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Idiosyncratic responses of arctic 
plants to changing snow melt dates 
The Arctic is one of the ecosystems most affected by climate change and especially winter 

temperatures and precipitation sums are supposed to increase.  Consequently, snow cover 

depth and duration, the most important drivers of growing season length in the high Arctic, 

will also change. Depending on the extent and temporal patterns of temperature and 

precipitation rise, and the associated partitioning of precipitation sums into rain and snow 

components, this may either entail a shortened or prolonged snow free period, respectively. 

These changes will likely have multiple effects on plant productivity and hence the availability 

of biomass for consumers. In this study, I try to assess how the growth and productivity of 

eight common high arctic plant species will respond to different predicted climate change 

scenarios by experimentally changing snowmelt dates. My results demonstrate considerable 

variation among species with idiosyncratic positive and negative responses of individual 

species to either accumulation or reduction of snow cover depth and duration. I conclude 

that generic predictions of effects of a changing snow pack on the productivity of arctic 

vegetation are hardly possible, at least if a climate change driven species turn-over in local 

community compositions is not accounted for.  

 

Introduction 

Snow cover duration and depth are the most important drivers of growing season length in 

the Arctic (Hülber et al. 2011; Körner 2003; Van Wijk et al. 2003; M. D. Walker et al. 1999; 

Wipf & Rixen 2010). They affect soil temperatures by the insulation of soil and vegetation 

and thereby microbial activity during winter, thus controlling nutrient availability and soil 

moisture especially in spring during the onset of plant growth (M. D. Walker et al. 1999; 

Wipf & Rixen 2010). Consequently, snow cover duration and depth also effect plant 

productivity (Körner 2003), and thus the carbon sink capacity of the arctic ecosystem (Starr 

et al. 2008). Moreover, changes in the amount of available plant biomass and temporal 

patterns of plant phenology may also have cascading effects on pollinators, herbivores, 

pathogens and pests (Wipf 2010). Indeed, arctic ecosystems are among those most affected 

by climate change (Stow et al. 2004; Wipf & Rixen 2010).  
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On the one hand temperatures in the Arctic have increased almost twice as much as the 

global average and even four fold in winter time over the past century (Christensen et al. 

2007). Until the end of the 21st century the Intergovernmental Panel on Climate Change 

(Christensen et al. 2007) predicts a potential further increase of 5°C (based on the A1B 

scenario), with the most pronounced warming during winter months and least changes in 

summer. Additionally, precipitation in the Norwegian Arctic has increased by 2.5% per 

decade during the last century (Førland & Hanssen-Bauer 2003) and it is assumed that it will 

increase by another 18% until the end of this century (Christensen et al. 2007), again with a 

peak during winter (Christensen et al. 2007; Førland & Hanssen-Bauer 2003; Wipf & Rixen 

2010). In combination, these forthcoming changes of temperature and precipitation regimes 

will have a big impact on the arctic snow cover which is, however, not easily predictable 

because it strongly depends on how precipitation sums are distributed across the winter 

season and, in particular, the partitioning into snow and rain fractions (Førland & Hanssen-

Bauer 2003). Depending on these factors, two possible scenarios and therefore implications 

of climate change on the snow cover are conceivable. (1) Due to rising temperatures 

especially in winter the fraction of precipitation falling as rain could increase and hence 

reduce the snow cover depth and duration; this scenario would lead to a longer growing 

season due to an earlier snowmelt (Hülber et al. 2006; Pop et al. 2000; Starr et al. 2000; Starr 

et al. 2008; Stow et al. 2004; Van Wijk et al. 2003; Wahren et al. 2005; Wipf 2010; Wipf & 

Rixen 2010). However, (2) temperatures might also remain low enough during periods of 

maximum snowfall to ensure that an increase of precipitation in winter leads to a thicker 

and longer lasting snow cover, and hence to a shortened growing season following a later 

snowmelt (Cooper et al. 2011; Mallik et al. 2011; Morgner et al. 2010; Wipf & Rixen 2010). 

Uncertainties about these alternative scenarios include that most predictions are given on a 

large scale for the Arctic and do not account for regional differences. Indeed, the climate of 

Svalbard differs from other high arctic localities in that it is influenced by the gulf stream 

resulting in relatively warm winters and cold summers (Førland & Hanssen-Bauer 2003; 

Mallik et al. 2011). Furthermore, changes in cloud cover could lead to a shorter or constant 

snow free period even with a reduced snow depth (Walsh et al. 1997) or a strong rise of 

spring temperatures could compensate for a deeper snow pack (Wipf & Rixen 2010). 

As a corollary, any study of snow pack mediated climate change effects on arctic ecosystems 

should account for both of these alternative scenarios. In this study, I focus on the 
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consequences of a climate-driven change in growing season length on the productivity of 

selected plant species, and I use experimental treatments which cover a range from a very 

early snowmelt until a very late one. Only very few snow manipulation experiments that 

include both an early and a late snowmelt have been conducted and to my knowledge none 

focused on the influence of snow cover duration on the growth of a wider range of high 

arctic plants (Wipf & Rixen 2010). However, parts of other studies or such that were 

conducted in other ecosystems (e.g. alpine) allow for various assumptions on the impact of 

both snow pack scenarios on the productivity of high arctic plant species (Dorrepaal et al. 

2003; Seastedt & Vaccaro 2001; Starr et al. 2008; Van der Wal et al. 2000; M. D. Walker et al. 

1999; Wipf & Rixen 2010). 

Especially results from studies in low arctic regions suggest an increase of NPP (net primary 

production) following a prolonged growing season (e.g. Euskirchen et al. 2009; Stow et al. 

2004). However, Pop et al. (2000) suppose that some species might be unable to increase or 

might even decrease their growth in response to a temporally advanced onset of growing 

season into a thermally less favorable time of the year. Such an earlier advance could lead to 

(1) early tissue damage by spring frosts and cold winds after snowmelt since plants lose their 

frost hardiness during the onset of growth (Jonas et al. 2008; Pop et al. 2000; Torp et al. 

2010; Wahren et al. 2005; Wipf et al. 2009; Wipf 2010); (2) reduced number of leaves 

because leaf set is determined in this stage (Marylin D. Walker et al. 1995); and (3) generally 

decelerate physiological processes by lower temperatures in spring compared to an onset of 

growth during the warmest days in summer time (Stow et al. 2004; Wipf & Rixen 2010). 

On the contrary, delayed snowmelt is assumed to cause a decrease in plant size since the 

short growing season is likely to be one of the main constraints on biomass accumulation for 

high arctic plant species (Cooper et al. 2011; Wipf & Rixen 2010). Additionally, a deeper 

snow pack leads to colder soils after snowmelt (Mallik et al. 2011; Morgner et al. 2010; Scott 

& Rouse 1995) and is supposed to harm especially ridge species since they respire too much 

during winter time under a thicker snow pack and thus warmer soils (Wipf & Rixen 2010). On 

the other hand, a deeper and prolonged snow cover shelters plants from spring frosts and 

cold winds (see above), causes more soil moisture after melt out (Jonas et al. 2008; Mallik et 

al. 2011; Morgner et al. 2010; Scott & Rouse 1995; Wahren et al. 2005) and warmer soils in 

winter presumably fostering mineralization rates and improving nutrient availability in spring 

(DeMarco et al. 2011; Mallik et al. 2011; Morgner et al. 2010; Scott & Rouse 1995; Wahren 
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et al. 2005; Walsh et al. 1997). In addition, onset of plant growth falls in a climatically more 

suitable period (Wahren et al. 2005; Marylin D. Walker et al. 1995). 

In face of these partly contradictory considerations, generic predictions of how an altered 

snow pack will affect arctic plant productivity remain difficult. In this study I consequently 

use a couple of common high arctic plant species from different life forms (graminoids, 

herbs, shrubs) and with different habitat associations (snowbeds, ridges) and explore how a 

delayed or earlier snowmelt, respectively, might affect their growth. More precisely, I want 

to assess (1) which environmental factor determines above-ground biomass accumulation of 

high arctic plants, (2) if the selected species accumulate different amounts of biomass under 

altered snow durations and depths, and (3) if they are are able to adapt their growth 

characteristics under different climate change scenarios and, particularly, if they are able to 

grow until senescence and might hence compensate for a delay in growing season onset by 

postponing biomass production towards later in the growth season.   

 

Material and Methods 

Experimental setup 

The fieldwork was conducted in Adventdalen (78°10′N, 16°06′E), which is one of the larger 

valleys on the high arctic archipelago of Svalbard, Norway in summer 2011. The annual mean 

temperature at the close-by airport of Longyearbyen at the end of the same valley during 

the last ten years was -3.7°C, with a minimum of -13.5°C in March, a maximum of 7.2°C in 

July and an annual mean precipitation of 177 mm (Norwegian Meterological Institute). 

The experimental setup is based on Morgner et al. (2010). In this study, I used nine of twelve 

existing snow fences (1.5 m tall and 6.2 m long) which were established in autumn 2006, 

distributed over an area of approximately 1.5 km x 2.5 km and grouped into blocks of three 

fences each (200 x 200 m) which are at least 500 m apart from each other to account for 

heterogeneity of the landscape. The fences were established perpendicular to the main 

winter wind direction leading from the glaciers towards the sea (easterly winds) so that 

snow transported by wind accumulates behind the fences due to turbulences. Behind each 

fence, two subplots of 75 x 75 cm were established: one in the area of the deepest snow (in 

the following named increased), and another one in the area of intermediate snow depth (in 

the following named medium), representing a climate scenario that predicts a delay of 

snowmelt and hence a shortened growing season. To account for a climate scenario that 
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predicts less snow in favor of rain and hence an earlier melt out I designated a subplot next 

to each fence on a small windblown ridge that melts out earlier naturally (in the following 

named shallow) and another one on which the snow was manually removed on 1. May (in 

the following named removed). In contrast to the other treatments removed subplots were 

newly established in autumn 2010. To compare those subplots with current conditions I also 

observed an unmodified subplot for each fence (in the following named control). Since not 

all treatments could be realized at each fence this experiment was based on a total of 37 

subplots: four removed, eight shallow, nine control, seven medium and nine increased. The 

low number of removed subplots is due to problems with lost markings during wintertime, 

probably because of reindeer interactions.  

 

Abiotic measurements 

Subplots were observed every second day and were defined as snow free when 50% of their 

area had melted out. In each block (i.e. three fences) was one data logger installed on 4. 

September 2007 (Tiny Tag Plus 2, Gemini Data Loggers, UK) for each treatment (i.e. 

removed, shallow, control, medium and increased) which recorded soil temperatures hourly 

at approximately two centimeters below the soil surface. Daily average soil temperatures of 

each logger were used for the entire block. Daily average air temperatures at two meters 

above the ground were taken from the new weather station of the University Centre in 

Svalbard in Adventdalen (The University Centre on Svalbard) around six kilometers west of 

the study site in the same valley. From these measurements I calculated nine different 

temperature variables for each subplot, three from air and six from soil measurements 

(table 1): these variables represent either the number of days with a mean temperature 

above 0°C or the cumulative temperatures above this threshold since either melt out dates 

or the 1. May, i.e. the date on which the snow got shoveled away on removed subplots. In 

addition, I also calculated the number of days with a mean temperature above 5°C. The 

temperature sum, respectively number of days until the day of each growth measurement, 

was then matched with the recorded plant size. 

 

Biotic measurements 

All biotic measurements were based on the ITEX manual (Molau & Edlund 1996) and were 

conducted in weekly intervals (ranging from 13. June until 8. September 2011). For those 
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study species not mentioned in the ITEX manual I adapted protocols following those of 

similar species. I chose eight common target species for the study site including deciduous 

and evergreen shrubs, graminoids and perennial forbs, as well as snowbed and ridge species: 

Alopecurus magellanicus, Bistorta vivipara, Cassiope tetragona, Dryas octopetala, Luzula 

arcuata subsp. confusa, Pedicularis hirsuta, Salix polaris and Stellaria crassipes. 

As soon as a subplot had melted out, or individuals of a given species were visible, one 

randomly chosen individual per species was selected. For S.polaris four individuals per 

subplot were chosen in order to make sure that each a female and a male specimen would 

be included in the study. Plant size was measured with an electronic caliper with an accuracy 

of one millimeter. Only photosynthetically active parts were taken into account. If the 

marked individual got lost due to grazing or other disturbances (e.g. wind) a new randomly 

chosen individual nearby was marked and observed from then on and treated as a replicate 

in order to avoid loss of data. 

For every species different measures were applied according to their morphology (table 2). 

For A.magellanicus, D.octopetala, L.confusa and S.polaris the summed length of all leaves (in 

mm) excluding the petiole (where applicable) was used whereas (in case of A.magellanicus 

leaves were defined from ligule to leaf tip). For B.vivipara the length and width of each leaf 

was used to calculate the leaf areas as ellipses and single leaf values were then summed for 

each individual. For P.hirsuta and S.crassipes, plant length was measured from soil surface 

until the uppermost leaf. For C.tetragona, the growth increment of a shoot of the year was 

used since the insertion of the youngest leaf on the caulis is not easily visible. 

The date of the onset of senescence of each species in each subplot was obtained from a 

parallel study (Semenchuk et al., unpublished) and was defined as the day when 50% of all 

individuals per species and subplot were senescent.  

 

Statistical analyses 

The data was analyzed with the R software (R Development Core Team 2011) using the 

packages nlme (Pinheiro et al. 2012) and lattice (Sarkar 2008). Since the data was collected 

in a hierarchically organized experimental set up, I used linear mixed-effects models 

(function lme) to analyze the effect of the treatments on (1) melt out dates, (2) the different 

temperature variables and on (3) the average growth of the species throughout the season. 

In order to evaluate the effect of the temperature variables on plant size, I fitted the models 
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with a second order polynomial predictor since plants do not grow continuously even 

though cumulative temperature sums or number of days above the given threshold are still 

increasing. I selected the minimal model by stepwise removal of higher order terms from the 

full until the Null model, and chose the model with the lowest AIC (Akaike Information 

Criterion). Potential heteroscedasticity was considered for as much grouping levels (i.e. 

block, fence, subplot, individual) as possible (i.e. parameter estimation algorithms 

converted).  These analyses were repeated for each species separately.  

To determine which temperature variable explains plant size best, an independent model 

was computed for each of the nine temperature variables and species based on the matched 

temperature values and plant sizes for each recorded date and the variable resulting in a 

model with lowest AIC was chosen. Maximum plant sizes were computed by the function 

predict.lme on the basis of the selected model. It should be noted that it was not possible to 

compute confidence intervals for plant peak sizes as there is currently no respective 

algorithm implemented in R. In order to assess if the species grew until the onset of 

senescence, empirical plant size peaks were identified in the data for every individual and 

compared to the senescence date of their subplot.  

 

Results 

Abiotic measurements 

Melt out dates of all treatment subplots differed significantly from those of control subplots 

(table 3). Shallow subplots were snow free on the 30. May, on average, control on the 4. 

June, medium on the 12. June, increased on the 16. June, while snow was manually removed 

from removed subplots on the 1. May as described above. The onset of the snow free period 

varied thus by up to 46 days.  

Positive air temperature sums (thawing degree temperatures, in the following TDT) was the 

temperature variable that explained plant size the best (lowest AIC) for all species except 

Dryas octopetala, but was still a highly significant predictor for this species, too (table 4). For 

consistency, I hence used TDT in all subsequent analyses. The TDT of individual subplots 

depend on melt out dates only because air temperatures were derived from one single 

weather station. Consequently, this variable varied across treatments in parallel to melt out 

dates except that control and shallow subplots did not differ significantly (table 5), most 
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probably because of low air temperatures in spring. However, none of the other variables 

calculated from my temperature measurement series was able to explain temporal plant 

growth patterns in a similarly consistent way across species.  

Senescence 

Most species (i.e. Alopecurus magellanicus, Bistorta vivipara, D.octopetala, Luzula confusa, 

Salix polaris and Stellaria crassipes) did not increase in plant size until the onset of their 

senescence. By contrast, about two thirds of the individuals of Pedicularis hirsuta were 

steadily growing over time in the treatments shallow, control and medium (table 6; 

treatment increased could not be analyzed for this species due to lack of data). Similarly, 

many individuals of Cassiope tetragona in control, medium and increased treatments grew 

until senescence, while individuals in the treatment removed hardly grew at all.  

Growth patterns of individual species 

Alopecurus magellanicus 

All treatments increased the summed leaf lengths of A.magellanicus compared to control 

(table 7). However, differences were only significant for a slightly delayed melt out date 

(medium) where leaf lengths were higher by 50% compared to ambient conditions. The 

modeled maximal plant sizes range from 105 -168 mm. However, the maximum plant size in 

medium is only enlarged by 9%. Figure 1a demonstrates that plants in medium were able to 

compensate for later snowmelt by enhanced growth rates, i.e. higher biomass accumulation 

per unit of temperature than in other treatments. The required TDT to reach the peak sizes 

range between 322°C in removed and 363°C in medium. 

Bistorta vivipara 

The average sum of leaf areas of B.vivipara varied between 360.5 mm2 in control and 704.8 

mm2 in increased (table 8). The leaf area increased significantly behind fences, by 95% and 

66% in increased and medium, respectively. Individuals in medium grew faster and hence 

reached a higher peak size (+57% compared to ambient conditions) but were senescing 

faster as well (figure 1b). Immediately behind the fences, B.vivipara grew less rapidly, 

reached a slightly lower peak size (+40% compared to control) but senesced slower and was 

thus photosynthetically active until later in autumn. Consequently, individuals in increased 

areas reached their full size later in the growing season and at higher levels of TDT, and they 

preserved their maximum biomass for a longer period of time. In subplots melting out 



 
9 

earlier, the size of B.vivipara individuals did not significantly differ from those of control 

subplots, maximal plant sizes required about the same amount of temperature sums as well.  

Cassiope tetragona 

All treatments significantly decreased the annual shoot increment of C.tetragona (table 9). 

Averages ranged between 0.19 mm in shallow and 2.32 mm in control and peaks sizes 

between 0.16 mm (shallow) and 3.41 mm (control). Most individuals in medium and shallow 

subplots did not grow at all (figure 1c) reducing the average shoot increment by 82% and 

92%, respectively, compared to control throughout the season. In increased (removed) 

subplots shoots of C. tetragona grew shorter by 36% (59%), on average, and the modeled 

maximum plant sizes were reduced by 57% (61%) compared to control.  

Dryas octopetala 

All treatments apart from shallow increased leaf lengths and peak sizes for D.octopetala 

(table 10). Averages ranged from 17.4 mm in shallow to 29.2 mm in medium and modeled 

maximal sizes from 21.3 mm to 38.5 mm, again in shallow and medium. The treatment effect 

was most pronounced in medium where plants grew 60% larger than in control and the 

estimated maximum plant size was enlarged by almost 75%, followed by individuals 

immediately behind the fences (increase of 38% in total leaf length, respectively 53% larger 

peak sizes), which grew the fastest after snowmelt (figure 1d). A very early snowmelt 

(removed) triggered a higher seasonal biomass accumulation, too (treatment effect of 

+28%), while peak size as well as timing and senescence were similar to increased snow 

conditions. By contrast, plant growth did not significantly differ among plants in shallow and 

control subplots.  

Luzula confusa 

Growth responses of L.confusa to the different treatments were rather inconsistent (table 

11, figure 2a). Under a very early snowmelt (removed) average plant size was increased by 

27% compared to control, whereas a moderately decreased snow pack (shallow) reduced  

the species’ growth by almost the same extent (24%). In parallel, plants reached a 12% 

higher maximum leaf length in removed, but a 35% lower maximum in shallow subplots. 

Shortening the growing season did not affect the species’ full-season leaf length significantly, 

although maximum values are higher (+17% in medium and +21% in increased compared to 

control). This discrepancy results from an enhanced growth after snowmelt (coupled with 
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higher TDT to reach full size: +21% in medium and +14% in increased compared to control) 

and faster senescence in the end of the season. 

Pedicularis hirsuta 

Earlier as well as later snowmelt had a negative effect on the average plant size of P.hirsuta 

which varied from 17.2 mm in shallow to 29.6 mm in control. However, differences were not 

significant for latest snowmelt dates (increased), probably because of scarcity of data from 

this treatment (table 12). The full-season plant size was decreased by 15% in removed, 42% 

in shallow and 19% in medium. The individuals in removed subplots had a peculiar temporal 

growth pattern: they grew rapidly in the beginning and kept approximately their size 

throughout the season, whereas plants in other treatments grew more steadily (figure 2b). 

Salix polaris 

Average sums of leaf lengths of S.polaris ranged between 10.8 mm in increased and 12.7 mm 

shallow and the modeled maximum between 10.5 mm in increased and 15.2 mm in control. 

Only a very late snowmelt had a significantly negative effect on the average plant size and 

reduced it by 11% compared to ambient conditions (31% in terms of maximum length; table 

13). Under moderately longer snow conditions (medium) individuals were smaller during 

their early growth phases, but an accelerated growth later on was compensating for this 

disadvantage (figure 2c). Peak sizes were hence similar to those of control individuals, but 

plants required higher TDT sums to reach their maximum size (329.4 in medium, compared 

to 281.3 in control. An earlier snowmelt (removed and shallow) did not affect the species 

significantly.  

Stellaria crassipes 

The average plant size of S.crassipes decreased with a delayed and increased with an 

advanced snowmelt, although this trend was only significant for the intermediate 

treatments with a decrease of 49% in medium (3.5 mm) and an increase of 64% in shallow 

(11.3 mm) compared to control (table 14). The modeled plant peak sizes varied from 5.7 mm 

in shallow to 11.5 mm in removed and stand thus in contrast to the average sizes where the 

highest value was recorded in shallow. Furthermore, the modeled maximal sizes and TDT to 

reach this size suggest that individuals in the treatments removed and medium grew until 

senescence, although they did not actually do so according to the phonological data. The 
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modeled growth shown in figure 2d is, however, based on relatively few measurements and 

hence does not allow for strong inferences. 

Table 1 Overview of the nine calculated temperature variables based on daily average temperatures. Melt out dates were 
recorded for each subplot. 

Air or soil temperature Beginning of record Threshold Used value 

Air Melt out date 0°C Temperature in °C 

Air Melt out date 0°C Number of days 

Air Melt out date 5°C Number of days 

Soil Melt out date 0°C Temperature in °C 

Soil Melt out date 0°C Number of days 

Soil Melt out date 5°C Number of days 

Soil 1. May 0°C Temperature in °C 

Soil 1. May 0°C Number of days 

soil 1. May 5°C Number of days 

 

Table 2 Overview of the species specific parameters per individual, growth form and habitat association 

Species Species specific parameter Growth form Habitat association 

Alopecurus magellanicus Sum of leaf lengths (from ligule to leaf tip) Graminoid Snowbed 

Bistorta vivipara Sum of leaf areas (calculated as ellipse based on 

leaf length and width) 

Forb Snowbed 

Cassiope tetragona Annual increment of one shoot Evergreen shrub Snowbed 

Dryas octopetala Sum of leaf lengths of one shoot (excluding 

petiole) 

Evergreen shrub Ridge 

Luzula confusa Sum of leaf lengths (from soil surface to leaf tip) Graminoid Ridge 

Pedicularis hirsuta Plant length (from soil surface to uppermost leaf) Forb Snowbed 

Salix polaris Sum of leaf lengths of one shoot (excluding 

petiole) 

Deciduous shrub Snowbed 

Stellaria crassipes Plant length (from soil surface to uppermost leaf) Forb Ridge 

 

Table 3 Estimates of treatment effects on melt out dates in days of year (doy). Effect values other than the intercept (here 

control treatment) are deviations from the latter. Control= unmanipulated snow cover; removed= snow removal on 1. May; 

shallow= naturally early snowmelt; medium= intermediately increased snow; increased= maximally increased snow. Given 

are standard deviation (sd), t- and p-values and degrees of freedom (df) of the model. 

 Effect ± sd t-value p-value 

Intercept (Control) 155 ± 1.0   

Removed -34 ± 0.9 -39.9 < 0.001 

Shallow -5 ± 0.7 -6.9 < 0.001 

Medium 8 ± 0.6 14.1 < 0.001 

Increased 12 ± 0.5 26.2 < 0.001 

df 182   
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Table 4 Estimates of the unimodal effect of TDT (thawing degree temperatures, i.e. sum of positive air temperatures) on 

plant size (in mm) of each recorded species throughout the season; effect sizes are given in °C. Given are standard 

deviations (sd), t- and p-values and degrees of freedom (df) of each model. 

 Alopecurus magellanicus  Bistorta vivipara  Cassiope tetragona 

  Effect ± sd t-value p-value  Effect ± sd t-value p-value  Effect ± sd t-value p-value 

(Intercept) 97.7 ± 9.0    399.7 ± 42.8    0.89 ± 0.25   

TDT linear 137.7 ± 13.4  10.25 < 0.001  299.8 ± 100.3 2.99 0.003  5.13 ± 0.87 5.89 < 0.001 

TDT non-linear -249.1 ± 4.4 -56.19 < 0.001  -2041.2 ± 40.1 -50.9 < 0.001  -2.82 ± 0.81 -3.47 < 0.001 

df 154      256       165     

            

 Dryas octopetala  Luzula confusa  Pedicularis hirsuta 

  Effect ± sd t-value p-value  Effect ± sd t-value p-value  Effect ± sd t-value p-value 

(Intercept) 20.3 ± 1.1    75.4 ± 6.6    23.9 ± 1.4   

TDT linear 81.3 ± 2.8 28.72 < 0.001  -187.4 ± 21.1 -8.86 < 0.001  66.9 ± 3.4 19.61 < 0.001 

TDT non-linear -48.3 ± 1.0 -46.98 < 0.001  -455.1 ± 7.0 -64.63 < 0.001  -22.7 ± 3.2 -7.17 < 0.001 

df 244      228       145     

            

 Salix polaris  Stellaria crassipes     

  Effect ± sd t-value p-value  Effect ± sd t-value p-value     

(Intercept) 11.3 ± 0.5    4.6 ± 0.6       

TDT linear 27.6 ± 3.8 7.34 < 0.001  24.6 ± 1.6 15.61 < 0.001     

TDT non-linear -65.3 ± 3.4 -19.46 < 0.001  -7.3 ± 1.3 -5.61 < 0.001     

df 860       180         

 
Table 5 Estimates of treatment effects on TDT (thawing degree temperatures, i.e. positive air temperature sums in °C). 

Effect values other than the intercept (here control treatment) are deviations from the latter. Control= unmanipulated 

snow cover; removed= snow removal on 1. May; shallow= naturally early snowmelt; medium= intermediately increased 

snow; increased= maximally increased snow. Given are standard deviation (sd), t- and p-value and degrees of freedom (df) 

of the model. 

 Effect ± sd t-value p-value 

Intercept (Control) 272.7 ± 6.7   

Removed 45.7 ± 11.6 3.95 0.003 

Shallow 10.7 ± 9.3 1.16 0.253 

Medium -26.4 ± 9.6 -2.74 0.009 

Increased -38.9 ± 9.0 -4.35 < 0.001 

df 6180   
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Table 6 Proportion of individuals per species and treatment that increased in size until senescence. Senescence was defined 

at the subplot level, namely as the day at which 50% of the subplot-population of a species were senescent. Control= 

unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early snowmelt; medium= 

intermediately increased snow; increased= maximally increased snow. NA: no growth peak could be detected. 

  
Alopecurus 
magellanicus 

Bistorta 
vivipara 

Cassiope 
tetragona 

Dryas 
octopetala 

Luzula 
confusa 

Pedicularis 
hirsuta 

Salix  
polaris 

Stellaria 
crassipes 

Removed 0 0 0 0.17 0 0.25 0.09 0 

Shallow 0 0 NA 0.6 0.29 0.75 0.12 0.25 

Control 0.11 0 0.67 0.6 0 1 0.17 0.13 

Medium 0 0.11 1 0.25 0.14 1 0.16 0 

Increased 0 0.1 0.75 0.43 0.1 NA 0.06 NA 

 

Table 7 Estimates of treatment effects on the average sum of leaf lengths of Alopecurus magellanicus (in mm) throughout 

the growing season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given 

are standard deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT 

(thawing degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model 

shown in table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early 

snowmelt; medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 84.4 ± 11.4 7.43  112.9 334.0 

Removed 14.1 ± 13.3 1.06 0.291 104.5 322.4 

Shallow 15.2 ± 10.4 1.45 0.148 137.2 345.2 

Medium 42.1 ± 9.9 4.25 < 0.001 168.4 362.8 

Increased 19.1 ± 10.0 1.91 0.058 127.0 334.9 

df 173     

 
Table 8 Estimates of treatment effects on the average sum of leaf areas of Bistorta vivipara (in mm

2
) throughout the 

growing season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are 

standard deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT 

(thawing degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model 

shown in table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early 

snowmelt; medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 360.5 ± 60.6 5.94  505.4 296.0 

Removed 23.8 ± 73.0 0.33 0.745 489.1 280.2 

Shallow 11.3 ± 63.7 0.18 0.859 471.6 271.9 

Medium 238.3 ± 63.2 3.77 < 0.001 793.1 297.6 

Increased 344.3 ± 60.0 5.73 < 0.001 705.1 370.1 

df 295     
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Table 9 Estimates treatment effects on the average annual shoot increment of Cassiope tetragona (in mm) throughout the 

growing season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are 

standard deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT 

(thawing degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model 

shown in table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early 

snowmelt; medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 2.32 ± 0.29 8.09  3.41 419.6 

Removed -1.37 ± 0.39 -3.53 < 0.001 1.34 466.7 

Shallow -2.13 ± 0.31 -6.78 < 0.001 0.16 0.0 

Medium -1.89 ± 0.32 -5.93 < 0.001 0.18 295.1 

Increased -0.84 ± 0.29 -2.91 0.004 1.47 494.9 

df 177     

 

Table 10 Estimates of treatment effects on the average sum of leaf lengths of Dryas octopetala (in mm) throughout the 

growing season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are 

standard deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT 

(thawing degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model 

shown in table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early 

snowmelt; medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 18.2 ± 2.2   22.2 410.2 

Removed 5.1 ± 2.0 2.51 0.013 31.3 570.0 

Shallow -0.8 ± 1.7 -0.45 0.653 21.3 399.0 

Medium 11.0 ± 1.9 5.96 < 0.001 38.5 542.0 

Increased 6.9 ± 1.9 3.69 < 0.001 33.9 497.6 

df 288     

 

Table 11 Estimates of treatment effects on the average sum of leaf lengths of Luzula confusa (in mm) throughout the 

growing season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are 

standard deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT 

(thawing degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model 

shown in table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early 

snowmelt; medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 77.4 ± 10.9   108.9 236.6 

Removed 20.5 ± 8.7 2.35 0.020 122.0 240.1 

Shallow -23.8 ± 7.1 -3.37 < 0.001 71.0 248.5 

Medium -7.9 ± 7.6 -1.05 0.297 127.7 287.1 

Increased 11.2 ± 7.0 1.60 0.112 131.9 269.0 

df 261     
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Table 12 Estimates of treatment effects on the average plant sizes of Pedicularis hirsuta (in mm) throughout the growing 

season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are standard 

deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT (thawing 

degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model shown in 

table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early snowmelt; 

medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak size TDT peak 

Intercept (Control) 29.6 ± 2.2   34.9 526.6 

Removed -4.5 ± 1.8 -2.46 0.016 22.0 413.3 

Shallow -12.4 ± 1.5 -8.02 < 0.001 22.6 520.8 

Medium -5.7 ± 1.9 -3.04 0.003 31.3 428.8 

Increased -0.4 ± 2.2 -0.17 0.867 47.0 570.0 

df 112     

 
Table 13 Estimates of treatment effects on the average sum of leaf lengths of Salix polaris (in mm) throughout the growing 

season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are standard 

deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT (thawing 

degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model shown in 

table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early snowmelt; 

medium= intermediately increased snow; increased= maximally increased snow. 

 Effect ± sd t-value p-value Peak  size TDT peak 

Intercept (Control) 12.1 ± 0.7   15.2 281.3 

Removed 0.3 ± 0.7 0.51 0.611 14.1 283.0 

Shallow 0.6 ± 0.6 1.08 0.283 14.8 280.3 

Medium -0.2 ± 0.6 -0.40 0.693 13.9 329.4 

Increased -1.3 ± 0.6 -2.34 0.020 10.5 296.2 

df 324     

 
Table 14 Estimates of treatment effects on the average plant size of Stellaria crassipes (in mm) throughout the growing 

season. Effect values other than the intercept (here control treatment) are deviations from the latter. Given are standard 

deviation (sd), t- and p-value and degrees of freedom (df) of the model. Modeled maximal plant sizes and TDT (thawing 

degree temperatures, i.e. positive air temperature sums in °C) to reach the maximum size are based on the model shown in 

table 3. Control= unmanipulated snow cover; removed= snow removal on 1. May; shallow= naturally early snowmelt; 

medium= intermediately increased snow; increased= maximally increased snow. 

 Effect + sd t-value p-value Peak size TDT peak 

Intercept (Control) 6.9 ± 1.4   10.9 515.7 

Removed 3.1 ± 1.9 1.60 0.112 11.5 570.0 

Shallow 4.4 ± 1.9 2.36 0.020 5.7 489.9 

Medium -3.4 ± 1.7 -1.98 0.050 7.2 570.0 

Increased -1.8 ± 2.0 -0.89 0.373 10.0 570.0 

df 148     



 
16 

 

Figure 1 Relationship between TDT (cumulative sum of thawing degree temperatures, i.e. positive air temperature sums) 

and a) the average sum of leaf lengths of all Alopecurus magellanicus individuals; b) the average sum of leaf areas of all 

Bistorta vivipara individuals; c) the average shoot increment of all Cassiope tetragona individuals; d) the average sum of 

leaf lengths of all Dryas octopetala individuals. Coefficients are derived from a quadratic linear mixed-effect model, 

separated by treatments. Control= unmanipulated snow cover; removed= snow removal on 1.  May; shallow= naturally 

early snowmelt; medium= intermediately increased snow; increased= maximally increased snow. Outliers are not shown for 

better visualization. 
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Figure 2 Relationship between TDT (cumulative sum of thawing degree temperatures, i.e. positive air temperature sums) 

and a) the average sum of leaf lengths of all Luzula confusa individuals; b) the average plant size of all Pedicularis hirsuta 

individuals; c) the average sum of leaf lengths of all Salix polaris individuals; d) the average plant size of all Stellaria 

crassipes individuals. Coefficients are derived from a quadratic linear mixed-effect model, separated by treatments. 

Control= unmanipulated snow cover; removed= snow removal on 1.  May; shallow= naturally early snowmelt; medium= 

intermediately increased snow; increased= maximally increased snow. Outliers are not shown for better visualization. 
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Discussion 

Abiotic measurements 

Above-ground growth of the selected species is more  closely correlated to air than to soil 

temperatures (cf. Walker et al. 1995 for a similar, but Wijk et al. 2003 for a contrasting 

result), with positive cumulative temperatures since snowmelt being the most significant 

predictor overall. This result suggests that it might be sufficient to use data from a close-by 

weather station and the use of data loggers at the field site is not strictly necessary which 

implies a reduction of work labor and finances for future studies. However, it is unsurprising 

that cumulative temperature sums are explaining plant growth better than simple melt out 

dates, and that a variable that includes both types of information is still more closely 

correlated to the productivity of arctic plants. Furthermore are sums of temperature values 

more accurate than number of days above a given threshold and it is not surprising that I 

found a better correlation for the first. This implies that the size of the observed species did 

not only depend on the length of the thawing period but also increased with higher 

temperatures.  

Senescence 

Only in case of Cassiope tetragona and Pedicularis hirsuta was a majority of the 

experimental plants able to continue their growth until they reached senescence under most 

treatments. This fits well together with the background that C. tetragona is a snow bed 

species (Lindner & Meister 2006; Rønning et al. 1996). There is a similar trend for P.hirsuta, 

except that the gradient is not that extreme for this species. It might be that the ability to 

grow until the onset of senescence depends on the environmental signal that triggers 

senescence with a photoperiodic trigger (the ratio of red to far red light) allowing less 

flexibility than a primary response to the annually varying weather conditions at the end of 

the growing season. All other species (Alopecurus magellanicus, Bistorta vivipara, Dryas 

octopetala, Luzula confusa, Salix polaris and Stellaria crassipes) were not able to grow until 

the onset of senescence and were thus not able to compensate a later melt out by extending 

the growth period into the autumn. Under a respective climatic scenario, plant biomass from 

these species would therefore become available later in spring/summer and for an overall 

shorter period of time which might have major implications for herbivores. 
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Further implications of snow manipulations 

Even though soil moisture was not recorded in this study, Morgner et al. (2010) showed that 

it was increased by 50-80% at the beginning of the growing season behind fences at the 

same study site and I observed problems with water influx from the surroundings into 

removed subplots, which resulted in a higher moisture content into experimental plots at 

the beginning of the growth period compared to a scenario of area-wide earlier snowmelt. 

Moreover snow fences can trap wind-drifted litter and hence increase nutrient input behind 

them (Fahnestock et al. 2000; Wahren et al. 2005). Indeed, the accumulation of litter 

biomass behind comparable snow fences was recorded to be up to ten times higher by an 

increase of snow depth of two meters in Alaska (Fahnestock et al. 2000) and up to 30% of 

the nitrogen input derives from inorganic nitrogen that comes from snow (Walsh et al. 

1997). Since arctic ecosystems are nutrient limited (Fahnestock et al. 2000; Starr et al. 2008; 

Wahren et al. 2005; Walsh et al. 1997) this implies an artificial trade-off between a 

shortened growing season and a higher nutrient input behind fences which probably co-

determines  the effects that the medium and increased treatments had on the different 

plant species in my study. By contrast, plants might be less able to profit from the extended 

growing season (e.g. in shallow) because this is the only treatment where neither soil 

moisture nor nutrient input were increased in parallel with the snow length manipulation. 

However, the nutrient input is in fact likely to increase by a prolonged growing season due to 

a gain of shrubs and thus litter deposition by rising temperatures. 

Effects on plant size 

Graminoids tend to respond particularly pronounced to nutrient input into nutrient-limited 

ecosystems (Wookey et al. 1995) and Alopecurus magellanicus in particular is known to 

perform best in moist habitats (Lindner & Meister 2006; Rønning et al. 1996) . Both of these 

factors probably explain the higher productivity of this species in medium subplots. 

However, since the effect of the increased treatment on the average sum of its leaf lengths 

was not significant, the performance of A.magellanicus illustrates the hypothesized trade-off 

between a shortened growing season and increased moisture and nutrient input behind 

fences inasmuch as the species’ ability to benefit from the latter changes is obviously limited 

by the time available for biomass production. Given that at least local nutrient enrichment 

will be less pronounced under an area-wider higher and longer lasting snow pack, I conclude 

that A. magellanicus might possibly profit from a climate scenario that predicts a moderate 
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increase of snow cover at most, but will rather decline under both a more pronounced 

shortening of the growing season and an advance of snowmelt.  

My result that the leaf areas of Bistorta vivipara are enlarged behind fences matches with 

the findings of Rønning et al. (1996) and Wookey et al. (1994) that this species has an 

enhanced growth on nutrient-rich sites and in years with an increased snow cover (Marylin 

D. Walker et al. 1995). The extensive increase of leaf area (95% in increased and 66% in 

medium) backs up the assumption that forbs respond more rapidly to changed 

environmental conditions than other life forms (Wahren et al. 2005). However, B. vivipara is 

a widespread and variable species (Wookey et al. 1994) and the result of only one species 

cannot be generalized for a whole life form. On the other hand, indifference of the species 

against earlier melt out matches with the results of Walker et al. (1995) and Starr et al. 

(2000) for the closely related Bistorta bistortoides. Walker et al. (1995) proposed that the 

initial growth falls in a period when temperatures are low, i.e. determination of the leaf set 

is determined during unsuitable climatic conditions resulting in a trade off with the longer 

growing season  and no overall net effect in leaf areas. In summary, B.vivipara will possibly 

benefit from increased snowfall during winter, but will probably not take advantage from an 

earlier melt out. 

Cassiope tetragona showed a smaller shoot increment in average and peak sizes in all 

treatments compared to control. One reason might be that evergreen shrubs follow a 

strategy of holding physiological activity at a constantly low level and are thus not adapting 

fast to any changes (Starr et al. 2008). This is in line with the results of an earlier study 

conducted at the same field site demonstrating a similar reduction of Cassiope-productivity 

behind fences (Mallik et al. 2011). The lack of positive response to fence treatments also 

suggests that this species is not limited by nutrients in the Arctic (Havström et al. 1993; 

Lindner & Meister 2006) and the reduction of growing season length due to an increased 

snow pack hence does not involve any positive side-effect for this species. Reduced growth 

under an earlier snowmelt contradicts the findings of Havström et al. (1993), probably 

because temperatures are the most limiting factor for this species in the Arctic (Havström et 

al. 1993; Lindner & Meister 2006) and plants might have been more exposed to spring frosts 

and winds in the removed and shallow treatments. Even though the analysis of the 

phenological data showed that C.tetragona is able to extend its growth until senescence, it is 

not able to benefit that much to reach the same productivity as under ambient conditions.  
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Dryas octopetala is supposed to grow better on dry localities with an early snowmelt like 

windblown ridges (Fahnestock et al. 2000; Lindner & Meister 2006; Morgner et al. 2010; 

Rønning et al. 1996) and is chionophobus (Morgner et al. 2010). Furthermore, Morgner et al. 

(2010) did not find a fence effect on its biomass at the same field site and Wookey et al. 

(1995) observed no significant effect of increased moisture on the same performance 

measure. By contrast, in my study the species increased its summed leaf lengths in the 

treatments increased, medium and removed, while I could not detect any significant 

response at the shallow subplots. My results are thus incongruent with the species’ 

established habitat requirements. I therefore assume that the effect of the higher nutrient 

input behind fences and by water influx in removed (with nutrient influx as a side-effect) is 

sufficient to compensate for the disadvantages in these areas, since this effect was as well 

experimentally shown in Wookey et al. (1995). I conclude that D.octopetala might actually 

benefit from a thicker and prolonged snow cover due to a higher nutrient input, although 

part of this fertilization affect is, as already stated, probably an artifact of fences and local 

snow removal.  

The results for Luzula confusa are fairly contradictory to the botanical literature for Svalbard 

which states dry and stony locations like windy ridges as its habitat and low nutrient 

requirements (Lindner & Meister 2006; Rønning et al. 1996). In addition, Van der Waal et al. 

(2000) found a higher quantity and size of leaves in areas with an advanced snowmelt for 

this species. In my study, by contrast, the leaf lengths were shorter on shallow subplots by 

about one quarter but longer by about the same amount on removed subplots. The latter 

increase might again have been driven by nutrient and moisture input at the removal plots 

which allowed the species to translate the longer growing season into increased 

productivity. The effect of a shortened snow free period is not significant in terms of whole-

season biomass production. However, the model suggests that individuals behind fences 

have a differential temporal growth pattern inasmuch as they are able to compensate 

reduced growth rates early in the season by an accelerated growth later on which finally 

results in greater plant peak sizes. Van der Waal et al. (2000) found higher leaf qualities in 

delayed subplots, which suggests that L.confusa takes an advantage of the higher nutrient 

availability behind fences, like most graminoids do (Wookey et al. 1995), but this advantage 

does not enable the species to overcompensate the effect of a shorter growing season. In 

summary, my results suggest that L.confusa is not impaired by a shortened growing season 
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but does not benefit from it neither, whereas I suppose that its size might be reduced by an 

advanced snowmelt. 

The unspecific semi-parasitic Pedicularis hirsuta prefers moist habitats with a continuous 

snow cover in winter like snow beds (Lindner & Meister 2006; Rønning et al. 1996). This is in 

line with my finding of a decreased plant size in removed and in shallow plots characterized 

by earlier melt out and drier soils during summer. Since those windblown ridges get snow 

free earlier and are supposed to be drier throughout the season. Growth reduction under a 

moderately increased snow pack (medium) might be due to a shorter growing season which 

is not balanced by an increased nutrient supply since P.hirsuta receives nutrients and water 

from its host plant. As stated above should the results in the treatment increased not be 

considered due to a lack of data. I assume therefore that this species will not benefit from 

any climate change even though it is able to extend its growth until the onset of senescence 

and is in contrast to my hypothesis not adapting well to a change of environmental. 

I found no treatment effects on the leaf lengths of Salix polaris except for increased subplots 

where the species’ productivity decreased. Remarkably plants have their maximum size all at 

about the same amount of temperature sums and senesce afterwards. This suggests that the 

growth of this species mainly depends on temperature. I assume therefore that the 

decreased plant sizes in the increased subplots are due to a too short snow free period. This 

finding is backed up by its wide distribution all over Svalbard and its generalist behavior 

(Lindner & Meister 2006) even though the species tends to prefer moist, sheltered localities 

like snow beds (Fahnestock et al. 2000; Lindner & Meister 2006) where it benefits from its 

prostrate growth form by overheating (Lindner & Meister 2006). Nevertheless, my results 

contrast those of Van der Wal et al. (2000) and Walsh et al. (1997, for the closely related 

Salix planifolia) which are contradictory by themselves inasmuch as the former study 

demonstrated  higher leaf mass in earlier melting plots and the latter an increased growth in 

areas with a delayed snowmelt. From my results, I conclude that even though S.polaris is not 

negatively affected by neither an earlier nor a moderately later snowmelt, it might face a 

competitive disadvantage from a changing climate as compared to other species that are 

able to benefit from altered snowmelt regimes 

In case of Stellaria crassipes, the medium treatment led to decreased plant sizes of 49%, but 

an even more delayed snowmelt (increased) showed no effect (table 14, figure 2d). The 

decrease in medium subplots suggests that the species cannot take sufficient advantage 
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from higher nutrient availability to compensate for the shorter growing season behind 

fences, whereas the results of the increased treatment were affected by a high loss of 

individuals. Because plant sizes in removed do not differ significantly from ambient 

conditions and S.crassipes increased its size by 64% in shallow subplots, I suggest that this 

species copes well with an exposure to spring frosts and cold winds, an early onset of leaf 

burst when climatic conditions are harsh and grows generally at rather dry locations like 

windblown ridges (Rønning et al. 1996).  I conclude that the species is likely to profit from a 

longer growing season. 

Conclusion 

My study species responded idiosyncratically to the snow manipulations with little 

parallelism detectable neither among growth forms nor among snowbed or ridge species. 

But admittedly there were only eight species included in this study and the sample size per 

growth form or habitat preference was hence probably too low to detect significant trends.  

I assume that the idiosyncratic response patterns result from the fact that plant size is not 

only depending on the length of the growth period, but as well on temperature sums, soil 

moisture and nutrient availability which interfere with the depth and duration of the snow 

cover. The thicker the snow pack is in an area, the more moisture, the cooler soils and the 

higher nutrient supply plants face after snowmelt (DeMarco et al. 2011; Jonas et al. 2008; 

Mallik et al. 2011; Morgner et al. 2010; Scott & Rouse 1995; Wahren et al. 2005; M. D. 

Walker et al. 1999; Walsh et al. 1997; Wipf & Rixen 2010). An intermediate increase of snow 

cover can thus lead to a beneficial trade-off for the nutrient limited high arctic vegetation 

(Fahnestock et al. 2000; Starr et al. 2008; Wahren et al. 2005; Walsh et al. 1997) and 

enhance its growth. This was the case for the species Alopecurus magellanicus, Bistorta 

vivipara and Dryas octopetala in my study. I detected an opposite effect of a moderately 

increased snow pack for Pedicularis hirsuta and Cassiope tetragona which were probably not 

able to benefit sufficiently from improved moisture and nutrient supply to compensate for 

the delayed snowmelt. A still later snowmelt enhanced the productivity of B.vivipara and 

D.octopetala, but not of A.magellanicus; C. tetragona and Salix polaris responded with a 

decrease in their average size, supposedly for the same reasons as under an intermediately 

increased snow pack.  

Due to water influx from the surroundings into subplots where the snow was removed 

experimentally, the treatment removed does not only differ in terms of growing season 
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length. In fact, soil moisture, and probably nutrient availability as well, were increased 

instead of decreased and this treatment rather simulates a climate scenario with an increase 

of rain during springtime. However, an earlier snowmelt and thus a longer growing season 

(shallow) did in contrast to the common assumption for arctic ecosystems (Euskirchen et al. 

2009; Stow et al. 2004) not result in an increase of photosynthetically active tissue and thus 

biomass for any species, neither in terms of average nor in terms of peak plant sizes. In fact, 

C.tetragona, Luzula confusa, P.hirsuta and Stellaria crassipes decreased both their average 

and peak sizes. I assume that the reason is a shift of the onset of growth and thus of the 

determination of leaf set towards more unsuitable climatic conditions in terms of light and 

warmth (Wahren et al. 2005; Marylin D. Walker et al. 1995; Wipf et al. 2009) and 

furthermore a more likely exposure of early and not frost hardened plant tissue to spring 

frosts and cold winds (Pop et al. 2000; Wipf et al. 2009; Wipf 2010). It should be noted, that 

this simulated earlier snowmelt might actually depart from conditions to be expected under 

climate change as these will also include an amelioration of early season climatic conditions 

that might allow species to actually benefit from earlier melting dates. 

The treatment removed led to an enhanced growth of D.octopetala and L.confusa, which are 

both assumed to be ridge species (Lindner & Meister 2006; Rønning et al. 1996) and should 

therefore be able to cope with an early snowmelt and might have taken an additional 

advantage by nutrients possibly washed-in with melt water from the surroundings.  

Overall, I therefore conclude from my results that there is no uniform response of high-arctic 

plants to climate driven changes in snow regimes and that species respond idiosyncratically 

across growth forms and habitat associations. I underpin, however, that experiments like the 

one conducted still suffer from an imperfect simulation of future conditions as (1) they do 

not account for the expected changes in temperature, especially during spring time and (2) 

neglect the interfering effects of altered moisture and nutrient supplies. 

However, a corollary from my study certainly is that I cannot infer that the biomass of this 

ecosystem will in- or decrease by a more or less extended or shortened snow free period. 

Rather, I assume that whichever of the predicted changes will actually become realized in 

the future, local communities will respond by a shift in species composition towards those 

species which are better able to cope with the altered conditions in the long run. Indirectly, 

such a shift in species composition will probably affect community, and finally ecosystem 

productivity.  
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 Appendix 
 
English summary 

The Arctic is one of the ecosystems most affected by climate change and especially winter 

temperatures and precipitation sums are supposed to increase.  Consequently, snow cover 

depth and duration, the most important drivers of growing season length in the high Arctic, 

will also change. Depending on the extent and temporal patterns of temperature and 

precipitation rise, and the associated partitioning of precipitation sums into rain and snow 

components, this may either entail a shortened or prolonged snow free period, respectively. 

These changes will likely have multiple effects on plant productivity and hence the availability 

of biomass for consumers. In this study, I try to assess how the growth and productivity of 

eight common high arctic plant species will respond to different predicted climate change 

scenarios by experimentally changing snowmelt dates. My results demonstrate considerable 

variation among species with idiosyncratic positive and negative responses of individual 

species to either accumulation or reduction of snow cover depth and duration. I conclude 

that generic predictions of effects of a changing snow pack on the productivity of arctic 

vegetation are hardly possible, at least if a climate change driven species turn-over in local 

community compositions is not accounted for.  

 
 
Deutsche Zusammenfassung 

Die Arktis ist eines der vom Klimawandel am meisten betroffenen Ökosysteme der Erde, 

wobei angenommen wird, dass sich vor allem die Wintertemperaturen und –niederschläge 

erhöhen werden. Folglich werden sich ebenso die Schneehöhe und ihre Persistenz ändern, 

welche die wichtigsten Faktoren für die Länge der Vegetationsperiode in der Arktis sind. 

Abhängig vom Ausmaß und dem zeitlichen Muster der Temperatur- und 

Niederschlagserhöhung, sowie der Aufteilung der Niederschlagsmengen in Schnee- und 

Regenfraktionen, kann dies entweder eine verkürzte oder verlängerte schneefreie Periode 

zur Folge haben. Diese Veränderungen werden vermutlich vielfache Auswirkungen auf die 

pflanzliche Produktivität und daher Verfügbarkeit von Biomasse für ihre Konsumenten 

haben. In meiner Arbeit versuche ich zu ermitteln wie das Wachstum und die Produktivität 

von acht typischen hocharktischen Pflanzenarten von verschiedenen vorhergesagten 

Klimawandelszenarien durch das experimentelle Verändern von Schneeschmelzezeitpunkten 

beeinflusst werden. Meine Ergebnisse zeigen erhebliche Unterschiede zwischen den Arten 

mit idiosynkratischen positiven und negativen Reaktionen der einzelnen Arten auf entweder 

eine Erhöhung oder Reduktion der Schneehöhe und ihrer Persistenz. Ich komme daher zu 

dem Schluss, dass allgemeine Vorhersagen von Folgen einer sich ändernden Schneedecke 

auf die Produktivität der arktischen Vegetation kaum möglich sind, zumindest wenn ein 

klimawandelbedingter Artenwechsel in lokalen Gesellschaftszusammensetzungen nicht 

berücksichtigt wird. 
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