
	

MAGISTERARBEIT

Titel der Magisterarbeit

Evaluation of Software Development Paradigms
and Processes for Web Application Engineering

Verfasser

Thomas Lichtenecker, Bakk.rer.soc.oec.

Angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer.soc.oec.)

Wien, 2011

Studienkennzahl lt. Studienblatt: A 000 926

Studiengebiet lt. Studienblatt: Wirtschaftsinformatik

Betreuerin: o.Univ.-Prof. Dr. Gertrude Kappel

Erklärung zur Verfassung der Arbeit

Thomas Lichtenecker
Gertrude-Wondrack-Platz 2/3.10, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich
die Stellen der Arbeit — einschließlich Tabellen, Karten und Abbildungen —, die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen
sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Kurzfassung

Die Diplomarbeit beschäftigt sich mit dem Fachgebiet des Software Engineerings.
Im Speziellen wird hierbei auf das Gebiet des Web Engineerings eingegangen.
Das Hauptziel ist es, festzustellen, ob ein signifikanter Unterschied zwischen
der Entwicklung klassischer Software (wie etwa für den Desktop) und der von
Web-Applikationen besteht. Weiters werden sowohl agile, als auch traditionelle
Entwicklungs-Methotologien auf ihre Anwendbarkeit auf den diskutierten Einsatz-
zweck hin untersucht.

Um das allgemeine Verständnis zu gewährleisten, gibt die Arbeit einen kurzen
Einblick in die Technologien, auf denen das Web aufbaut — wie etwa HTTP und
HTML. Darauf folgt eine Einführung in die Disziplin des Web Engineerings anhand
von relevanter Literatur. Dieses Thema wird weiter vertieft, indem eine Kategori-
sierung anhand der Faktoren Zeit und technischer Komplexität vorgenommen wird.
Ferner werden die Charakteristiken des Web Engineerings anhand der Perspektiven
des Entwicklers, des Users und des Managements betrachtet. In einem weiteren
Schritt wird untersucht, ob gängige Software Engineering Methodologien auf Web
basierte Entwicklung anwendbar sind. Zu diesem Zweck werden drei bekannte Me-
thodiken im Detail präsentiert: der Rational Unified Process, Scrum und Extreme
Programming (XP).

Um sie auf ihre Andwendbarkeit hin zu beurteilen, werden diese Methodiken
kategorisiert und nach ihren Stärken, Schwächen, sowie bezüglich ihrer Abdeckung
des Entwicklungsprozesses bewertet. Nach dem Abwägen dieser Information im
Verhältnis zu jenen Charakteristiken, die Web Engineering auszeichnen, stellt
die Arbeit noch einen Risiko-basierten Ansatz vor, welcher die Auswahl eines
Entwicklungs-Ansatzes anhand diverser Faktoren ermöglicht.

Basierend auf den Erkenntnissen, die aus dem theoretischen Teil gezogen werden
können, konzentriert sich der Implementiertungs-Teil der Arbeit darauf, diese
auf ein Beispiel aus der Praxis anzuwenden. Im Besonderen wird auf die Kom-
munikationsbedürfnisse eines Teams eingegangen, welches Web Projekte nach
agilen Gesichtspunkten abwickelt. Konkret wird die Entwicklung einer Aufgaben-
Verwaltungs-Lösung basierend auf dem Microsoft Team Foundation Server beschrie-
ben. Hierfür werden bestehende Templates extensiv angepasst und erweitert um
alle benötigten Anwendungsfälle abzudecken.

iii

Abstract

This thesis deals with the process of software development in general and Web
engineering in particular. Its main purposes are to determine whether there is a
significant difference between developing classical (desktop-centric) software and
applications being distributed via the World Wide Web (WWW) and to introduce
agile and traditional software development methodologies to evaluate if using these
is valuable for the discussed purpose.

To enhance common understanding, the thesis gives a brief introduction into the
technologies behind the Web, such as HTTP and HTML. This leads to a general
introduction of Web engineering as it is described in the relevant literature. Web
engineering is then further categorized according to complexity and technological
novelty and common characteristics affecting users, management, and development.
Further, this thesis examines if well known software development paradigms are
suitable for Web centric development, or if new solutions are needed. To support
this, three well-known development methodologies are presented in detail — the
Rational Unified Process, Extreme Programming, and Scrum.

Consequently, the strengths, weaknesses, and process coverage of all three processes
are discussed in order to judge on their applicability. The processes are then
weighed against the Web engineering characteristics found in earlier parts. Based
on this information and by combining it with an established risk driven approach,
a recommendation for choosing the right methodology for the different engineering
categories is provided.

The practical part concentrates on the insights gained in the theoretical chapters and
describes the support of a Web engineering process in a real live work environment
by leveraging the capabilities of Microsoft’s Team Foundation Server. Here the
work focuses on the communicative part of the process and heavily customizes the
standard templates in order to create a central communication tool. This tool acts
as a central communication hub providing a unified interface for all departments.

v

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Expected Result . 3
1.3 Methodical Approach . 3

2 Web Engineering 5
2.1 The World Wide Web . 5

2.1.1 Basics . 7
2.1.2 Protocols . 7
2.1.3 Document Representation 9

2.2 Categorization . 9
2.3 Characteristics . 12

2.3.1 Involved Disciplines . 13
2.4 User Perspective . 15

2.4.1 Usability and Accessibility 16
2.4.2 Design . 17
2.4.3 Content . 18
2.4.4 Non-linear Navigation . 18
2.4.5 Persistence . 20

2.5 Developer Perspective . 20
2.5.1 Hypertext and Hypermedia 20
2.5.2 Increasing Complexity . 21
2.5.3 Device Heterogeneity . 22
2.5.4 Concurrency . 24
2.5.5 Unpredictable Load . 24

2.6 Management Perspective . 25
2.6.1 Estimation Complexity . 25
2.6.2 Team Complexity . 26
2.6.3 Heterogenous User Base . 26
2.6.4 Frequency of Updates and Rapid Deployment 27

vii

3 Software Engineering Paradigms 28
3.1 The History of Software Engineering 28

3.1.1 1956, 1961: The Beginnings 29
3.1.2 1970: The Waterfall Model 29
3.1.3 1988: The Spiral Model . 31
3.1.4 Today: Agile Paradigms . 34

3.2 Rational Unified Process - RUP . 35
3.2.1 Underlying Principles . 37
3.2.2 Process Structure - The Structural Dimension 38
3.2.3 Process Disciplines . 39
3.2.4 Process Phases — The Time Dimension 41

3.3 Extreme Programming - XP . 44
3.3.1 Values & Principles . 46
3.3.2 Mandatory Practices . 47
3.3.3 Corollary Practices . 51

3.4 Scrum . 52
3.4.1 Project Prerequisites . 53
3.4.2 The Sprint . 54
3.4.3 Roles . 55
3.4.4 Artifacts . 57

4 Classification and Applicability 60
4.1 Classifying Software Engineering Processes 60

4.1.1 Describing the Characteristics 60
4.1.2 Describing the Lifecycle . 61

4.2 Classifying Methodologies . 61
4.2.1 Characteristics . 61
4.2.2 Lifecycle Coverage . 63

4.3 Applicability for Web Engineering 64
4.3.1 Domain Factors . 65
4.3.2 Organization Factors . 67
4.3.3 Project Factors . 67
4.3.4 People Factors . 67

4.4 Critical Remarks on Applicability 68
4.5 Deciding in Uncertainty — a Risk based Approach 70

4.5.1 Assessment . 73
4.6 Combining Methodologies . 75

5 Supporting the Web engineering Process 77
5.1 Work Environment . 77

viii

5.2 Process Evaluation . 79
5.2.1 Risk . 79
5.2.2 Application Categorization 79
5.2.3 Environment Factors . 80

5.3 Resulting Processes & Activities . 80
5.3.1 Project Process . 81
5.3.2 Development Process . 82
5.3.3 Comparing Practice and Theory 85

5.4 Implementation . 87
5.4.1 Problem Description . 87
5.4.2 Problem Solution . 88
5.4.3 Adaptations . 89
5.4.4 Work Item Type Task . 93
5.4.5 Work Item Type Deployment Request 96
5.4.6 Work Item Type Personal Todo 101
5.4.7 TFS Queries . 101
5.4.8 User Alerts . 102
5.4.9 Deadline Reminder . 102

5.5 Critical Discussion . 102
5.5.1 Strengths of the Solution . 103
5.5.2 Weaknesses of the Solution 104
5.5.3 Result . 105

6 Conclusion 106

A TFS Work Items XML 118

B TFS Queries and Alerts 165
B.1 List of Queries . 165
B.2 Code Examples . 166
B.3 Deadline Reminder . 167

ix

1

Chapter 1

Introduction

The Internet in all its forms provides people with many great benefits and op-
portunities. The global nature of this medium allows worldwide communication,
collaboration, and sharing of ideas. It provides consistent access to widely dis-
tributed information and has radically changed the way individuals are accessing it.
This environment has introduced new challenges to the field of software engineering
and thereby creating a separate discipline Web Engineering. In order to facilitate
reuse of existing software engineering methodologies, this thesis concentrates on
related aspects, introduces characteristics that set Web engineering apart, describes
standard approaches to software engineering, discusses their applicability and,
finally, showcases a customized software solution supporting the Web engineering
process.

1.1 Problem Description

Web applications adhere to the same criteria of software quality as every other
software product — such as maintainability, usability, and efficiency. Nevertheless,
questions arise about the extent that Web applications fall into these criteria,
and if there are additional criteria to describe this type of software. Highlighting
possible differences, the term Web engineering was first published in 1997 [1].
Though younger publications exist [2, 3], the amount of academic literature is
limited and often focuses on the early phases of what is described as a young
discipline [4]. Acknowledging the growing possibilities of using Web technologies
requires researching the characteristics and categories [5] of Web engineering,
especially in comparison with standard software development.

When looking for differences, it is necessary to look at this matter from different
viewpoints. Focusing on the people involved, running Web projects usually requires
expertise in media design and content creation in order to attract potential users on
first sight. Both disciplines are typically not that relevant for other software projects.

2 Chapter 1 Introduction

Incorporating them into the development process creates new relationships between
other project stakeholders like management, development, and the customer.

Another important aspect of Web offerings is that if not updated regularly, they
quickly become outdated. This leads to rapidly evolving/changing requirements.
Though collecting requirements early in the project is still important, features
change over time leading to constant adaptations to the code base and other
assets. This has consequences for code, processes, and tools. Regarding source
code, maintainability becomes a very important factor. In order to push updates
live quickly, rapid deployment and release practices are required [6]. This requires
appropriate tool support.

It is not only the products themselves that evolve quickly, but also the technologies
that are used to build them. This requires a very adaptive developer base which
consequently makes specialization very likely to happen. This is facilitated by the
existing ways of clearly separating code, design, and content [7].

A typical Web application is not limited to only a small user base. Instead, the vast
number of potential users makes it hard to determine specific user requirements.
This, however, is a key aspect, as users have individual preferences and significantly
varying domain knowledge. Not only do cultural factors have to be taken into
account but also technical conditions, such as different screen sizes (especially
mobile devices) and bandwidth influence the application design.

Today, software engineering is covered by a huge range of development method-
ologies. The concept of writing software in a structured manner was first widely
discussed at the 1968 NATO Conference on Software Engineering [8]. Even before
that, in 1956 H.D. Benington [9], and in 1961 W.A. Hosier [10] were considering
approaches for the improvement of the development standards existing at that time.
1970 was an important year in the journey of software development, as Winston
Royce invented a model that would later been known as the “Waterfall Model” [11].
Though Royce had already planned feedback loops between consecutive steps in his
model, it was Barry Boehm’s “Spiral Model” of 1988 [12] that paved the way for
iterative development and ultimately led to modern approaches like the Rational
Unified Process. Putting an even greater focus on iterativity, agile methods [13]
see change as a chance for better products. In contrast to what they describe as
heavyweight, these methods concentrate on human beings and working code, instead
of enforcing standards and process compliance. What unites all these approaches is
a common belief that the software development process has to be structured in a
certain way. A goal of this thesis is to determine what from this knowledge can be
transferred to Web engineering.

Chapter 1 Introduction 3

1.2 Expected Result

After analyzing the special characteristics of Web engineering, the challenge is
to decide which concepts, methods, techniques, and tools of traditional software
engineering have to be adapted to the needs of Web engineering [5], and to find a
base for choosing the right development method for the use case.

As mentioned, Web engineering requires short release cycles. This requires constant
communication and tools that support the information flow. This thesis describes
what has been done in a real world environment to streamline cross- and inter-
departmental communication, and how this affects the adopted Web development
process.

1.3 Methodical Approach

One major part of the thesis is to investigate what makes Web engineering a
discipline in its own right. Two dimensions of categorization are established to
identify which parts of the development team and which phases of the development
process are affected. This is essential in order to later judge the usability of software
development paradigms. The first dimension divides Web engineering into eight
different categories determined by means of complexity and age (in terms of how long
the category exists). The second classification aspect concerns characteristics [14]
applicable to all categories. Here it is possible to identify three major perspectives:
user, development, and management. Each role faces its own set of difficulties
inherent to the application domain. This approach leads to a list of characteristics
unique to Web engineering.

The main goal of applying a defined process to software development is to ensure
software quality whilst meeting the agreed budget and timeframe. Web engineering,
despite its organizational and technical specialities, still shares a lot of attributes
with standard software development. Weighing software development against these
factors and the specialities found depends on ascertaining which software develop-
ment approaches exist and which practical models are based on them. The thesis
provides an overview of existing models. With Extreme Programming (XP) [15]
and Scrum [16, 17], the thesis presents two popular agile approaches, plus the
Rational Unified Process (RUP) [18] as a more heavyweight, but nevertheless
modern counterpart.

Subsequently, the thesis elaborates on both the differences and the similarities of the
processes described to find a common set of attributes and thereby making sensible

4 Chapter 1 Introduction

comparison possible. This part demonstrates which aspects of the development
lifecycle the methods discussed focus on [19]. This indicates whether there is a
single paradigm that fits all process requirements, or if a combination of aspects
from different approaches is more suitable. Consecutively, a possible method of
deciding on the right methodology is presented: the risk-based approach [20]. This
approach states that risk should be the major driving factor when choosing a
development approach, and that the more risk there is, the more heavyweight the
process of choice should be. However, this leaves out the special Web engineering
characteristics, so their effect on the process selection has to be illustrated and
respected.

The practical part of the thesis showcases the application of the described theory
to a real-world project. It outlines the development lifecycle that was found to be
useful in this environment, and gives detailed insight into its main communication
platform (which was extensively adapted in order to support the process). For
this purpose, the requirements were discussed with a small group of stakeholders.
After finalizing a beta version, the solution found was presented to and discussed
with an extended user group. Their input was incorporated into the final product,
and after a short test period the system was put into production. Since then, it
has been improved on request. It has proven to be central for streamlining the
communication efforts in a very agile environment, and thus nicely complements
the lean structures of the given work environment.

5

Chapter 2

Web Engineering

The term “Web engineering” was first published in 1997 in the conference paper
“WebComposition: An Object-Oriented Support System for the Web Engineering
Lifecycle” [1]. Since that time Web applications have developed from a simple
text based information medium into an application medium for fully-fledged and
sophisticated software systems. This chapter provides information to help to under-
stand the different aspects of Web engineering. Based on scientific research and
practical experience, it gives insight into the field of Web engineering and explains
the motivation behind this thesis.

In 2001, S. Murugesan described Web engineering as “an emerging new discipline,
that advocates a process and a systematic approach to development of high quality
Web-based systems” [4]. The paper further stresses the establishment and use
of sound scientific, engineering and management principles, and disciplined and
systematic approaches to development, deployment and maintenance of Web-based
systems. To better understand what is covered by the term Web engineering, it
is important to shed some light on the discipline’s history, its origins, as well
as on the technological foundations. Consequently, this chapter further explains
technological and organizational characteristics, and names those specific to the
discipline discussed. This understanding allows weighing the features of existing
software development methodologies against these peculiarities.

2.1 The World Wide Web

Tim Berners-Lee can be considered as the architect of the World Wide Web (WWW).
In 1990, he not only designed its architecture but he also coined the accompanying
Hypertext Markup Language (HTML) [21, 22]. Since then, the WWW has become
an unavoidable part of our lives. Both ICANN [23] and other sources [24] conclude
that about 1.5 billion people use the WWW. Over the last 10 years, the WWW has
continued to grow at an exponential rate [2]. The July 2010 Netcraft report [25]

6 Chapter 2 Web Engineering

counted 205,714,253 individual Websites. Figure 2.1 shows the growing number of
Websites over time.

Figure 2.1: Number of Websites [25]

This development indicates the increasing influence of the Web on today’s society.
Although the Web is big in terms of numbers, it is maybe even bigger when
it comes to its social and cultural influence. Banks, enterprises, governments,
educational institutions, universities, and individuals depend on large-scale Web
based applications to run their operations. Thanks to technological advances, more
and more services can be provided over the Web. Recent developments in wireless
technologies, such as UMTS or IEEE 802.11n, and advanced mobile devices allow
these services to be used almost anytime and anywhere. As a consequence of this
evolution, serious Web application development requires sound, scientifically backed
engineering and management approaches in order to meet business requirements
and aspects of software quality. This involves structuring the raw information to
be delivered in a way that is meaningful, building a packaged presentation that is
organized, aesthetic, ergonomic, interactive (where required), and delivering it to
the Web client in a manner that initiates a conversation [14].

To introduce the characteristics of Web engineering to a broader audience, this
section gives a basic understanding of the technologies the WWW is built on. It
shows how these technologies interact and function with each other.

Chapter 2 Web Engineering 7

2.1.1 Basics

In the context of Web engineering, it is fundamental to know the three parts that
a Web application is typically composed of:

• Client: typically a browser, performing the request

• Server: holding the Web application, performing the response

• Protocol: defining the rules of communication between the client and the
server

According to Tim Berners-Lee’s proposal for an information management system in
March 1989 [22], the architecture of the hypertext world consists of data stored on
server machines, and client processes on the same or other machines, both linked
by a network. The WWW is built on top of the existing Internet structure and
the protocols that come along with it. HTTP is the most important of them as
network traffic generated by Web software is currently the largest single category of
traffic on the internet, exceeding e-mail, file transfers, and other data transmission
traffic [26].

2.1.2 Protocols

As the previous section mentioned, communication over the Web is regulated by
a set of protocols. Two very prominent ones are HTTP and SMTP, with each of
them being designed to serve different purposes.

HTTP - Hypertext Transfer Protocol. Probably the best-known protocol of the
WWW is the Hypertext Transfer Protocol, or short HTTP. HTTP is a text-based
protocol for distributed, collaborative, hypermedia information systems [27]. It is
stateless and controls how resources such as HTML files are accessed. Typically
exposed through port 80, HTTP builds on the TCP/IP stack. Together with
TCP/IP, HTTP is one of the fundamentals of the WWW. HTTP, therefore, acts
as a layer on top of the TCP/IP protocol as Figure 2.2 demonstrates.

8 Chapter 2 Web Engineering

Figure 2.2: Functional view of the WWW [28]

The HTTP protocol owes its high profile to the nature of forming the prefix for a
large number of URLs on the WWW. URL (Uniform Resource Locator) is the most
prominent representative of what is called URI (Uniform Resource Identifier). Typ-
ically a URL may look like http://www.example.org/path/resource.html. This URL
gives information about HOW (http://), and WHERE (www.example.org/path/)
the resource is accessed, as well as its NAME (resource.html). In combination with
the DNS (Domain Name Service), it is possible to assign resources unique and
user friendly names. The combination of HTTP with the SSL/TLS protocol allows
creating a secure channel via an insecure network. This is commonly referred to as
HTTPS. HTTPS uses port 443 by default.

SMTP - Simple Mail Transfer Protocol. Proposed in 1982 [29], the Simple Mail
Transfer Protocol (SMTP) is a standard for electronic mail (e-mail) transmission
across networks. Today it is only used to send e-mails from a client to a mail
server for relaying. Client applications usually use either the Post Office Protocol
(POP3) [30] or the Internet Message Access Protocol (IMAP) [31] to retrieve e-mails
from accounts on mail servers.

Chapter 2 Web Engineering 9

2.1.3 Document Representation

HTML - HyperText Markup Language. “The HyperText Markup Language
(HTML) is an SGML application” [5]. SGML itself “is a system for defining markup
languages” [32], and HTML is one sample implementation [33]. The first version
of HTML was created by Tim Berners-Lee in December 1990 [7]. Since 1996, the
HTML specifications have been maintained by the World Wide Web Consortium
(W3C)1, with input from commercial software vendors. In the year 2000, HTML
became an international standard (ISO/IEC 15445:2000). The most recent HTML
specification published by the W3C in 1999 is the HTML 4.01 Recommendation [32].
However, on January 22, 2008, the W3C has published the first public working draft
of HTML 5. Although the specification has not reached its final recommendation
status, parts of it are already implemented by major browser developers2.

Session Tracking and Cookies. As Web applications interact with multiple users
at the same time, they have to be able to distinguish between simultaneous requests
to identify the ones coming from the same user. This client-server dialogue is called
Session. As HTTP is stateless, the Web server cannot rely on an established TCP
network connection for longer than a single HTTP operation. The most common
way to overcome this challenge is to let the client store the session information
(e.g., a session ID) and to send it with each request. This data is typically stored
in Cookies. Cookies are little text files stored by the client’s Web browser, holding
key-value pairs of information. The cookie itself is generated by a Web server and
included into the HTTP response header. The lifetime of a cookie can either be set
to a certain duration, to be permanent, or to cover only the current session.

2.2 Categorization

With Web technologies advancing over time, applications steadily cover more com-
plex requirements. This development allows the categorization of Web applications
based on functionality. As Figure 2.3 shows, it is possible to define categories and
to classify these in a two-dimensional scale, comprised of the two axes Complexity
and Development History. The categorization presented in this document is based
on existing literature [5, 3]. In addition to these classifications, the one described
in this chapter adds current Web developments.

1http://www.w3c.org
2For example in Firefox: http://blog.mozilla.com/standards/category/html5/

http://www.w3c.org
http://blog.mozilla.com/standards/category/html5/

10 Chapter 2 Web Engineering

Figure 2.3: Web application categories [5, extended]

Informational. Informational Web sites are the simplest form of information
sharing. They consist of text which can be combined with graphics. A Web server
can host this kind of content as single, ready made (static) HTML documents.
Typical examples are online newspapers, product catalogues, newsletters, manuals,
reports, and online books.

Interactive. The invention of the Common Gateway Interface (CGI)3 made it
possible to create Web applications which could react based on user input. This can
be used to provide more dynamic content, such as registration forms, customized
information presentation, online games, etc.

3http://www.w3.org/CGI/

Chapter 2 Web Engineering 11

Transactional. Taking the possibilities of interactivity to the next level, transac-
tional applications allow the user to actually change the available content by, for
example, buying a certain good, booking a service, or by paying a bill. Doing this
requires a way of storing and querying this content in a transactional manner. A
common approach is to use databases to realize this functionality.

Workflow Oriented. A lot of activities rely on well defined workflows. This is
especially true at Business-to-Business (B2B) and Business-to-Government (B2G)
operations, which follow strict processes. Enabling the execution of such operations
over networks, adds another layer of complexity to Web applications. Possible
examples include online planning and scheduling, inventory management, status
monitoring, and supply chain management.

Collaborative. Comprehensive communication and information sharing defines
another category — Collaborative Web applications. The literature [3] names
distributed authoring systems and collaborative design tools as examples.

Service Oriented. Service Oriented Architecture (SOA) is an architectural
paradigm and discipline that enables connecting any sort of client with infor-
mation providers via services across disparate domains of technology and ownership.
Different kinds of architectures rely upon SOA as the enabling foundation, including
the automation of Business Process Management (BPM), mashup applications
(applications that aggregate multiple functionalities from different sources to create
new services), and the multitude of new architecture and design patterns generally
referred to as Web 2.0 [34].

Social. A lot of discussion around Web 2.0 concentrates on so-called “social
networks” like Facebook4, Myspace5, LinkedIn6, etc. These platforms allow people
to socialize, share information, and express their opinion on almost any topic. They
also provide interfaces allowing external programmers to integrate their applications
to create a richer user experience.

4http://www.facebook.com
5http://www.myspace.com
6http://www.linkedin.com

http://www.facebook.com
http://www.myspace.com
http://www.linkedin.com

12 Chapter 2 Web Engineering

Cloud Based. Cloud computing incorporates a number of young and emerging
aspects of Web based application development. Tim O’Reilly defines three different
categories in one of his blog entries7 on O’Reilly Radar8:

1. Utility computing. Utility computing sis the provision of virtual machine in-
stances, storage and computation at pay-as-you-go utility pricing and hosted
off-premises on the Internet. This means that one can get an almost infinite
amount of operating systems, storage space or computing power just by utiliz-
ing those service over the Web, while paying on a base of usage. Amazon.com9

is a forerunner in this area providing all of the services described above.

2. Platform-as-a-Service. Though Amazon’s offerings are seen as a Platform-as-a-
Service (PaaS) solution [35], Google App Engine10 is an even more integrated
solution with its integrated Phyton and Java execution frameworks and a
set of APIs11. These allow running Web applications without having to care
about hosting.

3. Cloud-based end-user applications. This term describes applications which
were traditionally available as desktop software and are now delivered through
the Web. This includes applications like word processing, spreadsheets, photo
editing or e-mail. The challenge here is to combine the user interface func-
tionality of desktop software applications with the wide reach and low-cost
deployment of Web applications. The desktop part in this includes providing
an interactive user interface for tasks like validation and formatting, fast
interface response times with no page refresh (and thus omitting the usual
request-response data exchange flow typical for the Web), common user inter-
face behaviors such as drag-and-drop and the ability to work online and offline.
The Web component includes capabilities such as instant deployment, cross-
platform availability, and leveraging widely adopted Internet standards [36].
With data being processed and hosted in the cloud in contrast to the user’s
local PC, a greater focus has to be put on security and reliability.

2.3 Characteristics

To understand what Web engineering is about, it is essential to get a basic percep-
tion of the technologies involved. This section therefore introduces the roots and

7http://radar.oreilly.com/2008/10/web-20-and-cloud-computing.html
8http://radar.oreilly.com
9Amazon Web Services: http://aws.amazon.com/

10Google App Engine: http://appengine.google.com
11such as the Google Maps API, Google Base API, and the Social Graph API

http://radar.oreilly.com/2008/10/web-20-and-cloud-computing.html
http://radar.oreilly.com
http://aws.amazon.com/
http://appengine.google.com

Chapter 2 Web Engineering 13

organizational fundamentals. It also further investigates whether Web engineering is
just a new application sub-domain of software engineering, only “slightly adapting
already existing approaches in terms of methodologies, principles, standards and
best practice guides” [37, p. 2]; or if it is in fact a discipline on its own right,
requiring new solutions. A prerequisite for answering this question is to define the
characteristics of this discipline and to outline what separates it from other, related
areas.

2.3.1 Involved Disciplines

One might argue that a Web application is nothing more than a client-server
application with an emphasis on aesthetic presentation (e.g., layout, graphics, audio
and video elements) and provisioning of information and that both Web applications
and conventional client-server applications share the same attributes [14]. On
the other hand, there are reasons that indicate that Web engineering consists
of more parts than software engineering. This approach leads to seeing Web
engineering as a multidisciplinary field encompassing diverse principles such as
management, information systems, and computer science. Major contributing areas
include systems analysis and design, software (and requirements) engineering, design
and layout creation, hypermedia engineering, human-computer interaction, data
mining, project management and artificial intelligence [2]. This explains how Web
engineering combines a variety of other — not only technical — disciplines with
the classical IT world. In total, four actively involved parties can be identified and
are depicted in Figure 2.4. In this model, the customer is displayed as an indirect
contributor as this role is usually not involved in designing the application from
the ground up but plays an increasingly important role where customer created
content adds real value.

14 Chapter 2 Web Engineering

Figure 2.4: The roots of Web engineering

Project Management. The project manager’s role is to coordinate efforts and
timelines between the customer and the other three involved parties. As the
leader of a project, a project manager is ultimately responsible for aligning
everybody involved in respect of project progress and outcome.

Content Creation. Content is maybe the most sensitive part of a Web project
as it delivers the core message. As with other media, such as newspapers,
or magazines, the complexity is to keep content easy to understand whilst
communicating the desired information. Spreading certain content might be
legally restricted, therefore necessary approvals might significantly slow down
the update rate of a Website.

Software Engineering. Depending on which category (cf. Section 2.2) a Web
applications falls into, it more or less relies on software engineering to be
realized. The more complex the application becomes, the more likely software
engineering will play an important role in achieving the desired outcome.
This includes creating server-side solutions as well as sophisticated client-side
scripts.

Media Design. Together with the raw content of a site, how it looks is what users
perceive. Media design covers a broad range of topics, from design oriented
tasks such as sound, video, and picture editing to HTML and CSS coding

Chapter 2 Web Engineering 15

and client-side scripting. As “anything that is a great print design is likely
to be a lousy Web design” [38], these two disciplines are clearly separated.
Also the wide scope of duties differentiates the Web designer from traditional
print design.

Though theoretically one single person might be responsible for all these roles, often
subject matter experts contribute with their expertise. Only by guaranteeing a
steady flow of information and collaboration between all contributors, it is possible
to successfully deliver Web projects.

For further investigation it is important to define the differences between software
engineering and Web engineering. This provides the basis to further show the
extent to which classical development approaches are suitable for developing Web
applications. In order to deepen the understanding of what makes Web engineering
a discipline in its own right, the following parts of this chapter give a detailed and
categorized list of characteristics specific to the application domain discussed.

2.4 User Perspective

This section describes the specific characteristics of a Web application from a
user’s perspective. It concentrates on aspects related to product quality and usage.
Following the ISO 9126 model for external and internal quality [39], software quality
consists of six main quality characteristics, namely:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

As software engineering is an integral part of Web engineering, these factors apply
to the latter in a similar manner as to the former. However, as Websites heavily
focus on content and aesthetics these are key factors influencing the overall quality
and usability of projects, targeted at the end-user. Hence, the following pages
concentrate on these aspects.

16 Chapter 2 Web Engineering

2.4.1 Usability and Accessibility

“Bad usability equals no customers!” [40, p. 14]

According to [41], six usability factors can be named to describe “ease of use” or
“user friendliness”:

• Fit for use: The system provides all functionality the user needs in a specific
situation.

• Ease of learning: Defines how easy the system can be learned by different
users.

• Task efficiency: Defines how efficiently regular users can accomplish tasks.

• Ease of remembering: Defines how much users have remembered from their
last session(s).

• Subjective user satisfaction

• Understandability: Describes if users comprehend what the application actu-
ally does and why certain information (e.g. error messages) appears.

These factors apply whether the application is Web based or not. One of the
fundamental requirements of any Web application is that it is possible to use it
for its intended purpose. However, it must be designed to be easily accessed by
possible visitors. Not following this basic requirement might quickly lead to a drop
in usage. Accessibility, therefore, does not only cover the ease of use, but also
describes whether an application can be used by physically handicapped people,
especially by those with a visual impairment. “More specifically, Web accessibility
means that people with disabilities can perceive, understand, navigate, and interact
with the Web, and that they can contribute to the Web” [42]. There is a number of
guidelines available on this topic, such as Authoring Tool Accessibility Guidelines
(ATAG), Web Content Accessibility Guidelines (WCAG), User Agent Accessibility
Guidelines (UAAG), and W3C technical specifications (HTML, XML, CSS, SVG,
SMIL, etc.) [42, 43].

The level of usability of document-oriented (cf. Section 2.4.3) software very much
depends on content aesthetics. Inappropriate colors, badly edited text or a con-
fusing layout will negatively influence ease of use and hence the rate of users
returning. Moreover, there might only be a quite vague concept of both content and
design in early phases of a Web project, as both develop gradually over time. The
basic usability concept must therefore be flexible enough to scale with changing
requirements.

Chapter 2 Web Engineering 17

Desktop-oriented software typically follows recommended interface guidelines like
the ones available for Windows12, Mac OS X13, or the GNOME project14 and
uses GUI libraries of the operating system they are written for. Hence, colors,
styles, basic layout and the overall look-and-feel are very much a given. As they
are basic requirements from the start of a project, this reduces the need to research
these parameters and allows this step to be completed in an early phase of the
development process. As stated in [44], considering “data as separate from the
controls used to display is new, because applications on other platforms combine
data and controls as a seamless whole”. Many users do not distinguish between their
browser and the Internet, thus mixing up features of the actual Web-application
and the displaying component.

2.4.2 Design

To a certain extent, usability and quality can be measured. Design, on the other
hand, is very much subject to personal preference or taste. Web applications are
competing with an overwhelming number of similar offerings distributed through
a medium, leaving it to the choice of the user which application to use, or which
Website to visit. Before knowing the actual content, the first thing attracting a
user is the way it is presented visually. If the aesthetics discourage a potential
customer from further exploration of the site, the best application may go virtually
unnoticed by a broader audience.

Another factor accounting for the relatively high importance of visual design is the
showcase role a Website plays not only for companies but all sorts of organizations,
such as clubs, societies, governments, non governmental organizations, communities,
etc. The Web representation might even be responsible for the main source of
income for the organization behind it. Beside the actual content, visuals are a
major way of communicating the desired statement through a Website. According
to [40], one can distinguish between two basic approaches to design. These two
extremes see the artist either as a person expressing personal views and emotions
or as a service provider, fulfilling customer requirements. The design of a corporate
Website frequently ends somewhere in between of these two concepts. As Websites
often represent organizations, acting as the face to the public, they often have to
follow corporate or brand guidelines — including specific colors, logos, or fonts

— even if these standards may not be appropriate for Web usage. This can be a
hindrance to creativity. Designers not only have to fulfill given prerequisites in

12http://msdn.microsoft.com/en-us/library/ms997506.aspx
13http://developer.apple.com/documentation/userexperience/index.html
14http://library.gnome.org/devel/hig-book/stable/

18 Chapter 2 Web Engineering

terms of design standards, but also considering usability and overall attractiveness
of their product. The skills and early integration of designers, therefore both play
a vital role in various kinds of Web projects.

2.4.3 Content

The major part of a Web offering is about providing content. Content can be
presented in different forms — video, audio, text, pictures, etc. — thereby content
maintenance and frequent updates are important factors in raising the profile of a
site. In many cases this content is not created by the development team, but by
external providers such as the marketing department, journalists, external agencies,
etc. The developer in turn is responsible for providing a framework allowing the
entry, styling and display´of the content. Literature on this subject summarizes
this characteristic as the “document-oriented” [4], or “document-centric” [5] nature
of the Web.

2.4.4 Non-linear Navigation

The Web provides almost unlimited ways of navigating through information. In
contrast to linear navigation systems — such as presentations, books or cinema —
non-linear systems provide more options. Newspapers, for example, to a certain
extent, allow the user to jump between content without losing information. For the
strongly non-linear Web and other hypertextual media, three information structures
(as depicted in Figures 2.5, 2.6, and 2.7) are described as being relevant [45].

The structure of the Web provides the user with a multitude of different ways of
finding information, such as browsing (e.g., on a newspaper site), queries (e.g.,
searching on a shopping portal), and guided tours (e.g., e-learning or e-detailing
applications) [5]. Even though this diversity suits human learning ability [5], failure
to systematic design a Web application’s navigation flow may result in what is
referred to as the “lost in hyperspace syndrome” [46], confusing people to the extent
that they are unable to find the information available.

Chapter 2 Web Engineering 19

Figure 2.5: Navigation: Hierarchy

Figure 2.6: Navigation: Multipath

Figure 2.7: Navigation: Web-like

20 Chapter 2 Web Engineering

2.4.5 Persistence

Non-Web applications usually provide operating system specific mechanisms for
closing programs. This can be realized via a Close/Exit button or menu entry, or
simply via a specific symbol in the window chrome. In contrast, Web applications
cannot clearly be stopped, as they are accessed from within another application —
most commonly a Web browser. Leaving a website by following a link implicitly
closes the previously opened site but leaves no information on whether the work in
progress is saved. Reopening the browser or clicking the Back button might lead
the user back to a previously opened application but usually the old state is lost,
as no action has been performed to persist it [44].

2.5 Developer Perspective

The literature [47, pages 49, 50] identifies four issues, or areas of interest when it
comes to Web development:

1. Data/Information: problems with data representation

2. Navigation: problems with navigation structure and behavior

3. Functionality: all problems not related to navigation and affecting application
functionality

4. Presentation/Interface: issues related to interface design and (data) represen-
tation

The order of the list represents the historical importance of the individual items
with data/information being central to the Web as a medium. This contrasts with
a more software engineering-centered view, which emphases functionality since this
aspect is taken into account by all traditional software design methods. Navigation
has been mainly introduced by Web application engineering as it is used as an
abstraction in the context of hypermedia and the Web. The next paragraphs explain
technical attributes defining Web applications in contrast to their desktop-centric
counterparts and thus influencing the way in which they are developed.

2.5.1 Hypertext and Hypermedia

Hypertext and hypermedia refer to Web pages and other kinds of on-screen content
that employ hyperlinks [33]. Hypertext refers to the use of text and static graphics

Chapter 2 Web Engineering 21

linked by so called hyperlinks. Hypermedia on the other hand describes the visu-
alization of multimedia content, such as video, audio, or interactive media. It is
common for people to use hypertext as a general term that includes hypermedia [33].
This kind of representation makes use of the concepts of nodes and links to connect
content. A node typically refers to pieces of content (such as Websites) and links
represent the route to navigate through this information. It is this linking capability
which allows a non-linear organization of text and other media [48]. In contrast to
linear media, such as books (e.g., novels), or movies, this concept gives the user the
ability to freely choose which part of information to consume next. Links do not
have to be statically predefined by, e.g., an editor, but can be generated dynamically
according to the currently presented content. For example, one could imagine a
Web shop for HiFi products presenting an aggregated list of shop items, filtered
by the search-query amplifier. The generated list is presented across a number of
sequential Websites to limit the number of displayed items to a certain amount. To
navigate from one page to another, links are created dynamically by the underlying
software (computed link).

When creating hypertext, authors have to take care not to confuse users by
disorientating them or by presenting too much information and consequently
overstraining their cognitive capabilities. Disorientation is the tendency to lose one’s
bearings in a non-linear document. Cognitive overload is caused by the additional
concentration required to keep in mind several paths or tasks simultaneously [5].
Meaningful linking and link naming reduce cognitive overload [48]. The usage of
breadcrumbs, sitemaps, or tag clouds can also help in keeping the user oriented
and focused.

To achieve a unified representation for non-linear navigation across different envi-
ronments, it is necessary to rely on a common specification for visualizing nodes
and links. This is realized by using HTML (cf. Section 2.1.3).

2.5.2 Increasing Complexity

According to [49], “the complexity of tasks performed through Web applications is
increasing”. With Web offerings providing higher levels of interaction, including
heavy client-side processing and extensive use of multimedia technologies, the
demands on application developers are continuously increase. In another paper [50],
the same team of authors reviews 15 traditional Web methodologies and finds that
these, and the tools they bring with them “are incomplete or inadequate” in giving
an answer to the demands this complexity entails. As applications increasingly
provide the same feature-richness as desktop software, development processes and

22 Chapter 2 Web Engineering

tools — as well as the software designers themselves — have to adapt in order to
cope with this situation.

2.5.3 Device Heterogeneity

Web applications can be run on a multitude of systems and under different condi-
tions. Screens vary in size and resolution and processing power is limited on mobile
devices or old computers. Also network connection bandwidth limitations must
be taken into account. But it is not only hardware that influences compatibility.
Probably the most important factor is the variety of browsers available. Web
applications often require a client-side application or environment in which to be
executed or viewed. Usually this application is the preferred Web browser installed
on the user’s desktop or laptop. Relying on a secondary application means that the
Web application’s behavior is not only determined by itself, but is also influenced by
external factors. Though institutions such as the “Web Standards Project”15 strive
to implement “standards that reduce the cost and complexity of development while
increasing the accessibility and long-term viability of any site published on the
Web” [51], not all browsers comply with these standards, such as the ACID3 [52].
This can potentially lead to Web pages not being rendered as expected in browsers
that are not 100 % standards-compliant. Not only do the browsers vary in their
compliance with web standards, the performance of their HTML and Javascript
rendering engines differs too16.

Developers therefore might want to concentrate on platforms with a large user
base. To give an overview of which browsers are used to what extent, Table 2.1
below contains usage statistics from three different sources. These sources are
W3Counter17, MarketShare by Net Applications18, and StatCounter GlobalStats19.

The table summarizes the statistics for January 2011. Where no distinction could
be made between browser versions, only aggregated numbers are displayed. Ad-
ditionally, a calculated average is given. The table only contains browsers with
more than 1 % of market share. Despite Microsoft Internet Explorer (IE) clearly
leading the field, previous studies show it to be loosing ground to its competition.
It must be added that all three IE generations use different versions of the un-
derlying rendering engine Trident, all behaving differently when it comes to both

15The Web Standard Project: http://www.webstandards.com
16http://www.favbrowser.com/category/benchmarks/
17http://www.w3counter.com
18http://marketshare.hitslink.com
19http://gs.statcounter.com

http://www.webstandards.com
http://www.favbrowser.com/category/benchmarks/
http://www.w3counter.com
http://marketshare.hitslink.com
http://gs.statcounter.com

Chapter 2 Web Engineering 23

standard compliance and performance. To give a clearer picture, the average usage
percentages are presented in a separate Figure 2.8.

Browser W
3C

ou
nt

er

M
ar

ke
tS

ha
re

St
at

C
ou

nt
er

A
ve

ra
ge

IE 41.27 % 54.84 % 46.86 % 47.66 %
8.0 26.02 % 33.02 % - -
7.0 10.71 % 8.76 % - -
6.0 4.54 % 13.06 % - -
Firefox 29.55 % 22.04 % 30.79 % 27.46 %
3.6 25.36 % 18.50 % - -
3.5 2.76 % 2.22 % - -
3.0 1.43 % 1.32 % - -
Safari 4.74% 3.24 % 4.81 % 4.26 %
5.0 4.74 % 3.24 % - -
4.0 1.05 % 1.59 % - -
Chrome 11.06 % 7.32 % 14.88 % 11.09 %
8.0 11.06 % 7.32 % - -
7.0 1.45 % 1.62 % - -
Opera - 1.51 % 2.07 % 1.19 %
10.x - 1.51 % - -

Table 2.1: Browser Usage January 2011 by Source

24 Chapter 2 Web Engineering

Figure 2.8: Averaged Browser Usage January 2011

2.5.4 Concurrency

Web applications may be accessed by a large number of users at the same time.
The manner in which the site is used can vary greatly between these individuals.
In some cases, the actions of one user (or one set of users) may have an impact on
the actions of other users or the information presented to other users [14]. This
is typically valid for collaboration and social platforms as well as transactional
applications.

2.5.5 Unpredictable Load

The number of users of a Web service may vary significantly over time. This stresses
the importance of scalability, availability, and performance for both software (e.g.,
the code base itself) as well as hardware (the hosting infrastructure). As a Web
application is a collection of a number of (more or less) independent systems,
performance bottlenecks can occur at numerous points:

• Hardware client- and server-side: server (RAM, storage, processing power,
etc.), client PC, network adapters, routers, switches, network quality

Chapter 2 Web Engineering 25

• Software server-side: operating system, Web server, application code, database

• Software client-side: operating system, browser, other Web clients, application
code (e.g., HTML, Javascript, Flash), network quality

Some of these possible error sources can be easily tested whilst for others it is
difficult or impossible. For example, it is not feasible to replicate each and every
combination of client PC, operating system, browser and network connection. Other
factors, however, can be be secured against possible failure. Servers, application
code and databases can be load tested and a standardized set of client infrastructure
can be checked too.

2.6 Management Perspective

Using and building Web applications does not only require users (cf. Section 2.4)
and developers (cf. Section 2.5), but also involves a management component, as
this section shows.

2.6.1 Estimation Complexity

A successful project often means not only meeting timelines and requirements
but also to stay within a certain budget. The Standish Group’s CHAOS report
for 2009 [53] gives a number of only 32 % of software projects “succeeding which
are delivered on time, on budget, with required features and functions”. Other
sources [54] are less pessimistic, but still see a failure rate of 11.5 % to 15.5 %.
One of the management objectives therefore is to realistically estimate costs,
time, and effort. Since “80 % of software scrap and rework is caused by 20 % of
the changes” [55], early estimates based on sound techniques and numbers allow
managing resources effectively.

Cost estimation is not only crucial but also very challenging for a number of reasons.
As the Web is a very fast moving medium, Web projects have short schedules with
tight time-to-market timelines, usually from a few weeks up to six months [56]. The
diversity of the technologies used increases the planning complexity as it requires
specialized knowledge in predicting the efforts of all stakeholders. As a still quite
new discipline, Web engineering attracts young people and teams tend to be rather
inexperienced, which negatively influences the quality of effort and time estimations.
Small teams and ad-hoc processes often prohibit using approaches established for
software engineering.

26 Chapter 2 Web Engineering

2.6.2 Team Complexity

Web projects involve multidisciplinary teams made up of art designers, copywriters,
frontend developers, backend developers, interface designers, testers, and project
managers [6]. Sometimes marketing personnel can also be added to this list. This
heterogeneity can make it difficult to set clear responsibilities, as project stakeholders
with very diverse perspectives are concurrently working on one single product. Due
to their individual and professional backgrounds, team members might not share a
common understanding of what project success means. Here, project management
can step in to provide a shared vision. Having numerous interfaces to other project
participants creates a certain communication overhead that has to be accounted
for.

Web engineering project teams are not only heterogenous but also very young by
trend [57]. This lack of experience can potentially negatively affect quality and
performance and increases the level of management necessary.

2.6.3 Heterogenous User Base

As Web applications and especially Websites are available to virtually anybody
with an Internet connection, it can be difficult to determine their typical user
base. This in turn complicates the design of software so that it covers the special
needs of a certain audience. Varying levels of technical experience, taste, and ways
of approaching a Web offering must be considered. Even in early project phases,
management can define the target audience to limit complexity. Given that, formal
experiments with a large number of test users (usually at least 20, often 50 or more)
can, according to [58, p. 68] provide an:

• “objective measurement of performance of a single design, or”

• “objective comparison of the performance of two or more alternative designs”.

These tests would ideally be performed in two different phases of the project [59]:

• Early mock-ups: Early in the design phase it is possible to present mock-ups
of the final product to a selected user group to get feedback.

• Functional prototypes: After a “representative part of the site” is working,
sample users can perform a set of predefined tasks to see if usage is straight-
forward.

Chapter 2 Web Engineering 27

2.6.4 Frequency of Updates and Rapid Deployment

The WorldWideWeb is a very fast moving medium. Outdated content, old fashioned
design, or usability that is not on par with the most recent developments can
quickly turn users away from a site. The resulting maintenance work thus creates
significant effort even after a project had been successfully completed. Taking this
into consideration before building the application can possibly reduce subsequent
costs.

28

Chapter 3

Software Engineering Paradigms

“The only constant in life is change!”1

This chapter outlines existing, well-documented software engineering methodolo-
gies. It gives an overview on the history on software engineering and summarizes
important historical approaches such as the Waterfall (cf. Section 3.1.2) and the
Spiral (cf. Section 3.1.3) models. Subsequently, a general introduction into agile
paradigms (cf. Section 3.1.4) is given, explaining their purpose and the features
common to all of them.

The last three sections each describe one specific software development methodology,
namely the Rational Unified Process - RUP (cf. Section 3.2), Extreme Programming
- XP (cf. Section 3.3), and Scrum (cf. Section 3.4). Here, the RUP represents a
more structured and process oriented solution, whilst the other two focus on agile
principles.

3.1 The History of Software Engineering

One might question why Software Engineering Methodologies exist at all. Shouldn’t
it be quite straightforward to collect a few requirements and to translate these into
working code? This thinking probably was the main reason behind what is known
as the Software Crisis. This term is used to describe the poor state of software
engineering at the time the first NATO Conference on Software Engineering took
place in 1968 in Garmisch, Germany [8]. Then, IBM had developed OS/360 and
TSS/360, two operating systems. The creation of the former of the two cost IBM
over $ 50 million a year during its preparation, and more than 6000 man-years
had to be invested during implementation. The TSS/360 project even had to be
stopped at all. The huge investment in OS/360 and the failure of TSS/360 led to a
common belief that it was necessary to enforce the “establishment and use of sound

1Heraclitus: http://stanford.library.usyd.edu.au/entries/heraclitus/#Oth

http://stanford.library.usyd.edu.au/entries/heraclitus/#Oth

Chapter 3 Software Engineering Paradigms 29

engineering principles to obtain economically software that is reliable and works
on real machines efficiently” as F.L. Bauer put it at the NATO conference [8]. This
was the first time a larger audience had discussed approaches to professionalize
the development of software, and it is often thought to be the birth of modern
software development. The following paragraphs illustrate how this discipline
evolved through the years.

3.1.1 1956, 1961: The Beginnings

The first explicit model of software engineering was outlined in H.D. Benington’s
“Production of Large Computer Programs”, published in 1956 and reprinted in
1987 [9]. He describes a “Phase Model”, dividing the development process into
sub-sections with dedicated purposes. W.A. Hosier followed the same approach
and, amongst other things, demanded testable requirements, precise interface spec-
ifications, and lean staffing in early phases [10]. The main purpose of these early
methodologies was “to provide a conceptual scheme for rationally managing the de-
velopment of software systems” to serve as a basis for “planning, organizing, staffing,
coordinating, budgeting, and directing software development activities” [60].

3.1.2 1970: The Waterfall Model

Without explicitly mentioning the word Waterfall, Winston Royce planted the seeds
of the Waterfall Model in his paper “Managing the Development of Large Software
Systems: Concepts and Techniques” [11]. The actual term was defined by Barry
Boehm in order to differentiate it with his own invention, the “Spiral Model” [12]. As
Illustrated in Figure 3.1, this traditional model of software development sequentially
lists the basic phases of the project lifecycle. Each of the phases ends with a formal
assignment by involved stakeholders.

30 Chapter 3 Software Engineering Paradigms

Figure 3.1: The Waterfall Model [12]

The following phases are part of the model:

Feasibility and Requirements. In this phase customer requirements are collected
and documented. Starting from a high abstraction level, they are further
refined to a degree where they can act as a basis for the subsequent phases.
The requirements are stored in a repository and are worked on as resources
become available. The phase ends when all requirements are signed off by all
involved stakeholders, such as customers, managers, and development leads.

Design. During the design phase, the development team builds the system ar-
chitecture. The finished design documentation is the foundation for further
development.

Code and Test. Following the design document of the previous phase, the software
is built and tested. The product of this phase is reviewed according to the

Chapter 3 Software Engineering Paradigms 31

quality gate checklist to see whether there are deviations from previous quality
gate decisions [61].

Integration and Implementation. This is the release phase of the project. The
individual software components are integrated into a releasable product. This
is rolled out to the customer and user training takes place if required. The
user checks whether the system meets the agreed requirements and has the
opportunity to reject it if not.

Operations and maintenance. After the product has been released, it enters a
stage of operation and maintenance. Bugs and problems are remediated and
patches are applied.

Shortcomings. The Waterfall model suffers from a number of shortcomings,
described throughout the literature (e.g. [12, p. 63]). A lot of problems are related
to the great impact the requirements phase has on the project. A thorough collection
and description of requirements must be performed at this very early phase as the
project can only be continued when this phase is successfully completed. However,
this phase is widely seen as the most complex part of building software [62] and
making mistakes is very likely.

Though Royce already incorporated back-loops between two sequential phases and
explicitly refers to prototyping as good practice, this is often overseen. Consequently,
problems unnoticed in earlier phases must be resolved in a later phase, resulting in
huge unforeseen costs and efforts. As there are no opportunities for customers to
provide feedback on the system during the project, clients are only able to discover
problems during system delivery and integration. This happens at a stage where
huge efforts have already been put into development and it makes it very hard to
respond to changes when the project is underway. This sort of big-bang integration
at the end of the project can lead to unexpected quality problems, high costs, and
schedule overrun. As each phase creates major artifacts, approving and correcting
them can substantially delay further progress.

3.1.3 1988: The Spiral Model

The Spiral Model was first mentioned in 1988 by Barry W. Boehm in his article “A
Spiral Model of Software Development and Enhancement” [12]. Instead of taking
a document-driven or code-driven approach to the software process, it follows a
risk-driven one. It is an incremental model and leads software development through
an unspecified number of cycles or loops as demonstrated in Figure 3.2. Within

32 Chapter 3 Software Engineering Paradigms

each loop, a sequential development approach is taken, so that it “couples the
iterative nature of prototyping with the controlled and systematic aspects of the
linear sequential model” [63, p. 15]. The inner cycles of the spiral represent early
analysis and prototyping, whilst the outer ones denote the classical software life
cycle [60]. The radial dimension shows the cumulative costs until a certain time
during the lifecycle [12].

The Spiral Model is divided into between three and six framework activities, also
called Task Regions. These cut the spiral into slices. Figure 3.2 depicts a Spiral
Model that contains four main Task Regions:

Determine objectives, alternatives, constraints. This covers customer commu-
nication, checking constraints and costs, and creating basic schedules.

Evaluate alternatives, identify, resolve risks. This includes activities for finding
alternatives relative to the objectives, and addressing sources of project risk.
Also prototyping and modeling are done at this stage.

Develop, verify next-level product. This is the main development step. The next
prototypes are planned and requirements are refined to address remaining
risks.

Plan next phases. This captures customer evaluation and feedback. Next itera-
tions are planned.

Risk analysis is a key activity and occurs during each spiral cycle. It tries to
determine all influences that might potentially cause the project to fail or to go
over budget [60]. Prototyping is utilized as a manner of reducing risksto a point
that a sequential software development process can be followed.

Chapter 3 Software Engineering Paradigms 33

Figure 3.2: The Spiral Model [12]

The Spiral Model tries to solve the problems of the Waterfall model, which are caused
by the following incorrect assumptions of the software development process [64]:

• There exists a reasonable well-defined set of requirements and it takes a
defined amount of time to understand them.

• Changes to requirements during the development process are minor enough
to be handled without substantially rethinking or revising the initial plans.

• System integration is an appropriate and necessary process. Based on sound
architecture and planning its behavior can be predicted.

• It is possible and practical to schedule and predict the efforts of creating a
significant new software application.

It may therefore be referred to as a theoretical foundation for the younger agile
methodologies.

34 Chapter 3 Software Engineering Paradigms

3.1.4 Today: Agile Paradigms

It is the role of a software builder to iteratively extract and refine requirements [62].
Unfortunately, it is often impossible to define all specification upfront. Also re-
quirements change as software systems and their level of detail grow. Like the
Spiral Model, agile methods accept this fact and apply extensive iteration to the
communication flow between designer and customer throughout the whole process.
In contrast to the Spiral Model, agile approaches clearly define the duration of each
cycle with each iteration producing a working product. In contrast to the more
abstract Spiral Model and though the name might not indicate, agile methods apply
strict restrictions and often give detailed practical guidance for various aspects
of software development. A common principle is to only produce output that is
of value to the customer. Agile ecosystems all describe the usage of “light-but-
sufficient” [65, p. 8] rules for software development and project management. They
follow iterative approaches and embrace change in order to respond to rapidly
changing environments. Agile development paradigms do not disregard processes
and documentation, but try to keep both to a necessary minimum. One could argue
that agile is Spiral but that Spiral is not necessarily agile as only the rules that
come with these processes enforce their lightness.

There is a multitude of methods available, each of them focusing on different aspects
of software development. Well documented examples of agile paradigms are:

• Scrum (cf. Section 3.4)

• Dynamic Systems Development Method (DSDM) [66]

• Crystal Methods [67]

• Feature-Driven Development (FDD) [68]

• Lean Development [69]

• Extreme Programming (XP) (cf. Section 3.3)

• Adaptive Software Development [70]

• Agile Unified Process (AUP) [71]

The Agile Manifesto. In 2001, 17 leading proponents of lightweight methods
gathered in Snowbird/Utah to discuss what agility means to them. The resulting
Manifesto for Agile Software Development [72] states:

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:”

Chapter 3 Software Engineering Paradigms 35

• “Individuals and interactions over processes and tools”

• “Working software over comprehensive documentation”

• “Customer collaboration over contract negotiation”

• “Responding to change over following a plan”

“That is, while there is value in the items on the right, we value the
items on the left more.”

In addition, 12 principles form the basis for agile development [73]. These emphasize
the importance of delivering valuable software while embracing change in every
phase of the project lifecycle. This is supported by short development lifecycles
(weeks, not months) and close collaboration between business and development
through face-to-face communication. The principles further stress the importance
of keeping the participating individuals motivated by providing them with a
supportive environment and trusting them to get the job done in self-organized
teams. Developers themselves should strive for technical excellence, simplicity, good
design, and self-reflection.

Representing these values, the “Agile Alliance” supports organizations and indi-
viduals who spread and apply agile principles to make the software industry more
“productive, humane, and sustainable”2. Currently it has more than 4000 members,
both individuals and corporate/institutional organizations.

3.2 Rational Unified Process - RUP

The Rational Unified Process (RUP) was invented by the Rational Software Corpo-
ration in 1998 and — after a take-over — has been the intellectual property of IBM
since 20033. The RUP is based on the “Unified Software Development Process” [18]
and is probably its best known representation. Being a commercial product, IBM
provides a rich set of tools supporting the process as well as numerous best practice
guides to encourage commercial adoption. A center piece of the process is the
extensive use of UML (“Unified Modeling Language”4) throughout all project
phases.

Similar to the Spiral Model, the RUP emphasizes iteration to overcome problems
of more static approaches. In addition, it contains extensive guidelines and a com-

2Agile Alliance Web site: http://www.agilealliance.org/
3IBM Rationale Web site: http://www-01.ibm.com/software/awdtools/rup/
4Object Management Group UML Web site: http://www.uml.org/

http://www.agilealliance.org/
http://www-01.ibm.com/software/awdtools/rup/
http://www.uml.org/

36 Chapter 3 Software Engineering Paradigms

prehensive number of artifacts for each of the process phases [19]. This holistic
approach is what sets the RUP apart, making it a very well defined framework
for software engineering [74]. Commonly, the methodology is not judged as be-
ing particularly agile and neither is IBM member of the the Agile Alliance (cf.
Section 3.1.4), nor is the process itself connected to it. Literature has, however,
examined the agility potential of RUP [75] and there are efforts5 underway to push
the process into this direction [76].

The RUP incorporates four different aspects of software engineering and therefore
is [18]:

• a software engineering process: The RUP describes the software develop-
ment process in great detail. This includes the distribution of tasks and
responsibilities, as well as workflow descriptions.

• a process product: IBM has developed a set of tools around this process.

• a process framework: Composed of process models, the RUP describes who is
doing what, how and when.

• a collection of best practices: Six practices are covered by the RUP:

– Developing software iteratively

– Managing of requirements

– Encouraging component-based architectures

– Modeling software visually

– Verifying software quality continuously

– Controlling change management

The RUP divides the software development cycle into four consecutive Phases
and Iterations (cf. Figure 3.3). Each of the phases is completed by a well-defined
Milestone — a point in time at which certain key goals must have been achieved and
where critical decisions must be made. These milestones provide the stakeholders
the option to assess the project, in order to review progress and to define the plans
for future work [77]. The phases are:

• Inception phase (I)

• Elaboration phase (E)

• Construction phase (C)
5Scrum and RUP: http://www.ibm.com/developerworks/rational/library/feb05/

krebs/

http://www.ibm.com/developerworks/rational/library/feb05/krebs/
http://www.ibm.com/developerworks/rational/library/feb05/krebs/

Chapter 3 Software Engineering Paradigms 37

• Transition phase (T)

As depicted in Figure 3.3, nine Disciplines are carried out throughout a project
cycle. These, also named Worflows [18] can further be divided into six Core Disci-
plines (Business Modeling, Requirements, Analysis & Design, Implementation, Test,
Deployment) and three Supporting Disciplines (Project Management, Configuration
and Change Management, Environment).

Figure 3.3: Nine RUP process disciplines [78]

A detailed view on all components as in Figure 3.3 is given in the following sections.

3.2.1 Underlying Principles

Being based on best practices [18] the RUP is founded on the base of eight
principles [74]. These principles are:

• Attack major risks early and continuously, or they will attack you.

• Ensure that you deliver value to your customer.

38 Chapter 3 Software Engineering Paradigms

• Stay focused on executable software.

• Accommodate change early in the project.

• Baseline an executable architecture early on.

• Build your system with components.

• Work together as one team.

• Make quality a way of life, not an afterthought.

3.2.2 Process Structure - The Structural Dimension

The Rational Unified Process is represented using four primary modeling elements:
Roles — the who, Activities — the how, Artifacts — the what, and Disciplines —
the when. Whereas the first three items are described in brief in this section, the
RUP disciplines are listed in Section 3.2.3.

Roles. A role defines the part played by an individual or group when working in
a team. One individual may have more than one role assigned and this assignment
may change during the project lifecycle. Each role is associated with a defined set
of activities.

Activities. As mentioned above, roles perform activities. Activities translate into
work units. These have a clear purpose, usually expressed in terms of creating or
updating such artifacts as models, classes, or plans [18, 77]. The duration of an
activity usually ranges from a few hours to a few days. A comprehensive list of
activities can be found in [18].

Artifacts. “An artifact is a piece of information that is produced, modified, or
used by a process” [79]. When performing activities, roles both use artifacts as
inputs and create them as outputs. Artifacts are tangible, as they constitute the
actual productive output of a project during its lifecycle. The literature ([18, 77, 79])
categorizes artifacts into categories. Before actual development starts, documents
such as the Business Case or the Software Architecture Overview” are written.
Models, such as the Use-Case, or the Design models are created early in each
development cycle to describe the system to be produced. Further breaking down
models generates another artifact — the Elements within a model, such as a class,

Chapter 3 Software Engineering Paradigms 39

a use case or a subsystem. Later in the phase, actual value is produced in the form
of Source Code or Executables.

3.2.3 Process Disciplines

A discipline is a sequence of activities that produces a result of observable value.
Disciplines are grouped into nine categories as depicted in Figure 3.3. Each of the
disciplines knows a defined set of roles, artifacts, and activities.

Business Modeling. Business modeling strives to create a common understanding
of the target organization, usually adopted to the scope of the part of the business
relevant to the software being developed. The goal is to improve mutual understand-
ing in order to build a bridge between software engineering and business engineering
by using a common language. As this might not apply to all organizations, “many
projects may choose not to do business modeling” [79]. Working closely with project
stakeholders, according to [77] it must give a complete overview on the status of
the organization. This not only includes describing the status quo related to all
“processes, roles, and responsibilities”, but also an outlook on strategies to adapt
these. Consequently, a “domain model” is created to outline the affected parts of
the organization.

Requirements. A requirement is a condition or capability to which a system
must conform [18]. Consisting of functional and non-functional requirements, they
basically describe what a software system should do. To achieve a common under-
standing between customers and developers, it is necessary to agree on the objects
for development. This has to be captured in a universally understandable way.
The RUP suggests Use Cases6 as a human readable solution. They are created
to represent the behavior of the system and consist of diagrams, together with
comprehensive descriptions.

Analysis and Design. During the analysis part of this discipline, the goal is
to translate requirements into a form of software architect speech — classes and
subsystems. Design receives this information and further refines it. The “design
model” [79] created predefines how the source code will be structured and written.
Again, a number of UML diagrams support this process.

6For more on Use Cases and UML, e.g. read [80] or [81]

40 Chapter 3 Software Engineering Paradigms

Implementation. The main purpose of this element is to perform the actual
coding. This means organizing the code by implementing subsystems arranged in
layers, and building classes and objects in terms of components. For each build
(which represents an operational version of a subset of the end product), testing
is performed in the form of unit tests. In bigger teams, setting up a build also
includes the integration of the individual parts into an executable system. The
RUP describes how to reuse existing components, and how to implement new
components with well defined responsibilities.

Test. Testing is about assessing product quality. This includes verifying that the
product is free of defects, that the system works as designed, and that it meets
the given requirements. Following the iterative nature of the RUP, testing does not
only apply to the final product, but is a task that is carried through throughout
the project and includes artifacts like the software architecture [18]. It supports the
team in finding defects as early as possible in order to reduce the cost of fixing them.
Tests are carried out to ensure three aspects of quality — reliability, functionality,
and performance. The RUP names a number of test stages, types, and models to
provide sufficient coverage.

Deployment. The purpose of the deployment discipline is to deliver the soft-
ware system to the customer. This not only includes packaging, distributing, and
installing it, but also beta testing and performing end-user training to increase
software acceptance. Also, existing data from legacy systems is migrated in this
phase. In order to avoid problems related to the deployment activities at the end
of the construction phase, these are not only part of the transition phase, but also
have to be considered in earlier phases [79].

Configuration and Change Management. This discipline’s purpose is to control
the numerous artifacts that are produced during the project. Abbreviated CCM
three interdependent functions can be identified:

• Configuration management (CM): Related to the product structure, it deals
with artifact identification, versioning, and dependency control.

• Change request management (CRM): Related to the process structure, it
manages and captures change requests, generated both by internal and
external stakeholders.

• Status management and measurement: Related to the project control struc-

Chapter 3 Software Engineering Paradigms 41

ture, it supports project management by providing meaningful figures about
the project.

Project Management. In [79, p. 13] it is stated that “Software Project Manage-
ment is the art of balancing competing objectives, managing risk, and overcoming
constraints to deliver, successfully, a product which meets the needs of both cus-
tomers (the payers of bills) and the users”. The RUP tries to support project
management by focusing on the iterative development process. This support is
provided as guidance for planning the whole lifecycle of an iteratively conducted
project and the iterations themselves, for accompanying risk management, and
for progress monitoring using metrics and statistics. The RUP explicitly does not
cover other aspects of project management, including managing people, managing
budgets, and managing contracts.

Environment. As a support function, this discipline provides and maintains the
software development organization’s environment, both from a process and tool
perspective. It continuously configures and improves processes and produces guide-
lines, supporting other team members in following them. By selecting, acquiring,
and setting up the right tools, it helps other staff focusing on their work area. Also
technical (IT) support falls into this category.

3.2.4 Process Phases — The Time Dimension

The RUP consists of four phases, covering the whole software development lifecycle
and thus representing the dynamic organization of the process over time [79]. Each
phase must meet a defined set of goals. To meet these milestones, the related tasks
are addressed while iterating through the phase. “In many ways phases provide
the glue which holds the RUP together, but the disciplines of the RUP capture its
heart” [77, p. 2].

Inception Phase. Milestone: Lifecycle Objective (LCO)
The inception phase’s primary goal is to establish a business case and to specify the
project scope [79, 82]. This transforms the initial product vision into a real project.
To successfully end this phase, it is necessary to reach a common understanding
and vision among all stakeholders [18] and thus reach a decision on whether or not
to continue the project. Depending on the complexity of the project, this phase
may vary in length. To close the phase, the following artifacts should be created:

42 Chapter 3 Software Engineering Paradigms

• The vision of the project, containing requirements, key features, and main
constraints

• A business case, business context/scope, success criteria, and financial forecast

• The initial risk assessment

• The initial project glossary

• A project plan, containing all phases and iterations

• To be included optionally, there are architecture candidates, functional and
non-functional prototypes, a business model, and an initial use-case model,
also listing all actors

Elaboration Phase. Milestone: Lifecycle Architecture (LCA)
The purpose of the elaboration phase is to analyze the problem domain, establish a
sound architectural foundation, develop the project plan, and eliminate the highest
risk elements of the project [79, 18]. This requires having a very profound knowledge
of the system, both in detail and at a high level. All functional and non-functional
requirements must therefore be well known. The products of this phase are:

• A baseline product vision and software architecture description

• A working prototype

• A use-case model with at least 80 % coverage, containing all actors and most
descriptions

• A revised risk list and business case, including staff, management, and test
plans

• A development plan, covering the overall project, showing iterations and
related evaluation criteria for each iteration

Depending on the complexity of the project, the work during this phase may be
performed in one or more iterations (E1, E2 in Figure 3.3).

The lifecycle architecture milestone is the point at which stakeholders have to
decide whether the architecture and vision can be seen as stable and it is sensible
to continue.

Construction Phase. Milestone: Initial Operational Capability (IOC)
The main purpose of the construction phase is to build the software product. All
features and components are implemented and tested to be ready for distribution.

Chapter 3 Software Engineering Paradigms 43

More than the two preceding phases, this means hands-on work, so the emphasis is
transferred from producing intellectual property to the development of a deployable
product [18]. Again, this process is carried out iteratively.

At the end of this phase the IOC review is conducted where stakeholders assess
the project’s health and ensure that the software product is integrated on the
agreed platforms, all user manuals are complete, and that the release is sufficiently
documented [77].

Transition Phase. Milestone: Product Release (PR)
During the transition phase the product is rolled out to the user community. This
includes testing by “both system testers and end-users, and corresponding re-
working and fine tuning” [77, p. 4]. To fix final bugs, and to individually adapt the
system, beta testing and user training is done together with the customers/users.
This may be performed by iteratively releasing new versions until the desired level of
quality is achieved. The primary objectives of the transition phase include [79, 18]:

• Achieving user self-supportability

• Achieving stakeholder approval that deployment baselines are complete and
consistent with the evaluation criteria of the vision

• Achieving a final product baseline as rapidly and cost effectively as practical

At the product release milestone, the stakeholders decide if all objectives were met
or if it is necessary to start another development cycle. This very much depends on
user satisfaction.

Iterations. Iterations bring a number of advantages over sequential development.
Managing risk as a part of each cycle makes mitigation easier. The strict top-down
approach of the Waterfall — where only preceding phases may be refined — makes it
very hard to integrate change in later phases. The more flexible nature of iterations
makes change more manageable. According to [77], iteration increases the level of
possible reuse as well as the ability of the project team to learn along the way. All
these factors ultimately lead to better overall quality.

All RUP phases are divided into one or more iterations. Each of them only covers
a certain portion of the entire system being developed. This sets the RUP apart
from traditional approaches that complete one phase in one step [77]. For each
iteration, there is a fine-grained plan and specific goals. Every iteration builds upon
the results of its predecessors. These are depicted along the bottom of Figure 3.3,

44 Chapter 3 Software Engineering Paradigms

separating each phase into iterations. Every iteration results in an internal or
external release of an executable product.

“Traditionalists will often mistakenly think that the Inception phase
corresponds to the traditional requirements phase, that Elaboration
corresponds to design, that Construction corresponds to coding, and
that Transition corresponds to testing. Nothing could be further from
the truth.” [77]

As Figure 3.3 depicts, nine different disciplines are performed throughout each
phase and iteration.

The RUP utilizes iteration to cope with the following “wrong assumptions” [18] of
sequential development:

• Requirements are frozen: Users, problems, technology, and the market change
over time. This prevents successful capturing of all requirements at one single
phase at the start of the project.

• The design can be right on paper before proceeding: Completing a design
according to all obvious quality factors would require a formal definition of
the problem. Commonly, this is not realistic due to lack of resources and
methods.

3.3 Extreme Programming - XP

“The goal of Extreme Programming (XP) is outstanding software
development” [15].

XP was originally developed by Kent Beck7, Ward Cunningham8, and Ron Jeffries9

whilst working on a project for the American car maker Chrysler10. XP is a member
of the Agile Alliance (cf. Section 3.1.4) and therefore shares its vision of how
software development should be organized. XP is comprised of a number of different
aspects [15]. XP is a philosophy of software development, endorsing the values of
communication, feedback, simplicity, courage, and respect. It takes practices, proven
useful in real world software development and provides a set of complementary
principles, supportive of translating XP values into practice. These values and
practices are shared by a dedicated community.

7Kent Beck: http://c2.com/ppr/about/author/kent.html
8Ward Cunningham: http://c2.com/˜ward/
9Ron Jeffries: http://xprogramming.com/xpmag/bio

10Chrysler: http://www.chrysler.com

http://c2.com/ppr/about/author/kent.html
http://c2.com/~ward/
http://xprogramming.com/xpmag/bio
http://www.chrysler.com

Chapter 3 Software Engineering Paradigms 45

XP can be clearly characterized as lightweight or agile [83] and adheres to a set
of paradigms [15]. Explicitly defining change as something inevitable, it endorses
coping with rapidly changing requirements as a key claim. Another central principle
is that developers only do what adds value to the customer and therefore reduce
other, more process-related work. As XP was designed by developers for developers,
it mainly addresses issues directly related to software development. It does not
provide extensive coverage of topics related to project management, financial
decision-making, operations, marketing, or sales.

The XP project flow is outlined in Figure 3.4. As plans are only valid for as long
as the environment is stable, changing plans before they expire is fundamental [84].
Prototypes or Architectural Spikes help to create the System Metaphor. User Stories
translate requirements into a common understanding. Constant refactoring and test
driven development are used to harden the system and to uncover bugs. Frequently
releasing software to the customer and passing the Acceptance Tests drives Iterations
and helps to produce the feedback required to alter the software early in order to
regularly produce Small Releases. Acceptance inherits the attitude that developers
are responsible for proving to their customers that the code works correctly, not
customers proving the code is broken [84]. Daily Stand Up Meetings steadily keep
the management and development teams informed about the ongoing progress.

Figure 3.4: XP project flow [84]

XP is a developer centric methodology and tries to focus on productivity and cus-
tomer satisfaction. Its success is documented by real-world studies. A JP Morgan
Chase study [85] reported that — in comparison to using other software methodolo-
gies — implementing XP reduced the total amount of defects by 63 % on average.
Even the amount of critical defects decreased by 79 % on average. For the given
sample, development time and effort could be reduced by 44 and 47 % respectively.
For the number of features not working, the study shows a 38 % advantage for the

46 Chapter 3 Software Engineering Paradigms

teams working with XP. At the same time, job satisfaction increased by 77 % for
technology staff and 81 % for business stakeholders.

3.3.1 Values & Principles

XP is based on the values of communication, simplicity, feedback, courage, and
respect [15]. In order to translate these values into something usable in a practical
setting, it features a set of principles that every software project should adhere to.
These are introduced in the following paragraphs.

Humanity. Software is developed by people and people have certain needs. XP val-
ues these and endeavors to fulfill them. The following needs are seen as particularly
important:

• Basic safety: e.g., no fear of job loss

• Accomplishment: the opportunity to contribute to society/to the team

• Belonging: identification with the group

• Growth: personal development

• Intimacy: the ability to understand and to be understood by others

Economics. Software development has to create business value. The sooner money
is earned, the better. Pay-per use (cf. Paragraph 3.3.3) is a way of realizing revenue
soon after a feature is completed.

Mutual Benefit. This is the most important XP principle [15]. Every activity
should benefit all persons involved. For example, creating test cases now not only
benefits the current developer, but also all succeeding ones.

Self-Similarity. Solutions that work for one situation are likely to work in similar
ones, even on a different scale.

Improvement. In XP, there is no perfect solution. XP strives to create excellence
through continuous improvement and reflection.

Chapter 3 Software Engineering Paradigms 47

Diversity. Diversity is an expression for a team where members are not alike but
add different skills to the group.

Reflection. Reflection is about constantly thinking about how the team is working
and why things are, or are not working.

Flow. Instead of cutting the software development process into distinct cycles,
XP favors a steady flow of valuable output created by all activities.

Opportunity. Problems are seen as opportunities for change. In order to achieve
excellence, it is not sufficient to just survive but to take problems as starting points
for evolution.

Redundancy. Redundancy should be avoided unless it serves a valid purpose.

Failure. Failure is accepted as a consequence to constant improvement. If some-
thing fails, the least value that is created is knowledge.

Quality. In XP, quality is not a control variable. The trade-off between time and
quality is questioned and the latter should never be sacrificed.

Baby Steps. Instead of going for the big change or big step, XP favors taking
small iterations.

Accepted Responsibility. Responsibility can only be accepted, not assigned.

3.3.2 Mandatory Practices

Originally consisting of 12 practices [86], XP’s current version consists of 13
Primary Practices and 11 Corollary Practices (both depicted in Figure 3.5). They
represent things XP teams perform, or experience on a daily/regular basis. The
practices are most effective when all are used in parallel. The primary practices are
independent from other activities, and are designed to give immediate improvement.
The corollary practices are somewhat more complex and it is recommended to start

48 Chapter 3 Software Engineering Paradigms

them after gaining experience with the primary ones [15]. This section describes all
practices in brief. Information on them is taken from [15] and [87], if not referenced
otherwise.

Figure 3.5: XP practices [15]

Sit Together. Sitting together means having the whole team in one space big
enough for all team members. The idea behind this is to stimulate information
sharing and cooperation. If this is not possible (e.g., working with multisite teams),
XP encourages having as much face time as possible.

Whole Team. The whole team concept advises including enough persons in the
team to cover the skills and experiences necessary for completing the project. This
includes developers, testers, managers, designers, and — highly important — the
customer. If a certain skill is required, somebody with this skill is taken on board.
If someone is no longer necessary, this person should not continue to be part of the
team. This approach is not only about having the right competences available, but
is also about creating a team spirit to keep members committed.

Informative Workspace. The team’s workspace should reflect what it is working
on. Ideally, it should be possible to give a project overview to an outsider within

Chapter 3 Software Engineering Paradigms 49

15 seconds. That can be supported by having large, visible charts, in the format
of a physical story-board and attached story cards showing project progress. The
informative workspace also includes measurements to serve human needs by, e.g.,
providing drinks, snacks, and a clean and friendly environment.

Energized Work. Staff should only spend those hours in the office during which
they can be productive. Long office hours (more than 40 hours per week) should
therefore be avoided and people encouraged to stay at home when they are ill.

Pair Programming. “In pair-programming, two programmers jointly produce
one artifact (design, algorithm, code, etc.)” [88]. Both sit in front of the same
monitor(s). Alternately one of them is the driver, physically coding or designing,
using keyboard and mouse while the other (the observer) is able to think ahead
more strategically and to check code on-the-fly. Both partners constantly review
the other’s output. During a work day the two partners switch roles several times.
Partners also frequently change over time, usually when some relatively independent
task is completed.

A controlled experiment11 by Robert Kessler investigated the economics of pair
programming. In a software engineering course, 13 advanced individuals and 14
pairs had been asked to code a class project. The programs produced by pairs
passed about 14 % more test-cases than the ones created by individuals (89.13 %
for pairs versus 75 % for individuals). While some individuals where not able to
complete the course, all pairs finished their software. The pairs were also able to
complete their assignments about 40-50 % more quickly. Also, personal satisfaction
significantly rose when working in pairs.

Stories. Stories or User Stories are a way to capture wishes articulated by cus-
tomers. They have a short name and a brief explanation of what their goal is.
They commonly follow a notation like As a <user-type> I want to <goal> so that
<reason>. User stories are limited to a few lines, so that they fit on a small paper
note card. Ideally, they are written by customers themselves. Development teams
estimate possible efforts early on to give customers a rough picture of each story’s
impact on the project.

Weekly Cycle. Weekly releases follow the natural working schedule. The week
can be started by reviewing current progress, and breaking the scheduled stories

11For more details, read [88]

50 Chapter 3 Software Engineering Paradigms

into tasks. For these tasks, automated tests can then be written and executed
towards the end of the week after coding the related functionality. Weekly planning
acts as a tool against over-planning. It keeps the team focused on the top priorities.

Quarterly Cycle. The quarterly cycle is a recommendation to regularly review
accomplished work from a strategic position. This is done to keep the high level
system structure aligned with long-term goals and priorities. A quarter is chosen
as it is a natural and widely shared timescale.

Slack. Slack is the practice of always planning a certain number of tasks that
might be dropped if time becomes critical. The reason for including slack is to
honestly and transparently communicate the customer that workload estimates can
never be 100 % correct. The slack can also serve as a task reserve, to be finished if
there is some time left over.

Ten-Minute Build. XP recommends that it should always be possible to auto-
matically build the whole system and run all of the tests within ten minutes. If the
process takes longer, something has to be altered so that it again falls into the ten
minute frame. The reason behind this idea is that everything taking longer than
ten minutes is very likely to be either seldom, or only partially, executed.

Continuous Integration. Changes are tested and integrated after no more than
a couple of hours. With distributed development, integration becomes increasingly
unpredictable and complex. Building the whole system on every check-in, or on a,
for example daily basis shows errors early and eases isolating their source as the
single malicious change is comparatively small.

Test-First Programming. Also known as test driven development/design
(TDD)12, it means writing a test for the functionality going to be developed.
This approach is chosen to solve the following problems:

• While developing, it is tempting to include code just for the case. Strictly
writing code to pass tests prevents developers from falling into this behavior.

• Having problems with writing a test case often indicates problems with overall
design. “Loosely coupled, highly cohesive code is easy to test” [15, p. 50].

12For test driven development, e.g. see http://www.testdriven.com/modules/news/

http://www.testdriven.com/modules/news/

Chapter 3 Software Engineering Paradigms 51

• Creating test cases justifies coding this functionality and creates trust.

• TDD creates a work rhythm: test, code, refactor, test, code, refactor.

Incremental Design. Design decisions are made at the last possible moment.
All other techniques described in this section also serve the purpose of allowing
this practice. With requirements frequently changing over the project lifetime, the
design has to be incrementally adopted too. Incremental design encourages the
team to primarily think about what has to be done soon.

3.3.3 Corollary Practices

This paragraph briefly lists and describes all the corollary practices.

Real Customer Involvement. Letting customers be part of the (e.g., weekly/quar-
terly) planning activities can benefit the supplier.

Incremental Deployment. Big deployments are risky and involve high effort.
Gradually replacing legacy systems with new versions mitigates this risk, even at
the cost of running two systems in parallel.

Team Continuity. Productive teams should be kept together as relations are an
important factor.

Shrinking Teams. As teams become more capable and experienced, workload is
kept constant but team size is reduced.

Root-Cause Analysis. When a defect is found, both the defect and the cause are
eliminated.

Shared Code. Code is not owned by the individual programmer but by the whole
team. Everybody is responsible for fixing errors wherever found.

Code and Tests. Only code and tests are stored as permanent artifacts. All other
documentation is generated from these sources.

52 Chapter 3 Software Engineering Paradigms

Single Code Base. Whenever possible, there should only be one actively main-
tained code base. Branches are only temporary measurements and are quickly
merged into the main code tree.

Daily Deployment. New software is put into production on a daily/nightly basis.
This practice depends on many prerequisites being met and is therefore listed as
corollary.

Negotiated Scope Contract. Contracts include fixed time, costs, and quality
but allow ongoing negotiation of the precise scope of the system.

Pay-Per-Use. As mentioned in [15, p. 70], “connecting money flow directly to
software development provides accurate, timely information with which to drive
improvement.”

3.4 Scrum

The Scrum approach was developed by Ken Schwaber13, Jeff Sutherland14 and
Mike Beedle15. In 2001, these developments were summarized in “Agile Software
Development with Scrum” ([16]). Scrum itself is named after a game situation in
rugby, where players gather in a tight formation. Being part of the Agile Alliance
(cf. Section 3.1.4), Scrum shares its vision of how software development should be
organized.

Scrum is an iterative software development framework. It consists of few but clear
rules, and knows only three different roles: the Product Owner, the Team, and the
ScrumMaster. An overview of how a Scrum project is run is depicted in Figure 3.6.
The Product Owner is responsible for the economical goals of the project [89]. He is
creator of the Product Backlog, a to-do list of what is going to be implemented in the
future. Implementation is carried out in cycles, so called Sprints, with a duration of
1-4 weeks. Every sprint terminates at a fixed point in time and produces a visible,
usable, deliverable product [90]. A Sprint is kicked off in a Sprint Planning Meeting
where the tasks for the next cycle are agreed. These tasks fill the Sprint Backlog.
The Team is responsible for developing the committed functionality. As Teams are

13Ken Schwaber: http://www.scrumalliance.org/profiles/7-ken-schwaber
14Jeff Sutherland: http://www.scrumalliance.org/profiles/70-jeff-sutherland-phd
15Mike Beedle: http://www.mikebeedle.com

http://www.scrumalliance.org/profiles/7-ken-schwaber
http://www.scrumalliance.org/profiles/70-jeff-sutherland-phd
http://www.mikebeedle.com

Chapter 3 Software Engineering Paradigms 53

self-managed, self-organized, and cross-functional, they are responsible for figuring
out how to turn the Product Backlog into an increment of functionality within an
iteration [91]. They have to manage their own work accordingly. The ScrumMaster
acts as a coach for the Team and is responsible for everybody complying with
the Scrum process and rules. At daily Standup Meetings, named Daily Scrums,
ScrumMaster and Team get together to discuss yesterday’s progress and today’s
tasks. At the end of the Sprint, a Sprint Review meeting is held [91]. At this
time-boxed meeting, the Team presents the Product Owner and other potential
stakeholders with what was developed during the past Sprint. Before the next
Sprint Planning Meeting, the ScrumMaster and Team hold a Sprint Retrospective
meeting. Here, the Team reflects on the finished Sprint in preparation for the next
one.

Figure 3.6: Scrum Overview [92]

3.4.1 Project Prerequisites

To run a Scrum project, the project stakeholders must answer three questions [16]:

• At the end of the project, what result can be expected by the project funders?

• Which results can be expected at the end of each Sprint?

• What makes the project a valuable investment for those who fund the project
and what can increase their confidence in the abilities of those proposing the
project?

54 Chapter 3 Software Engineering Paradigms

To answer these questions, all stakeholders must share a common vision and have
to agree on a Product Backlog (cf. Paragraph 3.4.4). The vision declares why the
project is set up and what a successful completion should change. The Product
Backlog is the foundation for potential Sprints and releases.

3.4.2 The Sprint

All work (such as writing code, designing, documenting) in Scrum is done within
Sprints. Figure 3.6 illustrates how the Sprint fits into the overall Scrum process.
Following an incremental approach, each Sprint represents one cycle in the software
development process. Therefore, a Sprint could also be named an iteration [89].
The goal of each iteration is to create an increment of product functionality [91],
potentially ready for delivery. All features included in this release are listed in the
Sprint Backlog and defined in the Sprint Planning Meeting. At this meeting, the
Sprint’s duration is also defined, which may vary between one and four weeks (or
up to 30 days). This timeline may not be changed during the Sprint. Also, any
changes of requirements are deferred until the next Sprint. If through external
influence, there appears to be a significant change in priorities, and continuing
on the current work would thus mean wasting the Team’s time, it is possible to
terminate the Sprint early [92]. Consequently, the Team stops working on tasks
from the current Sprint Backlog, and a new Sprint Planning meeting is scheduled.

The Sprint Planning Meeting. The Sprint Planning meeting is a roughly one day
long meeting where the participants decide on which functionality from the Product
Backlog is transferred into the Sprint Backlog for the next iteration. It is attended
by the Product Owner, the ScrumMaster, and the Team. In coordination with
the ScrumMaster, other stakeholders may also attend the meeting. The Product
Owner proposes the goal(s) for the Sprint, and the Team identifies the related
tasks, estimates effort and dependencies, and discusses what will be implemented
by whom [89]. The ScrumMaster acts as a moderator. The meeting attendants start
with the first requirement on the Product Backlog (that with the highest priority)
to break it down into the activities needed to fulfill it. For each activity, the Team
estimates its duration and self-assigns responsibility to one of its members. The
meeting ends when all parties are committed to a realistic goal and a Sprint Backlog
is generated.

Chapter 3 Software Engineering Paradigms 55

The Daily Scrum. The Daily Scrum is a time boxed [91] meeting, lasting for 15
minutes at most. All Team members are required to attend. Each Team member
answers the following three questions [91, 90]:

• Relative to the Backlog, what have you accomplished since the last Daily
Scrum?

• Are any obstacles in your way, impeding you from completing this work?

• Relative to the Backlog, what do you plan to accomplish between now and
the next Daily Scrum meeting?

There is no room for other discussions in this meeting. The ScrumMaster ensures
that nobody breaks this rule, and records all obstacles the Team is experiencing.

The Sprint Review. At the end of the Sprint, the Team demonstrates the product
increment. In addition to the Team, the Product Owner, and the ScrumMaster,
additional stakeholders (such as users, customers, or other departments) may par-
ticipate. Their attendance allows them to receive unfiltered and direct feedback [89].
The Product Owner checks whether the functionalities built meet the agreed
requirements. Based on this, changes to the Product Backlog can be discussed.

The Sprint Retrospective. After the Sprint Review, the Team gets together to
reflect on the last Sprint. This meeting is attended by the Team, the ScrumMaster,
and optionally the Product Owner. As all other Scrum meetings, this one is also
time boxed. In this case about three hours are scheduled. This meeting provides
answers to two main questions as stated in [91]:

• “What went well during the last Sprint?”

• “What could be improved for the next Sprint?”

The ScrumMaster presents (e.g., using a whiteboard) everybody’s statements for
the Team to review so they can be discussed in detail. The main purpose of a
Sprint Retrospective is to continuously improve performance and satisfaction.

3.4.3 Roles

There are three different roles in Scrum: the Product Owner, the Team, and the
ScrumMaster. Typically one Product Owner is working with one Team, supported
by one ScrumMaster. The ScrumMaster also only serves one Team.

56 Chapter 3 Software Engineering Paradigms

The Product Owner. The Product Owner represents the customer inside the
company and is integrated into software development. In some cases, customer
and Product Owner are one and the same person, but often the latter is part
of the internal organization. The Product Owner is ultimately responsible for
achieving maximum business value, translating customer input into a prioritized
list (the Product Backlog). According to [89], the Product Owner has the following
functions:

Describing and Managing Requirements. The Product Owner is responsible for
the collection of customer requirements and their descriptions, as well as input
from other team members. This information is translated into a prioritized
list — the Product Backlog.

Release Management and ROI. The Product Owner’s main objective is maxi-
mizing the Return on Investment (ROI). Therefore, the value created by the
project should be as high as possible. It is the Product Owner’s decision
when, with which set of features, and at what cost the product is delivered.
In contrast to the more traditional project/business owner, the leadership of
the development project is not delegated to a project manager or team lead.

Close Collaboration with the Team. The Product Owner collaborates closely
with the Team by helping to understand and express customer requirements.
This includes preparing detailed requirement descriptions and tracking project
progress.

Stakeholder Management. Negotiating with all project stakeholders (marketing,
IT, sales, etc.) and integrating their views into the project is another major
responsibility of the Product Owner.

The Team. The Scrum Team carries out the work required to realize all function-
alities it has committed to deliver. The Team is multifunctional in the sense that it
includes all the expertise necessary to deliver the project increment at the end of
each sprint and that it possesses project management capabilities to manage itself.
As with XP (cf. Paragraph 3.3.3), team continuity is regarded as very important.
The recommended team size ranges from 5-9 [16] to 3-8 [93].

As communication is crucial, the Team’s work facilities should be open-plan and
provide space to display information on posters and whiteboards. The posters should
at least show the current Sprint Backlog, and the Sprint Burndown chart [89].

The ScrumMaster. Compared to traditional roles like project manager or team
lead, the ScrumMaster is much more a coach and change agent [16]. Especially when

Chapter 3 Software Engineering Paradigms 57

Scrum is new to the organization, being a ScrumMaster should be a full-time job. If
that is not possible, a Team member (but never the Product Owner) might serve as
such [92]. The ScrumMaster is responsible for the success of the project [91]. He/she
helps to ensure project success by supporting the Product Owner in selecting the
most promising features to be part of the Product Backlog. The ScrumMaster’s
main responsibilities are:

Establish and Teach Scrum. The ScrumMaster is the role where in-depth Scrum
knowledge is most critical as it is the ScrumMaster’s responsibility that
everybody understands and follows Scrum practices. A ScrumMaster drives
Scrum adaptation within the organization and his/her duty is to try to
establish a way of thinking and acting in order to make agility possible.

Serve and Support the Team. Instead of managing the Team, the ScrumMaster
“serves” [92] it and protects it from outside interference. A ScrumMaster has
no direct authority to instruct Team members and has no staff responsibility.
He/she tries to resolve any impediments that might disturb the Team from
working. The ScrumMaster’s role is “similar to a personal trainer” [17, p.
117] who helps choosing exercises and performing them correctly.

Enhance Communication. The ScrumMaster constantly communicates with the
Product Owner and the Team to ensure that both parties understand each
other. This might include acting as a moderator between these stakeholders.

3.4.4 Artifacts

Scrum relies on a small but important number of artifacts that are created through-
out the process. The following paragraphs give a brief overview.

Product Backlog. The Product Backlog is a central artifact in Scrum. Owned and
maintained by the Product Owner, it contains a prioritized list of everything ever
thought of as being a valuable part of the final product [16]. This prioritized feature
list contains user requirements but also non-functional ones or administrative tasks.
There is one Product Backlog per Scrum project. It does not contain activities, as
these are only identified during the Sprint Planning meetings. The Product Backlog
changes throughout the project. User Stories are a common way of expressing
requirements in a short and simple manner. More on user stories can be found in
Paragraph 3.3.2. As the Product Backlog is initially incomplete [16], new stories
are added, existing ones are removed or revised, and their degree of detail increases.
All entries in the Product Backlog contain an estimated effort, usually expressed

58 Chapter 3 Software Engineering Paradigms

in story points or ideal man-days [93, p. 11]. Both methods are used to weigh the
different requirements in a project against each other.

Product Backlogs can be further broken down into Release Backlogs, containing all
information selected for a release.

Sprint Backlog. The Sprint Backlog is created after the Sprint Planning Meeting
and before the first Daily Scrum [93]. It contains all activities to which the Team
has committed itself at the Sprint Planning meeting. The effort of all activities is
estimated in hours. The level of detail dictates that each task should be completed
in roughly four to sixteen hours [16]. No items may be added or removed from
the Sprint Backlog until the Sprint ends, unless time allows the inclusion of new
activities or existing ones fall out of scope. Nevertheless, it is constantly changing
as Team members commence to work on their tasks and update descriptions and
estimates on a daily basis.

Changes Report. At the end of the Sprint Review, the Product Owner creates
a Changes Report, comparing the Product Backlog before and after the Sprint.
It summarizes everything that happened during the Sprint, what was highlighted
at the Sprint Review, and what adaptations have been made to the project in
response to the inspection done there [91]. The Changes Report is a tool to report
progress to other stakeholders, such as management or customers.

Burndown Report. The Burndown Report demonstrates the Sprint progress. On
the x-axis it lists all working days and the y-axis displays the effort in, for example,
story points or ideal days. Every day, the Team enters its progress into the Sprint
Backlog and the amount of remaining effort ends up in a point on the Burndown
Report. This can then be compared to the ideal, linear Burndown as depicted in
Figure 3.7.

Chapter 3 Software Engineering Paradigms 59

Figure 3.7: Sample Burndown Report

The Burndown Report gives a realtime overview of the Sprint progress. It therefore
helps the Team with self-organization and can be used to give stakeholders an
up-to-date project health status.

The Impediments Chart. This report contains a list of factors/issues impeding
the project. Each impediment is formed of a short description and the date on
which it was identified. Identifying impediments is part of the Daily Scrum and the
ScrumMaster is responsible for recording them. When an impediment gets rectified,
this is noted together with the date of remediation. The chart helps to keep track
of these difficulties and shows concluding trends.

60

Chapter 4

Classification and Applicability

The preceding chapters describe what Web engineering is about and provide
insight into a number of development approaches ranging from traditional concepts
to very recent ones following agile patterns. The challenge of this chapter is to
sufficiently compare these methodologies following shared comparison standards.
Subsequently, a judgement about their applicability for Web engineering can be
reached. It is, however, not part of this chapter to provide an in-depth analysis
of similarities, differences, shortcomings, and application areas, as the existing
literature [94, 19, 95, 96] provides a good overview.

4.1 Classifying Software Engineering Processes

The comparison approach used in this chapter combines components and results
from [19], [97], [98], and [94]. These methods are applied on XP, Scrum, and RUP.
The conclusion is based on results described in the named literature as well as
on findings gathered when elaborating the descriptive chapters of the paradigms
presented within this thesis. The comparison indicates which characteristics identify
the methodologies and which parts of the development lifecycle are covered by each
of them.

4.1.1 Describing the Characteristics

The first part of the analysis concentrates on the characteristics of the mentioned
software development paradigms. Following existing, well documented examples [98,
99, 94], the methodologies can be distinguished from each other and covers a generic
overview as well as a more detailed investigation.

Chapter 4 Classification and Applicability 61

4.1.2 Describing the Lifecycle

The second part divides the development project into nine phases, loosely following
the Waterfall approach. These phases cover the full development lifecycle from
concept creation to the usage of the developed system. This approach is introduced
in [19]. The phases covered are: Concept Creation, Requirements Specification,
Design, Code, Unit Test, Integration Test, System Test, Acceptance Test, and
System in Use.

Support for each of these phases is divided into three different categories. This
allows differentiating to which degree these phases are covered. The criteria are:

1. Does it include project management practices?

2. Is an adequate process proposed and described?

3. Does it offer concrete guidance for handling scenarios in a certain phase?

The results of this review are depicted in Figure 4.1.

4.2 Classifying Methodologies

This section shows the results of evaluating XP, Scrum, and the RUP following
the described approach. The results are based on descriptive (books and papers
presenting an approach) and on investigative (comparing and judging methodologies)
approaches.

4.2.1 Characteristics

The first part of the analysis concentrates on the differences between agile and non-
agile approaches in general and between the individual methodologies in particular.
Table 4.1 presents a generic overview on where light- and heavyweight solutions
put their emphasis.

62 Chapter 4 Classification and Applicability

Characteristics Agile methods Plan-driven methods

Approach Adaptive Predictive
Primary objec-
tive

Early value High assurance

Return on invest-
ment

Early in project End of project

Emphasis People oriented Process oriented
Size & complex-
ity

Smaller teams and prod-
ucts

Larger teams and products

Developers Agile, knowledgeable, co-
located, and collaborative

Plan-oriented; adequate
skills; access to external
knowledge

Customers Dedicated, knowledgeable,
co-located, collaborative,
representative, and em-
powered

Access to knowledgeable,
collaborative, representa-
tive, and empowered cus-
tomers

Requirements Largely emergent, rapid
change

Knowable early; largely
stable

Architecture Designed for current re-
quirements

Designed for current and
foreseeable requirements

Refactoring Inexpensive Expensive

Table 4.1: Generic Characteristics [98, 99, slightly adapted]

These findings to a large degree match the results in [95], where common charac-
teristics of agile methods are summarized. All of these methodologies have been
published between 1995 and 2002 in the USA and UK. Based on the assumption
that projects undergo constant change, they resemble objectivist methods pro-
viding technical solutions to address business problems. None of them have been
developed with much academic background, but are practitioner based instead.
Typically, agile paradigms distinguish between a project manager and a developer
perspective. They enforce incremental development with iteration cycles of about 1
month. Development is done in small, empowered teams of about 3-10 program-
mers and involves active user/stakeholder participation, feedback, and learning.
As communication between all project participants is critical, frequent meetings
are a common characteristic. The ultimate goal of agile methodologies is to create
working software as the main product of development whilst modeling techniques
are not mandated and documentation is minimized.

In contrast to Table 4.1 which introduces a generic view on the matter, Table 4.2

Chapter 4 Classification and Applicability 63

focuses on the individual paradigms. Despite XP and Scrum sharing many fun-
damental characteristics, they are still two distinct approaches and value specific
properties differently.

Characteristics XP Scrum RUP

Iteration length Short Short Long
Importance of planning Low Medium High
Importance of documentation Low Low High
Collaborative High High Medium
Refactoring enforced High Medium Low
Unit Testing enforced High Medium Medium
Functional Testing enforced Low Low High
Integration of changes High Medium Medium
Knowledge sharing High Medium Low
Interaction with end-users Medium High Medium
Team member interaction High Medium Low
Team self organization High High Low

Table 4.2: Detailed Characteristics [94, modified, extensively adapted]

Table 4.2 indicates that XP is the most radically agile of the methodologies listed,
whereas the RUP clearly represents a more planned approach. The result also
suggests that Scrum and XP share a lot of characteristics.

4.2.2 Lifecycle Coverage

In this section, the methodologies are compared based on their differing lifecycle
support. Thus, for each method, the software lifecycle coverage — including project
management support, process guidance, and practical support — is evaluated.
Figure 4.1 shows that there are three different aspects to be considered when
inspecting the software development lifecycle.

Project Management. As Figure 4.1 shows, XP does not address the project
management perspective. In contrast, one of the main focuses of Scrum is to
support this role with tools and a theoretical background. The RUP also provides
the necessary coverage, even extending that of Scrum.

64 Chapter 4 Classification and Applicability

Process Description. XP describes in detail how the software development pro-
cess should be conducted and concentrates on concrete guidance. Scrum also covers
most parts of the process but on a more abstract level. Again, the RUP gives the
most complete picture.

Practical Support. This is the main strength of XP. Its 24 practices provide
detailed descriptions of how to handle the different tasks in software development.
Scrum follows a more abstract approach, focusing on requirements description and
collection, and customer integration. RUP, being a fully featured methodology,
covers all these aspects.

Figure 4.1: Lifecycle Coverage [19, modified]

4.3 Applicability for Web Engineering

Having characterized Web engineering and software development processes, which
kind of methodology should be chosen? Traditional software development practices

— such as the Waterfall model (cf. Section 3.1.2) — were originally proposed in

Chapter 4 Classification and Applicability 65

the 1970s. As a part of a then very young industry, they reflect an environment
much different from what is reality today. Dominated by substantial organizations
such as the military or big corporations, developers wrote large-scale, centralized
systems, usually to achieve automation [100]. User interfaces — if they existed —
were command line based. Many of the approaches that historically seemed natural,
merely translate into modern application development or Web engineering. The
following paragraphs aim to discover which pieces of the more modern approaches
described in Chapter 3 are applicable in these scenarios. Based on the information
collected in previous chapters, this part of the thesis looks into the applicability of
these software development paradigms for Web engineering.

The following sections are based on the information given in this thesis and on a
method described in [20], where the authors propose a way of evaluating the kind
of development method best suited to a project. The suitability of a project for
agile development is dependent on a number of factors. These are described in the
following paragraphs.

4.3.1 Domain Factors

Not all domains are appropriate for applying agile management principles. The
Internet application domain is stated as being particularly [95] suitable. Other
factors relate to technological requirements, such as automated testing and the
utilization of object-oriented development.

Chapter 2 of this thesis provides a detailed list of peculiarities that distinguish
Web engineering from other disciplines. The book “Extreme Programming for Web
Projects” [6] provides a similar but shorter list, which in parts corresponds to
that mentioned in this thesis. The subsequent paragraphs summarize the most
important points and investigate whether the found specifics influence the choice
between conducting a project in an agile or traditional manner.

Teams. Described in Sections 2.4 and 2.6.2, Web engineering consists of the
disciplines Media Design, Project Management, Software Engineering, and Content
Creation. Two of the participating entities — Project Management and Software
Engineering — are common participants in almost every software development
project. The other two, however, are particular to Web engineering and deserve
separate attention as these roles are typically not covered by theories centering
around software development. In [6] this is referred to as a multidisciplinary team
covering a “myriad of new disciplines”.

66 Chapter 4 Classification and Applicability

Common to all agile methods is the strong emphasis on personal communication
and co-located teams. Both factors help with breaking down the psychological
and professional walls between people of different specializations. The strong
interdisciplinarity that is required by Web projects make this kind of interaction
highly important and may often replace formal in-detail documentation.

Support for Multiple User Environments. The background has been described
in Sections 2.5.3 and 2.6.3. It means that one version of a Website must be able
to support multiple types of devices and a heterogenous user base. This can be
seen as an additional technical constraint that has to be tackled but it should not
affect the development process itself significantly. In any case, customers might
not be aware of this device heterogeneity so the targeted user audience (and their
technical equipment) must be clearly specified.

Usability & Testing. Described in Sections 2.4.2 and 2.6.3, this point explains
that Web interfaces are different from desktop GUIs as they may be designed quite
freely, following only loose patterns. This makes usability testing a very important
component of the software development cycle. Additionally, the interface is usually
not laid out by a backend programmer but by people that combine artistry with
specific coding knowledge such as HTML, CSS, and Javascript. As these creatives
usually do not come from a software development background, their acceptance of
strict processes is not very sound. This opens the field for agile practices as they
tend to give the individual more freedom. Integrating design, usability testing, and
customer approvals early in the process is necessary as testing at the end “doesn’t
work” [17]. Scrum for instance makes testing a central practice and part of the
development process.

Rapid Deployment. As mentioned in Section 2.6.4, Web applications quickly
become obsolete. Updated versions have to be deployed rapidly. Integration of
new code or designs is a regular task that happens frequently. This reflects agile
approaches. In XP, team programming is a divide, conquer, and integrate prob-
lem [15]. Some of this integration effort can be automized by taking advantage
of unit testing and build automation. As rapidly changing requirements lead to
constantly changing software (or Websites), agility is certainly an important factor
here.

Customers. Web engineering is often positioned at the interface between mar-
keting and IT. These two worlds frequently do not have much in common and

Chapter 4 Classification and Applicability 67

also might not have a deep understanding of what a good Web product is about.
As customers are less experienced with Web applications than with traditional
software or marketing channels, it is vital to find a common language to manage
and understand expectations. This requires a lot of personal interaction which
reflects what agile approaches suggest. Prototyping and releasing software early
are agile ways of transporting information in a way that is comprehensible for all
participants.

4.3.2 Organization Factors

In oder to leverage the effects of agile methodologies, an organization has to
meet certain criteria. This largely concentrates on social factors, such as trusting,
collaborative, and competent interaction, face-to-face communication and a general
informality in daily interaction. The organization should be willing to empower
people, following a management style which combines leadership with collaboration,
which in turn requires an environment that is flexible, encourages participation
and social interaction.

4.3.3 Project Factors

The next factor relates to the project itself. Research [101] shows that theoretical
entitlement seems to differ from reality. According to this analysis, projects with
stable requirements and a well-established architecture are reported as especially
suitable for agile methods. Small, co-located teams, qualitative project control, and
a project manager acting as a facilitator are further factors to be named.

4.3.4 People Factors

Agile methods put heavy emphasis on people1. Therefore, the participating char-
acters have to meet certain conditions. Developers should be experienced and
capable of forming self-organizing teams. On the other side of the spectrum, agility
needs customers that are collaborative, representative, authorized, committed, and
knowledgeable. In the best scenario, the customer would be an on-site usage expert,
intensively collaborating with the development team.

1See the Agile Manifesto at Section 3.1.4

68 Chapter 4 Classification and Applicability

4.4 Critical Remarks on Applicability

The described factors clearly suggest that agile practices are favorable for the
described purpose. The more strict types do not provide the flexibility desired
for this fast moving environment. The different paradigms provide a varying
level of coverage for the software lifecycle aspects. Depending on the focus of a
project, a method based on any of the discussed frameworks can be chosen whilst
keeping in mind that a fully fledged RUP rollout will cripple agility. The next few
paragraphs summarize general thoughts on software development methods and on
their applicability for Web engineering.

RUP. There are many reasons why the RUP has become so popular and in many
areas a de-facto industry standard. According to [102],

“it combines recognized best practices such as adaptive, iterative, and
risk-driven development; it has been developed by world-class leaders
with experience in both small and large systems development; it is
flexible in its application and extension; and it has been coherently
documented in both print and the online RUP product”.

Despite this heritage and whilst containing agile elements [20], the RUP is still said
to be “overly complex” [103]. The methodology itself tries to cover almost every
aspect of the software development lifecycle. This makes the RUP very hard to
understand completely. The inherent complexity and sheer volume of information
make it very difficult to actually find the pieces of the process that are actually
valuable for a specific implementation. Not all pieces of the process follow the
same standard of quality. In [103], the author states that “it takes a very intimate
knowledge of the process framework and some very real experience using it to
determine what to use and what to completely ignore”. RUP, therefore leaves a lot
of tailoring to the user entirely, which raises the question how much of the RUP
can be left out, with the resulting process still being RUP [19].

Documentation and — if the process is strictly followed — the approach itself add a
lot of complexity to the RUP. For example, strict execution requires the completion
of around a 100 work products [76]. An example of the consequences this might
lead to can be found in [95], where one of the survey participants mentioned that,
over five years, “using RUP was prohibitive due to the time and cost of generating
the specified documentation”.

Generally, the RUP does not seem to be very suitable for smaller projects where
delivering the product is often more valuable than any strategic planning. It is very
hard to imagine the average Web agency follow this strict framework. The possible

Chapter 4 Classification and Applicability 69

benefits would not sacrifice the overhead. Only very complex and/or high-risk
projects can possibly require such strict processes, especially as the latter may
often be conducted in sensitive (high security) environments.

Agile Processes. In the past years many papers, books, and journals have been
published that describe the adoption of agile methods. However, most of these
articles on adoption are experience reports, often in the form of anecdotal success
stories or lessons-learned from organizations that have adopted one of the pro-
cesses for a project [104]. These reports often lack empirical evidence for efficacy,
benefits, and problems, therefore information about the most appropriate project
environment for agile methods is scarce [95].

A study carried out by D. Reifer [105, 101] in 2002 revealed that projects utilizing
agile methods are small (10 participants or less), often pilot projects and most
were Web-based, quick-to-market applications. This study involved 31 projects, 14
claiming to use agile methods. To identify costs and benefits, a small number of
measurements was taken in some of the projects, assisted by further qualitative
assessment. The measurements showed productivity improvements of 15% to 23%
and cost reduction of 5% to 7%. The small team size noted coincides with other
sources [106] that state the conclusions of agile practitioners and other researchers
that the agile value set and practices best suit co-located teams of about 50 people
or fewer who have easy access to user and business experts and are developing
projects that are not life-critical. Although the agile value set might be adopted
(and may be adapted) under other circumstances, the boundary conditions for truly
agile behavior seem to be fairly set. This makes scalability, or the lack of, a real
issue. The strong focus on face-to-face communication in agile processes makes
it especially difficult to scale up to larger projects. Even XP founder Kent Beck
admits that size clearly matters and that it is probably not possible to run an XP
project with a lot more than twenty programmers, suggesting a maximum number
of ten [15]. As shown in a 50-person XP case study [20], larger agile projects need
to adopt traditional plans and specifications in order to handle the increasingly
complex, multidimensional interactions among the project’s elements.

Another point negatively affecting scalability is that current experience [20] indicates
that there are limits to low-cost refactoring as projects scale up. The most serious
problems that can arise when a software architecture is not sufficiently planned are
problems known as “architecture breakers” [20]. These potentially highly expensive
problems can occur when early, simple design failures result in changes either
later within the same project or a follow-up project, that cause breakage in design
or functionality beyond the ability of refactoring to handle. Naturally, a larger
codebase means more risk for architecture breakers and more effort to fix them.

70 Chapter 4 Classification and Applicability

For the average Web project, agile approaches provide a lot of valuable input
as their core competence is about managing the flexibility often needed in Web
engineering. The close collaboration with the customer guarantees the feedback
that is especially critical for situations where visual design is a major factor. Also
technical recommendations such as continuous integration make much sense in
order to stay in touch with customer requirements.

Even for more standard solutions without much development involved even following
agile approaches can be unnecessary and standard project management is sufficient.
When launching the finished product, errors can be immediately visible to a very
large audience. This makes the launch phase very important. However, this phase
is missing in most agile methodologies, including Scrum and XP (cf. Figure 4.1).

4.5 Deciding in Uncertainty — a Risk based
Approach

In [20], B. Boehm and R. Turner propose a system for deciding whether to follow
an agile or more “plan-driven” route for a project. This solution uses project factors,
such as size (number of involved people), criticality, personnel skill level, dynamism
(requirements change per month), the organization’s culture (chaos versus order),
and especially project risk to determine the most suitable type of method to use
for a particular project [95]. It tries to answer the question “How much planning
and architecting is enough?” to find the right balance.

The approach categorizes the possible risks regarding three different categories [20]:

“Environmental risk

• E-Tech. Technology uncertainties

• E-Coord. Many diverse stakeholders to coordinate

• E-Cmplx. Complex system of systems

Agile risks: risks that are specific to the use of agile methods

• A-Scale. Scalability and criticality

• A-YAGNI. Use of simple design or YAGNI (You Ain’t Gonna Need
It)

• A-Churn. Personnel turnover or churn

• A-Skill. Not enough people skilled in agile methods

Chapter 4 Classification and Applicability 71

Plan-driven risks: risks that are specific to the use of plan-driven meth-
ods

• P-Change. Rapid change

• P-Speed. Need for rapid results

• P-Emerge. Emergent requirements

• P-Skill. Not enough people skilled in plan-driven method”

Figure 4.2 depicts the process model behind it.

Figure 4.2: Summary of the Risk-Based Method - Model [20]

In total, five steps are part of the method. Each of the steps requires that the
executor collects information or finalizes a decision. Every subsequent step depends
on the outcome of its predecessor.

1. Rate the project’s environmental, agile, and plan-driven risks. If uncertain
about ratings, buy information via prototyping, data collection, and analysis.

2. Make a decision.

72 Chapter 4 Classification and Applicability

a) If agility risks outweigh plan-driven risks, go risk-based plan-driven.

b) If plan-driven risks outweigh agility risks, go risk-based agile.

3. If parts of the application satisfy 2a and others 2b, architect the application
to encapsulate the agile parts. Go risk-based agile in the agile parts and
risk-based plan-driven elsewhere.

4. Establish an overall project strategy by integrating individual risk mitigation
plans.

5. Monitor progress and risks/opportunities, readjust balance and process as
appropriate.

Often the findings of Step 1 will lead to a final decision without the need of following
the whole process. Basing the decision on risk applies when the environment itself
is only vaguely determining the outcome. That may apply to completely new
organizations or to teams put together for one big project.

Risk and the organization executing the project are just one side of the coin.
The other side is made up of the different methodologies themselves. Their main
characteristics have already been described in Section 4.2. The developers of the
utilized decision model also categorize these. The classification given in Table 4.3
covers two dimensions: Levels of Concern defining the organizational scope for which
the methodology provides guidance and Sources of Constraint which summarizes
all the constraints the method puts on the project team. A third category Life
Cycle Activities has already been covered in Figure 4.1. On a scale from 1 to 5,
where 1 represents very low and 5 very high’, [20] assigns Scrum the least number
of constraints (1), XP classifies as 2-3 and the RUP as 2-4.

Chapter 4 Classification and Applicability 73

Levels of Concern Sources of Constraint

Method Bu
sin

es
s

En
te

rp
ris

e

Bu
sin

es
s

Sy
st

em

M
ul

ti-
Te

am
Pr

oj
ec

t

Si
ng

le
-T

ea
m

Pr
oj

ec
t

In
di

vi
du

al

M
an

ag
em

en
t

Pr
oc

es
se

s

Te
ch

ni
ca

lP
ra

ct
ic

es

R
isk

/O
pp

or
tu

ni
ty

M
ea

su
re

m
en

t
Pr

ac
tic

es

C
us

to
m

er
In

te
rfa

ce

Scrum - o o o o + - o - o
XP - o - + + o + o o +
RUP - o + + - o o + o -

+ ... fully supported
o ... partially supported

- ... not supported

Table 4.3: Risk-Based Method - Method Comparison [20, shortened]

4.5.1 Assessment

The risk based approach described above gives a sound and generic schema for
classifying projects. Taking this classification method as a basis, it is possible to
feed the typical attributes of Web engineering into this model. The basis for that is
given in Section 2.2 “Categorization” as part of this thesis. There, Web engineering
is subdivided into categories, taking into account novelty and complexity. For the
intended purpose here, only complexity is relevant and is taken as factor A in
this calculation. A follows a linear curve with 1 being the lowest number and 8
the highest. The other factor taken into account is risk (factor B). Divided into 8
levels, it is weighed higher than complexity as risk is the major source for making
a decision according to [20]. This importance is reflected in the value assignment
for these 8 levels. Here the Fibonacci sequence is chosen, starting with the third
number in this row. These two factors are then multiplied and the result represents
the level of planning that should be involved. The higher the value, the more
planning is going to be needed. The results of this calculation can be found in
Table 4.4.

As Figure 4.3 shows, higher complexity and, more prominently, higher risk lead to
higher planning demands. Taking into account that the more complex variations of

74 Chapter 4 Classification and Applicability

B: Risk
low high

* 1 2 3 5 8 13 21 34
A

:
C

om
pl

ex
it

y
Informational 1 1 2 3 5 8 13 21 34
Interactive 2 2 4 6 10 16 26 42 68
Transactional 3 3 6 9 15 24 39 63 102
Service Oriented 4 4 8 12 20 32 52 84 136
Workflow Oriented 5 5 10 15 25 40 65 105 170
Collaborative 6 6 12 18 30 48 78 126 204
Social 7 7 14 21 35 56 91 147 238
Cloud Based 8 8 16 24 40 64 104 168 272

Table 4.4: Risk-Based Method - Web engineering - Results

Web engineering are usually the youngest types, two possible conclusions can be
drawn.

The first one stipulates that Web engineering by trend more and more evolves
towards classical software engineering. Still, the factors described in the opening
of this chapter apply, but are possibly more and more merged into standard,
but flexible, software development approaches. However, these influences require
practices which are currently not sufficiently covered by the methodologies described.

The second conclusion from this practice is that planned and agile are not formal
descriptions, but synonyms which rather vaguely describe approaches differentiating
from each other in various dimensions. The participants of a huge and critical
banking software project might have a totally different view on what these terms
mean than a group of university graduates working for a local startup. This
makes Step 1 of the risk-based method crucial. Here the domain factors listed in
Section 4.3.1 clearly indicate that organizations in the Web environment tend to
lean towards agile approaches.

Chapter 4 Classification and Applicability 75

Figure 4.3: Risk-Based Method - Web engineering - Overview

4.6 Combining Methodologies

As the different parts of this thesis show, the various methods focus on different
aspects of the software development lifecycle. Here, XP is clearly more focused
on practical and descriptive areas, whereas Scrum gives more attention to project
management and processes. RUP provides an extensive and detailed coverage of
all aspects. Therefore, combining two methods seems to be a valuable idea.

XP and Scrum. As described in [107], Scrum is a product development method-
ology consisting of practices and rules to be used by all project stakeholders to
maximize the productivity and value of a development effort, whereas Extreme
programming (XP) is an engineering methodology mainly consisting of practices
that support focusing on creating top-quality code. This also reflects the lifecy-
cle related findings in Figure 4.1. As XP lacks management components [19], its
practices may be “wrapped” [16] by Scrum to provide a management and process
framework. This combines the strengths of both systems.

76 Chapter 4 Classification and Applicability

XP and RUP. Two articles [108, 103] relate to this combination as utilizing RUP
to provide a proven framework whose practices are enriched with agile techniques.
In summary, this advocates mixing agile with more structured methodologies like
the Rational Unified Process as a good way to combine energetic, creative and
real-time approaches with structured, more methodical frameworks that can help
organizing large-scale projects [103]. The same author emphasizes the complexity
of the RUP and how he uses XP to lighten it up.

RUP and Scrum. A combination of these two management focused approaches
can possibly be used to free a Scrum Team within a RUP structure from some of the
efforts of creating non-code artifacts. Since Scrum teams work very independently,
all the artifacts that could be produced by them should be declared optional to
reflect the control that teams have in Scrum environments [109].

77

Chapter 5

Supporting the Web engineering Process

This chapter of the thesis is about adding real world experience to the theory already
covered. All content is based on the author’s work in a department responsible for
e-marketing projects in one of the 10 biggest pharmaceutical companies1 in the
world — the Vienna eMarketing Center (VEC) — and on the insights gained while
elaborating the theoretical background. Both parts constantly influence each other,
thus the outcome is truly a consequence of both.

5.1 Work Environment

This first paragraphs describe the work environment in which the processes and
tools to be described in later chapters are part of daily routine. The VEC was
established in 2008. It started with about 10 people in 2008 and consists of about
60 at the time of writing.

Core Business. The VEC’s core business is to produce electronic marketing assets
for company affiliates around the globe. These assets mainly consist of: websites
build with .NET and Java; eDetails which are Flash or HTML5 based presentations
delivered via the Web, tablets, or iPads; and mobile applications for iOS and Android
devices. The target audience is primarily health care professionals (primarily
physicians) with supplemental offers for patients and a general audience. Marketing
in the pharmaceutical industry is strictly regulated [110], which is especially true
for communication targeted at patients. This prohibits product related information
from being publicly accessible. In this environment, the VEC covers the full product
lifecycle (concept, design, implementation, project management, maintenance,
hosting, etc.).

1Specific information may be given on request

78 Chapter 5 Supporting the Web engineering Process

Department Structure. The VEC consists of a number of specialized departments
as illustrated in Figure 5.1. General Management leads the department, Project &
Program Management (PM) guides the projects until they launch and also does
concept work, Operations (Ops) deals with the hardware and software infrastructure,
Project Support (ProS) is responsible for customer support and supportive tasks,
and Project Quality (ProQ) performs general and usability testing.

Figure 5.1: eMarketing Center - Structure (simplified)

This thesis focuses on the group marked in red on the chart — Development
(DEV). The author of this thesis leads this group. Together with the Media
department which does design and its implementation (HTML, CSS, Javascript,
video cutting, Flash), the Development team is part of the Product Delivery unit.
It is accountable for the implementation and also the maintenance of VEC assets.
Thus it covers application architecture design, project management, programming
in C#/ASP.NET, Java, Javascript, AS3 (Adobe Flex), Objective-C (Apple iOS2),
and MSSQL3. The maintenance part includes updating Websites with new runtime
versions, and about pushing website updates (content, design, etc.) from the Staging
to the Production environment. The team consists of nine developers, a senior
developer, a team coordinator, and a team lead.

2About iOS: http://www.apple.com/iphone/ios4/
3MS SQL Server (http://www.microsoft.com/sqlserver/en/us/default.aspx)

http://www.apple.com/iphone/ios4/
http://www.microsoft.com/sqlserver/en/us/default.aspx

Chapter 5 Supporting the Web engineering Process 79

5.2 Process Evaluation

Section 4.5 describes a risk based process for choosing the right development process
or the ideal level of planning. As outlined, application and environment factors
(cf. Section 4.3) of a project have great influence on the decision process, which is
especially true in a domain where risk is not the major factor. The next paragraphs
discuss the factors that apply to the VEC work environment.

5.2.1 Risk

In most cases, the VEC does not develop business critical applications. However,
during 2010 the average project tended to become both more complicated and time
critical. The differences between the individual projects did not justify substantially
differing processes yet but first steps are taken into this direction.

5.2.2 Application Categorization

Section 2.2 in this thesis shows that there is not one discipline of Web engineering
but that it can be further divided into sub-disciplines depending on the application
context. Table 5.1 lists how projects completed by the VEC are approximately
distributed between the different categories. The list clearly shows that simple

Application Type %

Informational 55
Interactive 25
Transactional 0
Workflow Oriented 5
Collaborative 5
Service Oriented 5
Social 5
Cloud Based 0

Table 5.1: VEC Project Distribution

projects still dominate daily business. EDetails fall into the Informational class.
The rest, making up 20% of all projects reflect the growing demand for more
sophisticated solutions.

80 Chapter 5 Supporting the Web engineering Process

5.2.3 Environment Factors

Domain Factors. The VEC is clearly doing Web engineering. With almost no
exception, all software produced is either distributed by, or exposed to, the Web,
or it is built with Web technologies. Therefore all of the peculiarities described in
Sections 2.4, 2.5, and 2.6 apply.

Organization Factors. Communication between VEC members is often face to
face, supported by the office facilities as the vast majority of staff are working in
one open plan office. These kind of offices are also advocated by proponents of agile
methodologies [17, 6, 15], as they clearly encourage personal conversation. Also,
hierarchies are rather flat and do not hinder communication.

Project Factors. The VEC undertakes a lot of projects for many different cus-
tomers. The customers themselves heavily influence how the project is conducted
as he/she defines and changes requirements. Often, quick turnaround times are
required leaving little time for architecture and documentation. Also development
projects are usually very short. Most of them concern the adding, or changing
of little pieces of functionality for one of the used Content Management System
implementations. Long-term projects are often triggered internally and usually do
not see more than 2 developers working on them simultaneously. Therefore even
agile release schedules (or sprints) of one to four weeks are too long for the quick
turnaround times.

People Factors. Overall the VEC team is quite young. Most staff range between
25 and 35 years of age. This influences flexibility in a positive way.

5.3 Resulting Processes & Activities

Considering the set preconditions, this chapter shows how these influence the
project and development process implemented in the VEC. It also relates this
to the methodology-related findings of previous sections. It describes both the
overall project process (cf. Section 5.3.1) and the internal development processes
(cf. Section 5.3.2) as both depend on each other and need to mutually complement
each other.

Due to the given environmental factors (cf. Section 5.2.3), a few aspects must be
considered:

Chapter 5 Supporting the Web engineering Process 81

• Quick requirements definition and agreement between stakeholders

• Independent work of developers

• Common quality and coding standards

• External quality checks

• Fast or continuous integration of new developments

• Keeping track of individual tasks

For this thesis, the last item of this list is central, as all of the practical work (cf.
Section 5.4) is based on it.

5.3.1 Project Process

This section explains the processes and parties involved in running a project with
the VEC. Figure 5.2 shows project phases and milestones, provides information
about the roles and responsibilities of the project team members, and describes
document deliverables from a customer perspective. The image does not show
the delivering units like Media or Development, as these usually have no, or only
supportive, direct customer contact. This might not at first glance look very agile at
all, but the project manager represents the customer on site, being a constant peer
for communication. This means that developers do not have to consider arranging
timelines or discussing sign offs, as these activities are transparently handled by
the project manager.

Only if the project contains major development efforts, real development practices
come into place. These parts of the project are then overseen and planned by the
development leadership team. Here, the development lead in some aspects relates to
the Scrum Master. Besides only paving the way for the Team this role also contains
activities like resource management, project management, and task assignment.
This is especially true of very technology-driven projects, which to a large extent
rely on development resources and know-how.

The project process itself relies on close collaboration between all departments. The
three delivery teams — Development, Media, and ProS — need to work closely
together. Still, the procedures differ from department to department. Often for
simple sites, no or only minor backend development is needed. The remaining
configuration tasks can be easily distributed amongst developers. On the other had,
bigger projects often need more than one core developer, not only to deliver in
time, but also to mitigate the contingency risk.

82 Chapter 5 Supporting the Web engineering Process

Figure 5.2: Summary of the VEC Project Process

5.3.2 Development Process

What the project process does for overall project handling and customer com-
munication, the software development process does for internally managing the
development efforts. Figure 5.3 shows the standard VEC development process
defined for software creation. The smaller, orange boxes contain all the artifacts
created throughout the process. The included decision nodes provide the possibility
for review and iteration. In detail, they have the following functions:

1. Development Feasible? The requirements have been checked against the given
timelines and available systems. If it is feasible, this triggers an initial effort
estimation for creating an offer and to improve planning. If not, some pre-
conditions will have to be changed. Usually the PM creates a TFS Task (cf.
Section 5.4.4) in order to initiate development after this circle is finished.

2. Specification OK? A member of the development leadership team checks the
elaborated specification and corrects it together with the PM if necessary. If
it is OK, efforts are estimated by developer and lead.

3. Effort OK? After the efforts have been discussed between project management

Chapter 5 Supporting the Web engineering Process 83

and development, the former (either alone or in coordination with the cus-
tomer) decides if the efforts meet given preconditions. If yes, implementation
starts, if not, requirements might be changed.

4. Prototype or Final Release? During implementation, prototypes are con-
stantly checked by project management (and the customer) and the de-
velopment leadership team. Before forwarding the final solution to formal
testing, a code review is done, acting as a quality gateway.

5. Review Successful? Only after a successful review and after all issues are fixed,
are ProQ asked to perform tests.

6. Test Successful? If the ProQ tests have been performed without finding any
bugs or other issues, the final version is checked into the source control trunk
and the final deployment is done.

84 Chapter 5 Supporting the Web engineering Process

Figure 5.3: The VEC Development Process

As the activities around the Implement node show, the developer is in constant
communication with the customer, represented by the project manager and the
development lead. To achieve this, especially in bigger developments, prototypes
are constantly integrated on development or staging servers for testing and review.
For smaller work packages, some steps — such as creating a technical specification

— can be skipped while still keeping crucial ones, like quality testing by ProQ or
code review.

Chapter 5 Supporting the Web engineering Process 85

5.3.3 Comparing Practice and Theory

There is one fundamental thing that differentiates almost any VEC project from
all the described theoretical approaches. Only very rarely is there the possibility
to fully dedicate a person or even a team to just one specific project. This starkly
contrasts with core claims of both XP and Scrum. Scrum especially emphasizes
the need of having a dedicated, multi-disciplinary, and self-organized [89, p. 15]
team for each project. Even if small teams can be established, proper planning
(as required for a Sprint) is often deterred, as unexpected, important tasks with
short timelines may present themselves. In fact, this requires more agility than
even the named approaches provide. It might sound like a paradox, but in the end
this increases planning overhead, as planners always have to take this uncertainty
into account. This somewhat chaotic precondition hampers predictability and
potentially risks agreed timelines. However, this just describes the status quo.
As described in Section 5.2.2, the average complexity of the developed solutions
increases. This automatically entails the demand for more resources which creates
team-like structures if the project is big and important enough. Also applying the
risk-driven decision methods as in Section 4.5 to this development indicates that
this will lead to a more structured environment in the future.

Even if the VEC does not strictly follow any specific methodology, agile aspects
found in Scrum (cf. Section 3.4) and XP (cf. Section 3.4) do play an important
role as the following list shows.

Co-located Team. All VEC staff works in one big open plan office. This sig-
nificantly eases face-to-face communication and speeds up the information
flow.

Whole Team. Though this is not realized in the manner XP suggests (one project,
one team, all disciplines, c.f. Paragraph 3.3.2), the VEC has all knowledge
available to run projects.

Informative Workspace. The VEC uses flip-charts and whiteboards throughout
the office to support discussions.

Short Iteration Cycles. When working on bigger projects, weekly iteration cycles
are the goal. If this proves to be too short, usually they are extended to
have bi-weekly releases. This falls into cycle durations both recommended in
Scrum and XP.

Continuous Integration. Both for .NET and Java development, continuous builds
are done, both on check-in and scheduled. New features are incrementally
integrated on designated environments. Continuously updating staging and

86 Chapter 5 Supporting the Web engineering Process

development systems for review aligns the deliverables with what the customer
expects. Therefore, there are no big-bang deployments and associated surprises
at the end of a project. A more heavyweight approach would certainly not
comply with the very flexible nature of the business.

Customer on Board. The customer is represented by the project manager. This
person sits in the same office as the development team and is always available.

Shared Code. Nobody owns code personally. Often extensions or fixes of existing
software are deliberately assigned to developers who have not been working
on the code in the past. Doing this, not only one person knows the code,
thereby mitigating the contingency risk and potentially increasing quality.

Limited Paperwork. The development team tries not to produce unnecessary
paper. The focus clearly lies on creating software instead. Still, documentation
is required and must be extended during development. Often a concept paper
becomes the technical documentation as it grows.

Stand-Ups. Bigger projects are usually accompanied by daily stand-up meetings.

Lessons-learned. After every project, all project members participate in a lessons-
learned meeting, following the model of the Scrum Sprint Retrospective.

From a process perspective, the RUP (cf. Section 3.2) does not apply to the VEC
as it is more targeted on classical, large scale software development. Still, UML
is used to design and document bigger architectures as it is a de-facto industry
standard and therefore is understood throughout the development team. Also the
development process as outlined in Figure 5.3 follows the RUP terminology of
distinguishing between Roles (cf. Paragraph 3.2.2), Activities (cf. Paragraph 3.2.2),
and Artifacts (cf. Paragraph 3.2.2). However, the artifacts described are not the
main focus of VEC development processes.

To summarize, the VEC development process is an organically grown procedure,
leaving much space for ad-hoc activities. It accepts that it is not possible to enforce
one single methodology to cover both the occasional very ad-hoc developments
often not lasting longer than two days, whilst at the same time applies to projects
with development efforts of a few months. The process also only applies to the
development department. Media work is not included in these processes, but
form part of the standard project procedures as described in Section 5.3.1. This
process can only be sustained by keeping communication lines very open, whilst
not overstraining the individual through the high number of different projects.
Canalizing and documenting this information flow is therefore a key activity and
can only be realized with appropriate tool support. This is what the following pages
focus on.

Chapter 5 Supporting the Web engineering Process 87

5.4 Implementation

This section represents the practical work done in terms of implementing specialized
Work Item Types 5.4.3 and related components in Microsoft4 Team Foundation
Server (TFS) to fit the VEC’s requirements. As TFS is the main internal form of
creating and assigning work requests, it is a key tool for managing everyday work.
The actual implementation was preceded by a phase of collecting requirements from
all department leads. After a first draft, further requirements had been implemented
and further adaptations have since been made on an irregular/on-request basis.

5.4.1 Problem Description

The very agile manner of how projects are done in the VEC relies on direct
communication lines between all stakeholders within the organization. Without a
regulatory factor, this can lead to a rather chaotic situation in which everybody
directly assigns tasks to a specific person without keeping the big picture in mind.
This basic problem had been solved with the introduction of team leads. They act
as central hubs that receive and dispatch tasks. This is only possible by canalizing
existing communication streams through one central tool (c.f. Figure 5.4). With
an increasing number of requests, not relying on a centralized solution can easily
overstrain the cognitive capacity of individuals, increasing the risk of forgetting or
missing something.

Figure 5.4: Overcoming the Communication Chaos

4http://www.microsoft.com

http://www.microsoft.com

88 Chapter 5 Supporting the Web engineering Process

5.4.2 Problem Solution

In order to solve the problem described, a tool was needed that could assist in task
management and would integrate into the existing infrastructure. As it was already
planned to upgrade to Visual Studio 2008, the TFS was an obvious choice.

Microsoft Team Foundation Server. The Microsoft Team Foundation Server’s
(TFS) primary purpose is to enable collaboration within a team to support building
software products, and to complete projects [111]. The VEC has used the TFS
since 2009 throughout the whole application lifecycle as it provides integration
into Microsoft Visual Studio, source control, automated build management, team
member alerts, role and task management, iterations, and reporting. Some of
these features can be customized, for example by using different Process Guidance
templates such as the one described in Paragraph 5.4.2. All information in this
thesis is related to Microsoft Visual Studio Team System 2008. Figure 5.5 gives an
overview on how TFS integrates into existing software development processes.

Figure 5.5: TFS Integration into Software Development Processes [111]

MSF for Agile Template. The Microsoft Solution Framework (MSF) in the 2008
version is a software development process framework. It was established in 1994

Chapter 5 Supporting the Web engineering Process 89

as a collection of best practices from Microsoft’s product development efforts and
consulting engagements. Today, MSF is developed by a dedicated development
team within Microsoft. The MSF does not only concentrate on software application
development, but also covers operations management perspectives. Figure 5.6
presents the components of MSF version 4. The red boxes are the ones on which
this thesis focuses. Infrastructure Development is only connected with a dashed
line as Microsoft does not offer a product supporting it yet.

The MSF can be utilized as a Process Template for TFS, providing a collection
of files that together define various process elements of a team project in Team
Foundation Server [112]. All further customization (cf. Section 5.4) is based on this
template. Version 5 has been released as a part of Visual Studio Team System in
2010 and is based on Scrum. However, all practical work has been completed using
the 2008 version.

Figure 5.6: MSF Components Overview [113]

5.4.3 Adaptations

During the first months of running TFS it became clear that the standard MSF for
Agile task management capabilities were not covering all the team’s requirements.
As the introduction of another tool was not in scope, it was decided to configure
TFS appropriately. The subsequently implemented artifacts require both coding
and configuration. This part of the thesis describes how this was performed and
what it required. All required knowledge was acquired via self study. Most resources

90 Chapter 5 Supporting the Web engineering Process

needed are freely available on blogs, forums, the Microsoft Developer Network5,
etc. on the Internet.

The Work Item implementation is done in Microsoft Visual Studio Team System
2008 Development Edition (VS) using the TFS Power Tools6 add on. Writing
the Deadline Reminder (cf. Section 5.4.9) in C# additionally requires the Team
Foundation Server SDK for Visual Studio 2008. The Power Tools in particular are
more or less inevitable for administering the TFS.

Work Item Type (WIT) is the generic TFS notation for all different kinds of
requests/tasks that can be created. One single instance of a created WIT is then
called Work Item (WI). MSF for Agile contains some predefined WITs (Bug, Risk,
Scenario, Task, Quality of Service Requirement) but these do not fit the VEC’s
needs. Reviewing the requirements made clear that two main Work Items are
necessary for daily work: Task and Deployment Request. As the TFS is the central
task management solution for the VEC, Personal Todo has been added to provide
an interface that is capable of managing both tasks that are assigned to somebody
else as well as personal ones. All WITs have an underlying workflow defined, which
means that their state can change. These states are critical as they are the main
source of filtering.

WITs are represented by XML files, also called Work Item Type Definition. Examples
can be found in Appendix A. These files can be imported into and exported from
TFS and can be modified manually.

Fields. Each WIT consists of a number of fields that in turn can be used to
build the user interface. Each process template comes with a set of standard fields.
However, these are not sufficient for more extensive adaptation. Screenshot 5.7
shows a number of custom additions needed for the desired customizations.

5MSDN: http://msdn.microsoft.com/en-us/default.aspx
6Download: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=

fbd14eea-781f-45a1-8c46-9f6ba2f68bf0&DisplayLang=en

http://msdn.microsoft.com/en-us/default.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=fbd14eea-781f-45a1-8c46-9f6ba2f68bf0&DisplayLang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=fbd14eea-781f-45a1-8c46-9f6ba2f68bf0&DisplayLang=en

Chapter 5 Supporting the Web engineering Process 91

Figure 5.7: TFS - Custom Fields

Layout The user interface is built in the Layout section (cf. Figure 5.8) of the
WIT creation interface. All elements defined can be used as controls here. The
design itself follows a strict table layout approach with rows and columns.

92 Chapter 5 Supporting the Web engineering Process

Figure 5.8: TFS - WIT Layout

Workflow. Every WIT has a workflow assigned. A workflow defines the States
that can be assigned to a WIT. Examples would be open, in progress, or closed.
Workflows are modeled in the respective Workflow section of the WIT creation
interface. A small extract is shown in Figure 5.9. The connection between two States
is called Transition with each of them forming a 1:1 connection. Each Transition
can have n numbers of Reasons assigned that may be chosen when changing the
State of a Work Item.

Chapter 5 Supporting the Web engineering Process 93

Figure 5.9: TFS - Transition and Reason

5.4.4 Work Item Type Task

The Task is the central WIT in the solution. It can cover almost everything that
somebody might request from another team member. Currently the following Task
Types are featured:

• Bug: something is broken somewhere and should be fixed

• Feature Request: a new feature is required

• Support Request: request that something has to be configured, evaluated,
investigated, etc.

• Test: something has to be tested

The user interface is shown in Figure 5.10. It divides the content into six groups
to add some structure. The yellow boxes in the screenshot represent required
fields. The related fields are listed in Table 5.2. The XML representation is part of
Appendix A.1.

94 Chapter 5 Supporting the Web engineering Process

Figure 5.10: TFS Task - User Interface

Chapter 5 Supporting the Web engineering Process 95

Name Description Allowed Content

Title Title of Task String
Priority Priority of Task 0 Low

1 Normal
2 Important
3 Emergency

Timeline Desired finish date Datetime
Start not before Constraint date Datetime
Start Constraint External start con-

straint
String

External Reference e.g. ticket number String
Task Type Type of Task Bug, Feature Request, Test,

Support Request
Severity In case of Bug 1 - Cosmetic

2 - Functionality affected
3 - Showstopper

Is Launch relevant Launch relevant? yes, no
Project Code VEC project code Imported list
Phase Project Phase Project, Maintenance
Requestor Task requestor Active Directory entities
Task Owner Task owner Active Directory entities
Assigned Group Internal groups Core, SMA
Assigned To Assigned person or

team
Active Directory entities

Estimated Effort Planned effort String
Estimated Timeline Planned timeline Datetime
Percentage com-
plete

Rate of complete-
ness

String

State State of task Section 5.11
Reason Reason for state

change
Dropdown

Description Task description HTML
Comment/History Change description HTML
File Attachments Attached files File
Links Links to other WIs Link

Table 5.2: TFS Task - User Interface Fields

96 Chapter 5 Supporting the Web engineering Process

The Task workflow is kept as generic as possible to reflect the various task types that
can be associated with it. As depicted in Figure 5.11, it makes use of descriptive
information associated with each state transition. Those displayed in the diagram
are the default values given when no other choice is made.

The basic workflow is Open →In Progress →Executed →Closed. In Progress may
be disregarded for short timed tasks. All closed tasks can be reopened again. From
every state it is possible to set a Task to Cancelled. Tasks can also be put On Hold
if their execution is paused for any reason. The See History transition comment
refers to the History functionality of all WITs, which stores every change. Here,
comments can be added.

The different colors in the diagram refer to the people/departments who are most
closely associated to a certain step where red represents ProQ, green is related to
the Task creator, and blue represents the person responsible for task execution.
Only ProQ users can set Tasks from Executed to Closed to ensure that no Task
can be finished without going through proper quality control.

Figure 5.11: Task State Diagram

5.4.5 Work Item Type Deployment Request

A Deployment Request (DR) is a WIT specific to jobs that require the synchroniza-
tion of entities between the development, staging, and production environments.
The DR workflow is based on a queue concept that automatically splits created
tasks into distinct queues for DEV and for ProS. Therefore, no classical task assign-
ment is needed. In contrast, the person opening a DR to work on it self-assigns it
to take it out of the queue. The workflow depicted in Figure 5.12 shows three roles

Chapter 5 Supporting the Web engineering Process 97

— again represented by corresponding colors as in the state diagram. The Requestor
represents the person requesting a deployment to be executed, the Executor refers
to the person/team executing the deployment — DEV or ProS and ProQ stands
for the quality assurance team. On first glance the DR workflow might look more
complicated than that associated with the Task. However, the DR has no reasons
defined for state transitions as all information needed is part of the Work Item’s
state name.

Figure 5.12: Deployment Request State Diagram

The states that can be chosen are:

• Open: The task is newly created. Both ProS and DEV only see their subset
of deployment tasks.

• Executed: ProS or DEV have executed the deployment, so it is finished from
their perspective.

• On Hold: Work Item execution has been paused for some reason.

• Not Tested: ProQ decides that the deployment does not have to be tested.
Work Item completion still has to be confirmed by the Requestor.

98 Chapter 5 Supporting the Web engineering Process

• Tested Error: ProQ has tested the deployment and an error has been found.
Work Item completion still has to be confirmed by the Requestor. Also Work
Items which are Tested OK or Not Tested can be set to Tested Error if a
defect was found.

• Tested OK: ProQ has tested the deployment and everything is OK. Work
Item completion still has to be confirmed by the Requestor.

• Completed: If the Requestor has reviewed the Work Item and everything is
OK, it can be set to Completed. Alternatively, if the review was not successful,
the Work Item can be set to Tested Error.

• Cancelled: Task is deferred for whatever reason.

The user interface is shown in Figure 5.10. It divides the content into eight groups
to add some structure. As for the Task, yellow boxes represent required fields.
The related fields are listed in Table 5.2. The XML representation is part of
Appendix A.2.

Chapter 5 Supporting the Web engineering Process 99

Figure 5.13: TFS Deployment Request - User Interface

100 Chapter 5 Supporting the Web engineering Process

Name Description Allowed Content

Title Title of DR String
Deployment Scope The scope 1 Content

2 Design/Template
3 Binary
4 Whole Portal
5 Whole Instance
6 Launch
7 New Website

Data Type The what 1 Files, 2 DB, 3 Files & DB
Start not before Constraint date Datetime
Start Constraint External constraint String
External Reference e.g. ticket number String
Timeline Desired finish date Datetime
Priority Priority of DR 0 Low

1 Normal
2 Important
3 Emergency

Is Launch relevant Launch relevant? yes, no
Website Affected Web Imported list
Project Code VEC project code Imported list
Phase Project phase Project, Maintenance
Requestor DR requestor Active Directory entities
Task Owner DR owner Active Directory entities
Assigned Group Internal groups Core, SMA
Assigned To Assigned person or

department
Active Directory entities

State State of DR Section 5.12
Source Environ-
ment

The source 1 DEV, 2 STA, 3 PRD

Destination Envi-
ronment

The target 1 DEV, 2 STA, 3 PRD

Description DR description HTML
Comment/History Change description HTML
File Attachments Attached files File
Links Links to other WIs Link

Table 5.3: TFS Deployment Request - User Interface Fields

Chapter 5 Supporting the Web engineering Process 101

5.4.6 Work Item Type Personal Todo

The WIT Personal Todo (PTD) is more or less a simplified version of a Task,
providing an easy-to-use interface (cf. Figure 5.14). It is automatically assigned
to the person that creates it. The workflow is Open →In Progress →Closed. The
PTD uses fields already defined for Task and DR. Its XML representation is part
of Appendix A.3.

Figure 5.14: TFS Personal Todo - User Interface

5.4.7 TFS Queries

In order to extract information from TFS, the system provides the possibility to
create queries. Queries allow filtering for all used WIT fields by using operators
depending on their data type. This operators include: >, <, <>, ≥, ≤, In (e.g.
certain group), Was Ever (e.g. was ever assigned to somebody), Contains (e.g.
part of project name), and Does Not Contain. The underlying language is based

102 Chapter 5 Supporting the Web engineering Process

on a SQL-like syntax and is called Work Item Query Language (WIQL). WIQL
allows the combination of filters with AND/OR operators. This allows creating
fairly complex queries. A list of all 27 custom VEC queries created is available
in Section B.1 as well as an example (cf. Appendix B.1) that returns all Tasks
that have been assigned to the Development department but are not assigned to a
developer.

5.4.8 User Alerts

TFS is capable of automatically sending e-mails when fields change their content.
Unfortunately, this feature is limited in a way that only permits the application of
some important query parameters (such as changes to) to core field types. Also,
alerts are always stored in the context of the user that created them, which makes
administration unnecessarily burdensome as one must create a central admin user
if configuration should be shared between users. Nevertheless, the application
currently stores 102 different alerts for VEC members. Their main function is to
inform users of changes to Work Items that they have either created or that have
been assigned to them. Also, department alerts exist that allow team leads to keep
track of the progress of tasks assigned to one of their team members. The reminders
themselves are stored as XPath queries in the TFS database such as these shown
in two examples in the Appendices B.2 and B.3.

5.4.9 Deadline Reminder

The deadline reminder is basically a workaround to cover functionality that is not
available through default TFS mechanisms. It is a small C# program (source code:
Appendix B.3) that queries TFS for Work Items whose finish date is today+1 and
adds this information into the History field of the respective Work Items. As this
changes the content of a Work Item field, this triggers the standard user alert
functionality as in Section 5.4.8. The tool runs on the same server as TFS and is
triggered nightly via a Windows Service.

5.5 Critical Discussion

The implemented solution has definitely changed the way in which the VEC works.
TFS is now the main means of assigning tasks and the only accepted way of sending

Chapter 5 Supporting the Web engineering Process 103

requests between teams, or even within them. The next paragraphs discuss the
advantages and disadvantages of the chosen system.

5.5.1 Strengths of the Solution

The TFS is well accepted and from an end-user perspective is relatively easy to
work with. Thanks to the made adaptations, the system covers all the standard use
cases in the VEC process workflow. The query mechanism provides flexible access
to all information held by Work Items. This information can be accessed via the
standard Web interface, which presents all options in a well structured manner. All
queries can be stored on a personal or team level and the output produced can be
filtered and ordered by columns.

All information held by TFS is stored centrally in a few MSSQL databases. On
top of this, the system creates a cube that allows extracting information in tools
like Microsoft Excel. Even without this, the simple fact of running all major
communication via one channel makes it easy to retrieve historical data. Before
the tool was introduced in its current form, there was no real way of measuring
the workload. Now it is at least possible to count the number of accomplished
Tasks, Bugs, or Deployment Requests. This makes work more transparent and gives
developers a better understanding of what they have achieved.

Another benefit is that all staff have a personalized overview of what is of individual
interest: an executor only sees a list of tasks assigned to him/her, ordered by priority
and timeline. The same interface also gives valuable information like the affected
project (for correctly booking the hours spent on a task) and the requestor. The
latter sees a similar screen with all requests he/she sent, in which state they are,
and who is working on them.

The automated notification system makes it harder to neglect timelines and out-
standing tasks. For team coordinators this reminder is a good indicator of resource
shortages and facilitates acting in a timely manner. The C# code providing this
functionality makes use of the rich TFS API, which nicely integrates into Vi-
sual Studio. For a developer who knows the system, it allows quite extensive
modifications.

Sharepoint services integration makes it possible to totally integrate TFS into an
existing Sharepoint architecture. That includes Microsoft Office connectivity.

104 Chapter 5 Supporting the Web engineering Process

5.5.2 Weaknesses of the Solution

With the TFS, Microsoft tries to combine various different components supporting
the software developing cycle into one product. Though this provides a good
opportunity to integrate otherwise only loosely coupled systems, version 2008 seems
like it tries to do a lot and in the end does nothing really right. This impression
is created when realizing that it requires a third party plugin (TFS Power Tools)
to actually be able to do any customization without touching XML files and
the command line. Even with the help of this tool, the interface feels unfinished
and unnecessarily cumbersome to work with. Also, the included source control
component is quite awkward to use and falls short when compared to free solutions.

The end-user interface for creating/updating Work Items only allows table-like
layouts and does not provide the full wealth of HTML controls (e.g., checkboxes
are not available). It is also not possible to properly bulk-edit Work Items or to
edit them directly where they are listed. Linking Work Items to each other is also
a problem in TFS 2008, as the interface for this purpose is very unfriendly to the
user and because it is not possible to create hierarchies (Work Item A is a child of
Work Item B, possible with TFS 2010). This is, in fact, a major drawback as it
renders splitting bigger tasks into small, functional entities impossible.

Work Item Types and Work Items always exist in the context of a project. This
behavior makes sense if a team only works on a few projects over the year. However,
for creating tasks, this always requires switching between contexts, which is not very
practicable. Therefore, the current solution uses only one generic project named
VEC Tasks. Unfortunately, the actual codebase that forms the shared base for all
Web projects is not part of this project but spread over several others. This makes
it impossible to connect Work Items with commits to source control repository.
For some reason, this separation is only partly true for the fields used to build the
Work Item Types, as their names are unique globally even though a field with the
same namespace can be created again for each Work Item Type.

Though the TFS provides an almost complete API, all the restrictions for closed
source software apply. For instance, using all TFS 2010 features in Visual Studio
requires updating the latter to version 2010 as well. Of course, the price tag that
comes with this upgrade can not be overlooked. Also, TFS integration is limited to
Visual Studio and support for other systems like Eclipse7 is only available through
another commercial product8.

7http://www.eclipse.org
8http://www.teamprise.com/

http://www.eclipse.org
http://www.teamprise.com/

Chapter 5 Supporting the Web engineering Process 105

5.5.3 Result

In a pure .NET environment, task management via TFS makes sense. However,
the tool’s inflexibility, incompleteness, and closed character make it hard to justify
a recommendation. At least from the experience with version 2008, it makes more
sense to sacrifice a tiny bit of integration by using tools that are really focused on
their use case, and often free of charge. Open source examples include Redmine9

(issue management, wiki, file repository, project management, forum, etc.), Jenkins10

(continuous integration), Bitten11 (build server, metrics), and SVN12 (source code
version control). There are also commercial competitors such as Atlassian13 (Jira
and other tools) and JetBrains14 (YouTrack, TeamCity).

9http://www.redmine.org/
10http://jenkins-ci.org/
11http://bitten.edgewall.org/
12http://subversion.apache.org/
13http://www.atlassian.com/
14http://www.jetbrains.com/index.html

http://www.redmine.org/
http://jenkins-ci.org/
http://bitten.edgewall.org/
http://subversion.apache.org/
http://www.atlassian.com/
http://www.jetbrains.com/index.html

106

Chapter 6

Conclusion

This thesis discussed a topic named Web engineering — a field which experiences
rapid change and at the same time receives little academic attention. With Web
applications becoming more and more sophisticated and complex, a thorough review
based on existing literature seemed necessary. This includes literature on software
development in order to verify its applicability to the Web environment. The thesis
therefore covers three major theoretical areas.

First, it gave an overview of Web engineering and presented a method to cat-
egorize it. This approach separates the domain into subtypes based on novelty
and complexity. This leads to a total of eight different subcategories. The other
important categorization step was to work out the peculiarities of Web engineering
in comparison with a more generic understanding of software development. In the
process of writing the thesis, this has been proven to be indispensable for judging
the applicability of standard software development processes for Web engineering.
These characteristics have been elaborated by looking at the discipline from the
three distinct perspectives of (end-)users, developers, and managers. Especially for
customer facing Web applications with medium complexity this showed that the
contrast with classical software engineering are reasoned by the important role of
media asset and content creation, in usually tight timelines, fast update cycles, and
limited customer know-how.

The second theoretical part introduced the concept of software engineering method-
ologies and the distinction between lightweight and heavyweight types. Subsequently,
three modern and popular proponents have been presented, with the Rational
Unified Process (RUP) representing the more traditional/heavyweight faction and
Scrum and Extreme Programming (XP) covering the agile/lightweight world. These
types were described in a manner that is understandable for non-professionals
in this area, whilst providing enough background to make the findings in the
consecutive chapters reproducible.

Classifying the three discussed software development paradigms was then subject of
the last theoretical part of the thesis. This has been computed based on the processes’

Chapter 6 Conclusion 107

characteristics and on the coverage they provide for the software development cycle.
This showed that the RUP is clearly the most complete of all processes with XP and
Scrum only partly covering the application lifecycle. On the other hand, the RUP
entails significant complexity and process-overhead. It also requires a deep level of
understanding to adapt existing processes in order to make them RUP compliant.
This information made it possible to further discuss the methods’ applicability for
Web engineering. The main finding was that in virtue of the environment’s ever
changing and flexible nature, agile approaches seem to be more suitable for the
majority of use cases. This is also reflected by the strong influence of domain factors
on the chosen methodology. Here, the literature sees the Internet application domain
as being particularly appropriate for agile approaches. Other influential factors
include the nature of the project itself and the organization and people executing
it. The focus of heavyweight processes on producing non-source-code artifacts
contrasts starkly with the typical Web specifics. Only under special circumstances
would it be necessary to opt for more structured approaches. This partly relates
to the incompleteness of the agile methodologies that were analyzed. It has been
shown that compared to the RUP, XP and Scrum only concentrate on specific
parts of the development cycle. However, combining them fills most of the gaps
and poses a reasonable option.

For cases of uncertainty, the thesis then presented a solution which bases the choice
between different software development methods mainly on the overall project
risk. This attempt was then combined with the categorization of Web engineering
elaborated in the first part of the thesis, producing a rough guidance for choosing
the correct development paradigm.

The practical part of the thesis described what had been accomplished in a real-
world scenario in order to cope with the specific challenges of Web engineering. It
gave an overview on the work environment of a team (the Vienna eMarketing Center
- VEC), realizing Web projects for one of the biggest pharmaceutical companies in
the world. Here, it focused on the processes found to be useful which in turn were
partly based on the theoretical findings in this thesis. It further concentrated on
aspects of communication and time management, as these are important for agile
processes in general and in particular for how work is done in the VEC. The main
challenge to be solved in the VEC was to streamline existing communication and
task management activities by introducing a new solution. Due to the software
development environment used, the Microsoft Team Foundation Server (TFS) was
a natural choice.

As the TFS standard configuration did not suit the existing processes, the main
task was to implement a solution reflecting the team’s specific needs. Therefore a
number of custom Work Item Definitions had to be created together with underlying

108 Chapter 6 Conclusion

workflows and a little C# program for user notification in case a task in the system
is about to become overdue.

Though the product of this work has proven itself to be stable and useful, criti-
cally challenging it showed a number of shortcomings mostly rooting from TFS’
inadequacies and the complex project structure given. Still, it is used on a daily
basis and definitely represents a step in the right direction. It shows that a central
communication platform benefits the quality and execution speed of diversified
teams.

109

Bibliography

[1] Gellersen HW, Wicke R, Gaedke M. WebComposition: An Object-Oriented
Support System for the Web engineering Lifecycle. Computer Networks and
ISDN Systems. 1997;29:865–1553.

[2] (editor) WS. Web engineering: Principles and Techniques. Idea Group
Publishing; 2005.

[3] Murugesan S, Ginige A. Web engineering: Introduction and Perspectives. In:
Web engineering: Principles and Techniques. Idea Group Publishing; 2005. .

[4] Murugesan S, Deshpande Y, Hansen S, Ginige A. Web engineering: A New
Discipline for Development of Web-Based Systems; 2001. Department of
Computing and Information Systems, University of Western Sydney.

[5] Kappel G, Pröll B, Reich S, Retschitzegger W. Web Engineering - the
Discipline of Systematic Development of Web Applications. Vienna: John
Wiley and Sons, Ltd; 2006.

[6] Wallace D, Raggett I, Aufgang J. Extreme Programming for Web Projects.
The XP Series. Pearson Education Limited; 2003.

[7] Dumke R, Lother M, Wille C, Zbrog F. Web Engieering. Pearson Studium;
2003.

[8] McIlroy MD. Software Engineering: Report on a conference sponsored by
the NATO Science Committee. In: NATO Software Engineering Conference.
NATO Scientific Affairs Division; 1968. p. 138–155.

[9] Benington HD. Production of Large Computer Programs (Reprint). In:
Proceedings of the 9th international conference on Software Engineering.
ICSE ’87. Los Alamitos, CA, USA: IEEE Computer Society Press; 1987. p.
299–310.

[10] Hosier WA. Pitfalls and Safeguards in Real-Time Digital Systems with
Emphasis on Programming. Engineering Management, IRE Transactions on.
1961 June;EM-8(2):99–115.

[11] Royce WW. Managing the Development of Large Software Systems:

110 Bibliography

Concepts and Techniques. Proceedings of the IEEE WESTCON, Los
Angeles. 1970 August;p. 1–9. Reprinted in Proceedings of the Ninth
International Conference on Software Engineering, March 1987, pp. 328–338.
Available from: http://www.cs.umd.edu/class/spring2003/cmsc838p/
Process/waterfall.pdf.

[12] Boehm BW. A Spiral Model of Software Development and Enhancement.
Computer. 1988 May;21(5):61–72. Available from:
http://portal.acm.org/citation.cfm?id=45797.45801.

[13] Highsmith J. Agile Software Development Ecosystems. 1st ed. The Agile
Software Development Series. Addison-Wesley Longman; 2002.

[14] Pressman RS, Lowe D. Web engineering: A Practitioners Approach. vol. 1.
McGraw-Hill Higher Education; 2009.

[15] Beck K. Extreme Programming Explained - Embrace Change. 2nd ed.
O’Hagan D, editor. The XP Series. Addison-Wesley; 2005.

[16] Schwaber K, Beedle M. Agile Software Development with Scrum. Prentice
Hall; 2002.

[17] Cohn M. Succeeding with Agile - Software Development using Scrum.
Guzikowski C, editor. Signature Series. Addison-Wesley; 2009.

[18] Kruchten P. The Rational Unified Process. An Introduction. 2nd ed.
Erickson K, editor. Object Technology Series. Pearson Education Limited;
2000.

[19] Abrahamsson P, Salo O, Ronkainen J, Warsta J. Agile Software
Development Methods - Review and Analysis. Kettunen M, editor. VTT
Technical Research Centre of Finland; 2002.

[20] Boehm B, Turner R. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison Wesley; 2003.

[21] Berners-Lee T. Information Management: A Proposal; 1989.
http://www.w3.org/History/1989/proposal.html.

[22] Berners-Lee T. WorldWideWeb: Proposal for a HyperText Project; 1990.
http://www.w3.org/Proposal.

[23] ICANN; 2009. http://www.icann.org/.

[24] Internetworldstats.com; 2009. http://www.internetworldstats.com/stats.htm.
Available from: http://www.internetworldstats.com/stats.htm [cited
29-Jan-2009].

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://portal.acm.org/citation.cfm?id=45797.45801
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/Proposal
http://www.icann.org/
http://www.internetworldstats.com/stats.htm

Bibliography 111

[25] July 2010 Web Server Survey; 2010.
http://news.netcraft.com/archives/2010/07/16/july-2010-web-
server-survey-16.html.

[26] Schneider G. Electronic Commerce. 7th ed. Course Technology Inc.; 2006.

[27] Hypertext Transfer Protocol – HTTP/1.1; 1999. Network Working Group.

[28] van Hengstum E, Pras A, Hazewinkel H. Management of the World-Wide
Web; 1997. Centre for Telematics and Information Technology, University of
Twente.

[29] Postel JB. Simple Mail Transfer Protocol, Internet RFC-821; 1982.

[30] Myers J, Mellon C, Rose M. Post Office Protocol - Version 3; 1996. Available
from: http://www.ietf.org/rfc/rfc1939.txt [cited 28-Dec-2009].

[31] Crispin M. Internet Message Access Protocol - Version 4.rev1; 2003. The
Internet Society - Network Working Group.

[32] Raggett D, Hors AL, Jacobs I. HTML 4.01 Specification. W3C; 1999.

[33] McCarty W. A Serious Beginner’s Guide to Hypertext Research; 2001.
http://www.allc.org/reports/map/hyperbib.html. Available from:
http://www.allc.org/reports/map/hyperbib.html [cited 11-Jun-2009].

[34] Nickul D. Service Oriented Architecture (SOA) and Specialized Messaging
Patterns; 2007. Adobe technical paper; http://www.adobe.com.

[35] Hinchcliffe D. Comparing Amazon’s and Google’s Platform-as-a-Service
(PaaS) Offerings; 2008.
http://blogs.zdnet.com/Hinchcliffe/?p=166&tag=btxcsim.

[36] Duhl J. Rich Internet Applications; 2003. Adobe technical paper;
http://www.adobe.com.

[37] Kappel G, Michlmayr E, Pröll B, Reich S, Retschitzegger W. Web
Engineering - Old Wine in New Bottles? In: Proceedings of the 4th
International Conference on Web Engineering. LNCS 3140; 2004. p. 6–12.

[38] Nielsen J. Differences Between Print Design and Web Design; 1999.
http://www.useit.com/alertbox/990124.html.

[39] ISO9126; 1991. International Organization for Standardization.

[40] Nielsen J. Designing Web Usability: The Practice of Simplicity. 1st ed.
Thousand Oaks, CA, USA: New Riders Publishing; 1999.

http://news.netcraft.com/archives/2010/07/16/july-2010-web-server-survey-16.html
http://news.netcraft.com/archives/2010/07/16/july-2010-web-server-survey-16.html
http://www.ietf.org/rfc/rfc1939.txt
http://www.allc.org/reports/map/hyperbib.html
http://www.adobe.com
http://blogs.zdnet.com/Hinchcliffe/?p=166&tag=btxcsim
http://www.adobe.com
http://www.useit.com/alertbox/990124.html

112 Bibliography

[41] Lauesen S. User Interface Design - A Software Engineering Perspective.
Pearson Education Limited; 2005.

[42] Introduction to Web Accessibility; 2009.
http://www.w3.org/WAI/intro/accessibility.php. Available from:
http://www.w3.org/WAI/intro/accessibility.php [cited 28-Dec-2009].

[43] W3C - All Standards and Drafts; 2009. http://www.w3.org/TR/.

[44] Shubin H, Meehan MM. Designing applications for the Web vs for the
desktop. Interaction Design, Inc.; 1997.
http://www.user.com/webapps/webapps.htm.

[45] Farkas DK. Hypertext and Hypermedia. Berkshire Publishing; 2004.

[46] Gaedke M, Meinecke J. The Web as an Application Platform. In: Web
engineering - Modelling and Implementing Web applications. Springer; 2008.
.

[47] Rossi G, Schwabe D, Olsina L, Pastor O. Overview of Design Issues for Web
Applications Development. Springer; 2008.

[48] Conklin J. Computer-supported cooperative work: a book of readings. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1988. p. 423–475.
Available from: http://dl.acm.org/citation.cfm?id=49504.49520.

[49] Preciado JC, Linaje M, Comai S, Sanchez-Figueroa F. Designing Rich
Internet Applications with Web Engineering Methodologies; 2007. Quercus
Software Engineering group, Universidad de Extremadura.

[50] Preciado JC, Linaje M, Sanchez F, Comai S. Necessity of methodologies to
model Rich Internet Applications. In: Proceedings of the Seventh IEEE
International Symposium on Web Site Evolution. Washington, DC, USA:
IEEE Computer Society; 2005. p. 7–13. Available from:
http://dl.acm.org/citation.cfm?id=1092361.1092692.

[51] The Web Standards Project - About; 2009.
http://www.webstandards.org/about/. Available from:
http://www.webstandards.org/about/ [cited 08-Dec-2009].

[52] The Web Standards Project - ACID Tests; 2009.
http://www.acidtests.org/. Available from:
http://www.acidtests.org/ [cited 08-Dec-2009].

[53] CHAOS Summary 2009. The Standish Group; 2009.

http://www.w3.org/WAI/intro/accessibility.php
http://www.w3.org/WAI/intro/accessibility.php
http://www.w3.org/TR/
http://www.user.com/webapps/webapps.htm
http://dl.acm.org/citation.cfm?id=49504.49520
http://dl.acm.org/citation.cfm?id=1092361.1092692
http://www.webstandards.org/about/
http://www.webstandards.org/about/
http://www.acidtests.org/
http://www.acidtests.org/

Bibliography 113

[54] Emam KE, Koru AG. A Replicated Survey of IT Software Project Failures.
IEEE Software; 2008.

[55] Royce W. Improving Software Development Economics Part II: Reducing
Software Product Complexity and Improving Software Processes. The
Rational Edge. 2001;.

[56] Mendes E. Cost Estimation Techniques for Web Projects. IGI Publishing;
2007.

[57] Reifer D. Ten Deadly Risks in Internet and Intranet Software Development.
IEEE Software. 2002;19(2):12–14.

[58] Andrews K. Information Architecture and Web Usability; 2009. Graz
University of Technology.

[59] Bevan N. Usability Issues in Web Site Design; 1998. National Physical
Laboratory, Usability Services.

[60] Scacchi W. In: Process Models in Software Engineering. 2nd ed. John Wiley
and Sons, Ltd; 2001. .

[61] Petersen K, Wohlin C, Baca D. The Waterfall Model in Large-Scale
Development. In: 10th International Conference on Product-Focused
Software Process Improvement. Blekinge Institute of Technology. Springer;
2009. p. 386–400.

[62] Brooks FP Jr. No Silver Bullet — Essence and Accidents of Software
Engineering. vol. 20. IEEE Computer Society Press; 1987. p. 10–19.

[63] Pressman RS. Software Engineering: A Practitioner’s Approach. 5th ed.
McGraw-Hill Higher Education; 2001.

[64] Leffingwell D. Scaling Software Agility. Addison-Wesley Professional Agile
Software Development Series. Addison-Wesley Professional; 2007.

[65] Cockburn A. Agile Software Development. 1st ed. The Agile Software
Development Series. Addison-Wesley Professional; 2001.

[66] Consortium D. Introduction to DSDM - Public Version; [cited 2010-09-26].
Available from: http://www.dsdm.org/version4/2/public/.

[67] Cockburn A. Crystal Clear a Human-Powered Methodology for Small Teams.
Addison-Wesley Professional; 2004. Available from:
http://portal.acm.org/ft_gateway.cfm?id=1406822&type=
safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543.

http://www.dsdm.org/version4/2/public/
http://portal.acm.org/ft_gateway.cfm?id=1406822&type=safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543
http://portal.acm.org/ft_gateway.cfm?id=1406822&type=safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543

114 Bibliography

[68] Palmer SR, Felsing M. A Practical Guide to Feature-Driven Development.
Pearson Education; 2001.

[69] Poppendieck M, Poppendieck T. Lean Software Development: An Agile
Toolkit. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.;
2003. Available from:
http://portal.acm.org/ft_gateway.cfm?id=829556&type=
safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543.

[70] Highsmith J. Agile Project Management: Creating Innovative Products. 2nd
ed. Addison-Wesley Professional; 2009.

[71] Ambler SW. The Agile Unified Process (AUP); 2009.
http://www.ambysoft.com/unifiedprocess/agileUP.html.

[72] Manifesto for Agile Software Development; 2001.
http://agilemanifesto.org/.

[73] Principles behind the Agile Manifesto; 2001.
http://agilemanifesto.org/principles.html.

[74] Kroll P, Kruchten P. The Rational Unified Process Made Easy. Pearson
Education Limited; 2003. Available from: http://books.google.at/
books?id=7FSf5661dfMC&printsec=frontcover#v=onepage&q&f=false.

[75] Iacob I. Extreme Programming and Rational Unified Process – Contrasts or
Synonyms?; 2004. Faculty of Computer Science for Business Management,
Romanian – American University, Bucharest, Romania.

[76] Hirsch M. Making RUP Agile;. Zühlke Engineering AG, Department of
Computer and Information Science, Linköping University.

[77] Ambler SW. A Manager’s Introduction to The Rational Unified Process
(RUP); 2004. Ambysoft.

[78] IBM Rational Unified Process Reference and Certification Guide: Solution
Designer. 1st ed. IBM Press; 2007.

[79] Rational Unified Process - Best Practices for Software Development Teams;
1998. Rational Software Corporation.

[80] Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language User
Guide. Shanklin JC, editor. Addison-Wesley object technology series.
Addison-Wesley Longman; 1999.

[81] Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language

http://portal.acm.org/ft_gateway.cfm?id=829556&type=safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543
http://portal.acm.org/ft_gateway.cfm?id=829556&type=safari&coll=GUIDE&dl=GUIDE&CFID=106127749&CFTOKEN=45871543
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://books.google.at/books?id=7FSf5661dfMC&printsec=frontcover#v=onepage&q&f=false
http://books.google.at/books?id=7FSf5661dfMC&printsec=frontcover#v=onepage&q&f=false

Bibliography 115

Reference Manual. Shanklin JC, editor. The Addison-Wesley object
technology series. Addison-Wesley; 1999.

[82] Kruchten P, Royce W. A Rational Development Process. CrossTalk - The
Journal of Defense Software Engineering. 1996;p. 11–16.

[83] Paulk MC. Extreme Programming from a CMM Perspective; 2001. XP
Universe, Raleigh, NC, 23-25 July 2001.

[84] Wells D. Extreme Programming: A Gentle Introduction; 2009.
http://www.extremeprogramming.org/.

[85] Jarvis B, Gristock S. JPMorgan Chase Case Study: Extreme Programming
(XP), Six Sigma, CMMI - How they can work together;.
http://www.sei.cmu.edu/library/assets/jarvis-gristock.pdf.

[86] Beck K. Extreme Programming Explained - Embrace Change. 1st ed. The
XP Series. Addison-Wesley; 2000.

[87] Marchenko A. XP Practices; 2007.
http://agilesoftwaredevelopment.com/xp/practices.

[88] Williams L, Kessler RR, Cunningham W, Jeffries R. Strengthening the Case
for Pair-Programming; 1999. University of Utah.

[89] Pichler R. Scrum - Agiles Projectmanagement erfolgreich einsetzen. 1st ed.
Preisendanz C, editor. dpunkt.verlag; 2008.

[90] Rising L, Janoff NS. The Scrum Software Development Process for Small
Teams. IEEE Softw. 2000 July;17:26–32. Available from:
http://dl.acm.org/citation.cfm?id=624638.626150.

[91] Schwaber K. Agile Project Management with Scrum. 2nd ed. Atkins K,
editor. Microsoft Press; 2004.

[92] Deemer P, Benefield G. The Scrum Primer - An Introduction to Agile
Project Management with Scrum; 2007. goodagile.

[93] Kniberg H. Scrum and XP from the Trenches - How We Do Scrum.
C4Media; 2007.

[94] Iacovelli A, Souveyet C. Framework for Agile Methods Classification. In:
Ebersold S, Front A, Lopistéguy P, Nurcan S, Franch X, Hunt E, et al.,
editors. MoDISE-EUS. vol. 341 of CEUR Workshop Proceedings.
CEUR-WS.org CEUR-WS.org; 2008. p. 91–102.

[95] Strode DE. The Agile Methods : An Analytical Comparison of Five Agile

http://www.extremeprogramming.org/
http://www.sei.cmu.edu/library/assets/jarvis-gristock.pdf
http://agilesoftwaredevelopment.com/xp/practices
http://dl.acm.org/citation.cfm?id=624638.626150

116 Bibliography

Methods and an Investigation of Their Target Environment. Massey
University. Department of Information Systems; 2007.

[96] Robert DT, France R, Rumpe B. Limitations of Agile Software Processes.
In: In Proceedings of the Third International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP2002).
Springer; 2000. p. 43–46.

[97] Abrahamsson P, Warsta J, Siponen MT, Ronkainen J. New Directions on
Agile Methods: A Comparative Analysis. In: ICSE. IEEE Computer Society;
2003. p. 244–254.

[98] Boehm BW. Get Ready for Agile Methods, with Care. IEEE Computer.
2002;35(1):64–69.

[99] Awad MA. A Comparison between Agile and Traditional Software
Development Methodologies. University of Western Australia; 2005.

[100] Harrison W. Is Software Engineering as We Know it over the Hill? IEEE
Software. 2003 May/June;p. 5–7.

[101] Reifer DJ. How Good are Agile Methods? IEEE Software. 2002;19(4):16–18.

[102] Larman C, Bittner K. How to Fail with the Rational Unified Process: Seven
Steps to Pain and Suffering. Valtech Technologies and Rational Software;
2001.

[103] Anderson J. Agile over RUP (Part 2); 2009.
http://agileconsulting.blogspot.com/2009/02/agile-over-rup-
part-2.html.

[104] Layman L, Williams L, Cunningham L. Exploring Extreme Programming in
Context: An Industrial Case Study. In: IEEE Agile Development Conference;
2004. p. 32–41.

[105] Reifer DJ. How to Get the Most out of Extreme Programming/Agile
Methods. In: Wells D, Williams LA, editors. XP/Agile Universe. vol. 2418 of
Lecture Notes in Computer Science. Springer; 2002. p. 185–196.

[106] Williams L, Cockburn A. Guest Editors’ Introduction: Agile Software
Development: It’s about Feedback and Change. Computer. 2003;36:39–43.

[107] Mar K, Schwaber K. Scrum with XP; 2002.
http://www.informit.com/articles/article.aspx?p=26057.

[108] Pollice G. RUP and XP Part I: Finding Common Ground. The Rational

http://agileconsulting.blogspot.com/2009/02/agile-over-rup-part-2.html
http://agileconsulting.blogspot.com/2009/02/agile-over-rup-part-2.html
http://www.informit.com/articles/article.aspx?p=26057

Bibliography 117

Edge. 2001;Available from: http://www.ibm.com/developerworks/
rational/library/content/RationalEdge/archives/rup.html.

[109] Krebs J. RUP in the Dialogue with Scrum. The Rational Edge.
2005;Available from: http://www.ibm.com/developerworks/rational/
library/feb05/krebs/index.html.

[110] Dennis A, Drouault-Gardrat P, Kupchyk A, Smith R. In: Marketing,
E-Commerce and Advertising in the Pharmaceutical Industry: France, the
Uk and the Us. Practical Law Company; 2007. .

[111] Meier JD, Taylor J, Bansode P, Mackman A, Jones K. Team Development
with Visual Studio Team Foundation Server - patterns & practices.
Microsoft Corporation; 2007.

[112] Microsoft. Process Templates and Tools; 2010.
http://msdn.microsoft.com/en-us/vstudio/aa718795.aspx. Available from:
http://msdn.microsoft.com/en-us/vstudio/aa718795.aspx.

[113] Turner MSV. Micrisoft Solutions Framework Essentials. Finnel L, editor.
Microsoft Press; 2006.

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/rup.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/rup.html
http://www.ibm.com/developerworks/rational/library/feb05/krebs/index.html
http://www.ibm.com/developerworks/rational/library/feb05/krebs/index.html
http://msdn.microsoft.com/en-us/vstudio/aa718795.aspx

118

Appendix A

TFS Work Items XML

1 <WITD application ="Work item type editor " version ="1.0"
xmlns:witd ="http: // schemas . microsoft .com/ VisualStudio
/2005/ workitemtracking / typedef ">

2 <WORKITEMTYPE name="Task">
3 <DESCRIPTION >General WorkItem to potentially cover all

tasks to be worked on within the VEC </ DESCRIPTION >
4 <FIELDS >
5 <FIELD name="Title" refname =" System .Title" type="

String " reportable =" dimension ">
6 <HELPTEXT >Short description of the task used to

differentiate it in a list or report </ HELPTEXT >
7 <REQUIRED />
8 </FIELD >
9 <FIELD name="State" refname =" System .State" type="

String " reportable =" dimension ">
10 <HELPTEXT >The workflow state of the task </ HELPTEXT >
11 </FIELD >
12 <FIELD name="Rev" refname =" System .Rev" type=" Integer "

reportable =" dimension " />
13 <FIELD name=" Changed By" refname =" System . ChangedBy "

type=" String " reportable =" dimension ">
14 <VALIDUSER />
15 </FIELD >
16 <FIELD name="Issue" refname =" Microsoft .VSTS. Common .

Issue" type=" String " reportable =" dimension ">
17 <HELPTEXT >Used to highlight a task , e.g., to mark it

as an issue </ HELPTEXT >
18 <REQUIRED />
19 <ALLOWEDVALUES expanditems ="true">
20 <LISTITEM value="Yes" />
21 <LISTITEM value="No" />
22 </ ALLOWEDVALUES >
23 <DEFAULT from="value" value="No" />

Appendix A TFS Work Items XML 119

24 </FIELD >
25 <FIELD name="State Change Date" refname =" Microsoft .

VSTS. Common . StateChangeDate " type=" DateTime ">
26 <WHENCHANGED field=" System .State">
27 <SERVERDEFAULT from="clock" />
28 </ WHENCHANGED >
29 <WHENNOTCHANGED field=" System .State">
30 <READONLY />
31 </ WHENNOTCHANGED >
32 </FIELD >
33 <FIELD name=" Activated Date" refname =" Microsoft .VSTS.

Common . ActivatedDate " type=" DateTime " reportable ="
dimension ">

34 <WHENNOTCHANGED field=" System .State">
35 <READONLY />
36 </ WHENNOTCHANGED >
37 </FIELD >
38 <FIELD name=" Activated By" refname =" Microsoft .VSTS.

Common . ActivatedBy " type=" String " reportable ="
dimension ">

39 <WHENNOTCHANGED field=" System .State">
40 <READONLY />
41 </ WHENNOTCHANGED >
42 </FIELD >
43 <FIELD name=" Reason " refname =" System . Reason " type="

String " reportable =" dimension ">
44 <HELPTEXT >The reason why the task is in the current

state </ HELPTEXT >
45 </FIELD >
46 <FIELD name=" Assigned To" refname =" System . AssignedTo "

type=" String " reportable =" dimension ">
47 <ALLOWEXISTINGVALUE />
48 <ALLOWEDVALUES expanditems ="true">
49 <LISTITEM value="[project]\ Contributors " />
50 </ ALLOWEDVALUES >
51 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
52 </FIELD >
53 <FIELD name="Work Item Type" refname =" System .

WorkItemType " type=" String " reportable =" dimension "
/>

54 <FIELD name=" Closed By" refname =" Microsoft .VSTS. Common
. ClosedBy " type=" String " reportable =" dimension ">

120 Appendix A TFS Work Items XML

55 <WHENNOTCHANGED field=" System .State">
56 <READONLY />
57 </ WHENNOTCHANGED >
58 </FIELD >
59 <FIELD name=" Closed Date" refname =" Microsoft .VSTS.

Common . ClosedDate " type=" DateTime " reportable ="
dimension ">

60 <WHENNOTCHANGED field=" System .State">
61 <READONLY />
62 </ WHENNOTCHANGED >
63 </FIELD >
64 <FIELD name="Rank" refname =" Microsoft .VSTS. Common .Rank

" type=" String " reportable =" dimension ">
65 <HELPTEXT >Stack rank to prioritize work </ HELPTEXT >
66 </FIELD >
67 <FIELD name=" Created Date" refname =" System . CreatedDate

" type=" DateTime " reportable =" dimension " />
68 <FIELD name=" Created By" refname =" System . CreatedBy "

type=" String " reportable =" dimension " />
69 <FIELD name="Exit Criteria " refname =" Microsoft .VSTS.

Common . ExitCriteria " type=" String " reportable ="
dimension ">

70 <HELPTEXT >Flag to determine if this scenario should
be tracked as an exit criteria for the iteration <
/ HELPTEXT >

71 <REQUIRED />
72 <ALLOWEDVALUES expanditems ="true">
73 <LISTITEM value="Yes" />
74 <LISTITEM value="No" />
75 </ ALLOWEDVALUES >
76 <DEFAULT from="value" value="No" />
77 </FIELD >
78 <FIELD name=" Integration Build" refname =" Microsoft .

VSTS.Build. IntegrationBuild " type=" String "
reportable =" dimension ">

79 <HELPTEXT >The build in which the task was completed <
/ HELPTEXT >

80 <SUGGESTEDVALUES expanditems ="true">
81 <LISTITEM value="<None>" />
82 </ SUGGESTEDVALUES >
83 <SUGGESTEDVALUES expanditems ="true" filteritems ="

excludegroups ">
84 <GLOBALLIST name=" Builds - DNN. Template .4.9.1 " />

Appendix A TFS Work Items XML 121

85 </ SUGGESTEDVALUES >
86 </FIELD >
87 <FIELD name=" Discipline " refname =" Microsoft .VSTS.

Common . Discipline " type=" String " reportable ="
dimension ">

88 <HELPTEXT >The discipline to which the task belongs </
HELPTEXT >

89 <ALLOWEDVALUES expanditems ="true">
90 <LISTITEM value=" Development " />
91 <LISTITEM value="Test" />
92 <LISTITEM value=" Deployment " />
93 <LISTITEM value=" Launch Management " />
94 </ ALLOWEDVALUES >
95 </FIELD >
96 <FIELD name=" Baseline Work" refname =" Microsoft .VSTS.

Scheduling . BaselineWork " type=" Double " reportable ="
measure " formula ="sum">

97 <HELPTEXT >The number of hours of work from the
baseline plan </ HELPTEXT >

98 </FIELD >
99 <FIELD name="Start Date" refname =" Microsoft .VSTS.

Scheduling . StartDate " type=" DateTime " reportable ="
dimension ">

100 <HELPTEXT >The date to start the task </ HELPTEXT >
101 <DEFAULT from="clock" />
102 </FIELD >
103 <FIELD name=" Finish Date" refname =" Microsoft .VSTS.

Scheduling . FinishDate " type=" DateTime " reportable ="
dimension ">

104 <HELPTEXT >The date to finish the task </ HELPTEXT >
105 <WHEN field=" COMPANY .Task. GlobalPriority " value="2

Important ">
106 <REQUIRED for="[global]\ Team Foundation Valid

Users" />
107 </WHEN >
108 </FIELD >
109 <FIELD name="Task Hierarchy " refname =" Microsoft .VSTS.

Scheduling . TaskHierarchy " type=" String " reportable =
" dimension ">

110 <HELPTEXT >A string representing MS - Project context
for the given task </ HELPTEXT >

111 </FIELD >
112 <FIELD name=" Completed Work" refname =" Microsoft .VSTS.

122 Appendix A TFS Work Items XML

Scheduling . CompletedWork " type=" Double " reportable =
" measure " formula ="sum">

113 <HELPTEXT >The number of hours that have been
completed for this task </ HELPTEXT >

114 </FIELD >
115 <FIELD name=" Remaining Work" refname =" Microsoft .VSTS.

Scheduling . RemainingWork " type=" Double " reportable =
" measure " formula ="sum">

116 <HELPTEXT >An estimate of the number of hours
remaining to complete the task </ HELPTEXT >

117 </FIELD >
118 <FIELD name=" Description " refname =" System . Description "

type=" PlainText " />
119 <FIELD name=" Module " refname =" COMPANY . Module " type="

String ">
120 <HELPTEXT >COMPANY . Module </ HELPTEXT >
121 </FIELD >
122 <FIELD name=" History " refname =" System . History " type="

History ">
123 <HELPTEXT >Discussion thread and other historical

information </ HELPTEXT >
124 </FIELD >
125 <FIELD name=" PlanningState " refname =" COMPANY .

PlanningState " type=" String ">
126 <HELPTEXT >PlanningState </ HELPTEXT >
127 <ALLOWEDVALUES expanditems ="true">
128 <LISTITEM value=" Unplanned " />
129 <LISTITEM value=" Planned " />
130 </ ALLOWEDVALUES >
131 </FIELD >
132 <FIELD name=" Project " refname =" COMPANY . Project " type="

String " reportable =" dimension ">
133 <HELPTEXT >Project </ HELPTEXT >
134 <ALLOWEDVALUES expanditems ="true">
135 <LISTITEM value="SMA" />
136 <LISTITEM value=" WeaningPlanner " />
137 <LISTITEM value=" GrowthChart " />
138 </ ALLOWEDVALUES >
139 </FIELD >
140 <FIELD name=" RequestSource " refname =" COMPANY .

Deployment . RequestSource " type=" String " reportable =
" detail " />

Appendix A TFS Work Items XML 123

141 <FIELD name=" Website " refname =" COMPANY . Deployment .
Website " type=" String " reportable =" dimension ">

142 <HELPTEXT >The website concerned (including URLs ,
PortalID , ...) </ HELPTEXT >

143 <ALLOWEDVALUES expanditems ="true">
144 <GLOBALLIST name=" VEC_Websites_Instances " />
145 </ ALLOWEDVALUES >
146 </FIELD >
147 <FIELD name=" DevTimeline " refname =" COMPANY .Task.

DevTimeline " type=" DateTime ">
148 <HELPTEXT >Timeline set by executing person </ HELPTEXT

>
149 </FIELD >
150 <FIELD name=" Completion " refname =" COMPANY .Task.

Completion " type=" Integer ">
151 <HELPTEXT >Completion Percentage </ HELPTEXT >
152 </FIELD >
153 <FIELD name=" Requestor " refname =" COMPANY .Task.

RequestSource " type=" String " reportable =" dimension "
>

154 <HELPTEXT >Who requested this task?</ HELPTEXT >
155 <ALLOWEXISTINGVALUE />
156 <ALLOWEDVALUES expanditems ="true">
157 <LISTITEM value="[project]\ Contributors " />
158 </ ALLOWEDVALUES >
159 <DEFAULT from=" currentuser " />
160 </FIELD >
161 <FIELD name="Prio" refname =" COMPANY .Task.

GlobalPriority " type=" String " reportable =" dimension
">

162 <HELPTEXT >Global Task Importance </ HELPTEXT >
163 <ALLOWEDVALUES expanditems ="true">
164 <LISTITEM value="1 Normal " />
165 <LISTITEM value="2 Important " />
166 <LISTITEM value="3 Emergency " />
167 <LISTITEM value="0 Low" />
168 </ ALLOWEDVALUES >
169 <DEFAULT from="value" value="1 Normal " />
170 </FIELD >
171 <FIELD name="Task Type" refname =" COMPANY .Task. TaskType

" type=" String " reportable =" dimension ">
172 <HELPTEXT >Defines the type (Bug , Feature Request

,...) of a task </ HELPTEXT >

124 Appendix A TFS Work Items XML

173 <ALLOWEDVALUES expanditems ="true">
174 <LISTITEM value="Bug" />
175 <LISTITEM value="Test" />
176 <LISTITEM value=" Feature Request " />
177 <LISTITEM value=" Support Request " />
178 </ ALLOWEDVALUES >
179 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
180 </FIELD >
181 <FIELD name=" RelatedLinkCount " refname =" System .

RelatedLinkCount " type=" Integer " />
182 <FIELD name=" Project Code" refname =" COMPANY .Task.

ProjectCode " type=" String " reportable =" dimension ">
183 <HELPTEXT >The VEC project code </ HELPTEXT >
184 <ALLOWEDVALUES expanditems ="true">
185 <GLOBALLIST name=" VEC_Projects " />
186 </ ALLOWEDVALUES >
187 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
188 </FIELD >
189 <FIELD name="Bug Severity " refname =" COMPANY .Task.

Severity " type=" String " reportable =" dimension ">
190 <HELPTEXT >Severity of a bug </ HELPTEXT >
191 <SUGGESTEDVALUES expanditems ="true">
192 <LISTITEM value="1 - Cosmetic " />
193 <LISTITEM value="2 - Functionality affected " />
194 <LISTITEM value="3 - Showstopper " />
195 </ SUGGESTEDVALUES >
196 <WHENNOT field=" COMPANY .Task. TaskType " value="Bug">
197 <READONLY for="[global]\ Team Foundation Valid

Users" />
198 </ WHENNOT >
199 <WHEN field=" COMPANY .Task. TaskType " value="Bug">
200 <REQUIRED for="[global]\ Team Foundation Valid

Users" />
201 </WHEN >
202 </FIELD >
203 <FIELD name=" Estimated Effort " refname =" COMPANY .Task.

EstimatedEffort " type=" Double " reportable ="
dimension ">

204 <HELPTEXT >The estimated effort in days </ HELPTEXT >
205 </FIELD >

Appendix A TFS Work Items XML 125

206 <FIELD name="Phase" refname =" COMPANY .Task.Phase" type=
" String " reportable =" detail ">

207 <HELPTEXT >Phase in which the Task falls into (e.g.
Maintenance , Project)</ HELPTEXT >

208 <ALLOWEDVALUES expanditems ="true">
209 <LISTITEM value=" Project " />
210 <LISTITEM value=" Maintenance " />
211 </ ALLOWEDVALUES >
212 </FIELD >
213 <FIELD name=" StartConstraint " refname =" COMPANY .Task.

StartConstraint " type=" String " reportable =" detail ">
214 <HELPTEXT >Constraint for Start Date of a WorkItem </

HELPTEXT >
215 </FIELD >
216 <FIELD name="Task Owner" refname =" COMPANY .Task.Owner"

type=" String " reportable =" detail ">
217 <HELPTEXT >Person responsible for the Work Item </

HELPTEXT >
218 <ALLOWEXISTINGVALUE />
219 <ALLOWEDVALUES expanditems ="true">
220 <LISTITEM value="[project]\ Contributors " />
221 </ ALLOWEDVALUES >
222 <DEFAULT from="field" field=" System . CreatedBy " />
223 </FIELD >
224 <FIELD name=" DescriptionHTML " refname =" COMPANY .Task.

DescriptionHtml " type="HTML" />
225 <FIELD name=" LaunchRelevancy " refname =" COMPANY .Task.

LaunchRelevancy " type=" String " reportable ="
dimension ">

226 <HELPTEXT >Is this WI launch relevant ?</ HELPTEXT >
227 <ALLOWEDVALUES expanditems ="true">
228 <LISTITEM value="Yes" />
229 <LISTITEM value="No" />
230 </ ALLOWEDVALUES >
231 <DEFAULT from="value" value="-" />
232 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
233 </FIELD >
234 <FIELD name="Group" refname =" COMPANY .Task.Group" type=

" String " reportable =" dimension ">
235 <HELPTEXT >To which group does the task belong to (e.

g. SMA , Core , ...) </ HELPTEXT >
236 <ALLOWEDVALUES expanditems ="true">

126 Appendix A TFS Work Items XML

237 <LISTITEM value="SMA" />
238 <LISTITEM value="Core" />
239 </ ALLOWEDVALUES >
240 <DEFAULT from="value" value="Core" />
241 </FIELD >
242 <FIELD name=" Iteration Path" refname =" System .

IterationPath " type=" TreePath " reportable ="
dimension ">

243 <HELPTEXT >The iteration of the product with which
this task is associated </ HELPTEXT >

244 </FIELD >
245 <FIELD name=" IterationID " refname =" System . IterationId "

type=" Integer " />
246 <FIELD name=" ExternalLinkCount " refname =" System .

ExternalLinkCount " type=" Integer " />
247 <FIELD name="Team Project " refname =" System . TeamProject

" type=" String " reportable =" dimension " />
248 <FIELD name=" HyperLinkCount " refname =" System .

HyperLinkCount " type=" Integer " />
249 <FIELD name=" AttachedFileCount " refname =" System .

AttachedFileCount " type=" Integer " />
250 <FIELD name="Node Name" refname =" System . NodeName " type

=" String " />
251 <FIELD name="Area Path" refname =" System . AreaPath " type

=" TreePath " reportable =" dimension ">
252 <HELPTEXT >The area of the product with which this

task is associated </ HELPTEXT >
253 </FIELD >
254 <FIELD name=" Revised Date" refname =" System . RevisedDate

" type=" DateTime " />
255 <FIELD name=" Changed Date" refname =" System . ChangedDate

" type=" DateTime " reportable =" dimension " />
256 <FIELD name="ID" refname =" System .Id" type=" Integer "

reportable =" dimension " />
257 <FIELD name=" AreaID " refname =" System . AreaId " type="

Integer " />
258 <FIELD name=" Authorized As" refname =" System .

AuthorizedAs " type=" String " />
259 </ FIELDS >
260 <WORKFLOW >
261 <STATES >
262 <STATE value="Open">
263 <FIELDS >

Appendix A TFS Work Items XML 127

264 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate
">

265 <EMPTY />
266 </ FIELD >
267 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
268 <EMPTY />
269 </ FIELD >
270 </ FIELDS >
271 </STATE >
272 <STATE value=" Closed " />
273 <STATE value="In Progress " />
274 <STATE value=" Executed " />
275 <STATE value=" Cancelled " />
276 <STATE value="On Hold" />
277 </ STATES >
278 <TRANSITIONS >
279 <TRANSITION from="" to="Open">
280 <REASONS >
281 <DEFAULTREASON value="New" />
282 </ REASONS >
283 <FIELDS >
284 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
285 <COPY from=" currentuser " />
286 <VALIDUSER />
287 <REQUIRED />
288 </ FIELD >
289 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
290 <SERVERDEFAULT from="clock" />
291 </ FIELD >
292 <FIELD refname =" System . AssignedTo ">
293 <DEFAULT from=" currentuser " />
294 </ FIELD >
295 </ FIELDS >
296 </ TRANSITION >
297 <TRANSITION from=" Closed " to="Open">
298 <REASONS >
299 <DEFAULTREASON value=" Problem found" />
300 </ REASONS >
301 <FIELDS >
302 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">

128 Appendix A TFS Work Items XML

303 <COPY from=" currentuser " />
304 <VALIDUSER />
305 <REQUIRED />
306 </ FIELD >
307 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
308 <SERVERDEFAULT from="clock" />
309 </ FIELD >
310 <FIELD refname =" System . AssignedTo ">
311 <COPY from="field" field=" Microsoft .VSTS.

Common . ClosedBy " />
312 </ FIELD >
313 </ FIELDS >
314 </ TRANSITION >
315 <TRANSITION from="Open" to="In Progress ">
316 <REASONS >
317 <DEFAULTREASON value="Work started " />
318 </ REASONS >
319 </ TRANSITION >
320 <TRANSITION from="In Progress " to="Open">
321 <REASONS >
322 <DEFAULTREASON value="Other Task Opened " />
323 </ REASONS >
324 </ TRANSITION >
325 <TRANSITION from="Open" to=" Cancelled ">
326 <REASONS >
327 <DEFAULTREASON value=" Deferred " />
328 <REASON value=" Covered by other Task" />
329 </ REASONS >
330 </ TRANSITION >
331 <TRANSITION from=" Cancelled " to="Open">
332 <REASONS >
333 <DEFAULTREASON value=" Opened up again" />
334 </ REASONS >
335 </ TRANSITION >
336 <TRANSITION from="In Progress " to=" Cancelled ">
337 <REASONS >
338 <DEFAULTREASON value=" Deferred " />
339 <REASON value=" Covered by other Task" />
340 </ REASONS >
341 </ TRANSITION >
342 <TRANSITION from=" Executed " to=" Closed " for="[global

]\ VEC ProQ Users">

Appendix A TFS Work Items XML 129

343 <REASONS >
344 <DEFAULTREASON value=" Tested OK" />
345 <REASON value="Not Tested " />
346 </ REASONS >
347 <FIELDS >
348 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
349 <SERVERDEFAULT from="clock" />
350 </ FIELD >
351 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
352 <COPY from=" currentuser " />
353 <VALIDUSER />
354 <REQUIRED />
355 </ FIELD >
356 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
357 <READONLY />
358 </ FIELD >
359 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
360 <READONLY />
361 </ FIELD >
362 </ FIELDS >
363 <ACTIONS >
364 <ACTION value=" Microsoft .VSTS. Actions . Checkin " /

>
365 </ ACTIONS >
366 </ TRANSITION >
367 <TRANSITION from="Open" to=" Executed ">
368 <REASONS >
369 <DEFAULTREASON value=" Development finished " />
370 </ REASONS >
371 <FIELDS >
372 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
373 <SERVERDEFAULT from="clock" />
374 </ FIELD >
375 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
376 <COPY from=" currentuser " />
377 <VALIDUSER />
378 <REQUIRED />
379 </ FIELD >

130 Appendix A TFS Work Items XML

380 <FIELD refname =" Microsoft .VSTS. Common .
ActivatedBy ">

381 <READONLY />
382 </ FIELD >
383 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
384 <READONLY />
385 </ FIELD >
386 </ FIELDS >
387 <ACTIONS >
388 <ACTION value=" Microsoft .VSTS. Actions . Checkin " /

>
389 </ ACTIONS >
390 </ TRANSITION >
391 <TRANSITION from="In Progress " to=" Executed ">
392 <REASONS >
393 <DEFAULTREASON value=" Development finished " />
394 </ REASONS >
395 </ TRANSITION >
396 <TRANSITION from=" Executed " to=" Cancelled ">
397 <REASONS >
398 <DEFAULTREASON value=" Deferred " />
399 <REASON value=" Covered by other Task" />
400 </ REASONS >
401 </ TRANSITION >
402 <TRANSITION from=" Executed " to="Open">
403 <REASONS >
404 <DEFAULTREASON value=" Tested Error" />
405 <REASON value="Not finished " />
406 </ REASONS >
407 </ TRANSITION >
408 <TRANSITION from="In Progress " to="On Hold">
409 <REASONS >
410 <DEFAULTREASON value="See History " />
411 </ REASONS >
412 </ TRANSITION >
413 <TRANSITION from="Open" to="On Hold">
414 <REASONS >
415 <DEFAULTREASON value="See History " />
416 </ REASONS >
417 </ TRANSITION >
418 <TRANSITION from="On Hold" to=" Cancelled ">
419 <REASONS >

Appendix A TFS Work Items XML 131

420 <DEFAULTREASON value=" Deferred " />
421 </ REASONS >
422 </ TRANSITION >
423 <TRANSITION from="On Hold" to="Open">
424 <REASONS >
425 <DEFAULTREASON value=" Opened up again" />
426 </ REASONS >
427 </ TRANSITION >
428 <TRANSITION from="On Hold" to="In Progress ">
429 <REASONS >
430 <DEFAULTREASON value=" Opened up again" />
431 </ REASONS >
432 </ TRANSITION >
433 </ TRANSITIONS >
434 </ WORKFLOW >
435 <FORM >
436 <Layout >
437 <Group Label=" ">
438 <Column PercentWidth ="100">
439 <Control FieldName =" System .Title" Type="

FieldControl " Label="& Title: "
LabelPosition ="Left" />

440 </ Column >
441 </Group >
442 <Group Label=" General Information ">
443 <Column PercentWidth ="50">
444 <Control FieldName =" COMPANY .Task. GlobalPriority "

Type=" FieldControl " Label=" Priority: "
LabelPosition ="Left" />

445 <Control FieldName =" Microsoft .VSTS. Scheduling .
FinishDate " Type=" DateTimeControl " Label="
Timeline: " LabelPosition ="Left" />

446 <Control FieldName =" Microsoft .VSTS. Scheduling .
StartDate " Type=" DateTimeControl " Label="
Start not before: " LabelPosition ="Left" />

447 <Control FieldName =" COMPANY .Task. StartConstraint
" Type=" FieldControl " Label="Start
Constraint: " LabelPosition ="Left" />

448 </ Column >
449 <Column PercentWidth ="50">
450 <Control FieldName =" COMPANY . Deployment .

RequestSource " Type=" FieldControl " Label="
External Reference: " LabelPosition ="Left" />

132 Appendix A TFS Work Items XML

451 <Control FieldName =" COMPANY .Task. TaskType " Type=
" FieldControl " Label="Task Type:"
LabelPosition ="Left" />

452 <Control FieldName =" COMPANY .Task. Severity " Type=
" FieldControl " Label=" Severity: "
LabelPosition ="Left" />

453 <Control FieldName =" COMPANY .Task. LaunchRelevancy
" Type=" FieldControl " Label="Is Launch
relevant: " LabelPosition ="Left" />

454 </ Column >
455 </Group >
456 <Group Label=" Project Information ">
457 <Column PercentWidth ="50">
458 <Control FieldName =" COMPANY .Task. ProjectCode "

Type=" FieldControl " Label=" Project Code:"
LabelPosition ="Left" />

459 </ Column >
460 <Column PercentWidth ="50">
461 <Control FieldName =" COMPANY .Task.Phase" Type="

FieldControl " Label=" Phase: " LabelPosition ="
Left" />

462 </ Column >
463 </Group >
464 <Group Label=" People ">
465 <Column PercentWidth ="50">
466 <Control FieldName =" COMPANY .Task. RequestSource "

Type=" FieldControl " Label=" Requestor: "
LabelPosition ="Left" />

467 <Control FieldName =" COMPANY .Task.Owner" Type="
FieldControl " Label="Task Owner: "
LabelPosition ="Left" />

468 </ Column >
469 <Column PercentWidth ="50">
470 <Control FieldName =" COMPANY .Task.Group" Type="

FieldControl " Label=" Assigned Group: "
LabelPosition ="Left" />

471 <Control FieldName =" System . AssignedTo " Type="
FieldControl " Label="Assi&gned to:"
LabelPosition ="Left" />

472 </ Column >
473 </Group >
474 <Group Label="State Information ">
475 <Column PercentWidth ="50">

Appendix A TFS Work Items XML 133

476 <Control FieldName =" COMPANY .Task. EstimatedEffort
" Type=" FieldControl " Label=" Estimated Effort

(days):" LabelPosition ="Left" />
477 <Control FieldName =" COMPANY .Task. DevTimeline "

Type=" DateTimeControl " Label=" Estimated
Timeline: " LabelPosition ="Left" />

478 <Control FieldName =" COMPANY .Task. Completion "
Type=" FieldControl " Label=" Percentage
complete: " LabelPosition ="Left" />

479 </ Column >
480 <Column PercentWidth ="50">
481 <Control FieldName =" System .State" Type="

FieldControl " Label="& State: "
LabelPosition ="Left" />

482 <Control FieldName =" System . Reason " Type="
FieldControl " Label="& Reason: "
LabelPosition ="Left" />

483 </ Column >
484 </Group >
485 <Group >
486 <Column PercentWidth ="50">
487 <Control FieldName =" COMPANY .Task. DescriptionHtml

" Type=" HtmlFieldControl " Label="Des&
cription: " LabelPosition ="Top" Dock="Fill" />

488 </ Column >
489 <Column PercentWidth ="50">
490 <Control FieldName =" System . History " Type="

WorkItemLogControl " Label=" Comment / History: "
LabelPosition ="Top" Dock="Fill" />

491 </ Column >
492 </Group >
493 <TabGroup >
494 <Tab Label="File Attachments ">
495 <Control Type=" AttachmentsControl " LabelPosition

="Top" Dock="Fill" />
496 </Tab >
497 <Tab Label="Links">
498 <Control Type=" LinksControl " LabelPosition ="Top"

/>
499 </Tab >
500 </ TabGroup >
501 </ Layout >
502 </FORM >

134 Appendix A TFS Work Items XML

503 </ WORKITEMTYPE >
504 </WITD >

Listing A.1: XML Structure - Work Item Type “Task”

1 <WITD application ="Work item type editor " version ="1.0"
xmlns:witd ="http: // schemas . microsoft .com/ VisualStudio
/2005/ workitemtracking / typedef ">

2 <WORKITEMTYPE name=" Deployment Request ">
3 <DESCRIPTION >WorkItem to describe the deployment from

and to websites </ DESCRIPTION >
4 <FIELDS >
5 <FIELD name="Title" refname =" System .Title" type="

String " reportable =" dimension ">
6 <HELPTEXT >Short description of the task used to

differentiate it in a list or report </ HELPTEXT >
7 </FIELD >
8 <FIELD name="State" refname =" System .State" type="

String " reportable =" dimension ">
9 <HELPTEXT >The workflow state of the task </ HELPTEXT >

10 </FIELD >
11 <FIELD name="Rev" refname =" System .Rev" type=" Integer "

reportable =" dimension " />
12 <FIELD name=" Changed By" refname =" System . ChangedBy "

type=" String " reportable =" dimension ">
13 <VALIDUSER />
14 </FIELD >
15 <FIELD name="Issue" refname =" Microsoft .VSTS. Common .

Issue" type=" String " reportable =" dimension ">
16 <HELPTEXT >Used to highlight a task , e.g., to mark it

as an issue </ HELPTEXT >
17 <REQUIRED />
18 <ALLOWEDVALUES expanditems ="true">
19 <LISTITEM value="Yes" />
20 <LISTITEM value="No" />
21 </ ALLOWEDVALUES >
22 <DEFAULT from="value" value="No" />
23 </FIELD >
24 <FIELD name="State Change Date" refname =" Microsoft .

VSTS. Common . StateChangeDate " type=" DateTime ">
25 <WHENCHANGED field=" System .State">
26 <SERVERDEFAULT from="clock" />
27 </ WHENCHANGED >
28 <WHENNOTCHANGED field=" System .State">

Appendix A TFS Work Items XML 135

29 <READONLY />
30 </ WHENNOTCHANGED >
31 </FIELD >
32 <FIELD name=" Activated Date" refname =" Microsoft .VSTS.

Common . ActivatedDate " type=" DateTime " reportable ="
dimension ">

33 <WHENNOTCHANGED field=" System .State">
34 <READONLY />
35 </ WHENNOTCHANGED >
36 </FIELD >
37 <FIELD name=" Activated By" refname =" Microsoft .VSTS.

Common . ActivatedBy " type=" String " reportable ="
dimension ">

38 <WHENNOTCHANGED field=" System .State">
39 <READONLY />
40 </ WHENNOTCHANGED >
41 </FIELD >
42 <FIELD name=" Reason " refname =" System . Reason " type="

String " reportable =" dimension ">
43 <HELPTEXT >The reason why the task is in the current

state </ HELPTEXT >
44 </FIELD >
45 <FIELD name=" Assigned To" refname =" System . AssignedTo "

type=" String " reportable =" dimension ">
46 <ALLOWEXISTINGVALUE />
47 <ALLOWEDVALUES expanditems ="true">
48 <LISTITEM value="[project]\ Contributors " />
49 </ ALLOWEDVALUES >
50 </FIELD >
51 <FIELD name="Work Item Type" refname =" System .

WorkItemType " type=" String " reportable =" dimension "
/>

52 <FIELD name=" Closed By" refname =" Microsoft .VSTS. Common
. ClosedBy " type=" String " reportable =" dimension ">

53 <WHENNOTCHANGED field=" System .State">
54 <READONLY />
55 </ WHENNOTCHANGED >
56 </FIELD >
57 <FIELD name=" Closed Date" refname =" Microsoft .VSTS.

Common . ClosedDate " type=" DateTime " reportable ="
dimension ">

58 <WHENNOTCHANGED field=" System .State">
59 <READONLY />

136 Appendix A TFS Work Items XML

60 </ WHENNOTCHANGED >
61 </FIELD >
62 <FIELD name="Rank" refname =" Microsoft .VSTS. Common .Rank

" type=" String " reportable =" dimension ">
63 <HELPTEXT >Stack rank to prioritize work </ HELPTEXT >
64 </FIELD >
65 <FIELD name=" Created Date" refname =" System . CreatedDate

" type=" DateTime " reportable =" dimension " />
66 <FIELD name=" Created By" refname =" System . CreatedBy "

type=" String " reportable =" dimension " />
67 <FIELD name="Exit Criteria " refname =" Microsoft .VSTS.

Common . ExitCriteria " type=" String " reportable ="
dimension ">

68 <HELPTEXT >Flag to determine if this scenario should
be tracked as an exit criteria for the iteration <
/ HELPTEXT >

69 <REQUIRED />
70 <ALLOWEDVALUES expanditems ="true">
71 <LISTITEM value="Yes" />
72 <LISTITEM value="No" />
73 </ ALLOWEDVALUES >
74 <DEFAULT from="value" value="No" />
75 </FIELD >
76 <FIELD name=" Discipline " refname =" Microsoft .VSTS.

Common . Discipline " type=" String " reportable ="
dimension ">

77 <HELPTEXT >The discipline to which the task belongs </
HELPTEXT >

78 <ALLOWEDVALUES expanditems ="true">
79 <LISTITEM value=" Development " />
80 <LISTITEM value="Test" />
81 <LISTITEM value=" Project Management " />
82 <LISTITEM value=" Requirements " />
83 <LISTITEM value=" Architecture " />
84 <LISTITEM value=" Release Management " />
85 </ ALLOWEDVALUES >
86 </FIELD >
87 <FIELD name=" Integration Build" refname =" Microsoft .

VSTS.Build. IntegrationBuild " type=" String "
reportable =" dimension ">

88 <HELPTEXT >The build in which the task was completed <
/ HELPTEXT >

89 <SUGGESTEDVALUES expanditems ="true">

Appendix A TFS Work Items XML 137

90 <LISTITEM value="<None>" />
91 </ SUGGESTEDVALUES >
92 </FIELD >
93 <FIELD name=" Completed Work" refname =" Microsoft .VSTS.

Scheduling . CompletedWork " type=" Double " reportable =
" measure " formula ="sum">

94 <HELPTEXT >The number of hours that have been
completed for this task </ HELPTEXT >

95 </FIELD >
96 <FIELD name="Start Date" refname =" Microsoft .VSTS.

Scheduling . StartDate " type=" DateTime " reportable ="
dimension ">

97 <HELPTEXT >The date to start the task </ HELPTEXT >
98 <DEFAULT from="clock" />
99 </FIELD >

100 <FIELD name=" Finish Date" refname =" Microsoft .VSTS.
Scheduling . FinishDate " type=" DateTime " reportable ="
dimension ">

101 <HELPTEXT >The date to finish the task </ HELPTEXT >
102 <WHEN field=" COMPANY .Task. GlobalPriority " value="2

Important ">
103 <REQUIRED for="[global]\ Team Foundation Valid

Users" />
104 </WHEN >
105 </FIELD >
106 <FIELD name="Task Hierarchy " refname =" Microsoft .VSTS.

Scheduling . TaskHierarchy " type=" String " reportable =
" dimension ">

107 <HELPTEXT >A string representing MS - Project context
for the given task </ HELPTEXT >

108 </FIELD >
109 <FIELD name=" Baseline Work" refname =" Microsoft .VSTS.

Scheduling . BaselineWork " type=" Double " reportable ="
measure " formula ="sum">

110 <HELPTEXT >The number of hours of work from the
baseline plan </ HELPTEXT >

111 </FIELD >
112 <FIELD name=" Remaining Work" refname =" Microsoft .VSTS.

Scheduling . RemainingWork " type=" Double " reportable =
" measure " formula ="sum">

113 <HELPTEXT >An estimate of the number of hours
remaining to complete the task </ HELPTEXT >

114 </FIELD >

138 Appendix A TFS Work Items XML

115 <FIELD name=" Description " refname =" System . Description "
type=" PlainText " />

116 <FIELD name=" Project " refname =" COMPANY . Project " type="
String " reportable =" dimension " />

117 <FIELD name=" History " refname =" System . History " type="
History ">

118 <HELPTEXT >Discussion thread and other historical
information </ HELPTEXT >

119 </FIELD >
120 <FIELD name=" Instance " refname =" COMPANY . Deployment .

Instance " type=" String ">
121 <HELPTEXT >COMPANY . Deployment . Instance </ HELPTEXT >
122 <ALLOWEDVALUES expanditems ="true">
123 <GLOBALLIST name=" GlobalList_Test " />
124 </ ALLOWEDVALUES >
125 </FIELD >
126 <FIELD name=" RequestSource " refname =" COMPANY .

Deployment . RequestSource " type=" String " reportable =
" detail ">

127 <HELPTEXT >COMPANY . Deployment . RequestSource </ HELPTEXT
>

128 </FIELD >
129 <FIELD name="Scope" refname =" COMPANY . Deployment .

DeploymentType " type=" String ">
130 <HELPTEXT >COMPANY . Deployment . DeploymentType </

HELPTEXT >
131 <ALLOWEDVALUES expanditems ="true">
132 <LISTITEM value="1 Content " />
133 <LISTITEM value="2 Design / Template " />
134 <LISTITEM value="3 Binary " />
135 <LISTITEM value="4 Whole Portal " />
136 <LISTITEM value="5 Whole Instance " />
137 <LISTITEM value="6 Launch " />
138 <LISTITEM value="7 New Website " />
139 </ ALLOWEDVALUES >
140 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
141 </FIELD >
142 <FIELD name="Data" refname =" COMPANY . Deployment .

DeploymentData " type=" String ">
143 <HELPTEXT >COMPANY . Deployment . DeploymentData </

HELPTEXT >
144 <ALLOWEDVALUES expanditems ="true">

Appendix A TFS Work Items XML 139

145 <LISTITEM value="1 Files" />
146 <LISTITEM value="2 DB" />
147 <LISTITEM value="3 Files & DB" />
148 </ ALLOWEDVALUES >
149 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
150 </FIELD >
151 <FIELD name=" DRequestor " refname =" COMPANY . Deployment .

Requestor " type=" String ">
152 <HELPTEXT >COMPANY . Deployment . Requestor </ HELPTEXT >
153 </FIELD >
154 <FIELD name=" DestInstance " refname =" COMPANY . Deployment

. DestinationInstance " type=" String ">
155 <HELPTEXT >COMPANY . Deployment . DestinationInstance </

HELPTEXT >
156 <DEFAULT from="field" field=" COMPANY . Deployment .

Instance " />
157 </FIELD >
158 <FIELD name=" FromPortalID " refname =" COMPANY . Deployment

. SourcePortalId " type=" Integer ">
159 <HELPTEXT >COMPANY . Deployment . SourcePortalId </

HELPTEXT >
160 <ALLOWEDVALUES expanditems ="true">
161 <LISTITEM value="1" />
162 <LISTITEM value="2" />
163 <LISTITEM value="3" />
164 <LISTITEM value="0" />
165 <LISTITEM value="4" />
166 <LISTITEM value="5" />
167 <LISTITEM value="6" />
168 <LISTITEM value="7" />
169 <LISTITEM value="8" />
170 <LISTITEM value="9" />
171 <LISTITEM value="10" />
172 <LISTITEM value="11" />
173 <LISTITEM value="12" />
174 <LISTITEM value="13" />
175 <LISTITEM value="14" />
176 <LISTITEM value="15" />
177 <LISTITEM value="16" />
178 <LISTITEM value="17" />
179 <LISTITEM value="18" />
180 <LISTITEM value="19" />

140 Appendix A TFS Work Items XML

181 <LISTITEM value="20" />
182 </ ALLOWEDVALUES >
183 </FIELD >
184 <FIELD name=" ToPortalID " refname =" COMPANY . Deployment .

DestinationPortalId " type=" Integer ">
185 <HELPTEXT >COMPANY . Deployment . DestinationPortalId </

HELPTEXT >
186 <ALLOWEDVALUES expanditems ="true">
187 <LISTITEM value="1" />
188 <LISTITEM value="2" />
189 <LISTITEM value="3" />
190 <LISTITEM value="0" />
191 <LISTITEM value="4" />
192 <LISTITEM value="5" />
193 <LISTITEM value="6" />
194 <LISTITEM value="7" />
195 <LISTITEM value="8" />
196 <LISTITEM value="9" />
197 <LISTITEM value="10" />
198 <LISTITEM value="11" />
199 <LISTITEM value="12" />
200 <LISTITEM value="13" />
201 <LISTITEM value="14" />
202 <LISTITEM value="15" />
203 <LISTITEM value="16" />
204 <LISTITEM value="17" />
205 <LISTITEM value="18" />
206 <LISTITEM value="19" />
207 <LISTITEM value="20" />
208 </ ALLOWEDVALUES >
209 </FIELD >
210 <FIELD name=" SourceEnv " refname =" COMPANY . Deployment .

SourceEnvironment " type=" String ">
211 <HELPTEXT >COMPANY . Deployment . SourceEnvironment </

HELPTEXT >
212 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
213 <ALLOWEDVALUES expanditems ="true">
214 <LISTITEM value="1 DEV" />
215 <LISTITEM value="2 STA" />
216 <LISTITEM value="3 PRD" />
217 </ ALLOWEDVALUES >

Appendix A TFS Work Items XML 141

218 <WHEN field=" COMPANY . Deployment . DeploymentType "
value="7 New Website ">

219 <FROZEN for="[global]\ Team Foundation Valid Users"
/>

220 </WHEN >
221 </FIELD >
222 <FIELD name=" DestEnv " refname =" COMPANY . Deployment .

DestinationEnvironment " type=" String ">
223 <HELPTEXT >COMPANY . Deployment . DestinationEnvironment <

/ HELPTEXT >
224 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
225 <ALLOWEDVALUES expanditems ="true">
226 <LISTITEM value="1 DEV" />
227 <LISTITEM value="2 STA" />
228 <LISTITEM value="3 PRD" />
229 </ ALLOWEDVALUES >
230 <WHEN field=" COMPANY . Deployment . DeploymentType "

value="7 New Website ">
231 <FROZEN for="[global]\ Team Foundation Valid Users"

/>
232 </WHEN >
233 </FIELD >
234 <FIELD name=" Website " refname =" COMPANY . Deployment .

Website " type=" String " reportable =" dimension ">
235 <HELPTEXT >Specifies the Website </ HELPTEXT >
236 <ALLOWEDVALUES expanditems ="true">
237 <GLOBALLIST name=" VEC_Websites_Instances " />
238 </ ALLOWEDVALUES >
239 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
240 </FIELD >
241 <FIELD name=" Requestor " refname =" COMPANY .Task.

RequestSource " type=" String " reportable =" dimension "
>

242 <HELPTEXT >COMPANY .Task. RequestSource </ HELPTEXT >
243 <ALLOWEXISTINGVALUE />
244 <DEFAULT from=" currentuser " />
245 <ALLOWEDVALUES expanditems ="true">
246 <LISTITEM value="[project]\ Contributors " />
247 </ ALLOWEDVALUES >
248 </FIELD >
249 <FIELD name="Prio" refname =" COMPANY .Task.

142 Appendix A TFS Work Items XML

GlobalPriority " type=" String " reportable =" dimension
">

250 <HELPTEXT >COMPANY .Task. GlobalPriority </ HELPTEXT >
251 <ALLOWEDVALUES expanditems ="true">
252 <LISTITEM value="1 Normal " />
253 <LISTITEM value="2 Important " />
254 <LISTITEM value="3 Emergency " />
255 <LISTITEM value="0 Low" />
256 </ ALLOWEDVALUES >
257 <DEFAULT from="value" value="1 Normal " />
258 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
259 </FIELD >
260 <FIELD name=" RelatedLinkCount " refname =" System .

RelatedLinkCount " type=" Integer " />
261 <FIELD name=" Project Code" refname =" COMPANY .Task.

ProjectCode " type=" String " reportable =" dimension ">
262 <HELPTEXT >COMPANY .Task. ProjectCode </ HELPTEXT >
263 <ALLOWEDVALUES expanditems ="true">
264 <GLOBALLIST name=" VEC_Projects " />
265 </ ALLOWEDVALUES >
266 </FIELD >
267 <FIELD name="Phase" refname =" COMPANY .Task.Phase" type=

" String " reportable =" detail ">
268 <HELPTEXT >The Project Phase the task falls into (e.g

. Maintenance , Project)</ HELPTEXT >
269 <ALLOWEDVALUES expanditems ="true">
270 <LISTITEM value=" Project " />
271 <LISTITEM value=" Maintenance " />
272 </ ALLOWEDVALUES >
273 </FIELD >
274 <FIELD name=" StartConstraint " refname =" COMPANY .Task.

StartConstraint " type=" String " reportable =" detail ">
275 <HELPTEXT >Constraint for starting a work item </

HELPTEXT >
276 </FIELD >
277 <FIELD name="Task Owner" refname =" COMPANY .Task.Owner"

type=" String " reportable =" detail ">
278 <HELPTEXT >Person responsilbe for the Work Item </

HELPTEXT >
279 <ALLOWEXISTINGVALUE />
280 <ALLOWEDVALUES expanditems ="true">
281 <LISTITEM value="[project]\ Contributors " />

Appendix A TFS Work Items XML 143

282 </ ALLOWEDVALUES >
283 <DEFAULT from="field" field=" System . CreatedBy " />
284 </FIELD >
285 <FIELD name=" DescriptionHTML " refname =" COMPANY .Task.

DescriptionHtml " type="HTML" />
286 <FIELD name=" LaunchRelevancy " refname =" COMPANY .Task.

LaunchRelevancy " type=" String " reportable ="
dimension ">

287 <HELPTEXT >Is this WI launch relevant ?</ HELPTEXT >
288 <ALLOWEDVALUES expanditems ="true">
289 <LISTITEM value="Yes" />
290 <LISTITEM value="No" />
291 </ ALLOWEDVALUES >
292 <REQUIRED for="[global]\ Team Foundation Valid Users"

/>
293 <DEFAULT from="value" value="-" />
294 </FIELD >
295 <FIELD name="Group" refname =" COMPANY .Task.Group" type=

" String " reportable =" dimension ">
296 <HELPTEXT >To which group does the task belong to (e.

g. SMA , Core , ...) </ HELPTEXT >
297 <ALLOWEDVALUES expanditems ="true">
298 <LISTITEM value="SMA" />
299 <LISTITEM value="Core" />
300 </ ALLOWEDVALUES >
301 <DEFAULT from="value" value="Core" />
302 </FIELD >
303 <FIELD name=" Iteration Path" refname =" System .

IterationPath " type=" TreePath " reportable ="
dimension ">

304 <HELPTEXT >The iteration of the product with which
this task is associated </ HELPTEXT >

305 </FIELD >
306 <FIELD name=" IterationID " refname =" System . IterationId "

type=" Integer " />
307 <FIELD name=" ExternalLinkCount " refname =" System .

ExternalLinkCount " type=" Integer " />
308 <FIELD name="Team Project " refname =" System . TeamProject

" type=" String " reportable =" dimension " />
309 <FIELD name=" HyperLinkCount " refname =" System .

HyperLinkCount " type=" Integer " />
310 <FIELD name=" AttachedFileCount " refname =" System .

AttachedFileCount " type=" Integer " />

144 Appendix A TFS Work Items XML

311 <FIELD name="Node Name" refname =" System . NodeName " type
=" String " />

312 <FIELD name="Area Path" refname =" System . AreaPath " type
=" TreePath " reportable =" dimension ">

313 <HELPTEXT >The area of the product with which this
task is associated </ HELPTEXT >

314 </FIELD >
315 <FIELD name=" Revised Date" refname =" System . RevisedDate

" type=" DateTime " />
316 <FIELD name=" Changed Date" refname =" System . ChangedDate

" type=" DateTime " reportable =" dimension " />
317 <FIELD name="ID" refname =" System .Id" type=" Integer "

reportable =" dimension " />
318 <FIELD name=" AreaID " refname =" System . AreaId " type="

Integer " />
319 <FIELD name=" Authorized As" refname =" System .

AuthorizedAs " type=" String " />
320 </ FIELDS >
321 <WORKFLOW >
322 <STATES >
323 <STATE value="Open">
324 <FIELDS >
325 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
326 <EMPTY />
327 </ FIELD >
328 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
329 <EMPTY />
330 </ FIELD >
331 </ FIELDS >
332 </STATE >
333 <STATE value=" Completed " />
334 <STATE value="In Progress " />
335 <STATE value=" Executed " />
336 <STATE value=" Cancelled " />
337 <STATE value=" Tested Error" />
338 <STATE value="Not Tested " />
339 <STATE value=" Tested OK" />
340 <STATE value="On Hold" />
341 </ STATES >
342 <TRANSITIONS >
343 <TRANSITION from="" to="Open">
344 <REASONS >

Appendix A TFS Work Items XML 145

345 <DEFAULTREASON value="New" />
346 </ REASONS >
347 <FIELDS >
348 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
349 <COPY from=" currentuser " />
350 <VALIDUSER />
351 <REQUIRED />
352 </ FIELD >
353 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
354 <SERVERDEFAULT from="clock" />
355 </ FIELD >
356 <FIELD refname =" COMPANY . Deployment . Requestor ">
357 <DEFAULT from="value" value="e.g. Project

Owner" />
358 </ FIELD >
359 <FIELD refname =" COMPANY . Deployment . RequestSource

">
360 <DEFAULT from="value" value="e.g. Gemini

Request Number " />
361 </ FIELD >
362 </ FIELDS >
363 </ TRANSITION >
364 <TRANSITION from=" Executed " to=" Cancelled ">
365 <REASONS >
366 <DEFAULTREASON value=" Deferred " />
367 </ REASONS >
368 </ TRANSITION >
369 <TRANSITION from=" Completed " to=" Tested Error">
370 <REASONS >
371 <DEFAULTREASON value="Error found" />
372 </ REASONS >
373 </ TRANSITION >
374 <TRANSITION from=" Tested Error" to=" Executed ">
375 <REASONS >
376 <DEFAULTREASON value="Error fixed" />
377 </ REASONS >
378 </ TRANSITION >
379 <TRANSITION from=" Executed " to=" Tested Error" for="[

global]\ VEC ProQ Users">
380 <REASONS >

146 Appendix A TFS Work Items XML

381 <DEFAULTREASON value="ProQ review not successful
" />

382 </ REASONS >
383 <FIELDS >
384 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
385 <SERVERDEFAULT from="clock" />
386 </ FIELD >
387 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
388 <SERVERDEFAULT from=" currentuser " />
389 </ FIELD >
390 </ FIELDS >
391 </ TRANSITION >
392 <TRANSITION from=" Executed " to="Not Tested " for="[

global]\ VEC ProQ Users">
393 <REASONS >
394 <DEFAULTREASON value=" Testing not necessary " />
395 </ REASONS >
396 </ TRANSITION >
397 <TRANSITION from=" Executed " to=" Tested OK" for="[

global]\ VEC ProQ Users">
398 <REASONS >
399 <DEFAULTREASON value="ProQ review successful " />
400 </ REASONS >
401 </ TRANSITION >
402 <TRANSITION from=" Tested OK" to=" Completed ">
403 <REASONS >
404 <DEFAULTREASON value=" Completed and tested " />
405 <REASON value=" Deferred " />
406 <REASON value=" Obsolete " />
407 <REASON value="Cut" />
408 </ REASONS >
409 <FIELDS >
410 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
411 <SERVERDEFAULT from="clock" />
412 </ FIELD >
413 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
414 <COPY from=" currentuser " />
415 <VALIDUSER />
416 <REQUIRED />
417 </ FIELD >

Appendix A TFS Work Items XML 147

418 <FIELD refname =" Microsoft .VSTS. Common .
ActivatedBy ">

419 <READONLY />
420 </ FIELD >
421 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
422 <READONLY />
423 </ FIELD >
424 </ FIELDS >
425 <ACTIONS >
426 <ACTION value=" Microsoft .VSTS. Actions . Checkin " /

>
427 </ ACTIONS >
428 </ TRANSITION >
429 <TRANSITION from=" Tested Error" to=" Cancelled ">
430 <REASONS >
431 <DEFAULTREASON value=" Deferred " />
432 </ REASONS >
433 </ TRANSITION >
434 <TRANSITION from=" Tested OK" to=" Cancelled ">
435 <REASONS >
436 <DEFAULTREASON value=" Deferred " />
437 </ REASONS >
438 </ TRANSITION >
439 <TRANSITION from="Not Tested " to=" Cancelled ">
440 <REASONS >
441 <DEFAULTREASON value=" Deferred " />
442 </ REASONS >
443 </ TRANSITION >
444 <TRANSITION from="Open" to=" Cancelled ">
445 <REASONS >
446 <DEFAULTREASON value=" Deferred " />
447 </ REASONS >
448 </ TRANSITION >
449 <TRANSITION from="Not Tested " to=" Completed ">
450 <REASONS >
451 <DEFAULTREASON value=" Completed without testing "

/>
452 </ REASONS >
453 </ TRANSITION >
454 <TRANSITION from=" Cancelled " to="Open">
455 <REASONS >
456 <DEFAULTREASON value=" Opened up again" />

148 Appendix A TFS Work Items XML

457 </ REASONS >
458 </ TRANSITION >
459 <TRANSITION from="In Progress " to=" Executed ">
460 <REASONS >
461 <DEFAULTREASON value=" Deployment Performed " />
462 </ REASONS >
463 <FIELDS >
464 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
465 <COPY from=" currentuser " />
466 <VALIDUSER />
467 <REQUIRED />
468 </ FIELD >
469 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
470 <SERVERDEFAULT from="clock" />
471 </ FIELD >
472 <FIELD refname =" System . AssignedTo ">
473 <COPY from="field" field=" Microsoft .VSTS.

Common . ClosedBy " />
474 </ FIELD >
475 </ FIELDS >
476 </ TRANSITION >
477 <TRANSITION from="Open" to="In Progress ">
478 <REASONS >
479 <DEFAULTREASON value="Work started " />
480 </ REASONS >
481 </ TRANSITION >
482 <TRANSITION from="In Progress " to=" Cancelled ">
483 <REASONS >
484 <DEFAULTREASON value=" Deferred " />
485 </ REASONS >
486 </ TRANSITION >
487 <TRANSITION from="Open" to="On Hold">
488 <REASONS >
489 <DEFAULTREASON value="See History " />
490 </ REASONS >
491 </ TRANSITION >
492 <TRANSITION from="In Progress " to="On Hold">
493 <REASONS >
494 <DEFAULTREASON value="See History " />
495 </ REASONS >
496 </ TRANSITION >

Appendix A TFS Work Items XML 149

497 <TRANSITION from="On Hold" to="In Progress ">
498 <REASONS >
499 <DEFAULTREASON value=" Opened up again" />
500 </ REASONS >
501 </ TRANSITION >
502 <TRANSITION from="On Hold" to=" Cancelled ">
503 <REASONS >
504 <DEFAULTREASON value=" Deferred " />
505 </ REASONS >
506 </ TRANSITION >
507 </ TRANSITIONS >
508 </ WORKFLOW >
509 <FORM >
510 <Layout >
511 <Group >
512 <Column PercentWidth ="100">
513 <Control FieldName =" System .Title" Type="

FieldControl " Label=" Title: " LabelPosition ="
Left" />

514 </ Column >
515 </Group >
516 <Group Label=" General Information ">
517 <Column PercentWidth ="50">
518 <Control FieldName =" COMPANY . Deployment .

DeploymentType " Type=" FieldControl " Label="
Deployment Scope: " LabelPosition ="Left" />

519 <Control FieldName =" COMPANY . Deployment .
DeploymentData " Type=" FieldControl " Label="
Data Type:" LabelPosition ="Left" />

520 <Control FieldName =" Microsoft .VSTS. Scheduling .
StartDate " Type=" DateTimeControl " Label="
Start not before: " LabelPosition ="Left" />

521 <Control FieldName =" COMPANY .Task. StartConstraint
" Type=" FieldControl " Label="Start
Constraint: " LabelPosition ="Left" />

522 </ Column >
523 <Column PercentWidth ="50">
524 <Control FieldName =" COMPANY . Deployment .

RequestSource " Type=" FieldControl " Label="
External Reference: " LabelPosition ="Left" />

525 <Control FieldName =" COMPANY .Task. GlobalPriority "
Type=" FieldControl " Label=" Priority: "

LabelPosition ="Left" />

150 Appendix A TFS Work Items XML

526 <Control FieldName =" Microsoft .VSTS. Scheduling .
FinishDate " Type=" DateTimeControl " Label="
Timeline: " LabelPosition ="Left" />

527 <Control FieldName =" COMPANY .Task. LaunchRelevancy
" Type=" FieldControl " Label="Is Launch
relevant: " LabelPosition ="Left" />

528 </ Column >
529 </Group >
530 <Group Label=" Website ">
531 <Column PercentWidth ="90">
532 <Control FieldName =" COMPANY . Deployment . Website "

Type=" FieldControl " Label=" Website: "
LabelPosition ="Left" />

533 </ Column >
534 </Group >
535 <Group Label=" Project Information ">
536 <Column PercentWidth ="50">
537 <Control FieldName =" COMPANY .Task. ProjectCode "

Type=" FieldControl " Label=" Project Code:"
LabelPosition ="Left" />

538 </ Column >
539 <Column PercentWidth ="50">
540 <Control FieldName =" COMPANY .Task.Phase" Type="

FieldControl " Label=" Phase: " LabelPosition ="
Left" />

541 </ Column >
542 </Group >
543 <Group Label=" Persons & Status ">
544 <Column PercentWidth ="50">
545 <Control FieldName =" COMPANY .Task. RequestSource "

Type=" FieldControl " Label=" Requestor: "
LabelPosition ="Left" />

546 <Control FieldName =" COMPANY .Task.Owner" Type="
FieldControl " Label="Task Owner: "
LabelPosition ="Left" />

547 </ Column >
548 <Column PercentWidth ="50">
549 <Control FieldName =" COMPANY .Task.Group" Type="

FieldControl " Label=" Assigned Group: "
LabelPosition ="Left" />

550 <Control FieldName =" System . AssignedTo " Type="
FieldControl " Label=" Assigned To:"
LabelPosition ="Left" />

Appendix A TFS Work Items XML 151

551 <Control FieldName =" System .State" Type="
FieldControl " Label="& State: "
LabelPosition ="Left" />

552 </ Column >
553 </Group >
554 <Group Label=" Environment ">
555 <Column PercentWidth ="50">
556 <Control FieldName =" COMPANY . Deployment .

SourceEnvironment " Type=" FieldControl " Label=
" Source Environment: " LabelPosition ="Left" />

557 </ Column >
558 <Column PercentWidth ="50">
559 <Control FieldName =" COMPANY . Deployment .

DestinationEnvironment " Type=" FieldControl "
Label=" Destination Environment: "
LabelPosition ="Left" />

560 </ Column >
561 </Group >
562 <Group Label=" Description ">
563 <Column PercentWidth ="50">
564 <Control FieldName =" COMPANY .Task. DescriptionHtml

" Type=" HtmlFieldControl " Label="Des&
cription: " LabelPosition ="Top" Dock="Top" />

565 </ Column >
566 <Column PercentWidth ="50">
567 <Control FieldName =" System . History " Type="

WorkItemLogControl " Label="& Comment: "
LabelPosition ="Top" Dock="Top" />

568 </ Column >
569 </Group >
570 <TabGroup >
571 <Tab Label="File Attachments ">
572 <Control Type=" AttachmentsControl " LabelPosition

="Top" Dock="Fill" />
573 </Tab >
574 <Tab Label="Links">
575 <Control Type=" LinksControl " Label=""

LabelPosition ="Top" />
576 </Tab >
577 </ TabGroup >
578 </ Layout >
579 </FORM >
580 </ WORKITEMTYPE >

152 Appendix A TFS Work Items XML

581 </WITD >

Listing A.2: XML Structure - Work Item Type “Deployment Request”

1 <WITD application ="Work item type editor " version ="1.0"
xmlns:witd ="http: // schemas . microsoft .com/ VisualStudio
/2005/ workitemtracking / typedef ">

2 <WORKITEMTYPE name=" Personal Todo">
3 <DESCRIPTION >Work Item to manage your personal todo list

</ DESCRIPTION >
4 <FIELDS >
5 <FIELD name="Title" refname =" System .Title" type="

String " reportable =" dimension ">
6 <HELPTEXT >Short description of the task used to

differentiate it in a list or report </ HELPTEXT >
7 <REQUIRED />
8 </FIELD >
9 <FIELD name="State" refname =" System .State" type="

String " reportable =" dimension ">
10 <HELPTEXT >The workflow state of the task </ HELPTEXT >
11 </FIELD >
12 <FIELD name="Rev" refname =" System .Rev" type=" Integer "

reportable =" dimension " />
13 <FIELD name=" Changed By" refname =" System . ChangedBy "

type=" String " reportable =" dimension ">
14 <VALIDUSER />
15 </FIELD >
16 <FIELD name="Issue" refname =" Microsoft .VSTS. Common .

Issue" type=" String " reportable =" dimension ">
17 <HELPTEXT >Used to highlight a task , e.g., to mark it

as an issue </ HELPTEXT >
18 <REQUIRED />
19 <ALLOWEDVALUES expanditems ="true">
20 <LISTITEM value="Yes" />
21 <LISTITEM value="No" />
22 </ ALLOWEDVALUES >
23 <DEFAULT from="value" value="No" />
24 </FIELD >
25 <FIELD name="State Change Date" refname =" Microsoft .

VSTS. Common . StateChangeDate " type=" DateTime ">
26 <WHENCHANGED field=" System .State">
27 <SERVERDEFAULT from="clock" />
28 </ WHENCHANGED >
29 <WHENNOTCHANGED field=" System .State">

Appendix A TFS Work Items XML 153

30 <READONLY />
31 </ WHENNOTCHANGED >
32 </FIELD >
33 <FIELD name=" Activated Date" refname =" Microsoft .VSTS.

Common . ActivatedDate " type=" DateTime " reportable ="
dimension ">

34 <WHENNOTCHANGED field=" System .State">
35 <READONLY />
36 </ WHENNOTCHANGED >
37 </FIELD >
38 <FIELD name=" Activated By" refname =" Microsoft .VSTS.

Common . ActivatedBy " type=" String " reportable ="
dimension ">

39 <WHENNOTCHANGED field=" System .State">
40 <READONLY />
41 </ WHENNOTCHANGED >
42 </FIELD >
43 <FIELD name=" Reason " refname =" System . Reason " type="

String " reportable =" dimension ">
44 <HELPTEXT >The reason why the task is in the current

state </ HELPTEXT >
45 </FIELD >
46 <FIELD name=" Assigned To" refname =" System . AssignedTo "

type=" String " reportable =" dimension ">
47 <ALLOWEXISTINGVALUE />
48 <ALLOWEDVALUES expanditems ="true">
49 <LISTITEM value="[project]\ Contributors " />
50 </ ALLOWEDVALUES >
51 </FIELD >
52 <FIELD name="Work Item Type" refname =" System .

WorkItemType " type=" String " reportable =" dimension "
/>

53 <FIELD name=" Closed By" refname =" Microsoft .VSTS. Common
. ClosedBy " type=" String " reportable =" dimension ">

54 <WHENNOTCHANGED field=" System .State">
55 <READONLY />
56 </ WHENNOTCHANGED >
57 </FIELD >
58 <FIELD name=" Closed Date" refname =" Microsoft .VSTS.

Common . ClosedDate " type=" DateTime " reportable ="
dimension ">

59 <WHENNOTCHANGED field=" System .State">
60 <READONLY />

154 Appendix A TFS Work Items XML

61 </ WHENNOTCHANGED >
62 </FIELD >
63 <FIELD name="Rank" refname =" Microsoft .VSTS. Common .Rank

" type=" String " reportable =" dimension ">
64 <HELPTEXT >Stack rank to prioritize work </ HELPTEXT >
65 </FIELD >
66 <FIELD name=" Created Date" refname =" System . CreatedDate

" type=" DateTime " reportable =" dimension " />
67 <FIELD name=" Created By" refname =" System . CreatedBy "

type=" String " reportable =" dimension " />
68 <FIELD name="Exit Criteria " refname =" Microsoft .VSTS.

Common . ExitCriteria " type=" String " reportable ="
dimension ">

69 <HELPTEXT >Flag to determine if this scenario should
be tracked as an exit criteria for the iteration <
/ HELPTEXT >

70 <REQUIRED />
71 <ALLOWEDVALUES expanditems ="true">
72 <LISTITEM value="Yes" />
73 <LISTITEM value="No" />
74 </ ALLOWEDVALUES >
75 <DEFAULT from="value" value="No" />
76 </FIELD >
77 <FIELD name=" Integration Build" refname =" Microsoft .

VSTS.Build. IntegrationBuild " type=" String "
reportable =" dimension ">

78 <HELPTEXT >The build in which the task was completed <
/ HELPTEXT >

79 <SUGGESTEDVALUES expanditems ="true">
80 <LISTITEM value="<None>" />
81 </ SUGGESTEDVALUES >
82 <SUGGESTEDVALUES expanditems ="true" filteritems ="

excludegroups ">
83 <GLOBALLIST name=" Builds - DNN. Template .4.9.1 " />
84 </ SUGGESTEDVALUES >
85 </FIELD >
86 <FIELD name=" Remaining Work" refname =" Microsoft .VSTS.

Scheduling . RemainingWork " type=" Double " reportable =
" measure " formula ="sum">

87 <HELPTEXT >An estimate of the number of hours
remaining to complete the task </ HELPTEXT >

88 </FIELD >
89 <FIELD name=" Completed Work" refname =" Microsoft .VSTS.

Appendix A TFS Work Items XML 155

Scheduling . CompletedWork " type=" Double " reportable =
" measure " formula ="sum">

90 <HELPTEXT >The number of hours that have been
completed for this task </ HELPTEXT >

91 </FIELD >
92 <FIELD name="Start Date" refname =" Microsoft .VSTS.

Scheduling . StartDate " type=" DateTime " reportable ="
dimension ">

93 <HELPTEXT >The date to start the task </ HELPTEXT >
94 </FIELD >
95 <FIELD name=" Finish Date" refname =" Microsoft .VSTS.

Scheduling . FinishDate " type=" DateTime " reportable ="
dimension ">

96 <HELPTEXT >The date to finish the task </ HELPTEXT >
97 </FIELD >
98 <FIELD name="Task Hierarchy " refname =" Microsoft .VSTS.

Scheduling . TaskHierarchy " type=" String " reportable =
" dimension ">

99 <HELPTEXT >A string representing MS - Project context
for the given task </ HELPTEXT >

100 </FIELD >
101 <FIELD name=" Discipline " refname =" Microsoft .VSTS.

Common . Discipline " type=" String " reportable ="
dimension ">

102 <HELPTEXT >The discipline to which the task belongs </
HELPTEXT >

103 <ALLOWEDVALUES expanditems ="true">
104 <LISTITEM value=" Development " />
105 <LISTITEM value="Test" />
106 <LISTITEM value=" Deployment " />
107 <LISTITEM value=" Launch Management " />
108 </ ALLOWEDVALUES >
109 </FIELD >
110 <FIELD name=" Baseline Work" refname =" Microsoft .VSTS.

Scheduling . BaselineWork " type=" Double " reportable ="
measure " formula ="sum">

111 <HELPTEXT >The number of hours of work from the
baseline plan </ HELPTEXT >

112 </FIELD >
113 <FIELD name=" Description " refname =" System . Description "

type=" PlainText " />
114 <FIELD name=" Project " refname =" COMPANY . Project " type="

String " reportable =" dimension ">

156 Appendix A TFS Work Items XML

115 <HELPTEXT >Project </ HELPTEXT >
116 <ALLOWEDVALUES expanditems ="true">
117 <LISTITEM value="SMA" />
118 <LISTITEM value=" WeaningPlanner " />
119 <LISTITEM value=" GrowthChart " />
120 </ ALLOWEDVALUES >
121 </FIELD >
122 <FIELD name=" History " refname =" System . History " type="

History ">
123 <HELPTEXT >Discussion thread and other historical

information </ HELPTEXT >
124 </FIELD >
125 <FIELD name=" Module " refname =" COMPANY . Module " type="

String ">
126 <HELPTEXT >COMPANY . Module </ HELPTEXT >
127 </FIELD >
128 <FIELD name=" PlanningState " refname =" COMPANY .

PlanningState " type=" String ">
129 <HELPTEXT >PlanningState </ HELPTEXT >
130 <ALLOWEDVALUES expanditems ="true">
131 <LISTITEM value=" Unplanned " />
132 <LISTITEM value=" Planned " />
133 </ ALLOWEDVALUES >
134 </FIELD >
135 <FIELD name=" Website " refname =" COMPANY . Deployment .

Website " type=" String " reportable =" dimension ">
136 <HELPTEXT >The website concerned (including URLs ,

PortalID , ...) </ HELPTEXT >
137 <ALLOWEDVALUES expanditems ="true">
138 <GLOBALLIST name=" VEC_Websites_Instances " />
139 </ ALLOWEDVALUES >
140 </FIELD >
141 <FIELD name=" DevTimeline " refname =" COMPANY .Task.

DevTimeline " type=" DateTime ">
142 <HELPTEXT >Timeline set by executing person </ HELPTEXT

>
143 </FIELD >
144 <FIELD name=" Completion " refname =" COMPANY .Task.

Completion " type=" Integer ">
145 <HELPTEXT >Completion Percentage </ HELPTEXT >
146 </FIELD >
147 <FIELD name=" Requestor " refname =" COMPANY .Task.

Appendix A TFS Work Items XML 157

RequestSource " type=" String " reportable =" dimension "
>

148 <HELPTEXT >Who requested this task?</ HELPTEXT >
149 <ALLOWEXISTINGVALUE />
150 <ALLOWEDVALUES expanditems ="true">
151 <LISTITEM value="[project]\ Contributors " />
152 </ ALLOWEDVALUES >
153 <DEFAULT from=" currentuser " />
154 </FIELD >
155 <FIELD name="Prio" refname =" COMPANY .Task.

GlobalPriority " type=" String " reportable =" dimension
">

156 <HELPTEXT >Global Task Importance </ HELPTEXT >
157 <ALLOWEDVALUES expanditems ="true">
158 <LISTITEM value="1 Normal " />
159 <LISTITEM value="2 Important " />
160 <LISTITEM value="3 Emergency " />
161 <LISTITEM value="0 Low" />
162 </ ALLOWEDVALUES >
163 <DEFAULT from="value" value="1 Normal " />
164 </FIELD >
165 <FIELD name="Task Type" refname =" COMPANY .Task. TaskType

" type=" String " reportable =" dimension ">
166 <HELPTEXT >Defines the type (Bug , Feature Request

,...) of a task </ HELPTEXT >
167 <ALLOWEDVALUES expanditems ="true">
168 <LISTITEM value="Bug" />
169 <LISTITEM value="Test" />
170 <LISTITEM value=" Feature Request " />
171 </ ALLOWEDVALUES >
172 </FIELD >
173 <FIELD name=" RelatedLinkCount " refname =" System .

RelatedLinkCount " type=" Integer " />
174 <FIELD name="Bug Severity " refname =" COMPANY .Task.

Severity " type=" String " reportable =" dimension ">
175 <HELPTEXT >Severity of a bug </ HELPTEXT >
176 <SUGGESTEDVALUES expanditems ="true">
177 <LISTITEM value="1 - Cosmetic " />
178 <LISTITEM value="2 - Functionality affected " />
179 <LISTITEM value="3 - Showstopper " />
180 </ SUGGESTEDVALUES >
181 <WHENNOT field=" COMPANY .Task. TaskType " value="Bug">

158 Appendix A TFS Work Items XML

182 <READONLY for="[global]\ Team Foundation Valid
Users" />

183 </ WHENNOT >
184 <WHEN field=" COMPANY .Task. TaskType " value="Bug">
185 <REQUIRED for="[global]\ Team Foundation Valid

Users" />
186 </WHEN >
187 </FIELD >
188 <FIELD name=" Estimated Effort " refname =" COMPANY .Task.

EstimatedEffort " type=" Double " reportable ="
dimension ">

189 <HELPTEXT >The estimated effort in days </ HELPTEXT >
190 </FIELD >
191 <FIELD name="Phase" refname =" COMPANY .Task.Phase" type=

" String " reportable =" detail ">
192 <HELPTEXT >Phase in which the Task falls into (e.g.

Maintenance , Project)</ HELPTEXT >
193 <ALLOWEDVALUES expanditems ="true">
194 <LISTITEM value=" Project " />
195 <LISTITEM value=" Maintenance " />
196 </ ALLOWEDVALUES >
197 </FIELD >
198 <FIELD name=" StartConstraint " refname =" COMPANY .Task.

StartConstraint " type=" String " reportable =" detail ">
199 <HELPTEXT >Constraint for Start Date of a WorkItem </

HELPTEXT >
200 </FIELD >
201 <FIELD name=" Project Code" refname =" COMPANY .Task.

ProjectCode " type=" String " reportable =" dimension ">
202 <HELPTEXT >The VEC project code </ HELPTEXT >
203 </FIELD >
204 <FIELD name=" Context " refname =" COMPANY .Task. Context "

type=" String " reportable =" detail ">
205 <HELPTEXT >Context of the Work Item (People ,

Environment , ...) </ HELPTEXT >
206 </FIELD >
207 <FIELD name=" DescriptionHTML " refname =" COMPANY .Task.

DescriptionHtml " type="HTML" />
208 <FIELD name=" Iteration Path" refname =" System .

IterationPath " type=" TreePath " reportable ="
dimension ">

209 <HELPTEXT >The iteration of the product with which
this task is associated </ HELPTEXT >

Appendix A TFS Work Items XML 159

210 </FIELD >
211 <FIELD name=" IterationID " refname =" System . IterationId "

type=" Integer " />
212 <FIELD name=" ExternalLinkCount " refname =" System .

ExternalLinkCount " type=" Integer " />
213 <FIELD name="Team Project " refname =" System . TeamProject

" type=" String " reportable =" dimension " />
214 <FIELD name=" HyperLinkCount " refname =" System .

HyperLinkCount " type=" Integer " />
215 <FIELD name=" AttachedFileCount " refname =" System .

AttachedFileCount " type=" Integer " />
216 <FIELD name="Node Name" refname =" System . NodeName " type

=" String " />
217 <FIELD name="Area Path" refname =" System . AreaPath " type

=" TreePath " reportable =" dimension ">
218 <HELPTEXT >The area of the product with which this

task is associated </ HELPTEXT >
219 </FIELD >
220 <FIELD name=" Revised Date" refname =" System . RevisedDate

" type=" DateTime " />
221 <FIELD name=" Changed Date" refname =" System . ChangedDate

" type=" DateTime " reportable =" dimension " />
222 <FIELD name="ID" refname =" System .Id" type=" Integer "

reportable =" dimension " />
223 <FIELD name=" AreaID " refname =" System . AreaId " type="

Integer " />
224 <FIELD name=" Authorized As" refname =" System .

AuthorizedAs " type=" String " />
225 </ FIELDS >
226 <WORKFLOW >
227 <STATES >
228 <STATE value="Open">
229 <FIELDS >
230 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
231 <EMPTY />
232 </ FIELD >
233 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
234 <EMPTY />
235 </ FIELD >
236 </ FIELDS >
237 </STATE >
238 <STATE value=" Closed " />

160 Appendix A TFS Work Items XML

239 <STATE value="In Progress " />
240 </ STATES >
241 <TRANSITIONS >
242 <TRANSITION from="In Progress " to=" Closed ">
243 <REASONS >
244 <DEFAULTREASON value=" Completed " />
245 <REASON value=" Deferred " />
246 <REASON value=" Obsolete " />
247 <REASON value="Cut" />
248 </ REASONS >
249 <FIELDS >
250 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
251 <SERVERDEFAULT from="clock" />
252 </ FIELD >
253 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
254 <COPY from=" currentuser " />
255 <VALIDUSER />
256 <REQUIRED />
257 </ FIELD >
258 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
259 <READONLY />
260 </ FIELD >
261 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
262 <READONLY />
263 </ FIELD >
264 </ FIELDS >
265 <ACTIONS >
266 <ACTION value=" Microsoft .VSTS. Actions . Checkin " /

>
267 </ ACTIONS >
268 </ TRANSITION >
269 <TRANSITION from="" to="Open">
270 <REASONS >
271 <DEFAULTREASON value="New" />
272 </ REASONS >
273 <FIELDS >
274 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
275 <COPY from=" currentuser " />
276 <VALIDUSER />

Appendix A TFS Work Items XML 161

277 <REQUIRED />
278 </ FIELD >
279 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
280 <SERVERDEFAULT from="clock" />
281 </ FIELD >
282 <FIELD refname =" System . AssignedTo ">
283 <DEFAULT from=" currentuser " />
284 </ FIELD >
285 </ FIELDS >
286 </ TRANSITION >
287 <TRANSITION from=" Closed " to="Open">
288 <REASONS >
289 <DEFAULTREASON value=" Reactivated " />
290 </ REASONS >
291 <FIELDS >
292 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
293 <COPY from=" currentuser " />
294 <VALIDUSER />
295 <REQUIRED />
296 </ FIELD >
297 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
298 <SERVERDEFAULT from="clock" />
299 </ FIELD >
300 <FIELD refname =" System . AssignedTo ">
301 <COPY from="field" field=" Microsoft .VSTS.

Common . ClosedBy " />
302 </ FIELD >
303 </ FIELDS >
304 </ TRANSITION >
305 <TRANSITION from="Open" to="In Progress ">
306 <REASONS >
307 <DEFAULTREASON value="Work started " />
308 </ REASONS >
309 </ TRANSITION >
310 <TRANSITION from="In Progress " to="Open">
311 <REASONS >
312 <DEFAULTREASON value="Other Task Opened " />
313 </ REASONS >
314 </ TRANSITION >
315 <TRANSITION from="Open" to=" Closed ">

162 Appendix A TFS Work Items XML

316 <REASONS >
317 <DEFAULTREASON value=" Deferred " />
318 <REASON value=" Obsolete " />
319 </ REASONS >
320 <FIELDS >
321 <FIELD refname =" Microsoft .VSTS. Common . ClosedDate

">
322 <SERVERDEFAULT from="clock" />
323 </ FIELD >
324 <FIELD refname =" Microsoft .VSTS. Common . ClosedBy ">
325 <COPY from=" currentuser " />
326 <VALIDUSER />
327 <REQUIRED />
328 </ FIELD >
329 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedBy ">
330 <READONLY />
331 </ FIELD >
332 <FIELD refname =" Microsoft .VSTS. Common .

ActivatedDate ">
333 <READONLY />
334 </ FIELD >
335 </ FIELDS >
336 <ACTIONS >
337 <ACTION value=" Microsoft .VSTS. Actions . Checkin " /

>
338 </ ACTIONS >
339 </ TRANSITION >
340 </ TRANSITIONS >
341 </ WORKFLOW >
342 <FORM >
343 <Layout >
344 <Group Label=" ">
345 <Column PercentWidth ="100">
346 <Control FieldName =" System .Title" Type="

FieldControl " Label="& Title: "
LabelPosition ="Left" />

347 </ Column >
348 </Group >
349 <Group Label=" General Information ">
350 <Column PercentWidth ="50">
351 <Control FieldName =" Microsoft .VSTS. Scheduling .

Appendix A TFS Work Items XML 163

FinishDate " Type=" DateTimeControl " Label="
Timeline: " LabelPosition ="Left" />

352 <Control FieldName =" COMPANY .Task. GlobalPriority "
Type=" FieldControl " Label=" Priority: "

LabelPosition ="Left" />
353 </ Column >
354 <Column PercentWidth ="50">
355 <Control FieldName =" Microsoft .VSTS. Scheduling .

StartDate " Type=" DateTimeControl " Label="
Start not before: " LabelPosition ="Left" />

356 <Control FieldName =" COMPANY .Task. StartConstraint
" Type=" FieldControl " Label="Start
Constraint: " LabelPosition ="Left" />

357 </ Column >
358 </Group >
359 <Group Label=" Project Information ">
360 <Column PercentWidth ="50">
361 <Control FieldName =" COMPANY .Task. ProjectCode "

Type=" FieldControl " Label=" Project Code:"
LabelPosition ="Left" />

362 </ Column >
363 <Column PercentWidth ="50">
364 <Control FieldName =" COMPANY .Task.Phase" Type="

FieldControl " Label=" Phase: " LabelPosition ="
Left" />

365 </ Column >
366 </Group >
367 <Group Label="State Information ">
368 <Column PercentWidth ="50">
369 <Control FieldName =" COMPANY .Task. EstimatedEffort

" Type=" FieldControl " Label=" Estimated Effort
(days):" LabelPosition ="Left" />

370 <Control FieldName =" COMPANY .Task. DevTimeline "
Type=" DateTimeControl " Label=" Estimated
Timeline: " LabelPosition ="Left" />

371 <Control FieldName =" COMPANY .Task. Completion "
Type=" FieldControl " Label=" Percentage
complete: " LabelPosition ="Left" />

372 </ Column >
373 <Column PercentWidth ="50">
374 <Control FieldName =" System .State" Type="

FieldControl " Label="& State: "
LabelPosition ="Left" />

164 Appendix A TFS Work Items XML

375 <Control FieldName =" System . Reason " Type="
FieldControl " Label="& Reason: "
LabelPosition ="Left" />

376 <Control FieldName =" COMPANY .Task. Context " Type="
FieldControl " Label=" Context: " LabelPosition =
"Left" />

377 </ Column >
378 </Group >
379 <Group >
380 <Column PercentWidth ="100">
381 <Control FieldName =" COMPANY .Task. DescriptionHtml

" Type=" HtmlFieldControl " Label="Des&
cription: " LabelPosition ="Top" Dock="Fill" />

382 </ Column >
383 </Group >
384 <TabGroup >
385 <Tab Label=" History ">
386 <Control FieldName =" System . History " Type="

WorkItemLogControl " Label=" Comment: "
LabelPosition ="Top" Dock="Fill" />

387 </Tab >
388 <Tab Label="File Attachments ">
389 <Control Type=" AttachmentsControl " LabelPosition

="Top" />
390 </Tab >
391 <Tab Label="Links">
392 <Control Type=" LinksControl " LabelPosition ="Top"

/>
393 </Tab >
394 </ TabGroup >
395 </ Layout >
396 </FORM >
397 </ WORKITEMTYPE >
398 </WITD >

Listing A.3: XML Structure - Work Item Type “Personal Todo”

165

Appendix B

TFS Queries and Alerts

B.1 List of Queries

• Deployments - All - Completed

• Deployments - All - Executed

• Deployments - All - Open

• Deployments - All - Tested

• Deployments - Dev - Open

• Deployments - ProS - Open

• Deployments - SMA - Open

• My Personal Todos

• My Received WorkItems

• My Requests

• Tasks - Assigned

• Tasks - Closed

• Tasks - DEV - BIP

• Tasks - DEV - Overdue

• Tasks - DEV - Unassigned

• Tasks - Executed

• Tasks - In Progress

• Tasks - Media - Open

166 Appendix B TFS Queries and Alerts

• Tasks - Open

• Tasks - Ops - Closed

• Tasks - Ops - Open

• Tasks - ProQ - Open

• Tasks - ProQ- Overdue

• Tasks - ProS - Closed

• Tasks - ProS - Open

• Tasks - SMA - Media - Open

• Tasks - Unassigned

B.2 Code Examples

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <WorkItemQuery Version ="1">
3 <TeamFoundationServer >SERVERURL /</ TeamFoundationServer

>
4 <TeamProject >VECTasks </ TeamProject >
5 <Wiql >SELECT [COMPANY .Task. ProjectCode], [System .Title

], [COMPANY .Task. GlobalPriority], [System .
CreatedDate], [Microsoft .VSTS. Scheduling . FinishDate
], [COMPANY .Task. TaskType], [COMPANY .Task.
RequestSource], [System .State], [System .Id] FROM
WorkItems WHERE [System . TeamProject] = ’VECTasks ’
AND [System . WorkItemType] = ’Task ’ AND [System .
State] <> ’Closed ’ AND [System .State] <>
; ’On Hold ’ AND [System .State] <> ’Cancelled ’

AND ([System . AssignedTo] = ’VEC Development Users
’ OR [System . AssignedTo] = ’FIRSTNAME LASTNAME ’ OR
[System . AssignedTo] = ’FIRSTNAME2 LASTNAME2 ’) AND
[System .State] <> ’Completed ’ ORDER BY [
System . CreatedDate] desc , [Microsoft .VSTS.
Scheduling . FinishDate] desc , [COMPANY .Task.
GlobalPriority] desc

6 </Wiql >
7 </ WorkItemQuery >

Listing B.1: XPath - Query for unassigned Tasks

Appendix B TFS Queries and Alerts 167

1 " CoreFields / StringFields /Field[ReferenceName =’ System .
AssignedTo ’]/ NewValue " = ’FIRSTNAME LASTNAME ’ AND

2 " PortfolioProject " = ’VECTasks ’ AND
3 " CoreFields / StringFields /Field[ReferenceName =’ System .

CreatedBy ’]/ NewValue " <> ’FIRSTNAME LASTNAME ’ AND "
CoreFields / StringFields /Field[ReferenceName =’ System .
ChangedBy ’]/ NewValue " <> ’FIRSTNAME LASTNAME ’

Listing B.2: XPath Alert-Query for assigned Work Items Request”

1 (" CoreFields / StringFields /Field[ReferenceName =’ System .
CreatedBy ’]/ NewValue " = ’FIRSTNAME LASTNAME ’ OR ("
ChangedFields / StringFields /Field[ReferenceName =’ COMPANY .
Task.Owner ’]/ OldValue " <> ’FIRSTNAME LASTNAME ’ AND "
ChangedFields / StringFields /Field[ReferenceName =’ COMPANY .
Task.Owner ’]/ NewValue " = ’FIRSTNAME LASTNAME ’) OR ("
ChangedFields / StringFields /Field[ReferenceName =’ COMPANY .
Task. RequestSource ’]/ OldValue " <> ’FIRSTNAME LASTNAME ’
AND " ChangedFields / StringFields /Field[ReferenceName =’
COMPANY .Task. RequestSource ’]/ NewValue " = ’FIRSTNAME
LASTNAME ’)) AND

2 " PortfolioProject " = ’VECTasks ’ AND
3 " CoreFields / StringFields /Field[ReferenceName =’ System .

WorkItemType ’]/ NewValue " <> ’Personal Todo ’ AND "
CoreFields / StringFields /Field[ReferenceName =’ System .
ChangedBy ’]/ NewValue " <> ’FIRSTNAME LASTNAME ’

Listing B.3: XPath - Alert-Query for created Work Items

B.3 Deadline Reminder

1 using System ;
2 using System . Collections . Generic ;
3 using System .Text;
4 using Microsoft . TeamFoundation . Client ;
5 using Microsoft . TeamFoundation . WorkItemTracking . Client ;
6 using log4net ;
7

8 namespace WorkItemReminder
9 {

10 internal class WorkItemReminder
11 {
12

13 private static log4net .ILog log;

168 Appendix B TFS Queries and Alerts

14

15 public WorkItemReminder ()
16 {
17 try
18 {
19 log.Info("Start");
20 WorkItemStore service =

TeamFoundationServerFactory . GetServer (
Settings . Default . ServerUrl). GetService (
typeof (WorkItemStore)) as WorkItemStore ;

21 foreach (WorkItem item in service .Query(
Settings . Default .Query))

22 {
23 log. InfoFormat ("Found work item # {0}",

item.Id);
24 item.Open ();
25 item. History = item. History + string .

Format (Settings . Default . ResponseText ,
item[" Finish Date"]. ToString ());

26 item.Save ();
27 }
28 log.Info("End");
29 }
30 catch (Exception exception)
31 {
32 log.Error(exception .Message , exception);
33 System . Console . WriteLine (exception . Message);
34 }
35 }
36

37 static WorkItemReminder ()
38 {
39 log = log4net . LogManager . GetLogger (typeof (

WorkItemReminder));
40 }
41

42 public static void Main(string [] args)
43 {
44 new WorkItemReminder ();
45 }
46 }
47 }

Listing B.4: Alert Reminder - Class WorkItemReminder

Appendix B TFS Queries and Alerts 169

1 using System ;
2 using System . Collections . Generic ;
3 using System .Text;
4 using System . Configuration ;
5 using System . Diagnostics ;
6

7 namespace WorkItemReminder
8 {
9 internal sealed class Settings : ApplicationSettingsBase

10 {
11 // Fields
12 private static Settings defaultInstance = ((Settings

) SettingsBase . Synchronized (new Settings ()));
13

14 // Properties
15 public static Settings Default
16 {
17 get
18 {
19 return defaultInstance ;
20 }
21 }
22

23 [ApplicationScopedSetting , DebuggerNonUserCode ,
DefaultSettingValue (" select id from WorkItems
where [System . TeamProject] = ’VECTasks ’ and [
System . WorkItemType] = ’Task ’ and [Finish Date] =

@today and State <> ’Closed ’ and State <> ’
Executed ’")]

24 public string Query
25 {
26 get
27 {
28 return (string)this["Query"];
29 }
30 }
31

32 [ApplicationScopedSetting , DebuggerNonUserCode ,
DefaultSettingValue ("The work item finish date
expires at {0}")]

33 public string ResponseText
34 {
35 get

170 Appendix B TFS Queries and Alerts

36 {
37 return (string)this[" ResponseText "];
38 }
39 }
40

41 [DebuggerNonUserCode , ApplicationScopedSetting ,
DefaultSettingValue (" SERVERURL ")]

42 public string ServerUrl
43 {
44 get
45 {
46 return (string)this[" ServerUrl "];
47 }
48 }
49 }
50

51 }

Listing B.5: Alert Reminder - Class Settings

1 <?xml version ="1.0"?>
2 <configuration >
3 <configSections >
4 <sectionGroup name=" applicationSettings " type=" System .

Configuration . ApplicationSettingsGroup , System ,
Version =2.0.0.0 , Culture =neutral , PublicKeyToken =
b77a5c561934e089 ">

5 <section name=" WorkItemReminder . Settings " type=" System
. Configuration . ClientSettingsSection , System ,
Version =2.0.0.0 , Culture =neutral , PublicKeyToken =
b77a5c561934e089 " requirePermission ="false"/>

6 </ sectionGroup >
7 </ configSections >
8 <applicationSettings >
9 <WorkItemReminder . Settings >

10 <setting name=" ServerUrl " serializeAs =" String ">
11 <value >SERVERURL </value >
12 </ setting >
13 <setting name="Query" serializeAs =" String ">
14 <value >select id from WorkItems where [System .

TeamProject] = ’VECTasks ’ and [System .
WorkItemType] = ’Task ’ and [Finish Date] = @today

and State <> ’Closed ’ and State <> ’
Executed ’</value >

Appendix B TFS Queries and Alerts 171

15 </ setting >
16 <setting name=" ResponseText " serializeAs =" String ">
17 <value >ATTENTION: The work item finish date expires

at {0} </value >
18 </ setting >
19 </ WorkItemReminder . Settings >
20 </ applicationSettings >
21 <startup >
22 <supportedRuntime version ="v2 .0.50727 "/>
23 </ startup >
24 </ configuration >

Listing B.6: Alert Reminder - app.config

1 <log4net debug="false">
2 <appender name=" FileAppender " type=" log4net . Appender .

FileAppender ">
3 <param name="File" value=" log4net .txt" />
4 <param name=" AppendToFile " value="true" />
5 <layout type=" log4net . Layout . PatternLayout ">
6 <param name=" ConversionPattern " value="%d [%t] %-5p %c

- %m%n" />
7 </ layout >
8 </ appender >
9 <root >

10 <appender -ref ref=" FileAppender "/>
11 <level value="ALL"/>"
12 </root >
13 </log4net >

Listing B.7: Alert Reminder - log4net.config

	Introduction
	Problem Description
	Expected Result
	Methodical Approach

	Web Engineering
	The World Wide Web
	Basics
	Protocols
	Document Representation

	Categorization
	Characteristics
	Involved Disciplines

	User Perspective
	Usability and Accessibility
	Design
	Content
	Non-linear Navigation
	Persistence

	Developer Perspective
	Hypertext and Hypermedia
	Increasing Complexity
	Device Heterogeneity
	Concurrency
	Unpredictable Load

	Management Perspective
	Estimation Complexity
	Team Complexity
	Heterogenous User Base
	Frequency of Updates and Rapid Deployment

	Software Engineering Paradigms
	The History of Software Engineering
	1956, 1961: The Beginnings
	1970: The Waterfall Model
	1988: The Spiral Model
	Today: Agile Paradigms

	Rational Unified Process - RUP
	Underlying Principles
	Process Structure - The Structural Dimension
	Process Disciplines
	Process Phases — The Time Dimension

	Extreme Programming - XP
	Values & Principles
	Mandatory Practices
	Corollary Practices

	Scrum
	Project Prerequisites
	The Sprint
	Roles
	Artifacts

	Classification and Applicability
	Classifying Software Engineering Processes
	Describing the Characteristics
	Describing the Lifecycle

	Classifying Methodologies
	Characteristics
	Lifecycle Coverage

	Applicability for Web Engineering
	Domain Factors
	Organization Factors
	Project Factors
	People Factors

	Critical Remarks on Applicability
	Deciding in Uncertainty — a Risk based Approach
	Assessment

	Combining Methodologies

	Supporting the Web engineering Process
	Work Environment
	Process Evaluation
	Risk
	Application Categorization
	Environment Factors

	Resulting Processes & Activities
	Project Process
	Development Process
	Comparing Practice and Theory

	Implementation
	Problem Description
	Problem Solution
	Adaptations
	Work Item Type Task
	Work Item Type Deployment Request
	Work Item Type Personal Todo
	TFS Queries
	User Alerts
	Deadline Reminder

	Critical Discussion
	Strengths of the Solution
	Weaknesses of the Solution
	Result

	Conclusion
	TFS Work Items XML
	TFS Queries and Alerts
	List of Queries
	Code Examples
	Deadline Reminder

