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Abstract

Based on the General Theory of Relativity, I argue that the spatial part of space-time can

be described by a three-dimensional, orientable, locally homogeneous, connected, smooth

and complete Riemannian manifold M without boundary. The main topic of this work is

to classify all the possible M by their geometry and topology.

Complete and locally homogeneous manifoldsM can be represented as the quotients M̃/Γ,

with Γ acting freely and properly discontinuously on the globally homogeneous universal

covering space M̃. The geometric structure onM is induced by M̃, hence, the classification

of all geometric structures onM can be done by classifying all three-dimensional geometries

(M̃, Isom(M̃)). Finally, Thurston’s Geometrization Theorem states thatM has a geometric

structure, modeled on one of the eight three-dimensional model geometries.

Supported by observational data, we restrict ourselves to locally isotropic manifolds, reduc-

ing the classification of the possible topologies ofM to the three-dimensional Clifford-Klein

space form problem. It can be solved by classifying the discrete subgroups of the isometry

groups of the simply-connected manifolds of constant curvature E3,S3 and H3 which act

freely on them. For E3 and S3 this classification enables us to list all candidates for the

spatial part of the universe with a flat respectively spherical geometry. So far, there is no

known structural classification of the hyperbolic space forms.

Every compact space form can be described as a gluing manifold, which are fundamental

polyhedra with identified sides by pairs. In closing, the methods used by Cosmic Topology

with the help of this “inner view” are presented. These, as opposed to the methods used by

Standard Cosmology, try to determine not only the geometry, but also the topology of the

space surrounding us.
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Zusammenfassung

Basierend auf der allgemeinen Relativitätstheorie, wird argumentiert, dass die räumliche

Komponente der Raumzeit mit einer dreidimensionalen, orientierbaren, lokal homogenen,

zusammenhängenden, glatten und vollständigen Riemann’schen Mannigfaltigkeit M ohne

Rand beschrieben werden kann. Das Hauptbestreben der vorliegenden Arbeit ist die Klas-

sifikation der möglichen M nach ihrer Geometrie und Topologie.

Vollständige und lokal homogene Mannigfaltigkeiten M können als Quotienten M̃/Γ

dargestellt werden, wobei Γ ⊂ Isom(M̃) frei und eigentlich diskontinuierlich auf der global

homogenen universellen Überlagerung M̃ operiert. Die geometrische Struktur auf M wird

von M̃ induziert und somit ist eine Klassifikation der Geometrien (M̃, Isom(M̃)) ausre-

ichend. Vervollständigt wird die Klassifikation durch Thurstons Geometrisierungstheorem,

welches besagt, dassM mit einer geometrischen Struktur versehen werden kann, welche auf

einer der acht dreidimensionalen Modell-Geometrien modelliert wurde.

Die von Beobachtungsdaten gestützte Einschränkung auf lokal isotrope Mannigfaltigkeit

reduziert das Problem der Klassifikation der möglichen Topologien von M auf das drei-

dimensionale Clifford-Klein’sche Raumproblem. Dieses ist äquivalent mit der Klassifika-

tion diskreter Untergruppen von Isometriegruppen der einfach zusammenhängender Man-

nigfaltigkeiten konstanter Krümmung E3,S3 und H3, welche frei auf eben diesen operieren.

Diese Klassifikation erlaubt es uns, eine Liste möglicher Kandidaten für die räumliche Kom-

ponente des Universums mit flacher oder sphärischer Geometrie anzugeben. Für hyperbolis-

che Raumformen ist bis jetzt keine strukturelle Klassifikation bekannt.

Jede kompakte Raumform kann als Fundamentalpolyeder mit paarweise identifizierenden

Seiten dargestellt werden. Mit Hilfe dieser Darstellung wird abschließend auf die Methoden

der “Cosmic Topology” eingegangen. Im Gegensatz zu den Methoden der Standardkosmolo-

gie versuchen diese nicht nur die Geometrie, sondern auch die Topologie des uns umgebenden

Raums zu bestimmen.

v



vi



Contents

Abstract iii

Zusammenfassung v

0. Introduction 1

1. Preconditions of the Universe 5
1.1. Basics of Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1. Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2. Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3. Parallel Transport and Curvature . . . . . . . . . . . . . . . . . . . . . . 15

1.1.3.1. Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3.2. Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.4. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.5. Hypersurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2. Introduction to General Theory of Relativity . . . . . . . . . . . . . . . . . . . . 20
1.2.1. First Assumptions on Space-Time . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2. The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.3. Metric within General Theory of Relativity . . . . . . . . . . . . . . . . . 21
1.2.4. Geodesic Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.5. Einstein’s Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.6. Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.6.1. Time Orientation and Causality . . . . . . . . . . . . . . . . . . 25
1.2.6.2. Causality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.6.3. Space Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.7. Further Assumptions on Space-Time . . . . . . . . . . . . . . . . . . . . 31
1.3. Observing the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1. The Expansion of the Universe and the Big Bang . . . . . . . . . . . . . 33
1.3.2. Remnant of Last Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4. Is the Spatial Part of the Universe Finite or Infinite? . . . . . . . . . . . . . . . . 35
1.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2. An Algebraic Approach to Geometry and the Topology of the Universe 37
2.1. Manifolds and Pseudogroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Lie Groups – Basic Definitions and First Examples . . . . . . . . . . . . . . . . . 39

2.2.1. The Action of a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2. Homogenous Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3. The Universal Covering Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1. The Group of Deck Transformations and its Action on M . . . . . . . . . 48

vii



Contents

2.3.2. Manifolds as Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3. Geometry of the Universe 53
3.1. Geometric Structures on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2. The Geometric Structure is Induced by the Universal Cover . . . . . . . . . . . . 56

3.2.1. Unrolling-Developing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1.1. Story of Tori – Unrolling the Two-Dimensional Torus in R4 . . . 56

3.2.2. The Developing Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3. Locally Homogeneous Riemannian Manifolds and The Condition of Com-

pleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3. Three-Dimensional Model Geometries . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1. Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2. The Eight Model Geometries . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2.1. If the Stabilizer is the Full Group SO3(R) . . . . . . . . . . . . . 68
3.3.2.2. If the Stabilizer is SO2(R) . . . . . . . . . . . . . . . . . . . . . 69
3.3.2.3. If the Stabilizer is Trivial: . . . . . . . . . . . . . . . . . . . . . 72
3.3.2.4. Thurston’s Geometrization Theorem . . . . . . . . . . . . . . . . 74

3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4. Locally Isotropic Riemannian Manifolds 77
4.1. Simply-Connected Spaces of Constant Curvature . . . . . . . . . . . . . . . . . 79

4.1.1. The Classification Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1. Homogeneous Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3. Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1. Finite Subgroups of SO3(R) . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4. Euclidean Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1. Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2. Compact Euclidean Space Forms . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2.1. Three-Dimensional Orientable, Compact Euclidean Space Forms . 88
4.4.3. Open Euclidean Space Forms . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.3.1. Open Three-Dimensional Euclidean Space Forms . . . . . . . . . 90
4.5. Three-Dimensional Spherical Space Forms . . . . . . . . . . . . . . . . . . . . . 92

4.5.1. Finite Subgroups of SO4(R) . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2. Classification of the Three-Dimensional Spherical Space Forms . . . . . . 94

4.6. Three-Dimensional Hyperbolic Space Forms . . . . . . . . . . . . . . . . . . . . 97
4.6.1. Thick-Thin Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5. Gluing Manifolds 99
5.1. Gluings – Geometry of Discrete Groups . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1. Metric on Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2. The Fundamental Polyhedron . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3. Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2. Gluings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1.1. Side-Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



Contents

5.2.1.2. Dihedral Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1.3. Cycle Relations and Cycles of Polyhedra . . . . . . . . . . . . . . 106

5.2.2. Gluing Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.3. Volumes of Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3. Euclidean Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.0.1. Fundamental Polyhedron: Parallelepiped . . . . . . . . . . . . . 110
5.3.0.2. Fundamental Polyhedron: Hexagonal Prism . . . . . . . . . . . . 112

5.4. Spherical Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1. Lens Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2. Polyhedral Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5. Hyperbolic Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6. Observing the Geometry and Topology of the Universe 119
6.1. Geometry of the Universe – The State of the Art of Standard Cosmology . . . . 121

6.1.1. Robertson-Walker Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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0. Introduction

From our home on the Earth, we look out into the distances and strive to imag-

ine the sort of world into which we are born. Today we have reached far out

into Space. Our immediate neighborhood we know rather intimately. But with

increasing distance our knowledge fades, and fades rapidly, until at the last dim

horizon we search among ghostly errors of observations for landmarks that are

scarcely more substantial. The search will continue. The urge is older than

history. It is not satisfied and it will not be suppressed. Edwin Hubble, 1953 [45]

With this philosophical background, we shall focus on the question about the geometry

and topology of the spatial part of the universe. The strategy shall be to formulate properties

of the universe which are consistent, on the one hand, with the current physical theory on

the largest scales, namely the General Theory of Relativity, and, on the other hand with

the observed universe based on a Big Bang scenario. On the spaces satisfying the above

formulated properties, we shall then apply the mathematical machinery to classify all the

possible geometric structures and topologies.

General Theory of Relativity assumes space-time to be a connected and smooth four-

dimensional Lorentzian manifold M4 which satisfies Einstein’s field equations. After an in-

troductory remark, we start the first chapter with the basics of differential geometry, which

builds the formal framework of General Theory of Relativity. In the second section, the ba-

sic concept of General Theory of Relativity is introduced, which includes, for example, the

correlation between matter and the metric defined on the manifold, as well as a motivation

of Einstein’s field equations. Furthermore, causality conditions are formulated which enable

us to consider the space-component M3 of the universe on its own, which is a smooth and

connected three-dimensional Riemannian manifold. Before we focus on the observational

universe, further preconditions of the universe, following [43] and [107], are formulated with-

out which the universe would appear paradoxic and contradicting our everyday-experience

of the world we are living in. Observational data indicates spatial homogeneity and isotropy

of the universe. At this point, it is worthwhile to note that throughout this work these prop-

erties are assumed to be local, enabling space to have a nontrivial topology and therefore to

be finite and independent of the geometry defined on M3.

1



0. Introduction

In Chapter 2 we start with an algebraic definition of a manifold, which we call a G-

manifold. A pseudogroup G, consisting of local homeomorphisms on Rn, defines a G-atlas

turning the topological space M into a manifold. This group can often be assumed to be

a Lie group, which we shall define in the second section, where we concretize the algebraic

approach to geometry. A group G acts on a topological space M, which we interpret as G

moving points of the space or stabilizing them. If any point can be reached from any point,

the space is called homogeneous, giving us the mathematical definition of homogeneity. We

continue with the definition of a covering space and the representation of manifolds as the

quotient M ' M̃/Γ, with Γ being isomorphic to the fundamental group of M and acting

freely and properly discontinuously on the universal covering space M̃. Thus, M can be

constructed by identifying points in a simply-connected space M̃.

Next, in Chapter 3, the term “metric manifold”, which is a (G,M)-manifold with G
the isometry group of a homogeneous Riemannian manifold M, is defined. A geometric

structure shall be a (G,M)-atlas. A complete metric manifold can be characterized by the

identification of the structure space M and the covering space M̃. Therefore, the geometric

structure on the complete and locally homogeneous manifold M is induced by the globally

homogeneous universal covering space M̃. This enables us to focus on the classification of

simply-connected and homogeneous three-dimensional Riemannian manifolds. Thurston’s

Geometrization Theorem states that there are exactly eight three-dimensional model ge-

ometries. We shall give a rough sketch of the proof of the theorem by characterizing model

geometries in order of the dimension of their isotropy group and give a detailed description

of each of the eight model geometries.

In Chapter 4, supported by observational data, we restrict our investigation to locally

isotropic manifolds and consider their topological classification. We start by arguing that

locally isotropic Riemannian manifolds are exactly Riemannian manifolds of constant cur-

vature. The problem reduces to the three-dimensional Clifford-Klein space form problem.

It can be solved by classifying the discrete subgroups of the isometry groups of the simply-

connected manifolds of constant curvature E3, S3 and H3 which act freely on them. In the

compact Euclidean case, we shall see that the classification can be done by classifying the

torsion-free, discrete and co-compact subgroups of E(n), denoting the isometry group of E3.

These groups are called Bieberbach groups. In the spherical case, we shall classify all finite

subgroups of SO4(R), describing the isometry group of S3. The hyperbolic case turns out to

be harder than the other cases. So far, there is no known structural classification of hyper-

bolic manifolds. We shall give a description of the Thick-Thin decomposition, which can be

done for any complete hyperbolic manifold and we also make a remark on the existence of

a classification of hyperbolic manifolds in terms of their volumes. This classification enables

us to list candidates for the spatial part of the universe.

Every compact space form can be described as a gluing manifold, which is a fundamental

polyhedron with identified sides by pairs. This representation enables the development of a
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visualization of three-dimensional manifolds without an embedding in a higher-dimensional

space. We shall introduce this representation in Chapter 5. All three-dimensional compact

Euclidean space forms as well as a selected set of hyperbolic and spherical space forms are

presented in detail as gluing manifolds. This “inner view” will be useful in Chapter 6, where

we present methods to determine which three-dimensional manifold is surrounding us.

In Chapter 6, we start with an overview of Standard Cosmology. A family of solutions

for a locally homogeneous and locally isotropic spatial part of space-time for Einstein’s field

equation is justified. Furthermore, we shall give an idea of how the geometry of the universe

can be determined by measuring the “cosmological parameter”. As opposed to Standard

Cosmology, Cosmic Topology tries to determine not only the geometry, but also the topology

of the space surrounding us. On the one hand three-dimensional data of cosmic objects is

used by “crystallographic methods”. On the other hand, the topological signal of space has

been searched for in the anisotropies of the Cosmic Microwave Background (CMB). Before

we present the corresponding methods, such as the “circle-in-the-sky method” and methods

using the “power spectrum”, we shall give a short introduction to the theory of anisotropies

in the CMB. In closing, we present the results obtained so far for Poincaré dodecahedral

space, which is a model frequently discussed in Cosmic Topology.

The appendix consists of three parts. The first part is a basic introduction to topology,

starting with the definition of a topological space. Topological definitions and results, if not

given throughout the text, shall be found in Appendix A. The second part of the appendix

considers the correspondence of Lie groups and Lie algebras, which is used in Chapter 3 for

the motivation of geometric structures modeled on manifolds with one-dimensional stabiliz-

ers. Appendix B ends with a remark on the Lie algebras of homogeneous spaces. The third

part of the appendix, Appendix C, introduces the “sectional curvature” of a Riemannian

manifold. While the General Theory of Relativity uses the “scalar curvature” defined in

Chapter 1, Riemannian geometry often uses the “sectional curvature” of a manifold. The

correspondence between sectional and scalar curvature is explained in Chapter 4.

A comprehensive index, starting with a table of symbols, shall enable the reader to look

up definitions in case no reference is given. I have tried to write this work in a way that

allows first year students of mathematics as well as astronomy to follow the arguments,

sometimes to the loss of mathematical elegance and compactness. Readers with a more

detailed mathematical background or a basic knowledge of General Theory of Relativity or

Standard Cosmology may prefer to skip some parts of the work.

3
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1. Preconditions of the Universe

Space is not a passive background, rather it has a structure which influences

the shape of all existing objects. Every material form pays tribute to the rules

dictated by the architecture of space. [62]

Which mathematical space enables a geometrical structure to describe all observed events

in the universe? We define the universe as the collection of all events and we are interested

in a cosmological model describing the universe. Einstein described a cosmological model as

reasonable, if it is a space-time which is the exact solution of some suitable form of matter

and gives a good representation of global properties in the observable universe [43].

Our everyday experience suggests three spatial dimensions and one dimension which rep-

resents time. Thus, the universe can be described by a four-dimensional space-time. First,

we recognize that the shape of the universe depends on the scale. We distinguish between

the microscopic, local, macroscopic and the global scale, where different physical frameworks

are used. Since physics is written in terms of local geometry within mathematical space,

different mathematical structures and, as we shall see, different mathematical spaces are

required on these scales.

• Microscopic: If we are describing physical processes on scales beyond the Planck

length (< 10−18meter), quantum physical effects have to be taken into account. On

these microscopic scales we find ourselves in the field of quantum physics. Physicists

try to describe space by compact Calabi-Yau manifolds, which might include hidden

dimensions [43, p.57] [55].

• Local: Events on scales between the Planck length (≈ 10−18m) and the sun-earth

distance (≈ 1011m) can be described in a very good approximation with Newtonian

physics in the common Euclidean space E3. Therefore, in a good approximation, the

geometry on local scales is flat. If relativistic velocities are taken into account, a

Special Theory of Relativity is required. Space-time is described by Minkowski space

– a four-dimensional, connected and flat Lorentzian manifold [55].

• Macroscopic: (1011−1025m) The General Theory of Relativity is the physical frame-

work on macroscopic scales. It is currently the most comprehensive theory for large

scales. The mathematical model for space-time is a four-dimensional and connected

5



1. Preconditions of the Universe

Lorentzian manifold which satisfies Einstein’s field equations. As opposed to the Spe-

cial Theory of Relativity, gravitational effects are taken into account which cause space-

time to be curved by more or less massive bodies. We shall go into this in further detail

in Section 1.2 [55].

• Global: If we look at global scales ( > 1025m), observational data indicates that

matter is distributed homogeneously and density fluctuations can thus be neglected.

For these scales, there is no physical framework. Here, the General Theory of Relativity

is the local physical framework. To find out more about the shape of the universe on

global scales, we use the following strategy: we assume physics on global scales to

be in local accordance with the General Theory of Relativity. Furthermore, we can

look for laws on a global scale which are implied by local physics. Additionally, we

can assume properties without which the cosmological model would contradict the

observed universe [55].

In the following, we shall give a short introduction to General Theory of Relativity, which

is written in terms of differential geometry. We start with a basic definition of differential

geometry sufficient to formulate Einstein’s field equations. Afterwards, we shall define fur-

ther requirements of space-time in order to specify the class of manifolds we are interested

in.

1.1. Basics of Differential Geometry

1.1.1. Manifolds

The mathematical model for space-time used in the General Theory of Relativity is a smooth

manifold. A manifold is a topological space (see A.0.0.1, p.185) such that each point has a

neighbourhood homeomorphic (see A.0.0.7, p.186) to an open subset U ⊂ Rn.

Definition 1.1.1.1. An n-dimensional C∞ real manifold M is a set together with a

collection of subsets Oα ⊂M such that:

1. Each point p ∈M lies in at least one Oα, i.e., the Oα covering M.

2. For each α there is a one-to-one, onto map ϕ : Oα → Uα, where Uα is an open subset

of Rn.

3. If any two sets Oα and Oβ overlap, Oα ∩Oβ 6= ∅, we can consider the map ϕα ◦ ϕ−1
β ,

which takes points in ϕβ(Oα ∩ Oβ) ⊂ Uβ ⊂ Rn to points in ϕα(Oα ∩ Oβ) ⊂ Uα ⊂ Rn.

We require this map to be infinitely continuously differentiable, denoted by C∞. In this

case (Oα, ϕα) and (Oβ, ϕβ) are called C∞-compatible.

[107]
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1.1. Basics of Differential Geometry

Figure 1.1.: The coordinate change of two compatible charts is visualized. In the domain of
intersection, the coordinate change ψ ◦φ−1 takes points in φ(U ∩ V ) ⊂ U ′ ⊂ Rn
to points in ψ(U ∩ V ) ⊂ V ′ ⊂ Rn [114].

Remark 1.1.1.2. 1. The (Oα, ϕα) are called charts. In a more physical context (Oα, ϕα)

are called local coordinate systems. The maps ϕα◦ϕ−1
β are called transition func-

tions or coordinate changes. See Figure 1.1 for a visualization. If p ∈ Oα ⊂ M,

the local coordinates of p are the coordinates of ϕα(p) ∈ Rn.

2. A C∞-atlas of M is a family of C∞-compatible charts {Oα, ϕα} such that the Oα

cover M. Two atlases are said to be equivalent if all their charts with nonempty

intersection are C∞-compatible. A maximal C∞-atlas can be achieved by adding

all C∞-compatible charts. Two equivalent atlases define the same structure on M.

Therefore, we can define a manifold alternatively as a setM together with a maximal

C∞-atlas.

3. A topology of M is given by: U ⊂ M is open if and only if ϕ(U) ⊂ Rn is open,

where ϕ is a chart. This topology causes that all charts to be homeomorphisms. The

topology turnsM into a topological space. It is usually assumed thatM is Hausdorff

(see A.1.0.14, p.187).

4. One gets the definition of a Cr-manifold by assuming the charts to be r-times con-

tinuously differentiable.

5. We call a C∞-manifold a smooth manifold.

6. We use the term of an abstract manifold instead of the more demonstrative term of

a submanifold of Rn. Space-time can be described by a four-dimensional manifold,

which we do not want to view embedded in Rn. A manifold is a space on its own, an

embedding in a higher-dimensional space is physically not necessary since physics just

uses local and therefore intrinsic geometry. Even if every abstract smooth manifold

can be smoothly embedded in Rn for an n ∈ N, as stated by the theorem of Whitney

(see [96, p.49]), we shall try to avoid this picture. [107] [54] [96]
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1. Preconditions of the Universe

Example 1.1.1.3. 1. The surface of the idealized earth is a two-dimensional manifold,

that is a two-dimensional sphere. Irregularities like mountains or trenches, such as

the Mariana Trench, are neglected. The atlas defined above is, like the geographical

atlas, a collection of charts. Each chart represents a small patch of the earth’s surface.

In the same manner, we can describe the idealized four-dimensional space-time by an

appropriate manifold.

2. The Cartesian product N ×M of two manifolds N and M of dimension n and m

with its natural structure, given by the structures of N andM, is again a manifold of

dimension m+n. In particular, N ×M is the set of all points (p, q) where p ∈ N and

q ∈ M. If ϕα : Oα → Uα ⊂ Rn is a chart on N and ψβ : Vβ → Uβ ⊂ Rm is a chart on

M, a chart on N ×M is defined by: ϕαβ : Oα × Vβ → Uα × Uβ ⊂ Rn+m. [107]

Definition 1.1.1.4. The boundary of a smooth manifold M, denoted by ∂M, is the

(possibly empty) set of points such that, if x ∈ Oα, then ϕα(x) ∈ ∂Rn+. It is the union of the

open sets ϕ−1
α (∂Rn+ ∩ ϕ(Oα)). [96]

Remark 1.1.1.5. 1. The restrictions of the ϕα to the boundary of M are the charts

of an (n − 1)-dimensional manifold. ∂M is closed in M and M \ ∂M is called the

interior of the manifold.

2. A compact manifold without boundary is called a closed manifold and a non-compact

one is called open.

[96]

Remark 1.1.1.6. A family of subsets {Bα : α ∈ A} of a metric space X, numbered by

elements of a set A, is said to be locally finite if for each point there is a neighbourhood

intersecting only finitely many subsets of this family. [103]

Definition 1.1.1.7. An atlas {Oα, ϕα} is said to be locally finite if every point p ∈M has

an open neighbourhood which intersects only a finite number of the sets Oα. Furthermore,

M is said to be paracompact if for every atlas {Oα, ϕα} there exists a locally finite atlas

{Vβ, ψβ} with each Vβ contained in some Oα. [43]

1.1.2. Vectors and Tensors

By taking into account geometries with non-vanishing curvature, we lose the structure of a

vector space. It turns out that we can define a vector space on every point on a manifold –

the tangent space. [107]

Definition 1.1.2.1. A Cr-curve γ(t) is a Cr-map γ : I ⊂ R→M.

Definition 1.1.2.2. A vector ( ∂∂t)|t0, tangent to the C1-curve γ(t) at the point γ(t0), is

the operator which maps each C1-function f at γ(t0) into the derivative of f in the direction

of γ(t) with respect to the parameter t and is denoted by (∂f∂t )γ |t0. [43]
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1.1. Basics of Differential Geometry

Remark 1.1.2.3. If (x1, . . . , xn) are local coordinates of γ(t) ∈M, we can write the vector

(∂f∂t )γ |t0 as:

(
∂f

∂t
)γ |t0 =

n∑

i=1

dxi(γ(t))

dt
|t=t0 ·

∂f

∂xi
|γ(t)

Thus, every tangent vector at the point p ∈ M can be written as a linear combination of

the coordinate derivatives

(
∂

∂x1
)|p, (

∂

∂x2
)|p . . . , (

∂

∂xn
)|p.

[43]

Definition 1.1.2.4. The tangent space to M at x, denoted by TxM , is the set of all

tangent vectors to M at x. If M is a manifold of dimension n, TxM is an Euclidean vector

space of the same dimension. [96, p.14]

Definition 1.1.2.5. The disjoint union of all tangent spaces TxM toM at all points x ∈M
is called the tangent bundle of M, denoted by TM . [96]

Theorem 1.1.2.6. LetM be an n-dimensional Cp-manifold (p > 1), then its tangent bundle

TM is a 2n-dimensional Cp−1-manifold. [96]

Definition 1.1.2.7. A (smooth) vector field on a manifold M is a smooth map X : M →
TM such that for any p ∈ M, X(p) ∈ TpM . The set of all vector fields is a vector space,

denoted by χ(M). [96]

Example 1.1.2.8. The gravitational field is a vector field. It assigns to each point a vector

pointing in the direction of the gravitational field with a length corresponding to the absolute

value of the gravitational force.

Remark 1.1.2.9. 1. A scalar field on a manifold is a map which assigns to each point

p ∈M a scalar a ∈ R. For example, a map which assigns a temperature or density to

each point in space-time is a scalar field.

Remark 1.1.2.10. 1. For a finite-dimensional vector space V, the dual vector space

is defined by V ? := {f : V → R | f is linear}. The elements of V ? are called dual

vectors. V ? is a vector space with the obvious rules for adding and scalar multiplying.

If {v1, . . . , vn} is a basis for the vector space V , we can define elements v1, . . . , vn ∈ V ?

by vi(vj) = δij , whith δij denoting the Kronecker symbol. {v1, . . . , vn} defines a basis

of V ?, called the dual basis of {v1, . . . , vn}.

2. If we take V = TpM , vectors in TpM are called contravariant vectors. Elements

of TpM
? are called covariant vectors. Given a coordinate system {x1, . . . , xn}, a

basis of TpM is given by {( ∂
∂x1

)|p, ( ∂
∂x2

)|p . . . , ( ∂
∂xn )|p}, the corresponding dual basis is

denoted by {dx1, . . . , dxn}. [107]
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1. Preconditions of the Universe

Definition 1.1.2.11. A tensor T of type (k, l) is a multi-linear map

T : V ? × V ? × . . . V ?
︸ ︷︷ ︸

k

×V × V × . . . V︸ ︷︷ ︸
l

→ R.

[107] With the obvious rules for adding

(T + T ′)(v1, . . . , vk, v1, . . . , vl) = T (v1, . . . , vk, v1, . . . , vl) + T ′(v1, . . . , vk, v1, . . . , vl)

and scalar multiplying

(a · T )(v1, . . . , vk, v1, . . . , vl) = a · T (v1, . . . , vk, v1, . . . , vl) a ∈ R,

the collection T (k, l) of all tensors of type (k, l) has the structure of a vector space of dimen-

sion nk+l. [43]

Example 1.1.2.12. 1. In physics, tensors are one of the most important tools since most

of physical quantities depend on vectors and dual vectors in a multilinear way. Take,

for example, a material body in equilibrium and consider the plane with normal vector

~n through the point p in the body. The matter of one side of the plane exerts a force per

unit area F in the direction ~l on the matter of the other side of the plane. F depends

linearly on ~n and ~l and is therefore a (0, 2)-tensor, the so-called stress-tensor. If

the values of F are known of a basis for ~n and ~l, we can calculate the value of F for

arbitrary ~n and ~l as a linear combination. This explains the importance of tensors in

physics, especially for the General Theory of Relativity.

2. A tensor of type (0, 1) is a map from V to R and thus a dual vector. A tensor of type

(1, 0) is, therefore, an element of V ??, which can be identified with V and can be seen

as a vector. By fixing the first or the second component accordingly, a tensor of type

(1, 1) can be seen either as a linear map from V to V or as a linear map from V ? to

V ?.

[107]

Remark 1.1.2.13 (Operations and Notation of Tensors). 1. Assuming T to be a tensor

of type (k, l) and T ′ to be a tensor of type (k′, l′), the outer product of T and T ′ is

the tensor T ⊗ T ′ of type (k + k′, l + l′) defined by:

(T ⊗ T ′)(v1, . . . , vk+k′ , v1, . . . , vl+l′) =

= T (v1, . . . , vk, v1, . . . , vl) · T ′(vk+1, . . . , vk+k′ , vl+1, . . . , vl+l′).

(1.1)

2. If {v1, . . . , vn} is a basis of V and {v1, . . . , vn} is the corresponding dual basis for V ?,

the nk+l tensors {vµ1 ⊗ · · · ⊗ vµk ⊗ vν1 ⊗ · · · ⊗ vνl} give a basis of T (k, l). Thus, every
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1.1. Basics of Differential Geometry

tensor can be written as

T =

n∑

µ1,...,νl=1

Tµ1...µkν1...νl
vµ1 ⊗ · · · ⊗ vνl .

T (k, l) forms an algebra over R with the outer product. [43]

3. The Tµ1...µkν1...νl are called the components of T with respect to the basis {v1, . . . , vn}.
Using component notation, a tensor is given by its components Tµ1...µkν1...νl . We use

the standard convention for using superscript indices for contravariant vectors and

subscript indices for covariant vectors. [107]

If we change the coordinate system, the tensor transforms to:

T
′µ′1...µ′k
ν′1...ν

′
l

=

n∑

µ1,...,νl=1

Tµ1...µkν1...νl

∂x′µ
′
1

∂xµ1
. . .

∂xνl

∂x′ν
′
l

.

This equation is known as the tensor transformation law. [107]

4. Apart from the outer product, there is another important operation on tensors: the

contraction with respect to the ith (dual vector) and jth (vector) slots. It is a map

C : T (k, l)→ T (k− 1, l− 1). If T is a tensor with components Tµ1...µkν1...νl , its contraction

is defined by

CT
µ1...µk−1
ν1...νl−1 =

n∑

µ1,...,νl=1

T
µ1...µj−1σµj+1...µk−1
ν1...νi−1σνi+1...νl−1 .

[107]

5. A notation similar to component notation is the abstract index notation: here, a

tensor of type (k, l) is given by T a1...akb1...bl
, where superscript indices denote k contravariant

vectors and subscript indices denote l covariant vectors. The abstract index notation

looks very similar to the component notation, but has a few advantages. The most

important is that the notation is independent of the choice of a basis. Different indices

denote different slots, the same index denotes the same slot. For instance, the con-

traction of a (3, 2)-tensor with respect to the second contravariant and first covariant

slot shall be denoted by T abcbd . Keep in mind that this denotes a (2, 1)-tensor. [107]

Remark 1.1.2.14 (Notation:). Greek letters in indices indicate that component notation

is used, while latin letters indicate abstract index notation.

Definition 1.1.2.15. A tensor field is an assignment of a tensor over TpM for each point

p ∈M [107, p.22]

For an arbitrary set X, a metric is defined as follows:
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1. Preconditions of the Universe

Definition 1.1.2.16. A metric on a set X is a function d : X ×X → R such that for all

x, y, z ∈ R:

1. d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y,

2. d(x, y) = d(y, x) and

3. d(x, y) ≤ d(x, z) + d(z, y).

X together with the map d : (x, y) 7→ d(x, y) is called a metric space. [84]

For manifolds, we define a metric in terms of tensor fields:

Definition 1.1.2.17. A metric at a point p ∈ M is a linear map g : TpM × TpM → R,

which satisfies:

1. g(v1, v2) = g(v2, v1)

2. If g(v, v1) = 0 ∀v ∈ TpM ⇒ v1 = 0.

Remark 1.1.2.18. 1. We see from Definition 1.1.2.17, that a metric at p ∈ M is a

symmetric, non-degenerate tensor of type (0, 2). A metric on a manifoldM is therefore

a tensor field of the same type. Given a coordinate basis {x1, . . . , xn}, we write the

metric g in terms of its components gµν as

g =
∑

µ,ν

gµνdx
µ ⊗ dxν .

It is common to write

ds2 =
∑

µ,ν

gµνdx
µdxν

where we use ds2 for the metric tensor and omit writing the sign for the outer product.

In abstract index notation the metric is denoted by gab. The metric applied to a vector

va gives a dual vector va = gabv
b. Analogously, if we apply the metric to a dual vector

wa, it gives a vector wa = gabwb.

2. A basis {v1, v2, . . . , vn} is called an orthonormal basis if g(vν , vµ) = 0 for ν 6= µ and

g(vµ, vµ) = ±1. The sign is called the signature of the metric. If the signature of g

is (+,+, . . . ,+), the metric is called a Riemannian metric. Metrics with a signature

(−,+, . . . ,+) are called Lorentzian.

3. Of course, a manifold together with a metric is a metric space in the sense of 1.1.2.16.

[107]

Definition 1.1.2.19. A pair (M, g) is called a Lorentzian (Riemannian) manifold if

M is a manifold and g a Lorentzian (Riemannian) metric defined on M. [107]
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1.1. Basics of Differential Geometry

Remark 1.1.2.20. 1. On a Lorentzian manifold (M, g), we distinguish three different

types of vectors:

a) If gabv
avb = 0, va is called a null vector.

b) If gabv
avb > 0, va is called a space-like vector.

c) If gabv
avb < 0, va is called a time-like vector. [43]

2. Similarly we can define three different types of curves. A curve is said to be space-

like, if for any tangent vectors along the curve gabt
atb > 0; time-like if gabt

atb < 0

and null if gabt
atb = 0. [107]

3. A non-space-like curve is said to be a causal curve. [107]

Example 1.1.2.21. For literature reference see [83], [54], [103], [84]. In the following

“( . , . )” shall always refer to the standard Euclidean inner product.

Euclidean Space En: Coordinates in Rn : (x1, . . . , xn)

Inner Product: (x, y) = x1y1 + · · ·+ xnyn, Norm on En : |x| =
√

(x, x)

Rn with the inner product ( , ) is called the n-dimensional Euclidean space, denoted

by En. The Riemannian metric on the space En is induced by the Euclidean metric

on the space Rn, thus, it is of the following form:

ds2 = dx2
1 + · · ·+ dx2

n. (1.2)

Sphere Sn: Coordinates in Rn+1 : x0, . . . , xn;

Inner Product on Rn+1 : (x, y) = x0y0 + · · ·+xnyn, Norm on Rn+1 : |x| =
√

(x, x)

This scalar product turns Rn+1 into an Euclidean vector space.

We obtain the n-dimensional sphere by the restriction:

Sn := {x ∈ Rn+1 : (x, x) = x2
0 + · · ·+ x2

n = 1}. (1.3)

The Riemannian metric is induced by the Euclidean metric on Rn+1 dE(x, y) := |x−y|:

ds2 = dx2
0 + · · ·+ dx2

n.

Keep in mind that the coordinates on Sn are not independent. Thus, this is no intrinsic

metric to Sn since it is defined on Rn+1. To define an intrinsic metric on S3 we need

to recall the cross product in R3:

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).
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Furthermore, we recall that the angle Θ(x, y) between x, y ∈ S3 – both nonzero – is

given by:

|x× y| = |x‖y| sin Θ(x, y).

The spherical metric on S3 is given by the spherical distance function:

dS(x, y) := Θ(x, y).

It is 0 ≤ dS(x, y) ≤ π. Two vectors x, y ∈ S3 are called antipodal if and only if

y = −x, that is if and only if dS(x, y) = π.

Hyperbolic Space Hn: Coordinates in Rn+1: x0, . . . , xn,

Lorentzian inner product on Rn+1: 〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn

Norm on Rn+1 : ‖x‖ =
√
〈x, x〉, which is either nonnegative or positive imaginary.

Lorentzian distance: dL(x, y) = ‖x− y‖.
This scalar product turns Rn+1 into a pseudo-Euclidean vector space, called the

Lorentzian (n+1)-space, denoted by R1,n.

In analogy to the spherical case we define the hyperbolical space as the sphere of the

imaginary radius −1. Thus, the Lorentzian space is defined as

Hn := {x ∈ Rn+1 : ‖x‖2 = −1, x0 > 0}.

For any x ∈ Hn, the tangent space TxHn can be identified with the orthogonal

complement of the vector x in Rn,1, which is an n-dimensional Euclidean vector

space (with respect to the same scalar product). Thus, a Riemannian metric on

Hn is induced by the pseudo-Euclidean metric (dE(x, y) = ||x − y||) on the space

Rn,1 : ds2 = −dx2
0 + dx2

1 + · · ·+ dx2
n.

Again, this is not an intrinsic metric on Hn. An intrinsic metric on Hn is given by the

time-like angle between the vectors x and y. It is the uniquely determined nonnegative

value µ(x, y), given by:

〈x, y〉 = ‖x‖ ‖y‖ coshµ(x, y).

The hyperbolic distance function dH(x, y) := µ(x, y) defines an intrinsic metric on

Hn. The Riemannian metric and the intrinsic metric define the same metric topology

on Hn.

[103], [84]
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1.1. Basics of Differential Geometry

1.1.3. Parallel Transport and Curvature

As we have pointed out already, we view space-time as a mathematical space on its own.

In general, we do not have the possibility to use a higher-dimensional space to measure

curvature. We therefore need an intrinsic notion of curvature. We shall define curvature as

the failure of a vector to return to its original value when it is parallel-transported around

a small closed curve. [107, p.36]

Definition 1.1.3.1. A derivative operator (covariant derivative) ∇ on a manifold is

a map which takes each smooth tensor field T a1...akb1...bl
of type (k, l) to a smooth tensor field

∇cT a1...akb1...bl
of type (k, l + 1) and satisfies:

1. Linearity:

∇c(aAa1...akb1...bl
+ bBa1...ak

b1...bl
) = a∇cAa1...akb1...bl

+ b∇cBa1...ak
b1...bl

A,B ∈ T (k, l); a, b ∈ R

2. Leibnitz rule:

∇e[Aa1...akb1...bl
B
c1...ck′
d1...dl′

] = ∇e[Aa1...akb1...bl
]B

c1...ck′
d1...dl′

+Aa1...akb1...bl
∇e[Bc1...ck′

d1...dl′
], ∀A ∈ T (k, l), B ∈ T (k′, l′)

3. Commutativity with Contraction:

∇d(Aa1...c...akb1...c...bl
) = ∇dAa1...c...akb1...c...bl

∀A ∈ T (k, l)

4. Consistency with the notion of tangent vectors as directional derivatives on scalar

fields:

t(f) = ta∇af ∀f ∈ F, ta ∈ TpM

[107]

Remark 1.1.3.2 (Assumption:). The tensor T cab, satisfying ∇a∇bf −∇b∇af = −T cab∇cf
with f a scalar field, is called torsion tensor. A derivative operator with vanishing torsion

tensor is called torsion-free. General Theory of Relativity assumes the derivative operator

to be torsion-free. Throughout this work, a derivative operator shall always be torsion-free,

unless otherwise stated. [43] [107]

Example 1.1.3.3. 1. For a local coordinate system (Oα, ϕα) and associated coordinate

bases { ∂
∂xµ } and {dxµ}, a derivative operator is defined by:

∂aT
µ1...µk
ν1...νl

=
∂(Tµ1...µkν1...νl )

∂xσ
.

This derivative operator is called the ordinary derivative. It is coordinate dependent

and torsion-free. [107]
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1. Preconditions of the Universe

2. A connection ∇ at p ∈M is a special case of a derivative operator. It is a map from

χ(M) × χ(M) → χ(M). It assigns a differential operator ∇X to each vector field X

at p ∈ M, thereby mapping an arbitrary Cr (r ≥ 1)-vector field Y onto a vector field

∇XY such that the above required conditions are satisfied. ∇XY can be interpreted

as the covariant derivative with respect to ∇ of Y in the direction of X at p. [43]

Remark 1.1.3.4. If we consider two different derivatives ∇c, ∇̃c, the difference between

these derivatives (∇c−∇̃c) is given by a (1, 2)-tensor Ccab at p (two dual vectors are mapped

to a tensor of type (0, 2)). Conversely, given a derivative operator and a (1, 2)-tensor, we

can define another derivative operator by:

∇̃c = Ccab −∇c.

If we choose ∇̃c = ∂c, C
c
ab is denoted by Γcab and called Christoffel symbol. In this case

we have:

∇atb = ∂at
b + Γbact

c.

[107]

1.1.3.1. Parallel Transport

Given a derivative operator, we can define the notion of parallel transport of a vector along

a curve γ with tangent ta:

Definition 1.1.3.5. A vector va, given at each point of the curve γ : I ⊂ R →M, is said

to be parallel-transported if

ta∇avb = 0 (1.4)

is satisfied along the curve. [107]

Remark 1.1.3.6. Using the Christoffel symbol and ordinary derivative, we can express

equation 1.4 as

ta∇avb = ta∂av
b + taΓbacv

b = 0.

Or, in terms of components of a coordinate basis:

dvν

dt
+
∑

µ,ν

tµΓνµλv
λ = 0.

These partial differential equations always have a unique solution for a given initial value of

va. Thus, a vector defines a unique parallel-transported vector everywhere along a curve.

The underlying structure of parallel transport is a connection, as introduced in 1.1.3.3, item

2. A connection on a manifold can be used to identify the tangent spaces TpM and TqM ,

where p, q ∈M are lying on a curve γ(t). [107]
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1.1. Basics of Differential Geometry

Example 1.1.3.7. Let us start with a given metric gab on a manifoldM. Given two vectors

va, vb, their inner product does not change while parallel transported:

ta∇a(gbcvbwc) = 0.

Using Leibnitz rule and the fact that the vectors va and wb are parallel-transported we

obtain:

tavbwc∇a(gbc) = 0,

which is equivalent to

∇agbc = 0. (1.5)

It turns out that equation 1.5 determines a unique torsion-free derivative. [107]

Remark 1.1.3.8 (Assumption:). Unless stated otherwise, we shall choose the connection

given by equation 1.5.

1.1.3.2. Curvature

If a vector is parallel-transported along a closed curve on the plane, the final vector coincides

with the initial one. If we perform the same on the two-dimensional sphere, the final vector

does not coincide with the initial one. We can use this fact to define the plane as flat and

the sphere as a manifold with a non-vanishing curvature. Since parallel transport can be

written in terms of local geometry, this procedure can be used to define an intrinsic notion of

curvature of manifolds. We shall define curvature as the failure of a vector to coincide with

its initial values when parallel-transported along a small, closed curve. As we have a unique

definition of a derivative operator for a given metric (see equation 1.5), parallel transport

is defined uniquely. Thus, the definition of curvature is well-defined. A slightly different

definition is the failure of the fifth Euclid postulate, the failure of initial parallel geodesics

(see 1.1.4) to remain parallel.

It turns out that there is a strong correspondence between the lack of commutativity of

two derivative operators ∇a and ∇b and the curvature. The deviation from commutativity

of ∇a and ∇b can be expressed by:

(∇a∇b −∇b∇a)(fwa),

where f is a smooth function and wa is a dual vector field. Using Leibnitz rule (see 1.1.3.1),

we see that

(∇a∇b −∇b∇a)(fwa) = f(∇a∇b −∇b∇a)(wa).

[107] This motivates the definition of the Riemannian curvature tensor:
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1. Preconditions of the Universe

Definition 1.1.3.9. The Riemannian curvature tensor is defined as

Rdabc = (∇a∇b −∇b∇a).

Remark 1.1.3.10. 1. It is not hard to show that the failure of a vector to coincide with

its initial values after parallel transport along a small closed path can be measured

directly using the Riemannian curvature tensor. (See [107, p.37–39].)

2. For a dual vector field wa we get ∇a∇bwc −∇b∇awc = Rdabcwd.

Theorem 1.1.3.11 (Properties of the Riemannian Curvature Tensor). The Riemannian

curvature tensor of a manifold M satisfies the following properties:

1. Rdabc = −Rdbac

2. First Bianchi identity: Rd[abc] = Rdabc +Rdcab +Rdbca = 0

3. For the derivative ∇a naturally associated with the metric gab we have Reabcged +

Reabdgce = Rabcd +Rabdc = 0.

4. Second Bianchi identity: ∇[aR
e
bc]d = ∇aRebcd +∇cReabd +∇bRecad = 0

[107]

Remark 1.1.3.12. 1. We can write the Riemannian curvature tensor with the notation

of 1.1.3.3, item 2: if X,Y, Z are Cr-vector fields, the Riemannian curvature tensor

defines a Cr−2-vector field:

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,

where [X,Y ] denotes the commutator of the vector fields X and Y :

[X,Y ](f) = X[Y (f)]− [X(f)]Y ∀f ∈ C∞.

[43]

2. The Riemannian curvature tensor can be decomposed into a trace part and a trace-free

part. The trace part is

Rbabc = Rab (1.6)

which is known as the Ricci tensor. In dimension three, the Riemannian curvature

tensor of a manifold is completely given by the Ricci tensor. Furthermore, the trace

of the Ricci tensor is called the scalar curvature R = Raa. Curvature in dimension

two is completely given by scalar curvature.
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1.1. Basics of Differential Geometry

3. The Ricci tensor satisfies (double contraction of the Bianchi identity):

∇aRac +∇bRbc∇cR = 0. (1.7)

If we define the Einstein tensor by

Gab = Rab −
1

2
Rgab (1.8)

Equation 1.7 reduces to

∇aGab = 0, (1.9)

which shall be important when deriving Einstein’s field equations.

[107]

Example 1.1.3.13. The Riemannian metrics given in 1.1.2.21 are of scalar curvature +1

(sphere), 0 (Euclidean space) and −1 (hyperbolic space).

1.1.4. Geodesics

A geodesic is curve which satisfies the geodesic equation

ta∇atb = 0, (1.10)

where ∇a denotes, as usual, the derivative induced by the given metric gab on the mani-

fold and ta is an arbitrary tangent vector along the curve. With respect to the derivative

∇a, tangent vectors ta along geodesics remain parallel. Thus, a geodesic is “as straight as

possible.”

In Riemannian manifolds, geodesics define the shortest paths between two points. Within

General Theory of Relativity they define the path along which particles need minimal energy.

Light rays are null geodesics, while particles move on time-like geodesics.

[107]

1.1.5. Hypersurface

Definition 1.1.5.1. A map φ from an n-dimensional Ck-manifold M to an n′-dimensional

Ck
′
-manifold M′ is said to be a Cr-map (r ≤ k, r ≤ k′) if for any local coordinate system in

M andM′, the coordinates of the image point φ(p) inM′ are Cr-functions of the coordinates

of p ∈M.

Definition 1.1.5.2. If f is a function on M′, the mapping φ (from Definition 1.1.5.1)

defines a function φ?f on M as the function with value f at φ(p) at the point p ∈M:

φ?(f(p)) = f(φ(p)).
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1. Preconditions of the Universe

Definition 1.1.5.3. A map φ from an n-dimensional Ck-manifold M to an n′-dimensional

Ck
′
-manifold N is said to be an immersion if it itself and its inverse are Cr-maps (r ≤ k

and r ≤ k′). This means that for each point p ∈ M there is a neighbourhood U ⊂ M of p

such that the inverse φ−1 restricted to φ(U) is a Cr-map. [43]

Definition 1.1.5.4. An immersion is an embedding if it is a homeomorphism onto its

image in the induced topology. Thus, an embedding is an injective immersion. [43]

Definition 1.1.5.5. If Mn−1 is an (n − 1)-dimensional manifold and φ :Mn−1 →Mn is

an embedding in an n-dimensional manifold, the image φ(Mn−1) of Mn−1 is said to be a

hypersurface in Mn. [43]

Remark 1.1.5.6. If gab is a metric on Mn, the embedding induces a metric φ?g on Mn−1

such that for X,Y ∈ TpM : φ?g(X,Y )|p = g(φ?(X), φ?(Y ))|φ(p), where φ?(X) and φ?(Y )

denote the corresponding tangent vectors in Tφ(p)M′ to X and Y . If gab is a Lorentzian

metric and na is orthogonal to all vectors tangent to φ(Mn−1), the induced metric φ?g will

be

1. Lorentzian if gabn
anb > 0. In this case the hypersurface is called time-like.

2. degenerate if gabn
anb = 0. In this case the hypersurface is called a null hypersurface.

3. positive definite if gabn
anb < 0. In this case the hypersurface is called space-like.

[43]

1.2. Introduction to General Theory of Relativity

1.2.1. First Assumptions on Space-Time

Within General Theory of Relativity, the mathematical model for space-time is a pair

(M4, g), whereM4 is a Hausdorff, connected, and therefore path-connected (see A.0.0.9 on

page 186 and the proceeding remark), four-dimensional C∞-manifold and g is a Lorentzian

metric on M4. [43]

Remark 1.2.1.1. 1. This is not a very restrictive condition, because any non-compact

four-dimensional manifold admits a Lorentzian metric. Furthermore, any compact

four-dimensional manifold with a Euler-Poincaré characteristic (see for instance [42])

of zero admits a Lorentzian metric. [55]

2. We assume space-time to be Hausdorff. As noted in 1.1.1.2, a manifold is almost

always assumed to be Hausdorff.

3. We require the metric to be at least to be C2 in order to define the field equations

continuously. But since the metric cannot be measured exactly, we cannot determine
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1.2. Introduction to General Theory of Relativity

if there would be a discontinuity at its derivatives of any order. There are theorems

of Munkres and Whitney, which ensure the existence of a C∞-subatlas. Thus, we can

choose a smooth atlas. See Chapter 2 (2.1.0.5, p.38). [43]

4. If the universe is not connected, we are only interested in the connected component we

are sitting in. There is no other choice since there is no physical connection between

disconnected components, and therefore information can therefore not be sent between

them.

These assumptions immediately imply another: every Hausdorff manifold on which a

Lorentzian metric is defined is paracompact (see 1.1.1.7). Thus, we can assume space-time

to be paracompact. [43]

Definition 1.2.1.2 (Diffeomorphism, Transformation). A smooth one-to-one map F for

which the inverse map F−1 is also smooth is called a diffeomorphism. A diffeomorphism

of a manifold onto itself is often called a smooth transformation. [32, p. 58]

Definition 1.2.1.3. Two models (M4, g), (M′4, g′) are said to be equivalent if they are

isometric, that is, if there exists a diffeomorphism φ :M4 →M′4 with φ◦g = g′. Therefore,

to be precise, if we speak about a model of space-time, we speak of an equivalence class of

models from which we take a representative. [43, p.56]

Remark 1.2.1.4 (Convention:). We follow the standard convention in the General Theory

of Relativity of setting the gravitational constant and the speed of light to unity: G = c = 1.

1.2.2. The Equivalence Principle

One of the most important principles within General Theory of Relativity, based on the

equivalence of gravitation and inertia mass formulated in Newtonian physics, states that all

bodies are influenced by gravity and all bodies fall precisely the same in gravitational fields.

One consequence is that we cannot define isolated observers, that is, observers on whom

no force acts, like in the Special Theory of Relativity. Another consequence is that for an

arbitrary point in a gravitational field we can choose a local inertial coordinate system, in

which gravitation is absent in a sufficiently small neighbourhood of the point. This enables

us to write an equation, which is known for conditions without gravitational fields, for the

condition of a gravitational field [109, p.511]. If we formulate the last sentence in the other

direction, we see that Special Theory of Relativity remains locally valid within General

Theory of Relativity. [43] [107]

1.2.3. Metric within General Theory of Relativity

As opposed to General Theory of Relativity, Special Theory of Relativity does not include

gravitational effects. The mathematical model for space-time in the Special Theory of Rel-

ativity is a Minkowski space, which is a four-dimensional, connected, flat Lorentzian
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manifold. The obvious way would be to introduce gravitation by a gravitational field and

keep the metric flat. This attempt fails, because light rays near massive objects are deflected

in accordance with Newtonian gravitation. Since light rays are defined as null geodesics, it

is space itself which is curved. The deviation of the metric from a flat metric accounts for

the physical effects usually ascribed to gravitational fields. Other geodesics are given by the

paths of free-falling test bodies (time-like geodesics), which we shall explain in the next sec-

tion. This set of preferred curves in space-time describe gravity as a property of space-time

itself. Thus, we can say that the metric describes gravitational fields, or, in other words: the

gravitational field is represented by space-time metric itself. This is referred to as March’s

principle. [107, p.7]; [43, p.71]

Remark 1.2.3.1. We do not rule out additional gravitational fields. If another gravitational

field is detected, we can introduce it as an additional field.

1.2.4. Geodesic Hypothesis

Instead of inertial observers on whom no force acts, we define free-falling test bodies in

General Theory of Relativity. These are small bodies with a self-gravity sufficiently weak to

not influence their paths through space-time. A typical example would be a dust particle.

At any time t0, we can assign a spatial position (x0, y0, z0) to the test body with respect

to a local coordinate system. The map t 7→ (x(t), y(t), z(t)) is the worldline of the test

body.

The geodesic hypothesis states that the worldlines of free-falling test bodies in a gravita-

tional field are exactly the time-like geodesics of the space-time metric. Thus they satisfy

the motion equation for particles (cf. equation 1.10)

ua∇aub = 0, (1.11)

where ua is the four-velocity, that is, the unit tangent vector to the worldline of the test

particle, a time-like curve. [107]

1.2.5. Einstein’s Field Equations

The relation between the metric and the distribution of matter is described by Einstein’s

field equations. The continuous distribution of matter is given by the energy-momentum

tensor which is a generalization of the stress tensor used in Newtonian physics (1.1.2.12,

p.10).

Physics uses local geometry to describe processes and states. The metric and quantities

derivable from it are the only space-time quantities that can appear in the equations of

physics [107, p.68]. Physics is described by physical fields, such as the electromagnetic field

or the neutrino field, which describes the matter content of space-time. Fields obey equations

expressed as relations between tensors in M4. Thus, physical fields are described by tensor
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fields (or, in special cases, vector or scalar fields) written in terms of the manifold’s structure.

Furthermore, the only connection available is that one induced by the metric gab defined on

M4 (see equation 1.5, p.17). If there was another connection, the difference between these

two connections would once more define a tensor field (1.1.3.4, p.16) and therefore another

physical field. As pointed out before, we do not exclude the possibility of the existence of

an undetected field. [43, p.58]

We assume that we can express physical fields entirely in terms of tensors. Thus, we

do not distinguish between gravitational fields with the same energy-momentum tensor.

In accordance with the equivalence principle, we require the equations of General Theory

of Relativity to reduce to the equations of Special Theory of Relativity if the metric is

flat [43, p.71].

The energy-momentum tensor Tab can be interpreted as the gravitational source (as

ja denotes the electromagnetic source used in the Maxwell equations). Tab satisfies the

following conditions:

1. Tab is symmetric: Tab = 1
2(Tab + Tba).

2. Tab vanishes on an open set U ⊂M if and only if all matter fields vanish on U .

Remark 1.2.5.1. The only possibility of a vanishing gravitational field on an open

set is the existence of some sort of negative energy such that all the existing fields

cancel each other out on U .

3. The energy-momentum tensor satisfies the motion equation

∇aTab = 0. (1.12)

Remark 1.2.5.2. We assume a family of observers to be represented by a unit time-

like vector field ta. In a small region the gravitational field should not influence the

energy of an observer significantly, and therefore, the energy should be approximately

conserved: ∇atb = 0. Thus,

∇a(Tabtb) = 0. (1.13)

By integrating, we can interpret this equation as a local conservation of material

energy and momentum [107].

[43]

Let ta be the four-velocity of a particle. If ta∇atb = ab, a force f = m · ab acts on the

particle with (rest) mass m. We have already pointed out that we cannot describe the

absolute gravitational field in this way. But, as opposed to the absolute gravity, the relative

gravitational force (tidal force) can be measured as the relative acceleration of two nearby

free-falling bodies.
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Let us assume the worldlines of two test bodies which are initially parallel and infinitesi-

mally nearby. The vectors ta are tangent to the worldlines and satisfy the geodesic equation

1.10. Because of the tidal force between the two particles, there is a non-vanishing devia-

tion vector xa. The quantity va = tb∇bxa gives the relative velocity of the two particles;

aa = tc∇cva the relative acceleration between them. The correspondence between the rela-

tive acceleration of two test bodies and the curvature of space-time is given by the geodesic

deviation equation

aa = −Racbdxbtctd, (1.14)

where Racbd denotes the Riemannian curvature tensor (1.1.3.9, p.17). [107]

If we give the tidal force in terms of Newtonian physics, we have

−(~x∇)∇Φ,

where Φ denotes the gravitational potential and ~x denotes the spatial separation of the two

particles. Weak and slowly changing gravitational fields satisfy the Poisson equation, which

is given by

∇2Φ = 4πρ,

where ρ is the matter density [109]. In General Theory of Relativity the matter density is

given by ρ = Tabt
atb, where ta is the four-velocity of the observer. Furthermore, we have

∇Tab = 0 (equation 1.12) and ∇Gab = 0 (equation 1.9).

This motivates Einstein’s field equations:

Gab = Rab −
1

2
Rgab = 8πTab, (1.15)

with Gab being the Einstein tensor (given by equation 1.8), Rab being the Ricci tensor

(given by equation 1.6) and R being the scalar curvature (1.1.3.12). For more details see,

for instance, [107, p. 66 – 72].

Using the trace, we get

R = −8πT. (1.16)

[107]

Theorem 1.2.5.3. Space-time is a manifold M4 on which there is defined a Lorentzian

metric gab. The curvature of the space-time metric gab is related to the matter distribution

in space-time by Einstein’s field equations 1.15. [107, p.73]

Remark 1.2.5.4. 1. It should be noted here that an exact solution of Einstein’s field

equations is only possible in space-times with high symmetry. Even in such perfect

space-times we cannot rule out the possibility that there remain points where the

physical laws brake down. These singularities are excluded from space-time such that

incompleteness can be cured. [43]
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2. Apart from Einstein’s field equations, space-time should satisfy equations which de-

termine the behavior of matter in space-time as the Maxwell equations and the Weyl

equation. Furthermore, a suitable equation of state relates the components of the

energy-momentum tensor. The equation of state is often represented as an “energy

condition.” [22]

1.2.6. Orientation

A manifold M is called orientable if we can choose for any point p ∈ M a class of right-

hand oriented and left-hand oriented vectors, and the orientation does not change along any

path. Thus, if we choose an orientation of a vector and go along a closed path, the initial

orientation is the final one. [107] More precisely, we define:

Definition 1.2.6.1. A smooth manifold M is said to be orientable if there exists an atlas

for M such that the Jacobians of all the transition functions are positive. Such an atlas is

called an orientation atlas. [96]

Remark 1.2.6.2. A transition function preserves a given orientation of Rn.

In Figure 1.2 a picture of a non-orientable manifold is shown.

Figure 1.2.: The Möbius strip is an example of a two-dimensional non-orientable Riemannian
manifold. A ball moving along the presented closed path ends on the opposite
side of the surface it started at [115].

In the following, we distinguish for a Lorentzian manifold to be time-orientable and/or

space-orientable. The difference shall depend on the kind of vectors under consideration.

1.2.6.1. Time Orientation and Causality

In Special Theory of Relativity local causality is assumed, which states:

Definition 1.2.6.3. A signal can be sent in a convex set U ⊂ M4 between two points

p, q ∈ U if and only if p and q can be joined by a causal (non-space-like) C1-curve lying

entirely in U and has nonzero tangent vectors. [43, p.60]
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Remark 1.2.6.4. 1. We rule out the possibility that a particle can move on space-like

curves, since, so far no signal faster than light/electromagnetic radiation has been

observed. Light travels on null geodesics and defines the limit of local causality.

2. Whether p is caused by q or q is caused by p depends on the local time orientation.

In a Minkowski space-time particles follow worldlines from past to future. Thus, we

can define a class of past-oriented time-like vectors and a class of future-oriented time-like

vectors at any point p ∈ M4. Minkowski space-time is therefore locally time-orientable.

Since Special Theory of Relativity remains locally valid in the curved space-times of General

Theory of Relativity, we can assume M4 to be locally time-orientable. M4 is called time-

orientable if local time orientation varies continuously along curves. For a closed curve,

the initial time orientation has to be the final one. Therefore, M4 is called time-orientable

if every closed curve is time-preserving. In order to decide if space-time is (global) time-

orientable, we shall go into further detail on causality. [55]

Remark 1.2.6.5. Ellis mentioned in [22] that with thermodynamic and electrodynamic

experiments, one can always determine a future-oriented arrow of time. This is based on

the second theorem of thermodynamics, which states that in thermal isolated systems the

entropy can never decrease. [106]

Definition 1.2.6.6. A differentiable curve γ(t) is said to be a future-directed time-like

(causal) curve if at each point p ∈ γ the tangent ta is a future-directed time-like (or null)

vector.

Remark 1.2.6.7. The definition of a past-directed time-like or causal curve is obtained

by replacing future-directed with past-directed.

Definition 1.2.6.8 (Chronological Future and Past). 1. The chronological future of

p ∈ M4, denoted by I+(p), is defined as the set of events that can be reached from p

by a future-directed time-like curve starting at p ∈M4. Thus,

I+(p) := {q ∈M4 | ∃ a future-directed time-like curve γ(t), such that γ(0) = p and γ(1) = q}.

2. The chronological past of a point p ∈M4 is defined analogously:

I−(p) := {q ∈M4 | ∃ a past-directed time-like curve γ(t), such that γ(0) = p and γ(1) = q}.

3. For a subset S ⊂M4 we define

I+(S) =
⋃

p∈S
I+(p)
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and

I−(S) =
⋃

p∈S
I−(p).

[107]

Remark 1.2.6.9. 1. Generally p 6∈ I+(p). A point is in its own chronological future if

and only if there exists a closed time-like path beginning and ending in p ∈M4. [43]

2. In Minkowski space-time, I+(p) is the set of points (events) which can be reached from

p ∈ M4 by time-like geodesics starting from p. Its boundary is generated by the null

geodesics. This defines the future light cone Np ⊂ TpM of the point p ∈ M4 (see

Figure 1.3). In curved space-times, this is only true locally. Any tangent space TpM

for p ∈M4 is isomorphic to Minkowski space. [107]

Figure 1.3.: Light cone of an observer in space-time; the red axes represent a space-like hy-
persurface for a fixed time. The boundary of the light cone (blue lines) represents
the null geodesics. [116]

Definition 1.2.6.10. A set U is called achronical if U ∩ I+(U) = ∅. The edge of an

achronical set is the set of all points p ∈ Ū such that in every neighbourhood V of p there

are points q ∈ I−(p) and r ∈ I+(p) which can be joined by time-like curves in V which do

not intersect U . [43]
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Definition 1.2.6.11 (Causal Future and Past). 1. The causal future of p ∈ M4, de-

noted by J+(p), is defined as the set of events that can be reached from p by a future-

directed causal curve starting at p ∈M4. Thus,

J+(p) := {q ∈M4 | ∃ a future-directed causal curve γ(t), such that γ(0) = p and γ(1) = q}.

2. The causal past of a point p ∈M4 is defined analogously:

J−(p) := {q ∈M4 | ∃ a past-directed causal curve γ(t), such that γ(0) = p and γ(1) = q}.

3. For a subset S ⊂M4 we define

J+(S) =
⋃

p∈S
J+(p)

and

J−(S) =
⋃

p∈S
J−(p).

[107]

Remark 1.2.6.12. We can define an acausal set analogously to an achronical set.

Proposition 1.2.6.13. If q ∈ J+(p) \ I+(p), the curve connecting p and q must be a null

geodesic. [107]

Definition 1.2.6.14. 1. A point p is said to be a future endpoint of a future directed

causal curve γ : F →M4 if for every neighbourhood V of p, there is a t ∈ F such that

γ(t1) ∈ V for every t1 ≥ t

2. A causal curve is said to be future-inextendible (in a set S) if it has no future endpoint

(in a set S). [43, p.184]

1.2.6.2. Causality Conditions

In order to rule out space-time topologies such as S×M3 with a three-dimensional spatial

manifold M3, which obviously is a causally misbehaving space-time, we have to permit

closed time-like geodesics. Thus, we assume that cause proceeds action by assuming the

chronology condition, which states that there are no closed time-like curves. The set of

points where the chronology condition does not hold is called the chronology violating

set.

Proposition 1.2.6.15 (Carter). The chronology violating set of M4 is the disjoint union

of sets of the form I−(p) ∩ I+(p), p ∈M4. [43]
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Proposition 1.2.6.16. IfM4 is compact, the chronology violating set ofM4 is nonempty.

Remark 1.2.6.17 (Assumption:). We therefore assume M4 to be non-compact.

There is a second argument against compact space-times: if a Lorentzian metric is defined

on a compact four-dimensional manifold, it cannot be simply-connected (2.3.0.14, p.45) [43].

As opposed to the standard models of cosmology, we shall not assume a trivial topology, but

there is no reason to rule them out.

In addition, it may be reasonable to rule out closed null curves, thereby stating the

causality condition. Once more, the set of points which violate the causality condition is

the disjoint union of sets of the form J−(p) ∩ J+(p), p ∈ M4. It turns out that in physical

realistic space-times the causality condition is equivalent to the chronology condition. [43]

Yet, a small modification of the metric leads to a violation of the causality condition.

Therefore, we shall assume strong causality condition, which states that for ∀p ∈ M4

and any neighbourhood U of p, there exists an V ⊂ U such that no causal curve intersects

V more than once.

The above defined causality conditions do not suffice to rule out causal pathologies (closed

causal curves) in arbitrary small neighbourhoods of one or more points. It turns out that

that there is a sufficiently strong condition which does ( [107]):

Theorem 1.2.6.18. A space-time is said to be stably causal if and only if there exists a

differentiable function on M4 such that ∇af is a past-directed time-like vector field. [107]

Remark 1.2.6.19 (Assumption:). The function f , as introduced in 1.2.6.18, can be in-

terpreted as a cosmic time function. The existence of a global time function is equivalent

to a global time-orientable space-time. The spatial hypersurfaces {f = const.} can therefore

be interpreted as hypersurfaces of simultaneity. If they are all compact, they are diffeomor-

phic [43]. We shall assume space-time M4 to be globally time-orientable.

A globally time-oriented space-time M4 is homeomorphic to the product of the spatial

hypersurfaces of simultaneity and a one-dimensional manifold orthogonal to them which

represents time. Thus, M4 ' M1 ×M3, where M3 is a three-dimensional Riemannian

manifold (a space-like hypersurface). One way to prove this is to show that the space-time

M4 is completely determined by the information on a hypersurface M3 (at an arbitrary

fixed time t0). We start with the definition of a Cauchy development:

Definition 1.2.6.20. 1. The future Cauchy development or domain of depen-

dence D+(S) of a set S is the set of all points p ∈M4 such that every past-inextendible

causal curve through p intersects S (S ⊂ D+(S)).

2. We define D(S) = D+(S)∪D−(S), where the past Cauchy development D−(S) is de-

fined analogously to D+(S). D(S) is a subset of space-time which is entirely determined

by the data on S.
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1. Preconditions of the Universe

3. A partial Cauchy surface is an acausal set S with no edge (1.2.6.10, p.27). Thus,

it is a space-like hypersurface which no causal curve intersects more than once.

4. A partial Cauchy surface S is said to be a (global) Cauchy surface if D(S) equals

M4. Thus, it is a space-like hypersurface which every causal curve intersects exactly

once.

[43]

Example 1.2.6.21. In Minkowski space, the hypersurfaces {x4 = const.} are Cauchy sur-

faces, while the hypersurfaces {(x1)2 + (x2)2 + (x3)2 − (x4)2 = const.} define only partial

Cauchy surfaces. [43]

Remark 1.2.6.22. In Newtonian physics one has to know the state of the entire universe

at present time to predict events in the future. In Relativity Theory, one only needs to know

“enough” about a set S in order to be able to predict events in the future of S. If we wish

to predict events in the entire universe, we have to know “enough” about the state of the

universe at the present time. The problem is to decide whether or not the information we

have is sufficient.

Closely related is the so-called Cauchy problem: given a three-dimensional manifoldM3

with initial data (metric and extrinsic curvature), the problem is to find a four-dimensional

manifold M4, an embedding M3 →M4 and a metric which satisfies Einstein’s field equa-

tions and agrees with the initial data and is also such that M3 is a Cauchy surface of

M4 [43] [107].

We cannot assume a Cauchy surface yet. As we shall see, there is a property of the

universe which indicates the existence of a Cauchy surface.

Definition 1.2.6.23. A set N is said to be globally hyperbolic if the strong causality

assumption holds on N and if for two points p, q ∈ N, J+(p)∩J−(p) is compact and contained

in N . [43]

Remark 1.2.6.24. The second requirement can be interpreted as J+(p) ∩ J−(p) does not

containing any points of the edge of the space-time (i.e. at infinity or at a singularity) [43].

The latter can be granted since singularities shall be excluded from space-time.

Theorem 1.2.6.25. Let (M4, gab) be a globally hyperbolic space-time. Then (M4, gab) is

stably causal. Furthermore, a global time function f can be chosen such that each surface

of f is a Cauchy surface. Thus, M4 can be foliated by Cauchy surfaces and the topology of

M4 is R×M3, where M3 denotes any Cauchy surface. [107]

Remark 1.2.6.26 (Assumption:). 1. For the one-dimensional time-like manifold there

are two possibilities: S or R. Since S leads to a causally misbehaved space-time (Gödel

universe), we choose R [64]. We do not have access to information about space-time

events before the Big Bang or about the Big Bang itself, therefore, we may write

R+ ×M3 [4]. Thus, we choose a space-time with a toroidal topology [48].
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2. We shall assume space-time to be globally hyperbolic and can restrict our investigations

to the three-dimensional space-like manifoldM3. General Theory of Relativity forbids

the topology of M3 to change during cosmic evolution [64]. Thus, it is sufficient to

determine the topology of space today.

3. If the cosmic time function is smooth,M4 is diffeomorphic to R×M3 [43, p.212]. We

shall assume the existence of a smooth cosmic time function.

4. The spatial hypersurfaces of simultaneity indeed foliate space-time [107]. We shall

define the term of a foliation in Chapter 3 (3.3.2.7, p.69).

1.2.6.3. Space Orientation

A space-time M4 is called space-orientable if the spatial part of the universe M3 is

orientable in the sense of 1.2.6.1.

Remark 1.2.6.27 (Notation). An orientable manifold shall denote a space-orientable

manifold throughout this work.

A non-orientable spatial part of space-time M3 contradicts our everyday experience.

Pathologies like going along a path and returning upside-down would be enabled. The

paradox of a space traveller who leaves his right-hand glove at home comes back and finds

out that his forgotten glove fits his left hand is it is mentioned in [22, p.9]. Thus, we shall

assume space-time M4 to be space-orientable.

There is the so-called CTP-theorem, a theorem of particle physics which states that along

a closed path either charge, time orientation and space orientation of a particle changes or

none of them. Assuming time orientation, space orientation would be implied immediately.

See [55] and [43] for more information and further references.

Remark 1.2.6.28 (Assumption:). Space-times which are time-orientable and space-orientable

are called total orientable. [55] Thus, we are assuming a total-orientable space-time.

1.2.7. Further Assumptions on Space-Time

Without Boundary: Assuming a boundary, we immediately run into contradictions. We

therefore assume space-time to be a manifold without boundary.

Inextendible:

Definition 1.2.7.1. (M′4, g′) is a Cr-extension of (M4, g) if there exists an isometric

embedding ν :M4 →M′4. [43]

In this case we should points of M′4 as belonging to the space-time M4. To ensure

that all nonsingular points are included in space-time, we require that there does not

exists a Cr-extension. Thus, we assume M4 to be inextendible. However, we shall
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assume an even stronger version of inextendible: locally inextendible. We require

that there does not even exist a local extension, which is defined as follows:

Definition 1.2.7.2. M4 is said to be locally extendible if there is an open set

U ⊂M4 with non-compact closure in M4 such that the pair (U, g|U ) has an extension

(U ′, g′) in which the closure of the image of U is compact. [43]

Completeness:

Definition 1.2.7.3. A metric space (M, g) is geodesically complete if and only if

each geodesic γ : I → (M, g) can be extended to a unique maximal geodesic γ : R→M.

[84]

Remark 1.2.7.4 (Notation:). We shall call a geodesically complete space-time a

complete space-time.

A geodesically complete manifold is inextendible. The converse is, in general, not true.

Incomplete space-times enable a variety of pathologies. In time-like or null geodesically

incomplete space-times the existence of particles with a worldline beginning a finite

time ago or ending in a finite time would be enabled. In space-like incomplete space-

times there could be singularities in space-time, but no observer could ever reach them.

For further examples see [107, p.215]. Thus, we assume space-time to be complete.

1.3. Observing the Universe

We observe the universe by detecting radiation of different frequency of the electromagnetic

spectrum. For example, we detect visible light, microwaves or X-rays coming from all the

different regions of the universe, except of in the direction of the bulge of the Milky Way.

As we have defined in 1.2.6.3 (p.25), we can only observe our causal past (1.2.6.11, p.27).

First of all, we shall make an important and strong assumption, namely the assumption

of spatial local homogeneity. It is the assumption that a “typical” free-falling observer

in another place in the universe would at the same time make the same observations of the

universe (here we can use the global time function or in other words we require the observer

to sit on the same spatial hypersurface). Thus, we are assuming the Copernican principle

which states that we are not located at a special place in the spatial universe. By a “typical”

free-falling observer we mean an observer who moves with the average velocity of typical

galaxies in their respective neighbourhoods. Without the assumption of homogeneity we

would not be able to make any generalizations. Observational data supports this following

assumption: the Sloan Digital Survey provides evidence that the distribution of galaxies on

global scales is homogeneous [113]. For a visualization see Figure 6.1 in Chapter 6 (p. 119).

But, and here we differ from standard theory of cosmology, we do not assume homogeneity
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as a global condition. We assume homogeneity to be merely a local property, because it is

a property derived from observational data and logic reasoning. [109] [55] [60]

The mathematical definition of a locally homogeneous manifold can be derived as follows:

Definition 1.3.0.5. For a Riemannian manifold M we define:

• Isometry: A local isometry on M is a differentiable map f such that each of the

tangent maps Txf : TxM → Tf(x)M is an isometry between the Euclidean vector

spaces (TxM, gx) and (Tf(x)M, gf(x)). Thus, Txf is an isomorphism of vector spaces

which preserves the inner product. Moreover if f is a diffeomorphism f : M → M
we say that f is an isometry. In this case f is called an isometric transformation, or

motion, of M. [96]

• (Local) Homogeneity: M is said to be (locally) homogeneous if for any two points

p, q ∈M there is a (local) isometry m such that m(p) = q. [111]

Thus, any two points can be carried into each other continuously. In Chapter 2 we shall

give a definition of local homogeneity using the action of the group of local isometries on

the manifold M3.

1.3.1. The Expansion of the Universe and the Big Bang

In the visual spectrum of light we observe that the farther away an object is, the greater

the redshift of the light’s spectrum received from it. Because of the Doppler effect (applied

to light waves) we can interpret the redshift as radial velocity. Thus, the farther away an

object is, the greater its radial velocity vr with respect to us. Hubble showed empirically

that this is in a good approximation directly proportional. This is the so-called Hubble

law:

vr = H0 · d,

where H0 is the Hubble constant, which describes the cosmic expansion at the present

time t0, and d denotes the radial distance from Earth. As an empirical law it is not in every

point exact. It holds true on average and on scales where the expansion of the universe

governs the motion of objects. For example, in our solar system the motion of objects

is governed by gravitational fields caused by the mass of the Sun and the planets. Thus,

Hubble’s law does not predict the motion of these bodies. To measure the Hubble constant,

secondary distance indicators are used (where peculiar velocities can be neglected). The most

important standard candles to evaluate the Hubble constant are supernovae Ia [109, p.48].

Recent measurements indicate an accelerating expansion [109]. Thus, Hubble’s law is only

valid for a special interval of distances. We shall go into further detail in Chapter 6 (p.128).

First, Lemâıtre formulated that it must be space which expands. The idea that galaxies

and other objects are moving away only from us is false. It would contradict the Copernican

principle. In fact, it is space itself which is expanding at every point. To visualize the

33



1. Preconditions of the Universe

expansion of the universe one can think of an inflating balloon. The surface of the balloon

expands and two points, which are initially close, separate while time passes (see Figure

1.4). While the surface of the balloon is two-dimensional, the spatial part of the universe is

three-dimensional.

Figure 1.4.: Two-dimensional visualization of the expansion of the universe. [117]

If the universe is expanding, all points were closer to each other if we go back in time.

Going back in time further and further, matter becomes denser and hotter until we come to

an era when it was too hot for electrons to be bound to the nuclei in atoms. Because of the

strong interactions of photons with free electrons the universe gets more opaque, keeping the

past-oriented view. Going even further back in time we reach a time when the universe was

so hot and dense that the mean free paths of photons was too short for light to propagate.

In this era the universe was opaque. Going back even further, we come to a point where

physical laws break down. This singularity is called the Hot Big Bang. If we now choose

a future-oriented view, we can interpret this singularity as an initial explosion. [109]

1.3.2. Remnant of Last Scattering

Because of the rapid collisions of photons with electrons there was a thermal equilibrium of

radiation and hot dense matter at sufficiently early times. The number density of photons

in equilibrium with matter and of the temperature T and a certain frequency is given by

a black body spectrum. When the universe cooled down to a mean temperature of about

T ≈ 105K, the exchange of energy between electrons and photons became negligible, despite
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there being some scattering (interaction between photon and electron), until a temperature

was reached where hydrogen and helium nuclei were able to bind the free electrons. The

function of opaqueness O(T ) gives the probability of a photon having had at least one more

scattering with an electron between a certain time t(T ) and the present moment. O(T )

increases with temperature. At temperatures of about 3, 000K, 99% of the free electrons

were bound. This event, which took place 400, 000 years after the Big Bang, is referred to as

recombination. From than on, the radiation could expand freely (interaction with helium

and hydrogen can be neglected). This space-time event is referred to as decoupling. At

that point in time the last scattering had happened and the universe became transparent.

This space-time event is known as the last scattering surface [109, section 2]. The last

scattering surface (LSS) defines the limit of the theoretically observable universe.

The radiation of the LSS continues to have a black body spectrum, even if the radiation

has become cooler and less dense. The temperature is the original temperature with a red

shift.

In the 1940s, Gamov predicted the existence of this radiation for the first time. Even

earlier, Penzias and Wilson had detected the Cosmic Microwave Background (CMB) [82].

It is an almost perfect black body spectrum with maximum T = 2.725 [91] [72].

The CMB is almost isotropic and looks the same in every direction. The anisotropies

are of order ∆T
T = 10−5. This leads to the assumption that on very large scales (global

scales) density fluctuation can be neglected. Thus, the universe is in good approximation

homogeneous and isotropic on these scales. Since these are properties which we deduce from

observational data, we can assume these properties to be merely local properties. Thus,

observational data indicates the spatial part of the universe to be locally homogeneous and

locally isotropic.

We shall give a mathematical definition of locally isotropic manifolds in Chapter 4 (4.0.0.18,

p.77). Descriptively, an isotropic manifold looks in any direction the same.

1.4. Is the Spatial Part of the Universe Finite or Infinite?

Standard models assume the cosmological principle, which states that the spatial part of the

universe is globally isotropic and homogeneous. This assumption leads to the conclusion that

space is simply-connected and of constant curvature. In this case, Einstein’s field equations

reduce to the Friedmann equation, which we shall deduce in Chapter 6. The metric for these

space-times is given by the Robertson-Walker metric.

Standard Cosmology does not deal with the possibility that space could have a nontrivial

topology. As we have seen, physics is written in terms of local geometry and is independent of

the topology of space-time. We require the Lorentzian manifoldM4 to satisfy Einstein’s field

equations, which do not include any topological information. Thus, non-simply-connected

(in cosmology multi-connected) models have the same kinematics or, more generally, the

35



1. Preconditions of the Universe

same physics as in the simply-connected case if and only if they have the same metric (up

to diffeomorphism). For spatially locally homogeneous and locally isotropic space-times,

Einstein’s field equations also reduce to the Friedmann equation and the space-time metric

is given by Robertson-Walker metric as well.

Nontrivial topologies would enable the universe to be finite without boundary. There are

good arguments in favour of finiteness:

1. We assume the spatial universe to be homogeneous, but how did information prop-

agate? The signal must have been faster than light! This contradicts the physical

principles and is called the homogeneity problem. In a finite universe homogeneity is

no contradiction. Gott analyzed this problem in detail in [48] and concludes that a

finite universe could solve the homogeneity problem, even if it is unlikely.

2. Homogeneity in infinite space would lead to an infinite amount of matter. In a finite

universe this, once more, would not lead to a contradiction. [55]

3. Space is finite if and only if it is compact. As we have seen in 1.2.6.19 (p.29), the spatial

hypersurfaces of simultaneity are diffeomorphic if they are compact. It is favourable

to assume the spatial hypersurfaces to be diffeomorphic.

4. Einstein and Wheeler argue for finite universes because of March’s principle.

5. Ellis argues that infinite universes are unaesthetic because any event which happens

once happens infinite times.

6. Some quantum cosmologists favour finite universes because spaces with small volumes

have small actions, which are more likely to be created. (See [18] and references there.)

1.5. Conclusion

We assume space-time M4 to be a four-dimensional, smooth, non-compact, geodesically

complete, (inextendible,) spatially locally homogeneous, connected, paracompact, Hausdorff

and total-orientable Lorentzian manifold without boundary diffeomorphic toM3×R+ which

satisfies Einstein’s field equations. This enables us to focus on the spatial part of the universe

M3, which is a three-dimensional, smooth, connected, geodesically complete, orientable,

locally homogeneous Riemannian manifold without boundary. Local homogeneity is a nec-

essary and sufficient property to develop a space-time model on the largest scales. Local

isotropy, in contrast, is not essential, but can be argued for from observational data. First,

we shall assume local homogeneity and classify all possible geometric structures reasonable

for the spatial part of the universe. In Chapter 4, we shall then additionally assume local

isotropy and classify these manifolds by their topology.
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Topology of the Universe

In Chapter 1 we argued thatM3 is a three-dimensional, orientable, connected, geodesically

complete, smooth and locally homogeneous Riemannian manifold without boundary. Most

of the results we will see in this chapter are true for an arbitrary manifold.

We shall start with an alternative definition of a “(topological) manifold” and gain some

insight on the algebraic concepts with which we examing these objects. After an introduction

to Lie groups and homogeneous spaces, we shall then focus on the topology ofM3. We will

see that the manifold describing the spatial part of the universeM3 is homeomorphic to the

quotient space M̃3/Γ (in symbols: M3 ' M̃3/Γ), where M̃3 is a simply-connected space

and Γ is a group of homeomorphisms acting freely and properly discontinuously on M̃3.

2.1. Manifolds and Pseudogroups

We already know that manifolds are topological spaces which are locally modeled on Rn. See

Chapter 1 (Definition 1.1.1.1, p. 6). Thus, we have a topological space consisting of small

pieces each of which is homeomorphic to an open ball in Rn. These pieces are glued together

by local homeomorphisms such that the resulting space has locally the same topological

structure as Rn. These local homeomorphisms are also called “gluing maps”. The pattern

of the manifold is completely determined by the gluing maps. To ensure a well-defined

mathematical object, we require the following properties of gluing maps:

Definition 2.1.0.1 (Pseudogroup). A pseudogroup of a topological space X is a set G of

homeomorphisms between open sets of X satisfying the following conditions:

1. The domains of the elements g ∈ G cover X.

2. The restriction of an element g ∈ G to any open set contained in its domain is also in

G.

3. The composition g1 ◦ g2 of two elements of G, when defined, is in G.

4. The inverse of an element of G is in G.
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5. The property of being in G is local, that is, if g : U → V is a homeomorphism between

open sets of X and U is covered by open sets Uα such that each restriction g |Uα is in

G, then g ∈ G. [99, p.110]

Assume X = Rn and G a pseudogroup of Rn. Since the inverse of any element is in G,

the identity has to be in G too. The smallest pseudogroup of Rn is the so-called trivial

pseudogroup, which consists only of the identity. The largest pseudogroup of Rn is the set

of all homeomorphisms between open subsets of Rn, denoted by Top. A topological space

M is a manifold if the set of gluing homeomorphisms G are in Top. Thus, locally, the space

has the topological structure of Rn.

Definition 2.1.0.2 (G-Manifold). Let G be a pseudogroup of Rn. An n-dimensional G-

manifold is a topological space M with a G-atlas on it. A G-atlas is a collection of

compatible coordinate charts the domain of which covers M . A coordinate chart, or a lo-

cal coordinate system, is a pair (Oi, ϕi), where Oi is open in M and ϕi : Oi → Rn is a

homeomorphism onto its image. Compatibility means that whenever two charts (Oi, ϕi) and

(Oj , ϕj) intersect the transition map or coordinate change

ϕij = ϕi ◦ ϕ−1
j : ϕj(Oi ∩Oj)→ ϕi(Oi ∩Oj)

is in G. [99, p.110]

Remark 2.1.0.3. 1. A G-structure for a manifold M is a G-atlas for M .

2. The structure, that is, the pattern of the manifold depends on the choice of G. Let

us give an example. Let G be the set of Cr-diffeomorphisms between open sets of Rn

(1.2.1.2, p.21). The corresponding manifold is an r-times differentiable manifold, called

Cr-manifold. If the pseudogroup is in C∞, the manifold is called smooth. [99, p.111]

Let us now consider a group of maps which preserves the G-structure: the group of local

G-isomorphisms.

Definition 2.1.0.4. A homeomorphism which is locally expressible as an element g ∈ G, is

called a local G-isomorphism. Such a map preserves the G-structure. [99, p.112]

Remark 2.1.0.5. 1. We have already mentioned that the pseudogroup of a G-manifold

is in Top. Let H ⊂ G be a pseudogroup, then any H-atlas is a G-atlas. Thus, any

H-manifold is also a G-manifold and has a G-structure. In this case, we call the G-

structure the G-relaxation of the H-structure. Similarly, the H-structure is called an

H-stiffening of the G-structure.

2. Let G = Cr with r <∞ and H = C∞, then the C∞-stiffening is called a smoothing.

Whitney proved in 1936 that every differentiable manifold has a unique smoothing up

to Cr-diffeomorphisms (see [110]). [99, p.112]
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3. Let Cw be the pseudogroup of real-analytic diffeomorphisms of open sets of Rn. A Cw-

manifold is then called a real-analytic manifold. Real-analytic diffeomorphisms are

completely determined by their restriction to an open subset of Rn. We shall need this

property in Chapter 3, when we introduce the concept of the developing map. It is,

once more, a (nontrivial) result of Whitney [110] that every smooth manifold admits a

real-analytic stiffening. Since any Riemannian manifold has a smooth stiffening, there

exists a real-analytic stiffening as well. [99, p.113]

2.2. Lie Groups – Basic Definitions and First Examples

Definition 2.2.0.6. A manifold endowed with a compatible group structure is called a Lie

group. Compatibility means that the maps G × G → G and G → G, which represent the

group operations of multiplication (g1, g2) 7→ g1g2 and inversion g 7→ g−1, are smooth. [32, p.

96]

Remark 2.2.0.7. The quotient G/G0, where G0 is the connected component of the identity,

is a discrete group. G/G0 is called the component group.

Example 2.2.0.8. 1. Since any finite dimensional real or complex vector space is a Lie

group under addition, so are R and C.

2. R \ {0},C \ {0} are Lie groups under multiplication.

3. GL(Rn) is the set of all invertible linear maps on Rn. Any linear map on a finite-

dimensional real vector space V is completely defined by its values on a basis of V .

Fixing a basis {v1, . . . , vn} of V , the map

L(V )→ V n, f 7→ (f(v1), . . . , f(vn))

defines a bijection from the set of all linear maps on V to V n. If we choose the

standard basis as a basis of Rn, the above-constructed map takes the form:

L(Rn)→Mn(R)(:= (Rn)n = Rn
2
), f 7→ A,

where A is the matrix representation of the linear map f . Consider the function

Mn(R)→ R, A 7→ det(A).

The map f is invertible if and only if the determinant of the matrix A is non-vanishing.

The set of all invertible matrices is called the linear group, denoted by GLn(R). The

image of the set of all invertible matrices under the map det is the open set R \ {0}.
Since the map det is continuous (see Appendix Topology, A.0.0.4, p. 185), the set of all

invertible matrices is open in Mn(R). We have found a bijection between GLn(R) and
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an open set in Rn2
, which turns GLn(R) into a manifold of dimension n2. The matrix

multiplication is smooth and therefore, GLn(R) is a smooth manifold. Furthermore,

the map GL(Rn) → GLn(R) ⊂ Mn(R), f 7→ A is an isomorphism. Throughout this

work we shall identify GL(Rn) with GLn(R).

4. Closed subgroups H ⊂ G of Lie groups are Lie groups. For example, closed subgroups

of the full linear group GLn(R). These groups are called matrix groups. Examples

are:

The special linear group SLn(R) := {A ∈ GLn(R) | det(A) = 1} is isomorphic to the

group of unimodular (or volume-preserving) transformations on Rn.

The orthogonal group On(R) := {A ∈ GLn(R) | A ·At = id} is the group of orthog-

onal matrices and is isomorphic to the orthogonal transformations on Rn.

The special orthogonal group SOn(R) := On(R) ∩ SLn(R) is the group of orthogo-

nal matrices with determinant 1 and is isomorphic to the orthogonal, unimodular

transformations on Rn.

They are called the classical simple Lie groups. These groups will be very important

for us throughout this work.

5. If G and H are Lie groups, the product G×H is a Lie group. Since U(1) := {z ∈ C :|
z |= 1} is a Lie group as a closed subgroup of a Lie group, the n-dimensional torus

Tn := U(1)n (n ∈ N) is a Lie group.

6. If N is a closed and normal subgroup of a Lie group G, the factor group G/N also is

a Lie group too.

[16], [32] [54]

2.2.1. The Action of a Group

Definition 2.2.1.1. Let X be a set and G a group with neutral element e ∈ G.

1. A left action of G on X is a map ϕ : G × X → X such that ϕ(e, x) = x and

ϕ(g, ϕ(h, x)) = ϕ(gh, x) for all x ∈ X and g, h ∈ G.

2. Given a left action ϕ : G×X → X and a point x0 ∈ X, we define the orbit G · x0 of

x0 as the subset {x ∈ X | ∃g ∈ G : ϕ(g, x0) = x} ⊂ X and the isotropy subgroup

(or stabilizer) Gx0 of x0 to be {g ∈ G | ϕ(g, x0) = x0} ⊂ G.

[17]

Definition 2.2.1.2. The group G is said to act effectively on a set X by homeomorphisms

if the only element of G acting trivially is the identity. [99, p.153]
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Remark 2.2.1.3. 1. Instead of ϕ(g, x) we often write gx or g(x). For us, an action shall

always be a left action. Everything can be defined by right actions analogously.

2. From the definition of a group follows that for g ∈ G with inverse g−1, ϕ(g−1, ϕ(g, x)) =

ϕ(e, x) = x, ∀x ∈ X. We conclude that for any g ∈ G the map x 7→ ϕ(g, x) is a

bijection X → X. This enables us to view ϕ : g 7→ ϕ(g, .) as a map from G to the set

of bijections of X, which again is a group. Thus, this is a group homomorphism.

3. The concept in 2.2.1.1(ii) becomes very natural if one thinks about the action as a way

to use elements of G for moving points of X around. Thus, the orbit of x0 ∈ X (or left

coset) is just the set of points in X which can be reached from x0. In other words, the

orbit of a point x0 is the set of point where x0 can be transported to. The isotropy

group is therefore the set of elements in G, which stabilize x0.

4. Two points x, y ∈ X are called equivalent if there is an g ∈ G such that y = g(x).

5. Let x, y ∈ X be points in the same orbit y ∈ G(x). There is a g ∈ G such that

y = g(x), thus, they are equivalent. Take h, which is an element of the stabilizer Gy.

Since h(y) = y and h(g(x)) = g(x), g−1hg is an element of the stabilizer Gx. Since

h ∈ Gy was arbitrary, g−1Gyg = Gx. Hence, Gx and Gy are conjugates in G.

6. It is a general fact that any group G is the disjoint union of its cosets. Thus, orbits

are either disjoint or coincide and “lying in the same coset” is an equivalence relation.

The set of all equivalent classes is called the orbit space, denoted by X/G. [16]

7. Let ϕ be an action of the group G on the set X. The kernel of ineffectiveness is

defined as the set {g ∈ G : gx = x, ∀x ∈ X}. Factorization of G with respect to the

kernel of ineffectiveness gives an effective action. [32]

Example 2.2.1.4. 1. The group G of all transformations of a smooth manifoldM (1.2.1.2,

p.21) is an effective group and different transformations therefore refer to different el-

ements of the group. This group can be endowed with a Lie group structure. If the

action of G on the manifold M , given by

G ×M →M, (g, x) 7→ g(x),

is smooth, G is called the Lie group of transformations and M is a G-manifold.

Here, the isotropy group

Gx = {g ∈ G : gx = x} (2.1)

of any point x ∈ M is a closed Lie subgroup of the group G.

2. The group of isometries (motions) (1.3.0.5, 33) of a Riemannian manifold M is uniquely

endowed with a differentiable structure, which turns it into a Lie group of transforma-

tions. It is called the isometry group of the manifold M and is denoted by Isom(M).
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[103], [32]

Remark 2.2.1.5. A subgroup Γ ⊂ Isom(M) is a discrete group of motions if for each

point x ∈M , the family {γ(x)|γ ∈ Γ} is locally finite (1.1.1.6, p.8). [103]

2.2.2. Homogenous Spaces

Remark 2.2.2.1 (Notation:). X shall denote a topological space and M a manifold.

Definition 2.2.2.2. Let G be a group acting on a space X. The action of G is called

transitive if for any two points x, y ∈ X there exists an element of G such that g(x) = y.

The action is called sharply transitive if there is exactly one element g ∈ G, such that

g(x) = y.

Remark 2.2.2.3. 1. A sharply transitive action is the same as a simply transitive (or

regular) action, which is defined as a transitive and (fixed-point-)free action (2.3.1.3,

p. 48).

2. In cosmology transitive actions are often called multiple transitive actions. This term

can be found in older mathematical books too.

An action of a group G on a space X defines a bijection from the orbit G · x of x to the

factor group G/Gx of left cosets for every x ∈ X. If the action is transitive, there is only

one orbit. Every point can be transported to any other point. Therefore, we get a bijection

G/Gx → X, gGx 7→ gx. (2.2)

The topological space X is diffeomorphic to the space of left cosets, symbolized by X ∼=
G/Gx. Assuming that X is Hausdorff is equivalent to assuming that the stabilizer Gx is a

closed subgroup. (A.1.0.15, p.187). [16, p.16,17]

Definition 2.2.2.4. A smooth manifold M together with a Lie group G acting transitively

on M is said to be a homogenous space. We denote a homogenous space with (M,G).

Remark 2.2.2.5. 1. If the manifold M is connected or simply-connected, the homoge-

nous space (M,G) is said to have the same property [103, p.9]. That does not mean

that G is connected or simply-connected.

2. If the action of a Lie group G on a homogeneous G-manifold M is effective, G can be

identified with the Lie group of transformations of the manifold M . [32, p.97]

Example 2.2.2.6. 1. A homogeneous Riemannian space is a Riemannian manifold

(M, g), the isometry group Isom(M, g) of which acts transitively on M. Isom(M, g) is

compact if and only if M is compact.
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2. Every isometry in En can be written as the composition of a rotation and a translation.

The set of all translations Tn is isomorphic to Rn. Thus, the set of all isometries of

the Euclidean space En is the semidirect product Isom(En) = RnoOn(R). Isom(En)

is called the Euclidean group and is denoted by E(n). On(R) is the isotropy group

of the action of Isom(En) on En. En ∼= E(n)/On(R) is a homogeneous space.

3. The group of all isometries of the n-dimensional sphere coincides with the group of all

(n + 1)-dimensional rotations. If we fix a one-dimensional subspace of Rn+1, we get

the isotropy group at each point. Thus, the stabilizers are isomorphic to On(R). In

particular On+1(R)/On(R) ∼= Sn [83, p.6]. Since the sphere is oriented, Sn can be also

written as SOn+1(R)/SOn(R). Because On+1(R) acts transitively, Sn is a homogeneous

space [96, p.65].

4. Recall Example 1.1.2.21 (p.13). A function f : Rn+1 → Rn+1 is a Lorentz trans-

formation if and only if f is linear and {e0, e1, . . . , en}, {f(e0), f(e1), . . . , f(en)} is

an (Lorentzian) orthonormal basis of Rn+1 for the standard Lorentzian basis of Rn+1

. A matrix A is called Lorentzian if and only if the associated linear transformation

A : Rn+1 → Rn+1, x 7→ Ax is Lorentzian. The group of all these matrices forms a

group, denoted by On,1(R), called the Lorentz group of (n× n)-matrices.

Every positive Lorentz transformation of Rn+1 restricts to an isometry of Hn and every

isometry of Hn extends to a unique positive Lorentz transformation of Rn+1. Thus, the

group of isometries of Hn is isomorphic to the positive Lorentz group POn,1(R). The

isotropy group of each point coincides with the groupO1(R)×On(R). The homogeneous

space Hn can be written as: Hn ∼= POn,1(R)/(O(R)×On(R)). [84]

Remark 2.2.2.7. Let G be a Lie group and H ⊂ G. Let G act on the factor space G/H

through the above-defined left translation lg : g′H → gg′H. This action is transitive and

therefore G/H is a homogeneous space. The left translation can be used to endow G/H

with a topology. The preimage of the unity eH in G/H is the group H. If we require the

topology to be Hausdorff, H has to be closed. As a closed subgroup of a Lie group, H itself

is a Lie group. Here, the space G/H is a smooth manifold, because the left translation is

smooth. [32] This leads to the following theorem:

Theorem 2.2.2.8. Let G be a Lie group and H ⊂ G a closed subgroup. Then there is a

unique structure of a smooth manifold on the homogenous space G/H so that the natural

map p : G → G/H is of maximal rank, i.e. dim(f(TxM)) = dim(G/H), ∀x ∈ M . In

particular dim(G/H) = dim(G)− dim(H). [16]

Remark 2.2.2.9. 1. In this case, p is called a submersion. See, for instance, [54] for a

definition.

2. It can be shown that the construction of 2.2.2.7 leads to all homogenous spaces of G.

Thus, a homogenous space can be defined by factor groups.
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3. H ⊂ G can be identified with the isotropy group of the identity of the action of G on

the quotient space G/H. The stabilizer has to be compact for every point, but since

the space is homogeneous it is sufficient to require it for an arbitrary point.

4. Let M = G/Gx, be a homogeneous manifold of dimension n. Theorem 2.2.2.8 states

that dim(G) = dim(Gx) + dim(G/Gx). For manifolds, which are locally modeled on

Rn, the isotropy group is a closed subgroup of On(R), which is of dimension n(n−1)
2 .

This gives an upper boundary for the dimension of the isometry group of M (which

can be identified with the Lie group G as mentioned in remark 2.2.2.5):

dim(G) ≤ n+
n(n− 1)

2
=
n(n+ 1)

2
.

Therefore, the dimension of the isometry group of three-dimensional homogeneous

manifolds is therefore not greater than six. The equivalence holds if and only if the

isotropy group is the whole group On(R). As we shall see in Chapter 4 (3.3.2.4, p.68),

this is satisfied if and only if the space is of constant curvature. If the space is simply

transitive, dim(G/Gx) = dim(G). [55]

2.3. The Universal Covering Space

We assume the reader to be familiar with the basic definitions of topology as described in

Appendix A (p.185).

Remark 2.3.0.10 (Notation:). In the following, X and Y denote topological spaces.

Definition 2.3.0.11. Let X,Y be two topological spaces and f : X → Y a continuous map.

We say f is homotopic to g (f ∼ g) if there is a continuous map H : X × I → Y such

that H(x, 0) = f(x) and H(x, 1) = g(x). In this situation, H is called a homotopy between

f and g. A map which is homotopic to a constant function is called null-homotopic.

[15][p.12]

A homotopy of paths (see A.0.0.8, p.186) in X is a family ft : I → X, with 0 ≤ t ≤ 1

and I = [0, 1] such that:

1. The end points ft(0) = x0 and ft(1) = x1 are independent of t.

2. The associated map, given by F : I × I → X, (s, t) 7→ ft(s), is continuous. [42]

Remark 2.3.0.12. Homotopy defines an equivalence relation. The equivalence class of the

path f is denoted by [f ] and is called the homotopy class of f .

Definition 2.3.0.13 (Fundamental Group). The fundamental group of X with base point

x0, denoted by π1(X,x0), is defined as the set of all homotopy classes [f ] of loops (see

A.0.0.10, p.186) f : I → X with base point x0.
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Remark 2.3.0.14. 1. The fundamental group π1(X,x0) is actually a group with respect

to the product [f ][g] = [ν], where ν(u) = f(2u) for 0 ≤ u ≤ 1/2 and ν(u) = g(2u− 1)

for 1/2 ≤ u ≤ 1. The inverse is given by [f ]−1 = [f(1− u)].

2. The fundamental group of a path-connected space (A.0.0.9, p.186) is independent (up

to isomorphism) of the base point x0. Thus, the fundamental group of a path-connected

space is a topological invariant.

3. If the fundamental group of a space is trivial, the space is called simply-connected.

[42]

Definition 2.3.0.15 (Covering Space). A covering of a topological space X is a topological

space X̃ together with a map p : X̃ → X satisfying the following condition: there exists an

open cover {Uα} of X such that for every α, p−1(Uα) is a disjoint union of open sets in X̃,

each of which is mapped homeomorphically onto Uα by p. [42, p.56]

Remark 2.3.0.16. 1. If the topological space X has a base point x0, the covering p :

X̃ → X is written as p : (X̃, x̃0)→ (X,x0) with p(x̃0) = x0. We say that x̃0 is a lift of

x0.

2. The covering p : (X̃, x̃0)→ (X,x0) induces a map p? : π1(X̃, x̃0)→ π1(X,x0). Chang-

ing the base point changes the subgroup p?(π1(X̃, x̃0)) to a conjugate subgroup in

π1(X,x0). The map p? is always injective. [42, p.63]

Definition 2.3.0.17. A lift of a map f : Y → X is a map f̃ : Y → X̃ such that p ◦ f̃ = f .

[42, p.60]

Proposition 2.3.0.18 (Homotopy Lifting Theorem). Given a covering space p : X̃ → X,

a homotopy ft : Y → X and a map f̃0 : Y → X̃ lifting f0, there exists a unique homotopy

f̃t : Y → X̃ of f̃0 that lifts ft. [42, p.60]

Remark 2.3.0.19. For paths, we get the path lifting property: let p : X̃ → X be a

covering and f : I → X a path with starting point f(0) = x0. For each lift x̃0 of x0 there is

a unique path f̃ : I → X̃ lifting f and starting at x̃0. [42, p.60]

Proposition 2.3.0.20 (Unique Lifting Property). Let us assume a covering p : X̃ → X

and a map f : Y → X. If two lifts f̃1, f̃2 : Y → X̃ of f agree at one point of Y and Y is

connected, then f̃1 and f̃2 agree on all of Y . [42, p.62]

Definition 2.3.0.21. A topological space X is called semi-locally simply-connected if

every point x ∈ X has an open neighbourhood U ⊂ X such that every closed path σ : I → U

is null-homotopic in X. [15][p.36]

Example 2.3.0.22. Let M be a connected manifold. Every x ∈M has a neighbourhood U

which is homeomorphic to an open ball in Rn and U is therefore simply-connected. In other
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words, M is locally path-connected (A.0.0.10, p.186) and semi-locally simply-connected.

Recall that a manifold is connected if and only if it is path-connected (A.0.0.10, p.186).

As it turns out, we already have all the necessary conditions to show that M has a simply-

connected covering space.

Theorem 2.3.0.23. Every path-connected, locally path-connected and semi-locally simply-

connected space X has a simply-connected covering space X̃.

Even though this is a basic result, we shall give an overview of its construction by virtue

of its importance for this work. For details see [42, p.63–65] (English) or [15] (German).

First, let us make some observations:

Remark 2.3.0.24. 1. Let (X,x0) be a topological space with base point x0 and a cov-

ering p : (X̃, x̃0) → (X,x0). Let us assume that X̃ is simply-connected. By the defi-

nition of a covering (2.3.0.15), every point x ∈ X has a neighbourhood U ⊂ X which

is homeomorphic to Ũ ⊂ X̃. Hence, U is simply-connected. Take a loop γ ∈ π1(X) of

x which lies entirely in U . Then there is a lift γ̃ in Ũ which is null-homotopic in X̃,

since π1(X̃) = 0. Thus, γ = γ̃ ◦ p is null-homotopic in X. The space X is therefore

semi-locally simply-connected. Thus, any space which has a simply-connected covering

space is semi-locally simply-connected.

2. An arbitrary point x̃ ∈ X̃ in a simply-connected space is determined by a unique

homotopy class of paths, starting at x̃0 and ending at x̃. Since the homotopy classes

of paths starting at x̃0 ∈ X̃ are the same as the homotopy classes starting at p(x̃0) =

x0 ∈ X (homotopy lifting property: 2.3.0.19), we are able to describe X̃ in terms of

X.

3. If the fundamental group of X is not trivial, different homotopy classes of paths with

starting point x0 and end point x ∈ X refer to different points in the covering space

(see Figure 2.1). If two paths of X are homotopic, they refer to the same point in X̃.

In other words: Consider a path γ with starting point x0 ∈ X and end point x ∈ X.

If γ lies entirely in a simply-connected domain of X, it produces a single point [γ] = x̃

in the covering X̃. Otherwise, there are non-homotopic paths with starting point

x0 and end point x, additionally producing the points x̃′, x̃′′, . . . , which are called

homologous. The maps transporting x̃ 7→ x̃′, x̃ 7→ x̃′′, . . . are isometries and form the

holonomy group of X in X̃, which we will introduce in the next chapter (3.2.3.7). [55]

Construction Overview. We start with a path-connected, locally path-connected and semi-

locally simply-connected topological space X with base point x0. Based on the previous

remark, we construct a space by identifying points in X̃ with the classes of paths in X

starting at x0.

(X̃, [x0]) := {[γ] | γ is a path in X starting at x0}

46



2.3. The Universal Covering Space

CONTENTS 32

x

x'

x

x'

x

X

X'

X

X

X'

X'

!1

!3

!2

"1

"2

"3

I I

II

J J

X'1

X'1
X'2x'

Figure 11. Development of geodesics of the cylinder.

a tesselation of M̃, each image γP being a cell of the tesselation.

The FP presents two major interests:

• The fundamental group of a given topological manifold M is isomorphic to the fundamental

group of the FP . Since routine methods are available to determine the holonomy group of as a

polyhedron, the problem is considerably simplified.

• The FP allows one to represent any curve in M, since any portion of a curve lying outside the

FP can be carried inside it by appropriate holonomies (figure 11).

As a general conclusion of this section, the method for classifying the topologies of a given manifold

M is :

• to determine its universal covering space M̃

• to find the fundamental polyhedron FP

• to calculate the holonomy group acting on the FP .

In sections 4 to 8 this is done for the two– and three–dimensional homogeneous manifolds.

Figure 2.1.: Paths on a two-dimensional cylinder and their development in the universal
cover. [99]

and the map p : X̃ → X, [γ] 7→ γ(1). Furthermore, we define

U = {U ⊂ X | U is path-connected and open;π1(U, x)→ π1(X,x) is trivial}.

U builds a basis of the topology of X (A.0.0.3, p.185) consisting of simply-connected open

sets. Its existence is granted since X was assumed to be semi-locally simply-connected. To

construct a basis of the topology of X̃, we take the sets

U[γ] = {[γ ◦ υ] | υ is a path in U with υ(0) = γ(1)}.

If [γ′] is in U[γ], U[γ] = U[γ′]. Such that, p−1(U) =
⊔
γ(1)∈U U[γ] is a disjoint union of open

sets. Therefore, X̃ is a covering space with a covering map p.

It remains to be shown that X̃ is simply-connected. Take a point [γ] ∈ X̃ and γt the

path in X that equals γ on [0, t] and is stationary on [t, 1]. The map t 7→ [γt] is a path

in X̃ starting at [x0] and ending at [γ], it is the lift of γ. Since [γ] was arbitrary, X̃ is

path-connected.

If [γ(1)] = [x0], the path is a loop. Because γ = γ1 and [γ] = [γ1] = [x0] (path lifting

property 2.3.0.19), we conclude that γ is null-homotopic. Thus, the path t 7→ [γt] is null-

homotopic, once again due to the path lifting property, and it follows that X̃ is simply-

connected.

Remark 2.3.0.25. 1. For a path-connected, locally path-connected and semi-locally

simply-connected spaceM there exists ∀H ⊂ π1(X,x) a covering X̃ with p?(π1(X̃, x̃)) =
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H. H = {1} gives the simply-connected one. [111, p.39]

2. A simply-connected covering space is called universal covering space (UCS). The

UCS is a covering for any other covering space of X and is unique up to isomorphisms,

which explains the name. [42, p.68]

2.3.1. The Group of Deck Transformations and its Action on M .

Definition 2.3.1.1. If p : X̃ → X is a covering, the set

{h ∈ Hom(X̃) | p ◦ h = p}

where Hom(X̃) denotes the set of all homeomorphisms h : X̃ → X̃ forms a group called the

group of deck transformations (or covering group), denoted by Γ(X̃/X). [111, p.38]

Remark 2.3.1.2 (Notation). If it is clear which covering is meant, we write Γ instead of

Γ(X̃/X).

Remark 2.3.1.3. Let G be a group of homeomorphisms acting on a connected, locally

path-connected space X̃ (2.2.1.1, p.40). The quotient space (or orbit space) X̃/G is the

set of all orbits G(x̃), x̃ ∈ X̃. The natural projection p : X̃ → X̃/G is given by p(x̃) = G(x̃).

The topology of the quotient space X̃/G is given by the quotient topology (A.0.0.6, p.185),

the finest topology such that the projection p is continuous.

1. The action of G on X̃ is called discontinuous if for each compact set K ⊂ X̃ the set

{g ∈ G | gK ∩K 6= ∅} is finite. [84]

2. The action of G on X̃ is called properly discontinuous if every point x̃ ∈ X̃ has a

neighbourhood U such that the set {g ∈ G | g(x̃) ∩ U 6= ∅} is finite.

3. The action of G on X̃ is called free if it is fixed-point-free. Thus, ∀x̃ ∈ X̃, ∀g 6= id ∈
G : g(x̃) 6= x̃. That is, if every g ∈ G moves any x̃ ∈ X̃ [111, p.39]. Note that a free

and transitive action is called sharply transitive. Compare with remark 2.2.2.3.

Example 2.3.1.4. Let M be a manifold and M̃ its UCS. Take the group of deck trans-

formations of the covering p : M̃ → M . The quotient space M̃/Γ consists of the orbits

Γ(x̃), x̃ ∈ M̃ .

1. For a x̃ ∈ M̃ , the set {Γ(x̃) | p(x̃) = x} is discrete (2.2.1.5, p.42) as a consequence

of the quotient topology. Thus, the group of deck transformations of a covering acts

properly discontinuously on the covering space since an admissible neighbourhood can

always be found. As an immediate consequence, M is Hausdorff.

2. Since p ◦ h = p, any deck transformation is a lift of the covering map p. The identity

is also a lift of the covering p. Now, assume there is an h ∈ Γ and x̃ ∈ X̃ such that
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h(x̃) = x̃. From the unique lifting theorem (2.3.0.20) follows h = id. Hence, Γ acts

freely on M̃ . [111]

Definition 2.3.1.5. Let Γ be a group acting on a topological space X.

1. If Γ acts properly discontinuously and the quotient space X/Γ is compact, we say that

the action (or Γ itself) is cocompact (or uniform).

2. If X is a Riemannian manifold and Γ a group of isometries such that the quotient X/Γ

has finite volume, Γ is said to be cofinite. [99, p.157]

Remark 2.3.1.6. Obviously, every cocompact group is cofinite. The converse is not true.

Sometimes cofinite and cocompact groups are called (uniform) lattices. Caution is re-

quired, because of the more common definition of a lattice as a discrete subgroup of Rn

isomorphic to Zn. [99]

2.3.2. Manifolds as Quotient Spaces

Definition 2.3.2.1. A covering is called normal (regular) if p?(π1(X̃, x̃)) is a normal sub-

group of π1(X,x) for some (hence any) x̃ ∈ X̃. [111, p.35]

Proposition 2.3.2.2. Let p : X̃ → X be a covering with Γ, the group of deck transforma-

tions. The covering is normal if and only if Γ acts transitively on every fibre p−1(x). If the

covering space is simply-connected, the group of deck transformations is isomorphic to the

fundamental group of X: Γ(X̃/X) ≈ π1(X,x). [111, p.38;40]

Proof. p?(π1(X̃, x̃)) is a normal subgroup in π1(X,x) if and only if its normalizer is the

whole set π1(X,x). Therefore, p?(π1(X̃, x̃)) is the union of conjugacy classes of π1(X,x).

Conjugacy classes refer to changes of the base point in p?(π1(X̃, x̃)). Given a pair x̃, ỹ ∈
p−1(x), there exists [σ] ∈ π1(X,x) such that: [σ] p?(π1(X̃, x̃))[σ]−1 = p?(π1(X̃, ỹ)). The lift

σ̃ of σ in X̃ takes x̃ to ỹ. Since x̃, ỹ ∈ p−1(x), the lift σ̃ is a deck transformation. In this

case, p−1(x) = {γ(x̃) | γ ∈ Γ, p(x̃) = x} and Γ acts transitively on every fiber p−1(x).

We define a map as follows: let x ∈ X be an arbitrary point. For x̃, ỹ ∈ p−1(x) in X̃ there

is an γ ∈ Γ such that γ(x̃) = ỹ (Γ acts transitively). Since they are both in p−1(x), p ◦ γ is a

loop in X based on x. Since Γ acts freely, this map defines an isomorphism between Γ and

π1(X,x) if X̃ is simply-connected. Thus,

π1(X,x) ≈ Γ(X̃/X).

[111]

Theorem 2.3.2.3. Let Γ be a group of homeomorphisms acting freely and properly dis-

continuously on a connected, locally path-connected space X̃. Then the natural projection

p : X̃ → X̃/Γ is a normal covering, whose group of deck transformations is Γ. [111, p.39]
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Proof. Let x̃ ∈ X̃ be an arbitrary point. Since Γ acts properly discontinuously on X̃, there

exists a neighbourhood U of x̃ such that {γ ∈ Γ | γ(Ū)∩ Ū} = {id}. Now γ(U) ' p(U),∀γ ∈
Γ and p−1p(U) =

⊔
γ∈Γ γ(U). As this is a disjoint union, p is a covering. Γ is a subset of

the group of deck transformations. Since a fibre is given by p−1(p(U)) = Γ(U) and Γ acts

transitively on each fibre and the group of deck transformations is free, Γ has to be the full

group of deck transformations and the covering is normal. [111, p.40]

Corollary 2.3.2.4. Let X be connected, locally path-connected and semi-locally simply-

connected. Then X ' X̃/Γ, where Γ is a group of homeomorphisms acting freely and

properly discontinuously on a simply-connected space X̃. [111, p.40]

Outline of the Proof. As X is connected, locally path-connected and semi-locally simply-

connected, we already know that there is a universal cover X̃ with a covering map p :

X̃ → X end therefore a normal covering (p?(π1(M̃, x̃)) = {1}). Let Γ be the group of deck

transformations of p : X̃ → X. Take p′ : X̃ → X̃/Γ, which is another normal covering.

Furthermore, we can define a covering p′′ : X̃/Γ → X, by p = p′′ ◦ p′. For details see [111,

p.40].

X̃ - X̃/Γ
@
@
@
@
@
@
@
@
@R ?

X

p′

p p′′

Since X̃/Γ and X have the same universal covering as well as the same group of deck

transformations and p′ is a normal covering, p′′ has to be a homeomorphism and

X ' X̃/Γ.

Remark 2.3.2.5. For a connected, simply-connected and locally path-connected space X̃,

the coverings p : X̃ → X, with varying X, are just the projections X̃ → X̃/Γ, with varying

Γ acting freely and properly discontinuously on X̃. [111, p.40]

Proposition 2.3.2.6. Let Γ be a group acting on a manifold M̃ . The quotient space M̃/Γ

is a manifold (which is Hausdorff) with a covering projection M̃ → M̃/Γ if and only if Γ

acts freely and properly discontinuously. [99, p.155]
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2.4. Conclusion

Isom(M3), the isometry group of the spatial part of the universe, is a Lie group acting on

M3. Thus, M3 is a Isom(M3)-manifold and the isometry group determines the structure

ofM3. Furthermore,M3 is homeomorphic to the quotient M̃3/Γ, where M̃3 is its universal

covering space and Γ is the group of deck transformations of the universal covering, isomor-

phic to the fundamental group of M3. Thus, all the possible candidates for the topology of

the spatial universe can be constructed by a simply-connected manifold and a group acting

freely and properly discontinuously on it.
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3. Geometry of the Universe

In this chapter we shall give the manifold M3 a geometric structure. Let us now consider

the geometry of the spatial universe.

What do we mean by the term “geometry”? Throughout history, three important ap-

proaches have been made, which we try to explain in a few words:

The first approach was exemplified by Euclid and discusses only objects such as points and

lines. Geometric structure is determined by distances between points and angles between

lines. The standard metric of the Euclidean plane is given by Pythagoras: s2 = x2 +y2. The

Euclidean approach is not restricted to Euclidean geometry but can also be applied to non-

Euclidean geometry. In the nineteenth century the second approach was made, differential

geometry developed and distances between points were first defined as the infimum of the

lengths of the paths joining them. These lengths can be calculated with the help of integrals.

The infimum is always taken along geodesics, which play the same role as lines in Euclidean

space. The standard metric of Euclidean space now takes the form: ds2 = dx2 + dy2. The

third approach, which is the one we mainly focus on, was first formulated by Klein. Here,

we have a space M and a group G acting on it. The group G consists of isometries, which

are distance-preserving maps. Geometry is interpreted as those properties which are left

invariant by the action of G. Every isometry of the Euclidean plane can be represented as

the combination of a translation and a rotation, where any rotation stabilizes a point. From

this, the Riemannian metric can be reconstructed. [92]

3.1. Geometric Structures on Manifolds

First, we shall generalize the definition of a G-manifold by letting G be a pseudogroup of an

arbitrary Riemannian manifold which is connected and homogeneous.

Definition 3.1.0.7. Let (X, dX), (Y, dY ) be metric spaces (1.1.2.17, p.12) and k > 0 ∈ R.

A function s : X → Y such that

dY (s(x), s(y)) = kdX(x, y) ∀x, y ∈ X,

is called a change of scale with scale factor k. A bijective change of scale is called a

similarity. [84, p.21]
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Remark 3.1.0.8. 1. An isometry is a similarity with scale factor k = 1. The group of

isometries of a metric space X builds a subgroup of the group of similarities of X.

2. Notation: In the following, M shall denote a connected and homogeneous Riemannian

manifold.

Definition 3.1.0.9. Let G be the group of transformations of a Riemannian manifold M .

A metric is called G-invariant if all transformations in G are motions (isometries) with

respect to this metric. [103]

Remark 3.1.0.10 (Existence of a G-Invariant Riemannian Metric). We need not assume

M to be a homogeneous Riemannian manifold. Less strong requirements would suffice: a

homogeneous space can be written as the quotient G/Gx, Gx ⊂ G (see section 2.2.2, p.42).

This space is Hausdorff if and only if Gx is compact (A.1.0.15, p.187). The stabilizer has to

be compact for every point, but since the space is homogeneous it is sufficient to require this

for an arbitrary point. Furthermore, there exists a unique structure of a smooth manifold on

G/Gx. (See 2.2.2.7 and the subsequent Theorem 2.2.2.8 on page 43.) The action is effective

(2.2.1.2, p.40), since the only element in G/Gx which acts trivially is in Gx. In this case,

there exists a G-invariant Riemannian metric, turning M into a Riemannian manifold. [96]

A G-invariant metric can be constructed as follows: as the homogeneous space is a manifold,

one can chose an Euclidean metric in every tangent space TxM which is invariant under the

group Gx. The metric can be moved by the transitive action of G on M at every point,

which turns the metric to a G-invariant Riemannian metric. [103]

If we strictly replace Rn by M in the Definition 2.1.0.2 of a G-atlas, we obtain the defi-

nition of a (G,M)-atlas. Thus, we construct manifolds locally modeled on a connected and

homogeneous Riemannian manifold.

Definition 3.1.0.11. Let M be a connected and homogeneous Riemannian manifold and G
a pseudogroup of its similarities. A (G,M)-structure for a manifold M is a (G,M)-atlas for

M . [84, p.344]

Definition 3.1.0.12. A (G,M)-manifold is a manifold M together with an (G,M)-structure

for M . [84, p.344]

Remark 3.1.0.13. 1. We use Klein’s idea of geometry proposed in the Erlangen pro-

gram (Erlanger Programm) in 1872. The geometry of a space is given by a system of

local coordinates modeled on a homogeneous Riemannian manifold M = G/H with

overlapping coordinate patches. Coordinate changes correspond to local restrictions

of transformations of elements of G. [36]

2. Just as every point of a G-manifold has a neighbourhood homeomorphic to an open

ball in Rn, every point of a (G,M)-manifold has a neighbourhood homeomorphic to

an open ball in M.
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3. We recall that if the action of G on M is effective, G can be identified with the isometry

group Isom(M) (2.2.2.5, p.42).

Example 3.1.0.14 (Manifolds of Constant Curvature). 1. As we have seen in Chapter

2 (2.2.2.6, p. 42), Isom(En) ≈ Rn oOn(R). A (Isom(En),En)-manifold M is called a

flat or Euclidean manifold.

2. The group of all isometries of the sphere coincides with the group of all rotations in

Rn+1 (2.2.2.6, p. 42). Thus, Isom(Sn) = SOn+1(R). A (Isom(Sn),Sn)-manifold is

called a spherical or elliptic manifold.

3. If G is the group of isometries of Hn, a (G,Hn)-manifold is called a hyperbolic

manifold. [99, p.125–127]

In Chapter 2 (2.2.2.6, p.42), we have seen that the group of isometries of Hn is iso-

morphic to the positive Lorentz group POn,1(R). There are different representations

of the space Hn from which we shall now present the upper half-space model:

Hn is isometric to the upper half-space

Un := {(x1, . . . , , xn) ∈ En : xn > 0}.

The isometry group of Un is isomorphic to the group of Möbius transformations

of the space Ên−1, which is the one-point-compactification of En−1 and therefore

En−1 ∪∞.

In order to give the definition of the group of Möbius transformations, we have to go

into more detail:

A reflection ρ of En in the hyperplane

P (a, t) := {x ∈ En : a · x = t}, t ∈ R, a . . . unit vector in En

is defined by the formula ρ(x) = x+ 2(t− a · x)a with a ∈ R.

A Möbius transformation of Ên is a finite composition of reflections of Ên in spheres

of Ên. That is in either Euclidean spheres

S(a, r) = {x ∈ En : |x− a| = r}

centered at a ∈ En with radius r ∈ R, or in an extended planes P̂ (a, t) = P (a, t) ∪∞.

The group of Möbius transformations of Ên is called the Möbius group of Ên, denoted

by M(Ên).

Thus, we have:

Isom(Hn) ≈M(Ên−1). [84]
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Remark 3.1.0.15. For dimensions two and three, the group of Möbius transformation is

isomorphic to the projective special linear groups PSL2(R) and PSL2(C) respectively.

[99]

In dimension two, every simply-connected and homogeneous manifold is of constant cur-

vature and therefore belongs to one of these three classes of manifolds. In section 3.3, we

will see that in dimension three there are five more classes of simply-connected manifolds

which are homogeneous but not of constant curvature.

Definition 3.1.0.16. A metric (G,M)-manifold is a connected (G,M)-manifold with G =

Isom(M). [84, p.346]

Remark 3.1.0.17. For any metric (G,M)-manifold M there is an induced metric on M

from M. The topology of M is then the metric topology (A.0.0.2, p.185) determined by the

induced metric.

Since M is a homogeneous manifold, any (G,M)-manifold is locally homogeneous. Follow-

ing Scott [92] we define:

Definition 3.1.0.18 (Geometric Structure). A metric on a manifold M is said to be locally

homogeneous if, given x and y in M , there are neighbourhoods U of x and V of y and

an isometry (U, x) → (V, y). A manifold admits a geometric structure if it admits a

complete, locally homogeneous metric.

3.2. The Geometric Structure is Induced by the Universal Cover

3.2.1. Unrolling-Developing

3.2.1.1. Story of Tori – Unrolling the Two-Dimensional Torus in R4

In this section we closely follow Kriegl [54].

Topologically, an n-dimensional torus Tn is defined as the product S1×S1× · · ·×S1 = Sn1
(2.2.0.8, item 5; p. 40). As a product of Lie groups, it is also a Lie group. For dimension two,

we can construct T2 = S1×S1 as follows: take a rectangle and glue one pair of opposite sides

together such that we get a cylinder. Glue together the cycles on the top and bottom of the

cylinder, giving us a two-dimensional torus (short 2-torus) T2 (see Figure 3.1). Assuming

the sides of the rectangle have the lengths a and b (a, b ∈ R), the gluing maps are given by

the two translations γ1, γ2 : R2 → R2, γ1 : (x, y) 7→ (x + b, y) and γ2 : (x, y) 7→ (x, y + a).

T2 can be written as the quotient space R2/Γ, where Γ consists of the two translations

γ1, γ2. Because we constructed the 2-torus by gluing opposite sides of a rectangle, it can be

equipped with a homogeneous Euclidean metric and is therefore a two-dimensional, flat and

homogeneous Riemannian manifold. Thus, its scalar curvature (1.1.3.12, p.18) vanishes at

every point. We call the 2-torus with a flat metric a flat 2-torus T2
F .
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Figure 3.1.: Constructing a torus by gluing opposite facets of a rectangle. [118]

Given a manifold M , how to decide about its geometric structure? Usually, one thinks of

a 2-torus to be embedded in R3, where we fail to define a flat metric on it. We can describe

the 2-torus embedded in R3 as the set of all points which have a constant distance a ∈ R to

a circle with radius A ∈ R, where a < A. Therefore, we can describe it by the equation:

z2 + (
√
x2 + y2 −A)2 = a2.

An elliptic Riemannian metric for the embedded torus in R3 is given in polar coordinates

by:

ds2 = (R+ r cos(ϕ))2(dΨ2 + r2dϕ2).

For this metric, the scalar curvature is given by

K = 6 · cos(ϕ)

r(R+ r cos(ϕ))
,

which does not vanish at every point. We call the so-constructed torus with an elliptic metric

in R3 an embedded 2-torus T2
E .

Let us now unroll the embedded torus in R4: we consider the inverse image of T2
E

with a2 = A2 − 1 under the stereographic projection R4 ⊃ S3 → R3 based on the point

(0, 0, 0, 1) ∈ R4.

The stereographic projection with respect to the point p ∈ S3 is given by the projection:

z 7→ z − 〈z, p〉p
1− 〈z, p〉 .

Thus, we have 〈z, p〉 = y2 with z = (x1, y1, x2, y2), where 〈, . , .〉 denotes the standard

scalar product. The projection is given by:

(x1, y1, x2, y2) 7→ 1

1− y2
(x1, y1, x2, 0).

The preimage of T2
E is the set of all (x1, y1, x2, y2) ∈ R4 fulfilling the equations:

x2
1 + y2

1 + x2
2 + y2

2 = 1 (3.1)
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(
x2

1− y2
)2 + (

√
x2

1 + y2
1

1− y2
−A)2 = A2 − 1, (3.2)

where equation 3.1 guarantees that (x1, y1, x2, y2) ∈ S4 and equation 3.2 forces (x1, y1, x2, y2)

to lie on the torus. Equation 3.2 can also be written as:

1− (x2
2 + y2

2) =
1

A2
.

Thus, T2
E is described by the equations

x2
1 + y2

1 =
1

A2
and x2

2 + y2
2 =

a2

A2
.

We conclude that the embedded torus can be described as the product of two circles in R4

and is, in fact, a 2-torus. One of its parametric representations is given by:

(φ, ψ) 7→ (
1

A
cos(Aφ),

1

A
sin(Aφ),

a

A
cos(

Aφ

a
),
a

A
sin(

Aφ

a
)).

This is an isometry R2 → R4. One can prove that by calculating the Jacobi matrix, which

has to build an orthonormal basis. To summarize, the 2-torus can be constructed in R4 by

rolling a rectangle while preserving the Euclidean metric. One such metric is given by:

ds2 = adΨ2 + 2bdΨϕ+ cdϕ2 with a, b, c . . . constant.

For this metric, the scalar curvature vanishes at every point. The torus cannot be smoothly

embedded in R3 with this metric.

Remark 3.2.1.1. The spatial part of the universe can be described by a three-dimensional

manifold, which we do not want to view embedded in Rn. As remarked in Chapter 1

(1.1.1.2(6), p.7), the manifold is a space on its own. The picture of an embedded manifold

sometimes leads to false associations: on the one hand, we have seen that the 2-torus is

locally isometric to its UCS, the Euclidean plane. On the other hand, we know that the flat

2-torus can be embedded in R3 and can be equipped with a spherical metric. Nevertheless,

a two-dimensional being living on a 2-torus would experience a flat environment. In other

words, we focus on the inner geometry of a manifold. The geometry is given by the intrinsic

metric and does not depend on the surrounding space.
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3.2.2. The Developing Map

In this section, we follow Thurston [99], if not cited otherwise.

The concept of unrolling a torus used in the previous section, enables us to decide about

its geometric structure. In the following, we aim to develop a general concept of unrolling a

manifold – the developing map:

Let M be a (G,M)-manifold with M being a connected, real-analytic manifold and G a

group of real-analytic diffeomorphisms acting transitively on M.

Remark 3.2.2.1. Since we have seen in Chapter 2 (2.1.0.5, p.38) that any Riemannian

manifold has a real-analytic stiffening, this poses no restriction. Here, any element of G is

completely determined by its restriction to an open subset of M.

Take an open covering U with coordinate patches Ui ∈ U and coordinate charts ϕi : Ui →M
such that {(Ui, ϕi) | Ui ∈ U} is a (G,M)-atlas of M .

A transition map γij : ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) locally agrees with an element

of g ∈ G by the definition of a (G,M)-manifold. Thus, we get a locally constant map, which

we also call γij : Ui ∩ Uj → G.

Composing a coordinate chart ϕj : Uj → M with a map γij(x) for x ∈ Ui ∩ Uj modifies ϕj

in such a way that it agrees with ϕi on the whole intersection. (Observe that Ui ∩ Uj is

connected.) Therefore, we get an extension of ϕj on Ui ∪ Uj →M.

However, if we try to extend this concept further it breaks down. In order to generalize the

coordinate charts, we have to pass to the universal cover:

Let p : M̃ → M be the universal covering and x0 the base point of M . As we have seen in

Chapter 2 (2.3.0.24, p.46), we can think of M̃ as the space of homotopy classes of paths in

M starting at x0. Points [α] in M̃ are represented as the end points α(1) = p([α]).

Now we take a path α in M which starts at x0. We subdivide α at points

x0 = α(0), x1 = α(t1), . . . , xn = α(1)

such that each subpath is contained entirely in a domain of a coordinate chart (Ui, ϕi).

Going along α, we modify each chart ϕi such that it agrees on Ui−1 ∩ Ui with ϕi−1. These

adjusted charts form an “analytic continuation” of ϕ0 along α (see Figure 3.2). The last

adjusted chart is:

ϕ
[α]
0 = γ01(x1)γ12(x2) . . . γn−1,n(xn−1)ϕn.

Remark 3.2.2.2. If one takes a different choice of subpaths and/or another explicit element

of the homotopy class of α, there are neighbourhoods U and V of α1(1) = α2(1) such that

ϕα1
0 = ϕα2

0 on U ∩ V . Therefore, the notation ϕ
[α]
0 is well-defined.
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Figure 3.2.: Analytic continuation. Left: the path in M ; right: its germ in the UCS M̃ . [99]

Definition 3.2.2.3 (Developing Map). For a fixed base point x0 and an initial chart ϕ0,

a developing map of a (G,M)-manifold M is a map D : M̃ → M which agrees with

the analytic continuation of ϕ0 along each path in a neighbourhood of the path’s end point

x = σ(1). In symbols:

D = ϕσ0 ◦ p

in a neighbourhood of [σ] ∈ M̃ . If we change the initial data (the base point and the initial

chart), the developing map changes by composition in the range with an element of G. [99,

p.140]

Remark 3.2.2.4. 1. The covering map is a local homeomorphism from the topologi-

cal space M̃ into the (G,M)-manifold M and is locally expressible as an element

of G. Thus, it is a local G-isomorphism (2.1.0.4, p.38) and therefore preserves the

G-structure. [99, p.112] Consequently, it induces the (G,M)-structure on the UCS

through the covering map. Using the notation above, the (G,M)-structure for M̃ can

be constructed as follows:

Let {Uij} = p−1(Ui) be a covering of M̃ , given by the preimages of the covering

U = {Ui} of M under the covering map. We define the local homeomorphisms pij =

p|Uij : Uij → Ui to be the restrictions of the covering map on the sets Uij . Furthermore,

we define the maps ϕij : Uij →M, ϕij = ϕi ◦pij , which map the Uij homeomorphically

to the open sets ϕ(Ui) ⊂M.

Suppose Uij ∩ Ukl is not empty, then Ui ∩ Uk is not empty either and the transition

map

ϕij ◦ ϕ−1
kl : ϕkl(Uij ∩ Ukl)→ ϕij(Uij ∩ Ukl)
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satisfies ∀x ∈ ϕkl(Uij ∩ Ukl):

ϕij ◦ ϕ−1
kl (x) = (ϕi ◦ pij) ◦ (ϕk ◦ pkl)−1(x) = (ϕi ◦ pij ◦ p−1

kl ◦ ϕ−1
k )(x) = (ϕi ◦ ϕ−1

k )(x).

Thus, the transition maps ϕij ◦ ϕ−1
kl are locally expressible as elements of G and

{Uij , ϕij} build an (G,M)-atlas on M̃ [84]. This turns the covering map into a local

diffeomorphism and the developing map into a local (G,M)-diffeomorphism between

M̃ and M. [99, p.140]

2. As the path above was arbitrarily chosen, we can consider a loop σ with base point

x0. Here, the analytic continuation ϕσ0 along σ is comparable to the initial chart ϕ0,

because the starting and end point are the same. Since all coordinate changes are in

G, the analytic continuation is of the form: ϕσ0 = gσ ◦ ϕ0 for an g ∈ G.

If we choose a lift x̃0 ∈ M̃ of x0, the path lifting property (2.3.0.19, p.45) states that σ

lifts to a unique σ̃ in M̃ based on x̃0. Let x̃1 be the end point of σ̃ in M̃ . Then there is a

unique deck transformation Tσ̃ with Tσ̃(x̃0) = x̃1, which depends only on the homotopy

class of σ in π1(M,x0). Given another loop ν, based on x0 in M , the lift σ̃ ◦ ν is given

by σ̃ ◦ (Tσ̃ ◦ ν̃) and the corresponding deck transformation is Tσ̃ν = Tσ̃ ◦ Tν̃ . [84]

If D is a developing map, D ◦Tσ is another one and there exists a unique gσ such that

D ◦ Tσ = gσ ◦D.

This defines a group homomorphism between the fundamental group π1(M) of M and

the pseudogroup G of M. [99]

Definition 3.2.2.5 (Holonomy, Holonomy Group). Let σ be an element of the fundamental

group of M . The element gσ ∈ G where the analytic continuation of σ can be written as

ϕσ0 = gσ ◦ ϕ0, is called the holonomy of σ. The homomorphism H : π1(M) → G, σ 7→ gσ

is called holonomy of M and its image the holonomy group H(π1(M)) of M.

Remark 3.2.2.6. 1. For a Riemannian manifold in the sense of Definition 1.1.1.1 (p.6),

we can give a more illustrative description of the holonomy group: consider a loop σ

based on x ∈ M . We denote the parallel transport (1.1.3.5, p.16) of tangent vectors

along σ by τσ. τσ is a linear transformation in the tangent space TxM and therefore

an element of On(R). The set Ψx = {τσ}, with σ being a loop based on x ∈ M ,

forms a group. It is called the linear holonomy group at x and is a subgroup of

On(R). If the manifold is orientable, the holonomy group is contained in SOn(R). For

two points x, y ∈M , the corresponding holonomy groups Ψx,Ψy are isomorphic. The

isomorphism is given as follows: let β be a curve from x to y, then Ψx → Ψy, τ 7→
τβττ

−1
β . Thus, we can speak of the (linear) holonomy group Ψ of M . If we only

consider the null-homotopic loops, we get the restricted holonomy group Ψ0. This
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group is the connected component of the identity and therefore a compact subgroup.

The holonomy of M can be defined alternatively as: h : π1(M,x)→ Ψx/Ψ
0
x, h([σ]) =

τσ. The map h is injective and thus, h(π1(M,x)) = Ψx/Ψ
0
x (2.2.0.7, p.39). [53] [103]

2. The group Ψ/Ψ0 is called the holonomy representation (B.1, p.189) of the funda-

mental group. [35]

3. The so-called “developing pair” (D,H) is unique up to composition/conjugation by

elements in G. The developing map D induces the (G,M)-structure on the universal

covering space M̃ and the holonomy H determines the action of π1(M) on M̃ . There-

fore, given a developing pair (D,H), the geometric structure of M is determined. For

a more detailed description of how exactly the structure can be reconstructed from the

developing pair see [35].

3.2.3. Locally Homogeneous Riemannian Manifolds and The Condition of Completeness

Definition 3.2.3.1. A (G,M)-manifold M with UCS M̃ is called complete if the developing

map D : M̃ →M is a covering map. [99, p.142]

Remark 3.2.3.2. For a metric space we distinguish between geodesic completeness (1.2.7.3,

p.32) and the definition of a complete metric space. The latter states that a metric space X

is called complete if and only if every Cauchy sequence converges in X [84] . It is a direct

consequence of the Rinow-Hopf theorem that a Riemannian manifold is geodesically complete

if and only if it is a complete metric space. For example, any compact or homogeneous

Riemannian manifold is complete. [83]

Remark 3.2.3.3 (Discussion of the Requirement of Completeness). 1. In Chapter 1, we

restricted our considerations to complete space-times. Thus, M3 is also assumed

to be complete throughout this work. We therefore assume M to be complete and

locally homogeneous. In this case, M is locally isometric to a homogeneous manifold.

The Definition 3.2.3.1 above is fulfilled and the two definitions of completeness are

equivalent.

2. In general, a locally homogeneous manifold need not be locally isometric to a homoge-

neous manifold. The equivalence is true if we assume the manifold to be complete. [100]

3. M is a homogeneous Riemannian manifold and is therefore a complete Riemannian

manifold. Any (G,M)-manifold is locally homogeneous.

4. If we assume (M̃,G) to be a homogeneous manifold and M to be a (M̃,G)-manifold,

M is complete since the covering map is a local isometry. [96]

Every covering space of the manifold M inherits a metric in a natural way such that the

covering map is a local isometry. Therefore, if M admits a complete geometrical structure,
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the UCS M̃ inherits a complete and locally homogeneous metric. Singer [93] showed that

such a metric must be homogeneous and therefore the group of isometries acts transitively.

Let M be as specified above and, in addition, be simply-connected. Since any covering of a

simply-connected space is a homeomorphism, we can identify M with M̃ . The identification

is canonical up to composition with an element of G. Thus, M is a (M,G)-manifold where

M can be identified with its UCS and G its group of isometries. [92, p.474]

In section 3.1 we argued that the geometric structure is given by a (G,M)-atlas, whereas in

section 3.2, we argued that the geometric structure is induced on the covering space through

the covering map. For complete manifolds modeled on a simply-connected manifold M these

geometric structures coincide.

In this case, the complete (G,M)-manifold is entirely determined by its holonomy group.

Proposition 3.2.3.4. If G is a group of analytic diffeomorphisms of a simply-connected

manifold M, any complete (G,M)-manifold may be reconstructed from its holonomy group

Γ as the quotient space M/Γ. [99, p.143]

Remark 3.2.3.5. 1. Thus, given the holonomy group of such a manifold, we can decide

about its geometrical structure up to stiffening or relaxation.

2. In the case of M not being simply-connected, we pass to the universal covering p :

M̃→ M. Due to the path lifting property (2.3.0.19) there is a unique diffeomorphism

g̃ : M̃ → M̃ for every diffeomorphism g ∈ G and every pair of points x̃1, x̃2 ∈ M̃
satisfying g(p(x̃1)) = p(x̃2) with:

a) g̃(x̃1) = x̃2 and

b) g(p(x̃)) = p(g̃(x)), ∀x̃ ∈ M̃.

The diffeomorphism g̃ ∈ G̃ is said to cover g ∈ G. G̃ is actually a group and the map

G→ G̃, which maps every element of g ∈ G to a diffeomorphism g̃ : M̃→ M̃ covering g.

This is a group epimorphism with the kernel being the group of deck transformations

of the universal covering p [103]. G̃ is a Lie group and can be described in the form of

an extension:

1→ Γ→ G̃→ G→ 1.

Thus, G is isomorphic to G̃/Γ. There is a one-to-one correspondence between (G,M)-

structures and (G̃, M̃)-structures, even though the holonomy group contains more in-

formation in respect to the (G̃, M̃)-structure. [99]

3. In the situation described above M̃ is called model space of M.

Corollary 3.2.3.6. Assuming G is a Lie group and M a manifold on which G acts transi-

tively with compact stabilizers Gx, any discrete subgroup (2.2.1.5, p.42) of G acts properly

discontinuously on M. [99, p.157]
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We will prove Corollary 3.2.3.6 in Chapter 4 (4.3.0.4, p.81). In light of Chapter 2 (2.3.2.5,

p.50), where we stated that the topology of manifolds with the same UCS depends only on

the group of deck transformations, we can now state:

Corollary 3.2.3.7. Let G be a Lie group acting transitively, analytically and with com-

pact stabilizer on a simply-connected manifold M. If M is a closed differentiable manifold,

(G,M)-structures on M (that is, (G,M)-stiffenings of M up to diffeomorphism) are in one-

to-one correspondence with conjugacy classes of discrete subgroups of G that are isomorphic

to π1(M) and act freely on M with quotient M . If M is not closed, we get the same corre-

spondence if we look only at complete (G,M)-structures. [99, p.157]

We end this section with the definition of a “geometry”:

Definition 3.2.3.8. An n-dimensional geometry is a simply-connected, homogeneous,

Riemannian n-manifold M for which there is at least one compact manifold modeled on

(M, S(M)) with S(M) being the group of similarities of M. [84, p.368]

Definition 3.2.3.9. A geometric n-manifold is a (G,M)-manifold with G being a group

of similarities of an n-dimensional geometry M. [84, p.368]

3.3. Three-Dimensional Model Geometries

We shall classify all different geometries a three-dimensional complete and locally homoge-

neous Riemannian manifold can have. In the previous section we argued that the geometric

structure is induced by the universal covering space by the covering map. Therefore, ge-

ometric structures on three-dimensional simply-connected and homogeneous Riemannian

manifolds are representative for each class of locally equivalent geometries we are interested

in. This leads us to the question of which three-dimensional geometries there are?

First, we must define geometry classes. In order to achieve this, we have to specify

which geometries we distinguish and which structures we view as being of the same class

of geometric manifolds. For instance, if we have a (G,M)-manifold and a (H,M)-manifold

where H ⊂ G, we want them to be in the same class of geometric manifolds. In other

words, relaxations and stiffenings should belong to the same class of geometry. If we use

distances to describe geometry, scaling a metric (with a constant factor) leads to different

geometric structures in Riemannian geometry. We do not want to distinguish between

metrics which are the same up to scaling. Let us also consider a Hopf fibration (see, for

instance, [96]) of the sphere. A family of spherical metrics can be constructed by scaling the

metrics in one component while keeping the metric in the orthogonal component constant.

We expand or contract circles while keeping the orthogonal component constant. These

geometric structures should correspond to the same class of geometries. Based on these

considerations we define:
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3.3. Three-Dimensional Model Geometries

Definition 3.3.0.10. Two n-dimensional geometries M and N are said to be equivalent if

there is a diffeomorphism φ : M→ N such that φ induces an isomorphism φ? : Isom(M)→
Isom(N) defined by

φ?(g) = φgφ−1. [84, p.368]

This definition of equivalent geometries is in correspondence with the equivalence of space-

time models defined in 1.2.1.3 (p.21). Now, we can define representatives for each class of

geometry up to equivalence:

Definition 3.3.0.11 (Model Geometry). A model geometry (G,M) is a manifold M
combined with a Lie group G of diffeomorphisms of M such that:

1. M is connected and simply-connected;

2. G acts transitively on M with compact stabilizers;

3. G is not contained in any larger group of diffeomorphisms of M with compact stabiliz-

ers; and

4. there exists at least one compact manifold modeled on (G,M). [99, p.180]

Remark 3.3.0.12. 1. Condition (3) ensures that enlarging the group G does not de-

crease the set of manifolds with such a structure. Condition (4) eliminates all geome-

tries which are not serving as models for any compact manifold. Condition (2) ensures

that the manifold is complete. According to (3), G is chosen to be maximal. It follows

that the metric is G-invariant, as we have already seen, in the last section. [99]

2. In section 3.1.0.14, we introduced three different manifolds of constant curvature. All

three of them are model geometries. They are homogeneous and isotropic. Isotropy,

as opposed to the condition of homogeneity, is not a necessary precondition.

Definition 3.3.0.13. A manifold M is said to admit a geometry modeled on some model

geometry (M,G) if ∃Γ < G : M/Γ ∼= M and M→M/Γ is a covering map.

In order to characterize all three-dimensional model geometries, we need a short introduc-

tion to bundles:

3.3.1. Bundles

Definition 3.3.1.1 (Fiber Bundle). Let E,B and X be smooth manifolds and π : E → B

be a smooth map. The triple (π,E,B) is a fiber bundle with fiber X, basis B and total

space E if:

(a) π is surjective,
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(b) there exists an open covering (Ui)i∈I of B and diffeomorphisms

hi : π−1(Ui)→ Ui ×X

such that hi(π
−1(x)) = {x} ×X for all x ∈ Ui (local trivialization of the bundle). [96,

p.31]

Remark 3.3.1.2. 1. In this situation we say that the space E fibers over B with fiber

X.

2. With the vocabulary of geometric (G,X)-manifolds, a fiber bundle can be formulated

in the following way: let G be a pseudogroup acting on a topological space X. A

(G,X)-bundle is a fiber bundle with structure group G and fiber X. It is defined as a

bundle projection: π : E → B and a local trivialization.

3. A fibration has a more general definition. It allows maps which only homotopically

behave like fiber bundles. Thus, every fiber bundle is a fibration, but the converse is

not true. [96]

4. A local trivialization is a tool to describe a bundle locally over a neighbourhood V as

the product V ×X. Compare with the term of an atlas defined in 2.1.0.2 (p. 38) or

1.1.1.2 (p. 7). [99, p.158]

Example 3.3.1.3. 1. The product (G,X)-bundle over B is B ×X.

2. A covering space of a connected space defines a fiber bundle.

Definition 3.3.1.4 (Vector Bundle). Let E and B be two smooth manifolds and π : E → B

a smooth map. We call (π,E,B) a vector bundle of rank n if:

1. E is a fiber bundle with base space B and fiber Rn

2. such that for i, j ∈ J , the diffeomorphisms

hi ◦ h−1
j : (Ui ∩ Uj)× Rn → (Ui ∩ Uj)× Rn

are of the form

hi ◦ h−1
j (x, v) = (x, gij(x) · v),

where gij : Ui ∩ Uj → GLn(R) is smooth.

Each fiber is equipped with a linear space structure. The maps hi are called local trivializa-

tions for the vector bundle. [96, p.16]

Remark 3.3.1.5. A vector bundle is a special case of a fiber bundle, which can be seen

directly from the definitions. A (G,X)-bundle with a vector space X and G = GL(X),

which is the group of linear automorphisms of X, is a vector bundle.
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Example 3.3.1.6. 1. The tangent bundle TM (1.1.2.5, p.9) with the projection π :

TM →M, TxM 7→ x is a vector bundle. Here, the fiber at x ∈M is the tangent space

TxM .

2. If the fiber is the structure group itself and the action is by left translation, the bundle

is called principal bundle. [99, p.161]

3.3.2. The Eight Model Geometries

Theorem 3.3.2.1 (Three-Dimensional Model Geometries). There are eight three-dimensional

model geometries (G,M) :

(a) If the point stabilizers are three-dimensional, M is S3, E3 or H3.

(b) If the point stabilizers are one-dimensional, M fibers over one of the two-dimensional

model geometries in a way that is invariant under G. There is a G-invariant metric on

M such that the connection orthogonal to the fibers has curvature 0 or 1.

• If the curvature is zero, M is S2 × R or H2 × R.

• If the curvature is 1, we have Nil geometry (which fibers over E2) or the geometry

S̃L2(R) (which fibers over H2).

(c) The only geometry with zero-dimensional stabilizers is Sol geometry, which fibers over

the line.

[99, p.181]

In the following, we shall explicate (for details see [99]) that there are only the eight

three-dimensional model geometries. For a detailed description of the eight geometries see,

for instance, the survey article by Scott [92].

M is a homogenous space and therefore M can be written as the quotient space G/Gx.

Since M is of dimension three, we have to find all Lie groups G with Gx ⊂ G a compact

subgroup such that dim(G) − dim(Gx) = 3 (2.2.2.9, p.43). In other words, in order to

get all the different three-dimensional geometries, we construct all the different Lie groups

acting on three-dimensional manifolds. Since the parameter space is R3 with point stabilizer

O3(R), the point stabilizer of any simply-connected three-dimensional manifold is a closed

subgroup of O3(R).

Remark 3.3.2.2. Even though the space M is simply-connected and therefore, by definition,

the homogeneous space (G,M) (2.2.2.5, p.42), the Lie group G need not even be connected.

For this reason, we shall first consider the connected component G′ of the identity. The

connected component G′ still acts transitively on M and G′x is connected. Gx is then of the

same dimension as G′x.

The orthogonal group On(R) consists of two connected components:
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• proper motions SOn(R): these are the orthogonal transformations with determinant

1, preserving the orientation;

• improper motions: orthogonal transformations which reverse the orientation. [54]

We focus on the compact and connected Lie subgroups of SO3(R), namely SO3(R), SO2(R)

and SO1(R).

Remark 3.3.2.3. The dimensions of the possible stabilizers (2.2.2.9 item (4), p.43) are

dim(SO3(R)) = 3, dim(SO2(R)) = 1 and dim(SO1(R)) = 0. Which gives the possible

dimensions of the Lie group G as six, four or three.

Let us start by giving M a G-invariant Riemannian metric.

3.3.2.1. If the Stabilizer is the Full Group SO3(R)

For details see [103], for instance.

Definition 3.3.2.4. A connected homogenous space is said to be a space of constant

curvature if its isotropy group is the group of orthogonal transformations (at each point)

with respect to some Euclidean metric.

Remark 3.3.2.5. We will give another definition of Riemannian manifolds of constant

curvature in Chapter 4 and we will show that this is equivalent to Definition 3.3.2.4.

Theorem 3.3.2.6 (The Classification Theorem). Any simply-connected space of constant

curvature is isomorphic to one of the spaces En, Sn,Hn. [103]

Here, the stabilizer Gx acts transitively on the tangent space TxM, which is equivalent to the

property of isotropy. We shall now describe manifolds with such a geometry in dimension

three. Recall Definition 3.3.0.13.

• M = S3 G = SO4(R)

Any three-dimensional manifold with spherical geometry can be described as the quo-

tient M = S3/Γ. Since S3 is compact, we only need to consider finite subgroups of G
acting freely on S3 by rotation [103]. The resulting manifolds are all oriented. These

spherical spaces are completely classified in any dimension. In dimension three, they

can be grouped in five classes, which we shall describe in detail in Chapter 4. Examples

are lens spaces and the Poincaré dodecahedral space, which are described in detail in

section 5.4 (p. 112).

• M = E3 G = R3 × SO3(R)

The three-dimensional manifolds with Euclidean geometry are the quotients M =

E3/Γ, where Γ is a torsion-free and discrete subgroup Γ ⊂ Isom(E3). Bieberbach
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showed that there is only a finite number of compact Euclidean manifolds (up to

diffeomorphism) in any dimension corresponding to the so-called Bieberbach groups

and that each of them can be finitely covered by a torus of the same dimension [111].

We will see in the next chapter that for dimension three there are only ten non-

homeomorphic and therefore non-diffeomorphic, compact Euclidean three-dimensional

manifolds from which six are orientable. Apart from those, there are four non-compact

Euclidean three-dimensional manifolds, as we will see.

• M = H3 G = PSL2(C)

In dimension three, the group of orientation-preserving isometries of the hyperbolic

space can be identified with the group of Möbius transformation of C ∪∞, PSL2(C).

A Möbius transformation of C ∪∞ is a function of the form

z 7→ az + b

cz + d
, a, b, c, d ∈ C with ad− bc 6= 0.

[92]

In the same way, a manifold with a hyperbolic structure can be written as the quotient

M = H3/Γ, Γ ⊂ G acting freely and properly discontinuously on H3. These manifolds

are much more difficult to handle. There is no classification of these manifolds (not

even for dimension two). It is known that for dimension three there are countably

infinitely many. Examples are Löbell space and Weeks space, which we shall describe

in detail in 5.5 (p. 115).

3.3.2.2. If the Stabilizer is SO2(R)

In this section we introduce the term “foliation of a manifold”. For a short introduction see

the article “Introduction to foliations and Lie grupoids” by I.Moerdijk and by J.Mrčun, in

which they describe a foliation of a manifold as follows:

Intuitively speaking, a foliation of a manifold M is a decomposition of M into

immersed submanifolds, the leaves of the foliation. These leaves are required to

be of the same dimension, and fit together nicely. [46, p.4]

Definition 3.3.2.7 (Foliation). Write Rn as the product Rn−k ×Rk and let G be the pseu-

dogroup generated by diffeomorphisms ϕ between open subsets of Rn which take horizontal

factors to horizontal factors, that is, diffeomorphisms of the form

ϕ(x, y) = (ϕ1(x, y), ϕ2(y)),

with x ∈ Rn−k, y ∈ Rk. A G-structure is called foliation of codimension k or dimension

(n− k). [99]

69



3. Geometry of the Universe

Remark 3.3.2.8. 1. The pseudogroup G consists of all diffeomorphisms between open

subsets of Rn such that at every point the Jacobian is a (n×n)-matrix with the lower

left (n− k)× k block being 0. [99, p.114]

2. An atlas A consisting of charts with the property described in Definition 3.3.2.7 is

called a foliation atlas and the charts are called foliation charts. A (smooth)

foliated manifold is a pair (M,F) with a smooth manifold M and a foliation atlas

F . A smooth map between foliated manifolds f : (M,F) → (M ′,F ′) must preserve

the foliation. [46, p.6]

3. The preimage of Rn−k × {y} under the charts is called a paque. They piece together

globally and give the leaves of the foliation. Thus, x, y ∈ M̃ are in the same

leaf if and only if there is a sequence of foliation charts and a sequence of points

p1, . . . , pq, q ∈ N such that pi and pi−1 lie on the same plaque in Ui for all 1 ≤ i ≤ q.

The leaves are of dimension (n− k). The quotient space M/F is called the space of

leaves and is of dimension k. It is constructed by identifying points if they lie on the

same leaf. [46]

4. There is a description of foliations in terms of group actions. Let G act on M . If the

map M → R, x 7→ dim(Gx) is a constant function of x, the action of G on M defines

a foliation of M . The connected components of the orbits of the action are the leaves

of the foliation of M . [46, p.16]

5. For a bundle with an n-dimensional base space B and an m-dimensional fiber X, the

total space E is an (n + m)-dimensional manifold. In this situation, the manifold

E has a foliation the leaves of which are the fibers. These are equipped with the

(G,X)-structure. In this situation, we speaks of a tangentially (G,X)-foliation (3.3.2.7,

p.69). [99]

For details of the proof see [99] or [36].

Let G′ act on a manifold M with point stabilizers G′x = SO2(R). Now, the dimension of

the stabilizer is one. For any x ∈M, the stabilizer Gx acts on the tangent space TxM, giving

us a map

Gx × TxM→ TxM.

Definition 3.3.2.9. Let G be a Lie group. A vector field X ∈ χ(G) is called left-invariant

if and only if g ? X = Tg ◦X ◦ g−1 = X ∀g ∈ G. [16]

Since we can assume the action to be effective (2.2.1.2, p.40), there is at least one non-

zero, G′-invariant vector field M → TM. The direction of the vector field gives the axis of

rotation of the elements in G′x.
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Proposition 3.3.2.10. Let X ∈ χ(M) be a vector field. For any x ∈ M there exists

a maximal interval Ix containing 0 and a unique smooth curve cx : Ix → M such that

cx(0) = x and for t ∈ Ix : c′x(t) = X(cx(t)). [96, p.22]

Definition 3.3.2.11 (Integral Curve). The curve cx : Ix → M with cx(0) = x described in

3.3.2.10 is called integral curve of the vector field X ∈ χ(M). It is the local solution of

the differential equation c′ = X ◦ c, induced by the vector field X. [54, p.140]

The integral curve of the vector field gives a one-dimensional foliation F of M (3.3.2.7,

p.69), thus, a foliation with one-dimensional leaves [50]. The space of leaves M/F is two-

dimensional. As M is simply-connected, the leaves and the space of leaves are also simply-

connected. Thus, the space of leaves M/F is one of the spaces E2, S2 or H2. The leaves are

either R or S1. Here, the foliation defines a fiber bundle (3.3.1.1, p.65) over the base space

M/F with the leaves being the fibers. See remark 3.3.2.8 item (4). Thus, we find that the

manifold M is a principal fiber bundle (3.3.1.6, p.67) over M/F with fiber R respectively S1.

The type of manifold depends on the connection (1.1.3.3, item (2) p.16) on the bundle.

For a more detailed introduction to connections see, for instance, [23]. Since the group of

isometries of the manifold acts transitively, the connection is of constant curvature. Deter-

mining the orientation of the fibre and the base space, the curvature of the connection can

be assumed to be nonnegative. Without loss of generality there remain the two cases 0 and

1 after scaling the metric.

1. First, let us assume that the curvature of the connection vanishes. Here, the group of

isometries of the manifold is the product of the isometry group of the base space and

the isometry group of the fiber: Isom(M) = Isom(B) × Isom(F ). There are three

cases:

• M = S2 × R, G = SO3(R)× R

Since S1 is covered by R, S2 × S1 is one of these manifolds and does not have

to be considered further. In addition, there are seven manifolds which occur as

quotients, four of which are compact.

A metric is given by: dσ2 = dr2 + sin2 rdϕ+ dz2.

• M = H2 × R G = PSL2(R)× R

The Möbius group PSL2(R) is isomorphic to the orientation-preserving subgroup

of the group of isometries of H2. The M/Γ include, for example, the product of

any compact hyperbolic surface (the g-torus or the g-handle) by S1 or R.

A metric is given by: dσ2 = dr2 + sinh2 rdϕ+ dz2.

• In the third case we consider the base space E2 while still assuming the connection

is flat. This results in the above-mentioned three-dimensional Euclidean space E3.

2. If the connection is of positive curvature, we get:
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3. Geometry of the Universe

• M = S̃L2(R)

Here, the base space is H2 and the unit tangent bundle is PSL2(R). The resulting

space is the three-dimensional Lie group of real matrices with determinant 1,

SL2(R). The universal cover of this group is S̃L2(R), giving the geometry.

A metric is given by: dσ2 = dx2 + cosh2 xdy2 + (dz + sinhxdy)2.

• Nil geometry: The base space is the Euclidean plane and the fibers are lines.

In order to ensure that we do not get Euclidean geometry we take the Lie group

consisting of all Heisenberg matrices for G:

M =




1 x z

0 1 y

0 0 1


 x, y, z ∈ R

G is called the Heisenberg group. A metric is given by:

dσ2 = dx2 + dy2 + (dz + xdy)2. [92]

There is one last case to consider: the one of base space being S2. Without going into detail,

this does not lead to a model geometry and we can therefore neglect this case.

3.3.2.3. If the Stabilizer is Trivial:

Since M is a homogeneous space with a trivial isotropy group and any homogeneous space

can be written as G/Gx [16], M can be identified by its Lie group. Therefore, in examining

M we have to find a three-dimensional Lie group which is not the Lie group of any other of

the seven geometries considered so far.

The Lie group is then simply-connected and therefore uniquely determined by its Lie

algebra g. The correspondence of Lie algebras and Lie groups is presented in Appendix B

(p.189), where the main theorem is described in B.2.3.2 on page 192. There are two ways of

viewing the Lie algebra: as the tangent space at the identity or the set of all left-invariant

vector fields. We denote the corresponding matrix to the map L : g×g→ g, (V,W ) 7→ [V,W ]

with [., .] being the Lie bracket, as L.

In order to ensure a compact quotient, we require the existence of a discrete, co-compact

(2.3.1.5, p.49) subgroup. In addition, to ensure a compact manifold admitting the (G,M)-

structure, we assume that every left-invariant vector field preserves volume. Thus, G has

to be unimodular and therefore det(L) = 1 (5.4, p.40). For further details see [99, p.187].

Without going into detail here, we know that from unimodality follows that L is symmetric.

One theorem in linear algebra states that every Euclidean vector space V with a self-adjoint

map ϕ : V → V (that is the corresponding matrix is symmetric) has a basis consisting of
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3.3. Three-Dimensional Model Geometries

eigenvectors of ϕ. Take a basis of g consisting of eigenvectors {e1, e2, e3} with:

[ei, ej ] = λkek, i 6= j 6= k,

where λk is the eigenvalue to the eigenvector ek. L is diagonal with entries lii = λi in respect

to this basis.

After appropriate scaling, we can assume the eigenvalues to be λi ∈ {1,−1, 0}. There are

six possible choices up to choosing an orientation and permutation of the basis elements:

1. λ1 = λ2 = λ3 = ±1⇒ S3

2. λ1 = λ2 = λ3 = 0⇒ E3

3. λ1 = λ2 = 0, λ3 = ±1⇒ Heisenberg group ⇒ Nil geometry

4. λ1 = λ2 = ±1, λ3 = ∓1⇒ S2 × R

5. λ1 = 1λ2 = −1, λ3 = 0 ⇒ in this case, e1 and e2 act on E2 by translation and e3 by

rotation. There is no corresponding geometry.

6. λ1 = λ2 = ±1, λ3 = 0⇒ Sol geometry

Thus, we finally have found a new geometry: Sol geometry. The Lie group can be

described by the set of matrices:

Sol = {




ez 0 x

0 e−z y

0 0 1


 | x, y, z ∈ R}.

We shall now describe this geometry (see [92] or [99] for further details):

The geometry is the semidirect product R2 oR, with the action of R on R2 given by:

(x, y) 7→ (etx, e−ty).

Identifying Sol with R3 and R2 with the xy-plane corresponds to the multiplication:

(x, y, z) · (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′).

A metric is given by: dσ2 = e2zdx2 + e−2zdy2 + dz2.

Remark 3.3.2.12. 1. Manifolds with a geometric structure modeled on either E3, S3, S2×
R, H2 × R, S̃L2(R) or Nil are called Seifert manifolds.

2. The Lie groups of E3, S3, S̃L2(R), Nil geometry and Sol geometry are unimodular.

Manifolds with such a geometric structure have been classified by Raymond and

Vasquez [85]. [92]
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3. Geometry of the Universe

3.3.2.4. Thurston’s Geometrization Theorem

In the last section we argued for the correctness of the following theorem:

Theorem 3.3.2.13 (Thurston). Any maximal, simply-connected, three-dimensional geom-

etry which admits a compact quotient is equivalent to one of the geometries (M, Isom(M)),

where M is one of

E3, S3, H3, S2 × R, H2 × R, S̃L2(R), Sol or Nil. [92, p.474]

Theorem 3.3.2.14 (The Geometric Structure is Unique). If M is a closed manifold admit-

ting a geometric structure modeled on one of the eight geometries, the geometry involved is

unique. [92]

This uniqueness can be shown by considering the holonomy groups. In the next chapter

we shall focus on the holonomy groups of three-dimensional manifolds.

In 1976, Thurston formulated his famous theorem stating that every connected and lo-

cally homogeneous three-dimensional manifold admits a canonical decomposition into pieces

(prime manifolds) by cutting along surfaces of nonnegative Euler characteristic. Each of

these pieces admits a geometric structure induced by one of the three-dimensional model

geometries. [36]

This theorem was proved by Perelman in 2003. For more information see, for instance, [75].

Remark 3.3.2.15. The corresponding theorem in the spherical case was first formulated

by Poincaré in 1900. Since then it has been known as Poincaré’s Theorem, which states

that if a closed three-dimensional manifold has a trivial fundamental group, it must be

homeomorphic to the three-dimensional sphere [73]. It has also been proven by Perelman as

a special case of Thurston’s Geometrization Theorem.

3.4. Conclusion

In Chapter 2 we argued that every connected manifold and therefore in particular M3, can

be written as M3 ≈ M̃3/Γ, where Γ is isomorphic to the fundamental group of M3 and

M̃3 is its universal covering space. Assuming completeness enabled us to conclude thatM3

admits a geometric structure modeled on a three-dimensional geometry M, which can be

identified with the UCS M̃3. Thurston’s Geometrization Theorem states that M is one of

the above-described eight geometries. Thus, the spatial part of the universe M3 admits a

geometric structure modeled on one of the eight three-dimensional model geometries.

Theorems 3.2.3.4 and 3.2.3.7 state that the holonomy group Γ of a complete (G,M)-

manifold M determines the geometric structure on M . If we assume M to be compact, we

can determine the geometric structure of the manifold by the algebraic properties of Γ:
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3.4. Conclusion

Theorem 3.4.0.16. A discrete co-compact (2.3.1.5, p.49) group Γ of automorphisms of any

one of the eight basic three-dimensional geometries is not isomorphic to a co-compact group

of one of the others. [99]

The following flowchart gives an overview [99, p.281]. We note that a group is virtually

cyclic/solvable/nilpotent/abelian etc. if it contains a subgroup of finite index with this

property.
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4. Locally Isotropic Riemannian Manifolds

Now, we requireM3 to be additionally locally isotropic. In Chapter 3 we presented the classi-

fication of the geometric structures on three-dimensional, locally homogeneous and complete

Riemannian manifolds. Now, we shall restrict ourselves to locally isotropic manifolds and

focus on the classification of the Γ ⊂ Isom(M̃), acting freely and properly discontinuously

on M̃ , in order to derive a classification of all manifolds with the same geometry. First, we

shall present the classification theorems for the general case of an n-dimensional manifold

before we restrict our considerations to the three-dimensional case.

Remark 4.0.0.17 (Notation). M̃ denotes the UCS of a locally isotropic, locally homoge-

neous, complete and connected Riemannian manifold M . Recall that since we assume M to

be complete, M̃ can be identified with the geometry M of M .

We start with the definition of a locally isotropic Riemannian manifold:

Definition 4.0.0.18. A Riemannian manifold M is called (locally) isotropic if given

x ∈ M and nonzero tangent vectors X and Y at x with ‖X‖2 = ‖Y ‖2, there is a (local)

isometry (at x) which fixes x and sends X to Y . [111]

Remark 4.0.0.19. 1. Therefore, an n-dimensional manifold M is said to be (globally)

isotropic (under the action of G) if the stabilizer of every point acts transitively on the

tangent space at that point [99]. Thus, if Gx = On(R), ∀x ∈ M . Therefore, isotropic

manifolds are spaces of constant curvature in the sense of 3.3.2.4 (p.68).

2. Sitting at a point of a locally isotropic manifold, the metric looks the same in every

direction.

If M is a locally isotropic manifold, its universal covering space M̃ is also locally isotropic.

Since we assume the UCS M̃ to be homogeneous (3.2.3.3, p.62), the metric looks the same at

every point and in every direction [111]. We conclude, that the UCS M̃ is (globally) isotropic

andM is locally isometric to a simply-connected and globally isotropic Riemannian manifold.

Therefore, M is also a space of constant curvature.

Remark 4.0.0.20. Conversely, (locally) isotropic manifolds are (locally) homogeneous (see,

for instance, [111, p.289,p.377]). In the case of global isotropy, we can conclude that these

manifolds are complete.
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4. Locally Isotropic Riemannian Manifolds

Until now, we have two concepts of curvature: scalar curvature used in General Theory

of Relativity, defined in 1.1.3.12 (p.18), and constant curvature in the sense of 3.3.2.4 (p.68)

used with an algebraic approach to geometry.

Now, we shall introduce a third concept of curvature which is usually used with manifolds

in Riemannian geometry: “sectional curvature”. For a short introduction to the term “sec-

tional curvature of a manifold” see Appendix C (p.195). The correspondence between these

three concepts of curvature will be explained immediately.

Definition 4.0.0.21. A Riemannian manifold M is said to be of constant curvature C, if

at each point its sectional curvature along any plane section equals C.

Theorem 4.0.0.22. Let (M, g) be an n-dimensional Riemannian manifold of constant sec-

tional curvature C. Then the scalar curvature K is given by

K = n · (n− 1) · C. [40]

Remark 4.0.0.23 (Notation:). In the following, a manifold of constant curvature shall

denote a manifold of constant sectional curvature. A manifold of constant sectional curvature

is of constant scalar curvature. The converse is not true.

Remark 4.0.0.24. Since the curvature of a manifold is completely determined by its metric,

an isotropic Riemannian manifold is at least local of constant curvature. Schur’s Theorem

states that if the sectional curvature C of a Riemannian manifold with dim(M) ≥ 3 M is

constant at each point, then C is actually constant on M . [38]

Remark 4.0.0.25. Now, we shall show that the connected and homogeneous spaces with

stabilizer Gx = On(R) are exactly the complete Riemannian manifolds of constant sectional

curvature.

First, let M be simply-connected, satisfying Definition 3.3.2.4, then the isotropy group

is On(R). Since On(R) is a compact group, there exists a G-invariant Riemannian metric

(3.1.0.10, p.54), where, as usual, G denotes the group of isometries of M . Since On(R) is

irreducible, the metric is unique (see [103, p.10]). On(R) acts transitively on every tangent

space with respect to this metric, thus, (M, g) is locally isotropic and therefore a Riemannian

manifold of constant curvature. Because M is homogeneous, (M, g) is complete.

Conversely, the isotropy group of any simply-connected, complete Riemannian manifold

of constant curvature acts transitively on the tangent space of a point, thus, is the entire

On(R).

If M is not simply-connected but a connected homogeneous space satisfying the maximum

mobility axiom, we consider its UCS M̃ . The lifts of all diffeomorphisms on M build a

Lie group G̃ consisting of diffeomorphisms on M̃ (see 3.2.3.5(2), p.63). The action of G̃

on M̃ is smooth and transitive and the covering map ϕ is also smooth. Thus, (M̃, G̃)

satisfies the maximum mobility axiom. As M̃ is homogeneous and simply-connected it is a
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4.1. Simply-Connected Spaces of Constant Curvature

Riemannian manifold of constant curvature. Thus, M is a Riemannian manifold of constant

curvature. [103, p.11]

Example 4.0.0.26. In Chapter 2 (Example 2.2.2.6, p.42) we presented three homogeneous

spaces with stabilizer On(R): Hn, En and Sn, which are therefore of constant curvature.

In Chapter 1 (1.1.3.13, p.19) we mentioned that these three spaces are of constant scalar

curvature.

Since M = M̃/Γ, M is locally isometric to a Riemannian manifold of constant curvature.

Hence, M is of constant curvature. To classify all locally isotropic M , we start with classify-

ing all simply-connected and homogeneous Riemannian manifolds M̃ of constant curvature.

4.1. Simply-Connected Spaces of Constant Curvature

4.1.1. The Classification Theorem

We already know three types of spaces of constant curvature : Sn,Hn,En. As it turns out,

this is already constitutes a complete list of simply-connected and homogeneous manifolds

of constant curvature, which is stated by the “Classification Theorem” below.

Definition 4.1.1.1. Two homogenous spaces (M1, G1), (M2, G2) are called isomorphic if

there exists a diffeomorphism f : M1 →M2 and an isomorphism of Lie groups ϕ : G1 → G2

such that

f(gx) = ϕ(g)f(x) ∀x ∈M1, g ∈ G1 (4.1)

Theorem 4.1.1.2 (The Classification Theorem). Any simply-connected space of constant

curvature is isomorphic to one of the spaces En, Sn,Hn. [103]

We assume M̃ to be a simply-connected space of constant curvature. As a homogenous

space (M̃,G) is uniquely determined by the pair (G,Gx) (up to isomorphism), where Gx

is the stabilizer of a point x ∈ M̃ (see Chapter 2, section 2.2.2, p.42). Let g and k be the

Lie algebras of the Lie groups G and Gx. If G is simply-connected, the Lie algebra g would

uniquely determine G (B.2.3.2, p.192), but the group of motions G does not even have to

be connected. Therefore, we have to prove the correspondence for our use:

Lemma 4.1.1.3. Any simply-connected, homogeneous space (M̃,G) of constant curvature

is uniquely defined by the pair (g, k) (up to isomorphism).

Proof. Since M̃ is connected, the connected component G+ acts transitively on M̃ . The

isotropy group of the homogenous space (M̃,G+) at the point x ∈ M̃ is the connected

component of the group Gx = On(R), hence, SOn(R). This group is compact as a closed

subgroup of a compact group. The homogenous space (M̃,G+) is uniquely determined by

the pair (g, so(n)), see B.2.4 (p. 194).
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4. Locally Isotropic Riemannian Manifolds

We need to show that the group of transformations G can be reconstructed from G+.

The action of SOn(R) ⊂ On(R) in Rn is irreducible, just as the action of On(R). Thus,

there is a unique G+- invariant Riemannian metric on M̃ . As every G-invariant metric is

G+-invariant, they coincide. Therefore, the group G can be reconstructed from G+ as the

group of all motions with respect to this metric. [103, p.16]

It remains to be shown that for any dimension n ∈ N there are only three non-isomorphic

pairs of (g, k) which correspond to simply-connected and homogeneous Riemannian manifolds

of constant curvature. We already know k = son(R). The remaining part of the proof can be

read, for instance, in [103]. In terms of Riemannian geometry the proof can be read in [96].

4.2. Space Forms

We drop the assumption of simply-connectedness. In this section we shall closely follow [111],

if not cited otherwise.

Definition 4.2.0.4. A space form is a complete Riemannian manifold M of constant

sectional curvature.

Theorem 4.2.0.5 (W. Killing, H. Hopf). Let M be a Riemannian manifold of dimension

n ≥ 2 and C be a real number. Then M is complete, connected and of constant curvature C

if and only if it is isometric to a quotient

Sn/Γ with Γ ⊂ On+1(R), if C > 0

En/Γ with Γ ⊂ E(n), if C = 0

Hn/Γ with Γ ⊂ POn,1(R), if C < 0

where Γ acts freely and properly discontinuously. [111]

In other words, every space form is locally isometric to one of En,Hn,Sn. They are called

Euclidean (C = 0), hyperbolic (C < 0) or spherical (C > 0) space forms.

Remark 4.2.0.6. In 1890, Clifford and Klein formulated the problem of describing compact

and connected Riemannian manifolds of constant curvature. Killing then showed in 1891 that

these manifolds are always of the form described in 4.2.0.5 and called them Clifford-Klein

space forms. Today, space forms denote the connected, complete Riemannian manifolds

of constant curvature. The problem of classifying them is referred to as the Clifford-Klein

space form problem. The Euclidean space form problem for the compact case was reduced

by Bieberbach to the classification of torsion-free crystallographic groups (which we shall go

into in more detail in the following). It is solved for the dimensions 2, 3 and 4. The solution

of the non-compact case was made by Wolf ( [111]), who also published the complete solution
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of the spherical space form problem for the first time in 1972. The hyperbolic case turns out

to be much more difficult. So far, there is no known classification, not even for dimension

n = 2. [103, p.157]

4.2.1. Homogeneous Space Forms

Definition 4.2.1.1. Let X be a metric space and f an isometry in X. The displacement

function of f is given by:

δf (x) : x 7→ d(x, f(x)),

where d is the distance given by the metric on X. The isometry f is called Clifford trans-

lation if its displacement function is constant.

Theorem 4.2.1.2. Let Γ be a discontinuous group of isometries acting freely on a complete

simply-connected Riemannian manifold M̃ of constant curvature. Then M̃/Γ is a homoge-

neous Riemannian manifold if and only if Γ is a group of Clifford translations. [111, p.230]

Example 4.2.1.3. The two-dimensional torus described in 3.2.1.1 (p.56) is a two-dimensional

homogeneous space form, because Euclidean translations are Clifford translations.

Before we consider the three classes of Riemannian manifolds of constant curvature in

detail, let us state some theorems which will turn out to be helpful later.

4.3. Preparations

The universal covering space M̃ is a homogeneous space and therefore of the form G/H,

where H is a closed subgroup of the Hausdorff topological group G (A.1.0.11, p.186). Γ

acts on G/H by left translation: γ : gH → (γg)H. The space (G/H)/Γ is therefore the

double coset space Γ\G/H. The topology is given by the quotient topology (A.0.0.6, p.185)

of G/H, which again has the quotient topology of G. [111]

We recall the definitions given in 2.3.1.3 and 2.3.1.5 (p.48) and 49.

Lemma 4.3.0.4. Let Γ and H be subgroups of G with H compact and G locally compact.

1. The following conditions are equivalent:

(i) Γ is discontinuous at some point of G/H,

(ii) Γ is discontinuous on G/H,

(iii) Γ is properly discontinuous on G/H,

(iv) Γ is discrete in G,

2. If Γ is closed in G, then (G/H)/Γ is compact if and only if Γ is cocompact in G.

[111]
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Proof. 1. (i)⇒ (iv) : Suppose Γ is discontinuous at x ∈ G/H. Then there exists a neigh-

bourhood UH of x in G/H such that U ⊂ G is open and the set {γ ∈ Γ|γ(x) ∈UH} is

finite. Since x is in G/H, there is an g ∈ G such that x = gH. Then Ug−1 is an open

neighbourhood of 1 in G which has finite intersection with Γ. Since G is Hausdorff,

there exists a neighbourhood such that the intersection is only the identity, which is

just the definition of Γ is discrete in G.

(iv) ⇒ (iii) : Let Γ be a discrete subgroup of G. Since G is locally compact we can

choose a neighbourhood U of 1 with compact closure. Let x = gH be an arbitrary

point in G/H. Then the set Vg = gUHU−1g−1 has compact closure too. Observe that

gU is a neighbourhood of g ∈ G and gUH a neighbourhood of x ∈ G/H. Now consider

the set Γ1 = {γ ∈ Γ|γ(x) intersects gUH}. γ is in Γ1 if and only if γ is in Vg. Since Γ

is discrete in G, H ∩ Vg is finite and Γ acts properly discontinuously on G/H.

(iii)⇒ (ii)⇒ (i) follows trivially.

2. Now Γ is closed in G. Consider the continuos and open map G/Γ→ Γ\G/H, g−1Γ 7→
ΓgH. The inverse image of a point γgH is compact, since H is compact. Hence G/Γ

is compact if and only if Γ\G/H is compact.

4.3.1. Finite Subgroups of SO3(R)

The finite subgroups of SO3(R) will play an essential role in the following. On the one hand,

the classification of three-dimensional Euclidean space forms can be done by classifying all

the finite subgroups of SO3(R). On the other hand, we ought to see, that there is an

one-to-one correspondence between finite subgroups of SO4(R) and those of SO3(R). Since

the fundamental group of a spherical three-dimensional space form is finite as a discrete

subgroup of the compact group SO4(R), this correspondence turns out to be essential for

the classification of three-dimensional spherical space forms.

We consider symmetry groups of regular polyhedron:

Definition 4.3.1.1. Let X be a set, G the set of transformations on X and Y ⊂ X. We

define the symmetry group S(Y ) of Y as

S(Y ) := {T ∈ G |T (Y ) = Y }.

Remark 4.3.1.2. The identity is in S(Y ) and for two symmetries S1, S2 ∈ S(Y ) the inverse

S−1
1 and the composition S1 ◦ S2 are in S(Y ) too, thus, S(Y ) is a subgroup of G. [112]

A regular polyhedron 4m can be inscribed in a two-dimensional sphere such that the

vertices of the polyhedron intersect with the sphere. A symmetry can therefore be described

as an element of O3(R) which stabilizes the set of vertices of 4m. In that way, the symmetry
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group S(4m) can be defined as a finite subgroup of O3(R). S(4m) contains as a subgroup

S+(4m) = S(4m)∩SO3(R), called the rotation group of 4m. As the rotation group of 4m

determines the symmetry group of4m, we do not distinguish between these two groups. [112]

Figure 4.1.: The regular polyhedra: from top left to bottom right: tetrahedron, hexahedron,
octahedron, dodecahedron, icosahedron [119]

The Dihedral Group Dm: is the symmetry group of the regular m-gon. It is the semidirect

product of

• the cyclic group: A rotation A by the angle 2π/m generates the cyclic group Cm
of order m.

• and C2: The group generated by the reflection B about a symmetry axis. B takes

the m-gon into itself and is therefore an element of the symmetry group of the

m-gon. Obviously it is of order two.

Dm is a subgroup of SO3(R) of order |Dm| = 2m.

Cyclic Group Cm: The cyclic group is a subgroup of SO3(R), since it is a subgroup of Dm.

Next, we consider the symmetry groups of the five regular polyhedra (see Figure

4.1), which are called the polyhedral groups.

Tetrahedral Group T : The tetrahedron44 consists of four vertices, six edges and four faces

(equilateral triangles). Its symmetry group is called tetrahedral group. T is generated

by the three rotations A, P and Q. The relations among these generators are given

by:

A3 = P 2 = Q2 = 1, PQ = QP, APA−1 = Q, AQA−1 = PQ.
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It is a group of order |T | = 12 and isomorphic to the alternating group A4 .

Octahedral Group O: The octahedral group is the symmetry group of the regular octahe-

dron 48, which consists of six vertices, twelve edges and eight faces. The octahedral

group is a finite subgroup of SO3(R) of order |O| = 24 and isomorphic to the per-

mutation group S4. The tetrahedral group is a normal subgroup of O of finite index

|O : T | = 2. O is generated by the four rotations A, P, Q and R. The relations among

these generators are given by:

A3 = P 2 = Q2 = R2 = 1, PQ = QP, APA−1 = Q

AQA−1 = PQ, RAR−1 = A−1, RPR−1 = QP, RQR−1 = Q−1.

Icosahedral Group I: The icosahedral group is the symmetry group of the regular icosahe-

dron 420 (12 vertices, 30 edges and 20 faces). I is generated by the three rotations

A, B, C. The relations among these generators are given by:

A3 = B2 = C5 = ABC = 1.

The order of the group is |I| = 60 and it is isomorphic to the alternating group A5.

There are two regular polyhedra (hexahedron �6 and octahedron 412) left to consider.

Figure 4.2.: The tetrahedron is dual to itself, the hexahedral and the octahedral are dual,
and the icosahedral and the dodecahedral are dual. [120]
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The hexahedron is dual to the octahedron. In other words, if one inscribes a octahedron

in a sphere and considers the tangent spaces of the points of intersection, one obtains a

hexahedron. Two polyhedra which fulfill this property are called dual (see Figure 4.2).

Regular polyhedra which are dual have the same symmetry group. Thus, O is the symmetry

group of �6. The same situation occurs if we consider the icosahedron and the dodecahedron.

Theorem 4.3.1.3. Every finite subgroup of SO3(R) is a cyclic, dihedral, tetrahedral, octa-

hedral or icosahedral group. If two finite subgroups of SO3(R) are isomorphic then they are

conjugate in SO3(R).

4.4. Euclidean Space Forms

4.4.1. Affine Spaces

An affine space is a set E together with a vector space V acting on E

V × E → E, (v, x) 7→ x+ v.

For two points x, y ∈ E, there is a unique v ∈ V with x+ v = y and, therefore, every vector

v can be written as v = y − x. The map

Tv : E → E, x 7→ x+ v

is called the translation by v. The space of all translations of E is denoted by V = T E.

If E and F are two affine spaces, a map f : E → V is called an affine map if there is a

point x0 ∈ E and a linear map A : T E → T E such that f(x0 + v) = f(x0) + Av. In this

case,

f(x+ v) = f(x) +Av ∀x ∈ E, v ∈ T E.

A is called the linear part of f , denoted by Lf . T E is the tangent space at every point

and Lf is the tangent map of f at every point of E.

f : E → F is an affine isomorphism if and only if Lf : T E → T F is a linear isomor-

phism. In this situation E and F are called affine equivalent.

The group of all affine automorphisms, which is the group of all affine transformations of

E is isomorphic to the semidirect product of V with the general linear group of V:

Aff(E) ≈ V oGL(V ).

An affine structure on a manifold is a maximal atlas consisting of affine charts. Thus, an

affine manifold is a manifold with an affine structure. An affine manifold has a torsion-free

connection with vanishing curvature. Therefore, affine manifolds are also called flat affine
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manifolds. [111]

Assume E is an affine space with T E = V and let F be the vector space defined by

{(v, 1)|v ∈ V }. This is an affine space with T F = V . The map τx : E → F given

by τx(x + v) = (v, 1) defines an isomorphism. Thus, we can think of an affine space of

dimension n as a hyperplane of a vector space of dimension n+1. [1]

The simply-connected Euclidean space is an affine space with V = Rn and Aff(E) =

Rn oGLn(R). Aff(E) contains the Euclidean group E(n) as a subgroup.

En has the normal covering π : E(n)→ E(n)/On(R) = En. An element of E(n) is mapped

through the covering on its value at the point 0: π(A, ta) = a = (A, ta)(0), A ∈ On(R); ta ∈
Rn. Any Euclidean space form is given by the normal covering

π′ : En → En/Γ = M,

where Γ is the group of deck transformations with respect to the universal covering. As we

have seen that Γ ⊂ E(n) is a discrete group acting freely on En (4.3.0.4, p.81).

Lemma 4.4.1.1. Let Γ be a subgroup of the Euclidean group E(n). If Γ is closed, Γ acts

freely if and only if Γ is torsion-free, that is, if it has no elements of finite order. [111]

For a proof see, for instance, [111, p.99].

4.4.2. Compact Euclidean Space Forms

In this section we require M = En/Γ to be compact. Combining 4.3.0.4 and 4.4.1.1, we

conclude that candidates for Γ are exactly the torsion-free, discrete, cocompact subgroups

of E(n).

Definition 4.4.2.1 (crystallographic group). An n-dimensional crystallographic group

is a cocompact discrete group of isometries of En. Torsion-free crystallographic groups are

called Bieberbach groups. [99, p.222]

Remark 4.4.2.2. [111] [103]

1. A crystalline structure is a three-dimensional pattern produced by the atomic arrays

in ideal crystals. The crystalline structure is determined by the crystal (unit cell)

and its symmetry group. The symmetry group of a geometric structure is the group

of motions taking the figure to itself. The crystal is a geometric figure given by the

lattice parameters. The symmetry group of the crystalline structure is a discrete,

cocompact group of motions of the three-dimensional Euclidean space and therefore

a three-dimensional crystallographic group – this explains the name. There are 14

crystallographic groups which are the full symmetry group of a crystalline structure

(up to affine equivalence). They were found by Bravais [12] in 1849. The lattices

according to this symmetry groups are called Bravais lattices. See Figure 4.3.
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(a) Bravais lattices [121] (b) Cristalline Structure of (a) graphite (b) dia-
mond [122]

Figure 4.3.: Cristalline structures

2. In higher dimensions, where Γ ⊂ E(n) is equally discrete and cocompact, the set

cγ = {x ∈ En : ‖γ(0)− x‖ ≤ ‖γ′(0)− x‖, ∀γ′ ∈ Γ} defines a so-called crystal for every

γ ∈ Γ. The symmetry group of the crystalline structure {cγ} contains Γ as a subgroup

of finite index.

Theorem 4.4.2.3 (Bieberbach). Let Γ be a group isomorphic to a discrete group of isome-

tries of En for some n.

1. Γ is a crystallographic group if and only if the subgroup T of translations of Γ is a free

abelian and normal subgroup of finite index.

2. If Γ and Γ′ are crystallographic groups of dimension n and n′ that are isomorphic as

groups, we have n = n′ and there is an affine isomorphism a : En → En′ conjugating

Γ to Γ′.

3. For any given n, there are only a finite number of n-dimensional crystallographic

groups, up to affine equivalence. [99, p.222] [84]

This theorem was first proven by Bieberbach ( [9], [10]). We can now state:

Corollary 4.4.2.4 (classification of Euclidean manifolds). Diffeomorphism classes of closed

Euclidean n-dimensional manifolds are in one-to-one correspondence via their fundamental
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groups with torsion-free groups containing a subgroup of finite index isomorphic to Zn. [99,

p.222]

Finding all Euclidean space forms by sorting out crystallographic groups which are acting

freely on En is a lot of work. There are 219 three-dimensional crystallographic groups,

which were found independently by Federov (1949, [29]), Schönflies (1891, [90]) and Barlow

(1894, [7]). Only ten of them are acting freely on E3, which was examined by Nowacki

(1934, [81]). These give exactly the ten closed locally Euclidean manifolds. If Γ does not

include glide reflections the manifold is orientable. There are six of them. In 1935, W.

Hantzsche and H. Wendt developed a direct classification of the three-dimensional Euclidean

space forms ( [41]).

Alternatively we can consider the maximal abelian subgroup of finite index described in

4.4.2.3, which we denote by Γ? = Γ ∩ Rn. Then

En → En/Γ? = Tn

is a normal covering. Tn is a torus, since Γ? consists only of translations.

In this situation we have:

Theorem 4.4.2.5. Let Γ be an n-dimensional torsion-free crystallographic group, then Γ is

isomorphic to the fundamental group of a compact, connected, flat Riemannian manifold M

of dimension n. In that case, we view Γ in E(n). Then M = En/Γ, Γ? = Γ∩Rn, and Γ/Γ?

is the group of deck transformations of the normal Riemannian covering En/Γ? → M by a

flat torus.

Remark 4.4.2.6. Let M be a complete, connected, flat manifold. An element γ ∈ Γ can be

decomposed as γ = (Aγ , taγ ). Then the linear holonomy group Ψ (3.2.2.6, p.61) consists of

all Aγ such that γ = (Aγ , taγ ) ∈ Γ. Ψ is therefore isomorphic to the group Γ/Γ? and is finite,

since Γ? is of finite index in Γ. This is because in Euclidean spaces the parallel transport

along homotopic loops are the same. Therefore, the restricted holonomy group Ψ0 is always

trivial. [111]

Corollary 4.4.2.7. Let M be a compact connected Riemannian manifold. M is flat if and

only if it has finite linear holonomy.

Remark 4.4.2.8. It is a theorem of Auslander and Kuranishi that the converse is also true:

any finite group is the holonomy group of a flat, compact, connected Riemannian manifold.

(See, for instance, [111, p.110].)

4.4.2.1. Three-Dimensional Orientable, Compact Euclidean Space Forms

Considering only orientable manifolds, we see that Ψ is a finite subgroup of SO3(R) and

therefore cyclic, dihedral, tetrahedral, octahedral or icosahedral (see section 4.3.1). It turns
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out that the only ones which have to be considered are:

Cyclic groups: Zm, m ∈ {1, 2, 3, 4, 6} and the dihedral group Z2 × Z2.

For details see [111, p.116]. These give exactly the six flat, compact, connected and orientable

three-dimensional Riemannian manifolds.

Theorem 4.4.2.9. There are just six diffeomorphism classes of compact connected ori-

entable flat three-dimensional Riemannian manifolds. They are represented by the manifolds

E3/Γ, where Γ is one of the groups given below. Here, Λ is the translation lattice, {a1, a2, a3}
are its generators, and ti = tai, and Ψ = Γ/Γ? is the holonomy.

G1: Ψ = {1}, Γ consists only of translations and is generated by {t1, t2, t3} with ai linear

independent.

G2: Ψ = {Z2},
Γ is generated by {α, t1, t2, t3}. The relations among the generators are given by:

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3

Lattice: a1 orthogonal to a2 and a3; α = (A, ta1/2) with

A(a1) = a1, A(a2) = −a2, A(a3) = −a3.

G3: Ψ = {Z3},
Γ is generated by {α, t1, t2, t3}. The relations among the generators are given by:

α3 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t−1

3

Lattice: a1⊥a2; a1⊥a3; ‖a2‖ = ‖a3‖, {a2, a3} define a hexagonal plane lattice.

α = (A, ta1/3) with

A(a1) = a1, A(a2) = a3, A(a3) = −a2 − a3.

G4: Ψ = {Z4},
Γ is generated by {α, t1, t2, t3}. The relations among the generators are given by:

α4 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2

Lattice: a1, a2, a3 mutually orthogonal; ‖a2‖ = ‖a3‖, α = (A, ta1/4) with

A(a1) = a1, A(a2) = a3, A(a3) = −a2.
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G5: Ψ = {Z6},
Γ is generated by {α, t1, t2, t3}. The relations among the generators are given by:

α6 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t3

Lattice: a1⊥a2; a1⊥a3; ‖a2‖ = ‖a3‖, {a2, a3} define a hexagonal plane lattice, α =

(A, ta1/6) with

A(a1) = a1, A(a2) = a3, A(a3) = a3 − a2.

G6: Ψ = {Z2 × Z2},
Γ is generated by {α, β, γ, t1, t2, t3}. The relations among the generators are given by:

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3

βt1β
−1 = t−1

1 , β2 = t2, βt3β
−1 = t−1

3

γt1γ
−1 = t−1

1 , γt2γ
−1 = t−1

2 , γ2 = t3.

Lattice: a1, a2, a3 mutually orthogonal; α = (A, ta1/2), β = (B, t(a2+a3)/2), γ = (C, t(a1+a2+a3)/2,

with

A(a1) = a1, A(a2) = −a2, A(a3) = −a3

B(a1) = −a1, B(a2) = a2, B(a3) = −a3

C(a1) = −a1, C(a2) = −a2, C(a3) = a3

Remark 4.4.2.10. All Euclidean translations are Clifford translations. Since the fundamen-

tal group of the torus (G1) consists only of translations, it is the only globally homogeneous

Euclidean manifold.

4.4.3. Open Euclidean Space Forms

If M = En/Γ is non-compact, Γ? = Γ ∩ Rn is not isomorphic to Zn. But Γ? is a discrete

group of pure translations and therefore isomorphic to Zm for a m < n. N = Em/Γ? is an

m-dimensional torus. Every γ ∈ Γ can be decomposed into γ = (γ1, γ2), where γ1 ∈ Rm and

γ2 ∈ O(n −m). To ensure that γ2 does not contain a translation part it may be necessary

to choose an appropriate origin. M is then isometric to En−m × Em/Γ?. We only consider

orientable manifolds. Thus, Γ ⊂ Rn × SOn(R) does not contain glide reflections.

4.4.3.1. Open Three-Dimensional Euclidean Space Forms

The classification of non-compact three-dimensional flat space forms was made by Wolf, [111].
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Theorem 4.4.3.1. The affine diffeomorphism classes of complete, connected, non-compact,

flat, orientable, three-dimensional Riemannian manifolds are represented uniquely by the

manifolds M = E3/Γ with Γ given below. Here, {v1, v2, v3} is a fixed orthonormal basis of

E3.

E: Γ = {1}, thus, M = E3,

Sθ, 0 ≤ θ ≤ π : Γ generated by a screw motion S = (σ, tv3) with:

S(v1) = cos(θ)v1 + sin(θ)v2, S(v2) = − sin(θ)v1 + cos(θ)v2, S(v3) = v3.

T : Γ generated by the translations tv1 , tv2.

K: Γ generated by a translation tv1 and a screw motion β = (B, tv2), with:

B(v1) = −v1, B(v2) = v2, B(v3) = −v3.

Motivation of 4.4.3.1: We already know that M is isometric to E3−m × Em/Γ?, m ∈
{0, 1, 2}.

m = 0 : M = E3 and Γ = {1}, N is a point. We get case E .

m = 1 : There is only one compact, one-dimensional, flat Riemannian manifold: the cycle

S1. A γ ∈ Γ can be decomposed into a rotation γ2 ∈ O2(R) and a one-dimensional

translation, which can be taken in the direction of v3 without loss of generality. After

choosing an appropriate origin and an orthonormal basis, this defines a screw motion

with 0 ≤ θ ≤ π (we exclude the possibility of a glide reflection). We get case Sθ.

m = 2 : There are two compact, two-dimensional, flat Riemannian manifolds:

a) The two-dimensional torus: Γ? is generated by two independent translations, for

example, tv1 , tv2 . Then Γ is generated by (U, tv1), (V, tv2), with:

U(tv1) = V (tv1) = v1, U(tv2) = V (tv2) = v2, U(tv3) = ±v3, V (tv1) = ±v3.

The manifold is only orientable if U(tv3) = V (tv1) = v3. We get T .

b) The Klein bottle: We have to ensure that every element of Γ preserves the ori-

entation. Let Γ? be generated by tv1 and β = (B, tv2) with B(v1) = −v1 and

B(v2) = v2. E1 is generated by tv3 . Γ is again generated by γ = (U, tv1) and

γ′ = (V, tv2) with:

U(v1) = −V (v1) = v1, U(v2) = V (v2) = v2, U(v3) = ±v3, V (v3) = ±v3.
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The only possibility to make both γ and γ′ orientation-preserving is taking

γ = tv1 , then U(v3) = v3, γ′ = β, with V (v3) = −v3

We get K.

Remark 4.4.3.2. If M and M ′ are manifolds as described in 4.4.3.1, they are homeomorphic

if and only if they are diffeomorphic or they are of types Sθ,Sθ′ , with θ 6= θ′. A complete

(E(3),E3)-manifold is uniquely determined by its fundamental group given by Γ.

4.5. Three-Dimensional Spherical Space Forms

Every spherical space form is given by the quotient S3/Γ, where Γ ⊂ SO4(R) acts freely

on S3. Γ is isomorphic to the fundamental group and the holonomy group of the manifold.

Since S3 is a closed and orientable manifold, spherical space forms are always closed and

orientable. As a discrete and closed subgroup of a compact group, Γ is finite. This leaves us

to find all the finite subgroups of SO4(R) which act freely on S3.

4.5.1. Finite Subgroups of SO4(R)

Literature references for this section are [111], [99] and [103].

First, the finite subgroups of SO4(R) were classified by Threlfall and Seifert. Since S3 =

SO4(R)/SO3(R), the three-dimensional sphere is a topological group, just as the circle. Just

as the circle can be described by complex numbers, the three-sphere can be described by

quaternions, which we introduce now:

Quaternions: The quaternions H can be constructed by the set R4 with a non-

commutative but associative multiplication H × H → H. The multiplication is bilinear

and is therefore uniquely defined by its effects on a basis {1, i, j, k}:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

The subspace spanned by {1} can be identified with R and its elements are called real

quaternions. A quaternion of the form q = Ri + Rj + Rk is called a pure quaternion.

The conjugate of q = a + bi + cj + dk is the quaternion q̄ = a − bi − cj − dk. A norm can

be defined by |q| = qq̄, which coincides with the standard norm of E4. If |q| = 1, q is called

a unit quaternion. Therefore, the three-sphere is the set of unit quaternions:

S3 = {q ∈ H||q| = 1} = H′.

[99, p.105]
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Since S3/{±1} ∼= SO3(R), one can define a covering by

π : H′ → SO3(R), π(q)(q′) = qq′q−1,

which is a two-to-one map, since π(q) = π(−q).
The only finite subgroups of SO3(R) are the cyclic, dihedral and polyhedral subgroups

(4.3.1.3, p.85). The groups:

D?
m := π−1(Dm), T ? := π−1(T ), O? := π−1(O), I? := π−1(I)

are finite groups of H′. They are called the binary dihedral/polyhedral groups. It tuns

out that these, together with the cyclic groups, are the only finite subgroups of H′.
First, the connection between the binary groups and the spherical space forms was seen

by H. Hopf ( [44]), but the main step was taken by W. Threlfall and H. Seifert ( [104], [105]):

SO4(R) is locally isomorphic to SO3(R)×SO3(R). We have already seen that the universal

covering of SO3(R) is H′. Let us denote the universal covering space of SO4(R) with Spin(4)

and the covering by p : Spin(4)→ SO4(R). There is an isomorphism:

φ : Spin(4)→ H′ ×H′ (4.2)

which we shall give in detail below. We denote the composition of φ with the projection on

the ith factor with φi.

If Γ ⊂ SO4(R) is finite, Γi = φi(p
−1(Γ)) ⊂ H′ is finite. Since all finite subgroups of H′

are known and we have the isomorphism φ, we can construct all finite subgroups of SO4(R).

The subgroups which act freely remain to be found.

A. Hattori reformulated the Threfall-Seifert classification in terms of quaternions. For

unit quaternions a, b we define the homomorphism:

F (a, b) : H → H, q 7→ aqb−1.

F is a two-to-one homomorphism from H′ ×H′ → SO4(R) with kernel {(1, 1), (−1,−1)}.
The above-given isomorphism 4.2 is determined by F = pφ−1.

For Γ ⊂ SO4(R) is finite, Γ? = F−1(Γ) and Γi is the projection of Γ? on the ith factor.

Thus, Γi ⊂ H′. A theorem by Vincent states that a group Γ acts freely on S3 if and only if

it is fixed-point-free (see [111]). Since F (a, b)q = q, q 6= 0 if and only if a = qbq−1, F (a, b)

has a fixed point if and only if a and b are conjugates in H′. Thus, Γ ⊂ SO4(R) acts freely

if the corresponding subgroup in Γ1 × Γ2 ⊂ H′ ×H′ has no element (a, b) such that a and b

are conjugates.
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4.5.2. Classification of the Three-Dimensional Spherical Space Forms

In this section we closely follow [33].

The finite subgroups of SO4(R) are isomorphic to the finite subgroups L×R ⊂ H′ ×H′.
If one of the components is trivial, the action is called single action. If none of the

subgroups L,R are trivial, the group L acts as left translations, whereas the group R acts

as right translations. There are two possibilities: either every element of L is allowed to act

simultaneously with every element of R, or we restrict the set of elements of R which occur

with an element of L. In the first case, we obtain a double action, whereas we obtain a

linked action in the second case. There are three categories of spherical space forms in

correspondence to the three different types of actions of Γ on S3:

Single Action Manifolds: A finite, discrete group Γ ⊂ SO4(R), consisting only of pure

Clifford translations, acts on S3. Corresponding to the finite subgroups of SO4(R),

there are five classes of these spherical space forms: the lens spaces, prism spaces and

three classes of polyhedral spaces:

Lens Spaces L(n,1) Γ ≈ Zp, the cyclic group

Prism Spaces Γ ≈ D?
m, the binary dihedral group

Polyhedral Spaces: Truncated Cube Space: Γ ≈ T ?, the binary tetrahedral group

Octahedral Space: Γ ≈ O?, the binary octahedral group

Dodecahedral Space: Γ ≈ I?, the binary icosahedral group

The names of the spaces correspond to the covering group. As their fundamental group

consists only of clifford translations, the manifolds are globally homogeneous.

Double Action Manifolds: Here, Γ = L × R, where L,R ⊂ SO4(R) are different, finite

subgroups. Where L acts as left-handed Clifford translations and R acts as right-

handed Clifford translations. In order to obtain a free action, we have to ensure that

R and L do not contain a nontrivial element of the same order. Since each of the

polyhedral groups contains an element of order four, they cannot be paired with one

another. Thus, without loss of generality, L has to be a cyclic group. R is therefore

cyclic or a polyhedral group. We assume L has no elements of order four and therefore,

L = Zp or L = Z2p, p odd. We can think of Z2p as the set {qi}0≤i<p ∪ {−qi}0≤i<p. If

R contains the element −1, the group Zp × R gives the same group as Z2p × R. If R

does not contain −1, R is a cyclic group of odd order and we may, therefore, switch

the roles of L and R. We can assume L to be a cyclic group of odd order. There are

the following possibilities:

Remark 4.5.2.1. We denote the greatest common divisor of the integers n and m

with (n,m).
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R = Zm, L = Zp, (m, p) = 1 yields a lens space L(m,n).

R = D?
m, L = Zp, (4m, p) = 1 : yields a quotient of a prism manifold.

R = T ?, L = Zp, (24, p) = 1 : yields a quotient of the truncated cube space.

R = O?, L = Zp, (48, p) = 1 : yields a quotient of the octahedral space.

R = I?, L = Zp, (120, p) = 1 : yields a quotient of the dodecahedral space .

All these spaces can also be constructed as a quotient of a lens space L(p, 1), since

their covering spaces are not simply-connected. The holonomy groups of two manifolds

can be isomorphic even if the manifolds are non-homeomorphic. For example, the lens

spaces L(5, 1) and L(5, 2) both have a holonomy group isomorphic to Z5, but the spaces

are not homeomorphic.

Linked Action Manifolds Here, the groups L and R are chosen just as in the case of double

action manifolds, but now we allow a r ∈ R to pair only with a restricted set of

elements of L. Combinations producing fixed points are avoided. We shall not go into

further detail, but see [33].

To conclude the classification of spherical space forms, we give a list of all groups up to the

order 120 which generate three-dimensional spherical space forms and a list of the space

forms themselves. First, we list the holonomy groups acting on the space form. The first

column gives the order of the holonomy group; the second the holonomy group itself. As

pointed out before, isomorphic holonomy groups can generate non-homeomorphic manifolds

through different group actions.
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Order Single Action Double Action Linked Action

1 Z1

2 Z2

3 Z3

4 Z4

5 Z5 Z5

6 Z6

7 Z7 Z7

8 Z8 D?2 Z8

. . .

12 Z12 D?3 Z3 × Z4

. . .

72 Z72 D?18 Z8 × Z9, D?2 × Z9 Z72, T
? × Z9, D?9 × Z8

. . .

120 Z120, D?30, I
? Z40 × Z3, Z24 × Z5, Z120, D?3 × Z40,

Z8 × Z15, T
? × Z5, D?5 × Z24,

D?6 × Z5, D?2 × Z15, D?10 × Z3, D?15 × Z8

. . .

We now list the corresponding space forms. Isomorphic manifold can be reconstructed by

different types of group actions. We list isomorphic manifolds only once. For example, the

lens space L(7, 2) and L(7, 3) are isomorphic.

Order Single Action Double Action Linked Action

1 S3

2 L(2, 1)

3 L(3, 1)

4 L(4, 1)

5 L(5, 1) L(5, 2)

6 L(6, 1)

7 L(7, 1) L(7, 2)

8 L(8, 1) L(8, 3)

. . .

12 L(12, 1) L(12, 5)

. . .

72 L(72, 1) L(72, 17) L(72, 5) + 5 more

. . .

120 L(120, 1) L(120, 31), L(120, 41), L(120, 49) L(120, 7) + 7 more

. . .
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4.6. Three-Dimensional Hyperbolic Space Forms

Hyperbolic geometric structures are much more complicated than in the Euclidean or spher-

ical case. Therefore, there is no classification of three-dimensional hyperbolic manifolds, not

even for dimension two. In 1979, Riley found an algorithm which lists compact hyperbolic

manifolds for the first time. Even if there is no structural classification, there exists a rich

theory of hyperbolic geometric structures. We shall only present the main theorems. For an

in-depth study on this topic, the following literature is recommended: [98], [99], [39], [84].

Mostow’s Rigidity Theorem states that the geometric structure of hyperbolic manifolds is

uniquely determined by its fundamental group.

Theorem 4.6.0.2 (Mostow Rigidity Theorem). Suppose M1 and M2 are compact hyperbolic

manifolds of dimension n ≥ 3 for which there is an isomorphism

Φ : π1(M1)→ π1(M2).

Then there exists an isometry F : M1 → M2 which induces the isomorphism Φ (up to

conjugacy) between the fundamental groups. [98]

The fundamental group of a three-dimensional hyperbolic manifold is of infinite order.

From Thurston’s Geometrization Theorem follows that a closed three-dimensional manifold

is hyperbolic if and only if it is prime with an infinite fundamental group which contains no

Z⊕ Z. Recall that a prime manifold is a manifold which cannot be written as a connected

sum of non-trivial manifolds of the same dimension. [73]

The group of orientation-preserving isometries of H3 is isomorphic to the group PSL2(C).

(See 3.1.0.15 on page 56.) Discrete subgroups of PSL2(C) are called Kleinian groups.

They act freely on H3 if and only if they have no element of finite order. Thus, a classification

of the hyperbolic space forms is equivalent to a classification of torsion-free Kleinian groups.

To date, no classification is known.

The only Clifford translation is the identity. Thus, the simply-connected open space H3

is the only globally homogeneous space form. [98]

4.6.1. Thick-Thin Decomposition

Let M be a complete, hyperbolic manifold of dimension n with covering p : Hn → M and

Γ, which is the group of deck transformations. Let us denote the lifts of an x ∈ M in H3

as x̃, x̃′, x̃′′, . . . Since Γ is a discrete group, there is a shortest distance d := d(x̃i, x̃j), i 6= j

between two lifts. This length is exactly the length of the shortest non-null-homotopic loop

based on x. The ball of radius r(x) = 1
2d with center x is the biggest ball which can be

embedded in the UCS. We call r(x) the injectivity radius of M at x. The ball centered at

x with radius r(x) is the biggest domain on which the exponential map is injective. Then
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M can be decomposed in:

M≥ε = {x ∈M |r(x) ≥ 1

2
ε}, the thick part and

M<ε = {x ∈M |r(x) <
1

2
ε}, the thin part.

This decomposition is called the Thick-Thin decomposition. The thin part can be

classified. It is the union of components of four different types (see [99]). One of them is

called the cusp, which can be thought of as the neighbourhood of a point at infinity.

It is known that the manifold is of finite volume if and only if the thick part is compact

∀ε > 0. There is a theorem of Thurston (see, for instance, [39] or [98]) which states that

there are only countably many hyperbolic manifolds of finite volume and that there are only

finitely many non-homeomorphic manifolds of a given volume V . Therefore, there exists a

finite amount of hyperbolic manifolds with minimal volume V1. The second lowest volume of

hyperbolic manifolds is V2, then there is V3 and so on until the first accumulation point Vω,

which is the lowest volume of hyperbolic manifolds with one cusp. The sequence continues

with Vω+1, Vω+2, Vω+3, . . . until the second accumulation point Vω2 , which is the lowest

volume of a hyperbolic manifold with two cusps. Thus, there is a structural classification in

correspondence to the volume of the manifold. [98]

4.7. Conclusion

We have seen that the model geometries M̃ for three-dimensional locally isotropic Rie-

mannian manifolds are the three spaces H3,E3, S3. Thus, the geometry is modeled on

one of the three simply-connected Riemannian manifolds of constant curvature. Since any

three-dimensional space form can be written as M̃/Γ, we are left with classify the discrete

Γ ⊂ Isom(M̃) acting freely on M̃ .

For Euclidean space forms, Γ is a torsion-free, discrete group of Euclidean isometries.

The compact Euclidean space forms correspond to the ten three-dimensional Bieberbach

groups from which six are oriented. Additionally, there are four non-compact Euclidean

spaces. Spherical space forms can be identified with the finite subgroups Γ of SO4(R), for

which there is a correspondence to the finite subgroups of SO3(R) × SO3(R). According

to the type of action of Γ on S3, the infinite amount of three-dimensional spherical space

forms are grouped in three classes of manifolds: single action, double action and linked

action manifolds, whereas, for single action manifolds one component of the corresponding

subgroup in SO3(R)×SO3(R) is trivial. Three-dimensional orientable hyperbolic space forms

correspond to torsion-free and discrete subgroups Γ ⊂ PSL2(C). So far, no classification of

Kleinian groups has been found.
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We shall now present the mathematical basics for the next chapter, where we focus on

Cosmic Topology. In Chapter 4, we have developed a list of candidates forM3. How can

we decide which space we are sitting in? In order to visualize three-dimensional manifolds,

we shall develop a procedure in dimension three.

5.1. Gluings – Geometry of Discrete Groups

Remark 5.1.0.1 (Notation). In this chapter, X shall always refer to an arbitrary metric

space and M̃ to one of the spaces Sn,Hn,En. Γ denotes a discrete group of isometries of X

or M̃ (2.2.1.5, p.42). A space form shall be denoted by M .

We start with an example in dimension two:

Example 5.1.0.2. Take a rectangle and glue the top side and the bottom side together

such that we get a cylinder. Gluing the two circles at the top and the bottom gives us a

two-dimensional torus T2
F (see Figure 5.1(a)). Here, the rectangle is called the fundamental

domain or fundamental polyhedron of the torus. It is not the only polygon which gives a

torus by gluing its sides, we can also use a hexagon or parallelogram for constructing T2
F . [2]

The different choices of the fundamental polyhedron have the following background: take

an infinite amount of rectangles, labeled as in Figure 5.1(a). Start with taking one rectangle

and add one after the other by identifying edges of the new ones with similarly labeled

edges of those placed already. Following this rule, each new polygon fits in a unique way.

The resulting pattern is called a regular tessellation of the Euclidean plane. For tiling the

Euclidean plane, triangles, parallelograms or hexagons can also be used (see fig. 5.1(b)).

Since the rectangle is a fundamental polyhedron for the torus and tiles the (simply-

connected) Euclidean plane, E2 is the universal covering space of the torus. The covering

map identifies corresponding points in each rectangle by the translations (x, y) 7→ (x+ b, y)

and (x, y) 7→ (x, y + a). These translations generate the group of deck transformations Γ.

Thus, the torus is the quotient space E2/Γ.

As long as a region D of the torus is simply-connected, it is isometric to E2. Thus, we can

define an Euclidean metric on D. Therefore, the torus is locally isometric to the Euclidean

plane and has an Euclidean geometric structure. [99] (cf. 3.2.1.1, p.56)
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5. Gluing Manifolds

The torus is uniquely described by its fundamental domain and the identifications of its

sides by pairs. This concept can be extended further, as we shall see in the following. [2]

(a) (b)

Figure 5.1.: (a): By identifying opposite sides of a rectangle in the Euclidean plane, a flat
torus is obtained. [123] (b): Regular tessellations of the Euclidean plane. [124]

Remark 5.1.0.3 (Assumption:). We assume M to be compact and oriented.

5.1.1. Metric on Space Forms

Let M = M̃/Γ be a space form. That way, M is the orbit space of the action of Γ on the

metric space M̃ :

M = {Γx |x ∈ M̃}.

Definition 5.1.1.1. We assuming A and B to be subsets of a metric space X. The distance

from A to B in X is defined to be

dist(A,B) := inf{d(x, y)|x ∈ A, y ∈ B}.

Remark 5.1.1.2. The orbit space distance function dΓ : M̃/Γ × M̃/Γ → R is defined

as:

dΓ(Γx,Γy) := dist(Γx,Γy).

dΓ defines a metric on an orbit space if and only if every orbit is closed in M̃ . For a space

form M = M̃/Γ, Γ is properly discontinuous. According to Lemma 4.3.0.4 (p.81), Γ is

discontinuous (2.3.1.3, p.48) and, thus, every orbit is closed in M̃ and dΓ defines a metric

on M . [84]

100



5.1. Gluings – Geometry of Discrete Groups

5.1.2. The Fundamental Polyhedron

The geometric properties of a simply-connected domain in M are the same as those of its

development in the universal covering space M̃ . [55]

Definition 5.1.2.1. A subset R of a metric space X is a fundamental region for a group

Γ of isometries of X if and only if

1. the set R is open in X;

2. the members of {γR | γ ∈ Γ} are mutually disjoint;

3. X =
⋃{γR | γ ∈ Γ}, where R denotes the closure of R. [84]

Definition 5.1.2.2. A subset D of a metric space X is a fundamental domain for a

group of isometries Γ of X if and only if D is a connected fundamental region for Γ. [84]

Recall the definition of a locally finite set (2.2.1.5, p.42).

Definition 5.1.2.3. A fundamental region R for a group Γ of isometries of a metric space

X is locally finite if and only if {γR | γ ∈ Γ} is a locally finite family of subsets of X. [103]

If Γ is a discrete subgroup of the group of isometries of M̃ , there exists a convex and

locally finite fundamental domain R for Γ. R is isometric to a simply-connected domain

in the UCS through the above-defined metric (5.1.1.2). Thus, we get the geometry of the

UCS M̃ on the quotient space M = M̃/Γ. Not only does R give the geometry, it is also

representative for the topology of M :

Theorem 5.1.2.4. If R is a fundamental region for a discontinuous group Γ of isometries

of a metric space X, the inclusion ι : R→ X induces a continuous bijection κ : R/Γ→ X/Γ

and κ is a homeomorphism if and only if R is locally finite. [84]

Remark 5.1.2.5. The quotient space M̃/Γ is compact if and only if the fundamental domain

for Γ is compact. [103]

Definition 5.1.2.6. The set

D(x) := {y ∈ X : d(y, x) ≤ d(y, γ(x))∀γ ∈ Γ}

is called the Dirichlet domain for Γ with center x. [103]

Remark 5.1.2.7. 1. It is very common to produce a fundamental domain by construct-

ing a Dirichlet domain for Γ.

2. The Dirichlet domain of a simply-connected manifold is the manifold itself. For a space

form M = M̃/Γ it is a locally finite fundamental domain for Γ.
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3. By changing the center of the Dirichlet domain we obtain another fundamental domain

for the same manifold. By changing the lengths of the Dirichlet domain, we obtain

another manifold of the same geometric and topological class (and therefore another

fundamental domain). [37]

Remark 5.1.2.8 (Fundamental Polyhedron). In order to define a fundamental polyhedron

we need several other definitions, which we shall present in this remark.

1. A subset C of M̃ is called convex if it contains the geodesic joining any two points in

it.

2. A side of a convex set C is a nonempty, maximal, convex subset of the (topological)

boundary ∂TC of C. A side is always closed and two sides meet only along their

boundaries.

3. The interior of a convex set is defined as C◦ = C\∂TC. [84]

Definition 5.1.2.9. A convex polyhedron P in M̃ is a nonempty, closed, convex subset

of M̃ such that the collection S of its sides is locally finite in M̃ . [84]

Remark 5.1.2.10 (Faces of Polyhedra). 1. Every side of anm-dimensional convex poly-

hedron is an (m − 1)-dimensional convex polyhedron. [84] They are sometimes called

facets. [55]

2. We shall inductively define k-faces for 0 ≤ k ≤ m of an m-dimensional convex polyhe-

dron P . The only m-face of P is P itself. Assuming that (k + 1)-faces have already

been defined, a k-face is a side of a (k + 1)-face. A k-face is a k-dimensional convex

polyhedron.

3. A vertex of a polyhedron is a point of a 0-face of P . A side of a polyhedron P is an

(m − 1)-face. A ridge of a convex polyhedron P is a side of a side of P , that is an

(m− 2)-face.

4. We assume P to be a three-dimensional polyhedron. The two-faces are called facets

or simply faces, the one-faces are called edges, and the zero-faces vertices. [84]

Definition 5.1.2.11. A flag of an n-dimensional convex polyhedron P is a sequence

F = {F0, F1, . . . , Fn−1},

where Fi is an i-dimensional (closed) face of P , and Fi−1 ⊂ Fi for i = 1, 2, . . . , n− 1. [103]

Remark 5.1.2.12. We recall the definition of a symmetry group S(Y ) of a set Y (4.3.1.1,

p.82). Bear in mind that we denote the collection of the sides of a polyhedron with S,

whereas the symmetry group of a polyhedron P is denoted by S(P ).
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Definition 5.1.2.13. A convex polyhedron P is said to be regular if for any two flags F
and F ′ there is a unique motion g of the symmetry group of the polyhedron S(P ) taking F
into F ′. [103]

Definition 5.1.2.14. A convex fundamental polyhedron for a discrete group Γ of isome-

tries of M̃ is a convex polyhedron P in M̃ , the interior of which is a locally finite fundamental

domain for Γ. [84]

Remark 5.1.2.15. The closure of any convex, locally finite fundamental domain for Γ

is a fundamental polyhedron for Γ. Thus, the closure of a Dirichlet domain D(x) for Γ, in

particular, is a convex fundamental polyhedron for Γ. It is called the Dirichlet polyhedron

for Γ with center x. [84]

Corollary 5.1.2.16. Any discrete group of motions of M̃ has a convex fundamental domain

and therefore a convex fundamental polyhedron. [103]

Definition 5.1.2.17. A convex fundamental polyhedron P for Γ is exact if and only if for

each side S of P there is an element γ ∈ Γ such that S = P ∩ γP . [84]

Theorem 5.1.2.18. Let P be an exact, convex fundamental polyhedron for Γ. Then Γ is

generated by the set

Φ = {γ ∈ Γ |P ∩ γP is a side of P}. [84]

Remark 5.1.2.19. The group Γ is generated finitely if its fundamental polyhedron is finite-

sided [84].

5.1.3. Tessellation

Definition 5.1.3.1. A tessellation of M̃ is a collection P of n-dimensional convex poly-

hedra in M̃ such that

1. the interiors of the polyhedra in P are mutually disjoint,

2. the union of the polyhedra in P is M̃ and

3. the collection P is locally finite. [84]

Remark 5.1.3.2. Using arbitrary closed domains instead of convex polyhedra in the defi-

nition given above we obtain a decomposition of the space. [103]

Definition 5.1.3.3. A tessellation P of M̃ is exact if and only if each side S of a polyhedron

P in P is a side of exactly two polyhedra P and Q in P. [84]

Definition 5.1.3.4. A collection P of n-dimensional polyhedra in M̃ is said to be connected

if and only if for each pair P,Q in P there is a finite sequence P1, . . . , Pm in P such that

P = P1, Q = Pm, and Pi−1 and Pi share a common side for each i > 1. [84]
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Remark 5.1.3.5. 1. Every exact tessellation is connected. [84]

2. An exact decomposition is sometimes called a normal decomposition.

3. Any tessellation can be normalized by introducing false faces. Here, we define

any nonempty intersection which does not contain any other intersection of the same

dimension as being a false face. The bricklaying (brick tessellation) (see Figure

5.2) becomes an exact tessellation by viewing the rectangles as hexagons. [103]

Figure 5.2.: The brick tessellation is an example for a non-exact tessellation. [125]

Theorem 5.1.3.6. Let P be an n-dimensional convex polyhedron in M̃ and let Γ be a group

of isometries of M̃ . Then Γ is discrete and P is an (exact) fundamental polyhedron for Γ if

and only if

P = {γP | γ ∈ Γ}

is an (exact) tessellation of M̃ .

Remark 5.1.3.7. The polyhedra γP, γ ∈ Γ are said to be chambers or cells of the

tessellation. [103]

5.2. Gluings

We now have a sufficient theoretical basis for developing a construction of metric spaces by

gluing the sides of convex polyhedra – gluings. While we consider the theoretical background

for gluings in section 5.2.1, we shall focus on the necessary preconditions of a gluing being

a manifold in section 5.2.2.

5.2.1. Theoretical Background

In this section, we closely follow [84].
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5.2.1.1. Side-Pairing

Let P be an n-dimensional convex fundamental polyhedron and S the set of all its sides.

From the definition of an exact (5.1.2.17, p.103) and convex fundamental polyhedron P for

Γ follows directly that if S is a side of P there is a uniquely determined nontrivial element

γS ∈ Γ such that

S = P ∩ γSP

and S′ = γ−1
S S is a side of P . The side S′ is said to be paired to the side S by the element

γS ∈ Γ. Since S′ = γ−1
S S, S is paired to S′ by γ−1

S and we have S′′ = S.

The set

Φ = {γS |S ∈ S}

is called the Γ-side-pairing (cf. 5.1.2.18) and its elements are the side-pairing trans-

formations.

For every side S′ ∈ S, there is a γS ∈ Φ such that γS(S′) = S. It follows immediately that

γSγS′ = γSγ
−1
S = id.

Two points x, x′ of P are said to be paired by Φ if and only if there are sides S, S′ such

that x ∈ S, x′ ∈ S′ and γS(x) = x′. We write x ' x′. If x ' x′, γS′(x′) = x, and thus,

x′ ' x. Two points x, y are said to be related by Φ (x ∼ y), if either x = y or there is a

finite sequence of points x1, . . . , xm of points of P such that

x = x1 ' x2 ' · · · ' xm = y.

Being related by Φ is an equivalence relation on the set P . The equivalence classes are

called cycles of Φ. For the cycle containing x we shall write [x].

If P is an exact, convex fundamental polyhedron for Γ, the cycle for every point x is finite

and is given by [x] = P ∩ Γx.

[84]

5.2.1.2. Dihedral Angle

Remark 5.2.1.1. 1. Assumption: From now on we require the dimension of any space

mentioned in the following to be of dimension n > 1.

2. A hyperplane of a space M̃ is a flat subset of M̃ of codimension 1, here (n− 1).

Definition 5.2.1.2. Sides S and T of an n-dimensional convex polyhedron are said to be

adjacent if and only if S ∩ T is a side of both S and T .

Let S and T be sides of the n-dimensional convex polyhedron P in M̃ and 〈S〉, 〈T 〉 the

hyperplanes of M̃ such that S ⊂ 〈S〉 and T ⊂ 〈T 〉. Then 〈S〉 and 〈T 〉 divide M̃ in four
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half-spaces, one of which contains P . It is

〈S〉 ∩ 〈T 〉 = 〈S ∩ T 〉.

For an x ∈ S ∩ T , we denote the geodesic lines which satisfy

1. λ(0) = x = µ(0),

2. λ, µ are normal to 〈S〉, 〈T 〉,

3. λ′(0), µ′(0) are directed away from the half-space of M̃ containing P

with µ, λ : R → M̃ . The angle α between λ and µ does not depend on the choice of the

point x.

Definition 5.2.1.3. The dihedral angle Θ(S, T ) between two sides S and T of a convex

fundamental polyhedron P is defined as

• Θ(S, T ) = π if S = T ,

• Θ(S, T ) = 0 if S and T are non-adjacent, distinct sides,

• Θ(S, T ) = π − α if S and T are adjacent sides of P.

Remark 5.2.1.4. In general, the dihedral angle Θ(S, T ) satisfies 0 ≤ Θ(S, T ) ≤ π. If

0 < Θ(S, T ) < π, the dihedral angle is said to be proper. This is the case if and only if the

sides are distinct adjacent sides. [84]

5.2.1.3. Cycle Relations and Cycles of Polyhedra

Definition 5.2.1.5. A cycle of polyhedra in M̃ is a finite set

C = {P0, . . . , Pm−1}

of n-dimensional convex polyhedra in M̃ such that for each i mod m

1. there are adjacent sides Si, Si+1 of Pi such that Pi ∩ Pi+1 = Si+1,

2.
∑m−1

i=0 Θ(Si, Si+1) = 2π, and

3. R =
⋂m−1
i=0 Pi is a side of Si ∀i.
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Remark 5.2.1.6. Let R be a ridge of a polyhedron P in an exact tessellation P of M̃ . Then

the set of all polyhedra in P containing R forms a cycle, the intersection of which is R.

Definition 5.2.1.7. Let R be a side of a side S of P . We define a sequence {Si}∞i=1 of sides

of P inductively as follows:

1. Let S1 = S.

2. Let S2 an adjacent side to S′1 such that γS1(S′1 ∩ S2) = R.

3. Let Si+1 be an adjacent side to S′i such that γS′i(S
′
i ∩ Si+1) = S′i−1 ∩ Si.

We call {Si}∞i=1 the sequence of sides of P determined by R and S.

Theorem 5.2.1.8. Let R be a side of a side S of an exact, convex, fundamental polyhedron

P for Γ and let {Si}∞i=1 be the sequence of sides of P determined by S and R. Then there is

at least a positive integer l and a positive integer k such that

1. Si+l = Si, ∀i,

2.
∑l

i=1 Θ(S′i, Si+1) = 2π/k and

3. the element γS1 . . . γSl has order k.

The finite sequence {Si}li=1 is called the cycle of sides determined by R and S of P

and the corresponding element γS1γS2 . . . γSl of Γ is called the cycle transformation. It

determines a cycle relation

(γS1γS2 . . . γSl)
k = 1

of Γ. Since Γ is torsion-free if M̃ is Hn or En (4.4.1.1, p.86) and fixed-point-free if M̃ = Sn

(mentioned in Chapter 4, p.92), k = 1. Thus, we have the cycle relation of Γ:

γS1γS2 . . . γSl = 1.

S1S2 . . . Sl is called the word in S corresponding to the cycle relation γS1γS2 . . . γSl .

Each side S of P determines a side-pairing relation:

gSgS′ = id. [84]

5.2.2. Gluing Manifolds

Remark 5.2.2.1 (Notation). Let G be a group of isometries of the three-dimensional

space M̃ and P a finite family of disjoint convex polyhedra in M̃ .
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Definition 5.2.2.2. A G-side-pairing for P is a subset

Φ = {gS : S ∈ S},

of G, indexed by the collection S of all sides of the polyhedra in P such that for each side

S ∈ S,

1. there is a side S′ in S such that gS(S′) = S,

2. the isometries gS and gS′ satisfy the relation gS′ = g−1
S ,

3. if S is a side of P in P and S′ is a side of P ′ in P, then

P ∩ gS(P ′) = S.

Remark 5.2.2.3. S′ is uniquely determined by S. Here Φ defines an equivalence relation

on Π =
⋃
p∈P P . The equivalence classes are called cycles.

Remark 5.2.2.4 (Solid Angle). Let P be a polyhedron of P and x ∈ P . Let r be the radius

of the open ball with center x: B(x, r) = {y ∈ P | d(x, y) < r} such that B(x, r) does not

intersect with any side of P not containing x. We define the solid angle ω subtended by P

at x to be the real number:

ω = 4π
Vol(P ∩B(x, r))

Vol(B(x, r))
.

For a finite cycle [x] = {x1, . . . , xm} let Pi be the polyhedron containing xi and ωi the

solid angle subtended by Pi at xi for every 1 ≤ i ≤ m. The solid angle sum is defined by

ω[x] = ω1 + · · ·+ ωm.

If x ∈ P ◦, P ∈ P, the cycle [x] consists only of the point x, and thus, [x] = {x}. Therefore,
Vol(P∩B(x,r))

Vol(B(x,r)) = 1 and ω[x] = 4π. If x is in the interior of a side of a polyhedron P ∈ P,

then [x] = {x, x′} and Vol(P∩B(x,r))
Vol(B(x,r)) = 1

2 . Here, either x = x′ and ω[x] = 2π, or x 6= x′ and

ω = 2π + 2π = 4π.

Remark 5.2.2.5 (Dihedral Angle Sum). If x is a point in the interior of an edge of a

polyhedron P ◦ in P, every point of the cycle [x] is in the interior of an edge of a polyhedron

in P. In this case, the cycle [x] is called edge cycle of Φ. The dihedral angle sum of the

edge cycle [x] is defined to be the real number

Θ[x] = Θ1 + · · ·+ Θm,

where Θi is the dihedral angle of Pi along the edge containing xi for each i.

It is ωi = 2Θi and therefore, ω[x] = 2Θ[x].
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Definition 5.2.2.6. A G-side-pairing Φ for P is proper if and only if each cycle of Φ is

finite and has a solid angle sum of 4π.

Definition 5.2.2.7. Let G be a group of isometries of M̃ . A space M obtained by gluing

together a finite family P of disjoint convex polyhedra in M̃ by a proper G-side-pairing Φ is

the quotient space of Π =
⋃
p∈P P by cycles of Φ. The space M is said to be obtained by

gluing together the polyhedra in P by Φ. We call M a gluing.

Remark 5.2.2.8. A (M̃,G)-map is a continuous map f between two (M̃,G)-manifolds

N, M such that if ϕ : U ⊂ M → M̃ is a chart of M and ψ : V ⊂ N → M̃ is a chart of N

with U ∩ f−1(V ) not empty, the function ψ ◦ f ◦ ϕ−1 agrees locally with an element of G.

Theorem 5.2.2.9. Let G be a group of isometries of M̃ and let M be a gluing of polyhedra

P by Φ. Then M is a three-dimensional manifold with an (M̃,G)-structure such that the

natural injection of P ◦ into M is an (M̃,G)-map for each P in P.

Remark 5.2.2.10. 1. If the gluing M is a manifold it is said to be a gluing manifold.

2. The identifications S → S′ give the generators of the holonomy group Γ of M = M̃/Γ.

3. The triplets (S, γS , S
′) are called gluing data and the quotient space M is completely

described by the fundamental polyhedron and the gluing data.

To prove if a given G-side-pairing is indeed proper, there is a very useful theorem:

Theorem 5.2.2.11. Let G be a group of orientation-preserving isometries of M̃ and let

Φ = {gs : S ∈ S} be a G-side-pairing for a finite family P of disjoint convex polyhedra in

M̃ . Φ is proper if and only if

1. each cycle of Φ is finite,

2. the isometry gS fixes no point of S′ for each S in S, and

3. each edge cycle of Φ has dihedral angle sum 2π.

Remark 5.2.2.12. Under which circumstances is a gluing complete? A spherical gluing

is always complete since it is compact. An Euclidean gluing is complete if and only if the

fundamental polyhedron is finite-sided. The hyperbolic case is more complex. A necessary

condition for a hyperbolic gluing is that the fundamental polyhedron is finitely sided. The

sufficient conditions can be read in [84, p.508].

Every compact manifold of constant curvature can be described by a convex fundamental

polyhedron which determines the manifold’s geometry, and the gluing data which gives the

topology of M . The converse is stated in Poincaré’s Polyhedron Theorem:
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5. Gluing Manifolds

Theorem 5.2.2.13 (Poincaré’s Polyhedron Theorem). Let Φ be a proper Isom(M̃)-side-

pairing for an n-dimensional convex polyhedron P in M̃ such that the (Isom(M̃), M̃)-

manifold M , obtained by gluing together the sides of P by Φ, is complete. Then the group Γ

generated by Φ is discrete and acts freely. Furthermore, P is an exact, convex fundamental

polyhedron for Γ. If S is the set of sides of P and R the set of words in S corresponding

to all the side-pairings and cycle relations of Γ, then (S,R) is a group representation for Γ

under the mapping S 7→ γS.

5.2.3. Volumes of Space Forms

Proposition 5.2.3.1. If a fundamental domain D of a group Γ satisfies

vol D◦ = vol D, (5.1)

then

vol X/Γ = vol D.

In particular, vol X/Γ <∞ if and only if vol D <∞. [103]

Corollary 5.2.3.2. The volumes of all fundamental domains of the group Γ satisfying con-

dition (5.1) are equal. [103]

5.3. Euclidean Space Forms

We already know that there are six compact, orientable, three-dimensional Euclidean man-

ifolds according to the six orientation-preserving Bieberbach groups (see section 4.4.2.1,

p.88). We shall describe these manifolds as gluings.

There are two regular tessellations of the three-dimensional Euclidean space. The funda-

mental polyhedron of a flat space form is either a parallelepiped or a hexagonal prism. The

topology of the manifolds depends on the way facets are identified by pairs.

Remark 5.3.0.3. We shall use the notation used in section 4.4.2.1, p.88.

5.3.0.1. Fundamental Polyhedron: Parallelepiped

For a visualization of fundamental polyhedra and the side-pairing see Figure 5.3(a). We

shall use the notation introduced in 4.4.2.9 (p.89).

G1, the Three-Dimensional Torus: opposite facets are identified by translations.

Holonomy Group: {1};
Side-Pairing:

ABCD ←→ A′B′C ′D′, ABB′A′ ←→ DCC ′D′, ADD′A′ ←→ BCC ′B′
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CONTENTS 49
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Figure 17. The six locally Euclidean, closed, oriented 3-spaces

When Γ includes a glide reflection, the space forms IR3/Γ are not orientable. We shall not describe

them because of their lack of interest for cosmology (cf. section 2)

6.2. Closed models

The compact models can be better visualised by identifying appropriate faces of fundamental

polyhedra. Six of them are orientable (figure 17)

The fundamental polyhedron can be a parallelepiped. The possible identifications are then :

• E1 - opposite faces by translations. The hypertorus T 3 already mentioned in section 3.2.3, which

is homeomorphic to the topological product S1 × S1 × S1, belongs to this class and, due to its

simplicity, will provide a preferred field of investigation in the second part of this article.

• E2 - opposite faces, one pair being rotated by angle π

• E3 - opposite faces, one pair being rotated by π/2

• E4 - opposite faces, all three pairs being rotated by π.

The fundamental polyhedron can also be the interior of an hexagonal prism, with two possible

(a)
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The fundamental polyhedron can be a parallelepiped. The possible identifications are then :

• E1 - opposite faces by translations. The hypertorus T 3 already mentioned in section 3.2.3, which

is homeomorphic to the topological product S1 × S1 × S1, belongs to this class and, due to its

simplicity, will provide a preferred field of investigation in the second part of this article.

• E2 - opposite faces, one pair being rotated by angle π

• E3 - opposite faces, one pair being rotated by π/2

• E4 - opposite faces, all three pairs being rotated by π.

The fundamental polyhedron can also be the interior of an hexagonal prism, with two possible

(b)

Figure 5.3.: Fundamental polyhedra for Euclidean space forms. (a): the parallelepiped; (b):
the hexagonal prism. [55]

G2, the Half-Turn Cube Space: opposite facets are identified; one pair being rotated by π.

Holonomy Group: Z2;

Side-Pairing:

ABCD ←→ C ′D′A′B′, ABB′A′ ←→ DCC ′D′, ADD′A′ ←→ BCC ′B′

G4, the Quarter-Turn Cube Space: opposite facets are identified; one pair being rotated by

π/2. Without loss of generality, we can assume the top and bottom facet to be rotated

by a quarter turn. To avoid distortions, these facets must be chosen to be squares.

Holonomy Group: Z4;

Side-Pairing:

ABCD ←→ B′C ′D′A′, ABB′A′ ←→ DCC ′D′, ADD′A′ ←→ BCC ′B′

G6, the Double Cube Space (Hantzsche-Wendt manifold): one pair of opposite facets are

identified and the four remaining facets are identified in such a way that each pair

consists of adjacent sides. All pairs are rotated by π. See Figure 5.4.

Holonomy Group: Z2 × Z2;

Side-Pairing:

ADD′A′ ←→ C ′B′BC, ABB′A′ ←→ CDAB, DD′C ′C ←→ C ′D′A′D′

Every edge cycle consists of exactly four points. All dihedral angles Θi are π/2. Thus, the

dihedral angle sum of each edge cycle is Θ = 2π. Hence, the obtained gluings are manifold

by Theorem 5.2.2.11.
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5. Gluing Manifolds

Figure 5.4.: The space form G6 as gluing manifold. Left: Facets are identified by pairs.
Right: Edge cycles. [37]

5.3.0.2. Fundamental Polyhedron: Hexagonal Prism

See Figure 5.3(b) for a visualization of the fundamental polyhedron and the side-pairing.

G3, the Third-Turn Hexagonal Prism Space: opposite facets are identified. The top facet

is rotated by the angle 2π
3 with respect to the bottom face.

Holonomy Group: Z3;

Side-Pairing:

ABCDEF ←→ C ′D′E′F ′A′B′, AA′F ′F ←→ CC ′D′D, EE′D′D ←→ AA′B′B

G5, the Sixth-Turn Hexagonal Prism Space: opposite facets are identified. The top facet

is rotated by the angle π
3 with respect to the bottom face.

Holonomy Group: Z6;

Side-Pairing:

ABCDEF ←→ B′C ′D′E′F ′A′, AA′F ′F ←→ CC ′D′D, EE′D′D ←→ AA′B′B

[55], [84], [2]

5.4. Spherical Space Forms

In this section we follow [33] if not cited otherwise.

In Chapter 4 we classified all the three-dimensional spherical space forms. We shall de-

scribe a selected number of them as gluings.
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5.4. Spherical Space Forms

Remark 5.4.0.4. The volumes of spherical space forms is given by:

vol Sn/Γ =
vol Sn

|Γ| =
2π2R3

|Γ| ,

where R is the radius of the three-dimensional sphere. [103]

5.4.1. Lens Spaces

A lens space L(p, q), with p and q relatively prime and 0 < q < p, is obtained by identifying

the lower surface of a lens-shaped solid to the upper surface with a q/p twist (see Figure

5.5).

Topological Lensing in Spherical Spaces 11

noncyclic groups, the realization as a holonomy group Γ ⊂ SO(4) is unique up to
an orthonormal change of basis, and thus the resulting manifold is unique.

2 q/p!

Figure 3. Construction of a lens space L(p, q).

4.1. Single Action Spherical 3-Manifolds

The finite subgroups of S3 give the single action manifolds directly, which are thus
the simplest class of spherical 3–manifolds. They are all given as follows:

• Each cyclic group Zn gives a lens space L(n, 1), whose fundamental domain is a
lens shaped solid, n of which tile the 3–sphere.

• Each binary dihedral group D∗
m gives a prism manifold, whose fundamental

domain is a 2m–sided prism, 4m of which tile the 3–sphere.

• The binary tetrahedral group T ∗ gives the octahedral space, whose fundamental
domain is a regular octahedron, 24 of which tile the 3–sphere in the pattern of a
regular 24–cell.

• The binary octahedral group O∗ gives the truncated cube space, whose funda-
mental domain is a truncated cube, 48 of which tile the 3–sphere.

• The binary icosahedral group I∗ gives the Poincaré dodecahedral space, whose
fundamental domain is a regular dodecahedron, 120 of which tile the 3–sphere
in the pattern of a regular 120–cell. Poincaré discovered this manifold in a
purely topological context, as the first example of a multiply connected homology
sphere [37]. A quarter century later Weber and Seifert glued opposite faces of
a dodecahedron and showed that the resulting manifold was homeomorphic to
Poincaré’s homology sphere [38].

In figure 4, we depict the fundamental domains for the binary tetrahedral group
T ∗, binary octahedral group O∗ and binary icosahedral group I∗. The fundamental
polyhedron for the lens space L(n, 1) can be constructed by following the example
presented in figure 3. Finally, the fundamental domain of the prism manifold generated
by the binary dihedral group D∗

5 is shown in figure 5.
To finish, let us emphasize that all single action manifolds are globally homoge-

neous, in the sense that there is an isometry h of the manifold taking any point x to
any other point y. If the manifold’s holonomy group is realized as left multiplication by
a group Γ = {gi} of quaternions, then the isometry h is realized as right multiplication
by x−1y. To check that h is well–defined on the quotient manifold S3/Γ, note that h
takes any point gix equivalent to x to a point gix(x−1y) = giy equivalent to y, thus
respecting equivalence classes of points.

4.2. Double action spherical 3-manifolds

The double action spherical 3–manifolds are obtained by letting one finite subgroup
R ⊂ S3 act as right–handed Clifford translations (equivalent to left multiplication

Figure 5.5.: The fundamental domain of a lens space L(p, q) [33]

Since S3 is compact, it is tiled by a finite account of fundamental domains. If we consider

the lens space L(p, q), the UCS is tiled by p copies of the lens-shaped fundamental domain.

Two lens spaces L(p, q), L(p′, q′) are homeomorphic if and only if p = p′ and either q =

±q′(mod p) or qq′ = 1(mod p).

The following finite groups of SO(4) are isomorphic to the holonomy group of a lens space:

Γ = Zn: acts by single action and gives a lens space L(n, 1).

Γ = Zn × Zm: acts by double action and gives a lens space L(mn, q) (see Chapter 4 for a

detailed list).

Γ = L×R with L,R cyclic groups: acts by linked action of S3 and gives a lens space L(p, q).

The majority of spherical space forms are lens spaces.

5.4.2. Polyhedral Spaces

Prism Manifold: Γ = D?
m acts by single action; the fundamental domain is a 2m-sided

prism; 4m of which tile S3.

Truncated Cube Space: Γ = T ? acts by single action; the fundamental domain is a regular

octahedron; 24 of which tile S3.
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5. Gluing Manifolds

(a) (b) (c)

Figure 5.6.: (a): The fundamental domain of the octahedral space. [126] (b): Side-pairing
of the fundamental polyhedron for the Poincaré dodecahedral space. [127] (c):
Dodecahedron with dihedral angle 180◦. [55]

Octahedral Space: Γ = O? acts by single action; the fundamental domain is a truncated

cube (see Figure 5.6(a)); 48 of which tile S3.

Remark 5.4.2.1. The names for S3/O? and S3/T ? are not unique in the literature.

Some authors name the space in order of their fundamental domain, others name the

spaces base on their covering group Γ. We chose the latter usage.

Poincaré Dodecahedral Space (PDS): Γ = I? acts by single action; the fundamental do-

main is a regular dodecahedron; 120 of which tile S3. Therefore, the globally homoge-

neous space form has a volume of VPDS = 1/120 · Vsphere.
Because of the importance of the Poincaré dodecahedral space in cosmology, we ought

to consider this space in more detail: let us denote the regular spherical dodecahe-

dron inscribed in with µ, λ : R → M̃ the two-dimensional sphere of radius r, with

0 < r ≤ π/2, as D(r). The dihedral angle of the Euclidean regular dodecahedron is

approximately 116◦34′. The dihedral angle Θ(r) of D(r) is, in general, bigger than

that of a Euclidean regular dodecahedron. If r is small, Θ(r) is approximately 116◦34′.

If r is increasing, Θ(r) increases continuously. The biggest dihedral angle Θ(π/2) = π

is obtained if the facets of the dodecahedron lie on S2 (see fig. 5.6(c)). The function

r 7→ Θ(r) is continuous, thus, there is an r such that Θ(r) = 120◦. Let us denote

this dodecahedron as P . We define an Isom(S3)-side-pairing Φ by identifying opposite

sides with a twist of π/5 (see fig. 5.6(b)). Here, every edge cycle consists of three

points, each of which having a dihedral angle of 2π/3 (see fig. 5.7(b)). Therefore, the

dihedral angle sum Θ(r) = 2π. Hence, the space obtained by gluing together the sides

of P by Φ is a spherical three-dimensional manifold. [84]
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5.5. Hyperbolic Space Forms

5.5. Hyperbolic Space Forms

Since there is no classification of hyperbolic space forms, we shall give several examples of

these manifolds.

(a)
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Figure 21. The spherical Poincaré space and the closed hyperbolic Seifert-Weber space are
respectively obtained by identifying opposite faces of a regular dodecahedron after rotation by π/5
and 3π/5.

Figure 22. The FP for the Löbell topology is made of 8 such 14–hedra pasted together. All the
angles in the figure are right angles in IH3.

compact hyperbolic 3-spaces can be build by pasting together various numbers of these 14–hedra, and

suitably identifying the unattached faces.

The Best Spaces.

Best [11] has constructed several compact hyperbolic manifolds whose FP is a regular icosahedron.

One of them was studied in details by Fagundes [48, 49] in a cosmological context. Its outer structure

is represented in figure (23). The corresponding generators of the holonomy group are expressible

in terms of 4 × 4 matrices corresponding to homogeneous Lorentz transformations; for details, see

(b)

Figure 5.7.: (a): A hyperbolic dodecahedron. [128] (b): The side-pairing of the Poincaré
dodecahedral space or the Seifert-Weber dodecahedral space. [55]

Seifert-Weber dodecahedral space: The fundamental polyhedron of the Seifert-Weber do-

decahedral space is a hyperbolic dodecahedron (see fig 5.7(a)). As in the spherical

space, we denote the dodecahedron inscribed on the two-dimensional sphere with ra-

dius 0 < r < 1 as D(r). If r is small, the dihedral angle Θ(r) is approximately 116◦34′,

but smaller. Increasing r to 1 leads to a decreasing of Θ(r) to its minimal value of

60◦. Since, as before, the map r 7→ Θ(r) is continuous, there is an r ∈ (0, 1) such that

Θ(r) = 2π/5. Let us denote this hyperbolic dodecahedral as P . We define a proper

Isom(H3)-side-pairing Φ by identifying opposite sides with a twist of 3π/5. Every

edge cycle consists of five points, each having a dihedral angle of 2π/5 (see fig. 5.7(a)

Right). Thus, the dihedral angle sum is 2π. Hence, the space obtained by gluing P by

Φ is a hyperbolic three-dimensional manifold. [84]

Löbell Space: The fundamental polyhedron of the Löbell space is a polyhedron with 14

sides. Two faces of which are regular rectangular hexagons and the twelve others are

regular rectangular pentagons (see fig 5.8(a)). Around each vertex, eight such poly-

hedra can be glued together and build a tessellation of H3. There are infinitely many

proper H3-side-pairings Φ which refer to a hyperbolic three-dimensional manifold. [55]

Best Space: The fundamental polyhedron of Best Space is a regular icosahedron. The
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5. Gluing Manifolds

side-pairing (see fig. 5.8(b)) is given by:

ADI ←→ BGC, ICA←→ ABC, EFL←→ DIK, DEL←→ KLD,

GFB ←→ HJK, FGJ ←→ GJH, ABE ←→ LJF, FEB ←→ CGH

AED ←→ KIH, JKL←→ CHI [55]

Weeks Space: The fundamental polyhedron of Weeks Space is a polyhedron with 26 vertices

and 18 faces (see fig 5.8(c)). Amongst which there are twelve pentagons and six

tetragons. So far, the Weeks Space is the hyperbolical manifold with the smallest

known volume. Its has a volume of vol(WS) = 0.94272R3. The side-pairing is given

by:

ABTCD ←→ HLDAO, SEFBA←→ FMPJE, RHIJE ←→ IKQLH,

FMXTB ←→ UKZV N, WNUY C ←→ IJPZK, CY QLD ←→MXWNV,

CTXW ←→ HOGR, KQY U ←→ ERGS, MPZV ←→ ASGO [55]
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Figure 22. The FP for the Löbell topology is made of 8 such 14–hedra pasted together. All the
angles in the figure are right angles in IH3.

compact hyperbolic 3-spaces can be build by pasting together various numbers of these 14–hedra, and

suitably identifying the unattached faces.

The Best Spaces.

Best [11] has constructed several compact hyperbolic manifolds whose FP is a regular icosahedron.

One of them was studied in details by Fagundes [48, 49] in a cosmological context. Its outer structure

is represented in figure (23). The corresponding generators of the holonomy group are expressible

in terms of 4 × 4 matrices corresponding to homogeneous Lorentz transformations; for details, see

(a)

!

(b)

!

(c)

Figure 5.8.: Fundamental polyhedron of the (a) Löbell space (left), (b) Best Space, (c) Weeks
Space. [55]

5.6. Conclusion

Any compact Riemannian manifold of constant curvature can be represented as a gluing

manifold. Thus, if we assume the spatial part of the universe to be locally isotropic and

compact,M3 can be obtained by identifying the sides of a convex polyhedron as pairs. This

construction enables us to derive methods for detecting the topology of the three-dimensional
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manifold we are sitting in. If we determine the fundamental polyhedron and the proper G-

side-pairing of the spatial part of the universe, the manifold would be determined completely.
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6. Observing the Geometry and Topology of the

Universe

In the previous chapters we developed a classification of all geometric structures which

are candidates for the geometry of the spatial part M3 of space-time M4. For the three-

dimensional locally homogeneous and locally isotropic Riemannian manifolds we even devel-

oped a classification of their topologies.

As we have explained in Chapter 1, several observational data, such as γ-ray and X-ray

maps, the CMB-radiation map, maps of galaxy-distribution in the visible light and the count

of radio sources are in confirmation with a locally homogeneous and locally isotropic spatial

part of space-time [107]. In Figure 6.1, a map of the distribution of galaxies from the Sloan

Digital Sky Survey illustrates the homogeneity and isotropy of the distribution of galaxies.

Figure 6.1.: The distribution of galaxies of the Sloan Digital Sky Survey. The earth is located
at the center and the radius amounts to two billion light years. Every point
represents a galaxy. The black regions are those parts of the universe which we
cannot observe, because of dust in the milky way. [129]
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The observational data cannot be seen as a proof for local isotropy and local homogeneity

of space. It is remarkable that we can detect galaxies which formed approximately 1 Gyr

after the Big Bang, which corresponds to a redshift of z ≈ 10. For a comparison, the first

stars and galaxies formed 100−270Myr after the Big Bang (z ≈ 15−30) [86]. Nevertheless,

the part of the universe which we are able to observe will always remain a small portion of our

past light-cone. Thus, we are forced to restrict cosmological models by making philosophical

assumptions [107].

In the history of cosmology we recognized further and further that our position in the

universe is not special. We are on a medium-sized planet, surrounding a medium-sized star,

which is located in an arm of a medium galaxy, situated in a medium galaxy cluster. So

far, the Copernican principle has not been proven wrong. Since additionally isotropy is

in confirmation with observational data, it is suitable to assume homogeneity and isotropy.

[107] [43]

As pointed out in the first Chapter, standard models of cosmology assume these properties

as global properties. This global assumption is called the cosmological principle. How-

ever, we assume them as local properties since they are derived from observational data. A

locally homogeneous and locally isotropic space does not contradict the observational data.

The possible geometric structures and therefore the physics in locally homogeneous and

locally isotropic spaces are the same as in globally homogeneous and isotropic spaces. By

assuming isotropy and homogeneity as local properties, geometry constrains the topology,

but does not dictate it. If global homogeneity and global isotropy are assumed, geometry

dictates the topology. [18]

A non-simply-connected shape of the universe cannot be excluded. Geometry determines

an exact solution of Einstein’s field equations. All spaces with the same geometric structure,

the simply-connected and the non-simply-connected ones, are locally identical, and therefore,

lead, among others, to the same kinematics, dynamics and inner geometry (angels, distances,

area and so forth).

In order to develop an exact solution of Einstein’s field equations (see Chapter 1, equation

1.15, p.24), we shall work in the Universal Covering Space (UCS) (2.3.0.15, p.45 and 2.3.0.24,

p.46). Since we assume M3 to be complete (3.2.3.3, p.62), the UCS is in fact globally

homogeneous and globally isotropic. We call the UCS the physical universe. If the

spatial part of space-time is simply-connected, the covering is trivial. In this case, the UCS

M̃3 and the quotient spaceM3 = M̃3/Γ coincide. According to the common designation in

cosmology, we shall call space-time models with a simply-connectedM3 simply-connected

cosmological models (SCM). A cosmological model is called multi-connected (MCM)

if M3 is not simply-connected. For a cosmological model with spatial part M̃3/Γ, the

cosmological model with the same physics, but spatial part of space-time M̃3, is called the

corresponding simply-connected cosmological model for a MCM M̃3/Γ.

The observational universe is a sphere with radius R = χLSS , which is the radius
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of the last scattering surface (LSS) (see section 1.3.2, p.34). The last scattering surface

determines the limits of observational possibilities, as the universe was opaque before. Every

observer in the universe is located at the center of a sphere with R = χLSS , describing his

observational universe. Actual calculations suggest the redshift of the last scattering surface

to be zLSS ≈ 1090 [52]. [55]

6.1. Geometry of the Universe – The State of the Art of Standard

Cosmology

6.1.1. Robertson-Walker Metric

We denote by M3 the spatial part of the universe at present, i.e. at cosmic time t0. Space-

time can be seen as foliated by surfaces of homogeneity
∑

t with t = const.. Thus,
∑

t0
=M3

[107]. We require the
∑

t to be diffeomorphic ∀t ∈ R+ (1.2.6.19, p.29). Thus, the topology

and the geometry (up to diffeomorphism) do not change during evolution of the universe.

Therefore, we shall write for all
∑

t, M3.

In order to avoid preferred directions, these surfaces of homogeneity must be orthogonal to

the worldlines of free-falling observers ua attending cosmic expansion in an isotropic universe.

The metric gab on M4 induces a metric hab on M3 by restricting the action of gab at each

point p ∈M3 to vectors tangent to M3. (See 1.1.5.6, p.20.) [107]

We have seen in Chapter 4 that the only geometric structures for locally homogeneous

and locally isotropic Riemannian manifolds are those of constant curvature. (See discussion

starting at page 77.) Thus, the UCS of the spatial part of space-timeM3 is one of E3,S3,H3

(4.1.1.2, p.79). The Riemannian curvature tensor (1.1.3.9, p.17), which is constructed from

hab on M3, is of the form

Rcdab = K · δc[cδdb]
with a scalar K. The trace of Rcdab is the scalar curvature of M3 (1.1.3.12, p.18).

Since isotropic observers are orthogonal to the surfaces of homogeneity, the four-dimensional

Lorentzian metric of space-time can be written as

gab = −uaub + hab(t).

If we express the last equations in terms of suitable physical coordinates, we get

ds2 = −dt2 + dl2, (6.1)

where dl2 describes the metric on M3. [107]

In cosmology it is common to use comoving coordinates. Comoving coordinates are

coordinates which do not change for a free-falling observer attending cosmic expansion. If ~r
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are physical coordinates, the corresponding comoving coordinates ~x are given by

~r = a(t)~x,

where a(t) is the Robertson-Walker scale factor, which describes the expansion of the

universe at cosmic time t. Since we required homogeneity, the scale factor depends only on

time and is independent of the spatial position in M3.

By scaling a(t) we obtain the scalar curvature to be one of +1, 0,−1, which corresponds

to the three possibilities of constant curvature. [60]

The expansion of the universe is often described by Hubble’s scale factor

H(t) =
ȧ(t)

a(t)
.

H(t) evaluated at present time t0 gives the Hubble constant H0 [109].

We shall choose spherical comoving coordinates (χ,Θ,Φ) and a time coordinate t, which

represents cosmic time. In spherical coordinates, the proper distance from an observer to

an object evaluated at present time t0 is dproper = a(t0)χ.

The metric of comoving space is given by a2
0dl

2, where a0 = a(t0) [55]. The geometry

of space expands proportionally to the scale factor a(t), which is the same for a multi-

connected model and its corresponding simply-connected model. The spaces at time t and

t0 are absolutely homothetic with ratio

a(t)

a(t0)
=

1

1 + z
,

where z is the corresponding redshift at the time t.

Remark 6.1.1.1 (Assumption:). We shall remark that the redshift can be taken as cosmic

time since we can assign to each cosmic time t after the Big Bang a unique redshift. To any

point P at time t corresponds a point Pt0 at time t0. In order to avoid confusion of spatial

properties of different time, we shall use comoving space.

With comoving coordinates the metric given by equation 6.1 can be written as

ds2 = −c2dt2 + a2(t)dl2, (6.2)

where c denotes the speed of light.

Corresponding to the scalar curvature K, d2
l is one of the following:

• K=0 ⇒ Euclidean space;

Cartesian Coordinates: dl2 = dx2 + dy2 + dz2

Spherical Coordinates: dl2 = dχ2 + χ2dΘ2 + χ2 sin2 ΘdΦ2, χ ∈ [0;∞].

122



6.1. Geometry of the Universe – The State of the Art of Standard Cosmology

• K = +1 ⇒ Spherical space; spherical (comoving) coordinates are obtained by em-

bedding a three-dimensional sphere with radius a > 0 in E4 (cf. 1.1.2.21, p.13). The

metric dl2 is given by:

dl2 = dχ2 + sin2 χdΘ2 + sin2 χ sin2 ΘdΦ2, χ ∈ [0; 2π].

• K = −1 ⇒ Hyperbolic space; spherical (comoving) coordinates are obtained by em-

bedding a three-dimensional sphere with radius −a < 0 in E4 (cf. 1.1.2.21, p.13). The

metric dl2 is given by:

dl2 = dχ2 + sinh2 χdΘ2 + sinh2 χ sin2 ΘdΦ2, χ ∈ [0;∞].

We recall the usage of the convention c = 1. In conclusion, the metric given by equation

6.2 can be written as

dl2 = −dt2 + a2(t)(dχ2 + f2(χ)(dΘ2 + sin2 ΘdΦ2)),

with

f(χ) =





sinχ if K = +1,

χ if K = 0,

sinhχ if K = −1.





This metric is called Robertson-Walker metric and it is the unique metric for (locally) ho-

mogeneous and isotropic space-times. Thus, we can choose coordinates such that the metric

of space-time has the form given above. According to this metric, the matrix corresponding

to gab hast just diagonal entrances due to isotropy:

gχχ =
a2(t)

1−Kχ2
, gΘΘ = a2(t)χ2, gΦΦ = a2(t)χ2 sin2 Θ, g00 = −1. [109]

6.1.2. Friedmann-Lemâıtre Universe

Now, we shall derive a family of special solutions of Einstein’s field equations for an isotropic

and homogeneous universe. In order to derive a solution for M3, we develop a solution for

the UCS M̃3, which are then equivalent. At this point it may be recommendable to recall

section 1.2.5 (p.22).

The homogeneous and isotropic distribution of matter enables us to treat matter in good

approximation as perfect fluid.

Perfect fluid is defined as a medium for which at every point there is a locally

inertial Cartesian frame of reference, moving with the fluid, in which the fluid

appears the same in all directions. [109, p.521]
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Therefore, the energy-momentum tensor Tab (see Chapter 1, p.23) has the form of perfect

fluid, which is

Tab = ρuaub + p(gab + uaub), (6.3)

where ρ (the energy density) and p (the pressure) are functions of time only.

The first term ρuaub of the energy-momentum tensor describes an energy-tensor dominated

by non-relativistic matter. The second term p(gab + uaub) describes the part of the energy-

momentum tensor which is dominated by relativistic matter (for example radiation). For

present time the latter term is negligible, but it was dominant in the early universe where

universe was dominated by radiation. [107]

For a detailed deviation of the Christoffel symbols (1.1.3.4, p.16), the energy-momentum

tensor and the Ricci tensor (given by equation 1.6, p.18) of the Robertson Walker metric see,

for instance, [109] in terms of Cartesian coordinates or [47] in terms of spherical coordinates.

All calculations are made in terms of Cartesian coordinates, where the components of the

Robertson-Walker metric are of the form:

gij = a2(t)

(
δij +K

xixj

1−Kx2

)
, g00 = −1, gi0 = 0.

The indices i and j are running from 1 to 3 and denote the spatial components. The index

0 denotes the time coordinate.

In general, to solve Einstein’s field equation

Gab = Rab −
1

2
Rgab = 8πTab, (6.4)

one has to solve a system consisting of ten equations according to the components of a tensor

with two indices. For an isotropic and homogeneous metric, all off-diagonal components

vanish. The “space-space” equations take the form:

Gabs
asb = 8πTabs

asb = 8πp, (6.5)

where sa is tangent to M3. The “time-time” equation takes the form:

Gabu
aub = 8πTabu

aub = 8πρ, ua ∈M3. (6.6)

The Christoffel symbols (1.1.3.4, p.16) can be written in terms of the metric gab as:

Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) .

For Robertson-Walker metric, the Christoffel symbols take the form

Γ0
ij = Γi0j = Γji0 = aȧ

(
δij +K

xixj

1−Kx2

)
, Γi0j =

ȧ

a
δij Γijl = Γ̃ijl,
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where Γ̃ denotes the Christoffel symbol of the metric hij . The Ricci tensor (equation 1.6,

p.18) calculates to

R00 = −3
ä

a
, Rij = (2

K

a2
+
ä

a
+ 2

ȧ2

a2
). (6.7)

Thus, the scalar curvature (1.1.3.12, p.18) is

R = −R00 + 3Rij = 6

(
K

a2
+
ä

a
+
ȧ2

a2

)
.

Inserting for Robertson-Walker metric in Einstein’s field equations gives for the spatial part

Gij = Rij −
1

2
R = −K

a2
− 2

ä

a
− ȧ2

a2
= 8πp. (6.8)

For the time coordinate, the corresponding equation is

G00 = R00 +
1

2
R = 3

(
K

a2
+
ȧ2

a2

)
= 8πρ. [107] (6.9)

Using equation 6.8 we can write equation 6.9 as

3
ä

a
= −4π(ρ+ 3p). (6.10)

The last equation is called Raychauduri equation [43]. Equation 6.9 is called Fried-

mann’s equation. It can be written as:

.ȧ2 +K =
8πρa2

3
. (6.11)

Friedmann’s equation is true on largest scales, where the expansion of the universe dom-

inates the movements and the cosmological principle is assumed. On smaller scales, for

example, at scales of our solar system, of course, movements cannot be described by Fried-

mann’s equation nor atoms in our body expand with time [107] [43]. Cosmological models

based on Friedmann’s equation (6.11) are called Friedmann(-Lemâıtre) universes [107].

From equation 6.10 and equation 6.11 we can derive a conservation law (see Chapter 1,

equation 1.12, p.23):

0 =
dρ

dt
+

3ȧ

a
(ρ+ p). (6.12)

From Friedmann’s equation 6.10 and the conservation law 6.12 we can derive easily a few

details about the dynamics of the universe:

Universe is expanding: If we assume ρ > 0 and p ≥ 0 (assumptions for present time)

and a constant scale factor a(t), from equation 6.10 we obtain ρ = −3p which is a

contradiction. Thus, the scalar factor a(t) cannot be constant and the universe is

expanding or contracting [43]. Observational data indicate that the expansion of the
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universe is accelerating at present time [109].

Expansion started a finite time ago: Furthermore, we deduce from equation 6.10 with the

assumptions ρ > 0 and p ≥ 0 that ä
a ≤ 0. Thus, expansion started a finite time ago.

It started at time t with a(t) = 0 [43].

Singularity at the beginning: We derive from the conservation law (equation 6.12) that

energy density decreases while the universe is expanding. Thus, the energy density

was higher in the past with lima→0 ρ =∞. In this limit, the worldlines of all particles

intersect. The known physical laws break down. This defines a singularity of space-

time, and therefore, it has to be excluded from space-time. This singularity cannot

be omitted for cosmological models with (ρ + 3p) > 0 and where the vacuum energy

density is not too large. Hawking and Ellis state (see [43]) that singularities may occur

in any reasonable space-time. [43]

By inserting K = 0 in Friedmann’s equation 6.11, we define the critical density of the

universe for present time:

ρcrit,0 =
3H2

0

8π
. (6.13)

Remark 6.1.2.1. Notation: The index 0 always denotes the value for present time t0.

If the total energy density ρ0 of the universe is

• < ρcrit,0 ⇒ K = −1: the universe expands forever and the expansion is accelerating.

• = ρcrit,0 ⇒ K = 0: the universe expands forever with limt→∞ ȧ(t) = 0.

• > ρcrit,0 ⇒ K = +1: the expansion of the universe will stop in a finite time and will

contract until a Big Crunch or it will start to expand at a critical density again.

Latter scenario is known as (Big) Bounce. [109]

Remark 6.1.2.2. We shall remark that the Big Bang and the Big Crunch cannot be iden-

tified since any identifications on the time axis are forbidden (see Chapter 1, section 1.2.6.2,

p.28). Nevertheless, events as the Big Bang and a probably future Big Crunch are singular-

ities, and therefore, they are excluded from space-time. [64]

Cosmological Models with K = 0 or K = −1 are called open models whereas cosmolog-

ical models with K = +1 are called closed cosmological models.

Remark 6.1.2.3. The name is quite misleading because of the property of a manifold to

be open/closed (1.1.1.5, p.8). Here, an open model is forever expanding, whereas a closed

model is recollapsing. [56]
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pR3! [R3("#p)]. (4.5)

We multiply (4.5) by R$1 and transform the derivative with respect to t
to a derivative with respect to R, to arrive at the following equation:

("R3)!$3pR2. (4.6)

From this equation we see that as long as the pressure p remains positive,
the density " must decrease with increasing R at least as fast as R$3. This is
because if the pressure is zero in (4.6), the density varies exactly as R$3,
and with a negative right hand side (for positive pressure), the density must
decrease faster than R$3. Thus as R tends to infinity, the quantity "R2 van-
ishes at least as fast as R$1. We see that in the cases k!$1 and k!0, given
respectively by (4.2a) and (4.2b), R2 remains positive definite so that R(t)
keeps on increasing. From (4.2a) we clearly get the result

R(t)→ct as t→%; k!$1. (4.7)

For k!0 also, R(t) goes on increasing, but more slowly than t. In the case
k!#1, given by (4.2c), R2 becomes zero when "R2 reaches the value
3c4/8&G. Since R̈ is negative definite, the curve R(t) must continue to be
concave towards the t-axis, so that R(t) begins to decrease, and must reach
R(t)!0 at some finite time in the future (the time t!t1 in Fig. 4.2). The
three cases k!$1, 0, #1 are illustrated in Fig. 4.2.

In (3.63) we have mentioned approximately 50 km s$1 Mpc$1 as a possi-
ble value of Hubble’s constant. To find the corresponding Hubble time,

d
dR

d
dt

62 The Friedmann models

R (t) k = –1

t = t0 tt = t1

k = 0

k = 1

Fig. 4.2. The behaviour of the curve R(t) for the three values $1, 0, #1
of k. The time t!t0 is the present time and t!t1 the time at which R(t)
reaches zero again for k!#1.

TLFeBOOK

Figure 6.2.: The three different possibilities of long-time evolution of Friedmann-Lemâıtre
universes is presented. For K = +1, the universe recollapses at a future time-
point. If K = 0, universe expands forever with a decreasing velocity. For the
case K = −1, the universe expands forever. As opposed to the flat case, the
velocity does not converge to zero. [47]

The three different possible evolutions of Friedmann-Lemâıtre universes are visualized in

Figure 6.2.

We choose an equation of state of the form p = w · ρ with a time-independent w. If

we are inserting p = w · ρ in equation 6.12, we get by solving the differential equation

ρ(t) ∝ a−3w−3(t). The scalar w depends on the form of energy. We distinguish:

• Cold Matter: non-relativistic matter; for example: dust; pressure is negligible (p = 0),

and therefore, ρ ∝ a−3.

• Hot Matter: relativistic matter; for example: radiation; pressure and density are

related by p = ρ/3, and therefore, ρ ∝ a−4.

• Vacuum-Energy: In the absence of matter the energy-momentum tensor is proportional

to the metric. In this case, we can derive from equation 6.3 for vacuum that there is

an energy with ρv = −pv. Furthermore, we can deduce from equation 6.12 that the

energy density is constant. [109]

According to the three different types of energy (matter, radiation and vacuum), the

energy density ρ is composed of the matter density ρM , the energy density of radiation ργ

and the energy density of vacuum energy ρΛ. Thus, we have ρ = ρM + ρΛ + ργ . Evaluated

for the present time and using Hubble’s scale factor, Friedmann’s equation takes the form:

3H2
0 + 3

K

a(t0)2
= 8π(ρM,0 + ρΛ,0 + ργ,0). (6.14)

We have developed a formula for the scalar curvature K in terms of the theoretically mea-
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surable constants H0, ργ,0, ρΛ,0, ρM,0. These are called cosmological parameters [108].

It is common, to use the dimensionless numbers

Ω0 =
ρ0

ρcrit
, ΩΛ =

ρΛ

ρcrit
,Ωγ =

ργ
ρcrit

and ΩM =
ρM
ρcrit

.

If K = 0, Ω0 = ΩΛ + ΩM + Ωγ = 1. In general, ΩΛ + ΩM + Ωγ + ΩK = 1, where ΩK = −K
a20H

2
0
.

Previous in this section we have seen that ρm ∝ a−3, ργ ∝ a−4 and ρΛ is constant. Thus,

ρ = ρcrit,0

(
ΩΛ,0 + ΩM,0

(a0

a

)3
+ Ωγ,0

(a0

a

)4
)
. (6.15)

An exact solution for Friedmann’s equation would be an explicit form of the scale factor

a(t). Using equations 6.11, 6.13, 6.15 and ΩK = −K
a20H

2
0
, we derive

H(t) = H2
0

(
ΩΛ,0 + ΩK,0

(a0

a

)2
+ ΩM,0

(a0

a

)3
+ Ωγ,0

(a0

a

)4
)
.

The solution depends on the initial values, i.e. the choice of the cosmological parameters.

There exists explicit solutions for the cases K = 0,±1. For K = 0, the corresponding

cosmological model is called Einstein-de Sitter universe and the scale factor takes the

form a(t) ∝ t 23 . [109] [108] [43]

6.1.3. Measuring the Cosmological Parameter

In the following, we shall give a short insight into the methods determining the cosmological

parameters. There are different methods for every cosmological parameter. We shall present

one of them. At the end of each subsection we shall name known problems in calculating the

parameter. In general, one has to make a lot of assumptions to measure and calculate the

parameters in a sufficient accuracy. We shall quote the values of the cosmological parameters

calculated by [52] which assume a ΛCMD model, which is the concordance model today.

It is a cosmological model with M3 = E3 which is dominated by vacuum energy and cold

dark matter. The authors of [52] combine the 7-year data of WMAP (Wilkinson Microwave

Anisotropy Probe) with the distance measurements of BAO (Baryon Acoustic Oscillations),

the galaxy distribution derived by Percival et al. (2009) and the measurements of the Hubble

constant of Riess et al. (2009). The methods used by [52] require a more complex background

than the methods presented here. In this section we shall renounce the convenient choice

c = G = 1.

6.1.3.1. Hubble Constant H0

The spectrum of an object is seen with a shift z = λ−λ0
λ0

. Here, λ is the observed wavelength

and λ0 is the emitted wavelength from the source. If z > 0, we call z a redshift, whereas z < 0

indicates a blueshift. By considering only objects with z << 1, we can neglect relativistic
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phenomena such as time dilation, and therefore, the Lorentz factor γ. If we interpret this

shift in terms of the Doppler effect, we can express the shift as a radial velocity vr ≈ λ−λ0
λ0

c.

Empirically, we get: z = H0
c d for objects with motion which is dominated by the expansion

of the universe. Thus, we have vr ∝ d in every direction and for objects with 0.03 < z << 1.

The proportional factor H0 is the above-mentioned Hubble constant. For a detailed

explanation of the connection between the proportional factor and H0 see, for instance, [109].

The actual value calculated by [52], where supernovae Ia were used as standard rulers,

amounts to

H0 = 70.2± 1.4 kms−1Mpc−1.

Remark 6.1.3.1. Parsec, denoted by [pc], is an often used distance unit in astronomy. It

is the parallax to the angular ϕ = 1”. Mpc is therefore 106 parsec.

Problems: In order to distinguish between motion caused by gravitational effects in the

local universe and motion due to cosmic expansion. [108]

Alternative Methods: use Tully-Fisher relation, Faber-Jackson relation, fundamental

plane, surface brightness fluctuations and the cosmic microwave background. See [109] for

further details.

6.1.3.2. Critical Density ρcrit and Hubble Time T0

The Hubble constant, gives immediately the critical density:

ρcrit,0 =
3H2

0

8πG
= 9.26 · 10−27kgm−3 = 1.36 · 1011M�Mpc−3.

Remark 6.1.3.2. The index � always denotes the given determinant of the Sun. Hence,

M� denotes the mass of the Sun.

If the expansion of the universe has been linear since its beginning, Hubble time

T0 < H−1
0 .

This gives an upper bound for the age of the universe:

T0 = 13.76± 0.11Gyr. [52]

Since the expansion of the universe is probably not linear, T0 serves only as a guidance value.

6.1.3.3. Mass Density ρM

Measuring the density of the total amount of matter in the universe is a nontrivial question.

Matter in the universe is composed of luminous matter, which is directly detectable,

and dark matter, which is for the major part non-baryonic matter. Baryonic matter is
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matter consisting of protons and neutrons. Non-baryonic matter does not consist of the

usual nucleons.

Luminous Matter emits radiation and is therefore detectable. The evolution of the stellar

energy production as a function of cosmic time z is given by the total luminosity density

εL(z) =

∫ ∞

0
LΦ(L, z) dL z = (z1, z2) . . . cosmic time interval (6.16)

Φ(L) = n∗( LL∗ )
γe

L
L∗ is an approximation of the perturbation of galaxies with luminosity

L. This analytic function was derived from Schechter in the 1970s. Thus, this function

describes the radiated energy per volume and per time interval. The actual calculated

value of εL is 2 · 108L�Mpc−1, where an average specific luminosity of L
M = 0.25 L�

M�
is

assumed. Therefore, we get:

ρLM ≈ 5 · 10−29kgm−3 ΩLM ≈ 0.005. (6.17)

Even if luminous matter was not estimated exactly, we can assume that ΩLM << 1.

Problems: We don’t know how many radiation is absorbed by dust in galaxies. For

measuring we need the best technical equipment available. The precise run of the

εl(z) is not known, which is a problem for approximating the account of dark energy

too. [108]

Dark Matter: 1. The ISM (Interstellar Medium) contains of a view atoms per m3. This

matter is not bound on galaxies, and therefore, takes part on the galactic expan-

sion.

2. Gravitational Lensing Effect: According to General Theory of Relativity, the

paths of light is deflected when it passes through a gravitational field. The angular

deflection can be expressed by α = 4GML
c2b

where ML denotes the mass of the

gravitational lens and b denotes the transverse distance between the masses center

and the path of light. The mass of galaxy clusters indicate that the major part

of matter bound in galaxy clusters is dark matter. [108]

The actual value for the density of gravitational mass is approximately

ρCDM,0 = 3 · 10−27kgm−3 ± 10− 15%, ΩCDM,0 = 0.229± 0.015 [52].

Problems: If we calculate the density of baryonic matter which has to be in the

universe in conformity with a cosmological model based on a Big Bang scenario, we

achieve ρb = 1/10∗ρm ( Ωb,0 = 0.0458±0.0016 [52]). We can conclude that 75−80% of

the total amount of matter in the universe consists of non-baryonic matter. Potential

candidates are: HDM (Hot Dark Matter), for example, relativistic neutrinos; CDM
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(Cold Dark Matter), for example, non-relativistic neutrinos and cosmic strings. [108]

Alternative Methods: use the Virial Theorem, anisotropies in the cosmic microwave

background, the redshift-luminosity relation of supernovae or X-ray luminosity of clus-

ters and galaxies. For more details see for instance [109].

The actual density parameter of matter amounts to

ΩMh
2 = 0.1352± 0.0036,

where h is the Hubble constant in units of 100kms−1Mpc−1. [52]

6.1.3.4. Radiant Flux Density ργ

We can approximate the radiation produced in all galaxies by T · εL ≈ 10−15Jm−3, where

T = 15 ± 3Gyr is the age of the universe [108]. The energy density of cosmic microwave

background can be calculated by integrating the Rayleigh-Jeans formula and accounts to

approximately 4, 2 · 10−14g Jm−3 [109]. In order to be able to compare these values with

mass density we use the famous formula E = mc2 and get:

ργ,0 ≈ 4 · 10−31kgm−3 Ωγ,0 ≈ 4 · 10−5 << Ωm,0. (6.18)

Thus, we can neglect radiation flux density [108].

6.1.3.5. Energy Density of Vacuum Energy ρΛ

Remark 6.1.3.3. Einstein mentioned an additional term −Λgµν in his field equations,

where Λ denotes the cosmological constant. He needed a constant because he assumed a

steady-state model of the universe, which is a cosmological model which does neither expand

nor contract. We have seen that with an isotropic and homogeneous cosmological model this

possibility can be ruled out. Therefore, the introduction of the cosmological constant was

revised. The observational data of the last ten years indicate an accelerating expansion of

the universe. This acceleration is explained by an additional force which satisfies ρv = −pv,
as we have pointed out in 6.1.2. Thus, the cosmological constant is reintroduced by ρΛ. [109]

There are two forces which are accountable for the expansion of the universe: gravity and

vacuum energy. These two forces act in reverse directions. While gravity slows expansion

down, vacuum energy accelerates it. In order to measure the cosmological constant, we need

precise distance measurements to describe expansion of the universe with high accuracy.

If a white dwarf exceeds by mass accretion a certain critical mass, which is called the

Chandrasekhar limit, it explodes. This explosion is called a “supernova Ia”. The luminosity

function of supernovae Ia are well-studied. The shape of the luminosity function is indepen-

dent of the time when this space-time event took place. Thus, they are suitable “standard

candles” for distances z > 0.1.
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In 1998, the “Supernovae Cosmology Project” and “High-z Supernova Search Team” com-

pared independently the luminosity distance as a function of redshift derived from observa-

tional data of supernovae Ia with the theoretical predictions in a flat universe. The apparent

luminosity of supernovae Ia decreases stronger with redshift than expected without vacuum

energy. This suggests that the distances are bigger than expected. Best accordance with

observable data is achieved with Ωm,0 = 0.28± 0.1 and ΩΛ,0 = 1−Ωm,0, which indicates an

accelerating expansion of the universe.

It should be noted that it cannot be excluded that the reduction of the apparent luminosity

is caused by absorption or light scattering. [109]

The results have been affirmed by several projects. The actual value amounts to

ΩΛ,0 = 0.725± 0.016. [52]

Problems: Dark energy is interpreted as result of quantum fluctuations. 1 Theoretical

calculations obtain a value of ρΛ,0 which is 100-times bigger than the value obtained by

measurements. [108]

Alternative Methods: Baryonic Acoustic Oscillations (BAO) are used as a standard

ruler, which are completely independent from supernovae measurements. Fluctuations of

the CMB are compared to todays density fluctuations calculated with the help of clustering

of galaxies. Measurements with the BAO suggest

Ω0 ≈ 1, Ωm,0 ≈ 0.3⇒ ρΛ ≈ ΩΛ,0 = 0.7.

6.1.3.6. Curvature Parameter ΩK

In conclusion, we shall give an actual estimate of the curvature parameter:

−0.0133 < Ωk < 0.0084, (95% certainty level). [52]

Recall that Ωk > 0 corresponds to a scalar curvature K = −1 and Ωk < 0 corresponds to

a positive curved space. Thus, todays observational data prefers slightly a positive curved

universe, but no curvature (positive/negative/flat) can be excluded.

6.2. Cosmic Topology

6.2.1. Introduction

By measuring the cosmological parameters, the geometry of universe can be determined.

Cosmic Topology focus on the determination of the topology of the universe. Geometry

1Pairs of Particle-Antiparticle arise spontaneously and discreate immediately. Evidence with the help of the
“Casmir effect”
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does not dictate the topology of space, but topology dictates geometry. Thus, there is hope

that Cosmic Topology could derive the curvature of space from the topology of the universe.

In order measure the cosmological parameters one has to make strong assumptions, as we

have seen in the previous section. The concordance model predicts a flat and infinite space,

and therefore, a total density parameter of exactly Ω0 = 1, which is due to measuring inac-

curacy not provable. Since it is assumed that the deflection of Ω0 = 1 (Ωk = 0) is small, the

spatial part of the universe is assumed to be approximately flat. Thus, the curvature radius

of M3 is assumed to be giant, if it is not infinite. But, giant in correspondence to what?

Positively/negatively curved with an enormous curvature radius is still positively/negatively

curved. A necessary condition to determine the spaces curvature is that the curvature radius

is not too big. If the curvature radius is too big or actually infinite, we would not be able

to distinguish between a flat and a curved space.

As we have developed in Chapter 5, the space M3 = M̃3/Γ can be represented by a

fundamental polyhedron with a suitable identification of its sides as pairs. Thus, M3 is

determined by

1. the Universal Covering Space (UCS) which determines the geometry (K = 0,−1, 1),

2. the Fundamental Polyhedron (FP) (5.1.2.14, p.103) and

3. the generators of the holonomy group Γ, which can be interpreted as the identification

of the sides of the FP as pairs (5.2.2.10, p.109). The holonomy group is very different

for the cases K = 0,−1, 1, see 3.4.0.16, p.75. Thus, if we would be able to determine

the holonomy group, we would be able to determine geometry. [55]

Before we are able to think of possible methods to determine topology, we have to clar-

ify how a finite three-dimensional space (without boundary) looks from inside. In order to

develop an intuition, I recommend the movie “Flatland” (2007) based on the book “Flat-

land” written by Edwin Abbott Abbott (1884). Furthermore, I can recommend the games

of Jeffrey Weeks available on his homepage 2. Especially the software “Curved Spaces” is

recommendable, where a flight through multi-connected universe is simulated. The software

“SnapPea” is a giant data base of three-dimensional manifolds with diverse properties and

features. Jeffrey Weeks lecture available online 3 gives a good first introduction. Further-

more, there is Jean-Paul Luminet’s non-technical book “Wrap around universe” [65].

Assume a two-dimensional being, living on the two-dimensional torus. As we have seen

in Chapter 3, a torus can be derived from a rectangle by identifying opposite sides. We

chose a small rectangle with respect to the size of the being. Starting in the middle of the

rectangle and going straight to the upper edge, as soon as the inhabitant has reached the

edge, it finds itself at the lower edge. Leaving the rectangle to the left, it enters it from the

right. Looking toward the top side, the being sees its own feet, because the top and bottom

2www.geometrygames.org
3http://www.wpi.edu/academics/Depts/Math/News/conant.html
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8 Jean-Pierre Luminet

Fig. 5. By analogy with the two-dimensional case, the three-dimensional hypertorus
T3 is obtained by identifying the opposite faces of a parallelepiped. The resulting
volume is finite. Let us imagine a light source at our position, immersed in such a
structure. Light emitted backwards crosses the face of the parallelepiped behind us
and reappears on the opposite face in front of us; therefore, looking forward we can
see our back. Similarly, we see in our right our left profile, or upwards the bottom of
our feet. In fact, for light emitted isotropically, and for an arbitrarily large time to
wait, we could observe ghost images of any object (here the Earth) viewed arbitrarily
close to any angle. The resulting visual e↵ect would be comparable (although not
identical) to what could be seen from inside a parallelepiped of which the internal
faces are covered with mirrors. Thus one would have the visual impression of infinite
space, although the real space is closed (courtesy Je↵ Weeks).

smaller the volume of the corresponding spaces). Hence 0 < vol(M)  2⇡2R3.
In contrast, the diameter, i.e., the maximum distance between two points in
the space, is bounded below by ' 0.326R, corresponding to the dodecahedral
space.

Figure 6.3.: Inner view of a three-dimensional torus. Image was made with the help of the
software “Curved Spaces”. [63]

facets are identified. In the same way the being would see its own back if he looks straight

ahead. If the FP of the torus is a square, the being sees itself at the same distance if it looks

straight up, down, left or right. Looking in the diagonal direction, the distance of its own

image is greater. Choosing a general rectangle, the distances of the images derived from the

vertical directions differ from those of the horizontal directions. Even if the being sees itself

several times, it exists, of course, only once.

We can define an Euclidean metric on the rectangle, and therefore, the surrounding space

appears flat and infinite to the being. The point is that the flat torus is locally isometric

to R2, because locally we can define an Euclidean metric. The simply-connected infinite

Euclidean space and the finite, multi-connected flat torus correspond to the same solution

of Einstein’s field equations. As opposed to the global properties, the local properties are

the same. While the holonomy group of the Euclidean space is trivial, the generators of the

holonomy group of the flat torus is given by two translations which can be interpreted as the

side-pairing of the rectangle (see section 5.2.1.1, p.105). Analogously, a three-dimensional

torus can be constructed if opposite facets of a parallelepiped are identified (see section

5.3.0.1, p.134). In Figure 6.3 an inner view from a three-dimensional torus is visualized.

Assume a simply-connected domain D in M3. A path γ in D starting at x0 produces a

single end point x. The development (see Chapter 3 3.2.2.3, p.60 and Figure 6.4(a)) ∆ of D in

the UCS M̃3 does not differ from the original domain. There is a one-to-one correspondence

between points in ∆ and D. In the same way, distances between points remain unchanged.

If the domain D is not simply-connected, the path γ produces additional points x′, x′′, . . .

in the UCS. These additional points correspond to the different γi which connect the points
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Figure 8. Development of a simply-connected domain of the cylinder.

its development (figure 8). There is a one-to-one correspondence between the points of D and those

of ∆, and all the distances remain unchanged. Inside D, all the properties of Euclidean geometry are

valid : the sum of the angles of a triangle is 180 degrees; one and only one geodesic joins two any

distinct points; and so on . . .

Now consider the domain D′ bounded by two circular sections of the cylinder (figure 9). D′ is

obviously multi–connected because between two arbitrary points P and P ′ can now pass an infinite

number of geodesics, which are helices of different pitch. Furthermore, the development ∆′ of D′ in

the plane IR2 is no more a one–to–one correspondance. If we unroll the cylinder on IR2, every point of

D′ generates an infinite number of imprinted points in ∆′. Therefore, although the metric properties

of Euclidean space remain valid in D′ (such as the value of the sum of the angles of a triangle), the

topological properties (such as the unicity of geodesics) do not.

The development can be extended step by step. A point x and a path γ from x to x′ on the

cylinder can be developed into the point X and the path Γ from X to X′ in IR2. X′ and Γ are unique if

x′ and γ lie in a simply-connected domain D of the cylinder. In the other case, if D is multi-connected,

there are several paths γ1, γ2, . . . from x to x′ such that their developments Γ1, Γ2 . . . generate the

distinct points X′,X′′, . . . in IR2. The Euclidean plane appears as the Universal Covering Space of the

cylinder.

(a)
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Figure 9. Development of a multi-connected domain of the cylinder.

Such a procedure can be generalized to any manifold. Start with a manifold M with metric g.

Choose a base point x in M and consider the differents paths from x to an other point y. Each path

belongs to a homotopy class γ of loops at x. We construct the universal covering space as the new

manifold (M̃,g̃) such that each point ỹ of M̃ is obtained as a pair (y, γ), y varying over the whole

of M while x remains fixed . The metric g̃ is obtained by defining the interval from x̃ = (x, γ) to a

nearby point x̃′ = (x′, γ) in M̃ to be equal to the interval from x to x′ in M. By construction, (M̃,g̃)

is locally indistinguishable from (M,g). But its global – namely topological – properties can be quite

different. It is clear that, when M is simply–connected, it is identical to its universal covering space

M̃. When M is multi–connected, each point of M generates an infinite number of points in M̃. The

universal covering space can thus be thought of as an “unwrapping” of the original manifold (see figure

10).

3.4.3. Holonomy group Consider a point x and a loop γ at x in M. If γ lies entirely in a simply-

connected domain of M, (x, γ) generates a single point x̃ in M̃. Otherwise, it generates additional

points x̃′, x̃′′, . . . which are said to be homologous to x̃. The displacements x̃ !→ x̃′, x̃ !→ x̃′′, . . . are

isometries and form the so-called holonomy group Γ in M̃. This group is discontinuous, i.e., there

is a non zero shortest distance between any two homologous points, and the generators of the group

(except the identity) have no fixed point. This last property is very restrictive (it excludes for instance

the rotations) and allows to classify all the possible groups of holonomy.

(b)

Figure 6.4.: (a) The development ∆ of D, a simply-connected domain on a two-dimensional
cylinder, in its UCS, the Euclidean plane, is visualized. (b) If a path is within
a simply-connected domain, it produces just a single point x. If the domain is
not simply-connected, it produces additional points x’,x” in the UCS. [55]

x0 and x in D. (See Figure 6.4(b).) [55]

The FP produces a tessellation (γFP )γ∈Γ of the UCS with cells γFP (5.1.3.6, p.104). In

this context, the FP is called the fundamental cell.

According to this discussion, we can describe an important difference between multi-

connected and simply-connected cosmological models: the information of an event in space-

time reaches us in form of radiation following null geodesics (see section 1.1.4, p.19) starting

at the source and ending at the observers position. The proper distance to the events is

dproper = a(t)χ. The proper distance shall be independent of the null geodesic. We calculate

distances to cosmological events through the redshift z, the luminosity distance dL or the

angular-diameter dAD. All these distances depend on the null geodesic.

In non-compact SCM the null geodesic between a source and an observer is unique. Thus,

there is a one-to-one correspondence between real objects in space and events. The only

SCM were the null geodesic is not unique is the sphere. Since the sphere is compact, there

are several null geodesics connecting an object and an observer.

MCM are compact, and therefore, finite in at least one dimension. Thus, there is no

injective correspondence between events with coordinates Sobs = (dobs,Θ,Φ) and the position

of the real objects in space. Because there are in general several null geodesics from a spatial

position (object) to an observer, there are associated different images (events) with different

redshifts (distances) to a single source. The nearest image is called the “real object”,

whereas all the others are called “ghosts”. See Figure 6.5 for a visualization. The real

object and each ghost have a different Sobs = (dobs,Θ,Φ), but the proper distance is for all

the same. If we pass to the (comoving) UCS, we have a one-to-one correspondence between

Sobs and spatial positions in the UCS. Therefore, the UCS is sometimes called the observers

space. [55]
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edge has another side. So why not redefine the “uni-
verse” to include that other side? German mathemati-
cian Georg F. B. Riemann solved the riddle in the mid-
19th century. As a model for the cosmos, he proposed
the hypersphere—the three-dimensional surface of a
four-dimensional ball, just as an ordinary sphere is the
two-dimensional surface of a three-dimensional ball. It
was the first example of a space that is finite yet has no
problematic boundary.

One might still ask what is outside the universe. But
this question supposes that the ultimate physical reality
must be a Euclidean space of some dimension. That is, it
presumes that if space is a hypersphere, then that hyper-
sphere must sit in a four-dimensional Euclidean space,
allowing us to view it from the outside. Nature, howev-
er, need not cling to this notion. It would be perfectly ac-
ceptable for the universe to be a hypersphere and not be
embedded in any higher-dimensional space. Such an ob-
ject may be difficult to visualize, because we are used to
viewing shapes from the outside. But there need not be
an “outside.”

By the end of the 19th century, mathematicians had
discovered a variety of finite spaces without boundaries.
German astronomer Karl Schwarzschild brought this
work to the attention of his colleagues in 1900. In a
postscript to an article in Vierteljahrschrift der As-

tronomischen Gesellschaft, he challenged his readers:

Imagine that as a result of enormously extended
astronomical experience, the entire universe con-
sists of countless identical copies of our Milky
Way, that the infinite space can be partitioned
into cubes each containing an exactly identi-

cal copy of our Milky Way. Would we really
cling on to the assumption of infinitely many
identical repetitions of the same world? . . . 
We would be much happier with the view that
these repetitions are illusory, that in reality space
has peculiar connection properties so that if we
leave any one cube through a side, then we im-
mediately reenter it through the opposite side.

Schwarzschild’s example illustrates how one can men-
tally construct a torus from Euclidean space. In two di-
mensions, begin with a square and identify opposite
sides as the same—as is done in many video games, such
as the venerable Asteroids, in which a spaceship going
off the right side of the screen reappears on the left side.
Apart from the interconnections between sides, the
space is as it was before. Triangles span 180 degrees,
parallel laser beams never meet and so on—all the famil-
iar rules of Euclidean geometry hold. At first glance, the
space looks infinite to those who live within it, because
there is no limit to how far they can see. Without travel-
ing around the universe and reencountering the same
objects, the ship could not tell that it is in a torus [see il-
lustration below]. In three dimensions, one begins with
a cubical block of space and glues together opposite
faces to produce a 3-torus.

The Euclidean 2-torus, apart from some sugar glaz-
ing, is topologically equivalent to the surface of a
doughnut. Unfortunately, the Euclidean torus is food
only for the mind. It cannot sit in our three-dimensional
Euclidean space. Doughnuts may do so because they
have been bent into a spherical geometry around the
outside and a hyperbolic geometry around the hole.

Scientific American April 1999      93
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DOUGHNUT SPACE, more properly known as the Euclidean 2-torus, is a flat square
whose opposite sides are connected (1). Anything crossing one edge reenters from the
opposite edge. Although this surface cannot exist within our three-dimensional space, a
distorted version can be built by taping together top and bottom (2) and scrunching the
resulting cylinder into a ring (3). For observers in the pictured red galaxy, space seems
infinite because their line of sight never ends (below). Light from the yellow galaxy can
reach them along several different paths, so they see more than one image of it. A Eu-
clidean 3-torus is built from a cube rather than a square.

Copyright 1999 Scientific American, Inc.
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(b)

Figure 6.5.: (a): Two galaxies in the fundamental cell of a torus shaped universe. (b): The
pattern of these two galaxies produced in the observers space, the UCS. [70]

6.2.2. Finding the Imprints of Multi-Connected Spaces

6.2.2.1. Spatial Scales Associated with the Fundamental Polyhedron

We denote the smallest length associated with the FP, which is the smallest edge, by Lmin.

We call cosmological models with an Lmin of order 100 − 1, 000Mpc a small universe

[22]. Lmax denotes the maximum length inscribable in the FP, which is the diameter of

the minimal sphere which can be subscribed to the FP. Additionally, we have the same

characteristic length as in SCM, for example, χLSS .

Lmax is the maximal distance of two images of the same object in adjacent cells. If

the observer is located at the center, Lmin
2 or Lmax

2 respectively is the minimal or maximal

distance to the boundaries of the FP.

Example 6.2.2.1. For a torus, the FP is a cuboid with length (Lx, Ly, Lz). In this case

Lmin = min{Lx, Ly, Lz} and Lmax =
√
L2
x + L2

y + L2
z. [55]

6.2.2.2. Distribution of Ghosts in the Observable Universe

We assume the observer to be located at the center of the FP, which is no restriction if space

is globally homogeneous. In this case, the nearest possible ghost image is in a distance of
Lmin

2 . The farthest possible position of a real object is at Lmax
2 . Thus, any image nearer

Lmin
2 is a real object, images at a distance between Lmin

2 and Lmax
2 can be both real or ghost,

and images with a distance greater than Lmax
2 are ghosts.

In general, there are as many ghosts of an object as cells of the FP in the universe.

While the number is finite if the geometry is spherical, it is infinite in a universe with flat o

hyperbolic geometry. The number of theoretically observable ghosts is the number of cells

within the LSS, and therefore, delimited by (χLSS/
√
LminLmax)3. If we contain the life-time
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T of an object in our considerations, the number reduces to ((cT )/
√
LminLmax)3. Thus, we

can only observe ghosts of objects with a life-time T > Lmin/c.

The topology of the universe is not in any case observable. In theory, the topology is

detectable if Lmin ≤ χLSS . If Lmin > χLSS , the topology would just be observable if space

is not globally homogeneous and we are sitting in a special position. If Lmin is too big or

infinity, we have no chance to detect topology. It is clear that the topology is the easier

testable, the smaller the FP is. [55] [66]

6.2.2.3. Searching for Ghosts

If space is small enough for light to have had the time to cross space more than once, than

multiple images of one source would occur, as we have argued above. This property of MCM

is sometimes called “topological lensing” [67]. The obvious method to search for imprints

of topology is to search for ghosts. Thus, to find two images, which can be identified as

coming from one source. The search for ghosts is no straight forward method and suffers

from several problems:

• We know that the only objects for which multiple images could be identified have to

have a life-time T > Lmin/c. If we want to identify two images with different redshift

to one object, the object should not change much during its life. This restrictions rule

out most objects. For example, single galaxies are no good studying objects because

their life-time is too short and they change too much during their life-time. Most

undertaken experiments used quasars and galaxy clusters. [55]

• The ghost may show the object from another perspective. If geometry is not flat,

the ghost could show a compressed or stretched image. These aspects complicate the

identification. [18]

• If space is too big, that light could not have crossed space more than once, no ghosts

exist.

• Even if there are ghosts which are theoretically observable, it is not clear that we would

detect them. Apart from the common limits of observation it suffice that another object

is in the path of light between the ghost and the observer. [55]

For a certain project it is advisable to chose a specific topology and search for ghosts in

the for this topology favourable directions. There still remain perturbations, which makes

the identification harder:

• The favourable directions and distances are calculated in an idealized, homogeneous

space. In real space null geodesics are deflected in accordance with the effect of gravi-

tational lensing. Thus, geodesics are deformed (changes in the length) and the images

are probably multiplied (gravitational lensing). In MCM, even the real object could

effect its own ghosts by gravitational lensing.
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• The typical proper velocities are of the order 500km/s. While the light ray turns

around a small universe (t = Lmin/c), the real object moves 500 · Lmin/c. Thus, the

position of the next ghost is shifted. [55]

Several approaches to find ghosts have been made, from which we want to name: [94],

[48], [24] and the erratum [25], [20] and [79]. Most projects use catalogues of galaxy clusters

as the Zwicky or Abell cluster (limited by z < 0.2). Sokolov, Shvartsman [94] and Gott [48]

rule out FP with Lmax < 600h−1Mpc which corresponds to a redshift z < 0.2. Some papers

( [11], [74]) deal with extraordinary events like the observation of simultaneous Gamma bursts

at antipodal points. For a historic review up to the year 1995 see [55], for instance. None

of these approaches was successful. Thus, so far, no ghost could be identified with another

and it is not believed that this method will succeed. But, since the search is complicated by

so many factors, a negative search for ghosts cannot rule out the possibility for a nontrivial

topology. [55]

6.2.3. Cosmic Crystallography

A more promising method is that of cosmic crystallography. The idea of cosmic crystallog-

raphy is that in spaces with nontrivial topology, equal distances, which are 3D-separations

between objects, appear more often than by chance, whatever the curvature of the space

form or nature of holonomies are. All crystallographic methods use 3D-data of cosmic ob-

jects as quasars or galaxy clusters. The 3D-data is specified by a position on the celestial

sphere and a redshift. A redshift-distance relation gives the radial distance to the observer.

In this section, we require space to be compact with a nontrivial topology and a sig-

nificantly smaller volume than the horizon volume. Spaces satisfying 0.7χLSS < Lmin <

1.2χLSS have also been examined using crystallographic methods. [26]

Since holonomies are isometries, we can associate to each generator of the holonomy group

γ ∈ Γ a length λγ (related to the size of the fundamental polyhedron). Other holonomies

can be represented as a linear combination of the generators of the holonomy group, and

therefore, we can associate a length Λh =
∑

γ∈ΓNγλγ , Nγ ∈ R. For example, the generators

of the holonomy group of the three-dimensional torus are translations, and thus, the λγ are

equal to the lengths of the fundamental parallelepiped Lx, Ly, Lz. [66]

If 3D-separations between images are calculated and plotted in a histogram, lengths asso-

ciated to a holonomy should produce spikes. Such a histogram is called Pair Separation

Histogram [66]. In theory, there are two different types of pairs which produce spikes in a

histogram:

1. Type I-pairs: Since any holonomy is an isometry, any holonomy satisfies dist(x, y) =

dist(h(x), h(y)),∀h ∈ Γ. Thus, {h(x), h(y)},∀h ∈ Γ produce a peak.

2. Type II-pairs: The image of a real object and a ghost can be taken into each other by
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a holonomy. Clifford translations fulfill dist(x, h(x)) = dist(y, h(y)). Thus, if h is a

Clifford translation, the {x, h(x)} produce a peak. [67]

Type I-pairs exist in every space form, but the spike is of the same order as numbers

of cells in the catalogue. The until now existing catalogues are too small that a spike due

to type I-pairs could produce a significant spike. Type II-pairs exist only in space forms

whose holonomy group contains Clifford translations (see Chapter 4, Theorem 4.2.1.2, p.81)

[67]. Holonomy groups of hyperbolic manifolds never contain Clifford translation. Thus, for

hyperbolic manifolds another method is required [27]. There are different crystallographic

methods for the different types of spaces, which we shall present in the following.

As opposed to searching for ghosts, a negative result of a crystallographic method could

theoretically rule out that the observational universe is non-simply-connected.

6.2.3.1. Pair Separation Histogram:

If we calculate the 3D-separation of each two objects of a catalogue and plot the numbers

of pairs versus the squared 3D-separation in a histogram, there should be a significant peak

at the values λ2
γ (in comoving distance units). Type II-pairs corresponding to the same

holonomy are characterized by their 3D-separation Λh. From the distribution and relative

hight of the sharp peaks, the generators of the holonomy group should be derivable, and

therefore, the topology. Thus, the pattern is characteristic for the topology. [66] [67] [56]

The pattern of the PSH depends on the curvature of space and in general on the position

of the observer. Only if the space is globally homogeneous, the position of the observer is not

relevant. That is, if and only if all holonomies are Clifford translations (see Chapter 4, 4.2.1.2,

p.81) [27]. The method works the better, the more holonomies are Clifford translations. For

not globally but locally homogeneous spaces there are more, but less sharp spikes.

For a catalogue with N objects, we get N(N−1)
2 pairs. If vol(catalogue) = F ·vol(FP ), F ∈

R, N/F entries are real objects and the rest of it are ghosts. N Type II-pairs with 3D-

separation λγ are expected. The more regular the FP is, the more significant is the neat

peak. For example, if two or three Li of the FP of a toroidal universe coincide, the peak is

two or three times as strong as if they all take different values. This property manifests in

the relative height of the peaks.

First, the method was suggested by Luminet, Uzan and Lehoucq in [66]. We shall ex-

plain the method, applying it to the only globally homogeneous Euclidean model — the

three-dimensional torus. The generators of the holonomy group are three translations in

correspondence to the length Lx, Ly, Lz of the FP, which is a parallelepiped. We shall con-

sider the special case L = Lx = Ly = Lz. Thus, we consider the locally Euclidean space

form G1, introduced in Chapter 4, Theorem 4.4.2.9 (p.89). 4 Here, the pattern shows the

sharpest spikes, because all holonomies are Clifford translations and all λγ coincide. [26]

4The description of the space form as a gluing manifolds was done in 5.3 (p.110).
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Luminet, Uzan and Lehoucq distributed randomly 50 objects in a cube with L = 1500h−1Mpc

endowed with a flat metric. They set a cut-off redshift at z = 4 and calculated the position

of the ghosts in the UCS. The simulation produced 45 times more ghosts than objects. The

first ghosts appear at a redshift of z = 0.31, whereas original objects are seen up to a redshift

of z = 0.63 [66]. The according pattern can be seen in Figure 6.6.
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Figure 6.6.: Pattern produced by simulated topological lensing in the space G1 with a cubic
fundamental polyhedron of size 1500h−1Mpc with of 50 randomly distributed
objects. [66]

Here, two images X,X ′ of the same object are related by a translation

X = X ′ +



nxL

nyL

nzL


 , nx, ny, nz . . . integers.

Thus, the 3D-separation is of the simple form d2
x + d2

y + d2
z = L2(n2

x + n2
y + n2

z), where

dx/dy/dz is parallel to the edge Lx/Ly/Lz. In this very special case, the peaks should be

located at Λ2
h = (a ·L)2, a ∈ N. If we plot versus Λ2/V

2
3 instead of Λ2, we get peaks located

at
L2(n2

x + n2
y + n2

z)

L2
= n2

x + n2
y + n2

z = Λ2/V
2
3 =

(aL)2

L2
= a2 ∈ N.

The boundary of the nx, ny, nz depends on the cut-off redshift. In the here mentioned work,

nx, ny, nz ∈ {0, . . . , 5} [66]. The corresponding pattern can be seen in Figure 6.7(a).

The amplitude of the peaks depend on the number of different combinations (nx, ny, nz)

producing a certain a2. For instance a2 = 1 is produced by the elements (1, 0, 0), (0, 1, 0)

140



6.2. Cosmic Topology

and (0, 0, 1), whereas a2 = 5 is produced by (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 1, 2) and

(0, 2, 1).

The PSH of the Euclidean space form with the same topology, but unequal lengths

Lx, Ly, Lz shows more, but less intense peaks (see Figure 6.7(b)).
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Figure 6.7.: Simulated PSH of a compact Euclidean space form G1 with (a) equal lengths
(b) unequal length. [66]

Luminet, Uzan and Lehoucq calculated the simulated PSH for all six closed and oriented

Euclidean space forms. For G1,G2 and G3, their pattern was affirmed by Fagundes and

Gausmann in [26]. For G6, [66] used a wrong holonomy group, which was due a mistake

made by Ellis in [22]. Fagundes and Gausmann have not found a characteristic pattern for

G6. For G4 and G5 both, [26] and [66], found characteristic pattern, which do not coincide

because of different choices of the fundamental polyhedron.

The simulated analysis was made under very idealized circumstances. In a more realistic

scenario, the following problems occur:

• Aperture Angle: A realistic catalogue cannot mask the region of the galactic plane.

Usually catalogues have an aperture angle of about 120◦, consisting of two cones with

an angular of about 60◦. Luminet, Uzan and Lehoucq [66] found that the signal fades

out if the aperture angle goes down to about 20◦.

• Spikes Due to Clustering: Galaxy clusters produce a significant number of Type II-

pairs in correspondence to their separation. In general, an N-body simulation with

clustering produces spikes.

• Calculating Distances: The calculation of the 3D-separations is strongly sensitive to

the choice of the cosmological parameter. Distances which are calculated by using a
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redshift-distance relation depend strongly on the Hubble constant.

• Catalogues: Catalogues are not complete and the listed redshifts are contaminated

with the redshift of the peculiar motion. But in the simulations, the redshift is taken

to be fully due to cosmic expansion. [66]

In order to test the method, the procedure was examined on Bury catalogue in an Einstein-

de Sitter universe (see 6.1.2) which consists of all Abell and ACO clusters. The catalogue

consists of 901 clusters with a maximal redshift of z ≈ 0.35 (where just twelve objects have

a z > 0.26) corresponding to a distance of 840h−1Mpc. The aperture angle is 120◦ in form

of a double cone. The pattern produced by the entries of Bury catalogue is presented in

Figure 6.8(a). The corresponding PSH can be seen in Figure 6.8(b).
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Figure 6.8.: (a): The pattern of the entries of Bury catalogue. (b): The PSH of the same
space with data of the Bury cluster catalogue. [66]

They found two suspicious peaks at 270h−1Mpc and 382h−1Mpc. In order to check if

these peaks are due to topology, Luminet, Uzan and Lehoucq simulated a catalogue with

30 entries in a cubic fundamental cell with L = 270h−1Mpc, zmax = 0.26. A double cone

aperture of 120◦ was chosen and the number of ghosts was limited to 901. The resulting

pattern can be seen in Figure 6.9(a) and the PSH in Figure 6.9(b).

In conclusion, we can say that if the above-mentioned topology would be the topology of

space, the peaks would be more significant. Thus, the in Figure 6.8(b) seen peaks are due

to noise. [66]
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Figure 6.9.: (a): The pattern of the simulated Bury catalogue. (b): The PSH of the simu-
lated Bury catalogue is presented. [66]

6.2.3.2. Collecting Correlated Pair Method CCP:

The Correlated Pair Method was developed by Uzan, Lehoucq and Luminet [67] when the

trial to apply the PSH method to several hyperbolic space forms failed. (See, for instance, [26]

or [27].) The here explained method works exclusively with type I-pairs, which exist in any

space form. We distinguish two different type I-pairs:

1. xy-pairs: ∀x, y ∈M3, ∀g ∈ Γ : dist[g(x), g(y)] = dist[x, y]

2. xg(x)-pairs: ∀x ∈M3, ∀g1, g2 ∈ Γ : dist[g1(x), (g1 ◦ g2)(x)] = dist[x, g2(x)]

For a catalogue with N entries, we calculate the 3D-separation di of all P = N(N−1)
2 pairs

and rearrange them such that di+1 > di. Building the differences ∆i = di+1 − di, all entries

with the same distance vanish.

We define the CCP-index as

R =
N

P − 1
with N = card{i : ∆i = 0},

with card denoting the cardinality of the set.

In the above-given definition ∆i = 0, this is an idealized situation. Working with real

data, due to errors in position and redshift, the differences do not vanish but take small

values. Therefore, in more realistic situation ε-binning is used: ∆i ∈ [0, ε].

If A entries of the N entries in the catalogue are real objects, N = A(B + 1) for a B ∈ Z.

Each xy-pair is represented (B + 1)-times. Therefore, the A(A − 1)/2 pairs contribute to

B · A(A− 1)/2 counts in N . If X is the number of representations of xg-pairs for A = 1 in

N , the contribution in N for A real objects is A2 ·X. Thus,

Nmin = A(A− 1)B/2 +A2X.
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6. Observing the Geometry and Topology of the Universe

This is just a lower bound, because there are additionally pairs x, y, which have randomly

the same separation and if Clifford translations exists in the holonomy group, type II-pairs

exist too.

The CCP-index takes values between zero and one. If B = 0, space is simply-connected

and R = 0. If the number of real objects dominates, the index goes to R → B+2X
(B+1)2

. Thus,

the index is representative for the degree of multi-connectedness of the spatial part of the

universe.

The CCP-index can be used in the following way: in order to calculate the required

radial distances di, a redshift-distance relation is needed, which depends on the cosmological

parameters Ω0 and ΩΛ,0. If the inaccuracy of these parameters is too big, the topological

signal, if existing, is destroyed. We can solve this problem by spanning an (Ω0,ΩΛ,0)-

parameter space and calculating R in terms of Ω0 and ΩΛ,0. The plot of R(Ω0,ΩΛ,0) produces

a spike only if the parameter Ω0 and ΩΛ,0 are chosen exactly. At all other points in the

(Ω0,ΩΛ,0)-plane, the topological signal is destroyed. A simulation showed that with A = 30,

Ω0 = 0.2 and ΩΛ,0 = 0.1, the plot of R produces in Weeks space (see section 5.5, p.116) a big

spike at (0.2, 0.1), which vanishes for a small variation of Ω0 and ΩΛ,0. See Figure 6.10(a). In

a more realistic situation with an ε-binning, the spike is less sharp and the (Ω0,ΩΛ,0)-plane

shows a background noise, see Figure 6.10(b).
J.-Ph. Uzan et al.: A new method for detecting space topology 771
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Fig. 7. Weeks A = 30, Ω0 = 0.2, ΩΛ = 0.1, z = 3 (quasars). We
check that the topological signal stands out only at the right values of
the cosmological parameters selected for the simulation.

2. If there is any topological signal, the position of the spike
gives the values of the cosmological parameters on the scale
of the catalog’s limit (see Fig. 7).

As a concrete example we proceed as follows. We first gener-
ate a simulated catalog by choosing the number of objects in the
fundamental domain (A = 30), the topology (Weeks manifold)
and the cosmological parameters (e.g. Ω0 = 0.2, ΩΛ = 0.1),
and we then use a second code to apply the test, drawing R in
terms of the two cosmological parameters. The result is shown
in plot 7. We see that the method works pretty well in the sense
that there is a spike signalling the presence of a topology and de-
termining the cosmological parameters. But we also can check
that a slight deviation in the choice of the cosmological param-
eters makes the spike to disappear. This effect will be discussed
in the next section.

Now, if applied with the required accuracy for the cosmo-
logical parameters, the absence of signature will give the lower
bound on the injectivity radius of the universe (in physical units)

rinj

3000 h−1 Mpc

≥
∫ 1

1
1+zmax

d lnx√
ΩΛx2 + (1 − Ω0 − ΩΛ) + Ω0

x

. (17)

5. Working with real data

When one wants to apply the CCP–method to real data, one
faces a number of problems. First, we cannot use a zero width
bin, one of the reasons being that the sources are not exactly
comoving. Let us first estimate the precision needed for the
cosmological parameters when working with a bin of width ε
as defined in Eq. (6). For that purpose, we just assume ΩΛ = 0
and estimate the precision on Ω0 from (16),
∣∣∣∣
δΩ0

Ω0

∣∣∣∣ =
√

1 − Ω0

√
Ω0z + 1√

Ω0z + 1 − 1
ε ≡ F (Ω0, z)ε. (18)
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Fig. 8. Computation of the CCP–index on a simulated catalog of depth
z = 3 in a hyperbolic universe model with the Weeks topology, Ω0 =
0.3, ΩΛ = 0.1, using a bin width ε = 10−6.

Assuming Ω0 ∈ [0.2, 1[ and z ∈]0, zmax], it is easy to see that
at Ω0 fixed, F (Ω0, z) is a decreasing function of z and that
F (Ω0, z) → ∞ when z → 0. Since F (Ω0, zmax = 3) ∼ 1, we
deduce that
∣∣∣∣
δΩ0

Ω0

∣∣∣∣ ) ε. (19)

Indeed, using a catalog with a smaller depth zmax will allow us to
use a smaller resolution for the cosmological parameters. One
has thus to find a compromise between depth and resolution.
A deeper catalog tests larger topological scales, but requires a
better accuracy of the cosmological parameters and thus a longer
computer time. In Fig. 8, we give an example with a bin width
ε = 10−6. The binning produces a “background noise” which
was absent in Fig. 7.

As real data we now consider a quasar catalog2

(Veron-Cetty & Veron 1998) containing 11,301 objects up to
a redshift of zmax = 4.897 (but only 20% of the quasars have
a redshift greater than 3). On Figs. 9 we have depicted its pro-
jection on the celestial sphere and the redshift distribution of
objects. In Uzan et al. (1999) the pair separation histogram
method, valid only in Euclidean spaces, was applied to the
same catalog and no topological signal was found; this raised
the lower bound on the characteristic size of Euclidean space to
L ≥ 3000 h−1Mpc. This limit, corresponding toL0/RH ≥ 0.5,
is of the same order as the bound L0/RH ≥ 0.8 obtained from
the CMB (Stevens et al. 1993).

We now apply the CCP–method in the Weeks hyperbolic
space model assuming ΩΛ = 0 and Ω0 spanning [0.2, 0.9]. No
topological signal is found either. Does it mean that there is no
topological lens effect on scales smaller than zmax ) 3? Not
necessarily, because we could only apply the test with precisions
ε = 10−7, 10−6, 10−5, and were unable to span the cosmolog-
ical parameter space with the required accuracy given by (19).

2 although quasars are not as good standard candels as X–ray galaxy
clusters, see Luminet & Roukema (1999) for a detailed discussion.
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Fig. 7. Weeks A = 30, Ω0 = 0.2, ΩΛ = 0.1, z = 3 (quasars). We
check that the topological signal stands out only at the right values of
the cosmological parameters selected for the simulation.

2. If there is any topological signal, the position of the spike
gives the values of the cosmological parameters on the scale
of the catalog’s limit (see Fig. 7).

As a concrete example we proceed as follows. We first gener-
ate a simulated catalog by choosing the number of objects in the
fundamental domain (A = 30), the topology (Weeks manifold)
and the cosmological parameters (e.g. Ω0 = 0.2, ΩΛ = 0.1),
and we then use a second code to apply the test, drawing R in
terms of the two cosmological parameters. The result is shown
in plot 7. We see that the method works pretty well in the sense
that there is a spike signalling the presence of a topology and de-
termining the cosmological parameters. But we also can check
that a slight deviation in the choice of the cosmological param-
eters makes the spike to disappear. This effect will be discussed
in the next section.

Now, if applied with the required accuracy for the cosmo-
logical parameters, the absence of signature will give the lower
bound on the injectivity radius of the universe (in physical units)
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5. Working with real data

When one wants to apply the CCP–method to real data, one
faces a number of problems. First, we cannot use a zero width
bin, one of the reasons being that the sources are not exactly
comoving. Let us first estimate the precision needed for the
cosmological parameters when working with a bin of width ε
as defined in Eq. (6). For that purpose, we just assume ΩΛ = 0
and estimate the precision on Ω0 from (16),
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Fig. 8. Computation of the CCP–index on a simulated catalog of depth
z = 3 in a hyperbolic universe model with the Weeks topology, Ω0 =
0.3, ΩΛ = 0.1, using a bin width ε = 10−6.

Assuming Ω0 ∈ [0.2, 1[ and z ∈]0, zmax], it is easy to see that
at Ω0 fixed, F (Ω0, z) is a decreasing function of z and that
F (Ω0, z) → ∞ when z → 0. Since F (Ω0, zmax = 3) ∼ 1, we
deduce that
∣∣∣∣
δΩ0

Ω0

∣∣∣∣ ) ε. (19)

Indeed, using a catalog with a smaller depth zmax will allow us to
use a smaller resolution for the cosmological parameters. One
has thus to find a compromise between depth and resolution.
A deeper catalog tests larger topological scales, but requires a
better accuracy of the cosmological parameters and thus a longer
computer time. In Fig. 8, we give an example with a bin width
ε = 10−6. The binning produces a “background noise” which
was absent in Fig. 7.

As real data we now consider a quasar catalog2

(Veron-Cetty & Veron 1998) containing 11,301 objects up to
a redshift of zmax = 4.897 (but only 20% of the quasars have
a redshift greater than 3). On Figs. 9 we have depicted its pro-
jection on the celestial sphere and the redshift distribution of
objects. In Uzan et al. (1999) the pair separation histogram
method, valid only in Euclidean spaces, was applied to the
same catalog and no topological signal was found; this raised
the lower bound on the characteristic size of Euclidean space to
L ≥ 3000 h−1Mpc. This limit, corresponding toL0/RH ≥ 0.5,
is of the same order as the bound L0/RH ≥ 0.8 obtained from
the CMB (Stevens et al. 1993).

We now apply the CCP–method in the Weeks hyperbolic
space model assuming ΩΛ = 0 and Ω0 spanning [0.2, 0.9]. No
topological signal is found either. Does it mean that there is no
topological lens effect on scales smaller than zmax ) 3? Not
necessarily, because we could only apply the test with precisions
ε = 10−7, 10−6, 10−5, and were unable to span the cosmolog-
ical parameter space with the required accuracy given by (19).

2 although quasars are not as good standard candels as X–ray galaxy
clusters, see Luminet & Roukema (1999) for a detailed discussion.

(b)

Figure 6.10.: Plot of R(Ω0,ΩΛ,0) in Weeks manifold with A = 30, Ω0 = 0.2 and ΩΛ,0 = 0.1;
(a): idealized situation (ε = 0) (b): More realistic situation with ε-binning. [67]

Several tests with real catalogues (Veron-Cetty and Veron 1998 quasar catalogue and Bury

cluster catalogue) did not show a topological signal.

The result is not surprising since the binning width and the accuracy of the parameter Ω0

are correlated by | δΩ0
Ω0
| ≈ ε. Additionally, the accuracy of the parameter Ω0 is increasing with

increasing zmax. Thus, one has to find a compromise between the depth of the used catalogue

and the error made because of the lack of the required accuracy of Ω0. Furthermore, the
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greater the inaccuracy in Ω0, the greater we have to chose the binning width, which reflects

in the computational time. Uzan, Lehoucq and Luminet made trials with ε = 10−5, 10−6 and

10−7, but were unable to span the (Ω0,ΩΛ,0)-plane with the required accuracy. Furthermore,

the computational time is increasing with increasing entries in the used catalogue and with

increasing precision of (Ω0,ΩΛ,0). For a reasonable precision, the computational time is too

long. Thus, the method is not able to determine topology of the universe with the today

available data and technical equipment. [67]

6.2.3.3. Cosmic Crystallography with Pull-Back:

This crystallographic method was developed by Fagundes and Gausmann in [28]. The

method is applicable to any space form. In [28], they applied it to a hyperbolic space

form with a fixed fundamental polyhedron and a fixed orientation in astronomical space.

The basic idea is to pull the images back to their position in the FP. This procedure should

produce a neat peak located at zero.

As before, working with real data produces a peak near zero instead of at zero, because

of inaccuracies in measurement of position and redshift.

The method was applied with idealized, and therefore, complete catalogues to two different

hyperbolic manifolds with the same FP, a regular dodecahedron, but different holonomy

groups Γ ⊂ Isom(H3). Both showed a significant peak near zero, whereas in the simply-

connected hyperbolic space, the distribution is Gaussian. See Figure 6.11.

2000 4000 6000 8000 10000 12000 14000
d/Mpc

(c) Difference between (a) and (b)

-1

1

2

3

Per Cent

2000 4000 6000 8000 10000 12000 14000
d/Mpc

(b) Open Model

0.25

0.5

0.75

1

1.25

1.5

1.75

Per Cent

2000 4000 6000 8000 10000 12000 14000
d/Mpc

(a) v2293, observer at center

0.5

1

1.5

2

2.5

3

3.5
Per Cent

Figure 1: The results of crystallography with pullback for a simulated catalog of

clusters of galaxies. Figure a corresponds to the multiply connected model, with

the observer at the center of the fundamental region, b to a simply connected
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Figure 6.11.: Histogram derived with the pull-back method applied to (a): the hyperbolic
manifold with the identification number v2293(+3, 2) (due to the software
SnapPea from Jeffrey Weeks) and (b): the simply-connected hyperbolic space.
Chosen parameter: ΩΛ = 0,Ω0 = 0.3, H0 = 65km/s/Mpc; number of cells:
93; [28]

Another trial was made with a shifted position of the observer. The plots were showing

the same result, indicating that the method is independent of the observers position. Further

tests showed that the method is strongly dependent on the orientation of the fundamental
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domain in astronomical space. If the fundamental domain is rotated by an angle β < 5◦,

the peak is less sharp, but visible. A rotation by an angle β > 5◦ destroys the peak. Thus,

the topology can just be used to affirm the topology if the orientation of the FP in space is

already known up to a high precision. Otherwise, thousands of different orientations have

to be examined. [28]

6.2.3.4. Crystallographic Methods Using Filter:

Latest improvements of crystallographic methods use filter. From these methods, we shall

present the one derived by Fushii and Yoshii [30], which is based in several aspects on the

method presented in [71].

The above-given average frequency of equal separation used with crystallographic methods

is caused by topological effects on the one side and stochastic effects on the other side. Here,

the idea is to sort out pairs caused by stochastic reasons with the help of filter. In [30] they

restrict the objects to shells with r1 < χ < r2 and use the following filter:

Filter I: First, pairs (ai, aj), (ak, al) are selected with ||ai − aj || − ||ak − al|| < ε.

Filter II: Secondly, vectorial properties of holonomies are used. Here, specific filters for different

types of holonomies are defined. The filters can be defined for very specific properties

of a certain kind of holonomies. The more specific a filter, the more free parameter are

required. For Euclidean manifolds, five different filter, similar to those used by [71],

are applied:

• Translations: If γ ∈ Γ is an Euclidean translation and (ai, aj), (ak, al) a cor-

responding quadruplet, γ(ai, aj) = (ak, al) or γ(ai, aj) = (al, ak). The filter is

constructed as:

|(xi−xj)±(xk−xl)| < εx, |(yi−yj)±(yk−yl)| < εy, |(zi−zj)±(zk−zl)| < εz,

with ar = (xr, yr, zr), r = i, j, k, l.

• Half-Turn Corkscrew: A half-turn corkscrew in orientable Euclidean spaces is

composed by a half-turn rotation followed by a parallel translation. For a quadru-

plet corresponding to a half-turn corkscrew γ(ai, aj) = (ak, al) or γ(ai, aj) =

(al, ak), once more. A filter for these holonomies can be defined by:

|(xi−xj)±(xk−xl)| < εx, |(yi−yj)±(yk−yl)| < εy, |(zi−zj)∓(zk−zl)| < εz.

• Nth-Turn Corkscrew for n = 3, 4, 6: An nth-turn corkscrew is an nth-turn followed

by a parallel translation. These holonomies indicate a specific Euclidean space

form. While third-turn corkscrew occur just in third-turn space, only the quarter-

turn space has quarter-turn corkscrew and sixth-turn corkscrew exists just in
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sixth-turn space. (See section 5.3, p.110, for a description of the mentioned

spaces.) The filters are:

|(xi − xj) cos(2/n)− (yi − yj) sin(2/n)± (xk − xl)| < εx,

|(xi − xj) sin(2/n) + (yi − yj) cos(2/n)± (yk − yl)| < εy,

|(zi − zj)± (zk − zl)| < εz.

As opposed to the filter for translations and half-turn corkscrew, here, the filter

does ignore γ−1. Therefore, we have to use additionally the very similar filters

|(xi − xj) cos(2/n)− (yi − yj) sin(2/n)± (xk − xl)| < εx,

−|(xi − xj) sin(2/n) + (yi − yj) cos(2/n)± (yk − yl)| < εy,

|(zi − zj)± (zk − zl)| < εz.

For hyperbolic or spherical manifolds one can define appropriate filter.

Filter III: Thirdly, as in [71], the last filter is used to select due life-time. Ghost images with

life-times ti, tj of the same object with a life-time tlife satisfy

∆tij =| ti − tj |< tlife.

Quadruplets of ghost images (ai, aj), (ak, al) with life-times ti, tj , tk, tl are dropped

unless ∆til,∆tjk < tlife or ∆tik,∆tjl < tlife.

With the images which have passed the filters, the CCP index and the PSH can be calcu-

lated. In theory, this method can detect the topology of manifolds with greater FP than

other methods. However, a test [31] has shown that this method is impractical in realistic

situations.

6.2.3.5. Possible Sources of Errors of Crystallographic Methods:

Crystallographic methods use 3D-data, as already mentioned. The general approach is

to test a specific method on a simulated catalogue and then apply it to a real catalogue.

Therefore, the two possible sources of errors are due to errors in the 3D-data and due to the

incompleteness of real catalogues.

1. Errors in 3D-data are caused by:

• error in redshift due to spectroscopic imprecision,

• uncertainties in the position due to peculiar motions (correction of redshift),
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• uncertainties in the cosmological parameter, especially in H0 (error in the radial

distances) and

• angular displacement due to gravitational lensing.

2. Catalogues are incomplete because

• objects are missing since either their apparent luminosity is to small or dust

respectively galactic gas is in the path of light between the source and the observer.

• we do not have access to observational data in the direction of the galactic plane,

which reduces the solid angle (5.2.2.4, p.108) to ω << 4π.

This different sources of errors influence the results more or less dramatic. The uncer-

tainties in the cosmological parameter can be handled by binning. With some methods the

required binning however increases the computational time to a not performable value. The

displacement of objects due to gravitational lensing is at most one arcsec and therefore neg-

ligible. The todays errors in redshift are of magnitude ∆z ≈ 0.001 (for quasars, for galaxies

the error is smaller) which causes an error ∆v ≈ 1, 000kms−1.

In [56], the different errors have been added to an idealized catalogue and their effect on

the results have been studied for PSH and CCP.

The error in the redshift was assumed to be Gaussian. ∆z can be interpreted as error in

redshift or position, even if the error in position is greater in real data than that in redshift.

The error in incompleteness was realized by randomly throwing out p% of the sources, but

more objects with greater redshift were deleted. Furthermore, a decreasing aperture angle

was chosen.

PSH: In order to test the PSH method, a three-dimensional torus was chosen with L =

3, 000Mpc. Further chosen cosmological parameter: ΩΛ = 0.7, Ωm = 0.3, H0 =

75kms−1Mpc−1. The simulated catalogue consists of 8500 entries which is of the

magnitude of the todays quasar catalogues.

The errors in the redshift and velocities were raised until the spikes disappeared. Fur-

thermore, the aperture angular was decreased and p% of the entries were randomly

vanished until the signal faded out. The results are represented in table 6.1.

We can conclude, that the error in the velocity is negligible.

CCP: Here, the test was exemplified with Weeks manifold, ΩΛ = 0, Ω0 = 0.3. The number of

cells within the horizon was chosen to be 190, whereas the number of catalogue entries

was delimited to 1300, which defines a compromise between a realistic catalogue and

calculation time. Once more the errors were raised until the index fell to noise level.

The index fell to noise level for errors in velocity of ∆v = 50 kms−1 and redshift

∆z ≈ 10−6, the order of the binning width. Were the error in the velocities is a bigger
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Table 6.1.: Values of errors at which the spike disappears dependent on the considered max-
imal redshift.

zmax ∆z ∆v [kms−1] % Θ[◦]
1 0.002 10, 000 70

2 0.1 80 110

3 0.03 90 80

4 0.08 70

5 0.12 40, 000 60

problem than the spectroscopic inaccuracies. The incompleteness has less dramatic

effects. [56]

A closing remark to the application of Crystallographic methods to spherical

space forms:

There are infinitely many spherical space forms. A lot of crystallographic methods require

a choice for the topology which can then be affirmed or rejected. [33] have reviewed the

spherical holonomy groups on the aspect of their degree of difficulty to be detectable.

Single action manifolds: The holonomy group of single action manifolds consists only of

Clifford translation. Therefore, these space forms could be detected with the PSH

method. For cyclic groups Cn and binary dihedral groups D?
m, the minimal transla-

tion distance is 2π
n or 2π

2m . Thus, the minimal translation distance is arbitrary small

for high n or m respectively. Therefore, cyclic and binary dihedral groups are the

easiest holonomy groups to be detected, whereas binary tetrahedral/octahedral and

icosahedral groups are more difficult.

Double action manifolds: If one of the factors is cyclic or binary dihedral, the holonomy

group is likely to be detected. The PSH of a double action manifold shows all spikes

produced by a single action manifold of one of the factors.

Linked action manifolds: These manifolds are the most difficult to detect, because they

have a very specific pattern.

6.3. Anisotropies in the Cosmic Microwave Background

In principal, there are two different kinds of data from which the topology of the universe

should be theoretically derivable. First, the three-dimensional data (position, redshift) of

objects used in crystallographic methods. The other kind of data is the Cosmic Microwave

Background (CMB), briefly introduced in Chapter 1. In order to describe methods based

149



6. Observing the Geometry and Topology of the Universe

Figure 6.12.: Image of the CMB anisotropies made by WMAP [130]. As CMB is observable
on a sphere around us, the shape can be seen in the same way as a chart of the
earth visualizes the surface of a two-dimensional sphere.

on CMB data, we have to go into further detail on anisotropies of the CMB. Since this is a

complicated and wide field of science, we shall only mention the most important points. For

more details [57] and [109] are recommended.

As we have explained in Chapter 1, the microwave background radiation is the remnant

of the radiation emitted at the time of last scattering. Light could not propagate before

recombination. At the time of the last scattering (which is more precisely a time interval)

radiation could propagate freely for the first time. During cosmic expansion, radiation also

expanded. Today, we detect its remnants in the microwave range of the spectrum. The

light received at earth has travelled the same distance in every direction since last scattering

and therefore defines a sphere around us [57]. Figure 6.12 shows an image of the CMB

from WMAP. Since it is the most extended source known in the universe, it is an excellent

studying object for Cosmic Topology.

The CMB was propagated when radiation was in thermal equilibrium with hot matter,

caused by numerous rapid collisions of electrons and photons. The number density of photons

in equilibrium with matter of a temperature T and a frequency between ν and ν + dν is

given by the black body spectrum

nz(ν)dν =
8πν2dν

exp(hν/kBT )− 1

where h denotes Planck’s constant, kB denotes Boltzmann’s constant and the convention

c = 1 is used. As the universe has expanded, the radiation has cooled down, but has not
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changed its distribution. Thus, the CMB still has an almost perfect black body spectrum.

See Figure 6.13. The mean temperature has cooled down from approximately 3, 000K to

2.725K ≈ 3, 000K · a(tLSS)/a(t) [109].

Figure 6.13.: The black body spectrum of the CMB. [131]

The CMB is remarkable homogeneous and isotropic. For the first time FIRAS on COBE

detected anisotropies within the background radiation [91]. A few years later, WMAP were

able to detect the anisotropies in a higher resolution, see Figure 6.12 [8]. The anisotropies

are of magnitude δT
T = 10−5, and therefore, the CMB remains remarkable homogeneous

and isotropic. The anisotropies are caused by numerous effects, from which we shall only

mention the most important ones. There are primary anisotropies and anisotropies in the

observed CMB, which are caused by effects in the recent universe.

The source of the anisotropy depends mainly on the scale, meaning that anisotropies of

a certain angular scale are dominated by a particular effect. Therefore, the parameter ` is

used, which is called the multipole. It is the angular wave number and corresponds to an

angular fluctuation θ with ` ∼ π/θ. Small ` correspond to large angular correlations, whereas

fluctuations on small scales correspond to high ` [57]. See Figure 6.14 for an illustration.

6.3.1. Anisotropies Caused by Effects in the Recent Universe:

6.3.1.1. Dipole Anisotropy:

The CMB is comoving with cosmic expansion. Since the earth has a peculiar velocity, we

move with respect to the CMB. The motion of the earth with respect to CMB is composed

of the motion of the galaxy with respect to the local group, the motion of the solar system

within the galaxy and the motion of the earth within the solar system. The motion of the

earth with respect to the CMB is estimated to be of order 10−3 · c. The maximal apparent

temperature is measured in the direction we are moving to. WMAP satellite experiment

found a maximal deviation of the mean temperature of CMB of about δT = 3.372±0.014mK,

which indicates that we are moving with a net velocity of 370km/sec [8]. The motion with
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Figure 6.14.: Visualization of the multipole `. [132]

respect to the CMB causes the dipole anisotropy due to the Doppler effect which dominates

the temperature fluctuation with ` = 1 (θ = 180◦). The visual effect of the dipole anisotropy

can be seen in Figure 6.15 [109].

6.3.1.2. Sunyaev-Zel’dovich Effect:

Along the line of sight, CMB photons are scattered by electrons in intergalactic space within

clusters of galaxies and therefore cause anisotropies. The Sunyaev-Zel’dovich effect does not

lower the amount of photons we are receiving, but it decreases the temperature and the

sharpness of the peak. Radio astronomers can distinguish between temperature anisotropies

caused by Sunyaev-Zel’dovich effect and primary anisotropies, which we shall explain in the

following. Fluctuations with ` > 200 are corrupted by the Sunyaev-Zel’dovich effect. As we

shall see, these are not interesting for Cosmic Topology. [109]

6.3.2. Primary Anisotropies

Apart from intrinsic temperature fluctuations in the electro-nucleon plasma at the time of

last scattering and the Doppler effect due to velocity fluctuations in the plasma at last

scattering, the primary anisotropies of the CMB are caused by the Sachs-Wolf (SW) effect

and the integrated Sachs-Wolf (ISW) effect, which we shall describe in more detail. [109]
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Figure 6.15.: (top left) The CMB has a isotropic temperature all over the universe; (top
right) A higher resolution shows the dipole pattern caused by the motion of
the earth versus the CMB. The red coloured balk is the plane of the milky way.
CMB has to be mask for this region. (bottom left) Dipole pattern is reduced;
(bottom right) Milky Way is reduced and the anisotropies of the CMB can be
seen. [133]

6.3.2.1. Sachs-Wolf Effect:

In the early universe acoustic waves propagated and caused by superposition density anisotropies

in the primordial plasma. These gravitational fluctuations at the time of last scattering are

one origin of temperature fluctuations in the CMB. Photons coming from a denser region had

to compete more strongly against gravity, and therefore, are reaching us cooler. Whereas

photons coming from a less dense region are reaching us hotter. These anisotropies have

stretched to macroscopic scales during a possible era of inflation. [18] [55]

It is widely accepted that these primordial density fluctuations are the origin of density

fluctuations today, as, for example, galaxies or galaxy clusters [60].

In a first approximation, this effect can be treated with Newtonian physics. The perturba-

tion of the gravitational potential, expressed in comoving coordinates, is a time independent

function δΦ(x) which can be written as a combination of components of δgµν [57]. The

perturbation has two effects:

• Gravitational Redshift: The energy of a photon emitted at the time of last scattering

is shifted by an amount δΦ(x). When we observe it in the direction ~n, it differs from

the average by an amount

(
δT (~n)

T0

)

1

= δΦ(~nχLSS). (6.19)

• The perturbation of the gravitational potential changes the rate at which the universe

expands. We observe the redshift of the last scattering surface shifted by approximately
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1
1+z . In a matter dominated universe, the shift in 1+z causes a shift of

(
δT (~n)

T0

)

2

= −2

3
δΦ(~nχLSS). (6.20)

Equations 6.19 and 6.20 add to the Sachs-Wolf effect:

(
δT (~n)

T0

)

SW

=
1

3
δΦ(~nχLSS). (6.21)

Sachs-Wolf effect dominates the fluctuations for 10 ≤ ` ≤ 50.

6.3.2.2. Integrated Sachs-Wolf Effect:

The perturbation is not strictly time-independent. The time-dependent part is due to the

integrated Sachs-Wolf effect and describes the gravitational red-/blueshift due to time-

dependent fluctuations in the gravitational potential between the time of last scattering

and today. It dominates the temperature fluctuations for ` ≤ 10. [109]

6.3.3. Mathematical Description of Anisotropies

We expand the deviations of the CMB temperature in the direction of the unit vector ~n

from the mean temperature T0 in spherical harmonics:

δT (~n) = T (~n)− T0 =
∑

`,m

a`mY
m
` (~n),

with ` positive definite integers, m ∈ {−`, . . . , `} and

T0 =
1

4π

∫
d2 ~nT (~n).

The coefficients a`m describe what happened at the last scattering surface for the position

of the earth in universe. Since we do not have access to such specific information, we are

forced to focus on averages over time and position. The Ergodic Theorem states that these

averages can be handled as only one average, which we shall denote by 〈, 〉. [109]

We can describe the anisotropies of the CMB by considering the angular (temperature

two-point) correlation function. It describes the difference in temperature of the CMB

between any two points on the sphere and is given by

C(θ) = C(~n, ~n′) = 〈δT (~n), δT (~n′)〉,

with ~n · ~n′ = cos(θ). The C(~n, ~n′) can be derived by theoretical considerations to compare

them to the observed Cobs. [57]
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The coefficients of the angular correlation function define the correlation matrix:

C`
′m′
`m = 〈a`m, a`′m′〉.

In Standard Cosmology, M3 is assumed to be simply-connected and isotropic. In this

case, 〈δT (~n)〉 is independent on the direction ~n and

〈a`m, a`′m′〉 = δ`,`′δm,−m′C`, (6.22)

with C` being the multipole coefficient which can be written as

C` =
∑̀

m=−`

|a`m|2
2l + 1

. [57]

With these assumptions, the angular correlation function can be written as:

〈δT (~n), δT (~n′)〉 =
∑

`m

C`Y
m
` (~n)Y −m` (~n′) =

∑

`

C`

(
2`+ 1

4π

)
P`(~n, ~n

′)

with P` denoting the Legendre polynomials.

The observed multipole coefficients Cobs` are averaged over m but not over the position. Of

course we cannot have the average over position, since we just have access to one observing

position. The C` and Cobs` satisfy

〈(
C` − Cobs`

C`

)2〉
=

2

2`+ 1
,

〈(
C` − Cobs`

C`

)(
C`′ − Cobs`′

C`′

)〉
= 0. [109]

For ` ≥ 4, the multipole coefficients C` can be expressed with the help of the Harrison-

Zel’dovich spectrum:

C` =
24πQ2

5`(`+ 1)
(6.23)

where Q denotes the quadrupole moment. [109]

In simply-connected, isotropic and homogeneous spaces it suffices to calculate the C`. In

non globally isotropic and homogeneous spaces, the correlation matrix Cm,m
′

`,`′ may has off-

diagonal entries. Here, the angular correlation matrix is not rotationally invariant. There-

fore, it depends on the orientation of the manifold with respect to the coordinate system.

In order to calculate the coefficients Cm,m
′

`,`′ , the eigenmodes Υ
[M3]
k ofM3 = M̃3/Γ have to

be calculated. In particular, these are the eigenmodes of the Laplace operator ∆ = ∇2 on

M̃3/Γ, where ∇ is the covariant derivative corresponding to the metric hab on M3 (1.1.3.7,

p.17) with the Harrison-Zel’dovich spectrum as initial data [62]. Thus, they are the solutions

of the Helmholtz equation:

∆Υ
[M3]
k = EkΥ

[M3]
k ,
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with Ek denoting the eigenvalue corresponding to the integer k, which can be interpreted as

the wave number [14]. For space forms, Ek = k2 −K, where K is positive, zero or negative

depending on whether the space form is spherical, flat or hyperbolic. Any other function on

M̃3/Γ can then be developed on its eigenmodes. [102]

In general, the space of eigenmodes of a space form M̃/Γ, is a subspace of the space of

eigenmodes of the UCS M̃. The subspace is defined as the space of all eigenmodes which

are invariant under Γ. In other words, they satisfy the fundamental periodicity condition

Y(γ(x)) = Y(x) ∀γ ∈ Γ where x ∈ M and Y is an eigenmode of the UCS M̃ [5]. The

multiplicity of a mode is at most equal to the multiplicity in the UCS. If {YM̃k`m} is a basis

of eigenmodes of M̃,

Υ
[M]
ks =

∞∑

`=0

∑̀

m=−`
ξ

[M]s
k`m YM̃k`m

with s indexing the eigenmodes to the eigenvalue Ek. The topological information is en-

coded in the coefficients ξk`m. Thus, we are implementing the topology by performing the

substitution

YM̃k`m → Υ
[M]
ks ,

where s is a subset of {`,m}.
For Euclidean space forms ( [102]), the determination of the space of eigenmodes can be

done analytically. For hyperbolical space forms, one is left to numerical methods. For spher-

ical space forms, the eigenmodes of prism spaces and lens spaces can be done analytically

( [13]), otherwise one is left to numerical methods. For compact space forms, the set of

eigenvalues Ek and the set of coefficients ξk`m are discrete.

With the help of perturbation equations, which are local differential equations and there-

fore the same for SCM and MCM, the coefficients Cm,m
′

`,`′ can be calculated. Furthermore,

the C` can be determined, which are rotationally invariant. [102]

6.3.4. Detecting-Methods using CMB-Maps

If you sprinkle fine sand on a drum and let it vibrate, the sand rearranges in a certain

pattern which is called the Chaldi pattern. The Chaldi pattern depends on the size and

shape of the drum. It is caused by the way acoustical waves are reflected. The early

universe was filled with acoustic waves, generated soon after the Big Bang. The primordial

universe vibrated for 380, 000 years before the radiation could escape. These vibrations left

their imprints in the primordial plasma in the form of small density fluctuations. These

density fluctuations are detectable today as temperature anisotropies in the CMB. Thus,

the temperature fluctuations of the CMB can be interpreted as a Chaldi pattern of the early

universe which vibrated over 380, 000 years. As the Chaldi pattern of a drum depends on its

size and shape, the pattern of the CMB depends on the shape and size of the universe. The

challenge is to reconstruct geometrical and topological properties by studying the pattern
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of the CMB. [62]

In order to develop methods using CMB-maps, simulating maps with the topological signal

of a brought variety of topologies are required to test the method. These maps can be used

to estimate the run-time of the method and the significance of the topological signal. In

order to mask the CMB for different space forms, the whole correlation matrix has to be

calculated. The predicted C` depend on

1. the model of structure formation, which fixes the initial conditions for perturbations,

2. the matter contend and geometry, which is given by the cosmological parameter and

3. the topology.

In a MCM the CMB map is expected to differ from the CMB map in a SCM in the

following aspects:

1. Existence of ` − `′ and m − m′ correlations, which reflect the break down of global

isotropy. Thus, the correlation matrix Cm,m
′

`,`′ is not diagonal.

2. Existence of a cut-off frequency in the CMB angular correlation spectrum on large

angular scales if Lmin < χLSS .

3. Existence of patterns such as matched circles if Lmin < χLSS . These are the circles of

intersection of the last scattering surface with itself, where the temperature fluctuations

are assumed to be strongly correlated.

[102]

6.3.4.1. Circles-in-the-Sky

Every observer is located at the center of a sphere with radius χLSS , the last scattering

surface, which determines the physical horizon. The last scattering surfaces of two observers

intersect along circles, because spheres always intersect along circles (or single points). If

space is non-simply-connected, there is the possibility that the fundamental cell intersects

the last scattering surface (along circles). In this case, the last scattering surfaces of two

observer in adjacent cells must have the same distribution of temperature fluctuations due to

the ordinary SW effect along these circles of intersection (up to a phase). Of course the two

observers are in reality only one observer and the circles are one circle observed in different

directions in the sky. Thus, if we live in a multi-connected universe with a fundamental

cell of size smaller or equal to the size of the last scattering surface, circles with the same

temperature distribution due to SW effect must exist in the CMB. These circles are called

a pair of matched circles. [19]

Just the temperature fluctuations caused by the ordinary SW effect are strongly correlated

along matched circles. The dipole anisotropy as well as the anisotropies caused by the
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integrated SW effect are in general anti-correlated since they depend on the null geodesic

and the circles are seen in different directions in the observers space. The correlation would

be perfect if the last scattering surface would be a two-dimensional sphere. Since the time of

last scattering is a time interval instead of a sharp time-point, the last scattering surface has a

finite width. These perturbations are probably negligible because the considered correlations

are on larger scales than the thickness of the last scattering surface. [102]

thing, such as string theory, are in their infancy and do
not yet have testable consequences. But eventually the
candidate theories will make predictions about the
topology of the universe on large scales.

The tentative steps toward the unification of physics
have already spawned the subfield of quantum cosmol-
ogy. There are three basic hypotheses for the birth of the
universe, which are advocated, respectively, by Andrei
Linde of Stanford University, Alexander Vilenkin of
Tufts University and Stephen W. Hawking of the Uni-
versity of Cambridge. One salient point of difference is
whether the expected volume of a newborn universe is
very large (Linde’s and Vilenkin’s proposals) or very
small (Hawking’s). Topological data may be able to dis-
tinguish among these models.

If observations do find the universe to be finite, it
might help to resolve a major puzzle in cosmology: the
universe’s large-scale homogeneity. The need to explain
this uniformity led to the theory of inflation, but
inflation has run into difficulty of late, because in its

standard form it would have made the cosmic geome-
try Euclidean—in apparent contradiction with the ob-
served matter density. This conundrum has driven the-
orists to postulate hidden forms of energy and
modifications to inflation [see “Inflation in a Low-Den-
sity Universe,” by Martin A. Bucher and David N.
Spergel; Scientific American, January]. An alterna-
tive is that the universe is smaller than it looks. If so,
inflation could have stopped prematurely—before im-
parting a Euclidean geometry—and still have made the
universe homogeneous. Igor Y. Sokolov of the Universi-
ty of Toronto and others have used COBE data to rule
out this explanation if space is a 3-torus. But it remains
viable if space is hyperbolic.

Since ancient times, cultures around the world have
asked how the universe began and whether it is finite or
infinite. Through a combination of mathematical in-
sight and careful observation, science in this century has
partially answered the first question. It might begin the
next century with an answer to the second as well.

Is Space Finite? Scientific American April 1999      97
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THREE POSSIBLE UNIVERSES, large, medium and small (top

row), would produce distinctive patterns in the cosmic microwave
background radiation, as simulated here (bottom row). Each of
these universes has the topology of a 3-torus and is shown repeat-
ed six times to evoke the regular grid that an observer would see.
In the large universe, the sphere of background radiation does not

overlap itself, so no patterns emerge. In the medium universe, the
sphere intersects itself once in each direction. One may verify
that tracing clockwise around the central circle in the left hemi-
sphere reveals the same sequence of colors as tracing counter-
clockwise in the right. Finally, in the small universe, the sphere
intersects itself many times, resulting in a more complex pattern.
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Figure 6.16.: Whether matched circles exist or not, depends on the size of the fundamental
cell. In Figure (a), the fundamental cell is bigger than the last scattering
surface and therefore no matched circles occur. In Figure (b), the fundamental
cell is small enough to enable the existence of matched circles. [70]

As already mentioned, matched circles would only exists if the fundamental cell has an

appropriate size. There are three different cases, depending on the size of the fundamental

cell (see Figure 6.16(a) and 6.16(b)):

1. If the LSS is smaller than the size of the fundamental cell and does not intersect, no

matched circles would be observable. If 2χLSS < Lmin, no signal would have reached

us. See Figure 6.16(a).

2. If the LSS fits exactly within the fundamental cell, there would be just points of

intersections. In a toroidal universe, there would be three pairs of points with exactly

the same temperature.

3. If the LSS intersects the fundamental cell along circles, we would detect pairs of circles

with correlated temperature anisotropies. The pattern of the locations of the circles

depends on the topology. For a torus, we would detect three pairs of antipodal matched

circles. See Figure 6.16(b). [18]

Circles-in-the-sky methods, first mentioned by [18], assume the universe to be not too

small such that the fundamental cell intersects the LSS. Then, the method is independent

of the topology, because the intersection of two spheres with the same radius is always a
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circle. The position, distance and number of matched circles is then representative for the

topology of the universe. [18]

The search for matched circles is time-consuming. The WMAP data ( [8]) consists of

3 · 106 independent points. Each point can be the center of a circle with radius 0 ≤ ν ≤ 90◦.

The Fourier transform
∑

m Ti,mexp(imΦ), where Ti,m is the mth harmonic of the ith circle,

of each circle has to be calculated. The temperature fluctuation of circles with the same

radius are compared where a possible phase φ between 0◦ and 360◦ has to be taken into

account. [51]

A statistic

Sij(Θ,Φ) =
2
∑

mmTi,m(Θ)T ?j,m(Θ)e−imΦ

∑
n n[|Ti,n(Θ)|2 + |T ?j,n(Θ)|2]

has been defined in [19] (first mentioned in [18]) which compares fluctuations of all scales

along circles with the same radius. The index satisfies Sij = 1 for a perfect match and ex-

pectation value of 0 if random circle are compared. The method was tested with a simulated

CMB sky for a finite cubic three-dimensional torus of L = 0.513χLSS were the Sachs-Wolf

effect was included. The algorithm found almost perfect matched circles with S = 0.99. The

algorithms applied to real data shall not show such perfect values. The statistic is widely

used in papers dealing with the circles-in-the-sky method, for example, in [51], [6] and [59].

There have been attempts to search for antipodal circles in the sky ( [19], [51]), without

result. Roukema et al. ( [59]) claimed the detection of six pairs of dodecahedral shaped

circles of radius 11± 1◦ with a phase shift of 36◦ as predicted for the Poincaré dodecahedral

space. The promised analysis of the statistic methods was not made and was doubt by

[51]. Then [97] made the analysis and found out that the ILC5 maps, used in [59], reduce

foreground not sufficiently enough to use the map for the circles-in-the-sky method. The

statistical significance was doubt by Roukema himself in [58]. The authors of [19] rule out

the possibility of a dodecahedral topology.

First, Aurich, Lustig and Steiner remarked in [6] that the correlated fluctuations due to the

ordinary SW effect could be degraded by the integrated SW effect and the dipole-anisotropy.

The in Figure 6.17 illustrated three contributions to the temperature fluctuations lead to a

deviation of a perfect match of temperature fluctuations along the circles. See also Figure

6.18.

Aurich, Lustig and Steiner [4] and Lew and Roukema [58] found a marginally hint for

Poincaré dodecahedral space, for which we shall present a detailed review in the end of this

chapter.

Recently, the deviation for matched circles from being antipodal has been calculated. The

results show that at least for Euclidean manifolds, the circles do not have to be antipodal

at all [77], [76]. The results for Euclidean space forms is presented in Figure 6.19(b).

5The ILC (Internal Linear Combination) maps are formed from weighted linear combinations of
five smoothed I-maps with minimized galactic foreground contribution. See Lambda Homepage
(http://lambda.gsfc.nasa.gov/product/map/dr1/internal linear comb.cfm) for more detailed information.
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contribution. A further distinction between S3 and D is that δTl oscillates as a function

of l in the case of the multi-connected space even for the mean values of δTl which

are considered here. With the exception of the smallest multipoles, the ordinary Sachs-

Wolfe contribution dominates up to l ! 30. However, even in this range the Doppler and

the ISW contribution provide a significant fraction of the total temperature fluctuation.

The ISW is most important for l ! 10, whereas the Doppler contribution increases for

l " 10 to even larger values than the ISW, such that both contributions give together a

large perturbation to the pure circles-in-the-sky signature.
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Figure 8. The three contributions to δTl are shown for the simply connected S3 (left)

and the dodecahedral space D (right) calculated in the tight-coupling approximation

for Ωtot = 1.019, h = 0.70, Ωmat = 0.28 and Ωbar = 0.046.

To emphasize this point, figure 9 shows the temperature fluctuation along two

matched circles parameterized by the angle φ defined in (49) below. One observes

in figure 9a) that the total temperature fluctuation δT is not matched perfectly well.

However, some rough similarities between both δT curves are nevertheless visible.

Whether such similarities occur sufficiently frequently by chance in the simply connected

S3 model, such that the circles-in-the-sky signature is swamped, is discussed below. The

different contributions to δT are separately shown in figures 9b), 9c) and 9d). Even the

ordinary Sachs-Wolfe contribution (figure 9b)) does not provide a perfect match which

is due to the fact that the dipole contribution has been subtracted from the sky map

analogously as it is done on the observational side. This destroys the perfect agreement

due to the SW contribution. Conversely, if one would know the topological structure of

the Universe, this would offer an opportunity to determine the dipole contribution due

to the primordial fluctuations which is usually superseded by the Doppler shift due to

our local motion. The Doppler and the ISW contributions are completely different for

the two circles as seen in figures 9c) and 9d), respectively, for reasons described above.

As just discussed, for cosmological models near Ωtot ! 1.02, the ordinary Sachs-

Wolfe contribution dominates for l ! 30. The value l = 30 corresponds to a scale

θ ! 180◦
l

= 6◦. Thus the circles are blurred on scales below ∼ 6◦. On larger scales, the

integrated Sachs-Wolfe and the Doppler contribution lead to a modulation of matched
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Figure 6.17.: The dipole anisotropies and the anisotropies caused by the ordinary SW ef-
fect as well as the integrated SW effect are illustrated for the sphere (a) and
the dodecahedral space (b). Used cosmological parameter: Ω0 = 1.019, h =
0.70, Ωm = 0.28. For further informations of the simulations see [6]. For the
lowest modes, the ISW effect dominates over the ordinary SW effect for the
dodecahedral space, which may avoid the detection of matched circles. [6]Poincaré Dodecahedron 20
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Figure 9. The temperature fluctuation δT is shown along two matched circles for

Ωtot = 1.019, h = 0.70, Ωmat = 0.28 and Ωbar = 0.046. Panel a) displays δT of the

total temperature fluctuation along the two circles, obtained from the ordinary Sachs-

Wolfe (SW), Doppler (Dop) and integrated Sachs-Wolfe (ISW) contribution, which are

shown separately in panels b), c) and d), respectively.

circle structure.

For a quantitative search of matched circles in microwave sky maps, the quantity

Σ(ρ) :=
〈2 δTa(±φ) δTb(φ + ρ)〉

〈δT 2
a (φ) + δT 2

b (φ)〉 (49)

is introduced in [8]. (In [8], Σ is called S, a name we avoid in the following in order

to not confuse the reader with the previously discussed S statistic.) Here δTa(φ) and

δTb(φ) are the temperature fluctuations along two circles on the SLS with the same

radius, and 〈〉 := 1
2π

∫ 2π

0
dφ. The angle ρ describes the relative phase between the

temperature fluctuations on the two circles and the plus/minus sign in the nominator

allows for orientable as well as for non-orientable manifolds. The Σ variable takes

the value Σ = +1 in the case of a perfect correlation and Σ = −1 for anticorrelated

temperature fluctuations.

In [59] the Σ test is applied to the first year data from WMAP and it is found

that Σmax = maxρ{Σ(ρ)} does not show any spikes which would reveal a matched circle

pair. The search is carried out for nearly back to back circles having a separation larger

than 170◦ and a radius larger than 25◦. For 1.0091 < Ωtot < 1.0252 (for h = 0.70

Figure 6.18.: In panel a), the total temperature fluctuations of two matched circles are visu-
alized. In panel b),c) and d) the according fluctuations due to SW effect, ISW
effect and dipole anisotropy respectively can be seen. The anisotropies due to
the SW effect give a perfect fit. The total anisotropies is not matched perfectly
well, because of the contribution of ISW and dipole anisotropies. [6]
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3

FIG. 1: This figure depicts the circles at the intersection of
the last scattering surface with its images. The parameter θ is
a measure of the deviation of the circles from being antipodal,
and φ measures the relative phase between the circles of radius
ν.

spatial sections; but beyond that, we want to know how
much more information can be gleaned from such a de-
tection. We shall make explicit how and to what extent
the detection of a circle-in-the sky could be used to con-
strain the geometry and topology of the spatial section
of the Universe, as well as our position in it. To do so,
we must first relate the parameters specifying the circles
to the elements of the associated holonomy.

To this end, let us assume that the spatial sections of
the Universe have a flat topology so that all holonomies
take the form of screw motions. In addition, suppose
that we have detected a pair of circles of radius ν with
parameters θ, φ, which is assumed to be the most readily
detectable pair of circles, i.e. the pair associated with
the shortest closed geodesic which contains the observer’s
position or equivalently pairs with the circles with largest
radius.5

The important question then is, given the parameters
θ, φ and ν of a single pair of circles, how to uniquely deter-
mine the parameters of the corresponding screw motion,

5 Clearly one might also detect other pairs of circles which are not
associated with the first neighboring copies of the CMB sphere.
But in such a case these pairs of circles corresponding to neigh-
boring CMB sphere copies, i.e. associated to the shortest closed
geodesic, will also be detected, and the pairs could be distin-
guished by their radii.

namely the angle α, the compactification length L, and
the distance r of observer to the axis of rotation?

To answer this question, we need to derive the rela-
tion between the parameters specifying the holonomy and
those corresponding to the circles. To begin with the
screw motion twist angle, α can be uniquely determined
by the phase shift φ and the deviation from antipodicity
θ through the relation

cosα =
(cosφ + 1)(cos θ + 1)

2
− 1 , (3)

obtained by inverting the expression Eq. (12) of Ref. [12].
Clearly, for a given value of α and θ, there is one and only
one possible value of φ. Conversely, the determination of
both θ and φ specifies α. In this way, from Eq. (1) one has
that the compact orientable flat manifolds Ei (i = 1 · · · 6)
define contour curves in the(θ–φ) plane, which are the
loci of values of the parameters (θ, φ) allowed for the
circles-in-the-sky of flat universes whose spatial section
is one of the associated flat 3−manifolds. The thick lines
in Fig. 2 indicate these contour curves (see below for more
details about this figure).

One can also show, after some algebra, that the com-
pactification length L and the distance of the observer r
to the axis of the screw motion can be written as

L = 2 χobs cos ν

√
cos θ − cosα

1 − cosα
, (4)

and

r =
√

2 χobs cos ν

√
1 − cos θ

1 − cosα
. (5)

respectively. Thus, given the parameters of the circles,
(θ, φ, ν), and the radius of the last scattering surface,
χobs, one can obtain the parameters for the correspond-
ing holonomy (α, L) and the distance r of the observer
to the rotation axis (henceforth, the observer’s position).
Clearly, from Eqs. (5), (4) and (3) one obtains the lo-
cus of values of the parameters (θ, φ) such that the ratio
r/L is constant. This locus defines another family of
contour curves in the (θ–φ) plane, depicted in Fig. 2 as
thin traversing curves for different values of ratio r/L.
Different combinations of θ and φ along each contour
correspond to different values of r (in units of the com-
pactification length L). Figure 2 shows that for observers
situated along the screw motion axis the resulting circles
are antipodal (θ = 0), with a relative phase φ given by
the twist angle α [cf. Eq. (3)]. For all observers the de-
viation from antipodicity θ becomes larger as the phase
φ decreases. In the limit where the observer is infinitely
distant from the axis, φ becomes zero and θ becomes
equal to α [see Eq. (3)].

III. CIRCLES-IN-THE-SKY IN COMPACT
ORIENTABLE FLAT UNIVERSES

Now let us assume observations have detected a single
pair of circles of radius ν with the corresponding parame-
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FIG. 2: The allowed combinations of the circles-in-the-sky
parameters θ (the deviation from antipodicity) and φ (the rel-
ative phase between circles) for compact orientable flat man-
ifolds. Each thick contour line corresponds to one allowed
class of holonomies, which take the form of a screw motion
with twist parameter α given in Eq. (1). The different ori-
entable compact flat manifolds Ei (i = 1 · · · 6) that include
each holonomy class are indicated; those for which this holon-
omy may generate the most readily detectable circle pair are
in bold. The dotted part in each countour line corresponds
to configurations where the circle pairs with the largest radii
are always translational, and thus antipodal. In all cases, the
compactification length L is not fixed, but the precise combi-
nation of θ and φ will depend on the position of the observer,
as depicted in the light contours corresponding to different
distances r from the axis of the screw motion (in units of L).
The shaded area corresponds to the parameter values that
have been probed in the recent searches for antipodal and
nearly antipodal circles in CMB maps [6, 7].

ters (θ, φ). As we mentioned above, in compact orientable
flat manifolds the screw motion angle α is restricted to
the values given by Eq. (1). Also, for each of the allowed
values, Eq. (3) becomes a finite set of one-to-one rela-
tions between θ and φ, as is shown in Fig. 2. Thus, the
detection of a pair of circles will allow the knowledge of
the parameters θ and φ to readily determine whether or
not the geometry of the spatial section of the Universe is
Euclidean (flat), by checking whether the observed val-
ues of θ and φ lie on one of the contours (thick curves)
shown in Fig. 2. If they do not (after taking into account
observational uncertainties) then this is a clear indica-
tion that the geometry is non-Euclidean. Conversely, if
the parameters θ and φ of the detected pair lie, within
observational uncertainty limits, on one of these thick

contours curves, we would conclude that the underlying
spatial geometry is most likely Euclidean (flat).6

Now if it is found that the geometry is indeed Eu-
clidean, we then wish to establish to what extent the
topology of the spatial section of the Universe can be
determined, given such a detected pair of circles. The
list of possibilities of compact orientable flat manifolds is
summarized in Table I. We indicate in each case the max-
imum deviations from antipodicity of the circles-in-the-
sky for which a non-translational holonomy may generate
the most readily detectable pair of circles (see Ref. [8] for
details).

Symbol Manifold n θmax

E1 three-torus 1,1,1 0◦

E2 half turn space 1,1,2 120◦

E3 quarter turn space 1,1,4 86◦

E4 third turn space 1,1,3 109◦

E5 sixth turn space 1,1,6 59◦

E6 Hantzsche-Wendt space 2,2,2 120◦

TABLE I: Multiply-connected flat orientable manifolds and
the maximum deviation from antipodicity of the circles-in-
the-sky for each manifold for which a non-translational holon-
omy may generate the most readily detectable pair of cir-
cles(i.e., with the largest radii). In all cases the screw mo-
tion twist parameters can only take certain values of the form
α = 2π/n; the values of n for the holonomy group genera-
tors are also indicated. Note that n = 1 corresponds to a
translation.

Table I and Fig. 2 show that each of the 6 possible
classes of holonomies corresponds to the different values
of α [cf. Eq. (1)], which in turn belong to the holonomy
group of one or more of the compact orientable flat man-
ifolds.

At first sight, this seems to indicate one-to-many cor-
respondence between the values of the twist angle α [ob-
tained from the detected angular parameters of circles
(θ, φ)] and the list of flat orientable compact manifolds
Ei (i = 1...6) with their associated holonomies.

However, as our previous work [8] details, some ele-
ments of a holonomy group can never produce the pair
of circles with the shortest distance between the observer
and its image, no matter where in the manifold the ob-
server happens to be. For instance, although a screw
motion with a twist of 120◦ exists in the holonomy group
of E5, being the square of its non-translational generator
with a twist of 60◦, it can be shown that the distance be-
tween any point and its image by the former holonomy
is always larger than the corresponding distance by the

6 The values along the contours are in fact compatible with some
positions of the observer for certain curved manifolds, but the
full set of possible combination of the latter densely span the θ –
φ plane, and thus the set of values corresponding exactly to the
contour curves correspond to a zero-measure set of observers for
each potential non-Euclidean manifold.

(b)

Figure 6.19.: (a): Two matched circles are determined by the coordinates of one of the
circles and three angles describing the relative position of the second. (b):
Maximal possible deviation of matched circles of being antipodal for Euclidean
space forms. Ei denotes the Euclidean space form Gi introduced in Chapter
4, Theorem 4.4.2.9, p.89 except for i = 3 and 4. E3 = G4 and E4 = G3. The
description as gluing manifolds was done in 5.3 (p.110). [77]

In a further investigation, Mota, Rebouças and Tavakol showed in [78], how to reconstruct

topology if one pair of matched circles is found in an Euclidean space 6:

Matched circles corresponding to an element of the holonomy group γ ∈ Γ are charac-

terized by three angles giving the position of the first circle and the following three angles

determining the relative position of the second (see also Figure 6.19(a)):

1. deviation angle of antipodicity (0 ≤ Θ ≤ π),

2. angular radius of the circle (0 ≤ ν ≤ π/2) and

3. phase-shift: angle between correlated points on the circle (0 ≤ φ ≤ π).

It is easy to see, that the nearer the circles are, the bigger the radius of the circles. For a

flat universe, a holonomy is a screw-motion, which consists of a rotation and a translation.

Thus, any Euclidean holonomy is determined by the following parameter:

1. α: The angle of the rotation, which can only take the discrete values α = 2π
n , n =

1, 2, 3, 4, 6 according to the space form G1,G2,G3,G4 or G5.

2. L : the length of the translation,

3. r: the distance of the observer to the axis of rotation.

6Mota, Rebouças and Tavakol considered in [78] just flat universes because of there negative attempts in
previous work on nearly flat spaces ( [19], [51])
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6. Observing the Geometry and Topology of the Universe

The coordinates of the matched circles and the parameter of the holonomy are correlated

by the following formulas [78]:

cosα =
(cos Φ + 1)(cos Θ + 1)

2
−1, L = 2χLSS cos ν

√
cos Θ− cosα

1− cosα
, r =

√
2χLSS cos ν

√
1− cos Θ

1− cosα

First equation, defines contour lines in the (Φ,Θ)-plane, see Figure 6.20.
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FIG. 2: The allowed combinations of the circles-in-the-sky
parameters θ (the deviation from antipodicity) and φ (the rel-
ative phase between circles) for compact orientable flat man-
ifolds. Each thick contour line corresponds to one allowed
class of holonomies, which take the form of a screw motion
with twist parameter α given in Eq. (1). The different ori-
entable compact flat manifolds Ei (i = 1 · · · 6) that include
each holonomy class are indicated; those for which this holon-
omy may generate the most readily detectable circle pair are
in bold. The dotted part in each countour line corresponds
to configurations where the circle pairs with the largest radii
are always translational, and thus antipodal. In all cases, the
compactification length L is not fixed, but the precise combi-
nation of θ and φ will depend on the position of the observer,
as depicted in the light contours corresponding to different
distances r from the axis of the screw motion (in units of L).
The shaded area corresponds to the parameter values that
have been probed in the recent searches for antipodal and
nearly antipodal circles in CMB maps [6, 7].

ters (θ, φ). As we mentioned above, in compact orientable
flat manifolds the screw motion angle α is restricted to
the values given by Eq. (1). Also, for each of the allowed
values, Eq. (3) becomes a finite set of one-to-one rela-
tions between θ and φ, as is shown in Fig. 2. Thus, the
detection of a pair of circles will allow the knowledge of
the parameters θ and φ to readily determine whether or
not the geometry of the spatial section of the Universe is
Euclidean (flat), by checking whether the observed val-
ues of θ and φ lie on one of the contours (thick curves)
shown in Fig. 2. If they do not (after taking into account
observational uncertainties) then this is a clear indica-
tion that the geometry is non-Euclidean. Conversely, if
the parameters θ and φ of the detected pair lie, within
observational uncertainty limits, on one of these thick

contours curves, we would conclude that the underlying
spatial geometry is most likely Euclidean (flat).6

Now if it is found that the geometry is indeed Eu-
clidean, we then wish to establish to what extent the
topology of the spatial section of the Universe can be
determined, given such a detected pair of circles. The
list of possibilities of compact orientable flat manifolds is
summarized in Table I. We indicate in each case the max-
imum deviations from antipodicity of the circles-in-the-
sky for which a non-translational holonomy may generate
the most readily detectable pair of circles (see Ref. [8] for
details).

Symbol Manifold n θmax

E1 three-torus 1,1,1 0◦

E2 half turn space 1,1,2 120◦

E3 quarter turn space 1,1,4 86◦

E4 third turn space 1,1,3 109◦

E5 sixth turn space 1,1,6 59◦

E6 Hantzsche-Wendt space 2,2,2 120◦

TABLE I: Multiply-connected flat orientable manifolds and
the maximum deviation from antipodicity of the circles-in-
the-sky for each manifold for which a non-translational holon-
omy may generate the most readily detectable pair of cir-
cles(i.e., with the largest radii). In all cases the screw mo-
tion twist parameters can only take certain values of the form
α = 2π/n; the values of n for the holonomy group genera-
tors are also indicated. Note that n = 1 corresponds to a
translation.

Table I and Fig. 2 show that each of the 6 possible
classes of holonomies corresponds to the different values
of α [cf. Eq. (1)], which in turn belong to the holonomy
group of one or more of the compact orientable flat man-
ifolds.

At first sight, this seems to indicate one-to-many cor-
respondence between the values of the twist angle α [ob-
tained from the detected angular parameters of circles
(θ, φ)] and the list of flat orientable compact manifolds
Ei (i = 1...6) with their associated holonomies.

However, as our previous work [8] details, some ele-
ments of a holonomy group can never produce the pair
of circles with the shortest distance between the observer
and its image, no matter where in the manifold the ob-
server happens to be. For instance, although a screw
motion with a twist of 120◦ exists in the holonomy group
of E5, being the square of its non-translational generator
with a twist of 60◦, it can be shown that the distance be-
tween any point and its image by the former holonomy
is always larger than the corresponding distance by the

6 The values along the contours are in fact compatible with some
positions of the observer for certain curved manifolds, but the
full set of possible combination of the latter densely span the θ –
φ plane, and thus the set of values corresponding exactly to the
contour curves correspond to a zero-measure set of observers for
each potential non-Euclidean manifold.

Figure 6.20.: The correlation of the twist parameter α of an Euclidean holonomy and the
coordinates Θ,Φ of a pair of matched circles define a contour plot in the (Θ,Φ)-
plane. The correlation is not one-to-one onto between the contour curves and
the topology of the Euclidean space forms. See Figure 6.19(b) for the corre-
sponding names of the space forms. [78]

We assume a pair of matched circles with coordinates (ν,Θ,Φ). If (Θ,Φ) lie on one

of the contour curves of Figure 6.20, it indicates that the geometry of space is actually

Euclidean. If they do not lie on one of the curves, this is an indication for a non-flat

geometry. Uncertainties of coordinates have to be taken into account by working with real

data.

Suppose (Θ,Φ) lies on one of the contour curves, then α gives us a first restriction on

the topology, see Figure 6.20. But the correlation is not one-to-one onto. If we assume the

matched circles to be the nearest pair, we get a one-to-one onto relation except for the cases

α = 0◦ and α = 180◦. If α = 0◦, any of the six Euclidean topologies is possible. If α = 180◦,

the found matched circles are the nearest circles for G2 and G6. Thus, in this case another

pair of matched circles has to be found. This case is unlikely because of the several negative

searches for antipodal circles.

Otherwise the pair of matched circles determines uniquely the topology. If we assume,
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6.3. Anisotropies in the Cosmic Microwave Background

for instance, that a pair of matched circles with α = 120◦ was found. Figure 6.20 tells us,

that the possible topologies are G3 and G5. G5 has a generator of the holonomy group with

α = 60◦. The corresponding matched circles to the holonomy with α = 60◦ is nearer and

therefore easier detectable. Thus, we would properly already have found it. If we have not

found it, we can calculate the position of these matched circles and search for them. If the

search result is negative, we have an indication that the topology of the universe is G3. [78]

6.3.4.2. Power Spectrum

In the power spectrum, the multipole is plotted versus the anisotropy power

δT 2
` =

`(`+ 1)

2π
C`. [5]

If space is simply-connected, the C` contain all the information. Otherwise, the C`
′m′
`m have

to be calculated to derive full information. In this case, the C` can be taken as an estimation

for the values of the average power spectrum. [57]

The power spectrum of the CMB can be seen in Figure 6.21. The power spectrum does

not change if a multi-connected space is considered instead of a simply-connected one. Just

the number of modes which exist is lowered.

Figure 6.21.: The power spectrum of the CMB visualizes the temperature anisotropies of
different angular scales. From left to right, the angular decreases, while the
multipole increases. For ` < 10, the wide-angular anisotropies are dominated
by the integrated Sachs-Wolf effect. For 10 < ` < 50, the Sachs-Wolf effect
causes the Sachs-Wolf Plateau. The dots are the anisotropy power derived by
WMAP data. It is visible that the quadrupole and octopole are significantly
smaller than the expected value. The here presented power spectrum uses the
7-year WMAP data. [134]

The measurements of the Cobs` for 4 ≤ ` ≤ 40 are in accordance with formula 6.23 [109].

The observed power spectrum is consistent with an infinite, flat universe at small and mean
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6. Observing the Geometry and Topology of the Universe

scales. Thus, the power spectrum of the CMB can be explained by Standard Cosmology

except for the multipole coefficients with ` = 2 and ` = 3. The first observable harmonic

is the quadrupole, which corresponds to the multipole ` = 2. The harmonic corresponding

to ` = 1 is not observable because the dipole caused by the Doppler effect is 100 times

greater than that caused by primary anisotropy [69]. The measured value of the quadrupole

is seven times weaker than expected by integrated Sachs-Wolf effect. The value of the

harmonic corresponding to ` = 3, which is called the octopole, is just 72% of the expected

value [102], [3]. These unexpected low values for temperature fluctuations on large scales

(θ > 60◦) have been detected for the first time by WMAP [95] [109]. Thus, long wavelengths

are missing. There are three possible explanations:

1. There are unknown physical laws in the early universe, see for example [101].

2. Space is not big enough to sustain long wavelength. This argument was first suggested

by [95] after they found the low wide-angular correlation.

3. The small values are due to errors in analysis. See for example [21].

[102] [3]

In the following we shall take the values of the observed C`s as real.

In an infinite space all wavelengths are allowed, and therefore, fluctuations must be present

on all scales. In a finite universe, the maximal wavelength is as long as the diameter of

space [62]. A power spectrum for different spaces can be simulated and compared to the

observed pattern.

For many homogeneous topologies, the eigenmodes can be thought of as harmonics of

the FP with identified facets. For example, the eingenstates of the three-dimensional torus

with equal fundamental lengths L are the discrete values sin(k · r) and cos(k · r), where k =(
2πnx
L ,

2πny
L , 2πnz

L

)
, with nx, ny, nz being integers. The minimum wave number is kmin = 2π

L

and the corresponding maximum wavelength is given by λmax = L. Thus, no fluctuation

larger than the topology scale L can occur [68]. For hyperbolic manifolds the situation is

different, because there are no discrete orbits and therefore no cut-off wavelength [18]. We

shall not go into further details here. For a more detailed description see [102], [3] and

references there.

If the whole correlation matrix is determined, the Cl = 1
2l+1

∑
mC

l′m′
lm can be calculated.

The multipole coefficients then include all the sufficient information [102].

The size of the FP has to be of the size of the last scattering surface. If it is significantly

smaller, higher modes (smaller angles) would be suppressed more strongly. If it is signifi-

cantly larger than the LSS, no effect on the CMB map from topology would be detectable.

In a MCM, the smaller the FP, the fewer modes are supported. In comparison with the

corresponding SCM, all modes are suppressed. The small values for low-order modes could

be caused by a FP, which suppresses the low modes more than the higher modes. Weeks
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6.4. The Poincaré Dodecahedral Space

et al. have considered the question which shapes of the FP could cause the observed power

spectrum. [68]

If we shrink the fundamental length L to a value L′ in a regular three-dimensional torus,

the power spectrum does not change its shape, but the spectrum occurs on smaller wave-

lengths (larger multipoles). If L′ >> χLSS no effect is visible. If L > χLSS and L′ < χLSS

the quadrupole is suppressed. A further shrinking of L′ causes properly the loss of support

of the octopole as well. Here, the low modes are more suppressed than the high modes. If we

shrink the fundamental length in one dimension, for example Lx to a value L′x while leaving

the other lengths unchanged, Ly = Lz = L, the lowest mode remains unchanged, but its

multiplicity is lowered by the factor 2/3. The overall density of modes has dropped by the

factor Lx/L. Thus the relative strength of the low modes with respect to the high modes is
2L
3Lx

. For Lx → 0 and 2L
3Lx
→∞, the low modes are boosted. [68]

Spaces with a fundamental polyhedron of approximately equal fundamental lengths are

called well-proportioned spaces, whereas spaces with at least one fundamental length

significantly larger than the others are called oddly-proportioned. The result derived

by [68] is that well-proportioned spaces suppress low modes more than high modes. In

oddly-proportioned spaces low modes are boosted relative to high modes. This conclusion

has been confirmed by simulations including the SW effect, ISW effect and dipole anisotropy.

For spherical spaces, lens spaces are oddly-proportioned whereas binary polyhedral spaces

are well-proportioned. The simulated power spectra of these homogeneous spaces fit the

observed powers spectrum better than a torus-universe, which fits the observed power spec-

trum better than the concordance model. From the binary polyhedral spaces, the data is

fitted the best by Poincaré dodecahedral space.

Aurich and Lustig calculated in [3] the angular correlation function C(θ) for different flat

space forms. In order to compare their predicted Cp(θ) to the observed Cobs(θ), they used

the weighted temperature correlation difference: for θ ∈ [0◦, 180◦]

I :=

∫ 1

−1
dcos(θ)

(Cp(θ)− Cobs(θ))2

V ar(Cp(θ))

V ar(C(θ)) ≈
∑

`

2`+ 1

8π2
[C`P`(cosθ)]

2.

Their results are presented in Figure 6.22. They independently derived the result that a

multi-connected space fits the power spectrum better than the concordance model. They

obtained best fit for the half-turn space.

6.4. The Poincaré Dodecahedral Space

For a mathematical description of Poincaré dodecahedral space see Chapter 5 (5.4.2, p.114).

Apart from the three-dimensional torus, the most discussed non-simply-connected space in
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Cosmic microwave anisotropies in an inhomogeneous compact flat universe 16

L

I(L)

Figure 11. The integrated weighted temperature correlation difference I(L) is shown

for the cubic half-turn space depending on the length L. The results are shown for

Cobs(ϑ) obtained from the ILC 7yr map with and without applying the KQ75 7yr

map. The bands show the range of variation with respect to the observer positions.

The dotted curves represent the corresponding results for the cubic torus model which

is a homogeneous space form having no such range of variation.

α
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β = 1

Figure 12. The same quantities as in figure 11 are shown but now for the general

half-turn space with L = 4 and β = 1. Thus, I(α) is plotted as a function of the

distortion parameter α.

The figure 11 also shows the results for the homogeneous cubic torus model for

the two correlation functions Cobs(ϑ). Although the values of I(L) of the 3-torus are

contained within the range of variation of the half-turn space, it is striking to see that the

minimum of the average over the observer positions of the half-turn space is lower than

that of the torus model. Furthermore, the half-turn space provides observer positions

which possess an even better match with the observations as revealed by the even lower

values of I(L). Thus, the half-turn space describes the CMB data not only better than

the concordance model, but even slightly better than the torus topology.

In figures 12 and 13 the integrated weighted temperature correlation difference I(α)

is shown as a function of the parameter α where the volume is fixed as V = 64. As in the

case of the S(60◦) statistic, the range of variation with respect to the observer position

(a)
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Figure 11. The integrated weighted temperature correlation difference I(L) is shown

for the cubic half-turn space depending on the length L. The results are shown for

Cobs(ϑ) obtained from the ILC 7yr map with and without applying the KQ75 7yr

map. The bands show the range of variation with respect to the observer positions.

The dotted curves represent the corresponding results for the cubic torus model which

is a homogeneous space form having no such range of variation.
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half-turn space with L = 4 and β = 1. Thus, I(α) is plotted as a function of the

distortion parameter α.

The figure 11 also shows the results for the homogeneous cubic torus model for

the two correlation functions Cobs(ϑ). Although the values of I(L) of the 3-torus are

contained within the range of variation of the half-turn space, it is striking to see that the

minimum of the average over the observer positions of the half-turn space is lower than

that of the torus model. Furthermore, the half-turn space provides observer positions

which possess an even better match with the observations as revealed by the even lower

values of I(L). Thus, the half-turn space describes the CMB data not only better than

the concordance model, but even slightly better than the torus topology.

In figures 12 and 13 the integrated weighted temperature correlation difference I(α)

is shown as a function of the parameter α where the volume is fixed as V = 64. As in the

case of the S(60◦) statistic, the range of variation with respect to the observer position

(b)

Figure 6.22.: (a) The weighted temperature correlation difference I(L) for the cubic half-turn
space and the cubic torus is plotted versus the topological length L, charac-
teristic for the fundamental cell. L is given in units of the Hubble length
LHubble = c/H0, which takes here the value LHubble = 4.28Gpc. Used cosmo-
logical parameter: Ωb = 0.0474, ΩCDM = 0.243, ΩΛ = 0.709 and h = 0.697.
The plots using the ILC 7yr map [34] with and without using the KQ75 7yr
mask, which masks the galactic plane, are shown. The bands show the variance
of the function if the position of the observer is changed. It is striking that the
half-turn space fits the data better than the torus and the infinite space, which
can be compared with L = 9. Best fit is achieved for L = 4. (b) Shows the plot
of the weighted temperature correlation difference depending on the angular
scale, here denoted by α, for the best fit of plot (a), the half-turn space with
L = 4. A better result is achieved with using the maps without the KQ75 7yr
mask. [3]

(a) (b)

Figure 6.23.: Inner view of the Poincaré dodecahedral space. [64]
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cosmology is Poincaré Dodecahedral Space (PDS). We shall present the scientific discussion

of the last ten years to conclude this chapter. In Figure 6.23, the inner view of the PDS is

visualized.

The eigenvalues of the three-dimensional sphere build a discrete set since the sphere is

compact [6]. They can be expressed in terms of the wave number k by Ek = k2 − 1

with multiplicity k2. For a fixed space form S3/Γ, the eigenvalues are the same, but the

wave number k cannot take all integer numbers and the multiplicity is may lowered. The

eigenvalues of PDS are Ek = k2 − 1 with

k ∈ {1, 13, 21, 25, 31, 33, 37, 41, 43, 45, 49, 51, 53, 55, 57} ∪ {2n+ 1, n > 30, n ∈ N}

with multiplicity

k

([
k − 1

10

]
+

[
k − 1

6

]
+

[
k − 1

4

]
− k − 3

2

)
. [6]

Using the method described in [102], Luminet et al. ( [69]) calculated the value of the

quadrupole and octopole numerically using the eigenmodes corresponding to the wave num-

bers k < 30 for the PDS. They found that the low modes fit the first-year WMAP data

( [95]) better than the standard model, see Figure 6.24.
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France
.............................................................................................................................................................................

The current ‘standard model’ of cosmology posits an infinite flat
universe forever expanding under the pressure of dark energy.
First-year data from the Wilkinson Microwave Anisotropy Probe
(WMAP) confirm this model to spectacular precision on all but
the largest scales1,2. Temperature correlations across the micro-
wave sky match expectations on angular scales narrower than 608
but, contrary to predictions, vanish on scales wider than 608.
Several explanations have been proposed3,4. One natural
approach questions the underlying geometry of space—namely,
its curvature5 and topology6. In an infinite flat space, waves from
the Big Bang would fill the universe on all length scales. The
observed lack of temperature correlations on scales beyond 608
means that the broadest waves are missing, perhaps because
space itself is not big enough to support them. Here we present a
simple geometrical model of a finite space—the Poincaré dode-
cahedral space—which accounts for WMAP’s observations with
no fine-tuning required. The predicted density is Q0 < 1.013 > 1,
and the model also predicts temperature correlations in match-
ing circles on the sky7.

Temperature fluctuations on themicrowave sky may be expressed
as a sumof spherical harmonics, just asmusic and other soundsmay
be expressed as a sum of ordinary harmonics. A musical note is the
sum of a fundamental, a second harmonic, a third harmonic, and so
on. The relative strengths of the harmonics—the note’s spectrum—
determines the tone quality, distinguishing, say, a sustained middle
C played on a flute from the same note played on a clarinet.
Analogously, the temperature map on the microwave sky is the
sum of spherical harmonics. The relative strengths of the harmo-
nics—the power spectrum—is a signature of the physics and geo-
metry of the Universe. Indeed, the power spectrum is the primary
tool researchers use to test their models’ predictions against
observed reality.

The infinite universe model gets into trouble at the low end of the

power spectrum (Fig. 1). The lowest harmonic—the dipole, with
wavenumber l ¼ 1—is unobservable because the Doppler effect of
the Solar System’s motion through space creates a dipole 100 times
stronger, swamping out the underlying cosmological dipole. The
first observable harmonic is the quadrupole, with wavenumber
l ¼ 2.WMAP found a quadrupole only about one-seventh as strong
as would be expected in an infinite flat space. The probability that
this could happen by mere chance has been estimated at about 0.2%
(ref. 2). The octopole term, with wavenumber l ¼ 3, is also weak at
72% of the expected value, but not nearly so dramatic or significant
as the quadrupole. For large values of l, ranging up to l ¼ 900 and
corresponding to small-scale temperature fluctuations, the spec-
trum tracks the infinite universe predictions exceedingly well.
Cosmologists thus face the challenge of finding a model that

accounts for the weak quadrupole while maintaining the success of
the infinite flat universe model on small scales (high l). The weak
wide-angle temperature correlations discussed in the introductory
paragraph correspond directly to the weak quadrupole.
Microwave background temperature fluctuations arise primarily

(but not exclusively) fromdensity fluctuations in the early Universe,
because photons travelling fromdenser regions do a little extra work
against gravity and therefore arrive cooler, while photons from less
dense regions do less work against gravity and arrive warmer. The
density fluctuations across space split into a sum of three-dimen-
sional harmonics—in effect, the vibrational overtones of space
itself—just as temperature fluctuations on the sky split into a sum
of two-dimensional spherical harmonics and a musical note splits
into a sum of one-dimensional harmonics. The low quadrupole
implies a cut-off on the wavelengths of the three-dimensional
harmonics. Such a cut-off presents an awkward problem in infinite
flat space, because it defines a preferred length scale in an otherwise
scale-invariant space. A more natural explanation invokes a finite
universe, where the size of space itself imposes a cut-off on the
wavelengths (Fig. 2). Just as the vibrations of a bell cannot be larger
than the bell itself, the density fluctuations in space cannot be larger
than space itself. Whereas most potential spatial topologies fail to fit
the WMAP results, the Poincaré dodecahedral space fits them very
well.
The Poincaré dodecahedral space is a dodecahedral block of space

with opposite faces abstractly glued together, so objects passing out
of the dodecahedron across any face return from the opposite face.
Light travels across the faces in the same way, so if we sit inside the

Figure 1 Comparison of the WMAP power spectrum to that of Poincaré dodecahedral

space and an infinite flat universe. At the low end of the power spectrum, WMAP’s results

(black bars) match the Poincaré dodecahedral space (light grey) better than they match

the expectations for an infinite flat universe (dark grey). Computed for Q m ¼ 0.28 and

Q L ¼ 0.734 with Poincaré space data normalized to the l ¼ 4 term.

Figure 2 Wavelengths of density fluctuations are limited by the size of a finite
‘wraparound’ universe. a, A two-dimensional creature living on the surface of a cylinder
travels due east, eventually going all the way around the cylinder and returning to her

starting point. b, If we cut the cylinder open and flatten it into a square, the creature’s path
goes out of the square’s right side and returns from the left side. c, A flat torus is like a

cylinder, only now the top and bottom sides connect as well as the left and right. d, Waves
in a torus universe may have wavelengths no longer than the width of the square itself. To

construct a multiconnected three-dimensional space, start with a solid polyhedron (for

example, a cube) and identify its faces in pairs, so that any object leaving the polyhedron

through one face returns from the matching face. Such a multiconnected space supports

standing waves whose exact shape depends on both the geometry of the polyhedron and

how the faces are identified. Nevertheless, the same principle applies, that the

wavelength cannot exceed the size of the polyhedron itself. In particular, the inhabitants of

such a space will observe a cut-off in the wavelengths of density fluctuations.
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Figure 6.24.: Comparison of the low modes for first-year WMAP data (black) from [95],
expectations for an infinite flat space (dark grey) and those for PDS (light
grey) [69]

Furthermore, they remarked the strong dependence of the low modes on the density pa-

rameter Ω0. Determining Ωm = 0.28 and ΩΛ = Ω0 − Ωm, they conclude that the expected

quadruple and octopole for PDS fit the first-year WMAP data ( [8]) for 1.012 < Ω0 < 1.014,

which is consistent with the density parameter derived by [8]. See Figure 6.25(a). In 2005,

they plotted the multipoles in dependence of Ω0 with the first-year data and found the best

fit at Ω0 = 1.016, see Figure 6.25(b) [64]. For Ω0 = 1.02, the smallest volume of the funda-

mental polyhedron of the PDS is just 80% of the volume of the last scattering surface and

Lmin = 43GPc. This is a theoretically testable model. [63]

The Poincaré dodecahedral space was affirmed, when Roukema et al. ( [59]) found six

pairs of matched circles in a pattern predicted by the PDS. As already remarked in section
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6. Observing the Geometry and Topology of the Universe

dodecahedron and look outward across a face, our line of sight re-
enters the dodecahedron from the opposite face. We have the
illusion of looking into an adjacent copy of the dodecahedron. If
we take the original dodecahedral block of space not as a euclidean
dodecahedron (with edge angles,1178) but as a spherical dodeca-
hedron (with edge angles exactly 1208), then adjacent images of the
dodecahedron fit together snugly to tile the hypersphere (Fig. 3b),
analogously to the way adjacent images of spherical pentagons (with
perfect 1208 angles) fit snugly to tile an ordinary sphere (Fig. 3a).
The power spectrum of the Poincaré dodecahedral space depends

strongly on the assumedmass-energy density parameter Q0 (Fig. 4).
The octopole term (l ¼ 3) matches WMAP’s octopole best when
1.010 , Q 0 , 1.014. Encouragingly, in the subinterval
1.012 , Q 0 , 1.014 the quadrupole (l ¼ 2) also matches the
WMAP value. More encouragingly still, this subinterval agrees
well with observations, falling comfortably within WMAP’s best-
fit range of Q0 ¼ 1.02 ^ 0.02 (ref. 1).
The excellent agreement with WMAP’s results is all the more

striking because the Poincaré dodecahedral space offers no free

parameters in its construction. The Poincaré space is rigid, meaning
that geometrical considerations require a completely regular dode-
cahedron. By contrast, a 3-torus, which is nominally made by gluing
opposite faces of a cube but may be freely deformed to any
parallelepiped, has six degrees of freedom in its geometrical con-
struction. Furthermore, the Poincaré space is globally homo-
geneous, meaning that its geometry—and therefore its power
spectrum—looks statistically the same to all observers within it.
By contrast, a typical finite space looks different to observers sitting
at different locations.

Confirmation of a positively curved universe (Q0 . 1) would
require revisions to current theories of inflation, but it is not certain
how severe those changes would be. Some researchers argue that
positive curvature would not disrupt the overall mechanism and
effects of inflation, but only limit the factor by which space expands
during the inflationary epoch to about a factor of ten8. Others claim
that such models require fine-tuning and are less natural than the
infinite flat space model9.

Having accounted for the weak observed quadrupole, the Poin-
caré dodecahedral space will face twomore experimental tests in the
next few years. (1) The Cornish–Spergel–Starkman circles-in-the-
sky method7 predicts temperature correlations along matching
circles in small multiconnected spaces such as this one. When
Q0 < 1.013 the horizon radius is about 0.38 in units of the curvature
radius, while the dodecahedron’s inradius and outradius are 0.31
and 0.39, respectively, in the same units. In this case the horizon
sphere self-intersects in six pairs of circles of angular radius about
358, making the dodecahedral space a good candidate for circle
detection if technical problems (galactic foreground removal, inte-
grated Sachs–Wolfe effect, Doppler effect of plasma motion) can be
overcome. Indeed, the Poincaré dodecahedral space makes circle
searching easier than in the general case, because the six pairs of
matching circles must a priori lie in a symmetrical pattern like the
faces of a dodecahedron, thus allowing the searcher to slightly relax
the noise tolerances without increasing the danger of a false positive.
(2) The Poincaré dodecahedral space predicts Q0 < 1.013 . 1. The
upcoming Planck Surveyor data (or possibly even the existing
WMAP data in conjunction with other data sets) should determine
Q0 towithin 1%. FindingQ0 , 1.01 would refute the Poincaré space
as a cosmological model, while Q0 . 1.01 would provide strong
evidence in its favour.

Figure 3 Spherical pentagons and dodecahedra fit snugly, unlike their euclidean
counterparts. a, 12 spherical pentagons tile the surface of an ordinary sphere. They fit
together snugly because their corner angles are exactly 1208. Note that each spherical

pentagon is just a pentagonal piece of a sphere. b, 120 spherical dodecahedra tile the
surface of a hypersphere. A hypersphere is the three-dimensional surface of a four-

dimensional ball. Note that each spherical dodecahedron is just a dodecahedral piece of a

hypersphere. The spherical dodecahedra fit together snugly because their edge angles

are exactly 1208. In the construction of the Poincaré dodecahedral space, the

dodecahedron’s 30 edges come together in ten groups of three edges each, forcing the

dihedral angles to be 1208 and requiring a spherical dodecahedron rather than a

euclidean one. Software for visualizing spherical dodecahedra and the Poincaré

dodecahedral space is available at khttp://www.geometrygames.org/CurvedSpacesl.

Figure 4 Values of the mass-energy density parameter Q 0 for which the Poincaré

dodecahedral space agrees with WMAP’s results. The Poincaré dodecahedral space

quadrupole (trace 2) and octopole (trace 4) fit the WMAP quadrupole (trace 1) and

octopole (trace 3) when 1.012 , Q 0 , 1.014. Larger values of Q 0 predict an

unrealistically weak octopole. To obtain these predicted values, we first computed the

eigenmodes of the Poincaré dodecahedral space using the ‘ghost method’ of ref. 10 with

two of the matrix generators computed in Appendix B of ref. 11, and then applied the

method of ref. 12, using Q m ¼ 0.28 and Q L ¼ Q0 2 0.28, to obtain a power spectrum

and to simulate sky maps. Numerical limitations restricted our set of three-dimensional

eigenmodes to wavenumbers k , 30, which in turn restricted the reliable portion of the

power spectrum to l ¼ 2, 3, 4. We set the overall normalization factor to match the WMAP

data at l ¼ 4 and then examined the predictions for l ¼ 2, 3.
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tipoles por `= 2,3,4 and fitted the overall normalization fac-
tor to match the WMAP data at `= 4, and then examined their
prediction for the quadrupole and the octopole as a function of
Ω0. There is a small interval of values within which the spec-
tral fit is excellent, and in agreement with the value of the total
density parameter deduced from WMAP data (1.02± 0.02).
The best fit is obtained for Ω0 = 1.016 (Fig. 9). The result is
quite remarkable because the Poincaré space has no degree of
freedom. By contrast, a 3-dimensional torus, constructed by
gluing together the opposite faces of a cube and which consti-
tutes a possible topology for a finite Euclidean space, may be
deformed into any parallelepiped : therefore its geometrical
construction depends on 6 degrees of freedom.

FIG. 9: The values of the total mass-energy density parameter (as-
suming Ωm = 0.28) for which the Poincaré Dodecahedral Space fits
the WMAP observations.

The values of the matter density Ωm, of the dark energy
density Ωλ and of the expansion rate H0 fix the radius of the
last scattering surface Rlss as well as the curvature radius of
space Rc, thus dictate the possibility to detect the topology
or not. For Ωm = 0.28, Ω0 = 1.016 and H0 = 62 km/s/Mpc,
Rlss ª 53 Gpc and Rc = 2.63 Rlss. It is to be noticed that
the curvature radius Rc is the same for the simply-connected
universal covering space S3 and for the multiconnected PDS.
Incidently, the numbers above show that, contrary to a current
opinion, a cosmological model with Ω0 ª 1.02 is far from
being “flat” (i.e. with Rc = ∞) ! For the same curvature ra-
dius, PDS has a volume 120 times smaller than S3. Therefore,
the smallest dimension of the fundamental dodecahedron is
only 43 Gpc, and its volume about 80% the volume of the
observable universe (namely the volume of the last scattering
surface). This implies that some points of the last scattering
surface will have several copies. Such a lens effect is purely
attributable to topology and can be precisely calculated in the
framework of the PDS model. It provides a definite signa-
ture of PDS topology, whereas the shape of the power spec-
trum gives only a hint for a small, well-proportioned universe
model.
To resume, the Poincaré Dodecahedral Space accounts for

the low value of the quadrupole as observed by WMAP in the

fluctuation spectrum, and provides a good value of the octo-
pole. To be confirmed, the PDS model, which has been pop-
ularized as the “soccerball universe model”, must satisfy two
experimental tests :
1) A finer analysis of WMAP data, or new data from the future
European satellite “Planck Surveyor” (scheduled 2007), will
be able to determine the value of the energy density parameter
with a precision of 1 %. A value lower than 1.01 will discard
the Poincaré space as a model for cosmic space, in the sense
that the size of the corresponding dodecahedron would be-
come greater than the observable universe and would not leave
any observable imprint on the CMB, whereas a value greater
than 1.01 would strengthen its cosmological pertinence.
2) If space has a non trivial topology, there must be partic-
ular correlations in the CMB, namely pairs of “matched cir-
cles” along which temperature fluctuations should be the same
(Cornish et al, 1998). The PDS model predicts 6 pairs of an-
tipodal circles with an angular radius less than 35±.

Such circles have been searched in WMAP data by two dif-
ferent teams, using various statistical indicators and massive
computer calculations. On the one hand, Cornish et al. (2004)
claimed to have found no matched circles on angular sizes
greater than 25±, and thus rejected the PDS hypothesis. More-
over, they claimed that any reasonable topology smaller than
the horizon was excluded. This is a wrong statement because
they searched only for antipodal or nearly-antipodal matched
circles. However Riazuelo et al. (2004b) have shown that for
generic topologies (including the well-proportioned topolo-
gies which are good candidates for explaining the WMAP
power spectrum), the matched circles are not back-to-back
and space is not globally homogeneous, so that the positions
of the matched circles depend on the observer’s position in
the fundamental polyhedron. The corresponding larger num-
ber of degrees of freedom for the circles search in the WMAP
data generates a dramatic increase of the computer time, up to
values which are out–of–reach of the present facilities.

On the other hand, Roukema et al. (2004) performed
the same analysis for smaller circles, and found six pairs of
matched circles distributed in a dodecahedral pattern, each
circle on an angular size about 11±. This implies Ω0 =
1.010± 0.001 for Ωm = 0.28± 0.02, values which are per-
fectly consistent with the PDS model.

It follows that the debate about the pertinence of PDS as the
best fit to reproduce CMB observations is fully open. Since
then, the properties of PDS have been investigated in more
details by various authors. Lachièze-Rey (2004) found an an-
alytical expression of the eigenmodes of PDS, whereas Aurich
et al. (2005) computed numerically the first 10 521 eigenfunc-
tions up to the `= 155 mode and also supported the PDS hy-
pothesis for explaining WMAP data. Eventually, the second–
year WMAP data, originally expected by February 2004 but
delayed for at least one year due to unexpected surprises in
the results, may soon bring additional support to a spherical
multiconnected space model.

(b)

Figure 6.25.: (a): The modes for ` = 2 and ` = 3 for WMAP first-year data [8] are plotted
as constant lines denoted by (1) respectively (3). The expectations for the
low modes for PDS are denoted by (2) for ` = 2 and (4) for ` = 3. [69] (b):
Comparison of the low modes for WMAP first-year data (light blue for the
octopole and yellow for the quadrupole) with the expectations for PDS-model
(pink for the octopole and dark blue for the quadrupole). [64]

6.3.4.1, the statistical significant has not been approven and the result is argumentative.

In 2005, Aurich, Lustig and Steiner considered spherical space forms in their investigations

[5] and [6]. Instead of using just the first three wave numbers 13, 21 and 25 (59 eigenfunctions)

as [69], they were able to consider 10 521 eigenfunctions of the PDS corresponding to the

wave numbers up to k = 155. The used algorithm to calculate the eigenmodes is described

in [6]. The dipole effect as well as the Sachs-Wolf and the integrated Sachs-Wolf effect have

been considered. A suppression of the low modes was only found for all polyhedral spaces.

First, they made investigations to derive the optimal value of Ω0 to obtain the best fit to

the WMAP data for the polyhedral spaces. The value of Ω0 can be taken as indication

of one of the polyhedral spaces. While Ω0 ∈ [1.06; 1.07] for the binary tetrahedral space,

Ω0 ∈ [1.03; 1.04] for the octahedral space and Ω0 ∈ [1.015; 1.02] for the dodecahedral space

(PDS). Furthermore, a map of the temperature fluctuation for the three spaces was simulated

and from them the angular power spectrum. The used cosmological parameter are listed in

table 6.2.

Table 6.2.: cosmological parameter used in [5]

Space form kmax Ω0 ΩΛ h

S/T ? 155 1.065 0.785 70

S/O? 161 1.038 0.785 70

S/I? 185 1.018 0.785 70

They found a strong suppression of the low modes for the PDS and could affirm the results

made by [69]. An even stronger suppression was found for the binary octahedral space. See
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Figure 6.26. For the optimal cosmological parameter, the power spectrum of both spaces lie

within the 1-σ band, thus, future restrictions of Ω0 may exclude at least one model.

The search for matched circles in [6] brought just a marginally hint for the PDS. As discussed

in 6.3.4.1, the statistical significance is not granted.

Furthermore, the angular correlation function was calculated and plotted for different values

of Ω0, see Figure 6.27. It is striking, that the PDS-model fits the WMAP data better than

the concordance model. The WMAP data is within the 1-σ region of the simulated angular

correlation function of the PDS for angles θ < 170◦ in Figure 6.27 b) and c). Thus, just the

largest negative correlation of WMAP data cannot be explained by the PDS-model, where

the dipole anisotropy and Doppler effect dominate the data.

The results presented in [6] have been confirmed by Caillerie and Lachièze-Rey et al.

in [14], which find an optimal fit for Ω0 = 1.018. They used the analysis derived by [6], but

used more recent data from 2007. See Figure 6.28.

Roukema with partially co-authors argued in [88], [87] and [89] that because of the residual

gravity accelerating effect, which we shall not explain here, polyhedral spaces are favourable.

From those, the Poincaré dodecahedral space fits the data the best.

There are, of course, also critical article, from which we shall mention [80].

6.5. Conclusion

We presented the derivation of Friedmann’s equation as a special solution of Einstein’s field

equation for isotropic and homogeneous M̃3. We have seen that Friedmann’s equation

enables us to determine the geometry of the universe by determining the cosmological pa-

rameter, which is aimed by Standard Cosmology. Cosmic Topology tries to determine the

topology of the universe. Therefore, two different types of data are used: three-dimensional

data of cosmic objects for crystallographic methods and the CMB-anisotropies for the circles-

in-the-sky method and methods using the power spectrum. Up to now, these methods were

not able to determine the topology of space, but they indicate that MCMs fit the observa-

tional data better than SCMs. The power spectrum and the angular correlation function of

MCM, as for example the PDS, fit the real data better than the concordance model. For a

proof of this indication, deeper catalogues, better technical equipment and data with a higher

accuracy are required. Future data from Planck and further developments of the methods

constraining the topology of the universe shall answer the until today open questions.
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Figure 14. The angular power spectrum δT 2
l is shown for the binary octahedral

group O! (open circles) using the same cosmological parameters as in figure 11.
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Figure 15. The angular power spectrum δT 2
l is shown for the binary icosahedral

group I! (open circles) using the same cosmological parameters as in figure 12.

spectra display a good agreement with the WMAP data.

4. Conclusion

In this paper we analyse the CMB anisotropy of homogeneous 3-spaces of constant

positive curvature which are multi-connected and are given by the quotient of S3 by a

group Γ of covering transformations, i. e. M = S3/Γ. The motivation is provided by

the surprisingly low power in the CMB anisotropy at the largest scales as measured by

COBE and WMAP and the fact that the mean value of Ωtot reported by WMAP is

1.020 which hints to a positively curved Universe. In order to explain this low power,

one could modify the primordial power spectrum PΦ(β), e. g. by carefully choosing the

inflationary scalar potential, or by resorting to multi-connected space forms which give
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group I! (open circles) using the same cosmological parameters as in figure 12.

spectra display a good agreement with the WMAP data.

4. Conclusion

In this paper we analyse the CMB anisotropy of homogeneous 3-spaces of constant

positive curvature which are multi-connected and are given by the quotient of S3 by a

group Γ of covering transformations, i. e. M = S3/Γ. The motivation is provided by

the surprisingly low power in the CMB anisotropy at the largest scales as measured by

COBE and WMAP and the fact that the mean value of Ωtot reported by WMAP is

1.020 which hints to a positively curved Universe. In order to explain this low power,

one could modify the primordial power spectrum PΦ(β), e. g. by carefully choosing the

inflationary scalar potential, or by resorting to multi-connected space forms which give

(b)

Figure 6.26.: The angular power spectrum for the space (a) S/I? and (b) S/O? are shown.
The open circles correspond to the simulated power spectrum derived by [6]
with the error bars visualizing the fluctuation due to different realizations.
In order to enable a comparison with the WMAP data the simulated power
spectrum in shifted by ∆l = 0.25. The full diamonds correspond to the data
of the first-year WMAP with the 1− σ errors.

170



6.5. Conclusion

Poincaré Dodecahedron 15

S statistic

S(ρ) =

∫ cos ρ

−1

|C(ϑ)|2 d cosϑ (48)

is discussed for the first year WMAP data in [28] for ρ = 60◦, and it is found that only

0.3% of the simulations based on the concordance model ri have lower values of S(60◦)

than the observed value S(60◦) = 1644. Somewhat higher values of S(60◦) are obtained

using other statistical methods and other sky masks in [56], but they are nevertheless

surprisingly low. In figure 3 we show the values of S(60◦) (full curve) and S(20◦) (dotted

curve) using the median values of C(ϑ) for the dodecahedral space D in dependence on

Ωtot. One observes that the models with Ωtot = 1.017 . . .1.020 give the lowest values for

the large scale anisotropy.

Here and in the following calculations, the overall amplitude of the CMB anisotropy,

i. e. the normalization constant α in (38), is fitted to the Cl values of the first year WMAP

data in the range l ∈ [20, 45]. (Thus, the values cannot be directly compared to the ones

in [35], where the amplitudes are scaled such that they match the C4 value of WMAP

exactly.)
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Figure 4. The temperature correlation function C(ϑ) for the dodecahedral topology

for four values of Ωtot for h = 0.70, Ωmat = 0.28 and Ωbar = 0.046, the WMAP first

year observation and the pl-concordance model (see description in the text).

In figure 4 the temperature correlation function C(ϑ) is shown for four values of Ωtot.

The WMAP curve obtained from the LAMBDA home page http://lambda.gsfc.nasa.gov

Figure 6.27.: The temperature correlation function C(θ) for the concordance model, the
WMAP data and for the PDS with cosmological parameter h = 0.70, Ωm =
0.28 for different Ω0 is plotted. The grey region corresponds to the 1-σ-
deviation caused by the 500 performed simulations. The curve for the con-
cordance model is, as the curve for the WMAP data, taken from LAMBDA
Homepage (http: //lambda.gsfc.nasa.gov) the dashed region corresponded to
the 1-σ deviation of the concordance model. [6]

S. Caillerie et al.: A new analysis of the Poincaré dodecahedral space model 5

teams have carefully analyzed the blurring in the case of the
Poincaré dodecahedral space: one team finds it strong enough
to hide matching circles (Aurich et al. 2005, 2006), while the
other team reaches the opposite conclusion (Cornish et al. 2004;
Shapiro Key et al. 2007). By contrast, in the case of a small 3-
torus universe, everyone agrees that blurring could not hide cir-
cles. The blurring’s effectiveness varies by topology, because the
relative strengths of the various effects (OSW, ISW, Doppler) de-
pend on the modes of the underlying space.

4. Power spectrum
Like any function defined on the sphere, the CMB temperature
fluctuations can be decomposed into spherical harmonics

δT
T
(n̂) =

+∞∑

l=0

l∑

m=−l
alm Ylm(n̂) (23)

where the unit vector n̂ ∈ S 2 represents a point on the sky.
For a statistically homogeneous and isotropic distribution of

matter in the universe, the power spectrum

Cl :=
1

2l + 1

l∑

m=−l
< alma∗lm > . (24)

contains all relevant information about the temperature fluctua-
tions. Such a power spectrum has been calculated for the CMB
temperature fluctuations as measured by WMAP. We compare it
here with the predictions of our model.

From our realizations of the predicted temperature maps,
we have calculated power spectra. Assuming a present day
matter density Ωmat = 0.27 and a reduced Hubble parameter
h = 0.70 (Spergel et al., 2007), we have varied Ωtot within the
range 1.015–1.025, where we get low-l power compatible with
WMAP3 data. For illustrative purposes, Fig. 3 shows our esti-
mated spectra for the PDS, using three values of Ωtot within the
above range, compared with the WMAP3 data taken from Fig. 2
of Spergel et al. (2007). We have normalized the curves by insist-
ing that they approach the concordance model curve for high ",
because topology is significant only for low ". We can see that
the PDS model agrees well with observations for all three val-
ues of Ωtot, up to the cutoff "max ∼ kmax

√
Ωtot − 1. Since our

numerical computations go only to wavenumber kmax ∼ 230, the
resulting power spectrum is reliable only up to " ∼ 25 − 30, de-
pending on Ωtot. The oscillatory pattern in the Cl is a prediction
of the Poincaré dodecahedral space model due to multiplicities
by which the vibrational modes are weighted in the mode sum.
The effect is significant only for the low vibrational modes; it
is washed out at sufficiently large l (l ! 30) so that the asymp-
totic behaviour of the power spectrum recovers the curve for the
simply connected S3.

Figure 4 shows the optimal fit at Ωtot = 1.018 for which
the quadrupole suppression is maximal, a value perfectly con-
sistent with the WMAP team reported Ωtot = 1.02 ± 0.02. In
order to compare the predictions of simply connected and multi-
connected topologies, we also compare our best fit PDS spec-
trum with the standard best fit “concordance model” spectrum.

5. Conclusion
Recent analytical eigenmode calculations for the Poincaré do-
decahedral space allowed us to simulate CMB temperature fluc-
tuation maps more accurately. We confirmed the correctness of
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Fig. 3. Comparative power spectra (in µK2) as a function of the
multipole " for WMAP3 (errorbars) and PDS for three values
of Ωtot (Ωtot = 1.015 for the dashed curve, Ωtot = 1.02 for the
solid curve and Ωtot = 1.025 for the dotted curve), assuming
Ωmat = 0.27 and h = 0.70. Here we calculate the modes up to
k = 3000 using the conjecture of Aurich et al. (2005) proved by
Gunderman (2005).

1 10 100
l

0

500

1000

1500

2000

2500

l(l
+1
)C
l/2
π

2 3

Fig. 4. Comparative power spectra (in µK2) as a function of the
multipole " for WMAP3 (errorbars), “concordancemodel” (dot-
dashed curve) and PDS (solid curve) for Ωtot = 1.018, Ωmat =
0.27 and h = 0.70.

the maps by verifying the presence of the expected circles-in-
the-sky in the OSW-only maps.

Using a random set of Gaussian realizations of the matter
fluctuations, we have calculated the predicted power spectrum
of the CMB temperature fluctuations and the two-point temper-
ature correlation function. Our results for the lowest modes con-
firm the numerical estimates of Luminet et al. (2003), while use
of higher PDS modes let us estimate the multipoles up to " ∼ 30.
We have obtained an excellent fit with the WMAP data, imply-
ing that the PDS cosmological model remains a good candidate
for explaining the angular spectrum, even though the negative re-
sults of matching circle searches remain a topic of debate (Key
et al. 2007; Aurich et al. 2006; Then 2006).

Clearly the power spectrum alone cannot confirm a multi-
connected cosmological model. Although the PDS model fits

Figure 6.28.: The power spectrum as a function of the multipole `. The dots with error
bars correspond third-year WMAP data from 2007. The solid curve represents
PDS-model with cosmological parameter h = 0.70, Ωm = 0.27 and Ω0 = 1.018.
The dashed curve represents the concordance model. [14]
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Annalen, 70:297–336, 1911. 87
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A. Topology

Definition A.0.0.1 (Topological Space). A topological space is a pair (X,O) consisting of

a set X and a set of open subsets O of X such that:

1. An arbitrary union of open sets in O is open.

2. The intersection O1 ∩O2 of two open sets O1, O2 ⊂ O is open.

3. The empty set ∅ and the entire set X are open. [49]

Remark A.0.0.2. 1. Let X be a metric space (1.1.2.16, p.12) with metric d. The open

ball with center a ∈ X and radius r is defined to be the set

B(a, r) = {x ∈ X | d(a, x) < r}.

2. A subset U ⊂ X is open in X if and only if for each point x ∈ U , there is an r > 0

such that B(x, r) ⊂ U .

3. The collection of all open sets of a metric space X is a topology on X, called the metric

topology of X. [84]

Definition A.0.0.3 (Basis of a Topology). A basis of a topological space is a set B ⊂ O of

open sets such that any open set O ⊂ O can be represented as a union of open sets of B. [49]

Definition A.0.0.4. A map f : X → Y between topological spaces is continuous if preimages

of open sets are open. Thus, if V ⊂ Y is open, f−1(V ) is open in X. [49]

Remark A.0.0.5 (Quotient Space). Let X be a set and ∼ an equivalence relation on X.

X/ ∼ denotes the set of all equivalence classes. The equivalence class of x ∈ X shall be

denoted by [x] ∈ X/ ∼ and π : X → X/ ∼, x 7→ [x] is the canonical projection.

Definition A.0.0.6 (Quotient Topology). Let X be a topological space and ∼ an equivalence

relation on X. A subset U ⊂ X/ ∼ is called open with respect to the quotient topology if

π−1(U) is open in X. X/ ∼ with this topology is called the quotient space of X with respect

to ∼. It is the finest topology such that the projection π is continuos. [49, p.39]
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Definition A.0.0.7. A homeomorphism between topological spaces X, Y is a bijective map

f : X → Y such that f and f−1 are continuous. Here X and Y are called homeomorphic,

denoted by X ' Y . [49]

Definition A.0.0.8 (Path). A path in a space X is a continuous map f : I → X, with I the

unit interval [0, 1]. A path with the same starting point as end point x0 = f(0) = f(1) ∈ X
is called a loop with base point x0. [42]

Definition A.0.0.9 (Path-Connected). A space X is path-connected if, for all x, y ∈ X,

there is a path α in X which takes x to y, thus, α(0) = x and α(1) = y.

Remark A.0.0.10. 1. A space X is called locally path-connected if ∀x ∈ X and for any

neighbourhood U ⊂ X of x there is a path-connected neighbourhood V ⊂ U of x. [49]

2. In mathematics, connectedness is defined in different, non-equivalent ways. A space

X is called connected if it cannot be written as the disjoint union of nonempty, open

subsets. A path-connected space is naturally connected, the converse is in general not

true. Take, for example, the space {(x, sin(lnx)) ∈ R | x > 0}∪ (0× [−1, 1]). However,

for a topological manifold these properties are equivalent. [49]

A.1. Topological Groups

Definition A.1.0.11. G is a topological group if

(i) G is a group and

(ii) G is a topological space

such that the maps

G×G µ−→ G (x, y) 7→ xy G
i−→ G x 7→ x−1 (A.1)

are continuous. In particular, they are homeomorphisms. Thus, for every open/closed sub-

group X in G the right or left cosetts are open/closed too.

Proposition A.1.0.12. Let H be a subgroup of G.

1. If H is open ⇒ H is closed.

2. If H is closed and the Index [G : H] <∞⇒ H is open.

3. If G is compact and H open in G ⇒| G : H |<∞.

Proof. Every group can be represented as a disjoint union of cosets. Thus, G =
◦⋃
t∈T

Ht with

T is transversal. Therefore, G can be written as G = H
◦∪ (
⋃
t∈T
t/∈H

).
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1. If H is open⇒ Ht is open for all t ∈ T, t /∈ H ⇒
◦⋃
Ht is open⇒ H = G\

◦⋃
t∈T,t/∈H

Ht ⇒

H is closed.

2. If H is closed ⇒ Ht is closed ⇒ ⋃
Ht is closed, because [G:H] is finite ⇒ H is open.

3. Because G is compact, there is a finite covering consisting of open sets. For instance,

take the set of all left or right cosets of H, which have to be disjoint ⇒ Index is finite.

Remark A.1.0.13. Let G be a topological group

1. If H ≤ G, H is a topological group with the subspace topology.

2. If N E G, G/N is a topological group with the quotient topology. [61]

Definition A.1.0.14. A topological space X is Hausdorff if ∀a, b ∈ X, a 6= b∃U, V open in

X with a ∈ U , b ∈ V and U ∩ V = ∅.

Proposition A.1.0.15. Let G be a topological group, G is Hausdorff if and only if {1} is

closed.

Proof. (⇒) If X is Hausdorff and x ∈ X, take an y ∈ X\{x} thus, x 6= y. There is an

open subset U ⊂ X\{x}. Since y was arbitrary, X\{x} is open as the union of open sets.

Therefore, {x} is closed and in particular {1}.
(⇐) Assume {1} is closed and a 6= b then, {1}a−1b = {a−1b} is closed. Since 1 6∈ {a−1b},

there is an U ⊂ G\{a−1b}.
The multiplication µ is continuos and µ(1, 1) = 1. Since U is open, there is an open

neighbourhood V ×W of (1, 1) in G×G, which is mapped inside U . VW−1 = V (V ×W ) ⊂ U
and a−1b 6∈ VW−1 ⊂ U . It follows that aV ∩bW = ∅, because otherwise there are v ∈ V and

w ∈W such that av = bw ⇒ vw−1 = a−1b. This is a contradiction. Since 1 ∈ V,W, a ∈ aV
and b ∈ bW and aV ∩ bW = ∅, G is Hausdorff

We conclude:

Corollary A.1.0.16. G/K is Hausdorff if and only if K is closed.
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B. The Correspondence of Lie Groups and Lie

Algebras

B.1. Representation of Lie Groups

Before we focus on the correspondence between Lie groups (2.2.0.6, p.39) and Lie algebras,

we introduce “representation of Lie groups”: A representation of a group G on a vector space

V over a field K is an action (2.2.1.1, p.40) of G on a K-vector space V by linear maps. If

we describe an action as a homomorphism between the group and the set of all bijections

on V (2.2.1.3 (2), p.41), a representation of a group G on a vector space V over a field K is

a group homomorphism from G to GL(V ). [17]

Example B.1.0.17 (Standard Representation). Consider the group GLn(R) and its action

on Rn given by

GLn(R)× Rn → Rn, (A, x) 7→ Ax.

This is the standard representation of GLn(R) on Rn.

B.2. Correspondence between Lie Groups and Lie Algebras

Definition B.2.0.18 (Lie algebra). (i) A Lie algebra over K = R or C is a K-vector

space g together with a bilinear map [., .] : g × g → g, called the Lie bracket of g,

which is skew symmetric and satisfies the Jacobi identity:

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]] ∀X;Y ;Z ∈ g. (B.1)

(ii) Let (g, [., .]) be a Lie algebra. A Lie subalgebra of g is a linear subspace h ⊂ g, which

is closed under the Lie bracket, denoted by h < g. Of course, (h, [., .]) is a Lie algebra

too.

(iii) If g and h are Lie algebras, a homomorphism ϕ : g→ h of Lie algebras is a linear map

which is compatible with the brackets, i.e. such that [ϕ(X), ϕ(Y )] = ϕ([X,Y ])∀X,Y ∈
g.
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(iv) An isomorphism of Lie algebras is a bijective homomorphism. Here, the inverse

is a homomorphism too. If there is an isomorphism ϕ : g → h, g and h are called

isomorphic and we write g ≈ h.

[17, S.13]

B.2.1. The Tangent Space and the Vector Space of Vector Fields

We recall the definition of a manifold M (1.1.1.1, p.6) and a tangent space TxM (1.1.2.4,

p.9).

Definition B.2.1.1. Let M be a manifold. A map ∂ : C∞(M,R)→ R is a derivation over

x ∈M if it is linear and for f, g ∈ C∞(M,R) and α ∈ R :

1. ∂(f + g)(x) = (∂f + ∂g)(x)

2. ∂(α · f)(x) = α · (∂f)(x)

3. ∂(f · g)(x) = (∂f · g + f · ∂g)(x)

The vector space of all derivations over x ∈ M will be denoted by Dx(C∞(M,R),R) or

Dx(M). [54, .114]

Definition B.2.1.2. For a point x ∈ M , a manifold M , a differentiable map f : M → M

and an element ξ ∈ TxM of the tangent space over x ∈M , we define the Lie derivative in

the direction ξ as:

Lξ(f) := Txf · ξ.

Theorem B.2.1.3. The map ξ 7→ Lξ is a linear isomorphism between TxM and Dx(M). [96,

p.20]

Remark B.2.1.4. 1. The fundamental theorem for the proof of B.2.1.3 is the following:

(U, x) be a local chart on M and {ek | k = 1, . . . , n} a basis of Rn. For an arbitrary

point p ∈ U we define ∂
∂xk

in TpM as:

(
∂

∂xk
)p : f 7→ ∂f

∂xk
(p) = ∂ek(f ◦ x−1)(x(p)).

Then the set

{ ∂

∂xk p
| k = 1, . . . , n}

is a basis for the tangent space TpM of M at p. [40, p.26] Therefore, any derivation

can be written as

δ(f) =

n∑

j=1

δ(xj)(
∂f

∂xj
) |0 .
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2. The tangent space of a manifold M at the point x ∈M is therefore sometimes defined

as the vector space:

TxM := Dx(C∞(M,R),R). [54, p.116]

Let (U,Φ) be a chart around m ∈ M , (x1, . . . , xn) are the corresponding coordinate

functions and f : M →M a differentiable function, then

(
∂

∂xj
) |m (f) = (

∂

∂xj
)(f ◦ Φ−1)(Φ(m)).

In this way a map from U → TU, m 7→ ( ∂
∂xj

)(f ◦ Φ−1)(Φ(m)) ∈ TmM is defined. Thus,

this defines a vector field (1.1.2.7, p.9). In general, if X1, . . . , Xn are smooth functions from

U to R, a vector field is given by:

X =

n∑

i=1

Xi(
∂

∂xj
).

Consider the map

LX : C∞(M)→ C∞(M), f 7→
n∑

i=1

Xi(
∂f

∂xj
).

Theorem B.2.1.5. The map

χ(M)→ D(M), X 7→ LX ,

is an isomorphism between the set of all vector fields of a manifold and the vector space of

all derivations.

Definition B.2.1.6. The bracket of two vector fields X and Y , denoted by [X,Y ], is the

vector field corresponding to the derivation LXLY − LY LX .

Lemma B.2.1.7. The bracket of vector fields X,Y, Z on M achieve the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Proposition B.2.1.8. Since the bracket is a bilinear map, achieves the Jacobi identity and

is obviously screw symmetric, the vector space χ(M) of all vector fields forms a Lie algebra

with the Lie bracket defined in B.2.1.6. The set of all left-invariant vector fields (3.3.2.9,

p.70) χl(M) is closed under the Lie bracket and therefore a subalgebra. [96]

B.2.2. The Lie Algebra gf the Lie Group G

For details see [16] or [96].
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We begin by recalling the left translation of a Lie group G as the map:

lg : G→ G, h 7→ g · h,

where · denotes the group multiplication.

For an element of the tangent space at the identity ξ ∈ TeG, we define the vector field

Xξ : G→ TG, Xξ(g) = Telg · ξ.

Observe that Telg · ξ is an element in TgG.

By construction this vector field is left-invariant and determined by its value at the identity,

thus, the map:

TeG→ χl(G), ξ 7→ Xξ,

is an isomorphism between the tangent space at the identity and the space of all left-invariant

vector fields of G. This isomorphism induces the Lie algebra structure on TeG. Thus, we

have:

Proposition B.2.2.1. Let G be a Lie group. For ξ in TeG, the expression Xξ(g) = Telg · ξ
defines a left-invariant vector field on G. The map ξ 7→ Xξ is an isomorphism between TeG

and the vector space of left-invariant vector fields. The latter has the structure of Lie algebra

as a subalgebra of the Lie algebra of all vector fields.

Definition B.2.2.2. Let G be a Lie group. The space of all left-invariant vector fields of

G, which is isomorphic to TeG, is denoted by g and called the tangent Lie algebra of the

Lie group G.

Example B.2.2.3. Let G = GLn(R), the Lie group of all linear maps from Rn to itself.

The corresponding Lie algebra is gln(R). gln(R) is the set of all (n×n) matrices with entries

in R under the commutator [x, y] = x · y − y · x.

B.2.3. Consequences

The following statements shall not be proven here. We state them to give an overview of

the strength of the correspondence.

Theorem B.2.3.1. Let g be a finite-dimensional Lie algebra, there exists a unique (up to

isomorphism) simply-connected Lie group G̃ with Lie algebra g. Any other Lie group G with

Lie algebra g (or isomorphic to it) is isomorphic to the quotient of G̃ by a discrete normal

subgroup H ⊂ G̃ which is contained in the center Z(G̃). [16, p.30]

Remark B.2.3.2. Thus, there is an one-to-one correspondence between Lie algebras and

simply-connected Lie groups.
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Lie Group Homomorphism – Lie Algebra Homomorphism : Assume G and H to be Lie

groups and g and h their corresponding Lie algebras. For a smooth homomorphism

ϕ : G→ H, the linear map Teϕ =: ϕ′ : g→ h is a Lie algebra homomorphism which is

compatible with the Lie bracket, i.e. ϕ′([X,Y ]) = [ϕ′(X), ϕ′(Y )].

Representations If ϕ : G → GLn(K) is a representation of the Lie group G, the derivative

ϕ′ : g→ Ln(K) is a representation of g.

Example B.2.3.3 (The Adjoint Representation). Consider the smooth function given

by conjugation with a fixed g ∈ G:

cg : G→ G, h 7→ ghg−1.

Since this is a group homomorphism in a natural way, its derivative is a Lie algebra

homomorphism:

Ad(g) : g→ g,

Furthermore we consider the map

Ad : G 7→ GL(g), g 7→ Ad(g),

which is a smooth homomorphism and in particular a representation of G on g. Its

corresponding representation of its Lie algebra g: ad : g→ L(g, g) is called the adjoint

representation of the Lie algebra g.

Lie Subgroups – Lie Subalgebras

Theorem B.2.3.4. Let G be a Lie group with Lie algebra g and let h ⊂ g be a

subalgebra. Then, there is a unique connected virtual Lie subgroup H → G with tangent

space at the identity is h. [16, p.26]

H ′ is called a virtual Lie subgroup of G if it is the image i(H) of some smooth injective

homomorphism i : H → G from some Lie group H.

Consider a connected Lie subgroup H of a simply-connected Lie group G. For the

corresponding Lie algebras holds: h = TeH ⊂ g = TeG.

Conversely let g be the corresponding Lie algebra of the Lie group G and let h be a

subalgebra of g. There exists a connected Lie subgroup H ⊂ G with Lie algebra h.

Further more, there exists an injective homomorphism i : H → G such that i′ : h→ g

is the inclusion. If i(H) is closed in G, i : H → i(H) is an isomorphism.

Example B.2.3.5. Consider the subgroup On(R) ⊂ GLn(R). We already now that the

corresponding Lie algebra to GLn(R) is gln(R). The corresponding Lie algebra of On(R) is

the Lie algebra of all screw symmetric matrices: son(R) = {A ∈ gln(R) | At + A = 0}. It is

of dimension dim(On(R)) = dim(so(n)) = n(n−1)
2 .
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B.2.4. Homogenous Spaces and their Lie Algebras

Let G act locally effectively on the homogeneous space G/H. If the group G is simply-

connected, its corresponding Lie algebra g is uniquely determined. (If G is not simply-

connected, one can pass to the universal cover.) G/H is a simply-connected homogenous

space if and only if H is connected. Here, the tangent algebra h of the stabilizer H is a

subalgebra of the Lie algebra g and uniquely determined. In this way, the simply-connected

homogenous space G/H is uniquely determined by the pair (g, h).

Conversely determines a pair (g, h), where h is a subalgebra of an arbitrary Lie algebra

g, a simply-connected homogenous space G/H such that g is the Lie algebra of G and h

corresponds to a closed, connected subgroup of G. [32, p.98–99]
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C. Sectional Curvature

In this section I follow [40] if not cited otherwise. In the following, we shall use the notation

of Chapter 1, where the basic definitions necessary for this section are given.

Definition C.0.4.1. Let (M, g) be a Riemannian manifold then the map

∇ : χ(M)× χ(M)→ χ(M)

given by:

2g(∇XY, Z) = {X(g(Y, Z))+Y (g(X,Z))−Z(g(X,Y ))+g([Z,X], Y )+g([Z, Y ], X)+g(Z, [X,Y ])}

is called the Levi-Civita connection on M.

Remark C.0.4.2. The Levi-Civita connection is the unique torsion-free and metric con-

nection described in Chapter 1 (1.1.3.7, p.17).

Remark C.0.4.3. 1. The Riemannian curvature can be written in terms of the Levi-

Civita connection as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Definition C.0.4.4. Let (M, g) a Riemannian manifold and p ∈M . A section V at p is a

two-dimensional subspace of the tangent space TpM . The set of all section

G2(TpM) := {V | V is a section of TpM}

is called the Grassmanian of two-dimensional planes at p.

Definition C.0.4.5. Let (M, g) be a Riemannian manifold and p ∈M . Then the function

Kp : G2(TpM)→ R, spanR{X,Y } 7→
g(R(X,Y )Y,X)

|X|2|Y |2 − g(X,Y )2

is called the sectional curvature at p.
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Remark C.0.4.6. If X,Y, Z,W ∈ TpM be tangent vectors at p such that the two sections

spanR{X,Y } and spanR{Z,W} are identical, it holds:

g(R(X,Y )Y,X)

|X|2|Y |2 − g(X,Y )2
=

g(R(Z,W )W,Z)

|Z|2|W |2 − g(Z,W )2
.

Thus, the definition C.0.4.5 is well-defined.

Definition C.0.4.7. Let (M, g) be a Riemannian manifold, p ∈ M and Kp the sectional

curvature. We define the functions: δ,4 : M → R by

δ : p 7→ minV ∈G2(TpM)Kp(V ), and4 : p 7→ maxV ∈G2(TpM)Kp(V ).

The Riemannian manifold is said to be of

• positive curvature if δ(p) ≥ 0, ∀p ∈M ,

• strictly positive curvature if δ(p) > 0, ∀p ∈M ,

• negative curvature if δ(p) ≤ 0, ∀p ∈M ,

• strictly negative curvature if δ(p) < 0, ∀p ∈M ,

• constant curvature if δ = 4 is constant

• flat δ ≡ 4 ≡ 0

Remark C.0.4.8. The curvature of a Riemannian manifold can be written in terms of

local coordinates with the help of the so called Christoffel symbols. Thus, the curvature is

completely described by the local geometry of a manifold.
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L(V ): set of linear maps on the vector

space V, 39

(G,M)-structure, 54

C◦: interior of C, 102

Cr-diffeomorphism, 38

Cr-extension, 31

C∞, 38

set of all infinitely continuous maps, 6

D?
m, T

?, O?, I?: binary dihedral/polyhe-

dral groups, 93

G: gravitational constant, 21

GL(Rn): set of invertible linear maps on

Rn, 39

Isom(M): isometry group of the manifold

M , 41

L(Rn): set of linear maps on Rn, 39

L(n,m): lens space, 94

M(X): group of Möbius transformations

of the space X, see Möbius group,

55

On(R) : orthogonal group, 40

On,1(R):Lorentz group, 43

POn,1(R): positive Lorentz group, 43

PSL2(R), PSL2(C): projective special lin-

ear group , 56

SLn(R): special linear group, 40

SOn(R: special orthogonal group, 40

TM : tangent bundle of a manifold, see

tangent bundle, 9

TxM : tangent space of a point on a mani-

fold, see tangent space, 9

Γ(X̃/X): group of deck transformations,

see deck transformations, 48

Γcab: Christoffel symbol, see Christoffel sym-

bol, 16

ΛCMD model, 128

≈: isomorphic, 49

χ(M): set of all vector fields of a manifold,

see vector field, 9

χLSS : comoving radius of the last scatter-

ing surface, 120
∼=: diffeomorphic, 42

En: n-dimensional Euclidean space, see Eu-

clidean space, 13

G-isomorphism, 38

Hn: n-dimensional hyperbolic space, see

hyperbolic space, 14

Sn: n-dimensional sphere, see spherical space,

13

Tn: n-dimensional torus, see torus, 56

TnE : n-dimensional embedded torus, see

torus, 56

TnF : n-dimensional flat torus, see torus, 56

Cm: cyclic group of order m, 83

Dm: dihedral group, 83

H: quaternions, 92

I: icosahedral group, 84

M3: spatial part of the universe, a three-

dimensional, connected and smooth

Riemannian manifold without bound-

ary, 29
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M4: space-time, a four-dimensional, con-

nected and smooth Lorentzian man-

ifold, 20

O: octahedral group, 83

S(Y ): symmetry group of the set Y, 82

T : tetrahedral group, 83

T E: space of all translations of the affine

space E., 85

∂M : boundary of a manifold, see mani-

fold, 8

π1(X,x0): fundamental group, see funda-

mental group, 44

∼: If f ∼ g, f is homotopic to g., 44

': homeomorphic, 176

S̃L2(R), 72

c: speed of light, 21

x ∼ x′: related points, 105

x ' x′ : paired points, 105

GLn(R): linear group, 39

R1,n: Lorentzian space, 14

E(n): Euclidean group, 42

acausal set, 28

achronical set, 27

edge, 27

action

discontinuous, 48

free, 48

properly discontinuous, 48

affine equivalent, 85

affine space, 85

analytic continuation, 59

angular correlation function, 154

antipodal, 14

atlas, 7

equivalent atlases, 7

foliation atlas, 70

maximal atlas, 7

baryonic matter, 129

basis of a topology, 175

Best Space, 115

Bianchi identities, 18

Bieberbach group, 86

Big Bang, 33

big crunch, 126

binary dihedral/polyhedral groups, 93

bounce model, 126

Cauchy development, 29

Cauchy problem, 30

Cauchy surface, 29

causal future/past, 27

causality

local causality, 25

causality condition, 29

strong causality condition, 29

change of scale, 53

chart, 7

compatible, 7

foliation chart, 70

Christoffel symbol, 16

chronological future/past, 26

chronology condition, 28

chronology violating set, 28

circles-in-the-sky, 157

Clifford translation, 81

Clifford-Klein space form problem, 80

Collecting Correlated Pair Method, 142

comoving coordinates, 121

complete, 62

complete metric space, 62

geodesically complete, 32

component group, 39

connection, 15

Levi-Civita connection, 185

continuous map, 175

convex set, 102

interior of a convex set, 102

side of a convex set, 102
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coordinate change, 7

coordinate system, 7

Copernican principle, 32, 120

cosmic microwave background, 34

cosmic time, 29

cosmological constant, 131

cosmological model

open/closed, 126

simply-/multi-connected, 120

cosmological parameters, 127

cosmological principle, 35, 120

covering group, 48

covering space, 45

critical density, 126, 129

crystallographic group, 86

curvature

Ricci tensor, 18

scalar curvature, 18

Riemannian curvature tensor, 17

sectional curvature, 78, 185

curve

Cr-curve, 8

causal curve, 13

null curve, 13

space-like curve, 13

time-like curve, 13

cusp, 97

cyclic group, 83

dark matter, 130

deck transformation, 48

decomposition, 103

decoupling, 35

density

mass density, 129

radiant flux density, 131

vacuum energy, 131

derivation, 180

derivative operator, 15

ordinary derivative, 15

torsion-free, 15

developing map, 59

definition, 60

developing pair, 61

diffeomorphism, 21

dihedral angle, 106

dihedral angle sum, 108

proper dihedral angle, 106

dihedral group, 83

dipole anisotropy, 152

Dirichlet domain, 101

Dirichlet polyhedron, 103

discrete subgroup, 42

displacement function, 81

dodecahedral space

Seifert-Weber dodecahedral space, 115

dodecahedral space, see also Poincaré do-

decahedral space, 94

domain of dependence, 29

double action, 94

dual basis, 9

dual vector, 9

dual vector space, 9

Einstein tensor, 19

Einstein’s field equations, 24

Einstein-de Sitter universe, 128

embedding, 20

energy-momentum tensor, 23

equivalence principle, 21

Euclidean space, 13, 43

expansion of the universe, 33

fiber, 65

fiber bundle, 65

foliation, 69

Friedmann’s equation, 125

Friedmann-Lemâıtre universe, 125

fundamental cell, 135

fundamental domain, 101
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fundamental group, 44

fundamental polyhedron, 103

exact fundamental polyhedron, 103

fundamental region, 101

future endpoint, 28

future-inextendible curve, 28

future-oriented curve, 26

geodesic, 19

geodesic equation, 19

geodesic deviation equation, 24

geodesic hypothesis, 22

geometry, 64

equivalent geometries, 65

geometric structure, 56

affine structure, 85

model geometry, 65

ghost, 135

globally hyperbolic, 30

gluing, 109

group action, 40

co-compact (uniform), 49

co-finite, 49

effective, 40

sharply transitive, 42

transitive, 42

group of deck transformations, 48

group of similarities, 54

group representation, 179

adjoint representation, 183

Standard representation, 179

Hantzsche-Wendt manifold, 111

Harrison-Zel’dovich spectrum, 155

Hausdorff, 177

Heisenberg group, 72

Helmholtz equation, 155

holonomy, 61

holonomy group, 61

restricted holonomy group, 61

linear holonomy group, 61

holonomy representation, 62

homeomorphism, 176

homeomorphic, 176

homogeneity problem, 36

homogeneous space, 42

homotopic, 44

null-homotopic, 44

homotopy, 44

homotopy class, 44

Hubble constant, 33, 122, 128

Hubble time, 129

Hubble’s law, 33

Hubble’s scale factor, 122

Hyperbolic space, 14, 43

hyperbolic space

upper half-space model, 55

hypersurface, 20

null, 20

space-like, 20

time-like, 20

icosahedral group, 84

immersion, 20

inextendible, 31

locally inextendible, 31

injectivity radius, 97

isometry group, 41

isotropic

locally isotropic, 77

isotropy group, 40, 41

Jacobi identity, 179

kernel of ineffectiveness, 41

Kleinian group, 97

Löbell space, 115

Laplace operator, 155

last scattering surface, 35, 120

leave, 70

200



Index

Leibnitz rule, 15

lens space, 94, 113

Lie algebra, 179

Lie bracket, 179

Lie derivative, 180

Lie group, 39

Lie algebra of a Lie group, 182

Lie group of transformations, 41

lift, 45

homotopy lifting property, 45

homotopy lifting theorem, 45

unique lifting property, 45

light cone, 27

linear group, 39

linked action, 94

local coordinates, 7

local trivialization, 65

locally finite, 8

locally homogeneous, 33

locally path-connected, 176

Lorentz group, 43

Lorentzian space, 14

Möbius group, 55

manifold, 6

(G,M)-manifold, 54

Cr-manifold, 7, 38

affine manifold, 85

boundary of a manifold, 8

closed/open manifold, 8

Euclidean manifold, 55

foliated manifold, 70

G-manifold, 38

geometric manifold, 64

gluing manifold, 109

hyperbolic manifold, 55

interior of a manifold, 8

Lorentzian manifold, 12

metric manifold, 56

paracompact, 8

product of manifolds, 8

real-analytic manifold, 38

Riemannian manifold, 12

smooth manifold, 7, 38

spherical manifold, 55

map, 19

March’s principle, 21

matched circles, 157

matrix groups, 40

matter
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hyperbolic space form, 80, 96, 115

spherical space form, 80, 93, 112

space of constant curvature, 68

spherical harmonics, 154

spherical space, 13, 43

stabilizer, 40

stably causal, 29
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