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Chapter 1

Introduction

Greenberger-Horne-Zeilinger or GHZ states are a superposition of two maximally
distinct three-qubit states [1]. In some sense they can be considered as maxi-
mally entangled. They have been studied intensively in the last years and many
interesting applications have emerged:

• quantum teleportation [2],

• quantum entanglement swapping [3],

• quantum computing [4],

• quantum cryptography [5] and

• quantum information [6].

Moreover it could be shown in [7] that GHZ states violate local realism in an
extreme form, leading to a Bell inequality check that can be effectuated in only
one experiment.

In the three qubit case states have a much richer structure than two qubit states.
Whereas two qubits can be separable or entangled, in the three qubit case we
have a larger spectrum of possibilities; states can here be completely separable,
biseparable or tripartite entangled and there are even two classes of tripartite
entanglement: GHZ or W type states. These tripartite entanglement classes are
not equivalent!

The association to one of these entanglement classes is much more difficult to
establish, and especially the well known PPT criterion – widely used in the two
qubit case – is not a necessary and sufficient condition in the tripartite qubit case.

1



In the last years many entanglement measures have been developed for this case,
at least for quite a lot of special cases [8], [9].

Studying geometrical properties can give us new ideas and insights to (sometimes
very strange) properties and applications of quantum states. Especially inter-
esting are geometrical connections between states of different entanglement or
separability types, since structures are more sophisticated for multipartite situa-
tions. Different geometrical representations and perspectives can give us a broader
understanding of the complicated structures.

In this work we will give a very short overview of the basic mathematical formalism,
a very concise overview of the bipartite situation and finally a collection of different
findings regarding the three-qubit case.

Throughout the work, but especially for the last chapter, Wolfram Mathematica
Software has been used to perform calculations and drawings. Most, but not all
of these calculations could have been made without this software, but since done
by hand tend to be very time consuming, it made life much easier.
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Chapter 2

Basics and mathematical
formalism

2.1 Quantum states

The state of a quantum mechanical system is represented by a vector in a Hilbert
space H, meaning a complex vector space equipped with an inner product. In this
work we will consider quantum systems where corresponding physical quantities
allow only a limited number of results as outcome of their measurements. Therefore
we use a finite dimensional Hilbert space for the mathematical representation [10].

Our main focus will be restricted to studying two-state systems, so that pure states
|ψ〉 can be represented by vectors in the two dimensional Hilbert space H = C2.
The spin of an electron or the polarization of a single photon are well studied
examples of this type.

Vectors of this two dimensional space can be written as linear combinations of
two vectors forming a basis of the corresponding Hilbert space. Often these basis
vectors are written as |0〉 and |1〉 and it is assumed that they are normalized and
orthogonal:

〈0|0〉 = 1, 〈1|1〉 = 1 and 〈0|1〉 = 0 (2.1.1)

The notation |0〉 and |1〉 suggests an analogy to a bit in information theory, so
in quantum theory two-state systems are often called qubits. But there are some
serious differences: whereas in a two-state quantum system, vectors like the su-
perposition 1√

2
(|0〉 + i |1〉) can be interpreted as a state with a physical meaning,

ordinary bits in information theory can only take the values 0 or 1.

In the context of concrete physical systems we come up with different notations.
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For example:

• In experiments with spin 1
2

particles instead of |0〉 , |1〉, the basis vectors
|↑〉 , |↓〉 (for spin up and spin down) are used in an absolutely equivalent way.
More precisely, if Sx, Sy, Sz are the corresponding components of the angular
momentum (measured in units of ~), |0〉 = |↑〉 corresponds to Sz = +1

2
and

|1〉 = |↓〉 to Sz = −1
2
. For the x- and y-components we obtain the following

correspondences:

Sx = +1
2
↔ 1√

2
(|0〉+ |1〉), Sx = −1

2
↔ 1√

2
(|0〉 − |1〉)

Sy = +1
2
↔ 1√

2
(|0〉+ i |1〉), Sy = −1

2
↔ 1√

2
(|0〉 − i |1〉) (2.1.2)

• In quantum optics, polarization of photons is noted as |H〉 , |V 〉 for polar-
ization in horizontal or vertical direction respectively. In this context some
rotated bases are frequently used and the following representation can be
taken for bases |0〉 , |1〉 or correspondingly |H〉 , |V 〉 in C2.

|H〉 = |0〉 =

(
1
0

)
, |V 〉 = |1〉 =

(
0
1

)
(2.1.3)

The rotated basis for photons polarized along ±45◦ is written as

|+45◦〉 = |+〉 =
1√
2

(|H〉+ |V 〉) =
1√
2

(
1
1

)
,

|−45◦〉 = |−〉 =
1√
2

(|H〉 − |V 〉) =
1√
2

(
1
−1

)
(2.1.4)

and right |R〉 and left |L〉 circularly polarized photons take the form

|R〉 =
1√
2

(|H〉+ i |V 〉) =
1√
2

(
1
i

)
,

|L〉 =
1√
2

(|H〉 > −i |V 〉) =
1√
2

(
1
−i

)
(2.1.5)

similar to the correspondences in the spin 1
2

particle case.
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2.2 Density matrices

Vectors in a Hilbert spaceH represent pure states, which are well suited for isolated
systems. In a general quantum mechanical system, we also need to describe mixed
states. The following mixture of quantum states |ψi〉 with respective probabilities
pi, will be represented by a C2 × C2 density matrix (see for example [11])

ρ =
∑
i

pi |ψi〉 〈ψi| , pi ≥ 0,
∑
i

pi = 1 (2.2.1)

To make sure that the density matrix ρ corresponds to physical states, the following
properties must be fulfilled:

• ρ ≥ 0: ρ is a ”positive” matrix in the sense that all its eigenvalues are
non-negative (actually this means the matrix is positive semi-definite)

• ρ = ρ†: ρ is self-adjoint

• tr ρ = 1: The trace of a density matrix is equal to 1

• tr ρ2 ≤ 1: The trace of the square of a density matrix is smaller than or
equal to 1

• ρ2 = ρ: the square of the density matrix equals the density matrix if the
state is pure and therefore, in this case only, tr ρ2 = tr ρ = 1
Remark: 1− tr ρ2 could therefore be used as measure for mixedness.

Actually states represented in this form are elements of the Hilbert-Schmidt space;
the space of operators acting on vectors of the corresponding Hilbert space A. And
indeed, for pure states the density matrix ρ = |ψ〉 〈ψ| is an operator of this form,
namely just the projector onto the corresponding vector state |ψ〉.
The trace operation is defined as

trA =
∑
i

Aii =
∑
i

〈i|A |i〉 (2.2.2)

with an orthogonal basis {|i〉} and Aii the matrix elements in the diagonal of A.
The value of the trace is independent of the choice of the basis and equal to the
sum of the eigenvalues λi of A

trA =
∑
i

λi (2.2.3)
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The trace operator provides an inner product of two elements A, B of the Hilbert-
Schmidt space:

〈A,B〉 = Tr(A†B) (2.2.4)

and also a norm
‖A‖ =

√
〈A,A〉 =

√
Tr(A†A). (2.2.5)

The Hilbert-Schmidt distance is then defined as

d(A,B) = ‖A−B‖. (2.2.6)

Considering an observable O for a quantum state ρ, its expectation value is given
by

〈O〉ρ = tr(ρO). (2.2.7)

For a pure quantum state with density matrix ρ = |ψ〉 〈ψ|, the expectation value
is given by

〈O〉ρ = tr(ρO) = 〈ψ|O |ψ〉 . (2.2.8)

This shows that the density matrix contains all the information that is physically
important.

The matrix elements of the density matrix can easily be obtained using the stan-
dard basis {|i〉} as

ρij = 〈i| ρ |j〉 , (2.2.9)

allowing us to write the density matrix for a qubit in the following way:

ρ =

(
〈0| ρ |0〉 〈0| ρ |1〉
〈1| ρ |0〉 〈1| ρ |1〉

)
(2.2.10)

2.3 Bloch sphere

In two-level quantum systems (qubits) pure states can be geometrically represented
as points on a Bloch sphere (in optics called Poincaré sphere).

A pure state |ψ〉 can be written as a superposition of the basis vectors {|0〉 , |1〉}

|ψ〉 = a |0〉+ b |1〉 , a, b ∈ C, |a|2 + |b|2 = 1. (2.3.1)

The representation can also be given in spheric coordinates (see Figure 2.1 below)
assigning to a state |ψ〉 the point with the following coordinates:

x = sin 2θ cosφ
y = sin 2θ sinφ
z = cos 2θ
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with −π
2
≤ θ < π

2
and 0 ≤ φ < 2π.

Figure 2.1: Bloch sphere (image from Wikimedia commons)

With this representation we assign the point

0
0
1

 to |0〉 and

 0
0
−1

 to |1〉 – say

as the north– and the south–pole. More generally orthogonal quantum states cor-
respond to antipodes, points on opposite sides of the sphere.
Mixed states correspond to points in the interior of the sphere. For qubits the
density matrices ρ are complex 2 × 2 hermitian matrices that can be represented
als linear combinations of the two-dimensional Identity matrix and the three her-
mitian, traceless Pauli-matrices

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

ρ =
1

2
(I + ~a · ~σ) (2.3.2)

The three-dimensional Bloch vector ~a now represents a point in the Bloch-sphere.
This means every 2× 2 density matrix can be thought of as a point on or inside a
sphere. Points on the hull of the sphere represent pure states and points inside the
sphere correspond to mixed states with the point in the center corresponding to

the origin

0
0
0

, representing the maximally mixed state 1
2
I. The density matrix
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|0〉 〈0| =
(

1 0
0 0

)
corresponding to the pure state |0〉 is obviously again related to

the point ~a =

0
0
1

, for in this case we obtain

1

2
(I + ~a · ~σ) =

1

2
(I + σz) =

1

2
(

(
1 0
0 1

)
+

(
1 0
0 −1

)
) =

(
1 0
0 0

)
. (2.3.3)

Eigenvalues of ρ are given by 1
2
(1 ± |~a|). Since ρ has to be positive semidefinite,

we need |~a| ≤ 1 to obtain physical states.

Points on the surface of the Bloch sphere fulfill |~a| = 1 which is in accordance with
tr ρ2 = tr ρ = 1, since tr ρ2 = 1

2
(1 + |~a|2) equal to 1 exactly if and only if |~a| = 1,

which is right on the surface of the Bloch sphere.
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Chapter 3

Bipartite systems

3.1 Vector states

Instead of one qubit, let us now consider a quantum system of two subsystems.
Let HA and HB be Hilbert spaces of the two subsystems of observer Alice and
Bob. State vectors of composite systems are suitably described by elements of the
composite Hilbert space which is the tensor product of the Hilbert spaces of the
subsystems: HAB = HA ⊗HB.

The dimension of the new Hilbert space is the product of the dimensions of the
subsystems:

dimHAB = dimHA · dimHB, (3.1.1)

in case of two qubits the dimension is dimHAB = 2 · 2 = 4.

Remark 3.1.1 In situations where there is no ambiguity, we often omit the in-
dices A and B.

The Hilbert space HAB consists of all the vectors of the form

|ψ〉 =
∑
i

∑
j

cij |ai〉 ⊗ |bj〉 (3.1.2)

for some coefficients cij, where {|ai〉} and {|bj〉} are orthonormal bases of HA and
HB. So {|ai〉 ⊗ |bj〉} form obviously a basis in HAB. In the special case of two
qubits the composite Hilbert space consists of the vectors

|ψ〉 = c00 |0〉 ⊗ |0〉+ c01 |0〉 ⊗ |1〉+ c10 |1〉 ⊗ |0〉+ c11 |1〉 ⊗ |1〉 . (3.1.3)
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For convenience we often write the tensor product |a〉 ⊗ |b〉 using the shorter form
|a〉 |b〉 or even shorter as |ab〉, giving us the compact form

|ψ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 . (3.1.4)

The inner product in HAB is given by

〈ψA ⊗ ψB|φA ⊗ φB〉 = 〈ψA|φA〉 〈ψB|φB〉 , ψA, φA ∈ HA, ψB, φB ∈ HB (3.1.5)

using again as a shorter notation |φA ⊗ φB〉 = |φA〉 ⊗ |φB〉.

A vector state or pure state |ψ〉 ∈ HAB that can actually be written as |ψ〉 =
|ψA〉 ⊗ |ψB〉 is called a product state. States that cannot be written in this form
are called entangled states.

In most cases it is not really evident whether a vector state written in the form
of (3.1.2) is a product state or not, because |ψA〉 as well as |ψB〉 could be linear
combinations of basis states.

Example 3.1.1 The state |00〉+ |01〉+ |10〉+ |11〉 can be written as (|0〉+ |1〉)⊗
(|0〉+ |1〉) and therefore is a product state.

Physically the definition of a product state means that states are uncorrelated.
If Alice measures an observable A and Bob an observable B, the measurement
outcome of Alice does not depend on Bob’s outcome.

3.2 Operators, Density matrices

Operators acting on vectors of the Hilbert space HAB form themselves a Hilbert
space called the Hilbert-Schmidt space AAB. The tensor product of operators is
defined by their action on vectors (of a basis). Let A ∈ AA and B ∈ AB be
operators of the Hilbert-Schmidt spaces associated to HA and HB:

(A⊗B)(|ai〉 ⊗ |bj〉) = A |ai〉 ⊗B |bj〉 . (3.2.1)

Any operator O ∈ AAB can be expressed as linear combination of tensor products
of operators in the subspaces:

O =
∑
i

∑
j

oijAi ⊗Bj, Ai ∈ AA, Bj ∈ AB. (3.2.2)

Observables A and B of the subspaces can be integrated in the Hilbert-Schmidt
space AAB in the following way:
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A⊗ IB (3.2.3)

IA ⊗B (3.2.4)

with IA and IB the identity operators in the corresponding subspaces.

In section (2.2) we introduced density matrices to represent states and especially
mixed states, noting that for pure states the density matrix ρ = |ψ〉 〈ψ| is an
operator of the Hilbert-Schmidt space. Again, the density matrix for composite
systems is an operator acting on HA ⊗ HB, meaning it is an element of AAB.
For two-state systems the dimension is dimHAB = 4, so our density matrices are
complex 4×4-matrices. If subsystems A and B are uncorrelated, the density matrix
of the composite system is given by the tensor product of the density matrices ρA

and ρB of the subsystems:
ρ = ρAB = ρA ⊗ ρB. (3.2.5)

The expectation value of the tensor product of operators is then given by

〈A⊗B〉ρ = tr(A⊗B)ρ = tr(AρA ⊗BρB). (3.2.6)

Let us define the trace of an operator O ∈ AAB as∑
i,j

〈ai| ⊗ 〈bj|O |ai〉 ⊗ |bj〉 (3.2.7)

and the partial traces over the respective subspaces as

trB O =
∑
j

〈bj|O |bj〉 (3.2.8)

or
trAO =

∑
i

〈ai|O |ai〉 . (3.2.9)

It then is easily seen that the partial traces of a product operator are given by

trA(A⊗B) = trA(A)B and trB(A⊗B) = trB(B)A (3.2.10)

and the trace of a product operator is just the product of the partial traces

tr(A⊗B) =
∑
i

〈ai|A |ai〉 ·
∑
j

〈bj|B |bj〉 = trA(A) · trB(B). (3.2.11)

For the expectation value of equation (3.2.6) we then obtain

〈A⊗B〉ρ = trAAρ
A. trB Bρ

B = 〈A〉ρA · 〈B〉ρB . (3.2.12)
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Especially for a density matrix ρ ∈ AAB we can just obtain reduced density matrices
which describe states on the subsystems with the help of partial traces:

ρA = trB ρ ∈ AA (3.2.13)

ρB = trA ρ ∈ AB. (3.2.14)

The reduced density matrix ρA describes completely statistical properties of the
subsystem A for observables O = OA ⊗ IB (where OA is the part concerning the
subsystem A):

〈O〉ρ = trOρ = tr(OA ⊗ IB)ρ = trAOAρ
A = 〈OA〉ρA (3.2.15)

For a concise overview of operators and partial traces see [12], Chapter 6.

3.3 Schmidt decomposition

Vectors |ψ〉 ∈ HAB = HA ⊗ HB describe bipartite pure states. For every such
vector, orthonormal bases exist (not necessarily unique) – called the Schmidt-
bases – in the Hilbert space HA {|χi〉A ∈ HA} as well as in the second Hilbert
space HB {|χi〉B ∈ HB} such that

|ψ〉 =
∑
i

ci |χi〉A ⊗ |χi〉B (3.3.1)

where ci ∈ C are called the Schmidt coefficients. In fact – resulting from the
singular value decomposition theorem [13] – a basis can be found so that ci take
non-negative real values. These real values are the square roots of the eigenvalues
of the matrix CC†, where matrix C = (cij) contains the coefficients from equation
(3.1.2). See for example Nielsen/Chuang [14].

The Schmidt decomposition of a pure state allows definition of the Schmidt rank
rS(ρ), which is the number of positive coefficients ci in the Schmidt decomposition.
This Schmidt rank is an invariant under local unitary transformations, meaning
that it does not depend on a particular Schmidt basis.

Remark 3.3.1 Pure product states have Schmidt rank one. This fact can be used
to determine if a pure state is separable or not (see below).

Remark 3.3.2 For a pure state ρ the reduced density matrices ρA = trB ρ and
ρB = trA ρ have the same eigenvalues [14].
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3.4 Separability and entanglement

3.4.1 Entanglement of pure states

A pure state in a composite system |ψ〉AB ∈ HA⊗HB is called a separable state iff it
can be written as tensor product of two state vectors of the composing subsystems
|ψ〉A ∈ HA and |ψ〉B ∈ HB

|ψ〉AB = |ψ〉A ⊗ |ψ〉B . (3.4.1)

The density matrix ρAB = ρA ⊗ ρB can then be associated to the state |ψ〉AB.

A state is called entangled if it is not separable.

Using the Schmidt decomposition, we can say that the state |ψ〉AB is entangled if
the Schmidt number NS > 1, else if NS = 1 the state |ψ〉AB is separable, it is a
product state.

If for a given density matrix ρ of a pure state, a subsystem ρA = trB ρ or ρB =
trA ρ is mixed, then ρ was entangled. This result is a characteristic feature of
entanglement: tracing a pure entangled state over subsystems results in a mixed
state.

For a test of purity or mixedness of the subsystem, we could check if tr(ρA)2 < 1.

Remark 3.4.1 If the system is in a pure state ρ = |ψ〉 〈ψ|, the corresponding
reduced density matrices ρA and ρB have the same eigenvalues (see [15]).

A very special basis of HA ⊗HB is the Bell basis consisting of four orthonormal,
maximally entangled pure Bell states:∣∣φ−〉 =

1√
2

(|0〉 |0〉 − |1〉 |1〉) (3.4.2)

∣∣φ+
〉

=
1√
2

(|0〉 |0〉+ |1〉 |1〉) (3.4.3)

∣∣ψ−〉 =
1√
2

(|0〉 |1〉 − |1〉 |0〉) (3.4.4)

∣∣ψ+
〉

=
1√
2

(|0〉 |1〉+ |1〉 |0〉) (3.4.5)

These states are maximally entangled in the sense that tracing over one of the
constituting subspaces gives a maximally mixed state 1

2
I2.
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The density matrices for the Bell states are given by

ω± =
∣∣φ±〉 〈φ±∣∣ =

1

2


1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1

 (3.4.6)

and

ρ± =
∣∣ψ±〉 〈ψ±∣∣ =

1

2


0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

 (3.4.7)

3.4.2 Entanglement of mixed states

For density matrices a state ρ is said to be a product state if states ρA for Alice
and ρB for Bob exist, such that the state can be written as

ρ = ρA ⊗ ρB. (3.4.8)

Generally, for the mixed case, we extend the pure state definition of separability
so that we can define a mixed state as separable if it can be written as

ρ =
∑
i

piρ
A
i ⊗ ρBi , pi ≥ 0,

∑
i

pi = 1. (3.4.9)

We could interpret this in the sense that Alice and Bob ”produce” states ρAi and
ρBi locally, based on the outcome i of a shared random number generator. There-
fore, using only local operations and classical communication (LOCC) they finally
produce the state ρAi ⊗ ρBi with probability pi.

If such a formulation is not possible, the mixed state is called entangled.

Remark 3.4.2 The set of separable states is obviously a convex set, because they
are defined in (3.4.9) as a convex combination of pure product states. The set of
separable states is thus the convex hull of the pure product states.

Unfortunately in this case simply checking mixedness of subsystems to confirm
entanglement does not suffice.

Example 3.4.1 Take ρ = 1
4
I = 1

4
(|0〉 〈0|⊗|0〉 〈0|+|0〉 〈0|⊗|1〉 〈1|+|1〉 〈1|⊗|0〉 〈0|+

|1〉 〈1| ⊗ |1〉 〈1|) and evidently ρA = TrBρ = 1
2
IA, a mixed state, while the original

state ρ is the maximally mixed state and obviously separable and not entangled.
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This means that we have to find more sophisticated ways to discriminate between
separable and entangled states in the mixed case. The general problem to deter-
mine whether a mixed state is entangled or separable is a very difficult task (see
for example [16]).

Figure 3.1: Schematic picture of the set of all states with the set of separable states as
a convex subset. It should be stressed that the extremal points of the set of separable
states (the pure product states), are also extremal points of the set of all physical states
(taken from Gühne/Toth’s review article [17])

In case of 2 × 2 and 2 × 3 a necessary and sufficient condition for separability is
known, which we will discuss in the next section. For all other cases no general
necessary and sufficient condition is known. Instead, entanglement measures are
calculated or geometric techniques like entanglement witnesses are used (see section
(3.5)) to analyse entanglement and separability properties.

Important examples for mixed states (in C2 ⊗ C2) :

1. The maximally mixed state ρ = 1
4
I4 = 1

4
I2 ⊗ I2 is separable (see previous

example)

2. The so-called Werner states [18], a mixture of the maximally mixed and one
of the Bell states, for example

ρW = α
∣∣φ+
〉 〈
φ+
∣∣+

1− α
4

I2 ⊗ I2 (3.4.10)

Werner states are invariant under the transformation U ⊗ U , if U is unitary
[19]. Isotropic states are a similar family, where transformations of the form
U ⊗ U∗ let the state be invariant (U∗ denotes complex conjugate).
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3. States with density matrices being diagonal in the Bell basis are called Bell-
diagonal states, meaning they are a mixture of the four Bell states:

p1

∣∣ψ−〉 〈ψ−∣∣+ p2

∣∣ψ+
〉 〈
ψ+
∣∣+ p3

∣∣φ−〉 〈φ−∣∣+ p4

∣∣φ+
〉 〈
φ+
∣∣ (3.4.11)

with
∑
pi = 1. The corresponding density matrix is of a very symmetric

form

1

2


p4 + p3 0 0 p4 − p3

0 p2 + p1 p2 − p1 0
0 p2 − p1 p2 + p1 0

p4 − p3 0 0 p4 + p3

 (3.4.12)

and the geometry of these states will be studied in section 3.7

3.4.3 Positive Partial Transpose Criterion

The positive partial transpose (PPT) test is most useful to discriminate between
entanglement and separability of bipartite states. It is a necessary condition for
separability as first noted by Asher Peres [20] and was also shown sufficient for
systems composed of two qubits or one qubit and one qutrit 1996 by Micha l, Pawe l
and Ryszard Horodecki [21]. For higher dimensions it is still useful as a necessary
condition for separability of bipartite states.

To state the criterion we need the following definitions:

Definition 3.4.1 A linear map M : H → H is called positive if and only if M
maps positive operators of the Hilbert space H onto positive operators of H, i.e.

A ≥ 0⇒M(A) ≥ 0, ∀A ∈ H (3.4.13)

Definition 3.4.2 A positive linear map M : H → H is called completely positive
if under every extension to higher dimensions it remains positive, i.e. if

M ⊗ Ik : H⊗Mk → H⊗Mk (3.4.14)

is again a positive map for k = 2, 3, ..., where Mk is the matrix space of k × k
complex matrices and Ik its identity matrix.

Definition 3.4.3 Let ρ be the density matrix of a state acting on HA ⊗HB: We
can represent ρ as

ρ =
∑
i,j,k,l

pijkl |i〉 〈j| ⊗ |k〉 〈l| . (3.4.15)

Partial transposition (with respect to B) applied to ρ, ρTB = (I ⊗ T )ρ acts on the
A party as an identity map and on the B party as a transposition map.
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A very nice illustration of process and meaning of partial transposition can be
found in [22].

It was noted by Peres [20] and especially the Horodecki’s [21], that for a separable
state ρsep =

∑
i ρ

A
i ⊗ ρBi positive maps, extended to higher dimensions, preserve

positivity, but for entangled states ρent this need not be true

(M ⊗ Ik)ρsep =
∑
i

MρAi ⊗ ρBi ≥ 0. (3.4.16)

For entangled states we can find a positive, but not completely positive map, such
that

(M ⊗ Ik)ρent ≤ 0. (3.4.17)

Moreover, Peres noticed that partial transposition is such a positive map, where a
distinction between separable and entangled states is possible, at least for dimen-
sions 2× 2 or 2× 3.

Now we can formulate the following Theorem

Theorem 3.4.1 (The PPT Criterion). For a bipartite separable state ρ the partial
transposition is a positive operator

ρTB = (I⊗ T )ρ ≥ 0. (3.4.18)

If for a given state, after partial transposition, negative eigenvalues occur, we know
that the state has to be entangled. The criterion is even necessary and sufficient,
but only for low dimensional cases.

Theorem 3.4.2 (Horodecki Theorem). If ρ is a state operating on H2 ⊗ H2 or
H2 ⊗H3, then ρTB ≥ 0 also implies that ρ is separable.

For higher dimensions the criterion is only necessary for separability. States –
in higher dimensions – exist, that fulfill the PPT criterion, but are nevertheless
entangled. These states are called bound entangled states.

Example 3.4.2 An interesting one-parametric family are the Werner states [18]
defined in section 3.4.2. In the 2× 2 qubit case the density matrix is of the form

ρWα =


1−α

4
0 0 0

0 1+α
4

−α
2

0
0 −α

2
1+α

4
0

0 0 0 1−α
4

 (3.4.19)
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if we take the mixture of the maximally mixed state and the |ψ−〉 Bell state. Since
the Eigenvalues are then λ1 = λ2 = λ3 = 1−α

4
and λ4 = 1+3α

4
, the state is physically

defined for −1
3
≤ α ≤ 1.

Taking the partial transposition of ρWα as in Definition 3.4.3, we obtain the matrix

ρTBWα
=


1−α

4
0 0 −α

2

0 1+α
4

0 0
0 0 1+α

4
0

−α
2

0 0 1−α
4

 (3.4.20)

with the eigenvalues: λTB1 = λTB2 = λTB3 = 1+α
4

and λTB4 = 1−3α
4

.

The first three eigenvalues are non-negative for the whole allowed interval of the
parameter −1

3
≤ α ≤ 1, but λTB4 can take negative values. So considering the PPT

criterion 3.4.1, we obtain:

−1

3
≤ α ≤ 1

3
⇒ λTB4 ≥ 0 ⇒ ρWα is separable

1

3
< α ≤ 1 ⇒ λTB4 < 0 ⇒ ρWα is entangled

3.5 Entanglement measures

In the last section a useful criterion to discriminate between separable and en-
tangled states was introduced, but in a fully satisfying way it only works in low-
dimensional cases 2×2 or 2×3. For higher dimensions we would like to find some
measures to decide if and how much quantum states are entangled. To this end,
several entanglement measures, meaning mappings E from density matrices into
non-negative real numbers, have been suggested. To be useful as an entanglement
measure, E shoud fulfill several requirements, but it is not clear if all of the prop-
erties below are really necessary. None of the suggested entanglement measures
fulfill all of these requirements (see [23], [24], [25]):

• Zero entanglement for separable states: If ρ is separable the entanglement
measure should be zero; the entanglement measure should not show any
entanglement in a separable state
ρ is separable⇔ E(ρ) = 0

• Invariance under local unitary transformation: Local unitary operations
UA, UB leave E(ρ) invariant, i.e.
E(ρ) = E(UA ⊗ UB ρU †A ⊗ U

†
B).
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• No increase under LOCC: Entanglement measures cannot increase under
local operations and classical communication (LOCC) Θ:
E(ρ) ≥ E(Θρ)

• Continuity: The entanglement measure should be continuous. If the Hilbert-
Schmidt distance between two states vanishes, the difference between their
entanglement should also go towards zero
E(ρ1)− E(ρ2)→ 0 for ‖ρ1 − ρ2‖ → 0

• Additivity: Entanglement of a composite system is equal to the sum of the
entanglements of the constituting systems
E(ρ⊗ σ) = E(ρ) + E(σ)

• Subadditivity: Additivity is sometimes considered as being too strong. In-
stead then subadditivity can be required
E(ρ⊗ σ) ≤ E(ρ) + E(σ)

• Convexity: The entanglement measure is convex, meaning
E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1− λ)E(ρ2), 0 ≤ λ ≤ 1

• Normalization: Entanglement of a maximally entangled state should be 1.

• Computability: The entanglement measure should be efficiently computable
for every state.

Up to now no entanglement measure is known, that can fulfill all of these require-
ments. Especially, the computability requirement turns out to be hard to fulfill in
higher dimensions. In the following subsections we will consider several suggested
entanglement measures for pure and also for mixed states. This overview is of
course very incomplete.

3.5.1 Entanglement measures for pure states

For pure states we can readily find entanglement measures considering mixedness
and entropy.

Mixedness (see section 2.2) of subsystems can be used as a separability criterion
for a pure state ρ = ρA ⊗ ρB, meaning that the mixedness of the subsystems
ρA and ρB can help us quantify entanglement. From a high degree of mixedness
of reduced density matrices one can derive a strong entanglement of the original
state. Entanglement can be seen as the amount of information contained in the
system, but not in the subsystems.

19



Mixedness of the subsystems or information contained therein can be measured
with different types of entropy. From there we can deduce a measure for entangle-
ment of the composite system.

• Mixedness of the subsystems could be measured using M(ρ) = 1 − tr(ρ2),
also called linear entropy, which takes values between 0 for a pure state and
1 − 1

d
(d dimension of ρ) for the maximally mixed state. Normalized as

d
d−1

(1− tr(ρ2)) it will take values between 0 and 1.

Remark: Linear entropy is a first order approximation of von Neumann
entropy (see below).

• A natural extension of Shannon entropy in classical information theory
−
∑

i pi log pi (pi discrete probability distribution with pi ≥ 0 and
∑
pi = 1)

is the von Neumann entropy in quantum mechanics for a given density matrix
ρ

S(ρ) = − tr(ρ log(ρ)). (3.5.1)

If λi are the eigenvalues of ρ, the von Neumann entropy of ρ is the Shannon
entropy of the eigenvalues of ρ

S(ρ) = −
∑

λi log λi. (3.5.2)

The range of von Neumann Entropy is 0 ≤ S(ρ) ≤ 1 (with log to base d) for
all density matrices ρ, with S(ρ) = 0 for pure states and S(ρ) = 1 for the
totally mixe state ρ = 1

d
Id.

For general mixed states ρ with spectral decomposition
∑
pi |φi〉 〈φi| the von

Neumann entropy coincides with Shannon entropy.

Remark: Moreover, von Neumann Entropy is invariant under unitary trans-
formation U: S(UρU †) = S(ρ). So under unitary transformation pure states
remain pure and mixed states remain mixed!

• A generalization of Shannon entropy is the Renyi-α-entropy, which is used as
a measurement for diversity, or randomness in a system and can be used in
the quantum version as a measurement of entanglement for quantum states.
In its quantum version it is defined as

Sα(ρ) =
1

1− α
log tr(ρα) (3.5.3)

with α ≥ 0, α 6= 1.

For pure states ρ the Renyi entropy is again Sα(ρ) = 0 and for mixed states
Sα(ρ) > 0.
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Remark: Taking the limit of the Renyi-Entropy for α → 1 , we obtain the
von Neumann entropy: limα→1 Sα(ρ) = S(ρ)

Therefore we can define the following measure for entanglement

Definition 3.5.1 For a pure bipartite state ρ = ρA ⊗ ρB the following measure

E(ρ) := S(ρA) = S(ρB) (3.5.4)

is called entropy of entanglement.

Remark 3.5.1 If ρ is a product state, E(ρ) = 0, that means the minimum value
of the entropy measure is 0.

For product states (pure, separable) S(ρA) = S(ρB) and therefore E(ρ) = 0 is a
consequence of the very remarkable fact, that the eigenvalues of the reduced density
operators ρA and ρB are identical, see section 3.3 for the Schmidt decomposition.

For entangled states – again because of the Schmidt decomposition – we have
S(ρA) = S(ρB) > 0.

Remark 3.5.2 The maximal value is log d. Take for example

|ψ〉 =
1√
d

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B + · · ·+ |d− 1〉A ⊗ |d− 1〉B). (3.5.5)

Alternatively we could formulate this with help of the Schmidt rank for pure states:

rS(ρ) = 1⇔ ρ is separable

rS(ρ) > 1⇔ ρ is entangled

and take ES = rS(ρ)− 1 as an entanglement measure.

3.5.2 Entanglement measures for mixed states

3.5.2.1 Entanglement of formation

To detect and quantify entanglement for mixed states, we use the entropy of entan-
glement E(ρ) defined in section 3.5.1 in calculating its infimum over all ensembles
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{(pi, |φi〉)} of pure states |φi〉 and probability distributions {pi} realizing the state
ρ =

∑
i pi |φi〉 〈φi| =

∑
i piρi

EF (ρ) = inf
{(pi,ρi)}

∑
i

piE(ρi) (3.5.6)

calling this quantity the ”Entanglement of formation” [26], [27].

This techique, to calculate the infimum of quantities defined for pure states over
ensembles and thus extending the definition to mixed states, is called a convex roof
construction.

Since we usually do not know the possible (not unique) decompositions of a general
mixed state into pure state ensembles, the calculation of the corresponding infimum
can be very difficult.

3.5.2.2 Concurrence

In the special case of a two qubits state, the entanglement of formation can be
written as

EF (ρ) = E(C) = H(
1 +
√

1− C2

2
), (3.5.7)

where H is the Shannon entropy function

H(x) = −x log2 x− (1− x) log2(1− x). (3.5.8)

C is a quantity defined below, called the concurrence. The concurrence C is
another quantity that can be used as an entanglement measure [27], [28], [29],
since it is monotonically increasing and ranges from 0 to 1.

The concurrence C of a pure 2-qubit state |ψ〉 is defined as

C(ψ) = | 〈ψ|ψ̃〉 |, (3.5.9)

with |ψ̃〉 = (σy⊗σy) |ψ∗〉 where a spin flip operation (σy is the second of the Pauli
matrices) has been applied to the complex conjugate of |ψ〉.

For a mixed 2-qubit state ρ the concurrence is defined in the convex roof construc-
tion way as in section 3.5.2.1 as

C(ρ) = inf
∑
i

piC(ψi) (3.5.10)

where ρ =
∑

i pi |ψi〉 〈ψi|.
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There exists an explicit formula for the concurrence given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (3.5.11)

where λi denote the squareroots of eigenvalues of ρρ̃ in decreasing order, with
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

3.5.2.3 Entanglement cost

Entanglement cost EC(ρ) [22], [30] quantifies how expensive it is to create a given
state ρ from a maximally entangled state via LOCC operations. That is, we
minimize the ratio of the number of copies n|Φ〉in of maximally entangled input
states |Φ〉 over the produced output states over all LOCC operations. In the limit
we obtain (infinitely many outputs)

EC(ρ) = inf
{ΛLOCC}

lim
nρ→∞

n|Φ〉in

noutρ

. (3.5.12)

3.5.2.4 Entanglement of distillation

On the other hand, if we are now interested in how much entanglement can be
extracted from an entangled state ρ via LOCC, we maximize the ratio of the
number of maximally entangled output states |Φ〉 over the needed input states
over all LOCC operations [22], [31]. In the limit we obtain (infinitely many inputs)

ED(ρ) = sup
{ΛLOCC}

lim
nρ→∞

n|Φ〉out

ninρ
. (3.5.13)

Entanglement of distillation and entanglement of cost are in some way dual to
each other [30] and the quantities ED and EC are in a way extreme, because the
distillable entanglement is a lower, and entanglement cost is an upper bound for
any entanglement measure E(ρ) [22], at least for pure states

ED(ρ) ≤ E(ρ) ≤ EC(ρ) (3.5.14)

3.5.2.5 Hilbert-Schmidt distance

Keeping in mind that the set of separable states S is convex, a very intuitive
measure of entanglement is to determine the nearest separable state σ for a state
ρ and to calculate their distance. A suitable choice would be the Hilbert-Schmidt
distance [32]:

D(ρ, σ) = ‖ρ− σ‖ =
√

tr(ρ− σ)2. (3.5.15)
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So the entanglement measure could be defined as

E(ρ) = min
σ∈S

D(ρ, σ). (3.5.16)

To find the nearest separable state can be a difficult task which we will also en-
counter in the context of entanglement witnesses in section 3.5.2.7.

3.5.2.6 Negativity

Negativity [33] is another entanglement measure very easy to calculate

N =
‖ρTA‖1 − 1

2
(3.5.17)

where ‖A‖1 is the trace norm

‖A‖1 = tr
√
A†A. (3.5.18)

which is the sum of the singular values of the operator A.

In our case it corresponds to the absolute value of the sum of negative eigenvalues
of ρTA and can be equivalently written as

N =
∑
i

|λi| − λi
2

(3.5.19)

with λi being all the eigenvalues, positive and negative ones.

N measures by how much the partially transposed density matrix ρTA fails to be
positive definite. For all PPT states N = 0 and for maximally entangled states
N = 1.

This measure has some drawbacks because it vanishes for some entangled states.
Its main advantage though is that it can easily be computed and that it must
not be restricted to two-level systems, but can be generalized for l-level systems
(l > 2).

3.5.2.7 Entanglement witness

Another way to discriminate between entangled and separable quantum states are
entanglement witnesses (see [21], [34]), where the geometry of the state space is
analyzed. In the set of physical states, the set of separable states S is a convex
subset. With the Hahn-Banach theorem we can state that an entangled state
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ρent outside of S can be separated from the convex set S of separable states by a
hyperplane. This hyperplane can be determined by a hermitian operator A.

Figure 3.2: Schematic overview for an entanglement witness. The nearest separable
state is ρ0 and the optimal entanglement witness Aopt

Theorem 3.5.1 A state ρent is entangled if and only if there exists a hermitian
operator A such that:

〈ρent|A〉 = tr ρentA < 0 and
〈ρ|A〉 = tr ρA ≥ 0 for all ρ ∈ S (3.5.20)

This operator A is called an entanglement witness.

An optimal entanglement witness Aopt for the entangled state ρent can be con-
structed in the following way [35]

Aopt =
ρ0 − ρent − 〈ρ0 | ρ0 − ρent〉 I

‖ρ0 − ρent‖
(3.5.21)

with ρ0 such that ‖ρent−ρ0‖ = minρ∈S ‖ρent−ρ‖ is the nearest separable state (in
Hilbert-Schmidt distance).

For such a state ρ0 ∈ S we obtain 〈ρ0|Aopt〉 = 0 and the state ρ0 is an element of
the border of S: ρ0 ∈ ∂S (see Fig. 3.2).
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3.6 EPR and Bell inequality

3.6.1 EPR ”Paradoxon”

In 1935 Albert Einstein, Boris Podolsky und Nathan Rosen (EPR) proposed a
Gedankenexperiment to show that the quantum-mechanical description of physical
reality is incomplete. To this end some plausible requirements were formulated,
that a consistent and complete theory should fulfill [36]:

1. Completeness: Every element of the physical reality must have a counterpart
in the physical theory.

2. Reality: If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical
quantity.

3. Locality: If two systems do not interact (anymore), then changements in
one of the systems cannot entail real changement in the second system (no
instantaneous action at a distance is possible, this would violate the fact that
information cannot be propagated faster than the speed of light).

Let us now consider the following physical system with a pair of two-state particles
(for example spin 1

2
). A source emits two particles into opposite directions. They

can move arbitrarily far away from the source and end up finally at the observers
Alice and Bob, see Figure 3.3.

The corresponding quantum state is entangled:

|Ψ〉 =
1√
2

(|+〉 |−〉+ |−〉 |+〉) (3.6.1)
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Figure 3.3: Source emitting two particles, from [7] (slightly adapted)

If Alice and Bob now measure along the same direction, there is perfect anti-
correlation. This means, if for example Alice measures + along the x-direction,
then Bob will measure −, again along the x-direction. Einstein, Podolsky and
Rosen argumented now in the following way:

If Alice and Bob are far enough away from each other, Alice’s measurement can-
not influence Bob’s (Locality). But Alice’s measurement determines Bob’s result
(perfect anti-correlation). Without another interaction in the system, Bob’s result
is determined (with probability 1) and known, so it must be an element of reality.

Analogous considerations can be made for the y- and z-directions. However the
quantum mechanical formalism cannot determine such a state, so Einstein, Podol-
sky and Rosen concluded that quantum mechanics must be incomplete and the
effects, which the theory could not explain, had to come from some hidden vari-
ables.

3.6.2 Bell inequality

In 1964 John Bell established an inequality [37] that must alway be fulfilled under
the locality and reality requirements. On the other hand, in quantum mechanics
one can construct situations where this inequality is violated.
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With that in mind, one obtains – in principle – a testable statement, that could
bring about a decision between local-realistic theories (LRT, see Einstein, Podolsky
and Rosen [36]) and quantum mechanics.

Starting from these considerations some experimental studies were started (for
example 1972 by Freedman and Clauser [38] or later in 1982 by Aspect et al.
[39]) using for example many pairs of entangled photons, that showed that Bell’s
inequalities can indeed be violated and so that the assumptions of locality and
reality (at least jointly) are unsustainable.

A special form of Bell’s inequality was developed 1969 by Clauser, Horne, Shimony
und Holt (CHSH) [40]. In this form experimental tests are more accessible [41],
especially the following form of Bell’s inequality

S(a, b, a′, b′) = |E(a, b) + E(a, b′)|+ |E(a′, b)− E(a′, b′)| ≤ 2 (3.6.2)

where E(a, b) is the expectation of a series of measurements with two detector
settings a and b. The value S(a, b, a′, b′) = 2 cannot be exceeded in LRT, but in
quantum mechanics detector settings can be adjusted in such a way that Bell’s
inequality is violated. Especially for the so-called Bell angles a = 0◦, a′ = 45◦, b =
22, 5◦, b′ = 67, 5◦ the violation is maximal with S(a, b, a′, b′) = 2

√
2, this value

being clearly higher than the LRT upper bound of 2.

Bell’s inequality provides an upper bound for the average of measurements that
can be exceeded in certain special quantum mechanical situations.

So with the predictions from Bell’s theorem, a disagreement between the EPR
statement and the quantum mechanical theory can be shown experimentally. The
decision between LRT and quantum mechanics was finally clearly – due to exper-
imental tests – provided in favor of quantum mechanics. Quantum mechanical
predictions were correct and so instead of proving incompleteness, quantum me-
chanics was confirmed with the help of Bell’s inequalities.

3.7 Bloch decomposition

Two qubit states can be represented in a Hilbert-Schmidt basis in the following
way (see for example [42], [43])

ρ =
1

4
(I⊗ I + ~a · ~σ ⊗ I + I⊗~b · ~σ +

∑
m,n

tnmσn ⊗ σm) (3.7.1)

where ~a and ~b are three-dimensional real vectors and ~σ the vector incorporating
the three Pauli matrices. The coefficients tnm form a real 3× 3 matrix T .
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The condition tr(ρ2) ≤ 1 (see section 2.2) implies that∑
i

(a2
i + b2

i ) +
∑
m,n

t2nm ≤ 3 (3.7.2)

and equality is achieved for pure states.

The matrix T can be diagonalized and since the unitary transformations needed
keep the properties separable or entangled invariant, an equivalent representation
with less parameters is possible

ρ =
1

4
(I⊗ I + ~a · ~σ ⊗ I + I⊗~b · ~σ +

∑
i

tiiσi ⊗ σi). (3.7.3)

A special one-parametric family of states are isotropic states

ρα = α
∣∣φ+
〉 〈
φ+
∣∣+

1− α
4

I, α ∈ R, −1

3
≤ α ≤ 1. (3.7.4)

For this family the terms ~a·~σ⊗I and I⊗~b·~σ vanish (see [44]) and the representation
takes the form

ρ =
1

4
(I⊗ I +

∑
m,n

tnmσn ⊗ σm) (3.7.5)

or in diagonalized form

ρ =
1

4
(I⊗ I + a · σx ⊗ σx + b · σy ⊗ σy + c · σz ⊗ σz) (3.7.6)

with finally only three real parameters a, b, c left.

From there it is easily seen that these states have to fulfill the following four
inequalities (due to positivity of eigenvalues) to be physical states

1
4
(1− a− b− c) ≥ 0

1
4
(1 + a+ b− c) ≥ 0

1
4
(1 + a− b+ c) ≥ 0

1
4
(1− a+ b+ c) ≥ 0

(3.7.7)

thus forming a tetrahedron [45], [46] in three-dimensional space (see Figure 3.4)
with the maximally mixed state 1

4
I4 at its center, sometimes called the ”magic

tetrahedron”.

The states in this tetrahedron are just the Bell-diagonal states (3.4.11) from section
3.4.2.
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Figure 3.4: Magic tetrahedron

The corners are associated to the Bell states:

1
4
(I⊗ I− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz) = |ψ−〉 〈ψ−|

1
4
(I⊗ I + σx ⊗ σx + σy ⊗ σy − σz ⊗ σz) = |ψ+〉 〈ψ+|

1
4
(I⊗ I− σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) = |φ−〉 〈φ−|

1
4
(I⊗ I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) = |φ+〉 〈φ+|

(3.7.8)

Note: General separable states can be represented by

ρ =
1

4

∑
k

pk(I⊗ I + ~a · ~σ ⊗ I + I⊗~b · ~σ +
∑
i,j

aibjσi ⊗ σj) (3.7.9)

with pk ≥ 0,
∑

k pk = 1.

In the magic tetrahedron in the 2 × 2 case the subset of separable states can be
visually represented – via PPT criterion – by the states in the double pyamid in
Figure 3.4.
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The Bell states at the corners are the only pure states in this graphical representa-
tion, because the equality condition in 3.7.2, here a2 + b2 + c2 = 3, is only fulfilled
for them.
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Chapter 4

Tripartite and especially GHZ
type states

4.1 Types of entanglement, GHZ and W states

For two qubits we had essentially two possibilities – the qubits were separable
or entangled – and in addition the powerful PPT criterion [20] to discern these
properties. For three qubits we are confronted with even more possibilites. Often
– for pure states – three classes of entanglement are distinguished [47]

• Totally separable states can be written as |ΨS〉 = |ΦA〉 ⊗ |ΦB〉 ⊗ |ΦC〉.
For example |000〉 is totally separable, a product state.

• Bi–separable states are states where only two out of the three parts in the
system are entangled, the third is in a tensor product with the entangled
two, this can be written as A–BC, B–AC or C–AB.

An example could be 1√
2
|0〉 ⊗ (|00〉+ |11〉).

• Tripartite entangled states mean states with genuine entanglement of all
three subsystems. There exist two subtypes of inequivalent states [48]

– GHZ states, for example 1√
2
(|000〉+ |111〉)

– W states, for example 1√
3
(|100〉+ |010〉+ |001〉)

The distinction between separable, bi–separable and tripartite entangled is not
enough, since the genuinely three-qubit entangled states belong to two inequivalent
classes, the GHZ class or the W class, this distinction is also essential.
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Figure 4.1: Types of tripartite entanglement after [47]

The sets corresponding to the different entanglement classes – S separable states,
B bi–separable states, W the W states, GHZ the GHZ states – are embedded into
each other in the following way [47]

S ⊂ B ⊂ W ⊂ GHZ (4.1.1)

where at least the last inclusion W ⊂ GHZ is at first sight a little surprising.

For mixed states the situation is more difficult and more cases are possible. Dis-
tinguishing classes of states with different ”flavours” of entanglement could be
accomplished using different entanglement measures, although several measures
sometimes do not even distinguish between some tripartite entangled and separa-
ble states (e.g. 3-tangle, see section 4.4.2.2 below).

The following classification suggested in [49] shows the structural richness of differ-
ent entanglement types, including distinction of states with different entanglement
of their reduced states. Entanglement of reduced states is marked in the following
figures 4.2 and 4.3 by a straight line connecting the two states, if tracing over the
third qubit results in an entangled state, and without such a line if tracing over
the third qubit results in a separable state.

• Type 0-0: totally separable states, no quantum entanglement

• Type 1: biseparable states

– Subtype 11 − 0: Simply biseparable states, with no reduced entangle-
ment. Of the three-qubit state considered, two qubits are entangled,
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but tracing over the remaining qubit, the resulting two-qubit state is
separable. This subtype is only possible for non-pure mixed states.

Example 4.1.1 The state ρ = (|0〉 〈0| ⊗ |ψ−〉 〈ψ−| + |1〉 〈1| ⊗
|ψ+〉 〈ψ+|)/2 is biseparable and the resulting state after tracing over
the first qubit is (|ψ−〉 〈ψ−|+ |ψ+〉 〈ψ+|)/2 = (|0〉 〈0| ⊗ |1〉 〈1|+ |1〉 〈1| ⊗
|0〉 〈0|)/2 which is clearly separable, a very counter-intuitive result.

– Subtype 11 − 1: simply biseparable states, with reduced entanglement.
Tracing over the remaining separable qubit the resulting two-qubit state
remains entangled.

Remark 4.1.1 All pure biseparable states are of this type

Remark 4.1.2 There exist also non-pure mixed states of this subtype,
see [49].

– Subtype 12: generalized biseparable states with bipartite entanglements
in two pairs of qubits, with or without reduced entanglements. The
following subtypes are possible: 12 − 0, 12 − 1, 12 − 2 depending on the
entanglement of the reduced states.

– Subtype 13: generalized biseparable states with bipartite entanglements
in three pairs of qubits. Again depending on the entanglement of the
reduced states we obtain the following subtypes: 13 − 0, 13 − 1, 13 −
2, 13 − 3

Example 4.1.2 The state

ρ =
1

3
(
∣∣φ+
〉 〈
φ+
∣∣
AB
⊗|0〉 〈0|C+

∣∣φ+
〉 〈
φ+
∣∣
AC
⊗|0〉 〈0|B+

∣∣φ+
〉 〈
φ+
∣∣
BC
⊗|0〉 〈0|A)

(4.1.2)
is an example for the case 13 − 3.

• Type 2: tripartite entangled states

– Subtype 2-0: all three reduced entanglements are zero → GHZ-like
states

– Subtype 2-1: one reduced entanglement is non-zero.

– Subtype 2-2: two reduced entanglements are non-zero.

– Subtype 2-3: all three reduced entanglements are non-zero → W-like
states
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Figure 4.2: Graphic representation of entanglement types in pure states of three-qubit
sytems

Figure 4.3: Graphic representation of entanglement types in mixed states of three-qubit
sytems
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4.2 Generalized Schmidt Decomposition

A generalization to the Schmidt decomposition in an absolutely similar way as for
two qubit states (see section 3.3) is not possible [50] for n-partite systems with
n ≥ 3, because such a decomposition is only possible under certain conditions.

But every pure three qubit state can be transformed by local unitary operations
into

|ψ〉 = λ0 |000〉+ λ1e
iθ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 (4.2.1)

with five coefficients. The five coefficients consist of six parameters, where the λi
are real, non-negative,

∑
i λ

2
1 = 1 and θ ∈ [0; π] (see [51], [52]). Thus generally for

a pure state we need six real parameters to characterize the nonlocal properties.

Especially for the class of W states one finds θ = λ4 = 0. This shows that the set
of pure W states is a set of measure zero in the set of all pure states [17].

Some more alternative generalizations of the Schmidt decomposition to the multi-
partite situation exist with different conditions on the coefficients used to expand
the state in terms of a factorizable orthonormal basis [52], [53], [54], [55], [56].

4.3 EPR and GHZ Theorem

With Bell’s theorem, predictions can be made which show disagreement between
EPR and quantum mechanical theory. Experimental tests using many pairs of
entangled photons have shown that quantum mechanical predictions are correct
(see section 3.6). By using states of three or four entangled particles, further
insights can be gained. Especially testing EPR vs. quantum mecanics can be
made with GHZ states in only one experiment and no correlations and expectation
values are needed [7].

Let us consider the following Gedankenexperiment [57] for a system consisting
of three particles (a,b,c) with spin 1

2
and a set of three commutating hermitian

operators
σaxσ

b
yσ

c
y, σayσ

b
xσ

c
y, σayσ

b
yσ

c
x. (4.3.1)

Since the operators commute, a common eigenstate for all three operators is pos-
sible. The square of all three operators gives the unit operator and so the only
possible eigenvalues are +1 or −1. If we now choose the following GHZ state as
common eigenstate

|GHZ−〉 =
1√
2

(|000〉 − |111〉), (4.3.2)
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then for all three operators the corresponding eigenvalue equals +1.
Furthermore |GHZ−〉 is also eigenstate of the following operator

σaxσ
b
xσ

c
x = −σaxσbyσcy · σayσbxσcy · σayσbyσcx, (4.3.3)

but now to the eigenvalue −1.

Remembering the EPR argumentation, we can now argue that using three well
separated entangled particles with spin S = 1

2
in the state |GHZ−〉, we are taking

three measurements (three different operators) on the corresponding three particles
a, b, c. After two measurements we already know with probability 1 (perfect
correlation) the result of the third measurement.

Again EPR argumentation states, that the measurements at the different particles
do not influence the measurements at other particles and instantaneous action at a
distance is not possible, but the third result is 100 % predictable. Therefore, after
EPR, the above measurement results should be fixed before measurement and the
property ”spin” would be real for all three particles.

For the operator σaxσ
b
yσ

c
y, for example, we know the measurement result ma

x before
measuring, having measured mb

y for particle b and mc
y for particle c, since the prod-

uct of all three measurements in the state |GHZ−〉 has to give the (eigen)value +1
(mx und my can take the values ±1). Analoguous considerations for the operators
σayσ

b
xσ

c
y and σayσ

b
yσ

c
x give an absolutely similar result.

So we can attribute the following values to the operators (after EPR they are real):

σaxσ
b
yσ

c
y : ma

xm
b
ym

c
y = 1 (4.3.4)

σayσ
b
xσ

c
y : ma

ym
b
xm

c
y = 1 (4.3.5)

σayσ
b
yσ

c
x : ma

ym
b
ym

c
x = 1 (4.3.6)

Taking the product of these three identities, one obtains

ma
xm

b
ym

c
y ·ma

ym
b
xm

c
y ·ma

ym
b
ym

c
x = ma

xm
b
xm

c
x(m

a
y)

2(mb
y)

2(mc
y)

2 = 1 (4.3.7)

Thus it follows that the value attributed to the operator from 4.3.3 has to be equal
to +1

ma
xm

b
xm

c
x = 1. (4.3.8)

This then means that EPR predicts the eigenvalue +1 for the operator σaxσ
b
xσ

c
x – in

exact opposition to the quantum mechanics prediction 4.3.3 – where the prediction
(eigenvalue) was equal to -1.

More interesting Gedankenexperiments and playful illustrations for two, three or
four particles can be found in Mermin [57], Kwiat and Hardy [58] and Aravind
[59].
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4.4 Geometry and entanglement

4.4.1 Partial Traces

Calculating partial traces, we observe a remarkable difference between GHZ and
W states. Whereas the partial traces over one qubit of the GHZ state produce –
as anticipated – mixed bipartite separable states, the resulting states of W states
stay – quite counter intuitively at first view – entangled.

Example 4.4.1 The density matrix corresponding to the GHZ state (pure, entan-
gled)

|GHZ〉 =
1√
2

(|000〉+ |111〉) (4.4.1)

is given as:

ρGHZ =
1

2



1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1


(4.4.2)

Taking the trace over any one of the subspaces Ai (i = 1, 2, 3), we obtain a NON
entangled mixed states:

trAi ρGHZ =
1

2
(|00〉 〈00|+ |11〉 〈11|) =

1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (4.4.3)

This state is separable, specifically it is the convex combination of two product
states.

Example 4.4.2 The W state

(|100〉+ |010〉+ |001〉)/
√

3, (4.4.4)
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is represented by the corresponding density matrix

ρW =
1

3



0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(4.4.5)

and taking now partial traces over any one of the subspaces, we obtain – in contrast
– again an entangled state (this can easily be checked via PPT criterion):

trAi ρW =
1

3


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 (4.4.6)

But both states (GHZ, W) are genuinely tripartite entangled, so taking partial
traces alone is not too useful to discriminate between entangled and separable
states in the tripartite case.

4.4.2 Entanglement measures

In section 3.5 a few entanglement measures for the 2× 2 case have been studied.
While the bipartite case for two qubits is quite manageable, since we only have
to discern between separable and entangled states, the situation in the tripartite
case is much more complicated as we have seen in section 4.1.

4.4.2.1 Entropy

In section 3.5.1 we used entropy as an entanglement measure for bipartite states.
For tripartite states we can use von Neumann entropy to get insights into entan-
glement by dividing the tripartite state into two parts, and calculating entropy in
the same way as in the bipartite situation [48].

Example 4.4.3 For GHZ states the corresponding entropies can be calculated
from the reduced density matrices ρA, ρB, ρC (here with logarithmus dualis) and
the result in this case is SA = SB = SC = 1 > 0.
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Example 4.4.4 If we take generalized GHZ states of the form

|GHZθ〉 = cos θ |000〉+ sin θ |111〉 (4.4.7)

the corresponding entropies are then (see also Figure 4.4 below)

SA = SB = SC = −(cos2 θ log2(cos2 θ) + sin2 θ log2(sin2 θ)) (4.4.8)

Figure 4.4: Entropy (blue), 3-tangle (red), concurrence (yellow) and negativity (green)
of the generalized GHZ state

Example 4.4.5 For W states the entropies are

SA = SB = SC = log2

3

2
2
3

= log2 3− 2

3
≈ 0.918296 > 0. (4.4.9)

Example 4.4.6 If we generalize the W states in the following form

|Wα1,α2,α3〉 = α1 |100〉+ α2 |010〉+ α3 |001〉 with
3∑
i=1

α2
i = 1 (4.4.10)

the entropies are

SA = SB = SC = −[α2
i log2 α

2
i + (1− α2

i ) log2(1− α2
i )] > 0, (4.4.11)

with i = 1 for A, i = 2 for B and i = 3 for C.
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Example 4.4.7 For another example take the bi–separable state ψA−BC = |0〉 ⊗
|ψ+〉. By separating the state into the two parts A and BC, the corresponding
entropy SA then vanishes in this case, whereas SB = SC = 1 > 0.

Example 4.4.8 The totally separable state A−B−C has of course all entropies
vanishing: SA = SB = SC = 0.

For an overall entropy measure for three-qubit states Feng Pan et al. [60] suggested
to calculate the arithmetic mean of partial entropies

S = (SA + SB + SC)/3 (4.4.12)

In [61] an alternative entanglement measure for three-qubit states the ”entropy
product” of partial entropies

SP = SA · SB · SC (4.4.13)

is proposed.

This corresponds essentially to a geometric mean (where the third root has been
omitted).

Figure 4.5: Arithmetic (blue) and geometric mean (red) entropy of generalized GHZ
states
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Figure 4.6: a) Arithmetic and b) geometric mean entropy of generalized W states

4.4.2.2 3-tangle and concurrence

The following entanglement measure was introduced by Coffman, Kundu and
Wootters in 2000 [62]

τ3 = τABC = τA(BC) − τAB − τAC (4.4.14)

and τXY is the square of the concurrence (see section 3.5.2.2) of the corresponding
bipartite system.

τ3 is called the 3-tangle and is invariant under permutation. The GHZ state giving
separable states for any partial trace has non-zero 3-tangle τ3 = 1

4
, whereas for

the W state, where reduced states remain entangled, the corresponding 3-tangle
vanishes. Since both states are of course entangled, the 3-tangle measure is not
always useful for detecting differences between entangled and separable states, but
it can be a distinguishing criterion between W and GHZ states.

In some way the 3-tangle is a kind of generalization of the concurrence from two
to three qubits and in this form coincides with the modulus of the Cayley hyper-
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determinant [8]

C(|Ψ〉) = DetA = a2
000a

2
111 + a2

001a
2
110 + a2

100a
2
011

− 2[a000a111(a001a110 + a010a101 + a011a100)

+ a001a010a101a110 + a001a011a101a100 + a010a011a101a100]

+ 4[a000a011a101a110 + a001a010a100a111]
(4.4.15)

where the tripartite qubit can be represented as

|Ψ〉 =
1∑

i,j,k=0

aijk |ijk〉 . (4.4.16)

From this we extract the coefficient matrix A = (aijk).

To be able to reliably classify the different entanglement properties at least for pure
states, we need more information about sub-concurrences. Building six submatri-
ces Ax0 = (a0ij), Ay0 = (ai0j), Az0 = (aij0), Ax1 = (a1ij), Ay1 = (ai1j), Az1 = (aij1),
the moduli of their determinants just give us the needed sub-concurrences:

Cαi = |detAαi|, (α = x, y, z; i = 0, 1). (4.4.17)

Then the ordered list

[|DetA|;Cx0;Cx1;Cy0;Cy1;Cz0;Cz1] (4.4.18)

gives us a possibility to discriminate between GHZ and W states via the first
term and furthermore the vanishing of the list provides a necessary and sufficient
condition for separability (see [8]).

Figure 4.7: Values of the local entropies SA, SB, SC and the 3-tangle τ3 for different
classes of tripartite states (after [48])
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Example 4.4.9 The 3-tangle of the GHZ state is τ3(|GHZ〉) = 1
4
, the concurrence

vanishes. The 3-tangle for the generalized GHZ state of example 4.4.4 is given by

τ3 = (cos θ · sin θ)2. (4.4.19)

See Figure 4.4, giving us a very similar picture as for the entropy.

In [63], [64] an n-partite generalization of the bipartite concurrence is given as

Cn(ψ) = 21−n/2
√

(2n − 2)−
∑
i

tr ρ2
i , (4.4.20)

where the ρi are the reduced density matrices obtained by tracing over all the
different subsystems.

So, for the case of three qubits we can use

C3(ψ) =

√
3− 1

2

∑
i

tr ρ2
i , (4.4.21)

as a generalization of concurrence.

For product states the concurrence vanishes.

For the W state the value is

C3(ρW ) =
2√
3
≈ 1.1547, (4.4.22)

for GHZ states

C3(ρGHZ) =

√
3

2
≈ 1.22474, (4.4.23)

whereas for example the biseparable state |ψA−BC〉 = |0〉 |ψ+〉 delivers the concur-
rence

C3(ψA−BC) = 1. (4.4.24)

It is interesting, that the generalized concurrence allows values larger than 1 for
GHZ and for W states. This shows that for genuine tripartite entanglement there
is an amount of entanglement that exceeds bipartite entanglement.

For the generalized W states of example 4.4.6 see a contour plot of the concurrence.
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Figure 4.8: Values of the concurrence for the generalized W state |Wα1,α2,α3〉 =
α1 |100〉+ α2 |010〉+ α3 |001〉 with 0 ≤ α1, α2 ≤ 1, α3 =

√
1− α2

1 − α2
2

4.4.2.3 Negativity

In the same way as for entropies (section 4.4.2.1) we can calculate bipartite nega-
tivities by dividing our tripartite states into two parts [33].

Example 4.4.10 For a quantum system ρ consisting of three parts A, B, C, join
for example parts of B and C, opposed to A and calculate the sum of negative
eigenvalues of ρTA to obtain the negativity

NA−BC(ρ) (4.4.25)

In a similar way negativities NB−AC(ρ) and NC−AB(ρ) can be calculated for pure
as well as for mixed states.

These quantities are entanglement monotones, meaning they do not increase under
LOCC.

To obtain an entanglement measure, we can extend the bipartite measure in the
following way [49]:

NABC(ρ) = (NA−BCNB−ACNC−AB)
1
3 (4.4.26)
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with NI−JK being bipartite negativities.

This measure can also be calculated for non-pure tripartite states.

Example 4.4.11 Negativity for the maximally entangled GHZ state equals 1
2

and
for the generalized GHZ states all the above four versions are identical and we
obtain

NABC(ρθ) =
1

2
(−1 + cos2 θ + sin2 θ + | sin 2θ|). (4.4.27)

See Figure 4.4, especially comparing with the corresponding graphs of entropy,
3-tangle and concurrence.

Example 4.4.12 Negativity for W states is equal to
√

2
3

for all of the above four
negativity versions. For generalized W states as in Example 4.4.6 the negativities
are of the form

1

2
(−1 + α2

i + (1− αi)2 + 2
√
|α2
i − α4

i |). (4.4.28)

In Figure 4.9 the negativity of generalized W states is compared to their entropy.

Figure 4.9: Entropy (blue) and negativity (red) of generalized W states for 0 ≤ α1 ≤ 1

4.4.2.4 Entanglement witnesses

The distinction between the different entanglement classes for mixed states is not
an easy task. In analogy to entanglement witnesses in the bipartite, we can con-
struct entanglement witnesses for the tripartite case, remembering that the sets of
separable (S), bipartite (B) and W states (W) are convex.
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Example 4.4.13 Take for example the following witness for GHZ states:
WGHZ is a hermitian operator with the following properties

tr(WGHZρGHZ) < 0 for a ρGHZ ∈ GHZ\W and
tr(WGHZρW ) ≥ 0 for all ρW ∈ W.

(4.4.29)

For GHZ the following witness is an example:

WGHZ =
3

4
I− PGHZ , (4.4.30)

where PGHZ is the projector onto the GHZ state 1√
2
(|000〉 + |111〉). This witness

fulfills the properties given above (see [47]).

Example 4.4.14 In an absolutely similar way a W–witness can be constructed,
where the witness has negative expectation for W states, but positive or vanishing
expectation value for all states in B (bi–separable or separable):

WW =
2

3
I− PW (4.4.31)

with PW the projector onto the W state 1√
3
(|100〉+ |010〉+ |001〉).

An interesting fact is, that the pure W states form a set of measure zero, whereas
the set W\B of mixed W states is not of measure zero. This can be seen with the
help of the entanglement witness idea, showing that there is a finite ball around a
state from the above set [24].

Considering again the generalized GHZ states |GHZθ〉 = cos θ |000〉 + sin θ |111〉
from example 4.4.4, one notices (see Figure 4.10) that the entanglement witness
4.4.30 only works for states with a minimum of ”entanglement” and the ”right
direction”. This means that tr(WGHZρGHZθ) < 0 only for

arccos(

√
2−
√

3

2
) ≤ θ ≤ arccos(

√
2 +
√

3

2
). (4.4.32)

Where the generalized GHZ states come near to the product states |000〉, |111〉 or
represents states similiar to |GHZ−〉 = 1√

2
(|000〉 − |111〉) for θ > π

2
, the entangle-

ment witnessWGHZ cannot produce negative values and therefore loses the power
to detect entanglement, because the operator WGHZ in not well fitted for these
situations.
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Figure 4.10: Entanglement witness (equation 4.4.30) (blue) and entropy (red) of the
generalized GHZ states for 0 ≤ θ ≤ π

4.4.3 Entanglement type for GHZ symmetric states

Eltschka and Siewert [65] characterize the family of GHZ symmetric states by
exploiting their symmetry. These states can be represented as affine combinations
of the states

|GHZ+〉 = |GHZ〉 =
1√
2

(|000〉+ |111〉), (4.4.33)

|GHZ−〉 =
1√
2

(|000〉 − |111〉) (4.4.34)

and the maximally mixed state 1
8
I.

They fulfill the property that they are invariant under the following transforma-
tions (and also combinations):

1. qubit permutations

2. simultaneous three-qubit flips (application of σx ⊗ σx ⊗ σx)

3. qubit rotations about the z axis of the following form

U(φ1, φ2) = eiφ1σz ⊗ eiφ2σz ⊗ e−i(φ1+φ2)σz (4.4.35)
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Density matrices ρS of GHZ-symmetric states can be fully specified by two inde-
pendent real parameters. The following choice

x(ρS) = 1
2
[〈GHZ+| ρS |GHZ+〉 − 〈GHZ−| ρS |GHZ−〉]

y(ρS) = 1√
3
[〈GHZ+| ρS |GHZ+〉+ 〈GHZ−| ρS |GHZ−〉 − 1

4
]

(4.4.36)

is such that the Euclidean metric in the (x, y) plane coincides with the Hilbert-
Schmidt metric for density matrices in the following way:

d(A,B)2 =
1

2
tr(A−B)†(A−B) (4.4.37)

Figure 4.11: x-y representation of GHZ-symmetric states (figure from [65])

Let us now observe (mixed) states in the interior of the triangle representing the
above affine combinations (see Fig. 4.11). For example, the generalized Werner
states, that is the convex combinations of the maximally mixed state and a maxi-
mally entangled state (here |GHZ〉), have the following density matrix represen-
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tation:

ρWS(p) = p · |GHZ〉 〈GHZ|+ (1− p) · 1
8
I8

=



1+3p
8

0 0 0 0 0 0 p
2

0 1−p
8

0 0 0 0 0 0
0 0 1−p

8
0 0 0 0 0

0 0 0 1−p
8

0 0 0 0
0 0 0 0 1−p

8
0 0 0

0 0 0 0 0 1−p
8

0 0
0 0 0 0 0 0 1−p

8
0

p
2

0 0 0 0 0 0 1+3p
8


(4.4.38)

Using the parametrisation from [65], the representation for Werner states is given
by

x(ρWS) = p
2

y(ρWS) =
√

3
4
p

(4.4.39)

and this exactly represents the Werner line y =
√

3
2
x as can be seen in the graphical

representation (Fig. 4.11) of the GHZ-symmetric states, where Werner states
ρWS(p) can be found on the purple line.

Boundaries for the different types of entanglement can be calculated for the Werner
states (see [65]), also discriminating between GHZ and W states:

• fully separable for p ≤ 1
5

= 0, 2

• biseparable 1
5
< p ≤ 3

7
≈ 0, 4286

• tripartite entangled W for 3
7
< p ≤ 0, 6955

• tripartite entangled GHZ for p > 0, 6955

The corresponding boundaries form a sort of entanglement witnesses. This means
that a state corresponding to a certain entanglement class in the graphical repre-
sentation could have a ”higher entanglement”, but never a lower one. For example
a state ρ+

1 with p ≥ 0.696 is a GHZ state (see boundaries in [65]), whereas a state
with 3

7
≤ p ≤ 0.696 could be a W or a GHZ state, but not biseparable.

It is interesting that all the generalized Werner states can easily be transformed
to separable states . Using the unitary (non local) transformation U from ex-
ample 4.4.15 of section 4.4.4 below, the density matrix of every Werner state is
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transformed into a diagonal matrix, thus in any case transforming the state into
a separable state:

UρWSU
† =



1+7p
8

0 0 0 0 0 0 0
0 1−p

8
0 0 0 0 0 0

0 0 1−p
8

0 0 0 0 0
0 0 0 1−p

8
0 0 0 0

0 0 0 0 1−p
8

0 0 0
0 0 0 0 0 1−p

8
0 0

0 0 0 0 0 0 1−p
8

0
0 0 0 0 0 0 0 1−p

8


(4.4.40)

Graphically the above unitary transformation moves the Werner states from the
purple line horizontally to the y-axis into the separable domain, resulting in the
coordinates:

x(UρWSU
†) = 0

y(UρWSU
†) =

√
3

4
p.

(4.4.41)

If we calculate the reduced density matrices of ρWS(p) we obtain (tracing over the
first qubit A):

trA ρWS = 1−p
4
I4 + p

2
|00〉 〈00|+ |11〉 〈11|)

=


1+p

4
0 0 0

0 1−p
4

0 0
0 0 1−p

4
0

0 0 0 1+p
4

 (4.4.42)

giving us always a mixed, not entangled state. This was to be expected from the
GHZ type states, but is at first quite unexpected since the Werner states also cross
the domain of the W states. But all these W states are mixed and so it seems,
the property of the pure W state to produce entangled reduced density matrices,
is somehow diluted.

4.4.4 Unitary transformations

Contrasting the fact that under local unitary transformations the entanglement
type does not change, one can show that this is not always true for unitary trans-
formations.

In Thirring et al. [66] (Theorem 1) it was even shown that in case of bipartite
states every pure state ρ can be transformed unitarily into a separable or on the
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other side into a maximally entangled state. Entanglement or separability then
only depends on the choice of the factorization algebra.

For mixed states the situation is a bit more complicated. For mixed separable
states a transformation to an entangled state is only possible for states below a
certain amount of mixedness. For the 2× 2 case one can even describe the set of
absolutely separable states, the states that remain separable under every unitary
transformation.

It is interesting to take a view into the geometry of states that remain separable
under every unitary transformation, called the absolutely separable states. The
Kuś-Życzkowski ball [67], the maximal ball which can be inscribed into the set
of the mixed states for a bipartite systems is a subset of the set of absolutely
separable states. Verstraete et al [68] established better constraints for the set of
absolutely separable states putting some constraints on the spectrum and showing
that the set of absolutely separable states is larger than the Kuś-Życzkowski ball.

The statements of [66] remain true for pure tripartite states. Example 4.4.15
illustrates this in a special case. For tripartite states it is also always possible to
transform pure states into GHZ states as maximally entangled states in the sense
that the GHZ maximally violates Bell’s inequality. Reciprocally it is also possible
to transform a pure entangled state into a separable one [69].

Example 4.4.15 Take for example the pure and entangled GHZ state. Using the
following unitary transformation (a rotation)

U =



1√
2

0 0 0 0 0 0 1√
2

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1√
2

0 0 0 0 0 0 − 1√
2


, (4.4.43)

we obtain the separable product state:

UρGHZU
† = |000〉 〈000| (4.4.44)

Open question: What are absolutely separable states in the tripartite case, states
which cannot be changed into entangled states by unitary transformation and how
can they be described geometrically?
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4.5 Entangled Entanglement

Quantum states in which one particle is nonclassically correlated to the entangled
state of the other two – similar to Bell states – are said to possess entangled entan-
glement. Such states have been studied and experimentally realized by Walther et
al. [70].

Example 4.5.1 Thinking of a situation where one qubit corresponds to Alice and
two entangled qubits correspond to Bob, we could for example write such a state as

|Φ〉 =
1√
2

(|0〉
∣∣φ−〉− |1〉 ∣∣ψ+

〉
) (4.5.1)

where |φ−〉 and |ψ+〉 are two of the bipartite Bell states.

By measuring the single particle of Alice, the properties of the relation between
the two particles of Bob are defined, but not their single particle properties. These
relational properties can now be measured by Bob. In [70] it is mentioned that
correlations between the measurement outcomes of the polarization state of a
single photon and the entangled state of two other experimentally violated the
Clauser-Horne-Shimony-Holt Bell inequality, showing that entanglement itself can
be entangled.

Example 4.5.2 As another example take the following state

|Φ〉 =
1

2
{|R〉 (|L〉 |+〉+ |R〉 |−〉) + |L〉 (|R〉 |+〉+ |L〉 |−〉)} (4.5.2)

where the particles are represented with some rotated basis vectors from {|R〉 , |L〉}
and {|+〉 , |−〉} defined in section 2.1, showing typical entangled entanglement in
this representation. Nevertheless the state is absolutely equivalent to the original
GHZ state

|Φ〉 = |GHZ〉 =
1√
2

(|000〉+ |111〉 (4.5.3)

and is represented by the same density matrix!

Tracing over the first system of Alice,

trA ρGHZrot = 1
4
{(|RL〉+ |LR〉)(〈RL|+ 〈LR|) + (|RR〉+ |LL〉)(〈RR|+ 〈LL|)}

= 1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


(4.5.4)
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we obtain as residual state – again – a separable state, as was expected, since the
state is in some sense indentical to the GHZ state.

4.5.1 Eight entangled entanglement 2x2x2 states

For bipartite states, the Bell states can be represented as four linear independent
vectors

∣∣ψ+
〉

=


0
1√
2

1√
2

0

 ,
∣∣ψ−〉 =


0
1√
2

− 1√
2

0

 ,
∣∣φ+
〉

=


1√
2

0
0
1√
2

 ,
∣∣φ−〉 =


1√
2

0
0
− 1√

2


(4.5.5)

in the corresponding four dimensional vector space, therefore building a basis in
this sense.

In a similar way, but constructing them as entangled entanglement states as in
[70], let us consider the following set of eight three particle states, where the first
particle (photon) is entangled with the entangled state of the second and third
particle in a similar way as two particles are entangled in Bell states [71]:

|GHZ1+〉 = 1√
2
(|0〉 |φ−〉+ |1〉 |ψ+〉)

|GHZ1−〉 = 1√
2
(|0〉 |φ−〉 − |1〉 |ψ+〉)

|GHZ2+〉 = 1√
2
(|0〉 |φ+〉+ |1〉 |ψ−〉)

|GHZ2−〉 = 1√
2
(|0〉 |φ+〉 − |1〉 |ψ−〉)

|GHZ3+〉 = 1√
2
(|1〉 |φ−〉+ |0〉 |ψ+〉)

|GHZ3−〉 = 1√
2
(|1〉 |φ−〉 − |0〉 |ψ+〉)

|GHZ4+〉 = 1√
2
(|1〉 |φ+〉+ |0〉 |ψ−〉)

|GHZ4−〉 = 1√
2
(|1〉 |φ+〉 − |0〉 |ψ−〉)

(4.5.6)

The vectors corresponding to these eight states are

∣∣GHZ1+
〉

=



1
2

0
0
−1

2

0
1
2
1
2

0


,
∣∣GHZ1−

〉
=



1
2

0
0
−1

2

0
−1

2

−1
2

0


,
∣∣GHZ2+

〉
=



1
2

0
0
−1

2

0
1
2

−1
2

0


,
∣∣GHZ2−

〉
=



1
2

0
0
−1

2

0
−1

2
1
2

0


(4.5.7)
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∣∣GHZ3+
〉

=



0
1
2
1
2

0
1
2

0
0
−1

2


,
∣∣GHZ3−

〉
=



0
−1

2

−1
2

0
1
2

0
0
−1

2


,
∣∣GHZ4+

〉
=



0
1
2

−1
2

0
1
2

0
0
1
2


,
∣∣GHZ4−

〉
=



0
−1

2
1
2

0
1
2

0
0
1
2


(4.5.8)

again eight linear independent vectors, forming a basis in the eight dimensional
vector space.

These eight states form the vertices of a ”magic simplex” S in the corresponding
Hilbert space similar to the tetrahedron of states described in [35] or [72].

The set S consists of the convex combinations of all the corresponding density
matrices ρGHZi± = |GHZi±〉 〈GHZi±| , i = 1, . . . , 4

S = {ρ =
∑

i=1,..4;k=+,−

λki ρGHZik , λ±i ≥ 0,
∑

λ±i = 1}. (4.5.9)

The result of the convex combination forms a simplex with the maximally mixed
state 1

8
I at its center and all the density matrices inside this simplex represent

valid quantum states: The eigenvalues of every state ρ =
∑

i=1,..4;k=+,− λ
k
i ρGHZik

in the simplex are just equal to the eight coefficients λki . For elements of S, we
know – by construction – that λ±i ≥ 0 and

∑
λ±i = 1, so that inside the simplex

all the eigenvalues are non-negative and the trace of ρ equals 1. Therefore ρ ∈ S
is a valid density matrix.

On the other hand we know that matrices outside the simplex S have to violate
one of the above properties and therefore do not form density matrices of physical
states. So we made sure that in the corresponding Hilbert space the valid density
matrices are exactly represented by elements of the simplex S.

Example 4.5.3 Take the density matrices on a one-dimensional facet, e.g.
ρFacetα1+1− = αρGHZ1+ + (1− α)ρGHZ1− , 0 ≤ α ≤ 1.

Then the following density matrix (a state on a ray from the maximally mixed to
a state on the facet)

ρ =
1

8
I + µ(ρFacetα1+1− −

1

8
I) = µρFacetα1+1− + (1− µ)

1

8
I with µ ≥ 0

has eigenvalues 1−µ
8

(6 times), 1+7µ−8αµ
8

and 1−µ+8αµ
8

.

56



Obviously all the Eigenvalues are nonnegative for µ ≤ 1, but crossing the border
of S by setting µ > 1, we obtain negative eigenvalues, since then 1−µ

8
is obviously

negative.

Figure 4.12: Illustration (projection into a subspace) for states in- and outside the
simplex S

4.5.2 Local unitary transformation of entangled entangle-
ment states

Analyzing the eight states |GHZi±〉more closely, we note that the states |GHZ1−〉
and |GHZ3+〉 can easily be represented as GHZ type states using the basis of right
and left circularly polarized photons |R〉 and |L〉 :

|GHZ1−〉 = 1√
2
(|RRR〉+ |LLL〉)

|GHZ3+〉 = − i√
2
(|RRR〉 − |LLL〉) (4.5.10)

For the other six states such a representation is possible in a similar way.

|GHZ1+〉 = 1√
2
(|RLL〉+ |LRR〉)

|GHZ2+〉 = 1√
2
(|RRL〉+ |LLR〉)

|GHZ2−〉 = 1√
2
(|RLR〉+ |LRL〉)

|GHZ3−〉 = − i√
2
(|RLL〉 − |LLR〉)

|GHZ4+〉 = − i√
2
(|RLR〉 − |LRL〉)

|GHZ4−〉 = − i√
2
(|RRL〉 − |LLR〉)

(4.5.11)
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Using transformations of the form

U = UA ⊗ UB ⊗ UC (4.5.12)

with Ui local unitary transformations (listed below 4.5.14), we can obtain all these
eight states from the GHZ state 1√

2
(|000〉+ |111〉):

U |GHZ〉 =
∣∣GHZi±〉 , i = 1, ..., 4. (4.5.13)

UA UB UC
ρGHZ1− U09 U09 U09

ρGHZ1+ U09 U13 U13

ρGHZ2− U09 U13 U09

ρGHZ2+ U09 U09 U13

ρGHZ3− U09 U13 U55

ρGHZ3+ U09 U09 U51

ρGHZ4− U09 U09 U55

ρGHZ4+ U09 U13 U51

(4.5.14)

Remark 4.5.1 To find suitable unitary transformations, we listed eighty different
unitary 2 × 2 matrices covering many different patterns, see Appendix B. This is
of course no complete enumeration, but with help of Mathematica and this list,
appropriate unitary transformations could be found easily.

Example 4.5.4 For example we obtain U |GHZ〉 = |GHZ1−〉 with the following
transformation U = UA ⊗ UB ⊗ UC with

UA = UB = UC = U09 =
1√
2

(
1 1
i −i

)
(4.5.15)

Remark 4.5.2 These transformations are not unique.

This means all eight states are in some way equivalent to the GHZ state and they
form a simplex in the corresponding Hilbertspace.

Subjecting all states of this simplex to one of those unitary transformations U
(same for all the corners), for example the transformation U from example 4.5.4
by which we transformed |GHZ〉 to |GHZ1−〉, we obtain a new simplex formed

58



by the following states:

U |GHZ1−〉 = − 1−i
2
|+ + +〉 − 1+i

2
|− − −〉

U |GHZ1+〉 = 1−i
2
|+−−〉+ 1+i

2
|−+ +〉

U |GHZ2−〉 = 1+i
2
|+−+〉+ 1−i

2
|−+−〉

U |GHZ2+〉 = 1+i
2
|+ +−〉+ 1−i

2
|− −+〉

U |GHZ3−〉 = − 1+i
2
|+−−〉 − 1−i

2
|−+ +〉

U |GHZ3+〉 = 1+i
2
|+ + +〉+ 1−i

2
|− − −〉

U |GHZ4−〉 = 1−i
2
|+ +−〉+ 1+i

2
|− −+〉

U |GHZ1+〉 = 1−i
2
|+−+〉+ 1+i

2
|−+−〉

(4.5.16)

Applying this same unitary transformation U a second time, we again obtain a
simplex of GHZ type states:

U2 |GHZ1−〉 = −1−i
2

(|000〉+ |111〉)
U2 |GHZ1+〉 = −1−i

2
(|011〉+ |100〉)

U2 |GHZ2−〉 = −1−i
2

(|010〉+ |101〉)
U2 |GHZ2+〉 = −1−i

2
(|001〉+ |110〉)

U2 |GHZ3−〉 = 1+i
2

(|011〉 − |100〉)
U2 |GHZ3+〉 = 1+i

2
(|000〉 − |111〉)

U2 |GHZ4−〉 = 1+i
2

(|001〉 − |110〉)
U2 |GHZ1+〉 = 1+i

2
(|010〉 − |101〉)

(4.5.17)

Finally applying the unitary transformation U a third time, we return to the states
where we started from, in the sense that the corresponding density matrices are
identical:

U3 |GHZ1−〉 = − 1−i
2

(|RRR〉+ |LLL〉) = −1−i√
2
|GHZ1−〉

U3 |GHZ1+〉 = − 1−i
2

(|RLL〉+ |LRR〉) = −1−i√
2
|GHZ1+〉

U3 |GHZ2−〉 = − 1−i
2

(|RLR〉+ |LRL〉) = −1−i√
2
|GHZ2−〉

U3 |GHZ2+〉 = − 1−i
2

(|RRL〉+ |LRR〉) = −1−i√
2
|GHZ2+〉

U3 |GHZ3−〉 = 1+i
2

(|RLL〉 − |LRR〉) = −1−i√
2
|GHZ3−〉

U3 |GHZ3+〉 = 1+i
2

(|RRR〉 − |LLL〉) = −1−i√
2
|GHZ3+〉

U3 |GHZ4−〉 = 1+i
2

(|RRL〉 − |LLR〉) = −1−i√
2
|GHZ4−〉

U3 |GHZ1+〉 = 1+i
2

(|RLR〉 − |LRL〉) = −1−i√
2
|GHZ4+〉

(4.5.18)

Applying the above transformation three times reveals a certain symmetry, similar
to a rotation that returns after three applications to the original state. In such
a way we obtain three simplices. Their intersection is restricted to one element –
the totally mixed state.
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4.5.3 Entanglement construction

Entangled states with more than three qubits can be constructed in a similar way.

Example 4.5.5 The states |GHZ1−〉 and |GHZ3+〉 are entangled. Now we en-
tangle them in a similar way as before with the help of |0〉 and |1〉, obtaining the
following two states:

|Ψ1〉 = 1√
2
(|0〉 |GHZ1−〉 − |1〉 |GHZ3+〉)

|Ψ2〉 = 1√
2
(|0〉 |GHZ3+〉+ |1〉 |GHZ1−〉)

(4.5.19)

Similar to the results in the previous section, we notice that the state |Ψ1〉 is
absolutely identical to the four particle GHZ state in the basis {|R〉 , (|L〉}

|Ψ1〉 =
∣∣Ψ+

〉
=

1√
2

(|RRRR〉+ |LLLL〉) (4.5.20)

and in a similar way

|Ψ2〉 =
∣∣Ψ−〉 =

−i√
2

(|RRRR〉 − |LLLL〉). (4.5.21)

With the help of states with entangled entanglement and using them as building
blocks in a considerate and careful way, we can construct GHZ type states in higher
dimensions.

We can show very generally that for every number of particles, it is possible to
construct GHZ type entangled states in the above way. To this end we introduce
the following notations:

|ϕ1
1〉 = |0〉 |ϕ2

1〉 = |1〉
|ϕ1

2〉 = 1√
2
(|0〉 |ϕ1

1〉 − |1〉 |ϕ2
1〉) |ϕ2

2〉 = 1√
2
(|0〉 |ϕ2

1〉+ |1〉 |ϕ1
1〉)

= |ϕ−〉 = |ψ+〉
|ϕ1

3〉 = 1√
2
(|0〉 |ϕ1

2〉 − |1〉 |ϕ2
2〉) |ϕ2

3〉 = 1√
2
(|0〉 |ϕ2

2〉+ |1〉 |ϕ1
2〉)

= |GHZ1−〉 = |GHZ3+〉

(4.5.22)

And generally
|ϕ1
n〉 = 1√

2
(|0〉

∣∣ϕ1
n−1

〉
− |1〉

∣∣ϕ2
n−1

〉
)

|ϕ2
n〉 = 1√

2
(|0〉

∣∣ϕ2
n−1

〉
+ |1〉

∣∣ϕ1
n−1

〉
)

(4.5.23)

If we denote by |RL±n 〉 the GHZ states in the {|R〉 , (|L〉} basis∣∣RL±n 〉 =
1√
2

(|RR . . . R〉︸ ︷︷ ︸
n

± |LL . . . L〉︸ ︷︷ ︸
n

) (4.5.24)
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we can for example write for n = 3 the equalities from the last section∣∣ϕ1
3

〉
=
∣∣GHZ1−

〉
=
∣∣RL+

3

〉
and

∣∣ϕ2
3

〉
=
∣∣GHZ3+

〉
=
∣∣RL−3 〉 (4.5.25)

in a compact way.

By mathematical induction we can now show for all n ≥ 3 that∣∣ϕ1
n

〉
=
∣∣RL+

n

〉
and

∣∣ϕ2
n

〉
= −i

∣∣RL−n 〉 . (4.5.26)

Assume |ϕ1
n〉 = |RL+

n 〉 and |ϕ2
n〉 = −i |RL−n 〉 then it follows that∣∣ϕ1

n+1

〉
= 1√

2
(|0〉 |ϕ1

n〉 − |1〉 |ϕ2
n〉)

= 1√
2
(|0〉 |RL+

n 〉+ i |1〉 |RL−n 〉)

= 1√
2
(|0〉 1√

2
(|RR . . . R〉︸ ︷︷ ︸

n

+ |LL . . . L〉︸ ︷︷ ︸
n

) + i |1〉 1√
2
(|RR . . . R〉︸ ︷︷ ︸

n

− |LL . . . L〉︸ ︷︷ ︸
n

))

= 1√
2
( (|0〉+i|1〉)√

2
|RR . . . R〉︸ ︷︷ ︸

n

+ (|0〉−i|1〉)√
2
|LL . . . L〉︸ ︷︷ ︸

n

)

= 1√
2
(|R〉 |RR . . . R〉︸ ︷︷ ︸

n

+ |L〉 |LL . . . L〉︸ ︷︷ ︸
n

)

= 1√
2
(|RR . . . R〉︸ ︷︷ ︸

n+1

+ |LL . . . L〉︸ ︷︷ ︸
n+1

)

=
∣∣RL+

n+1

〉
∣∣ϕ2

n+1

〉
= −i

∣∣RL−n+1

〉
follows in an absolutely similar way.

Thus it is now obviously possible to construct in a systematic way GHZ states
of arbitrary many states in the {|R〉 , (|L〉} basis using the process of entangling
states that are already entangled.

4.6 Bloch representation in the tripartite case

4.6.1 Unitary 2x2x2 transformations and density matrices

Density matrices and unitary 2 ⊗ 2 ⊗ 2 transformations can be represented with
the help of Pauli matrices:

σ0 = I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

U =
3∑
i=0

3∑
j=0

3∑
k=0

uijk · σi ⊗ σj ⊗ σk (4.6.1)
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Remark 4.6.1 The following examples of Bloch representations in the 2× 2× 2
case have been calculated with help of a Mathematica Tool (see Appendix A)

Example 4.6.1 Bloch representation of the unitary transformation U from ex-
ample 4.4.15, that transforms the entangled GHZ state into the separable product
state |000〉 〈000|:

U = 1
4
( 3I⊗ I⊗ I

+ 1√
2
(σ1 ⊗ σ1 ⊗ σ1 + σ3 ⊗ σ3 ⊗ σ3)

+ 1√
2
(I⊗ I⊗ σ3 + I⊗ σ3 ⊗ I + σ3 ⊗ .I⊗ I)

−(I⊗ σ3 ⊗ σ3 + σ3 ⊗ I⊗ σ3 + σ3 ⊗ σ3 ⊗ I)

− 1√
2
(σ1 ⊗ σ2 ⊗ σ2 + σ2 ⊗ σ1 ⊗ σ2 + σ2 ⊗ σ2 ⊗ σ1))

(4.6.2)

Example 4.6.2 The density matrix of the GHZ state ρGHZ = |GHZ〉 〈GHZ| can
be written in Bloch representation in the following way:

ρGHZ = 1
8
( σ1 ⊗ σ1 ⊗ σ1 − σ2 ⊗ σ2 ⊗ σ1 − σ1 ⊗ σ2 ⊗ σ2 − σ2 ⊗ σ1 ⊗ σ2+

I⊗ σ3 ⊗ σ3 + σ3 ⊗ I⊗ σ3 + σ3 ⊗ σ3 ⊗ I + I⊗ I⊗ I)
(4.6.3)

and for example one of the states with entangled entanglement shows the following
Bloch decomposition

ρGHZ1+ = 1
8
( σ1 ⊗ σ3 ⊗ σ1 − σ3 ⊗ σ1 ⊗ σ1 − σ2 ⊗ I⊗ σ2 + I⊗ σ2 ⊗ σ2+

σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3 − σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
(4.6.4)

4.6.2 Pure 2x2x2 states

One qubit can be geometrically represented as a point in the Bloch ball. Pure
states correspond to points on the Bloch sphere mentioned in section 2.3, mixed
states lie inside the ball.

In the bipartite case, for two qubits, the Bloch representation from section 3.7

ρ =
1

4
(I⊗ I + ~a · ~σ ⊗ I + I⊗~b · ~σ +

∑
i

tiiσi ⊗ σi) (4.6.5)

is already more complicated.
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For states that can be represented as convex combination of only four special
constituents, namely I⊗ I, σ1 ⊗ σ1, σ2 ⊗ σ2 and σ3 ⊗ σ3, the Bell-diagonal states

ρ =
1

4
(I⊗ I + a · σx ⊗ σx + b · σy ⊗ σy + c · σz ⊗ σz) (4.6.6)

the corresponding geometrical representation is the tetrahedron or magic simplex
(Figure 3.4) with the Bell states at the corners. In Fig. 4.13 this tetrahedron is
illustrated in combination with the ball of all pure states.

Figure 4.13: Tetrahedron of physical states and ball of pure states for two qubits

The borders have been defined by checking the eigenvalues and determining where
they are non-negative. To find pure states, we calculate tr(ρ2) = 1

4
(1+a2 +b2 +c2)

and set it equal to 1. Only states that fulfill 1
4
(1 +a2 + b2 + c2) = 1 or equivalently

a2 + b2 + c2 = 3 are pure states.

In our case the only points in the intersection of the tetrahedron of physical states
and the ball of pure states are the corners of the tetrahedron. So only the four
Bell states at the corners are pure states, all other states in this special setting are
mixed.

In the tripartite case the situation is still more complicated. Many more terms are
possible as could already be seen in the last section. If we restrict ourselves again
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to similar terms as before I⊗ I⊗ I, σ1⊗ σ1⊗ σ1, σ2⊗ σ2⊗ σ2 and σ3⊗ σ3⊗ σ3, the
corresponding state is

ρ =
1

8
(I⊗ I⊗ I + aσx ⊗ σx ⊗ σx + bσy ⊗ σy ⊗ σy + cσz ⊗ σz ⊗ σz) (4.6.7)

with a very symmetrical density matrix form

ρ =



1+c
8

0 0 0 0 0 0 a−ib
8

0 1−c
8

0 0 0 0 a+ib
8

0
0 0 1−c

8
0 0 a+ib

8
0 0

0 0 0 1+c
8

a−ib
8

0 0 0
0 0 0 a+ib

8
1−c

8
0 0 0

0 0 a−ib
8

0 0 1+c
8

0 0
0 a−ib

8
0 0 0 0 1+c

8
0

a+ib
8

0 0 0 0 0 0 1−c
8


(4.6.8)

Figure 4.14: Ball of physical states and ball of pure states for three qubits

The eigenvalues are 1
8
(1−
√
a2 + b2 + c2) and 1

8
(1+
√
a2 + b2 + c2). To obtain valid

density matrices, non-negative eigenvalues are necessary, therefore we obtain the
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constraint
√
a2 + b2 + c2 ≤ 1. This means in our situation that the set of valid

density matrices is again represented by a ball.

Only for pure states we would need tr(ρ2) = 1
8
(1 +a2 + b2 + c2) = 1, corresponding

to states on the ball a2 + b2 + c2 = 7. This clearly is not possible, so in this case
the set of states with this restriced set of Bloch terms does not include any pure
state.

In the case of four particles, geometry changes again and we obtain for states of
the form

ρ =
1

8
(I⊗4 + aσ⊗4

x + bσ⊗4
y + cσ⊗4

z ) (4.6.9)

a tetrahedron as in the case of two particles (actually compared to the two particle
case we obtain here a flipped tetrahedron). But as in the case before, this tetrahe-
dron of physical states does not contain any pure states; the condition for purity
being a2 + b2 + c2 = 15 in this case, contradicting the conditions for non-negative
eigenvalues.

Figure 4.15: Tetrahedron of physical states and ball of pure states for four qubits

This alternation between tetrahedra and balls can be shown to hold generally, see
Appendix C.
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All in all, we can say that for n particle states of the simple structure

ρ =
1

8
(I⊗n + a · σ⊗nx + b · σ⊗ny + c · σ⊗nz ) (4.6.10)

the corresponding geometrical Bloch representation is a tetrahedron for n even and
a ball for n odd. For n ≥ 3 this set of states does not include any pure states.
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4.6.3 States with entangled entanglement

For the states with entangled entanglement we obtain the following Bloch repre-
sentations:

ρGHZ1− = |GHZ1−〉 〈GHZ1−|
= 1

8
(−σ3 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ3 ⊗ σ1 + I⊗ σ2 ⊗ σ2

+σ2 ⊗ I⊗ σ2 − σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3

+σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ1+ = |GHZ1+〉 〈GHZ1+|

= 1
8
(−σ3 ⊗ σ1 ⊗ σ1 + σ1 ⊗ σ3 ⊗ σ1 + I⊗ σ2 ⊗ σ2

−σ2 ⊗ I⊗ σ2 + σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3

−σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ2− = |GHZ2−〉 〈GHZ2−|

= 1
8
(σ3 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ3 ⊗ σ1 − I⊗ σ2 ⊗ σ2

+σ2 ⊗ I⊗ σ2 + σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3

−σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ2+ = |GHZ2+〉 〈GHZ2+|

= 1
8
(σ3 ⊗ σ1 ⊗ σ1 + σ1 ⊗ σ3 ⊗ σ1 − I⊗ σ2 ⊗ σ2

−σ2 ⊗ I⊗ σ2 − σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3

+σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ3− = |GHZ3−〉 〈GHZ3−|

= 1
8
(σ3 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ3 ⊗ σ1 + I⊗ σ2 ⊗ σ2

−σ2 ⊗ I⊗ σ2 − σ1 ⊗ σ1 ⊗ σ3 − σ3 ⊗ σ3 ⊗ σ3

−σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ3+ = |GHZ3+〉 〈GHZ3+|

= 1
8
(σ3 ⊗ σ1 ⊗ σ1 + σ1 ⊗ σ3 ⊗ σ1 + I⊗ σ2 ⊗ σ2

+σ2 ⊗ I⊗ σ2 + σ1 ⊗ σ1 ⊗ σ3 − σ3 ⊗ σ3 ⊗ σ3

+σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ4− = |GHZ4−〉 〈GHZ4−|

= 1
8
(−σ3 ⊗ σ1 ⊗ σ1 − σ1 ⊗ σ3 ⊗ σ1 − I⊗ σ2 ⊗ σ2

−σ2 ⊗ I⊗ σ2 + σ1 ⊗ σ1 ⊗ σ3 − σ3 ⊗ σ3 ⊗ σ3

+σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)
ρGHZ4+ = |GHZ4+〉 〈GHZ4+|

= 1
8
(−σ3 ⊗ σ1 ⊗ σ1 + σ1 ⊗ σ3 ⊗ σ1 − I⊗ σ2 ⊗ σ2

+σ2 ⊗ I⊗ σ2 − σ1 ⊗ σ1 ⊗ σ3 − σ3 ⊗ σ3 ⊗ σ3

−σ2 ⊗ σ2 ⊗ I + I⊗ I⊗ I)

(4.6.11)
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All these states include only terms of the following set:

B0 = I⊗ I⊗ I
B1 = σ3 ⊗ σ1 ⊗ σ1

B2 = σ1 ⊗ σ3 ⊗ σ1

B3 = I⊗ σ2 ⊗ σ2

B4 = σ2 ⊗ I⊗ σ2

B5 = σ1 ⊗ σ1 ⊗ σ3

B6 = σ3 ⊗ σ3 ⊗ σ3

B7 = σ2 ⊗ σ2 ⊗ I

(4.6.12)

The GHZi± states can be represented as a linear combination of these terms
B0, ..., B7 with the following + and − signs, see (4.6.11)

B0 B1 B2 B3 B4 B5 B6 B7
ρGHZ1− + − − + + − + +
ρGHZ1+ + − + + − + + −
ρGHZ2− + + − − + + + −
ρGHZ2+ + + + − − − + +
ρGHZ3− + + − + − − − −
ρGHZ3+ + + + + + + − +
ρGHZ4− + − − − − + − +
ρGHZ4+ + − + − + − − −

(4.6.13)

As it is not possible to draw pictures in these high dimensional spaces, one can take
smaller subsets or projections to gain some insights into the geometry. If we take
– for example – a subset of four of the entangled entanglement states from section
4.5.1, for example ρGHZ1− , ρGHZ1+ , ρGHZ3− and ρGHZ3+ and adjust the reference
states to the following ”directions”,

D1 = B0 +B3
D2 = B2 +B5
D3 = B1−B6
D4 = B4 +B7

(4.6.14)

we can represent the above states geometrically in three dimensions by a tetra-
hedron, actually again a kind of ”magic simplex” with D1 in the center and the
three dimensional directions D2, D3 and D4.

ρGHZ1− = (D1−D2−D3 +D4)/8
ρGHZ1+ = (D1 +D2−D3−D4)/8
ρGHZ3− = (D1−D2 +D3−D4)/8
ρGHZ3+ = (D1 +D2 +D3 +D4)/8

(4.6.15)
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The states ρGHZ1− , ρGHZ1+ , ρGHZ3− and ρGHZ3+ are then the corners of the corre-
sponding magic simplex. The states inside the simplex take the form

ρ = λ1ρGHZ1− + λ2ρGHZ1+ + λ3ρGHZ3− + λ4ρGHZ3+ , λi ≥ 0,
∑
i

λi = 1 (4.6.16)

Figure 4.16: Magic simplex of 4 GHZ states with entangled entanglement

The state

D1 = (ρGHZ1− + ρGHZ1+ + ρGHZ3− + ρGHZ3+)/4 = I⊗ I⊗ I+ I⊗ σ2⊗ σ2 (4.6.17)

lies at the center of the simplex.

We can analyze states on a ray from the center D1 to one of the facets, e.g.
{ρGHZ1− , ρGHZ1+ , ρGHZ3+},

(1− λ) ·D1 + λ · (α1ρGHZ1− + α2ρGHZ1+ + α3ρGHZ3+) (4.6.18)
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with
∑3

i=1 αi = 1. One notices that at least one eigenvalue is of the form 1−λ
4

and
so we observe that – as expected – states outside the simplex (λ > 1) are in fact
not physical, they possess at least one negative eigenvalue.

To gain insight into the geometry of these states, we now take another point of
view. This time we take only three corner states, e.g. {ρGHZ1− , ρGHZ1+ , ρGHZ3+}
as above, but now we study the relation to the whole polytope built from all
eight states {ρGHZ1− , ρGHZ1+ , ρGHZ2− , ρGHZ2+ , ρGHZ3− , ρGHZ3+ , ρGHZ4− , ρGHZ4+},
not only a subset as shown in Figure 4.16.

Take the state at the center of the facet [ρGHZ1− , ρGHZ1+ , ρGHZ3+ ]

ρc =
1

3
(ρGHZ1− + ρGHZ1+ + ρGHZ3+). (4.6.19)

Connecting it with the maximally mixed state 1
8
I and extending this ray to the

”other side” of the polytope of physical states, we end up having the following
state

ρd =
1

5
(ρGHZ2− + ρGHZ2+ + ρGHZ3− + ρGHZ4− + ρGHZ4+) (4.6.20)

which is at the center of the ”opposite” facet of the polytope (this facet cannot be
represented in our picture due to dimensionality restrictions).

A further exploration along a ray from a point between 1
8
I and ρc

ρα = α
1

8
I + (1− α)ρc, 0 ≤ α ≤ 1 (4.6.21)

to the ”center”

ρm =
1

3
(ρGHZ1− + ρGHZ1+ +

1

8
I) (4.6.22)

of the facet [ρGHZ1− , ρGHZ1+ ,
1
8
I] of the polytope with the corners

{ρGHZ1− , ρGHZ1+ , ρGHZ3+ ,
1
8
I} delivers the point

ρb = λρm + (1− λ)ρα. (4.6.23)

For example if α = 1
2

the state ρb has the following eigenvalues:

1

48
(11− 9λ),

3− λ
48

(5×),
11 + 7λ

48
(2×). (4.6.24)

So the physical states on this ray end with λ = 11
9

and this corresponding state is
just on the facet [ρGHZ1− , ρGHZ1+ , ρd]

ρb =
11

27
ρGHZ1− +

11

27
ρGHZ1+ +

5

27
ρd (4.6.25)
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with eigenvalues
11

27
(2×),

1

27
(5×) and 0. (4.6.26)

This again shows that the physical states can only be inside the ”magic” polytope.
As soon as we reach the border, at least one eigenvalue turns zero and obtains
negative values outside.

Figure 4.17: Part of the magic simplex of 3 GHZ states and their ”opposite”

4.6.4 Entanglement in the magic simplex

Entanglement classification for mixed states being very difficult, we suggest a
method to find entanglement types at least for some special cases in the simplex
of the entangled entanglement simplex.
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According to section 4.5.2 it is possible to map the ρGHZi± to ρGHZ via local
unitary transformations. For some pairs of states ρGHZi± a common local unitary
transformation U = UA ⊗ UB ⊗ UC can be found that transforms these states to
the pair ρGHZ and ρGHZ−

Example 4.6.3 Of the eight states with entangled entanglement there are four
pairs of states that can be converted to the pair ρGHZ and ρGHZ−.

With local unitaries U = UA ⊗ UB ⊗ UC, the following transformations can be
executed

U03 ⊗ U03 ⊗ U03

ρGHZ1− → ρGHZ
ρGHZ3+ → ρGHZ− ,

(4.6.27)

U03 ⊗ U04 ⊗ U03

ρGHZ2− → ρGHZ
ρGHZ4+ → ρGHZ− ,

(4.6.28)

U03 ⊗ U04 ⊗ U08

ρGHZ3− → ρGHZ
ρGHZ1+ → ρGHZ− ,

(4.6.29)

U03 ⊗ U03 ⊗ U08

ρGHZ4− → ρGHZ
ρGHZ2+ → ρGHZ− ,

(4.6.30)

This means: Using the same transformation U = U03 ⊗ U03 ⊗ U03 for ρGHZ1− and
ρGHZ3+ , we obtain

U |GHZ1−〉 〈GHZ1−|U † = |GHZ〉 〈GHZ|
U |GHZ3+〉 〈GHZ3+|U † = |GHZ−〉 〈GHZ−| (4.6.31)

From that we deduce that we can also identify every state in the triangle
(1

8
I, ρGHZ1− , ρGHZ3+) with a corresponding state in the triangle (1

8
I, ρGHZ , ρGHZ−)

from [65].

U
a1

1
8
I + a2ρGHZ1− + a3ρGHZ3+ → a1

1
8
I + a2ρGHZ + a3ρGHZ−

(4.6.32)

The local unitary mapping between these states should not change their entangle-
ment type, so that we can identify mixed states from the first triangle of entangled
entanglement states to states from the Fig. 2 in the Eltschka/Siewert paper [65],
where areas for the different types of entanglement classes are specified and infer
the same type of entanglement for our mixed states.
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Figure 4.18: Correspondence of states in the entangled entanglement simplex and the
entanglement classes from [65]
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Example 4.6.4 Werner like states

ρ1−
WS = p

∣∣GHZ1−
〉 〈
GHZ1−

∣∣+
1− p

8
I (4.6.33)

can then be identified with the corresponding generalized Werner states ρWS =
p |GHZ〉 〈GHZ| + 1−p

8
I in [65] via the above unitary transformation. Therefore

assigning the same separation values for p at the regions separating separable, bi–
separable, W and GHZ states:

ρ1−
WS separable for 0 ≤ p ≤ 1

5

ρ1−
WS bi–separable for 1

5
< p ≤ 3

7

ρ1−
WS W state for 3

7
< p ≤ 0.6955427...

ρ1−
WS GHZ state for 0.6955427... < p ≤ 1
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Chapter 5

Conclusion

Entanglement being one of the most important properties of quantum systems,
considerable work has been done in this field. Bipartite and especially bipartite
qubit states are quite well studied. A very powerful criterion, the PPT criterion,
exists for 2× 2 and 2× 3 states, that can exactly discriminate between separable
and entangled states. For higher dimensions and multipartite states we still have
no such general tool, although for some special cases and some families of states,
entanglement properties can successfully be detected.

This work is concentrated on tripartite qubit states. Three qubit states have a
much richer entanglement structure than two qubit states and so many of the
well known entanglement measures for bipartite states cannot be used, at least
not in the usual way. Nevertheless in the last years entanglement measures, also
for the multipartite case, have been developed. We have studied some of these
entanglement measures especially for generalized GHZ and W states.

Using symmetries is investigated and for GHZ symmetric states it is possible to
determine the entanglement status, even giving border lines or regions for the
different types of entanglement.

Also due to richer possibilities in the tripartite case we had the possibility to study
the entanglement of entangled states and some of their geometrical structures. In
a similar way as for two qubit states the geometrical structure of simplices plays
a central role with maximally entangled states at their corners and the maximally
mixed state in the center. Local unitary transformations applied to these simplices
reveal another interesting symmetry: after three applications – similar to a rotation
– we again recover the original states.

The notion of entangled entanglement can be inductively generalized to generate
many-particle GHZ type states in a very easy and constructive way. We use some
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of our basis states similar to building blocks, entangle them in a special way and
obtain GHZ type states for arbitrary many particles.

Finally the Bloch representation for these tripartite states was established. This
kind of representation is in general much more complicated in its structure com-
pared to the bipartite case, but nevertheless gave us some interesting, especially
geometrical insights.

The GHZ type states being very important for many applications in quantum
information, certainly much more investigation will be effectuated in the near
future. The investigations in this work are only very small glimpses in a very wide
field and the situation somehow feels like in the old indian story of the blind men
and the elephant. A group of blind men touch an elephant on different parts of
his body. Every man now tells a different story of how the elephant feels, having
touched only a small part. Like them we only have partial information and not
yet a view of the whole situation!

Figure 5.1: The blind men and the elephant
(Source: Martha Adelaide Holton & Charles Madison Curry, Holton-Curry readers,
Rand McNally & Co. (Chicago), p. 108, Illustrator unknown, 1914)
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Appendix A

Mathematica Tool

To calculate the Bloch representation of 2×2×2 states, the following Mathematica
tool is sometimes useful.

The density matrix of the state for which we want to evaluate the Bloch represen-
tation is submitted to a variable called ”state”.

The Bloch basis consists of the Pauli matrices and the identity matrix in the
following notation

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 = I =

(
1 0
0 1

)
(A.0.1)

By pressing the Button ”Evaluate” the calculation is started and the representation
of the state in the following form

ρ =
1

8

4∑
i=1

4∑
j=1

4∑
k=1

tijk.σi ⊗ σj ⊗ σk (A.0.2)

is calculated.

The coefficients are given in four matrices in the following way:

The first matrix consists of the coefficients tij1, the second of tij2 and so on. For
the example in Figure A.1, which denotes the state ρGHZ1+ , this means:

ρGHZ1+ = ( σ1 ⊗ σ3 ⊗ σ1 − σ3 ⊗ σ1 ⊗ σ1− from the first matrix
σ2 ⊗ σ4 ⊗ σ2 + σ4 ⊗ σ2 ⊗ σ2+ from the second matrix
σ1 ⊗ σ1 ⊗ σ3 + σ3 ⊗ σ3 ⊗ σ3− from the third matrix
σ2 ⊗ σ2 ⊗ σ4 + σ4 ⊗ σ4 ⊗ σ4)/8 from the fourth matrix

(A.0.3)
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Figure A.1: User Interface of a Mathematica tool for Bloch representation of a 2x2x2
state
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Mathematica Code (based on a tool from Philipp Köhler calculating the Bloch
decomposition for 2x2 states):

Cell[BoxData[{

RowBox[{"Button", "[",

RowBox[{"\"\<EVALUATE\>\"", ",",

RowBox[{"FrontEndExecute", "[",

RowBox[{"{",

RowBox[{

RowBox[{"FrontEnd‘NotebookFind", "[",

RowBox[{

RowBox[{"FrontEnd‘InputNotebook", "[", "]"}], ",", "\"\<Input\>\"",

",", "All", ",", "CellStyle"}], "]"}], ",",

RowBox[{"FrontEndToken", "[",

RowBox[{

RowBox[{"FrontEnd‘InputNotebook", "[", "]"}], ",",

"\"\<EvaluateCells\>\""}], "]"}]}], "}"}], "]"}], ",",

RowBox[{"Active", "->", "True"}], ",",

RowBox[{"ImageSize", "->",

RowBox[{"{",

RowBox[{"100", ",", "50"}], "}"}]}]}], "]"}], "\n",

RowBox[{

RowBox[{

RowBox[{"T", "[",

RowBox[{"x_", ",", "y_"}], "]"}], "=",

RowBox[{"KroneckerProduct", "[",

RowBox[{"x", ",", "y"}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{

RowBox[{"T3", "[",

RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], "=",

RowBox[{"KroneckerProduct", "[",

RowBox[{"x", ",",

RowBox[{"KroneckerProduct", "[",

RowBox[{"y", ",", "z"}], "]"}]}], "]"}]}], ";"}], "\n",

RowBox[{"HoldForm", "[",

RowBox[{"Style", "[",

RowBox[{

RowBox[{"\"\<General state\>\"", "->",

RowBox[{

FractionBox["1", "8"], " ",
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RowBox[{"{",

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"i", "=", "1"}], "4"],

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"j", "=", "1"}], "4"],

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"k", "=", "1"}], "4"],

RowBox[{

SubscriptBox["t", "ijk"], " ",

RowBox[{

SubscriptBox["\[Sigma]", "i"], "\[CircleTimes]",

SubscriptBox["\[Sigma]", "j"], "\[CircleTimes]",

SubscriptBox["\[Sigma]", "k"]}]}]}]}]}], "}"}]}]}], ",",

RowBox[{"FontSize", "->", "20"}]}], "]"}], "]"}], "\n",

RowBox[{

RowBox[{

RowBox[{"m", "[", "4", "]"}], "=",

RowBox[{"{",

RowBox[{

RowBox[{"{",

RowBox[{"1", ",", "0"}], "}"}], ",",

RowBox[{"{",

RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}], ";",

RowBox[{

RowBox[{"m", "[", "1", "]"}], "=",

RowBox[{"{",

RowBox[{

RowBox[{"{",

RowBox[{"0", ",", "1"}], "}"}], ",",

RowBox[{"{",

RowBox[{"1", ",", "0"}], "}"}]}], "}"}]}], ";",

RowBox[{

RowBox[{"m", "[", "2", "]"}], "=",

RowBox[{"{",

RowBox[{

RowBox[{"{",

RowBox[{"0", ",",
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RowBox[{"-", "I"}]}], "}"}], ",",

RowBox[{"{",

RowBox[{"I", ",", "0"}], "}"}]}], "}"}]}], ";",

RowBox[{

RowBox[{"m", "[", "3", "]"}], "=",

RowBox[{"{",

RowBox[{

RowBox[{"{",

RowBox[{"1", ",", "0"}], "}"}], ",",

RowBox[{"{",

RowBox[{"0", ",",

RowBox[{"-", "1"}]}], "}"}]}], "}"}]}], ";"}], "\n",

RowBox[{

RowBox[{"temp", "=",

RowBox[{"Grid", "[",

RowBox[{

RowBox[{"{",

RowBox[{

RowBox[{"{",

RowBox[{

RowBox[{"MatrixForm", "[",

RowBox[{"m", "[", "1", "]"}], "]"}], ",",

RowBox[{"MatrixForm", "[",

RowBox[{"m", "[", "2", "]"}], "]"}]}], "}"}], ",",

RowBox[{"{",

RowBox[{

RowBox[{"MatrixForm", "[",

RowBox[{"m", "[", "3", "]"}], "]"}], ",",

RowBox[{"MatrixForm", "[",

RowBox[{"m", "[", "4", "]"}], "]"}]}], "}"}]}], "}"}], ",",

RowBox[{"Frame", "->", "All"}]}], "]"}]}], ";"}], "\n",

RowBox[{"Style", "[",

RowBox[{

RowBox[{"\"\<Bloch basis\>\"", "->", "temp"}], ",",

RowBox[{"FontSize", "->", "20"}]}], "]"}], "\n",

RowBox[{

RowBox[{"temp", "=",

RowBox[{"MatrixForm", "[", "state", "]"}]}], ";"}], "\n",

RowBox[{"Style", "[",

RowBox[{
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RowBox[{"\"\<Given state\>\"", "->", "temp"}], ",",

RowBox[{"FontSize", "->", "20"}]}], "]"}], "\n",

RowBox[{

RowBox[{"allgZustand", "=",

RowBox[{

FractionBox["1", "8"], " ",

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"i", "=", "1"}], "4"],

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"j", "=", "1"}], "4"],

RowBox[{

UnderoverscriptBox["\[Sum]",

RowBox[{"k", "=", "1"}], "4"],

RowBox[{

RowBox[{"t", "[",

RowBox[{"i", "+",

RowBox[{"4", " ", "j"}], "+",

RowBox[{"16", " ", "k"}], "-", "20"}], "]"}], " ",

RowBox[{"T3", "[",

RowBox[{

RowBox[{"m", "[", "i", "]"}], ",",

RowBox[{"m", "[", "j", "]"}], ",",

RowBox[{"m", "[", "k", "]"}]}], "]"}]}]}]}]}]}]}], ";"}], "\n",

RowBox[{

RowBox[{"temp", "=",

RowBox[{"Solve", "[",

RowBox[{

RowBox[{"allgZustand", "==", "state"}], ",",

RowBox[{"Array", "[",

RowBox[{"t", ",", "64"}], "]"}]}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{"sol", "=",

RowBox[{"FullSimplify", "[",

RowBox[{

RowBox[{"Array", "[",

RowBox[{"t", ",", "64"}], "]"}], "/.", " ", "temp"}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{"tmatrix1", "=",
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RowBox[{"MatrixForm", "[",

RowBox[{"Table", "[",

RowBox[{

RowBox[{"sol", "[[",

RowBox[{"1", ",",

RowBox[{"i", "+",

RowBox[{"4", " ", "j"}], "-", "4"}]}], "]]"}], ",",

RowBox[{"{",

RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",

RowBox[{"{",

RowBox[{"j", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{"tmatrix2", "=",

RowBox[{"MatrixForm", "[",

RowBox[{"Table", "[",

RowBox[{

RowBox[{"sol", "[[",

RowBox[{"1", ",",

RowBox[{"i", "+",

RowBox[{"4", " ", "j"}], "+", "12"}]}], "]]"}], ",",

RowBox[{"{",

RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",

RowBox[{"{",

RowBox[{"j", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{"tmatrix3", "=",

RowBox[{"MatrixForm", "[",

RowBox[{"Table", "[",

RowBox[{

RowBox[{"sol", "[[",

RowBox[{"1", ",",

RowBox[{"i", "+",

RowBox[{"4", " ", "j"}], "+", "28"}]}], "]]"}], ",",

RowBox[{"{",

RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",

RowBox[{"{",

RowBox[{"j", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}]}], ";"}], "\n",

RowBox[{

RowBox[{"tmatrix4", "=",

RowBox[{"MatrixForm", "[",
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RowBox[{"Table", "[",

RowBox[{

RowBox[{"sol", "[[",

RowBox[{"1", ",",

RowBox[{"i", "+",

RowBox[{"4", " ", "j"}], "+", "44"}]}], "]]"}], ",",

RowBox[{"{",

RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",

RowBox[{"{",

RowBox[{"j", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}]}], ";"}],

"\n",

RowBox[{

RowBox[{"temp", "=",

RowBox[{"Grid", "[",

RowBox[{

RowBox[{"{",

RowBox[{"{",

RowBox[{"tmatrix1", ",", "tmatrix2", ",", "tmatrix3", ",",

"tmatrix4"}], "}"}], "}"}], ",",

RowBox[{"Frame", "->", "All"}]}], "]"}]}], ";"}], "\n",

RowBox[{"Style", "[",

RowBox[{

RowBox[{"\"\<Coefficients f. k=1, 2, 3, 4 \>\"", "->", "temp"}], ",",

RowBox[{"FontSize", "->", "20"}]}], "]"}], "\n",

RowBox[{

RowBox[{"temp", "=",

RowBox[{"If", "[",

RowBox[{

RowBox[{

RowBox[{"sol", "[[",

RowBox[{"1", ",", "64"}], "]]"}], "===", "1"}], ",",

"\"\<State is Normalized\>\"", ",",

RowBox[{"sol", "[[",

RowBox[{"1", ",", "64"}], "]]"}]}], "]"}]}], ";"}], "\n",

RowBox[{"Style", "[",

RowBox[{

RowBox[{"\"\<Normalization\>\"", "->", "temp"}], ",",

RowBox[{"FontSize", "->", "20"}]}], "]"}]}], "Input"
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Appendix B

Unitary transformation matrices

The following 64 plus 16, therefore 80 unitary matrices were used to find suitable
local unitary transformations in a fast and easy way. These might not describe
entirely all possible cases, but proved to be a very useful subset.

U01 = 1
2

(
1 1
1 −1

)
U02 = 1

2

(
1 −1
1 1

)
U03 = 1

2

(
1 i
1 −i

)
U04 = 1

2

(
1 −i
1 i

)
U05 = 1

2

(
1 1
−1 1

)
U06 = 1

2

(
1 −1
−1 1

)
U07 = 1

2

(
1 i
−1 i

)
U08 = 1

2

(
1 −i
−1 −i

)
U09 = 1

2

(
1 1
i −i

)
U10 = 1

2

(
1 −1
i i

)
U11 = 1

2

(
1 i
i 1

)
U12 = 1

2

(
1 −i
i −1

)
U13 = 1

2

(
1 1
−i i

)
U14 = 1

2

(
1 −1
−i −i

)
U15 = 1

2

(
1 i
−i −1

)
U16 = 1

2

(
1 −i
−i 1

)
U17 = 1

2

(
−1 1
1 1

)
U18 = 1

2

(
−1 −1
1 −1

)
U19 = 1

2

(
−1 i
1 i

)
U20 = 1

2

(
−1 −i
1 −i

)
U21 = 1

2

(
−1 1
−1 −1

)
U22 = 1

2

(
−1 −1
−1 1

)
U23 = 1

2

(
−1 i
−1 −i

)
U24 = 1

2

(
−1 −i
−1 i

)
U25 = 1

2

(
−1 1
i i

)
U26 = 1

2

(
−1 −1
i −i

)
U27 = 1

2

(
−1 i
i −1

)
U28 = 1

2

(
−1 −i
i 1

)
U29 = 1

2

(
−1 1
−i −i

)
U30 = 1

2

(
−1 −1
−i i

)
U31 = 1

2

(
−1 i
−i 1

)
U32 = 1

2

(
−1 −i
−i −1

)
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U33 = 1
2

(
i 1
1 i

)
U34 = 1

2

(
i −1
1 −i

)
U35 = 1

2

(
i i
1 −1

)
U36 = 1

2

(
i −i
1 1

)
U37 = 1

2

(
i 1
−1 −i

)
U38 = 1

2

(
i −1
−1 i

)
U39 = 1

2

(
i i
−1 1

)
U40 = 1

2

(
i −i
−1 −1

)
U41 = 1

2

(
i 1
i −1

)
U42 = 1

2

(
i −1
i 1

)
U43 = 1

2

(
i i
i −i

)
U44 = 1

2

(
i −i
i i

)
U45 = 1

2

(
i 1
−i 1

)
U46 = 1

2

(
i −1
−i −1

)
U47 = 1

2

(
i i
−i i

)
U48 = 1

2

(
i −i
−i −i

)
U49 = 1

2

(
−i 1
1 −i

)
U50 = 1

2

(
−i −1
1 i

)
U51 = 1

2

(
−i i
1 1

)
U52 = 1

2

(
−i −i
1 −1

)
U53 = 1

2

(
−i 1
−1 i

)
U54 = 1

2

(
−i −1
−1 −i

)
U55 = 1

2

(
−i i
−1 −1

)
U56 = 1

2

(
−i −i
−1 1

)
U57 = 1

2

(
−i 1
i 1

)
U58 = 1

2

(
−i −1
i −1

)
U59 = 1

2

(
−i i
i i

)
U60 = 1

2

(
−i −i
i −i

)
U61 = 1

2

(
−i 1
−i −i1

)
U62 = 1

2

(
−i −1
−i 1

)
U63 = 1

2

(
−i i
−i −i

)
U64 = 1

2

(
−i −i
−i i

)
U65 =

(
1 0
0 1

)
U66 =

(
1 0
0 −1

)
U67 =

(
−1 0
0 1

)
U68 =

(
−1 0
0 −1

)
U69 =

(
0 1
1 0

)
U70 =

(
0 1
−1 0

)
U71 =

(
0 −1
1 0

)
U72 =

(
0 −1
−1 0

)
U73 =

(
i 0
0 i

)
U74 =

(
i 0
0 −i

)
U75 =

(
−i 0
0 i

)
U76 =

(
−i 0
0 −i

)
U77 =

(
0 i
i 0

)
U78 =

(
0 i
−i 0

)
U79 =

(
0 −i
i 0

)
U80 =

(
0 −i
−i 0

)
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Appendix C

Bloch representation and pure
states

In section 4.6.2 the representation of states of the form (n number of particles)

ρ =
1

8
(I⊗n + aσ⊗nx + bσ⊗ny + cσ⊗nz )

was discussed.

We can easily represent these states as density matrices for different cases:

1. n = 4k, k ∈ N

ρ =



1 + c 0 · · · · · · · · · · · · 0 a+ b
0 1− c · · · · · · · · · · · · a− b 0
...

. . . . .
. ...

... 1− c a− b
...

... a− b 1− c
...

... . .
. . . .

...
0 a− b · · · · · · · · · · · · 1− c 0

a+ b 0 · · · · · · · · · · · · 0 1 + c


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2. n = 4k + 1, k ∈ N

ρ =



1 + c 0 · · · · · · · · · · · · 0 a+ ib
0 1− c · · · · · · · · · · · · a− ib 0
...

. . . . .
. ...

... 1 + c a− ib
...

... a+ ib 1− c
...

... . .
. . . .

...
0 a+ ib · · · · · · · · · · · · 1 + c 0

a− ib 0 · · · · · · · · · · · · 0 1− c


3. n = 4k + 2, k ∈ N

ρ =



1 + c 0 · · · · · · · · · · · · 0 a− b
0 1− c · · · · · · · · · · · · a+ b 0
...

. . . . .
. ...

... 1− c a+ b
...

... a+ b 1− c
...

... . .
. . . .

...
0 a+ b · · · · · · · · · · · · 1− c 0

a− b 0 · · · · · · · · · · · · 0 1 + c


4. n = 4k + 3, k ∈ N

ρ =



1 + c 0 · · · · · · · · · · · · 0 a− ib
0 1− c · · · · · · · · · · · · a+ ib 0
...

. . . . .
. ...

... 1 + c a+ ib
...

... a− ib 1− c
...

... . .
. . . .

...
0 a− ib · · · · · · · · · · · · 1 + c 0

a+ ib 0 · · · · · · · · · · · · 0 1− c


We obtain different factors in the characteristic polynome and from there can
calculate the eigenvalues for the four cases. The factors and eigenvalues are of the
following form:
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1. n = 4k, k ∈ N: Factors (1+c
2n
− λ)2 − (a+b

2n
)2 and (1−c

2n
− λ)2 − (a−b

2n
)2

Eigenvalues: λ = 1+c±(a+b)
2n

or λ = 1−c±(a−b)
2n

, giving us finally four different
eigenvalues
λ1 = 1

2n
(1 + a+ b+ c), λ2 = 1

2n
(1− a− b+ c),

λ3 = 1
2n

(1 + a− b− c), λ4 = 1
2n

(1− a+ b− c)

2. n = 4k + 2, k ∈ N Factors (1+c
2n
− λ)2 − (a−b

2n
)2 and (1−c

2n
− λ)2 − (a+b

2n
)2

Eigenvalues: λ = 1+c±(a−b)
2n

or λ = 1−c±(a+b)
2n

, giving us again four different
eigenvalues
λ1 = 1

2n
(1 + a− b+ c), λ2 = 1

2n
(1− a+ b+ c),

λ3 = 1
2n

(1 + a+ b− c), λ4 = 1
2n

(1− a− b− c)

3. n = 4k+1, k ∈ N and n = 4k+3, k ∈ N have the same factors and eigenvalues
All factors are of the form (1+c

2n
− λ)(1−c

2n
− λ) − (a+ib

2n
)(a−ib

2n
), therefore the

characteristic polynome is

λ2 − 1

2n−1
.λ+

1− a2 − b2 − c2

2n
= 0

Eigenvalues: λ1,2 = 1
2n
± 1

2n

√
a2 + b2 + c2, giving us two different eigenvalues

in this case.

From the above results we conclude, ensuring that the eigenvalues are non negative,
that we obtain the following geometrical representations

1. n = 4k, k ∈ N: A tetrahedron with constraints
1 + a+ b+ c ≥ 0, 1− a− b+ c ≥ 0,
1 + a− b− c ≥ 0, 1− a+ b− c ≥ 0

2. n = 4k + 2, k ∈ N: A tetrahedron with constraints
1 + a− b+ c ≥ 0, 1− a+ b+ c ≥ 0,
1 + a+ b− c ≥ 0, 1− a− b− c ≥ 0)

3. n = 4k + 1, k ∈ N and n = 4k + 3, k ∈ N:
The ball

√
a2 + b2 + c2 ≤ 1
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separability - The choice of how to factorize the algebra of a density matrix,
Eur. Phys. J. D64, 181 (2011)
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Abstract

For tripartite states there is still no general tool to discriminate between separa-
blility and different types of entanglement. Some special entanglement measures,
adjusted to the usage for multipartite system were studied, and especially applied
to generalized GHZ and W states.

States with entangled entanglement and some of their corresponding geometrical
structures are examined. Similar to the magic simplex in the two qubit case the
geometrical structure of simplices plays an important role in the investigation of
relations, symmetries and entanglement properties of tripartite qubit states.

For GHZ symmetric states the entanglement status and border lines for regions of
different types of entanglement can be found [65]. Via local unitary transforma-
tion these informations could also be used for a simplex of states with entangled
entanglement.

Using basis states as building blocks and entangling them in a special way we are
able to construct GHZ type state for arbitrary many particles in a very straight-
forward method.

Finally with help of a Bloch representation we gained some interesting geometrical
insights into the structure of tripartite qubit states.
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Zusammenfassung

Für tripartite Quantenzustände gibt es bisher noch kein allgemeines Kriterium,
das eine Unterscheidung zwischen separablen und verschiedenartig verschränkten
Zuständen zuläßt. Einige spezielle Größen erlauben es – auch für multipartite Sys-
teme – das Ausmaß von Verschränkung zu bestimmen. Diese wurden untersucht
und speziell auf verallgemeinerte GHZ und W Zustände angewandt.

Auch Zustände mit verschränkter Verschränkung und deren entsprechend geo-
metrische Struktur wurden untersucht. Wie beim ”magischen Simplex” im Zwei-
Qubit Fall spielt die geometrische Struktur eine wichtige Rolle bei der Unter-
suchung von Zusammenhängen, Symmetrien und Verschränkungs-Eigenschaften
tripartiter Zustände.

Für GHZ-symmetrische Zustände können Verschränkungs-Eigenschaften und ihre
Bereiche bestimmt werden [65]. Mit Hilfe von lokalen unitären Transformatio-
nen kann dieses Wissen auch auf einen Simplex von Zuständen mit verschränkter
Verschränkung angewendet werden.

Verwendet man Basis-Zustände als Bauklötze und verschränkt diese in spezieller
Art, so kann man auf einfache Weise GHZ Zustände mit einer beliebigen Anzahl
von Teilchen erhalten.

Mit Hilfe der Bloch-Darstellung kann man weitere Einsichten in die Geometrie und
Struktur von tripartiten Qubit-Zuständen gewinnen.
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