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Abstract

The research field of quantum entanglement theory is comparatively new.

While a basic understanding of the most simple systems in question (i.e. bi-

partite systems) has been established over the past few decades, multipartite

entanglement still holds many unsolved questions and intriguing riddles. In

particular, it is completely unclear how several concepts from the bipartite

case can be generalised in a meaningful way to multipartite scenarios.

In this work, the main issues of multipartite entanglement detection, char-

acterisation and classification are discussed. The differences and similarities

between the bipartite and the multipartite situation are reviewed, various

possible generalisations are presented and results are obtained in several ar-

eas.

The focus of this work particularly lies on a formalism - the so called HMGH

framework, which has been developed and expanded for the past several

years - which allows for construction of very specific separability criteria, ca-

pable of discriminating between different kinds of multipartite entanglement.

By means of these criteria, the questions of partial separability, genuine

multipartite entanglement and - ultimately - multipartite entanglement clas-

sification (which appear to contain the most striking differences to bipartite

entanglement) are adressed and discussed.

In order to illustrate the theoretical conclusions in these respects, several ex-

amples are given from different (and differently closely related) fields, show-

ing the capabilities, strengths and weaknesses of the HMGH framework as

well as giving insights into the current status of research in multipartite

entanglement theory as a whole.
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Zusammenfassung
Das Forschungsgebiet der Theorie der Verschränkung von Quantensystemen

ist vergleichsweise jung. Ein grundlegendes Verständnis der elementarsten

solcher Systeme (i.e. Zweiteilchensysteme) wurde in den letzten Jahrzehn-

ten erreicht, doch Verschränkung in Mehrteilchensystemen birgt nach wie

vor viele offene Fragen und Mysterien. Insbesondere ist es bis dato völlig

unklar, wie spezielle Konzepte aus dem Zweiteilchenfall am sinnvollsten auf

die Mehrteilchensituation verallgemeinert werden können.

Diese Arbeit behandelt die zentralen Aspekte und Fragestellungen der Detek-

tion, Charakterisierung und Klassifikation von Mehrteilchenverschränkung.

Unterschiede und Gemeinsamkeiten zwischen Zwei- und Mehrteilchenszenar-

ien werden erläutert, verschiedene mögliche Verallgemeinerungen präsentiert

und in einigen Bereichen werden Resultate erarbeitet.

Der besondere Schwerpunkt dieser Arbeit liegt bei einem Formalismus - dem

sogenannten HMGH-Framework, der im Lauf der letzten Jahre entwickelt

und erweitert wurde - der die Konstruktion sehr spezifischer Separabilität-

skriterien ermöglicht, welche fähig sind, zwischen verschiedenen Arten von

Mehrteilchenverschränkung zu unterscheiden. Mit Hilfe dieser Kriterien wer-

den die Problemstellungen der teilweisen Separabilität (partial separabil-

ity), der genuinen Mehrteilchenverschränkung (genuine multipartite entan-

glement) und - schließlich - der Klassifikation von Mehrteilchenverschränkung

(die die den fundamentalsten und kritischsten Unterschiede zur Zweiteilchen-

verschränkung beinhalten) behandelt und diskutiert.

Um die so erhaltenen Resultate zu verdeutlichen werden mehrere Beispiele

aus verschiedenen (und unterschiedlich nah verwandten) Themenbereichen

präsentiert, die die Fähigkeiten, Stärken und Schwächen des HMGH-Frame-

works aufzeigen und Einblicke in den gegenwärtigen Status der Forschung

auf dem Gebiet der Mehrteilchenverschränkungstheorie im Gesamten geben.
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Chapter 1

Introduction

Ever since its theoretical discovery in 1935 [1], quantum entanglement has

increasingly witnessed attention from the scientific community. After first

being considered an ”odd phenomenon“ of no real physical concern, it grew

to be seen as one of the central and most fundamental mysteries of quantum

physics, giving rise to a whole new field of research (quantum information

theory) and, during the last few decades, even to several new kinds of tech-

nology which would not have been imaginable classically.

Entanglement theory is a very modern and dynamical field of research which

after several decades of extensive studies has brought forward at least as

many new questions as answers. While bipartite entanglement is slowly be-

ginning to be understood quite well (despite some rather counter-intuitive

aspects which still remain puzzling), multipartite entanglement theory is

only at the very beginning of being investigated and has already proven to

be a much more complex field, holding both the possibilities for even more

sophisticated new technologies as well as whole new problems and complica-

tions.

The main problem in multipartite entanglement theory is the ambiguity of

how to generalise results of bipartite entanglement theory (as simple gen-

eralisations of such often do not appear naturally). Unlike in the latter,
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multipartite entanglement can exhibit various different forms, which are not

only hard to distinguish from one another, but are even extremely difficult

to identify and properly define in the first place.

A recently introduced mathematical framework allows for investigation of

these questions in a novel way, as it contains the possibility of constructing

criteria for arbitrary kinds of entanglement which can be used both experi-

mentally and theoretically to classify given entangled states.

The aim of this work is to give a compact and precise overview over multi-

partite entanglement theory, focussing on the contributions to this field by

the author (i.e. Refs. [2, 3, 4, 5, 6, 7, 8, 9, 10]). While specific details can be

found in referenced articles, this work is rather meant to be comprehensible

and illustrative than complete (as a summary of an entire field as complex

as entanglement theory is far beyond the scope of a single PhD thesis). The

choice of focus-topics reflects the research performed during this course of

PhD study.

For sake of completeness, the author’s work which is not directly related to

multipartite entanglement is mentioned in the appendix.

This work is organised as follows. After giving a brief introduction into

the mathematical background and terminology in chapter 2, an overview

over the most important and fundamental facts on bipartite and multipar-

tite entanglement will be established (chapters 3 and 4, respectively). Then,

the HMGH-framework will be thoroughly introduced and explained in chap-

ter 5. Finally, several open problems of multipartite entanglement theory

will be discussed with special emphasis on their connection to the HMGH-

framework, in particular the problem of multipartite separability properties

and partial separability (chapter 6) and the question of classification of mul-

tipartite entanglement (chapter 7). As an illustration of the results obtained
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in the previous sections, several examples and applications will be given in

chapter 8 before the work is concluded.
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Chapter 2

Mathematical Basics, Notation

and Terminology

In order to properly discuss entanglement in multipartite systems, firstly the

mathematical background has to be introduced, which forms the basis of its

description. All symbols used in this chapter will retain their definitions and

meanings throughout this work (unless explicitly stated otherwise).

2.1 Hilbert Spaces and States

Quantum systems are mathematically described by Hilbert spaces H, which

in the multipartite case possess a tensor product structure, i.e. are composed

of several Hilbert spaces Hi, describing the respective subsystems, such that

H = H1 ⊗H2 ⊗ · · · ⊗ Hn (2.1)

where n is the number of subsystems comprising the complete considered

system. Instead of enumerating the subsystems, it is also customary to label

them by A for Alice, B for Bob, C for Charlie, et cetera. Often, a state is
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labelled in order to clarify which subsystems it describes, e.g. |ΨABC〉 is a

tripartite state on HA ⊗HB ⊗HC .

The elements of this Hilbert space are called state vectors or pure states and

are denoted by ket-vectors |Ψ〉. Since however, in general, pure states do not

suffice to describe realistic situations, mixed states have to be considered.

These are mathematically represented by density matrices ρ (also known as

density operators), which are elements of the Hilbert-Schmidt space HS as-

sociated with the respective Hilbert space H. For sake of simplicity, Hilbert

spaces and the (uniquely) associated Hilbert-Schmidt spaces are often de-

noted synonymously by H. Density matrices are of the form

ρ =
∑
i

pi|Ψi〉〈Ψi| (2.2)

where the pi form a probability distribution, i.e.

pi ≥ 0 and
∑
i

pi = 1 (2.3)

Density matrices ρ by definition satisfy

ρ† = ρ Tr(ρ) = 1 ρ ≥ 0 (2.4)

Note that pure state decompositions of the form (2.2) are not unique, in the

sense that any mixed state has infinitely many pure state decompositions

{pi, |Ψi〉}, while a density matrix of a pure state ρ = |Ψ〉〈Ψ| unambiguously

corresponds to a state vector |Ψ〉 (up to a global phase, which is of no phys-

ical relevance). The maximally mixed state is uniquely given by ρ = 1
d�,

where d is the dimension of the respective Hilbert space.

2.2 QuBits, QuDits and Dimensions

In quantum information theory, mainly finite-dimensional quantum systems

are of concern, such that the Hilbert spaces associated with the individual
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subsystems are of the form Hi = �
di , where di is the dimension of the

Hilbert space. Consequently, d = d1 × d2 × · · · × dn is the dimension of

the whole composite Hilbert space. Although this work is mostly concerned

with mixed states, and therefore the associated Hilbert Schmidt spaces are

more important in this context, the dimensionality of a system by convention

always refers to the complex dimension of the Hilbert space of state vectors

(unless explicitly stated otherwise).

In analogy to the terminology of classical information theory, a quantum

system of dimension d is called a quantum dit, or qudit. In particular, it is

called a qubit if d = 2 and a qutrit if d = 3. The standard (computational)

basis of a qudit-system is given by

{|i〉} with 0 ≤ i ≤ (d− 1) where 〈i|j〉 = δij (2.5)

For composite systems, the short hand notations

|a b · · ·n〉 ≡ |a〉|b〉 · · · |n〉 ≡ |a〉 ⊗ |b〉 ⊗ · · · ⊗ |n〉 (2.6)

is customarily used for pure states. Such a state, which can be written as a

tensor product of states on each subsystem is called a product state.

2.3 Multipartite Operations

The inverse operation of composing Hilbert spaces via the tensor product

is given by the partial trace Trx(ρ), where x represents a subspace of H.

By partially tracing over the density matrix of the complete Hilbert space,

reduced density matrices are obtained, which are states of the remaining part

of the quantum system, e.g.

ρAC = TrB(ρABC) :=

dB−1∑
i=0

〈iB |ρABC |iB〉 (2.7)
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where the scalar product is taken on HB.

A partition γ of the n-partite Hilbert space H is given by a number of non-

empty sets γi which satisfy

⋃
i

γi = {1, 2, 3, · · · , n} and γi ∩ γj = {} ∀ i 
= j (2.8)

This corresponds to a splitting of the quantum system, in which each γi (i.e.

the set of all subsystems whose labels are elements of γi) represents one split

part. Partitions are also often denoted by {γ1|γ2| · · · |γk}. In particular, a

k-partition is a partition of the Hilbert space into exactly k nontrivial parts

γi.

2.4 Further Terminology

Although it should be evident from the context, sets are always referred to

by symbols in brackets, so that they are clearly distinguishable from scalars

(e.g. {a} is a set, while a is a number). If {a} is a set, then ai is the i-th

element of {a} and |{a}| is its cardinality, i.e. the number of elements in

{a}.
Complex conjugation is denoted by a∗, i.e. the complex conjugate of a is a∗.
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Chapter 3

Bipartite Entanglement

Although bipartite entanglement is much less complex than multipartite en-

tanglement, it offers a good starting point for investigation of the latter, since

many basic principles and building pieces are common. It therefore seems

sensible to start by defining and briefly discussing bipartite entanglement,

such that these results can then form a basis on which to study multipartite

entanglement.

Definition 1. A pure bipartite quantum state |Ψ〉 ∈ H = HA⊗HB is called

separable, iff it can be written as a product of two unipartite states |ΨA〉 ∈ HA

and |ΨB〉 ∈ HB:

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉 (3.1)

A mixed bipartite quantum state ρ is called separable iff it can be decomposed

into pure separable states, i.e. iff

ρ =
∑
i

pi|Ψi〉〈Ψi| (3.2)

where {pi} is a probability distribution (i.e. pi ≥ 0 and
∑

i pi = 1) and all

|Ψi〉 are separable (note however, that such a state may also have decompo-
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sitions into entangled states).

Any state is called entangled iff it is not separable.

Since separability in mixed states is defined via the convex hull of separable

pure states, the set of all separable states is always a convex and closed set,

which is surrounded by entangled states (as illustrated in fig. 3.1).

Figure 3.1: Illustration of the geometry of separable and entangled states.

The set of separable states is convexly embedded within the set of entangled

states, which extends to the border of the Hilbert space.

3.1 Detecting Bipartite Entanglement

One of the main tasks in bipartite entanglement theory is the detection of

entanglement in mixed states, which in general is a rather challenging task.

To this end, various necessary separability criteria have been introduced (see

e.g. Refs. [11, 12, 13, 14]). Since these criteria are satisfied for all separa-

ble states, violation directly implies entanglement, while non-violation does

not make any statement about presence or absence of entanglement. Due

to the lack of a closed direct definition of entangled states (as opposed to

the definition as not separable), no necessary criteria for entanglement could

be formulated until now. Thus, the border between the sets of separable

and entangled states can only be approached by these means from one side
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(namely from the set of entangled states inwards).

The probably most prominent criterion for separability is the Peres-Horodecki-

criterion, also known as the PPT-criterion [15]:

Theorem 1. If a bipartite state ρ is separable, it has to stay positive semidef-

inite under partial transposition (PPT), i.e.

ρTA = (T ⊗ �)(ρ) =
d1∑

i,k=1

d2∑
j,l=1

〈i, j|ρ|k, l〉|k, j〉〈i, l| ≥ 0 (3.3)

where T denotes the transposition operator. Conversely, a state which is

non-positive under partial transposition (NPT) has to be entangled.

Proof 1. For a separable state ρ, the partially transposed density matrix is

ρTA = (T ⊗ �)(ρ) = (T ⊗ �)
(∑

i

pi|Ψi
A〉〈Ψi

A| ⊗ |Ψi
B〉〈Ψi

B |
)

=
∑
i

pi(|Ψi
A〉〈Ψi

A|)T ⊗ |Ψi
B〉〈Ψi

B | (3.4)

which is a positive semidefinite operator, since it is a convex sum of products

of positive semidefinite operators.

While the effect of the partial transposition and thus also the partially trans-

posed density matrix ρTA depend on the chosen basis, its eigenvalues do

not. Therefore, this criterion requires no optimisation and can be computed

quite simply, given a density matrix. It has also turned out to be one of the

strongest and most effective separability criteria for bipartite systems so far

and is therefore often used as a measure by comparison for other separability

criteria.

Another very important tool in entanglement detection is the entanglement

witness theorem [11].
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Figure 3.2: Illustration of the working principle of entanglement witnesses.

An entanglement witness W is visualised as the hyperplane characterised

by Tr(Wω) = 0. All states ω on one side of this hyperplane have a positive

expectation value Tr(Wω) > 0 and all states on the other side have a negative

expectation value Tr(Wω) < 0. As by definition, all separable states are

located on the positive-valued-side, all states on the negative-valued-side

can be identified as being entangled by means of the operator W .
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Theorem 2. For each entangled state ρ, there is an entanglement witness

W which detects this state, i.e. a hermitian Operator W with Tr(ρW ) < 0

and Tr(σW ) ≥ 0 for all separable states σ.

Proof 2. The entanglement witness theorem is a direct consequence of the

Hahn-Banach-theorem, which states the following: Given two disjoint convex

sets, at least one of which is closed, then there exists a functional which

assumes nonnegative values for all elements of the closed set and negative

values for all elements of the second set. As both the set of separable states

and the set containing the single (entangled) state ρ are convex and closed,

this implies the entanglement witness theorem. The Hahn-Banach-theorem

and its proof can be found in most textbooks on functional analysis, e.g. in

[16].

Although the entanglement witness theorem is hard to apply to a specific

given problem (since it is in general very difficult to find a suitable entan-

glement witness for an arbitrary given state), it still is a very valuable and

useful tool due to its generality. In particular, many other separability crite-

ria can be reformulated in terms of entanglement witnesses (see e.g. [11, 17]).

A typical task in bipartite entanglement detection is usually of the form:

Given a state ρ{αi} which depends on a number of parameters αi. For which

values of these parameters is the state entangled, and for which is it separa-

ble?

Since a full cartography of the considered Hilbert space in this fashion is in

most cases neither feasible nor useful (since the structure of high dimensional

spaces can seldom be fully visualised or even imagined), one often resorts

to investigating simplices of special states (i.e. lower dimensional subspaces

which often exhibit high degrees of symmetry).
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3.2 Measuring Bipartite Entanglement

While detection of entanglement can give a first rudimentary idea of the

structure of a state space or of the properties of a certain state, it can never

fully grasp the entanglement properties of an entangled state. In order to

get a finer and more detailed picture of these properties, a straightforward

approach is to quantify entanglement. The task in this context is not only

to decide whether a state is entangled or not, but also if so, how much it

is entangled. Evidently, this includes the detection of entanglement and is

therefore in general a much more complex task.

To this end, several measures of bipartite entanglement have been introduced

(see e.g. [18, 19, 20]). Before some of the more prominent shall be presented

here, observe that a proper entanglement measure should satisfy several con-

ditions.

Definition 2. An entanglement measure E(ρ) is a real-valued function H →
� which should ideally satisfy the following criteria [21]:

M1 E(ρ) = 0 ⇔ ρ is separable.

M2 ρ is maximally entangled ⇔ E(ρ) = maxω∈HE(ω)

M3 E(ρ) should not increase under any local operations and classical com-

munications (LOCC): E(ρ) ≥ E(ΛLOCC(ρ)) (since LOCC is often

defined in slightly different ways, and it does not play a central role in

this work, no precise mathematical definition of this concept shall be

presented here).

M4 E(pρ1 + (1− p)ρ2) ≤ pE(ρ1) + (1− p)E(ρ2) ∀ 0 ≤ p ≤ 1.

There are several other conditions which may (and often are) demanded from

an entanglement measure (such as additivity or continuity). However, these

24



four will be sufficient for the discussion of entanglement quantification in

this work.

Condition M1 guarantees that entangled states and separable states are in-

deed characterised as such by the measure.

While condition M2 sets the range of the measure, it only makes sense along

with a proper definition of ’maximally entangled’. Since entanglement can

be interpreted as information which exists apart from (or in between) the

two parties individually, and since information about a quantum state corre-

sponds to its purity, a maximally entangled bipartite state can be meaning-

fully defined as a pure state whose reduced density matrices are maximally

mixed.

Entanglement cannot be created (or increased) by local operations and clas-

sical communication. This fact should be respected by any sensible measure

of entanglement, which is stated in condition M3. Note that this implies

invariance under local unitary transformations, i.e.

E(ρ) = E(U1 ⊗ U2ρU
†
1 ⊗ U †

2 ) ∀ Ui ∈ U(di), i = 1, 2 (3.5)

where U(di) is the group of unitary di × di matrices.

Condition M4 means that E(ρ) has to be a convex function. This stems

from the definition of separable states via convex sums. The entanglement

in mixture of two states can never be greater than the weighted averaged

entanglement of these two states, while it may very well be lower (since e.g.

the maximally mixed state can be decomposed into maximally entangled

pure states, although it is separable itself, as it can also be decomposed into

pure separable states).

In general it is not possible to compute an entanglement measure for an

arbitrary state in a feasible way. Therefore, in order to be of actual use,

an entanglement measure also should have computable and tight bounds, in

addition to satisfying the above conditions.
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As two examples, consider two entanglement measures which were the first

to be formulated historically: the entanglement of formation and the entan-

glement of distillation [22].

3.2.1 Entanglement of Formation

Definition 3. The entanglement of formation EF of a pure bipartite state

|Ψ〉 is defined as the von Neumann entropy S(ρ) of either of its two reduced

density matrices ρA and ρB:

EF (|Ψ〉) = S(ρA) = S(ρB) with S(ρ) = −Tr(ρ ln ρ) (3.6)

For a mixed state ρ, the entanglement of formation is defined via a convex

roof construction, i.e. as the infimum over all pure state decompositions of

ρ:

EF (ρ) = inf
{pi,|Ψi〉}

∑
i

piEF (|Ψi〉). (3.7)

Theorem 3. The entanglement of formation of any general bipartite quan-

tum state ρ equals its entanglement cost, i.e. the number of maximally en-

tangled states which are required to produce this state by means of the most

effective conversion procedure, in the asymptotic limit of many copies of the

state.

Proof 3. See Ref. [23].

While the entanglement of formation of pure states is quite easy to evaluate,

for mixed states it can in general not be computed, since the convex roof

construction implies nontrivial optimisation. However, a remarkable method

allows for its exact and analytical computation for bipartite qubit systems

(see Ref. [24]). Also, there exist several bounds and computation methods

for special classes of states (see e.g. Refs. [25, 26, 27]).
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3.2.2 Entanglement of Distillation

As will be illustrated in more detail in section 3.3, it is possible to convert a

large number of weakly entangled states into a smaller number of more highly

or even maximally entangled states. This procedure is called entanglement

distillation.

Definition 4. The entanglement of distillation ED of a bipartite state ρ is

defined as the optimal conversion ratio of distilled maximally entangled states

per copy of the input state ρ, in the asymptotical limit of many copies.

Although the entanglement of distillation is defined in what appears to be

a rather simple way, there is at present no way to compute it for a general

state, since this would involve optimisation over all possible distillation pro-

tocols. Since at present there is no closed formulation of the latter, only

bounds on this measure can be obtained. The value for any fixed distillation

protocol clearly gives a lower bound, while the entanglement of formation

always gives an upper bound. Only in special cases it is possible to exactly

determine the entanglement of distillation, e.g. for pure states it coincides

with the entanglement of formation [28], while e.g. for all PPT states it is

zero (regardless of the state’s being entangled or not, as will be discussed in

more detail in section 3.3).

3.2.3 Properties of Bipartite Entanglement Measures

The respective physical interpretations of the entanglement of formation and

the entanglement of distillation lead to the conclusion, that any sensible

bipartite entanglement measure E(ρ) should satisfy

ED(ρ) ≤ E(ρ) ≤ EF (ρ) (3.8)

in order to be interpretable physically in a similar way [28], since a state can

never possess more entanglement than what is needed to obtain it, nor less
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entanglement than can be distilled out of it.

By considering the above two examples, it becomes apparent that a single

entanglement measure can never fully characterise the entanglement proper-

ties of a bipartite state. Each of the two quantities measures entanglement in

a physically meaningful way, yet they in general are not directly connected

to one another. They are sensitive to different aspects of entanglement and

thus capable of revealing different kinds of information, which can never be

fully contained in a single quantity.

3.3 Distillation and Distillability of Bipartite En-

tanglement

As mentioned above, there are protocols to convert a large number of weakly

entangled states into a smaller number of more highly entangled states. In

principle, this is not surprising, since e.g. any state can always simply be

projected onto a maximally entangled one with nonzero success probability.

The key feature of entanglement distillation however is, that it can be imple-

mented by means of local operations and classical communications (LOCC).

That is, both parties can, through combined effort, achieve distillation only

by manipulating their respective particles locally and coordinating these op-

erations via classical communications. This possibility is quite nontrivial, as

it is not possible to create entanglement by means of LOCC (i.e. without

transmitting quantum systems).

As an example, consider a moderately simple distillation protocol, the so

called BBPSSW protocol, which historically was the first such protocol to be

suggested [29, 30] and is named after its authors Bennett, Brassard, Popescu,

Schumacher, Smolin and Wootters. Without going into detail too much, it

28



Figure 3.3: Illustration of a distillation protocol. The two parties Alice and

Bob can increase the entanglement present in some of their particle-pairs,

by sacrificing the entanglement in the other pairs. Thus, many copies of a

weakly entangled state (ρ⊗n) are transformed into fewer copies of a more

strongly entangled state (ω⊗m) (and a number of copies of separable or less

entangled states). The overall entanglement does not increase during this

procedure.

works as follows:

1. Alice and Bob share a number n of copies of a non-maximally entangled

state ρ (ρ⊗n).

2. They transform each of the pairs into a standard form (called the

Werner state [31]) by an operation called twirling (which consists of

random unitary operations applied locally to both subsystems).

3. Each party applies a certain operation - an XOR (exclusive OR) gate

[32] - to their respective parts of two pairs.

4. Both then perform a certain measurement on one of these two particles.

Depending on the outcome, the second involved pair of particles is

either kept or discarded (while the measured particle pair is discarded

in any event). In the former case, the entanglement of the state has

been increased through the performed operations.

5. The previous two steps can be repeated until the required or desired
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amount of entanglement per state is achieved.

In the context of entanglement characterisation, the question arises whether

different states behave differently in distillation. In particular, can all states

be distilled? Evidently, this is not the case, since separable states can never

be distilled. The much more interesting (and subtle) question therefore is:

Can all entangled states be distilled? As it turns out, this is not the case;

undistillable entangled - so-called bound entangled - states do exist [33]. In

fact, a state ρ can be distilled if and only if

〈Ψ|ρTA |Ψ〉 < 0 (3.9)

for some state |Ψ〉 with Schmidt rank 2 (to be defined below). As a con-

sequence of this relation, PPT states (i.e. states not violating the Peres-

Horodecki-criterion) can never be distilled and are therefore always bound

entangled as soon as they are entangled. It is not entirely clear, whether

the converse statement also holds, i.e. whether all NPT states are distill-

able. Although this is a controversially discussed question, there is much

evidence pointing towards the existence of NPT bound entanglement (see

e.g. [34, 35]).

3.4 Classification of Bipartite Entanglement

In the previous sections, several possible properties of entangled states have

been discussed. These give rise to a classification scheme for bipartite en-

tangled states. Each state can unambiguously be assigned a value for each

property. A state may for example be NPT, thus entangled, having a certain

entanglement of formation and entanglement of distillation. However, this

classification scheme fails to grasp a central property of entangled states: the

number of degrees of freedom involved in the entanglement.
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The problem of describing this property is usually addressed by means of

Schmidt numbers, which in turn are defined via Schmidt ranks [36].

Theorem 4. For each pure bipartite state |Ψ〉 there exist local orthonormal

bases {|ai〉 ∈ H1} and {|bi〉 ∈ H2} such that the state can be written as

|Ψ〉 =
k∑

i=1

ci|ai〉 ⊗ |bi〉 (3.10)

for some k ≤ min(d1, d2). The lowest possible k for a given state is called

this state’s Schmidt rank.

Proof 4. The theorem is known as Schmidt’s theorem. The proof can be

found in most linear algebra textbooks or e.g. in [37].

Definition 5. The Schmidt number r of a general bipartite state ρ is defined

as the maximal Schmidt rank that is at least necessary in order to construct

the state, i.e. the minimal number r such that there is no decomposition of

ρ into pure states of Schmidt ranks strictly smaller than r.

The Schmidt number is the number of degrees of freedom which are entangled.

It ranges from 1 to min(d1, d2), where a Schmidt number of 1 corresponds

to a separable state, while a maximally entangled state necessarily has full

Schmidt number (i.e. r = min(d1, d2)). It is also conjectured that bound

entangled states may always have non-maximal Schmidt number [38].

As a direct consequence of its definition, the Schmidt number is convex, i.e.

the set of all states with Schmidt number 1 is convexly embedded within

the set of all states with Schmidt number 2, et cetera. In other words, the

unification
⋃i

j=1 Sj is a convex set for all i, while Si ∩ Sj = {}∀i 
= j, where

Si is the set of all states with Schmidt number i (as illustrated in fig. 3.4).

Consequently, local operations and classical communications can only lower

the Schmidt number, but never increase it.
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Figure 3.4: Illustration of the geometry of the sets Si of all states with certain

Schmidt numbers i. Each set is convexly embedded within the next without

being a subset.

By combining all previously discussed classification properties, a composite

characterisation scheme of bipartite entanglement can be obtained. Although

this still does not allow for a complete characterisation of the entanglement

present in a given state, it does give rise to a scheme of classification, which

describes bipartite entanglement in a practical and useful way, and may be

adapted to given situations and requirements by implementing further ele-

ments (such as different entanglement measures).
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Chapter 4

Multipartite Entanglement

In order to investigate entanglement in general situations, one has to go

beyond bipartite entanglement and rather consider multipartite scenarios

(which of course contain the bipartite situation as a special case). Wherever

entanglement is present - from quantum informational technologies to its

appearance in nature - multipartite systems offer more possibilities and in

general a more suitable description of the respective situation.

In principle, multipartite entanglement can be approached by the same

means as bipartite entanglement: it can be described by separability proper-

ties, entanglement measures, distillability, et cetera, each of which has more

or less straightforward generalisations from the bipartite case (for which they

were introduced and discussed in the previous chapter) to multipartite situa-

tions. However, these generalisations hold several subtleties and ambiguities

which make multipartite entanglement a much more complex research field

than bipartite entanglement.

In this chapter, only a brief summary of these generalisations will be given,

along with a short discussion of their problematic implications. The respec-

tive aspects of multipartite entanglement are then investigated in detail in

the following chapters.
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4.1 Partial Separability

Similarly to the study of bipartite entanglement, the first and most funda-

mental question concerning a multipartite state is: Is the state entangled?

While in the bipartite case, the answer to this question was either ”yes“ or

”no“, the situation is significantly more complex for multipartite systems.

Here, some subsystems may be entangled with each other, while others may

be separable from them. Furthermore, this partial separability (or partial

entanglement) can be defined in different (inequivalent) ways [39].

Definition 6. A pure multipartite quantum state |Ψ〉 is called k-separable

(where 1 ≤ k ≤ n), iff it factorises into k states |ψi〉, each of which describes

either one or several subsystems:

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 (4.1)

Equivalently, |Ψ〉 is called k-separable iff it is separable with respect to any

k-partition of the respective Hilbert space.

A mixed multipartite state ρ is called k-separable, iff it has a decomposition

into k-separable pure states.

An n-separable n-partite state is called fully separable and a state which is

not 2-separable (biseparable) is called genuinely multipartite entangled.

Definition 7. A general multipartite state ρ is called γk-separable, iff it is

separable w.r.t. any k-partition, i.e. iff it can be written as

ρ =
∑
i

piρ
i
1 ⊗ ρi2 ⊗ · · · ⊗ ρik (4.2)

where each ρij is a state of one or several subsystems and {pi} is a probability

distribution.
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In order to illustrate these definitions, consider the following tripartite example-

states:

|Ψ〉 = α|000〉 + β|011〉 = |0〉 ⊗ (α|00〉 + β|11〉)
ρ1 = a|Φ+〉〈Φ+| ⊗ |0〉〈0| + b|0〉〈0| ⊗ |Φ+〉〈Φ+|
ρ2 = c|0〉〈0| ⊗ |Φ+〉〈Φ+|+ d|1〉〈1| ⊗ |Φ−〉〈Φ−|

(4.3)

where

|α|2 + |β|2 = a+ b = c+ d = 1 (4.4)

and

|Φ±〉 = 1√
2
(|00〉 ± |11〉) (4.5)

are two entangled bipartite states.

While all three states |Ψ〉, ρ1 and ρ2 are biseparable (since |Ψ〉 can be written

as a product of two state vectors and since both ρi have decompositions into

pure states with the same property), only |Ψ〉 and ρ2 are also γ2-separable,

since they both are separable under a specific bipartition (namely {A|BC}).

It follows directly from the definitions of k-separability and γk-separability,

that they coincide for pure states and for k = n, while for mixed states and

k < n, γk-separability is a stronger condition, i.e. a γk-separable state is

always also k-separable, while the converse statement does not hold.

Both the set Sk of k-separable states and the set Sγ
k of γk-separable states

form convex nested structures (as illustrated in fig. 4.1), i.e.

Sn ⊂ Sn−1 ⊂ · · · ⊂ S1 and Sγ
n ⊂ Sγ

n−1 ⊂ · · · ⊂ Sγ
1 (4.6)

As a consequence of the convex structure of the sets of k-separable and γk-

separable states, a state which is k-separable (γk-separable) is always also

(k − l)-separable (γ(k−l)-separable) for all 0 ≤ l ≤ (k − 1). In particu-

lar, all states are 1-separable and γ1-separable, therefore the definition of

k-separability and γk-separability is only meaningful for 2 ≤ k ≤ n.
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Figure 4.1: Illustration of the geometry of the sets S(γ)
k of k-separable (γk-

separable) states. Each set is convexly embedded within the next. Note that

in spite of the similarity to the visualisation of Schmidt numbers in fig. 3.4,

there are significant differences. In particular, here each set is a subset of

the next and convex.

4.2 Multipartite Entanglement Measures

The complexity of multipartite entanglement detection implies that also its

quantification is a much more involved task than in the bipartite case. In

particular, each kind of entanglement (in terms of partial separability) may

be assigned an own entanglement measure, in order to be capable to specify

how much of which sort of entanglement is contained in which subsystems.

For example, a quantity sensitive to all kinds of entanglement is not able

to distinguish between different kinds of entanglement, while it gives useful

information about the overall entanglement contained in a present state. On

the other hand (representing the opposite extreme situation), a measure for

e.g. genuine multipartite entanglement has to be zero for most entangled

states, while it can be optimally used in applications where only genuine

multipartite entanglement is of concern. Also, it may be important for each

individual party to quantify how much entanglement their respective subsys-

tem shares with any one or several (or all) of the other parties. Considering

that each of these kinds of entanglement may require more than one quantity
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for description (e.g. in analogy to the entanglement of formation and the

entanglement of distillation of a bipartite state), in order to get a picture as

complete as in the bipartite case, a vast number of measures would be needed.

4.3 Multipartite Entanglement Distillation

Entanglement distillation is one of the few features of entanglement which

is not significantly more complex in the multipartite than in the bipartite

case. Although due to the ambiguity of maximally entangled states there are

different kinds of distillation (i.e. distillation protocols aiming at distilling

different kinds of multipartite states, see e.g. [40, 41]), the principle is very

similar (only the explicit distillation protocols differ). In fact, any multipar-

tite entangled state can be distilled from mere bipartite entanglement, if the

latter is shared between all involved parties (in several particle pairs). One

of the parties can simply prepare the desired multipartite state locally and

then use the bipartite entanglement to teleport its parts to the other parties

[42], thus establishing the multipartite entangled state between them (as il-

lustrated in fig. 4.2).

4.4 Equivalence Classes of Multipartite Entangle-

ment

As a consequence of the different (equally sensible) kinds of multipartite

entanglement measures, even the term ”maximally entangled“, which was a

basic building piece for bipartite entanglement measures, becomes ambigu-

ous in this case for two reasons. Firstly, because pure states with maximally

mixed reduced density matrices are no longer equivalent to one another, and

secondly, because there even are kinds of entanglement, which may be max-
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Figure 4.2: Illustration of how multipartite entanglement can be distilled

from bipartite entanglement. The red lines depict entanglement between

the enclosed particles, represented by blue dots. After locally preparing

a multipartite entangled state, its subsystems can be distributed to other

parties via bipartite quantum teleportation.

imal for states which do not have maximally mixed reduced density matrices.

In several ways, the maximally entangled state is considered to be the Greenberger-

Horne-Zeilinger (GHZ)-state, which for n-qudit-systems is defined as [43]

|GHZ〉 = 1√
d

d−1∑
i=0

|i〉⊗n (4.7)

This state possesses the maximal amount of genuine multipartite entangle-

ment, without containing any other form of entanglement (since all its re-

duced multipartite density matrices are separable, while it is a pure state

with maximally mixed unipartite reduced density matrices). This property

makes GHZ-states the preferred resource for several applications, such as

e.g. quantum secret sharing protocols (as will be discussed in section 8.4).

Another well-known genuinely multipartite state is the W -state of n qubits

[44]

|W 〉 = 1√
n

n∑
i=1

|wi〉 where |wi〉 = |0〉⊗(i−1) ⊗ |1〉 ⊗ |0〉⊗(n−i) (4.8)

Besides containing a certain amount of genuine multipartite entanglement,

this state contains maximal bipartite entanglement (distributed evenly among
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all parties) [45]. TheW -state belongs to the family of Dicke states [46], which

are genuinely multipartite entangled states of n qubits with a parameter m

(a natural number between 1 and n− 1):

|Dn
m〉 =

⎛
⎝ n

m

⎞
⎠

− 1
2 ∑
|{α}|=m

|d{α}〉 (4.9)

where the sum runs over all {α} ⊂ {1, 2, · · · , n} which are sets of m different

integers between 1 and n, and |d{α}〉 is the product state with |1〉 in all

subsystems whose numbers are contained in {α} and |0〉 else. Since the

sum runs over all sets {α} with cardinality m, this is the equally weighted

superposition of all n-qubit product states with m |1〉s and (n−m) |0〉s. For

m = 1, the Dicke state coincides with the W -state. For example, for n = 4

and m = 2, the state reads

|D4
2〉 =

1√
6
(|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉) (4.10)

Dicke states and variations thereof - e.g. phased Dicke states (i.e. Dicke

states with nonzero relative phases between some of the superposed product

states) - appear in crystals and spin-chains [47] and can be used for various

quantum informational tasks, such as e.g. quantum secret sharing or open-

destination teleportation [48]. Furthermore, Dicke states are a rich resource

for all kinds of quantum informational applications, since their reduced den-

sity matrices can exhibit different types of entanglement.

Because of the reasons discussed above, entanglement classification is much

more complex a task in multipartite systems than in bipartite ones, which

is why until now no even nearly complete classification scheme for general

multipartite quantum systems could be developed (results have only been

obtained for specific low-dimensional systems, see e.g. [49, 50]). There are

several frequently used approaches towards this problem, which will be dis-
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cussed in chapter 7.
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Chapter 5

The HMGH-Framework

Quite recently, a framework for constructing various kinds of separability

criteria for multipartite systems was introduced [2]. This framework (which

shall be referred to as the HMGH-framework – after the authors of its first

introductory publication [2], Huber, Mintert, Gabriel and Hiesmayr) allows

for construction of very general and versatile separability criteria, based on

convex inequalities of density matrix elements. Its advantages over other

separability criteria are numerous. Apart from being the first systematic

approach for characterising multipartite entanglement and its different as-

pects in general n qudit systems, the criteria obtained can comparatively

easily be implemented experimentally. Also, it should be emphasised that

the framework is not only applicable to separability problems, but also to

more specific tasks, such as multipartite entanglement classification or mul-

tipartite entanglement quantification.

In order to properly present the HMGH-framework with all its features and

capabilities, the formalism upon which it is based has to be introduced.
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5.1 Definitions, Terminology and Formulation

The first mathematical concept which is of grave importance to the HMGH-

framework is the notion of convexity. Convexity plays a very important role

throughout entanglement theory, since most relevant sets of states are con-

vex sets or complements thereof, e.g. the set of k- or γk-separable states, the

set of PPT states, et cetera. Furthermore, mixed states are convex combi-

nations of pure states, therefore problems of mixed states can be reduced to

comparatively simple problems of pure states by means of convex functions.

Definition 8. A function f(ρ) is called convex iff

pf(ρ1) + (1− p)f(ρ2) ≥ f(pρ1 + (1− p)ρ2) ∀ ρi, ∀ 0 ≤ p ≤ 1 (5.1)

Theorem 5. If a convex inequality of the form f(ρ) ≤ 0 is satisfied for all

pure states ρ, then it is also satisfied for all mixed states ρ.

Proof 5. The theorem follows immediately from the definition of convexity

since any mixed state ρ is a convex combination of pure states |ψi〉〈ψi|:

f

(∑
i

pi|ψi〉〈ψi|
)

≤
∑
i

pif (|ψi〉〈ψi|) ≤
∑
i

0 = 0 (5.2)

The above theorem obviously also holds if the considered mixed and pure

states do not constitute the whole Hilbert space, but only a part of it (as

long as the considered mixed states always have decompositions into the re-

spective pure states). For example, if such an inequality is satisfied for all

k- or γk-separable pure states, it is also satisfied for all k- or γk-separable

mixed states, respectively, since the latter are defined as having decomposi-

tions into the former.
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Theorem 6. All functions that can be written as sums of terms of the fol-

lowing forms are convex in ρ:

c1|〈φ1|ρ|φ2〉| (5.3)

− c2
l

√√√√ l∏
i=1

〈φi|ρ|φi〉 (5.4)

where the cj are arbitrary positive real numbers and l is an arbitrary positive

integer.

Proof 6. First, observe that any sum of convex functions is convex itself.

Thus, it is sufficient to prove that the expressions (5.3) and (5.4) are convex

individually.

For the first expression, this follows from the triangle inequality (as any tran-

sition element 〈φ1|ρ|φ2〉 is a complex number z):

p|z1|+ (1− p)|z2| = |pz1|+ |(1− p)z1| ≥ |pz1 + (1− p)z2|. (5.5)

For the second expression, abbreviate 〈φi|ρ|φi〉 = ri (and observe that these

are nonnegative real numbers). Now, the convexity of the expression (5.4) is

equivalent to

2∑
i=1

l∏
j=1

aji ≤
l∏

j=1

l

√√√√ 2∑
i=1

(aji )
l (5.6)

with aj1 = l
√
prj,1 and aj2 =

l
√

(1− p)rj,2. By defining

Aj
i =

aji
l

√∑2
k=1(a

j
k)

l
(5.7)

it follows that

2∑
i=1

l∏
j=1

Aj
i =

2∑
i=1

l∏
j=1

l

√
(Aj

i )
l ≤

2∑
i=1

∑l
j=1(A

j
i )

l

l
= 1 (5.8)
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where the inequality follows from the fact that the geometric mean is always

lower than or equal to the arithmetic mean for nonnegative numbers. Insert-

ing the above definition for the Aj
i , one arrives at

∑2
i=1

∏l
j=1 a

j
i∏l

j=1
l

√∑2
i=1(a

j
i )

l

≤ 1 ⇔
2∑

i=1

l∏
j=1

aji ≤
l∏

j=1

l

√√√√ 2∑
i=1

(aji )
l (5.9)

Most criteria constructed from the HMGH-framework (in particular the most

basic ones) are formulated via certain permutation operators acting on the

two-fold copy Hilbert space of states. In order to understand the working

principle of the framework, one needs to thoroughly define these permutation

operators.

Definition 9. The permutation operator Pi acting on an element |Φ〉 =

|φ1〉⊗ |φ2〉 of the two-fold copy Hilbert space H⊗2, where |φi〉 ∈ H, is defined

via its action as

Pi|Φ〉 = Pi|a1, a2, · · · , an〉 ⊗ |b1, b2, · · · , bn〉 (5.10)

= |a1, a2, · · · , ai−1, bi, ai+1, · · · , an〉 ⊗ |b1, b2, · · · , bi−1, ai, bi+1, · · · , bn〉

where n is the number of subsystems of H and the aj and bj are the con-

tributions of the j-th subsystem from |φ1〉 and |φ2〉, respectively. That is,

the permutation operator Pi swaps the i-th subsystems of the two single-copy

Hilbert spaces.

The permutation operator P{α}, where {α} is a set of integers between 1 and

n, is defined as

P{α} =
∏

j∈{α}
Pj (5.11)

Note that all Pj commute, therefore the order of the above product is irrel-

evant. Thus, P{α} swaps several subsystems at once between the two copies

of the Hilbert space, namely all subspaces with labels i ∈ {α}.
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The permutation operator P is defined as the operator permuting all n sub-

systems of both copies of the Hilbert space:

P =

n∏
i=1

Pi (5.12)

i.e.

P|a1, a2, · · · , an〉 ⊗ |b1, b2, · · · , bn〉 = |b1, b2, · · · , bn〉 ⊗ |a1, a2, · · · , an〉.(5.13)

Observe that all Pi (and products thereof) are hermitian and unitary, i.e.

P†
i = P−1

i = Pi (5.14)

5.2 Working Principle

The separability criteria constructed within the HMGH-framework via the

permutation operators Pi share a common working principle. First of all,

they are formulated via convex inequalities. Thus, it is sufficient to prove

their validity for pure states and validity for mixed states is guaranteed. Now,

if a pure state |Ψ〉 is separable with respect to any certain k-partition γk,

there are k different permutation operators P{α} which leave two copies of

the state invariant (see left part of fig. 5.1)

P{α}|Ψ〉 = |Ψ〉 ∀ {α} ∈ γk (5.15)

In particular, these permutation operators conserve the product structure

between the two copies of the state, while permutation operators P{α} with

{α} /∈ γk leave the two copies of the state entangled with each other (as

illustrated in the right part of fig. 5.1). In this way, problems of multipartite

partial separability are effectively reduced to comparatively simple problems

of bipartite separability between the two copies of the state.
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Figure 5.1: Illustration of the effect of the permutation operators Pi (or P{α})

on two copies of a pure state (in this example, a seven-partite triseparable

state). If all permuted subsystems (in the above examples, the one permuted

subsystem, i.e. system 3 and 2, respectively) are separable from the rest of

the system (as in the left hand picture), the two copies of the state remain

unchanged and, in particular, separable from each other. Contrary to this,

as illustrated in the right hand picture, if the permutation operator does not

match the partition under which the given state is separable, the resulting

state does not factorise into two copies any more. Using this, the permutation

operators Pi(or, more generally, the permutation operators P{α}) can be used

to detect and characterise different forms of multipartite entanglement.
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Some inequalities within the HMGH-framework do not rely on permutation

operators like Pi (see section 7.4). These inequalities however implicitly con-

tain the action of these operators. Since they do not possess the freedom

of basis choice other inequalities (such as the ones discussed in Chapter 6)

possess, they can be written in a more final and explicit form. However, the

working principle remains the same.

5.3 A Simple Example

The most simple (and also historically first [2]) separability criterion which

can be constructed via the HMGH-framework is a bipartite separability cri-

terion. Although it is not particularly useful by itself (since there are several

stronger bipartite separability criteria, such as e.g. the PPT criterion, the-

orem 1), it serves as an illustrative example for how the framework can be

used. Also, this criterion can be generalised to multipartite partial separa-

bility (as will be done in Chapter 6) in a very useful way.

Theorem 7. If a bipartite state ρ is separable, it has to satisfy the inequality

√
〈Φ|ρ⊗2P|Φ〉 −

√
〈Φ|P†

1ρP1|Φ〉 ≤ 0 (5.16)

for all fully separable states |Φ〉 on the two-copy Hilbert space.

Proof 7. Since the inequality is a convex function of ρ (which follows from

thm. 6), it is sufficient to prove it for pure states and its validity for mixed

states is guaranteed.

If ρ is separable, then P†
1ρ

⊗2P1 = ρ⊗2. Using |Φ〉 = |φ1〉⊗|φ2〉, the inequality

therefore assumes the form

|〈φ1|ρ|φ2〉| −
√
〈φ1|ρ|φ1〉〈φ2|ρ|φ2〉 ≤ 0 (5.17)

which follows from the positivite-semidefiniteness of ρ.
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In other words, whenever the above inequality is violated by a state ρ and

a fully separable state |Φ〉, ρ is identified as being entangled, while non-

violation of the inequality does not imply any statement about the separa-

bility properties of ρ. In particular, the inequality may be violated for some

|Φ〉, and satisfied for another (for the same ρ), which points out an important

issue: How can one chose |Φ〉 such that the detection power of the criterion

is maximal?

5.4 Optimisation

There are several (widely independent) conditions which an optimal |Φ〉
should satisfy (for any given state ρ under investigation) [7]:

C1 |Φ〉 should be fully separable, i.e. |Φ〉 = |φA1 〉 ⊗ |φB1 〉 ⊗ |φA2 〉 ⊗ |φB2 〉.

C2 The two parts |φ1〉 and |φ2〉 of |Φ〉 on the two copies of the Hilbert

space should be orthogonal in each subsystem:
〈
φX1 |φX2

〉
= 0, where

X ∈ {A,B}.

C3 |φ1〉 and |φ2〉 should be chosen such that |〈φ1|ρ|φ2〉| is maximal.

Condition C1 can be split up into two weaker conditions which should be

satisfied for different reasons. Firstly, |Φ〉 should be separable with respect

to the two-copy-partition (i.e. |Φ〉 = |φ1〉 ⊗ |φ2〉), since this is necessary for

the proof to hold and thus for the inequality to make sense. Therefore, this

may be seen as a technical requirement. Secondly, each of these |φi〉 should

itself be separable. Although this is not necessary for the criterion to be well-

defined or even to detect entanglement, the state |Φ〉 for which the criterion

is strongest (i.e. for which the violation of the inequality is greatest) will

always be fully separable. This can be seen by computing the criterion for
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an entangled state

|Φ〉 = (cosα1|φ11〉+ sinα1|φ21〉
) ⊗ (cosα2|φ12〉+ sinα2|φ22〉

)
(5.18)

where all |φji 〉 are product states such that the |φi〉 = cosαi|φ1i 〉+ sinαi|φ2i 〉
are entangled. Now, the first term of the inequality (5.16) of the criterion

(theorem 7) reads

∣∣cosα1 cosα2〈φ11|ρ|φ12〉+ cosα1 sinα2〈φ11|ρ|φ22〉+
sinα1 cosα2〈φ21|ρ|φ12〉+ sinα1 sinα2〈φ21|ρ|φ22〉

∣∣ (5.19)

This leads to a weakening of the detection quality of the criterion for several

reasons. Not only is a superposition of this form very likely to have a com-

paratively small absolute value (and thus not to satisfy condition C3, which

will be discussed below) due to interference between the individual terms.

Also some of the terms might (depending on the |φji 〉) be expectation values

(and not transition elements). Entanglement however is based on coherence

and is thus indicated by transition elements (off-diagonal density matrix el-

ements) rather than expectation values (density matrix diagonal elements).

Due to the construction of the separability criterion, such contributions are

automatically (at least) cancelled by similar contributions in the second term

of the inequality. Furthermore, entangled |φi〉 lead to contributions of the

off-diagonal density matrix elements in the second term of the inequality,

effectively reducing its violation for entangled states.

Condition C2 is a very central technical requirement. In order for the cri-

terion to work at all, the states |φX1 〉 and |φX2 〉 need to be different, since

otherwise the permutation operator PX would leave the state |Φ〉 invariant,

leaving the inequality trivially satisfied for all states ρ. Since for any choice

of |φX1 〉 any |φX2 〉 can be decomposed into the parallel and perpendicular

contributions

|φX‖
2 〉 = |φX1 〉〈φX1 |φX2 〉 and |φX⊥

2 〉 = (�− |φX1 〉〈φX1 |)|φX2 〉 (5.20)
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and only the latter are capable of yielding a violation of the criterion, it is ev-

ident that the optimal choice has to be such that 〈φX1 |φX2 〉 = 0 for X = A,B.

Condition C3 represents the optimisation of |Φ〉 in dependence of the given

state ρ. It is quite clear that the inequality can only be violated (i.e. yield

a value greater than zero) if its positive term is as large as possible (while

still satisfying all other conditions).

5.5 Experimental Implementation

A very advantageous feature of all separability criteria constructed within the

HMGH-framework is their experimental implementability. All these criteria

can be written as functions of density matrix elements, each of which can be

expressed as a linear combination of local observables (e.g. Pauli operators

for qubits). Furthermore, the number of density matrix elements needed for

any of the criteria is much smaller than the total number of elements the den-

sity matrix has, in particular, very few (often just one) off-diagonal elements

are needed. As a consequence, the number of observables required in order

to experimentally implement one of the criteria is much smaller than the

number of observables for a full quantum state tomography (in some cases,

the former does not even grow exponentially with the system size, while the

latter always does).

As an example, consider inequality (5.16) (theorem 7) for an arbitrary two-

qudit-state ρ with |Φ〉 = |0011〉. To this end, consider the short hand nota-

tion

[kl] := Tr(ρ σk ⊗ σl) (5.21)
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where the σj are the Pauli operators on the two-dimensional spaces spanned

by |φAi 〉 and |φBi 〉, respectively. For the above choice of |Φ〉 they read

σ0 = |0〉〈0| + |1〉〈1|
σ1 = |0〉〈1| + |1〉〈0|
σ2 = i|0〉〈1| − i|1〉〈0|
σ3 = |0〉〈0| − |1〉〈1|

(5.22)

The inequality now reads

|〈00|ρ|11〉| −
√

〈01|ρ|01〉〈10|ρ|10〉 = 1

4
|[11]− [22] + i([12] + [21])| −

1

4

√
([00] − [30] + [03]− [33])([00] + [30]− [03] − [33]) ≤ 0 (5.23)

By simple counting, one can see that it can be implemented by means of only

eight local observables σk ⊗ σl, as opposed to (d4 − 1) observables (i.e. for

example fifteen for two qubits, eighty for two qutrits, et cetera) necessary for

a full quantum state tomography (which is required for implementing most

other separability criteria, such as e.g. the PPT criterion).

5.6 Alternative Formulation

In order to put the HMGH-framework into a more general context, the per-

mutation operators Pi and their action on separable states can be formulated

in different ways. In contrast to the rather mathematical formulation given

in the previous sections, they will be formulated in terms more common in

physics in this section.

To this end, observe that the permutation operator Pi, as defined in defini-

tion 9 (eq. (5.10)) can, for fixed |Φ〉 = |φ1〉 ⊗ |φ2〉, also be written in terms

of creation and annihilation operators as

Pi = a
(i)†
φi
2
a
(i)

φi
1
b
(i)†
φi
1
b
(i)

φi
2

(5.24)
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where the a(i)φ and b
(i)
φ are annihilation operators, annihilating the mode φ

in the first and second copy of the i − th subsystem, respectively, and the

a
(i)†
φ and b(i)†φ are the corresponding creation operators.

Also, the condition for separability of a state ρ under a k-partition γ

P†
{γi}ρP{γi} = ρ ∀ i (5.25)

which is a basic building piece of the HMGH-framework, can be rewritten in

a way more common in physics, namely via commutators:

[Pγi , ρ] = 0 ∀ i (5.26)

such that separability can be formulated as a symmetry property of the state

ρ.
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Chapter 6

Multipartite Separability

Properties

Although the question of full separability for multipartite states is very well

studied (see e.g. [51, 52, 53, 54]), the problem of partial separability has only

quite recently started to be investigated thoroughly (e.g. [55]). The different

kinds of multipartite partial separability (k- and γk-separability, as defined in

section 4.1) require different kinds of tools for investigation. While the task

of detecting γk-(in)separability (i.e. separability under specific partitions)

does in principle not require special tools, but can be dealt with by means

of tools for bipartite entanglement, this is not the case for k-(in)separability.

Although the two definitions coincide for the pure state case, significant dif-

ferences arise when mixed states are considered.

6.1 γk-Separability

The question whether any given n-partite mixed state ρ is γk-separable with

respect to any given k-partition γ can be addressed by means of common

bipartite separability criteria. To this end, all subsystems of the i-th part
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of the partition γ are considered as one single subsystem Ai, while all other

subsystems together form a single subsystem Bi (where i = 1, 2, ..., k). Now,

it is easy to see that ρ is γk-separable with respect to the partition γ if and

only if Ai is separable from Bi for all i.

Despite this somewhat simple possibility of characterisation, γk-separability

still holds some remarkable and quite counterintuitive features. In particular,

a mixed quantum state ρ may be γk-separable with respect to different k-

partitions γ, but not be γ(k+1)-separable. In this sense, γk-separability is not

unique.

For example, consider the so-called Smolin-state of four qubits [56]

ρ =
1

4
(|GHZ〉〈GHZ| + |GHZ(1,2)〉〈GHZ(1,2)|

+|GHZ(1,3)〉〈GHZ(1,3)|+ |GHZ(1,4)〉〈GHZ(1,4)|) (6.1)

where |GHZ〉 = (|0000〉+ |1111〉)/√2 is the usual four-qubit GHZ state, and

the |GHZ(i,j)〉 are the same state after application of a bit flip in the i-th

and j-th subsystem (i.e. the same state in a different basis, e.g |GHZ(1,2)〉 =
|GHZ(3,4)〉 = (|1100〉 + |0011〉)/√2). This state can also be decomposed as

ρ =
1

4
(|Φ+〉〈Φ+| ⊗ |Φ+〉〈Φ+|+ |Φ−〉〈Φ−| ⊗ |Φ−〉〈Φ−|

+|Ψ+〉〈Ψ+| ⊗ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| ⊗ |Ψ−〉〈Ψ−|) (6.2)

where

|Ψ±〉 = 1√
2
(|01〉 ± |10〉) |Φ±〉 = 1√

2
(|00〉 ± |11〉) (6.3)

are the two-qubit Bell states. Since ρ is invariant under exchange of its sub-

systems (due to the symmetry of the decomposition (6.1)), the decomposition

(6.2) is possible with respect to any two-qubit-versus-two-qubit partition.

As can be seen from these different possible pure state decompositions, the

Smolin state is γ2-separable under all bipartitions into two sets of two subsys-

tems each (i.e. the bipartitions {1, 2|3, 4}, {1, 3|2, 4} and {1, 4|2, 3}). From
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this, one may naively conclude, that the state is actually fully separable,

since each subsystem is separable from every other subsystem in some par-

tition. This, however, is not true. In fact, the Smolin state is not separable

under any one-versus-three-subsystem bipartition (as can be easily proven

by means of bipartite separability criteria, e.g. the PPT-criterion).

This example illustrates the ambiguity of γk-separability. Although the max-

imal k for which a given state is γk-separable is an absolute value, there need

not be one unique partition with respect to which this state is γk-separable.

6.2 k-Separability and Genuine Multipartite Entan-

glement

γk-separability is a stronger criterion than k-separability, in the sense that

every γk-separable state is also always k-separable, but not vice-versa. Thus,

k-(in)separability can also be detected by bipartite separability criteria in the

way described in the previous section. However, most k-separable states are

not γk-separable and can therefore not be identified as such by this method

(as illustrated in fig. 6.1). Such k-separable but γk-inseparable states arise

from the fact that the k-separable pure states composing a k-separable mixed

state can be separable with respect to different k-partitions, i.e. the resulting

state is in general not separable under any particular partition.

The problem of deciding whether a general given state is k-separable or not

has recently been studied increasingly intensively (mainly for k = 2), and

different tools and approaches have been developed (see e.g. [57, 58]). One

of the most successful approaches, and the only systematic and fully analytic

one so far, lies within the HMGH-framework (stronger results have only been

obtained for very specific types of states [59, 60] or by semi-definite program-

ming [61], i.e. not fully analytically).
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Figure 6.1: Illustration of the problems in detecting k-separability. Each

sphere represents a subsystem, while the entanglement between the subsys-

tems is depicted by frames around the respective spheres. In this tripartite

example, the left state is biseparable (since there is no genuine multipartite

entanglement of all three subsystems present, e.g. a mixture of three states

containing bipartite entanglement between different subsystems), while the

state on the right hand side is genuinely multipartite entangled (e.g. a GHZ-

state). However, neither of the two states is γ2-separable, since both are

fully entangled.
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6.2.1 Genuine Multipartite Entanglement

Since the case of k = 2, i.e. the detection of genuine multipartite entan-

glement in a given state, is much more important to applications (in the

context of quantum information technology) than other questions of partial

separability, most of the research in this field is concentrated on this partic-

ular problem.

The conceptually most simple and straightforward approach utilises so-called

fidelity witnesses. These are a special kind of entanglement witnesses of the

form

W = max
σ∈S2

Tr(|Ψ〉〈Ψ|σ)� − |Ψ〉〈Ψ| = α�− |Ψ〉〈Ψ| (6.4)

where α is a positive real number and |Ψ〉 is a state exhibiting the desired

property (e.g. genuine multipartite entanglement). By optimising over all

states σ of a certain kind (e.g. biseparable states), this operator by construc-

tion can only have nonnegative expectation values for these states, thus, any

state with a negative expectation value necessarily cannot be of this kind

(i.e. has to be genuinely multipartite entangled). For example, witnesses for

genuine multipartite entanglement near the three-qubit GHZ- and W-state

are given by [62]

WGHZ =
3

4
�− |GHZ〉〈GHZ| and WW =

2

3
�− |W 〉〈W | (6.5)

respectively.

Such witnesses are a good starting point for investigations, as their applica-

tion does not require an extensive beforehand knowledge of the investigated

system and the results often give important insights. However, fidelity wit-

nesses are not practical for advanced studies of entanglement, because they

involve (mostly numerical) optimisation procedures, only work in a small
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region of the considered state space (i.e. in the vicinity of the state |Ψ〉 they

are constructed from) and thus have a rather low detection efficiency.

Some of the strongest and most versatile criteria for genuine multipartite en-

tanglement can be derived within the HMGH-framework, the most simple of

which is a straight-forward multipartite generalisation of the bipartite sepa-

rability criterion (5.16) [2], a less general version of which was also developed

independently in Ref. [58]:

Theorem 8. The inequality

√
〈Φ|ρ⊗2P|Φ〉 −

∑
{γ}

√
〈Φ|P†

{γ1}ρ
⊗2P{γ1}|Φ〉 ≤ 0 (6.6)

is satisfied for all biseparable states ρ and for all fully separable states |Φ〉,
where the sum runs over all bipartitions {γ}.

Proof 8. In analogy to the proof of thm. 7, firstly observe that the left hand

side of the inequality is a convex function. Therefore, it suffices to prove

the inequality for arbitrary pure states ρ = |Ψ〉〈Ψ| and its validity for mixed

states is guaranteed. Now, any biseparable pure state |Ψ〉 is separable under

a specific bipartition ˜{γ}, for which

P†
{γ̃1}ρ

⊗2P{γ̃1} = ρ⊗2 (6.7)

The inequality now reads

√
〈Φ|ρ⊗2P|Φ〉 −

√
〈Φ|ρ⊗2|Φ〉 −

∑
{γ}�={γ̃}

√
〈Φ|P†

{γ1}ρ
⊗2P{γ1}|Φ〉 ≤ 0 (6.8)

It follows from the positivity of ρ that the first two terms combined are non-

positive, as they can be rewritten as

√
〈Φ|ρ⊗2P|Φ〉 −

√
〈Φ|ρ⊗2|Φ〉 = |〈φ1|ρ|φ2〉| −

√
〈φ1|ρ|φ1〉〈φ2|ρ|φ2〉 (6.9)

using that by definition |Φ〉 = |φ1〉 ⊗ |φ2〉. Since the remaining sum is also

non-positive, this proves the theorem.
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As this inequality is a straightforward generalisation of inequality (5.16) and

therefore is based on the same working principle, the optimal choice of |Φ〉
is given by the conditions discussed in section 5.4.

Figure 6.2 illustrates the detection quality of the criterion (6.6) in comparison

to the detection range of the fidelity witnesses for GHZ- and W-states, as

well as to the bipartite separability criterion inequality (5.16) and the PPT

criterion for three-qubit states of the form

ρ = α|GHZ〉〈GHZ| + β|W 〉〈W |+ 1− α− β

8
� (6.10)

where |GHZ〉 and |W 〉 are given by (4.7) and (4.8), respectively. This il-

lustration suggests, that while inequality (6.6) optimally detects GHZ-like

genuine multipartite entanglement, it is not optimally suited to detect W-

type entanglement. Mathematically, this is due to the number of significant

off-diagonal density matrix elements in the respective states. Since the cri-

terion only utilises a single off-diagonal element, it cannot be optimal for a

state whose entanglement is described by several such elements. Thus, dif-

ferent criteria are necessary in order to optimally detect different types of

entanglement using the HMGH-framework.

Such criteria can be constructed conceptually quite simply by using more

complex generalisations and extensions of the bipartite separability criterion

(5.16):

1. Add up the absolute values of all characteristic off-diagonal density

matrix elements of the state under investigation.

2. Subtract square roots of products of two density matrix diagonal el-

ements each, such that the whole expression is strictly lower than or

equal to zero for biseparable states.

3. To do so, use the bipartite separability criterion (5.16) for estimations.
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Figure 6.2: Illustration of the genuine multipartite entangled states of the

form (6.10) detected by inequality (6.6) in comparison to those detected by

the fidelity witnesses for GHZ- and W-states (6.5), the entanglement detected

by the bipartite separability criterion inequality (5.16) and the PPT criterion.

For both inequalities, the two choices |Φ〉 = |000111〉 and |Φ〉 = |+++−−−〉
(where |±〉 = 1√

2
(|0〉 ± |1〉)) are used (in accordance with the conditions

discussed in section 5.4 for the cases β = 0 and α = 0, respectively). The

purple area is detected to be genuinely multipartite entangled by the fidelity

witnesses, the red and purple areas are detected to be genuinely multipartite

entangled, since they violate inequality (6.6), the yellow, red and purple

areas are detected to be entangled (not to be fully separable) by violation

of inequality (5.16). The green area is the set of PPT states, i.e. all states

outside are necessarily entangled.

The comparison to the fidelity witnesses demonstrates that the detection

power of inequality (6.6) is indeed quite satisfactory. However, the gap

between the PPT-area and the area detected by the bipartite separability

criterion (5.16) indicates that this criterion (and, by generalisation, also the

criterion for genuine multipartite entanglement which is based upon it) is

not capable of optimally detecting W-type entanglement (while GHZ-type

entanglement is indeed detected optimally in this sense).
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The bound has to be proven for pure states only, since by construction,

the constructed criterion is formulated as a convex function.

4. In order to formulate the criterion more elegantly, all density matrix

elements can optionally be expressed via permutation operators on

two-fold copies of states.

This concept can in principle be applied to all different kinds of multipartite

entangled states. Consider for example the n-qubit m-Dicke state (4.9). The

above method yields the following criterion [6]

Theorem 9. The inequality∑
{σ}

(
|〈d{α}|ρ|d{β}〉| −

√
〈d{α}| ⊗ 〈d{β}|P†

{α}ρ
⊗2P{α}|d{α}〉 ⊗ |d{β}〉

)

−m(n−m− 1)
∑
{α}

〈d{α}|ρ|d{α}〉 ≤ 0(6.11)

is satisfied for all biseparable states, where the sum runs over all sets {σ} =

{{α}, {β}} which satisfy |{α}| = |{β}| = m− 1 and |{α} ∩ {β}| = (m− 1),

and where

|d{α}〉 =
⊗
i∈{α}

|1〉i ⊗
⊗
j /∈{α}

|0〉j (6.12)

By construction, for each n and m the maximal value m of the inequality is

attained for the corresponding Dicke state |Dn
m〉 (for m ≤ n/2).

Proof 9. Since the left hand side of the inequality is a convex function of ρ

(as a consequence of thm. 6), it is sufficient to prove the inequality’s validity

for pure states, and validity for mixed states follows immediately. Since each

biseparable pure state is separable under a specific bipartition, assume that

the state is separable under the partition {A|B}. Now, denoting the first

term in the inequality as O{α},{β}, the second term as P{α},{β} and the third

term as D{α}, the following relations hold:

O{α},{β} ≤
⎧⎨
⎩ P{α},{β} if x ∈ A, y ∈ B or x ∈ B, y ∈ A

1
2 (D{α} +D{β}) if x, y ∈ A or x, y ∈ B

(6.13)
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where x = {α}\{β} and y = {β}\{α}. The first statement follows from thm.

7 (since P{α} acts as PA in this case), while the second statement follows

from the positivity of the density matrix ρ. Counting the maximal number of

necessary D{α} elements for this estimation yields the coefficient m(n−m−1)

of the last term of the inequality.

Such criteria, tailored specifically for special kinds of states by means of

the HMGH-framework, are comparatively noise-resistant (as illustrated in

fig. 6.3) and easily implemented experimentally (as discussed in section 5.5),

which makes them a very versatile tool for efficiently detecting genuine mul-

tipartite entanglement.

Figure 6.3: Illustration of the noise resistance of the criterion eq. (6.11) for

different n-qubit m-Dicke states mixed with white noise (i.e. states of the

form ρ = p|Dn
m〉〈Dn

m|+ 1−p
2n �). The lines represent the detection threshold p

for different m, ranging from m = 1 (red line) to m = 33 (purple line).

6.2.2 General k-Separability

Although the concept of general k-separability (i.e. for arbitrary k) and

its detection in given states is of comparatively low importance in quantum

informational applications, it is still crucial for establishing a full understand-
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ing of multipartite entanglement as a whole. So far, the HMGH-framework

offers the only analytic solution to this problem, as the convex inequalities

detecting genuine multipartite entanglement (i.e. 2-inseparability) can be

generalised to detect k-inseparability for arbitrary k. Explicitly, the corre-

sponding criteria have only been derived for the most simple case, i.e. as a

generalisation of eq. (6.6) [3]:

Theorem 10. The inequality

√
〈Φ|ρ⊗2P|Φ〉 −

∑
{γ}

k∏
i=1

(
〈Φ|P†

{γi}ρ
⊗2P{γi}|Φ〉

) 1
2k ≤ 0 (6.14)

is satisfied for all k-separable states ρ and for all fully separable states |Φ〉,
where the sum runs over all k-partitions {γ}.

Proof 10. In analogy to the proof of thm. 7, firstly observe that the left

hand side of the inequality is a convex function. Therefore, it suffices to

prove the inequality for arbitrary pure states ρ = |Ψ〉〈Ψ| and its validity for

mixed states is guaranteed. Now, any k-separable pure state |Ψ〉 is separable

under a specific k-partition ˜{γ}, for which

P†
˜{γ}i
ρ⊗2P ˜{γ}i = ρ⊗2 (6.15)

The inequality now reads

√
〈Φ|ρ⊗2P|Φ〉 −

√
〈Φ|ρ⊗2|Φ〉 −

∑
{γ}�= ˜{γ}

k∏
i=1

(
〈Φ|P†

γiρ
⊗2Pγi |Φ〉

) 1
2k ≤ 0(6.16)

It follows from the positivity of ρ that the first two terms combined are non-

positive. Since the remaining sum is also non-positive, this proves the theo-

rem.

Although the mere possibility to analytically detect k-inseparability is a con-

siderable advance in multipartite entanglement theory, this criterion (and,

along with it, all other similar generalisations of separability criteria con-

structed within the HMGH-framework) has a serious weak point. For high
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numbers n of parties and for 2 << k << n, the detection power of the

criterion is very low. In fact, it is not uncommon for this kind of criterion to

detect a state to be (k−1)-inseparable before detecting it to be k-inseparable

(although (k − 1)-separability is a weaker condition than k-separability), as

illustrated in fig. 6.4. This problem is caused by the vast number of terms

Figure 6.4: Illustration of the problems in detecting k-inseparability using

criterion (6.14) for the n qubit state ρ = p|GHZ〉〈GHZ| + 1−p
2n �. The lines

correspond to the detection threshold for different k, ranging from k = 3 (red

line) to k = 19 (purple line). The black lines correspond to k = 2 (upper

line) and k = n (bottom line).

While the detection quality for k = 2 and k = n is satisfactory (in fact,

for k = n, the threshold is equal to the one yielded by the PPT criterion),

this is not the case for other k. In particular, the order in which the state

is detected to be k-inseparable for different k becomes unsorted for n ≥ 5,

which indicates that the detection threshold in these cases is clearly far from

optimal.

which are subtracted from a single positive term. The number of such terms

is the number of inequivalent k-partitions of the n-partite system, which is

64



given by the Sterling-number in the second kind [63]

S(n, k) =

k∑
i=1

(−1)k−iin−1

(i− 1)!(k − i)!
(6.17)

which grows exponentially in n and over-exponentially in k (e.g. S(4, 2) = 7,

S(10, 3) = 9330 and S(20, 8) ≈ 1.5× 1013).

As a solution for this problem has not been found so far, the problem of

detecting k-(in)separability remains essentially unsolved for general k and n.

6.2.3 Measuring Genuine Multipartite Entanglement

As discussed in section 4.2, quantifying multipartite entanglement is a highly

ambiguous task, since for a complete characterisation of the entanglement

of any given multipartite state, different kinds of multipartite entanglement

need to be measured. However, in specific applications only specific kinds of

entanglement are relevant, thus it suffices to restrict the description of states

to these types of entanglement in these cases.

Like in the bipartite case, it is quite easy to define sensible entanglement

measures for pure states. Via convex roof constructions, these can even be

extended to mixed states in a straightforward fashion. This however leads to

effectively incomputable expressions. In order to be useful in practice, such

measures thus require computable (and tight) bounds. A good example for

such a measure is the gme-concurrence [8]:

Definition 10. The gme-concurrence is defined as

Cgme(|Ψ〉) = min
{γ}

√
2(1− Tr(ρ2γ1)) (6.18)

where the sum runs over all bipartitions {γ} and ργ1 is the reduced density

matrix of the first part of {γ}. For mixed states, the gme-concurrence is

defined via the convex roof construction

Cgme(ρ) = inf
{pi,|Ψi〉}

∑
i

piCgme(|Ψi〉) (6.19)
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where the infimum is taken over all pure state decompositions of ρ.

Theorem 11. The gme-concurrence is a measure of genuine multipartite en-

tanglement, i.e. it is nonzero iff the considered state is genuinely multipartite

entangled.

Proof 11. If a state ρ is genuinely multipartite entangled, then each of its

pure state decompositions contains a genuinely multipartite entangled pure

state |Ψ〉 with Cgme(|Ψ〉) > 0 (since reduced density matrices of fully entan-

gled pure states are always mixed). Therefore, Cgme(ρ) > 0 in this case.

Conversely, if ρ is biseparable, then there is a decomposition into biseparable

pure states |Ψi〉 with Cgme(|Ψi〉) = 0 (since the respective reduced density

matrices are pure). Since Cgme is nonnegative, such a decomposition will

always be an infimum of the convex roof construction and therefore ensure

Cgme(ρ) = 0.

Theorem 12. Computable lower bounds on the gme-concurrence are given

by

Cgme(ρ) ≥ 2

⎛
⎝√〈Φ|ρ⊗2P|Φ〉 −

∑
{γ}

√
〈Φ|P†

{γ1}ρ
⊗2P{γ1}|Φ〉

⎞
⎠ (6.20)

for arbitrary fully separable |Φ〉, where the sum runs over all bipartitions {γ}.
Note that the bound is similar to the expression in ineq. (6.6).

Proof 12. Since the bound is a convex function of ρ, it is sufficient to prove

the inequality for pure states. This can be done for arbitrary (but fixed)

dimension d and number n of subsystems, where the structure of the proof

is always the same. Here, for sake of simplicity and comprehensibility, the

proof shall be presented for the three-qubit case (n = 3 and d = 2).

The most general pure three-qubit state can be written as

|Ψ〉 = a|000〉 + b|001〉 + c|010〉 + d|011〉
+e|100〉 + f |101〉+ g|110〉 + h|111〉 (6.21)
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For this state, the squared concurrences C2(ργ) = 2(1−Tr(ρ2γ1)) (with respect

to the three possible bipartitions {γ}) read

C2(ρA|BC) = 4|ah − de|2 + F1

C2(ρB|AC) = 4|ah − cf |2 + F2 (6.22)

C2(ρC|AB) = 4|ah − bg|2 + F3

where the Fi are nonnegative functions. It thus follows that

C(ρA|BC) ≥ 2(|ah| − |de|)
C(ρB|AC) ≥ 2(|ah| − |cf |) (6.23)

C(ρC|AB) ≥ 2(|ah| − |bg|)

And therefore

Cgme(ρ) = max
{γ}

(C(ργ)) ≥ 2(|ah| − |de| − |cf | − |bg|) (6.24)

For the choice |Φ〉 = |000111〉, this expression coincides with the postulated

bound, as both yield

|〈000|ρ|111〉| −
√

〈001|ρ|001〉〈110|ρ|110〉 −
√

〈010|ρ|010〉〈101|ρ|101〉
−
√

〈100|ρ|100〉〈011|ρ|011〉 (6.25)

Since Cgme(ρ) is invariant under local unitary transformations, it follows

that the bounds must hold irrespective of such transformations as well, i.e.

for any fully separable |Φ〉.

Since all criteria for partial separability built within the HMGH-framework

utilise the same expression (implicitly or explicitly) that has been proven to

be related to the GME-concurrence, it stands to reason that all these crite-

ria give rise to different bounds on this genuine multipartite entanglement

measure (or similar ones). Using the criterion ineq. (6.14), this approach

could even be generalised to measuring k-inseparability for arbitrary k. All
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this however, has not yet been thoroughly investigated.

Measures for other kinds of multipartite entanglement are even less known

and understood. In most cases, the best known approach is using fidelity wit-

nesses as entanglement measures for specific kinds of states. Such measures

can be defined as

EX(ρ) = −max
U

Tr(UρU †WX) (6.26)

where X represents the kind of state in question, WX the corresponding fi-

delity witness given by (6.4) and the maximum is taken over all local unitary

operations U = U1⊗U2⊗· · ·⊗Un. The main disadvantage of this method is

(as in the mere entanglement detection problem) the lack of detection power

(even if the optimisation should be performable in a feasible way). Since

tools for multipartite entanglement detection and characterisation (which

form the foundation for multipartite entanglement quantification) are being

developed quite intensively at present, progress in this direction is to be ex-

pected in the near future.
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Chapter 7

Classes of Multipartite

Entanglement

Classification of multipartite entanglement is one of the most challenging

tasks in entanglement theory. While the situation for bipartite states is

quite simple (as the issue can be resolved by the concept of Schmidt num-

bers), it is widely unclear how this solution can be generalised most sensibly

to multipartite systems and whether such a concept is capable of giving rise

to a complete characterisation scheme for arbitrary multipartite systems.

7.1 Conditions for Classification Schemes

Although it is unclear, how a sensible classification scheme for multipartite

entanglement can be constructed, there are several conditions such a scheme

should satisfy. These mainly originate from two ideas:

C1 The resulting classes should not be too coarse, in the sense that states

which exhibit (qualitatively) different entanglement properties should

not belong to the same class of states.
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C2 The classes should also not be too fine, in the sense that equivalent

states (i.e. states which exhibit qualitatively similar entanglement

properties, particularly states which can be converted into one another

via local operations and classical communications) should always be-

long to the same class.

In particular (as a consequence of C2), the classification of states should be

Lorentz invariant (i.e. a state should be assigned to the same entanglement

class from all inertial frames of reference). Although at present there is no

closed consistent relativistic description of quantum information theory, an

approach based on the Wigner rotation of state vectors (for an overview,

see e.g. Ref. [64]) is very successful in forming a foundation for a future

development of a complete relativistic quantum information theory. In order

to be Lorentz invariant (in the above sense), an entanglement classification

scheme has to satisfy two conditions [4]:

(1) all classes have to be invariant under local-unitary transformations,

and

(2) all classes have to be convex (i.e. the mixture of two states belonging

to some class should belong to the same class).

While the necessity of (1) also follows directly from statement C2, statement

(2) is much less obvious (although it seems a reasonable requirement) and

leads to several complications. For example, it implies that different classes

must not be disjoint, but have to overlap. For example, certain mixed sepa-

rable states (particularly, the maximally mixed state) have to belong to all

classes of entanglement, since they can be composed of all kinds of states.

This requires entanglement classes to be arranged in a sort of hierarchy or

direction, since certain kinds of operations (particularly local operations and

classical communications) may only work in one way (leading e.g. from a

class of entanglement to the set of separable states, but never back).
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Due to all these complex requirements, it is very difficult to classify entangled

states in a satisfactory manner, especially since notations and definitions are

often used ambiguously throughout the scientific community, such that no

common basis of terminology has been established yet. Nevertheless, several

promising approaches have been developed and started to be studied.

7.2 Classification via Tensor Ranks

One possible generalisation of bipartite Schmidt numbers is given by the

concept of tensor ranks (see e.g. [65]).

Definition 11. The tensor rank r of a pure state |Ψ〉 is defined as the lowest

possible number of product states |φp〉, into a superposition of which |Ψ〉 can

be decomposed, i.e. the lowest number l such that

|Ψ〉 =
l∑

i=1

ci|φpi 〉 (7.1)

where ci ∈ � with
∑

i |ci|2 = 1.

For mixed states ρ, the tensor rank can be generalised as the lowest number l,

such that ρ has a decomposition into pure states |ψi〉 of tensor rank r(|ψi〉) ≤
l ∀ i.

At first glance, the tensor rank appears to induce a sensible classification of

multipartite entanglement, which is why it was hoped to hold the key to a

complete classification scheme. One of the most obvious disadvantages of

the tensor rank is the fact that it is quite difficult to determine for a given

(even pure) state. Apart from this, the tensor rank seems to offer many desir-

able features in the context of entanglement classification [66]. In particular,

for multipartite qubit systems, it induces a sensible structure of equivalence

classes of states, since all the well-known genuinely multipartite entangled

states have inequivalent tensor ranks (particularly, the n-qubit GHZ-state
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has a tensor rank of 2, and the n-qubit m-Dicke state has a tensor rank of

n −m + 1, where m ≤ n/2). Furthermore, the tensor rank formalism con-

tains a hierarchy of equivalence classes (which, as discussed in the previous

section, is a requirement for a sensible classification scheme): A state |φin〉
can only be converted into a state |φout〉 by means of local operations and

classical communications, if this operation does not increase the tensor rank,

i.e. if r(|φin〉) ≥ r(|φout〉).
Since there are still many aspects of the tensor rank that are not sufficiently

investigated, it cannot yet be estimated how exactly a potential classifica-

tion scheme on this basis might be structured. However, from the present

data it is already clear that the tensor rank alone cannot yield a sufficiently

fine classification scheme, as several inequivalent states possess the same ten-

sor rank and thus would be assigned to the same class. This can be seen

e.g. by considering an n-qutrit GHZ-state and a three-qubit W-state, which

both have a tensor rank of 3, while they should not be equivalent due to

the different number of parties (for n 
= 3) and the qualitatively different

entanglement properties. Various other examples of this kind can easily be

constructed, e.g. a two-qutrit maximally entangled state embedded within a

biseparable three-qutrit state has tensor rank three, just like a three-qutrit

GHZ-state or a three-qubit W-state embedded within a three-qutrit system

(i.e. all three states have the same tensor rank, while exhibiting completely

different entanglement properties).

7.3 Classification via Dimensionality of Entangle-

ment

In contrast to the concept of tensor ranks, the Schmidt number of bipartite

systems can be generalised to multipartite systems in a different way, which
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is based rather on the physical interpretation of the Schmidt number (i.e. the

number of degrees of freedom involved in the entanglement) than its purely

mathematical meaning (i.e. the number of superposed product states). This

concept is called the genuine dimensionality of entanglement [9].

Definition 12. A pure quantum state |Ψ〉 is called f -dimensionally en-

tangled (with f ≥ 2), iff it contains f -dimensional entanglement between

any of its subsystems, i.e. iff there exists a reduced density matrix ρi with

rank(ρi) ≥ f .

The state is called genuinely f -dimensionally entangled, iff all of its subsys-

tems are f -dimensionally entangled with each other, i.e. iff

rank(ρi) ≥ f ∀ i (7.2)

A mixed state ρ is (genuinely) f -dimensionally entangled iff there is an at

least (genuinely) f -dimensionally entangled pure state in each of its pure

state decompositions.

At present, tools for deciding whether a given state is f -dimensionally entan-

gled or not are being developed at a promising rate (see e.g. Refs [67, 68]).

However, like the classification via tensor ranks, the concept of entanglement

dimensionality does not fully grasp the entanglement properties of a state (for

example, all entangled qubit systems are 2-dimensionally entangled and all

genuinely multipartite entangled qubit states are genuinely 2-dimensionally

entangled - regardless of the specific type of entanglement present). Still, a

combination of different tools - particularly, the concepts of tensor rank, di-

mensionality of entanglement and partial separability - offers a promising ap-

proach, as examples for inequivalent states which are equivalently described

by these three concepts are not easily found.

In this context, it would be most desirable to find a way of constructing

tools which incorporate these three concepts at once. A first step in this

direction can be taken via the HMGH-framework, which allows for construc-
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tion of criteria sensitive to at least two of them, namely the dimensionality

of entanglement and partial separability [9]. By superposing criteria for gen-

uine multipartite entanglement (such as (6.6) or (6.11)) in different bases,

one can construct criteria for genuinely f -dimensional genuine multipartite

entanglement.

Theorem 13. Criteria for genuinely multipartite entangled f -dimensional

entanglement can be formulated via the quantities

Q0 =

d−1∑
k �=l

⎛
⎝√〈k, l|ρ⊗2|k, l〉 −

∑
{γ}

√
〈k, l|P†

{γ1}ρ
⊗2P{γ1}|k, l〉

⎞
⎠ (7.3)

where |k, l〉 = |k〉⊗n ⊗ |l〉⊗n and the sum over {γ} represents a sum over all

possible bipartitions, and

Qm =
1

m

⎛
⎝ d−2∑

k,l=0

∑
{σ}

⎛
⎝|〈ek{α}|ρ|el{β}〉| −

∑
{δ}

√
〈ek{α}|〈el{β}|P†

{δ}ρ
⊗2P{δ}|ek{α}〉|el{β}〉

⎞
⎠

−(d− 1)m(n−m− 1)

d−2∑
l=0

∑
{α}

〈el{α}|ρ|el{α}〉
⎞
⎠(7.4)

with 1 ≤ m ≤ n
2 , where |el{α}〉 is the product vector with |l + 1〉 in the m

subsystems whose labels are contained in the set {α}, and |l〉 in all (n −m)

other subsystems. The sum over {σ} runs over all sets {σ} = {{α}, {β}}
such that |{α} ∩ {β}| = m− 1, and {δ} is defined as

{δ} =

⎧⎨
⎩ {α} if k = l

{{χ} : |{χ} ∩ {α}| > 0 ∧ |{χ} ∩ {β}| = 0} if k 
= l
(7.5)

These quantities Qi (0 ≤ i ≤ n
2 ) are bounded from above by f − 1 for all

at most genuinely f -dimensionally entangled states and are non-positive for

all biseparable states. Conversely, if for a given state ρ any Qi > f − 2

(for any integer f ≥ 2), then this state is detected to be at least genuinely

f -dimensionally genuinely multipartite entangled.
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Proof 13. Note that for d = 2, the expressions (7.3) and (7.4) are equivalent

to (6.6) and (6.11), respectively, and are thus by construction maximally

violated by the corresponding n-qubit GHZ- and m-Dicke-states, with a value

of 1. Since the inequalities are also non-positive for biseparable states, this

proves the theorem for d = 2.

Validity for d > 2 follows from the convexity of the inequalities, as any non-

genuinely multi-dimensional entangled state which is embedded within more

than two local dimensions (i.e. for which more than one term in the sums

over k and l are nonzero) necessarily yields a value lower than or equal to

one.

As an example, consider the n-qudit-states

|GHZn
d 〉 =

1√
n

d−1∑
i=0

|i〉⊗n (7.6)

and

|W n
d 〉 =

1√
n(d− 1)

d−1∑
i=0

n∑
j=1

|wi
j〉 (7.7)

where |wi
j〉 is the product state of |i+1〉 for subsystem j and |i〉 in all (n−1)

other subsystems, mixed with white noise, i.e.

ρ = α|GHZn
d 〉〈GHZn

d |+ β|W n
d 〉〈W n

d |+
1− α− β

dn
� (7.8)

In fig. 7.1, the detection quality of the criteria Q0 and Q1 is illustrated, show-

ing that they are capable of detecting large areas of genuine d-dimensional

entanglement. Although the detection quality (i.e. the noise resistance) for

fixed f increases with growing n and d, the detection quality for detecting

genuine d-dimensional entanglement decreases with increasing d (as illus-

trated in fig. 7.2).
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Figure 7.1: Illustration of the detection quality of the criteria Q0 and Q1 for

the tripartite four-level state (7.8). The red region (outmost in the corners) is

detected to be genuinely four-dimensionally genuinely multipartite entangled,

the purple region (middle one of the three coloured regions) is detected to

be genuinely three-dimensionally genuinely multipartite entangled, and the

green region (innermost, adjacent to the white region near the origin) is

detected to be genuinely two-dimensionally genuinely multipartite entangled.

76



3    4    5    6    7    8    9   10

10
9
8
7
6
5
4
3

GHZ f=2d| W f=2d|

GHZ f=dd| W f=dd|

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

n
d 3    4    5    6    7    8    9   10

10
9
8
7
6
5
4
3

n
d

3    4    5    6    7    8    9   10

10
9
8
7
6
5
4
3

n
d 3    4    5    6    7    8    9   10

10
9
8
7
6
5
4
3

n
d

a)

b)

c)

d)

Figure 7.2: Noise resistance (detection thresholds) of the criteria Q0 and Q1

for the states ρ = p|GHZn
d 〉〈GHZn

d |+ 1−p
dn � (a and b) and ρ = p|W n

d 〉〈W n
d |+

1−p
dn � (c and d) for different n and d for f = 2 and f = d.

It can be seen that for fixed f (e.g. f = 2, as depicted in a and c), the noise

resistance increases with n and d, while for f = d (as depicted in b and d),

it decreases with growing d (but still increases with n).
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7.4 Classification via Exclusion

A quite different and rather intuitive approach, which can also be formulated

within the HMGH-framework [5], works by excluding known states from the

whole state space and defining new classes on the remaining set of states.

Since this approach is based rather on intuition than on mathematical inves-

tigations, the resulting classification scheme is not unique and (in general)

does not necessarily satisfy either of the two conditions C1 or C2 discussed in

section 7.1. Nevertheless, it can be a very useful tool, as the requirements for

its application – in particular, the necessary before-hand knowledge about

the considered state space, its symmetries and properties – are very low, such

that this classification scheme can ideally be used to obtain first results in

an uncharted state space, which further study can then be based upon.

One possible way to define sensible equivalence classes for this kind of clas-

sification is as follows.

Definition 13. A class of states C(|Ψ〉), represented by either one or several

pure states |Ψ〉, is defined as the set of all local-unitary and permutational

equivalents of these pure states, as well as the set of all mixtures of any such

states:

C(|Ψ〉) =
{
ρ | ρ =

∑
i

pi|φi〉〈φi|, |φi〉 = ΠiU
local
i |Ψ〉

}
(7.9)

where Πi are subsystem-permutation operators and U local
i are local unitary

transformations.

By this definition, any given pure state induces an entanglement class. Thus,

starting from a completely unknown state space (e.g. the set of all n qudit

states, for any fixed n and d), one can find a classification scheme by applying

the following steps:

1. Find a pure state (or a set of pure states) which does not belong to

any already defined class.
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2. Define the entanglement class associated with it (them).

3. If there are states left which do not belong to a class already defined,

go back to step 1. Otherwise, a complete classification scheme has been

obtained and the task is accomplished.

Since this procedure is not unique, there are several possible further restric-

tions, however, it is unclear which are favorable in the sense that they lead

to a more satisfactory classification scheme. For example, it might be useful

to restrict the choice of pure states in step 1 to a single family of states (for

each class) of the form

|Ψ〉 =
∑
i

ci|ψi〉 where
∑
i

|ci|2 = 1 (7.10)

with variable ci ∈ � or ci ∈ �\{0} (i.e. such that a pure states |Ψ〉 with

different ci can compose a mixed state ρ ∈ C(|Ψ〉)).
Also, there might come a time, when there are only mixed states left unclas-

sified, at which point there are several possibilities to proceed. All remain-

ing states could, for example, be assigned one (or several) already existing

class(es). Alternatively, a new class could be defined as the whole state space,

such that automatically any state belongs to this class and most states also

belong to (at least) one other class (which is an often-used strategy to obtain

classification schemes, see e.g. [62]).

Apart from the construction of entanglement classes, the problem of deciding

which class a given state belongs to is of high interest. This question can

be addressed by means of the HMGH-framework, as it allows for construc-

tion of separability criteria which are sensitive to this kind of classification

[5]. Given any representative pure state(s), an inequality can be constructed

which is satisfied for all states belonging to the respective class, i.e. violation

of the inequality implies that the investigated state does not belong to the

considered class.
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As an example, consider the n-qubit states

|Ψ(2)〉 = c1|0〉⊗n + c2|1〉⊗n with |c1|2 + |c2|2 = 1 (7.11)

and

|Ψ(n)〉 =
n∑

i=1

λi|wi〉 with
n∑

i=1

|λi|2 = 1 (7.12)

where |wi〉 = |0〉⊗(i−1)⊗|1〉⊗|0〉⊗(n−i), which are generalisations of the GHZ-

state and the W-state, respectively. Note that the definition of C(|Ψ(x)〉) is

to be understood such that each pure state in a decomposition of a mixed

state ρ ∈ C(|Ψ(x)〉) may have different ci or λi.

Theorem 14. For all n-qubit-systems, the inequality

�e
⎡
⎣∑

i �=j

(〈wi|ρ|wj〉+ (−1)n+1〈wi|ρ|wj〉
)⎤⎦

−(n− 2)
∑
i

(〈wi|ρ|wi〉+ 〈wi|ρ|wi〉)−
∑
i �=j

(〈dij |ρ|dij〉+ 〈dij |ρ|dij〉
)

−n(n− 1)

2

(〈0|⊗nρ|0〉⊗n + 〈1|⊗nρ|1〉⊗n
) ≤ 0 (7.13)

is satisfied for all states ρ ∈ C(|Ψ(2)〉), including all biseparable states. Here,

|wi〉 is defined as above, |dij〉 is the product state of |1〉 in the i-th and j-th

subsystem and |0〉 in all other subsystems, and an overline denotes a bit flip

in all subsystems, i.e. e.g. |001〉 = |110〉.
Furthermore, the inequality

�e [〈0|⊗nρ|1〉⊗n
]− α

(
1− 〈0|⊗nρ|0〉⊗n − 〈1|⊗nρ|1〉⊗n

) ≤ 0 (7.14)

is satisfied for all n-qubit-states ρ ∈ C(|Ψ(n)〉), including all biseparable states,

where α = 3
2 for n = 3, α = 1 for n = 4 and α = 1

2 for n > 4.

Proof 14. The idea of the proofs is to show that the inequalities are satisfied

for a pure state of the form (7.11) or (7.12) in an arbitrary basis (which
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also proves the validity for mixed states, by convexity of the inequalities).

The proofs are mathematically quite simple, but since they are also rather

cumbersome, they will not be presented here. The complete proofs can be

found in Ref. [5].

Similar inequalities and class definitions can be conceived for arbitrary types

of states, which allows for a successive cartography of any investigated state

space. Although this kind of classification has several advantages over other

classification schemes, there also are significant problems. Not only is it

rather difficult to find a complete set of pure states which induce a complete

classification. The associated detection inequalities also only barely have

satisfactory detection quality (as illustrated in fig. 7.3).

A rough and qualitative illustration of the set of all three-qubit states is

depicted as an example in fig. 7.4. Note that a two-dimensional image can

never grasp all properties of a high dimensional space such as this .
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Figure 7.3: Illustration of the detection quality of the two classification in-

equalities (7.13) and (7.14) for the four-qubit state ρ = α|GHZ4〉〈GHZ4| +
β|W4〉〈W4|+ 1−α−β

16 �. The areas I and II are detected by inequalities (7.14)

and (7.13), respectively, i.e. are detected not to belong to C(|Ψ(4)〉) and

C(|Ψ(2)〉), respectively. For comparison, the areas III (genuine multipartite

entanglement detected by (6.6) and (6.11)) and PPT (the set of PPT-states)

are also depicted.
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Figure 7.4: Qualitative illustration of the classification scheme induced by

the states |Ψ(2)〉 (denoted by ’2’) and |Ψ(3)〉 (denoted by ’3’) for three qubit

systems. The set labelled ’PS’ depicts the set of partially separable states,

which is a subset of both the sets ’2’ and ’3’. Note that these two classes

do not completely classify the space of three-qubit-states, and that a two-

dimensional image can not fully grasp all properties of a high-dimensional

space.
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Chapter 8

Examples and Applications

8.1 GHZ-Type Isotropic States

The most well-known and deeply studied multipartite entangled state is the

GHZ-state. Since also the most elementary criteria constructed from the

HMGH-framework work best for this state, it constitutes an ideal example

for illustrating how these different criteria complement each other. Consider

the four-partite four-level GHZ state

|GHZ4
4 〉 =

1

2
(|0000〉 + |1111〉 + |2222〉 + |3333〉) (8.1)

mixed with isotropic noise, i.e. the state

ρ = α|GHZ4
4 〉〈GHZ4

4 |+
1− α

256
� (8.2)

In fig. 8.1, the different areas of the parameter α are illustrated, where

the state ρ has different separability properties in terms of partial separa-

bility and genuine dimensionality of genuine multipartite entanglement, as

detected by the criteria (6.6) and (7.3), respectively.
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Figure 8.1: Illustration of the different parameter areas of the GHZ-type

isotropic state of four qudits with d = 4 mixed with isotropic noise (8.2).

In the area labelled ’4-dim GME’, i.e. for α > 149
213 , the state is detected to

be genuinely 4-dimensionally genuinely multipartite entangled by criterion

(7.3), 3-dimensionally (’3-dim GME’) for α > 85
213 and 2-dimensionally (’2-

dim GME’) for α > 7
71 . Below this threshold, the state is not detected to

be genuinely multipartite entangled, but appears to be partially separable

(’PS’). In detail (as magnified in the upper part of the figure), different areas

of partial separability can be identified by means of inequality (6.6). For

values of α above 3
35 , the state is detected not to be 3-separable (’3-ins’).

For α > 1
65 , it is still detected not to be fully separable, while below this

threshold the state becomes PPT.
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8.2 Continuous Variable Systems

After being the standard system for quantum informational considerations

in the early days of quantum mechanics, the importance of continuous vari-

able systems (e.g. position- or momentum-degrees of freedom of particles)

dropped significantly, when the much more simple qudit-systems assumed

this role. However, since a basic understanding of qudit-systems has been

established, the much more complex continuous variable systems began to

be investigated more thoroughly again, and today are known to enable tech-

nological applications, such as teleportation networks [69].

Unlike states of discrete systems, state vectors of continuous variable quan-

tum systems are described by square-integrable functions |Ψ(x)〉 ∈ L2. Mixed

states on these systems have the form

ρ =

∫ ∞

−∞
dα p(α)|Ψ(α, x)〉〈Ψ(α, x′)| (8.3)

Unfortunately, most concepts and criteria developed for discrete quantum

systems can not straightforwardly be generalised to continuous variable sys-

tems. Among the most prominent separability criteria, only the PPT cri-

terion has been implemented for continuous systems [70] (although this is

much more complex than applying it to qudit-systems). Most problems in

continuous variable entanglement theory are approached by means of the co-

variance matrix formalism (for an overview, see e.g. [71]). Gaussian states,

i.e. states with Gaussian profile, e.g. states the form

|Ψ(x)〉 ∝ e−
x2

σ (8.4)

can be described by this framework with very few parameters and thus be

characterised and detected very well. However, the covariance matrix ap-

proach fails to characterise non-Gaussian states, which makes the latter a

major open problem in continuous variable entanglement.

Most criteria constructed from the HMGH-framework can also be applied
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to these infinitely dimensional systems [7]. In particular, they allow for de-

tection of entanglement also in non-Gaussian states, as these criteria do not

rely on the covariance matrix formalism. Consider e.g. the tripartite state

ρ = p|ω〉〈ω|+ (1− p)ρmix (8.5)

with the non-Gaussian entangled state

|ω〉 = 1

αd2

∫ d

−d
dx(d− α|x|)|xxx〉 (8.6)

and the noise function

ρmix =
1

2δ

∫ δ

−δ
d3x|x1〉〈x1| ⊗ |x2〉〈x2| ⊗ |x3〉〈x3| (8.7)

For d > δ, state is detected to be genuinely multipartite entangled by crite-

rion (6.6) for all p > 0 and arbitrary values of d and δ, while for d ≤ δ it is

still detected if

p >
3d3α2

3d3α2 + 2δ
(8.8)

The state is furthermore detected to be entangled (not fully separable) for

p >
d3α2

d3α2 + 2δ
(8.9)

Investigation of genuine multidimensional entanglement is not a sensible task

for continuous variable systems, as e.g. the criterion (7.3) would diverge for

all states, where genuine multipartite entanglement is detected, if it was

adapted to this system (i.e. any detected genuine multipartite entanglement

is equivalent to detected genuine infinitely dimensional genuine multipartite

entanglement).

8.3 Many-Body Systems

Many-body systems, such as spin-chains or lattices, have been investigated

in connection with entanglement very intensively in the past decades (see
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e.g. [72, 73, 74, 75], or, for an overview, e.g. [76]). However, hardly any

work has been done so far in this direction concerning partial separability or

genuine multipartite entanglement. In this section, a common many-body

system shall be studied in an exemplary fashion by means of the HMGH-

framework as well as by special tools for many-body-entanglement, which

can be adapted to detect k-inseparability (and, in particular, genuine multi-

partite entanglement). To do so, the latter need to be defined first.

Consider a many-body system described by a bounded Hamiltonian H (which

for finite-dimensional Hilbert spaces, as are usually used to describe many-

body systems, is always the case). Since the sets Sk of k-separable states are

compact, there are certain minimal energy values

Ek−sep = min
σ∈Sk

Tr(σH) (8.10)

which a k-separable state can possess. If now the ground state of H is not k-

separable (or, in case of a degenerate ground state, if there is no k-separable

state in the ground state manifold), this implies

Ek−sep > E0 (8.11)

where E0 is the ground state energy of H. Therefore, by definition of Ek−sep,

all states with energies ε satisfying

Ek−sep > ε ≥ E0 (8.12)

are necessarily k-inseparable, i.e. partially entangled (or, for k = 2, genuinely

multipartite entangled). Note that as a consequence of the definition (8.10)

En−sep ≥ E(n−1)−sep ≥ · · · ≥ E2−sep ≥ E1−sep = E0 (8.13)

has to hold.

In this fashion, the Hamiltonian itself can effectively be used as an entangle-

ment witness. This idea was first used for detecting generic entanglement,

calling the detecting energy interval between the ground state energy and
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the minimal separable energy the entanglement gap [75]. Later, it was gen-

eralised to partial separability and genuine multipartite entanglement in the

form described above, denoting the corresponding energy interval between

E0 and Ek−sep the k-entanglement gap and the interval between E0 and

E2−sep the GME-gap [10].

As an example, consider the Heisenberg model of a system of multiple spin-
1
2 -particles with nearest-neighbor interaction, given by the Hamiltonian

H =
1

2

∑
〈i,j〉

(
Jxσ

x
i ⊗ σxj + Jyσ

y
i ⊗ σyj + Jzσ

z
i ⊗ σzj

)
+ h

n∑
i=1

σzi (8.14)

where h is the external magnetic field, σli is the l-th Pauli spin matrix acting

on the i-th particle, the coefficients Jl determine the spin-coupling strength

and orientation in the three spatial dimensions and the sum over 〈i, j〉 runs

over all index-pairs corresponding to adjacent particles (thus, this Hamilto-

nian can describe all kinds of lattices in arbitrarily many dimensions, de-

pending only on the choice of these index-pairs).

Consider the example

Jx = 1

Jy = 1− γ

Jz = 1− 2γ

(8.15)

with 0 ≤ γ ≤ 1, interpolating between the isotropic antiferromagnetic Heisen-

berg XXX model (γ = 0) and the anisotropic Heisenberg XZ model (γ = 1).

Note that the maximal magnitude of the Ji can be chosen to unity without

loss of generality, by measuring all energies in units of Jx.

In many-body physics, one is usually concerned with thermal states (or, as a

special case thereof, ground states) of given Hamiltonians, thus, this example

will also deal with this class of states. A thermal state of a Hamiltonian H
is given by

ρ =
1

Z

∑
i

e−
Ei
kT |Ei〉〈Ei| (8.16)
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where Ei are the eigenvalues of H corresponding to the eigenvectors |Ei〉, kT
is the temperature multiplied by Boltzmann’s constant and

Z =
∑
i

e−
Ei
kT Ei (8.17)

is a normalisation constant called the partition function.

In fig. 8.2, the genuine multipartite entanglement content of the above Hamil-

tonian’s ground state (as measured by the gme-concurrence (6.18)) is de-

picted for different values of γ and h . In this context, the most interesting

Figure 8.2: Visualisation of the genuine multipartite entanglement content

of the ground state of the investigated Hamiltonian for different values of the

external magnetic field h and the anisotropy parameter γ, measured by the

gme-concurrence (6.18). While it is clear that the ground state becomes less

and less genuinely multipartite entangled with increasing |h| (as the state of

lowest energy approaches the product state |0〉⊗n or |1〉⊗n, depending on the

sign of h), the amount of genuine multipartite entanglement also decreases

drastically with increasing γ (nevertheless, there always is an interval of h

in which the gme-concurrence is close to unity).

case appears to be the isotropic case γ = 0, on which the rest of this example

will thus be focussed.

In fig. 8.3, the genuine multipartite entanglement detection ranges of the

GME-gap-witness and of the detection inequalities of the HMGH-framework
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are compared for the thermal state of the above Hamiltonian with γ = 0.

While for magnetic fields of low magnitude, the GME-gap-witness detects

slightly higher temperatures to still be genuinely multipartite entangled, in

general the HMGH-inequalities detect a much larger state space area.

Figure 8.3: Illustration of the multipartite entanglement detected in thermal

states of the discussed Hamiltonian by means of the k-entanglement-gap-

witnesses (green, yellow and red for k = 2, k = 3 and k = 4, respectively) and

the detection inequalities (6.11) for Dicke states (area between the gray lines),

which in this case are the strongest criteria within the HMGH-framework. By

construction, the k-entanglement-gap-witnesses can only detect multipartite

entanglement in the area |h| < 2, outside which the Hamiltonian’s ground

state becomes separable. In this area, both the GME-gap-witness and the

HMGH-inequalities detect significant and about comparable amounts of gen-

uine multipartite entanglement (with certain areas being detected by the

witness, but not by the inequality, and other areas vice versa). In the area

|h| > 2 however, large areas are still detected by the inequality.

91



8.4 Quantum Secret Sharing

Quantum secret sharing [77], a multipartite form of quantum cryptography

[78], currently is one of the most important technological applications of

multipartite entanglement. It is the solution to the following problem: As-

sume that Alice wants to share a secret message with (n − 1) other parties

Bob, Charlie, Daisy, et cetera. However, some of these parties might not be

trustworthy, such that the message should only be readable by all recipients

together. What can Alice do to distribute the message, such that only all

(n− 1) other parties together can read it, while each individual party has no

information on it whatsoever.

Quantum secret sharing works as follows. Alice supplies each party (in-

cluding herself) with one of n particles which together are in an n-qubit

GHZ-state

|GHZ〉 = 1√
2
(|0〉⊗n + |1〉⊗n) (8.18)

Since the GHZ-state contains maximal n-partite entanglement and no lower

entanglement (in the sense that all of its reduced density matrices are separa-

ble), this guarantees that the (n− 1) recipient parties can only act together.

Now, each party randomly measures their respective qubit either in the x-

or in the y-basis, given by the respective sets of eigenstates

|x±〉 = 1√
2
(|0〉 ± |1〉) and |y±〉 = 1√

2
(|0〉 ± i|1〉) (8.19)

By comparing their respective measurement results, the (n − 1) recipient

parties can uniquely predict the state Alice’s qubit is left in before the mea-

surement (as can be seen by rewriting the GHZ-state in the x- or y-basis,

and as is explicitly given in table 8.1 for the case n = 3).

Next, all n parties (including Alice) publicly announce their choice of basis.

In half of the cases, Alice will have chosen the ’wrong’ basis (i.e. not the

basis corresponding to the state of her qubit, such that her measurement
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|x+〉 |x−〉 |y+〉 |y−〉
|x+〉 |x+〉 |x−〉 |y+〉 |y−〉
|x−〉 |x−〉 |x+〉 |y−〉 |y+〉
|y+〉 |y−〉 |y+〉 |x−〉 |x+〉
|y−〉 |y+〉 |y−〉 |x+〉 |x−〉

Table 8.1: Tripartite quantum secret sharing. The rows represent Bob’s dif-

ferent possible measurement outcomes, and the columns represent Charlie’s.

By revealing their respective measurement results to one another, Bob and

Charlie can uniquely predict the state of Alice’s qubit before the measure-

ment. Whenever Alice choses the ’right’ basis for her measurement, Bob

and Charlie can thus predict her measurement outcome with certainty. For

example, if Bob measures |x−〉 and Charlie measures |y+〉, Alice’s qubit is

left in the state |y+〉.

result is entirely random), in which case all n qubits are discarded and the

procedure is repeated. In all other cases, the recipient parties can determine

Alice’s measurement outcome if and only if they pool their knowledge. If

even one party is missing (or contributing false data), the prediction fails.

Alice’s measurement outcome can therefore be used as a key to securely en-

crypt messages.

One of the crucial loopholes in this scheme is the distribution of the GHZ-

state. A potential eavesdropper could intercept one or several of the sent

qubits and manipulate or replace them, thus compromising the security of

the secret. The loophole can be closed by verifying that indeed a genuinely

n-partite state is shared between the n parties. Since the desired state is a

GHZ-state, inequality (6.6) offers an ideal criterion to do so (as discussed in

Ref. [79]).

Rewriting the inequality e.g. for the three-qubit-case with |Φ〉 = |000111〉
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and the short-hand notation ρijklmn = 〈ijk|ρ|lmn〉

|ρ000111| − √
ρ001001ρ110110 −√

ρ010010ρ101101 −√
ρ100100ρ011011 ≤ 0 (8.20)

in expectation values of Pauli operators (see section 5.5),

ρ000111 = 1
8 ([111] − [221] − [212] − [122] − i([222] − [112] − [121] − [211]))

ρ001001 = 1
8 ([000] − [003] + [030] + [300] + [330] − [303] − [033] − [333])

ρ110110 = 1
8 ([000] + [003] − [030] − [300] + [330] + [303] − [033] + [333])

ρ010010 = 1
8 ([000] + [003] − [030] + [300] − [330] + [303] − [033] − [333])

ρ101101 = 1
8 ([000] − [003] + [030] − [300] − [330] + [303] − [033] + [333])

ρ100100 = 1
8 ([000] + [003] + [030] − [300] − [330] − [303] + [033] − [333])

ρ011011 = 1
8 ([000] − [003] − [030] + [300] − [330] − [303] + [033] + [333])

(8.21)

it becomes apparent that half of the necessary measurements Bob and Char-

lie have to do (eight out of sixteen) for implementing this security check

are measured already during the quantum secret sharing protocol itself, i.e.

whenever Alice choses the ’wrong’ measurement basis, the particles can be

used to verify inequality (8.20) instead of discarding them. In this way, the

number of additional measurements required is kept comparatively low and

the security check becomes rather cheap (in terms of entangled states).

8.5 Error Estimation

Since the criteria constructed from the HMGH-framework are comparatively

easily implementable in experiments (as discussed in section 5.5), it is desir-

able to also be able to control the error propagation from the measurements

to the yield of these criteria. In order to give an illustrative example for

this, consider the criterion (6.14). For reasons of simplicity, assume that

all density matrix diagonal elements contain the same relative error δ, and

let the (absolute) error of the measured off-diagonal density matrix element
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(the first term in the inequality) be o. The total error Ξ of the inequality’s

value can be determined by the Gaussian law of error propagation, which

states that the total measurement uncertainty Ξ of a function f of several

measured values xi is given by

Ξ =

√∑
i

(
∂f

∂xi
ξi

)
(8.22)

where ξi is the respective measurement uncertainty of xi. For the criterion

under investigation, this yields [7]

Ξ2 = o2 +
∑
{α},i

⎛
⎝ 1

2k

2k∏
j=1

(xj)
1
2k

xi
ξi

⎞
⎠

2

= o2 +
1

4k2

∑
{α},i

2k∏
j=1

(xj)
1
k δ2

≤ o2 + δ2
γ

8k3
(8.23)

where the xi are the different density matrix diagonal elements used in the

inequality, and γ is the number of k-partitions of an n-partite system, given

by the Sterling number in the second kind (6.17). For most practical cases,

the second term is much smaller than the first, and thus Ξ ≈ o.

Due to the simple form the criteria from the HMGH-framework assume when

written in terms of density matrix elements, the overall error can be esti-

mated rather easily (as compared to other separability criteria, which involve

e.g. optimisation, eigenvalue computation, and other nontrivial functions).
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Chapter 9

Summary and Conclusion

While the phenomenon of bipartite quantum entanglement is already widely

understood, the rather young research field of multipartite entanglement the-

ory still holds many puzzles and mysteries. Results from the bipartite case

often cannot be generalised in a straightforward way, which gives rise to var-

ious open problems, ranging from the only partially solved problem of mere

entanglement detection, over its quantification in different ways, to problems

like multipartite entanglement classification, which are still completely unan-

swered.

In order to address these issues, several different approaches have been de-

veloped over the past years, yielding results in different areas and starting

to form a first rudimentary picture of multipartite entanglement as a whole.

One of the most recent advances was made by the development of the HMGH-

framework, a versatile tool which finds application in all these topics and

already significantly improved on several previous results. It allows for con-

struction of criteria for characterising entanglement in various ways and is

very easily applicable (both theoretically and experimentally).

In the present work, different problems of multipartite entanglement charac-

terisation have been reviewed and discussed, with special emphasis on the
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contribution by the HMGH-framework. While this work is not claimed to

be a complete discussion of multipartite entanglement theory, it is meant to

give an overall insight into the problems and working principles of the topic.

The conceptually comparatively simple question of partial separability is es-

sentially understood, however, tools for distinguishing between states with

different separability properties still require further improvement for the

problem of general k-separability. Nevertheless, genuine multipartite entan-

glement can already be detected and quantified quite satisfyingly.

The probably most important still widely open question in multipartite en-

tanglement theory concerns the classification of multipartite entanglement.

For general systems, very little is known at all, apart from the fact that there

are inequivalent classes of multipartite entanglement which exhibit different

entanglement properties. Since even the number, let alone the form, of these

types of entanglement is generally unknown, this is a very difficult topic to

address. First advances can be made from several directions, still even a

coarse understanding of the problem seems not within range.
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Appendix A

Bipartite Separability Criteria

in the HMGH-Framework

The HMGH-framework (and generalisations of the elementary separability

criteria it yields) not only allows for construction of versatile multipartite

detection criteria for different kinds of entanglement, it also contains novel

separability criteria for bipartite systems. Since these do not detect more en-

tanglement than common criteria (such as the PPT criterion) and are rather

more complicated to use, they do not offer any real advance in entanglement

theory. However, these criteria (like related the multipartite ones) are rather

easily implementable in experiments due to the comparatively low number

of different measurements required. For sake of completeness, two examples

for such criteria shall be presented here.

A.1 Introducing Criteria

As a starting point, consider the elementary bipartite separability criterion

introduced and discussed in section 5.3:

√
〈Φ|ρ⊗2P|Φ〉 −

√
〈Φ|P†

Aρ
⊗2PA|Φ〉 ≤ 0 (A.1)
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A.1.1 m-linear Inequality

The above inequality can be straightforwardly generalised as follows.

Theorem 15. The inequality

√
�e(〈Φ|ρ⊗mP→|Φ〉)−

√
〈Φ|P→†

A ρ⊗mP→
A |Φ〉 ≤ 0 (A.2)

is satisfied for all separable bipartite states ρ ∈ H, for all fully separable states

|Φ〉 =
⊗m

i=1 |αi〉 ⊗
⊗m

i=1 |βi〉 ∈ H⊗m and for all m ∈ �, where the cyclic

permutation operators P→
i on the m-fold copies of the respective subsystems

of ρ are defined such that

P→
A |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αm〉 = |α2〉 ⊗ |α3〉 ⊗ · · · ⊗ |αm〉 ⊗ |α1〉 (A.3)

Note that for m = 2, this is equivalent to inequality (A.1), where for m 
= 2

the permutation operators P→
i are different from the operators Pi used in

other criteria constructed from the HMGH-framework, and in particular do

not satisfy P→†
i = P→

i .

Proof 15. The inequality is equivalent to the inequality

〈Φ|P→†
A ρ⊗mP→

A |Φ〉 − 1

2
(〈Φ|ρ⊗mP→|Φ〉+ 〈Φ|P→†ρ⊗m|Φ〉) ≥ 0 (A.4)

Since this inequality is not convex, it has to be proven for mixed states ρ =∑
i |φi〉〈φi|⊗ |χi〉〈χi| explicitly (where |φi〉 and |χi〉 are subnormalised states,

i.e. 〈φi|φi〉 = 〈χi|χi〉 = √
pi, with

∑
i pi = 1), which is equivalent to showing

that

�X∗
A · �XA − 1

2

(
�X∗ · �XAB + �X∗

AB · �X
)
≥ 0 (A.5)
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where

[
�X
]
p1···pnq1···qn

=

m∏
i=1

〈αi|φpi〉
m∏
i=1

〈βi|χqi〉

[
�XA

]
p1···pnq1···qn

=
m∏
i=1

〈αi|φpi⊕1〉
m∏
i=1

〈βi|χqi〉 (A.6)

[
�XAB

]
p1···pnq1···qn

=

m∏
i=1

〈αi|φpi⊕1〉
m∏
i=1

〈βi|χqi⊕1〉

where ⊕ is the addition modulo m. Since

�X∗ · �X = �X∗
A · �XA = �X∗

AB · �XAB (A.7)

this simplifies to

1

2

∣∣∣ �X∗ · �XAB − �X∗
AB · �X

∣∣∣2 ≥ 0 (A.8)

A.1.2 Rank-m-Determinant

In order to obtain a different bipartite separability criterion, observe that

inequality (A.1) can also be written as

det

⎛
⎝ρi1j1i1j1 ρi1j2i2j1

ρi2j1i1j2 ρi2j2i2j2

⎞
⎠ ≥ 0 (A.9)

where ρijkl = 〈ij|ρ|kl〉 with |Φ〉 = |i1j1i2j2〉.
Starting from this observation, the criterion can also be generalised in a

different way.

Theorem 16. The inequality

det

⎛
⎜⎜⎜⎜⎜⎜⎝

ρi1j1i1j1 ρi1j2i2j1 · · · ρi1jmimj1

ρi2j1i1j2 ρi2j2i2j2 · · · ρi2jmimj2

· · · · · · · · ·
ρimj1i1jm ρimj2i2jm · · · ρimjmimjm

⎞
⎟⎟⎟⎟⎟⎟⎠

≥ 0 (A.10)
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is satisfied for all separable states ρ =
∑
ρijkl|i〉〈k| ⊗ |j〉〈l|, for all m ∈ �

and for all {iα} ∈ �m and {jα} ∈ �m (i.e. each iα and jα is an integer

between 0 and d1 or d2 (respectively), and α = 1, 2, · · · ,m).

Note that for m = 2, this is equivalent to inequality (A.1). Also observe that

for m > rank(ρ) equality holds, i.e. the inequality can never be violated. The

same is true if any two iα or jα are chosen equal.

Proof 16. To prove this inequality, remember that

detA = εj1j2···jmA1j1A2j2 · · ·Amjm (A.11)

Since every density matrix element of a separable state can be written as

ρijkl =
∑
α

pαa
α
i b

α
j a

α∗
k bα∗k (A.12)

and by abbreviating

cα1α2···αm
1,2,··· ,m = aα1

i1
bα1∗
j1

aα2
i2
bα2∗
j2

· · · aαm
im
bαm∗
jm

(A.13)

we arrive at

Ξm =
∑

α1···αm

pα1 · · · pαmεk1k2···kmc
α1α2···αm
i1i2···im cα1α2···αm∗

jk1jk2 ···jkm (A.14)

Since the cα1α2···αm
j1j2···jm are symmetric w.r.t. interchange of index pairs {αr, jr}

and since the whole expression has to be fully symmetric in {α1, α2, · · · , αm},
it follows that

Ξm =
∑

α1···αm

pα1 · · · pαmεk1k2···kmc
αi1

αi2
···αim

1,2,··· ,m c
αjk1

αjk2
···αjkm

∗
1,2,··· ,m

=
∑

α1···αm

pα1 · · · pαmc
αi1

αi2
···αim

1,2,··· ,m c
[αj1

αj2
···αjm ]∗

1,2,··· ,m (A.15)

=
∑

α1···αm

pα1 · · · pαm

∣∣∣c[α1α2···αm]
1,2,··· ,m

∣∣∣2 ≥ 0

where [1, 2, · · · ,m] is the antisymmetrisation.
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A.2 Discussion

The main advantages of the HMGH-framework lie in the convex structure of

the inequalities, which allows for discrimination of different kinds of partial

separability. Since this concept is not present in the bipartite scenario, the

bipartite entanglement detection criteria which can be constructed from the

framework lack advantages over other bipartite separability criteria. Further-

more, they are disadvantageous in several ways, as e.g they require an opti-

misation over all local-unitary transformations in order to be implemented

most efficiently. Also, they detect entanglement strictly worse than the (com-

paratively quite simple) PPT criterion.

In spite of the parameter m representing a maximal number of (local) dimen-

sions in which entanglement can be detected by means of the criteria (A.2)

and (A.10), the criteria cannot straightforwardly be used to detect genuine

multidimensional entanglement either, since already bipartite entanglement

may violate the inequalities for arbitrary m. However, there might be other

entanglement properties which could be related to the different detection

capabilities of the criteria.

Note that the detection power of the criteria formulated via the m-linear

inequalities (A.2) decreases with increasing m, since the two sides of the re-

spective inequalities (with |Φ〉 = |φA1 〉⊗|φB1 〉⊗|φA2 〉⊗|φB2 〉⊗· · ·⊗|φAm〉⊗|φBm〉)
read

�e
(

m∏
i=1

〈φAi , φBi |ρ|φAi+1, φ
B
i+1〉

)
≤

m∏
i=1

〈φAi+1, φ
B
i |ρ|φAi+1, φ

B
i 〉 (A.16)

where the index m + 1 is identified with the index 1. Observe that both

sides of the inequality are essentially geometric means of density matrix el-

ements. Consequently, if the inequality is violated, there necessarily has to

be a smaller number of density matrix elements on each side (forming the

m′−linear inequality for some m′ < m), such that the inequality is violated
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by a larger value (or at the equal value) than the m-linear inequality. Due

to the freedom of choice in |Φ〉, any phase which might be necessary for the

violation (since only the real part of the product on the left hand side affects

the criterion) can always be reproduced with m′ factors as well (in particular,

for m = 2 phases do not enter the criterion at all, as the left hand side of

the inequality is just the absolute value of a density matrix element).
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Appendix B

Entanglement in Unstable

Systems

In unstable quantum systems (i.e. systems composed of radionuclids or other

decaying particles), density matrices are often incorrectly obtained by only

considering the undecayed part of the system. However, this implies a kind

of post-selection, which leads to correlations in the obtained data, which do

not reflect the information present in the system (see e.g. Ref. [80]). In

order to obtain a correct description of the state in question (containing

exactly the amount of information available in the physical scenario), the

decay products have to be taken into account as well. This, in turn, is a very

complicated task.

In other words: While the problem of determining a state’s entanglement

properties, given the density matrix, is - although highly nontrivial - a well

defined one, finding the density matrix which correctly describes a system

involves subtle complications which are only seldom mentioned.

For sake of simplicity, this concept shall be discussed here on the basis of (at

most) bipartite entangled qubit systems (as the principle idea is the same

for higher dimensional cases).
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B.1 Measurements

Consider a single particle with two degrees of freedom, i.e. a qubit. If the par-

ticle is stable, any measurement (characterised by a measurement direction

�a, e.g. in the Bloch-representation) can yield either of two outcomes:

• The particle is in the state corresponding to the direction �a.

• The particle is in the state corresponding to the direction orthogonal

to �a.

If the particle is unstable, this is not the case, since the particle may have de-

cayed before the measurement. Therefore, measurements have to be adapted

to incorporate this possibility. This can be done by explicitly allowing for

more different outcomes, such as

• The particle is in the state corresponding to the direction �a.

• The particle is in the state corresponding to the direction orthogonal

to �a.

• The particle has decayed via channel 1.

• The particle has decayed via channel 2.

• et cetera.

where the different channels represent the different possible ways of decay

for the particle (with different decay products, times of decay and/or proper-

ties of the decay products, e.g. momenta, spins, et cetera). This is a rather

unfeasible way of measuring, as it not only requires complete knowledge over

everything that happens in the experiment (including all involved particles),

but also implies that both directions, �a and its orthogonal, can be identified

with certainty (which in experimental situations often is not the case).
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A more experimentally suitable way of approaching this problem is by dis-

criminating not between all possible results, but only subsets. An intuitive

and practical choice of possible outcomes is e.g.

• The particle is in the state corresponding to the direction �a.

• The particle is not in this state.

In this case, while a negative measurement result contains rather little in-

formation, a positive one can be used for statistical analysis, thus yielding

valuable data.

An operational framework based on this approach was introduced in Ref. [81].

In this approach, operators in the Heisenberg picture (i.e. time dependant

operators acting on time independant states) are constructed, such that the

probability for a positive measurement result decreases exponentially with

time (corresponding to the decay rate of the particle). These effective oper-

ators can be written as

Oeff (α, φ, t) = (1− |�n|)�+ �n · �σ (B.1)

where �σ is the vector of the three Pauli matrices, t is the time parameter

which together with α and φ parametrises the measurement direction

�n = e−Γt

⎛
⎜⎜⎜⎝

cos(t+ φ) sin(α)

sin(t+ φ) sin(α)

sinh(ΔΓt) + cosh(ΔΓt) cos(α)

⎞
⎟⎟⎟⎠ (B.2)

with ΔΓ = Γ1−Γ2
2 and Γ = Γ1+Γ2

2 being the difference and mean value (respec-

tively) of the decay widths of the two eigenvectors of σz, which is, without

loss of generality, chosen to be the eigenbasis of decay width (if the latter

is not constant, in which case obviously ΔΓ = 0 and Γ is the usual decay

width of the particle). Note that this formalism is contains an additional

assumption, namely that the particles decay exponentially and obeying the

law of decay.
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B.2 Bell Inequalities

As an example, consider the problem of constructing experimentally suit-

able Bell-Inequalities for bipartite neutral kaon systems. These systems are

typically entangled in the degrees of freedom corresponding to the quantum

number of strangeness and are produced in a singlet state:

|Ψ−〉 = 1√
2

(|K0〉 ⊗ |K̄0〉 − |K̄0〉 ⊗ |K0〉) (B.3)

where |K0〉 and |K̄0〉 are the strangeness eigenstates (particle and antipar-

ticle, respectively). For unstable systems like this one, Bell inequalities can

- again, assuming the law of decay - be constructed in a more effective way

by observing that the bounds for the expectation value of the Bell operator

B may be time-dependant [82]. That is, while at t = 0, the bounds have

fixed values (e.g. for the CHSH-ineuqality |Tr(ρB)| ≤ 2), these bounds may

change as time passes, because the probability for the particles to already

have decayed increases.

In general, a Bell inequality is of the form

min
σ is local−realistic

Tr(σB) ≤ Tr(ρB) ≤ max
σ is local−realistic

Tr(σB) (B.4)

which only has to be modified such that the maximum has to be computed

individually for each moment in time. By assuming that the set of all states

which can be described by a local realistic theory is a convex one, the optimi-

sation reduces to pure states only. By using that for pure states, non-local-

realism and entanglement are equivalent (see e.g. [83]), the optimisation can

be performed over all separable pure states only, which is much more easily

computable and well-defined:

B− = min
σ∈S

Tr(σB) ≤ Tr(ρB) ≤ max
σ∈S

Tr(σB) = B+ (B.5)

where the bound B depends on the (possibly different) times of measurement

contained in the measurement of B. Bell inequalities of this kind are capable
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of detecting quantum nonlocality in systems, which cannot straightforwardly

be accessed by standard quantum informational tools, such as the bipartite

kaon system. In this case (since the kaon system is unstable), the Bell

operator may be composed out of effective operators of the form (B.1), such

that e.g. a CHSH-type Bell operator assumes the form

B = Oeff (αA
1 , φ

A
1 , t

A
1 )⊗ (Oeff (αB

1 , φ
B
1 , t

B
1 ) +Oeff (αB

2 , φ
B
2 , t

B
2 ))

+Oeff (αA
2 , φ

A
2 , t

A
2 )⊗ (Oeff (αB

1 , φ
B
1 , t

B
1 )−Oeff (αB

2 , φ
B
2 , t

B
2 )) (B.6)

Note that this sort of Bell inequality cannot be formulated in the Schrödinger

picture, since measurements at different times cannot be contained in a sin-

gle Schrödinger operator. This illustrates that the commonly used formalism

of quantum information theory (based on the Schrödinger formalism) does

not contain the full potential necessary for yielding a complete framework

(and, consequently, a complete characterisation and understanding) of these

phenomena.
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Appendix C

Mathematica Source Code

Many of the results presented in this work were obtained by means of sym-

bolic calculation and programming via the software Wolfram Mathematica.

In order to facilitate reproduction of these results as well as any possible

further study of the subject, the used Mathematica code shall be provided

here (along with a brief documentation).

In the upcoming section, the plain source code will be presented (sorted al-

phabetically by name of the defined functions), such that in can be directly

used for calculation. After that, in section C.2 the use of this code will be

explained .

C.1 Code

Cgme[\[Psi]_List,d_Integer:2]:=Module[{n,\[Rho]red,j},

n=Log[d,Max[Dimensions[\[Psi]]]];

Min[Re[Table[\[Rho]red=PartialTrace[VecToDM[Normalize[\[Psi]]],

UniquePartitions[2,n][[j]][[1]],d];

Sqrt[2(1-Tr[\[Rho]red.\[Rho]red])],{j,1,Length[UniquePartitions[2,n]]}]]]];
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DickeState[n_Integer:3,m_Integer:1,d_Integer:2]:=Module[{j},

Normalize[VecToDM[Sum[Sum[vd[Subsets[Range[n],{m}][[i]],n,d,j],

{i,1,Binomial[n,m]}],{j,0,d-2}]],Tr]];

DoubleClass[\[Sigma]_List]:=Module[{n,i,j,k},

n=Log[2,Dimensions[\[Sigma]][[1]]];

Sum[If[i!=j,

Re[MatrixElement[\[Sigma],UnitVector[n,i+1],

UnitVector[n,j+1]]+(-1)^(n+1) MatrixElement[\[Sigma],

1-UnitVector[n,i+1],1-UnitVector[n,j+1]]]

-(MatrixElement[\[Sigma],Table[If[MemberQ[{i,j},k],1,0],{k,0,n-1}]]

+MatrixElement[\[Sigma],Table[If[MemberQ[{i,j},k],0,1],{k,0,n-1}]]),

-(n-2)(MatrixElement[\[Sigma],UnitVector[n,i+1]]

+MatrixElement[\[Sigma],1-UnitVector[n,i+1]])

],{i,0,n-1},{j,0,n-1}]

-n(n-1)/2(MatrixElement[\[Sigma],Table[0,{n}]]

+MatrixElement[\[Sigma],Table[1,{n}]])];

Flip[i_List,d_Integer:2]:=Module[{flipop,j},

flipop=KP[Table[Sum[{UnitVector[d,j]}\[ConjugateTranspose].

{UnitVector[d,d-j+1]},{j,1,d}],

{Log[d,If[Length[Dimensions[i]]==1,Dimensions[i][[1]],

Max[Dimensions[i][[1]],Dimensions[i][[2]]]]]}]];

If[Length[Dimensions[i]]==1,({i}.flipop)[[1]],

If[Dimensions[i][[1]]==1,i.flipop,

If[Dimensions[i][[2]]==1,flipop.i,

If[Dimensions[i][[1]]==Dimensions[i][[2]]==

Dimensions[flipop][[1]]==Dimensions[flipop][[2]],

flipop.i.flipop\[ConjugateTranspose],
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Print["ERROR: Invalid input state."]]]]]];

GHZState[n_Integer:3,d_Integer:2]:=Module[{i},

Normalize[VecToDM[Sum[vd[{},n,d,i],{i,0,d-1}]],Tr]];

KP[i\_List]:=Module\[\{kprod,j\},

kprod={{1}};

Do[kprod=KroneckerProduct[kprod,i[[j]]],{j,1,Length[i]}];

kprod\];

MatrixElement[\[Sigma]_List,bra_List,d_Integer:2]:=

MatrixElement[\[Sigma],bra,bra,d];

MatrixElement[\[Sigma]_List,bra_List,ket_List,d_Integer:2]:=

Module[{n,branum,ketnum},

n=Log[d,Dimensions[\[Sigma]][[1]]];

branum=Sum[bra[[n-i+1]] d^(i-1), {i,1,n}]+1;

ketnum=Sum[ket[[n-i+1]] d^(i-1), {i,1,n}]+1;

Return[\[Sigma][[branum]][[ketnum]]]];

nClass[\[Sigma]_List]:=Module[{n,\[Alpha]},

n=Log[2,Dimensions[\[Sigma]][[1]]];

\[Alpha]=If[n==3,3/2,If[n==4,1,If[n>4,1/2,

Print["nClass: Invalid particle number!"]]]];

Re[MatrixElement[\[Sigma],Table[0,{n}],Table[1,{n}]]]

-\[Alpha](1-MatrixElement[\[Sigma],Table[0,{n}]]

-MatrixElement[\[Sigma],Table[1,{n}]])];

nm1Class[\[Sigma]_List]:=Module[{n,i,j,k},

n=Log[2,Dimensions[\[Sigma]][[1]]];
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Sum[If[i!=j,Re[MatrixElement[\[Sigma],UnitVector[n,i+1],UnitVector[n,j+1]]]

-(n-2) MatrixElement[\[Sigma],Table[If[k==i || k==j,1,0],{k,0,n-1}]],

-(n-2)MatrixElement[\[Sigma],UnitVector[n,i+1]]],{i,0,n-1},{j,0,n-1}]

-n(n-1)/2 MatrixElement[\[Sigma],Table[0,{n}]]];

PartialTrace[\[Rho]_List,sys_Integer,d_Integer:2]:=

Module[{n,\[Sigma],k,DigitList,temp},

n=Log[d,Max[Dimensions[\[Rho]]]];

\[Sigma][i_Integer,j_Integer]:=Sum[

MatrixElement[\[Rho],Insert[IntegerDigits[i,d,n-1],k,sys],

Insert[IntegerDigits[j,d,n-1],k,sys],d],{k,0,d-1}];

Sum[{UnitVector[d^(n-1),i+1]}\[ConjugateTranspose].

{UnitVector[d^(n-1),j+1]}\[Sigma][i,j],

{i,0,d^(n-1)-1},{j,0,d^(n-1)-1}]];

PartialTrace[\[Rho]_List,sys_List,d_Integer:2]:=Module[{matr,trsys},

matr=\[Rho];trsys=sys;

Do[matr=PartialTrace[matr,trsys[[1]]-i+1,d];

trsys=Drop[trsys,{1}];

,{i,1,Length[sys]}];matr];

Partitions[2,st_List]:=Module[{i},

Table[{Subsets[st,{1,Length[st]-1}][[i]],

Complement[st,Subsets[st,{1,Length[st]-1}][[i]]]},

{i,1,Length[Subsets[st,{1,Length[st]-1}]]}]];

Partitions[k_Integer,st_List]:=Module[{km1part,i,j},

km1part=Partitions[k-1,st];

Flatten[Table[{Join[Partitions[2,km1part[[i]][[1]]][[j]],

Table[km1part[[i]][[l]],{l,2,Length[km1part[[i]]]}]]},

{i,1,Length[km1part]},
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{j,1,Length[Partitions[2,km1part[[i]][[1]]]]}],2]];

Partitions[k_Integer,n_Integer]:=Partitions[k,Range[n]];

Q0[\[Sigma]_List,d_Integer:2,f_Integer:2]:=

Module[{n,Parts,k,l,i,j,s},

n=Log[d,Dimensions[\[Sigma]][[1]]];

Parts=UniquePartitions[2,n];

Sum[If[k==l,0,

(Abs[MatrixElement[\[Sigma],Table[l,{n}],Table[k,{n}],d]])-

(Sum[Sqrt[

MatrixElement[\[Sigma],Table[If[MemberQ[Parts[[i]][[1]],j],l,k]

,{j,1,n}],d] MatrixElement[\[Sigma],

Table[If[MemberQ[Parts[[i]][[1]],j],k,l],{j,1,n}],d]]

,{i,1,Length[Parts]}]/2)] ,{k,0,f-1},{l,0,f-1}]];

Qk[\[Sigma]_List,k_Integer,d_Integer:2,f_Integer:2]:=

Module[{n,\[Gamma],i,kvec1,kvec2},

n=Log[d,Dimensions[\[Sigma]][[1]]];

\[Gamma]=UniquePartitions[k,n];

Sum[2 Abs[MatrixElement[\[Sigma],Table[i,{n}],

Table[i+1,{n}],d]]

-Sum[Product[(

MatrixElement[\[Sigma],Table[If[MemberQ[\[Gamma][[l]][[j]],

m],i,i+1],{m,1,n}],d] MatrixElement[\[Sigma],

Table[If[MemberQ[\[Gamma][[l]][[j]],m],i+1,i],{m,1,n}],d])

,{j,1,k}]^(1/(2k)),{l,1,Length[\[Gamma]]}]2/k!,{i,0,f-2}]];

Qm[\[Sigma]_List,m_Integer:1,d_Integer:2,f_Integer:2]:=

Module[{n,\[Omega],\[Mu],DickeSetsA,DickeSetsB,DickeSets,
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dvec1,dvec2,\[Delta],i,j,k,l},

n=Log[d,Dimensions[\[Sigma]][[1]]];

If[m>n/2,\[Omega]=Flip[\[Sigma],d];\[Mu]=n-m,

\[Omega]=\[Sigma];\[Mu]=m];DickeSetsA=Subsets[Range[n],{\[Mu]}];

DickeSetsB[i_List]:=

Flatten[Table[Sort[Join[Delete[i,j],

Subsets[Complement[Range[n],i],{1}][[k]]]],

{j,1,\[Mu]},{k,1,n-\[Mu]}],1];

DickeSets=Flatten[Table[{DickeSetsA[[i]],

DickeSetsB[DickeSetsA[[i]]][[j]]},{i,1,Binomial[n,\[Mu]]},

{j,1,\[Mu] (n-\[Mu])}],1];

(Sum[Sum[

Abs[MatrixElement[\[Omega],

Table[If[MemberQ[DickeSets[[i]][[1]],s],k+1,k],{s,1,n}],

Table[If[MemberQ[DickeSets[[i]][[2]],s],k+1,k],{s,1,n}],d]]

-Sqrt[

MatrixElement[\[Omega],Table[If[MemberQ[DickeSets[[i]][[1]],j],

If[MemberQ[DickeSets[[i]][[2]],j],k+1,k],k],{j,1,n}],d]

MatrixElement[\[Omega],Table[If[MemberQ[DickeSets[[i]][[1]],j],

k+1,If[MemberQ[DickeSets[[i]][[2]],j],k+1,k]],{j,1,n}],d]]

,{k,0,f-2}]

+2Sum[\[Delta]=Subsets[Union[Complement[Range[n],

DickeSets[[i]][[2]]],DickeSets[[i]][[1]]],{1,n-2}];

Abs[MatrixElement[\[Omega],

Table[If[MemberQ[DickeSets[[i]][[1]],s],k+1,k],{s,1,n}],

Table[If[MemberQ[DickeSets[[i]][[2]],s],l+1,l],{s,1,n}],d]]

+Sum[-Sqrt[

MatrixElement[\[Omega],

Table[If[MemberQ[\[Delta][[h]],j],
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If[MemberQ[DickeSets[[i]][[2]],j],l+1,l],

If[MemberQ[DickeSets[[i]][[1]],j],k+1,k]],{j,1,n}],d]

MatrixElement[\[Omega],Table[If[MemberQ[\[Delta][[h]],j],

If[MemberQ[DickeSets[[i]][[1]],j],k+1,k],

If[MemberQ[DickeSets[[i]][[2]],j],l+1,l]],{j,1,n}],d]]

,{h,1,Length[\[Delta]]}]

,{k,0,f-2},{l,0,k-1}],{i,1,Length[DickeSets]}]

-\[Mu] (n-\[Mu]-1)(f-1)Sum[MatrixElement[\[Omega],

Table[If[MemberQ[DickeSetsA[[i]],s],k+1,k],{s,1,n}],d],

{i,1,Length[DickeSetsA]},{k,0,f-2}])/\[Mu]];

UniquePartitions[2,st_Integer]:=UniquePartitions[2,Range[st]];

UniquePartitions[2,st_List]:=Module[{start,out},

start=Subsets[st,{1,Length[st]-1}];

out=Table[If[MemberQ[start[[i]],st[[1]]],

{start[[i]],Complement[st,start[[i]]]}],{i,1,Length[start]}];

out=DeleteCases[out,Null];

out]

UniquePartitions[k_,st_]:=Module[{km1part,temp,additems},

km1part=UniquePartitions[k-1,st];

out={};

Do[temp=UniquePartitions[2,km1part[[i]][[j]]];

If[temp!={}, additems=Table[Sort[Join[temp[[l]],

Complement[km1part[[i]],{km1part[[i]][[j]]}]]],{l,1,Length[temp]}];

out=Join[out,additems]]

,{i,1,Length[km1part]},{j,1,k-1}];

out=Tally[out];

out=Table[out[[i]][[1]],{i,1,Length[out]}];

out];
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vd[i_List,n_Integer,d_Integer:2,f_Integer:0]:=Module[{j},

KP[Table[If[MemberQ[i,j],{UnitVector[d,f+2]},

{UnitVector[d,f+1]}],{j,1,n}]]];

VecToDM[i_List]:=Module[{vectr},

If[Length[Dimensions[i]]==1,vectr={i},vectr=i];

If[Dimensions[vectr][[1]]==1,

vectr\[ConjugateTranspose].vectr,

vectr.vectr\[ConjugateTranspose]]];

C.2 Documentation

Cgme[ψ,d] computes the gme-concurrence (6.18) of a pure n qudit state ψ.

If no dimension d is entered, ψ is considered to be a multi-qubit-state.

DickeState[n,m,d] generates a generalised n-qudit-m-Dicke state density

matrix, as defined in [9]. In particular, for m = 1, this is the state (7.7). All

three parameters are optional, the default values are n = 3, m = 1 and d = 2.

DoubleClass[σ] computes the value of the classification inequality for dou-

ble states (7.13) for the multi-qubit density matrix σ.

Flip[i,d] performs a generalised bit-flip on the multi-qudit state i, which

can be either a state vector or a density matrix. If not entered, d is set to 2.

GHZState[n,d] generates an n-qudit GHZ-state density matrix (7.6). By

default, n = 3 and d = 2.
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KP[i] is a short notation for the subsequent multiple tensor product

(KroneckerProduct) of all elements in the list i.

MatrixElement[σ,bra,ket,d] picks the transition element 〈bra|σ|ket〉 of

the n-qudit matrix σ, where both bra and ket are lists of indices corre-

sponding to numbers of unit vectors on the respective subsystems, follow-

ing the notation |ijk〉 = |i〉 ⊗ |j〉 ⊗ |k〉. E.g. the off-diagonal density ma-

trix element 〈000|ρGHZ |111〉 of a three-qubit GHZ-state ρGHZ is given by

MatrixElement[ρGHZ,{0,0,0},{1,1,1},2].

The parameters ket and d are optional - if not entered, d is set to 2 and ket

is set equal to bra, such that the function returns the corresponding diagonal

matrix element.

nClass[σ] yields the value of the n-tuple state classification inequality (7.14)

of the multi-qubit density matrix σ.

nm1Class[σ] yields the value of the (n − 1)-tuple state classification in-

equality, as defined in [5], of the multi-qubit density matrix σ.

PartialTrace[ρ,sys,d] performs the partial trace over the multi-qudit ma-

trix ρ with respect to the system sys (if sys is an integer) or all systems

whose number is contained in sys (if sys is a list of integers). By default,

d = 2.

Partitions[k,st] gives a list of all k-partitions (including all permuta-

tions) of the set st (if st is a list), or a list of all k-partitions of the set

{1, 2, 3, ..., st} (if st is an integer). Unlike the function UniquePartition,

this function treats different permutations of the same partition as different,

i.e. returns all possible permutations of all partitions, instead of just one
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permutation per partition. Consequently, the returned set of partitions is

k!-fold degenerate.

Q0[σ,d,f] evaluates the genuine multipartite entanglement detection cri-

terion (6.6) (if f = 2) with |Φ〉 = |0〉⊗n ⊗ |1〉⊗n, or the criterion for gen-

uinely f -dimensional genuine multipartite entanglement (7.3) (if f > 2) with

|Φ〉 = |0〉⊗n ⊗ |1〉⊗n of the multi-qudit density matrix σ.

The parameters d and f are optional, both default values are 2.

Qk[σ,k,d,f] computes the value of the criterion for k-separability (6.14)

of the multi-qudit density matrix σ with |Φ〉 = |0〉⊗n ⊗ |1〉⊗n (if f = 2), or

a multidimensional generalisation thereof for f > 2. The default values for

the optional parameters are d = 2 and f = 2.

Qm[σ,m,d,f] yields the value of the genuine multipartite entanglement de-

tection inequality for m-Dicke-like states (6.11) for the multi-qudit density

matrix σ (if f = 2) or the value of the criterion for multidimensional gen-

uine mutlipartite entanglement for generalised qudit m-Dicke states (7.4) (if

f > 2).

Default values are d = 2 and f = 2.

UniquePartitions[k,st] gives a list of all k-partitions of the set st (if st is

a list), or a list of all k-partitions of the set {1, 2, 3, ..., st} (if st is an integer).

Unlike the function Partition, this function treats different permutations

of the same partition as equal, i.e. only returns one representative partition

instead of all possible permutations.

vd[i,n,d,f] returns the n-qudit product state vector of |f + 1〉 in all sub-

systems whose labels are contained in the set i and |f〉 else. The optional
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parameters are d (default value 2) and f (default value 0).

VecToDM[i] yields the density matrix corresponding to the state vector i.

130



Curriculum Vitae 
 
 
 
Mag. rer. nat. Andreas Gabriel 
Faculty of Physics, University of Vienna 
Boltzmanngasse 5, 1090 Vienna, Austria 
 
Group: Quantum Particle Workgroup, Particle Physics 
E-Mail: andreas.gabriel@univie.ac.at 
 
 
 
30.1.1986 Born in Vienna (Austria) 

17.6.2004 Graduation with distinction at Lise-Meitner-Realgymnasium 
(Vienna) 

25.8.2009 Diploma of physics (University of Vienna) supervised by Univ. 
Prof. Dr. Reinhold A. Bertlmann, overall score: with 
distinction 

2009 – PhD-student (University of Vienna) 

 
 
Teaching: 

03/2010 – 06/2010 Quantum mechanics (1 hour/week) 

03/2010 – 06/2011 and 

03/2012 – 06/2012 Theoretical physics for teachers (2 hours/week) 

 
 
Further Achievements: 

2005 & 2006 University of Vienna's Performance Grant 

03/2010 – 06/2011 Organiser of the Vienna Theory Lunch Club Seminar 

01/2011 – 09/2011 University of Vienna's Research Grant 

03/2011 Head of the Month of the Fachausschuss für Kern- und 
Teilchenphysik der Österreichischen Physikalischen Gesellschaft 

 


	Frontpage
	Abstract
	List of Publications
	Table of Contents
	Introduction
	Mathematical Basics, Notation and Terminology
	Hilbert Spaces and States
	QuBits, QuDits and Dimensions
	Multipartite Operations
	Further Terminology

	Bipartite Entanglement
	Detecting Bipartite Entanglement
	Measuring Bipartite Entanglement
	Entanglement of Formation
	Entanglement of Distillation
	Properties of Bipartite Entanglement Measures

	Distillation and Distillability of Bipartite Entanglement 
	Classification of Bipartite Entanglement

	Multipartite Entanglement
	Partial Separability
	Multipartite Entanglement Measures 
	Multipartite Entanglement Distillation
	Equivalence Classes of Multipartite Entanglement

	The HMGH-Framework
	Definitions, Terminology and Formulation
	Working Principle
	A Simple Example
	Optimisation 
	Experimental Implementation
	Alternative Formulation

	Multipartite Separability Properties 
	gamma-k–Separability
	k–Separability and Genuine Multipartite Entanglement
	Genuine Multipartite Entanglement
	General k–Separability
	Measuring Genuine Multipartite Entanglement


	Classes of Multipartite Entanglement
	Conditions for Classification Schemes
	Classification via Tensor Ranks
	Classification via Dimensionality of Entanglement
	Classification via Exclusion

	Examples and Applications
	GHZ-Type Isotropic States
	Continuous Variable Systems
	Many-Body Systems
	Quantum Secret Sharing
	Error Estimation

	Summary and Conclusion
	List of Figures
	Bibliography
	Appendix
	Bipartite Separability Criteria in the HMGH-Framework
	Introducing Criteria
	m–linear Inequality
	Rank-m-Determinant
	Discussion

	Entanglement in Unstable Systems
	Measurements
	Bell Inequalities

	Mathematica Source Code
	Code
	Documentation


	Curriculum Vitae



