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Introduction

After E. Schrödinger and W. Heisenberg laid the foundations of non-relativistic quantum
mechanics around 1925, P.A.M. Dirac [6] created the subject of quantum field theory
(QFT) in 1927 by first describing the electromagnetic field and charged matter in the
framework of quantum mechanics. A year later he found an equation describing rela-
tivistic spin-1/2 particles, which was named Dirac equation in his honor. It was apparent
that this equation as well as QFT incorporated special relativity, thus allowing for a
relativistic treatment of many-particle systems. However, at small distances around the
Planck length lP =

√
~G
c3 , QFT produced divergent quantities, so-called ultraviolet di-

vergences, rendering the results of the theory in this regime useless. The appearance of
these divergences in the calculations indicated that at small distances space-time might
not exhibit classical behavior; for example, Heisenberg [19] reasoned in 1938 that there
exists a fundamental length scale beyond which quantum mechanics in its then common
interpretation is not applicable. Schrödinger [28] made more general remarks about the
measure process and geometric notions at small scales in 1934.

There is a simple, heuristic argument for a possible ‘quantum’ nature of space-time
at the Planck scale: Suppose we have an object of length-dimension ∆x. According to
Heisenberg’s uncertainty principle ∆x∆p ≥ ~

2 there is an associated momentum uncer-
tainty of ∆p ≥ ~

2∆x . Since the relativistic energy is given by E =
√
p2c2 +m2c4, we cer-

tainly have a lower bound for the energy (resp. the rest mass) given by E = mc2 ≥ ∆pc.
General relativity allows us to associate a Schwarzschild radius of RSS ' 2GE

c4 to the
energy of this object. A reasonable description of the object beyond the Schwarzschild
radius is not possible; hence, we infer by the above reasoning that

∆x ≥ RSS '
2GE
c4 ≥ 2G∆p

c3 ≥ G~
∆xc3

and hence

(∆x)2 ≥ l2p. (0.1)

The above argument is obviously rather hand-waving; however, in 1995 S. Doplicher,
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Introduction

K. Fredenhagen and J.E. Roberts [7] provided more detailed arguments in favor of the
idea of the quantum nature of space-time. Note that during the reasoning leading to
(0.1) we used arguments from both quantum mechanics and general relativity; we will
return to this thought later on.

Recall that Heisenberg’s uncertainty principle ∆x∆p ≥ ~
2 stems from the commutation

relation [X̂i, P̂ j ] = i~δij ; hence, we can interpret (0.1) as the result of prescribing a
similar commutation relation for the coordinates (or better: coordinate operators) X̂i.
This was first formalized by H.S. Snyder [30], who used a commutation relation in the
form of

[X̂i, X̂j ] = θij id

where θij is an anti-symmetric tensor. Although Snyder’s approach to quantizing space-
time seemed promising, it failed to receive proper resonance in the scientific community
after R. Feynman, J. Schwinger, S. Tomonaga and F. Dyson developed renormaliza-
tion and successfully applied it to electromagnetic QFT, thus founding quantum elec-
trodynamics (QED). Due to the overwhelming accuracy of QED in the prediction of
electromagnetic quantities such as the anomalous magnetic moment of the electron,
Snyder’s idea of quantizing space-time was discarded in favor of the newly developed
renormalization techniques. However, theoretical physicists were very well aware of the
shortcomings of renormalization; Dirac for example was never really content with its
lack of mathematical rigor.

The fact that the Physics community turned away from quantizing space-time through
non-commuting position operators did not prevent mathematicians from picking up the
idea and formalizing the concepts. The de-facto standard and highlight in this undertak-
ing is undoubtedly A. Connes’ seminal publication [5] in which he developed the theory
of non-commutative geometry by using methods from K-theory and cyclic cohomology.
Connes’ work drew the attention of many fellow mathematicians such as M. Rieffel and
J. Lott, as well as revitalizing the interest of physicists in non-commutative geometry.
In 1992 J. Madore [20] gave a description of the non-commutative fuzzy sphere S2

F in
terms of an algebra of matrices; together with H. Grosse [15] he applied this as a regu-
larization to the Schwinger model. A year later Grosse and P. Prešnajder [16] described
a method of constructing non-commutative manifolds using coherent states, which they
applied to Madore’s fuzzy sphere. A non-commutative differential calculus based on
the Frolicher-Nijenhuis bracket and derivations was developed by M. Dubois-Violette [9]
in 1988, also published co-authored with P. Michor [10] in 1994. Furthermore, Grosse,
C. Klimčik and Presnajder discussed field theories on non-commutative manifolds in a
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series of papers, including [13] and [14]. In 2004 Grosse and R. Wulkenhaar [17] showed
that the four-dimensional non-commutative φ4-model is renormalizable to all orders by
reformulating it as a dynamical matrix model.

The year 1999 saw important developments in non-commutative geometry. S. Min-
walla, M. van Raamsdonk and N. Seiberg investigated the perturbative dynamics of
non-commutative field theories on Rd, discovering an IR/UV mixing in the theory.
Furthermore, a connection between non-commutative geometry and string theory was
established when A. Alekseev, A. Recknagel, and V. Schomerus [2] on the one hand
and Seiberg and E. Witten [29] on the other hand discovered the appearance of non-
commutative geometries in string theory in presence of a non-vanishing magnetic field.
These developments not only spurred the interest of string theorists in non-commutative
geometry, but also substantiated the stand-alone role of the field. This is based on the
fact that non-commutative geometry adds to the existing candidates for a theory of
quantum gravity, the most famous contestants being string theory and loop quantum
gravity. In certain matrix models in non-commutative geometry, gravity enters the stage
through an effect called ‘emergent gravity’.

The thesis at hand provides an introduction to non-commutative geometry through
the investigation of deformed R3, denoted by R3

λ. The parameter λ governs the non-
commutativity of the space in a way which will become clear in the course of the discus-
sion. This thesis is divided into three chapters.

In the first chapter we acquaint the reader with the field of non-commutative geometry
by first introducing the Moyal plane, in a sense the simplest and most comprehensible
example of a non-commutative space. This is achieved by defining the canonical non-
commutative Groenewold-Moyal star product on the algebra of functions on R4 through
the use of Weyl operators. We also give a definition of a different star product using
the coherent state method. Not only does this alternative approach demonstrate that
there are different star products and hence different non-commutative geometries on a
given base space; this method is also convenient to define a star product on R3

λ, the
central object of this thesis. We also point out the relationship between R3

λ and the
fuzzy sphere S2

λ,N/2 by recognizing R3
λ as a direct sum of fuzzy spheres of increasing

radii. It is further demonstrated that the star product on R3
λ defined by coherent states

can be easily reduced to a fuzzy sphere of given radius.
The second chapter deals with differential calculi on non-commutative spaces. After a

short recapitulation of the de Rham-calculus on commutative manifolds, we first discuss
the universal calculus on arbitrary algebras. An important theorem states that every
given differential calculus on an algebra can be obtained as a quotient object of the
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Introduction

universal calculus. We then take a short detour and introduce quantum groups (or Hopf
algebras), a special class of bialgebras whose additional structure permits an explicit
construction of a differential calculus. The identification of R3

λ with the universal en-
veloping algebra U(su(2)) reveals its quantum group structure and allows us to present
a concrete example of a four-dimensional calculus on R3

λ. In the commutative limit this
calculus reduces to the ordinary three-dimensional calculus on R3, a fact which we sup-
port by evaluating the exterior derivative acting on plane waves and showing that we can
reproduce the known result of the commutative calculus. Since the subject of quantum
groups would deserve a thesis of its own, the treatment is kept rather short and only
intends to provide the most basic notions of quantum groups. However, references to
the literature are included for the interested reader.

After the general considerations in the first two chapters, the last chapter focuses on
a concrete quantum mechanical problem: the Coulomb problem formulated on R3

λ. We
repeat the realization of R3

λ via the Hopf fibration and bosonic creation and annihilation
operators from Chapter 1 and discuss the most important properties of the coordinate
operators x̂i, i = 1, 2, 3. After defining the angular momentum operators L̂i, i = 1, 2, 3
and identifying the eigenstates of L2 :=

∑
i(L̂i)2 and L̂3, we investigate the Hilbert space

generated by these eigenstates. In order to formulate the Coulomb problem in this space,
we define a Laplace operator and analyze its action on the eigenstates of the angular
momentum operators. Together with a potential term the Laplace operator forms the
Hamiltonian of the Coulomb problem. We compute the spectrum of the Hamiltonian
and learn that the energy values are essentially the solutions from the commutative
problem modified by certain correction terms due to the non-commutativity of R3

λ.
Since this thesis is intended as an introduction to non-commutative geometry on a

graduate level, the reader is not assumed to be familiar with the subject. However, a
sound knowledge of algebra and differential geometry surely aids in following the main
arguments. Detailed computations of the results are given wherever possible. Proofs of
the mathematical theorems (especially in the sections about the universal calculus and
quantum groups) are mainly omitted in order to focus on the explicit aspects of the
non-commutative geometry of R3

λ. The set of natural numbers, integers, real numbers
and complex numbers are denoted by N, Z, R and C respectively. By convention, N does
not contain 0.
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1 Examples of non-commutative spaces

The most general approach to defining the concept of non-commutative geometry, as
introduced by Connes in [5], is the following: Consider a general manifold M and the
R-algebra C∞(M) of smooth, real-valued functions on M . Addition and multiplication
of functions in C∞(M) are defined pointwise, turning it into a commutative algebra. It
is well-known that this algebra encodes much information about the topology and dif-
ferential structure of M in an algebraic sense. Hence, the algebra of functions provides a
good starting point for generalizing the concept of manifolds to non-commutative spaces.
The crucial idea is to replace C∞(M) by a non-commutative R-algebra Â and construct
a differential calculus in resemblance to the concepts in commutative differential geom-
etry (cf. Section 2). Furthermore, one often chooses an isomorphism between Â and
(C∞(M),+, ?) where ? is an associative, non-commutative product for ordinary func-
tions in C∞(M). We will discuss two possible approaches to defining this star product
in Sections 1.1.2 and 1.1.3 respectively.

However, there is a more straight-forward way of defining non-commutative spaces.
We simply prescribe commutation relations for the coordinates xi, i = 1, . . . , D of a
manifold M with D = dim(M), hence turning them into non-commutative operators. A
reasonable ansatz is a relation of the form

[x̂i, x̂j ] = iθij (1.1)

where θij is an anti-symmetric tensor of type (2, 0) and rank 4 (thus invertible), the
entries having dimension (length)2. The hats over the coordinates x̂i indicate their
operator nature.

In the following sections we are going to discuss two special cases of (1.1). The
treatment at hand is based on [31, Ch. 2] and [18, Ch. 2 and 3], but more detailed and
including proofs and explicit calculations whenever it does not impair readability.
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1 Examples of non-commutative spaces

1.1 Moyal plane

1.1.1 Definition of the Moyal plane

The simplest case of (1.1) is to consider a constant matrix θij . It follows from the theory
of anti-symmetric matrices that after a suitable basis transformation one can achieve the
following block form of the matrix θij :

(θij) =



0 θ1

−θ1 0
0 · · ·

0
0 θ2

−θ2 0
... . . .

0 θn

−θn 0
0

. . .
0



(1.2)

where θ1, . . . , θn ∈ R and ±iθ1, . . . ,±iθn, 0 are the eigenvalues of (θij). Setting D = 4
and assuming non-degeneracy of θij we obtain the Moyal plane R4

θ:

[x̂i, x̂j ] = iθij with (θij) =


0 θ

−θ 0
0

0
0 θ

−θ 0

 . (1.3)

Note that we introduced another basis transformation (which is effectively a rescaling
of the coordinates x̂i) to achieve θ1 = θ2 = θ in (1.2). The real parameter θ governs
the non-commutativity of R4

θ; in the commutative limes θ → 0 we obtain R4
θ → R4

according to (1.1). We denote by Â the non-commutative algebra generated by the
coordinate operators x̂i.

1.1.2 Weyl operators and Moyal star product

The prescription of commutation relations for the coordinates x̂i of the manifold M also
turns fields (which are essentially functions of the coordinates) into operators. Therefore,
studying field theory requires special care when dealing with these operator due to the
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1.1 Moyal plane

need to specify an ordering prescription. One way of facilitating this task is to relate
the algebra Â generated by the operators x̂i to ordinary functions in C∞(M). The non-
commutativity of Â is incorporated by defining a non-commutative, associative product
on C∞(M), the so-called star product. In this section we discuss the Moyal star product
on the Moyal plane R4

θ.
In order to ensure that Fourier transformation is well defined, we first restrict ourselves

to the Schwartz space

S(R4) =
{
f ∈ C∞(R4) | supx∈R4 |xαDβf(x)| <∞ ∀α, β

}
where α and β are multi-indices. More precisely, the Fourier transform F is a linear
automorphism of S(R4). Furthermore, for vectors v, w ∈ R4 we denote by vw the
standard Euclidean scalar product δijviwj . Similarly, kx̂ ≡ kix̂

i where k ∈ R4 and x̂i,
i = 1, . . . , 4 are the coordinate operators.

In order to define the star product, we need to introduce the notion of Weyl operators.
Given a function f(x) ∈ S(R4) and the corresponding Fourier transform

f̃(k) = 1
(2π)2

∫
d4x e−ikxf(x),

the Weyl operator Ŵ[f ] is defined by

Ŵ[f ] = 1
(2π)2

∫
d4k f̃(k)eikx̂ (1.4)

where x̂i are the coordinate operators satisfying (1.3). Since eikx̂ is defined by the Taylor
expansion of the exponential function, we have to fix an ordering prescription in (1.4).
A natural choice is the symmetric Weyl ordering, defined by requiring Ŵ[eikx] = eikx̂.
Denoting the mapping of a function f(x) to its Weyl operator Ŵ[f ] by

S : S(R4) −→ Â

f(x) 7−→ Ŵ[f ],

we observe that we may define an inverse mapping S−1 by

S−1(Ŵ[f̂ ])(k) = tr(e−ikx̂f̂). (1.5)

Note however that S−1 gives a function in momentum space, i.e., we have to perform a
Fourier transform of S−1(Ŵ[f̂ ])(k) in order to obtain f(x) in position space.

7



1 Examples of non-commutative spaces

Formally, the star product (f ? g)(x) of two functions f, g ∈ S(R4) is defined as

(f ? g)(x) := 1
(2π)2

∫
d4k eikxS−1(Ŵ[f ]Ŵ[g]). (1.6)

We would like to obtain an explicit formula for the star product in (1.6). To this end,
we observe using (1.4) that

Ŵ[f ]Ŵ[g] = 1
(2π)4

∫
d4kd4l eikx̂eilx̂f̃(k)g̃(l). (1.7)

Employing the Baker-Campbell-Hausdorff formula

log(eAeB) = A+B + 1
2[A,B] + 1

12[A, [A,B]]

− 1
12[B, [A,B]]− 1

24[B, [A, [A,B]]]± . . . ,
(1.8)

which continues with terms involving an increasing number of commutators, the product
eikx̂eilx̂ is evaluated as

eikx̂eilx̂ = exp(i(k + l)x̂− 1
2kilj [x̂i, x̂j ]︸ ︷︷ ︸

=iθij

)

= ei(k+l)x̂e−
1
2kiljθ

ij
. (1.9)

The key observation here is that the commutation relation (1.1) is constant; therefore,
terms involving two or more commutators drop out. By inserting (1.9) into (1.7) and
comparing it with (1.4), we infer the explicit form of the Moyal star product in position
space as

(f ? g)(x) := f(x) exp(
←
∂i
i

2θ
ij
→
∂j)g(y)

∣∣∣
x=y

. (1.10)

It is important to note that different ordering prescriptions in (1.4) lead to different
star products. The form given in (1.10) corresponds to the symmetric Weyl ordering
Ŵ[eikx] = eikx̂. We also observe that in the commutative limit θ → 0 the star product
(1.10) reduces to the usual commutative product of functions in analogy to R4

θ → R4.

Let us check the consistency of (1.10) with the commutation relation [x̂i, x̂j ] = iθij :

xi ? xj = xi exp(
←
∂i
i

2θ
ij
→
∂j)yj

∣∣∣
x=y

8



1.1 Moyal plane

= xi(1 +
←
∂i
i

2θ
ij
→
∂j + 1

2
←
∂i
i

2θ
ij
→
∂j
←
∂m

i

2θ
mn
→
∂n + . . . )yj

∣∣∣
x=y

= xixj + i

2θ
ij

Hence, {xi, xj}? := xi ?xj−xj ?xi = iθij , implying that (S(R4), ?) ∼= Â, that is, they are
isomorphic as non-commutative rings. Note that the above reasoning readily generalizes
to higher (even) dimensions D. The star product has the following important property:

Lemma 1.
∫
d4x (f ? g)(x) =

∫
d4x f(x)g(x)

Proof. We first compute the Fourier transform of the star product (1.10):

(f ? g)(x) = f(x) exp(
←
∂i
i

2θ
ij
→
∂j)g(y)

∣∣∣
x=y

=
∫
d4p d4q eipxf̃(p)eiqxg̃(q) exp

(
i

2θ
ijpiqj

)
Hence, ∫

d4x (f ? g)(x) =
∫
d4p d4q

∫
d4x ei(p+q)x︸ ︷︷ ︸
=δ(p+q)

f̃(p)g̃(q) exp
(
i

2θ
ijpiqj

)

=
∫
d4p f̃(p)g̃(−p) exp

(
− i

2 θ
ijpipj︸ ︷︷ ︸

=0

)

=
∫
d4p f̃(p)g̃∗(p)

=
∫
d4x f(x)g(x);

the last equality is Parseval’s theorem. Note that θijpipj = 0, since it is the contraction
of an anti-symmetric and a symmetric quantity.

Corollary 2.
∫
d4x (f1 ? f2 ? · · · ? fn)(x) =

∫
d4x (fσ(1) ? fσ(2) ? · · · ? fσ(n)) where σ is

any power of the cyclic permutation (1 2 . . . n).

Lemma 1 has important applications in field theory. For example, a quadratic term∫
d4xφ ? φ in the action can be replaced by the integral over the ordinary product∫
d4xφ2.

9



1 Examples of non-commutative spaces

1.1.3 Star product using coherent states

After having defined the star product on R4
θ via Weyl operators of functions, we want

to investigate a different approach using coherent states on a suitable Fock space.

Let us first identify R4 with C2 via

z1 = x1 + ix2 z2 = x3 + ix4. (1.11)

If we deform R4 to the Moyal plane by imposing the commutation relation (1.3), the
complex coordinates zα also become operators, which we denote by âα. Upon setting1

θ ≡ 1
2 , their commutation relation is immediate from (1.11):

[âα, â†β] = δαβ (1.12a)

[âα, âβ] = 0 = [â†α, â
†
β] for α, β = 1, 2 (1.12b)

Hence, âα and â†α are the creation and annihilation operators of a two-dimensional
harmonic oscillator acting on the Fock space F defined by

F := span(|n1, n2〉 | n1, n2 ∈ N) (1.13a)

|n1, n2〉 := (â†1)n1(â†2)n2
√
n1!n2!

|0〉 (1.13b)

where |0〉 := |0, 0〉 is the normalized vacuum state with â1|0〉 = â2|0〉 = 0. Given a
vector z ∈ C2 we can now define the coherent state

|z〉 := ez
∗z/2ezαâ

†
α |0〉 (1.14)

where z∗z is understood as z∗αzα. We can bring (1.14) into a more practical form using
(1.13b):

|z〉 = e−z
∗z/2ez1â

†
1+z2â

†
2 |0〉

= e−z
∗z/2 ∑

n1,n2

zn1
1 zn2

2
n1!n2! (â†1)n1(â†2)n2 |0〉

= e−z
∗z/2 ∑

n1,n2

zn1
1 zn2

2√
n1!n2!

|n1, n2〉 (1.15)

1The reason for this is to retain the standard form of (1.12). We will reinsert the non-commutativity
parameter θ when discussing the commutative limit θ → 0.
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1.1 Moyal plane

Let us record a few properties of these coherent states in the following

Lemma 3. For w, z ∈ C2 coherent states

(i) are normalized: 〈z|z〉 = 1

(ii) are eigenstates of the annihilation operators âα: âα|z〉 = zα|z〉

(iii) are not orthogonal: 〈w|z〉 = e(−w∗w−z∗z)/2+w∗z

(iv) satisfy the completeness relation∫
dµ(z∗, z) |z〉〈z| = 1

where dµ(z∗, z) = 1
π2dz

∗
1dz1dz

∗
2dz2 is the canonical measure on the complex plane

C2.

Proof. Setting w = z in (iii) yields (i). To show (iii), we use (1.15) to observe:

〈w|z〉 = e(−w∗w−z∗z)/2 ∑
n1,n2
m1,m2

(w∗1)m1(w∗2)m2zn1
1 zn2

2√
n1!n2!m1!m2

〈m1,m2|n1, n2〉︸ ︷︷ ︸
=δm1n1δm2n2

= e(−w∗w−z∗z)/2∑
n1

(w∗1)n1zn1
1

n1!
∑
n2

(w∗2)n2zn2
2

n2!︸ ︷︷ ︸
=exp(w∗1z1+w∗2z2)

= e(−w∗w−z∗z)/2+w∗z

(ii) First, consider â1: We set

fz1 = e−zαâ
†
α â1e

zαâ
†
α

and differentiate fz1 with respect to z1:

∂fz1

∂z1
= e−zαâ

†
α(−â†1â1)ezαâ

†
α + e−zαâ

†
α â1â

†
1e
zαâ
†
α

= e−zαâ
†
α [â1, â

†
1]ezαâ

†
α

= 1,

where the 1 is understood as the identity operator. Thus, we have the ordinary differ-
ential equation

∂fz1

∂z1
= 1

11



1 Examples of non-commutative spaces

f0 = â1,

which has the solution fz1 = z1 + â1. Similarly, fz2 = z2 + â2, giving

â1e
zαâ
†
α = z1e

zαâ
†
α + ezαâ

†
α â1

â2e
zαâ
†
α = z2e

zαâ
†
α + ezαâ

†
α â2.

Applying these operators to the vacuum state |0〉 and recalling that |0〉 is annihilated
by the term ezαâ

†
α âβ, β = 1, 2, yields the desired identity âα|z〉 = za|z〉.

(iv) In the following, dµ ≡ dµ(z∗, z):∫
dµ |z〉〈z| =

∑
n1,n2
m1,m2

1√
n1!n2!m1!m2!

|n1, n2〉〈m1,m2|

×
∫
dµ e−z

∗
1z1−z∗2z2zn1

1 (z∗1)m1zn2
2 (z∗2)m2

We take a closer look at the remaining integral:

∫
dµ e−z

∗
1z1−z∗2z2zn1

1 (z∗1)m1zn2
2 (z∗2)m2 =( 1

π

∫
dz∗1dz1 e

−z∗1z1zn1
1 (z∗1)m1

)( 1
π

∫
dz∗2dz2 e

−z∗2z2zn2
2 (z∗2)m2

)

These integrals are best solved using polar coordinates, setting z1 = reiϕ:

1
π

∫
dz∗1dz1 e

−z∗1z1zn1
1 (z∗1)m1 = 1

π

∫ ∞
0

dr re−r
2
rn1+m1

∫ 2π

0
dϕ ei(n1−m1)ϕ︸ ︷︷ ︸
=2πδn1m1

= 2
∫ ∞

0
dr re−r

2
r2n1

and changing variables to t = r2, dt = 2rdr gives

=
∫ ∞

0
e−ttn1 = Γ(n1 + 1) = n1!.

Analogously,

1
π

∫
dz∗2dz2 e

−z∗2z2zn2
2 (z∗2)m2 = n2!,

12



1.1 Moyal plane

resulting in ∫
dµ |z〉〈z| =

∑
n1,n2

n1!n2!√
n1!n2!n1!n2!

|n1, n2〉〈n1, n2| = 1.

The coherent states |z〉 can be used to associate to an operator f̂ ∈ Â a function
f(z∗, z) on the complex plane in the following way:

f(z∗, z) := 〈z|f̂ |z〉 (1.16)

From this we immediately obtain a definition for the star product of two functions:

(f ? g)(z∗, z) = 〈z|f̂ ĝ|z〉 =
∫
dµ(w∗, w) 〈z|f̂ |w〉〈w|ĝ|z〉 (1.17)

where we implicitly used Lemma 3(iv). An explicit formula for (1.17) is stated in the
following

Proposition 4.

(f ? g)(z∗, z) = f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z) for f, g ∈ C∞(C2) (1.18)

Proof. We first introduce the translation operator exp(w ∂
∂z ), whose action on f(z∗, z) is

given by

ewα
∂
∂zα f(z∗, z) = 〈z|f̂ |z + w〉

〈z|z + w〉
.

Hence,

e−zα
∂

∂wα
+wα ∂

∂zα f(z∗, z) = 〈z|f̂ |w〉
〈z|w〉

=: e(wα−zα)
→
∂
∂zα : f(z∗, z) (1.19)

where we define the ordering : : by moving every derivative in the Taylor expansion of

e(wα−zα)
→
∂
∂zα to the right. Similarly, in : e

←
∂
∂zα

(wα−zα) : every derivative in the Taylor
expansion is moved to the left. Plugging (1.19) into (1.17) gives

(f ? g)(z∗, z) =
∫
dµ(w∗, w) 〈z|f̂ |w〉〈w|ĝ|z〉

13



1 Examples of non-commutative spaces

= f(z∗, z)

∫ dµ(w∗, w) : e
←
∂
∂zα

(wα−zα) : |〈z|w〉|2 : e(w∗α−z∗α)
→
∂
∂z∗α :

 g(z∗, z).

Lemma 3(iii) implies that |〈z|w〉|2 = e−|w1−z1|2−|w2−z2|2 . Hence, we see that similar to
the proof of Lemma 3(iv) the integral factorizes into integrals over the two complex
coordinates w1 and w2:

(∗)︷ ︸︸ ︷
1
π

∫
dw∗1dw1 : e

←
∂
∂z1

(w1−z1) : e−|w1−z1|2 : e
(w∗1−z∗1 )

→
∂
∂z∗1 :

× 1
π

∫
dw∗2dw2 : e

←
∂
∂z2

(w2−z2) : e−|w2−z2|2 : e
(w∗2−z∗2 )

→
∂
∂z∗2 :︸ ︷︷ ︸

(∗∗)

Using the variable transformation u = w1 − z1, abbreviating a ≡ ∂
∂z1

(a∗ ≡ ∂
∂z∗1

) and
using polar coordinates u = reiϕ, the integral (∗) can be expressed as:

(∗) = 1
π

∫ ∞
0

dr re−r
2
∫ 2π

0
dϕ exp(areiϕ + a∗re−iϕ)

= 1
π

∫ ∞
0

dr re−r
2

×
∫ 2π

0
dϕ (1 + areiϕ + a∗re−iϕ + 1

2(a2r2e2iϕ + 2aa∗r2 + (a∗)2r2e−2iϕ) + . . . )

Every term in the Taylor expansion of exp(areiϕ + a∗re−iϕ) containing a factor eikϕ for
some non-zero k ∈ Z is integrated to zero; thus, only the terms constant with respect to
ϕ give non-zero contributions:2

(∗) = 2
∫ ∞

0
dr

(
re−r

2 + 1
22aa∗r3e−r

2 + 1
4!

(
4
2

)
(aa∗)2r5e−r

2 + . . .

)

= 1 + aa∗ + 1
2(aa∗)2 + 1

3!(aa
∗)3 + . . .

= exp(
←
∂

∂z1

→
∂

∂z∗1
)

2The occurring integrals can be evaluated with any decent CAS.
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1.1 Moyal plane

Similarly,

(∗∗) = exp(
←
∂

∂z2

→
∂

∂z∗2
).

Combining these results finally gives the explicit formula for (f ? g)(z∗, z).

Corollary 5. We have∫
dµ(z∗, z) (f ? g)(z∗, z) =

∫
dµ(z∗, z) (g ? f)(z∗, z)

where dµ(z∗, z) = 1
π2dz

∗
1dz1dz

∗
2dz2 is the standard four-dimensional measure on C2.

Proof. This is easily verified by employing a Fourier transformation. Since

exp

 ←
∂

∂zα

→
∂

∂z∗α

 F−→ exp(pαp∗α),

the result is obtained by a simple change of ordering.

Remark. The exponential does not vanish after Fourier transforming as it did in Lemma
1. Thus, we stress that in general ∫

f ? g 6=
∫
fg

with this particular star product, in contrast to the Moyal star product (1.10). �
Recall that we set the non-commutativity parameter θ ≡ 1

2 at the beginning of this
section in order to retain the well-known form of the commutator relations (1.12). Rein-
troducing θ in the formula for the star-product of Proposition 4 yields

(f ? g)(z∗, z) = f(z∗, z) exp

 ←
∂

∂zα

θ

2

→
∂

∂z∗α

 g(z∗, z). (1.20)

It is easy to see that (1.20) reduces to the usual commutative product f(z∗, z)g(z∗, z) in
the commutative limit θ → 0.

Further, we observe that the star product (1.20) (denoted by ?C) is different from the
star product (1.10) (denoted by ?M ) in Section 1.1.2, as can be seen in Corollary 5 and
the following remark. However, as both (C∞(R4), ?M ) and (C∞(C2), ?C) are isomorphic
to the non-commutative algebra Â, they are also isomorphic to each other. For details
of this isomorphism we refer the reader to [1, p. 14, Sec. 3.3.3].
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1 Examples of non-commutative spaces

1.2 Deformed R3 and the fuzzy sphere

In Section 1.1 we discussed the commutation relation (1.1) with D = 4 and a constant
anti-symmetric matrix (θij). These assumptions resulted in the four-dimensional Moyal
plane R4

θ, which we equipped with the star product ?M in (1.10) respectively ?C in
(1.18). In the following section, we pass from a constant commutation relation to a
more general setting by assuming a coordinate dependence in (1.1). We then define the
star product on R3

λ by restricting the star product ?C of Section 1.1.3 in a suitable way.
To this end we employ the Hopf fibration S3 → S2 and anticipate the Jordan-Schwinger
construction for the coordinate operators x̂i from 3.1.1 in a slightly different way, thus
enabling us to work out an explicit formula for the star product on R3

λ.

1.2.1 Definition and relation between the two spaces

We set D = 3 and consider the commutation relation

[x̂i, x̂j ] = iλεijkx̂
k for i, j, k ∈ {1, 2, 3} (1.21)

where λ is a non-commutative parameter playing the same role as θ in Section 1.1.1.
Relation (1.21) is immediately recognized as the defining commutation relation of the
Lie algebra su(2), that is, R3

λ comprises a reducible SU(2)-representation on a suitable
Fock space

F =
∞⊕
N=1
FN .

This Fock space F is defined in Sections 1.1.3 resp. 3.1.1; in the latter we show explicitly
(using the Jordan-Schwinger construction for the coordinate operators x̂i) that (1.21)
defines an irreducible spin-N/2 representation of SU(2) on the subspace FN :

3∑
i=1

(x̂i)2∣∣
FN

= λ2N

2

(
N

2 + 1
)

idFN (1.22)

This is the defining relation of the fuzzy sphere S2
λ,N/2 with radius λ

√
N
2

(
N
2 + 1

)
. Hence,

we can view R3
λ as a direct sum of infinitely many fuzzy spheres S2

λ,N/2:

R3
λ =

∞⊕
N=1

S2
λ,N/2 (1.23)

16



1.2 Deformed R3 and the fuzzy sphere

The fuzzy sphere S2
λ,N/2 can also be obtained using the orbit quantization method; see

for example [4], where an orbit quantization of the projective complex space CP 2 is
carried out explicitly. Since S2 ∼= CP 1, the method can be readily applied to the fuzzy
sphere.

1.2.2 Star product on R3
λ

In the following section we solely concentrate on the star product ?C coming from the
coherent states; therefore, we simply write ?.

Quantizing the Hopf fibration

The two-sphere S2 can be regarded as the image under the Hopf fibration S3 → S2 in
the following way: first, we embed the 3-sphere S3 in C2 via

ι : S3 −→ C2

(x1, x2, x3, x4) 7−→ (z1 = x1 + x2i, z2 = x3 + x4i)

where xi ∈ R and
∑
i x

2
i = 1. Second, we declare two points on S3 equivalent if both lie

on a complex line through the origin:

x ∼S3 y :⇔ x = λy for a λ ∈ C with |λ| = 1 (1.24)

Since CP 1 is the space of complex lines through the origin, this equivalence map gives rise
to the quotient map π : S3 → CP 1 of ∼S3 , assigning to each x ∈ S3 the corresponding
complex line [x] ∈ CP 1. The pre-image π−1([x]) = {eiθx | θ ∈ [0, 2π)}, also called the
fiber of [x], is isomorphic to S1. Employing the isomorphism S2 ∼= CP 1 finally gives the
Hopf fibration S3 → S2. The corresponding Hopf map can be written compactly as

xi(z) = 1
2z
∗
ασ

i
αβzβ (1.25)

where z = (z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1 and σi, i = 1, 2, 3, are the usual Pauli
matrices.

To quantize the Hopf map we simply replace the complex coordinates χα with bosonic
creation and annihilation operators âα of a 2-dimensional harmonic oscillator satisfying
the canonical commutation relations (1.12). One easily checks (cf. Section 3.1.1) that
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1 Examples of non-commutative spaces

the coordinates

x̂i := 1
2 â
†
ασ

i
αβ âβ (1.26)

satisfy the defining commutation relation (1.21) for λ = 1.

Reducing the algebra of the Moyal plane

Recall that we defined Â as the non-commutative algebra defined by the coordinate
operators x̂iM , i = 1, . . . , 4 of the Moyal plane R4

θ. Consider now the sub-algebra Â3 ⊂
Â generated by the coordinate operators x̂i = 1

2 â
†
ασ

i
αβ âβ. Since (x̂0)2 :=

∑3
i=1(x̂i)2

commutes with x̂i, i = 1, 2, 3 by (1.22), we see that Â3 is the algebra of elements of Â
commuting with x̂0. The function x0 defined by (x0)2 =

∑
i(xi)2 is associated to the

operator x̂0. To explicitly compute x0, we first write out the Hopf coordinates xi:

x1 = 1
2(z∗1z2 + z1z

∗
2)

x2 = i

2(z1z
∗
2 − z∗1z2)

x3 = 1
2(z1z

∗
1 − z2z

∗
2)

Hence,

∑
i

(xi)2 = 1
4((z∗1)2z2

2 + 2z∗1z1z
∗
2z2 + z2

1(z∗2)2 − z2
1(z∗2)2 + 2z∗1z1z

∗
2z2 − (z∗1)2z2

2

+ (z∗1z1)2 − 2z∗1z1z
∗
2z2 + (z∗2z2)2

= 1
4(z∗1z1 + z∗2z2)2,

implying x0 = 1
2z
∗
αzα. Employing the identification

i[x̂0, f̂ ]←→ i[x0, f ]? := i(x0 ? f(z∗, z)− f(z∗, z) ? x0)

we compute the equivalent of the commutation relation i[x̂0, f̂ ] in (C∞(C2), ?):

x0 ? f(z∗, z) = 1
2z
∗
αzα exp

 ←
∂

∂zα

→
∂

∂z∗α

 f(z∗, z)

= 1
2(z∗αzα(1 +

←
∂

∂zα

→
∂

∂z∗α
+ . . . )f(z∗, z))

18



1.2 Deformed R3 and the fuzzy sphere

= 1
2(z∗αzαf(z∗, z) + z∗α

∂

∂z∗α
f(z∗, z)),

since terms with higher-order derivatives annihilate z∗αzα. Analogously,

f(z∗, z) ? x0 = 1
2(z∗αzαf(z∗, z) + zα

∂

∂zα
f(z∗, z)),

resulting in

i[x0, f ]? = i

2

(
z∗α

∂

∂z∗α
− zα

∂

∂zα

)
f(z∗, z) =: L0f.

The map L0 is actually a derivation with respect to ?:

Lemma 6. L0 ∈ Der((C∞(C2), ?), that is, L0(f ? g) = L0(f) ? g + f ? L0g.

Proof. We compute:

L0(f ? g) = L0(f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z))

= i

2

(
z∗α

∂

∂z∗α
− zα

∂

∂zα

)
(f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z))

= i

2

(
z∗α

∂

∂z∗α
f(z∗, z)

)
exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z)

+ i

2f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂z∗α

 z∗α ∂

∂z∗α
g(z∗, z)

− i

2

(
zα

∂

∂zα
f(z∗, z)

)
exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z)

− i

2f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂zα

 zα ∂

∂z∗α
g(z∗, z)

= i

2

((
z∗α

∂

∂z∗α
− zα

∂

∂zα

)
f(z∗, z)

)
exp

 ←
∂

∂zα

→
∂

∂z∗α

 g(z∗, z)

+ i

2f(z∗, z) exp

 ←
∂

∂zα

→
∂

∂zα

(z∗α ∂

∂z∗α
− zα

∂

∂zα

)
g(z∗, z)

= (L0f)g + fL0g
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1 Examples of non-commutative spaces

Since we have the correspondence

i[x̂0, f̂ ] = 0 in Â ←→ L0f = 0 in (C∞(C2), ?),

Lemma 6 implies that the function algebra A3 corresponding to the operator sub-algebra
Â3 ⊂ Â is closed under the star product ?. We can thus simply restrict the star product
(1.17) to R3

λ and denote the corresponding function algebra by A3. Let us find an explicit
formula for ? of (1.18) on A3:

Proposition 7.

(f ? g)(x) = f(u) exp

 ←
∂

∂ui
1
2(δijx0 + iεijkx

k)
→
∂

∂vj

 g(v)

∣∣∣∣∣∣
u=v=x

(1.27)

for f, g ∈ A3.

Proof. First, we have to change the differentials ∂
∂zα
|A3 and ∂

∂z∗α
|A3 to the new coordinates

xi = 1
2z
∗
ασ

i
αβzβ:

∂

∂zα

∣∣∣∣
A3

= dxi

dzα

∂

∂xi
= 1

2z
∗
βσ

i
βα

∂

∂xi

∂

∂z∗α

∣∣∣∣
A3

= dxi

dz∗α

∂

∂xi
= 1

2
∂

∂xi
σiαβzβ

Plugging this into the exponential in (1.18) gives

exp

 ←
∂

∂zα

→
∂

∂z∗α

 = exp


←
∂

∂xi
1
4 z
∗
βσ

i
βασ

j
αγzγ︸ ︷︷ ︸

(∗)

→
∂

∂xj


where we take a closer look at the term (∗):

(∗) = z∗β(σiσj)βγzγ
= z∗β(δijδαβ + iεijkσ

k
βα)zα

= 2(δijx0 + iεijkx
k)

Putting everything together yields the desired result.

Let us check that we can recover the commutator relation (1.21) from the star product
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1.2 Deformed R3 and the fuzzy sphere

(1.27):

xi ? xj = xi exp

 ←
∂

∂xk
1
2(δklx0 + iεklmx

m)
→
∂

∂xl

xj
= xi(1 +

←
∂

∂xk
1
2(δklx0 + iεklmx

m)
→
∂

∂xl
+ . . . )xj

= xixj + 1
2(δijx0 + iεijkx

k)

Therefore,

[xi, xj ]? = xi ? xj − xj ? xi

= i

2(εijkx
k − εjikx

k)

= iεijkx
k,

establishing the isomorphism between Â3 and A3.

Suitable measure on R3
λ

In order to formulate field theories on R3
λ, one needs to specify an integration measure

on the algebra A3 corresponding to R3
λ. In the spirit of Section 1.2.2, we take the

four-dimensional measure

dµ = 1
π2dz

∗
1dz1dz

∗
2dz2 (1.28)

on C2 as in Corollary 5 and try to extract a suitable measure for A3.
Our ansatz is the following coordinate transformation:

z1 = R cos θ′eiϕ1 with 0 ≤ θ′ ≤ π

2 , 0 ≤ ϕα ≤ π

z2 = R sin θ′eiϕ2

We need to express the coordinate differentials dzα and dz∗α in the new coordinates:

dz1 = cos θ′eiϕ1dR−R sin θ′eiϕ1dθ′ + iR cos θ′eiϕ1dϕ1

dz∗1 = cos θ′e−iϕ1dR−R sin θ′e−iϕ1dθ′ − iR cos θ′e−iϕ1dϕ1

dz2 = sin θ′eiϕ2dR+R cos θ′eiϕ2dθ′ + iR sin θ′eiϕ2dϕ2

dz∗2 = sin θ′e−iϕ2dR+R cos θ′e−iϕ2dθ′ − iR sin θ′e−iϕ2dϕ2
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1 Examples of non-commutative spaces

Further, we compute the exterior product of these differentials:

dz∗1 ∧ dz1 = −R sin θ′ cos θ′dR ∧ dθ′ + iR cos2 θ′dR ∧ dϕ1

−R sin θ′ cos θ′dθ′ ∧ dR− iR sin θ′ cos θ′dθ′ ∧ dϕ1

− iR cos2 θ′dϕ1 ∧ dR+ iR2 sin θ′ cos θ′dϕ1 ∧ dθ′

= 2iR cos2 θ′dR ∧ dϕ1 − 2iR2 sin θ′ cos θ′dθ′ ∧ dϕ1

Analogously,

dz∗2 ∧ dz2 = 2iR2 sin2 θdR ∧ dϕ2 + 2iR2 sin θ′ cos θ′dθ′ ∧ dϕ2.

This finally gives

dµ(z∗, z) = 1
π2dz

∗
1 ∧ dz1 ∧ dz∗2 ∧ dz2

= 1
π2R

3 sin(2θ′)dRd(2θ′)dϕ1dϕ2.

Let us also express the coordinates xi in the new basis (R, θ′, ϕ1, ϕ2):

x0 = 1
2z
∗
αzα = 1

2R
2(cos2(θ′) + sin2(θ′)) = 1

2R
2 (1.29a)

x1 = 1
2z
∗
ασ

1
αβzβ = 1

2(z∗1z2 + z∗2z1)

= 1
2R

2 sin θ′ cos θ′(ei(ϕ2−ϕ1) + ei(ϕ1−ϕ2))

= 1
4R

2 sin(2θ′)(ei(ϕ2−ϕ1) + e−i(ϕ2−ϕ1)) (1.29b)

Similarly,

x2 = i

4R
2 sin(2θ′)(e−i(ϕ2−ϕ1) − ei(ϕ2−ϕ1)) (1.29c)

x3 = 1
4R

2 cos(2θ′). (1.29d)

We see in (1.29) that the xi only depend on the variables (R, θ := 2θ′, ϕ := ϕ2 − ϕ1).
This is not surprising, given that R3

λ is a three-dimensional space. We change to this
new coordinate system (R, θ, ϕ) and observe that the coordinates xi are now of the form

x1 = R2

2 sin θ cosϕ
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1.2 Deformed R3 and the fuzzy sphere

x2 = R2

2 sin θ sinϕ

x3 = R2

2 cos θ,

that is, the usual spherical coordinates with radius x0 = R2

2 . To express the measure
(1.28) in the basis (R, θ, ϕ), we also note the following:

R2 = 2x0 ⇒

 RdR = dx0

R3dR = 2x0dx0

ϕ = ϕ2 − ϕ1

ϕ′ = ϕ2 + ϕ1

⇒

ϕ1 = 1

2(ϕ′ − ϕ)

ϕ2 = 1
2(ϕ′ + ϕ)

dϕ1dϕ2 = 1
4(dϕ′dϕ− dϕdϕ′)

= 1
2dϕ

′dϕ

Thus, the measure dµ(z∗, z) takes the form

dµ(z∗, z) = 1
4π2x

0 sin θdx0dθdϕ′dϕ

and the integral of an arbitrary function f(x) ∈ A3 can be written as

∫
dµ(z∗, z) f(x) = 1

2π

∫ ∞
0

x0dx0
∫ π

0
sin θdθ

∫ 2π

0
dϕ f(x)

= 1
2π

∫
d3x

x0 f(x)

where we already carried out the trivial integration over ϕ′.

We observe that the measure on R3
λ differs from the ordinary measure on R3 by a

factor 1
x0 . This stems from the radial part x0dx0 of the integration measure on R3

λ; since
the usual radial part of the integration measure on R3 is r2dr, we need the extra factor
1
x0 . This is tied to the fact that the radial direction in the deformed space R3

λ plays

a special role, since it encodes all different fuzzy spheres with radius λ
√

N
2

(
N
2 + 1

)
,

expressed in (1.23).

Remark. Clearly, Corollary 5 and the remark thereafter also hold for the star product
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1 Examples of non-commutative spaces

(1.27) on R3
λ. We therefore have

∫
d3x

x0 (f ? g)(x) =
∫
d3x

x0 (g ? f)(x),

but
∫
f ? g 6=

∫
fg in general. �

1.2.3 Projection operator P̂J

In Section 1.2.2 we defined the star product on R3
λ as the restriction of the star product

?C on the Moyal plane R4
θ. Furthermore, in Section 1.2.1 we saw that R3

λ can be regarded
as the direct sum over the radii of infinitely many fuzzy spheres. We now employ this
connection to define the star product on a fuzzy sphere of given radius by means of a
projection operator P̂J .

In order to define P̂J we first switch to a more suitable basis of the Fock space F .
Remember that we initially defined F as the span of the vectors

|n1, n2〉 = (â†1)n1(â†2)n2√
(n1!n2!)

|0〉,

that is, eigenstates of the number operator N̂ = â†αâα (as shown in Lemma 28 in Section
3.1.2). However, for our purpose it is more convenient to work in the so-called Schwinger
basis:

|j,m〉 = (â†1)j+m(â†2)j−m√
(j +m)!(j −m)!

|0〉 (1.30)

where j ∈ 1
2N and m ∈ {−j,−j + 1, . . . , j − 1, j}. To express the coherent state |z〉 in

the basis (1.30), we use the expression (1.15) for |z〉 to compute:

〈j,m|z〉 = e−z
∗z/2 1√

(j +m)!(j −m)!
∑
n1,n2

zn1
1 zn2

2√
n1!n2!

〈0|âj+m1 âj−m2 |n1, n2〉︸ ︷︷ ︸
=δn1,j+mδn2,j−m

= e−z
∗z/2 zj+m1 zj−m2

(j +m)!(j −m)!

Hence, the coherent state in the Schwinger basis reads

|z〉 = e−z
∗z/2 ∑

j∈ 1
2N

j∑
m=−j

zj+m1 zj−m2
(j +m)!(j −m)! |j,m〉. (1.31)
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1.2 Deformed R3 and the fuzzy sphere

Setting J ≡ N
2 (i.e., J is a specific value of j in the Schwinger expansion |j,m〉), we

denote by ÂJ the algebra of operators on the fuzzy sphere S2
λ,J defined by

[x̂i, x̂j ] = iλεijkx̂
k

3∑
i=1

(x̂i)2 = λ2J(J + 1). (1.32)

An operator f̂J ∈ ÂJ can be written with respect to the Schwinger basis (1.30) as

f̂J =
J∑

m,m′=−J
fJm,m′ |J,m〉〈J,m′| with fJm,m′ ∈ C. (1.33)

Recalling that R3
λ =

⊕
J∈ 1

2N
S2
λ,J , we can certainly decompose any operator f̂ ∈ Â3 as

f̂ =
∑
J∈ 1

2N

f̂J , (1.34)

and it is obvious that (1.33) and (1.34) are related by the projection operator

P̂J :=
J∑

m=−J
|J,m〉〈J,m|. (1.35)

More precisely, we have

f̂J = P̂ †J f̂ P̂J , (1.36)

which is obvious from the definitions of f̂J and P̂J . It is easy to see that P̂J is indeed a
projection operator:

Lemma 8. P̂J is a projection operator of rank 2J + 1, that is:

(i) P̂ 2
J = P̂J

(ii) P̂ †J = P̂J

(iii) dim(P̂J(R3
λ)) = 2J + 1 and

∑
J∈ 1

2N
P̂J = idR3

λ

Proof. Prove this by using the definition of P̂J and the decomposition R3
λ =

⊕
J∈N S

2
λ,J .

The projection operator P̂J can be used to define a star product on the fuzzy sphere
S2
λ,J related to the star product ?C on R3

λ. Since we used coherent states to define ?C
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1 Examples of non-commutative spaces

we first need to investigate the action of P̂J on Â3. The following Lemma proves to be
useful:

Lemma 9.

(i) âαP̂J = P̂J− 1
2
âα and â†αP̂J = P̂J+ 1

2
â†α

(ii) [x̂i, P̂J ] = 0 for i = 1, 2, 3

Proof. (i) First we calculate the action of âα on a Schwinger basis vector |j,m〉:

â1|j,m〉 = (â†1)j+m(â†2)j−m√
(j +m)!(j −m)!

|0〉

= (j +m)(â†1)j+m−1(â†2)j−m√
(j +m)!(j −m)!

|0〉

=
√
j +m

(â†1)(j− 1
2 )+(m− 1

2 )(â†2)(j− 1
2 )−(m− 1

2 )√
((j − 1

2) + (m− 1
2))!((j − 1

2)− (m− 1
2))!
|0〉

=
√
j +m|j − 1

2 ,m−
1
2〉

Similarly,

â2|j,m〉 =
√
j −m|j − 1

2 ,m−
1
2〉.

Therefore:

â1P̂J =
J∑

m=−J
â1|j,m〉〈j,m|

=
J∑

m=−J

√
j +m|j − 1

2 ,m−
1
2〉〈j,m|

=
J∑

m=−J
|j − 1

2 ,m−
1
2〉〈0|â

j+m
1 âj−m2

√
j +m√

(j +m)!(j −m)!

=
J∑

m=−J
|j − 1

2 ,m−
1
2〉〈0|

âj+m−1
1 âj−m2√

(j +m− 1)!(j −m)!
â1

=
J∑

m=−J
|j − 1

2 ,m−
1
2〉〈j −

1
2 ,m−

1
2 |â1

= P̂J− 1
2
â1
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1.2 Deformed R3 and the fuzzy sphere

upon setting m′ = m− 1
2 and J ′ = J − 1

2 . Analogously,

â2P̂J = P̂J− 1
2
â2.

From âαP̂J = P̂J− 1
2
âα we immediately get â†αP̂J = P̂J+ 1

2
â†α by Hermitian conjugation.

(ii) Using (i), we calculate:

[â†αâβ, P̂J ] = [â†α, P̂J ]âβ + â†α[âβ, P̂J ]

= â†αP̂J âβ − P̂J â†αâβ + â†αâβP̂J − â†αP̂J âβ
= P̂J+ 1

2
â†αâβ − P̂J â†αâβ + â†αP̂J− 1

2
âβ︸ ︷︷ ︸

=P̂J â†αâβ

−P̂J+ 1
2
â†αâβ = 0,

yielding

[x̂i, P̂J ] = 1
2σ

i
αβ[â†αâβ, P̂J ] = 0.

Lemma 9 implies that any operator in Â3 = span(x̂i | i = 1, 2, 3) commutes with the
projection operator P̂J . Hence, (1.36) can be refined to

f̂J = P̂ †J f̂ P̂J = f̂ P̂J (1.37)

and therefore also ÂJ = P̂JÂ3 = Â3P̂J = P̂JÂ4P̂J . In order to relate P̂J to the star
product on ÂJ we need to compute its action on a coherent state |z〉. To this end, we
rewrite (1.31) as

|z〉 =
∑
j∈ 1

2N

|z〉j with |z〉j = e−z
∗z/2

j∑
m=−j

zj+m1 zj−m2
(j +m)!(j −m)! |j,m〉 (1.38)

which immediately implies P̂J |z〉 = |z〉J . Further, the coordinate representation PJ ∈ A3

of P̂J is given by

PJ = 〈z|P̂J |z〉 = 〈z|z〉J = 1
(2J)!e

−z∗z(z∗z)2J = 1
(2J)!e

−2x0(2x0)2J . (1.39)

Note that PJ = PJ(x0) as expected. We now define

fj(z∗, z) =j 〈z|f̂ |z〉j = 〈z|P̂j f̂ P̂j |z〉 = Pj ? f ? Pj (1.40)
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1 Examples of non-commutative spaces

for f ∈ A4 using the star product in (1.17); the star product on AJ for f, g ∈ A4 is
then given by (f ? g)j := fj ? gj . Introducing the angular coordinates x̃i := xi

x0 it is
straight-forward to prove that (x̃i ? x0)j = x̃ix0 and hence (f(x̃i) ? x0)j = (x0 ? f(x̃i))j .
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2 Differential calculi

The purpose of this chapter is to define a differential calculus on R3
λ. After a short repe-

tition of the de Rham-calculus on commutative manifolds, we first discuss the universal
calculus on an arbitrary unital algebra, from which every differential calculus can be
obtained as a quotient object. Turning to a certain class of algebras called quantum
groups or Hopf algebras, we describe an explicit method of defining differential calculi
on them. Since R3

λ can be regarded as a quantum group, we can use the techniques from
the previous sections to introduce an example of a four-dimensional calculus on R3

λ. The
results are compared to the commutative setting.

The first section about the de Rham-calculus is part of every standard textbook on
differential geometry. The discussion of the universal calculus is inspired by [21, Sec. 6.1],
the sections on quantum groups draw from [21, Sec. 4.4] and [23, Sec. 1 and 24]. The
explicit construction of the four-dimensional calculus on R3

λ is taken from [3, Sec. 4 and
5], extended by explicit calculations.

2.1 Commutative manifolds

In this section we briefly recapitulate the construction of the de Rham differential cal-
culus on a general, commutative manifold M . We set C(M) := C∞(M).

2.1.1 Vector fields

Let M be a smooth manifold of dimension n. A smooth vector field X : M −→ TM is
a smooth map assigning to each point p ∈ M a tangent vector in TpM . If we denote
by π : TM −→ M the projection of the tangent bundle, we have π ◦X = idM ; hence,
a vector field X is a smooth section of the tangent bundle TM −→ M . The space
X(M) of smooth vector fields on M is a left C(M)-module via (fX)(p) := f(p)X(p) for
f ∈ C(M) and X ∈ X(M). In the special case of the manifold Rn the vector fields form
the free module C(Rn)n, i.e., there is a global basis (∂1, . . . , ∂n) for X(Rn) and every
vector field X on Rn can be uniquely written as X = Xi∂i with Xi ∈ C(Rn) (Einstein
summation convention implied). In general, the module X(M) is not free, i.e., such a
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2 Differential calculi

(global) basis does not always exist. However, we can always find a C(M)-module N
such that X(M) ⊕ N is free. This is equivalent to saying that X(M) is a projective
module. By the observation above, X(M) is free if and only if M is parallelizable.

An important result states that vector fields can be identified with derivations on
C(M):

X(M) ∼= Der(C(M))

We write X(f) for X ∈ X(M) and f ∈ C(M) to indicate that X acts on f as a derivation.
The relationship between vector fields and derivations is supported by the representation
of vectors as X = Xi∂i where ∂i are the ordinary partial derivatives with respect to some
local coordinate system in p ∈M . The isomorphism X(M) ∼= Der(C(M)) however is not
trivial.

2.1.2 De Rham-calculus

A differential calculus on a manifold M consists of a space Ω∗(M) of differential forms
and an exterior derivative d defined on these forms. We familiarize ourselves with the
concept by considering the de Rham-calculus.

A p-form α is a smooth section of Λp(T ∗M), the p-th exterior power of the cotangent
bundle. Explicitly, for every x ∈ M the smooth map x 7→ αx defines a p-linear, alter-
nating map α(x) = αx : TxM × · · · × TxM −→ R. The set Ωp(M) of p-forms on M is
turned into a C(M)-bimodule by means of

(fα)(x) = (αf)(x) = f(x)α(x)

for f ∈ C(M), α ∈ Ωp(M) and x ∈M . For a p-form α ∈ Ωp(M) and a q-form β ∈ Ωq(M)
we define the exterior or wedge product α ∧ β ∈ Ωp+q(M) as

(α ∧ β)(X1, . . . , Xp+q) := 1
p!q!

∑
σ∈Sp+q

sgn(σ)α(Xσ(1), . . . , Xσ(p))β(Xσ(p+1), . . . , Xσ(p+q))

where Sn is the symmetric group on {1, . . . , n}. Note that α∧β = (−1)pqβ ∧α, i.e., the
exterior product is graded commutative. Setting Ω0(M) := C(M) we define the space
Ω∗(M) of differential forms as

Ω∗(M) =
∞⊕
p=0

Ωp(M),
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2.1 Commutative manifolds

which by the above is turned into a graded algebra (Ω∗(M),∧) by noting that

Ωp(M) ∧ Ωq(M) ⊂ Ωp+q(M).

The second ingredient in a differential calculus is an exterior derivative d, i.e., an
R-linear map satisfying d2 = 0 and a graded Leibniz rule. For α ∈ Ωp(M) we define

dα(X0, . . . , Xp) :=
p∑
i=0

(−1)iXi(α(X0, . . . , Xi, . . . , Xp))

+
∑

0≤i<j≤p
(−1)i+jα([Xi, Xj ], X0, . . . , Xi, . . . , Xj , . . . , Xp)

(2.1)

where a square bracket means that this vector is left out and [Xi, Xj ] is the Lie bracket
of the vector fields Xi and Xj . Observe that dα ∈ Ωp+1(M). Given f ∈ C(M) = Ω0(M),
definition (2.1) reduces to df(X) = X(f), i.e., this is just the derivation X acting on f .
The exterior derivative is a graded derivation with respect to the exterior product:

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

Another important observation is d2 = 0, which follows directly from (2.1). A p-form
α is called exact if there is a form β ∈ Ωp−1(M) with α = dβ, and closed if dα =
0. Since d2 = 0, every exact form is automatically closed; one can then start with a
particular space Ωp(M) and investigate the quotient space (closed forms)/(exact forms)
to obtain topological information about the manifold M . This is the subject of the field
of cohomology. The pair (Ω∗(M), d) is called the de Rham-calculus on a commutative
manifold M .

Let us also introduce two additional operations on differential forms: the interior
product ιX and the Lie derivative LX . Given a vector field X and a p-form α we define

(ιXα)(X1, . . . , Xp−1) := pα(X,X1, . . . , . . . , Xp−1),

which is just the contraction of α with the vector field X, producing the form ιXα ∈
Ωp−1(M). The Lie derivative LX is now defined as

LX := ιXd+ dιX .

Hence, LX is a map Ωp(M) −→ Ωp(M). Note that the notion of the Lie derivative
can be extended to arbitrary tensor fields. In the special case of vector fields, the Lie
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2 Differential calculi

derivative of a vector field Y with respect to a given vector field X is just the Lie bracket
of X and Y :

LXY = [X,Y ]

2.1.3 Generalized construction

In section 2.1.2 we outlined the explicit construction of the de Rham-calculus on a
commutative manifold M . However, this procedure is not suitable for generalizing the
concept of differential calculi to non-commutative spaces. Therefore, we consider an
equivalent procedure, which is easily adopted to the non-commutative setting:

(1) Identify the algebra of functions C(M) and the vector fields X(M) on M .

(2) Set Ω0(M) := C(M).

(3) For f ∈ C(M) and X ∈ X(M) define df(X) = X(f).

(4) Let D be the C(M)-module generated by the elements df for f ∈ C(M) and let I ⊂ D
be the submodule generated by elements of the form fdg − (dg)f for f, g ∈ C(M).
Define Ω1(M) := D/I.

(5) Define the space Ωp(M) of p-forms as the C(M)-module generated by p-fold exterior
products of elements in Ω1(M).

Note that in the commutative case step (1) amounts to setting C(M) = C∞(M) and
X(M) = Der(C∞(M)). There are more possibilities in the non-commutative case and
obtaining a differential calculus requires reasonable choices. Recall also the different
choices for non-commutative algebras shown in Chapter 1.

2.2 Non-commutative spaces

In Section (2.1.2) we used standard objects and techniques from differential geometry
to construct the de Rham-calculus on an arbitrary commutative manifold M . However,
a differential calculus can be defined in a purely algebraic way on the algebra C∞(M)
of smooth functions on M ; this was already indicated in Section 2.1.3. One can even
go one step further and start with an arbitrary, possibly non-commutative associative
algebra. We learned in Chapter 1 that non-commutative spaces are defined by replacing
the commutative algebra of functions on a manifold by a non-commutative algebra;
hence, we need to be able to construct differential calculi on non-commutative algebras
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2.2 Non-commutative spaces

in order to have geometric tools on non-commutative spaces at our disposal. The most
important observation is that, given an associative algebra, there is always a ‘minimal’
choice of such a differential calculus, called the universal calculus. It is minimal in the
sense that every other differential calculus can be expressed as a suitable quotient of the
universal calculus.

In this section we will first define the universal calculus and show a few properties.
Secondly, we take a closer look at quantum groups and outline how to obtain a non-
universal differential calculus on them by taking a quotient of the universal calculus.
Finally, these results are used to explicitly construct a four-dimensional calculus on R3

λ

and the fuzzy sphere.

2.2.1 Universal calculus

Given a unital associative algebra A we define Cp := A⊗(p+1) as the set of p-chains (e.g.,
0-chains are elements of A, 1-chains are elements in A⊗A, and so forth) and abbreviate
(a0, . . . , ap) := a0 ⊗ · · · ⊗ ap ∈ Cp where ai ∈ A, i = 0, . . . , p. We now define the central
object of a differential calculus, the differential map1 du : Cp −→ Cp+1 by:

du(a0, . . . , ap) = (1, a0, . . . , ap)

+
p∑
i=1

(−1)p(a0, . . . , ai−1, 1, ai, . . . , ap)

+ (−1)p+1(a0, . . . , ap, 1)

(2.2)

For example, dua = 1⊗ a− a⊗ 1 and du(a, b) = (1, a, b)− (a, 1, b) + (a, b, 1). We need to
ensure that d2

u = 0, as we would expect from a differential map. Furthermore, du should
satisfy the Leibniz rule on 0-chains a ∈ A (i.e., ‘functions’) and a graded Leibniz rule on
higher forms. The former is shown in the following proposition, the latter will be shown
in Proposition 11.

Proposition 10.

(i) d2
u = 0

(ii) du(ab) = (dua)b+ adub for a, b ∈ A

Proof. Throughout the proof we abbreviate d ≡ du. Further, for a = (a0, . . . , ap) ∈ Cp
we define an insertion operator ιi by ιi(a0, . . . , ap) := (a0, . . . , ai−1, 1, ai, . . . , ap) for i =

1In the language of homological algebra, the differential du is called a coboundary.
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2 Differential calculi

1, . . . , p, that is, it inserts the unit 1 in the (i + 1)-th slot of a ∈ Cp. Note that this is
just in order to ensure a clean notation in the proof.

(i) Clearly, by definition of d we have d(a ± b) = da ± db where a = (a0, . . . , ap) ∈
Cp, b = (b0, . . . , bp) ∈ Cp and a± b := (a0 ± b0, . . . , ap ± bp). Hence, we compute:

d2(a0, . . . , ap) = d(1, a0, . . . , ap) +
p∑
i=1

(−1)pd(a0, . . . , ai−1, 1, ai, . . . , ap)

+ (−1)p+1d(a0, . . . , ap, 1)

= (1, 1, a0, . . . , ap)︸ ︷︷ ︸
(♣)

+
p+1∑
i=1

(−1)iιi(1, a0, . . . , ap)︸ ︷︷ ︸
(♣)

+ (−1)p+2(1, a0, . . . , ap, 1)︸ ︷︷ ︸
(♥)

+
p∑
i=1

(−1)i(1, a0, . . . , ai−1, 1, ai, . . . , ap)︸ ︷︷ ︸
(♣)

+
p∑
i=1

p+1∑
j=1

(−1)i+jιj(a0, . . . , ai−1, 1, ai, . . . , ap)︸ ︷︷ ︸
(♦)

+
p∑
i=1

(−1)i+p+1(a0, . . . , ai−1, 1, ai, . . . , ap, 1)︸ ︷︷ ︸
(♠)

+ (−1)p+1(1, a0, . . . , ap, 1)︸ ︷︷ ︸
(♥)

+
p+1∑
i=1

(−1)i+p+1ιi(a0, . . . , ap, 1)︸ ︷︷ ︸
(♠)

+ (−1)2p+3(a0, . . . , ap, 1, 1)︸ ︷︷ ︸
(♠)

The terms (♥), (♠) and (♣) cancel. It remains to check that the term (♦) vanishes. If
we write

(♦) =
p∑
i=1

p+1∑
j=1

(−1)i+jιj(ιi(a0, . . . , ap)),

we see that the pairs (i, j) and (j, i + 1) cancel each other out. Since there is an even
number of terms, p(p+ 1), the term (♦) vanishes altogether, and we obtain

d2(a0, . . . , ap) = 0

for all p. Note that the whole proof is actually straightforward and merely a problem of
writing everything out.
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2.2 Non-commutative spaces

(ii) In order to verify the Leibniz rule, we first need to specify what we mean by the
expressions (a, b)c and c(a, b) for a, b, c ∈ A:

(a, b)c := (a, bc) = (ac, b)

c(a, b) := (ca, b) = (a, cb)
(2.3)

Hence, we can choose either the embeddingA ↪→ A⊗A, c 7→ c⊗1 orA ↪→ A⊗A, c 7→ 1⊗c;
the non-commutativity of the algebra A however forces us to be careful with the order
of multiplication. The Leibniz rule is now easily checked:

(da)b+ adb = ((1, a)− (a, 1))b+ a((1, b)− (b, 1))

= (1, ab)− (a, b) + (a, b)− (ab, 1)

= (1, ab)− (ab, 1)

= d(ab)

Remark. The choice in (2.3) fixes the left and right A-module structure of C2 = A ⊗
A. We will shortly see that the space Ω1

u(A) of 1-forms in the universal calculus is a
submodule of C2 with this module structure. �

The previous remark has already indicated the nature of the space Ω1
u(A) of 1-forms.

In order to construct the space Ωp
u(A) of p-forms with p > 1, we have to define a

multiplication for elements in Cp. For α = (a0, . . . , ap) ∈ Cp and β = (b0, . . . , bq) ∈ Cq
we set

α ∗ β := (a0, . . . , ap−1, apb0, b1, . . . , bq).

Since A is an associative algebra, so is the product ∗; furthermore, by definition we
clearly have Cp ∗ Cq ⊂ Cp+q. Thus, C∗ :=

⋃
p∈NCp is a graded associative algebra, on

which the differential du satisfies a graded Leibniz rule:

Proposition 11.

du(α ∗ β) = (duα) ∗ β + (−1)pα ∗ duβ for α ∈ Cp, β ∈ Cq

Proof. We set α = (a0, . . . , ap), β = (b0, . . . , bq) and calculate the left-hand side of the
equation:

du(α ∗ β) = du(a0, . . . , apb0, . . . , bq)

= (1, a0, . . . , apb0, . . . , bq) +
p+q∑
i=1

(−1)iιi(a0, . . . , apb0, . . . , bq)

35



2 Differential calculi

+ (−1)p+q+1(a0, . . . , apb0, . . . , bq, 1),

where ιi is the insertion operator from the proof of Proposition 10. The right-hand side
amounts to

(duα) ∗ β + (−1)pα ∗ duβ = (1, a0, . . . , apb0, . . . , bq) +
p∑
i=1

(−1)iιi(a0, . . . , apb0, . . . , bq)︸ ︷︷ ︸
(∗)

+ (−1)p+1(a0, . . . , ap, b0, . . . , bq)︸ ︷︷ ︸
(∗∗)

+ (−1)p(a0, . . . , ap, b0, . . . , bq)︸ ︷︷ ︸
(∗∗)

+ (−1)p
p+q∑
i=p+1

(−1)p+iιp+1(a0, . . . , apb0, . . . , bq)︸ ︷︷ ︸
(∗)

+ (−1)p+q+1(a0, . . . , apb0, . . . , bq, 1)

The terms (∗∗) cancel. Since (−1)2p+i = (−1)i, combining the terms (∗) gives exactly∑p+q
i=1 (−1)iιi(a0, . . . , apb0, . . . , bq); hence, the two sides of the equation are equal, proving

the claim.

Finally, we are ready to give the definition of the universal calculus over A:

Definition 12 (Universal calculus). Let A be a unital associative algebra. Set Ω0
u(A) =

A and let Ω1
u(A) ⊂ C1 = A⊗A be the A-bimodule generated by the set {dua | a ∈ A}.

The left and right module structure are given by

c(a1, a2) = (ca1, a2) = (a1, ca2)

(a1, a2)c = (a1, a2c) = (a1c, a2)

for a1, a2, c ∈ A. For p ≥ 2, Ωp
u(A) is the A-bimodule generated by the set

{dua1 ∗ · · · ∗ duap | a1, . . . , ap ∈ A}.

The left and right module structure are given by

c(a1, . . . , ap) = (ca1, . . . , ap) = (a1, . . . , cai, . . . , ap) = (a1, . . . , cap)

(a1, . . . , ap)c = (a1, . . . , apc) = (a1, . . . , aic, . . . , ap) = (a1, . . . , apc)
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for a1, . . . , ap, c ∈ A. With Ω∗u(A) =
⋃
p∈N Ωp

u(A), the graded algebra (Ω∗u, ∗, d) is called
the universal calculus of A. �

Note that Ωp
u(A) ∗ Ωq

u(A) ⊂ Ωp+q
u (A) by definition. Although the ∗-product is the

analogue of the wedge product in the de Rham-calculus of commutative manifolds, we
have in general

dua ∗ dub 6= −dub ∗ dua

for a, b ∈ A due to the module structure of Ω1
u(A) (which is in turn a consequence of

the non-commutativity of A). The universal calculus is characterized by the following
universal property:

Theorem 13 (Universal property of the universal calculus). Let A be a unital associative
algebra, (Ω∗u(A), du) the universal calculus over A and (Ω∗(A), ∗, d) some other calculus
over A. Then there is a unique surjective algebra homomorphism

φ : Ω∗u(A) −→ Ω∗(A)

with φ(duξ) = dφ(ξ) for ξ ∈ Ω∗u(A).

Proof. See [23, p. 150, Ex. 23.7].

Remark. The theorem states that every calculus Ω∗(A) on A can be obtained as a
suitable quotient of the universal calculus Ω∗u(A). �

2.2.2 Quantum groups

The universal calculus of Section 2.2.1 can be defined for arbitrary unital associative
algebras. The focus of this thesis however lies on the particular algebra R3

λ introduced
in Section 1.2, which can be regarded as a so-called quantum group or Hopf algebra.

The following section contains a very short introduction to quantum groups as well
as an outline of the construction of a differential calculus on quantum groups using the
quotient method of Theorem 13. Our goal is an explicit formula for the differential d
on R3

λ, enabling us to work out the computations in Section 2.2.4. Since a thorough
treatment of quantum groups would go beyond the scope of this work, we will be short
and only state the necessary theorems without proof; the interested reader is referred to
the literature, especially the textbooks [21] and [23] by Shahn Majid.

In order to define quantum groups, which are a certain type of a bialgebra, we need to
consider coalgebras, the dual objects of algebras. To emphasize this duality, we restate
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the already familiar definition of an algebra. Throughout this section k denotes an
arbitrary field.

Definition 14 (Algebra). An algebra A over k is a k-vector space together with an
associative multiplication map m : A ⊗ A −→ A and a unit i : k −→ A satisfying
i(1k) = 1A. The associativity condition can be expressed by defining the maps

m⊗ id : (A⊗A)⊗A −→ A⊗A id⊗m : A⊗ (A⊗A) −→ A⊗A

and requiring m ◦ (m⊗ id) = m ◦ (id⊗m). We frequently abbreviate ab ≡ m(a⊗ b) for
a, b ∈ A. The unit i has to satisfy m ◦ (id⊗i) = m ◦ (i⊗ id) = id, which just states that
a1A = 1Aa = a for a ∈ A. �

If we reverse the direction of the arrows of the maps m and i in Definition 14, we
obtain the dual object to an algebra, a coalgebra:

Definition 15 (Coalgebra). A coalgebra A over k is a k-vector space together with a
coassociative coproduct ∆ : A −→ A⊗A and a counit ε : A −→ k satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆

(id⊗ε) ◦∆ = (ε⊗ id) ◦∆ = id;

the first condition is the coassociativity of the coproduct ∆. �

We see that Definition 15 is, after reversing all arrows, entirely analogous to Definition
14. Now, if A(m, i,∆, ε) has the structure of both an algebra and a coalgebra and
satisfies certain compatibility conditions, it is called a bialgebra. In order to give an
exact definition, we need the following map:

τ : A⊗A⊗A⊗A −→ A⊗A⊗A⊗A

a⊗ b⊗ c⊗ d 7−→ a⊗ c⊗ b⊗ d

This helps us in stating the following

Definition 16 (Bialgebra). A bialgebra A(m, i,∆, ε) is a k-vector space having the
structure of an associative algebra and a coassociative coalgebra satisfying the following
compatibility conditions:

∆ ◦m = (m⊗m) ◦ τ ◦ (∆⊗∆) ε ◦m = m ◦ (ε⊗ ε)
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∆ ◦ i = i⊗ i ε ◦ i = id

For example, the second condition ε ◦m = m ◦ (ε ⊗ ε) requires that the counit ε is an
algebra homomorphism: ε(ab) = ε(a)ε(b). �

Example (Smooth functions on a group as bialgebra). Consider the set C∞(G) of smooth
complex-valued functions on a group G with identity eG. For f, g ∈ C∞(G) and x, y ∈ G
define

(m(f ⊗ g))(x) := f(x)g(x)

(∆f)(x, y) := f(xy)

ε(f)(x) := f(eG);

the unit i is fixed by the requirement ε ◦ i = id. Then it is straightforward to check the
compatibility conditions such that C∞(G)(m, i,∆, ε) becomes a bialgebra. �

A Hopf algebra is a certain type of bialgebra. The term quantum group was coined by
Drinfeld and Jimbo, who originally used a special q-deformed version of Hopf algebras
in physics, q being a deformation parameter. However, up to this point there is no
universally accepted definition of a quantum group; some authors use the terms quantum
group and Hopf algebra interchangeably, and we will adhere to this convention.

Definition 17 (Quantum group or Hopf algebra). A Hopf algebra A is a bialgebra
A(m, i,∆, ε) together with a linear map S : A −→ A called the antipode, which satisfies
the compatibility condition m ◦ (id⊗S) ◦∆ = m ◦ (S ⊗ id) ◦∆ = i ◦ ε. �

Example (Group algebra of a finite group). Let G be a finite group, k an arbitrary field
and kG the group algebra of G. Defining the coproduct, counit and antipode on elements
g ∈ G as

∆g := g ⊗ g ε(g) := 1k S(g) := g−1

and extending them by linearity to all of kG turns (kG,∆, ε, S) into a Hopf algebra. �

2.2.3 Non-universal differential calculi for quantum groups

We have seen in the previous discussion of differential calculi that a key ingredient in
defining a differential calculus Ω∗(A) on an algebra A is the space Ω1(A) of 1-forms.
For quantum groups H one is usually interested in so-called bicovariant modules. This
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essentially means that the H-module Ω1 ≡ Ω1(H) admits a left coaction Ω1 −→ H ⊗Ω1

and right coaction Ω1 −→ Ω1 ⊗H, both being bimodule homomorphisms. The axioms
for a coaction are the same as the usual axioms for actions, except with all arrows in
the defining maps reversed. We have the following

Theorem 18 (Classification of bicovariant differential calculi on quantum groups).
For a quantum group H the bicovariant differential calculi Ω1(H) on H are in 1:1-
correspondence with quotients Λ1 of ker ε, that is, there is a two-sided ideal I ⊂ ker ε
such that Λ1 = ker ε/I. The first-order calculus (Ω1(H), d) is then given by

Ω1(H) = Λ1 ⊗H

dh = (π ⊗ id)(∆h− 1⊗ h) for h ∈ H,

where π : ker ε −→ Λ1 = ker ε/I is the natural projection.

Proof. See [23, p. 156f., Lem. 24.6 and Thm. 24.7].

This result needs some explanations. Before we start, we introduce the Sweedler nota-
tion. For ω ∈ H⊗H we can always write ω =

∑
i x(1),i⊗x(2),i for suitable x(1),i, x(2),i ∈ H.

Note that the indices (1) and (2) only keep track of the corresponding factor in H ⊗H.
Sweedler’s notation abbreviates this expression to

ω =
∑

x(1) ⊗ x(2) ≡ x(1) ⊗ x(2),

that is, summation is always implied. An advantage of this notation is that the coproduct
∆h for h ∈ H can be written in compact form as

∆h = h(1) ⊗ h(2).

Let us now turn to Theorem 18. By [23, p. 156, Lem. 24.6(i)] we have an isomorphism

ψ : Ω1
u(H) ∼−→ ker ε⊗H

h⊗ g 7−→ h(1) ⊗ h(2)g
(2.4)

where h(1), h(2) ∈ H are given by ∆h = h(1) ⊗ h(2), that is, the isomorphism ‘twists’
the coproduct by g in the second factor. The image of the universal differential2 duh =

2With the sign convention of Section 2.2.1 this is actually −d; clearly, both definitions are equivalent.
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h⊗ 1− 1⊗ h under the isomorphism (2.4) is

ψ(dh) = ψ(h⊗ 1− 1⊗ h)

= h(1) ⊗ h(2) − 1⊗ h (∗)

= ∆h− 1⊗ h.

In (∗) we assumed that 1(1) = 1(2) = 1. It remains to map the first factor of the
differential dh ∈ Ω1

u(H) ∼= ker ε ⊗ H to Λ1(H) via the projection π : ker ε → Λ1; this
gives exactly dh = (π⊗ id)(∆h− 1⊗ h), as stated in the theorem. In summary, we used
the following maps:

Ω1
u(H) ψ−→ ker ε⊗H π⊗id−−−→ Λ1 ⊗H = Ω1(H)

Theorem 18 states that the choice of a first-order calculus for a quantum group H

amounts to finding a two-sided ideal I of ker ε. A practical method is to find a surjective
representation of ker ε ⊂ H on Cn, that is, a surjective algebra homomorphism ρ :
ker ε −→ Mn(C) such that Λ1 ∼= ker ε/ ker ρ. We will use this ansatz in Section 2.2.4 to
define a differential calculus on R3

λ.

However, note that Theorem 18 only defines a first-order differential calculus, that is,
the 1-forms Ω1(H), along with an exterior derivative defined on the 0-forms Ω0(H) = H.
The following part deals with the construction of the spaces Ωp(H) of p-forms for p ≥ 2.

Constructing Ωp(H) for p ≥ 2

In Theorem 13 we stated that every differential calculus Ω∗(A) for an arbitrary algebra A
can be obtained as the image of the universal calculus Ωu(A) under a surjective algebra
homomorphism ϕ. This homomorphism can be used to construct Ωp(H) for p ≥ 2. We
will discuss the case p = 2, from which the general procedure can be inferred.

To this end, let H be a Hopf algebra and Ω1(H) be a first-order calculus for H as
in Theorem 18. Further, denote by ϕ1 = (π ⊗ id) ◦ ψ the projection from Ω1

u(H) onto
Ω1(H) (after having defined Ω∗(H), the projection ϕ1 will be equal to the restriction of
ϕ from Theorem 13 to Ω1

u(H)). Our goal is to find a map ϕ2 playing the role of ϕ1,
that is, the restriction of ϕ to Ω2

u(H); the 2-forms Ω2(H) are then defined as the image
of Ω2

u(H) under ϕ2. Further, we need to extend the definition of the exterior derivative
d by a map d1 : Ω1(H) −→ Ω2(H), i.e., d1 = d|Ω1(H). We collect these facts in the
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following diagram:
Ω1
u(H) du //

(π⊗id)◦ψ=ϕ1
��

Ω2
u(H)

ϕ2
��

Ω1(H) d1 // Ω2(H)

We make the ansatz
Ω2(H) := Ω2

u(H)/N

where N ≤ Ω2
u(H) is the submodule generated by du kerϕ1. The map ϕ2 is defined as

the natural projection of this quotient. Furthermore, for a ∈ Ω1(H) we set

d1a := ϕ2(duau)

where au ∈ Ω1
u(H) such that a = ϕ1(au) (remember that ϕ1 is surjective, hence such

an element always exists). Primarily, the choice for Ω2(H) just ensures the natural
requirement that ϕ2(dua) = 0 for a ∈ kerϕ1, that is, d(ϕ1(a)) = d0 = 0. It turns out
that this ‘minimal’ choice already suffices, as the derivative d1 satisfies the Leibniz rule
and ensures that d2|H = 0:

Proposition 19.

(i) d1(ab) = (d1a)b+ ad1b for a, b ∈ Ω1(H).

(ii) d1 ◦ d = 0.

Proof. (i) Let a, b ∈ Ω1(H) and au, bu such that a = ϕ1(au) and b = ϕ1(bu). Since ϕ2 is
an algebra homomorphism with respect to the multiplication ∗ as in Definition 12, we
also have ab = ϕ2(aubu). We compute:

d1(ab) = ϕ2(du(aubu))

= ϕ2((duau)bu + audubu)

= ϕ2((duau)bu) + ϕ2(audubu)

= ϕ2(duau)b+ aϕ2(dubu)

= (d1a)b+ ad1b

(ii) Let h ∈ H. By Theorem 13 and 18 we have ϕ1(duh) = dh and therefore

d1(dh) = ϕ2(du(duh)) = ϕ2(0) = 0.
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Using this procedure one can inductively define Ωp(H) for p ≥ 2 to arrive at the full
differential calculus Ω∗(H).

R3
λ as a quantum group

In order to apply the previous considerations to R3
λ we need to establish its structure as

a quantum group. To this end, we first introduce the universal enveloping algebra of a
finite-dimensional Lie algebra:

Definition 20 (Universal enveloping algebra of a Lie algebra). Let g be a finite-
dimensional Lie algebra over the field k and consider the tensor algebra

T (g) :=
⊕
n∈N

g⊗n = k ⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ . . . .

Further, let J be the two-sided ideal generated by the terms X ⊗ Y − Y ⊗X − [X,Y ]
for X,Y ∈ g. The universal enveloping algebra U(g) is defined as the quotient

U(g) := T (g)/J . �

Remark. There is an obvious embedding ι : g ↪→ U(g). Furthermore, the universal
enveloping algebra U(g) is characterized by a universal property: for every algebra ho-
momorphism ϕ : g −→ A where A is a unital associative algebra, there is a unique
homomorphism ϕ̃ : U(g) −→ A such that ϕ = ϕ̃ ◦ ι. �

An important observation is that every universal enveloping algebra of a Lie algebra
has the structure of a quantum group:

Proposition 21. Let g be a finite-dimensional Lie algebra. The universal enveloping
algebra U(g) can be regarded as a Hopf algebra by setting

∆(ξ) = ξ ⊗ 1 + 1⊗ ξ

ε(ξ) = 0

S(ξ) = −ξ

for ξ ∈ g and extending ∆, ε as algebra homomorphisms and S as an anti-algebra
homomorphism to all of U(g).

Proof. This is simply checked by evaluating the maps on products ξη and ηξ for ξ, η ∈ g

and using the defining relations of U(g).
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Remark. An anti-algebra homomorphism ϕ : A −→ B between associative k-algebras A
and B is a k-linear map ϕ : A −→ B satisfying ϕ(xy) = ϕ(y)ϕ(x) for x, y ∈ A. �

Due to the commutation relations (1.21) for the generators x̂i, i = 1, 2, 3 of R3
λ, we

immediately recognize R3
λ as the universal enveloping algebra of the Lie algebra su(2):

R3
λ
∼= U(su(2)) (2.5)

This establishes the structure of R3
λ as a quantum group, enabling us to apply Theorem

18. Let us compute the differential dξ = (π ⊗ id)(∆ξ − 1 ⊗ ξ) for ξ ∈ su(2) using the
definitions from Proposition 21:

dξ = (π ⊗ id)(∆ξ − 1⊗ ξ)

= (π ⊗ id)(ξ ⊗ 1 + 1⊗ ξ − 1⊗ ξ)

= π(ξ)⊗ 1

Recall that given a surjective representation ρ : ker ε −→ Mn(C) the map π is just
the canonical projection ker ε −→ Λ1 = ker ε/ ker ρ. We have su(2) ⊂ ker ε by the
definition of ε in Proposition 21; furthermore, su(2) ∩ ker ρ = ∅, since ρ is surjective
and in particular non-zero on basis elements of su(2). Therefore, we can make the
identifications π(ξ) ≡ ρ(ξ) for ξ ∈ su(2) and ρ(ξ)⊗ 1 ≡ ρ(ξ) to obtain

dξ = λ−1ρ(ξ). (2.6)

The factor λ−1 is introduced as a length scaling.

Consider further a ‘group-like’ element exp(iξ) where ξ ∈ su(2) and exp : su(2) →
SU(2) is the exponential map of the Lie algebra su(2). The coproduct ∆ on group-
like elements g ∈ U(su(2)) is defined as ∆g = g ⊗ g (cf. [3, p. 12] and the example
after Definition 17). Hence, the exterior derivative on group-like elements g is as follows
(already including the length scaling λ−1):

dg = λ−1(π ⊗ id)(∆g − 1⊗ g)

= λ−1(π ⊗ id)(g ⊗ g − 1⊗ g)

= λ−1(π ⊗ id)((g − 1)⊗ g)

= λ−1π(g − 1)⊗ g
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According to the reasoning above we can write

π(g − 1)⊗ g ≡ ρ(g − 1)⊗ g = (ρ(g)− θ)⊗ g ≡ (ρ(g)− θ)g

and arrive at

dg = λ−1(ρ(g)− θ)g. (2.7)

2.2.4 A four-dimensional calculus on R3
λ

As we saw in Section 2.2.2, the construction of a differential calculus on R3
λ amounts to

choosing an ideal I ⊂ ker ε where ε : R3
λ −→ C is the co-unit of R3

λ. To this end we fix a
certain irreducible representation ρ : R3

λ −→ End(C2) whose restriction to ker ε gives a
surjective map onto End(C2) = M2(C). The fundamental theorem on homomorphisms
then guarantees that M2(C) = ker ε/ ker ρ, allowing us to identify the space of 1-forms
with complex-valued 2 × 2 matrices. Finally, we set Ω1(R3

λ) = M2(C) ⊗ R3
λ. In the

following we work out the details.

We define the representation ρ via its images of the generators x̂i of R3
λ:

ρ(x̂1) = λ

2

(
0 1
1 0

)
ρ(x̂2) = λ

2

(
0 −i
i 0

)
ρ(x̂3) = λ

2

(
1 0
0 −1

)
(2.8)

Note that these are essentially the Pauli matrices σi for i = 1, 2, 3. By (2.6) the coordi-
nate differentials are given as

dx̂i = 1
2σ

i

θ = id .
(2.9)

The fourth differential θ serves to constitute a basis for M2(C) (dimM2(C) = 4 as a
vector space). For ξ ∈ su(2) and v ∈ Ω1(R3

λ) the commutation relations are given in [24,
p. 148, Prop. 4.5 and proof] as

[ξ, v] = ρ(ξ)v. (2.10)

The product on the right-hand side of the equation is the ordinary matrix product in
M2(C); however, the entries in v might be elements in R3

λ, since Ω1(R3
λ) ∼= M2(C)⊗R3

λ.
We need to check that (2.10) is consistent with the definition (2.6) of the differential on
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su(2). To this end, let ξ, η ∈ su(2):

d(ξη) = (dξ)η + ξdη

= λρ(ξ)η + λξρ(η)

= λρ(ξ)η + λρ(η)ξ + λ ρ(ξ)ρ(η)︸ ︷︷ ︸
=ρ(ξη)

using (2.10)

d(ηξ) = λρ(η)ξ + λρ(ξ)η + λρ(ηξ)

and hence,

d(ξη − ηξ) = λ(ρ(ξη)− ρ(ηξ))

= λρ(ξη − ηξ)

= λρ([ξ, η])

= d([ξ, η]).

Note that we used the fact that ρ is an algebra homomorphism twice in this computation.
If (2.10) is written as ξv = vξ + ρ(ξ)v, it can also be interpreted as the definition of a
left R3

λ-module structure of Ω1(R3
λ); the term vξ is determined by the natural right R3

λ-
module structure of Ω1(R3

λ) ∼= M2(C)⊗R3
λ and ρ(ξ)v is again the usual matrix product

in M2(C).

The above discussion allows us to compute the commutation relations of the coordi-
nates x̂i and the coordinate differentials {dx̂i, θ}:

[x̂i, dx̂j ] = λ

4σ
iσj

= λ

4 (δij id +iεijkσ
k)

= λ

4 δ
ij + λ

2 iε
ij
kdx̂

k (2.11a)

[x̂i, θ] = λ

2σ
i

= λdx̂i (2.11b)

After having defined Ω1(R3
λ), the full calculus Ω∗(R3

λ) is now constructed along the lines
of Section 2.2.3. We denote the exterior product by ∧ as in the commutative case,
since it can be shown (cf. [3, p. 16]) that on Ω1(R3

λ) the exterior product ∧ is in fact
antisymmetric, that is, a ∧ b = −b ∧ a for a, b ∈ Ω1(R3

λ).
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Using the commutation relations (2.11) we can compute the differential of the Casimir
operator C :=

∑3
i=1(x̂i)2:

dC =
3∑
i=1

((dx̂i)x̂i + x̂idx̂i)

= 2
3∑
i=1

(dx̂i)x̂i + 3λ
4 θ (2.12)

Thus, the differential of the Casimir operator becomes dC = 2
∑3
i=1(dxi)xi in the com-

mutative limit λ → 0; the fourth basis differential θ, which constitutes the additional
dimension in the four-dimensional calculus on R3

λ, disappears as λ→ 0.
An immediate application of the preceding discussion is the calculation of the deriva-

tive d(exp(ikx̂)) of plane waves. The result is stated in the following

Proposition 22.

d(eikx̂) =
(
θ

λ

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)
kdx̂

)
eikx̂

where kx̂ ≡ kix̂i and kdx̂ ≡ kidx̂i.

Proof. We will employ the identity

eiaiσ
i = I2 cos |a|+ iaiσ

i

|a|
sin |a| (∗)

where I2 is the 2× 2-identity matrix, a ∈ R3 and |a| =
√
aiai. Since eikx̂ is a group-like

element in U(su(2)), the formula (2.7) for the exterior derivative applies here. Further
using (2.8) and the coordinate differentials from (2.9) we compute:

d(eikx̂) = λ−1(ρ(eikx̂)− θ)eikx̂

= λ−1(eikiρ(x̂i) − θ)eikx̂

= λ−1(eiλkiσi/2 − θ)eikx̂

= λ−1
(
θ cos

(
λ|k|

2

)
+ iλkiσ

i

2
2
λ|k|

sin
(
λ|k|

2

)
− θ

)
eikx̂ using (∗)

=
(
θ

λ

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)
kdx̂

)
eikx̂

In order to obtain the commutative limit λ→ 0, we compute the following terms using
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2 Differential calculi

l’Hôpital’s rule:

lim
λ→0

cos
(
λ|k|

2

)
− 1

λ|k|
2

= − lim
λ→0

sin
(
λ|k|

2

)
= 0

lim
λ→0

sin
(
λ|k|

2

)
λ|k|

2
= lim

λ→0
cos

(
λ|k|

2

)
= 1

Hence, limλ→0 de
ikx̂ = ik(dx)eikx, that is, we recover the well-known result of the ordi-

nary three-dimensional differential calculus on commutative R3.

Hodge ∗-operator

In analogy to ordinary differential geometry one can define a Hodge ∗-operator for an
n-dimensional differential calculus on a non-commutative manifold M by declaring its
image on basis elements ei1 ∧ · · · ∧ eik ∈ Ωk(M):

∗(ei1 ∧ · · · ∧ eik) := 1
(n− k)!ε

i1...ikik+1...inηik+1j1 . . . ηinjn−ke
j1 ∧ · · · ∧ ejn−k

where η is a non-degenerate metric on M with det(η) = 1. In our case we choose3 the
Minkowskian metric

η =
3∑
i=1

dx̂i ⊗ dx̂i − θ ⊗ θ,

leading to
∗∗ |Ωk(M)= (−1)1+k(4−k)

as in the commutative setting.

The Hodge ∗-operator allows to form the coderivative δ = ∗d∗ and the Laplacian
∆ = δd+ dδ. However, we are more interested in the ‘box’ operator � = δd = ∗d ∗ d (as
introduced in [3]) and its action on plane waves eikx̂. To compute this action, we need
to evaluate the hodge dual of the coordinate differentials dx̂i:

∗dx̂i = 1
3!(ε

1abcηaa′ηbb′ηcc′dx̂
a′ ∧ dx̂b′ ∧ dx̂c′)

Let us start with dx̂1. Since one of the η factors in each summand is ηθθ = −1, we get

3Another option is the Euclidean metric η =
∑3

i=1 dx̂
i ⊗ dx̂i + θ ⊗ θ.
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2.2 Non-commutative spaces

an overall minus sign:

∗dx̂1 = −1
6(dx̂2 ∧ dx̂3 ∧ θ − dx̂3 ∧ dx̂2 ∧ θ − dx̂2 ∧ θ ∧ dx̂3

+ dx̂3 ∧ θ ∧ dx̂2 − θ ∧ dx̂3 ∧ dx̂2 + θ ∧ dx̂2 ∧ dx̂3)

Therefore,

∗dx̂1 = −dx̂2 ∧ dx̂3 ∧ θ (2.13a)

after reordering the wedge-products while keeping track of the signs. In analogy,

∗dx̂2 = dx̂1 ∧ dx̂3 ∧ θ (2.13b)

∗dx̂3 = −dx̂1 ∧ dx̂2 ∧ θ (2.13c)

∗θ = −dx̂1 ∧ dx̂2 ∧ dx̂3. (2.13d)

Furthermore, we trivially have

∗(dx̂1 ∧ dx̂2 ∧ dx̂3 ∧ θ) = 1

We are now able to compute �eikx̂:

Proposition 23.

�eikx̂ = − 1
λ2

(
4 sin2

(
λ|k|

2

)
+
(

cos
(
λ|k|

2

)
− 1

)2)
eikx̂

Proof. We simply use the definition � := ∗d ∗ d of the box operator together with the
result for deikx̂ from Proposition 22:

�eikx̂ = ∗d ∗ deikx̂

= ∗d ∗
(
θ

λ

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)
kdx̂

)
eikx̂ by Prop. 22

= ∗d
[
− dx̂1 ∧ dx̂2 ∧ dx̂3

λ︸ ︷︷ ︸
(∗)

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)

× (−k1dx̂
2 ∧ dx̂3 ∧ θ + k2dx̂

1 ∧ dx̂3 ∧ θ − k3dx̂
1 ∧ dx̂2 ∧ θ)

]
eikx̂ by (2.13)

When applying d to the bracket, the term (∗) vanishes because of d2 = 0. Furthermore,
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dθ = 0, that is, θ is closed. Thus, d only acts on eikx̂:

�eikx̂ = ∗
([
− dx̂1 ∧ dx̂2 ∧ dx̂3

λ

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)
× (−k1dx̂

2 ∧ dx̂3 ∧ θ + k2dx̂
1 ∧ dx̂3 ∧ θ − k3dx̂

1 ∧ dx̂2 ∧ θ)
]

∧
[
θ

λ

(
cos

(
λ|k|

2

)
− 1

)
+ 2i
λ|k|

sin
(
λ|k|

2

)
kdx̂

])
eikx̂

To evaluate the wedge product between the square brackets, we observe that a ∧ a = 0,
so that we only have to keep track of terms of the form dx̂1 ∧ dx̂2 ∧ dx̂3 ∧ θ:

= ∗
(
− 1
λ2dx̂

1 ∧ dx̂2 ∧ dx̂3 ∧ θ
(

cos
(
λ|k|λ

2

)
− 1

)2
− 4
λ2|k|2

sin2
(
λ|k|

2

)
× (k2

1 (−1)dx̂2 ∧ dx̂3 ∧ θ ∧ dx̂1︸ ︷︷ ︸
(♥)

+k2
2 dx̂

1 ∧ dx̂3 ∧ θ ∧ dx̂2︸ ︷︷ ︸
(♣)

+ k2
3 (−1)dx̂1 ∧ dx̂2 ∧ θ ∧ dx̂3︸ ︷︷ ︸

(♠)

)
)
eikx

The terms (♥), (♣) and (♠) are all equal to dx̂1∧dx̂2∧dx̂3∧ θ after changing order and
keeping track of the correct sign. Applying the last Hodge ∗-operator via (2.13d) and
rearranging the terms, we get the final result:

�eikx̂ = − 1
λ2

(
4 sin2

(
λ|k|

2

)
+
(

cos
(
λ|k|

2

)
− 1

)2)
eikx̂

Corollary 24. In the commutative limit λ → 0 the box operator � reduces to the
ordinary three-dimensional Laplace operator.

Proof. This is checked by computing the commutative limit of the eigenvalues

− 1
λ2

(
4 sin2

(
λ|k|

2

)
+
(

cos
(
λ|k|

2

)
− 1

)2)

of � acting on plane waves eikx̂. We start with the first term, using l’Hôpital’s rule
twice:

lim
λ→0
−

4 sin2
(
λ|k|

2

)
λ2 = lim

λ→0
−

8 sin
(
λ|k|

2

)
cos

(
λ|k|

2

)
|k|
2

2λ

= lim
λ→0
−sin(λ|k|)|k|

λ
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2.2 Non-commutative spaces

= lim
λ→0
−cos(λ|k|)|k|2

1
= −|k|2

Similarly for the second term,

lim
λ→0
−

(
cos

(
λ|k|

2

)
− 1

)2

λ2 = lim
λ→0
−

2
(
cos

(
λ|k|

2

)
− 1

) (
− sin

(
λ|k|

2

))
|k|
2

2λ

= lim
λ→0

1
2 sin(λ|k|)− sin

(
λ|k|

2

)
2λ |k|

= lim
λ→0

1
2 cos(λ|k|)− cos

(
λ|k|

2

)
1
2

2 |k|2

= 0.

In summary, we have

lim
λ→0

�eikx̂ = lim
λ→0
− 1
λ2

(
4 sin2

(
λ|k|

2

)
+
(

cos
(
λ|k|

2

)
− 1

)2)
eikx̂

= −|k|2eikx

= ∆eikx,

which is the eigenvalue of the three-dimensional Laplace operator in commutative R3.

Reduction to the fuzzy sphere

The four-dimensional calculus introduced on R3
λ in the previous section can be reduced

to the fuzzy sphere. We will see that we lose one direction along the way, making the
reduced differential calculus on the fuzzy sphere three-dimensional.

Let us start by recalling the defining relation for the fuzzy sphere from (1.22) or (1.32):

C =
∑

(x̂i)2 = const.

Using (2.12) for the differential of the Casimir we obtain

dC = 2
∑

(dx̂a)x̂a + 3
4λθ = 0.

This means that the four differentials dx̂i, i = 1, 2, 3 and θ have become linearly depen-
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2 Differential calculi

dent. For instance,

θ = −8
3λ
∑

(dx̂a)x̂a, (2.14)

turning the obtained calculus into a three-dimensional one. The commutation relations
(2.11) can be rewritten using (2.14):

[x̂i, dx̂j ] = i

2λε
ij
kdx̂

k − 2
3δ

ij
∑
k

(dx̂k)x̂k (2.15)

Since
lim
λ→0

dC = 2
∑

(dx̂a)x̂a = 0,

we observe that in the commutative limit the three-dimensional calculus dx̂i, i = 1, 2, 3
reduces to the ordinary two-dimensional calculus on the sphere.
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3 The non-commutative Coulomb problem
on R3

λ

The previous chapters introduced the non-commutative space R3
λ and illustrated the

mathematical concepts behind it. In this chapter we turn to a prototypical quantum
mechanical problem, the Coulomb problem or H-atom, which we want to describe on
deformed R3.

The first section describes an explicit realization of the space R3
λ via bosonic creation

and annihilation operators, which is essentially identical to the approach in Section 1.2.1.
It comprises a detailed discussion of the coordinate operators x̂i and the angular mo-
mentum operators L̂i, including the identification of the eigenfunctions of the operators
L̂i. They generate a Hilbert space in which a suitable Laplace operator can be defined;
this is the subject of the next section. Finally, the Laplace operator and a certain po-
tential operator are used to form the Hamiltonian of the Coulomb problem in R3

λ. We
investigate the spectrum of the Hamiltonian and compare it to the energy levels of the
commutative problem.

The discussion follows [11], however using a different method to find the eigenvalues
of the Hamiltonian. Furthermore, detailed calculations are always included in order to
accommodate readers who are not familiar with the subject.

3.1 Realization of R3
λ

3.1.1 Coordinate operators

The non-commutative coordinates x̂i, i = 1, 2, 3, of the deformed space R3
λ are defined

via a set of two bosonic creation and annihilation operators âα, α = 1, 2 satisfying the
canonical commutation relations (1.12); as in Section 1.1.3 they act in the Fock space
(1.13). The coordinate operators x̂i are realized by setting

x̂i := λσiαβ â
†
αâβ ≡ λâ†σiâ for i = 1, 2, 3. (3.1)
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Here, σi are the usual Pauli matrices. The parameter λ has dimension length and
measures the non-commutativity of the space as we will see in the course of this section.
From (1.12) we derive commutation relations for the coordinates x̂i:

1
λ2 [x̂i, x̂j ] = [σiαβ â†αâβ, σ

j
γδâ
†
γ âδ]

= σiαβσ
j
γδ[â

†
αâβ, â

†
γ âδ]

= σiαβσ
j
γδ(â

†
α [âβ, â†γ ]︸ ︷︷ ︸

=δβγ

âδ + â†γ [â†α, âδ]︸ ︷︷ ︸
=−δαδ

âβ) by (3.2) and (1.12)

= σiαβσ
j
βδâ
†
αâδ − σiαβσjγαâ†γ âβ

= (σiσj − σjσi)αδâ†αâδ
= [σi, σj ]αδâ†αâδ
= 2iεijkσ

k
αδâ
†
αâδ by (3.3)

= 2i
λ
εijkx̂

k

In the derivation we used the commutator identity

[AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B (3.2)

and the well-known commutation relation for the Pauli matrices

[σi, σj ] = 2iεijkσ
k. (3.3)

In summary, the commutation relation for the coordinates x̂i reads

[x̂i, x̂j ] = 2iλεijkx̂
k. (3.4)

Relation (3.4) suggests that the coordinates x̂i define an irreducible SU(2)-representation
on the Fock space FN . Let us verify this by computing the action of the Casimir operator
X 2 :=

∑
i(x̂i)2 on FN . For this purpose it is advisable to write out the coordinates x̂i

explicitly using the standard two-dimensional representation of the Pauli matrices:

x̂1 = λ(â†1â2 + â†2â1) (3.5a)

x̂2 = iλ(â†2â1 − â†1â2) (3.5b)

x̂3 = λ(â†1â1 − â†2â2) (3.5c)
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Further, we define the the number operator1

N̂ := â†αâα.

Now we are ready to compute the action of X 2 on FN . Note that the commutation
relations (1.12) are deployed numerous times and their use is not stated explicitly in
order to retain a compact computation.

1
λ2X

2 = (â†1â2 + â†2â1)2 − (â†2â1 − â†1â2)2 + (â†1â1 − â†2â2)2

= â†1â2â
†
1â2 + â†1â2â

†
2â1 + â†2â1â

†
1â2 + â†2â1â

†
2â1 − â†2â1â

†
2â1 + â†2â1â

†
1â2

+ â†1â2â
†
2â1 − â†1â2â

†
1â2 + â†1â1â

†
1â1 − â†1â1â

†
2â2 − â†2â2â

†
1â1 + â†2â2â

†
2â2

= 2â†1â2â
†
2â1 + 2â†2â1â

†
1â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2 − â†1â1â

†
2â2 − â†2â2â

†
1â1

= 2â†1â2â
†
2â1 + 2â†2â1â

†
1â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2

+ â†1â1 − â†1â1â2â
†
2 + â†2â2 − â†2â2â1â

†
1

= â†1â1â
†
1â1 + â†2â2â

†
2â2 + â†1â1 + â†2â2︸ ︷︷ ︸

=N̂

+â†1â2â
†
2â1 + â†2â2â1â

†
1

= â†1â1(â†1â1 + â2â
†
2) + â†2â2(â†2â2 + â1â

†
1) + N̂

= â†1â1(â†1â1 + â†2â2︸ ︷︷ ︸
=N̂

) + â†1â1 + â†2â2(â†2â2 + â†1â1︸ ︷︷ ︸
=N̂

) + â†2â2 + N̂

= N̂2 + 2N̂

Hence,

X 2 |FN= λ2(N2 + 2N) idFN , (3.6)

i.e., the modified coordinates ŷi := x̂i

2λ define a spin-N/2 representation of SU(2) on FN .

Introducing the radial operator ρ̂ := λN̂ , we compute

1
λ2 [x̂i, ρ] = [σiαβ â†αâβ, â†γ âγ ]

= σiαβ[â†αâβ, â†γ âγ ]

= σiαβ(â†α[âβ, â†γ ]âγ + â†γ [â†α, âγ ]âβ) by (3.2)

= σiαβ(â†αâβ − â†αâβ) by (1.12)

1As the name suggests, the number operator satisfies N̂ |n1, n2〉 = (n1 + n2)|n1, n2〉, which is shown in
the proof of Lemma 28.
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= 0.

Hence, the coordinates x̂i commute with the radial variable ρ̂:

[x̂i, ρ̂] = 0 (3.7)

However, ρ̂ should not directly be interpreted as a radius in the non-commutative
space. This can be seen by computing the quantity ρ̂2−X 2, which should have dimension
(length)2, i.e., λ2 according to the choice of our coordinates in (3.1). Using the result of
the computation which led to (3.6) we find

ρ̂2 −X 2 = λ2(N̂2 − N̂2 − 2N̂) = −2λ2N̂ . (3.8)

In order to get rid of the number operator N̂ in expression (3.8) we introduce a modified
radial operator r̂ as follows (here, 1 ≡ idF , the identity operator in F):

r̂ := λ(N̂ + 1) (3.9)

Revisiting (3.8) we arrive at

r̂2 −X 2 = λ2(N̂2 + 2N̂ + 1− N̂2 − 2N̂) = λ2, (3.10)

having successfully discarded the number operator N̂ and ensuring the correct dimen-
sionality of the expression r̂2 −X 2. Furthermore, the operator r̂ will play a crucial role
in defining the Laplace operator in the next section.

3.1.2 Angular momentum operators

The angular momentum operators L̂i, i = 1, 2, 3, serving as the generators of rotations
(i.e., generators of the Lie algebra su(2)) are defined by their action on the vector space
Hj of normal ordered polynomials in âα and â†β having the same number of creation and
annihilation operators:

Hj := span
(
(â†1)m1(â†2)m2(â1)n1(â2)n2 | m1 +m2 = j = n1 + n2

)
(3.11)

Note that Ψ̂ ∈ Hj leaves the particle number in the Fock space F invariant, i.e., Ψ̂(FN ) ⊂
FN where FN := span(|n1, n2〉 | n1 + n2 = N) and j ≤ N . Furthermore, we have
Ψ̂ |FN= 0 for Ψ̂ ∈ Hj if j > N .
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We can now define the angular momentum operators Li:

L̂iΨ̂ := 1
2[σiαβ â†αâβ, Ψ̂] = 1

2λ [x̂i, Ψ̂] for i = 1, 2, 3 and Ψ̂ ∈ Hj (3.12)

Computing their commutation relation shows that the Li can be identified with gener-
ators of rotations. Let us first evaluate L̂i(L̂jΨ̂) for Ψ̂ ∈ Hj :

4λ2L̂i(L̂jΨ̂) = 4λ2L̂i
( 1

2λ [x̂j , Ψ̂]
)

= [x̂i, [x̂j , Ψ̂]]

= −[x̂j , [Ψ̂, x̂i]]− [Ψ̂, [x̂i, x̂j ]] by (3.13)

= [x̂j , [x̂i, Ψ̂]]− 2iλεijk[Ψ̂, x̂
k]

= [x̂j , [x̂i, Ψ̂]] + 2iλεijk[x̂
k, Ψ̂]

= 2λ[x̂j , L̂iΨ̂] + 4iλ2εijkL̂
kΨ̂ by (3.12)

= 4λ2L̂j(L̂iΨ̂) + 4iλ2εijkL̂
kΨ̂ by (3.12)

Note that we used Jacobi’s identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (3.13)

in the derivation. Hence, the commutation relation reads

[L̂i, L̂j ] = iεijkL̂
k. (3.14)

Let us also record the transformation properties of the ladder operators and the coordi-
nates under the su(2)-rotations L̂i:

L̂iâα = 1
2[σiβγ â

†
β âγ , âα]

= 1
2σ

i
βγ [â†β, âα]âγ

= −1
2σ

i
βγδβαâγ ⇒ L̂iâα = −1

2σ
i
αγ âγ (3.15a)

L̂iâ†α = 1
2[σiβγ â

†
β âγ , â

†
α]

= 1
2σ

i
βγ â
†
βδγα ⇒ L̂iâ†α = 1

2σ
i
βαâ
†
β (3.15b)

L̂ix̂j = 1
2λ [x̂i, x̂j ] ⇒ L̂ix̂j = iεijkx̂

k (3.15c)
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In analogy to quantum mechanics, we investigate the spectrum of the commuting
operators L2 :=

∑
i(L̂i)2 and L̂3. Their eigenfunctions2 for j ∈ N and m = −j, . . . , j are

given as

Ψ̂jm = λj
∑

m1,m2,n1,n2

(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2! (3.16)

where the range of the integers m1, m2, n1 and n2 is restricted by the conditions

m1 +m2 = n1 + n2 = j m1 −m2 − n1 + n2 = 2m (3.17)

and Rj is an analytic function in ρ̂. As stated before, Ψ̂jm |FN= 0 if j > N . We need to
verify that the Ψ̂jm are indeed eigenfunctions of L2 and L̂3. To this end the following
two Lemmata are useful:

Lemma 25. L̂3 : Rj(ρ̂) := 0 for analytic functions Rj.

Proof. Let Rj(ρ̂) =
∑∞
k=0 ckρ̂

k. We prove the claim separately for each term : ρ̂k :
and use induction over k. Relation (3.7) implies that L̂3ρ̂ = 0 (note that ρ̂ is already
normal ordered), so suppose the claim is true for k− 1. Since the L̂i are defined via the
commutators [x̂i, .], we have to use the Leibniz rule when applying L̂3 to products of
operators.

L̂3 : ρ̂k : = λkL̂3
(
â†α1 . . . â

†
αk

âα1 . . . âαk︸ ︷︷ ︸
=âα2 ...âαk âα1

)

= λk
(
L̂3(â†α1)â†α2 . . . â

†
αk
âα2 . . . âαk + â†α1 L̂

3
(
â†α2 . . . â

†
αk
âα2 . . . âαk

)
︸ ︷︷ ︸

=L̂3:ρ̂k−1:=0

âα1

+ â†α1 â
†
α2 . . . â

†
αk
âα2 . . . âαk L̂

3 (âα1)
)

= λk
(
L̂3(â†α1) : ρ̂k−1 : âα1 + â†α1 : ρ̂k−1 : L̂3âα1

)
We rewrite (3.15a) and (3.15b) as

L̂3â†α1 = 1
2σ

3
βα1 â

†
β = 1

2(−1)α1+1â†α1

L̂3âα1 = −1
2σ

3
βα1 âβ = −1

2(−1)α1+1âα1

2Note that we actually mean operators acting on Hj here. However, we will continue to use the term
eigenfunction.
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to get

L̂3 : ρ̂k : = (−1)α1+1

2 λk
(
â†α1 : ρ̂k−1 : âα1 − â†α1 : ρ̂k−1 : âα1

)
= 0.

Lemma 26.

(i) The ladder operators ‘differentiate’ powers of themselves:

[âα, (â†β)n] = nδαβ(â†β)n−1 [â†α, (âβ)n] = −nδαβ(âβ)n−1

(ii) Let Rj(ρ̂) =
∑∞
k=0 ckρ̂

k be an analytic function and ∂N̂Rj(ρ̂) :=
∑∞
k=1 kckλ

kN̂k−1

be its formal derivative with respect to N̂ = ρ̂
λ , then

[âα, : Rj(ρ̂) :] =: ∂N̂Rj(ρ̂) : âα [â†α, : Rj(ρ̂) :] = −â†α : ∂N̂Rj(ρ̂) : .

Proof. (i)

âα(a†β)n = â†1âα(â†β)n−1 + δαβ(â†β)n−1

= (â†β)2âα(â†β)n−2 + δαβ(â†β)n−1 + δαβ(â†β)n−1

...

= (â†β)nâα + nδαβ(â†β)n−1

and hence, [âα, (â†β)n] = nδαβ(â†β)n−1. The second commutator can be obtained by an
entirely analogous calculation.

(ii) A square bracket under an operator means that it is dropped in the summation.

[â†α, : N̂k :] = [â†α, â†α1 . . . â
†
αk
âα1 . . . âαk ]

= â†α1 . . . â
†
αk

[â†α, âα1 . . . âαk ]

= −â†α1 . . . â
†
αk

k∑
j=1

δααj âα1 . . . âαj . . . âαk

= −kâ†α : N̂k−1 :

and similarly

[âα, : N̂k :] = k : N̂k−1 : âα.

Using Rj(ρ̂) =
∑∞
k=0 ckρ̂

k and ∂N̂Rj(ρ̂) :=
∑∞
k=1 kckλ

kN̂k−1 now proves the claim.
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These results enable us to prove the following

Proposition 27. Given Ψ̂jm as in (3.16), we have for j ∈ N and m = −j, . . . , j:

(i) L̂3Ψ̂jm = mΨ̂jm

(ii) L2Ψ̂jm = j(j + 1)Ψ̂jm

Proof. (i)

L̂3Ψjm = λj
∑

L̂3
(

(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

)

= λj
∑

L̂3
(

(â†1)m1(â†2)m2

m1!m2!

)
︸ ︷︷ ︸

(∗)

: Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

+ (â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : L̂3
((â1)n1(−â2)n2

n1!n2!

)
︸ ︷︷ ︸

(∗∗)

by Lemma 25

Keeping in my mind that by (3.15a) we have L̂3â†1 = 1
2 â
†
1 and L̂3â†2 = −1

2 â
†
2, we get for

the term (∗):

L̂3
(
(â†1)m1(â†2)m2

)
= L̂3

(
(â†1)m1

)
(â†2)m2 + (â†1)m1L̂3

(
(â†2)m2

)
= m1(â†1)m1−1

(
L̂3â†1

)
(â†2)m2 +m2(â†1)m1(â†2)m2−1L̂3â†2

= 1
2
(
m1(â†1)m1(â†2)m2 −m2(â†1)m1(â†2)m2

)
For the term (∗∗) we note that (3.15b) implies L̂3â1 = −1

2 â1 and L̂3â2 = 1
2 â2. A similar

calculation then leads to

L̂3
(
(â1)n1(−â2)n2

)
= 1

2
(
− n1(â1)n1(−â2)n2 + n2(â1)n1(−â2)n2

)
.

Hence

L̂3Ψ̂jm = λj
∑ m1 −m2 − n1 + n2

2︸ ︷︷ ︸
=m

(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

= mΨ̂jm,

which is the desired result.
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(ii) To compute the eigenvalue of L2 we build the operators

L̂± := L̂1 ± iL̂2

and observe that

L̂−L̂+ = (L̂1 − iL̂2)(L̂1 + iL̂2)

= (L̂1)2 − iL̂2L̂1 + iL̂1L̂2 + (L̂2)2

= (L̂1)2 + (L̂2)2 + i [L̂1, L̂2]︸ ︷︷ ︸
=iL̂3

= (L̂1)2 + (L̂2)2 − L̂3

and hence,

L2 = L̂−L̂+ + L̂3 + (L̂3)2.

We need to compute the action of L̂−L̂+ on Ψ̂jm. To this end, we note that we can write

L̂+Ψ̂jm = (L̂1 + iL̂2)Ψ̂jm

= 1
2λ [x̂1 + ix̂2, Ψ̂jm] using (3.12)

= [â†1â2, Ψ̂jm] using (3.5)

and similarly

L̂−Ψ̂jm = [â†2â1, Ψ̂jm].

Thus,

L̂−L̂+Ψ̂jm = [â†2â1, [â†1â2, Ψ̂jm]︸ ︷︷ ︸
(∗)

]

Let us first deal with the term (∗). We will use the results from Lemma 26 in the
computation. Note that we only need to keep commutators acting on : Rj(ρ̂) : and
commutators of âα acting on (â†β)n and vice versa.

[â†1â2, Ψ̂jm] = â†1[â2, Ψ̂jm] + [â†1, Ψ̂jm]â2
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= λj
∑

â†1

[
â2,

(â†1)m1(â†2)m2

m1!m2!

]
: Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

+ λj
∑ (â†1)m1+1(â†2)m2

m1!m2! [â2, : Rj(ρ̂) :] (â1)n1(−â2)n2

n1!n2!

− λj
∑ (â†1)m1(â†2)m2

m1!m2!
[
â†1, : Rj(ρ̂) :

] (â1)n1(−â2)n2+1

n1!n2!

+ λj
∑ (â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) :
[
â†1,

(â1)n1(−â2)n2+1

n1!n2!

]
â2

= λj
∑ m2(â†1)m1+1(â†2)m2−1

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

− λj
∑ (â†1)m1+1(â†2)m2

m1!m2! : ∂N̂Rj(ρ̂) : (â1)n1(−â2)n2+1

n1!n2!

+ λj
∑ (â†1)m1+1(â†2)m2

m1!m2! : ∂N̂Rj(ρ̂) : (â1)n1(−â2)n2+1

n1!n2!

+ λj
∑ m2(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1−1(−â2)n2+1

n1!n2!

The two middle terms cancel, giving

[â†1â2, Ψ̂jm] = λj
∑ m2(â†1)m1+1(â†2)m2−1

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

+ λj
∑ m2(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1−1(−â2)n2+1

n1!n2!

We proceed with the calculation. In the following, we abbreviate φ̂ := [â†1â2, Ψ̂jm] and
leave out intermediate steps in order to shorten the proof.

[â†2â1, φ̂] = [â†2, φ̂]â1 + â†2[â1, φ̂]

= −λj
∑ m2(â†1)m1+1(â†2)m2

m1!m2! : ∂N̂Rj(ρ̂) : (â1)n1+1(−â2)n2

n1!n2!

+ λj
∑ m2(â†1)m1+1(â†2)m2−1

m1!m2! : Rj(ρ̂) : n2(â1)n1+1(−â2)n2−1

n1!n2!

− λj
∑ (â†1)m1(â†2)m2+1

m1!m2! ∂N̂ : Rj(ρ̂) : n1(â1)n1(−â2)n2+1

n1!n2!

+ λj
∑ (â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : n1(n2 + 1)(â1)n1(−â2)n2

n1!n2!

+ λj
∑ (m1 + 1)m2(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!
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+ λj
∑ m2(â†1)m1+1(â†2)m2

m1!m2! : ∂N̂Rj(ρ̂) : (â1)n1+1(−â2)n2

n1!n2!

+ λj
∑ m1(â†1)m1−1(â†2)m2+1

m1!m2! : Rj(ρ̂) : n1(â1)n1−1(−â2)n2+1

n1!n2!

+ λj
∑ (â†1)m1(â†2)m2+1

m1!m2! : Rj(ρ̂) : n1(â1)n1(−â2)n2+1

n1!n2!

We observe that the first term cancels with the sixth and the third term cancels with
the eighth. The remaining four terms are:

[â†2â1, φ̂] = λj
∑

((m1 + 1)m2 + n1(n2 + 1))(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

+ λj
∑

m1n1
(â†1)m1−1(â†2)m2+1

m1!m2! : Rj(ρ̂) : (â1)n1−1(−â2)n2+1

n1!n2!

+ λj
∑

m2n2
(â†1)m1+1(â†2)m2−1

m1!m2! : Rj(ρ̂) : (â1)n1+1(−â2)n2−1

n1!n2!

= λj
∑

((m1 + 1)m2 + n1(n2 + 1))(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2!

+ λj
∑

(m2 + 1)(n2 + 1) (â†1)m1−1(â†2)m2+1

(m1 − 1)!(m2 + 1)! : Rj(ρ̂) : (â1)n1−1(−â2)n2+1

(n1 − 1)!(n2 + 1)!︸ ︷︷ ︸
(♠)

+ λj
∑

(m1 + 1)(n1 + 1) (â†1)m1+1(â†2)m2−1

(m1 + 1)!(m2 − 1)! : Rj(ρ̂) : (â1)n1+1(−â2)n2−1

(n1 + 1)!(n2 − 1)!︸ ︷︷ ︸
(♣)

Let us change indices in the term (♠) to

s1 := m1 − 1 t1 := n1 − 1

s2 := m2 + 1 t2 := n2 + 1.

Remember that the summation runs over j = m1 +m2 = n1 +n2 and m = 1
2(m1−m2−

n1 + n2); since s1 + s2 = t1 + t2 = j and s1 − s2 − t1 + t2 = 2m, the summation remains
unchanged. The factor (m2 + 1)(n2 + 1) simply becomes s2t2. We do the analogous
index change in the term (♣), so that we can finally write (by changing the index names
back to mα and nα)

[â†2â1, φ̂] = λj
∑

((m1 + 1)m2 + n1(n2 + 1) +m2n2 +m1n1)
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× (â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : (â1)n1(−â2)n2

n1!n2! .

Now we are almost done. By using j = m1 +m2 = n1 +n2 and 2m = m1−m2−n1 +n2

we observe that we have the identities

m2 + n1 = j −m m1 + n2 = j +m,

leading to

(m1 + 1)m2 + n1(n2 + 1) +m2n2 +m1n1 = m1m2 +m2 + n1n2 + n1 +m2n2 +m1n1

= (m1 + n2)(m2 + n1) + n1 +m2

= (j +m)(j −m) + j −m

= j(j + 1)−m2 −m.

Thus, we have in summary:

L̂−L̂+Ψ̂jm = (j(j + 1)−m2 −m)Ψ̂jm

By recalling that L2 = L̂−L̂+ + L̂3 + (L̂3)2 and using (i) we have finally shown that
L2Ψ̂jm = j(j + 1)Ψ̂jm.

To conclude this section we derive a different expression for the analytic function
: Rj(ρ̂) : in (3.16). We first express Rj(ρ̂) as a power series:

: Rj(ρ̂) : =
∑
k

ck : ρ̂k :=
∑
k

ckλ
k : N̂k :

Furthermore, we need the following

Lemma 28. : N̂k : |n1, n2〉 = N !
(N−k)! |n1, n2〉 for N = n1 + n2.

Proof. As before, we use induction over k. Let k = 1. We have

N̂ |n1, n2〉 = â†αâα|n1, n2〉 = â†αâα
(a†1)n1(a†2)n2
√
n1!n2!

|0〉.

By Lemma 26(i) we also have

âα(a†1)n1 = (â†1)n1 âα︸ ︷︷ ︸
(∗)

+n1δα1(â†1)n1−1
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âα(â†2)n2 = (â†2)n2 âα︸ ︷︷ ︸
(∗∗)

+n2δα2(â†2)n2−1

Note that the terms (∗) and (∗∗), give no contribution when acting on |0〉, since âα|0〉 = 0.
Hence, we get:

â†αâα|n1, n2〉 = n1 δα1â
†
α

(a†1)n1−1(a†2)n2
√
n1!n2!

|0〉︸ ︷︷ ︸
=|n1,n2〉

+n2 δα2â
†
α

(a†1)n1(a†2)n2−2
√
n1!n2!

|0〉︸ ︷︷ ︸
=|n1,n2〉

= (n1 + n2)|n1, n2〉

= N !
(N − 1)! |n1, n2〉

Assume now that the claim is true for k − 1. We want to compute

: N̂k : |n1, n2〉 = â†α1 . . . â
†
αk
âα1 . . . âαk |n1, n2〉.

In a similar manner to before, we compute the right-hand side step by step (the square
bracket under an operator means that this operator is omitted):

â†α1 . . . â
†
αk
âα1 = â†α1 . . . â

†
αk−1 âα1 â

†
αk
− δα1αk â

†
α1 . . . â

†
αk−1

= â†α1 . . . â
†
αk−2 âα1 â

†
αk−1 â

†
αk
− δα1αk−1 â

†
α1 . . . â

†
αk−2 â

†
αk

− δα1αk â
†
α1 . . . â

†
αk−1

...

= âα1 â
†
α1 . . . â

†
αk
−

k∑
j=1

δα1αj â
†
α1 . . . â

†
αj . . . â

†
αk

This allows us to deploy the induction hypothesis twice:

: N̂k : |n1, n2〉 = âα1 â
†
α1 â
†
α2 . . . â

†
αk
âα2 . . . âαk |n1, n2〉

−
k∑
j=1

δα1αj â
†
α1 . . . â

†
αj . . . â

†
αk
âα2 . . . âαk |n1, n2〉

= âα1 â
†
α1

N !
(N − k + 1)! |n1, n2〉 −

k∑
j=1

N !
(N − k + 1)! |n1, n2〉
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= â†α1 âα1
N !

(N − k + 1)! |n1, n2〉︸ ︷︷ ︸
=N N !

(N−k+1)! |n1,n2〉

+ N !
(N − k + 1)! |n1, n2〉

− k N !
(N − k + 1)! |n1, n2〉

= (N − k + 1) N !
(N − k + 1)! |n1, n2〉

= N !
(N − k)! |n1, n2〉

Using Lemma 28 we can rewrite the analytic function : Rj(ρ̂) : as

: Rj(ρ̂) : =
∑
k

ck : ρ̂k :

=
∑
k

ckλ
k N̂ !

(N̂ − k)!
(3.18)

when restricting : Rj(ρ̂) : to the subspace FN . The operator N̂ ! is defined on FN by the
eigenvalue equation N̂ !|n1, n2〉 = N !|n1, n2〉 with N = n1 + n2.

3.2 The Laplace operator

3.2.1 Identifying the Hilbert space

Let Ĥ be the Hilbert space generated by the operators Ψ̂jm, j ∈ N, m = −j, . . . , j. The
scalar product on Ĥ is given by

〈Ψ̂|Φ̂〉 = tr
(
w(r̂)Ψ̂†Φ̂

)
for Ψ̂, Φ̂ ∈ Ĥ (3.19)

where w(r̂) is an (a priori) arbitrary, rotationally invariant weight function. With re-
spect to the scalar product in (3.19), the generators of rotations L̂i are Hermitian (for
simplicity, we set w(r̂) = 1):

〈Φ̂|L̂iΨ̂〉 = tr
(
Φ̂†L̂iΨ̂

)
= 1

2λ tr
(
Φ̂†[x̂i, Ψ̂]

)
= 1

2λ
(
tr
(
Φ̂†x̂iΨ̂

)
− tr

(
Φ̂†Ψ̂x̂i

))
= 1

2λ
(
tr
(
(x̂iΦ̂)†Ψ̂

)
− tr

(
x̂iΦ̂†Ψ̂

))
= 1

2λ
(
tr
(
(x̂iΦ̂)†Ψ̂

)
− tr

(
(Φ̂x̂i)†Ψ̂

))
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= 1
2λ tr

(
[x̂i, Φ̂]†Ψ̂

)
= 〈L̂iΦ̂|Ψ̂〉

Therefore, the operators Ψ̂jm =
∑
. . . : Rj(ρ̂) : . . . and Ψ̂j′m′ =

∑
. . . : Sj′(ρ̂) : . . .

with arbitrary analytic functions Rj and Sj′ are orthogonal with respect to (3.19) as
eigenfunctions of a Hermitian operator.

3.2.2 Definition of the Laplace operator

In Ĥ we define the Laplace operator as

∆λ := − 1
λr̂

[â†α, [âα, .]] (3.20)

Its action on the eigenfunctions Ψ̂jm of L2 and L̂3 (neglecting for now the factor 1
r̂ ,

cf. section 3.3) is recorded in the following

Proposition 29. Let Ψ̂jm be an eigenfunction of L2 and L̂3 as given in (3.16). Then

r̂∆λ Ψ̂jm = λj
∑ (â†1)m1(â†2)m2

m1!m2! : ρ̂R′′j (ρ̂) + 2(j + 1)R′j(ρ̂) : â
n1
1 (−â2)n2

n1!n2!

where R′j(ρ̂) :=
∑∞
k=1 kckρ̂

k−1 and R′′j (ρ̂) :=
∑∞
k=2 k(k − 1)ckρ̂k−2.

Proof. We start with the computation:

[â†α, [âα, Ψ̂jm] = λj
[
â†α,

[
âα,

∑ (â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : â
n1
1 (−â2)n2

n1!n2!

]]

We only need to keep the non-vanishing terms, i.e., commutators acting on : Rj(ρ̂) : and
commutators of âα acting on â†-terms and vice versa:

[â†α, [âα, Ψ̂jm] = λj
∑[

âα,
(â†1)m1(â†2)m2

m1!m2!

]
[â†α, : Rj(ρ̂)] : â

n1
1 (−â2)n2

n1!n2! (♠)

+ λj
∑[

âα,
(â†1)m1(â†2)m2

m1!m2!

]
: Rj(ρ̂) :

[
â†α,

ân1
1 (−â2)n2

n1!n2!

]
(♣)

+ λj
(â†1)m1(â†2)m2

m1!m2! [â†α, [âα, : Rj(ρ̂)]] â
n1
1 (−â2)n2

n1!n2! (♥)

+ λj
(â†1)m1(â†2)m2

m1!m2! [âα, : Rj(ρ̂) :]
[
â†α,

ân1
1 (−â2)n2

n1!n2!

]
(♦)
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The commutator appearing first is evaluated as:

[âα, (â†1)m1(â†2)m2 ] = (â†1)m1 [âα, (â†2)m2 ] + [âα, (â†1)m1 ](â†2)m2

= m2δα2(â†1)m1(â†2)m2−1 +m1δα1(â†1)m1−1(â†2)m2 (∗)

Observe further that

[â†2, â
n1
1 (−â2)n2 ] = n2â

n1
1 (−â2)n2−1

[â†1, â
n1
1 (−â2)n2 ] = −n1â

n1−1
1 (−â2)n2 .

Hence,

(♣) = λj
∑ m2(â†1)m1(â†2)m2−1

m1!m2! : Rj(ρ̂) : n2â
n1
1 (−â2)n2−1

n1!n2!

− λj
∑ m1(â†1)m1−1(â†2)m2

m1!m2! : Rj(ρ̂) : n1â
n1−1
1 (−â2)n2

n1!n2!

= λj
∑ (â†1)m1(â†2)m2−1

m1!(m2 − 1)! : Rj(ρ̂) : â
n1
1 (−â2)n2−1

n1!(n2 − 1)!

− λj
∑ (â†1)m1−1(â†2)m2

(m1 − 1)!m2! : Rj(ρ̂) : â
n1−1
1 (−â2)n2

(n1 − 1)!n2!
= 0

since every summand in the left term also appears in the right term. To compute the
commutators acting on : Rj(ρ̂) : we recall Lemma 26(ii), which states:

[â†α, : Rj(ρ̂) :] = −â†α : ∂N̂Rj(ρ̂) :

[âα, : Rj(ρ̂) :] = : ∂N̂Rj(ρ̂) : âα

Using this and (∗) we obtain

(♠) = λj
∑[

âα,
(â†1)m1(â†2)m2

m1!m2!

]
[â†α, : Rj(ρ̂)] : â

n1
1 (−â2)n2

n1!n2!

= λj
∑ 1

m1!m2! (m2δα2(â†1)m1(â†2)m2−1 +m1δα1(â†1)m1−1(â†2)m2)

× (−â†α : ∂N̂Rj(ρ̂) :) â
n1
1 (−â2)n2

n1!n2!

= λj
∑ (â†1)m1(â†2)m2

m1!m2! (−j : ∂N̂Rj(ρ̂) :) â
n1
1 (−â2)n2

n1!n2! .
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It is easy to see that (♦) gives the same contribution. Thus, the last thing we need to
calculate is line (♥). To this end, we evaluate the double commutator acting on : Rj(ρ̂) :,
which is given as:

[â†α, [âα, : Rj(ρ̂) :]] = [â†α, : ∂N̂Rj(ρ̂) : âα]

= −â†α : ∂2
N̂
Rj(ρ̂) : âα − 2 : ∂N̂Rj(ρ̂) :

= − : N̂∂2
N̂
Rj(ρ̂) : −2 : ∂N̂Rj(ρ̂) :

In summary we have:

− 1
λ

[â†α, [âα, Ψ̂jm]] = λj
∑ (â†1)m1(â†2)m2

m1!m2! : N̂∂2
N̂
Rj(ρ̂) + 2(j + 1)∂N̂R

′
j(ρ̂) : â

n1
1 (−â2)n2

n1!n2!

Remembering that ρ̂ = λN̂ , we can switch ‘derivatives’ from ∂N̂ to ∂ρ̂. More precisely, we
have N̂∂2

N̂
= N̂∂N̂λ∂ρ̂ = λρ̂∂2

ρ̂ and ∂N̂ = λ∂ρ. Setting ()′ ≡ ∂ρ we obtain the result.

It is important to note that the ‘differential operators’ ∂N̂ and ∂ρ̂ are only defined via
their action on the power series expansion of analytic functions. They cannot (yet) be
regarded as ordinary differential operators, since N̂ respectively ρ̂ are discrete ‘variables’,
that is, operators acting on the Fock subspace F .

3.3 The Hamiltonian and its eigenvalues

3.3.1 The potential term

The Laplace operator ∆λ from the previous section forms the kinetic part of the Hamil-
tonian H for the Coulomb problem in R3

λ (setting ~ = 1 and scaling the mass m such
that 1

2m = 1). The total Hamiltonian H is given as

H = −∆λ +V (r̂)

= 1
λr̂

[â†α, [âα, .]] + V (r̂) (3.21)

where V (r̂) is a rotationally invariant potential term yet to be determined. In the
commutative Coulomb problem V is the fundamental solution of the Laplace equation
∆u = 0. It turns out that the potential retains the same form in the non-commutative
case as the fundamental solution of ∆u = 0:
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Lemma 30. Let V (r̂) be a solution of ∆λ û = 0. Then V (r̂) is of the form

V (r̂) = −q
r̂

+ q0

where q and q0 are constants.

Proof. We need to solve [â†α, [âα, V (N̂)]] = 0. To this end, we restrict this equation to
FN for n1 + n2 = N :

[â†α, [âα, V (N̂)]]|n1, n2〉 = (â†αâαV (N̂)− â†αV (N̂)âα − âαV (N̂)â†α + V (N̂) âαâ†α︸ ︷︷ ︸
=N̂+2

)|n1, n2〉

The action of âα and â†α on |n1, n2〉 is:

â1|n1, n2〉 =
√
n1|n1 − 1, n2〉 â†1|n1, n2〉 =

√
n1 + 1|n1 + 1, n2〉

â2|n1, n2〉 =
√
n2|n1, n2 − 1〉 â†2|n1, n2〉 =

√
n2 + 1|n1, n2 + 1〉

Furthermore, if V is analytic then V (N̂)|n1, n2〉 = V (N)|n1, n2〉. Therefore,

â†1V (N̂)â1|n1, n2〉 = â†1V (N̂)
√
n1|n1 − 1, n2〉+

=
√
n1â

†
1V (N − 1)|n1 − 1, n2〉

= n1V (N − 1)|n1, n2〉

â†2V (N̂)â2|n1, n2〉 = n2V (N − 1)|n1, n2〉

â1V (N̂)â†1|n1, n2〉 = â1V (N̂)
√
n1 + 1|n1 + 1, n2〉

=
√
n1 + 1â1V (N + 1)|n1 + 1, n2〉

= (n1 + 1)V (N + 1)|n1, n2〉

â2V (N̂)â†2|n1, n2〉 = (n2 + 1)V (N + 1)|n1, n2〉,

and putting everything together we obtain

0 = [â†α, [âα, V (N̂)]]|n1, n2〉

= (NV (N)− (n1 + n2)V (N − 1)− (n1 + n2 + 2)V (N + 1)

+ V (N)N + 2V (N))|n1, n2〉.

Hence, the operator in the last line is zero,

2(N̂ + 1)V (N̂)− N̂V (N̂ − 1)− (N̂ + 2)V (N̂ + 1) = 0,
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and we rewrite this as a recurrence relation:

(N̂ + 2)V (N̂ + 1)− (N̂ + 1)V (N̂) = (N̂ + 1)V (N̂)− N̂V (N̂ − 1) (3.22)

For M ∈ N equation (3.22) implies that the operator (M̂ + 1)V (M̂) − M̂V (M̂ − 1) is
constant and therefore a multiple of the identity operator, say, q0. Set V (0) = q0 − q

λ

and compute (the summation over M̂ is symbolic and understood as summing over the
eigenvalues when acting on F):

N̂∑
M̂=1

(M̂ + 1)V (M̂)− M̂V (M̂ − 1) = N̂q0

(N̂ + 1)V (N̂)− V (0) = N̂q0

which gives the final result:

V (N̂) = − q

λ(N̂ + 1)
+ q0 = −q

r̂
+ q0

Therefore, the Hamiltonian of the Coulomb problem in R3
λ is

H = 1
λr̂

[â†α, [âα, .]]−
q

r̂
, (3.23)

where we have set q0 = 0.

3.3.2 Solving the Schrödinger equation

As in the commutative case, the constant q is obviously proportional to the square of
the unit charge e. With (3.23) the stationary Schrödinger equation is given as:

1
λr̂

[â†α, [âα, Ψ̂]]− q

r̂
Ψ̂ = EΨ̂

⇐⇒ 1
λ

[â†α, [âα, Ψ̂]]− qΨ̂ = −κ2r̂Ψ̂ with κ :=
√
−E (3.24)

Similarly to the commutative case, we look for solutions among the eigenfunctions Ψ̂jm

of L2 and L̂3. To this end, we need to calculate the action of r̂ on Ψ̂:

Lemma 31. Let Ψ̂jm be an eigenfunction of L2 and L̂3 as given in (3.16). Then

r̂Ψ̂jm = λj
∑ (â†1)m1(â†2)m2

m1!m2! : (ρ̂+ λj + λ)Rj(ρ̂) + λρ̂R′j(ρ̂) : â
n1
1 (−â2)n2

n1!n2! .
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Proof. We first calculate:

N̂ : N̂k : = â†α âαâ
†
α1︸ ︷︷ ︸

=â†α1 âα+δαα1

. . . â†αk âα1 . . . âαk

=: N̂k : +â†αâ†α1 âαâ
†
α2 . . . â

†
αk
âα1 . . . âαk

= 2 : N̂k : +â†αâ†α1 â
†
α2 âαâ

†
α3 . . . â

†
αk
âα1 . . . âαk

...

= k : N̂k : + : N̂k+1 :

Hence,

N̂ : Rj(ρ̂) : =: N̂Rj(ρ̂) : + : N̂∂N̂Rj(ρ̂) : . (∗)

Furthermore, we have

[N̂ , â†α] = [â†β âβ, â
†
α]

= â†β[âβ, â†α]

= â†α,

resulting in

N̂(â†1)m1(â†2)m2 = m1(â†1)m1(â†2)m2 + (ac†1)m1N̂(â†2)m2

= (m1 +m2)︸ ︷︷ ︸
=j

(â†1)m1(â†2)m2N̂ . (∗∗)

Using (∗) and (∗∗) we arrive at

r̂Ψ̂jm = λj
∑

λ(N̂ + 1)(â†1)m1(â†2)m2

m1!m2! : Rj(ρ̂) : â
n1
1 (−â2)n2

n1!n2!

= λj
∑ (â†1)m1(â†2)m2

m1!m2! λ(N̂ + j + 1) : Rj(ρ̂) : â
n1
1 (−â2)n2

n1!n2!

= λj
∑ (â†1)m1(â†2)m2

m1!m2! : (ρ̂+ λj + λ)Rj(ρ̂) + λN̂∂N̂Rj(ρ̂) : â
n1
1 (−â2)n2

n1!n2! ,

which is the desired result if we again change the ‘derivatives’ from ∂N̂ to ∂ρ̂ as in the
proof of Proposition 29.
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Hence, the Schrödinger equation

1
λ

[â†α, [âα, Ψ̂jm]]− qΨ̂jm = −κ2r̂Ψ̂jm (3.25)

can be translated into a ‘differential’ equation for the radial part of Ψ̂jm using Proposition
29 and Lemma 31:

: ρ̂R′′j (ρ̂) + 2(j + 1)R′j(ρ̂) + qRj(ρ̂) : = κ2 : ρ̂Rj(ρ̂) + λ((j + 1)Rj(ρ̂) + ρ̂R′j(ρ̂) : (3.26)

However, the use of derivatives in (3.26) should not be misunderstood. As ρ̂ is a discrete
‘variable’, i.e., an operator with discrete spectrum spec(ρ̂) = {λN | N ∈ N} acting
on the Fock space F , the ‘derivative’ R′j(ρ̂) is solely defined algebraically using the
representation of Rj(ρ̂) as a power series:

R′j(ρ̂) :=
∞∑
k=1

ckkρ̂
k−1 for Rj =

∞∑
k=0

ckρ̂
k

However, in either the commutative limit λ→ 0 or the quasi-classical limit N →∞ for
fixed λ, we can reinterpret R′j(ρ̂) as the analytic derivative of Rj(ρ̂) with respect to the
now continuous variable ρ̂.

Let us work in the quasi-classical limit in order to investigate any possible non-
commutative effects visible in the spectrum of H. To this end, we change from the
operator ρ̂ to the continuous variable ρ and associate the following ordinary differential
equation to (3.26):

ρR′′j + 2(j + 1)R′j + qRj = κ2(ρRj + λ((j + 1)Rj + ρR′j)) (3.27)

Since we are only interested in the energy levels of the solutions of (3.27), we are
not going to solve the ordinary differential equation explicitly. Rather, our strategy is
to bring it into a form resembling the radial Schrödinger equation for the commutative
Coulomb problem (cf. [25, p. 412, eq. (XI.4)]):

−R′′j +
(
j(j + 1)
ρ2 − q

ρ

)
Rj = −κ2Rj (3.28)

As we will see in the course of the computation, the right-hand side of (3.28) is going to
receive a correction term accounting for the effects stemming from the non-commutative
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setting. This is achieved by first introducing new variables:

R =: χS ⇒ R′ = χ′S + χS′

R′′ = χ′′S + 2χ′S′ + χS′′

Plugging this into (3.27) gives

ρχ′′S + 2ρχ′S′ + ρχS′′ + (2(j + 1)− κ2λρ)χ′S

+ (2(j + 1)− κ2λρ)χS′ + (q − κ2ρ− κ2λ(j + 1))χS = 0. (3.29)

Since we want to get rid of the first derivative in (3.27), we set the coefficient of S′ to
zero:

2ρχ′ + (2(j + 1)− κ2λρ)χ = 0 ⇔ χ′

χ
= −j + 1

ρ
+ κ2λ

2

Solving this differential equation for χ results in

χ = ρ−(j+1)eκ
2λρ/2 (3.30a)

χ′ =
(
−j + 1

ρ
+ κ2λ

2

)
χ (3.30b)

χ′′ =

j + 1
ρ2 +

(
−j + 1

ρ
+ κ2λ

2

)2
χ, (3.30c)

and inserting (3.30) into (3.29) we obtain

ρS′′ +
(
ρ

j + 1
ρ2 +

(
−j + 1

ρ
+ κ2λ

2

)2


+ (2(j + 1)− κ2λρ)
(
−j + 1

ρ
+ κ2λ

2

)
+ q − κ2ρ− κ2λ(j + 1)

)
S = 0. (3.31)

Carrying out the multiplications and dividing by ρ, we see that the majority of terms in
(3.31) cancel each other out; this results in

S′′ +
(
−j2 − j
ρ2 − λ2

4 κ
4 + q

ρ
− κ2

)
S = 0,
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which can be regrouped to give the final result:

−S′′ +
(
j(j + 1)
ρ2 − q

ρ

)
S =

(
−κ2 − λ2

4 κ
4
)
S (3.32)

3.3.3 Interpretation of the results

Comparing (3.32) with (3.28) we observe that the energy −κ2 in the commutative
Coulomb problem is replaced by the term −κ2− λ2

4 κ
4 in the non-commutative Coulomb

problem. We set −κ2 ≡ E and investigate the condition

E − λ2

4 E
2 = − C

M2 where M ∈ N and C = const. (3.33)

corresponding to bound states in the Coulomb problem. Solving for E gives the result

E = 2
λ2

1±

√
1 + λ2C

M2


= − C

M2 ×
2

1∓
√

1 + λ2C
M2

. (3.34)

Hence, the energy E in the non-commutative Coulomb problem consists of the well-
known energy levels −C/M2 for M ∈ N of the commutative problem (cf. [25, p. 417,
eq. (XI.17)]) and a factor 2(1∓

√
1 + λ2C/M2)−1 containing the non-commutative cor-

rections, see Figure 3.1. Observe that the correctional factor vanishes in the commutative
limit λ→ 0.

Figure 3.2 shows a plot of the energy function f(E) = E − λ2E2

4 and the first few
energy levels −C/M2 of the bound states. The spectrum is symmetric with respect to
the vertex at E = 2/λ2, the two branches resulting from the different signs in (3.34).
The region where f(E) > 0 corresponds to scattering states, which we do not consider
here. Furthermore, in the commutative limit λ→ 0 the distance 4/λ2 between the two
energy bounds at E = 0 and E = 4/λ2 goes to infinity. Thus, the second branch of f(E)
disappears, giving back the well-known energy levels in the (commutative) Coulomb
problem. Of course, this corresponds to the simple fact that f(E)→ E for λ→ 0.

Reintroducing ~, the electron mass me and the electron charge e into the equations,
the constant C can be computed. According to [11, Sec. 4], the value of C is (in Gaussian
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Figure 3.1: Comparison of the energy levels −C/M2 in the commutative case and
−C/M2 × 2(1∓

√
1 + λ2C/M2)−1 in the non-commutative case.

units)

C = mee
4

2~2 . (3.35)

This can be used to find an estimate for the non-commutativity parameter λ. After
including the physical constants into the equations, the energy levels (3.34) read

E = − C

M2 ×
2

1∓
√

1 + λ2

a2
0M

2

(3.36)

with C as in (3.35) and the Bohr radius a0 = ~2

mee2 in Gaussian units. The energy level
M = 1 corresponds to the ionisation energy of hydrogen, given by the Rydberg unit

1Ry = 13.605 692 53(30) eV.

Let us assume that the non-commutative correction factor 2
(

1 +
√

1 + λ2

a2
0

)−1
is in the

order of magnitude of the uncertainty of the Rydberg unit. This is achieved by setting
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Figure 3.2: Plot of the energy function f(E) and the energy levels −C/M2.

E = 13.605 692 83 eV . Solving (3.36) with M = 1 for λ then leads to

λ = a0

√(2C
E

+ 1
)2
− 1

≈ 4.67× 10−18m (3.37)

for the non-commutativity parameter λ. Let us compare this to the available amount of
energy in current particle accelerators. The LHC at CERN operates its two beams at
an energy of 4TeV each, resulting in E = 8TeV being released in the collision of the
beams. Employing E = hν and c = rν where ν is the frequency corresponding to the
operating energy E and r is the associated wavelength, we find a rough estimate for the
resolution of the LHC at

r = hc

E
≈ 10−18m.

This means that the order of magnitude of the non-commutativity parameter λ in (3.37)
should in principle be accessible to modern particle accelerators. However, at this scale
relativistic and quantum field theoretic effects have to be taken into account, which
would certainly modify the above reasoning and estimation.
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Abstract (German)

Die vorliegende Diplomarbeit behandelt den nichtkommutativen Raum R3
λ als physikal-

ischen Rahmen für quantenmechanische Problemstellungen. Zunächst wird die nicht-
kommutative Struktur dieses Raumes untersucht und ein Differentialkalkül konstruiert.
Dann wird das Coulomb-Problem auf R3

λ formuliert und dessen Energieniveaus werden
mit dem kommutativen Fall verglichen.

Das erste Kapitel enthält eine kurze Einführung in nichtkommutative Räume an-
hand der Moyalebene. Dazu werden auf diesem Raum sowohl das kanonische Moyal-
Sternprodukt als auch ein Sternprodukt basierend auf kohärenten Zuständen eingeführt.
Mit Hilfe der zweiten Methode definieren wir auch auf dem deformierten R3 ein Stern-
produkt und erläutern den Zusammenhang mit der Fuzzysphäre.

Im zweiten Kapitel werden Differentialkalküle auf nicht-kommutativen Räumen be-
handelt, wobei zunächst ein kurzer Überblick über den de Rham-Kalkül auf kommuta-
tiven Mannigfaltigkeiten gegeben wird. Dann führen wir den Universalkalkül auf allge-
meinen assoziativen Algebren mit 1 ein und geben außerdem eine kurze Einführung in
Quantengruppen. Wir entwickeln eine Methode einen Differentialkalkül auf Quanten-
gruppen zu konstruieren. Da der Raum R3

λ eine Quantengruppenstruktur besitzt, kann
diese Methode dazu verwendet werden, ein explizites Beispiel eines vierdimensionalen
Kalküls auf R3

λ anzugeben. Wir berechnen in diesem Kalkül die äußere Ableitung von
ebenen Wellen und vergleichen das Resultat mit dem kommutativen Fall.

Das dritte Kapitel beschäftigt sich mit dem Coulomb-Problem auf R3
λ. Dazu werden

die Drehimpulsoperatoren L̂i, i = 1, 2, 3 definiert und analog zur kommutativen Quan-
tenmechanik die Eigenfunktionen Ψ̂jm der Operatoren L2 :=

∑
i(L̂i)2 and L̂3 berechnet.

Diese erzeugen einen Hilbertraum, auf dem wir einen Laplace-Operator und einen Po-
tentialoperator definieren und somit den Hamiltonoperator des Coulomb-Problems bes-
timmen können. Die Berechnung des Spektrums des Hamiltonoperators führt auf eine
gewöhnliche Differentialgleichung zweiter Ordnung. Deren Lösungen bestehen aus den
bekannten Energieniveaus des kommutativen Problems sowie einem Korrekturterm, der
im kommutativen Limes λ → 0 verschwindet. Weiters wird eine Abschätzung für den
Nichtkommutativitätsparameter λ angegeben.
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Abstract (English)

The thesis at hand discusses the non-commutative space R3
λ as a physical framework

for quantum mechanical problems. After investigating its non-commutative structure
and constructing a differential calculus, we formulate the Coulomb problem on R3

λ and
compare its energy levels to the commutative case.

In the first chapter we give a short introduction to non-commutative spaces on the basis
of the Moyal plane, defining both the canonical Moyal star product and a star product
based on coherent states. We then specialize to deformed R3 and adapt the previous
method of using coherent states to define a star product on this space. Furthermore,
the connection between R3

λ and the fuzzy sphere is made clear.
The second chapter deals with differential calculi on non-commutative spaces, starting

with a short overview of the de Rham-calculus on commutative manifolds. A treatment
of the universal calculus on arbitrary associative unital algebras is followed by an intro-
duction to quantum groups. We develop a method to construct a differential calculus on
quantum groups and apply it to R3

λ after identifying its quantum group structure. The
chapter concludes with the definition of an explicit four-dimensional differential calculus
on R3

λ. We calculate the action of the exterior derivative on plane waves and learn that
the results from the commutative de Rham-calculus are recovered in the commutative
limit λ→ 0.

In the third chapter we discuss the Coulomb problem formulated on R3
λ. To this end,

we define the angular momentum operators L̂i, i = 1, 2, 3 and identify the eigenfunc-
tions Ψ̂jm of L2 :=

∑
i(L̂i)2 and L̂3, in analogy to commutative quantum mechanics.

The eigenfunctions Ψ̂jm span a Hilbert space, on which we define a Laplace operator
and a potential operator, leading to the Hamiltonian of the non-commutative Coulomb
problem. The computation of the spectrum of the Hamiltonian amounts to solving an
ordinary second-order differential equation. Its solutions consist of the usual energy lev-
els of the commutative problem multiplied by a non-commutative correction term, which
vanishes in the commutative limit. We also provide an estimate of the non-commutativity
parameter λ.
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