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5 Abstract 

 

Lung cancer is one of the leading causes of cancer deaths in the world causing over 1 million 

deaths each year. Numerous genetic (including gene mutation and chromosomal aberration) 

and epigenetic abnormalities (including mainly DNA methylation and histone acetylation) 

have already been identified to be involved in the pathogenesis of lung cancer. These 

changes affect expression of both protein encoding genes and microRNA (miRNA) encoding 

genes. This diploma thesis is based on the results of 2 genome-wide approaches to detect 

DNA methylation in non-small cell lung cancer (NSCLC) patients and NSCLC cell lines. The 

first approach combined immunoprecipitation of methylated DNA fragments and microarray 

analyses and was used to identify tumour-specifically methylated genes in a large number of 

NSCLC patients. In the second approach NSCLC cells were treated with epigenetically active 

drugs followed by miRNA expression microarray analyses to identify epigenetically regulated 

miRNAs. Overall, 298 protein encoding genes and 33 miRNA encoding genes were identified 

to be targets for methylation in NSCLC. The genes HOXA2, SHOX2, TAL1, miRNA-9-3 and 

miRNA-193a were selected for gene-specific DNA methylation analyses by methylation-

sensitive high resolution melting (MS-HRM) and bisulfite genomic sequencing (BGS) in 5 

NSCLC cell lines and in primary tumour (TU) and corresponding non-malignant lung tissue 

samples (NL) of 97 NSCLC patients, respectively. All genes were found to be methylated in 

nearly all NSCLC cell lines analysed (Section 12.1). While also TU were found to be methy-

lated for these genes, only weak methylation was observed in the NL samples. These results 

suggest that methylation of HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a is tumour-

specific. Some of these results were confirmed by BGS. By comparing our methylation results 

with clinico-pathological characteristics of the patients, we found that methylation of HOXA2 

and miRNA-9-3 may be of prognostic relevance in squamous cell carcinoma (SCC) patients.  

In conclusion, our data suggest that methylation of HOXA2, SHOX2, TAL1, miRNA-9-3 and 

miRNA-193a is an important event in the pathogenesis of NSCLC and that HOXA2 and 

miRNA-9-3 methylation may serve as prognostic parameters in SCC patients.  
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6 Zusammenfassung 

 

Lungenkrebs zählt zu den führenden Todesursachen und fordert jedes Jahr über eine Million 

Todesopfer. Zahlreiche genetische (Genmutationen und Chromosomen-Abberationen) und 

epigenetische Abnormalitäten (vorallem DNA Methylierung und Histon Acetylierung) 

konnten als Einflussfaktoren der Pathogenese des Lungenkarzinoms identifiziert werden. 

Diese Veränderungen betreffen sowohl Protein-kodierende Gene als auch miRNA 

kodierende Gene. 

Diese Diplomarbeit basiert auf Ergebnissen zweier genom-weiter Projekte, die sich mit der 

Detektion der DNA Methylierung in Patienten mit nicht-kleinzelligem Lungenkarzinom 

(NSCLC) und in NSCLC Zelllinien beschäftigten. Der erste Ansatz kombinierte 

Immunopräzipitation methylierter DNA Fragmente und „Microarray“ Analysen um tumor-

spezifisch methylierte Gene in einer großen Anzahl von NSCLC Patienten zu identifizieren. Im 

zweiten Ansatz wurden NSCLC Zellen mit epigenetisch aktiven Pharmaka behandelt um mit 

darauf folgenden miRNA „Microarray“ Analysen epigenetisch regulierte miRNAs zu 

identifizieren. Insgesamt konnten 298 Protein-kodierende Gene und 33 miRNA kodierende 

Gene als Ziel für die DNA Methylierung identifiziert werden. Die Gene HOXA2, SHOX2, TAL1, 

miRNA-9-3 und miRNA-193a wurden für gen-spezifische Methylierungsanalysen ausgewählt. 

Die Durchführung erfolgte mittels methylierungs-sensitiver hoch auflösender 

Schmelzkurvenanalyse und Bisulfid genomischer Sequenzierung in 5 NSCLC Zellinien und in 

Proben primärer Tumoren und korrespondierendem nicht-malignem Lungengewebe von 97 

NSCLC Patienten. Die Methylierung der Gene konnte in allen Zelllinien mit unterschiedlicher 

prozentueller Auspägung bestätigt werden. Während die Methylierung dieser Gene in 

primären Tumoren festgestellt werden konnte, waren korrespondierende nicht-maligne 

Proben lediglich zu einem geringen Prozentsatz methyliert. Die Ergebnisse deuten darauf 

hin, dass die Methylierung der Gene HOXA2, SHOX2, TAL1, miRNA-9-3 und miRNA-193a 

tumor-spezifisch ist. Einige dieser Ergebnisse wurden mittels Bisulfid genomischer 

Sequenzierung bestätigt. Durch Vergleich der Methylierungsergebnisse mit klinisch-

pathologischen Charakteristika der Patienten konnten wir die Methylierung von HOXA2 und 

miRNA-9-3 als mögliche prognostische Relevanz für Patienten mit Plattenepithel-Karzinomen 

finden. 
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Schlussfolgernd deuten unsere Daten darauf hin, dass Methylierung von HOXA9, SHOX2, 

TAL1, miRNA-9-3 und miRNA-193a ein wichtiges Ereignis in der Pathogenese von NSCLC ist 

und dass HOXA2 und miRNA-9-3 Methylierung als potentieller prognostischer Parameter bei 

Patienten mit Plattenepithel-Karzinomen dienen kann.  
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8 Basis for this diploma thesis 

 

DNA methylation is part of the epigenetic gene regulation complex which is relevant for the 

pathogenesis of non-small cell lung cancers (NSCLC). Ao. Univ. Prof. Dr. Sabine Zöchbauer-

Müller and her colleagues performed a genome-wide search for methylated CpG islands 

(CGI) in TU and NL samples of 101 stage I-III NSCLC patients by combining methylated DNA 

immunoprecipitation (MeDIP) and microarray analysis (MeDIP-chip) using NimbleGen´s 385K 

Human CpG Island plus Promoter arrays. They identified 298 unique tumour-specifically me-

thylated genes. Gene Ontology analyses revealed that about half of the tumour-specifically 

methylated genes are involved in regulation of gene expression and cell adhesion. Based on 

these results, several genes were selected for further gene-specific DNA methylation analysis 

in NSCLC cell lines and in clinical samples of NSCLC patients during this diploma thesis.   

In a second research project, Ao. Univ. Prof. Dr. Sabine Zöchbauer-Müller and colleagues 

performed a genome-wide screen for methylated miRNA encoding genes in NSCLCs. In brief, 

they investigated expression of 856 miRNAs before and after treatment of NSCLC cells 

(A549) with the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine (Aza-dC) and/or the 

histone deacetylase inhibitor trichostatin A (TSA). Overall, 66 miRNAs were identified whose 

expression was up-regulated after drug treatment. 33 of these miRNA genes are associated 

with a CGI and 2 of these genes were further analysed for methylation in clinical samples of 

NSCLC patients during this diploma thesis. 
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9 Introduction 

 

9.1 Epidemiological overview of lung cancer 

 

During the last decades lung cancer became the leading cause of cancer deaths with more 

than a million deaths a year worldwide (Jemal et al 2010, Wen et al 2011). 

In the year 2008 lung cancer was the most frequent cancer worldwide in men resulting in 1.3 

Million lung cancer deaths (Ferlay J 2008). Compared with the main occurring cancer types in 

men, lung cancer had an incidence of 16.5% (Figure 1). The mortality rate of lung cancer was 

22.5% (Figure 2).  

 

Figure 1. Incidence of cancer types in men in the year 2008. Lung (16.5%), Prostate (13.6%), 

Colorectum (10%), Stomach (9.7%), Liver (7.9%), Oesophagus (4.9%), Bladder (4.4%), Non-

Hodgkin lymphoma (3.0%), Leukemia (3.0), other and unspecified cancer types (27%) Figure 

adapted from reference (Ferlay J 2008). 
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Figure 2. Mortality of cancer types in men in the year 2008. Lung (22.5%), Prostate (6.1%), 

Colorectum (7.6%), Stomach (11%), Liver (11.3%), Oesophagus (6.5%), Bladder (2.7%), Non-

Hodgkin lymphoma (2.6%), Leukemia (3.4%), other and unspecified (26.3%) Figure adapted 

from reference (Ferlay J 2008). 

In the year 2008 lung cancer was one of the most frequently occurring cancer type in women 

worldwide resulting in 420.000 lung cancer deaths (Ferlay J 2008). Comparing with the main 

occurring cancer types in women, lung cancer had an incidence of 8.5% (Figure 3). The mor-

tality rate of lung cancer in women was 12.8% (Figure 4). 
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Figure 3. Incidence of cancer types in women in the year 2008. Breast (22.9%), Colorectum 

(9.4%), Cervix (8.8%), Lung (8.5%), Stomach (5.8%), Corpus uteri (4.8%), Liver (3.7%), Ovary 

(3.7%), Thyroid (2.7%), other and unspecified (29.6%) Figure adapted from reference (Ferlay 

J 2008). 

 

 

Figure 4. Mortality of cancer types in women in the year 2008. Breast (13.7%), Colorectum 

(8.6%), Cervix (8.2%), Lung (12.8%), Stomach (8.2%), Corpus uteri (2.2%), Liver (6.5%), Ovary 

(4.2%), other and unspecified (34.9%) Figure adapted from reference (Ferlay J 2008). 

The statistics for Europe reported similar results for men and women in the year 2008. Com-

paring with the main cancer types in men, lung cancer had an incidence of 16.8% and a mor-

tality rate of 26.6% (Ferlay J 2008). The incidence in women was 6.8% and the mortality rate 

was 11.5% (Ferlay J 2008). 

Very similar data were shown for Austria. Lung cancer was the leading cause of death in men 

and the second cause of death in women. The incidence in men was 13.6% and the mortality 

rate was 22.8% (Ferlay J 2008). The incidence in women was 8.4% and the mortality rate was 

13.3% (Ferlay J 2008). 

It is predicted that lung cancer increases about 45% from 2007 to 2030. 
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9.2 Risk factors of lung cancer 

 

The main risk factor for the development of lung cancer, is tobacco smoking both active as 

well as second hand smoking (Alberg et al 2005, Alberg et al 2007, Boffetta 2006, Chen et al 

2004, Cooter 2000, Doll and Hill 2004, Doll et al 2005, Evans 1962, Hackshaw et al 1997, 

Henley et al 2004, Vineis et al 2005, White 1990, Whitrow et al 2003, Wynder and Graham 

1950). 

The second leading cause of lung cancer is the naturally occurring gas radon (Alberg et al 

2007, Boffetta 2004, Chen 2005, Puskin 1992, Warner et al 1996). 

Additional factors which may increase the risk of lung cancer development are air pollution, 

arsenic, arsenic containing compounds, asbestos, silica and chromium (Alberg et al 2007, 

Boffetta 2004, Boffetta 2006, Hughes et al 2011, Whitrow et al 2003). 

 

9.3 Tobacco and lung cancer 

 

Tobacco smoking was confirmed to be the predominant risk factor for lung cancer develop-

ment (Bartal 2001, Boyle 1993, Boyle 1997, Doll et al 1994, Doll et al 2004, Gan et al 2007, 

Pukkala et al 2009, Ray et al 2010, Roychowdhury et al 2005). It was shown that 80% to 90% 

of US-lung-cancer patients are smokers. Tobacco smoke includes 3996 different components 

(WHO 2004). 

 

69 of these components have been identified as carcinogens including 10 variants of polynu-

clear aromatic hydrocarbons (PAHs), 6 heterocyclic hydrocarbons, 4 volatile hydrocarbons, 3 

nitrohydrocarbons, 4 aromatic amines, 8 N-heterocyclic amines, 10 N-nitrosamines, 2 alde-

hydes, 10 miscellaneous organic compounds, 9 inorganic compounds and 10 phenolic com-

pounds (Hecht 1999, Hoffmann et al 2001, Peterson 2010, Wen et al 2011, Wogan et al 

2004). Furthermore it has been reported that 11 compounds which are listed as “IARC Group 

1 human carcinogens”, are included in tobacco smoke. These carcinogens are: 2-

naphthylamine, 4-aminobiphenyl, benzene, vinyl chloride, ethylene oxide, arsenic, beryllium, 

nickel compounds, chromium, cadmium and polonium-210 (Hecht 1999, Hoffmann et al 

2001, Kavvadias et al 2009a, WHO 1987, WHO 1994, WHO 2004, Wogan et al 2004). Some 
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substances were under further investigation because of their observed carcinogenicity. 

These substances are: benzo-[a]pyrene which is a surrogate for PAHs, tobacco-specific N-

nitrosamines (TSNA), especially N′-nitrosonornicotine (NNN) and 4-(N-nitrosomethylamino)-

1-(3-pyridyl)-1-butanone (NNK) and aromatic amines, especially 4-aminobiphenyl (4-ABP) 

(Hecht 1998, Hecht 2002, Hecht et al 2004, Kavvadias et al 2009a, Vineis and Pirastu 1997, 

WHO 2004, Wogan et al 2004). Putative precursors of NNN and NNK are nicotine and nitrate 

(Peterson 2010, Upadhyaya et al 2006, WHO 2004, Wogan et al 2004). 

The exchange of the methyl group of nicotine with a nitroso group results in formation of 

NNN (Hecht 1998, Hecht 2003, Upadhyaya et al 2006). The chemical structures of Nicotine, 

NNN and the related NNK are shown in figure 5. 

 

Figure 5. Chemical structures of tobacco smoke components with addictive and carcinogenic 

effects. Nicotine, the structurally related N´nitrosonornicotine (NNN) and nitrosamine 4 (me-

thylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Figure adapted from reference 

(Upadhyaya et al 2006). 

 

Benzo[a]pyrene and nicotine-derived nitrosoaminoketone (NNK) are aromatic hydrocarbons 

and members of the most important carcinogens (Hecht 1998, Hecht 1999, Peterson 2010, 

Sun et al 2007, Wen et al 2011, WHO 2004). These carcinogens and accordingly their me-

tabolites, which are produced during smoking, are able to cause cell proliferation and initiate 

survival signals. In addition, these signals are able to result in preneoplastic changes in bron-

chial epithelial cells and thus can lead to lung cancer in laboratory animals (Peterson 2010, 

Sun et al 2007, Wen et al 2011). It has been reported that the carcinogens NNN and NNK can 

not only induce tumour growth in the lung and the respiratory tract but also in the liver, the 

nasal cavity and the oesophagus of laboratory animals (Hecht et al 1986a, Hecht and 

Hoffmann 1988, Hecht 1998, Hecht 2003, Peterson 2010, Upadhyaya et al 2006). 

Because of the evidence of NNK in urine indication of the exposure and metabolism of hu-

mans to that carcinogen were done (Hecht et al 1993, Lackmann et al 1999, Parsons et al 
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1998, Peterson 2010). NNN and its glucuronide are detectable in the urine of both smokers 

and second hand smokers and in toenails of smokers (Kavvadias et al 2009a, Kavvadias et al 

2009b, Peterson 2010, Stepanov and Hecht 2005, Stepanov et al 2009). 

 

9.4 Metabolism of NNN and NNK 

 

For the establishment of the toxicological outcome, NNN and NNK have to be converted to a 

defined metabolism (Hecht 1998, Peterson 2010, Upadhyaya et al 2006). Metabolising of 

these substances leads to DNA adduct formation ending in miscoding and in the develop-

ment of permanent mutations (Upadhyaya et al 2006). 

 

The pyridyloxobutylating pathway results in the DNA adducts 7-[4-(3-pyridyl)-4-oxobut-1-yl]-

2´-deoxyguanosine (7-pobdG) [42], O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2´-deoxycytosine (O2-

pobdC) [43], O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2´-deoxythymidine (O2-pobdT) [43], and O6-[4-

(3-pyridyl)-4-oxobut-1-yl]-2´-deoxyguanosine (O6-pobdG) (Hecht et al 2004, Peterson 2010, 

Wang et al 1997, Wang et al 2003). The schemes of these pathways are illustrated in figure 

6. 

 

Figure 6. Biosynthetic pathways of NNK, NNN and pyridyloxobutylating agents. Figure 

adapted from reference (Peterson 2010). 
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Two pathways are known which lead to DNA adduct formation of 2´- and 5´-hydroxylation 

from NNN (Hecht 1998, Peterson 2010). These pathways are 2´hydroxylation of (S)-NNN and 

both 2´- and 5´hydroxylation of (R) NNN (McIntee and Hecht 2000, Peterson 2010). Methyl-

hydroxylation of NNK and 2´hydroxylation of both (S) and (R) NNN build the same pyridy-

loxobutylating agent as shown in figure 2. The result of 5´hydroxylation is a metabolite which 

alkylates DNA (Figure 6) (Peterson 2010, Upadhyaya et al 2006). 

 

In addition, other substances like cholesterol, steroids and some other lipids were identified 

to be involved in the development of potent carcinogens (Oyama et al 2008, Weng et al 

2007). The CYP enzyme cytochrome P450 has major impact in the synthesis of these sub-

stances and plays an important role in the metabolism of therapeutic drugs and carcinogens 

for the inactivation of derivates (Oyama et al 2008, Singh et al 2011, Weng et al 2007). Cyto-

chrome P450 is involved in NNK-induced carcinogenesis (Peterson 2010, Weng et al 2007). 

Metabolites of NNK are methylating or pyridyloxobutylating agents (Peterson 2010). The 

methyl DNA adducts are: 7-methylguanine (7-mG), O6-methylguanine (O6-mG), and O4-

methylthymidine (O4-mT) (Belinsky et al 1986, Belinsky et al 1990, Hecht et al 1986b, 

Murphy et al 1990, Peterson 2010). 

 

9.5 Non-small cell lung cancer 

 

The two main types of lung cancer are small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC) (Brambilla et al 2001, Molina et al 2008). The main types of NSCLC are ade-

nocarcinomas with approximately 50%, squamous cell carcinomas with about 30% and large 

cell carcinomas with of about 20% (Wang et al 2012). The appearance of adenocarcinomas 

rose by 10% in the last 20 years (Brambilla et al 2001, Ramalingam et al 1998). 
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9.6 Epigenetics 

 

Conrad Hal Waddington (1905-1975) was a famous scientist in the areas of embryology and 

genetics. He created the concepts of the “epigenetic landscape” and “genetic assimilation” 

(Haig 2004). Waddington´s definition of epigenetics was: “The study of causal mechanisms 

by which the genes of the genotype bring about phenotypic effects” (Haig 2004). Develop-

mental events occur from the oocyte fertilization to the mature organism and could be asso-

ciated with a relationship between genes and development (Haig 2004, Slack 2002). Modern 

definitions for epigenetics were done by Gottschling: “A change in phenotype that is herita-

ble but does not involve DNA mutation” and Riggs: “The study of mitotically and/or meioti-

cally heritable changes in gene function that cannot be explained by changes in DNA se-

quence” (Haig 2004, Riggs 1996). 

 

Epigenetics extends over a broad field of molecular biology including several organisms with 

correlating discovered effects. Epigenetic studies have been done in different model organ-

isms like Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila, several plants 

and ciliates. The classic epigenetic mechanisms are “Dosage Compensation”, “Position effect 

of variegation”, “Mating type switching in yeast”, “Heterochromatin formation”, “Imprint-

ing” and the influence of “Polycomb” and “Trithorax” group proteins on differentiation and 

cell identity. Because of the influence of “DNA Methylation”, which is the main aspect of this 

diploma thesis, on “Dosage Compensation” and “Genomic Imprinting, these two aspects are 

briefly mentioned below. 

 

9.6.1 X-chromosomal inactivation/dosage compensation 

 

First suggestions for “X-chromosomal inactivation” or “Dosage Compensation” in female 

mammals were done by Mary Lyon´s followed by several studies for the support of this hy-

pothesis done by Beutler, Gartler and Linder and Nance (Beutler 1964, Gartler and Linder 

1964, Lyon 1961, Nance 1964, Nance and Uchida 1964). Responsible for the inactivation of 

female X chromosomes resulting in one residual X chromosome is the X-inactivation centre 

(Xic). This centre harbours three essential genes. The noncoding RNA Xist is for in cis binding 
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and accumulation on the total chromosome (Brockdorff et al 1992, Brown et al 1991, Brown 

1991) leading to the inactivation of the covered X chromosome (Lee et al 1996, Penny et al 

1996, Wutz and Jaenisch 2000). The expression of Xist is regulated by Tsix (Lee et al 1999). It 

has been reported that DNA methylation plays a major role to stabilize the inactive status 

(Sado et al 2000, Sado et al 2004). 

 

9.6.2 Genomic imprinting 

 

Mammalians consists of a set of 2 matched chromosomes, each inherited from the parental 

genomes. Progenies so have 2 copies of every gene with basically equal capability for gene 

expression. Genomic imprinting influences expression of certain genes by DNA methylation 

in a manner of parental inheritance. If one imprinted parental copy of a gene is expressed, 

the other copy is silenced leading to parental-specific gene expression. 

 

In the year 1985 more knowledge about chromosomal imprinting was gained by first nuclear 

transfers in mice (Cattanach and Kirk 1985, Solter et al 1985). It was concluded that not only 

DNA information but also information depending on the parental origin and the correlating 

gene expression might be important for further development. A mouse model experiment 

with uniparental disomy chromosomes (UPD) showed different phenotypes using either two 

maternal or two paternal copies of distinct genes leading to the implication of distinct gene 

expression depending on the origin (Cattanach and Kirk 1985). Further studies confirmed the 

influence of DNA methylation on genomic imprinting using transgenic mouse models (Reik et 

al 1990). Improvements in vertebrate epigenetics were done in the aspect of correlation of 

DNA methylation with chromosomal imprinting and X-inactivation with deeper interest in 

the Igf2-H19 locus (Ariel et al 1993, Li et al 1993, Tilghman et al 1993, Willard et al 1993). 

 

So far, approximately 80 imprinted genes arranged in clusters have already been identified 

(Verona et al 2003). A regulatory DNA element, responsible for the regulation of imprinting 

and so responsible for the regulation of gene expression has been established and is called 

imprinting control element (ICE). DNA methylation in genomic imprinting could act as a de 
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novo imprinting mark by the chromosomes of one gamete or as silencer of parental alleles in 

terms of repression of gene expression. 

 

9.6.3 Epigenetic gene silencing 

 

Epigenetic mechanisms largely contribute to the regulation of transcriptional gene activities. 

Among these mechanisms, methylation and various chemical modifications of histone pro-

teins (acetylation, methylation, phosphorylation, sumoylation, ubiquitination, ADP-

ribosylation) are key regulators which affect the binding of transcription factors to DNA and 

which change the chromatin structure resulting either in gene activation or gene silencing 

(Rauch et al 2008, Zhong et al 2007). 

 

9.6.4 DNA methylation 

 

DNA methylation describes the covalent addition of a methyl group to the 5´carbon of cyto-

sine bases within a CpG dinucleotide (Figure 13) (Cooper 1983). CpG dinucleotides are un-

derrepresented in the mammalian genomes but are accumulated in so called CpG islands 

(CGIs) in a higher density. These CGIs are associated with ~70% of human genes and are har-

boured in approximately 60% of human gene promoter regions (Figure 7) (Ioshikhes and 

Zhang 2000, Larsen et al 1992, Wang and Leung 2004). CGIs are defined by the following 

criteria: 1) “a minimum DNA sequence length of 500 base pairs”, 2) “a G + C content of 

about 55%” and “ 3) “a CpG observed/expected ratio of 0.65” (Takai and Jones 2002, Wang 

and Leung 2004). In general, CGIs are unmethylated. CGI methylation occurs in healthy, non-

malignant cells during developmental processes, genomic imprinting, X chromosomal inacti-

vation and tissue-specific gene expression respectively (Ariel et al 1993, Bird 1986, Gardiner-

Garden and Frommer 1987, Li et al 1993, Razin and Cedar 1994, Reik et al 1990, Sado et al 

2000, Sado et al 2004, Tilghman et al 1993, Willard et al 1993). In addition, it has been 

shown that methylation of CGI associated CpG dinucleotides in the promoter region of can-

cer-associated genes occur frequently in malignant cells (Baylin et al 2001, Costello et al 

2000, Esteller 2008, Herman and Baylin 2003, Jones and Baylin 2007). Moreover, it has been 

suggested, that up to 4.500 CpG islands (mean ~600) may be methylated in a tumour 
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(Costello et al 2000). As described in detail in section 9.8, CGI methylation is involved in 

regulation of transcriptional gene activity. While a gene which is associated with an un-

methylated CGI is actively transcribed, a gene which is associated with a methylated CGI is 

transcriptionally silenced. 

 

 

Figure 7. Genomic region with a CGI in a gene promoter which harbours a high density of 

CpG dinucleotides. The self-complementary CpG pairs are illustrated as vertical strokes. The 

active promoter is assigned with unmethylated cytosine in CpG dinucleotides (white spots). 

The silenced promoter is assigned with methylated cytosine (filled spots) (C. David Allis 

2007). With permission from Cold Spring Harbor Laboratory Press, Copyright holder is Cold 

Spring Harbor Laboratory Press  

 

It has been reported that certain transcription factors are able to recognize GC-rich motifs 

but a couple of them are not able to interact with methylated cytosine bases of CpG pro-

moter sequences (Watt and Molloy 1988). This repression of interaction of transcription 

factors at transcription factor binding sites of gene promoters may lead to repression of 

gene expression. This has been proven by several studies which were engaged in the role of 

the CTC binding factor (CTCF) in imprinting at the H19/Ifg2 locus (Bell et al 1999, Wallace and 

Felsenfeld 2007). 
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9.6.4.1 Interaction between DNA methylation and histone protein 

changes 

 

It has been shown that a crosstalk between methylated DNA and specifically modified his-

tone proteins exists (Eden et al 1998, Espada et al 2004, Heller et al 2008, Ikegami et al 2009, 

Jaenisch and Bird 2003, Zhong et al 2007, Zochbauer-Muller et al 2005). Eukaryotic DNA is 

organized in a defined arrangement consisting of chromatin, chromatin-associated proteins 

and an octamer of histones. This histone octamer contains two copies of the histones H2A, 

H2B, H3 and H4 (Luger et al 1997, Peters et al 2003, Shogren-Knaak et al 2006). The N-

terminal regions are called histone-tails and can variably be modified. These characterized 

modifications are phosphorylation, ubiquitylation, sumoylation, ADP-ribosylation, biotinyla-

tion, proline isomerization, methylation and acetylation (Heller et al 2010, Vaquero et al 

2003). Transcriptional activity is positively or negatively influenced by altered chromatin 

structure depending on these modifications (Heller et al 2010, Shogren-Knaak et al 2006, 

Vettese-Dadey et al 1996). Gene silencing may also be a result of a crosstalk between DNA 

methylation and histone acetylation (Eden et al 1998, Espada et al 2004, Heller et al 2008, 

Ikegami et al 2009, Jaenisch and Bird 2003, Zhong et al 2007, Zochbauer-Muller et al 2005). 

A methylated CGI is recognized and bound by a methyl-CpG binding protein (MBD). Several 

MBDs are currently known: MeCP2, MBD1, MBD2, MBD3, MBD4 and additional the unre-

lated protein Kaiso which is also involved in repression of gene expression (Figure 8) (Bird 

and Wolffe 1999, Fujita et al 1999, Jin et al 2005, Kass et al 1997, Majumder et al 2006, 

Meehan et al 1989, Nan et al 1998a, Ng et al 1999, Ng et al 2000, Prokhortchouk et al 2001, 

Yoon et al 2003, Yu et al 2001). 

 

Figure 8. Methyl CpG binding proteins. Members of the MBD family with their significant 

domains, Transcriptional Repression Domains (TRD), CXXC, zinc fingers of KAISO is for bind-
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ing of methylated DNA is shown (C. David Allis 2007). With permission from Cold Spring Har-

bor Laboratory Press, Copyright holder is Cold Spring Harbor Laboratory Press 

 

The MBD-DNA complex is then recognized and bound by a protein complex which contains 

transcriptional repressors and co-repressors (e.g. mSins3A, SETDB1, NuRD) (Jin et al 2005, 

Jones et al 1998, Nan et al 1998b). Beside others, this protein complex also includes histone 

deacetylases. By binding of the protein complex to DNA, histone deacetylases deacetylate 

histone proteins H3 and H4. Because acetyl groups are negatively charged, loss of acetyl 

groups results in positive overall charge of histone proteins and higher affinity to negatively 

charged DNA. As a result, chromatin is tightly packed and transcription is blocked (Eden et al 

1998, Espada et al 2004, Ikegami et al 2009). 

 

9.6.4.2 Reversibility of epigenetic changes 

 

Epigenetic alterations are reversible processes (Altucci and Minucci 2009, Das and Singal 

2004, Egger et al 2004, Glaser 2007, Graham et al 2009, Heller et al 2012, Lyko and Brown 

2005, Villar-Garea et al 2003, Villar-Garea and Esteller 2004). The reversibility of DNA methy-

lation or the inhibition of histone deacetylation is performed pharmacologically resulting in 

re-expression of prior silenced genes (Cameron et al 1999, Egger et al 2004, Glaser 2007, 

Graham et al 2009, Heller et al 2010, Heller et al 2012, Lyko and Brown 2005, Villar-Garea et 

al 2003, Villar-Garea and Esteller 2004). Epigenetically active drugs are DNA demethylating 

agents and histone deacetylase (HDAC) inhibitors. 

DNA demethylating agents may act as suicide substrates after incorporation into DNA, inhi-

bition by masking the DNA methyltransferase (DNMT) target sequence or block active site of 

DNMT enzymes (Flynn et al 2003, Graham et al 2009, Lyko and Brown 2005, Santi et al 

1984). Such drugs for instance are the nucleoside analogues 5-azacytidine (Vidaza), 5-aza-2´-

deoxycytidine (Decitabine), 1-β-D-ribofuranosyl-2(1H)-pyrimidinone (Zebularine) and the 

non-nucleoside inhibitors procaine, epigallocatechin-3-gallate (EGCG) and RG108 (Figure 9) 

(Graham et al 2009, Heller et al 2012, Lyko and Brown 2005, Nakagawa et al 2004, Santi et al 

1984). The incorporation mechanism of nucleoside analogues is shown in figure 10. 
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HDAC inhibitors may induce arrest of cell growth, differentiation and apoptosis by different 

mechanisms (Bi and Jiang 2006). Inhibitory effects are performed either by polar ends of 

HDAC inhibitors by binding zinc ion of the catalytic pocket structure or by hydroxamic acid 

groups acting on catalytic sites of HDACs (Bi and Jiang 2006, Finnin et al 1999). Another 

mechanism is the inhibition of active site of HDAC (Bi and Jiang 2006). Such HDAC inhibitors 

for instance are vorinostat (SAHA), romidepsin (depsipeptide, FK228), belinostat (PXD101), 

LAQ824/LBH589, MS-275 and trichostatin A (Bi and Jiang 2006, Glaser 2007, Heller et al 

2012, Villar-Garea and Esteller 2004, Yoshida et al 1990). 

 

 

Figure 9. DNMT inhibitors and their mechanisms. 5-azazytidine, 5-aza-2´-deoxycytidine and 

zebularin get incorporated into DNA (black arrows); RG108 and EGCG block active sites of 

DNMTS (black dots); procaine masks DNMT target sequences (black dot) (Lyko and Brown 

2005). 
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Figure 10. Incorporation and action mechanism of cytosine analogues. 5-azacytidine and 

zebularine are converted to nucleotide diphosphates (not shown), 5-aza-2´-deoxycytidine is 

converted to a nucleotide triphosphate and gets then incorporated into replicating DNA in-

stead of cytosine. After incorporation, covalent duplexes of cytosine analogues and DNMTs 

get built leading to function-inhibition of active enzymes and demethylation of DNA. Pink 

circles, methylated CpG; white circle, unmethylated CpG; red circle, cytosine analogues; MP, 

monophosphate; DP, diphosphate; TP, triphosphate. Figure adapted from reference (Egger 

et al 2004). 

 

9.6.4.3 De novo methylation of CpG dinucleotides 

 

De novo methylation describes methylation of prior, fully unmethylated cytosine in CpG di-

nucleotides and mainly occurs during gametogenesis and developmental processes (Heller et 

al 2010, Okano et al 1998, Okano et al 1999, Sado et al 2004). 

Experiments with retroviral proviruses and transgenic mice led to the identification of de 

novo methylation (Jahner et al 1982). Deletion experiments of the DNMT1 gene had no ef-

fect on the de novo methylation event leading to the presumption that other methyltrans-

ferases trigger de novo DNA methylation (Lei et al 1996). Two de novo methyltransferases, 

DNMT3a and DNMT3b are identified (Gowher and Jeltsch 2001, Okano et al 1998). Disrup-

tion experiments in mice resulted in developmental deficits (Hata et al 2002, Kaneda et al 
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2004), postnatal (DNMT3a) and embryonic (DNMT3b) lethality respectively, highlighting the 

importance of DNA methylation and DNA methylation catalysing enzymes (Hata et al 2002, 

Kaneda et al 2004, Okano et al 1999). 

DNMT2 is also a member of the DNMT family but a change in the CpG methylation pattern 

could not be observed. 

 

 

Figure 11. Illustration of De novo - and maintenance methylation. The vertical strokes indi-

cate self-complementary CpG pairs. De novo methylation of prior unmethylated genomic 

regions is catalysed by DNMT3a and DNMT3b. Maintenance methylation is catalysed by 

DNMT1 leading to the original methylation status after DNA replication. Only prior methy-

lated cytosine gets modified after replication. Prior unmethylated cytosine stays untreated 

(C. David Allis 2007). With permission from Cold Spring Harbor Laboratory Press, Copyright 

holder is Cold Spring Harbor Laboratory Press 

 

DNMTs have highly conserved catalytic domains (Figure 12) opposite to regulatory domains 

located at amino terminal regions which show little conservation (Fatemi et al 2001, Kumar 

et al 1994). Both DNMT3a and DNMT3b have 2 conserved domains, the “proline-tryptophan-

tryptophan-proline” (PWWP) domain which is involved in heterochromatin formation and a 

cysteine-rich region which harbours a C2-C2 zinc finger, the ATRX region.  
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Figure 12. Mammalian DNA methyltransferases with their regulatory – and catalytic do-

mains. Regions in the catalytic domains of the 4 DNMTs (I, IV, VI, IX and X) are largely con-

served. The regulatory domains show great difference. DNMT1 contains the PCNA-

interacting domain (PCNA), the nuclear localization signal (NLS), the replication foci-targeting 

domain (RFT) a cysteine-rich domain (CXXC) and the bromo-adjacent homology domain 

(BAH). Both DNMT3a and 3b have a proline-tryptophan-tryptophan-proline domain (PWWP) 

and a ATRX-related cysteine rich region with a C2-C2 zinc finger (ATRX) (C. David Allis 2007). 

With permission from Cold Spring Harbor Laboratory Press, Copyright holder is Cold Spring 

Harbor Laboratory Press 

 

9.6.4.4 Maintenance methylation of CpG dinucleotide 

 

It was postulated that a maintenance DNMT catalyses the methylation reaction of newly 

replicated cytosine bases according to the paternal methylation pattern. Unmethylated sites 

of the paternal strand are not influenced by the methylation event and keep their original 

pattern in the newly synthesised DNA strand. These postulations were confirmed a few 

years later by either DNA methylation sensitive restriction endonuclease experiments in 

Xenopus laevis (Bird and Southern 1978) or transfection experiments in cultured cells (Wigler 

1981). DNMT1 was identified as the protein which is responsible for the maintenance me-

thyltransferase reaction (Bestor and Ingram 1983, Li et al 1992). 

 

DNMT1 harbours 5 motifs in its regulatory domain: the PCNA interacting domain (PCNA) 

(Chuang et al 1997, Fatemi et al 2001), the nuclear localization signal (NLS) (Bestor and 

Verdine 1994, Fatemi et al 2001), the replication foci-targeting domain (RFT) (Fatemi et al 

2001, Leonhardt et al 1992), a cysteine rich domain (CXXC) and a bromo-adjacent homology 
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domain (BAH). The CXXC domain is involved in binding to CpG rich DNA sequences. The BAH 

domain is involved in protein-protein interactions (Kumar et al 1994). Regulatory and cata-

lytic regions of DNMT1 are schematically illustrated in figure 12. 

 

Figure 13. Illustration of the methyltransferase reaction. The addition of a methyl-group (CH3 

red) at the 5´carbon of cytosine bases in CpG dinucleotides is catalysed by DNA methyltrans-

ferases (DNMT). The green arrow indicates the covalently interaction of the DNMT with the 

6´carbon of the cytosine during the methylation event (C. David Allis 2007). With permission 

from Cold Spring Harbor Laboratory Press, Copyright holder is Cold Spring Harbor Laboratory 

Press 

 

9.7 Biosynthesis and function of microRNAs (miRNA) 

 

MiRNAs are about 21 nucleotide-long non-coding RNAs and have major influence in the 

regulation of eukaryotic gene expression (Bushati and Cohen 2007, Filipowicz et al 2008, 

Kloosterman and Plasterk 2006, Rana 2007). The influence in gene expression happens post-

transcriptionally in the cytoplasm by interaction with messenger RNAs (mRNA) (Filipowicz et 

al 2008, Jackson and Standart 2007, Nilsen 2007, Pillai et al 2007, Standart and Jackson 2007, 

Valencia-Sanchez et al 2006). The biosynthesis of miRNAs is a complex, multistep process 

which involves several enzymes and modification steps. Firstly miRNA encoding genes are 

transcribed by RNA polymerase II resulting in a pri-miRNA. The pri-miRNA is then modified in 

the nucleus by two enzymes, Drosha and Pasha, resulting in a ~ 70 nucleotide miRNA subop-

timal stem loop structure (Basyuk et al 2003, Denli et al 2004, Esquela-Kerscher and Slack 

2006, Gregory et al 2004, Lee et al 2002, Lee et al 2003, Zeng and Cullen 2003). The so 

formed pre-miRNA is then translocated into the cytoplasm by Exportin 5 (Bohnsack et al 

2004, Esquela-Kerscher and Slack 2006, Lund et al 2004, Yi et al 2003). The RNAse III enzyme 
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Dicer cuts the pre-miRNA resulting in an 18 to 22 nucleotide long miRNA:miRNA duplex 

(Bagga et al 2005, Esquela-Kerscher and Slack 2006, Grishok et al 2001, Hutvagner et al 

2001, Ketting et al 2001). This duplex has two 3´overhangs, the one with the 5´overhang at 

the less-stable end of the duplex becomes the mature miRNA the other strand is degraded 

(Du and Zamore 2005, Filipowicz et al 2005, Filipowicz et al 2008, Kim and Nam 2006, Rana 

2007, Sontheimer 2005). The processed, mature miRNA associates with the RNA induced 

silencing complex (RISC) forming a miRISC complex to fulfil the function as negative regula-

tors of target genes (Esquela-Kerscher and Slack 2006, Filipowicz et al 2008). Further, fun-

damental components of the RISC complex are Argonaute proteins (AGO 1 – 4) (Esquela-

Kerscher and Slack 2006, Filipowicz et al 2008, Nilsen 2007, Rana 2007). An overview of 

miRNA biogenesis is shown in figure 14. After the miRISC complex is built, miRNAs bind to 

mRNA target sequences and inhibit the protein biosynthesis in 2 ways depending on the 

base complementary. While little sequence similarity and imperfect binding between miRNA 

and its mRNA target leads to translational repression high sequence similarity and so nearly 

perfect interaction of complementary sequences of miRNA and its mRNA target leads to tar-

get degradation (Figure 14) (Bushati and Cohen 2007, Chang and Mendell 2007, Esquela-

Kerscher and Slack 2006, Filipowicz et al 2008, Kloosterman and Plasterk 2006, Krutzfeldt 

and Stoffel 2006). 
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Figure 14. Biosynthesis of non-coding miRNAs. The miRNA biosynthesis starts with transcrip-

tion and the procession to pri-miRNA and pre-miRNA in the nucleus. After translocation of 

pre-miRNA to the cytoplasm arranged by Exportin 5 further processions occur by several 

enzymes leading to a mature miRNA combined with the RISC complex. Micro RISC complexes 

are then able to fulfil their function as translational repressors. Figure adapted from refer-

ence (Esquela-Kerscher and Slack 2006). 

 

It is estimated that miRNAs represent 1% to 4% of the expressed human genome suggesting 

that these non-coding RNAs are part of the largest gene regulators (Bentwich et al 2005, 

Berezikov et al 2005, Esquela-Kerscher and Slack 2006, Lim et al 2003a). Bioinformatics stud-

ies revealed that miRNA complementary sequences are in the 3´untranslated region (UTR) of 

mRNA target genes (Esquela-Kerscher and Slack 2006). These 2 to 8 nucleotide complemen-

tary region of one miRNA could be found in up to 200 mRNAs leading to the conclusion that 

miRNAs are multifunctional inhibitors of, e.g. transcription factors, secreted factors, recep-

tors and transporters (Enright et al 2003, Esquela-Kerscher and Slack 2006, Grosshans et al 
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2005, John et al 2004, Kiriakidou et al 2004, Krek et al 2005, Lewis et al 2003, Lim et al 

2003b, Lim et al 2005, Rajewsky and Socci 2004, Rehmsmeier et al 2004). 

 

Several miRNAs and parts of the miRNA biosynthesis machinery have been identified to play 

a major part in tumour-genesis. Karube et al. (Karube et al 2005) reported about different 

expression levels of DICER and DROSHA in NSCLC patients with significant clinicopathologic 

characteristics (Esquela-Kerscher and Slack 2006, Karube et al 2005). Patients with a lower 

DICER expression level had poorly differentiated tumours and the hazard ratio in the aspect 

of earlier death was 17.6 (Karube et al 2005). Deletions in AGO1, 3 and 4 are involved in the 

formation of Wilms tumours and neuroectodermal tumours (Carmell et al 2002, Esquela-

Kerscher and Slack 2006). Several miRNAs were identified as regulators of cancer-related 

processes like cell growth, differentiation and apoptosis (He and Hannon 2004, Heller et al 

2012). For example the human homolog genes lin-4 and let-7 are involved in cell prolifera-

tion and are involved in the development of lung cancer (Esquela-Kerscher and Slack 2006, 

Farazi et al 2011, Iorio et al 2005, Johnson et al 2005, Takamizawa et al 2004, Yanaihara et al 

2006) and breast cancer (Calin et al 2004, Esquela-Kerscher and Slack 2006). Thus, altera-

tions and downregulation of miRNA gene expression may contribute to the development of 

a malignant phenotype (Du and Pertsemlidis 2010, Heller et al 2012). Downregulated 

miRNAs were already identified in several cancer types including lung cancer (Farazi et al 

2011, Heller et al 2012, Yanaihara et al 2006). A significant miRNA downregulation in TU 

samples compared with NL samples were observed (Bandi et al 2009, Fabbri et al 2007, 

Heller et al 2012, Wang et al 2011b, Yanaihara et al 2006). 
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9.8 DNA methylation in NSCLC 

 

In general, cancer arises from genetic lesions, both genetic alterations (point mutations, de-

letions, inversions and chromosome-aberrations) and epigenetics changes. Several publica-

tions have shown that epigenetic alterations especially DNA methylation influences gene 

expression and occurs in almost all cancer types (Hanahan and Weinberg 2000, Herman and 

Baylin 2003, Jones and Laird 1999, Jones and Baylin 2002). 

 

Using approaches to detect single gene methylation, numerous tumour suppressor genes 

(TSG) have already been identified which are frequently methylated and thus, transcription-

ally silenced in NSCLCs. Examples of these genes are DLEC1 and p16 (involved in cell cycle 

regulation), CDH1, CDH13, TSLC1 and DAL1 (involved in cell adhesion), RASSF1A and RARβ2 

(involved in cell growth), DAPK, FHIT and RUNX3 (involved in apoptosis) or MGMT (involved 

in DNA repair) (Brabender et al 2001, Burbee et al 2001, Dammann et al 2000, Esteller et al 

2001, Heller et al 2006, Heller et al 2010, Kashiwabara et al 1998, Kikuchi et al 2005, Kikuchi 

et al 2006, Kim et al 2003, Kuramochi et al 2001, Maruyama et al 2004, Nakata et al 2006, 

Seng et al 2008, Toyooka et al 2001a, Toyooka et al 2003b, Virmani et al 2001, Yanagawa et 

al 2007, Zochbauer-Muller et al 2001a, Zochbauer-Muller et al 2001b). It was found that TU 

samples are methylated up to 96% compared to NL samples, where no methylation or only a 

low percentage of methylation is detectable (Burbee et al 2001, Heller et al 2006, Toyooka et 

al 2001a, Zochbauer-Muller et al 2001b). In addition, it was shown that methylation of cer-

tain TSGs is tumour type-specific (Figure 15) (Burbee et al 2001, Heller et al 2006, 

Zochbauer-Muller et al 2001a, Zochbauer-Muller et al 2001b, Zochbauer-Muller et al 2005). 

Thus, DNA methylation of promoter regions of presumed TSGs may be one reason for the 

loss of function and may lead to the establishment of tumour growth (Fraga et al 2005, 

Herman and Baylin 2003, Jones and Laird 1999, Jones and Baylin 2002). 

 



Christian Noll a0502696 
 

Page 35 
 

 

Figure 15. Tumour-specific methylation of certain tumour suppressor genes in NSCLCs. The 

percentage of methylation in TU and NL samples is shown. Data summarized from refer-

ences (Burbee et al 2001, Heller et al 2006, Zochbauer-Muller et al 2001a, Zochbauer-Muller 

et al 2001b). 

 

Moreover, certain associations between methylation of certain genes and clinical character-

istics (e.g. histology, stage of disease, smoking history) were observed (Heller et al 2006, 

Heller et al 2010). For instance Toyooka et al. (Toyooka et al 2003b) reported statistically 

significant differences in methylation of the genes APC, RARβ and CDH13 in primary adeno-

carcinomas and primary SCC (Figure 16). These genes were found to be more frequently me-

thylated in adenocarcinomas than in squamous cell carcinomas. 

Interestingly no methylation or only a small percentage of methylation was observed in NL 

samples. These results showed a clear difference in the methylation pattern of TU and NL 

samples of NSCLC patients suggesting that DNA methylation is tumour-specific and tumour 

type-specific respectively (Burbee et al 2001, Esteller et al 2001, Toyooka et al 2001b, 

Toyooka et al 2003a). 
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Figure 16. Methylation frequencies of 7 genes in primary adenocarcinomas and primary 

squamous cell carcinomas. 

 

Moreover Toyooka et al. (Toyooka et al 2003b) compared the methylation status of the 

genes p16, RASSF1A, APC, RARβ, CDH13, MGMT and GSTP1 in primary tumours of never 

smokers and ever smokers and found a statistically significant higher methylation frequency 

of p16 and APC in primary tumours of ever smokers (Figure 17). Of note, methylation of all 

of these genes except GSTP1 was also found in non-malignant lung tissue samples of ever 

smokers but not or in a lower frequency in never smokers (Figure 17). 
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Figure 17. Methylation frequency of 7 genes in non-malignant lung tissue samples of never 

and ever smokers. 

 

In addition, it was reported that methylation of some of them (e.g. p16, RASSF1A, APC) may 

be associated with a poor prognosis of NSCLC patients (Brock et al 2008). 

 

DNA methylation analyses also have been done in blood, sputum, bronchial brushings and 

bronchioloalveolar lavage (BAL) samples of lung cancers. The methylation status of the 

genes MGMT, p16, DAPK, APC, CDH13, FHIT, RARβ-2 and RASSF1A obtained from plasma or 

serum samples could be confirmed in the majority of samples, however, a lower percentage 

of methylation was found in these sample types compared to TU samples (Anglim et al 2008, 

Belinsky et al 2005, Esteller et al 1999, Fujiwara et al 2005, Hsu et al 2007, Usadel et al 2002, 

Wang et al 2007). In serum and plasma samples of control individuals no methylation of 

these genes was obtained (Esteller et al 1999, Wang et al 2007). 

 

Recently, it was observed that also miRNA coding genes may be targets for methylation in 

NSCLCs (Ceppi et al 2010, Kitano et al 2011, Stanzer et al 2010, Yang et al 2010). However, 

researchers are still at the beginning of understanding the impact of methylation on miRNA 

gene silencing in cancers, particularly in NSCLCs. 

Expression of several miRNAs was found to be tumour-specifically downregulated in NSCLC 

by genome-wide approaches to detect miRNA expression (Wang et al 2009, Yanaihara et al 

2006). Tumour-specifically downregulated miRNAs in NSCLC included let-7 family members 

(involved in regulation of Ras signalling), miR-15a and miR-16-1 (involved in regulation of cell 
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cycle), miR-451 (regulator of Ras-related protein 14, RAB14) (Bandi et al 2009, Johnson et al 

2005, Takamizawa et al 2004, Wang et al 2011b). 

Chromosomal loss, alterations of the miRNA processing machinery and methylation were 

identified as a mechanisms causing downregulated miRNA expression in cancer cells (Farazi 

et al 2011, Lujambio and Esteller 2007). Examples for miRNA encoding genes in NSCLC are 

members of the miR-34 family, miR-124a, miR-126, miR-415 and miR-200c (Ceppi et al 2010, 

Gallardo et al 2009, Lujambio et al 2007, Wang et al 2011c, Watanabe et al 2012). Interest-

ingly, some of these miRNA genes are parts of molecular pathways whose deregulation may 

contribute to the development of a malignant phenotype. While miR-34a is part of the p53 

network, miR-124a regulates levels of the cell cycle progression factor CDK6 (Corney et al 

2007, Lujambio et al 2007, Pierson et al 2008). 

Recently, Wang et al. (Wang et al 2011c) observed that methylation of miR-34b/c may be 

associated with a poor overall and poor disease-free survival in stage I NSCLC patients. MiR-

451 is involved in Ras signalling pathway (Bandi et al 2009). Ceppi et al. (Ceppi et al 2010) 

reported, that miR-200c is a putative metastasis suppressor gene which is methylated in 63% 

of NSCLC cell lines analysed. 

Moreover, Fabbri et al. (Fabbri et al 2007) demonstrated that certain miRNA genes are not 

only targets but also regulators of methylation. They reported that DNMT3A and DNMT3B 

are regulated by miR-29 and that increased gene expression of miR-29 in NSCLC cell lines 

results in restoration of methylation and gene expression patterns of the silenced TSGs FHIT 

and WWOX (Fabbri et al 2007, Volinia et al 2006, Yanaihara et al 2006). 
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10 Aims of this diploma thesis 

 

This diploma thesis is based on 2 genome-wide approaches to detect DNA methylation of 

protein and miRNA encoding genes in NSCLC as described in detail in section “Basis of this 

diploma thesis”. A large number of protein and miRNA encoding genes were identified as 

targets for methylation in NSCLC cell lines and NSCLC patients. The aims of this diploma the-

sis were: 

• To develop gene-specific approaches to analyse DNA methylation of the genes 

HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a. 

• To confirm data obtained by genome-wide methylation analyses using gene-

specific approaches 

• To determine methylation of the 5 genes in primary tumours and correspond-

ing non-malignant lung tissue samples of 97 NSCLC patients 

• To compare methylation results with clinico-pathological characteristics of the 

NSCLC patients 
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11 Methods and material 

 

11.1 Cell culture 

 

NSCLC cell lines A549, NCI-H1993 and NCI-H2073 were purchased from the American Type 

Culture Collection (ATCC). Cells were stored in cryo tubes in liquid nitrogen. For thawing the 

cells cryo tubes were incubated for 1 minute at 37°C in a water bath. Then, cells were 

washed in 15 ml RPMI 1640 media + 10% FCS twice, the media was discarded, 5 ml fresh 

media were added and the cell pellet was dissolved by vortexing. Afterwards, cells were 

transferred into a T25 cell culture flask. 24 hours later we controlled adherent cell coloniza-

tion microscopically. Cell culture medium was changed when necessary.  

 

11.1.1 Cell passaging 

 

For cell passaging, cell culture medium was discarded and 3 ml pre-warmed Trypsin-EDTA 

(stored at -20°C) were added directly to the cells. After cells were detached from the surface, 

15 ml cell culture medium was added and cells were transferred to a 50 ml tube and centri-

fuged at 1520 rpm for 10 minutes. Fluids were discarded, 15 ml fresh cell culture medium 

was added and the cell pellet was dissolved by vortexing. This working step was repeated 

twice. Then the dissolved cells were transferred in equal parts in 2 new sterile T75 cell cul-

ture flasks. 

 

11.1.2 Material 

 

Components Catalogue number Company 

RPMI + GLUTAMAX 758483 INVITROGEN 

REFOBACIN 112214 MERCK 

TRYPSIN-EDTA 197812 INVITROGEN 

FCS 179822 INVITROGEN 
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11.1.3 Tissue samples 

 

Overall, frozen TU and NL samples of 106 stage I-III NSCLC patients who underwent surgical 

resection of their tumour in a curative intent have been collected the years 2000 – 2004. 97 

samples of NSCLC patients were analysed for methylation of protein encoding genes and of 

miRNA encoding genes. Clinical samples for MS-HRM were stored at -80°C until use. None of 

these NSCLC patients of the tumour stages I, II or III received adjuvant chemotherapy (Heller 

et al 2006, Heller et al 2012). 

 

11.2  Isolation of genomic DNA 

 

Genomic DNA was isolated from tumour cell lines and frozen tissue samples of 97 NSCLC 

patients using proteinase K digestion and phenyl-chloroform-isoamyl alcohol extraction. 500 

µl PK buffer, containing 1 molar TRIS (pH 8.0), 0.5 molar EDTA (pH 8.0), sodium dodecyl sul-

phate (SDS) (1 g/ 5 ml), proteinase K (10 mg/ml) and water, were added either to cell pellets 

or to liquid-nitrogen disrupted tissue samples of NSCLC patients and incubated the mixture 

for 1 hour at 50°C. After incubation 500 µl phenyl-chloroform-isoamyl alcohol were added 

and followed by centrifugation at 14000 rpm for 10 minutes resulting in a clear phase sepa-

ration. The upper phase containing genomic DNA was collected and transferred to a new 

tube. The phenyl-chloroform-isoamyl alcohol step was repeated followed by ethanol (EtOH) 

precipitation of genomic DNA using EtOH absolute. After incubation at -80°C for 30 minutes 

and subsequent centrifugation at maximum speed, the resulting DNA pellet was washed 

with 70% EtOH. Then, the DNA pellet was air dried and dissolved in TE-buffer. 
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11.2.1 Material 

 

Components Catalogue number Company 

Isoamyl alcohol 98% I-3643 SIGMA-ALDRICH 

Phenol S/P buffer saturated K-168-400 AMRESCO 

Chloroform C-5312 SIGMA-ALDRICH 

Ethanol absolute 96% 1.0097 MERCK 

TRIS 50005 BIOMOL 

EDTA 43178-8 SIGMA-ALDRICH 

SDS L-4390 SIGMA-ALDRICH 

Proteinase K 745723 ROCHE APPLIED SCIENCE 

 

11.3 Sodium bisulfite treatment of genomic DNA 

 

Prior detection of methylated cytosines in CpG dinucleotides in the promoter regions of the 

genes of interest, genomic DNA was treated with sodium bisulfite. Sodium bisulfite treat-

ment of DNA leads to deamination and conversion of unmethylated cytosine to uracil. Me-

thylated cytosines remain unchanged (Clark et al 1994, Clark et al 2006, Frommer et al 1992, 

Zilberman and Henikoff 2007). In the following amplification step uracil is replaced by 

thymine (Figure 18). 
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Figure 18. Sodium bisulfite treatment of genomic DNA. Methylated and unmethylated ge-

nomic regions are shown. After denaturation and treatment with sodium bisulfite, unmethy-

lated cytosine is converted to uracil while methylated cytosine remains 5-methylcytosine. 

After PCR amplification the incorporated uracil is replaced by thymine. This change of DNA 

sequence allows distinguishing methylated and unmethylated DNA sequences in subsequent 

PCR based approaches for detection of DNA methylation. Figure adapted from reference 

(Zilberman and Henikoff 2007). 

 

For sodium bisulfite treatment the EpiTect Bisulfite Kit form Qiagen was used according to 

the instructions of the manufacturer “Sodium Bisulfite Conversion of Unmethylated Cytosi-

nes in DNA”. 1 µg genomic DNA was used (C. David Allis 2007). 

 

11.3.1 Material 

 

Components Catalogue number Company 

EpiTect 96 Bisulfite Kit 59110 Qiagen 
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11.4 Primerdesign for methylation-sensitive high resolution melt analyses 

(MS-HRM) and bisulfite genomic sequencing (BGS) 

 

Primerdesign for methylation-sensitive high resolution melt analysis (MS-HRM) and bisulfite 

genomic sequencing (BGS) was performed using the “Methyl Primer Express v 1.0” software. 

These primers were designed to amplify the regions of interest regardless of the methylation 

status. Genomic sequences were obtained from Ensembl database. Settings for MS-HRM 

primer design were: a) primer length of 18 to 25 nucleotides, b) amplicon between 100 and 

160 nucleotides c) G-C content in the primer sequence of more than 50%. Settings for BGS 

primer design were: a) primer length of 18 to 25 nucleotides, b) amplicon between 250 and 

350 nucleotides and c) G-C content in the primer sequence of more than 50%. Primers were 

synthesized by VBC Biotech (Vienna, Austria). Lyophilised primers were dissolved in ddH2O 

according to the instructions of the manufacturer to obtain a concentration of 50 nm per µl. 

For a ready to use solution 20 µl of forward and reverse primer were mixed with 160 µl 

ddH2O in a sterilized Eppendorf tube. Primer sequences are shown in table 1. Sequencing 

primers were designed to harbour the MS-HRM primer binding sites. 

 

Table 1. Oligonucleotide primer sequences for MS-HRM analyses and BGS of 5 genes 

Gene Forward sequence Reverse sequence Amplicon 

length 

HOXA2  TTAGATTGAGGTGTTTAAATGATTTG ATAACTACCCTCTACCTCCCCC 98 

HOXA2 

BGS 

AATAGAATTTATGTGGTTGGG ACCTCCTAATCTACAAAAATCTATC 284 

SHOX2 GGTGGGAGTTTTGAGATTTTAG AACAAATTTCCCCAACAACTAT 118 

SHOX2 BGS GGTGGGAGTTCTGAGACCTCAG GGAGAAGGTGCAGGCAACCCTGTC 309 

TAL1  GATTGTGTTGGATTGTGTGTT CACCTAACACTACCCCAAAAA 110 

TAL1 BGS TGGTGTTCTCAGCAGGGATCTG GTGTGCCTGTGTCCTTTAGAGGT 299 

miRNA-9-3 GTGYGTGTGTTTGTTTATTTT ACCTCCCTTAACCAATACC 141 

miRNA-9-3 

BGS 

GTGYGTGTGTTTGTTTATTTT AACACTACAAATATCCCCAAAAA 393 

miRNA-193 TTTGAGGGATATTTAGAGTTTYGG CAACTCCCATCCTCRAAATT 115 
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miRNA-

193a BGS 

TTTTGATGTGTTATTAGTAYGTGGAG ACCCAACTCCRCTCTACC 385 

MS-HRM, methylation sensitive high resolution melt analyses; BGS, bisulfite genomic se-

quencing; Y in primers, random integration of C or T; R in primers, random integration of G 

or A. 

 

11.5 Methylation-sensitive high resolution melt analyses 

 

After bisulfite conversion of genomic DNA the methylation status of the promoter regions of 

the genes HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a were quantified by the use of 

EpiTect HRM PCR kit in a RotorGene®Q cycler (Qiagen, Hilden, Germany) according to the 

manufacturer´s instructions. This technique is based on 3 main facts, the intercalation of a 

fluorescent dye in double stranded DNA (dsDNA), the base pair constitution of the DNA 

fragments analysed and thus the melting behaviour depending on methylation of the region 

of interest (Wojdacz and Dobrovic 2007, Wojdacz et al 2010). The DNA intercalating dye of 

the EpiTect HRM PCR kit is EvaGreen which enables high fluorescence during intercalation in 

dsDNA without inhibiting the PCR reaction (Wittwer et al 2003, Wojdacz and Dobrovic 2007, 

Wojdacz et al 2010). Because of temperature gradients in HRM analysis from low to high 

temperature, dsDNA denature into ssDNA resulting in disability of intercalation of the fluo-

rescent EvaGreen and furthermore a decrease in light emission. 

 

The next aspect of DNA constitution refers to the hydrogen bridge bonds (H-bonds) between 

complementary nucleotides. It is known that G-C base pairs are connected by 3 H-bonds, A-T 

base pairs are connected by 2 H-bonds. As explained before, prior bisulfite conversion leads 

to a sequence change depending on the methylation status. Unmethylated cytosine gets 

converted to uracil and after PCR to thymine further resulting in the loss of one H-bond. Me-

thylated cytosine stays untreated and keeps the 3 H-bonds between CpG dinucleotides. The 

more H-bonds are present in a DNA sequence, the more energy is needed to break these 

bonds and denature dsDNA to ssDNA. 

 

For construction of a regression line and subsequent calculation of the % of methylation, 

differentially methylated DNA standards were included in each MS-HRM run. DNA standards 
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were prepared from dilutions of commercially available 100 % and 0 % methylated standard 

control DNA (Qiagen, Hilden, Germany) at 100 %, 75 %, 50 %, 25 %, 10 % and 0 % ratios 

(Stanzer et al 2010). PCR amplification was performed using the following conditions: 5 min-

utes hold at 95°C for enzyme activation followed by 40 times amplification cycle rotating 

with denaturation for 10 seconds at 95°C, annealing for 30 seconds at 55°C and an extension 

step for 10 seconds at 72°C. After amplification the RotorGene®Q software directly starts 

with HRM starting from 60°C and rising up to 90°C in 0.1°C steps. 

 

11.5.1 Material 

 

Components Catalogue number Company 

EpiTect Control DNA Set 

(100) 

59695 Qiagen 

EpiTect HRM PCR Kit (100) 59445 Qiagen 

 

11.6   Bisulfite genomic sequencing 

 

11.6.1 Polymerase chain reaction (PCR) 

 

DNA samples (stored at -20°C), and reaction components were thawed at room temperature 

(RT). For homogenization DNTPs, PCR buffer and primer mixes (forward and reverse) were 

vortexed. The total volume for one PCR reaction was 21 µl, consisting of 13.1 µl H2O, 3.2 µl 

DNTPs, 2.5 µl PCR buffer, 1 µl primer mix, 0.2 µl TAQ polymerase and 1 µl of bisulfite 

treated, genomic DNA. After the combination of all reaction components the thermo cycler 

was programmed according to the beneath program. To obtain a higher amount of ampli-

cons for subsequent cloning reactions all samples were amplified in triplicates.  
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Step Temperature in °C Time 

DENATURATION 94 12 minutes 

DENATURATION 95 30 seconds 

ANNEALING 56°C HOXA2 

60°C SHOX2 

56°C TAL1 

55°C miRNA-9-3 

64°C miRNA-193a 

40 seconds 

EXTENSION/ELONGATION 72 30 seconds 

FINAL ELONGATION 72 7 minutes 

HOLD 4 endless 

 

11.6.1.1 Material 

 

Components Catalogue number Company 

DNTP SET 120281 AMERSHAM 

HOT-STAR TAQ DNA POLY-

MERASE 

203205 QIAGEN 

BUFFER 203205 QIAGEN 

PCR SINGLE CAP SOFT-STRIPS 710980 BIOZYM 

 

11.6.2 Agarose gel electrophoresis 

 

For visualization of PCR products, agarose gel electrophoresis using a 2 % agarose gel was 

performed. Using this technique, the DNA was separated depending on their mass-to-weight 

ratio. 180 mL 1X TAE buffer were mixed with 3.6 g agarose and heated in a microwave. After 

cooling down 15 µl GelRED™ for autoradiographical detection were added. DNA samples 

were prepared by adding 2 µl loading buffer (bromphenol-blue) and transferred in separate 

slots. For band length classification a 100 base pair DNA ladder was used. Gel electrophore-

ses was performed at 170 V for 25 minutes. Band detection was performed using Chemi-

Doc™ XRS (Biorad). 
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11.6.2.1 Material 

 

Components Catalogue number Company 

DNA LADDER 100 base pairs 15628-019 INVITROGEN 

GelRED™ 41003 BIOTREND 

TAE BUFFER 161-0743 BIO-RAD 

 

11.6.3 Agarose gel purification 

 

Before DNA purification bands were excised from the agarose gel under the influence of UV 

detection. For each specific DNA sample a new scalpel was used to avoid contamination and 

result falsification. PCR products were then purified from agarose gel using the QIAquick Gel 

Extraction Kit (Qiagen) according to the instructions of the manufacturer. 

 

11.6.3.1 Material 

 

Components Catalogue number Company 

QIAquick GEL EXTRACTION 

KIT 

28704 QIAGEN 

 

11.6.4 Cloning of amplicons 

 

For bisulfite genomic sequencing of the promoter regions of the genes HOXA2, SHOX2, TAL1, 

miRNA-9-3 and miRNA-193a the gel purified PCR products were cloned using the TOPO® TA 

Cloning® Kit for Sequencing (Invitrogen) according to the instructions of the manufacturer. In 

the previous PCR step, regions of interest were amplified with TAQ polymerase. Because of 

the activity as a terminal transferase, the TAQ polymerase adds a single deoxyadenosine (A) 

to 3´ends of PCR products. Before inserting a fragment into the pCR™4-TOPO® vector, the 

vector has linear constitution with a single 3´overhanging deoxythymidine (T). These over-

hangs, one at the PCR product and one at the vector and the enzymatic activity of a cova-

lently bound topoisomerase I (TOPO I) from the Vaccinia virus allow integration and ligation 
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(Shuman 1991). Integration occurs in the open reading frame of the fusion construct of the 

LacZα-ccdB gene. Expression of this gene leads to the death of E. coli but integration of a 

fragment leads to disruption of the lethal gene and furthermore to growth of transformed E. 

coli cells (Bernard and Couturier 1992, Bernard et al 1993, Bernard et al 1994). The pCR™4-

TOPO® harbours 2 antibiotic resistant cassettes, one for Ampicillin and one for Kanamycin 

for further growth selection. In addition, 2 necessary sequences for later amplification and 

sequencing procedures are M13 forward and reverse primer binding sites (Figure 19). 

 

Figure 19. Schematic representation of the 3956 base pair vector which are essential for the 

integration of the PCR product at the TOPO® cloning site at position 294-295, for screening 

(Kanamycin resistant gene: bases 1159 – 1953, Ampicillin resistant gene: bases 2203 – 3063) 

and for amplification (M13 forward priming site: bases 355 – 370 and M13 reverse priming 

site: bases 205 – 221) Figure adapted from Invitrogen™ life technologies. 
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11.6.5 Production of LB culture medium  

 

Before the cloning procedure was started, the growth medium was prepared for chemically 

competent E. coli cells as follows: 

5 g Bacto Tryptone, 

2.5 g Yeast-extract, 

5 g NaCl 

Total volume: 500 ml, pH: 7.2 

 

11.6.6 Production of LB plates  

 

10 g agar were added to the prior prepared LB medium. For dissolution and sterilization the 

MultiControl (CertoClav) autoclave was used. After sterilization and cooling down to 50°C, 

the antibiotic Kanamycin was added (50 µg/ml). Then the medium was poured into cell cul-

ture plates for later cell cultivation and in 1.5 ml Eppendorf tubes for sequencing. Cell cul-

ture plates were stored on 4°C until use. 

 

11.6.6.1 Material 

 

Components Catalogue number Company 

BACTO TRYPTON 211705 BD 

BACTO YEAST EXTRACT 212750 BD 

BACTO AGAR 214014 BD 

SODIUMCHLORID S3014 SIGMA-ALDRICH 

KANAMYCIN K1876 SIGMA-ALDRICH 
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11.6.7 TOPO® cloning 

 

Before seeding chemically competent E. coli cells, cell culture plates were pre-warmed in the 

BBD 6220 Heraeus® incubator (Thermo Scientific) at 37°C for 30 minutes to reach the opti-

mum growing temperature. The first cloning step, the incorporation of our PCR amplified 

fragments into the vector, was done at RT. After thawing all components, 4 µl PCR amplified 

genomic DNA, 1 µl salt solution and 1 µl TOPO® vector were mixed in a 1.5 ml Eppendorf 

tube and incubated for 15 minutes at RT. During that time, the PCR amplified genomic DNA 

incorporated in the linear vector leading to circularization. The salt solution was then stored 

at 4°C, PCR products and TOPO® vector were stored at -20°C.  

The chemically competent E. coli cells were stored at -80°C in separate vials. Cells were thaw 

on ice. Transformation was performed in a 4°C cooling chamber. For each transformation 2 

µl of the cloning reaction were added into a separate E. coli vial and mixed gently by agita-

tion. After 30 minutes incubation at 4°C a heat shock reaction was performed at the pre-

warmed 42°C water bath for exactly 30 seconds. Afterwards the vials were immediately put 

on ice, 250 µl of pre-warmed S.O.C growth media were added and the vials were incubated 

for 1 hour at 37°C shaker at 200 rpm. After 1 hour of incubation cells were (50 µl and 20 µl) 

plated on pre-warmed LB cell culture plates with sterile drigalsky scoop, and incubated at 

37°C overnight. 

 

Afterwards E. coli culture growth was analysed optically. As mentioned before, the used E. 

coli strain has only growing ability, when 1) cloning of our PCR products and 2) transforma-

tion of the vector into the cells were successful. The transformation of the vector harbouring 

Kanamycin resistance leads to growth ability of the E. coli strain.  

 

In a next step, single colonies were picked from the LB plate and transferred to new pre-

warmed LB cell culture plates (37°C) using sterilized toothpicks. A raster was signed at the 

bottom of each cell culture plate and each square was for exact single colony identification. 

Then the patterned LB cell culture plates with transferred single E. coli colonies were incu-

bated at 37°C for further 4 hours. 
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For the confirmation of successful cloning and transformation steps PCR and agarose gel 

electrophoreses were performed. 20 µl master mix including 13.µl ddH2O, 3.2 µl DNTPs, 2.5 

µl PCR buffer, 1 µl of individual sequencing Primer mix (HOXA2, SHOX2, TAL1, miRNA-9-3 

and miRNA-193a) and 0.2 µl TAQ polymerase was prepared. Cells form the re-colonized sin-

gle E. coli colonies were picked using sterile toothpicks and transferring into the prepared 

master mix. PCR reactions were performed in a vapo.protect thermocycler (Eppendorf). The 

specific PCR program is mentioned in section 11.6.1. In the meantime patterned LB cell cul-

ture plates were put on 4°C. After positive identification of colonies with the inserts of inter-

est by agarose gel electrophoreses further incubation of selected E. coli colonies for 4 hours 

was performed. Furthermore pre-warmed LB containing 1.5 ml Eppendorf tubes with open 

cap were incubated at 37°C for 30 minutes. After 4 hour incubation specific E. coli cells with 

sterile toothpicks were transferred to the pre-warmed LB containing Eppendorf tubes and E. 

coli containing tubes with half open caps were incubated for further 5 hours. Afterwards 

transformed E. coli cells, harbouring the vector with specific promoter inserts, were sent for 

sequencing to LGC genomic Berlin. 

 

11.7 Statistical analyses 

 

Wilcoxon signed rank test were used to calculate differences between TU samples and NL 

samples obtained by MS-HRM analyses. Receiver operating characteristic (ROC) curve analy-

ses was done using GraphPad Prism 5 software. 

MS-HRM data of the genes HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a were com-

pared with clinico-pathological parameters (gender, age, histology, tumour stage, lymph 

node stage, stage of disease recurrence, disease free survival (DFS) and overall survival (OS) 

of NSCLC patients. Chi2 tests / Fisher´s exact tests were used to calculate differences be-

tween groups and t-tests were used to calculate differences between means. Survival analy-

ses of NSCLC patients were performed using log rank testing. The Cox proportional model 

was used for multivariate analyses on DFS/OS. Factors included in the multivariate analyses 

were gender, age, tumour stage, lymph node stage and stage of disease. A p-value < 0.05 

was considered as statistically significant. These analyses were performed using the statistic 

software PASW (version 18). 



Christian Noll a0502696 
 

Page 53 
 

12. Results 

 

12.1 Establishing MS-HRM assays for 5 genes in NSCLC cell lines 

 

The major aim of this diploma thesis was to confirm results of genome-wide DNA methyla-

tion analyses as described in “Basis for this diploma thesis”. To reach this goal, we developed 

MS-HRM assays for the genes HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a. In a first 

step, these assays were tested for quality and efficacy on the NSCLC cell lines A549, NCI-

H1993 and NCI-H2073 and on various DNA methylation standards (0%, 10%, 25%, 50%, 75% 

and 100% methylated). As shown in figures 20 - 24, all differentially methylated DNA stan-

dards were amplified at comparable Ct values in all 5 assays tested. After normalization of 

melt curves a clear curve separation depending on the % of methylation was observed (Fig-

ure 20 - 24). The % of methylation was then plotted against the normalized fluorescence and 

regression lines were calculated. The resulting R2 values of the assays range from 0.971 to 

0.9972 indicating high linearity of our MS-HRM assays. 

Methylation of all genes was observed in all 3 cell lines analysed. The percentage of methyla-

tion of HOXA2 was 90% in A549, 93% in NCI-H1993 and 84% in NCI-H2073. The percentage 

of methylation of SHOX2 was 84% in A549, 96% in NCI-H1993 and 36% in NCI-H2073. The 

percentage of methylation of TAL1 was 77% in A549, 88% in NCI-H1993 and 100% in NCI-

H2073. The percentage of methylation of miRNA-9-3 was 41% in A549, 98% in NCI-H1993 

and 44% in NCI-H2073. The percentage of methylation of miRNA-193a was 41% in A549, 

94% in NCI-H1993 and 83% in NCI-H2073. These results are summarized in table 2. 
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Figure 20. Test of linearity of MS-HRM assay for HOXA2. Left panel: Amplification plot show-

ing amplification of differentially methylated DNA standards at comparable Ct values. Middle 

panel: Normalization of melting curves against 0% methylated DNA. A clear curve separation 

depending on the % of methylation is shown. Right panel: Maximum peak values were plot-

ted against the % of methylation resulting in high linearity regression lines. 

 

 

Figure 21. Test of linearity of MS-HRM assay SHOX2. Left panel: Amplification plot showing 

amplification of differentially methylated DNA standards at comparable Ct values. Middle 

panel: Normalization of melting curves against 0% methylated DNA. A clear curve separation 

depending on the % of methylation is shown. Right panel: Maximum peak values were plot-

ted against the % of methylation resulting in high linearity regression lines. 
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Figure 22. Test of linearity of MS-HRM assay TAL1. Left panel: Amplification plot showing 

amplification of differentially methylated DNA standards at comparable Ct values. Middle 

panel: Normalization of melting curves against 0% methylated DNA. A clear curve separation 

depending on the % of methylation is shown. Right panel: Maximum peak values were plot-

ted against the % of methylation resulting in high linearity regression lines. 

 

 

Figure 23. Test of linearity of MS-HRM assay miRNA-9-3. Left panel: Amplification plot show-

ing amplification of differentially methylated DNA standards at comparable Ct values. Middle 

panel: Normalization of melting curves against 0% methylated DNA. A clear curve separation 

depending on the % of methylation is shown. Right panel: Maximum peak values were plot-

ted against the % of methylation resulting in high linearity regression lines. 
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Figure 24. Test of linearity of MS-HRM assay miRNA-193a. Left panel: Amplification plot 

showing amplification of differentially methylated DNA standards at comparable Ct values. 

Middle panel: Normalization of melting curves against 0% methylated DNA. A clear curve 

separation depending on the % of methylation is shown. Right panel: Maximum peak values 

were plotted against the % of methylation resulting in high linearity regression lines. 

 

Legend for HRM plots: 

% of methylation 

 

 

Table 2. Percentage of methylation of 5 genes in the NSCLC cell lines A549, NCI-H1993 and 

NCI-H2073 

 

Cell line % of methylation 

 HOXA2 SHOX2 TAL1 miRNA-9-3 miRNA-

193a 

A549 90 84 77 41 41 

NCI-H1993 93 96 88 98 94 

NCI-H2073 84 36 100 44 83 
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12.2 MS-HRM analyses of 5 genes in clinical samples of 97 NSCLC  

 patients 

 

Next, we performed MS-HRM analyses of the genes HOXA2, SHOX2, TAL1, miRNA-9-3 and 

miRNA-193a in TU and NL samples of 97 stage I, II and III NSCLC patients. Consistent with our 

data derived from cell line experiments, we observed amplification of the 5 genes in clinical 

samples at comparable Ct values (Figures 25 - 29). Overall, clinical samples of 97 NSCLC pa-

tients were analysed in 8 MS-HRM runs. The mean R2 values of these runs are 0.977 (HOXA2, 

range 0.961 -0.988, 0.982 (SHOX2, range 0.9592 - 0.992), 0.976 (TAL1, range 0.9439 – 0.997). 

0.995 (miRNA-9-3, range, 0.984 – 0.999) and 0.994 (miRNA-193a, range, 0.986 – 0.998). 

 

 

Figure 25. Example of MS-HRM analyses of the gene HOXA2 in differentially methylated DNA 

standards and in clinical samples of NSCLC patients. A clear difference in methylation of this 

gene is shown for a TU and a NL. 
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Figure 26. Example of MS-HRM analyses of the gene SHOX2 in differentially methylated DNA 

standards and in clinical samples of NSCLC patients. A clear difference in methylation of this 

gene is shown for a TU and a NL. 

 

 

Figure 27. Example of MS-HRM analyses of the gene TAL1 in differentially methylated DNA 

standards and in clinical samples of NSCLC patients. A clear difference in methylation of this 

gene is shown for a TU and a NL. 
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Figure 28. Example of MS-HRM analyses of the gene miRNA-9-3 in differentially methylated 

DNA standards and in clinical samples of NSCLC patients. A clear difference in methylation of 

this gene is shown for a TU and a NL. 

 

 

Figure 29. Example of MS-HRM analyses of the gene miRNA-193a in differentially methy-

lated DNA standards and in clinical samples of NSCLC patients. A clear difference in methyla-

tion of this gene is shown for a TU and a NL. 

 

Legend for HRM plots: 

% of methylation 
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In addition, we observed statistically significant differences in methylation between TU and 

NL samples for all genes analysed. Consistent with our results of genome-wide DNA methyla-

tion analyses, we found that HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a are tumour-

specifically methylated MS-HRM analyses (Figure 30). The mean % of HOXA2 methylation in 

TU samples and NL samples were 76% (range 57% - 86%) and 0%, respectively. The mean % 

of SHOX2 methylation in TU samples and NL samples were 71% (range 41% - 94%) and 0%, 

respectively. The mean % of TAL1 methylation in TU samples and NL samples were 87% 

(range 61% - 100%) and 0%, respectively. The mean % of miRNA-9-3 methylation in TU sam-

ples and NL samples were 89% (range 82% - 95%) and 6.65% (range 0% - 15.4%), respec-

tively. The mean % of miRNA-193a methylation in TU samples and NL samples were 77% 

(range 75% - 81%) and 0.7% (range 0% - 0.7%), respectively. 
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Figure 30. Summary of MS-HRM data of the genes HOXA2, SHOX2, TAL1, miRNA-9-3 and 

miRNA-193a in TU and NL samples of 97 NSCLC patients. Each circle represents a single tis-

sue sample. 

 

Moreover, we performed ROC curve analyses and found that methylation of all genes ana-

lysed statistically significant distinguishes TU samples from NL samples (Figure 31). 
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Figure 31. ROC curve analyses of HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a methy-

lation determined by MS-HRM analyses of TU and NL samples of 97 NSCLC patients. Extend 

of methylation of these genes allows to distinguish between TU and NL samples. Green line, 

reference line; blue line, methylation of particular gene.  
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Next, for each patient T/N methylation ratios of the 5 genes were calculated and patients 

with a T/N ratio ≥ 1.5 were considered as methylated. The most frequently methylated 

genes was HOXA2 (78%) followed by miRNA-9-3 (68%), TAL1 (61%), miRNA-193a (42%) and 

SHOX2 (39%). 

 

Finally, a heat map which summarizes methylation of the genes HOXA2, SHOX2, TAL1, 

miRNA-9-3 and miRNA-193a in all NSCLC patients analysed was generated (Figure 32). Me-

thylation of one gene was detected in 17/106 (16%) NSCLC patients, methylation of two 

genes in 19/106 (17.9%) NSCLC patients, methylation of three genes in 23/106 (21.7%) 

NSCLC patients, methylation of four genes in 25/106 (23.6%) NSCLC patients, and methyla-

tion of five genes in 12/106 (11.3%) NSCLC patients. Only 9.5% of NSCLC patients were not 

methylated for one of the genes analysed.  
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Figure 32. Heat map summarizing the methylation status of the genes miRNA193a, SHOX2, 

miRNA-9-3, HOXA2 and TAL1 in 106 NSCLC samples. Blue, unmethylated, red, methylated, 

grey, not analysed.  
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12.3 Bisulfite genomic sequencing 

 

To prove that genomic regions analysed by MS-HRM indeed are methylated, we performed 

BGS of a part of the 5´ regions of HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a in TU 

and NL samples (Figures 33 - 37). While in the TU specimens 76% of CpG sites analysed were 

found to be HOXA2 methylated, in the NL samples 0% of CpG sites analysed were observed 

to be HOXA2 methylated. In TU specimens 71% (SHOX2), 87% (TAL1), 89% (miRNA-9-3) and 

77% (miRNA-193a) of CpG sites analysed were found to be methylated. In NL specimens 0% 

(SHOX2), 0% (TAL1), 21% (miRNA-9-3) and 3% (miRNA-193a) of CpG sites analysed were 

found to be methylated.  

 

 

Figure 33. BGS results of parts of HOXA2 5´regions in a TU and NL sample. Fourteen CpG 

sites were analysed for methylation, respectively. CpG sites (pink bars) analysed by BGS rela-

tive to transcription start sites (blue bars) of the gene are shown. Three clones of a TU and 

NL sample were sequenced. Black squares indicate methylated cytosines at CpG sites, white 
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squares indicate unmethylated cytosines at CpG sites. In addition, representative chroma-

tograms from BGS of parts of the gene in a TU and the NL sample are shown. CpG sites are 

underlined. 

 

 

Figure 34. BGS results of parts of SHOX2 5´regions in a TU and NL sample. Seventeen CpG 

sites were analysed for methylation, respectively. CpG sites (pink bars) analysed by BGS rela-

tive to transcription start sites (blue bars) of the gene are shown. Three clones of a TU and 

NL sample were sequenced. Black squares indicate methylated cytosines at CpG sites, white 

squares indicate unmethylated cytosines at CpG sites. In addition, representative chroma-

tograms from BGS of parts of the gene in a TU and the NL sample are shown. CpG sites are 

underlined. 

 



Christian Noll a0502696 
 

Page 67 
 

 

Figure 35. BGS results of parts TAL1 5´regions in a TU and NL sample. Thirteen CpG sites 

were analysed for methylation, respectively. CpG sites (pink bars) analysed by BGS relative 

to transcription start sites (blue bars) of the gene are shown. Three clones of a TU and NL 

sample were sequenced. Black squares indicate methylated cytosines at CpG sites, white 

squares indicate unmethylated cytosines at CpG sites. In addition, representative chroma-

tograms from BGS of parts of the gene in a TU and the NL sample are shown. CpG sites are 

underlined. 
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Figure 36. BGS results of parts of miRNA-9-3 5´regions in a TU and NL sample. Thirty-nine 

CpG sites per gene were analysed for methylation. CpG sites (pink bars) analysed by BGS 

relative to transcription start sites (blue bars) of the gene are shown. Four clones of a TU and 

NL sample were sequenced. Black squares indicate methylated cytosines at CpG sites, white 

squares indicate unmethylated cytosines at CpG sites. In addition, representative chroma-

tograms from BGS of parts of the gene in a TU and the NL sample are shown. CpG sites are 

underlined. 
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Figure 37. BGS results of parts of miRNA-193a 5´regions in a TU and NL sample. Thirty-seven 

CpG sites per gene were analysed for methylation. CpG sites (pink bars) analysed by BGS 

relative to transcription start sites (blue bars) of the gene are shown. Five clones of a TU and 

NL sample were sequenced. Black squares indicate methylated cytosines at CpG sites, white 

squares indicate unmethylated cytosines at CpG sites. In addition, representative chroma-

tograms from BGS of parts of the gene in a TU and the NL sample are shown. CpG sites are 

underlined. 
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12.4 Comparison of MS-HRM results with clinico-pathological charac-

teristics of NSCLC patients 

 

Moreover, we compared the results with clinico-pathological characteristics of NSCLC pa-

tients. Therefore we used T/N rations of methylation obtained by calculation after MS-HRM 

analyses. T/N ratios of patients greater than 1.5 were determined to be methylated (Heller 

et al 2012). 

T/N ratios of methylation of the 5 genes analysed by MS-HRM were used for comparison of 

clinico-pathological characteristics of the patients. No associations between methylation and 

DFS or OS of the whole study population were observed. However, HOXA2 methylated 

squamous cell carcinoma (SCC) patients had a statistically significant shorter DFS than 

HOXA2 not methylated SCC patients (median survival: 45 month vs. not reached, p = 0.034) 

in univariate analyses (Figure 38A). Similar findings were observed for OS with a statistically 

significant shorter OS of HOXA2 methylated SCC patients compared to HOXA2 not methy-

lated patients (median survival: 39 month vs. not reached, p = 0.043, Figure 38B). 

Also miRNA-9-3 methylated SCC patients had a statistically significant shorter DFS than 

miRNA-9-3 not methylated SCC patients (median survival: 35 month vs. not reached, p = 

0.046) and a statistically significant shorter OS than miRNA-9-3 not methylated SCC patients 

(median survival: 35 month vs. not reached, p = 0.046, Figure 38C and 38D).  

In addition, multivariate analyses identified both HOXA2 and miRNA-9-3 methylation as in-

dependent prognostic factor for shorter DFS of SCC patients (HOXA2 methylation: hazard 

ratio (HR) = 5.8, 95% confidence interval (CI) = 1.2 to 28.2, p = 0.031; miRNA-9-3  methyla-

tion: HR = 4.6, 95% CI = 1.3 to 16.1, p = 0.018) (Heller et al 2012). 
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Figure 38. Results for HOXA2 and miRNA-9-3 regarding DFS and OS. Results are shown by 

Kaplan-Meyer plots for 39 patients (N = 39). Nine of them were treated with platin-based 

chemotherapy and two of them with radiotherapy after disease recurrence. A: DFS for 

HOXA2 methylated (N = 28) and not methylated (N = 11) SCC patients; B: OS for HOXA2 me-

thylated (N = 28) and not methylated (N = 11) HOXA2 SCC patients; C: DFS for miRNA-9-3 

methylated (N = 18) and not methylated SCC (N = 21) patients; D: OS for miRNA-9-3 methy-

lated (N = 18) and not methylated (N = 21) SCC patients (Heller et al 2012). 
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13 Discussion 

 

About 1.200.000 people are diagnosed with lung cancer per year worldwide. In 2009, 4.239 

people were diagnosed with lung cancer in Austria. Despite advances in developing new 

treatment strategies and new anticancer drugs in recent years, the prognosis of lung cancer 

patients is still poor with 5-year OS rates of about 14%. Thus, defining molecular markers of 

prognostic relevance would be the basis for a more personalized therapy promising im-

proved outcome.  

Beside genetic changes (e.g. mutations, deletions, chromosomal loss) epigenetic abnormali-

ties, especially DNA methylation, are involved in the pathogenesis of NSCLC. So far, several 

genes have been identified which are frequently methylated in NSCLCs (Heller et al 2010). 

Recently, members of the research lab of Ao. Univ. Prof. Dr. Sabine Zöchbauer-Müller per-

formed genome-wide screens to identify protein encoding and miRNA encoding genes which 

are targets for methylation in NSCLCs. Overall, 298 tumour-specifically methylated protein 

encoding genes were identified using MeDIP-chip analyses of 101 NSCLC patients. In addi-

tion, 33 miRNAs were found to be targets for methylation in NSCLC cell lines. Three protein 

encoding genes (HOXA2, SHOX2 and TAL1) and 2 miRNA encoding genes (miRNA-9-3 and 

miRNA-193a) were selected for further methylation analyses in NSCLC cell lines and in TU 

and NL samples of 97 NSCLC patients during this diploma thesis.  

DNA methylation of these genes was analysed using the recently developed technique MS-

HRM. This method is based on methylation-insensitive amplification of sodium bisulfite-

modified DNA followed by high resolution melt analysis. The major advantages of this 

method are that MS-HRM analysis is an in-tube, cost-effective, very sensitive and quantita-

tive alternative to other PCR based techniques (e.g. methylation-specific PCR) for detection 

of DNA methylation (Wojdacz et al 2008). The quality of our MS-HRM assays was strength-

ened by plotting fluorescence values of predefined methylation standards (0% methylated – 

100% methylated) against the percentage of methylation. A strong linear relationship (R2-

values >0.95) between fluorescence and percentage of methylation was observed for all MS-

HRM assays used for subsequent analyses of clinical samples. 

The genes HOXA2 and SHOX2 are members of the homeobox gene family. Homeobox genes 

are transcription factors which are involved in regulation of various developmental proc-
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esses including morphogenesis and cell differentiation (Abate-Shen 2002, Gehring and 

Hiromi 1986, Kim et al 2009, Stein et al 1996). To date more than 200 human homeobox 

genes are known. Thirty-nine of them are located in 4 HOX gene clusters (HOXA on chromo-

some 7, HOXB on chromosome 17, HOXC on chromosome 12 and HOXD on chromosome 2) 

(Abate-Shen 2002, Kim et al 2009). Besides their involvement in developmental processes 

some HOX genes are supposed to have tumour suppressor gene function (Shah and Sukumar 

2010). For example, HOXA5 and HOXA10 are involved in G1 cell cycle checkpoint regulation 

by regulating expression of p53 and CDKN1A (Bromleigh and Freedman 2000, Raman et al 

2000). HOXB13 represses the β-catenin-TCF pathway and acts as a tumour suppressor in 

colorectal cancer (Jung et al 2005). Moreover, HOXB13 suppresses the transactivation of the 

androgen receptor, thus, functioning as a tumour suppressor in prostate cancer cells (Jung et 

al 2004). Interestingly, Rauch et al. (Rauch et al 2007) observed that all 4 HOX gene clusters 

are targets for methylation in the lung adenocarcinoma cell line A549. Very similar data were 

observed by the research group of Ao. Univ. Prof. Sabine Zöchbauer-Müller. HOXA2 is one 

member of the HOX gene family and HOXA2 methylation was reported in up to 94% of ex-

trahepatic cholangiocarcinomas analysed (Shu et al 2011). In addition, it was reported that 

HOXA2 expression is downregulated in gastric carcinomas compared with non-malignant 

gastric tissue samples (Rossi Degl'Innocenti et al 2007). Using MS-HRM analyses, we found 

highly significant tumour-specific methylation of HOXA2 in NSCLC patients. BGS was per-

formed to validate MS-HRM data in some clinical samples. Those samples which were found 

to be HOXA2 methylated by MS-HRM analyses were also found to be methylated by BGS. 

Overall, 90% (A549), 93% (NCI-H1993) and 84% (NCI-H2073) of NSCLC cell lines and 78% of 

NSCLC patients analysed were found to be HOXA2 methylated suggesting that methylation 

of this gene is an important event in the pathogenesis of NSCLCs. 

SHOX2 (short stature homeobox 2) is located on chromosome 3 and is involved in regulation 

of gene transcription. Methylation of SHOX2 in NSCLCs was reported recently (Kneip et al 

2011, Schmidt et al 2010, Schneider et al 2011). These data are in concordance with our re-

sults showing that 77% (A549), 96% (NCI-H1993) and 36% (NCI-H2073) of NSCLC cell lines 

and 71% of NSCLC patients analysed are SHOX2 methylated. Again, MS-HRM results of some 

patients were confirmed by BGS. 

The TAL1 (T-cell acute lymphocytic leukemia 1) gene is located on chromosome 1. TAL1 is 

known to be a serine phosphoprotein, basic helix-loop-helix transcription factor and is asso-



Christian Noll a0502696 
 

Page 74 
 

ciated with embryonic haematopoiesis and T-cell acute lymphoblastic leukemia (Bash et al 

1995, Bernard et al 1995, Chetty et al 1997, Hsu et al 1991, Huang and Brandt 2000, Kelliher 

et al 1996, Pulford et al 1995). Differences in the methylation status of TAL1 were reported 

in pancreatic cancers and non-malignant control samples (Pedersen et al 2011). No other 

studies about TAL1 methylation and the role of TAL1 in the pathogenesis of NSCLCs have 

been reported so far. We found TAL1 frequently methylated in both, NSCLC cell lines 77% 

(A549), 88% (NCI-H1993), 100% (NCI-H2073) and in primary NSCLCs (87%). Besides its onco-

genic function in hematologic malignancies TAL1 was found to upregulate expression of the 

prostate cancer tumour suppressor gene NKX3.1 (Armstrong and Look 2005, Kusy et al 

2010). Our data suggest that TAL1 is involved in the pathogenesis of NSCLC, however, its role 

in the development of this disease needs to be investigated in future studies. 

Deregulated expression of miRNA genes is a relatively new abnormality which was observed 

in many cancer types (Calin and Croce 2006). Recent data suggest that downregulated ex-

pression of miRNA genes is an important event in the pathogenesis of lung cancer, however, 

knowledge about mechanisms leading to silencing of many of these miRNA genes is still lim-

ited (Peltier and Latham 2008, Volinia et al 2006, Wang et al 2011a, Yanaihara et al 2006). 

During this diploma thesis, we analysed methylation of the genes miRNA-9-3 and miRNA-

193a, whose expression was found to be upregulated in Aza-dC or Aza-dC/TSA treated 

NSCLC cell lines recently, in NSCLC cell lines and in clinical samples of NSCLC patients (Heller 

et al 2012). Interestingly, both genes were found to be methylated at various extents in 

NSCLC cell lines. Moreover, statistically significant tumour-specific methylation of miRNA-9-3 

and miRNA-193a was observed in NSCLC patients. Again, miRNA-9-3 and miRNA-193a MS-

HRM results of some clinical samples were confirmed by BGS. While miRNA-9-3 was found to 

be methylated in 89% of NSCLC patients miRNA-193a methylation was observed in 77% of 

NSCLC patients. The frequency of miRNA-9-3 methylation in primary NSCLCs is very similar 

compared to data reported recently by Lujambio et al (Lujambio et al 2008) who found 53% 

of primary lung tumours miRNA-9-3 methylated. Besides in lung cancers, miRNA-9-3 methy-

lation was also observed in acute lymphoblastic leukemia (Rodriguez-Otero et al 2011). Fur-

thermore, deregulated miRNA-9-3 expression was reported in ovarian cancer, breast cancer 

and gastric carcinomas (Laios et al 2008, Lehmann et al 2008, Luo et al 2009) suggesting that 

miRNA-9-3 is involved in the pathogenesis of various cancer types. MiRNA-193a was found 

to regulate expression of certain oncogenic factors and thus, is suggested to be a tumour 
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suppressor miRNA (Gao et al 2011, Kozaki et al 2008). Recently, it was reported that miRNA-

193a is silenced by methylation in myeloid leukemia and in oral squamous cell carcinoma 

(Gao et al 2011, Kozaki et al 2008). 

Next, we compared methylation results of the 5 genes with clinico-pathological characteris-

tics of the NSCLC patients. No statistically significant associations between HOXA2, SHOX2, 

TAL1, miRNA-9-3 or miRNA-193a methylation and age, sex, tumour stage, lymph node stage 

and stage of disease were found. While no associations between methylation of the 5 genes 

and DFS or OS of the whole study population were observed, HOXA2 and miRNA-9-3 methy-

lated SCC patients had a statistically shorter DFS and OS compared to HOXA2 and miRNA-9-3 

not methylated SCC patients. Compatible to these findings, we detected HOXA2 and miRNA-

9-3 methylation more frequently in SCC patients with disease recurrence compared to SCC 

patients with no disease recurrence, however, this association did not reach statistical sig-

nificance. Although the numbers of patients in our survival analyses are low, we believe that 

HOXA2 and miRNA-9-3 methylation may be of prognostic impact for patients with SCC. 

However, prospective studies are necessary to confirm these results. Overall, our findings 

might be potentially helpful for a more personalized treatment and follow-up care of pa-

tients with SCC after surgery. 

In summary, our methylation results suggest that MS-HRM is a very useful technique for 

detection of methylation. Using this method, we were able to confirm results of previous 

genome-wide approaches for detection of methylation of protein encoding genes and 

miRNA encoding genes. Statistically significant differences of HOXA2, SHOX2, TAL1, miRNA-

9-3 and miRNA-193a methylation in TU and NL samples of a large number of NSCLC patients 

were observed. In addition, we suggest that HOXA2 and miRNA-9-3 methylation might be 

useful prognostic markers for SCC patients, however, these findings need to be confirmed in 

additional studies. Overall, our results stress the importance of methylation of both protein 

encoding genes and miRNA encoding genes for the pathogenesis of NSCLCs.  

 

In conclusion, using gene specific methylation approaches in NSCLC cell lines and TU sam-

ples, an accurate quantification of methylation could be performed. The BGS approach con-

firms and strengthens genome-wide as well as gene-specific results in NSCLC. Major differ-

ences of promoter methylation of HOXA2, SHOX2, TAL1, miRNA-9-3 and miRNA-193a in TU 

and NL NSCLC samples could be obtained. DNA methylation of HOXA2 and miRNA-9-3 in SCC 
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patients is associated with shorter DFS and OS suggesting that these genes could be poten-

tial prognostic factors. Overall these results implicate that DNA methylation is an important 

mechanism in the pathogenesis of NSCLC.  
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