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Abstract

The prototypic receptor-like protein tyrosine phosphatase CD45 is proteolytically 

cleaved in human monocytes and granulocytes upon activation via zymosan or 

PMA. The cytoplasmic tail of ct-CD45 (ct-CD45) is released via activation-

induced cell death. Ct-CD45 acts as a cytokine-like factor on human T cells, 

thereby, potently reducing proliferation and cytokine production leading to an 

anergy-like state in T cells.

The aim of this work is to elucidate the molecular mechanisms governing ct-

CD45-induced T cell anergy. A potential receptor candidate for ct-CD45 on T 

cells was identified to be PRAT4A. Here, we demonstrate that binding of ct-

CD45 to a murine cell line transfected with human PRAT4A can be blocked by 

an antibody against PRAT4A. Induction of the anergic state is accompanied by 

an inhibition of T cell blast formation suggesting an early cell cycle arrest. 

Microarray analysis of T cells activated in the presence of ct-CD45 indicated 

upregulation of two factors not known to be associated with anergy before -

Schlafen family member 12 (SLFN12) and Krueppel-like factor 2 (KLF2). While 

KLF2 is a transcription factor implicated in the maintenance of T cell 

quiescence, little is known about SLFN12. SLFN12 is a primate-specific factor 

which belongs to a gene family that is involved in thymocyte development and 

cellular growth regulation. The expression of both factors was confirmed and 

analyzed via quantitative real-time PCR identifying SLFN12 as a putative 

anergy factor. IL-2 strongly reduced SLFN12 mRNA whereas KLF2 expression 

was barely changed. Furthermore only SLFN12 showed early induction in ct-

CD45-treated T cells. Transfection of a SLFN12 siRNA could partially restore 

proliferation of anergic cells. Expression profiling of cell cycle-associated factors 

supported an early cell cycle arrest as cyclin D1 showed impaired induction 

while other factors were unaltered. 

Taken together, these results demonstrate that ct-CD45 induces anergy via 

PRAT4A subsequently leading to the induction of SLFN12. Inhibition of cyclin 

D1 results in an early cell cycle arrest characterized by reduced lymphoblast 

formation resembling cellular quiescence. Thus, our data supports a novel 

functional state for T cells.
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Zusammenfassung

Die klassische Proteintyrosinphosphatase CD45 kann in humanen Monozyten 

und Granulozyten bei Aktivierung durch Zymosan oder PMA proteolytisch 

gespalten werden. Die Freisetzung der cytoplasmatischen Domäne von CD45 

(ct-CD45) erfolgt durch aktivierungsinduzierten Zelltod. Diese Domäne bindet 

als löslicher Faktor an humane T-Zellen und reduziert Proliferation und 

Zytokinsekretion was zur Ausbildung eines anergieähnlichen Zustandes führt.

Das Ziel der vorliegenden Arbeit ist es die molekularen Mechanismen, welche 

hinter der von ct-CD45 verursachten Anergie stehen, zu analysieren. Mit 

PRAT4A hat unser Labor in einer früheren Studie einen Rezeptorkandidaten für 

ct-CD45 identifiziert. In dieser Studie demonstrieren wir, dass die Bindung von 

ct-CD45 an eine PRAT4A-überexprimierende Zelllinie durch einen Antikörper 

gegen PRAT4A unterbunden werden kann.

Es wird gezeigt, dass die Induzierung dieses Zustandes von einer verminderten 

Bildung von Lymphoblasten begleitet wird, was auf einen frühen 

Zellzyklusarrest hindeutet. Microarray-Analyse von humanen T-Zellen die in der 

Gegenwart von ct-CD45 aktiviert wurden, zeigte die Überexpression zweier 

Faktoren – Krüppel-like factor 2 (KLF2) und Schlafen family member 12 

(SLFN12). Während KLF2 ein bekannter, mit der Regulation von T-

Zellquieszenz assoziierter Faktor ist, weiß man wenig über SLFN12. Dieser 

Faktor wird nur in Primaten exprimiert und gehört einer Genfamilie an, die mit 

Thymozytenentwicklung und zellulärer Wachstumsregulierung in Verbindung 

gebracht wird. Diese Studie bestätigt die Überexpression von beiden Faktoren 

mittels quantitativer Realtime-PCR und identifiziert SLFN12 als möglichen 

Anergiefaktor. IL-2 reduzierte die Expression von SLFN12 mRNA wogegen 

KLF2 kaum reguliert wurde. SLFN12 wurde zudem bereits kurz nach 

Aktivierung in der Präsenz von ct-CD45 hochreguliert. Die Transfektion einer 

SLFN12 siRNA verbesserte die Proliferation von T-Zellen die in der Gegenwart 

von ct-CD45 aktiviert wurden. Die Expressionsmuster von Zellzyklusfaktoren 

unterstützen einen frühen Zellzyklusarrest durch ct-CD45, da sich die 

Expression von Zyklin D1, nicht aber von anderen Faktoren verringert zeigte. 

Zusammenfassend zeigt diese Arbeit, dass ct-CD45 über die Bindung an 

PRAT4A T-Zellanergie induziert und zu einer Hochregulierung von SLFN12 
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führt. Die spezifische Inhibierung von Zyklin D1 führt zu einem frühen 

Zellzyklusarrest, der sich in einer verringerten Bildung von Lymphoblasten 

manifestiert, welche morphologisch ruhenden Zellen ähnlich sind. Unsere Daten 

unterstützen daher einen neuen funktionalen Differenzierungszustand von T-

Lymphozyten.
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1. Introduction

The central role of the immune system lies in the prevention of infection and in 

the containment and subsequent eradication of established infections [1]. In 

order to achieve this, the immune system relies on two major defence 

mechanisms consisting of innate and adaptive immunity. 

1.1. Innate immunity

Innate immunity conveys the immediate and the early immune response 

towards infection [2]. Innate immune defence mechanisms include physical 

barriers against pathogenic entry such as epithelia, molecular components like 

the serum proteins of the complement system and cellular effectors including

phagocytes (i.e. neutrophil granulocytes and macrophages), professional 

antigen-presenting cells like dendritic cells (DCs) and natural killer (NK) cells

[1].

The pathogen specificity of the innate immune system is based on the 

recognition of conserved molecular structures which are common to different 

classes of microbes, but are not found on cells of the host. These conserved 

structures, which are also termed pathogen-associated molecular patterns 

(PAMPs) are bound by germline-encoded pattern recognition receptors (PRRs)

[1]. Among these receptors is, for instance, the mannose receptor on 

macrophages which recognizes terminal mannose residues, a typical feature of 

many microbial glycoproteins. Triggering the mannose receptor also mediates 

phagocytosis and subsequent degradation of pathogens within 

phagolysosomes [1].

Pattern recognition receptors also comprise the Toll-like receptor (TLR) family. 

While there are 10 TLR family members in humans, 12 functional TLRs have 

been identified in mice [3]. TLRs are expressed intracellularly as well as on the 

cell surface depending on the type of ligand being bound. For instance, TLR-3, 

TLR-7, TLR-8 and TLR-9, all of them binding nucleic acids, are localized in

intracellular vesicles, including the endoplasmic reticulum (ER), endosomes, 

lysosomes or endolysosomes [3]. Their intracellular location is crucial to enable 

the recognition, for example, of viral nucleic acids but also to prevent contact to 

self nucleic acids which would potentially initiate autoimmune disease [3].
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Conversely, TLR-1, TLR-2, TLR-4, TLR-5 and TLR-6 which recognize microbial 

membrane or cell wall components are located on the cell surface [2,3]. For 

example, TLR-4 (together with MD-2 and CD14) recognizes lipopolysaccharide

(LPS), a cell wall component of gram-negative bacteria, while the TLR-2/TLR-6 

heterodimer binds bacterial lipoproteins, lipoarabinomannan, peptidoglycan and

zymosan, a component of yeast [2].

TLRs as well as other PRRs are widely distributed on immune cells and play an 

important role in their activation. DCs also require signalling through TLRs in 

order to fully mature and acquire the ability to migrate and present antigen 

taken up in the periphery to naïve T cells in the lymph nodes. Thus, they are 

important initiators of adaptive immune responses [2].

1.2. Adaptive immunity

Unlike innate immunity the specificity of the adaptive immune system relies on 

the recognition of distinct antigenic structures rather than conserved microbial 

patterns [1]. While PAMPs are conserved macromolecular structures, the 

antigens recognized by adaptive immune cells are highly specific enabling the 

detection of non-microbial antigens. The variety of the receptors of adaptive 

immunity is based on the somatic recombination of gene segments which leads 

to a much greater diversity than can be achieved for innate immune receptors. 

Adaptive immune receptors are distributed on lymphocytes, i.e. B and T cells 

which express B and T cell receptors, respectively [1]. A distinct feature of these 

receptors is their clonal distribution, only a few clones of B or T lymphocytes in 

the entire population are specific for a certain epitope of an antigen. Upon 

recognition of their cognate antigen, antigen-specific clones readily expand. 

Some of the clones persist as long-lived memory cells initiating even stronger 

responses upon reencounter with the antigen. Immunological memory is thus a 

hallmark of adaptive immunity [1].

B cell receptors are membrane-bound antibodies or immunoglobulins (Ig) which 

recognize either conformational or linear epitopes of macromolecules, like 

proteins, lipids or carbohydrates. Antigen-binding leads to the activation of a 

naïve B cell and differentiation to an antibody-secreting plasma cell. Secreted 

antibodies are found in the blood or are at mucosal sites binding and 

neutralizing extracellular pathogens or toxins. This type of immunity is termed 
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humoral immunity. Additionally, antibodies also mediate cellular effector 

functions carried out by innate immune cells expressing receptors for the Fc-

part of antibodies. These functions include, for instance, phagocytosis of 

opsonized microbes by phagocytes or complement activation via the classical 

pathway. These effector functions are specific for antibody isotypes which are 

secreted as a result of immunoglobulin class-switch [1].

Unlike B cells T lymphocytes are mediators of cell-mediated immunity towards 

intracellular pathogens such as viruses or intracellular bacteria. Different to the 

B cell receptor the T cell receptor (TCR) only recognizes processed forms of 

protein antigens which are presented by the body’s cells on major 

histocompatibility complex (MHC) molecules [2].

1.3. T cell development

T cells arise from hematopoietic progenitors in the bone marrow which enter the 

thymus for final differentiation [4]. T cell development within the thymus consists 

of a series of signalling events which decide about the cellular fate of 

thymocytes and lineage commitment into either CD4 or CD8 co-receptor-

bearing T lymphocytes. Thymocytes are initially generated via the interaction 

between haematopoietic stem cells and thymic stromal cells [5]. In this early 

phase the cells still-lack CD4 or CD8 expression and have to traverse a series 

of distinct double-negative stages during -chain of the TCR 

undergoes rearrangement of its several variable (V), diversity (D) and joining (J) 

gene segments until a pre-TCR is assembled from -chain and 

-chain [2,5]. -chain rearrangement is completed T 

cells start to express CD4 and the CD8  heterodimer. At this double-positive 

stage the -chain rearranges its V and J segments leading to the 

assembly of the fully rearranged TCR. [2, 104] Newly assembled TCRs are then 

selected via their avidity of binding of self-peptide:MHC complexes. Very weak 

to no interaction leads to “death by neglect”. Conversely, a subsequent strong 

interaction induces cell death via “negative selection”. Only intermediate

interaction with self-peptide:MHC complexes leads to “positive selection” of 

thymocytes which become mature T cells [104]. Depending on the class of 

MHC-molecules recognized thymocytes either retain the expression of the CD4 

or the CD8 co-receptor which gives rise to the two main T cell lineages. 
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1.4. Morphological and functional plasticity of T cell differentiation 

Triggering of the TCR sets the stage for the functional differentiation of a T cell. 

Basic T cell differentiation states are accompanied by characteristic cellular 

phenotypes (Table 1). Quiescent lymphocytes are small with reduced 

metabolism but readily proliferate when receiving signals through the TCR [58].

TCR engagement in the absence of costimulation typically induces a 

tolerogenic or anergic T cell phenotype while full stimulation results in the 

differentiation into various effector cell subsets [102]. 

phenotype
quiescent 

lymphocytes
activated 

lymphocytes
anergic

lymphocytes

cell size small large large

rate of protein synthesis low high low

response to activation proliferation
expansion or 

apoptosis
none or apoptosis

sensitivity to FasL-
dependent apoptosis low high high

Table1: Morphological and functional characteristics of basic T lymphocyte 

differentiation states. Adapted from Yusuf and Fruman [58].

Activation results in dramatic increases in cellular size which is found in both 

fully activated as well as in anergic lymphocytes [58]. A key difference between 

these two functional states lies in their responsiveness to subsequent 

stimulation. While activated T cells typically show further expansion towards 

TCR stimulation anergic lymphocytes are hyporesponsive which is 

accompanied by reductions in cellular protein synthesis similar to quiescent T 

cells [58]. The anergic phenotype might also be accompanied by the 

acquirement of regulatory T cell (Treg) characteristics [45]. T cell activation also 

renders T cell susceptible to activation-induced cell death and to apoptosis 

mediated via Fas ligand [58] which might be important for the contraction of 

immune responses and prevention of autoimmunity [103].

Differentiation of activated T lymphocytes into effector subsets depends on the 

cytokine environment as well as on the strength of the TCR stimulus [102]. 
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Effector subsets of CD4+ T cells are generated and reinforced by a distinct 

milieu. However, this differentiation is not always a terminal fate and can be 

destabilized by changing conditions thus favoring differentiation towards 

another subset [107].

T cell differentiation and its plasticity are actively regulated on the molecular 

level involving antagonizing transcriptional programs which may be induced by 

external factors such as cytokines. Stability of a T cell differentiation state may 

also depend on transcriptional curcuits favoring its own expression via positive 

feedback loops while repressing another fate [107]. Examples for such 

processes are the mutual antagonism of the transcription factors T-bet 

regulating the development of Th1 cells and GATA-3 favouring Th2 cell 

development [107]. Highly stable states might depend on repeated cell divisions 

in order to be reversed such as clonal anergy which requires the T cell growth 

factor IL-2 to return to a state of full T cell activation [45]. Molecular factors and 

pathways involved in the functional differentiation of T lymphocytes are 

discussed in more detail in the following sections.

1.5. T cell lineages

CD4+ T cells

CD4+ T helper (Th) cells are crucial for the initiation and modulation of adaptive 

immunity [6]. Th cells recognize antigens processed and presented by antigen-

presenting cells (APCs) on MHC class II molecules [2]. The main effector 

function of activated CD4+ T cells lies in cytokine and chemokine production [6]. 

Th cells may give help to primary CD8+ T cell responses. However, they have 

been shown to be essential for the generation of memory and initiation of 

secondary responses [14]. Similarly, there is a need for CD4+ T cells for the 

clonal selection of germinal center B cells to establish B cell memory and the 

regulation of antibody class switch as well as affinity maturation [6,9].

CD4+ T cell comprise a heterogeneous population with distinct functions [6]. 

Differentiation into subsets is regulated via the cytokine microenvironment but 

also depends on the strength of the TCR interaction with its cognate antigen [7].

Lineage choice is associated with the induction of a distinct transcriptional 

programme [6,7].
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Differentiation into the Th1 lineage is achieved via the cytokines IL-12 and IFN-

activation of macrophage-mediated phagocytosis of pathogens. Transcription 

factors expressed by these cells are STAT4, STAT1 and T-bet. [2, 7]. 

The Th2 subset requires IL-4 for its differentiation which is governed by the 

activity of GATA-3 and STAT6 transcription factors. Its physiological role lies in 

immunity against helminthic worms and other extracellular parasites by

promoting antibody class switch especially to IgE. Th2 cytokines include IL-4, 

IL-5 and IL-13 [2, 7].

Immunity against extracellular bacteria and fungi at mucosal sites is mediated 

via Th17 cells which are producers of IL-17A, IL-17F and IL-22 [7]. These 

cytokines act proinflammatory by inducing cytokine production of epithelial, 

endothelial and fibroblast cells and help in neutrophil recruitment [2]. 

Polarization towards Th17 depends on signalling via TGF- -6, IL-21 and IL-

23, ultimately leading to activation of the lineage-specific transcription factor 

( 7]. However, interspecies differences have been found between mice 

and human Th17 cells in several aspects. In contrast to mice, the human Th17 

cell lineage not only expresses (  but also T-bet as central transcription 

factors. Furthermore these cells show the propensity to secret IFN- besides IL-

17A in the presence of IL-12 suggesting a close relationship to Th1 cells. There 

is also indication for a different origin of human Th17 cells from CD161+

precursors with constitutive (  and IL-23R expression [8].

Another possible T helper cell subset was discovered recently. Th22 cells were 

found to produce IL-22 in the absence of other lineage-specific cytokines [105]. 

Similar to IL-17, IL-22 exerts its action on non-hematopoietic cells rather than 

immune cells. IL-22 production seems to be linked to inflammatory states of the 

skin during which Th22 cells probably develop from the Th17 subset [105].

T follicular helper cells (Tfh) are a subset of CD4+ T cells which regulates 

antigen-specific B cell immunity (7,9). Tfh cells are located to B cell follicles 

through their expression of the chemokine receptor CXCR5 [9]. Their 

differentiation requires IL-6 and IL-21 leading to the expression of a specific 

transcriptional program including Bcl-6 and STAT-3 [9].

Another important T helper cell population are regulatory T cells. Tregs express

FOXP3, a transcription factor critical for regulatory T cell function. Two major 
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groups of regulatory T cells have been characterized depending on their site of 

induction [7]. While naturally occurring CD4+ CD25+ Tregs (nTregs) arise from the 

thymus [7], T regulatory cells can also be induced in the periphery via TGF-

signalling (iTregs) leading to the expression of FOXP3 [7,10]. Both types of cells 

are assumed to play an essential role in peripheral immune tolerance in order to 

prevent autoimmunity [7] with their suppressive activity mainly relying on the 

action of TGF- [11]. However, different to iTregs the suppressor activity of nTregs

seems to be blocked by IL-6 [11].

Another subset of CD4+ T cells are Natural killer T cells, although these cell 

type can also have a CD4-CD8- phenotype [106]. NKT cells are generated 

during thymic development of T cells at the double-positive stage via 

recognition of CD1d which is a non-classical class I antigen-presenting 

molecule for glycolipids [106]. Characteristic features of NKT cells are the 

expression of a TCR with limited -chain diversity while also having NK cell 

receptors. Interestingly, NKT cells seem to acquire a memory T cell phenotype 

already during thymic selection and produce both, Th1 and Th2 cytokines upon 

activation [106].

CD8+ T cells

Cytotoxic T lymphocytes (CTLs) are essential for the immune response against 

viruses. They express the CD8 co-receptor and thus recognize peptide:MHC 

class I complexes [1,2,12-14]. Antigen processing for display on MHC class I 

typically involves the uptake of cytosolic proteins into the endoplasmic reticulum 

(ER). However, CD8+ T cells can also be presented with extracellular antigens 

via a mechanism termed cross-presentation. Antigens derived from virus-

infected cells or tumor cells taken up via phagocytosis by an antigen-presenting 

cell can be translocated from the ER to the cytoplasm and thus be alternatively 

loaded on MHC class I molecules [2]. Cross-presentation is most efficiently 

performed by dendritic cells [15].

Upon activation in the lymph nodes via dendritic cells CTLs rapidly expand 

undergoing cell division every 4 to 6 hours [16]. During this phase they also gain 

effector functions and the capacity to migrate to reservoirs of infection [16,17].

The effector functions of CTLs mainly rely on their cytoxic or cytolytic activity

whereby target cells are killed upon recognition either via the release of lytic 
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granules containing perforins and granzymes or through the engagement of 

death receptors [17]. Perforins are calcium-dependent pore-forming proteins 

which are involved in the delivery of other granule contents, while granzymes 

are serin-proteases which cleave the pro-apoptotic proteins such as Bid leading 

to cytochrome c release and caspase-activation [18]. However, cell death can 

also be induced independent of granzymes. CTLs express ligands for receptors 

of the tumor necrosis factor (TNF) superfamily which are expressed on the 

target cells including Fas, TNFR1, TNFR2 or TRAIL-R [18]. The FasL-Fas 

interaction leads to the direct recruitment of pro-caspase 8 via adaptor 

molecules subsequently initiating apoptosis in a caspase-dependent fashion

[18].

1.6. T cell activation

The process of T cell activation is initiated in secondary lymphoid organs such 

as lymph nodes where naïve T lymphocytes search the surfaces of dendritic 

cells for specific peptide-MHC complexes [19]. Recognition of less than 10 

specific pMHC complexes has been found sufficient to induce long-lasting 

contacts between T cells and dendritic cells ranging between 6 and 18 hours

[19]. These contacts (“immunological synapses”) finally lead to the activation of 

the T cells which subsequently enter the cell cycle and differentiate into effector 

cells [19]

Central to this process is the ligation of the T cell receptor with its cognate

pMHC complex which determines antigen specificity and initiation of T cell 

activation. However, additional signals are needed for the full activation of T 

cells. Signaling through the TCR alone was not only found to be insufficient for 

activating T cells but also to result in a hyporesponsive state termed anergy

[20]. Thus, a two-signal-model was established. “Signal 1” refers to the 

engagement of the TCR, while “signal 2” implies the ligation of additional 

costimulatory molecules presented by antigen-presenting cells [20].

The immunological synapse

The term “immunological synapse” (IS) broadly refers to any functional structure 

formed between APC and T cell, although its original meaning was restricted to 

a characteristic “bull’s-eye” structure formed by concentric rings of molecules
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[21]. The inner circle or central supramolecular activation cluster (cSMAC) 

consists of the TCR, the co-receptors (CD4 or CD8) as well as of receptors 

engaged during co-stimulation such as CD28 or CD2. The outer circle is termed

peripheral supramolecular activation cluster (pSMAC) containing integrins, 

especially LFA-1, which are important for cell-cell adhesion [19, 21]. Outside the 

pSMAC lies an area of active membrane movemement called distal 

supramolecular activation cluster (dSMAC) [19].

Initially, the function of the cSMAC was assumed to lie in the delivery of the 

activating signals. However, it was found that this central ring rather serves 

TCR internalization and degradation while active TCRs are mainly located 

within the pSMAC [19]. Thus, the function of the cSMAC might be linked to the 

regulation of long-term T cell responses. Besides T cell priming, the IS might 

also function in mediating the contact between activated CTLs and their target 

cells focussing the content of cytolytic granules on the target cell to avoid 

causing damage to bystander cells [19].

However, the bull’s-eye structure is not required per se to initiate T cell 

activation. Contact of T lymphocytes with dendritic cells is characterized by the 

establishment of multiple TCR clusters giving rise to multifocal immunological 

synapses resulting in efficient activation of the T cells [21].

TCR signal transduction

signaling activity. TCR signal transduction requires the association with the CD3 

complex consisting of dimeric , and  chains [22]. Binding of cognate 

pMHC complexes activates protein tyrosine kinases (PTKs) of the Src family 

which are associated either with the TCR or the co-receptors [22]. 

Upon activation, Src kinases such as Lck or Fyn phosphorylate immunoreceptor 

tyrosin-based activation motifs (ITAMs) within the CD3 chains which serve as 

recruitment domains for ZAP-70 kinase. ZAP-70 phosphorylation via Lck 

activates the former leading to further downstream signalling events [22]. 

Targets of ZAP-70 are the transmembrane adaptor protein LAT and the 

cytosolic SLP-76 which contains a Src homology 2 (SH2) domain. The two 

adaptors form the basis of a protein complex from which multiple signalling 

pathways originate [22]. Phoshorylation of LAT tyrosine residues via ZAP-70 
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leads to the recruitment of other proteins including phospholipase C 1 (PLC 1), 

phoshoinositide-3-kinase and the adaptor proteins Grb2 and Gads [22].

Activation of PLC 1 upon TCR ligation leads to the enzymatic hydrolysis of the 

membrane phosholipid phosphatidylinositol-4,5-bisphosphate (PIP(4,5)P2) into

phosphoinositol-1,4,5-trisphosphate (PIP3) and diacylglycerol (DAG) both 

serving as second messengers [22,23].

PIP3 binds to ion channel receptors of the endoplasmic reticulum (ER) which 

are permeable for Ca2+ thus initiating release of Ca2+ ions into the cytosol. Ca2+

released from the ER additionally stimulates the inflow of extracellular Ca2+ ions 

via Ca2+-dependent channels (CRAC) of the plasma membrane [22]. The 

increase in cytosolic Ca2+ leads to the activation of various Ca2+- and 

calmodulin-dependent transcription factors as well as signalling factors such as 

calcineurin, a serin/threonin phosphatase [22,24].

Fig. 1: Simplified scheme of TCR signalling pathways. Major components involved in the 

signal transduction upon TCR ligation and costimulation (not shown). Signalling results in the 

recruitment of transcription factors central to T cell function including 

forms heterodimers with NFAT [22, 30]. Figure was adapted from Razzaq et al. [30].
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Calcineurin dephosphorylates members of the nuclear factor of activated T cells 

(NFAT) transcription factor family, namely NFAT1, NFAT3 and NFAT4 [24].

Dephosphorylation of N-terminal serine residues within NFAT proteins reveals a 

nuclear import sequence subsequently mediating their translocation to the 

nucleus [24]. Within the nucleus NFAT forms cooperative complexes with other 

transcription factors thus linking several signalling pathways [22,24]. These 

interactions depend on additional signals besides the one released via the TCR 

[22], for example, on the presence of IL-2 signalling [25]. One of these

interactions is the formation of NFAT/AP-1 complexes [22]. The transcription 

factor activator protein 1 (AP-1) is a dimeric protein consisting of either Fos-Jun 

heterodimers or Fos-Fos homodimers. The complex formed by NFAT/AP-1

combines the signals of the Ca2+/calcineurin and of the mitogen-activated 

protein kinase (MAPK) pathways [24]. Interaction of NFAT with AP-1 is 

important for the expression of genes regulating for T cell proliferation and 

effector function including IL-2, IFN-  and IL-4 [22, 24]. Conversely, NFAT 

activity without the action of AP-1 has been shown to result in T cell anergy [26].

DAG, the second product of PIP(4,5)P2 hydrolysis serves as the activator of two 

signalling pathways, namely the Ras-Raf-MAPK pathway and the PKC

pathway [22]. Ras is a GTP-binding protein which is required for the activation 

of the serine/threonine MAPK kinase kinase (MAPKKK) Raf-1. Raf-1 

phosphorylates MAPK kinases (MAPKK) which themselves activate the MAP 

kinases (MAPK) Erk-1 and Erk-2. The latter activate the transcription factor Elk-

1 subsequently inducing the expression of AP-1 [22].

Protein kinase C (PKC ) is activated by DAG via binding to its specific lipid-

binding domain which recruits the kinase to the plasma membrane [22]. PKC

induces then the activation and nuclear translocation of the nuclear factor NF-

B (NF- B) by promoting the assembly of a complex of the adaptor proteins

CARMA1, Bcl-10 and MALT1 [27]. Serine phosphorylation of CARMA1 induces 

complex formation which subsequently activates the inhibitor of NF- B kinase 

(IKK) complex. IKK then promotes degradation of inhibitor of NF- B (I B) which 

sequesters the transcription factor in the cytosol. NF- B release results in its 

nuclear translocation [27]. NF- B is a transcription factor essential for the 

function of immune cells. In lymphocytes, it regulates cell proliferation by 

induction of cell cycle-associated genes such as cyclin D1, cyclin D2 or c-Myc
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as well as cell survival by the upregulation of the anti-apoptotic genes Bcl-2 and 

BCL-XL [28]. NF- B also regulates cytokine genes including the T cell growth 

factor IL-2 or pro-inflammatory IL-6. Another NF- B target gene is the 

costimulatory molecule CD40 ligand (CD40L) [28].

T lymphocyte activation through TCR signalling is also associated with profound 

cytoskeletal changes which are necessary to mediate various tasks important 

for T cell function, including cell growth, migration, cell-cell adhesion to APCs as 

well as to endothelial cells and extravasation into tissues [29]. TCR stimulation 

induces the formation of receptor clustering and of immunological synapses 

given the presence of costimulation. These events require the linkage to the 

actin and myosin cytoskeleton which convey these dynamic changes. A key 

molecule for linking TCR signals to the cytoskeleton is the guanine nucleotide 

exchange factor Vav1 which is linked to the LAT signalosome via SLP-76. Vav1 

functions to activate the Rho-like GTPases cdc42, Rac and Rho which mediate 

cytoskeletal changes [29].

Signalling pathways originating from TCR stimulation are summarized in Fig. 1.

T cell costimulation

Costimulation serves as “signal 2” to TCR stimulation and is required for the full 

activation of T cells. Although soluble factors such as cytokines can augment T 

cell activation the term “costimulation” is typically restricted to the interaction of 

membrane-bound receptor-ligand pairs. Costimulation can promote both, 

activating as well as inhibitory pathways depending on the nature of the 

costimulatory molecule engaged [31]. 

The most intensively investigated costimulatory interaction is the one of the T 

cell receptor CD28 with its ligands of the B7 family. CD28 is a homodimeric 

glycoprotein which is linked via disulfide bonds. It spans the plasma membrane 

displaying type I transmembrane protein topology [20].

Human T cells do not uniformly express CD28. While about 80% of CD4+ T 

cells are positive for CD28, it can be detected on roughly half of all CD8+ T cells 

[20]. Signalling through CD28 has profound effects on the threshold of TCR 

triggering which is significantly lowered. The increased sensitivity also results in 

enhanced cytokine production, most importantly of IL-2 [20].
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CD28 engages with two ligands on APCs, namely B7-1 (CD80) and B7-2 

(CD86). However, these ligands interact with another receptor on T cells termed 

cytotoxic T lymphocyte associated antigen 4 (CTLA-4) which transduces 

inhibitory signals into T cells [31,32]. Although structurally similar, CTLA-4 has 

higher binding affinities for both ligands. The two receptors display differential

distribution on T cells. While CD28 is expressed on both, resting as well as 

activated cells, CTLA-4 is induced during the process of T cell activation [32] in 

order to prevent excessive T cell responses [31]. However, its expression is 

constitutive on Tregs [32]. Lack of CTLA-4 results in uncontrolled T cell activation 

and autoimmune disease [33].

CD28, CTLA-4 and their ligands CD80 and CD86 belong to the B7-CD28 

superfamily which is generally accepted as the major group of T cell 

costimulatory molecules [31]. Other members of this family include inducible 

costimulator (ICOS) and its ligand (ICOSL) which are associated with the 

differentiation of T helper cells, the production of Th lineage cytokines and the 

regulation of B cell responses [31] by promoting the induction of follicular T 

helper cells [33]. CD28 and ICOS were shown to act synergistically in T cell 

activation as only the absence of both pathways resulted in the loss of T cell 

effector function [34].

Another receptor-ligand interaction of the CD28-B7 superfamily is the one of 

programmed cell death 1 (PD1) with its ligands PD-L1 and PD-L2. Its primary

action is inhibitory, although an alternative activating function has been 

described in mice [31].

The Tumor necrosis factor receptor (TNFR) superfamily also contains several 

costimulatory molecules the most potent of which is the 4-1BB/4BBL interaction. 

Other important interactions within this family are the ones of OX40 with its 

ligand or of CD27 with CD70 [31]. 

Besides the two major pathways mentioned other costimulatory pathways exist 

including the interaction of members of the CD2 superfamily, integrins, 

tetraspanins or the TIM family [31]. 

Integrins comprise a large protein family which function as receptors as well as 

adhesion molecule

subunits [35]. Integrin are expressed on cell surfaces typically in an inactive 

form. Signalling via other receptor such as the TCR is required to achieve an 
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active conformation which is dependent on linkage to the cytoskeleton [35] The 

main T cell integrin is lymphocyte-function associated antigen 1 (LFA-1) which 

interacts with intercellular adhesion molecule 1 (ICAM-1) [31,35] as well as with 

ICAM-2 and ICAM-3 [31]. This interaction functions on the one hand to promote 

arrest of T cells on endothelial surfaces inside blood vessels enabling 

subsequent transmigration and on the other one to establish contact and 

synapse formation with APCs [35]. In the latter interaction, LFA-1 initiates 

costimulatory pathways similar to CD28 [31].

Fig. 2: T cell costimulatory molecules. (A) Members of the CD28-B7 family, (B) Costimulatory 

molecules of the TNF receptor family, (C) Members of other pathways. Symbols (+) and (-) 

within the cytoplasmic tails of the receptor molecules depict costimulatory and coinhibitory 

function, respectively. Figure was adapted from Leitner et al. [31].

Tetraspanins are cell surface proteins which contain four characteristic 

membrane-spanning domains [36]. Many tetraspanins are regulated during 

activation of immune cells involving either up- or downregulation. On the 

molecular level some tetraspanins have been shown to interact with integrins, 

the T cell CD4/CD8 coreceptors, but also with members of their own family [36].

In the context of costimulation, the function of tetraspanins has usually been 

studied using antibody-mediated ligation or via loss-of-function studies, even 

though for some family members interaction partners have been found, e.g. 

HCV-E2 interacts with the tetraspanin CD81 [31]. Another tetraspanin which is 

targeted in this study for costimulatory reasons is CD63. A monoclonal antibody 

binding to CD63 was found to act costimulatory if bound to a plate resulting in T 

cell proliferation, cytokine production and induction of anti-apoptotic pathways 

similar to CD28 costimulation [37]. Additionally, it was shown that T cells 
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primarily activated via CD3 and CD63 antibodies respond even more readily to 

restimulation than in the context of a primary CD3/CD28 stimulus thus indicating 

a potent costimulatory role for this tetraspanin [37].

1.7. T cell tolerance

Immunological tolerance is defined as a state of unresponsiveness towards self 

or foreign antigens [38]. While protective immune responses are essential for 

clearance of pathogens immunological tolerance is required towards self

antigens [1, 2]. T cell unresponsiveness towards the latter plays a central role 

for the establishment and maintenance of tolerance. Mechanisms involved are 

clonal deletion via apoptosis, the induction of anergy, active suppression of T 

cell responses and antigen sequestration. T cell tolerance is achieved in central 

and peripheral lymphoid organs, thus being termed central and peripheral 

tolerance, respectively [38, 39].

T cell central tolerance

The establishment of T cell central tolerance is based on the selection of T 

lymphocytes during their development in the thymus [2, 5, 8, 39].

The selection process of thymocytes takes place at the CD4+/CD8+ double-

positive stage after the rearrangement of the TCR. After this step, immature 

cells are destined to undergo apoptosis or “death by neglect” unless they are 

rescued by a weak signal through the TCR by interaction with self-peptide-MHC 

complexes provided by cortical thymic epithelial cells (cTECs) [38,39]. Most of 

the peptides interacted with during positive selection are not unique to the 

epithelial cells, but involve peptides from other tissues of the body. Explanations 

for the necessity for immature cells to weakly react to self antigens involve the 

requirement for self-MHC restriction, i. e. T cells have to be able to recognize 

foreign peptides displayed on self-MHC molecules. Another aspect might be 

that T cells might require low levels to stay alive in the periphery as cells 

transferred into MHC-deficient hosts gradually disappear [38].

During the overall process of positive selection more than 95% of thymocytes 

undergo apoptosis due to the lack of reactivity of their TCR. After positive 

selection the cells enter the single-positive stage. Depending on the reactivity to 

MHC class I or class II either the CD8 or CD4 coreceptors are retained [38,39].
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Furthermore, the expression of chemokines is induced which leads the selected 

thymocytes to the thymic medulla for further maturation [39].

Negative selection is performed towards T cells reacting strongly to self 

antigens which are abundantly expressed in the medulla. However, medullary

thymic epithelial cells (mTECs) seem to express a wider array of self-antigens 

than cTECs [39]. Generally, expression of self-antigens is controlled by the 

transcription factor autoimmune regulator (AIRE) the loss of which was shown 

to result in excessive autoimmunity [40].

Negatively selected T cells undergo apoptosis or clonal deletion. This process 

involves specific dendritic cell subsets which are only found in the medulla [38]. 

It is assumed that DCs acquire self-antigens from mTECs involving 

phagocytosis of dead cells as well as obtaining material from living cells, e.g. 

via exosomes [39].

Apotosis induced upon negative selection also seems to be dependent on 

costimulation or Fas. While moderate self-reactivity seems to require 

costimulation while being independent of Fas, strong TCR avidity for self-

peptides initiates apoptosis in a Fas-dependent form [39].

The thymus is also the induction site for CD4+CD25+FOXP3+ natural T 

regulatory cells. Tregs display moderate to high avidity for self-antigens and are a 

means for non-deletional tolerance induction in the periphery. However, it is 

unclear how Tregs are rescued from apoptosis in order to find a different fate 

[39].

T cell peripheral tolerance

Although most autoreactive T cells are efficiently deleted in the thymus some 

cells which are reactive towards self-antigens escape to the periphery [41]. 

Typically, these cells display relatively weak TCR avidity towards self antigens. 

However, even in the absence of active immunosuppression these cells may 

not necessarily act autoreactive due to the phenomenon of immunological 

ignorance. Naïve T lymphocytes show a restricted circulation pattern involving 

migration from the blood to the lymph nodes which is subsequently re-entered 

via efferent lymphatics [41]. Tissue-specific expression of some antigens limits

the access of naïve T cells to their respective self-antigen, thus avoiding the 

encounter with self-peptide-MHC complexes. Effector-memory T lymphocytes 
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display a more efficient entry into peripheral tissues. However, they only pose a 

serious threat in terms of autoimmunity if TCR re-ligation occurs under 

inflammatory conditions [41].

A major cell type involved in peripheral T cell tolerance mechanisms are 

dendritic cells. While being highly efficient in activating T cells in a mature state, 

immature DCs are poorly immunogenic [42]. 

Dendritic cell populations undergoing migration from peripheral tissues to the 

draining lymph nodes in the steady-state (i.e. in the absence of inflammation) 

were found to act tolerogenic on T cells. Characteristically, these cells display a 

semi-mature phenotype and are capable of inducing either FOXP3+ adaptive T 

regulatory cells (aTregs) or FOXP3- Tr1 cells which are IL-10 producers [43].

The induction of tolerogenic dendritic cells (tDC) is thought to be influenced by 

factors in their local microenvironment. For example, DCs in the gut are typically 

associated with tolerance induction which is assumed to be dependent on anti-

inflammatory factors like TGF- -10 or thymic stromal 

lymphopoietin (TSLP) [42].

Negative costimulatory or coinhibitory molecules also play a major role in the 

maintenance of T cell tolerance, including CTLA-4 and PD-1. Knockout studies 

in mice indicate an early role for CTLA-4 in control of homeostatic T cell 

proliferation as mice deficient in CTLA-4 die soon after birth. PD-1 deficiency 

requires several months for the onset of autoimmunity which is restricted to 

certain tissues. Although not directly pro-apoptotic, signalling through both 

receptors antagonizes the induction of survival factors which favours activation-

induced cell death [44]. Coinhibitory signals are also associated with the 

induction of T cell anergy [33, 44].

1.8. T cell anergy

T cell anergy is a mechanism of peripheral tolerance induction where T 

lymphocytes are still alive but hyporesponsiveness to antigenic stimulation [45]. 

Basically, two forms of anergy are distinguished; “clonal anergy” and “adaptive 

tolerance” which is also termed “in vivo anergy”. Clonal anergy mainly 

represents a state of growth arrest while the latter state also involves inhibition 

of T cell effector functions [45].
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Clonal T cell anergy can be induced via a strong TCR signal without 

costimulation or via a weak signal in the presence of costimulation. The state is 

associated with reduced production of IL-2 reflecting the growth arrest but not 

necessarily of other cytokines. Typically, clonal anergy can be reversed by 

addition of exogenous IL-2 [45].

Adaptive tolerance has been described in vivo in the persistence of antigen 

involving rapid T cell expansion followed by a gradual decline of cell numbers. 

Remaining cells are hyporesponsive to restimulation and display a reduction of 

several other cytokines besides IL-2. Upon antigen removal most T cells lose 

their anergy within a week. This is different to clonal anergy where the 

unresponsive state can last for months. However, in most models of in vivo 

anergy IL-2 was not sufficient to reverse the hyporesponsive state [45].

Molecular factors maintaining clonal T cell anergy

Although in principal a growth arrest state, clonal anergy is associated with the 

induction of a distinct transcriptional program involving signalling molecules, 

transcription factors [46] and cell cycle regulators [47]. Additionally, clonal 

anergy might also be maintained via chromatin remodelling [33].

The initial signalling process promoting the induction of anergy is usually 

described as a defect in TCR signalling pathways. While calcium signals 

promoting the nuclear translocation of NFAT are intact, defective activation of 

the Ras/MAPK pathway leads to the diminished activation of AP-1 (Fig. 3). The 

resulting imbalance of signals impairs the transcription of the genes dependent 

on the NFAT-AP1 heterodimer while favouring NFAT-dependent genes which 

include anergy-associated genes [46]. Clonally anergic T cells also display 

impaired activation of NF- B which is characterized by a lack of I B degradation 

upon T cell activation [97].

E3 ubiquitin ligases

Many cellular processes are regulated by ubiquitylation, where the small protein 

ubiquitin is linked to lysine residues of target proteins [48]. Depending on the 

type of ubiquitylation different outcomes are achieved including for example 

proteasome-mediated degradation or cellular relocation of a protein. The 

ubiquitylation process is achieved by the action of three enzymes: the ubiquitin-
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activating enzyme E1 binds ubiquitin via a thioester linkage which is then 

transferred to the ubiquitin-conjugating enzyme E2 forming a complex with the 

ubiquitin ligase E3. E3 binds to degradation signal sequences of target proteins 

and aids in the transfer of the polyubiquitin chain to lysines [48].

E3 ubiquitin ligases have been shown to play important roles for the induction 

and maintenance of T cell anergy [46].

Fig. 3: Signalling pathways involved in clonal anergy induction. Defective activation of the 

Ras/MAPK pathway and excessive mobilization of Ca2+ leading to NFAT activation are 

assumed to be the main pathway in the induction of anergy. Fig. was adapted from Zheng et al. 

[46].

The most well-known E3 ubiquitin ligase is Casitas B cell lymphoma b (CBL-b). 

CBL-b has a decisive role in the negative regulation of TCR signals as it targets 

the p85 subunit of phosphoinositide-3-kinase which thus cannot associate with 

the TCR or CD28 [49]. This subsequently leads to the inhibition of NF B 

activation via PKC  and Akt and prevents cytoskeletal rearrangements via 

Vav1. CBL-b deficiency in mice results in severe autoimmunity [49].

Deletion of the E3 ligase Itch leads to a dermatitis-type inflammation of the skin 

accompanied by constant itching [33]. Itch ubiquitylates the Th2-specific 

transcription factor JunB leading to its degradation. Itch deficiency is associated 

with an increased production of IL-4 and IL-5 as well with elevated IgG1 and IgE 

serum levels [33, 49]. Other targets of Itch within TCR signalling pathways are 

PLC  and which are subsequently degraded within the proteasome [33].
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Gene related to anergy in lymphocytes (GRAIL) is a type I transmembrane 

protein which is localized in endosomes [49]. GRAIL is strongly induced in 

anergized T cells and is sufficient to render T cells anergic in overexpression 

experiments [49]. A putative target of GRAIL is the Rho guanine dissociation 

inhibitor which is stabilized by ubiquitylation and thus inhibits activation of the 

RhoA GTPase, another important factor in TCR signalling. Other likely targets 

are transmembrane proteins such as CD40L and the tetraspanins CD151 and 

CD81 [49]

Transcription factors

The early growth response genes Egr2 and Egr3 are zinc finger transcription 

factors which are highly implicated in the induction of the anergic state [46].

Both Egr genes are strongly transcribed upon TCR stimulation. However, 

costimulation via CD28 significantly reduces the level of Egr mRNA [50]. 

Overexpression of Egr proteins results in decreased synthesis of IL-2 by T cells 

and seems to regulate the transcription of other anergy factors including CBL-b 

and diacylglycerolkinase -

shown to confer resistance to anergy induction [46].

Proteins expressed in quiescent cells may also serve the maintenance of 

anergy. DNA binding zinc finger proteins including Ikaros, Blimp-1, p50 

homodimers -Smad heterodimers are highly expressed in 

resting cells and mediate the transcriptional repression of the il2 gene via 

recruitment of histone deacetylases (HDAC) [51]. HDAC activity maintains 

histones at the il2 promoter in a hypoactetylated form which is transcriptionally

inactive. Converting the promoter into an active conformation via chromatin 

remodelling is dependent on CD28 costimulation [51].

Diacylglycerol kinases

Diaclglycerol (DAG) is an important activator of the Ras/MAPK and PKC -

. Diacylglycerol kinases (DGK) mediate 

conversion of DAG into phosphatidic acid thus impairing activation of both

pathways [52]. DGK- as well as DGK- have been associated with anergy 

induction since deficiency in either gene has been shown to result in resistance 

to anergy induction. Conversely, DGK-
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induce anergy in T cells [52]. Although T cells deficient in either DGK are 

hyperresponsive to TCR stimulation autoimmune disease only develops in 

double-knock out mice suggesting a potential redundant function of these 

kinases [52].

Cell cycle-associated factors

Anergy induction seems to be closely linked to cell cycle progression of 

activated T cells. Although costimulation via CD28 during a primary response is 

commonly associated to be sufficient for escaping anergy this only holds true 

for cells undergoing several rounds of cell division while expressing high levels 

of IL-2 and IFN-  [47]. Cells who fail to divide during the primary response do 

not produce IL-2 and are hyporesponsive to secondary stimulation even though 

provided with both, a full signal 1 and signal 2 [47].

Fig. 4: Phases of the cell cycle and their regulation via cyclins, cyclin-dependent kinases 

(CDK) and CDK inhibitors. CDK activity is regulated via expression of associating cyclins at 

different stages of the cell cycle. CDK activity is antagonized via inhibitors of the Cip/Kip and 

Ink4 family. Figure was adapted from Schmetsdorf et al. [53]

In terms of cell cycle progression the transition from G1 into S phase seems to 

be essential for anergy avoidance, as the use of pharmacological inhibitors for 

G1 progression renders T cells anergic even in the presence of full stimulation 

while a block in the S phase fails to do so [47].

On the molecular level cell cycle progression is regulated by the activity of 

cyclin-dependent kinases which are associated with different cyclins depending 

on the phase of the cycle (Fig. 4). While CDK levels remain relatively constant 
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throughout the cell cycle, cyclins display an oscillating expression pattern. 

Additionally, the activity of CDK inhibitors is required for the regulation of 

different cell cycle stages [54].

In order to traverse the G1 phase of the cell cycle activated cells require CDK4 

and CDK6 kinases which are both regulated by D-type cyclin activity as well as 

CDK2 which is dependent on cyclins of the E-type [47]. CDK activity results in 

the hyperphosphorylation of the retinoblastoma protein (Rb) which promotes the 

release and activation of E2F transcription factors ultimately leading to the 

synthesis of S phase proteins [55]. While activation of CDK6 and cyclin D2 is 

unaffected in anergic T cells, cyclin E as well as CDK2 and CDK1 activity 

cannot be induced [47]. Anergic T cell clones do assemble Cyclin D2-CDK4 

holoenzymes. However, there is a lack of kinase activity which is due to the 

association with p27kip1, a CDK inhibitor [55]. p27kip1 presumably plays a dual 

role. While aiding in the cell cycle entry of naïve quiescent T cell by protecting 

D-type cyclin-CDK4/6 complexes from degradation via ink4 CDK inhibitors in 

the first cell division, it acts as negative regulator by additionally inhibiting

CDK1/2 activity in ensuing cell divisions [47]. Loss of p27kip1 was shown to 

uncouple T cell activation from the need of costimulation as silencing of the il2

locus does not occur [47]. However, its role as an essential anergy factor has 

been challenged by models where anergy could be induced despite lack of 

p27kip1expression [56, 57].

1.9. T cell quiescence

The term quiescence corresponds to the G0 phase of the cell cycle, a state 

where cells display markedly reduced size, metabolism, protein synthesis and 

transcriptional activity [58, 59]. Unlike anergy quiescence is characterized by 

responsiveness to activation as well as resistance to apoptosis. Quiescence is 

governed by a distinct transcriptional program by factors which are actively 

suppressed upon activation and cell cycle entry [58, 59].

A classical factor in T cell quiescence is Krüppel-like factor 2 (KLF2) or lung 

KLF (LKLF) the latter name being derived from its high expression levels in lung 

tissue [60]. KLF2 is a zinc finger transcription factor which is profoundly 

expressed in naïve T cells and resting memory cells. Activation mediates rapid 

downregulation of KLF2 [58].
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KLF2 deficiency in mice leads to pronounced defects in T cell development 

resulting in dramatically reduced T cell numbers. Remaining T cells bear 

activation markers leading to spontaneous proliferation and subsequent Fas-

dependent apoptosis [58]. Consistent with this is the observation that KLF2 

overexpression is sufficient to induce growth arrest accompanied by a decrease 

in size and metabolic activity and transferrin receptor expression in the T cell 

leukaemia line Jurkat. Further studies identified the proto-oncogene Myc as a 

target of KLF2 which is negatively regulated upon overexpression of the latter

[58]. Putative targets of c-Myc involve p27kip1, complexes of CDK4/CDK6 with 

cyclin D1 as well as the phosphatase cdc25. The latter dephosphorylates CDK2 

at inhibitory sites [59].

Other factors involved in T cell quiescence involve Tob, a member of the anti-

proliferative (APRO) family and forkhead box O (FOXO) family members [58, 

59] and Schlafen 2 (slfn2) [66].

1.10. The Schlafen gene family

The Schlafen gene family was first identified in the mouse as a family of growth 

regulatory genes which are preferentially expressed in lymphoid tissues and 

whose members were found to be differentially regulated during thymocyte 

development [61]. Already in the initial study a link between Schlafen genes and 

growth control was established since Slfn1 was reported to induce a cell cycle 

arrest in fibroblasts before the transition from G1 to S phase [61]. The 

mechanism of growth arrest seems to occur via suppression of cyclin D1 

expression [62]. However, the in vitro growth inhibitory action of Slfn1 as well as 

of Slfn2 was not always confirmed by others [63]. Schlafen genes have also 

been shown to be regulated during T cell activation [61, 64, 65]. A role for 

Schlafen family members in immune cell quiescence was suggested by a study 

characterizing a mutation in Slfn2 which lead to lineage-specific defects in 

monocytes and T cells. The latter were found to reside in a semi-activated state

and cells of both lineages rapidly died in response to activation signals 

suggesting a loss of cellular quiescence [66]. Schlafen-like proteins have also 

been identified in orthopoxviruses implicating importance for viral immune 

evasion [67].
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All proteins of the Schlafen family share a common core reagion which harbours 

a divergent AAA (ATPases associated with various cellular activities) domain 

(Fig. 5A) functioning as an ATP-binding site and a conserved domain signature 

(COG2865) which is found in transcriptional regulators and helicases [65-67].

The AAA motif is a highly conserved domain found in eukaryotes as well as in 

prokaryotes. Although AAA proteins are very homologous within this domain 

other sequences show little conservation. The diverse cellular functions exerted 

include, for example, fusion of membranes during vesicular transport, protein 

quality control as well as functions as microtubule-associated motor proteins 

[101]. The ATPase domain common to this class of proteins is assumed to 

provide energy through ATP hydrolysis enabling remodelling of substrates. 

Additionally, ATP-binding might aid in the formation and stabilization of ring-

shaped hexamers which is a typical feature of AAA proteins [101]. SLFN family 

members are divided into three subgroups based on their length and domain 

composition. Members of subgroup III within the SLFN family share motifs 

within their C-terminal domain homologous to superfamily I RNA/DNA helicases 

[65].

Little is known about the function of the six human Schlafen family members. A 

study investigating the expression of SLFN genes in primary human 

melanocytes and malignant melanoma cell lines showed basal expression of 

human SLFNs in both cell types [68]. All SLFN genes were found to be 

inducible in primary human melanocytes upon treatment with IFN-

only SLFN5 was consistently suppressed in all melanoma cell lines observed 

and was the only IFN- -inducible SLFN gene in these cells. Knock-down of 

SLFN5 resulted in increased anchorage-independent growth and invasion of 

malignant melanoma cells [68].

Growth inhibitory function or implication in T cell quiescence has not been 

shown for human SLFNs so far. Although having no direct orthologue in the 

mouse SLFN12 seems to be the most similar of human SLFN genes to the 

novel T cell quiescence factor Slfn2 [66]. According to its domain structure 

SLFN12 can be classified as a member of SLFN subgroup II (Fig 5B). 

Expression data for this factor is limited. Similar to other SLFN genes, SLFN12 

was shown to be upregulated in primary human melanocytes upon IFN-

treatment and seems to be suppressed in some melanoma cell lines [68]. 
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Another study showed upregulation of SLFN12 during the LPS stimulation of 

human monocyte-derived macrophages [70]. To date, expression of SLFN12 

has not been characterized in T cells or other lymphocytes.

A

B

Subgroup Murine Slfns Human SLFNs

I slfn1, slfn2

II slfn3, slfn4, slfn14 SLFN12, SLFN12L, SLFN14

III slfn5, slfn 8, slfn9, slfn10 SLFN5, SLFN11, SLFN13

Fig. 5: Domain structure of SLFN proteins and division into subgroups. (A) Scheme of 

domain structures of SLFN family members. (B) Subgroups of human and murine SLFN family 

members. Based on Bustos et al. [67] and on search results in NCBI conserved domain search 

[69].

1.11. CD45 as a regulator of TCR signalling

The common leukocyte antigen CD45 is the prototypic receptor-like protein 

tyrosine phosphatase (PTP) and has been shown to be essential in the 

regulation of signal transduction pathways in immune cells [71]. CD45 is 

abundantly expressed on all nucleated hematopoietic cells and their precursors 

and displays type I transmembrane topology [72]. While the cytoplasmic part of 

CD45 appears to be highly conserved across mammalia, its extracellular 

domain reveals little sequence homology. Alternative splicing of the extracellular 

domain gives rise to various isoforms the expression of which is dependent on 

cell type, developmental stage and activation state [71] The extracellular 

domain shows three conserved regions involving carbohydrate linkage sites 

followed by a region rich in cysteine residues and three fibronectin type III 

domains [73].

Subgroup

I

II

III

RNA/DNA helicase domainAAA_4 domain
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The cytoplasmic tail of CD45 consists of two tyrosine phosphatase homology

domains, designated D1 and D2. Only D1 has enzymatic activity, while D2 

might serve as a stabilizer of D1 [71]. 

CD45 seems to regulate signal transduction of the T cell receptor in a positive 

as well as in a negative fashion. Its main substrates are Src family protein 

tyrosine kinases (SFKs) like Lck or Fyn [71].

SFKs contain two sites of tyrosine phosphorylation for the regulation of kinase 

activity. While the inhibitory site is near the C-terminus, an activating site is 

located within the kinase domain [74]. However, despite hyperphosphorylation 

of the negative regulatory tyrosine residue in cell lines and thymocytes deficient 

in CD45, average SFK activity was found to be increased [71]. This observation 

implies that the activating residue also serves as a substrate for CD45 and is 

further supported by the abnormal adherence of CD45-deficient macrophages 

and T cells which is dependent on integrin receptor signalling regulated via 

SFKs [71]. 

The function of the extracellular domain of CD45 lies in the regulation of

phosphatase activity via differential dimerization of isoforms [71]. Dimerization 

seems to be regulated via sialylation and O-glycosylation of the alternatively 

spliced exons. As a result, the smallest isoform RO which is the least modified

homodimerizes more readily than larger isoforms, resulting in decreased TCR 

signalling [75].

1.12. The soluble cytoplasmic tail of CD45 and its action on human T 
cells

Recently, an alternative function for CD45 has been discovered showing that 

CD45 is proteolytically cleaved in activated human monocytes and granulocytes 

upon stimulation with the fungal cell wall component zymosan or phorbol 12-

myristate 13-acetate (PMA) but not by any other microbial stimulus [76]. Both 

stimuli are potent inducers of the respiratory burst in phagocytes, which was 

found necessary for CD45 cleavage. A critical step involved in burst formation 

via zymosan might be the ligation of Dectin-1 [76]. Following activation and 

recruitment of the NADPH oxidase CD45 is sequentially cleaved by

-secretase leading to the shedding of the 

ectodomain and the generation a 95 kDa fragment of the cytoplasmic tail of 
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CD45 (ct-CD45). This fragment was found to be released upon activation-

induced cell death [76]. 

Fig. 6: ct-CD45 generation upon activation of human granulocytes and monocytes. Upon 

activation-induced cell death ct-CD45 is released and binds to human T cells via the putative 

receptor PRAT4A.

Binding studies determined that ct-CD45 acts as a cytokine-like factor on 

human T cells and was shown to inhibit the proliferation of these cells upon in 

vitro upon stimulation with CD3 and CD3/CD63 antibodies as well as in 

allogeneic mixed leukocyte reactions [76, 77]. Inhibition of T cell proliferation 

was shown to be independent of phosphatase activity as fusion proteins 

consisting of D2 or a phosphatase-dead D1 showed inhibitory action. The 

reduced proliferation of these cells is not due to cell death [76]. Furthermore it 

was shown that even T cells activated via CD3/CD28 antibodies do not show 

impaired proliferation upon ct-CD45 challenge. However, most strikingly, it was 

demonstrated that even these cells display reduced production of all cytokines 

tested as well as an impairment in the induction of T cell activation markers [77].
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Further experiments showed that ct-CD45-treated T cells are hyporesponsive to 

restimulation which could be partly reversed by exogenous IL-2 [77]. A potential 

receptor candidate for ct-CD45 was identified by a cDNA library screen showing 

binding of ct-CD45 to a protein associated with TLR4 (PRAT4A) on the cell 

surface [77]. PRAT4A was originally described as an endoplasmic reticulum 

resident protein involved in the regulation of TLR4 surface expression [78].

Following studies found that PRAT4A is important for immune responses via 

several TLRs by regulating maturation of TLRs within the ER including TLR1 

and TLR4 as well as the subcellular distribution of TLR7 and TLR9 [98]. Since 

prior reports suggest a role for PRAT4A as an ER chaperone surface 

expression of this molecule including a receptor function for ct-CD45 appeared 

to be quite surprising. Nevertheless, evidence for this was provided by showing 

cells surface expression of PRAT4A on a Bw 5417 clone overexpressing human 

PRAT4A as well as on human T cells following activation [77]. A siRNA-

mediated knock-down of PRAT4A in the Bw clone showed reduced binding of 

ct-CD45 to the cells which also supported its receptor function as obtained by 

the screen [77]. However, a physical blockade of ct-CD45 binding via PRAT4A 

antibodies could not be achieved so far. Besides, the question regarding 

molecular factors regulating this anergic state of human T cells still remained.
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2. Aim

The pronounced inhibition of T cell proliferation by ct-CD45 accompanied by 

hyporesponsiveness to restimulation suggested an anergy-like state bearing 

similarities as well as differences to classical anergy. Since this anergy-like 

state is regulated by biochemical events the major aim of this study was to 

elucidate the molecular mechanisms involved in its maintenance. T cell anergy 

is based on a distinct transcriptional program [56-57] involving actively 

regulated factors such as signalling molecules, transcription factors and cell 

cycle regulators. Therefore, the specific aims of the study were:

1. To broadly identify responsible factors for this anergy-like state via the 

microarray technology.

2. Then to confirm and further analyze differentially expressed factors by 

quantitative real-time PCR. 

Fig. 7: Experimental procedure for the identification of molecular factors induced by ct-

CD45 in human T cells creating an anergy-like state.
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3. Materials and Methods

3.1. Antibodies, fusion proteins and oligonucleotides

Antibodies

species specificity clone isotype source

mouse hu CD3 OKT3 IgG2a Jansen-Cilag, Vienna, AT

mouse hu CD28 15E8 IgG1
Caltag Laboratories, 

Burlingame, CA

mouse hu CD63
CD63 -
11C9

IgG3
Otto Majdic, Institute of 

Immunology

rabbit SLFN12 (N-term.) polyclonal IgG Abcam, Cambridge, UK

rabbit SLFN12 (C-term.) polyclonal IgG Abcam, Cambridge, UK

rabbit hu KLF2 polyclonal IgG Sigma-Aldrich, St. Louis, MO

rabbit mu+hu PRAT4A polyclonal - Kensuke Miyake, Tokyo, JP

goat human IgG polyclonal IgG
Jackson Immunoresearch Lab., 

West Grove, PA

goat murine IgG polyclonal IgG
Jackson Immunoresearch Lab., 

West Grove, PA

goat human IgG-PE polyclonal IgG
Jackson Immunoresearch Lab., 

West Grove, PA

goat rabbit IgG-HRP polyclonal IgG
Dako Diagnostics AG, Glostrup, 

DK

Abbreviations: hu……human

   mu…. murine

   term…terminus
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Fusion proteins

fusion protein source

ct-CD45-Fc Stefan Hopf and Alexander Puck, Institute of Immunology, Vienna

CTLA-4-Fc Bristol-Meyers Squibb, NY

Primers used for qPCR

primer sequence 5'->3'

ACTB_F AGAGCTACGAGCTGCCTGAC

ACTB_R AGCACTGTGTTGGCGTACAG

-m_F GATGAGTATGCCTGCCGTGTG

-m_R CAATCCAAATGCGGCATCT

CBL-b_F ATGCTGAATGGAACACATGG

CBL-b_R ACTATGCCTTGCAGGAGGTG

CD3E_F TGAGGGCAAGAGTGTGTGAG

CD3E_R TCCTTGTTTTGTCCCCTTTG

CDK1_F GGTCAAGTGGTAGCCATGAAA

CDK1_R TCCTGCATAAGCACATCCTG

CDK2_F TTGTCAAGCTGCTGGATGTC

CDK2_R TTTAAGGTCTCGGTGGAGGA

CDK4_F TTCTGGTGACAAGTGGTGGA

CDK4_R CTGGTCGGCTTCAGAGTTTC

CDK6_F TGTTTCAGCTTCTCCGAGGT

CDK6_R CGTGACGACCACTGAGGTTA

cyclin D1_F CAAATGTGTGCAGAAGGAGGT

cyclin D1_R AGGAAGCGGTCCAGGTAGTT

cyclin D2_F CTGGGGAAGTTGAAGTGGAA

cyclin D2_R ATCATCGACGGTGGGTACAT

cyclin E1_F AATGCGAGCAATTCTTCTGG

cyclin E1_R CTGGTGCAACTTTGGAGGAT
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primer sequence 5'->3'

EGR3_F CAACTGCCTGACAATCTGTACC

EGR3_R AGTAGGTCACGGTCTTGTTGC

GAPDH_F CGACCACTTTGTCAAGCTCA

GAPDH_R AGGGGAGATTCAGTGTGGTG

IFNg_F TTCAGCTCTGCATCGTTTTG

IFNg_R TCTTTTGGATGCTCTGGTCA

KLF2_F CTACACCAAGAGTTCGCATCTG

KLF2_R AGTTGCAGTGGTAGGGCTTC

p27kip_F CCGGCTAACTCTGAGGACAC

p27kip_R AGAAGAATCGTCGGTTGCAG

SLFN11_F CCTCCCCTTAGCAGACCAGT

SLFN11_R TTCCCCGAAAGAAAGGTTG

SLFN12_F CAAGCCAACCAGGAGAAAAG

SLFN12_R AACCAACTCGGCATAATTCG

SLFN12_“B“_F AACCGTGTGATGCAGTTGAC

SLFN12_“B“_R TTCTGCAAAGGTTTTCTGGAG

SLFN12L_F TTGACCGAGAAGGAATGGAT

SLFN12L_R GCAGAAGGTTTTTGGAGCAC

SLFN13_F GACGCAGATCCAGAGTTTCC

SLFN13_R AAATGTCCTGGTGGAACTGG

SLFN14_F TCAGTCAGCTCCTCCCAGTT

SLFN14_R CAAGGATGTATCAGGGTCTTCA

SLFN5_F AATTGCCCACAAGAGAATGG

SLFN5_R AGCGTTTCTGCTGCTCTTTC

All primers were synthesized by Sigma-Aldrich (Steinheim, DE). Primer 

sequences for CD3E [94], CBL- -microglobulin [96] have 

been described previously. Sequences for the IFN-

from Dr. Peter Steinberger (Institute of Immunology). Another SLFN12 primer 
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used in some experiments was purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA).

siRNA

target sense strand of duplex

SLFN12 GCAAUUCUGGUCUUAAAUACAAUCUCC

SLFN12 CAUCACACGGUUAUCUUUCACAUGCCA

SLFN12 GUGAGCCUUCGACAAGAUUUAAACAUC

The SLFN12 Trilencer-27 siRNA and a Trilencer-27 Universal Scrambled 

Negative Control siRNA Duplex were purchased from Origene Technologies 

(Rockville, MD).

Buffers and media

LB medium: 25 mg Luria Broth Base per litre of distilled water; boil to dissolve 

and autoclave before use.

Heparin medium: 500 ml RPMI 1640 medium + FCS. Add 100 U/ml penicillin + 

100 g/ml streptamycin and 2mM L-glutamine (stored at –20°C, Sigma-

Aldrich)). Add 10 U/ml Heparin (stock: 5000 U/ml, Baxter, Vienna).

Freezing medium: RPMI 1640 supplemented with 25% FCS and 10% DMSO

MACS-buffer (stored at 0°C): 1000 ml 1x PBS def. + 25 ml Human Serum 

Albumin (stock: 20%, Centeon, Vienna) + 10 ml EDTA (stock: 0,5 M); sterile 

filtration.

10x PBS stock solution: 

5.8 g KH2PO4

16.6 g Na2HPO4 2H2O 

72 g NaCl 

Dissolve in aquabidest (=ddH2O), fill up to 10 litres and adjust to pH 7.2

PBS/BSA stock solution (20%):

100 g BSA 

10 g NaN3
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Dissolve in 500 ml PBS buffer. For the PBS/BSA wash buffer, prepare a 1:20 

dilution with PBS buffer.

Solutions for western blot:

Running buffer (4x):

Tris 12 g

SDS 4 g

Glycin 57,6 g

Fill up to 1000 ml with ddH2O

Blotting Buffer:

250ml of 4x running buffer

200 ml methanol

ad ddH2O to 1000 ml. Degas before use.

PBST (PBST 0.5%):

PBS with 0.5 % Tween 20

Dry milk solution

5% dry milk powder dissolved in PBST buffer.

List of reagents and chemicals

Reagent final conc. source

Beriglobin 20 mg/ml (in PBS/BSA)
Aventis Behring, Vienna, 
Austria

Glycogen 130 µg/ml
Fermentas, Burlington, 
Canada

GM-CSF 50 ng/ml
Novartis Research Institute,
Vienna

IL-4 100U/ml
Novartis Research Institute,
Vienna

LipofectamineTM 2000 1:150
Life technologies, Carlsbad, 
CA

methyl-3H-thymidine 1mCi/ml Perkin Elmer, Waltham, MA

pegGOLD TriFastTM undiluted PeqLab, Erlangen, DE

OPTI-MEM® undiluted
Life technologies, Carlsbad, 
CA
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Cell lines

The following cell lines were used in this study: The Jurkat cell line was 

obtained from American Type Culture Collection (ATCC, Manassas, VA). The 

SK-N-SH cell line was a gift from St. Anna Children’s Cancer Research 

Institute, Vienna. Murine Bw 5417 cells were kindly provided by Dr. Peter 

Steinberger (Institute of Immunology, Medical University of Vienna). Phoenix-E 

cells were a gift from G. P. Nolan (Stanford University, Stanford, CA).

3.2. Cell isolation

Cell preparation

Peripheral blood mononuclear cells were separated from whole blood of healthy

donors by density gradient centrifugation using Ficoll-Paque (Amersham, Little 

Chalfont, UK). Blood was diluted 1:2 to 1:3 with heparin-medium. For density

gradient centrifugation 15 ml of Ficoll-Paque were prepared in 50 ml tubes and

a layer of heparinized blood was carefully pipetted onto. The cells were spun 30

minutes at 900g without brake. After centrifugation granulocytes and

erythrocytes gathered at the bottom of the tube, mononuclear cells in the

interphase.

Magnetic activated cell sorting (MACS)

Magnetic activated cell sorting (MACS) is a method for the selective enrichment 

or depletion of cells which express a surface protein distinct for their cell type.

Therefore cells can be labelled with antibodies directed against the specific

molecule which have been coupled to biotin. These labelled cells can be

targeted with magnetic beads that contain a secondary antibody targeted

against the biotin residues on the primary antibody. Therefore, specific cells in a

mixture can be selectively retained in a magnetic column. The mAbs we used 

were labelled with biotin. These biotinylated antibodies recognizing cell-type 

specific surface molecules were mixed with the cells to be separated. Then the 

cells were washed twice with MACS-buffer. In a second incubation step 

paramagnetic beads (50 nm in diameter) were coupled to the cells. The cells 

were applied onto a separation column placed in a strong permanent magnet. In 

this strong magnetic field the cells labelled with paramagnetic beads stack to 
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the iron mesh and were retained while non-labelled cells passed through. 

Retained cells were eluted by removing the column from the magnetic field.

Purification of T cells and monocytes

For the isolation of monocytes up to 1 x 109 PBMCs were incubated with 250 l 

of biotinylated CD14 (VIM13) and positively enriched (positive selection),

whereas T cells were isolated by collecting the flowthrough of PBMCs depleted 

(negative selection) by using an antibody cocktail containing anti-CD14 

(monocytes), anti-CD16 (monocytes, NK–cells), anti-CD19 (B cells), anti-CD36 

(monocytes, thrombocytes), anti-CD56 (NK-cells) and anti-CD123 (progenitor 

cells, megakaryocytes, granulocytes). Freshly isolated PBMCs were 

resuspended in 750 l MACS buffer and incubated with 250 l of biotinylated 

antibodies for 15 minutes at 4 °C. To remove unbound antibodies the cells were 

washed with MACS buffer and again resuspended in 750 l buffer. Then 250 l 

of anti-Streptavidin MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) 

were added to the suspension and incubated for 15 minutes at 4°C. In the 

meantime a CS column (Miltenyi biotec) was placed onto a VarioMACS 

apparatus and equilibrated with 40 ml MACS buffer. Afterwards the labelled 

PBMCs were loaded onto the column and washed with 40 ml MACS buffer. The 

flow through was collected as the monocyte-negative fraction. The column was 

further washed 4 times with 10 ml MACS buffer and monocytes were collected 

by removal of the column from the magnet and aspiration of the retained cells 

from the side valve using a syringe. For T cells the flow-through was collected, 

washed with MACS buffer and counted. 20 l of this solution were taken for cell 

counting with a Coulter Counter (Beckman Coulter, Miami, FL). Before 

measuring the cell number two drops of Zap-Oglobin® (Beckman Coulter) are 

added to the counting beaker to remove residual erythrocytes.

Freezing and thawing of cells

Mammalian cells can be stored in liquid nitrogen for prolonged periods of time

with minimal loss of viability. For that purpose, cells were spun down, counted

and resuspended in freezing medium to a concentration between 107 – 5 x 

107cells/ml. 1 ml aliquots were filled into cryotubes (Nalgene Nunc International,
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Roskilde, Denmark) and kept overnight at - 80°C in a freezing box filled with

isopropanol before being transferred to liquid nitrogen.

Isolation of naïve T cells from human cord blood

Naive T cells were isolated from cord blood as described above. Cord blood 

samples from healthy donors were collected during healthy full-term deliveries. 

Approval was obtained from the Medical University of Vienna institutional review 

board for these studies.

3.3. Cell culture

Cell Culture conditions

For general cell culture RPMI 1640 (NBK, Novartis Research Institute, Vienna) 

supplemented with 10% FCS (HyClone, Logan, UT), 2 mM L-glutamine (NBK, 

Novartis Research Institute, Vienna), 100 U/ml penicillin and 100 g/ml 

streptomycin (NBK, Novartis Research Institute, Vienna) was used. Phoenix-E 

cells were cultivated in IMDM medium supplemented with FCS, L-glutamine,

penicillin, streptomycin and amphotericin. Cells were cultured at 37°C with 5% 

CO2.

T cell activation/inhibition

For T cell activation/inhibition assays antibodies and Ig-fusion proteins were 

used. 96-well non-tissue culture plates (Nunc-immuno plate maxisorp, #439454, 

Nunc, Denmark) were coated with 3 µg/ml of Fc-specific goat anti-mouse IgG 

and goat anti-human IgG (Jackson Immunoresearch laboratories), overnight at 

4°C, washed twice, and then incubated with 2 µg/ml of the respective fusion 

protein (ct-CD45-Fc and CTLA4-Fc) plus anti-CD3 (4 µg/ml) or the combination 

of anti CD3/CD28 or anti CD3/CD63 mAb (2 µg/ml of each antibody). After 

another washing step, T-cells (1-1.5x105 cells/well) were added to the wells.

T cell restimulation 

For restimulation T cells were activated in the presence of fusion proteins as 

indicated above and cultured for 4 days. Cells were then harvested, washed 

twice and rested in 24 well plates for 3 days. 96-well plates were pre-coated 

overnight at 4°C with 3 µg/ml of Fc-specific goat anti-mouse IgG, washed and 
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incubated with CD3/CD63 or CD3/CD28 (2 µg/ml for each antibody). Following 

washing, T-cells (1x105 cells/well) were added to the wells and cultured for 4 

days. Proliferation was assessed as described below.

Cell proliferation assays 

T cell proliferation was monitored in 96-well plates by activating 100.000 

cells/well for 3 days as indicated above. 

On day 3, 1.25 µCi of methyl-3H-thymidine (Perkin Elmer, Waltham, MA) were 

added to each well followed by culturing for another 18 hours. Cells were then 

lysed by distilled water and harvested onto filter plates (Milipore Corp., Bedford, 

MA). Plates were dried for 1 hour at 37°C before addition of 25 µl/well of 

Microscint scintillation mix (Packard, Meriden, Connecticut). Incorporated 

radioactivity was determined using a microplate scintillation counter (Packard). 

All assays were performed in triplicate.

Generation of monocyte-derived DC

Monocyte-derived immature dendritic cells were generated by culturing 

peripheral blood CD14+ monocytes for 7 days in the presence of 50 ng/ml GM-

CSF (Novartis Research Institute, Vienna) and 100 U/ml IL-4 (Novartis 

Research Institute, Vienna).

LPS-challenge of monocyte-derived dendritic cells

1x106 cells in a 24-well plate were treated with 1 µg/ml lipopolysaccharide for up 

to 24 hours. Cells were then harvested and lysed for RNA isolation.

3.4. Generation of fusion proteins

Preparation of fusion protein-encoding plasmid vectors

Plasmids were prepared from glycerol stocks of E. coli cells transformed with a 

pEAK12 vector (Edge BioSystems, Gaithersburg, MD) encoding ct-CD45-Fc 

fusion proteins consisting either of D1, D2 or full length Fc fusion constructs. 

For large scale preparation of plasmids, bacteria were inoculated in up to 500 

ml of LB medium supplemented with ampicillin (70 µg/ml) to grow under shaking 

over night at 37°C. Plasmid maxipreparation was performed with the Qiagen 

Plasmid Maxi Kit, according to the manufacturer’s protocol. Bacterial cells were 
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harvested by centrifugation at 5000 g (4000 rpm) for 15 minutes at 4°C. The 

pellet was resuspendend in 10 ml buffer P1 (Qiagen) before 10 ml of alkaline 

cell lysis buffer P2 (Qiagen) were added, the solution was gently mixed and 

incubated at room temperature for 5 minutes. In the next step 10ml of 

neutralization buffer P3 (Qiagen) were added to stop cell lysis. 

Lysates were incubated on ice for 15 minutes followed by centrifugation at 5000 

g (4000 rpm) for 30 minutes at 4°C to remove cell debris. The supernatant was 

filtered and transferred to a Qiagen tip 500 column, which had been equilibrated 

with 10 ml buffer QBT (Qiagen). After washing the column twice with 30 ml of 

buffer QC (Qiagen), DNA was eluted with 15 ml buffer QF (Qiagen) and 

precipitated by adding 10,5 ml isopropanol. The precipitated DNA was collected 

by centrifugation for 30 minutes at 4°C at 5000 g (4000 rpm). The DNA pellet 

was washed once with 70 % ethanol, dried and resuspendend in nuclease free 

water according to the pellet size. The DNA content was determined by 

measuring the OD at 260nm using a NanoDrop 2000 spectrophotometer 

(PeqLab, Erlangen, DE). Plasmid DNA was diluted to a final concentration of 1 

µg/µl and stored at -20°C until use.

CaCl2 Transfection of Phoenix cells

HBS-Buffer (pH 7,05): 

140 mM NaCl

1,5 mM Na2HPO4

50 mM HEPES

2,5 M CaCl2

24 h before transfection cells were harvested by trypsination and seeded in a 

concentration as indicated below. One hour before transfection fresh medium 

was applied. Plasmid DNA was diluted with sterile ddH2O and CaCl2 (see table 

below). The transfection mix was sterile filtered using a 0,22 µm filter and the 

required amount of 2 x HBS was added while vortexing on low level. Formation 

of DNA-calcium phosphate precipitates was allowed by incubation for exactly 1 

minute at room temperature, before applying the mix drop wisely to the cells. 

After 16 - 24 h the medium was replaced. The supernatants were harvested 3 



Materials and Methods

53

and 6 days after transfection. For generation of immunoglobulin fusion proteins 

6 to 10 ∅10 cm dishes were transfected with the respective plasmid construct. 

Cell number/ml DNA ddH2O CaCl2 2,5 M *) 2 x HBS-

Buffer

10cm plate 6 x 106 30 µg ad 900 µl 100 µl 1000 µl

6-well 1 x 106 6 µg ad 90 µl 10 µl 100 µl

24-well 0,3 x 106 3 µg ad 45 µl 5 µl 50 µl

48-well 2 x 105 1 µg ad 25 µl 2,5 µl 25 µl

optional: use 5 µg of a GFP-Plasmid to monitor transfection 

efficiency

*) add shortly before transfection 

Purification of immunoglobulin fusionproteins

Buffers & solutions

All buffers were sterile filtered (0,22 µm filter) before use:

binding buffer (wash buffer): 20 mM sodium phosphat, pH7

elution buffer: 0,1 M sodium citrat, pH 3

Tris-HCl pH 9 

PBS + 20 % EtOH

dialysis buffer : 150 mM NaCl, 50 mM HEPES, 4 mM DTT, 0,0035% Tween-20, 

pH 7.0

For protein purification of fusionprotein from cell-culture supernatants the 

HiTrap Protein A HP column (GE healthcare, UK) was used. The specifity of 

protein A is primarily for the Fc region of IgG.

The cell culture supernatants of Phoenix cells transfected with a vector 

encoding various ct-CD45-Fc fusion proteins were centrifuged at 2 200 rpm for 

5 min to remove cell debris. Before applying to the column the sample was 

filtered using a 0,22 µm filter.

Using a constant flow rate of 1 ml/min the column was equilibrated with 5-10 ml 

binding buffer, 5-10 ml elution buffer and 5-10 ml binding buffer again. Then the 

sample was loaded to the column. Before elution the column was washed with 
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5-10 ml binding buffer and then 8 x 1 ml fractions were collected. 120 µl of Tris-

HCl pH 9 were added so that the final pH of the sample would be neutral, to 

provide proper folding of the protein. The column was regenerated by washing 

with 5-10 ml binding buffer. For further use and storage (4°C) the column was 

washed with 20 % ethanol in PBS.

After purification the protein concentration of the eluted fractions was measured 

at OD280 (OD1 is equal to 0,7 µg/µl). Then all fractions which contained protein 

were pooled and dialysed o/n at 4°C against dialysis buffer under stirring. At the 

next day the protein concentration of the dialysed fractions was measured 

again. The Fc fusionproteins were aliquoted and stored at –80°C.

3.5. Flow cytometry

Principles

Flow cytometry can be used to examine diverse properties of cells including the 

relative size, relative granularity and relative fluorescence intensity. Cells are 

transported in a fluid stream to a laser beam. To accomplish that single cells are

passing through the beam, a principle related to laminar flow is applied. The

sample is injected into a stream of sheath fluid. Cells within this stream are

accelerated and are focused to the center, a process called hydrodynamic

focussing. The incident laser light is scattered by the cells and detected in 

different angles. Forward scatter light (FSC) is measured just of the axis of the 

incident beam by a photo diode and gives information about the size of a 

particle. Side scatter light (SSC) is collected by a photo-multiplier at 

approximately 90° of the laser beam axis and is proportional to the granularity.

The argon ion laser used emits light at 488 nm, a wavelength matching with the

absorption spectrum of a range of fluorescent dyes. These fluorochromes can

be excited by the laser, which means that an electron is raised to a higher state

of energy. After returning to ground state a photon is emitted and fluorescence

can be detected after passing a system of lenses and filters. The intensities of 

different fluorochromes can be analysed at once, provided that their absorption

maximae are not to close to each other.
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Membrane staining with unconjugated mAb

Unspecific binding of mAbs to Fc -receptors was blocked by incubation of cells 

with human immunoglobin Beriglobin (Aventis Behring GmbH, Vienna). As an 

isotype-matched control a polyclonal rabbit anti-human KLF2 antibody was 

applied. A phycoerythrin (PE)-conjugated goat anti-rabbit IgG was used for 

secondary labelling.

Firstly, the cell suspension (2-5x105 /assay) was centrifuged for 5 minutes at 

300g and the pellet was resuspended with 50 l Beriglobin/assay (20 mg/ml in 

PBS/BSA 1%) and kept 10 minutes on ice. Then 20 l of the antibody (20 µg/ml 

in PBS/BSA 1%) were prepared in Micronic tubes and 50 l of the cell 

suspension was added, mixed and incubated 30 minutes at 4°C. Each assay 

was washed twice with PBS/BSA 1% followed each time by centrifugation at 

300g, at 4°C. 20 l of PE-conjugated antibody (20 µg/ml) were added to the 

cells and again incubated for 30 minutes at 4°C. Each assay was washed twice 

with PBS/BSA 1% resuspending the cells in 50 l FACS fluid (Becton 

Dickinson, Franklin Lakes, NJ). The tubes were kept on ice until they were 

analyzed by flow cytometry using a FACScalibur Flow Cytometer (Becton 

Dickinson, Palo Alto, CA)

Binding studies with fusion proteins

Binding studies with fusion proteins were performed analogous to staining with 

unconjugated antibodies. As described above, unspecific binding of fusion 

proteins or antibodies to Fc -receptors was blocked via human Beriglobin 

(Aventis Behring GmbH, Vienna). CTLA-4 Fc was used as a non-binding control 

fusion protein. A phycoerythrin (PE)-conjugated goat anti- -

specific) antibody was used for secondary labelling. For blocking of ct-CD45 

binding to PRAT4A a polyclonal PRAT4A antiserum (kindly provided by Dr. 

Kensuke Miyake, University of Tokyo) at a 1:100 dilution in PBS/BSA 1% was 

incubated for 20 minutes before addition of fusion protein. Fusion proteins and 

secondary antibodies were used at a concentration of ~20 µg/ml.

Binding was analyzed by flow cytometry using a FACScalibur Flow Cytometer 

(Becton Dickinson).
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3.6. mRNA quantitation

RNA-Isolation and cDNA preparation

Total RNA was isolated using peqGOLD TriFastTM reagent (peqLab, Erlangen, 

DE) For isolation 1-2x106 cells/ml were resuspended in 500 µl of TriFastTM

reagent and incubated for 5 minutes (optional: -20°C until need) at room 

temperature. To separate RNA from cellular protein and DNA 100 l of 

chloroform were added, mixed by vortexing and incubated again for 5 minutes 

at room temperature. After centrifugation for 15 minutes at 13 000 rpm at 4°C 

the aqueous phase was transferred into a fresh tube and 300 l of isopropanol 

as well as 4 l of a 20 mg/ml solution of glycogen serving as an inert co-

precipitant were added. The contents were mixed by inversion, incubated for 5 

minutes at RT and centrifuged again at 13 000 rpm at 4°C for 10 minutes. The 

pellet was washed in 1 ml of 75 % ethanol. The dried pellet was resuspended in 

distilled water (12 l) and the concentration was measured using a NanoDrop 

2000 spectrophotometer(PeqLab, Erlangen, DE). RNA of an OD260/280 nm 

>1.6 was used for reverse transcription. Total RNA was reverse transcribed with 

MuLV-RT (Fermentas, Burlington, Canada) using Oligo (dT)18 primers, 

according to the manufacturer’s protocol. 1-2 g RNA were mixed with 0,5 g 

Oligo (dT)18 primers and distilled water was added up to 11 l, incubated for 5 

minutes at 70°C and chilled on ice. To each reaction 4 l of 5x M-MuLV reverse 

transcriptase buffer, 1 mM dNTP mix, 20 U ribonuclease inhibitor, 200 U of 

RevertAid H Minus M-MuLV reverse transcriptase (all Fermentas) and distilled 

water to a final volume of 21 l were added. The mixture was incubated for 5 

minutes at 37°C, followed by incubation for 60 minutes at 42°C and 10 minutes 

at 70°C. Finally cDNA was diluted 1:2 prior to qPCR. cDNA was stored at -20°C 

until use.

Microarray analysis

Microarray analysis was performed by extracting total RNA from T cells

activated via plate-bound CD3/CD63 or CD3/CD28 antibodies in the presence 

and absence of ct-CD45Fc fusion proteins, respectively. T cell activation and 

cDNA preparation were performed as described above. cDNA from five human 

donors was pooled for each condition and subjected to microarray analysis 
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using an Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix, Santa 

Clara, CA). The analysis was performed in close collaboration with Novo 

Nordisk A/S (Bagsvaerd, Denmark).

Quantitative real-time PCR (qPCR)

Real-time PCR is a sensitive tool for the quantification of mRNA expression in 

different samples. Amplification is monitored via emission of a fluorescence 

signal corresponding to the increase of the PCR product. Detection is 

performed during the logarithmic phase of the PCR as soon as the fluorescence 

signal generated during the reaction significantly exceeds background noise

[79]. Common detection methods used include, for example, SYBR Green and

TaqMan detection. SYBR Green is a non-specific DNA-binding dye which only 

emits fluorescence when intercalating into DNA double-strands and thus 

corresponds to the increase of the (double-stranded) amplicon of the gene of 

interest. However, this method of detection also yields signals when binding to 

primer dimers and other non-specific PCR products. TaqMan probes are 

specific for the cDNA to be detected and are located within the sequence 

amplified by the primer pair. Probes harbour both a reporter dye and a 

quenching dye located at the 5’ and 3’ end of the probe, respectively. During the 

amplification polymerase 5’ exonuclease activity displaces the fluorescent dye 

from the quenching dye thus resulting in the release of a fluorescent signal [79].

Although absolute quantification using DNA standards encoding the sequence 

of interest would be possible expression differences are usually determined in a 

relative way. Housekeeping genes serve as internal standard to account for 

variations during RNA isolation and reverse transcription [84]. This way of 

quantification requires stable expression of this reference which must not be 

altered during any treatment of the cells during cell culture. However, many 

classical housekeeping genes have been shown to be actively regulated, 

especially in lymphocytes upon activation [85]. As regulation of housekeeping 

genes can vary considerably depending on the experimental setting it is crucial 

to validate several housekeeping genes for their suitability in the respective 

assay [86]. Thus, we analyzed four genes regarding stability of expression in 

our T cell activation/inhibition assays using ct-CD45 48 hours post activation.
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Among the genes tested, a distinct bias was detected for GAPDH which shows 

reduced upregulation in T cell activated in the presence of ct-CD45 compared to 

controls. The most stable genes in our assays were found to be CD3 epsilon 

-microglobulin which were barely altered by ct-CD45 treatment 

and were thus chosen as references for experiments.

Fig. 8: Validation of various housekeeping genes for normalization of real-time PCR 

experiments with ct-CD45-treated samples. 96-well plates were coated with anti-human and 

anti-mouse IgG antibodies, washed, incubated with anti-CD3, anti-CD3/CD63 or anti-CD3/CD28 

monoclonal antibodies in the presence or absence of ct-CD45/CTLA-4-Fc. T cells were plated 

and cultured for the indicated time. Total RNA was extracted, reverse transcribed using oligo-dT 

primers and quantitative realtime PCR was performed using intron-spanning primers. Mean 

values and standard deviation of duplicate determination is shown. Ct….crossing point (i.e. first 

significant increase above background fluorescence).

Quantitative real–time PCR (qPCR) was performed using the CFX 96 realtime-

PCR detection system (Bio-Rad Laboratories, Hercules, CA) using SYBR 

Green I (Bio-Rad). Detection was performed according to the manufacturer’s 

protocol. In all assays, cDNA was amplified using a standard program (2 

minutes at 50°C, 10 minutes at 95°C, 40 cycles of 15 sec at 95°C / 15 sec at 

60°C / 45 sec at 72°C). 

3.7. RNA interference

RNA interference is a cell intrinsic mechanism serving the degradation of 

foreign double-stranded RNA molecules such as found in many viruses. 
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Double-stranded RNA entering a cell is bound by protein complex with nuclease 

activity (Dicer) which cleaves the double-strand to fragments of 23 nucleotides

which are termed short-interfering RNAs (siRNAs). siRNAs are bound by the 

RISC complex which separates double-strands to base pair them with other 

double-stranded RNA molecules containing these sequences. As a result,

dsRNA is effectively degraded within a cell. The mechanism of RNA 

interference can be experimentally harnessed for the specific silencing of a 

gene of interest by introducing siRNA containing the desired sequence into a 

cell [48].

We transfected a mix of three different siRNA each of them targeted against 

SLFN12 and a control siRNA (Origene Technologies, Rockville, MD) at a final 

concentration of 10 nmol each into T cells.

The general transfection procedure was performed according to the 

manufaturer’s protocol. Amounts given are indicated for transfection in 96-well 

plates. Briefly, Lipofectamine 2000 (1µl per well) was diluted into 25 µl of OPTI-

MEM® medium (Life technologies, Carlsbad, CA) and incubated for 5 minutes at 

room temperature before it was combined with equal volumes of siRNA duplex 

diluted in OPTI-MEM. The mixture was incubated for 20 minutes at room 

temperature to allow complex formation. Complexes were then added to the 

cells, mixed by gently rocking the plate and incubated at 37°C, 5% CO2.

T cells were transfected 3 days after activation in 96-well plates coated with 

CD3/CD63 antibodies as described above. Cells were harvested 24 hours after 

transfection, washed and were allowed to rest for two days before restimulation 

with CD3/CD63 in the presence of fusion proteins for 3 days before measuring 

proliferation.

3.8. SDS-PAGE and Western Blot

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) is a useful 

system to separate proteins according to their size. SDS is a strong detergent, 

having a hydrophobic tail (the lipid-like dodecyl part) and a negatively charged 

head group (the sulphate group). The dodecyl part interacts with hydrophobic 

amino acids in proteins. Since the 3D structure of most proteins depends on 
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interactions between hydrophobic amino acids in their core, the detergent 

destroys 3D structures, transforming what were globular proteins into linear 

molecules now coated with negatively charged SDS groups masking the actual 

charge of proteins. Thus, after boiling in the presence of SDS proteins are

unfolded and are separated according to their size. The reason why -

mercaptoethanol is usually included in the sample buffer is to reduce disulfide 

bonds within or between molecules, allowing molecules to adopt an extended 

monomeric form. 

Laemmli sample buffer (Biorad, Richmond, CA) containing 5% ß-

mercaptoethanol (Biorad) was used for preparation of SLFN12 fusion proteins 

and lysis of cells. Samples were boiled at 95 °C for 5 min before loading. 

Proteins were separated by electrophoresis on 10% SDS-polyacrylamide gels 

using the Hoefer Mighty Small system (Amersham, Little Chalfont, UK). As a 

running buffer 25 mM Tris base, 192 mM glycine, 0,1% SDS was used. A 

SeeBlue Plus2 prestained marker (Invitrogen) was used as a size marker.

Polyacrylamide gel composition

Reagent 10% separation gel 2% stacking gel

30% Acrylamide-solution 4 ml 440 µl

H2O 4,8 ml 2 ml

1,5 M Tris HCl pH 8,8 3 ml -

0,5 M Tris HCl pH 6,8 - 840 µl

10% SDS-solution 100 µl 35 µl

Ammoniumpersulfate (10%) 100 µl 35 µl

TEMED 8 µl 4 µl

Western Blotting

Western Blotting allows determining relative amounts of the protein present in 

different samples via the use of specific antibodies. Separated proteins are 

transferred to a membrane for detection. The membrane is incubated with a 

generic protein to bind to any remaining sticky places on the membrane and 
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therefore blocking unspecific antibody adherence on the membrane itself. A 

primary antibody is then added to the solution which is able to bind to its 

specific protein. A secondary antibody-enzyme conjugate, recognizing the 

primary antibody is added to bind and detect bound primary antibody.

Proteins that were separated by SDS-PAGE were blotted onto Immobilon-P

PVDF membranes (Millipore, Billerica, MA) using the Hoefer Semiphor TE77

system (Amersham, Buckinghamshire, UK) for 1 hour at 15 V. As a blotting 

buffer 25 mM Tris base, 192 mM glycine, 5% Methanol was used. Membranes 

were blocked with 5% dry milk / 0,05% Tween20 and incubated with primary 

antibody (1 g/ml) in the same solution. Bound Abs were detected using HRP-

conjugated goat antibodies to rabbit IgG (used at 1:2500; Dako) and 

chemiluminescence detection (SuperSignal West Femto Substrate, Thermo 

Fisher Scientific, Waltham, MA). Blots were developed on Kodak Biomax XAR 

films (Sigma-Aldrich).
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4. Results

4.1. ct-CD45 reduces cluster and blast formation of activated T cells

The cytoplasmic tail of CD45 was shown to be a potent inhibitor of T cells 

activated via CD3 or CD3/CD63 but not via CD3/CD28 [76, 77]. We found that 

this inhibition can even be achieved during strong activation as indicated by 

high levels of 3H-methyl thymidine uptake by T cells (Fig. 9) emphasizing the 

potent inhibitory action of ct-CD45.

Fig. 9: Inhibition of proliferation by ct-CD45 during strong T cell activation. 96-well plates 

were coated with anti-human and anti-mouse IgG antibodies, washed and incubated with 

antibodies targeted against (A) CD3, (B) CD3/CD63 and (C) CD3/CD28 in the presence or 

absence of ct-CD45. Proliferation was measured via 3H-methyl thymidine incorporation on day 3 

of activation. Data is displayed as counts per minute (cpm). Mean values +/- standard deviation 

(SD) of triplicate determination are indicated. One representative out of 4 independent 

experiments is shown.

The marked reduction in T cell proliferation exerted by the action of ct-CD45 is 

accompanied by distinct morphological differences between proliferating and 

growth-inhibited cells. Two main parameters characterizing T cell morphology 

upon activation in vitro were found to be drastically reduced. One typical feature 

most commonly observed is the formation of T cell blasts which is characterized 

by a profound increase in size of activated cells. As a second parameter 

clustering of neighbouring cells may occur depending on cell density as well as 

on the strength of activation. 
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Fig. 10: Changes of cell morphology caused by ct-CD45 during T cell activation. Plates 

were coated with anti-human and anti-mouse IgG antibodies, washed and incubated with anti-

CD3/CD63 in the presence or absence of ct-CD45. Activated T cells were observed via phase 

contrast microscopy on day 3 of activation. (A) T cells activated via CD3/CD63, (B) activated 

cells at 10-times higher magnification as indicated by red panels (C) T cells activated in the 

presence of ct-CD45 (D) Inhibited cells at higher magnification (10x).

The most dramatic effects caused by treatment with ct-CD45 on cell 

morphology were observed for T cells activated via antibodies against CD3 and 

CD63. Typically, cells receiving this type of stimulation show very little changes 

in cell morphology during the first 24 hours which may be due to a delayed 

onset of proliferation since CD63 expression is low on resting cells but is 

induced upon TCR triggering [37]. Usually, after 48-72 hours cells show 

dramatic increases in size (Fig. 10B). However, we found that activation in the 

presence of ct-CD45 most potently inhibits the formation of these T cell blasts 

(Fig. 10D). Additionally, CD3/CD63-activated T cells form clusters by day 3 (Fig. 

10A). Ct-CD45 treatment nearly seems to abrogate this effect (Fig. 10C). These 

distinct changes in morphology perfectly match the dramatic alterations in 

cytokine and cell surface activation marker expression reported previously [77].

A B

C D

10 µm

10 µm

100 µm

100 µm
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The effects caused by ct-CD45 can also be readily visualized using flow 

cytometric analysis (Fig. 11). Both, forward scatter and side scatter referring to 

cellular size and intracellular complexity, respectively, are drastically reduced in 

CD3/CD63 stimulated T cells treated with ct-CD45 while T cells activated via 

CD3/CD28 are not susceptible towards this inhibitory signal.

Fig. 11: ct-CD45 reduces activation-induced increase in cellular size and complexity. T 

cells were activated via plate-bound CD3 and CD63 antibodies in the presence/absence of ct-

CD45 fusion proteins for four days. Cellular morphology was then analysed via flow cytometry.

One representative out of at least four independent experiments is shown.

4.2. T cell anergy induced by ct-CD45 can be partly reversed by IL-2 
and by IL-7

IL-2 has been described as a classical cytokine for the reversal of clonal T cell 

anergy [45]. Using this approach, IL-2 has been previously used to show that T 

cells rendered hyporesponsive by ct-CD45 can be partly restimulated in the 

presence of this growth factor [77]. IL-7 is a cytokine implicated in the 

homeostatic proliferation of naïve T cells and in memory T cell survival [80]. 

However, recently it was shown that IL-7 can be superior to IL-2 for the 
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expansion of tumour-specific CD4+ T cells ex vivo [81]. Thus, we investigated 

whether IL-7 can be used for a complete reversal of ct-CD45-induced T cell 

anergy.

Using a restimulation assay we activated T cells for 4 days via CD3/CD63 and 

CD3/CD28 in the presence and absence of ct-CD45 using CTLA-4 as a control 

fusion protein. The cells were then profusely washed and rested in fresh 

medium for 3 days before they were restimulated in the absence of fusion 

proteins but in the presence of either IL-2, IL-7 or medium control.

Fig. 12: ct-CD45-induced anergy of T cells can be partly reversed by both, IL-2 and IL-7. T 

cells primarily activated for 4 days via (A) CD3/CD63, (B) CD3/CD63 in the presence of ct-

CD45, (C) CD3/CD63 and CTLA-4 were restimulated in the absence of fusion proteins for 4 

days using CD3/63 supplemented with 10 U/ml IL-2, 10 ng/ml IL-7 or medium only. The same 

experimental procedure was performed for cells initially activated via (D) CD3/CD28, (E) 

CD3/CD28 and ct-CD45 and (F) CD3/CD28 including CTLA-4 as a control except using

CD3/CD28 for restimulation. Proliferation was measured by the uptake of 3H-methyl thymidine 

which was added to the culture on day 3. Data is displayed as counts per minute (cpm). Mean 

values +/- standard deviation (SD) of triplicate determination are indicated. One representative 

experiment out of four is shown.
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We found that IL-7 is capable of inducing proliferation in cells otherwise 

hyporesponsive to restimulation (Fig. 12B). It shows comparable effects to IL-2 

in enhancing the proliferation of control cells activated via CD3/CD63 (Fig 12A 

and 12C) but has a weaker effect on 3H-methyl thymidine incorporation of 

anergic T cells (Fig 12B and 12E) and cells restimulated via CD3/CD28 (Fig. 

12D and 12F). We also tested whether IL-2 and IL-7 might act synergistically in 

reversing the anergic state but could not find improved cell division compared to 

IL-2 and IL-7 alone (data not shown).

4.3. Molecular factors induced in ct-CD45-treated T cells are actively 
regulated during human T cell activation

The reduced T cell proliferation accompanied by reversible hyporesponsiveness 

to restimulation suggested an anergic state of ct-CD45 treated T cells. Aiming to 

identify molecular factors involved we performed microarray analysis of a pool 

of five donors comparing T cells activated via CD3/CD63 or CD3/CD28 

antibodies to T cells activated with the stimuli in the presence of plate-bound ct-

CD45. Surprisingly, we did not find elevated gene expression of anergy factors 

like diacylglycerol kinases, E3 ubiquitin ligases or transcription factors like 

EGR3 or Ikaros. Among the genes which were most strongly induced on the 

microarray were krüppel-like factor 2 and Schlafen family member 12 (SLFN12)

(data not shown). While KLF2 is a well established T cell quiescence factor [58], 

the function of SLFN12 in T cells has not been investigated before.

Since KLF2 is downregulated during T cell activation [58] we speculated that 

SLFN12 is similarly regulated. To test this hypothesis, we stimulated T cells with 

plate bound anti-CD3, anti-CD3 in the presence anti-CD28 or anti-CD3 and

CD63 antibodies for 6 hours, 12 hours, 24 hours and 48 hours. Total RNA was 

extracted from the cells at the indicated times, subjected to reverse transcription 

and mRNA expression levels were assessed using quantitative realtime PCR.

Upon activation SLFN12 was rapidly downregulated compared to unstimulated 

controls, remained low for up to 24 hours but was increasing again after 48 

hours (Fig. 13A). Compared to the classical T cell quiescence factor KLF2 (Fig 

13B) loss of SLFN12 after activation appears to be less pronounced. After 6 

hours expression levels are reduced by 50-65% while KLF2 mRNA shows 
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reduction between 80% and 90%. In contrast to SLFN12, KLF2 mRNA does not 

seem to increase again during a 48 hour time course.

Fig. 13: Regulation of SLFN12, KLF2 and classical anergy factors upon Tcell activation in 

the presence or absence of costimulation. T cells were activated via plate-bound antibodies 

for 6 hours, 12 hours, 24 hours and 48 hours. Total RNA was extracted, reverse transcribed 

using oligo-dT primers and quantitative realtime PCR was performed using mRNA-specific 

primers. (A) SLFN12, (B) KLF2, (C) EGR3 and (D) CBl-b mRNA. IFN-  (E) was used as a 

control for T cell activation. Data was normalized against untreated cells. Mean values +/-

standard deviation (SD) of duplicate determination of the reference gene are indicated. CD3E 

was used as a housekeeping gene. One representative experiment out of two is shown.
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Since both genes were indicated to be regulated in ct-CD45-induced T cell 

anergy we compared their expression to those of canonical anergy factors.

Both, EGR3 (Fig. 13C) and CBL-b (Fig. 13D) appear to be upregulated in the

presence of an activation stimulus and thus show inverse regulation to 

quiescence genes. As reported before [50], EGR3 was strongly transcribed very 

early in T cell activation and shows elevated expression levels for CD3 

stimulation in the absence of costimulation (Fig 13C) which is a classical way to 

induce anergy in T cells [46]. Compared to EGR3, CBL-b mRNA shows only low 

upregulation upon T cell activation. CBL-b levels were only found to be 

significantly increased in CD3 stimulated cells after 24 hours (Fig. 13D). 

However, it was shown that CBL-b is proteolytically degraded upon T cell 

-dependent manner [83] suggesting that its regulation might 

be more prominent on the protein level.

CD3 stimulation without costimulation did not seem to trigger significant 

induction of both SLFN12 and KLF2 indicating that both factors are presumably 

not involved in canonical T cell anergy.

4.4. SLFN12 is not regulated during the activation of monocyte-
derived dendritic cells via LPS

Since the down-regulation of SLFN12 during the activation of human T cells 

represents a novel finding we investigated whether this factor was regulated in 

a similar manner by the activation of other immune cells. Recently, it was 

reported that SLFN12 was upregulated during the activation of human 

monocyte-derived macrophages via LPS [70].  Since this mechanism might be 

similar in other immune cells challenged with LPS the expression of SLFN12 

and of other members of the human SLFN family was tested in monocyte-

derived dendritic cells (mDCs).

Reproducible expression of all SLFN family members except SLFN14 (data not 

shown) was obtained for this cell type in vitro. Upon LPS challenge two SLFN 

family members were found to be substantially regulated in mDCs. SLFN5 was 

strongly upregulated 2h after addition of LPS to the culture medium reaching its 

maximum induction after 5 hours to decline again after 24 hours (Fig. 14A). 

Conversely, SLFN11 was downregulated by about 60% 2 hours after LPS 

challenge and remained at this level 22 hours later (Fig. 14B). We did not find 
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substantial changes in the expression of SLFN12 (Fig. 14C), SLFN12L (Fig. 

14D) and SLFN13 (Fig. 14E) mRNA expression suggesting that these 

Schlafens are presumably not regulated by LPS-mediated TLR4 signalling. 

These results also indicate that the regulation of SLFN12 via LPS as reported 

by van Zuylen et al. [70] is probably cell type-specific and does not represent a 

universal mechanism within the human immune system.

Fig. 14: SLFN5 and SLFN11 but not other SLFNs are regulated by LPS challenge of

mDCs. Monocytes were differentiated via IL-4 and GM-CSF to dendritic cells. mDCs were 

stimulated on day 7 of differentiation with 1 µg/ml of LPS. RNA was extracted from the cells at 

the indicated times and reverse transcribed. (A) SLFN5, (B) SLFN11, (C) SLFN12, (D) 

SLFN12L, (E) SLFN13 mRNA expression was quantified via qPCR. Mean values +/- standard 

deviation of two independent experiments are shown.
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4.5. Expression of Schlafen family members in human T cells and in 
human cell lines

The Schlafen gene family has been implicated in cellular growth control by 

several studies carried out in the murine system [61, 62, 65, 66]. Thus, we 

asked ourselves whether human Schlafens might exert a similar role in immune 

cells as well as in other tissues. In order to obtain a first indication for their 

involvement in cellular growth we compared SLFN gene expression in naïve T 

cells to continuously dividing cells lines. The human T cell leukaemia line Jurkat 

[87] and SK-N-SH, a human neuroblastoma cell line [88] were chosen as 

models for this purpose. In addition to the six members of the human SLFN 

family we also tested for KLF2 and Cyclin E1 expression serving as controls for 

highly and lowly expressed genes in resting T cells, respectively.

While cyclin E1 is roughly 5 to 8 fold increased in the cell lines compared to 

naïve T cells, KLF2 is considerably higher expressed in T cells compared to 

both cell lines (Fig. 15). The same holds true for most Schlafen family members.

Expression differences observed for T cells vs. the neuroblastoma cell line SK-

N-SH range from about 2x101 to 104, with the least differences observed for 

SLFN12 and the highest for SLFN5 and SLFN12-like (SLFN12L). The 

expression profile for T cells vs. Jurkat cells looked slightly different. While the 

biggest differences were observed for SLFN12L (~104-fold), SLFN11 was even 

found to be slightly increased in Jurkat cells questioning a possible role for this 

Schlafen family member in T cell growth control. SLFN12 was observed to be 

robustly expressed in naïve T cells with about 350-fold higher expression in 

these quiescent cells relative to proliferating Jurkat cells.

4.6. SLFN12 and KLF2 mRNA are induced by ct-CD45 in T cells

Microarray analysis is valuable tool for genome wide screens of gene 

expression. However, its accuracy and reproducibility is limited, especially for 

low abundance transcripts [92]. Thus, it was essential to validate our results 

obtained when analysing gene expression of T cells activated in the presence of 

ct-CD45. Testing SLFN12 and KLF2 expression 48 hours after activation we 

indeed found upregulation of both mRNAs in peripheral T cells which were 

anergized by ct-CD45. Regulation of SLFN12 closely correlated with the degree 

of inhibition observed for T cells activated with three different stimuli. Its 
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strongest induction was observed for T cells activated via CD3 and CD63 

monoclonal antibodies (Fig. 16B), followed by CD3 stimulation alone (Fig. 16A). 

Substantial upregulation of SLFN12 was also obtained for CD3/CD28 

stimulation (Fig. 16C) even though in our hands proliferation of T cells receiving 

these stimuli was never found to be impaired.

Regulation of KLF2 was more subtle with less strong induction (Fig 16D-F). 

However, we also obtained slightly increased KLF2 expression for ct-CD45 

treated T cells in the context of a CD3/CD28 stimulus (Fig. 16F) indicating an 

involvement of this gene in the anergic state induced.

Fig. 15: Expression profiles of Schlafen family members in T cells relative to 

continuously dividing cell lines. Cryopreserved naïve human T cells were thawed from liquid 

nitrogen stocks and were lysed without prior culturing. Cell lines were harvested the day after 

medium renewal to ensure logarithmic growth. Adherent cells (SK-N-SH) were directly lysed in 

the tissue culture plate without prior detachment with trypsin. Total RNA was isolated and 

mRNA was reverse transcribed using oligo-dTTT primers. Quantitative realtime-PCR was 

performed using specific intron-spanning primers for the genes indicated. Gene expression was 

calculated using CD3E (T cells vs. Jurkat cells) and beta-Actin (T cells vs. SK-N-SH) as 

reference genes. Relative expression was normalized to the respective cell line.
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Fig. 16: SLFN12 and KLF2 are both induced in T cells activated in the presence of ct-

CD45. 96-well plates were coated with anti-human and anti-mouse IgG antibodies, washed, 

incubated with anti-CD3, anti-CD3/CD63 or anti-CD3/CD28 monoclonal antibodies in the 

presence or absence of ct-CD45. CTLA-4-Fc was used as a control fusion protein. Total RNA 

was isolated, reverse transcribed using oligo-dTTT primers and subjected to quantitative 

realtime PCR. SLFN12 regulation in the presence/absence of ct-CD45 and CTLA-4 for (A) CD3, 

(B) CD3/CD63, (C) CD3/CD28 stimulation. KLF2 regulation towards the same stimuli for (D) 

CD3, (E) CD3/CD63, (F) CD3/CD28. Beta2-microglobulin was used for reference. Data is 

displayed as percent of stimulation without fusion protein +/- standard deviation of duplicate 

measurement of the reference gene. One representative experiment out of two is shown.

4.7. Confirmation of SLFN12 expression on the protein level – lack of 
reliable antibodies

In order to have another line of evidence for SLFN12 expression we tried to 

detect the mature protein in cell lysates. We purchased two polyclonal 

antibodies specific for the N-terminus and C-terminus of SLFN12 as indicated in 

Fig. 17A. Using a recombinant SLFN12-GST fusion protein as a positive control 
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we found strong reaction of both antibodies with the fusion protein. As the latter 

represents a truncated form of SLFN12 which lacks the N-terminal end of the 

native protein this result is somewhat surprising. When probing cell lysates of T 

cells and the SK-N-SH cell line both antibodies reacted distinctly with both cell 

types. However, when probing BW 5417, a murine thymoma cell line, which 

should serve as a negative control strong bands were obtained with both 

antibodies at approximately the same migration distance as observed for T cells 

and SK-N-SH (Fig. 17A). We performed quantitative real-time PCR testing 

SLFN12 expression in the respective cell types and could detect SLFN12 

mRNA in both T cells and the SK-N-SH cell lines but not in BW 5417 (Fig. 17B). 

Thus, we have to conclude that bands observed for cell lysates do not 

correspond to SLFN12 but are rather unspecific signals. Concentration of our 

protein of interest and/or antibody affinity might be too low to enable detection. 

4.8. Kinetics of SLFN12 induction in peripheral blood T cells

Since inhibition of T cells by ct-CD45 might occur from the beginning, we 

investigated the regulation of SLFN12 and of KLF2 during the first 24 hours post 

activation in the presence of the respective fusion protein. Using CD3/CD63 

antibodies as a stimulus we activated human T cells for 6 hours, 12 hours and 

24 hours and isolated RNA at the given times.

We found that SLFN12 seems to be induced very early after activation in the 

presence of ct-CD45 (Fig. 18A) although we cannot exclude that this elevated 

expression is due to mRNA stabilization rather than enhanced transcription. 

However, although SLFN12 levels in ct-CD45 treated cells seem to decrease 

compared to controls 12 hours post activation, they seem to recover after 24 

hours suggesting an oscillating expression pattern. Interestingly, we did not 

observe KLF2 induction for peripheral T cells treated with ct-CD45 during the 

first 24 hours of induction (Fig. 18B) indicating that its induction might only occur 

after this period.

The transcription factor EGR3 (Fig. 18C) was slightly induced by ct-CD45 

treatment but only after 12 hours of activation. CBL-b (Fig. 18D) was barely 

affected throughout the time course showing only weak induction after 24 hours. 
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Fig. 17: Reaction of two polyclonal SLFN12 antibodies with a SLFN12 fusion protein and 

cell lysates. (A) Western Blotting was performed using an N-terminal and a C-terminal SLFN12 

antibody. The SLFN12-GST fusion protein corresponds to amino acids 230-578 of the full length 

(578 aa, 67kDa) protein. 2µg of fusion protein and total protein of 500 000 cells were loaded per 

lane. Arrows and marked regions show the specificity of both antibodies within full-length 

SLFN12. (B) SLFN12 expression as determined by qPCR. One representative experiment out 

of three is shown.
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4.9. Kinetics of SLFN family regulation by ct-CD45 in peripheral T 
cells

All proteins of the Schlafen family share common sequence motifs [65-67] 

suggesting potential redundancy in molecular function. Thus, we speculated 

that other Schlafens might be similarly regulated upon ct-CD45 binding to 

human T cells. Addressing this question, we analyzed the expression of other 

SLFN family members comparing their induction over a 24 hour timecourse to 

that observed for SLFN12. Indeed, we found intriguing similarities in the 

regulation of most human SLFN family members in response to ct-CD45. 

SLFN12-like (Fig. 19C) shares the strongest resemblance to SLFN12 (Fig. 18A) 

as we found strong induction after 6 hours, accompanied by a decline by hour 

12 to be reinduced after 24 hours. This expression pattern mirrors regulation of 

SLFN12 over this time course (Fig. 18A). Other SLFNs including SLFN5 (Fig. 

19A) and SLFN13 (Fig. 19D) were induced by ct-CD45 after 6 hours to decline 

after 12 hours. However, unlike SLFN12 and SLFN12-like they were not found 

to be reexpressed after 24 hours. 

SLFN11 (Fig. 19B) and SLFN14 (Fig. 19E) were barely affected by ct-CD45 

treatment although we could find substantial downregulation of the latter 24 

hours after activation compared to non-activated T cells. We found little 

regulation of SLFN11 and SLFN13 by activating stimuli, whereas SLFN5 and 

SLFN12L were downregulated by 24 hours.

4.10. Exogenous IL-2 reduces SLFN12 mRNA levels in ct-CD45 
treated T cells

Based on the observation that IL-2 partly reverses the ct-CD45-induced 

hyporesponsive state in human T cells it was investigated whether exogenous 

IL-2 alters expression SLFN12 and KLF2 in the induction phase of this state.

Indeed, we found that addition of IL-2 has a dramatic effect on SLFN12 

expression. SLFN12 was drastically reduced regardless of the nature of the 

activating stimulus leading to a decrease even below the levels of the untreated 

controls (Fig. 20A-C). We did not obtain the same results for KLF2. Although 

KLF2 was reduced by CD3 stimulation alone (Fig 20D), a reduction of mRNA 

levels was not obtained neither for CD63 (Fig. 20E) nor for CD28 (Fig. 20F) 

costimulation.
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Fig. 18: Kinetics of SLFN12 induction in human peripheral blood T cells. 96-well plates 

were coated with anti-human and anti-mouse IgG, washed and incubated with anti-CD3/CD63 

in the presence or absence of ct-CD45 and CTLA-4 or were left untreated. T cells were 

activated for 6 hours, 12 hours and 24 hours. Total RNA was extracted and was reverse 

transcribed using oligo-dTTT primers. Regulation of (A) SLFN12, (B) KLF2, (C) EGR3, and (D) 

CBL-b was determined using quantitative realtime PCR. Data was normalized against untreated 

T cells. Mean values +/- standard deviation (SD) of duplicate determination of the reference 

gene are indicated. CD3E was used as a housekeeping gene. One representative out of two 

independent experiments is shown.
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Fig. 19: Regulation of other SLFN family members by ct-CD45. T cells were activated for 24 

hours via CD3/63 in the presence or absence of ct-CD45/CTLA-4. Harvests were performed 

after 6 hours, 12 hours and 24 hours. Total RNA was extracted and was reverse transcribed 

using oligo-dTTT primers. Regulation of (A) SLFN5, (B) SLFN11, (C) SLFN12-like, (D) SLFN13 

and (E) SLFN14 was determined using quantitative realtime PCR. Data was normalized against

untreated T cells. Mean values +/- standard deviation (SD) of duplicate determination of the 
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reference gene are indicated. CD3E was used as a housekeeping gene. One out of two

independent experiments is shown.

Fig. 20: Exogenous IL-2 reduces levels of SLFN12 but not of KLF2 mRNA in T cells 

treated with ct-CD45. 96 well plates were coated with anti-human and anti-mouse IgG 

antibodies, washed, incubated with anti-CD3, anti-CD3/CD63 or anti-CD3/CD28 monoclonal 

antibodies in the presence or absence of ct-CD45 or in the presence of ct-CD45 including 10 

U/ml of IL-2. Total RNA was isolated, reverse transcribed using oligo-dTTT primers. Quantitative 

realtime PCR was performed using primers specific for SLFN12 and KLF2. (A-C) SLFN12 

regulation in the presence of ct-CD45 and IL-2 for different activation stimuli. (D-F) KLF2 

regulation upon addition of IL-2. Beta-2-microglobulin was used as a reference. Data is 

displayed as percent of stimulation without fusion protein +/- standard deviation of duplicate 

measurement of the reference gene. One representative experiment out of two is shown.
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4.11. Kinetics of SLFN12 induction in Cord Blood T cells

Since human cord blood T cells could not be inhibited in the presence of ct-

CD45 we investigated whether differences in the induction of SLFN12 might 

provide an explanation for this phenomenon. As done before with peripheral 

blood T cells we determined the kinetics within a 24 hour time course using 

CD3/CD63 stimulation as a model.

As observed before, SLFN12 was downregulated upon T cell activation already 

after six hours, remained low after 12 hours and seemed to increase again in 

after 24 hours (Fig. 21A). Treatment with ct-CD45 does not seem to alter 

SLFN12 expression during the first hours but then rapidly peaks after 12 hours 

to reach expression levels of unstimulated (i.e. resting) T cells. By 24 hours 

SLFN12 expression declines again nearly reaching the levels of activated 

controls.

KLF2 seems to be induced in a similar manner. However, KLF2 mRNA levels 

upon ct-CD45 treatment are already higher after 6 hours (Fig. 21B) but also 

peak after 12 hours to decrease again by 24 hours.

As observed for peripheral T cells, EGR3 (Fig. 21C) and CBL-b (Fig. 21D) are 

not strongly regulated by treatment with ct-CD45. EGR3 appears to be slightly 

increased after 24 hours but was not found to be regulated before this time. No 

significant expression changes throughout the observed time course were 

detected for CBl-b.

4.12. Expression kinetics of other SLFN family members induced by 
ct-CD45

Since other members of the human SLFN family were partly regulated in a 

similar way to SLFN12 in T cells treated with ct-CD45 we also tested their 

expression kinetics during a 24 hour time course in cord blood T cells.

Again, striking similarities were found. Generally, there was a transient 

downregulation of SLFN mRNA by 12 hours which nearly returned to the level 

of the unstimulated control by 24 hours except for SLFN5 which remained low. 

In the presence of ct-CD45 there was no significant difference to activated 

controls after 6 hours. Similar to SLFN12 (Fig. 21A) other Schlafen family 

members including SLFN5 (Fig. 22A), SLFN11 (Fig. 22B), SLFN12-like (Fig. 

22C) and SLFN13 (Fig. 22D) were induced after 12 hours but decreased by 24 
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hours. While SLFN11 expression only subtly changed during T cell activation as 

well by ct-CD45 treatment SLFN14 (Fig. 22E) was not inducible at all by ct-

CD45 in cord blood T cells. Although all Schlafen family members were 

decreased during the first hours of culture regardless of stimulus SLFN14 and 

SLFN13 were most severely affected and never returned to their initial levels.

Fig. 21: Kinetics of SLFN12 induction in human cord blood T cells. Plates were coated with 

anti-human and anti-mouse IgG antibodies, washed, incubated with anti-CD3/CD63 in the 

presence or absence of ct-CD45 and CTLA-4 or were mock treated. Coord blood T cells were 

activated for 6 hours, 12 hours and 24 hours. Total RNA was extracted reverse transcribing 

mRNA into cDNA. Regulation of (A) SLFN12, (B) KLF2, (C) EGR3, and (D) CBL-b was 

determined using quantitative realtime PCR. Mean values +/- standard deviation (SD) of 

duplicate determination of the reference gene are indicated. CD3E was used as a 

housekeeping gene.
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Fig. 22: Expression of other human SLFN family members during activation of human 

cord blood T cells. Plates were coated with anti-human and anti-mouse IgG antibodies, 

washed incubated with anti-CD3/CD63 in the presence or absence of ct-CD45 and CTLA-4 or 

were mock treated. Coord blood T cells were activated for 6 hours, 12 hours and 24 hours. 

Total RNA was extracted and reverse transcribed into cDNA. Regulation of (A) SLFN5, (B) 

SLFN11, (C) SLFN12-like, (D) SLFN13, (E) SLFN14 was analysed using quantitative realtime 

PCR. Mean values +/- standard deviation (SD) of duplicate determination of the reference gene 

are indicated. CD3E was used as a housekeeping gene.
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4.13. Inhibition by ct-CD45 is accompanied by a reduction in cyclin 
D1 mRNA levels

Growth regulation by some members of the Schlafen family in the mouse has 

been shown to occur via specific inhibition of cyclin D1 [62] although these 

findings have not been left unchallenged [63]. Hypothesizing that SLFN12 might 

exert its action via a similar mechanism we investigated the expression of 

selected D- and E-type cyclins and their respective kinases.

Again we relied on CD3/CD63 activation over a 24 hour course as a model. We 

did not find expression of cyclin-dependent kinases (CDK) 2 and 4 (Fig. 23A-B) 

impaired in T cells provided with ct-CD45 during activation indicating that kinase 

activity rather than kinase protein levels must be affected. However, when 

looking at cyclin expression patterns we found substantial inhibition of cyclin D1 

(Fig. 23C) expression although this decrease in mRNA levels was only 

detectable after 24 hours. Detection of cyclin D1 mRNA in human T 

lymphocytes is of special interest since it was reported not to be expressed in 

this cell type [89]. A plausible explanation for these diverging results might lie in 

the advances of PCR technology since the publication of the prior finding.

We did not obtain reproducible inhibition of cyclin D2 mRNA (Fig. 23D) although 

this cyclin is induced early after T cell activation [89]. A similar result was 

obtained for the E-type cyclin E1 (Fig. 23E). 

p27kip1 has been described as specific inhibitor of CDK2 activity and as a 

potential anergy factor [55]. Thus, we investigated whether it acts in a similar 

manner in ct-CD45-induced T cell anergy. However, we could not find 

prolonged and substantial induction of p27kip1 (Fig. 23F) during the time course 

indicating that it might not be causative factor for the distinct hyporesponsive 

state of T cells anergized via ct-CD45.

4.14. Cyclin gene expression is also reduced in cord blood T cells

We investigated whether induction of cyclins is also impaired in cord blood T 

cells, despite lack of reproducible inhibition of proliferation [77]. However, 

cytokine levels are similarly reduced as in peripheral T cells suggesting some 

effect of ct-CD45 binding [77].



Results

84

Fig. 23: Regulation of cyclins and cyclin-dependent kinases by ct-CD45. Plates were 

coated with anti-human and anti-mouse IgG antibodies, washed, incubated with anti-CD3/CD63 

in the presence or absence of ct-CD45 and CTLA-4 or were mock treated. Peripheral T cells 

were activated for 6 hours, 12 hours and 24 hours. Total RNA was extracted reverse 

transcribing mRNA into cDNA. Regulation of (A) CDK2, (B) CDK4, (C) Cyclin D1, (D) Cyclin D2 
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and (E) Cyclin E1 and (F) p27kip1 was determined using quantitative realtime PCR. Mean values 

+/- standard deviation (SD) of duplicate determination of the reference gene are indicated. 

CD3E was used as a housekeeping gene. One representative out of two experiments 

performed is shown.
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Fig. 24: Regulation of cyclins and cyclin-dependent kinases in cord blood T cells. Plates 

were coated with anti-human and anti-mouse IgG antibodies, washed, incubated with anti-

CD3/CD63 in the presence or absence of ct-CD45 and CTLA-4 or were mock treated. T cells 

from human umbilical cord blood were activated for 6 hours, 12 hours and 24 hours. Total RNA 

was extracted reverse transcribing mRNA into cDNA. Regulation of (A) CDK2, (B) CDK4, (C) 

Cyclin D1, (D) Cyclin D2 and (D) Cyclin E1 and p27kip1 was determined using quantitative 

realtime PCR. Mean values +/- standard deviation (SD) of duplicate determination of the 

reference gene are indicated. CD3E was used as a housekeeping gene.

Nevertheless, we did not expect to see effects on cyclin levels which should be 

associated with altered CDK activity and subsequently impaired cell cycle 

progression. We were quite surprised to find that even cord blood T cells 

display reduction in cyclin D1 (Fig. 24C) as well as in cyclin D2 expression (Fig. 

24D). As observed before for peripheral T cells, induction of cyclin E1 was 

unaltered (Fig. 24E). Similarly, expression of cyclin-dependent kinases CDK2 

(Fig. 24A) and CDK4 (Fig. 24B) was barely affected. The CDK inhibitor p27kip1

was not found to be regulated by ct-CD45 during the first 12 hours (Fig. 24F). 

However, unlike in peripheral T cells a slight increase in p27kip1expression was 

obtained after 24 hours.

4.15. Transfection of a SLFN12 siRNA reduces inhibition of T cell 
proliferation

As our results strongly suggested a role for SLFN12 in the inhibition of 

peripheral T cell proliferation we investigated whether loss of SLFN12 might 

prevent this inhibition observed. Applying a siRNA-mediated knockdown 

approach, we hoped to achieve sufficient reduction of SLFN12 mRNA to obtain 

a phenotype. The major obstacle for such an approach lies in the lack of 

efficient non-viral transfection protocols [90]. Using LipofectamineTM 2000 which 

is a cationic lipid-based transfection reagent [91] we transfected human T cells 

which were pre-activated via plate-bound CD3 and CD63 antibodies for three 

days with a mix of three different SLFN12 siRNAs at a concentration of 10 nmol 

per duplex. Transfected T cells were harvested 24 hours after transfection and 

rested for 2 days in fresh medium until they were restimulated with CD3/CD63 

in the presence or absence of ct-CD45 fusion proteins. Proliferation of re-

stimulated T cells was tested using 3H-methyl thymidine incorporation as a 

read-out. Slightly increased proliferation was observed for ct-CD45-treated T 
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cells after transfection with the SLFN12 siRNA mix compared to scrambled and 

transfection reagent controls (Fig. 25A). 

Fig. 25: Transfection of a SLFN12 siRNA mix enhances proliferation of ct-CD45 treated T 

cells. T cells were activated via plate-bound CD3/CD63 antibodies for four days in a 96-well 

plate. Transfection of scrambled control and a mix of three SLFN12 siRNAs (10nmol each) were 

transfected using LipofectamineTM 2000 on day 3. Cells were harvested on day four, washed 

and let rest for two days until they were restimulated with CD3/CD63 and plate-bound fusion 

proteins. 3H-methyl thymidine was added on day 3 of restimulation and incorporation was 

measured 18 hours later. Proliferation of transfected T cells after restimulation is displayed 

relative (%) to inhibition. Data shown are mean values +/- SD of triplicates. 

4.16. ct-CD45 shows blockable binding to a Bw clone expressing 
PRAT4A

A screen of a human T cell cDNA library expressed in the Bw 5417 cell line 

revealed the protein associated with Toll-like receptor 4 A (PRAT4A) as a 

potential receptor candidate for ct-CD45 [77]. Although a siRNA knock-down of 
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PRAT4A in the PRAT4A-expressing BW clone 1C8 could reduce binding of ct-

CD45 by about 50%, a direct blockade of ct-CD45 via antibodies could not be 

shown [77]. Initially, PRAT4A was described as a protein regulating the cell 

surface expression of TLR4 [78] as well as of other TLRs which resides in the 

endoplasmic reticulum [82]. However, PRAT4A seems to be expressed at low 

levels at the cell surface of activated T cells [77].

We tested whether binding of ct-CD45 can be blocked by a PRAT4A antibody.

Bw clone 1C8 was preincubated with a polyclonal rabbit anti-PRAT4A antibody 

or mock-treated before addition of ct-CD45 fusion proteins. Flow cytometric 

analysis revealed markedly reduced binding of ct-CD45 to the cell line upon 

PRAT4A blockade suggesting interaction between the two molecules (Fig. 26).

Fig. 26: ct-CD45 binding to a PRAT4A-overexpressing BW clone can be blocked by a PRAT4A 

antibody. The BW clone 1C8 was stained with a ct-CD45-Fc fusion protein with or without prior 

incubation with a polyclonal rabbit anti-murine PRAT4A antibody. CTLA-4-Fc was used as a non-

binding control. A phycoerythrin-labelled antibody specific for the Fc fragment of human IgG was used 

for detection via flow cytometry. The shaded histogram represents ct-CD45 binding to the cell line;

dotted lines stand for preincubation with a PRAT4A antibody prior to addition of ct-CD45. Full lines are

the non-binding  control.
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5. Discussion

The study by Kirchberger et al. [76] suggested that the alternative cleavage of 

the well characterized tyrosine phosphatase CD45 [71] gives rise to a product 

negatively regulating the proliferation of human T cells. However, the distinct

molecular pattern governing this state remained unidentified. It was already 

known that this reduction in proliferation was not due to cell death as affected 

cells were still alive. As demonstrated in the present work, one remarkable 

feature of ct-CD45-inhibited T cells is the inability of lymphoblast formation, 

characterized by increase in cellular size (Fig. 10). Instead, the cells remained 

relatively small which was accompanied by a lack of T cell activation markers as 

shown before [77]. Another finding was that T cells treated with ct-CD45 are 

hyporesponsive to restimulation but can be partly restimulated in the presence 

of exogenous IL-2 [77]. Since microarray analysis indicated downregulation of 

the IL-2 receptor in ct-CD45-treated lymphocytes, we concluded that 

restimulation via this classical growth factor might probably be inefficient due to 

a lack of IL-2 binding. Thus, it was further investigated whether alternative 

factors reported for their cabability of promoting T cell expansion in vitro might 

better serve our purpose. IL-7 is a cytokine which was originally implicated in 

maintenance of memory cell homeostasis [80] However, a recent study showed 

that IL-7 was more efficient than IL-2 in ex vivo expansion of tumour-specific 

CD4+ T cells [81]. Indeed, it was found that IL-7 aids in restimulation of T cells 

anergized via ct-CD45 (Fig. 12). Nevertheless, it displayed lower efficiency than 

IL-2 indicating that IL-7 cannot act as a full growth factor in this distinct anergic 

state.

To our surprise, the microarray data did not show induction of established 

molecules involved in anergy. Instead, SLFN12 and KLF2 were most strongly 

transcribed which was confirmed via quantitative real-time PCR (Fig. 16). While 

KLF2 represents a well characterized factor involved in T cell quiescence [60] 

little was known to date about SLFN12. 

Most research related to the Schlafen gene family has been carried out in the 

murine system. Initial studies associated this family with the regulation of 

lymphocyte development and growth control [61]. The inhibitory roles of 

Schlafen family members appeared to occur very early in the cell cycle before 
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G1 to S phase transition [61] and was molecularly characterized to occur at the 

transcriptional level via inhibition of cyclin D1 promoter activity at least in the 

case of prototypic Slfn1 [62]. The most striking finding was by Berger et al. [66] 

demonstrating a non-redundant function of murine Slfn2 in lymphocyte 

quiescence, again indirectly providing evidence for a growth regulatory role of 

SLFNs. The human SLFN family bears little orthology to the murine slfns. 

SLFN12 is exclusively expressed in primate species [99]. Compared to 

SLFN12, Slfn2 [66] and Slfn3 are mostly similar. However, a BLAST search 

using SLFN12 mRNA as a query (NM_018042.3) indicates low overall similarity 

implying some distinctiveness in function. Nevertheless, our results with human 

T cells inhibited by ct-CD45 suggests a role for SLFN12 in the quiescent state 

and in T cell anergy similar to other factors exerting dual roles such as Tob or 

Ikaros [51]. KLF2 is another classical quiescence factor [60] but has hitherto 

never been reported to be highly expressed in anergic T cells. While an anti-

proliferative role for KLF2 has been established via overexpression experiments 

in the T cell leukaemia line Jurkat [93] such a role has still to be shown for 

SLFN12. Nonetheless, the expression of these quiescence factors in activated 

T cells retaining their small cellular size while being hyporesponsive to 

restimulation suggests the repertoire of functional plasticity of T cell 

differentiation states extended. It is tempting to speculate that these combined 

features represent another functional state for T cells - “quiescent anergy”. 

Quiescent-anergic lymphocytes share features with anergic T cells regarding 

their hyporesponsiveness to activation while retaining small cellular size similar 

to cellular quiescence (Table 2).

Expression profiling of naive T cells versus Jurkat cells and the neuroblastoma 

cell line SK-N-SH showed considerably lower expression not only of SLFN12 

and KLF2 but of most other SLFN family members in both cell lines (Fig. 15). 

This indicates that high expression of these genes would not be beneficial for 

survival or growth of continuously dividing cell lines. We also assessed SLFN12 

and KLF2 regulation during the first few hours upon T cell activation showing 

that both factors are downregulated already after 6 hours (Fig. 13). However, 

while KLF2 transcription is sustainably decreased, SLFN12 downregulation 

seems to be transient. After 24 hours SLFN12 mRNA levels start to rise in 

activated cells and have nearly reached the levels of unstimulated controls after 
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48 hours. This pattern raises a question whether a factor only transiently lost 

upon activation can have an essential role in proliferation. Nevertheless, this 

supports the role of SLFN12 during earlier stages of T cell activation probably 

negatively regulating cell cycle entry from the G0 phase. 

We did not find any evidence for an involvement of SLFN12 or KLF2 in the 

induction of canonical T cell anergy. Altered transcription of any of these two 

factors was not detected for TCR stimulation in the absence of costimulation 

whereas EGR3 was found to be substantially upregulated. 

phenotype
quiescent 

lymphocytes
activated 

lymphocytes
anergic

lymphocytes

„quiescent-
anergic“ 

lymphocytes

cell size small large large small

rate of protein 
synthesis

low high low low

response to 
activation proliferation

expansion or 
apoptosis

none or 
apoptosis

none

Table 2: T cell differentiation states extended. The morphological and functional features as 

well their gene expression profile suggest a novel functional state for T cells binding ct-CD45 

sharing features of both, quiescent and anergic lymphocytes Table adapted and modified from 

Yusuf and Fruman [58].

Additionally, it was investigated whether SLFN12 is regulated in other immune 

cells upon activation. Based on the observation of van Zuylen et al. [70] 

showing upregulation of SLFN12 during LPS stimulation of human monocyte-

derived macrophages we tested the expression of SLFN12 and other SLFN 

family members during the LPS challenge of human monocyte-derived dendritic 

cells. While little to no regulation was observed for SLFN12, SLFN12L, SLFN13 

and SLFN14, SLFN5 was found to be substantially increased peaking 5 hours 

after LPS challenge. Conversely, SLFN11 was sustainably downregulated 

during a 24 hour time course (Fig. 14). These results suggest a possible role for 

these two SLFNs but not of other SLFN family members during the LPS-

induced maturation of human dendritic cells. The regulation of SLFN12 as 

shown for macrophages might possibly be specific for this cell-type.

Having confirmed SLFN12 and KLF2 expression via qPCR 48 hours post 

activation we also hoped to confirm this expression on the protein level. 
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Unfortunately reliable antibodies serving this purpose are not available. 

Although reactivity with a SLFN12 fusion protein and human cell lysates could 

be shown, substantial differences in the molecular weights of detected bands 

were found for two different SLFN12 antibodies. Both antibodies also displayed 

strong reaction with cell lysates of the murine Bw 5417 cell line (Fig. 17). The 

latter observation suggests that the bands observed might be cross-reactions to 

other ubiquitously expressed proteins. As SLFN12 mRNA appears to be 

expressed at moderate to low levels it has to be concluded that the protein 

amount in the cell lysates is presumably below the limit of the detection for a 

western blot.

The kinetics of SLFN12 induction were observed over a shorter 24-hour time 

course and it was found that SLFN12 is induced very early in ct-CD45-treated T 

cells reaching its maximum after 6 hours (Fig. 18). We cannot exclude that this 

early upregulation is a result of mRNA stabilization rather than being an active 

transcriptional process. However, SLFN12 seems to be re-expressed 24 hours 

post activation suggesting an oscillating expression pattern. Surprisingly, 

elevated expression of KLF2 within the first 24 hours could not be shown, 

posing the question whether KLF2 might be important for the induction phase of 

anergy at all. Expression at a later time might just reflect a reduction in cell 

cycle progression. During the observed time course slight induction of EGR3 

and of CBL-b was obtained after 12 hours and 24 hours, respectively. Since 

molecular targets of SLFN12 are unknown it cannot be excluded that both 

genes are transcribed as a result of SLFN12 expression. However, this 

upregulation appears to be moderate and cannot be compared in magnitude to 

the classical mode of anergy induction via TCR triggered in the absence of 

costimulation.

When looking at the expression pattern of other SLFN family members we 

found to our surprise that nearly all SLFNs display upregulation at early time 

points upon activation of T lymphocytes in the presence of ct-CD45 similar to 

SLFN12 (Fig. 19). Only SLFN11 and SLFN14 do not seem to be affected by ct-

CD45 treatment at all. These results indicate that a certain degree of 

redundancy might exist within the human SLFN family which makes it difficult to 

exclude that the concerted action of SLFN family members might be required 

for the ct-CD45-induced hyporesponsive state of human T cells.



Discussion

93

As IL-2 could partly reverse the anergic state imposed by ct-CD45 on T cells it 

was tested whether addition of exogenous IL-2 to the culture medium alters the 

expression of SLFN12 and KLF2. Indeed, it could be shown that IL-2 strongly 

promotes the downregulation of SLFN12 mRNA in T cells treated with ct-CD45 

whereas KLF2 was only found to be altered in the absence of costimulation 

(Fig. 20). These results again suggest that SLFN12 rather than KLF2 might play 

the prominent role in this form of T cell anergy.

Fig. 27: ct-CD45-induced anergy is a non-canonical form of anergy. Impairment of cyclin 

D1 induction in T cell inhibited by ct-CD45 suggests an earlier inhibition than in canonical 

anergy which typically involves impairment of cyclin E1 expression [47]. Figure was adapted 

from [100] and modified with additional information from [47] and [53].

Although ct-CD45 has a potent action on human peripheral T cells, inhibition of 

proliferation was never observed for T cells from umbilical cord blood [77]. 

Thus, it was investigated whether SLFN12 and KLF2 are induced in these cells. 

Having determined the expression pattern again over a 24 hour time course, 

both factors were found to be expressed in cord blood T cells although the 

induction was observed to occur at a later stage than in mature T cells. SLFN12 

upregulation in ct-CD45-treated T cells was found only 12 hours post activation 

and coincided with a slight upregulation of KLF2 (Fig. 21). This was different to 

peripheral T cells where we could not find differences in KLF2 expression within 

the first 24 hours. However, unlike SLFN12, KLF2 mRNA levels never reached 
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the levels of naïve T cells. Somewhat similar to mature T cells, a slight but 

delayed induction of EGR3 mRNA was observed. Looking at the expression 

pattern of other members of the human SLFN family suggested a potential 

redundancy as SLFN5, SLFN12L and SLFN13 were induced at the very same 

time as SLFN12 (Fig. 22). The differential induction of SLFN genes for mature 

and naïve T lymphocytes provides a possible explanation for the lack of overt 

inhibition of the latter.

As Slfn1 has been implicated in the regulation of cyclin D1 expression [62] we 

also investigated the expression of G1 phase cyclins as well as of their 

respective cyclin-dependent kinases. Indeed, substantial downregulation of 

cyclin D1 in ct-CD45 treated peripheral T cells (Fig. 23) was obtained. 

Interestingly, this observation was made only after 24 hours of activation 

suggesting the need for another factor to be synthesized to enable the 

subsequent inhibition of cyclin D1. Inhibition of cyclin D2 or the E-type cyclin E1 

was not detected nor was CDK2 and CDK4 induction found to be impaired. 

Since many reports have suggested the CDK2 inhibitor p27kip1 as an anergy 

factor [47, 55] we tested its expression in our system but did not obtain any 

evidence for its involvement. As done before for SLFN gene expression cyclin 

mRNA levels were also determined in human cord blood T cells. Reduced 

expression of cyclin D1 and cyclin D2 was even detected in these cells whereas 

expression of cyclin E1 and CDKs was unaltered (Fig. 24). p27kip1 appeared to 

be slightly upregulated 24 hours after activation of cord blood T cells, but we 

lack further evidence for a major involvement of this factor. In conclusion, this 

data indicates that impairment of T cell proliferation is achieved via specific 

inhibition in the early G1 phase of the cell cycle which presumably results in 

diminished expression of IL-2 subsequently promoting the induction of anergy.

In order to prove the involvement of SLFN12 in the action of ct-CD45 siRNA-

mediated knockdown of SLFN12 was performed showing slight enhancement of 

T cell proliferation in ct-CD45-treated T cells compared to controls (Fig. 25). The 

subtle phenotype obtained requires further investigation to conclusively 

characterize SLFN12 as the major factor in the ct-CD45-induced anergic state. 

Since primary human T cells are hard to transfect a more efficient transfection 

protocol needs to be established.
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A protein associated with TLR4 (PRAT4A) had been identified as a potential 

receptor candidate by our group [77] but a physical blockade via antibodies 

could never been shown. Thus, blocking experiments were performed using a 

polyclonal antibody against PRAT4A. Preincubation with this antibody strongly 

reduced ct-CD45 binding to a PRAT4A overexpressing cell line thereby 

providing another piece of evidence for a direct interaction between these two 

molecules (Fig. 26).

Fig 28: Current model for the molecular mechanisms behind ct-CD45 generation and 

subsequent inhibition of T cell proliferation and anergy induction.

To conclude, binding of ct-CD45 to PRAT4A on activated T cells leads to the 

upregulation of SLFN12 and KLF2. The results obtained during this study 

especially demonstrate a role for SLFN12 as an anergy factor since induction of 

this factor occurs early and is impaired upon addition of exogenous IL-2. 

Furthermore, partial restorement of T cell proliferation after transfection of a 

SLFN12 siRNA provides further support for its involvement in the anergic state 

induced. 
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Regulation of cell cycle-associated factors in T cells activated in the presence of 

ct-CD45 appears to be different to canonical anergy that is characterized by a 

block in the late G1 phase [47]. The impairment of cyclin D1 mRNA induction in 

ct-CD45-challenged T cells suggests an earlier inhibition taking place already at 

the entry stage from the quiescent G0 to the G1 phase (Fig. 27). Since this 

inhibition follows SLFN12 induction it is tempting to conclude a direct effect of 

SLFN12 on cyclin D1 regulation (Fig. 28). 

Taken together, this work gives insight into the molecular mechanisms of T cell 

anergy induced via ct-CD45. The biological relevance of this state possibly lies 

in the dampening of exaggerated adaptive immune responses against 

ubiquitous but mostly harmless fungal agents. However, this mechanism might 

be exploited in immunocompromised individuals during systemic fungal 

infections where excessive generation of ct-CD45 would promote a state of 

severe immunosuppression.

Future studies will try to unravel these relations by trying to establish more 

efficient ways of SLFN12 knock-down in primary human T cells and by 

analysing the effects of SLFN12 overexpression on the activity of the cyclin D1 

promoter.
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6. Abbreviations

Abbreviation meaning

AAA ATPase family associated with various cellular activities

ACTB -Actin)

AP-1 activator protein 1

APC antigen-presenting cell

-m -microglobulin

CBL-b Casitas B cell lymphoma B

CD cluster of differentiation

CD3E

CDK cyclin-dependent kinase

ct-CD45 cytoplasmic tail of CD45

CTL cytotoxic T lymphocyte

CTLA-4 cytotoxic T lymphocyte-associated antigen 4

D1 / D2 domain 1 / domain 2 of CD45

DGK diacylglycerol kinase

DMSO dimethyl sulfoxide

EGR early growth response protein

ER endoplasmic reticulum

FCS fetal calf serum

FOXO forkhead box O

FOXP3 forkhead box protein 3

GAPDH glycerinaldehyde-3-phosphate dehydrogenase

GM-CSF granulocyte macrophage colony stimulating factor

GRAIL gene related to anergy in lymphocytes

GST glutathione S-transferase

HRP horseraddish peroxidase

IFN interferon

Ig immunoglobulin

I B Inhibitor of 

IL interleukin

KLF Krüppel-like factor

LPS lipopolysaccharide

mAb monoclonal antibody

MACS magnetic activated cell sorting

mDC monocyte-derived dendritic cell

MHC major histocompatibility complex

NFAT nuclear factor of activated T cells
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PE phycoerythrin

PRAT4A protein associated with Toll-like receptor 4

PTP protein tyrosine phosphatase

qPCR quantitative (real-time) PCR

siRNA short interfering RNA

SLFN Schlafen (family member)

SLFN12L SLFN12-like

TCR T cell receptor

TLR Toll-like receptor
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