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1. Introduction 

1.1. Peucedanum ostruthium (L.) Koch 

Peucedanum ostruthium (L.) Koch (Koch 1824), also called masterwort 

(German: Meisterwurz), is a species within the Apiaceae family, as are e.g. 

plants like carrot or herbs like dill or fennel. Masterwort is widely spread in 

the alpine and pre-alpine regions of the Alps, but is also found outside of 

Europe. It is a perennial herb and its average height ranges from 30 cm 

to 100 cm. The rhizome is stout and branched, the stems are terete, striate, 

hollow, simple or branched above. The leaves are grass-green, glabrous or 

hirsute at the bottom and pilose at the leaf margin. Lower leaves are ranging 

in size up to 30 cm long by 34 cm wide, they are usually 2-ternate and 

triangular in their outlines. The lobes usually measure 50-100 mm × 

40-70 mm and show ovate to lanceolate, acuminate and irregular dentate 

forms. Middle lobes are 3-lobed and lateral lobes sometimes are 2-lobed 

(Tutin et al. 1968). The large umbels have up to 50 rays bearing small 

reddish or white flowers. The fruits are 4 mm to 5 mm circular-shaped 

achens, pale-white with a brownish disk. Peucedanum ostruthium flowers 

from June to August (Hegi 1965). 

This plant prefers humid lime soil at altitudes of 1400 m to 2700 m above sea 

level in habitats such as mountain meadows, woods, cirque, tall herbaceous 

vegetations, rocky places and stream banks (Hegi 1965). 

 

Masterwort rhizomes are used as a herbal drug in traditional Austrian 

medicine for bitters, liquors and teas (Gerlach et al. 2006). “Peucedanum 

(officinale)” is the Latin-Greek name of the plant referring to the bitter taste of 

the rhizome used for medical purposes. “Ostruthium” (meaning “useful”, 

“lucky”) was added to the name in the Middle Ages. Masterwort was not 

known to ancient authors, but was used from 1560 throughout the 19th 

century as a medicinal plant. It was employed to cure bronchial catarrh, 

asthma, pestilent illnesses, epilepsy and fever, both in humans and animals 

(Düll and Kutzelnigg 2011). People in those times believed that masterwort 
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protected against witchcraft (Hegi 1965). Figure 1 shows Peucedanum 

ostruthium, the species used within this study, in the gardens of the 

Department of Pharmacognosy in Vienna.  

 

 
Figure 1: Peucedanum ostruthium (L.) Koch 

 

Coumarins and furanocoumarins are important secondary metabolites in the 

rhizomes of P. ostruthium. Within the Apiaceae and the Rutaceae family, 

about 1300 coumarins have been identified so far, and the occurrence of 

specific coumarins is used to distinguish between related species (Curini et 

al. 2006). For masterwort the most important coumarins and 

furanocoumarins are: Imperatorin, isoimperatorin, osthol, ostruthin, ostruthol, 

oxipeucedanin and peucenin (Hadacek et al. 1994). The chemical structures 

of those focused on in this thesis are shown in figure 2 on page 3. 

 

 

Coumarins and furanocoumarins show antioxidant, antimycobacterial, 

anticoagulant, antitumoral, antiviral, antifungal and anti-inflammatory activity 
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(Garcia-Argaez et al. 2000; Schinkovitz et al. 2003; Genovese et al. 2009; 

Riveiro et al. 2010; Thuong et al. 2010).  

These chemical agents are produced by many plants as a defense 

mechanism against herbivores (Hänsel and Sticher 2007), are also relevent 

for phototoxic, mutagenic, cancerogenic and heptatotoxic effects (McKenna 

2004; da Silva et al. 2009; Abraham et al. 2010). 
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Figure 2: Chemical structures of the most common coumarins and 
furanocoumarins found in Peucedanum ostruthium (Vogl et al. 2011). 

Several studies about the pharmaceutical, biological and medical use of 

Peucedanum ostruthium have been published. For instance, it is known that 

imperatorin and isoimperatorin act as harmful substances on Spodoptera 

littoralis larvae, hindering them in growing, in contrast to ostruthin and osthol, 

which do not show this effect (Ballesta-Acosta et al. 2008). 
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Ostruthin in the dichloromethane extract of masterwort rhizomes has an 

antimycobacterial effect on Mycobacterium fortuitum. Imperatorin was also 

isolated and tested, but showed no activity (Schinkovitz et al. 2003). Gracia-

Argaez et al. 2000 isolated imperatorin from Decatropis bicolor and examined 

it in the TPA ear mice model where it developed anti-inflammatory activity on 

edema. Another finding was that coumarins protect animals against MES-

induced seizures due to their anticonvulsant character (Genovese et al. 

2009). The antioxidant activity of natural coumarins was confirmed for 17 

coumarins isolated from four Korean medical plants (Thuong et al. 2010). 

For the treatment of Alzheimer’s disease coumarins like ostruthin, 

imperatorin, ostruthol and peucenin were isolated from a dichloromethane 

extract of Peucedanum ostruthium. They were shown to repress 

acetylcholinesterase-1 (Urbain et al. 2005). Psoralen (its structure is related 

to coumarins) is a parent compound of furanocoumarins and is 

therapeutically used in phytochemotherapy simultaneously with UV-A 

irradiation (PUVA) for the treatment of skin diseases. However, this therapy 

carries the risk of skin cancer (McKenna 2004).  

Furanocoumarins and coumarins show photosensibilising effects through 

interaction with the DNA at light wavelengths of 320-410 nm. As a result, 

transcriptase and polymerase are blocked and cell replication is inhibited (da 

Silva et al. 2009).  

 

Another important compound of P. ostruthium is the essential oil, which the 

rhizomes contain up to 1.25% of. Sabinene and 4-terpineol are the main 

substances of 29 compounds that could be identified in the essential oil. In 

total, 39 compounds were detected by the use of gas chromatography with 

MS detection and flame ionisation detection (Cisowski et al. 2001). 

As the process of dealing with all compounds of Peucedanum – among them 

also the phtalides cnidilide, Z-ligustilide and senkyunolide (Gijbels et al. 

1984) – would have been very extensive in time, the main focus of the study 

was laid on the coumarins and furanocoumarins. 
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1.2. Agrobacterium rhizogenes and hairy roots 

Within the bacterial genus Agrobacterium there are several strains known to 

be phytopathogens. A. tumefaciens causes crown gall disease, A. rubi leads 

to cane gall disease, and A. vitis for example causes galls on grape and 

other plant species. A. radiobacter is a non-virulent bacterium in the 

Agrobacterium genus (Miranda et al. 1992). 

Agrobacterium rhizogenes, depicted in figure 3 (old name: Phytomonas 

rhizogenes, latest scientific name: Rhizobium rhizogenes) is a Gram-negative 

soil bacterium (Conn 1942) and was identified as the origin of the so-called 

hairy-root disease in the first third of the 20th century (Riker et al. 1930; 

Hildebrand 1934). Numerous, i.e. more than 450, different plant families and 

genera are known to form hairy roots following infection with this bacterium.  

Recent studies on the comparative analyses of the 16s rDNA of 

Agrobacterium rhizogenes indicate that based on monophyletic nature and 

phenotypic generic circumscription the genera Agrobacterium, Allorhizobium 

and Rhizobium are related and joined into one genus Rhizobium (Young et 

al. 2001). 

 

 
 

Figure 3: Agrobacterium rhizogenes (strain ATCC 15834) cultured in YMB 
medium for 2 days, dark field in light microscope 
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Figure 4: Schematic overview of a Ri plasmid of Agrobacterium rhizogenes 
(modified after Chandra 2012) 

Agrobacterium rhizogenes is responsible for a neoplastic outgrowth of fine 

roots at the infection site, and infected plants show reduced vitality. These 

symptoms came to be known as the “hairy-root disease”. Transformed roots 

produce opines such as agropine, mannopine or cucumopine. Depending on 

the bacterial strain these metabolites are used as a carbon and nitrogen 

source for the bacteria. Strains of Agrobacterium rhizogenes are classified by 

the type of opines they produce, for instance the agropine, mannopine or 

cucumopine type. Experiments on comparative mapping and DNA 

hybridization point out that the DNA which is important for the hairy-root 

transformation is highly conserved. Since the 1980s, transformed roots 

induced by Agrobacterium rhizogenes are cultured in vitro because of their 

rapid growth without any requirement for exogenous phytohormones (Hamill 

and Lidgett 1997). 

The virulent strains of Agrobacterium rhizogenes contain the Ri (root 

inducing) plasmids with different gene sequences (figure 4). The T-DNA 

(transferred DNA) is the DNA which is transferred from the bacterium to the 

plant cell. These segments, approximately 10-30 kbp in size, encode for the 

Ri conjugation, opine synthesis, catabolism, initiation, transfer and integration 

of the T-DNA itself. The borders of the T-DNA region are homologous and 

25 bp in length.  
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Plasmids can be divided in strains producing mannopine and cucumopine 

with single DNA and strains producing octopine and agropine with two T-

DNAs. The two T-DNAs are classified in the TR-DNA (right DNA) and the TL-

DNA (left DNA). The root-inducing genes (rol A, rol B, rol C, rol D) are found 

in the center of TL-DNA of the agropine-producing strains. A part of the TR-

DNA are genes for the biosynthesis of auxins and the synthesis of 

mannopine and agropine. After the transfer of the TL-DNA and TR-DNA they 

are integrated in the genome of the plant cell. The TL-DNA is vital for the 

hairy-root induction (Chandra 2012). 

Plant cell transformation 

When plant cells are damaged, e.g. by an animal, they emit a simple 

phenolic substance, acetosyringone (figure 5, p. 8). Chemotactic effects 

attract Agrobacterium rhizogenes, which anchors to the wounded spot. The 

bacterium transforms the plant cell by integrating the T-DNA of its large Ri 

plasmid (root-inducing plasmid) into the genome of the infected plant. The vir 

region on the plasmid encodes for the T-DNA transfer which results in tumor-

like hairy-root growth at the infected area. After integration of the new genes 

the onc genes, also located on the plasmid, support the tumor-like growth. A 

new hormonal balance in the plant cell induces proliferation of hairy roots at 

the wounded site (Guillon et al. 2006). Hairy roots can be induced on nearly 

every plant organ. As soon as gene expression occurs, the transformed plant 

cell starts to produce opines. As stated before, these opines are used as a 

carbon and nitrogen source by the bacteria and cannot be metabolized by 

the host plant (Dingermann and Zündorf 1999). Agrobacterium rhizogenes, 

closely related to A. tumefaciens, is used for genetic engineering by cloning 

gene sequences into the T-DNA of the Ri plasmid, which then is inserted into 

the host genome (Hamill and Lidgett 1997). Furthermore, genes that encode 

for auxin und cytokinin biosynthesis are also integrated into the plant genome 

(Guillon et al. 2006). The following figure 5 (page 9) illustrates the process of 

DNA transfer into the plant genome. 
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Figure 5: Procedure of the transfer of the Agrobacterium rhizogenes T-DNA 
into the plant genome 

Secondary metabolites and hairy roots 

In the 1930s, first studies on the in vitro cultivation of non-transformed roots 

were carried out. Roots of Solanum lycopersicum were cultured in a simple 

salt mixture containing yeast extract (White 1934). In 1942, tobacco was 

used for in vitro studies, which showed that nicotine was produced by these 

root cultures, but most of the nicotine was found in the medium (Dawson 

1942). Despite the fact that several studies showed high levels of secondary 

metabolites of fast growing, non-transformed roots, in most reports growth 

regulators needed to be added to the established cultures with moderate 

growth. For this reason most of the further studies focused on disorganized 

cell suspensions (callus cultures) to obtain secondary metabolites. However, 

besides the fast growth rate of disorganized cell cultures many studies show 
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that they tend to be unstable and unreliable in regard to the production of 

secondary metabolites (Hamill and Lidgett 1997).  

On the other hand hairy-root cultures established with Agrobacterium 

rhizogenes often show a rapid growth comparable to cell suspensions, but 

they are fully differentiated tissues which produce characteristic metabolites 

of the transformed plant. Yet, in contrast to cell-suspension cultures, hairy 

roots show a high chromosomal stability. Also, hairy roots tend to grow fast 

without any growth regulators added to the culture medium. It is possible that 

secondary metabolites which are produced in other tissues of the plant, e.g. 

leaves, are not synthesized in hairy roots. For example, studies on 

Catharanthus roseus revealed that vindoline and vinblastine were found in 

leaves of in vitro grown shoot cultures, but only very small amounts were 

present in hairy-root cultures of this plant (Parr et al. 1988). However, recent 

studies show that hairy roots are also capable of accumulating the same 

secondary metabolites produced in the aerial parts of the plant (Kim et al. 

2002). Lawsonia inermis hairy roots cultured in darkness in MS medium are 

able to accumulate lawsone, usually formed in the upper parts of this plant 

(Bakkali et al. 1997). Likewise, artemisinin was known to be produced in the 

aerial parts of Artemisia annua (Wallaart et al. 1999), but studies show that 

hairy roots are able to produce artemisinin as well (Wang et al. 2001; Liu et 

al. 2002; Wang and Tan 2002). Hairy roots are proved to be genetically and 

biochemically stable and have the ability to synthesize natural compounds 

(Christey and Braun 2004; Georgiev et al. 2007; Srivastava and Srivastava 

2007), as well as other compounds which are not found in non- transformed 

roots; for instance transformed roots of Stellaria baicalensis Georgi produce 

glucoside conjugates of flavonoids rather than the glucose conjugates of non-

transformed roots (Nishikawa et al. 1999). 

The biochemical and genetic stability of hairy roots also offers advantages 

compared to cell suspensions. It is reported that after a cultivation period of 

20 weeks hairy roots of Valeriana wallichii DC induced with A. rhizogenes 

contain an amount of valepotriate which is 2 to 3.3 times higher than in non-

transformed roots (Banerjee et al. 1998).  
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1.3. Aim of this study 

This thesis addresses the possibility of establishing hairy roots in 

Peucedanum ostruthium by developing and testing a series of techniques 

and methods indicating how the use of three different wild-type strains of 

Agrobacterium rhizogenes (LBA 9402, TR 105, ATCC 15834) affect the 

formation of hairy roots. Given the evidence that different wild-type strains 

vary in their capability on hairy root induction and exhibit a different influence 

on the production of secondary metabolites, an examination of these factors 

seems essential (Ionkova and Fuss 2009). 

 

The first aim deals with establishment of hairy roots. To answer this question, 

we begin by taking a closer look at the plant-wounding techniques: Generally, 

one prospect is to scratch petioles and leaves several times at the leaf veins 

with a surgical blade and to pipet bacterial suspension culture on the 

wounded region. Another procedure would be to dip a surgical blade into the 

bacterial suspension culture before scratching. Also, the practicability of 

cutting off leaves of plantlets and dipping the cut end of the petiole into the 

bacterial culture was to be investigated. Plants cultivated in vitro as well as 

such grown in vivo were to be compared. Subsequently, transformed hairy 

roots were to be grown in three different basal media, so that one could 

observe the effects that these media would have on root growth. 

 

In the second part of this study, the effects of the bacterial strain used for 

transformation, and the effects of the culture medium on the roots’ secondary 

metabolism, especially the coumarins in transformed roots, were to be 

examined. Hairy roots promise to be faster in growth, and to produce more 

biomass than non-transformed in vitro cultivated roots, still being closely 

bound to the production of secondary metabolites. Identification of the 

coumarins and furanocoumarins was to be achieved by HPLC-DAD analysis, 

and was to be compared with previous studies of non-transformed, rhizomes 

grown in nature. 

 

Figure 6 on page 11 shows the main procedural steps to gain the results for 

this study. 
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Figure 6: A schematic overview of the methods and main steps used in this 
diploma thesis (the term co-cultivation refers to the cultivation of two or more 
different organisms in one culture vessel) 
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2. Materials and Methods 

2.1. Plant material 

Shoot cultures were established within the context of the Austrian Science 

Fund (FWF) NFN-Project S10704-B037. Seeds were purchased from the 

company Jelitto Staudensamen GmbH, Schwarmstedt, Germany. A total of 

720 seeds were surface-sterilized (see below), with 288 seeds pretreated by 

soaking them for 24 hours in an aqueous solution of 500 ppm gibberellic 

acid. Afterwards they were washed and dried at 35°C in a drying chamber 

before the germination started. Seed germination was performed in 58 mL 

test tubes containing 13 mL of ½ MS medium (refer to chapter 2.3, page 16) 

without any growth regulators. Half of the seeds were germinated at 25±1°C 

in a 16-hours photo period with a light regime of 50 µM⋅m-2⋅s-1 (SYLVANIA 

GRO-LUX® fluorescent tubes) and the other half was pretreated for four 

weeks at 5±1°C in darkness before transferring them to the above mentioned 

conditions. Shoot multiplication was maintained on ½ MS medium containing 

0.5 µM benzylaminopurine. After the multiplication stage the shoot cultures 

were kept on ½ MS medium without growth regulators, under the conditions 

described above. 

In vivo plants had been collected and identified by J. Saukel (Department of 

Pharmacognosy, Vienna) and were readily available in the gardens of the 

department. 

Surface sterilization 

All leaves taken from the open ground needed to be surface-sterilized before 

inoculation. The leaves were first washed thoroughly under running tap 

water. Subsequently, they were submerged in 10% ethanol for 5 minutes and 

then treated with aqueous solutions of sodium hypochlorite (W. Neuber’s 

Enkel GmbH) for 20 minutes. Two different concentrations of sodium 
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hypochlorite (1.7% and 2.1% active chlorine, respectively) were tested. The 

explants were then washed four times with autoclaved water. 

The surface sterilization of seeds was performed basically in the same way 

but with some modifications: The samples were submerged in 30% ethanol 

for 10 minutes and the concentration of the aqueous solution of sodium 

hypochlorite was adjusted to 4.25 active chlorine, with a treatment duration of 

30 minutes. 

Types of explants 

Different types of explants were used in successive experiments. On the one 

hand, leaves were excised from in vivo or in vitro grown plants, trimmed to a 

size of approximately 2 cm2 (in vitro) to 8 cm2 (in vivo plants), and the leaf 

veins slightly scratched with a surgical blade. On the other hand, whole in 

vitro cultivated plantlets were used, with petioles scratched. Finally, the 

leaves of in vitro grown plants were removed at approximately half the length 

of the petiole and the remaining “cut” plant was used for infection. 

 

2.2. Agrobacterium rhizogenes 

In the present study three different wild-type strains were used: LBA 9402, 

TR 105, and ATCC 15834. We are grateful to Prof. Dr. Maike Petersen, 

Institute of Pharmaceutical Biology and Biotechnology, Philips University of 

Marburg, for providing the LBA 9402 and TR 105 strains. The strain ATCC 

15834 was purchased from LGC Standards, Germany. 

The bacteria were grown in 100 mL Erlenmeyer flasks with 20 mL liquid YMB 

medium (see chapter 2.3. on page 16). All samples were incubated on a 

rotary shaker for 2 days with 70 rpm at a room temperature of 25±1°C and 

70% relative humidity. 

For long term storage the bacteria were cultured in petri dishes on YMB 

medium at 4°C. 
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2.2.1. Hairy-root induction 

Leaves from in vivo grown and in vitro grown cultures were scratched several 

times at the leaf veins with a surgical blade that had been dipped into the 

bacterial suspension culture. Petioles from in vitro cultures were scratched 

the same way. 

Alternatively, petioles and leaf veins of in vitro grown plantlets were 

scratched, but now the bacterial suspension culture was pipetted on the 

wounded region. Also, leaves of in vitro grown plantlets were cut off, and the 

cut end of the petiole dipped into the bacterial culture. Figure 7 illustrates the 

different wounding strategies. All explants were then further co-cultivated on 

½ MS medium (the term “co-cultivation” refers to the cultivation of two or 

more different organisms in one culture vessel). 

 

   
 
Figure 7: Peucedanum ostruthium wounding areas for the co-cultivation with 
different Agrobacterium rhizogenes strains; (A) explants established from in 
vivo samples – scratched leaf veins; (B) explants established from in vitro 
samples – scratched petioles; (C) explants established from in vitro explants 
– leaves cut off 

2.2.2. Rhizogenesis 

After the bacterial inoculation, the samples were kept at 25±1°C, with a shelf 

temperature of 23±1°C and a relative humidity of 70%. One group of samples 

was kept under a 16-hours photo period, the other one was kept in complete 

A B C 
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darkness – both groups were stored for 3 to 4 weeks in baby food jars with 

40 mL of solid ½ MS medium (see chapter 2.3, page 16). 

When hairy roots had formed, they were cut off from the primary explants 

and inoculated into 20 mL of each of three basal media in 100 mL 

Erlenmeyer flasks and treated three times with 0.5 g/L of the antibiotic 

Cefotaxim-Na (Claforan®). Each treatment lasted 3 weeks. At the end of the 

subculture a sample of the liquid medium was inoculated on YMB medium for 

2 days to monitor the presence of bacteria. 

2.2.3. Hairy-root culture 

Seven fast-growing hairy-root clones were cultivated for six weeks after the 

antibiotics treatment and labeled in the following way: 

 “L”, “T”, or “A” is the code for the bacterial strains LBA 9402, TR 105, and 

ATCC 15834, respectively, which were used for the induction of hairy roots. 

“HM”, “MS”, or “B5” are codes for the nutrient medium (½ MS, MS and B5 

medium, respectively). 

 

Upon availability, hairy-root clones were inoculated into 50 mL of each of the 

three basal nutrient media, utilizing 250 mL Erlenmeyer flasks. The hairy 

roots were sub-cultivated every 3 to 4 weeks and grown in darkness on a 

rotary shaker at 70 rpm, at a room temperature of 25±1°C and a relative 

room humidity of 70%. After each cultivation cycle the fresh weight was 

measured. When three cultivation cycles had been completed, the hairy roots 

were dried for 2 days at room temperature, and the dry weight was 

determined. 

2.3.  Culture media 

Plant-culture media 

MS and the modified ½ MS media were based on the formulation of 

Murashige and Skoog (1962), and the B5 medium on the formulation of 

Gamborg et al. (1968). All chemicals used in this study were of standard 

quality except of the sucrose which was of household grade. For easier 
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handling the stock solutions were prepared as follows: Each macronutrient 

(100-fold stock) was weighed on a micro scale and dissolved in 1 L of 

distilled water and stored in the refrigerator at 4°C. For the FeSO4⋅7H2O 

solution (100-fold stock), Na2-EDTA was dissolved first before the 

FeSO4⋅7H2O was added. Stock solutions of vitamins (200-fold) and 

micronutrients (1000-fold) were prepared in the same way and filled up to a 

final volume of 500 mL. 

For media preparation, myo-inositol (100 mg/L) was suspended in distilled 

water and the amount of stock solution for each medium (10 mL/L 

macronutrients, 5 mL/L vitamins and 1 mL/L micronutrients) was added. 

½ MS medium was prepared with 5 mL/L macronutrients. The sucrose 

concentration was 3% in all three media, and the pH value was adjusted to 

5.7±0.1 with aqueous KOH. 

Before autoclaving, the medium was filled into 100 mL Erlenmeyer flasks 

(20 mL medium) or 250 mL Erlenmeyer flasks (50 mL medium). The flasks 

were closed with cellulose plugs and autoclaved for 20 min at a pressure of 

1 bar and a temperature of 121°C. All media were stored in darkness at 5°C 

for further use. 

 

For solid media, 3 g/L Gelrite® was added and 40 mL of medium were filled 

into 250 mL baby food jars. For the multiplication of shoot cultures the growth 

regulator benzylaminopurine was added to the medium before autoclaving at 

a concentration of 0.5 µM. After closure with Magenta B-caps the jars were 

autoclaved as described above. 

13 mL of germination medium (solid ½ MS) was filled into 58 mL test tubes 

and closed with Magenta 2-way caps and autoclaved like the other media.  

A. rhizogenes culture media 

YMB medium (Wright et al. 1930) was used to cultivate the bacteria. The pH 

value was adjusted to 7.2±0.1 with aqueous KOH and autoclaved in 100 mL 

Erlenmeyer flasks as described above. 
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For the solid YMB medium, 8 g/L agar (MERCK) was added before 

autoclaving. After autoclaving, 30 mL of the medium were dispensed into 

petri dishes (60 mm) under sterile conditions. 

2.4. Identification and quantification of hairy roots by HPLC-DAD 

 

For the coumarin analysis, 0.1 g of powdered hairy roots was extracted with 

4 mL of dichloromethane using reflux extraction for 15 min at 40°C. 

Subsequently, the obtained solution was filtered, evaporated to dryness, and 

re-dissolved in 0.5 mL of methanol for HPLC analysis. 

The HPLC instruments used for this analysis were made by Shimadzu 

(Kyoto, Japan). A CBM-20A system controller, a DGU-20A5 membrane 

degasser, an LC-20AD solvent delivery unit, an SIL-20AC HT autosampler, a 

CTO-20AC column oven, and an SPD-M20A photodiode array detector were 

used for quantification (Vogl et al. 2011). 

Data analysis was performed using the chromatography software LCsolution 

1.2 (Shimadzu). 

Chromatographic separation was achieved on a 150 mm 2.1 mm i.d., 3 μm, 

Acclaim 120 C18 reversed-phase column, with a 10 mm 2.1 mm i.d., 5 μm, 

Acclaim 120 C18 guard column from Dionex (Germering, Germany), at 38°C 

and a flow rate of 0.5 mL/min. Water (modified with 0.01% acetic acid) and 

MeCN were used as mobile phases A and B, respectively. Gradient elution 

was performed as follows:  

25-37% of B in 6 min, 37-45% of B in 8 min, 45-65% of B in 10 min, 65-95% 

of B in 1 min, and isocratic at 95% of B for 5 min. The injection volume was 

20 μL for each sample (Vogl et al. 2011). 

To identify the main coumarins, chromatograms and UV spectra were 

compared at 310 nm to the seven major coumarins identified by Vogl et al. 

(2011) via HPLC-DAD. Imperatorin with a purity of 99% was purchased from 

Herboreal Ltd. (Edinburgh, UK) and was chosen as an internal standard. 
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3. Results 

3.1. Establishment of shoot cultures 

Before the establishment of in vitro cultures was started, the seed germina-

tion ability had been tested by inoculating seeds in petri dishes on wet filter 

paper disks. As illustrated in figure 8, the germination rate was rather poor, 

therefore we also tested a pretreatment of the seeds with gibberellic acid 

(500 ppm aqueous solution, soaking for 24 hours). Additionally, we also 

subjected the seed cultures to a four-week cold treatment at 5°C before the 

transfer to the standard 25°C condition. It is known that a cold pretreatment 

can reduce the period of dormancy. 

 

 
 
Figure 8: Testing the germination ability of Peucedanum ostruthium seeds. 
left: petri dish with wet filter paper and seeds, right: seedling of masterwort 

Out of the 720 seeds which were singly inoculated for germination (see table 

1 on page 20), 334 cultures turned out to be contaminated. In 329 cultures 

which could be established in aseptical culture, just 57 seeds germinated in 

total. The four-week pretreatment at a temperature of 5±1°C had a noticeable 
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influence on the germination: 43 plantlets developed under this condition, 

while only 14 seeds germinated without the cold pretreatment. Both the pre-

treatment with gibberellic acid and the cold-temperature treatment turned out 

to positively influence the germination of the Peucedanum ostruthium seed 

batch which was used in the present study.  

 

Table 1: Germination of Peucedanum ostruthium seeds established at tem-
peratures of 5°C and 25°C, with and without gibberellic acid pretreatment 
 

pretreatment T (°C) seeds contaminated cultures 
established  seedlings %* 

- 25 216 105 111 11 10 

- 5 216 92 124 24 19 

GA3 25 144 78 66 3 5 

GA3 5 144 59 86 19 22 

* germination rate 

 

 

After six to eight weeks several shoots formed on the multiplication medium. 

The multiplication was performed on solid ½ MS medium containing 0.5 µM 

benzylaminopurine (figure 9 on page 21, A). The shoots were separated and 

5 to 6 shoots were inoculated for 6 weeks on solid ½ MS medium. Clone 

POS9 of the established shoot cultures showed the best performance in 

propagation. For this reason this clone was chosen for further co-cultivation 

with Agrobacterium rhizogenes (figure 9 on page 21, B). 
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Figure 9: Shoot cultures of Peucedanum ostruthium (A) Multiplication on 
½ MS medium containing 0.5 µM benzylaminopurine, (B) Culture for inocula-
tion with Agrobacterium rhizogenes on ½ MS medium after multiplication  

 

To investigate whether Agrobacterium rhizogenes is able to induce hairy-root 

formation in Peucedanum ostruthium, explants of in vivo and in vitro plants 

were wounded and incubated with the bacterial culture. In case the T-DNA 

transfer of the Agrobacterium to the host plant was successful, hairy roots 

emerged at the wounded area after 3 to 4 weeks, as shown in figure 10 on 

page 22. 

 

A B 
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Figure 10: Agrobacterium rhizogenes-mediated hairy-root induction in 
Peucedanum ostruthium after 3 to 4 weeks on ½ MS medium (A) in vivo 
explant with hairy-root formation at scratched leaf veins; (B) in vitro explant 
with hairy-root formation at scratched petiole 

3.2. Plant-wounding techniques 

Generally, a number of different infection techniques have been described for 

the establishment of hairy-root cultures. Therefore we tested different 

approaches in order to achieve successful infection, and further hairy-root 

formation, on a selected clone of P. ostruthium, and also on leaf explants 

taken from plants growing naturally, i.e. in vivo. 

In vitro grown shoot cultures that were just decapitated (”cut” plantlets: the 

leaf blades were cut off), and dipped into the bacterial suspension culture 

with the cut part of the petiole, did not form any hairy roots at all. Thus, our 

experiments indicate that this infection method is not suited for the 

establishment of hairy roots in our given P. ostruthium clone, and with the 

utilized Agrobacterium strains. 

 

A B 
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In contrast, six samples of scratched leaves petioles that had bacterial 

suspension culture pipetted on the wounded region had produced hairy roots. 

In these explants Agrobacterium rhizogenes strain LBA 9402 did not show 

any hairy-root formation with this technique. Both TR 105 and ATCC 15834 

induced hairy roots at the wounded area three times each (Figure 11). 

 

 
Figure 11: Hairy-root induction in P. ostruthium of scratched leaf veins that 
had been pipetted on with Agrobacterium rhizogenes strain LBA 9402, ATCC 
15834 and TR 105 

Moreover, five samples of petioles that had bacterial suspension culture 

pipetted on their scratched side had produced hairy roots. Hairy roots 

established with Agrobacterium rhizogenes strain LBA 9402 and ATCC 

15834 each showed hairy-root formation in one explant only. TR 105 formed 

hairy roots three times and was the strain performing best with this technique 

(Figure 12, p. 24). 
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Figure 12: Hairy-root induction in P. ostruthium of scratched petioles, pipet-
ted-on with Agrobacterium rhizogenes strain LBA 9402, ATCC 15834 and TR 
105 

Although the pipetting process was carried out very carefully, in some cases 

bacterial suspension dripped onto the nutrient medium. As a consequence, 

bacterial growth on the medium eventually resulted in death of the explants. 

 

For all Agrobacterium rhizogenes strains used in this study the best way to 

obtain hairy roots was to scratch the petiole. The surgical blade was dipped 

into the bacterial suspension culture before scratching, thus no excess 

bacterial suspension could drip on the nutrient medium. Strain LBA 9402 

induced 9 hairy roots, ATCC 15834 16 and TR 105 25 hairy roots (Figure 13, 

p. 25). The root-formation rate for strain TR 105 was always the highest 

except in this case. Strain ATTC 15834 (55%) showed a little higher 

transformation rate than TR 105 (54%) with this technique. The same is true 

for strain that LBA 9402 (43%) showed the highest transformation rate when 

treated with this technique in contrast to all other techniques used on this 

strain. 
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Figure 13: Hairy-root induction in P. ostruthium of scratched petioles with a 
surgical blade with Agrobacterium rhizogenes strain LBA 9402, ATCC 15834 
and TR 105 

The results obtained from all different techniques and all A. rhizogenes 

strains with in vitro grown plantlets are shown in figure 14, page 26. 

Furthermore all plant wounding techniques are summarized in table 2. 

Explants which were scratched and which the bacterial suspension culture 

was pipetted on were similar in regard of the transformation rate of 18% and 

23%. It is shown that scratching the petioles with a surgical blade which was 

dipped into the bacterial suspension culture before resulted in the highest 

transformation rates of around 50%. This technique was the best suited for 

our hairy-root induction in Peucedanum ostruthium. Through all transform-

ation techniques, except the “cut”-plantlets technique used in this study, the 

strain TR 105 showed the best results. Root-formation frequency is given as 

the number of explants forming hairy roots, divided by the total number of 

explants, and multiplied by 100.  

 

Table 2: Results of plant-wounding techniques with all three different Agro-
bacterium rhizogenes strains 

strain leaf dipped 
(%) 

petiole dipped 
(%) 

petiole scratched 
(%) 

"cut" plantlets 
(%) 

LBA 9402 0 20 43 0 
ATCC 15834 27 20 55 0 
TR 105 60 60 54 0 
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Figure 14: Influence of wounding techniques on hairy-root induction in P. 
ostruthium infected with different Agrobacterium rhizogenes strains 

 

3.2.1. Co-cultivation of A. rhizogenes and P. ostruthium 

Within our studies a total of 381 samples of Peucedanum ostruthium (191 in 

vitro-explants and 190 in vivo-explants) were inoculated with A. rhizogenes, 

applying the different techniques previously described. Out of this total 

number, 174 samples did not show any formation of hairy roots. In 86 

cultures the explants died during the cultivation, and further 60 cultures 

turned out to be contaminated with Agrobacterium suspension culture that 

had dripped on the medium, or were unusable because of an unsuccessful 

surface sterilization. 

Out of all samples, 61 showed hairy-root formation at the wounded area.  

 

In vivo explants which were only scratched at the leaf veins showed a very 

low hairy-root formation rate in contrast to in vitro explants. Of the 190 in vivo 

explants only 3 formed hairy roots (Figure 15, p. 27). In that case surface 

sterilization may have failed to render the explants sterile. Because of the low 

transformation rate of in vivo explants we focused on further experiments on 

explants taken from in vitro. 
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Figure 15: Hairy-root induction in P. ostruthium performed form explants 
taken from in vitro and in vivo plants and infected with different Agrobacte-
rium rhizogenes strains 

Peucedanum ostruthium showed no hairy-root formation under light 

conditions, as can be seen in figure 16. Neither the plant-wounding technique 

nor the bacterial strains used for this experiment had any influence on 

forming hairy roots under this condition. For this reason all further studies 

were carried out in complete darkness. 

 

 
Figure 16: Results of co-cultivation in Peucedanum ostruthium infected with 
different Agrobacterium rhizogenes strains under light conditions (n=136) 
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After infection, 245 samples were cultivated in the dark. Out of these, 106 

samples did not form hairy roots, while 51 explants died during the process 

and further 27 cultures became contaminated. On 61 explants (25%) hairy 

root-formation could be observed. 

 

64 cultures were infected with Agrobacterium strain LBA 9402 (Figure 17), 

out of these explants 19% showed no hairy-root formation at all, 10% died 

during the cultivation and 6% were contaminated. Hairy roots were formed in 

7% of the samples, which is the lowest transformation rate of all strains used 

in this thesis. 

 

 
Figure 17: Results of co-cultivation in Peucedanum ostruthium infected with 
Agrobacterium rhizogenes strain LBA 9402 (n=64) 

 

Figure 18 on page 29 shows the results of the infections done with strain 

ATCC 15834. No hairy-root formation was perceived for 34%, 21% came out 

to be dead and 9% were contaminated. 19% formed hairy roots, the second 

highest value of all three Agrobacterium strains. 

 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 %
 

no hairy root 
formation 

dead contamination hairy root 
formation 

strain LBA 9402 



Results 

 

29 

 
Figure 18: Results of co-cultivation in Peucedanum ostruthium infected with 
Agrobacterium rhizogenes strain ATCC 15834 (n=91) 

 

In figure 19 the outcome of the co-cultivation of strain TR 105 and 

Peucedanum ostruthium is shown. This strain showed the highest 

transformation rate of 26% over all of the strains used in this study. 36% of 

90 explants showed no hairy-root formation, 12% died during the process 

and 7% came out to be contaminated. 

 

 
Figure 19: Results of co-cultivation in Peucedanum ostruthium infected with 
Agrobacterium rhizogenes strain TR 105 (n=90) 
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3.2.2. Virulence of A. rhizogenes strain 

The three wild-type strains of A. rhizogenes exhibited a varying ability to 

induce hairy-root formation: strain TR 105 induced hairy-root formation in 29 

samples, strain LBA 9402 on 11 explants, and strain ATCC 15834 in 21 

cultures (Figure 20). Strain TR 105 showed the highest virulence for hairy-

root induction, followed by strain ATCC 15834. The hairy-root induction 

frequency as detailed in figure 20 was calculated as the number of explants 

infected with a bacterial strain of Agrobacterium rhizogenes, divided by the 

total number of explants infected with this strain, and multiplied by 100. 

 

 
Figure 20: Frequency of hairy-root induction in Peucedanum ostruthium 
infected with different Agrobacterium rhizogenes strains cultivated in 
darkness 

3.3. Influence of basal medium on hairy-root growth 

It became evident that the choice of the basal medium had an influence on 

the growth rate, which also depended on the specific hairy-root clone. Figure 

21 and figure 22 (page 31) illustrate the biomass increase of samples T22HM 

(½ MS medium), T22MS (MS medium) and T22B5 (B5 medium) infected with 

A. rhizogenes strain TR 105 after 6 weeks and 9 weeks of cultivation, 

respectively, depending on the basal media. 
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Figure 21: Hairy-root culture of Peucedanum ostruthium (Agrobacterium 
rhizogenes strain TR 105) after 6 weeks of cultivation in media ½ MS (left), 
MS (middle) and B5 (right)  

 

Figure 22: Hairy-root culture of Peucedanum ostruthium (Agrobacterium 
rhizogenes strain TR 105) after 9 weeks of cultivation in media ½ MS (left), 
MS (middle) and B5 (right) 
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The ½ MS nutrient medium in most cases resulted in moderate growth rates, 

except for samples T52 and T54, for which this medium seemed to be the 

most suitable. 

The B5 nutrient medium turned out to be the most performant medium for 

hairy-root cultivation in this study with Peucedanum ostruthium. Nearly every 

sample showed a noticeable increase in biomass, from 1.5- up to 9-fold of 

the initial fresh weight. 

Hairy roots established with A. rhizogenes strain LBA 9402 (sample L8) 

showed the least increase in growth, followed by sample A11 (strain ATCC 

15834). All other hairy roots were established with strain TR 105 (see table 3 

for details). 

 

Table 3: Influence of culture media on hairy-root culture of Peucedanum 
ostruthium, established with different Agrobacterium rhizogenes strains, and 
cultivated in ½ MS, MS and B5 medium for 3 weeks 
 

sample flask medium start weight 
(g) 

end weight 
(g) 

increase 
(%) 

T53 
(strain TR 105) 

HM ½ MS 0.29 0.372 28 

MS MS 0.46 1.05 128 

B5 B5 0.343 0.706 106 

A11 
(strain ATCC 5834) 

HM ½ MS 0.11 0.141 28 

MS MS 0.025 0.035 40 

B5 B5 0.045 0.083 84 

T51 
(strain TR 105) 

HM ½ MS 0.12 0.19 58 

MS MS 0.054 0.108 100 

B5 B5 0.164 1.634 896 

T22 
(strain TR 105) 

HM ½ MS 0.324 1.66 412 

MS MS 1.525 7.326 380 

B5 B5 1.89 14.452 665 

T54 
(strain TR 105) 

HM ½ MS 0.059 0.11 86 

MS MS 0.09 0.188 109 

B5 B5 0.151 0.254 68 

T52 
(strain TR 105) 

HM ½ MS 0.408 0.694 70 

MS MS 0.073 0.112 53 

B5 B5 0.26 0.4 54 
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Table 3: continued: 

 

 

Hairy roots fresh and dry weight for HPLC analysis 

All samples showed the same ratio (approximately 10:1) of fresh to dry 

weight and were subsequently subjected to HPLC analysis (table 4). 

 

Table 4: Fresh and dry weight of hairy-root clones of P. ostruthium for HPLC 
analysis 

 

sample flask medium start weight 
(g) 

end weight 
(g) 

increase 
(%) 

L8 
(strain LBA 9402) 

HM ½ MS 0.271 0.713 163 

MS MS 0.673 1.425 112 
B5 B5 0.731 2.48 239 

 

sample name 
 

flask medium fresh weight (g) dry weight (g) 

T22B5 
(strain TR 105) 

A B5 2.061 0.249 

B B5 4.183 0.396 

C B5 3.364 0.323 

D B5 1.662 0.173 

T22HM 
(strain TR 105) 

B ½ MS 0.765 0.060 

C ½ MS 0.562 0.047 

T22MS 
(strain TR 105) 

A MS 2.025 0.188 

B MS 1.926 0.154 

C MS 2.755 0.230 

T55B5 
(strain TR 105) 

I B5 1.140 0.128 

J B5 1.113 0.127 

K B5 1.464 0.155 

L B5 0.971 0.112 
T57B5 

(strain TR 105) A B5 2.023 0.228 
T53B5 

(strain TR 105) D B5 1.264 0.151 
L8B5 

(strain LBA 9402) A B5 1.732 0.186 
L8MS 

(strain LBA 9402) A MS 1.013 0.115 
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3.4. HPLC Analysis 

Four coumarins (oxipeucedanin, imperatorin, isoimperatorin and ostruthin) 

were identified by comparing their UV spectra at 310 nm and the retention 

times to those of the major coumarins identified in a previous study (Vogl et 

al. 2011). Figure 23 illustrates the main coumarins found in wild collection of 

Peucedanum ostruthium rhizome. The samples were collected in the 

Weisspriachtal in Salzburg. Ostruthol, osthol and peucenin could not be 

detected in the hairy-root lines established in this study. 

On the one hand some coumarins and furanocoumarins were not detectable 

in our samples, but on the other hand unknown substances occurred in near-

ly all samples. 

 

  
 
Figure 23: HPLC chromatogram (Vogl et al. 2011) of P. ostruthium rhizome 
from a wild collection in the Weisspriachtal, Salzburg. Peak numbers refer to 
oxypeucedanin hydrate (1), oxypeucedanin (2), peucenin (3), ostruthol (4), 
imperatorin (5), osthol (6), isoimperatorin (7) and ostruthin (8)  

At first, the analyses of the dichloromethane extracts revealed that the 

concentration of the detectable coumarins (Table 5, p. 35) was distinctly 

lower than in wildly grown Peucedanum ostruthium. The sample T22B5 

contained all four identified coumarins. In T22HM, no coumarins at all could 

be detected – most likely the concentrations were too low to obtain a clear 

result. 

Imperatorin and isoimperatorin were found in 6 of all 8 analyzed samples.  

No other known coumarins were found in the hairy roots of Peucedanum 

ostruthium used in this study, although some peaks showed a coumarin-like 

UV spectrum. These peaks did occur in various samples, but have not been 

further investigated. 
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Table 5: Concentration of identified coumarins in Peucedanum ostruthium 
hairy-root clones (µg∙g-1 dry weight) 
 

coumarin L8MS L8B5 T22HM T22MS T22B5 T53B5 T57B5 T55B5 

oxypeucedanin     2.8    

imperatorin  3.7 2.3  6.3 2.6 2.1 4.7 

isoimperatorin 1.0 8.9   13.0 8.0 7.6 9.2 

ostruthin     2.3    
 

 

Figure 24 (page 36) shows the chromatograms of hairy-root clone T22 

cultured in three different media. Isoimperatorin was found in samples A 

(medium ½ MS) and C (medium B5). In sample B (medium MS) no 

coumarins could be identified. Sample C is the only one in which both 

oxipeucedanin and ostruthin were found. 
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Figure 24: HPLC chromatograms (system see page 18) of P. ostruthium 
hairy-root clone T22 cultivated in medium ½ MS (A), medium MS (B) and 
medium B5 (C). Peak numbers refer to oxypeucedanin (1), imperatorin (2), 
isoimperatorin (3), ostruthin (4) and unidentified compound (x) 
 

 

The nutrient medium definitively had an influence on secondary metabolite 

formation. Figure 25 on page 37 shows chromatograms of hairy-root clone L8 

grown in media MS and B5. More isoimperatorin was found in samples 

cultured in B5 medium than in those cultivated in MS medium; imperatorin 

could only be detected in the sample which had been cultivated in medium 

B5. 
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Figure 25: HPLC chromatograms (see page 18) of P. ostruthium hairy-root 
clone L8 cultivated in medium ½ MS (A) and medium MS (B). Peak numbers 
refer to imperatorin (1), isoimperatorin (2) and unidentified compound (x) 

As illustrated in figure 26 (page 38), hairy-root clones cultivated in medium 

B5 seemed to produce a similar spectrum of secondary metabolites. The 

peaks with retention times of 18.8 min (imperatorin), 20.3 min (unknown) and 

21.7 min (isoimperatorin) were found with a similar concentration in all hairy 

roots cultured in B5 medium, only in clone T57B5 less imperatorin was 

detected. The first peak in the chromatogram of clone T22B5 with a retention 

time of 13.4 min (unknown) was detectable only in this sample. The most 

prominent peak of the samples cultured in medium B5 was found at the 

retention time of 21.7 min (isoimperatorin) and was also detected in clones 

T22HM (cultured in ½ MS medium) and L8MS (cultured in MS medium). 

Isoimperatorin was the only detectable compound in the chromatogram of the 

clone T22HM, cultured in ½ MS medium. Substantial peaks were also found 

in sample T22HM at retention times of 11.7 min (unknown) and 12.0 min 

(unknown). These two peaks only occurred in this sample and in clone L8MS 

(cultured in MS medium), but in a smaller concentration than the clone 

cultured in ½ MS medium. In addition, for future analyses it is recommended 

to modify the mobile phase to achieve a better separation of these double 

peaks. 
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The two clones cultivated in MS medium revealed a very different spectrum 

of compounds. The double peak at 11.7 min and 12.0 min (see above) also 

occurred in sample L8MS, with an additional peak at 14.6 min. Besides, only 

a small amount of isoimperatorin was detected. In sample T22MS only traces 

of unknown compounds were found. 

 

 
Figure 26: HPLC chromatograms (see page 18) of various hairy-root clones 
of Peucedanum ostruthium cultured in media B5, 1/2 MS and MS 

These observations lead to the conclusion that the nutrient medium had a 

notable influence on the production of secondary metabolites as shown in 

figure 26. All hairy-root clones cultured in B5 medium showed a very similar 

chromatogram. Also the hairy-root sample L8B5 established with the Agro-

bacterium strain LBA 9402 showed the same results in cultivation with B5 

medium as the hairy-root clone established with TR 105. The clone T22 was 

cultured in all three media and shows different chromatograms depending on 

the use of the nutrient medium. This leads to the conclusion that the medium 

has higher influence on the production of the examined secondary metabo-

lites than the bacterial strain used for the establishment of hairy roots.  
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4. Discussion 

 

Several studies have revealed that hairy roots tend to grow faster than non-

transformed roots, that they are genetically and biochemically stable, and 

have the ability to synthesize natural compounds as found in vivo in normal 

roots (Christey and Braun 2004; Georgiev et al. 2007; Srivastava and 

Srivastava 2007). In contrast to numerous studies on Apiaceae plants that 

have been published so far, the present study is to our knowledge the first to 

deal with the establishment of hairy roots in Peucedanum ostruthium. The 

aim of this study was to establish an effective transformation system for 

Peucedanum ostruthium to induce hairy-root formation. Furthermore, the 

effects of the bacterial strains used for transformation, and the effects of the 

culture medium on the roots’ secondary metabolism were examined, the 

coumarins and furanocoumarins being the center of interest. 

These valuable secondary metabolites show antioxidant, antimycobacterial, 

anticoagulant, antitumoral, antiviral, antifungal and anti-inflammatory activity 

(Garcia-Argaez et al. 2000; Schinkovitz et al. 2003; Genovese et al. 2009; 

Riveiro et al. 2010; Thuong et al. 2010). 

It is well known that both the starting plant material and Agrobacterium strain 

are critical factors for a successful transformation. Therefore, we firstly used 

in vitro-cultivated plantlets, and leaf explants which were prepared from adult 

plants growing in vivo in the garden of the Department of Pharmacognosy  

(University of Vienna). Secondly, we performed all infection experiments with 

three different A. rhizogenes wildtype strains. The strains clearly have an 

influence on the production of secondary metabolites and show different 

capability of forming hairy roots, as further outlined below. 

For the establishment of in vitro-cultures of masterwort, seeds were 

germinated. A quick test, done on wet filter paper in a petri dish, at first 

indicated a low germination rate. We therefore applied two pretreatments, on 

the one hand a 24-hour soak on an aqueous solution of gibberellic acid (500 

ppm) which is well known to promote seed germination in certain species 

(Rahnama-Ghahfarokhi and Tavakkol-Afshari 2007). On the other hand, a 

batch of seeds was stored for 4 weeks at 5°C and then transferred to 25°C. 
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The cold pretreatment resulted in improved germination and also gibberellic 

acid had a supportive effect. No further investigations were performed on 

seed germination as enough seedlings were obtained for the further studies. 

For the establishment of shoot cultures we used MS medium supplemented 

with 0.5 µM of the cytokinin benzylaminopurine. This proved to be suitable for 

satisfactory multiplication, and thus no other growth regulators were tested.  

 

The source, type and age of the explant can influence the transformation 

effectiveness (Baranski 2008), just as preculture conditions as shown in 

transformations with the closely related species Agrobacterium tumefaciens: 

The transformation relies on the ability of the bacterium to pass the cuticle, 

and in prolonged preculture in vitro this waxy layer decreases (Tokuji and 

Fukuda 1999). Our results absolutely confirm these findings: In vitro plants or 

shoots were clearly the appropriate plant material with Peucedanum 

ostruthium and the three A. rhizogenes strains that we used. 

In our experiments both petioles and leaf veins were chosen as target sites 

for infection. Studies show that it is much more favorable to use petioles 

instead of any other plant organs, such as cotyledons, hypocotyls or roots 

(Pawlicki et al. 1992). The present study for hairy roots in Peucedanum 

ostruthium confirmed the results of Pawlicki (1992), because we obtained the 

highest hairy-root formation rate by scratching the petioles. 

Hairy-root formation could be achieved after transformation of P. ostruthium 

with the Agrobacterium rhizogenes wild-type strains TR 105, LBA 9402 and 

ATCC 15834. However, these strains varied in their effectiveness. Generally, 

genetic transformation mediated by Agrobacterium rhizogenes is affected by 

several factors like e.g. explant genotype, chemical and physical factors, 

structure of the explants, and bacterial strain (Tao and Li 2006). Also, the 

density of the Agrobacterium suspension culture is an important factor (Park 

and Facchini 2000). It is known that different strains of Agrobacterium 

rhizogenes vary in the ability of forming hairy roots (Vanhala et al. 1995; 

Zehra et al. 1998; Krolicka et al. 2001).  

This was confirmed in the present study: Using Agrobacterium rhizogenes 

strains TR 105, LBA 9402 and ATCC 15834, the strain TR 105 was found to 

be the most virulent one, followed by ATCC 15834. Strain LBA 9402 resulted 
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in the lowest infection rate. Studies about hairy-root induction in Linum 

tauricum ssp. tauricum with Agrobacterium strains TR 105 and ATCC 15834 

also showed a higher frequency of hairy-root formation with strain TR 105 

(Ionkova and Fuss 2009). In general, signal phenolics like acetosyringone 

can be used to enhance the hairy-root induction frequency (Gelvin 2000). In 

future investigations on P. ostruthium this might be a promising approach to 

improve hairy-root induction frequency with less virulent Agrobacterium 

rhizogenes strains like e.g. LBA 9402. 

 

Finally, our results indicate that P. ostruthium differs from other species in its 

specific behavior of forming hairy roots only in complete darkness. For other 

plants the light conditions are not a critical factor (Hamill and Lidgett 1997). 

The ½ MS nutrient medium, containing the least amount of nutrients, showed 

the lowest growth of the hairy-root clones obtained in this study. Hairy roots 

of Anethum graveolens, grown in ½ MS medium and cultured for 30 days, 

showed a 13-fold biomass increase (Figueiredo et al. 2002). These results 

clearly exceeded the results gained with the best-growing Peucedanum hairy 

roots.  

Studies performed on Ammi majus hairy-root cultures established in 

MS medium demonstrated a 150-fold biomass increase after 30 days of 

cultivation (Figueiredo et al. 2005). Hairy-root cultures of Daucus carota 

cultured in MS medium showed a 77-fold fresh-weight increase after one 

month (Pletsch et al. 2002). In our study, a 5-fold fresh-weight augmentation 

of the fastest-growing hairy-root sample cultured in MS medium for 21 days 

could be observed. Hairy-root cultures of Levisticum officinale showed a 35-

fold increase of fresh weight after 30 days grown in B5 medium (Figueiredo 

et al. 2005) in contrast to the 9-fold biomass increase with clone T51B5 in 

Peucedanum ostruthium. 

The nitrogen content of the nutrient medium was evidently essential. With 

higher nitrogen concentration (½ MS medium → MS medium → B5 medium) 

hairy-roots growth increased in most hairy-root clones used in this study, 

independently of the Agrobacterium rhizogenes strain used for 

transformation. The choice of nutrient medium clearly had much more 

influence on hairy-root growth than the bacterial strain used for 
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transformation. Nevertheless, different bacterial strains did make some 

difference in hairy-root growth: Hairy roots established with strain showed the 

least ATCC 15834, those obtained with strain LBA 9402 a moderate, and 

TR 105-induced clones the highest increase in growth, when cultivated in 

medium B5. Hairy roots have varying capabilities of producing growth 

regulators like auxins and cytokinins by themselves (Guillon et al. 2006). This 

might be a reason why certain hairy roots obtained through infection with 

certain Agrobacterium strains exhibit better growth than others – both 

generally, and as observed in our studies. 

Hairy-root cultures of several plant species have been studied for the 

production of phytochemicals like e.g. pharmaceuticals, cosmetics and food 

additives (Giri and Narasu 2000; Guillon et al. 2006). In the present study, 

some coumarins and furanocoumarins which are known to occur in the 

underground organs of Peucedanum ostruthium (Vogl et al. 2011) were not 

detectable in the available hairy-root clones. Only four coumarins out of the 

seven expected compounds could be clearly identified, but still unknown 

compounds were detectable. Similarly, in previous studies on the formation 

of furanocoumarins in hairy roots of Ammi majus no furanocoumarins could 

be detected (Krolicka et al. 2001). 

Within further studies the induction of coumarin and furanocoumarin  

formation by abiotic and biotic elicitors should be examined, because certain 

elicitors are known to stimulate the production of secondary metabolites in 

hairy roots of a number of plant species (Guillon et al. 2006). For example, 

methyl jasmonate can increase the biosynthesis of secondary metabolites 

without affecting hairy-root growth performance (Pinol et al. 2003; Reddanna 

et al. 2003; Yaoya et al. 2004). Generally, the production of secondary 

metabolites may also require interaction between leaves and roots, with e.g. 

metabolic precursors in roots and bioconversion in leaves (Giri and Narasu 

2000). 

The amount of coumarins in the hairy-root clones investigated within this 

study was only approximately 0.001% in comparison to the drug samples of 

wildly grown Peucedanum rhizomes analyzed recently (Vogl et al. 2011). 

However, some unidentified components showed a typical coumarin-like UV 

spectrum. These substances seemed to be the main components in the 
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hairy-root clones. In future studies a HPLC-DAD-MS approach might help to 

elucidate the secondary metabolism and the unknown compounds in hairy 

roots of Peucedanum ostruthium. 
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5. Summary 

Peucedanum ostruthium (L.) Koch (masterwort) is a widely used plant in 

traditional Austrian medicine, e.g. in forms of liquor or tea. Coumarins in 

masterwort rhizomes are of pharmaceutical relevance, as a number of 

studies have shown antibacterial, antiviral, anti-inflammatory, antifungal, 

antioxidant and antitumoral activities. 

The present thesis deals with the establishment of transformed hairy roots in 

Peucedanum ostruthium under controlled regimes. Multiple shoot cultures 

were established from aseptically germinated seeds. At this, germination 

frequency could be improved through a four-week pretreatment of the seeds 

at 5°C. A second way to increase germination rates is the use of gibberellic 

acid.  

Explants prepared from in vitro-cultures as well as from in vivo-growing 

plants were infected in vitro with three wildtype strains of Agrobacterium 

rhizogenes, the causative bacterium of the hairy-root disease. Both the type 

of starting material and the infection technique proved to be significant for a 

successful transformation. The use of explants from in vitro-cultures resulted 

in good hairy-root formation rates while explants from in vivo-growing plants 

did barely respond to the bacterial infection. Scratching the explants with a 

scalpel blade dipped in the bacterial suspension proved to be the most 

suitable technique. Interestingly, no hairy roots were formed under light 

conditions. 

The obtained hairy-root clones differed in their growth rate, depending on the 

bacterial strain used for infection and the nutrient medium for subsequent 

cultivation. Clones established with Agrobacterium strain TR 105 showed the 

fastest growth, and for most hairy-root clones B5 medium was best suited in 

terms of biomass increase. 

HPLC-DAD analyses of a number of hairy-root clones revealed that under 

the given culture conditions definitively less coumarins were formed when 

compared to non-transformed naturally-grown roots. Also, the coumarin 

pattern typical for natural roots was not found in any of the eight investigated 

clones, and the nutrient medium also seemed to influence coumarin 
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formation. In one sample, none of the seven main coumarins of masterwort 

could be detected. In the other clones from one to four known compounds 

(imperatorin, isoimperatorin, ostruthin and oxypeucedanin) were identified. 

 

For future studies it might be considered to investigate the influence of further 

nutrient media on growth and especially on coumarin formation. In addition, 

the use of elicitors could possibly also influence coumarin biosynthesis in 

both quantitative and qualitative ways. 
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6. Zusammenfassung 

Peucedanum ostruthium (L.) Koch (Meisterwurz) findet in Form von 

alkoholischen Auszügen oder Teezubereitungen verbreitete Anwendung in 

der österreichischen Volksmedizin. Die Rhizome der Pflanze enthalten 

pharmazeutisch relevante Cumarine, deren antibakterielle, antivirale, 

entzündungshemmende, antimykotische, antioxidative und antitumorielle 

Wirkeigenschaften durch entsprechende Studien belegt sind. 

In der vorliegenden Arbeit wurden an Peucedanum ostruthium transformierte 

„hairy roots“ gebildet. Dazu wurden zunächst ausgehend von in vitro-

gekeimten Samen Sprosskulturen angelegt. Die Samenkeimung konnte 

durch eine vierwöchige Kältevorbehandlung bei 5°C, und noch mehr durch 

eine Vorbehandlung mit Gibberellinsäure, gegenüber der Keimung bei 

Raumtemperatur deutlich verbessert werden.  

Es wurden Explantate aus in vitro-Kulturen und Freilandpflanzen präpariert 

und diese dann mit drei Wildstämmen von Agrobacterium rhizogenes 

infiziert. Dieses Bakterium ist Auslöser der „hairy roots“-Krankheit, wobei der 

Grad der Infektion, gemessen an der Transformationsrate, abhängig vom 

Explantattyp und von der Infektionstechnik ist: Explantate aus in vitro-Kultur 

reagierten gegenüber jenen aus Freilandpflanzen mit gesteigerter 

Wurzelbildung, weiters hat sich im Allgemeinen das Anritzen des Explantats 

mit einer in Bakteriensuspension getauchten Skalpellklinge als bestgeeignete 

Infektionsmethode erwiesen. Die Kultivierung im Licht brachte 

bemerkenswerterweise für die Bildung von „hairy roots“ keine Erfolge. 

Die erhaltenen „hairy roots“-Klone zeigten in Abhängigkeit von 

Bakterienstamm und Nährmedium unterschiedliches Wachstum: Klone von 

Explantaten, welche mit dem Agrobacterium-Stamm TR 105 infiziert worden 

waren, wiesen das beste Wachstum auf, außerdem führte der Einsatz des 

Nährmediums B5 zum höchsten Zuwachs an Biomasse. 

Erste HPLC-Analysen einiger „hairy roots“-Klone zeigten, dass unter den 

gegebenen Kulturbedingungen deutlich weniger Cumarine gebildet wurden 

als in natürlich gewachsenen, nichttransformierten Wurzeln. Keiner der acht 

untersuchten Klone wies das für die Meisterwurz typische Cumarinmuster 
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auf, und auch das Nährmedium schien Einfluss auf die Cumarinbildung zu 

haben. In einem Klon konnte keines der sieben Hauptcumarine der 

Meisterwurz detektiert werden, in den restlichen Klonen waren ein bis vier 

Cumarine (Imperatorin, Isoimperatorin, Ostruthin und Oxypeucedanin) 

nachweisbar. 

 

In weiterführenden Studien sollte der Einfluss anderer Nährmedien auf das 

Wachstum und vor allem auf die Cumarinbildung untersucht werden. 

Außerdem könnte auch der Einsatz von Elizitoren quantitative und qualitative 

Auswirkungen auf die Cumarinbiosynthese haben. 
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