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Introduction

Let G be an algebraic group defined over Q and Γ be an arithmetic subgroup of G. When

studying the properties of Γ, it is often advantageous to embed Γ into the Lie group of real

points G(R) of G. In this setting, Γ is a discrete subgroup of G(R) and we can employ a variety

of results from the general theory of discrete subgroups of Lie groups, as well as various geometric

methods, to derive results on the structure of Γ. This work focuses on one of these results and

tries to find a suitable adaption that does not require methods beyond the theory of algebraic

groups and some homological algebra. More precisely, we are interested in the following theorem

by van Est, which was published in [vE58]:

Theorem. Let N be a nilpotent Lie group such that N modulo the maximal connected subgroup

is finitely generated and Γ be a discrete cocompact subgroup of N . Then for any unipotent linear

representation of N on a real finite dimensional vector space V the restriction H∗
d (N,V ) →

H∗(Γ, V ) is an isomorphism.

Proof. See [vE58][Theorem 8].

The statement of this theorem itself requires some explanation. First of all, a unipotent

linear representation is a smooth representation of N on a finite dimensional vector space V such

that every n ∈ N acts as a unipotent linear map on V . Moreover, the cohomology H∗
d (N,V ) is

the cohomology based on “differentiable cochains” of N in V (see [HM62]), whereas H∗(Γ, V )

denotes the usual group cohomology of Γ with values in V .

One can apply this result to arithmetic subgroups of unipotent algebraic groups defined over

Q as follows: Let V be a finite dimensional rational representation of a unipotent algebraic group

U defined over Q. This representation gives rise to a smooth unipotent representation of the

Lie group of real points U(R) on VR = V ⊗ R. Moreover, the group U(R) is a nilpotent Lie

group with finitely many connected components. Therefore, as soon as one observes that any

arithmetic subgroup of U is cocompact, one obtains H∗
d (U(R), VR) ∼= H∗(Γ, VR). This implies

that for any rational representation V of U , the cohomology of Γ with values in VR is already

completely determined by U . In particular, given any other arithmetic subgroup Γ′ of U , the

cohomology groups H∗(Γ, VR) and H
∗(Γ′, VR) are isomorphic.

In view of the preceding considerations, the theorem of van Est establishes, loosely speaking,

the independence of the cohomology groups of Γ from the choice of Γ as an arithmetic subgroup

of U , insofar as representations of Γ obtained from those of U are concerned. The question is if

we can somehow eliminate the use of differential cohomology and replace it by something more

closely related to the structure of U as an algebraic group. A first hint that this question can be

answered in the affirmative is contained in the article Cohomology of Lie Groups by Hochschild
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and Mostow [HM62]. This paper takes a closer look at the different kinds of cohomology groups

available for Lie groups. If one applies the results presented therein - in particular theorem

5.1, 11.1 and 12.1 - to a finite dimensional rational representation V of a unipotent group U ,

one obtains an isomorphism identifying the differentiable cohomology groups H∗(U(R), V ) with

the so called rational cohomology groups H∗
r (U, V ). The latter were defined and studied by

Hochschild in [Hoc61] and depend only on the structure of U as an algebraic group. This

suggests that one can prove van Est’s theorem by regarding rational instead of differentiable

cohomology, which is the fundamental idea this work is based on.

In passing, we shall reestablish another well known result of Hochschild, presented in [Hoc61],

which asserts the existence of a similar isomorphism connecting rational cohomology of unipotent

algebraic groups to the corresponding Lie algebra cohomology:

Theorem. Let G be a unipotent algebraic group over a field F of characteristic 0 with Lie algebra

g and let A be a rational G-module. Then there is an isomorphism of the rational cohomology

group H(G,A) onto the Lie algebra cohomology group H(g, A).

Proof. See [Hoc61][Theorem 5.1]

Interestingly, both results are consequences of strikingly similar observations and can be

deduced using almost the same proof, once a suitable environment for stating them is available.

The first chapter therefore introduces group schemes as the technical framework of choice to

formulate all later results. The connection with the ideas described above is made in Lemma 1.1.12,

which reveals that the notion of a representation presented for group schemes yields precisely

the rational representations considered in [Hoc61]. We then focus on unipotent groups and their

representations. It turns out that both unipotent groups as well as their finite dimensional rep-

resentations admit special filtrations. More precisely, Theorem 1.2.5 asserts that any unipotent

algebraic group U over a field of characteristic 0 admits a closed normal subgroup V such that

U/V ∼= Ga, where Ga denotes the additive group and thus has a filtration

U = Un ⊃ Un−1 ⊃ . . . ⊃ U0 = {e}

by closed subgroups Ui, each normal in its predecessor, such that Ui+1/Ui ∼= Ga. Similarly, each

finite dimensional U -module M admits a filtration

M =Mn ⊃Mn−1 ⊃ . . . ⊃M0 = Ktr

with each Mi being a U -submodule of M such that Mi+1/Mi = Ktr (see Proposition 1.2.7).

The simple nature of these quotients suggests that unipotent groups are well suited for proofs

involving induction on the dimension of U , an idea we will exploit later on. The first chapter

concludes with a brief summary of constructions and results concerning the Lie algebra of an

algebraic group.

In order to define the rational cohomology groups mentioned above, we need injective reso-

lutions of modules over an algebraic group G. These can be obtained by considering so called

induced representations, which are obtained from representations of a closed subgroup H of G

and will be introduced in the second chapter of this work. The construction involved in this

process is similar to the one used for Lie groups or finite groups (although one has to deal with

slightly more technical difficulties). It also shares the main property of induced representations,
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a result commonly referred to as Frobenius reciprocity, which states that the functor mapping an

H-module M to the induced G-module indGHM is right adjoint to the restriction functor resGH ,

which assigns every representation N of G its restriction to H. In simpler terms, one has a

canonical isomorphism

HomG(N, ind
G
HM) → HomH(resGH N,M).

This result can be leveraged to show that for any representation N of G, the G-module N⊗K[G]

is injective. Since N can easily be embedded into N ⊗K[G], we obtain the existence of injective

resolutions as well as a way to construct them in a simple manner.

With the foundations of the first two chapters, the third and last chapter can freely focus on

our primary objects of interest: Arithmetic subgroups and the related cohomology groups. After

a brief introduction of the notion of cohomology groups for algebraic as well as abstract groups

and Lie algebras, we introduce spectral sequences as a technical tool necessary to obtain relations

between the cohomology of a group or a Lie algebra with respect to a normal subgroup or an ideal,

respectively. This is of particular interest to us, as it allows us to make use of the filtration of

unipotent groups constructed in the first chapter. The focus then shifts to arithmetic subgroups.

It is shown in Proposition 3.3.7 that any arithmetic subgroup Γ of a unipotent algebraic group

U over the rationals admits a filtration similar to the one proven in Theorem 1.2.5, where the

quotient of any two consecutive subgroups is isomorphic to the additive group of integers Z. We

subsequently consider the behaviour of the cohomology groups when applied to a direct limit of

modules, such as the locally finite representations obtained from algebraic groups. The upshot

is that arithmetic subgroups of unipotent algebraic groups permit the exchange of cohomology

with direct limits.

All these facts combined enable us to prove the following results:

Theorem (van Est). Let U be a unipotent algebraic group over the field of rational numbers Q

and let Γ be an arithmetic subgroup of U . Then for any U -module M , the module M ⊗K[G] is

acyclic for H(Γ,−). In particular, H(U,M) ∼= H(Γ,M).

Proof. This is shown in Theorem 3.4.2.

Theorem (Hochschild). Let U be a unipotent algebraic group over a field K of characteristic

0 and let u denote the Lie algebra of U . Then for any U -module M , the module M ⊗K[G] is

acyclic for H(u,−). In particular, H(U,M) ∼= H(u,M).

Proof. This is proven in Theorem 3.4.4.

Both results rely on the same reduction steps. The first step uses the filtration of U and the

induced filtrations on Γ and u together with the associated spectral sequences to apply induction

on the dimension of U , thus reducing to the case U = Ga. The second step then uses the local

finiteness of the U -module M combined with the compatibility of H(Γ,−) and H(u,−) with

direct limits to simplify to the case of a finite dimensional U -module. Finally, we can use the

filtration of M to further lower the dimension of M , thus reducing to the case of the trivial

module Ktr. In both cases, one is therefore left with computing either H1(Γ,K[t]) (with Γ ∼= Z)

or H1(ga,K[t]), which is done using the interpretation of these spaces in terms of derivations.
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The idea for this work as well as the basic outline of the proof was provided by Prof. Schw-

ermer, whom I would like to thank for his patience and invaluable support during the course of

this work.



Chapter 1

Unipotent Algebraic Groups

This chapter is meant as a brief introduction to the different topics required to understand

the basic structure of unipotent groups. We will first consider group schemes as a technical

framework to deal with algebraic groups over various ground fields.

Through this chapter, K will denote an arbitrary field (until otherwise indicated). The

term “K-algebra” will always refer to a commutative algebra over K, i.e. a commutative ring A

together with a morphism of rings K → A, called the structure morphism.

1.1 Group Schemes and Representations

Let R be a ring and denote the category of all commutative R-algebras by AlgR. A set-valued

functor (over R) is defined to be a covariant functor AlgR → Sets, where Sets denotes the

category of sets. If A is any R-algebra, there is an associated set-valued functor hA, given

by assigning each R-algebra B the set HomR(A,B) and each homomorphism of R-algebras ϕ:

B → B′ the map hA(ϕ): HomR(A,B) → HomR(A,B
′) which maps α: A→ B to ϕ ◦ α.

A set-valued functor X is then called an affine scheme if it is naturally isomorphic to a

functor hA for some algebra A. By Yoneda’s Lemma (cf. [Wat79][Section 1.3] or [HS97][Chapter

II, Proposition 4.1]), the algebra A is uniquely determined (up to isomorphisms) and is said to

represent X. If X is an affine scheme, we will often denote its representing R-algebra by R[X]

and call R[X] the affine coordinate ring of X.

Given affine schemes X and Y , a morphism of affine schemes X → Y is simply a natural

transformation of set-valued functors. Any morphism of R-algebras ϕ∗: R[Y ] → R[X] determines

a morphism ϕ: X → Y by mapping α ∈ X(B) = HomR(R[X], B) to α ◦ϕ∗ for any R-algebra B.

Another application of Yoneda’s Lemma shows that any morphism of affine schemes arises this

way. More precisely, any morphism ϕ: X → Y is uniquely determined by a (unique) morphism

of R-algebras ϕ∗: R[Y ] → R[X], which will be called the dual morphism of ϕ.

These observations are the foundation of a dictionary to translate functorial constructions

and properties to algebraic properties and constructions involving the R-algebra structure of the

corresponding coordinate rings. For example, the direct product of two affine schemes X and

Y is defined by (X × Y )(A) := X(A) × Y (A). Translating the universal property of the direct

product to its dual version in the category of R-algebras yields that X × Y is again an affine



10 Unipotent Algebraic Groups

scheme, whose coordinate ring is given by the tensor product R[X]⊗R[Y ].

Definition 1.1.1. A group scheme over a ring R is a quadruple (G,µ, ν, ǫ) consisting of an

affine scheme G and morphisms µ: G×G→ G, ν: G→ G and ǫ: hR → G satisfying the usual

group identities. The morphisms µ, ν and ǫ are referred to as the multiplication, inversion and

unit of G, respectively.

We will often omit explicitly mentioning the morphisms µ, ν and ǫ and simply call G a group

scheme. Note that hR itself is a group scheme, often called the trivial group scheme, since hR
maps any R-algebra to the trivial group {eA}, where eA is the structure morphism of A as an

R-algebra. We will therefore often denote hR by {e}, to put additional emphasis on its role as

the trivial group. This also implies that for any R-algebra A, the set G(A) has a canonical group

structure with multiplication µ(A), inversion ν(A) and identity ǫ(A) (note that ǫ(A) maps {eA}

onto the identity element of G(A), this is just the usual neutral element of G(A) in the classical

sense).

We will now consider the algebraic counterpart of this definition. For this, we fix a group

scheme G over R. By our above observations, the morphisms µ, ν and ǫ correspond to R-algebra

morphisms µ∗: A → A⊗ A, ν∗: A → A and ǫ∗: A → R, which satisfy the dual identities of the

group laws. An algebra A together with such morphisms is called a Hopf algebra, the morphisms

µ∗, ν∗ and ǫ∗ are called the comultiplication, coinverse and counit (or augmentation) morphism

respectively. From this point of view, group schemes over R correspond to Hopf algebras over

R. This observation permits us to interpret the group structure on G(A) in a slightly different

way: Given f and g in G(A) we define their composition to be fg = ∆∗ ◦ (f ⊗ g) ◦ µ∗, where

∆∗: B ⊗ B → B is the diagonal map mapping x ⊗ y to xy. An explicit calculation using the

identities of the Hopf algebra structure on A shows that this composition is indeed associative,

has a neutral element given by composing ǫ∗ with the canonical structure map R → B and

permits inverse elements, where the inverse of f is given by f ◦ ν∗. It is easy to see that the so

defined group structure on G(A) actually coincides with the one previously defined. The reader

interested in the details of the computation may find them in [Yan77][Proposition 1.2].

In particular, any group scheme over R actually defines a group-valued functor (i.e. a functor

AlgR → Groups) and it can be shown that any representable group-valued functor arises this

way (see [Yan77][Proposition 1.5]). This observation will play an important role later on, when

we define modules over group schemes.

We can also use the Hopf algebra structure to extend the base ring of a group scheme as

follows. Given a group scheme G over a ring R and morphism of rings α: R → S, the tensor

product S[G] = R[G]⊗R S is again a Hopf algebra over S, where we regard S[G] as an S-algebra

via the canonical morphism s 7→ 1⊗ s. We will denote the associated group scheme by GS and

call GS the base extension of G to S. From the functorial point of view, the morphism α induces

a functor Rα: AlgS → AlgR, where we regard any S-algebra A as an algebra over R by defining

rx = α(r)x for r ∈ R and x ∈ A. This technique is often called restriction of scalars. The

functor GS : AlgS → Groups can now be identified with the composition of G with Rα, which

is tantamount to saying that any morphism of S-algebras x: S[G] = R[G] ⊗ S → A is already

uniquely determined by its restriction to R[G] and that conversely, any morphism of R-algebras

R[G] → A gives rise to a unique S-equivariant morphism R[G] ⊗ S → A. To put it simply, the

base extension GS of G to S is the unique group scheme over S satisfying GS(A) = G(A) for

any S-algebra A.
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If G and H are both R-group schemes and ϕ: G → H is a morphism of affine schemes, we

will say that ϕ is a morphism of R-group schemes if it is compatible with the group structure

on both G and H, i.e. if ϕ ◦ µG = µH ◦ (ϕ× ϕ). This is equivalent to saying that ϕ is actu-

ally a natural transformation of group-valued functors, since any morphism of abstract groups

preserving multiplication necessarily preserves the neutral element and inversion. On the level

of Hopf algebras, we may express this by saying that the dual morphism ϕ∗ is a morphism of

Hopf algebras, i.e. preserves µ∗ in the sense that µ∗ ◦ ϕ∗ = (ϕ∗ ⊗ ϕ∗) ◦ µ∗. Note that just as ϕ

necessarily preserves ν and ǫ if it preserves µ, the dual map ϕ∗ preserves ν∗ and ǫ∗ once it is

compatible with the comultiplication.

Having defined our objects of interest, we would like to have a good notion of a “subobject”.

Let X be an affine scheme with affine coordinate ring R[X]. We say that an affine scheme Y is

a closed subscheme of X if its coordinate ring is given by a quotient R[Y ] = R[X]/I for some

ideal I of R[X]. In this case, we shall say that I defines Y in X or that I is the defining ideal of

Y in X. Note that the canonical projection R[X] → R[X]/I induces a canonical inclusion of Y

into X.

For a group scheme G, one may now ask under which circumstances a closed subscheme H is

again a group scheme with respect to a group structure induced by G, i.e. such that the canonical

inclusion is a morphism of group schemes. As it turns out (see [Wat79][Section 2]), this is the

case if and only if the ideal I defining H in G is a Hopf ideal of R[G] i.e. if and only if I satisfies

µ∗(I) ⊆ I ⊗R[G] +R[G]⊗ I,

ν∗(I) ⊆ I,

ǫ∗(I) = 0.

In this case, H is called a closed subgroup scheme (or simply a closed subgroup) of G.

Example 1.1.2. The most important example is the general linear group Gln over R, given by its

affine coordinate ring A = R[tij , t]/I, with i, j ∈ {1, . . . , n}, where I is the ideal generated by the

polynomial det(tij)t − 1, together with the following morphisms as comultiplication, coinverse

and augmentation

µ∗ : tij 7→
∑

k

tik ⊗ tkj ,

ν∗ : tij 7→ (−1)i+j det(trs)r 6=i,s 6=jt
−1,

ǫ∗ : tij 7→ δij .

In the special case of n = 1, we call Gl1 the multiplicative group and denote it by Gm.

An example of a closed subgroup scheme of Gln is the group Un of upper triangular matrices

with 1 on the diagonal. It is given by the Hopf ideal I generated by the polynomials tij for j < i

and tii−1 for all i ∈ {1, . . . , n}. Hence the affine coordinate ring of Un is given by the polynomial

ring R[tij ] with 1 ≤ i < j ≤ n together with the induced Hopf algebra structure. Explicitly, we

get

µ∗ : tij 7→
∑

k

tik ⊗ tkj ,

ν∗ : tij 7→ (−1)i+j det(trs)r 6=i,s 6=j ,
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ǫ∗ : tij 7→ 0.

We will also call Un the standard unipotent group over R.

Another basic example is the additive group scheme Ga, given by the affine coordinate ring R[t],

together with the Hopf algebra structure

µ∗ : t 7→ t⊗ 1 + 1⊗ t,

ν∗ : t 7→ −t,

ǫ∗ : t 7→ 0.

Note that Ga is in fact isomorphic to U2.

In all of the above examples, the affine coordinate rings had the special property that they

were finitely generated R-algebras. While this is not necessarily true for all group schemes, in

all the cases we are interested in, it will certainly be satisfied. In general, an affine scheme X

whose coordinate ring is finitely generated as an R-algebra is said to be of finite type.

Definition 1.1.3. Let K be a field. An algebraic group over K is a group scheme G whose

coordinate ring is finitely generated as a K-algebra.

For the reader familiar with algebraic groups in the classical setting, there is one subtle (but

important) difference in the above definition compared to the classical case: We did not require

algebraic groups to be reduced, which means that their coordinate rings may contain nilpotent

elements (that is, so to speak, they no longer have varieties as their underlying surfaces, as

varieties, in the classical sense, were assumed to be reduced). It turns out that this is indeed a

more general definition, hence we will call an affine scheme reduced if its affine coordinate ring is

reduced. Similarly, we will say that an affine scheme is integral if its coordinate ring is an integral

domain and connected if the coordinate ring modulo the nilradical is an integral domain. These

notions, while defined via algebraic conditions, have geometric origins, which may be found in

Hartshorne’s book [Har06], or many other books on algebraic geometry. The most important

fact for the reader to keep in mind is the following theorem.

Theorem 1.1.4. If K is a field and G is an algebraic group over K, then G, as an affine scheme,

is connected if and only if it is integral.

Proof. The proof, which relies on so-called separable subalgebras of the coordinate ring K[G],

can be found in [Wat79][Section 6.6].

In the theory of abstract groups, given a homomorphism of groups G→ H, the inverse image

of any subgroup of H is a subgroup of G. The same is true for closed subgroups of group schemes,

as we shall see in a moment.

In general, let X and X ′ be affine schemes over R and let Y ′ be a closed subscheme of X ′.

Given a morphism ϕ: X → X ′ of affine schemes, we define the inverse image of Y ′ under f to

be the functor ϕ−1(Y ′) given by mapping any R-algebra A to ϕ(A)−1(Y ′(A)). This functor is

actually a closed subscheme of X: Let I ′ be the ideal defining Y ′ in X ′ and consider the ideal I

of R[X] generated by ϕ∗(I ′). We claim that ϕ−1(Y ′) is actually isomorphic to the affine scheme
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Y given by the coordinate ring R[G]/I. To prove our claim, let x ∈ Y (A). Then we may regard

x as a homomorphism R[G] → A vanishing on I. Moreover, ϕ(x) = x ◦ ϕ∗ implies that f(x)

vanishes on I ′, hence it is an element of Y ′(A) and therefore x ∈ ϕ−1(Y ′)(A). If on the other

hand x ∈ ϕ−1(Y ′)(A) then f(x) ∈ Y ′(A) implies that I ′ is in the kernel of f(x) = x ◦ f∗, which

forces f∗(I ′) ⊂ ker(x). This implies I ⊂ ker(x) since f∗(I ′) generates I and hence x ∈ Y (A).

If we apply these considerations to the case of a morphism of group schemes ϕ: G → H,

we can even show slightly more: The inverse image of any closed subgroup H ′ of H is a closed

subgroup of G. Indeed, let G′ denote the inverse image of H ′ and let I and I ′ be the defining

ideals of G′ and H ′ respectively. In order to show that I is a Hopf ideal of R[G], it is sufficient to

check the necessary conditions on a generating set, hence on ϕ∗(I ′). But since ϕ∗ is a morphism

of Hopf algebras we get

µ∗
G(ϕ

∗(I ′)) = (ϕ∗ ⊗ ϕ∗)(µ∗
H(I ′)

⊆ (ϕ∗ ⊗ ϕ∗)(I ′ ⊗R[H] +R[H]⊗ I ′)

⊆ I ⊗R[G] +R[G]⊗ I

The other conditions of a Hopf ideal follow in a similar way. A particular consequence of this

observation is the existence of a kernel for any homomorphism of group schemes:

Definition 1.1.5. Let ϕ: G→ H be a morphism of group schemes over R. We define the kernel

of ϕ to be the closed subgroup ker(ϕ) of G defined by the inverse image of the trivial subgroup of

H.

Having defined closed subgroups, morphisms and kernels, we turn to another construction of

group theory whose equivalent has not yet appeared in our discussion of group schemes, namely

quotients of group schemes by closed subgroups. Up to now we have quietly avoided this subject

as it is surprisingly difficult to deal with, especially in the general context we are working in.

For this reason, our discussion will be quite brief and restricted to normal subgroups of algebraic

groups over a field K.

Suppose N is a closed subgroup of a group scheme G over K. We will say that N is normal

if for each K-algebra A, N(A) is normal in G(A). Note that the kernel of a morphism of group

schemes is always a normal, closed subgroup.

Definition 1.1.6. A morphism ϕ: G→ H of group schemes is said to be a quotient morphism

if the dual morphism ϕ∗ is injective.

Given a normal subgroup N of a group scheme G, a quotient of G by N is a quotient map

π: G → H with N = ker(π). Most of the time, we will simply call H the quotient of G by N

without explicitly mentioning the morphism π.

Theorem 1.1.7. Let N be a normal subgroup of G. Then a quotient of G by N is unique up to

isomorphism. If G is algebraic, then such a quotient always exists.

Proof. This result can be found in [Wat79][Section 15.4 and 16.3].

We now have most of the basic concepts of group schemes at hand, except for one basic

technique used to study groups: Representations. In order to define them, we need to keep in

mind that the setup we are working in is based on functors. Thus we need to define functorial
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equivalents of R-modules and their “general linear groups”. To do so, we first consider a more

general situation. Suppose that M is an R-module and ϕ: R → S is a morphism of rings

(commutative, as always in this section). Then we can form the tensor productM⊗S ofM and S

over R. This tensor product has a canonical structure as an S-module given by s·(m⊗t) = m⊗st

and is usually called the extension of scalars of M from R to S. In particular, for any R-algebra

A, M ⊗ A is an A-module in a canonical way (we simply extend the scalars via the structure

morphism R → A) and we may consider the group of A-linear automorphisms AutA(M ⊗ A).

Moreover, for any morphism of R-algebras A → B we naturally obtain morphisms of groups

M ⊗ A → M ⊗ B and AutA(M ⊗ A) → AutB(M ⊗ B). These observations now motivate the

following definition.

Definition 1.1.8. LetM be an R-module. The associated functorMa ofM is given byMa(A) =

M ⊗ A and Ma(ϕ) = idM ⊗ϕ for any R-algebra A and any morphism of R-algebras ϕ. The

general linear group of M is given by Gl(M)(A) = AutA(M ⊗A).

Note that Gl(M) is, in general, not a group scheme. However, if M is free of finite rank n,

then any choice of a basis of M yields an isomorphism Gl(M) → Gln of group-valued functors.

We can now define representations in just the same way as for abstract groups.

Definition 1.1.9. A representation of a group scheme G on an R-module M is a morphism of

group-valued functors ρ: G→ Gl(M).

An R-module M together with such a morphism ρ is also called a G-module. This way, a

representation of G on M is nothing more than an action of G on Ma by linear maps, i.e. a

natural transformation ρ: G×Ma →Ma satisfying the axioms of an action such that each G(A)

acts onMa(A) by A-linear maps (cf. [Wat79][Section 3.1]). By abuse of notation, we shall denote

both the morphism G→ Gl(M) as well as the corresponding action G×Ma →Ma by ρ.

As an interesting consequence of the latter description, we obtain the following lemma.

Lemma 1.1.10. Let M be an R-module. Then there is a bijection between morphisms ρ: G→

Gl(M) and R-linear maps ρ∗: M → M ⊗ K[G] satisfying (ρ∗ ⊗ id) ◦ ρ∗ = (id⊗µ∗) ◦ ρ∗ and

(id⊗ǫ∗) ◦ ρ∗ = id).

Proof. See [Wat79][Section 3.2].

A linear map ρ∗: M → M ⊗ K[G] satisfying the requirements of the lemma is called a

comodule map and M together with such a map is called a R[G]-comodule. In accordance with

our notational conventions, we shall denote comodule maps with raised stars, while denoting the

associated representation without them.

Example 1.1.11. Any R-module M may be regarded as a trivial G-module via the trivial mor-

phism G→ Gln mapping G(A) to e ∈ Gl(A). We usually denote M with the trivial G action by

Mtr. The associated comodule map is given by m 7→ m⊗ 1.

Suppose G acts on an affine scheme X from the right, i.e. we have a morphism ρ: G×X → X

satisfying the properties of a right action, then the dual morphism ρ∗: R[X] → R[X] ⊗ R[G]

satisfies the properties of a comodule map. Hence any such action induces a representation of

G on the affine coordinate ring of X. We call this structure the translation of functions on X

induced by the action ρ. The name stems from the following interpretation, which we shall use

later on: We may consider an element f ∈ R[X] as a “rational function” on X. More precisely,
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for any x ∈ X(A) and any R-algebra A we define f(x) := x(f) ∈ A (in this sense, we may regard

f as a natural transformation from X to the forgetful functor AlgR → Sets). Then acting with

g ∈ G(A) on f yields an element of R[G] ⊗ A and thus an element of the base extension A[G].

Hence gf is a “rational function” on GA and given an A-algebra A′ as well as x ∈ X(A′) we get

(gf)(x) = x(gf)

= (x⊗ g)(ρ∗(f))

= f(xg),

which justifies the idea of this action as right translation of functions in some sense.

A lot of important representations can be obtained this way: Consider the right action of G on

itself by right multiplication µ: G×G→ G. The comodule structure on R[G] obtained this way

is called the right regular representation, and will be denoted by ρ∗r . Note that ρ∗r = µ∗. We

could also consider the action of G on itself by left multiplication. However, to turn it into a

right action, we need to twist the factors and invert the element we act with, hence compose µ

with tw ◦(ν ⊗ id). The representation of G on R[G] obtained this way is called the left regular

representation, which will be denoted by ρl.

Note that the inversion ν∗: R[G] → R[G] defines an isomorphism between the left and the regular

representation of G on its coordinate ring.

Similar to dual morphisms, we may now start to define concepts and properties functorially

and translate them into more algebraic properties by using the comodule map. In particular,

since we are dealing with group-valued functors, we can adapt most of the basic definitions from

the representation theory of groups to group schemes. However, in the general case of a base

ring R, one needs to pay close attention to the algebraic properties of a G-module M over R,

such as flatness.

Given two G-modules M and N , an R-linear map f : M → N is said to be a morphism of

G-modules or G-equivariant if f(A): M(A) → N(A) commutes with the action of G(A). If we

denote the comodule maps of M and N by ρ∗M and ρ∗N respectively, then we can express this

condition as

ρ∗N ◦ f = f ⊗ id ◦ρ∗M

A G-submodule of a G-module M is an R-submodule N of M , together with a G-module struc-

ture such that the canonical inclusion N → M is a morphism of G-modules. In this case, an

interpretation in terms of the comodule map is not immediately possible. However, if G is a flat

group scheme (i.e. if the affine coordinate ring R[G] is flat over R, which means that short exact

sequences are preserved under the tensor product with R[G]), then N ⊗R[G] is a G(R[G])-stable

submodule ofM ⊗R[G] and thus ρ∗(N) ⊆ N ⊗R[G]. Conversely, any R-submodule N ofM sat-

isfying this condition is naturally a G-submodule of N with respect to the comodule map given

by the restriction of ρ∗ to N . This implies that in case of a flat group scheme, the G-module

structure on N is uniquely determined by the one on M (cf. [Jan87][Section 2.9]).

To avoid technical difficulties, we shall now restrict ourselves to the case of group schemes

over a field K, in which case any group scheme G is flat. Let G be a group scheme over K and

M be a G-module. We define the module of fixed points of M to be the K-submodule MG of M

consisting of all m satisfying g · (m⊗ 1) = m⊗ 1 for all g ∈ G(A) and all K-algebras A. Taking



16 Unipotent Algebraic Groups

g = idK[G] ∈ G(K[G]) one sees that

MG = {m ∈M | ρ∗(m) = m⊗ 1}

As a consequence of this description, we can identify MG with the group of G-homomorphism

from Ktr to M : Any m ∈ MG determines a G-equivariant morphism Ktr → M by mapping x

to xm and conversely, any such morphism is uniquely determined by the image m of the unit

1, which is then (due to G-equivariance) necessarily a fixed point. This implies that the fixed

point functor which maps any G-module M to its fixed points MG is naturally equivalent to

HomG(Ktr,−) and hence left exact (this is true in general for flat group schemes).

When working over a field, representations of group schemes have another important property:

They are locally finite, i.e. every element is contained in a finite dimensional invariant subspace.

Lemma 1.1.12. Let G be a group scheme over K and M be a G-module. Then every finite

dimensional subspace is contained in a finite dimensional G-submodule of M .

Proof. Since any sum of G-submodules of M is again a G-submodule, it suffices to show that

any element of M is contained in a finite dimensional G-stable subspace. Let fii∈I be a basis of

K[G] over K and ρ∗:M →M ⊗K[G] be the comodule map defining the G-module structure on

M . Then for m ∈M we have

ρ∗(m) =
∑

mi ⊗ fi

with almost all mi = 0. Furthermore, we may write µ∗(fi) =
∑

λijkfj ⊗ fk with λijk ∈ K and

again almost all λijk = 0. Then

ρ∗(mi)⊗ fi = (ρ∗ ⊗ id)(ρ∗(m))

= (id⊗µ∗)(ρ∗(m))

=
∑

λijkmi ⊗ fj ⊗ fk.

Comparing the coefficients of fk yields

ρ(mk) =
∑

λijkmi ⊗ fj ,

hence for N = Km+
∑

Kmi we get dimK(N) <∞ and ρ∗(N) ⊆ N ⊗K[G], which shows that

N is a finite dimensional G-submodule of M containing m.

This will be one of the key techniques in the last chapter, as it allows to reduce certain

problems to finite dimensional modules, which are, to a certain extent, easier to deal with. Note

that a similar statement holds for flat group schemes over arbitrary rings, yet the proof is different

as the subspace is not necessarily described in such a nice way (see [Jan87][Section 2.13]).

Before beginning to consider unipotent groups, we need an additional notion from algebraic

geometry. Suppose X is an affine scheme over a ring R and let A = K[X] be its coordinate ring.

A closed subscheme Y of X is said to be irreducible if the ideal I defining Y in X is a prime

ideal. The maximal irreducible subschemes of X (i.e. closed subschemes such that the defining

ideal I is a minimal prime ideal with respect to inclusion) are called the irreducible components

of X. The dimension of X is then defined to be the supremum over all positive integers n such
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that there exists a strictly ascending sequence p1 ( . . . ( pn of prime ideals of A. It will be

denoted by dim(A).

In general, dimension theory over an arbitrary base ring R can be very difficult, however

one can compute the dimension of the polynomial ring R[t1, . . . , tn], which is in fact equal to

dim(R) +n. If R = K is a is a field, then the affine space AnK , whose underlying coordinate ring

is precisely the polynomial ring K[t1, . . . , tn], therefore has dimension n (see [Liu02][Section 2.5,

Corollary 5.17]). Since we may embed any algebraic scheme in some affine space, the dimension of

any such scheme will also be finite. The most important result for us is the following proposition.

Proposition 1.1.13. Suppose X is an integral algebraic scheme and f ∈ K[X] be a non-nilpotent

element. Then every irreducible component of V (f) = K[X]/(f) has dimension dim(X)− 1

Proof. The proof can be found in [Liu02][Section 2.5, Corollary 5.26].

1.2 Unipotent Groups and Their Modules

Let G be an algebraic group over a field K. We will say that G is unipotent if G is isomorphic to

a closed subgroup of Un for some n ∈ N. One can show that G is unipotent if and only if every

simple G-module is isomorphic to Ktr, or, equivalently, if every G-module has nontrivial fixed

points (see Waterhouse [Wat79][Section 8.3]).

Our particular interest is the structure of these groups if the given ground field is the field of

rational numbers Q. In what follows, we shall therefore assume that the fieldK is of characteristic

0. It turns out that working over such a field has a lot of advantages, as certain unpleasant

phenomena such as nonreduced algebraic groups only arise over fields of positive characteristic.

A particularly important consequence of the restriction of the characteristic of K is that all

unipotent groups are in fact connected:

Theorem 1.2.1. Over a field of characteristic 0, any unipotent group is connected.

Proof. See Waterhouse [Wat79][Section 8.5].

We have already seen some examples of unipotent groups in the previous section. The “sim-

plest” (nontrivial) such group is the additive group scheme Ga, which is isomorphic to U2. It

turns out to be worthwhile to take a closer look at Ga before moving on to arbitrary unipotent

groups.

In general, given an arbitrary group scheme over K and a morphism ϕ: G→ Ga of K-group

schemes, the dual morphism ϕ∗: K[t] → K[G] is determined by an element x = ϕ∗(t) of K[G]

satisfying µ∗
G(x) = x ⊗ 1 + 1 ⊗ x. The elements of K[G] satisfying this identity are said to be

primitive and the set of all such elements is denoted by P (K[G]). It is then easy to check that

any primitive element of K[G] determines a morphism of Hopf algebras K[t] → K[G] and that

the map ϕ 7→ ϕ∗(t) defines a bijection from the set of morphisms Hom(G,Ga) onto the set of

primitive elements of K[G]. We can use this observation to classify the endomorphisms of Ga
(as in [Wat79][8.4]).

Theorem 1.2.2. If the characteristic of K is equal to 0, then Hom(Ga, Ga) ∼= K.
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Proof. By our above considerations, it is sufficient to classify the primitive elements of K[t].

Given a ∈ K, the element at is certainly primitive, thus we get an injective map K → P (K[t]).

It is therefore enough to show that any primitive element of K[t] is actually of the form at for

some a ∈ K. Suppose f ∈ K[t] is primitive and let d be the degree of f =
∑

ait
i. If we identify

K[t]⊗K[t] with K[x, y] then f has to satisfy

f(x) + f(y) = f(x+ y)

and hence
∑

ai(x
i+ yi) =

∑

ai(x+ y)i. This immediately implies a0 = 0 and by comparing the

coefficients of the mixed terms resulting from expanding ai(x + y)i starting from i = 2, we get

ai = 0 for 2 ≤ i ≤ d.

We are now able to relate the endomorphisms of Ga as a group scheme to its closed subgroups:

Proposition 1.2.3. Every closed subgroup of Ga arises as the kernel of a morphism of group

schemes Ga → Ga.

Proof. Let H be a closed subgroup of Ga and I = (f), f ∈ K[t], be the ideal defining H. Then

ǫ∗(f) = 0, i.e. f(0) = 0 and µ∗(f) ⊆ f ⊗K[t] +K[t]⊗ f . For notational convenience we identify

K[t] ⊗K[t] with K[x, y]. Then the ideal f ⊗K[t] +K[t] ⊗ f is exactly the ideal generated by

f(x) and f(y) and we claim that f is a primitive element of K[t] i.e. f(x + y) = f(x) + f(y).

Since f(x+ y) is by assumption in the ideal generated by f(x) and f(y), there exist polynomials

a(x, y), b(x, y) ∈ K[x, y] such that

f(x+ y)− f(x)− f(y) = a(x, y)f(x) + b(x, y)f(y).

Note that the left hand side has a degree in both x and y less than the degree of f . We then

write b(x, y) = b1(x, y)+ b2(x, y) where degx b1(x, y) < deg f and degx b2(x, y) ≥ deg f . Suppose

a(x, y) 6= 0 then degx a(x, y)f(x) ≥ deg f , so since the left hand side has an x-degree smaller

then deg f we must have a(x, y)f(x) + b2(x, y)f(y) = 0, hence

f(x+ y)− f(x)− f(y) = b1(x, y)f(y).

By comparing y-degrees, this implies b1(x, y) = 0, thus finally f(x+y) = f(x)+f(y) as claimed.

Since f is primitive, we get an endomorphism of Hopf algebras ϕ∗: K[t] → K[t] by mapping t

to f . The dual morphism ϕ: Ga → Ga is a morphism of group schemes, whose kernel is clearly

equal to H.

Corollary 1.2.4. If K is a field of characteristic 0, then Ga has no nontrivial closed subgroups.

Proof. This is an immediate consequence of our above observations: Any closed subgroup H of

Ga is defined by a primitive element f ∈ K[t]. Applying the theorem, we must have f = λt for

some λ ∈ K. If λ = 0 then H = Ga, otherwise we may assume λ = 1. In this case, H is the

trivial subgroup of Ga, consisting only of the neutral point.

Keeping the assumption that the characteristic of K is 0, we now consider the standard

unipotent group Un over K. Let Λ be the set of all pairs (i, j) with 1 ≤ i < j ≤ n, then the

coordinate ring of Un is given by K[Un] = K[tij | (i, j) ∈ Λ]. By defining (i, j) < (k, l) if j < l
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or j = l and i > k we obtain an order on Λ, which will be used to construct a sequence of closed

subgroups of Un (in fact, we will prove [Hum75][Section 17.6, Exercise 7]). For this purpose,

let Ilk be the ideal generated by all tij with (i, j) < (l, k). These ideals are all Hopf ideals

of K[Un] and each is normal in the preceding one. This can be checked on the matrix groups

Un(A), since each subgroup deletes exactly one entry of its predecessor. More precisely, if we

denote the scheme associated to K[Un]/Ikl by Ukl then Ukl(A) consists of all upper triangular

n × n-matrices (aij) with aii = 1 and aij = 0 if (i, j) < (k, l). Moreover, since all Ukl are

again unipotent, they are connected, and since each step adds only one variable to the defining

ideal, we get a sequence of closed subgroups Ukl of Un, each normal and of codimension one in

its predecessor. We now want to determine the quotient of two consecutive subgroups in this

chain. Let (l, k) ∈ Λ and (i, j) be the preceding index. Then tij /∈ Iij but tij ∈ Ikl. Consider

the morphism of group schemes ϕij : Uij → Ga defined by the dual ϕ∗
ij : K[t] → K[Uij ] with

ϕ∗
ij(t) = tij . This morphism is injective and thus a quotient map. The kernel of ϕij is given

by the ideal of K[Uij ] = K[Un]/Iij generated by tij , which is precisely the ideal defining the

subgroup Ukl in Uij . We therefore obtain a sequence of closed subgroups

Un = U1,2 ) U2,1 ) . . . ) Un−1,n
∼= Ga,

each normal in its predecessor, where each consecutive pair has quotient Ga.

The following theorem generalises this result to arbitrary unipotent groups.

Theorem 1.2.5. Let U be a unipotent algebraic group of dimension n over a field K of charac-

teristic 0. Then there exist a descending sequence of closed subgroups

U = Un ) Un−1 ⊇ . . . ⊇ U0 = {e}

such that each Ui is a normal subgroup of Ui+1 of codimension 1 satisfying Ui+1/Ui ∼= Ga.

Proof. We apply induction on the dimension n of U . If n = 0 then K[U ] is a finite dimensional

integral domain, hence Artinian and must therefore be a field (this follows from [AM69][Theorem

8.5]). The morphism ǫ∗: K[U ] → K now forces K[U ] = K, thus U is the trivial group scheme.

Let n > 0 and assume the assertion to be valid for all unipotent groups of smaller dimension.

After identifying U with a closed subgroup of Un, we may assume U to be a closed subgroup of

Un to begin with. Then U is defined by some ideal I of K[Un]. We now choose (i, j) ∈ Λ maximal

with respect to I ⊃ Iij and let (k, l) be the next larger index with respect to our chosen ordering.

By construction I 6⊃ Ikl, so in particular tij /∈ I. We then consider the restriction of ϕij to U .

The dual map of this restriction is given by the composition of ϕ∗
ij with the canonical projection

K[Uij ] → K[U ] = K[Uij ]/I. Then the kernel of this morphism of Hopf algebras K[t] → K[U ] is

a Hopf ideal of K[t]. But since Ga has no proper closed subgroups, this ideal is either zero or

equal to (t). The latter case would imply that tij = ϕ∗
ij(t) ∈ I, hence Ijk = Iij + tij ⊂ I which

contradicts our assumption on the maximality of (i, j). This implies that ϕ∗
ij : K[t] → K[U ] is

injective, hence ϕij is a quotient map whose kernel V is given by the ideal of K[U ] generated by

tij . In particular, V is a closed normal subgroup of codimension 1 in U with U/V ∼= Ga. The

assertion now follows by applying the induction hypothesis to V .

Note that our proof of this result only works in characteristic 0, even though the statement

itself is valid over any perfect field. But if we take a closer look at the proof, we can actually
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derive a slightly stronger result. Let U again be a closed subgroup of some Un defined by the

ideal I of K[Un] and choose (i, j) ∈ Λ as in the proof above. Then the closed normal subgroup

V is obtained as the kernel of ϕij : U → Ga. In particular, V is the zero set of tij in K[U ]. We

may express the fact that U/V ∼= Ga as having an exact sequence

0 → V → U → Ga → 0

of K-group schemes. On the other hand, if we consider σ∗: K[U ] → K[t] given by the restriction

of the K-algebra homomorphism K[Un] = K[tij ] → K[t] with tij 7→ t and tkl 7→ 0 for (k, l) 6=

(i, j), then it is easy to check that σ: Ga → U is a morphism of group schemes. In particular, σ

splits ϕij , i.e. the composition ϕij ◦ σ is the identity on Ga. As a consequence, U is actually the

semidirect product of V with Ga. This implies that U is isomorphic to the direct product V ×Ga
as an affine scheme, since this is valid as sets for any K-algebra A. If we consider the right action

of V on U = V ⋊Ga via ((v′, g), v) 7→ (v−1, e)(v′, g) (which is nothing but the left regular action

of U on itself, restricted to an action of V ) and the left regular action of V on V × Ga (which

is defined in just the same way), then the isomorphism of affine schemes V × Ga → V ⋊ Ga
is compatible with this V -action. This implies that the coordinate ring K[U ] is isomorphic to

K[t]⊗K[V ] as a V -module, where we regard K[t] as a trivial V -module. As a consequence, we

can easily compute the fixed points of K[U ] under the left regular action of V :

Lemma 1.2.6. Let M and N be G-modules. If the action on M is trivial then (M ⊗ N)G =

M ⊗NG.

Proof. We first choose a basis (mi)i∈I for M and (nj)j∈J for N . Then the set of all mi⊗nj is a

basis of M ⊗N , hence given x ∈ (M ⊗N)G we may write x =
∑

ij λijmi ⊗ nj for some unique

λij ∈ K almost all 0. For g ∈ G(A) we thus get

x = gx

= g
∑

ij

λijmi ⊗ nj ⊗ 1

=
∑

ij

λijmi ⊗ gnj ⊗ 1.

Hence 0 = λij(nj−gnj), which implies that either λij = 0 or nj ∈ NG. In particular, x ∈M⊗NG

and hence (M ⊗N)G ⊂M ⊗NG. Since the other inclusion is obvious, the assertion follows.

Applying this lemma to the situation above now yields K[U ]V ∼= (K[t] ⊗K[V ])V ∼= K[t] as

V -modules.

Finally, we can show that a filtration similar to Theorem 1.2.5 exists for finite dimensional

modules over unipotent groups. This is the content of the following proposition.

Proposition 1.2.7. Let K be an arbitrary field, U be a unipotent algebraic group over K and

M be a nontrivial U -module. If n = dimK(M) is finite then there exists an ascending sequence

0 =M0 (M1 ( . . . (Mn =M

of U -submodules of M such that Mi+1/Mi
∼= Ktr.
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Proof. We apply induction on n. If n = 1 there is nothing to show, so we may take n ≥ 2 and

assume the assertion for all positive integers smaller than n. Since (by definition) any nontrivial

module over a unipotent group has nonzero fixed points, the module of fixed pointsMU contains

a nonzero element m1. Let M1 = Km1 be the subspace of M generated by m1. Then M1 is a

U -submodule of M isomorphic to Ktr and the quotient M ′ =M/M1 has a canonical U -module

structure. Moreover dim(M ′) = n − 1, thus by induction hypothesis there exists a filtration of

M ′ by U -submodules M ′
i which satisfies the requirements of the lemma. Defining Mi to be the

preimage of M ′
i with respect to the canonical projection M → M ′ = M/M1 then yields the

required sequence of U -submodules of M .

1.3 The Lie Algebra of an Algebraic Group

Lie Algebras in General Let K be a field. A Lie algebra over K is a finite dimensional K-

vector space g together with a K-bilinear map [., .]:V ×V → V , called the Lie bracket, satisfying

1. [x, x] = 0 for all x ∈ g

2. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ g (Jacobi Identity)

In particular, any Lie algebra is anticommutative, i.e. satisfies [x, y] = −[x, y]. A morphism of

Lie algebras over K is simply a K-linear map compatible with the respective Lie brackets.

Given a Lie algebra g, a subspace h of g is called a Lie subalgebra of g if it is closed under

the Lie bracket, i.e. if [h, h] ⊆ h. If in addition [g, h] ⊆ h, then h is called an ideal of g. In this

case, the quotient g/h has a canonical structure as a Lie algebra, given by [π(x), π(y)] = π([x, y])

where, π : g → g/h denotes the canonical projection. Moreover, with respect to this structure,

the projection π is a morphism of Lie algebras.

Example 1.3.1. Any associative algebra A over K gives rise to a Lie algebra in a canonical way

by defining the Lie bracket to be the commutator bracket, i.e. [x, y] = xy − yx. To distinguish

between A as an associative algebra and A with the canonical Lie algebra structure, we will

denote the latter by (A, [., .]).

Moreover, any K-space V may be regarded as a Lie algebra by defining [x, y] = 0. This is

called the trivial Lie bracket.

A representation of a Lie algebra g on aK-space V is defined to be a morphism of Lie algebras

g → End(V ), where End(V ) is regarded as a Lie algebra via the commutator bracket. Given

such a morphism, we will also call V a g-module and say that g acts on V . A morphism V →W

of g-modules is a linear map compatible with the respective g-actions. Given a g-module V , a

fixed point of g in V is a vector v ∈ V such that Xv = 0 for all X ∈ g. The set of all such points

is a subspace of V , called the fixed point module and denoted by V g. If V = V g then V is called

a trivial g-module. Note that any K-space V may be regarded as a trivial g-module and that

we may, as in the case of group schemes, identify the fixed point module of a g-module V with

the space of homomorphisms Ktr → V . Other notions, such as the tensor product of modules

or the direct limit of modules, are defined in the obvious way.

One of the most important concepts in the representation theory of Lie algebras is that of a

universal enveloping algebra (see [HS97][Section VIII.1]):
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Definition 1.3.2. Let g be a Lie algebra over K. The universal enveloping U(g) of g is defined to

be the quotient T (g)/I where T (g) is the tensor algebra on g and I is the ideal of T (g) generated

by all elements of the form x⊗ y − y ⊗ x− [x, y], x, y ∈ g.

The universal enveloping algebra is an associative algebra over K and satisfies the following

universal property: For any associative algebra A over K and any morphism of Lie algebras ϕ:

g → (A, [., .]) there exists a unique morphism of associative algebras ϕ̂: U(g) → A such that

ϕ = ϕ̂ ◦ i, where i: g → (U(g), [., .]) is the canonical morphism of Lie algebras given by x 7→

x̄ ∈ T (g)/I. In particular, representations of g on a K-space V correspond bijectively to U(g)-

module structures on V . Moreover, we have a canonical isomorphism of groups Homg(V,W ) →

HomU(g)(V,U). In this sense, the category of g-modules is precisely the category of U(g)-modules.

Example 1.3.3. Let V be a K-space of dimension n regarded as a trivial Lie algebra. Then

I = (0), so U(V ) = T (V ) ∼= K[t1, . . . , tn].

The Algebra of Distributions of a Group Scheme If G is a group scheme over K, then

the augmentation morphism ǫ∗: K[G] → K is a K-algebra homomorphism defining the neutral

element e of G(K). The kernel Ie = ker(ǫ∗) of ǫ∗ is a maximal ideal of K[G], called the

augmentation ideal. We say that a linear map δ: K[G] → K is a distribution on G (with support

in e) if there exists an n ∈ N such that δ(In+1
e ) = 0. The smallest such n is called the degree of

δ. Note that the family of all distributions on G forms a K-subspace of the dual space K[G]∗ of

K[G] and we will denote this space by Dist(G). For any n ∈ N, the distribution of degree less

than or equal to n form a subspace of Dist(G), which will be denoted by Distn(G). Note that

the space Dist(G) is the direct union of all Distn(G).

Given δ ∈ Dist(G), we call δ(1) the constant term of δ. The evaluation map Dist(G) → K

which assigns to each distribution its constant term is a linear map, the kernel of which is

given by all distributions with vanishing constant term. This yields a decomposition of Dist(G)

into a direct sum K ⊕ Dist+(G), where Dist+(G) is the kernel of our evaluation map. This

decomposition is compatible with the filtration of Dist(G) given by the subspaces Distn(G) in

the sense that Distn(G) = K ⊕ Dist+n (G) with Dist+n (G) being the space of all distributions of

degree less than or equal to n with vanishing constant term.

We can now make use of the coalgebra structure on K[G] to endow the K-space Dist(G)

with the structure of an associative (but not necessarily commutative) algebra over K as follows.

Given two distributions δ and γ of G, we define

δ · γ = ∆∗ ◦ (δ ⊗ γ) ◦ µ∗

where ∆: K ⊗K → K is the canonical isomorphism given by mapping x ⊗ y to xy. It is easy

to check that Dist(G) is an algebra with respect to this multiplication. Note that the unit of

Dist(G) is precisely ǫ∗.

Definition 1.3.4. Let G be a group scheme. The algebra Dist(G) is called the algebra of distri-

butions on G.

The space Dist+1 (G) has a special meaning. By definition, it is the space of all linear maps

K[G] → K such that I2 is mapped to 0. Moreover, we have an exact sequence of K-spaces

0 → Ie → K[G] → K → 0,
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which yields an isomorphism K[G] ∼= K ⊕ I of vector spaces over K. The K-part of this

decomposition is spanned by 1, therefore any distribution with vanishing constant term can be

interpreted as a linear map I → K. If δ ∈ Dist+1 (G), then δ vanishes on I2. In particular, we

may identify δ with an element of the dual space (I/I2)∗. As any element of the latter space

can be extended to a distribution K[G] → K with vanishing constant term by using the direct

sum decomposition above, we obtain an isomorphism from Dist+1 to (I/I2)∗. The latter space

is precisely the tangent space of G at e in the classical sense (Mumford’s “Red Book” contains

an exposition of the different equivalent formulations of the tangent space, see [Mum99][Section

3.4, Theorem 3]).

We can use the same observation to obtain a decomposition of the tensor product K[G] ⊗

K[G] ∼= (K ⊗K)⊕ (K ⊗ I)⊕ (I ⊗K)⊕ (I ⊗ I). Given f ∈ I we can therefore find λi ∈ K and

fj ∈ I such that

µ∗(f) = λ1(1⊗ 1) + λ2 ⊗ f2 + f3 ⊗ λ3 + f4 ⊗ f5.

Then (ǫ∗ ⊗ id)(µ∗(f)) = f implies

f = λ1 + λ3f3,

which forces λ1 = 0 as f − λ3f3 ∈ I and thus λ3 = 1, i.e. f = f3. Similarly, (id⊗ǫ∗)(µ∗(f)) = f

implies λ2 = 1 and f = f2, hence

µ∗(f) ∈ f ⊗ 1 + 1⊗ f + I ⊗ I.

We can use this formula together with the fact that µ∗ is a morphism of K-algebras to obtain

µ∗(Ik) ∈

k
∑

i=0

Ii ⊗ Ik−i.

In particular, the product of δ ∈ Distn(G) and γ ∈ Distm(G) lies in Distn+m(G). We can even

refine this to get

µ∗(f1 . . . fk) ∈

k
∏

i=1

(fi ⊗ 1 + 1⊗ fi) +

k
∑

i=1

Ii ⊗ Ik+1−i.

If we now apply δ⊗γ to a product µ∗(f1 . . . fn+m), the sum
∑n+m
i=1 Ii⊗Ik+1−i vanishes as either

i < n and thus γ(Ik+1−i) = 0 or i ≥ n whence δ(Ii) = 0. A similar observation applied to

the expansion of the product
∏n+m
i=1 (fi ⊗ 1 + 1 ⊗ fi) yields that the only nonvanishing terms

are those of the form fJ ⊗ fJc where J ⊂ {1, . . . , n+m} ranges over all subsets consisting of n

elements, Jc denotes its complement and the element fJ (resp. fJc) denotes the product of all

all fj with j ∈ J (resp. j ∈ Jc). The same discussion applies to γ ⊗ δ, with the only difference

being that the nonvanishing terms are of the form fJc ⊗ fJ . If we now consider the commutator

[δ, γ] = δ ⊗ γ − γ ⊗ δ, then

[δ, γ](f1 . . . fn+m) =
∑

J

δ(fJ)γ(fJc)−
∑

J

γ(fJc)δ(fJ ) = 0

and hence [δ, γ] ∈ Distn+m−1. This implies that the tangent space Dist+1 (G) of G at e is a Lie

algebra with respect to the commutator bracket.
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Definition 1.3.5. Let G be a group scheme over K. The K-space Dist+1 (G) together with the

commutator bracket is called the Lie algebra of G and will be denoted by Lie(G) or g.

Example 1.3.6. Consider the additive group Ga over a field K of characteristic 0. The coordinate

ring of Ga is given by the polynomial ringK[t] in one indeterminate. The augmentation ǫ∗ simply

maps t to 0 and the comultiplication µ∗ maps t to t⊗ 1+ 1⊗ t. Then the space Dist(G) consists

of all linear maps K[G] → K with δ(tk) = 0 for all but finitely many k. Hence the maps δn:

K[t] → K with δn(t
n) = 1 and δn(t

k) = 0 for all k 6= n constitute a basis of Dist(G). Moreover,

(δnδm)(tk) = δn ⊗ δm(µ∗(t)k)

= δn ⊗ δm((t⊗ 1 + 1⊗ t)k)

=

k
∑

i=0

(

k

i

)

δn(t
i)⊗ δm(tk−i)

shows that (δnδm)(tk) = 0 if k 6= n + m and (δnδm)(tn+m) =
(

n+m
n

)

. This implies δnδm =
(

n+m
n

)

δn+m. In particular, the algebra Dist(G) is commutative and the map Dist(G) → K[t]

given by δn 7→ tn

n! is an isomorphism of K-algebras (recall that we assumed char(K) = 0 so

dividing by n! is possible). The Lie algebra ga = Dist+1 (Ga) is given by the dual space of

(t)/(t2), which is one dimensional and isomorphic to K.

In the above example, the algebra Dist(Ga) coincides with the universal enveloping algebra

of ga = Lie(Ga). This is wrong in general (see [Jan87][7.10]), however we have the following

result:

Proposition 1.3.7. If K is a field of characteristic 0 and G is an algebraic group over K with

Lie algebra g, then there is an isomorphism U(g) → Dist(G).

Proof. See [DG80][II, §6, Section 1, “Cartier’s Theorem”].

We can use this result to obtain representations of the Lie algebra g from representations of

the algebraic group G. If M is a G-module with comodule map ρ∗: M → M ⊗K[G] and δ is a

distribution of G, we define

δ ·m = id⊗δ(ρ∗(m)).

It is easy to check that this yields a Dist(G)-module structure on M . Since any morphism

f : M → N of G-modules is also a morphism of Dist(G)-modules with respect to this induced

structure, we get an exact functor from the category of G-modules to the category of Dist(G)-

modules. As Dist(G) ∼= U(g), the latter category is actually the same as the category of g-

modules, thus we have constructed a functor from the category of G-modules to the category of

g-modules.

Assume from now on that the characteristic of the base field K is equal to 0 and let G be

an algebraic group over K with Lie algebra g. We want to study properties of a G-module M

which are preserved when passing to the Lie algebra g. First of all, the local finiteness of M as

a G-module immediately carries over to M as a g-module. Moreover, any G-submodule of M is

certainly a g-submodule ofM and as far as algebraic groups over a general field K are concerned,

the converse is true as well provided that G is connected.
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Lemma 1.3.8. If G is a connected algebraic group over a field K of characteristic 0 and M is

a G-module, then a subspace N of M is a G-submodule of M if and only if it is a g-submodule.

Proof. The proof of this result can be found in Jantzen [Jan87][Lemma 7.15]. In fact, the result

proven there is slightly more general. This result is only a special case if one takes into account

that algebraic groups in characteristic 0 are always reduced and hence integral if and only if they

are connected.

If we assume our groups to be connected, then we can even show that our functor from

G-modules to g-modules is actually fully faithful :

Lemma 1.3.9. With the assumptions as in the previous lemma one has

HomG(M,N) ∼= Homg(M,N)

for any two G-modules M , N .

Proof. See Jantzen [Jan87][Lemma 7.16].

This lemma has an interesting consequence regarding fixed points. SupposeM is a G-module

with comodule map ρ∗ andm ∈M is a fixed point of theG-action onM . Then ρ∗(m) = m⊗1 and

the action of anyX ∈ g onm is given byXm = (id⊗X)(ρ∗(m)) = X(1)m. AsX ∈ g = Dist+1 (G)

is a distribution with vanishing constant term, we have X(1) = 0 and hence Xm = 0. This

implies that m is a fixed point of M under the associated g-action, hence passing to the g-

module structure preserves fixed points, i.e. MG ⊆ Mg. In particular, passing from G-modules

to g-modules maps trivial modules to trivial modules. An immediate consequence of this is that

the fixed point sets are actually equal, since

MG ∼= HomG(Ktr,M) ∼= Homg(Ktr,M) ∼=Mg.

Summing up, we have the following corollary.

Corollary 1.3.10. Suppose K is a field of characteristic 0 and M is a module of a connected

algebraic group G over K with Lie algebra g. Then MG =Mg.

We now turn to a slightly different topic. Suppose ϕ: G → H is a morphism of group

schemes over K. Then its dual morphism ϕ∗: K[H] → K[G] preserves the augmentation ǫ∗, i.e.

ǫ∗H = ǫ∗G ◦ ϕ∗. This implies that (ϕ∗)−1(IG) = IH where IG and IH are the augmentation ideals

of K[G] and K[H] respectively. In particular, ϕ∗(In+1
H ) ⊂ In+1

G , hence ϕ induces a linear map

K[H]/In+1
H → K[G]/In+1

G . If we transpose this map we get a linear map Distn(G) → Distn(H)

which in turn yields a linear map Dist(G) → Dist(H). This map will be denoted by dϕ and will

be called the differential of ϕ. Note that dϕ maps Dist+n (G) to Dist+n (H), hence gives rise to a

linear map g → h, which, by abuse of notation, will also be denoted by dϕ.

If ϕ: G → H has an injective dual morphism ϕ∗, then (ϕ∗)−1(IG) = IH implies that the

resulting map K[H]/IH → K[G]/IG is injective, thus the dual morphism dϕ: g → h is onto.

Using this observation, we can prove the following lemma.

Lemma 1.3.11. Suppose N is a normal subgroup of an algebraic K group G. Then the Lie

algebra n = Lie(N) is an ideal of g = Lie(G). If the characteristic of K is 0 and H = G/N is



26 Unipotent Algebraic Groups

the quotient of G by N then g/n ∼= h, where the isomorphism is induced by the differential of the

projection π: G→ H.

Proof. We will only sketch a proof. In general, over a field of characteristic 0, the dimension

of any algebraic group is equal to the dimension of its Lie algebra (this follows from the fact

that algebraic groups in characteristic 0 are smooth, see Waterhouse [Wat79][Section 11.6 and

12.2]). Moreover, one can show that in the situation of the lemma dim(G) = dim(N) + dim(H)

(one reduces to the case of an algebraically closed K and uses [Bor91][Chapter I, Corollary 1.4]),

hence in particular dim g = dim n+ dim h.

As π is a quotient map, its dual morphism π∗ is injective and hence dπ: g → h is onto. The

assertion now follows if we prove that n ⊂ ker(dπ), as the dimensions of these two spaces are

equal. If one uses the interpretation of the Lie algebra in terms of derivations (see Waterhouse

[Wat79][Section 12.2]), the differential dπ maps X ∈ g = DerK(K[G],K) to X ◦ π∗. As N is

defined by the ideal I of K[G] generated by π∗(IH), a derivation K[N ] → K is nothing but

a derivation K[G] → K vanishing on I. But if X is any such derivation, dπ(X)(IH) = (X ◦

π∗)(IH) ⊂ X(I) = 0, hence dπ(X) vanishes on IH as well as on K · 1 (since it is a K-derivation),

and thus on all of K[N ] ∼= K ⊕ IH , which implies X ∈ ker(dπ), as claimed. Moreover, as the

kernel of a morphism of Lie algebras is always an ideal, so is n.



Chapter 2

Induced Representations

This chapter is essentially a brief summary of [Jan87], tailored to fit the needs of this work.

It aims to provide the basic results required for a more in-depth study of representations of

algebraic groups and introduces the key results necessary for the techniques deployed in the final

chapter.

2.1 Restriction and Induction

We start with a slightly more general situation. Suppose ϕ: H → G is a morphism of group

schemes over a field K and let M be a G-module with associated structure morphism ρ: G →

Gl(M). Then the morphism of group valued functors ρ ◦ ϕ: H → Gl(M) gives rise to an H-

module structure on M . This is called the restricted H-module structure of M . Note that any

morphism of G-modules M → N is also a morphism with respect to the restricted H-module

structure, so we obtain an exact functor from the category of G-modules to the category of

H-modules, called the restriction functor induced by ϕ. In terms of the comodule structure of

M , this can be expressed by saying that the comodule map of M as an H-module is given by

composing the comodule map ρ∗: M →M ⊗K[G] with id⊗ϕ∗: M ⊗K[G] →M ⊗K[H].

In the special case of a closed subgroup scheme H of G, we call the restriction along the

canonical inclusion i: H → G the restriction functor and denote it by resGH . For notational

convenience, we shall often simply write M for resGHM , as long as no confusion is likely to arise

from doing so.

Lemma 2.1.1. Let H and H ′ be closed subgroup schemes of a K-group scheme G and suppose

H ′ normalises H. Then for any G-module M , MH is an H ′ submodule of M .

Proof. Since H ′ normalises H, we may regard K[H] as an H ′ module via the conjugation action.

Then an explicit computation shows that the comodule map ρ∗: M →M ⊗K[H] as well as the

map m 7→ ρ∗(m) −m ⊗ 1 are morphisms of H ′-modules. The kernel of the latter map is just

MH , hence the assertion clearly follows.

As we have seen, it is quite easy to obtain modules of a subgroup from those of the whole

group and it seems to be natural to ask whether one can also obtain modules of the whole group
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from those of a (closed) subgroup. As it turn out, this question can be answered affirmatively,

however the necessary construction is slightly more involved.

Suppose H is a closed subgroup of a K-group scheme G and let M be an H-module. By

regarding K[G] as an H-module via the restriction of the right regular representation of G on

K[G] to H, we get an H-module structure on M ⊗K[G]. Similarly, M ⊗K[G] has a G-module

structure given by regarding M as a trivial G-module and K[G] as a G-module via the left

regular representation. These two structures are compatible in the sense that they give rise to a

(G×H)-module structure on M ⊗K[G].

By identifying G and H with subgroups of G × H and applying Lemma 2.1.1 above, the

fixed point module (M ⊗ K[G])H is a G-submodule of M ⊗ K[G], which will be called the

induced module of M and denoted by indGH(M). It is easy to see that this defines a functor

indGH : {H-modules} → {G-modules}, which will be called the induction functor.

At first, this construction seems rather arbitrary, however there is a different interpretation

of indGHM in terms of natural transformations, detailed below, which also sheds some light on

the similarity to the corresponding construction for Lie groups.

First of all, for any K-algebra A, we have a natural isomorphism of A-modules

M ⊗K[G]⊗A ∼= (M ⊗A)⊗A (K[G]⊗A).

On the right hand side, the A-algebra K[G]⊗A is precisely the affine coordinate ring of the base

extension GA of G to A and the tensor product of (M ⊗ A) with (K[G] ⊗ A) over A is, after

applying Yoneda’s Lemma, isomorphic to Nat(GA, (M ⊗ A)a) as an A-module. Since the left

hand side is equal to (M ⊗K[G])a(A) we thus get an isomorphism of A-modules

(M ⊗K[G])a(A) ∼= Nat(GA, (M ⊗A)a).

This shows that (M ⊗K[G])a is naturally isomorphic (as a K-group functor) to

A 7→ Nat(GA, (M ⊗A)a),

which is precisely the associated functor of theK-module Nat(G,Ma). We can endow this functor

with a (G×H)-module structure as follows. For (g, h) ∈ (G×H)(A) and f ∈ Nat(GA, (M⊗A)a)

we define for all x ∈ G(A′) and all A-algebras A′

((g, h) · f)(x) = hf(g−1xh).

Using these observations, we can identify the induced module indGH(M) of an H-module M with

a submodule of the natural transformations G→Ma.

Lemma 2.1.2. Let G, H and M be as above. Then the canonical isomorphism M ⊗K[G] →

Nat(G,Ma) is a morphism of G × H-modules. Under this isomorphism, indGH(M) corresponds

to the submodule of Nat(G,Ma) consisting of all f : G→Ma satisfying

f(gh) = h−1f(g)

for all g ∈ G(A), h ∈ H(A) and all K-algebras A.

Proof. Given a K-algebra A and an element x of (M ⊗ K[G])a(A), we denote the associated
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natural transformation GA → (M ⊗ A)a by fx. To prove the first assertion, we need to show

that for any (g, h) ∈ (G×H)(A), any A-algebra A′ and any y ∈ GA(A
′)

f(g,h)x(y) = ((g, h)fx)(y).

As we already know that (M ⊗K[G])a ∼= Nat(G,Ma)a as K-group functors, there is no loss of

generality in assuming x to be of the form m⊗ f ⊗ 1 for some m ∈M and some f ∈ K[G]. Then

f(g,h)x(y) = (idM⊗A⊗y)((g, h)x)

= (idM⊗A⊗y)(hm⊗ 1⊗ (g, h)f)

= hm⊗ 1⊗ ((g, h)f)(y)

= hm⊗ 1⊗ f(g−1yh)

= ((g, h)fx)(y)

which proves that we have an isomorphism of (G×H)-modules. In particular, the H invariant

elements ofM⊗K[G] coincide with those of Nat(G,Ma). But f ∈ Nat(G,Ma) is a fixed point of

the action of H if and only if for all K-algebras A, all h ∈ H(A) and all g ∈ G(A) the equation

((e, h) · f)(g) = f(g) is satisfied. As ((e, h) · f)(g) = h · f(gh), we obtain

(M ⊗K[G])H ∼= {f ∈ Nat(G,Ma) | f(gh) = h−1f(g)}

as claimed.

There is an important observation one should make at this point: The computation we made

in the proof above to show that M ⊗K[G] ∼= Nat(G,Ma) as (G×H)-modules is actually valid in

a more general context. Given any G-module M , we can identify the tensor product M ⊗K[G]

as a G-module with Nat(G,Ma), without regarding M as a trivial G-module. However, we need

to choose a different G-module structure on Nat(G,Ma). More precisely, given x = m ⊗ f ∈

M ⊗K[G] with associated natural transformation fx and elements g, g′ ∈ G(A) we have

fgx(g
′) = (id⊗g′)(gx)

= (id⊗g′)(gm⊗ gf)

= gm⊗ (gf)(g′)

= g((gfx)(g
′)).

So if we define a G-module structure on Nat(G,Ma) by (gfx)(g
′) = (g ⊗ 1)((gfx)(g

′)), we again

obtain an isomorphism of G-modules M ⊗K[G] → Nat(G,Ma).

Lemma 2.1.3. Let M be a G-module. Then there is an isomorphism of G-modules

M ⊗K[G] →Mtr ⊗K[G].

Proof. We use the identification of both modules with Nat(G,Ma). Consider the linear endo-

morphism φ: Nat(G,Ma) → Nat(G,Ma) given by φ(f)(g) = gf(g). Then φ is an isomorphism

of K-space with inverse φ̃ defined by φ̃(f)(g) = g−1f(g). Moreover, φ is actually G-equivariant
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since

(φ(gf))(g′) = g′f(g−1g′)

= g(g−1g′)f(g−1g′)

= gφ(f)(g−1g′)

= gφ(gf)(g′).

A similar computation shows that φ̃ is G-equivariant as well, hence the assertion of the lemma

follows.

2.2 Frobenius Reciprocity

We will now use the interpretation of indGH in terms of natural transformations to prove funda-

mental results on induced modules. The most important of these is the following proposition,

which is commonly referred to as Frobenius reciprocity.

Proposition 2.2.1. Let H be a closed subgroup scheme of a K-group scheme G. Then the

induction functor indGH is left exact and right adjoint to resGH , i.e. for all G-modules N and all

H-modules M there is a (natural) isomorphism

HomG(N, ind
G
HM) → HomH(resGH N,M).

Proof. Let M be an H-module and consider the K-linear map ǫM : M ⊗ K[G] → M given by

ǫM = idM ⊗ ǫ∗. If we identify M ⊗K[G] with Nat(G,Ma) then, ǫ
∗: Nat(G,Ma) → M is given

by ǫM (f) = f(e). In particular, given a K-algebra A, h ∈ H(A) and f ∈ indGHM we have

ǫM (hf) = (hf)(e) = f(h−1) = hf(e) = hǫM (f)

This shows that ǫM : indGHM →M is actually a morphism of H-modules.

As morphism of G-modules ϕ: N → indGHM is also a morphism of H-modules with respect to

the respective restricted actions, composing ϕ with ǫM yields a morphism of H-modules N →M .

In particular, we obtain a map HomG(N, ind
G
HM) → HomH(N,M) by mapping ϕ to ǫM ◦ ϕ.

To show that map is an isomorphism, we construct an inverse as follows. For an H-module

homomorphism ψ: N → M , we define a map ψ̃: N → Nat(G,Ma) by mapping n ∈ N to the

natural transformation ψ̃(n): G → Ma with ψ̃(n)(x) = (ψ ⊗ id)(x−1(n ⊗ 1)) for all x ∈ G(A)

and all K-algebras A. Then

ψ̃(n)(gh) = (ψ ⊗ id)((gh)−1(n⊗ 1))

= h−1(ψ ⊗ id)(g−1(n⊗ 1))

= h−1ψ̃(n)(g)

shows that ψ̃: N → Nat(Ga,Ma)
H ∼= indGHM . It is now straightforward to check that ϕ 7→ ǫM ◦ϕ

and ψ 7→ ψ̄ are inverse homomorphisms.

In the language of category theory, the above proposition simply states that the induction
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functor indGH is left adjoint to resGH . One can use this fact to immediately deduce several proper-

ties of indGH , the most important for us being the preservation of injective modules : A G-module

I is said to be injective, if for any monomorphism ϕ: A → B of G-modules and any morphism

ψ: A→ I, there is a unique map ψ̂: B → I such that the diagram

A
� ϕ //

ψ

��

B

ψ̂��
I

commutes. It is easy to see that this is in fact equivalent to the exactness of the functor

HomG(−, I) (cf. [HS97][Section I, Theorem 8.4]).

Corollary 2.2.2. For any closed subgroup H of G, the functor indGH preserves injective modules.

Proof. By Frobenius reciprocity, we have a natural isomorphism

ǫ: HomG(N, ind
G
HM) → HomH(resGH N,M)

Now naturality asserts that for any morphism of G-modules M → M ′ and any morphism of

H-modules N ′ → N , the diagram

HomG(N, ind
G
HM) //

ǫ

��

HomG(N
′, indGHM

′)

ǫ

��
HomH(resGH N,M) // HomH(resGH N

′,M ′)

commutes, i.e. ǫ(indGH β ◦ ϕ ◦ α) = β ◦ ǫ(ϕ) ◦ resGH α of all ϕ ∈ HomG(N, ind
G
HM). Similarly, by

considering the same diagram for ǫ−1, one obtains the identity ǫ−1(β ◦ ψ ◦ resGH α) = indGH β ◦

ǫ−1(ψ) ◦ α for all ψ ∈ HomH(resGH N,M).

Suppose I is an injective H-module and consider the following diagram of G-modules.

indGH I

N N ′

ϕ

OO

?
α

oo

By applying ǫ to ϕ we obtain

I

resGH N

99

resGH N
′

ǫ(ϕ)

OO

?

resG
H
α

oo

Therefore, because of the injectivity of I, there exists a unique morphism ϕ̂ ∈ HomG(N, ind
G
H I)

such that

ǫ(ϕ) = ǫ(ϕ̂) ◦ resGH α.
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Applying ǫ−1 to this equation and using the identity obtained above (with β = id), we get

ϕ = ϕ̂ ◦ α, which proves that indGH I is an injective G-module.

Remark: This proof works in just the same way for adjoint functors in general, provided that

the left adjoint preserves monomorphisms, as is shown in [HS97][Proposition 10.2].

We can apply this observation to the special case H = 1. An H-module is then nothing other

than a K-vector space and morphisms of H-modules are just the usual linear maps. Moreover,

the induced module indG1 M is given by the tensor product M ⊗ K[G] with M regarded as a

trivial G-module. In particular, since any K-space is certainly injective and induction preserves

injective modules,M⊗K[G] is an injective G-module for any trivial G-moduleM . This assertion

is actually valid without the assumption of triviality on M , since we know by Lemma 2.1.3 that

M ⊗K[G] ∼=Mtr ⊗K[G].

Corollary 2.2.3. For any G-module M , the module M ⊗K[G] is injective.

We can now show that any G-module M can be embedded into an injective G-module.

Lemma 2.2.4. Let M be a G-module. Then there exists an injective morphism of G-modules

M →M ⊗K[G].

Proof. Consider the comodule map ρ∗: M → M ⊗K[G]. Then for g ∈ G(A) and m ∈ M with

ρ∗(m) =
∑

mi ⊗ fi

ρ∗ ⊗ idA(g(m⊗ 1)) = ρ∗ ⊗ idA((id⊗g)(ρ
∗(m))

= (id⊗g)((ρ∗ ⊗ id)(ρ∗(m)))

= (id⊗g)((id⊗µ∗)(ρ∗(m)))

=
∑

mi ⊗ (id⊗g)(µ∗(fi)).

Since (id⊗g)(µ∗(fi)) is nothing else but gfi with respect to the right regular representation, we

get ρ∗(g(m)) = gρ∗(m) where we regard M ⊗K[G] as a G-module with respect to the trivial G-

module structure on M and the right regular representation on K[G], hence ρ∗ can be regarded

as a morphism of G-modules M → Mtr ⊗ K[G]. As the right hand side of this equation is

isomorphic to M ⊗ K[G] and ρ∗ is injective (as a consequence of (id⊗ǫ∗)(ρ∗(m)) = m), the

assertion of the lemma follows.

In particular, this lemma shows that we can choose very special types of injective modules to

embed a given module in. This fact will become important later on, when we want to compare

different cohomology groups associated with a G-module M .



Chapter 3

Cohomology of Arithmetic

Subgroups of Unipotent Groups

3.1 Cohomology in General

The previous chapter established the existence of injective presentations for modules of group

schemes. The reader familiar with homological algebra will immediately realise the important

implication behind this fact, as the existence of such presentations is an essential requirement for

the construction of right derived functors. We will use this quite general technique to introduce

the concept of cohomology for the various types of representations we’re going to deal with.

Suppose A is an abelian category with enough injectives (i.e. any object of A admits a

monomorphism into an injective object) and F is a functor from A to the category of abelian

groups. The i-th right derived functor RiF of F is defined as follows. For an object A of A, one

chooses an injective resolution

0 → A→ I0 → I1 → . . .→ Ii → . . . ,

and applies F to the resolution In. This yields a chain complex

F (I0) → F (I1) → . . .→ F (Ii) → . . .

and RiF (A) is defined to be the i-th homology of this chain complex, i.e.

RiF (A) = ker(Fdi)/ im(Fdi−1),

where di: Ii → Ii+1 and d−1 = 0. One can show that this construction does not depend on the

injective resolution chosen for A (see [Wei94][Lemma 2.4.1 and Section 2.5.1]). Moreover, if F is

left exact, then R0F is always naturally isomorphic to F itself.

Example 3.1.1. Given an arbitrary ring R, the category of R-modules is an abelian category with

enough injectives (see [HS97][Section I, Proposition 8.3]). In addition, for any R-module M , the

functor Hom(M,−) is left exact (cf. [HS97][Section I, Theorem 2.1]). The right derived functors

of Hom(M,−) are called the Ext-functors and will be denoted by ExtR(M,−).
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Using this general construction, we can easily introduce the notion of cohomology in all the

settings we are interested in. Note that all of these cases fit into the general picture of deriving

a fixed point functor.

Suppose G is an abstract group. A G-module is an abelian group M together with a group

homomorphism ρ: G → Aut(M). Any such automorphism clearly defines an action of G on M

and we will usually denote ρ(g)(m) by gm for convenience. Note that any abelian group can

be regarded as a trivial G-module via the trivial homomorphism G→ Aut(M) which maps any

g ∈ G to the identity on M . One usually denotes M with this trivial G-module structure by

Mtr.

Given G-modules M and N , a morphism of G-modules (or a G-equivariant morphism) is

simply a homomorphism of groups f : M → N such that f(gm) = gf(m) for all g ∈ G and

all m ∈ M . We will usually denote the group structure on G multiplicatively, while using an

additive notion for the group structure on M .

One can almost effortlessly verify that the category of all G-modules, together with the G-

equivariant morphisms defined above, constitutes an abelian category. However, the definition of

cohomology groups usually requires injective resolutions, so we need to show that the category of

all G-modules actually has enough injectives. Consider the group ring Z[G], given by the direct

product
∑

g∈G Z together with the multiplication

(
∑

g∈G

λgg) · (
∑

h∈G

λ′hh) =
∑

g,h∈G

λgλ
′
hgh.

It is then easy to see that a G-module is actually nothing but a Z[G]-module and that the G-

equivariant homomorphisms are just the homomorphisms of Z[G]-modules (see [HS97][Section

VI, Proposition 1.1] as well as the discussion below the proof). In particular, the category of

G-modules is naturally isomorphic to the category of modules over Z[G] and thus has enough

injectives.

Given a G-module M , a fixed point of G in M is an element m of M such that gm = m for

all g ∈ G. Any such element determines a G-equivariant homomorphism Ztr → M by mapping

1 to m and conversely, any homomorphism Ztr →M determines a fixed point of M given by the

image of 1. We can therefore identify the subgroup of all fixed points of G in M with the group

HomG(Ztr,M).

Definition 3.1.2. Let G be an abstract group. For a G-module M , the i-th cohomology group

of M is defined as

Hi(G,M) = RiHomG(Ztr,−)(M).

Note that HomG(Z,−) is a left exact functor and thus H0(G,M) =MG where MG denotes

the subgroup of fixed points of M .

It is often useful to have more concrete interpretations for certain cohomology groups. A

particularly useful interpretation is available for H1 and identifies H1(G,M) as a quotient of

the group of derivations of M . In this setting, a derivation from G to M is a map d: G → M

such that d(gh) = d(g) + gd(h). The set of all derivations from G to M has a natural structure

as an abelian group and will be denoted by Der(G,M). Note that any element m ∈ M defines

a derivation dm via dm(g) = gm −m. Derivations of this form will be called inner derivations.

They form a subgroup of Der(G,M), denoted by Ider(G,M).
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Proposition 3.1.3. Given a group G and a G-module M , there is a natural isomorphism

H1(G,M) → Der(G,M)/ Ider(G,M)

Proof. See [HS97][Section IV, Corollary 5.2].

For Lie algebras, we can simply adapt the steps above. If g is a Lie-algebra over some field K,

we know that the category of g-modules is precisely the category of U(g)-modules, hence is again

abelian with enough injectives. Moreover, we know that the fixed point module of a g-module

M can be identified with the K-space of all g-homomorphisms Ktr → M . This motivates the

following definition.

Definition 3.1.4. For a Lie-algebra g over some field K, the i-th cohomology group of a g-module

M is defined as

Hi(g,M) = RiHomg(Ktr,M)

Similar to group cohomology, we can again interpret H1(g,M) in terms of derivations. In this

case, a derivation from g to M is a K-linear map d: g →M such that d([x, y]) = xd(y)− yd(x).

The set of all such maps is a K-vector space in a natural way and will be denoted by Der(g,M).

Moreover, for any m ∈ M , we can define a derivation dm by dm(x) = xm. Derivations of

this form are again called inner derivations. The subspace of Der(g,M) formed by all inner

derivations is denoted by Ider(g,M).

Proposition 3.1.5. If g is a Lie algebra over a field K and M is a g-module, then H1(g,M) ∼=

Der(g,M)/ Ider(g,M).

Proof. See [HS97][Section VII, Proposition 2.2].

Having defined these notions, we briefly step back to consider a more general situation.

When we introduced the notion of cohomology for groups and Lie algebras above, we basically

dealt with a category of modules over some ring R (in one case R = Z[G] was given by the

group ring, in the other case R = U(g) was given by the universal enveloping algebra) and we

derived the fixed point functor by using its interpretation as a homomorphism functor of the form

HomR(M,−). In particular, these cohomology functors are special instances of the Ext-functors

ExtiR(M,−) introduced above. As it turns out, there is actually another way of computing the

group ExtiR(M,N) by using a projective resolution of M instead of an injective resolution of N .

By a projective resolution of M , we mean an exact sequence

. . .→ P i → . . .→ P 1 → P 0 →M

with each P i projective over R. One can then compute ExtiR(M,N) by applying Hom(−, N) to

this resolution and taking the i-th homology of the resulting chain complex (cf. [HS97][Section IV,

Proposition 8.1]). One usually expresses this fact by saying that Ext is balanced. In particular,

we could have defined the cohomology functors Hi(G,−) and Hi(g,−) above by using projective

resolutions of Ztr and Ktr respectively, which is slightly more useful as one can use one fixed

resolution regardless of the module one considers.

We now want to address the question under which conditions Hi(G,−) and Hi(g,−) vanish

for sufficiently large i. We can actually answer this question in a more general setting by using



36 Cohomology of Arithmetic Subgroups of Unipotent Groups

our above interpretations. If we consider the functors ExtiR(M,−) for a module M over some

ring R, we can construct the groups ExtiR(M,N) from a projective resolution P i of M . If this

resolution is actually finite, i.e. Pn = 0 for some n (and hence also for all larger indices), then

clearly ExtiR(M,N) = 0 for all i > n. The minimal length of a finite resolution is called the

projective dimension of M (over R), which we will denote by pdR(M).

Definition 3.1.6. Let G be an abstract group. The cohomological dimension of G, denoted by

cdG, is defined as the projective dimension of Ztr as a G-module (and hence as a Z[G]-module).

Similarly, for a Lie algebra g, we define the cohomological dimension cd g as the projective

dimension of Ktr as a g-module.

This suggests that if we want to find conditions for our cohomology groups to vanish, we only

need to find a way to determine if certain modules permit a finite projective resultion.

Example 3.1.7. Let Γ = Z be the additive group of integers. We claim that the cohomological

dimension of Γ is equal to 1. To prove our claim, we consider the the group ring Z[Γ], which is

isomorphic to Z[t, t−1] = Z[x, y]/(xy − 1). The trivial Γ-module structure on Z corresponds to

the module structure induced by the ring homomorphism π: Z[t, t−1] → Z mapping t to 1. In

particular, we get an exact sequence

0 → IΓ → Z[Γ] → Z → 0,

where IG = kerπ is called the augmentation ideal of Γ. Thus, in order to show cdΓ = 1 it

is sufficient to show that IΓ is projective. As the group Γ is a cyclic group generated by 1,

the augmentation ideal, as a Z[Γ]-module is generated by t − 1 (see [HS97][Section VI, Lemma

1.2]) and therefore a principal ideal. Since Z[Γ] is an integral domain, mapping f to f · (t − 1)

yields an isomorphism Z[Γ] → IΓ of Z[Γ]-modules, hence the augmentation ideal is free and thus

projective.

Example 3.1.8. Similarly, the one dimensional trivial Lie algebra g = K has cohomological

dimension 1. This follows directly from the fact that U(g) ∼= K[t] is a principal ideal domain,

since K as a trivial g-module corresponds to the U(g)-module structure on K induced by the

map π: U(g) ∼= K[t] → K mapping t to 0 and the corresponding exact sequence

0 → kerπ → K[t] → K → 0

is a projective resolution for the same reason as in the above example.

With group schemes, the definition of cohomology follows the same basic idea. If G is a

group scheme over a field K, then Lemma 2.2.4 shows that the category of G-modules has

enough injectives. In particular, we can again derive the fixed point functor, just as we did

above.

Definition 3.1.9. Let G be a group scheme over a field K and M be a G-module. Then the i-th

cohomology group of M is defined as

Hi(G,M) = (RiHomG(Ktr,−))(M).

Having introduced all these notions, the reader familiar with homological algebra (or any

incarnation of “cohomology”) may recall some of the fundamental properties of these cohomology
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functors, such as long exact sequences on the cohomology induced by short exact sequences on

the respective modules. It turns out that all this fits into a more general picture, whose outline

we shall coarsely sketch below. The reader interested in details may find them in Grothendieck’s

Tohoku paper [Gro57][Chapter 2], on which all of the following exposition is based. Another brief

discussion of all the basic definitions and properties can be found in Hartshorne [Har06][III.1].

We first note that all of the cohomology functors considered so far are additive, i.e. they map

a direct sum of modules to the direct sum of the respective cohomology groups. This definition

makes sense for covariant functors between arbitrary abelian categories C and C ′. We may then

consider the cohomology functors Hi as a family of covariant additive functors H = (Hi).

Definition 3.1.10. Let C and C ′ be abelian categories. A δ-functor from C to C ′ is a collection

T = (T i)i≥0 of covariant additive functors T i: C → C ′ together with a morphism δi: T i(A′′) →

T i+1(A′) for each short exact sequence 0 → A′ → A → A′′ → 0 (called the “connecting” or

“boundary” morphism) such that the following properties are satisfied:

1. Given a second short exact sequence 0 → B′ → B → B′′ → 0 and any homomorphism

from the first exact sequence to the second, the connecting morphisms are compatible in the

sense that the diagram

T i(A′′)

��

δ // T i+1(A′)

��
T i(B′′)

δ // T i+1(B′)

commutes.

2. The exact sequence 0 → A′ → A→ A′′ → 0 gives rise to a long exact sequence

0 → T 0(A′) → T 0(A) → T . . .→ T 0(A′′) → T 1(A′) . . .

. . .→ T i(A′) → T i(A) → T i(A′′) → T i+1(A′) → . . .

In particular, all of our previously defined cohomology functors form δ-functors from the

respective category of modules to the category of abelian groups. Given two δ-functors T and

T ′, the notion of a morphism of δ-functors is quite natural. It is simply a family of natural

transformations T i → T ′i compatible with the boundary morphism for each short exact sequence,

i.e. given an exact sequence

0 → A′ → A→ A′′ → 0

one has a commutating diagram

T i(A′′)

��

δ // T i+1(A′)

��
T ′i(B′′)

δ // T ′i+1(B′)

for all i.

Definition 3.1.11. A δ-functor T : C → C ′ is said to be universal if for any other δ-functor
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T ′: C → C ′ and any natural transformation η: T 0 → T ′0 there exists a unique morphism of

δ-functors (ηi): T → T ′ with η0 = η.

Of course, such a property is often rather unpleasant to check, but there is a criterion for

universality which is sufficient most of the time.

Definition 3.1.12. Let T : C → C ′ be an additive functor. The T is said to be effaceable if for

any object A of C, there is a monomorphism i: A→ I, such that T (i) = 0.

The cohomology functors Hi defined above certainly satisfy this property for i > 0. More

precisely, given an injective module I, Hi(I) = 0 and we can embed any module into an injective

module. As it turns out, this is a sufficient condition for the universality of H = (Hi).

Lemma 3.1.13. Let T : C → C ′ is a δ-functor. If T i is effaceable for all i > 0 then T is

universal.

Proof. See [Gro57][Proposition 2.2.1]

3.2 Spectral Sequences for Groups and Lie Algebras

Spectral sequences arise in a number of vastly different settings, two of which will occur in the

sequel. However, since our application of this technical apparatus is of a rather simple nature,

we shall refrain from an overly technical approach to this subject and focus on the properties

and results important to us. The reader interested in the details can find them in various book

on homological algebra, such as [Rot09] and [Wei94].

Let R be a ring. A graded R-module is a family of R-modules (Mn)n∈Z. If d ∈ Z is an

integer, a morphism of graded R-modules ϕ:(Mn) → (Nn) of degree d is a family of morphisms

(ϕn)n∈Z where each ϕn: Mn → Nn+d is a morphism of R-modules. One often denotes the degree

of ϕ by deg(ϕ).

Similarly, one defines bigraded R-modules (Apq)p,q∈Z and their morphisms, where one replaces

the degree with the bidegree, i.e. a morphism ϕ:(Apq) → (Bpq) of bidegree (a, b) is a family of

morphism ϕpq: Apq → Bp+a,q+b.

Note that both graded and bigraded modules together with their respective morphisms form

an abelian category, denoted by (ModR)Z and (ModR)Z×Z respectively.

A differential bigraded module over R is then defined to be a pair (A, d) consisting of a

bigraded R-module A = (Apq) and a morphism of bigraded modules d: A → A with d2 = 0.

This is nothing but a straightforward generalisation of the definition of a chain complex to the

category of bigraded modules, just without any restriction on the degree of d. In particular,

given a differential bigraded module (A, d) one defines its homology to be the bigraded module

H(A, d) with

H(A, d)pq = ker(dpq)/ im(dp−a,q−b),

where (a, b) is the bidegree of d. Similar to the case of chain complexes, d is often called the

differential of A.

Definition 3.2.1. A spectral sequence over R is defined to be a family of differential bigraded

modules (Er, dr) for r ≥ 1, such that the bidegree of dr is (r, 1− r) and H(Er, dr) = Er+1.
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For our applications, the most important aspect of a spectral sequence is its limit term. Let

(Er, dr) be a spectral sequence. Then E2 = H(E1, d1)=Z2/B2 where Z2 = im d1 are the cycles

and B2 = ker d1 are the boundaries. We can now let Z3 be the preimage of im d2 and B3 be the

preimage of ker d2 under the projection Z2 → Z2/B2
∼= E2. In particular, we obtain E3

∼= Z3/B3

and we can continue this way to construct

B2 ⊆ . . . ⊆ Br ⊆ Zr ⊆ . . . ⊆ Z2 ⊆ E1

with Zr/Br ∼= Er. We then define the limit term E∞ by letting E∞
∼= Z∞/B∞ whereB∞ =

⋃

Br
and Z∞ =

⋂

Zr.

In order to make meaningful use of these limit terms, we need to identify them with other

objects of interest:

Definition 3.2.2. Let M = (Mn) be a graded module. A filtration of M is a family (F pM)p∈Z

of submodules F pM of M such that F pM ⊇ F p+1M . Such a filtration is said to be bounded if

for each n there exist integers s and t such that F sM =M and F tM = {0}.

Definition 3.2.3. A spectral sequence (Er, dr) is said to converge to a graded module M if there

exists a bounded filtration (F pM) of M such that Epq∞
∼= F pMp+q/F p−1Mp+q. One denotes this

by Epq2 ⇒p M
n and calls p the filtration degree.

If we employ the common convention of denoting n = p + q, then the above reads Epq∞
∼=

F pMn/F p−1Mn, which is slightly more visually appealing.

Usually, spectral sequences reside in certain quadrants. Most of the time one encounters either

first or third quadrant spectral sequences, depending on whether one is interested in homology

or cohomology.

Definition 3.2.4. A first quadrant (respectively third quadrant) spectral sequence is a spectral

sequence (Er, dr) such that Epqr = 0 whenever p < 0 or q < 0 (respectively p > 0 or q > 0).

Remark: Based on the choices made in this work, a spectral sequence in the sense of our

definition is sometimes called a cohomological spectral sequence. Because of this, our spectral

sequences will usually reside in the first quadrant when considering cohomology (which is a good

thing, as this is the only thing we are interested in) instead of the seemingly more widespread

third quadrant versions (which usually have raised indices and a slightly different degree on the

derivations dr). However, up to a minor change in the notation, all this is just a matter of

personal taste.

Having all these notions at hand, we consider two cases where spectral sequences arise quite

naturally. Both can be obtained as special instances of what is called the Grothendieck spectral

sequence (see [Rot09][Section 10.6]). Since the latter result requires a more technical approach

than the one chosen here, we shall refrain from even sketching a proof and simply state the

special instances which will be required later.

Theorem 3.2.5 (Lyndon-Hochschild-Serre Spectral Sequence for Groups). Let N be a normal

subgroup of a group G. Then for each G-module M there is a first quadrant spectral sequence

with

Hp(G/N,Hq(N,M)) ⇒p H
p+q(G,M).
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Proof. See [Rot09][Theorem 10.52].

Theorem 3.2.6 (Hochschild-Serre Spectral Sequence for Lie algebras). Let n be an ideal of a

Lie algebra g. Then for each g-module M there is a first quadrant spectral sequence with

Hp(g/n, Hq(n,M)) ⇒p H
p+q(g,M).

Proof. See [Wei94][7.5.2].

In general, given a spectral sequence (Er, dr), the more E2-terms vanish, the simpler the

spectral sequence is. In the particular case where Epq2 = 0 for q 6= 0, we say that the spectral

sequence collapses on the p-axis. Similarly, (Er, dr) is said to collapse on the q-axis if Epq2 = 0

for p 6= 0.

Proposition 3.2.7. If (Er, dr) collapses on the p-axis, then E∞ = E2. Moreover, if (Er, dr) is

a first quadrant spectral sequence converging to a graded module M with respect to a filtration

F pM satisfying Fn+1Mn = 0 and F 0Mn =M for all n, then Mn = En,02 .

Proof. For the first assertion, we consider the boundary operator d2: E2 → E2. By assump-

tion, d2 has bidegree (2,−1) and E3 = H(E2, d2). In particular, for q 6= 0, ker dpq2 ⊆ Epq2 = 0,

hence Epq3 = ker dpq2 / im dp−2,q+1
2 = 0. For q = 0, Ep+2,−1

2 = Ep−2,1
2 = 0, so ker dpq2 = Epq and

im dp−2,q+1
2 = 0, whence Epq3 = Epq2 . In particular, E3 = E2 and by proceeding inductively, we

obtain Er = E2 for all r ≥ 2, thus clearly E∞ = E2.

Suppose (Er, dr) is a first quadrant spectral sequence collapsing in the p-axis. If (Er, dr) con-

verges to some M with respect to a filtration as in the proposition, then for fixed n and p ≤ n

we have

0 = Epq2 = Epq∞ = F pMn/F p+1Mn

and hence F pMn = F p+1Mn. In particular, Mn = F 0Mn = . . . = FnMn and as moreover

Fn+1Mn = 0 we get En02 = FnMn/Fn+1Mn = FnMn as claimed.

Remark: The assumption on the filtration is automatically satisfied for first quadrant spectral

sequences, see [Wei94][Example 5.2.6].

3.3 Arithmetic Subgroups

Up to this point we have primarily dealt with the fundamental results necessary to deal with

the technical environment chosen for this work. We have yet to introduce the key objects of

interest: Arithmetic subgroups of algebraic groups over Q. This, along with a basic study of

their properties, is done below. Note that the discussion is once again kept rather brief, as the

study of these subgroups is, in general, quite involved. A much more extensive exposition of the

theory of arithmetic groups can be found in [Bor69] as well as [PR94], on which the following

material is based.

Recall that two subgroups H1, H2 of an abstract group G are said to be commensurable if

their intersection H1 ∩H2 has finite index in both H1 and H2.
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Definition 3.3.1. Let G be an algebraic group defined over the field of rational numbers Q. A

subgroup Γ of G(Q) is called an arithmetic subgroup of G if there exists a closed embedding ρ:

G→ Gln such that ρ(Γ) is commensurable with ρ(G(Q)) ∩Gln(Z).

Commensurability ensures that the notion of an arithmetic subgroup is independent of the

closed embedding of G: Given any other closed embedding ρ′ : G → Glm then ρ′(Q)(Γ) is

commensurable with ρ′(G(Q)) ∩Glm(Z) (this follows from [PR94][Chapter 4, Proposition 4.2]).

More generally one has the following important proposition:

Proposition 3.3.2. Let ϕ : G → H be a morphism of algebraic Q-groups, surjective on the

Q̄-points. If Γ is an arithmetic subgroup of G then ϕ(Q)(Γ) is an arithmetic subgroup of H.

Proof. See [PR94][Theorem 4.1].

The above definition includes another technical detail: An arithmetic subgroup was required

to be contained in the rational points of the algebraic group G. This restriction is sometimes

omitted to obtain a larger class of arithmetic groups (cf. [PR94][p. 173], especially the dis-

cussion following Corollary 2), however this condition is necessary in order to obtain suitable

representations of Γ from those of G.

Lemma 3.3.3. Let Γ be an arithmetic subgroup of an algebraic Q-group G. Then any G-module

M has a natural Γ-module structure.

Proof. Let ρ: G × Ma → Ma denote the action of G on M . Then ρ(Q) is an action of the

abstract group G(Q) on Ma(Q) ∼= M and since Γ ⊆ G(Q) we may restrict this action to obtain

a Γ-module structure on M .

In particular, we obtain an exact functor from the category of G-modules to the category of

Γ-modules. As we are interested in cohomology, it seems natural to ask how the fixed points of

a G-module M relate to the fixed points of the induced Γ-action. First of all, any G-invariant

element of M is Γ-invariant. This follows easily from the way the action of Γ on M is defined.

More precisely, as Γ is a subgroup of the Q-points of G and G(Q) acts trivially on MG, so does

Γ. In general, the inclusion MG ⊆ MΓ can be proper, however there is a coarse criterion for

equality provided by the following lemma.

Lemma 3.3.4. Let G be an algebraic group over a field K of characteristic 0 and Γ ⊆ G(K)

be a subgroup of G(K) which is dense in G i.e. which is not contained in the K-points of any

proper closed subscheme of G. Then MG =MΓ.

Proof. Since Γ ⊂ G(K) = Hom(K[G],K), the kernel of any γ ∈ Γ is a maximal ideal of K[G].

Translating the definition of density into an algebraic statement, we see that Γ is dense if and

only if
⋂

γ∈Γ

ker γ = (0).

Now let mi, i ∈ I, be a basis of M as a K-vector space such that mj , j ∈ J ⊆ I, is a basis for

MΓ and write ρ(mk) =
∑

j∈J mj ⊗ fjk +
∑

i/∈J mi ⊗ fik. Then for k ∈ J we have

mk = γ ·mk = (idM ⊗γ) ◦ ρ(mk)

for all γ ∈ Γ, so γ(fjk) = δjk and γ(fik) = 0. By density we therefore get ρ(mk) = mk ⊗ 1.
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We now specialise to arithmetic subgroups of unipotent groups. Let U be a unipotent alge-

braic group over Q and Γ be an arithmetic subgroup of U . Recall from Theorem 1.2.5 that U

has a filtration by closed subgroups Ui satisfying Ui/Ui+1
∼= Ga. We aim to prove a similar fact

for arithmetic subgroups of U . To do so, we consider Γ as a subgroup of the group of real points

U(R). The latter has the canonical structure of a Lie group with finitely many connected com-

ponents (see [PR94][Chapter 3, Theorem 3.6]) and, by convention, we will always consider the

group of real points as a Lie group. The group Γ embeds into U(R) via the canonical inclusion

U(Q) → U(R) and is in fact a discrete (and hence closed) subgroup of U(R). If we start with

the “simplest” (in the sense of our filtration) unipotent group we have, the additive group Ga,

we thus see that any arithmetic subgroup of Ga is a discrete subgroup of the additive group of

the real numbers R. In this case, we have the following well known result.

Lemma 3.3.5. Any discrete subgroup Γ of a finite dimensional vector space V over the real

numbers R is isomorphic to Zs for some s ≤ dim(V ).

Proof. By replacing V with the R-space spanned by Γ, we may assume that Γ generates V . Let

v1, . . . , vn be a basis of V consisting of elements of Γ and consider the subgroup Γ0 of Γ generated

by v11, . . . , vn. Then each element of Γ/Γ0 has a unique representative v =
∑

λivi ∈ Γ with

0 ≤ λi < 1. As Γ is discrete, the set of such elements must be finite, hence Γ/Γ0 is a finite

group. In particular, since both Γ0 and Γ/Γ0 are finitely generated, Γ is finitely generated as

well. This, together with the fact that Γ is torsion free implies that Γ is a free abelian group

(see [Bea99][Theorem 2.7.6]). Moreover rank(Γ) = rank(Γ0) + rank(Γ/Γ0) = dim(V ), hence the

assertion follows.

Corollary 3.3.6. Any arithmetic subgroup of the additive group Ga over Q is isomorphic to the

additive group of integers Z.

From this result, we can directly derive a suitable adaption of the filtration of unipotent

groups to arithmetic subgroups thereof.

Proposition 3.3.7. Let U be a unipotent algebraic group over Q and Γ be an arithmetic subgroup

of U . If V is a normal subgroup of U with U/V ∼= Ga, then Γ′ = Γ∩ V (Q) is a normal subgroup

of Γ with Γ/Γ′ ∼= Z.

Proof. It is clear that Γ′ is a normal subgroup of Γ. Moreover, Γ/Γ′ is an arithmetic subgroup

of Ga, hence isomorphic to Z by the previous corollary.

Since the subgroup Γ′ is an arithmetic subgroup of V , hence we may inductively repeat this

process to obtain a filtration

Γ = Γ0 ⊃ Γ1 ⊃ . . . ⊃ Γn = {e}

with Γi+1 normal in Γi and Γi/Γi+1
∼= Z for 0 ≤ i < n. Moreover, using the same fact, we can

show the following important lemma.

Lemma 3.3.8. Let Γ be an arithmetic subgroup of a unipotent algebraic group U over Q. Then

Γ is dense in U .
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Proof. We apply induction on the dimension n of U . If n = 1 then U ∼= Ga. As Γ ∼= Z, it is

clearly dense in U . If n > 1 then we may find a closed subgroup V of U with U ∼= V ⋊ Ga
(cf. Lemma 1.2.5). Moreover, Γ′ = Γ ∩ V (Q) is an arithmetic subgroup of V and hence by

assumption dense in V and likewise Γ′′ = Γ/Γ′ ⊂ Ga(Q) is dense in Ga. Now U ∼= V ⊗Ga as an

affine scheme, and the closure of Γ contains both V and Ga, which implies that Γ̄ = U .

As a consequence, the fixed points of any U -module under the corresponding Γ-action coincide

with the fixed points under U -action.

Let us fix a unipotent group U over Q and suppose Γ is an arithmetic subgroup of U . As we

have seen in Lemma 1.1.12, any U -moduleM is locally finite and hence a direct limit lim
−→

Mj over

a family {Mj}j∈J of finite dimensional U -modules. Since direct limits are preserved under tensor

products, we see that M ∼= lim
−→

Mj as Γ-modules. If we now were to compute the cohomology

of M as a Γ-module, we would end up computing Hi(Γ, lim
−→

Mj). The natural question which

comes to mind is whether we can “exchange” cohomology and direct limits i.e. if

Hi(Γ, lim
−→

Mj) ∼= lim
−→

Hi(Γ,Mj).

This property, in general, depends on the type of resolution one can chose for the Γ-module

Ztr. More precisely. we say that a projective resolution (Pn) of a module M over some ring R is

of finite type (resp. free) if each Pn is finitely generated (resp. free). If (Pn) is of finite type and

has finite length, i.e. if Pi = 0 for all i sufficiently large, then (Pn) is called a finite resolution.

Definition 3.3.9. Let Γ be an abstract group. We say that Γ is of type (FL) if the trivial

Γ-module Z has a finite free resolution.

We already know that a finite length resolution guarantees that the cohomological dimension

is finite. However, the existence of a resolution by finitely generated free modules yields an even

stronger consequence.

Proposition 3.3.10. If Γ is of type (FL) then Hi(Γ,−) commutes with direct limits.

Proof. The proof can be found in [Bro75][Corollary 1].

An example of a group of type (FL) is the additive group of integers Z. This follows from an

earlier example, where we showed that the exact sequence

0 → IΓ → ZΓ → Z → 0

with the morphism ZΓ → Z being the augmentation map, is a finite free resolution. This fact

alone would be sufficient for our cause, however there is an interesting general result for discrete

subgroups of unipotent groups, relating density to the (FL) property.

If we deal with discrete subgroups of real Lie groups with finitely many connected components

(such as in our case), there is a useful criterion to check if the property (FL) is satisfied.

Theorem 3.3.11. Suppose Γ is a discrete, torsion free subgroup of a real Lie group G with

finitely many connected components. If G/Γ is compact, then Γ is of type (FL).

Proof. This result can be found in Cohomologie des groupes discrets by J.P. Serre [Ser71][Proposition

18].
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Hence our aim is to apply this criterion to an arithmetic subgroup Γ of our unipotent group

U . We first show that Γ is torsion free. To do so, let γ 6= e ∈ Γ be an element of finite order. As

we have seen, there exists a filtration of Γ by a descending chain of subgroups Γi, each normal

in its predecessor, such that the quotient of any two subsequent subgroups is equal to Z. We

now chose i to be maximal with respect to γ ∈ Γi and let π: Γi → Γi/Γi+1
∼= Z be the canonical

projection. Then π(γ) is a torsion element of Z, hence π(γ) = 0 which forces γ ∈ Γi+1, a

contradiction to our choice of i. Thus, we only need to show that U(R)/Γ is compact. This is

provided by the following lemma, the proof of which can be found in an article by Raghunathan

[Rag67][Lemma 1].

Proposition 3.3.12. Let U be a unipotent algebraic group over the field of real numbers R and

Γ ⊂ U(R) be a discrete subgroup. Then the following conditions are equivalent:

1. The quotient U(R)/Γ is compact.

2. The group Γ is dense in U .

Summing up, we obtain the following corollary:

Corollary 3.3.13. Let Γ be an arithmetic subgroup of a unipotent algebraic group over Q. Then

Hi(Γ,−) commutes with direct limits for all i.

3.4 The Cohomology Isomorphisms

Having all the necessary techniques at hand, we can now focus on the main results we want to

derive. Suppose first that U is a unipotent algebraic group over the field of rational numbers Q

with Lie algebra u = Lie(U) and let Γ be an arbitrary arithmetic subgroup of U . We want to show

that the cohomology functorsH(U,−) andH(Γ,−) coincide when applied to U -modules. In more

technical terms, by composing the canonical functor {U -modules} → {Γ-modules} constructed

in 3.3.3 with H(Γ,−), we can regard both functors as δ-functors from the category of U -modules

to the category of abelian groups and we claim these functors are naturally isomorphic. But

before we prove this result, we require a rather inconspicuous lemma.

Lemma 3.4.1. Let K be a field and x ∈ K×. The K-linear map T : K[t] → K[t], defined by

T (f) = f(t− x)− f is onto.

Proof. Since Tx is K-linear, it is sufficient to show that for each n ∈ N there always exists

f ∈ K[t] such that tn = f(t− x)− f . Suppose f =
∑k
i=0 ait

i, then

Tx(f) =

k
∑

i=0

ai(t− x)i − ait
i

=

k
∑

i=0

ai

i
∑

j=0

(

i

j

)

(−x)i−jtj − ait
i

=

k−1
∑

j=0

(

k
∑

i=j+1

(

i

j

)

(−x)i−jai)t
j
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Thus, choosing k = n+ 1 and considering

tn =

n
∑

j=0

(

n+1
∑

i=j+1

(

i

j

)

(−x)i−jai)t
j

we obtain a system of equations which yields an+1 = 1 and by recursively solving

n+1
∑

i=j+1

(

i

j

)

(−x)i−jai = 0

starting with j = n, we obtain the other coefficients and hence the necessary polynomial.

We now consider the two δ-functors H(U,−) and H(Γ,−). In both cases, applying H0 to a

U -module M yields precisely the group of fixed points with respect to the action of either U or

Γ on M . Thus, as a consequence of Lemma 3.3.8 and Lemma 3.3.4, we obtain that the functors

H0(U,−) and H0(Γ,−) are naturally isomorphic. On the other hand, we know that H(U,−) is

a universal δ-functor. If we were able to prove that H(Γ,−) is universal as well, we would be

done since any two universal δ- functors coinciding on H0 are isomorphic (this is an immediate

consequence of the definition). By Lemma 3.1.13, it would be sufficient to show that H(Γ,−) is

effaceable as a functor from the category of U -modules to the category of groups. This is exactly

what we will show.

Theorem 3.4.2. Let U be a unipotent algebraic group over the field of rational numbers Q and

let Γ be an arithmetic subgroup of U . Then given any U -module M , the module M ⊗ Q[U ] is

acyclic for H(Γ,−), i.e. Hi(Γ,M ⊗Q[U ]) = 0 for all i ≥ 1.

Proof. Since M ⊗ Q[U ] ∼= Mtr ⊗ Q[U ] as U -modules, there is no loss of generality in assuming

M = Mtr. Let n = dimU and assume the assertion to be true for all unipotent groups of

smaller dimension. By Theorem 1.2.5 there is a normal closed subgroup V of U with U/V ∼= Ga.

Moreover, as we have seen in Proposition 3.3.7 (and the discussion following its proof), Γ′ = Γ∩

V (Q) is an arithmetic subgroup of V , normal in Γ and Γ′′ = Γ/Γ′ ∼= Z. In particular, the exact

sequence of groups

0 → Γ′ → Γ → Γ′′ → 0

yields a spectral sequence

Hp(Γ′′, Hq(Γ′,M ⊗Q[U ])) ⇒p H
p+q(Γ,M ⊗Q[U ]) .

Since U is the semidirect product of V and Ga, we get Q[U ] ∼= Q[Ga] ⊗ Q[V ] as V -modules

(see the discussion following Theorem 1.2.5) and thus obtain an isomorphism of V -modules

M⊗Q[U ] → (M⊗Q[t])⊗Q[V ] with Q[t] = Q[Ga] regarded as a trivial V -module. By assumption

(M ⊗Q[t])⊗Q[V ] is acyclic for H(Γ′,−), hence Hq(Γ′,M ⊗Q[U ]) = 0 for all q ≥ 1. This implies

that the spectral sequence considered above collapses on the p-axis and therefore

Hp(Γ′′, H0(Γ′,M ⊗Q[U ])) ∼= Hp(Γ,M ⊗Q[U ])
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by Proposition 3.2.7. As M and Q[t] are trivial Γ′-modules, we can apply Lemma 1.2.6 to obtain

H0(Γ′,M ⊗Q[U ]) ∼= ((M ⊗Q[t])⊗Q[V ])Γ
′

= ((M ⊗Q[t])⊗Q[V ])V

∼= (M ⊗Q[t])⊗ (Q[V ]V )

∼=M ⊗Q[t].

Hence we end up with

Hp(Γ′′,M ⊗Q[t]) ∼= Hp(Γ,M ⊗Q[U ]),

which shows that it is sufficient to prove the case n = 0 i.e. U = Ga.

Assuming U = Ga, we recall that M is locally finite and thus M ∼= lim
−→

Mi for some family

of finite dimensional Ga-submodules of M . This implies that M ⊗ Q[t] ∼= lim
−→

Mi ⊗ Q[t], since

direct limits commute with tensor products (see [Rot09][Chapter 5, Theorem 5.51]). Moreover,

by Corollary 3.3.13, Γ is of type (FL), so we can exchange direct limits with cohomology to

obtain

Hj(Γ,M ⊗Q[t]) ∼= lim
−→

Hj(Γ,Mi ⊗Q[t]).

It thus suffices to show that Hi(Γ,M ⊗Q[t]) = 0 holds for finite dimensional M and all i ≥ 1. In

this case, applying Lemma 1.2.7 yields a Ga-submodule M ′ of M such that M/M ′ ∼= K, where

K = Ktr is regarded as a trivial Ga-module. This in turn gives rise to a long exact sequence on

the cohomology groups

0 → H0(Γ,M ′ ⊗Q[t]) → H0(Γ,M ⊗Q[t]) → H0(Γ,Q[t]) → H1(Γ,M ′ ⊗Q[t]) → . . .

. . .→ Hi(Γ,M ′ ⊗Q[t]) → Hi(Γ,M ⊗Q[t]) → Hi(Γ,Q[t]) → Hi+1(Γ,M ′Q[t]) → . . . .

By Corollary 3.3.6 Γ is isomorphic to the additive group of integers Z and is therefore cyclic

and has cohomological dimension 1. In particular, the long exact sequence above actually ter-

minates at the first occurrence of H2. Moreover, if we assume the assertion to be true for all

Ga-modules of dimension less than M , we get H1(Γ,M ′ ⊗ Q[t]) = 0 = H1(Γ,Q[t]) and thus

H1(Γ,M ⊗Q[t]) = 0 by the exactness of

H1(Γ,M ′ ⊗Q[t]) → H1(Γ,M ⊗Q[t]) → H1(Γ,Q[t]) → 0.

We have therefore reduced to the case of dimM = 1, i.e. M = Qtr and need to show that

H1(Γ,Q[t]) = 0 (all larger cohomology groups vanish because of cd Γ = 1). To do so, we use

the interpretation of H1 in terms of derivations, i.e. H1(Γ,Q[t]) = Der(Γ,Q[t])/ Ider(Γ,Q[t]).

Therefore, it suffices to show that any derivation d: Γ → Q[t] is inner. Since Γ is cyclic, it is

generated by a single element γ. As a consequence, any other element of Γ can be written as

either γn or γ−n for some unique positive integer n. Using the fact that d is a derivation we get

d(γn) = d(γ) + γd(γn−1) and thus inductively

d(γn) =

n−1
∑

i=0

γid(γ).
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Moreover 0 = d(γγ−1) = d(γ)+γd(γ−1) yields d(γ−1) = −γ−1d(γ). In particular, d is completely

determined by d(γ). Suppose now we could write d(γ) = f − γf with f ∈ Q[t]. Then

d(γn) =

n−1
∑

i=0

γid(γ)

=

n−1
∑

i=0

γi(f − γf)

= f − γnf

and d(γ−1) = −γ−1d(γ) = f − γ−1f . Thus d is an inner derivation if (and only if) we can solve

the equation d(γ) = f−γf . But this follows immediately from Lemma 3.4.1 since γf = f(t−γ).

Summing up, we have Der(Γ,Q[t]) = Ider(Γ,Q[t]) and thus H1(Γ,Q[t]) = 0, which completes

the proof.

As an immediate consequence, we obtain the following corollary, which is precisely the gen-

eralisation of van Est’s Theorem we aimed for.

Corollary 3.4.3. If Γ is an arithmetic subgroup of a unipotent algebraic group U over the field

of rational numbers Q, then for any U -module M

Hi(U,M) = Hi(Γ,M).

We now turn to H(u,−), which we want to identify with H(U,−). The idea is largely the

same as above, since we have all the properties we need to apply the same reduction steps, thus

aside from slight differences, we can mimic the proof almost step by step for a general field K of

characteristic 0.

Theorem 3.4.4. Let U be a unipotent algebraic group over a field K of characteristic 0 and let

M be a U -module. Then the module M ⊗K[U ] is acyclic for H(u,−).

Proof. We may again assume M to be a trivial U -module. Let V be a normal subgroup of U

with U/V ∼= Ga as constructed in Theorem 1.2.5 and denote the Lie algebra of V by v. Then

we have an exact sequence of Lie algebras

0 → v → u → ga → 0

which gives rise to a spectral sequence

Hp(ga, H
q(v,M ⊗K[U ])) ⇒p H

p+q(u,M ⊗K[U ]).

As before, we have K[U ] ∼= K[t] ⊗K[V ] as V -modules, so we can use Corollary 1.3.10 and

Lemma 1.2.6 to obtain

H0(v,M ⊗K[U ]) = (M ⊗K[U ])v

= (M ⊗K[t]⊗K[V ])V

=M ⊗K[t].
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Thus, if we assume the assertion of the theorem to be valid for all unipotent groups of dimension

less than dim(U), we obtain Hq(v,M ⊗K[U ]) = 0 for q ≥ 1. In particular, the spectral sequence

considered above collapses and yields

Hp(ga,M ⊗K[t]) ∼= Hp(u,M ⊗K[U ]),

hence it is sufficient to consider the case U = Ga. Since Ga is abelian, its Lie algebra ga is simply

the trivial Lie algebra K and its universal enveloping algebra is isomorphic to the polynomial

ring K[t]. Therefore, ga has cohomological dimension one. The trivial ga-module K corresponds

to the K[t]-module structure on K obtained by mapping t to 0 and the augmentation ideal is

precisely the principal ideal generated by t. This shows that Ktr has a finite free resolution of

length 1 over ga. Applying these observations to the cohomology groups Hp(ga,M ⊗K[U ]) we

get

Hp(ga,M ⊗K[U ]) = 0 for p > 1

and we can, just as in the proof of Theorem 3.4.2, reduce to the case of dimM <∞ by writing

M = lim
−→

Mj for a family {Mj} of finite dimensional Ga-submodules of M and using

H1(ga,M ⊗K[U ]) ∼= lim
−→

H1(ga,Mj ⊗K[U ]).

Assuming M to be a finite dimensional Ga-module, we can find a Ga-submodule M ′ of M with

M/M ′ ∼= Ktr. This yields an exact sequence

0 → H0(ga,M
′ ⊗K[t]) → H0(ga,M ⊗K[t]) → H0(ga,K[t]) →

H1(ga,M
′ ⊗K[t]) → H1(ga,M ⊗K[t]) → H1(ga,K[t]) → 0

(recall that H2(ga,−) = 0), so if we assume the assertion to be true for all Ga-modules of

dimension less than dim(M), we get H1(ga,M ⊗ K[t]) = 0 as well. This shows that it is

sufficient to establish the theorem for dim(M) = 1 i.e. M = Ktr. Since we already know that

Hq(ga,K[t]) = 0, we only have to compute H1(ga,K[t]). To do so, we need to give an explicit

description of the ga-module structure on K[t]. Recall that the action of Ga on K[t] is given by

the right regular representation, i.e. by the comodule map µ: K[t] → K[t]⊗K[t] ∼= K[t, s] with

µ(t) = t+ s. Furthermore, ga = Dist+1 (Ga) ⊂ K[G]∗ consists of all K-linear maps γ: K[s] → K

with γ((s2)) = 0 and γ(1) = 0. In particular, any such map is uniquely determined by γ(s) ∈ K.

By definition, the action of γ on f in K[t] is now given by γ · f = (id⊗ γ)(ρ(f)). In case f = tn,

we therefore get

γ · f = (id⊗ γ)((t+ s)n)

=
n
∑

i=0

(

n

i

)

tn−iγ(si)

= ntn−1γ(s).

We therefore get γ · tn = a ddt t
n, where a = γ(s) ∈ K and d

dt is the standard differential operator

on K[t]. By linearity of the action of γ on K[t] this extends to γ · f = a ddtf for any f ∈ K[t], so

ga acts on K[t] by scalar multiples of the differential d
dt .
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We now identify H1(ga,K[t]) with the quotient of Der(ga,K[t]) by Ider(ga,K[t]). Suppose d:

ga → K[t] is a derivation. Since ga is generated by 1 (or any nonzero element for that matter) as

a vector space over K and d is K-linear, we get d(x) = xd(1) for any x ∈ ga = K. By definition,

d is an inner derivation if and only if d(x) = x · f for some f ∈ K[t]. By using the linearity of

the action of ga on K[t] we can rewrite x · f = x(1 · f). This shows that d is an inner derivation

if d(1) = 1 · f i.e. if d(1) = d
dtf for some f ∈ K[t]. But this equation clearly has a solution (the

“antiderivative” of d(1) exists since K has characteristic 0), hence any derivation d is an inner

derivation and H1(ga,K[t]) = 0.

In particular, the equalityMU =Mu extends to an isomorphism fromH∗(U,M) toH∗(u,M).

We have therefore reestablished Hochschild’s Theorem:

Corollary 3.4.5. Let U be a unipotent algebraic group over a field of characteristic 0 and let u

denote the Lie algebra of U . Then for any U -module M , there is a natural isomorphism

Hi(U,M) ∼= Hi(u,M).





Summary

The thesis at hand deals with the cohomology of arithmetic subgroups of unipotent algebraic

groups over the field of rational numbers Q. It is motivated by a result of van Est, which states

that for a discrete cocompact subgroup Γ of a nilpotent real Lie group N and a finite dimen-

sional unipotent linear representation V of N , there is an isomorphism from the differentiable

cohomology group H∗
d (N,V ) into the cohomology group H∗(Γ, V ). The principal aim of this

work is to establish an algebraic counterpart of this result, connecting the rational cohomology

groups H∗(U, V ), associated to a rational representation V of a unipotent algebraic group U

over Q, to the cohomology groups H∗(Γ, V ) of an arithmetic subgroup Γ of U via a natural

isomorphism. Aside from being different in the approach, the latter statement is not confined to

finite dimensional representations, as a rational representation may well be of infinite dimension.

Moreover, the new isomorphism considers the cohomology of Γ with values in the Q-vector space

V , thus does not require an extension of scalars to the field of real numbers R.

In passing, we shall also consider a result of G. Hochschild, which relates the rational coho-

mology groups H∗(U, V ) to the Lie algebra cohomology groups H∗(u, V ) (see [Hoc61]). As it

turns out, both results can be proven using quite similar techniques.

The exposition itself is split into three chapters. After a brief introduction to group schemes

and their representations, the first chapter focuses on properties of unipotent groups over a field

of characteristic 0. It is shown in Theorem 1.2.5, that any unipotent group U permits a closed

subgroup V , such that the quotient U/V is isomorphic to Ga. Similarly, any finite dimensional

representation M of U permits a U -submodule M ′ such that M/M ′ is a trivial 1-dimensional

U -module (see Proposition 1.2.7). The last part of the first chapter contains a brief summary of

the most important constructions and results regarding Lie algebras of algebraic groups.

Chapter 2 introduces the concept of induced representations for an algebraic group G, the

notion of which is quite similar to the one used for finite groups or Lie groups. The most

important property of these representations is called Frobenius reciprocity, which is established in

Proposition 2.2.1. These results are applied to construct particularly simple injective resolutions

for a given G-moduleM . More precisely, we shall establish that for any G-moduleM , the tensor

product M ⊗K[G] of M with the coordinate ring K[G] of G is an injective module, in which M

can easily be embedded.

The third and final chapter then deals with arithmetic groups and their cohomology groups.

The first half contains a brief introduction to the concept of cohomology and spectral sequences.

The upshot is that cohomology functors are all effaceable functors and thus special instances

of universal δ-functors. Moreover, the spectral sequences for abstract groups and Lie Algebras

provide a powerful tool for relating the cohomology groups of a group or Lie Algebra to those of
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a normal subgroup or ideal, respectively.

In the second half of chapter 3 the focus shifts back to unipotent groups. After defining arith-

metic subgroups of algebraic groups over Q, we concentrate on the structure of those subgroups

in case of a unipotent algebraic group U . We then leverage the construction of the filtration in

the first chapter to show that any arithmetic subgroup Γ of U has normal subgroup Γ′ of Γ such

that Γ/Γ′ ∼= Z. Moreover, Γ is a dense subgroup of U , cocompact in the Lie group of real points

U(R) and thus of type (FL). This permits us to exchange direct limits and cohomology.

Finally, we combine all these observations, to prove the effaceability of H(Γ,−) and H(u,−)

as δ-functors from the category of U -modules to the category of abelian groups, which in turn

yields the results of van Est and Hochschild, respectively.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Kohomologie arithmetischer Untergruppen von

unipotenten algebraischen Gruppen über dem Körper der rationalen Zahlen Q. Besonderes Au-

genmerk gilt dabei einem Resultat von van Est, das einen Isomorphismus zwischen den differen-

zierbaren Kohomologiegruppen H∗
d (N,V ) einer reellen nilpotenten Lie Gruppe N mit Werten in

einer endlichdimensionalen unipotenten Darstellung V und der gewöhnlichen Gruppenkohomolo-

gie H∗(Γ, V ) einer diskreten, kokompakten Untergruppe Γ von N herstellt. Das erklärte Ziel

der der Arbeit ist es, ein algebraisches Gegenstück zu diesem Resultat im Fall einer unipotenten

algebraischen Gruppe U über Q und einer arithmetischen Untergruppe Γ von U zu finden, also

die rationalen Kohomologiegruppen H∗(U, V ) von U mit Werten in einer rationalen Darstellung

V durch einen natürlichen Isomorphismus mit den gewöhnlichen Kohomologiegruppen H∗(Γ, V )

zu identifizieren. Dies erweitert das Resultat von von Est nicht nur auf unendlichdimensionale

Darstellungen, sondern bietet den zusätzlichen Vorteil, dass die erwähnten Kohomologiegruppen

von Γ sich nur auf den Q-Vektorraum V beziehen und damit keine skalare Erweiterung auf den

Körper der reellen Zahlen mehr notwendig ist.

Die diesem Resultat zugrunde liegenden Ideen ähneln denen in [Hoc61]. In diesem Artikel wird

die Existenz eines Isomorphismus zwischen den rationalen Kohomologiegruppen H∗(U, V ) und

den zugehörigen Lie Algebra Kohomologiegruppen H∗(u, V ) der Lie Algebra u von U bewiesen.

In der Tat eignen sich die in dieser Arbeit präsentierten Techniken, um einen alternativen Beweis

für diese Aussage geben zu können.

Die Arbeit selbst gliedert sich in drei Kapitel. Das erste Kapitel beinhaltet eine kurze

Einführung in die Theorie der Gruppenschemata und der zugehörigen Darstellungen. Besondere

Beachtung gilt dabei der Struktur von unipotenten Gruppen über Körpern der Charakteristik 0

und ihren endlichdimensionalen Darstellungen. Beide erlauben besonders einfache Filtrierungen,

die in Theorem 1.2.5 und Proposition 1.2.7 konstruiert werden. Das Kapitel schließt mit einer

kurzen Zusammenfassung der wichtigsten Resultate und Konstruktionen für die Lie Algebren

von algebraischen Gruppen.

Kapitel 2 beschreibt das Konzept von induzierten Darstellungen für algebraische Gruppen.

Die Begriffe und Konstruktionen ähneln dabei denen für Lie Gruppen und endliche Gruppen.

Insbesondere gilt für induzierte Darstellungen eine üblicherweise als Frobenius Reziprozität beze-

ichnete Eigenschaft, die in Proposition 2.2.1 bewiesen wird. Dies erlaubt die Konstruktion in-

jektiver Auflösungen für Darstellungen algebraischer Gruppen. So ist für jeden Modul M einer

algebraischen Gruppe G die Darstellung von G auf dem Tensorprodukt M ⊗K[G], wobei K[G]

den Koordinatenring von G bezeichnet, injektiv. Da man M leicht in M ⊗K[G] einbetten kann,

ergibt sich damit eine besonders einfache Methode um injektive Auflösungen zu konstruieren.



54 Zusammenfassung

Das dritte und letzte Kapitel befasst sich mit arithmetischen Untergruppen und ihrer Koho-

mologie. Die erste Hälfte beinhaltet dazu eine kurze Einführung in die grundlegenden Konzepte

der Kohomologietheorie und Spektralsequenzen. Besonderes Augenmerk gilt hier der Interpre-

tation von Kohomologiefunktoren als spezielle universelle δ-Funktoren.

Danach widmet sich die Arbeit den arithmetischen Untergruppen unipotenter algebraischer

Gruppen über Q. Hier kann die Filtrierung für unipotente Gruppen aus dem ersten Kapitel einge-

setzt werden, um zu zeigen, dass jede arithmetische Untergruppe Γ einer unipotenten Gruppe

U eine normale Untergruppe Γ′ besitzt, die Γ/Γ′ ∼= Z erfüllt. Aus dieser Tatsache ergibt sich,

dass Γ dicht in U ist. Des Weiteren ist Γ vom Typ (FL) und erlaubt damit das vertauschen der

Kohomologiefunktoren H∗(Γ,−) mit direkten Limiten.

Abschließend kann durch Kombination dieser Beobachtungen bewiesen werden, dass H(Γ,−)

und H(u,−) als δ-Funktoren von der Kategorie der U -Moduln in die Kategorie der abelschen

Gruppen auslöschbar sind. Dies beweist damit sowohl die oben beschriebene Version des Satzes

von van Est als auch das erwähnte Theorem von Hochschild.
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