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1 Introduction

Since quantum mechanics was formulated in the beginning of the 20th cen-
tury, many new effects were discovered and many new technologies invented.
As well the philosophical and scientific world view as the technological
progress were advanced by this new theory. Even though our modern world
would be unthinkable without the techniques of quantum mechanics, many
predictions and effects of quantum physics are still not well understood.
In particular, the transition from quantum mechanics to classical physics
and the measurement problem are still broadly discussed fields of scientific
investigation.
In the present thesis, I will take a deeper look at how in special cases the
transition between quantum mechanics and classicality is happening and at
how coarse grained measurements can affect an initial state. In particular,
I will investigate a smooth transition between fine-grained and very coarse-
grained measurements.
First, I will give a brief introduction to the mathematical background and
the fundamental postulates of quantum mechanics. Following this, we will
see how classical physics and quantum mechanics can lead to incompati-
ble predictions for measurement outcomes. Further, I will introduce the
so called coarse grained measurements, which are measurements of finite
precision. Subsequently, we will see to what extend coarse grained mea-
surements can influence the state of a system and future evolutions. This
will be based on the work of Johannes Kofler and Časlav Brukner [1], in
which it was shown that one can observe genuine quantum-mechanical ef-
fects no matter how large the system is (i.e. how may particles it consist of).
Furthermore, in their work it was shown that states that display quantum
mechanical features under sharp measurements can appear classical when
fuzzy measurements are made. Finally, I will show qualitatively the distur-
bance caused by projective measurements, by using the state disturbance
measurement introduced by Asher Peres.
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2 Quantum physics and its
mathematical foundation

2.1 Mathematical formalism

Hilbert space

A Hilbert space H is a complete, normed vector space (Banach space) with
imaginary entries, where the inner product of two vectors φ and ψ is defined
as 〈φ|ψ〉 =

∑n
i=1 φ

∗
iψi, where star means the complex conjugated. The

properties of the inner product are:

• 〈φ|ψ〉 = 〈ψ|φ〉∗

• 〈φ|λ1ψ1 + λ2ψ2〉 = λ1〈φ|ψ1〉+ λ2〈φ|ψ2〉

• 〈λ1φ1 + λ2φ2|ψ〉 = λ∗1〈φ1|ψ〉+ λ∗2〈φ2|ψ〉

with λ1, λ2 ∈ C.
If the inner product of two vectors is zero we call these two vectors orthog-
onal to each other. A group of vectors that are in pairs orthogonal to each
other is called an orthogonal system. A complete orthogonal system (no
more vectors orthogonal to all the vectors in the orthogonal system can be
found) is called an orthogonal base. If these vectors are normalized such
that the inner product of any vector with itself is one, then we talk about an
orthonormal base. Every Hilbert space has at least one orthonormal base
and can be spanned by its orthonormal bases.
In section 2.2, I will explain how quantum mechanics and the mathematical
structure of the Hilbert spaces are related to each other.

Dirac notation

Due to the fact that every Banach space has a dual space, also the Hilbert
space H has a dual space H∗. As commonly used, we will also use the
Dirac notation. In Dirac notation, any state vector ψ ∈ H is written as
|ψ〉. The corresponding dual vector ψ∗ ∈ H∗ is written as 〈ψ|. The relation
between vectors |ψ〉 and 〈ψ| is injective and defined over the inner product
as described in 2.1. More specifically, we can say that with |λψ〉 = λ|ψ〉
and 〈λψ| = λ∗〈ψ| where λ ∈ C, the image between H and H∗ is antilinear:

λ1|ψ1〉+ λ2|ψ2〉 −→ λ∗1〈ψ1|+ λ∗2〈ψ2| (2.1)

with

λ1, λ2 ∈ C; |ψ1〉, |ψ2〉 ∈ H; 〈ψ1|, 〈ψ2| ∈ H∗ (2.2)
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Linear operators

A linear operator Â assigns to any state vector |ψ〉 ∈ H another state vector
|ψ′〉 ∈ H, so that the relation between them is linear:

|ψ′〉 = Â|ψ〉 (2.3)

The adjoint linear operator Â† assigns to any dual vector 〈ψ| ∈ H∗ another
dual vector 〈ψ′| ∈ H∗ in the way

〈ψ′| = 〈ψ|Â† (2.4)

where dagger means the complex conjugated and transposed operator.
Any linear operator has the following properties for all choices of ψ:

• Â is equal to B̂ only if Â|ψ〉 = B̂|ψ〉

• (Â+ B̂)|ψ〉 = Â|ψ〉+ B̂|ψ〉

• (Â · B̂)|ψ〉 = Â(B̂|ψ〉)

• In general, Â · B̂ 6= B̂ · Â and we call [Â, B̂] = Â · B̂ − B̂ · Â the
commutator

• If [Â, B̂] = 0 we say that the operators Â and B̂ commute

• 〈φ|Â†|ψ〉 = 〈ψ|Â|φ〉∗

• (Â†)† = Â

• (λÂ)† = λ∗Â†

• (Â+ B̂)† = Â† + B̂†

• (Â · B̂)† = B̂† · Â†

Further, we say that |ψ〉 is the eigenvector of the linear operator Â, if it
fulfills the eigenvalue equality Â|ψ〉 = λ|ψ〉 with the eigenvalue λ ∈ C. The
whole set of solutions λ for Â is called the spectra of Â.

Projection operators

A special and for representation of quantum measurements very important
type of linear operators are the projectors. All projectors P̂ can be written
in the form P̂ = |ψ〉〈ψ|. If we apply operator P̂ to another space state
vector |χ〉 we get

P̂ |χ〉 = |ψ〉〈ψ|φ〉 = c · |ψ〉 (2.5)

where c = 〈ψ|φ〉. This gives us the projection of the vector |φ〉 on the vector
|ψ〉 (see scheme 2.1).
The projection operator has then the properties:

• P̂ 2 = P̂

• P̂ † = P̂

The projectors are Hermitian operators meaning that the eigenvalues of
these operators are real and can be interpreted as observables of a physical
system.
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Figure 2.1: Scheme of the projection.

2.2 Postulates of quantum mechanics

We will now describe how the mathematical formalism of quantum mechan-
ics is related to the observations of the physical world.
For further reading I recommend [2].

Postulate 1: State space

The first postulate defines the space of physical states in quantum mechan-
ics.

Postulate 1: ”Associated to any isolated physical system is a
complex vector space with inner product (that is, a Hilbert space)
known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s
state space.” [2]

In general, every state vector |ψ〉 in a state space can be written as the sum
(superposition) of the state space basis vectors |φi〉 with the corresponding
complex amplitudes αi

|ψ〉 =
∑
i

αi|φi〉, (2.6)

With the condition that |ψ〉 is the unit vector, we get 〈ψ|ψ〉 = 1 and there-
fore

∑
i |αi|2 = 1. This is also called the normalization condition.

The simplest quantum mechanical system is the two level system, also called
qubit. The complete basis for this state space can be written as |0〉 and |1〉.
In this notation any arbitrary state vector can be represented by:

|ψ〉 = α|0〉+ β|1〉, (2.7)

where again |α|2 + |β|2 = 1.
Every state of a two-level systems can be represented as a vector within or
on a three-dimensional unit sphere, the so-called Bloch sphere, on which
are all pure states for a closed system. Taking the following representation
of a pure state:

|ψ〉 = cos(
θ

2
)|0〉+ eiϕ sin(

θ

2
)|1〉 (2.8)

One can identify every state with a point (θ, φ) on the sphere. Here, θ gives
the rotation-angle in the x -z -plane and ϕ (which is the phase between the
amplitudes of |0〉 and |1〉) is the rotation angle in the x -y-plane.
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Figure 2.2: Illustration of the Bloch sphere.(Illustration taken from [3])

Postulate 2: Time evolution

Next we will describe how the dynamics of a quantum-mechanical state can
be described, i.e. how a state vector evolves with time. The second postu-
late describes this time evolution.

Postulate 2: ”The evolution of a closed quantum system is de-
scribed by an unitary transformation. That is, the state |ψ〉 of the
system at time t1 is related to the state |ψ′〉 of the system at time
t2 by a unitary operator Û which depends only on the times t1 and
t2,

|ψ′〉 = Û |ψ〉.” [2] (2.9)

In terms of the Bloch sphere, it means that every possible unitary time
evolution can be represented by rotations of the state vector around the
axes of the Bloch sphere.
Postulate 2 defines how the state evolves after the application of a given
unitary transformation. A continuous transformation of the system in time
is governed by the Schrödinger equation as follows:

i~
∂|ψ〉
∂t

= Ĥ|ψ〉. (2.10)

Here ~ is the Planck constant, we choose the units such that ~ = 1. Ĥ
is called the Hamiltonian. With the knowledge of Ĥ, we can completely
determine the evolution of the system |ψ〉.
The connection between the Hamiltonian and the unitary operator is given
by:

U(t1, t2) = e−iĤ(t2−t1), (2.11)

where we consider a time-independent Hamiltonian.
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Postulate 3: Quantum mechanical measurement

Until now we have discussed the set of states of a closed system and its
temporal evolution. In classical physics, the complete information about
the state and its evolution, would be enough to predict deterministically
future measurement outcomes. In quantum mechanics this is not the case,
and the prediction which measurement outcome will occur is fundamentally
probabilistic. So unlike in classical physics, the measurement process is of
great importance. Postulate 3 defines this process and its effect on the
quantum state.

Postulate 3: ”Quantum measurements are described by a collec-

tion
{
M̂m

}
of measurement operators. These are operators acting

on the state space of the system being measured. The index m
refers to the measurement outcomes that may occur in the exper-
iment. If the state of the system is |ψ〉 immediately before the
measurement then the probability that result m occurs is given by

pm = 〈ψ|M̂ †
mM̂m|ψ〉, (2.12)

and the state of the system after the measurement is

|ψm〉 =
M̂m|ψ〉√
〈ψ|M̂ †

mM̂m|ψ〉
. (2.13)

The measurement operators satisfy the completeness equation,∑
m

M̂ †
mM̂m = 1.” [2] (2.14)

The completeness equation means that the sum over all possibilities add up
to 1: ∑

m

pm =
∑
m

〈ψ|M̂ †
mM̂m|ψ〉 = 1. (2.15)

Projective measurements

A very important kind of measurement for many applications is the projec-
tive measurement. For these measurements, the measurement operators M̂d

are replaced by the projection operators P̂d as introduced in 2.1. The pro-
jector P̂d can be seen as a projection on any vector |d〉 and can be written
as:

P̂d = |d〉〈d| (2.16)

This projectors correspond to the measurement outcome d. The projection
operators P̂d build the spectral decomposition of an observable Ô we want
to measure:

Ô =
∑
d

d · P̂d =
∑
d

d · |d〉〈d|, (2.17)
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whereby P̂d is a projector on the eigenspace of Ô and the d is the corre-
sponding eigenvalue. The existence of this spectral decomposition means
that |d〉 span an orthonormal basis, and thus that the projection operators
P̂d are orthogonal. One therefore has

P̂dP̂d′ = δdd′P̂d. (2.18)

If we choose the Mm in Postulate 3 to be orthogonal, we end up with
projective measurements.
The probability for one specific outcome for a measurement on the state |ψ〉
is then given by:

pd = 〈ψ|P̂d|ψ〉 (2.19)

And the state after the measurement is:

|ψd〉 =
P̂d|ψ〉√
pd

(2.20)

The average value of the observables is

E(Ô) =
∑
d

d · pd (2.21)

=
∑
d

d · 〈ψ|P̂d|ψ〉 (2.22)

= 〈ψ|(
∑
d

d · P̂d)|ψ〉 (2.23)

= 〈ψ|Ô|ψ〉. (2.24)

This easy way of calculating average values can be a very helpful tool.

Positive Operator Valued Measurements

Positive Operator Valued Measurements (POVM) are the most general for-
mulation of measurements in quantum physics. POVM are self-adjoint op-
erators and their values are non-negative.
If we define Em = MmM

†
m, then the properties of Postulate 3 are∑

m

Em = 1 (2.25)

and

pm = 〈ψ|Em|ψ〉. (2.26)

The operators Em are called the POVM elements and the complete set
{Em} is called a POVM. The Em are positive and give the probability of
the corresponding measurement outcome if applied to a state. As long as
the POVM elements are positive and fulfill the completeness relation the
POVM can be chosen freely.
POVM can be a very helpful tool for state discrimination, in which two or
more states can be distinguished in a one-shot-experiment.
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2.3 Spin

An important property of particles is the so called spin. The spin is ana-
logue to the mechanical angular momentum except that it is not caused by
the rotation of a mass but is an intrinsic quantum property. As Otto Stern
and Walther Gerlach proved with their experiment performed in Frank-
furt/Main in 1922, the spin is quantized. With the emergence of quantum
mechanics it became very clear that the spin can be explained only in terms
of quantum mechanics.
The spin plays a very important role in atomic physics. For example, the
spin of the electron has a big influence on the formation of molecules and
on the appearance of matter.
In general, two different families of particles can be distinguished, namely
fermions with half-integer and bosons with integer spin. Due to spin con-
servation, restrictions for the decay of particles are emerging. These restric-
tions are very important in atomic and particle physics. For our further
investigations, we will deal with fermions only. Furthermore, we will limit
our calculations to fermions with spin 1/2, which could be electrons, for
example.
If the spin of such a particle should be measured, the procedure is to choose
a probing axis and then measure the spin quantum-number ms along this
axis. This gives the ”direction in which the rotation axis of the spin is
pointing” and we call it ”spin-up” and ”spin-down”. The values correspond
to ms = ±1/2, respectively. In Dirac notation, we can write | ↑〉 and | ↓〉

or |1〉 and |0〉. In vector notation, one has

(
1
0

)
and

(
0
1

)
. In quantum

computation this is also called a computational or binary basis.
Obviously the Hilbert-space of spin-1/2 particles is two dimensional. As
we noticed in 2.2, all unitary transformations can be seen as rotations on
the Bloch sphere. In the two dimensional case all these rotations can be
implemented by using the Pauli-matrices, where the index tells us the axis
around which the state vector is rotated. The Pauli-matrices are:

σx =

(
0 1
1 0

)
;σy =

(
0 −i
i 0

)
;σz =

(
1 0
0 −1

)
(2.27)

with the property

σiσj = δij · 1 + i
∑
k

εijkσk. (2.28)

where δij is the Kronecker-delta and εijk is the Levi-Civita symbol.
These matrices are hermitian and unitary and together with the unit ma-
trix they span the full vector space of all hermitian 2x2 matrices. This
means that all hermitian operations on a two dimensional system can be
decomposed into a combination of the Pauli matrices and the unit matrix.
All unitary operators on a two-level system can be written in the following
form:

U = eiφeiασieiβσjeiγσk , (2.29)

where the i,j,k can be equal or different, the α, β, γ are the angles of
rotation and φ gives an additional phase. Therefore, a rotation for the

8



angle α around the i -axis is

Ui(ω) = e−iασi = 1 cosα− iσi sinα. (2.30)

Proof:

e−iασi =
∞∑
n=0

in(−α · σi)n

n!
(2.31)

=
∞∑
n=0

(−1)n(−α · σi)2n

(2n)!
− i

∞∑
n=0

(−1)n(α · σi)2n+1

(2n+ 1)!
(2.32)

= 1 cosα− iσi sinα (2.33)

Where we used the Taylor series and the property 2.28 for the Pauli
matrices.

As an example we give the rotation matrix around the y-axis:

Uy(α) =

(
cosα − sinα
sinα cosα

)
(2.34)

This transformation applied on the basis set states gives:

Uy · | ↑> = cosα| ↑> + sinα| ↓> (2.35)

Uy · | ↓> = − sinα| ↑> + cosα| ↓> (2.36)

2.4 Macroscopic spin systems

We will now describe a ”macroscopic spin system”, a composite quantum
system that consists of a large number N of single spins. Such a macroscopic
spin system could be a particle cloud. If the individual spin states are pure
and separable the Hilbert space of the composite system has the dimension
D = 2N and the state of such a system is given by:

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ ...⊗ |ψN〉. (2.37)

One particular such macroscopic spin state could be:

|ΨS〉 = | ↑, ↓, ↑, ↑, ↓, ...〉 (2.38)

I will refer to states of such kind as states in spin basis.
If the spins are in an entangled state it is hard to analytically analyze such
systems due to the large dimensionality of the Hilbert space.
If we are dealing with indistinguishable spin particles the information about
”which particle is in which state” should not be accessible in the quantum
state. In this case we can use the total spin projection along an axis, say
z-axis, M as a representation for the state. Note that the states | ↑, ↓, ↑〉
and | ↑, ↑, ↓〉 for example would have the same projection of the total spin
quantum-number M = 1/2. The state of the composite system can thus be
written as the superposition of the corresponding states with the same spin

quantum-number. In our example |M = 1/2〉 =
1√
3
· (| ↑, ↑, ↓〉 + | ↑, ↓, ↑

9



〉+ | ↓, ↑, ↑〉). Likewise any other |M〉 can be constructed.
For our purposes we will use a slightly different notation. Due to the fact
that the number of particles with spin-up and spin-down defines the value
of M, we can write the state as |(N − p)up, pdown〉, whereby N is the total
number of particles and p is the number of particles with spin down. Our
state can thus in general be written as

|(N − p)up, pdown〉 =
1√(
N
p

) · (
N
p)∑
i=1

Si[| ↑〉⊗(N−p) ⊗ | ↓〉⊗p], (2.39)

whereby Si[| ↑〉⊗(N−p) ⊗ | ↓〉⊗p] gives the permutations for all possible spin
configurations at a given N and p. The set of basis vectors of the composite
system we will call the reduced basis. It can easily be checked that the
resulting Hilbert space for the symmetric subspace spanned by states 2.39
is just N+1 dimensional, not 2N as for distinguishable particles.
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3 Crossing the boarders of
classical physics

3.1 EPR paradox

In the beginning of the 20th century the first hints towards quantum me-
chanics were discovered, like the quantization of light in Max Plancks ra-
diation law or the quantization of the electron trajectory in the atomic
model of Niels Bohr. Physicists were endeavored to integrate the new find-
ings into the ruling realistic world view, according to which a result of a
measurement is existing regardless of whether a measurement is performed
or not. In the 1920th and 30th, Werner Heisenberg, Erwin Schrödinger,
Max Born, Pascual Jordan, Wolfgang Pauli, Nils Bohr, Paul Dirac, John
von Neumann, Friedrich Hund and others formulated the quantum theory.
At this time many effects of quantum physics, like the tunnel effect or the
quantization of light, were already discovered, but no underlying theory was
formulated. With the matrix mechanics of Heisenberg and the wave me-
chanics of Schrödinger it was now possible to make precise predictions.
The theory gave only probabilities for the occurrence of outcomes when a
system is measured. This was in direct contrast to the predominant world
view and classical physics. On the basis of certain set of assumption in
agreement with the classical world view Albert Einstein, Boris Podolsky
and Nathan Rosen came to the result that quantum mechanics cannot be a
complete theory.
In summary, the four main assumptions of Einstein, Podolsky and Rosen
are [4]:

Perfect (anti-)correlation: .”...by measuring either A or B we
are in a position to predict with certainty, and without in any way
disturbing the second system, either the value of the quantity P or
the value of the quantity Q.” (remark: A and B are properties of
particle 1 and P and Q are properties of particle 2, whereby P and
Q do not commute.)

Locality: ”Since at the time of measurements the two systems no
longer interact,no real change can take place in the second system
in consequence of anything that may be done to the first system.”

Reality: ”If, without in any way disturbing a system, we can pre-
dict with certainty (i.e., with probability equal to unity) the value
of a physical quantity, then there exists an element of physical re-
ality corresponding to this physical quantity.”

Completeness: ”Every element of the physical reality must have
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a counterpart in the [complete] physical theory.”

To find a complete theory, that would contain the predictions of quantum
mechanics, the so-called hidden variable theories were suggested. These
hidden variables should contain the information that is necessary to predict
the outcomes of all possible measurement on a (multipartite) system.

3.2 Bell inequality

Ever since the birth of quantum theory the discussions whether or not quan-
tum mechanical description is complete were based on philosophical argu-
ments. Besides, most physicists concentrated more on the practical side of
the new theory. This changed in 1966 when John Stuart Bell published a
paper [5], in which he gave his analysis of the EPR discussion and presented
an inequality which could experimentally distinguish between a local real-
istic (hidden variable) theory and the predictions of quantum mechanics.
The philosophical question became finally verifiable in experiments.
Based on the assumptions of the EPR paper, Bell constructed an inequality
satisfied by the correlations in any local realistic theory. If this bound is
violated no local realistic theory can describe the correlations between the
measured systems. We will discuss more in detail in 3.3 how this inequality
is constructed.

3.3 CHSH inequality

On the basis of the Bell’s work, John F. Clauser, Michael A. Horne, Abner
Shimony and Richard A. Holt (CHSH) formulated an inequality that is valid
also in the case of not perfectly correlated systems [6]. To understand this
inequality we will make a gedanken experiment.
Imagine a source that emits two particles. These particles are then sent,
one to Alice and one to Bob where they are detected. The two observers are
space-like separated. In front of each detector, there is a device with which
one can choose which property of the particle will be measured, the so called
setting. The detectors can record the binary outcomes ±1 (see fig. 3.1). As
an illustration of the measurement one could imagine a spin measurement.
The setting gives the direction along which the spin is measured and the
detector give us the information if the spin is up or down. Alice and Bob
can choose freely in which setting the measurement should be performed.
The setting belonging to Alice we will call a and the one belonging to Bob
b. In every experimental run Alice and Bob read out the detector. We will
call the result for Alice A and the one for Bob B. As already mentioned
before, the possible outcomes are A = ±1 and B = ±1.
We can now write down the joint conditional probability distribution as

P (A,B|a, b), (3.1)

which gives the probability for the appearance of a specific pair of outcomes
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Figure 3.1: Gedanken experiment with the switches determining experimen-
tal setting, detector and source. Alice and Bob each own one
experimental setting and one detector.

A and B under the condition of the chosen setting a and b. If the two
results A and B are correlated one has:

P (A,B|a, b) 6= P (A|a)P (B|b). (3.2)

Now we suppose that there is a so-called local hidden variable λ, that is
shared by the two particles at Alice and Bob. This additional variable
would allow to write the joint probability as:

P (A,B|a, b, λ) = P1(A|a, λ)P2(B|b, λ) (3.3)

The average probability can then be calculated by

P (A,B|a, b) =

∫
Γ

f(λ)P (A,B|a, b, λ)dλ, (3.4)

whereby f(λ) is the probability distribution of the variable λ and Γ is the
total λ space.
We will introduce now the correlation function E(a,b):

E(a, b) = P (+,+|a, b) + P (−,−|a, b)− P (+,−|a, b)− P (−,+|a, b) (3.5)

With 3.4 and 3.3 we get:

E(a, b) =

∫
Γ

f(λ)(P (+,+|a, b, λ) + P (−,−|a, b, λ)

− P (+,−|a, b, λ)− P (−,+|a, b, λ))dλ

=

∫
Γ

f(λ)((P1(+|a, λ) + P1(−|a, λ))

(P2(+|b, λ)− P2(−|b, λ)))dλ

=

∫
Γ

f(λ)Ā(a, λ)B̄(b, λ)dλ

(3.6)

with Ā(a, λ) = (P1(+|a, λ)+P1(−|a, λ)), B̄(b, λ) = (P2(+|b, λ)−P2(−|b, λ)).
Because P1 and P2 are probabilities, they have the property:

0 ≤ Pi ≤ 1 (3.7)

From this follows

|Ā(a, λ)| ≤ 1 |B̄(a, λ)| ≤ 1 (3.8)
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With 3.6 we get

E(a, b)± E(a, b′) =

∫
Γ

f(λ)Ā(a, λ)(B̄(b, λ)± B̄(b′, λ))dλ (3.9)

and then from 3.8

|E(a, b)± E(a, b′)| ≤
∫

Γ

f(λ)|(B̄(b, λ)± B̄(b′, λ))|dλ (3.10)

and

|E(a′, b)∓ E(a′, b′)| ≤
∫

Γ

f(λ)|(B̄(b, λ)∓ B̄(b′, λ))|dλ. (3.11)

With 3.8 this gives us

|B̄(b, λ)± B̄(b′, λ)|+ |B̄(b, λ)∓ B̄(b′, λ)| ≤ 2. (3.12)

Using ∫
Γ

f(λ)dλ = 1 (3.13)

we obtain

|E(a, b)± E(a, b′)|+ |E(a′, b)∓ E(a′, b′)| ≤ 2, (3.14)

which is the Bell inequality in the CHSH form [7].
The locality is assumed by the fact that the hidden variable λ makes the
separation of the probability distribution possible, which means that the
outcome at Alice is totally independent of Bob’s setting.
A third assumption is ”free will”, which is the assumption that f(λ) does
not depend on the local settings a and b.
Now, we will compare this result with the predictions of quantum mechan-
ics. Therefore we will replace the statistical mean values E(a, b) with the
quantum mechanical expectation values 〈aibj〉, which are defined as:

〈aibj〉 = |~ai|
∣∣∣~bj∣∣∣ cos(^aibj), (3.15)

So we get:

K = 〈a1b1〉+ 〈a2b1〉+ 〈a2b2〉 − 〈a1b2〉, (3.16)

with (3.15) and |~ai| =
∣∣∣~bj∣∣∣ = 1, we obtain:

K = cos(^a1b1) + cos(^a2b1) + cos(^a2b2)− cos(^a1b2) (3.17)

Now we can imagine an experiment very similar to figure 3.1. The exper-
iment consists of a source, two polarization filters that are turned to each
other by an solid angle of 22.5◦ and which are turnable by 45◦ and two
detectors that measure the incoming photons (see fig 3.2).

The source emits polarization entangled photons in the state |Ψ〉 =
|HV 〉+ |V H〉√

2
(H for the horizontal and V for the vertical polarized state) and sends one
to Alice and the other one to Bob.
Upon receiving the photons, Alice and Bob can measure the polarization
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Figure 3.2: EPR experiment with photons entangled in polarization.

of the photons with their polarization filters. The directions of the mea-
surement can be plotted on the Bloch sphere. Note that the solid an-
gles and the angles on the Bloch sphere differ by a factor of 2 and that

|±45◦〉 =
|H〉 ± |V 〉√

2
.

Figure 3.3: Measurement directions on the bloch sphere.

With (3.14) we obtain:

cos(45◦) + cos(45◦) + cos(45◦)− cos(225◦) =

=
1√
2

+
1√
2

+
1√
2
− (− 1√

2
) = 2

√
2

(3.18)

This clearly is a violation of 3.14, which means that at least one of the
assumptions we have made does not hold in quantum mechanics. Violations
of this kind can be found in many quantum mechanical systems. If we
assume the free will assumption to hold, it means that quantum mechanics
can not be explained by any local realistic theory.

3.4 Wigner inequality

Based on John Bell’s inequality Eugen Wigner formulated in 1970 an in-
equality for two perfectly correlated particles. To derive this inequality, we
will start with the Bell inequality in CHSH form (see equation 3.14), where
we will replace equation 3.5 with

Cnm = Pnm(+; +) + Pnm(−;−)− Pnm(+;−)− Pnm(−; +). (3.19)
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Whereby, n is the setting at Alice and m is the setting at Bob. The settings
will be chosen such that one of the possible settings at Alice and Bob is
identical (the same measurement is performed).
When we assume perfect correlations between the two particles all correla-
tion functions with n = m will be 1. Using equation 3.14 this gives us:

C12 + C23 − C13 ≤ 1 (3.20)

In the local realistic case this inequality is satisfied because if two of the
correlation functions are fixed the third is bounded as given by 3.20. This
means if we measured e.g. the value of C12 and C23 we know the outcome
of C13 without measuring.
For a quantum mechanical description we have to exchange the statistical
expectation values with the quantum mechanical ones. This gives us:

K = 〈a1b2〉+ 〈a2b3〉 − 〈a1b3〉 (3.21)

We could imagine a similar experiment as described in figure 3.2, where the
an and bm are the directions of the measurement.
With 〈anbm〉 = cos^(an, bm) = cosαnm, we get:

K = cosα12 + cosα23 − cosα13 (3.22)

If we choose the angles to be α12 = 45◦, α23 = 90◦ and α13 = α12 + α23 =
135◦, we end up with:

K =
√

2 (3.23)

Thus we obtain a violation of the Wigner inequality. Again, we get a con-
tradiction between the predictions of the classical world view and quantum
mechanics.

3.5 Leggett-Garg inequality

Until now, we have discussed inequalities with two particles. In general, it
is also possible to extend Bell inequalities to more particles. These parti-
cles will still be treated separately though. The question arises if similar
inequalities can be found also for the case where particles strongly interact,
as e.g. in a solid-state system, such that one has access to collective de-
grees of freedom only and not to single particles. Then, the entire ensemble
of particles behave as a single quantum system. In 1985, Anthony James
Leggett and Anupam Garg found an inequality that exactly addresses this
problem [8].
They derived the inequalities from the so-called macrorealism. Leggett sum-
marized the assumptions behind this notion as follows [9]:

Macrorealism per se.: ”A macroscopic object which has avail-
able to it two or more macroscopically distinct states is at any given
time in a definite one of those states”

Non-invasive measurability: ”It is possible in principle to de-
termine which of these states the system is in without any effect on
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the state itself or on the subsequent system dynamics.”

Induction: ”The properties of ensembles are determined exclu-
sively by initial conditions (and in particular not by final condi-
tions).”

Consider an observable Q that has two outcomes +1 or –1 when measured.
In the first set of runs, measurements take place only at t1 and t2, in the
second set of runs only measurements are conducted at t2 and t3 and in the
third only measurements at t1 and t3 are performed, whereby (0 ≤ t1 <
t2 < t3). Between the measurements the system is time evolved under the
influence of a Hamiltonian. For each measurement we get an outcome Q(ti),
from which we can calculate the temporal correlation function

Cij = 〈Q(ti)Q(tj)〉
=Pi(+1)Pji(+1|+ 1) + Pi(−1)Pji(−1| − 1)

− Pi(+1)Pji(−1|+ 1)− Pi(−1)Pji(+1| − 1),

(3.24)

whereby Pi(Q(ti)) are the probabilities for a specific outcome at time ti and
Pji(Q(tj)|Q(ti)) are the conditional probabilities to obtain at time tj given
the outcome obtained at ti. The Wigner type Leggett-Garg inequality can
then be written as

K = C12 + C23 − C13 ≤ 1, (3.25)

which has to be fulfilled by any macrorealistic theory. Here, K is called the
Wigner expression.
To find out if quantum mechanics obeys or violates this inequality, we again
insert the quantum mechanical expectation values. Using 2.11 and 2.31 we
get:

〈ψ(ti)|U(tj − ti)|ψti〉 = cosω∆tij, (3.26)

with ω the frequency of the rotation. This gives us:

K = cosω∆t12 + cosω∆t23 − cosω∆t13 (3.27)

As seen in 3.4 this can violate the above mentioned inequality. Conse-
quently, we can see that quantum mechanics violates macrorealism.

3.6 Experimental violation of Bell type
inequalities

The theoretical discrepancy between quantum mechanics and classical physics
was a strongly discussed problem for many years. In 1967, C. A. Kocher
and Eugene Commins discovered that calcium atoms emit under certain
circumstances correlated photon pairs [10]. Through this discovery, the ex-
perimental examination became possible. In 1972 Stuart Freedman and
John Clauser were able to show the violation of Bell type inequalities using

17



correlated photon pairs produced by calcium atoms [11].
Since then, many experiments validated the predictions of quantum me-
chanics. Moreover, experiments with other inequalities as well as ”all-
versus-nothing” arguments that do not involve inequalities, for example the
validation of quantum mechanical predictions using so-called GHZ states.
These states were predicted by D. M. Greenberger, M. A. Horne, and A.
Zeilinger in 1989.
All these experiments have confirmed the predictions of quantum mechan-
ics and ruled out local hidden variable theories. Today, it is the accepted
opinion that the effects of quantum mechanics can not be explained by local
realistic theories. The nature of these non-local-realistic effects is still not
totally understood and is an interesting field of scientific investigation.
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4 Granularity

In quantum mechanics the measurement process is of great importance, as
we have seen in chapter 3. Especially in the Leggett-Garg inequality, we
saw that the non-invasive measureability is an important feature for the
emergence of classicality. This outstanding role of the measurement process
in quantum mechanics makes it necessary to reconsider our understanding
of measurements.

(a)

(b)

Figure 4.1: The macroscopic states with the outcome m in a sharp mea-
surement (black lines) and the measurement precision ∆m
for (a) a fine grained measurement and (b) a coarse grained
measurement.

In quantum mechanics the granularity can be seen as the measurement pre-
cision in comparison to the distance of neighboring states. A finer graining
would resolve the individual states of the system, a coarser graining would
average over neighboring states (see fig. 4.1). In the case of coarse grained
measurements this would mean that states that are part of one graining
cannot be distinguished in the measurement.
Not just the size of the granularity can be an important factor, also the
shape of the granularity is of huge importance. Here, with the shape is
meant, that it is possible to choose the coarse graining such that states
that are not neighboring are indistinguishable. In the next chapter I will
introduce such a coarse graining.
As in quantum mechanics the measurement process is very important the
question is how the granularity of quantum mechanical measurements can
effect quantum states.
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5 The Wigner-type Leggett-Garg
inequality under coarse-grained
measurements

As seen in section 3.2, 3.4 and 3.5, Bell type inequalities can distinguish
between quantum-mechanical states and those that can be understood clas-
sically. These inequalities draw a strict boarder between these two theories.
The question is now if and how transitions between the quantum and the
classical world can happen.
As Johannes Kofler and Časlav Brukner showed [1], macroscopic spin sys-
tems can be understood quantum mechanically, even if they appear classical
when the resolution of the distinguishable eigenvalues m in a spin projection
measurement is given by ∆m �

√
j, where j is the total spin length. In

order to show the quantum-mechanical features of the systems, they used

the projectors P± =
1

2
(1 ± Q̂), where Q =

∑j
m=−j(−1)j−m|m〉〈m| defines

the parity measurement. Note that this measurement is a coarse grained
measurement because it assigns always the next-but-one state to the same
projector(see fig. 5.1).

Figure 5.1: Measurement under parity coarse graining.

By using the parity measurement they were able to show that the Leggett-
Garg inequality is violated for arbitrary high-dimensional systems. In the
case of composite systems, this illustrates that even huge particle clouds can
behave quantum mechanically under very particular coarse grained mea-
surements. Furthermore, they showed that under sharp POVM any non-
trivial Hamiltonian can lead to a violation of the Wigner type Leggett-Garg
inequality. [12]
On the other hand, Kofler and Brukner showed that states that under sharp
measurement behave quantum mechanically can appear classically when
fuzzy measurements are performed [1] [12]. Under fuzzy measurements in
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which neighboring states are joined into slots, any macroscopic spin state
can appear as a classical mixture. [12]
The transition between the quantum mechanically behavior under parity
measurements and the classically interpretable results of fuzzy measure-
ments is the object of interest of this thesis.

5.1 Calculation of the Wigner expression K

In order to calculate the Wigner expression K for the Wigner type Leggett-
Garg inequality we first choose an initial state. For reasons of simplicity I
chose the initial state to be the fully polarized state | ↑〉⊗N , on which also
the first measurement is conducted. For this measurement, we will project
the state in the reduced basis on the directions + and –. We will call the
corresponding projectors P+ and P−. These projectors are constructed by
assigning the different states in the reduced basis to P+ or P−. One possibil-
ity for this assignment is to choose randomly which state belongs to which
direction (see section 5.3). Another possibility is to create slots in which
neighboring states can be bundled (see section 5.2). Under the assump-
tion that |N, 0〉 is always assigned to P+, the initial state will not change
during the measurement and can now be time evolved by the Hamiltonian
Ĥ = Ĵ2/2I + ωJy, whereby ω is the spin precision frequency, Jy is the y-

component of the total spin vector Ĵ and I is the moment of inertia. In this
case Ĵ2/2I commutes with the spin projection, so only ωJy contributes to
the time evolution. With 2.11 and 2.30, we end up with the time evolution

given by U(t) = e−iωtJy , where Ji =
∑N

k=1

σik
2

, with i = x, y, z. Then we

can write the time evolution as U(t) = U(t)⊗Nk , whereby k numbers the

individual particles and U(t)k = −iωt
2
σy. The overall time evolution is now

calculated as the time evolution of the subsystems, as discussed in 2.3. The
state in the spin basis after the first time evolution is then given by:

|ψ12〉 = (cosωt| ↑〉+ sinωt| ↓〉)⊗N . (5.1)

The next step is now to conduct the second measurement on our system.
After applying the projectors to the evolved state we end up with the two
probabilities P21(+1| + 1) and P21(−1| + 1) to measure the system being
in state + or – . If we just include projections where projector onto |N, 0〉
is part of P+ and projector onto |0, N〉 of P−, the probability P1(−1) is
zero, because we started in the state in which all spins are ”up”. After the
measurement the projected state will be either |ψ+

12〉 or |ψ−12〉 depending on
which outcome has been observed. With the measured probabilities, the
correlation function

C12 = P1(+1)P21(+1|+ 1)− P1(+1)P21(−1|+ 1) (5.2)

can be calculated (see equation 3.24). Here, P1(+1) = 1 because the state
|N, 0〉 is always assigned to P+. Under the assumption that the total rota-
tion angle ωt of each time evolution is for each time step the same, we can
also evaluate C13 by just adding a factor 2 to the angle of rotation.
After the second measurement, the reduced states have to be converted
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back into the spin basis to calculate the second time evolution. In order
to do so, we again have to calculate the time evolution of every individual
spin as explained in section 2.3. The states after this second time evo-
lution are given by |ψ+

23〉 and |ψ−23〉. These states have to be reconverted
from the spin states to the reduced states to conduct the last measurement.
This measurement gives us the four conditional probabilities P32(+1| + 1),
P32(−1|−1), P32(−1|+1) and P32(+1|−1). And with P2(+1) = P21(+1|+1)
and P2(−1) = P21(−1|+1), we are able to calculate the correlation function
C23 and establish the formula for the Wigner expression K. After that, this
formula can be maximized by varying the angle of rotation ωt to see if the
inequality is violated under any angle.
In this approach it is necessary to change the basis of the state from the
spin representation to the reduced basis to apply the projective measure-
ment. A much more elegant way to apply the time evolution would be to
perform it directly in the reduced basis. The problem is that it is hard to
find an expression for general particle numbers that generate the changes of
the time evolution for different states. All tries of mine to do so failed. In
further investigations, it would be very helpful to find such an expression.

5.2 Projective Slot Measurement (PSM)

One possibility to implement coarse grained measurements, as explained
above, is the Projective Slot Measurement (PSM). In PSM, neighboring
states are bundled together in one slot of length L and the even slots are
assigned to the results +1, and odd to -1. (see figure 5.2).

Figure 5.2: The states are bundled into slots (in this case with length L=2)
and then projected accordingly onto P+ and P–.

The length of the slot (number of neighboring states per slot) can be chosen
freely, from one state per slot (parity measurement) to half of the states
(N/2 ) per slot (semi classical measurement). The projectors P+ and P−
can then be written as
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P+ =
x∑
s=1

y∑
r=0

|(N + 1− (2s− 1)L+ r)up, ((2s− 1)L− r − 1)down〉 ·

〈(N + 1− (2s− 1)L+ r)up, ((2s− 1)L− r − 1)down|
(5.3)

and

P− =
x∑
s=1

y∑
r=0

|(N + 1− 2sL+ r)up, (2sL− r − 1)down〉 ·

〈(N + 1− 2sL+ r)up, (2sL− r − 1)down| .
(5.4)

With L the length of the slots, x =
N + 1

2L
the number of slots and y = L−1.

To have x integer, we assume odd particle numbers N and also choose L
such that x remains integer.

5.3 Random Projection Measurement (RPM)

A second possibility to assign a state to the projection direction is by doing
it randomly (see fig. 5.3).

Figure 5.3: The projection direction for each state is chosen randomly.

In this case, the projectors are given by:

P+ =

N+1
2∑

h=1

|(N + 1− v[h])up, (v[h]− 1)down〉 ·

〈(N + 1− v[h])up, (v[h]− 1)down|

(5.5)

and
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P− =
N+1∑

i=N+1
2

+1

|(N + 1− v[i])up, (v[i]− 1)down〉 ·

〈(N + 1− v[i])up, (v[i]− 1)down|

(5.6)

Whereby v is a random list of the numbers 1 to N+1.
The RPM was conducted in the simulation to find out if there are any
combinations for P+ and P− that have a higher or lower violation of the
Leggett-Garge inequality, than it is possible in measurements with PSM.

5.4 Numerical solution

In order to simulate the violation of the Wigner type Leggett-Garge inequal-
ity I used Mathematica and the QuantumNotation package from José Luis
Gómez-Muñoz and Francisco Delgado.
The task was to write a code that simulates the Wigner expression K of
the inequality for a large number of particles with the angle of rotation as
a variable. In sections 5.1, 5.2 and 5.3, I already showed how to calculate
the inequality and how the projectors can be implemented. The remaining
task was to find a way to implement the time evolution in the simulation.
The two main difficulties were the conversion and back conversion from the
spin to the reduced states and the time evolution itself.
In the computational solution we start with the spin state

|ψ〉 =
n
⊗
a=1

(Cos[w] · |0â〉+ Sin[w] · |1â〉), so after the first time evolution.

Note that in this notation the |0î〉 are the | ↑〉 and the |1î〉 are the | ↓〉.
For the conversion from the spin states to the reduced states, I used the
following For-loop:

For [j = 0, j ≤ n, j++,

If
[
j < 1, |φ〉 = |φ〉, |φ〉 =

∣∣1ĵ〉 · 〈0ĵ∣∣ · |φ〉] ;

|ψkl〉 = |ψkl〉+
√

Binomial[n, j] |jdown, (n− j)up〉 · (|φ〉)† · |ψ〉]
(5.7)

Whereby |φ〉 =
n
⊗
i=1
|0î〉 and |ψ〉 are the spin states and the index kl defines

the time interval. This For-loop can be used because the prefactors for all
terms of the spin states belonging to the same reduced state are equal.
The reconversion from the reduced states to the spin states is then imple-
mented by using:

For[j = −n,−n ≤ j ≤ n, j++,

If[Element

[(
j

2
+

1

2

)
, Integers],

|ψ′xy〉 = |ψ′xy〉+ 1
/√

Binomial[n, (j + n)/2] ·

With[{m = j}, Sum[

If[DigitSum[a]==m,
n−1
⊗
k=0
|(−BitGet[a, k] + 1) ˆk+1〉, 0],

{a, 0, 2∧n− 1}]] · 〈(n− (j + n)/2)down, ((j + n)/2)up| · |φxy〉]]

(5.8)
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Here, the With-loop gives the sum over all permutations of the spin state
for a given reduced state |φxy〉, where the index xy defines the time interval.
The large computational complexity of the time evolution was a big prob-
lem. The QuantumNotation package reaches its limits, using an up-to-date
PC, at particle numbers of 5-7 (for higher particle numbers the evaluation
time is too long). To increase the speed of the evaluation, I used the ma-
trix representation for the spin states to compute the time evolution. This
speeds up the code and an computation with particle numbers up to N=11
were possible. To change between the Dirac notation and the matrix rep-
resentation, I used the DiractoMatrix and MatrixtoDirac functions of the
QuantumNotation package.
In retrospect, it would have been better to write the code from the begin-
ning in matrix representation. This would have resulted in a higher speed
because less conversions would have been necessary. One problem in matrix
representation though is the representation of the projectors in the reduced
states. In future codes, this problem can be solved by using the spin rep-
resentation for the projectors. For now, a particle number of N = 11 is
sufficient and the refinement of the code can be done for future simulations.
The present code can be used for arbitrary particle numbers. The differ-
ent measurements, as e.g. PSM and RPM, can be implemented by just
exchanging the construction of the projectors.
For the analysis, I used the NMaximize function of Mathematica which gives
the maximal violation for the inequality.
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5.5 Results

PSM

For PSM I used the particle number N = 11 and a slot length of L =
1, 2, 3, 6. I did not use the value L = 4 because it would lead to an uneven
assignment of the states to the projection operators.

1 2 3 4 5 6
w

-3

-2

-1

1

K

N11L6

N11L3

N11L2

N11L1

Figure 5.4: Values of the temporal correlation function depending on the
angle of rotation for N = 11 and L = 1 in blue, L = 2 in red,
L = 3 in green and L = 6 in orange.

In figure 5.4, one can see the value of the Wigner expression maximized over
the rotation angle for different values of L. The maximal values of K with
the corresponding angle w = ωt are then:

L K w
1 1.1986 0.1038
2 1.0996 0.1560
3 1.0938 0.6607
6 1.0102 0.5689

Table 5.1: The maximal values of K with the corresponding angle w

As expected the value decreases from a maximum of 1.1986 (at global max-
imum) for the parity measurement to a minimum of 1.0102 (at global max-
imum) for the semiclassical measurement. Initially, a dropping of the value
to 1 was expected, so that no violation of the inequality is measured in the
semiclassical case. This is clearly not observed. One explanation for this be-
havior could be the use of projective measurements instead of POVM. The
rather sharp projective measurements could lead to a disturbance of the
state. One indication for this hypothesis is also that, starting from L = 3,
the dominant violation of the inequality is at a different angle than before.
This effect should be studied more in detail to make better predictions.
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Figure 5.5: Values of the violation for the global maximum of the Wigner
expression K for different L.

In figure 5.5, we can clearly see that the violation of the Wigner type
Leggett-Garg inequality is decreasing for larger slot sizes, as expected. This
means, that under these circumstances the classical description of a state
arises out of the fact that single quantum mechanical states cannot be re-
solved.

RPM

Using the RPM projectors, I produced large output files. I selected these
lists and give below a list outcomes. Note that due to the construction
of the code only outcomes with the total polarized state |N, 0〉 projected
onto + and |0, N〉 projected onto – could be used. The goal was to find
out if there are projectors for which the Wigner type inequality is stronger
violated than for PSM.
For a particle number of N = 11, we end up with 665280 possible combina-
tions for the projectors. Due to the assignment of |N, 0〉 to P+ and |0, N〉
to P−, only 55440 could be used for analysis. I used a much smaller number
of combinations, such that the following results can just be seen as a small
selection and it is even possible that there are projectors for which the value
of K might be larger or smaller.
It seems that there are many possibilities for choices of projectors such that
the violation of the Wigner type Leggett-Garg inequality is larger than in
the case of parity measurement. In table 5.2, I give a selection of projectors
which lead to a higher violation of the inequality.
The most common values of K that are higher than the value for the parity
measurement were between 1.3 and 1.4. The quantum mechanical bound
of the inequality of K = 1.5 was not reached in the available data.
These results are very interesting because one would expect that the parity
measurement leads to the highest violation of the inequality.
Violations lower than those of the semi classical measurement were very
rare. In fact, I found only one set of projectors in my data that lead to a
lower violation. The projector P+ of this set is given by
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K p Plot of K over w
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w
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-1

1

K

1.19867 0,2,4,7,8,9

1 2 3 4 5 6
w

-3

-2

-1

1

K

1.2178 0,1,2,3,5,6
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w

-3
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-1

1

K

1.25287 0,1,2,3,4,8

1 2 3 4 5 6
w
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-2

-1

1

K

1.31029 0,3,5,8,9,10

1 2 3 4 5 6
w

-3

-2

-1

1

K

1.38973 0,4,6,8,9,10
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w

-3

-2

-1

1

K

1.41922 0,5,6,7,8,9

1 2 3 4 5 6
w

-3

-2

-1

1

K

1.42713 0,6,7,8,9,10

Table 5.2: List of the values of K, with the reduced states given by the values
of the numbers of particles with spin down p that are projected
onto P+ and the plot for the values of K over the angle w.
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P+ = |11ûp, 0 ˆdown〉 · 〈...|+ |10ûp, 1 ˆdown〉 · 〈...|+ |9ûp, 2 ˆdown〉 · 〈...|
+ |8ûp, 3 ˆdown〉 · 〈...|+ |5ûp, 6 ˆdown〉 · 〈...|+ |2ûp, 9 ˆdown〉 · 〈...|

(5.9)

and leads to the value K = 1.00649. In figure 5.6 we can see the value of K
over the rotation angle.

1 2 3 4 5 6
w

-3

-2

-1

1

K

Figure 5.6: The value of K over the rotation angle of the time evolution w
for the minimum violation.
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6 State disturbance due to
coarse-grained measurements

As we have already seen in section 2.2, the quantum mechanical mea-
surement concept is fundamentally different from the classical concept of
measurements. In quantum mechanics, a measurement leads to different
states before and after the measurement, such that the assumption of a
non-invasive measurement is clearly refuted. The question is then, which
effect do coarse grained measurements have on the state of a quantum sys-
tem.
As Asher Peres showed, a quantum mechanical systems undergoes the less
disturbance, the more fuzzy a measurement is (see [13], page 398). To show
this he used the macroscopic spin state of a particle ensemble, which at the
beginning was in the full polarized state |ψ1 = |z+〉⊗N . Then, the state is
rotated around the x-axis by π/2. If now a sharp measurement in z-direction
is executed we end up with the probability distribution shown in figure 6.1.

Figure 6.1: Expected probability distribution for a measurement of Jz after
a rotation of π/2 around the x-axis, with j=32. (figure taken
from [13])

If we turned this state by another π/2 without measuring it, we would end
up with the total polarized state |ψ2 = |z−〉⊗N . The question is now, how
the state after the second rotation would look like if a fuzzy measurement
was executed after the first rotation.
As we can see in figure 6.2, the outcome of the second measurement de-
pends on the fuzziness of the first measurement. A sharp measurement
totally destroys the state, so that the second measurement gives a mixture
of all states and not the expected state |ψ2 = |z−〉⊗N . The more fuzzy the
measurement gets, the more similar the state becomes to the expected state
without disturbing measurement. If these results can be reconstructed by
using PSM and RPM is the subject of the following contemplation.
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Figure 6.2: Expected probability distributions for a second measurement
of Jz, after one more rotation by π/2. The results depend on
the ∆m of the meter which performed the first measurement.
From top to bottom,this ∆m (shown as a horizontal error bar)
is 0, 1, 2, 4, and 8. Different vertical scales are used in the
various diagrams, for better visibility. In each diagram, the sum
of lengths of the vertical bars is 1, by definition. (figure and
caption taken from [13])
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6.1 Numerical solution

For the computation of the state disturbance, proposed by Peres, I used a
modified version of the code explained in section 5.4. Again we will start
the code after the first time evolution with the state
|ψ〉 =

n
⊗
a=1

(Cos[w] · |0â〉+ Sin[w] · |1â〉). I will again simulate the outcome

depending on the angle of rotation and insert later w = π/4 because other-
wise the numerical calculation lead to errors and incorrect solutions due to
rounding errors.
For the coarse grained measurement I chose PSM and selected projectors of
RPM. Since the outcomes for P+ and P− are the same, I decided to present
only the outcomes for P+. For the state evolution after the coarse grained
measurement I use the time evolution as explained in chapter 5. The time
evolved state is then measured sharply along z -direction and the resulting
probability distribution is plotted.

6.2 Results

PSM

To clarify how the state looks like after the first rotation, I made a sharp
measurement of the state after the first time evolution in z-direction. As
one can see in figure 6.3, the resulting probability distribution corresponds
to the probability distribution in figure 6.1.

2 4 6 8 10 12

0.05

0.10

0.15

0.20

Figure 6.3: Sharp measurement after the first rotation by π/2. With the
total polarized state | ↑〉⊗N on the right side of the coordinate
system.

If we execute now the PSM with the slot length L = 1, 2, 3, 6 and turn the
state by another π/2, we obtain after the sharp measurement, the proba-
bility distributions, as shown in figure 6.4.
If we compare the sharpest of the fuzzy measurements in figure 6.2 with the
sharpest of our coarse grained measurements, the parity measurement, one
can see that we get the two total polarized states instead of a superposition
between all states. For larger and larger L one can see that the probability
distribution forms closer and closer to the value that would be expected
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Figure 6.4: Probability distribution of the coarse grain measured state after
the second rotation with (a) L = 1, (b) L = 2, (c) L = 3 and
(d) L = 6. With N-p+1 on the x -axis.

without any measurement. For L = 6, the semi classical measurement, the
probability distribution is around the fully polarized state, but unlike in
the simulation of Peres, I never measured the state | ↓〉⊗N with probability
1. This corresponds with the result that the violation of the Wigner type
Leggett-Garg inequality is not vanishing for the semi classical measurement
and may occur, as mentioned before, because I used projective measure-
ments instead of POVM and have a small number of particles.
I was able to show that the semi classical measurement gives outcomes
close to the value one would expect when no disturbing measurement is
performed, while the parity measurement leads to a higher state distur-
bance. The smaller the value of L, the bigger the disturbance of the initial
state, which corresponds to the considerations of Peres.

Analytical results for the outcomes of the parity
measurement

The time evolution for the rotation around the y-axis of π/2 is given by

Û(t) = e−i
π
2
Ĵy . (6.1)

The projectors for the parity measurement are:

P̂± =
1± Q̂

2
. (6.2)

Where the parity measurement operator is given by (see chapter 5):

Q̂ = eiπ(j−Ĵz).(6.3)

The joint operator for the two time evolutions and the parity measurement
is then
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Û(t) · Q̂ · Û(t) =
1

2
e−i

π
2
Ĵy · e−i

π
2
Ĵy ± 1

2
e−i

π
2
Ĵye−iπĴze−i

π
2
Ĵy . (6.4)

Whereby I neglected the j-term, because it will just give an additional phase.
Using 2.30, we obtain:

Û(t) · Q̂ · Û(t) =
1

2
(1 cos

π

4
− iσ̂y sin

π

4
)⊗N · (1 cos

π

4
− iσ̂y sin

π

4
)⊗N±

1

2
(1 cos

π

4
− iσ̂y sin

π

4
)⊗N · (1 cos

π

2
− iσ̂z sin

π

2
)⊗N · (1 cos

π

4
− iσ̂y sin

π

4
)⊗N

With the mixed product property of the Kronecker product, this gives

Û(t) · Q̂ · Û(t) =
1

2
((1

1√
2
− iσ̂y

1√
2

) · (1 1√
2
− iσ̂y

1√
2

))⊗N±

1

2
((1

1√
2
− iσ̂y

1√
2

) · (−iσz) · (1
1√
2
− iσ̂y

1√
2

))⊗N

And we get:

Û(t) · Q̂ · Û(t) =
1

2
(−iσ̂y)⊗N ±

1

2
(−iσ̂z)⊗N (6.5)

If we apply this operator to the total polarized state |N, 0〉 = | ↑〉⊗N , we
end up with:

1

2
((−iσ̂y)⊗N ± (−iσ̂z)⊗N) · | ↑〉⊗N =

1√
2

(| ↓〉⊗N ± (−i)N | ↑〉⊗N) (6.6)

Whereby I have already inserted the new normalization factor in the last
step. This is the measured even superposition of the two total polarized
states.

RPM

Animated by the surprising outcome in subsection 5.5, I wanted to see if the
projectors that lead to a stronger or weaker violation of the inequality then
PSM will also disturb a state more respectively less. For this purpose I used
again the scheme of Peres and just replaced the PSM by the corresponding
RPM projectors.
First I chose the projectors with the highest violation of the Winger-type
Legget-Garg inequality out of chart 5.2. As one can see in figures 6.5 the
projectors for a violation of 0.41922 lead to a different probability distribu-
tion for P+ and P−. The probability distribution is close to the expected
value without any measurement but the probability for the exact expected
state is lower than in the semiclassical case.
More surprising is the resulting probability distribution for the projectors
that give a violation of 0.42713. This probability distribution is similar to
the distribution given by the semiclassical measurement which is unexpected
because naively thinking one would expect that a higher state disturbance
would also lead to a higher violation of the inequality.
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Figure 6.5: Probability distribution of the coarse grain measured state af-
ter the second rotation for (a) P+ given a violation of 0.41922,
(b) P− given a violation of 0.41922, (c) P+ given a violation of
0.42713, (d) P− given a violation of 0.42713.

In figure 6.6 we can see the state disturbance for the projector which leads
to a violation lower than for the semiclassical case. Very interesting here
is that the state disturbance under this projector seems to be higher than
the state disturbance of the parity measurement. There is also a slight
difference between the probability distribution for P+ and P−.
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Figure 6.6: Probability distribution of the coarse grain measured state after
the second rotation for (a) P+ given a violation of 0.00649, (b)
P− given a violation of 0.00649.

These results indicate that in some cases the violation of the Leggett-Garg
inequality and the state disturbance measurement proposed by Peres are
not equivalent. The reasons for this behavior are not clear yet and need to
be investigated more in detail.
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7 Example for an implementation
of coarse grained
measurements in experiments

I will now present an experiment proposed by A. Kuzmich, N. P. Bigelow
and L. Mandel in 1998 [14] and developed by Andres Sørensen and Klaus
Mølmer [15]. In these papers, a scheme how atomic spins can be measured
without destroying their spin state is presented, using the so-called Quan-
tum Non-Demolition (QND) measurements.

Figure 7.1: (a) Energy levels of atoms with ground state |f〉 and |g〉. The
cavity couples the state |f〉 to the excited state |e〉 with the
coupling strength g and detuning δ. |e〉 decays to |o〉 with the
decay rate γ. (b) Scheme of the experimental realization with
two atoms in a cavity. (Figure taken from [15])

In this scheme, a large number of spin particles (atoms) as well as a large
number of probe particles (photons) is used. The spin particles are trapped
inside an optical cavity. The photons are send into the cavity and can
interact with the atomic spin states (see figure 7.1). In our case |g〉 = | ↓〉
and |f〉 = | ↑〉. The frequency of the incoming light is now chosen such that
it drives a non-resonant transition between |f〉 and |e〉 with the detuning δ
and the coupling constant g. The transition is blind for |g〉. The light-spin
interaction is then described by the effective interaction Hamiltonian:

Ĥeff =
∑
k

gk|e〉〈f |kĉ+ g∗kĉ
†|f〉〈e|+ δ|e〉〈e|k (7.1)

With gk the coupling constant for the kth atom and ĉ the annihilation op-
erator for the single field mode light beam. As Andres Sørensen and Klaus
Mølmer showed, if we now choose the light resonant with the cavity but far
detuned from the atomic transition, the light beam will undergo a phase
shift with an angle proportional to the number of atoms in the state |f〉.
By changing the separation of the states and the detuning of the incoming
light, the resulting phase shift can be modified.
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By choosing the phase shift to be π per atom in the state | ↑〉, we can only
distinguish neighboring states, all next-but-one states will be indistinguish-
able from each other. This leads directly to the situation we discussed for
the parity measurement.
This is just one example for an experimental implementation of coarse
grained measurements. There are many other effects that could be used
for this purpose, e.g. spin-polarization coupling and spin-phonon coupling.
All these techniques are already used in experiments or very close to an
experimental realization and could be used in the near future to validate
the effects of coarse grained measurements.
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8 Conclusion

I was able to show, using simulations, that Projective Slot Measurement
(PSM) lead to weaker violations of the inequality the larger the slot is
(chapter 5). The classical limit could not be reached for the semiclassical
measurement: the resulting violation was weak but still present. For higher
N and by using coarse-grained POVM it is expected that this violation will
vanish. This should be tested in future theses. What my results suggests
is that the transition from quantum mechanical to classical description is a
continuous one. The exact model for this transition is still not known, but
the present data may help finding such a model.
In chapter 6, I could show qualitatively, by using a technique found by
Peres, that the longer the slots, the lower the state disturbance. This is
another indicator that the slot size for PSM has a big influence on the state
that is measured.
Furthermore, I showed by using Random Projection Measurement (RPM),
that there are projectors for which the violation of the Leggett-Garg inequal-
ity can be higher than in the case of parity measurement and lower than in
the semiclassical case. This result was surprising because one could expect
that the parity measurement, which separates neighboring states from each
other, would be the measurement that displays the quantum character of
the system the best. Also one could expect that the semiclassical measure-
ment, which is the closest to a classical measurement would give the lowest
possible violation. These effects should be investigated more in future.
Using the state disturbance measurement of Peres I found out that the pro-
jectors which lead to a stronger or weaker violation do not lead necessarily
to a stronger or weaker state disturbance, respectively. This result might
be an indicator that the violation of the Leggett-Garg inequality and the
state disturbance, measured with the scheme of Peres, are not equivalent in
some cases.
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9 Outlook

Coarse grained measurements and their influence on the state during the
measurement are a very interesting field of scientific investigation and can
lead, for example, to applications in state tomography, where they can help
to maximize the ratio of knowledge of a state to the disturbance of the
state. But it will be necessary to understand the effects of these mea-
surements more in detail in order to find the right coarse graining for an
application. One big step towards this understanding would be the analyt-
ical formulation of general coarse grained measurements and their influence
on an initial state.
One of the interesting questions to address would be to to find out if the
states that lead to a higher violation than the parity measurement and a
lower violation than the semiclassical measurement can be explained ana-
lytically or if they are an artifact of the simulation.
Another interesting task would be to use POVM instead of projective mea-
surements, to see if the violation of the semiclassical case drops to zero and
if POVM predicts different effects on the initial state for other slot lengths.
A very important and interesting step will be the realization of coarse
grained measurements in experiments.
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Zusammenfassung

Während meiner Masterarbeit beschäftigte ich mich mit sogenannten grob
gekörnten (coarse grained (CG)) Messungen und deren Wirkung auf quan-
tenmechanische Systeme. CG Messungen können dabei zum Beispiel un-
scharfe Messungen oder ungewöhnliche Zuordnungen der Zustände zu einem
Messergebnis sein, sie sind also so etwas wie die Pixelung der unterscheid-
baren Eigenwerte.
Wie Johannes Kofler und Časlav Brukner zeigen konnten [12], können
makroskopische Spin Systeme, wie z.B. Elektronenwolken, unter solchen
CG Messungen als klassisch betrachtet werden, wenn ∆m �

√
j gilt, also

die Auflösung von unterscheidbaren Eigenwerten ∆m schlechter ist als die
Quadratwurzel der Länge des Gesamtspins j. Werden solche Systeme allerd-
ings mittels der Paritätsmessung gemessen, eine CG Messung bei der alle
Zustände auf zwei Messergebnisse projiziert werden und zwar so, dass immer
benachbarte Zustände unterschiedlichen Ergebnissen zugeordnet werden, so
sind diese Systeme nur quantenmechanisch erklärbar. Die Unterscheidung
zwischen klassischer und quantenmechanischer Erklrung wurde dabei über
Einhaltung oder Verletzung der Wigner-Leggett-Garg-Ungleichung getrof-
fen.
Meine Aufgabe bestand nun darin den Zwischenraum zwischen diesen bei-
den Extremen zu füllen und heraus zu finden wie der Übergang von klas-
sisch interpretierbaren zu nur quantenmechanisch interpretierbaren Syste-
men abläuft. Dazu erstellte ich ein Mathematica-Programm in dem ich
die Resultate der Ungleichung simulierte und verwendete Projective Slot
Messungen (PSM), eine projektive Messung bei der zwischen zwei Projek-
toren unterschieden wird, wobei die Zuordnung der einzelnen Zustände zu
den Projektoren durch Slots geschieht. Die einzelnen Slots werden dann
den Projektoren zugewiesen, sodass immer benachbarte Slots zu unter-
schiedlichen Projektoren gehören. Ein Slot kann dabei einen Zustand
(Paritätsmessung), zwei, drei, usw., bis zur Hälfte aller Zustände enthalten
(semiklassische Messung). Unter Verwendung dieser Projektoren konnte die
zeitliche Korrelationsfunktion und der Wert des Wigner-Legget-Garg Aus-
drucks berechnet werden und die Werte verglichen werden. Aus meinen
Simulationen lässt sich ganz klar eine Abfall der Höhe der Verletzung der
Ungleichung mit der Länge der Slots feststellen. Für die semiklassische
Messung konnte allerdings nicht, wie analytisch vorausgesagt, eine Abfall
des Wigner-Leggett-Garg Wertes K unter die klassische Grenze gemessen
werden. Dies kann an der Tatsache liegen, dass für die vorliegenden Berech-
nungen projektive Messungen verwendet wurden, im analytisch bewiesenen
Fall aber POVM benutzt wurden und dass hier eine relative kleinen Anzahl
an Systemen betrachtet wurde.
Im weiteren überprüfte ich mittels einer zufälligen Zustandszuordnung zu
den Projektionsrichtungen (RPM) ob es Projektoren gibt die eine höhere
oder niedrigere Verletzung der Ungleichung zur Folge haben. Wie sich zeigte



gibt es eine hohe Anzahl an Projektoren, die die Ungleichung höher Verlet-
zen als die Paritätsmessung. Projektoren die eine geringere Verletzung als
die semiklassische Messung zur Folge haben sind hingegen weitaus seltener.
Im nächsten Schritt wollte ich mir nun die durch die Messung hervorgerufene
Störung des Ausgangszustandes genauer ansehen. Dazu benutzte ich ein
Verfahren, das Asher Peres [13] erstmals benutzte um zu zeigen wie un-
scharfe Messungen zu einer geringeren Störung der Ausgangszustände führen
können. Dabei wird zunächst eine Zeitevolution des voll polarisierten Aus-
gangszustandes durchgeführt, snschließend die störende Messung und zum
Schluss erneut eine Zeitevolution. Dabei sollte der Zustand ohne die störende
Messung durch die beiden Zeitevolutionen in den anderen voll polarisierten
Zustand überführt werden, also z.B. von alle Spins nach oben zu alle Spins
nach unten.
In meiner Simulation ergab sich nun, dass verglichen mit dem zu erwartenden
Ergebnis ohne Zwischenmessung, die Paritätsmessung den Ausgangszustand
in eine Superposition aus den voll polarisierten Zuständen überführt, was
ich auch analytisch zeigen konnte. Die semiklassische Messung hingegen
führt zu einer Anordnung der Wahrscheinlichkeitsverteilung um den ohne
Störung zu erwartenden Zustand herum. Dies zeigt, dass je kleiner der Slot,
desto größer wird die Störung des Ausgangszustands. Dies stimmt mit den
Ergebnissen der Verletzung der Leggett-Garge-Ungleichung überein.
Eine überprüfung der Ergebnisse der RPM zeigte allerdings, dass für bes-
timmte Projektoren eine höhere bzw. niedrigere Verletzung der Ungleichung
nicht zu einer höheren bzw. niedrigeren Störung des Systems führen kann.
Dies ist als Anzeichen dafür zu werten, dass die Verletzung der Ungle-
ichung und die Störungsmessung nach Asher Peres in bestimmten Fällen
nicht äquivalent sind.
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