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EINLEITUNG 

 

Die Bedeutung von Mikroorganismen und Viren in den Meeren 

 

Bereits in der zweiten Hälfte des 20. Jahrhunderts wusste man, dass relativ hohe Zahlen von 

Prokaryoten in den Weltmeeren vorkommen (Waksman und Renn, 1934; ZoBell, 1946), jedoch 

wurden diese Zahlen um ca. 3 Größenordnungen unterschätzt. Die Abweichungen der Zählungen 

entstanden aufgrund der Tatsache, dass diese nur kultivierbare Mikroorganismen berücksichtigten, 

die meisten Prokaryoten sind jedoch nicht kultivierbar (Hugenholtz, 2002). Man spricht in diesem 

Zusammenhang auch von der ―Great plate count anomaly‖ (Staley und Konopka, 1985). Bis in die 

1970er Jahre nahm man an, dass Prokaryoten lediglich Verwerter organischen Materials sind und 

nicht nennenswert zu biogeochemischen Kreisläufen beitragen. Diese Ansicht änderte sich in den 

1980er Jahren, als Azam et al. (1983) den Begriff des „microbial loop― prägten. Damit ist gemeint, 

dass Prokaryoten gelöstes, organisches Material (engl. dissolved organic carbon = DOC) aufnehmen 

und damit die Basis der Nahrungskette schaffen. Ciliaten und Flagellaten fressen wiederum die 

Prokaryoten und machen das organische Material für höhere trophische Ebenen verfügbar (Figure 1). 

Da das DOC zum größten Teil von Organismen, die selbst Teil dieser Nahrungskette sind, stammt, 

beschreibt der Begriff „microbial loop― treffend den Kreislauf des DOC innerhalb dieser 

Nahrungskette bzw. Nahrungsnetzes (Figure 1). DOC kann von unterschiedlichen Quellen stammen, 

z. B. Ausscheidungen von Phytoplankton, sinkendes, zerfallendes Plankton, Exkretionsprodukte, 

„sloppy feeding― von Zooplankton, und – wichtig für diese Diplomarbeit – lysis durch Viren (Dafner 

und Wangersky, 2002). 

Die ersten Erkenntnisse, dass Prokaryoten in hohem Maße von Viren infiziert sein und damit 

eine wichtige Rolle in aquatischen Systemen spielen können, wurden in den späten 1980er Jahren 

gemacht (Sieburth et al., 1988; Bergh et al., 1989; Proctor und Fuhrman, 1990). Als entdeckt wurde, 

dass durch Viren eine ähnlich hohe Mortalität wie durch Protisten verursacht wird (Fuhrman und 

Noble, 1995), war der Einfluss von Viren auf Prokaryoten bestätigt. Heute weiß man, dass das 

Sterben von Prokaryoten aufgrund viraler Infektion eine große Bedeutung für den 

Kohlenstoffkreislauf in aquatischen Systemen hat (Wommack und Colwell, 2000; Suttle, 2005 und 

2007). Ein wichtiger Punkt ist, dass Viren Prokaryoten „lysieren―, d.  h. zerstören, aber nicht essen 

(trotz ihres Namens „Bakteriophagen―). Durch diese Lysis werden Prokaryoten in organisches 

Material konvertiert, welches wiederum verfügbar für andere Prokaryoten ist. Dieser „Kurzschluss― 

innerhalb des microbial loop wird „viral shunt― genannt (Figure 2) (Wilhelm und Suttle, 1999; 

Suttle, 2005). Geschätzte 20 % der Prokaryoten tragen daher statistisch gesehen niemals zum 
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Kohlenstofffluss innerhalb der Nahrungskette bei, da sie von Viren lysiert werden, bevor sie von 

Protisten gefressen werden können (Wommack und Colwell, 2000). 

 

 

Eigenschaften von Viren 

 

Viren sind mit einer Anzahl von 1029 (Suttle, 2007) die zahlreichsten biologischen Einheiten in den 

Weltmeeren. Obwohl sie winzig sind (ca. 20–400 nm, La Scola et al., 2003) würden alle in den 

Meeren vorkommende Viren aneinandergereiht ein Band mit einer Länge von 10 Millionen 

Lichtjahren ergeben (Suttle, 2005 und 2007). Viren verfügen über unterschiedliche „Überlebens―-

strategien, die bekanntesten sind der lytische und der lysogene Zyklus (Weinbauer, 2004; Suttle, 

2007). Der lytische Zyklus führt zur Lysis der Wirtszelle, welche in ihr produzierte Viren freisetzt. 

Im Gegensatz dazu wird beim lysogenen Zyklus die virale Erbsubstanz in das Genom der Wirtszelle 

integriert, der Virus kann dann als so genannter Prophage in der Wirtszelle weiter existieren. Durch 

Zellteilung der Prokaryoten wird auch der Virus an die Tochterzellen weitergegeben. Durch 

Änderung äußerer Einflüsse kann auch der lytische Zyklus wieder aktiviert werden, was zur 

Produktion von Viren und deren Freisetzung führt. Ein wichtiger Parameter des lytischen Zyklus ist 

die „burst size― (BS), d. h. die Anzahl an Viren, die während der Lysis von einer infizierten Zelle 

freigesetzt wird. Bei gemischten, mikrobiellen Gemeinschaften, wie sie in situ vorkommen, wird die 

BS durch Elektronenmikroskopie ermittelt (Weinbauer, 2004). Ein höherer Anteil an Prophagen 

(Prozentsatz an Prokaryoten, die ein induzierbares, virales Genom enthalten) wird mit niedriger 

Wirtsabundanz- und aktivität in Verbindung gebracht (Weinbauer et al., 2003; Paul, 2008). Viren 

können auch genetisches Material zwischen Prokaryoten transferieren, wodurch kurzfristige 

Anpassungen an wechselnde Umgebungsbedingungen ermöglicht werden könnten (Fuhrman, 1999).  

Viren können sich nicht bewegen, daher ist virale Infektion ein stochastischer Prozess (Wommack 

und Colwell, 2000; Weinbauer, 2004), welcher von zahlreichen Faktoren abhängt, wie z. B. 

Abundanz und Größe der Wirtszellen (Murray und Jackson, 1992). Darüber hinaus sind die meisten 

Viren wahrscheinlich wirtsspezifisch (Ackermann und DuBow, 1987), nur ein geringer Teil infiziert 

ein breites Spektrum an Wirten (Riemann und Middelboe, 2002; Weinbauer, 2004). Da statistisch 

gesehen ein guter Teil aller Prokaryoten permanent infiziert ist, ist es keine Überraschung, dass 

spezifische Viren-Wirtssysteme eng gekoppelt sind und oftmals Räuber-Beute-Beziehungen zeigen 

(Gavin et al., 2006; Winter et al., 2010). 
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Diversität von Viren und Prokaryoten 

 

Viren sind genetisch gesehen die vielfältigste biologische Einheit unseres Planeten, es gibt kein 

einziges Gen, dass alle bekannten Viren aufweisen (Suttle, 2005). Dieses Fehlen von gemeinsamen 

Genen in Proben von gemischten Gemeinschaften macht es unmöglich, phylogenetische 

Beziehungen basierend auf genetischen Daten zu rekonstruieren. Die moderne Systematik von Viren 

basiert auf der Art von Nukleinsäure (ein- oder doppelsträngige DNA bzw. RNA) und 

morphologischen Merkmalen wie z. B. filamentöse Form, polyhedrale Form, An- bzw. Abwesenheit 

eines Schaftes etc. (Ackermann, 2003). 

Zahlreiche Experimente zeigten, dass Viren die Gemeinschaften von Prokaryoten 

beeinflussen (Hewson et al., 2003; Schwalbach et al., 2004; Winter et al., 2004b). Generell wird 

virale Infektion als top-down Kontrolle prokaryotischer Diversität angesehen im Gegensatz zu einer 

bottom-up Kontrolle durch anorganische Nährstoffe (z. B. Nitrat, Phosphat) und DOC. Man nimmt 

an, dass Viren einen hohen Grad an Diversität von Prokaryoten aufrechterhalten, indem sie die 

häufigsten Typen innerhalb eines bestimmten Zeitintervalls infizieren und damit Prokaryoten mit 

geringerer Abundanz erlauben wettbewerbsfähig zu bleiben. Obwohl diese so genannte ―Killing the 

winner‖-Hypothese (Thingstad und Lignell, 1997; Thingstad, 2000; Winter et al., 2010) auf 

gleichbleibenden Bedingungen basiert sowie auf der Annahme beruht, dass Viren strikt 

wirtsspezifisch sind, bietet sie ein leicht verständliches Modell, welches von zahlreichen Arbeiten 

unterstützt wird (Winter et al., 2010).  

Ein großer Beitrag zum gegenwärtigen Wissen über die Ökologie mariner Viren stammt von 

Inkubationsexperimenten sowie von Untersuchungen kultivierbarer Viren/Wirtssysteme (Wommack 

und Colwell, 2000; Weinbauer, 2004). Die rasante Entwicklung kulturunabhängiger Methoden in 

den letzten Jahrzehnten bietet detailliertere Einsicht in die eigentlichen in situ-Prozesse. Da der 

Aufwand, Viren aufgrund ihrer Größe zu untersuchen sowie Proben aus der Tiefsee zu nehmen, sehr 

hoch ist, gibt es noch viele unbeantwortete Fragen bezüglich der in situ-Verhältnisse in der Tiefsee. 

 

 

Tiefenstufen im subtropischen Atlantik 

 

Das Epipelagial ist die oberste Wasserschicht, sie reicht von der Oberfläche bis zu 200 m Tiefe. 

Besonders in den oberen 100 m, der euphotischen Zone, gibt es reichlich Sonnenlicht. Vor allem dort 

findet man das Phytoplankton, photosynthetisch aktive Organismen, die das Sonnenlicht nutzen, um 

Biomasse aufzubauen. Das Phytoplankton stirbt schließlich ab und sinkt in tiefere Wasserschichten. 
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Im Mesopelagial, welches von 200 m bis 1000 m Tiefe reicht, ist immer noch schwaches 

Sonnenlicht vorhanden, man nennt es daher auch „Dimlight zone―. Bei einer Tiefe von 500–700 m 

misst man im Allgemeinen die niedrigsten Sauerstoff-Konzentrationen eines vertikalen Profils 

aufgrund von heterotrophen Mikroorganismen, welche die sinkenden Überreste des Phytoplankton 

remineralisieren. Diese Zone wird daher oxygen minimum zone (OMZ) genannt. Das Bathypelagial 

ist ein umfangreicher Wasserkörper, es reicht von 1000 m bis 4000 m Tiefe. Da hier kein Licht mehr 

vorkommt, kann keine Photosynthese mehr stattfinden. Im Bathypelagial vorkommende 

Mikroorganismen konsumieren absinkendes, organisches Material. Das Abyssopelagial (4000 m 

Tiefe bis zum Meeresgrund) ist die tiefste in dieser Arbeit behandelte Wassermasse. Der 

Wasserdruck ist hoch und die Temperaturen sind niedrig, was für die dort lebenden Organismen 

konstante Bedingungen bedeutet. 

 

 

Charakteristika und Wassermassen des östlichen, subtropischen Atlantik 

 

Der östliche, subtropische Atlantik hat einen relativ hohen Sauerstoff- und Salzgehalt verglichen mit 

anderen Meeren (Tomczak und Godfrey, 2001). Teilweise handelt es sich um eine oligotrophe 

Umgebung, da die Corioliskraft riesige Wirbel (engl. „gyres―) in Form isolierter Wassermassen 

bildet, was wiederum zu wenig Eintrag von Nährstoffen führt (Ott, 1988). Die Probestationen 2–4 

sind näher an der Küste (Figure 3; „onshore―), die restlichen (Stationen 5–8) sind „offshore― und 

liegen innerhalb des subtropischen Gyre-Systems. Die verschiedenen Wassermassen des Atlantik 

können aufgrund von Salinität, Temperatur und Sauerstoffgehalt unterschieden werden. Im 

nördlichen Atlantik wird das sauerstoffreiche North Atlantic Deep Water (NADW) gebildet, welches 

sich südwärts entlang des amerikanischen Kontinents bewegt (Tomczak und Godfrey, 2001). Das 

Antarctic Bottom Water (AABW), das fast den ganzen Grund des Atlantik bedeckt, ist 

charakterisiert durch niedrige Temperaturen und Salinität sowie durch hohe Silikat- und 

Nährstoffkonzentrationen (Demidov et al., 2007). 

Die Vema Fracture Zone (VFZ) ist ein Riss im Mittelatlantischen Rücken auf einer Tiefe von 

5000 m bei Position 11 ° Nord, und 45 bis 40 ° West (Demidov et al., 2007) (Figure 3). Aufgrund 

dieses 8–20 km breiten Risses ist die Längsachse des Mittelatlantischen Rücken um ca. 300 km 

versetzt, wodurch der Austausch von Wassermassen zwischen westlichem und östlichem 

atlantischen Becken ermöglicht wird. Der untere Teil des NADW sowie das kalte und schwere 

AABW (Table 2) werden durch die VFZ mit Geschwindigkeiten von bis zu 30 cm s-1 in das östliche 

Becken des Atlantik bewegt (Demidov et al., 2007). Man nimmt an, dass dieser Fluss an 
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Wassermassen von West nach Ost mikrobielle sowie virale Gemeinschaften im nordöstlichen, 

subtropischen Atlantik durch veränderte Nährstoff- und Sauerstoffbedingungen beeinflussen. 

Um herauszufinden, ob virale und prokaryotische Gemeinschaften durch den 

Wassermassenaustausch beeinflusst werden, wurden im Rahmen der MOCA-Cruise im October 

2010 Proben aus bis zu 5200 m Tiefe genommen und wichtige Parameter der vorkommenden 

Prokaryoten und Viren charakterisiert. Im Zuge dieser Diplomarbeit wurden Proben von den ersten 

7 Stationen der MOCA-Cruise (Stationen 2–8, Table 1, Figure 3) mit Flow Cytometry und 

molekularbiologischen Methoden analysiert. 

 

 

Virenverdünnungsmethode 

 

Bei der Virenverdünnungsmethode werden Prokaryoten mit filtriertem Probenwasser verdünnt und 

dadurch bei geringerer Dichte inkubiert als bei in situ-Verhältnissen (Wilhelm, 2002). Viren, die von 

bereits infizierten Prokaryoten produziert und freigesetzt werden, können demnach kaum weitere 

Prokaryoten infizieren, da die Begegnungsrate stark reduziert ist. Aus diesem Grund beruht die 

gemessene virale Abundanz (Figure 5) auf Viren, die bereits zu Beginn der Inkubation Prokaryoten 

infiziert hatten und durch deren Lysis freigesetzt wurden. Basierend auf der gemessenen Abundanz 

in 4 Stunden-Abständen (Figure 5) kann der Prozentsatz an infizierten Prokaryoten (frequency of 

infected cells = FIC) sowie die im Durchschnitt durch Lysis freigesetzten Viren pro ml pro Stunde 

(lytic viral production = VP) berechnet werden. 

Mitomycin C ist eine Substanz, die Lysis bei infizierten Prokaryoten bewirkt (Jiang und Paul, 

1996), d. h., Prophagen im Wirtsgenom wechseln vom lysogenen in den lytischen Zyklus und 

werden dadurch freigesetzt. Dadurch tragen diese Viren zur gemessenen viralen Abundanz bei. Da 

das Experiment mit 2 verschiedenen Treatments durchgeführt wurde (mit und ohne Mitomycin C, 

beides in Duplikaten) kann man den Prozentsatz an lysogenen Viren (frequency of lysogenized 

cells = FLC) berechnen. Die FLC ist der Unterschied zwischen den Prozent infizierter Prokaryoten im 

Treatment mit Mitomycin C (enthält nach Induktion sowohl lysogene als auch lytische Viren) und 

der FIC berechnet aus dem Treatment ohne Mitomycin C (enthält nur lytische Viren). 
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Zusammensetzung prokaryotischer und viraler Gemeinschaften 

 

Um DNA-fingerprints von Archaea und Bacteria der verschiedenen Wassermassen zu erhalten, 

wurde terminal restriction fragment length polymorphism (T-RFLP) (Liu et al., 1997; Moeseneder et 

al., 1999) durchgeführt (Figure 6). Bei dieser Methode werden Unterschiede in den Längen von 

16S rRNA PCR-Fragmenten von Archaea und Bacteria, die mit einem Restriktionsenzym 

geschnitten wurden, verglichen. Unterschiede in den Längen reflektieren phylogenetische 

Unterschiede, ausgedrückt in apparent richness (AR), der Anzahl verschiedener Taxa sowie An- 

bzw. Abwesenheit der jeweiligen Gruppen in den samples. 

Randomly amplified polymorphic DNA-PCR (RAPD-PCR) (Williams et al., 1990; Franklin 

et al., 1999; Winget und Wommack, 2008) mit 2 unterschiedlichen Oligomer-Primern wurde 

durchgeführt, um die Viren in den Proben miteinander zu vergleichen. Wie bereits weiter oben 

erwähnt, sind Viren genetisch gesehen sehr divers. Um das Problem zu umgehen, dass keine 

gemeinsamen Nukleinsäure-Sequenzen aller Viren existieren und es damit keine allgemeinen Primer 

wie bei der Amplifizierung von 16S rRNA-Genen gibt, werden bei RAPD-PCR kurze Primer 

verwendet. Dies führt bei der PCR zu unterschiedlich großen DNA-Fragmenten unabhängig von der 

exakten Sequenz (Figure 8a). 
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INTRODUCTION 

 

The role of microorganisms and viruses in the Oceans 

 

The occurrence of relatively high numbers of prokaryotes in the oceans was already known in the 

first half of the 20th century (Waksman and Renn, 1934; ZoBell, 1946), even though those numbers 

were underestimated by ca. 3 orders of magnitude since those counts relied on cultivation of the 

microbes. This deviation of counts from the actual abundance results from the fact, that most 

prokaryotes are uncultivable (Hugenholtz, 2002) and is therefore called ―Great plate count anomaly‖ 

(Staley and Konopka, 1985). Until the 1970s, prokaryotes were viewed as terminal decomposers of 

the food chain with no major contribution to biogeochemical cycling. This view changed in the 

1980s. The term ―microbial loop‖ was coined by Azam et al. (1983) and refers to the ability of 

prokaryotes to take up dissolved organic carbon (DOC) and therefore to form the basis of the food 

chain, being grazed upon by ciliates and flagellates (Figure 1). Since this DOC derives largely from 

organisms being part of this food chain, the term ―loop‖ describes the cycling of DOC within this 

chain (Figure 1). There are several sources of DOC in the oceans such as exudates of phytoplankton, 

sinking and degraded/degrading planktonic organisms, excretion, sloppy feeding of zooplankton 

and – important for this thesis – viral lysis (Dafner and Wangersky, 2002). 

The earliest findings, that viral infection can be high in prokaryotes and therefore plays an 

important role in aquatic systems, were made in the late 1980s (Sieburth et al., 1988; Bergh et al., 

1989; Proctor and Fuhrman, 1990). The influence of viruses on the mortality of prokaryotes was 

confirmed, when a similar prokaryotic mortality caused by viruses and protists was discovered 

(Fuhrman and Noble, 1995). Today it is clear, that mortality of prokaryotes caused by viruses has a 

great impact on the cycling of organic carbon in aquatic systems (Wommack and Colwell, 2000; 

Suttle, 2005 and 2007). One difference, however is, that viruses lyse, but do not eat the prokaryotes 

(despite their name ―bacteriophages‖), leading to conversion of prokaryotes into non-living DOC 

available again for other prokaryotes, a circle known as ―viral shunt‖ (Figure 2) (Wilhelm and Suttle, 

1999; Suttle, 2005). For that reason, an estimated 20 % of the prokaryotes statistically never 

contribute to higher trophic levels since they are lysed by viruses before they can be grazed by 

protists (Wommack and Colwell, 2000). 
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Some characteristics of viruses 

 

Viruses are the most abundant biological entities in the ocean with an estimated total number of 1029 

(Suttle, 2007). Despite their small size (size range: 20–400 nm, La Scola et al., 2003), if stringed one  

after each other, the viruses in the oceans of the world would reach a length of 10 million light years 

(Suttle, 2005; Suttle, 2007). Viruses are capable of several different ―survival‖ strategies, the most 

common of which are the lytic and the lysogenic cycle (Weinbauer, 2004; Suttle, 2007). The lytic 

cycle leads to lysis of the host cell and the viral progeny are subsequently released. In contrast, 

during the lysogenic cycle, the viral nucleic acid is integrated into the host genome, leading to a 

―prophage‖. The virus can remain in the prophage state, leading to the transmission of the viral 

genome to the host daughter cells, or the lytic cycle can be induced again leading to the production 

and eventually the release of viruses. In the lytic cycle, the burst size (BS) is an important parameter. 

The BS is the number of viruses released per infected prokaryotic cell during lysis and, for mixed 

prokaryotic communities, is usually determined by electron microscopy (Weinbauer, 2004). A higher 

occurrence of prophages (percentage of prokaryotic cells containing an inducible viral genome; 

Weinbauer, 2004) is considered to be based on bad environmental conditions in terms of low host 

abundance and activity (Weinbauer et al., 2003; Paul, 2008). Viruses can also transfer genetic 

material between prokaryotes, which could influence short term adaptation of prokaryotes to 

changing environmental conditions (Fuhrman, 1999). Viruses are not capable of movement, 

therefore infection is a stochastic process (Wommack and Colwell, 2000; Weinbauer, 2004) and it 

depends on several factors such as host density and size of the hosts (Murray and Jackson, 1992). 

Moreover, most viruses are assumed to be host specific (Ackermann and DuBow, 1987), only a 

minority of viruses have a broad host range (Riemann and Middelboe, 2002; Weinbauer, 2004). 

Since a large part of prokaryotes is infected by viruses at any given time (Wommack and Colwell, 

2000) it is not surprising, that specific virus-host systems are closely coupled often displaying 

predator-prey oscillations (Gavin et al., 2006; Winter et al., 2010). 

 

 

Diversity of viruses and prokaryotes 

 

Since there is no single gene shared by all viruses, they are considered to be the most genetically 

diverse biological entities on our planet (Suttle, 2005). The lack of common genes among all viruses 

in mixed community samples makes it impossible to reconstruct phylogenetic relationships based on 

molecular data. So far, systematics of viruses is based on the type of nucleic acid (single or double 
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stranded DNA or RNA) and morphological properties such as presence of a tail, polyhedral shape, 

filamentous shape etc. (Ackermann, 2003). Several experimental studies showed that viruses 

influence prokaryotic community composition (Hewson et al., 2003; Schwalbach et al., 2004; Winter 

et al., 2004b). Viral infection is viewed as a top-down control for prokaryotic diversity, whereas 

inorganic nutrients such as nitrate and phosphate as well as DOC act as bottom-up controlling agents. 

It is argued, that viruses maintain a high level of prokaryotic diversity by infecting the most abundant 

populations over a specific time-course, therefore allowing prokaryotes with lower abundance to 

compete. Although this ―Killing the winner‖-hypothesis (Thingstad and Lignell, 1997; Thingstad, 

2000; Winter et al., 2010) is based on steady state conditions and on the assumption, that viruses are 

strictly host specific, it provides a model, which is easy to grasp and which is supported by several 

studies (reviewed by Winter et al., 2010). 

A great deal of recent knowledge of marine viral ecology is derived from incubation 

experiments and from cultivable phage-host-systems (Wommack and Colwell, 2000; Weinbauer, 

2004), but the progressive development of culture-independent methods in the last decades provides 

more insight into the actual in situ-processes. Nevertheless, considering the difficulties in 

investigating viruses owing to their physical size, and the high effort necessary to take samples from 

the deep sea, unsolved questions remain due to the difficulty of gathering reliable data of the in situ-

conditions in deep oceanic waters. 

 

 

Depth layers in the eastern, subtropical Atlantic 

 

The epipelagic is the layer from the water surface to 200 m depth. Sunlight is found there, especially 

in the upper 100 m, which is called the euphotic layer. Photosynthetic organisms conducting primary 

production, the phytoplankton, is found there. This phytoplankton degrades and sinks to deeper water 

layers. In the mesopelagic, which spans from 200 m to 1000 m depth, weak light still occurs, 

therefore it is also called ―dimlight zone‖. In the mesopelagic, at a depth of around 500–700 m, the 

oxygen minimum zone (OMZ) occurs. Oxygen reaches its lowest concentration there, due to 

microorganisms, which respire sinking organic matter derived from photosynthetic production in the 

epipelagic. The bathypelagic is a large water mass, it ranges from 1000 m to 4000 m depth. No 

photosynthesis occurs due to a lack of light. Microorganisms living there consume sinking organic 

matter. The abyssopelagic is the deepest water layer found in the present study ranging from 4000 m 

to the bottom. Pressure is high and temperature is low, providing constant conditions for organisms 

living there. 
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Characteristics and water masses of the eastern, subtropical Atlantic 

 

The eastern, subtropical Atlantic is characterized by a high oxygen content and a higher salinity 

compared to the other oceans (Tomczak and Godfrey, 2001). It is partly an oligotrophic 

environment, since formation of gyres due to the coriolis force leads to isolation of water masses and 

therefore less input of nutrients (Ott, 1988). Some of the sampling stations (Figure 3) are closer to 

shore (―onshore‖, stations 2–4), others (stations 5–8) are offshore and within the subtropical gyre-

system. Water masses of the Atlantic can be distinguished by their salinity, temperature, and oxygen-

concentration. North Atlantic Deep Water (NADW) is formed in the northern Atlantic and moves, 

rich in oxygen, southward along the American continent (Tomczak and Godfrey, 2001). Antarctic 

Bottom Water (AABW) occupies the bottom of almost the whole Atlantic, moves northward west of 

the Mid-Atlantic Ridge and is characterized by low temperature and salinity, but high silicate and 

inorganic nutrient concentrations (Demidov et al., 2007). 

The Vema Fracture Zone (VFZ) is a crack in the Mid-Atlantic Ridge at a depth of 5000 m at 

11 ° North, causing an offset of the ridge of ca. 300 km from 45 to 40 ° West (Demidov et al., 2007) 

(Figure 3). This fracture with a width of ca. 8–20 km allows the exchange of water masses between 

the western and the eastern Atlantic basin. The lower part of NADW as well as the cold and dense 

AABW (Table 2) are pushed through the fracture zone and enter the eastern basin, reaching 

velocities of up to 30 cm s-1 (Demidov et al., 2007). The movement of deep water masses from west 

to east is considered to influence microbial and viral communities found in the northeastern, 

subtropical Atlantic due to different concentrations of oxygen and nutrients. To find out, whether 

viruses and their prokaryotic hosts are being influenced, samples during the MOCA-Cruise in 

October 2010 were taken at depths down to 5200 m and parameters revealing characteristics of 

viruses and prokaryotes were determined. For this thesis, samples from the first 7 stations of this 

cruise (stations 2–8, Table 1, Figure 3) were analyzed with flow cytometry and molecular biology 

methods. 

 

 

Virus dilution approach 

 

The idea of the dilution technique (Figure 4) is to incubate prokaryotes with greatly reduced 

abundances than is found in situ (Wilhelm, 2002). Prokaryotes already infected by viruses produce 

and release viruses. Since prokaryotic abundance is low, a strongly reduced encounter rate of viruses 

and prokaryotes is the result. An increase in viral abundance over the period of incubation (Figure 5) 
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is therefore a result of viral lysis of the prokaryotes already infected at the beginning of the 

incubation rather than new infection of the prokaryotes by the released viruses. By this, the 

percentage of infected prokaryotes (frequency of infected cells = FIC) and the number of viruses 

released by lysis per ml per hour (lytic viral production = VP) can be calculated based on the 

abundance determined in 4 hour-intervals (Figure 5).  

Mitomycin C acts as an inducing agent, i. e. a substance, which forces prophages in the host 

genome to switch to the lytic cycle (Jiang and Paul, 1996). These viruses are eventually released and 

contribute to viral abundance measured in the incubation experiment. Since the experiment was 

conducted in duplicates of 2 different treatments (with and without Mitomycin C), it is therefore 

possible to calculate the percentage of lysogenic viruses (frequency of lysogenized cells = FLC). The 

FLC is the difference between the percentage of infected prokaryotes of treatments with Mitomycin 

C (which after induction contains both lysogenic and lytic viruses) and FIC of treatments without 

Mitomycin C (contains only lytic viruses). 

 

 

Prokaryotic and viral community composition 

 

In order to fingerprint Archaea and Bacteria found in the sampled water masses, terminal restriction 

fragment length polymorphism (T-RFLP) (Liu et al., 1997; Moeseneder et al., 1999) was used 

(Figure 6). This method analyzes differences in the lengths of PCR-amplified fragments of the 

16S rRNA gene of Archaea and Bacteria in a sample cut by a restriction enzyme as an indication of 

phylogenetic differences between samples. Diversity of prokaryotes and their community 

composition is in this method reflected in terms of apparent richness (AR) which is the number of 

occurring taxa as well as presence or absence of those taxa in specific samples. 

Randomly amplified polymorphic DNA-PCR (RAPD-PCR) (Williams et al., 1990; Franklin 

et al., 1999; Winget and Wommack, 2008) using two different oligomer-primers was carried out to 

fingerprint the viral communities found at each of the 6 depths at each station (Figure 7). As 

mentioned above, viruses are genetically very diverse. To circumvent the fact, that for amplification 

by PCR no specific primers as for amplification of 16S rRNA genes in prokaryotes can be used, 

short ―random‖-primers lead to differently-sized DNA-fragments independent of their exact 

sequence (Figure 8a). 
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MATERIAL AND METHODS 

 

Study area and sampling 

 

All samples were provided by Simone Muck and Christian Winter, who participated in the MOCA-

Cruise in October 2010 aboard R/V Pelagia. For this thesis, I got the samples of 7 stations covered 

during the cruise (Table 1, Figure 3). Water samples identified based on their specific characteristics 

of temperature, salinity and oxygen (Table 2) were collected at 6 depths from the epi- to the 

abyssopelagic layer (100–5200 m depth) (Table 2) using a CTD (conductivity-temperature-depth) 

rosette sampler equipped with 20 l Niskin-bottles. 

 

 

Prokaryotic and viral abundance 

 

Two ml of samples were fixed with glutaraldehyde (5 % final concentration) for 15 minutes at room 

temperature, subsequently shock-frozen in liquid nitrogen, and stored at -80 °C until analysis. 

Prokaryotic and viral abundance was measured as described by Marie et al. (1999) and Brussaard 

(2004). In short: For enumeration of prokaryotes, samples were thawed at room temperature, diluted 

with TE-buffer, consisting of MilliQ-water, 10 mM Tris (Tris(hydroxymethyl)-aminomethan), 1 mM 

EDTA (Ethylenediaminetetraacetic acid), pH 8.0, stained with SYBRGreen I® (Invitrogen, Cat. 

Nr.: VXS7563) and incubated in the dark for 10 minutes. The prokaryotes were counted on a 

FACSAria II flow cytometer (Becton Dickinson) by their signature in a plot of SYBR Green I® 

fluorescence versus side scatter (Figure 9). Particles in TE-buffer and in SYBRGreen I® were 

considered by measuring and subtracting blanks before calculating abundance values. For 

enumerating viruses, the procedure was the same, except for incubating the samples in the dark at 

80 ºC for 10 minutes. The viral abundance was also determined by their signature in a plot of green 

fluorescence versus side scatter (Figure 9). Based on the same plot, 3 different prokaryotic 

populations (high nucleic acid, high side scatter = HNAHS, high nucleic acid, low side 

scatter = HNALS and low nucleic acid = LNA prokaryotes) were distinguished. For viruses, also three 

different populations were distinguished: high fluorescence (Vir HIGH), medium fluorescence (Vir 

MED) and low fluorescence (Vir LOW) (Figure 9). 
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Virus dilution approach to estimate FIC and VP 

 

The Virus dilution-experiment (Figure 4) was carried out at three selected depths per station (meso-, 

bathy- and abyssopelagic) following the protocol of Wilhelm et al. (2002). Briefly, virus-free water 

obtained by Tangential-Flow Filtration through spiral-wound ultrafiltration catridges (Amicon 

S10Y100, 100 kDa molecular weight cut-off) was used to dilute the prokaryotic concentrate obtained 

by 0.2 µm Tangential Flow Filtration (Pelicon filter-cassettes, PTGVPPC05, 0.22 µm pore-size). The 

experiments were carried out in duplicates at in situ temperatures in the dark, with and without the 

addition of Mitomycin C (final concentration 1 µg ml–1, Sigma). Mitomycin C was added to induce 

the lytic cycle of lysogenic viruses. The subsamples for the enumeration of viruses and prokaryotes 

were taken every 4 h over a period of 32 h. The enumeration (Figure 5) was performed using flow 

cytometry as described above. FIC, FLC and VP were calculated as described by Winter et al. 

(2004a) according to the following formulas: 

 

 

 

When more peaks of viral abundance occurred in the time course of the experiment (Figure 5), the 

FIC was calculated separately for each peak and these values were added. Values for burst size were 

not determined in this study, it was assumed to be 30 throughout all of the samples. Calculation of 

FLC (2) could logically only have been performed, when the mean of FIC of the duplicate treatments 

including Mitomycin C (induced) was higher than the mean of the 2 treatments without 

Mitomycin C. Moreover, the calculation was only carried out, when the range of the duplicate 

treatments with Mitomycin C did not overlap with the range of the 2 treatments without 

Mitomycin C (control). The formula for calculating viral production (3) is shown for 3 peaks of viral 

lysis events according to Figure 5. 
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Prokaryotic community composition 

 

Sampling 

Eighteen liters of sample were filtered using the Vivaflow system (Vivaflow 200) in combination 

with Pelicon filter-cassettes (PTGVPPC05, 0.22 µm pore-size) to concentrate prokaryotes. This 

prokaryote concentrate was subsequently filtered on 0.2 µm filters with a diameter of 47 mm 

(Millipore, type GVWP) and those filters were stored at -80 °C. 

 

Extraction of prokaryotic DNA 

Prokaryotic DNA for T-RFLP was extracted from the filters using an UltraClean® Soil DNA 

Isolation Kit (MoBio Laboratories, Inc., Solana Beach, California, Cat. Nr.: 312800-100) according 

to the manufacturer’s instructions and following the alternative lysis protocol to keep shearing of 

nucleic acids at a low level. Filters were cut with ethanol-flamed scissors and transferred to 

extraction tubes with ethanol-flamed forceps. Tubes were shaken by hand instead of being vortexed. 

Extracted DNA, dissolved in 50 µl of buffer S5, was checked on a 1 % agarose (Eurogentec, 

Molecular biology grade, Cat. Nr.: EP-0010-05) gel (run at 75 V for 120 minutes) for quality. The 

agarose was dissolved in TBE-buffer (1.34 mol l-1 TRIS, 0.44 mol l-1 Boric Acid, 0.025 mol l-1  

EDTA disodium salt dihydrate, pH adjusted to 8.3). The gel was post-stained for 30 min with 0.5 x 

SYBR® Gold diluted in a TBE-buffer-bath taken from a 10 000 x concentrate (Invitrogen, Cat. Nr.: 

S11494). DNA-extracts were stored at -80 °C. 

 

Amplification of prokaryotic DNA 

Amplification of fragments of the 16S rRNA genes from prokaryotic DNA was performed via PCR 

using the primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTA 

CGACTT-3') for Bacteria (Lane, 1991) as well as 21F (5'-TTCCGGTTGATCCYGCCGGA-3') and 

958R (5'-YCCGGCGTTGAMTCCAATT-3') for Archaea (DeLong, 1992). Both forward primers 

were fluorescently 5′ end-labeled with phosphoramidite fluorochrome 5-carboxy-fluorescein (5′6-

FAM), the reverse primers were labeled with VIC (Perkin-Elmer Life Sciences Pty Ltd). Each PCR-

reaction included 5 µl of 10x Taq-buffer with KCl (100 mM Tris-HCl with pH 8.8 at 25 °C, 500 mM 

KCl, 0.8 % Nonidet P40), 4 µl of MgCl2 (25 mM), 1.25 µl of dNTPs (10 mM each), 2.5 µl of each 

forward and reverse primer (10 µM each) and 0.25 µl of recombinant Taq-Polymerase (5 U µl-1) as 

well as 1 µl of prokaryotic template DNA. All primers, as well as the Taq-Polymerase with supplied 

buffers (Cat. Nr.: EP0621) were purchased from Thermo-Scientific. Each run included a negative 

control to check for DNA contamination. Used deoxyribonucleotide triphosphates (dNTPs) were 
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from Invitrogen (100 mM each, Art. Nr.: dATP: 10216-018, dCTP: 10217016, dGTP: 10218014, 

dTTP: 10219-012), diluted to 10 mM each. A Mastercycler pro (Eppendorf, Hamburg, Germany) 

was used for the amplification reaction with the following protocol: Initial denaturation and enzyme 

activation at 95 °C for 5 min followed by 30 cycles of 95 °C for 1 min (denaturation), 55 °C for 1 min 

(annealing), and 72 °C for 1 min (extension), with a final elongation step of 30 min at 72 °C to 

eliminate artifacts (Janse et al., 2004). PCR products were checked by agarose gel electrophoresis 

(1 %, run at 70 V for 50 minutes) and subsequently purified with a 5Prime PCR Extract MiniKit 

(Ref. Nr.: 2300610) following the manufacturer's protocol. Prokaryotic 16S rRNA was eluted in 

50 µl of buffer PEB of the extraction kit. The concentration of PCR products was measured with a 

Nanodrop® spectrophotometer. 

 

T-RFLP digest 

The purified PCR products were used for the enzyme reaction with Hha I (New England Biolabs® 

Inc., Cat. Nr.: R0139S). A Mastercycler pro (Eppendorf, Hamburg, Germany) was used with the 

following protocol: Enzyme digestion at 37 °C for 12 hours followed by enzyme deactivation at 

65 °C for 20 min and a final hold at 4 °C. Each 15 µl digestion reaction contained 8–10 µl of purified 

PCR-product, 0.5 µl of restriction enzyme (Hha I, 20 U/µl, Ref. nr.: R0139S), 1.5 µl of 10x 

NEBuffer 4 (Ref. nr.: B7004S), 0.15 µl of 100x BSA (Ref. nr.: B9001S) and 2.85 µl of H2O. 

 

Analysis of fragments by capillary electrophoresis 

The fluorescently labeled and digested PCR fragments were analyzed by capillary electrophoresis. 

For each reaction, 10 µl of Hi-Di™ formamide (highly deionized formamide for capillary 

electrophoresis, Applied Biosystems, Cat. Nr.: 4311320), 0.25 µl Genescan™ 1200LIZ® (Cat. 

Nr.: 4379950) size marker as well as 1 µl of the T-RFLP digestion reaction were transferred into 

96-well microtiter plates, briefly centrifuged, denaturated at 95 °C for 3 min, and subsequently put on 

ice immediately. Analysis of the fragments was performed using a 3130XL Sequencer (Applied 

Biosystems) with capillary lengths of 50 cm and running POP-7 polymer. 

Data obtained from the sequencer were analyzed using Peak ScannerTM 1.0 Software 

(Applied Biosystems) considering fragments with a size of 20–1200 bp, For distinguishing signal 

from noise, an arbitrarily determined peak threshold-height of 30 was chosen and applied to all 

samples. After analyses and check of the peaks, the data was assembled into a matrix, where the 

peaks have been aligned based on fragment size. This resulted in four presence/absence matrices 

(forward and reverse primers for both Archaea and Bacteria) (Example: Figure 14), which were used 

for further statistical analysis. 
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Viral community composition 

 

Samples 

The rest of the water after removing and filtering prokaryotes for prokaryotic community samples 

was filtered through spiral-wound ultrafiltration catridges (Amicon S10Y100, 100 kDa cutoff) to 

obtain viral concentrates, ca. 30–50 ml of which was then transferred to 50 ml-tubes and stored at  

-80 °C. 

 

Preparation of viral samples 

After thawing the concentrate, it was filtered through 0.2 µm Acrodisc® Syringe Filters (Pall 

Corporation, Part Nr.: 4192) in order to ensure, that no prokaryotes remained in the samples. 

Concentration of the samples was performed by ultrafiltration at 4 °C using Amicon® Ultra-15 

Centrifugal filter devices (Millipore, Cat. Nr.: UFC910024) with a molecular weight cut-off of 

100 kDa. The centrifuge used was an Eppendorf 5810R at 3220 relative centrifugal force. The 

amount of resulting viral concentrate for further processing was ca. 180 µl. 

 

Extraction of viral DNA 

Extraction of viral DNA was performed with QIAamp® MinElute® Virus Spin Kit (Qiagen, 

Cat. Nr.: 57704). QIAGEN Protease was dissolved in Buffer AVE, 100 µl of the viral concentrate 

were diluted with 125 µl of 0.9 % (w/v) NaCl solution and then processed according to the protocol 

of the manufacturer. Extracted viral DNA was eluted in 50 µl AVE buffer and stored at -80 °C. 

 

PCR reactions 

For the PCR reactions, two primers were used: OPA-13 (5'-CAGCACCCAC-3') and CRA-22 (5'-CC 

GCAGCCAA-3') (Wommack et al., 1999) both purchased from Thermo Scientific. Only one of the 2 

primers were used in each reaction, acting as both forward and reverse primer (Figure 8). For each 

run, negative controls were also included, to check for potential DNA contamination of PCR 

chemicals. Each 50 µl-reaction contained 5 µl of 10x Taq-buffer with KCl (200 mM Tris-HCl pH 

8.4, 500 mM KCl), 1.5 µl of 50 mM MgCl2, 1 µl of dNTPs (10 mM each), 5 µl (CRA-22) or 10 µl 

(OPA-13) of primers, 0.25 µl of Platinum Taq (5 U µl-1) and 5 µl (CRA-22) or 4 µl (OPA-13) of 

viral template DNA. Taq-Polymerase was Invitrogen Platinum Taq (Cat. Nr.: 10966-018), including 

10x Taq-buffer and 50 mM MgCl. Used dNTPs were the same as for amplifying prokaryotic DNA. 

The protocol on the cycler (Eppendorf Mastercycler pro) started with initial denaturation and enzyme 

activation at 94 °C for 10 min, followed by 30 thermal cycles of 94 °C for 30 sec (denaturation), 
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35 °C for 3 min (annealing) and 72 °C for 1 min (extension) with a final elongation step of 30 min at 

72 °C. For reactions containing the primer OPA-13 it was necessary to double the primer volume to 

obtain good quality bands. 

 

Analysis of the bands by gel electrophoresis 

For analysis of the bands, gel electrophoresis using 2.5 % agarose gels in 1xTBE-buffer was 

performed at 44 V for 135 minutes. The gels were post-stained with SYBR® Gold as described 

above, pictures of the gels with high resolution were made using a Gel Doc EQ (Bio-Rad) gel 

documentation system. Analysis of the gels was performed using Quantity One 4.6.8 with a Gel Doc 

XR+ Plugin. Based on the DNA rulers SmartLadder (Eurogentec, 200–10 000 bp, Ref. Nr.: MW-

1700-10) as well as Fermentas gene ruler (250–10 000 bp, Cat. Nr.: SM0311), the occurring bands in 

the samples were sized. This information was then exported to Microsoft Excel, where an alignment 

was created. Appearance of specific bands resulted in presence/absence-matrices (Figure 14) for all 

samples. 

 

Other parameters measured on the ship 

Temperature, salinity, and oxygen were measured with sensors on the CTD-device. Prokaryotic 

heterotrophic production (PHP) was determined as prokaryotic leucine incorporation (in µmol 

leucine m-3d-1) as described by Reinthaler et al. (2006), except that a Tri-carb liquid scintillation 

counter (PerkinElmer) was used. Measurements of inorganic nutrients were performed according to 

the Joint Global Ocean Flux study (JGOFS, 1994). 
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Statistical analysis 

 

Except stated otherwise, statistical analysis was performed using SPSS software (version 15.0.1, 

SPSS Inc.). 

 

Comparison of different depth layers 

For comparing the different parameters with respect to sampling depth, the vertical water mass was 

separated into four depth layers (Table 2): epipelagic (0–200 m), mesopelagic (200–1000 m), 

bathypelagic (1000–4000 m) and abyssopelagic (4000–5200 m). Parameters of all seven stations 

were then summarized and grouped within these layers (Table 4). Since the bathypelagic is a vast 

water body spanning 3000 m in depth, separate graphs and correlation matrices were made for the 

lower NADW to check for relations between the parameters. The data were checked if they fit the 

normal distribution by a  Kolmogorow-Smirnov-Test. In case the particular parameter was normally 

distributed, ANOVA in combination with least square differences (LSD) post-hoc test was 

performed to compare the depth layers. Kruskal-Wallis one-way analysis of variance on ranked data 

in combination with Mann-Whitney posthoc and Bonferroni correction using PAST 2.10 (Hammer et 

al., 2001) was computed for non-normally distributed variables such as prokaryotic and viral 

abundance. 

 

Comparison of onshore and offshore stations 

Since some parameters changed over geographic distance (Figure 5, 6 and 7), the stations were 

grouped in ―onshore‖ (stations 2–5 for epipelagic, stations 2–4 for bathy- and abyssopelagic) as well 

as ―offshore‖ (stations 6–8 for epipelagic, stations 5–8 for bathy- and abyssopelagic). Those two 

groups were then compared using t-tests, when the specific parameter was normally distributed 

(e. g., AR) or using Manny-Whitney-tests, when the parameter was not normally distributed 

(e. g., prokaryotic abundance). 

 

Correlations 

Since the whole dataset of variables measured during the cruise (temperature, salinity, inorganic 

nutrients, DOC, etc.) was also available, correlations between those variables and the parameters 

determined in this thesis were also checked. Spearman rank correlation coefficients for all variables 

against each other were calculated to find related parameters over all depths and separately for each 

depth layer (Table 5 and 6) as well as specifically for the lower NADW.  
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In order to calculate the distances between the stations based on the GPS-coordinates shown 

in Table 1, an online calculator (http://www.gpsvisualizer.com/calculators), which considers the 

spheroid shape of the Earth was fed with the coordinates of the 7 stations. Geographic distance is 

expressed as distance in kilometers from station 8 (Figure 5, 6 and 7). 

 

Mantel tests 

For comparing prokaryotic and viral community composition with each other or with other 

parameters, Mantel tests (Mantel, 1967) were calculated from distance matrices using PAST 2.10 

(Hammer et al., 2001). Significance of each calculation was determined by 5000 iterations. The 

calculations were performed on the entire data set as well as on each depth layer alone (as well as for 

the LNADW only) to pinpoint differences in the specific depth layers controlling prokaryotic and 

viral communities (Table 7 and 8). Jaccard distance matrices were calculated from the 

presence/absence matrices obtained by T-RFLP and RAPD-PCR, Bray Curtis-distance matrices were 

computed from numeric variables such as depth or temperature to be able to compare these 

parameters to each other. Distance matrices were also calculated from the geographic distances 

in km between the stations to detect changes of community composition over a geographic scale. 

 

Bonferroni-correction 

The results of statistical tests were considered to be significant at p-values < 0.05, except for 

Bonferroni-correction: Spearman rank-correlations, ANOVA, Kruskal-Wallis-tests and Mantel 

statistics were corrected using the Bonferroni-Method. This correction was necessary for two 

reasons: First, stochastic relationships introduced by the co-occurrence of many factors were ruled 

out, since significance is more likely to occur, when many variables are considered simultaneously 

(Abdi, 2007). Without correction, this can lead to a wrong impression of significant results. Table 3 

shows the grouped parameters and the corrected p-values for each group.  

 

 

http://www.gpsvisualizer.com/calculators
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RESULTS 

 

Differences between depth layers 

 

Abundance of viruses and prokaryotes 

When data of all stations was combined and average values were calculated, a clear trend of decrease 

of viral and prokaryotic abundance with depth was visible (Table 4 and 5, Figure 10a). The 

abundance of prokaryotes decreased by one order of magnitude from 1.6 × 105 (SD = 0.3) in the 

epipelagic to 0.1 × 105 (SD < 0.1) in the abyssopelagic both being negatively correlated to depth 

(r = 0.93, Table 5). Prokaryotic abundance in the 4 depth layers differed significantly from each other 

(Kruskal-Wallis: H = 33.55, p ≤ 0.001; Mann-Whitney: all p-values ≤ 0.001) except when comparing 

bathy- to abyssopelagic (Mann-Whitney: U = 31, p = 0.230). 

Viral abundance was on average ca. 25 times higher than prokaryotic abundance (Table 4), it 

decreased from the epipelagic (5.0 × 106 ml-1, SD = 1.9) by one order of magnitude towards the 

bathypelagic (0.417 × 106 ml-1, SD = 0.2), but increased again in the abyssopelagic (0.519 × 106 ml-1, 

SD < 0.1) (Table 4, Figure 10a). Viral abundance in the epipelagic was significantly different from 

the meso-, bathy- and abyssopelagic (Kruskal-Wallis: H = 24.25, p ≤ 0.001; Mann-Whitney: all p-

values ≤ 0.01). Moreover, the mesopelagic differed significantly from the bathypelagic (Mann-

Whitney: p = 0.005). 

The VP-ratio was high in the epipelagic (30.9, SD = 8.5), lower in the mesopelagic (13.3, 

SD = 3.3) and high again in the bathy- and abyssopelagic (27.6, SD = 12.7 and 29.2, SD = 9.5, 

respectively) (Table 4, Figure 10a). VP in the mesopelagic differed significantly from the epi-, 

bathy- and abyssopelagic (Kruskal-Wallis: H = 20.58, p ≤ 0.001; Mann-Whitney: all 

p-values ≤ 0.010). 

 

Prokaryotic and viral populations 

The percentage of HNALS-prokaryotes was significantly lower in the epipelagic than in the other 

depth layers (Kruskal-Wallis: H = 15.95, p = 0.001; Mann-Whitney: all p-values < 0.010), no 

difference was found between meso-, bathy- and abyssopelagic (Figure 10c). HNAHS-prokaryotes 

were found to be significantly lower in the mesopelagic compared to all other depth layers (Kruskal-

Wallis: H = 28.72, p ≤ 0.001; Mann-Whitney, all p-values ≤ 0.001) (Figure 10c). A significant 

difference was also found when comparing bathy- to abyssopelagic (Mann-Whitney: p ≤ 0.001), with 

HNAHS being higher in the abyssopelagic. The percentage of LNA-prokaryotes decreased almost 
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linear with depth (Table 4, Figure 10c), with significant differences between some of the depth layers 

(Kruskal-Wallis: H = 24.34, p ≤ 0.001). 

The average in the epipelagic differed significantly from bathy-, and abyssopelagic (Mann-

Whitney: p-values ≤ 0.003) and the percentage in the mesopelagic was significantly higher than in 

bathy-, and abyssopelagic (Mann-Whitney: p-values ≤ 0.003). Percentage of LNA-prokaryotes in the 

bathypelagic differed also significantly from the abyssopelagic (Mann-Whitney: p = 0.004). 

 Vir LOW did not show any significant trend over depth, neither did Vir MED 

(Figure 10c), the latter of which constituted the most abundant group of viruses in all depth layers 

(Table 4). The percentage of Vir HIGH was significantly higher in the epipelagic from all other 

depth layers (Kruskal-Wallis: H = 15.78, p = 0.001; Mann-Whitney, all p-values ≤ 0.005). 

 

FIC and VP 

FIC increased significantly with depth (r = 0.74, Table 5, Figure 10b) from 23.1 % in the 

mesopelagic, over 27.7 % in the bathypelagic to 57.0 % in the abyssopelagic. FIC in the 

abyssopelagic was significantly different from the values determined in meso- and bathypelagic 

(Kruskal-Wallis: H = 9.55, p = 0.008; Mann-Whitney: all p-values ≤ 0.01). 

VP  decreased rapidly from 38.5 × 103 ml-1 h-1 in the mesopelagic to 7.9 × 103 ml-1 h-1 in the 

bathypelagic and differed significantly between the two depth layers (Kruskal-Wallis: H = 11.94, 

p = 0.003; Mann-Whitney: p = 0.002). In the abyssopelagic, VP increased again (10.56 × 103 ml-1 h-1), 

although not significant. No significant correlation between VP and depth was found. 

 

AR of prokaryotes and number of RAPD-PCR bands of viruses 

Although AR of Bacteria decreased significantly with depth (Bacteria reverse, r = -0.42, Table 5) 

(Table 4, Figure 10d), no statistically significant difference was found between the four depth layers 

(one-way ANOVA: Bacteria forward: F = 0.87, p = 0.467; Bacteria reverse: F = 1.71, p = 0.184). 

Bacterial AR (forward primer) was related to depth in the abyssopelagic only (r = 0.94, Table 5). AR 

of Archaea and the number of viral bands did not show any significant change over depth (one-way 

ANOVA: Archaea forward: F = 1.10, p = 0.365; Archaea reverse: F = 2.07, p = 0.123; CRA: F = 2.36, 

p = 0.081; OPA: F = 0.99, p = 0.412). 
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Differences over geographic distance 

 

Epipelagic 

When considering the epipelagic only, viral abundance decreased from 6.3 × 106 ml-1 at station 2 to 

3.6 × 106 ml-1 at station 8 (Figure 11a). Prokaryotic abundance was more or less constant over 

geographic distance (1.578 × 105 ml-1 at station 2, 1.452 × 105 ml-1 at station 8) (Figure 11a), for that 

reason, VP-ratio showed a similar trend as virus abundance and decreased from 40.1 to 24.0 

(Figure 11a). When grouping Stations 2–5 (onshore) and Stations 6–8 (offshore) and comparing the 

means of the 2 groups by a t-test, a significant difference was observed for viral abundance (t = 7.89, 

p ≤ 0.001) and also for VP-Ratio (t = 7.07, p ≤ 0.001). Temperature also decreased from Station 2 to 8 

(Figure 11b), and significantly correlated with geographic distance (r = 0.89, Table 5). Nitrate (NO3), 

phosphate (PO4) and silicate (SiO4) significantly increased towards station 8 in the epipelagic 

(Table 6). 

 

Mesopelagic and bathypelagic 

In the mesopelagic, only nitrate (r = -0.95) and phosphate (r = 0.92) were significantly correlated to 

geographic distance (Table 6): nitrate increased and phosphate decreased towards station 8. In the 

bathypelagic, FIC and oxygen increased, nitrate and phosphate decreased from station 2 to 8 

(Table 6). 

When examining the lower part of the NADW (7 samples taken at 2969–3397 m depth, 

Table 2), an increase of both VP and FIC towards station 8 was visible (Figure 12a and b). VP 

increased by a factor of ca. 2 from 4.42 × 103 ml-1 h-1at station 2 to 9.51 × 103 ml-1 h-1 at station 8. FIC 

increased by a factor of 2.6 from 13.9 % at station 2 to 36.8 % at station 8. AR of Bacteria 

determined by the forward primer increased almost 7-fold from station 2 to station 8 (Figure 12f). 

Other parameters that changed with geographic distance were temperature, oxygen, nitrate 

and phosphate. Oxygen increased almost linear (Figure 12d) with significant correlation to 

geographic distance (r = -0.96, p ≤ 0.001). Temperature, nitrate and phosphate decreased significantly 

towards station 8 (all r-values ≥ 0.89, all p-values ≤ 0.007). When comparing onshore and offshore-

stations by t-test or Mann-Whitney-test, significant differences were found for the following 

parameters: FIC (t = -3.07, p = 0.037), salinity (t = 2.64, p = 0.046), oxygen (t = -0.39, p = 0.012), 

phosphate (t = 3.59, p = 0.016) and AR Bacteria forward (t = -5.05, p = 0.004). No significant change 

of viral or prokaryotic abundance over geographic distance was observed in the LNADW. 
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Abyssopelagic 

In the AABW, VP was significantly higher when comparing means of the onshore stations against 

the offshore-stations (t = 7.0, p = 0.002) (Figure 13b). The temperature dropped from 2.39 °C at 

station 3 to 2.18 °C at station 8 and was correlated to geographic distance (r = 0.94, p = 0.005) 

(Figure 13b). When comparing means of the temperature at the stations onshore to the stations 

offshore by t-test, a significant difference was found (t = 3.16, p = 0.034). Nitrate increased 

significantly with decreasing geographic distance to station 8 (r = -0.94, p = 0.005) (Figure 13d). 

Silicate-concentrations at stations offshore were significantly higher than onshore (t = -4.99, 

p = 0.008). Prokaryotic and viral abundance did not show any significant trend over geographic 

distance in the abyssopelagic, neither did the VP-Ratio. 

 

 

Other relationships between parameters 

 

Abiotic factors, oxygen, inorganic nutrients, DOC and PHP 

Correlations of the parameters with abiotic factors are depicted in Table 5, relationships to each other 

or to other parameters such as PHP, oxygen and nutrient concentrations are shown in Table 6 and 

briefly summarized here: Prokaryotic abundance was correlated to viral abundance (r = 0.72), FIC 

(r = -0.73), VP (r = 0.44), PHP (r = 0.95), oxygen (r = -0.76) and SiO4 (r = -0.90), viral abundance to 

all of the parameters, except VP. These relationships were found over the whole data set as well as in 

the mesopelagic. The VP-Ratio was over all depths strongly correlated to oxygen (r = 0.62), both 

decreased from epi- to the mesopelagic and increased again in the deeper layers. FIC was negatively 

correlated to viral abundance (r = -0.57) and to PHP (r = -0.62), but increased with oxygen and 

silicate. Furthermore, VP vorrelated with  PHP (r = 0.53) and  nitrate (r = 0.58). The VP-ratio was 

correlated to FIC (r = 0.56) and VP (r = -0.50) in the entire data set, as well as to oxygen, nitrate and 

phosphate. 

The concentration of dissolved organic carbon (DOC) was significantly correlated to FIC in 

the whole dataset (r = 0.56), increased with geographic distance in the bathypelagic (r = -0.85) and 

was negatively correlated with the VP-ratio in the abyssopelagic (r = -0.94) (DOC-data not shown). 

 

Prokaryotic and viral populations 

Viral abundance correlated positively with LNA-prokaryotes (r = 0.52), but negatively with HNALS-

prokaryotes (r = -0.46). In the whole dataset, HNAHS-prokaryotes were connected to FIC (r = 0.75), 

oxygen (r = 0.75) and inorganic nutrients (nitrate: r = -0.61; phosphate: r = -0.59). In the mesopelagic, 
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HNAHS was positively correlated with oxygen (r = 0.67) and VP in the bathypelagic (r = 0.74). 

Overall, FIC and oxygen decreased with increasing LNA-prokaryotes (r = -0.73 and -0.76). Also, the 

higher PHP, the more LNA-prokaryotes were found (r = 0.76). Vir HIGH was correlated to 

prokaryotic abundance (r = 0.65) and also to PHP over all depths (r = 0.68) and in the bathypelagic 

(r = 0.76 and 0.59). Vir LOW and Vir MED appeared to play a role in the abyssopelagic, where they 

were positively (r = 0.94) and negatively (r = -0.94), correlated to PHP, respectively (Table 6). 

 

 

AR of Archaea and Bacteria and number of viral RAPD-PCR bands 

 

The forward primer of Bacteria yielded DNA fragments with a size ranging from 21–1132 bp (in 

total 92 peaks). Two most abundant peaks occurred at 33 and 902 bp, both being present in 41 of 42 

samples (97.6 %). For the reverse primer, the smallest fragment measured 24 bp and the longest 930 

bp, resulting in a total of 73 peaks. The 133 bp-fragment appeared in all of the 42 samples, 16 

fragments were only detected once. In contrast, analysis of the archaeal forward primer resulted in a 

total of 18 different DNA-fragments with sizes of 26–912 bp. The 321 bp-fragment was present in all 

of the samples, 11 other fragments were present only one time in one single sample. The archaeal 

reverse primer resulted in 18 different fragments with a size range from 28 to 933 bp with the most 

abundant one appearing in all samples having a size of 585 bp. Six fragments were present only one 

time in one sample. AR of Archaea reverse was on average significantly higher than Archaea 

forward (t = 4.1, p = 0.004), no significant difference was found between AR of the bacterial primers. 

The size of viral RAPD-PCR products ranged from 196–2918 bp for the CRA-primer, with 2 

most abundant bands at 596 bp and 1615 bp, both being present in 90.5 % of the samples. Bands with 

the size of 196 bp, 215 bp, and 2918 bp were only present in 1 sample (2.4 %) (Figure 14). Band-

sizes of the OPA-primer ranged from 212–3671 bp, the most abundant band had a size of 983 bp, 

being present in 73.8 % of the samples. Only 1 band (212 bp) was present in one sample (2.4 %). 

 

 

Community composition of prokaryotes and viruses 

 

Relationships between prokaryotic and viral community composition 

Using mantel tests, relations between the community composition of forward- and reverse-primers of 

Archaea and Bacteria, respectively were found in the entire data set (rM = 0.47 for Archaea, rM = 0.77 

for Bacteria) as well as in most depth layers (Table 7): Forward and reverse primers of Bacteria 
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were connected in all depth layers (rM ranging from 0.64–0.80), forward and reverse primers of 

Archaea were only connected in the mesopelagic (rM = 0.63) and bathypelagic (rM = 0.43). 

A connection between CRA- and OPA-primers was only found in the mesopelagic (rM = 0.38). When 

the community composition of prokaryotes with the one of viruses was compared, relationships were 

found only between Bacteria forward and CRA (bathypelagic, rM = 0.24) and Bacteria forward and 

OPA (abyssopelagic, rM = 0.38). 

 

Influence of other parameters on prokaryotic and viral communities 

Table 8 shows the relationship of abiotic and biotic parameters with the community composition of 

prokaryotes and viruses. For the entire data set, depth, temperature and salinity influenced archaeal, 

bacterial and viral communities stronger (rM ranging from 0.13–0.37) than geographic distance 

(rM ranging from 0.11–0.18). There was also a relationship between prokaryotic abundance and 

prokaryotic and viral communities (rM ranging from 0.18–0.39). Viral abundance was related to 

archaeal community composition (forward primer: rM = 0.29), bacterial community composition 

(forward primer: rM = 0.39, reverse primer: rM = 0.29), and viral community composition (CRA, 

rM = 0.34). PHP seemed to play an important role, and was related to archaeal community 

composition (forward primer: rM = 0.23), bacterial communities (forward primer: rM = 0.38; reverse 

primer: rM = 0.33) and viral community composition (CRA, rM = 0.33). Nitrate, nitrite and phosphate 

were related to bacterial community composition (rM ranging from 0.27–0.34) and CRA (rM ranging 

from 0.30–0.32). Silicate was also related to bacterial (rM ranging from 0.18–0.34) as well as viral 

(CRA, rM = 0.25) community composition, oxygen-concentration only showed a weak connection to 

OPA (rM = 0.18). Ammonia was related to viral community composition in the meso- (CRA, 

rM = 0.43) and bathypelagic (OPA, rM = 0.38). Viral communities changed over geographic distance 

in the mesopelagic (CRA, rM = 0.30) and bacterial communities changed in the bathypelagic with 

geographic distance (rM = 0.18 and 0.28). 

When considering the LNADW only (data not shown), both oxygen and geographic distance 

were significantly related to bacterial community composition. Geographic distance was linked to 

bacterial community composition (rM = 0.52 and 0.65 for forward and reverse, respectively; p for 

both ≤ 0.01), and oxygen (rM = 0.45 and 0.77, respectively; p for both ≤ 0.01). VP in the LNADW was 

connected to the community composition of Archaea (forward primer: rM = 0.44, p = 0.027), 

prokaryotic abundance was related to viral community composition (CRA: rM = 0.50, p = 0.018). 

In the abyssopelagic, depth, salinity and VP were related to bacterial community composition 

(rM ranging from 0.66 to 0.71). Viral community composition (OPA) was connected to VP 

(rM = 0.82) and phosphate (rM = 0.54). 
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DISCUSSION 

 

Critical evaluation of the techniques 

 

Virus dilution approach 

Advantages and disadvantages of the dilution approach were reviewed by Winget et al. (2005) and 

are briefly summarized here: Advantages include the simple and inexpensive equipment needed as 

well as the chance to observe changes of viral abundance over the time of incubation (Figure 5). 

Disadvantages are a slight influence on the prokaryotic communities in the sample while performing 

Tangential Flow Filtration and the high amount of sub-samples needed. However, the large amount 

of counts is not much of a problem when using flow cytometry, which has been shown to be a 

reliable method since flow cytometry-counts are similar to epifluorescence counts (Brussaard et al., 

2010). Decay of viruses was not taken into account in the present study, probably leading to a slight 

underestimation of FIC and VP especially in the mesopelagic, since viral decay was shown to be one 

order of magnitude lower in deep waters and depends on temperature (Parada et al., 2009). 

 

T-RFLP 

T-RFLP was introduced in 1997 (Liu et al.) as a high throughput method for characterizing the 

diversity of microorganisms. It has been applied to ribosomal genes and also functional genes of 

prokaryotes (Schütte et al., 2008). The use of polyacrylamide gels was shown to be not as 

reproducible and the resolution is lower than using capillary gel electrophoresis for separating 

differently-sized fragments described by Behr et al. (1999). The accuracy of the analysis by capillary 

electrophoresis is high (differences of ± 1 bp; Moeseneder et al., 1999; Schütte et al., 2008), although 

this accuracy decreases with longer DNA-fragments. Comparison of the same samples run several 

times showed a variability of the size fragments of only ± 1 bp (Schütte et al., 2008), which is in line 

with the observation of analyzing duplicate or triplicate samples done in the present study (data not 

shown). Identification of members of microbial communities as described by Schütte et al. (2008) 

was not considered to be a reliable approach, since one specific fragment could be due to the 

presence of different prokaryotic phylotypes and not just one. 

 

RAPD-PCR 

Compared to other methods such as pulsed field gel electrophoresis (PFGE), the resolution of 

RAPD-PCR is higher (Winget and Wommack, 2008). However, it is possible that some viral groups 

cannot be distinguished by agarose gel electrophoresis, limiting the method (Winter and Weinbauer, 
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2010). Another factor one has to keep in mind is, that only the nucleic acids of DNA-viruses were 

extracted using the QIAamp® MinElute® Virus Spin Kit. In addition, only viruses with priming sites 

for the primers could be detected (Figure 8). RAPD-PCR using one specific primer detects only a 

subset of viruses in the sample, as suggested by Winter and Weinbauer (2010). But since the number 

of database entries of viral genomes currently is low, this needs further investigation. The potential 

disadvantage of fingerprinting only a subset of viruses is minimized due to the use of 2 different 

primers, CRA and OPA, targeting different subsets of the virus community (Winter and Weinbauer, 

2010). As described for T-RFLP, determining the relative contribution of the groups is not possible 

for RAPD-PCR due to PCR-biases (Winter and Weinbauer, 2010).  

Nevertheless, other potential drawbacks have been shown to be minimal. For example, since 

RAPD-PCR was also successfully applied to prokaryotes (Franklin et al., 1999; Winter and 

Weinbauer, 2010) and eukaryotes (Williams et al., 1990; Winter and Weinbauer, 2010), the question 

arises, whether the amplified products are of viral origin only. This objection can easily be refused, 

since the viral template for PCR was viral concentrate (obtained from 18 l sample water) produced 

by Tangential Flow Filtration, which is a reliable method (Winget et al., 2005) and then additionally 

filtered through 0.2 µm filters to assure removal of all prokaryotic cells and other organisms. One 

general problem of PCR is chimera formation (Brakenhoff et al., 1991). Chimeric sequences are 

artefacts created during PCR. However, studies using RAPD-PCR and viral nucleic acid sequencing 

did not find any chimeric products at all (Rohwer et al., 2001; Winget and Wommack, 2008). 

Finally, there are two potential reasons for a wrong estimate of the observed viral diversity in 

comparison to the actual viral diversity: First, overestimation of viral genetic diversity by more than 

one priming site for a specific virus resulting in more than one band. Second, underestimation, if 

genetically different viral strains result in bands of the same size. These possible estimation-errors 

were shown by Winget and Wommack (2008) not to be a problem. By sequencing the amplified 

PCR-products after purification, the authors found that ―most bands are likely derived from single 

viral strains within the original assemblage‖. Furthermore, no homology between bands from the 

same profile was found. Despite these drawbacks and the fact that RAPD-PCR will not sample the 

diversity of the whole viral community, the method is reproducible and reliable (Winget and 

Wommack, 2008). 
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Prokaryotic and viral parameters 

 

Abundance and VP-Ratio 

Viral abundance with an average of 1.3 × 106 ml-1 is typical for marine environments (Wommack and 

Colwell, 2000; Weinbauer, 2004) and also typically low for oligotrophic open ocean areas. Also the 

decrease of abundance with depth of both viruses and prokaryotes was as expected and shown in 

several studies (Wommack and Colwell, 2000; Weinbauer, 2004). The positive correlation of viral 

and prokaryotic abundance (Table 6) is not surprising, since a higher density of prokaryotes 

increases the probability for a virus to find a host and therefore increases also the adsorbtion rate 

(Murray and Jackson, 1992). In addition, more prokaryotes can maintain a higher number of viruses. 

Viruses also show a higher variability in the measurements compared to prokaryotes (Table 4), 

confirming that viral abundance is less tightly controlled than abundance of prokaryotes (Weinbauer, 

2004). 

Compared to a similar study conducted further south in the Atlantic Ocean (De Corte et al., 

2010), viral abundance as well as the VP-Ratio were higher in the present study. Viral abundance 

was almost twice as high, VP-Ratio three times as high in the epipelagic, the differences in deeper 

water layers are smaller. For prokaryotic abundance, it was the other way around, it was found to be 

higher in the water samples taken further south. De Corte et al. found an increasing VP-Ratio with 

depth, which was not the case in the present study (Table 4, Figure 10a). VP-Ratio only differs 

drastically in the mesopelagic, being less than half found in the other 3 depth layers. However, the 

Cruise of De Corte et al. (2010) was undertaken at a different time of the year (December 

2007/January 2008) than the MOCA-Cruise (October 2010) relevant for the present study. Seasonal 

variation of prokaryotic and viral parameters was reported by several other authors (Wommack and 

Colwell, 2000; Winter and Weinbauer, 2010). 

Prokaryotic abundance was slightly higher and viral abundance was two- to three times 

higher in another study in the northeast, subtropical Atlantic (Parada et al., 2007) compared to the 

present study when considering similar depths. The authors concluded that the high number of 

viruses found in the meso- and bathypelagic in that study could have been the result of allochthonous 

input of viruses or high (pseudo)lysogenic production.  

The tight coupling of both viral and prokaryotic abundance with PHP found in this study 

(Table 6) is well known, since more prokaryotes simply incorporate more leucine and more viruses 

were found to occur in more productive systems (Weinbauer, 2004). Maintenance of a high number 

of viruses depends on an active prokaryotic host community (Wommack and Colwell, 2000). 
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Prokaryotic and viral populations 

The positive relationship of LNA-prokaryotes to PHP is at first glance unexpected, since other 

studies (Lebaron et al., 2001) have shown the HNA-fraction of prokaryotes being the main drivers of 

bulk PHP with values up to 100 % of HNA-prokaryotes to be responsible for the activity determined 

by leucine incorporation. However, this relationship does not necessarily mean, that all of the HNA-

prokaryotes have high cell-specific rates of production, since there was a great variety of activity 

determined for this group of prokaryotes. The major part of LNA-prokaryotes was in that study 

considered being mainly inactive or dead. However, one particular sampling site (SOLA 1/SOLA 2) 

of the study conducted by Lebaron et al. (2001) showed the weakest correlation between HNA-

prokaryotes and PHP and the highest incorporation rates of leucine by LNA-prokaryotes. Prokaryotic 

abundance at that sampling site was of similar magnitude as in the present study, moreover 

oligotrophic conditions were also found at SOLA. In contrast, there are also studies (Zubkov et al., 

2004; Sherr et al., 2006; Talarmin et al., 2011) showing that LNA-prokaryotes are important 

contributors to PHP. Zubkov et al. (2004) hypothesized that in coastal bacterioplankton communities 

off Plymouth (UK), LNA-content in prokaryotes is an adaptation to oligotrophic environments. Sherr 

et al. (2006) found, that HNA-prokaryotes are good predictors for high prokaryotic activity in 

coastal, productive marine ecosystems with high phytoplanktic biomass. In offshore waters however, 

both HNA- and LNA-prokaryotes are not as well related to prokaryotic activity with a higher 

variation of parameters there. In contrast to the study of Lebaron et al. (2001), the authors concluded 

that the LNA-prokaryotes cannot be considered inactive or dead. The third mentioned study 

(Talarmin et al., 2011) confirmed that both HNA- and LNA-prokaryotes are important contributors 

to PHP in the open Mediterranean Sea. These indications could mean that PHP in eutrophic 

environments like coastal areas is mainly driven by HNA-prokaryotes in contrast to the oligotrophic 

open ocean, where LNA-prokaryotes constitute the group being responsible for a major part of PHP. 

The connection between HNAHS-prokaryotes and FIC (r = 0.75, Table 6) could be an 

indication, that those prokaryotes are more susceptible to viral infection. In contrast, LNA-

prokaryotes do not appear to be infected to such a high extent (correlation with FIC: r = -0.73, 

Table 6), which could be an additional reason, why PHP can thrive among LNA-prokaryotes, since 

their activity is not hindered by viral infection. 

The finding, that Vir MED-populations were the most abundant ones, was also found by De 

Corte et al. (2008). These viruses seem to be dominant in pelagic, deep waters, whereas viruses with 

low fluorescence were found to be dominant in coastal regions (Kimmance et al., 2007; Pan et al., 

2007). De Corte et al. (2010) suggested a relation between larger prokaryotic genomes and 

Vir HIGH in the abyssopelagic, since prokaryotes are assumed to be opportunists there. 
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HNA-prokaryotes do not correlate with depth in the present study, however, LNA-prokaryotes 

decrease significantly with depth (Table 5). Vir HIGH shows a decrease with depth to the 

bathypelagic, with a slight increase in the abyssopelagic (Table 4, Figure 10). This trend is similar to 

the one found by De Corte et al. (2010). 

 

FIC and VP 

Critical for the calculation of FIC is the BS as depicted in Formula (1). As summarized by Parada et 

al. (2006), the parameters controlling BS are numerous (diversity, size and morphology of hosts and 

viruses, physiology, productive state of the environment, diel cycles etc.). However, a relation of BS 

in mixed communities and PHP based on average data for different environments was discovered in 

the same study. In contrast, in a study conducted by Weinbauer et al. (2003), BS did not change 

significantly over depth in the Mediterranean Sea. Since BS was not specifically assessed in the 

present study and the factors controlling BS seem to be too complex to extrapolate values from other 

environments, the BS was assumed to be 30 over the whole depth range which is a sensible estimate 

according to Wommack and Colwell (2000) and Parada et al. (2006). 

The occurrence of a low FIC in the epipelagic, where prokaryotic and viral abundance was 

high, is counterintuitive, but shows, that higher viral abundance does not automatically lead to a 

higher infection rate. The increase in FIC with depth could be related to the occurrence of fewer 

predators in deeper waters and therefore more viral infection. A higher FIC could result in a higher 

release of inorganic nutrients and DOC by lysis of prokaryotes. FIC is negatively correlated to PHP, 

which was also found by Winter et al. (2004). The more cells infected, the lower their production, 

which makes sense, since viruses could influence activity of their hosts (Weinbauer, 2004). Increase 

of VP with depth as well as values comparable to the ones in the present study were also found by 

De Corte et al. (2010). VP, intuitively, should be positively linked to prokaryotic abundance and 

PHP (Table 6), since more active cells can maintain and produce more viruses. A depth-related trend 

can be ruled out, since percentages of those viral populations were stable in the 3 depth layers, where 

also VP was determined. The inverse relationship between VP and VP-ratio when considering the 

FIC also is somehow a paradox: More viruses per prokaryotic cell should lead to an increased 

infection rate and also to an increased production of viruses, assuming steady state-conditions. But 

since FIC was lower in the mesopelagic, more viruses have to be released per lytic event, to maintain 

the comparatively high number of viruses. In the mesopelagic, only a small fraction of prokaryotes is 

infected, but produces a high number of viruses. It is the other way around in the abyssopelagic. This 

suggests, that the factors controlling viral parameters are different in deep waters at the sampling 

site, or, as mentioned above, the used BS estimate is not constant, but rather changes with depth. 
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Lysogeny 

Since calculation of FLC was possible for only 3 samples, they were excluded from further statistical 

analyses. One explanation for the low occurrence of lysogeny could be that Mitomycin C did not 

work as inducing agent for all prokaryotic groups as shown elsewhere (Ackermann and DuBow, 

1987). Another possibility however is, that there simply are very few lysogens in the investigated 

stations and depth layers. Jiang and Paul (1998) found a higher FLC in isolates from offshore, 

oligotrophic environments and suggested that lysogens only contribute significantly to viral 

production during natural induction events. Steward and Levin (1984) formulated a hypothesis, after 

which lysogeny is the dominant survival strategy at low host abundance. Weinbauer et al. (2003) 

discovered average values of lysogeny 6 times higher in the deep waters compared to surface waters 

of the Mediterranean Sea. FLC increased toward less productive environments, whereas FIC 

increased toward more productive environments. The authors therefore suggested that either viral 

lysis or lysogeny predominates in different environments, depending on the conditions (especially 

productivity) and that lysogeny is favored under disadvantageous environmental conditions. The 

Mediterranean Sea is known to be a phosphate-limited environment, with a Redfield-ratio (ratio of 

N:P, Redfield et al., 1963) between 19–23 in contrast to a typical Redfield-ratio of 16 for other 

marine systems (Karafistan et al., 2002). Since other studies (Wilson et al., 1998) found lysogeny 

being prevalent under nutrient (especially phosphorous) limited conditions, this substance among 

others may play a specific role, if either the lytic or lysogenic cycle dominates (Wilson et al., 1997). 

Evidence for that also comes from investigations of freshwater environments (Lymer and Lindström, 

2010; Pradeep Ram and Sime-Ngando, 2010). Lymer and Lindström (2010) found, that phosphate 

even induced prophages and resulted in subsequent production of temperate phages. Although host 

abundance is low in the present study (Table 4, Figure 10), other factors seem to be responsible for 

the occurrence of only few lysogens. Due to more or less stable concentrations of phosphorous in the 

water column (Table 4), phosphorous does not seem to be limiting in the northeast, subtropical 

Atlantic. This could be the main reason, why so few lysogens were found even at greater depths and 

why lysis is the dominant strategy of prokaryotic viruses at the sampled stations.  

 

Community composition and AR of prokaryotes 

The composition of prokaryotic communities seems to be influenced stronger by depth than by 

geographic distance. Mantel tests have shown positive connections of prokaryotic community 

composition to depth, but only for Bacteria reverse and CRA, in contrast to geographic distance 

(Table 8). Vertical structuring of marine prokaryotes and viruses was shown in several other studies 

(reviewed by Wommack and Colwell, 2000; Weinbauer, 2004). However, seasonal mixing of 
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different depth layers was also reported in deep waters of the Mediterranean Sea (Winter et al., 

2009). 

A relation of prokaryotic community composition to inorganic nutrients is also evident. 

Nutrients such as nitrate and phosphate influence prokaryotes by bottom up-control with different 

phylotypes being adapted in different ways. Influence of inorganic nutrients on viral communities 

(CRA-primer, Table 8) is indirect and probably a result of a change of prokaryotic communities.  

The connection between HNALS-prokaryotes and bacterial community composition might 

indicate, that those populations are mainly responsible for the bulk structure of bacterial types. The 

percentage of HNALS-prokaryotes is only significantly different in the epipelagic, supporting this 

idea, since covariation with depth does not seem to play a role.  

A change in FIC was not related to a change in community composition of prokaryotes as 

reported by Winter et al. (2008). Bacterial AR is almost the same for both primers, with no 

significant difference. Higher average values with a lower range were found by Winter et al. (2008) 

in the subtropical Atlantic off the African coast. However, the deepest sampling spot was 1000 m in 

that study, whereas the lowest values of bacterial AR were found in the bathypelagic in the present 

study. According to Winter et al. (2008), bacterial AR of the forward primer was higher than the AR 

given by the reverse primer. 

No trend of bacterial AR over depth was found by Winter et al. (2009). However, the study of 

De Corte et al. (2010) revealed a twofold increase in bacterial AR from 2750 m to >5000 m depth. 

The authors therefore suggested a wider host range of viruses in deep waters compared to surface 

waters. The method used in that study was automated ribosomal intergenic spacer analysis (ARISA), 

targeting the intergenic spacer-region in the rRNA operon. A direct comparison of the values to the 

ones obtained by T-RFLP is not possible, but comparing relative values of different depth layers 

within one method should be possible. Archaeal AR was low compared to bacterial AR (Table 4). 

Values for the archaeal reverse primer were significantly higher than for the archaeal forward primer 

(Table 4), which was also found in the study of Winter et al. (2008). The values in the present study 

are lower, but comparable with the values found by De Corte et al. (2010). 

Since prokaryotic community composition changed with depth (Table 8), but AR did not 

(Table 4), a potential shift of the communities with a more or less constant number of different types 

can be assumed. The same holds true for community composition and number of bands of viruses 

(Table 4 and Table 8). 
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Community composition and number of bands of viruses 

As for prokaryotes, viral communities differ also with respect to their depth (Table 8). A higher 

number of bands for CRA than for OPA was also found by Winter and Weinbauer (2010). Since the 

PCR for OPA did not work in my study (or showed only very weak bands) with the initial primer-

concentration, an increase of primer-volume from 5 µl to 10 µl in each PCR-reaction resulted in well 

visible bands. The reason is probably, that using only 5 µl of primers, not all of the priming sites 

were covered by primers. An amplification product is only formed, when the primers attach to a 

paired priming site (Figure 8). With a higher amount of primers, enough paired priming sites were 

covered, leading to sufficient amplification products. The observed communities of Bacteria and 

viruses considered by the methods used, appear to be tighter coupled in the bathy- and abyssopelagic 

compared to shallower depths, since viral and prokaryotic communities were connected only there 

(Table 7). 

 

 

Characteristics and comparison of the specific depth layers 

 

Change of parameters over geographic distance in the epipelagic 

A decrease of viral abundance from onshore-to offshore-stations (Figure 11) was found also in the 

gulf of Mexico (Boehme et al., 1993; Cochlan et al., 1993) and could be the result of higher 

productivity closer to the shore. The decrease of viral abundance while prokaryotic abundance did 

not change in the epipelagic (Figure 11) might be related to bacterial community composition (Table 

8). This suggests, that even in the epipelagic, the detected viruses are primarily  viruses infecting 

prokaryotes.  

When calculating a regression of Bacteria (forward and reverse primer combined), a positive 

relation with VP-Ratio is the result (y = 1.25x – 5.81; r2 = 0.96). The VP-Ratio therefore corresponds 

to bacterial diversity, the higher the ratio, the higher the diversity. This supports the ―Killing the 

winner‖-hypothesis (Thingstad and Lignell, 1997; Thingstad, 2000; Winter et al., 2010), according to 

which viruses maintain prokaryotic diversity by infecting the most abundant groups. 

 

Influence of deep water masses originating in the western Atlantic basin 

In the bathypelagic, where NADW was sampled, FIC as well as oxygen increases towards the VFZ 

(Table 6, Figure 6). The measured increase of oxygen could be the result of input of oxygen-rich 

NADW from the western basin, where the flow of NADW occurs southward after being formed in 

the North-west Atlantic (Ott, 1986; Tomczak and Godfrey, 2002). The input also seems to have some 
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significant influence on the community composition of Bacteria, as data of forward and reverse 

primers change over geographic distance (Table 8). Changing parameters in the bathypelagic become 

even more visible, when confining the analysis to samples taken from the lower NADW at around 

3000 m depth. Several factors including FIC and VP showed a clear trend over geographic distance, 

although not statistically significant (Figure 6). One possible reason for the higher FIC towards 

station 8 could be, that input of viral strains from the western basin could lead to a higher infection of 

prokaryotes, since those might not be resistant against allochthonous viruses. PHP did not show any 

trend in the LNADW, although it is correlated to VP over all depths. 

In the AABW, VP also increased towards station 8 (Figure 13a). In contrast to the LNADW, 

FIC did not show any trend. Another difference is the increase of nitrate- and phosphate-

concentrations in the AABW closer to station 8 (Figure 13d) in contrast to LNADW, emphasizing 

that the 2 water masses show distinct characteristics. 

Silicate (SiO4) concentrations were high in AABW. Different concentrations of silicate and 

the lack of a similar trend over geographic distance in the LNADW and AABW (Figure 12f and 13e) 

suggest, that the two water masses are clearly separated from each other. Therefore, LNADW and 

AABW show some distinct patterns of change of specific parameters over geographic distance being 

probably influenced by input from the western Atlantic basin through the VFZ. 
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APPENDIX 

 

Tables 

 

Table 1 Geographic position, sampling date, deepest sample and bottom depth at the specific stations. 

Station 1 was a test station and is therefore not part of this study. 

            
Station Latitude (°N) Longitude (°W) Sampling date Deepest sample (m) Bottom depth (m) 

            
      

2 24.45 -20.49 2010-10-11 3902 4023 

3 22.17 -23.58 2010-10-12 4700 4930 

4 19.91 -26.60 2010-10-13 4399 4703 

5 17.81 -29.43 2010-10-14 4502 4638 

6 15.86 -32.03 2010-10-15 5198 5465 

7 13.64 -34.73 2010-10-16 5198 6107 

8 11.38 -37.43 2010-10-17 4998 5241 

 

 

Table 2 Depth layers, sampled depths, water masses and their characteristics. AABW = Antarctic Bottom 
Water, AAIW = Antarctic Intermediate Water, BEL = Bottom of euphotic layer, OMZ = Oxygen minimum zone, 
UNADW, LNADW = upper and lower North Atlantic Deep Water. 

          
Depth layer Depth Water mass Sampled depth Characteristics 

          
     

Epipelagic 0–200 m BEL 100–101 m light, high temp. and O2-conc. 

Mesopelagic 200–1000 m OMZ 374–597 m low O2-conc. 

  AAIW 772–1000 m low salinity 

Bathypelagic 1000–4000 m UNADW 1976–2081 m high O2-conc. 

  LNADW 2969–3397 m high O2-conc. 

Abyssopelagic 4000–5200 m AABW 4399–5198 m cold, dense, high silicate 

 

 

Table 3 Grouped parameters for Bonferroni-correction. The resulting p-values were applied to Spearman-

correlations (Table 5 and 6) and Mantel-tests (Tab. 7 and 8). DOC  = Dissolved organic carbon, 

FIC = Frequency of infected cells, PHP  = Prokaryotic heterotrophic production, VP  = Viral production. 

      
Grouped parameters No. of parameters corr. p-value 
      
   
Depth, Temperature, Salinity 3 0.017 

Oxygen, DOC, PO4, NH4, NO3, NO2, SiO4 7 0.007 

Prokaryotic and viral abundance, VP-Ratio, populations 9 0.006 

FIC, VP, PHP 3 0.017 
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Table 4 Mean, standard deviation (SD), range and number of samples of all parameters for the entire data set and for the specific depth layers. AR = apparent 

richness, DOC = dissolved organic carbon, FIC = frequency of infected cells, fwd = forward, HNALS/HNAHS = high nucleic acid high/low side scatter porkaryotes, 

LNA = low nucleic acid prokaryotes, PHP = prokaryotic heterotrophic production, rev = reverse, Vir LOW / Vir MED / Vir HIGH = low, medium and high fluorescent 

viruses, VP-ratio = Virus-to-prokaryote ratio, VP = viral production. 

Parameter

Epi Meso Bathy Abysso all E M B A all

Prokaryotes ( × 10
5
) 1.559 (0.303) 0.582 (0.280) 0.165 (0.061) 0.141 (0.046) 0.523 (0.542) 1.182–2.084 0.309–1.229 0.099–0.321 0.109–0.233 0.10–2.08 7 13 16 6 42

  HNALS (%) 28.0 (5.3) 37.2 (4.4) 37.5 (1.9) 37.7 (2.4) 35.8 (4.9) 21.1–34.1 31.8–46.1 33.8–40.6 35.3–41.6 21.1–46.1 7 13 16 6 42

  HNAHS (%) 17.4 (5.1) 9.8 (1.8) 15.1 (2.0) 18.8 (1.6) 14.4 (4.2) 12.0–26.6 7.1–13.9 9.5–17.8 16.3–20.7 7.1–26.6 7 13 16 6 42

  LNA (%) 54.6 (3.6) 52.7 (4.5) 47.7 (3.1) 43.5 (2.3) 49.8 (5.1) 50.5–60.8 45.9–59.6 43.3–56.3 39.7–45.6 39.7–60.8 7 13 16 6 42

Viruses ( × 10
6
) 4.950 (1.917) 0.756 (0.353) 0.417 (0.156) 0.519 (0.040) 1.292 (1.829) 2.359–7.018 0.269–1.495 0.097–0.713 0.449–0.559 0.097–7.018 7 13 16 6 42

  Vir LOW (%) 31.4 (12.9) 42.7 (20.1) 43.9 (25.9) 31.2 (14.9) 39.6 (21.1) 14.9–54.0 17.9–69.4 18.0–96.4 18.9–57.4 14.9–96.4 7 13 16 6 42

  Vir MED (%) 54.6 (13.1) 47.3 (20.1) 47.4 (25.3) 59.4 (15.1) 50.3 (20.7) 31.1–68.8 20.2–73.5 2.7–73.8 33.2–71.7 2.7–73.8 7 13 16 6 42

  Vir HIGH (%) 14.1 (2.9) 9.9 (1.7) 8.7 (2.5) 9.3 (0.9) 10.1 (2.8) 10.6–18.7 7.0–13.8 0.8–12.6 8.1–10.8 0.8–18.7 7 13 16 6 42

VP-Ratio 30.9 (8.5) 13.3 (3.3) 27.6 (12.7) 29.2 (9.5) 25.4 (12.8) 20.0–40.1 7.9–18.6 7.1–45.5 24.0–49.5 7.1–49.5 7 13 16 6 42

FIC (%) - - 23.1 (7.1) 27.7 (15.0) 57.0 (13.2) 34.0 (18.6) - 12.7–33.6 6.8–53.7 39.2–67.6 6.8–67.6 - 6 8 5 19

VP  ( × 103
 ml-1

 h-1) - - 38.5 (17.8) 7.9 (2.6) 10.6 (2.2) 18.3 (17.1) - 11.0–63.5 3.3–10.1 7.2–12.6 3.3–63.5 - 6 8 5 19

AR Bacteria  fwd 18.4 (9.9) 14.7 (6.1) 15.7 (10.0) 11.2 (4.0) 15.2 (8.2) 9–38 6–28 4–32 7–18 4–38 7 13 16 6 42

AR Bacteria  rev 19.9 (6.2) 15.2 (5.3) 15.4 (8.4) 11.5 (4.0) 15.6 (6.9) 13–30 7–25 3–27 7–18 3–30 7 13 16 6 42

AR  Archaea  fwd 3.3 (1.3) 4.1 (1.1) 3.4 (1.3) 3.2 (1.6) 3.6 (1.3) 1–5 2–6 2–6 2–6 1–6 7 13 16 6 42

AR  Archaea  rev 5.6 (1.3) 6.0 (1.4) 4.4 (2.4) 4.3 (2.4) 5.1 (2.0) 4–7 3–8 1–10 3–9 1–10 7 13 16 6 42

No. of bands CRA 17.6 (3.8) 17.6 (2.9) 20.0 (3.8) 17.7 (3.3) 18.4 (3.5) 10–21 14–25 15–27 14–21 10–27 7 13 16 6 42

No. of bands OPA 16.9 (3.5) 13.6 (4.5) 14.9 (4.8) 13.7 (2.7) 14.7 (4.3) 12–20 7–21 7–21 10–18 7–21 7 13 16 6 42

Temperature (°C) 18.6 (2.5) 8.7 (2.7) 3.5 (1.4) 2.3 (0.07) 7.5 (5.9) 13.8–21.3 5.5–13.7 2.4–7.2 2.2–2.4 2.2–21.3 7 13 16 6 42

Salinity 36.5 (0.5) 35.2 (0.3) 34.9 (0.08) 34.9 (0.01) 35.3 (0.6) 35.5–36.9 34.8–35.9 34.9–35.22 34.9–34.9 34.8–36.9 7 13 16 6 42

Oxygen (µmol kg-1) 158.7 (36.2) 105.6 (34.3) 214.9 (26.9) 230.9 (2.2) 174.8 (59.6) 116.3–209.8 49.5–157.0 146.4–232.4 228.3–234.5 49.5–234.5 5 13 16 6 40

PHP (µmol Leu m-3
 d-1) 87.42 (27.21) 1.96 (1.82) 0.09 (0.11) 0.04 (0.01) 15.21 (34.32) 48.49–123.14 0.27–5.18 0.03–0.41 0.03–0.06 0.03–123.14 7 13 16 6 42

NO3 (µmol kg-1) 10.70 (8.77) 30.69 (5.44) 23.19 (1.89) 23.71 (0.12) 23.50 (8.10) 0.03–1.65 14.99–36.72 21.25–28.56 23.51–23.83 0.03–36.72 7 13 16 6 42

NH4 (µmol kg-1) 0.078 (0.018) 0.064 (0.027) 0.064 (0.021) 0.072 (0.016) 0.068 (0.022) 0.057–0.110 0.036–0.125 0.035–0.102 0.050–0.096 0.035–0.125 7 13 16 6 42

PO4 (µmol kg-1) 0.68 (0.52) 1.94 (0.39) 1.56 (0.11) 1.61 (0.01) 1.54 (0.52) 0.03–1.65 0.87–2.27 1.42–1.89 1.60–1.62 0.03–2.27 7 13 16 6 42

SiO4 (µmol kg-1) 3.08 (2.58) 17.97 (6.66) 31.92 (9.10) 51.20 (2.24) 25.55 (50.86) 0.53–8.37 5.25–26.71 19.39–48.60 49.04–54.59 0.53–54.59 7 13 16 6 42

DOC (µmol kg-1) 61.20 (5.98) 48.01 (3.44) 47.38 (4.65) 55.96 (9.80) 50.86 (7.45) 55.69–72.10 42.63–54.22 42.38–56.68 43.46–72.27 42.38–72.27 6 13 16 6 41

M  e  a  n (SD) R  a  n  g  e No. of samples

Epi Meso Bathy Abysso all
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Table 5 Spearman rank correlation coefficients (r) for different parameters against depth, temperature and 

salinity over the whole dataset and in the specific depth layers. All possible combinations were calculated, 

only significant results are shown here (see also Table 3). Dashes indicate no significant correlation, 

0.5 < r < -0.5 printed in bold. FIC = frequency of infected cells, PHP = prokaryotic heterotrophic production, 

VP = lytic viral production. 

All depths

n

Prokaryotic abundance -0.93 0.92 0.75 42

  LNA -0.78 0.76 0.57 42

Viral abundance -0.65 0.66 0.61 42

  Vir HIGH -0.58 0.59 0.52 42

FIC 0.74           - -0.74 19

AR Bacteria  reverse -0.42 0.44     - 42

PHP -0.92 0.92 0.77 42

Epipelagic

Geographic distance      - 0.89     - 7

Mesopelagic

Prokaryotic abundance -0.95 0.84 0.80 13

Viral abundance -0.86           -     - 13

Bathypelagic

Prokaryotic abundance -0.71 0.65 0.64 16

Abyssopelagic

HNAHS      -           - -0.94 6

VP      -           - -1.00 5

AR Bacteria  forward 0.94           -     - 6

Geographic distance      - 0.94     - 6

Depth Temperature Salinity
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Table 6 Spearman rank correlation coefficients (r) of determined parameters compared to each other over the 

whole dataset and in the specific depth layers. All possible combinations were calculated, only significant 

results are shown here (see also Table 3). Dashes indicate no significant relationship, 0.5 < r < -0.5 printed in 

bold. FIC = frequency of infected cells, PHP = prokaryotic heterotrophic production, Prok ab = prokaryotic 

abundance, Vir ab = viral abundance, VP = lytic viral production, n. a.  = not applicable. 

All depths

n

Prok. abundance n. a. 0.72 –0.73 0.44 0.95 –0.76    -    - –0.90 42

  HNALS n. a. –0.46    -   - –0.49    -    -    - 0.45 42

  HNAHS n. a.  - 0.75   - –0.44 0.75 –0.61 –0.59 0.41 42

  LNA n. a. 0.52 –0.73   - 0.76 –0.76    -    - –0.72 42

Viral abundance 0.72 n. a. –0.57   - 0.73 –0.46    -    - –0.62 42

  Vir HIGH 0.65 n. a.    - 0.45 0.68 –0.33    -    - –0.59 42

VP-Ratio n. a. n. a. 0.56 –0.50 –0.37 0.62 –0.45 –0.42    - 42

FIC –0.61 -0.57 n. a.   - –0.62 0.73    -    - 0.60 19

VP    -  -    - n. a. 0.53     - 0.58    -    - 19

Epipelagic

Geographic dist.    -  -    -   -    -     - –0.93 –0.93 –0.93 7

Mesopelagic

Prok. abundance n. a. 0.89    -   - 0.93 –0.56    -    - –0.82 13

  HNAHS n. a. –0.82    -   - –0.79 0.67    -    -    - 13

Viral abundance 0.89 n. a.    -   - 0.77     -    -    - –0.77 13

Geographic dist.    -  -    -   -    -     - –0.95 0.92    -

Bathypelagic

Prok. abundance n. a.  -    -   - 0.73     -    -    - –0.67 16

  HNAHS n. a.  - 0.76 0.74    - 0.69    -    -    - 16

  LNA n. a.  - –0.76 –0.71 0.60     -    -    -    - 16

Vir HIGH 0.76 n. a.    -   - 0.59     -    -    -    - 16

VP-Ratio n. a. n. a.    -   -    -     -    -    - 0.67 16

FIC    -  - n. a.   -    - 0.88 –0.88    -    - 8

VP    -  -    - n. a.    - 0.79    -    -    - 8

Geographic dist.    -  - –0.80   -    - –0.68 0.91 0.92    -

Abyssopelagic

Vir LOW    - n. a.    -   - 0.94     -    -    -    - 6

Vir MED    - n. a.    -   - –0.94     -    -    -    - 6

Geographic dist.    -  -    -   -    -     - –0.94    -    - 6

Prok ab Vir ab FIC VP PHP Oxygen NO3 PO4 SiO4
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Table 7 Mantel statistics (rM) comparing community composition of prokaryotes and viruses with each other. 

All possible combinations were calculated, only significant results are shown here (see also Table  3). Dashes 

indicate no significant relationship, rM  >  0.5 printed in bold. Arch fwd = Archaea forward, Arch rev = Archaea 

reverse, Bac fwd = Bacteria forward, Bac rev = Bacteria reverse, n. a.  = not applicable 

All depths

Archaea  reverse Bacteria  reverse CRA OPA n

Archaea  forward 0.47 - - - 42

Bacteria  forward - 0.77 - - 42

Epipelagic

Bacteria  forward - 0.64 - - 7

Mesopelagic

Archaea  forward 0.63 - - - 13

Bacteria  forward - 0.73 - - 13

CRA - - n. a. 0.38 13

Bathypelagic

Archaea  forward 0.43 - - - 16

Bacteria  forward - 0.76 0.24 - 16

Abyssopelagic

Bacteria  forward - 0.80 - 0.38 6  
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Table 8 Mantel statistics (rM), comparing community composition with other parameters at all depths and in 

the specific depth layers. All possible combinations were calculated, only significant results are shown here 

(see also Table 3). Prokaryotic and viral populations determined by flow cytometry were only considered over 

all depths, not in the particular depth layers. Dashes indicate no significant relationship, rM > 0.5 printed in 

bold. Arch fwd = Archaea forward, Arch rev = Archaea reverse, Bac fwd = Bacteria forward, Bac 

rev = Bacteria reverse. For other abbreviations see Table 4. 

All depths

Arch fwd Arch rev Bac fwd Bac rev CRA OPA n

Depth 0.13 0.22 0.31 0.29 0.29 0.21 42

Temperature 0.17 0.25 0.37 0.33 0.33 0.19 42

Salinity 0.18 0.32 0.36 0.32 0.33 - 42

Prok. abundance 0.19 0.18 0.39 0.26 0.33 0.23 42

  HNALS - - 0.29 0.27 0.26 -

  HNAHS - - - - - 0.26

Viral abundance 0.29 - 0.39 0.29 0.34 - 42

  Vir HIGH - - 0.26 - 0.26 -

VP-Ratio - 0.30 - - - - 42

Oxygen - - - - - 0.18 40

NO3 0.21 - 0.30 0.27 0.30 - 42

NO2 0.33 - 0.32 0.34 0.32 - 42

PO4 0.20 - 0.32 0.28 0.31 - 42

SiO4 - - 0.18 0.34 0.25 - 42

PHP 0.23 - 0.38 0.33 0.33 - 42

Geographic distance - - 0.15 0.18 0.11 - 42

Epipelagic

Temperature - - - - - 0.80 7

Viral abundance - - - 0.70 - - 7

VP-Ratio - - 0.66 0.81 - - 7

Mesopelagic

NH4 - - - - 0.43 - 13

Geographic distance - - - - 0.30 - 13

Bathypelagic

NH4 - - - - - 0.38 16

Geographic distance - - 0.18 0.28 - - 16

Abyssopelagic

Depth - - 0.76 - - - 6

Salinity - - - 0.66 - - 6

VP - - 0.71 - - 0.82 5

PO4 - - - - - 0.54 6  



54 
 

Figures 

 
 

Figure 1 The microbial loop. Prokaryotes (―Heterotrophic bacteria‖) take up dissolved organic carbon (DOC) 

which derives from different sources. The prokaryotes are grazed by protozoans (e. g. ciliates and flagellates), 

and provide carbon for higher trophic levels in the classic food chain. Solid arrows depict the original concept 

of the microbial loop (Azam et al., 1983), dashed arrows show later additions. Taken from Fenchel (2008). 

 

 

 
 

Figure 2 The viral shunt. Viruses convert single cell-organisms such as phytoplankton and prokaryotes 

(―Heterotrophic bacteria‖) into dissolved and particulate organic matter (P-D-OM), decreasing the trophic 

transfer efficiency of the marine foodweb. 
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Figure 3 Map of the sampling stations in the subtropical Atlantic Ocean. Station 1 was a testing station. 

VFZ = Vema fracture zone. For exact positions of the stations see Table 1. 

 

 

 

 

 

VFZ 

North Atlantic Ridge  
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Figure 4 Schematic overview of the virus dilution approach. Tangential Flow Filtration, incubation and 

subsampling were performed on the R/V Pelagia. Enumeration and further processing the data was performed 

at the Department of Marine Biology, Vienna. 

 

 

 

 

Figure 5 Example for a time course of prokaryotic and viral abundance over the 32 hours incubation period of 

the virus dilution experiment. Left: Duplicate treatments without Mitomycin C. Right: Illustration for 

calculating FIC and VP showing 3 lysis events in terms of peaks of viral abundance. Only one time course of 

the duplicate incubations is visible. P0 = prokaryotic abundance at the beginning of incubation, Vmin = viral 

abundance at low point, Vmax = viral abundance at a peak, tmin = time at low point, tmax = time point at a peak. 

Station 2, 11 October 2010 at 3900 m depth, treatments without Mitomycin C. 
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Figure 6 Schematic overview of the specific steps of T-RFLP. Tangential Flow Filtration and  

filtration through 0.2 µm-filters were performed on the ship, subsequent steps were performed 

in Vienna. 
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Figure 7 Schematic overview of the specific steps of RAPD-PCR. Tangential Flow Filtration was performed 

on the ship, filtration through 0.2 µm-filters and subsequent steps were performed in Vienna. 
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Figure 8 Schematic representation of the amplification in RAPD-PCR. Arrows represent primers with the 

same sequence, binding to priming sites on the template DNA. (a) PCR-products are formed since the primer-

pair attaches to the template DNA pointing to each other and within a certain distance. Deviations in the 

sequences of different viral groups lead to different-sized PCR-products and allow their comparison. 

(b) Although the two primers are pointing toward each other, no PCR-product is formed because the primers 

are too far apart. (c) No PCR-product is formed since only one priming site occurred, but not the 

corresponding second one. 
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Figure 9 Gating of prokaryotic (left) and viral (right) populations based on SYBR Green fluorescence 

(arbitrary fluorescence units, AFU) and side scatter intensity (arbitrary units, AU). LNA = low nucleic acid 

prokaryotes, HNALS = high nucleic acid low side scatter prokaryotes, HNAHS = high nucleic acid high side 

scatter prokaryotes. VirLow, VirMed, VirHigh = low, medium and high fluorescent viruses, respectively. 
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Figure 10 Parameters of all stations in the four depth layers. (a) Prokaryotic abundance, viral abundance and 

Virus-to-Prokaryote-Ratio (VP-Ratio). Note that the unit of prokaryotes is × 10
5

 ml
-1

 and that of viruses 

× 10
6
 ml

-1
. (b) Frequency of infected cells (FIC) and viral production (VP). (c) Percentage of prokaryotic and 

viral populations distinguished by flow cytometry. (d) Apparent richness of prokaryotes (Number of T-RFLP 

peaks). (e) Number of bands determined by RAPD-PCR. For other abbreviations see Table 4. 
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Figure 11 Selected parameters in the epipelagic compared over geographic distance. (a) Abundance of 

prokaryotes (Prok.), viruses (Vir.) and VP-Ratio (VP-R). (b) Temperature y = -0.96x + 23.45. Dashed line 

indicates arbitrary grouping of stations to compare difference of means by t-test or difference of medians by 

Mann-Whitney-test. 
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Figure 12 Lower North Atlantic Deep Water (sampled at ca. 3000 m depth). Selected parameters compared 

over geographic distance. (a) Viral production y = -0.0017x + 10.40 (b) Frequency of infected cells  

y = -0.013x + 46.48 (c) Temperature y = 0.00008x + 2.60; Salinity y = –0.0042x + 34.95 (d) Dissolved oxygen 

y = -0.0049x + 232.64 (e) Nitrate y = -0.00033x + 22.20; Phosphate y = -0.011x + 1.58 (f) Bacterial apparent 

richness (forward primer) y = -0.0098x + 25.37; Silicate y = 3.97x + 38.53. Dashed line indicates arbitrary 

grouping of stations to compare difference of means by t-test or difference of medians by Mann-Whitney-test. 
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Figure 13 Abyssopelagic (Antarctic Bottom Water). Selected parameters compared over geographic distance.  

(a) Viral production y = -0.0021x + 12.33 (b) Temperature y = -0.00011x + 2.21; Salinity y = -0.0066x + 34.91 

(c) Dissolved oxygen y = -0.0023x + 233.10 (d) Nitrate y = 0.057x + 23.40; Phosphate y = 1.07x + 2.21 

(e) Silicate y = -0.0029x + 53.94. Dashed line indicates arbitrary grouping of stations to compare difference of 

means by t-test or difference of medians by Mann-Whitney-test. 
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Figure 14 Example of viral community composition in form of a presence/absence matrix derived from 

RAPD-PCR performed with the primer CRA-22. Filled squares indicate presence, empty squares represent 

absence of a specific band for each sample. 

 

 

 

 

 

 

 

 

 



66 
 

Zusammenfassung 

 

Die Bedeutung von Prokaryoten und deren Viren für biogeochemische Kreisläufe in marinen 

Ökosystemen wurde in den 1980er Jahren entdeckt. Prokaryoten (Archaea und Bacteria) nehmen 

gelöstes, organisches Material (engl. dissolved organic carbon = DOC) auf und führen es somit 

höheren trophischen Levels im Nahrungsnetz zu (―microbial loop‖). Viren lysieren Prokaryoten 

(lytischer Zyklus) oder sie integrieren ihre Erbsubstanz in das Wirtsgenom, wo der einzelne Virus als 

so genannter Prophage weiter existiert und durch Zellteilung an Tochterzellen weitergegeben wird 

(lysogener Zyklus). Beim lytischen Zyklus wird DOC freigesetzt, welches somit verfügbar wird für 

andere Prokaryoten, man nennt diesen Mechanismus „viral shunt―. Der lysogene Zyklus hingegen 

scheint unter Bedingungen niedriger Wirtsabundanz und -aktivität bevorzugt zu werden, kann aber 

zum lytischen Zyklus wechseln, wenn sich die Bedingungen ändern bzw. wenn es von außen 

induziert wird. Im Rahmen der MOCA cruise im Oktober 2010 wurden Proben an 7 Stationen mit 

jeweils 6  unterschiedlichen Tiefenstufen genommen und mithilfe von Inkubationsexperimenten, 

Flow Cytometer und molekularbiologischen Methoden untersucht. Dabei wurden u. A. Abundanzen 

von Prokaryoten und Viren, lytic viral production (VP), frequency of infected cells (FIC) und 

frequency of lysogenic cells (FLC) ermittelt. Zusätzlich wurde terminal restriction fragment length 

polymorphism (T-RFLP) und randomly amplified polymorphic DNA-PCR (RAPD-PCR) 

durchgeführt, um Prokaryoten bzw. Viren zu charakterisieren und die unterschiedlichen Stationen 

und Tiefen hinsichtlich ihrer Zusammensetzung miteinander zu vergleichen. Andere Parameter, 

welche im Zuge der Cruise ermittelt wurden, wie beispielsweise prokaryotic heterotrophic 

production (PHP), Sauerstoff- und Nährstoffkonzentrationen, Temperatur etc. wurden ebenfalls in 

die Auswertung miteinbezogen. Rangkorrelationen, Vergleiche der 4 Tiefenstufen mittels t- bzw. 

Mann-Whitney-test sowie Mantel tests wurden berechnet. Wie erwartet, nahmen die Abundanzen 

von Prokaryoten und Viren an jeder Station mit zunehmender Tiefe exponentiell ab, weiters waren 

beide miteinander positiv korreliert. Die Anzahl an Viren schwankte stärker als die Anzahl der 

Prokaryoten, was darauf hinweist, dass virale Abundanz einer nicht so engen Kontrolle unterworfen 

ist. Der Grund für die entdeckte Zunahme von FIC mit der Wassertiefe könnte eine geringere Zahl an 

Protisten in der Tiefe sein. VP korrelierte positiv mit der Anzahl an Prokaryoten und mit PHP, da 

eine höhere Zahl aktiver Zellen mehr Viren produzieren können. Von den verschiedenen Gruppen, 

die am Flow Cytometer hinsichtlich Fluoreszenz unterschieden werden können, waren Prokaryoten 

mit geringem Nukleinsäureanteil (LNA) positiv korreliert mit PHP. Dies weist darauf hin, dass 

LNA-Prokaryoten einen wichtigen Beitrag zur PHP in oligotropher, offener See leisten. Am 

häufigsten waren Viren mit mittlerer Fluoreszenz (Vir MED), welche auch in anderen Studien sehr 
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zahlreich in der pelagischen Tiefsee waren. Im Gegensatz dazu scheinen Viren mit niedriger 

Fluoreszenz (Vir LOW) in Küstenregionen zu dominieren. Sowohl die mikrobiellen Gemeinschaften 

von Prokaryoten als auch jene von Viren scheinen sich stärker bezüglich Tiefe zu unterscheiden als 

hinsichtlich geographischer Distanz. Da die apparent richness (AR) von Prokaryoten und die Anzahl 

viraler RAPD-PCR Banden über die Tiefe hinweg mehr oder weniger konstant bleibt, weist dies auf 

eine Änderung der Artenzusammensetzung bei einer gleichbleibenden Anzahl unterschiedlicher 

Taxa hin. Das Verhältnis von Prokaryoten zu Viren (VP-Ratio) korrelierte mit bakterieller AR, dies 

ist in Einklang mit der Auffassung, dass Viren eine hohe Vielfalt an Bacteria aufrechterhalten. VP, 

FIC, Temperatur, Salinität, Sauerstoff und anorganische Nährstoffe (Nitrat, Phosphat) ändern sich in 

den tiefsten untersuchten Wassermassen (ca. 3000 bis 5200 m) mit zunehmender Distanz der 

einzelnen Probestationen. Dies weist darauf hin, dass der Eintrag von sauerstoffreichen 

Wassermassen (LNADW, AABW) vom westlichen ins östliche Becken durch die Vema Fracture 

Zone (VFZ) einen Effekt auf mikrobielle und virale Gemeinschaften hat. 

 

 

Summary 

 

The importance of prokaryotes and their viruses for biogeochemical cycling in marine environments 

was discovered in the 1980s. Prokaryotes (Archaea and Bacteria) take up dissolved organic carbon 

(DOC) and make it available for higher trophic levels of the food web (―microbial loop‖). Viruses 

infecting prokaryotes either lyse their hosts (lytic cycle) or integrate into the host genome, where 

they are passed on to daughter cells (lysogenic cycle). Through viral lysis, DOC is released, which is 

then available for other prokaryotes, a mechanism called ―viral shunt‖. Lysogeny, on the contrary, is 

considered to be favored under conditions of low host abundance and activity and can switch to the 

lytic cycle again, when the conditions change. During the MOCA cruise in October 2010, samples 

were taken from 7 stations and depth layers and analyzed using incubation experiments and flow 

cytometry to gain knowledge about the abundance of prokaryotes and viruses, lytic viral production 

(VP), frequency of infected cells (FIC), frequency of lysogenic cells (FLC) and other parameters. In 

addition, terminal restriction fragment length polymorphism (T-RFLP) and randomly amplified 

polymorphic DNA-PCR (RAPD-PCR) were performed to fingerprint and to compare prokaryotic 

and viral communities, respectively. Other parameters determined aboard the ship such as 

prokaryotic heterotrophic production (PHP), oxygen and nutrient concentrations, temperature, etc. 

were also taken into account and rank correlation statistics, comparison of 4 different depth layers as 

well as mantel tests were carried out. As expected, prokaryotic and viral abundance decreased 
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exponentially with depth and correlated positively with each other at all stations. The number of 

viruses shows higher variability, suggesting that viral abundance is less tightly controlled than 

prokaryotic abundance. The reason for the discovered increase of FIC with depth could be the 

occurrence of fewer predators in deeper waters. Moreover, the more prokaryotes that were infected, 

the lower their production, since viruses could influence the activity of their hosts. VP is positively 

linked to prokaryotic abundance and PHP, since more active cells can produce more viruses. From 

different populations distinguished by flow cytometry, prokaryotes with low nucleic acid-content 

(LNA) were correlated to PHP, suggesting that LNA-prokaryotes are important drivers of PHP in 

oligotrophic, open ocean. Medium fluorescence viruses (Vir MED) were most abundant, they were 

found in other studies to be dominant in pelagic, deep waters, whereas viruses with low fluorescence 

(Vir LOW) appear to dominate in coastal regions. The composition of both viral and prokaryotic 

communities seem to be stronger influenced by depth than by geographic distance. Since apparent 

richness (AR) of prokaryotes and number of viral bands at the same time remains more or less 

constant over depth, this indicates a potential shift of the communities with a constant number of 

different types of prokaryotes and viruses. The virus-to-prokaryote-ratio (VP-Ratio) is correlated to 

AR of Bacteria, suggesting that viruses maintain host diversity. The deepest investigated water 

layers (ca. 3000 to 5200 m) show some distinct patterns of change of specific parameters such as VP, 

FIC, temperature, salinity, oxygen and inorganic nutrients over geographic distance, indicating an 

effect on microbial and viral communities by input of oxygen-rich water from the western Atlantic 

basin through the Vema Fracture Zone (VFZ). 
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