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Abstract

This work deals with polarizable molecular dynamics (MD) computer sim-
ulations of three selected ionic liquids (IL), EMIM+BF−

4 , EMIM+TfO− and
BMIM+BF−

4 including the solute molecule coumarin 153 (C153). The dif-
ferent solvation properties of these three liquids are described by “solvation
dynamics”. In this method, the dynamical response of the solvent to an elec-
tronic excitation of the solute - C153 in this case - is characterized. Various
aspects of this time-dependent response of the three ILs under investigation
have been analyzed.
The respective solvation response function of the three liquids was cal-

culated from the gathered simulation data and decomposed in several ways
for a detailed interpretation. The total response was separated into con-
tributions from (i) cations and anions, (ii) permanent and induced charges
and (iii) translational and non-translational motion. The latter was ac-
complished using a simplified multipole expansion describing the complex
charge distributions of the solvent molecules only by the net charge located
at the molecular center of mass and the molecular dipole moment. In addi-
tion, the sub-picosecond decay of the solvation response function was linked
to the collective translational motion of the first solvation shell. Finally, the
contributions to the solvation energy were resolved according to the radial
distance of the interacting molecules in order to estimate the range of these
interactions.
The results of this analysis were collected in a manuscript which was then

submitted to The Journal of Chemical Physics for publication.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Molekulardynamik-Simulationen (MD)
von ionischen Flüssigkeiten (IL) unter Berücksichtigung atomarer Polar-
isierbarkeiten. Im Speziellen wurde das Lösungsmittelverhalten dreier Flüs-
sigkeiten - EMIM+BF−

4 , EMIM+TfO− und BMIM+BF−
4 - anhand des darin

gelösten Moleküls Coumarin 153 (C153) untersucht. Dabei wurden anhand
einer Methode namens Solvatationsdynamik (engl. solvation dynamics) die
dynamischen Antworten der verschiedenen Flüssigkeiten auf eine Änderung
der elektrostatischen Eigenschaften von C153 bestimmt. Diese Änderung in
den elektrostatischen Eigenschaft entspricht der Änderung in der moleku-
laren Ladungsdichteverteilung durch eine elektronische Anregung.
Die aus Simulationsdaten berechnete dynamische Antwort der verschiede-

nen Systeme wurde in Folge in verschiedene Beiträge aufgespalten, um eine
detailliertere Interpretation zu ermöglichen. Die komplette Antwort wurde
(i) in Beiträge von Kationen und Anionen, (ii) in Beiträge von perma-
nenten und induzierten Ladungen und (iii) in Beiträge von translationaler
und nicht-translationaler Bewegung unterteilt. Letzteres wurde erreicht, in-
dem die komplexe molekulare Ladungsverteilung durch die im Schwerpunkt
zentrierte molekulare Gesamtladung sowie durch das molekulare Dipolmo-
ment approximiert wurde. Zudem wurde der sub-Picosekunden Bereich der
dynamischen Antwort auf die Störung mit der kollektiven translationalen
Bewegung der ersten Lösungsmittelschale in Verbindung gebracht. Ab-
schließend wurde die Solvatationsenergie noch entsprechend der intermoleku-
laren Distanzen radial aufgetragen, um die Reichweite dieser Interaktionen
zu bestimmen.
Diese Resultate wurden in einem Manuskript zusammengefasst und bei

The Journal of Chemical Physics zur Publikation eingereicht.
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1. Introduction

1.1. Computer simulation of soft matter

”Soft matter“ is a term encapsulating highly diverse types of condensed
matter (e.g. liquids) sharing important properties that distinguish these
substances from matter in the solid state. In general, the state of matter
can be described by the free energy

F = U − TS, (1.1)

with the internal energy U , the temperature T and the entropy S. In
matter existing in a solid state at room temperature (293K), the energetics
are largely determined by the internal energy. In soft matter both the
internal energy and the entropy are of comparable size at room temperature.
The main reason for this highly different behaviour thus lies within the role
of entropy. In statistical mechanics, the entropy is given by

S = kBln(Ω), (1.2)

where kB is the Boltzmann constant and Ω is the phase space volume.
Hence, the entropy increases with the number of the microscopic states a
system can occupy. As matter in a solid state is usually organized in a very
regular fashion (e.g. as crystals), the number of possible microscopic states
typically is quite low. The common property shared by all types of ”soft
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1. Introduction

matter” is thus a very large number of possible molecular conformations,
which in turn makes the theoretical description of such substances quite
challenging.

Especially matter in the liquid state is ubiquitous in biological and chem-
ical applications and consequently has been studied extensively. The ques-
tion what causes various types of condensed matter to be in a liquid state at
room temperature has been of particular interest to experimenters as well as
theorists. Historically, it proved to be very challenging to construct approx-
imate theories capable of describing the properties of liquid matter, which
is mainly due to the plethora of microscopic conformations such a system
can occupy. Within statistical mechanics it is possible to extrapolate to the
macroscopic properties of a bulk liquid from a sample of the microscopic
properties at the atomic and molecular level. Generating a sufficiently large
number of samples of such microscopic states of a finite number of particles
is a task well-suited to computer simulation [1].

Two simulation methods are in wide use today. The Monte-Carlo method
[2] achieves its goal by a so-called random walk through many possible
molecular conformations, where the transition between states occurs on
the basis of a Markov chain as a controlled random process. However,
as the Monte-Carlo method does not preserve the principle of microscopic
reversibility, the Markov time, which describes the propagation of the sim-
ulation, is not a physical concept of time and thus prohibits the study
of dynamical phenomena. Nevertheless, the Monte-Carlo method is per-
fectly valid when studying structural properties of matter. The other major
method is classical molecular dynamics (MD) simulation, where the time
evolution of a given set of particles is described by solving the classical
equations of motion. MD simulation inherently keeps track of time and is
therefore the first choice when studying the dynamics of a liquid system over
long periods of time. In fact, MD simulation is the only simulation method
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1.2. Polarizability

providing a direct route from intermolecular interactions to the description
of dynamical phenomena.

In the construction of molecular models used in computer simulations
accurate parameters are paramount for achieving satisfying results. Such
parameters are usually obtained experimentally or by performing quantum-
mechanical calculations. Once an accurate model of a liquid is available,
computer simulation offers the possibility to interpret experimental results
at the molecular level. Thereby, simulation methods have become a valuable
and widely used tool used in combination with experimental methods such
as NMR spectroscopy, dielectric spectroscopy and fluorescence spectroscopy
in a wide range of applications.

1.2. Polarizability

An important feature missing in classical MD simulations is the ability of
the molecular charge distribution to quickly adapt to changes in the local
environment. The atomic partial charges defining the charge distribution
are kept constant and the only way for the distribution to change is via the
movement of the atoms. As this motion represents only the nuclear degrees
of freedom, classical MD simulation does not account for electronic degrees
of freedom. There already are various approaches to overcome this limi-
tation aiming to implement atomic polarizabilities in a reasonably feasible
manner.

One method is the fluctuating charge model [3–6], where the fixed atomic
partial charges are allowed to fluctuate in response to their respective local
environment. One should keep in mind, though, that the net charge of the
molecule has to be kept constant at all times. Thus, the fluctuations of the
charges of individual atoms in a molecule are not independent of each other.

3



1. Introduction

Another model widely used is the so-called induced point-dipole model,
where each polarizable atom in the simulation is assigned a mathematical
dipole. The energy resulting from the interaction of this dipole with the local
electric field is considered in the computation of the potential energy and
its strength is also determined by the respective atomic polarizabilities [7].

In this work atomic polarizabilities were implemented by so-called Drude
particles, also known as the charge-on-a-spring model [8]. This method
introduces two new particles of virtually no mass and equal, but oppositely
signed charge for each non-hydrogen atom. One of these is always located
at the coordinates of the respective atom and the other is displaced by an
oscillating distance ~d, thereby creating an atomic dipole that can adapt
to its local environment by the movement of the displaced Drude particle
around the atom. The characteristic polarizability αβ of any of the different
atomic species in the system is represented by the force constant kδβ of the
bond connecting the atom β to its associated oscillating Drude particle. For
practical purposes, the charges qδ of the Drude particles are chosen to be
the same for all atom types. The force constant is thus defined by

kδβ =
(qδ)2

4πε0αβ
. (1.3)

The total dipole moment ~µi of molecule i hence includes a permanent
contribution ~µ perm

i depending on the constant atomic partial charges qiβ
and atomic coordinates ~riβ, and an induced contribution ~µ ind

i depending on
the position of all Drude charges.

4



1.2. Polarizability

~µi(t) = ~µ perm
i (t) + ~µ ind

i (t) (1.4)

~µ perm
i (t) =

∑

β

qiβ(~riβ(t) − ~ri(t)) (1.5)

~µ ind
i (t) =

∑

β

qδ ~diβ(t) (1.6)

Fig. 1.1 illustrates the permanent and induced contributions to the total
dipole moment of an EMIM+ molecule. Implementing polarizability in this
way can be seen as a computationally cheap alternative to rather elaborate
quantum-chemical calculations. Still, any of the three methods mentioned
above comes with a significant increase in computational cost.

The addition of atomic polarizabilities is a profound change to a classi-
cal MD simulation. As will be described in more detail in Chapter 2, the
induced dipoles counteract the permanent ones and thereby reduce interac-
tion energies. These effects resemble those of a solvent, as solvent molecules
typically move much faster than solute molecules and dampen their inter-
actions. Because of this, the induced dipoles are said to act like an “inner
solvent”. Recent simulation studies of ionic liquids have shown that the
addition of polarization forces accelerates both the translational as well as
rotational dynamics [9]. Another important feature new to MD simula-
tions including polarization forces is that otherwise apolar species now also
exhibit an induced molecular dipole moment. An example for this is the
anion tetrafluoroborate, BF−

4 , which will also be discussed in greater detail
in Chapter 2.
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1. Introduction

~µ perm

~µ tot

~µ ind

Figure 1.1.: The permanent (blue arrow) and induced (red arrow) contri-
butions to the total molecular dipole moment (black arrow) of
EMIM+. Throughout this work all dipole moments are refer-
enced to the molecular center of mass (black dot).

1.3. Room temperature ionic liquids

In the past decades extensive simulation studies of the dynamical and struc-
tural properties of conventional liquids (e.g. various polar and apolar sol-
vents) have been performed. Recent years have seen the advent of room
temperature ionic liquids (IL), a novel class of solvents. An ionic liquid
consists solely of charged species, but it is not to be confused with what
is usually called a molten salt. The latter is solid at room temperature
and is only in a liquid state at elevated temperature, whereas the former
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1.3. Room temperature ionic liquids

is liquid under standard conditions for temperature and pressure. At least
one of the two ionic species in a room temperature ionic liquid - usually
the cation - is highly anisotropic and often also features long, flexible side
chains. These properties make the formation of a regular crystal lattice
much less favorable than for example in a system consisting of atomic ions.
This structural anisotropy is also reflected in an anisotropic charge distri-
bution, which causes some of the species in such liquids to exhibit rather
sizeable dipole moments. The combination of a net charge and a significant
dipole moment in a single molecule is a rather peculiar one. In ionic liquids,
not only the rotational dynamics of the particles is strongly coupled, as it
also is in conventional dipolar liquids like water, but due to the molecu-
lar net charges, the translational dynamics of the molecules also becomes
highly dependent on the electrostatic interactions with a wide range of its
environment, as charge-charge interactions described by the Coulomb po-
tential exhibit a 1

r
distance dependence. The strong interactions between

the individual particles in ionic liquids lead to slower single-particle as well
as collective dynamics than in conventional liquids, reflected in their fairly
high shear viscosity (cf. Table I of Chapter 2). Another effect is that these
liquids have a nearly negligible vapour pressure [10].

Besides the academic interest raised by their unique electrostatic proper-
ties, ionic liquids have also drawn attention as potential solvents for a multi-
tude of industrial applications [11]. Due to their extremely low vapour pres-
sure, general thermal stability over wide temperature and pressure ranges
and favorable solvation properties, ionic liquids were hoped to largely re-
place conventional organic solvents in chemical processing, promising a more
environment-friendly, “green” alternative [12–16]. Ionic liquids also offer a
wide range of cations and anions that can be combined to obtain a liquid
with the desired properties, be it a specific viscosity or highly specific sol-
vation properties favouring a certain chemical reaction. So far, however,
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1. Introduction

the much higher costs and also other issues questioning their environmental
harmlessness [11, 16–18] stood in the way of wide-spread use in organical
synthesis and biological applications.

1.4. Solvation dynamics

A method well-suited to experimentally measure translational and rota-
tional dynamics of a liquid sample is dielectric spectroscopy. This method
measures the response of the sample to an oscillating external electric field,
revealing translational and rotational dynamics on a broad frequency scale
[19]. As translation and rotation in ionic liquids is strongly coupled, their di-
electric spectra often are difficult to interpret. MD simulations have turned
out to be a valuable tool for interpreting such spectra and retracing the
experimental results to molecular movement patterns [20–22].

Solvation dynamics spectroscopy is another experimental technique for
obtaining information about dynamical behaviour of a liquid sample at the
molecular level. Unlike dielectric spectroscopy, it does not use an external
field to probe the response of the sample. In solvation dynamics, a solute
is electronically excited by a laser pulse and the time evolution of the fluo-
rescence signal is observed. The frequency of the peak of this fluorescence
signal changes over time, a phenomenon known as the Stokes shift. (cf.
Fig. 2 of Chapter 2) This shift is caused by the relaxation of the solvent
molecules after the abrupt change of the electrostatic properties of the so-
lute. As such, these experiments use the solute as a probe for the evolving
electric field exerted by the surrounding solvent molecules. This kind of dy-
namical behaviour lends itself to analysis by MD simulation. In this context,
one can retrace the experimentally obtained solvation response function to
molecular movement patterns in considerable detail.
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1.4. Solvation dynamics

This work is concerned with solvation dynamics in neat ionic liquids,
specifically in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM+BF−

4 ),
1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIM+TfO−) and
1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF−

4 ). Coumarin
153 (C153) has been used as a model chromophore in many experimen-
tal and computational studies and has been chosen for this study as well.
Please cf. Fig. 1 of Chapter 2 for an overview of the molecular structure of
all species. Chapter 2 contains a manuscript submitted to The Journal of
Chemical Physics for publication. There, the theoretical and methodologi-
cal background and also the most significant results of the analysis of these
three systems are presented in a comprehensive manner.
During the course of this extensive analysis the development of new algo-

rithms was necessary. The trajectory analysis software package GEPETTO

was extended and modified to accomodate the need for new types of analy-
sis. The focus of these additions was laid on the contributions of polarization
forces and further analysis of solvation shell-resolved collective dynamical
behaviour, e.g. the electric current per solvation shell ~Jcage (cf. Eqs. 25 and
26 of Chapter 2). The definition of solvation shells was given by the already
implemented Voronoi tesselation, which provides a parameterless means to
define molecular neighbourhood [23]. The Voronoi polyhedra resulting from
the tesselation are illustrated in Fig. 1.2, where an cross-section of the first
three solvation shells of EMIM+BF−

4 surrounding C153 is shown.

9



1. Introduction

64
.4

Å

Figure 1.2.: The first three Voronoi shells of C153 in EMIM+BF−
4 . The

polyhedra show the surrounding surfaces of C153 (grey) and the
first (red), second (blue) and third (green) solvation shells. The
black lines show the edges of the simulation box. The picture
was generated from a frame of a simulation of 1000 EMIM+BF−

4

ion pairs and one C153 molecule in a cubic simulation box with
an edge length of 64.4 Å.
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Polarizable solvation dynamics of coumarin C153 in ionic liquids:

Components and their cross-correlations
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The solvation dynamics of coumarin C153 dissolved in three se-

lected molecular ionic liquids - EMIM+BF−4 , EMIM+TfO− and

BMIM+BF−4 - was studied by molecular dynamics simulations in-

cluding polarization forces. The solvation response function was de-

composed with respect to permanent and induced charges, cationic

and anionic contributions and translational and non-translational

motions. The latter decomposition was accomplished by an appro-

priate multipole expansion. Furthermore, the difference in solvation

energy was resolved radially. The dynamics in the sub-picosecond

regime was elucidated as the mutual translational motion of the so-

lute and the cage formed by the first solvation shell. For a qualitative

interpretation, solvent molecules can be reduced to “quasi-atomic”

ions carrying a net charge at their molecular center of mass. Towards

a quantitative description, the dipole moment serves as a measure of

charge anisotropy.
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I. INTRODUCTION

Room temperature ionic liquids (IL) are a class of novel solvents that

have been the subject of intense research in recent years. At the meso-

scopic level their solvation properties can be characterized best by mea-

suring their dielectric spectrum.1 These spectra represent a superposition

of collective translational and rotational motions. In a series of simula-

tion studies we have shown how these different kinds of motion can be

decomposed.2,3 Computational dielectric spectroscopy analyzes the response

of a sample to an applied external electric field. A method that offers the

opportunity to study localized solvation effects is time dependent fluores-

cence spectroscopy,4 which uses a solute as an inner probe. Upon electronic

excitation following the Franck-Condon principle the charge status of the

solute is changed. The subsequent reorganization of the solvent is moni-

tored by the transient Stokes shift of the fluorescence emission frequency.

The common interpretation of this shift is via the time relaxation of the dif-

ference in solvation energy upon solute excitation. The model solute most

frequently used in such studies is coumarin C153.5–7 Therefore, we chose it

as a model solute for this work.

In the past, there have been many molecular dynamics (MD) simu-

lation studies concerned with the molecular origins of solvation dynam-

ics in dipolar liquids.8–15 In recent years, solvation dynamics in ILs was

the topic of many experimental,5–7,16,17 MD simulation18–23 and also other

theoretical5,24,25 studies. All previous MD studies were performed with pair-

wise additive forces. In this paper, we make a methodic step forward by

introducing polarization forces in the solvent in order to mimic the response

III
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of the molecular charge distribution to changes in the local environment.

Since solvation spectroscopy works with a probe to analyze its local envi-

ronment, we deemed the inclusion of polarization forces essential.

The solvation response function is complex in two respects. On the one

hand it comprises different kinds of interactions (e.g. interaction of the so-

lute with permanent and induced charges of the solvent molecules), on the

other hand it is a superposition of various types of molecular motion. It

is an intrinsic strength of simulation studies to decompose complex quanti-

ties into more elementary contributions. This paper presents a component

analysis of the time correlation function underlying the interpretation of sol-

vation dynamics. As with any decomposition procedure, cross-correlations

inevitably arise. These are analyzed with special emphasis throughout this

work. Actually, our decomposition is threefold.

First we separate the contributions of permanent and induced charges. A

decomposition into cationic and anionic contributions follows, as was previ-

ously performed for a variety of solute/solvent combinations, e.g. a diatomic

and a benzene-like model solute in EMIM+Cl− and EMIM+PF−6 ,20 a non-

diffusive model solute in 1,2-dimethylimidazolium chloride18 and betaine-

3026 or coumarin C15319 in BMIM+PF−6 . A decomposition with respect to

translational and non-translational motion completes our component analy-

sis. However, our analysis is not based on the work of Steele27 like previous

works.8,19,28 Instead, we follow a different route exploiting the genuine fea-

tures of ionic liquids. Additionally, we present a radial resolution of the

solvation energy and the specific behaviour of the first solvation shell.

To achieve more general conclusions, which are not system-specific,

IV
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FIG. 1. Overview of the various molecular species used in the presented sim-

ulations. Black dots indicate the respective centers of mass and black arrows

indicate the molecular dipole moments. In the special case of C153 the black

arrow indicates ∆µ, the difference of the molecular dipole moments of ground

state and excited state.

we selected the three systems 1-ethyl-3- methylimidazolium tetrafluo-

roborate (EMIM+BF−4 ), 1-ethyl-3-methylimidazolium trifluoromethanesul-

fonate (EMIM+TfO−) and 1-butyl-3- methylimidazolium tetrafluoroborate

(BMIM+BF−4 ) with coumarin C153 as the model solute (cf. Fig. 1).

EMIM+BF−4 serves as a consensus system, as in the other two systems

V
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either the anion or the cation was exchanged by another species with a

higher dipole moment.

II. THEORY

A. Solvation response function

In experimental fluorescence spectroscopy, the normalized solvation re-

sponse function is defined as

Sexp(t) =
ν(t)− ν(∞)

ν(0)− ν(∞)
, (1)

with ν(t) describing the time evolution of the emission frequency and ν(0)

and ν(∞) being its limits. Theoretically this transient frequency shift is

interpreted as the solvent’s response to the electronic excitation of the solute

molecule. In a non-equilibrium simulation, one would calculate

Sneq(t) =
∆U(t)−∆U(∞)

∆U(0)−∆U(∞)
, (2)

where ∆U(t) is the difference in solvation energy between the ground

state (S0) and the excited state (S1). The overbar indicates averaging over

non-equilibrium trajectories. In equilibrium molecular dynamics simula-

tions, the experimental solvation response function can be approximated

within the boundaries of linear response theory. In this way, Eq. 2 can be

formulated as the time correlation function (TCF)

Ceq(t) =
〈δ∆U(0) · δ∆U(t)〉

〈δ∆U2〉 . (3)
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Here δ∆U(t) represents the fluctuations

δ∆U(t) = ∆U(t)− 〈∆U〉. (4)

In accordance with the literature,8,12 we compute ∆U(t) as the elec-

trostatic interaction energy of the solute’s change in charge distribution

∆ρ(~r, t) due to the electronic excitation with the electrostatic potential

Φ(~r, t) of the surrounding solvent at time t.

∆U(t) =

∫
d~r∆ρ(~r, t)Φ(~r, t) (5)

In a fully atomistic description, the change in charge density of the solute

molecule j is given by

∆ρ(~r, t) =
∑

jγ

δ(~r − ~rjγ(t))∆qjγ, (6)

where ∆qjγ is the difference of the partial charge of atom γ between

ground and excited state. The electrostatic potential exerted by the solvent

molecules i reads

ΦA(~r, t) =
∑

iβ

(
qiβ − qδ
|~r − ~riβ(t)|

+
qδ

|~r − (~riβ(t) + ~diβ(t))|

)
,

(7)

with the atoms being indexed as β. Each atom carries an associated pair

of Drude particles of charge −2e, the one located at the atomic coordinates

~riβ(t), the other displaced by ~diβ. When inserting ∆ρ(~r, t) and ΦA(~r, t) into

Eq. 5, the difference in solvation energy in fully atomistic terms becomes
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∆UA(t) =
∑

jγ,iβ

(
∆qjγ(qiβ − qδ)
|~rjγ(t)− ~riβ(t)|

+
∆qjγqδ

|~rjγ(t)− (~riβ(t) + ~diβ(t))|

)
.

(8)

Alternatively to the time-dependence, the solvation energy may be radi-

ally resolved as

∆UA(r) =
1

∆r

∑

jγ,iβ

(
∆qjγ(qiβ − qδ)
|~rjγ − ~riβ|

+
∆qjγqδ

|~rjγ − (~riβ + ~diβ)|

)
δ(r − |~rj − ~ri|)

(9)

into contributions from bins of width ∆r. ~rj and ~ri refer to the centers

of mass of solute and solvent molecules, respectively.

B. Component analysis

In the following sections, the complete solvation energy ∆U will be sep-

arated into two subcomponents so that

∆U(t) = ∆U1(t) + ∆U2(t). (10)

The normalized solvation response function becomes

Ctot(t) =
C1(t) + C2(t) + 2χ12(t)

C1(0) + C2(0) + 2χ12(0)
, (11)

where

VIII

20



Ci(t) = 〈δ∆Ui(0) · δ∆Ui(t)〉 i=1,2 (12)

are the auto-correlation functions of the two subcomponents and

χ12(t) = 〈δ∆U1(0) · δ∆U2(t)〉 (13)

is the cross-correlation function of the subcomponents.

Throughout this work, the solvation response function and all of its com-

ponents were fitted to the following analytical expression, comprised of an

exponential and a Kohlrausch-Williams-Watts (KWW) function:9,15,21

C(t) ∼= a1e
−
(
t
τ1

)
+ a2e

−
(
t
τ2

)β
. (14)

For the Kohlrausch-Williams-Watts function an average relaxation time

can be calculated as

〈τ2〉 =
τ2
β

Γ

(
1

β

)
. (15)

C. Polarizability

From the electrostatic theorem we know that molecular charge distribu-

tions depend on the respective molecular conformations and as such change

with the latter. In an heuristic way, one can model this adjustment of the

molecular charge distribution to changes in the local environment by adding

charge pairs, so-called Drude charges qδ, to the frequently used set of perma-

nent charges. In previous studies we have learned that the inclusion of these

Drude charges acts as an “inner solvent“,29 thereby decreasing the viscosity
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of the system, which, in its turn, accelerates the dynamics. Therefore, in all

systems studied here the solvent molecules were augmented by appropriate

Drude charges, with the notable exception of hydrogen atoms. In order to

keep the interpretation of the system managable, we avoided even higher

complexity at this point and thus, the solute molecule coumarin C153 was

modeled without adding Drude charges. Otherwise we would have to aban-

don the concept of modeling the change in charge status upon excitation by

difference charges ∆q, because all Drude charges are usually taken to be the

same, independent of charge status. Of course, they differ with respect to

their position as a consequence of the respective polarizabilities. However,

this would require to use a completely different set of polarizabilities for the

excited state.

In Eq. 8 the Drude charges were included in the description of the

charge distribution of the solvent molecules. Here, we separate permanent

and induced contributions to the solvation energy by rewriting Eq. 8 as

∆UA(t) =∆Up(t) + ∆Ui(t)

∆Up(t) =
∑

jγ,iβ

∆qjγqiβ
|~rjγ(t)− ~riβ(t)|

∆Ui(t) =
∑

jγ,iβ

(
− ∆qjγqδ
|~rjγ(t)− ~riβ(t)|

+
∆qjγqδ

|~rjγ(t)− (~riβ(t) + ~diβ(t))|

)
,

(16)

thus splitting the total solvation energy ∆UA into a permanent (∆Up)

and an induced (∆Ui) part. For the decomposition into permanent and
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induced charges Eq. 11 becomes

Cpol
tot (t) =

Cp(t) + Ci(t) + 2χpol(t)

Cp(0) + Ci(0) + 2χpol(0)
. (17)

D. Species decomposition

A system composed of oppositely charged species naturally lends itself

to separating the solvation energy (Eq. 8) into cationic and anionic contri-

butions

∆UA(t) = ∆U+(t) + ∆U−(t). (18)

Thus, the decomposition of the solvation response function (Eq. 11) be-

comes

C±tot(t) =
C+(t) + C−(t) + 2χ±(t)

C+(0) + C−(0) + 2χ±(0)
. (19)

E. Multipole expansion

When reducing the complex anisotropic charge distribution of the vari-

ous ionic solvent species to ”quasi-atomic” ions carrying the net charge qi

at the molecular center of mass ~ri, the separation of the translational mo-

tion follows naturally. The multipole expansion offers a way to account for

the actual anisotropy of the charge distribution. The leading term in this

expansion is the molecular dipole moment and may thus be considered a

measure of charge anisotropy. For an interpretation of the separation of

translational and non-translational contributions to the solvation energy we

use
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ΦM(~r, t) =
∑

i

(
qi

|~r − ~ri(t)|
+
~µi(t) · (~r − ~ri(t))
|~r − ~ri(t)|3

)
(20)

as a simplification of the electrostatic potential (Eq. 7) exerted by the

solvent. Please note that the molecular dipole moment ~µi also contains all

induced effects. Inserting Eqs. 6 and 20 into Eq. 5 gives

∆UM(t) = ∆Uq(t) + ∆Uµ(t),

∆Uq(t) =
∑

jγ,i

∆qjγqi
|~rjγ(t)− ~ri(t)|

∆Uµ(t) =
∑

jγ,i

∆qjγ~µi(t) · (~rjγ(t)− ~ri(t))
|~rjγ(t)− ~ri(t)|3

,

(21)

For this case, equation 11 takes the special form

CM
tot(t) =

Cq(t) + Cµ(t) + 2χM(t)

Cq(0) + Cµ(0) + 2χM(0)
. (22)

We note that the denominator - in contrast to Eqs. 19 and 17 - may differ

from the fully atomistic result 〈(δ∆UA)2〉, as ∆UM(t) is only an approxima-

tion to ∆UA(t).

Furthermore, the radial distribution of the two components of ∆UM can

be described as

∆Uq(r) =
1

∆r

∑

jγ,i

∆qjγqi
|~rjγ − ~ri|

δ(r − |~rj − ~ri|) (23)

and

∆Uµ(r) =

1

∆r

∑

jγ,i

∆qjγ~µi(t) · (~rjγ − ~ri)
|~rjγ − ~ri|3

δ(r − |~rj − ~ri|).
(24)
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III. METHODS

This work presents molecular dynamics simulations of coumarin C153

in three ionic liquid solvents, EMIM+BF−4 , EMIM+TfO− and BMIM+BF−4

(Fig. 1). For each of these systems, two independent simulations of 1000

ion pairs and one C153 molecule were carried out. In one of these simula-

tions, the partial charge distribution of C153 corresponded to the electronic

ground state, S0, whereas in the other one, the charge distribution corre-

sponded to the first excited state, S1. All six simulations were performed

at 300 K in cubic boxes with a box length of either 64.4 Å for EMIM+BF−4 ,

67.9 for EMIM+TfO− or 68.65 Å for BMIM+BF−4 under periodic bound-

ary conditions. For all simulations a length of at least 50 ns was achieved

using a time step of 0.5 fs. Additionally, another set of simulations with

the same setup was carried out over 1 ns to collect less sparse data for

analysis of short-time dynamics. Force field parameters for various species

were adapted according to the following sources: EMIM+(partial charges as

reported by Hanke, et al.30 all other parameters were taken from Canongia

Lopes et al. ,31,32) BMIM+(all parameters used as reported by Canongia

Lopes et al. ,31,32) BF−4 (all parameters were adopted from de Andrade et

al. ,33) TfO−(all parameters as reported by Canongia Lopes et al. ,34) C153

(partial charges as reported by Kometani et al. ,35 all other parameters

were generated using SwissParam.36) General simulation parameters were

the same as in Ref 37: All bonds involving a hydrogen atom were kept at a

constant length using the SHAKE algorithm.38 Updates of non-bonded and

image lists were conducted at a neighbourhood distance of 16 Å. Lennard-

Jones interactions were switched off smoothly between 11 and 12 Å, while
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electrostatic interactions were calculated using the PME method.39,40 In-

teractions in real space were cut off at 12 Å and the damping constant for

interactions in reciprocal space was 0.410 Å−1. The grid had a spacing of

1.05 Å and was interpolated using sixth-order spline functions. Polariz-

ability of the solvent molecules was implemented through Drude oscillators

on all non-hydrogen atoms. All Drude particles share a uniform charge

qδ = −2.0 e and mass mδ = 0.2 amu, both of which were subtracted from

the respective atomic parameters. A more exhaustive description of the

computational setup concerning the Drude oscillators was given in our pre-

vious work.3,29,37

IV. RESULTS AND DISCUSSION

In previous simulation studies we have learned that viscosity governs

single-particle and collective dynamics of molecular ionic liquids.41 Of the

systems investigated here, EMIM+TfO− and EMIM+BF−4 have similar vis-

cosities, whereas BMIM+BF−4 is much more viscous (cf. Table I). In our

simulation, this is reflected by the diffusion coefficients D and dipolar reori-

entational times τ listed in Table I. As all solvent molecules in our systems

are polarizable, the non-polar species BF−4 also exhibits a dipole moment,

but of induced character. Therefore, the respective τind describing the re-

orientational times of the induced part of the molecular dipole moments are

listed in Table I as well. Throughout this paper, all dipole moments are

referred to the center of mass of the molecule and we use the concept of a

molecular dipole moment solely for interpretation.

As a validation of our computational results for solvation dynamics Fig.
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TABLE I. Dynamics parameters characterizing the different systems. An

overview of the presented species is given in Fig. 1.

ηexp D+ D− 〈τ+〉 〈τ−〉 〈τ+ind〉 〈τ−ind〉

[mPa s] [10−8cm2s−1] [10−8cm2s−1] [ps] [ps] [ps] [ps]

EMIM+BF−4 37 (295 K)42 12.3 5.1 1237 491 653 545

EMIM+TfO− 41 (298 K)43 11.1 5.2 1532 1183 758 1289

BMIM+BF−4 99 (295 K)42 1.9 1.6 19834 4508 12458 4580

2 presents the comparison with experimental data by Maroncelli et al. .5

Taking into account all methodological differences of generating the two

data sets, we consider their agreement to be quite satisfying for all three

systems investigated. The observed deviation in the asymptotic regime of

BMIM+BF−4 can be traced back to the comparatively high viscosity of this

system (cf. second column in Table I), which generally impairs the analysis

of slow processes due to insufficient sampling. Backed by this fair agree-

ment, computational solvation dynamics offers the possibility of a thorough

threefold component analysis presented in the following sections. As vali-

dated by linear response theory, the data presented in Fig. 2, 3, 5 and 7 are

averages of the ground and excited state equlibrium simulations.

A. Polarizability

A component analysis according to Eq. 17 separates contributions from

permanent and Drude charges and their cross-correlation. The respective

results are displayed graphically in Fig. 3. In addition, they have been
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FIG. 2. Comparison of experimental5 and simulation (cf. Eq. 8) results for the

solvation response function.
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TABLE II. Stokes function fitting parameters. All functions were fitted according

to Eq. 14, the average relaxation times 〈τ2〉 of the Kohlrausch-Williams-Watts

function were calculated according to 15.

EMIM+BF−
4 EMIM+TfO− BMIM+BF−

4

Cpol Ctot Cp Ci 2χpol Ctot Cp Ci 2χpol Ctot Cp Ci 2χpol

a1 0.45 0.52 0.03 -0.08 0.32 0.38 0.03 -0.07 0.40 0.46 0.03 -0.08

a2 0.55 0.62 0.05 -0.12 0.68 0.77 0.08 -0.17 0.60 0.68 0.05 -0.12

τ1 0.238 0.222 0.210 0.194 0.285 0.267 0.293 0.266 0.245 0.228 0.234 0.217

τ2 216.6 215.5 167.3 198.3 226.9 225.2 87.6 162.8 1259.2 1164.1 919.2 765.5

β 0.40 0.37 0.33 0.28 0.37 0.37 0.28 0.31 0.31 0.31 0.30 0.33

〈τ2〉 719.8 901.6 1042.9 2548.7 949.3 942.2 1125.9 1306.4 10104.3 9341.2 8512.3 4771.8

C± Ctot C+ C− 2χ± Ctot C+ C− 2χ± Ctot C+ C− 2χ±

a1 0.46 0.47 0.62 -0.64 0.33 0.36 0.36 -0.47 0.40 0.50 0.68 -0.77

a2 0.54 0.55 0.82 -0.82 0.67 1.04 0.92 -1.53 0.60 2.27 2.33 -4.02

τ1 0.242 0.285 0.259 0.282 0.340 0.361 0.339 0.405 0.244 0.330 0.302 0.34

τ2 227.5 251.1 369.6 357.0 226.0 344.9 374.1 377.4 1314.3 18044.8 6307.4 11238.3

β 0.40 0.37 0.37 0.37 0.49 0.44 0.41 0.44 0.32 0.39 0.44 0.46

〈τ2〉 756.1 1050.6 1546.3 1493.6 469.5 899.9 1163.1 984.7 9246.7 64406.9 16456.7 26543.9

CM Ctot Cq Cµ 2χM Ctot Cq Cµ 2χM Ctot Cq Cµ 2χM

a1 0.29 0.39 0.03 -0.12 0.24 0.41 0.14 -0.31 0.23 0.31 0.07 -0.14

a2 0.71 0.88 0.11 -0.28 0.76 1.93 1.12 -2.29 0.77 1.49 0.69 -1.41

τ1 0.286 0.259 0.299 0.225 0.328 0.353 0.548 0.463 0.284 0.271 0.348 0.298

τ2 613.8 529.6 562.9 381.3 320.3 555.2 454.7 585.5 4310.6 14053.3 13682.9 29401.8

β 0.44 0.42 0.52 0.42 0.44 0.51 0.49 0.53 0.40 0.37 0.45 0.41

〈τ2〉 1601.5 1547.1 1049.9 1113.9 835.7 1071.3 944.6 1057.6 14325.6 58796.7 33914.4 91412.5

fitted to the analytical expression in Eq. 14. The respective parameters

are listed in the upper part of Table II. As a universal result, the relative

contributions of these components are conserved for all three systems. This

can be confirmed by the sum of the respective amplitudes (cf. the first

two lines in Table II). The contribution of permanent charges exceeds the

total function by typically 15% , whereas the inductive self-term is nearly
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negligible. Nevertheless, the polarization forces play their role as a screening

”inner solvent“ by a substantial counter-active cross-term. The interplay

of permanent and induced charges can be further elucidated by considering

the time-avaraged, but spatially resolved solvation energy defined in Eq.

9. As shown in Fig. 4, the permanent contribution extends to at least 40

Å, while the induced contribution is confined to approximately 15 Å. This

may be explained by the rapid fluctuations of the Drude particles’ positions,

by which weaker long-range interactions are cancelled out. Viewing the

Drude particles as an ”inner solvent“, their influence may be characterized

in terms of a potential of mean force (PMF) acting between permanent

charges. For this PMF an analytical expression can be given (cf. Eq.

14 of ref. 44), which points to a 1/r6 dependence. Thus, the range of

the induced contribution is comparable to that of the traditional Lennard-

Jones potential, which is usually truncated beyond 12 Å. We also note that

inclusion of polarizability not only improves the results quantitatively, but

also creates qualitatatively new results. A striking example is the dipolar

auto-correlation function of the otherwise apolar anion BF−4 . The slight

difference between the reorientational times τ− and τ−ind listed in Table I is

a consequence of molecular vibrations also resulting in a temporary dipole

moment.

B. Species decomposition

Fig. 5 shows the contributions of the respective cations and anions and

their cross-correlation computed according to Eq. 19. As in all other figures

referring to component analysis, each set of curves is normalized to the sum
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TABLE III. Time averages and standard deviations of the solvation energy and

its species-specific contributions, as defined in Eq. 18. The values are shown for

both equlibrium simulations.

∆US0tot ∆US1tot ∆US0+ ∆US1+ ∆US0− ∆US1−

EMIM+BF−4 −7.0± 12.9 −48.4± 12.8 −21.0± 12.1 −27.7± 13.0 14.0± 14.3 −20.7± 15.4

EMIM+TfO− −10.0± 13.2 −40.5± 12.3 −26.4± 16.0 −35.6± 15.3 16.5± 17.8 −4.9± 15.9

BMIM+BF−4 −4.8± 13.0 −39.9± 10.5 −40.8± 22.6 −21.8± 15.2 35.9± 22.6 −18.1± 16.9

of its components. Therefore, the total correlation function is normalized

to unity. However, we note that the absolute initial values of the total,

unnormalized solvation response functions are fairly close to each other.

This can be seen from the data collected in Table III giving the average

values and the standard deviations of the total and species-resolved solvation

energies for both ground and excited state equilibrium simulations. The

normalization factors applied in Fig. 5 are given by the square of the mean

standard deviations of ground and excited state. The respective standard

deviations of ∆US0
tot and ∆US1

tot are very similar and even show minimal

variation for all three systems investigated.

In previous attempts to separate the cationic and anionic contributions to

the solvation response function, Kobrak19 and Shim et al.21 highlighted the

relative importance of the anionic over the cationic response in BMIM+PF−6 .

The data presented in Fig. 5 and the fit parameters in the C± section of

Table II cannot generally confirm this argument for the systems investi-

gated here. All three systems clearly exhibit similar behaviour of both ionic

species, at least for time scales < 100 ps. We also strongly emphasize the im-
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portance of the strong cross-correlation between cations and anions, shown

as dashed lines in Fig. 5. These reflect the genuine feature of ionic liquids

that the dynamics of cations and anions are very strongly coupled. In case

of EMIM+BF−4 the cross-term cancels the anionic self-term almost exactly.

For EMIM+TfO−, the cationic and anionic self-terms are almost identi-

cal and the cross-term compensates more than one self-term. BMIM+BF−4

again exhibits almost equal self-terms, but their magnitudes by far exceed

the total value. Consequently, an over-compensation by the cross-term is

observed. The commonly visible compensoratory behaviour of cationic and

anionic correlation functions has its origin in the fluctuations of the respec-

tive solvation energy time-series, which generally are perfectly synchronous,

but of different sign. A second common feature of all presented correlation

functions is a change in shape ocurring after 1 ps. This leads to a separation

into a short-time regime within the first ps and a much slower asymptotic

relaxation. Up to this point, we have characterized the solvation response

function and the contributions of the respective ionic species over the com-

plete time range. Now we focus on the short-time behaviour within the first

picosecond. Obviously, short-time dynamics doesn’t have its roots in long-

range spatial correlations, rather it has to be attributed to the interaction of

the solute with its immediate neighbourhood.9 Our well-established Voronoi

algorithm45 offers a rational means to define immediate neighbourhood as

the first Voronoi shell. Bearing in mind the mesoscopic character of exper-

iments, we rather consider the members of a solvation shell as a collective

entity instead of individual molecules. As the importance of translational

motion for the sub-picosecond decay of S(t) was numerously emphasized in
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the literature,18,20 we selected the shell-specific current

~Jcage(t) = ~J+
cage(t) + ~J−cage(t) (25)

= q

(
CN+∑

i=1

~vi(t)−
CN−∑

k=1

~vk(t)

)
(26)

as the appropriate observable for collective translational motion of the first

solvation shell with the coordination numbers CN+ and CN− for cations

and anions, respectively. As a measure of dynamical coupling between the

solute coumarin C153 and its immediate neighbourhood we computed the

correlation functions 〈~vs(0) · ~J+
cage(t)〉 and 〈~vs(0) · ~J−cage(t)〉, where ~vs(t) is

the translational velocity of the solute molecule. These functions are shown

in Fig. 6. Since the cationic and anionic curves turned out to be of very

similar shape for all systems investigated, we present the averaged curves

for cations and anions. The diversity of the systems is indicated by vertical

bars marking the standard deviation. The different sign of the net charge

q produces mirror images of the cationic and anionic curves. The higher

coordination number of cations as compared to the anions leads to somewhat

higher peaks, although their ratio is smaller than CN+/CN−. Therefore,

cationic and anionic curves do not cancel out. The most impressive feature

is the common zero-crossing of all curves at 0.715 ps. It is common for all

systems as well as for cations and anions. The occurance of this zero-crossing

coincides with the transition of the short-time to the long-time regime of the

total solvation response function (indicated by the vertical line in Fig. 5).

Furthermore, the species-specific curves C+ and C− show minor oscillations

after this point in correspondence to oscillations in Fig. 6. Interestingly,

the cross-correlation of C+ and C− eliminates these oscillations, making
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the total curve monotonic. This reflects the strong coupling of collective

translational motions of cations and anions within the first solvation shell.

As indicated by the vertical bars in Fig. 6, the diversity of the systems

investigated is remarkably small. This leads to the conclusion, that the

dynamical interplay of the solute and the first solvation shell is largely
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independent of the composition of the solvent. Therefore we propose the

conjecture, that the short-time behaviour of solvation dynamics in an ionic

liquid is largely determined by the inertial and electrostatic properties of

the solute as well as the ionic character of the solvent molecules.

C. Multipole expansion

In the previous section we have learned that short-time solvation dy-

namics is essentially described by the solvent molecules’ ionic character. In

other words, the net charge plays the dominant role in short-time motion,

whereas the anisotropy of the charge distribution seems to gain importance

on longer time scales. Therefore, we looked for an appropriate decomposi-

tion of the solvation response function to rationalize these observations. As

the change in solvation energy ∆U is described here solely by electrostatic

interactions between an uncharged dipolar solute and charged dipolar sol-

vent molecules, we considered the multipole expansion as an appropriate

means of decomposition, as outlined in Eq. 21. In fact, the expansion was

confined to the dipole moments, because they provided a simple, qualita-

tive measure for the anisotropy of the charge distribution. According to

Eq. 22, Fig. 7 shows the relative contributions of the charge-charge and

charge-dipole interactions to the solvation response function. As a common

feature of all three systems, the shape of the total curve in the short-time

regime can be traced back to the charge-charge interactions, whereas the

dipole moments play a minor role. This can be quantified by comparing the

ratio of the respective amplitudes of the mono-exponential and the KWW

part of the fit function, listed as a1 and a2 in lower part of Table II. In
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the sequence EMIM+BF−4 , EMIM+TfO− and BMIM+BF−4 , the respective

ratios for Cq are approximately 1:2, 1:5 and 1:5 and for Cµ 1:4, 1:8 and

1:10. This is in accordance with the findings of the previous section, where

the libration of the charge cage as a purely translational phenomenon was

shown to cover the same time span as the initial, ultra-fast decay of the sol-

vation response function. As the individual dipole moments of both species

of EMIM+BF−4 are either small or of inductive nature, the contribution of

Cµ to the total function is marginal. Nevertheless, the cross-term substan-

tially counteracts the dominant Cq term. Increasing the dipole moment of

one species, either the cation in BMIM+BF−4 or the anion in EMIM+TfO−,

correspondingly increases the size of both Cµ and Cq. At first sight it seems

surprising that the higher dipole moment also raises the charge-charge con-

tribution Cq. However, the description of an increasingly anisotropic charge

distribution in terms of an isotropic point charge becomes more insufficient

as the dipole moment as a first measure of this anisotropy gains in magni-

tude. This is emphasized in the radially resolved multipolar contributions

∆Uq(r) and ∆Uµ(r) to the solvation energies of the three systems given

in the lower row of Fig. 4. For EMIM+BF−4 , a description in terms of

net molecular charges is sufficient. Changing the cation from EMIM+ to

BMIM+ causes a moderate, but long-range deviation between ∆Uq(r) and

∆UA(r). The residual, however, is almost completely covered by ∆Uµ(r),

which in its turn is confined to about 15 Å, a range comparable to that of

the induced contributions. The interplay of charge and dipolar contribution

becomes most apparent for EMIM+TfO−, where the first peak and the sub-

sequent shoulder of the total curve ∆UA(r) are created by a superposition of
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FIG. 7. Decomposition of the solvation response function according to Eq. 22.

In this case, the electrostatic potential exerted by the solvent molecules is given

by the multipole approximation shown in Eq. 20.
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∆Uq(r) and ∆Uµ(r), with the latter solely accounting for the first peak and

the former for the shoulder. In the sequence EMIM+BF−4 - BMIM+BF−4 -

EMIM+TfO−, the increasing divergence between the fully atomistic view

∆UA(r) and the picture of net molecular charges ∆Uq(r) reflects the in-

creasingly dipolar character of the solvent molecules. While a change from

EMIM+ to BMIM+ adds polarity to the cation, but retains the apolar anion

BF−4 , replacement of BF−4 by TfO− exchanges an apolar by a distinctively

dipolar species. The same arguments apply to Fig. 7 previously discussed,

where an increase in the spread of the individual multipolar components in

the same sequence of systems can be observed.

V. CONCLUSION

In this paper we have presented simulation studies of solvation dynamics

of coumarin C153 in EMIM+BF−4 , EMIM+TfO− and BMIM+BF−4 . We have

followed three concepts of partitioning the solvation energy: (i) a threefold

component analysis with respect to (1) permanent and induced, (2) cationic

and anionic as well as (3) translational and non-translational contributions,

(ii) a radial resolution and range analysis and (iii) a focus on molecular

motion in the sub-picosecond regime.

All three concepts share a common motif. For a qualitative description,

the reduction of the solvent molecules to ”quasi-atomic“ ions carrying the

net charge at the molecular center of mass is sufficient. Any quantitative

deviations from the fully atomistic results can be compensated by includ-

ing the dipole moment as a measure of charge anisotropy. Furthermore,

the sub-picosecond region of the solvation response function is essentially
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characterized by the mutual translational motion of the solute and the cage

formed by the first solvation shell (Fig. 6). Again, the picture of ”quasi-

atomic“ ions is confirmed, because all systems, despite being composed of

ions considerably different in shape and charge distribution exhibited highly

similar dynamics.

In addition, each pair of subcomponents turned out to be anti-correlated.

This shows that the investigated effects are highly compensatory in nature,

often leaving the total effect at a much smaller magnitude. Previous similar

studies have shown that in polar and even more so in nonpolar liquids8–11

the short-time solvation response is largely dominated by single-molecule

dynamics. In contrast, as shown by the cross-correlation of the contribu-

tions of the ionic species (the dashed line in Fig. 5), the dynamics of cations

and anions in ionic liquids are strongly coupled even in the sub-picosecond

time scale. Our data also indicates that translational and non-translational

motion in ionic liquids is strongly correlated and the extent of this corre-

lation depends on the molecular dipole moment. It also seems that the

sub-picosecond decay of the solvation response function in ionic liquids is

rather determined by translational motion than by non-translational motion

(cf. Fig. 7), a question that has been a topic of much discussion.18–20,24,25
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