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Abstract in English 
In the drug development process the ADME profile and the toxicity of a drug candidate are of 

major importance for its success. Here the ATP-dependant efflux pump P-glycoprotein (P-gp) 

plays a key role as it is expressed in biological barriers, like intestinal epithelium, blood brain 

barrier, proximal renal tubular cells and hepatocytes. The protein transports xenobiotic 

compounds with a broad substrate and inhibitor specificity out of the cell. Consequently, 

predictive in silico models for human P-gp activity are valuable tools in drug development.  

However, at an early stage of drug development essential data is acquired in animal studies 

and consequently it is of utmost importance that drug candidates show a preferable 

pharmacokinetic and toxicity profile in animals. Thus next to existing predictive in silico 

models against human P-gp activity, predictive in silico models against rat and mouse would 

enable the avoidance of an early attrition in the following preclinical phase of animal in vivo 

studies. .  

 

Recently a crystal structure of mouse P-gp was established and provides new possibilities for 

structure-based drug design approaches. The high sequence identity between rat and mouse P-

gp (92%) and the importance of rats in animal ADME models motivated us to create a 

homology model of rat P-gp taking the crystallized mouse P-gp as a template. A multiple 

sequence alignment was performed using ClustalW2 and the resulting alignment was then 

used within MODELLER for model generation.  

 

Subsequently the docking software GOLD was used to dock 6 rat P-gp inhibitors with known 

IC50 values into the rat homology model. Docking poses were analyzed and showed frequent 

interactions between the ligand poses and F70 (TM helix 1) and F335 (TM helix 6). Also 

residue T306 (TM helix 5) was involved, whose human analogue T307 was (experimentally) 

shown to be important in ligand interactions. The predictive power of the model could be 

validated by comparing the rankings resulting from the scoring function GOLDScore and the 

experimentally determined activity: the docking was able to correctly assign the ranking for 

all but one of the experimentally tested compounds (only ranks 3 and 4 were switched).  
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Zusammenfassung 
Während des Drug Development Prozesses sind ADME und Toxizität eines Wirkstoff 

Kandidaten ausschlaggebend für seinen Erfolg. Hier spielt die ATP-abhängige Efflux Pumpe 

P-Glykoprotein (P-gp), die im Darmepithel, in der Blut-Hirn-Schranke, in proximalen 

Tubuluszellen der Niere und in Hepatozyten exprimiert wird, eine entscheidende Rolle. Das 

Protein transportiert xenobiotische Substanzen mit einem breiten Substrat und Inhibitor Profil 

aus der Zelle. Folglich sind vorhersagende in silico Modelle für das humane P-gp ein 

wertvolles Instrument im Drug Development. Allerdings werden in einem frühen Stadium des 

Drug Developments essentielle Daten in Tierstudien gewonnen, deswegen ist es besonders 

wichtig, dass ein Wirkstoffkandidat ein günstiges pharmakokinetisches Profil im Tiermodell 

zeigt. Daher könnten, abgesehen von den bestehenden in silico Vorhersagemodellen für das 

menschliche P-gp, in silico Vorhersagemodelle für das Ratten und Maus P-gp die 

Abbruchrate in den in vivo Tierstudien während der nächsten präklinischen Phase senken.   

 

Kürzlich wurde die Kristallstruktur des Maus P-gp aufgeklärt und schafft somit neue 

Möglichkeiten für strukturbasiertes Wirkstoffdesign. Die hohe Sequenzidentität zwischen 

Ratte und Maus (92%) und die Bedeutung von Ratten in ADME Tiermodellen motivierte uns 

ein Homologie Modell der Ratte zu entwickeln, als dessen Vorlage die Kristallstruktur des 

Maus P-gp herangezogen wurde. Ein multiples Sequenzalignment wurde mit ClustalW2 

durchgeführt und das resultierende Alignement wurde für die Modellberechnung mit 

MODELLER eingesetzt.  

 

Anschließend wurden 6 P-gp Inhibitoren der Ratte  mit bekannten IC50 Werten mit Hilfe der 

Docking Software GOLD in das Ratten Homologie Modell gedockt. Die Analyse der Docking 

Posen zeigte häufige Interaktionen zwischen den Aminosäuren F70 (TM Helix 1) und F335 

(TM Helix 6). Auch Aminosäure T306 war an Interaktionen beteiligt, dessen humanes 

Analogon T307 (experimentell) nachweislich bei Ligandeninteraktionen von Bedeutung ist. 

Die Vorhersagekraft des Modells konnte durch Vergleich der Ranking Ergebnisse, die mit 

Hilfe von GOLDScore berechnet wurden, mit den experimentell getesteten Aktivitäten 

validiert werden: das Docken war in der Lage alle außer einer experimentell getesteten 

Verbindungen richtig zuzuordnen (nur Nummer 3 und 4 waren vertauscht).  
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I. Introduction 
 

 

A. Drug Development 
 

The drug development process takes about 10-15 years to develop a new drug from the 

discovery until the chance of treating patients. The costs of research and development of each 

successful drug are in average approximately 800 million to 1 billion U.S. dollars. The 

failures are included in that amount: for every 5000-10000 compounds which enter the 

research and development pipeline in the end only one is approved [Figure 1] [1-4]. 

 

 
Figure 1 – Depiction of the drug development process, figure taken from [3]. 
 

 

Identify Disease 

Before starting the discovery of a new potential drug, the focus lies on understanding the 

underlying disease and the cause of the condition for finding the best possible treatment. It is 

of great importance to understand how the genes are altered, how that affects the proteins they 

encode and how those proteins interact with each other in living cells, how those affected 
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cells change the specific tissue they are in, and finally how the disease affects the entire 

patient. This knowledge is the fundament for an accurate treatment of the disease. 

However, the research and the development of new drugs often end in nowhere. Even if your 

research is successful there are still many years of work and possible dead ends ahead before 

the understanding of a disease can be turned into a new treatment.  

 

Target Identification 

The next step after understanding the disease and its cause is to choose the target for a 

potential new drug. A target most often is a single macromolecule, e.g. a gene or protein, 

which plays a role in the explored disease. At this point of research it plays an important role 

to select such a target that is able to interact and to be modified by a new drug molecule 

(drugable target).  

 

Target Validation 

Once a potential target is chosen it has to be shown that it is involved in the disease and can 

be accessed and also affected by a drug. This step of research is essential to avoid promising 

looking drug candidates to finish in dead ends.  

 

Drug Discovery 

After having understood the disease and having found a validated target the search for a drug 

starts. The focus lies on a molecule, which can also be called “lead compound” that is able to 

interact with the target in a way to modify the course of the disease. If this search turns out to 

be successful in many years and after a lot of testing the lead compound could become a new 

drug.  

There are different ways to determine the lead compound: 

1. From nature: In former times there were no high tech methods to find new compounds 

in the way we discover them today. In the lack of these techniques nature very often 

delivered templates for new drugs, e.g. antibiotics. There are surely still a lot more 

drugs we can copy from nature. 

2. De novo: The big progress in natural sciences makes it today even possible to design 

molecules from scratch. Computer modeling can be used to find out what kinds of 

molecules could have an effect on the target.  

3. High-throughput Screening: This method is mostly used to discover hits which then 

might evolve to lead compounds. A hit is generated by a yes or no question; a lead is a 
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hit which is selected for further studies. The progress in robotics and computational 

power allows testing billions of compounds against the target to check whether any 

compound could be active. After the evaluation of the results some of the tested 

compounds are chosen for further studies.  

4. Biotechnology: Another possibility to find new lead compounds is to genetically 

design living cells which produce disease-fighting biological molecules.  

 

Early Safety Profiling 

Lead compounds are tested with numerous tests to evaluate in an early stage of drug 

development the safety of the possible new drug. Absorption, Distribution, Metabolism, 

Excretion (ADME) and toxicological parameters, in short pharmacokinetics, are evaluated for 

each compound. 

Drugs have to be: 

• absorbed into the blood, 

• distributed to the proper organ, 

• metabolized efficiently and effectively, 

• successfully excreted from the body and 

• shown to be not toxic. 

Pharmacokinetic tests can be performed in living cells or in animals (preferably mouse or rat)  

 

Lead Optimization 

After the screening and the first safety tests lead compounds are modified in different ways to 

find more effective and safer derivatives. Various properties can be changed in the molecule 

to make it more hydrophilic, lipophilic, acidic, basic, etc. The newly generated derivatives are 

tested and out of the test results further changes can be done to step by step develop molecules 

with even better properties. In the end a potential drug candidate is received.  

Already at this point of the drug development the formulation, the delivery mechanism and 

the large-scale production of the new drug should be thought of.  

What kind of inactive substances could be possibly used? 

How should the new drug be assembled to dissolve at the right place and time? 

Is it going to be an oral drug, an injection, an inhalation, etc.? 

Is it possible to produce the new drug in large quantities? 

All these questions should already be answered at this point of the development. 
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Pre-clinical Tests 

In pre-clinical tests the one or more optimized lead compounds are tested more extensively to 

establish whether the drugs are safe to be tested in humans. For this purpose in vitro and in 

vivo tests are performed. In vitro is Latin and means “in glass”. As the name already indicates 

the experiments are performed in test tubes, Petri dishes or beakers. The expression in vivo is 

as well Latin and has the meaning “in life”. The in vivo tests are carried out in living animals. 

The purpose of these experiments is to interpret the mode of action of the drug and its safety. 

To acquire the approval for studies in humans the requirements to a drug candidate are 

extremely high.  

In this phase it is necessary to give again the technological aspects some thoughts as well. The 

production of a larger quantity of the drug for a possible upcoming clinical trial needs to be 

planned precisely. The translation from a smaller to a larger production is not that easily 

performed. If the drug would be approved even another scale up would become necessary.  

At this point already several years have passed and a lot of different studies have been 

performed.  From the originally 5000 to 10000 compounds only one to five molecules are left 

in the development process. Next they are going to be tested in clinical trials. 

 

IND Application 

In US, an Investigational New Drug (IND) application has to be submitted to the United 

States Food and Drug Administration (FDA) before any clinical trial can be started. The 

contents of the application is supposed to contain the results of the preclinical studies, the 

candidate drug’s chemical structure, its mode of action in the body, a list of side effects and 

manufacturing information. Further a detailed plan of the clinical trial explaining how, where 

and by whom the studies will be carried out must be included.  

The major concern of the FDA is the health of the participants of the clinical trial. All 

possible risks have to be ruled out in advance.  

The trial is observed continuously and can be stopped by the FDA or the sponsor company at 

any time if problems occur. In contrast, it is as well possible to stop a trial and put the 

compound immediately to the market, because the drug is acting so well that it would be 

unethical to hold it back from other patients.  

During the ongoing clinical trial the sponsor company is obliged to report regularly to the 

FDA.  
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Clinical Phase I 

In Phase I the drug candidate is tested in healthy volunteers for the first time. Usually 20 to 

100 patients are chosen for this purpose. The focus of the Phase I trial lies on finding out 

whether the drug candidate is safe in humans or not.  

The following questions concerning pharmacokinetics and pharmacodynamics are of interest: 

• How is the drug absorbed, metabolized and eliminated from the body? 

• Are there any side effects? 

• Do we experience all main desirable effects? 

With the help of the answers to these questions it can be determined if the drug candidate 

should be further developed and if yes, what dosing range is safe.  

 

Clinical Phase II 

In the Phase II trial the drug’s effectiveness is tested in around 100 to 500 patients. The 

volunteers suffer from the studied disease. In this phase of the study the short term side effects 

and risks of the drug candidate are tested.  

Further interest in the Phase II lies in the following tasks: 

Is the working mechanism the expected one? 

Does the condition improve? 

What dosage and schedule for drug use is optimal? 

If after all the results still look promising, the much larger Phase III trial needs to be prepared. 

 

Clinical Phase III 

In Phase III the focus lies on generating statistically significant data about safety, efficacy and 

the overall benefit-risk-relationship of the drug. Therefore a much higher number of patients 

is needed (around 1000 to 5000). The most important aspect of this phase is the determination 

if the drug is safe and effective. Additionally the basis for labeling instructions, like 

information on interactions with other medicines, is provided to ensure the right use of the 

drug.  

The Phase III trial is the most expensive and longest phase of all. Numerous different sites 

around the world usually participate in Phase III to ensure a large transverse profile of 

different patients. The management of all sites and the interpretation of their results and data 

is a huge challenge. 

Throughout the Phase III trial other serious issues should be resolved as well. The full scale 

production of the new drug is a critical step and requires to be planned in every detail. 
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However before this can become reality a sophisticated application for FDA approval ought to 

be prepared.  

 

FDA Approval 

As soon as all 3 phases are finished the data is evaluated by the sponsoring company. If the 

data again confirm that the new drug is safe and effective the company submits a New Drug 

Application (NDA) which may consist of 100.000 pages. The FDA has to decide if the drug 

can be approved to the market. The NDA contains all results from the previous years and 

suggestions for manufacturing and labeling of the new drug.  

The application is reviewed by FDA experts who have to decide if the drug is safe and 

effective enough to be approved. Therefore the risk-benefit-ratio is consulted, the package 

insert is checked for every needed information and the methods to produce the drug have to 

guarantee its quality. When all these aspects are positive the FDA approves the drug. In 

contrast, the FDA might request more information before an approval can be given or deny 

the approval right away.  

 

Manufacturing 

The step from small scale to large scale manufacturing is a major undertaking. In many cases 

new manufacturing facilities must be built or old ones reconstructed because the 

manufacturing process varies from drug to drug. The FDA requires from each facility to 

follow the guidelines for Good Manufacturing Practices (GMP).  

 

Ongoing Studies and Phase 4 Trials 

Even after the approval the research on a new drug doesn’t stop. With the larger number of 

patients taking the drug the company is obliged to submit reports regularly, as well as cases of 

adverse drug reactions to the FDA.  

Additionally sometimes further studies are required by the FDA even on an already approved 

drug. They are called Phase IV trials. The purpose of these studies can be the evaluation of 

long term safety or the affects of the drug on a specific subgroup of patients [1-4] [Figure 2].  
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Figure 2 – Scheme of the pharmaceutical research and development process, Figure taken from [3]. 
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B. Biological and Pharmacological 

Background 
 

1. P-glycoprotein 
P-glycoprotein (P-gp) [Figure 3] is a protein in the cell membrane of eukaryotes and 

prokaryotes. P-gp is able to transport a wide variety of substrates against a concentration 

gradient out of the cell using adenosine triphosphate (ATP) as energy supplier which is bound 

and hydrolyzed at the P-gps nucleotide binding domain (NBD). The ATP-dependant efflux 

pump is extensively expressed in the intestinal epithelium, hepatocytes, renal proximal tubular 

cells, adrenal gland, capillary endothelial cells and blood brain barrier.  

 

Figure 3 – Crystallographic structure of the mouse mdr3 protein. 

P-gp belongs to the ABC-transporter family and further to the Multidrug-Resistance-Protein 

subfamily. Therefore it is also called ATP-binding cassette sub-family B member 1 (ABCB1) 

or Multidrug-Resistance-Protein 1 (MDR1).  
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ABC-transporters form a large group of transmembrane proteins that all have an ATP binding 

cassette (ABC) domain in common. They can be divided into three main functional groups: 

importers, exporters and proteins involved in gene expression regulation and DNA repair [5]. 

In prokaryotes importers are responsible for the mediation of nutrients into the cell. They do 

not exist in eukaryotes. Exporters are present in prokaryotes as well as in eukaryotes and 

mediate the efflux of xenobiotic compounds. 

The human genome carries 49 ABC genes, set in seven subfamilies and named A to G [6] as 

shown in Table 1 and Figure 4. ABC-transporters are involved in a large variety of 

physiological processes, consequently they play a role in numerous diseases, e.g. tumor 

resistance, cystic fibrosis, bacterial multidrug resistance and other inherited human diseases as 

well.  

 

Table 1 - Human ABC transporter genes, chromosomal location, number of exons and their functions 
[6] 

Gene 
Chromosome 
location Exons Function 

ABCA1 9q31.1 36 Cholesterol efflux onto HDL 

ABCA2 9q34 27 Drug resistance 

ABCA3 16p13.3 26 Multidrug resistance 

ABCA4 1p22 38 N-retinylidene-phosphatidylethanolamine(PE) efflux 

ABCA5 17q24.3 31 Urinary diagnostic marker for prostatic 
intraepithelial neoplasia (PIN) 

ABCA6 17q24.3 35 Multidrug resistance 

ABCA7 19p13.3 31 Cholesterol efflux 

ABCA8 17q24 31 Transports certain lipophilic drugs 

ABCA9 17q24.2 31 
Might play a role in monocyte differentiation 
and macrophage lipid homeostasis 

ABCA10 17q24 27 Cholesterol-responsive gene 

ABCA12 2q34 37 Has implications for prenatal diagnosis 

ABCA13 7p12.3 36 Inherited disorder affecting the pancreas 

ABCB1 7q21.1 20 Multidrug resistance 

ABCB2 6p21.3 11 Peptide transport 

ABCB3 6p21.3 11 Peptide transport 
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Gene 
Chromosome 
location Exons Function 

ABCB4 7q21.1 25 Phosphatidylcholine (PC) transport 

ABCB5 7p15.3 17 Melanogenesis 

ABCB6 2q36 19 Iron transport 

ABCB7 Xq12-q13 14 Fe/S cluster transport 

ABCB8 7q36 15 Intracellular peptide trafficking across membranes 

ABCB9 12q24 12 Located in lysosomes 

ABCB10 1q42.13 13 Export of peptides derived from proteolysis  
of inner-membrane proteins 

ABCB11 2q24 26 Bile salt transport 

ABCC1 16p13.1 31 Drug resistance 

ABCC2 10q24 26 Organic anion efflux 

ABCC3 17q22 19 Drug resistance 

ABCC4 13q32 19 Nucleoside transport 

ABCC5 3q27 25 Nucleoside transport 

ABCC6 16p13.1 28 Expressed primarily in liver and kidney 

ABCC7 7q31.2 23 
Chloride ion channel (same as CFTR gene  
in cystic fibrosis) 

ABCC8 11p15.1 30 Sulfonylurea receptor 

ABCC9 12p12.1 32 
Encodes the regulatory SUR2A subunit  
of the cardiac K+(ATP) channel 

ABCC10 6p21.1 19 Multidrug resistance 

ABCC11 16q12.1 25 Drug resistance in breast cancer 

ABCC12 16q12.1 25 Multidrug resistance 

ABCC13 21q11.2 6 Encodes a polypeptide of unknown function 

ABCD1 Xq28 9 Very-long-chain fatty acid (VLCFA) transport 

ABCD2 12q11–q12 10 
Major modifier locus for clinical diversity  
in X-linked ALD (X-ALD) 

ABCD3 1p22–p21 16 
Involved in import of fatty acids and/or  
fatty acyl-coenzyme As into the peroxisome 

ABCD4 14q24 19 May modify the ALD phenotype 

ABCE1 4q31 14 Oligoadenylate-binding protein 

ABCF1 6p21.33 19 Susceptibility to autoimmune pancreatitis 
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Gene 
Chromosome 
location Exons Function 

ABCF2 7q36 14 
Tumour suppression at metastatic sites and  
in endocrine pathway for breast cancer/drug 
resistance 

ABCF3 3q27.1 21 Also present in promastigotes (one of five forms  
in the life cycle of trypanosomes) 

ABCG1 21q22.3 13 Cholesterol transport 

ABCG2 4q22 16 Toxicant efflux, drug resistance 

ABCG4 11q23.3 15 Found in macrophage, eye, brain and spleen 

ABCG5 2p21 11 Sterol transport 

ABCG8 2p21 10 Sterol transport 

 



 

 

16 Introduction 

 

Figure 4 – Schematic depiction of the transmembrane domains of ABC subfamilies A to G. 
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In 2009 the mouse P-gp crystal structure was published by Aller et al. [7] revealing up to now 

not known insights: P-gp is comprised of two transmembrane domains (TMDs) and two 

nucleotide binding domains (NBDs) spanning ~136Å perpendicular to and ~70Å in the plane 

of the bilayer. The distance between the NBDs averages ~30Å. The NBD is situated in the 

cytoplasm and responsible for binding and hydrolyzing ATP to provide the energy for the 

efflux process. The TMD consists of two bundles of six alpha helices reaching throughout the 

membrane bilayer: TMs 1 to 3, 6, 10, 11 and TMs 4, 5, 7 to 9, 12. P-gp binds a wide range of 

substrates in this region and changes its conformation to pump substances out of the cell. The 

binding pocket is mostly formed by hydrophobic and aromatic residues. It offers a lot of space 

(internal cavity within the lipid bilayer is ~6000Å3) as it is six times bigger than that of BmrR 

(transcription regulator from Bacillus subtilis) accommodating inter alia lipids, sterols, 

peptides and metabolic products [7] [Figure 5].   

 

Figure 5 – Front and back view of P-gp, Figure taken from [7]. 
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Genes encoding the P-gp are divided into 2 classes in humans (MDR1 and MDR3/MDR2) 

and 3 members in mice (mdr3/mdr1a, mdr1/mdr1b and mdr2) and rats (pgp1, pgp2/mdr1b and 

pgp3) [8] as shown in Table 2. 

Table 2 - Classification of P-gp isoforms [8] 

Species Class I Class II Class III 

Human MDR1 
 

MDR3/MDR2 

Mouse mdr3/mdr1a mdr1/mdr1b mdr2 

Rat pgp1 pgp2/mdr1b pgp3 

 

The sequence conservation of the P-gp gene family across species is very high. Class III is 

more than 90% identical between mice, hamsters and humans. In humans classes I and III are 

75% identical. In mice the highest levels of mdr1 (class II) are described in pregnant uterus, 

adrenals, placenta and kidney, while mdr2 (class III) is mostly expressed in the liver and 

muscle and mdr3 (class I) is frequently detected in the intestine and lung. Moreover, the 

profile of mdr gene expression is conserved across species: human MDR1 (class I) expression 

is overlapping with that of mouse mdr1 and mdr3 and human MDR3 (class III) expression is 

overlapping with mouse mdr2. In rats mdr2 (class III) is highly expressed in the liver, muscle, 

heart and spleen and at lower levels in the lung and brain, whereas mdr1b (class II) is 

frequently detected in the lung and rarely in the liver, kidney, small intestine and spleen[8].  

As mentioned before P-gp is a member of the MDR subfamily and therefore plays a role in 

multidrug resistance. The protein encoded by the MDR gene effluxes xenobiotic compounds 

with broad substrate specificity and as a result decreases drug accumulation in multidrug-

resistant cells. The over expression of P-gp is one reason for the resistance of tumor cells to 

multiple chemotherapeutic drugs [Figure 6]. 
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Figure 6 – An illustration of how multidrug resistance inhibitors (MDRIs) can block the P-gp of 
resistant tumor cells, Figure taken from  [9]. 
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C. Computational Background 

1. Molecular Modeling  
All theoretical methods and computational techniques used to model or mimic the behavior of 

molecules are covered by molecular modeling. The techniques are exploited in the fields of 

computational chemistry, computational biology and materials science for exploring 

molecular systems ranging from small chemical systems to large biological molecules and 

material assemblies. The simplest calculations can be executed by hand, but unavoidably 

computers are required to perform molecular modeling of any reasonably sized system. The 

atomistic level description of the molecular systems can be seen as the common feature of 

molecular modeling techniques; individual atoms are the lowest level of information. The 

advantage of molecular modeling is the reduction of the complexity of the system that allows 

considering more atoms during calculations. 

2. Sequence Alignment 
In bioinformatics the sequence alignment is a most widely used tool to analyze DNA, RNA or 

protein similarity. It is routinely a part of more complicated analysis pipelines, like homology 

modeling (see page 25). Alignments are important for highlighting areas of similarity which 

may be associated with specific features that have been more highly conserved than other 

regions [10]. Two methods are known to carry out an alignment: pair wise sequence 

alignment and multiple sequence alignment. The pair wise sequence alignment is used to 

identify regions of similarity that may indicate functional, structural and/or evolutionary 

relationships between two biological sequences. By contrast, the multiple sequence alignment 

aligns three or more biological sequences of similar length. Multiple sequence alignment is an 

important step for phylogenetic analysis, which intends to model the substitutions that have 

happened over evolution and obtain the evolutionary relationships between sequences. 

Several packages are available, e.g. ClustalW, ClustalX, T-Coffee, MAFFT and MUSCLE 

[11].  

a. ClustalW 
ClustalW is a tool to align three or more sequences together in a computationally efficient 

manner. ClustalW multiple sequence alignment is offered for free. The web form [Figure 7] 

is available at http://www.ebi.ac.uk/Tools/msa/clustalw2/.  

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 7 – Depiction of ClustalW web input form, Figure taken from [10]. 

There exist two ways to utilize the service at EBI: interactively or by e-Mail. The interactive 

way displays the results in the browser window. When the e-Mail option is chosen a link to 

the results will be sent by mail. The program accepts nucleic acid or protein sequences in the 

following multiple sequence input format: 

• NBRF/PIR 

• EMBL/UniProt 

• Pearson (FASTA) 

• GDE 
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• ALN/ClustalW 

• GCG/MSF 

• RSF 

For the alignment the sequences can either be pasted into the web form or uploaded to the 

web form in a file. It is very important that each of the sequences has a unique name. If they 

do not, the program will fail. Other reasons for failure are empty lines, white spaces or control 

characters between sequences or at the top of the file. The input for ClustalW is limited to a 

maximum of 500 sequences or to a 1MB file. When the input file or number of sequences is 

too large ClustalW can run for days and in some cases may not finish at all. For larger 

amounts of data the e-Mail results option should be used. The alignment method can be set to 

slow but accurate, or fast but approximate. ClustalW produces several outputs depending on 

the selected options when submitting the job. The output format for the alignment file can be 

as follows: 

• ALN/ClustalW with base/residue numbering 

• ALN/ClustalW without base/residue numbering 

• GCG MSF 

• PHYLIP 

• NEXUS 

• NBRF/PIR 

• GDE 

• Pearson/FASTA 

By default the main output is the alignment file [Figure 8]. Other outputs can be downloaded 

in the results summary tab. The ClustalW output contains a Scores Table that shows the pair 

wise scores calculated for every pair of sequences that is to be aligned. Pair wise scores are 

the number of identities between the two sequences, divided by the length of the alignment, 

and represented as a percentage. This alignment is only a forerunner to the full multiple 

alignment [10]. 
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Figure 8 – A sequence alignment of two human zinc finger proteins, calculated by ClustalW and 
identified on the left by Gen Bank accession number. An * (asterisk) indicates positions which have a 
single, fully conserved residue. A : (colon) indicates conservation between groups of strongly similar 
properties (same color group). A . (period) indicates conservation between groups of weakly similar 
properties (similar shapes), edited from  [10]. 

The residue colors according to their physicochemical properties: 

Residue Color Property 
AVFPMILW RED Small (small+ hydrophobic (incl.aromatic -Y)) 
DE BLUE Acidic 
RK MAGENTA Basic - H 
STYHCNGQ GREEN Hydroxyl + sulfhydryl + amine + G 
Others Grey Unusual amino/imino acids etc 
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3. Homology Modeling 
 

 

Figure 9 – Basic concept of Homology Modeling. For an unknown target structure with a known 
protein target sequence a homologous structural resolved protein is searched via sequence alignment. 
This protein is then served as a structural template for the target sequence, Figure taken from [12]. 

 

With the techniques’ development in molecular biology rapid identification, isolation and 

sequencing of genes became possible and enabled to infer the sequences of many proteins. A 

major goal of structural biology is the prediction of the three-dimensional structure from the 

sequence. Unfortunately this aim hasn’t been reached until now. Nevertheless, alternative 

strategies allow developing models of protein structure when the X-ray or NMR structure is 

not available.  

One method to calculate reasonable models of protein structures is homology modeling. This 

approach uses a “target” protein from its amino acid sequence and an experimental three-

dimensional structure of a related homologous “template” protein for model building [Figure 

9]. Homology modeling is based on the identification of one or more known protein structures 

resembling the structure of the query sequence and on the calculation of an alignment 

mapping residues in the query sequence to residues in the template sequence [Figure 10].  
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Figure 10 – Scheme of Homology modeling in more detail, Figure taken from [13]. 

1. Search for homologous sequences 
2. Search for homologous sequences with known 3D structure 
3. Cleaning the PDB files for the subsequent steps 
4. Determine sequence alignments between target and templates  
5. Finally building the structural models based on aligned sequence and structural template 

 

The sequence alignment and template structure are responsible for the quality of the 

homology model. Alignment gaps complicate the calculation and decrease the quality because 

they indicate that a structural region is present in the target but not in the template. 
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Accordingly model quality declines with decreasing sequence identity: high-accuracy 

comparative models are based on more than 50% sequence identity to their templates, 

medium-accuracy models on 30-50% identity and finally low-accuracy models on less than 

30% sequence identity [14].  

a. Modeller 
Modeller is a computer program that calculates three-dimensional structures of proteins and 

their assemblies by satisfaction of spatial restraints. It is most commonly utilized for 

homology or comparative protein structure modeling. The program works with a scripting 

language and does not include any graphics. It will run on Windows, Mac or UNIX. For the 

calculation an alignment of an amino acid sequence that has to be modeled and a known 

related structure is needed [Figure 11]. 

 

 

>P1;3g5u_pajeva.pdb 
structureX:3g5u_pajeva.pdb:   33:B : 1271 :B :::3.80:0.347 
VSVLTMFRYAGWLDRLYML 
VGTLAAIIHGVALPLMMLIFGDMTDSFASVGN--VSKNSTNMSEADKRAM 
FAK--LEEEMTTYAYYYTGIGAGVLIVAYIQVSFWCLAAGRQIHKIRQKF 
FHAIMNQEIGWFDVHDVGELNTRLTDDVSKINEGIGDKIGMFFQAMATFF 
GGFIIGFTRGWKLTLVILAISPVLGLSAGIWAKILSSFTDKELHAYAKAG 
AVAEEVLAAIRTVIAFGGQKKELERYNNNLEEAKRLGIKKAITANISMGA 
AFLLIYASYALAFWYGTSLVISKEYSIGQVLTVFFSVLIGAFSVGQASPN 
IEAFANARGAAYEVFKIIDNKPSIDSFSKSGHKPDNIQGNLEFKNIHFSY 
PSRKEVQILKGLNLKVKSGQTVALVGNSGCGKSTTVQLMQRLYDPLDGMV 
SIDGQDIRTINVRYLREIIGVVSQEPVLFATTIAENIRYGREDVTMDEIE 
KAVKEANAYDFIMKLPHQFDTLVGERGAQLSGGQKQRIAIARALVRNPKI 
LLLDEATSALDTESEAVVQAALDKAREGRTTIVIAHRLSTVRNADVIAGF 
DGGVIVEQGNHDELMREKGIYFKLVMTQT 
LDEDVPPASFWRILK 
LNSTEWPYFVVGIFCAIINGGLQPAFSVIFSKVVGVFTNGGPPETQRQNS 
NLFSLLFLILGIISFITFFLQGFTFGKAGEILTKRLRYMVFKSMLRQDVS 
WFDDPKNTTGALTTRLANDAAQVKGATGSRLAVIFQNIANLGTGIIIS-- 
LIYGWQLTLLLLAIVPIIAIAGVVEMKMLSGQALKDKKELEGSGKIATEA 
IENFRTVVSLTREQKFETMYAQSLQIPYRNAMKKAHVFGITFSFTQAMMY 
FSYAAAFRFGAYLVTQQLMTFENVLLVFSAIVFGAMAVGQVSSFAPDYAK 
ATVSASHIIRIIEKTPEIDSYSTQGLKPNMLEGNVQFSGVVFNYPTRPSI 
PVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYDPMAGSVFLDGKE 
IKQLNVQWLRAQLGIVSQEPILFDCSIAENIAYGDNSRVVSYEEIVRAAK 
EANIHQFIDSLPDKYNTRVGDKGTQLSGGQKQRIAIARALVRQPHILLLD 
EATSALDTESEKVVQEALDKAREGRTCIVIAHRLSTIQNADLIVVIQNGK 
VKEHGTHQQLLAQKGIYFSMVSVQA--- 
* 
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>P1;MDR1_RAT 
sequence:MDR1_RAT:    : :    : :::: 
VGIFGMFRYADWLDKLCMA 
LGTLAAIIHGTLLPLLMLVFGYMTDSFTPSRDPHSDRAITNQSEINSTHT 
VSDTSLEEDMAMYAYYYTGIGAGVLIVAYIQVSLWCLAAGRQIHKIRQKF 
FHAIMNQEIGWFDVNDAGELNTRLTDDVSKINDGIGDKLGMFFQSITTFS 
AGFIIGFISGWKLTLVILAVSPLIGLSSAMWAKVLTSFTNKELQAYAKAG 
AVAEEVLAAIRTVIAFGGQKKELERYNKNLEEAKRVGIKKAITANISIGI 
AYLLVYASYALAFWYGTSLVLSNEYSIGQVLTVFFSILLGTFSIGHLAPN 
IEAFANARGAAYEIFKIIDNEPSIDSFSTKGHKPDSIMGNLEFKNVYFNY 
PSRSEVKILKGLNLKVKSGQTVALVGNSGCGKSTTVQLLQRLYDPIEGEV 
SIDGQDIRTINVRYLREIIGVVSQEPVLFATTIAENIRYGRENVTMDEIE 
KAVKEANAYDFIMKLPHKFDTLVGERGAQLSGGQKQRIAIARALVRNPKI 
LLLDEATSALDTESEAVVQAALDKAREGRTTIVIAHRLSTVRNADVIAGF 
DGGVIVEQGNHEELMKEKGIYFKLVMTQT/ 
VDEDVPMVSFWQILK 
LNISEWPYLVVGVLCAVINGCIQPVFAIVFSKIVGVFSRDDDHETKQRNC 
NLFSLLFLVMGMISFVTYFFQGFTFGKAGEILTKRLRYMVFKSMLRQDIS 
WFDDHKNTTGSLTTRLASDASNVKGAMGSRLAVVTQNVANLGTGIILSLV 
LVYGWQLTLLLVVIIPLIVLGGIIEMKLLSGQALKDKKELEISGKIATEA 
IENFRTVVSLTREQKFETMYAQSLQIPYRNALKKAHVFGITFAFTQAMIY 
FSYAACFRFGAYLVARELMTFENVMLVFSAVVFGAMAAGNTSSFAPDYAK 
AKVSASHIIGIIEKIPEIDSYSTEGLKPNWLEGNVKFNGVKFNYPTRPNI 
PVLQGLSFEVKKGQTLRLVGSSGCGKSTVVQLLERFYNPMAGTVFLDGKE 
IKQLNVQCVRA-LGIVSQEPILFDCSIAENIAYGDNSRVVSHEEIVRAAR 
EANIHQFIDSLPEKYNTRVGDKGTQLSGGQKQRIAIARALVRQPHILLLD 
EATSALDTESEKVVQEALDKAREGRTCVVIAHRLSTIQNADLIVVIQNGQ 
VKEHGTHQQLLAQKGIYFSMVQAGAKRS 
* 

Figure 11 – Depiction of an aligned sequence in pir format. The template sequence (PDB entry 
3G5U) is given in the first part. The second part shows the alignment of the template sequence 
(MDR1_RAT). The * symbols sign the end of each sequence.  

 

With the command “mod9.10 model-default.py” Modeller automatically calculates a model 

with all non-hydrogen atoms.  

“First many distance and dihedral angle restraints on the target sequence are calculated from 

its alignment with template 3D structures. The form of these restraints was obtained from a 

statistical analysis of the relationships between many pairs of homologous structures. This 

analysis relied on a database of 105 family alignments that included 416 proteins with known 

3D structure. By scanning the database, tables quantifying various correlations were obtained, 

such as the correlations between two equivalent Cα-Cα distances or between equivalent main 

chain dihedral angles from two related proteins. These relationships were expressed as 

conditional probability density functions (pdf) and can be used directly as spatial restraints. 
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Next, the spatial restraints and CHARMM energy terms enforcing proper stereochemistry are 

combined into and objective function. Finally, the model is obtained by optimizing the 

objective function in Cartesian space. The optimization is carried out by the use of the 

variable target function method employing methods of conjugate gradients and molecular 

dynamics with simulated annealing. Several slightly different models can be calculated by 

varying the initial structure. The variability among these models can be used to estimate the 

errors in the corresponding regions of the fold [15] [Figure 12].”  

 

Figure 12 – Scheme of building a homology model within MODELLER. 1. The known template 3D 
structure is aligned with the target sequence to be modeled. 2. Spatial features, as Cα-Cα distances, 
hydrogen bonds and main chain/side chain dihedral angles are extracted from the template and 
transferred to the target. 3. The 3D model is obtained by satisfying all the restraints as good as 
possible, taken from [15]. 

 

For evaluation Modeller offers the molecular PDF (molpdf), which is the sum of all restraints, 

the GA-341 score, which assesses the overall fold quality and the “discrete optimized energy” 
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score (DOPE). The molpdf and DOPE score are not absolute measures therefore they can only 

be utilized to rank models. Molpdf is specific for a set of restraints and DOPE for a target 

sequence. The molpdf and the DOPE score should be as low as possible and the GA341 score 

ranges from 0 (worst) to 1 (native like). However, the GA341 score is not as good as the 

DOPE score at distinguishing well from bad models [15].  

Additionally, Modeller is able to perform multiple comparisons of protein sequences or 

structures, clustering of proteins and searching of sequence databases.  

 

4. Docking 
Docking calculations have been used in pharmaceutical research for nearly two decades. 

Virtual screening on protein templates, which varies from molecular similarity- and ligand-

based virtual screening methods, offers an opportunity for the de novo identification of active 

compounds, without favoritism towards known hits or leads. 

In the field of molecular modeling, docking appears as a computational simulation which 

foresees the preferred orientation of a molecule to a second one when bound to each other 

[16]. More precisely the docking process involves the prediction of ligand conformation and 

orientation within a targeted binding site and the prediction of the binding affinity [17].  

Most of the computer studies on molecular docking assume one of the docking partners to be 

a protein, also called “receptor” or “receiving molecule”. On the other hand there is the 

complementary partner molecule which binds to the receptor, named “ligand”. During the 

first step posing samples the ligands’ translational, rotational and conformational degrees of 

freedom within the active site (see a, page 31). After this calculation, different poses or 

binding modes can be evaluated with the scoring function (see b, page 32), which counts the 

number of favorable intermolecular interactions such as hydrogen bonds and hydrophobic 

contacts. In the end the ranking classifies which ligands most likely interact favorably with a 

particular receptor based on the assigned scoring values.  

The problem with molecular docking can be seen as a “lock and key” issue. In this case the 

protein is represented by the “lock” and the ligand by a “key”. During the docking calculation 

the protein and the ligand alter their conformation to achieve the “best fit” orientation, also 

known as “induced fit”. 
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a. Posing 
In this initial step searching algorithms sample ligand orientations within the binding site. 

Most docking programs consider the protein as rigid and ligand flexibility is treated mainly by 

three categories [17]: 

1. Simulation methods (molecular dynamics, energy minimization) 

2. Random or stochastic methods (Monte Carlo, genetic algorithms, tabu search) 

3. Systematic methods (incremental construction, conformational search, databases) 

1. Simulation methods are implemented in the following software packages 

• DOCK 

• Glide 

• MOE-Dock 

• AutoDock 

• Hammerhead 

2. Random or stochastic methods are implemented in the following software packages 

• AutoDock (MC) 

• MOE-Dock (MC,TS) 

• GOLD (GA) 

• PRO_LEADS (TS) 

3. Systematic methods are implemented in the following software packages 

• DOCK (incremental) 

• FlexX (incremental) 

• Glide (incremental) 

• Hammerhead (incremental) 

• FLOG (database) 

 

The handling of protein flexibility is less advanced than that of ligand flexibility, but various 

approaches have been utilized to flexibly calculate at least part of the target, including 

molecular dynamics and Monte Carlo calculations, rotamer libraries and protein ensemble 

grids [17].  
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b. Scoring 
After the posing the fit complementarity of the generated ligand-receptor complexes is 

evaluated by a scoring function. This function attempts to estimate the binding free energy of 

the complex with computational algorithms which sums up calculated ligand-receptor 

interactions. Scoring functions implemented in docking programs make various assumptions 

and simplifications in the evaluation of modeled complexes and do not fully account for a 

number of physical phenomena that determine molecular recognition, e.g. entropic effects. 

Basically three different types of scoring functions can be distinguished [17]: 

Types of scoring functions: 

1. Force-field-based 

• D-Score 

• G-Score 

• GOLD 

• AutoDock 

• DOCK 

2. Empirical 

• LUDI 

• F-Score 

• ChemScore 

• SCORE 

• Fresno 

• X-Score 

3. Knowledge-based 

• PMF 

• DrugScore 

• SMoG 

c. GOLD 
GOLD is a program which calculates the docking modes of small molecules in protein 

binding sites. It is offered as a part of the program GOLD Suite, also containing Hermes for 

structure visualization and manipulation, and GOLDMine for post-processing of docking 

results. As mentioned on page 31 GOLD uses a genetic algorithm (GA) for protein-ligand 

docking. A GA is a computer program that imitates the process of evolution [18]. “It sets up a 
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population of potential solutions at random. Each member of the population is encoded as a 

chromosome, which contains information about the mapping of protein ligand interactions. 

Every chromosome is assigned a fitness score based on its predicted binding affinity and the 

chromosomes within the population are ranked according to fitness [19].”  

The ligand can be kept fully flexible, the protein partially flexible or it is possible to dock into 

multiple models of the same or different proteins. GOLD accepts mol2, mol and pdb as ligand 

input files and pdb and mol2 as protein file formats. The docking run can be launched with 

the help of the set-up wizard via Hermes. Before the calculation can be started the following 

preparations have to be done: 

• GA speed settings 

• loading the protein target 

• specifying the binding site 

• uploading the ligand(s) 

• selecting the number of dockings and early termination allowance 

• choosing the fitness function 

GOLD provides three different scoring functions: GOLDScore, ChemScore and ASP. All of 

them calculate fitness scores that are dimensionless. The score illustrates how good the pose 

is; the higher the score, the better the docking result. The GOLDScore fitness function is the 

original scoring function offered with GOLD and is the one selected by default. It has been 

developed for the prediction of ligand binding positions and takes into consideration factors 

such as H-bonding energy, van der Waals energy and ligand torsion strain [19].  

GOLD Fitness = Shb_ext + Svdw_ext + Shb_int + Svdw_int 

Shb_ext: protein-ligand hydrogen-bond score 

Svdw_ext: protein-ligand van der Waals score 

Shb_int: contribution to the Fitness due to intramolecular hydrogen bonds in the ligand 

Svdw_int: contribution due to intramolecular strain in the ligand [20] 

The ChemScore fitness function assesses the total free energy change that occurs on ligand 
binding and was trained by regression against binding affinity data. The ASP fitness function 
is an atom-atom potential obtained from a database of protein-ligand complexes and can be 
likened to other such scoring potentials, e.g. PMF and Drugscore. ASP integrates some 
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ChemScore terms. As the fitness scores are dimensionless they cannot be utilized explicitly as 
values for binding energy or binding affinity [19]. 
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II. Aim of the study 

 

In early stage drug development the pharmacokinetic profile and the possible toxicity of a 

drug candidate are determined in animal models (usually mouse or rat) before it is tested in 

human beings. Thus predicting toxicity only in humans during the clinical trials is far too late.  

First pharmacokinetic and toxicological tests are carried out in animals several years before 

the drug candidate is even admitted for testing in humans. Thus, besides developing predictive 

in silico models for the identification of ligands for human P-gp it is also important to 

establish predictive models for mouse and rat P-gp. Furthermore, early in silico prediction of 

in vivo toxicological outcomes might increase the quality of drug candidates, lower the 

attrition rate during subsequent phases of drug development, and reduce the number of 

animals to be used in preclinical studies.  

 

The difficulty in structure-based in silico studies with membrane proteins like P-gp is the fact 

that due to technical difficulties in the crystallizing process, X-ray structures and other high-

resolution structural data are mostly unavailable. Therefore, computational methods such as 

homology modeling and docking are needed to explore molecular binding modes. However, 

in case of P-gp, since 2009 the mouse crystal structure is available [7]. As the rat P-gp shares 

high sequence identity (92%) to the recent crystallized mouse P-gp, we used it as a template 

for a rat P-gp homology model. 

 

The obtained protein homology model will be validated using routine methods. Subsequently, 

the model will be used for docking of known rat P-gp inhibitors into the rat P-gp homology 

model. The resulting docking ranking list will then be compared to the known IC50 values of 

these already published and tested inhibitors. Hence this comparison will be used to evaluate 

the predictive potency of the model.  
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III. Materials and Methods 

 

A. Multiple sequence alignment 
The P-gp sequences of different species (dog, frog, hamster, human, mouse, rabbit, rat and 

sheep) were compared with ClustalW version 2.1 [21, 22] taking the whole protein as well as 

the transmembrane domains only. All settings were used as default. Figure 13 shows the 

alignment of the whole P-gp sequences. 

 



 

 

38 Materials and Methods 

 



 

 

39Materials and Methods 

 



 

 

40 Materials and Methods 

 



 

 

41Materials and Methods 

 



 

 

42 Materials and Methods 

 

Figure 13 – P-gp Sequence alignment between different species: dog, frog, hamster, human, mouse, 
rabbit, rat and sheep. An * (asterisk) indicates positions which have a single, fully conserved residue. 
A : (colon) indicates conservation between groups of strongly similar properties (same color group). 
A . (period) indicates conservation between groups of weakly similar properties (similar shapes) [10]. 

The residue colors according to their physicochemical properties: 

Residue Color Property 
AVFPMILW RED Small (small+ hydrophobic (incl.aromatic -Y)) 
DE BLUE Acidic 
RK MAGENTA Basic - H 
STYHCNGQ GREEN Hydroxyl + sulfhydryl + amine + G 
Others Grey Unusual amino/imino acids etc 
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B. Sequence Alignment and Variability 
For the purpose of sequence alignment and variability calculations tools from the 

Bioinformatics Resource Portal ExPASy were used [23]. With ClustalW version 2.1 a 

sequence alignment between different species considering the whole sequences as well as the 

transmembrane domains only was calculated. The assignment of the transmembrane regions 

for  P-gp were taken from UniProt [24]. Further the variability of the aligned animal 

sequences and the mouse P-gp structure was checked with the Protein Variability Server 

(PVS) [25]. For all calculations the settings were used as default. 

C. Homology Model 
For the homology model the mouse P-gp structure (PDB ID: 3G5U, resolution: 3,8Å [7]) was 

taken as the template and the rat P-gp sequence was defined as the target. A sequence 

alignment was performed with ClustalW version 2.1. The resulting alignment was identical to 

the multiple sequence alignment mentioned above and used for model building with 

MODELLER version 9.8 [26]. All settings were kept as default. To adjust the disruption in 

TM helix 12 (residues 982-1000), this part was replaced by the homologous part of TM helix 

6 (residues 339-357) according to Pajeva et al. [27]. To analyze the quality of the model the 

outliers were checked in MOE [28] and with PROCHECK [29, 30]. From the 100 generated 

models, the final one was chosen regarding the generously allowed and disallowed outliers, 

the DOPE score, Z-score, QMEAN and dfire-energy, all calculated with SWISS-MODEL [31, 

32].  

D. Database Search 
The search for rat P-gp ligands was carried out  in the Transporter Database TP search [33], in 

the  ChEMBL database (ChEMBLdb) [34], and in PubMed [35]. 

E. Docking 
For the docking study 6 rat P-gp inhibitors with known IC50 values were chosen [36]. 

Minimization and protonation of the ligands as well as the correct determination of 

ASN/GLN/HIS flips for the protein was performed with MOE. For the docking process 

GOLD Suite version 5.1 was utilized [19, 20]. With GOLD, hydrogens were added, the 

binding site was defined as the entire TM region and all side chains were kept rigid. For the 
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calculation 100 genetic algorithm runs per molecule were performed and the scoring function 

GOLDScore as in GOLD implemented was used to evaluate the received complexes. 
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IV. Results and Discussion 
 

A. Sequence Alignment 
For the multiple sequence alignment the P-gp sequences of dog, frog, hamster, human, mouse, 

rabbit, rat and sheep were considered. The alignment was calculated twice with ClusalW: first 

the whole P-gp sequence was utilized and second only the transmembrane domains (TMDs) 

as described within UniProt were taken for the calculation. The results were not surprising: 

Tables 3 and 4 show that the sequence similarities are very high among these species, 

especially between mouse and rat (92% or rather 88%). The little differences in percentages 

involving the whole sequence and the transmembrane domains only are expected, as the 

nucleotide binding domain is strongly conserved and thus the whole protein comparison 

shows slightly higher values than the TMD only.  

 

Table 3 – Results of the multiple sequence alignment of the whole P-gp sequences, shown in percent 

species dog frog hamster human mouse rabbit rat sheep 
dog 100 66 87 90 80 85 79 87 
frog   100 68 67 63 66 63 65 

hamster     100 87 82 85 82 84 
human       100 80 86 79 87 
mouse         100 78 92 78 
rabbit           100 77 83 

rat             100 77 
sheep               100 
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Table 4 – Results of the multiple sequence alignment of the P-gp transmembrane domains, shown in 
percent 

species dog frog hamster human mouse rabbit rat sheep 
dog 100 60 84 88 75 82 74 87 
frog 

 
100 59 62 57 58 58 60 

hamster 
  

100 84 77 82 76 82 
human 

   
100 77 85 76 86 

mouse 
    

100 73 88 75 
rabbit 

     
100 73 83 

rat 
      

100 74 
sheep 

       
100 

 

 

B. Sequence Variability 
Further the variability of the aligned animal P-gp sequences and the mouse P-gp structure was 

checked with the Protein Variability Server (PVS). Figure 14 shows that the variability is 

higher in the beginning than at the end of the P-gp sequence. In contrast in the transmembrane 

regions in the middle of the sequence it is low or even not existing. For a better imagination 

Figure 15 illustrates the conservation color-coded: blue represents conserved regions and red 

variable ones. Again the very high sequence conservation is demonstrated. 

 

 

Figure 14 – Diagram showing the variability; the higher the red peak, the higher the variability of the 
amino acids. 
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Figure 15 – Colored P-gp illustrates the conservation; blue represents conserved regions, red 
variable ones. 

 

C. Homology Model 
The publications of the mouse P-gp structure [7], the human P-gp homology model [37], and 

the alignment results described earlier paved the way for  developing a rat P-gp model. The 

rat homology model was based on the structure of mouse P-gp (PDB ID: 3G5U) and its 

alignment to the rat P-gp sequence (sequence similarity: 92%). With these inputs the 

modeling program MODELLER [26] generated 100 different homology models which were 

subsequently refined due to the bad molpdf values (10401-11979). The deletion of a loop did 

only slightly improve the score. The low score was mainly due to a disruption in TM helix 12 

[Figure 16]. This could be remarkably improved when following the procedure from  Pajeva 

et al., by exchanging it with TM helix 6 (residues 339-357) [27].  
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Figure 16 – Depiction of the disruption in TM helix 12 (yellow) and TM helix 6 (green). 

 

The molpdf decreased substantially after this exchange, now ranging from 7462 to 7873, as 

shown in Table 5.  

 

 

 

Table 5 – MODELLER scores before (above) and after (below) the exchange of the TM helix 12. The 
molpdf decreased substantially after exchanging the helices. 
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The resulting models were evaluated with the geometry check tool implemented in MOE [28]. 

All models were assessed with the highest possible GA341 score of 1. Additionally, the 

models were analyzed with PROCHECK [29, 30] and according to the obtained results the six 

best models (model number 77, 95, 60, 52, 21 and 54) were chosen for further validation with 

SWISS-MODEL [31, 32].  These tests showed in average a DOPE of -123286, a Z-Score of   

-401, a QMEAN of 0.4, a dfire-energy of -1513.34 and a disallowed outliers score of 0.82 

[Table 6]. 

 

 

Table 6 – Results of the model analysis with PROCKECK and SWISS-MDOEL.  

NR. DOPEa disallowedb Z-Scorec QMEANd dfire-energye 

77 -125664,4219 0,9000 -3,997 0,402 -1523,43 
95 -124369,2734 0,8000 -4,018 0,4 -1502,16 
60 -125507,2891 0,9000 -4,134 0,389 -1515,94 
52 -125562,9141 0,8000 -4,064 0,395 -1517,53 
21 -125046,2656 0,7000 -3,861 0,414 -1511,35 
54 -125562,9141 0,8000 -4,003 0,401 -1509,63 

a discrete optimized energy,  
b disallowed outliers in the Ramachandran plot,  
c measure for the absolute quality of the model,  
d score of the whole model reflecting the predicted model reliability ranging from 0 to1,  
e assessment of non bonded atomic interactions [31] 
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As a result of this analysis, model number 21 was chosen as the best model with a DOPE of -

125046, a disallowed outliers score of 0.7, a Z-Score of -3.86, a QMEAN of 0.41 and a dfire-

energy of -1511 [Figure 17]. 

 

Figure 17 – Depiction of the rat P-gp model number 21. 

 

Subsequently, the models were color coded according to their similarities and differences in 

the amino acid sequence. Figure 18 shows that not only as already mentioned before the 

sequence similarity between species is high but also the sequence identity. 

 

 

Figure 18 – Comparison of the human, mouse and rat P-gps, pink demonstrate identical amino acids, 
black shows different amino acids, (a) human and mouse P-gp, (b) human and rat P-gp, (c) mouse and 
rat P-gp. 
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D. Database search 
In a next step we focused on the search for substrates and inhibitors of the human, mouse and 

rat P-gps. Especially rat P-gp ligands were of interest in order to carry out docking studies. 

For this purpose two databases were consulted: the Transport Database [33] and the ChEMBL 

database (ChEMBLdb) [34].  

Surprisingly, this task turned out to be a tricky undertaking, as no rat P-gp ligands were found 

in these databases. On the other hand, numerous human and mouse P-gp substrates and 

inhibitors were found twice, threefold, etc. in one database, which made data collection very 

elaborative and time consuming. Nevertheless, in the end it was possible to filter out the 

requested information.  

1. Transporter Database 

In the Transporter Database only human substrates and inhibitors and mouse substrates were 

found. There was no information for the rat at all. 256 human substrates and 12 mouse 

substrates were detected, whereupon all 12 mouse substrates overlap with the human 

substrates. On the other hand, only 371 human but no mouse or rat inhibitors were retrieved 

[Figure 19 and 20].  

 

Figure 19 – Venn diagrams of the P-gp ligands found in the TP-database [33]. 
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Figure 20 – Overlapping 12 human and mouse substrates retrieved by Tp-search [33]. 
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2. ChEMBL Database 

The ChEMBLdb [34] is not sub classified into substrates and inhibitors like the TP search 

database. One can only find ligands which are described more precisely in their profile. 

During the request once again only human and mouse ligands, but not a single rat ligand was 

returned [Figure 21 and 22]. In total 1087 human and 110 mouse ligands were detected, with 

33 overlapping ones.  

 

Figure 21 – Venn diagram of the P-gp ligands detected in the ChEMBLdb [34] for different species. 
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Figure 22 – Overlapping 33 human and mouse compounds of the ChEMBL search[34]. 

 

3. PubMed 

Having not found any rat data in the main public available  databases, in the next step a 

literature search in PubMed [35] was conducted. A few articles were detected leading to in 

total 18 substrates and inhibitors of  rat P-gp [Figure 23] [36, 38-43]. 
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Figure 23 – Resulting 18 rat P-gp ligands returned from PubMed [35]. 
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E. Docking 
 

 

Figure 24 – Binding site of the P-gp marked in purple.  

 

The docking software GOLD [19, 20] was used to dock 6 rat P-gp inhibitors [36] (taken from 

PubMed search) with known IC50 values against the rat homology model. The minimization 

and protonation of the ligands as well as the correct determination of ASN/GLN/HIS flips for 

the protein was performed with MOE [28]. According to Klepsch et al. [37] there is evidence 

that the proteins pore is filled with water and therefore it was suggested to dock the ligands in 

their ionized state. Before the docking run hydrogens were added to the protein using GOLD 

and the binding site was defined as the entire TM region [Figure 24]. During docking all side 

chains were kept rigid. GOLD is based on a genetic algorithm and for each of the 6 ligands 

100 docking poses were calculated. Subsequently, the scoring function GOLDScore 

implemented in GOLD was used to rank the complexes.  

The obtained poses were located in the whole TM region,showing  interactions with residues 

of different TM helices. The analysis of the complexes showed that especially TM helices 1, 

5, 6 and 12 were involved in interactions. Frequently, interactions were observed with 

residues F70 located in TM helix 1 and F335 in TM helix 6. Also residue T306 was involved 

in some interactions, whose human analogue T307 was shown to be important in ligand 

interactions [Figure 25] [37]. 
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Figure 25 – 2D ligand interaction 
plot of the best scored pose 
according to GOLDScore for each of 
the 6 P-gp ligands, docked into the 
rat P-gp homology model. 

(a) Elacridar pose 
(b) Quinine pose 
(c) Quinidine pose 
(d)  Ketoconazole pose 
(e) Itraconazole pose 
(f) Verapamil pose 

(a) 

(b) 

(c) 
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(d) 

(e) 

(f) 
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A representative docking pose is depicted in Figure 26 showing the best ranked Chinine 

receptor complex. 

 

Figure 26 – Best scored Chinine pose according to GOLDScore. 

 

Finally, the docking results were compared with the experimental IC50 values from Zolnerciks 

et al. [36]. The docking ranks were obtained according to the Fitness scores from the 

“bestranking” file produced by GOLD. Surprisingly, the experimental and docking ranks were 

almost identical disregarding only ranks 3 and 4 which were switched [Table 7].   

 

Table 7 – Comparison of rankings according to experimental data  

and GOLD scoring 

Inhibitor Rank (exper) Rank (dock) 
Elacridar 1 1 
Quinine 6 6 

Quinidine 5 5 
Ketoconazole 4 3 
Itraconazole 2 2 
Verapamil 3 4 
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V. Summary and Outlook 
 

In general the drug development workflow can be divided into 3 main stages: drug discovery, 

preclinical stage (animal in vivo trials) and clinical stage (human in vivo trials). Especially in 

the early drug discovery stage in silico predictions are widely applied. One important field of 

in silico activity is the generation of reliable models for ADME and toxicity profiles. Here P-

gp plays a key role because of its biological function as a xenobiotic carrier between 

distribution compartments.  

Nowadays a huge amount of experimental data against human P-gp is already available and 

has been implemented in the generation of prediction models during the drug discovery stage. 

However, in the early preclinical phase of animal in vivo studies, the animal P-gp activity 

profile may differ significantly and may lead to attrition. Thus next to existing in silico 

predictive models against human P-gp activity, predictive in silico models against rat and 

mouse would be beneficial.  

In our study we tackled this by the generation of a structure based rat P-gp prediction tool.  

Due to the lack of a crystal structure of  rat P-gp, homology modeling and computational 

ligand docking represent the only possibilities for structure-based hypotheses for protein-

ligand-interactions. Therefore, the accurate prediction of membrane protein structures and 

their interaction with small molecules stays a challenge.  

With our work we tried to take the first step towards in silico ADME and toxicity predictions 

with a focus on the role of P-gp. This would allow to assess potential failure of a drug 

candidate at an early stage in the drug development pipeline. For this reason we first 

constructed a homology model of  rat P-gp. Then we compiled a ligand library composed of 

known rat P-gp ligands from literature. A subset of this  library was then docked into the 

homology model and the subsequent ranking list was compared to the experimental (IC50) 

rankings.  

The resulted ranking list was promising: the docking was able to correctly assign almost all 

ranks, only ranks 3 and 4 were switched. Of course additional validation needs to be done, but 

the obtained results in this study assume its suitability for structure-based prediction models. 
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However, we have to consider that the amount of the docked compounds for validation was 

limited. For a more sophisticated validation more experimental data on compounds from 

industry is needed.  

Next to the predictive capabilities, the structural insights of the complexes can as well 

ameliorate our undertanding and hypothesis of inhibitor binding on a molecular level, 

stimulating scientists to conduct new experiments.  
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List of abbreviations 

ABC    ATP Binding Cassette 

ADME   Absorption, Distribution, Metabolism and Excretion 

ATP    Adenosine Triphosphate 

ChEMBLdb   ChEMBL Database 

DNA    Desoxyribonucleotide Acid 

DOPE    Discrete Optimized Energy 

EBI    European Bioinformatics Institute 

FDA    Food and Drug Administration in the USA 

GA    Genetic Algorithm 

GMP    Good Manufacturing Practice 

IC50   Half Maximal Inhibitory Concentration 

IND    Investigational New Drug 

MDR    Multidrug Resistance 

Molpdf  Molecular PDF 

NBD    Nucleotide Binding Domain 

NDA    New Drug Application 

PDB   Protein Database 

P-gp    P-Glycoprotein 

PVS    Protein Variability Server 

RNA    Ribonucletide Acid 

TAP   Antigen Peptide Transporter 

TM    Transmembrane 
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