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Abstract

In this diploma thesis, the implementation of a software package is presented, which
facilitates the simulation and analysis of multilocus migration-selection models. The
deterministic, discrete simulation iterates the underlying difference equation to find
the equilibria of the dynamical system. As an application, the equilibrium structure
of a population under quadratic stabilizing selection is investigated.

First, we state the biological assumptions and introduce the mathematical model.
We define the investigated dynamical system and introduce fitness functions, recom-
bination, and migration models. Furthermore, we define important quantities to mea-
sure properties of the genetic composition and of differentiation at equilibrium.

Then, we review related work concerning forward-time simulations and quadratic
stabilizing selection. Moreover, we discuss the limiting case of strong migration.

This is followed by a discussion of the implementation of the developed software.
This comprises the object model, the database architecture, and a discussion of algo-
rithmic issues.

Finally, the results obtained by the application of the program to the case of
quadratic stabilizing selection are presented. First, the case of a diallelic two-locus
panmictic population is investigated, allowing for arbitrary optimum position. Then,
two demes are considered, displacing the optima symmetrically within the demes, and
assuming the Deakin migration model.

Deutsche Zusammenfassung

Diese Diplomarbeit stellt eine Implementierung eines Software-Packets zur Simula-
tion von Migrations-Selektionsmodellen vor. Die deterministische, diskrete Simula-
tion iteriert die zugrunde liegende Differenzengleichung, um die Gleichgewichte des
dynamischen Systems zu finden. Als Anwendungsfall wird die Gleichgewichtsstruktur
einer Population unter quadratisch-stabilisierender Selektion untersucht.

Zuerst wird das zugrunde liegende mathematische Modell eingeführt und die getrof-
fenen biologischen Annahmen erklärt. Das untersuchte dynamische System wird
definiert, Fitnessfunktionen, Rekombination und Migrationsmodelle werden abgehan-
delt. Weiters definieren wir wichtige Größen, die erlauben die genetische Zusam-
mensetzung und die Differenzierung in Gleichgewichten zu messen.

Danach werden relevante Publikationen besprochen, die Simulationen vorwärts in
der Zeit und quadratisch stabilisierende Selektion betreffen. Weiters wird der Grenzfall
starker Migration betrachtet.

Dem folgt eine detailierte Beschreibung der Implementierung. Dies umfasst das
Objekt-Modell, die Datenbankarchitektur und eine Diskussion algorithmischer Be-
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lange.
Schließlich werden die Resultate duch Anwendung der vorgestellten Simulation auf

den Fall quadratisch stabilisierender Selektion vorgestellt. Zuerst wird der Fall einer
panmiktischen Population mit zwei Allelen auf zwei Loci untersucht, wobei das Op-
timum der Fitnessfunktion beliebig ist. Anschließend werden zwei Deme mit sym-
metrisch verschobenen Optima behandelt, um Migration anhand des Deakin-Modells
zu untersuchen.
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1 Model

This chapter gives an overview of the biological assumptions and states the mathe-
matical model used for implementation.

1.1 Biological Assumptions

Throughout this section, we follow the definitions given in Futuyma (2005). A diploid
population, i.e., of organisms with two sets of homologous chromosomes, with dis-
crete, non-overlapping generation is modeled, without taking sexual differentiation
into account. The population is subdivided into demes, also referred to as niches.
The population consisting of all the demes is also referred to as a metapopulation. For
the analysis we consider multiple alleles, i.e., different DNA sequences, on multiple
loci, by which we mean gene location on the DNA.

Within the randomly mating subpopulations viability selection acts on the zygotes,
and recombination events occur at a constant rate in time. Viability selection reflects
the probability of survival until reproductive age. We allow multiple crossover events
between pairs of homologous chromosomes as recombination, which results in new
combinations of genes.

Individuals migrate from one deme to another depending on probabilities taking
only geographical but not genetical differences into account. In general, migration
refers to “gene flow among populations“ (Futuyma, 2005, p. 550).

The population size is considered as infinitely large, thus, random genetic drift can
be ignored.

1.2 Mathematical Model

Diagram (1.1) depicts the life cycle of an individual within the population.

Zygote
Selection−−−−−→ Adult

Migration−−−−−→ Adult
Reproduction−−−−−−−−→

Recombination
Zygote (1.1)

Viability selection acts on the offspring, potentially changing the relative size of the
demes. After selection, adult individuals migrate independently of their genotype,
supposing no individuals are lost during migration. Due to migration, the relative
deme size may change again. Finally, reproduction including recombination with
random mating results in the next generation of zygotes.

Individuals are genetically modeled by a multiallelic multilocus system. Thus, (1.1)
is a special case of the life cycle stated in (Nagylaki, 1992, p. 133) and extended to
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1 Model

multiple loci. Based on the formulation and notation in Bürger (2009), we consider
L ≥ 1 loci, and on each locus a set of I ≥ 2 different alleles. The population is
subdivided in Γ discrete demes. Let A

(n)
in

for in = 1, ..., I and n = 1, ..., L denote allele
in on locus n. The multi index i = (i1, ..., iL) allows us to denote the frequency of

the gamete i, i.e., A
(1)
i1
...A

(L)
iL

, immediately after gametogenesis within deme α by pi,α.
The number of different gametes is then given by N = IL. Since distinction of the
gametic frequencies belonging to different demes is necessary, we have to keep track
of N = N · Γ = IL·Γ gamete frequencies.

The set of alleles is denoted by I = {1, ..., I}, the set of loci by L = {1, ..., L}, the
set of demes by G = {1, ...,Γ}, and the set of gametes by N.

We are interested in the simplex as state space of the proposed model. The simplex
representing a single deme is given by

∆N =

{
x ∈ RN :

∑
i∈N

xi = 1, xi ≥ 0 ∀i ∈ N

}
. (1.2)

Thus, the state space of the whole population, the Γ-fold cartesian product, can be
denoted by ∆Γ

N .

Selection operating on the genotypes within demes is based on fitness values, which
represent the probability of survival until reproductive age (viability selection). We
denote the fitness of the genotype ij in deme α by wij,α, assuming wij,α ≥ 0 and
independence of the order of the alleles, i.e., wij,α = wji,α.

Then, the marginal fitness of gamete i in deme α and the mean fitness in deme α
are given by

wi,α =
∑
j

wij,αpj,α, (1.3a)

w̄α =
∑
i

wi,αpi,α. (1.3b)

Let the probability that an individual within deme α immigrated from deme β be given
by mαβ, and let m̃αβ denote the probability of an individual in deme α migrating to
deme β. Obviously, to ensure that every individual of a deme either stays or migrates,
the Γ× Γ forward migration M̃ = (m̃αβ) and backward migration matrix M = (mαβ)
are stochastic, i.e., nonnegative and satisfy∑

β

m̃αβ = 1, (1.4a)

and ∑
β

mαβ = 1. (1.4b)

Clearly, the frequency of the gametes can be calculated from the genotype frequen-
cies by

pi,α =
∑
j

xij,α, (1.5)
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1.2 Mathematical Model

where xij,α denotes the frequency of the genotype ij in deme α. Since the adult
individuals migrate, the frequency of the genotype ij after selection and migration is
given by

x∗ij,α =
pi,αpj,αwij,α

w̄α
(1.6a)

and

x∗∗ij,α =
∑
β

mαβx
∗
ij,β, (1.6b)

respectively. Then, by using (1.5), we conclude that the frequency of gamete i in deme
α after selection and migration is given by

p∗i,α =
wi,α
w̄α

pi,α (1.7a)

and

p∗∗i,α =
∑
β

mαβp
∗
i,β, (1.7b)

respectively.

Let Ri,jl be the probability that during gametogenesis a gamete of type i is formed
by the genotypes j and l. Then the gametic frequency after random mating and
recombination is

p′i,α =
∑
j,l

Ri,jlx
∗∗
jl,α ∀i ∈ N,∀α ∈ G. (1.8)

Inserting (1.6) into (1.8) shows that migration and recombination commute, which
is possible due to the assumption of genotype-independent migration. Thus, we can
reduce the dynamics to one depending only on gamete frequencies (Bürger, 2009,
pp.945)

p′i,α =
∑
l

∑
j

∑
β

Ri,jlmαβx
∗
jl,β=

∑
β

mαβ

∑
l

∑
j

Ri,jlx
∗
jl,β =

∑
β

mαβp
#
i,β, (1.9a)

where
p#
i,α =

∑
l

∑
j

Ri,jl
pj,αpl,αwjl,α

w̄α
(1.9b)

describes the change in the frequency of gamete i due to selection and recombination
in deme α.

Equations (1.9a) and (1.9b) fully describe the dynamics of the population.

It follows that we can represent the order of events in the life cycle (1.1) of our
model by

cα, pi,α
Zygote

Selection−−−−−−−−→
Recombination

c#
α , p

#
i,α

Adult

Migration−−−−−→ c′α, p
′
i,α

Adult

Reproduction−−−−−−−→ c′α, p
′
i,α

Zygote

, (1.10)

where cα, c#
α and c′α describe the relative deme size of deme α before selection, after

selection and recombination, and after migration, respectively.
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1 Model

To simplify notation, we introduce the following vectors:

pi = (pi,1, . . . , pi,Γ)T ∈ RΓ, (1.11a)

p(α) = (p1,α, . . . , pN,α)T ∈ ∆N , (1.11b)

p = (pT(1), . . . , p
T
(Γ))

T ∈ ∆Γ
N . (1.11c)

Moreover, note that the frequency of allele A
(k)
ik

on locus k among gametes in deme α
is

p
(k)
in,α

=
∑
i|in

pi,α, (1.12)

where the sum runs over all gametes i, such that the nth locus exhibits allele in.

1.2.1 Selection

As stated above, selection acts on the newly formed offspring. Viability of the zygotes
is mathematically modeled by fitness values. Fitness values of zygotes depend on their
genetic make-up, i.e., the phenotype resulting from the paternal gametes.

The phenotypic value Gij of the individual consisting of the genotype ij depends
on the gametic contributions gi and gj. We assume the absence of dominance and of
epistasis on the level of the trait values, so that G is additive, i.e., the sum of gametic
contributions,

Gij = gi + gj =
∑
n∈L

γ
(n)
in

+
∑
n∈L

γ
(n)
jn
, (1.13)

where γ
(n)
in

denotes the contribution of allele in at locus n,

gi =
∑
n∈L

γ
(n)
in
. (1.14)

In general, the genotypic and the phenotypic value may differ, but in the absence of
environmental effects, they coincide.

We assume that the fitness of an individual of type ij in deme α is given by a
positive function Wα : R→ R+, assigning a fitness value to each phenotype,

wij,α = Wα(Gij). (1.15)

We refer to Wα as the fitness function in deme α. We will be able to define the fitness
setup for a population by providing a set of functions {Wα : α ∈ G} and the additive

allelic contributions {γ(n)
in

: n ∈ N, in ∈ I}.
Remark 1.2.1. Note that the absence of epistasis and dominance only applies on the
level of the genetic trait here. The fitness values given by the function Wα still may
exhibit dominance and epistatic effects (Bürger, 2000; Futuyma, 2005).

We consider three different fitness functions: The quadratic fitness function is de-
fined as

Φ(G) := 1− s(G− PO)2, (1.16)
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1.2 Mathematical Model

Figure 1.1: Quadratic (black) and Gaussian (gray) optimum functions with PO = 0.5.
Dashed lines refer to a selection coefficient s = 1, solid lines to s = 4 and the dashed-
dotted line to s = 16. Since we require positive fitness values for the genotypic values
between 0 and 1, only the Gaussian is plotted for a selection coefficient of s = 16.

where PO defines the position of the optimum and s is the selection coefficient. With-
out loss of generality, we may assume that the genotypic values G are constrained by
the interval [Ǧ, Ĝ], where Ǧ < Ĝ. This ensures positivity of the fitness values Φ(G)
for all phenotypes, if s is restricted to the set

Sq = [0, smax] , where smax = min

{
1

(Ǧ− PO)2
,

1

(Ĝ− PO)2

}
, (1.17)

and Ǧ, Ĝ respectively, denote the minimum and maximum genotypic values. We will
also use the normalized selection coefficient defined by

s̃ :=
s

smax
. (1.18)

Remark 1.2.2. The quadratic optimum model has been intensively studied, e.g. in
Bürger (2000), and originated from Wright’s work (Wright, 1935).

The Gaussian fitness function is defined as

w(G) := exp(−s(G− PO)2), (1.19)

where s defines the selection coefficient and PO the position of the optimum.
The linear fitness function is defined as

Ψ(G) := 1 + sG, (1.20)
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1 Model

where s defines the selection coefficient, which is restricted to

Sl = [−smax, smax] , where smax = min

{
1

|Ǧ|
,

1

|Ĝ|

}
. (1.21)

Remark 1.2.3. Both, the quadratic (1.16) and the Gaussian fitness function (1.19)
are used to model stabilizing selection, where the maximum value is attained at an
intermediate genotypic value (Endler, 1986, p. 177). Both functions are symmetric
with respect to the optimum and decrease monotonically from it.

The linear fitness function (1.20) exhibits directional selection, i.e., larger trait values
are favored. This has also be referred to as no dominance on the allelic level, cf. the
concept of addtive inheritance in (Futuyma, 2005, p. 176, p.282).

Because selection acts on the offspring, the deme sizes may change. We shall use
two extreme assumptions here: Soft selection describes a population regulated within
each niche, as occurs in the competition for a limiting factor, e.g. space or food. In the
case of hard selection, the size of the whole population is controlled, and survival of
the individual depends on its absolute fitness regarding the metapopulation (Nagylaki,
1992; Futuyma, 2005).

Soft selection assumes that the relative deme sizes are fixed, i.e.,

c∗α = cα ∀α ∈ G. (1.22)

Hard selection assumes that the relative deme sizes change proportional to the demes
mean fitness, i.e.,

c∗α = cα
w̄α
w̄
, (1.23a)

w̄ =
∑
α

cαw̄α, (1.23b)

where w̄ denotes the population’s mean fitness.

1.2.2 Recombination

Let the recombination probability Ri,jl, i.e., the probability that recombination of
gametes j and l results in gamete i, be based on independent crossover probabilities,
i.e., we negleckt interference and position effects. Thus, we model Ri,jl as the sum of
the joint probabilities of recombination events between loci. Given a vector of pairwise
recombination probabilities,

ρ = (ρ1, ρ2, . . . , ρL−1)T , (1.24)

where ρl is the probability of a crossover between locus l and locus l+ 1, we conclude
that the recombination probability is given by

Ri,jl =
∑

R∈Ri,jl

∏
k∈R

∏
n∈Rc

ρk(1− ρn), (1.25)
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1.2 Mathematical Model

where Ri,jl denotes the set of all recombination events of the multi indices j and
l resulting in i. Each recombination event R ∈ R is encoded as a set of indices
R = {i1, . . . , ir} ⊆ {1, . . . , L − 1}, such that for every ik ∈ R crossover event occurs
between locus k and k+1. The complement of R is defined by Rc := {1, . . . , L−1}\R.

Clearly, the following equations must hold:∑
i

Ri,jl = 1, (1.26a)

Ri,ii = 1. (1.26b)

Remark 1.2.4. Here we modified the approach by Bürger (2009, 2000) and Nagylaki
(1993), using the absence of interference to construct the Ri,jl from the recombina-
tion probabilities of adjacent loci. This allows to directly use the definition for the
implementation, see Section 3.3.2.

1.2.3 Migration

Since we assume no individuals are lost during migration and, both, M and M̃ are
stochastic, we observe

c∗∗β =
∑
α

c∗αm̃αβ, (1.27a)

c∗α =
∑
β

c∗∗β mβα. (1.27b)

Suppose the backward migration matrix M , and c∗ = (c∗1, ..., c
∗
Γ)T , the deme sizes after

selection, are given. Then, according to (1.27a), we can calculate the new deme sizes
after migration.

Also, by using the fact that

c∗αm̃αβ = c∗∗β mβα, (1.28)

and (1.27a), we deduce

mβα =
c∗αm̃αβ∑
γ c
∗
γm̃γβ

. (1.29)

We introduce two specific migration models here, defining the backward migration
rates: For the homogeneous Deakin model, the backward migration rates are given by

mαβ = µc∗β, for α 6= β, (1.30a)

and
mαα = 1− µ+ µc∗α, (1.30b)

where the constant µ ∈ [0, 1] describes the proportion of outbreeding individuals
(Deakin, 1966). The term homogeneous refers to the constant proportion of homing
individuals, i.e., homing rates 1− µ. In the case µ = 1 one obtains the Levene model
(Karlin, 1982, p. 78).

7



1 Model

Figure 1.2: Migration according to the Deakin model for 5 demes.

Remark 1.2.5. The homogeneous Deakin model is conservative (Nagylaki, 1992, p.
136), i.e., deme proportions stay constant, as can easily be deduced by using (1.27b),
definition (1.30), and stochasticity of M :

c∗α =
∑
β

c∗∗β mβα =
∑
β 6=α

c∗∗β µc
∗
α+c∗∗α (1−µ+µc∗α) =

∑
β

c∗∗β µc
∗
α+(1−µ)c∗∗α = c∗∗α . (1.31)

Thus, in case of soft selection (1.22), the backward migration matrix of the Deakin
model is constant.

For the stepping-stone model, the backward migration matrix is given by

M =



c∗1(1−µ1)

d1

c∗2µ2

d1
0 . . . 0

c∗1µ1

d2

c∗2(1−2µ2)

d2

c∗3µ3

d2
. . . 0

...
. . .

...

0 . . .
c∗Γ−2µΓ−2

dΓ−1

c∗Γ−1(1−2µΓ−1)

dΓ−1

c∗ΓµΓ

dΓ−1

0 . . . 0
c∗Γ−1µΓ−1

dΓ

c∗Γ(1−µΓ)

dΓ


, (1.32)

where

d1 = (1− µ1)c∗1 + µ2c
∗
2, (1.33a)

dα = µα−1c
∗
α−1 + (1− 2µα)c∗α + µα+1c

∗
α+1, for 1 < α < Γ, (1.33b)

and

dΓ = µΓ−1c
∗
Γ−1 + (1− µΓ)c∗Γ. (1.33c)

The constant µα ∈ [0, 0.5] describes the fraction of individuals migrating from deme α
to the neighboring demes. This is an adaptation of the model proposed in Kimura and
Weiss (1964), neglecting long-range dispersal and allowing different migration rates for
each deme. The denominators dα are normalization factors to assure the stochasticity
of the backward migration matrix.

8



1.2 Mathematical Model

Figure 1.3: Migration according to the stepping-stone model.

Remark 1.2.6. Given the forward migration matrix

M̃ =



(1− µ1) µ1 0 . . . 0
µ2 (1− 2µ2) µ2 . . . 0
...

. . .
...

0 . . . µΓ−1 (1− 2µΓ−1) µΓ−1

0 . . . 0 µΓ (1− µΓ)


. (1.34)

the backward migration matrix (1.32) follows directly by using (1.29). To reduce the
number of parameters involved, we will also use the special case where migration is
homogeneous, i.e., µα = µ for every α. Although (1.32) is a more general model, it
still assumes symmetric migration, cf. the general form of the stepping stone model
as given in (Karlin, 1982, p. 79).

The two migration patterns, (1.30) and (1.32), serve as two extreme prototypes in
the analysis. While the Deakin model allows for migration independent of the demes,
the stepping-stone model exhibits isolation by distance (Wright, 1943), which “occurs
in subdivided populations, when subpopulations exchange genes at a rate dependent
upon the distance, ...“ (Hardy and Vekemans, 1999, p. 1). Figures 1.2 and 1.3 illustrate
the differences of these two patterns.

1.2.4 Equilibria

Following (LaSalle, 1976, pp. 1-8), the difference equation (1.9) defines a dynamical
system given by

p′ = T (p), (1.35)

where T : ∆Γ
N ⊂ RΓ·N → ∆Γ

N ⊂ RΓ·N is continuously differentiable. The set {T n(p) :
n ∈ N} is called the orbit or trajectory of p. A point p̂ ∈ ∆Γ

N is called an equilibrium
point or equilibrium state of the dynamical system if it is a fixed point of the map T ,
i.e.,

p̂ = T (p̂). (1.36)

Thus, the relative frequencies of the gametes remain constant over generations. In the
following, we shall indicate equilibria by the circumflex.

An equilibrium point p̂ of T is said to be stable, if for a given neighborhood U of
p̂, there exists a neighborhood W containing U , such that T n(W ) ⊂ U , for all n ∈ N.
Furthermore, an equilibrium point p̂ is an attractor if there exists a neighborhood U

9
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of p̂ such that for each p ∈ U , T n(p)→ p̂ as n→∞. An attracting, stable equilibrium
point is called asymptotically stable. Analogously, a set of points can be stable or
asymptotically stable. An equilibrium p̂ is said to be hyperbolic, if no eigenvalue of
T (p̂) is of modulus 1.

We call an equilibrium monomorphic if only one gamete is present at equilibrium,
i.e.,

p̂i = (1, . . . , 1) for a specific i ∈ N. (1.37)

If more than one gamete is present, the equilibrium is called polymorhic. If on ev-
ery of the L loci, all I alleles are present, we call the equilibrium fully polymorphic.
Analogously, we distinguish for a single locus, whether it is momomorphic, i.e., only
one allele is present, polymorphic, i.e., more than one alleles are present, or fully-
polymorphic, i.e., all alleles are present.

1.3 Important Quantities

In the following, we introduce some important quantities measuring various properties
of the genetic composition of a population, as well as differentiation among subpopu-
lations.

We want to measure the disparity of the allelic contributions. To achieve this, we
need to measure the effect of allelic substitution, cf. (Bürger and Gimelfarb, 1999;
Nagylaki, 1989): Under the assumption of no dominance and no epistasis, as stated
above, see (1.13), the average effect of allelic substitution of allele ik on locus k is

given by |γ(k)
ik
|, the contribution of allele ik on locus k (Bürger, 2000, p. 75). Thus,

the average absolute allelic effect of locus k is given by

κk =

∑
ik∈I |γ

(k)
ik
|

I
. (1.38)

Note the fact that our genetic contributions are deme independent, thus, the measure-
ment defined above, (1.38) is independent of the index α.

We define the average excess of genotype ij in deme α as, cf. (Bürger, 2000, pp.
58-59)

eij,α = Gij − Ḡα, (1.39a)

where

Ḡα =
∑
ij

Gijxij,α, (1.39b)

denotes the mean genotypic value in deme α. Then, the total genetic, or genotypic
variance, in deme α is defined by

σ2
G,α =

∑
ij

xij,αe
2
ij,α. (1.40)

10
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For the whole metapopulation, we define the total genetic variance by

σ2
G =

∑
ij

xije
2
ij, (1.41a)

where

eij = Gij −
∑
i,j

xijGij, (1.41b)

and

xij =
∑
α

xij,αcα, (1.41c)

define the average excess of genotype ij, and the frequency of genotype ij in the
metapopulation, respectively.

Analogously, we define the total gametic variance in deme α (cf. Ewens, 2004, p.
246), as

σ2
Gam,α =

∑
i

pi,α(wi,α − w̄α)2. (1.42)

For the whole metapopulation averaging over the deme sizes yields the mean gametic
variance:

σ2
Gam =

∑
i,α

cαpi,α(wi,α − w̄α)2. (1.43)

Remark 1.3.1. The measures (1.40) and (1.41) depend on the current genetic compo-
sition of the population, i.e., the genotype frequencies in the subpopulations. In our
simulation, these will be calculated only at equilibrium. Since zygotes are in Hardy-
Weinberg proportions, the measures may be expressed in gametic frequencies rather
than zygotic frequencies.

To measure the differentiation among the subpopulations, we consider the variance
of gamete i among subpopulations (Nagylaki, 1992, p. 40),

Vi = p2
i − pi2, (1.44)

where
pi =

∑
j

cαpi,α. (1.45)

Averaging over the gametes yields the average gametic variance among subpopulations,

V̄ =
1

N

∑
i

Vi. (1.46)

Moreover, we define the measure QST of population differentiation (Spitze, 1993; Ede-
laar and Björklund, 2011) by

QST =
σ2
G − σ̄2

G,α

σ2
G

, (1.47)

where σ2
G and σ̄2

G,α denote the genetic variance of the trait among the whole population
and the mean genetic variance within subpopulations, respectively. QST ranges from
0 (no differentiation) to 1 (complete differentiation).
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We will measure the linkage disequilibrium at equilibrium, following the definition
in Nagylaki (1993). The linkage disequilibrium for gamete i in deme α is defined as

Di,α = pi,α −
∏
k

p
(k)
ik,α

, (1.48)

where the product runs over all alleles, as introduced in (1.12). We define the average
linkage disequilibrium as

D̄ =
1

NΓ

∑
i,α

|Di,α|. (1.49)

Remark 1.3.2. For two loci this definition equals the absolute value of the common
linkage disequilibrium D1,α, since D̄ = −D1,α = D2,α = D3,α = −D4,α.

Moreover, in the numerical simulation of our model, the number of alleles present
at a single locus at equilibrium, as well as the number of polymorphic and fully
polymorphic loci will serve as basic measures of genetic variation, see Table 3.2.

The definition of the following measures are in accordance with Gimelfarb (1998).
Let τ(p̂), τ : ∆Γ

N → R, be the fraction of trajectories converging to the stable equi-
librium p̂, and let λ(p̂), λ : ∆Γ

N → L, be the number of polymorphic loci in p̂. The
polymorphic fraction of the genome is defined as

1

L

L∑
l=0

l
∑

p̂:λ(p̂)=l

τ(p̂). (1.50)

The expected genetic load for l polymorphic loci in deme α is given by∑
p̂:λ(p̂)=l

τ(p̂)
ŵα − w̄α
ŵα

, (1.51)

where ŵα = maxi,j wij,α. By summing over all l ∈ L, the total genetic load can be
calculated: ∑

l∈L

∑
p̂:λ(p̂)=l

τ(p̂)
ŵα − w̄α
ŵα

. (1.52)

Remark 1.3.3. (1.50) can be interpreted as the expected fraction of polymorphic loci
in the multilocus genome. (1.52) measures the reduction in mean fitness relative to
the maximum possible fitness.
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2 Related Work

This chapter is intended to serve as both a review of related work and a motivation
for the special cases studied in Chapter 4. Every section briefly reviews relevant
publications and then discusses some of the results in more detail to provide a basis
of knowledge to enable an interpretation of our own numerical results.

2.1 Simulation

In most cases, it is analytically impossible to find the equilibria of the dynamical
system (1.9). Typical methods are reduction of dimensionality (alleles, loci, demes)
and restriction to special models and additional assumptions (e.g. Levene migration
model, linkage equilibrium, non-epistatic fitness). Another approach to gain insight
in the qualitative behavior of the systems is by making assumptions that lead to
perturbations of limiting cases (e.g. weak selection relative to migration, see Section
2.3.1) or approximations.

In this thesis, we want to pursue a different approach. We simulate the dynamical
system numerically for different parameter combinations until reaching an equilibrium
state. This allows us to investigate the equilibrium structure for cases that so far are
not understood analytically. Our numerical approach, implemented as discussed in
Chapter 3, is based on the work by Gimelfarb (1998).

Gimelfarb investigated measures and properties at equilibrium for panmictic multi-
locus systems. He simulated the system for two to five loci, each for 10 initial values,
6 recombination rates, and 4000 fitness sets. Instead of using a fine grid to cover pos-
sible parameter values and initial values, he used a different approach, reducing the
computational cost significantly. Fitness values were generated randomly, ensuring a
minimal distance between two fitness values for genotypes, and normalizing fitnesses
such that the fittest genotype exhibits a fitness of 1 in each set. Recombination rates
were selected to cover weak to strong linkage. 10 different initial value sets were also
chosen randomly. Gimelfarb compared the expected number of simultaneously stable
equilibria, polymorphic fraction of the genome, genetic load, and linkage disequilib-
rium for two- to five-locus systems, presented for the different recombination rates.
His results showed that multi-locus systems can maintain polymorphisms in a large
number of loci in the absence of migration or mutation. In Bürger and Gimelfarb
(1999) this approach was modified and applied to investigate the effects of quadratic
stabilizing selection in multi-locus systems, as will be discussed in Section 2.2.
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For the system investigated in this thesis, cf. Chapter 1, to our knowledge, no other
comparable software package is available. Thus, we analyzed the implementation of
user-oriented tools for forward simulation in the area of population genetics. Over the
past years, multiple such tools have been published, based on statistical data analysis,
not on the computation of equilibrium structures of dynamical systems. In all the
cited publications, finite populations are simulated forward in time to track changes
in the composition of a population subject to evolutionary forces such as mutation,
selection, recombination, or migration.

To provide the user with an easily applicable program, many authors created user-
friendly environments. Parreira et al. (2009) extended the existing ms command line
application by Hudson (2002) and also implemented a graphical user interface to ease
the simulation process for the user. Sanford et al. (2007) even incorporated a web
user interface in the program Mendel’s Accountant to plot the results out-of-the-box.
Lambert et al. (2008) used wrapper scripts to automate graphical output in R.

To allow extensibility of the program, Guillaume and Rougemont (2006) and O’Fallon
(2010) used object-oriented programming. Guillaume and Rougemont (2006) imple-
mented the program Nemo in C++ and allow the user to extend the program via
implementing interfaces. The implementation of TreesimJ by O’Fallon (2010) in Java
allows to extend the simulation by implementing a class inheriting from an appropriate
base class.

We combined these ideas in our implementation, using an object-oriented approach,
allowing extensibility and implementation of a user-friendly interface. Additionally,
we also provide out-of-the box analytical tools. Details will be given in Chapter 3.

2.2 Stabilizing Selection

One of the major goals in theoretical population genetics is to identify mechanisms
which may account for the high genetic variation observed in quantitative traits in na-
ture. Stabilizing selection is considered as one of the most common forms of selection
in nature and is generally assumed to deplete genetic variation. Still, in natural pop-
ulations, characters which are subject to stabilizing selection often show high genetic
variation, c.f. Ridley (2004).

Since the early work of Wright (1935), stabilizing selection towards an intermediate
optimum has been investigated using different approaches. His study, which uses a
quadratic fitness function acting on a system of two diallelic loci with an additively
controlled trait, showed that for pure selection dynamics no stable full polymorphism
can exist. Hastings (1987) even extended his result to stabilizing selection and arbi-
trary recombination, but still assuming symmetric effects of the loci, as has Wright
before him. His result is based on the fact that the system leads to a special case of
the symmetric viability model, studied by Karlin and Feldman (1970).

Other publications allowing arbitrary effects of the loci supported the view that
stabilizing selection can maintain high genetic variation. Gale and Kearsey (1968)
used a triangular fitness function to model stabilizing selection and showed that all
loci can be stably polymorphic, provided the disparity of the effects of the loci is high
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enough. When recombination becomes weaker, the necessary diversity of allelic effects
for existence of a stable equilibrium becomes smaller. In Kearsey and Gale (1968),
the authors were able to find stable equilibria for a three locus system using computer
simulations. In both cases selection was assumed to be strong. Nagylaki (1989)
investigated the model for two diallelic loci and allowed for arbitrary fitness function
monotonically and symmetrically decreasing from the optimum at the value of the
double heterozygote. Neglecting linkage disequilibrium, he showed that if the ratio of
the effects of the loci exceeds a critical value both loci can be stably polymorphic.

Gavrilets and Hastings (1993) calculated all possible equilibria and their stability
properties for a symmetric quadratic fitness function and arbitrary effects of the loci.
They proved that if selection is sufficiently strong relative to recombination, a stable
polymorphic equilibrium can exist, provided a high enough disparity in the effects of
the loci. Moreover, they investigated a model with arbitrary position of the optimum,
and showed that for strong selection relative to recombination, polymorphic equilibria
exist.

Bürger and Gimelfarb (1999) simulated a model for two to five diallelic loci, as
well as arbitrary recombination rates and selection intensity. The results showed
that if the number of loci contributing additively to the quantitative trait increases,
the maintained genetic variation in the population at equilibrium declines rapidly.
This gave further support to the early results, indicating that in multi-locus systems
stabilizing selection as the only evolutionary force can not account for high genetic
variation.

2.2.1 Symmetric Model - Optimum at the Double Heterozygote

We discuss the symmetric viability model for 2 alleles, 2 loci and unequal allelic effects.
The dynamics are given by (1.9), the fitness function is defined by

W (G) = 1− s
(
G− 1

2

)2

. (2.1)

We further assume, as explained in Section 3.3.3, that the average contributions of
the alleles are given by γ̄1 = 0 and γ̄2 = γ1 + γ2 = 1

2
. For brevity and consistency with

other publications, we use the notation γi for γ
(i)
2 . Then, if we denote the alleles at

the two loci by A and B, the fitness values are given by


B1B1 B1B2 B2B2

A1A1 1− d 1− b 1− a
A1A2 1− c 1 1− c
A2A2 1− a 1− b 1− d

, (2.2)

where a = s (γ1 − γ2)2, b = sγ2
1 , c = sγ2

2 , and d = s (γ1 + γ2)2 = 1
4
s. The symmetric

viability model was studied by Karlin and Feldman (1970). We use the analysis by
Gavrilets and Hastings (1993) and further investigations on quantitative characters
by Bürger and Gimelfarb (1999). We briefly discuss their findings here.
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Figure 2.1: Stability of the equilibria for the
symmetric model in dependency on the stan-
dard deviation of allelic effects and the ratio of
recombination to selection. 0: two monomor-
phic equilibria; 1: two equilibria with the ma-
jor locus polymorphic; 2a: two asymmetric
fully polymorphic equilibria; 2a: one sym-
metric fully polymorphic equilirbium. For
strongest possible selection s = 4 the shown
parameter region r

s < 0.125 covers the whole
range. (From Bürger and Gimelfarb (1999))

The system may exhibit four types of equilibria: two monomorphic equillibria for
fixation of A1B2 and A2B1, two major-locus polymorphisms, two fully-polymorphic
asymmetric equilibria and one symmetric equilibrium with both loci polymorphic.

Classical analyses studied existence and stability in dependence on the ratio of
allelic effects γ2

γ1
as a parameter. Bürger and Gimelfarb used the standard deviation

of average allelic effects, denoted as σγ from now on, which allows for comparison
with results for arbitrary loci. In our implementation we followed their suggestion, cf.
Section 3.2.2.

Figure 2.1 shows the stability regions of the different equilbria. Stability of equilibria
depends on the strength of recombination relative to selection and on the disparity of
allelic effects. The more similar the average allelic effects of the loci are, the tighter
linkage must be to allow for existence and stability of a fully-polymorphic equilibrium.
Even if recombination becomes stronger relative to selection, at least one locus can be
maintained polymorphic at equilibrium, if the disparity in allelic effects is big enough.

2.3 Migration

In nature, many populations are spatially structured and gene flow occurs among the
subpopulations by migration. Different fitness schemes can act on the subpopulations
due to environmental differences. Since the early work (Wright, 1943; Kimura and
Weiss, 1964), population division in discrete demes has been modeled. As already
stated above, for this work, we restrict ourselves to two special cases of migration, the
Deakin model and the stepping-stone model. For a review of the single locus results
regarding these two specific migration schemes, refer to Karlin (1982). Here, we state
general results on the limiting case applying to a system of arbitrary number of loci
and alleles.

2.3.1 Strong Migration

Here we present a result for the case of strong migration relative to selection derived
by Bürger (2009). If selection is absent, the dynamics can be described by the weak
selection limit, a system of differential equations of deme-independent averaged allele
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frequencies. Moreover, the system converges to spatial homogeneity at a geometric
rate. By introducing weak selection, the dynamics of strong migration can then be
understood as a pertubation of the weak-selection limit.

Suppose the backward migration matrix M is constant and ergodic, i.e., irreducible
and aperiodic, then there exists a principal left eigenvector µ of M to the eigenvalue
1, such that

µTM = µT , and 1 > |λ|, for all other eigenvalues λ of M. (2.3)

µ is the stationary distribution of the Markov chain defined by the transition matrix
M . By the convergence theorem for ergodic matrices, it follows that for every κ with
|λ0| < κ < 1, where λ0 is a simple eigenvalue of M ,

||M tz − eµT z|| ≤ czκ
t, (2.4)

where cz is independent of t and e = (1, . . . , 1)T ∈ RΓ. Thus, in the absence of
other evolutionary forces, the population composition will converge to the stationary
distribution at a geometric rate. Motivated by this observation, we average the gamete
frequencies with respect to the stationary distribution µ:

Pi = µTpi and P = (P1, ..., PN)T ∈ ∆N , (2.5)

and measure the heterogeneity between demes by defining

qi,α = pi,α − Pi, (2.6a)

qi = (q1, ..., qΓ), (2.6b)

q(α) = p(α) − P, (2.6c)

q = (qT(1), ...q
T
(Γ)). (2.6d)

Recall that pi and p(α) were defined in (1.11).
To model weak selection, we define the fitness differences to be small compared to

migration and recombination:
wij,α = 1 + εrij,α (2.7a)

for ε > 0 small and |rij,α| < 1. From (1.3a) and (1.3b) it follows that

wi,α
(
p(α)

)
= 1 + εri,α

(
p(α)

)
, and w̄α

(
p(α)

)
= 1 + εr̄α

(
p(α)

)
. (2.7b)

Here,

ri,α
(
p(α)

)
=
∑
j

rij,αpj,α, and r̄α
(
p(α)

)
=
∑
i

ri,α
(
p(α)

)
pi,α. (2.7c)

We denote the set of the equilibria of the dynamical system (1.9), with the fitnesses
given above, by Ξε ⊂ ∆Γ

N . We average the allele frequencies at every locus according
to our stationary distribution and define the vector

π =
(
P

(1)
1 , ..., P

(1)
N , ..., P

(N)
1 , ..., P

(N)
N

)T
. (2.8)
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We set the average selection coefficients of allele in at locus n and the entire population
to be

ω
(n)
in

(π) =
∑
α

µαr
(n)
in,α

(π) =
∑
α

µα
∑
i|in

ri,α(π)
∏
k 6=n

p
(k)
ik,α

. (2.9a)

ω̄(π) =
∑
α

µαr̄α(π). (2.9b)

The weak-selection limit of our dynamical system (1.9) is then given by

dP
(n)
in

dt
= P

(n)
in

(
ω

(n)
in

(π)− ω̄(π)
)
, (2.10a)

q = 0. (2.10b)

We denote the set of the equilibria of the weak selection limit by Ξ0 ⊂ ∆Γ
N .

Theorem 2.3.1 (Weak Selection). Suppose the backward migration matrix M is con-
stant and ergodic and all equilibria of (2.10) are hyperbolic, the recombination rates
Ri,jl are fixed, and ε > 0 is sufficiently small.

(i) The sets Ξ0 and Ξε contain only isolated points. As ε → 0, each equilibrium in
Ξ0 converges to the corresponding equilibrium in Ξε.

(ii) In the neighborhood of each equilibrium in Ξ0, there exists exactly one corre-
sponding equilibrium in Ξε. The stability of the corresponding equilibrium in Ξε

is the same of the corresponding equilibrium in Ξ0.

(iii) Every solution of (1.9) with fitnesses given in (2.7a) converges to one of the
equilibrium points in Ξε.

Remark 2.3.1. Recall that soft selection exhibits a constant migration matrix M , while
hard selection does not. Thus, the theorem applies to the former. Hyperbolicity of
an equilibrium was defined in Section 1.2.4. Statement (ii) of Theorem 2.3.1 tells us
that none of the boundary equilibria moves outside the simplex ∆Γ

N . Statement (iii)
allows us to conclude that no complicated dynamics can occur, such as cycling, since
all trajectories converge.
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The model proposed in Chapter 1 was implemented using an object-oriented approach
in C#, .Net 4.0. The goal was not only to provide a one-time solution to numerically
study equilibrium properties for selected migration-selection dynamics, but to build a
program, which may be adapted and extended to different scenarios. The main ansatz
was to use the life cycle given in (1.10).

We implemented two applications: one for simulation and one for analysis. The
Simulator allows to setup a scenario and simulates the dynamical system for a given
set of parameters and initial values by iteration until a steady state is reached. It
stores the final gamete frequencies and quantities of interest in the database. The
Analyzer, on the other hand, allows to retrieve this information from the database
and to create statistics, tables and plots based on it. They are used for the numerical
investigations in Chapter 4.

In Section 3.1, we will motivate our ansatz. The implementation of the simulation
will be discussed in Section 3.2, where the object model is explained and details on the
design of the relational database as well as on the parameter handling and extensibility
is provided. Also, the tool implemented to analyze the data will be presented in
Section 3.2.5. Then, we present algorithmic details of already implemented scenarios
in Section 3.3.

3.1 Modeling the Life Cycle

First, let us summarize the assumptions of the model stated in Chapter 1 which, thus,
also apply to our implementation:

• The population is infinitely large and consists of diploid individuals.

• The sexes are equivalent as, e.g., in a monoecious species.

• Generations are non-overlapping and discrete.

• At each locus there is the same number of possible alleles.

• Selection acts based on viability and is independent of the current composition
of the population and of time.

• Migration occurs among adults and is independent of genotype.

• Reproduction is random. This ensures Hardy-Weinberg proportions among the
zygotes in each deme.
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Remark 3.1.1. Clearly, the above stated assumptions allow for arbitrary fitness models.
The models stated in Section 1.2.1 only provide a very small catalogue of possibilities.
Soft and hard selection, cf. (1.22) and (1.23), although the most common selection
models, may be generalized. Also, for the scenarios discussed in this thesis, we as-
sumed the absence of epistasis and dominance, (1.13), however, our implementation is
independent of this choice. Migration has to fullfill equations (1.4), and may depend
on the deme size. Thus, migration rates may change over time, cf. (1.32). Other ob-
voius choices for migration models would be the island model, circulant or directional
migration, the inhomogeneous Deakin model, or a higher-dimensional stepping stone
model, cf. Karlin (1982). Also note that our implementation does not apriori restrict
the number of alleles and loci. However, these numbers are restricted by memory and
processing capacities.

To model and simulate different possible scenarios for the life cycle given in (1.10),
we decomposed it into the following parts:

1. Basic simulation settings: The numerical accuracy, the maximum number of
generations, memory pool size, allele extinction error.

2. Definition of the number of loci L, the number of alleles I, and the number of
demes Γ.

3. Generation of the initial gamete frequencies, to which we will refer as initial
values from now on.

4. Setting the initial deme sizes {cα : α ∈ G}.

5. Generation of the fitness values {wij,α : i, j ∈ N, α ∈ G} for all possible zygotes.

6. Generation of the recombination probabilities {Ri,jl : i, j, l ∈ N}

7. Selection. Adjustment of the deme sizes cα 7→ c#
α and gamete frequencies pi,α 7→

p#
i,α.

8. Migration. Generation of the forward and backward migration rates, i.e., {mαβ, m̃αβ :
α, β ∈ G}. Adjustment of the deme sizes c#

α 7→ c′α and gamete frequencies
p#
i,α 7→ p′i,α.

One simulation run creates results for many different sets of parameters. Typically,
the dynamics is computed for various initial gamete frequencies, for multiple migration
rates and selection coefficients. For a given migration pattern (e.g. the Deakin model),
multiple migration parameters need to be tested. This led to the current approach,
which is based on the idea of creating multiple populations where each corresponds
to one set of parameters. Such a combination of parameters is represented by a set of
patterns. We distinguish six types of patterns: initial value patterns, deme patterns,
fitness patterns, recombination patterns, selection patterns, and migration patterns.
These patterns correspond to steps three to eight of the list above. Step one and two
will be fixed for a single simulation run.
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3.2 Implementation

3.2.1 The Object Model

Here we discuss the implementation of our simulation approach, all mentioned classes
and interfaces and their relations are sketched in Figure 3.1. In the following we use
the typewriter font and upper camel notation to refer to classes, class-instances, or
methods and properties defined within the implementation.

Every instance of the Population class holds a field of SubPopulations it is com-
posed of. Every SubPopulation holds the current composition of gametes, the relative
deme size, and the fitness values including marginal and mean deme fitnesses. Starting
a new simulation run results in a new instance of the Simulation class, which creates
Populations based on the defined scenario. The two structs PopulationDimensions
and SimulationSettings correspond to step one and two of the list above and define
the basic terms for the simulation run.

Steps three to eight of the list above were mapped to interfaces, providing all neces-
sary input for a population run. Thus, construction of a new Population requires the
applied patterns, implementing these interfaces. Generators allow to create multiple
patterns. Each of the patterns is created by a generator, which is implemented to
be an enumeration of the corresponding pattern via the IEnumerable interace, c.f.
Drayton et al. (2003). Table 3.1 provides an overview on the interfaces involved and
their purpose. Every pattern interface inherits from the base interface IPattern.

For example, a homogeneous Deakin model can be implemented as follows: A
MyDeakinGenerator class implementing the IMigrationModelGenerator interface.
Therefore, it provides a graphical user interface to define the set of migration rates
(µ1, ...µn). The generator creates an instance of the MyDeakinPattern class for each
migration rate µi. The MyDeakinPattern class implements the IMigrationPattern

interface.
An implementation of the IInitialValueGenerator may allow to set the number

of generated initial values and their euclidian distance. Based on this information,
instances implementing the IInitialValuePattern interface are constructed and ac-
cessible via the generator.

The Simulation creates Populations based on all possible combinations of pat-
terns provided by the generators. The responsible StartSimulation method, imple-
mented by the Simulation class, asynchronously starts the Evolve method on all
Populations. This method creates the initial composition of the population and sim-
ulates the given dynamics based on the provided patterns; see the pseudo code of
Algorithm 1. If the gamete frequencies {pi,α : i ∈ N, α ∈ G} stagnate for a certain
number of generations as to the significant decimal place, the population is assumed to
have reached an equilibrium. The number of generations and the precision of the stag-
nation, i.e., significant decimal place, are set by the user. Former is reflected by the
RepeatCount property, and latter by the Error property of the SimulationSettings
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Simulation
- SimDataConnection: ISimDataConnection[1]
- SimSets: SimulationSettings[1]
- PopDims: PopulationDimensions[1]
 
+ StartSimulation()

«interface»
IParametrizedGenerator<T>: T

+ Form:BaseModelForm
+ Name:string

«interface»
IEnumerable<T> where T : IPattern

«interface»
IFitnessGenerator

«interface»
ISelectionModelGenerator

«interface»
IMigrationModelGenerator

«interface»
IInitialValueGenertor

«interface»
IRecombinationGenerator

«interface»
IDemeGenerator

1 1

1 1

1 1

1 1

1 1

1 1

implements via 
IInitialValuePattern

implements via 
IDemePattern

implements via 
IFitnessPattern

implements via 
ISelectionPattern

implements via 
IRecombinationPattern

implements via
IMigrationPattern

 1

     1..*

 creates   and runs 

Population
- SimDataConnection: ISimDataConnection[1]
- SimSets: SimulationSettings[1]
- PopDims: PopulationDimensions[1]
 
+ Evolve(IInitialValuePattern initialValuePattern
   IRecombinationPattern recombinationPattern,
   IFitnessPattern fitnessPattern, 
   ISelectionPattern selectionPattern, 
   IMigrationPattern migrationPattern,
   IDemePattern demePattern,
   ISimDataConnection simDataConnection,
   SimulationSettings simSets) «interface»

ISelectionPattern
+ ApplySelectionModel(SubPopulation[T] subPops,double[N,N,N] recombinationProbs, 
   IList<int[3]> recombinationIndices):SubPopulation[T]

«interface»
IMigrationPattern

+ ApplyMigrationModel(SubPopulation[T] subPops):SubPopulation[T]

«interface»
IInitialValuePattern

+GetInitialValues():double[T][N]

«interface»
IDemePattern

+ GenerateDemes(IFitnessPattern fitnessPattern, 
   IInitialValuePattern initialValuePattern):SubPopulation[T]

«interface»
IRecombinationPattern

+ GetRecombinationProbabilities(out IList<int[]> recombinationIndices):double[N,N,N]

«interface»
IFitnessPattern

+ GeneticValues:double[N,N]
+ GetFitnessMatrix():double[N,N]

SubPopulation
- Fitnesses:double[N,N]
+ DemeSize:double
+ GameteFrequencies:double[N]
+ MarginalFitnesses:double[N]
+ MeanFitness:double
+ UpdateFitness()

      1..*

1
           applies

  1..*

1
      applies

    1..*

1
          applies

1..* 1
      applies

  1..*

1
       applies

 1

 T

containes and manages 

«interface»
 IPattern

+ DatabaseIndex : int [1]

«interface»
ISimDataConnection

+ SimRunId: int
+ PopulationDimensions: PopulationDimensions
+ SimulationSettings: SimulationSettings
 
+ SavePattern(Generator generator, IList<DataTableParameter> parameters):int
+ SaveInitialValuePattern(IList<DataTableParameter> parameters, double[][] initialValues): int
+ SaveDemePattern(IList<DataTableParameter> parameters, double[] initialDemeSizes): int
+ SaveFitnessPattern(Generator model, IList<DataTableParameter> parameters, 
   double[] avgAllelicEffects, double[,] geneticValues, IList<double[,]> fitnessValues): int
+ SaveRecombinationPattern(IList<DataTableParameter> parameters, double[,] recombinationProbs): int
 
+ CreateTableParameter(string displayName, GeneratorType generator, ParameterType type, 
   object value): DataTableParameter       
 
+ CreateSimDbEntry(string name, string demeGenerator, string migrationModel, string fitnessGenerator,
   string recombinationModel, string selectionModel, string initialValueGenerator)
+ UpdateSimDbEntry(DateTime endTime, bool storeDict)
 
+ StorePopRunInDb(IInitialValuePattern initialValuePattern, IRecombinationPattern recombinationPattern,
   IFitnessPattern fitnessPattern, ISelectionPattern selectionPattern, IMigrationPattern migrationPattern,
   IDemePattern demePattern, SubPopulation[] subPops, int iterations, DateTime startTime, bool foundEquilibrium,
   IList<double[]> gameteFrequ, double[,,] recombinationProbs, IList<int[]> recombinationIndices)
        

«Struct»
PopulationDimensions

+ NrOfDemes:byte
+ NrOfAlleles:byte
+ NrOfLoci:byte
+ NrOfGametes: int

«Struct»
SimulationSettings

+ RepeatCount: int
+ Error: double
+ MaxIterations: int
+ PoolSize: short
+ AlleleExtinctError: double

     1..*

1
         applies

Figure 3.1: Simplified UML representation of the main classes and interfaces. Please note
that the number of demes is denoted by T instead of Γ as usual.
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3.2 Implementation

IParametrizedGenerator IPattern Pattern Description

IInitialValueGenerator IInitialValuePattern Provides the initial gamete fre-
quencies.

IFitnessGenerator IFitnessPattern Generates the fitness values for
all possible combination of ga-
metes, i.e., the zygotes.

IDemeGenerator IDemePattern Generates the initial subpopula-
tions based on the initial gamete
frequencies and the fitness val-
ues.

IRecombinationGenerator IRecombinationPattern Provides all possible recombina-
tions and their probabilities.

ISelectionModelGenerator ISelectionPattern Updates the gamete frequencies
and the deme sizes depending
on the provided recombination
probabilities, fitness values, and
current population composition.

IMigrationModelGenerator IMigrationPattern Updates the gamete frequencies
and deme sizes depending on the
current population composition.

Table 3.1: The IParametrizedGenerator interfaces, their corresponding IPattern inter-
faces, and the patterns function within the life cycle.

class. The MaxIterations property sets the maximal number of iterations before the
population run is aborted.

Our implementation allows for parallel computing on multi-core systems. Using
the System.Threading.ThreadPool class provided by the .Net Framework, (Drayton
et al., 2003), Populations created by the Simulation are executed parallel on the
CPUs. The maximum number of parallel instanced and executed Populations is set
by the SimulationSettings.PoolSize property.

3.2.2 The Database

To store the data gathered by simulation runs, a Microsoft SQL Server 2008 Express
instance was used, utilizing the LINQ to SQL technology to create an object relational
mapping, (Kansy, 2010). Via the ISimDataConnection interface, the Simulation,
Population, and all patterns share an instance handling all database related issues,
as depicted in Figure 3.1. The ISimDataConnection interface provides methods to
store information on simulations, populations and patterns in the database. The used
relational database comprises one table for the simulation runs, one for the created
populations, and one for each type of patterns to minimize redundancy, please refer
to Figure 3.2.
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3 The Simulation Approach

Algorithm 1 Population.Evolve
Description: Starts the simulation of the population. Calls fitness calculations, selection
and migration procedures, checks for an equilibrium and stores results in the database as
soon as equilibrium was found or iterations exceed the maximum number.
Input: initialValuePattern, demePattern, fitnessPattern, recombinationPattern, selection-
Pattern, migrationPattern (IPattern): The set of patterns.
simDataConnection (ISimDataConnection): The connection to the database.
simSets (SimulationSettings): The basic simulation settings.
Output: void

1: IList<double[ ]> recombinationIndices; //setup the population

2: double[ , , ] recProbs = recombinationPattern.
GetRecombinationProbabilities(out recombinationIndices);

3: IList<SubPopulation> subPops =
demePattern.GenerateDemes(fitnessPattern, initialV aluePattern);

4: bool foundEquilibrium = false; //set initial variables

5: int stagnationCount = 0;
6: int iterations = 0;
7: for iterations = 1 to simSettings.MaxIterations do //life cycle iteration

8: List<double[ ]> startGameteFreq = CopyGameteFrequencies(subPops);
9: for each subPop in subPops do //update all fitness values

10: subPop.UpdateF itness();
11: end for
12: selectionPattern.ApplySelectionModel(refsubPops, recProbs,

recombinationIndices);
13: migrationPattern.ApplyMigrationModel(refsubPops);
14: if GameteFrequDiffer(startGameteFreq, subPops, simSets.Error) then

//check for stagnation

15: stagnationCount = 0;
16: else
17: stagnationCount++;
18: if stagnationCount ≥ simSets.RepeatCount then
19: foundEquilibrium = true;
20: break; //end loop and store population

21: end if
22: end if
23: end for
24: simDataConnection.StorePopRunInDb(initialV aluePattern, demePattern,

recombinationPattern, fitnessPattern, selectionPattern, migrationPattern,
subPops, recProbs, recombinationIndices, iterations, foundEquilibrium);
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3.2 Implementation

«Table»
PopulationRuns

<pk> PopulationRunId: int
<fk> SimulationRunId: int  
FoundEquilibrium: tinyint 
Iterations: int 
DateTimeStart: datetime 
DateTimeEnd: datetime 
GameteFrequencies: varchar(max) 
MeanDemeFitnesses: varchar(max) 
MeanPopFitness: float 
DemeSizes: varchar(max) 
DemeSizeVariance: float
TotGenVarByDeme: varchar(max) 
TotGenVarWMean: float 
TotGamVarByDeme: varchar(max) 
TotGamVarWMean: float 
PresAllelesByDeme: varchar(max) 
PresGametesByDeme: varchar(max) 
PresAllelesTotal: tinyint 
PresGametesTotal: int 
PresAllelesByLocus: varchar(max) 
PresDemes: tinyint 
LinkageDisequilibrium: varchar(max) 
PolymorphicLoci: tinyint 
FullpolymorphicLoci: tinyint 
AvgSubPopVar: float 
Qst: float 
 
<fk>InitialValuesPatternId: int 
<fk>MigrationPatternId: int 
<fk>FitnessPatternId: int 
<fk>RecombinationPatternId: int 
<fk>DemePatternId: int 
<fk>SelectionPatternId: int 

«Table»
SimulationRuns

<pk> SimulationId: int
SelectionModel: varchar(50)
MigrationModel: varchar(50)
RecombinationModel: varchar(50)
InitialValueGenertor: varchar(50)
NrOfLoci: tinyint
NrOfGametes: int
NrOfAlleles: tinyint
NrOfDemes: tinyint
DateTimeStart: datetime
DateTimeEnd: datetime
DemeGenerator: varchar(50)
FitnessGenerator: varchar(50)
MaxIterations: int
AccuracyDecimalPlace: tinyint
AlleleAccuracyDecimalPlace: tinyint
RepeatCount: int
PoolSize: smallint
Name: varchar(50)
DataTableParameters: varchar(max)

SimulationId SimulationRunId
<fk> SimulationRun

PatternId

InitialValuesPatternId

<fk> InitialValuePattern

«Table»
InitialValuePatterns

«pk» Id: int 
«fk» SimRunId: int
InitialValues: varchar(max) 
P_DECIMAL_1: smallmoney 
P_DECIMAL_2: smallmoney
P_DECIMAL_3: smallmoney 
P_DECIMAL_4: smallmoney 
P_DECIMAL_5: smallmoney 
P_STRING_1: varchar(max) 
P_STRING_2: varchar(maxs)
P_INT_1: int
P_INT_2: int 
P_INT_3: int

SimulationRunId

<fk> SimulationRun

«foreign keys»

«foreign keys»
other pattern tables

Figure 3.2: The design of the relational database to store information on simulation runs.
We only represented the table for the initial value patterns, and ommited the other pattern’s
tables for clarity. Analogously, all pattern tables are referenced by a foreign key within the
PopulationRuns table and contain a foreign key to the SimulationRuns table, as denoted by
the dashed lines. Moreover, all patterns share the parameter columns, starting with ‘P’, as
well as the columns ‘Id’ and ‘SimRunId’, defining the primary and foreign key, respectively.

A simulation run table entry holds the population dimensions, the simulation set-
tings, information on the used generators and a serialization of a dictionary on the
data table parameters, which will be discussed in more detail later in Section 3.2.3.

All pattern tables hold various columns for data table parameters of different type
(varchar, int, smallmoney) and may hold additional dimensions, as for example,
the InitialValuePatterns holds a column of type varchar named InitialValues to store
the serialized initial gamete frequencies. The general and special columns of all pa-
rameter tables are listed in Table 3.2.

The PopulationRuns table references the set of patterns and the simulation run via
foreign keys. Additionally, information on the population composition and measures,
as defined in Section 1.3, are stored in the columns, see Table 3.3. These measures
are calculated and stored in the database by calling the StorePopRunInDb method on
the ISimDataConnection class, see Figure 3.1.

3.2.3 Dynamic Parameter Handling

Every generator may exhibit multiple parameters. Internally, a DataTableParameter

has a type, either Int, Decimal, or String, or Double[], as well as a display name, and
refers to a specific generator. Construction of a new pattern then necessitates a list of
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3 The Simulation Approach

Table Column Description

All Pattern Tables Id:int The primary key.
SimRunId:int The foreign key to the simula-

tion run.
P String *: varchar(max) Parameter columns of type var-

char, string, respectively.
P Decimal *: smallmoney Parameter columns of type

smallmoney, decimal, respec-
tively.

P Int *: int Parameter columns of type int.
InitialValuePatterns InitialValues: varchar(max) Serialized initial gamete fre-

quencies.
FitnessPatterns GeneticValues: varchar(max) Serialized genetic values for all

zygotes.{Gij : i, j ∈ N}
FitnessValues: varchar(max) Serialized fitness values for all

zygotes in all demes.
{wij,α : i, j ∈ N, α ∈ G}

AvgAllelicEffects:varchar(max) Serialized allelic effects of all
loci.{κk : k ∈ I}

AvgAllelicEffect: float Mean average allelic effect.
κ̄ =

∑
k κk/I

AvgAllelicEffectStDev: float Standard deviation of average
allelic effects.
σκ̄ =

√∑
k(κk − κ̄)2/I

RecombinationPatterns RecombinationProbabilities:
varchar(max)

Serialized recombination proba-
bilities, {Ri,jl : i, j, l ∈ N}.

DemePatterns InitialDemeSizes: varchar(max) Serialized initial deme sizes,
{cα : α ∈ G}.

Table 3.2: Pattern table columns.
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3.2 Implementation

Column Description & Formula

AvgLinkageDisequilibrium:float Average linkage disequilibrium D̄, as defined in
(1.49).

AvgSubPopVar:float The average variance of gametes within subpopu-
lations V̄ , as defined in (1.46).

DemeSizes:varchar(max) Serialized deme sizes.
{cα : α ∈ G}

FoundEquilibrium:tinyint 1 if an equilibrium was reached, 0 else.
FullPolymorphicLoci:tinyint Total number of full polymorphic loci.

card({k ∈ L : p
(k)
ik

> εafor all ik ∈ I})
GameteFrequencies:varchar(max) Serialized gamete frequencies.

{pi,α : i ∈ N, α ∈ G}
Iterations:int The number of simulated generations until equilib-

rium state or abortion.
LinkageDisequilibrium:varchar(max) Serialization of the linkage disequilibrium coeffi-

cients stored separately for all demes and gametes.
{Di,α : i ∈ N, α ∈ G}

MeanDemeFitness:varchar(max) Serialized mean deme fitnesses.
{w̄α : α ∈ G}

MeanPopFitness:float Mean population fitness, w̄.
PresAllelesByDeme:varchar(max) Serialized numbers of present alleles within all

demes.
{card({p(k)

ik,α
> εA : ik ∈ I, k ∈ L}) : α ∈ G}

PresAllelesByLocus:varchar(max) Serialized numbers of present alleles by locus.

{card({p(k)
ik,α

> εA : ik ∈ I, α ∈ G}) : k ∈ L}
PresAllelesTotal:int The total number of present alleles.

card({p(k)
ik,α

> εA : ik ∈ I, k ∈ Lα ∈ G}
PresDemes:tinyint Number of demes with a positive relative size.

card({cα : cα > εD})
PresGametesByDeme:varchar(max) Serialized numbers of present gametes within all

demes.
{card({pi,α > εA : i ∈ N}) : α ∈ G}

PresGametesTotal:int Total number of present gametes.
card({pi,α > εA : i ∈ N, α ∈ G})

PolymorphicLoci:tinyint Total number of polymorphic loci.

card({k ∈ L : p
(k)
ik

> εafor at least twoik})
QST:float QST as defined in (1.47).
TotalGamVarByDeme:varchar(max) Serialized total gametic variances within all demes.

{σ2
Gam,α : α ∈ G}

TotalGamVarWMean:float The mean total gametic variance, σ2
Gam.

TotalGenVarByDeme:varchar(max) Serialized genetic variances within all demes.
{σ2

G,α : α ∈ G}
TotalGenVar:float The total genetic variance in the metapopulation,

σ2
G, as defined in (1.41).

Table 3.3: Description of the measure columns contained in the PopulationRuns table.
Here, εD and εA denote the error defined by the SimulationSettings.Error property and
the SimulationSettings.AlleleExtinctError property, respectively.

27



3 The Simulation Approach

DataTableParameter

+ DataBaseColumn: string
+ Type: ParameterType
+ Generator: GeneratorType

«enum»
GeneratorType

DemeGenerator,
FitnessGenerator,
InitialValueGenerator,
MigrationModelGenerator,
RecombinationGenerator,
SelectionModelGenerator

1

«enum»
ParameterType

String,
Int,
Decimal,
DoubleArray

  1

«stereotype»
Generator 1..*1

creates

using«interface»
ISimDataConnection

     1..*

holds, stores serialized in database

   1..*

 1

creates

«stereotype»
Patterncreates entry in 

pattern's table using

Database
manages 

connection to

The column name 
in the pattern's table.

«interface»
IAnalysisDataConnection

Simulation

Analysis

manages connection to

Reconstructs the data 
table parameters.

Figure 3.3: The DataTableParameter class. The generator and pattern stereotypes repre-
sent instances of the different specializations of the IParametrizedGenerator, and IPattern

interfaces.

parameter values, representing the current parameter set of the pattern. For example,
in the case of a quadratic fitness generator, a typical parameter set would be given
by the selection coefficient, the position of the optimum, and allelic contributions.
The resulting pattern will then apply one such specific parameter set. We need to
keep track of the used parameters. This way, we can retrieve information on the
parameters used for a single population run for the analysis later on. The database
tables for the patterns provide rows to store the parameter values and every stored
simulation run holds a serialized dictionary of the parameter mapping. Using our
approach of centralized management of the parameters by the ISimDataConnection

interface, new parameters are created dynamically during runtime and all information
regarding the used parameter set may be retrieved during analysis. This way, new
generators and patterns, providing different parameters, may easily be implemented.
The analysis tool then reconstructs the parameters and allows to create plots and
tables based on them. Figure 3.3 shows the workflow regarding creation and handling
of the DataTableParameters and details on their implementation.

3.2.4 User Interface

The simulator provides a simple user interface to set up new simulation runs. To em-
bed new implementations of generators and patterns, every IParametrizedGenerator
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3.3 Algorithmic Details

implementation also may provide a Windows.Form, to be integrated as user interface.
If an implementation of the IParametrizedGenerator interface provides such an user
interface, accessible via the Form property, see Figure 3.1, it is then integrated auto-
matically into the frontend of the application.

3.2.5 The Analytic Tool

After data collection via simulation, often another program is used to visualize the data
properly. Therefore, extraction of the data and data conversion into the desired format
has to be accomplished. To provide an easier way to visualize the data of a simulation
run, we implemented an analytical tool, from now on simply called the Analyzer.
The Analyzer can directly access the data stored for the completed simulation runs
and provides a plotting functionality, as well as it facilitates the creation of simple
tables. This allows the user to quickly navigate through the data to reveal interesting
patterns without any overhead on data conversion issues. The basic design of the
implementation is sketched in Figure 3.4.

All plots presented in this thesis were generated with the Analyzer Plotter Gui. The
tabled data was generated and exported using the Table Gui.

The Plotter allows to adapt the visual depiction via color-coding and shape-coding,
labeling, zooming, and scaling. Moreover, it provides functionalities to save the plots
in different graphic formats, .png, .jpg, .gif. It allows to save and reload plotted data
in a proper format. The visualization of the data and user interaction handling uses
and is based on the open source project ZedGraph1.

The Table provides export functionality for the free software R2 and in a .csv format.

3.3 Algorithmic Details

This section provides details on algorithms. Section 3.3.1 concerns a general data han-
dling issue. All the other presented algorithms concern implementations of generators
and patterns used for the simulations presented in Chapter 4.

3.3.1 Allelic Composition of a Gamete

Our implementation of the SubPopulation class represents the gamete frequencies
{pi,α : i ∈ N} for deme α as an array of double precision floating point numbers of
dimension N. We need to keep track only of the gamete frequencies to apply the
selection and migration dynamics. Setting up the fitness values or calculation of
recombination rates depends on the allelic composition of the gamete, i.e., which allele
is present on which locus. Recall that this was described by a multi-index, see Section
1.2.

Thus, we have to be able to switch from one representation to the other, i.e., to
calculate the allelic composition from the array-index of the gamete. This mapping is

1http://sourceforge.net/projects/zedgraph/; visited on December 22nd 2011
2http://www.r-project.org; visited on December 22nd 2011
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1..*

   1..*

   1

creates 

 1
creates

Databaseuses SQL statements 
to extract data

«GUI»
Analyzer

[Allows selection of specific 
simulation run from the database]

1..*
«GUI»
Plotter

«GUI»
Table

«interface»
IAnalysisDataConnection

+ SimRunId: int
+ PopulationDimensions: PopulationDimensions
+ SimulationSettings: SimulationSettings
 

+ GetParameterValues(DataTableParameter dataTableParameter): IList<object>
+ GetParameterValues(string parameter): IList<object> 
+ GetParameterNames(): string[]
 
+ GetColumnByParameter<T>(IDictionary<string, object[]> parameters, string parameterName, object parameterValue, string columnName): IDictionary<int, T>
+ GetColumnByParameterAveraged(IDictionary<string, object[]> parameters,string parameterName, object parameterValue,string columnName): IDictionary<int, double> 
 
+ GetColumnAveraged(IDictionary<string, object[]> parameters, string columnName): IDictionary<int, double>
+ GetColumn<T>(IDictionary<string, object[]> parameters, string columnName): IDictionary<int, T>
 
+ GetNumericParameter(IDictionary<string, object[]> parameters, string axisParameter): IDictionary<int, double>
+ GetNumericParameterByParameter(IDictionary<string, object[]> parameters, string parameter, object parameterValue, string axisParameter): IDictionary<int, double>
 
+ GetRunsByParameter(IDictionary<string, object[]> parameters, string parameter, object parameterValue): IList<int> 
 
+ GetEquilibriaAnalysis(IDictionary<string, object[]> parameters, EquilibriaAnalysisType analysisType): IDictionary<int, object>
   

«Interface»
ISubTable

+ Calculate(IDictionary<string, object[]> parameters, IAnalysisDataConnection connection, string parameter, object[] parameterValues): SubTable

«Interface»
IAxis

+ CalculateAxis(IAnalysisDataConnection connection, IDictionary<string, object[]> parameters):  IDictionary<int, double>

AnalyticsManager

+ GetAxes(): IList<string>
+ GetSubTables(): IList<string>
 
+ Calculate3DimResultByZ(string xAxis, string yAxis, string zAxis, IDictionary<string, object[]> parameters): IDictionary<object, IList<double[]» 
+ CalculateTable(string parameter, object[] parameterValues, string[] analytics, IDictionary<string, object[]> dictionary): TableResult

calls

calls1

1 creates

calls

calls uses

uses

BACKEND

GUI

Figure 3.4: The IAnalysisDataConnection interface provides access to the data stored in
the database. The Analyzer provides two graphical user interfaces to display the data, a
table-based depiction and a plotter, the two classes called Table and Plotter. Both inherit
the Windows.Form base class. For a selected simulation run, an arbitrary number of these
Forms can be created and used parallel to facilitate comparison of the data. A Table allows
to create a table of averaged measures from the data stored in the database. Every measure
available for selection implements the ISubTable interface. This allows to extend the imple-
mentation by implementing additional measures, if needed. Additionally, the results can be
grouped by a specific DataTableParameter. The Plotter uses implementation of the IAxis
class, which defines one axis of the plotter. The CalculateAxis method returns a dictionary
of population run ids and the corresponding axis value. This way, the axes can be calculated
parallelized and the results joined later on in the analysis. Access to the data of a com-
pleted simulation run stored in the database is handled via the IAnalysisDataConnection

interface. This interface is used by the IAxis and ISubTable implementations. The imple-
mentation of the IAnalysisDataConnection then uses SQL statements to extract the data
from the database. Many methods are generically and this way cover the different use of
IAxis and ISubTable implementations.
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3.3 Algorithmic Details

defined by a function C : N0 → NL0 , i 7→ i, where i = (i1, ..., iL) denotes the multi-index
and i the array-index of the gamete. We define the bijective function C by the inverse
C −1

C −1(i) = i1I
L−1 + i2I

L−2 + ...+ iLI
0 (3.1)

Implementation of the functions is given in pseudo code, see Algorithm 2 and Algo-
rithm 3. Note that for uniqueness of the decomposition, we have to begin numeration
of the gametes as well as of the alleles at zero. The first possible allele is thus always
denoted by zero, as usual for indices within arrays, e.g., the gamete consisting of the
first allele on every locus, is given by (0, ..., 0).

Algorithm 2 CalculateAllelicComposition
Description: Calculates the allelic composition of the gamete index
Input: i (int): The index of the gamete.
L (int): The number of loci
I (int): The number of alleles
Output: (int[L]): The allelic composition

1: int total = i;
2: int[] alleleComp = new int[L];
3: for int index = L− 1 to 0 step −1 do
4: double basis = I index;
5: int k = b total

basis
c;

6: total = total%basis;
7: alleleComp[i] = k;
8: end for
9: return alleleComp;

Algorithm 3 CalculateGameteIndex
Description: Calculates the gamete index from the allelic composition
Input: alleleComp (int[L]): The allelic composition
L (int): The number of loci
I (int): The number of alleles
Output: int: The index of the gamete

1: int i = 0;
2: int j = 0;
3: for int index = L− 1 to 0 step −1 do
4: i+ = alleleComp[j]I index;
5: j + +;
6: end for
7: return i;
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3 The Simulation Approach

3.3.2 Calculation of Recombination Probabilities

We implemented a special case of recombination, as stated in Section 1.2.2. We used
equation (1.25) to design an algorithm that, given ρ = (ρ1, ..., ρL−1), calculates the
probability Ri,jl that the gamete i is formed by recombination of the parental gametes
j and l.

The applied algorithm, see Algorithm 4, proceeds from one locus to the next. The
current locus is represented by the index parameter. If either of both provided parents
exhibits the same allele as the offspring on the locus, the algorithm is called recursively
with adapted joint probability p for the next locus. If neither of the parental gametes
has the same allele on the current locus, 0 is returned. To enable the algorithm to
deal with the starting index = 0 correctly, we redefine the recombination rates to
ρ̂ = (0.5, ρ1, ..., ρL−1), a vector of length L, before calling this method.

In each iteration step, i.e., for each generation, the provided ISelectionPattern

of a population calculates the right hand side of (1.9b). To reduce the computational
costs, we only summed over those indices, exhibiting strictly positive recombination
rates. Therefore, the recombination pattern does not only provide the recombination
probabilities R(i, jl), but also the indices (i, jl) exhibiting a recombination probability
not equal to zero, i.e., R(i, jl) > 0. Thus, (1.9b) is implemented as

p#
i,α =

1

w̄α

∑
φ∈Φ

P (φ)pφ1,αpφ2,αwφ1φ2,α, (3.2)

where, the recombination probabilities R(i, jl) are stored in a three dimensional array
P . The positive recombination indices Φ are stored as a list of vectors. Every φ ∈ Φ
is a vector of positive integers φ = (φ0, φ1, φ2), where φi ∈ N+ for i = 0, 1, 2.

Example: Let the number of loci be L = 3, the number of alleles I = 2. The recombi-
nation probabilities between the loci are given by ρ = (0.2, 0.3). Let’s calculate the re-
combination probability for the two gametes G1 = A(1)B(2)B(3) and G2 = A(1)A(2)A(3)

to have an offspring G3 = A(1)B(2)A(3). Obviously, there are two possible recombina-
tion events, see Figure 3.5.

Therefore, we use Algorithm 4. p = 1, L = 3, index = 0, child = (0, 1, 0),
currentParent = (0, 1, 1), otherParent = (0, 0, 0), ρ̂ = (0.5, 0.2, 0.3).

Since both parents have the offspring allele A on the first locus, both cases occur
(line 6 and 10). Let’s take a look at the first case (recombination 1 in Figure 3.5).
We will come back to line 10 later. Here, we call the algorithm recursively with
p = 0.5(1− 0.5) = 0.25, index = 1, the other parameters stay the same. This reflects
no recombination. Still, the currentParent = G1 is correct, exhibiting allele B at
the second locus. Again, no recombination is necessary, see line 7; the algorithm is
called again for p = 0.25(1 − 0.2) = 0.2, index = 2. This time a recombination is
necessary to result in allele A on the third locus, thus line 10 results in true, the
algorithm is called for p = 0.2· 0.3 = 0.06, index = 3. This time, line 1 returns true
since the we reached the last locus. The algorithm returns p = 0.06. Recall, we
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Algorithm 4 CalculateRecombinationProbability
Description: Calculates the recombination probability for the parental gametes j and l to
have an offspring gamete i.
Input: p (double): The joint probability
L (int): The number of loci.
index (int): The current locus.
child (int[L]): The allelic composition of the offspring gamete.
currentParent (int[L]): The allelic composition of the first parent gamete.
otherParent (int[L]): The allelic composition of the second parent gamete.
ρ̂ (int[L]): The recombination rates.
Output: double: The probability for a recombination resulting in the offspring.

1: if index = L then //On the last index, return the current probability

2: return p;
3: end if
4: bool caseHit = false;
5: double sum = 0;
6: if currentParent[index] = child[index] then //If current parent is correct,

proceed without recombination via recursive call

7: sum+ = CalculateRecombinationProbability(p(1− ρ̂[index]), L, index+ 1,
child, currentParent, otherParent);

8: caseHit = true;
9: end if

10: if otherParent[index] = child[index] then //If other parent is correct, proceed

with recombination via recursive call

11: sum+ = CalculateRecombinationProbability(pρ̂[index], L, index+ 1, child,
otherParent, currentParent);

12: caseHit = true;
13: end if
14: if caseHit then //If no case has been hit, recombination is not possible, return 0

15: return sum;
16: else
17: return 0;
18: end if
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3 The Simulation Approach

Figure 3.5: Example for two possible recombination events resulting from different combi-
nations of crossover events in the case of 3 loci.
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3.3 Algorithmic Details

still have another case untracked, the call on line 6 from the beginning returns 0.06,
which is added to the variable sum. Then, line 10 returns true, resulting in another
algorithm call (recombination 2 in Figure 3.5). This reflects the possibility of starting
with the second parent as currentParent (This is the reason why we replaced ρ, the
recombination probabilities between loci, by ρ̂). This time the recursive calls result
in p = (0.5· 0.5)(0.2)(0.3) = 0.015, reflecting the discussed change of parent and two
recombination events. This is also added to the variable sum = 0.06 + 0.015 = 0.075,
which is returned as the probability by the algorithm on line 15.

Internally, the allelic compositions of the gametes are stored by arrays of integers,
i.e., G1 = [0, 1, 1], G2 = [0, 0, 0], G3 = [0, 1, 0]. Since the recombination probability
for this case is not zero, a recombination index would be created. Therefore, we also
need to calculate the gamete indices for our example. Therefore, we use Algorithm 3.
For the parameters alleleComp = G1 = [0, 1, 1], L = 3, I = 2, the algorithm returns
the gamete indexg1 = (0· 22) + (1· 21) + (1· 20) = 3. Analogously, we calculate the
gamete index g2 = 0 and g3 = 2 for gametes G2 and G3, respectively. This results in
the recombination index φ1 = [2, 3, 0] and of course φ2 = [2, 0, 3]. The recombination
probability array Φ is adapted to Φ[φ1] = Φ[φ2] = Φ[2, 3, 0] = Φ[2, 0, 3] = 0.075.

3.3.3 Fitness Values Construction

We calculated the fitness values by applying a fitness function Wα in each deme α to
the genotypic values Gij, see Section 1.2.1. A genotypic value is the sum of the allelic
contributions. To construct the allelic contributions, we used the same approach as
stated by Bürger and Gimelfarb (1999).

We allow to set the sum of allelic contributions for a single allele, and, create
randomized sets of allelic contributions summing-up correctly. This means, we define
γ̄n =

∑
k γ

(k)
nk , where n = (n1 = n, ...,nL = n) denotes the gamete exhibiting allele n

on every locus.
The implementations of the implemented fitness generators work exactly reverse,

accepting a set {γ̄n : n ∈ I} for all alleles as input and generate positive random
numbers {γnk : k ∈ L} for each allele n summing up correctly.

Moreover, we allowed to define the minimal distance εA in standard deviation of
allelic effects between the sets. This allows us to force construction of nearly uniform
distribution in standard deviation of allelic effects, see Table 3.2 and (1.38).

3.3.4 Initial Value Construction

Our implementation to construct the initial value sets ensures the initial gamete fre-
quencies to have a minimum Euclidean distance in at least one deme. This means
that for two initial value sets P = {pi,α : i ∈ N, α ∈ G} and Q = {qi,α : i ∈ N, α ∈ G},√∑

i

(pi,α − qi,α)2 > εE (3.3)

for at least one α, where εE defines the minimal Euclidean distance.
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4 Quadratic Stabilizing Selection

Previous results on quadratic stabilizing selection, cf. Section 2.2, on the one hand
show that high genetic variability can be preserved in a two locus system, given enough
disparity of the allelic effects. On the other hand, numerical results suggest that the
genetic variance and the probability for polymorphic loci declines rapidly for increas-
ing number of loci. How does population subdivision and migration influence this
behavior, and can it account for a higher genetic variability? Therefore, we model
a quantitative trait under stabilizing selection in multiple demes. To model different
selection pressures within the demes, we define the quadratic fitness functions to ex-
hibit different positions of the maximum. Thereby we want to address the following
questions:

• Genetic variability: Can a higher amount of genetic variability be maintained
by introducing migration?

• Polymorphism: Does migration allow for higher probability of polymorphic loci
and full polymorphisms?

• Equilibria: How many stable equilibria can coexist in such a system? Depending
on migration, how does the equilibrium structure change?

• Strong migration: How strong must migration be relative to selection, i.e., how
weak must selection be, to create results which can be understood as pertubation
of the weak selection limit? How does the relationship of selection and migration
influence the behavior of the dynamical system?

• Weak migration: How weak must migration be relative to selection and recom-
bination, so that the resulting equilibria can be considered as a perturbation of
the equilibria of the system without migration?

We will start with a single simulation run, as defined in Section 3.1, for the case of two
alleles and two loci in a panmictic population, in order to have a point of comparison
for our further findings. Starting with the symmetric model, we have a full analysis at
our disposal, also serving as a test case for our simulation. Afterwards, we will simulate
the panmictic model for arbitrary position of the optimum in order to quantify the
dependence on the deviation of the optimum from the double heterozygote. Following
this preliminary results, we continue with a simulation of a Deakin migration model
with two diallelic demes exhibiting symmetrically displaced optima within the demes.
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4 Quadratic Stabilizing Selection

Alleles / Loci / Demes 2 / 2 / 1
Max Iterations 300000
Error / Stagnation Count 10−10 / 10
Allele Loss 10−4

Initial Values 20 / εE = 0.25
Average Allelic Contributions (γ̄1, γ̄2) = (0, 0.5) / 40 sets, εA = 0.005
Optimum Positions PO ∈ {0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.6, 0.7, 0.8, 1}
Normalized Selection Coefficients U (0.25, 1, 10)
Recombination Rates U (0, 0.5, 10)

Table 4.1: Parameters and settings for the simulation of a diallelic two-locus panmictic
population under quadratic stabilizing selection.

Analysis of the executed simulation runs is based on the discussion of the equilibrium
structure and quantitative measures of variation and local adaption at equilibrium.
The quantities used throughout this chapter were calculated as described in Section
1.3 and Table 3.3.

4.1 A Single Deme

Here we present our results for a single deme under quadratic stabilizing selection.
We simulated the dynamics for 40000 constructed parameter sets and iterated each
for 20 initial values. Table 4.1 provides an overview on the settings for this simulation
run. U (a, b, k) refers to k values for a parameter, randomly chosen from a uniform
distribution with a support of [a, b].

We use normalized selection coefficients s̃, where a value of s̃ = 1 refers to the
strongest possible selection, as defined in (1.18). This is necessary to make the strength
of selection comparable, since the strongest possible selection varies for different op-
timum positions, cf. (1.17). The selection coefficient was randomly chosen between
0.25 and 1, since we already know that the behavior changes only on this range in the
symmetric case, cf. Figure 2.1.

The recombination rate was randomly chosen from tight linkage ρ = 0 up to no
linkage ρ = 0.5. We also chose ten different values for the position of the fitness
function maximum PO, increasing the step size, as the values reach 1.

The allelic contributions γ̄ = (γ̄1, γ̄2) = (0, 0.5) result in a genetic value of G = 0.5
for the double heterozygote. For all 40 sets of randomly chosen allelic effects, we
ensured a distance of εA = 0.005 between the standard deviations of two sets. Details
on the construction of allelic effects were given in Section 3.3.3.

Symmetric Case First, we discuss the symmetric case, where the optimum of the
quadratic fitness function is assumed by the double heterozygote, given our normal-
ization of the selection intensity s = 4s̃, i.e.,

W1(G) = Ψ(G) = 1− s(G− 0.5)2. (4.1)
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4.1 A Single Deme

Figure 4.1: Average mean fitness as a function of the standard deviation of allelic effects
for the symmetric case PO = 0.5. Gray levels refer to different randomly chosen selection
coefficients. Black refers to the lowest selection strength, the lightest gray to the highest.
Every data point is calculated as the average mean fitness ω̄ for one parameter combination
(r, s̃, γ̄) averaged over 20 initial values. Mean fitness decreases for higher disparity in allelic
effects. For stronger selection, the decline in average mean fitness is faster.

As the probability to reach a polymorphic equilibrium becomes higher with increas-
ing disparity in allelic effects, the genetic variance increases, see Figure 4.3. This is
consistent with the results achieved by Bürger and Gimelfarb (1999). Mean fitness
decreases, see Figure 4.1. For higher selection pressure, the decrease of mean fitness is
even stronger. For a fully polymorphic equilibrium, the mean fitness is lower, because,
due to recombination, gametes of lower marginal fitness are present. For stronger se-
lection, existence and stability of a fully polymorphic equilibrium is more frequent,
and, thus, the mean fitness decreases even faster.

Asymmetric Optimum By shifting the optimum of the quadratic function towards 1,
the genetic variance, the mean fitness, and the probability for loci to be polymorphic
change drastically. For the same parametrization as in the symmetric case, cf. Table
4.1, we allowed ten different positions of the optimum. Table 4.2 shows the numerical
results. As the position of the optimum increases towards 1, the polymorphic fraction
decreases. Already for PO = 0.7, no more than 2 gametes are found to be present
at the same time, resulting in a maximum of one polymorphic locus. In the extreme
case of an optimum at PO = 1, which leads to directional selection, genetic variation
is depleted completely, but mean fitness is maximized.

Based on these numerical results, we conclude, that only a slight shift of the op-
timum seems reasonable to model stabilizing selection in two demes. Otherwise, the
behavior of the dynamical system due to the fitness landscape would not be an ac-
curate model for stabilizing selection, which is assumed to act stabilizing towards an
intermediate optimum, cf. Endler (1986). The observation by Gavrilets and Hastings
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4 Quadratic Stabilizing Selection

PO
Polymorphic Loci Polymorphic Mean Linkage Genetic
0 1 2 Fraction Fitness Disequilibrium Variance

0.5 0.3183 0.5128 0.1689 0.4253 0.8631 0.0184 0.0468
0.51 0.319 0.546 0.135 0.4081 0.8676 0.0152 0.0467
0.52 0.339 0.5466 0.1143 0.3876 0.8743 0.0128 0.0455
0.53 0.3336 0.5627 0.1036 0.385 0.8812 0.0108 0.0438
0.54 0.3466 0.5583 0.0951 0.3743 0.8882 0.0089 0.0418
0.55 0.3638 0.5521 0.084 0.3601 0.8951 0.0072 0.0394
0.6 0.4855 0.4787 0.0357 0.2751 0.9269 0.002 0.0265
0.7 0.6562 0.3438 - 0.1719 0.9689 0 0.0078
0.8 0.55 0.45 - 0.225 0.9864 0 0.0077
1 1 - - - 1 0 0

Table 4.2: Average ratio of polymorphisms and average polymorphic fraction of the genome,
average mean fitness, average linkage disequilibrium, and average genetic variance for ten
different positions of the optimum. All averages taken over 4000 parameter sets (r, s̃, γ̄) and
20 initial values.

Figure 4.2: Average genetic variance as a function of the standard deviation of allelic effects
for different optimum positions. Every data point reflects the genetic variance σ2

G,α
for a

given parameter set (r, s̃, γ̄) averaged over 20 initial values. Color-coded by the optimum
position. Average genetic variance decreases for higher deviations of the optimum from the
mean, given the standard deviation of allelic effects is high enough.
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4.1 A Single Deme

Figure 4.3: Average linkage disequilibrium as a function of the standard deviation of allelic
effects for different optimum positions. Every data point reflects linkage disequilibrium for
a given parameter set (r, s̃, γ̄) averaged over 20 initial values. Color-coded by the optimum
position. Linkage disequilibrium was found to be only significant for slightly displaced
optimum, cf. Table 4.2.

(1993) of declining genetic variance as the optimum deviates further suggests small
deviations of the optimum from symmetry to maintain high genetic variance.

Stable Equilibria As we have seen in the symmetric case, the existence and stability
of polymorphic equilibria depends on the relation of selection to recombination as
well as the allelic effects, cf. Figure 2.1. If the optimum deviates from the double
heterozygote, such a general analysis of the equilibria is not available. Nevertheless,
our simulation approach allows us to study the existence of stable equilibria as in the
symmetric case. From now on, if not stated otherwise, we will only refer to stable
equilibria, since unstable equilibria are not included in our numerical analysis.

In order to compare our result to the qualitative behavior of the symmetric case as
stated in Section 2.2.1, note that the analysis for the symmetric case in Figure 2.1
depicts an ordinate of r/s ∈ [0, 0.125], since this covers the area, where the behavior
depends on this ratio. Since we rescaled selection, s̃ = 4s, this translates to the
interval r/s̃ ∈ [0, 0.5].

Figure 4.4 shows the numerical results of the equilibrium analysis for the cases
PO = 0.5, 0.51, 0.52, 0.55, 0.6, and 0.7. We also included the symmetric case, on the
one hand to serve as a verification of our methods and implementation, on the other
hand to make it easier for the reader to compare the result as displayed here. Clearly,
the numerical results for the symmetric case coincide with the analytical ones stated
in Section 2.2.1.
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4 Quadratic Stabilizing Selection

(a) PO = 0.5

(b) PO = 0.51

(c) PO = 0.52

Figure 4.4: Numerically determined equilibrium structure.
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4.1 A Single Deme

(d) PO = 0.55

(e) PO = 0.6

(f) PO = 0.7

Figure 4.4: Numerically determined equilibrium structure as a function of the standard
deviation of allelic effects and r/s̃ for different optimum positions. The colors refer to
different equilibrium structures. An expression of the form (a, b)ˆn refers to an equilibrium
type and its frequency. Here, a is the number of monomorphic loci, b to the number of
polymorphic loci, n denotes the number of equilibria of this type found for the different
simulated initial values. If only one such equilibrium was found, ˆ1 is omitted. If more than
one type of equilibria has been found, different types are separated by a slash ’/’.
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4 Quadratic Stabilizing Selection

For the smallest simulated deviation of the optimum from symmetry, i.e., PO = 0.51,
as in the symmetric case, two monomorphic equilibria exist (gray), if allelic effects
exhibit only small deviations and recombination is strong enough relative to selection.
In this case of relatively strong recombination, for higher disparity in allelic effects,
σκ̄ ∈ [0.075, 0.9], two equilibria exist (black). One exhibiting one polymorphic locus,
the other one being fully polymorphic. A single full polymorphic equilibrium (green)
was only found for a smaller parameter area compared to the symmetric model. For
high disparity in allelic effects, σκ̄ > 0.75, at least one locus always was found to
be polymorphic (red, dark red, black, green and light green). At the boundary of
the area exhibiting one polymorphic equilibrium (green), four different equilibrium
structures that do not occur in the case of no migration can be found: Between the
regions of a full polymorphism and two monomorphisms, a structure exhibiting one full
polymorphism and one monomorphism (dark green), as well as a single monomorphic
equilibrium was found (dark gray). The area for a single monomorphic equilibrium
will expand further as the position of the optimum increases towards 1. It represents
the area of a single homozygote matching the optimum closely and finally becoming
fixed. Between the area exhibiting a full polymorphism and the area of two single
locus polymorphisms, an equilibrium structure with a full polymorphism and a one
locus polymorphism was found. Moreover, an area with only one equilibrium with one
locus polymorphic (dark red) can be located. This area has been found to increase
further for higher optimum deviation up to 0.6. Already for the case PO = 0.6, the
area exhibiting two coexisting monomorphic stable equilibria is reduced significantly
(gray). For the case of PO = 0.7 this area can no longer be located in our numerical
result and no full polymorphism was found (green).

As the position of the optimum increases towards one, the area reflecting a single
monomorphic equilibrium expands. For complete directional selection PO = 1 (graph
not shown), this was the only equilibrium structure in the searched parameter space.
For all positions of the optimum, no more than two stable coexisting equilibria were
found, as was proven to be true for the symmetric case in (Bürger and Gimelfarb,
1999) and (Bürger, 2000, p.206).

4.2 Two Demes - Symmetrical Optima

To introduce migration, we simulated a population subdivided into two demes. Fitness
values were calculated using quadratic fitness functions with symmetrical optimum
positions between the demes, i.e.,

W1(G) = 1− s(G− (0.5− d))2, and (4.2a)

W2(G) = 1− s(G− (0.5 + d))2, (4.2b)

where d ∈ [0, 0.5] defines the magnitude of displacement, which for a first simulation
run was set to be d = 0.05, based on the results gathered in Section 4.1. Furthermore,
using the Deakin migration scheme, we allowed for ten different migration rates ranging
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4.2 Two Demes - Symmetrical Optima

Alleles / Loci / Demes 2 / 2 / 2
Max Iterations 300, 000
Error / Stagnation Count 10−10 / 10
Allele Loss 10−4

Initial Values 40 / εE = 0.25
Average Allelic Contributions (γ̄1, γ̄2) = (0, 0.5) / 40 sets
Quadratic Optimum Positions 0.45/0.55
Normalized Selection Coefficients U (0.25, 1, 10)
Recombination Rates U (0, 0.5, 10)
Migration Rates µ ∈ {0, 0.001, 0.01, 0.03, 0.06, 0, 1, 0.15, 0.2, 0.5, 1}
Population Regulation Soft selection

Table 4.3: Parameters and settings for the simulation of a two deme population with two
diallelic loci, subject to quadratic stabilizing selection with symmetrical optimum positions
and Deakin migration.

from weak (µ ≤ 0.1) to strong (µ ≥ 0.2) migration, including the special case of the
Levene model (µ = 1). Soft selection was assumed and the selection coefficient always
exceeded 0.25 as discussed in Section 4.1. Settings are outlined in Table 4.3.

Again, we start by discussing quantitative measures of variation and local adaptation
at equilibrium, followed by an analysis of the stable equilibria.

Measures of local adaption and variation Table 4.4 shows the observed quantities for
different migration rates. Since in the absence of migration, the two demes contain two
independent populations, which independently reach a equilibrium, polymorphic loci
may also result from the combination of two different monomorphic equilibria within
the demes. Thus, the polymorphic fraction of the genome decreases as migration
becomes stronger. The ratios of single-locus polymorphisms and monomorphisms
increase, while two-locus polymorphisms become less frequent. The decrease in mean
fitness can be explained by the fact that migration allows for presence of gametes
within a deme in which they may not exceed the other gametes in fitness, but by
immigration still exist at equilibrium.

As migration becomes stronger relative to selection, our results suggest that the
population approaches spatial quasi homogeneity. Table 4.4 supports this interpreta-
tion, as it reveals the average variance of gametes among subpopulations to decrease
drastically for increasing migration rates, and already is less than 10−4 for a migration
rate of 0.5. As an analysis of the equilibrium structure will reveal, the Levene model
shows a similar structure as the panmictic symmetric case. Comparing the size of ge-
netic variance, linkage disequilibrium, polymorphic fraction of the genome, and mean
fitness to the results for the panmictic symmetric case, also confirms this similarity,
cf. Table 4.4 and Table 4.2. This is accounted for by the symmetric displacement of
the optima. The strong migration limit, in this case the Levene model, results in the
spatial homogeneous averaged gamete frequencies, as discussed in Section 2.3.1.

The highest linkage disequilibrium was found for a migration rate of µ = 0.01. In
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4 Quadratic Stabilizing Selection

µ
Polymorphic Loci Polymorphic Linkage Genetic
0 1 2 Fraction Disequilibrium Variance

0 0.1014 0.1116 0.787 0.8428 0.0051 0.0557
0.001 0.107 0.1179 0.7751 0.834 0.0102 0.0538
0.01 0.1456 0.1769 0.6774 0.7659 0.0268 0.0538
0.03 0.2348 0.3737 0.3915 0.5784 0.0265 0.0506
0.06 0.2815 0.482 0.2364 0.4774 0.0186 0.0475
0.1 0.2949 0.4892 0.2159 0.4605 0.0175 0.0467
0.15 0.3193 0.4721 0.2086 0.4446 0.017 0.0461
0.2 0.3264 0.4685 0.2051 0.4394 0.0168 0.0456
0.5 0.3514 0.4471 0.2015 0.4251 0.0166 0.0446
1 0.3581 0.4399 0.202 0.422 0.0167 0.0441

µ QST
Variance of Gametes Mean Gametic Variance

among Subpopulations Fitness of Fitness

0 0.4513 0.0743 0.8933 0.0001
0.001 0.3621 0.0649 0.8963 0.0001
0.01 0.1831 0.0327 0.8907 0.0006
0.03 0.0788 0.0078 0.8871 0.0006
0.06 0.044 0.0021 0.8878 0.0003
0.1 0.0297 0.0014 0.887 0.0004
0.15 0.02 0.0009 0.8863 0.0004
0.2 0.0141 0.0006 0.8857 0.0005
0.5 0.0023 0.0001 0.8834 0.0009
1 - - 0.8814 0.0014

Table 4.4: Average fraction of polymorphisms, average linkage disequilibrium, average ge-
netic variance, average QST , average variance of gametes among subpopulations, average
mean fitness, and average gametic variance of fitness for different migration rates and op-
timum displacement d = 0.05. Averages are always taken over 40 initial values and 4000
parameter combinations (r, s̃, γ̄).
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4.2 Two Demes - Symmetrical Optima

Figure 4.7a we plotted the average linkage disequilibriumas a function of standard
deviation of allelic effects,

Stable Equilibria Numerical analysis of the equilibrium structure is shown in Figure
4.5. Note that we only depict equilibrium types according to their gametic composition
in the meta population and not for each deme separately. Otherwise, distinction of
the equilibria by demes would cause to many different possible combinations.

We first discuss the dynamics in the absence of migration Figure 4.5a, and then
compare them to the results in the analogous panmictic case, where PO = 0.55, cf.
Figure 4.4a.

(Blue): If disparity of allelic effects is small enough σκ̄ < 0.6, by combination of
the monomorphic equilibria within the demes, four equilibria are possible, two fully
polymorphic and two monomorphic.

(Dark red / light green): Recall, that in the panmictic case one equilibrium with a
single locus polymorphic as well as one monomorphic equilibrium exists or two equi-
libria with one locus polymorphic coexist. Combinations result in full polymorphisms
or at least one locus polymorphic. As for small values of σκ̄ < 0.15, up to four stable
equilibria can simultaneously coexist. Since the optima within the demes are displaced
in opposite direction, different zygotes exhibit the genetic value closest to the posi-
tion of the optimum. This is why the combination of two monomorphic single deme
equilibria can result in an equilibrium with one locus polymorhic here.

(Green): For all chosen values of selection and recombination, for high enough
disparity in allelic effects, only one fully polymorphic equilibrium exists.

For a migration rate of µ = 0.001, cf. Figure 4.5b, no significant changes can
be observed. This findings suggest that the weak-migration approximation applies if
µ ≤ 0.001.

For an even higher migration rate, cf. Figure 4.5c and Figure 4.5d, the areas ex-
hibiting full polymorphic equilibria resulting from the combination of monomorphic
single deme equilibria decrease, until for strongest possible migration, Figure 4.5f, they
cease to exist. As already discussed above, the Levene model results in deme indepen-
dent gamete frequencies, and, thus the analysis of the stable equilibria is similar to
the symmetric panmictic case, cf. Figure 4.5f and Figure 4.4a. We may assume that
differences at the right edge of Figure 4.5f are due to numerical instabilities. Note
that also in the cases for µ = 0.01, 0.01, 0.1, for highest standard deviation in allelic
effects, some numerical inaccuracies occured. This is why we plotted all equilibria
of the form (02)ˆn, for n ≥ 3 in the same color. These equilibria only occured for
highest values of σκ̄, exactly where most runs had to be excluded from the analysis
since the iterations exceeded 300000. Figure 4.6a shows a heat map revealing that the
highest average iterations (until equilibrium has been reached), were found for highest
disparity in allelic effects. Few population runs exhibit the highest used value in stan-
dard deviation of allelic effects and reached a single fully polymorphic equilibrium, cf.
Figure 4.5f. These show a very low average in iterations until equilibrium. Thus, we
can assume, that the gamete frequencies of these populations in fact change so slowly
causing the euclidean distance to stagnate according to the defined minimal change
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4 Quadratic Stabilizing Selection

(a) µ = 0

(b) µ = 0.001

(c) µ = 0.01

Figure 4.5: Numerically determined equilibrium structure.
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4.2 Two Demes - Symmetrical Optima

(d) µ = 0.03

(e) µ = 0.1

(f) µ = 1

Figure 4.5: Numerically determined equilibrium structure as a function of the standard de-
viation of allelic effects and r/ŝ for different migration rates. The colors refer to different
equilibrium structures. We only depict equilibrium types according to their gametic compo-
sition in the meta population and not for each deme separately. An expressions of the form
(a, b) refers to an equilibrium type in the meta population. As above, see Figure 4.4, ˆn
denotes the number of equilibria of this type found for the different simulated initial values.
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4 Quadratic Stabilizing Selection

Alleles / Loci / Demes 2 / 3 / 2
Max Iterations 300, 000
Error / Stagnation Count 10−10 / 10
Allele Loss 10−4

Initial Values 40 / εE = 0.25
Average Allelic Contributions (γ̄1, γ̄2) = (0, 0.5) / 40 sets
Quadratic Optimum Positions 0.45/0.55
Normalized Selection Coefficients U (0.25, 1, 10)
Recombination Rates U (0, 0.5, 10)
Migration Rates µ ∈ {0, 0.001, 0.01, 0, 1, 1}
Population Regulation Soft selection

Table 4.5: Parameters and settings for the simulation of a two deme population with three
diallelic loci, subject to quadratic stabilizing selection with symmetrically displaced optimum
and Deakin migration.

per generation, see the error property for the simulation run in Table 4.3.

4.2.1 Additional Numerical Investigations for Two Demes

This section is intended to check our prior made assumptions to model migration.
Therefore, we ran additional simulations varying single assumptions. We will discuss
them, presenting the gathered data and comparing it to our prior analysis.

3 Diallelic Loci For the prior analysis, we restricted ourselves to the case of two
diallelic loci. From the work of Bürger and Gimelfarb (1999), and Gimelfarb (1998)
we already know, how the genetic variance, linkage disequilibrium, or the polymorphic
fraction of the genomes are affected by an increasing number of contributing loci.
Thus, we ran another simulation for three diallelic loci and compared the collected
results, stated in Table 4.6, to the ones achieved for the case of two loci. Table 4.5
provides an overview on the simulation settings.

Similar to the results attained by Bürger and Gimelfarb (1999), the total genetic
variance is smaller for three than for two diallelic loci. This applies to all tested
migration rates. The polymorphic fraction of the genome declines even stronger for
increasing migration than in the case of two loci. As for the case of two diallelic loci,
the average linkage disequilibrium increases for growing migration rate until migration
reaches µ = 0.01, then decreases for even stronger migration. This suggests that the
reason for this behavior lies in the ratio of migration to selection and recombination
and the specific optimum position and is unrelated to the number of loci. As we
shall see later on, the optimum position has no influence on this behavior, as we also
obtained the same result for a higher shift of the optimum, see Table 4.9.

Since increasing the recombination strength decreases linkage equilibrium, cf. Figure
4.7a, the relation to recombination and selection is crucial and must be included to
completely analyze the observed behavior.
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4.2 Two Demes - Symmetrical Optima

(a) Heat map of the average iterations for µ = 1.

(b) Heat map of the average linkage disequilibrium for µ = 1

Figure 4.6: Average iterations until equilibrium was reached and average linkage disequilib-
rium for the Levene model in a two deme population with symmetrical optimum displacement
d = 0.05. Heat map as a function of the standard deviation of allelic effects and the ratio
r/s̃. Dark red refers to the highest values, light blue to the lowest values. Every data point
reflects the average value over 40 initial values for one parameter combination (r, s̃, γ̄).
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4 Quadratic Stabilizing Selection

(a) Average Linkage Disequilibrium as a function of σκ̄ for µ = 0.01. Color-coded by the recombina-
tion rate: High (dark red) to low (light blue).

(b) Average Linkage Disequilibrium as a function of the ratio r/s̃ for a specific case of allelic effects
σκ̄ = 0.1496 for different migration rates (indicated by different colors).

Figure 4.7: Average linkage disequilibrium for two loci. Every data point reflects the average
over 40 initial values for one parameter combination (r, s̃, γ̄).

52



4.2 Two Demes - Symmetrical Optima

µ
Polymorphic Loci Polymorphic Linkage Genetic

0 1 2 3 Fraction Disequilibrium Variance

0 0.0517 0.1861 0.0287 0.7335 0.8146 0.0011 0.0416
0.001 0.0726 0.2071 0.0233 0.697 0.7815 0.0035 0.0407
0.01 0.1596 0.48 0.0149 0.3455 0.5154 0.0067 0.0386
0.1 0.3443 0.5886 0.0274 0.0398 0.2542 0.0027 0.0329
1 0.3915 0.5473 0.0269 0.0343 0.2347 0.0026 0.0312

µ QST
Variance of Gametes Mean Gametic Variance

among Subpopulations Fitness of Fitness

0 0.4984 0.0393 0.9354 0
0.001 0.3837 0.03 0.9356 0.0001
0.01 0.1722 0.0086 0.932 0.0003
0.1 0.021 0.0005 0.9292 0.0002
1 - - 0.9258 0.0007

Table 4.6: Resulting measures for 3 diallelic loci listed for the different migration rates.
Averages are always taken over 40 initial values and 4000 parameter combinations (r, s̃, γ̄).

Figure 4.8: Average linkage disequilibrium for three loci as a function of the ratio r/s̃.
Plotted for a specific case of allelic effects σκ̄ = 0.1637 and color-coded by different migra-
tion rates. Every data point reflects the average over 40 initial values for one parameter
combination (r, s̃, γ̄).
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4 Quadratic Stabilizing Selection

Alleles / Loci / Demes 2 / 2 / 2
Max Iterations 300, 000
Error / Stagnation Count 10−10 / 10
Allele Loss 10−4

Initial Values 40 / εE = 0.25
Average Allelic Contributions (γ̄1, γ̄2) = (0, 0.5) / 20 sets
Quadratic Optimum Positions d ∈ {0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2}
Normalized Selection Coefficients U (0.25, 1, 5)
Recombination Rates U (0, 0.5, 5)
Migration Rates U (0, 0.1, 5)
Population Regulation Soft selection

Table 4.7: Parameters and settings for the simulation of a two deme population with two
diallelic loci, exploring multiple symmetrically displaced optima positions for quadratic sta-
bilizing selection.

We restricted the data to a specific set of allelic effects to reduce dimensionality and
enable us to analyze the relation of the migration rate, selection and recombination
strength to linkage disequilibrium. Averaged over all recombination rates, migration
rates and selection coefficients, we located the random genetic setup (allelic effects)
in our data, which exhibits the highest linkage disequilibrium in the two and three
locus case (σκ̄ = 0.1496 and 0.1637, respectively). Restricted to this genetic setup,
we plotted the linkage disequilibrium for different migration rates as a function of the
ratio r/s, Figure 4.7 and Figure 4.8. As expected, the linkage disequilibrium declines
for stronger recombination relative to selection. If recombination relative to selection
is weak enough, e.g. r/s < 0.16 for the case µ = 1, the linkage disequilibrium is higher
for stronger migration. But for stronger recombination relative to selection, linkage
disequilibrium for weaker migration exceeds the value for stronger migration rates.
Of course, averaging over all recombination rates and selection coefficients results in
lower linkage disequilibrium for stronger migration.

Optimum Position We used a specific symmetrical positioning of the optimum in the
two demes so far, i.e., d = 0.05. Here, we will explore the impact of this specific choice.
Therefore, we first simulated two diallelic loci with symmetrical displaced optimum
for 5 randomly chosen migration rates. To reduce the dimensionality of the possible
parameter combinations, we only simulated for 20 different allelic contributions, 5
random selection coefficients and 5 random recombination rates. Since, already for a
migration rate of µ = 0.1, the data suggested the population to be spatially homo-
geneous for the case d = 0.05, cf. Table 4.4, we restricted the 5 random uniformly
distributed migration rates to µ ≤ 0.1. Settings for this simulation run are outlined
in Table 4.7.

For the interpretation of the results, we have to keep in mind that we restricted
the migration rate. For growing disparity of the optima, the polymorphic fraction,
genetic variance, gametic variance, mean fitness, and the variance of the gametes
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4.2 Two Demes - Symmetrical Optima

PO
Polymorphic Loci Polymorphic Linkage Genetic

0 1 2 Fraction Disequilibrium Variance

0.5/ 0.5 0.2449 0.2961 0.459 0.607 0.0405 0.0472
0.49/ 0.51 0.2412 0.2955 0.4633 0.6111 0.0398 0.0476
0.47/ 0.53 0.2171 0.2545 0.5284 0.6557 0.0381 0.0495
0.45/ 0.55 0.1818 0.2492 0.569 0.6936 0.0351 0.0522
0.43/ 0.57 0.1505 0.2503 0.5992 0.7244 0.0324 0.0552
0.4/ 0.6 0.1035 0.2718 0.6247 0.7606 0.0287 0.0601

0.35/ 0.65 0.0263 0.3088 0.6648 0.8193 0.0232 0.0696
0.3/ 0.7 0.002 0.2576 0.7404 0.8692 0.0178 0.0815

PO QST
Variance of Gametes Mean Gametic Variance

among Subpopulations Fitness of Fitness

0.5/ 0.5 0.0177 0.0066 0.8672 0.0006
0.49/ 0.51 0.0269 0.0081 0.8724 0.0006
0.47/ 0.53 0.0745 0.0143 0.8831 0.0006
0.45/ 0.55 0.1365 0.0204 0.8937 0.0005
0.43/ 0.57 0.2019 0.0258 0.9039 0.0005
0.4/ 0.6 0.2948 0.0325 0.9176 0.0006

0.35/ 0.65 0.4248 0.0401 0.9353 0.0007
0.3/ 0.7 0.5263 0.0441 0.9473 0.001

Table 4.8: Resulting measures for different symmetrical displaced optima positions, random
migration, recombination, and selection. Averages are always taken over 40 initial values
and 2500 parameter combinations (r, s̃, γ̄, µ).
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4 Quadratic Stabilizing Selection

µ
Polymorphic Loci Polymorphic Linkage Genetic
0 1 2 Fraction Disequilibrium Variance

0 0.0349 0.1417 0.8234 0.8943 0.0062 0.063
0.001 0.0378 0.1511 0.8111 0.8867 0.0113 0.0612
0.01 0.0701 0.216 0.7139 0.8219 0.0289 0.0606
0.1 0.203 0.6117 0.1853 0.4912 0.0258 0.0501
0.2 0.2516 0.5821 0.1662 0.4573 0.0256 0.0472
0.5 0.303 0.5369 0.1601 0.4285 0.0258 0.0443
1 0.3308 0.5093 0.1598 0.4145 0.0261 0.0431

µ QST
Variance of Gametes Mean Gametic Variance

among Subpopulations Fitness of Fitness

0 0.6541 0.0878 0.9439 0
0.001 0.5649 0.0786 0.9443 0
0.01 0.3516 0.0397 0.9378 0.0003
0.1 0.074 0.0037 0.9263 0.0005
0.2 0.0314 0.0016 0.9227 0.0009
0.5 0.0042 0.0002 0.9172 0.0015
1 - - 0.9135 0.0021

Table 4.9: Resulting measures for higher deviation in optimum positions, i.e., d = 0.1 for
different migration rates. Averages are always taken over 40 initial values and 4000 parameter
combinations (r, s̃, γ̄).

among subpopulations increased, while linkage disequilibrium decreased. Clearly, the
growing difference in fitness landscapes results in a higher genetic disparity within
subpopulations. Note that this is the first case analyzed so far, showing a simultaneous
increase of mean fitness and genetic variance. This can be explained by the fact that
for higher deviation of the optimum from symmetry in each deme, the fixation of
a homozygote becomes more probable, which increases the mean fitness. On the
other hand, the disposition of the optima in opposing directions results in different
subpopulation compositions.

So far the question remains unsolved, whether the characteristics of the linkage
disequilibrium, as found, is specific for the discussed deviation of the optima from
symmetry d = 0.05 . To conclude, whether it is reproducible for a higher deviation,
we conducted another simulation run for the case d = 0.1. Aside from that, we chose
the same parameter settings as in Table 4.3. The results show the same behavior,
although the decline for migration rates µ ≥ 0.1 is weaker, see Table 4.9.

56



5 Summary

This work presents a developed software to simulate and analyze migration-selection
models in a multilocus population. Using the implemented program, a subdivided
population in two demes, exhibiting two diallelic loci under quadratic stabilizing se-
lection, was investigated. Thereby, we addressed the following questions by numerical
simulation of the discrete, dynamical system:

• Can migration account for higher genetic variability and and admit a higher
fraction of polymorphic equilibria than in the panmictic population?

• How strong or weak must migration be relative to selection, to create results
which can be understood as a pertubation of the weak selection limit or the
system without migration?

The object-oriented implementation was based on the mathematical model intro-
duced in Section 1.2. This allowed for an arbitrary number of loci and alleles, as well as
population subdivision in any number of demes. We considered three different fitness
functions (Gaussian, quadratic, linear) to model viability selection, and allowed for
recombination neglecting interference and position effects. Two migration models, the
Deakin model and the stepping-stone migration model, were considered. Population
regulation comprised soft and hard selection.

Based on the review of available simulation tools in Section 2.1, the implementation
focused on extensibility and the integration of analytical tools. The object-oriented
design of the program, based on the mathematical life cycle stated in (1.10), and the
software architecture were presented in Section 3.2.

Implementation of the mathematical model raised algorithmic issues, which were
adressed in Section 3.3. These concerned calculation of recombination rates, initial
and fitness value construction, and the fast reconstruction of the allelic composition
from a gamete index.

A review of results on quadratic stabilizing selection in Section 2.2 motivated the
numerical investigation. The equilibrium structure of the diallelic two-locus model
with the optimum attained by the double heterozygote is completely understood,
cf. Section 2.2.1. This holds even for arbitrary recombination and asymmetrical
allelic effects. For a displaced optimum, additional assumptions were made in previous
work to achieve analytical results. For example, parameter conditions which ensure
existence of a polymorphic equilibrium can be derived, given strong selection relative
to recombination.
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5 Summary

This motivated the first simulation in Section 4.1. A diallelic two-locus model of a
panmictic population under quadratic stabilizing selection. The recombination rate,
selection strength, and allelic effects were arbitrary, randomly chosen from uniform
distributions. The system was simulated for ten optimum positions, covering the
scope from the symmetrical model to directional selection.

As the optimum position changes in steps from the symmetrical model to direc-
tional selection, the genetic variance and average linkage disequilibrium were found to
decrease. Also, the average polymorphic fraction of the genome is maximized in the
symmetrical case. On the other hand, mean fitness increases, reaching its maximum
possible value in the case of the optimum at the homozygote.

Numerically determined equilibrium structures showed, how already small devia-
tions of the optimum reduced the areas of existence of polymorphisms drastically.

As was only proven before for the symmetrical case, no more than two stable coex-
isting equilibria were found. This was observed in the numerical results of all tested
optimum positions.

A second simulation of a subdivided population in two demes was performed in
Section 4.2, assuming a homogeneous Deakin migration model. Again, quadratic
stabilizing selection was assumed, this time with symmetrical displaced optima within
the demes. For increasing migration rate, the average polymorphic fraction declined
rapidly, while the population tended to quasi homogeneity. Already for a migration
rate µ = 0.1, i.e., one tenth of all individuals migrate, the numerically calculated
equilibrium structure coincided with the one of the Levene model. We found that
the Levene model exhibits the same structure as observed in the symmetric case for a
panmictic population.

For an increasing migration rate, the average genetic variance and the average poly-
morphic fraction of the genome declined.

To check the assumptions of the second simulation run, additional simulations were
performed and analyzed in Section 4.2.1. These included a simulation of the same
setup for three diallelic loci, resulting in an even faster decline of the average poly-
morphic fraction of the genome for growing migration rate. Another simulation run
tested the setup for eight different symmetrical optimum deviations. Higher disparity
of the optima resulted in higher genetic disparity within subpopulations, as measured
by QST and the variance of gametes among subpopulations.
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