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Abstract

In the past four years a laboratory has been set up to pursue the fundamental questi-
ons of quantum mechanics that can be addressed with correlation measurements of
individual atoms in matter-wave experiments. The large coherence length within a
Bose-Einstein condensate will be an essential ingredient when the condensate serves
as source for matter wave experiments. A four-wave mixing process can be initiated
within the condensate to create correlated atom pairs, which is remarkably analo-
gous to the spontaneous parametric down conversion of photons. The pairs are then
entangled in the sum of their momenta and the difference of their positions, which
is the three dimensional version of the original Einstein-Podolsky-Rosen state. The
experimental demonstration of the existence of this entangled state in matter wa-
ves promises to open up a playground for matter-wave experiments, extending the
successful photonic experiments into the realm of massive particles. Fundamental
differences, such as Fermi statistics opposed to Bose statistics, the first order time
dependence of the Schrödinger equation opposed to the second order of Maxwell’s
equations, and gravity, that has a much larger impact on massive opposed to mass-
less particles, will become possible to be tested in the framework of entanglement.

For this purpose, an ultra-cold sample of metastable helium, condensed into a
Bose-Einstein condensate has been achieved. After exciting helium-4 to its first
excited state the atomic beam is intensified, slowed, and eventually trapped in a
magneto-optical trap by optical means. In order to cool the atoms below the Dopp-
ler limit of optical cooling, the atoms are transferred to a purely magnetic trap.
Quantum mechanical degeneracy is achieved after evaporative cooling of the helium
atoms to 1µK within 10 s. Typically, 106 indistinguishable atoms are obtained and
serve as a source for later experiments on the statistics of correlated atom pairs.

For detection of the atomic correlations a high resolution, ultra-fast delay-line
detector has been installed. The detector consists of a micro-channel plate in com-
bination with a delay line for electronic read out. Each detection event is recorded
in space and time with accuracies of 120µm and 250 ps, respectively.

In order to achieve the correlated atom pairs, lasers to drive Raman transitions
have been set up and will be used to initiate the four-wave mixing process. The atoms
can then expand under free fall of 80 cm and drop onto the detector, and hence a
three-dimensional reconstruction of the momentum space of the atoms is possible.
This opens up the pathway to first experiments for confirming the entanglement of
the atom pairs created via the four-wave mixing process.

Finally, various schemes to proof the non-classical correlations have been theore-
tically investigated and analyzed for their feasibility in the current setup. Among
those are a double double-slit and a ghost-interference experiment, in analogy to
the experiments with photons of Rarity and Tapster. The analysis showed a scheme
with individual collision zones within the Bose-Einstein condensate to be the most
promising candidate to demonstrate the correlations of entangled matter waves.
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Zusammenfassung

In den vergangenen vier Jahren wurde ein Labor aufgebaut, um grundlegende Fra-
gestellungen der Quantenmechanik, die mit Korrelationsmessungen an individuellen
Atomen einer Materiewelle adressiert werden können, zu beantworten. Die große
Kohärenzlänge in einem Bose-Einstein-Kondensat, als Quelle für Materiewellen,
wird dabei eine wesentliche Rolle spielen. Mit dem Kondensat kann eine Vier-Wellen-
Mischung initiiert werden, die zu korrelierten Atompaaren führt, was in bemerkens-
werter Analogie zu der spontanen parametrischen Fluoreszenz von Photonen abläuft.
Die Paare sind dann in der Summe ihrer Impulse und der Differenz ihrer Positi-
on verschränkt, was der dreidimensionalen Version des original Einstein-Podolsky-
Rosen-Zustands entspricht. Die experimentelle Demonstration dieses verschränkten
Zustands verspricht eine Spielwiese für Materiewellenexperimente zu eröffnen, was
die erfolgreichen photonischen Experimente in das Reich der massiven Teilchen er-
weitert. Dadurch wird es möglich werden fundamentale Unterschiede wie Fermi-
Statistik im Gegensatz zu Bose-Statistik, die erste Ordnung in der Zeitabhängigkeit
der Schrödinger-Gleichung im Gegensatz zu der zweiten Ordnung in Maxwell’s Glei-
chungen, und Gravitation mit ihrer sehr viel stärkeren Wirkung auf massive Teilchen
im Vergleich zu ruhemasselosen Teilchen, im Rahmen von Verschränkung zu testen.

Für dieses Vorhaben wurde eine Probe metastabiler Heliumatome, kondensiert in
ein Bose-Einstein Kondensat, erzeugt. Nach dem Anregen von Helium-4 in seinen
ersten angeregten Zustand, wird der Atomstrahl mit optischen Mitteln gebündelt,
gebremst, und in einer magneto-optischen Falle gefangen. Um die Atome unter das
Doppler-Limit zu kühlen, werden die Atome in eine rein magnetische Falle transfe-
riert. Quantenmechanische Entartung wird durch Verdampfungskühlung der Helium
Atome bis auf 1µK in 10 s erreicht. Typischerweise werden 106 ununterscheidbare
Atome gewonnen und dienen als Ausgangspunkt für die späteren Experimente mit
korrelierten Atompaaren.

Zur Detektion der Atomkorrelationen wurde ein hochauflösender, ultraschneller
Verzögerungsleitungs-Detektor installiert. Der Detektor besteht aus Mikrokanalplat-
ten in Kombination mit einer Verzögerungsleitung für schnelles, elektronisches Aus-
lesen. Jedes Detektionsereignis wird in Ort und Zeit mit 120µm, beziehungsweise
250 ps Genauigkeit aufgezeichnet.

Um korrelierte Atompaare zu erzeugen, wurden Laser aufgebaut, die Raman-
Übergänge treiben können und später den Vier-Wellen-Prozess einleiten werden.
Danach können die Atome im freien Fall 80 cm expandieren bevor sie vom De-
tektor gemessen werden und daraus ein dreidimensionales Bild der Atome im Im-
pulsraum rekonstruiert wird. Das eröffnet die Möglichkeit für Experimente, die die
Verschränkung der Atompaare nach dem Vier-Wellen-Prozess beweisen.

Verschiedene Anordnungen, um die nicht-klassischen Korrelationen zu bewei-
sen, wurden theoretisch untersucht und deren Machbarkeit in dem aktuellen Auf-
bau analysiert. Darunter befinden sich Doppel-Doppelspalt- und Geisterinterferenz-
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Experimente, welche analog zu den Experimenten mit Photonen von Rarity und
Tapster sind. Die Analyse zeigt, dass das Erzeugen von individuellen Kollisionszo-
nen in dem Bose-Einstein-Kondensat der vielversprechendste Kandidat ist, um die
Korrelationen zu demonstrieren.
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1 Introduction

The smartphones in our pockets, the scanner of a checkout counter when we are
shopping, everyday devices such as these, as well as highly advanced medical devices,
e.g. nuclear magnetic resonance imaging, are based on the fundamental principles of
quantum mechanics. The predictive power of quantum theory has altered everyday
life and has had a tremendous impact on today’s technology. And yet, 90 years after
its inception, its full complexity and toolbox has not been exploited. Quintessential
features such as entanglement with all its subtleties embodies a whole new variety of
potential revolutions for technological innovations and likewise for evident as well as
still concealed mind-boggling fundamental questions. In particular, it is this concept
of superposed correlations that holds promises to reveal entirely new solutions in
the facets of quantum information and quantum communication and sheds light on
how epistomological the world is or how ontic we perceive it.

Even before the mathematical formulation of quantum mechanics by Erwin
Schrödinger and Werner Heisenberg, light was the prevailing guide in experiments
for this theory into the forefront of modern physics. Thomas Young’s double slit
experiment and its photonic realizations as well as James Clerk Maxwell’s equations
on one hand, and the photoelectric effect described by Einstein as well as Planck’s
quantum hypothesis on the other hand, illuminated the necessity and complimentar-
ity of light being an electromagnetic wave and a photonic quantum at the same time.
Nevertheless, with the Schrödinger equation at hand, Louis de Broglie [1] postulated
the existence of a similar corpuscule-wave duality for matter, even though matter
was genuinely perceived as particle before. Independently, Davisson and Kunsman [2]
had already observed then baffling interference effects in diffraction of electrons in
nickel crystals. Not only was their work ground breaking for diffraction imaging, but
subsequent experiments with neutron interferometry [3–6] and more recently with
atoms [7–9] and carbon fullerenes [10] deepened the understanding of fundamental
concepts of quantum mechanics. From the time when Schrödinger had formulated
his equation governing matter waves, the quantum mechanical repository of tools
to understand nature was enriched not only by the particle-wave of light but also
by the wave-particle of matter. Within the last century, quantum mechanics has
risen to the top of the list of fundamental, exact, and important theories. Its predic-
tions have been demonstrated in many experiments using photons as well as massive
particles.

Yet, in 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) [11] placed
entanglement at the center of a controversy on the completeness of the quantum me-
chanical theory. Their dissatisfaction with the indeterminism of quantum mechanics
led them to conclude that Heisenberg’s uncertainty principle [12] and measurement
outcomes on entangled systems are incompatible and thus, a deeper theory should
exist. Even though their original proposal was discussed in terms of the two con-
jugate variables position and momentum of two particles, later investigations by
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David Bohm [13] translated the argument to spin observables. It was in this frame-
work that John Bell discovered his inequality [14, 15], which, if violated, proofs the
existence of the stronger quantum mechanical correlations over the classical ones. In
the following decade, Bell’s idea excavated EPR’s gedankenexperiment and sparked
a vivid research in the field of quantum physics [16–20].

In 1982 Aspect et al. [21, 22] performed the first experiment to demonstrate
the quantum mechanical correlations beyond classical predictions on a space-like
separated system of two photons. Even though they succeeded in selecting the mea-
surement basis on both sides, after the photons were emitted, under strict Einstein
locality condition the settings could still have been predetermined. A group of physi-
cists lead by Anton Zeilinger finally closed the locality [23] and freedom of choice
loophole [24] by letting a quantum random number generator select the measure-
ment setting in a space like separated fashion so that neither the setting nor the
outcome could have been predetermined. As the detection of photons is not efficient,
photon experiments have to assume the measured photons to be a fair sample of
all photons. Rowe et al. [25] eventually closed what is called the detection loophole
by entangling ions in their internal degree of freedom. However, the ions were not
space like separated to rule out any kind of signaling, i.e. interaction between the
ions. Closing both major loopholes, locality and detection, in either of the systems
is an ongoing endeavor [26]. Nevertheless, the features of entanglement are imple-
mented and used in a variety of systems and the expectations for applications of
these systems, e.g. quantum computers are skyrocketing [27].

Even though entanglement has been realized in the internal degrees of freedom
of systems with massive particles, e.g. ion experiments [25, 28, 29], Josephson junc-
tions [30] and ultra-cold atoms [31–33], the original gedankenexperiment by Einstein
et al., employing the external degrees of freedom, has only been realized in experi-
ments with photons. Most prominently, the double-diamond experiment by Rarity
and Tapster [34] made use of the low decoherence rate of photons when traveling
through space and time.

For matter waves, though, this fundamental experiment has not been realized yet.
The strong coupling to the environment causing decoherence and the restriction of
particle conservation for matter waves has so far been a significant obstruction in
demonstrating the entanglement of the external degrees in matter wave experiments.
Nevertheless, with the advent of matter wave lasers, represented by Bose-Einstein-
condensed atoms [35, 36], a source of highly coherent matter waves has become
available. The experiments, started in the field of matter waves with neutrons and
fullerenes, can now start to penetrate into the realm of entanglement. Technological
progress, such as precision lasers, highly sophisticated optics, and electronic detec-
tion schemes for metastable noble gases, has made possible a variety of experiments
on atom statistics.

For example, the prominent idea of Hanbury-Brown and Twiss (HBT) [37] has
also been beautifully performed in atomic systems. Discovered in astronomy and
used to determine the size of distant stars, the HBT effect looks at correlated inten-
sity fluctuations. Being in a quantum mechanical superposition, the different paths
from different spots of the source interfere and the coherence length of the source
is recovered in the statistics of bunching photons. In 2005, Schellekens et al. [38]
demonstrated the HBT in ultra-cold atomic clouds of metastable helium using a
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micro-channel plate (MCP) in combination with a delay-line detector (DLD). The
disappearance of the bosonic bunching when the temperature of the cloud crosses
the transition temperature to the BEC as predicted in quantum mechanics by Roy
Glauber [39–42] was not observed in a rubidium experiment by Perrin et al. [43].
This reveals the more complex structure of an interacting BEC than the one of a
laser. The superior detection capabilities of a delay-line detector were essential to
experiments by Hodgman et al. [44], where higher order correlation beyond the orig-
inal photon experiments were shown. While these higher order correlations are the
same for photons, Jeltes et al. [45] investigated a property which does not exist for
photons and hence shows the importance and prospects of investigations of matter
waves in addition to photon experiments. Using again metastable helium, but this
time the fermionic isotope helium-3, they could demonstrate the purely quantum
mechanical effect of anti-bunching in the case of fermions.

The degenerate Fermi gas [46] is the sister of a BEC and is yet another exam-
ple where the fermionic nature of certain atoms is paramount. When cooled to
degeneracy, the fermionic atoms obey the same statistics as superconductors as de-
scribed by the BCS-theory, named after physicists Bardeen, Cooper, and Schrieffer.
By changing the interaction strength between the fermions, typically by employing
a Feshbach resonance [47], molecules of the fermionic atoms can be formed. These
molecules, though, compose bosons and hence, a transition between the BCS and
BEC can be observed [48]. Dissociating the molecules again yields momentum corre-
lated constituents of the former molecule. Number squeezing of the outgoing modes
has been measured [49] and sparked theoretical proposals to perform entanglement
experiments, with the external degree of freedom, i.e. momentum of the atoms as
the central observable.

In another line of experiments the collisions of atoms were used to generate non-
local correlations of matter. Though homodyning of massive particles is challenging,
in recent years Gross et al. [32] showed that spin-changing collisions can be used to
measure entanglement in atom number and phase of a locally separated spinor BEC.
Using specific radio frequency fields to control the interaction of different Zeeman
levels of rubidium, and subsequent splitting of the cloud, led to spatially separated
correlations between atom numbers. Using again rubidium Bücker et al. [50] used
an optimal control scheme to first shake their one dimensional BEC. Subsequent de-
cay under parity conservation populated twin-atom beams with opposite momenta,
where they could observe number squeezing as well.

Coming back to helium, there are a number of promising schemes to create en-
tanglement in the external degree of freedom induced by collisions. For metastable
helium, the application of a delay-line detector with single-atom sensitivity is supe-
rior to investigate momentum correlations after a time of flight (TOF). The colli-
sions follow Hamiltonians equivalent to the spontaneous parametric down conversion
(SPDC), which is usually used in entanglement experiments with photons. In 2006,
Perrin et al. [51] showed that elastic collisions of two matter waves in a four-wave
mixing (FWM) process yield correlations of atoms with opposite momenta as con-
sequence of momentum conservation (back-to-back correlations). In the experiment
they showed as well that this spontaneous process contained HBT bunching for
atoms scattered into the same direction (collinear correlations). Subsequent data
analysis by Kheruntsyan et al. [52] found the back-to-back correlations to outper-
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form the collinear ones such that they were even able to violate a Cauchy-Schwarz
inequality, ruling out all classical stochastic random variable theories.

An even closer resemblance to the SPDC process in terms of beam profile was
demonstrated by Dall et al. [53]. They made use of the different scattering lengths
of two Zeeman sublevels, where during collisions the release of mean field energy
initiates a momentum kick in an atom pair consisting of one atom of each sublevel.
In their analysis of the statistics [54] they found that the bunching of spontaneous
scattering disappeared. Given the high densities, they entered a stimulated regime,
where phase matching conditions apply, and conical, directed beams as in SPDC
were obtained. As a result of the bosonic stimulations, the bunching is suppressed
as in the case of an ideal BEC without interactions. The phase matching is of similar
nature as superradiance of Dicke states, where light gratings cause atoms to reflect
from the grating into collective modes, or equivalently light is reflected from the
matter grating [55–57]. After all, while the beam profiles raise the resemblance to
SPDC, it is the suppressed bunching statistics that differs for this scheme and makes
a proper identification of pairs a severe obstacle.

These exciting advances in atom statistics experiments pioneer the way to inves-
tigate the influence of entanglement in matter waves. As demanding as they seem
when compared to photon experiments, they also promise access to interesting new
realms of physics. Not only does gravity start to play a role for massive particles,
but also differences between the Maxwell equations and Schrödinger equation will
become addressable. While the Maxwell equations for the relativistic particles have
no dispersion in vacuum, the Schrödinger equation naturally causes interference
in time as well [58, 59]. This arises from the first order time dependence of the
Schrödinger equation. The importance of the vector-characterisitc for electromag-
netic waves compared to the scalar form of matter waves can be investigated, as well
as their behavior in non-trivial potentials [7, 8]. In addition, the impact of fermionic
statistics on entanglement can be addressed uniquely with massive particles.

Besides such fundamental questions, the intriguing application of matter waves
for high-sensitivity interferometers is already state of the art for metrology [60–
62]. The scale difference of the wavelengths of matter waves and light waves supplies
superior precision when realized with similar encompassing areas. Additionally, while
quantum metrology in spin systems of atoms has significantly improved its sensitivity
employing entangled states, the entanglement of matter waves in their external
degree of freedom has not yet been exploited in interferometers.

To pave the way to such still elusive experiments in the realm of matter-wave
entanglement, a metastable helium BEC platform has been developed. The system is
equipped with a delay-line detector to detect single atom statistics and will facilitate
experiments in the succession of the experiments by Perrin et al. The four-wave
mixing, applied in their scheme, is in remarkable analogy to SPDC and hence, will be
a useful tool for an immediate comparison between matter waves and the successful
photon experiments of Professor Zeilinger’s group.

This dissertation is outlined as follows: First the system to cool metastable helium
to its degeneracy in a BEC is introduced. A variety of steps and a precise control of
the atoms along their way is required. First the atoms are brought to their excited
state by electron impact in a DC-discharge plasma. Next, laser cooling intensifies
the atomic beam, slows it, and eventually traps the atoms spatially. After efficient
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transfer into a magnetic trap the atoms can be cooled via evaporation to tempera-
ture of 1µK where the condensation to a BEC occurs. The individual sections are
described along with their theoretical background and technical considerations and
eventually the emergence of the metastable helium BEC is shown.

The second part of the dissertation focuses on the preparation and detection of
the matter waves. A description of the four-wave mixing of two counter-propagating
waves will be given. This will include the optical process of Raman transition to
initiate the process as well as a schematic of the optical system. As the heart of
atom statistic experiments with metastable noble gases a delay-line detector was
installed. Its principle and characteristics will be described to give a full overview
of the platform.

Eventually, schemes to show entanglement created by the four-wave mixing will
be discussed. Extensions to the double-diamond scheme of Horne et al. [63] are
discussed in the situation of matter waves. For these schemes, the double double-slit
configuration and ghost-interference are presented with their dependence on the size
of the source for the atom pairs. To the culmination of the final chapter a practical
implementation of the ghost-interference scheme will be considered. One element of
this last chapter is to introduce an analytical approach to calculate the expected
interference pattern and analyze the feasibility and limitations of such an experiment
given the current status of the project.





The system to refrigerate metastable helium atoms 15

2 The system to refrigerate
metastable helium atoms

To show the counterintuitive phenomena of entanglement in the external degree of
freedom of a matter wave there is one major requirement to be able to first create
and then detect the entanglement. The initial momentum uncertainty of the source
before preparation of a momentum entangled state should be small not to obscure
the effects of momentum entanglement. Additionally, different sources should add
up coherently. As will be shown later in chapter 4 these two requirements are equiv-
alent. The degree of correlation and thus, the entanglement depends on the coherent
volume of the source that is participating in the creation of the entangled matter
wave. As the coherent volume becomes smaller and smaller Heisenberg’s uncertainty
principle omits a good correlation of momenta already in the preparation. However,
even though an atomic cloud condensed into a Bose-Einstein condensate (BEC) is
only of a few hundred µm down to just a few µm, it still beautifully incorporates this
requirement. The quantity defining the coherence length of a single atom as source
for a matter wave is given by the de Broglie wavelength λdB of the atoms. The de
Broglie wavelength scales inversely with the square root of the temperature. Thus,
an initially colder atomic cloud serves as a better source with larger coherence length
for the correlated state. Furthermore, atoms cooled below a certain critical temper-
ature undergo the transition to a BEC. Before condensation they are not only a
thermal cloud of ultra cold, but the cloud also consists out of distinguishable atoms.
As they all end up in the ground state of the trapping potential, they rather have all
a well defined and all the same indistinguishable state. Since atoms in a BEC have
low temperatures, i.e. the initial momentum spread, the uncertainty in wavelength
is minimal when the process to create momentum entanglement of matter waves is
initiated. Furthermore a main signature of a three dimensional condensate of indis-
tinguishable atoms is its large coherence over the whole cloud [64, 65]. So a BEC
gives the possibility to start with as small as possible uncertainty in wavelength, with
the magnitude precisely controlled in the preparation of the entanglement, while the
large coherence volume ensures a well correlated matter wave.

This chapter describes the system to cool metastable helium atoms below the
transition temperature and increase the phase space density such that the atoms
condense into the BEC. A precise control of various stages is required to prepare
the helium atoms in the first excited, metastable state, direct them into the desig-
nated science chamber, trap them spatially, and subsequently cool them below the
BEC transition temperature. This sequence has to be repeated for every run of the
experiment and in the following chapters the individual stages will be described.
The stages with focus of this dissertation will all have a theoretical introduction
to the underlying principle, describe the realization, and present results about the
performance.
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Figure 2.1: An overview of the system. The metastable atoms are produced in the
source chamber to the left. Right after the source the atomic beam flux
is intensified using laser light in two dimensions to collimate the atomic
beam. From there the atoms enter a Zeeman slower, where the atoms are
slowed longitudinally to trappable velocities. With this beam a magneto-
optical trap is loaded. The trapped atoms are then transferred to a mag-
netic trap, where they can eventually be cooled below the transition
temperature of about 1µK to condense into a BEC. Imaging of the cold
atoms by means of absorption imaging is performed a few ms after be-
ing released from the trap. Underneath the traps is a delay-line detector
DLD mounted to detect the atoms released from the trap. The coordi-
nate system indicates the system used throughout the dissertation. The
origin of it is usually placed at the center of the magnetic trap.

The chapter is structured as follows: First the characteristics of helium and its first
excited state relevant to this dissertation are presented and the source to produce
the excited atoms is briefly sketched. Then a general introduction to the light-
matter interaction is given as this interaction is the workhorse to obtain a BEC.
This is followed by the arrangement concerned about the preparation of the light.
The optical table carrying the optics to lock the laser to the atomic resonance and
to prepare all required frequencies is separate from the main optical table carrying
the vacuum chamber where the BEC is created. This second table is connected to
the main table by glass fibers to deliver the light for manipulation of the atoms.
The spectroscopy to generate a reference frequency for the laser is described and
the scheme to prepare the frequencies is presented. From there on it will be about
the control and manipulation of the metastable atoms.

Figure 2.1 shows the system to give an overview over the stages that will be
described in the next sections. Starting from left the source for the metastable helium
atoms is followed by a collimation stage to increase the flux of atoms entering the
ultra high vacuum chamber1. The Zeeman slower decelerates the atoms below the

1The vacuum chamber between source and Zeeman slower where the collimation of the atomic
beam takes place is referred to as “high vacuum chamber”. Opposed to this the vacuum cham-
ber where the magneto-optical trap (MOT) is and the BEC is produced is referred to as
“science chamber” or “ultra high vacuum chamber”. In the science chamber the pressure is
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capture velocity of the magneto-optical trap. In latter the atoms are trapped and all
further manipulation happens in this place until the atoms are released and dropped
upon the delay-line detector underneath the traps. The figure 2.1 has the coordinate
system used throughout this dissertation displayed as well. The x-axis is defined by
the propagation direction of the atomic beam and the z-axis pointing opposite to
gravity. The origin of the coordinate system is placed at the center of the magnetic
trap.

2.1 Metastable helium
This section will give an overview of all necessary properties of helium and in partic-
ular of its first excited metastable state He∗ to motivate why this species was chosen
and to understand the processes used. In this sense the first subsection provides all
essential properties of metastable helium at a glance, which will be found scattered
throughout the dissertation again. The second subsection will be a brief description
of the source of metastable helium atoms, where they are excited and launched into
the experiment. However, the technical realization of the source is not focus of this
dissertation and is nicely described in the master thesis of Mateusz Kotyrba [66]
and the dissertation of Michael Keller.

2.1.1 Properties of metastable helium

When it comes to laser cooling and ultimately to ultra cold atom experiments the
first thought is usually about the alkali metals lithium (Li) [67], sodium (Na) [35],
potassium (K) [48], rubidium (Rb) [36], and cesium (Cs) [68]. Their electronic energy
level scheme can be significantly simplified as only the valence electron in the outer
shell contributes to the light-matter interaction. This electron is well shielded from
the nucleus by closed inner shells and thus, behaves in principle like an electron of a
hydrogen atom, which is analytically well understood. With this respect alkalis have
optical transitions that can readily be accessed for optical manipulation. A different
approach is to use the yet more simple noble gas atom helium. Helium is after
hydrogen the simplest atom and with its two electron level structure can analytically
be calculated. This makes helium interesting as a candidate to investigate models
beyond the simple hydrogen atom, but because of the two electrons lying on a closed
shell, its only optical transitions lie in the deep ultraviolet spectrum. Lasers with
these wavelengths are hard to produce and make helium in its ground state a difficult
candidate for laser cooling. However, if one electron is excited from the core to a
higher lying state, there exist states that are long lived, such that the lifetime of the
excited state is well above any experimental time scale.

For this experiment helium atoms are excited to the lowest lying excited state
23S1. This triplet state is the longest lived state as well as the most energetic of
all first excited states within the whole periodic table. The selection rule ∆L = ±1
forbids the transition to the ground state 11S0. As the spin of one of the two electrons
needs to flip for this transition to occur the process is doubly forbidden and gives a
lifetime of about 8000 s [69]. Thus, this metastable state can serve as virtual ground

below 10−10 mbar
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Figure 2.2: The energy levels of helium. It is hard to excite from the electron from
its ground state 11S0. However, once brought to the lowest lying triplet
state 23S1 this can serve as virtual ground state for experiments. This
state has optical transitions to the 23P - and 33P -manifolds, which can
be used for optical manipulation. The high internal energy of 19.82 eV
can be used for detection.

state and now provides not only two optical transitions, but also has an internal
energy of 19.8 eV. Fig. 2.2 shows the energy levels relevant for this dissertation.
The transition from the 23S1-state to the 23P -manifold is at 1083 nm with linewidth
1083Γ = 2π · 1.62 MHz and saturation intensity 1083Is = 0.16 mW/cm2 while the
transition to the 33P -manifold occurs at 389 nm with linewidth 389Γ = 2π · 1.49 MHz
and saturation intensity 389Is = 3.31 mW/cm2.

The high internal energy of metastable helium makes it possible to electronically
detect single atoms with micro-channel plates (MCP)2. Upon collision with the walls
of the channels the excited atoms release their internal energy and eject electrons out
of the walls. Subsequent acceleration of the electrons in high electric fields launches
an avalanche in the channels until a decent electronic signal is produced and can
be recorded. This is the true advantage of a metastable noble gas species over the
alkali metals, where only in recent experiments single particle detection has become
available as well [70]. However, the single particle detection of alkali still relies on
optical detection, which is limited by long integration times and low flux’ of atoms.

While the high internal energy is an advantage of the metastable species in detec-
tion, it poses a severe challenge during the preparation of ultra cold samples. Just

2A more detailed description of MCP detectors is given in chapter 3.2
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as the internal energy is released upon collision with the walls of the MCPs during
detection, the internal energy is released as well upon collision of a metastable atom
with another atom. The consequence is that the collision partner is ionized, while
the metastable helium atom is deexcited (Penning ionization) [71]. The partner in
the collision can carry away the spin set free by the relaxation of the triplet electron
to its real ground state. The metastable atom thus, can return to the real ground
state, i.e. the atom is lost for any further manipulation and observation. The Pen-
ning ionization only allows for small densities when the atoms are spatially trapped
in the MOT and already limits the starting conditions for any step afterwards. Only
when the atoms are loaded into a magnetic trap and the sample is spin polarized
the Penning ionization can be significantly be suppressed [72]. This suppression is
strongest for the 4He isotope, as it has no nuclear spin which could take up as well
the excess spin of the electrons participating in the ionization process. Besides the
relatively large positive scattering length of a11 = 7.5 nm [73] for helium, only this
strong suppression made it possible to achieve the densities required for the degener-
acy of BEC gas and still poses the major challenge for any other metastable species,
e.g. neon [74].

The fact that 4He has no nuclear spin and therefore, no hyperfine splitting occurs,
has its consequences for the cooling scheme as well. No hyperfine splitting means
that no re-pumping is required for laser cooling in order to maintain a closed cycle
transition, which reduces the number of required frequencies. However, it should
be mentioned that no hyperfine splitting also means, there are no internal states
that can be easily used for quantum coherent operations in the radio frequency (rf)
spectrum, especially no isolated clock transitions exist.

Due to the two closed optical transitions, metastable helium can be laser cooled at
the fairly accessible near UV and near IR wavelengths. However, the small mass of
helium m = 6.64 · 10−27 kg means that small thermal, and as such kinetic energies,
still correspond to relatively high velocities. Therefore, slowing helium atoms by
optical means requires considerably more space than slowing alkali metals. Moreover,
helium atoms need to be excited to the metastable state (He∗) by non-optical means,
which cause additional heating of the gas. The stage for this process will be described
in the next subsection.

2.1.2 The source for metastable helium

In the preceding subsection it was described how the elementary properties of He∗

can come in as a benefit for laser cooling and especially for detecting single atoms.
On the other hand, this comes at the expense of an extra step when producing
the excited atoms. The atoms need to be excited to the metastable state and the
extremely long lifetime of the desired state excludes optical means to selectively
excite the atoms (not to mention the difficulty to produce a laser with a wavelength
at 62 nm). Nevertheless, there are ways to perform this excitation. In chapter 2.3
it will be described how an rf antenna can be used to create a plasma of a helium
gas, where some fraction of the atoms is in the excited state. This scheme however
requires a low density of atoms and is counterproductive when a high flux source of
He∗ for loading a MOT is desired. A solution for higher flux and continuous output
is the supersonic cold cathode discharge source. Fig. 2.3 depicts the principle. Ultra



20 The system to refrigerate metastable helium atoms

Source Chamber

(10-3 mbar)
Tungsten Needle

He in

He*

He out GND

2kV

Turbo Pump

High Vacuum

Chamber

(10-7 mbar)
Cold Finger

(28 K)

Skimmer
Nozzle

Figure 2.3: The schematic of the metastable helium (He∗) source. Ultra pure helium
enters the vacuum system and is cooled to 28 K by contact cooling with a
cryostat. Before being pumped out again it passes a high voltage needle
electrode (2 kV). The discharge of this electrode produces a plasma of
helium in which a fraction ends up in the first excited state and enters
into the high vacuum chamber. Courtesy of Michael Keller.

pure helium (99.9999%) enters the vacuum system (3 mbar inlet pressure). The gas
flows between a glass tube and the outer vacuum chamber to the cold finger. The
cold finger is held at 28 K to precool the helium from room temperature to almost its
freezing point by contact cooling3. Afterwards the gas enters into a strong electric
field between a tungsten needle and the nozzle separating this section from the
high vacuum chamber. Most of the gas flows back through the glass tube and is
pumped out of the system. However, some of the atoms are torn apart and create
a plasma. Through various cascades a fraction of about 10−5 ends up in the lowest
lying excited state 23S1. The nozzle has an orifice, which gives way for some atoms to
supersonically expand into the high vacuum chamber (10−9 mbar when the helium
inlet is closed and 10−7 mbar when operating).

The helium is pumped through the vacuum system by an ACP28 by Pfeiffer
Vacuum. The same pump is used as backing pump (3 · 10−2 mbar when the helium
inlet is closed and 3 · 10−1 mbar when operating) for the turbo pumps (2× HiPace400,
Pfeiffer Vacuum) at the following high vacuum chamber. The cold finger is cooled
by a cryostat VT4-500 by Vericold (now Oxford Instruments) and the high voltage
(2 kV @ 2.1 mA) between the needle and the orifice is maintained by an Iseg HPn
60-506 power supply.

To prevent the gas from flowing directly to the outlet and not passing the dis-
charge region o-rings seal this path. The tightness of these rings is crucial for the
performance of the source and care has to be taken that no discharge other than
the one between needle and orifice happens. Even though helium with high purity is
used, some nitrogen always enters the chamber and is collected by the cold finger. To
remove this load from the cryostat the cold finger is heated up to 60 K every night
when no experiments are run. The source can be operated for longer periods of time.

3Note that the atoms are not yet in the excited state. Hence, collisions with the wall are purely
elastic and lead to cooling of the gas.
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However, after a couple of days the source will freeze and no output is generated
anymore.

Behind the orifice is a skimmer to extract a pre-collimated atomic beam from
the source region. With this system an output of a few times 10−14 atoms

sr · s
is achieved

at a peak velocity of about 800 m/s. This is a comparatively high output for the
corresponding velocity and gives a good starting point for the laser cooling process.
Further analysis of the source can be found in ref. [66].

2.2 Interaction between light and matter
Throughout this dissertation the interaction between light and matter is of crucial
importance, may it be for locking the laser to the optical transition of helium, for
cooling the atoms, or to prepare the entangled state of two collided atoms. In this
section the fundamental principles underlying these interactions is briefly described.
First the concept of the Rabi two level approach to understand the interaction is
introduced. This is directly applicable to the situation when the two Raman light
pulses prepare the atoms of the BEC in a superposition of counter-propagating wave
packets for the four wave mixing process in chapter 3.1. However, this is the concept
building the foundation for all other interaction as well. The subsequent sections
will thus, make use of it, when the absorption of light will be discussed. The last
subsection concludes this theoretical overview by discussing how this interaction of
light and matter can eventually lead to cooling of atoms by means of light.

2.2.1 The Rabi two-level concept
A general approach to the interaction between light and matter is to start with a
perturbative ansatz, described by the time-independent atomic Hamiltonian H and
a broad perturbation H′ for the interaction. However, this can become complicated
for it takes all eigenstates of the unperturbed system into account. The broad per-
turbation accepts all possible wavelengths and hence, all eigenstates can in principle
be excited and participate in the interaction. A more straight forward approach for
atom optics was formulated by Rabi [75, 76], where a narrow linewidth laser can
individually couple only two states4. This reduces the problem to two coupled dif-
ferential equations for the complex population probability amplitudes ce,g of the two
concerned levels |e〉 and |g〉, respectively [77, 78]5

i~
dcg(t)

dt
= ce(t)H′ge(t)e−iωAt (2.1)

i~
dce(t)

dt
= cg(t)H′eg(t)eiωAt

where ~ is the reduced Planck constant, ωA the atomic transition frequency between
the levels, and H′ge the perturbing Hamiltonian reduced to the two level problem.
As the strongest interaction happens when the laser frequency ωL is close to the

4Even though for the interaction of matter with light the formulation is semantically restricted
to laser light, the formulation is applicable to all electromagnetic fields

5Most of the discussion in the section follows the book of Metcalf and van der Straten.
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transition frequency ωA the problem simplifies when entering a frame co-rotating
with the laser wave (rotating wave approximation). This way terms of the order
1/ωL can be neglected compared to terms of the order 1/(ωL−ωA) = 1/δ, where the
detuning δ between the laser and the atomic resonance is introduced. Additionally,
one assumes the spatial variation of the electric field to be small compared to the
spatial extension of the electronic wave function around the atom and the electric
dipole to be parallel to the electric field (summed up in the electric dipole transition).
A reasonable assumption, as in a two level system the electron can just follow the
electric field (this can vary for a multi level problem) and the extent of the field
(∼ 500 nm) and the electronic wave function6 (∼ 1 nm) typically differ by two orders
of magnitude. For a plane laser wave this results in an interaction Hamiltonian
H′ge(t) = ~Ω cos(ωLt), where the vacuum Rabi frequency Ω is used

Ω = −E0

~
e · 〈e|r|g〉 (2.2)

The dipole matrix element e · 〈e|r|g〉 can be difficult to calculate, but with the
linewidth Γ of the transition known it has the simple form

e · 〈e|r|g〉 =
√

3πε0~λ3Γ (2.3)

Where ε0 is the vacuum permittivity. With this the two population probabilities can
be decoupled and it can be seen that the populations oscillate at the reduced Rabi
frequency Ω′ =

√
Ω2 + δ2

cg(t) =

(
cos

(
Ω′t

2

)
− i δ

Ω′
sin

(
Ω′t

2

))
eiδt/2 (2.4)

ce(t) = −i Ω

Ω′
sin

(
Ω′t

2

)
e−iδt/2

These equations demonstrate how a resonant laser can drive the populations of a two
level system coherently into each other. An extension of this is the basis for coherent
population transfer to create the counter-propagating matter waves in chapter 3.

However, the calculation only holds as long as the off diagonal matrix elements
of the perturbing Hamiltonian vanish. In particular for high laser intensities and
large detunings it can be shown, that the eigenstates of the unperturbed Hamilto-
nian are no longer eigenstates of the perturbed Hamiltonian.The new eigenstates of
the perturbed system are shifted due to this ac-Stark shift from the unperturbed
eigenstates by

∆Eg = +
~Ω2

4δ
(2.5)

∆Ee = −~Ω2

4δ

This result is of particular interest when atoms are trapped by purely optical
means [79–81]. As the shift is proportional to the laser intensity, optical traps can

6Even though the atomic wave function can extend over µm the electronic wave function remains
localized around the atom
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be formed with laser beams tailored such, that a three dimensional local maximum
of the intensity exists. In chapter 2.8 it will be discussed how such a trap could be
realized in the existing setup. From a point of view of a matter wave experiment it
is even more interesting that such an energy shift due to off resonant laser light can
introduce a phase shift for matter waves propagating through this field [8, 9]. This
possibility will be illuminated in chapter 4 when entanglement between the atoms
in their external degree of freedom is discussed.

2.2.2 Absorption and radiative force

While the Rabi two-level concept elegantly describes the evolution of populations
in the electronic states of an atom when the laser can coherently manipulate the
atom, in most situations decoherence interrupts this eternal play. An excited atom
left by itself decays with finite lifetime τa = 1/Γ back to the ground state in a
spontaneous process. Spontaneous emission is not considered in the Rabi oscillations.
However, this predominantly happens when a laser passes through a gas of atoms.
The excited atoms do not only couple to the laser light field but can emit the light
into all possible vacuum modes surrounding the atoms. The problem of decoherence
is usually encompassed in a density matrix approach. This concept applies in the
case of spontaneous emission as well and leads in the two level system to the so called
optical Bloch equations. The steady state solution for the population difference of
the two levels involved ∆ρ = ρgg−ρee holds the saturation intensity Is to characterize
the system

∆ρ =
Is(1 + (2δ Γ)2)

I + Is(1 + (2δ Γ)2)
(2.6)

where I is the intensity of the laser. The saturation intensity defines the intensity
at which the population difference is 1/2 and further increase of the laser intensity
does not result in a significantly larger population of the excited state but rather
broadens the spectrum of absorption. Thus, the population of the excited state is
given by

ρee =
1

2
(1−∆ρ) =

1

2

I/Is
1 + I/Is + (2δ/Γ)2

(2.7)

As no more atoms can be excited some will be stimulated to emit back into the light
field. The result is a shorter lifetime for the atoms in the excited state and leads to
a power broadened linewidth of the absorption spectrum

Γ′ = Γ
√

1 + I/Is (2.8)

As the laser travels along its way through the gas more and more excited atoms
spontaneously decay into other modes and the photons are lost from the laser in-
tensity. This fact is central to spectroscopy and follows the Beer-Lambert law for
intensities smaller than the saturation intensity

I(z) = I0e
−σnz = I0e

−ODz (2.9)
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where n is the density of atoms, σ = 3λ2/2π is the scattering cross section, and OD
the parameter describing the concept of optical density.

As in every physical process energy needs to be conserved as well as momentum.
The absorbed photon thus needs to transfer its momentum to the atom. If the atom
now spontaneously emits the photon into an incoherent mode, i.e. not back into
the laser mode again, the momentum of the atom before and after the interaction
with the light has changed. The direction of the spontaneous emission is random
and the average of the various direction cancels the momentum kick exerted by the
emission and only the momentum kick from the absorbed photon remains. From the
Ehrenfest theorem follows that the radiative force on the atom by a large number of
photons is simply the momentum of the photons times the scattering rate and the
probability to be excited

~Fr = ~~kL · Γ · ρee = ~~kL ·
1

2

I/Is
1 + I/Is + (2δ/Γ)2

(2.10)

where the momentum of photons is defined over the wave vector of the laser ~kL.
From eq. (2.10) it is clear that the maximal force of ~~kLΓ/2 can only be reached if
the laser is always on resonance with the atomic transition.

The analysis so far treated the atom always at rest. However, when it comes to
cooling atoms by means of laser light the atoms are, at least at the beginning of the
process, moving and upon interaction with the light change their velocity ~vA. Atoms
moving relative to the laser experience a Doppler shift

δD = −~kL ·~vA (2.11)

In the chapters concerned with slowing and trapping of atoms it will be discussed
in more detail how this problem can be compensated experimentally. A closer look at
the level structure of atoms reveals another parameter to adjust the detuning. Most
energy levels have a magnetic degeneracy, which can be lifted by external magnetic
fields ~B

∆E = mJ~µeff · ~B (2.12)

where mJ
7 is the magnetic quantum number to the total angular momentum ~J =

~L + ~S, consisting of the orbital angular momentum ~L and electronic spin ~S. The
magnetic moment ~µ can be calculated from the Landé g-factor gJ of the respective
state and Bohr’s magneton µB

~µ = gJ~µB ≈
(

3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)

)
~µB (2.13)

So the total detuning of the laser light from the atomic resonance is given by

δ = ωL − ~k ·~v − ~µt · ~B/~− ωA (2.14)

7As 4He does not have a nuclear spin all effects are discussed in the terminology using J as
well-defined quantum number. For atom species with nuclear spin ~I, e.g. 3He this is not valid
anymore. However, the principle stands and can be extended by replacing ~J with the total spin
~F = ~I + ~J
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where ~µt = ~µe − ~µg is the magnetic moment of the transition between the excited
and ground state with effective magnetic moments ~µe and ~µg, respectively.

It should be mentioned that due to the spontaneous emission process as inherent
part of the radiative force there is a fundamental limit to the minimum speed that
can be achieved when the radiative force is used to slow atoms. Even if the atom
is perfectly at rest after the absorption of the photon the subsequent emission is
random, i.e. cannot be pre compensated for, and imprints a momentum kick on the
atom again. This last photon transfers a momentum of ~kL and defines with the
mass m of the atom the so called recoil velocity8

vrec =
~kL
m

= 92.1mm/s (2.15)

This is generally regarded as the lower limit for laser cooling processes. However,
this would require a knowledge of when the atom has just absorbed the last photon
and an immediate switch off of the laser is required. In most cooling schemes though,
the laser light is a strong coherent field that acts on an ensemble of atoms. Thus,
this one to one knowledge of the last photon for a single atom in order to reach
the recoil limit is in most cases not available. The atoms rather have to get out of
resonance with the laser, which happens when the Doppler detuning is on the order
of the linewidth of the transition. This defines the so called Doppler limit applicable
to most cooling schemes:

vD =

√
~Γ

2m
(2.16)

with the equipartition theorem and the Boltzmann constant kB this can be expressed
in terms of a temperature:

TD =
~Γ

2kB
= 38.9µK (2.17)

With this the most basic concepts of the light-matter interaction are introduced
and this section will be pulled up whenever a fundamental equation is required.

2.3 The optical setup for laser cooling
The preceding section gave a theoretical overview to the interaction of light and mat-
ter. This interaction plays a crucial role in the experiment as the narrow linewidth
of a laser gives enormously precise control of single atoms [82, 83] or as in the case
of this dissertation of an ensemble of atoms. Nevertheless, in order to make use of
this interaction the laser has to be well referenced to the atomic resonance. In this
section the laser system at hand is described. First two principles to lock a laser to
an atomic transition are described. While the polarization spectroscopy is relatively
easy to set up, its drawback is its susceptibility to birefringence and magnetic fields.
The saturation spectroscopy on the other hand requires a small electronic overhead
in order to lock the laser to the center of the transition, but is less coupled to the

8The values given here refer to the 21S-23P transitions of helium
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Figure 2.4: To produce a reference frequency for laser cooling helium is continuously
pumped through a glass cell. An rf antenna ignites a plasma to produce
metastable atoms. A µ-metal shields the atoms in the cell from the envi-
ronment and the copper Faraday cage shields electronic equipment from
the rf.

environment and thus, serves to greater extent as an absolute reference. The last
subsection explains the design of the optical table, where all various frequencies are
generated that are needed throughout the experiments.

Central to both spectroscopy methods is a reference sample of the atoms to which
the laser should be locked to. The noble gas species helium is at room temperature
already in the gas phase. However, it is not in the excited state which will be subject
to the laser manipulation. This excitation however, can be accomplished by a strong
rf field generated by an antenna around the cell. The rf induces a plasma in the
cell which contains some metastable atoms. Yet, the plasma is very reactive and
cleans effectively all dirt of the walls [84]. Once the walls are clean the dirt mixes
with the gas and the excited atom transition is quickly quenched to non-existence
through collisions with other atoms and molecules [85]. This process made all ref-
erence cells that were commercially available lose the spectroscopy signal within
minutes. In principle, the cell can be cleaned properly by super strong plasmas be-
fore hand. However, the process is delicate and the project of this dissertation uses
the approach to continuously pump the dirt out of the cell. This open system is
also continuously filled with helium gas such that a steady state pressure of about
0.1 mbar is maintained. The pressure is crucial for the number of atoms. The best
signal is obtained at the mentioned pressure. However, this leads to a collision broad-
ening of the transition of about 20 MHz. Fig. 2.4 shows such a cell with the plasma
ignited. Around the cell is the antenna wrapped to ignite and maintain the plasma.
To shield the gas from external magnetic fields a µ-metal is placed around the cell
and to shield the electronic equipment from the rf a Faraday cage made out of cop-
per encapsulates the whole arrangement. The rf source runs at 25 MHz and can be
turned up to 5W power to ignite the plasma. However, in operation this is usually
reduced to about 100 mW to minimize the noise on the signal.
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2.3.1 Polarization spectroscopy

To make use of the sharp linewidth of a laser to manipulate atoms it is absolutely
necessary to have the laser frequency resonate with the atom’s transition. For this
purpose the spectroscopy cell is used as a reference in order to lock the laser to the
transition. The laser passing through the cell is attenuated depending on the relative
detuning δ = ωA − ωL between the atomic transition frequency ωA and the laser
frequency ωL (compare eq. (2.9)). On resonance, δ = 0, the absorption is strongest.

The width of the atomic transition is determined by four processes which all add
up. The natural linewidth is due to the finite lifetime of the excited state of the
atom without any external perturbation and poses an ultimate limit on how narrow
the linewidth can be.

Collisions among the atoms and other residual gas atoms lead to shifted levels
and de-excitation of the atoms. This reduced lifetime of the excited state and the
shifted levels manifest themselves in a collision-broadened linewidth. The effects of
this broadening can be minimized by lowering the pressure in the cell. However,
smaller pressure is equivalent to less atoms and thus, less signal. So there is an
optimum at which signal strength and linewidth have tolerable extents.

The third broadening is caused by the laser probing the gas itself. Depending
on the intensity of the laser the emission of photons from excited atoms is induced
by the laser. This again shortens the lifetime and increases the linewidth (compare
eq. (2.8)). This contribution is minimized by operating the laser as far as possible
below the saturation intensity.

Lastly, the biggest contribution stems from the doppler broadening. This is not
caused by a reduced lifetime, but originates from the different velocities existing
in the thermal gas. The atoms in the gas have all different velocities, following a
Boltzmann distribution with the temperature as the parameter to determine the
width. Each atom thus experiences a different doppler shift δD depending on its
velocity with respect to the laser propagation and resonates at different frequencies
with the laser.

Doppler-broadening can be elegantly eliminated completely by means of Doppler-
free spectroscopy. For this method a second laser counter-propagating with the orig-
inal probe laser has a high intensity to excite the atoms and saturate the transition.
The counter-propagating direction of the so called pump beam has the effect that
only atoms at rest interact with both lasers at the same frequency and the high
intensity of the pump laser “burns” a hole into the gas of absorbing atoms, i.e.
into the absorption spectrum of the probe laser. The resulting profile shows a dip
within the Doppler-broadened signal, which is only limited by the natural lifetime,
the collision-broadening, and the power-broadening.

The doppler-free absorption profile is the basis for all locking schemes. However,
stable locking of a laser to the center of a transition of an atom is only possible with
a dispersion-like signal, i.e. a monotone slope around the locking-point. One way to
generate such a dispersion-like signal is by introducing a birefringence in the gas.
A σ+-polarized pump beam only saturates the σ+-transition (assuming this kind of
transition exists see fig. 2.5). Thus, a linearly polarized probe beam, decomposed
in its two circular polarizations, experiences a differential refractive index [86]. The
result is an elliptical and rotated probe beam at the exit of the gas cell. Placing a
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Figure 2.5: Optical dipole transitions for the first excited states 3P0, 3P1,and 3P2

from the metastable state 3S1. The 3P0-state does not have magnetic
sublevels and hence, does not support σ∓-transitions for closed cycles.

half wave plate (HWP) and a polarizing beam splitter (PBS) further down the beam
to measure the two components under 45◦ to the original polarization, gives direct
access to a dispersion signal centered around the center frequency of the transition
and any offset, e.g. from laser noise, is eliminated by subtracting those two signals.
Fig. 2.6 shows a scheme of the setup for this technique and a signal obtained by it.

This method is easy to implement and does not require sophisticated electronics
to generate an appropriate error signal. No modulation of the laser broadens the
laser linewidth nor an additional optical modulator needs to be placed in the spec-
troscopy. The detectors do not need to have a high bandwidth and can provide a
strong signal. However, there are two factors that make polarization spectroscopy
sensitive to fluctuations in the environment. The implemented scheme to eliminate
the offset assumes equal transition frequencies for σ+- and σ−-light. This is only
guaranteed in the absence of any magnetic field. Secondly, the original polarization
of the probe beam has to be known and stable. Thus, smallest fluctuations caused
by any additional birefringence can lead to a shift of the signal. Both effects can be
challenging to control and render the main disadvantages of this technique.

2.3.2 Saturation spectroscopy

Due to the simplicity of the polarization spectroscopy, this technique was used with-
out any problems until the stage of the magnetic trap and even the BEC could be
realized. However, in order to achieve long lifetimes in the magnetic trap with the
trap bottom at only a few Gauss the atoms need to be well shielded from any reso-
nant light. This required to completely enclose the optical table, prohibiting a proper
temperature stabilization. At this stage long term drifts in the spectroscopy could
be observed, as the glass of the spectroscopy cell exhibits temperature dependent
birefringence. This subsection describes a spectroscopy technique that overcomes
these external influences by deriving the dispersion signal from a beating with it-
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Figure 2.6: A dispersion like signal can be obtained by polarization spectroscopy.
Central components are a circularly polarized pump beam and a polar-
ization sensitive detection.The insets show the schematic of the setup
and the signals obtained from the individual detectors, which are sub-
tracted from each other.

self. Moreover, this technique does not require a specific level structure as does the
polarization spectroscopy, which relied on a σ+-transition. So the laser to drive the
Raman-transfer to initiate the two counter-propagating matter waves has to apply
this technique in order to use the 3P0 (see chapter 3.1).

The idea behind this is to take the Doppler-free absorption profile and by mod-
ulating the laser frequency the derivative can be obtained. Modulating the laser
frequency, either by means of the frequency of the laser itself or by introducing an
electro-optical modulator (EOM) into the laser beam, results in sidebands of the
carrier frequency. The individual side bands experience a phase shift with opposite
sign, depending on which side of the absorption peak the bands are, and an inter-
ference between the carrier and the sidebands can be observed in the beating signal.
Thus, by mixing down this signal again a strong signal with steep slope at the center
of the peak can be obtained. This approach has its beauty in two effects: firstly, the
signal is independent of any constant offset and automatically centers around the
peak; secondly, the detection happens at higher frequencies, and as such operates at
a level where the 1/f -noise has dropped significantly.

In principle there are two regimes of frequencies to modulate the laser with. One
is at frequencies smaller than the linewidth, called lock-in (typically some ten kHz).
This requires lower modulation frequencies, and is less demanding in terms of band-
width for the detectors. However, typically filters are used to reduce any residual
1/f -noise from the signal and can cause an unwanted phase between the input sig-
nal and error signal generated at the output. The second regime operates at much
higher frequencies than the linewidth (some ten MHz) and is called after physicists
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Figure 2.7: The derivative of the Doppler-free absorption spectroscopy can be ob-
tained by phase-modulating the laser light. Central is the EOM (4004-M,
Newport) to phase modulate the laser beam introducing sidebands and
a high bandwidth photodetector (Balanced Photoreceiver 1817FS, New-
port). Mixing down the beating signal reveals an interference between
carrier and sidebands, which is proportional to the derivative of the sig-
nal around the absorption peak. The insets show the schematic of the
setup and the signal of the detector before demodulation.

Robert Vivian Pound, Ronald Drever, and John Lewis Hall Pound-Drever-Hall-
locking (PDH). PDH requires neighboring absorption peaks to be well separated
and is typically used for locking of optical cavities. However, the fine structure split-
ting of He∗ is on the order of GHz and thus allows for this technique to work.
Fig. 2.7 shows a scheme of the setup for this technique and a signal obtained by it.
An electro-optical modulator (EOM) makes use of the Pockels effect to modulate
the refractive index of its crystal. This way a broadening of the laser itself and high
modulation frequencies can be achieved. To deconvolute the signal again the signal
is mixed down by the modulation frequency in PDD100-module of Toptica.

2.3.3 The optical frequency preparation

A fiber laser (Adjustik-Y10-10, Koheras) is the workhorse for laser cooling the
metastable helium atoms. An input of 1 mW input power is required to saturate a
5 W fiber amplifier (KPS-CUS-BT-YFA-1064-SLM-PM-50-110-CO, Keopsys). The
rest of the fiber laser light can be used for the spectroscopy with which the laser is
locked to the atomic resonance of the 23P2-transition by the PDH-scheme. Fig. 2.8
shows the arrangement to generate the frequencies required for cooling. About 3 W of
the amplifier is used to prepare light for the collimation stage, the Zeeman slower,
the MOT beams, and for spin polarization as well as imaging. The frequencies
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Figure 2.8: The schematic of the optical table. Laser cooling is done by a fiber ampli-
fied fiber laser at 1083 nm locked to the 23P2-transition. A second laser at
1083 nm is locked to the 23P0 transition for the Raman transitions that
prepare the atom in the BEC in two counter-propagating matter waves.
For a fluorescence detection a third laser can be set up. Produced in a
second harmonic generation setup the laser at 389 nm (33P -manifold) is
a convenient tool that can easily be detected by CCD cameras, e.g. to
characterize the collimation or Zeeman slower stages.

are shifted by acusto-optical modulators (AOM), where an rf signal is transduced
into a sound wave in a crystal. The light is Bragg-reflected from the sound wave
and depending on the incident angle either picks up the momentum of the phonon
~ kphonon = h/λrf or loses one quanta of phonon momentum. To be able to tune the
frequencies most stages have one double-pass configuration of an AOM. This way
the angle dependence on the frequency can be reduced.

Various AOMs from Brimrose, Isomet, and Intraaction are used to shift the fre-
quencies in the optical setup. While Brimrose AOMs are the most compact ones,
Intraaction AOMs are the most convenient ones to align. In performance they do
not differ much when operated at the designed rf power.

The collimation stage consists of a double-pass AOM at ∼ −40 MHz and one
single-pass AOM at 80 MHz to shift the frequency back to the resonance. The light
is then coupled to a polarization maintaining fiber (PM) and sent over to the vacuum
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system. Of the initially 250 mW at the beginning of this stage 50 mW come out of
the fiber and are used for collimating the atomic beam.

The Zeeman slower has only one AOM at −370 MHz. The high detuning is not
very efficient and therefore, it is more favorable to tune the magnetic field of the
Zeeman slower by changing the current there. About 400 mW is required at this
stage to produce 90 mW of PM-fiber coupled light.

The MOT stage requires most of the power. About 2.4 W impinges on a double-
pass AOM set to ∼ −2 × 40 MHz. A second AOM at 40 MHz shifts the frequency
back to the required frequency for the MOT. This AOM is turned off when the MOT
is not used and spin polarization, 1D-cooling, or imaging is turned on. This way the
zeroth reflection-order is strongest and the light from the double-pass AOM in this
order can be used for either spin polarization, 1D-cooling or imaging.

The MOT light is then coupled into a PM-fiber and sent to a fiber cluster9 (Fiber
Beam Port 2to6, Schäfter und Kirhchoff), where the light is split evenly into six plus
one PM-fibers. Eventually 40 mW per laser beam is used for the MOT.

For spin polarization, 1D-cooling and imaging another AOM in double-pass con-
figuration shifts the frequency from the double-pass AOM of the MOT stage back by
2× 40 MHz. After this the beam is split into two. One entering a PM-fiber and send
to the MOT cluster where it is split into two plus one beams for the spin polarization
and 1D-cooling. The light for these stages is coupled via the same PM-fibers to the
vacuum system. However, the beam propagating in positive y-direction needs to be
orthogonally polarized to the MOT beam propagating the same direction. To get
this polarization into the same PM-fiber the beam splitter before the coupler needs
to be non-polarizing and thus, an auxiliary port exists in the scheme for MOT, spin
polarization, and 1D cooling (this is the “plus one”). After the PM-fiber ∼ 2 mW
is available for imaging and about ∼ 20 mW for spin polarization and 1D cooling10.
All fiber ports on the optical table have a mechanical shutter in front of them. This
way the light is switched rapidly off by means of the AOMs and safely to prevent
leakage by the mechanical shutters. As doors of the optical table can be completely
shut, this gives the possibility to block any unwanted resonant light from disturbing
the trapped atoms.

A diode laser (Syst DL100 L, Toptica) is locked to the 23P0-transition. The current
of the laser can be modulated fast enough to use the lock-in scheme. However, this
will be eventually substituted by a PDH-scheme employing an EOM as well to avoid
the modulation on the laser itself. Most of the light is sent to two AOMs in double-
pass configuration. Each shifts the beam by ∼ 2 × 350 MHz. Each of this highly
off-resonant beams is PM-fiber coupled and amplified by a 2W Keopsys amplifier
for further use for the Raman pulses.

The third laser on the optical table is a diode laser at 778 nm which is frequency
doubled in a second harmonic generation SGH all within a compact system (TA SHG
110-2V0, Toptica). The output is at 389 nm and can be locked to the 33P -manifold
typically using polarization spectroscopy. As this wavelength can be detected bet-

9The cluster is a compact setup of PBSs and HWPs to split the beam and directly couple the
resulting beams into six plus one fibers. Some light falls onto photodiodes and can be used for
monitoring purposes

10Not all of this light is used. The fine tuning of the power is done by controlling the rf power of
the AOMs
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ter with CCD cameras, about 40 mW of this laser are available for fluorescence
measurements (e.g. for the collimation stage in chapter 2.4 and Zeeman slower in
chapter 2.5), but have no specific purpose in the current system.

2.4 The collimation of the atomic beam
After producing a high flux of 4He∗, the atoms can be optically addressed and
manipulated. This gives precise control over the atom’s motion and can be used
to cool and trap atoms. In order to collect a high number of atoms the first laser
cooling section is installed already right after the skimmer. At this stage the atomic
beam is strongly divergent and only a tiny fraction would reach a trap more than
2 m downstream. An effective way to avoid loss of atoms is to collimate the beam
by means of laser light. In this section a scheme is described that allows for a two-
dimensional cooling of atoms moving in the third direction. In the setup the third
direction corresponds to the x-axis (compare fig. 2.1).

2.4.1 The idea behind optical molasses
In section 2.2.2 it was shown that a light field impinging on atoms can exert a force.
However, this is only one side of the story. As soon as the atoms are pushed in
the direction of the laser the Doppler detuning changes accordingly and the atoms
get out of resonance. The situation changes when a second laser impinges from the
opposite side. Now, the lasers frequency can be tuned such that they are tuned to
the red, i.e. δ < 0, by half the linewidth of the atomic transition and the resulting
net force of both lasers gives a velocity dependent force in one dimension. This effect
resembles the viscous drag of molasses and gives the name “optical molasses” [87]. In
fig. 2.9 it can be seen that this mechanism only works well for atoms with a Doppler
shift smaller than the natural linewidth. Beyond this point the atoms experience a
smaller force than what is needed to effectively eliminate the velocity component
parallel (anti-parallel) to the laser light propagation. It is noteworthy, that this is
not a relocating force. A particle displaced from the center of the atomic beam stays
displaced, only its velocity is reduced to approximately zero (limited by the Doppler
velocity of eq. (2.16)). An atomic beam entering such a molasses stage with its
longitudinal velocity ~v⊥ perpendicular to the laser light but with some divergence in
its transversal velocity component ~v‖ can in that sense be seen as getting collimated,
i.e. all atoms having parallel momenta m~v⊥.

The change in velocity for an atom traveling opposite to a resonant laser is limited
by the Doppler shift

∆v =
Γ

2kL

√
1 + I/Is (2.18)

Taking this for the transversal velocity one can define an acceptance angle of such
a collimation scheme together with the longitudinal velocity as

αmax = arctan

(
Γ

2kLv⊥

√
1 +

I

Is

)
(2.19)



34 The system to refrigerate metastable helium atoms

a 
[m

/s
2
]

v
||
 [m/s]

- 1.0 - 0.5 0.0 0.5 1.0

- 0.02

- 0.01

0.00

0.01

0.02

Figure 2.9: The force field of two counter-propagating laser beams (blue) is called
optical molasses. Within the linewidth the sum of both (purple) result
in a velocity dependent drag for the atom. The detuning of the lasers for
this graph is set to half the linewidth of the atom. Helium atoms with
about 0.15 m/s experience the strongest deceleration of a = 15 mm/s2.

For an atomic beam at v⊥ = vx = 800 m/s this will mean only 1.5 mrad. There
are schemes that employ a two-dimensional MOT to enhance the capture angle and
even focus the beam back on to its axis [88, 89]. However, this requires additional
magnetic fields and focusing the atomic beam would eventually lead to divergence
again. Thus, it would need considerable overhead around or even inside the vacuum
chamber and proper focusing such that the atoms are still bundled at the trap
position ∼ 2 m behind the source.

A much simpler approach is realized in a curved wavefront scheme. The curvature
of a focused laser beam results in locally different directions for the quasi momentum
of the laser ~kL. This way one can make use of the angle dependence of the Doppler
shift (compare eq. (2.11)). In other words, the laser is not restricted to the one
dimension perpendicular to the main component of the velocity vx of the atomic
beam, but can change its direction to maintain the resonance condition with the
divergent but in the process of becoming collimated atoms.

With the idea of a curved wavefront one can lift the restriction that only atoms
with a Doppler shift smaller than half the natural linewidth can be slowed. The
objective is now to maximize the capture angle β within a certain interaction length
after which the atomic beam exits the collimation section again. This is limited by
the fact that the atoms need to acquire first a certain Doppler shift, e.g. change
in velocity, before the direction of the laser should be changed. Thus, there is a
minimal radius Rmin the atoms can be forced to move on. The minimum is given
exactly when the radiative force and the centrifugal force are of equal strength [90]

Rmin =
m~v 2

~k
2

Γ

(1 + I/Is)
2

I/Is
(2.20)
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This is the theoretical idea behind the collimation stage and in the next subsec-
tions it will be described how it is implemented in the system.

2.4.2 The implementation into the system
In the previous subsection the theoretical idea of collimating a divergent atomic
beam suggested that the capability to collimate the beam can be enhanced by using
a focused beam to create a curved wave front. This scheme is used in multiple
experiments [90, 91]. However, from eq. (2.20) an interaction length can be deduced
which is on the order of 10 cm for an enhancement of a factor of 10 in the case of
850 m/s fast helium atoms. This requires a laser with beam waist of 10 cm as well
and a power to achieve a decent saturation of the transition. A different approach is
to change the angle of the laser step by step. For this, two mirrors opposed to each
other are tilted with a small angle (∼ αmax/2) to each other [92, 93]. The laser is
then injected at an angle β = Nrefl ·αmax from being perpendicular to the x-axis.
Hence, the laser resonates with atoms diverging from the x-axis with the angle β.
After the beam was reflected from the mirror at opposite side and the mirror on the
same side it has changed its angle by 2 ·αmax/2. The next time it impinges on the
atomic beam it is thus resonant again and deflects the beam again by the amount
αmax. This happens Nrefl times before the laser beam becomes perpendicular to the
x-axis. The same effect happens when the laser beam is on its way back from the
mirror at the opposite side. However, now on atoms diverging from the atomic beam
with the angle −β. The interaction length before the atoms get out of resonance is
now less than 3 mm, thus a laser beam of ∼ 6 mm suffices to deflect the atomic beam
by αmax (for alignment convenience the laser beam was later enlarged to 12 mm).
Because the transmitted light is recycled by the mirrors much more efficient use of
the light is obtained. By setting up the same mirror assembly under 90◦ to the first
assembly a collimation in two dimensions can be achieved.

Fig. 2.10 shows a schematic of the setup. During alignment care is taken that
the laser beam enters the vacuum chamber as close as possible after the skimmer
of the helium source. This way it is made sure that the atoms entering the high
vacuum chamber are not displaced from the atomic beam axis already before the
collimation starts11. The relative tilt between the two opposing mirrors is then set
such that the beam bounces back and forth sixteen times before they reach the end
of the interaction region and are almost perpendicular to the atomic beam axis. If
they were perpendicular they would be reverted and go all the way back and start
heating the atomic beam transversally again. To avoid this a small angle is kept at
the end of the stage, which requires the laser beam to be slightly blue detuned in
order to be resonant with the atoms until they are parallel with the atomic beam
axis. The common angle of the mirrors with the atomic beam axis can be used to
some extent to steer the beam as this defines the final direction at which the atoms
exit the stage.

To detect the atoms after collimation a light sheet with the laser at 389 nm is set
up further downstream. The light sheet is tilted under 45◦ such that an EMCCD-
camera12 can detect the fluorescent signal from the side (for more details on the

11In chapter 2.2.2 it was shown that optical molasses is not a relocating force.
12For troubleshooting simple finger cameras, e.g. Sony DV1910 can be used.
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Figure 2.10: Two mirrors are set up with an angle αmax/2 to each other. After
deflecting the atomic beam for the first time the laser beam bounces off
the mirrors twice and hence, changes its direction by αmax. This way the
laser beam becomes resonant again with the atoms and can deflect the
atomic beam again. The same happens for the laser coming back from
the other mirror and another pair of mirrors is set up perpendicular to
the one shown achieving a two dimensional collimation of the atomic
beam. The atomic beam after the collimation stage is detected by a
blue light sheet (389 nm).

EMCCD-camera see chapter 2.7) . Fig. 2.11 shows the signal without and with the
collimation on. Due to the finite linewdith only atoms traveling perpendicular to
the propagation direction of the light sheet, i.e. along the atomic beam axis into the
Zeeman slower are scattering photons. When the collimation is off the beam diverges
rapidly and only a thin line of the spread out profile is visible. The situation changes
dramatically when the collimation is turned on (laser power per beam ∼ 25 mW
corresponding to about 10 Is). The atoms do not diverge anymore but are bundled
in two dimensions to increase the flux by a factor of about 30.

Typically an effect of the laser beams on the atomic beam is already visible when
the laser is bouncing between the mirrors like it is depicted in the inset of fig. 2.11.
A fine tuning of the alignment can be done on the signal by isolating one dimension
and scanning the light sheet frequency to see the whole profile. A thin line indicates
proper alignment in one dimension. Switching on both dimensions achieves a sig-
nal as shown in fig. 2.11, which than can be observed with simple finger cameras
(Conrad). At a later stage a Faraday-cup detector was installed behind the MOT.
Monitoring the current produced at this detector is sufficient to achieve collima-
tion, too. An additional advantage is that the direction of the atomic beam can be
optimized this way since it has to go through the Zeeman slower before it enters
the science chamber with the Faraday cup. A well collimated beam corresponds to
about 10 nA on an ampere meter (6485 Picoammeter, Keithley Instruments).

After the collimation stage the atomic beam passes through a 5 mm large shut-
ter. After loading of the MOT this is switched off to block any further flux
(∼ 1011atoms/s) of atoms into the science chamber. In an earlier stage of the project
a deflection stage, working with the exact same idea as the collimation, but this
time really with a focused beam, bent the atomic beam around the shutter by about
10 mrad. The idea of this is to separate the He∗-atoms from any other atoms enter-
ing the system through the source. However, it turned out that the vacuum could
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Figure 2.11: An image recorded with an EMCCD of the uncollimated atomic
beam (a) and the collimation stage switched on (b). The resonant laser
light only scatters off of atoms traveling perpendicular to it. Hence,
in the uncollimated beam only a thin stripe of the divergent beam is
visible. However, when the collimation is switched on the atoms are
collimated on the x-axis and resonate with the light sheet. With the
collimation stage on an increase by a factor of 30 is achieved. The inset
shows an infrared light intensified image of the reflections of the laser
beam on the surface of one of the mirrors.

be improved by introducing a complete valve (DN40 Slide Valve with Million Cycle
Option, VAT) in front of the Zeeman slower that shuts any time the magnetic trap
is loaded. Thus, the deflection stage was redundant and is not used anymore in order
to simplify the system.

2.5 The Zeeman-tuned slowing of neutral atoms

The most frequently used species for ultra cold experiments Rb is usually prepared
by heating a dispenser. The evaporated Rb has a low energetic tail with enough
atoms to be collected by a MOT. Thus, without any further effort the MOT can be
loaded just from the background pressure in the chamber. In the case of helium an
atomic beam enters the ultra high vacuum chamber. After the collimation stage a
high flux of atoms is achieved. The atoms produced in the dc discharge are in the
metastable state and the two dimensional transversal cooling made sure they are
only minimally divergent. However, they travel at the speed of about 800 m/s. This
is far too high to be captured by a magnetic trap and even a MOT with a capture
range of about 100 m/s operates at lower velocities. In this section it is described
how the atoms can be slowed sufficiently in longitudinal direction to be captured in
a MOT.



38 The system to refrigerate metastable helium atoms

2.5.1 The theory behind Zeeman-tuned slowing
A resonant laser counter-propagating to the atomic beam can slow the atoms ac-
cording to eq. (2.18) by less than 1 m/s; by far too little to bridge the gap between
atomic beam velocity and capture velocity of the MOT. In the early beginnings of
laser cooling of atoms there were schemes, where the laser frequency was chirped to
stay on resonance with the slowed atoms [94]. Yet, besides technical challenges for
the chirp this produces a pulsed train of atoms. A more frequently applied method
nowadays is to make use of the Zeeman shifts occurring in magnetically degenerated
energy levels [95, 96]. According to eq. (2.14) a magnetic field can compensate for
a Doppler shift and the laser stays on resonance with the atom even if the laser
frequency is unchanged and the atom slows down. By lifting the degeneracy though,
the closed-cycle transition in general is open to loss to other magnetic sublevels.
This loss is avoided by driving a transition whose only decay channel is back to the
magnetic sublevel the electron came from. The only points in a magnetic sublevel
splitting to achieve a closed cycle transition are at the very end of a transition (see
fig. 2.5). However, the maximally stretched state does not suffice to maintain a closed
cycle. To make the process efficient it is additionally necessary, to have an excited
state with one quanta of total angular momentum more than the ground state, sup-
porting one more magnetic sublevel. Hence, driving a σ-transition with a circularly
polarized laser is possible and the cycle remains closed even under varying magnetic
fields. This is the reason for locking the cooling laser to the 23P2-transition13.

Since the objective is to slow the atoms exiting the collimation stage from an initial
velocity to a final velocity within a fixed distance x0, the atoms will have a position
dependent velocity within the Zeeman slower. Equivalently, the Doppler detuning
will be position dependent and thus, the magnetic field will have to vary depending
on the position of the atoms and fortunately not in time. Assuming a constant force,
i.e. deceleration, the velocity drops quadratically with distance traveled. Thus, an
appropriate magnetic field to maintain the resonance condition follows [97]

B(x) = B0 −Bx0

√
1 + x/x0 (2.21)

As there are two maximally stretched states the Zeeman slower can in principle
operate at either of the two σ-transitions, depending on the definition of the quan-
tization axis. It is intuitive to use the initial magnetic field direction to define this
axis. The most simple type of Zeeman slower starts at zero magnetic field which
then gradually increases until it reaches its maximum magnitude at the end of the
slower. This way the Zeeman-tuned slowing works on the closed cycle transition of
σ+. A Zeeman slower employing the σ−-transition on the other hand, starts at a high
magnetic field and then monotonically decreases. However, latter design allows for
some freedom in choosing the final magnetic field. By giving the counter-propagating
laser light a red detuning from the atomic resonance the magnetic field can cross
zero magnitude, change its direction and increase again. This change typically is
slow enough, such that the atoms can follow the change in magnetic field and do not
undergo Majorana-flips (see chapter 2.8). There are two main considerations why
this advantage is important for the implementation. Firstly, for helium there exists a

13The same reasoning applies to the situation in the MOT
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level crossing between the used transition 23P2 and the 23P1-transition at 563G [98],
a magnetic field magnitude close to what would be required by a σ+-Zeeman slower
for atoms in this experiment. The other consideration is related to the section that
follows the Zeeman slower. Obviously, a large field at the end of the Zeeman slower
takes longer to decay and thus, would penetrate deeper into the MOT where the
experiments later will take place. Nevertheless, the laser beam for Zeeman slowing
shines through the MOT. Hence, some magnetic field at the end of the Zeeman
slower bears the additional advantage that the laser needs to be detuned and by
proper design can be far off-resonant for atoms in the MOT.

In chapter 2.2.2 it was argued that the spontaneous emission is isotropic in all
directions and thus the net force is zero. However, in the process of scattering in-
dividual photons the atoms undergo a random walk and thus the beam spreads
transversely [99, 100]. This heating becomes more pronounced the longer the slower
is and towards the end of the Zeeman slower and has a severe effect on the diver-
gence of the atomic beam exiting the slower. Thus, a short slower is desirable and
the exit of the slower should not give much space for the atoms to diverge before
they are captured by the MOT.

2.5.2 The implementation of the Zeeman slower into the
system

With the Biot-Savart law it is straight forward to calculate a magnetic field for
a given geometry of currents. The reversed process, i.e. calculating the required
geometry of currents for a desired magnetic field can be challenging. However, with
nowadays computer power an algorithm can be run to optimize the distribution of
current loops such, that the shape of the magnetic field on the axis of the solenoid
has the desired profile. The final code for such an optimization using Mathematica
can be found in Florian Leupold’s master thesis [101]. The result is shown in fig. 2.12.
The theoretical curve is given by the amount of deceleration required and the length
of the vacuum tube.

Here, it becomes obvious why the closed cryostat at the source to pre-cool the
atoms and thus, achieve a smaller initial velocity makes the whole system smaller and
simpler. The atoms only need to be slowed by about 800 m/s, which corresponds
to about 530G and is theoretically possible on a distance of roughly 80 cm. In
the case of a Zeeman slower with a zero crossing the magnetic field B0 can be
distributed roughly even between the two sections on the left and right of the zero
crossing. This is advantageous as the required electrical power to run the solenoid
is mostly determined by the maximal magnetic field. Additionally, not only more
power is consumed for high fields, but the dissipation of electrical power into heat
makes active water cooling a requirement at a certain level. For this reason the first
generation Zeeman slower consisted of double-wall vacuum tube to carry cooling
water along the inner side of the solenoid. However, the current needed and the heat
dissipation were small enough to discontinue the water cooling precautions in the
second generation slower.

The algorithm to compute the necessary current distribution arranges small coils
in an optimal way to reproduce the desired field. This is exactly what happened
in reality when a wire was wound around the vacuum tube. Fig. 2.13 shows the
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Figure 2.12: The magnetic field in the vacuum tube for the Zeeman slower follows
eq. (2.21). The real field (purple) and the simulated (blue) correspond
almost perfectly (a). However, at the steps of the layer a step in the
field occurs, too. This is more obvious when the local efficiency η(x) is
plotted (b).

partially finished Zeeman slower on a lathe-like arrangement to wind the solenoid.
The solenoid is wound in such a way that a first layer of coils is wound until the
desired amount of coils is reached. Then the wire is lifted into the next half-layer
and wound back. Repeating this for all layers, care was taken that the wires stay
where they are supposed to be by fixing them with Kapton tape at the steps of one
layer to the next. A plastic ring holds the wire in place at the start of all layers. An
important point for the construction is that wire with a circular cross-section does
not tightly drop into the grooves of the preceding layer, making the layers irregular
very fast. For this reason rectangular wire is used with dimensions of the enameled
wire of 2.5× 1.1 mm2 plus 0.05 mm isolation on each side.

The solenoid has two geometrical constraints in terms of its diameter. The outer
diameter was given by the design of the science chamber and the effort to be as
close as possible with the exit of the Zeeman slower to the MOT position. The inner
diameter is given by the diameter of the vacuum tube. On one hand, this should be
as small as possible to improve the ultra high vacuum in the science chamber by
differential pumping. On the other hand the atomic beam needs to get through it
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Figure 2.13: For building of the Zeeman slower the vacuum tube was mounted with
ball bearings such that it can be rotated. A rectangular wire was care-
fully wound around the tube forming a tapered solenoid to create the
required magnetic field to slow atoms inside the tube.

and be decelerated. Not only a hard task to align, given the length of the Zeeman
slower (1.36 m), but the smaller the inner diameter of the solenoid the less uniform
is the field inside the tube. Thus, the atomic beam needs to be more precisely on the
axis of the slower. For this the outer tube diameter (wall thickness 2 mm) was chosen
to be 34 mm. Fig. 2.14 shows that the current design is tolerant to atoms being more
than 10 mm off axis. The magnetic field calculations for this where done using the
Radia14 package for Mathematica with which the three dimensional magnetic field
of known geometries can be calculated easily.

While the ideal Zeeman slower has a smooth variation along the axis, the real
solenoid is made out of individual coils with steps at each layer (compare fig. 2.12).
At these steps the magnetic field changes faster than what would be required for a
constant deceleration. To take this into account a position dependent efficiency η(x)
of the Zeeman slowing can be calculated [97]

η(x) =
2mµeff
~2k3

LΓ

dB(x)

dx

(
µeffB(x)

~
− δ0

)
(2.22)

where δ0 is really just the detuning of the laser from the atomic resonance without
taking the Doppler or Zeeman shift into account. As can be seen in fig. 2.12 the
efficiency of the slower needs to go up everywhere a layer of coils ends. If there is
enough time between steps where the required efficiency is low enough for the atoms
to catch up again, the slower works even with short stages where the efficiency goes
above unity. However, once the resonance condition is lost, the atoms will never get

14Radia is a Mathematica package developed by the European Synchrotron Radiation Facility
(ESRF) and can be used in different branches of physics, where efficient solutions of 3D bound-
ary problems of Magnetostatics are needed
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Figure 2.14: Calculating the equation of motion of the atoms along different direc-
tions in the vacuum tube reveals the tolerance of the Zeeman slower
to misalignment. All atoms entering the Zeeman slower with velocities
smaller than 850 m/s are collected and slowed to less than 60 m/s. Even
if the atomic beam is completely off axis or misaligned with the Zeeman
slower axis, the atoms are slowed.

back into resonance. Thus, it is meaningful to make the slower a little longer than
what is necessary. A length of the solenoid of 1.36 m gives an overall efficiency of
about 0.7.

The power for the solenoid (2.2A for the first section and 1.9A for the second)
is delivered by a standard laboratory power supply (PL330QMD, Thurlby Thandar
Instruments). The current stability only marginally changes the acceptable veloc-
ity (first section) and final velocity (second section) of atoms that can be slowed.
So no active stabilization of the currents is required. However, as the MOT is al-
ready 20.5 cm downstream of the Zeeman slower exit, no compensation coil for the
magnetic field was installed, which would require even more space. Therefore, the
magnetic field of the second section can penetrate into the MOT region (1G in z-
direction at the center of the MOT). There was no effect observed on the MOT when
the Zeeman slower was left on. However, in full operation of the system the second
section is switched of by a voltage at a linearly regulated insulated-gate bipolar
transistor (IGBT) to avoid effects in the magnetic trap and imaging. The IGBT ad-
ditionally stabilizes the current through the section by comparing the voltage across
a shunt resistor.

The laser beam to perform the deceleration is expanded by a fiber coupler (60FC-
Q1083-4-M150-37, Schäfter und Kirchhoff). The coupler holds a λ/4-waveplate to
make the laser circularly polarized. To reduce the effect of the random walk heating
in the slower the laser is focused onto the source, i.e. the initial 36 mm beam waist
reduces to below 1 mm at the skimmer. This creates a curved wave front just as in
the collimation section. The photons off-axis have some component pointing towards
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the axis and can thus imprint a small momentum kick back to the axis. When the
Zeeman slower was first set up a laser power of about 90 mW was used. However, a
laser power of 10 mW suffices as well, corresponding to the saturation intensity. The
detuning of the laser is δ0 = −370 MHz.

The atomic beam entering the Zeeman slower consists of an unpolarized sample
of atoms. Atoms in the wrong magnetic sublevel would not be slowed in the Zeeman
slower as their energy shifts would be in the wrong direction. However, the field
first rises at the entrance of the Zeeman slower before actual slowing begins at the
maximum field. Within this slope the transition m−1

15 to m0 becomes resonant first
and the m−1-state becomes depopulated. A little bit later the transition m0 to m1

becomes resonant with the laser light and hence, the atoms become spin polarized
as they enter the Zeeman slower.

In order to achieve ultra high vacuum in the science chamber the source side
has to be blocked as well as possible. The first measure is to reduce the opening
of the Zeeman slower. For this purpose a differential pumping tube with an outer
diameter matching the inner diameter of the vacuum tube of the Zeeman slower is
inserted. The differential pumping tube has a bore of 3.5 mm, just big enough to let
the atomic beam enter, and has a length of 150 mm. In the second generation of the
Zeeman slower a six-way-cross was placed at the zero crossing of the magnetic field,
i.e. where no solenoid is needed. This gave optical access, but more importantly gave
space for a turbo pump (HiPace300, Pfeiffer Vacuum) that pumps out already most
of the residual gas coming from the source.

2.5.3 The performance of the Zeeman slower
To confirm that the actual magnetic field reproduces the simulated one, a Hall-
probe was guided through the tube. A sledge carrying the probe was moved in 2 mm
steps by means of a M6-threaded rod. Fig.2.12 shows how well the field matches the
theoretical needed one.

For troubleshooting the experiment the velocity of atoms coming out of the source
for He∗ has to be measured, as too fast atoms cannot be slowed by the Zeeman slower
(see fig. 2.15). For diagnosis purposes the initial velocity of the atomic beam it can
be “chopped” by switching of and on the collimation section. The arrival of atoms
at the Faraday cup 2.1 m behind the source is indicated by a rise of the flux, i.e.
increase in current. From this time of flight measurement a velocity can be deduced.
To characterize the functionality of the Zeeman slower no faraday cup can be placed
further downstream as the laser light would be blocked. An alternative, is to probe
the atomic beam behind the Zeeman slower from the side with the laser at 389 nm.
The scattered photons from this laser are then collected by an EMCCD. The laser
is not at perfectly 90◦ to the atoms, but deviates from this by an angle β. This
gives the laser a small but sufficient sensitivity to the longitudinal velocity of the
atoms by means of the Doppler shift δD = −kL vx cos β. This doppler shift needs to
be compensated by the laser frequency to maintain a high fluorescence signal. Two
AOMs are arranged such that the angle of the beam is unchanged when scanning
δ0 from 0− 60 MHz (see fig. 2.8).

15For the remainder of this dissertation the state mJ = −1 is abbreviated as m−1 and all other
magnetic substates correspondingly as no confusion with different J can arise.
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Figure 2.15: The atomic beam can be “chopped” by turning on and off the col-
limation stage. The increase in flux is detected with a Faraday cup
2.1 m behind the collimation section. The light pulse is recorded as well
and serves as reference (brown) to calculate the time of flight of the
atoms. The purple trace corresponds to a source running at 60 K and
the blue to 22 K. The velocity increases when the source is warmer.
The inset shows the corresponding velocities. This can be used for di-
agnostic purposes of the source however, is not available to measure
the velocities after the Zeeman slower. The velocities shown here are
significantly smaller than what was measured when the source and the
Zeeman slower were initially characterized. The data here is from a
more recent troubleshooting and hence suggests that the source has
improved during operation in that characteristic.

From the signal strength the resonant atoms can be counted and via the condition
δD = δ0 related to a velocity. Fig. 2.16 shows the result of such a measurement for
a non-slowed beam, the first Zeeman section turned on, and for the second section
turned on at about 1A. The initial atomic beam has a velocity peaking at almost
900 m/s. The first section than reduces the velocity to about half its magnitude,
while the second brings them down to about 150 m/s.

The overall intensity of the slowed atoms seems to decrease, the slower the atoms
get. However, this is due to the random walk heating that causes the atoms to spread.
The absence of any atoms at the initial velocity rather indicates a high degree of
efficiency of the slowing process. The reduced signal strength at lower velocities is
also the reason for the low current in the second section. Higher currents in the
second section would further reduce the speed. However, they were not detectable
anymore with the described method. As a matter of fact this is the signature of a
working Zeeman slower in the usually used troubleshooting scheme: a resonant laser
sheet of the 389 nm laser shines through a viewport of the MOT and its fluorescence
is viewed by the EMMCD. The atoms can be seen when the slower is off. When
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Figure 2.16: The velocity of the atomic beam after the Zeeman slower is measured
with an off-resonant laser beam under an angle to be sensitive to the
velocity component along the x-axis. Scanning the laser frequency re-
veals the operation of the Zeeman slower. Without the Zeeman slower
the atoms have a velocity of about 900 m/s (blue). The first Zeeman
slower section slows the atoms to less than 400 m/s (purple) and the
second section brings the velocity down to capturable values (brown).
The decrease in signal is caused by the spread of the atomic beam due
to transversal heating within the Zeeman slower.

the first section is switched on the signal spreads and with the second section active
almost no atoms are visible.

2.6 The magneto-optical trap

The source supplies the experiment with He∗, the collimation stage increases the
flux, and the Zeeman slower decelerates the atoms tunably below 100 m/s. The next
step is to spatialy trap the atoms. For this purpose, all ultra cold atom experiments
use the celebrated magneto-optical trap (MOT) [102–107]. The MOT combines a
magnetic field with the radiative force of light to create a position dependent force
field. In this section the principle idea behind a MOT is presented for completeness,
but is not focus of this dissertation.

The MOT consists of three pairs of lasers and two coils for the magnetic field.
The coils are positioned at y = ±60 mm on the y-axis which is horizontal and
perpendicular to the atomic beam propagation direction (x-axis). They are part of
the magnetic trap16 as well, but are used in this situation with 75 A in an anti-
Helmholtz configuration. An observer at the center of the trap looking in positive
y-direction would see the current at y = +60 mm rotate clockwise. This creates
a quadrupole field (dB

dy
∼ 7G/m) with the magnetic field pointing away from the

16Chapter 2.8.2 will describe how they are produced
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Figure 2.17: A two dimensional schematic of the MOT principle. Due to the symme-
try of the coils, the field is rotationally symmetric around the y-axis as
well. The field lines are pointing away from the origin at the y-axis and
to the origin in xz-plane. This way a local quantization can be defined
that allows for σ+-transitions, with the laser counter-propagating the
atoms. Due to the Zeeman shift the atoms stay on resonance with the
laser beam they are propagating towards even when they are slowed.

origin on the y-axis and to the origin in the xz-plane (see fig. 2.17). The laser pairs
are then on the y-axis and in the xz-plane. In order to not interfere with the Zeeman
slower the pairs in the xz-plane are under 45◦ and −45◦ to the x-axis, respectively.
The lasers are detuned −40 MHz from the atomic resonance and are all circularly
polarized.

While the lasers on the y-axis are right handed 17, the four lasers in the xz-plane
are all left handed. This way they are all driving a σ+-transition on their side of the
trap. As the lasers are red detuned they are in resonance with atoms in the center
that move rapidly towards them. Due to the magnetic field they are also resonant
with slow atoms on there respective side of the trap and not resonant with atoms,
slow or fast, at the other side of the trap. Simplified, this means each side of each
direction forms a Zeeman slower, which eventually pushes the atoms back into the
trap. The mechanism of a MOT is analyzed e.g. in ref. [104]

17Throughout this dissertation the convention for left and right handed is to define it with respect
to the photon, i.e. an observer travelling with the photon would see the electric field rotate
clockwise for right handed light
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To generate the six beams the laser with shifted frequency is split into six plus
one18 equally power balanced components by the fiber cluster. They are then guided
by fibers directly to collimators that are attached to the viewports and have only
the tip/tilt degrees of freedom. The collimators have a λ/4-waveplate incorporated
to produce the correct polarization after the PM-fiber. The beam waist after the
collimators is 55 mm corresponding to about twice the saturation intensity.

The MOT is able to capture atoms as fast as 80 m/s (this is equivalent to a few
K) and cool them down to typically ∼ 1.5 mK. This is a reduction of three orders of
magnitude in temperature from the velocity after the Zeeman slower19. In principle
one could think that an infinite amount of atoms can be trapped with a MOT as long
as atoms are supplied by the slowed atomic beam. However, collisions with the hot
background gas and inelastic intraspecies collisions (e.g. three body collisions that
lead to the formation of molecules) lead to a loss of atoms from the trap. Especially
for metastable helium the rate at which inelastic collisions occur increases as the
density of the cold cloud increases with higher atom numbers. For He∗ detrimental
inelastic collisions can happen already between two helium atoms. The high internal
energy of He∗ is not only released upon collision with the walls of a MCP, but also
when the atom collides with another He∗ or a background gas atom. In this process
the He∗ atom returns to the real ground state and its energy ionizes the collision
partner. Thus, all participants of the collision are lost from the trapping scheme due
to the so called Penning ionization.

The Penning ionization is the reason for the large detuning of the MOT lasers20 to
minimize the loss rate due to high densities but still achieve large atom numbers [105,
106, 108]. However, at some point loss rates become as large as the loading rate with
the slowed atomic beam and a steady state is reached. In this system the steady state
is reached when about 109 atoms are compressed to a sphere with radius ∼ 1.2 mm
(Fig 2.18 shows a time series of a cloud after being released from the MOT). This
is an increase of phase space density by four orders of magnitude from the start at
the source and serves itself as a starting point for ultra-cold atom experiments.

2.7 The absorption imaging of atomic clouds
The shadow image of atoms in fig. 2.18 was taken by shining a weak laser beam on the
cold atoms. The laser is resonant with the atoms and some photons get scattered
out of the beam. An EMCCD behind the cloud collects the unscattered photons
and by that images the shadow of the atoms. This absorptive measurement heats
up the cloud and the atoms are eventually lost. There are schemes that can monitor
cold atoms non-destructively by using off-resonant lasers which only experience a
dispersion due to the presence of the dense cloud of atoms [109]. However, absorption
imaging is the simplest scheme to implement and is well understood to determine
atom numbers and cloud profiles. This section describes how the images are taken
and analyzed to gain the information about the cloud.

18the seventh component is only used for monitoring. This occurs because the lasers for spin
polarization (see chapter 2.8.4) are prepared with the same cluster.

19Actually, the temperature of the atoms after the Zeeman slower with respect to their velocity
distribution in a co-moving frame is almost the same as in the MOT

20Typical alkali experiments work with a detuning on the order of the linewidth
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Figure 2.18: The atomic cloud expanding after being released from the MOT is
imaged with absorption imaging (see next section 2.7). The temperature
of the cloud can be extracted from the isotropic expansion.

For imaging an EMCCD-camera (iXon885-VP, Andor) is used. The chip is opti-
mized to extend into the near UV spectrum and has ultra fast readout electronics
(35 MHz, vertical clock speed < 1µs). However, due to the electronmultiplier gain
it is able to detect low intensity levels of light with 1083 nm wavelength as well.
Hence, the 1 Megapixel large chip with 8 × 8µm2 pixel size can be used for ab-
sorption imaging with intensities below the saturation intensity. Emerging cameras
using an InGaAs chip, which has its maximal sensitive further in the near IR, are
available. However, in practice no superior images could be obtained and more post-
or pre-processing of the read out signal is required.

The simple scheme of absorption imaging is depicted in fig. 2.19. The laser is
scattered from the cloud and loses intensity depending on the profile of the atomic
cloud. This is an application of the Lambert-Beer law (eq. (2.9). However, in this
case not the total intensity is recorded. A lens images the plane of the cloud on to
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Figure 2.19: A laser beam falls onto the atomic cloud and is partially absorbed. Two
lenses can be placed in between the atomic cloud and the EMCCD
camera to select between different magnifications (f = 125 mm for 4:1
and f = 150 mm for 1:1). The offset coils can be used to define a
quantization axis parallel to the laser beam.

the chip of the EMCCD camera and the two dimensional profile of a low intensity
laser beam coming from −∞ is gained21

I(x, y, z) = I(−∞, y, z) exp

(
−Γ

2

~ωL
Is(1 + 4(δ/Γ)2)

∫ x

−∞
n(x, y, z)dx

)
(2.23)

where the resulting intensity profile is an integration over the density n(x, y, z) of the
cloud along its propagation direction. In this low intensity approximation it is also
assumed that the laser linewidth is negligible compared to the linewidth of the tran-
sition. An imaging sequence consists of an image of the shadow of the cloud Ic(y, z),
a subsequent image of the laser without cloud as reference Ir(y, z), and finally an
image without the laser to subtract the background Ib(y, z). As the absorption is
logarithmic the final picture is calculated as well by taking the logarithm to obtain
optical density(compare eq (2.9))

OD(y, z) = ln

(
Ic(y, z)− Ib(y, z)
Ir(y, z)− Ib(y, z)

)
(2.24)

From the original Lambert-Beer idea one can assume each pixel of the EMCCD to
be a bucket detector and just sum up the intensity on each pixel to get the number
of atoms N [110]

N = −2πApixel
3λ3

I ′s(T )

Is

∑
pixel

OD(y, z) (2.25)

21Here the coordinate system is rotated by π/8 around the y-axis with respect to the original
coordinate system. This makes the analysis for absorption imaging much easier as the new
x-axis falls together with the k-vector of the light.
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Here Apixel is the effective area of the pixel taking magnification by the optical
system into account. Additionally, a parameter I ′s(T ) is introduced. This takes care
of effects of polarization and temperatures for the saturation intensity and will be
discussed a little later. A more complete information about the atomic cloud can
be gained from fitting the resulting image. Not only are statistical fluctuations on
different pixels averaged out this way, but also the radii of the cloud can be extracted.
A thermal cloud’s density is governed by the Boltzmann statistics and results in
a Gaussian distribution. However, the BEC is described by an inverted parabola
(compare section 2.9). So the fit needs to include two functions when approaching
the transition to the BEC:

OD(y, z) =− ~ωL
I ′s(T )

Γ

2

(
Ntherm

2πσyσz
exp

(
− y2

2σ2
y

− z2

2σ2
z

)
(2.26)

+
9

16

NBEC

RTF yRTF z

(
1− y2

R2
TF y

)(
1− z2

R2
TF z

))

This is the general fitting function including a BEC with its Thomas-Fermi radii
RTF y,z. However, in most situations only one of the distributions is imaged and the
respective term can be dropped. Additionally, to the number of atoms the fit proce-
dure also holds the radii of the cloud. Taking a time series of the cloud expanding,
i.e. measuring the time of flight, one can deduce the temperature of the cloud as
well as

σ2
i (t) = σ2

i (0) +
kBT

m
t2 (2.27)

This is how the most important data is extracted from the images, though in the
equations a modified saturation intensity is used. There are two factors modifying
the lineshape of the atoms. Depending on the orientation of the atoms with respect
to the laser beam propagation, i.e. the polarization of the atoms, and the laser
polarization, the laser is absorbed with different strength. In different situations
different factors have to be used and a detailed analysis can be found in ref. [111]. For
linear light and unpolarized atoms the f-factor is initially 18/10 and becomes 17/10
in the steady state. A circularly polarized beam pumping the atoms to the m+1-
state changes more drastically the f-factor to ideally up to 3. However, comparison
of the two polarizations did not show a statistical significant difference in the MOT
and magnetic trap. This is likely to be due to the propagation direction of the
laser perpendicular to the quantization axis of the magnetic trap. This way the
atomic cloud appears unpolarized to the laser beam and the optical pumping is
insufficient to reach a steady state with f = 3. To be less susceptible to magnetic
field fluctuations after the switch off of the magnetic trap, typically a field of 2G is
applied pointing in the propagation direction of the laser.

A second factor χ(T ) is required owed to the thermal distribution of the atoms.
Not all atoms are on resonance with the laser. Integration over the Boltzmann
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distribution for thermal atomic clouds then gives

χ(T ) =
√
πu(T ) exp

(
u2(t)

)
erfc (u(T )) (2.28)

u(T ) =
λΓ

4π

√
m

2kBT

This is a marginal correction for the heavy alkali. In helium however, a temperature
of 50µK results in 10% less absorption by the atoms and a cloud with a temperature
of 1 mK already absorbs 70% less light. With these two corrections the saturation
intensity is given by

I ′s(T ) =
f

χ(T )
Is (2.29)

Typical CCD cameras are made for visible light. The two transitions of He∗ lie
at the edge of this spectrum. However, most cameras have a prolonged quantum
efficiency (QE) into the ultra violet, while the infrared is significantly reduced. The
EMCCD used in this experiment has a QE of ∼ 30% at 389 nm and 0.1% at 1083 nm.
This makes the blue laser a convenient tool when monitoring the fluorescence of the
atomic beam in the sections 2.4 and 2.5. Yet, the atoms exposed to the laser beam
are pushed in the direction of the beam and heated radially leading to a weaker signal
as the light impinges on them. The more photons the atoms absorb the more they
get out of resonance and scatter less photons. For fluorescent imaging of an atomic
beam this degradation does not play a role as new atoms are continuously provided.
However for imaging of cold samples of atomic clouds it becomes important. Fig. 2.20
shows the scattering rate per atom over time for the two transitions.

It is clear from these considerations that the blue laser is not useful to obtain a
good signal in absorption imaging. The atoms do not even scatter two photons before
they get out of resonance, due to the high recoil velocity of 256.5 mm/s. On the other
hand, the atoms can scatter about 15 photons within 60µs when exposed to 0.1 Is
of the light driving the 23P2 transition. Thus, the higher scattering outweighs the
technological advantage of laser with a wavelength of 389 nm. A possible solution to
overcome the radiative force in imaging of one beam is to set up an optical scheme
where second beam from the opposite side balances the force on the atoms [70, 112].
However, metastable helium does not rely on such sophisticated optics as detection
of helium can outstandingly be achieved with the DLD detector.

2.8 The magnetic trapping of metastbale helium
The MOT is able to capture atoms with velocities up to 80 m/s and cool them
to a few mK. Bose-Einstein condensation typically occurs around 1µK. This is
even below the Doppler temperature. When the first BEC was produced in 1995
the breakthrough came with the implementation of evaporative cooling for atomic
gases [113, 114]. Evaporative cooling will be described in more detail in chapter 2.9,
but the idea is similar to cooling a cup of coffee. The hottest atoms evaporate
from the liquid and the remaining atoms cool down. To enhance the effect one
can blow the vapor away and force the evaporated atoms away to leave, thus more
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Figure 2.20: The scattering rate per atom is displayed over time in units of the
maximal possible scattering rate. Each dot indicates a scattered photon
after an average time. Because of the large momentum transfer the
scattering rate per atom drops significantly before a second photon can
be scattered in the case of 389 nm laser light. The exposure time in the
case of laser light with wavelength 1083 nm is chosen such that about
15 photons are scattered at 0.1 Is.

atoms can evaporate. In principle this can be achieved in an optical dipole trap.
Optical dipole traps are not based on radiative force which limit the temperature,
but are conservative forces far off resonance to avoid absorption of photons, i.e.
momentum transfer. Nevertheless, “blowing” the hottest atoms away is hard in this
scheme. There are schemes of crossed dipole traps that achieve all optical runaway
cooling [80, 115, 116], however magnetic traps offer an easier handle to do the forced
evaporative cooling.

In section 2.6 it was argued that Penning ionization limits the density achievable
with metastable atoms. However, it was experimentally shown that Penning ion-
ization is significantly suppressed for a spin polarized cloud [72]. During Penning
ionization of a triplet state atom the electron needs to flip its spin in order to relax
to its ground state. However, in a spin polarized cloud a two atom system is in its
maximally stretched state and the collision partner cannot take up the spin of the re-
laxed electron. Thus, spin conservation avoids Penning ionization. This is especially
pronounced in the case of 4He, where no nuclear spin exists which could take up the
spin. Because all other noble gases have a nuclear spin, this actually is the dominant
effect that so far has obstructed condensation of other species, e.g. neon [74]. In the
first subsection it will become obvious why a magnetic trap naturally works well for
a cloud of He∗. Thus, a magnetic trap offers the most straightforward method to
achieve Bose-Einstein condensation and its theoretical background, implementation,
results, and consequences will be discussed in this section.
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2.8.1 The theoretical considerations for a magnetic trap
From eq. (2.12) it follows that depending on the magnetic sublevel the energy can
shift to higher or lower energies. This can be used to trap neutral atoms with a
magnetostatic trap [117–119]. The force experienced by an atom in a magnetic field
is given by:

~F = mJ~µ ·∇| ~B| (2.30)

A He∗ in its virtual ground state 23S1 has three magnetic sublevels. While the m0

state does not experience a shift in a magnetic field the energy of the m−1 state is
lowered and the energy of the m+1 state is raised proportional to a magnetic field.
Due to the fact that physical systems try to minimize their energy m+1 is called low
field seeking state, while m−1 is called high field seeking state. As it is impossible
to generate a three dimensional local maximum for a magnetic field only the low
field seeking state can be trapped. This is advantageous in two situations. Firstly,
the cloud is naturally spin polarized once it is trapped and Penning ionization is
suppressed. Because the MOT relies on an unpolarized cloud of atoms, in subsec-
tion 2.8.4 it will be shown that it is necessary to spin polarize the atoms while the
magnetic trap is switched on in order not to loose more than half of the atoms at the
transfer from MOT to the magnetic trap. The second advantage is that atoms can be
selectively outcoupled of the trap by transferring them to other magnetic sublevels.
This is first used when runaway evaporation is enforced on the hottest atoms. But
the different behavior in magnetic fields of the different sublevels is also a nice fea-
ture for the creation of the counter-propagating matter waves. There, atoms can be
transferred into a magnetic insensitive state to cancel effects of any stray magnetic
fields on their way to the DLD detector.

The strength of such a magnetic trap is given by how fast the magnetic field
rises around the minimum. The simplest geometry to achieve such a field is the
quadrupole field of anti-Helmholtz coils, which is used for the MOT as well. How-
ever,the advantage that atoms which are not in the low field seeking state are lost
from the trap during evaporative cooling, is a disadvantage in this situation. The
magnetic moment of the atom has to follow the field direction for the energy to be
minimal. The condition for this to happen is that the rate at which the direction of
the magnetic field θ changes should be smaller than the Larmor frequency22 of the
atom

dθ

dt
<
µ|B(x, y, z)|

~
(2.31)

The Larmor frequency is proportional to the magnitude of the magnetic field and
thus, approaches zero for zero magnetic field. Thus, at low magnetic fields where
the direction changes faster than what the atoms can follow the atoms end up
in another state. The effect is commonly referred as Majorana spin flip, but is
also captured in the problem of Landau-Zener transitions [120]. The Landau-Zener-
problem looks at the probability of finding a quantum mechanical system in the

22The Larmor frequency is the frequency at which the magnetic moment precesses around an
external magnetic field. Its value is related to the Zeeman energy by 1/~
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upper energy eigenstate in the presence of a timevarying Hamiltonian. The minimum
of the quadrupole field however is zero and thus, such a geometry offers only limited
lifetimes. As the atoms at the center of the trap are mostly from the low energetic
tail of the Boltzmann distribution of the cloud this loss does not lead to cooling of
the cloud and should be avoided.

Even though there are schemes that circumvent the loss in the middle of the
quadrupole trap, e.g. with time-average orbiting potential or a blue detuned optical
plug to avoid atoms entering the region of loss [35, 121, 122], it is evident from this
example that it is advantageous for a magnetic trap to offer a magnetic field offset
(trap bottom). One of the most commonly used geometry is a Ioffe-Pritchard type
of trap, where a “cloverleaf”23 configuration offers 360◦ optical access in the plane
perpendicular to the axis of the coils. A total of twelve coils (six on each side of
the trap) is required to achieve the field. A set of two small coils on axis (SA-coils)
carrying current in the same direction generate a harmonic potential along the y-
axis. A second set of large coils on axis (LA-coils)24 generate a constant field in the
trap region. Those coils together achieve a confinement along the y-axis and can
control the trap bottom. However, their field has a saddle point at the center of
the trap and atoms would leave radially in the xz-plane. Four “cloverleaf” coils on
each side placed off axis (CL-coils) carry current with alternating direction within
one side and with respect to the other side. The superposition of their fields gives a
strong linear confinement in the xz-plane and prevents the atoms to leave in those
two dimensions. Fig. 2.21 shows the arrangement.

The adiabatic condition for the magnetic moment to follow the direction of the
magnetic field still holds and for this configuration the lifetime of a cloud in such a
trap can be calculated with [123]:

τmajorana =

(
2πωtrap tanh

~ωtrap
2kBT

Exp

(
−4µB + ~ωtrap

~ωtrap
tanh

~ωtrap
2kBT

))−1

(2.32)

Fig. 2.22 shows that for a typical system below a trap bottom of 2G the lifetime
of the atoms in the magnetic trap become limited by Majorana spin flips. This is
more pronounced at higher temperatures as the atoms move faster in the trap and
experience a faster change of the direction of the magnetic field.

The geometry of an Ioffe-Pritchard type trap is fully defined by three parameters.

The axial curvature B′′y = ∂2 ~B(0)
∂y2

is produced by the small coils on axis; the clover

leafs off axis are responsible for the radial gradient B′r = ∂ ~B(0)
∂x

= ∂ ~B(0)
∂z

; and the large

coils on axis define the trap bottom B0 = | ~B(0)| by subtracting an almost constant
field from the field produced by the small coils on axis. With this parameters it is
possible to calculate the magnetic field strength in cylindrical coordinates:

| ~B(y, r, ϕ)| =
√

(B′2r −B0B′′y )r2 + (B0 +B′′yy
2)2 − 2B′′yB

′
ryr

2 sin 2ϕ+B′′2y r
4/4

(2.33)

23The name stems from four small coils placed off axis on each side giving the coil arrangement
the shape of clover.

24The same coils are used for the MOT but in anti-Helmholtz configuration
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Figure 2.21: The coil arrangement to achieve magnetic trapping of He∗. The two
small coils on axis achieve trapping along the y-axis, the two large coils
on axis generate an offset and the small coils off axis confine the atoms
radially. The arrows indicate the direction of current in each coil during
operation of the magnetic trap.

A peculiarity is that the trapping potential is linear in radial direction but be-
comes harmonic in the center where the trap bottom is generated to avoid Majorana
flips. The radius where the transition from linear to harmonic regime happens is de-
termined by the condition (| ~B(~r)| − B0)/B0 < 1 for the trap to be harmonic. In a
strong magnetic trap with low trap bottom this radius can be as small as 200µm.
Thus, a large thermal cloud of atoms extends wide into the linear regime, from which
the evaporative cooling will benefit as will be seen in chapter 2.9.1. Once the motion
of the atoms is governed by the harmonic regime however, the trapping frequencies
of the trap can then written as

ωrad =

√
µ

m
(B′2r /B0 −B′′y ) (2.34)

ωax =

√
2µB′′y
m

Experimentally ωrad and ωax can be adjusted independently by changing the cur-
rents in the CL-coils and SA-coils, respectively. However, ωrad also depends on the
trap bottom which can be controlled by the LA-coils. So by increasing the current
in those coils the trap bottom can be lowered and the trap becomes more stiff in
radial direction, compressing the atomic cloud.

When capturing a thermal cloud of atoms the efficiency at which this happens is
limited by the trap depth. If the atoms have a higher energy than the energy depth of
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Figure 2.22: The influence of Majorana flip loss in the cloverleaf trap. As the trap
bottom becomes too low the Larmor frequency of the atoms decreases
at the center of the trap as well. As a result the atoms cannot follow
the change of the magnetic field anymore and undergo Landau-Zener
transitions to the untrapped magnetic substates. Hence, the lifetime
becomes limited by Majorana spin flips for magnetic fields below 1G
and drops below 60 s. The inset shows a measurement of the lifetime in
the uncompressed magnetic trap yielding τloss = 55 s

the trap, they will escape. The cloverleaf trap has four saddle points where this can
happen. Those are typically some mK higher than the trap bottom. This requires
the cloud to be loaded into the trap to be 6 1 mK and explains why a magnetic
trap cannot be directly loaded from the Zeeman-slowed beam. In chapter 2.8.4 it
will be shown that even for the transfer from a MOT extra precautions are required
to achieve efficient loading.

2.8.2 The realization of the magnetic trap

In the previous subsection it was shown that a magnetic trapping potential with
an offset at the center can be achieved using a cloverleaf configuration, i.e. a set
of twelve coils. This offset makes the cloverleaf configuration superior over a simple
quadrupole field. However, two coils in anti-Helmholtz configuration generate easily
high magnetic gradients thus, achieving stiff trapping with little current. In contrast,
a cloverleaf trap requires a considerable amount of current to generate a confining
potential. Especially, because the coils have to be placed fairly far away from the
trap center due to the large volume of the MOT and the diameter of its laser
beams. Additionally, the load of the MCP detector will be attached to the vacuum
chamber hosting the MOT and magnetic trap. Thus, a glass cell would be exposed
to considerable stress and might break. In this experiment reentrant flanges are used
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to bring the coils as close as ±25 mm25 to the trap center. The reentrant flanges have
another inner tube that makes it possible to have the thick viewport for the MOT
beams behind the coils. Thus, the coils are closer to the trap center however, they
cannot be removed without breaking the vacuum26.

The coils itself are wound out of 4 × 4 mm2 rectangular copper tubes with a
2 × 2 mm2 hollow core to be cooled from the inside using 16 ◦◦C cold water (at
6 bar). Each coil has three layers with three windings each. The diameter of the coils
is given by the geometry of the reentrant flanges. The SA coils are optimized with
an inner diameter of 51 mm, just big enough to be pushed over the knife edge of the
viewport flange. The flange itself is assembled after the magnetic trap is inserted.
The diameter of the LA coils (112 mm) is given by the inner radius of the reentrant
flange and some extra space to guide the tubes for the CL coils to the back. The CL
coils need to be fit between those two dimensions. Squashing them to racetracks gives
a little bit more circumference27. The straight part of the racetrack is 25 mm and the
inner radius of the turns is 10 mm. For getting the coils in the right shape the blank
tubes are annealed to relief thermal stress from the copper. Without any further
bending the wire is then taped with 50µm thick Kapton to insulate the individual
coils from each other without adding to much space between them. Kapton was
chosen primarily due to its thickness, good heat resistance, and electric insulation.
The heat resistance is required as the insulation should not be destroyed during bake
out of the vacuum chamber, which is done at about 180 ◦C and after the coils are
inserted. Even though, the thickness of Kapton is advantageous to achieve a tight
winding of the coils, it also makes the manufacturing a delicate process. Shells that
guide the wire into the next layers are necessary to keep a tight arrangement of the
coils, while at the same time avoid the copper tubes to bend such that edges can
punch through the Kapton and cause short circuits. The coil holder for the coils
was made out of Teflon, again due to its insulating and heating characteristics. The
holder fixes the coils already in their designated positions and only the rotational
degree of freedom for the whole assembly remains free when the coils are attached to
the vacuum chamber. All tube endings are then guided out of the reentrant flange
and are connected there to water tubes and the current carrying wires (the wire
cross-section is 50 mm2 for the LA coils and 2 × 50 mm2 for the SA and CL coils)
from the power supplies.

For theoretical modeling it is necessary to take the finite thickness of the coils
into account. This is again done using Radia. With this package the required coil
geometries are determined. Some additional coils are wound and all individually
characterized by measuring the magnetic field on their axis. Comparing them to the
theoretical model and among each other the best ones where chosen and assembled.
Each set of one side is then measured again in its complete arrangement and from

25Another set of reentrant flanges is available to bring the coils 5 mm closer at the cost of clipping
the MOT laser beams

26Small and quick changes can be done by maintaining a small overpressure of nitrogen inside the
vacuum chamber, avoiding a bake out process.

27Some setups make use of kidney shapes for the clover leafs to improve the trap even more. How-
ever, simulation did not show a significant improvement to justify the additional complication
of manufacturing the CL coils in that shape. Hence, the second generation of the magnetic trap
uses racetrack shaped CL-coils.
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Figure 2.23: The schematic of the electronics to switch the currents for the magnetic
fields. In the MOT configuration only S1 and S4 are closed. For the
magnetic trap S1 and S4 open and all others close. This way the current
of PS1 is added to the current from PS2 and runs through the SA coils.
The current of PS2 runs first through the LA coils where the direction
in one of the coils is reversed with respect to the MOT configuration.
PS3 provides exclusively the current to the CL coils.

this the theoretical model is adjusted to predict the values for the final magnetic
trap.

The current is supplied by three Delta Elektronika (SM15-100, SM30-200, and
SM15-400) power supplies. The current through the LA coils is supplied by the
SM30-200 (PS2). The same current passes through the SA coils. However, the SM15-
100 (PS1) adds extra current for these coils. The SM15-400 (PS3) is exclusively to
supply the current for the CL coils as they need the highest current for the radial
confinement. Fig. 2.23 shows a schematic of the electronic setup, including the basic
function of power IGBT based switches to make the currents turn on as fast as
possible28. Within 1 ms the current is supplied and takes another 5 ms to settle. This
is essential as the cloud released from the MOT should not be allowed to expand too
far into regions where the atoms would experience a high magnetic potential when
the magnetic trap is switched on, thus leading to heating of the atoms.

The switch on characteristics of the magnetic trap can be optimized by means of a
PID. A major challenge in operating the magnetic traps is to keep the magnetic fields
stable. Fluctuations of the fields can cause heating in the trap, counterproductive
to the cooling process. In addition, the temperature after the evaporative cooling is
given by the frequency of the rf knife with respect to the trap bottom. If the trap
bottom is fluctuating the temperature of the cloud after evaporative cooling will be
different. As the trap bottom is defined by the difference of the two large fields of
LA and SA coils, the current must be stabilized. In the current system this means

28When in the next section the transfer between the MOT and magnetic trap is described it will
be explained that too fast switching would cause problems as well. However, with the present
system it is impossible to get into this regime.
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a relative stability of 10−5 to achieve a stability on the order of tens of kHz29. A
feedback loop to control the coupled system of two plus one power supplies. Three
flux-gates (IT 400-S Ultrastab, LEM Danfysik) are used to transduce the current
by a factor of 103, working on a zero-flux principle to compensate the flux of the
current carrying wires. The currents after the current transducers are then measured
as voltage drop over a precision resistor (VCS3322Z, 5 Ω,Tolerance 0.1%,Vishay).
The setpoint of the PID controlling the feedback loop is given by a programmable
digital to analog converter (Flex DAC, WieserLabs) which generates the ramp for
the compression. After the ramp the set point reference can be swapped to a highly
stable reference as after the ramp a sub mV stability is required.

2.8.3 The process management of the system
Up until the magnetic trap the system can run in a continuous mode. The laser sys-
tem, source, and magnetic fields can keep all their values to achieve the steady state
in the MOT. However, for proper imaging and especially for loading the magnetic
trap a precise control of timed sequences is necessary. A detailed description of the
computer control can be found in the dissertation of Michael Keller. But starting
with magnetic trap it is impossible to proceed without the computer control. The
main components are briefly introduced here as well. In short, a LabView interface
serves as GUI to an field-programmable gate array (FPGA) (cRio-9104, National
Instruments), which in real time sends commands to the respective devices: the rf
generators are set over an ethernet connection, the programmable digital to analog
converter (FlexDAC) for the magnetic field ramp and a direct digital synthesizer
(DDS) to generate the rf signals for all AOMs are set over an RS232 connection,
and various TTL signals trigger the afore mentioned devices when the sequence runs.
TTL signals are also sent to the vacuum shutter and valve to block the atomic beam,
to the laser beam shutters, and the switch for the magnetic trap currents. Analog
signals control the current of the second Zeeman slower section, of the offset coils,
and of the LA coils in MOT-operation. The FPGA has also analog inputs to monitor
various parameters during the experiments. This way the system can be determinis-
tically controlled in principle on a 40 MHz time scale. Another independent FPGA
(equipped with an SMS module for notifications) is set up to control valves behind
all turbo pumps and another one in front of the DLD as well as between Zeeman
slower and collimation stage to react upon any failure and protect the ultra high
vacuum. This FPGA monitors all pressures, the vacuum pump status, the electricity
in the laboratory, and the temperature of the cooling water.

2.8.4 The trap transfer
The magnetic trap is able to trap atoms with a temperature of about 1 mK. However,
the MOT does not cool the atoms down to the Doppler limit and furthermore,
between switch off of the MOT and switch on of magnetic trap the atoms can
expand. To reduce both effects a short 0.3 ms long laser pulse of near-resonant light
(∼ Γ)is applied in three dimensions while the magnetic field of the MOT decays

29For comparison in section 2.9 the BEC is achieved about 150 kHz above the trap bottom hence,
leaving not much space for fluctuations in the currents to occur
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(∼ 0.9Is). This optical molasses pulse cools the atoms to 800µK and prevents their
expansion. This force is not position dependent anymore. Offset coils though, can
generate a few G strong fields at the MOT position. This way the MOT itself is
moved, such that it has the best overlap with the magnetic trap, and the atoms can
be steered to some extent during the molasses pulse.

The second phase of the transfer from one trap to the other one happens during
the switch on of the magnetic trap. While the field rises a strong laser pulse is
applied along the y-axis for 0.3 ms (∼ 7Is). The magnetic field is now pointing over
the whole range of the trap in direction of the y-axis and defines the quantization
axis. While the laser traveling the opposite direction is exactly the same as it was
in the MOT case, still pumping a σ+-transition. The MOT laser traveling along the
positive y-direction would now drive a σ−-transition and thus, the handedness of this
beam has to be reversed. To couple to the same MOT telescope as the MOT laser
the same PM-fiber has to be used. However, the spin polarization beam has to have
opposite polarization and thus, the coupling to the fiber has to happen after a non-
polarizing beam splitter. This causes the afore mentioned seventh laser output of
the cluster. The two lasers together blue detuned from the atomic resonance but red
detuned to atoms in the magnetic trap. This way they are a little bit cooled but more
importantly the laser first depopulates the m−1 state and a fraction of time later
the m0 state as the magnetic trap field rises. Thus, just as at the beginning of the
Zeeman slower, but now in time, the atomic sample becomes spin polarized, where
all atoms are in the low field seeking state. Hence, to achieve efficient polarization
the field must not rise too fast. Fig. 2.24 shows a transfer without and with the spin
polarization pulse applied. The transfer efficiency can be increased by about a factor
of three corresponding to the magnetic degeneracy still existing in the MOT cloud.

The last part of the transfer is already within the magnetic trap. The currents have
been switched on to their final values for the uncompressed trap (SA coil current
CSA = 168A, LA coil current CLA = 70A, CL coil current CCL = 140A). In this
situation the trap depth is defined by the magnetic field strength at the walls of
the reentrant flange as the saddle points are further outside. The fields reach at the
walls only a value of 39G, which results compared to a trap bottom of 20G in a
trap depth of 5 mK and is certainly too wide for a cloud with temperature of almost
1 mK. In order to maintain the density of the MOT the atoms are therefore cooled
by a delicate laser beam for a period of 1.2 s (∼ 0.008Is). In contrast to the molasses
pulse at the beginning of the transfer, this time only the beams in the y-direction
are used, maintaining the high degree of spin polarization. However, due to the high
density of atoms the emitted photons are reabsorbed and cool additionally to the
elastic collisions among the atoms in the other dimension [124]. Fig. 2.25 shows how
the radial component is getting cooled when the power is increased, demonstrating
this effect. The efficiency of the cooling process strongly depends on the density that
mediates the reabsorption of scattered photons. Hence, without the spin polarization
no efficient 1D cooling is possible.

2.8.5 The performance of the trap

During the evaporative cooling most of the atoms will be sacrificed for a small
fraction of ultra cold atoms condensing into a BEC. The evaporation is more efficient
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Figure 2.24: A strong laser pulse from two beams propagating in ±y-direction spin
polarizes the atomic sample during loading of the magnetic trap. With-
out the polarization about two third of the atoms in the MOT are lost
for the magnetic trap, significantly reducing the number of atoms in
the magnetic trap. With the low density 1D cooling does not work effi-
ciently as shown by the two images of cloud after the 1.2 s of 1D cooling
within the trap and 3 ms time of flight.

the more elastic collisions occur, throughout the process. Even at the beginning
of the process a high phase space density fertilizes an efficient cooling process. In
the previous subsection all the various stages to achieve the highest phase space
density available were described. From the 109 atoms in the MOT about 90% are
transferred to the magnetic trap. After the one-dimensional cooling stage they have
a temperature of 100µK. Thus, the phase space density has increased from the
MOT by a factor of 10 to 10−6 in the magnetic trap.

The science chamber is equipped with a large turbo pump (HiPace 700, Pfeiffer
Vacuum) to achieve a good base pressure. A second turbo pump (HiPace 300) at the
back of the chamber is supposed to pump out as many atoms as possible that were
not captured in the MOT. With these two a pressure of very low 10−9 mbar was
achieved before bake out. After a good week at a temperature of about 180 ◦C30 the
pressure in the science chamber drops to the low 10−10 mbar. A titanium sublimation
pump can be used on a daily basis to bring the pressure well into the 10−11 mbar31.
With this pressure and the valve in front of the Zeeman slower closed the lifetime of
the uncompressed trap is ∼ 60 s. When the currents are ramped to the compressed
situation care has to be taken that no resonant light can enter into the chamber. This
is achieved easily as all light is prepared separately on a different optical table and
then transferred via glass fibers. Therfore, closing all shutters and the doors of the

30The DLD must not be heated above 150 ◦C. Everything else is rated to at least 200 ◦C if all
unnecessary (electronic) equipment is detached.

31A VAT valve (DN200 UHV slide gate, VAT) at the connection to the DLD has to be closed in
order not to cover the MCP with titanium and destroy it.
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Figure 2.25: A sequence of images with increasing power during the 1D cooling stage.
When more and more photons are scattered from the cold cloud the
atoms begin to be cooled first axially and eventually in the radial di-
rection as well, where there are no cooling laser beams.

table is sufficient to maintain a background gas limited lifetime on the same order
as in the uncompressed scenario. A small effect of the Majorana flips is expected if
the trap bottom is lowered below 1G however, from fig. 2.22 it is expected to lose
importance as the cloud is cooled and the trap bottom is typically kept between
1− 3G.

To characterize the magnetic field the trapping frequencies and trap bottom can
be measured. In the uncompressed situation a small displacement32 of the cloud
during loading and a sudden release lets the cloud oscillate in the trap. From the
oscillations (compare fig. 2.26) trap frequencies can be inferred. With an rf knife the
trap bottom can be sampled (see fig. 2.27). The values for the radial trap frequency
ωrad = 52Hz, axial trap frequency ωax = 30Hz, and for the trap bottom B0 = 20G
match well to the simulated parameters. The measurement for the trap bottom is

32A displacement can easily be achieved by means of the offset coils.
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Figure 2.26: If the magnetic trap is displaced with respect to its original position
by means of the offset coils and suddenly released, the cloud starts to
oscillate in the trap at the frequency of the trap. In the uncompressed
trap the cloud oscillates in a harmonic potential with ωrad = 2π · 55 Hz
and ωax = 2π · 32 Hz matching the simulations for the coils.

fitted with

Nr(frf )

Nt

=1− 2√
π

exp (−q(frf ))
√
q(frf ) + erf

(√
q(frf )

)
(2.35)

where q(frf ) = (hfrf − B0µ/kbT ) and hence, the temperature T of the cloud is a
fit parameter. The 250µK match with time of flight measurements with absorption
imaging.

Before evaporation the magnetic trap is compressed within 1.5 s to a SA-coil cur-
rent CSA = 238 A, LA-coil current CLA = 140 A, and CL-coil current CCL = 360 A.
As a consequence the trap becomes much more anisotropic with the y-axis being
least stiff. With these currents the trap has an axial curvature of B′′y = 8G/cm2, a
radial gradient of B′r = 83G/cm, and a trap bottom of B0 = 2G. The extreme radial
gradient manifests itself in an efficient evaporative cooling process and is helpful to
achieve degeneracy of the metastable helium gas.

Planned improvements

The stability of the trap is of outmost importance for the reproducibility of the
experiment. Especially, fluctuation of the trap bottom changes the condition when
degeneracy is achieved. Stabilizing the currents through the coils as well as mechan-
ical stability is required to have continuous operation with ever the same quality.
For this the precise current sensors of Dan-fysiks has been set up as well as a next
generation magnetic trap is under construction. Besides slightly improved coils this



64 The system to refrigerate metastable helium atoms

55 60 65 70 75 80
0

0.5

1

1.5

frf [MHz]

N
r/

N
t

B0 =20.5 G and T =253 μK

 

 

Fit

Original Data

Figure 2.27: With an rf knife all atoms with energies above the rf frequency are
spilled out of the trap. Monitoring the remaining atoms maps out the
energy distribution of the atoms in the magnetic trap and reveals the
trap bottom at which no atoms remain in the trap. In the uncompressed
trap the trap bottom is around 20G and is lowered for the compressed
trap to 2G. The temperature is a fit parameter and can be determined
from the measurement as well.

will in particular have higher mechanical stability. The whole assembly will be one
massive block filling the whole reentrant flange and will be firmly attached to the
vacuum chamber.

On a somewhat bigger conceptual change, an optical dipole trap is planned. Fol-
lowing eq. (2.5), a single focused laser beam can achieve three dimensional spatial
confinement if the laser is red detuned. Dichroic mirrors, reflective for 1083 nm but
transmissive for 1550 nm (AdjustiK E15-10, Koheras + CEFA-C-PB-HP-PM-40-
NL1-OM1-BT203-FA-FA, Keopsys), can either be placed along the y-axis coupling
to the beam path of the MOT-beams, or on the z-axis to inject the beam from the
above. The laser power is much more easier to stabilize than the high currents in
the magnetic trap and with the different viewports to align the trap offers a higher
flexibility on the geometry of the trap. For example, aligning the major axis with
the z-axis will provide the possibility to make use of the high temporal resolution
of the delay-line detector as well as a way to test for the influence of gravity in later
experiments. However, in chapter 3.1 it will be discussed how a Raman transition
can be used to release some atoms out of the magnetic trap without the requirement
to switch the trap off. Such a convenient transfer is not possible with an optical trap.
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2.9 The Bose-Einstein condensation
The energy of an atom in a thermal cloud is characterized by its temperature and
follows a Maxwell-Boltzmann distribution. In the vicinity of a trapping potential
and in the regime of low temperatures the energy eigenstates become discrete and
so does the distribution. In order to be able to calculate the total energy of the
system the macroscopical occupation of the ground state is taken to be zero. How-
ever, when the chemical potential drops below the energy for the first excited state
any additional atom is filled into the ground state and thus, the ground state be-
comes macroscopically populated. This indicates a phase transition at which the
atoms condense into a Bose-Einstein condensate where the ensemble of millions of
atoms can be described by the single particle wave function. This section describes
the last step to cool He∗ below the transition temperature Tc and demonstrates
experimentally some basic features of a BEC.

2.9.1 The evaporative cooling

After compression of the magnetic trap about 109 atoms are trapped in a volume of
about 1×1×3 mm3 and have a temperature of 1 mK. Thus, there are still seven orders
of magnitude missing in the phase space density to achieve condensation. Further
optical cooling is not possible because of the limiting recoil velocity. However, atoms
with higher energy than the trap depth of the magnetic trap can leave the trap.
These atoms carry away more energy than the average energy per atom. Thus, the
average energy per atom decreases when such hot atoms leave the cloud. After the
energetic loss the atoms rethermalize through elastic collisions again yielding a lower
temperature.

In principle there is a finite probability that an atom gains so much energy to
leave the magnetic trap on its own. Therefore in principle, the cloud gets colder
and colder the longer one waits. Evaporative cooling, on the other hand, only works
efficiently if the phase space density increases as well. The lifetime of an atom is
limited by background collisions33. Thus, if such bad collisions with background
atoms outbalance the good elastic collisions and the time for a high energetic atom
to carry away more than the average energy, the loss of atoms leads to loss in density.
Hence, by waiting for an atom to leave the trap the cloud might get smaller and
no increase in phase space density would be achieved even though the temperature
falls.

An elegant way to change the trap depth without changing the trap stiffness is
to use an rf knife. This is a single sharp frequency to truncate the trap on a well
defined surface. The effect of the rf is to flip the magnetic moment of the atom to an
untrapped state thus, selectively releasing atoms from the magnetic trap. As atoms
with higher energy can climb the potential further up and experience higher magnetic
fields they get resonant with higher rf frequencies. This gives the experimentator an
easy handle to remove hot atoms from the trap. Once the atoms are removed the
remaining atoms undergo collisions, scatter new atoms in the higher lying energetic
states and those are removed again until the cloud settles at a new temperature.

33Three-body collisions and detrimental penning ionization are sufficiently suppressed to not play
a role in the evaporative cooling scheme
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This is the moment when the rf frequency is changed again to truncate the trap at
even lower trap depths. This process can be described by the ratio ν between the
change of temperature relative to the current temperature T and the change of atom
numbers relative to the current amount of atoms N

ν =
Ṫ /T

Ṅ/N
=
d(ln(T ))

d(ln(N))
(2.36)

Eq. (2.36) shows that this process happens on a logarithmic scale. In a trap without
any other loss mechanisms, the best (even though slow) strategy would be to just
wait until energy states are populated spontaneously that are able to leave the trap
in order to achieve a cold while still large cloud. In practice though, a logarithmic
scan with a time constant τev for the truncation frequency is optimal. In this system
only a single logarithmic scan is implemented but in general it might be better to
adapt the time constant of the ramp from time to time during the cooling process.
The so called runaway regime is entered when one achieves a constant or increasing
rate of the elastic collisions 1/τel, indicating a stable density. For this to happen the
lifetime in the magnetic trap τloss has to be large

τloss >
τev

ν(γ − 1/2)− 1
(2.37)

In eq. (2.37) it was implicitly assumed that the rate of elastic collisions must be
much larger than the rate due to losses. The parameter γ is defined such that the
volume scales as T γ and depends on the dimensionality of the trap, e.g. γ = 3/2
for a harmonic trap and γ = 3 for a linear potential whereas it is zero for a box
potential.

From eq. (2.37) and the parameter γ it can be seen that a linear trap potential is
beneficial for an evaporative cooling scheme. This can be understood as a compres-
sion effect. When the atoms become colder they are also pushed further towards the
center of the trap than in the case of a harmonic potential. Thus, the density of the
atoms increases more than what would be accomplished by a harmonic trap. This
remains valid when the trap has a harmonic potential in one dimension as it is in
the cloverleaf trap.

The rf frequency is generated by an arbitrary waveform generator (81150A, Ag-
ilent) which can be programmed via ethernet in different modes (exponential and
linear ramp, constant frequency) and gets a TTL-pulse triggers (for a gate-mode
operation) when the ramp should start. This signal is then amplified by a rf am-
plifier (BSA 0125-25, Bonn Elektronik) up to 25W . A second rf frequency can be
fed to the amplifier from an rf signal generator (SMA-B103, Rohde&Schwarz). Via
BNC feedthroughs the signal is guided into the vacuum chamber, where two square
coils with 48 × 50 mm2 area are placed at z = ±30 mm. These are connected in
Helmholtz configuration to produce an approximately homogenous magnetic field
at the position of the trapped atom cloud. Each of the coils consists of five windings
of enameled, vacuum compatible wire on a Teflon frame to support it. They are
placed such that they are close to the trap but clip as little of the MOT laser beams
as possible. The coils have only a marginal impedance for the rf signal. To reduce
the backreflection of the high power signal it is attempted to match the 50 Ω output
of the amplifier with a 50 Ω-terminator in series with the coils.
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Figure 2.28: The phase space density increases during evaporative cooling as the
temperature approaches the transition temperature. A ramp with time
constant 8 s is interrupted in between to measure the temperature in
a time of flight measurement. While the number of atoms decreases
the density increases as well as the deBroglie wavelength and hence,
the PSD approaches values close to unity (above for the BEC). The
inset shows the dependence of atom numbers after the ramp Nf on the
time constant of the rf ramp τeva. For too short time constants the too
many atoms are spilled out of the trap before rethermalization. For too
large time constants too many atoms are lost because of background
collisions.

Fig. 2.28 shows how the phase space density of a sample increases during this
final step of evaporative cooling of a cloud. The rf ramp is typically ramped from
75 MHz to 150 kHz above the trap bottom (B0 = 1.6G) within 8 s.

2.9.2 The basic features of a BEC in matter wave experiments

When the phase space density Λ3 = n/λ3
dB, i.e. the density of atoms n per de Broglie

wavelength λdB =
√

2π~2/mkBT cubed, approaches unity the wave packets of all
atoms start to overlap. This means each atom can be found within a volume which
is already occupied by another one. Thereby the atoms become indistinguishable as
no defined position can be assigned anymore to individually identify them. For a
harmonic trap the condition for the transition is:

Λ3 > 1.202 (2.38)

As the density in a harmonic trap is defined by the geometric mean of the trap
frequencies ω̄ = (ω2

radωax)
1/3, eq. (2.38) can be used to relate the transition temper-
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ature Tc to the number of atoms N

Tc ≈ 0.94~ω̄N1/3 (2.39)

The transition temperature for a Bose-Einstein condensate in dilute gases with about
a million helium atoms is around 1µK. Once the atoms are cooled below the transi-
tion temperature and compressed to densities high enough such that the phase space
density fulfills eq. (2.38) the atoms start to macroscopically occupy the ground state
of the harmonic trap and condense into the Bose-Einstein condensate. They are all
indistinguishable from then on and thus, the many body system can be described by
a single particle wave function. This can be used for the Gross-Pitaevski equation,
which adds an interaction term to the single particle Hamiltonian:(

− ~
2m
∇2 + V (~r) +

4π~2a11

m
|Ψ(~r)|2

)
Ψ(~r) = µΨ(~r) (2.40)

where V (~r) is the external potential of the trap and µ the chemical potential. The
interaction depends on the density of the particles and the scattering length a11. The
simplicity to use a single parameter to describe the interaction between atoms is owed
to the low temperatures of the atomic cloud. At the ultra-low temperatures only
isotropic s-wave scattering can occur34 and thus, the in general complex interaction
can be taken into account with a single parameter. 4He in the m+1-state has a
scattering length of a11 = 7.5 nm, favorable to achieve Bose-Einstein condensation.

For large atom numbers in the BEC the contribution of the kinetic energy is
negligible and therefore the this term is dismissed for the Thomas-Fermi approxi-
mation. The remaining external potential counteracts the repulsive interaction, and
one finds that the chemical potential, i.e. the energy to add a particle to any point in
the cloud, is the same everywhere. From this and the knowledge about the trapping
potential the chemical potential for a harmonic trap can be inferred

µ =
1

2

(
15Na11

r̄0

)2/5

~ω̄ (2.41)

where r̄0 is the geometric mean of the extents of the single-particle ground-state in
the three dimensions of the magnetic trap:

r̄0 =

√
~
mω̄

(2.42)

Due to the interaction the single particle ground state extent is smaller than the
Thomas-Fermi radius RTF , which describes the extent of the whole cloud:

RTF i =

√
2µ

mω2
i

(2.43)

The one dimensional probability amplitude for an atom in the BEC is then given
by:

|φ(x)|2 =

√
3

4RTFx

(
1− x2

R2
TFx

)
(2.44)

34This will be important for chapter 4 as well where the four wave mixing process prepares an
entangled state.
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Figure 2.29: The bimodal signature of the transition to a BEC. As the transi-
tion temperature is crossed, more and more atoms condense into the
ground state and a sharp inverted parabola arises out of the thermal
distribution.

For a thermal cloud occupying the excited states according to the Maxwell-
Boltzmann distribution the spatial shape follows a Gaussian distribution. However,
the competing terms of the Gross-Pitaevski equation in the Thomas-Fermi approx-
imation result in the fact that the potential of the trap is just evenly filled up with
atoms. Hence, the atoms map the profile of the trap and the density profile of the
cloud is an inverted parabola. Fig. 2.29 shows how this parabola profile arises as
sharp peak in the thermal cloud as the transition temperature is crossed, termed
“bimodal” distribution.

Another signature of a Bose-Einstein condensate is its ballistic expansion upon
release from the trap. A thermal cloud expands isotropically and the high spatial
anisotropy of the cloud in the trap cannot be seen. Conversely, a BEC only populates
the lowest lying energy level. This is different for the three axes for they have different
trapping frequencies. Hence, the atoms have a much higher momentum in radial
direction than in axial direction. While the cloud has a much smaller extent in the
radial direction than it has in the axial direction, it is expanding more rapidly in
radial direction. Fig. 2.30 shows how the BEC barely expands in axial direction
while the atoms burst out in radial direction. Moreover, the energies are still small
compared to the thermal expansion. Hence, even before they start to spread and are
too dilute to be detected by absorption imaging as in the case of the thermal cloud,
gravity pulls the atoms downwards. This pulling of gravity will eventually make the
atoms fall onto the DLD, which will be discussed in more detail in the next chapter.



70 The system to refrigerate metastable helium atoms

t=2 ms

x
 [

m
m

]

y [mm]
0.5   1

0.5

  1

1.5

  2

2.5

  3

3.5

t=6 ms

y [mm]
0.5   1

t=10 ms

y [mm]
0.5   1

t=14 ms

y [mm]
0.5   1

t=18 ms

y [mm]
0.5   1

t=22 ms

y [mm]
0.5   1

Figure 2.30: The highly anisotropic expansion of a BEC. Equivalent to the Heisen-
berg uncertainty principle, the atoms expand much faster in radial di-
rection than in axial, as the confinement in the magnetic trap is ra-
dially much higher than compared to the axial direction. During free
expansion the atoms are pulled downwards by gravity and expand in
radial direction while the axial dimension of the BEC remains almost
unchanged

Hence, the expansion is on the order of Heisenberg’s uncertainty principle. How-
ever, the interaction of the atoms adds a mean field interaction energy, which con-
tributes significantly to the free evolution of the cloud radius along the axial direc-
tion:

ry(t) = RTF y

(
1 +

(
ωax
ωrad

)2 (
ωrad t arctan (ωrad t)− log

√
1 + (ωrad t)2

))
(2.45)

while the radial expansion is simply:

rx,z(t) = RTF x,z

√
1 + (ωrad t)2 (2.46)

A big challenge is the stabilization of the trap bottom. The feedback loop that
stabilizes the current is an improvement. However, fluctuations of the trap bottom
due to grounding problems are still on the order of ∼ 100 kHz. This has to be further
improved to run experiments continuously. However, the current system is able to
achieve routinely BECs with about 5 · 106 atoms, which is enough for experiments
to initiate and detect entanglement. The feasibility of such experiments will be
discussed in more detail in chapter 4.
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3 The setup to generate and detect
momentum entanglement of
matter waves

The previous chapter described the system to realize a sample of ultra cold, indistin-
guishable particles as source for coherent matter waves. However, no entanglement
of the external degree of freedom is present for the individual constituents of a BEC
that could be observed. This chapter is dedicated to describe how Raman transi-
tions can initiate a four-wave mixing process. As a result the two outgoing waves
are entangled, where the feasibility of proving this entanglement is the subject of
this dissertation. The first section of this chapter describes the four-wave mixing
process. This includes the Raman transition and its optical setup with a spatial
light modulator (SLM) as main component, as well as the four-wave mixing itself.
The second section then introduces and characterizes the delay-line detector which,
able to detect single particles, has the capability to detect quantum correlations.

3.1 Four-Wave-Mixing of matter waves

In order to generate entanglement between two quantum mechanical systems an
interaction between the systems has to establish a fixed relation between them. In
order not to have measurements on one system directly affecting the other system,
ideally this interaction can be switched on and off in a controlled fashion to avoid
any further interaction between the entangled systems. In chapter 2.9 it was men-
tioned that the interaction of two colliding atoms in the low energy regime can be
described by a single parameter, giving rise to a Dirac-delta function like contact
potential. This strong interaction between the collision partners, which only occurs
during collision and not anymore after separation, is responsible for an entangle-
ment creation between the two partners. Without contact the two atoms do not
interact with each other anymore corresponding to a switch off of the interaction
upon separation.

In principle, the collisional interactions happen all the time among the millions of
atoms within a BEC. However, due to the fact that the total momenta of the atoms
compared to the momenta induced by collisions are on the same order, the signature
of entanglement is untraceable within the BEC. In the next sections it is described
how the cursor to the signature can be magnified by employing Raman transitions,
which increase the total momentum already before the collision. The description of
the Raman transition is then followed by the description of the the four-wave mixing
process of the collision and eventually the optical setup with an SLM.
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3.1.1 Raman transitions

To excel the statistics due to entanglement in the external degree of freedom of a
matter wave above the dominating statistics within the coherent state of a BEC the
atoms of interest need to be outcoupled of the ensemble of atoms of the BEC. A
straightforward way of doing so is to accelerate the atoms above the speed of sound
of the BEC creating a quasi free matter wave. If there are two counter-propagating
matter waves of this type, atoms of these waves that collide will have interacted and
be far separated from the rest of the BEC after a sufficient time of flight.

The generation of such supersonic waves in a BEC is possible by means of opti-
cal transitions1. In chapter 2.2.1 the coupling of two energy levels of an atom was
described by Rabi oscillations. The concept of Rabi oscillations allows for coherent
population transfers between two states. However, in practice the short lifetime of
an optically excited energy level and its decay channels to other levels renders this
process not efficient for a coherent state transfer. Subsequently as in laser cooling,
spontaneous emission will lead to a random second momentum transfer to the atom
which obscures the signature of the process. To avoid the second random momen-
tum transfer the atoms can be transferred back to a ground state by stimulated
emission of the photon. The stimulated emission then deterministically induces an-
other momentum kick opposite to the direction of the second laser. Typically, the
two laser frequencies are close to each other such that the resulting magnitude of
the momentum of the atom is ~k

√
(2− 2 cos(φ))~eφ, where φ is the angle between

the two laser beams. If a second laser drives a stimulated transition into a level
different than the initial one, coherent population transfers of up to unity can be
achieved [125]. Hence, in this two-photon process three energy levels of the atom are
involved (compare of fig. 3.1a). Two long-lived ground states, where one is the initial
and the other one the final state that is to be populated. A third intermediate level
is only virtually involved during the transfer and thus, can have a short lifetime.
The intermediate level however needs to be optically addressable by the two lasers
hence, needs to fulfill the typical selection rules. Variations of this idea are widely
used in Bragg spectroscopy [126–128], beam splitters for matter wave [60, 61, 129],
and electromagnetically induced transparency (EIT) [130, 131].

The efficiency of this two photon process increases if the intermediate excited level
is only populated as little as possible. Hence, a large detuning of the two laser beams
from the actual transition but a relative resonance condition to match possible en-
ergy mismatches of the initial and final states yields best results. To understand why
this two photon process occurs even though the lasers are individually not resonant
with the intermediate energy level the dressed state picture is usually applied. The
coupling of the second laser, being off resonant with the transition of the atom, in-
duces similar to eq.(2.5) a level splitting depending on whether a photon is present
or not. Hence, the atomic transition becomes dressed with the electromagnetical
field of the photon. The first laser can now be tuned such to drive a transition to
the level dressed with a photon of the second laser. The excited photon is then in-
stantaneously stimulated into the same mode as the dressing photon of the second
laser and thus, does not populate the intermediate level. The atom itself ends up in
the state that was coupled by the second laser to the intermediate dressed level.

1The speed of sound cs =
√
µ/m is about an order of magnitude smaller than the recoil velocity.
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Figure 3.1: The geometry of the Raman lasers. a) The atoms are initially trapped in
the m+1 state. A π-polarized beam dresses the excited state 23P0, which
is addressed with a σ−-polarized beam. This transfers the atoms into the
magnetic insensitive state m0. b) Two counter-propagating laser beams
L1 and L1′ transfer a momentum kick in the direction of the absorbed
laser to the atoms. The absorbed photon is subsequently emitted into
L2 leaving another momentum kick in the opposite direction of L2. c)
Two waves counter-propagating to each other and along the y-axis are
initiated, while the center of mass motion moves in -z-direction. Upon
four-wave mixing (see section 3.1.2) some atoms are scattered onto a
spherical halo in momentum space with radius ~krec.

As this is a coherent process again Rabi oscillations can be observed, which happen
at the frequency of the two-photon Rabi frequency Ω12

Ω12 =
Ω1Ω2

2|δ|
(3.1)

where Ω1,2 are the respective one photon Rabi frequencies from eq. (2.2). To avoid
sensitivities to Doppler shifts due to the inherent velocity uncertainties of the BEC
the two-photon Rabi frequency should be much larger than the Doppler shift Ω12 �
δDoppler, which is on the order of a few kHz. Hence, Rabi frequencies of a few MHz
are desirable. This way the population transfer also happens on much faster time
scales than any change in the BEC, characterized by the trap frequencies. However,
sub-µs light pulses are required to stop the transfer after half of a cycle when all
atoms are in the final state.

A peculiarity of the Raman transitions is that the ground state to which the
atoms are transferred is typically not the same as the initial state. In particular,
transitions to other hyperfine or magnetic sublevels can be driven, which otherwise
would require frequencies in the rf band or could be optically forbidden for single
photon processes. The momentum transferred by a single rf photon, though is far too
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little to separate the collided atoms from the BEC and thus optical transitions are
favorable for this purpose. The atoms in the BEC are trapped in the m+1 low field
seeking state. When the magnetic trap is switched off the extremely light helium
atom in a magnetic sensitive state is subject to all stray magnetic fields that occur
during switch off and along the atom’s way to the delay-line detector. The inset of
fig. 3.1a shows the relevant energy levels involved in a Raman transition. The first
laser L1 has a σ−-polarization. However, as it is off resonant with the 3P0-level no
absorption would happen. The second, π-polarized laser L2, though couples the m0

sublevel to the same excited level and in combination with L1 can transfer atoms
from the m+1 magnetic sublevel to the m0 sublevel of the same state. Hence, after
successful transfer, the atoms are insensitive to the field of the magnetic trap and
stray fields on their way to the detector. As the 3P0 is not degenerated no further
coupling to the m−1-state is possible and the populations only oscillate between the
low field seeking and the magnetically insensitive state.

Fig. 3.1 shows the geometry of the lasers involved in the Raman transition and
the subsequent motion of atoms. Another wave with opposite momentum can be
initiated by a counter-propagating laser L′1 in order to have the motion of the center
of mass of all atoms within the xy-plane at zero velocity. If the intensities of lasers
L1 and L′1 are equal, an equal amount of atoms are transferred to the respective mo-
mentum states creating a coherent superposition of two counter-propagating matter
waves in the center of mass frame. While L1 and L′1 have to be along the quan-
tization axis of the magnetic trap to drive the right σ−-transition, the π-polarized
L2 can be oriented arbitrarily in the xz-plane. However, an orientation along the
z-axis avoids any motion of the center of mass in the xy-plane. This way the atoms
collide and subsequently separate along the y-axis, which is favorable for the de-
vised experiment of chapter 4, where the detection of entanglement will be centered
around the xz-plane. Hence, the atoms that do not undergo collisions are not in-
terfering with the atoms of interest. In principle, one can change the geometry by
employing multi pulse schemes [132]. However, the Raman transition to obtain the
magnetically insensitive state is realized most easily with two counter-propagating
laser beams along the y-axis.

3.1.2 Four-Wave-Mixing mechanism
The Raman transitions described in the previous subsection initiate two matter
waves counter-propagating to each other. The atoms are transferred to a magnetic
insensitive state and start to pass through each other. The interaction between the
atoms of each wave begin a process called four-wave-mixing (FWM) in nonlinear
optics. Two incoming waves interact through a nonlinear interaction with each other
and initiate two outgoing waves. The corresponding Hamiltonian for this situation
can be written as [133]

H = −
∫

Ψ̂†~2∇2

2m
Ψ̂d~r + g

∫
Ψ̂†Ψ̂†Ψ̂Ψ̂d~r (3.2)

Here Ψ̂† and Ψ̂ are the creation and annihilation operators of the “matter-field
amplitudes” fulfilling bosonic commutation rules and are the equivalence to the
electric field amplitudes in nonlinear optics. The second term gives the interaction
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between the different waves. The interaction is characterized by the s-wave scattering
interaction strength g = 4πa00~/m, which is responsible for the contact potential of
the low energy atoms V (~r) = 4π~2a00/mδ(~r − ~r′). Note, that the scattering length
a00 = 5.3 nm of two atoms in the magnetic sublevelm0 is different from the scattering
length of atoms condensing to a BEC (compare chapter 2.9)2.

As only the interaction term is of interest for the entanglement process the first
term can be dropped and the interaction term written in second quantization

|Ψ〉 = g0

∮
|~p|=~ k

(â†
-~p b̂

†
~p ĉ d̂+ â~p b̂-~p ĉ

† d̂†)|0011〉 (3.3)

where each wave is given an individual name to emphasize the character of four waves
mixing. Whenever a collision occurs an atom of each incoming mode (c and d) is
annihilated and instead created in the outgoing modes (a and b). In order to maintain
energy conservation the integral is limited to the surface of constant magnitude of
momenta. In practice this is not necessarily fulfilled due to the initial momentum
uncertainty of the BEC itself. However this results in a finite thickness of the surface
and does not effect the entanglement, which is a result of the angle independent
scattering. Hence, the atoms that collide in the four-wave-mixing process end up on
a halo around the center of mass. The radius is ~krec in momentum space with a
finite width limited by the initial momentum uncertainty in the condensate.

Because of the nonlinearities in the Hamiltonian of the field operators the solutions
to the equation of motion for eq. (3.2) are in general not analytically solvable. There
are two approaches to model the situation. The slowly varying envelope (SVE)
approach introduced by Trippenbach et al. [133] neglects mean field interactions
and uses a perturbative approach to calculate the dynamics analytically. The second
approach by Kheruntsyan et al. [134] does not require additional assumptions to the
Hamiltonian by using a positive-P representation of the field3. This representation
allows to write down a stochastic Fokker-Planck master equation for the fields, which
then can be solved numerically.

For the SVE approach three characteristic time scales can be identified. The first
is the separation time of the two clouds passing through each other

τs =
mσy√
2~krec

(3.4)

When the clouds4 with spatial widths σx,y,z do not overlap anymore the atoms
obviously do not interact and thus do not scatter anymore as well. The two other
time scales describe the evolution of the wave packets of the incoming waves itself.
The nonlinear dispersion time describes the free ballistic expansion of the cloud and

2This difference in scattering length is responsible for the phase matching condition in the exper-
iment of ref. [53, 54]

3The positive-P representation of phase space is an extension to the Glauber-Sudarshan P-
representation for the phase space of photons. It can be shown that by extending the real
Glauber-Sudarshan P-representation to a complex number phase space no negative P values
exist and one can find this way solutions to Fokker-Planck master equations [135]

4To keep the calculations analytical Trippenbach et al. assume spherical symmetric Gaussian
wave packets. In their analysis the wave packet has width σ/

√
2 however, to have the immediate

relation to the RMS of the cloud here a width of σ is used.
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is in the Thomas-Fermi approximation

τND =

√
π3/2(σ̄/

√
2)5

gN
(3.5)

Leaving the mean field interaction aside the diffraction time or linear dispersion time

τLD =
mσ2

x,z

2~
(3.6)

gives the dispersion due to the diffraction of the initial source size. There are two
conditions to be fulfilled in order to maintain the validity of the approach. First,
as the name says, the envelope of the wave packets should vary slowly, i.e. τND �
τs as well as τLD � τs. In cigar shaped BECs this condition is in general only
fulfilled if the clouds pass through each other perpendicular to the major axis of
the ellipsoid. In order to continue their calculations in analogy to nonlinear optics
Trippenbach et al. assume an undepleted pump, i.e. the number of atoms scattered
into the outgoing waves is small compared to the number of atoms in the incoming
waves. As the densities are so dilute only few scattering events happen when the
clouds pass through each other, i.e. this is a reasonable assumption. However, if
stimulated processes start to enhance the bosonic fields a significant population of
the small perturbational fields can occur. The condition for stimulated scattering is
τs/
√
τLDτND ≥ 2, which is not fulfilled if the SVE assumption is fulfilled. A result of

this approach is that, as no quantum mechanical stimulation occurs, the number of
scattered atoms on the whole sphere is the same as expected from classical mechanics

Ns =
2N2a2

00

σxσz
(3.7)

where N is the number of atoms in both incoming waves together, assuming an
equal distribution among the two waves as created by the Raman laser pulses.

To capture more of the physics of the four-wave-mixing process of matter waves
the mean field energy from the interactions of the surrounding atoms have to be
taken into account. Kheruntsyan et al. try to accommodate for this by formulating
the differential equations describing the mixing process in the positive-P represen-
tation. This way no additional assumptions to the Hamiltonian of eq. (3.2) have to
be applied in order to solve the master equations. From numerical simulations it can
then be shown, e.g. that even though the atoms “roll” down the energy hill of the
mean field interaction upon separation from the condensate the radius of the scat-
tering halo is reduced by about 4% [132]. The reduction of the radius, even though
the mean field energy should increase the radius, is due to an increase in entropy.
To place the atoms from the indistinguishable ensemble of atoms in the BEC into a
mode of distinguishable atoms after scattering reduces the order and hence increases
the entropy. Even though the positive-P method yields interesting results, it has its
limitation as well. The numerical simulations rely on boundary conditions. The con-
ditions, though diverge as the simulation time continues. Therefore, only collision
times can be modeled that are even shorter than typical experimental conditions
suggest [136].



3.1. Four-Wave-Mixing of matter waves 77

The first experiment on four-wave-mixing of matter waves was performed in the
group of William Philips [137] whereas the benchmark experiment to characterize
the single atom correlations in the FWM process was realized in an experiment using
metastable helium and a delay-line detector in the group of Alain Aspect [51]. They
scattered on average about 250 atoms out of a condensate of 105 atoms and looked
at the probability of detecting an atom at position ~r if another atom is detected at
position ~r ′. This two particle correlation function is given by the g(2)(~r, ~r′)-function
(compare eq. (4.28)). They show that, as predicted by momentum conservation, there
is an increased probability in the back-to-back correlations, i.e. the g(2)(~r,−~r)-value
of detecting an atom at a position opposite to the position of the first atom mirrored
through the center of mass rises above 1. This indicates the momentum conservation
of the scattering process. As this process happens in a superposition of all possible
angels of the halo, the atoms before detection were in a supposedly entangled state
of their momenta.

They also measured the colinear correlations. An increased g(2)-function in this
case is a manifestation of the Hanbury-Brown-Twiss experiment [37]. Opposite to
the g(2)-function of a BEC, which is a coherent matter wave and thus is one for
all moments of g [39–42], the scattering results in Fock states of single atoms that
produce Hanbury-Brown-Twiss correlations. In another experiment the Canberra
group used a strong rf outcoupling pulse to initiate a scattering process between m+1

and m0 states. In the scattering process the high densities built up density gratings in
the BEC, which in return form phase matching conditions for the scattering atoms5.
With this self-amplifying process they entered the regime of stimulated scattering.
The stimulation leads to a coherent state in the phase matched modes and hence
they did not observe the Hanbury-Brown-Twiss effect in this situation [54].

The back-to-back correlations measured by the Palaiseau group suggest the exis-
tence of entanglement of two atoms scattered in the FWM process. In a later analysis
of the data Kheruntsyan et al. showed that the back-to-back correlations increased
significantly above the collinear correlations, such that they could violate a Cauchy-
Schwarz inequality, a violation essential for quantum mechanical correlations. Hence,
these atom correlation experiments show the prospects of how entanglement in the
external degree of freedom of matter waves can be generated in such a system of four
waves mixing. In the following subsections it will be described how such schemes
will be implemented in the current system.

3.1.3 The optical setup

While all laser cooling to achieve a BEC is done by a laser locked to the 23P2-
transition, the Raman transitions will make use of the 23P0-transition. This has the
advantage that due to only one magnetic sub level in the excited state the transfer
naturally stops at the m0 magnetic sublevel and no population of the m−1 sub-
level occurs. The seed laser is a diode laser (DL100L, Toptica) delivering nominally
100 mW. Of typical 80 mW output 2 mW are used to lock the laser with a lock-in
scheme to the transition. Currently, the current of the diode is modulated in order
to modulate the frequency of the laser and the bandwidth limits the modulation to

5This self enforcing scattering process is similar to the superradiant scattering of light from a
cold cloud of atoms.
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Figure 3.2: The laser preparation of the Raman beams. Two AOMs shift the laser
frequency of L1/L1′ and L2, respectively. Two 2W fiber amplifiers are
seeded by the two laser frequencies and deliver the necessary power
through fast fiber switches (FS) and high attenuation switches (SS) to
the respective stages. L2 needs to illuminate small regions of the BEC
for the devised experiment (see chapter 4) and hence large NA-optics
are used. By modulating spatially the phase of the laser beam, an SLM
generates flexible patterns at the position of the BEC in the focal plane
of the focusing lens.

a few MHz. However, this will be eventually substituted by a PDH scheme involving
an EOM and will be similar to the one for the cooling laser to avoid a modulation
on the laser itself. Fig. 3.2 shows the scheme for the laser preparation of the Raman
lasers.

The remaining laser power is sent through two AOMs to shift the frequency by
δRaman ≈ 2 × 350MHz with small relative detuning δrel ≈ 4.8 MHz to match the
resonance condition for the two photon process. The resonance is determined by the
trap bottom which splits the magnetic sublevels, which are coupled by the Raman
transition. One AOM prepares the frequency for the lasers L1 and L1′ at δRaman and
the second one for L2 at δRaman + δrel. Each laser beam of about 2 mW is then fed
into a fiber amplifier (KPS-CUS-BT-YFA-33-SLM-PM-111-FA-FA, Keopsys). Each
of the laser beams will then first pass a fast fiber switch (NanoSpeed 1x2, Agiltron)
to generate the sub-µs light pulses and a slow fiber switch (LightBend 1x2, Agiltron)
which on the other hand has a high attenuation in the off-state to block all light.

After the high attenuation switch L1 and L1′ are split into two fibers by a variable
in-fiber beam splitter (905P, Evanescent Optics) and coupled via the fiber switches
to the respective MOT laser fibers which go to the MOT-telescopes on the y-axis.
As the amplifiers only accept one polarization, but L1 and L1′ have to have orthog-
onal polarizations in order to drive the same transition when coming from opposite
directions, L1 has one fiber whose connector is aligned with the slow axis of the PM
fiber and the other one with the fast axis.

The laser beam L2, which will be injected from the top, determines the regions
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within the BEC where the Raman transitions happen, i.e. where the collisions of
atoms will predominantly take place. Fig. 3.2 shows the optics for this laser beam.
In order to achieve highest resolution of what atoms to address with L2, high NA-
optics are used. A 2” achromat lens focuses the laser onto the BEC 400 mm below
the lens. The focal length of this is f = 400 mm giving a theoretical Gaussian beam
waist of w0 = 5.5µm. A beam expander consisting of two achromats expands the
beam by a factor of 400/75 (one 1” and one 2” lens with focal length f = 75 mm
and f = 400 mm).

To be flexible in the pattern generated in the focal plane a spatial light modulator
is placed before the beam expands. The SLM operates by reflecting the light and the
details will be described in the following subsection. In principle the SLM can change
the spot size at the BEC, too. However, to maintain a good diffraction efficiency of
the SLM an iris is placed in the confocal point of the second achromat of the beam
expander and the focusing lens. The plane where the iris is placed, perpendicular to
the optical axis and at the confocal point, is the Fourier plane of the focusing lens
and the BEC. Thus, the contributing momentum components can conveniently be
manipulated by opening and closing the iris, which will change the spatial intensity
distribution of light at the position of the BEC on the scale of the diffraction limit.

3.1.4 Principle of a spatial light modulator

The devised experiment described in chapter 4 requires the light field of the π-
polarized beam to be shaped as precisely as possible. In particular, not only the
shape of one single spot needs to be modified but it is desirable to even split the
beam into multiple spots, all aligned close to each other. In principle, this can be done
by shaping different beams and injecting all of them into the vacuum chamber indi-
vidually. However, this task can be more conveniently and precisely accomplished by
a spatial light modulator (SLM). Spatial light modulators are liquid crystal displays,
that are able to manipulate certain parts of the beam individually with their pixels
of the display. In phase-only modulators the pixels act as phase retarders. A voltage
applied to the liquid crystals changes the optical path length for the light. These are
typically birefringent and can even rotate the polarization, which in combination
with polarizers can then act as amplitude modulators.

The SLM (X10468-08 LCOS-SLM, Hamamatsu) used in the optical setup for the
Raman transitions operates by reflecting the light at the back of the liquid crystal
and thus is placed as a mirror in the setup. The pixel size is 20µm and has a filling
factor of 95%. The diffraction efficiency, i.e. the amount of light that experiences the
desired phase shift, is 80% but depends on the angle at which light is incident on the
SLM. A reasonable efficiency can still be used for an incident angle of 7◦, enough
to seperate the incident beam and reflected beam at a distance of 10 cm from the
SLM. The reflection efficiency is about 90%.

The SLM acts as display and is controlled by the graphics card of a computer
just if it was one. Displaying on this “screen” different gray values will correspond
to different phase shifts at the respective pixel. The phase modulation of the light
at the SLM eventually results in amplitude modulation in the far field. Hence, by
applying a proper phase modulation one can generate a specific intensity distribution
in the focal plane of a lens, which acts as a Fourier transform for light. In general
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a) b)

c)

Figure 3.3: The Gerchberg-Saxton algorithm can be used to generate an arbitrary
intensity distribution in the imaging plane of a focusing lens. The algo-
rithm starts with a desired intensity a) and shuffles the phases of the two
conjugated planes of SLM plane b) and imaging plane back and forth
until the necessary phase at the SLM is obtained. Projecting the phase
as image to the SLM-“screen” yields the desired image in the far field
which is projected onto a camera by a focusing lens c), which can also
be moved by a sawtooth grating on top of the main phase.

it is hard to compute the necessary phase modulation to achieve a certain intensity
distribution in the focal plane. However, an iterative algorithm like the Gerchberg-
Saxton [138] can achieve reasonable results. Fig. 3.3 shows the intensity distribution
in the focal plane of the imaging lens created by spatially modulating the phase of
a Gaussian beam, overfilling the SLM. The algorithm starts with a random phase
distribution at the SLM and uniform intensity (therefore the overfilling the SLM
with the Gaussian beam). In each iteration it computes the Fourier transform in
the image plane, substitutes the obtained amplitude with the desired amplitude,
then computes back the Fourier transform of this at the SLM, and substitutes the
obtained amplitude again by a uniform one. Hence, the algorithm always neglects the
amplitude after Fourier transform and is only interested in the phase distribution.
This converges within less than 10 iterations to fairly satisfying results.

For the purposes of the SLM in this setup, where diffraction limited spots are
desirable, the situation is different. The Gerchberg-Saxton algorithm in principle
generates an image out of a multitude of diffraction limited spots. Hence, at the
scales of the diffraction limit the accuracy of the algorithm breaks down. Instead,
multiple spots are generated by step functions and a gradient deflects the light to
the desired positions. To increase the spot size the NA of the optics can be reduced
by the iris (compare fig 3.2).As the phase is periodic all desired patterns can be
summed up and taken modulo 2π to obtain the desired gray scale image, which is
to be displayed at the screen.

Fig. 3.4 shows that with the high NA-optics spot sizes of 8.5µm can be achieved



3.2. The four-quadrant delay-line detector 81

2
0
0y
 [

μ
m

]

x [μm]
6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750
2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]
x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

2
0
0y
 [

μ
m

]

x [μm]

6
0
0

250 750

Figure 3.4: Images of diffraction limited spots created by the SLM. The minimal ob-
tainable spots size in the setup is 8.5µm. Shown are varying distances of
the spots (top row), varying positions (middle row), and varying numbers
of spots (bottom row). The efficiency does not vary when the number of
spots is changed or the spots are moved, making the SLM a convenient
tool to generate the necessary pattern at the BEC.

in 400 mm distance from the lens, which is just sufficient to have the BEC in the
focal plane. The efficiency of the diffraction is the 90% and does not vary much when
multiple spots are generated or if they are moved over a distance of 300µm and more.
Again, crucial for high diffraction efficiencies is the alignment of the polarization.
The reflection efficiency of the SLM is measured to be 70%. Hence, through the
whole optical setup a transmission of 60% is possible.

This shows the ability to generate multiple light spots with beam waist of
w0 = 8.5µm. The spot shape can be altered by an iris or alternative filters in
the confocal plane of the focusing lens and the second beam expander. The spots
can be conveniently moved and properly aligned with respect to the BEC as well as
their own orientation. Only when the distance between adjacent spots is about the
size of spots they start to influence each other.

3.2 The four-quadrant delay-line detector

In chapter 4 it will be shown how the ability of the SLM to precisely address small
regions in the BEC with the Raman lasers can be used to generate EPR-like en-
tangled states of two metastable helium atoms. In order to verify the entanglement
the two atoms need to be detected and identified. Therefore, a single atom detec-
tion scheme is essential to prove the entanglement. The high internal energy of the
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metastable atoms can be used for this purpose in combination with a micro-channel
plate (MCP). A delay line underneath the MCP can then be used to extract the elec-
tronic signal and infer spatial and temporal information of the event. The principle
and characteristics of this delay-line detector (DLD) is described in this section and
will be essential part of the analysis of the feasibility of the experiment of chapter 4.

3.2.1 Principle of a delay-line detector

Micro-channel plates (MCPs) (see fig. 3.5) are widely used in particle physics to
detect the high energetic particles with spatial resolutions of a few tens of µm [139,
140] The high internal energy of metastable noble gases can serve as an equivalent to
the kinetic energy of high energy physics particles. The MCPs consist of millions of
glass tubes with a core varying between a few µm and some ten µm. A high voltage
supplied to the surfaces generates a strong electric field within the channels and
accelerates all charged particles to the respective side of the MCP. Upon collision
of the metastable helium atoms with the walls the energy is released and suffices to
overcome the work function to eject electrons out of the channel wall6. The channels
do not go straight through the glass slab but with a small angle such that accelerated
particles do not just pass through the channel, but hit the walls over and over again.
Every hit generates secondary electrons, such that a single high energetic particle
at the entrance of the channel creates a significant avalanche at the exit (the single
event is enhanced by a factor of 103-104 for single MCP). This avalanche is then
strong enough to e.g. illuminate a phosphor screen that can be monitored by a CCD
camera. As the avalanche depletes the charge carrier density locally a dead time of
up to a few ms occurs. However, other regions of the MCP are not affected by this.
In order to increase the gain to a factor of at least 107 typically a chevron-stack
of two MCPs is used. The “chevron” indicates that the second MCP is oriented
such that the angle of its channels is opposite to the one of the channels of the first
MCP. This geometry enhances also the uniformity of gain over the whole MCP and
additionally prohibits a straight passage of particles through the MCPs.

Monitoring the MCP by the combination of a phosphor screen and CCD allows
for recording with high spatial resolution and high flux of particles. However, the
read out of the CCD is slow compared to the capabilities of the MCP where the
avalanche process takes about 100 ps. A different approach is to place a resistive
anode behind the MCP and record the signal electronically. This gives the speed
of pure electronics but does not contain accurate position information anymore.
The speed of propagation of the electronic signal on the anode is about 30% of
the speed of light in vacuum. For an MCP of radius 40 mm this means a signal
takes about 100 ps to travel along the anode. This is at the limit of what is elec-
tronically recognizable, but makes it unlikely to resolve where the particle hit the
anode. However, if the anode is arranged such that the signal needs to travel along
it multiple times the resolution can be enhanced. The effective propagation speed
in delay-line detectors is thus increased, by winding the anode as a transmission
line either meander-shaped or as a helix behind the MCP. The avalanche signal is
then coupled capacitively as image charge to the delay line and propagates along

6Some MCPs use coatings for the channels to lower the work function. This increases the efficiency
of a detection by the MCP.
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Figure 3.5: a) A schematic of an MCP. Glass tubes form µm-sized channels in which
charged particles are accelerated to produce electronic avalanches. The
avalanches can either be detected optically when they excite a phosphor
screen or electronically in combination with a delay line. Using a delay
line the signal takes n ·Ly to propagate in x-direction. b) The delay line
in the specific detector is split into four quadrants. For each quadrant
the peaks heralding a detection event are shown. These are converted
by the CFD into a fast rising pulse, whose arrival at the TDC is in turn
converted into a digitized time.

the transmission line in both directions. The arrival time of the two signals at both
ends of the delay line is recorded. The offset from the sum of the two signals from
some time zero of when the recording was started yields the time when the event
occurred. From the difference of the two arrival times the position in the dimension
perpendicular to the winding of the meander can be inferred. To get a full three
dimensional information typically a second meander is placed orthogonal to the first
one. However, to properly identify signals a second particle must not hit the anode
while the signals are still propagating on the delay line. Hence, a limiting dead time
of typically some tens of ns is given by this restriction. To overcome this limitation,
a third meander structure can be installed, such that the three delay lines are sym-
metrically oriented. The third helix is redundant for a single event reconstruction.
Nevertheless, for situations of multi-events sophisticated algorithms can obtain the
three dimensional information of up to ten events with this redundancy if they do
not hit at the same position [141].

The avalanche behind the MCP typically spreads over multiple pick up strips of
the delay line (typically a few hundred µm thick). However, upon propagation the
wave packets traveling from each strip spread and overlap when they reach the read
out electronics. This way a constant fraction discriminator (CFD) can determine the
maximum of the signal with higher precision than the pitch distance of the delay line.
The CFD transforms this information into a fast rising pulse (see inset of fig. 3.5).The
CFD, combined with a preamplifier, is attached to the vacuum chamber as up to
this point all contributions along the transmission line need to be considered for
the analysis. From there the time signal is sent to a time-to-digital-converter (TDC)
which can convert the time from the fast rising pulse generated by the CFD. The
information of all arrival times is then recorded and an algorithm reconstructs which
arrival times belong to each other and computes the three dimensional coordinate
of the detection event.
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3.2.2 The performance of the delay-line detector
There are two main figures of merit of the delay-line detector important to this
system. The efficiency to detect single particles η and the resolution7 in spatial as
well as in temporal dimension δx,y,t. This subsection describes the specific DLD of
the system in terms of its characteristics as well as the geometry within the setup
to reconstruct the three dimensional momentum of an atom after time of flight.

In the current system a four-quadrant delay-line detector (DLD 3030-4Q, Surface
Concept) is installed. Even though the chevron stack of MCPs consists of one large
circular disk with 40 mm radius, the delay line underneath the MCP splits into
four individual delay lines with independent read out electronics. Fig. 3.6 shows a
two dimensional image of a cloud passing through the MCP and being registered
by the four quadrants. The detector is mounted straight underneath the magnetic
trap of the helium atoms so that they hit the detector upon release from the trap
and after free fall. Fine adjustment can be done by an xy-translation stage and a
rotation stage (SLC-2460-S-UHV+ SR-3610-S-UHV, Smaract). The travel range of
the linear stages is 17 mm with a resolution of 5 nm and the rotation stage can be
rotated by 90◦ (limited by cables) in steps of 0.3µrad. A hole in the optical table
carrying the vacuum system allows for a distance from the magnetic trap to the
detector of H = 800 mm. Just before the detector, there is a full metal gate valve
(48244-CE74-AKS1, VAT) to close the detector off when the titanium sublimation
pump in the main chamber is switched on. The detector side of the vacuum can
separately be pumped by an extra turbo pump (HiPace300, Pfeiffer Vakuum).

Detection efficiency

To test the efficiency of the DLD a cloud of thermal helium atoms is cooled to
35µK by evaporative cooling. A second 5 ms short rf pulse outcouples a fraction of
the remaining atoms. From absorption imaging, the number of atoms still in the
trap after the rf spilling pulse is known and the outcoupled atoms are recorded with
the DLD. The total number of atoms is deduced from runs where no atoms are
outcoupled of the trap. As the thermal cloud is too hot to fall entirely on the DLD,
not all atoms missing in the remaining cloud in the trap can be detected by the DLD.
More so the rf couples out from an isoenergetic shell of the cloud corresponding to
the rf frequency. This results in a shell of atoms passing through the DLD with a
radius larger than the radius of the active area of the MCP. The width and radius of
this shell can be obtained by fitting two Gaussian distributions to the time histogram
of the detection events on the DLD (compare fig. 3.7). From this fit the number of
atoms that could have been detected can be corrected. The ratio to the total number
of atoms then yields the efficiency of the DLD. If the voltage at the two MCPs is too
low, quadrants one, two, and three show reduced count rates even when quadrant
four still records reasonable count rates. This is due to a reduced pulse height (see
inset of fig. 3.5) before the CFD and needs readjustment of the threshold of the CFD
for the respective quadrants. However, when the voltages are high enough (1.35 kV
at each of the MCPs) all four quadrants show similar count rates. Other groups have

7In the context of detecting the position of a single particle the term ”resolution” is used to
describe the error in determining the position and given by the standard deviation of a statistical
ensemble.



3.2. The four-quadrant delay-line detector 85

-40

40

30

20

10

0

-10

-20

-30

-40 403020100-10-20-30

y
 [

m
m

]

x [mm]

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

Figure 3.6: Behind the MCP are four independent delay lines splitting the detector
into four quadrants. This way single atoms can be detected simultane-
ously on different quadrants, overcoming the individual dead time of
each quadrant.

reported non-uniformities over the MCP, which are not observed with the 4Q-DLD
in this system. Hence, the efficiency is assumed to be constant over the MCP and
all four quadrants. The main systematic error results from the uncertainty of the
number of atoms determined by the imaging system. Correcting, for the temperature
dependent velocity distribution of the cloud the error in the number of atoms can
be assumed to be less than 20%. This is on less than the statistical error over 200
runs and yields an efficiency of η = 0.07± 0.02, which is comparable to what other
groups have reported for metastable helium.

Temporal resolution

To test the temporal resolution of the DLD a mode locked picosecond laser (pico-
TRAINTM IC-355-3000 ps, HighQ Laser) at 355 nm was set up. The intense near UV
photon pulses can eject electrons by multi-photon absorption processes. The mode
locked pulses give an inherent trigger to the detector (repetition rate 80 MHz). Inte-
grating over 1 s each quadrant is addressed by the laser individually while a second
beam hits another quadrant. This way the relative error between quadrants can be
determined as well. The arrival times of the photons are then taken modulo the
repetition rate of the mode locked laser and the distribution yields an upper bound
to the electronic time resolution of the quadrants. Fig. 3.8 shows the distributions
for each quadrant. A width of δt = 250 ± 50 ps8 averaged over all four quadrants
is measured. With the velocity of the atoms at the detector this can be converted

8This gives an upper bound as the pulse width of the mode-locked laser is not taken into account.
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Figure 3.7: A shell of atoms with radius larger than the radius of the active area of
the MCP is passing through the DLD. From the time histogram of the
detection events the radius and width can be deduced to correct for the
atoms that miss the detector.

into a spatial resolution in z-direction of δz = 1.0 ± 0.2 nm. However, it should be
mentioned that the validity of this conversion is not bullet-proof. The characteriza-
tion of the temporal resolution is done by photons which travel at the speed of light.
Hence, any finite penetration depth into the channel before the electrons are ejected
is negligible. The metastable atoms, though have a velocity of 4 m/s when they hit
the detector. The angle of the channels allows the atoms in principle to penetrate
about dp = 100µm into the channel before they have to hit the wall. Hence, the
event can happen within a jitter of about 25µs, much larger than the measured sub-
ns temporal resolution. If the atoms can penetrate into the channel that means the
spatial resolution in z-axis is given by the penetration depth dp into the MCP. This
would be on the same order of magnitude as the spatial resolution in x and y. The
experiments on atom statistics performed by the Groups in Palaiseau [38, 45, 51] and
Canberra [44] on the other hand confirm, that the temporal resolution is better than
the spatial resolution and the electronic time resolution can in good approximation
indeed be converted with the velocity of the atoms at the detector.

From the minimal distance of two detection events the dead time td of the indi-
vidual quadrants can be deduced. All Quadrants show an onset of counts at about
td = 25 ns. Tab. 3.1 shows the results for the temporal resolution as well as the tim-
ing jitters δtj between different quadrants which is calculated from the distribution
of events of the same mode locked laser at the two different quadrants with respect
to the first quadrant. The minimal distance between detection events on separate
quadrants goes to zero as the read out electronics are independent and an event on
one quadrant can be identified even though events at other quadrants can occur.
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Figure 3.8: A mode locked ps-laser is used to characterize the temporal resolution
of the DLD. The events occur at precise intervals given by the oscillator
length of the laser. A histogram of the detection events modulo this
interval yields the temporal resolution.

Quadrant δt [ps] δtj [ps]

Q1 236± 12 0
Q2 215± 9 10
Q3 196± 16 40
Q4 232± 12 136

Table 3.1: A summary of the timing characteristics of the DLD. The error of the
temporal resolution δt is a statistical over several runs. The jitter δtj
between individual quadrants is small compared to the resolution.

Spatial resolution

The time binning of the TDC is 6.859 ps while the binning of the spatial dimension
happens at the TDC in 27 ps bins. The latter binning defines the pixel in the spatial
dimension as well. From the size of the MCP and the number of pixels per diameter
a spatial pixel size can be calculated to be px = 32µm and py = 36µm. Note,
the pixel size does not relate to the spatial resolution attainable by the DLD as it
does for CCD cameras even though the terminology is similar. A simple approach
to estimate the resolution can be done by subtracting the two time sums of the
two dimensions. The time sum of each dimension should be the arrival time of the
detection event plus some constant time the signal takes to propagate along the
whole transmission line. Subtracting the two time sums of the two dimensions will
eliminate the offset caused by the arrival time. As the time to travel the transmission
line remains constant for every event the distribution of this time sum method
results in a sharp peak if the resolutions of the DLD were perfect. Fig. 3.9 shows
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Figure 3.9: The time sum of the recorded events can be subtracted for the two
dimensions to have a first check on the spatial resolution of the detector.
The histograms show the distribution of recorded events for all four
quadrants. With the pixel size of about 30µm this gives roughly 300µm
spatial resolution.

the histograms of the time sum distribution for all four quadrants. Together with
the pixel size a spatial resolution of δx,y ≈ 300µm is obtained. However, the chips
in the CFD produce similar systematic errors, which add up in the time sum but
cancel out when the two individual signals of one dimension are subtracted from
each other to determine the respective coordinate. Hence, there is a compromise
between optimizing the temporal resolution (time sum) and spatial resolution (time
difference). In particular, the spatial resolution is likely to be better than what is
estimated from the time sum method.

A more accurate way to determine the spatial resolutions of the detector is to
project a known pattern on to the detector. The drawback is that the vacuum system
has to be opened to insert a mask to avoid any image blurring from a distant mask.
In a first experiment a shadow mask with 30µm holes in diameter and 500µm
pitch is placed 2 mm before the MCP. The diffraction at the holes is only 0.001rad.
However, the mask itself is only 300µm thick and thus, atoms with an angle of
0.1rad can pass through. Hence, the spot size at the detector is 90µm. The mask is
then illuminated by a cloud of thermal helium atoms released from the MOT with a
short molasses pulse applied (see chapter 2.8.4). The small filling factor of the mask
results in a little bit more than 10k events over the whole detector area. Hence, to
obtain somewhat reasonable statistics 20k runs were performed. The diameter of the
holes of the shadow mask was sampled with an electron microscope (Supra-55, Zeiss)
Even though the error of the the diameter was measured to be only ±5µm certain
areas of the mask allowed for better transmission and held better statistics. These
areas were analyzed by fitting 24 Gaussian distributions to a subarea of the detector.
Fig. 3.10 shows the image of the shadow mask. In the fig. 3.10b the structure of the
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a) b)

c)

Figure 3.10: a) An image of a shadow mask placed 2 mm above the MCP. The
shadow mask has about 80 k holes with 30µm diameter and 500µm
pitch. An accumulation of 20 k clouds of thermal atoms from the MOT
is used to extract the spatial resolution of the detector. b) shows a
subsection of an area with high count rates and c) shows the fit of
24 two-dimensional Gaussian distributions to it, yielding the spatial
resolution. Note how spots at the edges of the image can disturb the
fitting procedure, still holding reasonable fits, while overestimating the
resolution.

mask is more clearly visible and the fit to such a subsection of the image is shown
in fig. 3.10.

With this the spatial resolution can be calculated. Table 3.2 shows the results
for all four quadrants. The resolutions for quadrants one, two, and three where
hard to extract and indicate that those three quadrants require a new adjustment
of CFD and TDC. However, the result of quadrant four shows that resolutions of
δx = 153± 10µm are possible. Deconvoluted with the spot size of the image at the
detector this corresponds to δ′x = 124µm ± 12 and will be used for the analysis of
chapter 4.

As the resolution of the detector is the bottle neck of all experiments looking for
the correlations in time of flight measurements any effort to improve on the resolution
is worthwhile. There are three technical improvements that can be implemented
relatively easily9. Quadrants one through three showed issues with the pulse height
of the CFD. This can be improved by improved amplification stages before the
CFD. Secondly, the parameters for the quadrants need to be readjusted and can be
optimized for spatial resolution. This can provide a spatial resolution improvement
of about 50% at the cost of temporal resolution. However, the temporal resolution is
by far better than the spatial ones and would not limit the experiment if reduced to
some extent. Finally, but most promising is to upgrade the CFD with a module that

9This paragraph is an excerpt from personal discussions with Andeas Ölsner of Surface Concept.
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Quadrant δx [µm] δ′x [µm] δy [µm] δ′y [µm]

Q1 175.0± 5.8 150.1± 6.8 215.1± 6.8 195.4± 7.4
Q2 196.4± 8.7 174.5± 9.8 241± 12 224± 13
Q3 204± 15 184± 17 226± 10 207± 11
Q4 153± 10 124± 12 185± 12 161± 13

Table 3.2: The spatial resolution δx,y of the individual quadrants of the DLD, as
well as the resolution δ′x,y deconvoluted with the mask structure. The
errors stem from statistical variations between different sub pictures. The
large error for quadrant four suffers from areas where low count rates,
i.e. no good fits, were obtained. As these areas probably only suffered
from low count rates the resolution given here is on the conservative side.
The degraded resolution of quadrants one through three compared to
quadrant four indicate again the necessity for a readjustment of the other
three quadrants.

reflects the incoming signal a few times back on the CFD. Hence, the signal can be
measured multiple times reducing the error at the cost of a larger dead time of about
150 ns. Fig.3.11 shows a measurement of Surface Concept where they could improve
the electronic accuracy by a factor 2-3. This would bring the spatial resolution down
to about 60µm.

Dark counts

A big advantage of a DLD for detection of single atoms is its low dark counts. Due to
the requirement of relatively high energies in order to eject electrons out of the walls
of the MCP, barely any spurious counts not originating from atoms are registered.
To characterize the detector with respect to its dark counts within the system, the
valve to the main chamber is left open, but no helium atoms are present in the
main chamber. In this scenario a dark count rate of 60 s−1 is measured over the
whole detector. As seen in fig. 3.10 atoms hitting the MCP at the edge between two
quadrants can be registered by either quadrant and therefore leads to an artificial
higher count rate for the dark counts as well. As this area is restricted to ±300µm
where the intersection of two quadrants is, this can safely avoided by orienting the
DLD appropriately for experiments. Table 3.3 shows the total dark counts of the
individual quadrants as well as the dark counts excluding the regions of the edge.

3.2.3 Reconstructing momentum space

When the atoms are transferred to the magnetic insensitive state during the Raman
transition, they are no longer trapped by the magnetic trap. Gravity accelerates them
towards the detector underneath the trap. From the time of flight the momentum
distribution in three spherical coordinates can be reconstructed. Fig. 3.12 shows a
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Figure 3.11: Histograms of arrival times of electronic signals. Shown is a test of the
electronics performed by Surface Concept. The timing error has been
converted to the corresponding spatial resolution of the DLD in the
system. A module before the CFD (right) could reflect the signal N
times to let the CFD measure it N times. Hence, the error would drop
by a factor of

√
N , which would improve the spatial resolution by a

factor of 2-3 in this case where 8 reflections were introduced.

Quadrant Dark Counts Dark Counts
Total [s−1] without Edge effect [s−1]

Q1 28.2± 5.7 5.2± 1.0
Q2 13.6± 3.8 5.9± 1.6
Q3 49.5± 7.8 7.1± 1.1
Q4 18.3± 5.0 4.0± 1.1

Table 3.3: The dark counts of the individual quadrants of the DLD with and without
the edges of the quadrants. The error is given from the statistics of 600
runs with each 1 s exposure.

BEC dropped onto the DLD and its momentum distribution calculated with

θ(x, y, t) = arccos

 gt2 − 2H − vz√
(gt2 − 2H − vz)2 + 4 (x2 + y2)

 (3.8)

φ(x, y, t) = π(1− sgn(y)) + sgn(y) arccos

(
x√

x2 + y2

)
(3.9)

p(x, y, t) =
m

2t

√
(gt2 − 2H − vz)2 + 4 (x2 + y2) (3.10)

(3.11)

The equations include already a possible initial velocity vz component along the
z-direction. This is required for properly reconstructing the momentum shell of the
scattered atoms after the Raman transition, where the atoms receive a momentum
kick upwards vz =

√
2~k/m by the stimulated emission of a photon into L2. However,

if a cloud is simply released from the trap, this component is taken to be zero. The
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Figure 3.12: An image of a BEC passing through the DLD. With the distance of the
trap to the detector known the momenta of the atoms can be recon-
structed and the pancake shape of the BEC after time of flight becomes
visible. The inset shows a time histogram of the cloud. At the center
of the cloud the density becomes too high for the detector to record all
events.

inset of fig. 3.12 shows the time histogram for the cloud exhibiting a flat hat top of
the distribution where the detector is saturated by the dense cloud of atoms. From
this the maximal flux is determined to be ∼ 5 · 105 s−1 per quadrant. This is valid
in the regime of a BEC where high densities for a (in terms of particle physics) long
burst time occur. However, the atoms scattered in the four-wave-mixing process are
much more dilute and will not be limited by the bandwidth of the detector.

This concludes this chapter, where the four-wave mixing-process was introduced
and the ability to realize flexible light patterns at the BEC with a resolution close to
the diffraction limit. The DLD was shown to have comparable detection efficiencies
as reported by other groups and the resolution of the detector was characterized.
The spatial resolution of 120µm will be the bottle neck for experiments looking at
atom correlations. However, possible ways for improvements are pointed out, such
as multiple measurements of the electronic signal to reduce the measurement error.
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4 The devised experiment to
demonstrate momentum
entanglement

In the preceding chapters the experimental basis to precisely create matter waves and
accurately measure them was presented. In this chapter the experiment is discussed
for which the system is designed. The ensemble of ultra-cold atoms in the BEC serves
as a source for coherent matter waves. The precise control of the Raman beams using
the spatial light modulator will be used to prepare an Einstein-Podolsky-Rosen-like
state of two counter-propagating atoms. The delay-line detector finally, with its high
spatial and temporal resolution able to detect single atoms, will be used to analyze
the correlations of the atoms. For interpreting the data the first section of this chap-
ter lays the foundation of an understanding of entanglement in terms of a historical
review. Afterwards two conceptual experiments are described, capable of showing
entanglement in momentum space. While the double-double diamond scheme of sec-
tion 4.2 is able to perform a full Bell type experiment, section 4.3 will simplify the
setup at the cost of not being able to rule out local hidden variables. Nevertheless,
within quantum mechanics entanglement can be shown with this arrangement and
tested against classical predictions. A deviation of this scheme provides access to
test local hidden variables again and will be used to discuss the theory behind the
devised experiment in section 4.5 and analyze the capabilities of the metastable
helium BEC platform to perform such an experiment.

4.1 Review of entanglement

In this section the idea of entanglement is presented in the context of its historical
argument by Einstein, Podolsky, and Rosen (EPR) [11]. Their idea will provide
the essential gedankenexperiment underlying the setup to perform an entanglement
experiment in the external degree of freedom of a matter wave. This section is
concluded by pointing out the difference to the more widely used scheme of spin
entanglement.

Not long after the formulation of quantum mechanics by Schrödinger and Heisen-
berg, EPR drew the attention to entanglement, an intriguing feature of quantum
mechanics. In their seminal work of 1935, they argued that quantum mechanics can-
not be complete by its own laws. They first took special relativity to claim no action
to have an effect faster than light on a distant object. Together with their criterion
for “elements of reality”, that a prediction about a real physical quantity cannot be
subject to probabilities if all elements of this reality can be observed, they laid the
foundation to what is today called “local realism”. An implication of what Bell later
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extended to be local realism is, that a measurement on one particle cannot affect the
reality of another, space-like separated particle. EPR then looked at a system of two
particles A and B interacting at some point in time, but that are then separated and
do not interact with each other anymore. The state in its position representation for
the position xa and xb of particle A and particle B, respectively can be written as

Ψ(xa, xb) =

∫ ∞
−∞

e(2πi/h)(xa−xb+x0)pdp (4.1)

with some constant offset x0 in position. The integrand is the eigenfunction for
the single-particle momentum operator p̂i with eigenvalues p and −p for particle
A and particle B, respectively. On the other hand the state itself, i.e. the Fourier
transform of the integrand is the eigenfunction for the position operator x̂i with
eigenvalues xa and xb − x0 for particle A and particle B, respectively. The Fourier
transform represents the quantum mechanical feature that all bases are equivalent
to describe a state, i.e. the observer can choose the basis in which the measurement
is conducted. This mathematical rotation of the basis corresponds to a different
experimental measurement setting. In the EPR example, the observer can choose
whether he wants to measure position or momentum (or anything in between) of the
system and still the measurement yields an exact answer in the respective Fourier
space.

When one observation is now made in position space the state is projected onto the
state corresponding to the measurement, i.e. if the position of particle A is measured
x̂a|Ψ〉 = xa then particle B has to be in an eigenstate of its position representation
as well, yielding with certainty an outcome x̂b|Ψ〉 = xa +x0. On the other hand, the
same holds true for momentum space, i.e. if the momentum of particle A is measured
p̂a|Ψ〉 = p then particle B has to be in an eigenstate of its momentum representation
as well, yielding with certainty outcome -p for p̂b|Ψ〉. However, the two particles are
well separated and the measurements can be performed independently. This is to
say, without disturbing particle B, the position of particle A can be measured and
the outcome for a position measurement on particle B predicted with certainty.
On the other hand, again without disturbing particle B, the momentum of particle
A can be measured and the outcome for a momentum measurement on particle B
predicted with certainty. As required by the locality of the measurement process and
to be an element of reality, particle B has to have both outcomes for position and
momentum with certainty no matter what measurement is performed on particle A.

However in quantum mechanics, after Heisenberg’s uncertainty principle [12], two
conjugate variables of one particle like x̂ and p̂ cannot be predetermined without any
uncertainty the same time. The operators of two conjugate variables of one particle
are non-commuting, i.e. the order in which they are applied to the state matters

[x̂i, p̂j] = x̂ip̂j − p̂jx̂i = −i~δij (4.2)

Note that two “conjugate” variables xi and pj with i 6= j of two different particles are
not conjugate and do commute. The complimentarity of the two conjugate variables
requires the uncertainty of one variable to approach infinity if its conjugate variable
is determined with certainty. From this commutation relation Heisenberg derived his
uncertainty principle which is one of the most fundamental principles in quantum
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mechanics, i.e. the product of the uncertainties of two non-commuting observables
cannot vanish

σxiσpi >
~
2

(4.3)

Thus, only one observable can be measured arbitrarily precise1, while the uncer-
tainty of the other one unconditionally approaches infinity. This however, leads to
a contradiction of the train of thoughts in the EPR case. Measuring either observ-
able of particle A, predicts the respective observable of particle B equally well, even
though there is no action at a distance. As the basis of the measurement on particle
A is not a priori determined, both observables of particle B need to be an “element
of reality” from the very beginning and should be precisely measurable with unity
probability contradicting Heisenberg’s principle.

As EPR only used the quantum mechanical properties of uncertainty principle
and entanglement to conclude this contradiction, the problem formulated by EPR
is usually referred to as EPR paradox. However, EPR proved quantum mechanics
to be incompatible with their notion of “elements of reality”, as this assumption is
necessary to infer the result at the other particle. As a consequence of the Newtonian
mechanics this was the prevailing philosophical view of physics2 at that time and
the incompatibility to quantum mechanical predictions justified their reasoning to
claim quantum mechanics to be incomplete, i.e. not capturing the full physics behind
this effect. To recover the deterministic world view initiated by the mathematical
formulation of classical physics by Newton, Einstein expressed the hope that a theory
could be formulated that extends quantum mechanics with some additional physical
quantity to make it complete. Such quantities were later referred to as “local hidden
variables”.

As the measurement of the conjugate variable to the one measured at particle A
is performed at the remote location where particle B is measured, the uncertainty
principle of eq. (4.3) does not describe the full system of two particles. In this situ-
ation, though a criterion can be derived that, given the total variance of the system
of the dimensionless positions 〈∆(x̂a − x̂b)〉2/x2

d and momenta 〈∆(p̂a + p̂b)〉2/p2
d, is

only fulfilled for entangled systems [143]

1

x2
d

〈∆(x̂a − x̂b)〉2 +
1

p2
d

〈∆(p̂a + p̂b)〉2 ≤ 1 (4.4)

The constants xd and pd have to be chosen for the appropriate system and fulfill the
relation3

ixdpd = [(x̂a − x̂b), (p̂a + p̂b)] (4.5)

For more than 30 years this problem was taken as purely philosophical. Bohm had
reformulated the problem of EPR’s continuous variables into a system of two discrete

1This formulation indicates the statistical uncertainty σxi
=
√
〈x̂2i 〉 − 〈x̂i〉2 to be zero.

2Bohr in his early response already pointed out that such view is not consistent with quantum
mechanics and should be avoided [142].

3If either of the variances of the observables is known the respective proper constant is the variance
times

√
2.
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two-level particles with spin-1/2 [13]. Even though equivalent the discrete system is
easier to deal with as measurement outcomes can only yield Ĵi|Ψ 1

2
〉 = ±1/2. How-

ever, observables Ji along either axis i of the Bloch sphere do not commute and yield
the same arguments as in the case of the continuous variables x̂ and p̂. It was Bell to
realize that no local hidden variable theory, i.e. a theory employing some local hidden
variables (even if only additional to quantum mechanics in order to make it com-
plete), could explain the correlations arising from entanglement [14, 15]. The ideas
of Bell were to be proven in a system with perfect correlations and thus challeng-
ing to proof by experiments. The most prominent formulation of a Bell inequality
applicable to real experiments was brought forward by Clauser, Horne, Shimony,
and Holt (CHSH) [144]. Central to both, Bell’s and CHSH’s proof is the assump-
tion that the measurement on one side does not depend on the measurement on the
other side fulfilling the locality criterion, but can depend on some hidden variables.
The requirement to reproduce quantum mechanical correlations for measurements in
orthogonal bases and the use of a Cauchy-Schwarz inequality 4 to calculate probabil-
ities at different angles lead to an upper bound for theories of local hidden variables.
However, quantum mechanical probabilities of the two-level system do not adhere
to a linear trend, which is immanent to the Cauchy-Schwarz inequality, but rather
show a sinusoidal behavior as result of the projective measurement process on eigen-
states. For example, the probability to detect a photon of linear polarization after
a polarizer follows Malus’ Law5. Hence, choosing the right angles to measure the
state on the Bloch sphere let quantum mechanical correlations violate a Bell-, or a
CHSH-inequality, respectively6.

With the experiments demonstrating a violation of Bell’s inequality [16, 21–25],
respectively appropriate versions of it, quantum mechanics was proven impressively
to be correct and excelled with its correlation to be stronger than what local hidden
variable theories can provide. While a full proof under strict locality conditions with
high detection efficiencies remains challenging to perform for current technology,
the implications of entanglement for information science is far reaching [145–148].
Quantum cryptography and quantum computing assume quantum mechanics to be
true and have started to explore the power of entanglement. In these scenarios it is
not a question of completeness of quantum mechanics, but rather whether the state
at hand is entangled. The definition of entanglement in quantum mechanics is a more
general one than what is required for the EPR-paradox, but can be illustrated with
their example. The outcome of the measurement on each particle has to be random
in any basis, i.e. the mixed state7 of the single particle, after the second particle is
traced out of the entangled state, has even probabilities for all measurement settings.
Hence, a maximally entangled state is an even superposition of orthogonal states.

4The Cauchy-Schwarz inequality states that the square of the inner product of two vectors is
smaller or equal the product of the inner products of the individual vectors and one of its
consequences is for example the triangle inequality, which is used in Bell’s derivation.

5P (θ) = 1− (cos θ)2
6The original angles are calculated for the two level system, i.e. spin-1/2. The polarization of

photons is in practice however, a spin-1 particle and thus, its phase changes twice as fast.
Hence, the angles at which quantum mechanics violates the inequalities maximally are half as
big for photons entangled in their polarization.

7Mixed states result from pure states where some information has been irrevocably migrated to
the environment and thus is traced out.
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On the other hand the two systems should be correlated, i.e. each eigenstate in one
system should be uniquely related to an eigenstate of the partner system. As this
should hold for any basis, the system of both particles needs to be in a superposition
of correlated states. Formally, this means a pure bipartite state is entangled if and
only if the state cannot be separated into a simple product of states [149]

Ψent(x1, x2) 6= Ψsep(x1, x2) = ψ(x1)φ(x2) (4.6)

As current technology is far from being able to separate matter waves for space-
like separated detection, this is the criterion to be tested for the system of this
dissertation. However, to exclusively rule out any possibility that a state is separa-
ble can be challenging most of the times and so called entanglement witnesses are
used. These witnesses are constructed such that, given the violation of a boundary,
no separable state can be used to describe the measurement outcome [149]. The
Bell inequalities are by far not the only ones to witness entanglement, but are usu-
ally exploited for spin-like systems, e.g. photons [23], ions [25], Josephson junction
qubits [150], where internal degrees of freedom are entangled. In the following sec-
tions it will become obvious why violating a Bell inequality, as clear as it serves
as an entanglement witness8, is hard to realize experimentally and other witnesses
might be more useful.

The internal degrees are alluring to use for entanglement as their coupling to
the environment is small, compared to particles moving through space and time.
By coupling to the environment the coherence of the superpositions is lost and the
state decoheres to a mixed state with eventually no entanglement left for verifica-
tion. Interestingly, the effect of coupling to the environment is of the same nature
as the entanglement of the two systems. The interaction with the environment es-
tablishes an entanglement between the environment and the system. This leads to
an information flux from and into the environment, which if read out corresponds
to a measurement. However, a measurement destroys the superposition. Thus, the
coupling to the environment in principle offers the possibility to gain information
of the system, destroy the superposition, and with this the entanglement. This no-
tion of information and superposition will be important again when a closer look at
different paths of the particles will be given.

The only candidates so far succeeding in demonstrating EPR like correlations in
their external degrees of freedom are photons produced in a spontaneous parametric
down conversion process (SPDC) [34, 151–154]. Photons propagating in free space
are neither disturbed by electric, nor magnetic fields, and their effects in gravity are
faint. Thus, they are ideal in terms of low decoherence during propagation through
space and time.

In the next section it will be shown how exploiting the quadrature phase operators
can be used to demonstrate EPR correlation in a system of two momentum entangled
particles, which is then extended to the situation of matter waves as well.

8Discriminating quantum mechanics against other theories goes beyond the boundaries of quan-
tum mechanics and thus, violating a Bell inequality certainly implies much more than being an
entanglement witness.
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4.2 Concept of double-diamond experiments
After this general overview of entanglement and its terminology, this section will
turn towards the specific situation of systems entangled in their external degree in
the spirit of the original EPR gedankenexperiment. The widely employed mechanism
to create entangled photons happens in a nonlinear crystal, where highly energetic
photons split their energy onto two daughter photons. This process of spontaneous
parametric down conversion (SPDC) is well understood in the field of nonlinear
optics [155]. While developed for strong fields for second harmonic generation, the
interaction of two fields in the crystal can be simplified by incorporating the non-
linearity χ2 of the crystal into a single coupling constant g0 and neglecting all other
orders. This yields then in second quantization

|Ψ〉 = g0

∫ ∫
(â†
~pa
b̂†~pb ĉ d̂+ â~pa b̂~pb ĉ

† d̂†)|0011〉d~pad~pb (4.7)

where a, b and c, d are the annihilation operators for the two outgoing modes and two
incoming modes, respectively. They need to fulfill phase matching conditions, i.e.
conserve momentum and energy as well as support coherent amplification while the
incoming fields propagate through the crystal. One of the two incoming modes, say
c is typically a strong coherent light field and the second one, d, is populated by the
vacuum and the quantum fluctuations therein. Therefore the name “spontaneous”.
Upon interaction with the crystal the modes are populated, where due to momentum
conservation particle A always occupies a mode with opposite momentum to the
momentum of particle B in the co-moving frame of the strong light field (~pa = −~pb).
In general, this results in two forward directed light cones, each for every photon.
High production rates of these photon pairs however allow to select only two distinct
modes of the cones and the respective modes on the cone of the partner photon and
results in the entangled output state

|Ψ〉 =
1√
2

(|pa1pb2〉+ |pa2pb1〉) (4.8)

Double Diamond

The integral in eq. (4.7) is an extension of a two-mode squeezed state [156] where only
one single pk1 would be considered. However, to show entanglement in a two mode
squeezed state a strong coherent field is required as a local oscillator in the homodyne
detection of the photons. While this is feasible for light, particle conservation renders
it extremely unlikely to be used for matter waves. However, by extending the state
with the pk2-mode, a natural source for the local oscillator is generated at the same
time. Fig. 4.1 shows a schematic of how an entanglement experiment would look like
for such a state in a double-diamond configuration. The name “double diamond”
arises from the two paths on each side describing each a diamond. The two modes for
each photon are reflected and interfered again on a beam splitter. Using retardation
plates in one arm of each photon, the relative phase between the two paths can be
adjusted and thus, the quadratures (see top row of fig. 4.1) of both photons scanned.
This way the additional second paths substitute the strong coherent field impinging
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Figure 4.1: a) A schematic of the setup for a double-diamond measurement to verify
entanglement of a state given by eq. (4.17). The two photons are gen-
erated in the source and can either take path {a1, b2} or {a2, b1}, with
each side describing a diamond when reflected by mirrors. The two paths
interfere again on a beam splitter and retardation plates are used to ad-
just the relative phases for homodyning. b) By varying the relative phase
difference φ1 − φ2 the phase quadratures x̂ and p̂ can be scanned, i.e.
the complete relevant phase space accessed. c) The quantum mechanical
projective measurement on one of the two axes yields then a sinusoidal
dependence. The black lines indicate the linear trend of classical theo-
ries obeying the Cauchy-Schwarz inequality, yet reproducing quantum
mechanical results at φ1 − φ2 = 0, π/4, π/2.

on the second input of the beam splitter in the two mode squeezed situation. In both
cases the two output modes of the beam splitters are monitored with detectors on
each side. With the phase plates φ1 and φ2 and the 50/50-beam splitter, where the
reflected beams experience a phase shift of π/2, one can calculate the state at the
bucket detectors Q1a, Q1b, Q2a, and Q2b in the output modes of the beam splitter:

|Ψ〉 =
1√
2

(|P 〉+ |X〉) (4.9)

= (|Q1aQ1b〉+ |Q2aQ2b〉) cos

(
φ1 − φ2

2

)
(4.10)

+ (|Q1aQ2b〉+ |Q2aQ1b〉) sin

(
φ1 − φ2

2

)

where |X〉 and |P 〉 are the eigenstates to the phase quadratures

x̂ =
|Q1aQ2b〉〈Q1aQ2b|+ |Q2aQ1b〉〈Q2aQ1b|

2
(4.11)
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and

p̂ =
|Q1aQ1b〉〈Q1aQ1b|+ |Q2aQ2b〉〈Q2aQ2b|

2
(4.12)

respectively. While x̂ measures coincidences of crossed detectors, p̂ measure the
coincidences if parallel detectors click.

Hence, at all detectors a detection is equally probable with probability 1/2 as
required for an entangled state. However, upon conditional detection the outcomes
become correlated in a, typical for quantum mechanics, sinusoidal dependence on
the relative phase. For example same detectors always click (i.e. both Q1s or both
Q2s) if the relative phase is zero, or the crossed detectors click (i.e. Q1 clicks for one
particle while Q2 clicks for the other particle) if the relative phase is π. Additionally,
the phase can be adjusted such that all angles in between are accessible, in particular
the ones where quantum mechanics deviate from the linear trend of classical physics
and local hidden variable theories.

This experiment was originally proposed by Horne et al. [63] in a time when SPDC
sources were not that developed. Nevertheless, before considering matter waves of
massive particles they analyzed a system of photons, which at that time were en-
visioned to be created in positronium annihilation yielding entangled γ-rays. The
realization of the proposal by Rarity and Tapster [34] eventually confirmed the pre-
dictions of quantum mechanics using photons of SPDC. However, whether massive
particles exhibit similar correlations or experience decoherence due to, e.g. gravity,
remains an open question for experimental physics. Even though neutron experi-
ments, because of their weak interaction with the environment, were at the forefront
of fundamental research [3–6], because of this weak interaction, now among each
other, they were not candidates for sources of entangled pairs. Yet, with the ad-
vent of laser cooling and the achievement of Bose-Einstein condensation, the strong
interaction of atoms in collisions has become attractive to be exploited for such ex-
periments. Many proposals investigate the possibility of using dissociating molecules
in the BCS-BEC crossover [134, 157, 158]. The similarities of eq. (4.7) and eq. (3.3)
however are striking and the experiments by Perin et al. [51, 52] are promising that
the four-wave mixing process (FWM) yields a test bed for an EPR experiment with
massive particles in their external degree of freedom.

The SPDC source relies on proper alignment of the crystal and the laser beam,
which creates the strong coherent light field to drive the process. Only under cer-
tain angles a phase matching is fulfilled that allows for a coherent population of
the desired modes and a decent output of photons in those modes. As this phase
matching condition only supports a limited amount of modes, collecting the pho-
tons at reasonable count rates is feasible. The FWM process of chapter 3 however,
is solely governed by the low energetic scattering parameter describing s-wave scat-
tering. Hence, the produced atom pairs do not only lie on selected modes but are
isotropically scattered over all 4π of the whole solid angle. This makes it hard to
collect the atoms, especially as the mirrors in atom optics are usually made out of
Bragg laser pulses [60, 129, 159, 160]. Bragg pulses only resonantly reflect certain
velocity classes which have a Doppler shift smaller than the linewidth. This is dif-
ficult to construct for a three-dimensional, expanding cloud. There exist proposals
and attempts to realize phase matching conditions in FWM of matter waves by em-
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Figure 4.2: The mirrors of a double-diamond setup can be substituted by double-
slits. Diffraction at these slits cause an overlap of the two different paths
at the screen and result in an interference pattern in conditional de-
tection if the two partners are entangled. As the pattern only arises in
conditional detection, the pattern on either side can be shifted to differ-
ent locations for the detection on the other side. Note, the arrangement
drawn in 2D neglects gravity which points in opposite direction to the
z-axis. This is justified as long as the slits do not have a z-component
as only the transversal momentum uncertainty ∆py defines the pattern
and the magnitude |px| scales the pattern at the screen.

ploying moving standing waves of the Raman lasers [161–163], which are promising
pathways to increase count rates.

The rf method of ref. [53] already showed similar beam profiles as SPDC sources
and atom correlations to verify the existence of correlations in this process have
been measured [54]. However, the phase matching condition in the rf scheme relies
on density fluctuations of the BEC itself. To enter the stimulated (directed beam)
regime high densities are required. In section 4.5.2 it will be shown that demon-
strating entanglement, requires pair identification of the respective partners. After
all, for high densities and thus, high pair production rates this identification is very
challenging even for DLDs.

Double double-slit

Another way to again overlap the two paths without using mirrors is to use the
diffraction of a wave at small slits. Fig. 4.2 illustrates the altered scheme of the
double-diamond experiment. Just like in ordinary single-particle interference at a
double-slit the waves coming from each slit are diffracted and the divergent waves
overlap again in the far field. The screen consists of an array of bucket detectors.

To analyze the situation it will be assumed that the FWM process has populated
the scattering modes spontaneously (compare chapter 3.1.2) and only these modes
are considered for further analysis. Particle A can then take either path La1 or La2
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while particle B takes path Lb1 or Lb2

|φ〉 = |La1 Lb1〉+ |La2 Lb2〉+ |La1 Lb2〉+ |La2 Lb1〉 (4.13)

For this qualitative analysis |φ〉 is not normalized and for the pattern on the screen
only the phase resulting from each path is relevant

|Lai Lbj〉 = exp (−ikrecLai(ya, ys)) exp (−ikrecLbj(yb, ys)) (4.14)

For the full quantum mechanical state, though, all possible paths contributing to the
pattern have to be considered [164, 165]. In a simplified picture of a one dimensional
source along the y-axis this can be taken into account by adding up all possible
paths for the particles, in particular different positions of the source ys. Hence, the
path lengths of the particles Lai,bj(ya,b, ys) depend on the location of the collision in
the source ys, the position9 ya where particle A is detected, respectively the position
yb where particle B is detected. The path lengths Lkl for particle k = a, b on path
l = 1, 2 can be geometrically calculated to be

Lkl(yk, ys) =

√(
d

2
+ (−1)lyk

)2

+D2
2 +

√(
d

2
+ (−1)lys

)2

+D2
1 (4.15)

Here d is the distance between the two slits and D1 and D2 describe the distance
between the source and the slits, and the distance between the slits and the screen,
respectively. As the two particles originate from the same position of the collision of
two incoming atoms, ys is the same for both particles. For the analysis of conditional
detection the width of the slits s is taken to be zero. A finite slit width only results
in an envelope of the fringe10 pattern and does not change the result of conditional
detection as long as the slit width remains smaller than the slit distance. Superposing
all possible paths the particles can take to reach the screen yields the state

Ψ(ya, yb) =

∫
s

|φ(ys, ya, yb)〉dys (4.16)

This integration will yield in general a state Ψ′ at the double slits which has terms
for the crossed passage ac and parallel passage ap of particles through the slits

|Ψ′〉 = ac (|pa1pb2〉+ |pa2pb1〉) + ap (|pa1pb1〉+ |pa2pb2〉) (4.17)

For analyzing the specific situation of collided atoms it is important to understand
that the state produced during FWM is far from being perfectly anti-correlated. The
atoms before the Raman transition are not at perfect rest, but their velocities are
limited by their zero point fluctuations governed by the trap geometry. Owing to
Heisenberg’s uncertainty principle, the spatial confinement leads to a momentum
uncertainty (see chapter 2.9 and chapter 3.1). Hence, the atoms have an initial
momentum uncertainty which is transferred on to the outgoing modes. In other
words, the center of mass motion of the two colliding atoms is not zero before and is

9Note the label of the coordinate has been changed from x to y to be consistent with the coordinate
system used in previous chapters and match the experimental conditions of this dissertation.

10The term fringe describes the sinusoidal pattern arising from the interference of different slits.
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not zero after the Raman transition and the s-wave scattering of the atoms. Hence,
the correlations in momentum of the atoms are limited by the size of the source and
ultimately by the initial momentum uncertainty in the BEC.

Fig. 4.3 displays the probability of detecting particle A at position ya conditional
on the detection of particle B at position yb as a result of a numerical integration over
the whole source size sy for this state. The significance of the two other dimensions
only marginally changes the pattern and is neglected. This demonstrates nicely
the importance of the size of the source and at the same time casts light on the
importance of information in the realm of quantum mechanics. If the source is
too small, the initial momentum uncertainty is too large. Hence, the correlations
between the two particles are too weak to establish a conditional pattern on the
screen. On the other hand, the momentum uncertainty for the individual particles is
so large that the single particle can go through both slits at the same time. The high
momentum uncertainty leads to a product state for the two-particle wave function of
the two single-particle wave functions, i.e. a separable state. With the single-particle
uncertainty of its transversal momentum ∆py the condition for this to happen is the
same as for the single-particle interference pattern to arise [166–169]

∆py � mvrec
d

D1

(4.18)

When the source size increases the initial momentum uncertainty decreases and
the correlations become stronger ∆py ∼ 1/sy. Hence, the information through which
slit particle A goes is carried by particle B, and vice versa. For example, in principle
it would be possible to detect particle B and infer through which slit particle A went.
This knowledge of which-path information means the latter particle was not able to
go through both slits at the same time and the single-particle interference disappears.
The first particle, say particle B, that allows to predict through which slit particle A
went, does not even need to be detected. The information would then decohere into
the environment and the interference would still be lost. However, the diffraction
at the double-slit causes the two possible paths of particle B to overlap again and
with this the possibility to identify through which slit the other particle went. This
overlap makes the two paths of particle B indistinguishable for the detector and
corresponds to an erasure of the information which path particle A takes that was
carried by particle B, a so called quantum erasure [170–172]. The inseparability of
this state is indicated by a cos (ya − yb) dependence of the conditional probability
(compare eq. (4.9)). Hence, while in single-particle detection no pattern is visible,
a detection conditioned on a detection on the other side will give an interference
pattern.

One could assume now increasing the source size even further will enhance the
correlations. Indeed the correlations become better. Yet, as the source size gets on
the order of the slit distance the contribution of |La1 Lb1〉 and |La2 Lb2〉 increases as
well. This causes the two amplitudes for crossed ac and parallel ap slit passage of the
two particles to become equal (compare eq (4.13)). Hence, the state can be written
as a separable product state again. The detection of a particle in either slit does not
hold an information about which slit the other particle went through and, thus the
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Figure 4.3: Double double-slit scenario: The probability distribution of conditional
detection of particle A and particle B at position ya and yb, respectively.
Parameters for the numerical integration are D1 = 5 mm, D2 = 30 mm,
and d = 100µm. The source size is varied from sy = 10µm, 50µm,
and 150µm demonstrating the three regimes. For too small sources a)
each particle can go through both slits at the same time causing single-
particle interference. b) When the source size increases and hence, the
correlation improves, which-way information could be in principle ob-
tained from the partner and the single-particle interference disappears.
However, conditional fringes indicate the entanglement of the two par-
ticles. c) Contributions from parallel passage ap through upper or lower
paths make the state separable again and single-particle interference be-
comes visible again, as a detection of a particle at either slit does not
hold an information about which path the other particle took.

single-particle interference pattern arises again11 at the cost of loss of two-particle
interference. The condition to avoid this situation is to have a smaller source size
than the slit distance [169]

sy � d (4.19)

As long as the source is large enough it is always possible to achieve a genuine two-
particle interference by keeping the slit distance larger. However, from a practical
point of view the interference fringes need to be resolved by a detector. The fringe
distance df scales inversely with the slit distance. In chapter 3.2 the spatial resolution

11In general the phase of the single-particle interference now depends on the relative position of
the slits from the source to the distance to the screen
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of the DLD is measured to be δx,y = 124µm12. Hence, the correlations of fig. 4.3
are already unlikely to be resolved and a third condition applies to an experimental
realization13

d <
2πD2

5krecδx,y
(4.20)

An interesting feature of such a slit version of the double-diamond experiment is
that the bucket detectors in the two output modes of the beam splitter are replaced
by an array of detectors. Each position of such a bucket detector corresponds to a
different relative phase between the waves coming from the different slits. Hence,
by looking at different detectors one can virtually change the phase of the double-
diamond experiment. However, this can only serve as an entanglement witness, as a
violation of a Bell inequality requires an active setting of the measurement basis. This
is to say, the atoms detected at different positions could be described by different
local hidden variables and thus, a violation of the Bell inequality would need an
additional assumption that the particles are all from the same ensemble, independent
from where they are detected.

There are possible ways to overcome the lack of the missing active phase change.
In chapter 2.2 it was discussed how an off-resonant light field can shift the energy
levels of an atom. This energy shift corresponds to a different phase evolution for
a particle within the light field and the situation without the light field. Hence, a
phase shift can be introduced. Shining such a laser on one of the slits can be used to
control the phase of the matter wave by changing the power of the laser. Moreover,
this phase control can be used to form the slits itself. Substituting the whole double-
slit arrangement with a standing light wave would create a whole array of slits that
could all contribute to the pattern and no particles were lost at the massive wall,
yielding higher count rates. Changing the phase of the two laser fields creating the
standing wave would then be a handle to change the phase again. However, care has
to be taken to still fulfill the three conditions to see genuine two-particle interference
as mentioned before as well as the three dimensionality of the scattering halo has to
be taken into account. Hence, such an experiment would require very delicate design
and control of the setup.

4.3 Theory of ghost-interference
In the preceding section it was argued that a large source is required to achieve a
reasonable correlation between the momenta of the atoms. However, the distance
between the two slits had to be even larger than the source to avoid a separable
state at the detector. The slit distance determines the fringe distance and thus, has
to be kept small to be still able to resolve the fringes with the detector. A simpler
situation arises when the slits in the path of particle B are omitted (see fig. 4.4).
Eq. (4.13) reduces then to

12In principle δz could be used as well. However, this makes the analysis much harder as gravitation
would need to be taken into account and could even lead to decoherence

13Here the factor of 1/5 is chosen to incorporate 5 data points per fringe. Indeed, it will be seen
later that this is a good approximation to achieve reasonable results
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Figure 4.4: Simplifying the double double-slit setup by removing the slits in the
path of particle B removes the restriction that the source size must
not be larger than the slit distance, but can still yield conditional in-
terference, called ghost-interference. The purple lines show the paths to
calculate the geometrical phases, while the dotted black lines illustrate
the Klyshko picture. With the Klyshko picture the interference pattern
on the right hand side can be explained by taking the left-hand side as
source for a single particle and connect it to the right-hand side through
the correlations in the source.

|φ〉 = |La1 Lb〉+ |La2 Lb〉 (4.21)

The situation of only one pair of slits in the path of one particle and not the other
is generally referred to as ghost-interference. Even though only particle A passes
through a double-slit and no double-slit is in the path of particle B an interference
pattern can arise at position yb in conditional detection. There is extensive literature
about ghost imaging [173–175] and ghost-interference [176, 177] however, while ghost
imaging can be performed by classical light, ghost-interference is a non-classical
feature of quantum mechanics. Ghost imaging can be achieved by correlated classical
light, where an object in the path of particle A is visible in the conditional detection
of particle B as well. Ghost-interference goes one step further. Here the basis in
which one measures can be chosen freely as allowed by quantum mechanics and one
still obtains the conditional pattern, showing stronger than classical correlations.

For a qualitative analysis of the ghost-interference the calculations are analog to
the ones for the double double-slit scenario, but using eq. (4.21). Fig. 4.5 demon-
strates the new situation with the conditional probabilities displayed. In this situa-
tion the two-particle interference pattern does not disappear even when the source
becomes larger than the slit distance, as no additional possibilities for the paths
arise. However, the source needs to have a certain size to establish good momen-
tum correlations and prohibit single-particle interference. If the source is too small
a single-particle interference can be observed on screen a and only a as expected.

An intuition of this phenomenon can be gained by applying the Klyshko pic-
ture [176]. The particles from the source are emitted in random directions. However,
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Figure 4.5: Ghost-interference: The probability distribution of conditional detection
of particle A and particle B at position ya and yb, respectively. Param-
eters for the numerical integration are D1 = 5 mm, D2 = 30 mm, and
d = 100µm. The source size is varied from sy = 10µm, 100µm, and
300µm. Now the condition that the source must be smaller than the slit
distance can be dropped and only two regimes exist of single-particle
and conditional interference.

if the momenta are well correlated, the virtual path of particle A can be recon-
structed by following particle B. Therefore, taking the source for the two-particle
state as the bridge14 between two paths of just one single particle originating from
the position where particle B is detected. This describes why the pattern on screen a
moves when the location where particle B is detected differs, i.e. the source position
for a single particle in the Klyshko picture is different. It is this ability to change
the outcome of a measurement of the particle A by measuring particle B and vice
versa that is made accessible by the quantum mechanical correlations and could not
be achieved by classical correlated light.

In the ghost-interference experiment no other contributions start to arise when
the source becomes larger as no additional path possibilities exist for particle B.
The fact that a large source is possible to guarantee the momentum correlation
while at the same time keep the slit distance still small, gives the advantage to
have resolvable fringe distances (compare fig. 4.5). However, this comes at the cost
of losing control over two distinguished paths. The relative phase of the two paths
of particle B cannot be accessed by means of an additional laser. A local hidden
variable model cannot be ruled out anymore as the active phase change cannot be
performed on both sides anymore. Moreover, it was shown that ghost imaging can

14The original Klyshko picture is for SPDC where the crystal can be taken as a mirror, giving the
same result as here
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be performed by using classical light. So the question arises how to verify that the
above discussed conditional pattern can only be explained by quantum correlations.

4.4 Fringe visibility
To test if a two-particle interference pattern can only be explained by quantum cor-
relations, the visibility of the fringes can serve as a measure. This section clarifies
the definition of the visibility for two-particle interference and its complimentarity
to single-particle interference and shows how a criterion of visibility arises for quan-
tum correlations. While the visibility in general is useful to discriminate quantum
from classical correlations in the realm of pure states, the visibility can serve as an
entanglement witness as well.

It is instructive to first only investigate the separability of pure bipartite states
(compare eq. (4.13)). A measure of entanglement in such a state is called concurrence
C in quantum theory and quantifies the non-classical phase correlation between the
two parties of the entangled system. For the pure bipartite state from eq. (4.13) the
degree of entanglement is given by the difference between the parallel terms and the
crossed ones [178]

C = 2|a2
c − a2

p| (4.22)

In measurements, the observable to quantify the entanglement has to have a re-
lation to the amplitude of the sinusoidal fringes, called visibility. In general, the
visibility for single-particle interference vi is defined as15

vk =
I(yk)max − I(yk)min
I(yk)max + I(yk)min

(4.23)

However, extending eq. (4.23) for the two-particle probabilities would serve as a
wrong measure for entanglement. The two-particle visibility is still unity even in the
case of a too small source where any sinusoidal pattern is simply due to local single-
particle interference (compare fig. 4.3). To avoid such misleading situations a better
definition is thus to subtract the product of the two single-particle probabilities
from the two-particle probability and then add the square of the background single-
particle probability An = d k/π to counteract overcompensation [179, 180]

Ī(ya, yb) = I(ya, yb)− I(ya)I(yb) + A2
n (4.24)

With this modified probabilities the correct two-particle visibility reads

vab =
Ī(ya, yb)max − Ī(ya, yb)min
Ī(ya, yb)max + Ī(ya, yb)min

(4.25)

and for pure states is equivalent to the concurrence. With these definitions it can
then be shown that [178, 181]16

v2
ab + v2

k ≤ 1 (4.26)

15In the later discussion the pattern will have an additional envelope. Nevertheless, the visibility
is only defined with the oscillating term (compare e.g. eq. (4.32)).

16The reference to Jaeger et al. provides a nice discussion of this complementarity
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where the equal sign holds for pure states. In the discussions about the different
regimes of the source size for the setup it was already mentioned that it is necessary
to avoid single-particle interference to maximize the two-particle interference as seen
by equation eq. (4.26) as well. Another complementarity adding to the which-path
discussion from above is obtained by the distinguishability of the paths D, i.e. a
knowledge that can in principle be gained about which path the particle takes. In
general

D2
k + v2

k ≤ 1 (4.27)

must hold while the equality is again given for pure states. The similarities of the
two equations eq. (4.26) and eq. (4.27) are obvious and yield the sufficiency of a
high two-particle visibility to guarantee a high distinguishability. Interestingly, while
eq. (4.26) contains the two-particle quantity vab, the distinguishability is a single-
particle quantity. This asymmetry results from the fact that the entangled partner of
a two-particle system carries the information of distinguishability through which slit
the other single particle went. Furthermore, in principle this information could be
measured, which makes the two paths distinguishable, and thus the single-particle
visibility has to vanish.

Now most of the discussion was focused around pure states. However, while in
theory everything is perfect, in experiments rarely anything is. Hence, the pure states
degrade to mixed states. While in the pure state scenario it is sufficient to obtain
any finite two-particle visibility to claim entanglement, for mixed states this does
not hold anymore. If information about entanglement is lost into the environment,
then there are situations allowed where the two-particle visibility of classical light
can exceed the concurrence, i.e. it is not possible anymore to conclude from any
finite two-particle visibility directly to entanglement.

To still differentiate between classical and quantum correlations, the stochastic
properties of classical light can be exploited [182]. In this situation the phenomenon
of conditional particle interference is best captured in the normalized second order
correlation function g(2)(ya, yb), that was introduced in chapter 3.1. It describes the
normalized probability to find a particle at ya conditioned on detecting a particle
at yb. Qualitatively this is equivalent to the unnormalized probability distribution
displayed in fig. 4.3 and 4.5. In general the second order correlation function is
defined by the position dependent annihilation â(yi) and creation â†(yi) operators

g(2)(ya, yb) =
〈â†(ya)â

†(yb)â(ya)â(yb)〉Ψ
〈â†(ya)â(ya)〉Ψ〈â†(yb)â(yb)〉Ψ

(4.28)

where the average is taken over an ensemble of particles in state Ψ. However, in clas-
sical statistics the quantities are no operators and thus do not need to be normally
ordered:

g(2)(ya, yb) =
〈a∗(ya)a(ya)a

∗(yb)a(yb)〉P
〈a∗(ya)a(ya)〉P 〈a∗(yb)a(yb)〉P

(4.29)

=
〈I(ya)I(yb)〉P
〈I(ya)〉P 〈I(yb)〉P
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For a field obeying just a phase difference, this can hold the similar sinusoidal depen-
dence on the difference of the location of the detectors as quantum mechanics [183].
For this dependence to be maximal the single-particle interference has to be mini-
mized following eq. (4.26) and hence zero single-particle fluctuations yield highest
two-particle visibilities

〈I(yi)〉 = 〈I1〉+ 〈I2〉 (4.30)

where Ik are the intensities resulting from the two different paths on both sides of
the source. This also holds for the ghost-interference situation where it is not obvious
that there are two paths. However, the paths of the second particle have different
spots in the source where they originate from as the Klyshko picture illustrates.

Hence, in the situation where the phase is random such that the single-particle
interference is averaged out and vanishes the two-particle interference can arise

〈I(ya)I(yb)〉P = 〈I2
1 〉+ 〈I2

2 〉+ 2〈I1I2〉 [1 + cos (d krec (ya − yb))] (4.31)

Here it is assumed the that intensity passing through slit k on both sides to be the
same, which is necessary to maximize the two-particle visibility17 . Inserting this into
the classical definition for g(2) the two-particle correlation function can be written
as [182]

g(2)(ya, yb) = A [1 + vab cos (d krec(ya − yb))] (4.32)

where the parameters A and the two-particle visibility vab are used for clarity. They
are given by:

A =
〈I2(ya)〉+ 〈I2(yb)〉+ 2〈I(ya)I(yb)〉

(I(ya) + I(yb))
2 (4.33)

and

vab =
2〈I1I2〉

〈I2
1 〉+ 〈I2

2 〉+ 2〈I1I2〉
(4.34)

For classical stochastic correlations again a Cauchy-Schwarz inequality holds and
as a consequence 〈I2

1 〉 + 〈I2
2 〉 ≥ 2〈I1I2〉. With this the two-particle visibility for

classical light cannot exceed 1/2. Hence, a non-classical, i.e. quantum correlation
has to be responsible for two-particle visibilities larger than 1/2 [182]

vab >
1

2
(4.35)

This visibility criterion can be easily read out of the experimentally observed
pattern and hence, is a first indicator for quantum mechanical correlations. There is
ongoing research on how to construct an entanglement witness for such a pattern to
include even mixed quantum mechanical states [158, 163, 184, 185]. However, as a
first proof of quantum mechanical correlations the visibility criterion will be used to
discuss the feasibility of a ghost-interference experiment in the subsequent section.

17Note, that the two individual particles do not necessarily need to emit from the same slit in
order to obtain two-particle interference.
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4.5 The devised experiment
The preceding sections introduced the conceptual ideas of demonstrating entangle-
ment in the external degree of freedom of matter waves and laid the foundation for
this section, where the devised experiment to be first realized on the new platform of
this dissertation is presented. An approach adapted from quantum optics is used to
analytically calculate the expected pattern in conditional two-particle detection. Fi-
nally, the parameter range of the system with respect to the feasibility of performing
such an experiment is discussed.

4.5.1 The spherical wave approximation
To calculate the conditional probabilities for the double-slit and ghost-interference
experiment all possible ways originating from the source were summed up. This
worked well when the possible ways through the slits where given (compare
eq.(4.16)). In ref. [168] the authors showed that for a SPDC source the correlations
in forward direction in principle can be obtained by integrating over the source re-
gion with spherical waves as Green’s functions. The coherence of the BEC gives the
possibility to follow the same approach in the case of FWM18.

To transfer this, it is useful to enter a frame co-moving with the center of mass
motion. This way the effect of gravitation can be neglected and will only be required
to retrieve the numerical values in the end. Let the two particles then emit from just
a single point source with constant momentum given by the momentum kick from
the Raman lasers k0 = krec. This is analog to eq. (4.14), where all possible phase
contributions from different spots in the source were considered.

The analysis of momentum correlation happens in the far field and thus, will be
described by angles so that a finite uncertainty in the magnitude of the longitudinal
momenta will not change the angle dependent pattern. The state in the far field can
than be written as

Ψ(~ra, ~rb) =
eikrec|~ra|

|~ra|
eikrec|~rb|

|~rb|
= ψ(~ra)ψ(~rb) (4.36)

As there is no dependence of the detection of particle A at position ~ra on the de-
tection of particle B at position ~rb this is a product state and does not contain
correlations. However, the wave function of the initial particle before collision is de-
scribed by the Thomas-Fermi parabola (compare chapter 2.9). The coherence of the
BEC given by the single-particle wave function does not allow for a distinguishabil-
ity from where the pair was emitted within the source and hence, all possibilities
need to be summed up, weighted by the density of the single-particle wave function
φ(~r ′).

Ψ(~ra, ~rb) =

∫
V

|φ(~r ′)|2 e
ikrec|~ra−~r ′|

|~ra − ~r ′|
eikrec|~rb−~r

′|

|~rb − ~r ′|
d~r ′ (4.37)

To investigate the momentum correlations the observation is done in the far field
at position ri so that ri � r ′. With this |~ri−~r ′| ' ri−~r ′~ri/ri and |~ri−~r ′|−1 ' r−1

i ,

18Again, to analyze the pattern the dynamics during FWM are neglected and only the scattered
atoms are discussed
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and eq. (4.37) can be rewritten as the Fourier transform of the density profile19.
Underlining the momentum space characteristic of the measured probability dis-
tribution the wave function is here given as function of the wave vectors ~ka and
~kb

Ψ(~ka, ~kb) =
1

(2π)3/2

∫
V

|φ(~r ′)|2e−i(~ka+~kb)~r
′
d~r ′ (4.38)

To write the equation in this form the wave vectors where identified to be ~ki ≡
krec ~ri/ri and the factor in front of the integral is to normalize properly in the far
field.

To justify this fairly simple approach, which for most situations can be calculated
analytically, the results of Perrin et al. can be compared to predictions by eq. (4.38).
The integration over an inverted parabola of a BEC in one dimension yields

Ψ(ka,y, kb,y) =
3 sin (sy (ka,y + kb,y))− 3sy (ka,y + kb,y) cos (sy (ka,y + kb,y))√

2πs3
y (ka,y + kb,y) 3

(4.39)

Fig. 4.6 shows a comparison of the correlations between the spherical wave ap-
proximation, the numerical calculations of ref. [136], and the experimental data of
ref. [51]. While the numerical simulation is somewhat closer to the experimental re-
sult, the simple numerical approach only differs by about 10%. This is remarkable as
no initial momentum uncertainty of the original BEC had to be taken into account,
neither were mean field interactions between the atoms, nor time scales on which the
collisions happen taken into account. Their effects will be discussed later. However,
the good agreement motivates to use this model for further analysis.

Another remarkable feature of this approach is that the correlations arise merely
from the summation of coherent point sources. Just as in simple Fourier optics,
where a single beam is more collimated if emitted by a larger source, the correlations
become stronger if a larger source participates in the creation process. Notably, when
this approach was first used by Horne et al. [168] they only considered the half sphere
in which the two photons could be emitted. However, the s-wave scattering in the
FWM is isotropic and can in principle populate all 4π, even the collinear half sphere.
Hence, there is no a priori reason why atoms should not be detected next to each
other. As a matter of fact if only a point source is considered this is actually what
happens. Fig. 4.7 shows the probability distribution to detect particle B relative to
particle A for different source sizes. For very small source sizes sy � 2π/krec, the
probability to find the second particle is uniform over the whole sphere, no matter
where the first particle was detected. However, as the source grows, the second
particle becomes more and more localized on the opposite side of the sphere with
respect to the first particle. This way momentum conservation comes in naturally
for a large enough source 20.

This simple formulation will be used to analyze the parameters for the envisioned
experiment and test the feasibility of the system and extended by a discussions
about finite collision time and interacting particles when needed.

19These calculations follow an unpublished draft by Mandip Singh.
20The apparent momentum violation for very small source sizes is a result of the high initial

momentum uncertainty caused by Heisenberg’s uncertainty principle and does not contradict
physical reality.
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Figure 4.6: A comparison of the prediction by the spherical wave approximation
and the numerical positive P method as well as experimental results of
Perrin et al. show a good agreement and justifies the simple approach.
The curves for the experiment and the numerical simulation are simple
Gaussian distributions with the rms-value given in ref. [51] and ref. [136],
respectively.

4.5.2 The feasibility analysis

In the preceding sections it was discussed how the spherical wave approximation
(SWA) can be used to calculate the correlations of two particles scattered out of
the BEC into an entangled state of two counter-propagating waves. It was also
shown how a ghost-interference setup can be used to identify the entanglement. A
double-slit placed in the path of one of the particles can then cause a conditional
interference pattern on either side. In this situation the fringe distance depends on
the distance between the slits and the distance between the position of the slits with
respect to the screen, i.e. detector. The larger the distance from the screen, the more
time the particles have to expand and hence, the fringe distance increases and the
interference pattern is easier to resolve. The maximal distance can be achieved by
placing the slits right at the position where the source is. Hence, a modulation of
the source itself yields the best resolvable interference pattern. Experimentally, this
is appealing as well, as no additional components for the slits have to be introduced
into the vacuum chamber.

Multiple collision zones

One way to achieve the altered situation of having the “slits” as source is by splitting
the BEC into two parts. This can be done by introducing a blue detuned light sheet
that rejects the atoms from the middle of the BEC and forms a double source (“dou-
ble well”). However, the coherence over both sources has to be preserved and hence,
the barrier height has to be accurately controlled to allow for tunneling [186, 187]. A
different approach is to avoid the manipulation of the main BEC, this way maintain-
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Figure 4.7: The probability of detecting particle B when particle A is detected at
−krec~ex. As the source size grows the momentum conservation comes in
naturally by using the spherical wave approximation. When the source
size sy is smaller than the wavelength λ, the probability of finding particle
B on the same side as particle A is still significant. The larger the source
the better is the anti-correlation in momentum of the two emitted atoms.
Note, the shiny spot in the upper right part of the spheres is a result of
the three-dimensional presentation of the probability sphere and is not
part of the probability distribution itself.

ing the coherence and thus the relative phases, but to create counter-propagating
waves at two different locations in the BEC. This can be achieved by means of the
Raman lasers. Fig. 4.8 shows a schematic of the arrangement of the laser beams to
create a modulated source for the colliding particles. The spatial light modulator
(SLM) for the Raman laser beam L2 propagating in -z-direction can be used to
shape the beam such that different regions in the BEC are selected to initiate the
FWM process.

An advantage of creating the slits within the BEC is that the whole pattern arising
at the detector is now governed by the source and no intermediate components need
to be taken into account. Hence, the SWA can be used as is and makes the analysis
of the experiment more feasible. In this situation the weighted integration is not
over the whole BEC |φ(~r ′)|2 anymore but rather over the area where the atoms
are coupled out by the laser beams |φ′(~r ′)|2. The SLM imprints a pattern of two
slits with Gaussian shape and width sx,y = w0 in a distance d into the BEC. The
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Figure 4.8: A schematic of how a ghost-interference experiment can be realized in the
system. a) The SLM modulates the laser beam L2 such that it generates
small spots in the BEC. b) Atoms are only coupled out of the BEC
in those regions which serve as collision zones from where the spherical
waves are emitted. As the atoms are in a superposition of being at either
spot, these regions serve as sources for the entanglement. The small red
spheres are the unscattered, conuter-propagating waves from each source
spot, while the purple halo is a result of the FWM process. c) When the
waves from the two zones start to overlap in the far field they interfere
and in conditional detection the fringes become visible.

source size in z-direction is still given by the Thomas-Fermi radius of the BEC.
However, the z-direction only gives the envelope of the distribution perpendicular
to the interference pattern which reveals the entanglement. Thus, for simplicity of
the integration the distribution is still calculated with a Gaussian distribution as in
the other two directions

|φ′(x ′)|2 =
1√

(2π)sx
exp

(
− x

′2

2s2
x

)
(4.40)

|φ′(y ′)|2 =
1√

(8π)sy

[
exp

(
−(y′ + d/2)2

2s2
y

)
+ exp

(
−(y′ − d/2)2

2s2
y

)]

|φ′(z ′)|2 =
1√

(2π)sz
exp

(
−(z′)2

2s2
z

)

The integrals of eq. (4.38) can be evaluated independently and hold for the two-
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particle probability distribution in x- and z-direction

Ψi(ka,i, kb,i) =
e−

1
2
s2i (ka,i+kb,i)2

√
2π

(4.41)

with i = x, z. In y-direction the superposition of the two Gaussian distributions
gives in addition to this envelope a oscillatory term indicated by the imaginary i

Ψy(ka,y, kb,y) =

(
1 + eid(ka,y+kb,y)

)
e(−

1
2(ka,y+kb,y)(s2y(ka,y+kb,y)+id))

2
√

2π
(4.42)

The oscillations will become more apparent when the probabilities are computed.
In spherical coordinates and with ki = krec the absolute square of the wave function
has in three dimensions the explicit form

|Ψ(~ka, ~kb)|2 =|Ψ(φa, θa, φb, θb)|2 (4.43)

=
1

16π3

{
1 + cos [d krec (sin(θa) sin(φa) + sin(θb) sin(φb))]

}
exp

{
− 2k2s2 [1 + sin(θa) sin(θb) cos(φa − φb) + cos(θa) cos(θb)]

}
where the first bracket holds the conditional fringe pattern showing entanglement
and the second bracket gives the envelope given by the source size s = sx = sy = sz,
including momentum conservation. For clarity of the equation the source sizes are
set to be equal as they only determine the envelopes as described by eq. (4.41). For
the inverted parabola distribution of a BEC, the envelope would be replaced by the
absolute square of eq. (4.39). Fig. 4.9 shows exemplarily how the fringe pattern of
detection of particle B conditional on detection of particle A is visible in the xz-
plane. The probability distribution where particle B is detected moves depending on
the position where particle A is detected. When particle A is detected close to the
y-axis, the two source spots in the BEC become, viewed from the detection position,
aligned behind each other. Hence, they do not reveal a lateral interference pattern21.

For clarity of fig. 4.9, the spot sizes of the source were assumed to be half the
wavelength. The small source size “enlarges” the pattern on the sphere and makes
it easier to recognize. This illustrates how the situation changes when the slits are
inside the source. In contrast to the situation of the regular double double-slit or even
ghost-interference where the goal was to achieve a source size as large as possible in
order to achieve good momentum anti-correlation, this setup benefits from smallest
possible spot sizes within the BEC. The smaller the spots the larger the envelope for
the pattern. This requirement was neglected in the earlier consideration by taking
the slit widths to zero resulting in infinite widths for the envelopes. However, in the
experiment considered here one does not need to worry about the momentum anti-
correlation of the two particles before the slit22. The condition to avoid single-particle

21Due to the first order time dependence of the Schrödinger equation an interference in longitudinal
direction can potentially be observed.

22Later, in the analysis it will be discussed how the anti-correlations in the directions perpendicular
(x and z) to the interference pattern in y-direction do play a role for detection of the particle
in coincidences.
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Figure 4.9: The probability distribution of the scattering halo for detecting particle
B, when particle A is detected at ~ka = −krec~ex, ~ka = −krec~ez, and
~ka = krec~ey, respectively. Depending on the detection of particle A a
conditional interference pattern can be observed for particle B. As the
setup is symmetric around the y-axis the pattern can be observed in the
whole xz-plane, while it disappears for detections close to the y-axis.

interference (see eq. (4.18)) is always fulfilled and the EPR-like entanglement is a
result of the superposition of two positions rather than the a priori anti-correlation
of momenta. In that sense the source size only matters for the overlap of the two
waves from the different spots in the far field and define the envelope of the pattern.
Hence, the SLM has to create tunable patterns which have smallest possible beam
waists.

Before continuing with an analysis of the setup using the spherical wave approx-
imation it is worthwhile to consider two more effects neglected by this approach.
The mean field interaction as well as the finite pair creation time are not captured
in the SWA.

Even though the SWA predictions was within 10% of the experimental data of
ref. [51] and even closer to the numerical results [136], the mean field interactions play
a role in the correlation in momenta. However, they lead to a broadened distribution,
i.e. they have the same effect as a smaller spot size. So by using the SWA for the
experimental situation described here the envelope is rather underestimated and
additional broadening by interactions will enhance the pattern in the sense that
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the envelope comprises more fringes. This justifies to use the SWA even to obtain
numerical values, keeping in mind that the envelope might be a little bit wider.

Eq. (4.43) is given in dependence of angles, assuming perfectly monochromatic
waves with wave vector23 k = krec. However, this conceals that the width of the shell
of scattered atoms is finite as well. This is limited by the initial momentum spread
within the BEC, but can be broadened by the pair creation time. There are two
timescales which can define this creation time. One is given by the linear dispersion
of the cloud after being released from the trap and can be calculated by the inverse
of the radial trap frequency τLD = ms2

x,y,z/2~ ≈ 1/ωx,z (compare eq. (3.6)). The
other one is given by the separation of the two counter-propagating clouds, which
serve as source for the scattered pairs. When they do not overlap anymore no pairs
are produced, which happens after τs = msy/

√
2~k (compare eq. (3.4)). The width

of the shell is then given by δk = m/~k τLD,s, with whichever τ is smaller. Hence,
as long as the expansion time is larger than the separation time the width of the
shell is determined by the inverse of the source size δk =

√
2/sx,y,z. For spots in the

BEC on the order of a few µm the cloud separation time becomes ∼ 65µs, while
the expansion time is on the order of ∼ 200µs.

Now it is possible that one wave packet from one spot collides with one packet from
the other spot, resulting in a third collision zone in the middle. This would result
in a three slit interference pattern at the detector. However, the time before they
collide in this third zone is only after ∼ 300µs, on the order of the expansion time.
Hence, the incoming matter waves for the FWM process are already considerably
diluted and will only generate wave-amplitudes that contribute negligibly to the
interference pattern. Actually, the SLM easily generates a third or even more spots
on purpose within the BEC. This will be an intriguing future experiment where
eventually Born’s rule can be tested, i.e. that the absolute square of the quantum
mechanical wave function corresponds to the probability to detect the particle, [181]
in the spirit of the photon experiment of ref. [188].

With these considerations in mind, eq. (4.43) can be used to estimate the feasibility
of such an experiment in the current system. The first challenge is to be able to
resolve the pattern with the detector. Hence, slit distance d and detector resolution
δx,y,z are the figures of merit. Additionally, the envelope has to be wide enough to
support at least the first order of the interference pattern. Hence, the beam waist
w0 is important as well. Fig. 4.10 shows that with the results from chapter 3 the
first order is just supported and can be resolved by the detector.

With eq. (3.8) the three-dimensional data, recorded by the detector in space and
time, can be transformed back into the spherical momentum distribution. For clar-
ity, for the remainder of this section the resulting three-dimensional pattern is inter-
preted as it will be in the experimental realization. Firstly, the radius dependence
is averaged out. In order to obtain decent count rates, each detection of coincident
events is also rotated around the origin such that all detection events of particle A
fall on φ′a = π and θ′a = π/2. In this way a two dimensional pattern of only the
relative coordinates is obtained for a detection at side B conditioned on a detection

23In ref. [132] it is shown that taking an atom out of the BEC adds the chemical potential to its
momentum. On the other hand, occupying a mode of the outgoing waves as a distinguishable
particle even requires a little bit more energy. However, for the analysis this effect is neglected
as k is only a few percent smaller than krec.
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Figure 4.10: The expected interference pattern on side B, given a detection on side
A and rotated as described in the text. The angle dependence is given
in multiples of the detector resolution. The fringe distance spans about
seven pixels to just barely resolve the interference pattern for a source
size sy = w0 = 8.5µm and a slit distance of d =

√
2πs = 37.8µm.

at side A

|Ψb|a(qx, qy)|2 =
k2sysx

πD2

(
e
− d2

4sy2 + 1

) [cos (d k qy/D) + 1] e−
k2

D2 (s2yq
2
y+s2xq

2
x) (4.44)

where D is the radius of the scattering halo at the detector and sin θ′b = qx/D as
well as sinφ′b = qy/D was used. For the height of the cloud H = 80 cm above the
DLD and the recoil velocity of the Raman transition the radius of the scattering
halo at the detector is D = 37.1 mm.

This interpretation of the experimental data has two distinct consequences in the
cases of the polar and azimuthal dimension. If not the polar coordinate of the first
particle, but only the relative angle in this direction is used, this is equivalent to
averaging over a larger sample to obtain better statistics. Each particle remains in its
respective fringe when rotated. Doing this for the azimuthal coordinate implies even
more. If this averaging still yields an interference pattern the averaging is equivalent
to measuring at different relative phases between the two paths of particle A. Hence,
if the interference pattern is not washed out by the rotation, not only are better
statistics achieved, but this situation also indicates the existence of the same pattern
in all bases, e.g. in the two basis |X〉 and |P 〉 in the case of the double-diamond
experiment (see section 4.2), which is required for entanglement.

In contrast to the original ghost-interference idea with the slits outside the BEC,
in the scenario with the two sources within the BEC it even becomes possible to vio-
late Bell’s inequality. Obviously the aforementioned averaging would not be allowed
anymore. However, by shining an additional detuned laser on one of the source spots
to introduce a phase shift gives the possibility to change the phase of the two respec-
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tive paths again as in the double-slit scenario (see fig. 4.2). Different intensities on
either side would give the possibility to even have different phase changes for side A
and B, which is required for a Bell measurement. In that sense, the envisioned exper-
iment is more a hybrid of a double double-slit experiment and a ghost-interference
experiment.

Separability-criterion with modular variables

To analyze the significance of quantum mechanical correlations over classical cor-
relations in the following subsection, the visibility that can be achieved with the
current system will be analyzed. However, from the analysis so far an intuitive un-
derstanding of the entanglement in context of the EPR-inequality (4.4) can be seen
in fig. 4.10, namely the reduced uncertainty in one variable without a loss of certainty
in the conjugate variable.

In the work of Gneiting et al. [185], they employ modular variables [189–191] that
split the momentum operator p into the periodic p̄ = (p + h/2d)mod(h/d) − h/2d,
and an integer part Np

p = Np
h

d
+ p̄ (4.45)

and in similar fashion the position y into ȳ = (y + d/2)mod(d)− d/2 and Ny

y = Nyd+ ȳ (4.46)

The interference pattern with its envelope and the periodic fringe pattern is then de-
scribed by the respective parts of the momentum, i.e. the oscillations in momentum
space is solely governed by p̄ and the envelope by Nph/d. Interestingly, while the
modular variables commute with each other, and so do the integer parts ([ȳ, p̄] = 0
and [Ny, Np] = 0), the integer part of one observable does not commute with the
modular variable of the other and vice versa ([ȳ, Ny] 6= 0 and [p̄, Np] 6= 0). With this
Gneiting et al. construct a separability criterion similar to eq. (4.4) for the relative
integer position Ny,rel = Ny,1 −Ny,2 and total modular momentum p̄tot = p̄1 + p̄2

〈(∆Ny,rel)
2〉+

d2

h2
〈(∆p̄tot)2〉 ≤ 2C (4.47)

where d is the slit distance, h the Planck constant and C ' 0.078235. This condition
can only be fulfilled by an entangled state and discriminates them from separable
states. Illustratively this means for a separable state, that the reduction of the
uncertainty in the relative position comes at the cost of an increase in uncertainty
of the total momentum, as discussed when the importance of the source size for the
anti-correlation of momenta was stressed (the smaller the source size the larger the
momentum spread, see section 4.2). However, with the double-source for entangled
states the uncertainties of the modular variables can be independently reduced. To
see this one has to confirm that both particles originate from the same source region
of the hybrid experiment24 and thus 〈(∆Ny,rel)

2〉 = 0. Then the reduced width of

24In case of the double double-slit experiment, it would be necessary to confirm that they went
through “anti-correlated slits”, i.e. the particles pass through the upper slit if the partner goes
through the lower slit and vice versa
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the modular momentum as seen in the width of one fringe can be smaller than the
width of the single source spot, which is close to the limit for a separable state,
as seen in the envelope of the pattern (compare fig. 4.10) to exclude separability.
Moreover, the uncertainty of the modular momentum does not change when the
source size is reduced. This underlines again that the smallest possible source size is
an advantage rather than a problem as one could expect because the anti-correlation
of the momenta becomes weaker.

A qualitative effect of the entanglement in this interpretation can be seen in
fig. 4.10. While the source size for qx and qy are the same, the width of the zeroth
order fringe can be independently reduced in y-direction by changing d, somehow
analog to a squeezing in this direction. Assuming each pair always originates from
the same source region (as they do in the scattering process, however without proof
in the experiment), the separability criterion for modular variables is fulfilled in
y-direction25

d2

h2
〈(∆p̄y,tot)2〉 =

π2 − 3

6π
< 2C (4.48)

d2

h2
〈(∆p̄x,tot)2〉 =

1

6
> 2C

To verify 〈(∆Ny,rel)
2〉 = 0 in a double double-slit experiment a control experiment

can be performed where the slits are removed and from the anti-correlation in mo-
menta it can be excluded that the particles do not originate from the anti-correlated
slits. However, in the envisioned experiment such a verification would really require
to measure the relative position of the pairs that close to the collision regions that
it is impossible to have been created in the other source region. This is impossi-
ble if using a DLD 80 cm below the BEC and a different verification scheme would
be necessary or additional assumptions would be required which would weaken the
modular variable argument.

A final remark relating the criterion of Gneiting et al. and the visibility: if the
uncertainty of the integer part is guaranteed to be zero, the modular variable crite-
rion is solely given by the variance of the total modular momenta and a visibility of
already 20.1% excludes a separable mixed state. Yet, as the aforementioned, simple
control experiment to verify 〈(∆Ny,rel)

2〉 = 0 is only applicable to the double double-
slit version of the experiment, criterion (4.47) can only be employed in a future, full
blown double double-slit experiment and the here discussed hybrid experiment is
left with the visibility criterion26 vab ≥ 1/2.

Visibilities

The signature of entanglement in all discussed scenarios is heralded by the disap-
pearance of single-particle interference, but only visible in coincidence detection on
both sides A and B. Essential for the coincidence measurements, single atoms need
to be detected, which is the reason for using He∗ atoms in combination with the

25As there is no double slit in x-direction, the number is only given for comparison and cannot be
related to the modular variable criterion.

26Interestingly, as no entanglement is existent in the classical stochastic theories that can achieve
this visibility, the particles creating such a pattern cannot always originate from the same slit.
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delay-line detector (DLD). Yet, single-atom detection is only a prerequisite for the
coincidences. The main challenge is to identify the pairs, i.e. the correct partner has
to be associated with its counterpart on the other side of the momentum sphere. Due
to the native correlation length of back-to-back scattered atoms, i.e. the width of the
Gaussian distribution of eq. (4.44), which defines a mode volume, the partner-atom
can be discriminated against other atoms. On the other hand, falsely associating
particles to each other which are not correlated will diminish the visibility of the
interference pattern. Hence, it is delicate to choose the right coincidence window
that determines whether a partner was detected, and the correct amount of pairs
produced in the first place.

The angular coincidence window CW on the sphere has to span at least the first
order maximum of the pattern (see fig. 4.10) in azimuthal direction to make this
fringe visible and has then a free parameter c, which is the width in polar direction in
units of the width of the Gaussian distribution 1/

√
2sxk describing the correlations.

Hence, the area on the sphere of the coincidence windows is obtained by integration
over π/2± c/

√
2sxk in polar direction and ±1/

√
2syk in azimuthal direction.

CW =

∫ 1√
2syk

1√
2syk

∫ π/2+ c√
2sxk

π/2− c√
2sxk

sin θ dθ dφ =
4√

2syk
sin

(
c√

2sxk

)
(4.49)

Now the good coincidence counts GC are the emitted atoms per steradian, N =
Ns/4π, times the detection efficiency η on each side times the probability that the
partner is in the coincidence window. Latter probability is given by the Gaussian
correlation distribution, integrated over the coincidence window. Hence the good
coincidences are

GC = Nη2erf

(
c√
2

)
erf

(
1√
2

)
(4.50)

The accidental counts AC, i.e. counts where two detection events are misinter-
preted as correlated atoms, are made up out of three contributions. Either a par-
ticle from one pair and a particle from another pair are detected within the co-
incidence window, while the respective partner is lost, and are associated to be a
pair27 CW (η(1 − η)N)2; a dark count of the detector on either side and a particle
with a lost partner on the other side within the coincidence window are associated
2CW DCη(1−η)N (DC are the dark counts per steradian of the detector28); or two
dark counts are accidentally identified to be a pair CW DC2. The three contributions
can be summarized as [192]

AC = CW (DC + η(1− η)N)2 (4.51)

27This is an approximation to the Poisson distribution of detection events, valid if CWηN � 0.1.
The coincidence window is on the order of 10−4 sr and together with the detection efficiency
guarantees the validity of the approximation

28The dark counts per second of chapter 3.2 can be converted into DC if the thickness of the
scattering halo is known.
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Hence, choosing the coincidence window to be small yields low accidental counts,
but as it becomes smaller than the native mode volume, the low accidental count
rates come at the cost of a high rejection of good coincidences.

The smaller the coincidence window the better the visibility as expected. However,
longer integration times are required as the coincidence rate decreases. The mini-
mal coincidence window that can be chosen is limited by one pixel of the detector
resolution to

cmin =

√
2δxksx
D

(4.52)

In principle the coincidence window parameter can change when detection is in the
equatorial plane as the temporal resolution is much better. However, for simplicity
and to stay on the conservative side the problem is kept symmetric around the y-axis
and hence, the calculations are made with the detector resolution in x-direction.

Neglecting where specifically the first particle was detected averages over the
distribution so that the two-particle visibility vab is equivalent to the definition of
the one particle visibility and can be calculated from the count rates of coincidences
CC and accidentals

vab =
CC − AC
CC + AC

=
GC

GC + 2 ·AC
(4.53)

Even though the efficiency of the detector is only about 7% the low dark count rate
of the detector compared to optical detection schemes suggests a good visibility for
the pattern.

Fig. 4.11a shows the visibility in dependence of emitted pairs. The visibility in-
creases linearly with less pairs produced per shot. However, at some point dark
counts start to dominate the accidental count rate and the visibility decreases again
for too low pair production rates29. Shown is also the dependence of the visibility
above 1/2 in units of the standard deviation σ for a fixed number of shots. Here,
the maximum is shifted towards higher numbers of pairs.

Parameter Value

δx,z,y 124µm
sx,y,z 8.5µm
d 37.8µm

Dark counts 6 s−1

H 80 cm
η 0.07

Table 4.1: A summary of the parameters used to obtain numerical results and plots.

Fig. 4.11b shows how the visibility can slightly be improved by increasing the
source sizes sx and sz perpendicular to the interference pattern. A better correlation
in this dimension increases the probability to find the scattering partner within the
coincidence window. Fig. 4.13a shows the probability to detect a particle per Raman

29The optimum visibility is on the order of ηN = DC.
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Figure 4.11: The achievable visibility versus the pair production rate per shot 2πN
and the source size sx perpendicular to the dimension of the interfer-
ence. a) The pair production rate, even though favorable to be small to
avoid high accidental count rates, can enter a regime where dark counts
can dominate the accidental count rate and outbalance the good coinci-
dences. Even more pronounced is the disadvantage of too low numbers
of scattered pairs, when the visibility is plotted in units of its stan-
dard deviation above 1/2 (Here, 400 light pulses per pixel are used to
generate the statistics). b) Some improvement on the visibility can be
achieved by increasing the source size sx,z perpendicular to the inter-
ference pattern. A better correlation in these dimensions increases the
probability to find the partner within the coincidence window. However,
when sy/sx becomes small, the pattern out of the xz-plane degrades and
the useful area of the sphere is smaller (see fig. 4.12). Hence, the count
rate drops (Here, 200 Atoms are scattered in the FWM-process). A
collection of other parameters can be found in tab. 4.1.

pulse, when half of the sphere can be used to collect events. This is possible if the
source size sx,z and sy in the different directions are equal. One handle to improve
the visibility is to increase the correlations perpendicular to the interference pattern,
hence increasing the source size in x- and z-direction. However, as the pattern is
more and more restricted to the xz-plane less area on the sphere can be used.
Fig. 4.12 shows how the height of the first order maximum decreases relative to the
zeroth order maximum as the particles are detected closer to the y-axis and how
the width of this curve reduces for higher ratios of sx,z to sy. Hence, less area of
the scattering halo can be used to obtain better statistics. Nevertheless, if required,
such an increase in source size can be easily achieved by shaping the L2 beam in the
Fourier plane of the focusing lens (compare chapter 3.1.4).

The visibilities after the considerations of accidental identification of partners are
fairly high. However, another major effect is posed by the finite resolution of the
detector. The pattern recorded does not perfectly follow eq. (4.44), but the result is
the convolution of the pattern with the detector resolution δx,y

|Ψ̃x(qx)|2 =
1√

2π(δ2
x + D

2s2xk
2 )

exp

(
− q2

x

2(δ2
x + D

2s2xk
2 )

)
(4.54)
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Figure 4.12: As the detection of the particles (here labeled with the detection angle
φa of particle A) gets closer to the y-axis the interference pattern di-
minishes as the two source spots, viewed from the detection position,
line up behind each other. The height of the first order maximum h1

relative to the zero order h0 is shown. As the source size sx increases
relative to sy the useful angles are reduced.

for the polar dimension and

|Ψ̃y(qy)|2 =
1

A
e−Eq

2
y(1 + V cosFqy) (4.55)

for the azimuthal. The four parameters are the wider envelope

E =
4k2s4

y

8k2s4
yδ

2
y + 4D2s2

y

(4.56)

the shifted frequency of the oscillations in the pattern

F =
dkD

2k2s2
yδ

2
y +D2

(4.57)

the normalization constant

A =
√
π

√
D2

k2s2
y

+ 2δ2
y

e− d2
(

D4

s2y(2k2s2yδ2y+D2)
+2k2δ2y

)
4D2 + 1

 (4.58)

and the reduced visibility

V = e−
d2k2δ2y

2D2 (4.59)
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Figure 4.13: The intensity pattern on side B given a detection on side A (per shot)
resulting from the EPR-like entanglement in the source with the ac-
cidental coincidences are taken into account. The count rate increases
as the detector resolution gets larger, because the minimal coincidence
window has to be increased. However, the visibility starts to decrease
significantly when the detector resolution gets on the same order as the
fringe distance, more clearly visible in the right graph.

While the detector resolution broadens the envelope it also lowers the frequency
at which the maxima of the interference pattern appear. More importantly for the
visibility criterion, the visibility is reduced even with perfect pair identification.

In order to combine the results for the influence on the interference pattern from
the finite detector resolution with the considerations about accidental pair identi-
fications, the reduced visibility has to be scaled with the good coincidences. The
minimum of the pattern yields then an additional contribution to the accidental
count rate AC ′

AC ′ = GC
1− V

2
+ AC (4.60)

and the expected coincidence rate CC ′ is reduced by the maximum of eq. (4.55) to

CC ′ = GC
1 + V

2
+ AC (4.61)

Fig. 4.11 already included these considerations. However, the mere number ob-
scures the fact that the first order maximum can vanish for the naked eye in the
background even though the visibility is still high. This is owing to the fact that
the visibility is only concerned with the oscillatory term and neglects the envelope,
which is justified as the modular variable criterion also only requires the width of the
of the fringes to be narrow. Fig. 4.13 shows how the interference pattern degrades
and is washed out as the detector resolution approaches the fringe distance.

Note, to obtain decent count rates and thus statistics it can be useful to sacrifice
some visibility by increasing the coincidence window and/or the scattered pairs per
shot (compare fig. 4.11). Fig. 4.14 shows how the coincidence window and scattered
pairs can be optimized given the parameters of tab. 4.1.

As fig. 4.13 points out the coincidence rate is extremely low. However, as only few
atoms need to be scattered per shot in order to maintain a proper identification of
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Figure 4.14: The coincidence window and number of scattered atoms can be opti-
mized to achieve best statistical significance. For 400 shots per pixel
the visibility can be more than σ above 1/2.

collision partners anyway, multiple Raman pulses can be launched on to the same
BEC. This way more use can be made out of one duty cycle of the experiment. To
scatter about 120 pairs about 55 k atoms need to be released from the trap (compare
eq. (3.7)). Hence, about five shots per BEC is realistic.

Taking all parameters given by the system, scattered pairs of Ns = 120, and
c = 1.5/

√
2sxk a visibility of vab = 0.71 can theoretically be achieved and within 10h

of data taking a Poisson error gives a significance of 1.7σ above a visibility30 of 1/2.
This provides an estimate that it is in general possible to rule out classical correlation
with this system. Fig. 4.13 shows how the visibility dramatically improves as the
detector resolution improves. Hence, the suggested improvements of chapter 3.2 will
bring the system well into the regime where not only the side lobes of the pattern
can be observed but indeed a violation of classical correlations should be possible.

In conclusion, a scenario has been described that allows for observation of non-
classical interference. The slits of a ghost-interference experiment are moved into the
source, such that no additional components are required and the SWA can be used to
calculate the expected pattern. In this situation smallest spot sizes are advantageous
and the slit distance has to be chosen such that the detector can resolve the fringes
on one hand, and lie within the envelope given by the individual source sizes on the
other hand. Choosing the number of scattered atoms as well as the right size for the
coincidence window are necessary when it comes to accidental counts to still yield
high visibilities. The other limiting effect for the visibility is a result of the finite
detector resolution. The parameters of the existing system are shown to be within
the regime to achieve visibilities higher than 1/2, which is the limit for classical
intensity fluctuations. Possible handles, such as source sizes, scattered atom pairs,

30Here 15 pixel of the detector are filled with coincidences to cover both side lobes.
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coincidence window, are pointed out with which to tune the parameters such that
count rates are possible that allow for reasonable acquisition times and still have a
significantly small statistical error.
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5 Summary and Outlook

A system to cool metastable helium below the transition temperature and condense
into a Bose-Einstein condensate has been developed. A high-resolving delay-line
detector, capable of detecting single atoms in space and time, has been installed and
its performance characterized. In the final section of this dissertation, the power of
the metastable helium BEC platform was discussed in the context of its purpose to
show entanglement of matter waves in their external degree of freedom.

To achieve Bose-Einstein condensation a sequence of well controlled manipula-
tion and cooling steps has been designed, developed, and built. First, the atoms
are excited to their metastable state within a DC-discharge source. Transverse laser
cooling facilitates an increase in flux, necessary to achieve high loading rates of
a magneto-optical trap, which is loaded via a Zeeman-slowed atomic beam. After
transfer to a magnetic trap, the atoms can be cooled to degeneracy, which is accom-
plished with about 106 atoms at 1µK. Despite current technical instabilities, this
will eventually serve as source for coherent matter waves.

The creation of entanglement will follow the scheme of Perrin et al. by colliding
atoms in a four-wave mixing process. The necessary optics, which are even able to
generate arbitrary light fields at the position of the BEC, have been installed and
tested. Importantly, a micro-channel plate in combination with a delay-line detector
has been attached to the system and its characteristics were tested. The delay-line
detector has the capability to resolve single-atom detection-events spatially with
120µm and temporally with 250 ps at fluxes of about 106 events per second and
quadrant. Possible ways to even improve on the spatial resolution capabilities are
outlined and will enhance the signal quality further.

The combination of the BEC as source for coherent matter waves, the creation of
four-wave mixing in the condensate, and the detection of single atoms to measure
correlations will enable the system to perform experiments with non-classical states
of matter waves. Among those experiments are double diamond, double double-slit,
and ghost-interference experiments. These were described and a version of a hybrid
of the double double-slit and ghost-interference experiment has been analyzed in
detail for its feasibility to be implemented as entanglement experiment in the current
system.

The next steps to realize such an experiment are to improve on the stability of
the experiment and the detector resolution. An improved magnetic trap as well
as an optical trap can boost the reproducibility of the experiment improving on
the statistics obtained from multiple runs. The immediate next step is to create
correlated atom pairs, for which the optics has been set up.

A proper identification of pairs, essential for all entanglement experiments, will
provide better statistics for experiments on the back-to-back correlations as well.
Together with a verification of the spherical wave approximation, which will be
shown by measuring the dependence of the correlation uncertainty on the source size



130 Summary and Outlook

(independent of the BEC size), the pair identification will be the crucial ingredient
to perform the envisioned experiment.

This will bring a three-dimensional version of the original Einstein-Podolsky-
Rosen paradox closer to realization in a matter-wave system. The envisioned experi-
ment will demonstrate the non-classical character of the state, which is generated in
the four-wave mixing process. Subsequent extensions like introducing a phase shift
around one source spot or accompanying it with a double double-slit experiment
will make even Bell measurements possible.

What is more, while demonstration of entanglement is an exciting experiment by
itself, the current setup can eventually be used as platform to test concepts beyond
the experiments performed so far with photons. A Franson-like experiment will for
example yield significantly different outcomes for matter waves than it is the case for
photons. Interference patterns in space and time should be possible to be observed.
A multi slit experiment could test Born’s rule with entangled matter waves. The
significant effect of gravity on matter waves can be tested in an interferometric
setup, now even exploiting the aspects of entanglement and possibly enhancing the
sensitivity. The spatial-light modulator gives the opportunity to shape most complex
light fields at and around the BEC. With this, gratings that facilitate anomalous
transmission for matter waves can be generated or non-trivial properties, such as
orbital angular momentum states, can be transferred onto the matter wave. The
fermionic character of helium-3 can be exploited to investigate the fundamentally
different statistics as compared to bosons. For example, four-wave mixing has not
been shown for fermions and the Pauli exclusion principle would suggest at first
sight a breakdown of the spherical wave approximation. On the other hand though,
the necessary anti-symmetrization of the wave function for Fermions proposes an a
priori entanglement of the Green’s function itself, which only comes in for Bosons
upon integration over the source volume.

Hence, it is obvious that with this platform at hand the possibilities of finding and
potentially solving a multitude of puzzling yet thrilling questions have significantly
grown and it primes the playground to continue the challenge of our perception of
the world!



Remerciements 131

Remerciements

This will read as a list of names but as a matter of fact after more than four
years working on this project the people involved were much more part of my life
than black ink on white paper. I herewith want to thank especially those people
contributing the colorful spots in the picture!

Not only in the past four years, but my whole life has been “sans soucis”, because
my mom and dad supported all my ideas and let me always know that they are
there for me. THANK YOU!

I feel blessed for having my friendships from childhood with Flo and Chris, as well
for the ones I found in physics and took beyond with Daniel and Simon. And this
is said without neglecting all the other color stains of my life. Thank you!!!

I wanna thank explicitly Ju and Wili for contributing some dark red spots during
my time in Vienna!

I want to thank the whole IQOQI. It was a pleasure and honor to walk with all of
you. With this I also appreciate to had the opportunity to work with Anton. Thank
you, for everything, for creating such an extraordinary environment, and thank you
for all the visionary discussions.

Special thanks go to Markus, who is not just an outstanding professor for his own
students, but always had a helpful ear for me as well. Thanks a lot!

I also wanna thank my colleagues on the project itself. First, Michi and Mateusz,
who have borne the longest with me in this endeavor. Thank you very much! But
also Flo and Mandip for their valuable contributions in the lab as well as Johannes
for his particular involvement in the theoretical discussions.

It is a pleasure to express my distinct gratitude to Roland, without whose inge-
nious constructions nothing in this dissertation would have been possible. Thanks
for the joyful invites to your kingdom!

I am also grateful for all the helpers in the administration for all the small talks
and the big support with all bureaucracy!

The financial support from the University of Vienna is greatly appreciated as
well as the extra curricula support from the FWF in form of the CoQuS doctoral
program, with all its students and the inspiring discussions with them.

Last but not least I wanna thank two special companions that carried me through
this time. Music was such soothing, yet provocative ingredient and certainly got me
going, if not gorillas! And sports was indispensable to exhaust the body when the
mind had to be cleansed free of thoughts.

A little sweat ain’t never hurt nobody. So get the bottles poppin’ !





Bibliography 133

Bibliography

[1] L. de Broglie, Waves and quanta, Nature 112, 540 (1923).

[2] C. Davisson and C. Kunsman, The scattering of electrons by nickel, Science
(New York, NY) 54, 522 (1921).

[3] H. Rauch, W. Treimer, and U. Bonse, Test of a single crystal neutron inter-
ferometer, Physics Letters A 47, 369 (1974).

[4] R. Colella, A. Overhauser, and S. Werner, Observation of Gravitationally In-
duced Quantum Interference, Physical Review Letters 34, 1472 (1975).

[5] S. A. Werner and J. L. Staudenmann, Effect of Earth’s Rotation on the
Quantum Mechanical Phase of the Neutron, Physical Review Letters 42, 1103
(1979).

[6] H. Kaiser, M. Arif, R. Berliner, R. Clothier, S. A. Werner, A. Cimmino, A. G.
Klein, and G. I. Opat, Neutron interferometry investigation of the Aharonov-
Casher effect, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 151, 68
(1988).

[7] H. Batelaan, E. Rasel, M. Oberthaler, J. Schmiedmayer, and A. Zeilinger,
Anomalous transmission in atom optics, Journal of Modern Optics 44, 2629
(1997).

[8] C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and
A. Zeilinger, Tailored complex potentials and Friedel’s law in atom optics,
Physical Review Letters 79, 3327 (1997).

[9] M. Oberthaler, R. Abfalterer, S. Bernet, C. Keller, J. Schmiedmayer, and
A. Zeilinger, Dynamical diffraction of atomic matter waves by crystals of light,
Physical Review A 60, 456 (1999).

[10] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, and
A. Zeilinger, Wave-particle duality of C 60 molecules, Nature 401, 680 (1999).

[11] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description
of physical reality be considered complete?, Physical Review 47, 777 (1935).
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condensation of cesium., Science 299, 232 (2003).

[69] R. Van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema,
R. A. Rozendaal, and W. Vassen, Frequency Metrology in Quantum Degener-
ate Helium: Direct Measurement of the 23S1 → 21S0 Transition, Science 333,
196 (2011).
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Kheruntsyan, Spontaneous four-wave mixing of de Broglie waves: beyond op-
tics., Physical Review Letters 104, 150402 (2010).
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