
MAGISTERARBEIT

Titel der Magisterarbeit

Airport gate assignment with airline preferences:
a robust approach for Vienna Intl. Airport

Verfasser

Gregor Gahbauer, Bakk.

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften

(Mag. rer. soc. oec)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 066 915
Studienrichtung lt. Studienblatt: Magisterstudium Betriebswirtschaft
Betreuer: o.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

II

ACKNOWLEDGEMENT

First, I would like to thank my advisor, o. Univ.–Prof. Dipl.–Ing. Dr. Richard F.

Hartl, for his encouragement and his constructive feedback regarding my master

thesis project.

I also want to thank Mag. Dipl.–Ing. Dr. Verena Schmid for her dedicated men-

toring and support. Especially her ongoing motivation and creativity encouraged

me a lot during this time.

Furthermore, I would like to thank my colleagues at the Chair of Production and

Operations Management for their ideas and technical support.

I would also like to acknowledge the support of the following companies for pro-

viding me with the necessary data to accomplish this project:

Austro Control GmbH, Austrian Airlines AG, Niki Luftfahrt GmbH and Flughafen

Wien AG.

In the end, I would like to thank my family and friends who supported me in

various ways during my studies.

Vienna, June 2012

III

IV

Contents

List of Figures VI

List of Tables VII

List of Abbreviations VIII

1 Introduction 1

2 Literature review 10

3 Mathematical model 14
3.1 Notation . 14
3.2 Problem formulation . 17

3.2.1 General (static) airport gate assignment 17
3.2.2 Robust approach for the airport gate assignment with air-

line preferences . 19

4 Solution method 24
4.1 Large Neighborhood Search . 24
4.2 Proposed operators . 26

4.2.1 Construction heuristic . 26
4.2.2 Destroy operators . 27
4.2.3 Repair operators . 30

5 Computational experiments 32
5.1 Data sets . 32

5.1.1 Input data . 32
5.1.2 24–hour VIE instance . 36
5.1.3 Small instances . 39

5.2 Parameter tuning . 41
5.3 Experimental results . 46

5.3.1 Small instances . 46
5.3.2 24–hour VIE instance . 48

6 Conclusion 50

Bibliography 51

Abstract 54

Deutsche Zusammenfassung 54

Curriculum Vitae 55

Appendix – VIE ground layout 57

V

List of Figures

1 Necessity of robustness in gate assignment 2

2 Example for gate shadow restrictions 5

3 Vienna Airport traffic progression – July 12th 2011 6

4 RMS sally – baggage module at Zurich airport 8

5 Single and multiple slot models 11

6 Example for a non–robust assignment 21

7 Example for a robust assignment 22

8 LNS operator destroy worst – first remove 28

9 LNS operator destroy worst – nr–1 removes 29

10 Parameter test small instances – degree of destruction 42

11 Parameter test small instances – runtime best solution found 42

12 Parameter test VIE instance – degree of destruction 44

13 Parameter test VIE instance – runtime best solution found 45

VI

List of Tables

1 Notation used for sets . 14

2 Notation associated with (input–) parameters 15

3 Notation used for decision variables 16

4 LNS operator abbreviations . 41

5 Parameter test F35 instances – operator combinations 43

6 Parameter test small instances – operator combinations 44

7 Parameter test VIE instance – operator combinations 46

8 Computational results – small instances 47

9 Computational results – VIE instance 49

VII

List of Abbreviations

ACG Austro Control GmbH

AIP Aeronautical Information Package

AOV average objective value

AUA Austrian Airlines

btw. between

CEE Central and Eastern Europe

CPLEX IBM ILOG CPLEX optimizer (version 12.1)

CVRP capacitated vehicle routing problem

EBOT estimated block–on time

e.g. for example

EOBT estimated off–block time

EU European Union

IATA International Air Transport Association

ICAO International Civil Aviation Organization

LNS Large Neighborhood Search

MIP mixed integer program

NLY Niki Luftfahrt GmbH

QAP quadratic assignment problem

RAGA–AP robust approach for the airport gate assignment problem with
airline preferences

RMS resource management system

STDEV standard deviation

VAH Vienna Aircraft Handling GmbH

VIE Vienna Intl. Airport

VRPTW vehicle routing problem with time windows

VIII

1 Introduction

Since the beginning of the 20th century, civil aviation has experienced an overall

continuous growth in demand. The peak was reached in the 1950s/1960s with an-

nual growth rates of up to 15%. Even during the 1990s, the industry experienced

average rates of 6%.

Due to the fact that airports interact with passengers (representing demand) and

airlines (representing supply), they are seen as the bottlenecks of the aviation

business since capacity shortages can be identified at a very early stage. Airport

managers very often have to deal with existing infrastructure which cannot be

changed or adapted easily. Therefore, the field of research of airport logistics has

gained in importance during the last decades [17].

One particular research topic is the airport gate assignment problem which opti-

mizes the assignment of flights (demand) to airport gates (supply). The problem

itself is considered to be hard to solve since many involved stakeholders want to

influence the decision making to their favor.

In general, airport gate assignment can be divided into seasonal, daily and tactical

planning [8]. The model presented in this thesis belongs to daily planning, since

aircraft turnarounds (linkage of in– and outbound flights) are already preassigned

and no information about flight delays is yet available.

In the beginning, research was mainly focused on the minimization of passenger

walking distances within an existing airport terminal [10–12]. During the last

two decades, the focus was extended to other objectives which are more relevant

in real life, such as robust scheduling with stochastic flight delays, disruption

management, aircraft reassignment algorithms, etc. [17, 25, 26].

1

Problem description

The airport gate assignment problem developed in this thesis project – titled

robust approach for the airport gate assignment problem with airline preferences

(RAGA–AP) – can be formulated as a mixed integer program (MIP). In order to

adapt this deterministic problem to real life situations including aircraft delays,

a robust approach was chosen in order to reduce rescheduling during tactical

planning. Robust scheduling of airport gates has become increasingly important

during the last decades due to growing air traffic and subsequent tighter airline

schedules.

In order to demonstrate the importance of robustness, let us consider the following

example:

10:00 11:00 12:00 13:00 14:00

gate C39

gate C40

gate C41 flight A

flight B flight C flight D flight E

flight F flight G flight H

Figure 1: Necessity of robustness in gate assignment

Figure 1 shows an assignment of 8 flights to 3 gates. The small gap between flight

C and D at gate C40 might lead to problems in case the first of these two flights is

delayed or the second one arrives earlier than scheduled. A possibility to improve

this situation would be to reassign flight C to gate C41. This reassignment would

increase the robustness of the schedule.

Another important goal of real life gate assignment is the consideration of airline

preferences. Besides an airline’s desire to park at a certain gate area, the prefer-

2

ence value of assigning a flight to a specific gate is also influenced by other factors

such as passenger convenience and handling costs:

passenger handling:

Network carriers attach great importance to passenger comfort. Therefore,

such airlines prefer gates located at a terminal where passengers can board

the aircraft by jetway. In case of Vienna Intl. Airport (VIE), this might

interfere with fast boarding times, since jetway boardings use only one air-

craft door, compared to apron gates1 where two stairs are used.

Other reasons for the preference of gates with jetways are the existence of

special security checks and customs offices in the terminal.

incurring costs for handling, parking and aircraft operations:

It is assumed that gates located on the apron have cheaper parking and han-

dling fees than gates located at a pier. Lower costs might incur because of

unnecessary pushbacks and less infrastructure at the gate (e.g. aircraft guid-

ance via marshaller instead of docking–guidance system, passenger boarding

via bus instead of jetways,...).

Another advantage of apron gates is the reduction of taxi time from the

runway to the parking position and vice versa. At VIE, it is assumed that

low–fare airlines like FlyNiki, AirBerlin and Germanwings prefer gates on

the E–block, because those parking positions are located closer to the most

used runways for departures (runways 29 and 16).

Due to these circumstances, airlines are often required to make trade–offs between

passenger comfort and incurring costs.

In order to achieve a valid schedule, an airport gate assignment has to meet certain

criteria, as for instance limitations in size, gate characteristics and limitations

regarding neighboring gates:

1 apron: area with remote parking positions serviced usually with buses instead of jetways

3

basic limitations: an aircraft can only be assigned to one gate. Further-

more, many flights can be assigned to the same gate, but not at the same

time.

wingspan: the wingspan of an aircraft cannot exceed the gate width.

length: the length of an aircraft cannot exceed the gate length.

gate characteristics: at VIE, four different flight characteristics exist: Schen-

gen, Non–Schengen, European Union (EU) and international flights. Each

type has different regulations regarding customs and passport control. For

simplification, these four flight characteristics were combined into three gate

types in the model: pier gates (both Schengen and Non–Schengen) and

apron gates. Flight and gate characteristics have to be equal in case of pier

gates and can be unequal in case of apron gates, since it does not matter if

the bus drives the passengers to the Schengen or Non–Schengen arrival area

(considering travel time).

shadow restrictions: a popular method to increase the flexibility of avail-

able airport gates is the implementation of shadow restrictions which are

used at all Austrian airports2. In case a shadow restriction exists between

two gates, only one gate can be occupied at the same time, because aircraft

wingtip clearance to the neighboring gate is not guaranteed [13].

Figure 2 shows an example of a shadow restriction at VIE. If an aircraft is

parked at gate F05 (maximal aircraft wingspan: 65 meters), the wingtips

reach far into the neighboring gate areas. Therefore, the neighboring gates

have to be blocked until the aircraft leaves gate F05. On the other hand, if

gates F03 or F09 (maximal aircraft wingspan: 36 meters each) are blocked,

parking position F05 has to be blocked by a shadow restriction.

2 see AIP Austria (Part III – AD 2 – Aircraft Parking/Docking Charts) for further information.
Available online at http://eaip.austrocontrol.at.

4

http://eaip.austrocontrol.at

flight 1

F05F03 F09

flight 2 flight 3

F03

F05

F09

10:00 11:00 12:00

flight 1

flight 2

flight 3

time

ga
te

Figure 2: Example for gate shadow restrictions

Vienna International Airport – VIE

The airport was privatized in 1992 and is now owned by the province of Lower

Austria (20%), the city of Vienna (20%), a private employee–participation foun-

dation (10%) and private shareholders (50%).

In 2011, a total of 21.1 million passengers landed and/or departed to/from VIE,

which is an increase of 7.2% compared to 2010. Thereof, 6.5 million (30.8%) are

transfer passengers. VIE uses a two–runway system: runway 11/29 (3500 me-

ters long, 45 meters wide) and runway 16/34 (3600 meters long, 45 meters wide).

Although parallel approaches to both runways are only possible during good visi-

bility and calm (southern) winds, the airport recorded 246,157 traffic movements

in 2011. VIE has evolved into a major hub for destinations in CEE countries,

thanks to the special focus of Austrian Airlines (AUA) [15].

The traffic at airports is often concentrated in so–called waves, which are time

periods with concentrated in– and outbound traffic. Traffic waves often have

an effect on the complexity of gate assignment, since different requirements (e.g.

demand of gates) exist at different times.

Figure 3 shows the traffic progression at VIE on July 12th 2011 containing 7

traffic waves. This data indicates that a maximum of 53 aircraft are parked at

5

the airport at the same time. Since VIE features 115 gates, it is not a question

of capacity, but of how to assign all aircraft in an efficient way.

A more detailed description of the structure of the 24–hour instance containing

401 turnarounds is given in Section 5.1.3.

10

20

30

40

50

60

06:00 12:00 18:00 24:00

time

n
u

m
b

er
of

p
a
rk

ed
ai

rc
ra

ft

Figure 3: Vienna Airport traffic progression – July 12th 2011

VIE features two general aviation centers (east and west) where Vienna Aircraft

Handling GmbH (VAH) handles all general aviation flights.

Parking positions at VIE which are close to each other are combined to gate blocks,

which are numbered from A to K.

Parking positions located at Pier West (C–block) are used for flights to/from

countries which signed the Schengen contract. Pier East (D–block) contains park-

ing positions used mainly for Non–Schengen, Non–EU and international flights.

B–, E– and F–blocks feature apron parking positions which are usually used by

low–fare or non–Star–Alliance airlines3. The remaining gate blocks A, H and K

are mainly used by cargo airlines and for parking aircraft. More information about

3 F–parking positions are located at the new SKYLINK terminal which was not yet in operation
during the master thesis project and therefore the positions are used as apron gates
handled by buses.

6

the layout of VIE is depicted in the Aeronautical Information Package (AIP) Aus-

tria (LOWW AD 2.24–1–2) available online4 or in the Appendix on page 57.

Software currently in use at Vienna Intl. Airport

The software used for gate assignment at VIE is part of the resource management

system (RMS) sally, developed by the German company Delair 5.

Sally is also used at Zurich and Frankfurt/Main airport. In case of Zurich, the

gate assignment of a 24–hour schedule was accelerated from more than 4 hours

to approximately 15 seconds.

In case of flight delays and possible consequential conflicts, the RMS proposes pos-

sible flight gate changes automatically to the airport managers who can choose

between different alternative assignments. Other advantages are the considera-

tion of connecting passengers within a terminal (passenger walking distances) as

well as the automatic linkage of in– and outbound flights which is very effective

in case of sudden aircraft changes.

sally is divided into three different modules (gate planning, baggage planning and

check–in planning) and includes a strategic (seasonal planning and what–if sce-

narios) as well as a tactical version (daily and tactical planning). The calculated

assignment is depicted in a Gantt chart. Figure 4 shows the baggage module

which assigns flights to baggage carousels at Zurich airport [7].

sally uses two types of rules [7]:

hard rules which have to be observed

(e.g. time–overlapping constraints, aircraft wingspan/length vs. gate size,...)

soft rules which improve the assignment if they are observed

(e.g. airline preferences, Schengen/Non-Schengen flights,...)

4 http://eaip.austrocontrol.at
5 http://www.delair.de

7

http://eaip.austrocontrol.at
http://www.delair.de

This set of rules can be individualized for specific local needs, depending on

whether the airport is a regional or hub airport.

Figure 4: RMS sally – baggage module at Zurich airport6

According to Delair, the RMS is based on a constraint satisfaction problem solver

which implements unary and binary constraints and uses constraint propagation,

prioritization based on an assessment heuristic as well as backtracking to a con-

flict solution. Consequentially, every solution within the solution space is an equal

and valid solution and no optimization of the problem is achieved (which explains

the comparatively short computation time) [7].

6source: http://www.airport-int.com/upload/image files/Sally-Racetrack.jpg
last accessed: June 19th 2012

8

http://www.airport-int.com/upload/image_files/Sally-Racetrack.jpg

Finally, some terms and definitions used in this thesis are explained.

In the literature, the terms gate, position and parking position are often used in

the same context. In practice, a (parking) position is the area where the aircraft

is parked, whereas a gate is the area in a terminal where departing passengers are

waiting for their flight. In this thesis, these terms are also used as synonyms.

A second case is the use of the terms terminal and pier. A terminal also includes

the check–in area, passport control, security checks, duty–free shops etc. In con-

trast, a pier is located between the terminal and the apron and contains almost

exclusively gates.

The research topic of this thesis is motivated by the scientific and practical rel-

evance of the problem as well as personal interest after a four year employment

within the department of Aircraft Handling Services at Vienna Intl. Airport.

This thesis is structured as follows:

Section 2 gives a short overview of past research developments in the area of air-

port gate assignment. The mathematical model is described in Section 3. There-

after, Section 4 presents the solution method used to solve the MIP. At the very

end, Section 5 presents the real life data used as input for this model as well as

the computational results.

9

2 Literature review

The airport gate assignment problem in its original form can be formulated as a

quadratic assignment problem (QAP), in which the cost of assigning an aircraft

to a specific gate depends on the passenger walking distance, the demand and the

interaction with other gates [16].

In general, gate assignment problems can be divided into single and multiple slot

models (see Figure 5). Single slot models – developed at the beginning of airport–

oriented research – resemble the NP–hard QAP and consider a single time interval

where at most one flight can be assigned to any gate. Multiple time slot problems

were first introduced in [16] in 1998 and consider multiple time intervals to allow

more than one aircraft at the same gate [12]. The model developed in this thesis

belongs to the latter.

Dorndorf et al. [12] divide gate assignment research streams into two categories:

rule–based expert systems and mathematical programming techniques (which will

be discussed first).

Airline– and passenger–oriented objectives for static/deterministic problems (con-

sidering baggage carrying distances, walking distances or passenger delays) were

deeply researched in the past; whereas airport–oriented objectives still offer many

possibilities for future research.

According to [17], typical objectives are:

- minimize number of aircraft assigned to apron gates

- minimize total or average passenger walking distances

- minimize baggage transportation distances

- minimize total passenger delay

- minimize deviation of a current schedule to a reference schedule

- minimize number of towing procedures

10

Figure 5: Single and multiple slot models (source: [16])

Between 1973 and 1977 Braaksma et al. [3–5] developed the first mathematical

models which considered intra terminal travel of passengers. Babić et al. [1] pre-

sented a model for the single slot gate assignment problem minimizing walking

distances between the gate and the entry/exit which was solved with an exact

branch–and–bound algorithm. Later, [19] added transfer passengers to the model

and solved the problem with LP–relaxation and greedy heuristics [12].

The approach including passenger walking distances is especially preferred by air-

lines within the same alliance, since short transfer distances are desired to reduce

departure delays caused by walking passengers. A high number of flights located

11

at the terminal gives the passengers more comfort than gates serviced by buses.

Airports, on the other hand, pursue different strategies. Although the minimiza-

tion of walking distances might ensure the robustness of a schedule, airports are

not always interested in guiding the passengers to their gate via the shortest path.

A reason for this circumstance is the fact that airports do not only earn money

through the handling of passengers, but also for renting advertising panels within

a terminal to advertising agencies.

Chang [6] added a minimization of the baggage transfer distances at a hub airport

and applied a simulated annealing algorithm to the model. A column generation

algorithm was used in Diepen et al. [9] to solve the gate and bus assignment at

Schipol Airport (Amsterdam, Netherlands).

A popular model based on [1] is the over–constrained airport gate assignment

problem presented in Ding et al. [10, 11], in which the capacity of terminal gates

is exceeded by the number of flights; hence apron gates were introduced. A closer

explanation follows in Section 3.2.1.

Models regarding stochastic flight delays, robust scheduling and reassignment al-

gorithms were developed in [2, 22, 24–26].

Jaehn [17] presents different models regarding disruption management, since pre-

vious research was mainly focused on static/deterministic problems and little

attention was paid to this particular field of research.

The second research stream of airport gate assignment are simulations and rule–

based expert systems. Compared to the category of mathematical programming

techniques these systems seem to cope better with difficulties in case of multiple

performance criteria and uncertain information.

Typical examples are systems to “evaluate the effectiveness of operational options

to improve the gate utilization“ [16], systems containing sensitivity analysis and

systems for evaluating the effects of particular rules on gate utilization. To in-

12

crease the flexibility of a gate assignment, [12] proposes the implementation of

mathematical programming techniques into simple expert systems.

Further information on the two research streams is presented in more detail in

[12, 16].

The main focus of this thesis project is the mathematical model of the RAGA–AP

solved with a MIP solver and a metaheuristic.

Dorndorf et al. [12] recommend an implementation of the Large Neighborhood

Search (LNS) metaheuristic for real life problem sets with a large number of

flights and gates as well as for manually generated small instances.

The RAGA–AP shows similarities to the vehicle routing problem with time win-

dows (VRPTW) where the gates are denoted as routes and the aircraft turnarounds

as customers with (hard) time windows.

LNS was originally presented in [23] in 1998 for the capacitated vehicle routing

problem (CVRP) and the VRPTW. According to [21], LNS belongs to the class

of Very Large Scale Neighborhood Search (VLSN). This class is characterized by

exponentially growing neighborhoods and neighborhoods which are too large to

be searched in practice.

LNS has shown good results for the VRPTW in the past [23] and it seems as if it

has never been applied to a variation of the airport gate assignment problem.

13

3 Mathematical model

In this section, the mathematical model developed in this thesis project will be

introduced. After describing the notation used for the problem, an overview of

the underlying model (general (static) airport gate assignment problem) is given.

In the last section, the actual MIP for the RAGA–AP is presented.

3.1 Notation

We are going to define the following sets:

Let F denote the set of flights; more precisely the set of aircraft turnarounds.

For every flight i, the subset F ′ contains a list of flights j where i precedes j,

that is pi,j=1 (see Table 2). G(i) is a subset of G which only includes suitable

gates for flight i. In this context, suitable means that the limitations concerning

wingspan, length and gate characteristics are met. The set A contains all rele-

vant information regarding aircraft specifications. P represents the set of airline

preferences which contains data concerning a flight’s desire to be assigned to a

specific gate. The set of shadow restrictions N contains pairs of gates where a

shadow restriction exists. A summary of all the different sets used in the model

is also given in Table 1.

Abbreviation Description

F set of flights
F ′ ⊆ F subset of F with flights where flight i precedes flight j
G set of gates
G(i) ⊆ G subset of G with possible gates for flight i
A set of aircraft
P set of airline preferences
N set of shadow restrictions

Table 1: Notation used for sets

14

Abbreviation Description

i,j ∈ F indices used to describe flights
k,l ∈ G indices used to describe gates
n number of flights
m number of gates
fi,k ∈ [0, 1] flight i possible on gate k
sk,l ∈ [0, 1] shadow restriction between gate k and l
pi,j ∈ [0, 1] flight i is preceding flight j
ui,k ∈ P preference value of assigning flight i to gate k
tAi estimated block–on time
tDi estimated off–block time
tsetupk setup time of gate k
tIV length of time interval in minutes
M very high number
α1, α2, α3 objective function weights

Table 2: Notation associated with (input–) parameters

Table 2 shows the notation used to describe the (input) parameters. fi,k equals 1

if the (hard) constraints concerning wingspan, length and gate characteristic are

fulfilled. Airline preferences are represented in the model as ui,k. The variable

assumes a high negative value (e.g. –1000) in case flight i is not desired on gate

k and a value between 0 and 100 in case of a desired assignment.

tAi and tDi represent the arrival and departure times of the flights. Since the model

does not include taxi times to and from the runway, tAi equals the estimated block–

on time (EBOT) and tDi the estimated off–block time (EOBT). This approach –

a gate k is blocked from the time the aircraft touches down on the runway until

it departs for the succeeding flight – is also used by VIE airport managers in real

life.

tsetupk represents the gate setup time. This variable includes the time needed to

push the previous aircraft back from the parking position, the time to prepare

the visual docking guidance system for the next flight, the time needed by the

15

ground handlers to move new equipment to the gate as well as the arrival of the

succeeding aircraft [12]. In real life, every gate has different setup times depending

on the location on the apron. In the presented model, this variable is equal for

every gate.

tIV represents the length of the time interval in which all included times are

measured. This is especially necessary to standardize the times used in the flight

set F .

e.g. if tIV =5, one time unit equals 5 minutes and 01:00 equals 12 time units.

A closer explanation follows in Section 5.1.1.

Abbreviation Description

xi,k ∈ [0, 1] assignment of flight i to gate k
gmin minimal gap

(btw. any two consecutive flights at all gates)
tFA
k arrival time of first flight at gate k
tLDk departure time of last flight at gate k
xFF
i,k ∈ [0, 1] flight i is first flight at gate k
xLFi,k ∈ [0, 1] flight i is last flight at gate k

Table 3: Notation used for decision variables

Table 3 shows the decision variables used for the MIP.

xi,k denotes the assignment of flight i to gate k. The variable assumes the value

1 in case i is assigned to k and 0 otherwise. gmin represents the smallest gap

between any two consecutive flights at all gates. The last four variables are used

to calculate the total idletime between the flights. A closer explanation of the

decision variables follows in Section 3.2.2.

16

3.2 Problem formulation

This section presents the mathematical formulation of the airport gate assignment

problem. Section 3.2.1 explains briefly the classical problem which forms the basis

of the model developed in this master thesis project (which is then presented in

Section 3.2.2).

3.2.1 General (static) airport gate assignment

The original over–constrained airport gate assignment problem was presented in

[10, 11] and inspired by the work presented in [1].

The problem contains a set of n flights – F – and a set of m airport gates – G.

Ding et al. minimized the number of flights assigned to gates that are not located

at a terminal/pier, as well as the passenger walking distances between (btw.) two

gates k and l (wk,l) and btw. the gates and the entry/exit (w0,k, wk,0).

The number of connecting passengers from flight i to flight j is denoted as fi,j,

where fi,i = 0. Passengers can only board a flight which departs later than the

arrival time of the origin flight.

Therefore, two possible cases arrise:

flight i precedes flight j : if fi,j > 0, then fj,i = 0

flight j precedes flight i : if fj,i > 0, then fi,j = 0

A third possibility would exist in case the ground times of flights i and j are long

enough to allow a mutual transfer of passengers. However, this circumstance does

not seem to be included in the model.

The binary decision variable xi,k assumes the value 1 in case flight i is assigned

to gate k and 0 otherwise.

17

The model proposed in [11] considers only gates located at a terminal where

passengers can walk between the gates instead of driving with buses. Apron

positions are represented by a dummy gate m+1 and the terminal entry/exit is

denoted as gate 0. In case the dummy gate is part of the set of gates G, the new

set is denoted as G′.

Minimize:
∑
i∈F

xi,m+1 (1)

Minimize:
∑
i∈F

∑
j∈F

∑
k∈G′

∑
l∈G′

fi,jwk,lxi,kxj,l (2)

+
∑
i∈F

∑
k∈G′

f0,iw0,kxi,k +
∑
i∈F

∑
k∈G′

fi,0wk,0xi,k

subject to:∑
k∈G′

xi,k = 1 ∀ i ∈ F (3)

xi,kxj,k(tDj − tAi)(tDi − tAj) ≤ 0 ∀ i ∈ F, k ∈ G (4)

xi,k ∈ [0, 1] ∀ i ∈ F, k ∈ G′ (5)

Ding et al. [10] used a multi objective approach which contains two parts:

Objective (1) minimizes the number of flights assigned to the apron (m+1),

whereas the second objective minimizes the total passenger walking distance. The

first part of Objective (2) refers to the walking distance of transfer passengers,

the second part to departing passengers and the third part to arriving passengers.

This mathematical model is subject to following constraints:

Constraint (3) ensures that flight i can only be assigned to exactly one gate.

In case flights i and j are assigned to the same gate k (xi,k=xj,k=1), the depar-

ture time of the preceding aircraft has to be smaller than or equal to the arrival

18

time of the succeeding aircraft. This avoidance of overlapping flights at the same

gate is indicated by Constraint (4) and does not include the dummy gate (m+1).

Furthermore, the nonlinear constraint has to be linearized if required.

Constraint (5) indicates that xi,k is binary [12].

3.2.2 Robust approach for the airport gate assignment with airline

preferences

The model described in this section is an extension of the over–constrained air-

port gate assignment problem which was presented in the previous section. Basic

constraints – like time overlapping and decision variable binarity – are taken from

the underlying model.

The three–part objective function was combined into a single aggregated objective

function (6) via the weighted–sum method:

Maximize: α1z1 + α2z2 + α3z3 (6)

where:

z1 :=
∑
k∈G

∑
i∈F

xi,kui,k (7)

z2 :=
∑
k∈G

[(
tLDk − tFA

k

)
−
∑
i∈F

xi,k

(
tDi − tAi

)]
(8)

z3 := gmin (9)

and α1, α2, α3 ≥ 0 (10)

19

subject to: ∑
k∈G(i)

xi,k = 1 ∀ i ∈ F (11)

∑
k/∈G(i)

xi,k = 0 ∀ i ∈ F (12)

tDi + tsetupk ≤ tAj + M(2− xi,k − xj,k) ∀ k ∈ G, i, j ∈ F ′

(13)

tDi + tsetupk ≤ tAj + M(2− xi,k − xj,l + pi,j + pj,i)
∀ k, l ∈ G, i, j ∈ F

where sk,l = 1

(14)

tFA
k ≤ xi,k (tAi − tsetupk) + M(1− xFF

i,k) ∀ k ∈ G, i ∈ F (15)∑
i∈F

xFF
i,k ≤ 1 ∀ k ∈ G (16)

tFA
k =

∑
i∈F

xFF
i,k (tAi − tsetupk) ∀ k ∈ G (17)

tLDk ≥ xi,k t
D
i −M(1− xLFi,k) ∀ k ∈ G, i ∈ F (18)∑

i∈F
xLFi,k ≤ 1 ∀ k ∈ G (19)

tLDk =
∑
i∈F

xLFi,k tDi ∀ k ∈ G (20)

gmin ≤ tAj − tDi + tsetupk + M(2− xi,k − xj,k) ∀ k ∈ G, i, j ∈ F ′

(21)

0 ≤ tFA
k ≤ 24

60

tIV
− 1 ∀ k ∈ G (22)

0 ≤ tLDk ≤ 24
60

tIV
− 1 ∀ k ∈ G (23)

xi,k ∈ [0, 1] ∀ k ∈ G, i ∈ F (24)

xFF
i,k ∈ [0, 1] ∀ k ∈ G, i ∈ F (25)

xLFi,k ∈ [0, 1] ∀ k ∈ G, i ∈ F (26)

gmin ≥ 0 (27)

20

The first part of the aggregated objective function (Objective (7)) represents the

airline preferences. In case flight i is assigned to gate k (xi,k=1), the preference

value ui,k is added to the objective value. The selection of the preference value

scale results in many small MIP trade–off decisions, since more flights have to be

assigned to their most preferred gate (ui,k=100) in case one flight is assigned to

an unwanted gate (ui,k= –1000).

The second part of the objective function (Objective (8)) increases the robustness

of the scheduling. A schedule is robust if the time between two consecutive flights

at the same gate is long enough to be unaffected in case of time window shifts

(e.g. flight earliness/tardiness). This objective is particularly important during

daily planning, where a schedule is created for a time period which lasts several

hours.

In the MIP, this effect is achieved by the maximization of all idle times between

two consecutive flights at all gates.

Figure 6 shows an assignment of 4 flights to 2 gates. Although a gap of 30 minutes

between two flights is already acceptable, the schedule can still be improved.

10:00 11:00 12:00 13:00 14:00

gate C31

gate C32 flight 1 flight 2

flight 3 flight 4

00:30

02:00

Figure 6: Example for a non–robust assignment (own graphic based on [9])

Figure 7 shows such an improved assignment where the smallest gap at all gates

was increased from 30 minutes to 1 hour and 15 minutes by a simple exchange

move between flight 2 and 4. The total gate idle time sum remains 2 hours and

21

30 minutes, but the smallest gap was increased, which makes the schedule more

robust.

In general terms, the third part of the objective function increases the robustness

by maximizing the smallest gap between any two consecutive flights at all gates.

10:00 11:00 12:00 13:00 14:00

gate C31

gate C32 flight 1

flight 2flight 3

flight 4
01:15

01:15

Figure 7: Example for a robust assignment (own graphic based on [9])

The mixed integer program is subject to the following constraints:

Constraints (11) and (12) ensure that flight i is assigned to exactly one gate.

However, compared to Constraint (3) a different approach was used. Gates which

are not possible for flight i, because of wingspan, length and gate characteristics,

are eliminated from the assignment process in advance.

In case flight i and j are both assigned to gate k, the gap between the departure

of flight i and the arrival of flight j has to be greater than or equal to the gate

setup time tsetupk . This is ensured by Constraint (13) and it guarantees that at

most one aircraft can be parked at gate k at the same time (pi,j + pj,i = 1).

Constraint (14) embeds the shadow restrictions into the MIP. In case a shadow

restriction exists between two gates (sk,l=1), only one gate can be occupied at

the same time. This static restriction is independent from the size of the aircraft

parked at the affected gate.

22

Constraints (15)–(17) are used to calculate the arrival time of the first flight at

every gate. Each gate can have a maximum of one first flight (Constraint (16)).

In case there is at least one flight at the gate, tFA
k assumes the smallest arrival

time of all flights assigned to gate k minus the gate setup time (Constraints (15)

and (17)).

Constraints (18)–(20) calculate the departure time of the last flight at each gate

and are composed in a very similar way as Constraints (15)–(17).

Constraint (21) ensures that gmin is smaller than or equal to the smallest gap

between any two consecutive flights i and j (assigned both to the same gate k).

Since gmin is maximized in the third part of the aggregated objective function (9)

it assumes the smallest gap at all gates.

Constraints (22)–(27) describe the ranges of the decision variables.

The first two constraints define the ranges of the first arrival time as well as the

last departure time at each gate (e.g. if tIV =5 then the range equals 00:00 – 23:55).

The last four constraints ensure the binarity and the non–negativity of the re-

maining decision variables.

23

4 Solution method

The robust approach for the airport gate assignment problem with airline prefer-

ences (RAGA–AP) MIP was solved using CPLEX, a commercial solver developed

by IBM. Since exact algorithms are rather time consuming, a metaheuristic was

adapted to the problem. The main goal of the metaheuristic is an attainment of

the good solution for the problem set, but with a much shorter runtime than the

exact algorithm.

At first, this chapter describes the metaheuristic Large Neighborhood Search in

detail. In a second step, the implemented construction heuristic as well as the

destroy and repair operators are presented.

4.1 Large Neighborhood Search

Large Neighborhood Search (LNS) is a metaheuristic which does not provide a

guarantee to find the optimal solution. However, compared to a commercial MIP–

solver, a metaheuristic needs much shorter runtimes.

LNS defines solution neighborhoods by the use of destroy and repair operators

which ruin and recreate an incumbent solution x.

Destroy operators often involve stochastic elements to increase diversification. In

case of RAGA–AP, this is achieved by the implementation of the roulette–wheel

selection7.

The selection of the degree of destruction is considered to be very important since

it defines the number of unique neighborhoods. A small percentage might lead

to problems during the exploration of the search space, whereas a high degree of

destruction might lead to similar neighborhoods and a repeated optimization.

7 A more detailed explanation of the simple roulette–wheel selection can be found in [18].

24

If we consider a CVRP with 100 customers and a degree of destruction of 15%, we

obtain 2.5×1017 different selection possibilities. Combined with different repair

operators, a high number of iterations is required to scan all possible neighbor-

hoods. Different approaches on the selection of the degree of destruction can be

found in the literature. These approaches range from a random selection during

each iteration to a stepwise increase after a certain iteration number. We choose

a fixed degree of destruction for all iterations during parameter tuning.

The implementation of repair operators allows much freedom and can consist of

heuristics and/or optimal solution techniques. Latter achieve better results but

also result in higher computation times and a limited amount of diversification

[21].

Algorithm 1 Large Neighborhood Search (source: [21])

1: input: a feasible solution x
2: xb = x;
3: repeat
4: xt = r(d(x));
5: if accept(xt,x) then
6: x = xt;
7: end if
8: if c(xt) > c(xb) then
9: xb = xt

10: end if
11: until stop criterion is met
12: return xb

The pseudocode for Large Neighborhood Search is denoted in Algorithm 1.

A construction heuristic creates a feasible solution x, which provides the input

for the LNS algorithm. xb represents the best solution found so far and xt is an

incumbent solution which is subject to an acceptance decision. At the beginning,

xb is initialized with the starting solution.

25

During every iteration, an incumbent solution xt is created by destroying and

repairing the current solution x using the implemented operators. The function

accept(xt, x) decides if xt is a feasible solution and whether it is accepted as the

new current solution x. In our case, this is done via a threshold–accepting of

98%, which allows 2% inferior solutions. In case a better solution was found, xb

is updated accordingly.

This ruin and recreate process is continued until the stop criterion is met. In

case of the RAGA–AP, the algorithm terminates after a predefined number of

iterations. At the end, the best solution is returned.

4.2 Proposed operators

This section describes the implemented construction heuristic as well as the de-

stroy and repair operators of LNS in more detail.

4.2.1 Construction heuristic

The main purpose of a construction heuristic is the creation of a feasible starting

solution where all flights are assigned and no aircraft remains ungated.

For every flight i, a list of possible gates – according to wingspan, length and

gate characteristics – is created and sorted according to their preference values.

A flight is chosen and assigned to an unoccupied gate with the highest preference

value.

In order to avoid infeasible solutions, flights with a smaller number of possible

gates have a higher probability to be chosen first.

In case the assignment process leads to such an infeasible solution, the schedule

gets deleted and the algorithm starts again.

26

4.2.2 Destroy operators

Destroy operators remove nr flights from a feasible solution and add them to

a set of removed flights R. The selection of destroy operators for the Large

Neighborhood Search tries to cover three different approaches of destruction and

was inspired by the work presented in [20].

Destroy worst – Dw

The first operator selects nr flights according to their current preference values

ui,k. If a flight is assigned to an undesired gate, a high probability ensures that it

will be removed from the schedule. The weight that flight i is selected is defined

by

max
i∈F, k∈G

{ui,k} − ui,k + 1 (28)

where max
i∈F, k∈G

{ui,k} represents the highest of all assigned preference values.

e.g.:

bad assignment: 100− (−1000) + 1 = 1101 high chance to be removed

good assignment: 100− 100 + 1 = 1 low chance to be removed

A good performance of this operator is expected especially with the large 24–hour

instance where not every flight can be assigned to its most preferred gate.

Destroy similar – Ds

The second destroy operator consists of three parts and selects nr flights according

to their time–window similarity. The motivation behind this operator lies in

27

the removal of an unfavorable candidate as well as possible substitutes featuring

similar time windows.

The first flight to be removed is one which is affecting the smallest gap gmin. The

probability for a flight to be removed is calculated as follows:

gmax − min
i∈F, k∈G

{gprevi,k , gsucci,k }+ 1 (29)

10:00 11:00 12:00 13:00 14:00

gate C34

gate C33

gate C32

gate C31

12–11+1=2

12–6+1=7 12–6+1=7 12–12+1=1

12–9+1=4 12–9+1=4

12–11+1=2

1

Figure 8: LNS operator destroy worst – first remove

Figure 8 shows the selection of the first flight. In this example, gmax is 1 hour

(12 time units) and nr equals 5. The flight assigned to gate C34 and the third

flight at gate C32 have the lowest probability values since they contribute to the

robustness the most. min
i∈F, k∈G

{gprevi,k , gsucci,k } returns the smallest gap of flight i to

the previous flight (gprevi,k) or to the succeeding flight (gsucci,k) at gate k. In case flight

i is the first or the last flight at the gate, it returns the gap to its sole neighbor;

in case flight i has no neighbor the weight assumes the value 1.

The smallest gap gmin occurs between the first two flights at gate C32, hence the

high values.

28

In the second step, and once the first flight is removed, nr − 1 = 4 flights are

selected according to their similarity to the first.

In this example, the second flight at gate C31 was selected first. Figure 9 shows

the percentage of overlapping time with the first removed flight. The higher the

overlapping value, the higher the probability that this flight will be removed in

this step.

In our case, five flights shall be removed from the assignment in total, but only

three flights overlap the ground time of the first removed aircraft. Therefore, a

third step is implemented where flights with the closest time windows to the first

remove are selected. In this example, this would be the first flight at gate C33.

10:00 11:00 12:00 13:00 14:00

gate C34

gate C33

gate C32

gate C31

25%

0% 75% 0%

0% first remove

0%

100%

Figure 9: LNS operator destroy worst – nr–1 removes

Destroy random – Dr

The last destroy operator is the most simple one. nr flights are selected and re-

moved from the feasible solution with the same probability.

A random removal increases the effect of diversification, since flights are not re-

moved by an intelligent algorithm and also good assignments have the same prob-

ability to be selected [20].

29

4.2.3 Repair operators

The basic idea of repair operators is the reestablishment of a schedule’s feasibility

after a partial removal of flights. This applies if all flights are reassigned to gates

and no constraint is violated. Inspired by the work presented in [20], two repair

operators were implemented.

Before we take a closer look at the operators, the function calc objval change(ir,k)

is introduced. If a removed flight ir is inserted into the sequence of gate k ∈ G(ir),

the function calculates the change of the gate’s objective value, denoted as ∆cir,k.

The changes in a gate’s total idle time sum titk and its total preference value sum

pk is easy to calculate.

In case of gmin, a different approach had to be chosen, since the smallest gap at

a gate (gmin
k) is only part of the aggregated objective function if it is the smallest

gap at all gates (gmin
k = gmin).

However, it is considered quite important to include gmin
k into the calculation of

∆cir,k. Instead of adding gmin
k to ∆cir,k directly, we take the deviation gdevk of the

smallest gap at a gate from the smallest gap at all gates (gdevk = gmin
k − gmin).

In case gdevk is positive, the insertion of flight ir into the sequence of gate k is

desired; in case gdevk assumes a negative value, the assignment is not favored.

To sum up, the function calc objval change(ir,k) is calculated as follows:

∆cir,k = α1pk + α2t
it
k + α3g

dev
k ∀ir ∈ R, k ∈ G(ir) (30)

Repair greedy best – Rg

As its name implies, the greedy best operator chooses the best insert position for

flight ir, regardless of the opportunity costs.

30

Based on the matrix containing all ir ∈ R × k ∈ G(ir) combinations calculated

by the function calc objval change(ir,k), the repair operator greedy best inserts a

removed flight ir to the gate with the highest ∆cir,k value.

At first, the algorithm chooses a flight according to the number of possible gates

to avoid infeasible solutions. Once flight ir is selected, it is assigned to the gate

with the best (greedy) impact on the objective value change:

(ir, k) := arg max
ir∈R, k∈G(ir)

∆cir,k (31)

In case the best gate is already occupied, ir is assigned to the second best gate

etc. After the assignment, flight ir is removed from the set of removed flights R

as well as the objective value change matrix and the ∆cir,k values are updated for

all remaining gates. The process is continued until all nr flights are reassigned.

Repair regret best – Rr

The second repair operator does not only assign a removed flight ir to its best

gate automatically, but it also considers the opportunity costs to the second best

gate. As with the greedy best operator, the regret best operator first chooses a

flight ir according to its number of possible gates.

In a second step, the algorithm inserts flight ir to a gate where the opportunity

costs between the best and the second best gate are the highest:

(ir, k) := arg max
ir∈R, k∈G(ir)

(∆c1ir,k −∆c2ir,k) (32)

The algorithm continues until all nr flights are reassigned.

31

5 Computational experiments

This section presents the obtained computational results in detail. First, the

input data as well as the parameter settings used for the model are described and

an overview about the parameter tuning procedures is given. Later, Section 5.3

presents the main results of the CPLEX/LNS calculations.

All calculations were done on a LINUX cluster consisting of 8–core nodes of IntelR©

XeonR© CPU X5550 processors clocked at 2.67 GHz each and a shared memory

of 24 GB. LNS was implemented in object–oriented C++ and the exact branch–

and–cut algorithm for the MIP was computed by IBM ILOG CPLEX optimizer

(version 12.1) embedded in a C++ concert technology.

5.1 Data sets

This section describes the source and configuration of all input data sets used

in the model and provides information about the structure of the test instances.

Furthermore, a description of the developed instance generator is given.

5.1.1 Input data

The model is solved for instances which are completely based on real life data.

Besides the flight data provided by the Austrian Aviation Safety Authority Austro

Control GmbH (ACG), additional information about minimum ground times was

supplied by the ground operations departments of Austrian Airlines (AUA) and

Niki Luftfahrt GmbH (NLY). Data regarding towing procedures and turnaround

splits was kindly provided by VIE movement control.

32

Flight data

The required flight data including flight numbers, flight callsigns and aircraft reg-

istrations of all in– and outbound flights (passenger, cargo and general aviation)

handled at VIE on Tuesday July 12th 2011 was provided by ACG.

In general, VIE’s summer schedule is busier than the winter schedule due to

an increased demand in flights to holiday destinations. School summer holidays

started on July 9th 2011 in six out of nine Austrian provinces, therefore it is

assumed to be a flight day with a slightly higher workload than usual.

Additional information about departure and arrival airports regarding Schengen

information and ICAO codes, as well as scheduled departure and arrival times

were retrieved from http://data.flight24.com and http://www.viennaairport.com.

General aviation flights which are handled by VAH via the general aviation centers

were removed from the instance since non–scheduled flights are assigned to gates

manually by VAH.

For all aircraft of AUA and NLY based at VIE, the data had to be slightly modified

since the schedule (flight–to–aircraft assignments) provided by ACG was based

on actual times of arrival/departure. However, the model presented in Section

3.2.2 uses (estimated) scheduled times, not actual times.

In case the ground time of a turnaround is below its minimum, a manual aircraft

change8 was performed to ensure enough ground time for the handling agents.

All residual in– and outbound flights were combined into several aircraft turn–

arounds (the period between arrival and departure at an airport gate) according to

their aircraft registrations and flight times. After the data cleansing, the instance

contains 401 aircraft turnarounds of passenger and cargo flights.

8 aircraft change: a different aircraft of the same company and aircraft type is assigned to
perform flight i : e.g. aircraft with registration OE-LDA is inbound Vienna and has a
delay of 1 hour. The subsequent flight of OE-LDA (OS121 to Frankfurt) is assigned to
a different aircraft (OE-LDG, also an Airbus A319) to reduce the delay of flight OS121.

33

http://data.flight24.com
http://www.viennaairport.com

Gate data and shadow restrictions

All relevant information about pier and apron gates at Vienna Intl. Airport is

described in the “Vienna civil airfield - terms of use“ available at [14]. This in-

cludes specifications about maximum aircraft dimensions and gate characteristics

(Schengen, Non-Schengen, pushback necessary,...).

The model considers all gates except parking positions located in the maintenance

area and at the general aviation centers east/west. Furthermore, parking positions

B97–B99 (located at the eastern end of the apron) are not implemented, since they

are only used as intermediate/holding positions during de–icing operations.

Information about shadow restrictions and overlapping gates can be found in the

AIP Austria9 or in the Appendix on page 57.

In total we consider 115 gates and 50 shadow restrictions for all our instances,

which resemble the actual layout of VIE.

Aircraft data

Information about all aircraft types operating at VIE was derived from the Eu-

rocontrol Aircraft Performance Database v2.0 which is available online10.

Among this are specifications about ICAO and IATA codes, wingspan, length,

wake turbulence category and engine types (e.g. turboprop aircrafts should not

be assigned to pier gates). The instance contains more than 150 aircraft types.

9 AIP Austria LOWW AD 2.24-1-2 – Aircraft Parking/Docking Chart - ICAO
10 http://contentzone.eurocontrol.int/aircraftperformance/, last accessed: June 19th 2012

34

http://contentzone.eurocontrol.int/aircraftperformance/

Preference data

The instance for the airline preferences is based on personal observations during

four years of employment at VIE and do not represent the official agreements

between the airlines and Vienna Intl. Airport since they are subject to secrecy.

Additionally, two former VIE employees completed and double–checked the data.

Preferences are represented by integer numbers ranging from –1000 to +100 de-

pending on airline, aircraft type and gate block.

Based on these observations, preferences for more than 70 airlines operating at

VIE were included.

Parameter settings

Parameter values concerning the input data (e.g. time interval, minimum ground

time and gate setup time) were adjusted according to real–world situations. Other

parameters concerning Large Neighborhood Search and CPLEX have been fixed

up–front (e.g. CPLEX runtime limit and gap limit) or after a more detailed anal-

ysis (e.g. LNS degree of destruction and destroy–/repair–operator combinations).

The length of a time interval tIV was fixed to 5 minutes (meaning one time

unit equals 5 minutes) according to real–world flight data. Scheduled arrival and

departure times are usually shown in 5 minute intervals, whereas actual times

of arrival/departure are shown in 1 minute intervals. This approach follows the

multiple time–slot model presented in [16].

Another variable that needed to be fixed was the gate setup time tsetupk . In real-

ity, this time is different for most gates since it depends very much on the gate

characteristic and the location on the apron. It primarily depends on the neces-

sity of pushback (taxi–out positions have shorter setup times). Furthermore, it

depends on the location of the pushback area. In case of VIE, a pushback at gate

35

C41 needs more time than at gate F17, because the pushback area is located in

a one–way taxilane and the succeeding aircraft has to wait until the taxilane to

the respective gate is vacant. In the model, the gate setup time was fixed to 5

minutes for all gates.

The adjustment of the objective function weights turned out to be very sensitive

and was subject to protracted tests. The main focus lies on the compliance

with the airline preferences, but a good trade–off was needed to achieve a robust

scheduling.

For the small instances, the alpha values were predefined as follows:

α1 = 1
n

α2 = 1
n

α3 = 2
n

In case of the large 24–hour instance, the objective function weights assume fol-

lowing values:

α1 = 1
1.15m

α2 = 1
1.15n

α3 = 1
10

The CPLEX–runtime limit was set to 80 hours and the gap limit to 1%.

More sensitive parameters used for LNS (e.g. degree of destruction and destroy–

and repair–operator combinations) were optimized during parameter tuning.

5.1.2 24–hour VIE instance

Our largest instance at hand – covering a timespan of 24 hours on July 12th 2011

– contains 401 turnarounds in total. 52% are operated by the Austrian Airlines

Group (Austrian, Lauda Air and Tyrolean), 16% by NIKI, 5% by Lufthansa, 2%

by AirBerlin and 25% by other airlines. Out of these 401 turnarounds, 56.4%

are Schengen, 21.4% are Non–Schengen and 22.2% are mixed flights (in– and

outbound flight are not of the same characteristic).

36

394 flights (98%) are passenger flights and only 2% are cargo flights.

Regarding night stops, 48 aircraft (12%) are parked at Vienna Intl. Airport from

the previous evening and 47 aircraft stay at the airport until the next day.

In total, 32 different aircraft types and 207 different aircraft (registrations) oper-

ated at VIE during that day, whereof 92 are hub–based (AUA and NLY).

Implementation of towing procedures

In real life, aircraft with long ground times are often towed to remote parking

positions in case they are parked at a very desired gate block. Therefore, the gate

is not occupied unnecessarily and can be used for subsequent arrivals.

At Vienna Intl. Airport, such desired gate blocks are C– (12 parking positions

located at Pier West) and D–gates (9 parking positions located at Pier East,

but only 8 gates can be used simultaneously). The new terminal SKYLINK was

not yet in operation during this master thesis project and its parking positions

(F01–F37 and F04–F36) were then treated as apron gates.

Discussions with airport managers showed that the splitting of turnarounds is

a complex task and is therefore often done manually during tactical planning.

Nevertheless, a simple splitting algorithm was implemented in the model to show

the effectiveness of towing procedures at gate planning. Turnarounds are only

split in case the preference values are highest for Pier East/West, meaning the

selection of alternative gate blocks featuring only apron gates is less desired.

The emerging parking turnarounds have preferences at A–, H– and K– parking

positions, since these gate blocks are rarely used for passenger flights.

37

In order to adapt the splitting algorithm to real life situations, it is important to

distinguish between three types of turnaround splits:

night stops from the previous evening

At VIE, the first outbound wave starts between 06:00 and 07:00. In case

the departure time of a night stop is later than 08:00, the turnaround is

split into a parking and a departure part. As a result, the aircraft is parked

at a remote parking position during the night and towed to its final parking

position before the aircraft departs to its destination. In doing so, enough

time is taken into account at the departure gate to allow handling agents

and airline crews sufficient time to prepare the aircraft for its departure.

night stops until the next day

In case an aircraft arrives later than 20:00 and stays until the next morning,

the turnaround is split again into an arrival and a parking part. After the

deboarding and the preparations for the night stop by the handling agents,

the aircraft is towed to a remote parking position until the next day.

long turnarounds during the day

The third possibility for a turnaround split occurs in case an aircraft has

an above–average ground time during the day. An example for this would

be an Austrian Airlines Boeing 767–300 which arrives in the morning from

North America and departs to Asia in the afternoon.

In this case, the turnaround is split into three parts: an arrival, a parking

and a departure part.

After the application of the splitting algorithm, the instance size increased from

401 to 431 turnarounds.

38

5.1.3 Small instances

In order to test and configure LNS for the large 24–hour instance, 15 small in-

stances were created by an instance generator which randomly creates instances

based on the characteristics of the 24–hour schedule. These instances are divided

into morning, afternoon and evening instances each containing 10, 15, 20, 25 and

35 flights. The reason for this time–wise segmentation is the heterogeneity of

traffic composition during these time intervals.

morning instances (B06 E12 *)

The time period between 06:00 and 12:00 contains the morning outbound

rush of overnight parkers (06:30–07:30) and the first traffic wave (08:00–

11:00) with a peak of 53 parking aircraft (see Figure 3 on page 6 for further

details). This includes the majority of Austrian Airlines longhaul flights,

connections to the biggest European hubs and about 40% of this day’s cargo

flights.

afternoon instances (B12 E18 *)

The afternoon interval between 12:00 and 18:00 contains three traffic waves

with peaks at around 12:15, 14:45 and 17:00. Compared to the morning

interval, where only one peak exists and most of the time windows are

arranged very similarly, the afternoon interval offers more combination pos-

sibilities of aircraft which are parked at the same gate. This also has an

effect on the LNS solution quality, which will be discussed in Section 5.3.1.

evening instances (B18 E24 *)

The third time period (18:00 – 24:00) contains two inbound waves which

peak at 19:50 and 23:15 and includes also night stops until the next morning

as well as the remaining 60% of cargo flights. As we only consider a limited

time horizon of 24 hours, the turnarounds are supposed to end at midnight.

39

Instance generator

Based on the input parameters (interval start time tSI , end time tEI and instance

size nI), the instance generator selects all flights where tSI ≤ tAi and tDi ≤ tEI .

A main task of the tool is to generate instances whose characteristics resemble

the ones present at the time interval under consideration. Hence the program

determines the current workload and generates instances with similar workloads

accordingly. This ensures that the traffic curve in the small instance develops the

same way as in the large instance (see Figure 3) and that traffic peaks and lows

are represented correctly.

The algorithm selects flights in three steps (airline, aircraft type and in the end

a specific turnaround) until the instance size equals nI :

At the beginning, an airline is picked randomly. The more flights an airline

operates within the time period, the higher the chance of this airline to be selected.

This ensures that if an airline operates 50% of flights during the defined time

interval, about nI

2
flights in the small instance are flights of this particular airline.

In case the chosen airline operates only one flight a day to/from VIE, this flight is

added directly to the instance. In every other case, the tool continues the selection

process.

In a second step, the algorithm choses an aircraft type from the airline picked in

step 1. More precisely, the instance generator selects an aircraft according to its

wake turbulence category, since this represents more or less aircraft wingspan and

length.

In the third and last step, the actual flight is chosen. The algorithm takes a look

at the instance workload and picks a flight if the workload at that time (tAi until

tDi) has not yet reached its upper limit.

40

5.2 Parameter tuning

The main objective of parameter tuning is an optimization of the LNS results as

well as a reduction of the runtime. This section describes the performed steps

applied to the used instances. At the beginning, the degree of destruction is

determined and the number of iterations is fixed.

In a second step, all destroy– and repair–operator combinations were tested, which

lead to 21 different combinations11. The abbreviations for this test are shown in

Table 4.

During each test, the stated objective value or runtime is an average of 6 LNS

runs.

Abbreviation Operator

Dr destroy random
Dw destroy worst
Ds destroy similar
Rg repair greedy best
Rr repair regret best

Table 4: LNS operator abbreviations

Small instances

First tests have shown that instances with 35 flights (B* E* F35) seemed to expe-

rience the most difficulties to reach good results. Therefore the parameter tuning

for the small instances was conducted on those three instances.

Figure 10 shows the development of the objective function depending on different

degrees of destruction (1%–70%). The number of iterations for this test was fixed

11 LNS–operator combinations: [Dr, Dw, Ds, Dr,w, Dr,s, Dw,s, Dr,w,s] × [Rg, Rr, Rg,r]
In case of a two or three operator combination, one is chosen randomly at the beginning
of every iteration.

41

to 15.000 and the selection of the destroy and repair operators was a combination

of all implemented operators (Dr,w,sRg,r).

1% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70%

12.2

12.4

12.6

12.8

13.0

13.2

13.4

13.6

13.8

14.0

degree of destruction

ob
je

ct
iv

e
va

lu
e

Figure 10: Parameter test small instances – degree of destruction

The curve peaks at a degree of 50% and flattens slightly afterwards. Given that

the values between a degree of 45–70% do not allow a distinct selection, a second

test is conducted to look at the development of the average runtime where the

best solution is found.

1% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70%

200

400

600

800

1000

1200

1400

1600

1800

degree of destruction

av
g.

ru
n
ti

m
e

b
es

t
so

lu
ti

on
(i

n
se

c.
)

Figure 11: Parameter test small instances – runtime best solution found

42

Figure 11 shows the runtime where the best solution is found, depending on the

degree of destruction.

The difficulty lies in the trade–off between objective value and runtime. Although

the runtime at 40% is significantly lower, a degree of 50% is chosen, because the

focus lies on the achievement of a higher objective value.

The final test selects the best destroy– and repair–operator combination. At first,

all 21 possibilities are tested on the three 35–flight instances and the best methods

are selected and tested on all 15 small instances.

Table 5 shows the three best operator combinations for the instances containing

Operators AOV STDEV

Dw Rr 14.04 0.08
Dw,s Rr 14.03 0.07
Dr,w,s Rr 14.02 0.04

Table 5: Parameter test F35 instances – operator combinations

35 flights (B* E* F35) as well as the respective average objective value (AOV).

Since the values are very close, the table also shows the average standard devia-

tion (STDEV).

Particularly noticeable is the fact that the single use of the repair operator re-

gret best (Rr) achieves better results in every combination with the destroy oper-

ators than the single use of Rg or the combination of all repair operators (Rg,r).

Based on these results, the three best combinations mentioned above were tested

on all 15 small instances. Taking the average objective value of 15 differently

structured instances is not a very accurate comparison method. Therefore a

comparison by ranks was introduced12.

12 For each instance, a rank between 1 and 3 is given to the three operator combinations
depending on their respective objective value. Rank 1 is assigned to the combination
with the highest value; 3 to the one with the lowest.

43

Operators Rank STDEV

Dw Rr 1.33 0.024
Dw,s Rr 1.53 0.027
Dr,w,s Rr 1.20 0.018

Table 6: Parameter test small instances – operator combinations

Table 6 shows the average ranks of the proposed operator combinations for all

small instances. The combination of all three destroy operators and the repair

operator regret best (Dr,w,s Rr) emerge to be the best selection for the small in-

stances. It achieves the highest rank and the smallest standard deviation com-

pared to the other two combinations.

24–hour VIE instance

The parameter tuning for the large 24–hour instance follows the same steps as

for the small instances. The number of flights to be removed during the destroy

phase has been varied between 10 and 120 flights, at a stepsize of 10.

10 20 30 40 50 60 70 80 90 100 110 120

29

31

33

35

37

39

41

number of removed flights

ob
je

ct
iv

e
va

lu
e

Figure 12: Parameter test VIE instance – degree of destruction

44

Figure 12 shows that, with a selection of 10 to 80 flights, good results can be

achieved. Starting from 90 removed aircraft (degree of destruction: 22.4%), the

average objective value drops significantly.

Now we want to take a closer look at the two peaks at 30 and 60 removed aircraft.

Although in the previous section a higher objective value was preferred to a shorter

runtime, this approach is questionable for this instance since the runtime range

is approximately ten times higher. In Figure 13 we can see that a selection of 30

removed aircraft reduces the average runtime by almost 50%, whereas only 1.6%

of the objective value have to be compromised for this trade–off.

10 20 30 40 50 60 70 80 90 100 110 120

2000

4000

6000

8000

10000

12000

14000

16000

number of removed flights

av
g.

ru
n
ti

m
e

b
es

t
so

lu
ti

on
(i

n
se

c.
)

Figure 13: Parameter test VIE instance – runtime best solution found

The three best operator combinations for the large 24–hour instance are denoted in

Table 7. It is quite surprising that the single use of the repair operator greedy best

achieved the best result. Nevertheless, the combination of all three destroy and

all two repair operators (Dr,w,sRg,r) is chosen, which results in a slightly worse

average objective value (–1.4%), but shows a 27% smaller standard deviation

(STDEV).

45

Operators AOV STDEV

Dr,w,sRg 40.02 1.24
Dw,s Rg,r 39.42 1.62
Dr,w,s Rg,r 39.46 0.90

Table 7: Parameter test VIE instance – operator combinations

5.3 Experimental results

This section finally presents the computational results for the small instances

as well as for the large 24–hour instance. At first, a recapitulation of the used

parameters is given. Thereafter, the results are presented and analyzed.

5.3.1 Small instances

The final calculations for the 15 small instances were performed with a 50% degree

of destruction, an iteration limit of 20.000, a mix of all three destroy operators

combined with the repair operator regret best (Dr,w,sRr), a CPLEX runtime limit

of 80 hours as well as a CPLEX gap limit of 1%.

Table 8 denotes the results of the calculations. The columns Solution, SolTime

and Gap display the best solution found with CPLEX after 80 hours of compu-

tation, the corresponding time when the best solution was found (in seconds) as

well as the CPLEX gap between the upper and lower bound.

The remaining columns show the best LNS solution found during 6 runs (Best),

the average of these 6 runs (Mean) and the average solution time when the so-

lution was found (SolTime). The last column presents the percental difference

between the solutions obtained by CPLEX and LNS.

46

Apparently CPLEX struggles quite a bit during its calculations, which is re-

flected in very high SolTimes and an average Gap of 93.1%. For two instances

(B06 E12 F35 and B18 E24 F35) no solutions are available due to memory issues.

CPLEX/MIP LNS
Instance Solution SolTime Gap Best Mean SolTime ∆ CPLEX

B06 E12 F10 15.40 67 93.7% 15.40 15.40 1.85 0.00%
B06 E12 F15 10.67 67,180 94.2% 10.67 10.67 1.35 0.00%
B06 E12 F20 12.45 129,780 92.2% 12.45 12.45 6.15 0.00%
B06 E12 F25 12.04 130,192 91.3% 12.04 12.04 4.11 0.00%
B06 E12 F35 n/a n/a n/a 10.94 10.92 835.14 n/a

average 81,805 92.9% 169.72 0.00%

B12 E18 F10 20.50 80,647 92.9% 20.50 20.50 1.26 0.00%
B12 E18 F15 20.67 56,067 91.6% 20.67 20.67 11.56 0.00%
B12 E18 F20 17.45 136,154 91.4% 17.45 17.38 542.23 0.38%
B12 E18 F25 16.44 278,398 91.2% 16.48 16.48 156.35 -0.24%
B12 E18 F35 17.06 277,552 92.3% 16.89 16.81 1,087.01 1.42%

average 165,764 91.9% 359.68 0.31%

B18 E24 F10 16.90 704 95.5% 16.80 16.80 0.43 0.59%
B18 E24 F15 14.40 129,714 94.9% 14.40 14.40 87.36 0.00%
B18 E24 F20 15.10 130,613 93.7% 15.45 15.37 538.87 -1.77%
B18 E24 F25 14.76 273,856 93.8% 14.48 14.48 274.06 1.90%
B18 E24 F35 n/a n/a n/a 14.46 14.36 828.72 n/a

average 133,722 94.5% 345.89 0.18%

Table 8: Computational results – small instances

The runtimes required by LNS are highly competitive, especially when compared

to those required by CPLEX. On average, the LNS runtimes assume values

between 0.2% and 0.3% of the CPLEX runtimes, which prove the effectiveness of

the implemented metaheuristic. Especially with instances of 10 and 15 flights, the

best solution can be found in a very short period of time, which may be caused

by the structure of the instances and its workload during the respective interval.

In 12 out of 15 cases, LNS achieves to find the best solution at least during one

47

run and for 8 instances the best solution is found in every run. For instances

B12 E18 F25 and B18 E24 F20 LNS finds better solutions than CPLEX; even at

a fraction of the CPLEX runtime.

Furthermore it is noticeable that the number of traffic peaks within an instance

time interval has a direct effect on the LNS solution quality. The lowest ∆CPLEX

values are achieved for the morning instances and the highest for the afternoon

instances. If we take a closer look at Figure 3 on page 6, we can see that the

workload during the morning interval (06:00–12:00) peaks once at around 09:30.

In case of the afternoon interval (12:00–18:00), three peaks at around 12:30, 14:45

and 17:00 are noticeable, which leads to much more combination possibilities for

two or more flights at the same gate; hence the highest average ∆–value of 0.31%.

During the evening interval (18:00–24:00), the traffic peaks twice at around 19:45

and 23:00, resulting in a ∆–value of 0.18%.

To sum up, the less traffic peaks an instance interval contains, the better the LNS

results.

5.3.2 24–hour VIE instance

To make the model more realistic, towing procedures were introduced to improve

the assignments at gate blocks where capacity limitations are most likely to occur.

The main goal of such procedures is an increase in the number of assigned aircraft

to a certain gate block with a consistent average idle time sum per gate block.

For the large 24–hour instance, CPLEX was not able to find a single solution

within the imposed time limit of 80 hours, since the n×m matrix equals 401/431

flights × 115 gates which is simply too large to be solved optimally. Therefore, a

comparison between an instance with (TOW) and one without towing procedures

(NO TOW) is drawn. This should demonstrate the importance of turnaround

splits during daily/tactical planning.

48

During parameter tuning, the number of removed flights was fixed to 30 aircraft,

the number of iterations to 40.000 and the selected LNS operators are a combi-

nation of all destroy and all repair operators (Dr,w,sRg,r).

Table 9 shows the computational results of the instance with and without towing

procedures. In case of the instance without turnaround splits (NO TOW) on

average 57 aircraft are assigned to 12 parking positions at Pier West (C–block –

Schengen) and 32 aircraft are assigned to 8 parking positions at Pier East (D–

block – Non–Schengen).

The instance including towing procedures (TOW) assigns on average 61 aircraft

to the C–block and 40 aircraft to parking positions at the D–block. The average

idle times at both piers remain constant with both instances.

NO TOW TOW improvement

Best 37.42 40.59
Mean 37.03 39.63

SolTime 4553.78 4633.68
avg. aircraft C 57 61 +4
avg. aircraft D 32 40 +8
avg. idletime C 02:40 02:40 00:00
avg. idletime D 02:35 02:30 – 00:05

Table 9: Computational results – VIE instance

Discussions with VIE airport managers showed that capacity bottlenecks appear

especially at Pier East (D–block) where Non–Schengen, Non–EU and interna-

tional flights are handled. A look at Table 9 confirms the advantages of an imple-

mentation of towing procedures, since more flights can be assigned to pier–gates

while average idle times remain constant. In case of Pier East – where a maxi-

mum of 8 gates can be handled simultaneously – this means that an additional

traffic wave (+8 flights) can be assigned to the pier gates located at the D–block,

resulting in more passenger convenience while maintaining a robust schedule.

49

6 Conclusion

In this thesis, a new mixed integer program for airport gate assignment was

developed and presented which is partly based on the over–constrained airport

gate assignment problem. Previous research focused primarily on the minimization

of passenger walking distances which is rather passenger/airline orientated.

The main objective of this model is a maximization of airline preferences as well

as a creation of a robust schedule that is as insusceptible as possible against flight

delays which arise during daily operations. In general, airport gate assignment

can be divided into tactical, daily and seasonal planning. The new model belongs

to daily planning.

At first, the problem was tested with 15 small instances and solved using a com-

mercial MIP solver which resulted in good results, but very long computational

times. Therefore, the metaheuristic Large Neighborhood Search was adapted to

the problem with the objective of decreasing the runtime of the problem while

maintaining good results.

Once the destroy and repair operators were optimized, the metaheuristic was

applied to a large instance which simulates a 24–hour traffic period at Vienna

International Airport. A version with and one without the implementation of

towing procedures was presented and compared to highlight the importance of

turnaround splits.

During these computations, Large Neighborhood Search proved to be a very effec-

tive metaheuristic for these kinds of combinatorial optimization problems.

An aggregation of different objective functions that combine passenger, airline

and airport oriented goals offers many possibilities for further research. One

particular possibility would be an assignment of flights to certain gate blocks and

further optimization within this block regarding walking distances and schedule

robustness.

50

References

[1] Babić, O., Teodorović, D., & Tošić, V. (1984). Aircraft stand assignment to

minimize walking. Journal of Transportation Engineering, 110(1), 55–66.

[2] Bolat, A. (2000). Procedures for providing robust gate assignments for arriving

aircrafts. European Journal of Operational Research, 120(1), 63–80.

[3] Braaksma, J. P. (1973). A computerized design method for preliminary airport

terminal space planning. The Transport Group, Department of Civil Engineer-

ing, University of Waterloo, Waterloo, Ontario, Canada.

[4] Braaksma, J. P. (1977). Reducing walking distances at existing airports. Air-

port forum, 7.

[5] Braaksma, J. P. & Shortreed, J. H. (1975). Method for designing airport

terminal concepts. Transportation Engineering Journal of ASCE, 101(2), 321–

335.

[6] Chang, C. (1994). Flight sequencing and gate assignment in airport hubs. PhD

thesis, University of Maryland at College Park.

[7] Delair (2011). SALLY – the airport resource management system. Avail-

able online at http://www.delair.eu/rms.html?file=tl files/delair/pdf/sally by

delair.pdf, last accessed: June 19th 2012.

[8] Diepen, G. (2008). Column Generation Algorithms for Machine Scheduling

and Integrated Airport Planning. PhD thesis, Utrecht University. Available

online at http://igitur-archive.library.uu.nl/dissertations/2008-0827-200530/

diepen.pdf, last accessed: June 19th 2012.

[9] Diepen, G., van den Akker, M., & Hoogeveen, H. (2008). Integrated gate

and bus assignment at Amsterdam airport Schiphol. In M. Fischetti & P.

Widmayer (Eds.), ATMOS 2008 - 8th Workshop on Algorithmic Approaches

for Transportation Modeling, Optimization, and Systems Dagstuhl, Germany:

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

51

http://www.delair.eu/rms.html?file=tl_files/delair/pdf/sally_by_delair.pdf
http://www.delair.eu/rms.html?file=tl_files/delair/pdf/sally_by_delair.pdf
http://igitur-archive.library.uu.nl/dissertations/2008-0827-200530/diepen.pdf
http://igitur-archive.library.uu.nl/dissertations/2008-0827-200530/diepen.pdf

[10] Ding, H., Lim, A., Rodrigues, B., & Zhu, Y. (2004). New heuristics for

over–constrained flight to gate assignments. The Journal of the Operational

Research Society, 55(7), 760–768.

[11] Ding, H., Lim, A., Rodrigues, B., & Zhu, Y. (2005). The over–constrained

airport gate assignment problem. Computers & Operations Research, 32(7),

1867–1880.

[12] Dorndorf, U., Drexl, A., Nikulin, Y., & Pesch, E. (2007). Flight gate schedul-

ing: State–of–the–art and recent developments. Omega, 35(3), 326–334.

[13] Dorndorf, U., Jaehn, F., & Pesch, E. (2008). Modelling robust flight–gate

scheduling as a clique partitioning problem. Transportation Science, 42, 292–

301.

[14] Flughafen Wien (2010). Zivilflugplatz Benützungsbedingungen. Avail-

able online at http://viennaairport.com/jart/prj3/va/uploads/data-uploads/

Passagier/Zivilflugplatz Benuetzungsbedingungen.pdf, last accessed: June 19th

2012.

[15] Flughafen Wien (2012). FWAG (group) facts & figures. Available on-

line at http://viennaairport.com/jart/prj3/va/main.jart?rel=en&content-id=

1249344074274&reserve-mode=active, last accessed: June 19th 2012.

[16] Haghani, A. & Chen, M.-C. (1998). Optimizing gate assignments at airport

terminals. Transportation Research Part A: Policy and Practice, 32(6), 437–

454.

[17] Jaehn, F. (2008). Robust Flight Gate Assignment (European University Stud-

ies Series V Economics and Management). Peter Lang GmbH.

[18] Lipowski, A. & Lipowska, D. (2012). Roulette–wheel selection via stochas-

tic acceptance. Physica A: Statistical Mechanics and its Applications, 391(6),

2193–2196.

52

http://viennaairport.com/jart/prj3/va/uploads/data-uploads/Passagier/Zivilflugplatz_Benuetzungsbedingungen.pdf
http://viennaairport.com/jart/prj3/va/uploads/data-uploads/Passagier/Zivilflugplatz_Benuetzungsbedingungen.pdf
http://viennaairport.com/jart/prj3/va/main.jart?rel=en&content-id=1249344074274&reserve-mode=active
http://viennaairport.com/jart/prj3/va/main.jart?rel=en&content-id=1249344074274&reserve-mode=active

[19] Mangoubi, R. S. & Mathaisel, D. F. X. (1985). Optimizing gate assignments

at airport terminals. Transportation Science, 19(2), 173–188.

[20] Pisinger, D. & Ropke, S. (2007). A general heuristic for vehicle routing

problems. Computers & Operations Research, 34(8), 2403–2435.

[21] Pisinger, D. & Ropke, S. (2010). Large neighborhood search. In M. Gendreau

& J.-Y. Potvin (Eds.), Handbook of Metaheuristics, volume 146 of International

Series in Operations Research & Management Science (pp. 399–419). Springer

US.

[22] Şeker, M. & Noyan, N. (2012). Stochastic optimization models for the air-

port gate assignment problem. Transportation Research Part E: Logistics and

Transportation Review, 48(2), 438–459.

[23] Shaw, P. (1998). Using constraint programming and local search methods

to solve vehicle routing problems. In Proceedings of the 4th International Con-

ference on Principles and Practice of Constraint Programming (pp. 417–431).

London, UK: Springer-Verlag.

[24] Xu, L., Wang, F., & Xu, Z. (2011). A robust approach for the airport gate

assignment. In J. J. Liu (Ed.), Proceedings of IFSPA 2010.

[25] Yan, S. & Tang, C.-H. (2007). A heuristic approach for airport gate assign-

ments for stochastic flight delays. European Journal of Operational Research,

180(2), 547–567.

[26] Yan, S., Tang, C.-H., & Hou, Y.-Z. (2011). Airport gate reassignments con-

sidering deterministic and stochastic flight departure/arrival times. Journal of

Advanced Transportation, 45(4), 304–320.

53

Abstract

The airport gate assignment problem is an important part of airport oriented

research and gained more and more in importance during the last decades due to

growing air traffic and subsequent tighter airline schedules.

The new deterministic model presented in this thesis focuses on the satisfaction

of airline preferences as well as on the generation of a robust schedule which aims

to be as insusceptible as possible against aircraft delays.

First applied to small instances derived from real–world data and then applied to

a large instance containing a 24–hour traffic progression at Vienna International

Airport, the implemented metaheuristic Large Neighborhood Search showed very

good results regarding runtime and solution quality compared to benchmarks

created by a mixed integer program solver.

Deutsche Zusammenfassung

Das airport gate assignment problem gewann in den letzten Jahrzehnten aufgrund

der steigenden Dichte des Flugverkehrs und den daraus resultierenden dichter wer-

denden Flugplänen der Fluglinien immer mehr an Bedeutung. Das in dieser Mag-

isterarbeit vorgestellte mathematische Modell konzentriert sich einerseits auf eine

gute/bestmögliche Erfüllung der Präferenzen der Fluglinien für die gewünschten

Parkpositionen, sowie andererseits auf die Erstellung einer Abstellzuordnung die

so unanfällig wie möglich in Bezug auf Flugverspätungen ist. Die implementierte

Metaheuristik wurde zuerst auf einige kleinere Testinstanzen und in weiterer Folge

auf eine große Testinstanz, die einen 24 Stunden Flugbetrieb des Flughafen Wiens

widerspiegelt, angewendet. Verglichen mit einem exakten Verfahren liefert die

Metaheuristik, bei einem Bruchteil der benötigten Rechenzeit, sehr gute (teil-

weise auch bessere) Ergebnisse.

54

Curriculum Vitae

Personal Data

Name: Gregor Gahbauer

Date of Birth: May 12th 1986

Nationality: Austria

E–Mail: gregor@gahbauer.at

Education

2005 – 2012 University of Vienna – Bachelor and Master program
field of study: Business Administration

1996 – 2004 Secondary school
”
Europagymnasium vom Guten Hirten Baum-

gartenberg“, Upper Austria

1992 – 1996 Primary school
”
St.Nikola an der Donau“, Upper Austria

Working Experience

03/2011 – 02/2012 Teaching Assistant at the Chair of Production and Operations
Management, University of Vienna, Austria

07/2010 – 08/2010 Internship Ground Operations and Sales Management,
Viennajet Bedarfsflug GmbH, Vienna, Austria

07/2006 – 10/2010 Aircraft Handling Services, Vienna Airport, Austria

Additional Skills

German mother tongue

English language proficient

Spanish fluent written and spoken

French fluent written and spoken

Language stays Cambridge (UK) 2000, Cannes (FR) 2003 and Australia 2005

55

mailto:gregor@gahbauer.at

IT skills Good programming skills in C++, HTML, PHP and mySQL
Solid knowledge in application of Microsoft Office including
Excel Solver
Basic knowledge in IBM CPLEX, ADOscore and Google Ad-
Words

Pilot licenses GPL, MiM and AFZ

Driving license B

Vienna, June 2012

56

A
p
p

e
n
d
ix

–
V

IE
g
ro

u
n
d

la
y
o
u
t

so
u

rc
e:

V
A

C
C

A
u

st
ri

a
(c

h
ar

t
sl

ig
h
tl

y
m

o
d

ifi
ed

)
av

ai
la

b
le

on
li

n
e

at
w

w
w

.v
a
cc

-a
u

st
ri

a
.o

rg

57

www.vacc-austria.org

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Literature review
	Mathematical model
	Notation
	Problem formulation
	General (static) airport gate assignment
	Robust approach for the airport gate assignment with airline preferences

	Solution method
	Large Neighborhood Search
	Proposed operators
	Construction heuristic
	Destroy operators
	Repair operators

	Computational experiments
	Data sets
	Input data
	24–hour VIE instance
	Small instances

	Parameter tuning
	Experimental results
	Small instances
	24–hour VIE instance

	Conclusion
	Bibliography
	Abstract
	Deutsche Zusammenfassung
	Curriculum Vitae
	Appendix – VIE ground layout

