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Abstract

This thesis combines ideas from the fields of quantum information and condensed matter. This

combination has already proven extraordinarily successful: While one would naively assume

that in condensed matter theory one would always have to work with an exponentially large

Hilbert space, we are now beginning to understand that only a small part of these states is

physically relevant. This understanding is primarily driven by insights about entanglement

properties of the states actually occurring in nature; those insights have been delivered exactly

by the application of quantum information theory.

In the spirit of these ideas, this thesis applies a quantity that is defined and justified by infor-

mation theory – mutual information – to models of condensed matter systems. More precisely,

we will study models which are made up out of ferromagnetically interacting spins. Quan-

tum information theory often focuses on the ground state of such systems; we will however be

interested in what happens at finite temperature.

Using mutual information, which can be seen as a generalization of entanglement entropy

to the finite-temperature case, we can study the different phases occurring in these models, and

in particular the phase transitions between those. We examine broadly two different classes

of models: classical spins on two-dimensional lattices [1], and fully-connected models of

quantum-mechanical spin-1/2 particles [2]. We find that in both cases the mutual information

is able to characterize the different phases, ordered and unordered, and shows clear features at

the phase transition between those.

In particular, in the case of classical spins on a lattice, we numerically find a divergence of

the first derivative of the mutual information at the critical point, accompanied by a maximum

within the high-temperature phase. We justify the location of the maximum by studying the

behaviour of Fortuin-Kasteleyn clusters of aligned spins.

For fully-connected spins, we find a rather different behaviour: a mutual information that

logarithmically diverges at the phase transition, as long as it is of second order; for a first-order

phase transition there is no divergence at all. Analytical calculations in the classical limit sup-

port the numerical evidence. The behaviour is consistent with what one would have predicted

from existing studies of entanglement entropy at the zero-temperature phase transition in these

models.
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Zusammenfassung

Diese Dissertation kombiniert Ideen aus den Bereichen Quanteninformation und Festkörper-

physik. Diese Verbindung hat sich bereits als außerordentlich erfolgreich erwiesen: Es hat sich

gezeigt, dass anstelle des gesamten, exponentiell großen, Hilbertraums nur ein kleiner Teil der

Zustände tatsächlich physikalisch relevant ist. Durch Einsichten in die Verschränkungseigen-

schaften von Zuständen hat Quanteninformation hier wesentlich zu unserem Verständnis beige-

tragen.

In Anlehnung an solche Ideen wird in dieser Arbeit die Verwendung von mutual informa-

tion (auch: Transinformation, gegenseitige Information, oder Synentropie) zur Beschreibung

von Korrelationen in Festkörpersystemen motiviert und beschrieben. Dazu werden ferromag-

netisch wechselwirkende Spinsysteme betrachtet. Im Bereich der Quanteninformation werden

häufig die Grundzustände solcher Systeme diskutiert; in dieser Arbeit werden dagegen ther-

mische Zustände bei endlicher Temperatur erörtert werden.

Mittels mutual information, die dabei als Verallgemeinerung von entanglement entropy

(Verschränkungsentropie) für den Fall gemischter Zustände gesehen werden kann, können wir

dann die verschiedenen Phasen dieser Modelle untersuchen, und insbesondere die Phasenüber-

gänge zwischen ihnen. Wir werden im Wesentlichen zwei Klassen von Modellen betrachten:

zum einen klassische Spins auf zweidimensionalen Gittern [1], und zum anderen vollständig

verbundene Modelle quantenmechanischer Spin-1/2-Teilchen [2]. In beiden Fällen zeigt die

mutual information charakteristisches Verhalten am Phasenübergang und innerhalb der geord-

neten beziehungsweise ungeordneten Phasen.

Insbesondere finden wir für klassische Spins auf einem Gitter mittels numerischer Me-

thoden eine Divergenz der ersten Ableitung der mutual information am kritischen Punkt, ver-

bunden mit einem Maximum innerhalb der paramagnetischen Phase. Wir motivieren die Exis-

tenz dieses Maximums durch Betrachtungen von Fortuin-Kasteleyn-Clustern von parallel aus-

gerichteten Spins.

Für die vollständig verbundenen Modelle zeigt sich ein anderes Verhalten: Die mutual in-

formation divergiert logarithmisch am Phasenübergang, sofern dieser ein Übergang zweiter

Ordnung ist; für einen Übergang erster Ordnung gibt es keine Divergenz. Analytische Rech-

nungen im klassischen Grenzfall unterstützen hierbei die numerischen Ergebnisse. Das gefun-

dene Verhalten ist konsistent mit bestehenden Resultaten, die bereits in anderen Arbeiten für

die entanglement entropy des Grundzustandes gefunden wurden.
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Chapter 1

Introduction and overview

The purpose of this thesis is to explore mutual information as a correlation measure, in the

setting of a few selected spin models, at finite temperature.

In order to do this, I will try to generally motivate the study of mutual information, as a

correlation measure, in chapter 2. This will mostly be based on an information-theoretic point

of view. In particular, we will of course see the connection to entanglement entropy, to which

mutual information sometimes reduces, and which was certainly a motivation for its study. I

would however like to point out already at this point that this thesis is not concerned with a

measure for “quantum entanglement”, which would allow to distinguish entanglement from

“classical correlations”. It is well known that mutual information cannot provide that [3] – and

while such a distinction is without any doubt very interesting, we will see that it might not

actually be so relevant if one wants to use correlations to study phase transitions.

The bulk of the thesis will then be dealing with actually calculating mutual information in

interesting model systems. They can all be understood as “spin systems”. There are essentially

two very different classes that we will discuss: On the one hand, classical spins on fixed lattice

positions, with local interactions, discussed in chapters 3 through 5. Some key results out of

this group have been published as [1]. On the other hand, there are fully-connected spin models,

where the spins all interact with each other rather than only with a small set of neighbours; this

will be the subject of chapters 6 and 7. Again, some of the results have already been published,

as [2]. The thesis finishes with some concluding remarks and an outlook.
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Chapter 2

Mutual information

In this chapter I will try to generally motivate the study of mutual information in physical

systems. The following chapters will then deal with its calculation for some specific systems,

and also contain sometimes more specific motivation.

2.1 Motivation

I believe the most intuitive way to motivate the study of mutual information is the following:

Take a look at figure 2.1(a). This tries to represent a rather generic physical system: some

bigger system that is made up out of many smaller constituents. These constituents could for

example be individual nucleons, or atoms, or molecules. Let us maybe call them just “particles”

for now. They could be arranged in a regular lattice (such as in the figure, and also as discussed

in the next few sections), or they might be more randomly distributed.

For the system to be interesting, the particles will have to have some interaction. This

interaction makes them behave differently than if they were just isolated individual particles. In

fact, there will now be correlations between the particles. For example, in a solid the individual

particles are arranged in a regular lattice, which is obviously a very strong correlation between

the particles.

As another example, closer to the systems that will be considered in this thesis, a ferro-

magnetic interaction means that particles (which you may in this case imagine as some sort

of elementary magnets) will tend to all align in the same direction, which is clearly also some

sort of correlation. But they will not always be perfectly aligned – there might be other factors

that tend to counteract the perfect alignment, such as external magnetic fields, or temperature

and entropy. In fact, at high enough temperature or fields, the ferromagnetic order typically

vanishes, in a phase transition to an unordered (paramagnetic) phase.

It is therefore certainly important to try to actually quantify such correlations. Let’s stay

with the example of a ferromagnetic interaction, and call the individual particles spins. A very

well-established way to describe the correlations is the following: just consider two of these

11
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Figure 2.1: Correlation functions versus mutual information

spins, as indicated in part (b) of figure 2.1. Maybe they could be described by classical values

si and sj . These could for example be allowed to be only +1 and −1, representing orientation

along some given axis. Maybe they would instead have to be described quantum-mechanically,

in terms of spin operators, for which we could however just use the same symbols. In both

cases, the concept of a correlation function is applicable: It is an expression like

〈sisj〉 − 〈si〉〈sj〉

that tells us how the expectation value of the product of the spin “operators” is different from

just looking at the two spins individually. This is clearly an expression that tells us something

about correlations between these two spins. It is called a correlation “function” because we

can now study how this expression depends, for example, on interaction strength, temperature,

external fields, or the distance of the two spins.

But don’t you find it a bit lacking? In particular, don’t you think it is rather arbitrary to

12



pick out just two spins out of all of them? Certainly, in general there will be correlations in the

system that we miss in this way, for which we would have to look at more than two spins at a

time. Of course, this is well understood, and there are corresponding “higher order” correlation

functions that involve more than two spins. But now, it is no longer so obvious which of these

correlation functions we should refer to if we want to quantify the correlations, so is there

maybe something else we could do?

Indeed there is: Imagine that you (virtually, not physically) divide the system into two

parts, as indicated in figure 2.1(c). Then we would like to ask the following question: how

much information can we gain about one part of it by looking only at the other one? It turns

out that this is exactly what is known as mutual information!

So what is this mutual information? For a much more general (but also more abstract)

discussion you can consult e.g. [4], but let me try to describe it in the setting I have started

to lay out. The first thing we need to understand is that the state of a system at finite temper-

ature is described by a probability distribution. This is also needed for the averaging in the

correlation functions of course, but now we will make even more explicit use of the probabili-

ties. In classical physics, in thermal equilibrium, the probability distribution is the well known

Boltzmann-Gibbs distribution. In quantum physics, we will need a corresponding Boltzmann-

Gibbs density operator instead.

The Shannon entropy [5] of a probability distribution {pi}

S = −
∑
i

pi log pi

is a quantity that describes the uncertainty we have about the state of the system. If we now

do our virtual bipartitioning, we write the index of a state instead of i as (a, b) with the under-

standing that a and b describe the state of the parts respectively.

This means we can now write the total entropy as

SAB = −
∑
ab

pab log pab ,

or

SAB = −Tr ρAB log ρAB

for the corresponding von Neumann entropy in the quantum case (see e.g. chapter 11 of [6]

for more about the quantum case). It is of course clear that the classical case is just the special

case of a diagonal density matrix; I still find it useful to write out the classical sums as well, as

they make explicit the operations that are implicit in the quantum-mechanical trace.

Let us realize now that we can also find the probability distributions for the parts as the

marginal probability distributions

pa =
∑
b

pab , pb =
∑
a

pab .

13



In the quantum mechanical setting, we would have to take partial traces of the density matrix,

“tracing out” the respective other part ([6], chapter 2),

ρA = TrB ρAB , ρB = TrA ρAB .

We can now also calculate entropies of the marginal distributions, or reduced density matrices:

SA = −
∑
a

pa log pa , SB = −
∑
b

pb log pb

or

SA = −Tr ρA log ρA , SB = −Tr ρB log ρB .

Now we are ready to define mutual information as

I(A : B) = SA + SB − SAB. (2.1)

How can we understand that this is what we want? I very much like the following point of view:

it is the uncertainty (“what we do not know”) about A and “what we do not know about B”

minus “what we do not know about the whole system”. Quite intuitively, this is the information

that A and B have in common. Or, as described before, the information that we can extract

from A about B and vice versa (note that the definition is symmetric).

We can try to illustrate this with an “information diagram” as shown in figure 2.2 [4, 7].

The red circle represents SA, the blue one SB . The uncertainty about the whole system, SAB ,

is the whole shaded area in the figure. If you subtract that from SA + SB , you see that what

remains is the “overlap” I(A : B).

Also indicated in the figure is the relation to conditional entropies. As you can see there,

we can also write the mutual information as

I(A : B) = SA − S(A|B) = SB − S(B|A) (2.2)

where S(A|B) is the entropy of A given that we already know B. You can easily see that this

leads to the same interpretation of mutual information.

There is another important way to view mutual information: Let us write it out in terms of

classical probabilities:

I(A : B) =
∑
ab

pab log
pab
papb

(2.3)

and you can see that this in fact a sort of “distance measure” between the actual joint proba-

bility distribution pab of the total system, and the product of the marginal distributions papb. It

does not actually fulfill the axioms of a distance (you can immediately notice that it is not sym-

metric between pab and papb). It is therefore labeled a “divergence” instead. More specifically:

the Kullback-Leibler divergence of these two distributions (this is also called their relative en-

tropy).

14



S(A|B) S(B|A)

SA SB

I(A:B)

Figure 2.2: Information diagram for (Shannon) mutual information

It seems intuitive to measure correlations by looking at how far the actual distribution is

from a product distribution, so this is another nice interpretation of mutual information. It

is also relevant for a different reason: The arguments I presented before rely on adding, or

subtracting, entropies (or conditional entropies). This makes sense for Shannon/von Neumann

type entropies, as explained for example in [4]. But these are not the only entropies out there,

and such a property is not generally true for other definitions of entropy. If we wanted to work

with Rényi entropies [8, 9] instead, the way towards a definition of mutual information should

therefore certainly start from such a distance measure instead. More about this in section 2.5.

2.2 Mutual information and entanglement entropy

There is another strong motivation for mutual information that has already been mentioned in

the introduction: It has been applied very successfully in a special case where it is usually

known as “entanglement entropy”. You could also say that mutual information is a generaliza-

tion of this by now pretty well-established concept. The special case is that the system is in

a pure quantum state, which has therefore zero total entropy. A classical state with zero en-

tropy is usually uninteresting, because the entropies of the parts will be zero as well. But pure

quantum states can be strongly entangled, which reflects in nonzero entropies of the reduced

density matrices. In that case, SA = SB is called entanglement entropy. You will read more

about mutual information as a generalization of entanglement entropy in particular in chapters

6 and 7.

2.3 The success story of mutual information

I would now like to argue that mutual information has proven a very useful concept in a huge

number of applications, in many different branches of physics and other sciences. If you are

already convinced of that, or do not care either way, feel free to skip this section.

In fact, I think the story of mutual information is such a success that it is impossible to even

give an appropriate selection of references, not least because I am far from an expert in most of

the applications. That is why I would like to point out only a very small number of references

that I personally found particularly interesting: Mutual information seems to have turned out

15
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Figure 2.3: Relative frequency of the (case-insensitive) phrase “mutual information” in articles submit-
ted to arXiv.org. 12-month rolling average, spanning the period January 17, 1995 to February 22, 2012.
Graph produced by the web application at arxiv.culturomics.org.

to be extremely useful for the alignment of (in particular medical) images: Imagine you have

two different pictures of the same thing – say, one obtained by x-rays (computer tomography)

and one obtained by magnetic resonance imaging, and you want to overlay them to get a better

total picture (since they show different features differently well). The most effective way to get

them to “match” seems indeed to be minimization of their mutual information, in a suitably

defined sense, as originally described in [10, 11, 12, 13, 14].

Or, for an example that is maybe closer to your idea of physics, see [15] for an application

in the context of dynamical systems.

All of these references are widely cited, but I found that many physicists are still pretty

unfamiliar with the concept of mutual information and hence sometimes doubtful if it really

can be that relevant. Therefore, I would like to go one step farther in trying to convince you

that it has in fact proven useful. Indeed, let us try to quantify how much use it has found: First,

let us look at articles submitted to arXiv.org, which is a preprint server with a strong focus on

physics (and “neighbouring” sciences, such as mathematics or quantitative biology). We could

even restrict to just papers that are explicitly categorized as physics, but the results turn out to

be rather similar, so let us work with the largest possible data set.

Figure 2.3 shows the frequency of the phrase “mutual information” in the articles submitted

to arXiv over a period from about 1995 (which is about the earliest date from which there is

a reasonably good data basis) to the present. This graph is produced by arxiv.cultoromics.org;

since we are not interested in any particular short-term trends or fashions, the data are smoothed

by carrying out a rolling average over 12 months. It seems to be very clear to me that mutual

information must have proven a useful tool – at least that is the only reasonable explanation I

16
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Figure 2.4: Relative frequency of the (case-insensitive) phrase “mutual information” in books published
between 1940 and 2000, see reference [16]. 7-year rolling average.

can offer for why it is now used more than five times as often that it was about 15 years ago.

Of course that by itself would not be sufficient to argue that it is also relevant in the current

context, but I certainly find this encouraging! I would like to point out that I only think this is

a good indicator for relevance because the data spans many years – if it were just a short-term

trend, you could easily argue that it is just currently “fashionable” and may well prove to have

very limited use after all.

Since arXiv data only go back a relatively short period of time, I hope figure 2.4 can con-

vince you that the success of mutual information is in fact a long-term one. The figure is based

on [16] and the data available at books.google.com/ngrams (n-gram is just a fancy term for a

sequence of n words; in this language, “mutual information” is called a 2-gram, or bigram).

The figure is produced from the raw data “English, Version 20090715” which is considered

the highest quality data set currently available. Of course, the frequency of the term “mutual

information” in a general corpus of books is much lower than on the arXiv, but I believe we

can again call it a pretty consistent success story. As an aside, you may try the phrase “infor-

mation theory” at books.google.com/ngrams to convince yourself that it was indeed started by

Shannon’s famous paper in 1948 [5].
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2.4 What has been done?

Maybe you are now convinced that it should be a pretty obvious thing to try and look at mutual

information. So, the next question is: has anyone else already done it? Judging by the title

“Mutual Information in Ising Systems” of the paper [17] you would think it has been done

at least in a setting similar to the one which will be discussed in chapter 4. However, that

paper studies the mutual information of just two spins that are picked out, quite similarly to

the study of correlation functions in fact. This is certainly also interesting (and turns out to be

much simpler than what we are going to do), but cannot yield the new kind of information about

many-body correlations we are looking for. You can also find a similar kind of study among the

results of [18]. Yet another different definition of mutual information, as occurring between the

steps of a Monte Carlo simulation of an Ising system, is presented in [19]. While very different

from the approach presented here, it is also very interesting, and turns out to work well to

determine the phase transition, something that we will also repeatedly be discussing (with our

definition) in the following chapters.

Much closer to the spirit of this thesis are the works [20, 21, 22]. They present the same

physically motivated idea of mutual information as a generalization of entanglement entropy.

They study quantum spins on 2-dimensional lattices, which is not among the cases considered

in this thesis, but it turns out that their results are not too dissimilar from what we will find

for classical systems on these lattices, as will be shown in the following chapters. However,

their (numerical) results are from my point of view severely limited by the fact that, in their

Quantum Monte Carlo simulations, it is only possible to calculate Rényi entropies of reduced

density matrices, with integer Rényi parameters larger than 1. They go on to use these to define

mutual information according to (2.1). It does seem to produce useful results, but in principle

the usage of this formula is not justified for Rényi entropies; as mentioned before, adding

and subtracting entropies only really makes sense for Shannon/von Neumann entropies. Even

just generally working with “raw” (non-smoothed) Rényi entropies can sometimes be very

misleading. If you’re wondering now why all that is, or what Rényi entropies are at all, read on

to the next section!

2.5 Generalizations

Of course there are some obvious generalizations to our definition of mutual information, the

most obvious one being maybe dividing the system into more than just two parts. The afore-

mentioned studies [17, 18] could indeed be considered an extreme limiting case, where the

subsystems picked would just be single spins, with the rest of the system understood as a sort

of background. If we wanted to study this more generally though, there will be a lot of freedom

in our choice of the parts, and that is simply beyond the scope of this investigation. Also, in

many cases the calculations will become infeasibly hard.
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Another very interesting route would however be to study not just Shannon entropies (or

their quantum generalization, von Neumann entropies). Possibly the most interesting other

class of entropies are Rényi entropies [8, 9]

S(κ) =
1

1− κ
log
∑
i

pκi

for a probability distribution {pi}, or in the quantum case

S(κ) =
1

1− κ
log Tr ρκ

where κ is a “Rényi parameter”, κ ≥ 0 and κ 6= 1.

If you carefully take the limit for κ → 1, you will see that you reproduce exactly the

Shannon/von Neumann entropy (you will probably need l’Hôpital’s rule). This shows that this

is obviously a possible generalization of the Shannon definition (because it reduces to that in

this limit).

One advantage of Rényi entropies is that (integer) powers of density matrices may some-

times be calculated even where logarithms may not, such as was the case in [20, 21, 22].

Even more interesting is the fact that in some settings Rényi-type entropies may have a

more concrete operational meaning. As outlined in [23, 24], Shannon entropy generally has

an “asymptotic” interpretation: In the limit of a large number of realizations of a system, the

uncertainty it describes can be made more tangible as both the amount of randomness that can

be extracted from it and and its optimum encoding length (think of a compressed description of

the system). If you have however just one realization of a system, these two things can be very

different. If you want a measure of these quantities that is appropriate for a single realization

of a system, you should look at Rényi entropies S(κ) – maybe in particular the limiting cases

S(0) and S(∞), also called max- and min-entropy respectively. Written out explicitly for a

probability distribution {pi}, these are

S(0) = log |supp {pi}|

S(∞) = − log max
i
pi

and from this you may already see that they are related to compressibility on the one hand

and amount of extractable randomness on the other hand. Max-entropy, which is simply the

logarithm of the number of nonzero probabilities, is also known as Hartley entropy [25] and as

such even precedes Shannon entropy.

In fact, it turns out that you might not even have to use these extreme cases, but that there

are essentially two classes of Rényi entropies, namely the ones for κ < 1 and the ones for

κ > 1. However, all of this is only true if you apply “smoothing”, which means in calculating

the entropy you optimize over all probability distributions within a certain distance of the one

you are looking at. If you do not do this, Rényi entropies can become misleading and have

very undesirable behaviour, because small changes in the probability distributions can lead to
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large changes in entropy. Maybe this is most easily seen in the definition of S(0), which would

be clearly changed a lot by adding very many very small probabilities (while slightly reducing

a large one, for conservation of probability). Smoothing is the procedure to deal with such

undesired behaviour.

This extra optimization step however (which is not required for Shannon/von Neumann

entropies) makes those smoothed Rényi entropies much more complicated to deal with, at least

numerically. Add to this the fact that for Rényi mutual information, we cannot start from (2.1)

or (2.2), but need to find a good generalization of (2.3), and you see why this actually becomes

significantly more involved than Shannon/von Neumann mutual information. And after all, the

usual thermodynamic entropy is just Shannon/von Neumann entropy! Therefore, we will focus

on the Shannon/von Neumann definitions from now on.

2.6 Phase transitions; area laws

As has already been hinted in the previous sections, we will generally be interested to study

mutual information in the vicinity of phase transitions – we have argued that mutual infor-

mation measures correlations, and phase transitions are where we expect the correlations to

change strongly.

We will see that mutual information may even be used to “detect” phase transitions, mean-

ing that by looking at the behaviour of mutual information you can conclude where (i.e., at

what system parameters) the phase transition occurs. In the systems studied here, this is usually

well known already, and can typically be found with less effort by looking at more traditional,

“classical thermodynamical” quantities. In the systems studied here, you do not even need

to bother with things like correlation functions, but straightforward “order parameters” will

suffice. However, understanding the possible behaviours of mutual information is important

anyway, because there are systems where traditional order parameters are not applicable and

even correlation functions might fail. These are sometimes called novel or topological phases.

There is another aspect of mutual information that I should already mention in connection

with phase transitions, which will be discussed in more detail within the following chapters:

Remember the “classical thermodynamic” quantities such as correlation functions, or simply

order parameters, with which we contrasted mutual information. In certain types of phase tran-

sitions, these show a very regular behaviour, independent of microscopic details of a system,

but rather “universal” for a whole class of systems, which is then suitably called a universal-

ity class. The typical manifestation of such behaviour is in universal “critical exponents” that

describe the functional behaviour of these quantities.

So is there anything similar for mutual information? There is indeed. Probably the most

well known manifestation of such universal behaviour comes in the form of area laws [26].

They describe how mutual information scales with the size of the system, which is in many

interesting cases not with the volume of the system, but rather its surface area – therefore the
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name area law. Area laws are something that has also been studied extensively in the context

of entanglement entropy, see e.g. [27, 28, 29, 30, 31, 32, 33, 34]. We will see a clear instance

of area laws in the following chapters!

While the correlations in classical systems will always strictly bounded by an exact area law

[26], there may in general be corrections to the area law behaviour; and “universal exponents”

might actually manifest in corrections, see also e.g. [35, 36].

In the systems studied in chapters 6 and 7, there is no notion of dimension (or you could say

they are infinite-dimensional models). Hence, there is no such thing as area laws. Still, there

are typical scaling behaviours that have been identified in the ground states of such models, e.g.

in the entanglement entropy [37, 38, 39, 40]. In section 6.7 we will discuss similar behaviour

that we found in the mutual information.
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Chapter 3

Classical spin models on a lattice

In this chapter, we will consider how to calculate mutual information in a classical spin model

on a lattice. The initial considerations will be independent of the lattice, but we will then

specialize to two-dimensional lattices and in particular consider the case of a square lattice.

Key results of the calculations in this chapter and the next two have been published in [1],

but a big part of the methods sections is previously unpublished, in particular the connection to

matchgates as laid out in section 4.2.

Let us start from the definition of mutual information in the form of equation (2.3). This

involves a sum over all the states of the system. Even for classical spins, these are exponentially

many states: if we have N spins that can take just two possible values, say {−1,+1}, there

are 2N states. Clearly, carrying out such a sum quickly becomes intractable – even a pretty

modestly sized 10× 10 lattice is out of reach.

One idea you might immediately have is to replace the exact sum by a Monte Carlo sam-

pling [41, 42]. However, take another look at equation (2.3): what you then need to evaluate for

each sample is a still pretty complicated expression involving marginal probabilities, which are

not easily accessible – tracing out one subsystem involves an exponentially large sum again.

Of course, you could argue that this could again be approximated using Monte Carlo methods.

But if we had to do that in each step of the “outer” Monte Carlo run, it would be very inefficient

– with Monte Carlo methods, you need to keep the updates simple, so that you can have the

large number of samples you generally require for a good approximation.

However, such initial considerations are what finally lead to the following approach, which

can in the end be used even without any involvement of Monte Carlo methods: You may notice

that our formula bears some resemblance to a partition function, which is also a sum over all

possible states of a system, although a simpler one:

Z =
∑
ab

pab. (3.1)

In many cases, partition functions can actually be calculated pretty efficiently. However, our

problem currently does not have the form of a partition function. But let us now also remember
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Figure 3.1: Spins on a strip/cylinder: (a) subsystems; (b) their interiors and borders.

the result mentioned in section 2.6, that a classical spin system always has to fulfill an area law

[26]. In a way, this implies that instead of summing over all the spins in the system, it should

be sufficient to sum over just those that make up the “boundary” between the systems.

Let us try to combine these ideas into a way to rewrite the definition (2.3). We divide each

subsystem into its “interior” and its “border” with the other system. The border is defined

as the set of all those sites that share a bond with a site that belongs to the other subsystem;

the rest makes up the interior. This is illustrated in figure 3.1: part (a) shows you the most

straightforward way to divide a rectangular system into two parts A and B with states a and b.

Part (b) shows how we identify the borders, for the states of which we will now use labels α

and β, and the interior (or “bulk”) parts which we will label by x and y respectively. Therefore,

we now divide the labels a and b for the states of the subsystems, as we used them in chapter

2, into a = (α, x) and b = (β, y).

Now, we can rewrite the joint probability pab as pab = pαxβy = pxpαxpαpαβpβpβypy

where px describes the contribution from bonds between spins all in the interior of A, pαx the

contribution from the bonds between the interior and the border of A, pα the one from bonds

within the border, and so on. Plugging in this “factorization” of the probabilities, we find that
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we can rewrite the Shannon mutual information (2.3) as

I(A : B) =
∑
αxβy

pαxβy log
pαxβy∑

β′y′ pαxβ′y′
∑

α′x′ pα′x′βy

=
∑
αβ

pαpαβpβ
∑
x

pxpαx︸ ︷︷ ︸
ZA(α)

∑
y

pypβy︸ ︷︷ ︸
ZB(β)

· log
pαβ∑

β′y′

pαβ′pβ′pβ′y′py′︸ ︷︷ ︸
ZB̃(α)

∑
α′x′

pα′βpα′pα′x′px′︸ ︷︷ ︸
ZÃ(β)

. (3.2)

Here the curly underbrackets identify “partial” partition functions, e.g. ZA(α) =
∑

x pxpαx is

the partition function of the system A with the border α fixed – we are summing over all sites

x in the interior of A, but the border α of A has some fixed value.

We also have definitions of partition functions of “extended” systems. For example, ZÃ(β)

means the partition function of the enlarged system Ã, which has all of A (both x and α) in its

interior, and is bounded by β, which is the fixed border configuration for this partition function.

As you can see, the final sum is only over the spins in the boundary region, α and β. So, if

we have an efficient way to calculate the partition functions in the formula – with given fixed

boundary conditions – then we have reduced the sum over all the possible states to a sum over

just the possible states of the borders.

In section 3.2, we will indeed see how partition functions can be efficiently approximated

for arbitrary classical spin models in two dimensions. Chapter 4 will then deal with the classical

Ising model, where there are even ways to calculate the partition function exactly, which we

will also discuss in some detail there. Most of the results even for the Ising model will however

be based on the approach of section 3.2, since it has some additional advantages. It is also the

method used in chapter 5, which deals with some models that are not exactly solvable.

3.1 Monte Carlo sampling

What remains to decide – given a method to evaluate the partial partition functions – is how we

carry out the remaining sum over the border states. For small enough systems we can certainly

just carry out the sum exactly. For larger systems we will indeed use Monte Carlo sampling

for this problem, which is now much more tractable than the original one. In particular, we no

longer need to sample states of the whole system, but only of the border region consisting of α

and β.

Let us spend a few words on why equation (3.2) is in fact in a form directly suitable for

Monte Carlo: Monte Carlo sampling generally works for an expression of the form∑
i pifi∑
i pi

(3.3)
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where the pi form a probability distribution in the sense that they are real and nonnegative, and

that we only get the value of
∑

i pifi up to the normalization of the pi, which we therefore

need to have access to. Both of these conditions are fulfilled by the expression (3.2), where the

obvious choice for the probability part is pi = pαβxy = pαpαβpβZA(α)ZB(β).

What about the error we make by using Monte Carlo sampling rather than the exact sum? It

is of statistical nature, and therefore proportional to 1/
√
nwhere n is the number of samples. It

is also proportional to the standard deviation of the fi. But it also makes a big difference if we

manage to have truly independent samples or if the samples are correlated. In fact, our samples

will almost certainly be correlated; we will be working with what probably most people mean

when they say Monte Carlo sampling, and that is Markov Chain Monte Carlo. Even more

specifically, we will use the Metropolis algorithm, where, in essence, we start with a random

sample, and new samples i′ are proposed as updates of the current one, and accepted with a

probability pi′/pi (or with probability 1 if pi′ is greater than pi). In the next section we will see

a way to calculate partition functions that allows for a particularly simple form of updates, i.e.,

updates that can be done very efficiently, with little computational effort.

There are a few more subtleties about the Monte Carlo algorithm, in particular the fact that

you do not want to start with a completely randomly picked initial state, but only start the actual

averaging after a certain amount of equilibration. Also, in order to estimate the error accurately

for the case of correlated samples, it is not enough to just calculate the standard deviation

of the samples, but one needs to take into account their correlation as well. We will follow

the common approach and do it by a coarse-graining procedure: one combines neighbouring

samples into bins and examines how the standard deviation increases as a function of the bin

size. Once it is converged, one has found the effective standard deviation s of uncorrelated

samples, which one can use to estimate the error made in the Monte Carlo approximation.

3.2 Calculating partition functions

Now let us think about how to calculate partition functions for classical spin systems on a two-

dimensional lattice. We follow ideas presented in [32, 26]. Let us assume the Hamiltonian has

the form

H =
∑
〈ij〉

Hij(si, sj)

where si and sj are the (classical) spins and 〈ij〉 defines interacting sites, e.g. nearest neigh-

bours. The partition function then is

Z =
∑
{sk}

exp(−βth

∑
〈ij〉

Hij(si, sj)) =
∑
{sk}

∏
〈ij〉

exp(−βthHij(si, sj)). (3.4)

with βth the “thermal” β = 1/kBT as opposed to the β used to label boundary configurations.

Let us rewrite the contribution of each bond 〈ij〉 as
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exp(−βthHij(si, sj)) =
∑
λ

a(λ, si)b(λ, sj)

where we introduced a new variable λ. In order for the above identity to be satisfied, λ needs to

take at most as many different values as any of the classical spins involved. You can see that by

taking e.g. a singular value decomposition USV † of the left hand side (understood as a matrix

with row and column indices si and sj). Then simply absorb the singular values into either U

or V † and you have exactly the desired form. This rewriting of a single bond is graphically

illustrated in figure 3.2 (a) and (b).

We can now carry out the sums over the sk in (3.4), and let sums over the λ remain. Doing

this, we create at each site a tensor which is constructed as the sum (over sk) of direct products

of as and bs. The number of terms in the direct product (and therefore the order of the resulting

tensor) is given by the number of bonds meeting at this site. This is illustrated in figure 3.2 (c)

and (d).

What remains to be done for the calculation of the partition function is the summation

over the λ-indices, which corresponds to the contraction of the resulting tensor network. An

example of such a network is shown in figure 3.3, corresponding to the evaluation of the partial

partition function ZA(α) in the geometry discussed before. Fixing the state of the border α can

be understood as a specific choice of (unconnected) tensors on the boundary.

In this network, we can now understand each interior column as a transfer matrix which

has a special form – it is a Matrix Product Operator (MPO) [43, 44]. For non-square lattices,

you would need to be a bit more careful, but the principle remains applicable. The boundary

(in figure 3.3, the leftmost column) can be understood as a Matrix Product State (MPS). The

network can now be contracted by repeatedly applying MPOs to a MPS, resulting in another

MPS to which we apply the next MPO, and so on. In principle, this is exactly the same as

contracting the tensor network in any other way (although it is already much more efficient

than if you were to write each transfer matrix in full form rather than as an MPO). The required

dimension of the MPS does however grow exponentially.

The approximation will come from reducing the dimension of the MPS in this scheme.

After we apply another MPO, we approximate the MPS by another one of lower bond dimen-

sion (typically chosen fixed in advance), thereby preventing the exponential growth. Of course,

we lose information this way, and we will in fact examine the quality of the approximation in

section 4.1.2.

One case is of particular importance, namely the case of a translationally invariant system

(more precisely, it just needs to be translationally invariant along the horizontal direction in

figure 3.3). In that case, all the MPOs are identical. We can now consider the case of a

system that is very large in the horizontal direction. Now, what we do is repeatedly apply the

same transfer matrix T (given as an MPO) to a vector. It is clear that after many applications

this vector will in fact be proportional to the eigenvector of the MPO that corresponds to its
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Figure 3.2: From partition function (a) to tensor network contraction (d).
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MPS MPO

Figure 3.3: Identifying MPSs and MPOs in the resulting tensor network. Each square in this picture
represents a tensor A as constructed in figure 3.2; each line represents a tensor contraction (generalized
matrix multiplication).

eigenvalue with largest magnitude (assuming that it is unique) [45, 46, 47, 48]. Now, there

exist specific algorithms [49, 50, 43, 51] that can very efficiently determine an approximation

for this eigenvector, in the form of an MPS with a given bond dimension. The algorithms can

also make use of translational invariance in what is the vertical direction in figure 3.3.

Let us indeed assume the number of columns Nbulk in the bulk is so large that we can

make this approximation. We can label the largest eigenvalue Λ, the corresponding eigenvector

|Λ〉, and now the whole partial partition function discussed can be approximated as ZA(α) =

ΛNbulk〈Λ|α〉. Note how each application of the transfer matrix MPO contributes a factor of Λ.

What is really great about this formula, and remains true in an analogous way for the case of a

network without translational symmetry, is that for a different border configuration α we need

only calculate the new overlap with |Λ〉, rather than do the whole (much more complicated)

tensor network contraction again!

It should be obvious that the other partial partition functions in equation (3.2) can be ap-

proximated in a similar way as ZA(α). Let us now work with a rectangular system of N

columns total, in the limit N → ∞, and divide it as in figure 3.1, exactly in the middle. If

we assume periodic boundary conditions in vertical direction, this is actually a very long cylin-

der, cut in the middle. The partition functions are then ZA(α) = ΛN/2−1〈Λ|α〉, ZB(β) =

ΛN/2−1〈Λ|β〉, ZÃ(β) = ΛN/2〈Λ|β〉, and ZB̃(α) = ΛN/2〈Λ|α〉. The partition function of the

whole system, which is needed for normalization purposes, is ZAB = ΛN . Let us further in-

troduce the shorthand L(α, β) = 〈Λ|α〉〈Λ|β〉. Let us also introduce unnormalized Boltzmann

weights, qab = exp(−βthEab) whereEab is the energy of configuration (a, b). Let us now work

with these qab rather than the normalized probabilities pab = qab/
∑

ab qab = qab/ZAB . The

qab can be factored exactly like the pab in the previous section, and we then get the following

formula for the mutual information

I(A,B) =
1

Λ2

∑
αβ

qαqαβqβL(α, β) log
qαβ

L(α, β)
(3.5)

which is independent of N , so that the N →∞ limit is unproblematic.
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3.2.1 Simplifications

Can we simplify formula (3.5) even further? It would be a lot simpler if the logarithmic term

were not there, because then we would just have

∑
αβ

〈Λ|α〉qαqαβqβ〈β|Λ〉 = 〈Λ|TT |Λ〉 (3.6)

with T the Ising transfer matrix, and because that can be written as a MPO, this expression

would be easy to calculate as the contraction of a tensor network (and it is actually just the total

partition function).

Of course we cannot simply drop the logarithmic term; but we can separate the logarithmic

term into three parts, log (qαβ/ (〈Λ|α〉〈Λ|β〉)) = log qαβ − log〈Λ|α〉 − log〈Λ|β〉.
Now, qab is actually an exponential, of the sum over all the bonds between two columns:

qab = exp(−βth
∑

iH(αi, βi)), where the sum goes over the rows i and αi and βi are the

components of the configurations α and β, respectively.

The logarithm of the exponential is of course just the exponent −βth
∑

iH(αi, βi), so we

have to calculate

−βth

∑
αβ

〈Λ|α〉qαqαβqβ〈β|Λ〉
∑
i

H(αi, βi). (3.7)

We can now consider the terms separately for each i, and notice that they are all local and can

therefore efficiently be calculated as a contraction with suitably modified MPOs.

What about the remaining parts, with log〈Λ|α〉 and log〈Λ|β〉? Let us look only at the one

with log〈Λ|α〉; the one with log〈Λ|β〉 is exactly symmetric. We have

− βth

∑
αβ

qαqαβqβ〈Λ|α〉〈Λ|β〉 log〈Λ|α〉

=− βth

∑
α

qα
∑
β

qαβqβ〈Λ|β〉︸ ︷︷ ︸
Λ〈Λ|α〉

〈Λ|α〉 log〈Λ|α〉

=− βthΛ
∑
α

qα〈Λ|α〉2 log〈Λ|α〉

=− 1

2
βthΛ

∑
α

qα〈Λ|α〉2 log〈Λ|α〉2

=− 1

2
βthΛ

∑
α

qα〈Λ|α〉2 log qα〈Λ|α〉2

+
1

2
βthΛ

∑
α

qα〈Λ|α〉2 log qα

where we introduced a qα/qα unit term in the logarithm and used that to separate it into two

parts, one that has the form of an entropy,

−
∑
α

πα log πα , (3.8)
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and an additional term again containing the logarithm of an exponential, which becomes a sum

of local terms that can be handled easily.

So what remains is just the term (3.8) that describes the entropy −
∑

α πα log πα of the

marginal distribution πα = qα〈Λ|α〉2, normalized by
∑

α πα = Λ. If we have the eigenvector

|Λ〉, we can calculate this entropy: Just as discussed in section 3.1, for small numbers of rows

the sum can be carried out exactly, and for large numbers of rows it can be approximated by

Monte Carlo sampling.

In particular, note that for sampling the coefficients 〈Λ|α〉 it is sufficient to know the eigen-

vector as a MPS, without ever needing it in exponentially large full form (the qα are straightfor-

ward to calculate anyway). As a consequence, we can do the sampling particularly efficiently

by using Monte Carlo updates that sweep back and forth along the MPS and store intermediate

contraction results. It might be worth noting that similar Monte Carlo sampling procedures for

matrix product states have also been used in a rather different (variational) context [52, 53].
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Chapter 4

The classical Ising model

In this chapter, we consider a particular instance of the classical spin models discussed in the

previous one. The model under consideration is the famous Ising model [54] in two spatial

dimensions. It has been solved exactly by Onsager [47]. In this case, that implies that there

exist algorithms that allow an efficient evaluation of its partition function, in exact form rather

than just as an approximated tensor network contraction. However, we will start by reviewing

how the general tensor network approach specializes to the Ising model in section 4.1. In

sections 4.2 and 4.3 we will then see two algorithms that make use of the special features of

the Ising model. At the end of the chapter, we will discuss the results of the calculations, and

see if they match our ideas about mutual information.

Let us start with the model definition: The classical Ising Hamiltonian is

H = −
∑
〈ij〉

Jijsisj (4.1)

where the spins have possible values +1 or −1, and interactions are between nearest neigh-

bours. We will generally consider the homogenous case Jij = J , and restrict to the ferromag-

netic J > 0. On bipartite lattices such as we will study, the antiferromagnetic case can directly

be obtained by simply flipping all the spins of one of the sublattices.

4.1 Tensor network contraction

Let us go through the steps outlined in section 3.2 again, and see what they look like for the

particular example of the Ising model.

4.1.1 Tensors

Introducing the shorthand notation Kij = βthJij = Jij/(kBT ), the partition function is

Z =
∑
{sk}

exp(
∑
〈ij〉

Kijsisj) =
∑
{sk}

∏
〈ij〉

exp(Kijsisj) (4.2)
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and we can rewrite the contribution of each bond 〈ij〉 as

exp(Kijsisj) =
∑
λ

a(λ, si)b(λ, sj) (4.3)

where the new index λ only takes two values here, say 0 and 1. Equation (4.3) can be satisfied

by
a(λ = 0, s = +1) =

√
coshKij

a(λ = 0, s = −1) =
√

coshKij

a(λ = 1, s = +1) =
√
− sinhKij

a(λ = 1, s = −1) = −
√
− sinhKij

and b(λ, s) = a(λ, s). Unsymmetric choices are also possible, where for example the K-

dependence is only in the bs; it is even possible to completely take out the K-dependence, and

write

exp(Kijsisj) =
∑
λ

g(λ, si)g(λ, sj)h(λ)

with

g(λ = 0, s = +1) = 1

g(λ = 0, s = −1) = 1

g(λ = 1, s = +1) = 1

g(λ = 1, s = −1) = −1

and

h(λ = 0) = coshKij , h(λ = 1) = − sinhKij .

We can now carry out the sums over the sk in (4.2), and let the newly introduced sums over the

λ remain. Doing this, we create at each site k a tensor, which is constructed as the sum (over

sk) of direct products of as and bs (or gs and hs). The number of terms in the direct product

(and therefore the order of the resulting tensor) is given by the number of bonds meeting at this

site. What remains to be done for the calculation of the partition function is the summation

over the λ-indices, which corresponds to the contraction of the resulting tensor network.

Let us write down the tensors, using g and h. They have 4 indices, say λ1, λ2, λ3, and λ4.

We will later sometimes want to understand the tensor as a gate acting on two incoming indices,

let these be λ1 and λ2. The outgoing indices are then λ3 and λ4. Putting the K-dependencies

in the outgoing indices only, we get

T =
∑
sk

g(λ1, sk)g(λ2, sk)g(λ3, sk)g(λ4, sk)h(λ3)h(λ4) (4.4)

and you see that the hs (that contain the K-dependencies) can be completely separated from

the gs. We will pick up from that fact again in section 4.2.
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Figure 4.1: Error made in the calculation of the mutual information by using a MPS with bond dimen-
sion D rather than the exact eigenvector. A system with 16 rows and open boundary conditions was
studied. The dashed black line marks the location of the phase transition in the thermodynamic limit.

4.1.2 Error analysis

Having found the form of the tensors, we can now follow the calculation outlined in section

3.2. The results for the Ising model will be presented at the end of this chapter. For now, let us

only analyze the errors that come from approximating the largest eigenvalue and corresponding

eigenvector by a MPS with limited bond dimension.

Since the focus of this work is not on Matrix Product States and their properties, let us only

pick out one specific setting to discuss the general features. Figure 4.1 shows the error made

by using a MPS of bond dimension D rather than the exact eigenvector of the transfer matrix,

for a system of 16 rows, where it is still possible to calculate that eigenvector exactly. To avoid

any other error sources, it is of course necessary that we also carry out the summation of (3.5)

exactly. This is indeed possible after the simplifications described in section 3.2.1.

We notice two things: First of all, the errors show a very systematic behaviour, and have

a pronounced maximum (note the logarithmic scale). The maximum occurs where the system

becomes critical, and this is exactly the behaviour we would expect from Matrix Product States.

Second, the quality of the MPS approximation depends strongly on the bond dimension.

For the system studied, a MPS with bond dimension of D = 16 is very close to the exact
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eigenvector, and for most temperatures the only difference is numerical noise. However, almost

any choice of D results in an error that will be lower than the statistical error we will introduce

by Monte Carlo sampling. Since a smaller D results in faster Monte Carlo updates, we will

choose a relatively modest D, in order to be able to do as many Monte Carlo steps as possible

and minimize the total error.

Even if it will be the Monte Carlo sampling that decides our errors, let us dedicate the next

two sections to methods for the exact calculation of Ising partition functions.

4.2 Matchgates

Let us remember the tensors (4.4) from the preceding section. We can rewrite them in ma-

trix form, with (λ1, λ2) being the column indices (corresponding to “incoming” indices) and

(λ3, λ4) being the row (“outgoing”) indices. We have T = G ·H3(K3) ·H4(K4) with

G =


1 1

1 1

1 1

1 1

 , H(K) =

(
coshK

− sinhK

)
,

H3(K3) = H(K3)⊗ I , H4(K4) = I ⊗H(K4) .

We will now interpret these tensors/matrices as “gates” acting on some quantum state. The

gates turn out to have a special form, they are matchgates [55]. As the name “gate” suggests,

the context in which this has mostly been considered are quantum circuits, the gates in which

are usually unitary. This also provides the connection to what has become known as fermionic

linear optics [56, 57, 58, 59, 60, 61, 62]. We will work along similar lines, and map the

tensors/matrices/gates to fermionic operators. However, the actual mapping is significantly

different from what has been done in the literature – in particular, our operators are non-unitary.

4.2.1 Fermionic representation

So, let us now try to express the gates in terms of fermionic creation and annihilation operators.

Without loss of generality, let us restrict ourselves to just two modes, which we can label 1 and

2, with occupation numbers λ1 and λ2. The state space is Fock space, states are given as

|ψ〉 =
∑
λ1,λ2

ψλ1,λ2(a†1)λ1(a†2)λ2 |Ω〉.

To determine the components, say ψ00 or ψ01, we can project

ψ00 = 〈Ω|a1a
†
1a2a

†
2|ψ〉

ψ01 = 〈Ω|a1a
†
1a2|ψ〉

etc.
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Let us start by looking at the entangling gate G. In terms of fermionic operators, this can be

written as the operator Ô = I + a1a2 + . . . = b†1b1 in a transformed basis given by

b1 = (+a1 + a2 − a†1 + a†2)/
√

2

b†1 = (−a1 + a2 + a†1 + a†2)/
√

2.

Going back to the old basis, the bond-strength gates are just single-mode gates of the form

H(K) = exp(−K)aa† + sinh(K)I (4.5)

where a is either of a1 or a2. A gate is required for each bond, i.e. at a typical site in the bulk

there are two gates: one for the horizontal bond and one for the vertical bond.

The essential thing is that all of these gates are only quadratic in the fermionic operators.

In the next section we will see how this allows us to efficiently describe the application of the

gates using only a polynomially-sized covariance matrix, rather than a full exponentially-sized

state vector.

How do we handle the boundary conditions needed for our partial partition functions?

In the end there turns out to be a pretty simple way to handle them: what we do is fix the

relative orientations of boundary spins by using infinite bond strengths. That is, if we want to

implement a boundary configuration in which two neighbouring boundary spins are pointing

in the same direction, we connect them by an infinitely strong ferromagnetic bond. Otherwise,

we use an infinitely strong antiferromagnetic bond. This fixes the boundary configuration up

to a possible inversion of all the spins at once. However, because of the inversion symmetry

of the whole problem, both these configurations will result in identical values of the partition

function. Therefore, we simply do the calculation with the spins only fixed among each other,

and divide the result by a factor of two. The gates remain in fact well-defined even for infinitely

strong couplings, if we renormalize them – since these infinitely strong bonds are not relevant

for the partition function, this does not cause any problem.

If one prefers, one can even work without infinitely strong antiferromagnetic bonds at all:

Rather than fixing the relative orientations of the boundary spins, we can achieve the same

effect by fixing all boundary spins to point in the same direction, which only requires infinitely

strong ferromagnetic couplings. We then simply invert the couplings that connect some of the

boundary spins with the spins in the interior.

4.2.2 Calculating the partition function

Now, we know how to express the tensors as fermionic operators, but we still need to calculate

the tensor network contraction to find the partition function. So how do we do that? We start

from a state |Ω〉 and begin applying the operators, and finally project onto |Ω〉 again. However,

why can this be done efficiently? Let us first see how we can identify modes such that the only

thing that acts on them are the quadratic operators found in the previous section. Figure 4.2
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Figure 4.2: The 8 fermionic modes required for a 4× 4 lattice

shows how to do that in a square lattice by having the modes run at an angle of 45 degrees

to the rows and columns of the lattice. The gates act on nearest neighbours and there is no

problem in keeping track of signs due to fermionic anticommutation rules.

It is now really essential that the gates are only quadratic in the fermionic operators, because

that means we do not need to work with a general fermionic state, but only with a fermionic

Gaussian state. You can find more details about this class of states e.g. in reference [59]. In

particular, what we will do is the following: Instead of working with an exponentially large

state vector, we work only with its covariance matrix, which contains all the information if we

apply at most quadratic operators. This covariance matrix can then be updated using Wick’s

theorem [63], and we have all the pieces needed to calculate the partition function efficiently,

i.e. with polynomial rather than exponential complexity. Let us see how these pieces indeed

require only polynomial resources:

Covariance matrix

The covariance matrix contains the expectation values for all quadratic expressions of creation

and annihilation operators of fermionic modes. We can order the operators for example as

(ci)i=1,2,...,2n = (a1, a2, . . . , an, a
†
1, a
†
2, . . . , a

†
n). A mapping to Majorana fermions [64] is also

possible, but not necessary. The covariance matrix is then C = (〈cicj〉)i,j=1,2,...,2n where

〈·〉 = 〈ψ| · |ψ〉 is the expectation value with respect to the current state |ψ〉 of the system.

Applying a gate operator Ô means transforming |ψ〉 into Ô|ψ〉, or transforming the expectation

value as 〈Ô · Ô〉.
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Wick’s Theorem

So, what we have to do is update the covariance matrix by applying some fermionic opera-

tors, thereby inducing a transformation of the covariance matrix. To calculate the transformed

expectation values in the covariance matrix, we can use Wick’s theorem

〈cucvcw · · · 〉 = Pf(Γ) where Γ = (〈cicj〉)i,j=u,v,w,...

i.e. what you have to calculate is the Pfaffian of the matrix restricted to rows and columns

u, v, w, . . . . In particular for the case of just 4 fermionic operators (which turns out to be all

that is actually needed)

〈abcd〉 = 〈ab〉 〈cd〉 − 〈ac〉 〈bd〉+ 〈ad〉 〈bc〉 .

What is that Pfaffian in general? We will give a proper definition and discuss it in more detail

in section 4.3.2. This is already a hint that the method presented in the next section does

in fact make use of the same intrinsic properties of the Ising model, even though the actual

manifestation will look pretty different.

4.3 The FKT method

In this section, we will revisit a long-established method used to calculate Ising partition func-

tions, which can be formulated without any understanding of the (partial) partition functions

as tensor network contractions. While the method itself is old, we will see that it can also be

adapted to deal with the fixed boundary conditions needed for our partial partition functions.

Maybe even more importantly, we will also see how it can be used in such a way that changing

of the boundary conditions requires only a small amount of new computation, just like with the

MPS method discussed in the previous chapter.

4.3.1 Ising partition function as a dimer covering

So how does this method calculate the partition functions? Let us start by following the treat-

ment of chapter V of [65]. For simplicity of exposition, let us work in the homogenous case,

but it should be obvious that the following can straightforwardly be generalized to interac-

tions of varying strengths, just as in all the other methods we have discussed. As si, and

consequently also sisj can only take on the values +1 and −1, it holds that exp(Ksisj) =

coshK+sisj sinhK = coshK(1+sisj tanhK) and consequently we can write the partition

function as

Z =
∑
{sk}

exp(K
∑
〈ij〉

sisj) = (coshK)Nb
∑
{sk}

∏
〈ij〉

(1 + sisj tanhK)
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where Nb is the number of bonds in the lattice. Expanding the product gives us (exponentially)

many terms, which have some factors of 1 and some factors of the type sisj tanhK, and in

fact any sk can turn up at most in a power equal to the coordination number of the lattice, so

for a quadratic lattice up to 4. More interesting though is that terms that have an odd number

of any sk will vanish once the sum over this sk is carried out. The only remaining terms are

those that contain even powers of every sk appearing in them, and those will pick up a factor

of 2 from each sum over some sk, so a total factor of 2Ns , where Ns is the number of sites in

our lattice.

We want to represent every such term by “marking” the bonds appearing in it in the lattice.

The condition that we can only have an even power of sk means we have a configuration where

at each site an even number of marked bonds meet. This leads to a configuration consisting

of one or more closed loops of connecting bonds, and we get the product of as many tanhK

as there are bonds in the loop(s). The loops may intersect but cannot share segments. In the

literature you will sometimes also read that these allowed configurations are called polygon

configurations (if you draw the graph using straight edges, closed loops are polygons).

So all in all we have

Z = 2Ns(coshK)Nb
∑

c

∏
〈ij〉∈c

(tanhK)

where we sum over all configurations c fulfilling the above conditions, with the suitable weight

given as the product over the weight of all the bonds in the configuration. You can indeed

notice that the above formula can be generalized to lattices where each bond has, in general, a

different strength Kij :

Z = 2Ns
∏
〈ij〉

(coshKij)
∑

l

∏
〈ij〉∈l

(tanhKij). (4.6)

What we now want to do is calculate this weighted sum over closed loop configurations. Let

us now follow the presentation of [66], but with updated terminology. We will map each loop

configuration to a “perfect matching”, i.e. a set of edges such that each vertex is part of exactly

one edge in the set. This sort of matching is exactly what gave the name to the matchgates that

were mentioned in the previous section.

The mapping to perfect matchings can be achieved by extending the lattice; let us illustrate

it for a lattice where each vertex has a coordination number of four, i.e. the square lattice.

The nicest way is to replace each vertex by six new ones and map the possibilities of an even

number of bonds meeting there, of which there are(
4

0

)
+

(
4

2

)
+

(
4

4

)
= 1 + 6 + 1 = 8,

to the eight possible perfect matchings as shown in figure 4.3. In order not to change the weight

of each contribution in the partition function, it is necessary that all the extra bonds introduced

must have a weight of unity.
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Figure 4.3: Even numbers of bonds correspond to perfect matchings of subgraphs. Adapted from [66].

4.3.2 Dimer covering calculated as a Pfaffian

Using this construction, we can build up the extended lattice, as is shown in figure 4.4. Now,

the essential ingredient is what is sometimes called the FKT theorem after Fisher, Kasteleyn,

and Temperley [67, 68, 69]. It tells us that we can calculate the partition function, i.e. the

sum over all the weighted dimer coverings, or perfect matchings, as the Pfaffian of a suitably

constructed matrix. Crucially however, it must be possible to orient the edges of the lattice

graph in a specific way, such that every possible loop contains an odd number of bonds oriented

in clockwise direction, as indicated by the arrows in figure 4.4. Such an orientation can always

be found for planar lattices, but in general not for arbitrary lattices. This is what ultimately

restricts this method in the same way that the mapping to free fermions and matchgates is

restricted. Let us now take a closer look at this Pfaffian, which also occurred in section 4.2.2.
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Figure 4.4: Oriented extended lattice. Adapted from [66].

What is a Pfaffian?

The Pfaffian of a 2n × 2n antisymmetric matrix A = (akl)1≤k,l≤2n is conventionally defined

as

Pf(A) =
1

2n · n!

∑
σ∈S2n

sgn(σ)aσ1σ2aσ3σ4 · · · aσ2n−1σ2n (4.7)

where the sum is over all possible permutations σ of (1, 2, . . . , 2n). It can however also be writ-

ten as a sum over all partitions of (1, 2, . . . , 2n) into n pairs {(p1, p̃1), (p2, p̃2), . . . , (pn, p̃n)} =:

p. Let us call the set of all such partitions P . We then get

Pf(A) =
∑
p∈P

sgn(p)ap1p̃1ap2p̃2 · · · apnp̃n (4.8)

where sgn(p) is the same as sgn(σ) for one of the corresponding permutations σ, one of which

would be

i 1 2 3 4 . . . 2n− 1 2n

σi p1 p̃1 p2 p̃2 . . . pn p̃n
.
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There are n! ways to order the pairs, and two possibilities to order each of the n pairs, so

that the factor in the definition (4.7) is exactly canceled, and we might really say (4.8) is the

more natural definition. It is pretty obvious that equation (4.8) provides the required connection

to the weighted perfect matchings, which are exactly such partitions into pairs. Note that it is

crucial that we can assign the correct signs, which means this only works if it is possible to find

a suitable orientation of the lattice.

Relation to determinant

We realize that the matrix of which we need to calculate the Pfaffian is essentially just a

weighted oriented adjacency matrix, and its dimension is therefore just the number of sites.

But the definitions of the Pfaffian still seem to involve exponentially many terms, so how can

it be calculated efficiently? For this, we can use the identity Pf(A)2 = det(A), for we know

efficient methods to evaluate determinants. Efficient means in time polynomial rather than ex-

ponential in the size of the matrix. To be precise, (4.8) consists of (2n)!/(2n ·n!) terms, just as

the usual definition of a determinant of a (2n× 2n) matrix does:

det(A) =
∑
σ∈S2n

sgn(σ)a1,σ1a2,σ2 · · · a2n,σ2n

but this can nevertheless be computed in time O(n3), e.g. by doing a LU decomposition (see

below).

Efficient evaluation of the determinant

So the evaluation of a determinant is already efficient, but for the final calculation of the mutual

information we actually have to repeatedly calculate determinants of still pretty big matrices

where only very few entries (those related to the boundary conditions) change, while the “bulk”

remains unchanged. In this situation, we can do better still, as the determinant of a matrix can

be split into factors

det

(
A B

C D

)
= det

[(
A 0

C I

)(
I A−1B

0 D − CA−1B

)]
= det(A) det(D − CA−1B), (4.9)

so if just the D block, assumed to be relatively small, changes, we just have to calculate the

determinant of the big blockA once, and find once the (again relatively small) matrix CA−1B,

and each time we want the determinant of the changed full matrix we can then get away with

calculating a determinant of a matrix of only this small size.
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Numerical computations of the determinants

Since the calculation of determinants is the essential computational step, let us spend a mo-

ment discussing it: The standard way to calculate a determinant numerically, is to do a LU

decomposition of the matrix in question. This decomposes a matrix A into a product of two

matrices L and U , A = LU , such that L is a lower triangular matrix and U is an upper trian-

gular one. The determinant of a triangular matrix is simply the product of its diagonal entries,

so the determinants of L and U can be easily computed, and the determinant of A is then given

as det(A) = det(L) det(U) due to the multiplicativity property of the determinant. In fact, a

typical LU decomposition even produces an L with unit diagonal, such that det(L) = 1 and

therefore det(A) = det(U), and we just need to multiply the diagonal elements of U .

Especially for the full matrix (but also for the reduced ones, depending on their size) the

determinant is a very big number. This is not so surprising: If all the elements on the diagonal

of U are greater than 1, the number will grow exponentially with the matrix size. If they are

all smaller than 1, the determinant will become exponentially small. While these conditions

may not occur often with more general matrices, they are pretty typical for the ones we have

to deal with, and neither exponentially small nor exponentially large numbers can be handled

particularly well in the usual floating point representation [70] – you can lose precision, or, in

the worst case, numbers can even become too large or small to be represented at all (overflow

or underflow). However, we can work perfectly well with the logarithms of these numbers, and

therefore we can simply use a custom routine for the determinant calculation that does just that.

Bond strengths and boundary conditions

As mentioned at the beginning of this section, one other thing that goes beyond the established

FKT algorithm is the handling of the fixed boundary conditions. In fact, it turns out to be pretty

straightforward once you realize that we you again employ the procedure described at the end

of 4.2.1, and use bonds of infinite strength to fix the boundary in itself (and take care of the

extra factor of two introduced). It turns out that we can again avoid any possible problems

with infinities, because only the hyperbolic tangens of the bond strength is relevant, and that is

simply 1 for an infinite bond strength. Seemingly divergent terms like the coshKij-terms in

(4.6) will always cancel for the relevant partition functions.

4.4 Results

The preceding sections contain all the information needed to successfully implement the calcu-

lations algorithmically, e.g. as Matlab programs. It is a bit of a challenge to get all the different

normalization factors correct, but in the end of course all the algorithms give the same results,

so that there is little to show or discuss here, and we can simply use whatever algorithm seems

most appropriate for a given problem geometry.
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Figure 4.5: Nested geometry

In particular, we want to work with systems that are as large as possible and therefore re-

quire Monte Carlo sampling. For the geometry introduced in figure 3.1 the MPS approximation

method turns out to be most convenient in practical implementation, and as we have seen in

section 4.1.2, the error is typically limited by the statistical Monte Carlo error rather than the

approximation of the eigenvector.

One geometry is however a bit limited, so is there a second choice of geometry that would

be interesting? In fact, there might be an even more natural one: Not just one system that is

cut in the middle, but one system that it is fully embedded in a bigger one. This is illustrated

in figure 4.5. For such a geometry the MPS method is less convenient, which is why the re-

sults presented are obtained by the FKT method (with Monte Carlo sampling of the boundary

configurations again). The matchgate method is of course also suitable, but its Matlab imple-

mentation turned out to be somewhat slower in practice.

So let us take a look at the results, shown in figures 4.6 and 4.7 for the two respective

geometries: Figure 4.6 shows the results for the geometry introduced in figure 3.1, of a strip

that is cut in the middle. The strip is assumed to be infinitely long in horizontal direction, which

is another advantage of the MPS method, avoiding any finite-size effects in that direction.

Also, we can most easily employ periodic boundary conditions in the vertical direction, which

makes for a much larger effective system than open boundary conditions, and means that we

are working with a cylinder rather than a strip. This is in fact also possible with for example

the FKT method, but increases the number of Pfaffians that have to be calculated there.

Let us start by taking a look at the general features of mutual information: We notice that

it goes to zero for high temperatures. That is exactly what we would have expected: at high

temperatures the spins are all randomly aligned, and if you look at the spins in one of the

subsystems, this does not give you any information about those in the other subsystem.

At low temperatures, the mutual information, calculated using a base-2 logarithm, becomes

1, i.e. 1 bit. Again, this is exactly what should happen: All the spins will be aligned either up
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Figure 4.6: Results for the cylindrical geometry

or down. In any case, looking at one part of the system tells us that the spins will be aligned in

the same way in the other part, which is exactly 1 bit of information.

In between those two limits, there is a phase transition. Its location in the thermody-

namic limit is known exactly, and indicated by the dashed black line at K = arcsinh(1)/2 =

ln(1 +
√

2)/2 ≈ 0.44. Clearly something is happening around there, again as we would have

hoped. However, the naive reasoning may have gone like this: We know that at criticality

the correlation length, which describes the spatial behaviour of the correlation function, di-

verges. That is why maybe the most natural thing would have been to expect a maximum of

the mutual information exactly at the critical point. However, the maximum lies within the

high-temperature (paramagnetic) phase. Still, there is something happening at the phase tran-

sition: It appears to be an inflection point of the curve and the point of the largest (negative)

slope. In fact this slope, i.e. the first derivative of the mutual information, will obviously di-

verge in the thermodynamic limit. You can see that for example by comparing the results for

two different numbers of rows (circumferences of the cylinder) that are shown in the figure.

To be specific, results are shown for both 32 and 64 rows. Let us however first take a look

at the heat capacity, which can be straightforwardly calculated as a suitable second derivative

of the logarithm of the full partition function

cv = K2 ∂2

∂K2
lnZ

It has been scaled by some arbitrary factors to be nicely visible in the figure and is plotted in

cyan and green, respectively. You can see that it has a sharp peak near the location of the phase
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Figure 4.7: Results for the nested geometry

transition in the thermodynamic limit. This is already a first indicator that our system sizes are

sufficiently large to make useful statements.

Let us however focus on the plots of the mutual information now. It turns out that it shows

a remarkably simple scaling behaviour with the system size, scaling linearly with it in the

paramagnetic regime. In the ferromagnetic regime, you first need to subtract 1, the value of

the mutual information in the low-temperature limit, and then you recover exactly the same

linear scaling. This can be seen in the right parts of figure 4.6, where the data for 32 rows have

been scaled as described and are contrasted with the data for 64 rows. You can see that these

scalings indeed work very well; there appear to be very little residual finite size effects. Also,

you notice that not both of the scalings can work at the phase transition – unless this is indeed

a point at which the slope becomes infinite in the thermodynamic limit.

The error bars might deserve an additional explanation: They show the Monte Carlo errors,

calculated by a binning procedure as described at the end of section 3.1. The bond dimension

of the MPS was chosen D = 8, such that the errors due to this approximation are lower than

the ones introduced by Monte Carlo sampling even at the critical point.

Let us now take a look at the second geometry, where the two parts of the system are

nested within each other. The results are shown in figure 4.7, and are now obtained by using

the FKT method as described in section 4.3. We find pretty much the same behaviour as in the
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cylindrical geometry, which serves as a nice confirmation of our results. In particular, we even

find the same scaling in the paramagnetic phase. This is shown in the inset of the figure, where

again the data for 32 rows has simply been scaled by a factor of 2. The ferromagnetic phase

appears to be a bit more complicated in this geometry, and does not exhibit a straightforward

scaling behaviour any more. Again the error bars show the Monte Carlo errors; remember that

the FKT method itself is numerically exact.

4.5 Fortuin-Kasteleyn clusters

Can we understand why the mutual information has a maximum not at the phase transition, but

within the high-temperature phase?

What follows is certainly not a full explanation, but a motivation which you may or may

not find convincing: For spin systems like the Ising model, it is sometimes useful to consider

clusters of aligned spins. For example, single spin updates can become very inefficient in

Monte Carlo sampling methods, when the typical cluster size diverges at the critical point.

What one therefore does instead is work with Fortuin-Kasteleyn (FK) clusters [71]. Those

are clusters of spins pointing in the same direction, but not the simple geometric clusters that

would arise from combining all neighbouring aligned spins. Instead, we only connect spins that

are pointing in the same direction with a probability 1 − exp(β∆E) where ∆E is the energy

difference between two aligned and unaligned spins, and β = 1/kBT the inverse temperature.

This procedure results in clusters which can be treated independently from each other, which

then allows for efficient Monte Carlo updates that flip the whole clusters. If one did not use this

procedure, but always connected aligned spins, you would form clusters even at infinitely high

temperature (β = 0), simply because neighbouring spins will sometimes happen to randomly

point in the same direction.

So how can we make any argument about the behaviour of mutual information by looking

at clusters? It is true that spins within a cluster are always perfectly correlated. So whenever

a cluster lies in both parts between which we calculate the mutual information, it represents

some information that is accessible in one system about the other one. It is not obvious how

one would exactly quantify that amount of information, since we do not know how far any

given cluster will extend into the other part; but we can nevertheless think of some interesting

quantities: Namely, we can implement a Monte Carlo simulation that identifies FK clusters,

using for example the Swendsen-Wang algorithm [72]. We can then ask how many of these

clusters lie in both parts of the system; in other words, how many clusters would be cut if we

were to cut the system in half. We can also ask for a slightly different thing, namely, in how

many pieces each of this clusters would disintegrate. Since it might turn into more than two

pieces, this is a slightly different measure.

Take a look at figure 4.8 for the results. We again looked at the same cylindrical geometry

as for the results in figure 4.6, so as to allow for greatest comparability. Instead of a cylinder
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Figure 4.8: FK clusters being cut (cylindrical geometry). The simulations were done using Swendsen-
Wang cluster updates, which also allow the immediate identification of clusters that are being cut. Code
from the ALPS project [73, 74] was used in the simulations.

that is infinitely long in horizontal direction, we just used a very elongated one, such that all

relevant clusters were contained within it. Again, let us look at the cases of 32 and 64 rows

circumference. You see that we recover many of the behaviours of mutual information: At very

high temperature, there are no clusters to be cut. At low temperature, there is just one big clus-

ter. In particular, also the scaling behaviour is exactly the same as for the mutual information:

For high temperature, we find a perfectly linear scaling, no matter which of the two slightly

different quantities “clusters cut” or “resulting cluster pieces” we study. For low temperature,

we again need to take the “residual” contribution of the one big cluster into account.

We also see that these quantities show the same behaviour as the mutual information near

the phase transition: There is again an inflection point at the critical temperature, with diverging

slope. And again we have a maximum in the paramagnetic phase, and now we can give an

interpretation of this maximum in terms of clusters: The phase transition may be the point

where the cluster size diverges, but if our measure is instead how many clusters we can cut (or

into how many pieces we can cut them), it is clear that the maximum of such a quantity will not

be at the phase transition, but at higher temperature, where there are more clusters that can be

cut – but also not at very high temperature, because there the clusters become too small, until

they just consist of individual spins.

So, if we accept that the “cut clusters” quantities capture some of the essential properties

of mutual information, I believe we have found a good intuition for why it behaves the way it
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does.

4.6 Related studies in the Ising model

At this point, some other studies made in the Ising model deserve mentioning [35, 36]. They

study entropies of the probability distributions of boundary configurations in the 2-dimensional

Ising model in a cylindrical geometry. This definition of entropy is actually very similar to the

term (3.8), which appears as an important part in our calculations of the mutual information,

and they are able to establish very nice scaling properties and relations to conformal field

theories. However, there does not seem to be a way to actually connect this with our results

concerning the mutual information.
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Chapter 5

More lattice spin models

In this chapter, we will take a look at a few models which may be understood as generalizations

of the Ising model. The essential generalization is that the spins can now take more than two

different values; you might imagine it for example as a spin which can point in more different

directions than just up or down. Two different generalizations of the Hamiltonian then lead to

either the Potts models or the clock models.

5.1 Potts models

Let us start with the Potts models [75, 76, 77], defined by the Hamiltonian

H = −J
∑
〈ij〉

δ(si, sj) .

If the sk only take two different values, this is indeed identical to the Ising model (4.1), up to a

scaling of the coupling constant by factor of two (and an irrelevant constant energy shift). Now

however we will let them take q different values. The critical temperatures for Potts models are

known exactly, just like for the Ising model. They are Tc(q) = ln(1 +
√
q) [77].

While we no longer have methods for exact solutions, like they were available in the Ising

model, we can still numerically calculate the mutual information using the method explained

in section 3.2. Figure 5.1 shows the results for N = 32 rows, up to q = 6. It should be noted

that for larger q, the calculations become harder: We need to work with MPOs and MPSs with

larger bond dimensions, and there is a bigger space of boundary states that needs to be sampled.

So what do we see? In short, pretty much the same behaviour as in the Ising model: A

maximum in the high-temperature phase near the critical point, which again seems to be an

inflection point with diverging slope. The maximum becomes larger with larger q, which also

makes sense of course – there can indeed now be a bigger amount of correlation, or shared

information if you will. It is known that for q > 4 the phase transition should change from a

second-order phase transition to a first-order one. However, there is nothing notably changing

in our results.
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Figure 5.1: Potts models

5.2 Clock models

The previous section described what is now known as the standard Potts models. These are

however not the only possible generalizations of the Ising model. In fact, even Potts himself

originally studied something a bit different, which is now usually called planar Potts model,

vector Potts model, or clock model. Let us stick to that last name for clarity. Again, we have q

possible states for each site/spin, and let us now explicitly understand them as (planar) angles

sk = 2πk/q where k ∈ {0, 1, . . . , q−1}. The Hamiltonian of the q-state clock model can then

be defined as

H = −J
∑
〈ij〉

cos(si, sj) .

For q > 3, the clock models are different from, and rather more complex than the Potts models;

and not much seems to be known about their phase transitions. Therefore, let us first take a

look at the heat capacity, which we can also easily extract from our calculation of partition

functions, just as we did before, for figure 4.6. The heat capacities behave pretty much like has

been found in [78, 79, 80]. Figure 5.2 shows our results for the heat capacities for q = 4, 5, 6.

For q = 4, the heat capacity has a pronounced maximum that is a good match for the location

of the phase transition, which is known exactly in this special case [81, 82] and indicated as the

vertical dashed blue line. For q > 4 however, the clock model apparently has not just one, but

two phase transitions. There are in fact also two maxima of the heat capacity, but these are not

very sharp. They also do not match very well the estimated locations of the phase transitions;

the dotted red lines show the estimates of [80] for q = 6.

Correspondingly, we also find a rather straightforward behaviour for the mutual informa-
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Figure 5.2: Clock models: heat capacity
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Figure 5.3: Clock models: mutual information

tion in the q = 4 case, see figure 5.3 – it seems essentially the same again as for Ising and stan-

dard Potts models, with a maximum near and the inflection point at the phase transition. This

is actually not so surprising because this case can be related to regular Ising models [81, 82].

For q = 5 and 6, the models clearly become more complicated. Since the different phases

in the models are not very well understood, it does not seem possible to say much about the
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behaviour of the mutual information either. Again, there appear to be inflection points close to

the suspected locations of the phase transitions. They now seem to be accompanied by some

sort of slight “kinks”.

5.3 Quantum spin models

As has already been mentioned in section 2.4, there have been some independent investigations

in quantum spin models [20, 21, 22]. These works made use of so-called replica tricks to allow

for calculation of integer Rényi entropies in an adapted Quantum Monte Carlo simulation. As

far as the results can be compared, they find some similar features as we did: a maximum within

the high-temperature phase, an inflection point at criticality. However, their results are critically

limited by the fact that they have to calculate mutual information according to (2.1) while using

Rényi entropies, which is not well-justified from an information-theoretic perspective; there is

also no smoothing, which is generally necessary to give a clear meaning to Rényi entropies, as

was discussed briefly in section 2.5. Therefore I will not try to make any further connections

between the results.
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Chapter 6

The Lipkin-Meshkov-Glick model

In this chapter we will start to consider a very different kind of model. It can also be understood

as a model of interacting spins. But rather than having only local interactions as in the previous

chapters, these spins will now all be interacting with each other. Such a model is therefore also

called a fully-connected model (the graph which describes the interactions as edges between

the nodes representing the spins is fully connected) or sometimes also a collective model.

The model studied in this chapter is the Lipkin-Meshkov-Glock model, which can be seen

as the fully-connected version of an Ising-type model and which has received the most attention

of all fully-connected models; a subset of the results of this chapter has already been published

as [2]. The chapter after this one will then deal with some more general fully-connected models.

6.1 Motivation

Most readers will probably agree that the assumption of having local interactions is a very nat-

ural one, and might therefore doubt if it even makes sense to consider fully-connected models.

So where does the Lipkin-Meshkov-Glick (LMG) model come from, and is it even relevant for

anything other than maybe a very small system?

The model got its name when it was studied by Lipkin, Meshkov, and Glick in the 1960s

[83, 84, 85]. Stigler’s law of eponymy [86] applies, meaning it may be named after them, buy

they are not its original discoverers: As they mention themselves in their first paper, it had

certainly been discussed before that, e.g. in the (otherwise unpublished) PhD thesis of Stavros

Fallieros [87].

Even though Lipkin, Meshkov, and Glick were working in the field of nuclear physics, and

thinking about the spin-1/2 particles of neutrons and protons, they did not think about a model

with spin-spin interactions in the same sense as e.g. in the Ising model, with a “magnetic”

(ferromagnetic or antiferromagnetic) interaction between spins. Indeed, in a nucleus that is not

a very relevant interaction – the relevant interaction is instead the strong nuclear interaction.

However, in order to arrive at the LMG model the exact form of the interaction is not actually
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relevant. What is relevant is the fact that one has a system of fermions that arrange them-

selves in shells; the analogy to spin-1/2 systems comes about via fermions that can be in either

of two possible shells, thereby forming effective two-level systems. Assuming some natural

symmetries then leads to the LMG Hamiltonian.

Since the precise form of the interaction is not important in arriving at the LMG Hamilto-

nian, it turns out to work as a simple model Hamiltonian in quite a number of other systems as

well. Typically, these are systems of fermions that form shells, like the nucleons in a nucleus

do, but the interaction itself can be very different [88]. A prime example of such systems are

metal clusters, but the same is also true for droplets of helium-3. There are also connections to,

for example, Bose-Einstein condensates [89], or circuit quantum electrodynamics [90].

Another strong motivation to pick the LMG model for further study is the fact that in

recent years, its ground state entanglement properties have received a lot of attention [91, 92,

93, 94, 37, 38, 39, 40]. We can therefore hope to be able to study how these relate to what

we will find at finite temperature. In particular, the model has a phase transition both at zero

and at finite temperature. In section 6.7 we will see how in fact the mutual information shows

a comparable scaling behaviour to the ground state entanglement entropy, in the form of a

logarithmic divergence in both cases.

6.2 Hamiltonian and symmetries

We will use the LMG Hamiltonian in the following form:

H = − 1

4N

∑
i,j

σ(i)
x σ(j)

x + γ
∑
i,j

σ(i)
y σ(j)

y

+
h

2

∑
i

σ(i)
z (6.1)

which shows very clearly how it can be understood as a system of N two-level systems – spin-

1/2 particles, if you like. In this language, every spin interacts with every other one. Let it be

noted that this is not quite the most general form, but the form in which it has generally been

studied recently. In particular, note that there is a ferromagnetic coupling between spins. In

the next few sections we will deal, for simplicity of exposition and readability, with the special

case of γ = 0, and only afterwards go on to consider the effects of a nonzero γ.

The essential property of this Hamiltonian is that all the interactions are exactly identical,

which is a symmetry that makes this system much more accessible than a general system of N

spins. One can see this by introducing the total spin S = (Sx, Sy, Sz), component-wise:

Sx =
∑
i

σ(i)
x /2

Sy =
∑
i

σ(i)
y /2

Sz =
∑
i

σ(i)
z /2
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and then one sees that this symmetry implies that the Hamiltonian commutes with the magni-

tude of the total spin, [H,S2] = 0. We can in fact rewrite the Hamiltonian, up to constants,

as

H = − 1

N

(
S2
x + γS2

y

)
+ hSz .

The symmetry implies the following: If you think of the Hamiltonian of N spins-1/2 as a

2N × 2N matrix, this matrix can be brought into block-diagonal form, where the blocks cor-

respond to different representations of the total spin, indexed by the magnitude of the total

spin.

Why is this such a useful property? The reason is that this hugely reduces the complexity of

numerically approaching the problem, because we no longer need to handle a Hamiltonian that

is exponentially large in the number of spins. Instead we only need to deal with blocks of the

size of the angular momentum representations. The possible values of total spin lie between

s = 0 or s = 1/2 and s = N/2. If N is even, only integer values of s appear; otherwise,

only half-integer ones. The size of such a representation is (2s + 1) × (2s + 1), and there

are only bN/2c different possible values of s. The exponential size of the full Hamiltonian

is reproduced by the multiplicity with which these representations appear, but these are just

numbers that can be calculated rather easily and of course be handled much more efficiently.

It will turn out that calculating mutual information is still far from easy, but let us get a

little more familiar with the model first.

6.3 Phase diagram

Rather than just the one parameter K = J/kBT of e.g. the classical Ising model on a lattice

we now have several independent parameters. Therefore it seems appropriate to spend some

time to get familiar with the phase space of the model, in particular since I am not aware of

any suitable existing review. It will be convenient to set kB = 1 (i.e., expressing temperature

in units of kB), and sometimes to work with the inverse temperature β = 1/T .

6.3.1 Mean-field theory

Let us continue to interpret the model as N interacting spin-1/2 particles and stick, for now,

with the γ = 0 case of the Hamiltonian (6.1), i.e.

H = − 1

4N

∑
i,j

σ(i)
x σ(j)

x +
h

2

∑
i

σ(i)
z .

We have a ferromagnetic interaction, and if we just apply our intuition from spin models on a

lattice, we suspect (correctly) that there will again be an ordered (ferromagnetic) phase and a

disordered (paramagnetic) phase. In fact, the average magnetization in x-direction mx = 〈σx〉
is a good order parameter. It is zero in the disordered phase and finite in the ordered one. As

before, we will be mostly interested in what happens at and near the phase transition.
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To find the location of this phase transition, we just need to find where the order parameter

mx goes to zero. We can calculate this using mean field theory (see also [95, 96]; similar

approaches can be found in [97] and [98]): We rewrite σ(i)
x = mx + (σ

(i)
x − mx) and make

the replacement in the Hamiltonian, ignoring quadratic and higher terms in the “deviation”

(σ
(i)
x −mx). We get

H = −heff · S +H0

where heff = (mx, 0, h) and H0 = Nm2
x/4 (an added scalar constant that does however

depend on mx). Now, by using the self-consistent condition

mx
!

= 〈σx〉 = Tr(σxe−H/T )/Z = mx tanh(
√
m2
x + h2/(2T ))/

√
m2
x + h2

with Z = Tr e−H/T we can solve this for mx and determine the solution with the lowest free

energy

F = −T lnZ = Nm2
x/4−N ln(2 cosh(

√
m2
x + h2/(2T ))) .

It is then possible to determine the temperature at which there is no longer a nonzero solution

for the magnetization (which is exactly the transition temperature). This can easily be done

numerically, but in this case it is even possible to give an analytical expression for this critical

temperature as a function of the magnetic field h:

Tc(h) = h/(2 arctanh(h)) .

6.3.2 Finite-N numerical treatment

As has been mentioned before, the Hilbert space of a system consisting of N spins-1/2 has

dimension 2N , which usually limits the study of such systems to a few tens of spins at most.

But due to the symmetry [H,S2] = 0, the Hamiltonian becomes block diagonal in the total spin

basis. For the numerical calculations, we need to know the multiplicities with which the blocks

corresponding to the different values of total spin occur. We can get these from the theory of

addition of angular momenta, which tells us that there are dNs distinct ways of obtaining a total

spin s when combining N spins 1/2, with

dNs =

(
N

N/2− s

)
−

(
N

N/2− s− 1

)
=

2s+ 1

N/2 + s+ 1

(
N

N/2− s

)
.

There is one possible problem with the numerical evaluation of these multiplicities, namely

the factorials contained in the definition of the binomial coefficient. Of course, one can imme-

diately get rid of all the canceling factors, but even then, some pretty large numbers remain,

and in fact they can quickly become larger than the largest floating point number that can be

represented e.g. in usual IEEE754 64-bit arithmetic [70].

In fact, for our purposes the above formula can just about still be evaluated, but for future

problems it might also be useful to be aware that the multiplicities can be generated recursively

according to the following scheme, which is perfectly stable:
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N\s 0 1
2 1 3

2 2 5
2 3 . . .

1 0 0 1 0

2 0 1 0 1 0

3 0 0 2 0 1 0

4 0 2 0 3 0 1 0

5 0 0 5 0 4 0 1 0 . . .

Here, each line is obtained from the one above by summing the multiplicities from the

columns to the left and to the right (but not directly above).

One can of course check that

S∑
s=[S]

(2s+ 1)dNs = 2N ,

where S = N/2 is the maximum spin, and [S] is the minimum spin, namely [S] = 0 if N is

even and [S] = 1/2 if N is odd. The sum over s then runs over integers (half-integers) if N is

even (odd).

We can now efficiently diagonalize the Hamiltonian in the separate blocks, keeping track of

their multiplicities, and by exponentiation of the blocks obtain the density matrix which we are

interested in. Exponentiation of the blocks can be done either via diagonalizing them, or via

direct matrix exponentiation algorithms (see e.g. [99, 100]). In our setting, it does not really

matter which option one chooses. They all work well, and for the more involved calculation

of the mutual information later on, this step will only take a negligible amount of computation

time anyway.

In fact, at this point it should also be noted that the LMG model possesses additional sym-

metries, specifically the so-called spin-flip symmetry [H,
∏
j σ

z
j ] = 0. This does in fact further

reduce the size of the blocks, roughly by half, but we will mostly ignore it in order to give

general results for any Hamiltonian satisfying only [H,S2] = 0. Of course, whenever such a

symmetry exists, it is in general worthwhile implementing it to speed up the algorithm.

Because we will use it later, let us formally write down our spin-conserving Hamiltonian

in block-diagonal form as

H =

S∑
s=[S]

dNs∑
i=1

H
(s)
i ,

=
S∑

s=[S]

dNs∑
i=1

s∑
m=−s

s∑
m′=−s

h
(s)
m′,m |s,m

′〉i i〈s,m|, (6.2)

where i labels the dNs degenerate subspaces of spin s, and where the notations of the sums

over s have already been introduced above. Furthermore, we introduced eigenstates |s,m〉i of
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operators S2 and Sz with eigenvalues s(s+ 1) and m respectively. The matrix elements h(s)
m′,m

are independent of i so that, for each s, one has dNs copies of the same matrix to diagonalize.

Once the diagonalizations are performed, one can write

H =

S∑
s=[S]

dNs∑
i=1

2s+1∑
α=1

E(s)
α |s;α〉i i〈s;α|, (6.3)

where eigenvalues E(s)
α of H(s)

i are independent of i and where the corresponding eigenvector

|s;α〉i is given by

|s;α〉i =
s∑

m=−s
a(s)
α;m|s,m〉i, (6.4)

with coefficients a(s)
α;m ∈ C independent of i. The partition function is then

Z = Tr e−βH ,

=
S∑

s=[S]

dNs∑
i=1

2s+1∑
α=1

e−βE
(s)
α ,

=
S∑

s=[S]

dNs

[
2s+1∑
α=1

e−βE
(s)
α

]
=

S∑
s=[S]

dNs Z
(s), (6.5)

where Z(s) = Tr e−βH
(s)
ref is the partition function associated to any of theH(s)

i (here we choose

a reference index i = ref).

Calculating expectation values of observables A as 〈A〉 = Tr ρA with ρ = e−βH/Z is a

simple generalization of the above formula, as long as the observable can be decomposed in

the same block structure, which is however the case for all the observables we are interested in.

One additional remark: we will later be comparing finite-temperature properties to ground-

state properties. It is obvious that our diagonalization procedure allows us to find the ground

state(s) by just choosing the state(s) with the lowest energy. In fact, it is known that this state is

always part of the (non-degenerate) maximum-spin sector, due to the ferromagnetic nature of

the interaction [92], so that it is sufficient to look at just that sector.

6.3.3 Order parameter

Now that we understand how to do the calculations, let us get a better feeling for the LMG

model by looking explicitly at the aforementioned order parameter. It clearly differentiates the

two phases, as can be seen from the upper part of figure 6.1 (obtained using the mean-field

theory of section 6.3.1): There is the ordered phase for low field and temperature, and the

disordered phase elsewhere.
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Figure 6.1: Order parameter mx for the LMG model, mean-field theory (top) and N = 256 (bottom).
The black line denotes the location of the phase transition.
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Figure 6.2: Order parameter mx as a function of temperature for h = 1/2. Different N are shown
together with the mean-field theory valid in the thermodynamic limit (dashed black line). The critical
temperature for h = 1/2 is also marked by the vertical solid black line.

The lower part of figure 6.1 then shows what happens if we do the calculation not by using

mean-field theory, but working with a fixed number N of spins, using the approach of section

6.3.2. In fact, we numerically calculate the order parameter as mx = 2
√
〈S2
x〉/N in order to

avoid any problems due to symmetry-breaking.

For N = 256 as chosen in the figure we get the same characteristic picture as in the

thermodynamic limit, with of course some inevitable finite-size corrections. We can conclude

that N = 256 already gives us a very good idea even if we declare ourselves interested in the

behaviour in the thermodynamic limit.

There are two interesting extreme cases of the LMG model that we will specially consider

in the following: The left edge of the phase space, h = 0, is what we will call the classical

limit: Since there is no transverse field, we can work with classical spins (in the σx-basis). The

bottom edge, where T → 0, is the zero-temperature limit. The T = 0 case will usually not be

explicitly shown in the plots since, as mentioned, it requires a different (if simpler) algorithm

and would just smoothly add another line of barely visible pixels anyway.

Let us also look at some cross-sections of these plots, in figure 6.2. You can see that (as

one would expect) for increasingN the thermodynamic limit is approximated better and better.
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Figure 6.3: Magnetic susceptibility

h = 1/2 was chosen since it represents a somewhat more general case than e.g. h = 0 (which

looks very similar, only with the transition at Tc = 1/2).

6.3.4 Magnetic susceptibility

The order parameter gives us a good idea about the two distinct phases, the ordered (ferromag-

netic) and disordered (paramagnetic) one. We will however be most interested in the phase

transition between those. So are there quantities that show a more “interesting” behaviour at

the phase transition than just going to zero as the order parameter does? Maybe the most ob-

vious choice is the magnetic susceptibility, which is just the derivative of our order parameter

with respect to the magnetic field, ∂mx/∂h. In the thermodynamic limit, this will diverge at

the phase transition. At finiteN , there is still a pronounced maximum near the phase transition,

as can be seen in figure 6.3. While it would still be possible to produce mean-field plots for

classical thermodynamic quantities such a the susceptibility, from now on we will mostly stick

to finite-N plots, since these will be the only thing that we will be able to produce for the more

interesting quantities we will study later, at least in the full phase space.

One more thing to say about the susceptibilities: It would also be possible to use not the

magnetization in x-direction, but rather the magnetization in the direction of the field (or maybe
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Figure 6.4: Heat capacity

even the total magnetization). These will all result in slightly different plots, but we will not go

into that any further, since this is of little relevance to the quantities we will want to study later

anyway.

6.3.5 Heat capacity

In order to complete the survey of all the “standard” quantities that one thinks of in relation to

the study of phase transitions, let us also take a quick look at the heat capacity. In particular,

this was also our choice in the classical Ising model on a lattice (where there was no obvious

choice of external field, with respect to which one would derive).

The study of the heat capacity is in some way complementary to the study of the order

parameter and related magnetic susceptibilities: rather than derive with respect to the magnetic

field to arrive at magnetic susceptibilities, we derive with respect to the temperature.

This is somehow evident in the fact that, as figure 6.4 shows, in a colour plot the heat

capacity seems to work better as an indicator for the “fully thermal” transition at low fields,

and not work quite as well where the external field is relevant. It should however be noted that

even there the heat capacity still has a clear maximum near the phase transition; it is just not

easily visible in this figure that is trying to show the full transition line at once.
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Figure 6.5: Order parameter as a function of N . For the T > Tc a T of 0.7 was chosen in all cases; the
dependence on the exact value of T is very weak there.

6.4 Finite size scaling properties

We said we wanted to study the behaviour at (or nearby) the phase transition, so what is it that

one studies quantitatively in such a situation?

We are dealing with a second-order phase transition, and that implies that there will be

critical exponents to be found. So where would we look for such critical exponents? The

obvious choice is the order parameter: we can examine how it tends to zero either as a function

of (T − Tc), or as a function of the number of spins N , at the critical point. The former was

already displayed in figure 6.2, and when studying this in more detail one can indeed see that it

matches the known critical behaviour: the order parameter goes to zero as (T − Tc)α with the

known critical exponent α = 1/2 [96].

What about critical exponents associated to the behaviour as a function of N? As we can

also see in figure 6.5, within the disordered phase, i.e. for T > Tc, the order parameter (which

is zero in the thermodynamic limit) vanishes as N−1/2. You would probably not even call that

a critical exponent, but it is important to know in order to compare it to the critical behaviour:

At h < 1, where the phase transition occurs at a nonzero temperature Tc, the order parameter

instead behaves as N−1/4. As you can see, the exact value of h is irrelevant for the asymptotic
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Figure 6.6: Concurrence

behaviour.

However, the case h = 1 is special: Here the critical temperature is zero; we are dealing

with a quantum phase transition. First of all, this means that a different numerical approach is

required. As described in section 6.3.2 however, we can also easily enough access the ground

state and calculate its properties, such as the expectation values needed for the order parameter.

What we can see is a different critical exponent, with the order parameter going to zero as

N−1/3.

We will be interested in studying such scaling behaviour also for the mutual information,

and in particular again contrast finite with zero temperature in section 6.7.

6.5 Entanglement measures

Let us stay with the topic of zero versus finite temperature for a bit: Part of the motivation for

looking at mutual information was that it is the generalization of entanglement entropy, which

proved useful for pure states, and in particular also for the study of the ground state of the

LMG model. While entanglement entropy was not the only entanglement measure that proved

interesting there, a general problem with entanglement measures is that many of them only

work well for pure states. An exception that remains well-defined for mixed states and can also
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still be calculated efficiently is concurrence [101], which has indeed already been examined for

this model, both at zero [91, 92, 93] and at non-zero temperature [102]. However, take a look

at figure 6.6: As you can see, it works well in the vicinity of the quantum phase transition, but

has no interesting features at all for most of the finite-temperature transition.

Can we explain why concurrence works so badly? I believe the answer lies in the argument

presented in the first chapter: concurrence may qualify as an entanglement measure, but it is

not a good measure of all many-body correlations. In fact, it can be calculated from the reduced

density matrix of just two spins, and the calculation can even be reduced to a formula involving

only expectation values of expressions at most quadratic in spin operators. It is therefore also

much easier to calculate than mutual information will prove to be – but even if it seems to work

well for the quantum phase transition, it is of little use to us if it does not exhibit any interesting

behaviour at finite temperature as well.

Among the other quantities that have been studied in the zero-temperature case for the

LMG model, there is one more where the definition straightforwardly generalizes to the finite-

temperature case, namely, (logarithmic) negativity [94]. However, the calculation is again

significantly more involved, and there is probably little chance of achieving it for thermal states.

While they do not actually qualify as entanglement measures, this might still be a good

place to mention fidelity and related quantities, which have also been studied as markers for

phase transitions, both quantum and thermal. Let me just point to the references [103, 104, 98].

6.6 Mutual information

Now let us finally look at mutual information, as promised. Figure 6.7 shows the results; the

numerical algorithm will be described in section 6.9. Section 6.10 will show how an analytical

approach is possible in the case of vanishing magnetic field h = 0, the left edge of the plot.

As mentioned, this case will also be called the classical limit in the following, since there

are no non-commuting observables any more, and everything can be expressed using classical

(thermal) probability distributions.

We see that the result is rather convincing: the maximum of the mutual information follows

exactly the phase transition. Certainly this is a much more convincing plot than the one shown

for concurrence in the previous section, further supporting our arguments from chapter 2 for

studying mutual information as a measure of correlations. I also think it is a much nicer plot

than either susceptibility (figure 6.3) or heat capacity (figure 6.4).

Similarly to what we did in figure 6.2, we can again plot some cross-sections to get a

better feeling for the behaviour of the mutual information. Figure 6.8 shows cross-sections

for constant magnetic field. Part (a) is for the special case of h = 0 (which we now call the

classical limit), and part (b) shows the rather generic case of h = 1/2.

As you can see, the two cases are actually not very different, but studying the classical

limit has two distinct advantages: For one, the numerics actually become much simpler than
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Figure 6.7: Mutual information

what is described in section 6.9 for the general case: The Hamiltonian becomes proportional

to S2
x, and we know that everything becomes diagonal in the Sx-basis, so we just need to

deal with classical probability distributions rather than density matrices. In fact, there are just

N + 1 different possible eigenvalues and their degeneracies are easily calculated numerically

as binomial coefficients. Of course, we actually need something a bit more complicated than

that, splitting the whole system into subsystems A and B, but it can be written down straight-

forwardly and easily implemented numerically (which was in this case done in Mathematica,

because that allows to calculate binomial coefficients even where it becomes problematic with

IEEE754 64-bit arithmetic [70], which was important for the large-N studies in section 6.7).

The second advantage is that in this setting, it also becomes possible to do analytical cal-

culations extending to the thermodynamic limit N → ∞, the result of which is also shown in

figure 6.8(a). This is however far more challenging, as outlined in section 6.10. The general

idea is to approximate the binomial coefficients (along the lines of Stirling’s formula), replace

sums by integrals, and approximate those integrals. For the N = ∞ plot in figure 6.8(a),

however, numerical evaluation of the resulting integrals was in fact sufficient.
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Figure 6.8: Mutual information as a function of temperature for both the classical limit h = 0 and for
h = 1/2. The critical temperatures are marked by the vertical solid black lines.
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6.7 Scaling behaviour and comparison to the QPT

Can we extract more predictions about the mutual information from the analytical treatment of

the classical case in section 6.10? In fact, after a lot of calculation we find a very nice critical

scaling of the mutual information (compare equation (6.17)):

I(Tc) ∝
1

4
log2N.

We can call the coefficient 1/4 a critical exponent, just like the exponents we found when

studying the order parameter in section 6.4.

Let us first check if our numerical simulations match the analytical calculation. Figure 6.9

shows that this is indeed very much the case. In particular the agreement for h = 0 is very good

for the larger N we can access numerically in this case, as explained in the previous section.

For a non-zero h, like the h = 1/2 displayed here, we cannot access quite such large system

sizes, but as you can see, the mutual information is almost identical for those system sizes that

we can access.

Of course this changes considerably if we get very close to the quantum phase transition at

h = 1. Remember that there also the order parameter showed a different critical exponent, of

−1/3 rather than −1/4. Do you want to predict what happens for the mutual information?
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Figure 6.10: Mutual information, for γ = 1/4

Since at zero temperature, mutual information is just twice the entanglement entropy, its

scaling behaviour has already been carefully studied in [37, 38, 39, 40], and in fact it has been

found analytically that the entanglement entropy behaves like 1/6 log2N , and the mutual in-

formation therefore as 1/3 log2N
1. This parallel between the behaviour of the order parameter

and the mutual information does in fact seem extraordinarily nice.

6.8 From Ising to XY

So far, we considered the special case of a zero γ in (6.1). What happens for nonzero γ (which

we could now maybe call an anisotropy parameter)? This corresponds to going from a pure

Ising- to an XY-type model of competing x- and y-interactions; there is now no classical limit

anymore, but our numerical procedure as described in section 6.9 remains applicable.

Figure 6.10 shows some results for γ = 1/4, and in fact not much seems to have changed.

However, there is one rather nice additional feature: If you look carefully at low temperatures

and around h = 1/2, you notice that the mutual information seems to be a bit lower there than

at both lower and higher h. This is much better visible in figure 6.11, which plots exactly the

1The initial numerical study [37] mistakenly identified the scaling behaviour of the entanglement entropy as

1/3 log2 N . The later references contain the correct result.
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Figure 6.11: Mutual information for the case γ = 1/4 as a function of magnetic field, for several “low”
temperatures

same data, but this time only a few relevant cross-sections at fixed low values of T .

In fact, this behaviour is a signature of the two-fold degenerate and separable ground state

at h =
√
γ [93, 39, 105], so for our choice of γ = 1/4 this occurs at h = 1/2. We can call

this a “Kurmann point”, and see that the mutual information (where we put in absolutely no

knowledge of such behaviour) gives us a good idea of how this effect still remains visible at

non-zero temperatures.

What happens if we go all the way towards the case of an interaction that is isotropic in

x and y? The results are shown in figure 6.12. Clearly, this is quite a different picture now!

The essential difference is that the Hamiltonian now has an additional symmetry; it is isotropic

in the x-y-plane. This changes the universality class, and explains why γ = 1 is qualitatively

so different from the γ = 0 and γ = 1/4 cases (both of which are anisotropic and generally

pretty similar). This has been studied in the ground state case in the aforementioned references

[91, 92, 93, 94, 37, 38, 39, 40]. It will however be a challenge to make any analytical statements

about the thermal case, especially as there is now no classical limit any more.

Let us also use this opportunity to point out that our methods give us access not only to the

mutual information, but really to the full spectrum of the reduced density matrices from which

it is calculated. These “entanglement spectra”, where the eigenvalues of the reduced density
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Figure 6.12: Mutual information, for γ = 1

matrices are studied, typically sorted by a good quantum number such as the total angular

momentum in the subsystem, have received some attention in recent years [106, 107, 108,

109]. Unfortunately, there does not currently seem to be much theory that we can compare

the entanglement spectra of our models to. Nevertheless, figure 6.13 presents some finite-

temperature entanglement spectra which show that not only the mutual information, but also

the spectra themselves are significantly different between the γ = 0 and γ = 1 cases.

6.9 Algorithm for calculating mutual information in spin-conserving
Hamiltonians

Let us now look at the algorithm we used for numerically calculating the mutual information, as

also presented in [2]. It works for any Hamiltonian fulfilling the essential property [H,S2] = 0.

In section 6.3.2, we saw how to calculate the partition function using the block decomposition

of such a Hamiltonian while keeping track of multiplicities. With all the spin quantum numbers,

there will now be a lot of instances of the letter S around. To avoid confusion, let us therefore

use a different letter for the entropies, namely, E . Just like we did for the partition function

before, in equation (6.5), we can now write the (total) entropy as
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Figure 6.13: Entanglement spectra for γ = 0 and γ = 1 contrasted, for N = 20, h = 1/2, T = 0.2

EAB = −Tr[ρ log2 ρ] =
S∑

s=[S]

dNs E
(s)
AB , (6.6)

where ρ = 1
Z e−βH is the density matrix and where we defined E(s)

AB = −Tr
[
ρ

(s)
ref log2 ρ

(s)
ref

]
and ρ(s)

ref = 1
Z e−βH

(s)
ref .

Computation of EA and EB

The much more challenging part is the calculation of entropies of the subsystems in our def-

inition of the mutual information (2.1). We split the system into two subsystems A and B

containing L = τN and N − L = (1 − τ)N spins respectively, and aim to compute the

entropies of the reduced density matrices ρA = TrBρ and ρB = TrAρ.

Again, the essential idea is to work with a block decomposition of the Hamiltonian, and

density matrix. However, what makes this more challenging now is that we have to be able to

take partial traces, which means we need a basis with a tensor product structure. Therefore,

we cannot straightforwardly work with the total spin. However, what we can do instead is

combine the spins in A and B separately, to total spins which we can label s1 and s2. The most

straightforward thing would then be to work in the basis of states

|s1,m1〉 ⊗ |s2,m2〉

where the ms label e.g. the z-component of the respective spins. In this basis, taking partial

traces is straightforward (although we would still need to keep track of all multiplicities). How-
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ever, this is not the most efficient approach, because this forces us to work with much bigger

blocks which arise in the tensor product basis.

It is more efficient to couple s1 and s2 to a total spin s again and work with the density

matrix in the blocks of fixed s. In order to calculate partial traces, we will then need to work

with Clebsch-Gordan coefficients describing the angular momentum coupling. However, this

can be done rather efficiently. While this basic idea is simple enough, the formulas will unfor-

tunately start to look rather messy, due to the fact that not every s1 and s2 can be coupled to

every s. Let us start with the Hamiltonian, which reads

H =
S∑

s=[S]

S1∑
s1=[S1]

′
S2∑

s2=[S2]

′
dLs1∑
i1=1

dN−Ls2∑
i2=1

H
(s1,s2;s)
i1,i2

=

S∑
s=[S]

S1∑
s1=[S1]

′
S2∑

s2=[S2]

′
dLs1∑
i1=1

dN−Ls2∑
i2=1

s∑
m=−s

s∑
m′=−s

h
(s)
m′,m |s1, s2; s,m′〉i1,i2 i1,i2〈s1, s2; s,m|,

where |s1, s2; s,m〉i1,i2 denotes an eigenstate of operators S2
1, S

2
2, S

2 and Sz with eigenvalues

s1(s1 + 1), s2(s2 + 1), s(s + 1) and m respectively. Index i1 (i2) labels the dLs1 (dN−Ls2 )

degenerate subspaces of spin s1 (s2) that can be built from L (N −L) spins 1/2. For a given s,

primed sums are restricted to values of s1 and s2 that can add to a total spin s. That is to say,

one must fulfill the inequalities |s1 − s2| 6 s 6 s1 + s2, so one can alternatively write:

S∑
s=[S]

S1∑
s1=[S1]

′
S2∑

s2=[S2]

′
=

S1∑
s1=[S1]

S2∑
s2=[S2]

s1+s2∑
s=|s1−s2|

.

We have denoted as S = N/2, S1 = L/2 and S2 = (N − L)/2 the maximum spins of the

whole system and of each of the subsystems. As before, minimum spins are denoted with

square brackets. Note that the degeneracy dNs of the spin-s sector can be recovered from

S1∑
s1=[S1]

′
S2∑

s2=[S2]

′
dLs1d

N−L
s2 = dNs .

The matrix elements h(s)
m′,m are the same as in formula (6.2), and do not depend on s1, s2, i1 or

i2. Therefore, all Hamiltonians H(s1,s2;s)
i1,i2

have the same eigenvalues E(s)
α (which are the same

as in equation (6.3)), and corresponding eigenvectors

|s1, s2; s;α〉i1,i2 =

s∑
m=−s

a(s)
α;m|s1, s2; s,m〉i1,i2 .

Once again, coefficients a(s)
α;m ∈ C are independent of s1, s2, i1 and i2, and are the same as in

equation (6.4).
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Now, the density matrix ρ = 1
Z e−βH reads

ρ =
1

Z

S1∑
s1=[S1]

S2∑
s2=[S2]

s1+s2∑
s=|s1−s2|

dLs1∑
i1=1

dN−Ls2∑
i2=1

2s+1∑
α=1

e−βE
(s)
α |s1, s2; s;α〉i1,i2 i1,i2〈s1, s2; s;α|

=
1

Z

S1∑
s1=[S1]

S2∑
s2=[S2]

s1+s2∑
s=|s1−s2|

dLs1∑
i1=1

dN−Ls2∑
i2=1

2s+1∑
α=1

s∑
m=−s

s∑
m′=−s

e−βE
(s)
α a(s)

α;m

∗
a

(s)
α;m′ |s1, s2; s,m′〉i1,i2 i1,i2〈s1, s2; s,m|.

where a∗ denotes the complex conjugate of a.

Now we have to decompose each basis state |s1, s2; s,m′〉i1,i2 into the tensor product state

basis using Clebsch-Gordan coefficients

|s1, s2; s,m′〉i1,i2 =

s1∑
m1=−s1

s2∑
m2=−s2

Cm1,m2;m
s1,s2;s |s1,m1〉i1 ⊗ |s2,m2〉i2

with obvious notations. The only pairs (m1,m2) that contribute to the above sum are such

that m1 + m2 = m, since the Clebsch-Gordan coefficients vanish otherwise. Introducing the

shorthand notation

∑
all

=

S1∑
s1=[S1]

S2∑
s2=[S2]

s1+s2∑
s=|s1−s2|

dLs1∑
i1=1

dN−Ls2∑
i2=1

2s+1∑
α=1

s∑
m=−s

s∑
m′=−s

s1∑
m1=−s1

s2∑
m2=−s2

s1∑
m′1=−s1

s2∑
m′2=−s2

,

we get

ρ =
1

Z

∑
all

e−βE
(s)
α a(s)

α;m

∗
a

(s)
α;m′C

m1,m2;m
s1,s2;s C

m′1,m
′
2;m′

s1,s2;s |s1,m
′
1〉i1 i1〈s1,m1|⊗|s2,m

′
2〉i2 i2〈s2,m2|.

(6.7)

It is now possible to perform the partial traces. Let us focus on computing ρA = TrBρ. This

partial trace will enforce m′2 = m2 in
∑

all. Furthermore, the index i2 disappears from the

quantity to be summed over, so that
∑dN−Ls2

i2=1 simply yields a factor dN−Ls2 . At the end of the

day, one finds

ρA =
1

Z

S1∑
s1=[S1]

dLs1∑
i1=1

s1∑
m1=−s1

s1∑
m′1=−s1

rA
(s1)
m′1,m1

|s1,m
′
1〉i1 i1〈s1,m1| with

rA
(s1)
m′1,m1

=

S2∑
s2=[S2]

dN−Ls2

s1+s2∑
s=|s1−s2|

maxm∑
m=minm

(
2s+1∑
α=1

e−βE
(s)
α a(s)

α;m

∗
a

(s)
α;m+m′1−m1

)

Cm1,m−m1;m
s1,s2;s C

m′1,m−m1;m+m′1−m1
s1,s2;s (6.8)
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with

minm = max(−s,−s+m1 −m′1,−s2 +m1),

maxm = min(s, s+m1 −m′1, s2 +m1).

These limits come from the fact that not all values of m are allowed in between −s and s, but

only those that fulfill −s2 6 m−m1 6 s2 and −s 6 m+m′1 −m1 6 s. Let us remark that,

here, we have got rid of the sum over m2 and kept the sum over m. One could have of course

done the opposite, resulting in a somewhat different implementation.

Expression (6.8) of ρA allows one to numerically compute EA. The partial entropy EB can

be computed similarly. We already saw EAB in formula (6.6). Once we have all of these, the

mutual information I is simply obtained from its definition (2.1).

It should be noted that the above algorithm requires the numerical computation of many

Clebsch-Gordan coefficients. To see why that is important, let us estimate the computational

complexity of our algorithm. Looking at equation (6.8), one sees that eight sums are involved.

However, the sum over i1 will only yield a multiplicity, which leaves seven sums. Furthermore,

the matrices created by the sum over α (which is enclosed in parentheses above)

2s+1∑
α=1

e−βE
(s)
α a(s)

α;m

∗
a

(s)
α;m′ ,

can be computed once (for all the different values of s), and stored in memory. These matrices

are nothing but the density matrices in the spin-s sectors (up to a factor of 1/Z). The compu-

tational cost of this is comparatively negligible, and one is left with a sum over six variables,

namely s1, m1, m′1, s2, s and m, which all take a number of values scaling linearly with N (at

most). So we expect that our algorithm roughly scales as N6 in computation time. However,

there we made an important assumption, namely that we already know the Clebsch-Gordon

coefficients. Indeed, if we count them, we realize that we actually need in the order of N5

different ones of them. That means we need a very efficient way of calculating them, otherwise

this becomes the bottleneck of the algorithm. In fact, even calculating all the coefficients for

a given system size in advance and storing them is not attractive: we would require a huge

amount of storage and reading from such storage would not be very fast.

It is however indeed possible to calculate Clebsch-Gordon coefficients efficiently, with just

a small and constant number of operations per coefficient. To do this, one needs to calculate

them recursively. However, the required recursion has nontrivial stability properties; it is only

stable in some of the possible directions, otherwise numerical inaccuracies pile up very quickly.

In the end, we arrived at the same algorithm as is also described by Schulten and Gordon [110].
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6.10 Analytical calculations in the classical limit

In this section (which has been relegated to the end of the chapter like the previous one, in

order not to interrupt the discussion of results), let us understand the analytical treatment of

the classical (quantum fluctuation free) case h = 0. In this case, the LMG Hamiltonian (6.1)

simplifies to

H = −S
2
x

N
. (6.9)

We follow again the presentation as in [2]. The eigenstates of (6.9) are now those of Sx, and

can be chosen as separable states |p, i〉, with p spins pointing in the −x direction and (N − p)

spins pointing in the +x direction. The variable i allows to distinguish between the

(
N

p

)
such states which are degenerate and have eigenenergy Ep = −N

( p
N −

1
2

)2.

To obtain the mutual information, again one first needs to compute the total entropy of the

system at finite temperature. Let us again start with the partition function

Z(β) = Tr e−βH =

N∑
p=0

(
N

p

)
e−βEp , (6.10)

where as before, β = 1/T denotes the inverse temperature (kB = 1). Despite the apparent

simplicity of H , it is difficult to compute Z analytically for arbitrary finite N . That is why we

will now focus on the physically relevant large-N limit to analyze the thermodynamical limit

and its neighbourhood. Computations get easier in this limit because the discrete sum in (6.10)

can be approximated by an integral with, as is well-known, an error of the order 1/N2. This

is fortunate since, in order to compute the mutual information in the present problem, we will

need to compute the first correction to the infinite N limit.

The very first step in the calculation is to perform a large-N expansion of the binomials(
N

p

)
=

N !

p! (N − p)!
=

Γ(N + 1)

Γ(p+ 1)Γ(N − p+ 1)
. (6.11)

Using the series expansion of the Euler Γ function at large N (or the Stirling formula) and

skipping terms of relative order 1/N2, one gets(
N

p

)
=

√
2

πN

1√
1− 4ε2

× e−N[( 1
2
−ε) log(( 1

2
−ε)+( 1

2
+ε) log( 1

2
+ε)]

×
[
1− 1

N

3 + 4ε2

12(1− 4ε2)
+O

(
1/N2

)]
(6.12)

where we set ε = p
N −

1
2 . Then, replacing the sum by an integral in equation (6.10) gives

Z(β) = 2N
√

2N

π

ˆ + 1
2

− 1
2

dε√
1− 4ε2

×
[
1− 1

N

3 + 4ε2

12(1− 4ε2)
+O

(
1/N2

)]
e−Nϕ(ε), with

ϕ(ε) =

(
1

2
− ε
)

log

(
1

2
− ε
)

+

(
1

2
+ ε

)
log

(
1

2
+ ε

)
+ log 2− βε2.
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Furthermore, the exponential term e−Nϕ(ε) allows us to extend the integration range to R.

Indeed, the effect of this extension consists in exponentially small terms (∝ e−αN ) which are

negligible compared to the error we already made by approximating the sum by an integral.

The resulting integral can be evaluated using the standard Laplace’s method (also known as

saddle-point or stationary-phase approximation) though one has to take care of computing the

subleading corrections [111].

At and above the critical temperature (β 6 βc(h = 0) = 2), the minimum of ϕ(ε) is found

for ε = 0 and the result of the saddle-point approximation reads

Z(β < 2) = 2N
√

2

2− β

[
1− 1

N

β2

4(2− β)2
+O(1/N2)

]
, (6.13)

and

Z(β = 2) = 2N−1 31/4N1/4Γ(1/4)√
π

[
1 +

2
√

3 Γ(3/4)

5
√
N Γ(1/4)

− 1

280N
− Γ(3/4)

20
√

3N3/2 Γ(1/4)
+O(1/N2)

]
.

(6.14)

Note that, in this approach, Z(β = 2) does not coincide with limβ→2 Z(β < 2) (which

is divergent) since the integral arising from the saddle-point approximation is not Gaussian

anymore at criticality. Furthermore, we see that Z(β = 2)/2N diverges with a non-trivial

finite-size scaling exponent, as N1/4. This result, which is obtained by directly computing

Z(β = 2), is consistent with equation (6.13). Indeed, adapting the finite-size scaling argument

developed in references [92, 93] for the zero-temperature problem, one can write (for β smaller

than 2 but close to 2) Z(β . 2)/2N = z∞f [N(2 − β)2] where z∞ =
√

2/(β − 2) is the

thermodynamical limit value of Z(β < 2)/2N , and f is a scaling function. As this quantity

cannot be singular for finite N , one must have f(x) ∼ x1/4 so that the singularity at β = 2

disappears : Z(β . 2)/2N ∼ (β − 2)−1/2[N(2− β)2]1/4 ∼ N1/4.

In the low-temperature phase (β > 2), ϕ(ε) has two symmetric minima, the position of

which can only be computed numerically. Once determined, one can still perform the Gaussian

integral resulting from the second-order Taylor expansion around these minima, which yields

a “numerically exact" result in the infinite-N limit. As a consequence, we only give analytical

expressions for β 6 2, but we can still obtain exact numerical results for β > 2, as we saw e.g

in figure 6.8(a).

To compute the entropy in the thermodynamical limit, let us start by computing the internal

energy of the system using the same approximation (6.12) of the binomials. The internal energy

is

U(β) = Tr(ρH) = −∂ lnZ(β)

∂β
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where ρ = 1
Z e−βH is the thermal density matrix. For β < 2, it can be obtained from equation

(6.13) but, as before, special care must be taken to deal with the critical case for which one can

show that

U(β = 2) = −
√

3N Γ(3/4)

2Γ(1/4)

[
1− 2

√
3 Γ(3/4)

5
√
N Γ(1/4)

+ 12
Γ(1/4)2 + 7 Γ(3/4)2

175N Γ(1/4)2

−10 Γ(1/4)4 + 32 Γ(1/4)2 Γ(3/4)2 + 504 Γ(3/4)4

875
√

3N3/2 Γ(1/4)3Γ(3/4)
+O(1/N2)

]
so that the internal energy diverges as N1/2.

The desired entropy can now be computed (analytically for β 6 2 and numerically for

β > 2) as

EAB(β) = −Tr(ρ log2 ρ) = log2 Z(β) +
βU(β)

log 2
. (6.15)

Computing the mutual information is still a challenge, the most difficult part of which lies in

the derivation of the large-N behavior of the subsystem entropies like

EA(β) = −Tr(ρA log2 ρA)

where ρA = TrBρ is the reduced density matrix (and correspondingly for subsystem B). It is

therefore mandatory to find an expression for ρA (and ρB). With this aim in mind, let us split

the system into two partsA andB containingNA andNB = N−NA spins respectively. Next,

let us decompose the eigenstates of H as |p, i〉 = |pA, iA〉A ⊗ |pB, iB〉B with pA + pB = p

and where |pj , ij〉j denotes a state of subsystem j = A,B that has pj spins pointing in the

−x direction. Variable ij can take

(
Nj

pj

)
values, describing which spins point in the −x

direction. This decomposition allows one to write the reduced density matrix as

ρA =
1

Z
TrB

∑
p,i

eNβ(
p
N
− 1

2)
2

|p, i〉〈p, i|,

=
1

Z
TrB

∑
pA,iA,pB ,iB

eNβ(
pA
N

+
pB
N
− 1

2)
2

×

|pA, iA〉A ⊗ |pB, iB〉B A〈pA, iA| ⊗ B〈pB, iB|,

=
∑
pA,iA

R(pA)|pA, iA〉A A〈pA, iA|.

Here, we introduced the quantity

R(pA) =
1

Z

NB∑
pB=0

(
NB

pB

)
eNβ(

pA
N

+
pB
N
− 1

2)
2

.

The subsystem entropy is then
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EA(β) = −
NA∑
pA=0

(
NA

pA

)
R(pA) log2R(pA) .

Following the same line of reasoning as for the partition function calculation and replacing

the binomials by the same form as (6.12), one can again use Laplace’s method to obtain the

large-N behavior of the partial entropy. Things are now rather more involved since one has to

deal with a double sum and therefore with a two-variable integral. After some algebra, we get

EA(β < 2) = τN − 1

2 log 2

{
β τ

2− β
+ log

[
2− β

2− β(1− τ)

]}
+O(1/N)

and

EA(β = 2) = τN − τ
√
N

√
3

log 2

Γ(3/4)

Γ(1/4)
+

1

4
log2N +O(N0)

where we have identified NA/N = τ , and NB/N = 1− τ .

Finally, noting that EB is obtained from EA by exchanging τ ↔ (1 − τ) and using (6.15),

one obtains the following expressions of the mutual information

I(β < 2) =
1

2
log2

{
[2− β τ ][2− β(1− τ)]

2(2− β)

}
+O(1/N), (6.16)

and

I(β = 2) =
1

4
log2N +O(N0). (6.17)
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Chapter 7

m,n-models

In this chapter, we will consider a class of generalizations of the Lipkin-Meshkov-Glick model

that was discussed in the previous chapter. Again, the ground state entanglement properties of

these models have received some attention recently [112]. We will now examine what happens

in the finite-temperature case.

7.1 Hamiltonians

Let us consider the Hamiltonian

H = −N(cosω(2Sx/N)m +Km,n sinω(2Sz/N)n)

where

K2,1 = 2 ,

Km>2,1 = mm/2(m− 2)m/2−1(m− 1)1−m ,

Km≥2,n≥2 = 1 .

These values have been chosen such that the relevant parameter range for ω is always [0, π/2]

and the zero-temperature phase transition always occurs exactly in the middle of it, at ω = π/4.

In particular, the (m = 2, n = 1) case is again our LMG model in a slightly re-parametrized

form. We can consider the other cases generalizations of the LMG model, in the sense that

when we imagine the model derived from spin-1/2 particles again, they describe interactions

between not just two spins, but m or n spins each instead. What is important is that in every

case the all-essential property [H,S2] = 0 is preserved, and therefore the numerical meth-

ods of section 6.9 still remain applicable. In fact, even more symmetries are preserved: the

spin-flip symmetry in z-direction still exists in the cases where m is even, and there occurs a

corresponding spin-flip symmetry in x-direction for even n.
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7.2 Calculating the location of the phase transition

We are of course again mainly interested in the behaviour of the mutual information in the

vicinity of the phase transition. For this, we first have to know where exactly the phase transi-

tion is located. It is in principle straightforward to generalize the procedure used in the Lipkin

model to higher spins; however, the equations become significantly more complicated. In par-

ticular, there are in general many more possible solutions for the magnetization and it will now

be much more important to check which possible solution for the magnetization has the lowest

free energy. It becomes very hard to write down analytical solutions, but since we have no

particular interest in the analytical form anyway, we can just implement it numerically, which

is possible without problems. Let us recall all the steps from the LMG case and see where

things are different.

Again, we start by introducing order parametersmx = 〈σx〉, and now alsomz = 〈σz〉. The

mean field approach is just the same as in section 6.3.1, replacing σ(i)
x = mx + (σ

(i)
x −mx)

and σ(i)
z = mz + (σ

(i)
z −mz) in the Hamiltonian, ignoring quadratic and higher terms in the

“deviations” (σ
(i)
x −mx) and (σ

(i)
z −mz). This again yields a Hamiltonian of the form

H = −heff · S +H0

which consists of a linearly spin-dependent part with

heff = (2mmm−1
x cosω, 0, 2Km,nnm

n−1
z sinω)

and a part that involves only the mean-field magnetizations mx, mz

H0 = N [(m− 1)mm
x cosω +Km,n(n− 1)mn

z sinω] .

Again, we demand self-consistency as before, and find the mean-field magnetizations (order

parameters) as the self-consistent solution that has the lowest free energy. The actual equations

become rather messy but can be handled efficiently numerically.

A phase transition occurs wherever an infinitesimal change of parameters makes at least

one of the order parameters change from zero to some finite value, which can also easily be

determined numerically.

7.3 First order versus continuous (second order) phase transition

In the LMG model, we were dealing with a continuous phase transition. This was manifesting

in the fact that the order parameter went from zero to a finite value in a continuous manner; this

continuity does not, however, extend to derivatives [113].

However, many of the m-n-models we will now study do not exhibit such a continuous

(sometimes still called second-order) transition. Instead the order parameter is discontinuous

at the phase transition, as shown for the (3,1)-model in figure 7.1. It is therefore also quite
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Figure 7.1: Behavior of the order parameter in a first-order vs. a second-order phase transition

impossible to define anything like critical exponents – there is no universal behaviour for such

first-order transitions.

In the next section we will see that the behaviour of the mutual information will also be

very different in those models that show a first-order transition rather than a continuous one.

7.4 Results

As mentioned, the LMG model is equivalent to the (2,1)-model. Since it has been studied

extensively in the previous chapter, we just remember that we got a good idea about its phase

diagram by looking at the order parameter mx in figure 6.1. Since we can now also have

an interaction in Sz-direction, we will for the new models also plot the corresponding order

parameter mz . As in section 6.3.3, we calculate the order parameters using 〈S2
x〉 and 〈S2

z 〉 to

avoid any confusion by symmetry-breaking.

The essential behaviour that we found for the mutual information in the LMG model was

displayed in figure 6.7, where you can see how it beautifully follows the phase transition, and in

the thermodynamic limit diverges logarithmically at the critical temperature, as was examined

in figure 6.9.

We will therefore now be studying the same sort of plots for the (2,2)-, (3,1)-, (3,2)-, and

(4,1)-models. The numerically determined locations of the phase transitions will be marked by

solid black lines.

The Hamiltonian is clearly symmetric inm and n, so that e.g. the (2,3)-model is exactly the

same as the (3,2)-model. It also turns out that models with even higher m and n will not show
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Figure 7.2: m = 2, n = 2: Collective version of the quantum compass model [114]: competing x-
and z-interactions (of two spins each). There are two essentially identical ordered phases and a high-
temperature symmetric phase. Again the mutual information works very well to point out the different
phases and their transititions (note that the ordered phases are characterized by a mutual information of
one, in contrast to the unordered phase). At the phase transition, the mutual information still seems to
diverge logarithmically; interestingly, at the points with ω = π/4 the coefficient in front of the logarithm
seems to be 1/2 rather than 1/4 (just like the contributions from both phases are added).

any interesting new features, which is why we restrict ourselves to this selection. Since some of

the density plots will need finer resolution (i.e., more data points) than those in the last chapter,

we reduced the system sizes we studied to N = 128, in order to speed up computations.

What do we find? The particular observations for each model are noted in the caption

below it, so let us just summarize the general behaviour here: only a two-spin-interaction gives

rise to a continuous phase transition, where the mutual information diverges logarithmically.

Higher-order interactions still give rise to distinct phases, but with a first-order transition

between them, which shows up as much sharper in the plots. In fact the mutual information

captures also this type of phase transition very well. However, one would not expect any critical

behaviour, and the mutual information shows none, it just goes to a constant value.

Again, this sort of comparably trivial behaviour in the first-order transitions corresponds
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Figure 7.3: m = 3, n = 1: Generalization of the LMG model in the sense that we have a 3-spin
interaction in an external field. Note that there are again only two phases, and for an odd number of
interacting Ising spins even the one that was “ordered” in the LMG model has zero mutual information
(a 3-spin interaction no longer orients all spins like a 2-spin ferromagnetic interaction did). Note that the
transition has become much sharper. It is now a first-order transition rather than a continuous/second-
order one, and that also implies that there are no longer any interesting exponents: while the mutual
information still pinpoints the phase transition very nicely, it no longer diverges at the phase transition,
but simply goes to a constant finite value (of 1) in the thermodynamic limit. Everywhere else it goes to
zero.

with what has been found for the quantum phase transitions in the same models in [112], where

in particular the entanglement entropy has been found to diverge only in continuous transitions.
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Figure 7.4: m = 3, n = 2: Competing 3-spin and 2-spin interactions: In the regime where the two-
spin interaction dominates, we get a phase with one bit of mutual information again. Note how the
mutual information very clearly shows that there are three distinct phases again. This model allows for
a nice comparison between the sharp first-order phase transition, where the mutual information does
not diverge, and the far “wider” second-order phase transition with logarithmically diverging mutual
information.
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Figure 7.5: m = 4, n = 1: This figure has been included to show that also for even exponents (where
we have nonzero mutual information in the ordered phase) one can again find a saturation of mutual
information at the first order phase transition, although now at a value larger than 1.
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Concluding remarks and outlook

I hope that I have managed convince you that mutual information is interesting! We have seen

that is a well-founded correlation measure. It is not easy to calculate though – the biggest

parts of this thesis were dedicated to the problems of calculating it, in what are after all rather

simple model systems. I think it was worth the effort though: We have clearly seen that mutual

information has pronounced features around a phase transition – be it in the classical spin

systems on a lattice or in the fully-connected models. In the latter, we even saw analytical

results that support the argument that it is a natural generalization of entanglement entropy.

For the systems studied, I certainly would not claim that it is very useful for detecting the

phase transitions, because these systems are rather well understood and there are far easier

ways to find their phase transitions. We can however extract more information than just the

location of the phase transition – we also learn about the amount of correlations in the different

phases and at the transition between them: remember for example the Kurmann point in section

6.8 and the markedly different behaviour at first- and second-order phase transitions we saw in

chapter 7. Most crucially, we get all this without having needed any intuition about order pa-

rameters. That means such information-theory-based methods immediately suggest themselves

for the study of any sort of novel phases, which are not yet as well-understood – similarly as

entanglement entropy has turned out essential for ground-state studies in topological models

[115, 116]. Of course that will in general be even more challenging, but I think we have so far

only seen a very small part of what is possible at the point where (quantum) information theory

and condensed matter intersect.
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