent Lyapunov

exponents in the Lyapunov spectrum may become small, but the probability of this angle to

vanish approaches zero. The stable and unstable manifolds are transverse to each other and

the system is hyperbolic.
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3.1 Introduction

Lyapunov exponents measure the exponential growth, or decay, of infinitesimal phase-space

perturbations of a chaotic dynamical system. For a D-dimensional phase space, there are D

exponents, which, if ordered according to size, λi ≥ λi+1, are referred to as the Lyapunov

spectrum. The classical algorithm for the computation is based on the fact that almost all

volume elements of dimension d ≤ D in tangent space (with the exception of elements of measure

zero) asymptotically evolve with an exponential rate which is equal to the sum of the first d

Lyapunov exponents. Such a d-dimensional subspace may be spanned by d orthonormal vectors,

which may be constructed by the Gram-Schmidt procedure and, therefore, are referred to as

Gram-Schmidt (GS) vectors. The GS vectors are not covariant, which means that at any point in

phase space they are not mapped by the linearized dynamics into the GS vectors at the forward

images of that point [1]. As a consequence, they are not invariant with respect to the time-

reversed dynamics. Due to the periodic re-orthonormalization of the GS vectors only the radial

dynamics is exploited for the computation of the exponents, whereas the angular information is

discarded.

Although the angular dynamics is not a universal property and may depend, for example, on the

choice of the coordinate system [2], it would be advantageous for many applications, to span the

subspaces mentioned above by covariant vectors and to study also the angular dynamics of and

between these vectors. It has the additional advantage to preserve the time-reversal symmetry for

these tangent vectors, a property not displayed by the GS vectors. Recently, an efficient numerical

procedure was developed by Ginelli et al. [1] for the computation of covariant Lyapunov vectors.

Here, we apply their algorithm to a two-dimensional system of rigid disks.

The choice of hard elastic particles is motivated by the fact that their dynamics is comparatively

simple, and their ergodic, structural and dynamical properties are well known and are thought to

be typical of more realistic physical systems [3]. Secondly, hard-particle systems in two and three

dimensions serve as reference systems for the most successful perturbation theories of dense gases

and liquids [4, 5]. Finally, the combination of a Lyapunov analysis with novel statistical methods

for rare events [6] seems particularly promising for the study of such rare transformations in

systems, for which hard core interactions are at the root.

The paper is organized as follows. After an introduction of the basic concepts for the dynamics of

phase-space perturbations in Sec. 3.2, we summarize in Sec. 3.3 the features and our numerical

implementation of the algorithm of Ginelli et al. [1] for the computation of covariant vectors and

covariant subspaces. In Sec. 3.4, the Hénon map serves as a simple two-dimensional illustration.

The hard-disk model is introduced in Sec. 3.5. In this work we restrict ourselves to 198 disks,
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a number which is dictated by computational economy, but still large enough to allow the

study of Lyapunov modes. In Sec. 3.5.1 we study the relative orientations of Gram-Schmidt

and covariant vectors, which give rise to the same Lyapunov exponents. Next, in Sec. 3.14,

we compare the localization properties in physical space for these two sets of perturbation

vectors. The configuration and momentum space projections of the perturbation vectors – Gram-

Schmidt or covariant – are the topic of Sec. 3.5.3. The central manifold (or null subspace) and

its dependence on the intrinsic continuous symmetries – translation invariance with respect to

time and space – is discussed in Sec. 3.5.4. Although the null subspace is completely orthogonal

to the unstable and stable subspaces, it is essential for a proper understanding of the Lyapunov

modes [7, 8]. Sec. 3.5.5 is devoted to a discussion of these modes and how they are represented

by the covariant vectors. In Subsec. 3.5.6 we compute the angles between the covariant modes

and test for tangency between covariant Oseledec subspaces. In Sec. 3.6 we conclude with a

summary.

3.2 Phase-space and tangent-space dynamics

The dynamics of a system of hard disks is that of free flight, interrupted by elastic binary

collisions. If Γ0 denotes the state of the system at time 0, the state at time t is given by

Γt = φt(Γ0), where φt : X → X defines the flow in the phase space X. Similarly, if δΓ0 is a

vector in tangent space TX at Γ0, at time t it becomes δΓt = Dφt|Γ0δΓ0, where Dφt defines

the tangent flow. It is represented by a D × D matrix, where D is the dimension of phase space.

A subspace E(i) of the phase space is said to be covariant if

Dφt|Γ0E
(i)(Γ0) = E(i)(φt(Γ0)). (3.1)

This definition also applies to covariant vectors, if E(i) is one-dimensional. Loosely speaking,

covariant subspaces (vectors) are co-moving (co-rotating in particular) with the tangent flow.

An analogous relation holds for the time-reversed flow.

Next we consider the decomposition of the tangent space into subspaces according to the mul-

tiplicative ergodic theorem of Oseledec [9, 10, 11]. Here, we closely follow Ref. [7].

The first part of the multiplicative ergodic theorem asserts that the real and symmetric matrices

Λ± = lim
t→±∞

([
Dφt|Γ

]†
Dφt|Γ

)1/2|t|
(3.2)

exist for (almost all) phase points Γ. Here, † denotes transposition. The eigenvalues of Λ+ are
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ordered according to exp(λ(1)) > · · · > exp(λ(`)), where the λ(j) are the Lyapunov exponents,

which appear with multiplicity m(j). For symplectic systems as in our case, λ(j) = −λ(`+1−j),

which is referred to as conjugate pairing. Similarly, the eigenvalues of Λ− are exp(−λ(`)) >

· · · > exp(−λ(1)). The eigenspaces of Λ± associated with exp(±λ(j)) are denoted by U (j)
± . They

are pairwise orthogonal but not covariant. If the λ(j) are degenerate with multiplicity m(j) =

dimU (j)
± , all multiplicities sum to D, the dimension of the phase space. Since the matrices Λ±

are symmetrical, each of the two sets of eigenspaces, {U (j)
± }, completely span the tangent space,

TX(Γ) = U
(1)
± (Γ)⊕ · · · ⊕U (`)

± (Γ). (3.3)

The eigenspaces U (j)
± are not covariant, but the subspaces

U
(j)
+ ⊕ · · · ⊕U (`)

+ and U
(1)
− ⊕ · · · ⊕U (j)

− , j ∈ {1, . . . , `} , (3.4)

are. They are, respectively, the most stable subspace of dimension
∑`

i=j m
(i) of Λ+, and the most-

unstable subspace of dimension
∑j

i=1m
(i) of Λ− (corresponding to the most stable subspace of

that dimension in the past).

The second part of Oseledec’ theorem asserts that for (almost) every phase-space point Γ there

exists another decomposition of the tangent space into covariant subspaces E(j)(Γ) referred to

as Oseledec splitting,

TX(Γ) = E(1)(Γ)⊕ · · · ⊕E(`)(Γ). (3.5)

For δΓ ∈ E(j)(Γ) the respective Lyapunov exponent follows from

lim
t→±∞

1
|t|

log ‖Dφt|Γ δΓ ‖ = ±λ(j) ∀ j ∈ {1, . . . , `} . (3.6)

The subspaces E(j) are covariant (see Eq. (3.1)) but, in general, not orthogonal. According to

Ruelle [10], they are related to the eigenspaces U (j)
± of Λ±:

E(j) =
(
U

(1)
− ⊕ · · · ⊕U (j)

−

)
∩
(
U

(j)
+ ⊕ · · · ⊕U (`)

+

)
. (3.7)

This equation is at the heart of the construction of covariant vectors according to Ginelli et al.

as described in the next section. Furthermore, one can show that

F (j) ≡ E(1) ⊕ · · · ⊕E(j) = U
(1)
− ⊕ · · · ⊕U (j)

− (3.8)

are covariant subspaces.
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3.3 Numerical considerations

Numerical methods probe the tangent space by a set of D tangent vectors, such that the Lyapunov

exponents are repeated with multiplicities, λ1 ≥ · · · ≥ λD. Here, the lower index is referred to as

the Lyapunov index. The relation between the λ(j) and λi is given by

λ(j) = λf (j−1)+1 = · · · = λf (j) ,

where f (j) = m(1) + · · ·+m(j) is the sum of all subspace dimensions up to j.

For notational convenience in the following, the vectors gj
k, j = 1, . . . , D, spanning the tangent

space at time tk, are arranged as column vectors of a D × D matrix Gk ≡ (g1
k| . . . |gDk). The

same convention is used below for other spanning vector sets such as Gk ≡ (g1
k| . . . |gDk) and

V k ≡ (v1
k| . . . |vDk).

In the classical algorithm of Benettin et al. [12] and Shimada and Nagashima et al. [13] for the

computation of Lyapunov exponents, an orthonormal set of tangent vectors Gk−1 at time tk−1

is evolved to a time tk ≡ tk−1 + τ , (τ > 0),

Gk = Jτ
k−1Gk−1,

where Jτ
k−1 is the Jacobian of the evolution map taking the phase space point Γk−1 at time tk−1

to Γk at time tk. The column vectors of Gk at time tk generally are not orthonormal any more

and need to be re-orthonormalized with a Gram-Schmidt procedure. This gives the matrix Gk

with column vectors {gj}k, which form the next orthonormal Gram-Schmidt (GS) basis at time

tk. These vectors are pairwise orthogonal but not covariant. Each GS renormalization step is

equivalent to a so-called QR decomposition of the matrix Gk, Gk = GkRk, where the matrix

Rk is upper triangular [14]. The diagonal elements of Rk are required for the accumulative

computation of the Lyapunov exponents. This procedure is iterated until convergence for the

Lyapunov exponents is obtained.

For the computation of a covariant set of vectors {vj}0 spanning the tangent space for the phase

point Γ0 ≡ Γ(0) at, say, time t0, Ginelli et al. [1] start with a well-relaxed set of GS vectors at

t0 and follow the dynamics forward for a sufficiently long time up to tω = t0 + ωτ , storing Gk

and Gk (or, equivalently, Rk) for tk = t0 + k τ, k = 0, . . . , ω along the way. At tω a set of unit

tangent vectors
{
vj
}

ω
is constructed according to

vj
ω ∈ Sj

ω ≡ span
{
g1

ω, . . . , g
j
ω

}
∀ j ∈ {1, . . . , D} , (3.9)
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which serve as starting vectors for a backward iteration from tω to time t0. The vector vj
k will

stay in Sj
k at any intermediate time tk, because Sj

k is the most stable subspace of dimension j for

the time-reversed iteration. Arranging these vectors again as column vectors of a matrix V k and

expressing them in the GS basis at time tk, one has V k = GkCk, where the matrix Ck is again

upper triangular with elements [Ck]i,j = gi
k · v

j
k. If, at any step n, Ck−1 is constructed from Ck

according to Ck−1 = [Rk]
−1Ck , Ginelli et al. have shown that V k = Jk−1V k−1 and, hence,

the respective column vectors of this matrix follow the natural tangent-space dynamics without

re-orthogonalization. They are covariant but not orthogonal in general. At this stage of the

algorithm, renormalization of vj
k−1 is still required to escape the exponential divergence of the

vector norms without affecting their orientation. After reaching t0 at the end of the iteration,

the vectors vj
0 point into their proper orientations in tangent space such that, according to

Eq. (3.7), span
(
v1

0, · · · ,v
f (j)

0

)
= E(1)(Γ0) ⊕ · · · ⊕ E(j)(Γ0) is the most-unstable subspace of

dimension f (j) ≡ m(1) + · · ·+m(j) of the tangent space at the space point Γ0, going forward in

time. If there are degeneracies (as in the presence of Lyapunov modes to be discussed below),

the Oseledec subspace E(j) is spanned according to

E(j) = vf (j−1)+1 ⊕ · · · ⊕ vf (j)
, (3.10)

where, as in the following, we omit the arguments for the phase-space point. If there are no

degeneracies, vf (j)
= E(j). Similarly, the Gram-Schmidt vectors may be expressed in terms of

the eigenspaces of Λ− [15, 16, 7],

U
(j)
− = gf (j−1)+1 ⊕ · · · ⊕ gf (j)

, (3.11)

for nondegenerate subspaces one finds

U
(j)
− = gf (j)

. (3.12)

The drawback of this algorithm for many-particle systems is the large storage requirement for

the matrices Gk and Gk (or, equivalently, Rk) for the intermediate times tk = t0 + k τ, k =

0, . . . , ω, because τ must not be chosen too large (containing not more than, say, 20 particle

collisions). At the expense of computer time, this can be bypassed by storing the matrices only

for times separated by, say, 100 τ intervals and recomputing the forward dynamics in between

when required during the time-reversed iteration. In this case, also the phase-space trajectory

needs to be stored.
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3.4 A simple example: the Hénon map

To illustrate the foregoing algorithm, we apply it to a simple two-dimensional example, the

Hénon map [17],

xk+1 = a− x2
k + b yk ,

yk+1 = xk ,

with a = 1.4 and b = 0.3. In Fig. 3.1 the Hénon attractor is shown (black line), which is known

to coincide with its unstable manifold. An approximation of the stable manifold is shown by the

dotted lines. At the point 0 the initial GS basis is indicated by the two orthogonal vectors in

blue, where one, as required, points into the direction of the unstable manifold. If these vectors

are evolved forward in time with the GS method for a few hundred steps, the two orthogonal

GS vectors at the point ω are obtained. Taking these vectors as the initial vectors v1
ω and v2

ω,

the consecutive backward iteration yields the covariant vectors at point 0 indicated in red. As

expected, one is parallel to the unstable manifold, the other parallel to the stable manifold at

that point.

Figure 3.1 : The Hénon attractor (black line) and a finite-length approximation of its stable manifold
(dotted line) are shown. The red vectors are the covariant vectors at the phase point 0 as explained in
the main text. The blue vectors are Gram-Schmidt vectors.

3.5 Systems of hard disks

Now we turn to the study of a two-dimensional system of hard disks in a box with periodic

boundaries, where the particles suffer elastic hard collisions (without roughness), and move along
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straight lines in between collisions. The case of rough hard disks is the topic of a forthcoming

publication (Chap. 8).

The Lyapunov instability of hard-disk systems has been studied in detail in the past [18, 19,

20, 21, 22]. Here, we are mainly concerned with the differences encountered with the GS and

covariant vectors, which, as we have seen, give rise to identical Lyapunov spectra. To facilitate

comparison with our previous work, we consider reduced units for which the particle diameter

σ, the particle mass m and the kinetic energy per particle, K/N , are unity. Here, K is the total

energy, which is purely kinetic, and N denotes the number of particles. Lyapunov exponents

are given in units of
√
K/Nmσ2. If not otherwise stated, our standard system consists of N =

198 particles at a density ρ ≡ N/(LxLy) = 0.7 and a simulation box with an aspect ratio

Ly/Lx = 2/11, which is periodic in x and y. The choice of such a small aspect ratio facilitates

the observation of the Lyapunov modes to be discussed later. As usual, the total momentum is

set to zero.

The state of the system is given by the coordinates and momenta of all the particles,

Γ = {~qn, ~pn; n = 1, · · · , N}.

Similarly, an arbitrary tangent vector δΓ - either a Gram-Schmidt vector g or a covariant vector

v - consists of the respective coordinate and momentum perturbations,

δΓ = {δ~qn, δ~pn; n = 1, · · · , N}. (3.13)

The time evolution of these vectors and the construction of the map from one Gram-Schmidt

step to the next has been discussed before [18, 23].

Fig. 3.2 shows the Lyapunov spectrum for this system computed both in forward direction with

the GS vectors (blue line) and in backward direction with the covariant vectors (red line). The

typical time of the simulation in the forward direction is for t0 + tω = 2.5× 105τ , where τ = 0.6

is the largest interval between two successive Gram-Schmidt re-orthonormalizations, which does

not affect the spectrum. The backward simulation is for a time tω − t0 = 2.5× 104τ . The time

t0 (at least of the order of 1× 104τ) is required for the preparation of the relaxed initial state at

t0. It can be observed in the figure that the unstable directions in the future correspond well to

the stable directions in the past and vice versa. Of course, if the sequence of covariant vectors

is followed in the forward direction of time, the spectrum is identical to the classical GS results

(blue line in Fig. 3.2).
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Figure 3.2 : Lyapunov spectrum for the 198 disk system described in the main text. The spectrum
calculated in the forward direction with the GS method is shown by the blue line, the one calculated in
the backward direction with the covariant vectors by the red line. Reduced indices i/4N are used on the
abscissa. Although the spectrum is defined only for integer i, solid lines are drawn for clarity.

3.5.1 Covariant versus Gram-Schmidt vectors

Whereas the time evolution of the GS vectors is determined by the exponential growth of in-

finitesimal volume elements belonging to subspaces g1 ⊕ · · · ⊕ gi for i ∈ {1, . . . , D} according

to exp
(
t
∑i

j=1 λj

)
, the growth of an infinitesimal perturbation representing a covariant vector

vi is directly proportional to exp (t λi), for all i. Thus, it is interesting to compare the relative

orientations of respective vectors giving rise to the same exponent. In the left panel of Fig. 3.3

the difference in orientation of the two types of vectors is demonstrated by a plot of |gi ·vi| as a

function of i. The black line is an average over 100 frames separated by time intervals of 250τ .

Since for tangent vectors only their direction and not the sense of direction is important, an

absolute value is taken (here and for analogous cases below), otherwise the scalar product might

average to zero over long times, with equal numbers of vectors pointing into opposite directions.

For the unstable directions in the left half of the left panel, one observes a rapid decrease of

the scalar product with i and, hence a rapid increase of the angle between respective covariant

and GS vectors. This decrease is repeated for the stable directions in the right half of the figure.

These two parts are separated by the mode region, an enlargement of which is shown in the

right panel of Fig. 3.3 and which will be dealt with in more detail below.

In Fig. 3.4 we show similar projections (time averages of absolute values of scalar products as

before) for selected covariant vectors with the whole Gram-Schmidt vector set. One observes

that the covariant vectors vj belong to the GS subspace g1 ⊕ · · · ⊕ gj , for all j ∈ {1, . . . , 4N}

and, thus, give rise to the upper-triangular property of the matrix R in the QR-decomposition
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Figure 3.3 : Plot of the scalar product norm, 〈|gi · vi|〉, for GS and covariant vectors giving rise to the
same Lyapunov exponent λi, as a function of i. The line is a time average as discribed in the main text.
Left panel: full range of Lyapunov exponents; Right panel: enlargement of the central part.

mentioned above. The curves in the figure strongly depend on the choice of j:

• If it belongs to the unstable subspace Eu but does not represent a Lyapunov mode (top-left

panel for j = 370), there is no obvious orientational correlation with any of the GS vectors with

index i < j. For i = j = 1 corresponding to the maximum exponent, the covariant and GS

vectors are identical. If, however, the covariant vector represents a Lyapunov mode as in the

bottom-left panel for j = 393, then its angle with the respective GS vector may become smaller,

giving rise to a scalar product closer to unity.

• If the covariant vector belongs to the stable subspace Es but does not represent a mode as for

j = 700 in the top-right panel of Fig. 3.4, it has non-vanishing components in the GS basis for all

i ≤ j with the exception of the zero subspace 2N − 2 ≤ i ≤ 2N +3, which is strictly orthogonal.

With the exception of the step at the conjugate index i = 4N + 1− j = 93, the origin of which

is not fully understood, there is no indication of orientational correlations between the covariant

vector with any of the GS vectors for i ≤ j. If, however, the covariant vector represents a mode

as for j = 400 in the lower-right panel of the figure, there is strong orientational correlation not

only with the respective GS vector with i = 400, but also with its conjugate pair at 4N + 1− i

(= 393 in our example).

It is interesting to note that the leading GS and covariant vectors in the null subspace are always

identical (up to an irrelevant sign): v2N−2 = g2N−2.

3.5.2 Localization

The maximum (minimum) Lyapunov exponent is the rate constant for the fastest growth (de-

cay) of a phase-space perturbation and is dominated by the fastest dynamical events, a locally-

enhanced collision frequency. It is not too surprising that the associated tangent-vector com-
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Figure 3.4 : Time averaged absolute value of the scalar product of selected covariant vectors vj (as
indicated by the labels) with the whole set of Gram-Schmidt vectors gi as a function of i.

ponents are significantly different from zero for only a few strongly-interacting particles at any

instant of time. Thus, the respective perturbations are strongly localized in physical space. This

property persists in the thermodynamic limit such that the fraction of tangent-vector compo-

nents contributing to the generation of λ1 follows a power law ∝ N−η, η > 0, and converges to

zero for N → ∞ [24, 25, 20, 26]. The localization becomes gradually worse for larger indices

i > 1, until it ceases to exist and (almost) all particles collectively contribute to the coherent

Lyapunov modes to be discussed below. Similar observations for spatially extended systems have

been made by various authors [27, 28, 29, 21, 22], which were consequently explained in terms

of simple models [30, 31]. We also mention Ref. [32], where the tangent-space dynamics of the

first Lyapunov vector g1 for various one-dimensional Hamiltonian lattices is compared to that for

the Kardar-Parisi-Zhang model of spatio-temporal chaos. The unexpected differences found for

the scaling properties are traced back to the existence of long-range correlations, both in space

and time, in the Hamiltonian chains, the origin of which, however, could not be fully disclosed.

The same correlations are conjectured to be responsible for a slow 1/
√
N convergence of λ1
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Figure 3.5 : Localization spectra W for the complete set of Gram-Schmidt vectors (blue) and covariant
vectors (red). The details of the hard-disk system are given in Sec. 3.5. Reduced indices i/4N are used
on the abscissa. In the inset a magnification of the central mode region is shown.

towards its thermodynamic limit [32], which is also observed for hard-disk systems [18].

Up to now, all considerations concerning localization were based on the Gram-Schmidt vectors.

Here, we demonstrate the same property for the covariant vectors. According to Eq. (3.13) we

define the contribution of an individual disk n to a particular perturbation vector as the square

of the projection of δΓ onto the subspace pertaining to this disk,

µn = (δ~qn)2 + (δ~pn)2.

Since δΓ is either a GS vector or a covariant vector both of which are normalized, one has∑N
n=1 µn = 1, and µn may be interpreted as a kind of action probability of particle n contributing

to the perturbation in question. It should be noted that for the definition of µn the Euclidean

norm is used and that all localization measures depend on this choice. Qualitatively, this is still

sufficient to demonstrate localization. From all the localization measures introduced [29, 24],

the most common is due to Taniguchi and Morriss [21, 22],

W =
1
N

exp[S], S =

〈
−

N∑
n=1

µn lnµn

〉
. (3.14)

Here, S is the Shannon entropy for the ”probability” distribution µn, and 〈· · · 〉 denotes a time

average. W is bounded according to 1/N ≤W ≤ 1, where the lower and upper bounds apply to

complete localization and delocalization, respectively. In Fig. 3.5, we compareW obtained for the

full set of Gram-Schmidt vectors (blue curve) to that of all the covariant vectors (red curve). The

spectra are obtained by identifying δΓ with all vectors of the respective sets, i = 1, . . . , 4N . Not
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too surprisingly, the localization is stronger for the covariant vectors, whose direction in tangent

space is solely determined by the tangent flow and is not affected by renormalization constraints.

Another interesting feature is the symmetry Wi = W4N+1−i, which is a direct consequence of

the symplectic nature of the flow (see Chap. 8).

3.5.3 Tangent space projections

It is interesting to see how much the coordinate and momentum subspaces contribute to a

particular tangent vector δΓ (see Eq. 3.13), which may be a Gram-Schmidt vector gi or a

covariant vector vi, both associated with the same Lyapunov exponent λi. The time-averaged

squared projections of δΓ onto the coordinate and momentum subspaces Q and P , respectively,

are given by

ηq =

〈
N∑

n=1

(δ~qn)2
〉

, ηp =

〈
N∑

n=1

(δ~pn)2
〉

(3.15)

and are plotted in Fig. 3.6 for the whole set of Gram-Schmidt vectors, and in Fig. 3.7 for the

whole set of covariant vectors, i = 1, . . . , 4N . One notes that for the Gram-Schmidt case the

contributions of ηq and ηp to a vector gi and its conjugate g4N+1−i are interchanged, whereas

for the covariant vectors vi and v4N+1−i they are the same. This is particularly noticeable for

the expanded central regions in the respective right panels of Figs. 3.6 and 3.7.

3.5.4 Central manifold and vanishing exponents

The dynamics of a closed particle system such as ours is strongly affected by the inherent con-

tinuous symmetries, which leave the Lagrangian and, hence, the equations of motion invariant.

The symmetries relevant for our two-dimensional system with periodic boundaries are the ho-

mogeneity of time (or invariance with respect to time translation), and the homogeneity of space

(or invariance with respect to space translations in two independent directions). Each of these

symmetries is associated with two vector fields with sub-exponential growth (or decay) and,

therefore, gives rise to two vanishing Lyapunov exponents [33]. At any phase-space point Γ, the

six vectors span a six-dimensional subspace N (Γ) of the tangent space TX(Γ), which is referred

to as null space or central manifold. This subspace is covariant. If the 4N components of the

state vector are arranged as

Γ =
(
q1x, q

1
y , . . . , q

N
x , q

N
y ; p1

x, p
1
y, . . . , p

N
x , p

N
y

)
, (3.16)
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Figure 3.6 : Mean squared projections for the full Gram-Schmidt vector set, i = 1, · · · , 4N , onto the
coordinate subspace Q, ηGS
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198-particle system defined above. Left panel: full spectrum; Right panel: magnification of the central
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Figure 3.7 : Mean squared projections for the full covariant vector set, i = 1, · · · , 4N , onto the coordinate
subspace Q, ηcov

q (green line), and the momentum subspace P , ηcov
p (black line), for the 198-disk system

defined above. Left panel: full spectrum; Right panel: magnification of the central mode-carrying region.

the six orthogonal spanning vectors, which are the generators of the elementary symmetry

transformations, are given by [20, 7]

e1 =
1√
2K

(p1
x, p

1
y, . . . , p

N
x , p

N
y ; 0, 0, . . . , 0, 0) , (3.17)

e2 =
1√
N

(1, 0, . . . , 1, 0 ; 0, 0, . . . , 0, 0) , (3.18)

e3 =
1√
N

(0, 1, . . . , 0, 1 ; 0, 0, . . . , 0, 0) , (3.19)

e4 =
1√
2K

(0, 0, . . . , 0, 0 ; p1
x, p

1
y, . . . , p

N
x , p

N
y ) , (3.20)

e5 =
1√
N

(0, 0, . . . , 0, 0 ; 1, 0, . . . , 1, 0) , (3.21)

e6 =
1√
N

(0, 0, . . . , 0, 0 ; 0, 1, . . . , 0, 1) . (3.22)
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e1 corresponds to a change of the time origin, e4 to a change of energy, e2 and e3 to an

(infinitesimal) uniform translation of the origin in the x- and y-directions, respectively, and e5

and e6 to a perturbation of the total momentum in the x- and y-directions, respectively. The six

vanishing Lyapunov exponents are located in the center of the Lyapunov spectrum with indices

2N−2 ≤ i ≤ 2N+3. The first three of these vectors have non-vanishing components only for the

position perturbations in the 2N -dimensional configuration subspace Q, the remaining only for

the momentum perturbations in the 2N -dimensional momentum subspace P . They are related

by ej = J ej+3 for j ∈ {1, 2, 3}, where J is the symplectic (skew-symmetric) matrix.

Let us consider the projection matrices α and β of the GS and covariant vectors, respectively,

onto the natural basis,

αi,j = gi · ej ; βi,j = vi · ej , j ∈ {1, . . . , 6} i ∈ {2N − 2, · · · , 2N + 3}.

For i /∈ {2N − 2, . . . , 2N + 3} these components vanish. Without loss of generality, we consider

in the following example a system with onlyN = 4 particles in a periodic box, which is relaxed for

t0 = 106 time units, followed by a forward and backward iteration lasting for tω − t0 = 105 time

units. Very special initial conditions for the backward iteration, vi
ω = gi

ω for i = 1, . . . , 4N(= 16),

are used. The projections at the time t0 are given in Table 3.1 for the GS vectors, in Table 3.2

for the covariant vectors.

Table 3.1 : Instantaneous projection matrix α of Gram-Schmidt vectors (for i ∈ {2N − 2, · · · , 2N + 3})
onto the natural basis {ej , 1 ≤ j ≤ 6} of the central manifold. The system contains N = 4 disks. The
powers of 10 are given in square brackets.

i αi,1 αi,2 αi,3 αi,4 αi,5 αi,6

2N − 2 -0.766 0.582 0.273 −0.766[−6] 0.582[−6] 0.273[−6]
2N − 1 0.256 -0.114 0.960 0.256[−6] −0.114[−6] 0.960[−6]
2N 0.590 0.805 -0.062 0.590[−6] 0.805[−6] −0.062[−6]
2N + 1 −0.611[−6] 0.782[−6] −0.121[−6] 0.611 -0.782 0.121
2N + 2 0.575[−6] 0.544[−6] 0.611[−6] -0.575 -0.544 -0.611
2N + 3 −0.543[−6] −0.304[−6] 0.783[−6] 0.543 0.304 -0.783

A comparison of the two tables reveals the following:

• The six orthogonal GS vectors gi; i = 2N − 2, . . . , 2N + 3 completely span the null subspace

(the squared elements for each rows add up to unity in Table 3.1). The same is true for the six

non-orthogonal covariant vectors vi; i = 2N − 2, . . . , 2N + 3 in Table 3.2.

• The first three covariant and Gram-Schmidt vectors completely agree. This is a consequence

of the special initial conditions for the former at the time tω as mentioned above. During the
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Table 3.2 : Instantaneous projection matrix matrix β for the the six central covariant vectors onto the
natural basis {ej , 1 ≤ j ≤ 6} of the central manifold. The system contains N = 4 particles. The powers
of 10 are given in square brackets.

i βi,1 βi,2 βi,3 βi,4 βi,5 βi,6

2N − 2 -0.766 0.582 0.273 −0.766[−6] 0.582[−6] 0.273[−6]
2N − 1 0.256 -0.114 0.960 0.256[−6] −0.114[−6] 0.960[−6]
2N 0.590 0.805 -0.062 0.590[−6] 0.805[−6] −0.062[−6]
2N + 1 -0.611 0.782 -0.121 0.611 [-5] -0.782 [-5] 0.121 [-5]
2N + 2 0.575 0.544 0.611 -0.575 [-5] -0.544[-5] -0.611[-5]
2N + 3 -0.543 -0.304 0.783 0.543 [-5] 0.304 [-5] -0.783[-5]

backward iteration the three covariant vectors stay in their respective subspaces and remain

parallel to the GS vectors (which were stored during the forward phase of the algorithm). At t0

they are still identical to their GS counterparts. The first vectors always agree, v2N−2
0 = g2N−2

0 ,

even if less special initial conditions conforming to Eq. 3.9 are used.

• Equivalent components have the same mantissa but may differ by a factors of 105 or 106, which

are related to the duration of the relaxation phase t0 and of the forward-backward iteration time

tω − t0.

The explanation for this behavior (see Sec. 3.8.1) is obtained by a repeated explicit application

of the linearized maps for the free streaming and consecutive collision of particles [23, 18] to

the six basis vectors {ej}. One finds that

Dφt
Γ0
ej (Γ0) = ej (Γt) , (3.23)

Dφt
Γ0
ej+3 (Γ0) = t ej (Γt) + ej+3 (Γt) , (3.24)

for j ∈ {1, 2, 3}. Eq. (3.24) implies that any perturbation vector with non-vanishing components

parallel to e4, e5, or e6 will rotate towards e1, e2, and e3, respectively. It follows (i) that

the null subspace N (Γ) is covariant; (ii) that the subspaces N1 = span{e1}, N2 = span{e2}

and N3 = span{e3} are separately covariant (from Eq. (3.23)); that, as was already noted

in Ref. [7], N can be further decomposed into the three two-dimensional covariant subspaces

Np = span{e1, e4}, Nx = span{e2, e5}, and Ny = span{e3, e6}.

3.5.5 Lyapunov modes

We have seen in Sec. 3.14 that the perturbation vectors are less and less localized, the smaller

the Lyapunov exponents become, until they are coherently spread out over the physical space

and form periodic spatial patterns with a well-defined wave vector k. This collective patterns

are referred to as Lyapunov modes. The modes were observed for hard-particle systems in one,
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Figure 3.8 : Enlargement of the mode regime for the Lyapunov spectrum depicted in Fig. 3.2. The open
symbols indicate exponents computed from the Gram-Schmidt vectors, the full dots are for exponents
obtained from the covariant vectors.

two and three dimensions [7, 19, 21, 22, 34], for hard planar dumbbells [35, 36, 24] and for

one and two-dimensional soft particles [37, 38, 26]. A formal classification of the modes is given

in Ref. [7]. Physically, they are interpreted as periodic modulations with wave number (k 6= 0)

of the null modes associated with the elementary continuous symmetries and conservation laws.

Since this modulation involves the breaking of such symmetries, the modes have been interpreted

as Goldstone modes [8]. Theoretical approaches are based on random matrix theory [39, 40],

periodic orbit expansion [41], and kinetic theory [42, 43, 8].

So far the numerical work on Lyapunov modes has been exclusively concerned with the or-

thonormal Gram-Schmidt vectors {gi}, i = 1, . . . , 4N . The purpose of this section is to point

out some differences one encounters, if the modes for the Gram-Schmidt and covariant vectors

are compared.

Fig. 3.8 shows an enlargement of the mode-carrying region for the Lyapunov spectrum of Fig.

3.2. In order to emphasize the conjugate pairing symmetry λi = −λ4N+1−i for symplectic sys-

tems, conjugate exponent pairs are plotted with the same index i on the abscissa, where now

i ∈ {1, . . . , 2N}. The open circles are computed from the Gram-Schmidt vectors in the for-

ward direction of time, the dots from the covariant vectors during the time-reversed iteration.

Considering the size of the system (N = 198), the agreement is excellent.

The steps in the spectrum due to degenerate exponents is a clear indication for the presence

of Lyapunov modes. According to the classification in our previous work [7], the steps with a

two-fold degeneracy are transverse (T) modes – T(1,0), T(2,0) and T(3,0) from right to left

in Fig. 3.2. Similarly, the steps with a four-fold degeneracy of the exponents are longitudinal-
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momentum (LP) modes – LP(1,0), LP(2,0) and LP(3,0) again from the right. The arguments

(nx, ny) account for the number of periods of the sinusoidal perturbations in the x and y-

directions. Since our simulation cell is rather narrow, only wave vectors k parallel to the x-axis

of the (periodic) cell appear, leaving 0 for the second argument [7]. As usual, “transverse” and

“longitudinal” refer to the spatial polarization with respect to k of the wave-like pattern.

One of our early observations, which greatly facilitates the classification of the modes for the

Gram-Schmid vectors [7], is that in the limit N → ∞ the cosine of the angle Θ between the

2N -dimensional vectors of the position perturbations and momentum perturbations converges

to +1 for the smallest positive, and to -1 for the smallest negative exponents. See the blue line

in Fig. 3.9. Furthermore, the relation

δp = C±δq (3.25)

holds with known constants C±.

This means that these vectors are nearly parallel or anti-parallel for large N and that the mode

classification may be based solely on δq. Somewhat surprisingly, this property does not strictly

hold anymore for the covariant vectors. This is shown by the red line in Fig. 3.9, where cos(Θ) is

seen to differ significantly from ±1 for all i outside of the null subspace (for which 394 ≤ i ≤ 399).

Unfortunately, this has dire consequences for the representation of the covariant vector modes,

since they cannot be purely understood as a vector field of the position perturbations only as in

the GS case. For the purpose of this paper, however, we restrict to the GS-based classification

of Ref. [7].

Table 3.3 : Basis vectors of (nx, 0) modes for a hard disk system in a rectangular box with periodic
boundaries. We use the notation cx = cos(kx x), and sx = sin(kx x), where the wave vector is given by
k = (kx, ky) = (2πnx/Lx, 0). Here nx ∈ {1, 2, 3}.

n Basis of T(n) Basis of L(n) Basis of P(n)(
nx

0

) (
0
cx

)
,
(

0
sx

) (
cx
0

)
,
(
sx

0

) (
px

py

)
sx,
(
px

py

)
cx

Transverse modes are two-dimensional subspaces (for the periodic boundary conditions and a

rectangular box), for which two orthogonal basis vectors are given in Table 3.3. As an example,

we show in the panels on the left-hand side of Fig. 3.10 snapshots of the mode T(1,0) for the

index i = 393, namely plots of δqy as a function of qx (top-left), and of δpy as a function of qx

(bottom-left). The respective plots for the x components fluctuate around zero, as expected, and

are not shown. Analogous plots for the mode T(2,0) with i = 387 are shown in the panels on the

right-hand side. The blue points are for GS vectors, the red squares for the respective covariant
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Figure 3.9 : Time averaged value of cos(Θ) = (δq · δp)/(‖δq‖‖δp‖) as a function of the Lyapunov index
i for a system with N = 198 hard disks. Here, δq ∈ Q and δp ∈ P are the 2N -dimensional vectors of
all position perturbations respective all momentum perturbation for the Gram-Schmidt vectors gi (blue
line) and the covariant vectors vi (red line). The insets are magnifications of the mode-carrying region.

vectors. It is interesting to note that the scatter of the points for the position perturbations is

smaller for the covariant modes (red squares) than for the GS modes (blue dots). A fit shows

that the residuals for the covariant modes are smaller by about a factor of two in comparison to

Gram-Schmidt. Quite the opposite is true for the momentum perturbations in the bottom row

of panels. Although the proportionality of Eq. (3.25) still holds, the scatter of the red squares

for the covariant vectors is larger than that of the blue dots for the GS vectors. Such a behavior

is always observed and is not simple numerical noise. The reason for this behavior is related to

the previous discussion in connection with Fig. 3.9 but still needs further clarification.

Longitudinal (L) and associated momentum (P) modes share the same degenerate Lyapunov

exponent λ(i), and generally appear superimposed in experimental vectors. With a rectangular

box and periodic boundaries, they form four-dimensional LP perturbations. The superposition

varies periodically with time. This “dynamics” has been identified as a rotation of the pure

L and P vectors in the standard frame. For details we refer to previous work in Ref. [7]. The

patterns for the pure L mode are easily recognizable as sine and cosine functions, but those for

the P modes are not. As is evident from the spanning vectors for L(1,0) and P(1,0) also listed

in Table 3.3, the P modes are proportional to the instantaneous velocities of all particles, which

does not at all constitute a smooth vector field. For a pattern to be recognizable, these velocities

need to be “divided out”. A full mode reconstruction is required as is described for the case of

Gram-Schmidt vectors in Ref. [7], see Sec. 3.8.2. Here we carry out an analogous reconstruction

in terms of the covariant vectors and compare them to the GS modes. In Fig. 3.11 two of the

reconstructed patterns for L and P modes belonging to the four-dimensional LP(1,0) subspace
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Figure 3.10 : Instantaneous transverse Lyapunov modes T(1,0) for index i = 393 (left panels), and
T(2,0) for index i = 387 (right panels) for the 198-disk system. In the panels at the top (bottom) the
y-coordinate perturbations δqy (y-momentum perturbations δpy) of all particles are plotted as a function
of their x coordinate, qx, in the simulation cell. The wave vector is parallel to the x axis. The blue dots
are for Gram-Schmidt vectors, the red squares for covariant vectors.

with indices i ∈ {388, 389, 390, 391} are shown. The blue dots are for GS modes, the red squares

for covariant modes. To judge the quality of the reconstruction, we have included in the top-right

panel also the δqy versus qx curve, which vanishes nicely as required.

For comparison, Fig. 3.12 gives results for a completely analogous reconstruction, where instead

of the position perturbations as in Fig. 3.11, the corresponding momentum perturbations are

used. For this example cosine patterns were selected, whereas in Fig. 3.11 sine patterns were

used. As before, blue dots refer to GS vectors, red squares to covariant vectors.
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Figure 3.11 : Reconstructed position perturbations of the pure L(1,0) mode (top panels) and P(1,0)
mode (bottom panels). Only the patterns proportional to sin(2πqx/Lx) are shown. Blue dots: Gram-
Schmidt vectors; Red squares: covariant vectors. For details we refer to the main text.
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Figure 3.12 : Reconstructed momentum perturbations for the pure L(1,0) mode (top panels) and P(1,0)
mode (bottom panels) depicted already in Fig. 3.11. Only the patterns proportional to cos(2πqx/Lx) are
shown. Blue dots: Gram-Schmidt vectors; Red squares: covariant vectors.
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3.5.6 Transversality

From the Lyapunov spectrum of Fig. 3.2 and the magnification of its central part in Fig. 3.8,

the following inequalities are read off,

λ1 > · · · ≥ λ2N−3 >
[
λ(0)

]
> λ2N+4 ≥ · · · > λ4N , (3.26)

where the equal sign applies for the degenerate exponents belonging to modes.
[
λ0
]

= 0 is sixfold

degenerate in our case. Conjugate pairing assures that λi = −λ4N+1−i. The Oseledec splitting

provides us with the following structure of the tangent space,

TX = Eu ⊕ N ⊕Es, (3.27)

where Eu = v1⊕· · ·⊕v2N−3 and Es = v2N+4⊕· · ·⊕v4N are the covariant unstable and stable

subspaces, respectively, and N is the null subspace or central manifold. The question arises

whether the system is hyperbolic, which implies that the angles between the stable manifold

Es and the unstable manifold Eu are bounded away from zero for all phase points (due to the

existence of a central manifold this is referred to as partial hyperbolicity in the mathematical

literature [44]). Even more, we may ask whether the angles between all Oseledec subspaces and,

hence between all covariant vectors, are bounded away from zero for all phase-space points. To

find an answer to that question, we compute in the following the scalar products for all covariant

vector pairs and present representative results. (This procedure reminds us of the so-called

coherence angles introduced by d’Alessandro and Tenenbaum [45, 46], measuring the angular

distance between a physically interesting direction and the direction of maximum perturbation

expansion).

The lines in Figure 3.13 depict the product norms 〈|vj · vi|〉 for selected covariant vectors vj

with all other covariant vectors vi, i 6= j. As before, a time average is performed. The panels

on the left-hand side provide three examples for vj from the unstable manifold outside of the

mode regime (j = 1, 200, and 370 from top-left to bottom-left, respectively), and similarly on

the right-hand side from the stable manifold outside of the mode regime (j = 420, 600, and

792 from bottom-right to top-right, respectively). One immediately observes that the stable

and unstable subspaces are not orthogonal. As has been mentioned in Sec. 3.5.4 and is also

convincingly demonstrated in the following Fig. 3.14, the null subspace N is orthogonal to both

Eu and Es. For two covariant vectors from the same subspace, Eu or Es, however, the scalar

product does not vanish indicating considerable non-orthogonality. But at the same time it is

also well bounded away from unity, which means that the two vectors do not become parallel
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either. However, one possible exception may be the covariant vector pairs (vj ,vj+1) for adjacent

Lyapunov exponents in the spectrum. In these cases, the scalar product reaches a pronounced

maximum in all of the six panels of Fig. 3.13 which may still allow these vectors to become

parallel occasionally. This will be discussed further below.

So far we have considered only vectors vj outside of the mode regime. The case of covariant

vectors representing modes is treated separately in Fig. 3.14, where, as before, time-averaged

scalar product norms 〈|vj · vi|〉 for i 6= j are plotted as a function of i. The panels on the

left-hand side are for j belonging to unstable transversal modes, the panels on the right-hand

side for j belonging to unstable LP pairs. The curves for the conjugate stable modes just look

like the mirror images around the central index. Each vector representing a T or LP-mode has

significant contributions to the scalar product only for covariant vectors belonging to the same

degenerate exponent and – to a lesser extent – the corresponding conjugate (negative) exponents

(where the latter is not true anymore for the LP(3,0) modes in the bottom-right panel of Fig.

3.14, where no peak around i = 414 is discernible).

The covariant vectors belonging to transverse (or to LP) modes span covariant Oseledec sub-

spaces E(i) with a dimension m(i) equal to 2 (respective 4). To ease the notation, we refer to

them as E(X) in the following, where X is either T(nx, 0) or LP(nx, 0) with nx ∈ {1, 2, 3}.

The conjugate Oseledec subspaces, E(X)∗, have the same dimension and are spanned by the

respective conjugate covariant vectors. Fig. 3.14 shows that the covariant vectors spanning any

of the subspaces E(X) or E(X)∗ have a rather small but finite angular distance and, thus, are

transversal. The Oseledec subspaces representing modes are themselves transversal to all other

subspaces of the Oseledec splitting, but to a varying degree. The angular distances in tangent

space are generally large except between conjugate subspaces E(X) and E(X)∗, for which the

scalar products of their spanning vectors may become surprisingly large.

To check more carefully for transversality even in this case, we show in Fig. 3.15 the probability

distribution for the minimum angle between the conjugate subspaces E(X) and E(X)∗, where X

stands for the T and LP modes as indicated by the labels. This angle Φ is computed from the

smallest principal angle between the two subspaces [47, 48]. If the covariant vectors belonging

to E(X) and E(X)∗ are arranged as the column vectors of matrices V and V ∗, respectively, the

QR decompositions V = QR and V ∗ = Q∗R∗ of the latter provide matrices Q and Q∗, with

which the matrix M = QTQ∗ is constructed. The singular values of M are equal to the cosines

of the principal angles, of which Φ is the minimum angle. Since Φ is never very small, this

method works well and does not need more complicated refinements [47, 48, 49]. It is seen that

all distributions are well bounded away from zero indicating transversality for the respective

subspaces.
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Figure 3.13 : The lines are time averaged (100 frames separated by 150 time units) absolute values of
the scalar product of a specified covariant vector vj with all the remaining covariant vectors vi 6=j as a
function of i. Left panels from top to bottom: j = 1, 200, and 370 belonging to the unstable manifold;
Right panels from bottom to top: j = 420, 600, and 792 from the stable manifold.
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Figure 3.14 : The lines are time averaged (100 events separated by 150 time units) absolute values for the
scalar product of covariant vectors vj (as specified by the label j) with all the remaining covariant vectors
vi 6=j as a function of i. The abscissa is restricted to the mode regime. j is for modes from the unstable
subspace with positive exponents only. For the respective conjugate modes from the stable subspace, the
curves in all panels are just the mirror images around the center as in Fig. 3.13.
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Figure 3.15 : Probability distributions for the minimum angle between the Oseledec subspace E(X) and
its conjugate subspace E(X)∗. Here, X ∈ {T(nx, 0),LP(nx, 0)} with nx = 1, 2, 3 specifies the modes as
indicated by the labels. The probability distribution Ψ for the minimum angle between the stable and
unstable manifolds Es and Eu is shown by the red line.

Finally, we concentrate on the minimum angle between the full unstable subspace Eu = v1 ⊕

· · · ⊕ v393 and its conjugate stable counterpart Es = v400 ⊕ · · · ⊕ v792, using the same method

as before. These subspaces include the mode-carrying vectors studied before. The probability

distribution for the minimum angle is denoted by Ψ and is also shown in Fig. 3.15 (red line).

Also this distribution is well bounded away from zero and indicates transversality between Es

and Eu. We conclude that for finite N the hard-disk systems are (partially) hyperbolic in phase

space.

In Fig. 3.13 it was observed that the scalar products between covariant vectors with adjacent

indices are rather large and possibly may allow tangencies. To study this point more carefully,

we follow a suggestion of G. Morriss and consider the angle Θ = cos−1 |vi · vj | between the

vectors vi ∈ F (J) and vj ∈ F (J), for which i− j is a specified positive integer. The probability

distributions for angles with i − j = 1, 2, 4, 20, 50 are shown in Fig. 3.16, and for i − j =

100, 200, 300 in the inset of the same figure. Whereas the probabilities for i− j > 1 are bounded

away from zero, the distribution for i− j = 1 seems to converge to zero for Θ → 0.

An even more demanding test is given in Fig 3.17, where the minimum of Θ for given i−j > 0 is

plotted as a function of i− j. The inset provides a magnification of the most interesting region.

One observes that the minimum of the angle Θ between covariant vectors specifying Oseledec

subspaces with i− j = 1 may indeed become very small, but this happens with extremely small

probability. Our numerical evidence is consistent with the assumption that the angle becomes

zero with vanishing probability.
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Figure 3.16 : Probability distributions for the angles Θ between all covariant vectors vi and vj from
F (370) = v1 ⊕ · · · ⊕ v370 with prescribed separation i− j of their indices as indicated by the labels.
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3.6 Conclusion

A comparison of the covariant vectors with corresponding orthonormal Gram-Schmidt vectors

reveal similarities, but also significant differences. The vectors associated with the maximum

Lyapunov exponent are identical, v1 = g1, and also the leading vectors in the central manifold

agree, v2N−2 = g2N−2. All the other corresponding vectors generally point into different tangent-

space directions. Whereas the GS vectors are pairwise orthogonal by construction, the covariant

vectors are not. Most notably, the perturbation contributions from the particles’ positions and

momenta are significantly different and even exhibit a different symmetry between vectors from

the stable and unstable manifold as in Fig. 3.6. For the covariant vectors these contributions

agree in accordance with the time-reversal symmetry required for them, whereas for the Gram-

Schmidt vectors these contributions are interchanged. Another significant difference is the degree

of localization in physical space for the non-degenerate perturbations. As Fig. 3.5 shows, the

covariant vectors are much more localized than the GS vectors in accordance with the fact that

they are not dynamically constrained by re-orthogonalization.

From a theoretical point of view, an interesting result is that no tangencies occur between the

respective unstable and stable manifolds Eu and Es. In Fig. 3.15 the probability distribution Ψ

of the minimum angle between stable and unstable subspaces (including the Lyapunov modes) is

well bounded away from zero, and even more so for the vectors belonging to unstable respective

stable modes. Thus, a hard-disk system with N = 198 particles as in our case is (partial)

hyperbolic for all points in phase space. We even find that all Oseledec subspaces are pairwise

transversal with non-vanishing angles between them.

We speculate that for N →∞ the distribution for the minimum angle between Eu and Es may

possibly reach the origin in Fig. 3.15. To clarify this point further studies are required.

The concept of hyperbolicity is closely linked with the notion of dominated Oseledec splitting

for all phase space points [44]. We may rewrite Eq. (3.6) for the Lyapunov exponents, expressed

in terms of the covariant vectors, according to

λi = lim
K→∞

1
K

K−1∑
k=0

1
τ

ln
∥∥Dφτ |Γ(tk) v

i(Γ(tk))
∥∥, (3.28)

where tk ≡ k τ , and τ is the short time interval between consecutive re-normalizations of the

covariant vectors. Here, λ` is expressed as a time average of a quantity

Λcov
i (Γ(tn)) =

1
τ

ln
∥∥Dφτ |Γ(tk−1) v

i(Γ(tk−1))
∥∥, (3.29)
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which is referred to as local (or time-dependent) Lyapunov exponent, and is a function of the

instantaneous phase point Γ(t). The Oseledec splitting is said to be dominated, if the local

Lyapunov exponents, when averaged over a finite time ∆, do not change their order in the

spectrum for any ∆ larger than some finite ∆0 > 0 (see Chap. 7). This is a very strong condition

on the fluctuations of the local exponents [50, 51]. For symplectic systems it is known that

the domination of the splitting implies that the system is (partially) hyperbolic [44]. But it is

not clear whether the converse is true in our case. The discussion of this point is deferred to a

forthcoming publication (Chap. 8).

The number and the dimension of the Oseledec subspaces are constant in phase space. There

is no entanglement of subspaces, which has been identified as one of the main reasons for the

occurrence of well-established Lyapunov modes [50]. We refer to Ref. [51] (Chap. 5) for a

discussion of a simple but physically-relevant model, for which the dimensions of the stable and

unstable manifolds frequently change along the trajectory.

An interesting extension of this work is the study of rough hard particles allowing for energy

exchange between translational and rotational degrees of freedom (Chap. 8). Arguably, this is the

simplest model of a molecular fluid. No Lyapunov modes are found in this case [52]. An analysis

in terms of covariant vectors is presently under way and will be published separately.
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3.8 Appendix∗

3.8.1 Zero Modes dynamics

In this Appendix we justify Eqs. (3.23) and (3.24) for the dynamics of the six natural basis vectors

(Eqs. (3.17) - (3.22)) spanning the central manifold. For convenience, we use the notation

ej =
1√

(δq j)2 + (δp j)2

(
δq j ; δp j

)

for the basis vectors, and

Γ =
(
q ; p

)
for the state point, where q = (~q1, . . . , ~qN ) and p = (~p1, . . . , ~pN ) are 2N -dimensional vectors in

the configuration and momentum spaces, respectively. The time evolution of the state vector

and of an arbitrary perturbation vector follows the phase flow and the tangent flow, respec-

tively:

Γt = φt Γ0 and δΓt = Dφt
Γ0
δΓ0 .

Both flows are characterized by a sequence of free flights interrupted by elastic collisions at times

{τ1, τ2, . . . , τζ},

φt = φt−τζ M · · · φτ2−τ1 M φτ1−τ0 ,

Dφt
Γ0

= Dφt−τζ S · · · Dφτ2−τ1 S Dφτ1−τ0 ,

where the discrete maps M and S govern the respective transformation at each collision in the

phase and tangent space. The free flight between collisions at τ1 and τ2 is trivially given by

φτ2−τ1 Γ

 ~qn(τ2) = ~qn(τ1) + (τ2 − τ1)~pn(τ1)/m ,

~pn(τ2) = ~pn(τ1) ,

Dφτ2−τ1 δΓ

 δ~qn(τ2) = δ~qn(τ1) + (τ2 − τ1)δ~pn(τ1)/m ,

δ~pn(τ2) = δ~pn(τ1) ,

where the particle mass m is considered equal to unity. Since δ~pn = ~0, ∀n ∈ {1, . . . , N}, for e1,

e2 and e3 (Eqs. (3.17) - (3.19)), one has

Dφτ2−τ1 ej(τ1) = ej(τ2) ∀j ∈ {1, 2, 3} .

∗This section is not included in the original publication in Chem. Phys. 375, p. 296 (2010).
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Since δ~qn = ~0, ∀n ∈ {1, . . . , N}, for e4, e5 and e6 (Eq. (3.20) - (3.22)), writing these last three

vectors as

ej+3(τ1) =
1

‖δp j+3(τ1)‖

(
∅ ; δp j+3(τ1)

)
∀j ∈ {1, 2, 3} ,

implies

Dφτ2−τ1 ej+3(τ1) =
1

‖δp j+3(τ1)‖

(
(τ2 − τ1) δp j+3(τ1) ; δp j+3(τ1)

)
= (τ2 − τ1)

(
δp j+3(τ1)
‖δp j+3(τ1)‖

; ∅
)

+
(

∅ ;
δp j+3(τ1)
‖δp j+3(τ1)‖

)
= (τ2 − τ1) J ej+3(τ1) + ej+3(τ1)

= (τ2 − τ1) ej(τ1) + ej+3(τ1) ∀j ∈ {1, 2, 3} .

Now we turn our attention to the transformations for a collision between the disks k and `. Let

~q = ~qk − ~q` and δ~q = δ~qk − δ~q` denote the respective relative positions in the phase space and in

the tangent space, similarly, ~p = ~pk − ~p` and δ~p = δ~pk − δ~p` the relative momenta. According to

[18], immediately after the collision, the vectors Γ and δΓ are transformed according to

M Γ



Mq q
{
~q ′n = ~qn ∀n ∈ {1, . . . , N} ,

Mp p


~p ′n = ~pn ∀n /∈ {k, `} ,

~p ′` = ~p` +
1
σ2

(~p · ~q)~q ,

~p ′k = ~pk −
1
σ2

(~p · ~q)~q ,

(3.30)

S δΓ



Sq δq


δ~q ′n = δ~qn ∀n /∈ {k, `} ,

δ~q ′` = δ~q` +
1
σ2

(δ~q · ~q)~q ,

δ~q ′k = δ~qk −
1
σ2

(δ~q · ~q)~q ,

Sp δp


δ~p ′n = δ~pn ∀n /∈ {k, `} ,

δ~p ′` = δ~p` +
1
σ2

(δ~p · ~q)~q +
1
σ2

[
(~p · ~q)δ~qc + (~p · δ~qc)~q

]
,

δ~p ′k = δ~pk −
1
σ2

(δ~p · ~q)~q − 1
σ2

[
(~p · ~q)δ~qc + (~p · δ~qc)~q

]
,

(3.31)

where the displacement of the collision point between the reference and the satellite trajectory

is given by δ~qc = δ~q − ~p (δ~q · ~q)/(~p · ~q), which is perpendicular to ~q (see Fig. 3.18).
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q
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p

Figure 3.18 : Collision in relative coordinates.

According to Eqs. (3.30) and (3.31), we obtain

S e1 (Γ0) =
1√

(δq 1)2 + (δp 1)2

(
Sq δq

1 ; Sp δp
1
)

=
1√
2K

(
Mp p ; ∅

)
≡ e ′1 (Γ0) . (3.32)

For e2 and e3, for which δ~q ≡ δ~q` − δ~qk = ~0 and δ~pn = ~0, ∀n ∈ {1, . . . , N}, Eq. (3.31) gives

S e2 (Γ0) = e2 (Γ0) and S e3 (Γ0) = e3 (Γ0) . (3.33)

Correspondingly, for e5 and e6, for which δ~p ≡ δ~p` − δ~pk = ~0 and δ~qn = ~0, ∀n ∈ {1, . . . , N},

Eq. (3.31) yields

S e5 (Γ0) = e5 (Γ0) and S e6 (Γ0) = e6 (Γ0) . (3.34)

For e4 we have δ~qn = ~0, ∀n ∈ {1, . . . , N}, and from Eqs. (3.30) and (3.31) we obtain

S e4 (Γ0) =
1√

(δq 4)2 + (δp 4)2

(
Sq δq

4 ; Sp δp
4
)

=
1√
2K

(
∅ ; Mp p

)
≡ e ′4 (Γ0) . (3.35)

Finally, an alternative application of the maps for free flight and collision to the six basis vectors

{ej , 1 ≤ j ≤ 6} gives

Dφt
Γ0
ej (Γ0) = ej (Γt) , (3.36)

Dφt
Γ0
ej+3 (Γ0) = t ej (Γt) + ej+3 (Γt) , (3.37)

for j ∈ {1, 2, 3} as stated in Eqs. (3.23) and (3.24).
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Next, we consider the time evolution of an arbitrary perturbation vector δΓc in the central

manifold. Initially,

δΓc
0 =

6∑
j=1

a j
0 ej(Γ0) .

According to Eqs. (3.36) and (3.37), it will reorient for large times t towards the Q-space,

δΓc
t ≡

6∑
j=1

a j
t ej(Γt) =

3∑
j=1

(a j
0 + t a j+3

0 ) ej(Γt) + a j+3
0 ej+3(Γt) ,

lim
t� 1

δΓc
t =

3∑
j=1

t a j+3
0 ej(Γt) + a j+3

0 ej+3(Γt) .

For large times,

a j+3
t =

a j
t

t
∀ j ∈ [1, 3] .

This behavior determines the projection matrix β in Table 3.2. With t→∞ the vectors e4, e5

and e6 converge towards the subspace spanned by e1, e2 and e3.

We note that for the first three vectors belonging to the central manifold {ej , 1 ≤ j ≤ 3} the

convergence in the P-part depends on the relaxation time t0, whereas for the last three vectors

{ej , 4 ≤ j ≤ 6} this convergence depends on the forward-backward iteration time tω − t0. The

reason for this is that for the first three vectors the convergence is already obtained with the G-S

vectors during the relaxation time (see Table 3.1), whereas during the forward and backward

iterations the changes are compensated. For the last three vectors the components are only

generated during the backward iteration.

3.8.2 Reconstruction of the LP-modes from the experimental GS and covari-

ant vectors (see Table 3.3)

Here we explain how we approximate the typical basis vectors for the various LP modes from the

experimental GS and covariant vectors. This method was first used in Ref. [7] for GS vectors,

where the mode classification is based only on δq, since δq and δp are observed to be either

parallel (for the unstable branch) or anti-parallel (for the stable branch) in the mode region for

sufficiently large systems (see Fig. 3.9). Here, the method is also applied to the covariant vectors,

and the δq and δp parts are treated separately since δq and δp are not strictly parallel (see Fig.

3.9).

Because the hard disks are enclosed in a rectangular box with periodic boundary conditions,

the LP(nx, 0) spaces have a dimension of 4 (the spectrum indicates a four-fold degeneracy).
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Each LP(nx, 0) space is assumed to be a superposition of the 2-dimensional subspaces L(nx, 0)

and P(nx, 0). Each L(nx, 0)- and P(nx, 0)-mode consists of a pair of 2N -dimensional spanning

vectors (cosine and sine part), which are denoted (ϕL
c ,ϕ

L
s ) and (ϕP

c ,ϕ
P
s ), respectively. According

to Table 3.3, the typical basis vectors are defined as

ϕL
c =

1
zL
c

(c1, 0, . . . , cN , 0) and ϕL
s =

1
zL
s

(s1, 0, . . . , sN , 0) ,

ϕP
c =

1
zP
c

(
p1

x c1, p
1
y c1, . . . , p

N
x cN , p

N
y cN

)
and ϕP

s =
1
zP
s

(
p1

x s1, p
1
y s1, . . . , p

N
x sN , p

N
y sN

)
,

where zL
c , zL

s , zP
c and zP

s are normalization factors, and where cn = cos (kx q
n
x) and sn =

sin (kx q
n
x) corresponding to the n-th particle. From now on, the four 2N -dimensional spanning

vectors are indifferently denoted by ϕ ≡ (ϕ1, . . . , ϕ2N ), omitting the subscripts and superscripts

for the sake of simplicity.

We denote by ψ1, ψ2, ψ3 and ψ4 the four experimental perturbation vectors of 2N dimensions

(since δq and δp are considered separately) associated with each tangent subspace LP(nx, 0),

for 1 ≤ nx ≤ 3. We give as example the expression of {ψj}4
j=1 associated to LP(1, 0) in the

configuration space (i.e. the δq part):

ψ1 =
δq388

‖δq388‖
, ψ2 =

δq389

‖δq389‖
, ψ3 =

δq390

‖δq390‖
, ψ4 =

δq391

‖δq391‖
,

where δqi = (~q i
1 , . . . , ~q

i
N ) is the 2N -dimensional configuration part of the perturbation vector

δΓi ≡ (δqi ; δpi), i corresponding to the Lyapunov index. The Lyapunov indices corresponding

to the set {ψj}4
j=1, for each LP(nx, 0) space, are shown in Fig. 3.14.

For each of the four typical basis vectors ϕ, we find its best approximation from the linear

combination of the measured vectors {ψj}4
j=1:

ϕ ≈ α1ψ
1 + α2ψ

2 + α3ψ
3 + α4ψ

4 ,

where ψj ≡ (ψj
1, . . . , ψ

j
2N ). Numerically, the best values for the constants {αj}4

j=1 are computed

using the least-square method, and chi-square is calculated as usual:

χ2 =
2N∑
k=1

(
ϕk − α1 ψ

1
k − α2 ψ

2
k − α3 ψ

3
k − α4 ψ

4
k

)2
.

The conditions ∂χ2/∂αj = 0, for all j ∈ {1, 2, 3, 4}, directly give the following matrix equal-
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ity:


∑

k ψ
1
kϕk∑

k ψ
2
kϕk∑

k ψ
3
kϕk∑

k ψ
4
kϕk


︸ ︷︷ ︸

B

=


∑

k

(
ψ1

k

)2 ∑
k ψ

1
kψ

2
k

∑
k ψ

1
kψ

3
k

∑
k ψ

1
kψ

4
k∑

k ψ
2
kψ

1
k

∑
k

(
ψ2

k

)2 ∑
k ψ

2
kψ

3
k

∑
k ψ

2
kψ

4
k∑

k ψ
3
kψ

1
k

∑
k ψ

3
kψ

2
k

∑
k

(
ψ3

k

)2 ∑
k ψ

3
kψ

4
k∑

k ψ
4
kψ

1
k

∑
k ψ

4
kψ

2
k

∑
k ψ

4
kψ

3
k

∑
k

(
ψ4

k

)2


︸ ︷︷ ︸

A


α1

α2

α3

α4

 .

The investigated constants are then simply found as


α1

α2

α3

α4

 = A−1 B .

This algorithm was used to reconstruct the different basis vectors of the L-mode and the P-mode:

the classification of the modes is shown for the δq and δp parts of the GS and covariant vectors,

and only for the corresponding positive Lyapunov exponents.
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Figure 3.19 : Reconstruction of the δq part for LP(1,0) (• GS vectors, � covariant vectors).
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Figure 3.20 : Reconstruction of the δp part for LP(1,0) (• GS vectors, � covariant vectors).
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Figure 3.21 : Reconstruction of the δq part for LP(2,0) (• GS vectors, � covariant vectors).
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Figure 3.22 : Reconstruction of the δp part for LP(2,0) (• GS vectors, � covariant vectors).
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Figure 3.23 : Reconstruction of the δq part for LP(3,0) (• GS vectors, � covariant vectors).
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Figure 3.24 : Reconstruction of the δp part for LP(3,0) (• GS vectors, � covariant vectors).
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Soon to be submitted.

Covariant Lyapunov vectors for the
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4.1 Introduction

The isokinetic periodic Lorentz gas is a popular model for studying irreversible processes in

classical chaotic systems. In the simplest two-dimensional equilibrium version, it consists of an

infinite array of hard disk scatterers, periodically arranged on a triangular lattice (see Fig. 4.1),

and a single point particle, which suffers hard elastic collisions with the scatterers and moves

freely along straight paths in between. It may be easily driven into a stationary non-equilibrium

state by accelerating the point particle with a homogeneous external field in, say, the x-direction

and, simultaneously, keeping the kinetic energy fixed by a Gaussian thermostat [1]. For such a

state the Sinai-Ruelle-Bowen measure is known to exist and to be a multifractal object in phase

space [2].
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Figure 4.1 : Disk arrangement for the planar periodic Lorentz gas. The hexagonal basis cell of the
corresponding Sinai billiard with the (shaded) scatterer inside is also shown. The numbering in the
scheme is used below to locate the scatterer hit by the trajectory before it collides with the central
disk (0).

The model may also be viewed as a Sinai billiard within a hexagonal basis cell with periodic

boundaries and a single scatterer inside (shaded in Fig. 4.1). If the point particle leaves the

hexagon at a particular point, the periodic boundaries assure its return at the homologous

point. In the following we always have this billiard interpretation in mind.

Since the (purely kinetic) energy is conserved, the phase space is essentially three-dimensional.

If a Poincaré map is constructed from one collision with the central scatterer to the next [3],

the rectangle spanned by the Birkhoff coordinates α and sinβ, defined by the collision depicted

in Fig. 4.2, is uniformly covered by successive applications of the map [1]. This is a consequence

of the ergodicity of the model, which is theoretically well known [4].

The driven thermostated Lorentz gas has some unique features thought to be typical for more-

complicated many body systems of relevance for physics [1, 5, 6, 7]: (i) The equations of

motion and the associated Poincaré map, both at and away from equilibrium, remain exactly

time reversible and invertible, respectively; (ii) In equilibrium an arbitrary volume element in

phase space is dynamically conserved. In the non-equilibrium steady state, however, it shrinks,

on average, with a rate given by the (negative) sum of all Lyapunov exponents; (iii) For not

too-strong driving fields, the support of this measure is the full phase space, and the system is

ergodic. Although the system is not strictly hyperbolic, the hyperbolic tangencies are statistically

insignificant. The Lorentz gas may be treated even as an Anosov-like system and obeys the

steady-state Galavotti-Cohen fluctuation theorem [8, 9].

In the following we restrict to the field-free equilibrium case. We use reduced units for which

the scatterer diameter σ, the point particle mass m, and the point particle (kinetic) energy,

K = p2/2m, are unity. The unit of time is (mσ2/K)1/2. In these units, the center-to-center
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separation of the scatterers is b = 2σ/
√

3, which corresponds to the limiting case of a finite

horizon.

α

β’

β

σ/2

→
e
x

→
p

→
p ’

→
n

Figure 4.2 : Definition of the Birkhoff coordinates α and sinβ for a collision of the point particle with
the scattering disk. ~p and ~p ′ are the pre- and post-collisional momentum vectors of the particle, and ~n is
a unit normal vector at the impact point.

4.2 Phase-space and tangent-space dynamics

Between successive collisions, the point particle moves along a smooth trajectory, which follows

from the motion equations. At an elastic collision, the state vector is instantaneously mapped

to another state in phase space. The corresponding linearized motion equations and linearized

collision map for an infinitesimal perturbation in tangent space have been derived by Dellago et

al. [10, 11]. Here we apply an elegant matrix formulation due to de Wijn and van Beijeren [12]

(which was already used in [13]) by considering as an elementary step the map from a state

immediately after a collision to the state immediately after the next collision, which happens

a time τ later. An initial state vector Γ0 = (~q0 , ~p0)
†, and an initial tangent vector δΓ0 =

(δ~q0 , δ~p0)
† (where the superscript † means here transposed), are transformed by the elementary

step as follows,

Γ ′
τ ≡Mτ

φ Γ0 =

I 0

0 K (Γ0)

 I τI

0 I

 Γ0 , (4.1)

δΓ ′
τ ≡ S τ

φ δΓ0 =

K (Γ0) 0

G (Γ0) K (Γ0)

 I τI

0 I

 δΓ0 , (4.2)

where the 2× 2 sub-matrices K (Γ0) and G (Γ0) are defined by

K (Γ0) = I − 8
σ2

~q0 ~q
†
0 , (4.3)

G (Γ0) = − 8
σ2

(~p0 · ~q0)

(
I +

~q0 ~p
†
0

~p0 · ~q0

)(
I − ~p0 ~q

†
0

~p0 · ~q0

)
. (4.4)
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The last factor in Eq. (4.4) denotes the displacement of the collision point of the perturbed

trajectory with respect to that of the reference trajectory,

δ~qc =
(

I − ~p ~q †

~p · ~q

)
δ~q . (4.5)

The field-free periodic Lorentz gas has two vanishing Lyapunov exponents and, hence, a two-

dimensional central manifold. Due to the time-translation invariance property of the motion

equations and the conservation of energy [14], perturbation vectors in this invariant subspace

do not grow or shrink exponentially with time. The respective marginal unit vectors

e2 =
1
‖~p‖

~p
~0

 and e3 =
1
‖~p‖

~0
~p

 (4.6)

provide a natural basis for the central manifold. By adding the unit vector

e1 =
1
‖~p‖

~p⊥
~0

 and e4 =
1
‖~p‖

 ~0

~p⊥

 , (4.7)

where ~p⊥ = Dπ/2~p (the matrix Dπ/2 refers to an anticlockwise rotation of angle π/2), one

obtains a set of orthonormal vectors {ek}4
k=1 spanning the full tangent space at any instant of

time. Applying the elementary iteration step in tangent space, Eq. (4.2), to these basis vectors,

one observes that e2 is preserved by the dynamics, but e3 rotates towards e2 :

S τ
φ e2(0) =

~p ′0
~0

 ≡ e ′2(0) , (4.8)

S τ
φ e3(0) =

τ ~p ′0
~p ′0

 ≡ τe ′2(0) + e ′3(0) , (4.9)

since the outgoing momentum at the impact point is given by ~p ′0 = K(Γ0) ~p0, and G(Γ0) ~p0 = ~0.

In addition, we find that

S τ
φ ei(0) · S τ

φ ej(0) = 0 , i ∈ {1, 4} and j ∈ {2, 3} , (4.10)

i.e. the orthogonality between e1 ⊕ e4 and e2 ⊕ e3 is preserved by the dynamics. The fact that

e3 rotates towards e2 (Eq. (4.9)) is completely analogous to Eq. (3.24) for hard disk systems,

where the basis vectors e4, e5 and e6 are found to rotate towards the subspace spanned by e1,

e2 and e3 (see Chap. 3).
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4.3 Gram-Schmidt vectors and covariant vectors

Next, we introduce the set of Gram-Schmidt (GS) vectors, {gi(Γt0)}4
i=1, and the set of covariant

vectors, {vi(Γt0)}4
i=1, at the phase-space point Γt0 . GS vectors are orthonormal unit vectors

co-moving with the tangent flow, such that the first vector always points in the direction of

maximum phase-space expansion, the second vector into a direction with fastest-possible phase-

space expansion but orthogonal to the first vector, and so forth. In the classical algorithm for

the computation of Lyapunov exponents [15, 16, 11], orthonormality of the vectors is achieved

by periodic applications of the Gram-Schmidt procedure. For time-continuous systems and even

more elegantly, a differential approach with motion equations may be used, which involve La-

grange multipliers keeping these vectors orthonormal at all times [17, 18, 19]. If the simulation

starts at time zero with arbitrary initial conditions, the Gram-Schmidt vectors gi(Γt0) will have

reached their proper phase-space directions at a phase point Γt0 after a sufficiently-long relax-

ation time t0. Covariant vectors, on the other hand, are strictly co-moving with the flow in

tangent space. They are regularly normalized, but their orientation is not affected. In general,

they are not pairwise orthogonal. According to the theorem of Oseledec [20, 21, 22], their phys-

ical significance lies in the fact that they span subspaces which are covariant with the flow.

The algorithm for the computation of covariant vectors is much more involved [23, 24, 25] and

requires the computation of the Gram-Schmidt vectors in the forward time interval t0 ≤ t ≤ tω.

At tω � t0, the Gram-Schmidt vectors {gi(Γtω)}4
i=1 are taken as initial condition for a set of

vectors {vi(Γtω)}4
i=1, which, when iterated backward along the trajectory according to the algo-

rithm of Ginelli et al., gradually converge towards the set of covariant vectors {vi(Γt0)}4
i=1 at the

phase point Γt0 . For non-degenerate Lyapunov exponents the covariant vectors are unique. In the

following we are interested in these vectors at Γt0 and omit the arguments, if not required.

Thus, v1 and v4 span the (one-dimensional) unstable and stable manifolds, respectively, and

v2 and v3 provide another spanning set for the two-dimensional central manifold (which is

covariant). These vectors satisfy

g1 = v1; g1 ⊕ g4 = v1 ⊕ v4 = e1 ⊕ e4; g2 ⊕ g3 = v2 ⊕ v3 = e2 ⊕ e3 . (4.11)

As an illustration, we expand in Table 4.1 the Gram-Schmidt vectors, and in Table 4.2 the

respective covariant vectors, in the natural basis {ek}4
k=1. The time t0 = 103 after startup is

large enough for all Gram-Schmidt vectors to have relaxed to their proper orientations. Similarly

tω − t0 = 102 suffices for the covariant vectors to relax sufficiently well. One directly observes

that

g2 = ±e2 and g3 = ±e3 , (4.12)
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Table 4.1 : Projection of all GS-vectors {gi, 1 ≤ i ≤ 4} – at time t0 = 103 – onto the natural basis
{ek, 1 ≤ k ≤ 4}.

i gi · e1 gi · e2 gi · e3 gi · e4
∑4

k=1(gi · ek)2

1 -0.2539303 0.0000000 0.0000000 -0.9672225 1.0000000
2 0.0000000 -1.0000000 0.0000000 0.0000000 1.0000000
3 0.0000000 0.0000000 1.0000000 0.0000000 1.0000000
4 0.9672225 0.0000000 0.0000000 -0.2539303 1.0000000

Table 4.2 : Projection of the whole covariant vector set {vi, 1 ≤ i ≤ 4} – at time t0 = 103 – onto the
natural basis {ek, 1 ≤ k ≤ 4}. tω − t0 = 102.

i vi · e1 vi · e2 vi · e3 vi · e4
∑4

k=1(vi · ek)2

1 -0.2539303 0.0000000 0.0000000 -0.9672225 1.0000000
2 0.0000000 1.00000000 0.0000000 0.0000000 1.0000000
3 0.0000000 0.99995000 0.0099995 0.0000000 1.0000000
4 0.2013094 0.0000000 0.0000000 -0.9795277 1.0000000

due to the dynamics in the central manifold as a consequence of the Eqs. (4.8) - (4.9) in combini-

ation with the Gram-Schmidt procedure used at constant time intervals. Furthermore,

g1 = ±v1 and g2 = ±v2 . (4.13)

The last equality is a direct consequence of the initial conditions mentioned above for the back-

ward iteration of the covariant vectors. One further observes that the central manifold (spanned

by e2⊕e3) is always perpendicular to the unstable subspace (parallel to g1 = v1) and the stable

subspace (parallel to v4). The most relevant observation is that the central manifold is “almost

completely” contained just in one marginal direction, namely e2, which is parallel to the flow Γ̇

(respective v2). As a consequence of Eqs. (4.8) - (4.9), one finds

v3(t0) · e2(t0) = ±

√
1

1 + 1 / (tω − t0)2
and v3(t0) · e3(t0) = ±

√
1

1 + (tω − t0)2
,

for any finite tω > t0. Strict convergence of the covariant vectors is obtained for tω → ∞,

for which v3 → v2. Thus, the direction perpendicular to the constant (kinetic) energy sur-

face effectively disappears for large tω, and the null subspace has only one effective dimension.

This subtlety can be avoided by replacing py = ±
√

2m (K − p2
x/2m) and working only in a

three-dimensional phase space. Then the central manifold is one-dimensional and parallel to the

flow.
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4.4 Projections onto coordinate and momentum subspaces

Up to now the speed of the point particle of the Lorentz gas was set to unity, since the trajectory

in physical space is not affected by the speed. In this section we make an exemption in order

to observe how a variation of the energy affects the time-averaged relative contributions of

the coordinate and momentum subspaces to the perturbation vectors. To that effect we define

squared projection components [26, 27]

ηi
q =

〈
(δ~qi)

2
〉
, ηi

p =
〈
(δ~pi)

2
〉
, (4.14)

where, the subscript q and p refer to the coordinate and momentum subspaces, respectively, and

the superscript i denotes the Lyapunov index. 〈 · 〉 indicates a time average. Since ηi
q +ηi

p = 1, we

show in Fig. 4.3 the momentum dependence of the squared contributions only for the spatial part

of g1 = v1, associated with the maximum Lyapunov exponent. Since the first two Gram-Schmidt

and covariant vectors agree, so do their squared projections onto the p and q subspaces. For the

third and fourth vectors, however, the squared projections are different, as is shown in Fig. 4.4.

In fact, the role of the position and momentum subspaces is interchanged: for GS vectors, the

anti-symmetry (with respect to the conjugate negative branch) reveal the Hamiltonian aspect of

the system, whereas the symmetry for covariant vectors is due to the time-reversible phase-space

structure. This will be explained in detail in Chap. 8.

η1
q

0.01

0.10

1.00

0.0 1.0 2.0 3.0 4.0

p

(GS)ηi
q ,

(cov)ηi
q

0.0

 0.2

 0.4

 0.6

 0.8

1.0

 1  2  3  4

i

Figure 4.3 : Semi-log plot of the squared
projections η1

q as a function of the momen-
tum p of the point particle. Gram-Schmidt and
covariant-vector results agree.

Figure 4.4 : Comparison of the squared pro-
jections onto the coordinate subspace for Gram
Schmidt vectors (black full dots) and covariant
vetors (red open squares), where p = 1. i on the
abscissa denotes the Lyapunov index.
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4.5 Hyperbolicity

The Oseledec splitting is a decomposition of the tangent space into covariant subspaces. If this

decomposition is unique at every phase-space point, and if the dimensions of the stable and

unstable subspaces are the same everywhere in phase space, the system is said to be hyperbolic.

The Lorentz gas is known to have that property [2]. Hyperbolicity implies that there are no

homoclinic tangencies. In view of later applications to related models, we demonstrate this

behavior in Fig. 4.5, where the probability density P (Φ) of the angle between the stable and

unstable manifolds (which is the angle between the covariant vectors v1 and v4) is shown. P (Φ)

is well bounded away from zero, which indicates that the stable and unstable directions never

become parallel. The fine structure in this distribution is a consequence of the lattice structure

of the scattering disks. This will become clear below.

 0

 1

 2

 3

 4

 5

π/16 π/8 π/4 3π/8 π/2

P(
Φ

)

Φ

Figure 4.5 : Probability distribution of the angle Φ between the stable and the unstable direction for
the field-free Lorentz gas. One million collisions are used to generate this density.

4.6 Poincaré map representation of covariant vectors

Here we use Birkhoff coordinates α and sinβ ′ as defined in Fig. 4.2 for a collision of the point

particle with the scatterer. If ~n denotes the unit vector normal to the scatterer surface at the

collision point, α is the angle between ~n and the x axis. Similarly, β ′ is the angle between the

outgoing momentum ~p ′ and ~n. A Poincaré map from one collision to the next may be constructed

in the rectangle [0 ≤ α ≤ 2π, −1 ≤ sinβ ′ ≤ 1]. For clarity and without loss of generality, in the

following figures the upper bound of α is restricted to π. For any collision at the point (qx, qy),

these coordinates become

α = k π + tan−1

(
qy
qx

)
with k =


0 if qx > 0 and qy > 0,

1 if qx < 0,

2 if qx > 0 and qy < 0,

and sinβ ′ =
~p ′ · ~t
‖~p ′‖

,
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where ~t is the unit tangent vector at the impact point, which is obtained from ~n by a counter-

clockwise rotation of π/2. For any perturbation vector {δ~q, δ~p ′} immediately after a collision,

its projection onto the Poincaré plane becomes a vector (δα, δ(sinβ ′)), where

δα =
δ~q · ~t
σ/2

and δ(sinβ ′) =
1
‖~p‖

(
δ~p ′ · ~t+ ~p ′ · δ~t

)
. (4.15)

In these equations ~t and its associated tangent-space projection, δ~t, are given by

~t =

 0 −1

1 0

 ~q

σ/2
, δ~t =

 0 −1

1 0

 δ~q

σ/2
.

In Fig. 4.6 the vector fields for the covariant-vector projections onto the Poincaré plane are shown

for 5000 consecutive collisions immediately after each collision. The top and bottom panels refer

to the projections for v1 and v4, which indicate the unstable and stable directions, respectively.

The whole map is separated into various domains according to the nearest scattering disk, at

which the collision would take place, if no periodic boundaries were used. If the next-neighbor

disks are labeled according to Fig. 4.1, the respective domains in the Poincaré plane are indicated

in Fig. 4.7. The boundaries of these domains are explicitly given in the Appendix and are marked

by the red lines in Fig. 4.6. The intermediate regions – with the vectors indicated in blue – refer

to collisions, which do not take place with neighboring disks but with second-next-neighbor

disks. There, due to the longer free path, the stable and unstable manifolds point into markedly

different directions than for next-neighbor-disk collisions. No possible collisions with other disks

exist. The middle panel of Fig. 4.6 refers to the central manifold spanned by v2 and v3. As

pointed out in Sec. 4.3, the two vectors coincide (for tω → ∞) and point into the direction of

the phase-space flow. This requires sinβ′ to vanish, and the respective perturbation vectors are

indeed parallel to the α axis.

The symmetry observed between the two vector fields due to the expanding and contracting

directions of the 4-dimensional phase-space underlines the time-reversible property of the phase-

space structure. The expanding direction (parallel to v1) in the time-forward iteration becomes

the contracting direction in the time-backward iteration, and similarly, the contracting direction

(parallel to v2) becomes the expanding direction. This fact is studied in more detail for simple

particle systems in the following chapter and in Ref. [25].

All these considerations are for the field-free equilibrium case. If a weak field along the x-

direction is switched on, the phase-space probability density and the respective Poincaré map

become multifractal objects [1].
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Figure 4.6 : For the simple periodic Lorentz gas with finite horizon: In the collisional (α, sinβ ′)-plane,
the various vector fields (δαcov

i , δ(sinβ ′)cov
i ) are shown. For each Lyapunov index i ∈ {1, 2, 3, 4}, the

covariant vector field is constructed for 5, 000 collisions immediately after the collision events (the vectors
are normalized immediately after the collision and before α and sinβ ′ are calculated).
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4.7 Appendix

In the unfolded representation of the periodic Lorentz gas any trajectory of the point particle

hitting the central scatterer (with label (0) in Fig. 4.1) originates either from a collision with

a next neighbor (with labels (1) to (6) in Fig. 4.1) or from a collision with a scatterer of the

second-nearest neighbor shell. In the Poincaré plane of the central scatterer in Fig. 4.7, the

labels of the various domains refer to the next neighbor disk, with which the foregoing collision

occurred. The narrow domains are from foregoing collision with a disk from the second-nearest

neighbor shell. The boundaries between these domains in the Poincaré plane (α, sinβ ′) may be

expressed by functions sinχ+
` (α) and sinχ−` (α) in terms of the angle α (defined in Fig. 4.2).

Simple geometrical considerations give

χ±` = θ`± sin−1

 σ/2√
b2 + σ2

4 − bσ cos
(

π
6 − θ`

)
∓ cos−1

 σ − σ
2 cos(θ`)√

b2 + σ2

4 − bσ cos
(

π
6 − θ`

)
 ,

where b = 2σ/
√

3 and

θ` = α− π

3
` with


α ∈ [0, π/3] for ` = 0 ,

α ∈ [0, 2π/3] for ` = 1 ,

α ∈ [π/3, 2π/3] for ` = 2 ,

α ∈ [2π/3, π] for ` = 3 .

(
sinχ+

` (α) , sinχ−` (α)
)
; ` = 0, 1, 2, 3

-1

 0

 1

 0 π/3 2π/3 π

α

(1)

(2) (3) (4)

(5)

Figure 4.7 : In the Poincaré map, the lines indicate the boundaries of the collision domains according
to the geometry of the scatterers (see the labelling scheme in 4.1). They are given by sinχ+

` (α) and
sinχ−` (α) defined in the text.
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Chapter 5
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Abstract

Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corre-

sponding local Lyapunov exponents has become available. Here we study the properties of

these still unfamiliar quantities for a number of simple models, including an harmonic oscilla-

tor coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic

and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the

perturbation vectors in tangent space and the associated local Lyapunov exponents. We also

find that the local covariant exponents vary discontinuously along directions transverse to the

phase flow.
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5.1 Introduction

Recently, many concepts and methods of dynamical systems theory have turned out to be very

useful for the characterization and understanding of physical systems in and out of thermody-

namic equilibrium. For example, for a class of stationary non-equilibrium systems, the spectrum

of Lyapunov exponents is a convenient tool for studying the collapse of the phase-space probabil-

ity distribution onto fractal measures with an information dimension smaller than the dimension

of phase space. In this case, stationarity is achieved with time-reversible thermostats [1, 2]. Sta-

tionary non-equilibrium systems with stochastic thermostats may be formulated along similar

lines [3].

The aim of this paper is to apply the hitherto rather unfamiliar concept of covariant Lyapunov

vectors and their associated local Lyapunov exponents to some simple and pedagogical systems in

equilibrium and in non-equilibrium stationary states to sharpen the intuition for more demanding

applications. The systems studied include a harmonic oscillator subjected to a two-stage chain

of Nosé-Hoover-type thermostats with a temperature which varies with the position of the

particle.

The paper is organized as follows: In the next section we provide the basic theoretical concepts

and definitions required for our numerical work. In particular, the covariant vectors and their

classical counterparts, the Gram-Schmidt vectors, are introduced, and their dynamical evolu-

tion is discussed. Sec. 5.3 is devoted to an alternative differential-equation based method for

the evolution of orthonormal perturbation vectors, which may be interpreted as continuous re-

orthonormalization. In Sec. 5.4 we specify the protocol for our numerical work, both forward and

backward in time. Our main example, a doubly-thermostated oscillator in a space-dependent

thermal field, is treated in various subsections of Sec. 5.5. Sec. 5.6 is devoted to symplectic

systems, with regular trajectories on a torus or with chaotic behavior, for which the differences

of the symmetry properties for the local Gram-Schmidt and covariant Lyapunov exponents are

most pronounced. We conclude in Sec. 5.7 with some remarks, which also concern the stationary

fluctuation theorem for thermostated systems.

5.2 Covariant Lyapunov vectors and local Lyapunov exponents

If Γ(t) denotes the state of a dynamical system of dimension D, its evolution equations are given

by

Γ̇ = F(Γ), (5.1)
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where F is a (generally nonlinear) vector-valued function of dimension D. An arbitrary pertur-

bation vector δΓ(t) in tangent space evolves according to the linearized equations

˙δΓ = DΓ δΓ, (5.2)

where the dynamical (Jacobian) matrix DΓ is given by

DΓ =
∂F
∂Γ

.

The stability of a trajectory in a D-dimensional phase space is determined by a set of D (global)

Lyapunov exponents, which are the time-averaged logarithmic rates of the growth or decay of

the norm of some perturbation vectors, which must be oriented ‘properly’ in tangent space at

the initial time. Formally, let Γ(0) denote the state of the system at time 0, the state at time t

is given by Γ(t) = φt(Γ(0)), where the map φt : Γ → Γ defines the flow in the phase space Γ.

Similarly, if δΓ(0) is a vector in the tangent space at the phase point Γ(0), at time t, it becomes

δΓ(t) = Dφt|Γ(0) δΓ(0), where Dφt defines the tangent flow. It is represented by a real but

generally nonsymmetric D× D matrix. The multiplicative ergodic theorem of Oseledec [4, 5, 6]

asserts that there exist ‘properly oriented’ normalized vectors v` (Γ(0)) in tangent space, which

evolve according to

Dφt|Γ(0) v
` (Γ(0)) = v` (Γ(t)) , (5.3)

and which generate the Lyapunov exponents on the way,

±λ` = lim
t→±∞

1
|t|

ln
∥∥Dφt|Γ(0) v

` (Γ(0))
∥∥ (5.4)

for all ` ∈ {1, . . . , D}, both forward and backward in time (for time-reversible systems). (Strictly

speaking, this formulation is only correct for nondegenerate exponents λ`. If two such exponents

become identical, the respective vectors must be replaced by a covariant subspace spanned by

the vectors. Since in our applications below, this happens only for the symplectic systems in

thermodynamic equilibrium discussed in Sec. 5.6, there is no danger of misinterpretation, and

we avoid the additional notational complexity. The case of degenerate exponents is treated in

detail in Ref. [7] (Chap. 3). Because of the property described by Eq. (5.3), the vectors v` are

called covariant. Loosely speaking, covariant vectors are co-moving (co-rotating in particular)

with the tangent flow. As will be shown below, this property of co-rotation is responsible for

the fact that the evolution of their length in the forward and backward directions of time (for

time-reversible systems) is intimately connected, a symmetry not enjoyed by other perturbation

vectors. For numerical reasons, it is still necessary to normalize the vectors periodically at times
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tk ≡ k τ , such that Eq. (5.4) becomes

λ` = lim
K→∞

1
Kτ

K−1∑
k=0

ln
∥∥Dφτ |Γk

v`(Γk)
∥∥, (5.5)

where we use the abbreviated notation Γ(tk) ≡ Γk. ‖v`(Γk)‖ = 1 at the beginning of each

interval of length τ . Generally its norm differs from unity at the end of the interval.

Up to very recently, no practical algorithm for the computation of the covariant vectors was

available. The classical algorithm for the computation of Lyapunov exponents [8, 9] is based on

the fact that almost all volume elements of dimension d ≤ D in tangent space (with the exception

of elements of measure zero) asymptotically evolve with an exponential rate, which is equal to

the sum of the first d Lyapunov exponents. Such a d-dimensional subspace may be spanned

by d orthonormal vectors, which are constructed by the Gram-Schmidt re-orthonormalization

procedure and, therefore, are referred to as Gram-Schmidt (GS) vectors g`(Γ(t)). The evolution

during the time interval τ = tk − tk−1,

Dφτ |Γk−1
g` (Γk−1) ≡ ḡ` (Γk) , (5.6)

generates a set of non-orthonormal vectors , {ḡ` (Γk) , ` = 1, · · · , D}, which after Gram-Schmidt

re-orthonormalization [10, 11],

g1 (Γk) =
ḡ1 (Γk)∥∥ḡ1 (Γk)

∥∥ ,
g` (Γk) =

ḡ` (Γk)−
∑`−1

i=1

(
ḡ` (Γk) · gi (Γk)

)
gi (Γk)∥∥ḡ` (Γk)−

∑`−1
i=1 (ḡ` (Γk) · gi (Γk)) gi (Γk)

∥∥ ,
(where ` consecutively assumes the values 1, · · · , D) become the orthonormal starting vectors for

the next interval. The vectors g` are not covariant, which means that, in general, the vectors

are not mapped by the linearized dynamics into the GS vectors at the forward images of the

initial phase-space point [12]. As a consequence, they are also not invariant with respect to

the time-reversed dynamics. The Lyapunov exponents are computed from the normalization

factors,

λ1 = lim
K→∞

1
Kτ

K−1∑
k=0

ln
∥∥ḡ1 (Γk)

∥∥,
λ` = lim

K→∞

1
Kτ

K−1∑
k=0

ln
∥∥ḡ` (Γk)−

`−1∑
i=1

(
ḡ` (Γk) · gi (Γk)

)
gi (Γk)

∥∥ (5.7)

for ` = 2, · · · , D.
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Recently, a reasonably fast algorithm for the computation of covariant Lyapunov vectors was

presented by Ginelli et al. [12], which first requires the construction of the Gram-Schmidt vectors

by a forward integration in time. In a second step, this stored information is used to obtain the

covariant vectors by a backward iteration in time. For details of this algorithm we refer to their

paper [12] and to our previous work [7].

A local Lyapunov exponent characterizes the expansion, or shrinkage, of a particular tangent

vector during a (short) time interval τ . From Eqs. (5.5) and (5.7) local exponents for the covariant

and Gram-Schmidt vectors are obtained for a time tk ≡ k τ at the phase point Γk:

Λcov
` (tk) =

1
τ

ln
∥∥Dφτ |Γk−1

v`(Γk−1)
∥∥, (5.8)

for ` = 1, · · · , D, and

ΛGS
1 (tk) =

1
τ

ln
∥∥ḡ1 (Γk)

∥∥,
ΛGS

` (tk) =
1
τ

ln
∥∥ḡ` (Γk)−

`−1∑
i=1

(
ḡ` (Γk) · gi (Γk)

)
gi (Γk)

∥∥, (5.9)

for ` = 2, · · · , D.

Since the spaces

v1 ⊕ · · · ⊕ v` = g1 ⊕ · · · ⊕ g` (5.10)

are covariant subspaces of the tangent space for all `, we have v`(t) ∈ g1(t)⊕· · ·⊕g`(t). If β``(t)

denotes the angle between the respective covariant and Gram-Schmidt vectors v`(t) and g`(t) at

the specified time, the component of the normalized vector v`(tk−1) in the direction of g`(tk−1)

is given by cosβ``(tk−1). During τ , this component grows by a factor exp{ΛGS
` τ}, whereas the

norm of the vector itself grows by exp{Λcov
` τ}. At the end of the interval, equating the vector

components of v`(tk) in the new direction of the re-orthonormalized vector g`(tk), one obtains

ΛGS
` (tk) = Λcov

` (tk) +
1
τ

ln
cosβ``(tk)

cosβ``(tk−1)
, (5.11)

` = 1, · · · , D. This relates the local exponents for the GS and covariant vectors.

If we consider the limit τ → 0 implying continuous re-orthonormalization of the g` and normal-

ization of the v`, Eq. (5.11) becomes

ΛGS
` (t) = Λcov

` (t)− tanβ``(t)
dβ``

dt
.

This is most easily achieved with a matrix of Lagrange multipliers constraining the vectors to
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unit length and enforcing orthogonality of the g` [13, 14, 15]. We shall return to this point in

the following section.

For time-continuous systems, these relations are general and are not restricted to any particular

model. Below they will be applied to a variety of models mentioned in the introduction.

The global exponents are the time averages of the local exponents over a long trajectory tracing

out the whole ergodic phase space component, and are the same for the covariant and Gram-

Schmidt cases,

λ` = lim
K→∞

1
K

K−1∑
k=0

Λcov
` (tk) = lim

K→∞

1
K

K−1∑
k=0

ΛGS
` (tk).

Whereas the global Lyapunov exponents do not depend on the particular metric and the choice

of the coordinate system, the local exponents do. This will become apparent in Sec. 5.6 for a

scaled harmonic oscillator. For particular applications of the local exponents this must be kept

in mind.

All systems we consider here are invariant with respect to time reversal. This property leaves

the equations of motion in phase and tangent space unchanged if the signs of all momentum-like

variables and of time are reversed, but leaving all position variables unchanged. This implies

that there exists a smooth isometry T of phase space, such that T φt = φ−t T . In practice, an

integration of the equations of motion backward in time is carried out with reversed momentum-

like variables and a positive time step. After reaching the endpoint, the signs of all momentum-

like variables need to be reversed again and the time variable properly adjusted. Alternatively,

and even more easily, the integration of the motion equations may proceed without changing the

sign of the momentum-like variables but with a negative time step. There is also no sign change

after reaching the end point in this case. A comparison of both methods yields identical results.

Where necessary, we indicate the forward and backward directions of time by upper indexes (+)

and (−), respectively. If this index is omitted, the forward direction is implied.

We have mentioned already that the classical algorithm invoking Gram-Schmidt re-orthonormalization

carefully keeps track of the time evolution of d-dimensional volume elements, δVd, for any d ≤ D,

which proceeds according to [2, 16]

d ln δVd(t)
dt

=
d∑

`=1

ΛGS
` (t).

If the total phase volume is conserved as for symplectic systems, the following sum rule for the
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Gram-Schmidt local exponents holds at all times:

D∑
`=1

ΛGS
` (t) = 0. (5.12)

In this symplectic case we can even say more. For each positive local GS exponent there is a

local negative GS exponent such that their pair sum vanishes [17],

(+)ΛGS
` (t) = −(+)ΛGS

D+1−`(t), (5.13)

(−)ΛGS
` (t) = −(−)ΛGS

D+1−`(t). (5.14)

As indicated, such a symplectic local pairing symmetry exists both forward and backward in

time. But, generally, the GS local exponents do not show the symmetry with respect to time-

reversal invariance. Thus,
(−)ΛGS

` (t) 6= −(+)ΛGS
D+1−`(t). (5.15)

No such symmetries exist for non-symplectic systems. Examples are provided below.

The situation is very different for the covariant local Lyapunov exponents. In their case, the

vectors are still re-normalized, but the angles between them remain unchanged, which effectively

destroys all information concerning the d-dimensional volume elements. Thus, no symmetries

analogous to Eqs. (5.13) and (5.14) exist. Instead, the re-normalized covariant vectors faithfully

preserve the time-reversal symmetry of the equations of motion, which is reflected by

(−)Λcov
` (t) = −(+)Λcov

D+1−`(t) for ` = 1, · · · , D, (5.16)

regardless, whether the system is symplectic or not. This means that an expanding co-moving

direction is converted into a collapsing co-moving direction by an application of the time-reversal

operation. Of course, the forward and backward local exponents in Eq. (5.16) refer to the same

phase space point Γ(t).

These symmetry properties may be considered the main conceptual differences between the

Gram-Schmidt and covariant viewpoints.

Before leaving this section, a short remark concerning the commonly-used term “time-dependent

exponent” seems in order. Primarily, this quantity is a function of the phase point and should

only be called a “local” exponent. Its value may be different whether the phase point is reached

from the past, forward in time (+), or from the future, backward in time (−).
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5.3 Differential approach to local Lyapunov exponents

Equation (5.9) precisely reflects the numerical procedure for the computation of local GS expo-

nents for finite time intervals τ . But it is also possible to obtain a differential version for τ → 0.

Goldhirsch et al. derived a full set of differential equations for the Gram-Schmidt vectors g`

[13],

ġ1 = DΓ g
1 −R11 g

1, (5.17)

ġ` = DΓ g
` −R`` g

` −
`−1∑
m=1

(R`m +Rm`) gm, (5.18)

where in the last equation ` = 2, · · · , D. We have demonstrated [14, 15] that the matrix elements

R`m (Γ(t)) = (g`)† DΓ g
m (5.19)

may be understood as Lagrange multipliers enforcing the orthonormalization constraints g` ·

gm = δ`m (equal to unity for ` = m, and zero otherwise). Here † means transposition. Most

importantly, the diagonal elements are the local Gram-Schmidt exponents:

ΛGS
` (Γ(t)) ≡ R``(Γ(t)) = (g`)† DΓ g

`. (5.20)

This expression nicely underlines the local nature of the exponents.

We have verified for the doubly-thermostated heat conduction model discussed in Sec. 5.5 below

that the direct integration of the Eqs. (5.17) and (5.18) provide local GS exponents according

to Eq. (5.20), which agree extremely well with the results obtained from a direct application of

the GS algorithm, Eq. (5.9), for a reasonably-small time interval τ . This agreement also persists

for the time-reversed dynamics.

5.4 Numerical considerations

In this section we remark on a few aspects of our implementation of the algorithm for the com-

putation of the covariant Lyapunov vectors, which we apply in the following sections. Reduced

units are used for the various models treated below. For convenience, we specify already here

the adopted values (in reduced units) for some time parameters: tω = 6× 104, tα = 5× 104, and

t0 = 100. Their meaning is explained below. For the integration of the equations of motion, a

4th-order Runge-Kutta algorithm with a time step dt = 0.001 is used. This time step is chosen
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such that the trajectory is correct to double-precision accuracy. For the interval between suc-

cessive Gram-Schmidt re-orthonormalization steps – respective covariant vector normalizations

– we choose τ = 10dt = 0.01. This number is a (very conservative) compromise between the

achieved reduction in storage requirements as outlined below, and the precision of integration

forward and backward over the same interval. The time t0 is chosen such that in the interval

−t0 ≤ t ≤ t0 accurate Gram-Schmidt and covariant Lyapunov vectors are available.

The simulations are carried out with the following protocol:

Phase 1 (forward integration from −tω to +tω): Starting with arbitrary initial conditions

at a time −tω and using a positive integration time step dt > 0, the evolution of the reference

trajectory Γ(t) and of the full set of Gram-Schmidt vectors is computed in the forward direction

of time up to a time +tω. The reference trajectory and the Gram-Schmidt vectors are stored for

every 10 time steps, 10dt = τ , along the way. The Gram-Schmidt vectors are used in phase 2 for

the construction of the covariant vectors, and the reference trajectory is required in phase 3 for

the computation of the time-reversed Gram-Schmidt vectors. The Lyapunov spectrum {(+)λGS}

is accumulated for times −tα ≤ t ≤ tω, for which the orientations of the Gram-Schmidt vectors

are fully relaxed.

Phase 2 (backward iteration from tω to −t0): Starting at tω, the covariant vectors are

computed by iterating back to a time −t0. The details of this algorithm are given in Ref. [7]. Since

the forward GS-vectors, stored during phase 1, are now used in reversed order, the consecutive

order of the covariant vectors · · · ,v`(tk),v`(tk−1), · · · has to be reversed for the computation of

the corresponding local exponent,

(+)Λcov
` (tk) =

1
τ

ln
‖v`(tk)‖
‖v`(tk−1)‖

,

or, alternatively, the sign of the local exponents must be reversed. The time averaging for the

global Lyapunov spectrum {(+)λcov
` } is carried out for times tα ≥ t ≥ −t0.

The following two phases are only required for the computation of the local time-reversed Gram-

Schmidt and covariant exponents.

Phase 3 (backward integration from tω to −tω): With arbitrary initial conditions at time tω,

the Gram-Schmidt tangent space dynamics is followed backward in time up to−tω. To counteract

the Lyapunov instability, it is essential for this computation to use the same reference trajectory

stored in phase 1, where the sign of the momentum-like variables ( p, z, and x for the doubly-

thermostated oscillator) is left unchanged, but with the time step reversed to −0.001. For an

accurate computation of the backward GS vectors, the reference trajectory at every integration
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step is required. Since in phase 1 this information was stored for only every 10th step (to

save computer storage), the forward reference trajectory is piece-wise re-computed with stored

phase-space points as initial conditions. The backward Gram-Schmidt vectors are again stored

for every 10th time step replacing the forward vectors of phase 1. If time is reversed, the stable

directions become unstable and vice versa. The Lyapunov spectrum {(−)λGS
` } is accumulated in

the interval tα ≥ t ≥ −tω.

Phase 4 (forward iteration from −tω to +t0): Analogous to phase 2, in this final stage the

covariant Lyapunov vectors for the reversed time direction are computed with the help of the

time-reversed Gram-Schmidt vectors from phase 3. The respective Lyapunov spectrum {(−)λcov
` }

is accumulated for times −tα ≤ t ≤ t0.

It may be noticed that in the interval −t0 ≤ t ≤ +t0 all local properties are available with the

Gram-Schmidt and covariant vectors fully relaxed both forward and backward in time. Therefore,

the detailed analysis of local (time-dependent) Lyapunov exponents in the following sections is

carried out in this regime.

5.5 Doubly-thermostated oscillator

5.5.1 Description of the model

Here we consider a simple model which already has many ingredients in common with much more

involved physical systems. It exhibits chaotic equilibrium and stationary non-equilibrium states

and collapses onto a limit cycle for very strong driving. It consists of a one-dimensional harmonic

oscillator, which is coupled to two consecutive stages of Nosé-Hoover thermostats with a space-

dependent temperature T (q). The equilibrium version of this model was first considered by

Martyna, Klein and Tuckerman [18]. Its non-equilibrium properties were consecutively studied

by us in some detail [19, 20], but without considering covariant vectors. This paper is also

intended to augment this work correspondingly.

The equations of motion, expanded with two thermostat variables z and x, are [19, 20]

q̇ = p,

ṗ = −q − zp,

ż = p2 − T (q)− zx,

ẋ = z2 − T (q),
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where the position dependent temperature is given by

T (q) = 1 + ε tanh(q).

The control parameter ε coincides with the temperature gradient at q = 0. These equations

are written in the most simple reduced form with all arbitrary parameters of the model set

equal to unity. The system is not symplectic. On average, the oscillator picks up energy from

the thermostat whenever it is in a region of high temperature (q > 0), and releases it again in

low-temperature regions (q < 0).

5.5.2 Global properties

For a typical non-equilibrium state, (ε = 0.25), the global Lyapunov spectrum was computed

by four independent methods, applying the protocol outlined in Sec. 5.4:

Phase 1 : GS exponents in forward direction of time,

{(+)λGS
` } = {0.0531, 0.00001,−0.0344,−0.0867},

Phase 2 : covariant exponents in forward direction of time,

{(+)λcov
` } = {0.0536, 0.00001,−0.0351,−0.0862},

Phase 3 : GS exponents in backward direction of time,

{(−)λGS
` } = {0.0867, 0.0344, 0.00003,−0.0531},

Phase 4 : covariant exponents in backward direction of time,

{(−)λcov
` } = {0.0871, 0.0337, 0.000001,−0.0525}.

The last digit of each number is rounded accordingly. Considering the smallness of the expo-

nents and the rather involved numerical procedures, the agreement between the independently-

determined global spectra is very satisfactory. A comparison of the forward and backward dy-

namics reveals the theoretically expected symmetry for the global Lyapunov exponents [5, 21],

(−)λ` = −(+)λD+1−` for ` = 1, · · · , D. (5.21)

If the temperature gradient ε is varied over a wide range, significant changes of the spectrum

become evident. This is shown in the left panel of Fig. 5.1. There exist a number of distinct

regimes with different qualitative behavior.
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Figure 5.1 : Temperature-gradient dependence of all four Lyapunov exponents (left panel) and of the
Kaplan-Yorke dimension (right panel) for the doubly-thermostated oscillator. For ε > εc = 0.26314, the
trajectory collapses onto a limit cycle.
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Figure 5.2 : Floquet multipliers µ2 and µ3 in the complex plain for ε ≥ 0.26312. UC denotes the unit
circle, and A is the bifurcation point. The multipliers are complex conjugate to each other for ε > 0.26319
as indicated by B.

For ε . 0.18, the spectrum changes but little with ε, and the Kaplan-Yorke dimension is only

weakly reduced with respect to the full phase space dimension, as is shown in the right panel of

Fig. 5.1. The dissipation due to the weak heat current influences the appearance of the chaotic

phase-space trajectory very little. An example of a projection of such a trajectory onto the

qpz-subspace is provided in the top-left panel of Fig. 5.3. For 0.18 . ε < 0.26, the trajectory

is more and more attracted to a weakly unstable periodic orbit (see the bottom-left panel of

Fig. 5.3), which for εc ≈ 0.26312 turns into a stable limit cycle as shown in the top-right panel of

Fig. 5.3. The nature of this transition may be established by considering the Floquet multipliers

µ`, ` = 1, · · · , 4 for the fixed points of the Poincaré map, defined by q = 0, for ε ≥ εc ≈ 0.26312.

Whereas µ1 = 1 and µ4 < 0, a single mutiplier µ2 crosses the unit circle on the real axis

at the point A corresponding to εc in Fig. 5.2. Such a behavior is characteristic of a period

doubling bifurcation [22], where, possibly, the chaotic attractor disappears in a boundary crisis

bifurcation. Increasing ε further, the Floquet multipliers µ2,3 vary as indicated by the arrows and
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Figure 5.3 : Projection of a short chaotic trajectory for ε = 0.10 (top-left), ε = 0.25 (bottom-left),
ε = 0.28 (top-right) and ε = 0.45 (bottom-right) onto the qpz-subspace.

become complex conjugate to each other for ε ≈ 0.26319 (point B in Fig. 5.2). For ε ≈ 0.417,

there is another transition changing the two-loop limit cycle into a single-loop orbit, this is

illustrated in the bottom-right panel of Fig. 5.3.

5.5.3 Local Lyapunov exponents

In Fig. 5.4 we apply Eq. (5.11) to the doubly-thermostated oscillator in a stationary chaotic

state, ε = 0.25. For ` = 1 the respective time-dependent exponents are identical and are not

shown. The case ` = 2 is treated in the figure. The dashed green line denotes the covariant local

exponent, the smooth red line is for the local GS-exponents, which is directly obtained from the

simulation invoking Gram-Schmidt re-orthonormalization. The time interval τ is 0.01. The blue

points for ΛGS
` (t) are computed with Eq. (5.11), where the covariant exponent Λcov

` (t) and the

angle β``(t) are taken from the simulation. The agreement is convincing. Similar results are also

obtained for ` = 3 and 4 (not shown).

In the right panel of Fig. 5.5 we demonstrate, for ` = 2, the general time-reversal symmetry

for the local (time dependent) covariant exponents (see Eq. (5.16)) which also gives rise to the

symmetry of the global (time-averaged) exponents already encountered in Eq. (5.21). For ` = 1
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Figure 5.5 : Doubly-thermostated oscillator for ε = 0.25. Left panel: The Gram-Schmidt local Lyapunov
exponents do not display time-reversal symmetry. Right panel: Display of time-reversal symmetry by the
covariant local exponents, (+)Λcov

` = −(−)Λcov
D+1−` for ` = 2, Analogous curves are obtained for the other

`, but are not shown.

the symmetry is also fully obeyed but not shown.

As emphasized already in Eq. (5.15), the local Gram-Schmidt exponents generally do not have

this symmetry. This is explicitly shown in the left panel of Fig. 5.5. See also Ref. [19], where the

same observation was made. Only the subspaces in Eq. (5.10) spanned by consecutive Gram-

Schmidt vectors have a simple dynamical interpretation, but not the GS-vectors themselves.

The orthonormal GS-vectors are oriented such that for the tangent space, tangent to the phase

flow at the phase point Γ(t), the subspaces (−)g
1
(t) ⊕ · · · ⊕(−) g`, with ` ∈ {1, · · · , D}, are

the most unstable subspaces of dimension ` going from time t to −∞ (i.e. the most stable

subspaces of dimension ` in the future). Although time reversal converts a most stable subspace

of dimension ` into the most unstable subspace with the same dimension, and vice versa, there
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Figure 5.6 : Doubly-thermostated oscillator with ε = 0.25: Time dependence of all four local covariant
Lyapunov exponents.

is no obvious correlation of the instantaneous Lyapunov exponents (−)ΛGS
` (t) and (+)ΛGS

D+1−`(t)

for ` = 1, · · · , D.

It is interesting to follow the time dependence of the covariant local exponents, or more correctly

expressed, their variation for consecutive state points along the phase space trajectory (see

Fig. 5.6). One observes that the order of the exponents fluctuates and may even be totally

reversed with Λcov
1 (t) being most negative and Λcov

4 (t) most positive. Also the dimension of the

stable and unstable manifolds changes along the trajectory. This indicates that the system is far

from being hyperbolic. We address this point more closely in the following subsection.

5.5.4 Hyperbolicity

We infer from Eq. (5.11) that the difference between the local covariant and Gram-Schmidt

exponents stems from the fact that the angle between the respective vectors deviates signifi-

cantly from zero and varies with time. But also the angles between covariant vectors, αij(t) ≡

arccos
[
(vi · vj)/‖vi‖‖vj‖

]
significantly change with time. This is demonstrated in the right panel

of Fig. 5.7 for the same non-equilibrium state (ε = 0.25) of the doubly-thermostated oscillator

discussed previously. There is an intermittent tendency of any two pairs of vectors to get parallel

or antiparallel to each other. The probability distributions for these angles, π(αij), are shown

in the left panel of Fig. 5.7 and confirm this observation. Although the angles α do not become

strictly zero – the vectors could not separate anymore after such an event, which is not observed –

the large probability for angles close to zero or π is noticeable. As was mentioned before, the asso-

ciated local covariant exponents are out of order for most of the time as in Fig. 5.6. If Pi denotes

the probability for Λcov
i to be out of order with respect to any of the other exponents, one finds

for the doubly-thermostated oscillator (ε = 0.25) {P1, · · · , P4} = {0.650, 0.813, 0.840, 0.645}.
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the angles αij between covariant vector pairs specified by the labels. Right panel: Time evolution of the
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This clearly demonstrates the strong entanglement between the covariant vectors. If the local

exponents are time averaged along the trajectory for time intervals ∆, the analogous probabil-

ities P ∆
i for the time-averaged exponents covΛ∆

i scale according to P ∆ ∝ ∆−γi with γ > 0 for

large-enough ∆. This shows that the domination of the Oseledec splitting is violated for finite

times.

Such a behavior is in contrast to the covariant dynamics of hard-disk systems, for which the

covariant vectors tend to avoid becoming parallel or antiparallel [7]. Thus, whereas the hard-disk

system is hyperbolic, the doubly-thermostated oscillator is not.

5.5.5 Singularities of the local Lyapunov exponents

In the direction of the flow, the local Lyapunov exponents clearly are smooth functions of the

time and, hence, of the phase-space position along the trajectory, see Fig. 5.4. But transverse to

the flow this need not be the case. Indeed, for the periodic Lorentz gas it was noted by Gaspard

[23, 24] that the local stretching factors are discontinuous transverse to the flow. Since this

model involves hard elastic collisions of point particles with space-fixed scatterers, the observed

discontinuity might still be thought to be a consequence of the discontinuous nature of the flow.

However, Dellago and Hoover showed [25] that this is not the case. They found a discontinuous

local exponent ΛGS
1 along a path transverse to the flow even for a time-continuous Hamiltonian

system, a chaotic pendulum on a spring. Of course, their result also applies to Λcov
1 for that

model. Here we provide evidence for the doubly-thermostated oscillator in equilibrium (ε = 0)

that all local covariant exponents are discontinuous along directions transverse to the flow.

For this simulation we slightly modify the protocol of Sec. 5.4.
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Phase 0: Starting at a phase point Γs at time zero, the reference trajectory is followed backward

in time to −tω = −60, 000 and is periodically stored for intervals τ along the way.

Phase 1: The next phase is identical to phase 1 of Sec. 5.4 with one essential difference: For

−tω ≤ t ≤ 0, the previously-stored reference trajectory is now used in the forward direction

of time for the computation of the Gram-Schmidt vectors, which assures that the trajectory

precisely arrives at Γs at time zero in spite of the inherent Lyapunov instability. For 0 ≤ t ≤ tω

the simulation proceeds as in phase 1 of Sec. 5.4.

Phase 2: This is identical to phase 2 of Sec. 5.4 and provides us with the covariant vectors and

the respective local exponents in the interval −t0 < t < t0 and at the time t = 0 in particular,

when the state coincides with the selected phase point Γs.

The whole procedure is repeated for starting points Γs ≡ Γ0 + s× (0, 0, 1, 0) on a straight line

parallel to the z-axis, which is parametrized by s. This line is transversal to the flow, as may be

expected from Fig. 5.3.

As an example, we plot in the left panel of Fig. 5.8 the local covariant exponent Λcov
4 (t) as a

function of time for 500 initial points Γs separated by ∆s = 1 × 10−4. It should be noted that

the scale on the t axis, converted into distances along the trajectory, is about 200 times coarser

than that on the s axis. The red line for t = 0 connects the local exponents for the selected initial

states Γs. This curve for Λcov
4 (t) is also reproduced in the right panel of Fig. 5.8 together with an

analogous result for Λcov
1 (t). Both curves exhibit singularities on many scales showing singular

fractal character. There are no obvious correlations between the two curves. The singularities are

due to bifurcations in the past history of the trajectory. In view of Fig. 5.3, such a bifurcation

may be visualized, for example, by a transition of the trajectory from the neighborhood of an

unstable periodic orbit to the neighborhood of another with a different number of loops.

One may raise the question (as has been done by one of the referees), how reliable the curves in

Fig. 5.8 are in view of the chaotic nature of the flow and problems of shadowing due to the finite

computational accuracy. An increase of the Runge-Kutta integration time step dt by a factor of

four has no noticeable effect (less than 0.1%) in Fig. 5.8, which also proved completely insensitive

to a reduction of the relaxation time tω of the algorithm by a factor of two and of an increase of

the time τ between successive re-orthonormalization steps by the same factor. This robustness,

however, does not apply to the local exponents Λcov
2 and Λcov

3 (not shown), which belong to the

two-dimensional central manifold for this equilibrium system. The respective covariant vectors

span this subspace, but their precise orientations and their local exponents are affected by details

of the algorithm and do not have direct physical significance.

For non-equilibrium stationary states the singular character of the local exponents in transverse
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directions is expected to be even more pronounced, since even the phase-space probability density

becomes a multifractal object [1, 14]. For the covariant exponent this cannot be shown with the

present algorithm. The reason is that during the time-reversed simulation in phase 0, the phase

volumes collapse yielding negative Lyapunov exponent sums. Since in phase 1 this trajectory is

followed in the opposite direction, the respective phase volumes expand providing a positive sum

of Lyapunov exponents, but only up to time zero. For positive times the reference trajectory

is calculated anew from the motion equations, again yielding contracting phase volumes. Thus,

the character of the flow changes at t = 0 and the Gram-Schmidt vectors at first are non-

relaxed and point into wrong directions for positive times. Since these vectors are required for

the computation of covariant vectors at and near zero time, the algorithm cannot be used to

obtain the covariant vectors and respective local exponents at a pre-determined point Γs in

phase space. For equilibrium states this restriction does not apply and the local exponents may

be computed for pre-specified phase-space points.

5.6 Local Lyapunov exponents for symplectic systems∗

So far we have omitted to mention that we use a particular metric in phase space. Whereas the

global exponents are independent of the metric, the local exponents, covariant or Gram-Schmidt,

clearly are not. We demonstrate this with the most simple symplectic example, a scaled harmonic

∗This section is not included in the original publication in Phys. Rev. E 82, 046218 (2010).
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Left panel: The smooth red lines are local GS exponents for ` = 1 and 2 as indicated by the labels. The
results from direct simulation and from theory are undistinguishable on this scale. The points indicate the
reconstruction of (+)ΛGS
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oscillator [26, 27] with Hamiltonian

Hs(p, q) =
1
2

[(p
s

)2
+ (sq)2

]
and equations of motion

q̇ = s−2p , ṗ = −s2q, (5.22)

where s is a scaling parameter. For the ‘natural’ scaling, s = 1, the global and local exponents

vanish. But for the scaled case, s 6= 1, the local Lyapunov exponents do not. They depend

on the metric and, for that matter, on the choice of the coordinate system, be it Cartesian or

polar.

Let us look at this model in a little more detail, since the dynamical matrix

DΓ =

 0 s−2

−s2 0


for this linear model does not depend on the phase point and allows for a complete analytical

solution [27] for the tangent vector dynamics. Still, the model is a bit peculiar, since there is

no global exponential ordering of tangent vectors familiar from the Gram-Schmidt algorithm,

and the considerations of Sec. 5.4 lose their meaning. Any (unit) vector, with arbitrary initial

condition (phase), which is a solution of Eq. (5.17), may be taken as the first Gram-Schmidt

vector (or covariant vector for that matter). We fix this arbitrary phase by requiring that g1

coincides with the normalized phase-space velocity, which is associated with a vanishing exponent
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and is a solution of Eq. (5.17), as may be explicitly shown. Thus,

g1 ≡

δq1
δp1

 =
[( p
s2

)2
+ (s2q)2

]−1/2
p/s2
−s2q

 , (5.23)

where we denote the perturbation components of g1 by δq1 and δp1). From the constrained

motion equation (5.17) one obtains

δ̇q1 = s−2δp1 −R11δq1 (5.24)

δ̇p1 = −s2δq1 −R11δp1. (5.25)

Since g1 is constrained to unit length, δq1δ̇q1 + δp1δ̇p1 = 0, and noting that ΛGS
1 ≡ R11, we

obtain from these equations

ΛGS
1 =

(
s−2 − s2

)
δq1δp1. (5.26)

Insertion of δq1 and δp1 from Eq. (5.23) yields an analytic expression for the local Gram-Schmidt

exponent ΛGS
1 as a function of the phase-space point (q, p). The second Gram-Schmidt vector

is perpendicular to the first, and its associated GS exponents immediately follow from the

conservation of phase-space volume:

ΛGS
2 (q, p) = −ΛGS

1 (q, p).

In the left panel of Fig. 5.9 the local Gram-Schmidt exponents for the scaled harmonic oscillator

for s = 2 are shown as a function of time. The initial conditions q(0) = 0 and p(0) = 1 are used,

for which the solution of Eq. (5.22) becomes

q(t) = s−2 sin t , p(t) = cos t.

Both computer simulation results and the theoretical expressions for ΛGS
1 and ΛGS

2 are shown,

which agree so well that they cannot be distinguished and appear only as a single smooth red

line in the figure.

The upper and lower bounds of the local exponents are also easily obtained from Eq. (5.26)

[27],

Λmin,max = ±(s+2 − s−2)/2.

The extrema are attained whenever the components δq and δp of the respective perturbation

vectors contribute equally, δp = ±δq. For s = 2 we find Λmin,max = ±1.875 in full agreement
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Figure 5.10 : Local Lyapunov exponents for the Hénon-Heiles system with energy H = 1/6. Left panel:
Illustration of the symplectic local pairing symmetry, Eq. (5.13), for the Gram-Schmidt exponents (+)ΛGS

2

and (+)ΛGS
3 (smooth red lines). Here, D = 4. Also the inequality Eq. (5.15) applies (` = 2), as the dashed

green line for (−)ΛGS
3 certifies. Right panel: Verification of the time-reversal invariance property (5.16)

for the covariant vectors specified.

with Fig. 5.9.

The undetermined phases we encountered with the Gram-Schmidt vectors also carry over to the

covariant vectors. But since the latter are computed with the help of the former, the choice of

phase for g1 also fixes that for v1 and v2. In the right panel of Fig. 5.9 the covariant exponent

Λcov
2 (t) is shown as it is obtained from the simulation. If this function is used to reconstruct

ΛGS
2 (t) with the help of Eq. (5.11), the (blue) dots in the left panel of Fig. 5.9 are obtained,

where cos(β22) = g2 · v2 is also taken from the simulation. The agreement is very good. In the

right panel of Fig. 5.9 we also plot (−)Λcov
1 (t) for the time-reversed dynamics. The time-reversal

symmetry of Eq. (5.16),
(−)Λcov

1 (t) = −(+)Λcov
2 (t),

is nicely displayed.

As a slightly more involved example, we compute the four local Lyapunov exponents for the

symplectic Hénon-Heiles system [28] with Hamiltonian

H =
1
2
(p2

x + p2
y) +

1
2
(x2 + y2) + x2y − 1

3
y3. (5.27)

For an energy H = 1/6, the system is known to be chaotic (with a Lyapunov spectrum {0.1277,

0, 0, −0.1277}), where the trajectory visits most of the accessible phase space [29, 30]. Using

the protocol of Sec. 5.4, we compute the GS and covariant exponents and present some of the

results in Fig. 5.10. In the left panel the symplectic local pairing symmetry of Eq. (5.13) for
(+)ΛGS

2 and (+)ΛGS
3 is shown by the smooth red lines (similar to the results of Ref. [30]). The

green dashed line refers to the time-reversed exponent (−)ΛGS
3 and clearly emphasizes the lack
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of any time-reversal symmetry as expressed by the inequality (5.15). On the other hand, for the

covariant exponents precisely this symmetry is evident from the right panel of Fig. 5.10.

To avoid confusion, we note that the ‘detailed balance symmetry’ introduced in Ref. [30] is not

connected with the symplectic local pairing symmetry considered here. The former only means

that for a global exponent to become zero, the positive and negative parts of the respective local

exponent along the trajectory must cancel each other when integrated over time.

5.7 Concluding remarks

For the doubly-thermostated oscillator in a non-equilibrium stationary state, there is a single

vanishing global exponent, λ2, due to the time-translation invariance of the equations of motion.

The corresponding covariant vector, v2(t), needs to be parallel (or antiparallel) to the phase-

space velocity Γ̇(t) ≡ {q̇(t), ṗ(t), ż(t), ẋ(t)}. We have verified in our simulation that this is indeed

the case. The remaining vectors v1, v3 and v4 are oriented with angles fluctuating between 0

and π with respect to Γ̇(t). The Gram-Schmidt vectors behave very differently. Whereas the

vector g1 is identical to v1, the vector g2 is not parallel to Γ̇(t). Instead, the vectors g3 and g4

are perpendicular to Γ̇(t) as expected in view of the covariant subspaces of Eq. (5.10). These

observations serve as convenient consistency checks for the numerical procedure.

One of the remarkable features of the covariant local Lyapunov exponents Λcov(Γ(t)) is their

singular behavior transverse to the phase flow, whereas they are absolutely continuous in the di-

rection of the flow. Fig. 5.8 provides an illuminating example. The singularities are consequences

of bifurcations in the past history. Still, the local exponents are point functions in the phase

space in the sense that one always gets the same value at the state point in question, as long

as the trajectory has been followed from far enough back and has experienced the same history.

Due to the uniqueness of the solutions of differential equations there is only this path to the

state point in question. The global exponents, however, are time averages of the local exponents

along an (ergodic) trajectory.

A final remark concerns the doubly-thermostated driven oscillator again. In a driven system

(in our case a single particle in a non-homogenous thermal field) heat and, hence, entropy is

generated, which needs to be compensated by a negative entropy production in the thermostat

to achieve a stationary state. The excess heat is transferred from the system to the thermostat

(by the positive friction zp > 0), where it disappears. It follows from the thermostated motion

equations in Sec. 5.5.1 that the external entropy production (of the reservoir) is given by

Ṡ/k ≡ ∂

∂Γ
Γ̇ = z + x,



5.8. Acknowledgements 141

where k is the Boltzmann constant. In the non-equilibrium situation, a full time average 〈z+x〉

is necessarily positive. However, we have verified by simulation that finite time averages of this

quantity numerically obey the steady-state fluctuation theorem originally discovered by Evans,

Cohen and Morriss [31]. This theorem was given a firm theoretical basis by Gallavotti and Cohen

[32, 33], by invoking the so-called ‘chaotic hypothesis’ for Anosov-like systems. Although our

system is not Anosov-like, it still obeys the theorem.
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Chapter 6

This chapter has already appeared in print with another title:

H.A. Posch and H. Bosetti,

Covariant Lyapunov vectors and local exponents,

American Institute of Physics, Conf. Proc. vol. 1332, p. 230 (2011),

edited by P.L. Garrido, J. Marro,

and F. de los Santos.

Symmetry properties of Lyapunov vectors

and local exponents

Using a doubly-thermostated heat-conducting oscillator as an example, we demonstrate how

time-reversal invariance affects the perturbation vectors in tangent space and the associated

local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously

along directions transverse to the phase flow.

For classical chaotic systems, the set of Lyapunov exponents, {λ`}, ` = 1, . . . , D, measures the

exponential growth, or decay, of small (infinitesimal) perturbations of the phase-space trajectory.

Here, D is the dimension of the phase space. The standard algorithms for the computation of the

exponents (see Chap. 5 and Ref. [1] for a review) probe the tangent-space dynamics by a set of

orthonormal Gram-Schmidt (GS) vectors {g`}. Since their orthonormality is not preserved, it

must be periodically restored by a GS procedure, or continuously kept up by Lagrange-multiplier

constraints. These schemes are all based on the volume changes of d-dimensional volume ele-

ments in phase space, d ≤ D, but they simultaneously destroy any information concerning the

angles between the perturbation vectors. Thus, symmetries concerning phase-space volumes

generate symmetries of the associated local GS Lyapunov exponents∗, whereas time-reversal

symmetry does not. For example, for a phase-space conserving symplectic system the equalities
(+)ΛGS

` (t) = −(+)ΛGS
D+1−`(t) and (−)ΛGS

` (t) = −(−)ΛGS
D+1−`(t) hold, if the trajectory is followed

forward or backward in time as indicated by the upper indices (+) and (−), respectively. How-

ever, time reversal invariance of the motion equations is not reflected by the GS local exponents:
(−)ΛGS

` (t) 6= −(+)ΛGS
D+1−`(t).

∗Local Lyapunov exponents give the local (time-dependent) exponential rate of growth (shrinkage) of the norm
for GS or covariant vectors at a phase point Γ(t) along the trajectory. The global exponents are time averages of
the local exponents.
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Figure 6.1 : Panel on the left: Time-dependent local Lyapunov exponents Λ(t) (as identified by the
labels) for the doubly-thermostated oscillator in a non-equilibrium stationary state (ε = 0.25). Panel on
the right: Fractal behavior of the local covariant exponents (+)Λcov

i for ` ∈ {1, 4} along a parametric
straight line transverse to the phase flow. The parameter s specifies the location Γ(s) in phase space. The
data are for the doubly-thermostated oscillator in thermal equilbrium (ε = 0).

The multiplicative ergodic theorem of Oseledec [2, 3] asserts that there exists another spanning

set of normalized vectors v` (Γ(0)) in tangent space. These vectors evolve (co-rotate) with the

natural tangent flow, v` (Γ(t)) = Dφt|Γ(0) v
` (Γ(0)) , (where Dφt|Γ(0) is the propagator), and di-

rectly generate the Lyapunov exponents, ±λ` = limt→±∞ (1/|t|) ln
∥∥Dφt|Γ(0) v

` (Γ(0))
∥∥ , ` ∈

{1, · · · , D}, along the way. They are referred to as covariant vectors. Generally, they are not pair-

wise orthogonal and span invariant manifolds, for which the local expansion (contraction) rates

are given by the local covariant Lyapunov exponents (±)Λcov
` . In contrast to the GS exponents,

they respect the time-reversal invariance of the motion equations, such that

(−)Λcov
` (Γ(t)) = −(+)Λcov

D+1−`(Γ(t)) ; ` = 1, · · · , D . (6.1)

Local expansion forward in time implies local contraction backward in time and vice versa.

However, they do not reflect (possible) phase-volume conservation.

Recently, reasonably efficient algorithms for the computation of covariant vectors have become

available [4, 5], which were applied to a variety of systems [1, 6, 7]. In the panel on the left of the

figure we demonstrate the time-reversal symmetry displayed by the local covariant exponents

for a one-dimensional harmonic oscillator coupled to a position-dependent temperature T (q) =

1 + ε tanh(q) with a two-stage Nosé-Hoover thermostat, which makes use of two thermostat

variables [1]. The equations of motion are time reversible and not symplectic, and D = 4. The

control parameter ε denotes the temperature gradient at the oscillator position q = 0. As the

figure shows, the time-reversal symmetry of Eq. (6.1) is clearly obeyed for the maximum (` = 1)

and minimum (` = 4 ) covariant exponents. Since, by construction, (+)ΛGS
1 ≡(+) Λcov

1 [1], one

observes that no analogous relation holds for the GS exponents.
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In the panel on the right of the figure it is demonstrated that the local covariant exponents show

a fractal-like structure along a straight line transverse to the phase-space flow [1]. This is to

be expected in view of the different past (and future) histories for trajectories passing through

adjacent phase-space points transverse to the flow.
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Chapter 7

Soon to be submitted.

Domination and convergence of Lyapunov

spectra for smooth-hard-disk systems

Let us consider the dynamics of smooth-hard-disk systems in the positive sense of time. The

domination of the Oseledec splitting asserts that there exists a finite time ts, from which on

each Oseledec subspace – associated with an exponent λ(j) – is uniformly more expanding than

any subspace associated with a smaller Lyapunov exponent λ(i) (i.e., ∀ i : i > j). Therefore one

obtains a Lyapunov spectrum – a plateau is only observed in the case of exponent degeneracies

due to Lyapunov modes.

The mathematical definition of domination is based on the relative dynamical isolation of the

Oseledec subspaces, and can also be expressed in terms of the fluctuations of the local Lyapunov

exponents [1, 2] (see also Chap. 5). The Oseledec splitting is said to be dominated if these

local Lyapunov exponents, when averaged over a finite time ts, do not change their order in the

spectrum for any time t > ts. The local Lyapunov exponents and the Oseledec subspaces are

computed with the algorithm of Ginelli et al. [3].

The domination of the Oseledec splitting (DOS) implies that the angles between the Oseledec

subspaces are bounded away from zero [4]. Such a situation was experimentally shown to oc-

cur for coupled map lattices [1]. For rigid disk systems one also observes a strong correlation

between the violation of the local order of the time-averaged Lyapunov exponent in the spec-

trum for short averaging times t and the relative deviation from orthogonality between Oseledec

subspaces.

In order to specify the domination, we use two-dimensional smooth-hard-disk systems at a

density ρ = 0.7 in a box with periodic boundary conditions (in x- and y-directions) and with an

aspect ratio Ly/Lx = 1. The number of particles varies, N ∈ {9, 16, 25, 36, 100}, for the different

systems. As before, we consider reduced units for which the particle diameter σ, the particle mass
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Figure 7.1 : The normalized Lyapunov spectra (a) and the localization spectra (b) are obtained with
the covariant vectors for systems with various numbers of particles. Symmetrized reduced indices (i/4N−
1/8N) are used on the abscissa.

m and the kinetic energy per particle K/N equal unity. Fig. 7.1 shows the normalized Lyapunov

spectra (in the top panel) and the localization spectra (in the bottom panel) for all systems.

Both sets of spectra are averages over a sufficiently long time to be considered converged. For

the computation of these spectra covariant Lyapunov vectors were used (Chap. 3 and Ref. [5]).

To compare spectra for various N , we use symmetrized reduced indices (i/4N − 1/8N).

The Lyapunov spectra serve as a measure for chaos and as a reference, around which the local

exponents fluctuate. Only the system with N = 100 particles exhibits Lyapunov modes. Since

the aspect ratio is unity, one obtains a mix of T (1, 0) and T (0, 1) belonging to the same smallest

(positive and negative) Lyapunov exponents.

In the following we consider the local (time dependent) covariant Lyapunov exponents and

average them over a finite time K τ ,

Λ t=K τ
i =

1
K τ

K−1∑
k=0

ln
∥∥∥Dφ tk→ tk+1

Γk→Γk+1
vi(Γk)

∥∥∥ , (7.1)

for i = 1 . . . 4N , where the vi(Γk) are the covariant vectors at the phase point Γk at time

tk . The flow Dφ tk→ tk+1 is the propagator, which maps the tangent bundle at Γk ≡ Γ(tk) to

Γk+1 ≡ Γ(tk+1). In practice, τ corresponds to the time between two successive normalizations
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i 6=j) for 100 smooth hard disks in a
square box, ρ = 0.7. The averaging time t = 0.5. The blue lines are for j = 2N − 3 and j = 2N + 4
(corresponding to the smallest positive and negative exponents). Top-right panel: magnified view of the
central region. The blue lines belong to the T(1,0) and T(0,1) modes. Bottom-left panel: Time averaged
(400 events separated by 500 time units) absolute values for the scalar product of some covariant vectors
vj with all the remaining covariant vectors vi 6=j . The blue lines are for j = 2N − 3 and j = 2N + 4.
Bottom-right panel: Magnified view of the central region of the bottom-left panel. The blue lines belong
to the T(1,0) and T(0,1) modes.

of the covariant vector set. The global Lyapunov exponents correspond to the limit

λi = lim
K→∞

Λ t=K τ
i . (7.2)

We compute the probability P (Λ t
j < Λ t

i ) for j 6= i, for an averaging time t. In the top-left

panel of Fig. 7.2 this quantity is shown for some pairs (i, j) and for t = 0.5. The top-right

panel provides a magnified view for all pairs (i, j) of the central region, which contains the mode

regime, which is indicated by the blue lines. If the spectra were dominated without violation,

the probabilities P (Λ t
j < Λ t

i ) would consist of a plateau at 0 for j < i and a plateau at unity for

j > i, with a sharp transition at i = j, for all large-enough t > tc. Here, tc > 0 is some critical

averaging time. Any violation for small t broadens the transition.
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One observes that the transition is very sharp for the finite-time averaged local exponents

belonging to the mode regime (which includes the central manifold), although the time t is

rather short (t = 0.5). This means that the local exponents in this central region are already at

their proper positions in the spectrum. The fluctuations of the local exponents do not change

their order any more. This is not the case for the exponents outside the mode regime, for

which severe violations of the domination requirement still exist, leading to broad transitions of

P (Λ t
j < Λ t

i ). Somewhat loosely we may say that the tangent space associated with the mode

regime is rather well dominated as compared to the remainder of the tangent space.

The lines in the bottom panels of Fig. 7.2 depict the product norms 〈|vj · vi|〉 for the covariant

vector vj , j = 1, . . . , 4N , with all the other covariant vectors vi, i 6= j. The bottom-right panel

again provides a magnified view of the central region. Comparing the left-hand side of the top

and the bottom panels, some correlations can be observed between the domination behavior,

expressed by the probability P (Λ t
j < Λ t

i ) (or the detailed violation probability), and the angles

between covariant vectors with adjacent indices, |i − j| = 1, 2, . . . This tendency is even more

apparent for the right-hand sides of the top and the bottom panels. Note that the central

manifold for such systems (smooth hard disks) is exactly orthogonal to the rest of the tangent

space, and the subspaces associated with the modes (blue lines) are almost orthogonal to the

rest of the tangent space. Most importantly, the local Lyapunov exponents associated with the

unstable subspace (resp. with the stable subspace) never change their sign, the central manifold

acts like a barrier which prevents exchanges between the stable and the unstable subspaces

of the tangent space. This property of the hard-disk system does not hold in general. As we

have demonstrated in Chapter 5 for the Hénon-Heiles system (Fig. 5.10), the local Lyapunov

exponents fluctuate strongly such that Λ1 may become negative and Λ4 may become positive.

The exponents may be strongly entangled, by which we mean that the instantaneous order of

the exponents may be completely reversed as compared to the time-averaged global Lyapunov

exponents.

Next we are interested in the convergence of the Lyapunov spectrum towards its long-time

average. As a first step, another violation probability, called “partial”, is defined, which is the

probability that for each index j, the associated local Lyapunov exponent Λ t
j is smaller than any

other local exponent Λ t
i , for all j < i. In Fig. 7.3, this partial violation probability is shown for a

system with 16 hard disks for various averaging times t ranging from 0.125 to 32. First of all, one

notices that the smallest positive exponent for j = 2N − 3, and the last vanishing exponent for

j = 2N +3, never change position with one of the lower exponents, which confirms that there is

no exchange across the central manifold: no interchanges are allowed between the local exponents

for the stable subspace, the unstable subspace, and the central manifold. Secondly, one observes



153

P
(Λ

t j
<

Λ
t i
)
∀
i

:
j
<
i

0.0

0.2

0.4

0.6

0.8

1.0

 1 2N

 10  20  30  40  50  60

j
2N-3 2N+3

t=1/8

t=1/2

t=1

t=2

t=4

t=8

t=16

t=32

Figure 7.3 : Partial violation probability of the Lyapunov spectrum after different times for a system
of 16 smooth hard disks.

regular smooth spectra for the various finite times considered. Finally, a slow convergence is

obtained for increasing the averaging time t, but this representation is not detailed enough to

give full account of the relaxation-time classification for the whole Lyapunov spectrum.

We introduce also a “total” violation probability, denoted Π(t), namely the probability that at

least one local Lyapunov exponent – when averaged over a time t > 0 – changes the order of the

local Lyapunov spectrum. The Oseledec splitting is said to be dominated, if the total violation

probability converges toward zero for any time t larger than some finite time ts.

The maximum Lyapunov exponent is the rate constant for the fastest growth of the phase-space

perturbation, and depends on the binary collisions and on the velocities of the particles. It has

been well established from pioneering work of Hoover, Posch and collaborators [6, 7, 8, 9, 10, 11,

12, 13] and others [14, 15, 16, 17, 18, 19], that the perturbation associated with the maximum

Lyapunov exponent is strongly localized in physical space; such that non-vanishing perturbation

components, which are significantly different from zero, are restricted to only few particles at any

instant of time (see Chapter 3). Since there are no distinguished particles, the excited perturbed

domain moves around in space, affecting succinctly all particles in a similar manner. We use

this property to define a mixing process, that is concluded when, after a sufficiently long time,

a large fraction of all particles has contributed to λ1.

To describe this “mixing” in space, we define “cumulative particle contributions” to the pertur-

bation v1 ≡ g1 (note that the covariant and GS vectors agree in this case) by

µ1
n(t = K τ) =

1
K + 1

K∑
k=0

(
δ~q 1

n (t0 + k τ)
)2

+
(
δ~p 1

n (t0 + k τ)
)2

, (7.3)
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(τ = 0.5 is the time between successive Gram-Schmidt orthonormalization steps) which accu-

mulates the contributions of the particle n over a time interval from t0 to t. For t→∞ one has

µ1
n(∞) = 1/N , with each particle contributing identically. The quantity

Ω(t = K τ) =
1
N

exp

〈
−

N∑
n=1

µ1
n(t) lnµ1

n(t)

〉
t0

, (7.4)

measures the “cumulative delocalization” due to mixing. Clearly, Ω(∞) = 1. Here, 〈 〉t0 cor-

responds to the average over different starting times t0. In practice, the starting times t0 are

chosen to be separated by t = K τ .

At the initial time, t = 0, one has Ω(0) = W1 (see Eq. 3.14 in Chapter 3). The system is spa-

tially relaxed for cumulative localizations approaching one. We are especially interested in the

convergence dynamics of the different systems (i.e., the appearances of the function Ω(t)) and

in the time needed to consider them relaxed.

In the bottom-left panel of Fig. 7.4 Ω(t) is plotted as function of t/Nα, where the scaling
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parameter α = 0.85 is chosen such that all curves Ω(t) for various N collapse onto a single

curve. A magnification of the long-time behavior is shown in the bottom-right panel of Fig. 7.4.

It is well known that the bigger the system the better is the localization of the perturbation for

the maximum Lyapunov exponent [13]. Here find that the time scale for the localization to affect

all particles increases with N0.85, where N is the number of particles. For all practical purposes,

after a time of t∗ = 40N0.85 the local perturbation has moved around in the physical space

such that Ω(t) almost reaches unity. In the top panel of Fig. 7.4 the total violation probability

Π(t) is plotted on the same time scale, where the top-right panel provides a magnification. One

observes that Π(t) drops to zero for t ≈ 40N0.85. This shows that the violation of the spectral

domination is lifted for time scales, which are connected to the speed with which the localized

perturbation for λ1 moves around in the physical space. This time scale varies less than linearly

with the number of particles.
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Chapter 8

This chapter is an expanded preprint

of a paper soon to be submitted.

How rotation breaks the Hamiltonian

character of rough-hard-disk systems
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8.1 Introduction

The Oseledec splitting can be experimentally determined by computing covariant vectors. In this

chapter the covariant vectors and the Gram-Schmidt vectors are analyzed for rough-hard-disk

systems (RHDS). These results are compared to respective results obtained for smooth-hard-

disk systems (SHDS). We establish that the rotation of the disks deeply affects the Oseledec

splitting of the tangent space. In particular, the rough-hard-disk systems are not strictly hyper-

bolic. We demonstrate that the rotations break the Hamiltonian character of rough-hard-disk

systems.

The chapter is organized as follows. The basic concepts of the dynamics of the tangent-space
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bundle are summarized in Sec. 8.2. The smooth-hard-disk system and, more thoroughly, the

rough-hard-disk system are introduced in Sec. 8.3 where a matrix formulation of the system

evolution is introduced. In Sec. 8.4, we compare the Gram-Schmidt vectors with the covariant

Lyapunov vectors for the RHDS (which give rise to the same global Lyapunov exponents). The

emphasis is on the angles between the spatial and momentum parts of the translation dynamics,

on the localization of the tangent vectors in space, and on some tangent-space projections. We

also show the spectra obtained for the SHDS in order to understand the transition from non-

rotating (smooth) to rotating (rough) particles. The null subspace for the RHDS is the topic of

Sec. 8.5, where we show that it is not strictly orthogonal to the unstable and stable subspaces.

Using the covariant vector set, we show that the dynamics is converging to a sub-manifold. In

Sec. 8.6 we examine the loss of isolation for the local covariant exponents, which implies that a

finite-time average of local exponents may lead to a different order in the Lyapunov spectrum

as compared to that of globally-averaged exponents. Furthermore, the transversality between

the stable, the unstable, and the central manifolds is investigated for the SHDS and the RHDS.

Sec. 8.7 is devoted to a discussion of the difference between the two models. In particular, it

explains how the rotations break the Hamiltonian character for the RHDS.

8.2 Tangent-bundle dynamics

First we recall some basic notions in statistical mechanics and dynamical systems theory, e.g.

[27, 28, 29]: (i) The concept of a phase space X is tantamount to consider the full ensemble

of accessible system states, denoted by the state vector Γ. If this system is ergodic, which we

assume, every infinitesimal volume element of the phase space in accord with the conserved

quantities will be visited in due time. Each phase point Γ on the hypersurface (defined by the

exclusion of the subspace violating the conserved quantities) becomes equally likely; (ii) The

dynamics in the phase space is characterized by the motion of a unique phase point in that

space (with a fixed frame) which is not the case for the tangent space TXΓ. TXΓ moves with

the state vector in phase space and is tangent to the hypersurface determined by the conserved

quantities. It contains the complete set of perturbation vectors {δΓi} which point in all accessible

directions, where the state Γ is allowed to evolve (observing the conservation rules); (iii) In order

to examine also the dynamics of the perturbation vectors δΓ, we have to consider the concept of

the tangent bundle TX, which consists of the union of the tangent spaces to X at various state

vectors Γ,
⋃

Γ∈X TXΓ. A point of TX is a vector δΓ, tangent to X at some point Γ(t).

According to the multiplicative ergodic theorem of Oseledec for unstable systems [1], the dynam-

ics of the tangent bundle induces some hierarchically dissociated sub-bundles. At some phase
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point Γ, the sub-bundles correspond to an ensemble of dissociated subspaces, which is referred

to as Oseledec splitting. The exponential growth (or decay) of the sub-bundles gives rise to the

Lyapunov spectrum, whose hierarchical structure is reflected by the ordering of the exponents

by size. Ginelli et al. [2] introduced an algorithm which permits to experimentally generate the

Oseledec splitting by computing the covariant vectors {vi}. This method is based upon a theo-

retical statement, arising directly from assertions due to Ruelle [3] (see Eq. (3.7)) and to Ershov

and Potapov [4] (see Eqs. (3.11) and (3.12)),

vi =
(
g

(+)
1 ⊕ · · · ⊕ g(+)

i

)
∩
(
g

(−)
i ⊕ · · · ⊕ g(−)

D

)
, (8.1)

where {gi} denotes the set of orthonormal Gram-Schmidt vectors. As usual, D is the phase space

dimension. All of these vectors are associated with the same state vector Γ. The superscript “+”

refers to the forward direction of time (i.e. the starting vector set {g(+)
i } was initially placed

in the far past), whereas the superscript “−” refers to the backward direction of time (i.e. the

starting vector set {g(−)
i } was initially placed in the far future).

Let Γ(t) denote the state of the system at time t. The flow in phase space is denoted by

φt : X → X and the corresponding flow in tangent space by Dφt : TXΓ(0) → TXΓ(t). Then the

covariant vectors {vi} obey

Dφt|Γ(0)vi(Γ(0)) = vi(Γ(t))

for all i ∈ {1, . . . , D}, where Γ(t) = φt(Γ(0)). The corresponding (global) Lyapunov exponents

are time averages,

lim
t→±∞

1
|t|

log ‖Dφt|Γ(0) vi(Γ(0)) ‖ = ±λi ,

and due to the dynamical hierarchy, they obey: λ1 ≥ · · · ≥ λD.

8.3 Systems of hard disks

We now turn our attention to the smooth-hard-disk system (SHDS) and the rough-hard-disk

system (RHDS). Due to roughness, the disks may temporarily store energy in internal degrees

of freedom (rotation). The disks suffer elastic hard collisions and move along straight lines in

between collisions. The systems consist of N particles at a density ρ in a box of dimension

(Lx, Ly) with periodic boundaries in the x- and y-directions. As usual, we consider reduced

units for which the particle diameter σ, the particle mass m and the kinetic energy per particle,

K/N , are unity. Here, K is the total energy, which is purely kinetic. Lyapunov exponents are

given in units of
√
K/Nmσ2. The Lyapunov instability of SHDS has been studied in detail in
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the past [5, 6, 7, 8, 9], whereas for the RHDS it has been studied only recently [10].

For the SHDS, the state vector is given by

Γ = {~qn, ~pn}N
n=1 , (8.2)

where ~qn and ~pn denote the position and momentum vectors of particle n. For the RHDS, the

state vector is given by

Γ = {~qn, ~pn, ωn}N
n=1 , (8.3)

where ωn is the angular velocity of particle n. The orientation angles of the disks are not required

for the equations of motion and are not included in the list of independent variables. This means

that the Lagrangian of the system does not depend on the orientation of the particles. We shall

come back to this point in Sec. 8.5. An arbitrary perturbation vector is given by

δΓ = {δ~qn, δ~pn}N
n=1 , (8.4)

and δΓ = {δ~qn, δ~pn, δωn}N
n=1 , (8.5)

for the SHDS and the RHDS, respectively.

8.3.1 The rough-hard-disk system (RHDS)

The RHDS is an extension of the common SHDS, where the particles rotate and exchange

translational and rotational energy at a collision. This implies a coupling between translational

and rotational degrees of freedom. The “rough-hard-collision” transformation rule is established

from the conservation laws for energy, linear momentum, and angular momentum. A first version

of the RHDS was already introduced in the late 19th century by Bryan [11]. Explicit motion

equations were given by Chapman and Cowling [12] in 1939. Initially, roughness was introduced

as the maximum possible roughness in the model, where a collision reverses the relative sur-

face velocity at the point of contact of two colliding particles. Such a model was thoroughly

studied by O’Dell and Berne [13]. Subsequently, Berne and Pangali also investigated models

with partial roughness [14, 15]. Here we use the maximum-roughness model of Chapman and

Cowling [12].

The energy of the RHDS is purely kinetic,

K =
1
2

N∑
n=1

[(~pn)2

m
+ I(ωn)2

]
,
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where I is the moment of inertia, which is taken to be identical for all disks.

We first recall the collision rules for two rough hard spheres k and ` in three dimensions [12, 10].

Let ~q = ~qk−~q` and δ~q = δ~qk−δ~q` denote the respective relative positions in the phase space and

in the tangent space, and analogously, ~p = ~pk− ~p` and δ~p = δ~pk− δ~p` the relative momenta. For

convenience, we define the following quantities: ~Ω = ~ωk + ~ω`, δ~Ω = δ~ωk + δ~ω`, the unit vector

~n = ~q/σ, the dimensionless moment of inertia κ = 4I/mσ2, and the velocity of the impact point

on the surface of the scatterer,

~g =
~p

m
+
σ

2
(~n× ~Ω) .

During a collision, only the components associated with the colliding particles k and ` of the

vector Γ change [10],

~q ′k = ~qk ,

~q ′` = ~q` ,

~p ′k = ~pk −mγ~g − β(~n · ~p)~n ,

~p ′` = ~p` +mγ~g + β(~n · ~p)~n ,

~ω ′
k = ~ωk +

2β
σ

(~n× ~g) ,

~ω ′
` = ~ω` +

2β
σ

(~n× ~g) , (8.6)

where the prime, here and below, refers to the state immediately after the collision. The con-

stant parameters γ = κ/(1 + κ) and β = 1/(1 + κ) control the coupling between translational

and rotational degrees of freedom. If the moment of inertia vanishes (κ → 0 and β → 0) the

translational and rotational degrees of freedom decouple.

Using the general equation, Eq. (11) in the Introduction, the linearization of the collision map

(8.6) yields the collision map for the perturbation vectors δΓ [10],

δ~q ′k = δ~qk +
[
γ~g +

β

m
(~n · ~p)~n

]
δτc ,

δ~q ′` = δ~q` −
[
γ~g +

β

m
(~n · ~p)~n

]
δτc ,

δ~p ′k = δ~pk −mγδ~gc −
β

σ

[
(δ~qc · ~p)~n+ σ(~n · δ~p

)
~n+ (~n · ~p)δ~qc

]
,

δ~p ′` = δ~p` +mγδ~gc +
β

σ

[
(δ~qc · ~p)~n+ σ(~n · δ~p

)
~n+ (~n · ~p)δ~qc

]
,

δ~ω ′
k = δ~ωk +

2β
σ2

[
δ~qc × ~g + σ(~n× δ~gc)

]
,

δ~ω ′
` = δ~ω` +

2β
σ2

[
δ~qc × ~g + σ(~n× δ~gc)

]
, (8.7)
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where δτc = −(δ~q · ~n)/(~p · ~n) is the infinitesimal time shift between the collision of the reference

and the perturbed trajectories, and δ~qc = δ~q+δτc ~p/m corresponds to the shift (in configuration

space) between the collision points of the reference and of the satellite trajectories. Further-

more,

δ~gc =
δ~p

m
+

1
2

[
δ~qc × ~Ω + σ(~n× δ~Ω)

]
.

The three-dimensional maps (8.6) and (8.7) remain valid for the case of planar rough disks. In

this case all position and velocity vectors are placed in the xy-plane, and all angular velocity

vectors are perpendicular to this plane with a single non-vanishing z-component (denoted ωi for

disk i) [10]. Analogous definitions apply to the perturbation vectors.

Since the angular positions do not play any role in the dynamics, they are omitted from the

list of independent variables in Eq. (8.3): If the number of particles is odd, the phase-space

dimension D is also odd (5N). If the boundaries are periodic in x and y, also the number of

vanishing exponents is an odd integer. Since for symplectic systems the conjugate pairing rule

applies [9], the number of vanishing Lyapunov exponents should be even. The appearance of an

odd number of vanishing exponents indicates that the RHDS is not symplectic. This finding will

be confirmed below both numerically and by analytic computation. We shall come back to the

question of the number of vanishing Lyapunov exponents in Sec. 8.5. For the time being, the

number of particles, N , is chosen an even number.

If the angular positions do not play any role in the dynamics whereas the angular velocities do,

a paradox would appear if the system were Hamiltonian. The symplectic structure could not

be satisfied, since the dimension of the phase space is required to be even in order to satisfy

the differential 2-form: the angular velocities would not be counterbalanced by their associated

coordinates, the angular positions. In summary, for the RHDS it can be said that either the

angular velocities do not influence the dynamics at all, or the system is not Hamiltonian. We

show below that the latter is true.

8.3.2 Matrix formulation of the dynamics for RHDS

A: The orientations of the rough disks are excluded

A matrix formulation of the collision maps for the phase- and tangent-space dynamics of

Eqs. (8.6) and (8.7) is given next. For the case of the SHDS, such a procedure was suggested

already in Ref. [16] by de Wijn and van Beijeren, and similarly in Ref. [17]. We assume that

the components of the vectors associated with an individual particle n are arranged following
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a specific order: the position, the translational momentum, and the angular velocity. They are

denoted by

Γ †
n(~q †n , ~p

†
n, ωn) and δΓ †

n(δ~q †n , δ~p
†
n, δωn) ,

in the phase space and the tangent space, respectively. The superscript † means transposition.

In order to simplify the notation, we write down only the rows and columns of the matrices

associated with the two colliding particles k and ` arranged such that k and ` are successive

indices:

Γ † ≡ (· · · ,Γ †
k ,Γ

†
` , · · · ) and δΓ † ≡ (· · · , δΓ †

k , δΓ
†
` , · · · ) . (8.8)

The time evolution consists in a succession of free flights, interrupted by binary collisions between

particles. Let the matrix Z(τ) describe the propagator for the smooth streaming of the whole

system between two successive collisions separated by a time interval τ . It corresponds to a

N ×N - block diagonal matrix, where each block on the diagonal is a 5×5 - dimensional matrix

defined as

Zn(τ) =



1 0 τ 0 0

0 1 0 τ 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

The matrix Z(τ) acts both on Γ and on δΓ. Let the discrete maps M and S govern the trans-

formation at each collision for the phase and tangent space, respectively. They are also block

diagonal matrices, and because of Eq. (8.8) yield

M =


I 0 0

0 Mk` 0

0 0 I

 and S =


I 0 0

0 Sk` 0

0 0 I

 .

The dynamics of the vectors Γ and δΓ, after n collisions, follows from

Γ(t = τζ + · · ·+ τ0) = Z(τζ)MZ(τζ−1) · · ·MZ(τ1)MZ(τ0) Γ(0) ,

δΓ(t = τζ + · · ·+ τ0) = Z(τζ) S Z(τζ−1) · · · S Z(τ1) S Z(τ0) δΓ(0) ,

where the τi are time intervals between successive collisions.

With the notation suggested by Eq. (8.8), the collision matrix in phase space becomes (see
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Eq. (8.6)):

Mk` =



I O ~0 O O ~0

O I − A −~a O A −~a
~0 † −~b † 1− β ~0 † −~b † −β
O O ~0 I O ~0

O A ~a O I − A ~a

~0 † −~b † −β ~0 † −~b † 1− β


, (8.9)

where I and O are the 2× 2 identity and null matrices, respectively, and

A = γ I + β ~n~n † , ~a =
σ

2
mγ~t and ~b † =

2
mσ

β~t † .

~n and ~t are the respective normal and tangent vectors at the impact point of the collision between

the particles referred to with indices k and `. They are defined conventionally as ~n = (~qk−~q`)/σ

and ~t = Dπ/2 ~n , where the matrix Dπ/2 refers to a rotation by an angle π/2 in the anti-clockwise

direction. The linearized collision map in the tangent space follows in an analogous way (see

Eq. (8.7)):

Sk` =



I − B O ~0 B O ~0

−C I −A −~a C A −~a
~c † −~b † 1− β −~c † ~b † −β
B O ~0 I − B O ~0

C A ~a −C I −A ~a

~c † −~b † −β −~c † ~b † 1− β


, (8.10)

where ~p = ~pk − ~p` and ~p⊥ = Dπ/2 ~p, and

~c † =
2

mσ2
β ~p †⊥ ,

B =
γ

~n · ~p

(
~p− σ

2m
Ω~t
)
~n † + β ~n~n † ,

C = −mγ Ω
2

(
Dπ/2 − ~p⊥ ~n

†

~n · ~p

)
+
β ~n · ~p
σ

(
I +

~n ~p †

~n · ~p

)(
I − ~p ~n †

~n · ~p

)
.

After some laborious computation, we find that the determinants for the matrix transformations

M and S are equal to unity,

det (M) ≡ det (Mk`) = 1 and det (S) ≡ det (Sk`) = 1 .

These relations are equivalent to saying that the collisions are phase-volume conserving. This

is a necessary but not sufficient condition to qualify the transformations as symplectic. These

considerations will be discussed in detail in Sec. 8.7. In the Appendix (Sec. 8.8), the matrix

transformation rules for the smooth-hard-disk model are shown. They are directly recovered from
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the rough-hard-disk model for κ = 0, if the angular-velocities are discarded altogether.

The equations in this section are used in the following to construct the time evolution of the

perturbation vectors, both the Gram-Schmidt and covariant vectors, and the respective time-

dependent local Lyapunov exponents. The global exponents are obtained by a time average along

a long trajectory.

B: The orientations of the rough disks are explicitly included

For completeness we give here the collision matrices in the phase and tangent spaces, when

the disk orientations θn are explicitly included. The respective components of the state and

perturbed vectors associated with an individual particle n are arranged as

Γ †
n(~q †n , ~p

†
n, ωn, θn) and δΓ †

n(δ~q †n , δ~p
†
n, δωn, δθn) .

With the notation suggested by Eq. (8.8), the collision matrix in phase space becomes:

Mk` =



I O ~0 ~0 O O ~0 ~0

O I − A −~a ~0 O A −~a ~0
~0 † −~b † 1− β 0 ~0 † −~b † −β 0
~0 † ~0 † 0 1 ~0 † ~0 † 0 0

O O ~0 ~0 I O ~0 ~0

O A ~a ~0 O I − A ~a ~0
~0 † −~b † −β 0 ~0 † −~b † 1− β 0
~0 † ~0 † 0 0 ~0 † ~0 † 0 1


. (8.11)

The linearized collision map in the tangent space assumes the form (see Eqs. (8.7) and (8.13)):

Sk` =



I − B O ~0 ~0 B O ~0 ~0

−C I −A −~a ~0 C A −~a ~0

~c † −~b † 1− β 0 −~c † ~b † −β 0
~h † ~0 † 0 1 −~h † ~0 † 0 0

B O ~0 ~0 I − B O ~0 ~0

C A ~a ~0 −C I −A ~a ~0

~c † −~b † −β 0 −~c † ~b † 1− β 0
~h † ~0 † 0 0 −~h † ~0 † 0 1


, (8.12)

where ~h † =
2β
σ

(
~t · ~p
m

− σ

2
Ω
)

~n †

~n · ~p
.
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8.4 Covariant versus Gram-Schmidt vectors

We consider two-dimensional fluid-like systems consisting of N = 88 hard disks at a density

ρ = 0.7. The box with periodic boundary conditions has an aspect ratio A = 2/11, the same

value as in our previous work on smooth hard disks (Chap. 3 and Ref. [18]), to facilitate com-

parison.

For the computation of the covariant vectors according to the algorithm of Ginelli et al. [2, 18,

19] the system was first relaxed forward in time for tr = 105τ time units. Then, the Gram-

Schmidt vectors were stored for ts = 5 · 104τ time units. Finally, the system was iterated

backward in time, and covariant vectors were computed for times in the interval [tr, tr + 0.9 ts].

Here, τ = 0.6 is the time difference between two successive Gram-Schmidt re-orthonormalization

steps.

For κ > 0 (three degrees of freedom per particle), the energy per particle is taken 1.5 in our

reduced units. For κ = 0 (two degrees of freedom per particle), the energy per particle is set to

unity. With this choice, a comparison between the SHDS and RHDS is meaningful.

Fig. 8.1 shows the Lyapunov spectra computed with the covariant vectors for the RHDS with

various values of the coupling parameter κ ∈ {0, 0.1, 0.2, 0.4, 1}. Fig. 8.2 shows an enlargement

of the central part of these spectra. Conjugate exponent pairs are plotted with the same index

i on the abscissa, where now i ∈ {1, ..., 5N/2}. The open symbols are computed from the GS

vectors in the forward direction of time, the full ones from the covariant vectors during the

time-reversed iteration. Considering the size of the system (N = 88), the agreement is excellent.

The figure clearly displays the conjugate pairing symmetry λi = λ5N+1−i expected for time

reversible energy-conserving systems.

For κ > 0 and periodic boundaries in both x- and y-directions (as is the case for the Figs. 8.1

and 8.2), there are 6 vanishing exponents, if the number N of particles is even. If this number is

odd, there are 7 vanishing exponents, which is a consequence of the conjugate pairing symmetry

and the fact that the phase-space dimension is odd as well (5N), since the particle orientations

do not contribute. We shall come back to this point in Sec. 8.5. However, for κ = 0, one obtains

N additional vanishing Lyapunov exponents due to the N angular-disk velocities {ωn}N
n=1, which

are invariants of the system in this case. The discussion of the vanishing Lyapunov exponents is

postponed to Sec. 8.5.

We can see in Fig. 8.2 the influence exerted by the moment of inertia I on the spectra. For I = 0

corresponding to κ = 0, the steps in the spectrum due to degenerate exponents is a clear indica-

tion for the presence of Lyapunov modes. According to the classification in [20], the steps with a
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Figure 8.1 : Lyapunov spectra for an equilibrium system consisting of a gas of 88 rough hard disks for
various values of the coupling parameter (κ ∈ {0, 0.1, 0.2, 0.4, 1}). The spectra are calculated with the
help of the covariant vectors. Reduced indices 2i/5N are used on the abscissa. Although the spectrum is
defined only for integer i, lines are drawn for clarity.
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Figure 8.2 : Enlargement of the Lyapunov spectra for the small exponents (in absolute value) of Fig. 8.1.
Only the spectra for κ ∈ {0, 0.1, 1} are shown. The open symbols indicate exponents computed from
the GS vectors, the full symbols exponents obtained from the covariant vectors. Steps can clearly be
observed, the modes disappear progressively when κ grows and do not exist any more for a certain value
of κ between 0.1 and 0.2.
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twofold degeneracy are transverse (T ) modes – T (1, 0) and T (2, 0) from right to left in Fig. 8.2.

Similarly, the steps with a fourfold degeneracy of the exponents are longitudinal-momentum

(LP ) modes – LP (1, 0) and LP (2, 0) again from right to left. The arguments (nx, ny) account

for the number of periods of the sinusoidal patterns in the x- and y-directions. Since our simula-

tion cell is rather narrow, only modes with wave vectors k parallel to the x-axis of the (periodic)

cell appear, leaving 0 for the second argument. The modes for covariant vectors of smooth hard

disks was studied in Chap. 3 and Ref. [18]. As usual, “transverse” and “longitudinal” refer to

the spatial polarization with respect to the wave vector k of the wave-like pattern. As is evident

from Fig. 8.2, the mode structure in the spectra gradually disappears if κ is increased. This must

be interpreted as a consequence of rotation-translation coupling.

8.4.1 Angles between the position and momentum parts of perturbation vec-

tors

Next, we show how differently the GS and covariant vectors span the tangent space. We consider,

for each Lyapunov index i, the angle θi between the spatial part and the translational-momentum

part of the perturbation vector δΓi – either a Gram-Schmidt vector gi or a covariant vector vi.

Defining the 2N -dimensional position vectors δqi = (δ~q 1
i , . . . δ~q

N
i ) and the 2N -dimensional

momentum vectors δpi = (δ~p 1
i , . . . δ~p

N
i ), we compute cos θi = (δqi · δpi)/(‖δqi‖ ‖δpi‖). Note

that, for the reduced units we use throughout, the positions and momenta are dimensionless.

The elements of the perturbation vectors consisting of the N angular velocities of the disks are

not considered.

In Fig. 8.3, the time average of cos θi is shown as a function of the Lyapunov index i for various

values of the coupling parameter, κ ∈ {0, 0.1, 1}. As a reference, the respective result for the

SHDS is also shown in the bottom-right panel of Fig. 8.3. For the covariant vectors (red curves)

one immediately observes for κ > 0 that the positive branch is anti-symmetric with respect to

the conjugate negative branch,

〈cos (θD+1−i(t))〉 = −〈cos (θi(t))〉 ∀ i ∈ {1, . . . , D/2} .

The covariant vectors evolve according to the natural tangent bundle and obey the time-reversal

symmetry prescribed by the respective dynamical rules. That means that the i-th expanding

vector vi in the time-forward direction becomes the conjugate contracting vector −vD+1−i in

the time-backward direction. The 〈cos θ〉 for the GS vectors (blue curves) does not show this

time-reversal symmetry. Whereas the deviations for κ = 0.1 outside the range 0.4 ≤ i/5N ≤ 0.6

are comparatively small (bottom-left panel of Fig. 8.3), they are pronounced for κ = 1 (top-



8.4. Covariant versus Gram-Schmidt vectors 169

〈 cos θ 〉

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

i / 5N

κ = 1.0

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

i / 5N

κ = 0.1

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

i / 5N

κ = 0.0

-1.0

-0.5

 0.0

 0.5

 1.0

0.00 0.25 0.50

i / 4N

0.50 0.75 1.00

i / 4N

(SHDS)

//

Figure 8.3 : Time-averaged value of cos(θ) = (δq · δp)/(‖δq‖ ‖δp‖) as a function of the Lyapunov
index i for a system of N = 88 rough hard disks, for three different values of the coupling parameter
κ ∈ {0, 0.1, 1}, as well as for a standard system of N = 88 smooth hard disks. The density is ρ = 0.7
and the aspect ratio is A = 2/11. Here, δq and δp are the to 2N -dimensional vectors of all position
perturbations and of all transversal-momentum perturbations respectively, for GS vectors g (blue line)
and covariant vectors v (red line). The case of smooth hard disks is treated in the bottom-right panel.

left panel of Fig. 8.3). This is to be expected due to the fact that the GS vectors do not obey

time-reversal symmetry in general as outlined in detail in Chap. 5 and Ref. [19].

All these symmetry considerations strictly apply only to the stable and the unstable branches

of the Lyapunov spectrum, where there is exponential contraction or expansion of the pertur-

bations. The central manifolds in Fig. 8.3 (in the range 0.4 ≤ i/5N ≤ 0.6 for RHDS at κ = 0,

and in the close vicinity of i/5N ∼ 0.5 for the other cases) are explicitly excluded and should

be ignored.

It is interesting to note that the simple SHDS (bottom-right panel in Fig. 8.3) shows anti-

symmetrical behavior of 〈cos θ〉 both for the covariant vectors (as expected) and for the GS

vectors. For the latter, this can only be a consequence of the symplectic symmetry of the GS

vectors for Hamiltonian systems [19, 21] (see also Chap. 5). This was explicitly stated already
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in Ref. [8],

cos (θD+1−i(t)) = − cos (θi(t)) ∀ i ∈ {1, . . . , D/2} ,

for any instant of time t (which is a direct consequence of Eq. (8.19) in Sec. 8.7). Therefore,

also the time-averaged spectra are anti-symmetric as displayed in the bottom-right panel of

Fig. 8.3.

However, the rough-hard-disk model for κ = 0, keeping the angular velocity variables included in

the GS re-orthonormalization process, does not show this symmetry (top-right panel of Fig. 8.3).

This is not a numerical artefact since the GS vectors, which do not display the expected symme-

try, are used in the construction of the covariant vectors, which lead to the expected symmetry.

Thus, it is not sufficient to simply put κ to 0 for rough disks to generate the same tangent

space dynamics as found for SHDS. It is also necessary to explicitly exclude the redundant

angular velocity components of the perturbation vectors from the GS re-orthonormalization

procedure.

8.4.2 Localization of perturbation vectors

As a second example, we consider the most common localization measure for the perturbation

vectors proposed by Taniguchi and Morriss [9], but here we use this measure in a slightly modified

way. The aim is to better understand, how the GS vectors and the covariant vectors span the

tangent space.

For each Lyapunov index we introduce two different normalized measures for the perturbation

a particle n contributes to the full perturbation vector δΓ,

µ(q, p, ω)
n =

δ~qn
2 + δ~pn

2 + δωn
2∑N

k=1

(
δ~qk

2 + δ~pk
2 + δωk

2
) , µ(q, p)

n =
δ~qn

2 + δ~pn
2∑N

k=1

(
δ~qk

2 + δ~pk
2
) .

The former is used only for the RHDS, whereas the latter can be used for RHDS and SHDS.

Since the conditions
∑N

n=1 µn = 1 and 0 ≤ µn ≤ 1 are satisfied, the quantity µn acts like

a probability measure of the particle n contributing to the perturbation δΓ. The localization

W is defined according to the time-averaged entropy-like quantity, S, for the “probability”

distributions µn:

W =
1
N

exp [S] , S = −

〈
N∑

n=1

µn lnµn

〉
.

W is bounded, 1/N ≤W ≤ 1, where the lower and upper bounds apply to complete localization

and delocalization in physical space, respectively.
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Figure 8.4 : Normalized localization W for the full GS vector set
(
(GS)W (q, p, ω): blue, (GS)W (q, p): green

)
and for the full covariant vector set

(
(cov)W (q, p, ω): red, (cov)W (q, p): gray

)
as a function of the Lyapunov

index i for a system of N = 88 rough hard disks at three different values of the coupling parameter
(κ ∈ {0, 0.1, 1}). Equivalent results for the SHDS with N = 88 are shown in the bottom-right panel. The
density ρ = 0.7, and the aspect ratio A = 2/11.

In Fig. 8.4, we show W as a function of the Lyapunov indices i. As in Sec. 8.4.1 the range

of the central manifold in the center should be ignored. We compare W for the full set of GS

vectors (blue curves) to that of all covariant vectors (red curves) for the RHDS at different

values of the coupling parameter, κ ∈ {0, 0.1, 1}. As a reference, we show the results for the

SHDS in the bottom-right panel. Not too surprisingly, the localization is stronger for covariant

vectors, whose directions in tangent space are solely determined by the tangent flow and are not

affected by re-orthonormalization constraints. An interesting feature is the lack of symmetry

for the GS vectors: (GS)Wi 6= (GS)WD+1−i. However, the symmetry for the covariant vectors

persists: (cov)Wi = (cov)WD+1−i. It also exists for the GS vectors of the SHDS (bottom-right

panel of Fig. 8.4). The explanation of this symmetry is the same as the explanation furnished in

Sec. 8.4.1 to understand the anti-symmetry and the lack of symmetry of 〈cos θ〉 for the covariant

vectors and GS vectors, respectively.

For κ = 0, the localization spectrum for GS vectors agrees with that for the SHDS only on the
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stable branch. This confirms our conclusions already reached for 〈cos θ〉: It is not sufficient to

put κ = 0 and keep the (redundant) angular-velocity components of the perturbation vectors

in the GS procedure included to recover the smooth-hard-disk case. These components need to

be excluded from the GS re-orthonormalization step. Most surprisingly, even the inclusion of

these components for κ = 0 in the RHDS generates covariant localization measures, which are

identical to those of SHDS. This nicely emphasizes the physical significance of the covariant

vectors as compared to GS vectors, which may be considered as a more mathematical tool for

the computation of global exponents.

The fact that (cov)W (q,p,ω) < (cov)W (q,p) in the top-right panel of Fig. 8.4 and (cov)W (q,p) for

RHDS (κ = 0) agrees with (cov)W (q,p) for SHDS suggests that the rotational velocities are

irrelevant for this special case. We admit that it is counterintuitive that they are still relevant

for the GS case (producing the asymmetry), although the GS vectors are subsequently used to

generate the covariant data (which are symmetric).

8.4.3 Tangent space projections

Motivated to quantify how translation and rotation affects the dynamics, we consider projec-

tions of the perturbation vectors δΓ onto the coordinate, the transversal-momentum and the

rotational-velocity subspaces. We introduce five such measures, where the index n enumerates

the disks, n = 1, . . . , N :

η
(q, p, ω)
X =

〈 ∑N
n=1 δ

~Xn
2∑N

k=1

(
δ~qk

2 + δ~pk
2 + δωk

2
)〉 , where

{
δ ~Xn

}N

n=1
≡


{δ~qn}N

n=1 ,

or {δ~pn}N
n=1 ,

or {δωn}N
n=1 .

η
(q, p)
Y =

〈 ∑N
n=1 δ

~Yn
2∑N

k=1

(
δ~qk

2 + δ~pk
2
)〉 , where

{
δ ~Yn

}N

n=1
≡

 {δ~qn}N
n=1 ,

or {δ~pn}N
n=1 .

Obviously the first three of these measures involving {δ ~Xn}N
n=1 are useful only for the RHDS,

whereas the remaining quantities may be used also for SHDS.

In Fig. 8.5 we plot these measures for the Gram-Schmidt vectors in the panels on the left-hand

side, and for the covariant vectors in the panels on the right-hand side. We ask the reader again

to ignore the range of the central manifold in the center of all panels (0.4 ≤ i/5N ≤ 0.6) for

the RHDS due to the non-exponential growth/decay of perturbations in that regime. From top

to bottom the panels are for κ = 1, 0.1, and κ = 0. The panels at the bottom are for the

smooth-hard-disk model, which was already discussed in Chap. 3 and Ref. [18].
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Figure 8.5 : Mean squared projections for the complete set of GS vectors (left-hand panels) and covariant
vectors (right-hand panels) as a function of the Lyapunov index i. Parameters: N = 88, κ ∈ {1, 0.1, 0} as
indicated by the labels. The panels in the bottom row are for the smooth-hard-disk system for N = 88.



174 Chapter 8. How rotation breaks the Hamiltonian character of rough-hard-disk systems

Let us consider the simple case of the SHDS in the bottom-row panels of Fig. 8.5. One observes

for the Gram-Schmidt cases η(q,p)
q and η

(q,p)
p for conjugate pairs i and 5N + 1 − i are of equal

magnitude but different sign. This anti-conjugation also persists in the central manifold. We refer

to Fig. 3.6 in Chap. 3 for more details. Since the GS vectors display symplectic symmetry but not

time-reversal symmetry, the anti-conjugation must be a consequence of the symplectic phase-

space structure for this model. In the rough-hard-disk case, even for κ = 0, this anti-conjugation

does not exist. This is again a strong evidence that the RHDS is not symplectic.

However, in the covariant case for the SHDS (bottom-right panel of Fig. 8.5), η(q,p)
q and η

(q,p)
p

are conjugated with equal sign. This was already observed in Fig. 3.7 of Chap. 3 (and Ref. [18]).

This conjugation is a consequence of the time-reversal symmetry displayed by the covariant

vectors. Since time-reversal invariance also persists for strictly rough hard disks (κ > 0), the

squared phase-space projections also show the conjugation property for κ > 0 (panels on the

right-hand side of Fig. 8.5).

For the covariant case η(q,p)
q (green lines) and η(q,p)

p (gray lines) of the RHDS with κ = 0 (including

the angular velocity part in the Gram-Schmidt re-orthonormalization procedure, but excluding

these variable in the definition of η) agree with the respective quantities for the strict SHDS, as

expected (panels on the right-hand side). For the Gram-Schmidt case (panels on the left-hand

side) they only agree for the stable branch (i/5N > 0.6).

8.5 Null subspace and vanishing exponents for RHDS

The subspace of the tangent space associated with the vanishing exponents is of special interest.

Let us consider some experimental results first. In Fig. 8.6 the Lyapunov spectra of a rough-

hard-disk system consisting of an odd number of particles, namely N = 3 disks, are shown. The

panels in the top row are for periodic boundary conditions, which we exclusively used so far. The

panels in the bottom row, however, are for reflecting boundary conditions, for which the tangent

vectors change according to Eq. (20) of Ref. [5] for a reflection at the boundary. The essential

difference is that translational momentum conservation does not apply in this case (both in x-

and y-directions), which results in a reduction of the vanishing exponents by 4 with respect to

the periodic-boundary case. The panels on the left-hand side of Fig. 8.6 include the orientation

angles {θn}N
n=1 in the list of independent variables in Eq. (8.3) and the respective perturbations

{δθn}N
n=1 in Eq. (8.5). Although the {θn}N

n=1 do not affect the dynamics in the phase space at all

(as discussed further below), the associated perturbations {δθn}N
n=1 contribute to the evolution

of the tangent bundle since they take part in the GS re-orthonormalization. At the collision of
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Figure 8.6 : Lyapunov spectrum of the RHDS, with N = 3 disks, for the cases of periodic and reflecting
boundary conditions, where the orientation angles of the disks are either included or excluded from the
phase-space and tangent-space dynamics.
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Figure 8.7 : As for Fig. 8.6, with N = 4 disks.
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particles k and ` these perturbation components change according to [5]

δθ ′k = δθk − 2β
σ (~n× ~g) δτc

δθ ′` = δθ` − 2β
σ (~n× ~g) δτc

 (8.13)

which augment the Eqs. (8.7) in this case. The panels on the right-hand side of Fig. 8.6 are for the

standard representation of the RHSD without the explicit consideration of the disk orientations

{θn}N
n=1 (see Eqs. (8.6) and (8.7)).

The spectra in the analogous Fig. 8.7 are for an even number of disks, N = 4.

A: Projection matrix for the case excluding the orientation angles

(N = 4, periodic boundary conditions)

The central manifold is a consequence of the intrinsic continuous symmetries, which leave the

Lagrangian and, thus, the equations of motion invariant. Our two-dimensional system with pe-

riodic boundaries provides three continuous symmetries: homogeneity of space (i.e. invariance

with respect to space translations in two independent directions) and the homogeneity of time

(i.e. invariance with respect to time translation). Each of these symmetries generates one con-

servative quantity [22]. Each symmetry produces two vector fields with sub-exponential growth

(or decay) and, therefore, gives rise to two vanishing Lyapunov exponents [23]. The six vectors

span, at any phase-space point Γ, a six-dimensional subspace N (Γ) of the tangent space TXΓ,

which is referred to as null subspace or central manifold. This subspace is covariant, but is not

orthogonal to the stable and the unstable subspaces. With the 5N components of the state

vector arranged as

Γ =
(
q1x, q

1
y , . . . , q

N
x , q

N
y ; p1

x, p
1
y, . . . , p

N
x , p

N
y ; ω1, . . . , ωN

)
,

the components of an arbitrary tangent space vector δΓ are arranged accordingly:

Γ =
(
δq1x, δq

1
y , . . . , δq

N
x , δq

N
y ; δp1

x, δp
1
y, . . . , δp

N
x , δp

N
y ; δω1, . . . , δωN

)
.

The six orthogonal generating vectors of the continuous symmetries are written as [20]

e1 =
(
p1

x, p
1
y, . . . , p

4
x, p

4
y ; 0, 0, . . . , 0, 0 ;0, 0, 0, 0

)
/A

e2 =
(

1, 0, . . . , 1, 0 ;0, 0, . . . , 0, 0 ;0, 0, 0, 0
)
/
√
N

e3 =
(

0, 1, . . . , 0, 1 ;0, 0, . . . , 0, 0 ;0, 0, 0, 0
)
/
√
N
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e4 =
(
0, 0, . . . , 0, 0 ; p1

x, p
1
y, . . . , p

4
x, p

4
y ; Iω1, Iω2, Iω3, Iω4

)
/B

e5 =
(
0, 0, . . . , 0, 0 ; 1, 0, . . . , 1, 0 ; 0, 0, 0, 0

)
/
√
N

e6 =
(
0, 0, . . . , 0, 0 ; 0, 1, . . . , 0, 1 ; 0, 0, 0, 0

)
/
√
N

where A and B are normalization constraints. The orthogonality arises from the fact that the

total translational momenta in x- and y-directions are set to zero and are conserved. The vector

e1 corresponds to a shift of the time origin, e4 to a change of energy, e2 and e3 to a uniform

translation of the origin in the x- and y-directions, respectively, and e5 and e6 to a uniform

perturbation of the translational momentum in the x- and y-directions, respectively. The six

vanishing Lyapunov exponents are located in the center of the Lyapunov spectrum with indices

5N/2− 3 ≤ i ≤ 5N/2 + 2 (where N is even).

The projection matrices α and β of the GS and covariant vectors onto this natural basis, are

defined by

αi,j = gi · ej ; βi,j = vi · ej ; ∀ j ∈ {1, . . . , 6} , i ∈ {5N/2− 2, . . . , 5N/2 + 3} .

A small system is sufficient to study the general properties of the null subspace. We consider

only N = 4 rough hard disks in a periodic box, which is relaxed for tr = 105 time units, followed

by a forward and backward iteration lasting for ts = 104 time units. The initial conditions for

the backward iteration are vi(tr + ts) = gi(tr + ts) for i = 1, · · · , 5N(= 20). See Sect. 3.5.4 (or

Ref. [18]) for a discussion of this point. The projections at the time tr are given in Table 8.1 for

the GS vectors, in Table 8.2 for the covariant vectors.

The covariant and Gram-Schmidt vectors are different. The six orthogonal GS vectors {gi ; 5N/2−

3 ≤ i ≤ 5N/2+2} do not span the null subspace (the squared elements for each rows do not add

up to unity in Table 8.1). The vectors e2, e3, e5 and e6 are entirely included in the subspace

spanned by these six orthogonal GS vectors (the squared elements for the respective columns

do add to unity in Table 8.1), but the vectors e1 and e4 are not. Thus, the null subspace

spanned by {ej}6
j=1 does not agree with the subspace spanned by the orthogonal GS vectors

{gi ; 5N/2− 3 ≤ i ≤ 5N/2 + 2}, since the latter is orthogonal to the stable and unstable sub-

spaces by construction, but the null subspace is not.

In contrast, the six non-orthogonal covariant vectors {vi ; 5N/2 − 3 ≤ i ≤ 5N/2 + 2} correctly

span the null subspace (in Table 8.2). The components of the configuration part {βi,j ; j = 2, 3}

are equivalent to the corresponding component of the momentum part (i.e. βi,j+3). They have

(almost) the same mantissa but differ by a factor of 105 or 104. These factors are related to

the duration of the relaxation phase tr = 105 and of the forward-backward iteration time ts =

104.
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Table 8.1 : RHDS for N = 4 disks: Instantaneous projection matrix α of GS vectors (for i ∈
{5N/2 − 2, . . . , 5N/2 + 3}) onto the natural basis {ej , 1 ≤ j ≤ 6} of the null subspace. We use a
coupling parameter κ = 0.2. The powers of 10 are given in square brackets.

i αi,1 αi,2 αi,3 αi,4 αi,5 αi,6
P

j(αi,j)
2

5N/2 − 2 -0.9902[-1] -0.4653 -0.8689 -0.5300[-5] -0.4653[-5] -0.8689[-5] 0.9813
5N/2 − 1 0.5488 -0.3529 0.7182[-2] 0.2939[-4] -0.3529[-5] 0.7195[-7] 0.4258

5N/2 0.1818 0.8118 -0.4950 0.9690[-5] 0.8117[-5] -0.4951[-5] 0.9370
5N/2 + 1 0.2281[-4] 0.8248[-7] 0.2534[-6] -0.8068 -0.1324[-1] -0.2284[-1] 0.6517
5N/2 + 2 0.5757[-6] -0.7350[-5] -0.6776[-5] -0.2035[-1] 0.7350 0.6776 0.9998
5N/2 + 3 0.1785[-6] 0.6779[-5] -0.7351[-5] -0.6310[-2] -0.6779 0.7351 1.0000P

i(αi,j)
2 0.3441 1.0000 1.0000 0.6514 1.0000 1.0000

Table 8.2 : RHDS for N = 4 disks: Instantaneous projection matrix β of covariant vectors (for i ∈
{5N/2− 2, . . . , 5N/2 + 3}) onto the natural basis {ej , 1 ≤ j ≤ 6} of the null subspace. We use a coupling
parameter κ = 0.2. The powers of 10 are given in square brackets.

i βi,1 βi,2 βi,3 βi,4 βi,5 βi,6
P

j(βi,j)
2

5N/2 − 2 -0.2803 -0.4532 -0.8462 -0.5161[-5] -0.4532[-5] -0.8462[-5] 1.0000
5N/2 − 1 0.9747 -0.2233 -0.8146[-2] 0.1796[-4] -0.2233[-5] -0.8139[-7] 1.0000

5N/2 0.4349 0.7688 -0.4688 0.7971[-5] 0.7688[-5] -0.4689[-5] 1.0000
5N/2 + 1 -0.9982 -0.3016[-1] -0.5204[-1] 0.1838[-3] 0.3016[-5] 0.5204[-5] 1.0000
5N/2 + 2 -0.6617[-2] -0.7350 -0.6780 0.1218 0.7350[-4] 0.6780[-4] 1.0000
5N/2 + 3 -0.2049[-2] 0.6780 -0.7351 0.3781 -0.6779[-4] 0.7351[-4] 1.0000

The explanation for this behavior is obtained by a repeated explicit application of the linearized

maps for the free streaming and consecutive collision of particles [24, 5] to the six basis vectors

{ej , 1 ≤ j ≤ 6}. Similar to SHDS [18], one finds that the tangent flow Dφt : TXΓ(0) → TXΓ(t)

acts on the six orthogonal vectors spanning the null subspace according to

Dφt
Γ0
ej (Γ0) = ej (Γt) , (8.14)

Dφt
Γ0
ej+3 (Γ0) = t ej (Γt) + ej+3 (Γt) , (8.15)

for j ∈ {1, 2, 3}. And finally, one has βi,j ≈ βi,j+3 ts or βi,j ≈ βi,j+3 tr for j = 2, 3, since, during

the backward iteration, the vectors e2(t), e3(t), e5(t) and e6(t) are entirely included in the

subspace spanned by the six orthogonal vectors {gi(t) ; 5N/2 − 3 ≤ i ≤ 5N/2 + 2}. One also

has βi,1 ≈ βi,4 (0.543 ts) or βi,1 ≈ βi,4 (0.543 tr), since the vectors e1(t) and e4(t) are not entirely

included in the latter subspace, but the factor 0.543 cannot be easily related to the vectors e1(tr)

and e4(tr).

Eq. (8.14) shows that the subspaces N1 = span{e1}, N2 = span{e2} and N3 = span{e3}

are separately covariant. Eq. (8.15) implies that any perturbation vector with non-vanishing

components parallel to e4, e5, or e6 will rotate towards e1, e2, and e3. It follows thus that

the null subspace N (Γ) is covariant and, more precisely, that N can be further decomposed

into the three two-dimensional covariant subspaces Np = span{e1, e4}, Nx = span{e2, e5}, and

Ny = span{e3, e6} [18].
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We conclude that for the RHDS the null subspace is not orthogonal to the stable and unstable

subspaces. Only four of its directions associated with the homogeneity of space (or momentum

conservation) are orthogonal to the stable and unstable subspaces. One might be tempted to

argue that such a behavior is caused by the fact that the orientation angles of the particles have

not been considered at all. In the following we treat this most general representation and show

that this is not the case.

B: Projection matrix for the case including the orientation angles

(N = 4, periodic boundary conditions)

Now the state vector has 6N components which are arranged according to

Γ =
(
q1x, q

1
y , . . . , q

4
x, q

4
y ; p1

x, p
1
y, . . . , p

4
x, p

4
y ; ω1, ω2, ω3, ω4 ; θ1, θ2, θ3, θ4

)
.

Similarly, the perturbation vectors become

δΓ =
(
δq1x, δq

1
y , . . . , δq

4
x, δq

4
y ; δp1

x, δp
1
y, . . . , δp

4
x, δp

4
y ; δω1, δω2, δω3, δω4 ; δθ1, δθ2, δθ3, δθ4

)
.

In addition to the continuous symmetry we have considered before, one has to account for the

fact that the Lagrangian does not depend on the orientation angles of each particles. Hence, the

symmetry transformation (~q, ~p, ω, θ) 7→ (~q, ~p, ω, θ + ε θ) gives rise to a generator (~0,~0, 0, 1) for

each particle. The 6 +N vectors spanning the null subspace become (here, N = 4):

e′1 =
(
p1

x, p
1
y, . . . , p

4
x, p

4
y ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; ω1, ω2, ω3, ω4

)
/A

e2 =
(

1, 0, . . . , 1, 0 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 0, 0, 0
)
/2

e3 =
(

0, 1, . . . , 0, 1 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 0, 0, 0
)
/2

e4 =
(

0, 0, . . . , 0, 0 ; p1
x, p

1
y, . . . , p

4
x, p

4
y ; Iω1, Iω2, Iω3, Iω4 ; 0, 0, 0, 0

)
/B

e5 =
(

0, 0, . . . , 0, 0 ; 1, 0, . . . , 1, 0 ; 0, 0, 0, 0 ; 0, 0, 0, 0
)
/2

e6 =
(

0, 0, . . . , 0, 0 ; 0, 1, . . . , 0, 1 ; 0, 0, 0, 0 ; 0, 0, 0, 0
)
/2

e7 =
(

0, 0, . . . , 0, 0 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 1, 0, 0, 0
)

e8 =
(

0, 0, . . . , 0, 0 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 1, 0, 0
)

e9 =
(

0, 0, . . . , 0, 0 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 0, 1, 0
)

e10 =
(

0, 0, . . . , 0, 0 ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 0, 0, 1
)

where A and B are normalization factors. e′1 follows from the invariance with respect to time

translation, e4 is a consequence of energy conservation, e2, e3, e5 and e6 follow from the ho-
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mogeneity of space (invariance with respect to space translation and momentum conservation),

and e7 to e10 are a consequence of the invariance with respect to individual angular shifts. One

notices that the vectors e2 to e10 are pairwise orthonormal, but e′1 is not. In order to generate

an orthonormal basis of the central manifold, it is enough to consider a GS orthonormalization

only for e′1 (since the other vectors are already orthonormal),

e1 =
e′1 −

∑10
j=7(e

′
1 · ej) ej

‖e′1 −
∑10

j=7(e
′
1 · ej) ej‖

,

which yields

e1 =
1√∑4

k=1(~p k)2

(
p1

x, p
1
y, . . . , p

4
x, p

4
y ; 0, 0, . . . , 0, 0 ; 0, 0, 0, 0 ; 0, 0, 0, 0

)
.

e1 replaces e′1 in the equations above. The angle cosines of the projection of all Gram-Schmidt

vectors onto this basis is shown in the upper part of Table 8.3, the corresponding projection

matrix for the covariant vectors is shown in the lower part of this table. These data were

obtained in a completely analogous way as the results in the Tables 8.1 and 8.2. A comparison

of Table 8.3 with Tables 8.1 and 8.2 for the case without orientation angles shows that all the

conclusions previously obtained are confirmed. In particular, it is shown below that the null

subspace spanned by the orthonormal vector set {e1, . . . , e10} is not perpendicular to the stable

and unstable subspaces of the system.

8.6 Transversality versus order violation in the local Lyapunov

spectrum

The dynamics of the tangent bundle is characterized by a complete set of dissociated sub-bundles,

which are defined by the Oseledec splitting,

TXΓ = Eu ⊕ N ⊕Es ,

at any point Γ in phase space. Here, Eu = v1 ⊕ · · · ⊕ vD/2−3 and Es = vD/2+4 ⊕ · · · ⊕ vD are

the covariant unstable and stable subspaces, respectively, and N is the covariant null subspace

(the dimension D of the phase space equals 5N for RHDS and 4N for SHDS). The multiplicative

ergodic theorem provides us with the following inequalities for the global Lyapunov spectrum

λ1 > · · · ≥ λD/2−3 >
[
λ(0)

]
> λD/2+4 ≥ · · · > λD , (8.16)
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where the equal sign relates to degenerate exponents, and
[
λ0
]

= 0 is sixfold degenerate (assum-

ing energy conservation and momentum conservation in x- and y-directions). These inequalities,

which guarantee a hierarchy of the instabilities, imply also a certain dynamical isolation in the

tangent bundle.

The order in Eq. (8.16) may be different, if the local Lyapunov exponents are averaged over a

finite time (instead of an infinite time for the global exponents) to which we refer as “loss of

isolation”. It may be expressed in terms of the order violation probability for the (finite-time

averaged) local Lyapunov spectrum, which is the probability that the (finite-time averaged)

local Lyapunov exponent Λ τ
j is smaller than the (finite-time averaged) local Lyapunov exponent

Λ τ
i for which the global exponents obey λj ≥ λi. Therefore, a spectrum is not violated, if all

probabilities P (Λ τ
j < Λ τ

i ) = 0 for all times τ > τc, where τc > 0. It implies that the angles

between the Oseledec subspaces are bounded away from zero [25], which indicates uniform

transversality for the respective subspaces. These considerations may be applied to the angles

between all possible covariant vector pairs.

In Fig. 8.8 we show contour plots of P (covΛ τ
j <

covΛ τ
i ), τ = 0.01, for all Lyapunov indices j < i

(provided λj ≥ λi), and compare results for rough hard disks (top) with parameters N = 80,

κ = 0.1 and ρ = 0.7, with analogous results for smooth hard disks with parameters N = 100

and ρ = 0.7. The averaging period τ = 0.01 is small enough such that time averaging does not

affect the local exponents much, and they can also be considered as “instantaneous” measures:
covΛ 0.01

i ≈ covΛ i, for all i. 105 such intervals were used for the construction of each contour

plot. The regime UU , for which i ∈ [2, 187] and j ∈ [1, i − 1], refers to vector pairs from the

unstable manifold and is located in a triangle in the upper right corner of these plots. The

regime SS, for which i ∈ [205, 400] and j ∈ [204, i − 1], refers to vector pairs from the stable

manifold and is located in a triangle in the upper left corner of these plots. The regime SU , for

which i ∈ [204, 400] and j ∈ [1, 187], refers to the case where vi is a covariant vector from the

stable manifold and vj from the unstable manifold. This regime is located in a square in the

center of the plot, which separates SS from UU . Vector pairs involving at least one vector from

the central manifold are located in narrow stripes in between these domains. A fundamental

difference between the rough and smooth disk case may be observed.

For smooth disks (SHDS) in Fig. 8.8, the violation probability P vanishes for all vector pairs

from SU , which conforms our previous results that the minimum angle between the stable

and unstable subspaces is well bounded away from zero, at least for finite N (see Chap. 3

and Ref. [18]). An entanglement of covariant vectors and, hence, a loss of isolation of covariant

subspaces due to an order violation of local exponents only occurs within the stable and unstable

manifolds. This causes the finite numbers for violation probability P in UU and SS. Our results
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P
(

covΛ
0.01

j < covΛ
0.01

i

)
Figure 8.8 : Violation probability contour plot for covariant local exponents for averaging times τ =
0.01. Top panel: rough-hard-disk system (κ = 0.1). Bottom panel: smooth-hard-disk system. The order
violation probability P (covΛ

0.01

j < covΛ
0.01

i ) is shown for all Lyapunov index pairs (i, j) for which the
global exponents obey λj ≥ λi (such that j < i).

〈 |vj · vi| 〉

Figure 8.9 : Contour plot of 〈|vj · vi|〉 for all Lyapunov index pairs (i, j) such that j < i. Top panel:
rough-hard-disk system (κ = 0.1). Bottom panel: smooth-hard-disk system.
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also imply that the stable and unstable manifolds have the same dimension at all points in phase

space.

For rough disks (RHDS), however, the violation probability varies rather smoothly in Fig. 8.8

and does not vanish for vector pairs from SU . This means that stable covariant vectors are

entangled with unstable covariant vectors and that the respective subspaces are not transversal

to each other. Tangencies occur for pairs from the domains UU , SS and SU . This is a new result.

It has been argued that the appearance of these tangencies is responsible for the disappearance of

Lyapunov modes in particle systems [25]. Our results confirm this conjecture (see Fig. 8.2).

Related and complementary information may be gained by considering the scalar products

between covariant vector pairs. In Fig. 8.9 we show – for the same systems as before – contour

plots of 〈|vj · vi|〉 for all j < i. The same domains UU , SS and SU may be distinguished.

Let us again consider the SHDS first (bottom panel in Fig. 8.9). Most remarkably, vector pairs

from SU , which correspond to the uniformly shaded square, are not orthogonal to each other.

This confirms our results from Chap. 3, where we found that the stable and unstable manifolds

are transversal but not orthogonal. The central manifold, however, is orthogonal to both the

stable and unstable manifolds.

As expected, the situation is different for the RHDS (top panel in Fig. 8.9). One observes a

very smooth variation of 〈|vj ·vi|〉 for all three regimes and deviations from orthogonality every-

where. Most notably, these deviations persist also between a vector from the central manifold

and another vector from the stable or unstable manifolds (the narrow stripes between SU and

UU respective SS). Thus, the central manifold is not orthogonal to the stable and unstable

manifolds.

8.7 The RHDS is not symplectic

We have established in the previous sections that for the SHDS the central manifold is orthogonal

to the stable and unstable manifolds, that for RHDS is not. Next we show that the SHDS is

symplectic and RHDS is not.

Let us denote the energy associated with two colliding particles, k and `, by

Hk` =
1
2

[
(~pk)

2 + I(ωk)2 + (~p`)
2 + I(ω`)2

]
.
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Then the energy difference between the satellite and the reference trajectory is

δHk` =
∂Hk`

∂Γk
δΓk +

∂Hk`

∂Γ`
δΓ` ,

where both trajectories are separated by a small perturbation vector δΓ = (δΓk, δΓ`). Using the

equations of motion, we verified analytically that both Hk` and δHk` are exactly preserved by

the collision for the SHDS and for RHDS. Also the free flight between two successive collisions

does not change the total energy. However, the conservation of energy is not sufficient to ensure

that the transformation is symplectic. Experimentally, it is easily proved that the sum of all

local Gram-Schmidt exponents vanishes exactly at any point in phase space.

D∑
i=1

ΛGS
i (Γ) = 0 (8.17)

for both the SHDS and the RHDS. It follows that the phase volume is conserved for both

systems.

It was shown by Ershov and Potapov [4] that the orthonormal Gram-Schmidt vectors are inti-

mately connected to another set of spanning vectors of the tangent space already introduced by

Oseledec [1], namely the eigenvectors of the matrix

[
Dφt

Γ

]†
Dφt

Γ .

As before, † means transpose. Let J denote the even-dimensional skew-symmetric matrix,

J =

 0 I

−I 0

 .

For Hamiltonian systems it was shown by Meyer [26] that for any Gram-Schmidt vector gi also

the vector J gi belongs to the set of Gram-Schmidt vectors such that

ΛGS
D+1−i(Γ) = −ΛGS

i (Γ) , (8.18)

gD+1−i(Γ) = ±J gi(Γ) , (8.19)

for i ∈ {1, . . . , D/2}. In Chap. 5 and in Ref. [19] we have referred to Eq. (8.18) as symplectic

local pairing symmetry.

Here, we test both expression for the SHDS and RHDS. In Fig. 8.10 the maximum and minimum

local GS exponents are shown for a SHDS (left panel) and a RHDS (right panel). One observes
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Figure 8.10 : Test of the symplectic symmetry of Eq. (8.18) for a SHDS with N = 4 (left panel) and
for a RHDS with N = 4 (right panel).

that Eq. (8.18) is obeyed for the smooth case,

(SHDS)ΛGS
D+1−i(t) + (SHDS)ΛGS

i (t) = 0 ,

but not for the rough case,

(RHDS)ΛGS
D+1−i(t) + (RHDS)ΛGS

i (t) 6= 0 .

To test Eq. (8.19), we list in Table 8.4 the perturbation vectors for the largest and the most

negative exponents of a four-particle system, where the conjugate perturbation components are

indicates in the top block and where n enumerates the particles. For RHDS we have not included

the perturbation components associated with the rotational degree of freedom. This comparison

shows that Eq. (8.19) is obeyed for the SHDS (left column in Table 8.4) but not for the RHDS

(right column in Table 8.4).

In summary, with this comparison we prove that the RHDS is not a Hamiltonian system, and

we confirm here more thoroughly what we have already foreseen in Sec. 8.4.

Next, we demonstrate the non-Hamiltonian character of RHDS considering the transformation

rules in the tangent bundle. Let us recall some notions of differential geometry linked to classical

mechanics, e.g. [27, 28, 29]:

i) A symplectic structure on a vector space is given by a bilinear skew-symmetric 2-form,

∆2. This form is called the “skew-scalar product”. The Euclidean space R2F together

with the symplectic structure ∆2 constitute the symplectic vector space. F corresponds to
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Table 8.4 : Test of the symplectic symmetry of Eq. (8.19) for a SHDS with N = 4 (left panel) and for
a RHDS with N = 4 (right panel). For RHDS we have omitted the perturbation components associated
with the rotational degree of freedom. n enumerates the particles.

SHDS
(δqx) n

16

(δqy) n
16

(δpx) n
16

(δpy) n
16



−(δpx) n

1

−(δpy) n
1

(δqx) n
1

(δqy) n
1



n = 1


−0.129760
−0.422082
−0.189845
−0.584252




0.129760
0.422082
0.189845
0.584252



n = 2


0.187058
0.287147
0.238637
0.454717



−0.187058
−0.287147
−0.238637
−0.454717



n = 3


−0.723013[−1]

0.140295
−0.576590
0.133684




0.723013[−1]
−0.140295

0.576590[−1]
−0.133684



n = 4


0.150037[−1]
−0.535970[−2]
0.886748[−2]
−0.414995[−2]



−0.150037[−1]
0.535970[−2]
−0.886748[−2]
0.414995[−2]



RHDS
(δqx) n

20

(δqy) n
20

(δpx) n
20

(δpy) n
20



−(δpx) n

1

−(δpy) n
1

(δqx) n
1

(δqy) n
1



−0.122329[−1]
−0.322550[−1]
−0.863835[−1]
−0.149908



−0.115517
−0.136373
−0.342865
−0.588225




0.564003[−1]
0.859799[−1]

0.154315
0.243975




0.287485[−1]
0.170368
0.212333
0.643007



−0.477307[−1]
0.483709[−1]
−0.745171[−1]
0.411408[−1]




0.398695[−1]
−0.319941[−1]
0.628463[−1]
−0.476581[−1]




0.356330[−2]
−0.102095

0.658561[−2]
−0.135208




0.468989[−1]
−0.200067[−2]
0.676849[−1]
−0.712407[−2]



the number of degrees of freedom. Let us consider the standard symplectic space X2F =

(Q1,P1, . . . ,QF ,PF ), where Qi and P i are conjugate variables consisting either of (qix, p
i
x),

(qiy, p
i
y) or (θi , ωi). The last degree of freedom applies only to rough disks. The differential

2-form can be expressed as

∆2 = δQ1 ∧ δP1 + · · ·+ δQF ∧ δPF .

ii) The skew-scalar product of two vectors ϕ and ψ is the sum of the areas of the projections

onto the F coordinate planes of the oriented parallelogram (ϕ,ψ). The skew-scalar prod-

uct consists of a Lie algebra. The binary operator in this algebra is known as a Poisson

bracket
{
,
}
.

iii) A linear transformation S of the symplectic space X2F into itself is said to be “symplectic”
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or “canonical” if, and only if, S preserves the differential 2-form ∆2, i.e. preserves the skew-

scalar product: {
S ϕ,S ψ

}
=
{
ϕ,ψ

}
, ϕ,ψ ∈ X2F . (8.20)

Each of the differential forms (∆2)2, (∆2)3 . . . (∆2)F is invariant of the Hamiltonian phase

flow. The preservation of

(
∆2
)F ≡ δQ1 ∧ δP1 ∧ · · · ∧ δQF ∧ δPF ,

constitutes Liouville’s theorem.

iv) Eq. (8.20) can be written in terms of the scalar product, since
{
ϕ,ψ

}
= Jϕ · ψ. Hence,

the linear transformation S is symplectic if, and only if, it satisfies

S †J S = J .

Applying this identity to the collision map onto the matrix transformations for the smooth-

and rough-hard-disk models, Eqs. (8.22), (8.10) and (8.12), we proved analytically – after some

tedious calculations (not shown here) – that the SHDS is Hamiltonian whereas the RHDS is

not. In particular, this computation for the RHDS was carried out for both cases, with the

orientation of the particles included and excluded.
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8.8 Appendix: Matrix formulation of the phase-space and tangent-

space dynamics, for the SHDS

In this Appendix we give the matrix formulation for the dynamical events – free streaming and

collision between particles k and ` – for the smooth-hard-disk model (SHDS), where we follow

the notation of de Wijn and van Beijeren in Ref. [16]. It may be obtained from corresponding

expressions (8.9) and (8.10) for the rough-hard-disk model (RHDS) treated in Sec. 8.3.2 by

taking κ = 0 and discarding all angular velocities,

The state and perturbation vectors for a particle n are denoted by Γ †
n(~q †n , ~p

†
n) and δΓ †

n(δ~q †n , δ~p
†
n).

The matrix Z(τ) for the free flight between two successive collisions separated by a time τ of the

N particles corresponds to a N -block diagonal matrix, where each block is a 4× 4 - dimensional

matrix defined as

Zn(τ) =


1 0 τ 0

0 1 0 τ

0 0 1 0

0 0 0 1

 .

The collision map in the phase space is given by

Mk` =


I O O O

O I − ~n~n † O ~n~n †

O O I O

O ~n~n † O I − ~n~n †

 , (8.21)

where I and O are the respective 2 × 2 identity and null matrices, and ~n = (~qk − ~q`)/σ is the

unit vector at the impact point connecting the particles k and `. The collision map in tangent

space follows,

Sk` =


I − ~n~n † O ~n~n † O

−C I − ~n~n † C ~n~n †

~n~n † O I − ~n~n † O

C ~n~n † −C I − ~n~n †

 , (8.22)

where C is a 2× 2 matrix

C =
~n · ~p
σ

(
I +

~n ~p †

~n · ~p

)(
I − ~p ~n †

~n · ~p

)
,

and ~p = ~pk − ~p`. The determinants for the maps M and S are also equal to unity,

det (M) ≡ det (Mk`) = 1 and det (S) ≡ det (Sk`) = 1 ,

due to the fact that SHDS is a Hamiltonian system.
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Outlook

As is rather common with a scientific program, the work on a topic for a number of years – as is

the case for this thesis – does not solve all of the problems, and some of the open problems have

to be deferred to future work. More often than not, the answer to a particular question opens

up new and refined questions.

For example, a problem not touched in this thesis is the existence, or lack of existence, of

Fourier’s law in two-dimensional hard disk systems. As is well known from kinetic theory [1, 2],

correlation functions in two dimensions tend to have a slow decay due to long-time tails caused

by the famous Alder vortices [3, 4, 5]. This effect is responsible for a logarithmic divergence of the

diffusion coefficient. A similar behavior is expected for heat diffusion. No computational problem

arises for finite systems. Still, the problem of the existence of regular transport coefficients for

systems with lower than three dimensions poses a vexing problem.

Another interesting question concerns the dependence of the local Lyapunov exponents on the

metric and the coordinate system used. Whereas the local exponents depend on the metric, there

is some evidence that the covariant vectors obtained with a particular coordinate system may

be converted to the respective covariant vectors for another coordinate system [6] of the same

state. This observation is very interesting and will be investigated further in the future.

Here, we have devoted much effort to clarify the properties of covariant Lyapunov vectors and

of the associated local Lyapunov exponents. We have also clarified the non-symplectic nature of

the rough-hard-disk system. An application of the covariant vectors to more practical systems

is still a complicated and time consuming task, but in our opinion a promise for the future.

It will require new ideas and improved computational facilities to apply this concept, say, to

the dynamics of complex molecules such as polymer chains or biomolecules. But one may be

confident that this method will eventually become a standard tool. It is hoped that the present

thesis provides some guidance for the next moves in that direction.
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at “Laboratoire de Physique Théorique de la Matière Condensée”,

Paris Diderot University (Paris VII),

title: Kinetics and Chaotic Transport in Hamiltonian Systems.
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at “Laboratoire de Physique Théorique des Liquides”,
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