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Introduction

The study of the regularity properties of the real line may be approached
in several ways. Since the “birth” of Solovay’s model, most of the studies
in this area have been focused on Lebesgue measurability and Baire pro-
perty. Furthermore, during the years, the interest of experts in this field has
touched many other notions of regularity, like Sacks-, Miller-, Laver- and
Silver-measurability, which we will introduce in section 1.1.3.

After Solovay’s article [So70], one had to wait about fifteen years to
see other results on this topic, comparable to those of Solovay, in terms
of deepness and appeal; in 1984, Shelah introduced a very profound and
mysterious tool, called amalgamation, to construct Boolean algebras having
strong homogeneity, one of the crucial properties of the Levy Collapse used
by Solovay. In [Sh84], Shelah was able to solve the most intriguing question
arisen from Solovay’s work, i.e., one could build a model for ZF+DC plus
the statement

BP ≡ “every set of reals has the Baire property”,

without using an inaccessible, whereas the analogous statement for Lebesgue
measurability (LM ) could not avoid the use of an inaccessible. Furthermore,
in [Sh85], Shelah also solved another important problem, which was to
separate LM from BP, i.e., to construct a model

N |= LM ∧ ¬BP.

(Note that a model for BP ∧ ¬LM is an indirect consequence of the result
in [Sh84]).

The aim of this work is mainly devoted to solve analogous problems for
other notions of regularity. Hence, we will analyze statements of the form

Γ(P) ≡def “every set of reals is P-measurable”,

where P-measurability will be introduced in definition 18 in a rather general
way and it will be exactly our notion of regularity. More precisely, our notion
of measurability will be strong enough to capture all of the most popular
notions of regularity, such as Baire property, Lebesgue measurability, Sacks-,
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Silver-, Miller- and Laver-regularity. However, our notion will not consider
asymmetric properties, like perfect set property.

In particular, we will try to construct models to separate such statements
for different notions of measurability, i.e., to construct models N such that

N |= Γ(P) ∧ ¬Γ(Q),

for different forcings P,Q.
As we said, we will focus on regularity properties coming from:

Sacks forcing. S = {T ⊆ 2<ω : T is a perfect tree}, ordered by ⊆;

Miller forcing. M = {T ⊆ ω<ω : T is a superperfect tree}, or-
dered by ⊆;

Laver forcing.

L = {T ⊆ ω<ω : T is a tree ∧∀t ∈ T (t D Stem(T )⇒ t is ω-splitting)}

ordered by ⊆;

Silver forcing. V = {f : dom(f)→ 2 : |ω \ dom(f)| = ω}, ordered
by f ≤ g ⇔ f ⊇ g.

For instance, we will show that the implication

every Σ1
2 set is Silver measurable⇒ every Σ1

2 set is Miller measurable,

which is a corollary of proposition 3.7 in [BLH05] and theorem 6.1 in
[BL99], does not extend to the family Γ consisting of all sets of reals. Our
work will also concern results of separation regarding the second level of
projective hierarchy. At such level many proofs are possible because of
Shoenfield’s absoluteness theorem; we remark that when one moves to the
third level, the situation becomes more difficult; a possible way to preserve
some results could be either Jensen’s coding or the use of models closed
under ]’s for sets of ordinals; the former has been used by Sy Friedman and
David Schrittesser in [FS10] to build up a model where all projective sets
are Lebesgue measurable, but there exists a ∆1

3-set without Baire property.
About the latter, Sy Friedman and I currently work on extending some re-
sults of separation presented in this thesis to the third level of projective
hierarchy as well.

We conclude this introductive section with a schema of the thesis:

(1) Chapter 1 is divided into two different sections: the first one simply
consists of a preliminary part concerning the approach to regularity
properties of the real line, with some historical remarks; the second one
is devoted to introduce some important tools for our work and it is split
into two subsections, the first one concerning Shelah’s amalgamation
and the second one concerning forcings for adding trees of generic reals;
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(2) Chapter 2 is itself divided into two main parts. The first one is devoted
to results about separation of regularity properties for ∆1

2 and Σ1
2 sets,

whereas the second concerns the work for the family Γ of all sets of
reals.

(3) Finally, a last brief chapter is devoted to the study of the generalized
Cantor space 2κ, equipped with the topology induced by basic clopen
sets [η] = {z ∈ 2κ : z B η}, for every η ∈ 2<κ. Within this chapter we
will analyze the behaviour of the natural generalized regularity prop-
erties, showing some known examples which underline the difference
with the standard case. The most important result of this chapter will
be the definition of a new notion of measure on 2κ, which will give us
a way to measure the Borel sets and to then define a notion of random
forcing for 2κ and the corresponding notion of Lebesgue measurability.

At the end, I would like to acknowledge the indispensable support that I
have received from Sy-David Friedman, whose deep and brilliant suggestions
have strongly improved the results in this dissertation. The great pleasure
of working with him is an experience that I will never forget.



Chapter 1

Basic notions and tools for
forcing constructions

This first chapter is divided into two main parts. The first one consists
of an introduction to some basic notions and the historical background.
The second one is more advanced, and it is dedicated to introduce some
important tools, which one will need in the second chapter.

1.1 Basic definitions and preliminary results

1.1.1 Measure and category

As we mentioned in the introduction, the starting point of the study con-
cerning regularity properties is given by the investigation around the Baire
property and the Lebesgue measurability. In our work, when we will say
“real”, we will refer to elements of Baire space ωω and Cantor space 2ω.
Since these spaces are “almost homeomorphic”, i.e., there is an homeomor-
phism h : ωω → 2ω \C, where C is countable, our questions about regularity
properties are invariant between ωω and 2ω. Hence, we will deal with any
question in the space that one considers more suitable for the situation. Af-
ter this brief remark, one can introduce the notions of measure and category
in the Baire space (those for the Cantor space are analogous).

Work into the Baire space ωω, consisting of infinite sequences of natural
numbers, endowed with the topology generated by basic clopen sets [s] =
{x ∈ ωω : sC x}, for all s ∈ ω<ω. One can define the family Bor consisting
of Borel sets as the smallest family containing all basic clopen sets [s]’s and
closed under countable union and complementation. Furthermore, one can
also define the family Proj of projective sets as follows:

Σ1
0 = family of open sets of ωω;

Σ1
1 = family of projections of closed sets;
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Π1
1 = family of complements of Σ1

1 sets;

Σ1
n+1 = family of projections of Π1

n;

Π1
n+1 = family of complements of Σ1

n+1 sets;

Proj =
⋃
n∈ω Σ1

n =
⋃
n∈ω Π1

n.

It is well-known that one can also set on the Baire space the standard
Lebesgue measure µ such that for every s ∈ ω<ω, µ([s]) = Πj<|s|2

−(s(j)+1).
For X ⊆ ωω one says that

X is nowhere dense ⇔ the interior of the closure of X is empty;

X is meager ⇔ X is the union of countably many nowhere dense sets;

X is null ⇔ for every ε > 0 there exists an open set O with µ(O) < ε
such that X ⊆ O.

One can then define the ideal of meager setsM and the ideal of null sets N
simply as

M = {X ⊆ ωω : X is meager}, and

N = {X ⊆ ωω : X is null}

and consequently the notions of regularity associated with category and
measure, respectively.

Definition 1. Given X ⊆ ωω. one says that

X has the Baire property ⇔ ∃B ∈ Bor(X4B ∈M), and

X is Lebesgue measurable ⇔ ∃B ∈ Bor(X4B ∈ N ).

It is well-known that every Borel set (and also every Σ1
1 set) is Lebesgue

measurable and has the Baire property. Nevertheless, under the axiom of
choice AC, one can construct “bad” sets, such as the non-principal ultrafilter
on ω and Vitali’s set, which are examples of sets without Baire property
and non-Lebesgue measurable. So the natural question which arises is to
understand whether AC is really necessary to get non-regular sets, or to
realize which family of regular sets of reals is consistent with AC.

Both problems were solved by Solovay, and the model named after him,
obtained by collapsing an inaccessible cardinal κ to ω1, has represented (and
probably still represents nowadays) the angle-stone and the tip of the iceberg
for studying the behaviour of regularity properties. Hence, we have to state
this famous result. For a good comprehension we remind the following:

BP ≡ “every set of reals has the Baire property”,
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BPL(ωω) ≡ “every set of reals in L(ωω) has the Baire property”,

LM ≡ “every set of reals is Lebesgue measurable”,

LML(ωω) ≡ “every set of reals in L(ωω) is Lebesgue measurable”.

Theorem 2 (Solovay,1970). Let κ be an inaccessible cardinal, i.e., κ is
regular and ∀α < κ, 2α < κ, and let Coll(ω, κ) be the forcing to collapse κ
to ω1, defined as

Coll(ω, κ) = {p : dom(p) ⊆ κ× ω ∧ |p| < ω ∧
∧∀(α, n) ∈ dom(p)(p(α, n) ∈ α)},

ordered by extension. Finally, let G be a Coll(ω, κ)-generic filter over V.
Then

V[G] |= ZFC + BPL(ωω) + LML(ωω)

and
L(ωω)V[G] |= ZF+DC + BP + LM.

Beyond Solovay’s article [So70], other presentations of this popular theorem
can be found in [Kan] (pg. 139) and [Jech] (pg. 519). We said that this
theorem is the tip of the iceberg of a wide research field as many natural
and interesting questions come immediately out.

Question (a). Is the inaccessible really necessary to get models for
BP and LM?

Question (b). Can one construct a model for BP ∧ ¬LM and,
viceversa , for LM ∧ ¬BP?

As we already mentioned in the introduction, these problems were solved by
Shelah and we refer the reader to the introduction for the answers.

Crucial notions of forcing, which are used for Lebesgue measurability and
Baire property, are random forcing R and Cohen forcing C, respectively:

[Random Forcing]. R = {B ⊆ ωω : B is closed, µ(B) > 0}, ordered by
inclusion;

[Cohen Forcing]. C = {[s] : s ∈ ω<ω}, ordered by inclusion, which is
isomorphic to the original Cohen forcing.

One of the most profound connections between these forcings and the related
regularity properties is underlined by the following well-known fact.

Lemma 3. Let C(V) be the set of Cohen reals over V, and, analogously,
let R(V) be the set of random reals. Then

C(V) = ωω \
⋃

(M∩V), and R(V) = ωω \
⋃

(N ∩V),
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where
⋃

(M ∩ V) is the union of all Borel meager sets coded in the
ground model V (and analogously for N ). The left-right inclusion (i.e., ⊆ )
can be proved by an easy density argument, and it is true in a very general
setting, whereas the right-left inclusion only holds for ccc forcings.

Beyond Lebesgue measurability and Baire property, Solovay’s model sa-
tisfies many other regularity properties of the Baire space. For example,
set [s, f ] = {x ∈ ωω : x B s ∧ ∀n ∈ ω(x(n) ≥ f(n))}, where s ∈ ω<ω,
f ∈ ωω and f Bs (i.e., f extends s); then, consider the topology δ generated
by such basic open sets. One can easily remark that δ is finer than the
standard topology, and Bor(δ) ⊇ Bor (where the left member represents
the family of Borel sets of ωω w.r.t. δ). Furthermore, since the notion
of nowhere dense is different, also the notion of Baire property associated
with δ (which we call δ-Baire property) is different from the standard Baire
property. Nevertheless, with a simple generalization of the proof to get the
Baire property of all sets in L(ωω) inside Solovay’s model, one can also easily
get

V[G] |= “every set of reals in L(ωω) has the δ-Baire property”.

Obviously, the forcing associated is the Hechler forcing

D = {(s, f) : s ∈ ω<ω ∧ f ∈ ωω ∧ sC f},

ordered by (s′, f ′) ≤ (s, f) ⇔ s′ D s ∧ ∀n(f(n) ≤ f ′(n)). An analogous of
Lemma 3 for the set of Hechler reals D(V) can be stated also in this case:

D(V) = ωω \
⋃

(M(δ) ∩V),

where M(δ) is the ideal of meager sets w.r.t. δ.
To conclude this paragraph, we remark that a very general result to ob-

tain regularity properties inside Solovay’s model is proved by Yurii Khomskii
in [K12], proposition 2.2.8.

1.1.2 Trees

The notion of tree on ω is very useful to characterize closed sets of ωω and
furthermore, many interesting forcings has been invented by using trees.

Definition 4. T ⊆ ω<ω is an infinite tree if and only if:

(i) if t ∈ T then ∀sE t, s ∈ T ;

(ii) for every t ∈ T there exists t′ D t, t′ ∈ T .

Note that (ii) ensures the tree to be well-pruned, i.e., there are no ter-
minal nodes. We also introduce some standard notations.

Definition 5. Given an infinite tree T ⊆ ω<ω we define:
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• t = Stem(T ) iff ∀t′ ∈ T (t′ E t ∨ t′ D t);

• t ∈ Split(T ) iff ∃k0, k1 ∈ ω(tak0 ∈ T ∧ tak1 ∈ T );

• t ∈ Splitn(T ) iff t ∈ Split(T ) ∧ ∃j0 < j1 < · · · < jn−1∀i < n(t�ji ∈
Split(T )) and we say that t is an n + 1-st splitting node of T (for
n = 0, we set Split0(T ) = Stem(T )).

• n ∈ Succ(s, T ) iff san ∈ T , (for a fixed s ∈ T );

• t ∈ Lv(n, T ) iff |t| = n ∧ t ∈ T , where |t| is the length of t;

• [T ] = {x ∈ ωω : ∀n ∈ ω(x�n ∈ T )}, ([T ] is called the body of T ).

• T |t = {s ∈ T : s D t ∨ s E t}. Note that we will also use the notation
Tt to denote such a subtree;

• T �n = {t ∈ T : |t| ≤ n}. Note that T �n is necessarily a finite tree.

In some cases we will also deal with finite trees. In this case we will use the
following notations:

• t ∈ Term(T ) iff t in a terminal node of T , i.e., there is no t′ B t such
that t′ ∈ T ;

• ht(T ) = max{|t| : t ∈ Term(T )}.

It is straightforward that same definitions can be given for 2<ω, in place
of ω<ω.

Fact 6. For every tree T ⊆ ω<ω, [T ] is closed. Conversely, If C ⊆ ωω is
closed then there exists a tree T such that [T ] = C.

The proof immediately follows from the definition.
As we mentioned at the beginning, some specific trees have become very

popular, because of their importance in the method of forcing.

Definition 7. • T ⊆ 2<ω is a Sacks tree (or perfect tree) if and only if
for every node t ∈ T , there exists t′D t, t′ ∈ T such that t′ ∈ Split(T );

• T ⊆ 2<ω is a Silver tree (or uniform tree) iff T is perfect and for
every s, t ∈ T , such that |s| = |t|, one has sa0 ∈ T ⇔ ta0 ∈ T and
sa1 ∈ T ⇔ ta1 ∈ T .

• T ⊆ ω<ω is a Miller tree (or superperfect tree) if and only if for
every t ∈ T there exists t′ D t, t′ ∈ T such that t′ ∈ Split(T ) and
|Succ(t′, T )| = ω (we will call such nodes ω-splitting, and we will
indicate them with ω-Split);

• T ⊆ ω<ω is a Laver tree if and only if for every t ∈ T, t D Stem(T ),
one has t ∈ ω-Split(T ).
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In the introduction we have also presented the related forcing notions
S,M, V and L, respectively. For Sacks forcing S, a notion of regularity
property was introduced by Bernstein and it is known as Bernstein partition
property (BPP): X ⊆ 2ω has the BPP if and only if

∀T ∈ S∃T ′ ∈ S, T ′ ⊆ T ([T ′] ⊆ X ∨ [T ′] ∩X = ∅).

It is clear that one can analogously define a notion of regularity associated
with Miller forcing M, Silver forcing V and Laver forcing L. To finish this
section, we give a proof that the Miller property for every set of reals holds
in Solovay’s model. Note that such a result is well-known and we decide
to present it here only to figure out which properties of Solovay’s model
are essential for some questions which will come out afterward (see the
paragraph in next section concerning Shelah’s amalgamation).

Fact 8. Let V[G] be Solovay’s model obtained by collapsing an inaccessible
κ to ω1. Then

V[G] |= “every set of reals in L(ωω) has the Miller property”.

Proof. We remind the following two key lemmata, whose proofs can be found
in [Kan], proposition 10.21 and lemma 11.12. In both, G is Coll(ω, κ)-
generic over V.

Lemma 9. [Factor Lemma] Let x ∈ Onω ∩ V[G]. Then there exists a
Coll(ω, κ)-generic filter G′ over V[x] such that V[G] = V[x][G′].

Lemma 10. For every formula ψ there exists a formula ϕ such that, for
every x ∈ ωω ∩V[G],

V[G] |= ψ(x)⇔ V[x] |= ϕ(x).

Let X ⊆ ωω and let ψ and v ∈ Onω ∩V[G] such that X = {x ∈ ωω :
ψ(x, v)}. By κ-cc, there is α < κ such that v ∈ V[G�α]. From now on,
V[G�α] will be our new ground model. Consider the formula ϕ as in the
above lemma. Consider the forcing MT for adding a Miller tree of Miller
reals inside any ground model Miller tree, which we will introduce at page 25;
one can easily show that such a forcing completely embeds into Coll(ω, κ).
Furthermore, note that Coll(ω, κ)/Coll(ω, α) = Coll(α, κ) ≈ Coll(ω, κ).
These two facts together give, in V[G�α], for every W ∈M ∩V[G�α],

Coll(α,κ) (∃T ∈M)(T ⊆W )(∀z ∈ [T ])(z is Miller over V[G�α]).

Work in V[G�α]. Let P lColl(α, κ) represents the subforcing equivalent to
M. Let ż be a P -name for a P -generic real. Two cases are possible

∃p ∈ P (p  ϕ(ż)) ∨ ∃p ∈ P (p  ¬ϕ(ż)).
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W.l.o.g., assume the first holds. For every P -generic filter H such that p ∈ H
one obtains

V[G�α][H] |= ϕ(żH).

From now on, we will call a P -generic simply Miller real and we will indicate
it with z.

Note that the condition p ∈ P can be seen as a Miller tree and so one
can consider in V[G] a Miller tree T of Miller reals inside p. Hence,

for every z ∈ [T ]⇒ V[G�α][z] |= ϕ(z). (1.1)

As a consequence of the two above lemmata one obtains

V[G] |= ∀x ∈ ωω(x ∈ [T ]⇒ ψ(x)),

and so V[G] |= [T ] ⊆ X.
Similarly, the case p  ¬ϕ(ż) provides a Miller tree T such that V[G] |=

[T ] ∩X = ∅.

1.1.3 A general approach to regularity properties

In the previous two subsections we have seen several types of regularity pro-
perties. In this subsection we will present three different abstract manners
to introduce notions of regularity for sets of reals and to then show a more
general point of view, whereby we will be able to see under the same light
all of the regularity properties previously introduced.

Idealized forcing. This notion is essentially a first generalization of Baire
property and Lebesgue measurability.

Definition 11. Let I be an ideal on ωω. For every X ⊆ ωω, one says

X is I-null ⇔ X ∈ I

and
X is I-regular ⇔ ∃B ∈ Bor(X4B ∈ I).

It is straightforward to note that the M-regularity and N -regularity
correspond to the Baire property and to the Lebesgue measurability, re-
spectively. As for the specific cases of Cohen forcing and random forcing,
the ideal I shows a natural way to introduce forcing notions.

Definition 12. Let Bor∗(ωω) = Bor(ωω) \ I. An I-forcing (idealized
forcing) is the partial order PI defined as

PI = Bor∗(ωω)/I,

ordered by inclusion.
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In [Za00], Zapletal showed that many well-known forcings are of this
form, in particular all of those we are interested in (like Sacks forcing,
Miller forcing, Laver forcing and Silver forcing), but the naive notion of
I-regularity is the right one only for ccc forcings. As an example, one may
consider the case of Sacks forcing; the corresponding ideal IS is the family
of countable subsets of ωω; however, in such a case, being IS-regular would
mean being Borel, which obviously does not correspond to the usual notion
of Sacks measurability (i.e. either the set or its complement contains the
set of branches through a perfect tree). The more experienced reader could
object that we should consider the ideal of S-null sets (see definition 15 later
on) instead of the ideal of countable sets; nevertheless, even in that case one
would not obtain the appropriate notion of regularity.

Topological forcings and τ-Baire property. Another class of forcings
which appears as a generalization of the Cohen forcing can be defined as
follows.

Definition 13. A poset P is called a topological forcing whenever one can
associate every p ∈ P with a basic neighborhood Up in such a way that the
family UP = {Up : p ∈ P} generates a topology τ on ωω, and UP, ordered by
inclusion, is forcing equivalent to P.

The obvious concepts of smallness and regularity related to this class of
forcings are those induced by the topology τ . Thus, the small sets are those
belonging to the ideal of τ -meager setsM(τ) and the regular sets are exactly
those having the τ -Baire property. Besides the Cohen forcing C, other for-
cing notions belonging to this class are the Hechler forcing D, the eventually
different forcing E, the Mathias forcing MA. (A detailed study of D and E
can be found in [LR95] and [L96], respectively, while for MA one may see
[Jech], pg.524-529). As above, this definition of topological posets captures
the other forcings as well, such as Sacks, Miller and Laver. Nevertheless, in
such cases the notion of regularity property is not the suitable one again.

Arboreal forcings and P-property. Finally, we give a natural genera-
lization of forcings like Sacks, Miller and Laver.

Definition 14. A forcing P is arboreal if every element T ∈ P is a perfect
tree of ω<ω and for every node t ∈ T , one has Tt ∈ P, where Tt = {s ∈ T :
s D t ∨ t D s}, and P is ordered by inclusion.

One can actually see also the other posets as forcings of this sort.

Cohen forcing. Each basic open set [s] can be seen as the body of
the tree Ts = {t ∈ 2<ω : t D s}. Thus,

C ≡ {Ts ⊆ 2<ω : s ∈ 2<ω}.
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Random forcing. Each closed set can be identified with a tree
T ⊆ 2<ω, and therefore

R ≡ {T ⊆ 2<ω : µ([T ]) > 0 ∧ ∀t ∈ T (µ([Tt]) > 0)}.

Silver forcing. g ∈ V is associated with

Tg = {t ∈ 2<ω : ∀n ∈ dom(t) ∩ dom(g)(t(n) = g(n))}.

About the last one, the idea is to associate a function g ∈ V with a tree in
such a way that for those n /∈ dom(g) every node of length n is a splitting
node, otherwise when n ∈ dom(g) for every s, t ∈ Tg (of length > n),
t(n) = s(n) = g(n). (Morally speaking, in the second case the tree decides
the value of the new real, according to the function g, while in the first it
can not decide the value, according to the fact that the function g is not
defined).

One can easily note that, if one orders by inclusion each poset just de-
fined, one gets equivalent forms of the usual ones. Note that the list is not
complete; in fact we could have added Mathias forcing MA, Hechler forcing
D and eventually different forcing E. Nevertheless, since they will not take
part of our study in the next chapter, we have not quoted them in the above
list.

As we said above, one may introduce notions of smallness and regularity
related to arboreal forcings.

Definition 15. For every X ⊆ ωω,

X is P-null⇔ ∀T ∈ P∃S ∈ P(S ≤ T ∧ [S] ∩X = ∅)

and

X has the P-property⇔ ∀T ∈ P∃S ∈ P
(
(S ≤ T )∧ ([S]∩X = ∅∨ [S] ⊆ X)

)
.

The set JP = {X ⊆ ωω : X is P-null} is an ideal, but in general it is not
a σ-ideal (for instance JC is the ideal of nowhere dense sets which is not a
σ-ideal). Hence, we will consider its closure under countable unions, i.e.,

IP = {Y ⊆ ωω : Y ⊆
⋃
n∈ω

Xn, for some Xn ∈ JP}.

In some cases, the P-property can be verified in an easier way, as the
following result shows. Remind that Γ is the family of all sets of reals, and
Γ(P) is the statement “all sets of reals have the P-property”.

Lemma 16. Let P ∈ {S,V,M,L}. Then Γ(P) is equivalent to require that
for every X ∈ Γ,

∃T ∈ P([T ] ⊆ X ∨ [T ] ∩X = ∅).
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For a proof one can see [BL99], lemma 2.1. Actually, such a result
can be proved in a more general setting, replacing the family Γ with any
topologically reasonable family Θ, which we will introduce at the beginning
of chapter 2.

Remark 17. Unfortunately, even if it has been easy to see that this notion
of arboreal forcing captures all of the posets which we are interested in,
the related notion of regularity does not. For example, the Baire property
does not correspond to the C-property; in fact, in this particular case, the
C-property is rather senseless, since not even the set of rationals satisfies
the C-property. However, a slight modification of definition 15 will give us
the notion of regularity we are interested in.

A unique notion of regularity.

Definition 18. For every X ⊆ ωω,

X is P-measurable ⇔ ∀T ∈ P∃S ∈ P(
(S ≤ T ) ∧ ([S] ∩X ∈ IP ∨ [S] \X ∈ IP)

)
.

(Notation: we will often say Sacks measurable, Miller measurable, Silver
measurable and so on).

One may show that, whenever P allows a fusion argument, JP is actually
a σ-ideal and so JP = IP. As an easy consequence, one gets that, if [T ]∩X ∈
IP = JP, then there is T ′ ≤ T such that [T ′] ∩X = ∅, simply by definition
of P-null. Hence, in such cases, definition 18 is equivalent to definition 15.
Furthermore, Ikegami proved in [Ik10], that, for any ccc arboreal forcing
notion P,

IP-regularity⇔ P-measurability,

and so, for all of the forcings of our interest, the notion of P-measurability
is exactly the suitable one.

Once again, we remark that a detailed and enlightening exposition to
regularity properties, by using idealized forcing in place of arboreal forcings,
can be found in [K12].

A word about the P-generic filter and the reals added by P. In
the previous paragraphs we introduced a general notion of forcing, called
arboreal forcing, which will be central in our study throughout the thesis.
It is therefore necessary to understand which new objects such forcings add
into the model and which properties such objects satisfy. Like Cohen and
random forcing, it is clear that one can easily associate a P-generic filter G
over V with a unique generic sequence zG, i.e.,

zG =def
⋃
{Stem(T ) : T ∈ G} =

⋂
{[T ] : T ∈ G}.
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We will often refer to these sequences by using the word real and calling
them Silver reals, Sacks reals, Miller reals and so on, according to which
forcing we will deal with. The features of such zG depend on which arboreal
forcing P one considers. In what follows, we will use the following notation:

∃∞n ≡ ∀m∃n ≥ m, and ∀∞n ≡ ∃m∀n ≥ m.

We list the main properties with the relative proofs, or sketches of them:

• Miller reals are unbounded over V. Remind that z ∈ ωω is unbounded
over V iff

∀x ∈ ωω ∩V∃∞n(x(n) < z(n)).

To show that Miller reals have such a property, one can easily note
that, for every n ∈ ω and x ∈ ωω ∩V,

D(n, x) = {T ∈M : ∃m ≥ n(|Stem(T )| = m+ 1∧
Stem(T )(m) > x(m))}

is open dense in M. Hence, given x ∈ ωω ∩V, n ∈ ω and T ∈ G, since
G ∩D(n, x) 6= ∅, there exists T ′ ≤ T , T ′ ∈ G such that T ′ ∈ D(n, x),
and therefore there exists m ≥ n for which

T ′  zG(m) = Stem(T ′)(m) > x(m).

An analogous argument works for Cohen reals as well.

• Laver reals are dominating over V. Remind that z ∈ ωω is dominating
over V iff

∀x ∈ ωω ∩V∀∞n(x(n) ≤ z(n)).

Note that, for every x ∈ ωω ∩V, the set

D(x) = {T ∈ L : ∀t D Stem(T )(t(|t| − 1) ≥ x(|t| − 1))}

is open dense in L. For every x ∈ ωω ∩V and T ∈ G, G ∩D(x) 6= ∅,
and therefore there exists T ′ ∈ G, T ′ ≤ T such that T ′ ∈ D(x) and

T ′  ∀n ≥ |Stem(T ′)|(zG(n) ≥ x(n)).

An analogous argument works for Hechler reals and Mathias reals as
well.

Such a list stated some properties satisfied by specific generic reals. How-
ever, another interesting point is to find properties which are satisfied by all
of the reals added by a specific arboreal forcing P. As before, we state them
and we give some sketches of the proofs:
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• Miller forcing and Cohen forcing does not add dominating reals. The
two proofs are different. About Cohen forcing, one can see [BJ95],
Lemma 3.1.2, page 100. We will give a proof for Miller forcing, by
using a fusion argument. Let ḟ ∈ ωω ∩VM and T ∈ M. We want to
build T ′ ≤ T as a limit of a fusion sequence and z ∈ ωω ∩V such that
T ′  ∃∞n(ḟ(n) < z(n)). Remind that a fusion sequence 〈Tn : n ∈ ω〉
of Miller trees satisfies Tn+1 ≤n Tn, where

T ≤n S ⇔ T ≤ S ∧ ∀j ≤ n∀t ∈ Splitj(S)

(t ∈ Splitj(T ) ∧ Succ(t, S) = Succ(t, T )).

(Remind that Splitj(T ) is the set of j + 1-st splitting nodes of T ). It
is clear that

⋂
n∈ω Tn ∈M.

We build the fusion sequence by induction; for the construction we
need to fix a bijection φ : ω<ω ↔ ω.

Start from T0 = T . Then assume Tn already defined. Let σn = {tw :
w ∈ ωn} be the set of n+ 1-st splitting nodes of Tn and τnw = {ik ∈ ω :

ik ∈ Succ(tw, Tn)}. For every w ∈ ωn and k ∈ ω, choose Skw ≤ Tn|t
a
wik

and a(w, k, n) ∈ ω such that

Skw  ḟ(φ(wak)) = a(w, k, n).

Finally, put Tn+1 =
⋃
{Skw : w ∈ ωn, k ∈ ω}. Clearly, Tn+1 ≤n Tn

and so one can consider T ′ =
⋂
n∈ω Tn. Furthermore, one defines the

suitable z ∈ ωω ∩V as follows:

for every j ∈ ω, z(j) = a(w, k, n)+1, for w, k, n such that φ(wak) = j.

It is left to show that, for every M-generic x over V belonging to [T ′],

V[x] |= ∃∞n(ḟ(n) < z(n)).

To see that, let Σ be the set of splitting nodes of T ′ and ψ : Σ↔ ω<ω

be the natural isomorphism preserving inclusion.

Furthermore, for every t ∈ Σ, let et : Succ(t, T ′) ↔ ω be an enume-
ration of the successors of t in T ′. Hence,

∀i ∈ ω, x�i ∈ Split(T ′)⇒ ḟx(mi) < z(mi),

where mi =def φ(ψ(x�i)aex�i(x(i))). Since there are infinitely many
i’s for which x�i splits, the proof is completed.

• Sacks forcing, Silver forcing and random forcing are ωω-bounding. Re-
mind that a forcing is ωω-bounding if it adds no unbounded reals over
the ground model. About random forcing, one can see again [BJ95],
Lemma 3.1.2 at page 100. The analogous results for Sacks forcing
S and Silver forcing V are well-known as well, and the proofs use a
standard fusion argument.
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• Miller forcing and Laver forcing adds neither Cohen nor random reals.
The method to prove that is completely explained in details in [BJ95],
and therefore we will only state the leading steps. The key property is
called Lf -property for forcings satisfying axiom A. The axiom A will
be introduced at page 35; all of the arboreal forcings allowing a fusion
argument introduced so far, like S, V, M and L, satisfy axiom A. In
the following definition we define the Lf -property for any forcing P
satisfying axiom A, coming from [BJ95], definition 7.2.1, page 327.

Definition 19. Let f ∈ ωω. One says P has the Lf -property iff for
every p ∈ P , n ∈ ω and A ∈ [ω]<ω one has:

if p  ȧ ∈ A, then there exists q ≤n p and B ⊆ A, |B| ≤ f(n) such
that q  ȧ ∈ B.

(We explicitely introduce such a property because it will be necessary
in next chapter, in the paragraph concerning the separation of Σ1

2(V)
and ∆1

2(C).)

Several results shows that both L and M have the Lf -property, for
the appropriate f ∈ ωω (see [BJ95], theorem 7.3.29, page 353 and
theorem 7.3.45, page 360) and that Lf -property implies neither Cohen
reals nor random reals are added (see [BJ95], lemma 7.2.2 and lemma
7.2.3, page 328).

We also remark that the same is true for Sacks forcing S and Silver
forcing V as well. The fact that they do not add Cohen reals was
already known, since they are ωω-bounding. Furthermore, it is not
hard to see that they both have the Lf -property and therefore they
do not even add random reals.

1.2 Tools for forcing constructions

Two important tools in our work will be the amalgamation of Boolean al-
gebras, introduced by Shelah in [Sh84], and some notions of forcing to add
trees of generic reals. The amalgamation will be introduced in the first part,
where we will also explain why it is so important for our purpose, while the
second part will be dedicated to introduce some forcing notions to add trees
whose branches are generic reals. In the end of the section, we will also give
an easy but enlightening application of such tools. In the part dedicated
to Shelah’s amalgamation, we will deal with Boolean algebras instead of
forcing notions, simply because the argument can be more easily handled.

1.2.1 Homogeneous algebras and Amalgamation

The study of models for Lebesgue measurability and Baire property, pre-
sented by Solovay in [So70], shows that the main property that a Boolean



1.2. TOOLS FOR FORCING CONSTRUCTIONS 18

algebra B should have to be useful in Solovay-like proofs, is the, so called,
reflection property.

Definition 20. A Boolean algebra B has the reflection property if and only
if for any formula ϕ with parameters in V and for any B-name for a real
ẋ, one has ||ϕ(ẋ)||B ∈ Bẋ, where Bẋ is the Boolean algebra generated by ẋ,
i.e., Bẋ is generated by {||sC ẋ||B : s ∈ ω<ω}.

The meaning of the definition is that, to evaluate ϕ(ẋ) in VB, it suffices
to know its value in a certain partial extension obtained from a subalge-
bra of B, namely Bẋ. It is not hard to show that a particular family of
Boolean algebras, satisfying the reflection property, is the class of strongly
homogeneous algebras, which is part of the next definition.

Definition 21. A Boolean algebra B is strongly homogeneous if and only
if for every pair of σ-generated complete subalgebras B0,B1 l B and every
φ∗ : B0 → B1 isomorphism, one can extend such φ∗ to an automorphism
φ : B→ B.

Lemma 9.8.3 in [BJ95] shows that

if B is strongly homogeneous, then B has the reflection property. (1.2)

Hence, we need a method to construct strongly homogeneous algebras. One
may note that the strong homogeneity is a strengthening of the notion of
weak homogeneity, saying that given a Boolean algebra B, for any a, b ∈ B
there exists an automorphism φ : B→ B such that φ(a) is compatible with
b. To get weakly homogeneous algebras, a rather simple argument works,
as the following result shows.

Fact 22. Let B be a Boolean algebra and B(ω) =
∏
n∈ω B with finite sup-

port. Then B(ω) is weakly homogeneous.

Proof. Let p, q ∈ B(ω) and let I(p), I(q) be the supports of p and q, respec-
tively. Define f : ω → ω such that

1. ∀n ∈ I(p) ∩ I(q)(pn ⊥ qn ⇒ f(n) /∈ I(p) ∩ I(q) ∧ f(f(n)) = n);

2. otherwise f(n) = n.

Then, define the function

φ : B(ω)→ B(ω), such that φ(p)j = pf(j).

(Intuitively, φ(p) is just p endowed with the “new” support). Note that,
for every n ∈ I(φ(p)) ∩ I(q), pn ‖ qn, and so φ(p) ‖ q. It is left to show
that φ is an automorphism. To check that φ is onto, pick arbitrarily q ∈ B,
q = 〈q1, q2, . . . , qn, 1, 1, . . . 〉. Then, if we pick q′j = qf−1(j), one gets φ(q′)j =
q′f(j) = qj , which gives φ(q′) = q. The proof that φ is order preserving is
immediate.
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Unfortunately, this construction is not sufficient to get strong homo-
geneity too. Anyway, the idea behind the proof of fact 22 should not be en-
tirely thrown away. In fact, for any pair B0,B1 of isomorphic σ-generated
complete subalgebras of B, Shelah’s amalgamation carefully constructs a
subalgebra of B(ω). Furthermore, since we have to be able to extend any
isomorphism between each of these pairs, one has to iterate this process
ω1-many times.

We will not go into details, but we would like to give an idea about such
a construction. Our presentation will not be exhaustive, and we will only
give basic definitions and a list of the main properties, which we will use
later on. For a complete and detailed exposition of Shelah’s amalgamation
one may see [JR93], and we will often refer to that paper for the proofs.

Definition 23. Let B be a complete Boolean algebra and B0 l B. One
defines the projection π : B→ B0 as the surjective map such that, for every
b ∈ B, π(b) =

∏
{b ≤ b0 : b0 ∈ B0}.

Definition 24. Let B be a complete algebra and B1,B2 two isomorphic
complete subalgebras of B and φ0 the isomorphism between them. One
defines the amalgamation of B over φ0, say Am(B, φ0), as follows: first, let

B×φ0 B =def {(b′, b′′) ∈ B×B : φ0(π1(b′)) · π2(b′′) 6= 0},

where πj : B → Bj is the projection, for j = 1, 2, and consider on such
B×φ0 B simply the product order. Then set Am(B, φ0) =def B(B×φ0 B),
i.e., the complete Boolean algebra generated by B×φ0 B.

One can easily see that ej : B→ Am(B, φ0) such that

e1(b) = (1, b) and e2(b) = (b,1)

are both complete embeddings (for a proof, see [JR93], lemma 3.1). Further,
for any b1 ∈ B1, one can show that

(1, b1) is equivalent to (φ0(b1),1). (1.3)

In fact, given (b′, b′′) ∈ Am(B, φ0), one has

φ0(π1(b1 ·b′)) ·π2(b′′) = φ0(b1) ·φ0(π1(b′)) ·π2(b′′) = φ0(π1(b′)) ·π2(φ0(b1) ·b′′)

and so, if either (1, b1) ≤ (b′, b′′) or (φ0(b1),1) ≤ (b′, b′′), then (b1 · b′, φ0(b1) ·
b′′) ∈ B×φ0 B.

Moreover, if one considers φ1 : e1[B]→ e2[B] such that, for every b ∈ B,
φ1(b,1) = (1, b), one obtains nothing more than an isomorphism between
two copies of B into Am(B, φ0), which may be seen as an extension of φ0

(since for every b1 ∈ B1, by (1.3) above, e1(b1) = (1, b1) = (φ0(b1),1) =
e2(φ0(b1)) and so φ1 ◦ e2 = e1).
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Hence, if one considers e1[B], e2[B] as two isomorphic complete subalge-
bras of Am(B, φ0), one can repeat the same procedure to construct

2-Am(B, φ0) =def Am(Am(B, φ0), φ1)

and φ2 the isomorphism between two copies of Am(B, φ0) extending φ1.
It is clear that one can continue such a construction, in order to define,

for every n ∈ ω,

n+ 1-Am(B, φ0) =def Am(n-Am(B, φ0), φn)

and φn+1 the isomorphism between two copies of n-Am(B, φ0) extending
φn.

Finally, putting

(i) ω-Am(B, φ0) = direct limit of n-Am(B, φ0)’s, and

(ii) φω = limn∈ω φn,

one obtains B0,B1 l ω-Am(B, φ) and φω automorphism of ω-Am(B, φ)
extending φ0.

Obviously, that is not sufficient to get a strongly homogeneous algebra,
since the construction only works for two subalgebras, fixed at the beginning.
The following crucial result completes the construction. In next theorem,
and for the rest of the paper, limit cases will be direct limits.

Theorem 25. (Shelah, 1984). Let 〈Bα : α < ω1〉 be a sequence of Boolean
algebras of size ≤ω1, such that Bα l Bβ, whenever α < β, and let Bω1 =
limα<ω1 Bα. Furthermore, by using a book-keeping argument, we require also
that whenever Bα0 l B′ l Bω1 and Bα0 l B′′ l Bω1 are such that

(i) VBα0 |= “(B′ : Bα0) and (B′′ : Bα0) are σ-generated algebras”,

(ii) φ0 : B′ → B′′ is an isomorphism s.t. φ0 � Bα0 = IdBα0
,

then one can find a sequence of functions in order to extend the isomorphism
φ0 to an automorphism Φ : Bω1 → Bω1, i.e., ∃〈αη : η < ω1〉 increasing,
cofinal in ω1, and ∃〈φη : η < ω1〉 such that dom(φη) ⊇ Bαη and

(Bα1+η+1) = ω-Am(Bα1+η , φη),

φλ = limη<λ φη, whenever λ is a limit ordinal, and

Φ = lim
η<ω1

φη.

Then the Boolean algebra Bω1 is strongly homogeneous.
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Hence, we have a general method to build strongly homogeneous alge-
bras. At this point a natural question arises: where did Solovay’s inaccessible
end up?

In fact, our construction only uses a direct limit of length ω1 and, at
first sight, it does not seem to need an inaccessible. However, the point is
that the amalgamation does not preserve ccc, which is helpful to preserve
ω1 and to therefore absorb the real parameter (used for a set in L(ωω)) into
the ground model. To get a particular regularity property is necessary to
add into the construction a specific forcing notion adding a “suitable” set
of generic reals and, in many cases, such a forcing notion affects ccc. For
example, in the case of Lebesgue measurability and Baire property, these
forcing notions are the Amoeba forcing for measure A and for category UM,
respectively, defined as follows:

1. A = {T ⊆ 2<ω : T is a perfect tree ∧ µ([T ]) > 1/2}, with T ′ ≤ T iff
T ′ ⊆ T ;

2. UM = {(T,T) : T is a nowhere dense tree ∧ ∃n ∈ ω(T = T�n)}, with
(T ′,T′) ≤ (T,T)⇔ T′ ⊇ T∧T ′ wend T , where wend means that T ′ ⊇ T
and T ′�ht(T ) = T .

A makes the set of random reals a measure one set, whereas UM makes
the set of Cohen reals a comeager set. In other cases, the right choice is to
involve in the construction a forcing adding a particular tree of generic reals
(as we will see at the end of this section). Anyway, except for some particular
cases, like when UM is used to get the Baire property (see [Sh84]), one has
to lengthen the construction to an inaccessible κ in order to get κ-cc, which
allows us to absorb the real parameter into the ground model. For a more
detailed explanation we refer the reader to section 2.2.4 at the end of next
chapter.

Definition 26. [Full amalgamation model]. If one considers the same
construction introduced in theorem 25, but of length κ inaccessible, instead
of ω1, and moreover, one requires for every α < κ, |Bα| < κ to hold, then one
obtains a κ-cc algebra. Furthermore, one can add into such a construction
any forcing of size < κ, without losing κ-cc. If G is Bκ-generic over V we will
call V[G] the full amalgamation model. (One may see that this construction
provides a complete Boolean algebra which is forcing-equivalent to the Levy
collapse).

Remark 27. Sometimes it will be enough (and necessary) to amalgamate
not over any pair of isomorphic σ-generated subalgebras, but only over any
B0,B1 isomorphic toB(P), for a certain forcing P, whereB(P) is the Boolean
algebra generated by P. This can be simply done by replacing, in theorem
25, condition (i) with

VBα0 |= “(B′ : Bα0) and (B′′ : Bα0) are isomorphic to B(P)”.
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In this case, we will say that the Boolean algebra obtained is strongly P-
homogeneous.

1.2.2 Trees of generic reals

This section is devoted to introduce several ways to add trees of generic reals.
The importance of this work has two aspects: firstly, such constructions are
intrinsically interesting and some of these need new forcing notions; secondly
(and probably mainly), they play a crucial role in questions concerning re-
gularity properties, as the following simple and well-known example shows.

Example 28. Consider the forcing consisting of finite trees T ⊂ 2<ω such
that all t ∈ Term(T ) have the same length, ordered by end-extension wend.
It is well-known, and not hard to verify, that such a forcing adds a perfect
tree of Cohen reals, more precisely a perfect tree whose branches are Cohen
reals. Moreover, since this forcing is countable, it is actually the Cohen
forcing C. Hence,

C  “∃Ṫ perfect tree of Cohen reals over V”. (1.4)

Now, we are going to use (1.4) to prove

V[G] |= “every ∆1
2-set of reals is Sacks measurable”,

where G is a Cω1-generic filter over V.
Let X = {x ∈ 2ω : ϕ0(v0, x)} = {x ∈ 2ω : ¬ϕ1(v1, x)} be a set of reals

in V[G], where ϕ0, ϕ1 are Π1
2-formula and v0, v1 real-parameters. Such reals

can be absorbed into V[G�α], for some α < ω1, and the tail Cω1/G�α is still
forcing equivalent to Cω1 . Let c be the Cohen real added by G(α); one has
two possible cases:

V[G�α][c] |= ϕ0(v0, c) or V[G�α][c] |= ϕ1(v1, c).

Assume the first case holds (the argument is analogous in the other case).
Argue in V[G�α]. Since ϕ0(v0, c) holds, there exists t ∈ C such that t 
ϕ0(v0, ċ). In V[G�α][c], by shrinking and translating the perfect tree in
(1.4), one can get a perfect tree T of Cohen reals over V[G�α] contained
into [t]. Hence, we get

V[G�α][c] |= ∀x ∈ 2ω(x ∈ [T ]⇒ ϕ0(v0, x))

and, by absoluteness of Π1
2-formulas, also

V[G] |= ∀x ∈ 2ω(x ∈ [T ]⇒ ϕ0(v0, x)).

Therefore, V[G] |= [T ] ⊆ X.
It is clear that, from the second case, one can deduce that there exists a

tree T such that V[G] |= [T ] ∩X = ∅, which completes the proof.
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Remark 29. Given a Cohen real c, the quotient Cω1/c ≈ Cω1 . As a conse-
quence, we get Cω1 is strongly Cohen homogeneous, and so one can actually
get the Sacks measurability for every projective set of reals, simply by using
the same argument above and the property that if p  ϕ(v, ċ), for some
p ∈ Cω1 , then there exists t ∈ C such that t  ϕ∗(v, ċ), where ϕ∗ is a
translation of ϕ to a statement about the single Cohen extension.

Hence, adding a particular tree of generic reals, can be helpful for our
topic concerning regularity properties. Furthermore, as we said above, the
problem of adding trees of generic reals is of intrinsic interest and some
natural questions arise, like adding a perfect tree of random reals. At first
sight, the more natural manner to do that would seem the use of random
forcing R; however, the following result of Bartoszynski and Judah shows
that it is not the right way.

Theorem 30. Let r be a random real over V. Then

V[r] |= “ R(V) does not contain a perfect set”.

For a proof one may see ([JR93], theorem 3.2.17, page 114).
The rest of this section is dedicated to several examples and constructions

of forcing notions to figure such questions out.

Adding a perfect tree of random reals. Consider the forcing RT con-
sisting of pairs (T,T) such that:

(i) T is a perfect tree such that for every t ∈ T, µ([Tt]) > 0;

(ii) T = T�n, for some n ∈ ω,

ordered by

(T ′,T′) ≤ (T,T)⇔ T′ ⊆ T ∧ T ′ wend T

It is clear that, for every null set N ∈ V, the set

DN = {(T,T) ∈ RT : [T] ∩N = ∅}

is open dense in RT. To see that, one can simply note that for t ∈ Term(T ),
Tt is a perfect tree of positive measure which can be shrunk to a perfect
tree T′t, still of positive measure, such that [T′t] ∩ N = ∅; therefore, if one
sets T′ =

⋃
{T′t : t ∈ Term(T )} one precisely obtains a stronger condition

(T,T′) ∈ DN .
Hence, the branches of the generic TG =

⋃
{T : (T,T) ∈ G} are random

reals. Moreover, it is clear that TG is itself a perfect tree, and so

RT “ ˙[TG] is a perfect set of random reals over V”.

Note that, in (i) above, if one drops the condition µ([T]) > 0, one gets a
forcing, say ST, adding a perfect tree of Sacks reals.
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Adding a Miller tree of Miller reals. First of all, note that, by using
a similar argument of example 28, it is easy to add a Miller tree of Cohen
reals. We want to show that one can also define a forcing notion for adding
a Miller tree of Miller reals. Note the analogy with RT above.

Definition 31. We use the following notation:

T[n] =def {t ∈ T : ∃s ∈ Splitn(T)(tE s)}.

Consider the following forcing notion:

MT = {(T,T) : T is a Miller tree ∧ ∃n ∈ ω(T = T[n])}

ordered by

(T ′,T′) ≤ (T,T)⇔ T′ ⊆ T ∧ T ′ wend T

Fact 32. Let G be MT-generic over V. Then

V[G] |= “TG is a Miller tree of Miller reals”,

where, as usual, TG =
⋃
{T : (T,T) ∈ G}.

Proof. What we have to do is to make sure that any branch through TG
is in each ground model open dense subset D ⊆ M. Therefore, fix such D
arbitrarily and let

ED = {(T,T) ∈MT : ∀t ∈ T (Tt ∈ D)},

Pick any (T,T) ∈ MT. We are done when we find (T ′,T′) ≤ (T,T) such
that (T ′,T′) ∈ ED. Let Λ = {Tt : t ∈ Term(T )}; obviously, any Tt ∈ Λ
can be shrunk to a tree T′t ∈ D, simply by density of D ⊆M. Furthermore,
one can extend any terminal node t ∈ T to t′ ∈ T ′ such that t′ is ω-splitting
(this is to make sure that TG will be a Miller tree). It is therefore clear
that, if we put T′ to be the union of such T′t’s, then (T ′,T′) ≤ (T,T) and
(T ′,T′) ∈ ED.

Remark 33. Unfortunately, this construction cannot be generalized for any
arboreal forcing P; in fact, one can easily notice that such a method does
not work for Laver trees and Silver trees; about the latter, while the union
of Miller (Sacks) trees is again a Miller (Sacks) tree, the same is not true
for Silver trees, since we lose the uniformity; however, a slight refinement of
the proof above is sufficient in this case, as the following paragraph shows.
On the contrary, for Laver trees the problem seems to be more complicate
to solve, since, when one shrinks the second coordinate, in order to make
it belonging to the dense subset D, one may lose the possibility to have
infinitely many immediate successors.
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Adding a Silver tree of Silver reals. Consider the forcing VT defined
like ST at page 23, but with Silver trees in place of Sacks trees. As above,
we want to show that

V[G] |= “TG is a Silver tree of Silver reals”.

Fix an open dense D ⊆ V. By remark 33, one has to find a finer method to
make sure that the union of Silver trees Tt’s is a Silver tree. First of all, let
t0, t1, . . . , tk be an enumeration of all terminal nodes in T . Before starting
the construction, we need the following notation: for any tree T and t ∈ 2<ω

such that |t| ≤ |Stem(T )|, let

T ⊕ t = {t′ ∈ 2<ω : ∀n < |t|(t′(n) = t(n)) ∧ ∃t′′ ∈ T∀n ≥ |t|(t′′(n) = t′(n))}.

(Intuitively, T ⊕ t is the translation of T above t). Consider the following
construction:

- firstly, let T0
t0 ⊆ Tt0 be in D and let T0

t1 = T0
t0 ⊕ t1;

- then, let T1
t1 ⊆ T0

t1 be in D and let T1
t2 = T1

t1 ⊕ t2; note that T1
t1 ⊕ t0 ⊆

T0
t0 and so T1

t1 ⊕ t0 ∈ D;

- continue this construction for every j ≤ k;

- finally, let T′tj = Tktk ⊕ tj , for every j ≤ k.

It follows from the construction that T′ =
⋃
{T′tj : j ≤ k} is a Silver tree.

The rest of the argument works as in the proof of fact 32.

Remark 34. It is noteworthy that such forcings RT,ST,VT and MT are
rather different from their counterparts R, S,V and M. A difference between
R and RT has been already underlined, since the latter adds a perfect set
of random reals, whereas the former does not. About forcing VT, we will
see at page 35 that, rather surprisingly, it adds a dominating real (and a
similar proof could be given for ST and MT as well). If one goes into the
construction of such a dominating real, one can note that it does not work for
forcing RT; In fact, one can prove that the latter does not add dominating
reals (as a corollary of theorem 3.2.23, lemma 6.5.10 and theorem 6.5.11
of [BJ95]). This last fact also implies that RT is not forcing equivalent
to the Amoeba for measure A, since the latter adds Hechler reals. As a
further information we therefore obtain that the perfect set of random reals
added by RT is measure zero; in fact, since such a perfect tree of random
reals exists inside any positive set of the ground model, if it were positive,
one would obtain by translation that it would have measure one, which is
impossible since the latter would imply adding dominating reals.
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Remark 35. Note that, any forcing PT just introduced, adds a tree in P of
P-generic reals below any ground model condition in P. This simply follows
noting that the forcing PTW = {(T,T) ∈ PT : T ⊆W} is isomorphic to PT,
for any W ∈ P. As an immediate consequence, one gets

PT (∀W ∈ P ∩V)(∃T ∈ P)(T ⊆W )(∀z ∈ [T ])(z is P-generic over V),

We conclude this section with a standard application of the tools intro-
duced so far.

Example 36. Consider a Boolean algebra Bκ obtained as in definition
26, but only amalgamating over Silver forcing V, and adding also cofinally
often the forcing VT into the construction, i.e., for cofinally many α’s, let
Bα+1 = Bα ∗ V̇T. We want to show that

Bκ  “every set of reals in L(ωω) is V-measurable”.

Proof. Fix arbitrarily X ⊆ 2ω and let ϕ and v ∈ Onω such that X = {x ∈
2ω : ϕ(x, v)}. Let α < κ be such that v ∈ V[G�α+ 1] and Bα+1 = Bα ∗ V̇T.
To lighten the notation, let Gα+1 = G�α+ 1.

By construction, we know

V[Gα+1] |= “Bκ/Gα+1 is strongly V-homogeneous”.

Let N = V[Gα+1] and B∗ = Bκ/Gα+1.
Let H be the tail of the generic filter G, i.e., H is B∗-generic over N and

N[H] = V[G]. Hence, for every W ∈ N ∩ V,

N[H] |= (∃T ∈ V)(T ⊆W )(∀z ∈ [T ])(z is V-generic over N). (1.5)

The following result is easy to check.

Fact 37. Let ẋ be a B-name such that B “ẋ is a V-generic real over N”,
and assume for every Borel set B /∈ IV, ‖ẋ ∈ B‖B 6= 0. Then there exists
an isomorphism

f : B(V)→ Bẋ, such that B f(v̇) = ẋ,

where v̇ is the canonical V-name for the V-generic real.

Let ẋ be a name for a Silver real and assume ‖ϕ(ẋ)‖B? 6= 0. Since we
have in the construction iteration of VT, one obviously obtains B(V) l B∗.
Hence, because of 37, together with strong V-homogeneity, one can consider
A ∈ B(V) such that A = ‖ϕ(v̇)‖B(V) 6= ∅. Then, pick T ∈ V as in (1.5) such
that [T ] ⊆ A. The next observation follows from Solovay’s lemma, stated
for V-generic (Silver) reals in place of random reals.
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Remark 38. Suppose N[H] |= “z is a Silver real over N”. Then

N[H] |= “z ∈ A⇔ ϕ(z)”.

Thus, since every z ∈ [T ] is V-generic over N and, by construction,
z ∈ A, then for every z ∈ [T ], N[H] |= ϕ(z). Hence, one obtains

V[G] |= [T ] ⊆ X.

It is left to show the case ‖ϕ(ẋ)‖B? = 0. In this case, ‖¬ϕ(ẋ)‖B? 6= 0 and
then, arguing in the same way, one gets a Silver tree T such that for every
z ∈ [T ], N[H] |= ¬ϕ(z), and therefore

V[G] |= [T ] ∩X = ∅.



Chapter 2

Separation of regularity
properties

As we said in the introduction, this chapter is dedicated to prove results
of separation between regularity properties, or in other words to construct
models

M |= Γ(P) ∧ ¬Γ(Q),

for different arboreal forcings P and Q. Note that, the statements Γ(P)
defined in the introduction may be seen as particular cases of a more general
type of statements, i.e.,

Θ(P) ≡def “every set of reals in Θ is P-measurable”.

In this fashion, the family Γ considered in the introduction exactly consists
of all sets of reals. Obviously, such statements are well defined for every
family of sets of reals Θ; however, some nice results can be proved when
this family Θ satisfies certain particular properties, that are to be closed
under continuous preimages and to be closed under intersections with closed
sets; such families are called topologically reasonable families. A detailed
study of this topic may be found in [BL99]. Let us note that the family Γ
obviously satisfies such properties, and moreover also the families consisting
of projective sets, of ∆1

2-sets, Σ1
2-sets and so on are topologically reasonable.

Our work is essentially devoted to the separation of statements of the
form Γ(P); furthermore, another interesting point is the study of statements
of the form ∆1

2(P) and Σ1
2(P). About this second point, most of the results

concerning these two families are corollaries of some interesting characteri-
zations due to Solovay, Shelah, Brendle and Löwe; other results are a little
more complicate and they will require some sophisticated argument, like
that one we will present at page 35 to answer question 3 of [Ha03]. The
chapter is therefore divided into two main sections for dealing with those two
different subjects. We remark that for Σ1

1 this sort of issues do not occur,
since one can rather easily show in ZFC that any Σ1

1-set is P-measurable,

28
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for all P’s of our interest (for a general proof one can see [K12], proposition
2.2.3).

2.1 Regularity properties for ∆1
2 and Σ1

2 sets

We divide this section in several parts, each of ones concerns a particular
parallel between two regularity properties. The following diagram shows the
known implicatons.

∆1
2(R)

Σ1
2(R) Σ1

2(C)

∆1
2(C) Σ1

2(V) Σ1
2(M)

Σ1
2(S)

Σ1
2(L)

∆1
2(V)

We will call it the RP-diagram. The reader may note the lack of the
statements ∆1

2(S), ∆1
2(M) and ∆1

2(L). The reason is that such assertions
are equivalent to their corresponding counterparts for Σ1

2, as we will see in
the next paragraphs.

Almost all of the implications are known results proved by Shelah, Solo-
vay, Brendle, Löwe and Halbeisen. We only have to prove the following.

Fact 39. ∆1
2(R)⇒∆1

2(V). Actually, for every perfect tree T such that, for
every t ∈ T , µ([Tt]) > 0, there exists T ′ ⊆ T such that T ′ ∈ V.

Proof. Let T ⊆ 2<ω be a perfect tree of positive measure, with the further
condition that for every t ∈ T , also µ([Tt]) > 0. The proof is essentially a
consequence of the well-known density lemma for measure. In particular,
this lemma implies that, given any positive measure tree [T ], one can find
x ∈ [T ] such that

lim
n<ω

µ([Tx�n])

µ([x�n])
= 1,

which means that for every ε > 0 there exists n ∈ ω such that

µ([Tx�n]) > (1− ε)µ([x�n]) (2.1)

Such x is called density branch. The construction of the Silver tree T ′ is
done by induction.

Step 0. Pick x ∈ [T ] density branch. Apply (2.1) for ε = 1
2 ; to

lighten the notation we put t = x�n. Furthermore, (2.1) also implies
that t is a splitting node of T . Hence, we have µ([Tt]) >

1
2µ([t]). Put
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T0 = Tta0, T1 = Tta1 and T ∗1 = T1 ⊕ ta0, where we remind the latter
is the translation of T1 over ta0.

We claim that [T ∗1 ] ∩ [T0] 6= ∅. To reach a contradiction, assume not.
Then, on the one hand, by [T ∗1 ] ∪ [T0] ⊆ [ta0] and (2.1), it follows

µ([T ∗1 ]) + µ([T0]) = µ([T ∗1 ] ∪ [T0]) ≤ µ([ta0]) =
1

2
µ([t]).

On the other hand, since µ([T ∗1 ]) = µ([T1]), it follows

µ([T ∗1 ]) + µ([T0]) = µ([T1] ∪ [T0]) = µ([Tt]) >
1

2
µ([t]),

and so one obtains a contradiction.

Furthermore, we know that the intersection is not only non-empty, but
is closed and with positive measure; put S0 = T ∗1 ∩T0. We also remark
that for every t ∈ S0, µ([S0]) > 0. Therefore, by using density lemma
again, one can pick x0 ∈ [S0] density branch, such that x0 ⊕ ta1 ∈
[S0 ⊕ ta1] is a density branch as well. Hence, we have found a way
to lengthen the splitting node t with two uniform density branches in
[T ].

Step j + 1. Assume Sj ⊆ T and xj already defined. Applying the
same argument of previous step, there exists n ∈ ω, such that, for
every σ ∈ 2j and i = 0, 1, one has tσai =def (xj ⊕ taσ i)�n is a splitting

node and µ([Sj ⊕ taσ i]∩ [tσai]) >
1
2µ([tσai]). (Note that we consider t∅

to be t of Step 0). Furthermore, we also get Sj+1 and xj+1 such that:

– Sj+1 ⊆ Sj such that ∀t ∈ Sj+1, µ([Sj+1]) > 0;

– xj+1 ∈ [Sj+1] is a density branch;

– for every σ ∈ 2j+1, for i = 0, 1, one has (xj+1⊕taσ i) ∈ [Sj+1⊕taσ i].

One can therefore uniformly extend all splitting nodes tσ, for σ ∈ 2j+1.

It is clear that such a recursive construction satisfies our requirements. More
precisely,

T ′ =def {tσ ∈ 2<ω : tσ as defined above, σ ∈ 2<ω}

is a Silver tree inside T .

Going back to the RP-diagram, note that one may assign a white square
� to mean that the corresponding statement in the diagram holds, and a
black square � to mean that the corresponding statement does not hold.
For instance, if one considers an ω1-iteration of Amoeba for measure A,
one obtains a model satisfying Σ1

2(R), and hence such a model satisfies the
following RP-diagram:
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�

� �

� � �

�

�

�

In this manner, like for Cichom’s diagram for cardinal invariants, one can
ask whether one can construct a model for each allowed combination of white
and black squares. In the concluding part of this section we will summarize
all of the results which we are going to present in the next paragraphs in
terms of combinations of the RP-diagram.

Baire property vs Lebesgue measurability. We start from the follo-
wing two theorems, due to Solovay and Shelah, which are part of the folklore
of our subject. Remind that P(V) is the set of P-generic reals over V.

Theorem 40 (Shelah,1978).

(i) ∆1
2(R)⇔ ∀x ∈ ωω(R(L[x]) 6= ∅);

(ii) ∆1
2(C)⇔ ∀x ∈ ωω(C(L[x]) 6= ∅).

Theorem 41 (Solovay,1970).

(i) Σ1
2(R)⇔ ∀x ∈ ωω(R(L[x]) has measure one);

(ii) Σ1
2(C)⇔ ∀x ∈ ωω(C(L[x]) is comeager).

Proofs of such results may be found in [BJ95], sections 9.2 and 9.3. As
an immediate corollary we also get

LRω1 |= ∆1
2(R) ∧ ¬∆1

2(C), and

LCω1 |= ∆1
2(C) ∧ ¬∆1

2(R),

since random forcing R does not add Cohen reals, and viceversa, Cohen
forcing C does not add random reals. Note that, rather surprisingly, the
same separation cannot be done for Σ1

2. In fact, on the one hand

LUMω1 |= Σ1
2(C) ∧ ¬Σ1

2(R),

where UM is the Amoeba for category, the forcing to make the union of
the ground model meager sets a meager set; on the other hand, we have
Σ1

2(R)⇒ Σ1
2(C) (this result is due to Raisonnier; for a proof see also [BJ95],
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theorem 9.3.4). The symptoms of that may be already noted because the
Amoeba for measure A, which is the natural forcing to make the union of
ground model null sets a null set, also makes the union of the ground model
meager sets a meager set, and so

LAω1 |= Σ1
2(R) ∧Σ1

2(C).

This implication does not extend to the family Γ of all sets of reals, as we
mentioned in the introduction. Furthermore, in [FS10], Sy Friedman and
David Schrittesser showed an even deeper result, constructing a model

M |= Proj(R) ∧ ¬∆1
3(C).

Note that such a result is optimal, since M |= Σ1
2(C) by Raisonnier’s theo-

rem stated above. This construction is the core of David Schrittesser’s PhD
thesis.

Baire property vs Miller measurability. In this case we remark two
interesting results proved in [BL99], corollary 3.5 and theorem 6.1.

Remark 42. For every set of reals X, one has

X has the Baire property⇒ X is Miller measurable.

Theorem 43. ∆1
2(M)⇔ Σ1

2(M)⇔ ∀x ∈ ωω(ωω ∩ L[x] is not dominating).

Hence, to get a model for Σ1
2(M) ∧ ¬Σ1

2(C) is sufficient to consider an
ω1-iteration of Cohen, i.e.

LCω1 |= Σ1
2(M) ∧ ¬Σ1

2(C).

Note that the failure of Σ1
2(C) in such a model in due to theorem 44.

However, such a model also satisfies ∆1
2(C). To obtain a model for

Σ1
2(M) ∧ ¬∆1

2(C), we need to iterate a forcing adding unbounded reals,
without adding Cohen reals; for such a proof we refer the reader to the
paragraph on Laver measurability vs Baire property.

Lebesgue measurability vs Miller measurability. The situation for
Lebesgue measurability is slightly different, since we do not have an analo-
gous of theorem 42 also for Lebesgue measurability. In fact, since random
forcing does not add unbounded reals, we get

LRω1 |= ∆1
2(R) ∧ ¬∆1

2(M).

On the contrary, the situation for Σ1
2 is different; in fact, because of theorem

42 and Raisonnier’s result stated above, we get Σ1
2(R)⇒ Σ1

2(M). So for Σ1
2

we get again the result that we already had for the Baire property. In section
2.2.1, we will see that such an implication does not extend to the family Γ.
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Baire property vs Laver measurability. First of all, note that in this
case we do not have an analogous of theorem 42. However, the following
results proved by Löwe and Brendle in [BL99], theorem 4.1 and theorem 5.8,
allows us to make some interesting observations. In the following theorem,
remind that D(L[x]) denotes the set of Hechler reals over L[x].

Theorem 44 (Brendle-Löwe,1999).

(i) Σ1
2(C)⇔ ∀x ∈ ωω(D(L[x]) 6= ∅);

(ii) ∆1
2(L)⇔ Σ1

2(L)⇔ ∀x ∈ ωω(ωω ∩ L[x] is bounded).

As an immediate corollary we get Σ1
2(C) ⇒ Σ1

2(L). The interesting
observation is that such an implication does not reverse. Actually, we can
prove something even stronger, constructing a model

M |= Σ1
2(L) ∧ ¬∆1

2(C).

The method to do that is simply an ω1-iteration of L, with countable sup-
port, as the following fact shows.

Fact 45. Let G be an Lω1-generic over L, where Lω1 is an iteration of Laver
forcing L of length ω1, with countable support. Then

L[G] |= Σ1
2(L) ∧ ¬∆1

2(C).

Proof. The core of the proof his the fact that a countable support iteration
of Laver forcing L satisfies Laver property ([BJ95], theorem 6.3.34) and the
latter in turn implies that no Cohen reals are added ([BJ95], Lemma 7.3.33).
The rest of the argument is standard. Since ω1 is preserved by properness,
any real parameter r can be absorbed at some stage of the iteration α < ω1,
i.e., r ∈ L[G�α]. Since L adds dominating reals, we therefore have ωω∩L[r] is
bounded, for any real r, and hence, by theorem 44-(i), we get L[G] |= Σ1

2(L).
On the contrary, since Lω1 does not add Cohen reals, we obtain, by theorem
40, L[G] |= ¬∆1

2(C).

It is straightforward that such a result also implies that one can separate
Σ1

2(M) and ∆1
2(C), simply since the former is implied by Σ1

2(L).
Furthermore, we may remark that in the implication Σ1

2(C) ⇒ Σ1
2(L),

there is no hope to weaken the left side, since

LCω1 |= ∆1
2(C) ∧ ¬Σ1

2(L).

Laver measurability vs Miller measurability. There is nothing inte-
resting to say in this case, since, on the one hand we obviously have that
every Laver measurable set of reals is Miller measurable as well, and on the
other hand, a simple ω1-iteration of Cohen forcing Cω1 gives

LCω1 |= Σ1
2(M) ∧ ¬Σ1

2(L).
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Lebesgue measurability vs Laver measurability. First of all, one may
note that, again by Lemma 7.3.33 in [BJ95], Laver forcing L does not add
random reals and so, a similar argument used in the proof of Fact 45 shows
that

LLω1 |= Σ1
2(L) ∧ ¬∆1

2(R).

For the converse, one can again note that Σ1
2(R) ⇒ Σ1

2(L), because of
Raisonnier’s result and Theorem 44. Moreover, this implication is optimal,
since a simple ω1-iteration of random forcing gives

LRω1 |= ∆1
2(R) ∧ ¬Σ1

2(L).

Sacks measurability vs all the others. Sacks measurability is the weak-
est among all regularity properties that we are considering. In fact, it is clear
that it is implied by each of the other ones, i.e.,

X is P-measurable⇒ X is Sacks measurable,

where P is any of the arboreal forcing in the RP-diagram. The question
which could arise is whether is the case of

∆1
2(S)⇒∆1

2(P) or Σ1
2(S)⇒ Σ1

2(P).

Once more, an enlightening characterization of the statements ∆1
2(S) and

Σ1
2(S), due to Brendle and Löwe, is presented in [BL99], theorem 7.1, and

we state here for completeness.

Theorem 46. ∆1
2(S)⇔ Σ1

2(S)⇔ ∀x ∈ ωω(ωω ∩ L[x] 6= ωω).

Hence, if we consider an ω1-iteration of Sacks forcing Sω1 , with countable
support, we immediately get

LSω1 |= Σ1
2(S) ∧ ¬∆1

2(C) ∧ ¬∆1
2(M),

since Sacks forcing S does not add unbounded reals. Moreover, since one
may also prove that Sacks forcing does not add random reals, we get

LSω1 |= Σ1
2(S) ∧ ¬∆1

2(R).

Silver measurability vs Laver measurability and Lebesgue mea-
surability. A result due to Halbeisen (see [Ha03], page 176) shows that
Cohen forcing C adds a Silver tree of Cohen reals. Hence, by a standard
argument, an ω1-iteration of C with finite support gives us a model for
Σ1

2(V) ∧ ¬∆1
2(L) ∧ ¬∆1

2(R). Conversely, since R does not add unbounded
reals, one has LRω1 |= ∆1

2(R)∧¬Σ1
2(V), and since V satisfies the Laver pro-

perty, one has LVω1 |= ∆1
2(V) ∧ ¬∆1

2(R). On the contrary, the implication
Σ1

2(L)⇒ Σ1
2(V) is still unsolved.
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Silver measurability vs Baire property. In the previous paragraph we
have seen that to separate Silver measurability and Laver measurability a
simple iteration of Cohen forcing is sufficient. Furthermore, that model also
satisfies Σ1

2(V) ∧ ¬Σ1
2(C). Nevertheless, the method adds Cohen reals, and

so such a model satisfies ∆1
2(C). Hence, the natural question turning out is

how to separate Σ1
2(V) and ∆1

2(C). This question was asked by Halbeisen
in [Ha03], as question 3 in the last page of the paper. Our idea to answer
this question is to find a forcing notion whereby one can add a Silver tree of
generic reals, without adding Cohen reals. We want to prove that the right
choice is the forcing VT introduced in the previous chapter at page 25. In
that paragraph we have already shown that such forcing VT adds a Silver
tree of Silver reals. Hence, only two things are left:

1. to verify that VT is proper;

2. to verify that VT does not add Cohen reals.

Obviously V l VT. The following observation points out that they are
not equivalent.

Remark 47. Consider the following definition:

• for every tree T, let SLT(n) = |t|, where t ∈ T is an n + 1-st splitting
node;

• for every T ⊆ ω<ω finite, let ns(T ) = number of splitting levels of T ;

• let δT (n) = SLT (n+ 1)− SLT (n) and set

∆T = 〈δT (0), δT (1), . . . , δT (ns(T )− 1)〉.

Finally, if G is VT-generic over V, let hG =
⋃
{∆T : (T,T) ∈ G}.

Claim: VT “ ḣG is dominating over V”.
To see that, fix an increasing x ∈ ωω ∩V and (T,T) ∈ VT, arbitrarily.

Pick T′ ⊆ T, T′�ht(T ) = T such that for every n ≥ ns(T ), SLT′(n + 1) −
SLT′(n) > x(n).

To prove the properness, we will actually show that VT satisfies Axiom
A, which is defined as follows.

Definition 48. A forcing P satisfies Axiom A if and only if there exists a
sequence {≤n: n ∈ ω} of orderings of P such that:

1. for every p, p′ ∈ P , for every n ∈ ω, p′ ≤n+1 p implies both p′ ≤n p
and p′ ≤ p;

2. for every sequence 〈pn : n ∈ ω〉 of conditions in P such that for every
n ∈ ω, pn+1 ≤n pn, there exists q ∈ P such that for every n ∈ ω,
q ≤n pn;
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3. for every antichain A ⊆ P , p ∈ P , n ∈ ω, there exists q ≤n p such that
{p′ ∈ A : p′ is compatible with q} is countable.

We define the sequence of orderings on VT as follows:

(T ′,T′) ≤n (T,T) ⇔ (T ′,T′) ≤ (T,T)

T ′ = T ∧ ∀k ≤ n(SLT′(k) = SLT(k)).

Clearly, conditions 1 and 2 of the above definition are satisfied. To obtain
condition 3, the following observation is crucial.

Remark 49. LetD ⊆ VT be open dense and fix (T,T) ∈ VT arbitrarily. Let
T 0 = T�(SLT(h0) + 1), where the h0-th splitting nodes are the first splitting
nodes occurring above T . Furthermore, let {T 0

j : j < 3} be an enumeration

of all uniform finite trees such that T ⊆ T 0
j ⊆ T 0, ht(T 0

j ) = ht(T 0) and

T 0
j �ht(T ) = T

Notation: given T infinite tree and T finite tree, put

T⊗ T = {t ∈ 2<ω : ∃t′ ∈ T∃t′′ ∈ Term(T ) , ∀n < |t′′|(t(n) = t′′(n))

∧∀n ≥ |t′′|(t(n) = t′(n))}.

(Intuitively, T⊗ T is the translation of T over T ).
Starting from such T 0, one develops the following construction along

i ≥ h0, and j < 3i−h0+1.

• Start from i = h0:

– Substep j = 0: if there exists S ⊆ T such that (T 0
0 ,S) ∈ D,

then put T0
0 = S; otherwise put T0

0 = T;

– Substep j+1: if there exists S ⊆ T0
j⊗T 0

j+1 such that (T 0
j+1,S) ∈

D, then put T0
j+1 = S; otherwise let T0

j+1 = T0
j ;

– when the operation is done for every j < 3, put T0
∗ = T0

2⊗T 0 and
T 1 = T0

∗�(SLT0
∗
(h0 + 1) + 1); furthermore, let {T 1

j : j < 32} be the

enumeration of all the uniform finite trees such that T 1
j ⊆ T 1,

ht(T 1
j ) = ht(T 1) and T 1

j �ht(T ) = T ;

• Step i = h0 + k + 1:

– Substep j = 0: if there exists S ⊆ Tk∗ such that (T k+1
0 ,S) ∈ D,

then put Tk+1
0 = S; otherwise let Tk+1

0 = Tk∗;

– Substep j + 1: if there exists S ⊆ Tk+1
j ⊗ T k+1

j+1 such that

(T k+1
j+1 ,S) ∈ D, then put Tk+1

j+1 = S; otherwise let Tk+1
j+1 = Tk+1

j ;

– when the operation is done for every j < 3k+2, put Tk+1
∗ =

Tk+1
3k+2−1

⊗T k+1 and T k+2 = Tk+1
∗ �(SLTk+1

∗
(i+1)+1); furthermore,
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let {T k+2
j : j < 3k+3} be the enumeration of all the uniform fi-

nite trees such that T k+2
j ⊆ T k+2, ht(T k+2

j ) = ht(T k+2) and

T k+2
j �ht(T ) = T .

Once that such a construction is finished, one obtains a sequence 〈Tk∗ : k ∈ ω〉
such that Tk+1

∗ ≤h0+k Tk∗. Hence, the tree T∗ obtained by fusion, i.e.,
T∗ =

⋂
k∈ω T

k
∗, is a Silver tree, and so the pair (T,T∗) belongs to VT and

(T,T∗) ≤h0 (T,T).
Let T∗↓S = {t ∈ T∗ : ∃s ∈ S(t D s ∨ tE s)}. By construction, one gets

∀(S,S) ≤ (T,T∗), if (S,S) ∈ D then (S,T∗↓S) ∈ D. (2.2)

Condition (2.2) is the core of the next lemma.

Lemma 50. Let A ⊂ P be a maximal antichain and (T,T) ∈ VT. Then
there exists T∗ ⊆ T such that (T,T∗) only has countably many compatible
elements in A.

Proof. Fix a condition (T,T) ∈ VT. Let DA be the open dense subset
associated with A, i.e., DA = {p ∈ VT : ∃q ∈ A(p ≤ q)}. Let T∗ be as in
remark 49. To reach a contradiction, assume there are uncountably many
elements in A compatible with (T,T∗), i.e., there is a sequence 〈(Tα,Tα) :
α < ω1〉 of distinct elements of A and there are (Sα,Sα)’s such that, for
every α < ω1,

(Sα,Sα) ≤ (Tα,Tα), (T,T∗).

Note that (Sα,Sα) ∈ DA. Thus, by remark 49, one obtains (Sα,T
∗↓Sα) ∈

DA, and therefore

(Sα,T
∗↓Sα) ≤ (Tα,Tα), (T,T∗).

Note that there are only countably many different (Sα,T
∗↓Sα)’s and there-

fore there exist α0, α1 < ω1 such that (Sα0 ,T
∗↓Sα0) = (Sα1 ,T

∗↓Sα1), and
this contradicts (Tα0 ,Tα0) ⊥ (Tα1 ,Tα1).

Note also that in remark 49, for any n ∈ ω, one could repeat the con-
struction starting from h0 = n, in order to get (T,T∗) ≤n (T,T). Thus, in
lemma 50 one can actually pick (T,T∗) ≤n (T,T), and therefore one obtains
condition 3 of definition 48.

Futhermore, one can prove that VT satisfies the Lf -property (see defi-
nition 19), which is the content of the next result.

Lemma 51. Let A ∈ [ω]<ω and ȧ a VT-name for an element of A. Then for
any condition (T,T) ∈ VT, for every n ∈ ω, there exists (T,T∗) ≤n (T,T)
and B ⊆ A, B ⊆ 3n such that

(T,T∗)  ȧ ∈ B.
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Proof. We will need the following result.

Lemma 52. (Pure Decision of VT). Let (T,T) ∈ VT and ϕ0, . . . , ϕk be a
finite list of statements such that (T,T) 

∨
i≤k ϕi. Then there exists T∗ ⊆ T

and i ≤ k such that
(T,T∗)  ϕi.

Proof of Lemma 52. Note that if, for some i ≤ k, there exists (T ′,T′) ≤
(T,T) such that every t′ ∈ T ′ \ T is not splitting, and (T ′,T′)  ϕi, then
(T,T′)  ϕi as well. Hence, w.l.o.g., one can assume that does not happen.

To reach a contradiction, assume there exists a minimal (T 0,T0) ≤ (T,T)
such that (T 0,T0)  ϕi, for some i ≤ k, where minimal means that there is
no T ′ ⊂ T 0 (and T′ ∈ V) such that (T ′,T′)  ϕi.

Let {T 0
j : j ≤ k0} be the list of all finite trees such that T ⊆ T 0

j ⊆ T 0

and T 0
j �ht(T ) = T , for every j ≤ k0.

Step 0: pick (S1
0 ,T

1
0) ≤ (T 0

0 ,T
0) such that (S1

0 ,T
1
0)  ϕi and put

S0
1 = T1

0 ⊗ T 0
1 ;

Step j: pick (S1
j ,T

1
j ) ≤ (T 0

j ,S
0
j ) such that (S1

j ,T
1
j )  ϕi and put

S0
j+1 = T1

j ⊗ T 0
j+1;

Finally, once the procedure has been done for every j ≤ k0, put T∗ =⋃
j≤k0 T

1
k0
⊗ T 0

j .

By construction T∗ is perfect and uniform. Hence (T,T∗) is well-defined,
that means (T,T∗) ∈ VT.

Furthermore, for every (S,S) ≤ (T,T∗), either S ≤ T 0 (and then
(S,T∗)  ϕi simply because (S,T∗) ≤ (T 0,T0)), or S = T 0

j , for the ap-

propriate j ≤ k0, and therefore there is S1
j ≤ S such that

(S1
j ,S↓S1

j ) ≤ (S,S) and (S1
j ,T

∗↓S1
j )  ϕi.

By density, that means (T,T∗)  ϕi, which contradicts the minimality of
T0.

We now proceed with the proof of lemma 51. Fix n ∈ ω arbitrarily
and consider {Tj : j ≤ Jn} the list of all finite trees such that Tj ⊇ T ,
Tj�ht(T ) = T and ht(Tj) = hn, where hn is the level of the n-th splitting
nodes. (The development of the proof will show that the case hn ≤ ht(T ) is
trivial, and so one can assume hn > ht(T )). Note also that Jn ≤ 3n.

Let A = {ai : i ≤ u}, for some u ∈ ω. Note that, for every j ≤ Jn,

(Tj ,T) 
∨
i≤u

ȧ = ai.

As usual, one proceeds by steps:
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• start from T0. Let T0 = T↓T0 and, by applying lemma 52, choose
S0 ≤ T0 such that (T0,S0)  ȧ = ai0 , for some i0 ≤ u.

• Let Tj+1 = Sj⊗Tj+1 and, by applying lemma 52, choose Sj+1 ≤ Tj+1

such that (Tj+1,Sj+1)  ȧ = aij+1 , for some ij+1 ≤ u.

• Finally, once the construction has been done for every j ≤ Jn, set

T∗ = TJn ⊗ (T�hn) and B = {aij : j ≤ Jn}.

Hence, by construction, (T,T∗) ≤ (T,T) and (T,T∗)  ȧ ∈ B, where
|B| ≤ Jn ≤ 3n.

We are now able to prove the main result of this section.

Theorem 53. Let VTω1 be an iteration of length ω1 with countable support
of VT and let G be a VTω1-generic over L. Then

L[G] |= Σ1
2(V) ∧ ¬∆1

2(C).

Proof. Let X = {x ∈ 2ω : ϕ(r, x)} ∈ L[G], where ϕ is a Σ1
2-formula and r

is the real parameter. As usual, one can find α < ω1 such that r ∈ L[G�α].
Consider the formula ϕ(v̇), where v̇ is the canonical name for the V-generic
real. Furthermore, since X is Σ1

2, one can find ω1-many Borel sets Bγ coded
in L[G�α] such that X = ∪γ<ω1Bγ . Two cases are therefore possible. The
first one is that for every γ ∈ ω1, Bγ ∈ IV. If that happens, then simply
consider the generic Silver tree Tα of V-generic reals added at stage α. Since
every V-generic real avoids all the Borel sets in IV ∩ L[G�α], one therefore
gets that [Tα] ∩X = ∅. Hence, one obtains

L[G�α][G(α)] |= ∀x ∈ [Tα](¬ϕ(x)),

which is a Π1
2-formula, and so also

L[G] |= [Tα] ∩X = ∅.

In the second case there exists γ ∈ ω1 such that Bγ /∈ IV. Hence, since
every Borel set is V-measurable, there is T ∈ V, [T ] ⊆ Bγ . Hence, one gets

L[G�α][G(α)] |= ∀x ∈ [T ](x ∈ Bγ),

which is a Π1
1-formula, and so, again by absoluteness,

L[G] |= [T ] ⊆ Bγ ⊆ X.
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Silver measurability vs Miller measurability. The parallel between
these two regularity properties is interesting. In fact, even if they seem
rather different, Brendle, Löwe and Halbeisen showed that Σ1

2(V)⇒ Σ1
2(M)

(see [BLH05], proposition 3.7). At the same time, it is clear that one cannot
replace the left side with ∆1

2(V), since the ωω-boundedness of V implies that
Vω1 forces ∆1

2(V)∧¬Σ1
2(M). On the contrary, it is known that Mω1 does not

add splitting reals, and therefore it provides a model for Σ1
2(M) ∧ ¬∆1

2(V)
(because of proposition 2.4 in [BLH05], saying that ∆1

2(V) implies for all
x ∈ ω, there exists a splitting reals over L[x]).

2.1.1 Concluding remarks.

We summarize all of the results of the previous paragraphs in terms of the
RP-diagram.

• Cω1 forces

�

� �

� � �

�

�

�

• UMω1 forces

�

� �

� � �

�

�

�

In the latter, to get ∆1
2(R) without Σ1

2(R) is sufficient to consider
a mixed ω1-iteration of UM and R, say (UM ∗ R)ω1 , which therefore
provides a model for
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�

� �

� � �

�

�

�

• Lω1 forces

�

� �

� ? �

�

�

?

• Rω1 forces

�

� �

� � �

�

�

�
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• Mω1 forces

�

� �

� � �

�

�

�

• Vω1 forces

�

� �

� � �

�

�

�

• VTω1 forces

�

� �

� � �

�

�

�
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• (C ∗ R)ω1 forces

�

� �

� � �

�

�

�

• Sω1 forces

�

� �

� � �

�

�

�

Remark 54. From the question marks left in the previous diagrams, we re-
alize that the problem to get a complete work for all possible combinations
is still open. In particular the following diagrams are still without models:

�

� �

� � �

�

�

� �

� �

� � �

�

�

� �

� �

� � �

�

�

�

�

� �

� � �

�

�

� �

� �

� � �

�

�

� �

� �

� � �

�

�

�

2.2 Regularity properties for Γ

In this section we will go into the second topic of our work, proving some
results of separation between regularity properties for the family Γ. Remind
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that separation means that we will show that, in some cases, statements of
the form

Γ(P) ≡def “every set of reals is P-measurable”

are independent one from the other, which means that given a pair of dif-
ferent arboreal forcings P,Q among those considered in this thesis, we will
be able to construct a model N such that

N |= Γ(P) ∧ ¬Γ(Q).

Before starting our work, we give a survey on what we already know. The
following diagram, which will be called the Γ-RP-diagram, summarize the
known implications existing between such statements.

Γ(L)

Γ(C)

Γ(M)

Γ(V)

Γ(S)

Γ(R)

Some first comments on the Γ-RP-diagram Some implications are
trivial, such as Γ(L) ⇒ Γ(M), Γ(M) ⇒ Γ(S) and Γ(V) ⇒ Γ(S). Further-
more, to get Γ(C) ⇒ Γ(M) one only has to note that any comeager set
contains the body of a Miller tree (see remark 42), while Γ(R) ⇒ Γ(V) fol-
lows from fact 39, which we proved at page 29. Finally, Γ(C) ⇒ Γ(V) can
be obtained by the following remark.

Fact 55. Any comeager set contains the body of a Silver tree.

Proof. Let Y ⊇
⋂
n∈ωDn, where all Dn’s are open dense. Consider the

following recursive construction:

• let t〈0〉 ∈ 2<ω such that [t〈0〉] ⊆ D0;

• Assume for every r ∈ 2n, tr already defined, in order to have [tr] ⊆ Dn.

Let {tj : j < 2n+1} be an enumaration of {tar i : r ∈ 2n, i = 0, 1}. Then
consider the following construction along j < 2n+1:

for j = 0, pick s0 D t0 such that [s0] ⊆ Dn+1;

for j + 1, pick sj+1 D sj ⊕ tj+1 such that [sj+1] ⊆ Dn+1.

Then put trai = s2n+1−1 ⊕ tj , where tj = tar i.

Finally, set T =
⋃
{tr : r ∈ 2<ω, tr as defined in the construction}. It is

clear that T is a Silver tree such that for every z ∈ [T ], z ∈
⋂
n∈ωDn.
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For separating Γ(S) and Γ(V) from the others, one can simply recall that
an ω1-iteration of C with finite support forces every set of reals in L(ωω) to
be V-measurable (see [Ha03]), and so, going into L(ωω) of such an extension,
we get Γ(S) and Γ(V) without Γ(L),Γ(C) and Γ(R) (by several results stated
in the previous section about characterization of the statements Σ1

2(P) and
∆1

2(P)), while we do not know the behavior of Γ(M) in that model. The
corresponding Γ-RP-diagram is the following:

�

�

?

�

�

�

The coming section is devoted to obtain a model to separate Γ(V) from
Γ(M).

2.2.1 Silver measurability without Miller measurability.

This section is devoted to show how we may separate Silver measurability
from Miller measurability. As we mentioned in the introduction, this work
is mainly inspired by the fact that Σ1

2(V) ⇒ Σ1
2(M). This implication can

be obtained by proposition 3.7 in [BLH05], stating that

Σ1
2(V)⇒ ∀x ∈ ωω(ωω ∩ L[x] is not dominating),

and theorem 43. Hence, a natural question is whether such an implication
extends to the family Γ. The task of this section is precisely to give a
negative answer. In fact, we will construct a model

N |= Γ(V) ∧ ¬Γ(M).

Note that we will not separate the projective V-measurability from the
projective M-measurability. In fact, our method will be to construct a set Y
non-M-measurable (and not projective), and to then amalgamate over Silver
forcing V, with respect to such Y . The construction will give us a Boolean
algebra Bκ forcing Silver measurability of every set of reals in L(ωω, Y ),
which means that we will build up a model

V[G] |= “every set of reals in L(ωω, Y ) is V-measurable and

Y is not M-measurable”,

where G is Bκ-generic over V. We will therefore get the desired model
picking L(ωω, Y )V[G].
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In this case, one has to make sure that, not only all sets in L(ωω) are
regular, but all sets in L(ωω, Y ) are such. In this spirit, one introduces the
following notion.

Definition 56. Let B be a Boolean algebra and Ẏ a B-name. One says
that B is (V, Ẏ )-homogeneous if and only if any isomorphism φ0 between two
complete subalgebras B1,B2 of B, such that, for j = 1, 2, Bj is generated
by Aj ∪ aj , for some Aj

∼= B(V) and aj ∈ B, there exists φ : B → B
automorphism extending φ0 such that B φ(Ẏ ) = Ẏ . (Intuitively, we want
a B-name fixed by any automorphism constructed by the amalgamation).

Furthermore, since we will use Silver tree of Silver reals to get Silver
measurability, one only has to amalgamate over Silver forcing. So, as usual,
one starts from a ground model V containing an inaccessible cardinal κ.
Define a Boolean algebra Bκ as a direct limit of κ-many Boolean algebras
Bα’s of size < κ, such that for every α < γ < κ, Bα lBγ , and one simulta-
neously constructs a set Ẏ of Bκ-names of reals. Such a set is constructed
step by step, that means, for every α < κ, one defines Ẏα in a specific way
and one finally puts Ẏ =

⋃
α<κ Ẏα. The two sequences 〈Bα : α < κ〉 and

〈Ẏα : α < κ〉 are defined as follows:

• Firstly, to ensure the (V, Ẏ )-homogeneity, we use a standard book-
keeping argument as follows: whenever BαlB′lBκ and BαlB′′lBκ

are such that Bα forces (B′ : Bα) and (B′′ : Bα) to be as in definition
56 and φ : B′ → B′′ an isomorphism s.t. φ0 � Bα = IdBα , then there
exists a sequence of functions in order to extend the isomorphism φ0 to
an automorphism φ : Bκ → Bκ, i.e., ∃〈αη : η < κ〉 increasing, cofinal
in κ, and ∃〈φη : η < κ〉 such that dom(φη) ⊇ Bαη and

(Bα1+η+1) = ω-Am(Bα1+η , φη),

Moreover, since one needs to close the set of names under each of such
automorphisms φη, one puts

Ẏα1+η+1 = {φjη+1(ẏ) : ẏ ∈ Ẏα1+η , j ∈ Z}.

• Secondly, to ensure the Silver measurability of every set of reals in
L(ωω, Y ) and that Y will not be Miller measurable, one has to add
the following operations into the construction of Bκ:

1. iteration with VT cofinally often, and so, for cofinally many α’s,

Bα+1 = Bα ∗ V̇T.

In this case, put Ẏα+1 = Ẏα.

2. for cofinally many α’s, Bα+1 = Bα ∗ Ṁ and Ẏα+1 = Ẏα;
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3. for cofinally many α’s, Bα+1 = Bα ∗ Ṁ and

Ẏα+1 = Ẏα ∪ {ẏT : T ∈M},

where ẏT is a name for an M-generic real over VBα belonging to
[T ], for every T ∈ VBα .

• Finally, for any limit ordinal λ, Ẏλ =
⋃
α<λ Ẏα and Bλ = limα<λ Bα.

The proof of the main theorem splits into the following two lemmata.

Lemma 57. Let G be Bκ-generic over V. Then

V[G] |= “every set of reals in L(ωω, Y ) is Silver measurable”.

Proof. The proof of this lemma is basically the same presented in example
36. Let us remind the main steps. Fix arbitrarily X ⊆ 2ω and Φ and r such
that X = {x ∈ 2ω : Φ(x, r)}. Let α < κ be such that r ∈ V[G�α + 1] and
Bα+1 = Bα ∗ V̇T. Note that, by construction,

V[G�α+ 1] |= “Bκ/G�α+ 1 is (V, Ẏ )-homogeneous”.

The next step is to show the reflection property for Φ over Silver reals,
which is the content of the next observation.

Remark 58. Let A be (V, Ẏ )-homogeneous algebra and Φ(x, y) be a for-
mula with only parameters in the ground model and Y as parameter, then
||Φ(Ẏ , v̇)||A ∈ Av̇, where v̇ is a name for a Silver real.

The proof is pretty standard and we give a sketch of it for completeness.
To reach a contradiction, assume ||Φ(Ẏ , v̇)||A /∈ Av̇. Let A′ be the complete
Boolean algebra generated by Av̇ ∪ ||Φ(Ẏ , v̇)||A. It is well-known that there
exists ρ : A′ → A′ automorphism such that ρ(||Φ(Ẏ , v̇)||A) 6= ||Φ(Ẏ , v̇)||A
and ρ is the identity over Av̇. By (V, Ẏ )-homogeneity, there exists φ : A→
A automorphism extending ρ such that A φ(Ẏ ) = Ẏ . Hence, the following
equalities yields a contradiction:

ρ(||Φ(Ẏ , v̇)||A) = φ(||Φ(Ẏ , v̇)||A) = ||Φ(φ(Ẏ ), φ(v̇))||A = ||Φ(Ẏ , v̇)||A.

From now on the proof exactly continues as in example 36.

Lemma 59. Let G be a Bκ-generic filter over V. Then

V[G] |= “Y is not Miller measurable”.

Proof. In V[G], we want to show that there is a tree T ∈ M such that for
every tree S ∈M, S ≤ T , both

Y ∩ [S] 6= ∅ and [S] * Y.
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Fix S ∈M. Let Ṡ be a Bκ-name. By construction, there is α < κ such that Ṡ
is a Bα-name for S, Bα+1 = Bα∗Ṁ and Ẏα+1 = Ẏα∪{ẏT : T ∈M}. Consider
ẏS name for a Miller real over V[G�α+1] such that V[G] |= ẏGS ∈ [S]. Thus,

V [G] |= ẏGS ∈ Y ∩ [S].

On the other hand, there is also γ < κ, such that Ṡ is a Bγ-name for S,
Bγ+1 = Bγ ∗ Ṁ and Ẏγ+1 = Ẏγ . Let ġ be a name for a Miller real over
V[G�γ + 1] such that V[G] |= ġG ∈ [S]. Obviously, V[G] |= ġG /∈ Yγ , since
it occurs at stage γ + 1, and thus,

V[G] |= ġG ∈ [S] \ Ẏ G
γ+1,

since Ẏγ+1 = Ẏγ . It is left to show that V[G] |= ġG /∈ Y \ Ẏ G
γ+1. This follows

from the following two general results.

Fact 60. Let ẋ be a B-name for an element of ωω such that

B “ẋ is unbounded over both VB1 and VB2”,

where B1,B2 l B and φ0 : B1 → B2 isomorphism. Then, for every n ∈ ω,

ω-Am(B,φ0) “φnω(ẋ) and φ−nω (ẋ) are both unbounded over VB”.

where φω is the automorphism of ω-Am(B, φ0) extending φ0.

For a proof one may see lemma 3.4 in [JR93].

Fact 61. Let B0 l B′ l B and B0 l B′′ l B such that

B0 “(B : B′) and (B : B′′) are isomorphic to Q”

where Q does not add unbounded reals. Assume φ0 : B′ → B′′ isomorphism
such that φ0�B0 = IdB0. Then for every ẋ B-name for an element of ωω

such that B “ẋ is unbounded over VB0, one has, for every n ∈ ω,

ω-Am(B,φ0) “φnω(ẋ) and φ−nω (ẋ) are both unbounded over VB”.

The proof of that is a simple corollary of fact 60 and the assumption
that Q is ωω-bounding.

Hence, since Silver forcing is ωω-bounding, the results apply to our case.
Thus, we have found a Bκ-name ġ for a real such that

V[G] |= ġG ∈ [S] \ Y,

which completes the proof.
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Hence, if one considers the inner model L(ωω, Y ) of V[G], one obtains

L(ωω, Y )V[G] |= Γ(V) ∧ ¬Γ(M),

which corresponds to the following Γ-RP-diagram:

�

�

�

�

�

?

Furthermore, it is straightforward to note that if, in the previous con-
struction, one simultaneously amalgamates over random forcing and iterates
Amoeba for measure cofinally often, one obtains a model satisfying Γ(R) as
well, without affecting the rest of the proof, since random forcing is ωω-
bounding. Therefore, as an immediate corollary, the following diagram can
be obtained as well:

�

�

�

�

�

�

An interesting question could be how one can modify the construction of
this section in order to get ¬Γ(R). The natural way of doing that would be
to add random reals in Y cofinally often, but we do not have an immediate
proof to show that this is sufficient.

2.2.2 Miller measurability without Baire property

In [DT98], Di Prisco and Todorcevic introduced a way to show that, starting
from a choiceless Solovay’s model N (i.e., the L(ωω) of a model obtained
by collapsing an inaccessible to ω1), and adding a generic ultrafilter U , one
obtains

N[U ] |= “every set of reals has the perfect set property and

there exists a set without Baire property”.

The idea was essentially to use some nice properties of Mathias forcing MA.
Such a forcing can be defined in several ways; following the spirit of the rest
of our work, we give a definition in terms of trees in ω<↑ω, i.e., the set of
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finite increasing sequences of natural numbers.

Ts,A = {t ∈ ω↑<ω : t D s ∧ Succ(t) ⊆ A \max(t) + 1},

ordered by inclusion. Let us now briefly recall what the model N[U ] is and
why it is so interesting. We start from a choiceless Solovay’s model N and
we add a generic ultrafilter U , by using forcing W, consisting of infinite
subsets of ω modulo the ideal of finite sets, ordered by almost inclusion ⊆∗,
i.e.,

W = [ω]ω/Fin, and a ≤ b⇔ a ⊆∗ b⇔ b \ a ∈ Fin.

Since W is σ-closed, it easily follows that such a forcing does not add reals
and so the generic ultrafilter U added by W is still an ultrafilter in the
extension.

The importance of N[U ] is that it may be seen as a model “between”
two Solovay’s models. Let us explain this fact. It is well-known that, if N
and N∗ are two Solovay’s models over V such that ωω ∩N ⊆ ωω ∩N∗, then
there exists an elementary embedding

j : N→ N∗, such that ∀α ∈ On∀r ∈ ωω(j(α) = α ∧ j(r) = r).

The following two results are well-known as well.

Fact 62. Let MAU be the U -Mathias forcing, consisting of those elements in
MA with second coordinate in U . Then MA is forcing equivalent to W∗MAU .

Fact 63. If N is a Solovay’s model over V and G is an MA-generic filter
over N, then N[G] is a Solovay’s model over V. (In other words, if one
adds a Mathias real into a Solovay’s model, one obtains a Solovay’s model
again.)

For a proof, see [DT98], proposition 2.4.
We have therefore obtained

N ⊆ N[U ] ⊆ N[U ][GU ] = N[G],

where GU is an MAU -generic filter over N[U ], while G is an MA-generic
filter over N. (We will indicate N[G] with N[m], where m is the Mathias
real related to G.)

One can now prove the main result of this section.

Theorem 64. Let N be a Solovay’s model over V and let U be a generic
untrafilter added by W. Then

N[U ] |= Γ(M) ∧ ¬Γ(C) ∧ ¬Γ(R).
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If one looks at the proof of Di prisco and Todorcevic, one can easily
realize that such a method does not work when one directly deals with
symmetric properties, like Miller measurability. In fact, the proof does not
work for Baire property and Lebesgue measurability, which we know to fail
in N[U ]. Hence we need a trick to prove Miller measurability inside N[U ],
but viewing it under a different light.

Definition 65. We say that a set X ⊆ ωω is Kσ-regular if and only if either
X in bounded or there exists T ∈M such that [T ] ⊆ X.

It is straightforward that if X is Kσ-regular, then it is M-measurable as
well, since the complement of a bounded set contains the branches through
a Miller tree.

proof of theorem 64. First of all, one has to show that Kσ-regularity holds
in Solovay’s model.

Lemma 66. Let V[G] be a Solovay’s model obtained by collapsing κ inac-
cessible to ω1. Then

V[G] |= “every set of reals in L(ωω) is Kσ-regular”.

Proof. Let X = {x ∈ ωω : ψ(x)} be an unbounded set of reals (it is known
that one can consider any parameter inside the ground model). Pick x ∈ X
such that x is unbounded over V. Consider the formula ϕ as in lemma 10.
Furthermore, by lemma 9, there exists a forcing P l Coll of countable size
such that x ∈ V[H], where H is P -generic over V. Hence, there exist p ∈ P
and ẋ P -name for x such that

p  “ϕ(ẋ) ∧ ẋ is unbounded over V”.

Moreover, let {Dn : n ∈ ω} be a countable enumeration of all open dense
subsets of P . Consider the following recursive construction:

j = 0: pick p∅ ≤ p such that p∅ ∈ D0 and let σ∅ be the initial segment
of ẋ decided by p∅;

j = 1: for every n ∈ ω, pick p〈n〉 ≤ p∅ such that p〈n〉 ∈ D1 and
p〈n〉  ẋ(k1) > n, where ẋ(k1) is not already decided by p∅ (note that
can be done, by virtue of the unboundedness of ẋ). Lastly, let σ〈n〉 be
the initial segment of ẋ decided by p〈n〉.

j + 1: for t ∈ ωj and n ∈ ω, pick pta〈n〉 ≤ pt such that pta〈n〉 ∈ Dj+1

and pta〈n〉  ẋ(ktj+1) > n, where ẋ(ktj+1) is not already decided by pt.
Lastly, let σta〈n〉 be the initial segment of ẋ decided by pta〈n〉.
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Finally, set Σ = {σt : t ∈ ω<ω, σt defined as above}. By construction, Σ is a
tree and for every z ∈ [Σ], ẋH = z, for some P -generic filter H containing p.
Furthermore, by construction, one can consider a Miller tree T ⊆ Σ. Hence,
we have found a Miller tree T such that, for every z ∈ [T ], V[z] |= ϕ(z),
that means

V[G] |= ∃T Miller tree ([T ] ⊆ X).

Now, fix any unbounded set of reals X ∈ N[U ]. In N, let Ẋ be a W-
name for X. Let m be an MA-generic real over N. Recall there exists an
elementary embedding

j : N→ N[m],

which fixes ordinals and reals. Define the set

X ′ = {x ∈ ωω ∩N[m] : m  x ∈ j(Ẋ)},

Note that X ′ ∈ N[m], by definition. Therefore, since N[m] is a Solovay’s
model, two cases are possible:

Case 1. N[m] |= ∃T ∈ M([T ] ⊆ X ′). Remind that m ⊆∗ u, for every
u ∈ U . Then, fixed u ∈ U arbitrarily, we have

N[m] |= ∃a ⊆∗ u∃T ∈M
[
a  [Ṫ ] ⊆ j(Ẋ)

]
,

and hence, by elementarity,

N |= ∃a ⊆∗ u∃T ∈M
[
a  [Ṫ ] ⊆ Ẋ

]
,

and so also N[U ] |= ∃T ∈M([T ] ⊆ X ′).
Case 2. N[m] |= “X ′ is bounded”, that means

N[m] |= ∃a ⊆∗ u∃f ∈ ωω
[
a  ∀x ∈ j(Ẋ)∀∞n ∈ ω(x(n) ≤ ḟ(n))

]
,

and again, by elementarity,

N |= ∃a ⊆∗ u∃f ∈ ωω
[
a  ∀x ∈ Ẋ∀∞n ∈ ω(x(n) ≤ ḟ(n))

]
,

that means N[U ] |= “X is bounded”, contradicting the assumption on X.

The corresponding Γ-RP-diagram is the following:

?

�

�

?

�

�
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2.2.3 A brief digression: from Sacks to Miller

In section 2.2.1, we saw that Sacks measurability and Miller measurability
can be separated. However, there is a little space between Sacks and Miller,
in the sense of the following definition.

Definition 67. (a) A tree T ⊆ ω<ω is an n-perfect tree iff

∀t∃t′(t′ D t ∧ |Succ(t′)| ≥ n).

We call the forcing consisting of such trees the n-Sacks forcing Sn,
ordered in the usual way.

(b) A set of reals X is Sn-measurable iff ∃T ∈ Sn such that

either [T ] ⊆ X or [T ] ∩X = ∅.

Hence, it could be interesting to analyze such properties. Later on,
we will see how this work could suggest a possible way to separate Miller
measurability from Laver measurability.

Let us now go a little into the study of these “new” regularity properties
turning out between Sacks and Miller. The fact that Γ(Sn) holds in a Cω1-
extension is clear, and the proof is exactly the same used for the Sacks
measurability. What we actually want to do is to prove a stronger property,
which is somehow very close to the Miller measurability.

Definition 68.

(a) A sequence of trees 〈Tn : n ∈ ω〉 is good iff ∀n ∈ ω(Tn ∈ Sn ∧ Tn ⊆
Tn+1).

(b) A set of reals X is Sω-measurable iff there exists a good sequence
〈Tn : n ∈ ω〉 such that

either ∀n([Tn] ⊆ X) or ∀n([Tn] ∩X = ∅).

Fact 69. There exists a forcing P equivalent to the Cohen forcing C such
that

P  “∃〈Tn : n ∈ ω〉 good sequence ∧ ∀n([Tn] ⊆ C(V))”,

where C(V) is the set of Cohen reals over V.

Proof. Let us define the forcing P as a finite support ω-iteration as follows:

Step 0. First of all, consider

P0 = the forcing for adding a perfect tree of Cohen reals,

and let T0 be the P0-generic perfect tree of Cohen reals over V;
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Step 1. In V[T0] = V1, let

P1 = {T ⊆ ω<ω : T is finite ∧ T0 v T ∧ T ∈ S3},

where T0 v T means that T0�ht(T ) ⊆ T . As above, let T1 be the
P1-generic over V1;

Step n+ 1. In Vn[Tn] = Vn+1, let

Pn+1 = {T ⊆ ω<ω : T is finite ∧ Tn v T ∧ T ∈ Sn+3},

and let Tn+1 be the Pn+1-generic over Vn+1.

Step ω. Finally, let P = limn∈ω Pn.

(∗) In each of these cases the order is always the end-extension.

First of all, note that each Pn is countable and so it is equivalent to the
Cohen forcing C, and since P is the direct limit of such Pn’s, then P ≈ C as
well.

Fix arbitrarily n ∈ ω. It is straightforward to show that Tn is an n-
perfect tree, since, for each k ∈ ω, Dk = {T ∈ Pn : ht(T ) > k} is dense in
Pn. It is left to show that each branch in [Tn] is a Cohen real over V. To
see that, one has to prove, for every nowhere dense tree S ∈ V,

DS = {T ′ ∈ Pn : ∀t ∈ T ′(t ∈ Term(T ′)⇒ t /∈ S)}

is dense in Pn. To this aim, fix a nowhere dense tree S ∈ V and T ∈ Pn.
The goal is to find T ′ ≤ T , T ′ ∈ DS . Obviously, every terminal node t ∈ T
can be extended to a node e(t) /∈ S. Therefore,

T ′ = T ∪ {t′ E e(t) : t ∈ Term(T )}

is the tree we wanted.

Thus, one has obtained that, if c is a Cohen real over V, then

V[c] |= “ ∃〈Tn : n ∈ ω〉 good sequence ∧ ∀n([Tn] ⊆ C(V)) ”.

Theorem 70. Let G be a Cω1-generic over V.

V[G] |= “every set of reals in L(ωω) is Sω-measurable”.

Proof. The proof is similar to that of example 28, by using the strong Cohen-
homogeneity of Cω1 to replace the argument using the absoluteness of Σ1

2-
formulae.
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Another question which we would like to deal with is how one can modify
such an argument to get some results about Miller measurability. In fact,
the reader may notice that if one considers the forcing P introduced above,
but with full support, one obtains a forcing notion adding a Miller tree of
Cohen reals, and this forcing is exactly an ω1-iteration of C, with countable
support, say Cωω1

. Since Cωω1
is proper, the usual argument to absorb the

real parameter in V[G�α], for some α < ω1, is valid. The point is that is
not clear whether Cωω1

is strongly Cohen-homogeneous. Thus the following
remains open:

Conjecture. Let G be Cωω1
-generic over V. Then

V[G] |= “every set of reals in L(ωω) is M-measurable”.

Remark 71. In case the above conjecture were true one could obtain a
nice result about our work concerning separation of regularity properties.
In fact, it is well-known that, Cωω1

does not add dominating reals over V.
Therefore, by theorem 4.1 and theorem 5.8 in [BL99], starting from V =
L and considering a Cωω1

-generic filter G over L, one could get L[G] |=
¬∆1

2(L) ∧ ¬Σ1
2(C). Hence, in particular,

L[G] |= Γ(M) ∧ ¬Γ(L) ∧ ¬Γ(C).

2.2.4 A word about the inaccessible

Before concluding this chapter, it is noteworthy to give a survey on the topic
concerning the use of the inaccessible cardinal to get a particular regularity
property for every set of reals. The general question turning out is the
following:

Question. Is Solovay’s inaccessible always necessary to get Γ(P)?

Obviously, the answer depends on which P one deals with. In some previous
sections we have already seen cases in which such an answer is negative. For
instance, as we have already said, since Cω1 is strongly Cohen homogeneous,
it follows that one can obtain the Sacks measurability of all projective sets
simply by a finite support ω1-iteration of C. Moreover, we have already
remarked that

C “∃T Silver tree of Cohen reals”

and therefore the same iteration gives a model where all projective sets are
Silver measurable.

More complicate is the situation when one deals with Baire property and
Lebesgue measurability. As we cited in the introduction, one of the most
surprising results in this area, due to Shelah, underlines a huge difference
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between these two regularity properties. About Lebesgue measurability, one
can show that

Σ1
3(R)⇒ ∀z ∈ ωω,L[z] |= “ωV

1 is inaccessible”.

(For a proof, one can also see [Ra84]). In this article Raisonnier also shows

Σ1
2(R) ∧Σ1

3(C)⇒ ∀z ∈ ωω,L[z] |= “ωV
1 is inaccessible”.

Nevertheless, the assumption Σ1
2(R) cannot be dropped. In fact, this is the

gap between Lebesgue measurability and Baire property, as Shelah proved
in [Sh84]. The way to construct the model for BP without inaccessible was
sketched out in the first chapter, when we introduced the amalgamation.
The key point is represented by a nice property of the Amoeba forcing for
category UM. Such a property is called sweetness and it is a strenghtening
of the σ-centeredness. The sweetness is precisely the property which allows
the preservation of ccc under amalgamation, or better, it is itself preserved
under amalgamation. Moreover, iteration with UM preserves sweetness, and
so when one adds cofinally often iterations with UM in the construction of
theorem 25, one obtains Bω1 to be ccc, without any need of the inaccessible
κ. The crucial difference with Lebesgue measurability is that, the Amoeba
forcing for measure A is not sweet, and so the same construction cannot be
done.

The main question which is still open is whether Laver measurability
needs an inaccessible or not. Such a question was explicitly asked by Brendle
and Löwe in [BL99] and its importance is that one can see Mathias forcing
as a uniform version of Laver forcing (see section 1.2 in [Br95]), and hence
the use of the inaccessible to get Γ(L) is strictly related to the famous open
problem:

Question. Does the statement “every subset of [ω]ω has the Ramsey
property” have the consistency strenght of ZFC?

A failed attempt to get Γ(L) without inaccessible. We conclude this
section showing an example to understand which complications turn out
when one tries to prove Γ(L). The only method which is known so far
is Shelah’s machinery. As we have said above, the crucial property is the
sweetness.

Definition 72. A forcing notion P is sweet if and only if there is D ⊆ P
dense and a sequence 〈∼n: n ∈ ω〉 of equivalence relations on D such that:

1. for every p, q ∈ D, n ∈ ω, if p ∼n q then p ∼n+1 q, and ∼n has
countably many equivalence classes;

2. for every p, q ∈ D, n ∈ ω, if p ∼n q then there exists r ∈ [p]n such that
r ≤ p, q;
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3. for every p ∈ D and for every sequence 〈pn : n ∈ ω〉 such that p ∼n pn,
there exists qn ∈ [p]n such that for every j ≥ n, qn ≤ pj ;

4. for every p, q ∈ D, q ≤ p, for every n ∈ ω, there exists k ∈ ω such that

∀p′ ∈ [p]k∃q′ ∈ [q]n(q′ ≤ p′).

Now consider the following forcing

KT = {(T,N) : T ⊂ ω<ω is a finite tree ∧N is a nowhere dense tree},

ordered by

(T ′, N ′) ≤ (T,N)⇔ T ′ wright T ∧N ′ ⊇ N ∧ ∀t′ ∈ T ′(t′ /∈ N),

where

T ′ wright T ⇔ ∀t′ ∈ T ′ \ T (t′ B t⇒ t′(|t|) > max{s(|t|) : s ∈ Succ(t, T ))}).

(In other words, every new node t′ in T ′ extending t ∈ T has to take value
at |t| to the right of all of the values taken by the immediate successors of t
in T ). Note that this is a sort of “dual” version of UM.

If we set TG =
⋃
{T : (T,N) ∈ G}, then, clearly,

KT ṪG is a Laver tree.

The two points that one should check are the following:

Hope 1: KT is sweet.

Hope 2: any branch through TG is Cohen.

About Hope 1, it is clear that KT is σ-centered, i.e., KT can be written as
a countable union of Fn’s ⊆ KT such that every p, q ∈ Fn are compatible in
Fn. We want to show even more, indeed KT is sweet. For every n ∈ ω, let

(T ′, N ′) ∼n (T,N)⇔ T = T ′ ∧N ′�jn = N�jn,

where jn = max{min{|s′| : s′ D sj ∧ s′ /∈ N ′} : sj ∈ T}, where 〈si : i ∈ ω〉 is
the enumeration of all the finite sequences s ∈ ω<ω.

It is clear that conditions 1, 2 and 4 of definition 72 are satisfied. About
condition 3, one can easily note that, given a sequence 〈(Tn, Nn) ∈ KT : n ∈
ω〉, such that for every n, pn ∼n pn+1, we get

N∗ =
⋃
n∈ω

Nn�jn is nowhere dense.

In fact, given s ∈ ω<ω arbitrarily, s = sn for some n ∈ ω, there exists s′ D sn
such that s′ /∈ Nn. Hence, s′ /∈ N∗ as well, by the choice of jn. One has
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thus shown that KT is sweet. Actually, to use it into Shelah’s machinery,
one should check that Q ∗ KT is sweet, whenever Q is sweet; however, the
above technic to demonstrate that KT is sweet gives a good hint to show
that the iteration is still sweet.

It is therefore clear, since we said at the beginning that this is a failed
attempt, that what is wrong is Hope 2. In fact, one can note that there
are branches z ∈ [TG] which are not shifted away from any ground model
nowhere dense set. The best one can obtain is

KT ∃T ⊆ ṪG, T is a Miller tree(∀z(z ∈ [T ]⇒ z is Cohen)).

Hence, we only obtain a different proof of the fact that Γ(M) does not need
an inaccessible, which was already indirectly known, since it is implied by
BP. Nevertheless, even if this example fails to give a definitive answer
concerning Γ(L), it is anyway interesting and it seems to be propaedeutic
for further studies around this problem.

2.2.5 Conclusions and open questions

The work done throughout this section allows to settle some combinations
of the Γ-RP-diagram, like those in 2.2.1 and 2.2.2. However, many issues
are still open; among those, we state the following unsolved questions:

Question 1. Γ(C)⇒ Γ(L)?

Question 2. Γ(L)⇒ Γ(C)?

Furthermore, from the results of sections 2.2.1, Sy Friedman suggested
me an even more general and deeper question: let P,Q be arboreal proper
forcings, such that Q is ωω-bounding and P adds unbounded reals.

Question 3. Can one always get a model M |= Γ(Q) ∧ ¬Γ(P)?



Chapter 3

Generalized Cantor space 2κ

In the previous chapters, the space where our investigations took place was
the Cantor space 2ω (or the Baire space ωω). In this last brief chapter of
the thesis we will deal with the generalized version of the Cantor space 2κ,
for κ uncountable cardinal.

Throghout the chapter, 2κ will be equipped with the topology generated
by basic clopen sets of the form

[s] = {x ∈ 2κ : xB s}, for every s ∈ 2<κ .

Since we want such a family to be of size κ, we assume 2<κ = κ. As usual
one defines the family of Borel sets on 2κ as the smallest family containing
all such [s]’s and closed under complements and unions of size κ. We will
still indicate it with Bor. Analogously one can define the family of projec-
tive sets Proj. The first main gap between this generalized case and the
standard one is that the family of ∆1

1 strictly contains the family of Borel
sets (we will see the proof in the next section).

Another difference with the standard case is represented by the notion
of perfect tree. In fact, except for the case κ inaccessible, the perfect trees
on κ are somehow “fat”, in the sense that there are levels α < κ such that
2α = κ, and this gives the unpleasent consequence that κ-Sacks forcing Sκ
is not κκ-bounding. A detailed work on the uncountable Sacks forcing can
be found in [Ka80].

Finally, another wide gap consists of the difficulty in defining a reaso-
nable notion of measure on 2κ, where reasonable roughly means able to
measure at least all Borel sets. One can obviously consider 2κ equipped
with the product measure m, but such a choice would not be appropriate
for our purpose; in fact, in this case, the family of measurable sets would be
only a σ-algebra, and so even the open sets in 2κ would not be measurable
w.r.t. m. Our work in the second section will aim to solve this problem, and
that will also give us a way for introducing a suitable notion of Lebesgue
measurability and the corresponding κ-random forcing.

59
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3.1 Category

Once that a notion of topology is settled on a certain space, one can always
define a notion of Baire property. In our specific case the definition is exactly
the natural generalization of definition 1, i.e, to be equal to a Borel set
modulo a meager set. Some properties of the category, which hold in the
standard case, extend to this generalized case as well. Among these, one
can remark the Baire category theorem, Fubini’s theorem, the fact that
every Borel set has the Baire property (these results are stated and proved
in [FHK10], [H96] and [HS01]). Note also that the associated notion of
forcing is equivalent to the κ-Cohen forcing Cκ consisting of all sequences
t ∈ 2<κ, ordered by extension.

Nevertheless, the differences with the standard case are deeper and more
interesting than the analogies. The first wide gap is represented by the
following result.

Theorem 73. Let Cub = {x ∈ 2κ : ∃C ⊆ κ closed unbounded (α ∈ C ⇒
x(α) = 1)}. Then Cub is Σ1

1 and does not have the Baire property.

The proof can be found in [HS01], theorem 4.2. Such a result underlines
a huge difference with the standard case, since one can directly prove in ZFC
that all analytic sets in 2ω have the Baire property.

Another interesting remark is that in L, one can construct a ∆1
1 set

without Baire property. Such a construction in essentially the same of the
standard case, but with the difference that one can define a ∆1

1 well-ordering
of L. This is possible because “to be well-founded” is not only Π1

1, but is
Borel (in particular closed), and therefore the usual well-ordering of L can
be defined in order to be ∆1

1. However, this consistency result for ∆1
1 sets

cannot be shifted to a theorem of ZFC, as the following result shows.

Remark 74. Let Cκ(κ+) be a κ+-iteration with < κ-support and let G be
Cκ(κ+)-generic over L. Then L[G] |= ∆1

1(Cκ).

Note that, as an immediate consequence, one obtains Bor ( ∆1
1.

This result was proved by Philip Lucke and Philip Schlicht. Furhtermore,
Sy Friedman proved that ∆1

1(Cκ) holds in Silver’s model as well, i.e, the
model obtained by collapsing an inaccessible to κ+. Such a result was a joint
work with Tapani Hyttinen and Vadim Kulikov, presented in [FHK10].

The fact that an iteration of Cκ was sufficient to get ∆1
1(Cκ) has inspired

the following result.

Theorem 75. Let Cκ(L[z]) be the set of κ-Cohen generic sequences over
L[z]. Then

∆1
1(Cκ)⇒ ∀z ∈ 2κ(Cκ(L[z]) 6= ∅)
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Proof. Remind that, in 2ω, the two statements “to be a Borel code” and
“x ∈ L” are Π1

1 and Σ1
2, respectively. On the contrary, in 2κ the situation

is different, as we already remarked in the previous page, since the two
analogous statements are closed and Π1

1, respectively, and therefore, the
good well-ordering ≤L is ∆1

1 in this generalized case (instead of ∆1
2). Finally,

we may also note that, for any Borel code c, the formula “x is a code for a
meager set” is Σ1

1; in fact, it is equivalent to

∃〈cα : α ∈ κ〉, cα’s are codes for closed nowhere dense and Bx ⊆
⋃
α∈κ

Bcα ,

where Bx represents the Borel set associated with the Borel code x. Hence,
the result easily follows, since “c is a code for a closed nowhere dense set”
is equivalent to

Bc is closed ∧ ∀η ∈ 2<κ∃η′ ∈ 2<κ(Bc ∩ [η′] = ∅),

which is obviously Borel.
All of these observations allow us to define two Σ1

1(z) sets, for any z ∈ 2κ,
in the following way. (Note the analogy, from now on, with the standard
case).

First of all, we have to consider a formula ϕz(v, a) consisting of the
conjuction of the following:

(i) v is a code for a meager set;

(ii) a is an enumeration of all κ-reals x <L[z] v.

It is clear that, from the above observations, such a formula ϕz(v, a) is Σ1
1(z).

One can now define a new notion of ordering on 2κ in the following way:

v E w ⇔ ∃c ∈ 2κ∃a ∈ 2κ(ϕz(v, a) ∧ v ∈ Bc ∧ w /∈
⋃
α∈κ

B(a)α);

v C w ⇔ ∃c ∈ 2κ∃a ∈ 2κ(ϕz(v, a) ∧ v ∈ Bc ∧ w /∈ Bc ∪
⋃
α∈κ

B(a)α),

where (a)α represents the α-th element in the enumeration. Roughly speak-
ing, a κ-real v is less than w if the first Borel meager set (w.r.t. the ordering
≤L[z]) containing v is ≤L[z] the first one containing w. Also note that such
an ordering is Σ1

1(z). We can now define the two Σ1
1(z) sets mentioned at

the beginning:
Xz = {(v, w) : v /∈ Cκ(L[z]) ∧ v C w}

Yz = {(v, w) : v /∈ Cκ(L[z]) ∧ w E v}.

The following remark is crucial.

Fact 76. Xz is either meager or without Baire property (the same for Yz).
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The proof is the same of the standard case, by using Fubini’s theorem
and the fact that only κ-many elements precede any element in the ordering
≤L[z].

To conclude the proof is sufficient to note that, if Cκ(L[z]) is empty, then
Xz and Yz are one the complement of the other, and so, in particular, they
are both ∆1

1(z). However, this is a contradiction, because we are assuming
∆1

1(Cκ) and so the two sets should be on the one hand one the complement
of the other, and on the other hand they should be both meager.

3.2 Measure

Troughout this section κ will be an uncountable regular cardinal. The aim
is to define a notion of measure on 2κ, i.e., a function µ : F → Ω, where
F ⊇ Bor, Ω is a linearly ordered set, such that:

(a) if A,B ∈ F , A ⊆ B, then µ(A) ≤ µ(B);

(b) if {Aα : α < κ} is a sequence of elements of F , then

µ(
⋃
α<κ

Aα) ≤
∑
α<κ

µ(Aα);

(c) if {Aα : α < κ} is a sequence of disjoint elements of F , then

µ(
⋃
α<κ

Aα) =
∑
α<κ

µ(Aα).

(Note that we will also define a notion of
∑

α<κ in order to make such a
measure well-defined).

Note that the product measure does not satisfy our requirements, since
it only gives rise to a σ-algebra, which is not closed under unions of size
κ > ω.

Let LO = {λα : α < κ} be the list of limit ordinals below κ such that
2λα = κ and let

Wα = 〈sαξ : ξ < κ〉

be an enumeration of the elements s ∈ 2λα . Further, we will denote with S
the family of all basic clopen sets.

The following elementary, but noteworthy, observation should be kept in
mind to understand the definition of measure µ and for next developments.

Remark 77. Every [s] ∈ S can be easily seen as a union of κ-many disjoint
[tβ]′s in S. In fact, given s ∈ 2γ , there are κ-many incompatible tβ’s in 2λ,
where λ is any limit ordinal > γ, such that [s] =

⋃
β<κ[tβ].



3.2. MEASURE 63

Such a remark inspires the following definition. (The reason for which πβα
below is defined as a subset of κ ·κ will be clear later on, and it is essentially
because of the fact that µ will take values in 2κ·κ).

Definition 78. Let s ∈ 2γ and λα be the least limit ordinal ≥ γ. For every
β ≥ α, one defines

σβs =def {t ∈ 2λβ : t D s}

and
πβs =def {κ · β + ξ : sβξ ∈ σ

β
s }.

(Note that if γ = λα, then σαs = {s}).
We are now able to define our measure µ for basic clopen sets [s] ∈ S,

which will take values in 2κ·κ. From now on, we use the notation µs in place
of the more cumbersome µ([s]).

Let s ∈ 2γ , λα = min{λ : λ is limit ∧ λ ≥ γ} and Wα = 〈sαξ : ξ < κ〉 be

the according well-order of 2λα , introduced above. Then set

µs(δ) =def

{
1 ∃β ≥ α such that δ ∈ πβs
0 otherwise .

Notation: For every s ∈ 2λα , for some λα ∈ LO, let δs be the unique
element in παs . Sometimes, we will indicate µs with iδs .

Now, we define the suitable notion of sum on 2κ·κ.

Definition 79. Given a set {xγ : γ < ρ} ⊆ 2κ·κ, with ρ ≤ κ, one defines∑
γ<ρ xγ as follows: for every δ ∈ κ · κ, let

(∑
γ<ρ xγ

)
(δ) = 1 iff

either ∃γ < ρ, xγ(δ) = 1,

or ∃α < κ∃s ∈ 2λα s.t. δ ∈ παs ∧ ∀δ′ ∈ πα+1
s ,

(∑
γ<ρ xγ

)
(δ′) = 1.

For a reason which will be clear later on (see remark 83), it is also
necessary to identify different elements of 2κ·κ. To do that we need to
consider, for every s ∈ 2λ0 , the set ds =

⋃
β<κ π

β
s ; note that, for every

s ∈ 2λ0 , ds ⊆ κ · κ, and {ds : s ∈ 2λ0} forms a partition of κ · κ. One defines
an equivalence relation on each 2ds as follows:

∼s: given x, y ∈ 2ds , one defines x ∼s y iff for every β < κ, there exists ηβ
such that κ · β ≤ ηβ < κ · (β + 1) and

∀δ
(

(ηβ ≤ δ < κ · (β + 1) ∧ δ ∈ πβs )⇒ x(δ) = y(δ) = 1
)
.

Note that such equivalence relations {∼s: s ∈ 2λα} induces an identifica-
tion on elements in 2κ·κ, that is not properly an equivalence relations (note
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that such an identification makes somehow pleonastic the second condition
in the above definition of sum).

From now on, we will indicate with Ω the set 2κ·κ endowed with these
equivalence relations. Furthermore, we will consider the lexicographical or-
der on Ω, in order to make Ω linearly ordered, i.e, one sets, for every x, y ∈ Ω,

x ≤ y ⇔ x ≤lex y.

Lastly, we will use the convention 0 = [〈0, 0, . . . 〉] and 1 = [〈1, 1, . . . 〉].
It is clear that, under these definitions, if [s] ⊆ [t], then µs ≤ µt. More-

over, one has the following result.

Fact 80. Let F ⊆ S be a family of disjoint basic clopen sets. Then

µ
( ⋃

[s]∈F

[s]
)

=
∑

[s]∈F

µs.

(Note that the assumption for the basic clopen sets to be disjoint could be
dropped.)

One can now introduce a notion of outer measure µ∗, exactly in the same
fashion of Lebesgue measure.

Definition 81. For every X ⊆ 2κ, set

µ∗(X) = inf{µ(O) : O ∈ C(X)},

where C(X) is the set of open coverings of X, i.e., more precisely,

C(X) = {O : ∃〈sγ : γ < κ〉, sγ ∈ 2<κ s.t O =
⋃
γ<κ

[sγ ] ∧O ⊇ X}.

(Remind that inf is meant with respect to the ≤lex-order).

Trivial Remarks:

• for every s ∈ 2<κ, µs = µ∗([s]).

• for every X,Y ⊆ 2κ, X ⊆ Y , we have µ∗(X) ≤ µ∗(Y ).

We introduce the family F , which will be our family of measurable sets (in
the standard case it is called Caratheodory’s family).

Definition 82. One says that a subset X ⊆ 2κ is in F iff ∀A ⊆ 2κ, one has

µ∗(A) = µ∗(A ∩X) + µ∗(A ∩Xc).
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It is not hard to see that F is closed under complementation and finite
unions.

The remaining task is to show that such a family extends S and it is
closed under unions of size ≤ κ, in order to show that F ⊇ Bor. Moreover
one has to show that µ∗ satisfies the ≤κ-additivity for every ≤κ-union of
disjoint sets in F .

Before doing that, we need to step back for proving the ≤κ-subadditivity
of the measure µ∗. The following preliminary observations are needful for
the proof.

Remark 83. Let 〈δξ : ξ < κ〉 be a sequence of subsets of κ · κ such that:

i if ξ < ξ′ then δξ ⊆ δξ′ ;

ii if ξ < ξ′ then mξ < mξ′ , where mξ = min{α : α ∈ δξ}.

We will call it nice sequence . Let iδξ be the corresponding element in 2κ·κ,
i.e., iδξ(δ) = 1 iff γ ∈ δξ.

For every x, y ∈ Ω one has

If ∀ξ < κ(x+ iδξ ≥ y) then x ≥ y.

(Note the importance of the equivalence relations introduced before to make
that true).

Remark 84. (Nasty behaviour of
∑

α<κ). Given {xα : α < κ} and {yα :
α < κ} two sequences of element of Ω, even if for every α < κ, xα < yα, it
may happen ∑

α<κ

xα >
∑
α<κ

yα.

Nevertheless, that does not happen if one further requires that, for each
α < κ,

∀δ ∈ κ · κ(xα(δ) = 1⇒ yα(δ) = 1).

Lemma 85. Let {Xα : α < ρ} be a family of subsets of 2κ (not necessarily
in F), ρ ≤ κ. Then

µ∗
( ⋃
α<ρ

Xα

)
≤
∑
α<ρ

µ∗(Xα).

(w.l.o.g. one can assume µ∗(Xα) 6= 1, for every α < ρ, otherwise the
(in)equality would be obvious).

Proof. By remark 83, we have to define a nice sequence 〈δξ : ξ < κ〉 such
that, for every ξ < κ,

µ∗
( ⋃
α<ρ

Xα

)
≤
∑
α<ρ

µ∗(Xα) + iδξ .
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Fix ξ < κ. Consider a cofinal sequence 〈δαξ : α < ρ〉 such that, for every
α < ρ, one can find Oα ∈ C(Xα) such that µ(Oα) ≤ µ∗(Xα) + iδαξ , with the

further condition that, whenever µ(Oα)(η) = 1, then

µ∗(Xα)(η) = 1 ∨ iδαξ (η) = 1.

Note that this construction can be done, since µ∗(Xα) 6= 1, for α < ρ.
The reason to choose those Oα’s so carefully is because of remark 84.

Note also that each Oα =
⋃
γ<κ[tαγ ], for some tαγ ∈ 2<κ. Hence,⋃

α<ρ

⋃
γ<κ

[tαγ ] ∈ C
( ⋃
α<ρ

Xα

)
We therefore get the following inequalities:

µ∗
( ⋃
α<ρ

Xα

)
≤ µ∗

( ⋃
α<ρ

⋃
γ<κ

[tαγ ]
)

=
∑
α<ρ

∑
γ<κ

µtαγ =
∑
α<ρ

µ(Oα) ≤

≤
∑
α<ρ

(
µ∗(Xα) + iδαξ

)
=
∑
α<ρ

µ∗(Xα) +
∑
α<ρ

iδαξ ≤
∑
α<ρ

µ∗(Xα) + iδξ ,

where one can arbitrarily choose iδξ in order to be ≥
∑

α<ρ iδαξ .

We now prove that F ⊇ S and it is closed under ≤κ-unions.

Fact 86. For every s ∈ 2<κ, for every A ⊆ 2κ, one has

µ∗(A) = µ∗(A ∩ [s]) + µ∗(A \ [s]).

Proof. By subadditivity, we only have to check ≥. W.l.o.g., one can assume
µ∗(A) 6= 1. Let 〈δξ : ξ < κ〉 be a sequence as in remark 83, with the further
condition that for every ξ < κ, µ∗(A)(δξ) = 0. We aim to show, for every
ξ < κ,

µ∗(A) + iδξ ≥ µ
∗(A ∩ [s]) + µ∗(A \ [s]).

Fix ξ < κ. Let O =
⋃
γ<κ[tγ ] such that O ∈ C(A) and µ(O) ≤ µ∗(A) + iδξ .

Then, let Z0
γ = [tγ ] ∩ [s] and Z1

γ = [tγ ] \ [s], for every γ < κ. Then set

O0 =
⋃
γ<κ

Z0
γ and O1 =

⋃
γ<κ

Z1
γ .

It is clear that O0 ∈ C(A ∩ [s]) and O1 ∈ C(A \ [s]). Hence, the following
inequalities conclude the proof:

µ∗(A ∩ [s]) + µ∗(A \ [s]) ≤ µ(O0) + µ(O1) =
∑
γ<κ

µ(Z0
γ) +

∑
γ<κ

µ(Z1
γ) =

=
∑
γ<κ

µtγ = µ(O) ≤ µ∗(A) + iδξ .
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Fact 87. Let {Xα : α < κ} be a family of sets in F . Then
⋃
α<κXα ∈ F .

Proof. Let X =
⋃
α<κXα. Pick A ⊆ 2κ arbitrarily, such that µ(A) 6= 1.

Note that, by hypothesis

∀α < κ∀B ⊆ 2κ, µ∗(B) = µ∗(B ∩Xα) + µ∗(B ∩Xc
α). (3.1)

Let 〈δξ : ξ < κ〉 be the usual nice sequence and fixed ξ < κ. Pick O =⋃
γ<κ[tγ ] such that O ∈ C(A) and µ(O) ≤ µ∗(A) + iδξ . Let

Zαγ = [tγ ] ∩Xα and Wα
γ = [tγ ] ∩Xc

α

and note that

A ∩X ⊆
⋃
α<κ

⋃
γ<κ

Zαγ and A ∩Xc ⊆
⋃
α<κ

⋃
γ<κ

Wα
γ .

Furthermore, by (3.1), µ∗(Zαγ ) + µ∗(Wα
γ ) = µtγ . Then

µ∗(A ∩X) + µ∗(A ∩Xc) ≤
∑
α<κ

∑
γ<κ

µ∗(Zαγ ) +
∑
α<κ

∑
γ<κ

µ∗(Wα
γ ) =

∑
α<κ

∑
γ<κ

µtγ =
∑
α<κ

µ(O) = µ(O) ≤ µ∗(A) + iδξ .

It remains to show the ≤ κ-additivity for sets in F . We first prove the
ρ-additivity, for any ρ < κ.

Fact 88. Let ρ < κ. For every {Xα : α < ρ} family of sets in F , one has

µ∗
( ⋃
α<ρ

Xα

)
=
∑
α<ρ

µ∗(Xα).

Proof. The proof is by induction on ρ < κ. We already remarked that for
finite unions the result holds, and moreover, such a proof also works for
successor case. Let ρ be any limit cardinal such that ω ≤ ρ < κ and assume
for every β < ρ one has the β-additivity. By subadditivity, one only has to
show ≥.

Let δ ∈ κ · κ such that
∑

α<ρ µ
∗(Xα)(δ) = 1. Then, since the sum has

size < κ, one finds η < ρ such that
∑

α<η µ
∗(Xα)(δ) = 1. By η-additivity,

we know ∑
α<η

µ∗(Xα) = µ∗
( ⋃
α<η

Xα

)
,

and hence
µ∗
( ⋃
α<ρ

Xα

)
(δ) = µ∗

( ⋃
α<η

Xα

)
(δ) = 1.
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Note that such a proof does not work for ρ = κ, since there could be
some δ for which the value is 0 for every partial cut < κ of the sum, but
which becomes 1 at limit κ. Nevertheless, there is a very simple argument
showing that one can get the κ-additivity, once we have the ρ-additivity, for
every ρ < κ.

In fact one can easily note that

µ∗
( ⋃
α<κ

Xα

)
≥ lim

ρ<κ
µ∗
( ⋃
α<ρ

Xα

)
,

since µ∗
(⋃

α<κXα

)
(δ) = 0 trivially implies, for every ρ < κ,

µ∗
( ⋃
α<ρ

Xα

)
(δ) = 0.

Thus, by ρ-additivity, we get

µ∗
( ⋃
α<κ

Xα

)
≥ lim

ρ<κ

∑
α<ρ

µ∗(Xα) =
∑
α<κ

µ∗(Xα).

This concludes the demonstration that measure µ is well-defined and re-
spects all requirements listed at the beginning. Note that, from now on, we
will use µ also for indicating the outer measure µ∗ for those elements in F .
Hence µ : F → Ω is monotone and ≤ κ-additive. It should be clear that µ
is not translation-invariant (nevertheless, this should not represent a great
obstacle in future developments, since the standard Lebesgue measure for
ωω is not translation-invariant as well).

Once defined a measure on 2κ, one can introduce many concepts related
to it, in the same fashion of the standard case.

Definition 89. Let X ⊆ 2κ. One says that X is null (or measure zero) iff
there exists 〈δξ : ξ < κ〉 as in remark 83 and 〈Oξ : ξ < κ〉 sequence of open
sets such that, for every ξ < κ, µ(Oξ) ≤ iδξ and X ⊆ Oξ.
Remark 90. If {Xα : α < κ} is a family of null sets, then also

⋃
α<κXα is

null. In fact, given a nice sequence 〈δξ : ξ < κ〉, one can consider, for every
ξ, another nice sequence 〈δαξ : α < κ〉 such that

∑
α<κ iδαξ ≤ iδξ and open

sets Oαξ ’s such that, for every α < κ, µ(Oαξ ) ≤ iδαξ and Xα ⊆ Oαξ . Thus, one
obtains

∀ξ < κ, µ
( ⋃
α<κ

Oαξ

)
≤ iδξ and Xα ⊆

⋃
α<κ

Oαξ .

In particular, it follows that the ideal

Nκ =def {X ⊆ 2κ : X is null}

is κ-complete. By definition, it is straightforward that every set of size ≤ κ
is null.

Now, we want to prove that the notion of null is very different from that
one of meager.
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Remark 91. There is X ⊂ 2κ null set, such that Xc is meager. To see
that, fix an enumeration 〈sγ : γ < κ〉 of 2<κ. Then, pick a nice sequence
〈δξ : ξ < κ〉 and for every ξ < κ, let

Dξ =
⋃
γ<κ

[tξγ ],

where each tξγ ∈ 2<κ such that ∀η(µ
tξγ

(η) = 1 ⇒ η ∈ δξ) and [tξγ ] ⊆ [sγ ]. It

is clear that µ(Dξ) ≤ iδξ and it is open dense. Thus X =
⋂
ξ<κDξ has the

required properties.

Once that one has a notion of null set, one can introduce, in standard
way, a notion of Lebesgue measurability.

Definition 92. For every X ⊆ 2κ, one says that X is measurable iff there
exists B ∈ Bor such that X4B ∈ Nκ.

It is not hard to show that the family of all measurable subsets of 2κ

coincides with F .
The following well-known facts for Lebesgue measure on 2ω shift to 2κ

as well:

1. If X ⊆ 2κ is measurable then for every nice sequence 〈δξ : ξ < κ〉
there are Oξ open set and Cξ closed set such that Cξ ⊆ X ⊆ Oξ and
µ(Oξ \ Cξ) ≤ iδξ .

2. If X ⊆ 2κ is measurable then there are F ∈ Π0
2 and G ∈ Σ0

2 such that
G ⊆ X ⊆ F and µ(F ) = µ(G) = µ(X).

3. AC implies the existence of a non-measurable set.

Point 1 and 2 are immediate from the definition of µ∗ given before. About
point 3, one can easily build a non-measurable set X by using an enume-
ration of positive measure closed sets 〈Cα : α < 2κ〉, as the following stan-
dard recursive construction shows: for every α < 2κ, pick

xα ∈ Cα ∧ ∀γ < α, xα 6= xγ .

yα ∈ Cα ∧ ∀γ ≤ α, yα 6= xγ ,

and then let Xα =
⋃
γ<αXγ ∪ {xα} and Yα =

⋃
γ<α Yγ ∪ {yα}. Finally, set

X =
⋃
α<2κ

Xα and Y =
⋃
α<2κ

Yα.

Clearly Xc ⊇ Y and therefore neither X nor Xc can contain any closed set,
which implies X is not measurable, by point 1.

These last elementary observations show that some natural properties of
Lebesgue measure are preserved for our notion of measure as well. Another
natural definition is that one of random forcing Rκ.



3.2. MEASURE 70

Definition 93. One defines the random forcing Rκ as the poset consisting
of Borel sets of positive measure, ordered by inclusion. By point 1 above, it
is clear that an equivalent formulation is

Rκ = {C ⊆ 2κ : C is closed ∧ µ(C) > 0}.

A standard proof also shows that Rκ adds a generic zG ∈ 2κ, which we
call random κ-real, and we denote with Rκ(V) the set of random κ-reals
over V.

The following result points out a crucial difference with the standard
random forcing. (Note the similarity with the uncountable Sacks forcing).

Fact 94. Rκ is not κκ-bounding.

Proof. First of all, note that, for every γ < κ, for every x ∈ κκ ∩V, the set

Dγ
x = {C ∈ Rκ : ∃γ′ ≥ γ∀ξ ≤ x(γ′) + 1(µ(C)(κ · γ′ + ξ) = 0)}

is dense in Rκ. This follows from the fact that for any C of positive measure
there have to be cofinally many β’s such that the set

{ξ : κ · β ≤ ξ < κ · (β + 1) ∧ µ(C)(ξ) = 1}

has size κ. Hence, if one defines

zG(γ) = min{ξ : ∃C ∈ G(µ(C)(κ · γ + ξ) = 1)},

where G is Rκ-generic over V, one obtains

Rκ ∀γ∃γ′ ≥ γ(zG(γ′) > x(γ′)).

Nevertheless, even if Rκ adds unbounded κ-reals, by remark 91, we know
that the random κ-real is not Cohen (nevertheless, Rκ may add Cohen reals
anyway).

Similarly to Baire property, a possible connection between Rκ and Lebesgue
measurability is represented by the following.

Conjecture. ∆1
1(Rκ)⇒ ∀x ∈ 2κ(Rκ(L[x]) 6= ∅.

The idea to prove that is essentially the same of fact 75. However, we do not
know if Fubini’s theorem holds for our generalized measure. We conclude
with another interesting open question. It is known that the club filter Cub
does not have the Baire property. Hence, the following question rises rather
spontaneously.

Question 4. Is Cub Lebesgue measurable?
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of Simbolic Logic, Vol. 60 (1995), pp 444-458.

[L96] Grzegorz  Labedzki, A topology generated by eventually different
functions, Proceedings of the 24th Winter School on Abstract
Analysis. Charles University, Praha, 1996. Acta Universitatis
Carolinae-Mathematica et Physica , Vol. 37 n.2, pp 37-53.

[Ra84] Jean Raisonnier, A mathematical proof of S.Shelah’s theorem on the
measure problem and related results, Israel Journal of Mathematics,
Vol. 48 (1984), pp 48-56.

[Sh84] Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel
Journal of Mathematics, Vol. 48 (1985), pp 1-47.

[Sh85] Saharon Shelah, On measure and category, Israel Journal of
Mathematics, Vol. 52 (1985), pp 110-114.

[So70] Robert M. Solovay, A model of set theory in which every set of reals
is Lebesgue measurable, Annals of Mathematics, Vol. 92 (1970), pp
1-56.

[Za00] Jindřich Zapletal, Descriptive set theory and definable forcing,
Memoirs of the American Mathematical society , Num. 793 (200).



Index
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Abstract

The paper is centered around the study of regularity properties of the real
line. The notion of regularity is presented in a rather general way, by using
arboreal forcings. In particular, we focus on questions concerning the sepa-
ration of different regularity properties. More precisely, in some cases, given
P,Q arboreal forcings, we construct a model where all sets of reals are P-
measurable and a non-Q-measurable set exists. A similar work is done for
statements concerning the 2nd level of projective hierarchy. Finally, we also
deal with questions about measure and category for the generalized Cantor
space 2κ, for κ uncountable cardinal. In particular, we introduce a new no-
tion of measure on such a space, which allows us to define the corresponding
notion of measurability and the related uncountable random forcing.

Die Arbeit befasst sich mit dem Studium von Regularitaetseigenschaften
der reellen Zahlen. Der Begriff Regularitaet wird, dank Verwendung von so-
genannten arboreal forcings allgemein eingefuehrt. Insberondere fokussieren
wir uns auf die Frage der Trennung verschiedener Regularitaetseigenschaften.
Genauergesagt, falls P, Q arboreal forcings sind, konstruieren wir ein Mod-
ell indem saemtliche Teilmengen der reellen Zahlen P-messbar sind, aber
zugleich eine Menge existiert, die nicht Q-messbar ist. Mit aehnlichen Mit-
teln werden auch Aussagen in der zweiten Ebene der projektiven Hierarchie
untersucht. Schliesslich betrachten wir noch einige Fragen bezueglich Mass
und Kategorie im verallgemeinerten Cantor Raum 2κ, fuer ein uberabza-
ehlbares κ. Wir fuehren einen neuen Begriff fuer Mass in diesem Raum ein,
der es uns erlaubt analoge Begriffe fuer Messbarkeit und ueberabzaehlbarem
random forcing zu enfwickeln.
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