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Abstract 

Recent molecular data place the phoronids within the protostome superclade Lophotrochozoa, 

where they have recently been suggested to cluster with the brachiopods and/or nemerteans. 

Herein, the anatomy of the nervous system and the structure of the apical organ are described 

for two larval stages of Phoronis muelleri in order to contribute to the discussion concerning 

the evolution of the lophotrochozoan nervous system. Specimens were investigated using 

immunocytochemistry and confocal laser scanning microscopy. A ventral nerve cord is 

common in many larval and adult spiralians. Although a ventral neurite bundle is present in 

the early larval development of Phoronopsis harmeri, such a structure is absent in both 

investigated stages herein. Most larval lophotrochozoans have a simple apical organ 

containing a few serotonin-like immunoreactive (serotonin-lir) flask-shaped cells. The 

complex apical organ of Phoronis muelleri consists of numerous serotonin-lir flask-shaped 

cells, bi-or multipolar serotonin-lir additional cells, and several FMRFamide-like 

immunoreactive (FMRFamide-lir) perikarya. Moreover, this study provides the first 

description of the small cardioactive peptide-like immunoreactive (small cardioactive peptide-

lir) nervous system of a phoronid larva. This neuropeptide is present along the margin of the 

preoral lobe, in the apical organ, along the mesosome and in the tentacles as well as in the 

trunk and the telotroch. Moreover, a positive signal is known from molluscs, annelids and 

arthropods, indicating the high conservation of this immunoreactive molecule among the 

Protostomia and supports the notion that it was also part of the protostomian groundplan.  

 

Zusammenfassung 

Aktuellen molekularen Daten zufolge werden die Phoroniden innerhalb der Protostomia den 

Lophotrochozoa zugeordnet, wobei von manchen Autoren eine engere Verwandtschaft zu den 

Brachiopoda und/oder zu den Nemertea angenommen wird. Um ein besseres Verständnis für 
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die Evolution des Nervensystems der Lophotrochozoen zu bekommen, wird in dieser Studie 

das Nervensystem und das Apikalorgan von Phoronis muelleri im Detail beschrieben. Ein 

ventraler Nervenstrang kommt bei vielen Vertretern der Spiralia vor. Obwohl in der frühen 

Entwicklung von Phoronopsis harmeri ein ventrales Neuritenbündel vorhanden ist, konnte in 

dieser Studie eine solche Struktur nicht nachgewiesen werden. Ein einfach gebautes 

Apikalorgan mit wenigen serotonin-immunoreaktiven flaschenförmigen Zellen ist 

charakteristisch für die meisten Vertreter der Lophotrochozoen. Das Apikalorgan von 

Phoronis muelleri jedoch ist äußerst komplex und besteht aus zahlreichen serotonin-

immunoreaktiven flaschenförmigen Zellen und zusätzlichen serotonin-immunoreaktiven bi-

oder multipolaren Zellen sowie einigen FMRFamid-immunoreaktive Zellen. Weiters wird in 

dieser Studie zum ersten Mal das Small Cardioactive Peptide-immunoreaktive Nervensystem 

einer Phoronidenlarve beschrieben. Dieses Neuropeptid kommt entlang des Prosomas, im 

Apikalorgan, im Mesosoma und in den Tentakeln sowie im Metasoma und im Telotroch vor. 

Innerhalb der Protostomier gilt dieses Neuropeptid als stark konserviert. Ein positives Signal 

kommt bei diversen Gruppen der Mollusken, den Anneliden und den Arthropoden vor. Der 

Nachweis eines positiven Signals bei Phoroniden bekräftigt somit die Hypothese, dass Small 

Cardioactive Peptide bereits im Grundbauplan der Protostomier enthalten war.  
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Introduction 

The phylogenetic position of the Phoronida is still highly debated. While recent molecular 

studies consider them as close relatives to brachiopods or nemerteans within the protostomian 

superclade Lophotrochozoa (Dunn et al., 2008; Hausdorf et al., 2010; Paps et al., 2010), the 

traditional morphological-based view is that they cluster together with brachiopods and 

ectoprocts within a taxon called Lophophorata, the sister group of Spiralia (Emig, 1984; 

Nielsen, 2002). In some recent phylogenetic studies the Phoronida are included within the 

Brachiopoda to form a group called Brachiozoa, which share a monophyletic clade with 

Nemertea or Mollusca (Hausdorf et al., 2010; Paps et al., 2010). Nevertheless, phoronids also 

share some features which are considered as typical Deuterostomia-like, such as radial 

cleavage, a regulative development as well as the still widely debated trimeric organization of 

the body (Nielsen, 2002). 

The organization of the nervous system of adult lophotrochozoans varies between the 

different groups. While adult platyhelminths express an orthogonal nervous system which 

consists of an apical “brain” and 2 to 8 longitudinal nerve cords, a rope ladder-like nervous 

system with 1 to 5 ventral nerve cords is found in annelids (Wanninger, 2009). Interestingly, 

it was shown that the multiple ventral cords of annelids and echiurans as well as the single 

ventral nerve cord of adult sipunculids always results from a paired ventral nerve, which 

forms the first anlage of the future ventral nervous system (Wanninger, 2009). In juvenile 

brachiopods two ventral longitudinal neurites are present (Altenburger and Wanninger, 2010) 

while in adult ectoprocts each polypide possesses a ganglion with lateral nerves following the 

tentacle base and a peripheral nerve net (Nielsen, 2012). The typical tetraneurous nervous 

system of adult molluscs includes a paired ventral and lateral nerve cord together with the 

buccal nerves and the anterior nerve loop (Nielsen, 2012). Moreover, a tetraneurous condition 

of the nervous system is present in the creeping-type larva of entoprocts which is considered 
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basal for the phylum (Wanninger et al., 2008). It is hypothesized that the simple nervous 

system of adult Entoprocta results from a typical molluscan tetraneurous condition supporting 

the monophyletic molluscan-entoprocts clade (Wanninger, 2008). All these data of the 

nervous system of different Lophotrochozoa support the scenario that the last common 

ancestor (LCA) had at least two ventral nerve cords in its groundplan (Wanninger, 2009). 

Interestingly, the Acoelomorpha have traditionally been viewed as an ingroup of the 

platyhelminths, but based on recent molecular data they are nowadays considered as the 

earliest offshoot of bilaterians (Haszprunar, 1996; Ruiz-Trillo et al., 2004; Paps et al., 2009). 

The nervous system of Acoelomorpha consists of a nerve net which is barely concentrated 

anteriorly (Ruiz-Trillo et al., 1999). This simple neural organization is considered by several 

authors as a basal condition for Bilateria. 

The body of adult phoronids can be divided in three parts: the prosome or epistome which is a 

fold that overhangs the mouth, the mesosome which bears the lophophore and the large 

metasome or trunk. The nervous system of adult phoronids consists of a ganglion which is 

located in the epidermis of the epistome. It gives rise to a nerve ring at the base of the 

lophophore and one or two lateral giant nerve fibres. Giant nerve fibres are absent in Phoronis 

ovalis. In addition, they possess a basiepidermal nerve plexus along their entire body (Emig, 

1979). Compared with the organization of the nervous system of other lophotrochozoans, the 

nervous system of adult phoronids differs in various aspects. There are no ventral nerve cords 

present in the nervous system of adult phoronids.  

Recently, numerous immunocytochemical studies on the development of the nervous system 

have been carried out on different lophotrochozoan groups (see, e.g., Hay-Schmidt, 1990a, b; 

Haszprunar et al., 2002; Santagata, 2002; Voronezhskaya et al., 2002; Voronezhskaya et al., 

2003; Wanninger, 2005; Wanninger et al., 2005a, b; Fuchs and Wanninger, 2007; Kristof et 

al., 2008; Wanninger et al., 2008; Altenburger and Wanninger, 2010; Schwaha and 

Wanninger, 2012; Temereva, 2012; Temereva and Wanninger, 2012). These studies have 
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shown that the larvae of most lophotrochozoans possess a simple apical organ situated 

anteriorly and contain only a few serotonin-lir flask-shaped cells, often about four 

(Voronezhskaya et al., 2003; Fuchs and Wanninger, 2008; Wanninger, 2008; Altenburger and 

Wanninger, 2010; Nielsen and Worsaae, 2010). However, in polyplacophoran molluscs and in 

the creeping-type larva of entoprocts, the apical organ is more complex and contains 6-8 

serotonin-lir flask-shaped cells and several additional peripheral cells (Voronezhskaya et al., 

2002; Wanninger et al., 2008). The larva of phoronids, the so-called actinotroch larva, is 

sometimes considered a modified trochophore larva (Salvini-Plawen, 1980) and contains 

numerous flask-shaped cells in its apical organ (Hay-Schmidt, 1990a; Lacalli, 1990; 

Santagata, 2002; Temereva and Wanninger, 2012). However, a recent study of the larval 

nervous system of Phoronopsis harmeri has shown that four serotonin-lir flask-shaped cells 

differentiate simultaneously in the mid-gastrula stage (Temereva, 2012; Temereva and 

Wanninger, 2012). In addition, the apical organ increases in complexity during subsequent 

development (Temereva and Wanninger, 2012).  

Another feature of the nervous system of many Lophotrochozoa is the presence of a ventral 

nerve cord, either in the larva or the adult or both (Kristof et al., 2008; Wanninger, 2009; 

Altenburger and Wanninger, 2010). For the young larva of Phoronopsis harmeri a serotonin-

lir and a FMRFamide-lir ventral neurite bundle containing several repetitive commissures and 

neurons have been described (Temereva, 2012; Temereva and Wanninger, 2012). When the 

larva reaches the 6 primordial tentacle stage, the serotonin-lir ventral neurite bundle 

disappears. The FMRFamide-lir ventral neurite bundle instead is present at least until the 6 

tentacle stage (Temereva and Wanninger, 2012).  

The gross morphology of the nervous system of the actinotroch larva of Phoronis muelleri has 

been described previously (Hay-Schmidt, 1990a), but several details remain vague. This study 

herein deals not only with the analysis of the nervous system of the actinotroch larva of 

Phoronis muelleri in general, but also focuses on the detailed structure of the apical organ. 
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Moreover, this work presents the first data of the small cardioactive peptide-lir nervous 

system of the actinotroch larva. This neuropeptide was characterized from molluscan nervous 

tissue, where it is involved in regulation of the heart beat rate. A positive signal has been 

found in gastropods, bivalves, cephalopods as well as in annelids and arthropods (Lloyd et al., 

1984; Mahon et al., 1985; Kempf et al., 1987; Lloyd et al., 1987; Evans and Calabrese, 1989; 

Candelario-Martinez et al., 1993; Fox and Lloyd, 1997; Gainey et al., 1999; Perry et al., 1999; 

Ohsuga et al., 2000; Willows et al., 2000; Kempf and Page, 2005; Kanda and Minakata, 2006; 

Ellis and Kempf, 2011). In larval and adult molluscs it is expressed in the central and 

peripheral nervous system and obviously plays an additional modulatory role in the control of 

feeding behavior (Perry et al, 1999; Ellis and Kempf, 2011). In adult arthropods the 

distribution of this neuropeptide is concentrated in the brain and the subesophagal ganglion 

while in adult annelids it is mainly expressed in the segmental ganglia (Settembrini and Villar, 

2005). The present study provides new data about the distribution of the small cardioactive 

peptide-lir nervous system in the larva of Phoronida. Taken together, this work increases the 

morphological database concerning the larval neuroanatomy of Phoronida and contributes to a 

better understanding of the evolution of the lophotrochozoan nervous system.  

 

Materials and Methods 

Animal collection and fixation 

Actinotroch larvae of Phoronis muelleri (Selys-Longchamps, 1903) were collected in August 

2011 at the Sven Lovén Centre for Marine Sciences, Sweden. Vertical plankton tows were 

taken from 55 m depth (58°15.66N, 11°27.20E; 58°15.7N, 11°26.30E;  58°15.65N, 

11°27.22E) and 15 m depth (58°15.02N, 11°27.23E), respectively. In addition, a horizontal 

tow was taken from 3-5 m depth (58°15.66N, 11°27.20E). Specimens were divided into two 
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developmental stages (12-16 tentacles, 18 and more tentacles). For each stage, 4-11 

individuals were investigated per neurotransmitter.  

The specimens were narcotized by adding 3.5% Magnesium chloride to the seawater, and 

subsequently fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline (PBS) 

and 10% sucrose (pH 7.4) for 2-3.5 hours at room temperature. After fixation they were 

rinsed 3-5 times in 0.1 M PBS with 0.1% sodium azide (NaN3) for 10 minutes each (pH 7.4) 

and stored at 4°C.  

 

Immunocytochemistry, data acquisition and analysis 

Prior to immunocytochemical staining the larvae were washed in 0.1 M PBS with 0.1% NaN3 

and 4% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) (PTA) for 1 hour at room 

temperature. Unspecific binding sites were blocked overnight in a solution of 6% normal goat 

serum (Invitrogen, Molecular Probes, Eugene, OR, USA) in 0.1 M PBS and 4% Triton-X-100 

(block-PTA). The samples were incubated for 24 hours at room temperature in block-PTA 

containing the primary antibodies: anti-rabbit serotonin (Immunostar, Hudson, WI, USA, 

dilution 1:800); anti-rabbit FMRFamide (Bio Trend, Cologne, Germany, dilution 1:1000); 

anti-mouse α-tubulin (Sigma-Aldrich, dilution 1:500). In case of the staining against small 

cardioactive peptide the samples were incubated for 48 hours at room temperature in block-

PTA containing the primary antibody: anti-small cardioactive peptide (homemade, dilution 

1:300). After 4 washes in block-PTA for 6-12 hours or overnight, the secondary 

fluorochrome-conjugated antibody (anti-rabbit Alexa Fluor 568,Invitrogen; anti-mouse Alexa 

Fluor 568, Invitrogen; anti-mouse Alexa Fluor 633,Invitrogen) diluted in block-PTA 

(serotonin: 1:300; α-tubulin: 1:300; FMRFamide: 1:100; small cardioactive peptide: 1:300) 

was added. The incubation lasted for 24 hours, in case of the small cardioactive peptide 

staining for 48 hours, at room temperature and was carried out in the dark. Multi-stainings 
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were made by a cocktail of the desired antibodies in the respective working concentrations. 

Specimens were rinsed 4 times in PBS without NaN3 for 6-12 hours or overnight and 

subsequently mounted in Flouromount G (Southern Biotech, Birmingham, AL, USA) on glass 

slides. Controls were made by either adding only the primary antibody, only the secondary 

antibody, or neither of them, and rendered no signal.  

Animals were viewed on a Leica TCS SP 5 II confocal laser scanning microscope (Leica 

Microsystems, Wetzlar, Germany) with the LAS AF (Leica Application Suite Advanced 

Fluorescence) Leica Microsystems software. Specimens were scanned with 0.1 µm–1.5 µm 

step size and maximum projection images were created with the LAS AF software.  

In addition, a differential interference contrast (DIC) image was taken with a Nikon Eclipse 

E800 microscope (Nikon, Tokyo, Japan) equipped with a Nikon DS-Fi2 U3 microscope 

camera (Nikon). For a better understanding of the three-dimensional situation of the 

neuroanatomy and to generate 3D reconstructions, the software Imaris 7.3.1 (Bitplane, Zurich, 

Switzerland) was used. The figure plates were created with Adobe Photoshop CS5 software 

(Adobe, San Jose, CA, USA) and the line drawings with Adobe Illustrator CS5 software 

(Adobe).  

 

Results 

General morphology of the actinotroch larva 

 

The body of the actinotroch larva is divided into three parts: the prosome, the mesosome and 

the metasome. The prosome, also called preoral lobe or hood, overhangs the mouth and 

includes the apical organ. The mesosome or collar region bears the tentacles. The metasome, 

also called trunk, is enlongated, bears the telotroch and terminates in the anus (Fig. 1, A, B).  
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12-16 tentacle stage 

 

Serotonin-lir nervous system 

In the preoral lobe, a U-shaped apical organ is situated (Fig. 2, A). It contains about 22 flask-

shaped cells, each projecting into the neuropil (Fig. 2, C-E). Every flask-shaped cell bears a 

single cilium. Additionally, bi- or multipolar serotonin-lir cells are located under the neuropil 

and are likewise arranged in a horseshoe-like pattern (Fig. 2, A, E; Fig. 3, D). Dorso-lateral 

neurites emerge from the apical organ, project posteriorly and give rise to the tentacular 

neurite bundle, which runs under the tentacles and sends two lateral abfrontal processes into 

each tentacle (Fig. 2, A, B; Fig. 3, A; Fig. 4, A). The lateral part of the tentacular neurite 

bundle spreads towards the mesosome and sends a median frontal process into each tentacle 

(Fig. 2, A, B; Fig. 3, A; Fig. 4, A). Along the tentacular ridge and the frontal side of each 

tentacle a band of serotonin-lir perikarya is present (Fig. 2, A, B; Fig. 3, A). From the anterior 

part of the apical organ the median hood neurite bundle extends and runs towards the margin 

of the preoral lobe, where the hood margin neurite bundle with several perikarya is situated. 

Serotonin-lir neurites are present along the entire preoral lobe (Fig. 2, A; Fig. 4, A). The 

neurites of the trunk region connect the tentacular neurite bundle to the ring-shaped neurite 

bundle of the telotroch (Fig. 2, A, Fig. 4, A). Moreover, the telotroch is innervated by a 

meshwork of fine neurites (Fig. 2, A; Table 1).  

 

FMRFamide-lir nervous system 

The apical organ is located in the preoral lobe and consists of a U-shaped neuropil and a few 

dorso-lateral bipolar perikarya on both sides (Fig. 3, E; Fig. 5, A, C). Neurites project in 

dorso-lateral direction and give rise to the tentacular neurite bundle (Fig. 4, C). The posterior 
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part of the tentacular neurite bundle runs under the tentacles and projects into each of them on 

the median abfrontal side (Fig. 3, B). The lateral part of the tentacular neurite bundle spreads 

over the mesosome and projects into the tentacles on the frontal side (Fig. 3, B; Fig. 5, B). At 

the basis of each tentacle the lateral frontal processes are connected to each other via several 

commissures (Fig. 3, B; Fig. 5, B). Several bi-or multipolar perikarya are situated along the 

ventral side of the mesosome (Fig. 4, C; Fig. 5, A, B). At the anterior part of the apical organ 

a median hood neurite bundle develops and runs towards the hood margin (Fig. 4, C). Several 

perikarya are situated along the hood margin neurite bundle and some perikarya are scattered 

along the entire preoral lobe (Fig. 4, C; Fig. 5, A). Several neurites are scattered along the 

trunk region and are connected to the telotroch and its two ring-shaped neurite bundles (Fig. 

4, C; Fig. 5, D; Table 2). In addition, perikarya with a granular appearance develop in the 

telotroch region (Fig. 4, C; Fig. 5, D, E). Some of them are connected to the nerve net of the 

trunk as well as to the ring shaped neurite bundles and its fine interconnecting neurites of the 

telotroch (Fig. 5, D, E; Table 2).  

 

18 and more tentacles 

 

Serotonin-lir nervous system 

The serotonin-lir nervous system is similar to the one described in the previous stage (Fig. 4, 

B; Fig. 6, A, B; Fig. 7, A, B). The frontal organ, a sense organ situated anterior to the apical 

organ, contains several probably bipolar perikarya which project into the median neurite 

bundle of the preoral lobe (Fig. 6, C). It is connected to the apical organ as well as to some 

thinner neurites of the entire preoral lobe (Fig. 6, C). The number of flask-shaped cells in the 

apical organ increases. At the 22 tentacle stage they possess up to 37 of these flask-shaped 
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cells (Fig. 6, C, D). Nodes are visible along the processes of the flask-shaped cells which 

project into the neuropil (Fig. 6, E; Table 1).  

 

FMRFamide-lir nervous system 

The general organization of the FMRFamide-lir nervous system is similar to the one described 

in the previous stage (Fig. 4, D; Fig. 7, C, D; Fig. 8, A). At the tentacle tips the frontal and the 

abfrontal tentacular processes are connected to each other (Fig. 8, C).The signal of the apical 

organ increases in intensity (Fig. 8, D). The perikarya of the telotroch region disappear, while 

the two ring-shaped neurite bundles of the telotroch and its meshwork of fine neurites remain 

(Fig. 8, B; Table 2).  

 

Small cardioactive peptide-like immunoreactiviy 

On the preoral lobe, a U-shaped apical organ is situated, which contains several, probably 

bipolar, dorso-lateral perikarya on both sides (Fig. 3, F; Fig. 7, E, F; Fig. 9, A, B). There are 

several fine neurites along the entire preoral lobe (Fig. 7, E, F; Fig. 9, B). A main hood neurite 

bundle runs along the margin of the preoral lobe (Fig. 9, B, D). A few neurites are located in 

the entire mesosome. Two frontal processes project into each tentacle (Fig. 3, C; Fig. 7, E; 

Fig. 9, A, D). A few neurites are situated in the trunk and some of them are connected to the 

ring-shaped neurite bundles of the telotroch. In addition, the telotroch is innervated by several 

fine neurites that form a meshwork together with the two ring-shaped neurite bundles (Fig. 9, 

A, C; Table 3). 
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Discussion 

Comparison of the larval nervous system within Phoronida 

The serotonin-lir and FMRFamide-lir nervous system of Phoronis muelleri is similar to the 

previous description (Hay-Schmidt, 1990a), although there are some significant differences 

such as the absence of the serotonin-lir marginal neurite bundle of the preoral lobe and of the 

serotonin-lir perikarya along the tentacular ridge in the previous study which are present in 

the study herein (Tables 1, 2). In addition, the innervation of the tentacles differs concerning 

the position of the three serotonin-lir processes. Along the tentacular ridge FMRFamide-lir 

perikarya are present and serotonin-lir perikarya are absent in the previous study while in the 

present study only serotonin-lir perikarya along the tentacular ridge are detectable. Moreover, 

the FMRFamide-lir components of the apical organ are different. While there are 5-7 

monopolar cells in the antero-lateral part of the apical organ and about 20 additional bipolar 

cells located behind the apical organ described in the previous study the present study shows 

only a few bipolar FMRFamide-lir perikarya in the dorso-lateral part of the apical organ. 

Another main difference is the presence of the posterior part of the FMRFamide-lir tentacular 

neurite bundle which projects in posterior direction and runs under the tentacles as well as 

some perikarya along the hood margin neurite bundle in this study herein. In addition, a 

nervous structure called the ‘minor nerve ring’ which connects the tentacle processes with 

tentacular processes of the adjacent tentacles is described (Hay-Schmidt, 1990a). In the 

present study the innervation of the tentacles is more complex as the tentacular processes are 

connected to the processes of the neighboring tentacles, to the tentacular neurite bundle and to 

the neurites of the mesosome. On the contrary to the previous study, the telotroch is 

innervated by two FMRFamide-lir ring-shaped neurite bundles. The FMRFamide-lir 

perikarya which are connected to the ring-shaped neurite bundle of the telotroch are only 

detectable in the 12-16 tentacle stage in the present study. The mentioned differences between 
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these two studies on Phoronis muelleri might result from using antibodies of different 

companies in a slightly modified concentration. Moreover, different technical equipments 

were used as specimens were viewed with an epifluorescence microscope in the previous 

study while a confocal laser scanning microscope was used in the present study.  

Compared to the nervous system of Phoronopsis harmeri the serotonin-lir and FMRFamide-

lir nervous system of Phoronis muelleri also shows some differences (Temereva and 

Wanninger, 2012). In early larval stages of Phoronopsis harmeri a serotonin-lir and 

FMRFamide-lir ventral neurite bundle with an associated oral nerve ring is present. This 

resembles a common feature in many other lophotrochozoans (Wanninger, 2009). Such a 

ventral neurite bundle was not detected in the current study. Moreover, the innervation of the 

tentacles differs slightly between these two studies. In Phoronopsis harmeri a serotonin-lir 

abfrontal loop of processes projects into each tentacle while in Phoronis muelleri two 

serotonin-lir abfrontal and a serotonin-lir frontal process as well as two FMRFamide-lir 

frontal and a FMRFamide-lir abfrontal process are present.  

During early development of Phoronopsis harmeri the first serotonin-lir flask-shaped cells in 

the apical organ differentiate in the mid-gastrula stage (Temereva and Wanninger, 2012). 

During subsequent development they increase in number to about 25 in the 6 tentacle stage. In 

the apical organ of Phoronis muelleri, there are approximately 22 flask-shaped cells in the 12 

tentacle stage and about 37 of those cells when the larva has 22 tentacles (Fig. 2, C, D; Fig. 6, 

C, D). The apical organ of Phoronopsis harmeri contains monopolar FMRFamide-lir 

perikarya and two dorso-lateral groups of several bi- or multipolar FMRFamide-lir perikarya 

(Temereva and Wanninger, 2012). Only two dorso-lateral groups of several bipolar 

FMRFamide-lir perikarya are present in the apical organ of Phoronis muelleri. Serotonin-lir 

and often also FMRFamide-lir components are found in the apical organ of many other 

lophotrochozoans such as annelids and molluscs (Wanninger, 2008), supporting the scenario 
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that the LCA of the lophotrochozoans already had, at least, serotonin-lir components 

expressed in its apical organ. 

In addition, this study provides the first results of the small cardioactive peptide-lir nervous 

system in the actinotroch larva of Phoronis muelleri (Table 3). A positive signal is known 

from larval and adult molluscs, adult annelids and even adult arthropods (Lloyd et al., 1984; 

Kempf et al., 1987; Lloyd et al., 1987; Candelario-Martinez et al., 1993; Fox and Lloyd, 

1997; Gainey et al., 1999; Perry et al., 1999; Ohsuga et al., 2000; Willows et al., 2000; Kempf 

and Page, 2005; Settembrini and Villar, 2005; Kanda and Minakata, 2006; Ellis and Kempf, 

2011). The staining results in a weak signal where the apical organ, the marginal neurite 

bundle of the preoral lobe, the innervation of the tentacles and the telotroch are the most 

prominent nervous structures visible. Although it is hypothesized that small cardioactive 

peptide plays a role in the regulation of the heart beat rate, muscle modulation and ciliary 

activity in molluscan larva, little is known about additional functions of this neuropeptide 

(Ellis and Kempf, 2011). The positive signal in phoronids corroborates the assumption that it 

was present in the protostomian groundplan.  

 

Comparative larval neuroanatomy of lophotrochozoans 

Most lophotrochozoans, e.g., annelids, ectoprocts, the swimming type larva of entoprocts, 

sipunculids and platyhelminths have a simple apical organ with up to 4 associated serotonin-

lir flask-shaped cells (Voronezhskaya et al., 2003; Fuchs and Wanninger, 2008; Wanninger, 

2008; Nielsen and Worsaae, 2010). A simple apical organ with only a few serotonin-lir flask-

shaped cells is therefore considered as basal within the lophotrochozoans (Wanninger 2009). 

However, a more complex apical organ containing 6-8 serotonin-lir flask-shaped cells and 

several additional peripheral cells is present in the larva of polyplacophoran molluscs and in 

the creeping-type larva of entoprocts (Voronezhskaya et al., 2002; Wanninger et al., 2008). 



17 
 

This derived complexity is viewed as an apomorphy of a mollusk-entoproct-clade, the 

Tetraneuralia (Wanninger, 2008). A simple apical organ with 1 or 2 sets of four serotonin-lir 

flask-shaped cells is found in the larva of craniiform and rhynchonelliform brachiopods 

(Altenburger and Wanninger, 2010; Altenburger et al., 2011). On the contrary, the apical 

organ of the “paralarvae” of planktotrophic linguliform brachiopods contains numerous 

serotonin-lir cells (Hay-Schmidt, 1992). The latter seemingly resembles more closely the 

apical organ found in phoronids, although the typical flask-shape of the serotonin-lir cells has 

not been described in the linguliform “paralarvae”. While in some species of the short-lived 

lecithotrophic coronate larva of ectoprocts the apical organ consists of two serotonin-lir flask-

shaped cells, others show a serotonin-lir apical commissure without serotonin-lir or 

FMRFamide-lir cell bodies (Shimizu et al., 2000; Wanninger et al., 2005a). However, the 

long-lived planktotrophic cyphonautes larva possesses a simple apical organ containing two 

flask-shaped serotonin-lir cells and some additional serotonin-lir perikarya (Nielsen and 

Worsaae, 2010). It is still debated whether the corona-type or the planktotrophic cyphonautes 

larva is basal for ectoprocts and therefore it is difficult to interpret these results 

phylogenetically. Interestingly, in the mid-gastrula stage of Phoronopsis harmeri four 

serotonin-lir flask-shaped cells differentiate simultaneously in the apical plate and 

subsequently increase in number (Temereva and Wanninger, 2012). The synchronous 

formation of four flask-shaped cells in the early development of the actinotroch larva 

resembles a typical simple apical organ as found in most spiralian larvae. Thus, the complex 

apical organ of the actinotroch larva may be interpreted as a secondary condition, 

corroborating the notion that the LCA of the lophotrochozoans had a simple larval apical 

organ with a few serotonin-lir cells (Wanninger, 2008, 2009).  

Many lophotrochozoans such as annelids, echiurans, sipunculids, molluscs, entoprocts and 

platyhelminths, possess a ventral nerve cord (Kristof et al., 2008; Wanninger, 2009). Even in 

juvenile brachiopods two ventral neurite bundles with three commissures are present 
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(Altenburger and Wanninger, 2010). Hitherto, Phoronopsis harmeri is the only actinotroch 

larva known to have a ventral neurite bundle during early larval development. This serotonin-

lir ventral neurite bundle disappears in the 6 primordial tentacle stage and is lost in subsequent 

stages (Table 1; Temereva and Wanninger, 2012). On the contrary, the FMRFamide-lir 

ventral neurite bundle is, at least, expressed until the 6 tentacle stage (Table 2; Temereva and 

Wanninger, 2012). In this work no ventral neurite bundle was found, neither a serotonin-lir 

nor a FMRFamide-lir one (Table 1, 2). Due to the documented loss of the ventral neurite 

bundle in Phoronopsis harmeri, it could be assumed that a ventral neurite bundle is only 

present in the very early developmental stages of phoronids and therefore was not detectable 

in this study. Neither in competent larva of Phoronis pallida (Santagata, 2002) nor in 0-6 

tentacles developmental stages of Phoronis vancouverensis (Hay-Schmidt, 1990b) a ventral 

neurite bundle is present. It remains unknown whether or not a ventral neurite bundle is 

present in other phoronid species since only few developmental data on early phoronid 

neurogenesis are available. Nevertheless, the occurrence of a paired ventral nerve cord is very 

common in lophotrochozoans and considered basal for protostomes (Wanninger, 2009). 

Despite the absence of a ventral nerve cord in adult phoronids (Emig, 1979), the presence of a 

ventral neurite bundle during early development of Phoronopsis harmeri indicates that such a 

neural feature was also present in the LCA of Phoronida.  

Serotonin-lir nerves that underlie ciliary bands are common in lophotrochozoan larvae. They 

are known from polyplacophoran and gastropod molluscs, polychaete annelids and 

nemerteans as well as from platyhelminths, entoprocts and ectoprocts (Hay-Schmidt, 1990c, 

2000; Friedrich et al., 2002; Page 2002; Voronezhskaya et al., 2002; Voronezhskaya et al., 

2003, Nielsen, 2005; Rawlinson, 2010). Accordingly, serotonin-lir nerves underlying the 

ciliary bands are considered as basal for lophotrochozoan larvae, although this feature may be 

secondarily reduced in certain taxa such as in larvae of sipunculids, echiurans and 

cycliophorans (Hessling and Westheide, 2002; Wanninger, 2005; Wanninger et al., 2005b). 
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The actinotroch larvae of phoronids have a preoral ciliated band that is situated along the edge 

of the preoral hood and a postoral ciliated band situated along the tentacles and a posterior 

ciliated band, the so-called telotroch (Nielsen, 1987). In Phoronis muelleri each of these 

ciliated bands are innervated by serotonin-lir and FMRFamide-lir neurite bundles. This 

supports the view that this condition is considered basal and that the LCA of the 

lophotrochozoans already had serotonin-lir and probably also FMRFamide-lir nerves 

underlying the ciliated bands (Wanninger, 2008; Wanninger, 2009).  

 

Conclusion 

This study demonstrates the presence of serotonin-lir, FMRFamide-lir as well as small 

cardioactive peptide-lir components in the larval nervous system of Phoronis muelleri. The 

complex apical organ of Phoronis muelleri is described in detail for each mentioned 

neurotransmitter. It supports the scenario that these immunoreactive substances have already 

been present in the groundplan of the Phoronida as well as in the LCA of Lophotrochozoa. In 

addition, this study provides evidence that each ciliary band of Phoronis muelleri is 

underlined by serotonin-lir, FMRFamide-lir and small cardioactive peptide-lir neurite 

bundles. This indicates that innervated ciliary bands have already been present in the 

groundplan of the Phoronida.  

Moreover, this study provides the first description of the small cardioactive peptide-lir 

nervous system in a larval phoronid. The widespread distribution of this neuropeptide 

throughout the protostomians suggests that this peptide was part of the protostomian 

groundplan. More developmental data on the neuroanatomy of various species of Phoronida 

are needed in order to assess the precise phoronid neural ground pattern.  
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Figure Legends 

Figure 1: 

Main gross anatomical features of the actinotroch larva of Phoronis muelleri. Lateral view of 

a larva with apical to the top. Scale bars equal 100 µm. (A) Differential interference contrast 

image of a larva showing the preoral lobe (pl), apical plate (ap), mesosome (ms), tentacles (t) 

with tentacular cilia (tc), the trunk (tr), telotroch (tt) and the cilia of the telotroch (ctt). (B) 

Nuclear staining (DAPI) of the same larva. 

 

Figure 2: 

Organization of the serotonin-lir nervous system at the 12-16 tentacle stage of the actinotroch 

larva of Phoronis muelleri. A-C: Maximum projections of double stainings for serotonin-lir 

(graded shades of red through white) and DAPI (blue). D is a 3D reconstruction of the dataset 

shown in C. E is a snapshot of an apical organ (A) Overview of the serotonin-lir nervous 

system of the actinotroch larva showing the apical organ (ao), the neurites in the preoral lobe 

(hn), the tentacle neurite bundle (tn), the lateral part of the tentacle neurite bundle (tnl) which 

runs along the mesosome and sends a frontal process into each tentacle, as well as neurites in 

the trunk (trn) which connect the tentacular neurite bundle to the neurites of the telotroch (nt). 

In addition, a few perikarya along the margin of the preoral lobe (mp) as well as numerous 

perikarya along the tentacle ridge (ptr) and in the frontal side of each tentacle have formed. 

Apical is to the top and scale bar equals 100 µm. (B) Detail of the tentacles with the perikarya 

along the tentacle ridge (ptr) continuing in the frontal side of each tentacle. The tentacular 

neurite bundle (tn) runs under the tentacles and sends two lateral abfrontal processes (lap) into 

each tentacle, while the lateral part of the tentacular neurite bundle runs along the mesosome 

and sends a median frontal process (mfp) into each of them. Scale bar equals 50 µm. (C) 

Detail of the apical organ showing the neuropil (np), which has increased in size, and about 
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22 flask-shaped cells (fc), as well as a few bi-or multipolar perikarya (asterisks). Each flask-

shaped cell bears a cilium (sc). The tentacular neurite bundle (tn) projects in posterior 

direction. (a) anterior, (p) posterior. Anterior is to the top. Scale bar equals 25 µm. (D) 3D 

reconstruction of the dataset shown in C showing the flask-like shape of the cells. Scale bar 

equals 25 µm. (E) Snapshot approximately in the median of the apical organ showing one 

flask-shaped cell (fc) as well as some neurites (n) of the neuropil and the bi-or multipolar 

perikarya (asterisks) which lie under the neuropil and are also arranged in a U-shape. Lateral 

view with anterior to the right. Scale bar equals 25 µm.  

 

Figure 3: 

Line drawings of the neuronal components of the tentacles in A-C and the apical organ in D-F 

in the actinotroch larva of Phoronis muelleri for all analysed neurotransmitters. Scale bars 

equal 50 µm in A-C and 25 µm in D-E. (A) Serotonin-lir innervation of the tentacles. The 

tentacular neurite bundle (tn) projects posteriorly from the apical organ (ao), runs under the 

tentacles and sends two lateral abfrontal processes into each tentacle. The lateral portion of 

the tentacular neurite bundle (tnl) sends neurites along the mesosome and a median frontal 

process into each tentacle. Perikarya are visible along the tentacle ridge and in each tentacle 

on the frontal side. (B) FMRFamide-lir innervation of the tentacles showing a median 

abfrontal process which is formed by the tentacular neurite bundle (tn). In addition, the 

tentacles are innervated by two lateral frontal processes which are connected to each other 

(arrowheads) at the tentacle basis. (C) Small cardioactive peptide-lir innervation of the 

tentacles showing two lateral frontal processes in each tentacle. (D) The serotonin-lir portion 

of the apical organ shows the U-shape, the flask-shaped cells, each bearing a cilium and 

projecting into the neuropil (np), and the bi-or multipolar cells underlying the neuropil. The 

median neurite bundle of the preoral lobe (men) projects in anterior direction, the tentacular 

neurite bundle (tn) in posterior direction. (E) FMRFamide-lir portion of the apical organ 
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showing the U-shaped neuropil (np) and dorso-lateral perikarya on each side. The median 

neurite bundle of the preoral lobe (men) projects in anterior direction, the tentacular neurite 

bundle (tn) in posterior direction. (F) The small cardioactive peptide-lir apical organ showing 

the U-shaped neuropil (np) as well as dorso-lateral perikarya on each side.  

 

Figure 4: 

Line drawings of both investigated stages of the serotonin-lir (A, B) and the FMRFamide-lir 

(C, D) nervous system in the actinotroch larva of Phoronis muelleri. Apical is to the top in all 

aspects. Lateral right views, scale bars equal 100 µm in A and C, and 200 µm in B and D.  

(A) Serotonin-lir nervous system of the larva at the 12-16 tentacle stage showing the apical 

organ (ao), the median neurite bundle of the preoral lobe (men), the tentacular neurite bundle 

(tn) which projects in posterior direction and runs under the tentacles, as well as several fine 

neurites in the entire preoral lobe (hn) and the marginal neurite bundle of the preoral lobe 

(mn) with several associated perikarya (mp). The lateral part of the tentacular neurite bundle 

(tnl) projects more laterally, spreads over the mesosome (msn) and sends a median frontal 

process (mfp) into each tentacle, while the tentacular neurite bundle sends two lateral 

abfrontal processes (lap) into each of them. Numerous perikarya (ptr) are visible along the 

tentacle ridge and in each tentacle on the frontal side. Several neurites are situated in the trunk 

region (trn). The telotroch is innervated by two ring-shaped neurite bundles (nt). (B) 

Serotonin-lir nervous system of the larva with 18 and more tentacles showing the same 

structures as in A. The frontal organ (fo) is visible. (C) FMRFamide-lir nervous system of the 

larva at the 12-16 tentacle stage showing the apical organ (ao), several fine neurites (hn) along 

the entire preoral lobe and the marginal neurite bundle (mn). Several perikarya (hp) in the 

preoral lobe as well as perikarya (mp) along the marginal neurite bundle are present. 

Anteriorly to the apical organ the median neurite bundle (men) is visible. The tentacular 

neurite bundle (tn), which projects in posterior direction, runs under the tentacles and sends a 
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median abfrontal process (map) into each of them. The lateral part of the tentacular neurite 

bundle (tnl) spreads over the mesosome (msn) and sends two lateral frontal processes (lfp) 

into each tentacle. In addition, several perikarya (cp) are situated ventral in the entire 

mesosome. Several fine neurites (trn) are located in the trunk. The telotroch is innervated by 

two ring-shaped neurite bundles (nt). Several perikarya are visible in the telotroch region (tp). 

(D) FMRFamide-lir nervous system of the larva with 18 and more tentacles showing similar 

structures as described in C. The perikarya of the telotroch have disappeared. 

 

Figure 5: 

Organization of the FMRFamide-lir nervous system at the 12-16 tentacle stage of the 

actinotroch larva of Phoronis muelleri. Maximum projections of triple stainings for 

FMRFamide-lir (graded shades of red through white), acetylated α-tubulin (green) and DAPI 

(blue). (A) Overview of the larva showing the triple staining with the apical organ (ao), the 

neurites along the entire preoral lobe (hn), the marginal neurite bundle of the preoral lobe 

(mn), the median neurite bundle of the preoral lobe (men), neurites along the mesosome 

(msn), as well as the perikarya in the mesosome (cp) and the innervated tentacles (t). In 

addition, perikarya of the telotroch region (tp) as well as two ring-shaped neurite bundles (nt) 

of the telotroch (tt) and the cilia of the telotroch (ctt) are visible. Apical to the top, scale bar 

equals 100 µm. (B) Detail of the mesosome region shown in A. The bi-or multipolar 

perikarya (cp) are situated median in the mesosome. Neurites are spread over the entire 

mesosome (msn). The tentacles are innervated by two lateral frontal processes (lfp), which 

show some commissures (arrowheads) at the tentacle base, as well as a fine median abfrontal 

process (map). Several fine neurites are located in the trunk (trn). Scale bar equals 50 µm. (C) 

Detail of the apical organ showing the neuropil (np) and dorso-lateral perikarya (dlp) on both 

sides. Neurites (hn) are located along the preoral lobe. (a) anterior, (p) posterior. Anterior is to 

the bottom. Scale bar equals 25 µm. (D) Detail of the telotroch showing the two ring-shaped 
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neurite bundles (nt) as well as some interconnecting neurites (arrow). The perikarya of the 

telotroch (tp) are associated with the ring-shaped neurite bundles of the telotroch. The neurites 

in the trunk (trn) have increased in number. Scale bar equals 25 µm. (E) Detail of the 

telotroch with associated perikarya (tp). They show a granular appearance and some of them 

are associated with one of the ring-shaped neurite bundles (nt). Scale bar equals 15 µm. 

 

Figure 6: 

Organization of the serotonin-lir nervous system at the 18 and more tentacle stage of the 

actinotroch larva. Maximum projections of triple stainings for serotonin-lir (graded shades of 

red through white), acetylated α-tubulin (green) and DAPI (blue). (A) Overview of the 

serotonin-lir nervous system of the actinotroch larva showing the apical organ (ao), the 

median neurite bundle of the preoral lobe (men), the marginal neurite bundle of the preoral 

lobe (mn) with associated perikarya (mp), the tentacular neurite bundle (tn) which runs in 

posterior direction, the lateral part of the tentacular neurite bundle (tnl) which runs towards 

the mesosome. In addition, the tentacles (t) are innervated by processes (lap), and the 

telotroch is innervated by two ring-shaped neurite bundles (nt). The cilia of the telotroch (ctt) 

are visible. Apical is to the top, scale bar equals 200 µm. (B) Detail of a tentacle showing the 

tentacular neurite bundle (tn) which runs under the tentacles and sends two lateral abfrontal 

processes (lap) into each of them. Neurites of the mesosome (msn) send a median frontal 

process (mfp) into each tentacle. Perikarya of the tentacle ridge and in the frontal side of the 

tentacle (ptr) are visible. Scale bar equals 25 µm. (C) Lateral view of the apical organ shown 

in A. Anterior to the apical organ, the frontal organ (fo) is visible, both are interconnected by 

the median neurite bundle of the preoral lobe (men). The apical organ consists of about 37 

flask-shaped cells (fc) that are arranged in a U-shape. Each flask-shaped cell bears a 

serotonin-lir cilium (sc). Bi-or multipolar perikarya (asterisks) are situated underneath. (a) 

anterior, (p) posterior. Scale bar equals 25 µm. (D) Dorsal view of the apical organ showing 
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the flask-shaped cells (fc) which are situated in a U-shape surrounding and projecting into the 

neuropil (np). The bi-or multipolar perikarya (asterisks) are situated under the neuropil and 

also in a U-shape. The flask-shaped cells appear roundish due to the dorsal view. The median 

neurite bundle of the preoral lobe (men) projects in posterior direction. (a) anterior, (p) 

posterior. Scale bar equals 25 µm. (E) Detail of the posterior part of the apical organ showing 

the flask-shaped cells (fc) with the serotonin-lir cilia (sc). Thickenings (arrowheads) are 

located along the processes they send into the neuropil. Underneath the neuropil, the cell mass 

of bi-or multipolar perikarya (asterisks) is situated. Lateral view, scale bar equals 15 µm. 

 

Figure 7: 

Line drawings of the distribution of the tested neurotransmitter (A-B: serotonin-lir; C-D: 

FMRFamide-lir; E-F: small cardioactive peptide-lir) in the 18 and more tentacle stage in the 

larva of Phoronis muelleri. Lateral view in A, C, E, dorsal view in B, D, F. Scale bars equal 

200 µm. (A) Serotonin-lir nervous system of the larva showing the apical organ (ao), the 

frontal organ (fo), the median neurite bundle (men) which projects in anterior direction 

towards the margin of the preoral lobe, the marginal neurite bundle (mn) with several 

associated perikarya (mp) and several neurites (hn) along the entire preoral lobe. The 

tentacular neurite bundle (tn) projects in posterior direction and sends two lateral processes 

into the abfrontal side (lap) of each tentacle. The lateral part of the tentacular neurite bundle 

(tnl) spreads over the mesosome (msn) and sends a median frontal process (mfp) into each 

tentacle. Numerous perikarya are located along the tentacular ridge and in each tentacle on the 

frontal side (ptr). Several neurites are situated in the trunk (trn) and the telotroch is innervated 

by two ring-shaped neurite bundles (nt). (B) Dorsal view of the line drawing shown in A. (C) 

FMRFamide-lir nervous system of the larva showing the apical organ (ao), the median neurite 

bundle (men), which runs towards the margin of the preoral lobe, the marginal neurite bundle 

(mn) with several associated perikarya (mp), as well as neurites (hn) and perikarya (hp) 
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spread over the entire preoral lobe. The tentacular neurite bundle (tn) projects in posterior 

direction and sends a median abfrontal process (map) into each tentacle. The lateral part of the 

tentacular neurite bundle (tnl) sends several neurites towards the mesosome (msn) and sends 

two lateral processes into the frontal side (lfp) of each tentacle. Several bi-or multipolar 

perikarya (cp) are located in the mesosome. The trunk is innervated by neurites (trn) and the 

telotroch by two ring-shaped neurite bundles (nt). (D) Dorsal view of the line drawing shown 

in C. (E) Small cardioactive peptide-lir nervous system of the larva showing the apical organ 

(ao), a few neurites in the preoral hood (hn), the marginal neurite bundle (mn), neurites along 

the mesosome (msn), as well as two lateral frontal processes (lfp) in each tentacle. A few fine 

neurites (trn) are located in the trunk. The telotroch is innervated by two ring-shaped neurite 

bundles (nt). (F) Dorsal view of the line drawing shown in E. 

 

Figure 8: 

Organization of the FMRFamide-lir nervous system at the 18 and more tentacle stage of the 

actinotroch larva of Phoronis muelleri. Maximum projections of double stainings for FMRF-

amide (graded shades of red through white) and DAPI (blue). (A) Overview of the 

FMRFamide-lir nervous system of the actinotroch larva showing the apical organ (ao), the 

median neurite bundle of the preoral lobe (men), the perikarya along the mesosome (cp), the 

tentacles (t) which are innervated by the tentacle processes (lfp, map) as well as the two ring-

shaped neurite bundles of the telotroch (nt). Ventral view, scale bar equals 200 µm. (B) Detail 

of the telotroch showing the two ring-shaped neurite bundles (nt) as well as several neurites in 

the trunk (trn). Scale bar equals 70 µm. (C) Detail of a tentacle shown in A, which is 

innervated by two lateral frontal processes (lfp) and a median abfrontal process (map). At the 

tip of the tentacle these processes are interconnected (arrowheads). (a) anterior, (af) abfrontal, 

(f) frontal, (p) posterior. Lateral view, frontal is to the left. Scale bar equals 25 µm. (D) Detail 

of the apical organ shown in A. The neuropil (np) and dorso-lateral perikarya (dlp) are visible. 
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The median neurite bundle of the preoral lobe (men) projects in anterior direction. (a) 

anterior, (p) posterior. Dorso-lateral view, scale bar equals 50 µm. 

 

Figure 9: 

Organization of the small cardioactive peptide-lir nervous system at the 18 and more tentacle 

stage of the actinotroch larva of Phoronis muelleri. Maximum projections of double stainings 

for small cardioactive peptide-lir (graded shades of red through white) and DAPI (blue). (A) 

Overview of the small cardioactive peptide-lir nervous system showing the apical organ (ao), 

the marginal neurite bundle of the preoral lobe (mn), the lateral frontal processes (lfp) of the 

tentacles (t) as well as the telotroch (tt) with its ring-shaped neurite bundles (nt). Lateral view, 

scale bar equals 200 µm. (B) Detail of the preoral lobe showing a lateral view of the apical 

organ with the neuropil (np) and a few dorso-lateral perikarya (arrowheads) on both sides. In 

addition, the marginal neurite bundle (mn), which runs along the edge of the preoral lobe, as 

well as several fine neurites in the preoral lobe (double arrowheads) are visible. Lateral view, 

scale bar equals 50 µm. (C) Detail of the telotroch showing the two ring-shaped neurite 

bundles (nt) which connect to fine neurites of the trunk (arrows). Scale bar equals 50 µm. (D) 

Detail of the tentacle ridge region showing two lateral processes (lfp) which project into each 

tentacle on the frontal side. The preoral lobe with fine neurites (double arrowheads) and the 

marginal neurite bundle (mn) are visible. Lateral view, scale bar equals 50 µm. 
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Table 1: Summary of data currently available on the serotonin-lir nervous system of the actinotroch larva. Data are taken from Hay-Schmidt (1990) 
(Phoronis muelleri, Phoronis vancouverensis), Santagata (2002) (Phoronis pallida), Temereva and Wanninger (2012) (Phoronopsis harmeri) and 
the study herein (Phoronis muelleri). N/A, not applicable; +, present; -, not present; ?, unclear. 
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Table 2: Summary of data currently available on the FMRFamide-lir nervous system of the actinotroch larva. Data are taken from Hay-Schmidt 
(1990) (Phoronis muelleri, Phoronis vancouverensis), Temereva and Wanninger (2012) (Phoronopsis harmeri) and the study herein (Phoronis 
muelleri). N/A, not applicable; +, present; -, not present; ?, unclear. 
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Table 3: Overview of the small cardioactive peptide-lir nervous system of the actinotroch 
larva. Data are taken from the study herein (Phoronis muelleri). +, present; -, not present; ?, 
unclear. 
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