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22  __IINNTTRROODDUUCCTTIIOONN________________________________________________  
 

2.1 Aims of this thesis  

 

In the course of this master thesis the vibrational features of two proteinogenic amino 

acids were investigated. For this purpose spectroscopic analyses and theoretical 

calculations were carried out. Both L-lysine and L-arginine have three functional 

groups that can pick up or release a proton depending on the pH-value. Therefore, 

lysine and arginine have four different protonation levels (overall charges +2, +1, 0,     

-1). These protonation states influence the vibrations of the molecule. As all other 

amino acids, lysine and arginine contain an α-COOH group and an α-NH2 group. In 

the amino acid side chain lysine has a second NH2 group in ε-position to the               

α-COOH group, whereas arginine contains a guanidine group δ-position to the           

α-COOH group. Both amino acids are basic due to their side chains and are positively 

charged at neutral pH-values. 

 

As it is the natural environment of amino acids, aqueous solutions of L-lysine and             

L-arginine were prepared. Furthermore, different pH-values were adjusted from acidic 

to basic media (pH-values from about 0.3 to 13.2). These samples were analysed with 

FT-IR and Raman spectroscopy to evaluate the changes of the molecular vibrations at 

different pH-values. The changes of the absorption bands of several vibrations with 

the pH-value were shown and the peaks were assigned to the corresponding 

molecular vibrations. 

 

As a support to the experimental data, theoretical calculations were carried out with 

eight possible tautomers in the four different protonation levels. The structures of the 

molecules were optimized with HF/3-21G and M06-2X/6-31++G** methods in vacuum 

and with M06-2X/6-31++G** method in simulated water. For this calculation the      

self-consistent reaction field (SCRF) hydration model was used. The vibrational 

frequencies, IR-intensities and Raman-activities were calculated with the               

M06-2X/6-31++G** method in vacuum and simulated water. 

 

A comparison of the experimental spectra to other experimental data from the 

literature as well as the theoretical calculations was performed to help with the 

assignment of the absorption bands to the corresponding vibrations. Certain 

interesting bands of the experimental infrared spectra were analysed via integration, 
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determination of peak heights and curve fits to reveal the progress of the band 

absorptions with the pH-value and to identify the corresponding molecular vibrations. 

 

Lysine and arginine are basic amino acids, both contain a basic end group 

(protonated at neutral pH-values) in an amino acid side chain of CH2-groups. 

Therefore, lysine and arginine are very similar and their experimental IR and Raman 

spectra were compared to find similarities and differences in their vibrational features. 

 

Some literature already exists on the spectroscopic analyses of L-lysine and              

L-arginine. There solutions of the amino acids in H2O or D2O were analysed with IR 

and Raman spectroscopy, in some papers also theoretical calculations were reported. 

A very good basis for the assignment of the vibrational bands is provided by 

Hernández and co-workers [1]. They analysed the amino acids at neutral pH-values 

and tried to assign the absorption bands. However, no analyses of L-lysine and           

L-arginine solutions with variation of the pH-value have been reported. Only in the 

diploma thesis of Schwarzott [2] L-lysine was studied at different pH-values. 

Schwarzott analysed L-lysine and poly-L-lysine in D2O with infrared spectroscopy to 

determine and characterize changes in the secondary structure of the peptide. Only 

the characteristic bands for the secondary structure of poly-L-lysine were further 

investigated and assigned, a complete assignment of all absorption bands was not 

performed. 

 

2.2 Proteins and amino acids  

 

Proteins are very important in nature because they are essential for many biological 

processes. They are needed for the transport and storage of molecules, for immunity, 

movement and nerve-impulse propagation, for growth and differentiation control and 

for many other physiological functions [3] [4]. Proteins are unbranched polymers of only 

20 different building blocks. These building blocks are the amino acids alanine, 

arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, 

isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, 

tryptophan, tyrosine and valine. Besides these 20 proteinogenic amino acids, which 

build up all proteins, about 250 naturally occurring non-proteinogenic amino acids 

were identified yet [3] [4]. 

 

The proteinogenic amino acids are divided into essential, semi-essential (or 
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conditionally essential) and non-essential amino acids. Non-essential amino acids can 

be synthesized in the human body whereas essential amino acids have to be supplied 

with the nutrition. Essential amino acids for adults are isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan and valine [5] [6]. Non-essential amino 

acids are alanine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, 

proline, serine and threonine [5] [6]. Semi-essential amino acids such as arginine and 

histidine can belong to both groups, depending on other circumstances, for example 

age. Therefore, they are also called conditionally essential amino acids [7]. 

 

All amino acids have the same basic structure. They consist of an amino group, a 

carboxyl group, a hydrogen atom and a side chain (also called rest group) bound to 

one carbon atom (referred to as α-C-atom). The side chain often contains another 

functional group and is specific for the different amino acids. The general structure of 

an amino acid can be seen in Figure 1, whereas R stands for the side chain. To form a 

protein the amino acids are connected via peptide bonds. These bonds result from a 

condensation reaction between the α-carboxyl group of one amino acid and the          

α-amino group of the next amino acid. The formation of a peptide bond is shown in 

Figure 2. Functional proteins are generated by folding of the amino acid chain to a 

specific three-dimensional structure. [6] [8] 
 

 
Figure 1: Basic structure of amino acids at neutral pH, R stands for the different side chains. 

 

 
Figure 2: Formation of a peptide bond between two amino acids. [9] 

 

The structure of a protein mainly depends on the conformation of the backbone chain, 

which means the angles φ (between Cα and N) and ψ (between Cα and C) around 

the peptide bond, whereas the main characteristics arise from the certain amino acid 

side chains. Therefore, it is more important to analyse the side chains for a better 

understanding of the characteristics. In the course of this master thesis two basic 

amino acids were chosen and analysed in aqueous solutions. 
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In a solution amino acids with only two functional groups (α-carboxyl group and          

α-amino group) are dipolar at neutral pH-values, which means that the amino group is 

protonated (-NH3
+) and the carboxyl group is deprotonated (-COO-). They are also 

called zwitterions. The degrees of dissociation and therefore the charges of the amino 

acids depend on the pH-value, each functional group has a different pK-value. At low 

pH-values (in acidic solutions) the carboxyl group is protonated (-COOH), whereas at 

higher pH-values (in basic solutions) the amino group is deprotonated (-NH2). Figure 3 

shows the ionization degree of an amino acid as a function of the pH-value. At neutral 

pH-values the zwitterionic form predominates. The charges and pK-values of the side 

chains highly depend on the types of the amino acid side chains and the included 

functional groups. [6] 

 

 
Figure 3: Ionization state of an amino acid as a function of the pH-value. [10] 

 

2.3 L-lysine and L-arginine  

 

L-lysine and L-arginine are basic amino acids with side chains consisting of              

CH2 groups. The side chains are polar and therefore hydrophilic. Lysine has a primary 

amino group at the end of the side chain, arginine has a guanidine group. Both end 

groups are positively charged at neutral pH-values. 
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2.3.1 L-lysine 

 

L-lysine is a proteinogenic amino acid with a linear side chain consisting of four       

CH2 groups. Besides the α-amino group and the α-carboxyl group bound to the         

α-carbon atom lysine contains a third functional group. This group is a second primary 

amino group at the end of the side chain in ε-position to the carboxyl group. Due to 

this additional functional group lysine is positively charged at neutral pH-values. The 

structure of lysine is displayed in Figure 4. Further information on L-lysine is listed in 

Table 1. Table 2 shows the pK-values of the three functional groups in L-lysine found 

in different literary sources. 

 

 
Figure 4: Structure of lysine 

 

Table 1: Information on L-lysine. 

Abbreviations Lys (three-letter-code), K (one-letter-code) [6] [11] 

Molecular formula C6H14N2O2 
[12] 

Chemical name 2,6-diamino hexanoic acid [12] 

CAS Registry number 56-87-1 [12] 

Molecular weight 146.19 g mol-1 [12] 

 

Table 2: pK-values of L-lysine (pK-values depend on temperature, ionic strength and micro-environment 

of the ionisable group [6]) 

Literary source 1  [13] 2 [14] 3 [15] 4 [16] 5 [12] 

α-COOH 2.20 2.2 2.18 2.2 2.18 

α-NH3+ 8.90 9.0 8.95 9.2 8.95 

side chain  10.28 10.5 10.53 10.8 10.53 

 

L-lysine is an essential amino acid for humans. This means that it can not be 

synthesized in the human body and has to be supplied by the nutrition. Red meat, 

beans, peas, lentils, nuts, eggs and sardines are examples for lysine-containing food. 

Lysine is necessary for many biological processes, for example receptor affinity, 

muscle elasticity, chelation of heavy metals and nuclear structure and function. It is 
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important for the production of carnitine, which converts fatty acids to energy and 

helps to lower the cholesterol level. Furthermore, it helps with the calcium absorption 

and the formation of collagen. [12] 

 

Lysine is widely used as a dietary supplement and for fortification of cereals and 

feeds. Furthermore, it is used in pharmaceuticals and in biochemical and nutritional 

research. In medicine lysine is used for the treatment of hypochloremia. Lysine may 

also have antiviral, cardiovascular and lipid-lowering effects. [12] 

 

2.3.2 L-arginine 

 

L-arginine is also a proteinogenic amino acid. It has a linear side chain consisting of 

three CH2 groups. Besides the α-amino group and the α-carboxyl group bound to the 

α-carbon atom also arginine contains a third functional group at the end of its side 

chain. This group is a guanidine group in δ-position to the α-carboxyl group. Due to 

this additional functional group arginine is also positively charged at neutral              

pH-values. The structure of arginine is shown in Figure 5. Further information on          

L-arginine is listed in Table 3. Table 4 shows the pK-values of the functional groups 

found in different literary sources. 

 

 
Figure 5: Structure of arginine 

 

Table 3: Information on L-arginine. 

Abbreviations Arg (three-letter-code), R (one-letter-code) [6] [11] 

Molecular formula C6H14N4O2 
[17] 

Chemical name 2-amino-5-((aminoiminomethyl)amino pentanoic acid [17] 

CAS Registry number 74-79-3 [17] 

Molecular weight 174.20 g mol-1 [17] 
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Table 4: pK-values of L-arginine (pK-values depend on temperature, ionic strength and                      

micro-environment of the ionisable group [6]) 

Literary source 1  [18] 2 [14] 3 [15] 4 [16] 5 [17] 

α-COOH 2.0 2.0 2.17 1.8 2.18 

α-NH3+ 9.0 9.0 9.04 9.0 9.09 

side chain  12.1 12.5 12.48 12.5 13.2 

 

L-arginine is a conditionally essential amino acid [19] [20]. This means that it can belong 

to the group of essential or to the group of non-essential amino acids, depending on 

other circumstances like age or health status. For example in times of stress the body 

can not provide sufficient amounts of arginine [20]. The body needs arginine for cell 

proliferation, neurotransmission, immunity and wound healing [20]. Arginine can also 

reduce blood pressure and renal vascular resistance in hypertensive patients after 

systemic or oral administration [19]. 

 

Arginine is a precursor for nitric oxide, urea, creatine and many other 

pharmacologically important molecules [20]. Nitric oxide is involved in the regulation of 

blood pressure [19] and cell signalling [21]. Creatine is necessary for the energy 

metabolism of muscles and nerves [19]. After dietary supplementation arginine is 

proposed to normalize or enhance wound healing but this hypothesis is still not 

confirmed [20]. 

 

L-arginine is widely used as a dietary supplement and in pharmaceuticals. 

Furthermore, it is used for biochemical research. In medicine arginine is used as 

ammonia detoxicant against hepatic failure. [17] 

 

2.4 FT-IR and Raman spectroscopy  

 

Electromagnetic irradiation with higher wavelengths than visible light is called infrared 

light. This radiation has a wavelength between 750 nm and 1 mm [22]. The IR radiation 

can be divided to near IR (750 nm to 2.5 µm), middle IR (2.5 µm to 25 µm) and far IR 

(25 µm to 1 mm), whereas basic vibrations can be seen in the mid-infrared light. If the 

light is absorbed by molecules it stimulates vibrations and rotations in the molecules. 

These vibrations and rotations can be measured directly through the absorption of the 

infrared light (IR spectroscopy) or via the dispersive light (Raman spectroscopy) [23]. 
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To find out which molecular vibrations and rotations are active in IR or Raman 

spectroscopy an easy selection rule is applied. This means that a molecules dipole 

moment changes during the vibration, if the molecular vibration is active in IR 

spectroscopy. To be active in Raman spectroscopy the polarizability of the molecule 

must change during the vibration. The polarizability describes the deformability of the 

electron cloud around a molecule or atom. [23] 

 

A mid-infrared spectrum usually displays the range between 4000 cm-1 and 400 cm-1. 

Many functional groups have characteristic vibrations and absorption bands in the 

infrared spectrum and can be easily assigned. There exist tables with the 

characteristic absorption wavelengths for the vibrations of functional groups and also 

a lot of databases contain infrared spectra for comparison. Hence the IR spectroscopy 

is a very easy and fast method to characterize a molecule. With the help of databases 

unknown molecules can often be assigned only through the characteristic absorption 

bands in the infrared spectra. One problem is that the absorption bands of the 

different molecular vibrations can also overlap in the IR spectra, which complicates 

their assignments. [23] 

 

There are two types of IR spectrophotometer. The older lattice or prism 

spectrophotometer is nowadays mostly replaced by Fourier-Transform (FT) IR 

spectrophotometer. The big advantage of FT-IR spectrophotometer is that all 

frequencies of the IR spectrum can be analysed simultaneously, which saves a lot of 

time. The resulting interferogram is then converted via Fourier-Transformation to a 

normal IR spectrum. [23] 

 

The composition of an FT-IR spectrophotometer is displayed in Figure 6. The 

polychromatic infrared light from the light source is converted to an interferogram via 

an interferometer. In a Michelson-interferometer the light passes a semi-permeable 

mirror. One half of the light is directed to a fixed mirror, the other half to a movable 

mirror. The distance of the movable mirror to the semi-permeable mirror can be 

varied. Both light beams are combined again and constructive or destructive 

interference occurs. Then the light goes through the sample to the detector and is 

registered as interferogram, which is converted to the usual spectrum via               

Fourier-Transformation. [23] 
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Figure 6: Composition of an FT-IR spectrophotometer together with an interferogram and a resulting 

spectrum. [24] 

 

There are three main advantages of FT-IR spectroscopy over the conventional IR 

spectroscopy: The new technique allows time saving because all wavelengths are 

analysed at the same time (so-called Multiplex-advantage). The measuring time is 

only a few seconds. Also the signal to noise ratio is significantly better (so-called 

Jacquinot-advantage). This is because the whole laser power is used at any time. The 

third advantage is the high wavenumber accuracy (so-called Connes-advantage). This 

is achieved by adding a monochromatic light of a certain frequency (laser) to the 

signal as internal calibration. [23] 

 

One disadvantage is the very high absorption of water in infrared spectra. Therefore, 

the spectra were evaluated only in the other regions. Figure 7 shows an IR-spectrum 

of water in chloroform and Figure 8 shows that of pure water. In Figure 7 the peaks for 

asymmetric and symmetric stretching vibrations as well as the deformation vibration 

(corresponding to the three peaks from high to low wavelengths) of water can be 

seen. 
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Figure 7: IR-spectrum of H2O in CCl4 

[25] 

 

 
Figure 8: IR-spectrum of pure H2O [25] 

 

Raman spectra are a useful extension to IR spectroscopy for the determination of 

structures. The Raman-effect results from interactions between electromagnetic 

radiation and matter. If a molecule is irradiated with monochromatic light the biggest 

part goes directly through the sample. A small amount is dispersed to all directions but 

with the same frequency as the original monochromatic light. This is called           

Rayleigh-dispersion. An even smaller amount of the light interacts with the molecule, 

changes its frequency and is then dispersed to all directions. The difference between 

the frequencies of the irradiated monochromatic light and a Raman-line is the 

frequency of the related vibration. The Raman-lines with longer wavelengths than the 

Rayleigh-frequency are called Stokes-lines, if they have shorter wavelengths they are 

called anti-Stokes-lines. [23] 

 

The composition of a classical Raman spectrophotometer is displayed in Figure 9. A 

laser light with a frequency in the visible range irradiates the sample. To raise the 

intensity the light is reflected at a mirror on the other side of the sample. The intensity 

of the diffused light is also doubled by another mirror in right angle and then focussed 
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via a lense. The light is split spectrally on a lattice and focussed on a photoelectric 

detector. A new generation of Raman spectrophotometer also uses the                

Fourier-Transform technique. For so-called FT-IR Raman spectrophotometer an 

infrared-laser is used. [23] 

 

 
Figure 9: Composition of a Raman spectrophotometer, the diffused light is shown in blue. [23] 

 

2.5 Molecular vibrations  

 

The number of molecular vibrations of a molecule (so-called normal modes) can be 

calculated via the following simple formula (n is the number of molecular vibrations 

and N is the number of atoms in the molecules) [23]: 

n = 3N-6 for non-linear molecules 

n = 3N-5 for linear molecules 

 

At physiological pH-values lysine consists of 25 atoms. Therefore, 69 molecular 

vibrations are possible. Arginine consists of 27 atoms at physiological pH-values.      

75 molecular vibrations are possible. 

 

Depending on the type the vibrations can be divided to stretching and               

bending (deformation) vibrations. Stretching vibrations are symmetric and           

asymmetric stretching, which can be seen in Figure 10. Deformation vibrations          

are scissoring (bending), rocking, twisting and wagging vibrations, which can be        

seen in Figure 11. [26] 
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Figure 10: Molecular stretching vibrations. [26] 

 

 
Figure 11: Molecular deformation vibrations. [26] 
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33  __MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS______________________________  
 

3.1 Experimental  

 

Stock solutions of L-lysine monohydrochloride (Fluka, 62929-100G-F,                             

Lot BCBF0486V) and L-arginine (EGA-Chemie, A9,240-6) were obtained by 

dissolving the amino acids in ultrapure water (provided with Millipore Milli-Q gradient 

ultrapure water system, Q-Guard 1, QGARDOOR1, with 0.22 µm Millipore MILLIPAK 

Express 0575, MPGP02001) to a concentration of 800 mM. For the measurements 

the solutions were diluted to a concentration of 400 mM with water. Different             

pH-values were adjusted by adding HCl-solution or NaOH-solution. To maintain the 

concentration of 400 mM L-lysine or L-arginine amino acid stock solutions were added 

in the same amount. The pH-values were measured with an Orion 420A pH-meter, 

whereas the electrode was cleaned with water before and after each measurement. 

For the calibration pH-buffer solutions were used. These were purchased from Fluka 

as FIXANAL pH-buffer concentrates for the pH-values 1 (38740), 4 (38743), 7 (38746) 

and 13 (38752) and prepared with 500 ml ultrapure water according to the enclosed 

guidance. The pH-meter was calibrated via two-point-calibration with the buffer 

solutions in the ranges from 1 to 4, 4 to 7 and 7 to 13. The different pH-values of 

lysine and arginine samples were determined in the corresponding calibrated range. 

All adjusted and analysed pH-values are listed in Table 5. 

 

Table 5: Analysed pH-values of lysine and arginine samples. 

0.36 0.42 0.51 0.76 0.92 1.10 1.21 1.35 1.46 

1.58 1.74 1.91 2.09 2.22 2.40 2.64 2.85 3.07 

3.31 3.61 4.51 5.35 6.85 7.65 7.92 8.14 8.35 

8.65 8.87 9.05 9.21 9.36 9.53 9.74 10.00 10.23 

10.64 10.83 11.02 11.19 11.40 11.63 11.86 12.03 12.21 

Lysine IR-measurements 

12.43 12.66 12.89 13.03 13.17     
0.56 1.06 1.49 2.12 3.30 4.87 5.88 7.89 8.58 

8.91 9.35 9.72 10.11 10.59 11.18 12.15 12.74  

Lysine Raman-measurements 

         
0.33 0.48 0.66 0.80 0.93 1.04 1.18 1.34 1.49 

1.60 1.77 1.94 2.05 2.19 2.34 2.50 2.69 2.91 

3.22 3.65 4.11 4.53 5.17 5.78 6.81 7.40 7.88 

8.08 8.29 8.48 8.65 8.79 8.98 9.18 9.37 9.48 

9.68 9.83 9.97 10.14 10.38 10.56 10.77 11.13 11.29 

11.48 11.55 11.85 11.99 12.14 12.30 12.43 12.59 12.76 

Arginine IR-measurements 

12.93 13.05 13.13       
Arginine Raman-measurements  0.41 7.25 11.25 13.17      
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3.1.1 FT-IR measurements  

 

The FT-IR transmission measurements were carried out on a Bruker IFS 25 

spectrophotometer with an MCT (mercury cadmium telluride) detector and OPUS 

software (version 4.2). For the measurements the samples were filled in a CaF2-cell 

with a 12 µm Spacer. A measurement of the real spacer thickness gave results of   

14.2 µm for lysine measurements and 16.4 µm for arginine measurements. The 

assembly of the used measuring cell is described in Figure 12. The analyses were 

carried out with opened sample department. The samples were scanned 200 times 

with a resolution of 4 cm-1. The adjusted FT-IR parameters for lysine and arginine 

samples are listed in Table 6. 

 

 
Figure 12: Assembly of the measuring cell used for the FT-IR measurements (SPECAC, Omni cell 

system, demountable cell). [27] 

 

Table 6: FT-IR spectrophotometer adjustments for lysine and arginine samples. 

Parameter Lysine samples Arginine samples 

Experiment: JH_TR_MCT.XPM JH_TR_MCT.XPM 

Resolution: 4 cm-1 4 cm-1 

Sample scan time: 200 Scans 200 Scans 

Background scan time: 200 Scans 200 Scans 

Save data: from 4000 cm-1 to 670 cm-1 from 4000 cm-1 to 670 cm-1 

Detector setting: MCT_OEC; -670; 0.8 MCT_OEC; -670; 0.8 
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Parameter Lysine samples Arginine samples 

Scanner velocity: High; 40 Khz High; 40 Khz 

Sample signal gain: 1 1 

Background signal gain: 1 1 

Laser wavenumber: 7899.00 (real 15798) 7899.00 (real 15798) 

Interferogram size: 3776 Points 3776 Points 

FT size: 8 K 8 K 

Acquisition mode: Single Sided Fast Return Single Sided Fast Return 

Correlation mode: Aroud Peak; Low Aroud Peak; Low 

Phase resolution: 64 64 

Phase interferogram points: 444 444 

Phase correction mode: Mertz Mertz 

Apodization function: Blackman-Harris; 3-Term Blackman-Harris; 3-Term 

Zerofilling factor: 2 2 

 

3.1.2 Raman measurements  

 

For the Raman measurements a Bruker VERTEX 70 spectrophotometer with LN-Ge 

Diode detector and OPUS software (version 6.5) was used. The Raman laser was set 

to 500 mW (9394,9 cm-1) and the resolution to 4 cm-1. The samples were submitted in 

glass NMR-tubes (about 100 mm high and 3 mm diameter). The lysine samples were 

measured for 30 minutes, whereas the arginine samples were measured for             

60 minutes overall to get a better signal to noise ratio. The adjusted Raman 

parameters for lysine and arginine samples are given in Table 7. 

 

Table 7: Raman spectrophotometer adjustments for lysine and arginine samples. 

Parameter Lysine samples Arginine samples 

Experiment: RAMII_Baurecht.xpm RAMII_Herrklotz.xpm 

Raman laser power: 500 mW 500 mW 

Resolution: 4 cm-1 4 cm-1 

Sample scan time: 30 minutes 2 minutes 

Repetitions: 1 30 

Save data: from 3500 cm-1 to 50 cm-1 from 4000 cm-1 to 50 cm-1 

External synchronization: Off Off 
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Parameter Lysine samples Arginine samples 

Source: Laser; 9394.9 cm-1; 500 mW Laser; 9394.9 cm-1; 500 mW 

Beam splitter: CaF2 CaF2 

Optical filter: Open Open 

Aperture: 5 mm 5 mm 

Accessories: Z_STAGE #0B7D2B4D Z_STAGE #0B7D2B4D 

Measuring channel: Raman Compartment Raman Compartment 

Detector: LN-Ge Diode [RAM 2 Pos 1] LN-Ge Diode [RAM 2 Pos 1] 

Mirror velocity: 5 kHz 5 kHz 

Sample signal gain: x1 x1 

Laser wavenumber: 15798.55 15798.55 

Interferogram size: 28436 Points 28436 Points 

FT size: 32 K 32 K 

High pass filter: Open Open 

Low pass filter: 5 kHz 5 kHz 

Acquisition mode: Double Sided;                  

Forward-Backward 

Double Sided;                       

Forward-Backward 

Correlation mode: Raman OFF 

Phase resolution: 16 16 

Phase interferogram points: 7109 7109 

Phase correction mode: Power / No Peak Search Power / No Peak Search 

Apodisation function: Blackman-Harris; 4-Term Blackman-Harris; 4-Term 

Zerofilling factor: 2 2 

 

3.1.3 Evaluation  

 

The evaluation of the FT-IR spectra as well as the Raman spectra was done with 

OPUS software (version 7.0) and the routine OPUS methods spectrum subtraction, 

peak integration, determination of peak height and curve fit were used. With the 

method spectrum subtraction the spectrum of for example water can be subtracted 

from the spectrum of a sample. The peak integration was performed by defining two 

frequency limits. A baseline was automatically generated between this frequencies 

and the resulting area was integrated. Peak heights were determined by simply taking 

the intensities at a certain frequency. 
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For regions with overlaying bands an integration via curve fit was performed. 

Therefore, the interesting wavelength range was defined and for each presumed 

absorption band a Lorentz-function was added. With the OPUS software for each 

band the peak intensity and full width at half maximum are first varied in the spectra 

where the band can be seen clearly to get a function that calculates the curve of the 

band. For the spectra with overlaying bands the determined peak intensities and full 

widths at half maxima are fixed and with these values an integration of overlaying 

bands can be performed. Figure 13 shows exemplary an automated curve fit. The 

green bands define the single absorption bands. The red lines display the 

experimental spectrum and the calculated curve fit, which is the sum of the single 

bands. 

 

 
Figure 13: Example of an automated curve fit, single absorption peaks are shown in green, experimental 

spectrum as well as the calculated curve fit is shown in red. 

 

3.2 Theoretical  

 

For a better alignment quantum mechanical calculations were carried out. Geometry 

optimizations were calculated and vibrational frequencies as well as IR-intensities and 

Raman-activities were estimated. The geometry optimization was carried out with ab 

initio (HF/3-21G) and DFT (M06-2X/6-31++G**) methods. An optimization at          

M06-2X/6-31++G** was also performed with simulated solvent water 

(SCRF=(solvent=water)). The frequencies and intensities were calculated with the 

same DFT method, once with the SCRF hydration model and once without. This 

implicit solvent model was applied as the experimental data were recorded in water. 

The hydration model was tested on ethanol (EtOH). 
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The following job types were used exactly for the theoretical calculations, whereas all 

keywords are explained in Table 8: 

Geometry optimization: 

#HF/3-21G OPT=Z-MATRIX OPTCYC=50 MAXDISK=400GB 

#M062X/6-31++G** OPT INT=ULTRAFINE OPTCYC=50 MAXDISK=400GB 

#M062X/6-31++G** OPT INT=ULTRAFINE OPTCYC=50 SCRF=(Solvent=water) MAXDISK=400GB 

Frequency calculation: 

#M062X/6-31++G** FREQ=RAMAN INT=ULTRAFINE MAXDISK=400GB 

#M062X/6-31++G** FREQ=RAMAN INT=ULTRAFINE SCRF=(Solvent=water) MAXDISK=400GB 

 

Table 8: Explanation of the keywords used for theoretical calculations. 

OPT The keyword OPT indicates the geometry optimization of the molecules. 

OPT=Z-MATRIX To perform the optimization with a Z-matrix this keyword is used. [28] 

OPTCYC=50 The keyword OPTCYC is used to define the maximum number of optimization 

cycles. 

FREQ=RAMAN With the keyword FREQ the frequencies and IR-intensities of the vibrations 

are calculated. A thermochemical analysis will also be performed [29]. For 

calculating the Raman-activities too, the keyword FREQ=RAMAN is used [30]. 

SCRF=(Solvent=water) The self-consistent reaction field (SCRF) models systems in solution [30]. 

Therefore, the additional keyword SCRF is used to calculate the optimization 

and frequencies in the presence of a solvent, whereas the solvent is defined in 

brackets. In this hydration model the molecule is placed in a cavity in the 

solvent reaction field. [31] 

INT=ULTRAFINE This keyword specifies the use of a more accurate numerical integration          

grid [32]. 

MAXDISK=400GB With the keyword MAXDISK=400GB the amount of disk storage is set to a 

maximum of 400 GB [33].  

 

The optimizations and frequency calculations were carried out with eight possible 

structures of L-lysine and L-arginine in four different protonation levels (+2, +1, 0, -1). 

The optimized structures of lysine and arginine are shown in Figure 14 and Figure 15, 

respectively. 
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Figure 14: Optimized structures of the 8 possible lysine conformations, charges are given in brackets. 

 

 
Figure 15: Optimized structures of the 8 possible arginine conformations, charges are given in brackets. 
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44  __RREESSUULLTTSS  &&   DDIISSCCUUSSSSIIOONN__________________________________  
 

4.1 L-lysine  

 

4.1.1 Spectra and band assignment  

 

In the following an assignment of the vibrational bands in the experimental IR and 

Raman spectra of L-lysine to the corresponding molecular vibrations was attempted. 

The assignments were made with the help of the theoretical calculations and different 

literary sources [1] [34]. 

 

4.1.1.1 IR spectra 

 

Figure 16 (A) shows the FT-IR spectra of 0.4 M L-lysine at all measured pH-values. 

These were analysed via integration, determination of peak heights and curve fits and 

will be discussed in the following. The stacked FT-IR spectra of selected pH-values, 

sorted from acidic to basic, are displayed in Figure 16 (B). Figure 16 (C) shows the 

FT-IR spectra at the pH-values 0.36, 5.35, 10.23 and 13.17, corresponding to the four 

different protonation states. The peak list and possible assignments are listed in    

Table 9. 

 

 

(A) 
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Figure 16: (A) IR-spectra of 0.4 M L-lysine in water at different pH-values (0.36, 0.42, 0.51, 0.76, 0.92, 

1.10, 1.21, 1.35, 1.46, 1.58, 1.74, 1.91, 2.09, 2.22, 2.40, 2.64, 2.85, 3.07, 3.31, 3.61, 4.51, 5.35, 6.85, 

7.65, 7.92, 8.14, 8.35, 8.65, 8.87, 9.05, 9.21, 9.36, 9.53, 9.74, 10.00, 10.23, 10.64, 10.83, 11.02, 11.19, 

11.40, 11.63, 11.86, 12.03, 12.21, 12.43, 12.66, 12.89, 13.03 and 13.17). (B) Stacked IR-spectra of 0.4 M 

L-lysine in water at different pH-values (0.36, 1.35, 2.40, 3.31, 8.35, 9.36, 10.23, 11.40, 12.21 and 13.17), 

sorted from acidic (top) to basic (bottom). (C) IR-spectra of 0.4 M L-lysine in water at four different       

pH-values (0.36, 5.35, 10.23 and 13.17). All spectra are given in the range from 3000 cm-1 to 1100 cm-1. 

 

 

(B) 

(C) 
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Table 9: Peak list for the IR-spectra of 0.4 M L-lysine in water, peak wavelengths [cm-1] of the average 

and at the pH-values 0.36, 5.35, 10.23 and 13.17 are given in the range from 3000 cm-1 to 1100 cm-1. 

Average pH 0.36 pH 5.35 pH 10.23 pH 13.17 Possible assignment [1] 

2871 2878 2872 2868 2865 CH2 asymmetric stretching 

2789 2789    CH2 symmetric stretching 

2654 2654 2654 2654  unknown 

2545 2545 2545   unknown 

1734 1734    C=O stretching 

1619 1620 1618   NH3
+ asymmetric bending 

1603  1603 1603  COO- asymmetric stretching (if     

α-amino group is deprotonated) 

1557   1557 1557 COO- asymmetric stretching (if     

α-amino group is protonated) 

1525 1529 1520   NH3
+ symmetric bending,          

NH3
+ symmetric rocking 

1475 1474 1475 1475  CH2 deformation 

1462 1462 1462 1462 1460 CH2 deformation 

1445 1447 1445 1445 1445 CH2 deformation 

1413  1413 1413 1413 COO- symmetric stretching 

1355  1352 1355 1359 Cγ wagging, Cδ twisting,              

Cε twisting 

1327  1327   Cβ twisting 

1299 1299    Cβ twisting, C-Cα-Hα,                     

NH3
+ asymmetric rocking 

1272 1272    unknown 

1255 1255    C-OH stretching 

1235 1233 1237   Cβ twisting, NH3
+ asymmetric 

rocking, Cβ-Cα-Hα, Cδ wagging 

1186 1188 1184   NH3
+ asymmetric rocking,            

Cε rocking 

1146 1150 1141   NH3
+ asymmetric rocking,            

C-Cα-Hα 
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4.1.1.2 Raman spectra 

 

The Raman spectra of 0.4 M L-lysine at all measured pH-values are displayed in 

Figure 17 (A). Figure 17 (B) shows the stacked Raman spectra of selected pH-values, 

sorted from acidic to basic. Figure 17 (C) shows the Raman spectra at the different 

pH-values 0.56, 5.88, 10.59 and 12.74, corresponding to the four different protonation 

states. The peak list and possible assignments are listed in Table 10. 

 

 

 

(A) 

(B) 
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Figure 17: (A) Raman-spectra of 0.4 M L-lysine in water at different pH-values (0.56, 1.06, 1.49, 2.12, 

3.30, 4.87, 5.88, 7.89, 8.58, 8.91, 9.35, 9.72, 10.11, 10.59, 11.18, 12.15 and 12.74). (B) Stacked       

Raman-spectra of 0.4 M L-lysine in water at different pH-values (0.56, 1.49, 3.30, 7.89, 8.91, 10.11, 

11.18 and 12.74), sorted from acidic (top) to basic (bottom). (C) Raman-spectra of 0.4 M L-lysine in water 

at four different pH-values (0.56, 5.88, 10.59 and 12.74). All spectra are given in the whole range from 

3500 cm-1 to 50 cm-1. 

 

Table 10: Peak list for the Raman-spectra of 0.4 M L-lysine in water, peak wavelengths [cm-1] of the 

average and at the pH-values 0.56, 5.88, 10.59 and 12.74 are given in the whole range from 3500 cm-1 to 

50 cm-1. 

Average pH 0.56 pH 5.88 pH 10.59 pH 12.74 Possible assignment  [1] 

3312    3312 unknown 

2975 2977 2979 2972  CH2 asymmetric stretching 

2936 2940 2935 2928 2929 CH2 symmetric stretching 

2874 2874 2874 2874 2874 unknown 

1734 1734    C=O stretching 

1445 1446 1445 1444 1443 Cβ bending, Cγ bending,                

Cδ bending 

1414  1414 1414 1414 COO- symmetric stretching 

1352  1352 1358 1362 Cγ wagging, Cδ twisting, Cε twisting 

1326 1328 1326 1327 1323 Cβ twisting 

1309   1309 1309 C twisting/rocking/wagging 

 

(C) 
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4.1.2 Quantitative evaluation of absorption bands a t different 

pH-values  

 

4.1.2.1 Characteristic vibrational bands of the carboxyl group 

 

The IR-spectra of 0.4 M L-lysine in water at different pH-values are shown in Figure 

18 in the range from 1800 cm-1 to 1100 cm-1. The bands for the characteristic 

molecular vibrations of the carboxyl group are marked in Figure 18 and listed in Table 

11 together with their assignments. The pK-value of the carboxyl group is around 2. 

Below this pH-value the functional group is protonated (COOH) whereas above this 

pH-value it is deprotonated (COO-). 

 

 

Figure 18: IR-spectra of 0.4 M L-lysine in water at different pH-values (0.36, 0.42, 0.51, 0.76, 0.92, 1.10, 

1.21, 1.35, 1.46, 1.58, 1.74, 1.91, 2.09, 2.22, 2.40, 2.64, 2.85, 3.07, 3.31, 3.61, 4.51, 5.35, 6.85, 7.65, 

7.92, 8.14, 8.35, 8.65, 8.87, 9.05, 9.21, 9.36, 9.53, 9.74, 10.00, 10.23, 10.64, 10.83, 11.02, 11.19, 11.40, 

11.63, 11.86, 12.03, 12.21, 12.43, 12.66, 12.89, 13.03 and 13.17), in the range from 1800 cm-1 to       

1100 cm-1, characteristic bands of the carboxyl group are marked. 
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Table 11: Wavelengths and assignments of the characteristic infrared bands for the molecular vibrations 

of the carboxyl group. 

Wavelength [cm -1] Assignment  

1734 C=O stretching 

1600 COO- asymmetric stretching (if α-amino group is 

deprotonated) 

1557 COO- asymmetric stretching (if α-amino group is 

protonated) 

1400 COO- symmetric stretching 

1255 C-OH stretching 

 

The bands for the C=O and C-OH stretching vibrations decrease with increasing           

pH-values around the pK-value. At the same time the bands for the symmetric and 

asymmetric COO- stretching vibrations appear and rise with further increasing of the 

pH-value. As the carboxyl group is deprotonated at low pH-values only the bands for 

C=O and C-OH stretching vibrations can be seen, whereas at higher pH-values the 

carboxyl group is protonated and only the bands for COO- stretching vibrations can be 

seen. For the COO- asymmetric stretching two peaks can be found in the infrared 

spectra at different wavelengths. This is because the vibration is coupled to the            

α-amino group and depends on the protonation state of this group. At pH-values up to 

around 9 the α-amino group is protonated (NH3
+) and the band for COO- asymmetric 

stretching appears around 1560 cm-1. If the α-amino group is deprotonated (NH2) at 

higher pH-values the band for COO- asymmetric stretching is shifted to 1600 cm-1. 

 

The vibrational bands for the carboxyl group were analysed via integration and 

determination of peak height. The band for C=O stretching was integrated between 

1772 cm-1 and 1696 cm-1 and the band for COO- symmetric stretching was integrated 

between 1433 cm-1 and 1390 cm-1. Peak heights were determined at 1734 cm-1               

(C=O stretching), 1557 cm-1 (COO- asymmetric stretching when the α-amino group is 

protonated) and 1255 cm-1 (C-OH stretching). The band at 1600 cm-1                   

(COO- asymmetric stretching when the α-amino group is deprotonated) was not 

evaluated as many vibrational bands are overlapping in this region. 

 

The results for the integration and determination of peak height are displayed in 

Figure 19. It can be seen that the C=O stretching vibration is only present at very low 

pH-values when the carboxyl group is still protonated. Around the pK-value of the 

carboxyl group the band for C=O stretching decreases. In the same pH-value range 
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the band for C-OH stretching decreases. Above its pK-value the carboxyl group is 

deprotonated (COO-) and therefore the bands for C=O and C-OH stretching disappear 

whereas the vibrations for COO- appear. The band for the COO- symmetric stretching 

vibration increases simultaneously to a maximum when the carboxyl group is 

deprotonated. Due to the influence of neighbouring bands it seems that the band 

decreases at higher pH-values. Also the band for COO- asymmetric stretching 

appears when the carboxyl group is deprotonated. As this vibration is coupled to the 

α-amino group it appears at two different wavelengths, depending on the protonation 

state of this amino group. Therefore, the band at 1557 cm-1 increases not until the          

α-amino group is deprotonated. 
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Figure 19: Changes of the band intensities for the characteristic molecular vibrations of the carboxyl 

group with the pH-value. integrations from 1772 cm-1 to 1696 cm-1 (C=O stretching) and from 1433 cm-1 

to 1390 cm-1 (COO- symmetric stretching) as well as determination of peak height at 1734 cm-1               

(C=O stretching), 1557 cm-1 (COO- asymmetric stretching when the α-amino group is deprotonated) and 

1255 cm-1 (C-OH stretching). 

 

4.1.2.2 Vibrational bands coupled with the carboxyl group 

 

In the IR-spectra of 0.4 M L-lysine many overlapping absorption bands appear in the 

range from 1310 cm-1 to 1100 cm-1. Besides the absorption band for C-OH stretching 

vibrations around 1255 cm-1 some other bands are also present only at low              

pH-values. The intensities of these bands decrease with increasing pH-values when 

the carboxyl group is deprotonated. An exact assignment of these bands to certain 

molecular vibrations was not possible. With the help of the theoretical calculation it 

can be said, that all these bands are coupled to vibrations of the carboxyl group. 
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In the range from 1305 cm-1 to 1122 cm-1 a curve fit was performed. Figure 20 shows 

the changes of the band intensities for the six peaks at 1300 cm-1, 1275 cm-1,              

1254 cm-1, 1233 cm-1, 1188 cm-1 and 1149 cm-1 with the pH-value. All band intensities 

decrease with the deprotonation of the carboxyl group. Between the pH-values 0 and 

4 the intensities of the three bands at 1275 cm-1, 1254 cm-1 and 1233 cm-1 decrease 

to zero. Only the band at 1275 cm-1 seems to increase again at pH-values higher than 

10, but this is due to bad baselines. The band intensity at 1300 cm-1 also seems to 

rise at pH-values higher than 9 due to baseline problems. The intensities of the two 

bands at 1188 cm-1 and 1149 cm-1 first decrease with the deprotonation of the 

carboxyl group and further decrease at pH-values higher than 9. This may also be due 

to bad baselines. An exact assignment to a certain molecular vibration could not be 

made. 
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Figure 20: Changes of the band intensities at 1300 cm-1, 1275 cm-1, 1254 cm-1, 1233 cm-1, 1188 cm-1 and 

1149 cm-1 (analysed via curve fit) with the pH-value. 

 

4.1.2.3 Characteristic vibrational bands of the CH2 groups 

 

The characteristic IR bands for CH2 stretching vibrations are located between          

2900 cm-1 and 2700 cm-1. Those for CH2 deformation vibrations are located between 

1480 cm-1 and 1430 cm-1. 

 

The two peaks for the symmetric and asymmetric CH2 stretching vibrations were 

analysed via integration of the band. These integrations were performed between 

2897 cm-1 and 2847 cm-1 for the peak around 2871 cm-1 (CH2 asymmetric stretching) 
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and between 2818 cm-1 and 2735 cm-1 for the peak around 2789 cm-1 (CH2 symmetric 

stretching). The results of the peak integration are shown in Figure 21. The band for 

the asymmetric stretching vibration slightly decreases when the carboxyl group is 

deprotonated. The band intensity mainly changes for the different protonation state of 

the ε-amino group and increases when this functional group is deprotonated. The 

band intensity for the symmetric stretching vibration mainly changes around the       

pK-value of the carboxyl group. It is more intense at low pH-values and decreases 

when the carboxyl group is deprotonated. At higher pH-values the band slightly 

increases again. 
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Figure 21: Changes of the integrations from 2897 cm-1 to 2847 cm-1 (CH2 asymmetric stretching) and 

from 2818 cm-1 to 2735 cm-1 (CH2 asymmetric stretching) with the pH-value. 

 

For the CH2 deformation vibrations there is one peak less than CH2 groups in the 

amino acid side chain. As L-lysine has four CH2 groups there are three peaks in the 

corresponding wavelength range. Figure 22 shows the IR spectra of 0.4 M L-lysine at 

different pH-values in the range from 1485 cm-1 and 1425 cm-1, whereas the three 

bands for CH2 deformation vibrations are marked. 
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Figure 22: IR-spectra of 0.4 M L-lysine in water at different pH-values (0.36, 0.42, 0.51, 0.76, 0.92, 1.10, 

1.21, 1.35, 1.46, 1.58, 1.74, 1.91, 2.09, 2.22, 2.40, 2.64, 2.85, 3.07, 3.31, 3.61, 4.51, 5.35, 6.85, 7.65, 

7.92, 8.14, 8.35, 8.65, 8.87, 9.05, 9.21, 9.36, 9.53, 9.74, 10.00, 10.23, 10.64, 10.83, 11.02, 11.19, 11.40, 

11.63, 11.86, 12.03, 12.21, 12.43, 12.66, 12.89, 13.03 and 13.17), in the range from 1485 cm-1 to        

1425 cm-1, characteristic bands for the CH2 deformation vibrations are marked. 

 

A curve fit was performed for the three bands between 1480 cm-1 and 1430 cm-1. The 

changes of the band intensities at 1444 cm-1, 1461 cm-1 and 1475 cm-1 with the        

pH-value can be seen in Figure 23. All band intensities change with the protonation 

state of the carboxyl group. The two bands at 1461 cm-1 and 1475 cm-1 decrease 

when the carboxyl group is deprotonated, whereas the band at 1444 cm-1 increases 

from zero to a maximum. At higher pH-values the bands around 1444 cm-1 and         

1475 cm-1 decrease again between the pH-values 8 and 12. The band at 1461 cm-1 

slightly increases when the ε-amino group is deprotonated. 
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Figure 23: Changes of the band intensities at 1444 cm-1, 1461 cm-1 and 1475 cm-1 (analysed via curve fit) 

with the pH-value. 

 

4.1.2.4 Vibrational bands coupled with the amino groups 

 

Two absorption bands were detected at 1508 cm-1 and 1521 cm-1 that were assigned 

to molecular vibrations coupled with the amino groups. Therefore, these bands were 

integrated from 1513 cm-1 to 1504 cm-1 and from 1532 cm-1 to 1513 cm-1. The results 

of the integrations are displayed in Figure 24. As the frequency ranges for the 

integrations were not ideal and due to the influence of other absorption bands the 

results of the integrations also reach negative values. With decreasing pH-values the 

intensities of both bands decrease. They do not decrease equally, which means that 

they are coupled to the carboxyl group to a different extent. At pH-values above 7 both 

absorption bands decrease with increasing pH-values at the same time to a minimum. 

Both vibrations are coupled to deformation vibrations of the amino groups, but 

unfortunately, it can not be said exactly which amino group is involved. With the help 

of the theoretical calculations it seems that the main vibration for the band at 1508 cm-

1 comes from a deformation vibration of the ε-amino group. For the band at 1521 cm-1 

both amino groups can be involved, the theoretical calculations show bands for the     

α-amino group as well as the ε-amino group in the possible frequency range with a 

difference of only one cm-1. 
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Figure 24: Changes of the integrations from 1513 cm-1 to 1504 cm-1 and from 1532 cm-1 to 1513 cm-1 

with the pH-value. 

 

4.1.2.5 Vibrational bands around 2650 cm-1 and 2550 cm-1 

 

Two absorption bands were found in the infrared spectra of L-lysine at around            

2650 cm-1 and 2550 cm-1, that could not be assigned to a certain molecular vibration. 

These two bands were analysed via integration as well as curve fit. The intensities of 

the bands seem to change according to the protonation and deprotonation of the 

carboxyl group as well as the ε-amino group. 

 

Figure 25 shows the results for the integration of the two unknown bands whereas 

Figure 26 shows the results of the curve fits. In both figures it can be seen that the 

intensities of the bands first decrease when the carboxyl group is deprotonated. When 

the ε-amino group is deprotonated the intensities of the bands decreases further. 

Unfortunately, no assignment was possible for these bands. Also with the help of the 

theoretical calculations as well as existing literature absorption bands in this 

wavelength region could not be assigned to any molecular vibration. 
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Figure 25: Changes of the integrations from 2696 cm-1 to 2606 cm-1 and from 2570 cm-1 to 2503 cm-1 

with the pH-value. 
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Figure 26: Changes of the band intensities at 2655 cm-1 and 2546 cm-1 (analysed via curve fit) with the 

pH-value. 
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4.2 L-arginine  

 

4.2.1 Spectra and band assignment  

 

In the following an assignment of the vibrational bands in the experimental IR and 

Raman spectra of L-arginine to the corresponding molecular vibrations was 

attempted. The assignments were made with the help of the theoretical calculations 

and different literary sources [1] [34]. 

 

4.2.1.1 IR spectra 

 

Figure 27 (A) shows the FT-IR spectra of 0.4 M L-arginine at all measured pH-values. 

Figure 27 (B) displays the stacked FT-IR spectra of selected pH-values, sorted from 

acidic (top) to basic (bottom). The FT-IR spectra at the pH-values 0.33, 5.78, 10.56 

and 13.13, corresponding to the four different protonation states are shown in       

Figure 27 (C). The peak list and possible assignments are listed in Table 12. 

 

 

(A) 



page 39 of 140 

 

 
Figure 27: (A) IR-spectra of 0.4 M L-arginine in water at different pH-values (0.33, 0.48, 0.66, 0.80, 0.93, 

1.04, 1.18, 1.34, 1.49, 1.60, 1.77, 1.94, 2.05, 2.19, 2.34, 2.50, 2.69, 2.91, 3.22, 3.65, 4.11, 4.53, 5.17, 

5.78, 6.81, 7.40, 7.88, 8.08, 8.29, 8.48, 8.65, 8.79, 8.98, 9.18, 9.37, 9.48, 9.68, 9.83, 9.97, 10.14, 10.38, 

10.56, 11.77, 11.13, 11.29, 11.48, 11.55, 11.85, 11.99 , 12.14, 12.30, 12.43, 12.59, 12.76, 12.93, 13.05 

and 13.13). (B) Stacked IR-spectra of 0.4 M L-arginine in water at different pH-values (0.33, 1.34, 2.34, 

3.22, 8.29, 9.37, 10.38, 11.29, 12.30 and 13.13), sorted from acidic (top) to basic (bottom). (C) IR-spectra 

of 0.4 M L-arginine in water at different pH-values (0.33, 5.78, 10.56 and 13.13). All spectra are given in 

the range from 3000 cm-1 to 1100 cm-1. 

 

(B) 

(C) 
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Table 12: Peak list for the IR-spectra of 0.4 M L-arginine in water, peak wavelengths [cm-1] of the average 

and at the pH-values 0.33, 5.78, 10.56 and 13.13 are given in the range from 3000 cm-1 to 1100 cm-1. 

Average pH 0.33 pH 5.78 pH 10.56 pH 13.13 Possible assignment  [1] [34] 

2870 2870 2870 2870 2870 CH2 asymmetric stretching 

2769 2769 2769   CH2 symmetric stretching 

2660 2660 2648   unknown 

2578 2578    unknown 

1734 1734    C=O stretching 

1680 1680 1680 1680 1680 NH2 bending 

1665  1665 1665 1665 NH3
+ asymmetric bending 

1635  1635 1635  N2-H2 bending, C-N2-H2 symmetric 

bending 

1561   1561 1561 COO- asymmetric stretching 

1526 1531 1520   NH3
+ symmetric bending,                 

NH3
+ symmetric rocking 

1474 1471 1474 1473 1473 CH2 deformation 

1454 1454 1454 1454 1454 CH2 deformation 

1411  1411 1411 1411 COO- symmetric stretching 

1369 1369    N-Cα-Hα, Cβ-Cα-Hα 

1362   1362 1362 N-Cα-Hα, Cβ-Cα-Hα 

1352  1352   N-Cα-Hα, Cβ-Cα-Hα 

1297 1297    Cγ rocking, Cδ twisting 

1270 1270    Cδ twisting, Cγ wagging, Cβ twisting 

1253 1253    C-OH stretching 

1215 1215 1213 1213 1213 NH3
+ asymmetric rocking, Cβ twisting, 

Cδ twisting 

1175 1175 1175 1178 1178 C-N2-H2 asymmetric bending 

 

4.2.1.2 Raman spectra 

 

The Raman spectra of 0.4 M L-arginine at all measured pH-values (0.41, 7.25, 11.25 

and 13.17, corresponding to the four different protonation states) are displayed in 

Figure 28 (A). The stacked Raman spectra of all four pH-values (0.41, 7.25, 11.25 and 

13.17), sorted from acidic to basic, are displayed in Figure 28 (B). The peak list and 

possible assignments are listed in Table 13. 
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Figure 28: (A) Raman-spectra of 0.4 M L-arginine in water at all four different pH-values (0.41, 7.25, 

11.25 and 13.17). (B) Stacked Raman-spectra of 0.4 M L-arginine in water at different pH-values (0.41, 

7.25, 11.25 and 13.17), sorted from acidic (top) to basic (bottom). All spectra are given in the whole range 

from 4000 cm-1 to 50 cm-1. 

 

 

 

 

 

(A) 

(B) 
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Table 13: Peak list for the Raman-spectra of 0.4 M L-arginine in water, peak wavelengths [cm-1] of the 

average and at the pH-values 0.41, 7.25, 11.25 and 13.17 are given in the whole range from 4000 cm-1 to 

50 cm-1. 

Average pH 0.41 pH 7.25 pH 11.25 pH 13.17 Possible assignment  [1] [34] 

2948 2948 2948 2935 2935 CH2 stretching 

1734 1734    C=O stretching 

1446 1446 1446 1446 1446 N1-C-N2 asymmetric 

stretching, C-Nε-Hε 

1411  1411 1411 1411 COO- symmetric stretching, 

Cβ rocking, Cγ wagging 

1356  1355 1365 1366 N-Cα-Hα, Cβ-Cα-Hα 

1319 1326 1319 1316 1316 Cβ twisting, Cγ rocking,       

Cβ-Cα-Hα 

1170 1170 1170 1179  C-N2-H2 asymmetric bending 

1082 1082 1082 1082 1082 C-N1-H2 asymmetric 

bending, CN stretching 

 

4.2.2 Quantitative evaluation of absorption bands a t different 

pH-values  

 

4.2.2.1 Characteristic vibrational bands of the carboxyl group 

 

Figure 29 shows the IR-spectra of 0.4 M L-arginine in water at different pH-values. 

The bands for the characteristic molecular vibrations of the carboxyl group are marked 

and listed in Table 14 together with their assignments. The pK-value of the carboxyl 

group is around 2. Below this pH-value the functional group is protonated (COOH) 

whereas above this pH-value it is deprotonated (COO-). 
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Figure 29: IR-spectra of 0.4 M L-arginine in water at different pH-values (0.33, 0.48, 0.66, 0.80, 0.93, 

1.04, 1.18, 1.34, 1.49, 1.60, 1.77, 1.94, 2.05, 2.19, 2.34, 2.50, 2.69, 2.91, 3.22, 3.65, 4.11, 4.53, 5.17, 

5.78, 6.81, 7.40, 7.88, 8.08, 8.29, 8.48, 8.65, 8.79, 8.98, 9.18, 9.37, 9.48, 9.68, 9.83, 9.97, 10.14, 10.38, 

10.56, 11.77, 11.13, 11.29, 11.48, 11.55, 11.85, 11.99 , 12.14, 12.30, 12.43, 12.59, 12.76, 12.93, 13.05 

and 13.13), in the range from 1800 cm-1 to 1100 cm-1, characteristic bands of the carboxyl group are 

marked. 

 

Table 14: Wavelengths and assignments of the characteristic infrared bands for the molecular vibrations 

of the carboxyl group. 

Wavelength [cm -1] Assignment  

1735 C=O stretching 

1561 COO- asymmetric stretching 

1411 COO- symmetric stretching 

1253 C-OH stretching 

 

The bands for the characteristic molecular vibrations of the carboxyl group in              

L-arginine are similar to those in L-lysine and were therefore not evaluated again       

for arginine. They were only checked visually and compared to the                 

theoretical calculations. The bands for the C=O and C-OH stretching vibrations 

decrease with increasing pH-values around the pK-value. At the same time                 

the bands for the symmetric and asymmetric COO- stretching vibrations appear          

and rise with further increasing of the pH-value. As the carboxyl group is      

deprotonated at low pH-values only the bands for C=O and C-OH stretching    
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vibrations can be seen, whereas at higher pH-values the carboxyl group is protonated 

and only the bands for COO- stretching vibrations can be seen. 

 

A curve fit was performed only in the range from 1425 cm-1 to 1395 cm-1 with one 

peak at 1411 cm-1 to evaluate the COO- symmetric stretching. The change of the band 

intensity with the pH-value is shown in Figure 30. First the band increases around a 

pH-value of 2 when the carboxyl group is deprotonated. Around the pK-values of the 

α-amino group the band decreases slightly and increases again at higher pH-values 

around the pK-value of the guanidine group. This means, that the vibration of the 

COO- group is slightly connected to the protonation states of the amino group and the 

guanidine group. 
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Figure 30: Changes of the absorption band at 1411 cm-1 (analysed via curve fit) with the pH-value. 

 

4.2.2.2 Vibrational bands coupled with the carboxyl group 

 

In the range from 1380 cm-1 to 1345 cm-1 a curve fit was performed for three 

absorption bands at 1369 cm-1, 1362 cm-1 and 1352 cm-1. Figure 31 shows the results 

of this curve fit. The intensities of all three bands change with the protonation of the 

carboxyl group as well as the α-amino group. The band at 1369 cm-1 first decreases 

to a minimum when the carboxyl group is deprotonated and rises again with the 

deprotonation of the α-amino group. In contrast, the band at 1352 cm-1 first increases 

to a maximum with the deprotonation of the carboxyl group and decreases again 

when the α-amino group is deprotonated. The band at 1362 cm-1 appears when the 

carboxyl group is deprotonated. It first increases around the pK-value of the          
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carboxyl group and increases to a maximum when the α-amino group is 

deprotonated. With the help of the theoretical calculations it can be said that these 

vibrations are coupled with vibrations of the carboxyl group. 
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Figure 31: Changes of the absorption bands at 1369 cm-1, 1362 cm-1 and 1352 cm-1 (analysed via curve 

fit) with the pH-value. 

 

4.2.2.3 Characteristic vibrational bands of the CH2 groups 

 

In infrared spectra the characteristic bands for CH2 stretching vibrations are located 

between 2900 cm-1 and 2700 cm-1, whereas those for CH2 deformation vibrations are 

located between 1490 cm-1 and 1430 cm-1. 

 

For the evaluation of the CH2 stretching vibrations a curve fit was performed for the 

two bands at 2870 cm-1 and 2769 cm-1. Figure 32 shows the results of the curve fit. 

The band intensity at 2870 cm-1 seems to change with the deprotonation of the 

carboxyl group. At higher pH-values the band intensity increases again, which means 

that it also correlates with the protonation state of the guanidine group. The band at 

2769 cm-1 is mainly connected to the α-amino group and increases when this group is 

deprotonated. 
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Figure 32: Changes of the absorption bands at 2870 cm-1 and 2769 cm-1 (analysed via curve fit) with       

the pH-value. 

 

For the CH2 deformation vibrations in the IR spectra there appears one peak less than 

there are CH2 groups in the amino acid side chain. L-arginine has three CH2 groups, 

so there are two peaks in the corresponding wavelength range. Figure 33 shows the 

IR spectra of 0.4 M L-lysine at different pH-values in the range from      1485 cm-1 and 

1425 cm-1, whereas the two bands for CH2 deformation vibrations are marked. 
 

 
Figure 33: IR-spectra of 0.4 M L-arginine in water at different pH-values (0.33, 0.48, 0.66, 0.80, 0.93, 

1.04, 1.18, 1.34, 1.49, 1.60, 1.77, 1.94, 2.05, 2.19, 2.34, 2.50, 2.69, 2.91, 3.22, 3.65, 4.11, 4.53, 5.17, 

5.78, 6.81, 7.40, 7.88, 8.08, 8.29, 8.48, 8.65, 8.79, 8.98, 9.18, 9.37, 9.48, 9.68, 9.83, 9.97, 10.14, 10.38, 

10.56, 11.77, 11.13, 11.29, 11.48, 11.55, 11.85, 11.99 , 12.14, 12.30, 12.43, 12.59, 12.76, 12.93, 13.05 

and 13.13), in the range from 1485 cm-1 to 1425 cm-1, characteristic bands for theCH2 deformation 

vibrations are marked. 
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A curve fit was performed for the two bands between 1480 cm-1 and 1440 cm-1.   

Figure 34 shows the changes of the band intensities at 1474 cm-1 and 1454 cm-1 with 

the pH-value. Unfortunately, the results are not very good. The intensity of the band at 

1474 cm-1 seems to be constant for nearly all pH-values. Only at low pH-values the 

intensity varies, it seems that the vibration changes with the protonation state of the 

carboxyl group. The intensity of the band at 1454 cm-1 increases when the           

carboxyl group is deprotonated. With the deprotonation of the amino group the band 

decreases again and slightly increases when the guanidine group is deprotonated. 
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Figure 34: Changes of the integrations from 1481 cm-1 to 1470 cm-1 and from 1456 cm-1 to 1447 cm-1 

with the pH-value. 

 

4.2.2.4 Vibrational bands around 2650 cm-1 and 2550 cm-1 

 

Between 2700 cm-1 and 2500 cm-1 two absorption bands were detected in the infrared 

spectra of L-arginine that were already found in the infrared spectra of L-lysine 

samples. The two bands at 2660 cm-1 and 2578 cm-1 were analysed via curve fit but 

unfortunately they could not be assigned to a certain molecular vibration. Figure 35 

shows the changes of the intensities of these two bands with the pH-value. Both 

bands decrease with the deprotonation of the carboxyl group. The band at 2660 cm-1 

decreases further with the deprotonation of the α-amino group. Also with the help of 

the theoretical calculations as well as existing literature an assignment for absorption 

bands in this wavelength region to any molecular vibration was not possible. 
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Figure 35: Changes of the absorption bands at 2660 cm-1 and 2578 cm-1 (analysed via curve fit) with the 

pH-value. 

 

4.3 Results of the theoretical calculations 
 

4.3.1 Ethanol  

 

The optimized structure of the EtOH-molecule after optimization with                       

M06-2X/6-31++G** with SCRF=(solvent=water) is shown in Figure 36. The 

corresponding bond lengths and important angles are listed in Table 15 for all 

calculation methods used for optimization. 

 

 
Figure 36: Optimized structure of an EtOH molecule. 
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Table 15: Optimized bond lengths, angles and dihedral angles for an EtOH-molecule, calculated with 

HF/3-21G, M06-2X/6-31++G** and M06-2X/6-31++G** SCRF=(solvent=water) calculation methods. 

 HF M06-2X M06-2X SCRF 

Bond length O-H9 0.966 0.963 0.964 

Bond length O- αC 1.444 1.420 1.426 

Bond length αC-βC 1.524 1.515 1.515 

Bond length αC-H6 1.085 1.099 1.097 

Bond length αC-H7 1.085 1.099 1.097 

Bond length βC-H2 1.082 1.093 1.094 

Bond length βC-H3 1.082 1.093 1.094 

Bond length βC-H4 1.084 1.094 1.093 

Angle H9-O- αC 110.861 109.473 108.895 

Angle O- αC-βC 106.204 107.446 107.844 

Dihedral angle O- αC-βC-H4 -180.035 -180.032 -180.035 

Dihedral angle H9-O- αC-βC -179.997 -179.998 -179.998 

 

Table 16 shows the frequencies as well as the IR intensities and Raman activities of 

the EtOH molecule, calculated without simulated water (M06-2X/6-31++G**) and with 

simulated water using the SCRF hydration model (M06-2X/6-31++G** and 

SCRF=(solvent=water)). To compare the results of the calculations with and without 

simulated solvent Lorentz-functions were established. The comparison of the            

IR-spectra is displayed in Figure 37, the comparison of the Raman-spectra is shown 

in Figure 38. 

 

Table 16: Calculated frequencies, IR-intensities and Raman-activities of EtOH with and without simulated 

water. 

without simulated water with simulated water (SCRF) 

Frequencies IR-intensity Raman-activity  Frequencies IR-intensity Raman-activity  

236.79 82.87 0.52 226.12 173.96 1.12 

278.31 65.70 1.47 274.46 39.01 1.36 

423.43 12.59 0.36 424.36 17.31 0.59 

822.05 0.00 0.17 817.92 0.05 0.35 

921.94 8.70 6.56 915.73 14.83 10.26 

1050.59 44.68 4.68 1049.18 60.72 6.78 

1140.78 42.12 7.74 1124.49 74.45 12.54 
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without simulated water with simulated water (SCRF) 

Frequencies IR-intensity Raman-activity  Frequencies IR-intensity Raman-activity  

1183.32 4.50 0.80 1179.62 7.33 0.76 

1264.39 87.61 3.17 1258.13 112.46 4.72 

1304.42 0.04 11.12 1302.93 0.07 22.59 

1402.50 1.20 0.21 1398.09 2.88 0.50 

1459.64 18.27 4.46 1454.43 21.88 10.27 

1490.53 6.75 11.52 1481.11 10.56 21.19 

1508.10 3.15 14.46 1493.79 3.84 25.95 

1535.75 2.10 5.12 1529.27 2.44 9.26 

3027.40 70.19 137.24 3045.07 86.36 266.39 

3062.21 54.23 110.68 3074.55 21.92 320.13 

3078.60 15.16 161.18 3083.07 61.96 226.96 

3160.25 25.59 65.34 3154.79 54.64 90.08 

3164.67 27.65 49.07 3159.35 36.59 128.81 

3912.06 39.56 108.55 3892.24 79.00 155.11 
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Figure 37: Calculated IR-spectra of EtOH, via Lorentz-function, without and with SCRF hydration model. 
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Figure 38: Calculated Raman-spectra of EtOH, via Lorentz-function, without and with                           

SCRF hydration model. 

 

Most frequencies are slightly red shifted, but not by more than 10 cm-1. Only few 

frequencies are red shifted by more than 10 cm-1 or blue shifted. The intensities are 

affected much more and are significantly higher with the SCRF hydration model. The 

hydration model leads to reasonable changes in the spectra and from the calculations 

on ethanol it can be concluded that this model is also suitable for calculations on both 

amino acids. 

 

4.3.2 L-lysine  

 

The structure optimization with the three methods Hartree-Fock (HF/3-21G) and        

M06-2X (M06-2X/6-31++G** with and without SCRF) worked very well. Only the 

structures lys_2, lys_5 and lys_6 could not be optimized with the M06-2X method 

without simulated water. The structure of lys_2 could not be optimized as the molecule 

coiled because of the different charges on both ends of the molecule. In the molecules 

lys_5 and lys_6 the H+ from the NH3
+ group was transferred to the COO- group during 

the optimization of the structures. If the calculation was performed with SCRF all 

structures could be optimized without proton transfer. The optimized structures with 

simulated water can be seen in Figure 14 on page 23, due to the solvent all structures 

are stretched. Optimized bond lengths and atom distances after structure optimization 

and frequency calculation with the M06-2X method with SCRF hydration model are 

given in Table 17 for all eight lysine tautomers. 
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Table 17: Optimized bond lengths and atom distances for all eight lysine-tautomers, calculated with 

simulated water (M06-2X/6-31++G** SCRF=(solvent=water)). 

 lys_1 lys_2 lys_3 lys_4 lys_5 lys_6 lys_7 lys_8 

αC-αN 1.50 1.50 1.46 1.50 1.47 1.50 1.46 1.47 

εC-εN 1.50 1.50 1.50 1.46 1.50 1.47 1.47 1.47 

N N 7.45 7.48 7.53 7.51 7.52 7.44 7.43 7.44 

C=O 1.21 1.24 1.21 1.21 1.26 1.24 1.21 1.26 

C=O / C-OH 1.32 1.26 1.34 1.32 1.26 1.26 1.34 1.26 

O O 2.25 2.26 2.24 2.25 2.25 2.26 2.24 2.25 

C-αC 1.52 1.56 1.52 1.52 1.55 1.55 1.52 1.55 

αC-βC 1.53 1.53 1.54 1.53 1.54 1.53 1.54 1.52 

βC-γC 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 

γC-δC 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 

δC-εC 1.52 1.52 1.52 1.53 1.52 1.52 1.52 1.52 

C βC 2.54 2.61 2.49 2.53 2.52 2.56 2.48 2.59 

C γC 3.10 3.32 3.03 3.09 3.03 3.10 3.00 3.28 

C δC 4.53 4.66 4.45 4.53 4.45 4.52 4.44 4.63 

C εC 5.47 5.67 5.38 5.49 5.37 5.48 5.38 5.65 

αC γC 2.56 2.55 2.58 2.57 2.57 2.56 2.58 2.55 

αC δC 3.90 3.90 3.93 3.91 3.92 3.90 3.93 3.91 

αC εC 5.07 5.05 5.09 5.10 5.08 5.09 5.12 5.09 

βC δC 2.51 2.52 2.53 2.52 2.53 2.53 2.53 2.54 

βC εC 3.86 3.87 3.87 3.89 3.87 3.89 3.89 3.90 

γC εC 2.51 2.50 2.51 2.54 2.51 2.53 2.54 2.54 

αC-H 1.09 1.09 1.09 1.09 1.10 1.09 1.10 1.11 

βC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

βC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

γC-H 1.09 1.09 1.10 1.10 1.10 1.10 1.10 1.10 

γC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

δC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

δC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

εC-H 1.09 1.09 1.09 1.10 1.09 1.10 1.10 1.10 

εC-H 1.09 1.09 1.09 1.10 1.09 1.10 1.10 1.10 
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In Figure 39 the IR spectra of lys_1 calculated without and with SCRF hydration 

model are displayed. It can be seen that the wavelengths of the vibrational bands do 

not differ very much. Only the intensities of the peaks vary. Comparisons of the 

calculated IR and Raman spectra (with simulated water) for the eight tautomers of      

L-lysine are shown in Figure 40 and Figure 41, respectively. Table 18 to Table 25 give 

the results of the frequency calculations for the structures lys_1 to lys_8. These tables 

include the calculated frequencies, IR-intensities and Raman-activities calculated with 

the M06-2X/6-31++G** method without and with the hydration model. The 

corresponding theoretical IR and Raman spectra without and with solvent water are 

given in the appendix. As the structures lys_2, lys_5 and lys_6 could not be optimized, 

no frequencies, IR-intensities and Raman-activities were calculated without simulated 

water and therefore no frequencies and theoretical spectra can be shown for these 

structures. 
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Figure 39: Comparison of the IR-spectra of lys_1 calculated with the method M06-2X/6-31++G** without 

and with SCRF hydration model. 
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Figure 40: Comparison of the IR-spectra of all eight tautomers of L-lysine (lys_1, lys_2, lys_3,             

lys_4, lys_5, lys_6, lys_7 and lys_8), calculated with the method M06-2X/6-31++G** with                   

SCRF hydration model. 

 

 
Figure 41: Comparison of the Raman-spectra of all eight tautomers of L-lysine (lys_1, lys_2, lys_3,           

lys_4, lys_5, lys_6, lys_7 and lys_8), calculated with the method M06-2X/6-31++G** with                    

SCRF hydration model. 
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Table 18: Calculated frequencies, IR-intensities and Raman-activities for lys_1, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 40.85 3.66 0.54 1 46.34 9.51 1.43 

2 50.58 4.73 0.34 2 62.97 0.50 0.42 

3 79.71 7.28 0.46 3 72.39 14.96 0.67 

4 95.80 15.44 0.09 4 91.48 20.60 0.11 

5 131.13 2.44 0.03 5 143.33 1.82 0.05 

6 150.78 3.45 0.11 6 145.33 8.72 0.17 

7 171.40 1.47 0.25 7 192.57 6.95 0.61 

8 196.09 7.47 0.51 8 259.70 15.94 0.69 

9 232.76 0.02 0.01 9 271.07 0.90 0.11 

10 269.25 1.67 2.17 10 279.72 6.68 1.62 

11 302.71 3.35 2.70 11 299.84 9.83 2.88 

12 327.68 19.02 0.32 12 317.46 8.24 1.70 

13 411.46 16.19 1.09 13 411.99 29.37 1.93 

14 458.87 5.31 0.74 14 462.72 6.96 0.65 

15 525.31 45.16 0.96 15 530.23 54.80 1.10 

16 634.19 60.26 2.18 16 583.10 176.93 0.77 

17 656.08 56.00 1.39 17 641.14 10.93 5.04 

18 741.65 18.27 0.19 18 742.65 23.15 0.41 

19 758.97 36.19 0.43 19 763.76 17.24 0.64 

20 781.25 17.68 2.41 20 789.62 30.13 4.80 

21 825.56 26.85 3.99 21 830.26 29.18 7.50 

22 901.67 7.17 0.51 22 909.12 6.09 2.05 

23 910.12 13.09 7.99 23 929.79 20.86 9.55 

24 962.64 6.84 6.42 24 982.05 17.03 14.06 

25 983.19 11.78 2.46 25 994.34 22.55 2.41 

26 984.90 14.65 1.08 26 1008.48 10.37 1.04 

27 1014.08 3.30 3.98 27 1043.31 8.24 7.43 

28 1057.68 4.28 3.02 28 1070.52 5.98 2.87 

29 1075.12 0.20 8.44 29 1089.09 0.38 16.15 

30 1086.89 6.80 2.75 30 1102.83 11.03 3.79 

31 1122.89 44.08 3.20 31 1132.35 88.91 6.44 

32 1152.87 16.50 3.78 32 1161.70 24.22 8.14 

33 1194.19 9.02 3.23 33 1204.66 17.61 6.24 

34 1218.28 172.27 3.33 34 1207.80 267.47 6.58 

35 1249.42 2.49 1.08 35 1256.83 2.43 2.50 

36 1292.33 0.78 0.30 36 1292.81 1.11 0.29 

37 1308.90 1.42 0.96 37 1312.10 5.72 2.00 



page 56 of 140 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1343.78 15.91 2.16 38 1344.52 17.04 17.28 

39 1354.99 8.89 20.75 39 1355.29 40.73 33.41 

40 1359.17 4.11 1.96 40 1365.41 5.59 3.49 

41 1372.00 2.72 0.52 41 1372.57 5.79 0.67 

42 1388.61 7.13 2.55 42 1391.06 20.72 9.50 

43 1427.32 8.65 0.21 43 1424.78 14.76 0.93 

44 1439.54 7.27 1.50 44 1444.52 10.48 2.67 

45 1468.60 74.67 3.47 45 1473.51 64.48 11.73 

46 1494.71 8.01 7.17 46 1485.19 7.80 35.87 

47 1498.77 8.47 9.28 47 1494.28 19.01 3.27 

48 1506.77 3.11 8.36 48 1506.30 23.22 8.76 

49 1516.87 25.22 0.86 49 1513.73 36.61 1.13 

50 1527.08 229.64 0.77 50 1528.65 235.58 1.01 

51 1536.12 171.32 0.94 51 1529.87 208.71 0.79 

52 1628.90 48.14 5.52 52 1634.55 72.34 7.05 

53 1662.93 47.33 5.81 53 1659.07 74.01 9.13 

54 1663.60 56.76 6.23 54 1662.28 64.94 7.94 

55 1667.58 54.65 3.65 55 1673.06 71.21 6.11 

56 1896.73 319.12 10.52 56 1851.38 589.03 26.82 

57 3056.10 5.72 155.22 57 3065.85 10.53 572.33 

58 3060.21 4.51 88.86 58 3070.39 1.56 178.92 

59 3082.16 9.13 24.99 59 3080.03 52.42 11.31 

60 3105.64 4.45 114.40 60 3111.31 6.49 355.35 

61 3109.91 0.82 11.63 61 3121.25 0.47 53.11 

62 3122.96 0.44 72.33 62 3132.07 8.60 185.17 

63 3141.91 7.74 22.20 63 3139.27 48.75 9.71 

64 3145.57 0.84 30.88 64 3160.58 0.33 130.51 

65 3186.73 0.03 31.82 65 3195.43 5.60 83.82 

66 3338.57 106.61 53.73 66 3419.70 86.48 143.80 

67 3407.60 91.32 95.83 67 3443.91 75.15 159.69 

68 3457.63 156.35 60.98 68 3506.08 197.73 51.49 

69 3496.74 140.98 44.71 69 3533.19 176.77 66.44 

70 3501.19 121.93 24.68 70 3534.63 156.01 47.91 

71 3514.98 127.01 31.68 71 3540.51 168.05 68.00 

72 3755.80 233.97 88.32 72 3779.47 224.07 151.12 
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Table 19: Calculated frequencies, IR-intensities and Raman-activities for lys_2, calculated with the 

method M06-2X/6-31++G** with simulated water using the SCRF hydration model (no frequencies could 

be calculated without simulated water). 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    1 33.72 2.02 3.05 

    2 51.52 30.57 0.23 

    3 79.09 16.73 0.29 

    4 99.28 11.86 0.11 

    5 133.88 13.13 0.07 

    6 152.55 4.21 0.05 

    7 197.23 28.47 1.27 

    8 214.36 22.32 0.69 

    9 243.98 0.31 0.05 

    10 282.95 1.28 1.85 

    11 287.97 1.31 5.62 

    12 340.09 78.55 2.03 

    13 427.70 1.87 0.41 

    14 466.49 9.59 1.77 

    15 544.54 45.97 4.96 

    16 627.65 12.57 5.32 

    17 741.50 17.76 0.97 

    18 761.60 6.90 1.63 

    19 798.55 13.14 1.58 

    20 856.12 98.28 9.94 

    21 902.75 3.25 3.01 

    22 928.25 29.79 8.53 

    23 965.21 33.27 15.08 

    24 992.42 47.30 5.18 

    25 1007.87 16.70 2.40 

    26 1038.66 10.43 8.32 

    27 1064.62 15.35 3.14 

    28 1088.40 1.89 16.98 

    29 1094.45 3.45 10.14 

    30 1125.20 44.72 3.30 

    31 1163.69 34.06 7.99 

    32 1199.90 19.63 5.66 

    33 1248.92 13.06 1.87 

    34 1280.51 1.56 1.38 

    35 1308.69 1.68 2.81 

    36 1336.98 2.90 38.74 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    37 1354.65 48.91 14.23 

    38 1359.49 27.80 7.85 

    39 1367.52 12.05 2.16 

    40 1389.84 14.07 6.52 

    41 1413.35 219.14 6.21 

    42 1426.04 295.25 2.40 

    43 1438.17 12.46 2.40 

    44 1449.54 279.73 26.93 

    45 1486.35 11.35 39.44 

    46 1489.87 4.80 8.31 

    47 1504.49 0.40 2.37 

    48 1514.17 24.22 2.78 

    49 1531.80 205.16 0.81 

    50 1621.57 56.34 8.97 

    51 1656.71 75.05 9.48 

    52 1660.92 61.80 8.08 

    53 1661.69 57.40 6.32 

    54 1723.65 912.28 12.88 

    55 3055.80 24.64 612.23 

    56 3059.99 3.46 179.21 

    57 3067.61 67.62 64.77 

    58 3102.62 28.02 257.68 

    59 3108.10 14.78 115.38 

    60 3125.41 12.64 132.30 

    61 3134.08 10.15 190.79 

    62 3147.16 24.08 40.18 

    63 3197.41 7.23 88.12 

    64 3215.93 348.77 106.27 

    65 3444.51 73.66 161.52 

    66 3495.56 127.13 116.82 

    67 3535.34 156.48 47.05 

    68 3541.57 166.42 71.52 

    69 3569.72 147.37 74.01 
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Table 20: Calculated frequencies, IR-intensities and Raman-activities for lys_3, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 27.85 4.16 1.12 1 39.39 4.73 1.32 

2 45.39 1.59 0.06 2 50.15 3.11 0.49 

3 61.84 6.02 0.32 3 64.29 7.22 0.80 

4 86.67 5.13 0.15 4 88.00 5.06 0.11 

5 130.40 2.78 0.09 5 130.74 2.64 0.16 

6 135.38 0.88 0.02 6 143.12 1.76 0.05 

7 190.88 5.91 0.42 7 198.45 7.94 0.73 

8 228.30 0.01 0.01 8 229.64 72.82 0.21 

9 258.28 17.15 0.99 9 238.99 0.16 0.02 

10 273.64 4.81 0.87 10 271.88 5.12 2.38 

11 301.34 18.44 1.68 11 307.92 13.50 6.60 

12 317.05 32.39 2.75 12 320.07 21.68 0.39 

13 394.59 12.49 1.67 13 401.51 6.68 1.69 

14 469.02 2.89 0.83 14 465.64 2.89 0.36 

15 540.17 14.02 0.37 15 535.22 39.78 1.36 

16 646.72 101.58 1.84 16 613.59 152.78 0.55 

17 651.83 25.35 1.56 17 646.61 32.61 4.62 

18 740.48 9.18 0.52 18 740.60 24.45 0.84 

19 771.06 10.37 1.76 19 770.52 24.15 1.54 

20 803.20 30.84 0.78 20 798.68 49.43 2.19 

21 824.06 44.76 4.71 21 832.30 16.46 8.24 

22 879.82 87.90 0.34 22 903.44 160.58 0.61 

23 896.48 21.84 6.71 23 913.15 90.29 5.40 

24 911.70 71.88 7.86 24 932.22 13.29 10.05 

25 975.15 9.51 1.28 25 996.26 4.96 3.50 

26 987.76 0.60 2.37 26 1008.85 8.38 3.02 

27 1038.19 3.89 6.22 27 1060.66 26.01 2.09 

28 1059.30 13.14 6.95 28 1068.63 28.69 10.43 

29 1086.63 3.86 8.88 29 1086.00 4.24 20.48 

30 1097.32 18.75 1.38 30 1119.67 14.05 10.99 

31 1151.95 3.37 1.73 31 1142.98 8.97 5.03 

32 1169.32 16.94 3.82 32 1165.17 66.39 6.11 

33 1186.65 240.68 1.07 33 1176.98 296.67 6.22 

34 1225.88 3.62 2.01 34 1226.93 39.59 5.92 

35 1252.58 3.83 3.48 35 1248.79 13.99 6.61 

36 1286.84 3.22 2.79 36 1279.82 2.97 3.89 

37 1297.00 3.10 2.70 37 1307.70 8.28 3.07 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1322.91 14.29 3.47 38 1334.50 34.25 2.60 

39 1338.88 1.63 18.92 39 1343.10 0.80 46.43 

40 1351.85 1.59 0.90 40 1355.47 13.96 5.20 

41 1361.73 2.32 0.84 41 1368.36 6.56 4.12 

42 1390.05 25.14 4.86 42 1373.79 24.53 9.53 

43 1413.87 4.76 0.35 43 1415.63 2.81 1.43 

44 1420.37 9.57 3.07 44 1439.87 10.39 3.01 

45 1443.36 23.39 3.05 45 1469.60 34.94 17.17 

46 1487.04 3.64 11.90 46 1481.18 15.21 28.70 

47 1492.50 7.65 5.52 47 1490.32 23.03 8.12 

48 1501.39 4.31 8.66 48 1500.41 7.77 7.58 

49 1514.66 19.18 1.14 49 1514.35 21.64 2.83 

50 1518.68 171.42 1.62 50 1524.60 205.67 0.97 

51 1659.79 57.16 6.09 51 1631.43 92.80 4.98 

52 1665.72 42.04 6.01 52 1656.85 61.41 8.14 

53 1673.00 42.49 2.47 53 1662.46 76.47 9.33 

54 1883.61 289.78 8.45 54 1838.24 569.54 22.03 

55 3048.87 6.81 180.89 55 3055.32 3.31 651.81 

56 3059.31 5.09 62.72 56 3061.13 20.62 65.73 

57 3068.43 24.50 31.27 57 3068.32 72.86 88.61 

58 3091.88 0.54 110.33 58 3095.80 0.80 438.69 

59 3109.36 12.78 15.37 59 3107.45 6.81 36.65 

60 3115.45 4.07 43.54 60 3117.15 5.79 122.28 

61 3122.17 1.84 77.85 61 3124.21 104.08 34.87 

62 3134.27 24.40 34.41 62 3134.38 10.36 189.83 

63 3187.00 0.86 33.70 63 3197.78 7.72 85.50 

64 3419.27 65.02 100.05 64 3443.52 75.32 162.76 

65 3512.97 108.74 24.78 65 3528.30 5.07 210.66 

66 3521.02 119.94 59.42 66 3534.20 157.63 52.45 

67 3536.90 9.81 112.05 67 3540.56 164.87 67.07 

68 3632.28 16.23 70.80 68 3619.43 18.74 96.58 

69 3797.81 103.93 122.54 69 3788.21 156.73 181.11 
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Table 21: Calculated frequencies, IR-intensities and Raman-activities for lys_4, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 39.46 2.19 0.53 1 44.59 3.36 0.18 

2 52.62 0.93 0.31 2 54.97 3.86 1.54 

3 80.00 0.57 0.65 3 77.07 1.49 0.98 

4 88.15 1.10 0.15 4 90.51 0.73 0.14 

5 138.80 1.80 0.04 5 140.75 2.96 0.07 

6 151.58 1.83 0.12 6 151.80 3.20 0.18 

7 185.07 1.55 0.35 7 195.92 4.39 0.79 

8 196.54 2.88 0.55 8 272.23 26.08 1.15 

9 268.70 13.01 2.72 9 278.02 93.68 0.45 

10 298.32 49.30 0.47 10 280.07 9.25 2.32 

11 312.58 4.62 3.83 11 307.01 12.24 1.89 

12 324.19 17.51 0.59 12 320.70 2.25 3.40 

13 410.43 12.11 1.15 13 412.47 20.72 1.92 

14 475.90 9.57 1.16 14 478.35 13.68 1.05 

15 526.81 39.77 0.93 15 530.59 47.55 0.91 

16 620.10 124.37 0.92 16 586.62 183.43 0.74 

17 646.13 8.48 2.39 17 641.94 11.81 4.89 

18 734.33 7.91 0.12 18 735.34 13.12 0.25 

19 755.79 20.74 0.30 19 759.66 19.97 0.73 

20 778.82 141.87 1.92 20 787.70 29.11 4.65 

21 784.72 123.66 0.84 21 828.57 22.24 8.64 

22 823.62 14.11 4.66 22 892.16 242.51 1.07 

23 912.89 7.24 1.95 23 918.01 7.21 2.78 

24 955.53 15.86 2.88 24 972.92 17.94 5.92 

25 992.17 8.41 3.17 25 1020.49 13.59 4.60 

26 1020.77 3.30 1.12 26 1032.33 3.94 2.16 

27 1042.98 12.52 5.46 27 1065.62 11.59 3.29 

28 1064.20 15.53 3.56 28 1075.18 32.87 6.78 

29 1075.66 1.78 6.55 29 1085.85 3.25 10.69 

30 1097.55 41.03 10.79 30 1107.60 59.03 15.60 

31 1125.71 7.43 2.11 31 1126.25 39.05 13.56 

32 1148.83 18.17 4.21 32 1141.95 21.62 8.11 

33 1192.91 9.32 2.76 33 1201.82 29.91 6.04 

34 1216.13 161.46 3.84 34 1208.59 254.35 6.58 

35 1254.85 0.62 0.58 35 1262.28 0.69 2.08 

36 1267.06 1.10 0.40 36 1274.84 3.64 0.86 

37 1310.19 2.31 0.83 37 1315.15 7.27 2.86 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1330.52 3.51 13.63 38 1333.78 4.56 33.30 

39 1336.53 6.82 0.87 39 1344.93 26.22 4.70 

40 1349.11 10.49 7.10 40 1357.94 20.68 13.24 

41 1368.52 7.61 3.86 41 1384.15 16.71 6.80 

42 1388.35 1.05 4.78 42 1387.47 0.97 10.77 

43 1399.02 17.47 1.57 43 1403.63 23.40 4.32 

44 1412.75 8.12 0.97 44 1421.08 12.44 0.35 

45 1470.59 83.75 4.02 45 1471.89 64.86 13.01 

46 1488.28 5.52 27.81 46 1477.38 5.58 50.98 

47 1489.70 18.87 0.31 47 1487.09 16.25 0.56 

48 1500.66 35.31 5.06 48 1499.71 11.91 7.94 

49 1510.44 99.96 0.34 49 1507.78 53.94 0.74 

50 1511.47 107.38 0.32 50 1526.00 235.47 0.97 

51 1631.84 43.76 6.73 51 1637.13 71.65 7.42 

52 1666.45 51.48 3.75 52 1649.06 56.58 6.38 

53 1667.99 37.42 4.01 53 1673.09 70.51 6.06 

54 1879.84 324.14 10.60 54 1849.02 588.12 27.07 

55 3044.52 7.22 182.44 55 3044.31 23.32 447.12 

56 3048.21 7.20 108.35 56 3061.10 5.57 67.11 

57 3061.08 21.05 36.97 57 3063.44 82.88 493.35 

58 3067.11 42.93 52.04 58 3070.76 56.18 58.88 

59 3083.74 2.48 124.55 59 3082.88 6.17 364.38 

60 3097.03 3.04 40.50 60 3106.66 11.87 28.65 

61 3110.02 19.15 16.58 61 3113.72 63.93 176.99 

62 3126.62 40.56 8.19 62 3127.82 74.26 16.03 

63 3150.24 0.02 51.98 63 3161.93 0.45 135.97 

64 3344.82 95.30 55.61 64 3419.57 84.63 146.11 

65 3474.48 131.95 69.41 65 3506.72 195.60 53.81 

66 3528.76 114.72 40.31 66 3525.36 0.54 228.11 

67 3557.54 3.38 117.82 67 3534.46 173.30 69.20 

68 3656.40 7.16 48.55 68 3610.64 6.25 104.51 

69 3775.56 204.29 89.49 69 3780.11 220.27 152.23 
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Table 22: Calculated frequencies, IR-intensities and Raman-activities for lys_5, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model (no 

frequencies could be calculated without simulated water). 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    1 48.87 11.86 1.46 

    2 68.13 14.62 2.69 

    3 91.05 0.63 0.15 

    4 94.28 7.37 0.17 

    5 130.04 12.03 0.29 

    6 155.22 3.59 0.06 

    7 203.58 21.44 0.79 

    8 245.09 0.18 0.02 

    9 264.15 84.58 0.58 

    10 274.03 8.69 3.15 

    11 316.82 5.20 5.48 

    12 337.80 13.30 1.32 

    13 409.91 0.81 2.42 

    14 477.19 6.96 0.76 

    15 556.36 19.37 2.65 

    16 668.93 22.30 2.75 

    17 745.50 23.56 0.44 

    18 779.53 9.43 1.37 

    19 812.95 24.60 0.42 

    20 863.14 50.50 10.05 

    21 905.56 102.44 2.02 

    22 925.09 62.28 17.94 

    23 937.47 85.77 4.70 

    24 995.11 4.26 6.00 

    25 1006.49 7.67 2.34 

    26 1059.01 24.81 2.60 

    27 1066.55 34.11 12.66 

    28 1084.59 2.45 20.04 

    29 1117.33 2.58 7.79 

    30 1132.62 30.52 10.72 

    31 1164.48 4.40 11.20 

    32 1197.24 37.09 11.21 

    33 1240.46 2.67 2.34 

    34 1269.90 0.43 3.08 

    35 1309.57 5.26 4.24 

    36 1335.48 1.42 43.49 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    37 1340.95 11.14 1.80 

    38 1361.48 29.22 10.60 

    39 1365.89 5.52 3.78 

    40 1379.41 67.08 13.09 

    41 1406.99 15.69 2.29 

    42 1435.70 11.20 3.04 

    43 1466.76 134.73 28.25 

    44 1480.53 69.83 34.05 

    45 1488.20 31.63 10.40 

    46 1499.84 6.05 8.31 

    47 1514.49 18.17 2.96 

    48 1522.19 204.99 0.83 

    49 1606.28 408.10 9.73 

    50 1654.43 71.13 8.87 

    51 1659.06 852.30 7.18 

    52 1661.94 72.25 8.90 

    53 3038.40 47.37 397.07 

    54 3054.63 17.37 381.99 

    55 3063.14 69.76 88.31 

    56 3075.36 7.39 381.06 

    57 3089.61 67.05 160.67 

    58 3101.50 17.36 134.34 

    59 3117.86 98.58 13.77 

    60 3133.26 11.29 192.19 

    61 3196.46 8.67 86.89 

    62 3445.78 73.39 164.56 

    63 3510.03 9.37 277.53 

    64 3537.35 156.54 54.41 

    65 3543.53 161.09 67.12 

    66 3600.13 13.62 107.30 
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Table 23: Calculated frequencies, IR-intensities and Raman-activities for lys_6, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model (no 

frequencies could be calculated without simulated water). 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    1 34.24 7.06 1.69 

    2 54.30 10.08 0.75 

    3 73.80 6.42 1.71 

    4 86.76 21.24 0.21 

    5 138.51 6.88 0.54 

    6 146.54 5.61 0.01 

    7 196.93 10.72 0.50 

    8 231.04 11.94 1.39 

    9 250.57 53.33 0.21 

    10 272.33 13.64 2.21 

    11 323.19 42.96 1.16 

    12 326.02 47.42 4.79 

    13 417.23 15.28 2.86 

    14 490.29 20.18 0.77 

    15 544.39 35.66 3.03 

    16 666.49 6.08 4.18 

    17 740.65 11.62 0.62 

    18 766.42 3.59 0.84 

    19 810.18 46.46 0.64 

    20 854.26 77.69 13.29 

    21 883.81 138.83 3.73 

    22 940.02 50.71 7.97 

    23 954.88 47.41 3.87 

    24 1006.03 2.33 10.09 

    25 1009.69 9.50 7.83 

    26 1051.43 20.87 4.29 

    27 1076.61 4.17 3.39 

    28 1090.04 1.09 17.24 

    29 1112.66 39.94 13.02 

    30 1116.37 32.22 13.55 

    31 1158.60 10.19 5.73 

    32 1187.55 14.66 5.43 

    33 1246.70 3.20 3.00 

    34 1265.48 0.70 2.35 

    35 1304.13 4.77 2.15 

    36 1323.43 5.33 34.28 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    37 1329.46 4.40 20.51 

    38 1352.94 2.97 2.06 

    39 1355.29 52.30 8.84 

    40 1381.55 26.97 8.94 

    41 1407.98 110.01 6.80 

    42 1435.14 181.11 8.70 

    43 1437.10 83.19 2.05 

    44 1461.64 361.04 15.59 

    45 1480.22 2.95 49.69 

    46 1487.64 7.92 1.89 

    47 1501.99 21.78 6.81 

    48 1516.41 5.74 9.08 

    49 1615.10 85.11 10.91 

    50 1645.42 62.01 6.27 

    51 1666.36 71.42 6.21 

    52 1720.42 922.95 10.41 

    53 3007.09 108.04 307.35 

    54 3044.85 42.39 340.87 

    55 3047.36 22.48 416.05 

    56 3061.79 61.43 146.31 

    57 3083.90 27.53 325.94 

    58 3092.09 28.68 178.59 

    59 3099.90 49.16 31.12 

    60 3123.65 93.07 36.68 

    61 3156.99 17.87 170.12 

    62 3297.11 221.88 109.38 

    63 3500.03 142.43 145.50 

    64 3530.05 0.46 259.97 

    65 3559.35 135.75 78.65 

    66 3615.42 6.64 142.32 
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Table 24: Calculated frequencies, IR-intensities and Raman-activities for lys_7, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 35.37 3.59 0.64 1 36.79 1.50 1.59 

2 42.95 0.96 0.34 2 49.48 5.89 0.70 

3 61.02 1.00 0.15 3 70.99 0.28 0.65 

4 102.91 0.52 0.06 4 86.58 0.72 0.25 

5 132.87 1.12 0.04 5 131.65 8.26 0.20 

6 146.83 2.94 0.02 6 147.87 3.82 0.02 

7 222.27 4.05 0.89 7 193.15 10.10 0.62 

8 255.99 23.08 0.34 8 220.64 48.84 0.16 

9 261.49 37.17 0.74 9 250.05 77.37 0.28 

10 295.10 14.55 0.70 10 287.98 16.86 2.38 

11 303.48 17.49 2.97 11 304.08 8.68 0.70 

12 340.95 1.62 0.83 12 324.07 8.19 4.65 

13 447.29 5.51 0.37 13 410.76 4.54 2.31 

14 477.25 21.67 1.12 14 490.31 21.88 0.52 

15 542.04 13.12 0.52 15 541.86 19.52 1.04 

16 591.59 37.55 1.97 16 608.70 160.00 0.58 

17 638.29 55.81 1.80 17 645.18 64.10 3.64 

18 730.74 16.70 0.43 18 735.65 14.63 0.71 

19 747.74 52.74 2.60 19 768.16 21.69 1.40 

20 776.84 11.23 1.32 20 799.41 52.86 4.42 

21 825.08 154.78 4.27 21 827.69 59.12 10.28 

22 841.45 60.75 1.01 22 877.30 61.21 2.19 

23 878.18 81.37 1.53 23 910.11 263.04 3.46 

24 942.59 5.28 1.74 24 960.77 16.96 4.95 

25 991.02 1.91 3.49 25 993.26 14.15 0.55 

26 1044.56 1.85 3.53 26 1021.45 2.29 13.85 

27 1057.02 1.06 2.22 27 1057.81 3.39 2.59 

28 1089.87 0.95 6.39 28 1089.55 1.03 15.96 

29 1111.37 5.96 5.52 29 1110.03 27.60 20.18 

30 1118.93 19.16 11.91 30 1119.77 114.80 11.53 

31 1148.64 9.67 2.62 31 1138.91 12.11 1.49 

32 1176.26 67.87 3.76 32 1169.68 23.48 6.90 

33 1203.16 132.95 1.44 33 1186.55 283.73 2.80 

34 1221.91 38.11 2.89 34 1217.92 42.10 6.14 

35 1247.51 13.46 4.00 35 1258.14 2.01 9.55 

36 1272.77 1.01 2.68 36 1269.18 2.10 4.13 

37 1293.73 0.10 1.07 37 1304.10 0.79 0.18 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1321.18 9.67 12.79 38 1317.54 35.36 8.08 

39 1327.81 1.22 7.40 39 1327.60 2.45 48.94 

40 1339.55 2.79 1.81 40 1334.31 10.71 3.21 

41 1346.54 30.41 4.24 41 1347.44 5.18 1.86 

42 1379.38 4.36 3.40 42 1376.61 11.29 11.87 

43 1416.30 4.32 1.12 43 1409.61 11.29 3.64 

44 1438.47 13.03 0.78 44 1437.09 16.10 1.90 

45 1451.16 30.54 3.26 45 1457.09 39.18 7.12 

46 1490.04 5.31 2.91 46 1477.03 3.47 45.71 

47 1495.78 1.18 20.54 47 1486.10 5.46 3.52 

48 1507.74 4.75 1.88 48 1498.95 21.57 6.58 

49 1523.92 2.47 6.58 49 1516.89 4.53 9.89 

50 1642.43 72.44 2.90 50 1646.44 60.79 6.48 

51 1662.71 44.96 3.75 51 1651.40 65.00 5.99 

52 1875.96 381.97 14.52 52 1842.52 582.17 23.98 

53 2958.22 36.64 94.46 53 3008.41 107.54 306.45 

54 2988.95 72.51 106.92 54 3042.77 15.12 515.62 

55 3038.92 19.56 140.51 55 3048.88 40.10 46.03 

56 3042.33 32.43 96.38 56 3049.83 49.20 456.28 

57 3064.14 25.55 92.02 57 3060.38 84.87 140.51 

58 3085.98 25.57 68.87 58 3079.23 18.68 438.72 

59 3103.01 30.12 46.82 59 3088.18 7.07 34.79 

60 3108.19 2.76 38.05 60 3102.79 76.19 53.93 

61 3128.35 49.51 16.19 61 3115.54 120.35 41.01 

62 3540.90 0.13 159.70 62 3530.30 0.44 261.03 

63 3553.20 6.99 131.56 63 3535.53 3.98 277.07 

64 3634.80 2.30 92.76 64 3615.43 6.55 142.41 

65 3653.31 14.18 53.40 65 3620.05 13.77 129.27 

66 3822.34 101.09 110.60 66 3797.66 151.87 172.60 
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Table 25: Calculated frequencies, IR-intensities and Raman-activities for lys_8, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 40.21 2.64 0.80 1 21.26 1.25 3.29 

2 49.66 2.72 0.50 2 39.31 6.04 0.11 

3 70.93 2.88 1.03 3 61.20 6.50 0.78 

4 94.43 3.21 0.14 4 95.07 1.94 0.18 

5 137.01 4.35 0.12 5 126.95 9.24 0.10 

6 143.32 6.14 0.14 6 157.59 7.31 0.06 

7 203.36 5.11 0.39 7 219.79 6.77 1.12 

8 247.65 38.89 0.84 8 259.32 51.88 0.17 

9 257.97 35.49 0.73 9 282.56 32.88 1.38 

10 288.49 20.41 1.76 10 295.33 9.72 2.10 

11 313.57 19.53 0.52 11 326.80 79.30 3.36 

12 330.28 17.47 3.30 12 341.61 6.84 3.75 

13 416.05 7.94 2.90 13 431.56 5.12 1.22 

14 491.93 8.23 0.65 14 515.10 28.73 0.55 

15 559.15 11.10 1.35 15 563.22 2.41 2.94 

16 669.53 11.11 1.27 16 598.25 29.43 5.32 

17 734.42 4.12 0.37 17 731.97 15.86 1.25 

18 777.64 2.65 0.80 18 770.90 15.73 1.75 

19 810.68 39.68 0.23 19 799.96 85.72 3.57 

20 851.13 56.52 4.71 20 860.86 111.26 15.17 

21 868.08 84.23 3.55 21 882.17 71.46 4.97 

22 939.45 30.85 2.14 22 921.93 184.48 9.19 

23 977.43 27.79 0.75 23 955.53 20.55 6.78 

24 1003.13 83.54 8.93 24 994.23 7.03 8.00 

25 1034.27 15.09 4.75 25 1039.13 6.32 2.99 

26 1059.52 6.81 6.86 26 1055.41 1.18 6.04 

27 1082.76 15.12 4.72 27 1086.75 2.22 11.38 

28 1088.16 1.40 6.91 28 1098.11 14.88 13.06 

29 1111.55 22.22 7.66 29 1110.31 27.02 23.98 

30 1148.79 7.68 1.70 30 1143.42 19.24 2.56 

31 1161.33 6.34 6.03 31 1166.78 24.09 8.66 

32 1202.60 4.12 2.87 32 1212.40 3.67 6.04 

33 1241.92 4.85 2.54 33 1243.57 4.17 6.48 

34 1262.66 2.73 0.51 34 1266.92 6.25 4.93 

35 1286.07 15.20 6.11 35 1293.36 1.00 1.75 

36 1317.29 3.28 15.78 36 1314.95 4.26 57.42 

37 1324.20 4.63 4.68 37 1323.74 1.59 6.56 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1326.34 13.48 4.28 38 1338.01 2.83 3.65 

39 1350.63 0.39 2.36 39 1357.92 92.88 5.29 

40 1396.15 30.09 4.56 40 1381.90 71.69 6.30 

41 1406.01 54.43 4.01 41 1415.92 13.68 1.73 

42 1430.22 27.07 0.75 42 1432.24 16.38 1.69 

43 1434.94 113.52 13.36 43 1459.57 73.76 39.69 

44 1481.95 1.24 16.49 44 1471.48 164.73 15.35 

45 1488.86 4.40 2.43 45 1481.25 0.07 33.80 

46 1501.72 8.03 7.90 46 1497.37 5.70 1.85 

47 1523.53 2.40 5.78 47 1515.88 4.43 10.98 

48 1654.58 44.92 3.61 48 1610.61 421.49 11.47 

49 1669.89 38.84 3.35 49 1644.76 62.48 6.50 

50 1726.19 573.78 5.63 50 1655.53 840.97 8.54 

51 2995.31 68.15 94.04 51 2962.07 115.33 313.64 

52 3016.66 26.69 72.23 52 3003.91 111.04 295.05 

53 3026.50 62.49 189.51 53 3034.53 3.43 77.99 

54 3046.02 28.30 97.75 54 3035.79 101.30 712.57 

55 3058.63 6.48 85.12 55 3039.85 89.09 216.08 

56 3077.06 62.45 49.92 56 3077.90 35.84 289.12 

57 3080.33 37.90 83.89 57 3090.32 77.31 142.94 

58 3096.02 24.86 28.69 58 3093.94 30.69 57.50 

59 3116.03 61.55 22.91 59 3113.94 120.07 67.51 

60 3469.79 13.36 91.24 60 3525.31 6.99 298.78 

61 3527.85 3.61 178.92 61 3527.96 0.22 267.48 

62 3560.78 7.01 110.25 62 3613.31 5.80 145.28 

63 3620.90 0.36 102.11 63 3614.03 15.62 123.27 

 

4.3.3 L-arginine  

 

The structure optimization with the three methods Hartree-Fock (HF/3-21G) and         

M06-2X (M06-2X/6-31++G** with and without SCRF) also worked very well               

for arginine. Only the structures arg_2 and arg_6 could not be optimized                 

without simulated water because in these molecules the H+ from the NH3
+ group            

was transferred to the COO- group during the optimization of the structures. If           

the calculation was performed with SCRF all structures could be optimized without 

proton transfer. The optimized structures with simulated water can be seen in          

Figure 15 on page 23, due to the solvent all structures are stretched. Optimized      
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bond lengths and atom distances after structure optimization and                       

frequency calculation with the M06-2X method with SCRF hydration model are given 

in Table 26 for all eight arginine tautomers. 

 

Table 26: Optimized bond lengths and atom distances for all 8 arginine-tautomers, calculated with 

simulated water. 

 arg_1 arg_2 arg_3 arg_4 arg_5 arg_6 arg_7 arg_8 

αC-αN 1.50 1.50 1.45 1.50 1.46 1.50 1.46 1.47 

δC-N1 1.46 1.46 1.46 1.45 1.46 1.45 1.45 1.46 

CG-N1 1.33 1.33 1.33 1.38 1.33 1.38 1.38 1.37 

CG-N2 1.33 1.33 1.33 1.29 1.33 1.29 1.29 1.29 

CG-N3 1.33 1.34 1.34 1.39 1.34 1.39 1.39 1.39 

αN N1 6.23 6.22 6.21 6.24 6.27 6.22 6.18 6.27 

αN N2 7.66 7.69 7.63 7.58 7.73 7.64 7.55 7.68 

αN N3 8.54 8.53 8.52 8.54 8.58 8.51 8.47 8.58 

N1 N2 2.31 2.31 2.31 2.32 2.31 2.32 2.32 2.32 

N1 N3 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 

N2-N3 2.31 2.31 2.31 2.39 2.31 2.39 2.39 2.39 

C=O 1.21 1.26 1.21 1.21 1.26 1.26 1.21 1.26 

C=O / C-OH 1.32 1.24 1.34 1.32 1.26 1.24 1.34 1.26 

O O 2.25 2.26 2.24 2.25 2.25 2.26 2.24 2.25 

C-αC 1.52 1.56 1.52 1.52 1.55 1.56 1.52 1.55 

αC-βC 1.53 1.53 1.54 1.53 1.54 1.53 1.54 1.54 

βC-γC 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 

γC-δC 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 

C βC 2.53 2.61 2.49 2.53 2.52 2.61 2.54 2.52 

C γC 3.05 3.30 2.98 3.06 3.00 3.32 3.27 3.02 

C δC 4.50 4.65 4.42 4.50 4.43 4.67 4.65 4.45 

C CG 6.65 6.86 6.57 6.66 6.57 6.89 6.89 6.61 

αC γC 2.55 2.54 2.58 2.56 2.57 2.55 2.60 2.57 

αC δC 3.88 3.88 3.90 3.89 3.91 3.89 3.92 3.91 

αC CG 6.25 6.24 6.27 6.26 6.27 6.26 6.30 6.29 

βC δC 2.50 2.51 2.51 2.51 2.52 2.52 2.51 2.53 

βC CG 4.95 4.96 4.96 4.94 4.97 4.96 4.95 4.97 
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 arg_1 arg_2 arg_3 arg_4 arg_5 arg_6 arg_7 arg_8 

γC CG 3.72 3.72 3.72 3.73 3.72 3.74 3.74 3.74 

δC CG 2.47 2.47 2.47 2.45 2.47 2.45 2.45 2.45 

αC-H 1.09 1.09 1.09 1.09 1.10 1.09 1.10 1.10 

βC-H 1.10 1.10 1.09 1.10 1.10 1.10 1.10 1.10 

βC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

γC-H 1.09 1.09 1.10 1.09 1.10 1.09 1.09 1.10 

γC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

δC-H 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

δC-H 1.10 1.10 1.10 1.09 1.10 1.09 1.09 1.09 

 

The IR spectra of arg_1 calculated without and with SCRF hydration model are 

displayed in Figure 42. It can be seen that the wavelengths of the vibrational bands do 

not differ very much. Only the peak intensities vary. A Comparison of the calculated     

IR and Raman spectra (with simulated water) for the eight tautomers of L-arginine are 

shown in Figure 43 and Figure 44, respectively. The results of the frequency 

calculations for the structures arg_1 to arg_8 are given in Table 27 to Table 34. These 

tables include the calculated frequencies, IR-intensities and Raman-activities 

calculated with the M06-2X/6-31++G** method without and with the SCRF hydration 

model. The corresponding theoretical IR and Raman spectra without and with solvent 

water are given in the appendix. As the structures arg_2 and arg_6 could not be 

optimized, no frequencies, IR-intensities and Raman-activities were calculated without 

simulated water and therefore no frequencies and theoretical spectra can be shown 

for these structures. 
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Figure 42: Comparison of the IR-spectra of arg_1 calculated with the method M06-2X/6-31++G** without 

and with SCRF hydration model. 

 

 
Figure 43: Comparison of the IR-spectra of all eight tautomers of L-arginine (arg_1, arg_2, arg_3,           

arg_4, arg_5, arg_6, arg_7 and arg_8), calculated with the method M06-2X/6-31++G** with                 

SCRF hydration model. 

 



page 74 of 140 

 
Figure 44: Comparison of the Raman-spectra of all eight tautomers of L-arginine (arg_1, arg_2, arg_3, 

arg_4, arg_5, arg_6, arg_7 and arg_8), calculated with the method M06-2X/6-31++G** with                   

SCRF hydration model. 

 

Table 27: Calculated frequencies, IR-intensities and Raman-activities for arg_1, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 21.64 1.03 1.06 1 35.81 0.66 2.57 

2 36.58 3.79 0.91 2 48.82 3.82 2.14 

3 60.81 2.84 1.17 3 64.34 5.05 1.67 

4 70.14 5.49 0.17 4 70.36 3.32 0.55 

5 103.16 1.53 0.30 5 105.37 7.32 0.43 

6 128.35 1.96 0.45 6 118.56 15.30 1.61 

7 152.48 1.55 1.02 7 161.65 11.65 0.87 

8 169.72 1.28 0.21 8 177.22 3.21 0.41 

9 195.37 1.27 0.29 9 198.09 3.57 0.29 

10 243.46 2.93 2.69 10 208.06 148.71 0.46 

11 266.92 4.42 1.59 11 242.98 8.21 2.21 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

12 328.36 18.00 0.26 12 263.77 558.58 1.43 

13 337.42 11.21 1.85 13 270.72 13.27 1.88 

14 377.56 8.70 1.40 14 285.26 41.90 1.41 

15 398.48 20.72 0.28 15 299.69 26.02 0.58 

16 427.66 52.71 0.49 16 382.24 13.43 1.59 

17 442.84 203.32 1.17 17 431.62 16.55 1.14 

18 490.57 192.35 1.43 18 483.80 105.88 0.49 

19 516.72 126.28 0.77 19 513.60 37.85 2.00 

20 547.15 6.47 0.84 20 553.05 11.96 1.27 

21 566.42 30.96 0.32 21 564.21 26.42 0.85 

22 593.76 14.95 3.11 22 588.11 153.87 1.12 

23 627.18 85.32 1.16 23 610.61 9.23 5.57 

24 651.45 32.34 1.87 24 640.56 10.53 3.64 

25 712.73 3.57 0.42 25 718.66 2.16 0.29 

26 751.86 36.42 0.23 26 751.11 32.89 1.00 

27 768.37 26.22 1.73 27 782.99 32.79 3.88 

28 817.40 22.89 5.98 28 819.42 23.16 9.83 

29 909.03 4.92 1.73 29 918.51 6.15 4.65 

30 957.79 10.87 2.75 30 971.48 15.83 4.89 

31 991.30 4.00 5.11 31 1014.67 5.85 17.72 

32 1022.75 7.78 7.31 32 1040.38 16.36 5.47 

33 1047.41 11.04 2.26 33 1056.55 10.30 1.45 

34 1066.39 2.66 2.21 34 1077.34 3.33 9.93 

35 1079.02 0.63 6.99 35 1095.22 0.63 12.13 

36 1092.11 1.03 11.39 36 1103.11 8.04 14.59 

37 1112.39 24.04 5.60 37 1126.26 65.91 7.66 

38 1127.81 8.24 3.42 38 1132.84 6.51 5.51 

39 1172.18 2.16 4.78 39 1181.30 9.54 10.85 

40 1188.81 16.61 3.16 40 1200.72 42.88 6.20 

41 1219.19 152.33 3.71 41 1207.88 248.06 7.38 

42 1227.72 34.51 2.26 42 1238.28 16.36 4.58 

43 1300.57 0.81 1.21 43 1303.45 0.88 1.34 

44 1303.59 3.06 1.16 44 1310.91 12.09 3.70 

45 1341.09 12.63 5.11 45 1345.81 14.11 18.52 

46 1361.22 8.29 11.84 46 1363.04 33.68 23.08 

47 1367.42 5.75 4.41 47 1378.90 7.01 3.01 

48 1394.01 14.32 2.14 48 1396.47 41.17 10.62 

49 1431.98 13.40 0.61 49 1434.93 6.60 2.01 

50 1465.14 27.67 2.32 50 1467.49 19.06 8.08 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

51 1470.07 59.16 4.71 51 1473.98 62.92 9.56 

52 1498.42 8.09 11.85 52 1490.51 15.56 26.25 

53 1507.45 17.20 2.96 53 1503.48 60.95 1.84 

54 1527.91 75.84 4.01 54 1525.05 47.06 12.59 

55 1529.52 179.41 2.38 55 1535.02 243.11 0.80 

56 1595.41 2.39 2.68 56 1599.21 1.63 1.75 

57 1628.51 50.31 5.66 57 1634.72 70.10 7.47 

58 1657.78 82.09 1.25 58 1663.49 245.83 3.24 

59 1667.35 53.87 3.82 59 1671.20 72.24 5.88 

60 1706.52 607.83 2.10 60 1697.45 706.67 8.15 

61 1738.30 542.95 1.83 61 1705.36 845.80 7.61 

62 1897.32 316.52 10.86 62 1853.35 576.27 26.64 

63 3056.49 10.09 168.42 63 3063.18 17.44 373.01 

64 3057.68 2.12 61.74 64 3074.78 0.62 350.86 

65 3085.06 7.54 28.09 65 3084.18 37.60 11.72 

66 3107.01 2.80 93.89 66 3110.60 9.28 231.64 

67 3113.97 0.59 18.45 67 3125.51 0.11 131.21 

68 3142.94 6.87 16.24 68 3143.89 34.48 4.47 

69 3146.45 0.73 34.66 69 3165.16 0.24 125.38 

70 3339.92 108.86 55.30 70 3418.32 90.58 142.85 

71 3456.69 159.89 60.96 71 3505.24 202.98 58.31 

72 3514.20 125.70 31.10 72 3530.22 180.57 57.37 

73 3606.37 230.36 27.29 73 3631.15 266.12 59.67 

74 3619.11 214.64 98.76 74 3636.58 282.52 81.18 

75 3637.26 50.70 97.44 75 3646.59 41.25 263.06 

76 3730.81 131.87 33.78 76 3756.61 232.34 75.44 

77 3739.53 156.30 32.19 77 3760.47 123.69 26.95 

78 3753.08 234.64 88.91 78 3782.32 226.83 149.79 
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Table 28: Calculated frequencies, IR-intensities and Raman-activities for arg_2, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model                   

(no frequencies could be calculated without simulated water). 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    1 35.72 11.82 1.31 

    2 40.52 5.48 3.72 

    3 55.13 6.74 3.14 

    4 68.89 25.30 1.00 

    5 95.71 11.83 0.55 

    6 123.08 16.78 0.45 

    7 160.64 21.35 0.24 

    8 178.63 30.65 0.67 

    9 190.27 11.42 0.78 

    10 199.07 33.87 0.93 

    11 244.47 521.62 0.50 

    12 251.14 151.43 2.39 

    13 260.10 16.11 2.32 

    14 268.74 6.48 2.23 

    15 342.02 78.24 1.86 

    16 383.37 0.82 1.21 

    17 447.36 7.35 0.79 

    18 488.95 124.46 0.12 

    19 529.78 16.35 4.96 

    20 553.27 26.16 3.15 

    21 556.98 1.89 0.56 

    22 597.19 13.11 5.24 

    23 637.02 4.46 4.27 

    24 718.95 1.68 0.20 

    25 752.07 13.89 2.33 

    26 788.95 16.84 1.85 

    27 850.39 78.02 10.29 

    28 909.31 22.88 6.58 

    29 962.28 47.59 7.63 

    30 1004.45 2.42 15.96 

    31 1039.02 35.92 10.77 

    32 1058.47 12.01 1.15 

    33 1076.63 4.53 4.56 

    34 1093.47 1.60 14.30 

    35 1097.55 3.11 15.33 

    36 1110.31 32.75 10.07 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    37 1140.20 14.75 9.51 

    38 1180.02 17.17 10.49 

    39 1199.31 12.22 6.38 

    40 1227.65 24.95 3.69 

    41 1292.73 8.61 3.32 

    42 1305.54 5.69 2.47 

    43 1336.51 3.98 37.16 

    44 1362.44 71.87 13.36 

    45 1370.51 24.52 8.09 

    46 1398.36 25.73 3.99 

    47 1419.85 305.50 13.11 

    48 1433.29 195.09 1.82 

    49 1454.50 288.98 21.17 

    50 1463.20 29.81 7.29 

    51 1489.70 13.77 22.11 

    52 1506.45 12.21 13.58 

    53 1524.71 37.64 8.26 

    54 1595.40 0.18 2.14 

    55 1623.41 48.51 8.37 

    56 1660.68 186.03 3.59 

    57 1667.67 58.45 6.21 

    58 1694.40 712.40 8.34 

    59 1702.57 928.85 8.24 

    60 1725.79 889.18 12.84 

    61 3057.68 26.54 485.12 

    62 3060.05 11.83 232.43 

    63 3074.69 44.59 98.19 

    64 3105.95 40.79 307.52 

    65 3107.08 0.06 25.09 

    66 3126.75 12.30 120.01 

    67 3153.14 18.49 46.27 

    68 3204.79 357.58 103.29 

    69 3494.95 129.51 122.84 

    70 3566.13 152.34 72.10 

    71 3630.96 262.36 31.81 

    72 3636.62 266.18 80.54 

    73 3647.90 47.87 293.69 

    74 3758.96 229.24 72.85 

    75 3759.61 137.03 29.42 
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Table 29: Calculated frequencies, IR-intensities and Raman-activities for arg_3, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 -72.13 1.31 0.84 1 34.76 2.47 3.20 

2 27.48 1.76 1.63 2 46.00 1.08 1.97 

3 32.23 0.43 0.98 3 55.33 2.41 1.30 

4 56.97 0.84 0.37 4 72.22 1.48 0.36 

5 71.77 0.49 0.02 5 105.71 9.25 2.11 

6 115.22 0.05 0.19 6 117.95 0.51 0.05 

7 121.65 1.13 0.29 7 157.39 16.90 1.07 

8 171.31 1.38 0.52 8 179.13 11.78 0.31 

9 218.52 0.15 0.53 9 207.17 151.78 0.40 

10 238.58 7.40 2.11 10 230.53 38.32 1.31 

11 248.82 36.95 0.05 11 255.69 132.96 1.52 

12 259.07 21.35 0.31 12 256.57 463.14 0.32 

13 272.21 2.26 2.31 13 273.32 16.25 3.34 

14 302.19 30.19 0.47 14 291.59 7.47 0.63 

15 364.65 380.44 0.12 15 298.45 53.47 1.25 

16 373.69 10.29 1.47 16 377.58 9.47 1.98 

17 430.80 9.30 0.93 17 433.78 14.82 1.48 

18 506.77 10.73 1.32 18 490.09 87.22 0.51 

19 517.11 131.63 0.21 19 518.00 23.56 2.03 

20 540.73 9.60 0.23 20 558.10 3.04 0.85 

21 557.80 7.10 0.58 21 568.05 10.41 0.92 

22 598.95 24.67 3.55 22 598.08 135.77 2.62 

23 632.63 105.65 0.92 23 612.83 52.21 3.48 

24 651.67 6.87 2.24 24 649.78 10.48 4.65 

25 719.27 1.27 0.07 25 718.55 1.95 0.28 

26 756.55 13.89 1.47 26 753.40 20.00 2.83 

27 794.59 28.80 0.53 27 794.87 29.25 1.03 

28 817.15 38.21 6.12 28 817.15 64.41 9.92 

29 882.99 125.53 0.29 29 897.72 119.85 0.92 

30 924.19 29.33 3.16 30 937.80 88.79 5.93 

31 994.94 8.86 6.98 31 1003.12 16.44 14.81 

32 1036.62 3.90 7.13 32 1036.34 5.34 11.98 

33 1054.05 0.60 0.78 33 1062.79 0.53 1.44 

34 1077.33 1.81 9.09 34 1082.48 7.19 13.10 

35 1087.01 5.17 4.79 35 1093.86 4.49 11.06 

36 1090.11 4.13 3.84 36 1097.27 10.05 12.80 

37 1121.93 6.90 6.51 37 1125.33 8.38 8.56 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1166.89 21.88 2.38 38 1162.03 97.79 4.72 

39 1177.24 25.84 7.70 39 1183.65 293.64 2.45 

40 1184.17 204.16 0.77 40 1192.68 12.50 13.81 

41 1203.07 5.23 1.61 41 1204.20 11.32 2.78 

42 1245.75 14.41 4.75 42 1249.04 12.78 7.70 

43 1290.14 3.03 5.90 43 1295.83 10.96 11.88 

44 1295.03 0.58 0.65 44 1298.08 0.63 0.66 

45 1327.21 10.05 0.98 45 1334.26 16.23 2.11 

46 1342.11 2.14 16.35 46 1345.84 0.63 39.43 

47 1367.31 2.05 1.48 47 1374.40 3.33 5.30 

48 1388.04 30.65 5.60 48 1385.16 55.42 12.68 

49 1419.49 4.62 1.67 49 1425.51 8.26 4.56 

50 1441.36 14.31 3.04 50 1442.93 49.11 6.24 

51 1446.85 25.51 2.49 51 1463.58 26.52 7.41 

52 1491.56 2.47 13.55 52 1483.65 4.14 29.80 

53 1500.81 8.95 2.80 53 1497.12 15.97 4.91 

54 1525.27 27.02 5.40 54 1523.92 45.04 12.29 

55 1594.43 1.03 2.03 55 1598.76 1.01 1.83 

56 1666.30 41.18 1.21 56 1654.85 56.31 3.48 

57 1675.02 44.48 2.57 57 1663.32 233.28 3.77 

58 1721.83 511.49 2.48 58 1697.01 693.82 8.32 

59 1729.64 710.17 2.87 59 1703.41 880.70 7.92 

60 1887.56 294.30 9.24 60 1834.12 571.74 23.78 

61 3054.96 2.41 188.99 61 3060.60 9.24 667.44 

62 3062.13 3.10 58.46 62 3063.62 1.66 108.46 

63 3070.79 23.72 20.12 63 3071.75 68.57 3.21 

64 3100.89 0.31 100.88 64 3104.24 2.05 345.01 

65 3110.90 8.30 44.47 65 3113.03 16.96 109.41 

66 3119.18 2.74 14.54 66 3121.28 3.42 65.57 

67 3135.26 24.57 22.66 67 3133.90 73.92 49.40 

68 3538.25 11.26 111.16 68 3528.26 6.90 224.99 

69 3628.59 210.39 13.06 69 3617.04 16.68 122.05 

70 3633.69 17.11 74.64 70 3632.19 265.43 56.50 

71 3634.73 198.07 32.83 71 3638.17 269.61 91.25 

72 3646.19 24.63 170.84 72 3648.68 45.11 257.38 

73 3754.53 70.74 20.45 73 3758.27 216.40 71.94 

74 3757.81 207.66 45.24 74 3762.07 139.69 30.27 

75 3800.29 105.51 120.89 75 3791.00 151.39 204.48 
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Table 30: Calculated frequencies, IR-intensities and Raman-activities for arg_4, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 27.27 2.23 0.63 1 41.16 15.52 4.62 

2 55.01 14.64 0.42 2 47.95 3.62 1.89 

3 93.92 6.76 0.55 3 64.45 5.11 1.52 

4 120.70 6.31 1.23 4 71.54 18.32 0.41 

5 140.00 1.78 0.24 5 119.52 3.58 0.48 

6 147.54 14.12 2.18 6 124.59 7.17 1.46 

7 171.53 3.07 0.52 7 173.45 5.58 1.27 

8 214.51 4.37 0.55 8 190.48 14.87 0.29 

9 235.42 4.12 0.38 9 219.39 5.43 0.25 

10 298.72 67.98 1.00 10 240.70 1.30 1.27 

11 310.17 47.02 0.55 11 271.53 15.65 3.39 

12 319.10 12.12 2.36 12 297.00 30.38 0.47 

13 334.43 21.15 0.24 13 350.66 97.93 2.28 

14 385.12 29.79 0.52 14 376.38 37.98 1.43 

15 406.08 15.34 1.00 15 431.63 26.84 0.91 

16 434.67 11.46 0.51 16 450.60 208.97 3.76 

17 508.33 42.58 1.45 17 511.46 36.53 2.60 

18 517.71 11.77 1.33 18 557.47 88.74 1.01 

19 539.21 213.79 2.29 19 580.40 171.04 1.93 

20 568.98 145.73 0.60 20 586.99 278.08 2.37 

21 633.50 4.37 1.96 21 637.63 8.80 8.17 

22 659.22 7.39 4.09 22 648.22 87.70 3.09 

23 731.87 10.76 0.16 23 729.13 5.66 2.16 

24 739.57 81.72 8.89 24 750.80 18.37 1.40 

25 747.85 48.96 3.17 25 775.97 194.04 3.51 

26 788.42 73.60 1.73 26 781.23 46.38 3.04 

27 821.33 29.51 2.06 27 813.42 23.10 10.47 

28 888.31 1.09 11.54 28 908.24 9.55 5.39 

29 947.31 14.58 3.07 29 969.20 14.59 4.82 

30 982.90 7.86 1.95 30 999.63 14.22 10.00 

31 993.22 9.18 1.43 31 1034.83 17.10 3.47 

32 1038.17 16.52 4.62 32 1064.83 12.64 7.50 

33 1060.56 4.74 1.82 33 1085.31 8.31 10.94 

34 1085.89 6.43 3.65 34 1107.54 12.00 11.72 

35 1104.12 3.30 1.28 35 1120.22 30.50 16.28 

36 1114.09 24.67 12.03 36 1126.11 35.56 5.17 

37 1153.64 22.59 2.13 37 1147.90 126.40 5.99 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1166.99 22.37 3.73 38 1176.06 18.45 12.85 

39 1197.00 32.78 2.62 39 1202.90 100.49 4.21 

40 1219.21 131.90 5.38 40 1206.11 253.39 6.08 

41 1240.77 20.82 1.43 41 1228.44 17.63 4.72 

42 1300.13 0.84 1.32 42 1285.55 6.37 3.19 

43 1319.19 18.36 3.28 43 1302.39 9.44 5.58 

44 1335.12 2.05 4.04 44 1329.73 20.35 19.72 

45 1356.00 6.83 2.82 45 1354.43 58.77 12.97 

46 1367.67 3.35 6.90 46 1361.56 26.47 8.23 

47 1401.66 91.69 1.12 47 1387.22 49.15 11.15 

48 1414.58 4.08 2.32 48 1414.33 23.72 2.87 

49 1423.37 6.89 2.50 49 1440.48 42.61 1.65 

50 1462.39 39.20 4.40 50 1471.71 67.84 10.79 

51 1487.11 127.08 7.73 51 1487.45 16.76 28.19 

52 1491.04 53.86 2.17 52 1501.65 50.82 1.50 

53 1499.27 16.97 7.64 53 1516.42 37.16 6.75 

54 1506.26 160.50 0.83 54 1532.14 251.82 0.63 

55 1596.56 237.15 1.25 55 1569.20 411.46 7.21 

56 1624.22 37.52 7.28 56 1639.60 63.07 7.78 

57 1649.68 164.31 3.14 57 1640.73 172.68 10.53 

58 1663.60 41.02 3.95 58 1668.65 70.31 6.02 

59 1721.71 367.96 20.90 59 1703.35 669.87 69.59 

60 1873.84 304.57 9.65 60 1851.11 579.96 26.46 

61 3055.38 35.14 121.46 61 3036.84 66.28 294.40 

62 3079.23 23.72 96.91 62 3067.95 2.60 505.86 

63 3098.89 15.74 125.95 63 3075.77 44.15 18.05 

64 3123.05 1.36 55.87 64 3116.87 2.42 316.53 

65 3140.87 0.27 35.52 65 3126.45 3.93 23.99 

66 3154.03 12.28 94.89 66 3139.60 60.18 34.63 

67 3165.47 4.97 33.24 67 3166.25 0.26 133.28 

68 3343.55 85.74 53.81 68 3418.86 87.98 143.06 

69 3482.78 131.11 69.31 69 3506.74 197.84 62.46 

70 3541.03 104.25 39.56 70 3534.16 176.90 56.51 

71 3561.64 9.31 81.08 71 3559.55 13.45 245.99 

72 3609.09 57.23 146.78 72 3592.09 55.54 259.62 

73 3680.66 61.31 85.49 73 3623.97 51.40 189.78 

74 3725.16 44.14 49.32 74 3703.29 59.34 97.83 

75 3797.75 151.32 67.27 75 3782.21 221.99 151.66 
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Table 31: Calculated frequencies, IR-intensities and Raman-activities for arg_5, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 66.86 1.48 1.60 1 36.20 2.06 2.17 

2 104.88 3.33 1.47 2 41.87 8.89 3.29 

3 126.57 11.82 0.67 3 61.62 1.64 2.65 

4 138.44 6.44 0.73 4 73.06 17.25 0.43 

5 162.51 3.93 0.76 5 99.62 17.16 1.78 

6 197.18 17.29 0.91 6 114.59 5.39 0.23 

7 217.73 70.42 0.89 7 152.62 47.53 1.14 

8 245.03 126.07 0.76 8 184.49 90.19 0.50 

9 260.73 17.90 1.01 9 190.33 48.04 0.44 

10 286.52 63.61 0.43 10 237.55 577.93 0.55 

11 302.28 29.69 2.02 11 247.01 2.03 3.55 

12 337.74 1.22 0.68 12 263.57 86.40 1.24 

13 354.43 39.09 0.70 13 280.00 6.01 2.49 

14 391.38 22.58 2.22 14 287.14 12.69 1.50 

15 432.94 101.41 1.26 15 332.86 20.00 0.40 

16 460.77 10.98 0.89 16 382.30 0.37 2.62 

17 512.94 16.30 0.78 17 446.47 4.53 1.77 

18 548.03 6.49 3.22 18 491.69 96.34 0.36 

19 551.35 57.37 3.44 19 526.50 5.25 3.93 

20 580.44 32.52 3.16 20 557.73 2.40 0.33 

21 667.59 28.07 0.62 21 574.72 14.88 1.37 

22 717.35 7.93 3.18 22 605.63 5.79 5.21 

23 788.57 83.89 1.16 23 667.79 22.05 2.93 

24 796.30 11.25 4.13 24 718.91 2.21 0.28 

25 851.52 192.05 1.06 25 762.74 25.14 1.28 

26 875.27 12.03 0.83 26 805.31 27.25 0.50 

27 900.09 9.16 5.44 27 859.34 38.35 11.12 

28 947.28 47.81 2.17 28 912.23 129.03 3.74 

29 965.26 26.80 9.60 29 940.05 105.11 11.40 

30 990.71 162.00 4.18 30 1003.49 6.88 13.93 

31 1006.30 115.81 7.39 31 1045.47 15.38 5.15 

32 1040.99 17.84 3.12 32 1063.12 10.22 2.01 

33 1083.59 1.85 4.02 33 1085.67 3.53 18.27 

34 1087.82 0.65 2.78 34 1089.61 3.54 14.96 

35 1113.60 16.60 6.88 35 1105.26 2.85 4.98 

36 1141.53 6.16 4.60 36 1121.88 19.91 9.62 

37 1155.93 9.81 4.24 37 1143.31 9.63 21.86 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1201.72 6.52 0.15 38 1188.35 38.12 17.70 

39 1215.87 7.49 5.54 39 1198.55 2.19 3.78 

40 1240.16 27.74 3.27 40 1210.82 9.71 4.78 

41 1256.53 4.59 3.05 41 1280.64 2.53 3.71 

42 1306.80 4.79 6.90 42 1305.64 5.71 2.03 

43 1328.03 0.83 4.01 43 1335.46 0.66 42.20 

44 1354.94 1.95 3.27 44 1355.12 14.71 4.59 

45 1370.07 57.93 4.29 45 1366.16 24.07 9.75 

46 1390.25 46.40 0.78 46 1382.97 81.01 12.58 

47 1394.18 0.85 0.92 47 1414.95 23.46 4.29 

48 1449.53 248.79 5.71 48 1458.44 22.57 7.30 

49 1481.28 1.77 5.53 49 1468.35 150.30 26.21 

50 1491.79 28.45 4.66 50 1482.44 75.04 28.11 

51 1505.29 91.81 5.58 51 1493.84 24.18 5.95 

52 1515.32 43.37 8.38 52 1521.05 45.20 12.42 

53 1582.74 63.92 5.01 53 1596.27 0.84 2.08 

54 1590.12 47.14 3.21 54 1606.84 404.47 9.61 

55 1636.42 122.49 2.96 55 1660.64 857.49 7.55 

56 1683.24 442.39 5.64 56 1664.05 237.12 3.95 

57 1716.88 101.78 2.36 57 1696.62 637.64 8.30 

58 1756.20 623.88 0.68 58 1701.73 935.77 8.54 

59 2278.42 1567.40 33.04 59 3043.66 45.97 389.68 

60 3038.66 18.65 84.46 60 3056.97 4.38 400.98 

61 3058.53 162.63 146.70 61 3065.85 67.58 39.98 

62 3075.35 56.83 149.43 62 3077.91 16.98 361.85 

63 3085.64 28.80 61.57 63 3094.25 65.00 184.02 

64 3090.24 670.68 59.16 64 3103.44 3.06 92.03 

65 3100.06 123.42 86.74 65 3124.21 82.70 2.30 

66 3110.69 46.10 104.51 66 3510.14 9.80 274.75 

67 3127.07 13.86 50.84 67 3600.76 14.17 107.85 

68 3530.66 10.04 119.62 68 3632.83 266.51 55.21 

69 3630.84 9.41 46.48 69 3637.89 273.28 81.14 

70 3645.61 78.14 108.76 70 3647.63 36.51 272.18 

71 3691.77 69.95 135.59 71 3758.83 226.76 75.63 

72 3776.79 70.71 43.43 72 3762.34 126.61 27.25 
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Table 32: Calculated frequencies, IR-intensities and Raman-activities for arg_6, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model              

(no frequencies could be calculated without simulated water). 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    1 28.97 15.89 6.23 

    2 31.93 14.14 2.38 

    3 48.78 24.31 1.54 

    4 70.62 22.65 0.39 

    5 91.19 1.09 1.54 

    6 128.26 4.19 0.47 

    7 177.64 6.12 0.83 

    8 187.28 27.76 0.93 

    9 189.50 12.56 0.99 

    10 254.85 9.50 3.09 

    11 267.47 30.02 3.47 

    12 340.15 102.12 2.57 

    13 340.72 80.01 1.91 

    14 380.15 24.76 0.92 

    15 443.23 65.81 2.17 

    16 455.63 139.37 2.04 

    17 536.26 12.51 5.64 

    18 557.79 80.58 2.95 

    19 581.09 318.38 3.05 

    20 622.52 8.24 6.10 

    21 655.34 53.90 5.78 

    22 728.78 6.59 2.10 

    23 746.85 5.16 2.21 

    24 774.90 173.35 3.52 

    25 781.12 62.99 1.85 

    26 844.17 66.83 10.06 

    27 901.62 32.69 7.98 

    28 960.07 48.00 7.47 

    29 996.00 6.70 8.87 

    30 1033.00 44.97 7.99 

    31 1066.27 10.66 4.42 

    32 1083.65 4.31 10.92 

    33 1104.54 22.92 11.37 

    34 1111.50 10.97 19.20 

    35 1132.66 20.39 6.60 

    36 1147.63 116.42 6.79 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

    37 1176.74 32.06 13.96 

    38 1203.57 91.31 2.00 

    39 1217.14 2.53 3.32 

    40 1279.02 8.90 7.75 

    41 1289.32 22.74 3.33 

    42 1321.15 8.08 33.81 

    43 1356.13 42.74 5.30 

    44 1357.72 79.81 13.82 

    45 1386.36 16.83 4.39 

    46 1410.54 184.55 8.57 

    47 1423.77 296.68 4.84 

    48 1435.01 111.17 2.22 

    49 1452.02 287.75 24.31 

    50 1487.44 11.92 29.80 

    51 1499.72 6.32 6.25 

    52 1518.02 27.68 4.76 

    53 1568.98 443.84 7.34 

    54 1617.14 48.39 8.84 

    55 1644.19 160.34 10.90 

    56 1668.78 57.62 6.11 

    57 1702.14 667.66 69.00 

    58 1722.98 912.02 13.05 

    59 3029.18 77.71 268.94 

    60 3051.58 15.73 530.99 

    61 3057.68 60.15 70.04 

    62 3100.76 20.40 190.32 

    63 3119.89 32.72 117.27 

    64 3122.97 11.99 143.03 

    65 3152.05 24.87 79.64 

    66 3209.17 354.07 105.84 

    67 3496.80 129.51 126.23 

    68 3559.50 12.85 251.47 

    69 3565.54 148.45 69.98 

    70 3592.31 54.11 265.58 

    71 3627.43 50.74 179.76 

    72 3703.01 56.83 97.99 
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Table 33: Calculated frequencies, IR-intensities and Raman-activities for arg_7, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 28.20 1.06 0.89 1 22.53 1.03 1.76 

2 40.30 0.13 0.34 2 38.24 5.07 4.40 

3 58.61 1.48 0.59 3 54.16 4.98 1.88 

4 66.11 7.56 2.05 4 77.43 1.86 0.31 

5 110.27 2.15 0.68 5 99.42 0.38 1.17 

6 136.36 1.69 0.36 6 123.31 6.33 0.66 

7 165.57 0.71 0.64 7 180.35 20.81 0.91 

8 214.89 0.16 0.76 8 185.91 12.19 0.65 

9 244.52 42.23 0.41 9 235.29 6.69 0.65 

10 283.13 8.91 1.64 10 254.52 81.08 0.50 

11 304.35 10.13 0.47 11 266.96 0.56 3.87 

12 318.51 11.57 2.11 12 334.77 11.03 0.73 

13 343.17 32.44 0.24 13 340.52 98.39 2.57 

14 366.53 11.38 1.69 14 391.05 15.56 1.35 

15 421.50 16.07 0.92 15 437.53 78.87 1.67 

16 491.76 47.36 1.61 16 451.43 145.61 3.39 

17 518.01 72.26 0.63 17 521.66 6.43 2.09 

18 559.69 62.28 1.23 18 558.23 123.24 1.18 

19 608.91 177.71 0.45 19 578.13 111.24 2.84 

20 614.94 133.71 1.16 20 585.99 276.12 2.43 

21 652.14 7.59 1.70 21 629.59 56.74 8.12 

22 656.53 23.81 2.65 22 652.56 75.86 3.15 

23 733.36 7.06 0.85 23 728.45 13.08 1.75 

24 742.07 16.75 2.09 24 738.09 17.93 2.09 

25 785.27 14.15 0.22 25 760.97 30.58 5.23 

26 795.78 123.05 2.54 26 774.47 223.23 3.63 

27 807.25 53.67 3.23 27 816.69 11.55 7.57 

28 872.06 69.29 5.53 28 877.78 152.57 5.45 

29 922.08 94.21 7.21 29 928.90 50.42 3.38 

30 964.09 4.99 2.95 30 996.98 22.21 8.73 

31 1019.72 13.43 2.37 31 1025.78 6.54 5.56 

32 1065.61 12.76 7.79 32 1086.10 2.52 7.54 

33 1081.40 2.43 5.67 33 1087.47 7.81 9.91 

34 1101.26 8.89 3.68 34 1107.22 16.34 11.12 

35 1108.61 27.19 1.29 35 1118.49 30.53 27.85 

36 1120.29 42.13 5.22 36 1152.95 128.58 10.36 

37 1164.10 23.19 3.32 37 1158.01 115.28 5.33 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1177.54 58.90 1.61 38 1185.71 68.32 4.84 

39 1187.28 178.74 0.82 39 1192.12 213.44 6.40 

40 1208.19 25.24 2.65 40 1208.32 45.90 4.49 

41 1242.97 14.77 1.74 41 1241.79 16.26 12.44 

42 1290.72 7.02 0.73 42 1275.63 1.54 3.22 

43 1294.27 2.04 6.77 43 1291.97 14.45 4.25 

44 1329.57 9.90 3.12 44 1317.76 26.66 21.72 

45 1342.65 1.95 11.84 45 1334.44 15.57 15.07 

46 1371.81 28.72 2.36 46 1345.75 61.09 9.32 

47 1380.77 63.85 6.39 47 1371.78 37.78 11.26 

48 1396.04 32.55 1.62 48 1407.14 42.49 6.02 

49 1428.28 4.74 1.84 49 1434.35 37.88 1.39 

50 1439.44 23.12 3.27 50 1457.73 37.44 8.80 

51 1481.06 4.27 13.21 51 1483.45 10.09 27.73 

52 1490.23 2.22 11.64 52 1497.75 11.58 7.23 

53 1501.81 13.68 1.32 53 1518.08 28.18 5.55 

54 1563.39 241.59 1.30 54 1567.89 435.01 7.17 

55 1643.08 130.04 3.84 55 1637.43 87.09 6.69 

56 1671.48 38.32 2.81 56 1641.52 178.31 11.25 

57 1756.36 273.07 22.17 57 1700.60 669.39 67.31 

58 1875.87 313.81 9.36 58 1836.41 645.97 34.00 

59 3048.96 7.53 156.27 59 3010.41 44.11 296.09 

60 3059.41 28.68 16.93 60 3031.89 76.21 260.52 

61 3078.74 42.02 123.63 61 3052.51 19.73 442.85 

62 3098.93 7.47 75.89 62 3061.34 64.51 122.67 

63 3112.40 15.56 63.90 63 3105.16 32.33 163.64 

64 3131.83 8.96 18.76 64 3120.93 22.13 126.34 

65 3147.87 17.76 19.14 65 3146.28 49.06 75.11 

66 3531.36 2.99 122.47 66 3544.04 5.71 261.10 

67 3567.55 7.38 141.41 67 3559.53 12.35 255.86 

68 3594.88 24.09 148.95 68 3590.85 54.48 256.04 

69 3621.16 6.97 74.87 69 3627.27 48.88 185.25 

70 3635.59 19.94 78.85 70 3633.07 18.45 116.23 

71 3710.26 25.16 57.29 71 3701.95 57.58 98.05 

72 3816.38 81.82 113.04 72 3803.13 162.76 170.65 
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Table 34: Calculated frequencies, IR-intensities and Raman-activities for arg_8, calculated with the 

method M06-2X/6-31++G** without and with simulated water using the SCRF hydration model. 

Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

1 24.96 2.94 0.81 1 38.06 15.30 4.31 

2 35.75 8.26 2.51 2 43.08 14.11 2.05 

3 53.43 4.51 0.87 3 57.94 9.92 2.66 

4 68.85 11.80 0.40 4 72.17 15.40 0.47 

5 101.66 0.78 0.63 5 101.40 3.08 1.60 

6 136.89 2.89 0.48 6 123.91 1.16 0.30 

7 167.64 4.82 0.76 7 169.77 9.80 1.44 

8 200.73 6.05 0.23 8 186.85 6.79 0.39 

9 238.83 15.40 3.07 9 241.78 17.78 1.88 

10 262.14 18.27 1.06 10 274.72 71.98 0.79 

11 284.99 30.22 1.68 11 278.00 30.22 5.09 

12 315.66 46.88 0.47 12 333.18 128.12 2.85 

13 339.60 9.47 0.66 13 335.64 29.92 0.41 

14 395.21 1.65 1.06 14 375.73 3.36 2.45 

15 438.89 18.39 0.62 15 433.41 166.83 3.28 

16 459.25 88.64 1.48 16 448.48 2.51 1.70 

17 530.25 14.31 2.74 17 525.00 10.74 3.35 

18 574.81 6.91 0.90 18 573.08 71.79 1.76 

19 621.93 159.65 1.07 19 586.52 299.08 3.48 

20 642.37 35.20 4.28 20 644.91 53.84 7.42 

21 669.97 8.22 1.47 21 667.18 25.24 2.79 

22 728.44 8.97 0.53 22 730.28 6.82 1.67 

23 751.76 7.33 0.53 23 756.55 8.54 2.36 

24 780.04 22.40 1.14 24 775.49 231.66 3.08 

25 786.37 153.76 2.72 25 801.79 24.65 0.79 

26 845.10 49.51 6.12 26 854.50 33.84 9.81 

27 905.76 63.55 1.82 27 909.23 93.03 6.36 

28 938.35 127.76 5.01 28 940.89 137.08 10.09 

29 989.28 2.18 4.90 29 996.86 14.29 7.72 

30 1030.83 34.68 2.66 30 1045.67 20.95 4.40 

31 1079.12 1.72 6.18 31 1080.11 3.60 14.16 

32 1089.28 25.99 8.12 32 1085.38 3.87 4.68 

33 1100.57 7.41 1.58 33 1106.75 14.41 15.72 

34 1119.79 6.91 4.17 34 1119.86 27.07 11.63 

35 1138.72 49.55 6.51 35 1134.61 42.02 14.36 

36 1158.15 17.04 11.87 36 1158.84 56.04 19.55 

37 1180.58 18.66 3.28 37 1184.51 74.53 4.09 
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Calculated frequencies 

without simulated water 

Calculated frequencies 

with SCRF hydration model 

 Frequency 
IR   

Intensity 

Raman 

Activity 
 Frequency 

IR   

Intensity 

Raman 

Activity 

38 1199.63 21.79 2.82 38 1201.65 37.74 10.30 

39 1209.90 43.44 4.43 39 1203.15 32.53 4.46 

40 1261.76 3.40 2.52 40 1270.81 4.34 3.69 

41 1283.27 2.24 2.07 41 1287.99 16.88 5.84 

42 1318.87 2.69 17.77 42 1318.14 3.20 38.24 

43 1327.80 7.07 3.50 43 1341.49 33.66 3.76 

44 1352.48 75.77 1.07 44 1362.41 23.83 11.98 

45 1369.03 16.27 2.41 45 1379.11 98.97 11.75 

46 1392.16 33.01 3.21 46 1398.70 45.95 5.09 

47 1421.57 95.73 3.68 47 1429.86 44.28 2.29 

48 1431.51 105.42 9.01 48 1465.88 100.90 28.67 

49 1487.89 3.50 14.76 49 1480.70 109.42 26.96 

50 1498.85 4.37 2.25 50 1490.87 36.35 6.90 

51 1523.57 14.31 4.02 51 1516.08 29.45 7.73 

52 1567.33 315.74 1.24 52 1568.28 443.36 7.00 

53 1631.58 179.81 4.92 53 1608.35 414.11 10.10 

54 1648.88 150.38 3.62 54 1642.22 176.93 11.26 

55 1740.62 427.76 8.61 55 1658.14 845.89 7.38 

56 1744.42 439.32 24.45 56 1699.07 676.99 68.37 

57 2997.83 71.12 118.05 57 3033.39 47.17 172.11 

58 3039.10 32.08 66.81 58 3036.91 62.02 571.86 

59 3041.75 8.32 206.62 59 3046.95 69.63 172.56 

60 3057.26 6.76 27.41 60 3073.28 6.79 352.95 

61 3066.51 91.93 37.62 61 3088.37 77.79 136.33 

62 3102.41 6.99 77.22 62 3103.67 42.36 97.72 

63 3123.06 42.83 2.98 63 3119.81 90.63 69.43 

64 3467.01 62.44 97.66 64 3509.53 9.07 278.53 

65 3552.02 9.44 188.17 65 3559.10 12.28 252.47 

66 3575.78 8.56 68.92 66 3591.45 51.85 255.59 

67 3588.63 11.19 139.60 67 3599.31 13.35 107.01 

68 3632.63 32.52 69.09 68 3628.94 52.40 190.50 

69 3703.67 14.58 67.38 69 3702.12 56.04 99.54 
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4.4 Comparison of the experimental results with dat a 

from the literature 
 

Some literature has already been published on the analysis of L-lysine and L-arginine 

with spectroscopic methods. Whereas some of them used theoretical calculations       

as a support no variation of the pH-value has been reported, yet. Only the diploma 

thesis of Schwarzott [2] provides a basis for the analysis of lysine at different               

pH-values. Schwarzott analysed L-lysine and poly-L-lysine in D2O with                 

infrared spectroscopy to determine and characterize changes in the secondary 

structure of the peptide. Assignments were not made for all absorption bands, only  

the characteristic bands for the secondary structure of the peptide were evaluated and 

assigned. 

 

A very good basis for the assignment of vibrational bands in infrared and Raman 

spectra of lysine and arginine at neutral pH-values is provided by Hernández and       

co-workers [1]. Samples of lysine and arginine were dissolved in water and D2O and 

analysed with IR and Raman spectroscopy at neutral pH-values. Additionally, 

theoretical calculations were carried out and the main observed bands at a neutral 

pH-value were assigned to their possible molecular vibrations. 

 

Another useful work was done by Kumar and Rai [34]. They analysed solid L-arginine 

molecules with infrared and Raman spectroscopy at room temperature. For the           

IR measurements a JASCO FTIR-5300 spectrophotometer was used. The Raman 

measurements were carried out on a ISB Jobin-Yvon Spex HR-320 

spectrophotometer with a SDL-8430 diode laser at 785 nm. The assignments made 

by Kumar and Rai were used to help with the assignment of the bands in the 

experimental infrared and Raman spectra of L-arginine analysed in the course of this 

master thesis. 

 

Guangyong and co-workers [35] recorded Raman spectra of different amino acids            

in solid state and aqueous solutions. Also aqueous solutions of L-lysine and                  

L-arginine were analysed with a concentration of 3 g/100 ml H2O. For this purpose         

a Renishaw HPNIR Raman spectrometer with a diode laser of 785 nm was used.             

The acquisition time was ten seconds. The samples were placed on a metal-coated 

slide and analysed at room temperature. The resulting spectra for the region            

from 600 cm-1 to 1700 cm-1 looked similar to those analysed in the course of                 
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this master thesis. The assignments made by Guangyong and co-workers [35] are also 

based on the work of Hernández and co-workers [1]. 

 

In the following figures the experimental IR and Raman spectra of L-lysine and          

L-arginine at neutral pH-values were compared to the IR and Raman spectra of               

L-lysine and L-arginine from the paper “Vibrational Analysis of Amino Acids and Short 

Peptides in Hydrated Media. VI. Amino Acids with Positively Charged Side Chains:         

L-Lysine and L-Arginine” by Belén Hernández, Fernando Pflüger, Najoua Derbel,          

Joël De Coninck, and Mahmoud Ghomi. 

 

In their experiments the lysine and arginine samples for IR spectroscopy were 

dissolved in water to a concentration of 100 mM and analysed with a Perkin-Elmer 

2000 spectrophotometer. Continuous dry air purge and a ZnSe crystal ATR accessory 

were used. 18 µL of the samples were dropped on the ATR crystal and scanned              

20 times with 1 cm-1 spectral resolution. 

 

The samples for Raman spectroscopy were dissolved to a concentration of 50 mM.            

30 µL of the samples were filled to a suprasil quartz cell with 5 mm path length. The 

samples were excited by the 488 nm line of an Ar+ laser and the dispersive light was 

analysed with a Jobin-Yvon T64000 spectrograph. The spectra were detected by           

a liquid nitrogen cooled CCD detection system and accumulated for 40 minutes with 

an effective spectral slit width of 5 cm-1. 

 

4.4.1 L-lysine  

 

The spectra of 0.4 M L-lysine in water at neutral pH-values correspond very well with 

the spectra in the literature [1]. In the given range from about 1700 cm-1 to 850 cm-1 the 

same peaks could be identified in the infrared spectra. Figure 45 shows an overlay of 

the analysed FT-IR spectrum of L-lysine at a pH-value of 5.35 and the spectrum of      

L-lysine at neutral pH-values found in the literature [1] in the range from 1700 cm-1 to 

850 cm-1, both spectra were recorded in water. The common bands are marked in red 

and their wavelengths are listed in Table 35 together with a possible assignment of the 

vibrations. 
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Figure 45: Overlay of the FT-IR spectrum of L-lysine at a pH-value of 5.35 and the ATR IR spectrum of        

L-lysine at neutral pH-values found in the literature (black) [1], both spectra were recorded in water, the 

common bands are marked in red. 

 

Table 35: Wavelengths of the compared bands of the analysed FT-IR spectrum of L-lysine at a pH-value 

of 5.35 and the ATR IR spectrum of L-lysine at neutral pH-values found in the literature [1] together with a 

possible assignment of the vibrations. 

IR spectrum of 

L-lysine, pH 5.35 

FT-IR ATR spectrum of 

L-lysine (literature  [1]) 
Possible assignment  [1] 

1635 1636 NH3
+ asymmetric bending 

1602 1599 COO- asymmetric stretching 

1520 1523 
NH3

+ symmetric bending,                                 

NH3
+ symmetric rocking 

1475 1473 CH2 deformation 

1462 1462 CH2 deformation 

1445 1445 CH2 deformation 

1413 1413 COO- symmetric stretching 

1352 1352 Cγ wagging, Cδ twisting, Cε twisting 

1327 1329 Cβ twisting 

1313 1315 Cγ rocking, Cδ rocking, Cδ twisting 

1290 1292 
Cβ twisting, C-Cα-Hα,                                 

NH3
+ asymmetric rocking 
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IR spectrum of 

L-lysine, pH 5.35 

FT-IR ATR spectrum of 

L-lysine (literature  [1]) 
Possible assignment  [1] 

1182 1181 NH3
+ asymmetric rocking, Cε rocking 

1141 1143 NH3
+ asymmetric rocking, C-Cα-Hα 

1006 1007 Cα-Cβ, Cγ-Cδ, Cε-N 

 

Also the compared Raman-spectra showed the same bands in the given range from 

about 1700 cm-1 to 650 cm-1. An overlay of the analysed Raman spectrum of L-lysine 

at a pH-value of 5.88 and the spectrum of L-lysine at neutral pH-values found in the 

literature [1] in the range from 1700 cm-1 to 650 cm-1 is displayed in Figure 46, whereas 

both spectra were recorded in water. The common bands are marked in red and their 

wavelengths are listed in Table 36 together with a possible assignment of the 

vibrations. 

 

 
Figure 46: Overlay of the FT-IR Raman spectrum of L-lysine at a pH-value of 5.88 and the Raman 

spectrum of L-lysine at neutral pH-values measured with a laser wavelength of 488 nm found in the 

literature (black) [1], both spectra were recorded in water, the common bands are marked in red. 
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Table 36: Wavelengths of the compared bands of the analysed FT-IR Raman spectrum of L-lysine at a 

pH-value of 5.88 and the Raman spectrum of L-lysine at neutral pH-values measured with a laser 

wavelength of 488 nm found in the literature [1] together with a possible assignment of the vibrations. 

Raman spectrum of 

L-lysine, pH 5.88 

Raman spectrum of 

L-lysine (literature  [1]) 
Possible assignment  [1] 

1649 1650 NH3
+ asymmetric bending 

1615 1615 NH3
+ asymmetric bending 

 1598 COO- asymmetric stretching 

1472 1470 Cδ bending, Cε bending 

1445 1446 Cβ bending, Cγ bending, Cδ bending 

1411 1415 COO- symmetric stretching 

1352 1353 Cγ wagging, Cδ twisting, Cε twisting 

1327 1328 Cβ twisting 

1290 1293 Cβ twisting, C-Cα-Hα, NH3
+ asymmetric 

bending 

1234 1234 Cγ twisting, NH3
+ asymmetric rocking,              

Cβ-Cα-Hα, Cδ wagging 

1184 1183 NH3
+ asymmetric rocking, Cε rocking 

1141 1143 NH3
+ asymmetric rocking, C-Cα-Hα 

1079 1076 Cβ-Cγ, Cγ-Cδ 

1068 1063 Cδ-Cε, Cε-N, Cδ wagging 

1029 1033 Cδ-Cε, Cε-N 

1015 1012 Cβ-Cγ, Cβ wagging, Cγ scissoring 

960 961 N-Cα, Cδ-Cε 

923 919 Cε wagging, Cα-Cβ 

908 903 Cγ-Cδ, Cβ wagging, Cβ-Cγ, N-Cα, C-Cα 

847 847 Cγ twisting, Cε wagging, Cβ wagging 

819 819 O-C-O 

 745 Cδ wagging, Cγ twisting 
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4.4.2 L-arginine  

 

The spectra of 0.4 M L-arginine in water at neutral pH-values also show a very good 

correlation to the corresponding spectra in the literature [1]. In the infrared spectra the 

same bands could be identified in the given range from about 1700 cm-1 to 850 cm-1. 

Figure 47 shows an overlay of the analysed FT-IR spectrum of L-arginine at a              

pH-value of 7.40 and the spectrum of L-arginine at neutral pH-values found in the 

literature [1] in the range from 1700 cm-1 to 850 cm-1, both spectra were recorded in 

water. The common bands are marked in red. Table 37 lists the wavelengths of these 

bands and a possible assignment of the vibrations. 

 

 

Figure 47: Overlay of the FT-IR spectrum of L-arginine at a pH-value of 7.40 and the ATR IR spectrum of 

L-arginine at neutral pH-values found in the literature (black) [1], both spectra were recorded in water, the 

common bands are marked in red. 
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Table 37: Wavelengths of the compared bands of the analysed FT-IR spectrum of L-arginine at a          

pH-value of 7.40 and the ATR IR spectrum of L-lysine at neutral pH-values found in the literature [1] 

together with a possible assignment of the vibrations. 

IR spectrum of 

L-arginine, pH 7.40 

FT-IR ATR spectrum of 

L-arginine (literature  [1]) 
Possible assignment  [1] [34] 

1665 1669 NH3
+ asymmetric bending 

1619 1620 N2-H2 bending, C-N2-H2 symmetric bending 

1600 1600 COO- asymmetric stretching, N1-H2 bending, 

N1-C-N2 asymmetric stretching 

1519 1520 NH3
+ symmetric bending,                                  

NH3
+ symmetric rocking 

1474 1468 CH2 deformation 

1454 1456 CH2 deformation 

1411 1412 COO- symmetric stretching 

1352 1353 N-Cα-Hα, Cβ-Cα-Hα 

1331 1331 Cβ rocking, Cδ rocking 

1315 1315 Cβ twisting, Cγ rocking, Cβ-Cα-Hα 

1297 1293 Cγ rocking, Cδ twisting 

 1263 Cδ twisting, Cγ wagging, Cβ twisting 

1213 1217 NH3
+ asymmetric rocking, Cβ twisting, Cδ 

twisting 

1174 1176 C-N2-H2 asymmetric bending 

 1164 NH3
+ asymmetric rocking, C-Cα-Hα, Cβ-Cα-Hα, 

Cδ wagging 

 1148 unknown 

1123 1117 NH3
+ asymmetric rocking, C-Cα-Hα 

 1100 C-N1-H2 asymmetric bending 

 1080 Cδ-Nε, N1-C-N2 symmetric stretching 

 1049 Cγ-Cδ 

 1018 Cβ-Cγ 
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The compared Raman-spectra also showed the same bands in the given range from 

about 1700 cm-1 to 650 cm-1. An overlay of the analysed Raman spectrum of L-lysine 

at a pH-value of 5.88 and the spectrum of L-lysine at neutral pH-values found in the 

literature [1] in the range from 1700 cm-1 to 650 cm-1 is displayed in Figure 48, whereas 

both spectra were recorded in water. The common bands are marked in red and their 

wavelengths are listed in Table 38 together with a possible assignment of the 

vibrations. 

 

 

Figure 48: Overlay of the FT-IR Raman spectrum of L-arginine at a pH-value of 7.25 and the spectrum of    

L-arginine at neutral pH-values measured with a laser wavelength of 488 nm found in the literature 

(black) [1], both spectra were recorded in water, the common bands are marked in red. 

 

Table 38: Wavelengths of the compared bands of the analysed FT-IR Raman spectrum of L-arginine at a 

pH-value of 7.25 and the Raman spectrum of L-lysine at neutral pH-values measured with a laser 

wavelength of 488 nm found in the literature [1] together with a possible assignment of the vibrations. 

Raman spectrum of 

L-arginine, pH 7.25 

Raman spectrum of 

L-arginine (literature  [1]) 
Possible assignment  [1] [34] 

 1605 
N1-H2 bending, N1-C-N2 asymmetric stretching, 

C-N2-H2 symmetric bending 

 1594 Nε-C 

 1581 COO- asymmetric stretching 

 1470 Cγ bending, Cδ bending 

1446 1445 N1-C-N2 asymmetric stretching, C-Nε-Hε 
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Raman spectrum of 

L-arginine, pH 7.25 

Raman spectrum of 

L-arginine (literature  [1]) 
Possible assignment  [1] [34] 

1411 1415 
COO- symmetric stretching, Cβ rocking,           

Cγ wagging 

1355 1353 N-Cα-Hα, Cβ-Cα-Hα 

1319 1323 Cβ twisting, Cγ rocking,       Cβ-Cα-Hα 

1288 1290 Cγ rocking, Cδ twisting 

 1264 Cδ twisting, Cγ wagging, Cβ twisting 

 1214 
NH3

+ asymmetric rocking, Cβ twisting,                 

Cδ twisting 

 1176 C-N2-H2 asymmetric bending 

 1164 
NH3

+ asymmetric rocking, C-Cα-Hα, Cβ-Cα-Hα, 

Cδ wagging 

1092 1092 C-N1-H2 asymmetric bending, CN stretching 

1057 1056 Cγ twisting, N1-C-N2 symmetric stretching 

 1035 Cγ-Cδ 

1013 1011 Cβ-Cγ 

 981 Cα-Cβ, N-Cα 

971 970 N-Cα, Cα-Cβ, Cα-C 

934 934 
N1-C-N2 symmetric stretching, Cδ-Nε, Cβ-Cγ, 

Nε-C 

898 900 Cδ wagging, Cβ wagging 

 891 unknown 

857 860 unknown 

 828 unknown 

 809 Cγ twisting 
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4.5 Comparison of the experimental results to the 

related theoretical calculations  

 

The theoretical IR and Raman spectra of lysine and arginine (calculated with 

simulated water) were compared to the experimental spectra at the same protonation 

level to support the assignment of the bands to the corresponding molecular 

vibrations. Especially the animations of the vibrations helped with the assignment of 

bands that could not be certainly assigned to a molecular vibration. Figures of the 

compared experimental and theoretical spectra are shown in the appendix. 

 

In the literature many calculations on the structures of L-lysine [36] and L-arginine [37] 
[38] [39] have been performed. Only few calculations exist for the infrared and Raman 

frequencies. Also for theoretical calculations the paper by Hernández and co-workers 
[1] provides a good basis. Hernández and co-workers used the density functional 

theory (DFT) approach with B3LYP functionals and the basis set 6-31++G*. These 

calculations were performed with two different hydration models and helped with the 

assignment of the vibrational bands in the experimental spectra. 

 

The theoretical calculations with the method M06-2X/6-31++G** conducted in the 

course of this master thesis as well as their animations were very useful for the 

assignments of some bands. Especially with the SCRF hydration model good results 

could be achieved and new or at least further clues for the assignment of the 

vibrational bands were gained, as no calculations with this method have been 

performed yet. 
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4.6 Comparison of L-lysine to L-arginine  

 

4.6.1 IR-spectra  

 

Figure 49 shows a direct comparison of the IR spectra of four pH-values of                  

0.4 M L-lysine (0.36, 5.35, 10.23 and 13.17) to four pH-values of 0.4 M L-arginine 

(0.33, 5.78, 10.56 and 13.13). For a better overview the spectra of L-lysine are shown 

at the top and the spectra of L-arginine are shown at the bottom. It can be seen that 

some of the bands are common for lysine and arginine in the same protonation states. 

The wavelengths of the common absorption bands are listed in Table 39 together with 

a possible assignment. 

 

It can be seen that the absorption bands for the vibrations of carboxyl group as well as 

the CH2 stretching vibrations appear for both amino acids in the corresponding 

spectra of the same protonation state. Also the two unknown bands between           

2700 cm-1 and 2500 cm-1 and the vibrational bands coupled with the carboxyl group 

are present in the IR spectra of both amino acids. Unfortunately, still no clear 

assignment was possible. 

 

 
Figure 49: IR-spectra of 0.4 M L-lysine at four different pH-values (0.36, 5.35, 10.23 and 13.17, at the 

top) and 0.4 M L-arginine at four different pH-values (0.33, 5.78, 10.56 and 13.13, at the bottom) in water, 

in the range from 3000 cm-1 to 1100 cm-1. 
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Table 39: Peak list for the common IR absorption bands for 0.4 M L-lysine and 0.4 M L-arginine in water, 

in the range from 3000 cm-1 to 1100 cm-1. 

Wavelength [cm -1] Possible assignment  [1] [34] 

2871 CH2 asymmetric stretching 

2779 CH2 symmetric stretching 

2657 unknown 

2562 unknown 

1734 C=O stretching 

1561 COO- asymmetric stretching 

1526 NH3
+ symmetric bending, NH3

+ symmetric rocking 

1412 COO- symmetric stretching 

1354 N-Cα-Hα, Cβ-Cα-Hα 

1298 C twisting/rocking/wagging 

1271 C twisting/rocking/wagging 

1254 C-OH stretching 

 

4.6.2 Raman-spectra  

 

The direct comparison of the Raman spectra of four pH-values of 0.4 M L-lysine    

(0.56, 5.88, 10.59 and 12.74) to four pH-values of 0.4 M L-arginine (0.41, 7.25, 11.25 

and 13.17) is displayed in Figure 50. For a better overview the spectra of L-lysine are 

shown at the top and the spectra of L-arginine are shown at the bottom. The 

wavelengths of common absorption bands are listed in Table 40 together with a 

possible assignment. 

 

It can be seen that the absorption bands for some vibrations are common in the 

Raman spectra of L-lysine and L-arginine. The bands for C=O and CH2 stretching 

vibrations as well as the COO- symmetric stretching appear for both amino acids in 

the corresponding spectra of the same protonation level. 
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Figure 50: Raman-spectra of 0.4 M L-lysine at four different pH-values (0.56, 5.88, 10.59 and 12.74, at 

the top) and 0.4 M L-arginine at four different pH-values (0.41, 7.25, 11.25 and 13.17, at the bottom) in 

water, in the range from 3500 cm-1 to 50 cm-1. 

 

Table 40: Peak list for the common Raman absorption bands for 0.4 M L-lysine and 0.4 M L-arginine in 

water, in the range from 3500 cm-1 to 50 cm-1. 

Wavelength [cm -1] Possible assignment  [1] [34] 

2942 CH2 stretching 

1734 C=O stretching 

1446 C twisting/rocking/wagging 

1413 COO- symmetric stretching 

1354 C twisting/rocking/wagging 

1323 C twisting/rocking/wagging 
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55  __CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS__________________________________  
 

The purpose of this work was to assign the bands of L-lysine and L-arginine               

in infrared and Raman spectra to their corresponding molecular vibrations.              

Altogether, this work is a systematic and compact summary of experimental                  

IR and Raman data on the vibrational features of L-lysine and L-arginine                          

at different pH-values and therefore in different protonation states.                              

Also theoretical data calculated with quantum mechanical methods were            

considered and data from other literary sources were included and compared. 

 

The molecular vibrations of L-lysine and L-arginine dissolved in water                     

were analysed with infrared spectroscopy at different pH-values from acidic                

to basic media (pH-values from about 0.3 to 13.2). Even if low and high pH-values      

do not coincide with the natural environment of the amino acids, analyses                    

of these pH-values helped with the identification and assignment of the           

vibrational bands at physiological pH-value. For the sake of completeness               

also Raman spectra were recorded for L-lysine and L-arginine solutions at            

different pH-values. 

 

Furthermore, theoretical calculations with the SCRF (self consistent reaction                     

field) model were performed to help with the assignments of the bands                         

and molecular vibrations. The used hydration model was beneficial and                   

produced more realistic results. With the SCRF method the resulting              

structures were more plausible as no proton transfer occurred during the          

calculations. The use of the hydration model had no significant effect on the                   

IR and Raman frequencies, only the IR-intensities and Raman-activities varied. 

 

Via combination and comparison of the experimental data and the related               

theoretical calculations as well as with the aid of different literary sources many      

bands in the experimental IR and Raman spectra of L-lysine and L-arginine                    

could be assigned to their corresponding molecular vibrations. The variation                  

of the pH-value turned out to be very useful as conclusions can be drawn                     

for the assignments from the changes of the absorption bands at different               

protonation states. In other literary sources the analyses were conducted                         

at physiological pH-values only. 
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Altogether, this master thesis contains a complete and systematic                   

collection of vibrational data on L-lysine and L-arginine. This data collection            

contains not only IR and Raman spectra of both amino acids at different pH-values.       

It also shows a comparison of the experimental spectra to the related                

theoretical calculations at different protonation states combined with                           

useful information and band assignments of various literary sources. The              

combination of all this data lead to the assignment of many absorption bands                   

of the infrared and Raman spectra to their corresponding molecular vibration             

in L-lysine and L-arginine molecules. 
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77  __AAPPPPEENNDDIICCEESS__________________________________________________  
 

7.1 Theoretical calculated spectra  

 

In the following figures the theoretical calculated spectra of L-lysine and L-arginine are 

displayed. These include the IR-spectra as well as the Raman spectra, calculated with 

the M06-2X/6-31++G** method without and with the SCRF hydration model. 

 

7.1.1 L-lysine 

 

 
Figure A - 1: IR-spectrum of lys_1, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 
Figure A - 2: IR-spectrum of lys_1, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 3: Raman-spectrum of lys_1, calculated with M06-2X/6-31++G**, without SCRF               

hydration model. 

 

 

 
Figure A - 4: Raman-spectrum of lys_1, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 5: IR-spectrum of lys_2, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 6: Raman-spectrum of lys_2, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 7: IR-spectrum of lys_3, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 
Figure A - 8: IR-spectrum of lys_3, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 9: Raman-spectrum of lys_3, calculated with M06-2X/6-31++G**, without SCRF                

hydration model. 

 

 

 
Figure A - 10: Raman-spectrum of lys_3, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 11: IR-spectrum of lys_4, calculated with M06-2X/6-31++G**, without SCRF hydration model. 
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Figure A - 12: IR-spectrum of lys_4, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 13: Raman-spectrum of lys_4, calculated with M06-2X/6-31++G**, without SCRF             

hydration model. 

 

 

 
Figure A - 14: Raman-spectrum of lys_4, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 15: IR-spectrum of lys_5, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 16: Raman-spectrum of lys_5, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 17: IR-spectrum of lys_6, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 18: Raman-spectrum of lys_6, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 19: IR-spectrum of lys_7, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 
Figure A - 20: IR-spectrum of lys_7, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 21: Raman-spectrum of lys_7, calculated with M06-2X/6-31++G**, without SCRF              

hydration model. 

 

 

 
Figure A - 22: Raman-spectrum of lys_7, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 23: IR-spectrum of lys_8, calculated with M06-2X/6-31++G**, without SCRF hydration model. 
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Figure A - 24: IR-spectrum of lys_8, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 25: Raman-spectrum of lys_8, calculated with M06-2X/6-31++G**, without SCRF             

hydration model. 

 

 

 
Figure A - 26: Raman-spectrum of lys_8, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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7.1.2 L-arginine 

 

 
Figure A - 27: IR-spectrum of arg_1, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 

Figure A - 28: IR-spectrum of arg_1, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 29: Raman-spectrum of arg_1, calculated with M06-2X/6-31++G**, without SCRF             

hydration model. 
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Figure A - 30: Raman-spectrum of arg_1, calculated with M06-2X/6-31++G**, with SCRF              

hydration model. 

 

 

 
Figure A - 31: IR-spectrum of arg_2, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 32: Raman-spectrum of arg_2, calculated with M06-2X/6-31++G**, with SCRF               

hydration model. 
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Figure A - 33: IR-spectrum of arg_3, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 
Figure A - 34: IR-spectrum of arg_3, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 35: Raman-spectrum of arg_3, calculated with M06-2X/6-31++G**, without SCRF                   

hydration model. 
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Figure A - 36: Raman-spectrum of arg_3, calculated with M06-2X/6-31++G**, with SCRF                  

hydration model. 

 

 

 
Figure A - 37: IR-spectrum of arg_4, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 
Figure A - 38: IR-spectrum of arg_4, calculated with M06-2X/6-31++G**, with SCRF hydration model. 
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Figure A - 39: Raman-spectrum of arg_4, calculated with M06-2X/6-31++G**, without SCRF           

hydration model. 

 

 

 
Figure A - 40: Raman-spectrum of arg_4, calculated with M06-2X/6-31++G**, with SCRF                 

hydration model. 

 

 

 
Figure A - 41: IR-spectrum of arg_5, calculated with M06-2X/6-31++G**, without SCRF hydration model. 
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Figure A - 42: IR-spectrum of arg_5, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 43: Raman-spectrum of arg_5, calculated with M06-2X/6-31++G**, without SCRF                

hydration model. 

 

 

 
Figure A - 44: Raman-spectrum of arg_5, calculated with M06-2X/6-31++G**, with SCRF                  

hydration model. 
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Figure A - 45: IR-spectrum of arg_6, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 46: Raman-spectrum of arg_6, calculated with M06-2X/6-31++G**, with SCRF                  

hydration model. 

 

 

 
Figure A - 47: IR-spectrum of arg_7, calculated with M06-2X/6-31++G**, without SCRF hydration model. 
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Figure A - 48: IR-spectrum of arg_7, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 49: Raman-spectrum of arg_7, calculated with M06-2X/6-31++G**, without SCRF             

hydration model. 

 

 

 
Figure A - 50: Raman-spectrum of arg_7, calculated with M06-2X/6-31++G**, with SCRF                 

hydration model. 
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Figure A - 51: IR-spectrum of arg_8, calculated with M06-2X/6-31++G**, without SCRF hydration model. 

 

 

 
Figure A - 52: IR-spectrum of arg_8, calculated with M06-2X/6-31++G**, with SCRF hydration model. 

 

 

 
Figure A - 53: Raman-spectrum of arg_8, calculated with M06-2X/6-31++G**, without SCRF            

hydration model. 
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Figure A - 54: Raman-spectrum of arg_8, calculated with M06-2X/6-31++G**, with SCRF                 

hydration model. 
 

7.2 Comparison of the experimental results to the 

related theoretical calculations  

 

The comparison of the theoretical IR and Raman spectra of lysine and arginine 

(calculated with simulated water) to the experimental spectra at the same protonation 

level was used to help with the assignment of the absorption bands to the 

corresponding molecular vibrations. 

 

In the following figures the theoretical IR and Raman spectra of lysine and arginine 

(calculated with simulated water) are compared to the experimental spectra at          

the corresponding protonation level. A list of the compared experimental and 

theoretical spectra as well as the corresponding figures is shown in Table A - 1. The 

blue spectrum always shows the experimental spectrum whereas the orange,              

dark red and green spectra show the corresponding theoretical spectra.                   

The compared spectra are displayed without applying any correction factor                

to the wavelengths of the theoretical spectra. Only the IR intensities of the               

theoretical spectra were scaled by a factor of 5000, the Raman activities by a            

factor of 50000 for a better comparison to the experimental data. 

 

Even if the theoretical calculated wavelengths of the absorption bands always vary to 

the wavelengths in the experimental spectra it can be seen that there are many 

common bands. In the region between 3700 cm-1 and 3000 cm-1 the absorption of 

water is very high in the experimental infrared spectra and below 950 cm-1 the used 

measuring cell absorbs. In the Raman spectra the water absorptions appear in the 

ranges from 3600 cm-1 to 3050 cm-1 and from 1700 cm-1 to 1550 cm-1. Therefore, 

some of the theoretical calculated bands can not be seen in the experimental spectra. 
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Table A - 1:List of the compared experimental and theoretical IR and Raman spectra of lysine and 

arginine and the corresponding figures. 

amino acid spectrum experimental theoretical figure  

lysine IR pH 0.36 lys_1 Figure A - 55 

lysine IR pH 5.35 lys_2, lys_3, lys_4 Figure A - 56 

lysine IR pH 10.23 lys_5, lys_6, lys_7 Figure A - 57 

lysine IR pH 13.17 lys_8 Figure A - 58 

lysine Ra pH 0.56 lys_1 Figure A - 59 

lysine Ra pH 5.88 lys_2, lys_3, lys_4 Figure A - 60 

lysine Ra pH 10.59 lys_5, lys_6, lys_7 Figure A - 61 

lysine Ra pH 12.74 lys_8 Figure A - 62 

arginine IR pH 0.33 arg_1 Figure A - 63 

arginine IR pH 5.78 arg_2, arg_3, arg_4 Figure A - 64 

arginine IR pH 10.56 arg_5, arg_6, arg_7 Figure A - 65 

arginine IR pH 13.13 arg_8 Figure A - 66 

arginine Ra pH 0.41 arg_1 Figure A - 67 

arginine Ra pH 7.25 arg_2, arg_3, arg_4 Figure A - 68 

arginine Ra pH 11.25 arg_5, arg_6, arg_7 Figure A - 69 

arginine Ra pH 13.17 arg_8 Figure A - 70 

 

7.2.1 L-lysine 
 

 

Figure A - 55: Compared IR spectra of 0.4 M L-lysine at a pH-value of 0.36 (experimental spectrum) to 

the theoretical calculated spectrum of lys_1 in the same protonation state, in the range from 4000 cm-1 to 

670 cm-1. 
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Figure A - 56: Compared IR spectra of 0.4 M L-lysine at a pH-value of 5.35 (experimental spectrum) to 

the theoretical calculated spectra of lys_2, lys_3 and lys_4 in the same protonation state, in the range 

from 4000 cm-1 to 670 cm-1. 

 

 

 
Figure A - 57: Compared IR spectra of 0.4 M L-lysine at a pH-value of 10.23 (experimental spectrum) to 

the theoretical calculated spectra of lys_5, lys_6 and lys_7 in the same protonation state, in the range 

from 4000 cm-1 to 670 cm-1. 
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Figure A - 58: Compared IR spectra of 0.4 M L-lysine at a pH-value of 13.17 (experimental spectrum) to 

the theoretical calculated spectrum of lys_8 in the same protonation state, in the range from 4000 cm-1 to 

670 cm-1. 

 

 

 
Figure A - 59: Compared Raman spectra of 0.4 M L-lysine at a pH-value of 0.56 (experimental spectrum) 

to the theoretical calculated spectrum of lys_1 in the same protonation state, in the range from 3500 cm-1 

to 50 cm-1. 
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Figure A - 60: Compared Raman spectra of 0.4 M L-lysine at a pH-value of 5.88 (experimental spectrum) 

to the theoretical calculated spectra of lys_2, lys_3 and lys_4 in the same protonation state, in the range 

from 3500 cm-1 to 50 cm-1. 

 

 

 
Figure A - 61: Compared Raman spectra of 0.4 M L-lysine at a pH-value of 10.59 (experimental 

spectrum) to the theoretical calculated spectrum of lys_5, lys_6 and lys_7 in the same protonation state, 

in the range from 3500 cm-1 to 50 cm-1. 
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Figure A - 62: Compared Raman spectra of 0.4 M L-lysine at a pH-value of 12.74 (experimental 

spectrum) to the theoretical calculated spectrum of lys_8 in the same protonation state, in the range from 

3500 cm-1 to 50 cm-1. 

 

7.2.2 L-arginine 

 

 
Figure A - 63: Compared IR spectra of 0.4 M L-arginine at a pH-value of 0.33 (experimental spectrum) to 

the theoretical calculated spectrum of arg_1 in the same protonation state, in the range from 4000 cm-1 to 

670 cm-1. 
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Figure A - 64: Compared IR spectra of 0.4 M L-arginine at a pH-value of 5.78 (experimental spectrum) to 

the theoretical calculated spectra of arg_2, arg_3 and arg_4 in the same protonation state, in the range 

from 4000 cm-1 to 670 cm-1. 

 

 

 
Figure A - 65: Compared IR spectra of 0.4 M L-arginine at a pH-value of 10.56 (experimental spectrum) to 

the theoretical calculated spectra of arg_5, arg_6 and arg_7 in the same protonation state, in the range 

from 4000 cm-1 to 670 cm-1. 
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Figure A - 66: Compared IR spectra of 0.4 M L-arginine at a pH-value of 13.13 (experimental spectrum) to 

the theoretical calculated spectrum of arg_8 in the same protonation state, in the range from 4000 cm-1 to 

670 cm-1. 

 

 

 
Figure A - 67: Compared Raman spectra of 0.4 M L-arginine at a pH-value of 0.41 (experimental 

spectrum) to the theoretical calculated spectrum of arg_1 in the same protonation state, in the range from 

4000 cm-1 to 50 cm-1. 
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Figure A - 68: Compared Raman spectra of 0.4 M L-arginine at a pH-value of 7.25 (experimental 

spectrum) to the theoretical calculated spectra of arg_2, arg_3 and arg_4 in the same protonation state, 

in the range from 4000 cm-1 to 50 cm-1. 

 

 

 
Figure A - 69: Compared Raman spectra of 0.4 M L-arginine at a pH-value of 11.25 (experimental 

spectrum) to the theoretical calculated spectra of arg_5, arg_6 and arg_7 in the same protonation state, 

in the range from 4000 cm-1 to 50 cm-1. 
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Figure A - 70: Compared Raman spectra of 0.4 M L-arginine at a pH-value of 13.17 (experimental 

spectrum) to the theoretical calculated spectrum of arg_8 in the same protonation state, in the range from 

4000 cm-1 to 50 cm-1. 
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7.3 Abstract (english)  

 

In this work the vibrational features of two amino acids (L-lysine and L-arginine) were 

studied with spectroscopic methods and theoretical calculations. Aqueous solutions of 

L-lysine and L-arginine were prepared with different pH-values (whole range of acidic 

to basic, pH-values from about 0.3 to 13.2) and analysed with FT-IR spectroscopy as 

well as with Raman spectroscopy. From the progress of the absorption bands with 

changing pH-values band assignments could be done also for small bands where the 

assignment was not unambiguously possible in single spectra at a specific pH-value. 

In addition to the experimental data theoretical calculations were carried out. First the 

structures of eight possible tautomers of both amino acids were optimized (with HF/3-

21G and M06-2X/6-31++G** methods). Then vibrational frequencies, IR-intensities 

and Raman-activities were calculated with the M06-2X/6-31++G** method. To 

simulate the surrounding water calculations with the self-consistent reaction field 

(SCRF) hydration model were carried out, too. The resulting frequencies, IR-

intensities and Raman-activities were compared to the experimental data. 

 

7.4 Abstract (deutsch)  

 

Im Zuge dieser Arbeit wurden die molekularen Schwingungen von den beiden 

Aminosäuren L-Lysin und L-Arginin mit spektroskopischen Methoden und 

theoretischen Berechnungen untersucht. Dazu wurden wässrige Lösungen von L-

Lysin und L-Arginin mit verschiedenen pH-Werten (gesamter Bereich von sauer bis 

basisch, pH-Werte von etwa 0.3 bis 13.2) hergestellt und mit FT-IR Spektroskopie und 

Raman Spektroskopie analysiert. Aus dem Verlauf der Absorptionsbanden bei 

unterschiedlichen pH-Werten konnten auch kleine Banden zugeordnet werden, bei 

denen eine eindeutige Zuordnung aus einzelnen Spektren bei einem bestimmten pH-

Wert nicht möglich waren. Zusätzlich zu den experimentellen Daten wurden 

theoretische Berechnungen durchgeführt. Dabei wurden zuerst die Strukturen der 

acht möglichen Tautomere beider Aminosäuren mit den Methoden HF/3-21G und 

M06-2X/6-31++G** optimiert. Dann wurden die Schwingungsfrequenzen, IR-

Intensitäten und Raman-Aktivitäten mit der M06-2X/6-31++G** Methode berechnet. 

Zur Simulation des Lösungsmittels Wasser wurden die Berechnungen auch mit Hilfe 

des SCRF (self-consistent reaction field) Hydratisierungsmodells wiederholt. Die 

resultierenden Frequenzen, IR-Intensitäten und Raman-Aktivitäten wurden mit den 

experimentellen Daten verglichen. 
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7.5 Zusammenfassung (deutsch)  

 

Im Zuge dieser Masterarbeit wurden die molekularen Schwingungen von                 

zwei Aminosäuren untersucht. Dazu wurden spektroskopische Methoden            

verwendet und zusätzlich theoretische Berechnungen durchgeführt. Die beiden 

proteinogenen Aminosäuren L-Lysin und L-Arginin haben jeweils drei               

funktionelle Gruppen, die je nach pH-Wert ein Proton aufnehmen oder abgeben 

können, und kommen in vier unterschiedlichen Protonierungsstufen            

(Gesamtladung +2, +1, 0, -1) vor. Diese Protonierungsstufen beeinflussen               

die Schwingungen des Moleküls. Wie alle anderen Aminosäuren enthalten Lysin        

und Arginin sowohl eine α-COOH-Gruppe als auch eine α-NH2-Gruppe. Zusätzlich 

enthält Lysin in der Seitenkette eine zweite NH2-Gruppe in ε-Position zur                

COOH-Gruppe, Arginin enthält eine Guanidin-Gruppe in δ-Position zur                   

COOH-Gruppe. Beide Aminosäuren sind aufgrund ihrer Seitenketten basisch und         

bei neutralem pH-Wert positiv geladen. 

 

L-Lysin und L-Arginin wurden in Wasser gelöst, wie es auch die natürliche Umgebung 

der Aminosäuren ist. Zudem wurden unterschiedliche pH-Werte von sauer bis   

basisch (pH-Werte von etwa 0.3 bis 13.2) eingestellt. Alle Proben wurden mit            

FT-IR und Raman Spektroskopie analysiert um die Änderungen der molekularen 

Schwingungen bei verschiedenen pH-Werten zu untersuchen. Die Veränderungen  

der Absorptionsbanden einiger Schwingungen mit dem pH-Wert wurden             

aufgezeigt und die Banden den zugehörigen molekularen Schwingungen         

zugeordnet. 

 

Unterstützend zu den experimentellen Daten wurden theoretische Berechnungen         

mit acht möglichen Tautomeren in den vier Protonierungsstufen durchgeführt.            

Die Strukturen der Moleküle wurden mit den Methoden HF/3-21G und                          

M06-2X/6-31++G** in Vakuum optimiert und mit der Methode M06-2X/6-31++G** 

auch in simuliertem Wasser. Für diese Berechnungen wurde das                             

SCRF Hydratisieungsmodell verwendet. Die Schwingungsfrequenzen, IR-Intensitäten 

und Raman-Aktivitäten wurden ebenfalls mit der Methode M06-2X/6-31++G**                 

in Vakuum und simuliertem Wasser berechnet. 

 

 

 



page 139 of 140 

Die erhaltenen experimentellen Daten wurden sowohl mit weiteren experimentellen 

Daten aus der Literatur als auch mit den theoretischen Berechnungen verglichen           

um die Zuordnung der Banden zu den Schwingungen zu erleichtern.                   

Einzelne interessante Banden wurden durch Integration, Peakhöhenbestimmung           

und Bandenformanalysen analysiert um die Änderungen der Absorptionsbanden          

mit dem pH-Wert zu zeigen und die zugehörige molekulare Schwingung zu 

identifizieren. 

 

Lysin und Arginin sind basische Aminosäuren, beide haben eine basische Endgruppe 

(bei neutralem pH-Wert protoniert) an einer Seitenkette aus CH2-Gruppen. Lysin          

und Arginin sind sich daher sehr ähnlich. Aus diesem Grund wurden auch                     

die experimentellen IR und Raman Spektren der beiden Aminosäuren               

miteinander verglichen um Gemeinsamkeiten und Unterschiede in deren 

Schwingungen festzustellen. 

 

Einige Literaturdaten existieren bereits zur spektroskopischen Analyse von                       

L-Lysin und L-Arginin. Dabei wurden Lösungen der Aminosäuren in H2O oder D2O       

mit IR und Raman Spektroskopie analysiert, in einigen Artikeln werden auch 

theoretische Berechnungen angeführt. Eine sehr gute Basis für die Zuordnung              

der Absorptionsbanden wird von Hernández et al. [1]bereitgestellt. Sie analysierten           

die beiden Aminosäuren bei neutralem pH-Wert und ordneten die Absorptionsbanden 

den Schwingungen zu. Es gibt allerdings keine Analysen von Lysin und                     

Arginin Lösungen bei unterschiedlichen pH-Werten. Lediglich für die Diplomarbeit    

von Schwarzott [2] wurde Lysin bei verschiedenen pH-Werten untersucht.                         

Er analysierte L-Lysin und Poly-L-Lysin in D2O mit IR Spektroskopie um Änderungen 

in der Sekundärstruktur des Peptides festzustellen und zu charakterisieren.          

Allerdings wurden nur jene Banden weiter untersucht und analysiert, die für                   

die Sekundärstruktur von Poly-L-Lysin charakteristisch sind, eine komplette 

Zuordnung aller Absorptionsbanden zu den molekularen Schwingungen wurde             

nicht durchgeführt. 
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