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Abstract

One of the most frequent operations in the field of image processing is the matrix multi­

plication. Parallel algorithms and concepts are well known and developed, but in case of 

decentralized systems there is still a lack of new approaches. In this thesis we proposed 

different  approaches  of  performing  a  matrix  multiplication  on  a  decentralized  mobile 

sensor network. The aggregation process over the nodes is based on the Push Sum al­

gorithm. We introduced four strategies for the matrix multiplication on a mobile sensor 

network. Results have shown that it is relatively hard for a random node distribution and 

constant mobility to achieve high accuracy. Therefore, we considered different determin­

istic topologies with high immobility periods, particularly in the transient phase of the ag­

gregation process. Under certain circumstances, we reduced the message loss and achieved 

nearly half of double precision.

Keywords: matrix multiplication, network, sensors, nodes, forwarding, mobility, subnet, 

push-sum, gossip algorithms, wireless 
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1  Introduction

1.1  Background

Advances in wireless communication offer a large set of opportunities. Sensing and 

actuation technology can be embedded into our physical environment at an unprecedented 

large scale and fine granularity [1]. Further, dense sensor networks provide highly accurate 

information from our physical environment. Measured data have to be processed and dis­

tributed over the network. Additionally a base station collects the data and sends it to an ex­

ternal host machine for further processing. Items covered with sensor nodes can communic­

ate with the environment. Connecting these items to the present IT infrastructure raises new 

challenges. A world-wide connected network of things is foreseen as the future of internet 

[2]. Such architectures demand new approaches and algorithms to give answers to the fu­

ture challenges of distributed systems.

Wireless sensor networks solve problems not suited for conventional IT infrastructures. The 

communication of Wireless Sensor Networks (WSNs) is based on gossiping protocols. A 

gossiping protocol is a communication protocol inspired by the social phenomena of gos­

siping. Gossiping protocols have to be used in case of frequent node failures and message 

losses.  

Gossiping and peer-to-peer networks rely on the assumption of neighborhood communica­

tion. These kinds of networks satisfy the following conditions: 

• fault-tolerance is provided

• reliable communication is not assumed

• convergence should be achieved in finite rounds

• network self-stabilization 

Matrix multiplications are some of the  most common arithmetic operations used in several 

scientific applications. They are most of all used in the fields of graphics, robotics, signal 

processing and digital control. Matrix multiplications are usually performed on high per­

formance computers with several cores and an immense of shared memory. Parallel con­
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cepts for these kinds of problems are widely known and well developed. However, in the 

case of ad-hoc networks without appropriate IT infrastructure and limited resources, there is 

still a lack of new approaches and algorithms. In the more recent past camera networks have 

become widely pervasive  in  many applications  in  our  environment.  Public  institutions, 

shopping centers, public places are equipped with a large scale of cameras for surveillance 

and safety reasons. Such technologies enabled police officials to share visual information in 

real time over the internet. At the same time, a lot of problems of processing and storing re­

corded data has arose from this development. Security, bandwidth and storage concerns led 

to the necessity of developing algorithms for distributed camera architectures. Usually data 

retrieved from these networks is analyzed and processed manually. Thus, this is a extremely 

costly task [3].  Distributed camera sensor networks perform these tasks before sending the 

raw data to host machine. In such records a large noise level can exists and, in order to 

eliminate the noise from the picture a filter could be set (Figure 1). In fact, a common color 

filter represents a matrix multiplication between a 2D image matrix and a 2D filter matrix. 

Figure 1: Noise filtering

Similarly, robot sensor networks in rescue missions, collects images of the operational  en­

vironment. In such areas there is no appropriate network infrastructure to collect the data 

and send it to a server machine. Also, there is not enough time to process the images on the 

server. On the other hand, matrix multiplication is also essential in grid computing. Ex­

tremely large problem sizes could be distributed over a network of high performance com­
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puters. These networks could take advantage from the fault  tolerant and self-organizing 

properties of a distributed matrix multiplication approach.  

1.2  Problem description

The objective of this study is to implement a distributed matrix multiplication  al­

gorithm. The first step is to find a gossiping algorithm which is appropriate for the matrix 

multiplication. Therefore, the Push Sum algorithm (PSA) is chosen and adapted to the mat­

rix multiplication. The idea is to distribute the elements of two matrices A and B over a gos­

siping network  and let them communicate with each other. The main challenge of this idea 

is to let the nodes communicate, but only in the same range (subnet). This means that the 

first subnet consists of the product of the first row of matrix A and the first column of mat­

rix B. The complexity of mobile sensor networks also opens the question of routing. Nodes 

move, lose old and establish new connections, but the neighborhood route table must be up­

dated. Similarly, there is the question of the message overhead. The huge bulk of messages 

would perhaps lead to a faster convergence, however, it needs more energy and the possibil­

ity of node failure is much higher. All of these problems will be considered and we will try 

to give an overview of various matrix multiplications and the possible unstable states of the 

Push-Sum algorithm (PSA).   

1.3  Related work

Papers related to the problem of sensor networks and matrix operations seem to be 

rare.  Therefore, we designed entirely new approaches based on the ideas of [4],  [5] and 

[20].  

The authors of  [4] discussed the challenges of designing algorithms for sensor networks. 

They categorized them, upon how their in-network aggregation is performed into central­

ized, tree and gossip based aggregation. Further, they introduced a hybrid-protocol, which 

combines the advantages of tree and gossip-based protocols. In such a protocol, nodes are 

partitioned into groups, where the groups communicate with each other over cluster heads. 

The results showed that a hybrid protocol outperform tree and gossip-based protocols. Ad­

ditionally, the authors of [5] have also proposed a similar hybrid-protocol for large scale 

networks with a high fault rate. They also assumed that nodes are grouped, and a cluster-

head for group to group communication is present. In paper [20], a deterministic hot-potato 
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protocol was investigated. For such a protocol, every node holds the information of good 

directions,  where the probability to reach a destination node is high. The authors of  [20] 

considered a statical network and the good directions are calculated before the sending ex­

actly one time. However, for mobile networks,  the calculation of good directions is rather 

expensive. Every time, when the nodes are moving, they has to recalculate the new good 

directions. Thus, we decided to use a random hot-potato protocol for the forwarding of mes­

sages. 

Moreover, the authors of [22] explained the effect of mobility in relation to the convergence 

speed and accuracy. They stated that mobility is a challenging behavior, in order to achieve 

a high accuracy, but on the other hand, mobility has a positive effect on the convergence 

speed.  All these patterns led us to the idea of mobility and forwarding messages between 

subnet groups.

1.4 Project organization

This master thesis is a continuation of the lecture “Praktikum Scientific Computing”, in 

which we have simulated and designed a Push Sum algorithm in OmNet++. The imple­

mentation provides the feature to categorize the nodes in subnets and provides principles to 

let them communicate over the whole network. In addition, we held two seminars on this 

topic. The master thesis is based on the implementation from the previous lecture and up­

graded by the MiXiM framework. The scientific method of this research is a simulation un­

der limited conditions. A sample of representative scenarios have been determined. The first 

section will present the gossiping technique and the push sum algorithm. What follows is a 

discussion of simulation conditions and limitations. We will then go on to demonstrate the 

initial matrix distribution and different consensus approaches. The final selection will eval­

uate the simulation results and give a conclusion.
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2  Gossiping and the Push Sum algorithm

2.1  Gossiping

Figure 2: Social behavior of insects

The gossiping phenomena is widely pervasive in nature. Information broadcast in a 

gossiping based manner is simple and very effective. Viral infections spread with enormous 

speed, following simple rules of peer-to-peer communication. Ants are a good example of 

self-organizing networks. On their food search ants mark the routes with pheromones. The 

ants algorithm works as follows [6]:

• A food source is recognized

• In every unit T of time the ant pushes the news from its position X to position Y 

randomly chosen in its neighborhood

• First choosing a destination then updating pheromones

This form of communication we also recognize in the waggle dance of bees and other social 

insects (Figure 2). Here, we can recognize a basic pattern of gossiping communication. 

The  Gossiping  protocol  is  a  communication  protocol  between  two  nodes  (sensor,  cell 

phone, peer etc.) in a decentralized manner. Every node performs the same GP and chooses 

at a time unit R a random neighbor (peer) for communication. This time unit R is called 

round. Each node measure, sends (pushes) and updates its value in every round. After a cer­

tain number of rounds the information is spread around the whole network. Every node tries 

to obtain the global information; sending/receiving messages from the local neighborhood. 
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Each node can send messages independent (asynchronous) or simultaneous with all other 

nodes in the network (synchronous). For asynchronous implementations the message must 

have a round counter to determine the round for each node. Gossiping protocols have three 

types of message exchange:

• Push (Each node pushes news in its neighborhood)

• Pull (Each node sends messages and asks its neighborhood if there is some news)

• Push-Pull (Hybrid algorithms for better optimization)

Other important characteristics of gossiping algorithms are convergence time, number of 

rounds and time synchronization. These  characteristics are variable and depend on the actu­

al developed algorithm. They have been investigated especially in relation to computation 

complexity of the gossiping algorithm (for instance aggregation algorithms). Gossip-based 

protocols can be classified into two different classes [7]:

• anti-entropy protocols

• rumor-mongering protocols

Anti-entropy protocols  have  the  characteristics  to  detect  and correct  inconsistency in  a 

sensor network in a certain number of gossip rounds. [8]. Every node chooses another node 

for message exchange. Both nodes exchange their  values and search for any difference 

between the two values [9]. Anti-entropy protocols are highly reliable, but on the other hand 

very expensive. In every round nodes have to communicate in both directions and compare 

the whole values. Therefore, anti-entropy protocols are designed to solve problems with 

small value sizes. In case of huge matrices as values, anti-entropy protocols produce a large 

overhead.  Rumor-mongering  protocols  distribute  the  information  until  all  nodes  are  in­

formed, with a very high probability. This assumption does not ensure that all nodes are in­

fected with the new information. In rumor-mongering protocols nodes are sending messages 

only in one direction, sending a rumor in every round to a randomly chosen neighbor. This 

received message becomes the next “hot rumor” which is sent to the next neighbor. Mostly, 

such algorithms stop after a node has recognized that a large number of neighbors have up­

dated their values. Rumor rounds can be more frequent than anti-entropy rounds because 

they need fewer resources on each side. Algorithms that spread information in a natural 
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manner, following simple rules to spread information and having only a local view, are 

called epidemic algorithms [9]. Further, there is the classification related to the epidemic al­

gorithms in simple and complex classes. Simple epidemics have two states for the nodes: 

susceptive and infective (SI model). A node is infective if it has the information and starts to 

spread it. A susceptive node waits for the information and as soon as it receives the informa­

tion it becomes infective. Complex epidemics have three states. The third state is the re­

moved or recovered state. Nodes in the removed state cannot be infected. For reason of in­

fection rate control, some nodes are set to the removed state [7].

2.2  Push Sum Algorithm

The PSA is a very natural gossip-based algorithm. It belongs to the group of aggreg­

ation algorithms. The goal of the PSA is to compute sums, averages, minima or maxima in 

a  decentralized  manner.  The  PSA also  fits  more  in  the  group  of  rumor-mongering  al­

gorithms because of its aggregating nature. We assume that each node i holds in each round 

n a value x i(n) and a weight wi(n)  . 

Let p be a randomly chosen communication partner from the neighborhood. The PSA per­

forms the following steps[10]:

 Algorithm 1: Classic Push Sum

i. Initial step set all  pairs { x i(0) , wi(0) } where i represents the node number. 

ii. Choose randomly a communication partner p from the neighborhood H.

iii. Send {
1
2

x i(n) , 
1
2

wi(n) } to p and i(yourself).

iv. Calculate the new pair { x i(n+1) , wi(n+1) } with

x i(n+1)=
1
2

xi(n)+∑∀r∈H
xr and wi(n+1)=

1
2

wi(n)+∑∀ r∈H
wr where r rep­

resents a neighbor sending to i and n the round number. For the next round we start 

from ii. again.
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In each round  n, nodes send their pair {
1
2

x i(n) ,
1
2

wi(n) } to itself and a randomly 

chosen neighbor. Further, the nodes collect all received messages and summarize it to the 

new pair { x i(n+1) , wi(n+1) }. In consideration to the initial value we can calculate 

the sum or average of the PSA values by setting x i(0) and wi(0) in the step i. of Al­

gorithm 1. The average will be calculated for the initial x i(0)  random and wi(0) =1. If 

we initialize x i(0)  random and a weight w1(0)  = 1 and all other with 0, the PSA per­

forms the summation of x i(0)  in the network. The summation can easily be modified to 

a  node  counter  by  setting  x i(0)  =  1.  The  estimate  of  the  aggregation  function  is 

x i(n)
wi(n)

for each node in every round. The estimation accuracy of the PSA improves as far 

as the nodes adjust their values. 

The sum of all values in the network must be constant (mass conversation) along the time 

as stated in [10]. This property is a prerequisite for the correctness of the PSA. In case of 

node failures and mass (message) loss this prerequisite is not satisfied any more. The author 

of  [10] recommends a mass recover strategy by sending undeliverable messages back to the 

source. Unfortunately, the author only offers the approach how to solve this problem, but no 

implementation. This approach opens various questions for the network stability and rout­

ing. 

The error in average calculation drops within ε in O( log n+log 1
ε
+ log 1

δ
) rounds where 

1-δ is the probability that the estimate of
x i(n)
wi(n)

conforms within every node in the net­

work [10].  Thus, this convergence criteria is valid only for static networks. The conver­

gence criteria of mobile networks also depend on area size, mobility speed and nature of 

movements. 
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3  Routing

Unlike conventional networks, WSNs still have no standard routing protocol. The 

routing strategy of WSN depends on several factors, such as power capacity, network topo­

logy, observed environment, mobility etc. Conventional wireless networks use state or dis­

tance vector routing protocols for the routing link. But for mobile ad-hoc networks these ap­

proaches are not appropriate. They periodically produce a large bulk of  control messages 

and for large networks frequent message exchange is needed [11]. Routing in WSNs is es­

pecially difficult if frequent and fast mobility is imposed.  For gossip-based algorithms a 

local view of the neighborhood is obligated. In case of static networks, routing is achieved 

in a first initial round, but for mobile approaches the local view must constantly be updated. 

Nodes move, lose old and establish new connections. If the nodes move fast, the update 

periods will be short and the message overhead increases. Thus for networks with slow mo­

tion the update periods and message overhead remain feasible. According to [12] all WSN 

routing protocols can be classified in:

• flat-based

• hierarchical-based

• location-based

In flat-based routing, all nodes have the same roles and abilities, they strive to perform 

some a  couple  of sensing  task.  In such protocols,  every node floods its  neighborhood. 

Flooding produces implosion, caused by receiving duplicated messages. Overlaps occur if 

two nodes are sensing the same area and flooding the same neighbor. Flooding also leads to 

resource blindness, consuming large amounts of power [13]. Hierarchical-based or cluster-

based routing is a two layered routing protocol. It is assumed that nodes with various capab­

ilities and amount of power exist in the network. Nodes are typically organized into clusters 

where every cluster has a cluster-head node. Data transition, in such networks, can be intra-

cluster  (member nodes of a cluster communicate with each other) or inter-cluster (cluster-

heads communication) [14]. Member nodes are only allowed to communicate over their 

cluster-heads with other cluster nodes. This assumption saves energy and reduces the rout­

ing tables of member and cluster-head nodes. Location-based routing depends on the posi­
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tion information of the nodes. This approach attempts to send messages to its destination, 

rather than flooding the whole network. Each node calculates the distance between itself 

and the destination node, by acquiring position information about position. The position 

information can be  retrieved by the estimation of signal strengths or via GPS signal [12]. 

In case of a gossip-based algorithm there is no need for a global view of the network. Every 

node is communicating only with its neighbor nodes. But a local view of the neighborhood 

is  for  some gossip-based algorithms essential.  Gossiping nodes  would  have to  perform 

some kind of local routing. Every node would have a routing vector with all the addresses 

of its neighbors. If a node performs a push sum algorithm, it would send its message in 

every round to a randomly chosen neighbor. Hence, how does the node know its neighbor­

hood? If we assume a static network, the nodes have to explore its neighborhoods only in a 

first initial round or would be provided by a global administrator. However, if we have a 

mobile sensor network, nodes have to keep track about its neighbors constantly. Such nodes 

would have a permanent changing neighborhood. This fact opens a large topic of routing in 

mobile sensor networks. We solve the local routing problem with a kind of flat-based pro­

tocol. Our first approach was to send  periodically controlled messages and wait for re­

sponse. In fact, if we choose small intervals between the control messages, the nodes could 

move  faster.  Unfortunately,  in  such  an  approach,  each  node  would  be  too  busy  with 

sampling the neighborhood that there would not be enough resources to perform an aggreg­

ation algorithm. Therefore, we assume slow moving nodes, where the sampling period is 

rather large. After a couple of initial experiments we recognized that for slow motion there 

is no need for control messages. In the first round all nodes would send a message to the en­

vironment with no recipient. Each node (which is in the transmit range of the sending node) 

would then collect all messages from its neighborhood and save the consignee address to its 

routing vector. For the next round each node would pick a certain neighbor from its routing 

vector. In such a routing protocol nodes acquire information about its neighborhoods from 

the previous round. This kind of routing is learning by the past behavior of the network. Be­

nefits of such an approach are avoiding message overhead, simplicity and faster conver­

gence (same number of rounds but faster in real time). 
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4  Push Sum adapted for the matrix multiplication

The matrix multiplication is defined as a row(i)-by-column(j) multiplication of two 

matrices A and B. Each row of matrix A is multiplied with the first column of matrix B to 

an entry of the product matrix. The matrix multiplication is in general not commutative, 

therefore AB≠BA . 

In order to compute the product matrix  P=AxB  where A and  B are dense matrices  of 

NxN   dimension, we have to perform O(N 3) operations. For each element  Pik  we 

have to calculate:

 p ik=∑
j=1

N

a ijb jk              (5)

                                                          or                        

p ik=a i1b1k+ai2 b2k+ai3 b3k ...aij b jk (6)

where  p ik  represents the elements of the product matrix. For the push-sum algorithm 

we perform a summation over the values of a node network, by setting the weight of the 

first node to 1, and the rest to 0. The sum approximation is represented by the estimation of 

x i

wi
 on each node. If the pairs a ij b jk are the values x i on each node, then  these pairs 

can  be exchanged in a gossip-based manner. The estimation 
(a ijb jk)

wi
is the approxima­

tion of one element of the product matrix at each round. We introduced three different ini­

tialization and message exchange strategies. The first two initialization strategies build a 

network with a different number of sub-networks, namely:

• Element distribution

• Block-matrix distribution

These initialization strategies use different message exchange approaches to achieve con­

vergence. We classify them as:
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• Message forwarding

• Node mobility

• Forwarding and mobility

Likewise, we have also analyzed a sub-network free approach based on a column/row dis­

tribution. In the following sections we describe these initialization and message exchange 

strategies in detail. 

4.1  Node initialization

We have introduced three strategies in relation to memory capabilities of the nodes, 

whose initialization matrices are uniformly distributed across the network. Each node in the 

network stores the same amount of information. Furthermore, the amount of message ex­

change/passing in the network is inverse proportional to the load of information distributed 

across the nodes. This means that a large amount of information decreases the number of 

messages in the network, while increases the bandwidth for one single message exchange. 

The first two approaches perform data aggregation in the sphere of distributed sensor net­

work clusters or sub-networks. The authors of  [15][16][17] propose several clustering tech­

niques for WSNs, which mostly assume static networks [18][19] with certain distribution. 

Communication in such networks can be intra-cluster, where all nodes communicate within 

the cluster, or inter-cluster where cluster-heads communicate with each other. In [4], a hy­

brid protocol for inter-cluster (group) gossiping was introduced. In this so called hybrid pro­

tocol, nodes are grouped into clusters. Every cluster has a cluster-head which identifies the 

cluster,  and the cluster-heads collect information from the clusters and forward it to the 

base station (sink). In [5], a similar approach was presented. The intra-cluster aggregation is 

still gossip-based but the inter-cluster aggregation, represented by the cluster-heads, is now 

tree based. Thus, if the nodes are mobile and permanently change their positions, clustering 

becomes more complex. In order to let the members of one cluster communicate with each 

other, despite of the fact that they are out of range of one another, multiple hop communica­

tion is required. However, for our proposed method, cluster-heads are unnecessary due to 
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the fact that we disregard the problem of data collecting to a base station. It also has to be 

mentioned that all nodes within a subnet have the same capabilities and resources.    

4.1.1  Element distribution

As mentioned in the previous section, we distribute one element ( a ij ) of matrix A 

and one element ( b jk ) of matrix B on every node. The product of these two elements 

( a ij b jk ) represents the value of the push-sum algorithm. For the first element of the NxN 

product matrix(aggregation result) N values and N nodes are required. In Figure 3, the gen­

eral idea is depicted. The product  a11b11 is stored on the first node, where  a12b21 is 

stored on the second and so on. As we can see in Figure 3, the values a11b11 , a12b21  

and a13b31 build a sub-network (gray sub-network). The aggregation for the first element 

of the product matrix, is performed over the members of the gray sub-network.

Figure 3: Element distribution of two 3x3 matrices over the whole 
network and the subnet grouping

Figure 3 demonstrates the initial distribution of two 3x3 matrices. For this example we have 

9 sub-networks and 27 nodes in the network. For a NxN matrix we need N 3 nodes, sep­

arated into  N 2 subnets. For the first node (In case of subnet 1 node a11b11 ) of each 

subnet, the weight is set to 1 and the rest to 0. 
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4.1.2  Block-matrix distribution

For the block-matrix distribution we utilized the same pattern as for the element dis­

tribution. Hence, instead of two elements we distributed a block of the matrices A and B 

(Figure 4) on each node. 

Figure 4: Block matrix distribution over the first sub-network

For this strategy we had to perform a matrix multiplication of two sub-matrices on every 

node. In Figure 4, the first left 3x3 matrices are multiplied and stored on the first node. The 

value of the PSA on every node turns into a matrix, whereas the weight remains a number. 

With this approach we unbound the matrix size from the network size. The consequence of 

such a  distribution is of course the large message size. Every node has to send a matrix as a 

message instead of a number.

4.1.3  Column/row distribution

Finally, we designed a third method, where one column of matrix A and one row of 

matrix B are distributed on each node. Every node builds an initial matrix with this informa­
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tion, which represents the value of the PSA. The initial matrix is built by calculating the 

outer product of one column of  A( Ca
'  is  Ca  transposed)  Ca and one row of  B(

Rb
'  is Rb  transposed) Rb  :

 

Ca
' ×Rb

'  = Ca
' Rb

' = [
a11

a21

.

.

.
an1

][b11 b12 . . . b1n ]=[a11b11 a11b12 ⋯ a11 b1n

a21 b11 a21b12 ⋯ a21 b1n

⋮ ⋮ ⋱ ⋮
an1 b11 an1b12 ⋯ an1 b1n

]  (7)

This approach builds an approximation matrix(right matrix in expression 7) for the  PSA. 

Sub-networks are avoided for this solution since all nodes are in the same network range 

and communicate with each other. All nodes store different approximation matrices, and by 

performing the PSA they converge to the product of matrix A and B. This leads to a consid­

erable reduction of the number of nodes. Thus, for an N×N  matrix multiplication only 

N nodes are required. In Table 1 a comparison of  the value and weight for all distribution 

strategies is given.

Strategy Value [ x i ] Weight [ wi ]

Element distribution Number Number

Block-matrix distribution Matrix Number

Column/Row distribution Matrix Vector
Table 1: Parameters of the PSA for different distribution strategies 

4.2  Subnet convergence strategies

Introducing sub-networks creates new challenges for message exchange. Nodes are 

grouped in subnets and have to communicate only inside of their subnet. If a node wants to 

send a message to a subnet member beyond its transmission range, it has to build bridges 

over nodes with different subnets or to move towards the neighborhood of the destination 

node. All the following message exchange strategies are built on the random neighbor as­

sumption. Each node picks a random neighbor for communicating in every round. In addi­

tion, all nodes move randomly and hope to find a subnet member for communication.  
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4.2.1  Message forwarding

We have introduced a forwarding strategy for static networks with a certain number 

of sub-networks. All member nodes of one subnet strive to achieve a consensus. Our solu­

tion for this problem is an adapted  hot-potato protocol [20]. The hot-potato protocol for­

wards messages from a source to a sink (destination) with multiple hops. All nodes try to 

forward the message to the first possible opportunity in the neighborhood. For such an ap­

proach only a local network view is necessary. Our subnet distribution assumes multiple 

message forwarding  and multiple sinks in the network. In every round each node sends a 

message to itself and to a randomly chosen neighbor. The receiver proves if its subnet num­

ber is equal to the source subnet number. If it is different, it picks and forwards the message 

to a randomly chosen node from the neighborhood (except the node of its origin). Addition­

ally, every message poses a hop counter. If the hop counter achieves a pre-defined limit, the 

forwarding stops immediately.  If the network is split or the message is pending between 

two nodes,  we would get a message overhead. In the worst  case scenario,  the message 

might never find a subnet member. Because of this problem we set a hop counter. The mes­

sage is counting how often it is forwarded, and after a certain number of hops the message 

is deleted. The hop number depends on the time span between two rounds. For large time 

spans it is possible to have more time to hunt for a subnet member, but for small time spans  

it is likely to have only a few hops. If the hop count is small, the probability of a consensus 

in the subnet is also rather small. Algorithm 2 shows the steps of initialization and forward­

ing messages. In iii. and iv. the general idea of forwarding is described.  Nodes forward a 

message until the condition hopCount<hopLimit is true. If the hopLimit is achieved the 

message has to be deleted.
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Algorithm 2: Message Forwarding and  Push Sum

i. Initial step set x i(0)=aij b jk . If i is first subnet member then wi(0)=1 else

wi(0)=0 . Set si=subnetID , where subnet members have the same subnetID .

ii. Chooses randomly a communication partner p from the neighborhood H.

iii. Set hopCount=0 . Send {
1
2

x i(n) , 
1
2

wi(n) , si , hopCount } to p and 

             i (yourself).

iv. If si≠sr and hopCount<hopLimit choose a new communication partner p and 

forward {
1
2

xr ,  
1
2

wr ,  sr,, hopCount+1  } to p. If  si=sr calculate the new  

pair{ x i(n+1) , wi(n+1) }  with wi(n+1)=
1
2

wi(n)+∑∀ r∈H
wr where  r rep

resents a neighbor sending to i  and n the round number . For the next round we start 

from ii. again.

In case of the block matrix distribution, the same pattern is  followed. Hence, the value 

a ij b jk  is a matrix instead of a number. 

4.2.2  Node mobility

Our second approach deals with the fact that the nodes are moving and that the 

member nodes of one subnet potentially move towards each other in finite time. Each node 

moves and sends messages expecting to address the message to a subnet member node. Un­

fortunately, the drawback of such an approach is obvious; the nodes are sending large num­

bers of messages to themselves and to non subnet members which reject the message in or­

der to perform the push sum. Every rejection falsifies the consensus of its sub-network, and 

as a result, the absorption of self messages with no awareness of delivery success leads to 

an irreversible mass loss. In fact, for mobile sensor networks with random mobility, there is 

yet no guarantee of convergence speed [21]. Nevertheless, in [22] is shown that for a small  

number of mobile nodes, a positive effect on the convergence speed is plausible.  The au­

thors  of   [22]  analyzed  the  influence  of  different  mobility models  on  gossip-based al­

gorithms. The area of mobility is limited and nodes move, as in our simulation in a limited 
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2D space. These models are rather unrealistic but they have also stated that a random walk,  

under certain circumstances, can show the same results as for instance a bidirectional mo­

bility. Namely, mobility that is limited to two directions can yield to a major benefit in con­

vergence speed.

Algorithm 3: Mobility and Push Sum

i. Initial step set x i(0)=aij b jk . If i is first subnet member then wi(0)=1 else  

wi(0)=0 . Set si=subnetID , where subnet members have the same subnetID .

ii. Chooses randomly a communication partner p from the neighborhood H.

iii. Send {
1
2

x i(n) , 
1
2

wi(n) , si } to p and i(yourself).

iv. If si≠sr then delete message. If si=sr calculate the new pair

{ x i(n+1) , wi(n+1) } with x i(n+1)=
1
2

xi(n)+∑∀r∈H
xr and 

wi(n+1)=
1
2

wi(n)+∑∀ r∈H
wr where r represents a neighbor sending to i  and n 

the round number . For the next round we start from ii. again.

Algorithm 3 is relatively similar to Algorithm 2 except that we no more have the hopCount 

parameter for forwarding messages. If a node receives a message with a different subnet, it 

will be deleted immediately.

4.2.3  Forwarding and mobility

The combination of the previous strategies is expected to unify the benefits of both, 

the forwarding and mobility approach. Since this approach has a higher message deliver re­

liability than the forwarding strategy, it provides a smaller message loss and an improved 

accuracy. Additionally, nodes are moving and changing their positions, also leading to a 

fair message distribution over the sub-networks.  
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4.3  Column/Row strategy

As we have seen in the previous section, it is rather challenging to perform a correct 

push sum aggregation over a sub-network if the member nodes are far away from each oth­

er. This happens especially if the nodes are mobile and large message loss is produced. To 

avoid the partitioning of the network in sub-networks and overcome this large message loss, 

we designed a sub-network free strategy. The idea behind this strategy is to distribute more 

information of the  N×N  matrices and find an approximate of the resulting matrix. In 

order to perform the push sum, we have to send some elements of this approximation mat­

rix from one node to the other. The first approach is to send a randomly chosen element, 

which as a matter of fact, would lead to a large number of rounds for the convergence of  

large networks. Therefore, we consider one randomly selected row as the PSA value, mean­

ing that we also have a row of N entries as the weight.

Figure 5: Message exchange within the Column/Row strategy of a 3x3 matrix

In Figure 5 we have a matrix A and B, whereas their columns/rows are distributed and trans­

formed into the approximation matrix as depicted in expression (7). Every node has its ap­
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proximation matrix and a weight vector. According to Algorithm 4, each node selects a ran­

dom row and the appropriate weight for the message transmission in every round of the 

PSA. The node in the bottom left corner of Figure 5  selects the second row and sends a  

PSA message with the half of [a21 b11 a21 b12 a21b13 ]  and w2  to itself and its neigh­

bor. As the PSA goes on all nodes store the product matrix of A and B at the end of the sim­

ulation. The cost to pay for this strategy is the large message size. In fact, instead of sending 

one number for the value and the weight, we have to send two vectors as value and weight. 

The following algorithm describes the column/row approach:

Algorithm 4: Column/Row strategy 

i. Initial step built from the column of A and row of B the approximation matrix 

X i , if i=0 set w0=1 else wi=0 .

ii. Choose randomly a row number k  from X i and the k appropriate entry 

 from wi . 

iii. Choose randomly a communication partner p from the neighborhood H.

iv. Send {
1
2

X i
k (n) , 

1
2

wi
k (n) ,  k} to p and i (yourself).

v. Calculate the new pair{ X i
k (n+1) , wi

k (n+1) } with

X i
k (n+1)=

1
2

X i
k+∑∀r∈H

X r
k and wi

k (n+1)=1
2

wi
k+∑∀ r∈H

w r
k where r 

represents a neighbor sending to i  and n the round number . For the next round we 

start from ii. again.
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5  Simulation Environment

All simulations are performed in OmNet++ version 4.2. OmNet++ is an extensible 

and component-based C++ framework for  network  simulation.  One module  description 

consists of:

• Interface description (.NED file)

• Behavior description (C++ class)

 Components are written in C++ and connected to the high level language NED. Compon­

ents describe the behavior of a module whereby the NED file describes the module inter­

faces and network connections. Modules, gates and links can be created statically at the be­

ginning of the simulation, or dynamically at the run-time. There is also an Eclipse IDE for 

OmNet++ with  a  simulation  GUI.  For  the simulation  of  mobility we used the  MiXiM 

framework.

 

5.1  Simulation area

First of all, we assume that the simulation area is a 2D space. It is also limited and 

quadratic. Nodes cannot move outside the simulation area; in other words nodes reflect on 

the area borders. Convergence speed and mobility are highly influenced by the size of the 

area  and the  network  size.  For  large networks  the  simulation  area  must  be  adapted  to 

provide enough space for node mobility, and to limit the visibility of each other. Thus, the 

simulation area is proportional to the network size. Figure 6 shows a network of three nodes 

in a square network space with the side length  l.  All nodes have the same transmission 

range r. Node n2 and n3 see each other and communicate with each other, whereas n1 is out 

of the transmission range of n2 and n3.
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 Figure 6: Simulation area

We have determined the size of the area in order to avoid a fully connected network (see 

Figure 6). This means that if we have N nodes and a transmission range r, the side length of 

the simulation area has to be:

  

l=r⋅N (1)

Thus, the size of our simulation area is always:

P=(r⋅N )2 (2)

OmNet++ provides two configuration files; omnetpp.ini and config.xml. In these files we 

can set parameters, such as number of nodes, physical characteristics, signal strength, mo­

bility speed etc.

5.2  Message sending and network topology

The network topology for our simulation is built by random. The transmission medi­

um is air. If one node broadcasts, all nodes within the transmission range receive the mes­

sage. Such a behavior is described in Figure 7. Node one is sending a message and all nodes 

within the transmission range receive the message.
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Figure 7: Illustration of a wireless transmission

There is no limitation for the bandwidth and number of connections per node. Nodes have 

the ability to  send a message to the neighborhood, to send a message to itself and to receive 

messages. Nodes are equal and there is no base station in the network. The problem of col­

lecting data from the network to a base  station is not regarded. Connection between nodes 

is usual in both directions. Lost messages cannot be recovered. Unfortunately, nodes have 

no mechanism to  recognize mass losses. If one node has no connection, it stays in its idle 

state. We sophisticated the stop criteria for our simulation. The simulation stops if all nodes 

(in the same subnet) store the same estimation
x i

wi
 in the order of 10−2  for random to­

pologies, thus for deterministic topologies this criteria is set up to 10−16 . Once the nodes 

have reached a common estimate, the simulation finishes. If we set the precision to be of 

the order 10−2 the simulation will end sooner, but the price to pay is the estimation accur­

acy. In this case nodes adjust their values only to the second decimal place and the simula­

tion stops afterwards. This assumption is not feasible for real world scenarios. In real world 

scenarios nodes have only their local estimations and no global view of the estimations in 

the network, the number of connections and the message size is limited. But for our proto­

typical analysis of the distributed matrix multiplication, it is sufficient.
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5.3  MiXiM mobility features

Mobility in WSNs is either an incidental side effect or a desirable feature. Mobility 

can be produced by environment influences such as wind or water. Senses or nodes can also 

posses the ability to move, carried by some subjects or have automotive capabilities. Thus, 

we can categorize mobility in WSNs in active (desirable) or passive ( influenced by some 

external  power)  .  Mobility can  be  attached  to  certain  nodes  or  to  the  whole  network. 

Between the movements there can be a long immobility period or the nodes can move con­

stantly [5]. 

In our simulation we used the MiXiM framework. The MiXiM framework is an Omnet++ 

extension, created for simulating fixed or wireless mobile networks. MiXiM is a merger of 

several simulation frameworks. The precedents are:

• ChSim by Universitaet Paderborn 
• Mac Simulator by Technische Universitaet Delft 

• Mobility Framework by Technische Universitaet Berlin, Telecommunication 
Networks Group 

• Positif Framework by Technische Universitaet Delft 

MiXiM offers a  lot of features for modeling radio wave propagation, mobility and interfer­

ence estimation. Mobility speed in MiXiM is defined as meter per second. Further, mobility 

speed in the MiXiM framework can be constant or variable. However, in our examples we 

considered constant speed mobility. Immobility periods are defined by the mobility update 

interval. A mobile node moves along a straight line for a certain period of time before it  

makes a turn. This moving period is a random number, normally distributed with an average 

of 5 seconds and standard deviation of 0.1 second. 

When it makes a turn, the new direction (angle) in which it will move is a normally distrib­

uted random number with an average equal to the previous direction and standard deviation 

of 30 degrees. When it hits a wall, it reflects off the wall at the same angle.
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6  Implementation study

The MiXiM framework provides a mechanism to simulate a fully layered network infra­

structure. However, for our propose, only the application layer is in the sphere of our in­

terest. We implemented  our adapted PSA on the application layer and used only the address 

space from the underlying layer for the uniform message exchange. 

6.1 Structure

Our implementation consists of 4 main methods on every node:
• initialize(int stage)
• sendBroadcast()
• selfMessage()
• handleLowerMsg(cMessage* msg)

In the initialize  method, the nodes initialize the matrix  value and weight.  Further, 

sendBroadcast creates a messages, chooses a randomly chosen neighbor address and sets 

all parameters. Simultaneously, the node calls selfMessage() and sends the same message 

to itself. When a message is received, the handleLowerMsg method is called. In this meth­

od, the node decides if the message is in the same subnet or should be forwarded. The mes­

sage has to be deleted if the maximal hop count is achieved. 

6.2 Message

The messages contain following content:
• int destAddr
• int srcAddr
• double mvalue[MATRIXSIZE*MATRIXSIZE]
• double weight
• int subnet
• int hopCount
• int round|optional

Messages in the MiXiM framework are restricted to scalar and 1 dimensional array values. 

Therefore, we always had to ensure that the value matrix is converted to a 1 dimensional ar­

ray with the size of MATRIXSIZE* MATRIXSIZE. Every node in the MiXiM framework 

has a unique node number from 0 to N-1 (N is the network size). If one node is sending a 

message the srcAddr parameter will be set to the node number. The destAddr is a node 

number from the neighborhood vector. The neighborhood vector contains node numbers 

from all neighbors  of the sending node (see Chapter 3 Routing).
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7  Simulation Study

7.1 Correctness and Accuracy

In order to evaluate the correctness of the computed matrix, we compare the matrix norm of 

the true and computed value. The absolute error is defined as follows:

  

Absolute error = ∥Acalculated − Atrue∥1

where

∥A∥1=max 1⩽ j⩽n∑
i=1

m

∣aij∣
 (3)

Further, the relative error in our calculations is:

Relative error % =
∥Acalculated − Atrue∥1

∥Atrue∥1
∗100

(4)

Acalculated  is the resulting matrix distributed over the subnets. Each member of a subnet 

stores the same sub-matrix of Acalculated at the end of the simulation. In the further simula­

tion study, we have chosen one member node from every subnet, and collected their PSA 

estimations, which represents a sub matrix of the product matrix  Acalculated . From these 

sub-matrices we build Acalculated and calculate the relative error as described in (4). How­

ever, in case of the Column/Row strategy, all nodes hold the same matrix (estimation) at the 

end of the simulation. In order to find the Acalculated only the estimation of one node from 

the network is necessary.

In further simulations we have distributed two randomly generated matrices over the net­

work. The elements of these matrices are numbers between 0 and 1 from the set  ℝ . 

These matrices are stored in a flat file and initialized before the simulation starts.
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7.2 Mobility

In Tables 2, 3 and 4, we compared the relative error for several node speed values and for 

different mobility update intervals. By mobility update interval, we refer to the interval of 

time for which a node is immobile. In the simulations below, we considered a PSA perform­

ing an average aggregation over all distributed values over a network. Our aim was to show 

that the PSA is hardly vulnerable to message loss and link failures produced by node mobil­

ity. As we can see from the below tables, the relative error increases with arising node speed 

and network size. Nevertheless, for larger mobility update intervals, the relative error de­

creases. In fact for large mobility update intervals the nodes can perform a lot of rounds, 

between the two mobility moments with a very small message loss.

Table 2: Different speed and mobility update intervals for network size 8 - PSA 
averaging

27

Speed [mps] Mob.UpdateInterval [s] Relative error % Networksize

0.5 10 20.25 8

2 10 30.87 8

4 10 45.21 8

8 10 63 8

16 10 106.2 8

32 10 110.5 8

0.5 50 31.25 8

2 50 25.3 8

4 50 39.41 8

8 50 45.89 8

16 50 83.4 8

32 50 110.53 8

0.5 100 10 8

2 100 13.1 8

4 100 15.9 8

8 100 16.01 8

16 100 40.98 8

32 100 77.4 8

0.5 200 6 8

2 200 12.25 8

4 200 10.2 8

8 200 13.45 8

16 200 17.47 8

32 200 41.2 8
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Table 3: Different speed and mobility update intervals for network size 27- PSA 
averaging

As we can see from Table 2 and 3, the relative error for 8 and 27 nodes occurs approxim­

ately in the same order. But intuitively, the relative error has to be larger for larger networks. 

The relative error in Table 4 is extremely large in comparison to Table 2 and 3. At this mo­

ment we have no explanation for this kind of behavior. This behavior has to be analyzed in-

depth. 
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Speed [mps] Mob. UpdateInterv al [s] Relativ e error % Networksize

0.5 10 14 27

2 10 11.48 27

4 10 15.11 27

8 10 17.62 27

16 10 63.25 27

32 10 132.5 27

0.5 50 12.5 27

2 50 13.67 27

4 50 14.39 27

8 50 17.76 27

16 50 54.9 27

32 50 102.1 27

0.5 100 8.51 27

2 100 11.23 27

4 100 12.45 27

8 100 15.2 27

16 100 39.12 27

32 100 83.23 27

0.5 200 7.48 27

2 200 9.23 27

4 200 11.5 27

8 200 14.11 27

16 200 20.9 27

32 200 75.4 27
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Table 4:  Different speed and mobility update intervals for network size 64- PSA 
averaging

In Table 4 we analyzed the behavior of the relative error for 64 nodes. The relative error is 

exploding, namely at the end of the simulation we have an altogether different product mat­

rix for the matrix multiplication. Such a trend supports our assumption that the relative er­

ror is growing proportionally to the network size.
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Speed[mps] Mob. UpdateInterv al [s] Relativ e error % Networksize

0.5 10 400.06 64

2 10 737.56 64

4 10 875.06 64

8 10 943.81 64

16 10 1056 64

32 10 1278.4 64

0.5 50 391.68 64

2 50 997.93 64

4 50 1102.4 64

8 50 1267.6 64

16 50 1416.2 64

32 50 1562.78 64

0.5 100 81.81 64

2 100 843.36 64

4 100 965 64

8 100 1045.4 64

16 100 1078.7 64

32 100 1112.3 64

0.5 200 390.93 64

2 200 689.25 64

4 200 794.8 64

8 200 901.4 64

16 200 1032.32 64

32 200 1210.2 64
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Figure 8: Error for various kinds of speed and mobility update interval - PSA 
averaging

After 6 [mps] the accuracy decreases abruptly for all network sizes. In fact, permanent and 

fast movement of the nodes has a large influence on the correctness of the PSA. This kind  

of behavior can in particular be observed in Figure 8b. Therefore, it is highly complicated to 

hold track of the local neighborhood, if the nodes are moving permanently and fast. 

7.3 Random subnet distribution and network topology

7.3.1 Forwarding

In the following simulation, a static network with random node distribution and to­

pology is presented. Subnet member nodes are mostly connected virtually over different 
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a) This figure shows the influence of mobility update interval and speed on a network with 8 nodes. 
After 8 [mps] a abrupt loss of accuracy is noticeable.
b) As in a) after 8 [mps] the relative error is growing faster.
c) From this figure we can  conclude that mobility has a hazardous  effect on large networks. The 
relative error, in this figure is at the 0.5 [mps] already about 100-400%. The result of this matrix is 
completely different from the true result. 
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non member nodes. Nodes can have 0 up to N-1 connections where N is the number nodes 

in the network. The message queue is set up to 100 messages for every node. 

Figure 9: Random node distribution and topology

Figure 9 represents a random initial topology. In such a network, all nodes have a different 

number of connections. Some parts of the network are connected only over one connection 

with the other nodes in the network . In the case of mobility, the network could also fall 

apart in two groups but should join again because of the limited area size, after several 

numbers of cycles. In consideration of the hot-potato protocol, a large number of connec­

tions might be an advantage. Nodes would have a higher probability to be connected over 

few hops with the rest of its subnet members. On the other hand, a large number of connec­

tions makes it really hard for the hot-potato protocol to hunt a member node within the hop 

count limitation. In Table 5 we show the forwarding approach with different problem sizes. 

The column “sent messages” or “received messages” is the sum of all sent or received mes­

sages of all nodes in the network. We introduce the message loss ratio, which represents the 

proportion of sent and received messages (sent messages/received messages rounded to the 

closest tens). Meaning that for instance, if three messages are sent, the number of lost mes­

sages is three times the message loss ratio (3 x message loss ratio). 
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Matrix size
Rounds 

until 
stop

∥Acalculated − Atrue∥1

 /(relative error %)
Sent messages Received messages Message loss ratio Nodes Hop Count

60x60 18 5.4(4.5%) 128 85 2 8 20

120x120 18 12(5%) 128 85 2 8 20

300x300 18 34(5.16%) 128 84 2 8 20

600x600 18 58(5.16%) 128 84 2 8 20

900x900 18 80(5.22%) 128 84 2 8 20

1200x1200 18 98(5.54%) 128 83 2 8 20

60x60 146 21.5(7.77%) 3876 1201 3 27 40

120x120 147 23(8.51%) 3810 1169 3 27 40

300x300 147 87(9.66%) 3801 1156 3 27 40

600x600 147 270(10%) 3746 1121 3 27 40

900x900 148 379(10.33%) 3678 1079 3 27 40

1200x1200 148 492(13.66%) 3510 989 4 27 40

60x60 951 49.5(20.62%) 55867 8408 7 64 100

120x120 951 105(21.87%) 55811 8367 7 64 100

300x300 952 307(25.62%) 55798 8360 7 64 100

600x600 952 619(25.79%) 55790 8358 7 64 100

900x900 952 933(25.91%) 55796 8360 7 64 100

1200x1200 953 1320(27.5%) 55750 8330 7 64 100

Table 5: Forwarding approach for different hop counts,
 matrix and network sizes

In Table 5 we can recognize a relatively similar relative error within the same network size. 

The message loss ratio is also small in comparison with the other approaches. For a rising 

network size we have also increased the number of maximal hops of forwarded messages 

(Hop Count). Figure 10 shows the number of received messages for each node. It demon­

strates that the consumed message ( consumed≠ forwarded ) distribution over 27 nodes 

varies highly. Such a message distribution is a direct cause of the underlying network topo­

logy. Nodes with less connections have a smaller probability to acquire messages from the 

network. This behavior influence of course the final convergences value of a subnet.

Figure 10 : Mobility approach message consumption of each node (Network size 27)
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7.3.2 Mobility

The mobility approach is based on the assumption that nodes are constantly moving 

and subnet members will find each other in finite time. If a node receives a message it com­

pares the message with its subnet address. If the subnet address matches the subnet address 

in the message header, it will consume the message. Otherwise it will reject and delete it.  

Thus, due to the fact that nodes are sending messages without acknowledgment from the 

other side a message loss is produced. For instance, node 1 is in the transmission range of 

node 4. Node 1 is  in subnet 1 and sends a message to node 4, which is in subnet 2, thus  

node 4 will delete this message (message loss) because their subnet numbers are different.  

After a certain period, all nodes move again and the topology looks completely different. If 

node 1 is now in the transmission range of node 2 (which is also in subnet 1), node 1 might  

choose node 2 for communication. If node 2 receives the message, it will consume the mes­

sage and calculate the new pair of x i  and wi .

Matrix size Rounds 
until stop

∥Acalculated − Atrue∥1

/(relative error %)
Sent messages Received messages Message loss ratio Nodes

60x60 200 21(17.5%) 1478 96 15 8

120x120 201 33(13.75%) 1493 94 16 8

300x300 202 35(5.83%) 1494 97 15 8

600x600 203 39(3.25%) 1501 102 14 8

900x900 201 250(13.88%) 1446 92 16 8

1200x1200 198 150(6.25%) 1469 94 16 8

60x60 950 75.4(27.92%) 25084 766 33 27

120x120 958 163(30.29%) 25296 773 33 27

300x300 963 312(34.66%) 25368 782 32 27

600x600 966 500(27.77%) 25394 789 32 27

900x900 966 735(27.22%) 25334 779 32 27

1200x1200 973 1010(28.05%) 25311 743 34 27

60x60 1205 938.25(390.93%) 70187 1222 57 64

120x120 1211 1968(410%) 70293 1245 58 64

300x300 1198 5034(419.5%) 70195 1234 57 64

600x600 1203 10122(421.75%) 70302 1256 56 64

900x900 1220 15500(430.55%) 70336 1301 54 64

1200x1200 1226 20533(427.77%) 70358 1423 49 64

Table 6: Mobility approach for different hop counts,
 matrix and network sizes

Table 6 demonstrates the relation of message loss and accuracy for the mobility approach. It 

turned out that with the mobility approach it is very hard to achieve a good precision.  Addi­

tionally, the message loss is relatively high (message loss ratio 58). The probability to send 
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a message to a subnet non member node, for this approach, is rather high. On the other 

hand, constant  mobility is  useful  in  order  to  achieve a fair  message distribution for  all 

nodes.

7.3.3 Forwarding and Mobility

The combination approach should unify the benefits of the forwarding approach as 

well as the mobiltiy approach. The forwarding strategy is statical and nodes with less con­

nections are treated unfair. The mobility strategy distributes uniformly the number of con­

sumed messages over the network but produces also a high message loss.

Matrix size Rounds 
until stop

∥Acalculated − Atrue∥1

/(relative error %)
Sent messages Received messages Message loss ratio Nodes

60x60 60 2.4(2%) 432 100 4 8

120x120 60 2.4(1%) 437 100 4 8

300x300 61 20(3.33%) 440 101 4 8

600x600 61 24(2%) 444 103 4 8

900x900 61 30(1.66%) 448 107 4 8

1200x1200 63 48(2%) 407 114 4 8

60x60 160 17(6.29%) 4349 464 9 27

120x120 173 24(4.44%) 5142 541 10 27

300x300 175 100(11.11%) 5517 580 10 27

600x600 181 210(11.66%) 5534 585 9 27

900x900 185 315(11.66%) 5545 587 9 27

1200x1200 190 458(12.72%) 5552 591 9 27

60x60 572 80.5(33.56%) 33224 1437 23 64

120x120 580 161.3(33.6%) 33256 1442 23 64

300x300 583 437(36.42%) 33301 1456 23 64

600x600 591 934(38.91%) 33336 1459 23 64

900x900 592 1432(39.77%) 33378 1483 23 64

1200x1200 589 1934(40.29%) 33365 1471 23 64

Table 7: Forwarding and mobility approach for different hop counts,
 matrix and network sizes

Table 7 shows, in comparison with Table 6. a faster convergence for all nodes. The ratio of 

lost messages is also smaller for the combination approach. But it has to be mentioned that 

the message loss ratio is not so good as in Table 5. However, we achieved a smaller error 

for small networks with the combination approach. This is the result of a better message 

distribution over the nodes because of the mobility in the network. That is to say, in case of 

the forwarding approach some nodes or subnets have an unfair static position (with no or a 
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small number of connections to the other nodes) in the network, thus they receive less mes­

sages than other nodes. So, few very accurate subnets with a very high message consump­

tion cannot correct the error made on some remotely separated member nodes. The combin­

ation strategy distributes the messages uniformly over the nodes. The probability that all 

nodes have a high message consumption is rather high, if the nodes are moving with con­

stant speed. Figure 11 demonstrates the consumed message distribution of the combination 

strategy. A consumed message distribution is the total number of received and processed 

messages (without the forwarded messages) of each node.

Figure 11 : Combination approach message 
consumption of each node (Network size 27)

The following Figure 12 shows the comparison between the accuracy and problem sizes for 

the three aggregation strategies. As we can see, the accuracy is relatively the same for a 

50x50 and a 1200x1200 matrix. But the accuracy is decreasing steadily if the matrix is dis­

tributed on a larger number of nodes. The mobility approach particularly shows a huge de­

cline of accuracy for a network of 64 nodes. In fact, under certain circumstances, the relat­

ive error is about 400%, which is a completely different matrix than the true resulting mat­

rix.
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Figure 12 : Accuracy comparison with different matrix and network sizes between the 
matrix multiplication approaches 

Compared to the forwarding or mobility approach, the combination of both approaches de­

livers the best results for a small number of nodes. It combines the benefits of the forward­

ing and mobility approach. All nodes have a fair message consumption (approximately the 

same) because of the mobility, whereas the message forwarding avoids such a large mes­

sage loss as in the mobility approach. 
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a) In this figure we have analyzed the influence of the problem size on accuracy of the forwarding 
approach. As it is depicted  in the figure, the absolute error is growing proportionally with the matrix 
size. The relative error is approximately the same for all problem sizes for a certain network size (Table 
5). We can also recognize that with rising network size, the error is in a different order. 
b) Here we can observe a huge loss of accuracy for all network sizes. Nevertheless, the absolute and 
relative errors are behaving similarly  to the rising problem sizes as in a). The huge inaccuracy is 
influenced by the frequent message loss in the simulation.
c) This figure shows the combination of the forwarding and the mobility approach.  In fact, for small 
networks it outperforms both previous approaches. 
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7.3.4 Column/Row strategy

The Column/Row approach is an altogether different strategy. In order to avoid sub­

nets we distribute more information on one node. Every node holds a column from the first 

matrix and a vector from the second one. Figure 13 shows the absolute error for this ap­

proach. We executed all simulations with a static and mobile assumption. We have chosen 

smaller problem sizes for this strategy, in order to perform the aggregation in reasonable 

time. Thus, if the matrix size is larger than 100x100, the simulation runs up to  half an hour.

Figure 13 : Comparison of the accuracy
 between a static and mobile Column/Row strategy

As we can see, such an assumption also suffers from the message loss. But, here we have in 

fact another hazardous influence. The classical PSA sends a value and a weight in each 

round, thus, in the column/row approach, every row represents an independent value. Let us 

assume that two nodes perform the message exchange in a certain round. First, both nodes 

randomly pick a row and the appropriate weight from the weight vector. Then they send half 

of all the entries in the row and half of the appropriate weight. Thus, the first node probably 

picks a different row than the second node. A loss of synchronization is produced due to the 

fact that we are not simultaneously sending the same value in a certain round. For small 

matrices the probability that two nodes pick the same value is much higher and that ex­
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plains the high accuracy for small matrices. But for large matrices this randomness influ­

ences the convergences speed as well as the accuracy. The nodes adjust their values in each 

round until they store the same value, but this value can be different from the true value. So, 

the benefit of this strategy is also that all nodes store, at the end of the simulation the  same 

value Acalculated . But this result is under certain circumstances (especially for large prob­

lem sizes) far away from the real product matrix  Atrue . In other words, the error in the 

calculated matrix is large. 

Matrix size
Rounds

until stop

∥Acalculated − Atrue∥1

/(relative error %)
Sent messages Received messages Message loss ratio Nodes

5x5 171 0(0%) 680 610 1 5

30x30 1133 30(3.33%) 33960 27079 1 30

60x60 9345 157(4.36%) 487456 389552 1 60

100x100 12342 1131(11.31%) 845999 634566 2 100

Table 8: Static network column/row strategy for different 
matrix and network sizes 

Matrix size
Rounds 

until stop

∥Acalculated − Atrue∥1

/(relative error %)
Sent messages Received messages Message loss ratio Nodes

5x5 220 0(0%) 968 821 1 5

30x30 1523 64(7.11%) 44607 27793 2 30

60x60 7290 189(5.25%) 301940 135191 2 60

100x100 13971 1450(14.5%) 1271334 832433 2 100

Table 9: Mobile network column/row strategy for different 
matrix and network sizes

Table 9 shows the increase of message loss and decrease of accuracy, if the network is mo­

bile. The mobility speed in all previous simulations was set to 0.5 [mps] and a mobility up­

date interval of 200 [s]. In comparison with Table 8, Table 9 has already a larger message 

loss ratio, which also results in a higher error in the resulting matrix. All in all, in case of 

very small matrices the error in the resulting matrix is small. So we note that the relative er­

ror for this strategy is proportional to the matrix size. The column/row approach is of course 

more accurate but has the disadvantage of performing a double random selection. Namely, 

first a random row from the approximation matrix has to be selected, and second the com­

munication partner from the neighborhood. Such a behavior highly influences the conver­

gence speed. Especially in case of large matrices the simulation slows down.
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7.4 Deterministic subnet distribution and network topology

7.4.1 Static network 

In this section we describe a static network with predefined subnet distribution and 

topology. Simulations show that loss of messages due to link failures does not influence the 

consensus agreement of the nodes. In the models presented so far, the nodes hold the same 

result at the end of the simulation. However, we have observed that random topologies in­

fluence the accuracy of the  computed result matrix due to link failures. In order to tackle 

these problems we consider from now on a deterministic distribution. The sub-networks are 

separated and only subnet member nodes are connected with each other. In case of no mo­

bility, each subnet performs a PSA without interference from the non member nodes. Figure 

14 describes a static network with network size 27 and 9 subnets where each subnet has 3 

members. The matrix size distributed on this  network is  150x150, therefore every node 

holds a block matrix of a 50x50 matrix as the PSA value.

Figure 14: Initial distribution of a static network with size 27 nodes, 
no connections between non member nodes

After 48 rounds the PSA has achieved double precision. The improvement curve, as we can 

recognize from the Figure 15, is almost linear.  
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divided (without

Figure 15: Accuracy of a static network with size 27 nodes, 
no dependability between non member nodes (matrix size 150x150)

This simulation also showed that the local PSA (on each subnet) works properly. Generally, 

such a behavior is the consequence of a very high message delivery rate. Additionally, there 

is  no interference between the subnets,  which means that  every time a node chooses a 

neighbor, it is for sure a subnet member node. In other words, all subnets perform a classic 

PSA without forwarding and mobility, where the value of the PSA is a matrix.  At the 48 th 

round, the total number of messages that are sent is 1323 and the number of correctly de­

livered messages is 1283, thus this is a small message loss of 3.02%. 

7.4.2 Forwarding

Let us assume that the network is static and all nodes are connected to this network 

but they are still distributed in such a manner that subnet members build connected groups. 

The border nodes of such groups could also have connections to other non member nodes. 

The network topology of such a network is represented in Figure 16. Nodes still forward 

messages to random nodes expecting to find a node with the same subnet number. Meaning 

that subnet nodes build virtual connections between two nodes separated by a certain num­

40

0 5 10 15 20 25 30 35 40 45 50
1,00E-014

1,00E-012

1,00E-010

1,00E-008

1,00E-006

1,00E-004

1,00E-002

1,00E+000

Static

Rounds per PSA

7 Simulation Study



ber of non member nodes. If this were not the case, the forwarding becomes a possible 

source of message loss in a network. In such a network, the border nodes of the subnet 

groups could incidentally  choose a non member node. In addition, they have always at least 

one subnet member as neighbor. So, there is definitely a probability that a message sent out­

side the group, finds the route back back to the group, but there are no guarantees. 

Figure 16: Initial distribution of a fully connected network 27 nodes with
high dependability between subnets

Because of the hot-potato protocol, the nodes attempt to forward the messages as fast as 

possible, sending the messages to a randomly chosen neighbor. The hop count in Figure 17 

is the maximal number of forwardings of one message (see chapter 4.2.1).

Figure 17: Relation between hop count and accuracy of a network with high 
dependability between subnets (matrix size 150x150)
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The absolute error increases abruptly after setting the hop counter limitation higher than 

100 hops. The reason for this is in fact the limited number of message in the message queue 

of each node. In Figure 17, the queue limit is set to 100.  If the message queue is full, the  

following messages will be rejected, which explains the behavior in Figure 17. It turns out 

that nodes reject messages when the message queue is full. Such a behavior increases the 

message loss and influences the accuracy. Nodes have no mechanism to recognize if one 

node is busy and no longer able to consume or forward messages.

Figure 18: Illustration of a limited message queue

In Figure 18 we can see 3 nodes; node 1 and node 3 are sending messages to node 2. Hence, 

the message queue of node 2 is full, thus all following messages will be rejected. This let us 

to the idea to perform the simulation with different queue sizes and compare the results. 

Figure 19 describes this behavior.
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Figure 19: Relation between accuracy and hop count for different
 message queue sizes (matrix size 150x150)

It is noticeable that after a hop count of 200 messages, the accuracy is worsening abruptly. 

The accuracy is also irregular after a hop count of 200 messages. Namely, larger message 

queues have no more influence to the accuracy. We have no explanation for such a behavior, 

but our assumptions are that the MiXiM protocol cannot handle such a high message traffic 

on the topology in Figure 16. 

The forwarding approach causes loss of accuracy of the computed matrix. Such an inaccur­

acy is a product of the very high message loss. There is no strategy to overcome such a be­

havior if we use the hot-potato protocol for forwarding messages.  Nevertheless, the benefit 

of the hot-potato protocol lies in its simplicity and efficient  resource utilization.   

Additionally, we simulated a network with maximal 2 connections for each node and where 

all subnet members are neighbors as well. Figure 20 represents a network with a low num­

ber of connections. The nodes in the middle of the network are interfaces between subnets. 

Only these 9 nodes produce message losses sending messages outside of its subnet. Such a 

network topology certainly reduces the forwarding, but on the other hand difficults that the 

forwarded messages (produced by the nodes in the middle of the network) find the route 

back to the subnet.
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Figure 20: Topology of 27 node with low dependability between subnets

Figure 21: Relation between accuracy and hop count for a
 topology of low dependability between subnets (matrix size 150x150)

Figure 21 represents the accuracy with different number of hop counts. In comparison with 

Figure 17, Figure 21 provides a better accuracy for smaller hop counts but for 100 hop 
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counts it is still not satisfactory. All in all, forwarding with the hot-potato protocol con­

verges every time but to a false value caused by the huge message loss.

7.4.3 Mobility

As we have seen in section 7.1.2, the mobility concern is still a great challenge for a 

WSN. It is an very difficult task for the routing protocol to keep track of the neighborhood 

and avoid any message loss, if nodes are moving constantly. Thus, we rather accept the fact 

that in such a system, there is always a certain message loss. In Figure 22 we analyzed a 

static network with a typical PSA performing the counting operation of the nodes in the net­

work. Under such circumstances, after 3045 rounds we achieve double precision on every

node. But how would the mobility influence such a system?

Figure 22: Counting 27 nodes in a static network x axis – number of rounds 
y axis – estimation value/weight

Figure 23: Counting 27 nodes with mobility x axis – number of rounds
 y axis – estimation value/weight
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In Figure 23 we let  the nodes move constantly very slow with 0.1 [mps].  We can still 

achieve a consensus but the inaccuracy of the estimation is very high; instead of  the num­

ber 27 the nodes store about 47 at the end of the simulation. Note that this is a consequence 

of  a high message loss (87.18 %). We can also observe that the advantage of mobility in 

such a network is the convergence speed. Namely, after 710 rounds all nodes in the network 

agree on a consensus. As a consequence of this, we decided to let the nodes move and then 

wait for a certain time and perform few rounds. This waiting time is the mobility update in­

terval. In Figure 24 we simulated the PSA behavior on 27 nodes with different mobility up­

date intervals.  Finally, we can recognize there is a steady improvement of  the accuracy by 

increasing the mobility update interval.    

46

7 Simulation Study



Figure 24: Relative error by increasing the mobility update interval 
of a PSA counting 27 nodes

Such a behavior led us to the conclusion that very large mobility update intervals achieve at  

least half of the double precision. The most important phase of a PSA is the beginning 

phase (Phase 1), where the differences of the estimation on each node are significantly large 

(see Figure 25). 
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Figure 25: Illustration critical phase vs. robust phase of the PSA

In phase 1,  also called the transient phase,  message loss and round conflicts  should be 

avoided in order to achieve a high precision. Thus, if the mobility update interval is relat­

ively high it would be possible to avoid a high message loss in phase 1. Such a behavior is 

demonstrated in Figure 24. 

7.4.4 Forwarding and Mobility

Further, we continue to investigate the matrix multiplication. We assume that the 

nodes are grouped as in Figure 20, they move very slowly and at relatively large time inter­

vals. The initial network structure is in the transient phase as in Figure 20, but falls apart in 

a random structure at the end of the transient phase. The key idea behind this strategy is to 

let the network fall apart relatively late, in order to avoid message loss. 
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Figure 26: Accuracy for low dependability between 
subnets of a network with 27 nodes (combination approach with matrix size 150x150)

In Figure 26 convergence speed is fast, but the accuracy is still not satisfactory. Therefore 

we decide to let the subnets be separated (without connections to other subnets) in the tran­

sient phase as in Figure 14 and posteriorly allow them to move after a certain number of 

rounds.
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Figure 27: Accuracy for different immobility periods 
in the transient phase of 27 nodes (combination approach with matrix size 150x150)1

As we can see in Figure 27 mobility in the transient phase influences the accuracy signific­

antly. If we let the subnets perform a local PSA with a small message loss in the first few 

rounds we can achieve almost half of double precision. Such a large improvement of the ac­

curacy, in comparison with the previous simulations, is directly the product of avoiding for­

warding and mobility in the first few rounds. Therefore, we realize that the classical PSA is 

rather sensitive to forwarding and mobility due to the high number of lost messages. Note 

that some simulations in Figure 27 need more rounds to achieve a consensus in all subnets 

(see Figure 27: red, green and yellow curve). This kind of behavior happens due to the ran­

dom mobility in the simulations, whereas some subnet members are separated for longer 

time intervals. Hence, it is comparatively difficult to predict the convergence speed in such 

a model.

1 Figure 15, 26 and  27 represent the trend of the absolute error on the first node of each subnet. The first 
node in the subnet is always the node whose weight equals number one.
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7.4.5 Column/Row strategy

We also tested the Column/Row strategy with a deterministic distribution. Addition­

ally, we delayed the mobility of the transient phase in order to achieve a higher precision. 

The initial network topology is shown in Figure 20. As we can see in Figure 13, the differ­

ence  between the static  and mobile  approach of  the  Column/Row strategy is  relatively 

small. Obviously, the accuracy in such a strategy cannot be more improved than the static 

approach. Thus, we have no more subnets; every node is able to consume messages from all 

other nodes in the network. But our intention was to adjust the results up to the accuracy of 

the static approach, due a small delay in the mobility approach. So, we distributed a 27x27 

matrix on 27 nodes and let them move after 10 rounds. 

Figure 28 : Accuracy for the static/mobile Column/Row strategy for a 
deterministic distribution

As we can see in Figure 28, there is a small insignificant improvement in the aggregation in  

mobile model, if we compare it with the Figure 13. Nevertheless, the simulation is still in­

accurate for large matrix sizes. The small improvement here is due to the  stable transient 

phase (reduction of message loss due to immobility in the transient phase).
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The accuracy of the static approach is the same as in in Figure 13. In this solution we have 

less options to improve the accuracy than in the subnets solutions because of the different 

row selection in each round.
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8  Conclusion

The IT environment has changed rapidly in the last few decades. From huge com­

puter blocks in the 70's and 80's, over small desktop PCs in the 90's we managed to arrive  

into the world of smart phones.  So, while the decades before the millennium marked a time 

of localized computation, the new century brought a lot of new challenges for distributed 

systems. Especially with the comeback of Apple and the launching of the iPhone, the whole 

IT industry got a new impetus in the direction of distributed systems. It is to expect that this  

trend will continue and new distributed technologies will conquer the market. Our contribu­

tion in this direction are simple strategies for solving the matrix multiplication distributed 

on a mobile sensor network. We have analyzed and  implemented 3 major approaches with 

simple considerations of forwarding messages and mobile subnet communication. We also 

analyzed 2 different approaches of distributing data. The first distribution approach stores a 

part of the matrix product on each node, where the second approach builds an approxima­

tion matrix on every node, and by performing the PSA, it  aggregates all  approximation 

matrices to the product matrix. It turned out that the PSA which we used for the aggrega­

tion, is extremely sensitive to message loss in the transient phase. As long as the network  is 

static, we can guarantee a low message loss, and we can also define a convergence criteria. 

Otherwise, if the nodes are mobile, the task of tracking the neighborhood becomes really 

hard. If a receiving node moves outside the transmission range of a sending node, message 

loss is produced. It is also to mention that message loss, is not a reliable indicator for accur­

acy. A network could be highly reliable in the transient phase but extremely hazardous at the 

end of the simulation and could still achieve a high precision. 

In our simulation, we implemented a very simple routing protocol in order to avoid 

message overheads and save resources on the nodes. Namely, our routing protocol  learns 

from the previous behavior of the network. We are certainly aware of losing messages with 

this protocol but, on the other hand such an approach makes the simulation more stable. In 

section 7.1 we described randomly distributed networks. We have shown that it is rather dif­

ficult to achieve a high precision under such circumstances. The reason is, as we have de­

scribed it, the large message loss, particularly in the transient phase. Both the approach of 

forwarding and mobility has a hazardous effect on the accuracy. Naturally, the forwarding 
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approach delivers  better  results  in  relation  to  the  accuracy than  the  mobility approach, 

which is due to the high message loss within the mobility approach. However, the mobility 

approach does provide a fair message distribution on every node and over the subnets. The 

combination approach includes properties from both approaches and ensures a trade-off 

situation. In particular, for small networks (8 or 27 nodes) the combination approach out­

performs the individual one. As we mentioned before, the Column/Row strategy is slower 

than the previous one but the advantage is that no more subnets are necessary within this 

approach. Every node can communicate with its neighbors without proving that it is in the 

same subnet. Further, it is important to mention that we are able to achieve a consensus in 

all simulations (with different errors of the resulting matrix). Also, from the aspect of initial 

distribution  there  is  a  difference  between  the  subnet  strategies  and  the  Column/Row 

strategy. For the subnet strategies block matrices of both matrices have to be distributed on 

the network, thus in case of the Column/Row strategy one column from the first and one 

row from the second matrix are sufficient. Note that, consequently the Column/Row ap­

proach has different message and network sizes.  Namely, for NxN matrices in case of the 

subnet strategies, N3  nodes are required, whereas the Column/Row approach needs only N 

nodes. The message size for the subnet strategies is bound to the size of the block matrices 

but  in case of the Column/Row the PSA message contains as value a vector with  N ele­

ments and one number for the weight. Additionally, in section 7.2,  deterministic ways of 

subnet distribution and network topologies have been investigated. Since random topolo­

gies are rather difficult to predict, we grouped the subnets. We simulated scenarios where 

the subnets are divided into a heap of member nodes (there is no connection to the non 

member nodes).  And we have also analyzed the case of a high and  low dependability 

between the subnets. It turned out that only if the subnets are divided in the very beginning 

of the aggregation, it is possible to avoid message loss and achieve a high precision in case 

of the combination strategy (forwarding and mobility). Therefore, we propose an initial idle 

phase for mobile networks, where the subnets are independent from each other and perform 

their local push sums. However, forwarding and mobility should not be abolished because 

of their importance for the convergence. The mobility in particular has a positive influence 

on  the  convergence  speed.  All  subnet  strategies,  in  comparison  with  the  Column/Row 

strategy, show a better performance for deterministic distribution. But on the other hand, 

every node stores only a part of the resulting matrix, and the network size is always N3.

54

8 Conclusion



9  Further work

With the PSA, we have focused on distributed matrix multiplication approaches. In 

order to deal with message losses, other aggregation algorithms should be used instead of 

the PSA for the distributed matrix multiplication . Also a variant of improved PSA, which 

minimizes or avoids the message loss, could be implemented. Secondly, there are many 

open questions concerning the routing protocol. It is still a open issue how to build a reli­

able routing protocol for WSNs. The PSA is not broadcasting messages but rather sending 

one message to a uniformly chosen neighbor. Therefore, every node has to track its neigh­

borhood. This becomes an extremely hard task in mobile networks. And at the end, the hot-

potato protocol could be improved, in order to send messages more reliably to subnet mem­

bers.  
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Zusammenfassung

Eine der häufigsten Operationen im Bereich der digitalen Bildverarbeitung ist die Matrix Multip­

likation. Parallele Algorithmen und Konzepte sind allgemein bekannt und gut entwickelt, aber im 

Falle von dezentralisierten Systemen gibt es immer noch einen Mangel an neuen Ansätzen. Wir 

haben in dieser Arbeit verschiedene Ansätze der Matrix Multiplikation auf einem mobilen Sensor­

netzwerk vorgeschlagen. Der Aggregationsprozess über die Knoten basiert auf dem Push Sum Al­

gorithmus. Wir haben 4 Strategien zur Matrix Multiplikation auf einem mobilen Sensornetzwerk 

eingeführt. Die Ergebnisse haben gezeigt das es verhältnismäßig schwer ist, für zufällige Topologien 

und ständige Mobilität eine hohe Genauigkeit zu erreichen. Deshalb haben wir verschiedene de­

terministische Topologien, mit hohen Perioden der Bewegungslosigkeit in der transienten Phase des 

Aggregationsprozesses untersucht. Unter bestimmten Bedingungen, konnten wir den Nachrichten­

verlust minimieren und fast die Hälfte der Double Precision erreichen.  
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