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Abstract
The aim of this diploma thesis is to make a contribution to modelling heavy ion fusion
reactions in the range of the coulomb barrier height. The nucleus-nucleus interaction
potential consists of the coulomb potential and the nuclear potential. In this thesis
the nuclear potential is calculated by using the proximity potential [1]. For this task
already well known nuclear properties, such as surface energy coefficient, rms nuclear
charge radii, etc., are used. Because of that, no adaptation of experimentally measured
data or measurements need to be undertaken.
By applying additional aspects on the calculation of the nucleus-nucleus interaction
potential by neck formation [2] and extra push [3], corrected barrier heights are gained.
These new barrier heights are used to estimate the fusion cross section by using the
distributed barrier model [4] for each reaction.
A comparison between the results of Siwek-Wilczyńska et al. [4] using the woods-saxon
potential in conjunction with the distributed barrier potential, which states that no
acceptable results are gained by the proximity potential, shows that the modification of
the proximity potential by inclusion of neck formation and extra push produces almost
as good as results as the woods-saxon potential [4] with fitted parameters.
In this work one gets by using this modified model of the proximity model the barrier
height and its location radius for all reactions, which are used in the distributed barrier
function [4] in order to receive the excitation function.
For the analysis 48 fusion reactions [4] were examined and compared to results of other
models. The calculation was executed in the scientific program MATLAB R2008b and
is attached in the appendix.



Abstract
Das Ziel dieser Diplomarbeit ist es, in der Modellierung von Schwerionenreaktionen im
Bereich der Coulomb-Barriere einen Beitrag zu leisten. In dieser Arbeit wird zur Berech-
nung des nuklearen Potentials, welches neben dem Coulomb-Potential in das wechsel-
wirkende Potential zwischen den Atomkernen miteinfließt, das Proximity-Potential her-
angezogen [1]. Dafür werden wohl bekannte nukleare Größen wie der Oberflächenenergie-
Koeffizient, rms Ladungsradien, etc. verwendet. Aufgrund dessen ist eine Anpassung
an experimentellen Werten nicht von Nöten.
Durch die Anwendung weiterer Aspekte wie Neck Formation [2] und Extra Push [3] in
der Berechnung des wechselwirkenden Potentials, werden korrigierte Werte der Barrie-
renhöhen erhalten. Diese neuen Barrierenhöhen werden verwendet, um eine Abschätzung
der Fusionswirkungsquerschnitte mittels dem ”distributed barrier model” [4] für jede
Reaktion zu ermöglichen.
Ein Vergleich mit den Ergebnissen unter der Verwendung des Woods-Saxon Potential
mittels dem ”distributed barrier model” von Siwek-Wilczyńska et al. [4], nach welchen
das Proximity-Potential keine akzeptablen Werte ergibt, zeigt aber, dass die Modifi-
kation des Proximity-Potentials durch Einbeziehen der Neck Formation und des Extra
Push fast so gute Werte liefert wie das Woods-Saxon-Potential [4] mit angepassten
Werten.
In dieser Arbeit wird dieses modifizierte Proximity-Potential herangezogen um die Bar-
rierenhöhen sowie deren Position zu berechnen. Diese fließen in die Distributed Barrier
Function [4] ein, welche die Anregungsfunktion einer Reaktion liefert.
Für die Analyse wurden 48 Fusionsreaktionen [4] betrachtet und ein Vergleich zu den
Ergebnissen von anderen Modellen wurde angestellt. Die Berechnung wurde mittels
des wissenschaftlichen Programms MATLAB R2008b durchgeführt und ist im Anhang
beigelegt.
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1 Introduction

1.1 Motivation

The nucleus-nucleus interaction potential of two fusing nuclei needs to be studied, as it is a math-
ematical challenge in determining the nuclear part of the interacting potential via coupled channel
calculations. Different kinds of nucleus-nucleus interacting potential have been introduced in the last
decades. By using the proximity potential for the calculation of the nuclear part, one can get an ac-
ceptable theoretical value for the barrier height and its location in comparison to the experimentally
measured values. With this easy to handle calculation tool for which no fitting to experimental data is
needed, one can approximately estimate fusion cross section for any heavy ion fusion reaction without
any measurements. This possibility of prediction about characteristics of fusion reactions (such as
barrier height, fusion cross section, etc.) is significant for research, especially for the formation of
superheavy elements by nucleosynthesis.

1.2 State of Research

Different investigations into the prediction of barrier height and the location of radius of fusion reac-
tions have been made. These investigations differ in various kinds of nuclear potentials (such as the
proximity potential or the woods-saxon potential) for fusion reactions, in different modifications of
the potentials or in varying the parameters of a potential itself.

The original form of the proximity potential [5] was used by Vaz et al. [6] for calculation of bar-
rier heights and their location radius for 96 measured fusion barriers at low energies. This model
features a 4% deviation on average to the experimentally measured values [1]. Further modifications
of the original proximity potential model improved this overestimation.

Myers et al. [1] used a modified form of the proximity potential for the calculation by using up-
to-date values of nuclear parameters (e. g. surface energy coefficient and nuclear radius). For the
analysis, they studied the same data as Vaz et al. (96 measured fusion barriers at low energies) [6].
The results showed an average deviation for all 96 fusion reactions of about −0.01% and the rms
spread of the deviation was 3.30%.

Another modified proximity potential model has been analysed by Dutt [7]. In this model a new
formula for the nuclear charge radius has been used. Furthermore, the surface energy coefficient was
taken from [8]. For their analysis, they viewed 395 fusion reactions at low and intermediate ener-
gies. The mean deviation in the determined barrier height values by this modified proximity potential
model is about 0.30 MeV to the experimental values.

Siwek-Wilczyńska et al. [4] analysed the fusion excitation functions at low energies of 48 measured
reactions and determined by using the distributed barrier function the barrier heights of each fusion
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CHAPTER 1. INTRODUCTION

reactions. This model reproduces theoretical barrier heights to within a deviation of less than 1 MeV

in mean to the experimental values.

An advantage of the modified model used in this work is that no fitting of parameters to experi-
mental data will be needed, whereas all models named above need fitted parameters.

1.3 Level of Ambition
Here the author wants to modify the proximity potential by including different kinds of corrections, so
that the predicted results of the modified nucleus-nucleus interaction potential represent acceptable
values of the barrier height of a fusion reaction and the position of the barrier-maximum without
fittings to experimental data. To improve the original results [6], neck formation is taken into account
for the calculation of the barrier height. The theory of the extra push is also included.
This model is still a simplified model as deformation of the participating nuclei and other phenomena
(quantum effects, etc.) are disregarded. But in spite of these simplifications, this model produces
good results as can be seen in the analysis chapter.
The gained results for the position and height of the barrier are used in the distributed barrier model [4]
and results in acceptable accuracy at about the same level as the latest models feature but with the
additional advantage no fitting to experimentally measured data is needed.
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2 Fusion

Fusion describes the process of conflation between two colliding nuclei and occurs in all mass ranges.
For this task, the participating nuclei need to overcome the fusion barrier, which is determined by the
potential of the repulsive coulomb force and the attractive nuclear force [9].
Fusion of light particles is the process responsible for the production of energy in stars. Elements up
to iron are formed by stellar nucleosynthesis. Elements of a higher proton number than iron (Z = 26)
are formed either by the r- and/or s-processes. Uranium is the last element which is formed naturally
and still exist on earth. All elements with a higher proton number than uranium (Z = 92) are formed
synthetically. These are produced by heavy ion fusion reactions. Niels Bohr presented the hypotheses
of compound nuclear reactions [9] in which an intermediate nucleus in the fusion process is introduced.
In this case projectile a and target A fuse to an extremely excited compound nucleus C∗, which decays
into an ejectile b and a final nucleus B [9]:

a + A −→ C∗ −→ b + B (2.1)

It is assumed that entry channel and exit channel are independent of each other. The fusion process
in the entry channel can occur for all kinds of compositions of nuclei [9].
As for other nuclear reactions there are conservation laws for the fusion process:

• Conservation of the charge q

qa + qA = qb + qB (2.2)

• Conservation of the energy E

Ea + EA + mac2 + mAc2 = Eb + EB + mbc2 + mBc2 (2.3)

• Conservation of linear momentum −→p

−→p a + −→p A = −→p b + −→p B (2.4)

• Conservation of the total angular momentum
−→
J

−→
J a,A = −→s a + −→s A +

−→
l a,A = −→s b + −→s B +

−→
l b,B =

−→
J b,B (2.5)

with the total angular momentum
−→
J as the sum of the spin −→s of each particle and the orbital

angular momentum of the relative movement
−→
l .

• Conservation of the parity π

πa · πA · (−1)la,A = πb · πB · (−1)lb,B (2.6)

• Conservation of the isospin
−→
T −→

Ta +
−→
TA =

−→
Tb +

−→
TB (2.7)
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CHAPTER 2. FUSION

• Conservation of the baryon number

Aa + AA = Ab + AB (2.8)

with the mass number A.
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3 Nucleus-Nucleus Interaction Potential

The nucleus-nucleus interaction potential for two approaching nuclei can be written as [1]

V (r) =
Z1Z2e2

r
+ Vnuc for s > 0 (3.1)

Here Z1 and Z2 are the proton numbers of each nucleus, r describes the center separation radius of
the two colliding nuclei and e is the charge unit.

Figure 3.1: Illustration of two approaching nuclei with matter radius C1 and C1 at a center separation
distance r

The first term of equation (3.1) describes the coulomb potential which is well known and has a long
range and a repulsive character against fusion processes. It is defined only for positive values of the
contact separation s, as the electrostatic repulsion is defined for this range [7]. The second term is
the nuclear potential in the form of the proximity potential which is based on the short-range and
attractive nuclear force.
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CHAPTER 3. NUCLEUS-NUCLEUS INTERACTION POTENTIAL

3.1 Proximity Potential

The proximity potential is based on the proximity force theorem [5] which says that ”the force between
two gently curved objects in close proximity is proportional to the interaction potential per unit area
between two flat surfaces made of the same material, the constant of proportionality being a measure
of the mean curvature of two objects. This theorem leads to a formula for the interaction potential
between curved objects (e. g. two atomic nuclei) which is a product of a simple geometrical factor
and a universal function of separation, characteristic of the material of which the objects are made,
and intimately related to the surface energy coefficient”.

In following section the calculation of the proximity potential is described step by step and is based
on [1].
If one considers the nuclear part of the nucleus-nucleus interaction potential which is the proximity
potential in this model, one gets

Vnuc(r) = KΦ(ζ) (3.2)

The proximity potential is a product of the strength factor K and the dimensionless proximity potential
function Φ, which depends on the dimensionless quantity ζ.
ζ is the contact separation in units of the Süssmann measure of the diffuseness of the nuclear surface
b [5]

ζ =
s

b
(3.3)

b describes the width of the diffuse surface of the nucleus. It is taken as 1 fm [5].
The density distribution of both nuclei is assumed to be spherical and frozen.

For the calculation some information about the participating nuclei in the fusion reactions is needed:
the proton numbers Z1 and Z2 as maybe if available the root mean square (rms) charge radii rrms [10].
If the rms charge radii of the two fusing nuclei are not available (because no measurement has been
undertaken to estimate their charge radii), then an approximation is used for calculation of the nuclear
charge radii.
First the calculation of the strength factor K needs to be done, which is given by

K = 4πγCb (3.4)

where γ is the mean of the surface tension coefficients according to the two nuclei. The calculation of
γ and of the reduced radius C is discussed later on.
The mean of the surface tension coefficients is the energy per surface of an unit sphere and is obtained
by

γ =
a2

4πr02 (3.5)

with a2 as the surface energy coefficient and the nuclear radius constant r0. This nuclear radius
constant has nearly the same value for all nuclei and is derived from the correlation by the correlation
that the radius R00 of a spherical nucleus is proportional to the cubic root of the mass number A [11]
given by

R00 = r0 · A1/3 (3.6)

which is only an approximation, that does not represent the experimentally measured rms radii very
well [12]. For the calculation r0 is taken as 1.14 fm [13] .
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3.1. PROXIMITY POTENTIAL

The surface energy coefficient can be calculated via

a2 = 18.36 MeV − Q (t1
2 + t2

2)
2r02 (3.7)

and is the average of the values for the two fusing nuclei.
Q describes the neutron skin stiffness coefficient and is a measure of the resistance of neutrons to
separate from protons in a nucleus to form a neutron skin [14] and is taken as 35.4 MeV [13]. t

describes the neutron skin and has to be determined for each nucleus

t =
3
2

r0
J I − 1

12 c1 Z A−1/3

Q + 9
4 J A−1/3 (3.8)

Here J is the symmetric energy coefficient and ”represents with a very good accuracy the energy cost
per nucleon to convert all protons into neutrons in symmetric infinity nuclear matter at saturation
density ρ0” [14]. It is taken as 32.65 MeV [13], c1 = 3e2/5r0 = 0.757895 MeV [11], Z the proton
numbers and A the mass number of each nuclei.
I is the asymmetric term of a nucleus which describes the symmetry between proton number and
neutron number N and is lost for growing mass number of a nucleus because of the repulsive coulomb
force [15]. It is given by

I =
(N − Z)

A
(3.9)

C is the reduced radius of the two nuclei

C =
C1C2

C1 + C2
(3.10)

Here C1 and C2 are the matter radii of each nuclei. C1,2 can be calculated for each nuclei by

C = c +
N

A
t (3.11)

c is the half-density radius of the charge distribution. It describes ”where the nuclear density has
dropped to half its central value” [16] and is described by

c = R00 (1 − 7
2

b2

R00
2 − 49

8
b4

R00
4 + ...) (3.12)

As already mentioned, equation (3.6) does not provide good results for the experimentally measured
rms radii.
In the calculation made by the author there are two possibilities to determine the nuclear charge radius
R00, which describes the range of nuclear charge of a deformed nucleus in any direction [12]. These
possibilities depend on whether there are experimentally measured rms charge radius values rrms

available for the two interacting nuclei or not. If the rms charge radius values exist, the calculation is
done by

R00 =
√

5
3

rrms (3.13)

This relation follows the approximation rrms
2 = Q00

e Z , with the electric monopole moment of the
spherical nucleus Q00 = 3

5 eZR00
2 [12].

Otherwise, an approximation for the nuclear charge radii, which takes the neutron excess N − Z of
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CHAPTER 3. NUCLEUS-NUCLEUS INTERACTION POTENTIAL

each corresponding nucleus into account, can be used [12]

R00 = 1.240 A1/3 (1 +
1.646

A
− 0.191

A − 2Z

A
) (3.14)

An investigation on the difference of these two methods is done in the analysis chapter.

All necessary quantities for the calculation of K are derived by the equations above. For calculating
the dimensionless proximity potential function Φ, a distinction needs to be made:

Φ(ζ) = −0.1353 +
5∑

n=0

cn

n + 1
(2.5 − ζ)n+1

, for 0 < ζ < 2.5 (3.15)

Φ(ζ) = −0.09551 · e
(2.75−ζ)

0.7176 for ζ > 2.5 (3.16)

cn are constants and have following values:
c0 = −0.1886, c1 = −0.2628, c2 = −0.15216, c3 = −0.04562, c4 = 0.069136, c5 = −0.011454.

The barrier height V0 of the nucleus-nucleus interaction potential is derived by looking for the ex-
tremum of the interaction potential. It is given by

−dV

dr
=

Z1Z2e2

r2 +
K

b
φ(ζ) = 0 (3.17)

φ represents the proximity force function and is the negative derivation of Φ with respect to ζ.

φ = −dΦ
dζ

(3.18)

The dimensionless proximity force function φ are derived from equation (3.15) and equation (3.16)

φ(ζ) =
5∑

n=0
cn(2.5 − ζ)n

, for 0 < ζ < 2.5 (3.19)

φ(ζ) = −0.1331 · e
(2.75−ζ)

0.7176 , for ζ > 2.5 (3.20)
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3.2. NECK FORMATION

3.2 Neck Formation

Fusion reactions of heavy ions at low energies, energies below the coulomb barrier, need more than
one degree of freedom, as the predicted values of a one-dimensional model, with the radial separation
as the degree of freedom, do not reproduce experimental data very well. The predicted values for the
barrier height reach an exceedance of several orders of magnitude [2]. For this an additional degree of
freedom, neck formation, is included to lower the overpredicted values towards the experimental data.
For the calculation of the neck formation, the multidimensional model by Aguiar et al. [2] was taken.
This multidimensional model includes radial separation, neck formation and asymmetry as degrees of
freedom. An important condition for neck formation is to assume that both nuclei are not frozen so
that deformation for both nuclei at a certain distance is possible.

Figure 3.2: Illustration of neck formation for two approaching nuclei. Initial stage when nuclear forces
begin to act (a). Nuclear matter of the nuclei overlap (b). [2]

Figure 3.2 (a) illustrates early stages of two colliding nuclei at a separation radius for which the
nuclear forces begin to act. The nuclei are still separated. For later stages (figure 3.2 (b)), the nuclear
matter of the two colliding nuclei overlap and the two nuclei are not a separate systems any more.
The radial separation ρ is

ρ =
r

(R1 + R2)
(3.21)

In this notation R1 and R2 equal the matter radii C1 and C2 of the former notation.
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CHAPTER 3. NUCLEUS-NUCLEUS INTERACTION POTENTIAL

The neck formation λ is
λ =

d1 + d2
(R1 + R2)

(3.22)

here d1,2 are the thickness of the missing spherical tips.
The asymmetry Δ is

Δ =
R1 − R2
R1 + R2

(3.23)

As the two approaching nuclei deform, their radii need to compensate the deforming volume by
changing themselves because of volume conservation.
The system of the colliding nuclei becomes unstable as neck formation sets in. This happens for
energies between the critical value Vneck and the former barrier height V0. The difference ΔV describes
the energy shift, which is gained by the neck formation and lowers the overestimated predicted values

ΔVneck = V0 − Vneck (3.24)

Aguiar et al. [2] investigated the neck formation for symmetric (Δ = 0) and asymmetric fusion systems.
They attributed the dependence of the effective barrier decrease ΔVneck to the parameter ζeff , which
is the effective fissility and is defined as

ζeff = (
Z2

A
)
eff

=
4Z1Z2

A1
1/3A2

1/3(A1
1/3 + A2

1/3)
(3.25)

Figure 3.3: Dependence of ΔVneck on the parameter ζeff . The solid line represents the trend line.
Image taken from [2] with y-label named to this paper.
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3.2. NECK FORMATION

The effective fissility is ”a measure of the importance of the repulsive coulomb force compared to
the attractive nuclear surface tension” [17].
For Figure 3.3 they got following fit parameters

ΔVneck = α ζeff
β (3.26)

with
α ≈ 0.0016 MeV, β ≈ 2.5 (3.27)

The original barrier height calculated by the proximity potential V0 is lowered by the effective barrier
decrease ΔVneck.
This model of neck formation is only applicable on sub-barrier fusion reactions, as for fusion processes
at high energies the one-dimensional model reproduces acceptable results.

11



CHAPTER 3. NUCLEUS-NUCLEUS INTERACTION POTENTIAL

3.3 Extra Push
Fusion processes are regulated by repulsive electric forces and attractive nuclear forces. As mentioned
before, the strength of electric force increases with the proton numbers Z1 Z2 of the two colliding
nuclei. Because of that lighter systems, with lower repulsive electric forces, are supposed to fuse more
easily than heavier systems. It is even assumed [3] that the electric repulsion reaches values so that
a heavy system starting from rest at contact, the system will reseparate. To make such a heavy
system fuse, an additional bombarding energy above the interaction potential barrier is needed. This
additional energy is introduced as the extra push and is approximated for central collisions by [3]

ΔVextrapush =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for ( Z2

A )
eff

≤ ( Z2

A )
eff thr

K[( Z2

A )
eff

− ( Z2

A )
eff thr

]
2

for ( Z2

A )
eff

> ( Z2

A )
eff thr

(3.28)

K is the thud wall stiffness coefficient and is according to [3]

K =
A1

1/3A2
1/3(A1

1/3 + A2
1/3)

2

A1 + A2

32
2025

(
3
π

)
2
3
(
e2

�c
)
2

mc2a2 (3.29)

( Z2

A )
eff

is the effective fissility. ( Z2

A )
effthr

and a are numerical constants, which are determined
either from experiment or model calculations. a is the thud wall slope coefficient. m is the nuclear
mass unit (m = 931 MeV/c2).
For the calculation experimentally determined values were used

(
Z2

A
)
eff thr

≈ 33, a ≈ 12 (3.30)

The already neck-formation-corrected barrier height is lifted by the extra push energy ΔVextrapush,
which leads to a new barrier height Vcorr

Vcorr = Vneck + ΔVextrapush (3.31)

Only for heavy systems ( Z2

A )
eff

> ( Z2

A )
eff thr

will the extra push be different from zero and counteract
fusion processes.
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4 Fusion Cross Section and Excitation
Function

The aim of this work is to get to know the probability of fusion processes for two arbitrary colliding
nuclei. The fusion cross section is a measure of the probability of a fusion reaction.
A calculation according to K. Siwek-Wilczyńska et al. (2004) [4] requires a barrier height distribution
p(V ). This assumption is necessary to account for the influence of additional different degrees of
freedom (e. g. vibration, rotation, etc.). The assumed distribution is modelled by a Gaussian
distribution

p(V ) =
1

w
√

2π
e− (V −V0)2

2w2 (4.1)

here p(V ) is the distribution of the barrier heights, V0 is the mean barrier height, for which Vcorr from
equation (3.31) is used, and w is the barrier height distribution.
By using the classical expression for the fusion cross section

σfus = πRσ
2(1 − V

E
) for E > V (4.2)

and by combining equation (4.1) with equation (4.2), one gets the following expression [4] for the
fusion cross section, which is used for the determination of the excitation function

σfus = πRσ
2 w

E
√

2π
[X

√
π(1 + erf X) + e−X2

] (4.3)

with
X =

E − V0√
2w

(4.4)

Rσ approximates the location of the maximum barrier height [4] and is determined by equation (3.17).
erf X is the gaussion error function.
The barrier height distribution is given by

w =
√

w2
tunnel + w2

stat,1 + w2
stat,2 + w2

vibr,1 + w2
vibr,2 (4.5)

Equation (4.5) represents the total barrier height distribution of the fusing system and takes quan-
tum effects of subbarrier tunneling as static quadrupole deformations and surface vibrations of the
participating nuclei into account.
The values of the distribution barrier height distribution w for the determination of the fusion cross
sections and its excitation functions for each fusion reaction, were taken from [4].
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5 Results and Analysis

The calculated results for the barrier height and its location radius are listed step by step. For
analysis, the fitted values V0,fit, R0,fit, the width of the barrier height distribution wfit, as well as
the theoretically determined width of the barrier height distribution wtheo are taken from [4] and are
listed in table 5.1.
The fusion reactions are listed in order of the increasing coulomb barrier parameter z, which is a
measure of the coulomb barrier and is given by

z =
Z1Z2

(A1/3 + A1/3)
(5.1)

For the analysis, a distinction into three groups is made [4]:

• light systems: z < 70

• medium systems: 70 ≤ z ≤ 130

• heavy systems: z > 130

Table 5.1: Fitted values of the barrier height V0 and its location radius R0, the width of the barrier
height distribution wfit, as well as the theoretically determined width of the barrier height
distribution wtheo.

Reaction z V0,fit [MeV] R0,fit [fm] wfit [MeV] wtheo [MeV]
48Ca + 48Ca 55.03 51.2 11.2 1.11 1.25
30Si + 64Ni 55.16 51.4 9.6 1.38 1.39
30Si + 62Ni 55.48 52.1 9.7 1.55 1.42
28Si + 64Ni 55.71 50.4 7.6 1.12 1.43
28Si + 62Ni 56.04 51.3 7.7 1.20 1.46
30Si + 58Ni 56.18 52.8 8.8 1.59 1.36

40Ca + 48Ca 56.70 51.8 11.5 1.78 1.31
28Si + 58Ni 56.75 52.9 8.1 1.32 1.41

40Ca + 44Ca 57.55 51.8 7.9 1.59 1.35
40Ca + 40Ca 58.48 53.6 9.5 1.60 1.40

36S + 64Ni 61.35 56.8 8.5 1.17 1.46
34S + 64Ni 61.88 56.9 8.5 1.25 1.48

40Ca + 50Ti 61.94 57.3 9.4 1.72 1.40
40Ca + 48Ti 62.37 57.1 9.4 1.50 1.42
32S + 64Ni 62.44 57.3 8.1 1.57 1.52
36S + 58Ni 62.46 58.4 7.7 1.53 1.42

40Ca + 46Ti 62.83 57.3 9.4 1.45 1.44
16O + 154Sm 62.94 58.4 9.6 2.25 2.38

34S + 58Ni 63.01 58.5 7.6 1.25 1.45
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Table 5.1 – continued from previous page
Reaction z V0,fit [MeV] R0,fit [fm] wfit [MeV] wtheo [MeV]

17O + 144Sm 63.49 60.6 10.8 2.06 1.59
16O + 148Sm 63.51 59.4 10.2 1.98 1.93

32S + 58Ni 63.59 59.6 8.3 1.35 1.48
16O + 144Sm 63.91 60.5 10.3 1.45 1.64
16O + 186W 71.95 68.3 10.6 2.29 2.43
16O + 208Pb 77.68 73.6 10.5 1.57 1.72

36S + 96Zr 81.21 74.9 11.0 1.34 2.31
36S + 90Zr 82.23 77.0 10.8 1.24 1.60

36S + 110Pd 90.94 85.5 8.2 1.91 2.61
32S + 110Pd 92.39 86.3 8.0 2.63 2.65
64Ni + 64Ni 98.00 92.7 7.8 1.58 2.07
58Ni + 64Ni 99.61 94.6 6.5 2.18 1.97
40Ca + 96Zr 100.01 93.6 9.3 2.65 2.79
58Ni + 60Ni 100.70 96.6 7.5 1.93 1.87
40Ca + 90Zr 101.25 96.1 10.0 1.53 1.90
58Ni + 58Ni 101.27 95.8 6.0 1.18 1.88

40Ar + 122Sn 107.40 103.6 9.8 2.58 1.94
40Ar + 116Sn 108.47 103.3 8.7 2.23 1.98
40Ar + 112Sn 109.22 104.0 8.9 2.26 2.01
64Ni + 74Ge 109.29 103.2 6.5 1.97 3.09
58Ni + 74Ge 111.04 106.8 7.0 2.96 3.05

40Ca + 124Sn 118.95 113.4 9.6 2.75 2.13
28Si + 198Pt 123.18 120.9 9.8 3.41 2.94
34S + 168Er 124.24 121.5 10.3 4.21 4.55

40Ar + 154Sm 127.11 121.0 7.3 3.40 4.27
40Ar + 148Sm 128.14 124.7 8.5 3.15 3.15
40Ar + 144Sm 128.85 124.4 8.3 2.19 2.31
40Ca + 192Os 165.42 167.9 10.7 5.46 4.18
40Ca + 194Pt 169.40 171.0 9.6 4.12 4.20

The run of the nucleus-nucleus interaction potential and its quantities are calculated as well as each
excitation function for every fusion reaction is determined.
Every section includes a further step of modification to the nucleus-nucleus interaction potential.
Comparisons between the results of these calculations and fitted data are made.
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5.1. CALCULATION OF THE NUCLEUS-NUCLEUS INTERACTION POTENTIAL BY THE
PROXIMITY POTENTIAL

5.1 Calculation of the nucleus-nucleus interaction potential by the
proximity potential

Here the run for the nucleus-nucleus interaction potential for each reaction is determined by using
equations (3.1)-(3.20).
The results are listed in table (5.2).

Figure 5.1: Nucleus-nucleus interaction potential for the light fusion reaction (z = 55.03)
48Ca + 48Ca with a determined barrier height of V0 = 54.5125 MeV and a location
radius of Rσ = 9.7854 fm.
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Figure 5.2: Nucleus-nucleus interaction potential for the heavy fusion reaction (z = 169.40)
40Ca + 194Pt with a determined barrier height of V0 = 175.3262 MeV and a location
radius of Rσ = 11.9527 fm.

Table 5.2: Values for the calculated barrier height V0 and its location radius R0 versus the fitted data.
Reaction V0 [MeV] R0 [fm] V0,fit [MeV] R0,fit [fm]

48Ca + 48Ca 54.5125 9.7854 51.2 11.2
30Si + 64Ni 53.6280 9.7409 51.4 9.6
30Si + 62Ni 53.8986 9.6855 52.1 9.7
28Si + 64Ni 53.9683 9.6794 50.4 7.6
28Si + 62Ni 54.2427 9.6241 51.3 7.7
30Si + 58Ni 54.7699 9.5193 52.8 8.8

40Ca + 48Ca 55.0506 9.6825 51.8 11.5
28Si + 58Ni 55.1254 9.4479 52.9 8.1

40Ca + 44Ca 54.8733 9.7100 51.8 7.9
40Ca + 40Ca 55.6010 9.5697 53.6 9.5

36S + 64Ni 59.7555 10.0159 56.8 8.5
34S + 64Ni 60.1041 9.9541 56.9 8.5

40Ca + 50Ti 60.0840 9.7636 57.3 9.4
40Ca + 48Ti 59.9869 9.7736 57.1 9.4
32S + 64Ni 60.5981 9.8560 57.3 8.1
36S + 58Ni 60.9945 9.7944 58.4 7.7

40Ca + 46Ti 59.9778 9.7829 57.3 9.4
16O + 154Sm 61.9827 10.7406 58.4 9.6

34S + 58Ni 61.3585 9.7226 58.5 7.6
17O + 144Sm 63.6177 10.4389 60.6 10.8
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PROXIMITY POTENTIAL

Table 5.2 – continued from previous page
Reaction V0 [MeV] R0 [fm] V0,fit [MeV] R0,fit [fm]

16O + 148Sm 63.1146 10.5297 59.4 10.2
32S + 58Ni 61.8751 9.6345 59.6 8.3

16O + 144Sm 63.7394 10.4228 60.5 10.3
16O + 186W 72.1183 11.0291 68.3 10.6
16O + 208Pb 79.0870 11.1492 73.6 10.5

36S + 96Zr 80.6791 10.6339 74.9 11.0
36S + 90Zr 81.9731 10.4480 77.0 10.8

36S + 110Pd 90.5498 10.9120 85.5 8.2
32S + 110Pd 91.7284 10.7521 86.3 8.0
64Ni + 64Ni 98.6308 10.6491 92.7 7.8
58Ni + 64Ni 100.5683 10.4175 94.6 6.5
40Ca + 96Zr 99.9188 10.7274 93.6 9.3
58Ni + 60Ni 101.7305 10.2806 96.6 7.5
40Ca + 90Zr 101.5133 10.5415 96.1 10.0
58Ni + 58Ni 102.5908 10.1860 95.8 6.0

40Ar + 122Sn 108.3829 11.1506 103.6 9.8
40Ar + 116Sn 109.2604 11.0533 103.3 8.7
40Ar + 112Sn 109.9748 10.9757 104.0 8.9
64Ni + 74Ge 109.8822 10.9392 103.2 6.5
58Ni + 74Ge 111.9858 10.7077 106.8 7.0

40Ca + 124Sn 120.7113 11.1095 1134 9.6
28Si + 198Pt 126.7314 11.5835 120.9 9.8
34S + 168Er 125.3432 11.6891 121.5 10.3

40Ar + 154Sm 128.1273 11.7347 121.0 7.3
40Ar + 148Sm 130.2827 11.5138 124.7 8.5
40Ar + 144Sm 131.4711 11.4069 124.4 8.3
40Ca + 192Os 170.7431 11.9619 167.9 10.7
40Ca + 194Pt 175.3262 11.9527 171.0 9.6

As can be seen, the barrier heights increase towards heavy systems and their location radii shift
outward. The increase of the barrier height for heavy systems is because of the increase of the
repulsive coulomb force for increasing proton numbers.
The barrier heights calculated by the proximity model overestimate the fitted data for all 48 reactions.
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5.2 Correction by the neck formation
On the calculated barrier height by the proximity model, neck formation was included. This lead to
a lowering of the barrier heights, as can be seen in table 5.3.

Table 5.3: Values for the effective barrier decrease by neck formation ΔVneck and corrected barrier
height Vneck

Reaction ΔVneck [MeV] Vneck [MeV]
48Ca + 48Ca 1.8144 52.6981
30Si + 64Ni 2.1240 51.5040
30Si + 62Ni 2.2136 51.6851
28Si + 64Ni 2.3066 51.6617
28Si + 62Ni 2.4042 51.8385
30Si + 58Ni 2.4137 52.3562

40Ca + 48Ca 2.2762 52.7744
28Si + 58Ni 2.6224 52.5030

40Ca + 44Ca 2.5399 52.3333
40Ca + 40Ca 2.8622 52.7389

36S + 64Ni 2.3812 57.3743
34S + 64Ni 2.5515 57.5526

40Ca + 50Ti 2.7434 57.3406
40Ca + 48Ti 2.8887 57.0983
32S + 64Ni 2.7447 57.8534
36S + 58Ni 2.7027 58.2918

40Ca + 46Ti 3.0480 56.9299
16O + 154Sm 2.4005 59.5822

34S + 58Ni 2.8971 58.4614
17O + 144Sm 2.4658 61.1519
16O + 148Sm 2.5377 60.5768

32S + 58Ni 3.1178 58.7574
16O + 144Sm 2.6367 61.1027
16O + 186W 2.8650 69.2533
16O + 208Pb 3.1615 75.9254

36S + 96Zr 3.4236 77.2555
36S + 90Zr 3.7269 78.2462

36S + 110Pd 4.0557 86.4941
32S + 110Pd 4.6546 87.0739
64Ni + 64Ni 4.7537 93.8771
58Ni + 64Ni 5.3744 95.1939
40Ca + 96Zr 5.2782 94.6406
58Ni + 60Ni 5.8277 95.9029
40Ca + 90Zr 5.7432 95.7701
58Ni + 58Ni 6.0802 96.5106

40Ar + 122Sn 5.1657 103.2172
40Ar + 116Sn 5.5227 103.7378
40Ar + 112Sn 5.7849 104.1899
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5.2. CORRECTION BY THE NECK FORMATION

Table 5.3 – continued from previous page
Reaction ΔVneck [MeV] Vneck [MeV]

64Ni + 74Ge 5.5320 104.3502
58Ni + 74Ge 6.2481 105.7377

40Ca + 124Sn 6.5789 114.1324
28Si + 198Pt 6.5429 120.1885
34S + 168Er 6.5199 118.8233

40Ar + 154Sm 6.4819 121.6454
40Ar + 148Sm 6.8366 123.4461
40Ar + 144Sm 7.0920 124.3791
40Ca + 192Os 10.4211 160.3220
40Ca + 194Pt 10.9650 164.3612
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5.3 Correction by the extra push
The Extra push was also applied to the barrier height of the proximity model. The extra push only
matters for ”heavier” systems (z > 100), as the extra push energy ΔVextrapush is zero for lighter
systems. Results are listed in table 5.4.

Table 5.4: Values for the extra push energy ΔVextrapush and the neck formation and extra push cor-
rected barrier height Vextrapush

Reaction ΔVextrapush [MeV] Vextrapush [MeV]
48Ca + 48Ca 0 52.6981
30Si + 64Ni 0 51.5040
30Si + 62Ni 0 51.6851
28Si + 64Ni 0 51.6617
28Si + 62Ni 0 51.8385
30Si + 58Ni 0 52.3562

40Ca + 48Ca 0 52.7744
28Si + 58Ni 0 52.5030

40Ca + 44Ca 0 52.3333
40Ca + 40Ca 0 52.7389

36S + 64Ni 0 57.3743
34S + 64Ni 0 57.5526

40Ca + 50Ti 0 57.3406
40Ca + 48Ti 0 57.0983
32S + 64Ni 0 57.8534
36S + 58Ni 0 58.2918

40Ca + 46Ti 0 56.9299
16O + 154Sm 0 59.5822

34S + 58Ni 0 58.4614
17O + 144Sm 0 61.1519
16O + 148Sm 0 60.5768

32S + 58Ni 0 58.7574
16O + 144Sm 0 61.1027
16O + 186W 0 69.2533
16O + 208Pb 0 75.9254

36S + 96Zr 0 77.2555
36S + 90Zr 0 78.2462

36S + 110Pd 0 86.4941
32S + 110Pd 0 87.0739
64Ni + 64Ni 0 93.8771
58Ni + 64Ni 0 95.1939
40Ca + 96Zr 0 94.6406
58Ni + 60Ni 0.0497 95.9525
40Ca + 90Zr 0.0252 95.7953
58Ni + 58Ni 0.1574 96.6680

40Ar + 122Sn 0 103.2172
40Ar + 116Sn 0 103.7978
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5.3. CORRECTION BY THE EXTRA PUSH

Table 5.4 – continued from previous page
Reaction ΔVextrapush [MeV] Vextrapush [MeV]

40Ar + 112Sn 0.0352 104.2251
64Ni + 74Ge 0.0001 104.3504
58Ni + 74Ge 0.2696 106.0073

40Ca + 124Sn 0.5042 114.6366
28Si + 198Pt 0.3955 120.5840
34S + 168Er 0.4177 119.2410

40Ar + 154Sm 0.4166 122.0621
40Ar + 148Sm 0.7544 124.2005
40Ar + 144Sm 1.0509 125.4300
40Ar + 192Os 7.7462 168.0682
40Ar + 194Pt 9.2212 173.5823
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5.4 Excitation functions
As can be observed in the following figures, the excitation function of the proximity potential under-
estimates the experimental data. For light and medium fusion reaction, the neck formation corrected
barrier height reproduces acceptable results for the excitation function. But for heavy systems the
excitation function overestimates the experimental data, as can be seen in figure 5.5 and figure 5.7.
This overestimation is minimised by the extra push to preferable values (figure 5.5).
In the following figures σneckformation is the by neck formation corrected proximity potential. σextrapush

describes the modification of the proximity potential by neck formation and extra push.
In the following figures (5.3, 5.4 and 5.6) is the extra push energy ΔV extrapush = 0 (as can be seen in
table 5.4) and therefore no distinction in σneckformation and σextrapush can be observed.

Figure 5.3: Excitation function for the light fusion reaction (z = 55.03) 40Ca + 48Ca for all calculated
models as well as for the woods-saxon potential (distributed barrier potential) by [4] in
comparison to experimental data [19]. In this case the excitation functions were determined
using rms radii of the two nuclei.

24



5.4. EXCITATION FUNCTIONS

Figure 5.4: Excitation function for the medium fusion reaction (z = 101.25) 40Ca + 90Zr for all
calculated models as well as for the woods-saxon potential (distributed barrier potential)
by [4] in comparison to experimental data [20]. In this case the excitation functions were
determined using rms radii of the two nuclei.

Figure 5.5: Excitation function for the heavy fusion reaction (z = 165.42) 40Ca + 192Os for all cal-
culated models as well as for the woods-saxon potential (distributed barrier potential)
by [4] in comparison to experimental data [21]. In this case the excitation functions were
determined using rms radii of the two nuclei.
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Figure 5.6: Excitation function for the medium fusion reaction (z = 107.40) 40Ar + 122Sn for all
calculated models as well as for the woods-saxon potential (distributed barrier potential)
by [4] in comparison to experimental data [22]. In this case the nuclear charge radii of the
two nuclei were calculated by using equation (3.14).

Figure 5.7: Excitation functions for the heavy fusion reaction (z = 169.40) 40Ca + 194Pt for all calcu-
lated models as well as for the woods-saxon potential (distributed barrier potential) by [4]
in comparison to experimental data [21]. In this case the nuclear charge radii of the two
nuclei were calculated by using equation (3.14).
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5.5 Analysis

5.5.1 Analysis of the different models

Figure 5.8: Comparison of the theoretically determined barrier heights V0 and fitted barrier heights
Vfit for different modifications of the proximity potential in dependence of the coulomb
barrier parameter z = Z1Z2

(A1/3+A1/3) .

Overestimations of fitted data up to a maximum of 7.4 MeV are observed in the original model
of the proximity potential. As can be seen in figure 5.8 the difference Vtheo − Vfit increases with the
growing coulomb barrier parameter z.
The modification of the proximity potential by the neck formation lowers this overestimation to ac-
ceptable discrepancies for light and medium systems (z � 130). For all reactions this model produces
discrepancies of about 1.1 MeV on average. But for heavy systems (z > 130), for which only two
reactions have been analysed, an underestimation of about 7.6 MeV is reached by this step.
For these two heavy systems (z � 110) the extra push steps in. This leads to an excellent agreement
of the theoretical predicted values with the fitted data even for heavier systems. Barrier heights,
calculated by this model, show a maximal total deviation of about 2.6 MeV . An improvement of the
overestimated data is observed.
In comparison to other introduced models for the nuclear potential, such as the woods-saxon model [4],
a decrease in the deviation for heavy systems is observed. The woods-saxon model shows a maximal
discrepancy of about 3.2 MeV for the studied systems.
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As the original, unmodified proximity potential features discrepancies up to 7.4 MeV , the modifica-
tions lower the discrepancies even for heavy systems to a preferable 2.6 MeV .

For the analysis of the results, the mean of the absolute deviation �V is calculated by

�V =
1
N

N∑
i=1

ΔVi =
1
N

N∑
i=1

| Vi − Vfit | (5.2)

with N as the number of reactions.
The deviation of the single value is given by

σ =

√√√√ 1
N − 1

N∑
i=1

(ΔVi − �V )2 (5.3)

The standard deviation of the mean value is determined by

σm =
σ√
N

(5.4)

Table 5.5: Values of the mean deviation �V to the fitted data, the deviation of the single value σ

and the standard deviation of the mean value σm are listed for all models as well as for
the woods-saxon potential based on [4]. A distinction is made between light, medium and
heavy reactions.

Vproximity Vneck formation Vextra push VW oods−Saxon

z < 70
�V [MeV ] 2.8461 0.5966 0.5966 0.5461
σ [MeV ] 0.5460 0.4170 0.4170 0.3435

σm [MeV ] 0.1139 0.0870 0.0870 0.0716

70 � z � 130
�V [MeV ] 5.6117 0.9610 0.9698 0.8138
σ [MeV ] 1.0383 0.6642 0.6041 0.6278

σm [MeV ] 0.2119 0.1356 0.1233 0.1281

z > 130
�V [MeV ] 3.5846 7.1084 1.3753 2.2500
σ [MeV ] 1.0487 0.6641 1.7070 1.2021

σm [MeV ] 0.7415 0.4696 1.2070 0.8500

all 48 reactions
�V [MeV ] 4.2515 1.0500 0.8155 0.7600
σ [MeV ] 1.6122 1.4032 0.6083 0.6230

σm [MeV ] 0.2327 0.2025 0.0878 0.0899

As already mentioned the proximity potential overestimates the barrier height for all reactions by
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about 5.5%.
The correction by neck formation lowers the mean deviation for light and medium reactions �V to ac-
ceptable values, whereas for the two heavy fusion reactions a deviation of �V = 7.1084±0.4696 MeV

is reached. But for all 48 reactions it shows a mean absolute deviation �V = 1.0500 ± 0.2025 MeV ,
which is about 1.2%.
The modification by the extra push shows no change for light systems, because ΔVextra push = 0. For
medium fusion reactions, a change for the worse is noticed. But for the two heavy systems a significant
improvement in the mean deviation �V = 1.3753 ± 1.2070 MeV is reached. For all 48 reactions the
modified proximity potential shows an absolute average deviation of about 1.1%.
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5.5.2 Comparison of calculated data with and without rms radii

A comparison of the barrier heights Vextrapush by using rms radii and by using the approximation for
no rms radii given (equation 3.14) is made.

Figure 5.9: Deviation of these theoretically determined barrier heights from the fitted barrier heights.

Table 5.6: Values of the mean deviation �V to the fitted data, the deviation of the single value σ

and the standard deviation of the mean value σm are listed for all models using equation
(3.14) as well as for the woods-saxon potential based on [4].

Vproximity Vneck formation Vextra push VW oods−Saxon

z < 70
�V [MeV ] 3.4206 0.9688 0.9688 0.5461
σ [MeV ] 0.7659 0.6295 0.6295 0.3435

σm [MeV ] 0.1597 0.1313 0.1313 0.0716

70 � z � 130
�V [MeV ] 6.6442 1.5521 1.6824 0.8138
σ [MeV ] 1.4115 1.0141 1.0509 0.6278

σm [MeV ] 0.2881 0.2070 0.2145 0.1281
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Table 5.6 – continued from previous page
Vproximity Vneck formation Vextra push VW oods−Saxon

z > 130
�V [MeV ] 6.0220 4.6710 3.8127 2.2500
σ [MeV ] 0.8309 0.4463 1.4893 1.2021

σm [MeV ] 0.5876 0.3156 1.0531 0.8500

all 48 reactions
�V [MeV ] 5.1375 1.4152 1.4447 0.7600
σ [MeV ] 1.9615 1.1164 1.0705 0.6230

σm [MeV ] 0.2831 0.1611 0.1545 0.0899

As can be seen in figure 5.9, the deviation for the theoretical data using equation (3.14) is stronger
than for the theoretical data using the rms radii. Furthermore a change for the worse in the mean
deviation is observed. For the neck formation and extra push corrected barrier heights for all 48
reactions the mean absolute deviation by using rms radii is �V = 0.8155 ± 0.0878 MeV and rises to
�V = 1.447 ± 0.1545 MeV for the approximation by equation (3.14), which is an average deviation
of about 1.8%.

The percentage difference of the approximated nuclear charge radii ΔR00, calculated by equation
(3.14), and the nuclear charge radii (equation (3.13)), which is based on the rms radii, has been
observed and is given by [7]

ΔR00(%) =
R00,approximated − R00,rms

R00,rms
· 100 (5.5)

The approximation for the nuclear charge radius (equation (3.14)) reproduces the nuclear charge ra-
dius, based on the rms radius, very well with an absolute deviation of 1% in the mean.

In figure 5.10 the nuclear charge radii of equations (3.13) and (3.14)) are compared.
In figure 5.11 the excitation functions for given rms radii (equation (3.14)) and for the approximation
(equation 3.13) are compared to the experimental data. The neck formation and extra push corrected
proximity potential was used for these excitation functions. As can be seen in figure 5.11 the excitation
function based on rms radii mostly represents the the experimental data very well, whereas the exci-
tation function based on the approximation (equation 3.13) agree much better with the experimental
data for the reaction ′34S + 168Er′. As it can be observed a distinction in the excitation function
is given by using either equation (3.14) or (3.13). But no statement can be made as no systematic
deviation is observed.
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Figure 5.10: (a) Comparison between R00,approximated and R00,rms. (b) Percentage difference ΔR00
in dependence on the mass number.

Figure 5.11: Comparison of excitation functions by using rms radii (equation (3.14)) or the approxi-
mation for no rms radii (equation (3.13)) for different reactions
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5.5.3 Comparison of excitation functions for different width of the barrier
height distribution

A comparison of the resultant excitation functions with the barrier heights calculated from the modified
proximity potential and using theoretical and fitted values for width of the barrier height distribution
w [4] has been made. As can be seen in figures (5.12-5.14) there are no systematic deviations for the
two kinds of width of the barrier height distribution. For most reactions no significant deviation from
the excitation functions, which were calculated by using wtheo, to excitation functions, determined
by using wfit, can be observed (e. g. figure (5.12)). For heavier reactions (figures (5.13-5.14)), a
deviation of the two excitation functions is visible. But as already mentioned, there is no systematic
deviation between the fitted and theoretical width of the barrier height distribution. While in figure
(5.13), the excitation function of wtheo = 4.27 MeV reproduces the experimental data very well, the
excitation function of wfit = 3.40 MeV deviates from the experimental data for low energies. On the
contrary, the excitation function of wfit = 4.18 MeV does reproduce the experimental data in figure
(5.14) very well, for which the excitation function of wtheo = 5.46 MeV does not provide good results.

In figures (5.12-5.14) σw,fit represents the excitation function using the proximity potential modi-
fied by neck formation and extra push as well as the fitted width of the barrier height distribution
wfit [4]. σw,theo represents the excitation function using the proximity potential modified by neck for-
mation and extra push as well as the theoretically determined width of the barrier height distribution
wtheo [4]. σwoods−saxon represents the excitation function using the fitted barrier height [4] as well as
the fitted width of the barrier height distribution wfit [4].

Figure 5.12: Excitation functions for the fitted width of the barrier height distribution wfit and the
theoretical width of the barrier height distribution wtheo in comparison to the excitation
function from woods-saxon [4] and experimental data [22].
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Figure 5.13: Excitation functions for the fitted width of the barrier height distribution wfit and the
theoretical width of the barrier height distribution wtheo in comparison to the excitation
function from woods-saxon [4] and experimental data [22]. In this case, the nuclear charge
radii have been calculated by equation (3.14).

Figure 5.14: Excitation functions for the fitted width of the barrier height distribution wfit and the
theoretical width of the barrier height distribution wtheo in comparison to the excitation
function from woods-saxon [4] and experimental data [21].
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6 Conclusio

In this work, the fusion barrier heights and excitation functions for 48 measured fusion reactions have
been studied. For the calculation of the fusion barrier heights, the proximity potential and modifi-
cations of it by neck formation and extra push were used. A comparison between these models (the
original proximity potential, the proximity potential corrected by neck formation and the proximity
potential corrected by neck formation and extra push) and the experimental data, reveal an improve-
ment in the prediction of the excitation functions. Whereas for the original proximity potential, an
overestimation of the experimental data has been observed, the neck formation lowered this deviation
to acceptable results. But for the two heavy fusion systems (z > 130), discrepancies were still present.
Because of a small number of heavy fusion systems no clear statement can be made but for the two
analysed heavy fusion reactions, these discrepancies were reduced by applying the extra push. The
advantage of this modified proximity model is the agreement of the results to the experimental data
with an absolute mean deviation of �V = 0.8155 ± 0.0878 MeV for all 48 fusion reactions. Fur-
thermore no adaptation to experimental data is needed in this model. So this modified proximity
model reproduces the experimental data with an acceptable accuracy without necessary alignments
to measurements.
An analysis of the nuclear charge radius derived either by rms radii (equation (3.13)) or by an ap-
proximation (equation (3.14)), yield a change for the worse by using the approximation.
Last but not least, a comparison between excitation functions determined by either fitted width of
the barrier height distribution wfit or theoretically predicted width of the barrier height distribution
wtheo has been made. In this analysis, no systematic deviation could be observed.
This simple model, for which no alignment to experimental data is necessary, produces almost as good
results as the distributed barrier model with the woods-saxon potential [4] and is much simpler than
the coupled channel calculation in use.
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Appendix

function proximity potential rms

clear all

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Loading the Exel File

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[num,txt,name]=xlsread('K:\Diplom\Berechnung\Matlab\Berechnung nach Myers(Daten Matlab).xls');

[num1,txt1,name1]=xlsread('K:\Diplom\Berechnung\Matlab\Daten−Reaktionen.xls');

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declarations of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

e=sqrt((1.43996));

%[MeV fm]ˆ(1/2), charge unit

hbarc=197.3269718;

%[MeV fm], reduced Planck constant multiplied by light speed [m/s], light

%speed

Z=nan(size(num,1),2);

%designs a matrix with two columns for the atomic number which adapts to

%the size of the input data

A=nan(size(num,1),2);

%mass number

rms=nan(size(num,1),2);

%[fm], rms charge radii [10]

w=nan(size(num,1),1);

%[MeV], barrier height distribution (one column) [4]

V0fit=nan(size(num,1),1);

%fitted barrier heights [4]

R0fit=nan(size(num,1),1);

%effektive Radius [fm]

V0wilc=nan(size(num,1),1);

%derived by the model of K. Siwek−Wilczynska and J. Wilczynski [4]

%(one column)

w theo=nan(size(num,1),1);

%[MeV], theoretical barrier height distribution of K. Siwek−Wilczynska and

%J. Wilczynski [4] (one column)

txt(1,:)=[];

%deletes the headline of the input file

txt(:,2:size(txt,2))=[];

pathname = {'K:\Diplom\Berechnung\Matlab\Plots\analysis\deviation\';...
'K:\Diplom\Berechnung\Matlab\Plots\analysis\correlation\'};

pathname1 = {'K:\Diplom\Berechnung\Matlab\Plots\potential\'};

39



CHAPTER 6. CONCLUSIO

pathname2 = {'K:\Diplom\Berechnung\Matlab\Plots\excitation function\excitation function\';
'K:\Diplom\Berechnung\Matlab\Plots\excitation function\wfit vs wtheo\'};

%defines the memory location

for i=1:size(Z,2)

Z(:,i)=num(:,i);

A(:,i)=num(:,i+2);

rms(:,i)=num(:,i+4);

end

%fills the matrices with datas

w(:,1)=num(:,7);

V0fit(:,1)=num(:,8);

R0fit(:,1)=num(:,9);

V0wilc(:,1)=num(:,10);

%fills the matrices with datas

coulpara(:,1)=num(:,11);

%Coulomb Parameter

w theo(:,1)=num(:,12);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Call functions

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[K, V0, R0, run, norms]=fusion potential(Z,A,rms,e);

[Vneck, deltaVneck]=neck potential(Z,A,V0);

[Vextrapush, deltaVextrapush]=extrapush(Z,A,e,hbarc,Vneck);

[run1, E]=excitation function(w,V0,Vneck,Vextrapush,V0fit,A,V0wilc,w theo,R0fit,R0);

[delta, ana]=analysis(Z, A, w, K, Vextrapush, R0, V0, V0fit, V0wilc, Vneck);

trend(V0, Vneck, Vextrapush, V0fit, V0wilc, coulpara);

run.X0=run1.X0;

run.Xneck=run1.Xneck;

run.Xextrapush=run1.Xextrapush;

run.X0fit=run1.X0fit;

run.Xwilc=run1.Xwilc;

run.Xw theo=run1.Xw theo;

%simplifies the code by adding two cell−arrays
run.sigma0=run1.sigma0;

run.sigmaneck=run1.sigmaneck;

run.sigmaextrapush=run1.sigmaextrapush;

run.sigmaV0fit=run1.sigmaV0fit;

run.sigmawilc=run1.sigmawilc;

run.sigmaw theo=run1.sigmaw theo;

run.sigmaexp=cell(size(Z,1),1);

run.sigmaexperror=cell(size(Z,1),1);

run.sigmaexpenergy=cell(size(Z,1),1);

clear run1; clear run2;

%deletes the cell−array run1 after beeing added to the cell−array run

for j=1:4:size(txt1,2)

for i=1:size(txt,1)

if strcmp(txt(i,1),txt1(2,j))==1

%compares data in order to plot theoretical data of a reaction

%against its experimental measured data

expreactions(i,1)=1;

run.sigmaexpenergy{i,1}=num1(:,j);
run.sigmaexp{i,1}=num1(:,j+1);
run.sigmaexperror{i,1}=num1(:,j+2);
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run.sigmaexpenergy{i,1}(isnan(run.sigmaexpenergy{i,1}))=[];
run.sigmaexp{i,1}(isnan(run.sigmaexp{i,1}))=[];
run.sigmaexperror{i,1}(isnan(run.sigmaexperror{i,1}))=0;
x=size(run.sigmaexp{i,1},1);
y=size(run.sigmaexperror{i,1},1);
run.sigmaexperror{i,1}(x+1:y)=[];

end

end

end

xlswrite('norms',norms);

%calls the functions which include the plot commands

plotten(delta, txt, run, ana, E, V0, Vextrapush, V0fit, R0, expreactions,...

pathname, pathname1, pathname2, coulpara, A, Z, rms);

end

function [K, V0, R0, run, norms]=fusion potential(Z,A,rms,e)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Constants used for determination of the proximity potential [1]

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Q=35.4;

%[MeV], neutron skin stiffnes coefficient

r0=1.14;

%[fm], constant radius

b=1;

%[fm], Süssman measure of the diffuseness of the nuclear surface

J=32.65;

%[MeV], symmetry energy coefficient

c1=0.757895;

%[MeV]

cn=[−0.1886; −0.2628; −0.15216; −0.04562; 0.069136; −0.011454];
%constants for calculation of the proximity potential

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declaration of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R00=nan(size(Z,1),4);

%[fm], equivalent rms radii

I=nan(size(Z,1),2);

%asymmetry term

t=nan(size(Z,1),2);

%[fm], neutron skin

c=nan(size(Z,1),4);

%[fm], half density Radius

C12=nan(size(Z,1),6);

%[fm], matter radius/locate half density radii of matter distribution

a=nan(size(Z,1),1);

%[MeV], surface energy coefficient

gamma=nan(size(Z,1),1);

%[MeV fmˆ(−2)], mean surface tension coefficient

C=nan(size(Z,1),2);

%[fm], reduced radius

K=nan(size(Z,1),2);
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%[MeV], strength factor

run.distance=cell(size(Z,1),2);

%creates a cell array which are arrays in each cell of the cell array; in

%this case there are as many cell arrays as the number of reactions; this

%cell array defines the run of the center seperation distance for each

%reaction

run.zeta=cell(size(Z,1),2);

%seperation distance

run.proxfac=cell(size(Z,1),2);

%defines the run for the proximity function used for the calculation for

%the Proximity potential

run.proxpot=cell(size(Z,1),2);

%[MeV], Proximity potential

run.coul=cell(size(Z,1),2);

%[MeV], Coulomb potential

run.interactpot=cell(size(Z,1),2);

%[MeV], nucleus−nucleus interaction potential

run.proxforce=cell(size(Z,1),2);

%Proximity force function

run.V0=cell(size(Z,1),2);

%[MeV fmˆ(−1)], run of the barrier height [MeV]

V0=nan(size(Z,1),2);

%[MeV], barrier height

R0=nan(size(Z,1),2);

%[fm], barrier height location

norms=nan(size(Z,1),1);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for q=1:2

%q=1 no rms radii

%q=2 rms radii are given

for i=1:size(Z,2)

for j=1:size(Z,1)

if q==1

R00(j,i)=1.240*A(j,i)ˆ(1/3)*(1+1.646/A(j,i)−0.191*(A(j,i)−...
2*Z(j,i))/A(j,i));

else

R00(j,i+2)=sqrt(5/3)*rms(j,i);

if isnan(R00(j,i+2))==1

R00(j,i+2)=1.240*A(j,i)ˆ(1/3)*(1+1.646/A(j,i)−0.191*(A(j,i)−...
2*Z(j,i))/A(j,i));

norms(j,1)=1;

else

norms(j,1)=0;

end

end

end

end

for i=1:size(Z,2)

for j=1:size(Z,1)

I(j,i)=(A(j,i)−2*Z(j,i))/A(j,i);
t(j,i)=(3/2)*r0*(J*I(j,i)−(1/12)*c1*Z(j,i)*A(j,i)ˆ(−1/3))/...

(Q+(9/4)*J*A(j,i)ˆ(−1/3));
if q==1
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c(j,i)=R00(j,i)*(1−(7/2)*(bˆ2/R00(j,i)ˆ2)−(49/8)*(bˆ4/R00(j,i)ˆ4));
C12(j,i)=c(j,i)+(A(j,i)−Z(j,i))/A(j,i)*t(j,i);

else

c(j,i+2)=R00(j,i+2)*(1−(7/2)*(bˆ2/R00(j,i+2)ˆ2)−(49/8)*(bˆ4/R00(j,i+2)ˆ4));
C12(j,i+3)=c(j,i+2)+(A(j,i)−Z(j,i))/A(j,i)*t(j,i);

end

end

end

if q==1

m=0;

else

m=3;

end

for i=1:size(Z,1)

a(i,1)=18.36−Q*(t(i,1)ˆ2+t(i,2)ˆ2)/(2*r0ˆ2);
gamma(i,1)=a(i,1)/(4*pi*r0ˆ2);

C(i,q)=(C12(i,1+m)*C12(i,2+m))/(C12(i,1+m)+C12(i,2+m));

K(i,q)=(b*a(i,1)*C(i,q))/r0ˆ2;

C12(i,3+m)=C12(i,1+m)+C12(i,2+m);

end

for j=1:size(C12,1)

run.distance{j,q}(1,1)=C12(j,1+m)+C12(j,2+m);
%defines the initial value of the center seperation distance

for i=2:2000

run.distance{j,q}(i,1)=run.distance{j,q}(i−1,1)+0.01;
end

end

for j=1:size(C12,1)

for i=1:size(run.distance{1,1},1)
run.zeta{j,q}(i,1)=run.distance{j,q}(i,1)−C12(j,3+m);

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation of the Proximity Potential

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.zeta,1)

for i=1:size(run.zeta{1,1},1)
if run.zeta{j,q}(i,1)>0 && run.zeta{j,q}(i,1)<2.5

y=0;

for n=1:size(cn,1)

x=(cn(n,1)*(2.5−run.zeta{j,q}(i,1))ˆn)/n;
y=y+x;

end

run.proxfac{j,q}(i,1)=−0.1353+y;
elseif run.zeta{j,q}(i,1)>=2.5

run.proxfac{j,q}(i,1)=−0.09551*exp((2.75−run.zeta{j,q}(i,1))/0.7176);
end

end

end

for j=1:size(run.zeta,1)

for i=2:size(run.zeta{1,1},1)
run.proxpot{j,q}(i,1)=K(j,q)*run.proxfac{j,q}(i,1);
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end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation of the nucleus−nucleus interaction Potential

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.zeta,1)

for i=2:size(run.zeta{1,1},1)
run.coul{j,q}(i,1)=Z(j,1)*Z(j,2)*eˆ2/run.distance{j,q}(i,1);
run.interactpot{j,q}(i,1)=run.coul{j,q}(i,1)+run.proxpot{j,q}(i,1);

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation of the barrier height

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.zeta,1)

for i=1:size(run.zeta{1,1},1)
if run.zeta{j,q}(i,1)>0 && run.zeta{j,q}(i,1)<2.5

y=0;

for n=1:size(cn,1)

x=(cn(n,1)*(2.5−run.zeta{j,q}(i,1))ˆ(n−1));
y=y+x;

end

run.proxforce{j,q}(i,1)=y;
elseif run.zeta{j,q}(i,1)>=2.5

run.proxforce{j,q}(i,1)=−0.1331*exp((2.75−run.zeta{j,q}(i,1))/0.7176);
end

end

end

for j=1:size(run.zeta,1)

for i=2:size(run.zeta{1,1},1)
run.V0{j,q}(i,1)=run.coul{j,q}(i,1)/run.distance{j,q}(i,1)+...

run.proxforce{j,q}(i,1)*K(j,q)/b;
end

end

%looks for the barrier height and its position

for j=1:size(run.distance,1)

vorzeichen=sign(run.V0{j,q});
maxima=find(diff(vorzeichen)>0);

V0(j,q)=run.interactpot{j,q}(maxima,1);
R0(j,q)=run.distance{j,q}(maxima,1);

end

end

end

function [Vneck, deltaVneck]=neck potential(Z,A,V0)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Constants used for correction by the Neck potential [2]

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%constants based on the parametrization of deltaVneck:

alpha=0.0016;
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%[MeV]

beta=2.5;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declaration of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

zeta=nan(size(Z,1),1);

%effective fissility

deltaVneck=nan(size(Z,1),1);

%difference gained by the Neck potential

Vneck=nan(size(Z,1),2);

%[MeV], critical value

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for q=1:2

for i=1:size(V0,1)

zeta(i,1)=(4*Z(i,1)*Z(i,2))/(A(i,1)ˆ(1/3)*A(i,2)ˆ(1/3)*(A(i,1)ˆ(1/3)+...

A(i,2)ˆ(1/3)));

deltaVneck(i,1)=alpha*(zeta(i,1))ˆbeta;

Vneck(i,q)=V0(i,q)−deltaVneck(i,1);
end

end

end

function [Vextrapush, deltaVextrapush]=extrapush(Z,A,e,hbarc,Vneck)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Constants used for correction by the Extra Push potential [3]

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a=5;

%numerical constants

fissthr=26;

%threshold value for (Zˆ2/A)eff,thr

m=931;

%[MeV/cˆ2]

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declaration of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K=nan(size(Z,1),1);

%factor used for the calculation for the correction of the barrier height

%by the Extra Push

fiss=nan(size(Z,1),1);

%fissility factor

Vextrapush=nan(size(Z,1),2);

%corrected form of the barrier height

deltaVextrapush=nan(size(Z,1),1);

%difference gained by the Neck potential

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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for q=1:2

for i=1:size(Z,1)

K(i,1)=((A(i,1)ˆ(1/3)*A(i,2)ˆ(1/3)*(A(i,1)ˆ(1/3)+A(i,2)ˆ(1/3))ˆ(2))/...

(A(i,1)+A(i,2)))*(32/2025)*((3/pi)ˆ(2/3))*((eˆ2/(hbarc))ˆ(2))*m*(aˆ(2));

fiss(i,1)=(4*Z(i,1)*Z(i,2))/(A(i,1)ˆ(1/3)*A(i,2)ˆ(1/3)*(A(i,1)ˆ(1/3)+...

A(i,2)ˆ(1/3)));

if fiss(i,1)<=fissthr

deltaVextrapush(i,1)=0;

else

deltaVextrapush(i,1)=K(i,1)*(fiss(i,1)−fissthr)ˆ2;
end

Vextrapush(i,q)=Vneck(i,q)+deltaVextrapush(i,1);

end

end

end

function [run1, E]=excitation function(w,V0,Vneck,Vextrapush,V0fit,A,V0wilc,...

w theo,R0fit,R0)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declaration of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E=[40:0.5:250]';

%run for energy at a stepsize of 1

run1.X0=cell(size(w,1),2);

run1.Xneck=cell(size(w,1),2);

run1.Xextrapush=cell(size(w,1),2);

run1.X0fit=cell(size(w,1),1);

%X i is the variable used in the formula for the fusion cross section

run1.sigma0=cell(size(w,1),2);

%run of the fusion cross section for the uncorrected proximity model

run1.sigmaneck=cell(size(w,1),2);

%run of the fusion cross section for the by neck formation corrected

%proximity model

run1.sigmaextrapush=cell(size(w,1),2);

%run of the fusion cross section for the by neck formation and extra push

%corrected proximity model

run1.sigmaV0fit=cell(size(w,1),1);

%Rsigma=nan(size(A,1),1);

%is the sum of the radii of the two nuclei

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for q=1:2

% for j=1:size(A,1)

% Rsigma(j,1)=1.27*(A(j,1)ˆ(1/3)+A(j,2)ˆ(1/3));

% end

%calculates the excitation function for each model

for i=1:size(w,1)

for j=1:size(E,1)

run1.X0{i,q}(j,1)=(E(j,1)−V0(i,q))/(sqrt(2)*w(i,1));
run1.sigma0{i,q}(j,1)=pi*R0(i,1)ˆ2*w(i,1)*(run1.X0{i,q}(j,1)*sqrt(pi)...

*(1+erf(run1.X0{i,q}(j,1)))+exp(−run1.X0{i,q}(j,1)ˆ2))/(E(j,1)*sqrt(2*pi));
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run1.Xneck{i,q}(j,1)=(E(j,1)−Vneck(i,q))/(sqrt(2)*w(i,1));
run1.sigmaneck{i,q}(j,1)=pi*R0(i,1)ˆ2*w(i,1)*(run1.Xneck{i,q}(j,1)*...

sqrt(pi)*(1+erf(run1.Xneck{i,q}(j,1)))+exp(−run1.Xneck{i,q}(j,1)ˆ2))...
/(E(j,1)*sqrt(2*pi));

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run1.Xextrapush{i,q}(j,1)=(E(j,1)−Vextrapush(i,q))/(sqrt(2)*w(i,1));
run1.sigmaextrapush{i,q}(j,1)=pi*R0(i,1)ˆ2*w(i,1)*(run1.Xextrapush{i,q}...

(j,1)*sqrt(pi)*(1+erf(run1.Xextrapush{i,q}(j,1)))+exp(−run1.Xextrapush...
{i,q}(j,1)ˆ2))/(E(j,1)*sqrt(2*pi));

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run1.X0fit{i,1}(j,1)=(E(j,1)−V0fit(i,1))/(sqrt(2)*w(i,1));
run1.sigmaV0fit{i,1}(j,1)=pi*R0(i,1)ˆ2*w(i,1)*(run1.X0fit{i,1}(j,1)*...

sqrt(pi)*(1+erf(run1.X0fit{i,1}(j,1)))+exp(−run1.X0fit{i,1}(j,1)ˆ2))...
/(E(j,1)*sqrt(2*pi));

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run1.Xwilc{i,q}(j,1)=(E(j,1)−V0wilc(i,1))/(sqrt(2)*w theo(i,1));

run1.sigmawilc{i,q}(j,1)=pi*R0fit(i,1)ˆ2*w theo(i,1)*(run1.Xwilc{i,q}(j,1)*...
sqrt(pi)*(1+erf(run1.Xwilc{i,q}(j,1)))+exp(−run1.Xwilc{i,q}(j,1)ˆ2))/...
(E(j,1)*sqrt(2*pi));

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run1.Xw theo{i,q}(j,1)=(E(j,1)−Vextrapush(i,1))/(sqrt(2)*w theo(i,1));

run1.sigmaw theo{i,q}(j,1)=pi*R0(i,1)ˆ2*w theo(i,1)*(run1.Xw theo{i,q}(j,1)*...
sqrt(pi)*(1+erf(run1.Xw theo{i,q}(j,1)))+exp(−run1.Xw theo{i,q}(j,1)ˆ2))/...
(E(j,1)*sqrt(2*pi));

end

end

end

end

function [delta, ana]=analysis(Z, A, w, K, Vextrapush, R0, V0, V0fit, V0wilc, ...

Vneck)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Declaration of variables

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ana.fissility=nan(size(Z,1),1);

ana.coulomb=nan(size(Z,1),1);

N=nan(size(Z,1),2);

delta.V0=nan(size(Z,1)+1,2);

delta.V1=nan(size(Z,1)+1,2);

delta.V2=nan(size(Z,1)+1,2);

delta.V3=nan(size(Z,1)+1,2);

delta.V01=nan(size(Z,1),2);

delta.V11=nan(size(Z,1),2);

delta.V21=nan(size(Z,1),2);

delta.V31=nan(size(Z,1),2);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Calculations

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i=1:size(Z,1)

N(i,1)=A(i,1)−Z(i,1);
N(i,2)=A(i,2)−Z(i,2);
ana.fissility(i,1)=(4*Z(i,1)*Z(i,2))/((A(i,1)ˆ(1/3))*(A(i,2)ˆ(1/3))*...

((A(i,1)ˆ(1/3))+A(i,2)ˆ(1/3)));
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ana.coulomb(i,1)=(Z(i,1)*Z(i,2))/((A(i,1)ˆ(1/3))+(A(i,2)ˆ(1/3)));

end

for q=1:2

for i=1:size(V0fit,1)

delta.V0(i,q)=(V0(i,q)−V0fit(i,1));
delta.V1(i,q)=(Vneck(i,q)−V0fit(i,1));
delta.V2(i,q)=(Vextrapush(i,q)−V0fit(i,1));
delta.V3(i,q)=(V0wilc(i,1)−V0fit(i,1));

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Statistics

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

mittel(1,q)=mean(delta.V0(:,q));

stand(1,q)=std(delta.V0(:,q));

standstand(1,q)=stand(:,1)/sqrt(size(Z,1)−1);

delta.V01(:,q)=abs(delta.V0(1:size(delta.V0,1)−1,q));
delta.V11(:,q)=abs(delta.V1(1:size(delta.V1,1)−1,q));
delta.V21(:,q)=abs(delta.V2(1:size(delta.V2,1)−1,q));
delta.V31(:,q)=abs(delta.V3(1:size(delta.V3,1)−1,q));

delta.V0(size(delta.V0,1),q)=mean(delta.V01(:,q));

delta.V1(size(delta.V1,1),q)=mean(delta.V11(:,q));

delta.V2(size(delta.V2,1),q)=mean(delta.V21(:,q));

delta.V3(size(delta.V3,1),q)=mean(delta.V31(:,q));

end

end

function trend(V0, Vneck, Vextrapush, V0fit, V0wilc, coulpara)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%%analyses the deviation of the determined barrier height datas from the

%fitted measured values [4]:

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

calculation=nan(size(V0,1),4);

calc=nan(size(V0,1),4);

result=nan(16,5);

deltaVprox=nan(size(V0,1)+1,2);

deltaVneck=nan(size(V0,1)+1,2);

deltaVextra=nan(size(V0,1)+1,2);

deltaVwoods=nan(size(V0,1)+1,2);

calc=nan(size(V0,1),8);

for q=1:2

calculation(:,1)=abs(V0(:,q)−V0fit);
calculation(:,2)=abs(Vneck(:,q)−V0fit);
calculation(:,3)=abs(Vextrapush(:,q)−V0fit);
calculation(:,4)=abs(V0wilc−V0fit);

%result(1,2)='Proximity Potential';

%result(1,3)='Neck Formation';

%result(1,4)='Extrapush';

%result(1,5)='Wilcinzky';

%result(2,1)='z<70';
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%result(6,1)='70<z<130';

%result(10,1)='z<130';

%result(14,1)='all';

x=find(coulpara<=70);

y=find(coulpara<=130);

z=find(coulpara>130);

calc(:,q)=V0(:,q)−V0fit;
calc(:,q+2)=Vneck(:,q)−V0fit;
calc(:,q+4)=Vextrapush(:,q)−V0fit;
calc(:,q+6)=V0wilc−V0fit;
for i=1:size(V0,1)

deltaVprox(i,q)=(calc(i,q)/V0fit(i,1))*100;

deltaVneck(i,q)=(calc(i,q+2)/V0fit(i,1))*100;

deltaVextra(i,q)=(calc(i,q+4)/V0fit(i,1))*100;

deltaVwoods(i,q)=(calc(i,q+6)/V0fit(i,1))*100;

end

deltaVprox(size(deltaVprox,1),q)=0;

deltaVneck(size(deltaVneck,1),q)=0;

deltaVextra(size(deltaVextra,1),q)=0;

deltaVwoods(size(deltaVwoods,1),q)=0;

for i=1:size(V0,1)

deltaVprox(size(deltaVprox,1),q)=deltaVprox(size(deltaVprox,1),q)+abs(deltaVprox(i,q));

deltaVneck(size(deltaVneck,1),q)=deltaVneck(size(deltaVneck,1),q)+abs(deltaVneck(i,q));

deltaVextra(size(deltaVextra,1),q)=deltaVextra(size(deltaVextra,1),q)+abs(deltaVextra(i,q));

deltaVwoods(size(deltaVwoods,1),q)=deltaVwoods(size(deltaVwoods,1),q)+abs(deltaVwoods(i,q));

end

deltaVprox(size(deltaVprox,1),q)=deltaVprox(size(deltaVprox,1),q)/size(V0,1);

deltaVneck(size(deltaVneck,1),q)=deltaVneck(size(deltaVneck,1),q)/size(V0,1);

deltaVextra(size(deltaVextra,1),q)=deltaVextra(size(deltaVextra,1),q)/size(V0,1);

deltaVwoods(size(deltaVwoods,1),q)=deltaVwoods(size(deltaVwoods,1),q)/size(V0,1);

for i=1:4

result(2,i+1)=mean(calculation(1:max(x),i));

result(6,i+1)=mean(calculation(max(x):max(y),i));

result(10,i+1)=mean(calculation(min(z):max(z),i));

result(14,i+1)=mean(calculation(:,i));

result(3,i+1)=std(calculation(1:max(x),i));

result(7,i+1)=std(calculation(max(x):max(y),i));

result(11,i+1)=std(calculation(min(z):max(z),i));

result(15,i+1)=std(calculation(:,i));

result(4,i+1)=result(3,i+1)/sqrt(size(calculation(1:max(x),1),1));

result(8,i+1)=result(7,i+1)/sqrt(size(calculation(max(x):max(y),1),1));

result(12,i+1)=result(11,i+1)/sqrt(size(calculation(min(z):max(z),1),1));

result(16,i+1)=result(15,i+1)/sqrt(size(calculation,1));

end

if q==1

xlswrite('normsdaten', result);

else

xlswrite('daten', result);

end

end
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end

function plotten(delta, txt, run, ana, E, V0, Vextrapush, V0fit, R0, expreactions,...

pathname, pathname1, pathname2, coulpara, A, Z, rms)

for q=1:2

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Plot nucleus−nucleus interaction potential

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.distance,1)

h=figure('visible','off');

plot(run.distance{j,q}(2:size(run.interactpot{j,q},1)),...
run.interactpot{j,q}(2:size(run.interactpot{j,q},1)),'LineWidth',1.5);

hold on

a=get(gca,'XTickLabel');

b=get(gca,'YTickLabel');

a=str2num(a);

b=str2num(b);

x=find(R0(j,q)>a(:,1));

y=find(V0(j,q)>b(:,1));

c=(x:R0(j,q))';

d=ones(size(c,1))*V0(j,q);

plot(c,d,'−.','Color','k');
e=(y:V0(j,q))';

f=ones(size(e,1))*R0(j,q);

plot(f,e,'−.','Color','k');
plot(R0(j,q),V0(j,q),'*','MarkerSize',12);

text(1,V0(j,q)+1,'V0','FontSize',12);

text(R0(j,q),2,'R0','FontSize',12);

ylim([0 max(b)+10]);

ylabel('Nucleus−Nucleus Interaction Potential [MeV]','FontSize',12);

xlabel('Center seperation distance [fm]','FontSize',12);

title(txt(j,1),'FontSize',12);

set(gca,'FontSize',12);

if q==1

saveas(gca, [pathname1{1,1} 'potential norms ' num2str(j) '.png']);

elseif q==2

saveas(gca, [pathname1{1,1} 'potential ' num2str(j) '.png']);

end

close

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%excitation function

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.sigmawilc,1)

run.sigmawilc{j,q}=run.sigmawilc{j,q}*10;
run.sigma0{j,q}=run.sigma0{j,q}*10;
run.sigmaextrapush{j,q}=run.sigmaextrapush{j,q}*10;
run.sigmaneck{j,q}=run.sigmaneck{j,q}*10;
h=figure('visible','off');

v=find(E<=170);

w=find(run.sigma0{j,q}>0.001);
x=find(run.sigmawilc{j,q}>0.001);
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y=find(run.sigmaextrapush{j,q}>0.001);
z=find(run.sigmaneck{j,q}>0.001);
if coulpara(j,1) <= 120

plot(E(w:max(v),1),run.sigma0{j,q}(w:max(v),1),'−.','LineWidth',2.2);
hold on

plot(E(z:max(v),1),run.sigmaneck{j,q}(z:max(v),1),'−−','LineWidth',2.2);
plot(E(y:max(v),1),run.sigmaextrapush{j,q}(y:max(v),1),'LineWidth',2);
plot(E(x:max(v),1),run.sigmawilc{j,q}(x:max(v),1),'Color','g','LineWidth',2.2);
errorbar(run.sigmaexpenergy{j,1},run.sigmaexp{j,1},run.sigmaexperror{j,1},'.','Color',...

'r','MarkerSize', 18);

set(gca,'FontSize',12,'yscale','log');

ylabel('Fusion Cross Section [mb]','FontSize',12);

xlabel('Center of Mass Energy [MeV]','FontSize',12);

legend('{\sigma} {proximity potential}','{\sigma} {neck formation}',...
'{\sigma} {extra push}','{\sigma} {woods−saxon}','{\sigma} {experimental}',4);

title(txt(j,1),'FontSize',12);

if q==1

saveas(gca, [pathname2{1,1} 'excitationfct prox norms ' num2str(j) '.png']);

elseif q==2

saveas(gca, [pathname2{1,1} 'excitationfct prox ' num2str(j) '.png']);

end

hold off

close

else

plot(E(w:size(run.sigma0{j,q},1),1),run.sigma0{j,q}(w:size(run.sigma0{j,q},1)),'−.',...
'LineWidth',1.8);

hold on

plot(E(z:size(run.sigmaneck{j,q},1),1),run.sigmaneck{j,q}(z:size(run.sigmaneck{j,q},1)),...
'−−','LineWidth',1.5);

plot(E(y:size(run.sigmaextrapush{j,q},1),1),run.sigmaextrapush{j,q}...
(y:size(run.sigmaextrapush{j,q},1)),'LineWidth',1.5);

plot(E(x:size(run.sigmawilc{j,q},1),1),run.sigmawilc{j,q}(x:size(run.sigmawilc{j,q},1)),...
'Color','g','LineWidth',1.5);

errorbar(run.sigmaexpenergy{j,1},run.sigmaexp{j,1},run.sigmaexperror{j,1},'.','Color',...
'r','MarkerSize', 18);

set(gca,'FontSize',12,'yscale','log');

ylabel('Fusion Cross Section [mb]','FontSize',12);

xlabel('Center of Mass Energy [MeV]','FontSize',12);

legend('{\sigma} {proximity potential}','{\sigma} {neck formation}',...
'{\sigma} {extra push}','{\sigma} {woods−saxon}','{\sigma} {experimental}',4);

title(txt(j,1),'FontSize',12);

if q==1

saveas(gca, [pathname2{1,1} 'excitationfct prox norms ' num2str(j) '.png']);

elseif q==2

saveas(gca, [pathname2{1,1} 'excitationfct prox ' num2str(j) '.png']);

end

hold off

close

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%w fit vs w theo

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j=1:size(run.sigmaextrapush,1)

run.sigmaw theo{j,q}=run.sigmaw theo{j,q}*10;
h=figure('visible','off');

x=find(run.sigmaw theo{j,q}>0.001);
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y=find(run.sigmaextrapush{j,q}>0.001);
z=find(run.sigmawilc{j,q}>0.001);
plot(E(y:size(run.sigmaextrapush{j,q},1),1),run.sigmaextrapush{j,q}...

(y:size(run.sigmaextrapush{j,q},1)),'LineWidth',2.2);
hold on

plot(E(x:size(run.sigmaw theo{j,q},1),1),run.sigmaw theo{j,q}...
(x:size(run.sigmaw theo{j,q},1)),'−−','Color','g','LineWidth',2.2);

plot(E(z:size(run.sigmawilc{j,q},1),1),run.sigmawilc{j,q}...
(z:size(run.sigmawilc{j,q},1)),'Color','y','LineWidth',2.2);

errorbar(run.sigmaexpenergy{j,1},run.sigmaexp{j,1},run.sigmaexperror{j,1},...
'.','Color','r','MarkerSize', 18);

set(gca,'FontSize',12,'yscale','log');

ylabel('Fusion Cross Section [mb]','FontSize',12);

xlabel('Center of Mass Energy [MeV]','FontSize',12);

legend('{\sigma} {w,fit}','{\sigma} {w,theo}','{\sigma} {woods−saxon}',...
'{\sigma} {exp}',4);

title(txt(j,1),'FontSize',12);

if q==1

saveas(gca, [pathname2{2,1} 'w against w norms ' num2str(j) '.png']);

elseif q==2

saveas(gca, [pathname2{2,1} 'w against w ' num2str(j) '.png']);

end

hold off

close

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Correlation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
h=figure('visible','off');

plot(ana.fissility,delta.V2(1:size(delta.V2,1)−1,q),'.','MarkerSize', 12);

set(gca,'FontSize',12);

a=get(gca,'XTickLabel');

a=str2num(a);

hold on

c=(min(a):max(a))';

d=zeros(size(c,1),1);

plot(c,d,'−−','Color','k');
ylabel('{V} {i}−{V} {fit} [MeV]');

xlabel('Fissility');

if q==1

saveas(gca, [pathname{2,1} 'correlation norms.png']);

elseif q==2

saveas(gca, [pathname{2,1} 'correlation.png']);

end

close

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Subplot 4

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

h=figure('visible','off');

w1=find(run.sigmaextrapush{9,1}>0.001);
w2=find(run.sigmaextrapush{9,2}>0.001);
x1=find(run.sigmaextrapush{32,1}>0.001);
x2=find(run.sigmaextrapush{32,2}>0.001);
y1=find(run.sigmaextrapush{43,1}>0.001);
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y2=find(run.sigmaextrapush{43,2}>0.001);
z1=find(run.sigmaextrapush{47,1}>0.001);
z2=find(run.sigmaextrapush{47,2}>0.001);

subplot(2,2,1); plot(E(w2:size(run.sigmaextrapush{9,2},1),1),run.sigmaextrapush{9,2}...
(w2:size(run.sigmaextrapush{9,2},1)),'LineWidth',1.5);

hold on

subplot(2,2,1); plot(E(w1:size(run.sigmaextrapush{9,1},1),1),run.sigmaextrapush{9,1}...
(w1:size(run.sigmaextrapush{9,1},1)),'Color','g','LineWidth',1.5);

subplot(2,2,1); errorbar(run.sigmaexpenergy{9,1},run.sigmaexp{9,1},run.sigmaexperror{9,1},...
'.','Color','r','MarkerSize', 18);

xlim([40 75]);

set(gca,'FontSize',12,'yscale','log');

title(txt(9,1),'FontSize',12);

subplot(2,2,2); plot(E(x2:size(run.sigmaextrapush{32,2},1),1),run.sigmaextrapush{32,2}...
(x2:size(run.sigmaextrapush{32,2},1)),'LineWidth',1.5);

hold on

subplot(2,2,2); plot(E(x1:size(run.sigmaextrapush{32,1},1),1),run.sigmaextrapush{32,1}...
(x1:size(run.sigmaextrapush{32,1},1)),'Color','g','LineWidth',1.5);

subplot(2,2,2); errorbar(run.sigmaexpenergy{32,1},run.sigmaexp{32,1},run.sigmaexperror{32,1},...
'.','Color','r','MarkerSize', 18);

xlim([80 120]);

set(gca,'FontSize',12,'yscale','log');

title(txt(32,1),'FontSize',12);

subplot(2,2,3); plot(E(y2:size(run.sigmaextrapush{43,2},1),1),run.sigmaextrapush{43,2}...
(y2:size(run.sigmaextrapush{43,2},1)),'LineWidth',1.5);

hold on

subplot(2,2,3); plot(E(y1:size(run.sigmaextrapush{43,1},1),1),run.sigmaextrapush{43,1}...
(y1:size(run.sigmaextrapush{43,1},1)),'Color','g','LineWidth',1.5);

subplot(2,2,3); errorbar(run.sigmaexpenergy{43,1},run.sigmaexp{43,1},run.sigmaexperror{43,1},...
'.','Color','r','MarkerSize', 18);

legend('{\sigma} {rms radii}', '{\sigma} {no rms radii}','{\sigma} {experimental}',4);
xlim([100 165]);

set(gca,'FontSize',12,'yscale','log');

title(txt(43,1),'FontSize',12);

subplot(2,2,4); plot(E(z2:size(run.sigmaextrapush{47,2},1),1),run.sigmaextrapush{47,2}...
(z2:size(run.sigmaextrapush{47,2},1)),'LineWidth',1.5);

hold on

subplot(2,2,4); plot(E(z1:size(run.sigmaextrapush{47,1},1),1),run.sigmaextrapush{47,1}...
(z1:size(run.sigmaextrapush{47,1},1)),'Color','g','LineWidth',1.5);

subplot(2,2,4); errorbar(run.sigmaexpenergy{47,1},run.sigmaexp{47,1},run.sigmaexperror{47,1},...
'.','Color','r','MarkerSize', 18);

xlim([140 205]);

set(gca,'FontSize',12,'yscale','log');

title(txt(47,1),'FontSize',12);

[ax,h]=suplabel('Center of Mass Energy [MeV]','x',[.08 .08 .84 .84]);

hold on

[ax,h]=suplabel('Fusion Cross Section [mb]','y',[.12 .12 .74 .74]);

saveas(gca, [pathname{1,1} 'excitation rms norms.png']);

close

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Deviation

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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h=figure('visible','off');

subplot(4,1,1); plot(ana.coulomb, delta.V0(1:size(delta.V0,1)−1,2),'.','MarkerSize', 9);

a=get(gca,'XTickLabel');

a=str2num(a);

hold on

c=(min(a):max(a))';

d=zeros(size(c,1),1);

subplot(4,1,1); plot(c, d,'−−','Color','k');
ylim([−4 11]);

title('Proximity Potential');

subplot(4,1,2); plot(ana.coulomb, delta.V1(1:size(delta.V1,1)−1,2),'.','MarkerSize', 9);

hold on

subplot(4,1,2); plot(c, d,'−−','Color','k');
ylim([−10 5]);

title('Proximity Potential corrected by Neck Formation');

subplot(4,1,3); plot(ana.coulomb, delta.V2(1:size(delta.V2,1)−1,2),'.','MarkerSize', 9);

hold on

subplot(4,1,3); plot(c, d,'−−','Color','k');
ylim([−5 5]);

title('Proximity Potential corrected by Neck Formation and by Extra Push');

subplot(4,1,4); plot(ana.coulomb, delta.V3(1:size(delta.V3,1)−1,2),'.','MarkerSize', 9);

title('Woods−Saxon Potential');

hold on

subplot(4,1,4); plot(c, d,'−−','Color','k');
ylim([−5 5]);

xlabel('z');

hold on

[ax,h]=suplabel('{V} {theo} − {V} {fit} [MeV]','y',[.12 .12 .74 .74]);

%link(http://www.mathworks.com/matlabcentral/fileexchange/7772−suplabel,23.
%12.2012, 11:00)

saveas(gca, [pathname{1,1} 'deviation.png']);

close

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%pot vs pot rm

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

h=figure('visible','off');

subplot(3,1,1); plot(ana.coulomb, delta.V0(1:size(delta.V0,1)−1,2),...
'.','MarkerSize', 9);

a=get(gca,'XTickLabel');

a=str2num(a);

hold on

subplot(3,1,1); plot(ana.coulomb, delta.V0(1:size(delta.V0,1)−1,1),...
'.','Color','r','MarkerSize', 9);

c=(min(a):max(a))';

d=zeros(size(c,1),1);

subplot(3,1,1); plot(c, d,'−−','Color','k');
ylim([−4 11]);

legend('rms radii', 'no rms radii');

title('Proximity Potential');

subplot(3,1,2); plot(ana.coulomb, delta.V1(1:size(delta.V1,1)−1,2),...
'.','MarkerSize', 9);

54



hold on

subplot(3,1,2); plot(ana.coulomb, delta.V1(1:size(delta.V1,1)−1,1),...
'.','Color','r','MarkerSize', 9);

subplot(3,1,2); plot(c, d,'−−','Color','k');
ylim([−10 5]);

title('Proximity Potential corrected by Neck Formation');

subplot(3,1,3); plot(ana.coulomb, delta.V2(1:size(delta.V2,1)−1,2),...
'.','MarkerSize', 9);

hold on

subplot(3,1,3); plot(ana.coulomb, delta.V2(1:size(delta.V2,1)−1,1),...
'.','Color','r','MarkerSize', 9);

subplot(3,1,3); plot(c, d,'−−','Color','k');
ylim([−5 5]);

title('Proximity Potential corrected by Neck Formation and by Extra Push');

xlabel('z');

hold on

[ax,h]=suplabel('{V} {theo} − {V} {fit} [MeV]','y',[.12 .12 .74 .74]);

%link(http://www.mathworks.com/matlabcentral/fileexchange/7772−suplabel,23.
%12.2012, 11:00)

saveas(gca,[pathname{1,1} 'pot vs pot rms.png']);

close

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%R00 vs rms

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i=1:size(Z,2)

for j=1:size(Z,1)

R00(j,i)=1.240*A(j,i)ˆ(1/3)*(1+1.646/A(j,i)−0.191*(A(j,i)−...
2*Z(j,i))/A(j,i));

R00(j,i+2)=sqrt(5/3)*rms(j,i);

deltaR00(j,i)=(R00(j,i)−R00(j,i+2))/R00(j,i+2)*100;
end

end

f1=0;

for i=1:size(deltaR00,1)

f=abs(deltaR00(i,1))+abs(deltaR00(i,2));

f1=f1+f;

end

mittelwert=f1/(2*size(deltaR00,1));

h=figure('visible','off');

hold on

for i=1:size(A,2)

subplot(2,1,1); plot(A(:,i),R00(:,i+2),'*','MarkerSize', 13);

hold on

subplot(2,1,1); plot(A(:,i),R00(:,i),'.','Color','r','MarkerSize', 12);

hold on

subplot(2,1,2); plot(A(:,i),deltaR00(:,i),'.','MarkerSize', 12);

end

hold on

a=get(gca,'XTickLabel');

a=str2num(a);

c=(min(a):max(a))';

d=zeros(size(c,1),1);
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subplot(2,1,1); plot(c,d,'−−','Color','k');
hold on

ylabel('Nuclear Charge Radius [fm]','FontSize',12);

legend('{R} {00, rms}','{R} {00,no rms}',4);
text(20,1.5,'(a)','FontSize',12);

subplot(2,1,2); plot(c,d,'−−','Color','k');
hold on

ylabel('{\Delta R} {00} (%)','FontSize',12);

text(55,−2.2,'(b)','FontSize',12);

xlabel('Mass number','FontSize',12);

set(gca,'box','on');

saveas(gca, [pathname{1,1} 'R00 vs R00rms.png']);

close

end
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