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Abstract 

This thesis describes the development of novel homogeneous asymmetric 
hydrogenation catalysts that are all based on chiral non-racemic ferrocene derivatives 
as the catalyst ligands. For this purpose, phosphino-substituted ferrocenyloxazoline 
ligands were prepared and tested in ruthenium-catalyzed asymmetric hydrogenations 
and transfer hydrogenations. Furthermore, two novel and optimized synthesis 
procedures for such ligands were established. Moreover, a very general and highly 
modular synthesis procedure for chiral non-racemic 1,2-di- and 1,2,3-trisubstituted 
ferrocene derivatives has been developed. 

All novel phosphino-oxazoline ligands were prepared in good yields by applying 
two different and highly modular synthesis strategies. One synthesis route started from 
commercially available Ugi-amine and allowed to build up the desired phosphino-
oxazoline ligand in a five step sequence. With use of the second methodology, the 
desired phosphino-oxazoline ligands could be obtained in only two steps from 
commercially available ferrocenyloxazoline. Ruthenium complexes [RuCl2(PPh3)(L)] of 
all ligands were prepared. The application of these complexes as catalysts in 
asymmetric hydrogenations and transfer hydrogenations of ketones delivered excellent 
results and product with up to 99% e.e. was obtained in hydrogenation and with 98% 
e.e. in transfer hydrogenation reactions. 

In order to further ease the synthesis procedure of such ligands, two additional 
complementary synthesis routes were worked out and optimized. Both routes started 
from easily accessible ferrocenyloxazolines and in both cases the phosphino-
substituted side chain was build up diastereoselectively. In the first sequence, 2-
oxazolinyl substituted ferrocene aldehydes were directly phenylated or alkylated 
through an auto-activated transfer from diphenyl zinc or dialkyl zinc reagents to the 
aldehyde functionality and provided alcohols with 94% d.e. and in very high chemical 
yield. In a further two-step sequence, these alcohols were transformed into the desired 
phosphino-oxazolines. Alternatively, the ligand side chain could be built up by applying 

a diastereoselective -deprotonation reaction to diphenylphosphinylmethyl substituted 
ferrocene precursors. With this methodology the stereogenic center of the side-chain 
was introduced with 95% d.e. and 93% chemical yield. Moreover, from a number of 
additional asymmetric transfer hydrogenations it was concluded that for these ligands 
the (S,SOx,SFc) relative configuration constitutes the matching configuration while both a 
change of the side-chain or of the oxazoline configuration leads to less efficient transfer 
hydrogenation catalysts. 

Furthermore, a number of chiral, non-racemic 1,2-di- and 1,2,3-trisubstituted 
ferrocene derivatives were synthesized in a highly modular three-step sequence, 
starting from well-established diastereoselectively ortho-directing ferrocenyl amines. 
Ortho-lithiation followed by reaction with electrophiles and subsequent reductive 
removal of the amino substituents led to enantiopure 1,2-disubstituted ferrocenes. A 
further ortho-lithiation of these products followed by reaction with another electrophile 
allowed to generate chiral non-racemic 1,2,3-trisubstituted ferrocenes which are 
inclined to be useful starting materials for the synthesis of chiral, non-racemic ferrocene 
derivatives such as phosphino- or oxazoline-based catalysts ligands.  
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Zusammenfassung 

Diese Dissertation beschreibt die Weiterentwicklung homogener, 
asymmetrischer Hydrierkatalysatoren, die alle chirale, nichtrazemische Ferrocen-
derivate als Katalysatorliganden aufweisen. Zu diesem Zwecke wurden phosphino-
substituierte Ferrocenyloxazoline dargestellt und in Ruthenium-katalysierten 
asymmetrischen Hydrierungen und Transferhydrierungen getestet. In diesem Rahmen 
wurden auch zwei neue Wege zur einfacheren Synthese solcher Liganden, sowie eine 
sehr allgemeine und modulare Synthesesequenz für chirale, nichtrazemische 1,2-di- 
and 1,2,3-trisubstituierte Ferrocenderivate ausgearbeitet. 

Alle neuen Phosphinooxazolin-Liganden wurden auf zwei hochmodularen 
Synthesewegen hergestellt. Die erste Synthesesequenz beginnt mit kommerziell 
erhältlichem Ugi-Amin und erlaubt es, die gewünschten Phosphinooxazoline in fünf 
Schritten darzustellen. Mit Hilfe der zweiten Synthesemethode können solche Liganden 
– ausgehend von kommerziell erhältichem Ferrocenyloxazolin – in zwei Stufen 
hergestellt werden. Von allen dargestellten Liganden konnten Komplexe des Typs 
[RuCl2(PPh3)(L)] erhalten und in asymmetrischen Hydrierungen und Transfer-
hydrierungen von Ketonen getestet werden. Mit beiden Methoden waren Produkte mit 

einem enantiomeren Überschuss von  98%  zugänglich.  

Zur Vereinfachung der Darstellung solcher Oxazolin-Liganden wurden zwei 
neue komplementäre und optimierte Synthesesequenzen ausgearbeitet. Beide 
Synthesemethoden begannen mit leicht zugänglichen Ferrocenyloxazolinen und in 
jedem Fall wurde die benötigte Seitenkette auf einem diastereoselektiven Weg 
aufgebaut. In der ersten Synthesesequenz wurde von 2-Oxazoliny-substituierten 
Ferrocenylaldehyden ausgegangen und diese jeweils in einer autoaktivierten Reaktion 
mittels Diphenylzink oder Dialkylzink-Reagenzien phenyliert beziehungsweise alkyliert. 
Die dabei entstandenen Alkohole konnten in zwei weiteren Schritten zu den 
gewünschten Liganden umgesetzt werden. In einer alternativen Synthesesequenz 

konnten die Seitenkettensubstituenten durch -Deprotonierung von geeigneten 
Ferrocenylmethyl-substituierten Phosphinoxiden mit 95% diastereoselektivem 
Überschuss und 93% chemischer Ausbeute eingeführt werden. Aus den Resultaten 
weiterer Transferhydrierungen konnte geschlossen werden, dass die besten 
Ergebnisse dann erhalten werden, wenn Liganden mit (S,SOx,SFc) Relativkonfiguration 
eingesetzt werden. Änderungen sowohl der relativen Seitenketten- als auch der 
Oxazolinkonfiguration führten zu Katalysatorliganden mit geringerer Effizienz.  

In einem weiteren Teil dieser Arbeit wird die Synthese von chiralen, 
nichtrazemischen 1,2-di- und 1,2,3-trisubstitubstituierten Ferrocenderivaten 
beschrieben, wobei jeweils von etablierten diastereoselektiv ortho-dirigierenden 
Ferrocenylaminen ausgegangen wurde. Durch ortho-Lithiierung derartiger Ferrocene, 
einer nachfolgenden Reaktion mit Elektrophilen und anschließender partieller 
Entfernung der dirigierenden Gruppe konnten enantiomerenreine 1,2-disubstituierte 
Ferrocene hergestellt werden. Wurden Elektrophile verwendet, die selber ortho-
dirigierend wirken, konnten durch nochmalige ortho-Lithiierung und Reaktion mit 
weiteren Elektrophilen 1,2,3-trisubstituierte Ferrocene erhalten werden, die als 
Ausgangsmaterialien für die Synthese von chiralen, nichtrazemischen 
Ferrocenderivaten, wie etwa Katalysatorliganden, verwendet werden können. 
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1. Introduction 

1.1.  General Introduction 

The term “catalyst” was raised for the first time by Berzelius in 1836 and in 1894 

Ostwald defined a catalyst as a substance that increases the rate of a chemical reaction 

without itself being substantially consumed. The function of a catalyst usually depends 

significantly on the type of chemical reaction. A catalyst may either change the rate of a 

chemical reaction by altering its activation energy or may open up reaction pathways 

that otherwise are inaccessible. In the case of an equilibrium reaction, a catalyst will 

accelerate both the forward and the backward reaction without changing the position of 

equilibrium. In those cases where the reactions can follow simultaneously more than 

one reaction pathway, a catalyst may accelerate selectively one reaction over the 

others and this may result in a different product distribution.1 

A catalytic reaction usually consists of a series of transformations to which a 

catalyst enters in one step and is regenerated in another step. Such sequences are 

frequently depicted in a cyclic graph which is called a „catalytic cycle‟ (Figure 1). The 

notable difference between a catalytic and a stoichiometric reaction ensues from the 

fact that – as compared to the reagent – in a catalytic reaction only a substoichiometric 

amount of the catalyst is required. 

Generally, catalysts are categorized either in accordance to their physical state 

(gas, solid, liquid), their chemical nature (metals, oxides, proteins), the type of catalyzed 

reaction (oxidation, reduction, cracking, etc.) or according to the number of phases 

(homogeneous, heterogeneous).2 

Heterogeneous and homogeneous catalysis constitute two main types of 

catalysis, which are characterized by significantly different properties and applications. 
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Figure 1. Schematic representation of a catalytic cycle. 

In homogeneous catalysis, the catalyst is present in the same phase as the 

other reaction components and this fact is associated with a number of advantages and 

disadvantages. Advantages of homogeneous catalysts include (i) high diffusion rates 

for all reaction components, (ii) the possibility of investigating the progress of reaction 

by utilizing spectroscopic methods such as NMR spectroscopy (iii) higher reactivity and 

selectivity. Disadvantages include difficulties in separating catalyst and products as well 

as the regeneration of catalyst.  

In heterogeneous catalysis (surface catalysis), catalyst and reagents are 

present in different phases. These types of reaction usually occur on the surface of 

solid catalysts. The advantages of heterogeneous catalysts include low cost, ease of 

separation, high stability and the possibility of catalyst recycling. Disadvantages include 

slow rates – and as compared to homogeneous catalysis – lower regio- and 

stereoselectivity. 

Like with stoichiometric reagents also with use of chiral catalysts, chiral non-

racemic products can be obtained from prochiral substrates. Such compounds are 

typically formed in biological systems in which enzymes act as the enantioselective 

catalysts.3 

Since usually biological systems constitute a chiral non-racemic environment, 

enantiomers may act significantly different from each other. For example, one 

enantiomer could cause a beneficial therapeutic action while the other one could be 

highly toxic. Hence, the synthesis of enantiomerically pure or highly enriched 
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biologically active compounds has become an important task in organic chemistry. 

Several methods have been applied for the synthesis of enantiomerically pure 

compounds such as resolution of racemates, chromatographic separation of 

enantiomers, enzymatic resolution, chemical kinetic resolution, asymmetric synthesis 

and enantioselective catalysis. Amongst these methodologies, frequently, asymmetric 

catalysis has proved to be superior since a small amount of a chiral non-racemic 

catalyst can produce a large amount of chiral non-racemic product. Therefore, 

asymmetric catalysis has become a powerful tool for synthesizing chiral non-racemic 

compounds.1,4,5 

Historically, enantioselective catalysis dates back to 1904 when Marckwald 

reported his pioneering work on the enantioselective decarboxylation of properly 

substituted malonic acids with use of brucine.6 

Later on in 1908, Bredig synthesized mandelonitrile from benzaldehyde and 

HCN in the presence of an alkaloid (quinine or quinidine) as the catalyst.7 Prelog and 

Wilhelm continued along this line and in 1954 proposed a mechanistic picture.8 In the 

late 1950s in Japan, Izumi and co-workers reported on the impregnation of silk with 

palladium dichloride and its application in the enantioselective hydrogenation of some 

dehydroamino acid derivatives.9 In a further attempt, Izumi modified Raney nickel with 

tartaric acid derivatives and these modified catalysts were applied in the hydrogenation 

of methyl acetoacetate.10 Products were obtained with up to 80% enantiomeric excess.  

Since then the development of homogeneous and heterogeneous as well as 

enantioselective catalysts has progressed enormously and this work has been awarded 

by several Nobel prizes (Ziegler, Natta 1963; Wilkinson, Fischer, 1973; Knowles, 

Noyori, Sharpless 2001; Chauvin, Grubbs, Schrock, 2005; Ertl, 2007; Heck, Negishi, 

Suzuki, 2010). 

Nowadays, a great variety of highly selective catalysts is available for 

applications ranging from the small laboratory to the large industrial scale. From an 

industrial point of view, hydrogenations including enantioselective hydrogenations with 

use of hydrogen gas belong to the most mature synthesis methodologies available and 

are used for the large scale production of many achiral as well as chiral products. For 

enantioselective applications, especially homogenous catalysts11 are used while for the 

production of achiral or racemic derivatives heterogeneous catalysts2 are preferred. 

In certain cases, hydrogen gas in hydrogenations can be replaced by other 

hydrogen sources. These so called transfer hydrogenations are in some respects 
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complementary to hydrogenations with hydrogen gas and are especially useful for the 

reduction of polar substrates such as ketones, aldehydes or imines.2 However, due to 

some limitations large scale industrial applications are rare. Like hydrogenations, also 

transfer hydrogenations can be carried out enantioselectively and in many cases 

products with very high enantiomeric excess can be obtained. 

1.2. Asymmetric Transfer Hydrogenation 

Asymmetric transfer hydrogenation of ketones and imines with chiral non-

racemic catalysts is recognized as an efficient methodology for the preparation of 

enantiopure or highly enantiomerically enriched alcohols and amines.12 In catalytic 

transfer hydrogenation reactions, hydrogen is transferred from a donor to the substrate 

to yield reduced substrate and oxidized donor (Scheme 1). Common donors include 

cyclohexadiene, ammonium formate and 2-propanol. Chiral Ru, Rh and Ir catalysts are 

particularly useful in these reactions and have been intensively studied.13 

 

Scheme 1. Schematic representation of transfer hydrogenation reactions. 

The first report on asymmetric transfer hydrogenation describes an asymmetric 

version of the Meerwein-Pondorf-Verley reduction (MPV) (Scheme 2).9a,14 

 

Scheme 2. Asymmetric Meerwein-Pondorf-Verley (MPV) reduction. 

In this case, a chiral non-racemic alcohol was used as the source of chirality. 

Although the enantioselectivity of this type of MPV reduction was rather low, it is 

considered a milestone in the development of many chiral catalysts for the asymmetric 

transfer hydrogenation of ketones and imines. In 1991 Chowdhury and Backvall 

showed that RuCl2(PPh3)3 in the presence of NaOH acts as an effective catalyst for this 

transformation.15 A breakthrough came about when Noyori reported the development of 
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a class of well-designed chiral Ruװ-arene complexes that were modified with chiral 

diamine derivatives (Scheme 3). With applying these catalysts, asymmetric transfer 

hydrogenation of ketones and imines in the presence of an organic hydrogen donor 

solvent such as 2-propanol gave products with excellent conversion and enantiomeric 

excess.16 

 

Scheme 3. Asymmetric transfer hydrogenation of aromatic ketones. 

Later on in 1997, Sammakia and co-workers applied chiral ferrocenyloxazoline 

complexes with planar chirality to the asymmetric transfer hydrogenation of aryl 

ketones. They prepared catalysts in situ from RuCl2(PPh3)3 and a variety of 

ferrocenyloxazolines. In the presence of these catalysts, products with up to 94% e.e. 

were obtained (Scheme 4).17 

In 1999 Nishibayashi and co-workers isolated diastereomerically pure ruthenium 

complexes [RuCl2(PPh3)3L] of oxazolinyl ferrocenylphoshphine ligands. By applying 

these complexes, extremely high enantionselectivities were obtained in the transfer 

hydrogenation of alkyl aryl ketones and dialkyl ketones when 2-propanol was used as 

the hydrogen donor (up to 99% e.e. for acetophenone).18 

 

Scheme 4. Asymmetric transfer hydrogenation of aryl ketones catalyzed by 

RuCl2(PPh3)3 and ferrocenyloxazolines. 
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Some chiral Schiff bases have also been applied as catalyst in asymmetric 

transfer hydrogenations. In 1999 Kwong and co-workers used P,N,O ligand 1 (Chart 1) 

for the asymmetric transfer hydrogenation of ketones and reported up to 81% e.e.19 

Later on in 2003, Zheng and co-workers reported on a series of P,N,O ligands (2, Chart 

1) for ruthenium catalyzed asymmetric transfer hydrogenation of ketones (up to 94% 

e.e.).20 

Generally, chiral PN, NN, NO and P,N,O ligands have shown to be very 

successful in asymmetric transfer hydrogenations. Chart 1 summarizes the most 

effective ligands for the transfer hydrogenation of ketones.9d,10 

In the last two decades, asymmetric transfer hydrogenation has evolved as a 

complementary methodology to the well-established asymmetric hydrogenation, 

especially for producing enantiopure or highly enantiomerically enriched secondary 

alcohols and amines. Contrary to hydrogenation reactions, the use of transfer 

hydrogenations does not require hydrogen gas as the reagent and in addition high 

pressure equipment can be avoided. In most cases isopropanol is used as the 

hydrogen source.21 

However, besides some advantages like high stereo- and regioselectivity, there 

are some disadvantages related to asymmetric transfer hydrogenations that until now 

have prevented large scale industrial applications: (i) in order to reach reasonable 

reaction rates, addition of a strong base to the reaction mixture is required and this may 

result in side reactions of both substrates and products (e.g. aldol reactions of substrate 

or racemisation of product); (ii) in many cases the reactions have to be carried out at 

low substrate concentrations, a fact that severely limits up-scaling; and (iii) if 

isopropanol is used as the hydrogen source, at large scale huge amounts of 

commercially unusable acetone is produced. 
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Chart 1. The most effective ligands for transfer hydrogenations of ketones. 

1.3 Asymmetric Hydrogenation 

Asymmetric hydrogenation of prochiral unsaturated compounds such as 

alkenes, ketones and imines has been intensively studied and is considered a versatile 

methodology for the synthesis of chiral compounds ranging from the laboratory to the 

industrial scale. The discovery of homogenous catalysts for the asymmetric 

hydrogenation of prochiral olefins, ketones and imines is well recognized as one of the 

most significant developments in organotransition metal chemistry.2 

 Low valent Ru, Rh or Ir complexes bearing at least one chiral ligand belong to 

the most effective homogeneous hydrogenation catalyst precursors.4a,22 

The term “homogeneous hydrogenation” was used for the first time in 1938 by 

Calvin.23 He reported on copper based catalysts and used it for the reduction of p-

benzoquinone. Rhodium amine complexes and later on cyanocobaltate complexes 

were described by Iguchi.24 With his discovery of [RhCl(PPh3)3] in 1965 Wilkinsons 

made a very important breakthrough in homogeneous catalysis.25 Independently, 

Coffey26 discovered and also applied this complex in the hydrogenation of a variety of 

alkenes. The reactions could be carried out under very mild conditions and with high 

selectivity. In 1968 Horner27 and Knowles28 independently published on chiral non-

racemic rhodium catalysts all containing P-chiral monodentate ligands. In 
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hydrogenations, these rhodium complexes resulted in measurable but low product 

enantioselectivities (less than 30%). In 1971 Kagan introduced his rhodium complexes 

containing the C2-symmetric diphosphine DIOP [(4R,5R)-(–)-O-isopropylidene-2,3-

dihydroxy-1,4-bis(diphenylphosphino)butane] as the chiral ligand (3, Chart 2).29,30 His 

studies resulted in significantly higher product enantioselectivities (up to 88%) for the 

hydrogenation of alkenes. With Kagan‟s study about C2-symmetric chelating 

diphosphine ligands in view, Knowles synthesized DIPAMP (R,R)-(-)-1,2-bis[(o-

methoxy-phenyl)(phenyl)phosphino]ethane; a second generation of P-chiral ligands (4, 

Chart 2).31 Rhodium complexes of this C2-symmetric ligand catalyzed the hydrogenation 

of dehydroamino acids and L-DOPA (3,4-dihydroxy-L-phenylalanine), a drug for treating 

Parkinson‟s disease, with high enantioselectivity (up to 95% e.e.).32 

The next outstanding ligand was BINAP [2,2‟-bis(diphenylphosphino)-1,1‟-

binaphtyl] which was developed by Noyori in the 1980s (5, Chart 2).33,34 Unlike the 

previously described ligands, BINAP does not contain carbon stereocenters but belongs 

to the group of axially chiral compounds. Interestingly, the most active and selective 

catalysts containing BINAP as the chiral ligand are based on ruthenium rather than on 

rhodium (e.g. [Ru(BINAP)(OAc)2]). BINAP also belongs to the group of so called 

privileged ligands, since BINAP based catalysts can be used for a wide range of 

catalysis reactions as well as for a broad range of substrates. 

Ligands containing alkylphosphines such as the DuPhos ligand family (6, Chart 

2) have been developed by Burk.35 Catalysts from DuPhos and rhodium precursors 

show excellent results in enantiosective hydrogenation of many olefins and imines. 

 

Chart 2. C2-symmetric bidentate diphosphine ligands. 

During the last 25 years, hundreds of chiral non-racemic ligands have been 

synthesized and applied in enantioselective catalysis. Among all of these ligands, the 

group of ferrocene based ligands has been applied most successfully in hydrogenation 

and transfer hydrogenation reactions. 
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1.4. Chiral, non-racemic ferrocene ligands 

A great number of properly substituted ferrocene derivatives has been 

synthesized in chiral non-racemic form and such planar chiral derivatives have been 

applied in a variety of different fields including homogeneous enantioselective catalysis, 

bioorganometallic chemistry, polymers and dendrimers, electrooptical materials as well 

as thermotropic liquid crystals.36 

In 1959 the first optically active planar chiral ferrocene was prepared by 

Thomson via chemical resolution (7, Chart 3).37 

Fe

NMe2

(R)-8

Fe

7

O

 

Chart 3. First optically active planar chiral ferrocene, 7, and Ugi‟s amine, 8. 

In 1970 Nozaki and Ugi independently used a diastereoselective ortho-directing 

group (2-methylpyrrolidine) in the synthesis of chiral non-racemic 1,2-disubstituted 

ferrocenes. In the same year, Ugi and co-workers also reported on N,N-

dimethylferrocenylethylamine (Ugi‟s amine) (8, Chart 3), a ferrocene derivative that 

bears a highly diastereoselective ortho-directing group.38 Ugi‟s amine marks a turning 

point in the synthesis of chiral 1,2-disubstituted ferrocenes since by reaction with butyl 

lithium and subsequent trapping with electrophiles a variety of substituents can be 

introduced in the ortho-position (Scheme 5). 

 

Scheme 5. Synthesis of chiral ferrocenyl derivatives with planar chirality. 

Chiral ferrocenylphosphines were prepared for the first time in 1974 by Hayashi 

and Kumada with use of Ugi‟s methodology.39 Diastereoselective ortho-lithiation of (R)-8 

yielded (R,RFc)-9 with high diastereoselectivity (92% d.e.) and subsequent quenching 

with chlordiphenylphosphine resulted in PPFA (11, Chart 4). In addition to 
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aminophosphine PPFA, diphosphine BPPFA (12, Chart 4) was synthesized. It turned 

out that these derivatives are very valuable ligands in a variety of catalytic asymmetric 

transformations such as cross-coupling reactions and asymmetric hydrosilylations of 

olefins.40 

 

Chart 4. First ferrocenyl-based chiral ligands. 

Further stereospecific SN1-type reactions of the dimethylamino moiety with 

different nucleophiles such as acetate, R2PH, pyrazoles and others, which take place 

with retention of configuration, have led to a wide variety of chiral non-racemic 

ferrocene ligands. Among the huge number of ferrocene based catalyst ligands the so 

called Josiphos ligand family (14, Scheme 6) – developed by Togni, Spindler and co-

workers – holds a dominant role amongst C1-symmetric ferrocene-based ligands. In 

Scheme 6 the synthesis approach of Joshiphos ligands is depicted. This method starts 

from readily available Ugi‟s amine and follows Ugi‟s original diastereoselective ortho-

lithiation procedure. Then by quenching with chlorodiphenylphosphine the first 

phosphino substituent is added. In a second step, by replacing the ortho-directing N,N-

dimethyl-amino group by another phosphine the second substituent is introduced. This 

short and highly modular approach has allowed the synthesis of a huge number of 

Josiphos type ligands.12d,41 

Josiphos ligands proved to be excellent ligands in the asymmetric 

hydrogenation of alkenes, ketones, imines and enamines.2,42 Especially Xyliphos43 

(14b) represents an outstanding example of the Josiphos family and is intensively 

applied in an industrial process. The iridium catalyzed large scale hydrogenation of 

imine 15 yields amine 16 which is an intermediate in the synthesis of herbicide (S)-

metolachlor (17, Scheme 7). This herbicide is produced on a 10.000 ton scale per year. 

To date this is considered to be the most successful asymmetric hydrogenation process 

on industrial scale with exceptional turnover numbers (2.000.000) and turnover 

frequencies (400.000 h-1) as well as acceptable product enantioselectivity (80% e.e.).44 

Josiphos-type ligands are also applied by industry for the preparation of β-amino 

acid derivatives, which are important intermediates in the synthesis of biologically active 
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molecules. For this purpose, unprotected prochiral enamines are enantioselectively 

hydrogenated with use of a diphosphine-modified rhodium catalyst. PPF-t-Bu2 (14c) 

proved to act as the most effective diphosphine ligand in this process (Scheme 8).45,46 

 

Scheme 6. Synthesis of Josiphos ligands. 

 

 

Scheme 7. Synthesis of (S)-metolachlor. 

 

 

Scheme 8. Synthesis of β-amino acid derivatives. 

Like Josiphos, Walphos-type ligands, (18, Chart 5) were prepared in a highly 

modular approach from Ugi‟s amine.47 Walphos derivatives were found to be promising 

catalyst precursors for the enantioselective hydrogenation of olefins and ketones, as 

well as for C–C bond forming reactions.48 As an industrial application of one Walphos 

ligand, the preparation of Synthon A, an intermediate in the synthesis of the rennin 

inhibitor Aliskiren, should be mentioned. On a large scale, it was prepared quantitatively 
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and with high enantioselectivity from the appropriately substituted 2-isopropyl cinnamic 

acid (Scheme 9).12d,49  

 

Chart 5. Structure of C1-symmetric ferrocenyl-based Walphos and Taniaphos 

ligands. 

 

 

Scheme 9. Application of a Walphos ligand (18e) on large scale. 

Taniaphos-type ligands50 (19, Chart 5) constitute another class of C1-symmetric 

ferrocene-based diphosphines that proved superior in the rhodium and ruthenium 

catalyzed hydrogenation.51 Within this class of ligands the product enantioselectivity 

strongly depends on the nature of the backbone substituent R attached to the benzylic 

methylene position. For example, in the hydrogenation of β-dicarbonyl compounds, 

ligand 19b (R = Me) and 19d (R = NMe2) resulted in product of opposite absolute 

configuration. 

Furthermore, ferrocenyl diphosphine ligands with planar chirality as the sole 

source of chirality (20 and 21, Chart 6)52 – originally developed by Kagan‟s group – 

have been screened in hydrogenations of a variety of alkenes, however, only in the 
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hydrogenation of dimethyl itaconate high enantioselectivities could be obtained (98 and 

92% e.e. for ligand 20, R = Cy and cyclopentyl).16 

 

Chart 6. Exclusively planar chiral diphosphine ligands. 

As mentioned above, for the synthesis of 1,2-disubstituted ferrocene derivatives 

different ortho-directing groups can be applied. Besides amines also sulfoxides, acetals, 

oxazolines and miscellaneous chiral auxiliaries are in use. 

Amongst all stereogenic ortho-directing groups, Kagan‟s p-tolylsulfinyl group53 is 

a unique directing group since it can be fully replaced by reaction of tBuLi and 

subsequent quenching with an electrophile (Scheme 10). Although this exchange 

reaction is very efficient on the laboratory scale, up-scaling to the large industrial scale 

was not possible.  

 

Scheme 10. Synthesis of planar chiral 1,2-disubstituted ferrocenes by 

sulfoxide/lithium exchange. 

1.5. Phosphino-substituted ferrocenyloxazolines 

In 1993, aryl based phosphinooxazolines – the so called PHOX ligands54 – ((S)-

22, Chart 7) were independently synthesized by Pfaltz, Helmchen and Williams and 

have been applied in a variety of catalysis reactions.55 Their outstanding results raised 

the idea of extending this concept to ferrocene derivatives ((S,SFc)-23, Chart 7). 

These FOXAP ((S,SFc)-23) type derivatives were synthesized independently by 

Sammakia,56 Richards57 and Ahn58 almost at the same time and are now recognized to 
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be versatile ligands in a wide variety of enantioselectively catalyzed reactions, including 

enantioselective hydrogenations,59 transfer hydrogenations,40k,60 hydrosilylations,40k,61 

cross-coupling reactions,62 Heck-reactions,63 alkylations of aldehydes,64 allylic 

substitutions,40k,43c,65 and many other transformations.49d,66  

 

Chart 7. Aryl and ferrocene-based phosphine-oxazoline ligands. 

Several routes for the synthesis of these FOXAP ligands have been reported 

which differ only in the preparation procedure of ferrocenyl oxazolines (S)-24 (Scheme 

11). These intermediates are accessible either from esters of ferrocenecarbonic acid 

(route 11a)56, from the acid chloride of ferrocenecarbonic acid (route 11b),67 or from 

cyanoferrocene (route 11c).68 In the latter cases reaction of cyanoferrocene with a 

suitable amino alcohol in the presence of ZnCl2 leads directly to the oxazolines (S)-24. 

In the former cases an amide is formed as the intermediate which can be cyclised with 

use of different methodologies to the desired ferrocenyl oxazolines. 

As already reported by Richards55,65, Sammakia54a and Uemura69 

ferrocenyloxazolines (S)-24 can be diastereoselectively ortho-deprotonated with butyl 

lithium (Scheme 13). In the presence of nBuLi or sBuLi and diethyether as the solvent 

diastereomeric ratios of up to 39:1 of (S,SFc)-25 were obtained (Scheme 12). Later on, 

Sammakia and co-workers increased this ratio to >500:1 by adding 

tetramethylethylendiamine and by changing the solvent to hexane.54b Finally, trapping of 

the lithiated species ((S,SFc)-25) with chlorodiphenylphosphine as the electrophile 

results in the planar chiral FOXAP ligands (S,SFc)-23. 
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Scheme 11. Synthesis of optically active ferrocenyloxazoline. 

 

 

Scheme 12. Diastereoselective ortho-lithiation of ferrocenyloxazolines and 

synthesis of the FOXAP ligand family. 

Generally, FOXAP ligands show a good performance in both hydrogenation and 

transfer hydrogenation catalysis. In 1997 Sammakia13 and later on Uemura70 (1999) 

reported that ruthenium complexes of FOXAP ligands ([RuCl2(PPh3)(L)], L = FOXAP 

ligands) perform very efficiently as catalysts for transfer hydrogenations of ketones in 

the presence of isopropanol as the hydrogen source and a sodium or potassium 

alkoxide as the base. Especially aryl-alkyl ketones and in some cases also dialkyl 

ketones could be transformed at room temperature into secondary alcohols with almost 
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quantitative conversion and with excellent enantioselectivity. In 2006 Naud63c and co-

workers found that [RuCl2(PPh3)(FOXAP)] complexes are not only able to catalyze 

transfer hydrogenations but also hydrogenations in the presence of hydrogen gas even 

when transfer hydrogenation conditions such as isopropanol as the solvent and KOtBu 

as the base are applied. With these conditions the limitation of transfer hydrogenations 

(high dilution and product racemisation) could be overcome without losing product 

enantiomeric excess. Hence, up-scaling even to the large industrial scale became 

possible and as a result a few industrial pilot projects have been carried out.65b 

Very recently, the backbone of FOXAP type ligands was further modified in our 

group by replacing the ferrocene unit by a ferrocenylethyl unit (Chart 8). A preliminary 

high throughput screening of ruthenium complexes of these ligands ([RuCl2(PPh3)(L)] L 

= 26–28) in the hydrogenation of a small set of three aryl-alkyl ketones provided 

products in nearly quantitative conversion and with an enantiomeric excess of 97–99%. 

Because of their excellent performance, these ligands were called with reference to one 

inventor Raffa-FOX ligands.71  

 

Chart 8. Ferrocenylethyl based phosphinooxazolines. 
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2 Aim and scope of this thesis 

The main intention of this thesis was (i) to develop further phosphino-substituted 

ferrocenyloxazolines based catalysts, (ii) to test and to compare their performance in 

asymmetric hydrogenations and transfer hydrogenations, (iii) to develop additional 

straightforward and easy to handle synthesis routes for Raffa-FOX ligands and (iv) to 

explore methodologies for the synthesis of enantiopure 1,2-di- and 1,2,3-trisubstituted 

ferrocenes that could serve as starting material for the synthesis of ferrocene based 

ligands including oxazoline derivatives. 

These topics are summarized in Chapter 3 of this thesis. In the first part 

(Chapter 3.1), the synthesis of additional Raffa-FOX ligands and their performance in 

the asymmetric transfer hydrogenation of ketones is described. Moreover, a quantitative 

comparison between asymmetric transfer hydrogenation and asymmetric hydrogenation 

reactions is reported. The second part (Chapter 3.2) reports on a novel and optimised 

synthesis procedure for Raffa-FOX ligands that starts from well-known and easily 

accessible ferrocenyloxazolines. The third part (Chapter 3.3) describes a simplified 

methodology for removing ortho-directing amines in the presence of various 

substituents. With use of this methodology a number of enantiopure 1,2-di- and 1,2,3-

trisubstituted ferrocenes could be synthesized. 

2.1 Phosphino-substituted ferrocenyloxazolines: asymmetric 

hydrogenation and asymmetric transfer hydrogenation of 

ketones 

As described in the introduction, preliminary test reactions of our newly 

developed Raffa-FOX ligands (26–28, Chart 9) provided excellent results in the 

asymmetric hydrogenation of a small set of ketones. Nearly quantitative conversion and 

product e.e.s of 97–99% were observed when ruthenium complexes [RuCl2(PPh3)(L)] of 

ligands L = 26–28 were used as the catalyst precursors. It was therefore obvious to 
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extend this concept towards several directions. First of all, we questioned whether 

structural changes of these ligands could improve the catalysts performance or could 

ease and shorten the original preparation procedures. For this purpose novel synthesis 

routes for ligands 29–31 were developed. Like ligand 26, ligand 29 lacks the 

stereogenic center of the oxazoline unit while ligands 30 and 31 lack the stereogenic 

center of the side-chain carbon. Secondly, it was of interest to explore the scope of 

substrates with respect to asymmetric hydrogenations and transfer hydrogenations. In 

addition we questioned whether ruthenium complexes of type [RuCl2(PPh3)(L)] could be 

used for both hydrogenations and transfer hydrogenations and how these results would 

compare to each other. Results related to this topic are presented in Chapter 3.1. 

 

Chart 9. Raffa-FOX ligands 26–28 and newly proposed analogs 29–31. 

2.2 Diastereoselective synthesis of phosphino-substituted 

ferrocenyloxazolines 

Amongst all ligands tested in the ruthenium catalysed hydrogenation and 

transfer hydrogenation of alkyl-aryl ketones ([RuCl2(PPh3)(L)], L= 26–31) ligand 

(R,ROx,RFc)-27 performed best. Additionally, in certain cases ligand (R,ROx,RFc)-28 

provided comparable results while (SOx,SFc)-23 always led to slightly lower product e.e. 

values. 

The original synthesis route for ligands of type 27 not only requires several 

steps but also two enantiopure reagents are needed (Scheme 13).  

 

26



 

 

 

Scheme 13. Original synthesis route for ligand 27 and analogs. 

For example, for the synthesis of the (R,ROx,RFc)-27 enantiopure starting 

materials (R)-8 and (R)-valinol, (R)-33, are required. Therefore, we questioned whether 

this synthesis route for ligands with either (ROx,RFc) or (SOx,SFc) configuration could be 

significantly simplified and shortened. For this purpose two different methodologies 

were considered. 

The first methodology is based on a report of Marr who showed that ferrocenyl 

phosphine oxides can be α-deprotonated and reacted with electrophiles such as methyl 

iodide (Scheme 14). Recently, a diastereoselective version of this reaction has been 

published by Stepnicka. It was therefore our intention to investigate whether this 

methodology could be applied for the synthesis of ligands 27 and 28 when the easily 

accessible derivatives 24a and 39 (Scheme 15) are used as the precursors (Scheme 

16).  

 

Scheme 14. α-Deprotonation of a ferrocenyl phosphine oxide. 
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Scheme 15. Synthesis of ligands (SOx,SFc)-30 and (SOx,SFc)-42. 

 

 

Scheme 16. Diastereoselective side-chain alkylation. 

The second methodology relates to work of Brocard who has shown that alkyl 

groups from dialkyl zinc reagents can be transferred autocatalytically to aldehydes. 

Based on this report, we considered to autocatalytically alkylate amino-aldehydes 

(S,SFc)-37 and 40 with dialkylzinc reagents and to transform the alcohol intermediates 

into the desired phosphino-oxazolines (Scheme 17). 

 

Scheme 17. Autocatalytic alkylation of oxazolinyl-aldehydes with dialkylzinc 

reagents. 

Results related to this topic are presented in Chapter 3.2. 
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2.3. Synthesis of chiral, non-racemic ferrocene derivatives via 

ortho-metallation and partial reductive removal of ortho-directing 

amino groups.  

As mentioned in the introduction, chiral non-racemic 1,2-disubstituted ferrocene 

derivatives have found widespread application in homogeneous catalysis. Among the 

prevalent methodologies for the preparation of 1,2-disubstituted ferrocene derivatives, 

the p-tolylsulfinyl group (57) holds a unique position since it is the only diastereosective 

ortho-directing ferrocene substituent that undergoes full sulphur/lithium exchange with 

tBuLi. However, replacement of the sulfinyl group by other electrophiles works well only 

on the laboratory scale but up-scaling to the larger industrial scale has proved to be 

very difficult (Scheme 18). 

In order to circumvent this problem, other strategies have been reported by 

industrial researchers. One approach was to use an ortho-directing group and to only 

partially remove it. For example, 2-bromo-(N,N-dimethylaminoethyl)-ferrocene, (R,SFC)-

58, was prepared from Ugi’s amine and subsequently, in a two-step sequence, the 

ortho-directing group was transformed into a non-coordinating ethyl group, (SFc)-60. 

Since the ortho-position next to the bromide can also be deprotonated, various 

phosphino units could be introduced, (RFc)-61. A further exchange of bromide by a 

second set of phosphino groups allowed the synthesis of a variety of ferrocenyl 

diphosphines (62, Scheme 19).  

 

Scheme 18. Preparation of 1,2-disubstituted ferrocene derivatives via the p-

tolylsulfinyl directing group. 
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Scheme 19. Preparation of 1,2-disubstituted ferrocene derivatives from Ugi’s 

amine. 

Due to the importance of these types of ligands, we anticipated that simplifying 

this procedure and by using additional ortho-directing groups and substituents others 

than bromide a much broader applicability of this methodology could be achieved.  

Therefore this project is aiming for an extention of this methodology with respect 

to the type of ortho-directing groups, (R)-8 and 63-65, as well as with focus on the 

synthesis of 1,2-di- and 1,2,3-trisubstiuted ferrocenes (Scheme 20). 

 

Scheme 20. Synthesis of non-racemic 1,2-di- and 1,2,3-trisubstituted 

ferrocenes. 

Details of this work are reported in Chapter 3.3. 
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3. Results 

This thesis is based on the following papers and manuscripts. 

 

Ruthenium complexes of phosphino-substituted ferrocenyloxazolines in the 

asymmetric hydrogenation and transfer hydrogenation of ketones: a comparison. 

Afrooz Zirakzadeh, Raffael Schuecker, Kurt Mereiter, Felix Spindler, and Walter 

Weissensteiner 

Organometallics, submitted 

 

The use of -deprotonation- and autoactivated alkylation-reactions in the 

diastereoselective synthesis of phosphino-substituted ferrocenyloxazolines.  

Afrooz Zirakzadeh, Kurt Mereiter, and Walter Weissensteiner 

Manuscript prepared 

 

Synthesis of chiral, nonracemic ferrocene derivatives via ortho-metallation and 

partial reductive removal of ortho-directing amino groups. 

Afrooz Zirakzadeh, Raffael Schuecker, Walter Weissensteiner  

Tetrahedron: Asymmetry 2010, 21, 1494–1502 
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3.1. Ruthenium complexes of phosphino-substituted 

ferrocenyloxazolines in the asymmetric hydrogenation and 

transfer hydrogenation of ketones: a comparison. 
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Ruthenium complexes of phosphino-substituted 

ferrocenyloxazolines in the asymmetric hydrogenation and 

transfer hydrogenation of ketones: a comparison. 

 

Afrooz Zirakzadeh,a Raffael Schuecker,a Kurt Mereiter,b Felix Spindler,c and 

Walter Weissensteinera,* 

 

a University of Vienna, Institute of Organic Chemistry, Währinger Straße 38, A-1090 

Wien, Austria 

Fax: 0043142779521; e-mail: walter.weissensteiner@univie.ac.at 

b Institute of Chemical Technologies and Analytics, Vienna University of Technology, 

Getreidemarkt 9/164SC, A-1060 Vienna, Austria 

c Solvias AG, Synthese & Katalyse, Römerpark 2, CH-4303 Kaiseraugst, Switzerland 

 

Abstract 

Ruthenium complexes of the type [RuCl2PPh3(L)] with eight novel bidentate 

ferrocene-based phosphine-oxazoline ligands were prepared and tested as catalysts in 

the asymmetric hydrogenation and transfer hydrogenation of fourteen ketones. The 

molecular structures of two catalyst precursors and of two corresponding acetonitrile 

complexes were studied by X-ray diffraction. Two catalysts delivered products in high 

yield and with enantiomeric excesses of up to 99%. The transfer hydrogenation results 

obtained with all novel ligands were compared to those of one well-established and 

commercially available FOXAP ligand. Furthermore, a qualitative comparison with the 

hydrogenation data was carried out. In both cases surprising similarities in product 

enantiomeric excess and product absolute configuration were found. Attempts were 

made with use of a transition state model to rationalize these features. 
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Introduction 

For more than two decades phosphino-oxazolines such as the so called PHOX-

type ligands[1] (Chart 1) have been successfully used in a huge number of asymmetric 

transformations as hetero-bidentate ligands of transition metal-based catalysts.[2] In 

1995 several groups independently extended the concept of PHOX-type ligands by 

replacing the ligand aryl backbone by a ferrocene unit.[3] The resulting FOXAP ligands 

(Chart 1) were found to perform excellently in a wide variety of enantioselectively 

catalyzed reactions,[4] including hydrogenations,[5] transfer hydrogenations,[5i,6] 

hydrosilylations,[3d,7] cross-coupling reactions,[3b,8] Heck reactions,[9] alkylations of 

aldehydes,[10] allylic substitutions,[5i,8c,11] and many other transformations.[12]  

Fe

PPh2

N

O

R

PPh2

N
O

R

PHOX FOXAP  

Chart 1. 

Sammakia[6e] (1997), Dai[6d] (1998) and Uemura[6b] (1999) reported that 

ruthenium complexes of FOXAP ligands ([RuCl2(PPh3)(L)], L = FOXAP ligands) 

performed very efficiently as catalyst precursors in the transfer hydrogenation of 

ketones when 2-propanol was used as the hydrogen source and sodium hydroxide or a 

sodium (potassium) alkoxide was used as the base. In particular, aryl-alkyl ketones – 

and in some cases also dialkyl ketones – could be transformed at room temperature 

into secondary alcohols with almost quantitative conversion and with excellent 

enantioselectivity. In 2006 Naud and co-workers found that [RuCl2(PPh3)(FOXAP)] 

complexes are not only able to catalyze transfer hydrogenations but also 

hydrogenations in the presence of hydrogen gas, even when transfer hydrogenation 

conditions such as the use of 2-propanol as the solvent and KOtBu as the base were 

applied.[13] On using these conditions some limitations of transfer hydrogenations (high 

dilution, product racemization) could be overcome without losing product enantiomeric 

excess and scale-up even to the large industrial scale became possible.[13a] 

Within this framework, and as a continuation of our search for novel chiral non-

racemic catalysts and catalyst ligands,[14] we very recently made further modifications to 

the ligand backbone of FOXAP ligands by replacing the ferrocene unit by a 

ferrocenylethyl unit (derivatives 2–4, Chart 2). This structural modification led to the 

addition of a further stereogenic unit to the ligand system and for the corresponding 
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ruthenium complexes to an increase in chelate ring size from six to seven.[15] A 

preliminary high throughput screening of ruthenium complexes of these ‘Raffa-FOX’ 

ligands ([RuCl2(PPh3)(L)] L = 2–4) in the hydrogenation of a small set of three aryl-alkyl 

ketones gave products with nearly quantitative conversion and with an enantiomeric 

excess of 97–99%.  

Fe

Ph2P

O

N R

(R,RFc)-2

(R,SOx,RFc)-3

(R,ROx,RFc)-3

R =

(R,SOx,RFc)-4

(R,ROx,RFc)-4

CHMe2

CHMe2

Ph

Ph

H

Fe

Ph2P

O

N

(R,RFc)-5

Fe

(SOx,SFc)-6

PPh2

N

O

R =

3,5-(CH3)2C6H2

Ph

(SOx,SFc)-7

(SOx,SFc)-1

Fe

N

O

PR2

 

Chart 2. 

In this contribution we report the synthesis of three additional ligands (5, 6, and 

7), all of which feature structural modifications of our previously described ligands 2–

4[15]. Like 2, ligand 5 lacks a stereogenic center at the oxazoline ring while ligands 6 and 

7 represent analogs of 3 lacking the stereogenic center of the side chain.  Complexes 

[RuCl2(PPh3)(L)] of all ligands (L = 2–7) have been extensively tested in transfer 

hydrogenations and hydrogenations of fourteen ketones. The transfer hydrogenation 

results obtained with 2–7 are compared to those of FOXAP ligand 1. In addition, a 

qualitative comparison of the results obtained for transfer hydrogenations and 

hydrogenations under transfer hydrogenation conditions is given. Attempts are also 

made to identify structural features responsible for product enantioselectivity as well as 

for the experimentally determined product absolute configuration. 
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Results and Discussion 

Synthesis of Ligands 5–7 and Complexes 19–23 

Ligand 5 was prepared by the same synthesis route as ligands 2–4 (Scheme 1). 

Amino-ester (R,SFc)-9,[16] which is easily accessible from Ugi’s amine, (R)-8, was 

reacted in the presence of trimethylaluminium[8g] with 1,1-dimethyl-2-hydroxyethylamine 

to give amide (R,SFc)-10. In the next step this compound was transformed according to 

the methodology of Appel[17] to oxazoline (R,SFc)-11. Oxazoline 11 was treated with 

methyl iodide in acetonitrile and the crude ammonium salt was subsequently reacted 

with diphenylphosphinyl lithium to give the phosphinyl-substituted derivative (R,RFc)-

12.[18] Reduction of this phosphine oxide with polymethylhydrosiloxane (PMHS) in the 

presence of titanium isopropoxide[19] gave the desired phosphine-oxazoline (R,RFc)-5. 

 

Scheme 1. 

The synthesis of ligands 6 and 7 was achieved in only two steps from 

commercially available ferrocenyl oxazoline (SOx)-13 (Scheme 2). Alcohol (SOx,RFc)-14 

was obtained from (SOx)-13 in analogy to a reported procedure.[20] Subsequent 

reactions with diphenylphosphine or bis(3,5-dimethylphenyl)phosphine in the presence 

of chlorotrimethylsilane and sodium iodide gave ligands (SOx,SFc)-6 and (SOx,SFc)-7, 

respectively.[21]  

Complexes [RuCl2(PPh3)(L)] of ligands 5–7 (19–21) were prepared in exactly the 

manner as the complexes of ligands 1–4 (Scheme 3, 16–18). Reaction of phosphino-

oxazoline ligands 5–7 with [RuCl2(PPh3)3] in toluene at r.t. gave the desired unsaturated 

green complexes 19–21. Two of these complexes, (ROx,RFc)-17 and (SOx,SFc)-21, were 

further treated at r.t. with acetonitrile and the coordinatively saturated yellow-orange 

acetonitrile complexes (ROx,RFc)-22 and (SOx,SFc)-23 were obtained (Scheme 3, bottom).  
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Scheme 2. 

 

+ L [RuCl2(PPh3)(L)][RuCl2(PPh3)3]
toluene

(R,ROx,RFc)-4

(R,SOx,RFc)-4

(R,ROx,RFc)-3

(R,SOx,RFc)-3

(R,RFc)-2

L =

(SOx,SFc)-7

(SOx,SFc)-6

(R,RFc)-5

complex =

(SOx,SFc)-15(SOx,SFc)-1

(ROx,RFc)-18

(SOx,RFc)-18

(ROx,RFc)-17

(SOx,RFc)-17

(RFc)-16

(SOx,SFc)-21

(SOx,SFc)-20
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(R,ROx,RFc)-3 (ROx,RFc)-22

L = complex =

(SOx,SFc)-7 (SOx,SFc)-23

CH3CN

 

Scheme 3. 

Single crystals were obtained for two unsaturated, (ROx,RFc)-17 and (RFc)-19, 

and two coordinatively saturated, (ROx,RFc)-22 and (SOx,SFc)-23, complexes and their 

molecular structures in the solid state were studied by X-ray diffraction. Details of these 

X-ray crystallography studies are given in the Experimental section and in the 

Supporting Information (Table S4). The absolute configuration of each compound was 

determined from the X-ray anomalous dispersion effects and was consistent with the 
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chemical evidence. Views of the molecular structures of these compounds are shown in 

Figures 1 and 2 (for selected geometric data see Supporting Information, Tables S5–

S8). The molecular structure of (SOx,SFc)-15 had been determined previously[6c] and the 

data for this compound were used for comparative purposes (retrieved from Cambridge 

Structural Database, refcode MAPLUK; for a view of the molecular structure see 

Supporting Information, Figure S5). 

As in the case of (SOx,SFc)-15, complexes (ROx,RFc)-17 and (RFc)-19 adopt a 

square pyramidal rather than a trigonal bipyramidal molecular structure. In all cases the 

free coordination site is well shielded by either a PPh3 phenyl (15 and 17) or an 

oxazoline methyl (19) group. However, as compared to 15 the overall molecular 

structures and the ligand arrangements differ significantly in 17 and 19. In 15 the 

chlorides adopt a cis disposition while in 17 and 19 the chlorides are located trans to 

each other. Furthermore, in 15 the triphenylphosphino phosphorus is cis to the 

oxazoline nitrogen but is trans in 17 and 19. 

 

Figure 1. Molecular structures of complexes (ROx,RFc)-17 (left) and (RFc)-19 

(right). Hydrogen atoms omitted for clarity. 
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Figure 2. Molecular structures of complexes (ROx,RFc)-22 (left) and (SOx,SFc)-23 

(right). Hydrogen atoms omitted for clarity. 

As expected, the acetonitrile complexes (ROx,RFc)-22 and (SOx,SFc)-23 adopt an 

octahedral geometry, but – in contrast to 17 and 19 – the chlorides are positioned in a 

cis rather than in a trans arrangement and the acetonitrile nitrogen is trans to one of the 

chlorides. 

 

Catalysis 

Complexes 16–21 were screened in asymmetric hydrogenations (HY) and 

transfer hydrogenations (THY) of a total of fourteen ketones (Chart 3). All catalysis 

reactions were carried out with the isolated and fully characterized catalyst precursors 

16–21. Complex 15 was used as the reference.  

Transfer Hydrogenations (THY) 

Transfer hydrogenations of thirteen ketones were carried out with complexes 

15–21. It was our initial intention to compare the performance of the newly synthesized 

complexes 16–21 with that of the well-established FOXAP ligand 15. In order to ensure 

maximum comparability, all complexes (15–21) were synthesized according to the 

same protocol.  
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Chart 3. 

The THY conditions were first optimized with respect to the type and amount of 

base, the substrate concentration, the substrate-to-catalyst ratio (S/C), and the reaction 

temperature (for details see Supporting Information). Based on this optimization 

procedure, the majority of all screening reactions were carried out at r.t. using 1 mmol 

of substrate in 51 mL of 2-propanol (19.6 mM), 0.5% catalyst and 2% base (S/C/base = 

200/1/4). In an effort to ensure consistency and reproducibility, all transfer 

hydrogenations were carried out at least twice. 

The THY results obtained with acetophenone (ACP) as the substrate and 

complexes 15–21 as the catalyst precursors are summarized in Table 1. It is important 

to note that as a result of the availability of ligands for these THY reactions, complexes 

with a different absolute configuration at the ferrocene unit were applied. Complexes 

15, 20 and 21 had the (SFc) absolute configuration and derivatives 16–19 had the (RFc) 

configuration.  

In all THYs carried out, we observed that the product enantiomeric excess was 

significantly dependent on the reaction time due to product racemization. After reaching 

a maximum value, the product e.e. dropped continuously. Therefore, in all Tables the 

maximum product e.e. values obtained at the given reaction time are listed together 

with the corresponding conversion data. 
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Table 1. THY results for acetophenone obtained with complexes 15–21. 

entry substrate complex time 
% 

conv. 

% 

e.e. 

abs. 

conf. 

1 ACP (SOx,SFc)-15 20 min 99 96 R 

2 ACP (RFc)-16 20 min 98 92 S 

3 ACP (ROx,RFc)-17 10 min 99 98 S 

4 ACP (SOx,RFc)-17 5 h 18 69 R 

5 ACP (ROx,RFc)-18 15 min >99 97 S 

6 ACP (SOx,RFc)-18 6 h 90 73 R 

7 ACP (RFc)-19 4 h 78 95 S 

8 ACP (RFc)-19
a 

1 h 85 95 S 

9 ACP (SOx,SFc)-20 30 min 96 93 R 

10 ACP (SOx,SFc)-21 20 min 97 89 R 

a pre-prepared catalyst 

For example, with reference (SOx,SFc)-15 as the catalyst precursor the reaction 

was essentially finished after 20 min (99% conversion) and the product (R)-1-

phenylethanol was formed with 96% e.e. (Table 1, entry 1). In order to estimate the 

effect of product racemization, enantiopure (S)-1-phenylethanol was treated for 24 

hours in 2-propanol either with base only (KOiPr) or it was exposed to the actual 

catalysis conditions [KOiPr/(SOx,SFc)-15]. The treatment with base only led to a loss of 

5% e.e. while under catalysis conditions this process took place much faster and after 

24 hours a reduction of 30% e.e. was observed. 

The results obtained for complexes 16–21 to some extent depended on the 

substitution pattern and relative configuration of the ligands used (2–7). The best results 

were obtained with ligands (R,ROx,RFc)-3 and (R,ROx,RFc)-4 [complexes (ROx,RFc)-17 and 

(ROx,RFc)-18], both of which bear a mono-substituted oxazoline ring and have the 

(ROx,RFc) relative configuration. As compared to the reference, both complexes gave 

rise to slightly higher product e.e.s in a shorter reaction time (17: 98%; 18: 97%; Table 

1, entries 3 and 5). Removal of the oxazoline substituent or the side chain methyl group 

[ligands (R,RFc)-2 and (SOx,SFc)-6; complexes (RFc)-16 and (SOx,SFc)-20] resulted mainly 

in a decrease in the product e.e. (92% and 93%, Table 1, entries 2 and 9). 

Replacement of the diphenylphosphino group of (SOx,SFc)-6 by a dixylylphosphino unit 

[ligand (SOx,SFc)-7, complex (SOx,SFc)-21] led to a further reduction in the product 

enantiomeric excess (89%, Table 1, entry 10). 
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Interestingly, the use of ligand (R,RFc)-5 [complex (RFc)-19], which bears two 

methyl groups at the oxazoline position 4, led to a significant decrease in the rate of the 

reaction and after 4 hours a conversion of only 78% was achieved. However, this 

problem could be partly overcome without loss of product e.e. (95%) when the catalyst 

precursor (RFc)-19 was reacted for 2 hours with base in 2-propanol before the substrate 

was added. The use of such a pre-prepared catalyst led to a markedly faster THY 

process and after 1 hour the product was obtained with 85% conversion and 95% e.e. 

(after 2 h: 97% conversion and 94% e.e.; Table 1, entries 7 and 8). It is clear that with 

catalyst precursor (RFc)-19 the formation of the active catalyst is slowed down 

significantly. From the chemical and structural evidence it is plausible to assume that 

the transformation of the ruthenium dichloride complex into the active ruthenium hydride 

catalyst is slowed down by steric hindrance caused by one of the oxazoline methyl 

substituents, which efficiently shields the free coordination site at the metal center 

[Figure 1 (right) and Supporting Information, Figure S2, C47]. 

The strongest influences on the THY reactions were observed when, instead of 

complexes (ROx,RFc)-17 and (ROx,RFc)-18, the diastereomers (SOx,RFc)-17 and (SOx,RFc)-

18 [ligands (R,SOx,RFc)-3 and (R,SOx,RFc)-4] were applied – both of which have the (S) 

configuration at the oxazoline carbon C4. In these cases, not only did the reaction 

become very slow but the product absolute configuration also changed from (S) to (R).  

Generally, the product of (S) absolute configuration was obtained either when 

ligands were used that adopted an (RFc) absolute configuration at the ferrocene unit but 

lacked a further stereogenic unit at the oxazoline ring (16 and 19) or when ligands with 

(ROx,RFc) relative and absolute configuration were applied (15, 17, 18, 20 and 21). 

However, with phenyl or 2-propyl substituents a change in the configuration at the 

oxazoline carbon C4 led to ligands having the (SOx,RFc) relative configuration and this 

resulted in a change of product absolute configuration from (S) to (R) (Table 1, entries 4 

and 6). Interestingly, an identical dependence of the product absolute configuration on 

the relative configuration of the ligand was reported by Dai and co-workers.[6d] In the 

transfer hydrogenation of acetophenone with the diastereomeric complexes (SOx,SFc)-15 

and (SOx,RFc)-15 [ligands (SOx,SFc)-1 and (SOx,RFc)-1] the product with the same (R) 

absolute configuration was formed. This means that – as with 17 and 18 – the use of 

diastereomers (ROx,RFc)-15 and (SOx,RFc)-15 leads to products of opposite absolute 

configuration. 

Since the THY of acetophenone was best accomplished with complex (ROx,RFc)-

17, the dependence of this process on the substrate concentration as well as on the 
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substrate-to-catalyst ratio was investigated. The dependence on the substrate 

concentration was found to be rather small. While a 0.02 molar solution was 

transformed within 10 minutes into the product with 98% e.e. (99% conversion), a 0.2 

molar solution gave the product with 95% e.e. (90% conversion) within 5 minutes. Only 

when a 0.02 molar solution was used and the S/C ratio was increased from 200/1 to 

1000/1 did the conversion become slow and the maximum product e.e. dropped from 

98% to 81%.  

In summary, with the exception of complexes (SOx,RFc)-17 and (SOx,RFc)-18, all 

catalyst precursors gave results that are comparable to those of the reference. 

Surprisingly, for these complexes the type of oxazoline substituent as well as the 

oxazoline substitution pattern [non- (16), mono- (17, 18) or di-substitution (19)] hardly 

had any influence on the product enantiomeric excess (16: 92%; 17: 98%; 18: 97%; 19: 

95% e.e.).  

In order to study the influence of steric and electronic effects, 2- and 4-

substituted acetophenones (2-F-ACP, 2-Cl-ACP, 4-CF3-ACP, 4-MeO-ACP, and 4-Me-

ACP) together with additional phenyl-alkylketones (phenyl-ethylketone, PEK; phenyl-

benzylketone, PBK; 1,3-diphenylpropan-1-one, DPP) were tested. Furthermore, a 

bicyclic system (1-tetralone, TETN), acetylferrocene (AcFc), and one dialkylketone (tert-

butylmethylketone, tBMK) were used. For these transfer hydrogenations only those 

catalyst precursors were used that gave the best results with acetophenone as the 

substrate [reference (SOx,SFc)-15, (ROx,RFc)-17, (ROx,RFc)-18, (RFc)-19, and (SOx,SFc)-20].  

In the majority of test reactions (Table 2) nearly quantitative conversion could be 

achieved within 5–30 minutes. Only with the electron-rich substrates 4-MeO-ACP and 

AcFc, with the sterically more demanding bicyclic 1-tetralone (TETN) and, especially, 

with dialkyl ketone tBMK was a prolonged reaction time required. The best results were 

obtained with complex (ROx,RFc)-17 [ligand (R,ROx,RFc)-3]. In a few cases comparable 

(Table 2, entries 2/3, 13/14, 18/19, 21/22, and 24/25) or even better (entries 27/28 and 

30/31) results could be obtained on using complex (ROx,RFc)-18. In particular, the THY 

of acetylferrocene gave the product with significantly higher enantiomeric excess, albeit 

with a very low level of conversion (entry 31). 

As for acetophenone, when the THY reactions were carried out with catalyst 

precursors of (RFc) or (ROx,RFc) configuration and with aryl-alkyl ketones as the 

substrates, products with the (S) absolute configuration were obtained consistently. As 

one might expect, the product enantiomeric excess was also dependent on the 

substrate substitution pattern (Figure 3). On employing reference 15 and ACP as the 
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substrates, products with 96% e.e. were obtained. Substitution of the ACP phenyl ring 

with electron-donating or electron-withdrawing substituents led – with the exception of 

4-Me-ACP (96% e.e.) – to a small reduction in the e.e. values (90–93%) but replacing 

the methyl group of ACP with other alkyl substituents did not significantly affect the 

product e.e. (95–97%; PEK, PBK, DPP). Even the bicyclic compound 1-tetralone 

(TETN) was reduced with an enantiomeric excess of 93%.  

Similar trends were seen when the best performing complex (ROx,RFc)-17 was 

used (Figure 3). As compared to the reference, slightly better product e.e.s were 

obtained with seven substrates (ACP, 4-Cl-ACP, 4-MeO-ACP, 4-Me-ACP, PBK, DPP, 

and AcFc) while slightly lower product e.e.s were found in the THY reactions of 

substrates 4-CF3-ACP and PEK. Interestingly, with both 2-substituted acetophenones 

(2-F-ACP and 2-Cl-ACP) and with tetralone a sharp drop in product e.e. was found (2-

F-ACP: 50%, 2-Cl-ACP: 75%, TETN: 74%).  

In summary, in a number of cases complex (ROx,RFc)-17 gave slightly better 

results than the original FOXAP analog 15. However, we noticed with surprise that 

although complexes 15 and 17 adopt totally different molecular structures (15: 

Supporting Information, Figure S5 and 17: Figure 1, left) their performance in THY 

reactions was found to be remarkably similar. Except for the 2-substituted 

acetophenones and 1-tetralone, structural changes in the substrates were comparably 

reflected in changes of product e.e. values. For complexes 15 and 17 as the catalyst 

precursors, we consider these findings to be the result of similar asymmetric induction 

mechanisms.[22] 

In their original report on THYs of aryl-alkyl and dialkyl ketones with FOXAP 

ruthenium dichloride complexes such as [RuCl2((SOx,SFc)-1)], Uemura and co-workers 

commented on mechanistic features and presented some NMR evidence for a 

ruthenium dihydride-based reaction mechanism.[6b] Furthermore, for aryl-alkyl ketones a 

transition state model was presented (Figure 4, top). Based on this report we 

questioned whether the THY reactions with complex (ROx,RFc)-17 or similar complexes 

could be explained in terms of a related transition state model. Like Uemura’s proposal, 

our suggestion is based on structural and chemical evidence. Our model was mainly 

derived from the molecular structures of complexes (ROx,RFc)-22 and (SOx,SFc)-23 

(Figure 2) and is shown in Figure 4 (bottom).  
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Table 2. Best THY results obtained for all substrates screened. 

entry substrate complex time 
% 

conv. 
% 

e.e. 
abs. 
conf. 

1 ACP (SOx,SFc)-15 20 min 99 96 R 

2 ACP (ROx,RFc)-17 10 min 99 98 S 

3 ACP (ROx,RFc)-18 15 min >99 97 S 

4 2-F-ACP (SOx,SFc)-15 5 min 99 91 R 

5 2-F-ACP (ROx,RFc)-17 30 min 99 50 S 

6 2-Cl-ACP (SOx,SFc)-15 20 min >99 90 R 

7 2-Cl-ACP (ROx,RFc)-17 5 min >99 75 S 

8 4-Cl-ACP (SOx,SFc)-15 10 min >99 93 R 

9 4-Cl-ACP (ROx,RFc)-17 5 min 98 94 S 

10 4-CF3-ACP (SOx,SFc)-15 5 min 99 90 R 

11 4-CF3-ACP (ROx,RFc)-17 20 min >99 87 S 

12 4-MeO-ACP (SOx,SFc)-15 20 min 80 90 R 

13 4-MeO-ACP (ROx,RFc)-17 20 min 82 95 S 

14 4-MeO-ACP (ROx,RFc)-18 20 min 75 95 S 

15 4-Me-ACP (SOx,SFc)-15 10 min 97 96 R 

16 4-Me-ACP (ROx,RFc)-17 10 min 97 98 S 

17 PEK (SOx,SFc)-15 10 min 99 97 R 

18 PEK (ROx,RFc)-17 20 min 99 96 S 

19 PEK (ROx,RFc)-18 15 min 94 96 S 

20 PBK (SOx,SFc)-15 10 min >99 95 R 

21 PBK (ROx,RFc)-17 20 min >98 97 S 

22 PBK (ROx,RFc)-18 2 h >99 95 S 

23 DPP (SOx,SFc)-15 10 min >99 94 R 

24 DPP (ROx,RFc)-17 15 min 99 96 S 

25 DPP (ROx,RFc)-18 20 min >99 94 S 

26 TETN (SOx,SFc)-15 5 min 71 93 R 

27 TETN (ROx,RFc)-17 30 min 32 74 S 

28 TETN (ROx,RFc)-18 20 min 21 81 S 

29 AcFc (SOx,SFc)-15 30 min 24 80 R 

30 AcFc (ROx,RFc)-17 30 min 10 81 S 

31 AcFc (ROx,RFc)-18 30 min 16 93 S 

32 tBMK (SOx,SFc)-15 24 h 85 >99 S 

33 tBMK (SOx,SFc)-20 24 h 36 21 R 
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Figure 3. Best product enantiomeric excesses (% e.e.) obtained in THYs and 

HYs. 

 

 

Figure 4. Transition state models for the THYs of aryl-alkyl ketones with systems 

[RuH2((ROx,RFc)-1)]/ACP (top; adopted from Cambridge Structural Database, refcode 

MAPLUK and reference [6c]), and [RuH2((ROx,RFc)-3)]/ACP (bottom). 

This model is able to explain why acetophenone or similar ketones coordinate to 

the (ROx,RFc)-configured metal hydride with their (Si) side and therefore the product of 

(S) absolute configuration is obtained. Furthermore, unlike with the FOXAP-type 

ligands, phenyl ortho- and meta-substituents are more prone to interfere with the 

oxazoline-substituted ferrocenyl Cp-ring and this view correlates well with the observed 

drop in product enantiomeric excess when substrates 2-F-ACP, 2-Cl-ACP and TETN 

48



 

were used. On the other hand, the steric influence of phenyl para-substituents or of 

different side chain alkyl groups is expected to be much smaller.  

It is also clear from this model that, unlike with FOXAP-type catalysts, the 

oxazoline substituents at carbon C4 and the substrate are located far from each other 

and therefore in most cases a change in this substituent only leads to a rather small 

change of the product enantiomeric excess. However, when the phenyl groups of the 

diphenylphosphino unit are replaced by xylyl groups a greater steric interaction between 

one xylyl group and the substrate is expected and this is again consistent with the 

experimentally observed drop in enantioselectivity when catalyst precursor 20 was 

replaced by 21 (Table 1, entries 9 and 10). 

Hydrogenations (HY) 

Since complexes of the type [RuCl2(FOXAP)] are known to be very efficient 

catalyst precursors for asymmetric hydrogenation reactions,[13] the full set of novel 

complexes 16–21 was screened against seven aryl-alkyl ketones on a customized 

Symyx high throughput screening system.[23] Typical results are listed in Table 3. 

As for the THYs, all hydrogenations were carried out with isolated and fully 

characterized catalyst precursors. Reactions were run for 16 hours at a temperature of 

25 °C under hydrogen gas at a pressure of 25 bar, a substrate concentration of 41.67 

µmol/500 µL (83 mM), and a substrate-to-catalyst ratio of 25:1. Different combinations 

of solvents and bases were tested. Either 2-propanol in combination with KOtBu or 

toluene/water (9:1) with bases K2CO3 or NaOH were applied. The former solvent/base 

system is typically used in transfer hydrogenation reactions[22] while the latter conditions 

were found to give excellent results in the hydrogenation of ketones using ruthenium-

FOXAP-based catalysts, even on a large industrial scale.[13] 

For all substrates screened, reaction conditions were identified that gave 

products with quantitative or nearly quantitative conversion and – with the exception of 

bis(3,5-trifluoromethyl)acetophenone – with an enantiomeric excess equal to or better 

than 90%.  

As in transfer hydrogenations, catalyst precursor (ROx,RFc)-17 gave the best 

results (Table 3, entries 2, 9, 12, 15, and 17), especially when it was used in 

combination with the solvent/base system toluene/H2O/K2CO3.  

Only in the case of phenyl benzyl ketone, PBK, did the iPrOH/KOtBu system 

prove to be superior to the toluene/H2O system, resulting in quantitative conversion and 
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a product enantiomeric excess of 99% (entry 20). Once again, in a few cases complex 

(ROx,RFc)-18 gave equally good results to (ROx,RFc)-17 [Table 3, entries 2/6 (ACP), and 

17/19 (4-Me-ACP)]. 

With respect to the substrate substitution pattern and to the relative 

configuration of ligands and complexes, the hydrogenation and transfer hydrogenation 

results obtained with (ROx,RFc)-17 showed almost identical trends (Figure 3). Only in the 

hydrogenation of the 2-substituted acetophenones 2-F-ACP and 2-Cl-ACP were 

significantly better results obtained in comparison to transfer hydrogenations. 

Interestingly, the hydrogenation reactions of substrates 2-F-ACP and 2-Cl-ACP showed 

a very strong dependence on the solvent/base system used. When the reactions were 

carried out in the 2-PrOH/KOtBu system instead of the toluene/H2O/K2CO3 system – as 

in transfer hydrogenations – a very significant drop in product enantiomeric excess was 

seen [Table 3, entries 10/11 (2-F-ACP) and 13/14 (2-Cl-ACP)].  

Comparison of Transfer Hydrogenation and Hydrogenation Results 

Despite the fact that significantly different reaction conditions were used for the 

transfer hydrogenation and hydrogenation reactions, a number of surprising similarities 

were observed. Of all the novel catalyst precursors tested, complex (ROx,RFc)-17 and, in 

a few cases, complex (ROx,RFc)-18 gave the best results. A similar dependence of the 

product enantiomeric excesses on the catalyst precursors and on the substrate 

substitution pattern was found (Tables 2 and 3, Figure 2).  
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Table 3. Typical HY results obtained with complexes 16–21. 

entry substrate complex solvent base 
% 

conv. 

% 

e.e. 

abs. 

conf. 

1 ACP (RFc)-16 Tol/H2O K2CO3 99 95 S 

2 ACP (ROx,RFc)-17 Tol/H2O K2CO3 99 99 S 

3 ACP (ROx,RFc)-17 Tol/H2O NaOH 99 97 S 

4 ACP (ROx,RFc)-17 
i
PrOH KO

t
Bu 95 94 S 

5 ACP (SOx,RFc)-17 
i
PrOH KO

t
Bu 95 58 R 

6 ACP (ROx,RFc)-18 Tol/H2O K2CO3 99 98 S 

7 ACP (ROx,RFc)-18 Tol/H2O NaOH 99 96 S 

8 ACP (SOx,RFc)-18 
i
PrOH KO

t
Bu 95 62 R 

9 2-F-ACP (ROx,RFc)-17 Tol/H2O K2CO3 97 90 S 

10 2-F-ACP (ROx,RFc)-17 Tol/H2O NaOH 96 87 S 

11 2-F-ACP (ROx,RFc)-17 
i
PrOH KO

t
Bu 99 70 S 

12 2-Cl-ACP (ROx,RFc)-17 Tol/H2O K2CO3 95 91 S 

13 2-Cl-ACP (ROx,RFc)-17 Tol/H2O NaOH 98 90 S 

14 2-Cl-ACP (ROx,RFc)-17 
i
PrOH KO

t
Bu 80 82 S 

15 4-CF3-ACP (ROx,RFc)-17 Tol/H2O K2CO3 97 90 S 

16 4-CF3-ACP (ROx,RFc)-17 Tol/H2O NaOH 97 89 S 

17 4-Me-ACP (ROx,RFc)-17 Tol/H2O K2CO3 100 97 S 

18 4-Me-ACP (ROx,RFc)-17 Tol/H2O NaOH 99 95 S 

19 4-Me-ACP (ROx,RFc)-18 Tol/H2O K2CO3 100 97 S 

20 PBK (ROx,RFc)-17 
i
PrOH KO

t
Bu >99 99 S 

21 PBK (ROx,RFc)-18 
i
PrOH KO

t
Bu >99 93 S 

22 3,5-bTFA (ROx,RFc)-17 Tol/H2O K2CO3 95 40 S 

23 3,5-bTFA (ROx,RFc)-18 Tol/H2O NaOH 95 41 S 

 

For both transfer hydrogenations and hydrogenations an identical correlation 

between catalyst and product absolute configuration was found. All of the ligands and 

complexes with an (RFc) (2 and 5) or (ROx,RFc) absolute configuration (3, 4, 6, and 7) led 

to the transformation of all tested aryl-alkyl ketones into alcohols with the (S) absolute 

configuration. Only when the relative configuration of ligands 3 and 4 (complexes 17 

and 18) was changed from (ROx,RFc) to (SOx,RFc) did the product absolute configuration 

change from (S) to (R) (Table 3, entries 2/5 and 6/8). 
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Table 4. Comparison of THY and HY results obtained with (ROx,RFc)-17. 

 THY
a
 HY 

substrate % conv. % e.e. % conv. % e.e. 

ACP 99 98 (S)
d
 99

 
99

b
 (S)

d
 

2-F-ACP 99 50 (S) 97
 

90
b
 (S) 

2-Cl-ACP >99 75 (S) 95
 

91
b
 (S) 

4-CF3-ACP >99 87 (S) 97
 

90
b
 (S) 

4-Me-ACP 97 98 (S) >99
 

97
b
 (S) 

PBK >99 97 (S) >99
 

99
c
 (S) 

a
 Solvent/base: 2-PrOH/KO

i
Pr; 

b
 solvent/base: Tol/H2O/K2CO3; 

c
 solvent/base: 2-PrOH/KO

t
Bu; 

d
 

product absolute configuration 

Furthermore, for all substrates tested, hydrogenation conditions could be 

identified that gave the desired product with comparable or higher enantiomeric excess 

than in transfer hydrogenations (Table 4). This was especially the case when the 

hydrogenations were carried out in the toluene/H2O/K2CO3 solvent/base system. Clearly 

these reaction conditions lead to much slower product racemization than in the 2-

PrOH/KOtBu system. 

 

Conclusion 

Ruthenium complexes of the type [RuCl2PPh3(L)] (16–21) of eight bidentate 

phosphine-oxazoline ligands (L = 2–7), all of which contain a ferrocenylethyl (16–19, L 

= 2–5) or a ferrocenylmethyl (20 and 21, L = 6 and 7) backbone, were synthesized, 

characterized and screened in transfer hydrogenations and hydrogenations against a 

total of one dialkyl and thirteen aryl-alkyl ketones. In addition, for comparative purposes, 

the transfer hydrogenations of all substrates were carried out with one analogous and 

well-established FOXAP ruthenium complex (15). The molecular structures of two 

catalyst precursors and of two corresponding acetonitrile complexes were studied by X-

ray diffraction. One catalyst precursor in particular (17) delivered products with an 

enantiomeric excess of up to 98%. A comparison of the transfer hydrogenation results 

obtained with the novel complex 17 and those of the analogous FOXAP-based catalyst 

15 showed surprising similarities. Although complexes 15 and 17 adopt totally different 

molecular structures, most substrates were transformed into products with nearly 

identical enantioselectivity. Except for the 2-substituted acetophenones and 1-tetralone, 

structural changes in the substrates were comparably reflected in changes in the 

52



 

product e.e. values. Based on structural and chemical evidence, a transition state 

model was proposed that allows qualitative rationalization of the absolute configuration 

of the product as well as the dependence of e.e. values on the substitution patterns of 

substrates and ligands. 

Complexes 16–21 were also used as catalyst precursors in hydrogenations of 

seven aryl-alkyl ketones and once again complex 17 delivered the best results, with 

product e.e. values of up to 99%. A comparison with the transfer hydrogenation results 

revealed that, for all substrates tested, hydrogenation conditions could be identified that 

gave product with comparable or higher enantiomeric excess. Furthermore, a similar 

dependence of the product enantiomeric excesses on the catalyst precursors and on 

the substrate substitution patterns was found. Also, for both transfer hydrogenations 

and hydrogenations an identical dependence of catalyst and product absolute 

configuration was seen. 

Based on these results, we expect that in most cases the use of catalyst 

precursors [RuCl2PPh3(P-oxazolines)] in the transfer hydrogenation and hydrogenation 

of aryl-alkyl ketones will deliver products of comparable enantiomeric excess. In these 

particular cases, the transfer hydrogenation results may be used to estimate achievable 

hydrogenation results. Based on the finding that complexes 15–21 gave highly 

comparable results in the hydrogenations as well as in the transfer hydrogenations of 

ketones, one might speculate whether this could be the result of comparable 

mechanistic features. Work is currently underway to clarify this possibility. 

 

Experimental Section  

General procedure for the asymmetric transfer hydrogenation of ketones 

To a solution of ruthenium complex (0.005 mmol, 0.5%) in anhydrous 2-PrOH 

(50 mL) were added a solution of ketone (1 mmol) in 2-PrOH (1 mL) and a solution of 2-

PrOK (0.02 mmol) in 2-PrOH (5% w/v). The reaction mixture was stirred at r.t. and the 

progress of the reaction was monitored by periodically analyzing 1 mL samples of the 

reaction mixture. The samples were quenched with aqueous H3PO4 (0.5 M, 0.5 mL), 

diethyl ether (1 mL) was added and the product was extracted. The organic phase was 

washed with brine and filtered through a short plug of MgSO4 (top) and aluminum oxide 

90 (bottom) using 2-PrOH as the eluent. The filtrate obtained was analyzed either by 

GC or HPLC (for details see Supporting Information).   
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General procedure for the asymmetric hydrogenation of ketones 

For hydrogenations a customized Symyx high throughput screening system was 

used. All hydrogenations were carried out for 16 hours at r.t. under hydrogen gas at a 

pressure of 25 bar and a substrate to catalyst ratio of 25:1. Typically the following 

amounts of substrate, catalyst, and solvent were used: 41.67 µmol substrate and 1.67 

µmol catalyst precursor in a total of 500 µL solvent (for analysis data see Supporting 

Information). 
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General considerations 

All reactions required inert conditions and were carried out under an argon 

atmosphere using standard Schlenk techniques. All solvents were dried by standard 

procedures and distilled before use. Preparative chromatographic separations were 

performed under gravity on standardised aluminium oxide 90 (MERCK). Petroleum 

ether with a boiling range of 55–65 °C was used for chromatography. Abbreviations: 

PE: petroleum ether; DEE: diethyl ether; EA: ethyl acetate; DCM: dichloromethane; 

THF: tetrahydrofurane. The following substrates were purchased and were used without 

further purification: (S)-(4-isopropyloxazolin-2-yl)ferrocene (TCI), acetophenone 

(FLUKA), propiophenone (FLUKA), pinacolone (ABCR). All other substrates were 

purified by chromatography before use: 2'-fluoroacetophenone (FLUKA), 2'-chloro-

acetophenone (ALDRICH), 4'-chloroacetophenone (ALDRICH), 4'-(trifluoromethyl)-

acetophenone (ALDRICH), 1-(4-methoxyphenyl)ethanone (ALDRICH), 4'-methyl-

acetophenone (ALDRICH), 3′,5′-Bis(trifluoromethyl)acetophenone (ALDRICH), 1,2-

diphenylethanone (ALDRICH), 1,3-diphenyl-1-propanone (ABCR), acetylferrocene 

(ABCR) and 1-tetralone (ABCR). 

NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl3 or 

CD2Cl2. Chemical shifts (δ) are given relative to CHCl3 (
1H: 7.26 ppm), CDCl3 (

13C: 77.0 

ppm), CH2Cl2 (
1H: 5.32 ppm), CD2Cl2 (

13C: 54.0 ppm) and 85% H3PO4 (
31P: 0 ppm). The 

coupling constants in 13C{1H} spectra are due to 13C-31P coupling. For signal assignment 

the following terms were used: s, bs, d, dd, t, q and m refer to singlet, broad singlet, 

doublet, doublet of doublets, triplet, quartet and multiplet, respectively. The terms PhA 

and PhB were used to distinguish phenyl groups of diphenylphosphino units. A general 

atom numbering scheme used for proton and carbon assignment is given below. 

Melting points were determined on a Kofler melting point apparatus and are 

uncorrected. Mass spectra were recorded on instruments Finnigan MAT 900 S, MAT 95 

S and Bruker ESI-Qq aoTOF. Optical rotations were measured on a Perkin-Elmer 241 

polarimeter. Conversion and e.e. values were measured with use of an Agilent 7890 A 

GC or an Agilent 1200 HPLC. Elemental analysis was carried out at the 

Mikroanalytisches Labor at the Faculty of Chemistry (University of Vienna).  
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Atom numbering scheme for NMR assignment of ferrocenes. 

(R,RFc)-2-(4,5-Dihydro-4,4-dimethyloxazol-2-yl)-1-[1-(diphenylphosphino)ethyl]-

ferrocene, (R,RFc)-5  

To a solution of (R,RFc)-12 (1.029 g, 2.01 mmol) in THF (5 mL) were added polymethyl-

hydrosiloxane (1.3 g) and titanium(IV) isopropoxide (2.29 g, 8.04 mmol) and the 

resulting mixture was reacted for 30 minutes at 80 °C. After cooling to r.t. and without 

further workup was the resulting dark solution chromatographed twice on aluminium 

oxide 90 under inert conditions and with use of deoxygenated solvents (eluent: 

PE/EA/TEA = 5/5/1). A third chromatography with use of PE/EA/TEA = 8/2/1 as the 

eluent gave the desired product as a yellow semisolid (669 mg, 1.35 mmol, 67 % yield). 

1H NMR (400 MHz, CDCl3): δ 1.17 (s, 3H, C(CH3)(CH3)), 1.18 (s, 3H, C(CH3)(CH3)), 

1.51 (dd, J = 7.2 Hz, J = 15.1 Hz, 3H, CHCH3), 3.58, 3.78 (AB, J = 7.6 Hz, 2H, CH2), 

4.14 (s, 5H, Cp'), 4.26–4.32 (m, 3H, H3/5 + H4 + CHCH3), 4.63 (dd, J = 2.6 Hz, J = 1.6 

Hz, 1H, H3/5), 6.84–6.88 (m, 2H, PhA-ortho), 7.05–7.09 (m, 2H, PhA-meta), 7.11–7.15 

(m, 1H, PhA-para), 7.40–7.44 (m, 3H, PhB-meta + PhB-para), 7.62–7.66 (m, 2H, PhB-

ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.8 (d, J = 20.9 Hz, CHCH3), 27.9 

(C(CH3)(CH3)), 28.3 (C(CH3)(CH3)), 29.3 (d, J = 14.3 Hz, CHCH3), 66.5 (C(CH3)2), 68.4 

(C3/5), 68.7 (C4), 68.8 (C3/5), 69.8 (Cp'), 77.8 (CH2O), 93.8 (C1), 127.4 (d, J = 6.1 Hz, 

2C, PhA-meta), 127.7 (PhA-para), 128.3 (d, J = 7.8 Hz, 2C, PhB-meta), 129.2 (PhB-para), 

132.9 (d, J = 17.6 Hz, 2C, PhA-ortho ), 134.7 (d, J = 19.7 Hz, 2C, PhB-ortho), 135.9 (d, J 

= 16.4 Hz, PhB-ipso), 137.1 (d, J = 17.6 Hz, PhA-ipso), 164.1 (C=N), C2 not observed. 

31P NMR (162 MHz, CDCl3): δ 11.4 (PPh2). HR-MS (ESI, MeOH/MeCN): m/z = [M+Na]+ 

calcd. 518.1312 for C29H30FeNOPNa; found: 518.1319. [α]20
λ (nm): –273 (589), –307 

(578), –468 (546) (c 0.275, CHCl3).   

(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-diphenylphosphino-

methyl]-ferrocene, (SOx,SFc)-6 

To a stirred solution of (SOx,RFc)-14 (1.5 g, 4.58 mmol) and sodium iodide (1.37 g, 9.14 

mmol) in acetonitrile (40 mL) was added chlorotrimethylsilane (1.08 g, 11.45 mmol) 

which led to a change of color from orange to red. After additional stirring for 10 min at 

r.t. diphenylphosphine (938 mg, 5.04 mmol) was added and this resulted in a change of 

Fe

1 2

3
4

5

Cp'

R
R
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color from red to orange. The reaction mixture was stirred for 24 h at r.t.; subsequently 

without previous workup the crude product was purified by chromatography under inert 

conditions with deoxygenated solvents on aluminium oxide 90. The solvent mixture 

PE/DEE = 20/1 removed excess of diphenylphosphine and PE/EA/TEA = 2/1/1 + 10% 

DCM eluted the title compound as a red oil (2.02 g, 4.08 mmol, 89 % yield). 1H NMR 

(400 MHz, CDCl3): δ 0.96 (d, J = 6.7 Hz, 3H, CH(CH3)(CH3)), 1.04 (d, J = 6.7 Hz, 3H, 

CH(CH3)(CH3)), 1.74–1.84 (m, 1H, CH(CH3)2), 3.38 (dd, J = 2.5 Hz, J = 13.8 Hz, 1H, 

CHHP), 3.89–3.92 (m, 1H, H5), 3.92–4.00 (m, 3H, CHHO + CHHP + CHN), 4.07–4.10 

(m, 1H, H4), 4.09 (s, 5H, Cp'), 4.21–4.28 (m, 1H, CHHO), 4.61 (dd, J = 1.5 Hz, J = 2.5 

Hz, 1H, H3), 7.27–7.37 (m, 6H, Ph-meta + Ph-para), 7.39–7.45 (m, 2H, Ph-ortho), 

7.45–7.51 (m, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.5 (CH(CH3)(CH3)), 

18.9 (CH(CH3)(CH3)), 29.2 (d, J = 14.9 Hz, CH2P), 32.8 (CH(CH3)2), 68.3 (C4), 69.2 

(2C, CH2O + C3), 69.5 (C2), 70.3 (Cp'), 71.6 (d, J = 5.3 Hz, C5), 72.6 (CHN), 86.1 (d, J 

= 16.9 Hz, C1), 127.9 (Ph-para), 128.2 (d, J = 6.2 Hz, 2C, Ph-meta), 128.3 (d, J = 7.2 

Hz, 2C, Ph-meta), 128.8 (Ph-para), 132.2 (d, J = 17.5 Hz, 2C, Ph-ortho), 133.8 (d, J = 

19.7 Hz, 2C, Ph-ortho), 139.0 (d, J = 124.7 Hz, Ph-ipso), 141.6 (d, J = 115.8 Hz, Ph-

ipso), 165.6 (C=N). 31P NMR (162 MHz, CDCl3): δ –10.0 (PPh2). HR-MS (EI, 30 °C): 

m/z = [M + H]+ calcd. 496.1492 for C29H31FeNOP; found: 496.1491. [α]20
λ (nm): –50.5 

(589), –59.9 (578), –112 (546) (c 0.192, CHCl3). 

(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[bis(3,5-dimethylphenyl)-

phosphinomethyl]-ferrocene, (SOx,SFc)-7 

To a solution of (SOx,RFc)-14 (1.5 g, 4.58 mmol) and sodium iodide (1.37 g, 9.14 mmol) 

in acetonitrile (40 mL) was added chlorotrimethylsilane (1.08 g, 11.45 mmol) which 

resulted in a change of color from orange to red. After further stirring the solution at r.t. 

for 10 min bis(3,5-dimethylphenyl)phosphine (1.39 g, 5.04 mmol) was added and this 

led to a slow change of color from red to orange. The reaction mixture was stirred for 24 

h at r.t. and subsequently without previous workup the crude product was 

chromatographed under inert conditions with deoxygenated solvents on aluminium 

oxide 90. A mixture of PE/DEE = 20/1 removed excess of diphenylphosphine while with 

use of PE/EA/TEA = 2/1/1 + 10% DCM the title compound was obtained as a red oil 

(2.23 g, 4.04 mmol, 88 % yield). 1H NMR (400 MHz, CDCl3): δ 1.00 (d, J = 6.8 Hz, 3H, 

CH(CH3)(CH3)), 1.08 (d, J = 6.7 Hz, 3H, CH(CH3)(CH3)), 1.74–1.85 (m, 1H, CH(CH3)2), 

2.29 (s, 6H, CH3
A), 2.31 (s, 6H, CH3

B), 3.39 (dd, J = 2.4 Hz, J = 14.0 Hz, 1H, CHHP), 

3.89 (d, J = 14.0 Hz, 1H, CHHP), 3.94–3.97 (m, 1H, H5), 3.98–4.02 (m, 2H, CHHO + 

CHN), 4.11 (t, J = 2.6 Hz, 1H, H4), 4.12 (s, 5H, Cp'), 4.22–4.30 (m, 1H, CHHO), 4.62 

(dd, J = 1.6 Hz, J = 2.6 Hz, 1H, H3), 6.92 (s, 1H, PhA-para), 6.98 (s, 1H, PhB-para), 7.07 
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(d, J = 7.3 Hz, 2H, PhA-ortho), 7.11 (d, J = 7.6 Hz, 2H, PhB-ortho). 13C{1H} NMR (100.6 

MHz, CDCl3): δ 18.6 (CH(CH3)(CH3)), 19.0 (CH(CH3)(CH3)), 21.2 (2C, CH3
A), 21.3 (2C, 

CH3
B), 28.9 (d, J = 14.6 Hz, CH2P), 32.9 (CH(CH3)2), 68.1 (C4), 69.0 (C3), 69.2 (CH2O), 

69.4 (d, J = 3.4 Hz, C2), 70.2 (Cp'), 71.7 (d, J = 6.2 Hz, C5), 72.6 (CHN), 86.5 (d, J = 

17.1 Hz, C1), 129.8 (PhA-para), 129.9 (d, J = 17.8 Hz, 2C, PhA-ortho), 130.5 (PhB-para), 

131.3 (d, J = 20.0 Hz, 2C, PhB-ortho), 137.4 (d, J = 6.1 Hz, 2C,  Ph-meta), 137.5 (d, J = 

6.8 Hz, 2C,  Ph-meta), 138.2 (d, J = 14.8 Hz, Ph-ipso), 139.3 (d, J = 15.5 Hz, Ph-ipso), 

165.5 (C=N). 31P NMR (162 MHz, CDCl3): δ –10.6 (PPh2). HR-MS (EI, 30 °C): m/z = [M 

+ H]+ calcd. 552.2119 for C33H39FeNOP; found: 552.2116. [α]20
λ (nm): –56.8 (589), –

64.0 (578), –117.4 (546) (c 0.236, CHCl3).   

(R,SFc)-1-[1-(N,N-Dimethylamino)ethyl]-2-[(2-hydroxy-1,1-dimethylethyl)amino-

carbonyl]-ferrocene, (R,SFc)-10 

A solution of 2-amino-2-methyl-1-propanol (600 mg, 6.73 mmol) in toluene (10 mL) was 

cooled to 0 °C and treated with a solution of trimethylaluminium in toluene (2.0 M, 6.68 

mL, 13.36 mmol). After stirring for 5 min the solution was warmed to r.t. and stirring was 

continued for additional 45 min. Subsequently, a solution of (R,SFc)-9 (2.00 g, 6.07 

mmol) in toluene (10 mL) was added and the resulting mixture was stirred for 16 h at 

126 °C. After cooling to r.t., the reaction mixture was quenched carefully by addition of 

water and the phases were separated. The aqueous phase was extracted with EA (3 x 

50 mL), the organics were combined, washed with water and brine and dried over 

MgSO4. The solvents were removed under reduced pressure and the crude product 

was purified by chromatography on aluminium oxide 90 (eluent PE/EA/TEA = 1/1/1) to 

give the title compound as an orange solid (2.01 g, 5.40 mmol, 89 % yield). Mp: 117 °C. 

1H NMR (400 MHz, CDCl3): δ 1.27 (s, 3H, C(CH3)(CH3)), 1.34 (d, J = 6.9 Hz, 3H, 

CHCH3), 1.36 (s, 3H, C(CH3)(CH3)), 2.11 (s, 6H, N(CH3)2), 3.63 (bs, 2H, CH2O), 4.11 (q, 

J = 6.9 Hz, 1H, CHCH3), 4.13 (s, 5H, Cp'), 4.22–4.28 (m, 2H, H4 + H5), 4.90 (dd, J = 

2.5 Hz, J = 1.7 Hz, 1H, H3), 6.20 (bs, 1H, OH), 10.19 (bs, 1H, NH). 13C{1H} NMR (100.6 

MHz, CDCl3): δ 7.4 (CHCH3), 25.1 (2C, C(CH3)2), 38.7 (2C, N(CH3)2), 55.6 (C(CH3)2), 

57.9 (CHCH3), 68.0 (C4), 69.9 (C5), 70.6 (Cp'), 71.9 (CH2O), 73.8 (C3), 79.1 (C2), 86.0 

(C1), 171.5 (C=O). HR-MS (EI, 30 °C): m/z = [M]+ calcd. 372.1500 for C19H28FeN2O2; 

found: 372.1465. [α]20
λ (nm): –8.8 (589), –4.8 (578), 28.0 (546) (c 0.25, CHCl3). 

(R,SFc)-2-(4,5-Dihydro-4,4-dimethyloxazol-2-yl)-1-[1-(N,N-dimethylamino)ethyl]-

ferrocene, (R,SFc)-11 

To a solution of (R,SFc)-10 (3 g, 8.06 mmol) in acetonitrile (50 mL) were added 

triphenylphosphine (3.17 g, 12.09 mmol), triethylamine (3.67 g, 36.27 mmol) and 
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carbon tetrachloride (11.16 g, 72.54mmol) and the resulting mixture was stirred for 16 h 

at r.t. The reaction was quenched by addition of water (10 mL) and the resulting mixture 

was acidified with an aqueous solution of citric acid. The aqueous phase was extracted 

with DCM (3 x 50 mL) and the organic phases were discarded. The aqueous phase was 

made basic by addition of an aqueous sodium hydroxide solution, followed by extraction 

with DCM (2 x 50 mL). The combined organics were washed with water and brine, dried 

over MgSO4 and the solvents were evaporated. The crude product was purified by 

chromatography on aluminium oxide 90 with use of PE/EA/TEA = 5/5/1 as the eluent to 

give the title compound as an orange-red solid (2.60 g, 7.34 mmol, 91 % yield). Mp: 105 

°C. 1H NMR (400 MHz, CDCl3): δ 1.27 (s, 6H, C(CH3)2), 1.52 (d, J = 7.0 Hz, 3H, 

CHCH3), 2.02 (s, 6H, N(CH3)2), 3.92, 4.04 (AB, J = 7.9 Hz, 2H, CH2O), 4.13 (s, 5H, Cp'), 

4.25–4.28 (m, 1H, H5), 4.30 (t, J = 2.5 Hz, 1H, H4), 4.38 (q, J = 7.0 Hz, 1H, CHCH3), 

4.3 (dd, J = 2.5 Hz, J = 1.5 Hz, 1H, H3). 13C{1H} NMR (100.6 MHz, CDCl3): δ 17.6 

(CHCH3), 28.2 (C(CH3)(CH3)), 28.4 (C(CH3)(CH3)), 40.5 (2C, N(CH3)2), 54.7 (CHCH3), 

66.9 (C(CH3)2), 68.5 (C4), 69.2 (C3), 69.5 (C5), 69.9 (C2), 70.2 (Cp'), 78.4 (CH2O), 88.4 

(C1), 164.9 (C=N). HR-MS (EI, 30 °C): m/z = [M]+ calcd. 354.1394 for C19H26FeN2O; 

found: 354.1365. [α]20
λ (nm): –336.2 (589), –373.0 (578), –581.0 (546) (c 0.315, CHCl3). 

(R,RFc)-2-(4,5-Dihydro-4,4-dimethyloxazol-2-yl)-1-[1-(diphenylphosphinyl)ethyl]-

ferrocene, (R,RFc)-12 

To a stirred solution of (R,SFc)-11 (1.66 g, 4.69 mmol) in acetonitrile (10 mL) was added 

iodomethane (2.0 g, 14.07 mmol) at 0 °C and stirring was continued for 1 h at r.t. The 

solvent was removed under reduced pressure and the crude salt was dried in vacuo. In 

a separate flask, diphenylphosphine oxide (1.043 g, 5.16 mmol) was dissolved in THF 

(10 mL) and cooled to 0 °C. A solution of n-BuLi in hexane (1.6 M, 3.52 mL, 5.63 mmol) 

was added dropwise and the resulting mixture was stirred at r.t. for 1 h. The solvent 

was removed under reduced pressure and the crude diphenylphosphinyl lithium was 

dried in vacuo. The methiodide salt was then redissolved in THF (20 mL) and was 

transferred to the dried diphenylphosphinyl lithium. The resulting mixture was heated to 

85 °C for 1 h, cooled to r.t. and subsequently quenched by addition of water. The 

product was extracted with EA (3 x 50 mL), the combined organics were washed with 

water and brine and dried over MgSO4. After removing the solvent on a rotary 

evaporator, the crude product was chromatographed on aluminium oxide using 

EA/TEA/methanol = 100/10/1 as the eluent. The title compound was obtained as a 

yellow solid (1.59 g, 3.11 mmol, 66 % yield). Mp: 178 °C. 1H NMR (400 MHz, CDCl3): δ 

1.22 (s, 6H, C(CH3)2), 1.66 (dd, J = 7.4 Hz, J = 15.5 Hz, 3H, CHCH3), 3.68, 3.70 (AB, J 

= 7.8 Hz,  2H, CH2O), 4.14 (s, 5H, Cp'), 4.33 (t, J = 2.6 Hz, 1H, H4), 4.50 (dd, J = 2.6 
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Hz, J = 1.6 Hz, 1H, H3), 4.48–456 (m, J = 7.4 Hz, 1H, CHCH3), 4.59–4.62 (m, 1H, H5), 

7.07–7.13 (m, 2H, PhA-meta), 7.14–7.22 (m, 2H, PhA-ortho), 7.23–7.29 (m, 1H, PhA-

para), 7.51–7.59 (m, 3H, PhB-meta + PhB-para), 7.96–8.04 (m, 2H, PhB-ortho). 13C{1H} 

NMR (100.6 MHz, CDCl3): δ 15.0 (d, J = 2.2 Hz, CHCH3), 28.2 (C(CH3)(CH3)), 28.4 

(C(CH3)(CH3)), 32.4 (d, J = 65.2 Hz, CHCH3), 67.0 (C(CH3)2), 68.5 (C3), 69.1 (C4), 69.2 

(C2), 69.9 (Cp'), 70.2 (d, J = 2.3 Hz, C5), 77.7 (CH2O), 88.8 (d, J = 1.5 Hz, C1), 127.3 

(d, J = 11.7 Hz, 2C, PhA-meta), 128.5 (d, J = 10.8 Hz, 2C, PhB-meta), 130.9 (d, J = 3.2 

Hz, PhA-para), 131.5 (d, J = 9.2 Hz, PhA-ortho), 131.6 (d, J = 3.1 Hz, PhB-para), 131.7 

(d, J = 8.4 Hz, 2C, PhB-ortho), 132.2 (d, J = 62.0 Hz, PhA-ipso), 163.8 (C=N), PhB-ipso 

not observed. 31P NMR (162 MHz, CDCl3): δ 36.3 (P(O)PPh2). HR-MS (EI, 30 °C): m/z 

= [M]+ calcd. 511.1363 for C29H30FeNO2P; found: 511.1368. [α]20
λ (nm): –100 (589),–

112 (578), –172 (546) (c 0.240, CHCl3).    

(SOx,RFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-hydroxymethyl-ferrocene, 

(SOx,RFc)-14 

To a solution of (S)-13 (1.0 g, 3.37 mmol) and tetramethylethylenediamine (431 mg, 

3.71 mmol) in anhydrous DEE (30 mL) cooled to –78 °C was added dropwise a solution 

of sec-BuLi in cyclohexane (1.4 M, 2.9 mL, 4.04 mmol). Stirring was continued for 2 h at 

–78 °C. Subsequently, dimethylformamide (259 mg, 3.54 mmol) was added to the 

reaction mixture. Stirring was continued for 30 min at –78 °C and for additional 45 min 

at r.t. The reaction mixture was quenched by addition of water, the phases were 

separated and the aqueous phase was extracted with DEE (3 x 50 mL). The combined 

organics were washed with water and brine, dried over MgSO4 and the solvent was 

removed under reduced pressure. In the next step the crude product (1.02 g, 3.14 

mmol) was dissolved in MeOH (20 mL), cooled to 0 °C and NaBH4 (356.4 mg, 9.42 

mmol) was added in portions. The reaction mixture was stirred for 2 h at r.t. 

Subsequently, the reaction mixture was quenched by addition of water at 0 °C, the 

phases were separated and the aqueous phase was extracted with DEE (3 x 50 mL). 

The combined organics were washed with water and brine, dried over MgSO4 and the 

solvents were removed under reduced pressure. The crude product was 

chromatographed on aluminum oxide 90 using PE/EA = 5/1 as the eluent. The desired 

compound was obtained as an orange solid (0.84 g, 2.57 mmol, 76 % yield). The 

spectroscopic data are in accordance with those reported in reference 20. 

Synthesis of neutral ruthenium complexes – General procedure 

A mixture of oxazoline ligand (1.00 mmol) and [RuCl2(PPh3)3] (0.95 mmol) dissolved in 

freshly distilled and degassed toluene (3 mL) was stirred for 16 h at r.t. Degassed 
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hexane was added to precipitate the product. The green solid was filtered off under 

inert conditions and was washed with freshly distilled and degassed hexane (2 × 2 mL). 

The crude product was redissolved in toluene, precipitated by addition of hexane and 

dried in vacuo to yield a green powder.  

Dichloro[(R,RFc)-2-[4,5-Dihydro-4,4-dimethyloxazol-κN)-1-[1-(diphenylphosphino)-

ethyl-κP]-ferrocene]triphenylphosphine ruthenium, [RuCl2(PPh3)((R,RFc)-5)], (RFc)-

19 

Starting from (R,RFc)-5 (250 mg, 0.505 mmol) and following the general procedure  

given above the desired product was obtained as a green powder (369.8 mg, 397.8 

mmol, 79  % yield). Single crystals suitable for X-ray crystallography were obtained from 

a solution of the product in Tol/PE by slow evaporation of the solvents.  Mp: > 230 °C 

(dec.). 1H NMR (400 MHz, CDCl3): δ 1.24 (s, 3H, C(CH3)(CH3)), 1.51 (dd, J = 7.1 Hz, J 

= 13.9 Hz, 3H, CHCH3), 1.69 (s, 3H, C(CH3)(CH3)), 3.87–3.89 (m, 1H, H5), 3.88  (t, J = 

2.7 Hz, 1H, H4), 4.01, 4.23 (AB, J = 7.7 Hz, 2H, CH2), 4.14 (s, 5H, Cp'), 4.29–4.39 (m, 

1H, CHCH3), 4.85 (dd, J = 2.5 Hz, J = 1.5 Hz, 1H, H3), 6.86–7.56 (m, 25H, Ph). 13C{1H} 

NMR (100.6 MHz, CDCl3): δ 18.8 (d, J = 6.3 Hz, CHCH3), 23.5 (C(CH3)(CH3)), 28.6 

(C(CH3)(CH3)), 39.7 (d, J = 21.3 Hz, CHCH3), 69.0 (C4), 69.6 (bs, C5), 68.8 (C(CH3)2), 

70.2 (Cp'), 72.4 (C3), 79.8 (CH2), 125–138 (aromatic C, unresolved), C1, C2 and C=N 

not observed. 31P NMR (162 MHz, CDCl3): δ 48.3 (d, J = 43.6 Hz, PPh3), 95.1 (d, J = 

43.6 Hz, PN). HR-MS (ESI in MeOH/MeCN): m/z [M-Cl+ACN]+ calcd for 

C49H48FeN2OP2RuCl: 935.1323, found: 935.1344. [α]20
λ (nm): +1159 (589), +1154 

(578), +1072 (546) (c 0.022, CHCl3).  

Dichloro[(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-1-[1-diphenyl-

phosphinomethyl-κP]-ferrocene]triphenylphosphine ruthenium, 

[RuCl2(PPh3)((SOx,SFc)-6)], (SOx,SFc)-20 

Starting from (SOx,SFc)-6 (0.80 g, 1.62 mmol) and following the general procedure  given 

above the desired product was obtained as a green powder (1.03 g, 1.11 mmol, 69 % 

yield). Mp: > 230 °C (dec.). 1H NMR (400 MHz, CD2Cl2): δ 0.88 (d, J = 7.1 Hz, 3H, 

CH(CH3)(CH3)), 1.06 (d, J = 6.7 Hz, 3H, CH(CH3)(CH3)), 2.99–3.11 (m, 1H, CH(CH3)2), 

3.37–3.48 (m, 1H, CHHP), 3.48–3.52 (m, 1H, H5), 3.89 (t, J = 2.6 Hz, 1H,  H4), 4.15–

4.21 (m, 1H, CHN), 4.18 (s, 5H, Cp'), 4.22–4.29 (m, 1H, CHHO), 4.52 (dd, J = 3.9 Hz, J 

= 8.3 Hz, 1H, CHHO), 4.66 (dd, J = 10.1 Hz, J = 12.8 Hz, 1H, CHHP), 4.71 (dd, J = 2.6 

Hz, J = 1.6 Hz, 1H, H3), 6.93–7.60 (m, 25H, Ph). 13C{1H} NMR (100.6 MHz, CD2Cl2): δ 

15.2 (CH(CH3)(CH3)), 19.5 (CH(CH3)(CH3)), 28.1 (CH(CH3)2), 39.6 (d, J = 26.1 Hz, 

CH2P), 67.6 (CH2O), 69.3 (C4), 70.8 (Cp'), 72.6 (C3), 72.9 (CHN), 73.6 (bs, C5), 82.3 
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(d, J = 1.9 Hz, C1), 125.5 (Ph-para), 127.0 (d, J = 10.4 Hz, 2C, Ph-meta), 127.5 (d, J = 

10.0 Hz, 2C, Ph-meta), 128.5 (Ph-para), 133.5 (d, J = 7.8 Hz, 2C, Ph-ortho),  135.3 (d, 

J = 10.4 Hz, 2C, Ph-ortho), 173.7 (C=N), C2 and Ph-ipso not observed, signals of PPh3 

are very broad and unresolved. 31P NMR (162 MHz, CD2Cl2): δ 48.3 (d, J = 43.7 Hz, 

PPh3), 84.6 (J = 43.8 Hz, PN). Anal. Calcd for C47H45Cl2FeNOP2Ru x toluene: C, 63.47; 

H, 5.23; N, 1.37. Found: C, 63.92; H, 5.14; N, 1.38. HR-MS (ESI in MeOH/MeCN): m/z 

[M-Cl]+ calcd for C47H45ClFeNOP2Ru: 894.1058, found: 894.1062. [α]20
λ (nm): –766 

(589), –860 (578), –996 (546) (c 0.022, CH2Cl2). 

Dichloro[(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-1-[bis(3,5-

dimethylphenyl)phosphinomethyl-κP]-ferrocene]triphenylphosphine ruthenium, 

[RuCl2(PPh3)(( SOx,SFc)-7)], (SOx,SFc)-21 

Starting from (SOx,SFc)-7 (950 mg, 1.72 mmol) and following the general procedure  

given above the desired product was obtained as a green powder (1.05 g, 1.07 mmol, 

62 % yield). Mp: > 230 °C (dec.). 1H NMR (400 MHz, CD2Cl2): δ 0.88 (d, J = 7.2 Hz, 3H, 

CH(CH3)(CH3)), 1.06 (d, J = 6.7 Hz, 3H, CH(CH3)(CH3)), 2.01 (s, 6H, CH3), 2.08 (s, 6H, 

CH3), 3.03–3.14 (m, 1H, CH(CH3)2), 3.35–3.45 (m, 1H, CHHP), 3.51–3.54 (m, 1H, H5), 

3.89 (t, J = 2.6 Hz, 1H, H4), 4.12–4.19 (m, 1H, CHN), 4.18 (s, 5H, Cp'), 4.21–4.27 (m, 

1H, CHHO), 4.50 (dd, J = 4.0 Hz, J = 8.3 Hz, 1H, CHHO), 4.60 (dd, J = 9.8 Hz, J = 12.8 

Hz, 1H, CHHP), 4.7 (dd, J = 2.6 Hz, J = 1.6 Hz, 1H, H3), 6.35–7.74 (m, 21H, Ph). 

13C{1H} NMR (100.6 MHz, CD2Cl2): δ 15.3 (CH(CH3)(CH3)), 19.5 (CH(CH3)(CH3)), 21.2 

(2C, CH3), 21.3 (2C, CH3), 28.1 (CH(CH3)2), 39.4 (d, J = 26.5 Hz, CH2P), 67.4 (C2), 

67.5 (d, J = 1.6 Hz, CH2O), 69.1 (C4), 70.7 (Cp'), 72.4 (C3), 72.9 (CHN), 73.7 (d, J = 1.5 

Hz, C5), 82.7 (d, J = 1.5 Hz, C1), 131.2 (d, J = 7.7 Hz, 2C, Ph-ortho), 131.3 (d, J = 3.0 

Hz, Ph-para), 131.4 (d, J = 2.4 Hz, Ph-para), 133.0 (d, J = 10.5 Hz, 2C, Ph-ortho), 

136.4 (d, J = 11.5 Hz, 2C, Ph-meta), 137.0 (d, J = 10.8 Hz, 2C, Ph-meta), 140.4, 

140.45, 140.9, 150.0 (2C, Ph-ipso), 173.8 (C=N), signals of PPh3: very broad and 

unresolved. 31P NMR (162 MHz, CD2Cl2): δ 48.9 (d, J = 44.2 Hz, PPh3), 83.4 (d, J = 

43.5 Hz, PN). Anal. Calcd for C51H53Cl2FeNOP2Ru x 0.25 toluene: C, 62.81; H, 5.49; N, 

1.39. Found: C, 62.38; H, 5.25; N, 1.38. HR-MS (ESI in MeOH/MeCN): m/z [M-Cl]+ 

calcd for C51H53ClFeNOP2Ru: 950.1684, found: 950.1692. [α]20
λ (nm): –805 (589), –880 

(578), –1005 (546) (c 0.020, CH2Cl2).   

Synthesis of the saturated acetonitrile complexes – General procedure 

The ruthenium complex (0.05 mmol) was dissolved at r.t. in freshly distilled and 

degassed acetonitrile (2 mL) which resulted in an immediate change of color from green 
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to yellow. After 15 minutes stirring, the solvent was removed under reduced pressure. 

The complexes were characterized without further purification.  

Dichloro(acetonitrile)[(R,ROx,RFc))-2-[4,5-dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-

1-[1-(diphenylphosphino)ethyl-κP]-ferrocene]triphenylphosphine ruthenium, 

[RuCl2(CH3CN)(PPh3)((R,ROx,RFc)-3)], (ROx,RFc)-22 

Starting from complex (ROX)-17 (50 mg, 0.053 mmol) and following the general 

procedure given above the desired product was obtained. Single crystals suitable for X-

ray crystallography were obtained from a DCM solution by slow evaporation of the 

solvent. Mp: > 230 °C (dec.). 1H NMR (400 MHz, CD2Cl2): δ 1.07 (d, J = 7.2 Hz, 3H, 

CH(CH3)(CH3)),  1.09 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.11 (s, 3H, CH3CN), 1.16 

(dd, J = 7.1 Hz, J = 10.8 Hz, 3H, CHCH3), 2.97–3.07 (m, 1H, CH(CH3)2), 3.29–3.39 (m, 

1H, CHCH3), 4.15 (s, 5H, Cp'), 4.26–4.29 (m, 1H, H4), 4.31–4.35 (m, 1H, H5), 4.43 (t, J 

= 8.4 Hz, 1H, CHHO), 4.67 (dd, J = 2.2 Hz, J = 8.4 Hz, 1H, CHHO), 4.75–4.79 (m, 1H, 

H3), 5.48–5.53 (m, 1H, NCH), 6.63 (t, J = 8.1 Hz, 2H, PhA-ortho), 6.86 –7.59 (m, 21H), 

7.81–7.95 (m, 2H, PhB-ortho). 13C{1H} NMR (100.6 MHz, CD2Cl2): δ 4.6 (CH3CN), 15.6 

(CH(CH3)(CH3)), 17.0 (d, J = 5.0 Hz, CHCH3), 19.1 (CH(CH3)(CH3)), 31.1 (CH(CH3)2), 

41.1 (d, J = 19.2 Hz, CHCH3), 68.9 (C4), 69.9 (CH2O), 70.3 (C3), 71.0 (C5), 71.2 (Cp'), 

73.1 (CHN), 126.8–136 (Ph), Signals from C1, C2, C=N, CN not observed. 31P NMR 

(162 MHz, CD2Cl2): δ 44.4 (d, J = 29.8 Hz, PPh3), 68.4 (d, J = 29.8 Hz, PN). HR-MS 

(ESI in MeOH/MeCN): m/z [M-Cl]+ calcd for C50H50ClFeN2OP2Ru: 949.1480, found: 

949.11486.  

Dichloro(acetonitrile)[( SOx,SFc)-2-[4,5-dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-1-

[bis(3,5-dimethylphenyl)phosphinomethyl-κP]-ferrocene]triphenylphosphine 

ruthenium, [RuCl2 (CH3CN)(PPh3)(( SOx,SFc)-7)], (SOx,SFc)-23 

Starting from Complex (SOx,SFc)-7  (50 mg, 0.051 mmol)  and following the general 

procedure  given above the desired product was obtained. Single crystals suitable for 

X-ray crystallography were obtained from a Tol/PE solution by slow evaporation of the 

solvents. Mp: > 230 °C (dec.). 1H NMR (400MHz, CD2Cl2): δ 0.99 (d, J = 7.1 Hz, 3H, 

CH(CH3)(CH3)), 1.1 (d, J = 7.0 Hz, 3H, CH(CH3)(CH3)), 1.13 (s, 3H, CH3CN), 1.99 (s, 

6H, CH3
A), 2.35 (s, 6H, CH3

B), 2.96–3.07 (m, 1H, CH(CH3)2), 3.21–3.39 (m, 2H, CH2P), 

4.12 (s, 5H, Cp'), 4.21–4.24 (m, 1H, H4), 4.38–4.40 (m, 1H, H3/5), 4.41 (t, J = 8.5 Hz, 

1H, CHHO), 4.62–4.67 (m, 1H, CHHO), 4.70–4.74 (m, 1H, H3/5), 5.45–5.51(m, 1H, 

CHN), 6.29 (d, J = 9.1 Hz, 2H, PhA-ortho), 6.91–7.01 (m, 7H, PhA-para + PPh3-meta), 

7.07–7.17 (m, 7H, PhB-para + PPh3-para), 7.18 –7.91 (PPh3-ortho), 8.0 (d, J = 10.4 Hz, 

2H, PhB-ortho). 13C{1H} NMR (100.6 MHz, CD2Cl2): δ 5.2 (CH3CN), 16.3 
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(CH(CH3)(CH3)), 19.5 (CH(CH3)(CH3)), 21.8 (2C, CH3), 21.9 (2C, CH3), 31.5 

(CH(CH3)2), 43.4 (d, J = 22.5 Hz, CH2P), 69.2 (C4), 70.3 (C3/5), 70.8 (CH2O), 71.7 

(Cp'), 73.0 (CHN), 73.4 (C3/5), 127.6 (d, J = 9.3 Hz, 6C, PPh3-meta), 129.1 (6C, PPh3-

para), 130.9 (PhA-para), 131.7 (m, 3C, PhA-ortho+ PhB-para), 132.9 (d, J = 9.3 Hz, 2C, 

PhB-ortho), 135.0 –135.8 (bm, PPh3-ortho), 137.1 (d, J = 8.6 Hz, 2C, PhA-meta), 137.7 

(d, J = 9.9 Hz, 2C, PhB-meta). Signals of C1, C2, C=N, CN, all Ph-ipso not observed. 

31P {1H} NMR (100.6 MHz, CD2Cl2): δ 46.5 (d, J = 31.7 Hz, PPh3), 50.8 (J = 31.7 Hz, 

PN). HR-MS (ESI in MeOH/MeCN): m/z [M-Cl]+ calcd for C53H56ClFeN2OP2Ru: 

991.1949, found: 991.1945. 

Catalysis 

Asymmetric transfer hydrogenations 

Optimization of transfer hydrogenation reactions 

Test reactions were carried out with acetophenone in 2-propanol (19.6 mM), complex 

15 (0.5 %) as the catalyst precursor and the three different bases iPrONa, iPrOK, and 

tBuOK (2%). In all three cases product with nearly identical e.e. values (95–96%) was 

obtained, however the reaction rates differed significantly for the sodium and the 

potassium alkoxides. In order to reach 95% conversion 1 h was needed with iPrONa, 30 

min with tBuOK and 20 min with iPrOK (Table S1). Based on these results potassium 

isopropoxide was used as the base for all further reactions. When in the reaction with 

ACP and 15 the amount of base was increased from 2 to 6% the reaction rate was 

hardly influenced but a very small decrease in product e.e. was seen (95 versus 96%). 

Reducing the reaction temperature from 25 °C to 0 °C reduced only the reaction rate 

but did not significantly alter the enantioselectivity. An increase in substrate 

concentration from 19.6 mM to 0.1 M did neither result in a significant change of 

conversion nor in a change of enantiomeric excess. Only when a 0.2 M solution was 

used the product e.e. dropped to 89%. 
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Table S1. THY optimization results obtained with complexes 15 and 17 

entry complex  time % conv. % e.e. 

effect of type of base  base    

1 (SOx,SFc)-15 iPrONa 1 h 98 95 

2 (SOx,SFc)-15 tBuOK 30 m 97 95 

3 (SOx,SFc)-15 iPrOK 20 m 99 96 

effect of amount of base  % base    

4 (SOx,SFc)-15 2 20 m 99 96 

5 (SOx,SFc)-15 6 30 m 99 95 

effect of temperature  temp.    

6 (SOx,SFc)-15 25 °C 20 m 99 96 

7 (SOx,SFc)-15 10 °C 2 h 94 95 

8 (SOx,SFc)-15 0 °C 3 h 46 96 

effect of concentration  molarity    

9 (SOx,SFc)-15 19.6 mM 20 m 99 96 

10 (SOx,SFc)-15 0.1 M 5 m 94 95 

11 (SOx,SFc)-15 0.2 M 5 m 92 89 

12 (ROx,RFc)-17 19.6 mM 10 m 99 98 

13 (ROx,RFc)-17 0.1 M 10 m 90 96 

14 (ROx,RFc)-17 0.2 M 5 m 90 95 

effect of S/C ratio  S/C ratio    

15 (SOx,SFc)-17 200/1 10 m 99 98 

16 (SOx,SFc)-17 1000/1 1 h 13 81 

 

Table S2. Typical THY results obtained with complexes 15–21. 

entry substrate ligand complex time 
% 

conv. 

% 

e.e. 

abs. 

conf. 

1 ACP (SOx,SFc)-1 (SOx,SFc)-15 20 m 99 96 R 

2 ACP (R,RFc)-2 (RFc)-16 20 m 98 92 S 

3 ACP (R,ROx,RFc)-3 (ROx,RFc)-17 10 m 99 98 S 

4 ACP (R,SOx,RFc)-3 (SOx,RFc)-17 5 h 18 69 R 

5 ACP (R,ROx,RFc)-4 (ROx,RFc)-18 15 m >99 97 S 

6 ACP (R,SOx,RFc)-4 (SOx,RFc)-18 6 h 90 73 R 

7 ACP (R,RFc)-5 (RFc)-19 4 h 78 95 S 

8 ACP (SOx,SFc)-6 (SOx,SFc)-20 30 m 96 93 R 

9 ACP (SOx,SFc)-7 (SOx,SFc)-21 20 m 97 89 R 

 

10 2-F-ACP (SOx,SFc)-1 (SOx,SFc)-15 5 m 99 91 R 
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11 2-F-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 30 m 99 50 S 

 

12 2-Cl-ACP (SOx,SFc)-1 (SOx,SFc)-15 20 m >99 90 R 

13 2-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 5 m >99 75 S 

14 2-Cl-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 30 m >99 67 S 

15 2-Cl-ACP (R,RFc)-5 (RFc)-19 6 h 89 10 S 

16 2-Cl-ACP (SOx,SFc)-6 (SOx,SFc)-20 30 m 64 27 R 

 

17 4-Cl-ACP (SOx,SFc)-1 (SOx,SFc)-15 10 m >99 93 R 

18 4-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 5 m 98 94 S 

19 4-Cl-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 10 m >99 90 S 

20 4-Cl-ACP (R,RFc)-5 (RFc)-19 2 h 91 85 S 

21 4-Cl-ACP (SOx,SFc)-6 (SOx,SFc)-20 20 m 99 83 R 

 

22 4-CF3-ACP (SOx,SFc)-1 (SOx,SFc)-15 5 m 99 90 R 

23 4-CF3-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 20 m >99 87 S 

24 4-MeO-ACP (SOx,SFc)-1 (SOx,SFc)-15 20 m 80 90 R 

25 4-MeO-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 20 m 82 95 S 

26 4-MeO-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 20 m 75 95 S 

27 4-MeO-ACP (R,RFc)-5 (RFc)-19 4 h 32 88 S 

28 4-MeO-ACP (SOx,SFc)-6 (SOx,SFc)-20 1 h 72 87 R 

 
29 4-Me-ACP (SOx,SFc)-1 (SOx,SFc)-15 10 m 97 96 R 

30 4-Me-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 10 m 97 98 S 

 

31 PEK (SOx,SFc)-1 (SOx,SFc)-15 10 m 99 97 R 

32 PEK (R,ROx,RFc)-3 (ROx,RFc)-17 20 m 99 96 S 

33 PEK (R,ROx,RFc)-4 (ROx,RFc)-18 15 m 94 96 S 

34 PEK (R,RFc)-5 (RFc)-19 3 h 89 91 S 

35 PEK (SOx,SFc)-6 (SOx,SFc)-20 1 h 97 88 R 

 

36 PBK (SOx,SFc)-1 (SOx,SFc)-15 10 m >99 95 R 

37 PBK (R,ROx,RFc)-3 (ROx,RFc)-17 20 m >98 97 S 

38 PBK (R,ROx,RFc)-4 (ROx,RFc)-18 2 h >99 95 S 

39 PBK (R,RFc)-5 (RFc)-19 3 h 77 93 S 

40 PBK (SOx,SFc)-6 (SOx,SFc)-20 4 h >99 91 R 

 
41 DPP (SOx,SFc)-1 (SOx,SFc)-15 10 m >99 94 R 

42 DPP (R,ROx,RFc)-3 (ROx,RFc)-17 15 m 99 96 S 

43 DPP (R,ROx,RFc)-4 (ROx,RFc)-18 20 m >99 94 S 

44 DPP (R,RFc)-5 (RFc)-19 3 h 77 93 S 
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45 DPP (SOx,SFc)-6 (SOx,SFc)-20 30 m 98 90 R 

 

46 TETN (SOx,SFc)-1 (SOx,SFc)-15 5 m 71 93 R 

47 TETN (R,ROx,RFc)-3 (ROx,RFc)-17 30 m 32 74 S 

48 TETN (R,ROx,RFc)-4 (ROx,RFc)-18 20 m 21 81 S 

49 TETN (SOx,SFc)-6 (SOx,SFc)-20 2 h 50 72 R 

 

50 AcFc (SOx,SFc)-1 (SOx,SFc)-15 30 m 24 80 R 

51 AcFc (R,ROx,RFc)-3 (ROx,RFc)-17 30 m 10 81 S 

52 AcFc (R,ROx,RFc)-4 (ROx,RFc)-18 30 m 16 93 S 

53 AcFc (SOx,SFc)-6 (SOx,SFc)-20 30 m 16 62 R 

 

54 
t
BMK (SOx,SFc)-1 (SOx,SFc)-15 24 h 85 >99 S 

55 
t
BMK (R,ROx,RFc)-3 (ROx,RFc)-17 24 h 42 9 R 

56 
t
BMK (R,ROx,RFc)-4 (ROx,RFc)-18 24 h 11 3 R 

57 
t
BMK (SOx,SFc)-6 (SOx,SFc)-20 24 h 36 21 R 

 

Asymmetric hydrogenations  

 

Table S3. Selected HY results obtained with complexes 15–21. 

entry substrate ligand complex Solvent Base 
% 

conv. 

% 

e.e. 

abs. 

conf. 

1 ACP (R,RFc)-2 (RFc)-16 Tol, H2O K2CO3 99 95 S 

2 ACP (R,RFc)-2 (RFc)-16 Tol, H2O NaOH 99 94 S 

3 ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 99 99 S 

4 ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O NaOH 99 97 S 

5 ACP (R,ROx,RFc)-3 (ROx,RFc)-17 
i
PrOH KO

t
Bu 95 94 S 

6 ACP (R,SOx,RFc)-3 (SOx,RFc)-17 
i
PrOH KO

t
Bu 95 58 R 

7 ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O K2CO3 99 98 S 

8 ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O NaOH 99 96 S 

9 ACP (R,SOx,RFc)-4 (SOx,RFc)-18 
i
PrOH KO

t
Bu 95 62 R 

 

10 2-F-ACP (ROx,RFc)-1 (ROx,RFc)-15 Tol, H2O K2CO3 94 93 S 

11 2-F-ACP (ROx,RFc)-1 (ROx,RFc)-15 Tol, H2O NaOH 96 91 S 

12 2-F-ACP (R,RFc)-2 (RFc)-16 Tol, H2O K2CO3 98 74 S 

13 2-F-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 97 90 S 

14 2-F-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol/H2O NaOH 96 87 S 

15 2-F-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 
i
PrOH KO

t
Bu 99 70 S 
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14 2-F-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O K2CO3 97 83 S 

16 2-F-ACP (SOx,SFc)-6 (SOx,SFc)-20 Tol, H2O NaOH 93 85 R 

17 2-F-ACP (SOx,SFc)-7 (SOx,SFc)-21 Tol, H2O NaOH 95 70 R 

 

18 2-Cl-ACP (R,RFc)-2 (RFc)-16 Tol, H2O K2CO3 97 71 S 

19 2-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 95 91 S 

20 2-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O NaOH 98 90 S 

21 2-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 
i
PrOH KO

t
Bu 80 82 S 

22 2-Cl-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 
i
PrOH KO

t
Bu 80 82 S 

23 2-Cl-ACP (R,SOx,RFc)-3 (SOx,RFc)-17 
i
PrOH KO

t
Bu 73 59 R 

24 2-Cl-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O K2CO3 96 87 S 

25 2-Cl-ACP (R,SOx,RFc)-4 (SOx,RFc)-18 
i
PrOH KO

t
Bu 76 75 R 

 

26 4-CF3-ACP (ROx,RFc)-1 (ROx,RFc)-15 Tol, H2O K2CO3 97 91 S 

27 4-CF3-ACP (R,RFc)-2 (RFc)-16 Tol, H2O K2CO3 98 64 S 

28 4-CF3-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 97 90 S 

29 4-CF3-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol/H2O NaOH 97 89 S 

30 4-CF3-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O K2CO3 98 80 S 

31 4-CF3-ACP (SOx,SFc)-6 (SOx,SFc)-20 Tol, H2O K2CO3 95 80 R 

32 4-CF3-ACP (SOx,SFc)-7 (SOx,SFc)-21 Tol, H2O NaOH 94 69 R 

  

33 4-Me-ACP (ROx,RFc)-1 (ROx,RFc)-15 Tol, H2O K2CO3 100 91 S 

34 4-Me-ACP (R,RFc)-2 (RFc)-16 Tol, H2O K2CO3 100 88 S 

35 4-Me-ACP (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 100 97 S 

36 4-Me-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 
i
PrOH KO

t
Bu >99 93 S 

37 4-Me-ACP (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O K2CO3 100 97 S 

38 4-Me-ACP (SOx,SFc)-6 (SOx,SFc)-20 Tol, H2O K2CO3 99 92 R 

39 4-Me-ACP (SOx,SFc)-7 (SOx,SFc)-21 Tol, H2O K2CO3 98 86 R 

 

41 PBK (R,RFc)-2 (RFc)-16 
i
PrOH KO

t
Bu >99 74 S 

42 PBK (R,ROx,RFc)-3 (ROx,RFc)-17 
i
PrOH KO

t
Bu >99 99 S 

43 PBK (R,ROx,RFc)-4 (ROx,RFc)-18 
i
PrOH KO

t
Bu >99 93 S 

 

44 3,5-bTFA (ROx,RFc)-1 (ROx,RFc)-15 Tol, H2O K2CO3 99 94 S 

45 3,5-bTFA (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 95 40 S 

46 3,5-bTFA (R,ROx,RFc)-3 (ROx,RFc)-17 Tol, H2O K2CO3 95 40 S 

47 3,5-bTFA (R,ROx,RFc)-4 (ROx,RFc)-18 Tol, H2O NaOH 95 41 S 
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Analysis data: 

Conversions and e.e. values of substrates ACP, 2-F-ACP, 2-Cl-ACP, 4-Cl-ACP, 4-CF3-

ACP, 4-MeO-ACP, 4-Me-ACP, 3,5-bTFA, tBMK, PEK and TETN were determined by 

GC. Retention times are given for the reactants and both product enantiomers. 

Substrate tBMK: Column: Supelco, Beta DexTM 110 (30m); 62 °C isothermal, carrier gas 

He, 15.3 psi, split 100:1. 

tBMK = 4.6 min, (R) = 9.3 min, (S) = 9.7 min. 

Substrates ACP, PEK and 3,5-bTFA: column: Supelco, Beta DexTM 110 (30m); 110 °C 

isothermal, carrier gas He, 15.3 psi, split 30:1. 

ACP = 10.4 min, (R) = 15.6 min, (S) = 16.4 min. 

PEK = 16.5 min, (R) = 25.7 min, (S) = 26.9 min. 

3,5-bTFA = 3.8 min, (R) = 7.5 min, (S) = 8.0 min. 

Substrates 2-F-ACP, 4-Me-ACP: column: Supelco, Beta DexTM 110 (30m); 120 °C 

isothermal, carrier gas He, 15.3 psi, split 30:1. 

2-F-ACP = 4.2 min, (R) = 6.7 min, (S) = 6.9 min. 

4-Me-ACP = 9.4 min, (R) = 10.4 min, (S) = 11.0 min. 

Substrates 4-MeO-ACP, TETN: Column: Supelco, Beta DexTM 110 (30m); 125 °C 

isothermal, carrier gas He,17 psi, split 30:1. 

4-MeO-ACP = 28.3 min, (R) = 30.0 min, (S) = 31.2 min. 

TETN = 30.9 min, (S) =37.1 min, (R) = 37.7 min. 

Substrates 2-Cl-ACP, 4-Cl-ACP and 4-CF3-ACP: column: Supelco, Beta DexTM 110 

(30m); 130 °C isothermal, carrier gas He, 15.3 psi, split 30:1. 

2-Cl-ACP = 10.4 min, (R) = 19.2 min, (S) = 22.7 min. 

4-Cl-ACP = 13.5 min, (R) = 22.2 min, (S) = 23.8 min. 

4-CF3-ACP = 4.5 min, (R) = 7.7 min, (S) = 8.2 min. 
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Conversions and e.e. values of substrates PBK, DPP and AcFc were determined by 

HPLC. Retention times are given for the reactants and both product enantiomers. 

Substrate PBK: column: Daicel, Chiraldex OD-H, temperature: 25 ºC, eluent: 

hexane/iPrOH 96:4, flow rate: 0.6 mL/min, detector: DAD, Sig = 230 nm, 8, ref = 360 nm, 

100. 

PBK = 17.6 min, (R) = 20.4 min, (S) = 25.8 min. 

Substrate DPP: column: Daicel, Chiraldex OD-H, temperature: 25 ºC, solvent: 

hexane/iPrOH 9:1, Flow rate: 0.8 mL/min, detector: DAD, Sig = 215 nm, 8, ref = 360nm, 

100. 

DPP = 8.2 min, (R) = 12.4 min, (S) = 14.8 min. 

Substrate AcFc: column: Daicel, Chiraldex OJ, temperature: 25 ºC, solvent: 

hexane/iPrOH 97:3, flow rate: 0.8 mL/min, detector: DAD, Sig = 210 nm, 8, Ref = 650 

nm, 100. 

AcFc = 16.2 min, (R) = 19.0 min, (S) = 26.7 min. 

75



 

S18 

X-ray structure determination of the complexes (ROx,RFc)-17, (RFc)-19, 

(ROx,RFc)-22, and (SOx,SFc)-23. 

Single crystals of the four complexes were obtained by layering toluene solutions 

((ROx,RFc)-17, (RFc)-19, (SOx,SFc)-23) or dichloromethane solutions ((ROx,RFc)-22) with 

diethyl ether or pentane as antisolvent. Except for (ROx,RFc)-17, which was unsolvated, 

all crystals represented either toluene ((RFc)-19, (SOx,SFc)-23) or dichloromethane 

solvates ((ROx,RFc)-22). The crystals of (ROx,RFc)-17 and (RFc)-19 were emerald-green, 

those of ((ROx,RFc)-22) and (SOx,SFc)-23) were orange. X-ray data were collected on a 

Bruker Kappa APEX-2 CCD diffractometer with a cryostream cooler (Oxford 

Cryosystems) using graphite-monochromatised Mo-Kα radiation (λ = 0.71073 Å) and 

0.5° - and ω-scan frames covering complete Ewald spheres with max = 30° or 25° 

((SOx,SFc)-23). The frames were integrated with program SAINT and corrections for 

absorption and λ/2 effects were applied with program SADABS. After structure solution 

with program SHELXS97 and direct methods, refinement on F2 was carried out with the 

program SHELXL97 (Sheldrick, 2008). Non-hydrogen atoms were refined anisotropically. 

All H atoms were placed in calculated positions and thereafter refined as riding. The 

absolute structures of all compounds could be unambiguously determined by anomalous 

dispersion effects and the Flack absolute structure parameter. Variata: The toluene 

solvent in (RFc)-19 resided in channels parallel to the a-axis of the orthorhombic unit cell 

(one toluene molecule per formula unit) and showed very large anisotropic displacement 

ellipsoids. Therefore its contribution to the structure factors was removed with procedure 

SQUEEZE of program PLATON (Spek, 2003) prior to the final refinement. 

Crystallographic data are compiled in Table S4 and atomic parameters are provided in 

CIF-format in the Supporting. Structural diagrams of the complexes (Fig. S1 – S4) and 

Tables (Tab. S5 – S8) with selected geometric parameters are given below. For 

molecular graphics the programs XP (Bruker) and MERCURY (Macrae et al., 2006) were 

used. 

Bruker programs: APEX2; SAINT, version 7.68A; SADABS, version 2008/1; SHELXTL, 

version 2008/4; XP, version 5 (Bruker AXS Inc., Madison, WI, 2009). 

SHELXS97 and SHELXL97: G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.  

PLATON: Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. 

MERCURY: Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., 

Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
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Table S4. Crystal data and structure refinement for the four investigated complexes (ROx,RFc)-

17,  (RFc)-19, (ROx,RFc)-22, and  (SOx,SFc)-23. 

 (ROx,RFc)-17 (RFc)-19∙C7H8 
a)
 (ROx,RFc)-22∙CH2Cl2 (SOx,SFc)-23∙C7H8 

formula 
C48H47Cl2FeNOP

2Ru 

C47H45Cl2FeNOP2Ru∙

C7H8 

C50H50Cl2FeN2OP2Ru∙CH

2Cl2 

C53H56Cl2FeN2OP2Ru∙

C7H8 

fw 943.63 1021.73 1069.61 1118.89 

cryst.size, 

mm 

0.38 × 0.15 

× 0.13 

0.41 × 0.29 × 

0.25 
0.55 × 0.29 × 0.10 

0.22 × 0.15 × 

0.03 

crystal 

system 
monoclinic orthorhombic triclinic orthorhombic 

space group P21   (no. 4) 
P212121   (no. 

19) 
P1   (no. 1) P212121   (no. 19) 

a, Å 13.4450(4) 10.3672(4) 10.0952(6) 11.531(2) 

b, Å 11.3616(3) 15.3829(6) 11.0657(6) 21.358(4) 

c, Å 13.8849(4) 29.4389(12) 12.6518(12) 22.000(4) 

α, deg 90 90 105.215(4) 90 

β, deg 104.865(2) 90 96.050(4) 90 

γ, deg 90 90 115.719(2) 90 

V, Å
3 

2050.03(10) 4694.8(3) 1188.96(15) 5418.4(17) 

T, K 100 100 100 299 

Z 2 4 1 4 

ρcalc, g cm
-3
 1.529 1.446 1.494 1.372 

µ, mm
-1
 

(MoKα) 
0.970 0.853 0.955 0.746 

F(000) 968 2104 548 2320 

absorption 

corrections 

multi-scan, 

0.88-0.73 

multi-scan, 

0.82-0.66 

multi-scan, 0.92-

0.74 

multi-scan, 0.98-

0.83 

θ range, deg 2.3 - 30.0 1.9 – 30.0 2.2 - 30.0 1.9 - 25.0 

no. of rflns 

measd / Rint 

44495 / 

0.042 
129187 / 0.038 36346 / 0.051 59588 / 0.11 

no. of rflns 

unique 
11827 13664 13554 9550 

no. of rflns 

I>2σ(I) 
10932 13211 13243 7038 

no. of 

params / 

restraints 

508 / 1 499 / 0 563 / 3 617 / 271 

R1 (I > 

2σ(I)) 
0.0280 0.0226 0.0414 0.0476 

R1 (all data) 0.0338 0.0242 0.0424 0.0815 

wR2 (I > 

2σ(I)) 
0.0640 0.0535 0.1064 0.0805 

wR2 (all 

data) 
0.0672 0.0541 0.1075 0.0910 

Flack 

abs.str. 

param. 

-0.023(10) -0.005(8) -0.016(8) 0.00(2) 

Diff.Four.pe

aks 

min/max, eÅ
-3
 

-0.45 / 1.13 -0.64 / 0.47 -1.41 / 2.45 -0.39 / 0.56 
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Figure S1. Structural diagram of the asymmetric unit of (ROx,RFc)-17 showing 50% 

ellipsoids and the atom numbering. 

  

Table S5. Selected geometric data (Å, deg) of (ROx,RFc)-17. 

Ru(1)-N(1)         2.1588(18) 

Ru(1)-P(1)         2.1979(6) 

Ru(1)-P(2)         2.2834(6) 

Ru(1)-Cl(1)        2.3704(6) 

Ru(1)-Cl(2)        2.3943(6) 

 

Fe(1)-C(1)         2.061(2) 

Fe(1)-C(2)         2.049(2) 

Fe(1)-C(3)         2.047(2) 

Fe(1)-C(4)         2.066(2) 

Fe(1)-C(5)         2.054(2) 

Fe(1)-C(6)         2.045(2) 

Fe(1)-C(7)         2.049(2) 

Fe(1)-C(8)         2.067(2) 

Fe(1)-C(9)         2.062(2) 

Fe(1)-C(10)        2.051(2) 

 

P(1)-C(11)         1.888(2) 

P(1)-C(16)         1.836(2) 

P(1)-C(22)         1.829(2) 

 

P(2)-C(28)         1.831(2) 

P(2)-C(34)         1.843(2) 

P(2)-C(40)         1.833(2) 

 

N(1)-C(13)         1.284(3) 

N(1)-C(14)         1.494(3) 

O(1)-C(13)         1.346(3) 

O(1)-C(15)         1.468(3) 

C(14)-C(15)        1.528(3) 

C(14)-C(46)        1.541(3) 

C(46)-C(47)        1.519(3) 

C(46)-C(48)        1.524(3) 
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C(1)-C(2)          1.440(3) 

C(1)-C(5)          1.429(3) 

C(1)-C(11)         1.504(3) 

C(2)-C(3)          1.431(3) 

C(2)-C(13)         1.455(3) 

C(3)-C(4)          1.420(3) 

C(4)-C(5)          1.420(3) 

C(6)-C(7)          1.420(4) 

C(6)-C(10)         1.418(4) 

C(7)-C(8)          1.428(4) 

C(8)-C(9)          1.418(4) 

C(9)-C(10)         1.428(4) 

 

C(11)-C(12)        1.541(3) 

 

C(16)-C(17)        1.396(3) 

C(16)-C(21)        1.405(3) 

C(17)-C(18)        1.396(3) 

C(18)-C(19)        1.382(4) 

C(19)-C(20)        1.389(3) 

C(20)-C(21)        1.385(4) 

 

C(22)-C(27)        1.394(3) 

C(22)-C(23)        1.405(3) 

C(23)-C(24)        1.388(3) 

C(24)-C(25)        1.394(4) 

C(25)-C(26)        1.389(3) 

C(26)-C(27)        1.385(3) 

 

C(28)-C(33)        1.392(3) 

C(28)-C(29)        1.406(3) 

C(29)-C(30)        1.386(3) 

C(30)-C(31)        1.394(4) 

C(31)-C(32)        1.377(4) 

C(32)-C(33)        1.393(3) 

 

C(34)-C(35)        1.397(3) 

C(34)-C(39)        1.399(3) 

C(35)-C(36)        1.390(3) 

C(36)-C(37)        1.390(4) 

C(37)-C(38)        1.388(4) 

C(38)-C(39)        1.385(3) 

 

C(40)-C(41)        1.391(4) 

C(40)-C(45)        1.397(3) 

C(41)-C(42)        1.393(4) 

C(42)-C(43)        1.377(4) 

C(43)-C(44)        1.389(4) 

C(44)-C(45)        1.391(4) 

N(1)-Ru(1)-P(1)        99.20(5) 

N(1)-Ru(1)-P(2)       163.61(5) 

P(1)-Ru(1)-P(2)        96.74(2) 

N(1)-Ru(1)-Cl(1)       81.80(5) 

P(1)-Ru(1)-Cl(1)      108.79(2) 

P(2)-Ru(1)-Cl(1)       89.48(2) 

N(1)-Ru(1)-Cl(2)       86.22(5) 

P(1)-Ru(1)-Cl(2)       94.82(2) 

P(2)-Ru(1)-Cl(2)       96.26(2) 

Cl(1)-Ru(1)-Cl(2)     154.89(2) 

 

C(22)-P(1)-C(16)      102.57(10) 

C(22)-P(1)-C(11)      106.08(10) 

C(16)-P(1)-C(11)      100.76(10) 

C(22)-P(1)-Ru(1)      115.08(7) 

C(16)-P(1)-Ru(1)      122.95(7) 

C(11)-P(1)-Ru(1)      107.49(7) 

 

C(28)-P(2)-C(40)      101.63(10) 

C(28)-P(2)-C(34)      104.41(10) 

C(40)-P(2)-C(34)       97.85(10) 

C(28)-P(2)-Ru(1)      115.24(8) 

C(40)-P(2)-Ru(1)      108.34(8) 

C(34)-P(2)-Ru(1)      125.59(7) 

 

C(13)-N(1)-C(14)      106.53(18) 

C(13)-N(1)-Ru(1)      125.83(16) 

C(14)-N(1)-Ru(1)      117.94(14) 

C(13)-O(1)-C(15)      104.70(17) 
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Figure S2. Structural diagram of the asymmetric unit of (RFc)-19∙C7H8 showing 50% 

ellipsoids and the atom numbering. The toluene solvent molecule was squeezed with 

program PLATON and is not shown therefore. 

 

Table S6. Selected geometric data (Å, deg) of (RFc)-19∙C7H8. 

Ru(1)-N(1)         2.1623(13) 

Ru(1)-P(2)         2.2858(4) 

Ru(1)-P(1)         2.1993(4) 

Ru(1)-Cl(1)        2.3987(4) 

Ru(1)-Cl(2)        2.3767(4) 

 

Fe(1)-C(1)         2.0446(16) 

Fe(1)-C(2)         2.0378(16) 

Fe(1)-C(3)         2.0485(17) 

Fe(1)-C(4)         2.0626(18) 

Fe(1)-C(5)         2.0503(17) 

Fe(1)-C(6)         2.0443(18) 

Fe(1)-C(7)         2.0563(19) 

Fe(1)-C(8)         2.0629(18) 

Fe(1)-C(9)         2.0488(17) 

Fe(1)-C(10)        2.0405(17) 

 

P(1)-C(11)         1.8876(17) 

P(1)-C(16)         1.8325(17) 

P(1)-C(22)         1.8292(16) 

 

P(2)-C(28)         1.8270(18) 

P(2)-C(34)         1.8368(17) 

P(2)-C(40)         1.8326(17) 

 

O(1)-C(13)         1.3586(19) 

O(1)-C(15)         1.452(2) 

N(1)-C(13)         1.281(2) 

N(1)-C(14)         1.518(2) 

C(14)-C(15)        1.531(3) 

C(14)-C(46)        1.526(3) 
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C(14)-C(47)        1.514(2) 

 

C(1)-C(2)          1.437(2) 

 

C(1)-C(5)          1.425(2) 

C(1)-C(11)         1.507(2) 

C(2)-C(3)          1.432(2) 

C(2)-C(13)         1.454(2) 

 

C(3)-C(4)          1.415(2) 

C(4)-C(5)          1.419(2) 

C(6)-C(7)          1.425(3) 

C(6)-C(10)         1.420(3) 

C(7)-C(8)          1.418(3) 

C(8)-C(9)          1.417(3) 

C(9)-C(10)         1.416(3) 

 

C(11)-C(12)        1.540(2) 

 

C(16)-C(17)        1.397(2) 

C(16)-C(21)        1.403(2) 

C(17)-C(18)        1.389(2) 

C(18)-C(19)        1.394(2) 

C(19)-C(20)        1.384(2) 

C(20)-C(21)        1.397(2) 

 

C(22)-C(23)        1.400(2) 

C(22)-C(27)        1.403(2) 

C(23)-C(24)        1.391(2) 

C(24)-C(25)        1.388(3) 

C(25)-C(26)        1.376(3) 

C(26)-C(27)        1.392(2) 

 

C(28)-C(33)        1.390(3) 

C(28)-C(29)        1.398(2) 

C(29)-C(30)        1.386(3) 

C(30)-C(31)        1.390(3) 

C(31)-C(32)        1.387(3) 

C(32)-C(33)        1.394(2) 

 

C(34)-C(35)        1.396(2) 

C(34)-C(39)        1.401(2) 

C(35)-C(36)        1.394(2) 

C(36)-C(37)        1.388(3) 

C(37)-C(38)        1.393(3) 

C(38)-C(39)        1.391(2) 

 

C(40)-C(41)        1.392(3) 

C(40)-C(45)        1.393(2) 

C(41)-C(42)        1.395(3) 

C(42)-C(43)        1.378(3) 

C(43)-C(44)        1.374(3) 

C(44)-C(45)        1.381(3) 

N(1)-Ru(1)-P(1)       100.61(4) 

N(1)-Ru(1)-P(2)       161.15(4) 

P(1)-Ru(1)-P(2)        98.234(16) 

N(1)-Ru(1)-Cl(2)       86.31(4) 

P(1)-Ru(1)-Cl(2)       89.641(16) 

P(2)-Ru(1)-Cl(2)       94.279(15) 

N(1)-Ru(1)-Cl(1)       82.88(4) 

P(1)-Ru(1)-Cl(1)      108.069(16) 

P(2)-Ru(1)-Cl(1)       90.897(15) 

Cl(2)-Ru(1)-Cl(1)     160.650(15) 

 

C(22)-P(1)-C(16)      102.41(7) 

C(22)-P(1)-C(11)      105.23(7) 

C(16)-P(1)-C(11)       99.31(7) 

C(22)-P(1)-Ru(1)      116.10(6) 

C(16)-P(1)-Ru(1)      122.68(5) 

C(11)-P(1)-Ru(1)      108.73(5) 

 

C(28)-P(2)-C(40)      102.65(8) 

C(28)-P(2)-C(34)      101.51(7) 

C(40)-P(2)-C(34)      102.80(8) 

C(28)-P(2)-Ru(1)      118.24(6) 

C(40)-P(2)-Ru(1)      100.90(5) 

C(34)-P(2)-Ru(1)      127.14(5) 

 

C(13)-O(1)-C(15)      105.13(13) 

C(13)-N(1)-C(14)      106.33(13) 

C(13)-N(1)-Ru(1)      129.00(12) 

C(14)-N(1)-Ru(1)      120.14(10) 
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Figure S3. Structural diagram of the asymmetric unit of (ROx,RFc)-22∙CH2Cl2  showing 

50% ellipsoids (except for the CH2Cl2 solvent molecule) and the atom numbering.  

 

Table S7. Selected geometric data (Å, deg) of (ROx,RFc)-22∙CH2Cl2

Ru(1)-N(1)         2.190(2) 

Ru(1)-N(2)         2.007(3) 

Ru(1)-P(1)         2.2908(7) 

Ru(1)-P(2)         2.3076(7) 

Ru(1)-Cl(1)        2.4793(7) 

Ru(1)-Cl(2)        2.4191(7) 

 

Fe(1)-C(1)         2.062(3) 

Fe(1)-C(2)         2.046(3) 

Fe(1)-C(3)         2.041(3) 

Fe(1)-C(4)         2.058(3) 

Fe(1)-C(5)         2.044(3) 

Fe(1)-C(6)         2.040(3) 

Fe(1)-C(7)         2.051(4) 

Fe(1)-C(8)         2.065(3) 

Fe(1)-C(9)         2.060(3) 

Fe(1)-C(10)        2.038(3) 

 

P(1)-C(11)         1.900(3) 

P(1)-C(16)         1.834(3) 

P(1)-C(22)         1.845(3) 

P(2)-C(28)         1.828(3) 

P(2)-C(34)         1.839(3) 

P(2)-C(40)         1.851(3) 

 

O(1)-C(13)         1.352(3) 

O(1)-C(15)         1.452(4) 

N(1)-C(13)         1.288(4) 

N(1)-C(14)         1.495(4) 

C(14)-C(15)        1.533(4) 

C(14)-C(46)        1.544(4) 

C(46)-C(48)        1.531(4) 

C(46)-C(47)        1.532(4) 

 

N(2)-C(49)         1.134(4) 

C(49)-C(50)        1.471(5) 

C(1)-C(2)          1.431(4) 

C(1)-C(5)          1.438(4) 

C(1)-C(11)         1.517(4) 

C(2)-C(3)          1.438(4) 

C(2)-C(13)         1.444(4) 

C(3)-C(4)          1.431(4) 

C(4)-C(5)          1.426(4) 

 

C(6)-C(7)          1.414(6) 

C(6)-C(10)         1.432(7) 

C(7)-C(8)          1.423(5) 

C(8)-C(9)          1.425(5) 

C(9)-C(10)         1.424(6) 

 

C(11)-C(12)        1.531(4) 
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C(16)-C(17)        1.398(5) 

C(16)-C(21)        1.406(4) 

C(17)-C(18)        1.392(5) 

C(18)-C(19)        1.389(6) 

C(19)-C(20)        1.367(7) 

C(20)-C(21)        1.393(5) 

 

C(22)-C(27)        1.392(4) 

C(22)-C(23)        1.405(4) 

C(23)-C(24)        1.391(5) 

C(24)-C(25)        1.381(6) 

C(25)-C(26)        1.389(5) 

C(26)-C(27)        1.399(4) 

 

C(28)-C(33)        1.389(5) 

C(28)-C(29)        1.404(4) 

C(29)-C(30)        1.404(5) 

C(30)-C(31)        1.384(6) 

C(31)-C(32)        1.400(6) 

C(32)-C(33)        1.396(5) 

 

C(34)-C(35)        1.393(4) 

C(34)-C(39)        1.402(4) 

C(35)-C(36)        1.390(4) 

C(36)-C(37)        1.393(5) 

C(37)-C(38)        1.393(5) 

C(38)-C(39)        1.383(4) 

 

C(40)-C(41)        1.399(4) 

C(40)-C(45)        1.404(4) 

C(41)-C(42)        1.398(4) 

C(42)-C(43)        1.386(5) 

C(43)-C(44)        1.392(5) 

C(44)-C(45)        1.381(5) 

 

C(51)-Cl(3)        1.730(8) 

C(51)-Cl(4)        1.759(7) 

N(2)-Ru(1)-N(1)        92.94(10) 

N(2)-Ru(1)-P(1)        86.99(8) 

N(1)-Ru(1)-P(1)        92.02(7) 

N(2)-Ru(1)-P(2)        93.67(8) 

N(1)-Ru(1)-P(2)       167.30(6) 

P(1)-Ru(1)-P(2)        99.14(3) 

N(2)-Ru(1)-Cl(2)      171.99(7) 

N(1)-Ru(1)-Cl(2)       87.43(7) 

P(1)-Ru(1)-Cl(2)      101.00(2) 

P(2)-Ru(1)-Cl(2)       84.52(2) 

N(2)-Ru(1)-Cl(1)       79.16(8) 

N(1)-Ru(1)-Cl(1)       80.89(6) 

P(1)-Ru(1)-Cl(1)      164.03(2) 

P(2)-Ru(1)-Cl(1)       89.72(3) 

Cl(2)-Ru(1)-Cl(1)      93.01(2) 

 

C(16)-P(1)-C(22)      106.56(14) 

C(16)-P(1)-C(11)      102.89(13) 

C(22)-P(1)-C(11)       96.17(12) 

C(16)-P(1)-Ru(1)      114.85(10) 

C(22)-P(1)-Ru(1)      121.97(10) 

C(11)-P(1)-Ru(1)      111.34(9) 

 

C(28)-P(2)-C(34)      104.80(14) 

C(28)-P(2)-C(40)      100.38(13) 

C(34)-P(2)-C(40)       99.09(13) 

C(28)-P(2)-Ru(1)      113.60(10) 

C(34)-P(2)-Ru(1)      118.31(9) 

C(40)-P(2)-Ru(1)      118.06(10) 

 

C(13)-O(1)-C(15)      105.2(2) 

C(13)-N(1)-C(14)      106.1(2) 

C(13)-N(1)-Ru(1)      127.0(2) 

C(14)-N(1)-Ru(1)      118.98(17) 

C(49)-N(2)-Ru(1)      173.0(3) 

 

N(2)-C(49)-C(50)      178.6(4) 

 

Cl(3)-C(51)-Cl(4)     112.4(4) 
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Figure S4. Structural diagram of the asymmetric unit of (SOx,SFc)-23∙C7H8 showing 20% 

ellipsoids (except for the toluene solvent molecule) and the atom numbering. 

 

Table S8. Selected geometric data (Å, deg) of (SOx,SFc)-23∙C7H8. 

Ru(1)-N(1)         2.215(4) 

Ru(1)-N(2)         1.988(4) 

Ru(1)-P(1)         2.3014(15) 

Ru(1)-P(2)         2.2968(15) 

Ru(1)-Cl(1)        2.4773(14) 

Ru(1)-Cl(2)        2.4162(14) 

 

Fe(1)-C(1)         2.062(6) 

Fe(1)-C(2)         2.045(6) 

Fe(1)-C(3)         2.016(6) 

Fe(1)-C(4)         2.034(6) 

Fe(1)-C(5)         2.023(6) 

Fe(1)-C(6)         2.023(8) 

Fe(1)-C(7)         2.041(8) 

Fe(1)-C(8)         2.043(7) 

Fe(1)-C(9)         2.031(7) 

Fe(1)-C(10)        2.026(7) 

 

P(1)-C(16)         1.839(5) 

P(1)-C(22)         1.849(5) 

P(1)-C(11)         1.877(5) 

P(2)-C(28)         1.826(5) 

P(2)-C(40)         1.837(5) 

P(2)-C(34)         1.843(6) 

 

O(1)-C(13)         1.357(6) 

O(1)-C(15)         1.452(7) 

N(1)-C(13)         1.276(7) 

N(1)-C(14)         1.511(6) 

C(14)-C(15)        1.525(8) 

C(14)-C(46)        1.551(8) 

C(46)-C(47)        1.528(8) 

C(46)-C(48)        1.513(8) 

 

N(2)-C(49)         1.118(6) 

C(49)-C(50)        1.462(8) 

 

C(1)-C(2)          1.437(7) 

C(1)-C(5)          1.415(8) 

C(1)-C(11)         1.483(7) 

C(2)-C(3)          1.436(7) 

C(2)-C(13)         1.460(8) 

C(3)-C(4)          1.409(8) 

C(4)-C(5)          1.398(8) 

C(6)-C(7)          1.389(11) 

C(6)-C(10)         1.374(10) 

C(7)-C(8)          1.413(11) 

C(8)-C(9)          1.386(11) 

C(9)-C(10)         1.425(11) 

 

C(16)-C(21)        1.391(7) 

C(16)-C(17)        1.393(7) 

C(17)-C(18)        1.384(7) 

C(18)-C(19)        1.358(8) 

C(18)-C(51)        1.539(8) 

C(19)-C(20)        1.407(8) 
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C(20)-C(21)        1.397(7) 

C(20)-C(52)        1.496(8) 

 

C(22)-C(27)        1.396(7) 

C(22)-C(23)        1.398(7) 

C(23)-C(24)        1.392(7) 

C(24)-C(25)        1.381(8) 

C(24)-C(53)        1.489(8) 

C(25)-C(26)        1.385(8) 

C(26)-C(27)        1.383(8) 

C(26)-C(54)        1.491(8) 

 

C(28)-C(33)        1.381(7) 

C(28)-C(29)        1.399(7) 

C(29)-C(30)        1.390(8) 

C(30)-C(31)        1.373(8) 

C(31)-C(32)        1.374(9) 

C(32)-C(33)        1.394(8) 

 

C(34)-C(39)        1.366(7) 

C(34)-C(35)        1.407(8) 

C(35)-C(36)        1.388(8) 

C(36)-C(37)        1.366(9) 

C(37)-C(38)        1.353(9) 

C(38)-C(39)        1.386(7) 

 

C(40)-C(41)        1.375(7) 

C(40)-C(45)        1.394(7) 

C(41)-C(42)        1.400(8) 

C(42)-C(43)        1.351(8) 

C(43)-C(44)        1.352(9) 

C(44)-C(45)        1.388(8) 

 

N(2)-Ru(1)-N(1)        89.88(17) 

N(2)-Ru(1)-P(2)        91.28(13) 

N(1)-Ru(1)-P(2)       170.36(12) 

N(2)-Ru(1)-P(1)        87.70(13) 

N(1)-Ru(1)-P(1)        92.09(12) 

P(2)-Ru(1)-P(1)        97.52(5) 

N(2)-Ru(1)-Cl(2)      172.29(13) 

N(1)-Ru(1)-Cl(2)       88.32(12) 

P(2)-Ru(1)-Cl(2)       89.26(5) 

P(1)-Ru(1)-Cl(2)       99.85(5) 

N(2)-Ru(1)-Cl(1)       82.78(13) 

N(1)-Ru(1)-Cl(1)       82.58(12) 

P(2)-Ru(1)-Cl(1)       88.08(5) 

P(1)-Ru(1)-Cl(1)      169.07(5) 

Cl(2)-Ru(1)-Cl(1)      89.56(5) 

 

C(16)-P(1)-C(22)      104.4(2) 

C(16)-P(1)-C(11)      102.5(2) 

C(22)-P(1)-C(11)       95.1(2) 

C(16)-P(1)-Ru(1)      117.71(17) 

C(22)-P(1)-Ru(1)      123.35(17) 

C(11)-P(1)-Ru(1)      109.71(18) 

 

C(28)-P(2)-C(40)      100.3(2) 

C(28)-P(2)-C(34)      106.4(3) 

C(40)-P(2)-C(34)       97.0(2) 

C(28)-P(2)-Ru(1)      111.11(17) 

C(40)-P(2)-Ru(1)      120.31(19) 

C(34)-P(2)-Ru(1)      119.11(18) 

 

C(13)-O(1)-C(15)      104.4(4) 

C(13)-N(1)-C(14)      106.3(4) 

C(13)-N(1)-Ru(1)      129.0(4) 

C(14)-N(1)-Ru(1)      118.7(3) 

C(49)-N(2)-Ru(1)      174.5(5) 

 

N(2)-C(49)-C(50)      178.5(7) 

85



 

S29 

 

Figure S5. Molecular structure of (SOx,SFc)-15 (retrieved from the Cambridge Structural 

Database, refcode MAPLUK)[6c] 
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Abstract 

Two complementary and highly modular routes were developed for the synthesis of 

ferrocenyl-based phosphino-oxazolines all having the phosphino unit attached to a 

ferrocenylmethyl or a ferrocenylethyl side-chain. Both routes started from (S)-4-iso-

propyl- (5) or (S)-4-phenyl-2-ferrocenyloxazoline (8) and in both cases was the 

phosphino-substituted side chain built up diastereoselectively. In the first synthesis 

sequence, 2-oxazolinyl substituted ferrocene aldehydes were prepared from 5 and 8 and 

subsequently arylated or alkylated through an auto-activated phenyl or alkyl transfer 

either from diphenyl zinc or from dialkyl zinc reagents and provided the product alcohols 

in form of single diastereomers. Furthermore, these alcohols were transformed into the 

desired phosphino-oxazolines all having the matching (S,SOx,SFc) relative and absolute 

configuration. In the second sequence, starting from 5 and 8, 2-phosphinylmethyl 

substituted ferrocenyl-oxazolines were prepared. These phosphine oxides were 

subjected to a diastereoselective -deprotonation with tert-BuLi in THF at –78 °C. 

Quenching with MeI and subsequent reduction resulted in phosphino-oxazoline ligands 

with (R,SOx,SFc) absolute configuration. These side chain epimers could be isomerized 
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with tert-butyl lithium and water to the desired (S,SOx,SFc) configured ligands. All newly 

synthesized ligands were transformed into [RuCl2(PPh3)(L)] complexes and were used 

as catalyst precursors for transfer hydrogenations of ketones. From a comparison of 

these catalysis results with our previously reported data it is concluded that for this type 

of ligand the (S,SOx,SFc) relative configuration constitutes the matching configuration 

while a change of either the side-chain or the oxazoline configuration leads to less 

efficient transfer hydrogenation catalysts. With the matching ligands and complexes 

products were obtained with quantitative conversion and in up to 98% enantiomeric 

excess. 

 

Introduction 

Since more than fifteen years have oxazoline based ferrocene derivatives been 

employed as ligands of asymmetric catalysts.1 Especially FOXAP type ligands such as 

derivative (SOx,SFc)-1 (Chart 1) were successfully used in asymmetric transformations.2 

For example, ruthenium complexes of FOXAP ligands ([RuCl2(PPh3)(FOXAP)]) 

performed very efficiently as catalyst precursors in the transfer hydrogenation of 

ketones when isopropanol was used as the hydrogen source.3 In addition, the same 

type of complexes gave excellent results in hydrogenations in the presence of hydrogen 

gas4 and with these conditions up-scaling even to the large industrial scale became 

possible.5  

Fe

PPh2

O

N R

(R,SOx,RFc)-3

(R,ROx,RFc)-3

R =

(R,SOx,RFc)-4

(R,ROx,RFc)-4

CHMe2

CHMe2

Ph

Ph

Fe

PPh2

N

O

(SOx,SFc)-1 (SOx,SFc)-2

Fe

N

O

PPh2

 

Chart 1. 

Very recently, in a search for novel asymmetric hydrogenation catalysts, we 

have modified FOXAP type ligands by extending their ferrocene backbone to a 

ferrocenylmethyl or a ferrocenylethyl unit.6 Examples of these ligands, that we called 

'Raffa-FOX' ligands, are shown in Chart 1 (2–4). Ruthenium complexes 
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[RuCl2(PPh3)(L)] of a number of such ligands were extensively tested as catalysts in 

transfer hydrogenations and hydrogenations of alkyl-aryl ketones (see Chapter 3.1). In 

both types of reaction several substrates were transformed into product with 

quantitative conversion and with an enantiomeric excess of up to 99%. From all ligands 

tested, derivative (R,ROx,RFc)-3 performed best. In certain cases also ligand (R,ROx,RFc)-

4 gave comparable results while with (SOx,SFc)-2 always slightly lower product e.e. 

values were obtained. It was also found that the results of both hydrogenation and 

transfer hydrogenation reactions were strongly depending on the relative configuration 

of the ligands applied. For example, when the transfer hydrogenation of acetophenone 

was carried out with use of ligand (R,ROx,RFc)-3, product 1-phenylethanol with (S) 

absolute configuration and 98% e.e. was obtained while when the configuration at the 

oxazoline carbon C4 was changed from (ROx) to (SOx) and the resulting ligand 

(R,SOx,RFc)-3 was used, product with (R) absolute configuration and 69% e.e. was 

formed. Also for ligands 4 the (ROx,RFc) relative configuration constitutes the matching 

and the (SOx,RFc) configuration the mismatching combination of stereogenic units. 

Our reported synthesis of ligands of type (SOx,SFc)-2 required only three 

straightforward steps from easily accessible and commercially available ferrocenyl 

oxazoline (SOx)-5 (see Chapter 3.1). In the first step a diastereoselective ortho-

deprotonation followed by reaction with dimethylformamide resulted in aldehyde 

(SOx,SFc)-6 which after reduction to alcohol (SOx,SFc)-7 was transformed into the final 

product. It is obvious that the ortho-deprotonation step already determined the relative 

configuration of the final product. 

The original synthesis of diastereomeric ligands 3 and their analogs was 

designed to allow for a variation of the oxazoline substituent and the relative 

configuration at the oxazoline carbon to which this substituent is bound (C4). These 

variations could be achieved by choosing a proper aminoalcohol in the second step of 

the reaction sequence (Scheme 2) but this advantage was limited by the fact that for 

the synthesis of each ligand two enantiopure reagents were needed. For example, for 

the synthesis of (R,ROx,RFc)-3 enantiopure starting material (R)-12 as well as (R)-valinol, 

(R)-14, were required. 
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Scheme 1. Synthesis of ligands (SOx,SFc)-2 and (SOx,SFc)-11. 

 

 

Scheme 2. Synthesis route for ligand 3 (R = iPr) and analogs. 

Since for 3 and analogs the (ROx,RFc) relative configuration was identified as the 

matching configuration, we questioned whether the synthesis of such ligands with either 

(ROx,RFc) or (SOx,SFc) configuration could be simplified. As mentioned above, the ortho 

deprotonation of (S)-5 and further transformations led to ligand 2 having the desired 

(SOx,SFc) relative configuration. It seemed therefore promising to start an alternative 

synthesis route for 3 and related derivatives from ferrocenyl oxazolines such as 5 and 8 

(Scheme 1) and to build up the side chain diastereoselectively instead of starting from 

enantiopure 12 that has the side chain already in place (Scheme 2). 

For introducing the side chains and side chain substituents diastereoselectively, 

two different methodologies were taken into account. The first one is related to work of 

Brocard who has shown that ferrocenyl amino-aldehydes can be directly alkylated with 

dialkylzinc reagents.7 The second methodology makes use of an -deprotonation 

reaction. As originally reported by Marr, ferrocenylmethyl substituted phosphineoxides 

can be deprotonated and alkylated at the ferrocene -position.8 Later on Stepnicka 

applied this methodology to cyanomethyl substituted ferrocenes.9  
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In this contribution we describe two complementary approaches for the synthesis of 

ligands 3 and analogs all having (SOx,SFc) configuration and either (R) or (S) 

configuration at the side chain -carbon. In addition, we report on a few transfer 

hydrogenations that show the influence of different side chain substituents as well as of 

different side chain configurations on the product enantiomeric excess. 

 

Results 

Synthesis of ligands (SOx,SFc)-3 and analogs. In order to modify and simplify the original 

synthesis sequence we explored two novel routes that both start from ferrocenyl 

oxazolines (SOx)-5 and (SOx)-8. It was our intention to build up the phosphino-substituted 

side chain of 3 and analogs in such a way that the use of a second enantiopure reagent 

could be avoided. Furthermore, we aimed for synthesis routes that allow for a variation 

of the configuration at the side chain -carbon. For this purpose, diastereoselective 

alkylations of aldehydes 6 and 9 (Scheme 3) were employed. As an alternative route, 

the diastereoselective -deprotonation of phosphine oxides 26 and 27 was investigated 

(Scheme 4). 

 

Scheme 3.  

Alkyl and phenyl transfer with use of R2Zn reagents. Several groups have already 

investigated the diastereoselectivity of alkyl and aryl transfers to 2-substituted 

ferrocenylaldehydes.7,10 Mainly the reactivity of lithium, magnesium and zinc reagents 

was studied. It was found that in many cases the transfer of rather small alkyl groups 

such as methyl or ethyl substituents work best with use of dialkyl zinc reagents. Usually, 

the alkyl transfer from dialkyl zinc reagents to aldehydes proceeds rather slowly, but its 

reaction rate increases significantly when a catalyst such as an amino alcohol is added. 

However, according to Brocard7 and Fukuzawa,10d the reaction of amino substituted 

ferrocenyl carbaldehydes 2-(N,N-dimethylaminomethyl)-ferrocenylcarbaldehyde and 2-
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(1-N,N-dimethylaminoethyl)-ferrocenylcarbaldehyde with dialkyl zinc reagents went on 

smoothly without a catalyst and this fact was rationalized by invoking an autocatalytic or 

auto-activation mechanism that involves the participation of the dimethylamino nitrogen 

and the carbonyl oxygen. Since such an effect has also been reported for a pyrimidyl 

substituted ferrocenylaldehyde11 we reasoned whether oxazoline units could also 

promote autocatalytic alkyl transfers.  

When aldehyde (SOx,SFc)-6 was reacted in toluene with dimethyl zinc or diethyl 

zinc (Scheme 3), indeed, the desired product alcohols (S,SOx,RFc)-18 and (S,SOx,RFc)-23 

were obtained in nearly quantitative yield and in each case with a diastereomer ratio of 

97:3. Surprisingly, when diphenyl zinc was used as the reagent also a phenyl transfer 

was possible resulting in alcohol (S,SOx,RFc)-20. With oxazoline (SOx,SFc)-9, which was 

easily accessible form (SOx)-8, and dimethyl zinc alcohol (S,SOx,RFc)-24 was formed 

again with a diastereomer ratio of 97:3 (for details on the synthesis of (SOx)-8 see 

Supporting). In all cases had the main product the desired (S) side chain configuration. 

From alcohol (S,SOx,RFc)-18 suitable single crystals could be grown and its 

molecular structure in the solid state was studied by X-ray diffraction confirming both its 

relative and absolute configuration (Figure 1). Details of this X-ray crystallography study 

are given in Table 1 of the Supporting Information.  

 

Figure 1. Molecular structure of (S,SOx,RFc)-18. 

After chromatographic separation of the respective diastereomers, alcohols 

(S,SOx,RFc)-18, 20, and 24 were transformed into the acetates 19, 21, and 25. A further 

reaction with diphenylphosphine led to the desired phosphino-oxazolines (S,SOx,SFc)-3 

and (S,SOx,SFc)-4 as well as to the novel ligand (S,SOx,SFc)-22 having a phenyl 

substituent attached to the side chain -carbon. As expected, the acetate/phosphine 

exchange proceeded with retention of configuration at the ferrocenyl -carbon.12 It 
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should be mentioned that ligands 3 and 4 were obtained with the same relative 

configuration, (S,SOx,SFc), than those that preformed best in transfer hydrogenation and 

hydrogenation reactions.  

Diastereoselective -deprotonation of phosphine oxides 

 In 1975 Marr reported that – like benzyldiphenylphosphine oxide – also 

ferrocenylmethyldiphenylphosphine oxide can be deprotonated with butyl lithium at the α-

position and the resulting anion can be reacted with electrophiles.8 Recently this 

methodology has been used by Stepnicka to derivatize a cyanomethyl substituted 

ferrocene diastereoselectively.9 Therefore we questioned whether phosphine oxide 26 

(Scheme 4) could also be deprotonated and alkylated at the side chain methylene group 

and whether this reaction could be run diastereoselectively.  

 

Scheme 4. 

For this purpose phosphine oxide (SOx,SFc)-26 was prepared from phosphine 

(SOx,SFc)-2 (98%) by reaction with H2O2 in acetone.12 As mentioned above, this 

precursor, (SOx,SFc)-2, is accessible in three steps from oxazoline (SOx)-5 (Scheme 1). 

In order to optimize the reaction conditions, phosphine oxide 26 was treated in THF or 

Et2O at different temperatures with bases n-BuLi, tert-BuLi or Li-TMP and the 

intermediate anions were quenched with MeI (Table 1).  In all cases was the product 

diastereomer ratio strongly depending on the reaction temperature and the solvent 

used. 

The best diastereoselectivity could be obtained when (SOx,SFc)-26 was reacted 

in THF with 1.2 equivalents of tert-BuLi at –78 °C (Table 1, entry 6). Quenching with 

MeI resulted in a 97/3 mixture of diastereomers (R,SOx,SFc)-17 and  (S,SOx,SFc)-17 (93% 

overall isolated yield). We suspect that this high diastereoselectivity could at least in 

part be caused by a corroborative action of the oxazoline unit and the base. The 

oxazoline unit is expected to co-ordinate to lithium and thereby directing the base to the 

pro-(R) methylene hydrogen of the side chain. Quenching with MeI under retention of 

configuration would result in the observed main diastereomer (R,SOx,SFc)-17. A further 
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reduction of this diastereomer gave ligand (R,SOx,SFc)-3 which represents the side chain 

epimer of (S,SOx,SFc)-3. As already mentioned, its enantiomer (R,ROx,RFc)-3 had 

performed the best in the hydrogenation and transfer hydrogenation of ketones. 

 

Table 1. -Alkylation of (SOx,SFc)-26 with different bases and MeI. 

entry base/solvent 
equiv. 

base 
T, °C (R)-17

a
/(S)-17

b
/30

c
 

1 n-BuLi / THF 1.1 r.t. 65/15/20
d
 

2 tert-BuLi / THF 1.1 r.t. 80/17/3 

3 tert-BuLi / Et2O 1.1 r.t. 57/43/0 

4 Li-TMP / THF 1.1 0 79/16/5 

5 tert-BuLi / THF 1.1 –78 94/6/0 

6 tert-BuLi / THF 1.2 –78 97/3/0 

7 n-BuLi / THF 1.2 –78 91/4/5 

8 Li-TMP / THF 1.2 –78 92/3/5 

a 
(R,SOx,SFc)-17, 

b 
(S,SOx,SFc)-17, 

c 
unreacted starting material, 

d
 ratios determined by 

1
H-NMR 

Since the alkylation of (SOx,SFc)-26 to (R,SOx,SFc)-17 could be carried out with full 

conversion of substrate and with high diastereoselectivity, we questioned whether 17 

could be alkylated a second time at the ferrocenyl -position. Indeed, when (R,SOx,SFc)-

17 was reacted in THF with 1.2 equivalents of tert-BuLi at –78 °C, after quenching with 

MeI, the doubly -substituted ferrocene derivative (SOx,SFc)-27 was obtained 93% 

isolated yield.  

Furthermore, we investigated whether the epimers (R,SOx,SFc)-17 and 

(S,SOx,SFc)-17 can be converted into each other. For this purpose (R,SOx,SFc)-17 was 

reacted with tert-BuLi and the lithiated intermediate was quenched with water (Scheme 

5). Under optimized conditions (THF, 2 equivalents of base, –78 °C) 95% of the epimer 

(S,SOx,SFc)-17 was formed. In a control experiment (S,SOx,SFc)-17 was subjected to the 

same reaction conditions, but in this case no epimerization took place. This result 

indicates that phosphine oxide (S,SOx,SFc)-17 is thermodynamically more stable than its 

epimer (R,SOx,SFc)-17 and consequently, in the alkylation of (SOx,SFc)-26 with tert-BuLi 

and MeI the thermodynamically less stable diastereomer (R,SOx,SFc)-17 was formed.  

In summary, the reaction of the oxazoline substituted ferrocenyl aldehydes 

(SOx,SFc)-6 and (SOx,SFc)-9 with dimethyl- and diphenyl zinc gave alcohols 18, 20, and 
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24 with very high diastereoselectivity (94% d.e.) which could be further transformed into 

the desired ligands 3, 4, and 22. In this case, all ligands were obtained with (S,SOx,SFc) 

absolute configuration. Complementary, -deprotonation and alkylation of phosphine 

oxide (SOx,SFc)-26 gave intermediate 17 which after reduction of the phosphine oxide 

resulted in the side chain epimer  (R,SOx,SFc)-3. 

 

Scheme 5. -Alkylation and isomerization of (R,SOx,SFc)-17. 

Transfer hydrogenation of ketones 

Since with use of ruthenium complex [RuCl2(PPh3)((R,ROx,RFc)-3)] excellent 

results had been obtained in the transfer hydrogenation and hydrogenation of a variety 

of aryl-alkyl ketones,6 it was of interest to compare the performance of this ligand with 

that of its side-chain epimer (S,ROx,RFc)-3 and its side-chain substituted analog 

(R,ROx,RFc)-22 that bears a phenyl instead of a methyl group at the ferrocenyl -

position. Because of synthetic availability, for the transfer hydrogenations of ketones the 

enantiomers (R,SOx,SFc)-3 and (S,SOx,SFc)-22 were used. For this purpose complexes 

(R,SOx,SFc)-29 and (S,SOx,SFc)-30 were prepared by reaction of ligands (R,SOx,SFc)-3 

and (S,SOx,SFc)-22 with [RuCl2(PPh3)3] (Scheme 6). 
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+ L [RuCl2(PPh3)(L)][RuCl2(PPh3)3] toluene

(R,SOx,SFc)-3

(R,ROx,RFc)-3

L = complex =

(R,SOx,SFc)-29

(R,ROx,RFc)-29

(S,SOx,SFc)-22 (S,SOx,SFc)-30

(SOx,SFc)-1 (SOx,SFc)-28

 

Scheme 6. 

All transfer hydrogenations were carried out at r.t. with 2-propanol as the 

hydrogen source and potassium isopropoxide as the base (for reaction details see 

Experimental). The transfer hydrogenation results obtained with ketones acetophenone 

(ACP), 4-methyl-acetophenone (4-Me-ACP) and phenyl-benzylketone (PBK) and 

complexes (R,ROx,RFc)-29, (R,SOx,SFc)-29 and (S,SOx,SFc)-30 are summarized in Table 

2. In all cases only isolated ruthenium complexes were used as the catalyst precursors. 

For assuring comparable reaction conditions, FOXAP complex (SOx,SFc)-28 (Scheme 6) 

of ligand 1 (Chart 1) was used as the reference. 

A comparison of all data of Table 2 shows that complex (R,ROx,RFc)-29 [ligand 

(R,ROx,RFc)-3] performed best with all three substrates (entries 2,6,10). When complex 

(S,SOx,SFc)-30 with the side-chain phenyl substituted ligand (S,SOx,SFc)-22 was used all 

product e.e.s dropped by about 10% and also the reaction rate decreased (entries 

4,8,12). With complex (R,SOx,SFc)-29 [ligand (R,SOx,SFc)-3] the most significant changes 

were observed. Not only decreased the reaction rates further, but also the product e.e.s 

became very low (entries 3, 7 and11).  

With respect to product absolute configuration a consistent picture is seen. With 

all complexes of (ROx,RFc) absolute configuration always products of (S) configuration 

were obtained. From these and our previously reported transfer hydrogenation results 

some conclusions can be drawn. When the performance of the diastereomeric 

complexes and ligands (R,ROx,RFc)-29 [ligand (R,ROx,RFc)-3], (R,SOx,RFc)-29 [ligand 

(R,SOx,RFc)-3], and (S,ROx,RFc)-29 [ligand (S,ROx,RFc)-3] – all normalized to the same 

(RFc) ferrocene configuration – are compared to each other some general features are 

seen. With all investigated substrates ligand (R,ROx,RFc)-3 performed best with respect 

to product e.e. and therefore we consider the (R,ROx,RFc) relative configuration to be the 

matching configuration. Changes either of the side-chain [ligand (S,ROx,RFc)-3] or the 

oxazoline configuration [ligand (R,SOx,RFc)-3] led to lower product e.e.s. Furthermore, a 

change of the side-chain substituent of ligand (R,ROx,RFc)-3 from methyl to phenyl 

[ligand (R,ROx,RFc)-22] resulted in a drop of product enantiomeric excess.  
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Table 2. Transfer hydrogenation results obtained for three ketones.a 

entry substrate complex time
e 

% conv. % e.e. 
abs. 

conf. 

1 ACP
b 

(SOx,SFc)-28 20 min 99 96 R 

2 ACP (R,ROx,RFc)-29 10 min 99 98 S 

3 ACP (R,SOx,SFc)-29 1 h 80 41 R 

4 ACP (S,SOx,SFc)-30 30 min 97 90 R 

5 4-Me-ACP
c 

(SOx,SFc)-28 10 min 97 96 R 

6 4-Me-ACP (R,ROx,RFc)-29 10 min 97 98 S 

7 4-Me-ACP (R,SOx,SFc)-29 2 h 95 28 R 

8 4-Me-ACP (S,SOx,SFc)-30 30 min 95 88 R 

9 PBK
d 

(SOx,SFc)-28 10 min >99 95 R 

10 PBK (R,ROx,RFc)-29 20 min >98 97 S 

11 PBK (R,SOx,SFc)-29 4 h 35 57 R 

12 PBK (S,SOx,SFc)-30 4 h 57 87 R 

a
 Reaction conditions: 1 mmol of substrate in 51 mL of 2-propanol (19.6 mM), 0.5% catalyst and 

2% base (S/C/base = 200/1/4), 
b
 ACP: acetophenone, 

c
 4-Me-ACP: 4-methyl-acetophenone, 

d
 

PBK: phenylbenzyl ketone, 
e
 reaction time optimised with respect to conversion and product e.e. 

 

Conclusions 

In order to simplify the synthesis of ferrocenyl-based phosphino-oxazolines that 

have the phosphino unit attached to a ferrocenylmethyl or a ferrocenylethyl side-chain 

two complementary synthesis routes were explored. Both routes started from easily 

accessible ferrocenyl-oxazolines and in both cases the phosphino-substituted side 

chain was build up diastereoselectively. The first route made use of an auto-activated 

alkyl transfer either from diphenyl zinc or from dialkyl zinc reagents to 2-oxazolinyl 

substituted ferrocene aldehydes. The resulting alcohols were obtained in form of single 

diastereomers and could be further transformed into the desired phosphino-oxazolines. 

Via this route differently substituted ligands all suitable for use in transfer 

hydrogenations of ketones and all having the matching (S,SOx,SFc) relative configuration 

could be obtained in enantiomerically pure form.  

The second route made use of the fact that phosphine oxides can be 

deprotonated and alkylated at their -positions. In this case 2-phosphinylmethyl 

substituted ferrocenyloxazolines were deprotonated and alkylated at the side-chain 
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methylene group. However in this case product with (R,SOx,SFc) configuration was 

obtained in very high diastereoselectivity. Furthermore, it was shown that with use of 

this methodology not only one but two alkyl (methyl) groups can be attached 

consecutively to the ferrocene side-chain -position. In addition, the epimerization of 

phosphine oxazoline (R,SOx,SFc)-3 into (S,SOx,SFc)-3 was studied. It was found that 

(R,SOx,SFc)-3 can be transformed almost quantitatively into its thermodynamically more 

stable epimer (S,SOx,SFc)-3. Therefore both epimers of 3 are accessible via this route. 

Transfer hydrogenations with 2-propanol as the hydrogen source and potassium 

alkoxide as the base were carried out with use of [RuCl2(PPh3)(L)] complexes of two 

ligands and three aryl-alkyl ketones. The results obtained were compared with our 

previously reported data. It was concluded that for this type of ligand the (S,SOx,SFc) 

relative configuration constitutes the matching configuration while both changes of the 

side-chain or of the oxazoline configuration leads to less efficient transfer hydrogenation 

catalysts. 
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S2 

General considerations 

 

All reactions required inert conditions and were carried out under an argon atmosphere 

using standard Schlenk techniques. All solvents were dried by standard procedures and 

distilled before use. Preparative chromatographic separations were performed under 

gravity on standardised aluminium oxide 90 (MERCK). Petroleum ether with a boiling 

range of 55–65 °C was used for chromatography. Abbreviations: PE: petroleum ether; 

DEE: diethyl ether; EA: ethyl acetate; DCM: dichloromethane; THF: tetrahydrofurane, 

DMAP: 4-N,N-dimethylaminopyridine. The following substrates were purchased and 

were used without further purification: (S)-(4-isopropyloxazolin-2-yl)ferrocene (TCI), 

diethylzinc solution in toluene (Aldrich). NMR spectra were recorded on a Bruker DPX-

400 spectrometer in CDCl3 or CD2Cl2. Chemical shifts (δ) are given relative to CHCl3 (
1H: 

7.26 ppm, 13C: 77.0 ppm), CH2Cl2 (
1H: 5.32 ppm, 13C: 54.0 ppm) and 85% H3PO4 (

31P: 0 

ppm). The coupling constants in 13C{1H} spectra are due to 13C-31P coupling. For signal 

assignment the following terms were used: s, bs, d, dd, t, q and m refer to singlet, broad 

singlet, doublet, doublet of doublets, triplet, quartet and multiplet, respectively. The terms 

PhA and PhB were used to distinguish phenyl groups of diphenylphosphino units and 

PhOx and PhP were used to distinguish phenyl groups of oxazoline and 

diphenylphosphino units. A general atom numbering scheme used for proton and carbon 

assignment is given below. Melting points were determined on a Kofler melting point 

apparatus and are uncorrected. Mass spectra were recorded on instruments Finnigan 

MAT 900 S, MAT 95 S and Bruker ESI-Qq aoTOF. Optical rotations were measured on a 

Perkin-Elmer 241 polarimeter. Conversion and e.e. values were measured with use of an 

Agilent 7890 A GC or an Agilent 1200 HPLC. 

 

 

 

 

 

 

Atom numbering scheme for NMR assignment of ferrocenes. 

Fe

1 2

3
4

5

Cp'

R
R
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S3 

(R,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(diphenylphosphino)-

ethyl]-ferrocene, (R,SOx,SFc)-3 

To a solution of (R,SOx,SFc)-17 (1.0 g, 1.90 mmol) in THF (5 mL) were added 

polymethylhydrosiloxane (1.23 g) and titanium(IV) isopropoxide (2.16 g, 7.6 mmol) and 

the resulting mixture was heated at 80 °C for 30 minutes. After cooling to r.t, the dark 

solution was chromatographed on aluminium oxide 90 without previous workup under 

inert conditions with deoxygenated solvents. The crude product was chromatographed 

twice using PE/EA/TEA = 5/5/1 as the eluent. A third chromatography using PE/EA/TEA 

= 8/2/1 provided the pure product as an orange semisolid (873 mg, 1.71 mmol, 90% 

yield). 1H NMR (400MHz, CDCl3): δ 1.03 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.06 (dd, J = 

7.4 Hz, J = 8.3 Hz, 3H, CHCH3), 1.01 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.83–1.94 (m, 

1H, CH(CH3)2), 3.99–4.8 (m, 7H, Cp' + CHHO + CHN), 4.23 (t, J = 2.5 Hz, 1H, H4), 

4.24–4.28 (m, 1H, CHHO), 4.64 (m, 1H, H5), 4.41–4.497 (m, 1H, CHCH3), 4.62–4.67 

(dd, J = 1.5 Hz, J = 2.5 Hz, 1H, H3), 7.29–7.40 (m, 6H, Ph-meta + Ph-para), 7.55–7.62 

(m, 2H, Ph-ortho), 7.66–7.73 (m, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 

18.4 (CH(CH3)(CH3)), 19.0 (CH(CH3)(CH3)), 21.3 (d, J = 4.8 Hz, CHCH3), 28.7 (d, J = 

13.6 Hz, CHCH3), 32.8 (CH(CH3)2), 68.4 (C4), 68.8 (CH2O), 69.0 (d, J = 2.2 Hz, C3), 

70.3 (Cp'), 70.7 (d, J = 10.8 Hz, C5), 72.7 (CHN), 95.1 (C1), 128.0, 128.1, 128.2 (3C, Ph-

meta + Ph-para), 128.4 (d, J = 6.1 Hz, 2C, Ph-meta), 128.9 (Ph-para), 132.9 (d, J = 17.6 

Hz, 2C, Ph-ortho), 135.3 (d, J = 21.6 Hz, 2C, Ph-ortho), 165.7 (C=N). C2 and Ph-ipso not 

observed. 31P{1H} NMR (100.6 MHz, CDCl3): δ 0.6 (PPh2), HR-MS (ESI in MeOH/MeCN): 

m/z [M+H]+ calcd. for C30H33FeNOP: 510.1649, found: 510.1652. [α]20
λ (nm): –80 (589), –

90 (578), –131 (546) (c 0.740, CHCl3).  

(SOx,RFc)-2-[4,5-Dihydro-4-(phenyl)oxazol-2-yl)-1-hydroxymethyl-ferrocene, 

(SOx,RFc)-10 

To a solution of (SOx,SFc)-9 (1.5 g, 4.18 mmol) in methanol (50 mL) was added NaBH4 

(474 mg, 12.53 mmol) in portions at 0 °C. The mixture was warmed to r.t. and stirred for 

90 minutes. After cooling again to 0 °C, the reaction mixture was quenched by dropwise 

addition of water, and then the phases were separated. The aqueous phase was 

extracted with DEE (3 × 25 mL), and the organic phase was washed with water and dried 

over MgSO4 and then the solvents were removed under reduced pressure. The crude 

product was chromatographed on aluminium oxide 90 using PE/EA = 5/1 as eluent 

giving the pure compound as an orange oil (1.49 g, 4.12 mmol, 99% yield). 1H NMR 

(400MHz, CDCl3): δ 4.26 (s, 5H, Cp'), 4.27–4.31 (m, 2H, CHHO + H5), 4.38–4.47 (m, 
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S4 

2H, CHHOH + H3/4), 4.65–4.75 (m, 3H, CHHO + CHHOH + H3/4), 5.21–5.31 (m, 1H, 

CHN), 6.11 (bs, 1H, OH), 7.29–7.36 (m, 3H, Ph-ortho + Ph-para), 7.38–7.44 (m, 2H, Ph-

meta). 13C{1H} NMR (100.6 MHz, CDCl3): δ 59.6 (CH2OH), 68.4 (C5), 68.4 (C2), 69.1 

(CHN), 70.1 (Cp'), 70.5 (C3/4), 72.3 (C3/4), 74.8 (CH2O), 89.8 (C1), 126.2 (2C, Ph-

ortho), 127.7 (Ph-para), 128.3 (2C, Ph-meta), 142.4 (Ph-ipso), 169.1 (C=N). HR-MS (ESI 

in MeOH/MeCN): m/z [M+H]+ calcd. for C20H20FeNO2: 362.0843, found: 362.0836. [α]20
λ 

(nm): –410 (589), –468 (578), –750 (546) (c 0.285, CHCl3).   

(SOx,SFc)-2-[4,5-Dihydro-4-(phenyl)oxazol-2-yl)-1-(diphenylphosphino)methyl-

ferrocene, (SOx,SFc)-11 

To a stirred solution of (SOx,RFc)-10 (1.3 g, 3.60 mmol) and sodium iodide (1.08 g, 7.21 

mmol) in acetonitrile (35 mL) was added chlorotrimethylsilane (978 mg, 9.0 mmol). which 

led to a change of color from orange to red. After additional stirring for 10 minutes at r.t. 

diphenylphosphine (804 mg, 4.32 mmol) was added. The reaction mixture was stirred for 

24 h at r.t.; subsequently without previous workup the crude product was purified by 

chromatography under inert conditions with deoxygenated solvents on aluminium oxide 

90. The solvent mixture PE/DEE = 20/1 removed excess of diphenylphosphine and 

PE/EA/TEA = 2/1/1 + 10% DCM eluted the title compound as an orange semisolid (1.65 

g, 3.12 mmol, 86% yield). 1H NMR (400MHz, CDCl3): δ 3.39 (dd, J = 1.9 Hz, J = 13.8 Hz, 

1H, CHHP), 3.96–4.01 (m, 2H, CHHP + H5), 4.09 (t, J = 8.2 Hz, 1H, CHHO), 4.14 (s, 5H, 

Cp'), 4.14–4.17(m, 1H, H4), 4.63 (dd, J = 8.2 Hz, J = 9.9 Hz, 1H, CHHO), 4.68–4.72 (m, 

1H, H3), 5.24 (dd, J = 8.2 Hz, J = 9.9 Hz, 1H, CHN), 7.20–7.52 (18H, Ph). 13C{1H} NMR 

(100.6 MHz, CDCl3): δ 29.4 (d, J = 15.3 Hz, CH2P), 68.6 (C4), 68.9 (C2), 69.3 (C3), 69.9 

(CHN), 70.3 (Cp'), 71.9 (d, J = 5.4 Hz, C5), 79.9 (CH2O), 86.4 (d, J = 17.3 Hz, C1), 126.7 

(2C, PhOx-ortho), 127.3 (Ph-para), 128.0 (Ph-para), 128.1 (d, J = 6.9 Hz, 2C, PhP-meta), 

128.3 (d, J = 6.9 Hz, 2C, PhP-meta), 128.6 (PhOx-meta), 128.8 (Ph-para), 132.2 (d, J = 

17.6 Hz, 2C, PhP-ortho), 133.7 (d, J = 19.9 Hz, 2C, PhP-ortho), 138.3 (d, J = 15.7 Hz, 

PhP-ipso), 139.4 (d, J = 16.5 Hz, PhP-ipso), 143.2 (PhOx-ipso), 167.3 (C=N). 31P{1H} NMR 

(100.6 MHz, CDCl3): δ –9.1 (PPh2). HR-MS (ESI in MeOH/MeCN): m/z [M+CH3OH+H]+ 

calcd. for C33H33FeNO2P: 562.1598, found: 562.1050. [α]20
λ (nm): +2 (589), +0.4 (578), –

12 (546) (c 0.280, CHCl3).  
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(R,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(diphenylphosphinyl)-

ethyl]-ferrocene, (R,SOx,SFc)-17 

To a solution of (SOx,SFc)-26 (1.5 g, 2.93 mmol) in THF (20 mL) was added tBuLi (2.2 mL, 

1.6 M, 3.52 mmol) at –78 °C which immediately led to a change of color from orange to 

dark red. After stirring at –78 °C for 30 minutes, methyl iodide (1.32 g, 8.79 mmol) was 

added. The reaction mixture was stirred for 30 minutes at –78 ºC, and for additional 3 h 

at r.t. Subsequently, the reaction mixture was quenched by addition of water and the 

phases were separated. The aqueous phase was extracted with DEE (3 x 25 mL). The 

organics were combined, washed with water and brine, dried over MgSO4 and the 

solvents were removed under reduced pressure. The crude product was purified by 

chromatography on aluminium oxide 90 (eluent PE/EA/TEA = 1/1/1) to provide the title 

compound as an orange semisolid (1.43 g, 2.72 mmol, 93% yield). 1H NMR (400MHz, 

CDCl3): δ 1.06 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.13 (d, J = 6.8 Hz, 3H, 

CH(CH3)(CH3)), 1.15 (dd, J = 7.3 Hz, J = 16.2 Hz, 3H, CHCH3), 1.89–1.99 (m, 1H, 

CH(CH3)2), 3.67 (s, 5H, Cp'), 3.99–4.08 (m, 2H, CHHO + CHN), 4.18–4.29 (m, 1H, 

CHHO), 4.31 (t, J = 2.5 Hz, 1H, H4), 4.64–4.68 (m, 1H, H3), 4.74–4.82 (m, 1H, CHCH3), 

4.82–4.86 (m, 1H, H5), 7.42–7.48 (m, 3H, PhA-meta + PhA-para), 7.49–7.57 (m, 3H, PhB-

meta + PhB-para), 7.79–7.89 (m, 2H, PhA-ortho), 8.17–8.26 (m, 2H, PhB-ortho). 13C{1H} 

NMR (100.6 MHz, CDCl3): δ 18.3 (CH(CH3)(CH3)), 18.9 (CH(CH3)(CH3)), 20.8 (bs, 

CHCH3), 29.9 (d, J = 73.6 Hz, CHCH3), 32.7 (CH(CH3)2), 68.52 (C3), 68.54 (CH2O), 69.0 

(C4), 70.3 (Cp'), 71.6 (C2), 71.8 (bs, C5), 72.6 (CHN), 89.4 (bs, C1), 128.5 (d, J = 11.0 

Hz, 2C, PhA-meta), 128.7 (d, J = 11.1 Hz, 2C, PhB-meta), 130.7 (d, J = 8.4 Hz, 2C, PhA-

ortho), 130.9 (d, J = 2.3 Hz, PhA-para), 131.4 (d, J = 8.7 Hz, 2C, PhB-ortho), 131.5 (d, J = 

2.4 Hz,  PhB-para), 165.8 (C=N), Ph-ipso not observed. 31P{1H} NMR (100.6 MHz, 

CDCl3): δ 34.9 (P(O)Ph2), HR-MS (ESI in MeOH/MeCN): m/z [M+H]+ calcd. for 

C30H32FeNO2P: 526.1598, found: 526.1593. [α]20
λ (nm): –168 (589), –189 (578), –272 

(546) (c 0.263, CHCl3).  

(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(hydroxy)ethyl]-

ferrocene, (S,SOx,SFc)-18 

To a solution of (SOx,SFc)-6 (1.0 g, 3.08 mmol) in THF (30 mL) was added a solution of 

dimethylzinc in toluene (5.64 mL, 1.2 M, 6.77 mmol) at 0 °C. After warming up to r.t and 

stirring overnight, the reaction mixture was quenched by addition of water and the 

phases were separated. The aqueous phase was extracted with DEE (3 x 25 mL); the 

organics were combined, washed with water and brine and dried over MgSO4. The 
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solvent was removed under reduced pressure and the crude product was purified by 

chromatography on aluminium oxide 90 (eluent PE/EA = 5/1) to give the title compound 

as an orange solid (1.02 g, 2.99 mmol, 97% yield). Single crystals suitable for X-ray 

crystallography were obtained from EA solution by slow evaporation of the solvent. M.p.: 

112 °C. 1H NMR (400MHz, CDCl3): δ 1.01 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.04 (d, J 

= 6.8 Hz, 3H, CH(CH3)(CH3)), 1.53 (d, J = 6.7 Hz, 3H, CHCH3), 1.77–1.87 (m, 1H, 

CH(CH3)2), 3.96–4.05 (m, 1H, CHN), 4.12–4.19 (m, 1H, CHHO), 4.15 (s, 5H, Cp'), 4.24 

(t, J = 2.5 Hz, 1H, H4), 4.28–4.35 (m, 1H, CHHO), 4.40 (dd, J = 1.5 Hz, J = 2.5 Hz, 1H, 

H5), 4.60 (dd, J = 1.5 Hz, J = 2.5 Hz, 1H, H3), 4.99 (q, J = 6.7 Hz, 1H, CHCH3), 6.82 (bs, 

1H, OH). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.4 (CH(CH3)(CH3)), 18.5 

(CH(CH3)(CH3)), 20.9 (CHCH3), 32.6 (CH(CH3)2), 64.8 (CHCH3), 68.1 (C4), 69.1 (C2), 

69.4 (C5), 70.1 (Cp'), 70.2 (CH2O), 70.6 (C3), 71.6 (CHN), 93.3 (C1), 167.6 (C=N). HR-

MS (ESI in MeOH/MeCN): m/z [M+Na]+ calcd. for C18H23FeNO2Na: 364.0976, found: 

364.0968. [α]20
λ (nm): –322 (589), –372 (578), –629 (546) (c 0.260, CHCl3).    

(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(acetoxy)ethyl]--

ferrocene, (S,SOx,SFc)-19 

A solution of a catalytic amount of DMAP in Ac2O (1.17 mL, 12.35 mmol) was added to a 

stirred solution of (S,SOx,SFc)-18 (836 mg, 2.45 mmol) in freshly distilled triethylamine 

(4.5 mL). After stirring for 17 h at r.t, the reaction mixture was quenched by addition of 

water and the phases were separated. The aqueous phase was extracted with EA (3 x 

25 mL); the organics were combined, washed with water and brine and dried over 

MgSO4. The solvents were removed under reduced pressure and the crude product was 

used without any further purification (854 mg, 2.23 mmol). 1H NMR (400MHz, CDCl3): δ 

0.89 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 0.96 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.67 (d, 

J = 6.5 Hz, 3H, CHCH3), 1.72–1.84 (m, 1H, CH(CH3)2), 1.92 (s, 3H, COCH3), 3.90–4.03 

(m, 2H, CHN + CHHO), 4.16 (s, 5H, Cp'), 4.24–4.31 (m, 1H, CHHO), 4.34 (t, J = 2.5 Hz, 

1H, H4), 4.44–4.48 (m, 1H, H5), 4.79 (dd, J = 1.5 Hz, J = 2.5 Hz, 1H, H3), 6.29 (q, J = 

6.5 Hz, 1H, CHCH3). 
13C{1H} NMR (100.6 MHz, CDCl3): δ 17.9 (CH(CH3)(CH3)), 18.5 

(CH(CH3)(CH3)), 18.6 (CHCH3), 21.2 (COCH3), 32.4 (CH(CH3)2), 68.5 (CHCH3), 68.9 

(C5), 69.1 (C4), 69.5 (CH2O), 70.3 (Cp'), 70.9 (C3), 72.0 (CHN), 87.4 (C1), 165.2 (C=N), 

170.5 (C=O). C2 not observed. HR-MS (ESI in MeOH/MeCN): m/z [M–CH3COO]+ calcd. 

for C18H22FeNO: 324.1051, found: 324.1046.  
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(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-hydroxy-1-(phenyl)-

methyl]-ferrocene, (S,SOx,SFc)-20 

A solution of diphenylzinc (446 mg, 2.03 mmol) in THF (5 mL) was added to a stirred 

solution of (SOx,SFc)-6 (300 mg, 0.923 mmol) in THF (10 mL) at 0 °C. After warming up to 

r.t and stirring for 24 h, the reaction mixture was quenched by addition of water and the 

phases were separated. The aqueous phase was extracted with DEE (3 x 25 mL); the 

organics were combined, washed with water and brine and dried over MgSO4. The 

solvent was removed under reduced pressure and the crude product was purified by 

chromatography on aluminium oxide 90 (eluent PE/EA = 5/1) to give the title compound 

as an orange oil (361 mg, 0.895 mmol, 97% yield). 1H NMR (400MHz, CDCl3): δ 1.04 (d, 

J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.09 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.79–1.91 (m, 

1H, CH(CH3)2), 3.95–4.04 (m, 2H, H5 + CHN), 4.14–4.19 (m, 1H, CHHO), 4.21 (t, J = 2.6 

Hz, 1H, H4), 4.24 (s, 5H, Cp'), 4.29–4.37 (m, 1H, CHHO), 4.65 (dd, J = 1.5 Hz, J = 2.6 

Hz, 1H, H3), 5.84 (bs, 1H, CHPh), 7.23–7.28 (m, 1H, Ph-para), 7.29–7.37 (m, 2H, Ph-

meta), 7.45–7.51 (m, 2H, Ph-ortho), 7.91 (bs, 1H, OH). 13C{1H} NMR (100.6 MHz, 

CDCl3): δ 18.5 (CH(CH3)(CH3)), 18.6 (CH(CH3)(CH3)), 32.6 (CH(CH3)2), 67.8 (C2), 68.4 

(C4), 70.4 (6C, Cp' + CH2O), 70.7 (C3), 71.5 (CHN), 71.9 (CHPh/C5), 72.0 (CHPh/C5), 

93.5 (C1), 126.8 (2C, Ph-ortho), 127.0 (Ph-para), 128.0 (2C, Ph-meta), 143.5 (Ph-ipso), 

167.4 (C=N). HR-MS (ESI in MeOH/MeCN): m/z [M-OH]+ calcd. for C23H24FeNO: 

386.1207, found: 386.1213. [α]20
λ (nm): –297 (589), –339 (578), –554 (546) (c 0.300, 

CHCl3).    

(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(acetoxy)-1-(phenyl)-

methyl]-ferrocene, (S,SOx,SFc)-21 

A solution of a catalytic amount of DMAP in Ac2O (0.805 mL, 8.57 mmol) was added to a 

stirred solution of (S,SOx,SFc)-20 (685 mg, 1.70 mmol) in freshly distilled triethylamine 

(3.2 mL). After stirring for 17 h at r.t, the reaction mixture was quenched by addition of 

water and the phases were separated. The aqueous phase was extracted with EA (3 x 

25 mL); the organics were combined, washed with water and brine and dried over 

MgSO4. The solvents were removed under reduced pressure and the crude product was 

used without any further purification (695 mg, 1.56 mmol). 1H NMR (400MHz, CDCl3): δ 

0.96 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.03 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.77–

1.89 (m, 1H, CH(CH3)2), 1.94 (s, 3H, COCH3), 3.92–4.07 (m, 8H, CHN + CHHO + Cp' + 

H5), 4.26  (t, J = 2.5 Hz, 1H, H4), 4.30–4.37 (m, 1H, CHHO), 4.79–4.82 (m, 1H, H3), 

7.18 (s, 1H, CHPh), 7.31–7.39 (m, 1H,Ph-para), 7.39–7.48 (m, 2H, Ph-meta), 7.55–7.63 

(m, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.1 (CH(CH3)(CH3)), 18.7 
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(CH(CH3)(CH3)), 21.1 (COCH3), 32.4 (CH(CH3)2), 69.2 (C4), 69.5 (CH2O), 70.2 (C2), 

70.4 (Cp'), 70.8 (C3), 71.3 (C5), 72.4 (CHN), 74.1 (CHPh), 87.4 (C1), 127.6 (2C, Ph-

ortho), 127.9 (Ph-para), 128.1 (2C, Ph-meta), 140.0 (Ph-ipso), 164.5 (C=N), 169.2 

(C=O). HR-MS (ESI in MeOH/MeCN): m/z [M-CH3COO]+ calcd. for C23H24FeNO: 

386.1207, found: 386.1214. [α]20
λ (nm): +53 (589), +62 (578), +120 (546) (c 0.320, 

CHCl3).    

(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)]-1-[1-phenyl-1-(diphenyl-

phosphino)methyl]-ferrocene, (S,SOx,SFc)-22 

To a stirred solution of (S,SOx,SFc)-21 (830 mg, 1.86 mmol) in methanol (50 mL) was 

added diphenylphosphine (3.46 g, 18.6 mmol). The reaction mixture was refluxed for 7 h. 

After cooling to r.t, subsequently was the crude product chromatographed without 

previous workup under inert conditions with deoxygenated solvents on aluminium oxide 

90. A mixture of PE/DEE = 20/1 removed excess of diphenylphosphine while with use of 

PE/EA/TEA = 9/1/ the title compound was obtained as a yellow solid (895 mg, 1.57 

mmol, 84% yield). M.p.: 149 °C. 1H NMR (400MHz, CDCl3): δ 1.02 (d, J = 6.8 Hz, 3H, 

CH(CH3)(CH3)), 1.12 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.71–1.83 (m, 1H, CH(CH3)2), 

3.62 (s, 5H, Cp'), 3.76–3.87 (m, 2H, CHHO + CHN), 4.03–4.10 (m, 1H, CHHO), 4.23 (t, J 

= 2.6 Hz, 1H, H4), 4.39 (dd, J = 1.5 Hz, J = 2.6 Hz, 1H, H3), 4.59 (dd, J = 1.5 Hz, J = 2.6 

Hz, 1H, H5), 6.02 (d, J = 7.5 Hz, 1H, CHPh), 6.99–7.06 (m, 2H, PhA-meta), 7.07–7.15 

(m, 3H, PhA-ortho + PhA-para), 7.16–7.27 (m, 4H, PhB-meta + PhB-para + PhC-para), 

7.28–7.35 (m, 2H, PhC-meta), 7.46–7.54 (m, 2H, PhB-ortho), 7.61–7.68 (m, 2H, PhC-

ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.9 (CH(CH3)(CH3)), 18.98 (CH(CH3)(CH3)), 

32.9 (CH(CH3)2), 41.3 (d, J = 11.9 Hz, CHPh), 67.8 (C3), 67.7 (CH2O), 67.8 (C4), 69.2 

(C2), 69.9 (Cp'), 41.3 (d, J = 11.9 Hz, C5), 72.6 (CHN), 93.0 (d, J = 17.6 Hz, C1), 126.2 

(d, J = 1.5 Hz, PhC-para), 127.0 (d, J = 6.9 Hz, 2C, PhA-meta), 127.8–128.0 (4C, PhC-

meta + PhB-meta), 128.1 (PhA-para), 128.5 (PhB-para), 130 (d, J = 9.9 Hz, 2C, PhC-

ortho), 133.8 (d, J =19.6 Hz, 2C, PhB-ortho), 134.1 (d, J = 19.5 Hz, 2C, PhA-ortho), 136.8 

(d, J = 16.0 Hz, PhA-ipso), 137.2 (d, J = 15.3 Hz, PhB-ipso), 144.3 (d, J = 14.2 Hz, PhC-

ipso), 165.1 (C=N). 31P{1H} NMR (100.6 MHz, CDCl3): δ 10.3 (PPh2), HRMS (ESI in 

MeOH/MeCN): m/z [M+H]+ calcd. for C35H35FeNOP: 572.1806, found: 572.1810. [α]20
λ 

(nm): –15 (589), –17 (578), –27 (546) (c 0.230, CHCl3).    
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(S,SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(hydroxy)propyl]-

ferrocene, (S,SOx,SFc)-23 

To a solution of (SOx,SFc)-6 (500 mg, 1.54 mmol) in THF (15 mL) was added a solution of 

diethylzinc in toluene (3.38 mL, 1.0 M, 3.38 mmol) at 0 °C. After warming up to r.t. and 

stirring overnight, the reaction mixture was quenched by addition of water and the 

phases were separated. The aqueous phase was extracted with DEE (3 x 25 mL); the 

organics were combined, washed with water and brine and dried over MgSO4. The 

solvent was removed under reduced pressure and the crude product was purified by 

chromatography on aluminium oxide 90 (eluent PE/EA = 5/1) to provide the title 

compound as an orange solid (525 mg, 1.48 mmol, 96% yield). M.p.: 81 °C. 1H NMR 

(400MHz, CDCl3): δ 1.00 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.03 (t, J = 7.5 Hz, 3H, 

CH2CH3), 1.04 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.73–1.89 (m, 3H, CH2CH3 + 

CH(CH3)2), 3.93–4.01 (m, 1H, CHN), 4.13 (dd, J = 7.5 Hz, J = 8.3 Hz, 1H, CHHO), 4.19 

(s, 5H, Cp'), 4.23 (t, J = 2.5 Hz, 1H, H4), 4.31 (dd, J = 8.3 Hz, J =9.6 Hz, 1H, CHHO), 

4.34 (dd, J = 1.5 Hz, J = 2.5 Hz, 1H, H5), 4.5 (q, J = 6.6 Hz, 1H, CHEt), 4.60 (dd, J = 1.5 

Hz, J = 2.5 Hz, 1H, H3), 6.98 (d, J = 6.5 Hz, 1H, OH). 13C{1H} NMR (100.6 MHz, CDCl3): 

δ 11.1 (CH2CH3), 18.6 (2C, CH(CH3)2), 29.7 (CH2CH3), 32.6 (CH(CH3)2), 66.7 (C2), 

68.21 (C4), 70.18 (CH2O), 70.21 (Cp'), 70.3 (C3), 70.6 (C5), 70.9 (CHEt), 71.7 (CHN), 

93.8 (C1), 167.8 (C=N). HR-MS (ESI in MeOH/MeCN): m/z [M+H]+ calcd. for 

C19H26FeNO2: 356.1313, found: 356.1317. [α]20
λ (nm): –301(589), –347 (578), –575 (546) 

(c 0.365, CHCl3).    

(S,SOx,SFc)-2-[4,5-Dihydro-4-(phenyl)oxazol-2-yl)-1-[1-(hydroxy)ethyl]-ferrocene, 

(S,SOx,SFc)-24 

To a solution of (SOx,SFc)-9 (1.0 g, 2.78 mmol) in THF (30 mL) was added dimethylzinc 

(5.1 mL, 1.2 M, 6.12 mmol) at 0 ºC. After warming up to r.t and stirring for 24 h, the 

reaction mixture was quenched by addition of water and the phases were separated. The 

aqueous phase was extracted with DEE (3 x 25 mL); the organics were combined, 

washed with water and brine and dried over MgSO4. The solvent was removed under 

reduced pressure and the crude product was purified by chromatography on aluminium 

oxide 90 (eluent PE/EA = 5/1) to provide the title compound as an orange oil (1.0 g, 2.66 

mmol, 96% yield). 1H NMR (400MHz, CDCl3): δ 1.54 (d, J = 6.7 Hz, 3H, CHCH3), 4.22 (s, 

5H, Cp'), 4.69 (dd, J = 7.2 Hz, J = 9.9 Hz, 1H, CHHO), 4.70 (t, J = 2.6 Hz, 1H, H4), 4.48 

(dd, J = 1.5 Hz, J = 2.6 Hz, 1H, H5), 4.64–4.74 (m, 2H, H3 + CHHO), 5.01–5.11 (q, J = 

6.7 Hz, 1H, CHCH3), 5.28 (dd, J = 7.2 Hz, J = 9.9 Hz, 1H, CHN), 6.55 (bs, 1H, OH), 

7.29–7.36 (m, 3H, Ph-para + Ph-ortho), 7.38–7.45 (m, 2H, Ph-meta). 13C{1H} NMR 
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(100.6 MHz, CDCl3): δ 21.1 (CHCH3), 64.8 (CHCH3), 68.3 (C2), 68.5 (C4), 69.1 (CHN), 

69.8 (C5), 70.2 (Cp'), 70.9 (C3), 74.8 (CH2O), 93.3 (C1), 126.3 (2C, Ph-ortho), 127.7 

(Ph-para), 128.6 (2C, Ph-meta), 142.5 (Ph-ipso), 169.1 (C=N). HR-MS (ESI in 

MeOH/MeCN): m/z [M-OH]+ calcd. for C21H20FeNO: 358.0894, found: 358.0888; m/z 

[M+H]+ calcd. for C21H22FeNO2: 376.1000, found: 376.0994. [α]20
λ (nm): –460 (589), –524 

(578), –833 (546) (c 0.220, CHCl3).    

(S,SOx,SFc)-2-[4,5-Dihydro-4-(phenyl)oxazol-2-yl)-1-[1-(acetoxy)ethyl]-ferrocene, 

(S,SOx,SFc)-25 

A solution of a catalytic amount of DMAP in Ac2O (0.620 mL, 6.60 mmol) was added to a 

stirred solution of (S,SOx,SFc)-24 (492 mg, 1.31 mmol) in freshly distilled triethylamine 

(2.4 mL). After stirring for 17 h at r.t, the reaction mixture was quenched by addition of 

water and the aqueous phase was extracted with EA (3 x 25 mL); the organics were 

combined, washed with water and brine and dried over MgSO4. The solvents were 

removed under reduced pressure and the crude product (red oil) was used without any 

further purification (498 mg, 1.19 mmol). 1H NMR (400MHz, CDCl3): δ 1.71 (d, J = 6.5 

Hz, 3H, CHCH3), 1.93 (s, 3H, COCH3), 4.10 (t, J = 8.3 Hz, 1H, CHHO), 4.21 (s, 5H, Cp'), 

4.40 (t, J = 2.6 Hz, 1H, H4), 4.52 (dd, J = 1.5 Hz, J = 2.6 Hz, 1H, H5), 4.70 (dd, J = 8.3 

Hz, J = 9.9 Hz, 1H, CHHO), 4.89 (dd, J = 1.5 Hz, J = 2.6 Hz, 1H, H3), 5.23  (dd, J = 8.3 

Hz, J = 9.9 Hz, 1H, CHN), 6.40 (d, J = 6.5 Hz,  1H, CHCH3), 7.23–7.29 (m, 3H, Ph-para 

+ Ph-ortho), 7.31–7.37 (m, 2H, Ph-meta). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.8 

(CHCH3), 21.2 (COCH3), 68.6 (CHCH3), 69.1 (C5), 69.4 (C4), 69.7 (CHN), 69.9 (C2), 

70.4 (Cp'), 71.0 (C3), 74.4 (CH2O), 87.5 (C1), 126.5 (2C, Ph-ortho), 127.4 (Ph-para), 

128.6 (2C, Ph-meta), 142.6 (Ph-ipso), 166.8 (C=N), 170.1 (C=O). HR-MS (ESI in 

MeOH/MeCN): m/z [M-CH3COO]+ calcd. for C21H20FeNO: 358.0894, found: 358.0887; 

m/z [M+H]+ calcd. for C23H24FeNO3: 418.1105, found: 418.1090. 

(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-(diphenylphosphinyl)-

methyl]-ferrocene, (SOx,SFc)-26 

To a solution of (SOx,SFc)-2 (2 g, 4.04 mmol) in acetone (80 mL) was added an aqueous 

solution of hydrogen peroxide (5 mL, 30%). After stirring for 1 h at r.t., the reaction 

mixture was quenched with Na2S2O3, and acetone was removed under reduced 

pressure. The residue was dissolved in DCM and washed with water and brine and dried 

over MgSO4. The solvents were removed under reduced pressure. The title compound 

was obtained as a yellow powder (2.02 g, 3.95 mmol, 98% yield). M.p.: 151 °C. 1H NMR 

(400MHz, CDCl3): δ 0.96 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 1.06 (d, J = 6.8 Hz, 3H, 
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CH(CH3)(CH3)), 1.63–1.79 (m, 1H, CH(CH3)2), 3.49 (dd, J = 15.0 Hz, J = 18.4 Hz, 1H, 

CHHP), 3.78–3.88 (m, 2H, CHHO + CHN), 4.08 (s, 5H, Cp'), 4.11–4.18 (m, 1H, CHHO), 

4.23 (t, J = 2.5 Hz, 1H, H4), 4.48–4.52 (m, 1H, H3), 4.62–4.67 (m, 1H, H5), 4.79 (dd, J = 

8.2 Hz, J = 15.0 Hz, 1H, CHHP), 7.20–7.27 (m, 2H, PhA-meta), 7.31–7.38 (m, 1H, PhA-

para), 7.44–7.62 (m, 5H, PhA-ortho + PhB-meta + PhB-para), 7.84–7.93 (m, 2H, PhB-

ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.7 (CH(CH3)(CH3)), 19.0 (CH(CH3)(CH3)), 

31.4 (d, J = 66.6 Hz, CH2P), 32.8 (CH(CH3)2), 69.0 (C3), 69.1 (CH2O), 69.2 (C4), 70.5 

(Cp'), 72.3 (d, J = 1.8 Hz, C5), 72.6 (CHN), 79.9 (d, J = 3.2 Hz, C1), 127.7 (d, J = 12.1 

Hz, 2C, PhA-meta), 128.4 (d, J = 11.3 Hz, 2C, PhB-meta), 131.1–131.6 (m, 6C, Ph-ortho 

+ Ph-para), 131.7 (d, J = 17.5 Hz, PhA-ipso). C2, PhB-ipso and C=N not observed. 

31P{1H} NMR (100.6 MHz, CDCl3): δ 30.9 (P(O)Ph2), HR-MS (ESI in MeOH/MeCN): m/z 

[M+H]+ calcd. for C29H31FeNO2P: 512.1442, found: 512.1462. [α]20
λ (nm): –35 (589), –41 

(578), –82 (546) (c 0.230, CHCl3).    

(SOx,SFc)-2-[4,5-Dihydro-4-(1-methylethyl)oxazol-2-yl)-1-[1-methyl-1-(diphenyl-

phosphinyl)ethyl]-ferrocene, (SOx,SFc)-27 

To a solution of (R,SOx,SFc)-17 (1.5 g, 2.85 mmol) in THF (20 mL) was added tBuLi (2.2 

mL, 1.6 M, 3.52 mmol) at –78 °C. which immediately led to a change of color from 

orange to dark red. After stirring at -78 °C for 30 minutes, methyl iodide (1.28 g, 8.55 

mmol) was added. The reaction mixture was stirred for 30 minutes at –78 ºC, and for 

additional 3 h at r.t. Subsequently, the reaction mixture was quenched by addition of 

water. After phase separation, the aqueous phase was extracted with DEE (2 x 25 mL). 

The organics were combined, washed with water and brine, dried over MgSO4 and the 

solvents were removed under reduced pressure. The crude product was purified by 

chromatography on aluminium oxide 90 (eluent PE/EA/TEA = 1/1/1) to provide the title 

compound as an orange semisolid (1.43 g, 2.65 mmol, 93% yield). Mp: 110 °C. 1H NMR 

(400MHz, CDCl3): δ 0.78 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 0.88 (d, J = 6.8 Hz, 3H, 

CH(CH3)(CH3)), 1.48–1.58 (m, 1H, CH(CH3)2), 1.66 (d, J = 14.4 Hz, 3H, C(CH3)(CH3)), 

1.96 (d, J = 15.4 Hz, 3H, C(CH3)(CH3)), 3.44–3.53 (m, 1H, CHN), 3.62 (t, J = 8.3 Hz, 1H, 

CHHO), 3.97 (dd, J = 8.3 Hz, J = 9.7 Hz, 1H, CHHO), 4.00–4.04 (m, 1H, H5), 4.20 (s, 

5H, Cp'), 4.26 (t, J = 2.6 Hz, 1H, H4), 4.63 (dd, J = 1.6 Hz, J = 2.6 Hz, 1H, H3), 7.27–

7.37 (m, 4H, Ph-meta), 7.38–7.44 (m, 2H, Ph-para), 7.57–7.65 (m, 2H, Ph-ortho), 7.65–

7.72 (m, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): δ 18.5 (CH(CH3)(CH3)), 19.0 

(CH(CH3)(CH3)), 23.9 (C(CH3)(CH3)), 26.8 (C(CH3)(CH3)), 32.6 (CH(CH3)2), 39.8 (J = 

64.8 Hz, C(CH3)(CH3)), 67.8 (C4), 69.1 (CH2O), 70.1 (Cp'), 72.0 (C3), 72.6 (d, J = 1.9 

Hz, C5), 72.7 (d, J = 1.7 Hz, C2), 73.2 (CHN), 92.4 (d, J = 4.6 Hz, C1), 127.5 (d, J = 10.7 
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Hz, 2C, Ph-meta), 127.7 (d, J = 11.4 Hz, 2C, Ph-meta), 130.39, 130.4, 131.29, 131.3 

(Ph-ipso), 130.9 (d, J = 2.7 Hz, 2C, Ph-para), 131.1 (d, J = 2.6 Hz, Ph-para), 132.8 (d, J 

= 4.6 Hz, Ph-ortho), 132.9 (d, J = 4.7 Hz, 2C, Ph-ortho), 164.0 (C=N). 31P{1H} NMR 

(100.6 MHz, CDCl3): δ 36.9 (P(O)Ph2), HR-MS (ESI in MeOH/MeCN): m/z [M+H]+ calcd. 

for C31H35FeNO2P: 540.1755, found: 540.1761. [α]20
λ (nm): +129 (589), +162 (578), +229 

(546) (c 0.337, CHCl3).    

(SOx)-{N-[2-hydroxy-1-(phenyl)eth-1-yl]aminocarbonyl}-ferrocene,  

A solution of (+)-(S)-2-amino-2-phenylethanol (2.30 g, 16.8 mmol) in toluene (50 mL) 

was cooled to 0 °C and treated with a solution of trimethylaluminium in toluene (16.7 mL, 

2.0 M, 33.4 mmol). After stirring for 5 minutes the solution was warmed to r.t. and stirring 

was continued for additional 45 minutes. Subsequently, a solution of (methoxycarbonyl)- 

Ferrocene (3.70 g, 15.2 mmol) in toluene (20 mL) was added and the resulting mixture 

was stirred for 16 h at 126 °C. After cooling to r.t, the reaction mixture was quenched 

carefully by addition of water and the phases were separated. The aqueous phase was 

extracted with EA (3 x 25 mL), the organics were combined, washed with water and 

brine and dried over MgSO4. The solvents were removed under reduced pressure and 

the crude product was purified by crysallisation (DCM and PE) and afforded the title 

compound as yellow crystals (5.12 g, 14.66 mmol, 97% yield). M.p.: 158 °C. 1HNMR 

(400 MHz, CDCl3): δ 2.82 (bs, 1H, OH), 3.91–3.04 (m, 2H, CH2), 4.10 (s, 5H, Cp'), 4.33–

4.39 (m, 2H, H3 + H4), 4.67–4.70 (m, 1H, H2/H5), 4.70–4.75 (m, 1H, H2/H5), 5.18–5.26 

(m, 1H, CHPh), 6.37 (d, J = 6.9 Hz, 1H, NH), 7.29–7.45 (m, 5H, Ph). 13C{1H} NMR (100.6 

MHz, CDCl3): δ  55.9 (CHPh), 66.8 (CH2O), 68.0 (C2/C5), 68.5 (C2/C5), 69.8 (Cp'), 70.6 

(C3/C4), 70.7 (C3/C4), 75.5 (C1), 126.7 (2C, Ph), 127.9 (Ph-para), 128.9 (2C, Ph), 139.4 

(Ph-ipso), 171.0 (C=O). HR-MS (ESI in MeOH/MeCN): m/z [M+Na]+ calcd. for 

C19H19FeNNaO2: 372.0663, found: 372.0664. [α]20
λ (nm): +29 (589), +31 (578), +42 (546) 

(c 0.344, CHCl3).    

Synthesis of neutral ruthenium complexes – General procedure 

A mixture of oxazoline ligand (1.0 mmol) and [RuCl2(PPh3)3] (0.95 mmol) dissolved in 

freshly distilled and degassed toluene (3 mL) was stirred for 16 h at r.t. Degassed 

hexane was added to precipitate the product. The green solid was filtered off under inert 

conditions and was washed with freshly distilled and degassed hexane (2 × 2 mL). The 

crude product was redissolved in toluene, precipitated by addition of hexane and dried in 

vacuo to yield a green powder.  
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Dichloro[(R,SOx,SFc)-2-[4,5-dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-1-[1-(diphenyl-

phosphino)ethyl-κP]-ferrocene]triphenylphosphine ruthenium, 

[RuCl2(PPh3)((R,SOx,SFc)-3)], (R,SOx,SFc)-29 

Starting from (R,SOx,SFc)-3 (195 mg, 0.383 mmol) and following the general procedure 

stated above the desired product was obtained as a green powder (292 mg, 0.310 mmol, 

81% yield). Mp: > 230 °C (dec.). 1H NMR (400 MHz, CD2Cl2): δ 0.90 (d, J = 7.2 Hz, 3H, 

CH(CH3)(CH3)), 1.08 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 2.16 (dd, J = 7.0 Hz, J = 15.2 

Hz, 3H, CHCH3), 2.15–3.29 (m, 2H, CH(CH3)2 + CHCH3), 3.51–3.54 (m, 1H, H5), 3.97 (d, 

J = 2.6 Hz, 1H, H4), 3.99–4.05 (m, 1H, CHN), 4.22–4.28 (m, 6H, Cp' + CHHO), 4.55 (dd, 

J = 3.3 Hz, J = 8.5 Hz, 1H, CHHO),  4.79 (dd, J = 1.5 Hz, J = 2.6 Hz, 1H, H3), 6.90 –7.31 

(m, 25H, Ph). 13C{1H} NMR (100.6 MHz, CD2Cl2): δ 15.1 (CH(CH3)(CH3)), 20.0 

(CH(CH3)(CH3)), 22.3 (d, J = 4.1 Hz, CHCH3), 28.5 (CH(CH3)2), 42.0 (d, J = 25.1 Hz, 

CHCH3), 67.7 (d, J = 3.8 Hz, C2), 68.27 (C4), 68.28 (CH2O), 70.2 (Cp'), 73.1 (2C, C3 + 

CHN), 74.4 (d, J = 3.0 Hz, C5), 93.1 (d, J = 4.6 Hz, C1), 126.2–139.5 (Ph), 176.1 (C=N). 

31P{1H} NMR (162 MHz, CD2Cl2): δ 45.6 (d, J = 39.8 Hz, PPh3), 103.9 (d, J = 39.8 Hz, 

PN). HR-MS (ESI in MeOH/MeCN): m/z [M-Cl]+ calcd. for C48H47ClFeNOP2Ru: 908.1214, 

found: 908.1192. [α]20
λ (nm): –908 (589), –950 (578), –1013 (546) (c 0.0240, CH2Cl2).   

Dichloro[(S,SOx,SFc)-2-[4,5-dihydro-4-(1-methylethyl)oxazol-2-yl-κN)-1-[1-phenyl-1-

(diphenylphosphino)methyl-κP]-ferrocene]triphenylphosphine ruthenium, 

[RuCl2(PPh3)((S,SOx,SFc)-22], (S,SOx,SFc)-30 

Starting from (S,SOx,SFc)-22 (300 mg, 0.525 mmol) and following the general procedure 

stated above the desired product was obtained as a green powder (456 mg, 0.453 mmol, 

86% yield). Mp: > 230 °C (dec.). 1H NMR (400MHz, CDCl3): δ 0.97 (d, J = 7.1 Hz, 3H, 

CH(CH3)(CH3)), 1.19 (d, J = 6.8 Hz, 3H, CH(CH3)(CH3)), 3.21–3.33 (m, 1H, CH(CH3)2), 

3.50–3.56(m, 1H, H5), 3.86 (s, 5H, Cp'), 3.97 (t, J = 2.6 Hz, 1H, H4), 4.13–4.22 (m, 1H, 

CHN), 4.34 (t, J = 8.7 Hz, 1H, CHHO), 4.61 (dd, J = 4.1 Hz, J = 8.7 Hz, 1H, CHHO), 

4.86–4.89 (m, 1H, H3), 6.17 (d, J = 13.5 Hz, 1H, CHPh), 6.46–7.88 (Ph). 13C{1H} NMR 

(100.6 MHz, CDCl3): δ 15.3 (CH(CH3)(CH3)), 19.5 (CH(CH3)(CH3)), 28.2 (CH(CH3)2), 

53.3 (d, J = 16.1 Hz, CHPh), 67.9 (d, J = 1.7 Hz, CH2O), 70.5 (C4), 70.6 (Cp'), 71.2 (bs, 

C5), 72.6 (C3), 73.0 (CHN), 88.2 (d, J = 4.6 Hz, C1), 125.4–141.0 (Ph), 175.4 (C=N). C2 

not obsereved. 31P{1H} NMR (100.6 MHz, CD2Cl2): δ 48.6 (d, J = 39.5 Hz, PPh3), 95.1 (J 

= 39.6 Hz, PN). HR-MS (ESI in MeOH/MeCN): m/z [M-Cl]+ calcd. for C53H49ClFeNOP2Ru: 

970.1371, found: 970.1381. [α]20
λ (nm): –688 (589), –722 (578), –803 (546) (c 0.025, 

CH2Cl2).   
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Asymmetric transfer hydrogenations 

To a solution of ruthenium complex (0.005 mmol, 0.5%) in anhydrous 2-PrOH (50 mL) 

were added a solution of ketone (1 mmol) in 2-PrOH (1 mL) and a solution of 2-PrOK 

(0.02 mmol) in 2-PrOH (5% w/v). The reaction mixture was stirred at r.t. and the progress 

of the reaction was monitored by periodically analyzing 1 mL samples of the reaction 

mixture. The samples were quenched with aqueous H3PO4 (0.5 M, 0.5 mL), diethyl ether 

(1 mL) was added and the product was extracted. The organic phase was washed with 

brine and filtered through a short plug of MgSO4 (top) and aluminum oxide 90 (bottom) 

using 2-PrOH as the eluent. The filtrate obtained was analyzed either by GC or HPLC. 

Analysis data: 

Conversions and e.e. values of substrates ACP and 4-Me-ACP were determined by GC. 

Retention times are given for the reactants and both product enantiomers. 

Substrate ACP: column: Supelco, Beta DexTM 110 (30m); 110 °C isothermal, carrier gas 

He, 15.3 psi, split 30:1. 

ACP = 10.4 min, (R) = 15.6 min, (S) = 16.4 min. 

Substrate 4-Me-ACP: column: Supelco, Beta DexTM 110 (30m); 120 °C isothermal, 

carrier gas He, 15.3 psi, split 30:1. 

4-Me-ACP = 9.4 min, (R) = 10.4 min, (S) = 11.0 min. 

 

Conversions and e.e. values of substrate PBK as determined by HPLC. Retention times 

are given for the reactant and both product enantiomers. 

Substrate PBK: column: Daicel, Chiraldex OD-H, temperature: 25 ºC, eluent: 

hexane/iPrOH 96:4, flow rate: 0.6 mL/min, detector: DAD, Sig = 230 nm, 8, ref = 360 nm, 

100. 

PBK = 17.6 min, (R) = 20.4 min, (S) = 25.8 min. 
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X-ray structure determination of (S,SOx,SFc)-18 

Orange single crystals of the (S,SOx,SFc)-18 were obtained from EA solution by slow 

evaporation of the solvent. X-ray data were collected on a Bruker Kappa APEX-2 CCD 

diffractometer with a cryostream cooler (Oxford Cryosystems) using graphite-

monochromatised Mo-Kα radiation (λ = 0.71073 Å) and 0.5° - and ω-scan frames 

covering complete Ewald spheres with max = 30° or 25° ((SOx,SFc)-23). The frames were 

integrated with program SAINT and corrections for absorption and λ/2 effects were 

applied with program SADABS. After structure solution with program SHELXS97 and 

direct methods, refinement on F2 was carried out with the program SHELXL97 

(Sheldrick, 2008). Non-hydrogen atoms were refined anisotropically. All H atoms were 

placed in calculated positions and thereafter refined as riding. The absolute structures of 

all compounds could be unambiguously determined by anomalous dispersion effects and 

the Flack absolute structure parameter. Crystallographic data are compiled in Table S1. 

A structural diagram of complex 18 is shown in Figure S1. Atomic coordinates and 

anisotropic displacement parameters are given in Tables S2–S4. For molecular graphics 

the programs XP (Bruker) and MERCURY (Macrae et al., 2006) were used. 

 

Bruker programs: APEX2; SAINT, version 7.68A; SADABS, version 2008/1; SHELXTL, 

version 2008/4; XP, version 5 (Bruker AXS Inc., Madison, WI, 2009). 

SHELXS97 and SHELXL97: G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.  

PLATON: Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. 

MERCURY: Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., 

Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. 
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Table S1. Crystal data and structure refinement for (S,SOx,SFc)-18. 

 (S,SOx,SFc)-18 

formula C18H23FeNO2 

fw 341.22 

cryst.size, mm 0.45 x 0.25 x 0.04  

crystal system Orthorhombic 

space group P21…(no. 3) 

a, Å 9.8793(3) 

b, Å 12.7041(4) 

c, Å 12.8138(4) 

α, deg 90 

β, deg 90 

γ, deg 90 

V, Å
3 

1608.23(9) 

T, K 100 

Z 4 

ρcalc, g cm
-3
 1.409 

µ, mm
-1
 (MoKα) 0.944 

F(000) 720 

absorption corrections multi-scan, 0.96–0.60 

θ range, deg 2.2–30.0 

no. of rflns measd / Rint 55009 / 0.069 

no. of rflns unique 4490 

no. of rflns I>2σ(I) 4490 

no. of params / restraints 203 

R1 (I > 2σ(I))  0.0266 

R1 (all data) 0.0311 

wR2 (I > 2σ(I)) 0.0655 

wR2 (all data) 0.0675 

Flack abs.str. param. -0.012(11) 

Diff.Four.peaks, min/max, eÅ
-

3
  

-0.43 / 0.59 
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Figure S1. Structural diagram of the asymmetric unit of (S,SOx,SFc)-18 showing 50% 

ellipsoids and the atom numbering. 

 

Table 2.  Bond lengths [Å] and angles [deg] for (S,SOx,SFc)-18. 

 

Bond distances 

 

Fe(1)-C(2)         2.0339(14) 

Fe(1)-C(1)         2.0438(16) 

Fe(1)-C(7)         2.0456(16) 

Fe(1)-C(8)         2.0458(17) 

Fe(1)-C(3)         2.0464(15) 

Fe(1)-C(9)         2.0509(16) 

Fe(1)-C(6)         2.0512(16) 

Fe(1)-C(10)        2.0517(16) 

Fe(1)-C(5)         2.0564(16) 

Fe(1)-C(4)         2.0571(16) 

O(1)-C(11)         1.4377(18) 

O(1)-H(1)          0.84 

O(2)-C(13)         1.3611(16) 

O(2)-C(15)         1.4581(16) 

N(1)-C(13)         1.2711(18) 

N(1)-C(14)         1.4802(17) 

C(1)-C(5)          1.4315(19) 

C(1)-C(2)          1.4395(19) 

C(1)-C(11)         1.517(2) 

C(2)-C(3)          1.4325(19) 

C(2)-C(13)         1.4590(17) 

C(3)-C(4)          1.424(2) 

C(3)-H(3)          0.95 

C(4)-C(5)          1.417(2) 

C(4)-H(4)          0.95 

C(5)-H(5)          0.95 

C(6)-C(7)          1.422(2) 

C(6)-C(10)         1.430(2) 

C(6)-H(6)          0.95 

C(7)-C(8)          1.416(2) 

C(7)-H(7)          0.95 

C(8)-C(9)          1.423(2) 

C(8)-H(8)          0.95 

C(9)-C(10)         1.423(2) 

C(9)-H(9)          0.95 

C(10)-H(10)        0.95 

C(11)-C(12)        1.511(2) 

C(11)-H(11)        1.00 

C(12)-H(12A)       0.98 

C(12)-H(12B)       0.98 

C(12)-H(12C)       0.98 

C(14)-C(16)        1.532(2) 

C(14)-C(15)        1.538(2) 

C(14)-H(14)        1.00 

C(15)-H(15A)       0.99 

C(15)-H(15B)       0.99 

C(16)-C(18)        1.526(2) 

C(16)-C(17)        1.527(2) 

C(16)-H(16)        1.00 

C(17)-H(17A)       0.98 

C(17)-H(17B)       0.98 

C(17)-H(17C)       0.98 

C(18)-H(18A)       0.98 

C(18)-H(18B)       0.98 

C(18)-H(18C)       0.98 

 

 

Bond  angles 

 

C(1)-Fe(1)-C(5)        40.87(5) 

C(2)-Fe(1)-C(1)        41.34(6) 

C(2)-Fe(1)-C(3)        41.10(5) 
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C(3)-Fe(1)-C(4)        40.60(6) 

C(5)-Fe(1)-C(4)        40.30(7) 

C(7)-Fe(1)-C(8)        40.50(6) 

C(8)-Fe(1)-C(9)        40.66(6) 

C(7)-Fe(1)-C(6)        40.61(6) 

C(9)-Fe(1)-C(10)       40.60(7) 

C(6)-Fe(1)-C(10)       40.80(6) 

C(11)-O(1)-H(1)       109.5 

C(13)-O(2)-C(15)      105.46(11) 

C(13)-N(1)-C(14)      107.33(11) 

C(5)-C(1)-C(2)        106.50(12) 

C(5)-C(1)-C(11)       127.33(12) 

C(2)-C(1)-C(11)       126.17(12) 

C(5)-C(1)-Fe(1)        70.04(9) 

C(2)-C(1)-Fe(1)        68.96(8) 

C(11)-C(1)-Fe(1)      126.05(11) 

C(3)-C(2)-C(1)        108.51(12) 

C(3)-C(2)-C(13)       125.87(12) 

C(1)-C(2)-C(13)       125.62(12) 

C(3)-C(2)-Fe(1)        69.92(8) 

C(1)-C(2)-Fe(1)        69.70(8) 

C(13)-C(2)-Fe(1)      127.01(11) 

C(4)-C(3)-C(2)        107.66(13) 

C(4)-C(3)-Fe(1)        70.10(9) 

C(2)-C(3)-Fe(1)        68.98(8) 

C(4)-C(3)-H(3)        126.2 

C(2)-C(3)-H(3)        126.2 

Fe(1)-C(3)-H(3)       126.3 

C(5)-C(4)-C(3)        108.18(13) 

C(5)-C(4)-Fe(1)        69.82(9) 

C(3)-C(4)-Fe(1)        69.30(9) 

C(5)-C(4)-H(4)        125.9 

C(3)-C(4)-H(4)        125.9 

Fe(1)-C(4)-H(4)       126.5 

C(4)-C(5)-C(1)        109.15(13) 

C(4)-C(5)-Fe(1)        69.88(10) 

C(1)-C(5)-Fe(1)        69.10(9) 

C(4)-C(5)-H(5)        125.4 

C(1)-C(5)-H(5)        125.4 

Fe(1)-C(5)-H(5)       127.2 

C(7)-C(6)-C(10)       107.58(14) 

C(7)-C(6)-Fe(1)        69.48(9) 

C(10)-C(6)-Fe(1)       69.62(9) 

C(7)-C(6)-H(6)        126.2 

C(10)-C(6)-H(6)       126.2 

Fe(1)-C(6)-H(6)       126.3 

C(8)-C(7)-C(6)        108.61(13) 

C(8)-C(7)-Fe(1)        69.76(9) 

C(6)-C(7)-Fe(1)        69.90(9) 

C(8)-C(7)-H(7)        125.7 

C(6)-C(7)-H(7)        125.7 

Fe(1)-C(7)-H(7)       126.2 

C(7)-C(8)-C(9)        107.82(14) 

C(7)-C(8)-Fe(1)        69.74(9) 

C(9)-C(8)-Fe(1)        69.86(9) 

C(7)-C(8)-H(8)        126.1 

C(9)-C(8)-H(8)        126.1 

Fe(1)-C(8)-H(8)       125.9 

C(8)-C(9)-C(10)       108.19(13) 

C(8)-C(9)-Fe(1)        69.48(9) 

C(10)-C(9)-Fe(1)       69.73(9) 

C(8)-C(9)-H(9)        125.9 

C(10)-C(9)-H(9)       125.9 

Fe(1)-C(9)-H(9)       126.5 

C(9)-C(10)-C(6)       107.80(14) 

C(9)-C(10)-Fe(1)       69.67(9) 

C(6)-C(10)-Fe(1)       69.58(9) 

C(9)-C(10)-H(10)      126.1 

C(6)-C(10)-H(10)      126.1 

Fe(1)-C(10)-H(10)     126.2 

O(1)-C(11)-C(12)      107.71(13) 

O(1)-C(11)-C(1)       110.51(12) 

C(12)-C(11)-C(1)      111.82(11) 

O(1)-C(11)-H(11)      108.9 

C(12)-C(11)-H(11)     108.9 

C(1)-C(11)-H(11)      108.9 

C(11)-C(12)-H(12A)    109.5 

C(11)-C(12)-H(12B)    109.5 

H(12A)-C(12)-H(12B)   109.5 

C(11)-C(12)-H(12C)    109.5 

H(12A)-C(12)-H(12C)   109.5 

H(12B)-C(12)-H(12C)   109.5 

N(1)-C(13)-O(2)       118.54(12) 

N(1)-C(13)-C(2)       125.55(13) 

O(2)-C(13)-C(2)       115.87(12) 

N(1)-C(14)-C(16)      111.28(11) 

N(1)-C(14)-C(15)      103.77(11) 

C(16)-C(14)-C(15)     114.82(13) 

N(1)-C(14)-H(14)      108.9 

C(16)-C(14)-H(14)     108.9 

C(15)-C(14)-H(14)     108.9 

O(2)-C(15)-C(14)      104.75(11) 

O(2)-C(15)-H(15A)     110.8 

C(14)-C(15)-H(15A)    110.8 

O(2)-C(15)-H(15B)     110.8 

C(14)-C(15)-H(15B)    110.8 

H(15A)-C(15)-H(15B)   108.9 

C(18)-C(16)-C(17)     110.77(13) 

C(18)-C(16)-C(14)     112.71(12) 

C(17)-C(16)-C(14)     110.20(14) 

C(18)-C(16)-H(16)     107.7 

C(17)-C(16)-H(16)     107.7 

C(14)-C(16)-H(16)     107.7 

C(16)-C(17)-H(17A)    109.5 

C(16)-C(17)-H(17B)    109.5 

H(17A)-C(17)-H(17B)   109.5 

C(16)-C(17)-H(17C)    109.5 

H(17A)-C(17)-H(17C)   109.5 

H(17B)-C(17)-H(17C)   109.5 

C(16)-C(18)-H(18A)    109.5 

C(16)-C(18)-H(18B)    109.5 

H(18A)-C(18)-H(18B)   109.5 

C(16)-C(18)-H(18C)    109.5 

H(18A)-C(18)-H(18C)   109.5 

H(18B)-C(18)-H(18C)   109.5 

 

 

Torsion angles 

 

C5-C1-C2-C3         -0.96(17) 

C11-C1-C2-C3       179.33(14) 

Fe1-C1-C2-C3        59.34(11) 

C5-C1-C2-C13       178.06(14) 

C11-C1-C2-C13       -1.6(2) 

Fe1-C1-C2-C13     -121.64(15) 

C5-C1-C2-Fe1       -60.30(11) 

C11-C1-C2-Fe1      119.99(15) 

C1-C2-C3-C4          0.47(18) 

C13-C2-C3-C4      -178.55(15) 

Fe1-C2-C3-C4        59.67(11) 

C1-C2-C3-Fe1       -59.20(10) 

C13-C2-C3-Fe1      121.78(15) 

C2-C3-C4-C5          0.23(18) 

Fe1-C3-C4-C5        59.19(12) 

C2-C3-C4-Fe1       -58.96(11) 

C3-C4-C5-C1         -0.84(19) 

Fe1-C4-C5-C1        58.03(11) 

C3-C4-C5-Fe1       -58.87(12) 
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C2-C1-C5-C4          1.11(18) 

C11-C1-C5-C4      -179.19(15) 

Fe1-C1-C5-C4       -58.50(12) 

C2-C1-C5-Fe1        59.61(10) 

C11-C1-C5-Fe1     -120.69(16) 

C10-C6-C7-C8         0.23(19) 

Fe1-C6-C7-C8       -59.20(11) 

C10-C6-C7-Fe1       59.43(11) 

C6-C7-C8-C9         -0.43(19) 

Fe1-C7-C8-C9       -59.73(12) 

C6-C7-C8-Fe1        59.29(11) 

C7-C8-C9-C10         0.47(19) 

Fe1-C8-C9-C10      -59.18(12) 

C7-C8-C9-Fe1        59.65(12) 

C8-C9-C10-C6        -0.33(19) 

Fe1-C9-C10-C6      -59.35(11) 

C8-C9-C10-Fe1       59.02(11) 

C7-C6-C10-C9         0.07(19) 

Fe1-C6-C10-C9       59.41(12) 

C7-C6-C10-Fe1      -59.34(11) 

C5-C1-C11-O1      -116.02(16) 

C2-C1-C11-O1        63.63(19) 

Fe1-C1-C11-O1      152.60(10) 

C5-C1-C11-C12        4.0(2) 

C2-C1-C11-C12     -176.39(15) 

Fe1-C1-C11-C12     -87.42(15) 

C14-N1-C13-O2       -2.75(19) 

C14-N1-C13-C2      179.58(14) 

C15-O2-C13-N1        0.34(18) 

C15-O2-C13-C2      178.23(13) 

C3-C2-C13-N1       166.58(16) 

C1-C2-C13-N1       -12.3(2) 

Fe1-C2-C13-N1     -102.59(17) 

C3-C2-C13-O2       -11.1(2) 

C1-C2-C13-O2       170.00(14) 

Fe1-C2-C13-O2       79.68(15) 

C13-N1-C14-C16    -120.25(14) 

C13-N1-C14-C15       3.75(17) 

C13-O2-C15-C14       2.11(16) 

N1-C14-C15-O2       -3.49(16) 

C16-C14-C15-O2     118.18(13) 

N1-C14-C16-C18      56.67(17) 

C15-C14-C16-C18    -60.82(16) 

N1-C14-C16-C17     -67.64(16) 

C15-C14-C16-C17    174.88(12) 

 

Hydrogen-bond 

  

 D-H...A                      d(D-H)      d(H...A)    d(D...A)    <(DHA) 

 O(1)-H(1)...N(1)             0.84        2.06        2.7912(16)  145.1 
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Synthesis of chiral, nonracemic ferrocene derivatives by ortho-

metallation and partial reductive removal of ortho-directing 

amino groups. 

 

Afrooz Zirakzadeh, Raffael Schuecker and Walter Weissensteiner
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University of Vienna, Institute of Organic Chemistry, Währinger Straße 38, 1090 Wien, 

Austria; Fax: +43 1 4277 9521; e-mail address: walter.weissensteiner@univie.ac.at 

 

Dedicated to Professor Henri B. Kagan on the occasion of his 80th birthday. 

 

Abstract: Chiral, nonracemic 1,2-disubstituted ferrocenes have been prepared from 

monosubstituted ferrocene derivatives by amine-mediated ortho-directed reactions and 

subsequent partial reductive removal of the stereogenic ortho-directing group. It was 

found that the ortho-directing amino group of 2-substituted derivatives of N,N-

dimethylaminoethyl-ferrocene and similar compounds can – after quaternisation with 

methyl iodide – be reductively removed with sodium borohydride to give 2-substituted 

methyl- or ethylferrocenes. In most cases the substituents I, Br, COOEt, P(O)Ph2 and CN 

tolerate the reaction conditions used. In addition, a few examples are reported that show 

how the use of LiTMP allows 2-bromo- and especially 2-cyano-substituted derivatives to 

be further ortho-lithiated and reacted to give 1,2,3-trisubstituted ferrocenes.  

 

Keywords: ferrocenes, stereoselective synthesis, ortho-metallation, reduction, sodium 

borohydride 
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1. Introduction 

Chiral, nonracemic ferrocene derivatives have found widespread applications in 

a variety of different fields, including homogeneous enantioselective catalysis, 

bioorganometallic chemistry, polymers and dendrimers, electrooptical materials and 

thermotropic liquid crystals.1 In catalytic applications 1,2-disubstituted ferrocenes, as 

well as more highly substituted analogues, were found to give excellent results as 

catalyst ligands in enantioselectively catalysed reactions.1–4 Almost all synthetic 

approaches to ferrocene derivatives with such substitution patterns involve directed 

metallation, mainly directed ortho-lithiation steps.5 For example, 1,2-disubstituted 

enantiopure or highly enantiomerically enriched ferrocenes have been prepared by 

ortho-lithiation of a monosubstituted ferrocene Fc-R1, where R1 is either a stereogenic 

or, less frequently, a nonstereogenic ortho-directing substituent.6 In the latter case, 

chiral lithiation reagents such as an alkyllithium in the presence of (–)-sparteine have 

been used.7–9  

The ortho-metallation strategy has been extended further to the synthesis of 

chiral, nonracemic 1,2,3-trisubstituted ferrocene derivatives. Depending on the ortho-

directing properties of substituents R1 and R2 of the 1,2-disubstituted ferrocenes, a third 

substituent R3 can be introduced either next to R2 or next to R1 [Scheme 1, reactions (b) 

and (c)].10–15 

Fe

R1 R2

Fe

R1 R2

R3

Fe

R1

Fe

R1 R2

R3

(a) (b)

(c)

R1 =

Me

N

S

Me

O

N
O O

OMe

Me

 

Scheme 1. Synthesis routes to 1,2-di- and 1,2,3-trisubstituted ferrocenes. 

In 1970 Nozaki,16 as well as Ugi17 and co-workers, reported the first 

diastereoselective ortho-lithiation of a monosubstituted ferrocene derivative [lithiation of 

(S)-N-ferrocenylmethyl-2-methylpiperidine (Scheme 1) with butyllithium] and since that 

time a variety of stereogenic ortho-directing groups have been developed. The N,N-

dimethylaminoethyl group (Scheme 1), again introduced by Ugi,18 and the p-tolylsulfinyl- 

126



and 4-methoxymethyl-1,3-dioxan-2-yl groups developed by Kagan19–23 have been the 

most frequently applied.  

Within the group of stereogenic ortho-directing substituents the p-tolylsulfinyl 

group holds a unique position since, to the best of our knowledge, it is the only ortho-

directing stereogenic ferrocene substituent that can be fully replaced by other 

electrophiles. This feature has been extensively used for the preparation of 1,2-

disubstituted ferrocene derivatives.24 For example, starting from p-tolylsulfinylferrocene, 

Kagan and co-workers synthesised purely ferrocene-stereogenic 1,2-disubstituted 

diphosphino-ferrocenes25 (Scheme 2, sequence 1, A), compounds that are difficult to 

prepare otherwise. These and other derivatives prepared from p-tolylsulfinyl-ferrocene 

have been very successfully applied as catalyst ligands in enantioselectively catalysed 

reactions.1,5,24 

Interestingly, replacement of the sulfinyl group by other electrophiles (Scheme 2, 

sequence 1, second step) works nicely on the small to medium laboratory scale, but 

unfortunately the process on the larger industrial scale proved to be difficult. In order to 

circumvent this problem, workaround strategies have been developed. For example, the 

synthesis of purely ferrocene-stereogenic diphosphines could be achieved by using a 

novel directing group that allows the introduction of different phosphino groups into the 

ortho-position and in a subsequent step the directing group can be transformed into a 

second set of phosphino units (Scheme 2, sequence 2).26,27 

An alternative approach has been used to achieve the same aim (Scheme 2, 

sequence 3). In a first ortho-directed reaction 2-bromo-N,N-dimethylaminoethyl-

ferrocene was prepared from N,N-dimethylaminoethylferrocene and in a subsequent 

two-step sequence the dimethylamino group was removed, thus transforming the ortho-

directing group into a noncoordinating ethyl group. Further ortho-lithiation adjacent to 

the bromide allowed the introduction of various phosphino units and subsequent 

bromide/lithium exchange enabled a second set of phosphino groups to be 

attached.28,29 Both approaches allowed the synthesis of a variety of diphosphines of 

types A and B (Scheme 2) in a very flexible way.  
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Scheme 2. 

In this context we envisaged that simplifying and extending the latter strategy to 

additional ortho-directing groups and substituents other than bromide could lead to a 

much broader applicability of this methodology.  

In this contribution we report a simple method for the partial removal of ortho-

directing amines in the presence of various substituents, which themselves are able to 

ortho-direct further metallation reactions. Several examples of such ortho-metallation 

reactions that led to chiral, nonracemic 1,2,3-trisubstituted ferrocenes as the final 

products are given. 

 

2. Results and discussion 

A three-step sequence for the preparation of chiral, nonracemic ferrocene derivatives 

was explored (Scheme 3). In the first step 1,2-disubstituted derivatives were synthesised 

by diastereoselective ortho-directed reactions (ODR). For this purpose the well-

established ferrocenyl amines (R)-2,18 (1R,2S)-3,30,31 and (R)-432 were used as the 

starting materials. In the second step, suitable reaction conditions for the reductive 

removal of the amino substituents were investigated and in a few cases possibilities for 

the synthesis of 1,2,3-trisubstituted ferrocenes through further ortho-directed reactions 

were explored. 
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Scheme 3. 

 

2.1. Reductive removal of quaternised amino substituents 

The reduction of ferrocenylmethyl ammonium iodides to methylferrocenes with 

the use of sodium amalgam,33 sodium in liquid ammonia34 or sodium borohydride35 has 

been reported previously. Since a number of functional groups tolerate sodium 

borohydride as the reducing agent, its use for the removal of the amino substituents 

from derivatives of 2–4 seemed to be the most promising approach.  

In order to identify suitable reaction conditions, amines 1–4 were reacted with 

methyl iodide and the resulting ammonium salts were subjected to the reduction with 

sodium borohydride in different solvents (acetonitrile, dimethylsulfoxide, 

dimethylformamide) and at different reaction temperatures (80 °C, 100 °C). As shown in 

Table 1, the ammonium salts of all amines tested could be reduced in good (1) to 

excellent (2–4) yields to either methylferrocene (5) or ethylferrocene (6).  

Based on these promising results, the selective reduction of 2-substituted 

derivatives of 2–4 bearing various substituents [I, Br, COOEt, P(O)Ph2, CN] was 

investigated. Starting from enantiomerically pure amines (R)-2, (1R,2S)-3 and (R)-4 

(e.e. >99%), the 2-substituted derivatives (R,Sp)-7a–7e, (1R,2S,Rp)-8a–8e and (R,Rp)-

9a, 9c, 9e [a: I, b: Br, c: COOEt, d: P(O)Ph2, e: CN] were prepared by ortho-lithiation 

with tBuLi (236 and 330) or sBuLi (432) and an appropriate electrophile [Scheme 4; E: I2, 

BrCl2CCCl2Br, CO(OEt)2, ClPPh2 followed by H2O2, 4-CH3C6H4SO2CN]. It should be 

mentioned that the use of tosylcyanide as the electrophile gave the 2-cyano-substituted 

derivatives 7e, 8e and 9e in good to excellent yields (7e: 88%; 8e: 77%; 9e: 90%).37  
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Table 1: Isolated yields obtained in the reduction of the ammonium iodide salts of 1–4 

with NaBH4 
a 

amine product
b 

CH3CN 

80 °C 

DMSO 

100 °C 

DMF 

100 °C 

1
 

5 38 89 87 

2
 

6 98 89 94 

3
 

5 97 98 96 

4
 

5 99 94 96 

 a reaction time: 4 h; b 5: methylferrocene, 6: ethylferrocene  

All amines 7a–7e, 8a–8e and 9a, 9c, 9e were transformed with methyl iodide 

into their corresponding ammonium iodide salts, which were subjected to reductions 

with sodium borohydride. In most cases suitable reaction conditions could be found. 

The reaction conditions, products and yields are summarised in Table 2. All derivatives 

of amine 2 [(R,Sp)-7a–7e] were nicely reduced in acetonitrile at 80 °C to give products 

(Sp)-10a–10e in 79–96% isolated yield. The O-methylephedrine derivatives (1R,2S,Rp)-

8a–8d could be reduced in dimethylsulfoxide at 100 °C to give products (Rp)-11a–11d 

in 72–93% yield. Interestingly, in the reduction of the iodo- and bromo-derivatives 8a 

and 8b a rather small amount (<5%) of dehalogenated product (methylferrocene, 5) 

was obtained in addition to the expected products 11a and 11b. However, in the case of 

iodide 9a not only did the overall yield drop significantly but the dehalogenation side 

reaction became very pronounced. In this particular case, both facts severely restrict 

the synthetic applicability of this transformation. In addition, in contrast to the cyano 

derivative 7e, which could be reduced without difficulties to 10e, synthetically suitable 

reaction conditions have not yet been identified for the reduction of the analogous 

derivatives 8e and 9e. 

When the ammonium salt of ester 9c was reacted with NaBH4 in DMSO at 100 

°C the overall conversion was low and 11c was isolated in only 42% yield. However, an 

increase in the reaction temperature to 120 °C led to full conversion and the product 

was isolated in 80% yield. Interestingly, although the ammonium iodide salt of 

pyrrolidine derivative 4 can be reduced at 80 °C (Table 1), the reduction of its 2-

substituted derivatives requires significantly higher reaction temperatures. This effect is 

likely to be steric in nature but is much less pronounced for the corresponding O-

methylephedrine derivatives 8a–8d.  
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Scheme 4. Preparation of derivatives 7–11. 

  

2.2. Synthesis of 1,2,3-trisubstituted derivatives by ortho-directed reactions 

The substituents Br,11,38–40 COOEt,6,41–43 P(O)Ph2
41,44–46 and CN41 are well 

recognised ortho-directing groups. Therefore, the derivatives 10b–10e and 11b–11d 

should all be suitable starting materials for the preparation of chiral, nonracemic 1,2,3-

trisubstituted ferrocenes – including exclusively ferrocene-stereogenic (planar chiral) 

derivatives. In order to prove and extend this concept, a few examples of further ortho-

directed reactions have been explored without extensive optimisation of reaction 

conditions.  

According to our previously reported protocol,39 bromo derivatives (Sp)-10b and 

(Rp)-11b were ortho-deprotonated with 2 equivalents of lithium 2,2,6,6-

tetramethylpiperidide (LiTMP) and quenched with CO2 as the electrophile. These 

reactions gave the ferrocenecarbonic acids (Rp)-12 and (Sp)-14 in 77% and 73% yield, 

respectively (Scheme 5). Since acid 12 was accompanied by a small amount of by-

product (about 5%), it was transformed with diazomethane into the corresponding 

methyl ester (Rp)-13, which could be purified easily. Whereas ortho-lithiation of 

ferrocenylbromides has been applied several times for the synthesis of catalyst 

ligands28,29,38 – as well as for the preparation of pincer-type 1,3-disubstituted 

ferrocenes39,47 – to the best of our knowledge the ortho-metallation of ferrocenyl 

cyanides has been reported only once.41  

131



Table 2: Reduction of the ammonium iodide salts of 7–9 with NaBH4
a 

amine solvent 
reaction 

temp. (°C) 
product 

Isolated yield 

(%) 

7a
 

CH3CN 80 10a 86 

7b
 

CH3CN 80 10b 96 

7c
 

CH3CN 80 10c 90 

7d
 

CH3CN 80 10d 79 

7e CH3CN 80 10e 91 

8a DMSO 100 11a 93 

8b DMSO 100 11b 92 

8c DMSO 100 11c 72 

8d DMSO 100 11d 78 

9a CH3CN 80 11a/5 36
b
 (64/36)

c 

9a DMSO 100 11a/5 68
b
 (61/39)

c
 

9a DMF 100 11a/5 50
b
 (0/100)

c
 

9c DMSO 100 11c 42 

9c DMSO 120 11c 80 

 

a reaction time: 4 h; b conversion; c ratio of 11a/5 as determined by 1H-NMR 
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Scheme 5. Synthesis of 1,2,3-substituted ferrocenes 12–15. 

It has been shown that ferrocenyl cyanides can be ortho-magnesiated with TMP-

MgCl.LiCl and further reacted with electrophiles to give 2-substituted 

cyanoferrocenes.
41

 Interestingly, the application of our ortho-lithiation protocol for 

bromides to cyanide derivative (Sp)-10e, followed by quenching with ClPPh2 as the 

132



electrophile, gave product (Sp)-15 in 91% yield, thus providing an alternative route to 

ortho-substituted cyanoferrocenes.  

It is worth mentioning that not only the disubstituted ferrocenes 10a–10e and 11a–11d 

but also all derivatives 12–15 can serve as precursors for the preparation of catalyst 

ligands, e.g. for the synthesis of ferrocenyl phosphinooxazolines.
48–52

   

 

3. Conclusion 

A number of 1,2-disubstituted ferrocene derivatives have been prepared starting 

from the monosubstituted and ortho-directing ferrocenyl amines (R)-2, (1R,2S)-3 and 

(R)-4. Quaternisation of their amino-nitrogen with methyl iodide and subsequent 

reduction with sodium borohydride led to the removal of the ortho-directing amino-

substituents to give to 2-substituted chiral, nonracemic methyl- or ethylferrocenes. In 

most cases, ortho-substituents I, Br, COOEt, P(O)Ph2 and CN were found to tolerate 

the reaction conditions used. Furthermore, it was shown in a few examples that 2-

bromo- and, most interestingly, 2-cyano-methyl (or ethyl)ferrocene can be further ortho-

deprotonated next to the bromo and the cyano group by treatment with LiTMP. The 

subsequent reaction of these intermediates with an appropriate electrophile gave chiral, 

nonracemic 1,2,3-substituted ferrocene derivatives. In particular, we consider the 

deaminated 1,2-disubstituted ferrocenes 10a–10e, 11a–11d and similar derivatives to 

be useful starting materials for the synthesis of chiral, nonracemic ferrocenes for use 

as, for example, phosphino- or oxazoline-based catalysts ligands.  

 

4. Experimental 

4.1. General methods 

NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl3 or 

DMSO-d6. Chemical shifts (δ) are given relative to CHCl3 (
1H: 7.26 ppm), CDCl3 (

13C: 

77.0 ppm), DMSO (1H: 2.50 ppm), CDCl3 (
13C: 39.5 ppm) or 85% H3PO4 (

31P: 0 ppm). 

The coupling constants in 13C{1H} spectra are due to 13C-31P coupling. For signal 

assignment the following terms were used: s, bs, d, dd, t, q and m refer to singlet, broad 

singlet, doublet, doublet of doublets, triplet, quartet and multiplet, respectively. The 

terms PhA-C were used for phenyl units. In this respect, superscripts A and B were used 

to distinguish between rings attached to phosphorus atoms. A general atom numbering 

scheme used for proton and carbon assignment only is given in Figure 1. Melting points 
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were determined on a Kofler melting point apparatus and are uncorrected. Mass 

spectra were recorded on Finnigan MAT 900 and MAT 95 spectrometers. Optical 

rotations were measured on a Perkin-Elmer 241 polarimeter. All reactions required inert 

conditions and were carried out under an argon atmosphere using standard Schlenk 

techniques. All solvents were dried according to standard procedures and distilled 

before use. Chromatographic separations were performed under gravity either on silica 

(MERCK, 40–63 µm) or on standardized aluminium oxide 90 (MERCK). Petroleum 

ether with a boiling range of 55–65 °C was used for chromatography. Abbreviations: 

PE: petroleum ether, DEE: diethyl ether, EA: ethyl acetate; TEA: triethylamine. 

Fe

R1 R2

R3

R1 = amine, Me or Et

1 2
3

5
4

Cp'

 

Figure 1: Numbering scheme (for NMR signal assignment only) 

 

4.2. Synthesis of ferrocenes (R,Sp)-7a–7e, (1R,2S,Rp)-8a–8e and (R,Rp)-9a, 9c, 9e 

Compounds (R,Sp)-7a,53 7b,54 7c,55 7d15 were synthesised from (R)-2, (1R,2S,Rp)-8a,31 

8b31 from (1R,2S)-3, and (R,Rp)-9a,56 9c57 from (R)-4 according to reported procedures. 

4.2.1. (R,Sp)-N-1-(2-Cyano-ferrocenyleth-1-yl)-N,N-dimethylamine (R,Sp)-7e 

To a solution of (R)-2 (500 mg, 1.94 mmol) in diethyl ether (15 mL) was added dropwise 

a solution of tBuLi in pentane (1.7 M, 1.26 mL, 2.14 mmol) at –78 °C. The reaction 

mixture was stirred at –78 °C for 1 h and then at r.t. for a further 3 h. The mixture was 

added to a solution of tosyl cyanide (703 mg, 3.88 mmol) in THF (10 mL) at –78 °C. 

After 20 min at –78 °C, the solution was allowed to warm up to r.t. and an aqueous 

solution of NaOH (0.5 M, 5 mL) was added. After stirring for an additional 15 min, the 

mixture was poured into a solution of NaOH (1 M, 150 mL). The phases were separated 

and the aqueous phase was extracted with diethyl ether (3 × 50 mL). The combined 

organic phases were washed with brine and dried over MgSO4. The solvents were 

removed under reduced pressure and the residue was purified by chromatography on 

silica with PE/EA/TEA = 30/10/1 as eluent to give the title compound as orange crystals 

(483 mg, 88% yield). mp 85 °C. [α]20
λ (nm) = –33.9 (589), –30.4 (578), –6.8 (546) (c 

0.280, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 1.54 (d, J = 6.8 Hz, 3H, CHCH3), 2.10 [s, 

6H, N(CH3)2], 3.75 (q, J = 6.8 Hz, 1H, CHCH3), 4.27 (s, 5H, Cp'), 4.33 (dd, J = 2.5 Hz, J 
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= 1.3 Hz, 1H, H5), 4.37 (t, J = 2.5 Hz, 1H, H4), 4.64 (dd, J = 2.5 Hz, J = 1.3 Hz, 1H, 

H3). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 17.4 (CHCH3), 41.2 [N(CH3)2], 53.1 (C2), 57.6 

(CHCH3), 69.2 (C5), 69.5 (C4), 70.9 (C3), 71.1 (Cp'), 90.4 (C1), 120.4 (CN). HR-MS (EI, 

30 °C): m/z [M]+ calcd 282.0819 for C15H18FeN2; found 282.0811. 

4.2.2. (1R,2S,Rp)-N-(2-Ethoxycarbonyl-ferrocenylmethyl)-N-methyl-1-methoxy-1-

phenylprop-2-ylamine (1R,2S,Rp)-8c 

A solution of (1R,2S)-3 (5.00 g, 13.25 mmol) in pentane (100 mL) was cooled to –78 °C 

and the resulting suspension was treated with a solution of tBuLi in pentane (1.7 M, 

9.35 mL, 15.90 mmol). Stirring was continued at this temperature for 1.5 h followed by 

warming to –30 °C and stirring for an additional 2.5 h. The mixture was again cooled to 

–78 °C and diethyl carbonate (35 mL) was added in one portion with vigorous stirring. 

The reaction was kept at –78 °C for 30 min and at r.t. for 1 h. Addition of water led to 

phase separation and the aqueous phase was extracted with diethyl ether. The 

combined organic extracts were washed with water and brine, dried over MgSO4 and 

the solvents were evaporated. The crude product was chromatographed on aluminium 

oxide 90 using PE/DE/TEA = 80/20/1 as the eluent to give the title compound as a red 

oil (4.26 g, 72% yield). [α]20
λ (nm) = –22.9 (589), –23.5 (578), –27.0 (546) (c 0.808, 

CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 1.08 (d, J = 6.8 Hz, 3H, CHCH3), 1.32 (t, J = 7.1 

Hz, 3H, CH2CH3), 2.26 (s, 3H, NCH3), 2.88–2.97 (m, 1H, CHCH3), 3.23 (s, 3H, OCH3), 

3.57 (d, J = 13.9 Hz, 1H, CHAHB), 3.99 (d, J = 13.9 Hz, 1H, CHAHB), 4.06 (s, 5H, Cp'), 

4.17–4.28 (m, 5H, H5 + H4 + CH2CH3 + CHOCH3), 4.68–4.72 (m, 1H, H3), 7.17–7.32 

(m, 5H, Ph). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 9.5 (s, CHCH3), 11.6 (s, CH2CH3), 

37.0 (s, NCH3), 53.0 (s, CHAHB), 56.7 (OCH3), 59.8 (CH2CH3), 63.3 (CHCH3), 69.3 (C4), 

69.4 (C1/C2), 70.2 (Cp'), 70.7 (C3), 73.9 (C5), 85.1 (CHOCH3), 88.8 (C1/C2), 126.9 

(Ph-para), 127.0 (Ph-ortho), 127.9 (Ph-meta), 141.7 (Ph-ipso), 171.9 (C=O). HR-MS 

(ESI): m/z [M + H]+ calcd 450.1732 for C25H32FeNO3; found 450.1713.  

4.2.3. (1R,2S,Rp)-N-(2-Diphenylphosphinyl-ferrocenylmethyl)-N-methyl-1-methoxy-

1-phenylprop-2-ylamine (1R,2S,Rp)-8d 

To a stirred solution of (1R,2S,Rp)-N-(2-diphenylphosphino-ferrocenylmethyl)-N-methyl-

1-methoxy-1-phenylprop-2-ylamine31 (7.44 g, 13.25 mmol) in acetone (100 mL) was 

added a 30% solution of hydrogen peroxide in water (12 mL). Stirring was continued for 

1 h at r.t. and excess peroxide was decomposed by dropwise addition of saturated 

aqueous Na2S2O3 (20 mL). Acetone was then removed under reduced pressure and the 

residue was extracted with dichloromethane (2 × 50 mL). The combined organic 

extracts were washed with water and brine, dried over MgSO4 and the solvents were 
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removed on a rotary evaporator. The crude phosphine oxide was purified by 

chromatography on aluminium oxide 90 using EA as the eluent to give the title 

compound as an orange-yellow semisolid (5.98 g, 78% yield). [α]20
λ (nm) = +45.0 (589), 

+45.7 (578), +41.5 (546) (c 1.230, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 0.73 (d, J = 6.8 

Hz, 3H, CHCH3), 1.98 (s, 3H, NCH3), 2.70–2.78 (m, 1H, CHCH3), 3.17 (s, 3H, OCH3), 

3.49 (d, J = 13.9 Hz, 1H, CHAHB), 3.80 (d, J = 13.9 Hz, 1H, CHAHB), 3.79–3.82 (m, 1H, 

H3), 4.06–4.10 (m, 1H, CHOCH3), 4.16 (s, 5H, Cp'), 4.19–4.23 (m, 1H, H4), 4.31–4.34 

(m, 1H, H5), 7.16–7.20 (m, 2H, PhC-ortho), 7.20–7.25 (m, 1H, PhC-para), 7.27–7.36 (m, 

4H, PhB-meta + PhC-meta), 7.37–7.42 (m, 1H, PhB-para), 7.42–7.53 (m, 3H, PhA-meta + 

PhA-para), 7.57–7.64 (m, 2H, PhB-ortho), 7.74–7.81 (m, 2H, PhA-ortho). 13C{1H} NMR 

(100.6 MHz, CDCl3) δ: 8.8 (CHCH3), 35.9 (NCH3), 53.7 (CHAHB), 56.4 (OCH3), 64.1 

(CHCH3), 69.3 (d, J = 11.3 Hz, C4), 70.2 (Cp'), 71.3 (d, J = 115.0 Hz, C2), 73.6 (d, J = 

15.2 Hz, C3), 73.8 (d, J = 10.0 Hz, C5), 84.8 (CHOCH3), 91.3 (d, J = 10.7 Hz, C1), 

126.69 (PhC-para), 126.74 (PhC-ortho), 127.8 (d, J = 6.1 Hz, PhA/B-meta), 127.88 (PhC-

meta), 127.9 (d, J = 5.6 Hz, PhA/B-meta), 131.0 (d, J = 2.5 Hz, PhA/B-para), 131.1 (d, J = 

2.5 Hz, PhA/B-para), 131.48 (d, J = 9.5 Hz, PhA/B-ortho), 131.51 (d, J = 9.9 Hz, PhA/B-

ortho), 134.1 (d, J = 99.4 Hz, PhA-ipso), 135.2 (d, J = 101.0 Hz, PhB-ipso), 141.9 (s, 

PhC-ipso). 31P NMR (162 MHz, CDCl3) δ: 29.6 (P(O)Ph2). HR-MS (ESI): m/z [M + H]+ 

calcd 578.1912 for C34H37FeNO2P; found 578.1916.  

4.2.4. (1R,2S,Rp)-N-(2-Cyano-ferrocenyl)-N-methyl-1-methoxy-1-phenylprop-2-

ylamine (1R,2S,Rp)-8e 

A solution of (1R,2S)-3 (5.00 g, 13.25 mmol) in pentane (100 mL) was cooled to –78 °C 

and the resulting suspension was treated with a solution of tBuLi in pentane (1.7 M, 

9.35 mL, 15.90 mmol). Stirring was continued at this temperature for 1.5 h followed by 

warming to 0 °C and stirring was continued for a further 2.5 h. The mixture was again 

cooled to –78 °C and a solution of tosylcyanide (3.60 g, 19.87 mmol) in THF (10 mL) 

was added dropwise with stirring. The reaction was warmed to r.t. and stirred for a 

further 1 h. Addition of water led to phase separation and the aqueous phase was 

extracted with diethyl ether. The combined organic extracts were washed with water 

and brine, dried over MgSO4 and the solvents were evaporated. The crude product was 

chromatographed on silica using DEE as eluent to give the title compound as a dark red 

oil (4.12 g, 77% yield). [α]20
λ (nm) = –32.6 (589), –37.9 (578), –57.1 (546) (c 0.298, 

CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 1.07 (d, J = 6.8 Hz, 3H, CHCH3), 2.25 (s, 3H, 

NCH3), 2.78–2.88 (m, 1H, CHCH3), 3.27 (s, 3H, OCH3), 3.56–3.67 (m, 2H, CHAHB), 4.23 

(s, 5H, Cp'), 4.24–4.30 (m, 3H, H4 + H5 + CHOCH3), 4.54–4.57 (m, 1H, H3), 7.20–7.27 

(m, 3H, Ph-ortho + Ph-para), 7.28–7.34 (m, 2H, Ph-meta). 13C{1H} NMR (100.6 MHz, 
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CDCl3) δ: 8.9 (CHCH3), 37.6 (NCH3), 52.1 (CHAHB), 53.3 (C2), 56.7 (OCH3), 63.7 

(CHCH3), 69.7 (C4), 71.0 (Cp'), 71.3 (C3), 72.1 (C5), 85.3 (CHOCH3), 89.5 (C1), 119.8 

(C≡N), 126.9 (Ph-ortho), 127.0 (Ph-para), 128.0 (Ph-meta), 141.4 (Ph-ipso). HR-MS 

(ESI): m/z [M + H]+ calcd 403.1473 for C23H27FeN2O; found 403.1478.  

4.2.5. (R,Rp)-N-(2-Cyano-ferrocenylmethyl)-2-methoxymethyl-pyrrolidine (R,Rp)-9e 

To a stirred solution of (R)-432 (5.00 g, 15.96 mmol) in diethyl ether (80 mL) was added 

dropwise at –78 °C a solution of sBuLi in cyclohexane (1.4 M, 13.7 mL, 19.15 mmol). 

The resulting mixture was stirred for 1.5 h at –78 °C and for an additional 1.5 h at –30 

°C. During this time an orange suspension evolved and this was again cooled to –78 °C 

followed by addition of a solution of tosyl cyanide (4.34 g, 23.94 mmol) in diethyl ether 

(60 mL). Stirring was continued for an additional 30 min at –78 °C. The mixture was 

warmed to r.t. and quenched by the addition of water. The aqueous phase was made 

basic with an aqueous sodium hydroxide solution and the product was extracted with 

diethyl ether (2 × 100 mL). The combined organic extracts were washed with water and 

brine, dried over MgSO4 and the solvents were evaporated. The crude product was 

subjected to chromatography on silica using PE/EA/TEA = 10/1/1 → 2/1/1 as the eluent 

to give the title compound as a red oil (4.88 g, 90% yield). [α]20
λ (nm) = +79.6 (589), 

+79.3 (578), +63.5 (546) (c 0.690, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 1.50–1.75 (m, 

3H, NCH2CH2CHH), 1.75–1.90 (m, 1H, NCH2CH2CHH), 2.18–2.30 (m, 1H, NCHH), 

2.62–2.75 (m, 1H, NCH), 2.95–3.03 (m, 1H, NCHH), 3.29 (dd, J = 9.4 Hz, J = 5.4 Hz, 

1H, CH3OCHH), 3.37 (s, 3H, CH3), 3.42 (dd, J = 9.4 Hz, J = 5.4 Hz, 1H, CH3OCHH), 

3.59 (d, J = 13.5 Hz, 1H, FcCHH), 3.99 (d, J = 13.5 Hz, 1H, FcCHH), 4.28 (s, 5H, Cp'), 

4.30–4.34 (m, 1H, H4), 4.41–4.47 (m, 1H, H5), 4.59–4.64 (m, 1H, H3). 13C{1H} NMR 

(100.6 MHz, CDCl3) δ: 22.7 (NCH2CH2), 28.4 (NCH2CH2CH2), 51.8 (FcCH2), 53.7 (C2), 

54.2 (NCH2), 59.1 (CH3), 61.7 (NCH), 70.0 (C4), 71.0 (Cp'), 71.6 (C3), 72.3 (C5), 76.4 

(CH3OCH2), 87.8 (C1), 119.7 (s, C≡N). HR-MS (ESI): m/z [M + H]+ calcd 339.1160 for 

C18H23FeN2O; found 339.1158. 

4.3. General procedure for the preparation of the ammonium iodide salts of 

(R,Sp)-7a–7e, (1R,2S,Rp)-8a–8d and (R,Rp)-9a, 9c 

To a solution of amines (R,Sp)-7a–7e, (1R,2S,Rp)-8a–8d or (R,Rp)-9a,9c (10 mmol) in 

anhydrous acetonitrile (50 mL) was added dropwise methyl iodide (30 mmol) and the 

mixture was stirred at r.t. for 1 h. In the cases of 7a, 7b, 8a, 8b and 9a diethyl ether 

(100 mL) was added and a yellow precipitate was formed. After stirring for an additional 

30 min the precipitate was filtered off, washed with diethyl ether and dried under 

vacuum to give a crystalline solid. In the cases of 7c–7e, 8c, 8d and 9c all volatiles 
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were removed, the residues were dried under vacuum and the remaining yellow salts 

were used without further purification.  

4.4. General procedure for the preparation of (Sp)-10a–10e 

The ammonium iodide salts (10 mmol) of (R,Sp)-7a–7e (prepared according to the 

general procedure 4.3.) were suspended in anhydrous acetonitrile (50 mL) and NaBH4 

(30 mmol) was added in portions. The resulting mixture was stirred for 4 h at 80 °C. The 

reaction mixture was cooled to r.t. and was quenched with water (30 mL). Diethyl ether 

was added, the phases were separated and the organic phase was washed with water 

(3×) and brine. After drying with MgSO4 the solvent was removed under reduced 

pressure and the crude product was purified by chromatography on aluminium oxide 

90. 

4.4.1. (Sp)-2-Ethyl-1-iodo-ferrocene (Sp)-10a 

The crude product prepared from the ammonium iodide salt of (R,Sp)-7a (676 mg, 1.29 

mmol) and NaBH4 (146 mg, 3.86 mmol) was purified by chromatography on aluminium 

oxide 90 with eluent PE/EA = 9/1 to give the title compound as a red oil (375 mg, 86% 

yield). [α]20
λ (nm) = –5.2 (589), –3.3 (578), +16.6 (546) (c 0.484, CHCl3). 

1H NMR (400 

MHz, CDCl3) δ: 1.16 (t, J = 7.5 Hz, 3H, CH2CH3), 2.32–2.45 (m, 2H, CH2CH3), 4.10 (s, 

5H, Cp'), 4.11–4.14 (m, 2H, H4 + H5), 4.37 (dd, J = 2.3 Hz, J = 1.5 Hz, 1H, H3). 13C{1H} 

NMR (100.6 MHz, CDCl3) δ: 14.5 (CH2CH3), 23.1 (CH2CH3), 45.3 (C2), 66.2 (C5), 67.6 

(C4), 71.4 (Cp'), 73.8 (C3), 91.8 (C1). HR-MS (EI, 30 °C): m/z [M]+ calcd 339.9411 for 

C12H13FeI; found 339.9410. 

4.4.2. (Sp)-1-Bromo-2-ethyl-ferrocene (Sp)-10b29 

The crude product prepared from the ammonium iodide salt of (R,Sp)-7b (2.74 g, 5.74 

mmol) and NaBH4 (651 mg, 17.20 mmol) was purified by chromatography on aluminium 

oxide 90 with eluent PE/EA = 9/1 to give the title compound as a yellow oil (1.62 g, 96% 

yield). [α]20
λ (nm) = –2.5 (589), –1.7 (578), +8.3 (546) (c 0.485, CHCl3). 

1H NMR (400 

MHz, CDCl3) δ: 1.17 (t, J = 7.5 Hz, 3H, CH2CH3), 2.44 (q, J = 7.5 Hz, 2H, CH2CH3), 4.01 

(t, J = 2.5 Hz, 1H, H4), 4.05–4.08 (m, 1H, H5), 4.14 (s, 5H, Cp'), 4.35–4.39 (dd, J = 2.5 

Hz, J = 1.4 Hz, 1H, H3). 13C{1H} NMR (100.6 MHz) δ: 14.4 (CH2CH3), 21.4 (CH2CH3), 

65.1 (C4), 65.6 (C5), 69.4 (C3), 71.0 (Cp'), 79.8 (C2), 89.3 (C1). HR-MS (EI, 30 °C): 

m/z [M]+ calcd 291.9552 for C12H13FeBr; found 291.9553. 
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4.4.3. (Sp)-1-Ethoxycarbonyl-2-ethyl-ferrocene (Sp)-10c 

The crude product prepared from amine (R,Sp)-7c (2 g, 6.075 mmol) and NaBH4 (689 

mg, 18.22 mmol) was purified by chromatography on aluminium oxide 90 with eluent 

PE/EA = 15/1 to give the title compound as a red oil (1.56 g, 90% yield). [α]20
λ (nm) = –

15.5 (589), +12.3 (578), +17.8 (546) (c 0.252, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 

1.17 (t, J = 7.3 Hz, 3H, CH2CH3), 1.36 (t, J = 7.3 Hz, 3H, OCH2CH3), 2.61–2.72 (m, 1H, 

CHAHBCH3), 2.74–2.85 (m, 1H, CHAHBCH3), 4.12 (s, 5H, Cp'), 4.19–4.35 (m, 2H, 

OCH2CH3), 4.24 (t, J = 2.5 Hz, 1H, H4), 4.31–4.33 (m, 1H, H5), 4.75 (dd, J = 2.5 Hz, J = 

1.6 Hz, 1H, H3). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 14.5 (OCH2CH3), 15.0 (CH2CH3), 

21.9 (CH2CH3), 59.7 (OCH2CH3), 68.7 (C4), 69.1 (C2), 70.0 (Cp'), 70.5 (C3), 71.4 (C5), 

93.5 (C1), 172.4 (C=O). HR-MS (ESI): m/z [M]+ calcd 286.0656 for C15H18FeO2; found 

286.0659. 

4.4.4. (Sp)-1-Diphenylphosphinyl-2-ethyl-ferrocene (Sp)-10d15 

The crude product prepared from amine (R,Sp)-7d (2.285 g, 4.996 mmol) and NaBH4 

(0.582 g, 1.54 mmol) was purified by chromatography on aluminium oxide 90 with EA 

as the eluent to provide the title compound as a yellow solid (1.64 g, 79% yield); mp 

150 °C. [α]20
λ (nm) = –115.7 (589), –117.1 (578), –128.8 (546) (c 0.281, CHCl3). 

1H 

NMR (400 MHz, CDCl3) δ: 0.97 (t, J = 7.5 Hz, 3H, CH2CH3), 2.32–2.43 (m, 1H, 

CHAHBCH3), 2.59–2.70 (m, 1H, CHAHBCH3), 3.73–3.77 (m, 1H, H3), 4.22–4.25 (m, 1H, 

H4), 4.27 (s, 5H, Cp'), 4.39–4.43 (m, 1H, H5), 7.44–7.42 (m, 2H, PhB-meta), 7.43–7.55 

(m, 4H, PhA-meta + PhA-para + PhB-para), 7.57–7.65 (m, 2H, PhB-ortho), 7.71–7.79 (m, 

2H, PhA-ortho). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 15.2 (CH2CH3), 22.2 (CH2CH3), 

69.1 (d, J = 11.5 Hz, C5), 70.0 (Cp'), 71.2 (d, J = 10.4 Hz, C4), 71.7 (d, J = 114.5 Hz, 

C2), 73.5 (d, J = 15.7 Hz, C3), 95.2 (d, J = 11.5 Hz, C1), 128.0 (d, J = 12.3 Hz, PhA-

meta), 128.2 (d, J = 12.3 Hz, PhA-meta), 131.2–131.4 (m, PhA-para + PhB-para), 131.5 

(d, J = 10.0 Hz, 2C-ortho), 131.6 (d, J = 10.0 Hz, 2C-ortho), 133.9 (d, J = 88.8 Hz, PhA- 

ipso), 134.9 (d, J = 88.8 Hz, PhB - ipso). 31P NMR (162.6 MHz, CDCl3) δ: 31.3 

[P(O)PPh2]. HR-MS (EI, 30 °C): m/z [M] + calcd 414.0836 for C24H23FePO; found 

414.0823. 

4.4.5. (Sp)-1-Cyano-2-ethyl-ferrocene (Sp)-10e 

The crude product prepared from amine (R,Sp)-7e (2.485 g, 8.81 mmol) and NaBH4 

(999 mg, 26.4 mmol) was purified by chromatography on aluminium oxide 90 with 

eluent PE/EA = 9/1 to give the title compound as a red oil (1.91 g, 91% yield). [α]20
λ 

(nm) = +24.3 (589), +34.8 (578), +103.7 (546) (c 0.485, CHCl3). 
1H NMR (400 MHz, 
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CDCl3) δ: 1.23 (t, J = 7.6 Hz, 3H, CH2CH3), 2.46–2.60 (m, 2H, CH2CH3), 4.25–4.27 (m, 

1H, H4), 4.27 (s, 5H, Cp'), 4.29–4.33 (m, 1H, H5), 4.57 (dd, J = 2.5 Hz, J = 1.3 Hz, 1H, 

H3). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 14.9 (CH2CH3), 21.4 (CHCH3), 52.2 (C2), 69.2 

(C5), 69.6 (C3), 70.7 (C4), 70.8 (Cp'), 94.6 (C1), 120.0 (C≡N). HR-MS (ESI): m/z [M]+ 

calcd 239.0397 for C13H13FeN; found 239.0398. 

4.5. General procedure for the preparation of (Rp)-11a–11d 

To a stirred suspension of the ammonium iodide salts of (1R,2S,Rp)-8a–8d and (R,Rp)-

9c (5 mmol, prepared according to the general procedure 4.3., in dimethyl sulfoxide (10 

mL) was added sodium borohydride (15 mmol) in portions. The resulting mixture was 

heated to 100 °C (8a–8d) or 120 °C (9c) for 4 h and was subsequently cooled to r.t., 

diluted with water (200 mL) and extracted with diethyl ether (2 × 100 mL). The 

combined organic extracts were washed with water and brine, dried over MgSO4 and 

the solvents were removed under reduced pressure. The crude product was purified by 

column chromatography on silica or aluminium oxide 90.  

4.5.1. (Rp)-1-Iodo-2-methyl-ferrocene (Rp)-11a 

The crude product obtained from the ammonium iodide salt of (1R,2S,Rp)-8a (1.00 g, 

1.550 mmol) and sodium borohydride (176 mg, 4.650 mmol) in dimethyl sulfoxide (4 mL) 

was purified by filtration through a short plug of aluminium oxide 90 using PE as the 

eluent. The product was obtained as an orange solid (470 mg, 93% yield). mp 44–47 °C. 

[α]20
λ (nm) = +29.9 (589), +30.1 (578), +22.9 (546) (c 0.708, CHCl3). 

1H NMR (400 MHz, 

CDCl3) δ: 2.02 (s, 3H, CH3), 4.09 (s, 5H, Cp'), 4.08–4.11 (m, 1H, H4), 4.14–4.17 (m, 1H, 

H5), 4.34–4.37 (m, 1H, H3). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 15.7 (CH3), 46.5 (C2), 

67.7 (C4/C5), 67.9 (C4/C5), 71.6 (Cp'), 73.7 (C3), 85.9 (C1). HR-MS (ESI): m/z [M]+ 

calcd 325.9255 for C11H11FeI; found 325.9248. 

4.5.2. (Rp)-1-Bromo-2-methyl-ferrocene (Rp)-11b58 

The crude product obtained from the ammonium iodide salt of (1R,2S,Rp)-8b (5.03 g, 

8.409 mmol) and sodium borohydride (1.00 g, 26.43 mmol) in dimethyl sulfoxide (20 mL) 

was purified by filtration through a short plug of aluminium oxide 90 using PE as eluent. 

Traces of methylferrocene were removed by heating the mixture in a bulb to bulb 

distillation apparatus under vacuum at 50 °C for 1 h. The remaining pure product was 

obtained as an orange solid (2.16 g, 92% yield). mp 70–74 °C. [α]20
λ (nm) = +26.6 (589), 

+27.0 (578), +24.9 (546) (c 0.957, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 2.05 (s, 3H, 

CH3), 3.97–4.00 (m, 1H, H4), 4.07–4.10 (m, 1H, H5), 4.13 (s, 5H, Cp'), 4.33–4.36 (m, 1H, 

H3). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 13.7 (CH3), 65.1 (C4), 67.4 (C5), 69.2 (C3), 
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71.1 (Cp'), 80.6 (C1/C2), 83.1 (C1/C2). HR-MS (ESI): m/z [M]+ calcd 277.9395 for 

C11H11BrFe; found 277.9393.  

4.5.3. (Rp)-1-Ethoxycarbonyl-2-methyl-ferrocene (Rp)-11c 

The crude product obtained from amine (1R,2S,Rp)-8c (4.172 g, 9.284 mmol) and NaBH4 

(1.054 g, 27.85 mmol) was purified by column chromatography on silica using PE/EA = 

10/1 as the eluent to give the title compound as an orange oil (2.155 g, 85% yield). [α]20
λ 

(nm) = +22.1 (589), +18.8 (578), –6.3 (546) (c 0.521, CHCl3). 
1H NMR (400 MHz, CDCl3) 

δ: 1.37 (t, J = 7.1 Hz, 3H, CH2CH3), 2.27 (s, 3H, CH3), 4.12 (s, 5H, Cp'), 4.21–4.23 (m, 

1H, H4), 4.23–4.34 (m, 3H, H5 + CH2CH3), 4.70–4.73 (m, 1H, H3). 13C{1H} NMR (100.6 

MHz, CDCl3) δ: 14.59, 14.63 (CH2CH3 + CH3), 59.8 (CH2CH3), 68.8 (C4), 69.7 (C2), 70.3 

(C3), 70.4 (Cp'), 73.6 (C5), 87.0 (C1), 172.4 (C=O). HR-MS (ESI): m/z [M]+ calcd 

272.0500 for C14H16FeO2; found 272.0502.  

4.5.4. (Rp)-1-Diphenylphosphinyl-2-methyl-ferrocene (Rp)-11d 

The crude product obtained from amine (1R,2S,Rp)-8d (5.071 g, 8.781 mmol) and NaBH4 

(996 mg, 26.34 mmol) was purified by column chromatography on aluminium oxide 90 

using EA as the eluent to give the title compound as an orange solid (2.495 g, 71% 

yield). mp 130–134 °C. [α]20
λ (nm) = +118.9 (589), +120.7 (578), +113.7 (546) (c 0.996, 

CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 2.04 (s, 3H, CH3), 3.70–3.74 (m, 1H, H3), 4.17–

4.21 (m, 1H, H4), 4.24 (s, 5H, Cp'), 4.35–4.39 (m, 1H, H5), 7.34–7.41 (m, 2H, PhB-meta), 

7.41–7.48 (m, 3H, PhA-meta + PhB-para), 7.48–7.54 (m, 1H, PhA-para), 7.54–7.61 (m, 

2H, PhB-ortho), 7.69–7.78 (m, 2H, PhA-ortho). 13C{1H} NMR (100.6 MHz, CDCl3) δ: 14.1 

(CH3), 69.1 (d, J = 11.4 Hz, C4), 70.1 (Cp'), 72.1 (d, J = 115.1 Hz, C2), 73.5 (d, J = 15.4 

Hz, C3), 73.6 (d, J = 10.1 Hz, C5), 88.3 (d, J = 10.9 Hz, C1), 127.9 (d, J = 12.1 Hz, PhA-

meta), 128.2 (d, J = 11.9 Hz, PhB-meta), 131.2–131.3 (m, PhA-para + PhB-para), 131.4 

(d, J = 6.7 Hz, PhA/B-ortho), 131.5 (d, J = 6.8 Hz, PhA/B-ortho), 133.5, 134.2, 134.3, 135.2 

(PhA-ipso + PhB-ipso). 31P NMR (162 MHz, CDCl3) δ: 30.6 (P(O)Ph2). HR-MS (ESI): m/z 

[M + H]+ calcd 401.0758 for C23H22FeOP; found 401.0760.  

4.6. Synthesis of 1,2,3-trisubstituted ferrocenes 

4.6.1. (Rp)-1-Bromo-5-ethyl-2-hydroxycarbonyl-ferrocene (Rp)-12 

To a solution of (Sp)-10b (437 mg, 1.491 mmol) in dry THF (5 mL) was added a solution 

of LiTMP in THF/hexane (0.73 M, 4.08 mL, 2.98 mmol) at –78 °C. After stirring for 30 min 

at –78 °C, the temperature was raised to –30 °C and the mixture was stirred for an 

additional 4 h. The reaction mixture was transferred onto crushed dry ice. After 1 h at r.t. 

141



the reaction mixture was dissolved in diethyl ether and extracted with a 10% aqueous 

NaOH solution (50 mL). The basic aqueous phase was extracted with diethyl ether (3 × 

50 mL, organic phases discarded) and the aqueous phase was made acidic with 10% 

phosphoric acid. After extraction with diethyl ether (3 × 50 mL) the combined organic 

phases were washed with brine, dried over MgSO4 and the solvent was removed under 

reduced pressure. The title compound was obtained as a yellow solid (0.386 mg, 77% 

yield). 1H NMR (400 MHz, DMSO-d6) δ: 1.12 (t, J = 7.3 Hz, 3H, CH2CH3), 2.35–2.56 (m, 

2H, CH2CH3), 4.18 (s, 5H, Cp'), 4.47–4.53 (m, 1H, H5), 4.64–4.72 (m, 1H, H4), 12.38 (s, 

1H, COOH). 13C{1H} NMR (100.6 MHz, DMSO-d6) δ: 14.2 (CH2CH3), 21.5 (CH2CH3), 

68.0 (Cq), 68.5 (C5), 68.9 (C2), 72.4 (Cp'), 80.5 (Cq), 92.8 (C1), 170.9 (COOH). HR-MS 

(EI, 30 °C): m/z [M – H]+ calcd 334.9372 for C13H12FeBrO2; found 334.9368. 

4.6.2. (Rp)-1-Bromo-2-ethoxycarbonyl-5-ethyl-ferrocene (Rp)-13 

To a solution of (Rp)-12 (290 mg, 861 mmol) in dichloromethane (23 mL) and methanol 

(2.3 mL) at r.t. was added a solution of diazomethane in diethyl ether (1M, 18 mL, 18 

mmol). The mixture was stirred for 30 min and the solvents were evaporated. The crude 

product was purified by chromatography on aluminium oxide 90 with PE/EA = 5/1 as the 

eluent to give the title compound as an orange solid (2.81 mg, 93% yield). mp 83 °C. 

[α]20
λ (nm) = +0.61 (589),+3.1 (578), +26.7 (546) (c 0.330, CHCl3). 

1H NMR (400 MHz, 

CDCl3) δ: 1.17 (t, J = 7.6 Hz, 3H, CH2CH3), 2.40–2.57 (m, 2H, CH2CH3), 3.84 (s, 3H, 

CH3), 4.17 (s, 5H, Cp'), 4.36 (d, J = 2.8 Hz, 1H, H5), 4.73 (d, J = 2.8 Hz, 1H, H4). 13C 

{1H}NMR (100.6 MHz, CDCl3) δ: 14.0 (CH2CH3), 21.9 (CH2CH3), 51.7 (CH3), 67.8 (C4), 

68.6 (C5), 72.7 (Cp'), 80.1 (Cq), 94.0 (C1), 1 Cq was not observed. HR-MS (EI, 30 °C): 

m/z [M]+ calcd 349.9605 for C14H15BrFeO2; found 349.9606. 

4.6.3. (Sp)-1-Bromo-2-hydroxycarbonyl-5-methyl-ferrocene (Sp)-14 

To a solution of (Rp)-11b (200 mg, 0.7170 mmol) in THF (6 mL) was added dropwise a 

solution of LiTMP in THF/hexane (0.73 M, 1.96 mL, 1.434 mmol) at –78 °C. The resulting 

mixture was stirred at –78 °C for a further 30 min and at –30 °C for 3 h. The solution was 

poured onto crushed dry ice and the heterogeneous mixture was left to warm up to r.t. 

The residue was dissolved in diethyl ether and extracted with 10% aqueous sodium 

hydroxide (50 mL). The basic aqueous phase was extracted twice with diethyl ether 

(organic phases discarded), the aqueous phase was made acidic with 10% phosphoric 

acid and extracted with diethyl ether. The combined organic extracts were washed with 

water and brine, dried over MgSO4 and the solvents were removed under reduced 

pressure. The crude product was obtained as an orange-yellow solid (169 mg, 73% 

yield). mp 145–168 °C (dec.). [α]20
λ (nm): +9.8 (589), +5.1 (578), –26.2 (546) (c 0.654, 
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CHCl3). 
1H NMR (400 MHz, DMSO-d6) δ: 2.04 (s, 3H, CH3), 4.16 (s, 5H, Cp'), 4.53 (d, J = 

2.7 Hz, 1H, H5), 4.66 (d, J = 2.7 Hz, 1H, H4), 12.39 (bs, 1H, COOH). 13C{1H} NMR 

(100.6 MHz, DMSO-d6) δ: 13.9 (CH3), 68.0 (C4), 68.6 (Cq), 70.1 (C5), 72.6 (Cp'), 80.6 

(Cq), 86.9 (Cq), 170.9 (COOH). HR-MS (ESI): m/z [M]+ calcd 321.9293 for C12H11BrFeO2; 

found 321.9296. 

4.6.4. (Sp)-2-Cyano-1-diphenylphosphino-3-ethyl-ferrocene (Sp)-15 

To a solution of (Sp)-10e (269 mg, 1.125 mmol) in dry THF/hexane (5 mL) was added 

LiTMP (0.73 M, 3.08 mL, 2.250 mmol) at –78 °C. After stirring for 30 min at –78 °C, the 

temperature was raised to –30 °C and the mixture was stirred for additional 4 h. The 

mixture was cooled to –78 °C and chlorodiphenylphosphine (0.437 mL, 2.363 mmol) was 

added. After 30 min stirring at –78 °C, the reaction mixture was allowed to warm up to r.t. 

Stirring was continued for an additional 16 h and the reaction was quenched by the 

dropwise addition of water (5 mL). Diethyl ether was added and the phases were 

separated. The organic phase was washed with water and brine (3×), dried over MgSO4 

and the solvent was removed under reduced pressure. The crude product was purified 

by chromatography on aluminium oxide 90 with PE/EA = 9/1 as the eluent to give the title 

compound as a yellow solid (433 mg, 91% yield). mp 162 °C. [α]20
λ (nm) = –108.1 (589), 

–111.4 (578), –131.9 (546) (c 0.298, CHCl3). 
1H NMR (400 MHz, CDCl3) δ: 1.27 (t, J = 

7.8 Hz, 3H, CH2CH3), 2.59 (q, J = 7.8 Hz, 2H, CH2CH3), 3.95 (dd, J = 2.5 Hz, J = 1.0 Hz, 

1H, H4), 4.45(d, J = 2.5 Hz, 1H, H5), 7.16–7.23 (m, 2H, PhA-ortho), 7.25–7.30 (m, 3H, 

PhA-meta + PhA-para), 7.37–7.43 (m, 3H, PhB-meta + PhB-para), 7.52–7.60 (m, 2H, PhB-

ortho). 13C{1H}NMR (100.6 MHz, CDCl3) δ: 14.5 (CH2CH3), 21.8 (CH2CH3), 58.5 (d, J = 

28.9, 2C Hz, C2), 71.3 (C4), 72.1 (Cp'), 73.6 (d, J = 2.4 Hz, C5), 80.1 (d, J = 14.5 Hz, 

C3), 97.8 (d, J = 2.7 Hz, C1), 119.0 (CN), 128.3 (d, J = 6.2 Hz, PhA-meta), 125.35 (PhA-

para), 128.4 (d, J = 6.9 Hz, PhB-meta), 129. 5 (PhB-para), 132.3 (d, J = 18.3 Hz, PhA-

ortho), 134.8 (d, J = 21.4 Hz, PhB-ortho), 136.5 (d, J = 9.5 Hz, PhB-ipso), 138.4 (d, J = 

10.7Hz, PhA-ipso). HR-MS (EI, 30 °C): m/z [M + H]+ calcd 424.0918 for C25H23FeNP; 

found 424.0923.  
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4. Summary 

4.1 Ruthenium complexes of phosphino-substituted ferrocenyl-

oxazolines in the asymmetric hydrogenation and transfer 

hydrogenation of ketones: a comparison. 

As described in Chapter 3.1*, a number of phosphino-substituted ferrocenyloxazolines 

with altered structural features were prepared and tested in the ruthenium-catalyzed 

transfer hydrogenation and hydrogenation of ketones. It was one intention of this work to 

investigate correlations in between ligand structure and catalyst performance. 

Furthermore, it was of interest to compare the results of transfer hydrogenations and 

hydrogenations when these reactions were carried out with identical catalyst precursors. 

For this purpose five ligands, 2–4, recently developed in our group plus three newly 

prepared ligands, 5–7, with varied structural features were used (Chart 10). 

Ligand (R,RFc)-5 which lacks the stereogenic center of the oxazoline unit, was 

prepared by the synthesis procedure depicted in Scheme 21. Amino-ester (R,SFc)-9 

which was easily accessible from Ugi’s amine, (R)-8, underwent with the appropriate 

amino alcohol an aluminium mediated transamidation that afforded the corresponding 

amide (R,SFc)-10. In the next step, (R,SFc)-10 was transformed according to Appel’s 

methodology to oxazoline (R,SFc)-11. Subsequently, treatment with methyl iodide in 

acetonitrile and reaction of the crude ammonium salt with diphenylphosphinyl lithium 

generated the phosphinyl-substituted derivative (R,RFc)-12. Reduction of this phosphine 

oxide with polymethylhydrosiloxane (PMHS) in the presence of titanium isopropoxide 

provided the desired phosphine-oxazoline (R,RFc)-5. 

Ligands (SOx,SFc)-6 and (SOx,SFc)-7 which both lack the stereogenic center of the 

side-chain carbon were achieved in only two steps from commercially available 

ferrocenyl oxazoline (SOx)-13. Alcohol (SOx,RFc)-14, easily obtainable from (SOx)-13, was 

transformed with either diphenylphosphine or bis(3,5-dimethylphenyl)phosphine in the 

presence of chlorotrimethylsilane and sodium iodide into ligands (SOx,SFc)-6 and 

(SOx,SFc)-7 (Scheme 22). 

                                                

*
 The substance numbering is adapted from chapter 3. 

148



 

 

Scheme 21. Synthesis route for ligand (R,RFc)-5. 

 

 

Scheme 22. Synthesis route for ligands (SOx,SFc)-6 and (SOx,SFc)-7. 

Ruthenium complexes of the type [RuCl2PPh3(L)] were prepared from all eight 

bidentate phosphine-oxazoline ligands L = 2–7 plus one reference ligand L = 1 (Chart 

10) and were tested as catalyst precursors in the asymmetric hydrogenation and 

transfer hydrogenation of fourteen ketones. 

In summary, ruthenium complexes [RuCl2PPh3(L)] of eight novel bidentate 

phosphine-oxazoline ligands were synthesized, characterized and screened in transfer 

hydrogenations and hydrogenations of a series of dialkyl and aryl-alkyl ketones. In 

addition, for comparative purposes, the transfer hydrogenations of all substrates were 

carried out with one analogous and well-established FOXAP ruthenium complex (L = 1). 

Two catalysts delivered products with enantiomeric excesses of up to 99% in 

hydrogenation and 98% in transfer hydrogenation. A structural comparison of all ligands 

allowed to deduce that the (S,SOx,SFc) relative configuration constitutes the matching 

configuration while a change of the oxazoline configuration leads to a decrease in 

product enantiomeric excess. Furthermore, a comparison of transfer hydrogenation and 

hydrogenation data showed surprising similarities. In both types of reaction nearly 

identical product e.e.s were obtained when identical catalyst precursors were used and 
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this fact is likely to be the result of comparable reaction mechanisms. The molecular 

structures of two catalyst precursors and of two corresponding acetonitrile complexes 

were studied by X-ray diffraction. From these structures a transition state model for the 

transfer hydrogenations reactions was deduced that allowed a correlation of ligand and 

product absolute configurations. 

 

Chart 10. Ligands 1–7. 

4.2 Diastereoselective -deprotonations and autocatalytic 

alkylations: synthesis of phosphino-substituted ferrocenyl-

oxazolines 

As reported in chapter 3.2, two novel routes were developed for the synthesis of 

the most efficient phosphino-substituted ferrocenyloxazoline ligands (Raffa-FOX 

ligands) (SOx,SFc)-3 and analogs. As compared to the original synthesis, these novel 

routes avoid the use of two enantiopure starting materials and in addition allow the 

synthesis of previously inaccessible diastereomers. 

Both routes started from easily accessible ferrocenyl-oxazolines and in both 

cases the phosphino-substituted side chain was built up diastereoselectively. In the first 

synthesis sequence, 2-oxazolinyl substituted ferrocene aldehydes were directly arylated 

or alkylated through an auto-activated phenyl or alkyl transfer either from diphenyl zinc 

or from dialkyl zinc reagents and provided alcohols (S,SOx,RFc)-18, 20, 23 and 24 in 

form of single diastereomers. Furthermore, these alcohols were transformed into the 

desired phosphino-oxazolines (S,SOx,SFc)-3, 4 and 22 in enantiomerically pure form all 

having the desired (S,SOx,SFc) relative configuration (Scheme 23). 
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Scheme 23. Synthesis of different phosphino-oxazolines via auto-activated 

phenyl or alkyl transfers. 

In the second sequence, ligands of type (SOx,SFc)-2 were synthesized in three 

straightforward steps from easily accessible and commercially available ferrocenyl 

oxazoline (SOx)-5 (Scheme 24). Subsequently, (SOx,SFc)-2 was oxidized to phosphine 

oxide (SOx,SFc)-26. Diastereoselective -deprotonation of (SOx,SFc)-26 with tBuLi in THF 

at –78 °C and quenching with MeI formed (R,SOx,SFc)-17 as the main diastereomer. In 

the next step, reduction of (R,SOx,SFc)-17 resulted in (R,SOx,SFc)-3 which represents the 

side chain epimer of (S,SOx,SFc)-3 (Scheme 25).  

 

Scheme 24. Synthesis of ligands (SOx,SFc)-2 and (SOx,SFc)-11. 

 

 

Scheme 25. Diastereoselective -deprotonation of (SOx,SFc)-26. 

Surprisingly, when (R,SOx,SFc)-17 was reacted with tBuLi and when the lithiated 

intermediate was quenched with water, it cleanly epimerized to (S,SOx,SFc)-17. 
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Subsequently, reduction of (S,SOx,SFc)-17 resulted in (S,SOx,SFc)-3 which in form of its 

enantiomer (R,ROx,RFc)-3 had performed best in the hydrogenation and transfer 

hydrogenation of ketones (Scheme 26). Furthermore, the -dimethylsubstituted 

ferrocene derivative (SOx,SFc)-27 was obtained by treating (R,SOx,SFc)-17 with tBuLi and 

quenching with MeI (Scheme 26). 

 

Scheme 26. Synthesis of (S,SOx,SFc)-3 and (SOx,SFc)-27. 

In summary, two complementary and highly modular synthesis routes for 

ferrocenyl-based phosphino-oxazolines were explored that have the phosphino unit 

attached to a ferrocenylmethyl or a ferrocenylethyl side-chain. Furthermore, a number 

of transfer hydrogenations of ketones were carried out. From a comparison of these 

catalysis results with our previously reported data it is concluded that for this type of 

ligand the (S,SOx,SFc) relative configuration constitutes the matching configuration while 

a change of either the side-chain or the oxazoline configuration leads to less efficient 

transfer hydrogenation catalysts.  
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4.3 Synthesis of chiral, non-racemic ferrocene derivatives via 

ortho-metallation and partial reductive removal of ortho-directing 

amino groups 

As described in chapter 3.3, a three step sequence for the preparation of chiral, 

nonracemic ferrocene derivatives was explored. In the first step 1,2-disubstituted 

derivatives were synthesized from the well-established ferrocenyl amines (R)-2, 

(1R,2S)-3, and (R)-4 via diastereoselective ortho-directed reactions. In the second step, 

suitable reaction conditions for the reductive removal of the amino substituents were 

developed (Scheme 27). A further ortho-lithiation of derivatives 10b–10e and 11b–11d 

which contain well recognised ortho-directing substituents (Br, COOEt, P(O)Ph2 and 

CN) resulted in chiral non-racemic 1,2,3-trisubstituted ferrocenes (Scheme 28). 

In summary, a very general and highly modular procedure has been developed 

for the synthesis of chiral non-racemic 1,2-di- and 1,2,3-trisubstituted ferrocene 

derivatives which all are inclined to be useful starting materials for the preparation of 

chiral, non-racemic ferrocenes such as phosphino or oxazoline based catalysts ligands. 

 

Scheme 27. Preparation of derivatives 7–11. 
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Scheme 28. Synthesis of 1,2,3-trisubstituted ferrocenes 12–15. 
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