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Abstract

Todays large-scale scientific collaborations are increasingly data driven. A big part

of this data is produced continuously by sensors and other scientific instruments.

This stream data has specific data management and data mining issues like varying

arrival rates, bursts and heterogeneity of data formats, quality, volumes, etc. Various

systems exist to process them, including ESPER, StreamInsight and MOA. The

OGSA-DAI framework, one of the focuses of this Thesis, was designed to execute

stream-oriented data set accesses and associated workflows.

The ADMIRE Project, partially implemented by the University of Vienna team

based in the Research Group for Scientific Computing, provides a single platform

for knowledge discovery on the basis of combined strategies, skills and technology.

It offers tools for data access, pre-processing, data mining, statistical analysis, post-

processing, transformation and delivery. It is intended to be used by several groups

of specialists, including domain experts, data analysis experts or data-intensive dis-

tributed computing engineers. The main developments are the ADMIRE platform

and a Java-like data-intensive language DISPEL for steering the platform function-

ality.

A missing feature of the ADMIRE and other data stream projects is the possibil-

ity to use selected data streams for performance experiments and validation. Large

static data set examples are used instead. The reason is the lack of well analyzed

data streams with predictable behavior that may be used for this purpose.

The main goal of the presented Thesis is to add an extendable data stream

generation feature to the ADMIRE platform. To achieve this, the following steps

were executed: 1) analysis of state of the art in Data Streams; 2) porting/adapting

selected stream generators to the ADMIRE Platform in an extendable manner;

3) modeling of simple workflows involving stream generators; 4) investigation of

DISPEL workflow patterns involving stream generators; and 5) actual deployment.

The kernel result of the work is the DataStream OGSA-DAI activity which in-

cludes several configurable data stream generators and a client to use with this ac-

tivity. Furthermore, the ADMIRE visualization tool was incorporated to illustrate

stream generation with the DataStream activity. A new Outlier activity, based on

the STORM outlier detection algorithm, was implemented to demonstrate useful-

ness of the DataStream activity in possible real-life workflows. All the developed

software prototypes are written in Java with the use of OGSA-DAI and MOA tools.
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Zusammenfassung

Heutige wissenschaftliche Großkollaborationen sind zunehmend datengetrieben. Ein
großer Teil dieser Daten wird ununterbrochen von Sensoren und anderen wis-
senschaftlichen Instrumenten produziert. Diese Stromdaten haben spezifische Data–
Management– und Data–Mining–Aspekte, wie schwankende Zugangsraten, Brüche
und Heterogenität von Datenformaten, Qualität oder Größen. Es gibt verschiedene
Systeme, um sie zu verarbeiten, einschließlich ESPER, StreamInsight und MOA. Das
OGSA-DAI Framework, das einer der Schwerpunkte dieser Arbeit ist, wurde entwor-
fen, um stromorientierte Datensatz–Zugriffe und assoziirte Workflows auszuführen.

Das ADMIRE Projekt, das teilweise von dem Team aus Research Group for Sci-
entific Computing (Universität Wien) implementiert wurde, hat Strategien, Fähig-
keiten und Technologie kombiniert, um eine Einheitsplattform zu entwickeln, die
Wissensentdeckung durchführt, indem sie Datenzugriff, Integration, Vorbearbeitung,
Data-Mining, Statistische Analyse, Nachbearbeitung, Transformation und Zustel-
lung kombiniert. Das Projekt soll von verschiedenen Spezialisten-Gruppen benutzt
werden, wie Fachexperten, Datenanalyse-Experten oder Technikern für dateninten-
sives verteiltes Rechnen. Die Hauptentwicklungen sind die ADMIRE-Plattform und
eine Java-ähnliche Sprache DISPEL, um die Funktionalität der Plattform zu führen.

Eine fehlende Eigenschaft des ADMIRE und anderen Datenstrom-Projekte ist
die Möglichkeit, ausgesuchte Datenströme für Leistungsexperimente und Validierung
zu verwenden. Stattdessen werden große statistische Datensatz-Beispiele verwendet.
Das Grund dazu ist fehlende, geeignete Datenströme mit voraussagbarem Verhalten,
die für diesen Zweck verwerden werden könnten.

Das Hauptziel dieser Arbeit ist, eine erweiterbare Datenstrom-Generation-Feature
zu der ADMIRE-Plattform hinzuzufügen. Um das zu erreichen, die folgende Schritte
wurden ausgeführt: 1) State–of–the–Art Analyse im Bereich Datenströme; 2) Übertra-
gung/Anpassung von ausgesuchten Strom-Generatoren zu der ADMIRE Plattform
in erweiterbarer Weise; 3) Modellierung simpler Workflows, die einen Stromgener-
ator umfassen; 4) Untersuchung von DISPEL Workflow-Patterns, die einen Strom-
generator umfassen; und 5) tatsächliche Bereitstellung.

Das Hauptergebnis der Arbeit ist die DataStream OGSA-DAI Activity, die
mehrere konfigurierbare Datenstrom–Generatoren umfasst, zusammen mit einem
Client für diese Activity. Außerdem, wurde das ADMIRE Visualisierungstool
eingearbeitet, um Stromerzeugung mit Hilfe der DataStream Activity zu illustri-
eren. Eine neue, auf dem STORM-Algorithmus basierende Outlier Activity wurde
implementiert, um die Verwendbarkeit der DataStream Activity in möglichen real–
life Workflows zu demonstrieren. Alle entwickelte Software–Prototypes sind in Java
mit Verwendung von MOA und OGSA-DAI Tools verfasst.
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Chapter 1

Introduction

1.1 Motivation

The progress in hardware technology has made it possible to produce, send and

receive large sets of data that continuously and rapidly grow over time. Sensor

technology development has resulted in the possibility of monitoring many events

in real time. Such large amounts of continuously arriving, potentially infinite data

arise, e.g., in the following areas.

1. Fraud detection, ATM operations.

The main principle for fraud detection is to find “unusual observations” that

are likely associated with fraud. A data stream instances in such cases may

contain information about the seller, the location, the amount of money spent,

etc. A bank may temporally block a card when a purchase was done in a

foreign country, or the daily limit is exceeded, or in case of other event that

may indicate a suspicious action.

2. Network monitoring and traffic management.

A web log instance may store the information about visitor’s IP, time and date,

clicks, etc. The tasks include detection of traffic usage patterns, analysis and

ensuring of the infrastructure, including detection of anomalous traffic. Also,

we may mention prevention and identification of bottlenecks, bad distribution

of resources and other problems.

3. Telecommunication.
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Data streams in telecommunication are sequences of digitally encoded con-

nected signals (packets of data) used to transmit and/or receive information.

The produced data streams may contain information about the phone calls

in the form of call detail records, or information about the operation of the

telecommunication networks. Among the main tasks in the former case one

could mention identifying suspicious calling patterns, and in the latter case

mining the streams in order to support the network management, such as

fault detection or fault prediction.

4. Remote weather sensors.

The data captured by weather sensors usually includes such characteristics as

wind speed, temperature, visibility. The weather sensors usually present a wide

range of instruments organized into networks, and the resulting data may vary

widely in size and arrival rate. The analysis should run simultaneously over

multiple input streams, performing such operations as comparing one stream’s

data to another, aligning streams based on time. Further tasks include outlier

detection (which may mean, e.g., fire or storm) and stable work of the network

inspite of a sensor’s outage.

5. Scientific and engineering experiments.

Examples of scientific streams include, for instance, data generated by NASA’s

observation satellites, or whole genome sequences for many species, or data

from experiments on subatomic particles. Task in this area are numerous

depending on the concrete experiment goals and may include common pat-

tern detection, outlier analysis, distribution changes, and so forth. Besides

the analysis of an experiment, goals may include the system monitoring and

ensuring that a service is running correctly.

6. Medical data.

Body sensors include various types of anatomical and physiological sensors,

including ECG and EEG machines, respiratory or blood pressure monitors.

Further medical data include patient records, laboratory results, various types

of medical documents and images. The produced data is very heterogeneous,

maybe structured or unstructured, often distributed across healthcare insti-

tutions. Some of the goals are: alerting services, decision support, ambient
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intelligence, etc.

7. Other dynamic environments.

Other application areas, where large volumes of dynamic stream data arises,

include, but are not limited to: power consumption monitoring, processing

(quantization) of analog signals and many more.

The arising data are not only massive, they are also potentially infinite, ordered

in time and changing. The data with such characteristics are referred to as data

streams. The modern scientific challenge is to find feasible ways to process these

large continuous volumes of data for interesting and relevant information.

As follows from the above discussion, among the specific issues of the stream data

management [7] and stream data mining [15] are varying arrival rates, bursts and

heterogeneity of data formats, quality, volumes, etc. The data stream processing

poses a number of challenges that are not easily solved by traditional data mining

methods. To thrive in this new environment requires new strategies, new skills and

new technology.

Various systems exist to process data streams, including StreamInsight [28] and

Esper [13]. A further example of a data stream mining environment is MOA [27], the

main purpose of which is classification and clustering of data arriving as a stream.

A recently released system SASE [33] proves pattern matching over streams. The

ADMIRE project [1], partially implemented at the University of Vienna, provides

a single platform for knowledge discovery on the basis of combined strategies, skills

and technology. It offers tools for data access, integration, pre-processing, data

mining, statistical analysis, post-processing, transformation and delivery [1]. The

ADMIRE’s DISPEL language adopts a streaming data execution model. Every data

stream can be understood as a sequence of elements with a common abstract struc-

ture. Streams are carried continuously from one processing element (encapsulation

of an algorithm) to another through connections.

In order to test the developed service components, they have to be evaluated on

top of large-scale real (or well designed synthetic) data sets. The current develop-

ment of the field is restricted by lack of existing data streams with well predictable

behavior that can be used to test the devised methods.
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A solution would be to use artificial data streams that model the

expected behavior, i.e., have necessary distribution of elements,

predictable evolution, speed, etc.

While for static data sets various well designed data generator tools exists, e.g.

PREDO [11], the situation is more complicated in the area of dynamic streams. An

example of an existing data stream generator is HIDS [40], a generator of hierarchical

data streams. Some event processors, e.g., MOA and SASE, include a built-in data

stream generator which allows illustration of instruments provided by the systems.

However, the main disadvantage of those generators is that the generated stream is

stored as a file before it may be submitted to an external application to be tested.

In this thesis we are going to suggest our solution to this problem.

1.2 Objective and approach

The main goal of the work is:

To provide a functionable extendable data stream generation system

that models a real behavior of data streams met in practical

applications.

In its most general form, the entire task is envisioned in Figure 1.1. In a later

chapter we will choose several available data stream generators that simulate the

behavior of various real data streams. In particular, the generated streams must

be configurable and must satisfy the main properties of real data streams, such as

being potentially infinite, generated independently of the user (i.e., externally, for

instance, by a remote server), arriving and different speed, etc. Furthermore, it

should be easy to extend the tool with further data stream generation models, when

necessary. This is the server side of the system.

On the client side, it should be possible to configure parameters of a chosen

stream generator and to use the output of the generator according to clients’ needs.
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In particular, there should be an option to incorporate the generated stream into

workflows processed by stream processing systems, like mentioned above ESPER,

StreamInsight or ADMIRE, through the corresponding input adaptors.

Finally, to provide a stable interaction between the server and the client sides, a

fixed common data format is needed. All the components of the system and their

implementation issues are discussed in more detail in Sections 5.2, 5.3 and 5.4. The

worked out details will be reflected by Figure 5.2.

  

Stream 
Source
Type X

Stream 
Source 
Type Y

Data Stream
Generators 

simulated by

Configuration to 
act like Stream 
Source Type Y

Configuration to 
act like Stream 
Source Type X

Common
Data
Format

Client (adaptor) 1

Client (adaptor) 2

Client (adaptor) n

Server Side

Format

ClientSide

Client (adaptor) 3

...

Figure 1.1: General scheme of a functionalbe extendable stream generation system.

To achieve the main goal, in this thesis we complete the following steps.

1. Analysis of state of the art in Data Streams.

We describe the current situation in the area of data streams in general and

for data stream generators in particular. We discuss the main tasks in the area

of data stream management and mining which implicitly imply the necessity

of synthetic data streams with well predictable behavior for evaluation and

testing. We mention the existing data stream generators with their advantages

and disadvantages.
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2. Porting/adapting selected stream generators to the ADMIRE Platform in an

extendable manner.

After analyzing the present situation with data stream generators, we choose

those represented in MOA [27] to be ported into the ADMIRE. The main

challenge is to be able to generate a really potentially infinite data stream,

and not just a huge but finite file where the generated data is stored. The

latter approach is exactly what is used in existing generators and what we

find unsatisfactory as it does not reflect the nature of real data streams.

3. Modeling of simple workflows involving stream generators.

To illustrate the potential of our data stream generator, we model several

elementary workflows involving stream generation. The first one simply allows

a user to choose a stream generator and then outputs the resulting stream to

the user’s screen. Within the second workflow, we connect the generators to a

visualization tool available in the ADMIRE to demonstrate generation of data

streams with the help of various types of plots and diagrams.

The most interesting workflow we create allows us to detect instances of a

generated stream with exceptional behavior (also called outliers). Outlier de-

tection is based on the STORM outlier detection algorithm from [5].

4. Investigation of DISPEL workflow patterns involving stream generators.

We discuss DISPEL workflows including the data stream generator and give

examples of the corresponding DISPEL codes.

5. Actual deployment.

We implement two OGSA-DAI activities: the DataStream activity and the

Outlier activity and deploy them to a server. These activities are able to

perform potentially infinite data stream generation and outlier detection, re-

spectively.

1.3 Achievements

The main result of the work is the DataStream OGSA-DAI activity which includes

several configurable data stream generators and can easily be extended to include
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new data stream generators, when necessary. The generated streams satisfy all

the main properties of real data streams such as: potential infinity; continuous,

temporarily ordered arrival of data; behavior evolution/change; etc.

We also provide a command line client to use with this activity. The client allows

one to choose a desired data stream generator and to have the resulting stream be

output to the screen. Furthermore, the ADMIRE visualization tool was incorporated

to illustrate data stream generation with the DataStream activity. The results are

presented as plots and diagrams and may be useful for a deeper understanding of

the properties of the generated streams.

Moreover, a new Outlier activity, based on STORM algorithm [5], was imple-

mented to demonstrate usefulness of the DataStream activity in possible real-life

workflows. A user may then choose a data stream generator by submitting his

choice through the client to the DataStream activity, the output of which is an-

alyzed by the Outlier activity and the found outliers are displayed on the user’s

screen.

All the developed software prototypes are written in Java with the use of OGSA-

DAI and MOA tools.

1.4 Thesis organization

In the next chapter we discuss the main facts about data streams. We start with

the most important properties of real-life data streams that should be reflected by

a data stream generator. To formalize the discussion and fix useful notations, we

give the formal definition of a data stream and its components. As motivation

for further work, we discuss the main problems in data stream management and

mining. Solutions to these problems require careful evaluation and testing, which is

very hard in absence of artificial predictable data streams. We conclude the chapter

with a short description of the existing data stream processing systems, such as

Esper, StreamInsight and ADMIRE.

Chapter 3 gives an overview of existing data stream generators. There exist

several implemented data stream generators. A common feature of all of them is

the storage of a generated stream in a file. Thus, one of the main features of data

streams, potential infinity, is lost in each case. We also review several unimplemented

models of data stream generators available in the literature. These may be used in



1.4 Thesis organization 8

future to add more options to the DataStream activity.

Chapter 4 provides the necessary technical background for the implementation

of the DataStream activity generating data streams. The first component is the

MOA (Massive Online Analysis) software [27] from the University of Waikato, New

Zealand. We give a short general overview and then examine more precisely the

MOA stream generators, their features and implementation details. The second

component is the OGSA-DAI framework [30] which will allow us to generate poten-

tially infinite data streams. We give the main notions and provide basic facts about

OGSA-DAI activities and their properties. Our third main component is the AD-

MIRE project (“Advanced Data Mining and Integration Research for Europe”) [1].

We discuss in detail the ADMIRE’s architectural paradigm, as this is also the ap-

proach we use for our data stream generator. Finally, we mention further software

tools we used.

In Chapter 5 we explain how to implement the DataStream activity. We start

by explaining how the principles fixed in the ADMIRE’s architectural paradigm

are applied to the development of a functionable extendable data stream generator.

We discuss the requirements on the server side of the stream generation system.

We then fix the common data format needed for stable interactions between the

server and the client sides. After that, we discuss requirements on the client side

of the system and indicate possible steps to create input adaptors for several data

processing frameworks, if needed. Furthermore, we explain in detail the necessary

OGSA-DAI tools, such as matched iterative activity, data sources and data sinks.

We continue with a complete description of the DataStream activity and a command

line client that is used to choose a stream generator and output the results to the

screen. We complete the chapter with an illustration of data stream generation with

the help of the ADMIRE visualization tool.

In Chapter 6 we evaluate the DataStream activity by incorporating it into a

workflow which performs stream outlier detection. Outliers are instances of the

stream that have a statistically exceptional behavior. In real life, data stream out-

liers may signify that something goes wrong. Thus, outlier detection is one of the

important tasks in data stream processing. By creating the corresponding workflow

we achieve our main goal: to illustrate usefulness and topicality of the DataStream

activity in testing further methods of data stream analysis. As performance is not

an issue, we do not run any test of this kind.
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Finally, we conclude our work in Chapter 7 and suggest directions for further

work in the area of data stream generators on both the server side and the client

side of the system.

The thesis contains two appendices. Appendix A explains how to extend the

DataStream activity to include further interesting data stream generators, for ex-

ample, those described in Chapter 3. Appendix B gives an overview of the exact

STORM outlier detection algorithm from [5].



Chapter 2

Basic Facts about Data Streams

Due to the progress in modern technology, the world is undergoing a digital-data

revolution. More and more digital data is produced, collected, sent, received, pro-

ceeded. A huge part of every business, government, scientific and further organi-

zational activity is driven by data and/or produces data. Such important areas of

human life as medicine, engineering, science and design are powered by data. As

already mentioned in Chapter 1, it is almost always infeasible to store all the arising

information. There is an essential need to process and analyze the data as soon as

it arrives. Tasks and goals in the area of data stream processing and mining are

numerous and different.

The aim of this chapter is to formalize the notion of data stream, discuss typical

data stream features and give an overview of the most common tasks arising in the

field of data stream management and mining.

A data stream is a large volume of data coming as a temporarily ordered, possibly

unbounded sequence. The main features of data streams and the resulting challenges

in their processing are the following [3, 14, 17].

1. Data arrives continuously and needs to be analyzed at real time. In particular,

algorithms should be able to adapt to the high speed nature of streaming

information.

2. Algorithms need to be space-efficient, as the amount of data can be large and

the memory is limited. With increasing volume of the data, it is no longer

possible to process the data efficiently by using multiple passes. Rather, one

can process a data item at most once. This is referred to as the one-pass
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constraint. Therefore, stream mining algorithms typically need to be designed

so that the algorithms work with one pass of the data.

3. Data streams are generated by external sources and temporarily ordered. The

user has no influence on the order of the arriving data.

4. Data streams evolve over time: i.e. characteristics of the data may change

from one moment to another. Therefore, a straightforward adaptation of one-

pass mining algorithms may not be an effective solution to the task. Careful

design of new algorithms is needed.

Depending on the nature and rate of the change, one distinguishes data drifts,

data shifts and distribution changes (all discussed later). There is an inherent

temporal component to the stream processing. This behavior of data streams

is referred to as temporal locality.

5. Data streams are often processed in a distributed fashion. A significant num-

ber of data stream applications run in mobile environments with limited band-

width, e.g., sensor networks and handheld devices. Furthermore, the individ-

ual processors may have limited processing and memory. The user could be

mobile or stationary but getting the results from mobile nodes. This is often

a challenge because of the bandwidth limits in transferring data.

More issues are discussed in the above mentioned articles.

2.1 Formal definition

Before describing tasks and algorithms, we give the main definition of a data stream

and its elements and fix some necessary notations that will be used throughout the

text [5, 21].

Definition 1 (Data Streams).

• A data stream DS is a possibly infinite series of objects

. . . , objt−2, objt−1, objt, . . . ,

where objt denotes the object observed at time t. These objects are also called

instances, nodes, events or transactions.
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• The term identifier is also used for the time of arrival to refer to the time t

at which the object objt was observed for the first time.

• Each object contains one or several items.

• Each item is characterized by some number of attributes.

• The number of items is the dimension of the object, it may be fixed or vary-

ing. Ambiguously, in the literature the number of attributes is also called

dimension.

Figure 2.1 illustrates the above definition by displaying objects (instances) of a

data stream generated at times t, t− 1 and t− 2:

Source
 of the data 

stream

(e.g., a 
sensor)

Generated
data

Time t

...

Obj
t
:

Item 2

Item k

Item 1

...

Obj
t
:

Item 2

Item k
t

Item 1

Time t-1

...

Obj
t-1

:

Item 2

Item k
t-1

Item 1

Time t-2

...

Obj
t
:

Item 2

Item k

Item 1

...

Obj
t-2

:

Item 2

Item 1

…

Item k
t-2

Figure 2.1: A data stream.

Example 1. A web log server registers visitor’s IP, the date, the status code, etc.,

thus, creating a data stream each object of which contains several items.

Example 2. A stock data stream may include daily prices, trading volumes, and

return indices, updated at the end of every trading day, etc.

As a data stream comes as an unbounded sequence, it is often the case that

older data objects are less significant than more recent ones, thus, should contribute

less. This is because characteristics of the data may change during the evolution,
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and then the most recent behavior should be given higher priority. As a matter

of fact, stream monitoring applications are usually interested in analyzing only the

most recent behavior. For this reason, various window models have been adopted

to process and mine data streams. In all window models the main approach is to

analyze the portion of the stream within the current window, in order to mine data

stream properties or to single out objects conforming with characteristics of interest.

A window is a subsequence between i-th and j-th arrived objects, usually denoted

as

W [i, j] = (obji, obji+1, . . . , objj), i ≤ j.

The landmark window model fixes the initial point i of the window. Then if

i = 1, the user is interested in processing the entire data stream from the very

first element. In this model, each stream instance after the starting point is equally

important. However, in many cases, one is more interested in recent instances.

The sliding window model maintains the size of the window W [t − w + 1, t]

constant, i.e., the window “moves along” with the current time point and w is

called the size of the window. In this model, we are not interested in the data which

arrived before the timepoint t− w + 1.

Finally, the damped window model assigns more weights to the recently arrived

instances, e.g., by assigning a decay rate and using this rate to update the previously

arrived transactions as a new transaction arrives. I.e., the sliding window model is

a partial case of the damped window model with the decay function equal to 1 in

the temporal interval [t− w + 1, t], and 0 elsewhere.

2.2 Data stream management and mining

In this section we give an overview of the most important tasks that arise in the area

of data stream processing and mining. Further details can be found in [3, 6, 17].

2.2.1 Data stream classification

This is, probably, the most widely studied problem in the area of data stream mining.

In the classical case of static data classification, one first constructs a model which

is then used for classification, i.e., prediction of class labels of tuples from new data

sets. In contrast, in the case of data streams, it is impossible to use several passes
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to train the model on the training data set. Furthermore, an additional difficulty

arises due to the evolution of the underlying data stream. Thus, temporal locality

has to be taken into account when designing effective classification algorithms.

Example 3 (from [14]). Data stream classification may be applied in various con-

texts: from critical astronomical and geophysical applications to real-time decision

support in business and industrial applications. An example of such important ap-

plication is classification and analysis of biosensor measurements around a city for

security reasons. A further example is the analysis of simulation results and on-

board sensor readings in scientific applications. In the area of electronic commerce,

web log and clickstream analysis is an important application.

2.2.2 Data stream clustering

The clustering problem is defined as follows: given set of data points, the goal is

to partition them into one or more groups of similar objects. Here the notion of

similarity is usually defined by a distance measure or objective function.

Because of one-pass constraints on the data set, it is difficult to adapt clustering

algorithms developed in the data mining literature to data streams. Furthermore, in

the context of data streams it is often more useful to determine clusters in specific

user defined horizons rather than on the entire data set. Taking into the account

the stream evolution, it is important to develop a clustering process which continu-

ously determines the dominant clusters in the data without being dominated by the

previous history of the stream.

Example 4. Examples of data stream clustering would include applications for

network intrusion detection, analyzing Web click streams, or stock market analysis.

2.2.3 Frequent pattern mining

The focus of frequent pattern mining is to discover frequently occurring patterns

from different types of datasets. The patterns are represented by itemsets, sequences,

subtrees, etc. A pattern is considered frequent if its count satisfies a minimum

support. Again, due to the temporal locality, in the context of data streams, one

may wish to find the frequent itemsets over a sliding window rather than the entire

data stream. Moreover, large volumes of data impose restrictions that only allow

an approximate set of answers. This is, however, often sufficient in practice.
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Example 5. Consider a shopping transaction stream. It could start a few years

ago, and since then some old items may have lost their attraction due to changes

in fashion and seasonality. Therefore, the model constructed by treating all the

transactions equally cannot be very useful at guiding the current business.

Moreover, one may not only want to reduce the weight of old transactions but

also to discover changes or evolution of frequent patterns with time. For example, in

network monitoring, the changes of the frequent patterns in the past several minutes

can signify network intrusion.

2.2.4 Change detection

As explained above, the patterns in a data stream may evolve over time. In many

cases, it may be helpful to detect these changes and analyze their nature. One of the

reasons is that the data stream evolution can affect the behavior of the underlying

data processing algorithms as the results become stale over time.

We fix some definitions that we will use in future. A concept refers to the target

variable, which the model is trying to predict. Concept change is the change of the

underlying concept over time. Concept drift means a gradual change of the concept,

whereas concept shift signifies that a change between two concepts is more abrupt.

When a data distribution has changed, it is a distribution change.

Example 6. As already noticed in the shopping example above, the behavior of the

customers may change over time. This is an example of a concept drift. Possible rea-

sons may include seasonality, i.e., seasonal changes in shopping behaviour, fashion,

traditions (higher sales in the winter holiday season than during the summer), etc.

Example 7 (from [25]). Consider the problem of intrusion detection in a network

traffic stream. If we treat each type of attack as a class label, a completely new kind

of attack, that occurs in the traffic, means a concept-shift.

Another example of a concept shift is the case of a text data stream, e.g., oc-

curring in Twitter. In this case, new topics (classes) may emerge in the underlying

stream of text messages.

Example 8 (from [22]). Imagine a factory manufacturing beams made from a metal

alloy. There are quality tests that define the strengths of a sample of the beams.

It may be beneficial for the factory to analyze the distribution of beam strengths
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over time even if the number of defective beams does not change. The reason is that

changes in this distribution can signify the development of a problem or give evidence

that a new manufacturing technique is creating an improvement. Furthermore, the

information, that describes the change, could also help analyze the technique.

2.2.5 Outlier detection

A potentially infinite nature of a data stream makes it either unnecessary or im-

practical to store all incoming objects. In this context, an important challenge is to

find the most exceptional objects among the incoming data.

Such elements that deviate from certain statistical models or expectations from

previous experience are called outliers. One of the methods to detect outliers will

be discussed later in Chapter 6 as it will be useful for an illustration of our main

results.

2.2.6 Processing rate adaptivity

Generation of data streams by extraneous processing application makes it impossible

to control the incoming stream rate. As a result, the system must be able to quickly

adjust to varying incoming stream rates. Possible solutions to the problem include

various types of approximate algorithms and “load shedding” (dropping unprocessed

tuples to reduce system load) when the demands placed on the system cannot be

met in full given available resources. This problem is discussed, for instance, in [8]

and as the approximate algorithms of [5].

For a detailed discussion of these and further common questions and tasks in

data stream processing and mining see [2, 17].

2.3 Data stream processing systems

Some of the existing data stream processing systems are:

1. Esper (EsperTech) [13]: the main goal of Esper is complex event processing

(CEP). Esper helps develop applications that process large volumes of incom-

ing messages or events. The main features of Esper are filtering and analysis

of events that allow the component to respond to conditions of interest in
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real-time. Esper enables high-speed processing of many events. The idea is

to identify the most meaningful events, analyze their impact, and make a

decision.

For processing events, Esper offers a Domain Specific Language (DSL). To

deal with high frequency time-based events, Esper offers the Event Processing

Language (EPL).

2. StreamInsight (Microsoft) [28]: is Microsoft’s CEP platform based on Mi-

crosoft .NET Framework. StreamInsight capabilities include all the important

operations, including projection, windowing, filtering, joining, etc. The input

and output to/from StreamInsight is performed through an adapter frame-

work, which connects StreamInsight with event sources and sinks.

3. SASE (University of Massachusetts Amherst) [33]: is another CEP engine.

Its main purpose is to provide pattern matching over streams. It supports

complex pattern queries. SASE also provides a declarative event language,

formal semantics of the event language and theoretical underpinnings of CEP.

The implementation of SASE is based on automata.

What is interesting for us, SASE contains a stream generator which generates

synthetic data for experiments.

4. MOA (University of Waikato, New Zealand) [27]: is an open source framework

for data stream mining. It includes a collection of machine learning algorithms

mainly for the purposes of classification, clustering and regression over data

stream. It also offers some tools for evaluation. MOA is related to Weka

[38] and is also written in Java. The goal of MOA is to provide a standard

framework for executing experiments in the context of data stream mining.

The tools MOA provides to achieve the goal include a set of existing algorithms

described in the literature.

MOA also contains a built-in data stream generation tool, which allows one to

generate large data sets imitating data streams, store them as files and then

use for external applications.

The MOA framework may be easily extended to include new streams, al-

gorithms and evaluation methods. This important feature is significant for

extendability of our DataStream activity. More on MOA in Section 4.1.
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5. ADMIRE project (among others: University of Vienna) [1]: The purpose of

the ADMIRE project has been to create an advanced, distributed data analysis

platform to enable data stream processing for various groups of users. More

information on ADMIRE is given in Section 4.3.

The most important for the present work are the MOA and the ADMIRE

projects. We will discuss them in more detail in Chapter 4.



Chapter 3

Existing Data Stream Generators

and Models

As explained in previous chapters, data stream generators are an important tool to

test and evaluate stream processing methods and systems. We have discussed the

main functional requirements to data stream generators, such as, e.g., the ability

to produce a potentially infinite stream. In this section we review several existing

generators and models of data streams. We start with the most important for us

case and then mention further existing generators. Some of them are described in

the literature but do not have an existing implementation available for public use.

In Appendix A we explain how their possible implementations may be incorporated

into our data stream generator.

3.1 MOA generators

The MOA (Massive Online Analysis) software was developed in the University of

Waikato, New Zealand [27]. MOA is a framework for data stream processing. It

includes a collection of machine learning algorithms and tools for evaluation. In

particular, MOA contains several built-in data stream generators. We will use them

for our purposes. More detailed analysis of the MOA project and its data stream

generators will be done in the next chapter, Section 4.1.
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3.2 SASE generator

SASE (Stream-based And Shared Event processing) is a stream processing system

developed at the University of Massachusetts Amherst [33]. The main aim of SASE

is to provide pattern matching over streams. For evaluation purposes, a simple

data stream generator is integrated. It is intended to simulate stock behavior and

may be configured via several parameters. In its current form, the SASE stream

generator does not generate a potentially infinite stream, though after appropriate

adjustments it might be turned into such.

3.3 HIDS generator

The HIDS (Hierarchical Data Stream generator) data stream generator was de-

scribed in [40]. It can construct random hierarchical structures, and can also gener-

ate both fixed-dimensional and varying-dimensional data streams.

Items generated by HIDS are extracted from a hierarchical structure which is

constructed according to user-defined parameters. The items specified for the data

streams are considered leaves of a tree-like hierarchical structure.

We could find no publicly available implementation of HIDS, although as it

follows from [40], the data stream is saved as a file.

3.4 Selected unimplemented models

The following data stream models have been described in the literature. To our

knowledge, so far there exists no publicly available implementation of them. We

review the models in a hope they can serve as possible extensions of our DataStream

Generator activity according to the principles described in Appendix A.

3.4.1 Social networking generator

An interesting social networking generator was described in [35].

The generator is inspired by recommendation engines. Think of people ranking

items (e.g., goods, services, etc., not to confuse with items as components of a data

stream instance). The rankings make up a (fast) stream. New items may show up,

while old items may disappear, thus also making up a (slow) stream. New users sign
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up, while old users re-appear and re-rank items, so users also form a (slow) stream.

The main challenge is that processing of one stream requires also considering the

other streams.

The generator has the following idea in the background. Each user is associated

with a user profile, while each item is associated with an item profile. The rating of

a user u for an item i is determined by properties of the user profile of u towards

the item profile of i. Ratings are generated at each point of time t. User profiles

may mutate at certain points. This reflects the idea that the rating given by users

to items may change.

In other words, the generator builds the stream of ratings upon a synthetic

set of evolving profiles. It takes as input several parameters described in [35] and

generates: item profiles and from them items; user profiles and from them users;

and ratings of users for items at each point of time. There is a parameter L that

bounds the time when a user profile must mutate. Therefore, the described generator

allows a possibility of data evolution. Furthermore, both concept drifts and concept

shifts are possible. The generator can be used for evaluating both supervised and

unsupervised learning tasks, as well as for discovering and adaptation to concept

drift.

Two earlier generators are mentioned in the same paper.

3.4.2 Beijing traffic model

The paper [24] describes a model simulating the main statistical features of traf-

fic volume flows over Beijing transportation networks. The model can be used to

implement a data stream generator which models traffic behavior.

The model consists of three parts:

• the main part which models residents’ everyday travel; it remains relatively

stable over time and follows a certain M-shape curve;

• the random fluctuations determined by a super-Gaussian distribution; and

• peaks, with their arriving rates arising according to negative exponential dis-

tribution.

This model can describe well the arriving behaviors of the peaks in the traffic volume

flow.
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3.4.3 Wave generators/models

There exists several wave models based on either statistical or physical approach.

Some of them are summarized in [32] with their advantages and disadvantages dis-

cussed there. These models can also be used to implement corresponding stream

generators.



Chapter 4

Technical Background

The goal of this chapter is to overview the technical tools we base our work on. The

most important components are MOA, OGSA-DAI and ADMIRE.

4.1 MOA

The first tool we use is the Massive Online Analysis (MOA) software [27] developed

in the University of Waikato, New Zealand.

The software environment MOA implements algorithms for online learning from

evolving data streams. Its main purpose is to provide tools for running experiments

over data streams. It includes a collection of offline and online methods as well as

tools for evaluation. MOA is related to Weka [38] and is also written in Java.

The workflow in MOA has the following form:

1. a data stream (e.g., from a generator) is chosen and configured,

2. an algorithm (e.g., a classifier) is chosen and the corresponding parameters are

set,

3. the evaluation method is chosen and configured, and finally

4. the results are obtained.
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Figure 4.1: The MOA framework.

4.1.1 General overview of MOA

MOA is mostly concerned with the problem of classification and clustering (see

Subsections 2.2.1 and 2.2.2) for elements of a data stream. MOA algorithms assume

that the number of attributes is fixed. According to [9, 27], the main approaches

and methods for stream classification are:

1. Bayesian classifiers: these methods are based on the Bayes theorem. MOA’s

classifiers include Naive Bayes and Naive Bayes Multinomial methods. Naive

Bayes methods are simple and require little memory. The main assumption

is independence of the stream instances. However, Naive Bayes models are

usually less accurate than more involved models.

2. Decision trees classifiers for streaming data: include decision trees of one level

(Decision Stump) and several variations of Hoeffding Trees. The methods are

applicable when the distribution of the stream instances does not change over

time.

3. Meta classifiers: wrap around other methods for data stream classification.

MOA’s collection include various online modifications of bagging and boosting.

More elaborate versions are available for the case of evolving streams.
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4. Function classifiers: include related methods based on neural network and sup-

port vector machines. Support vector machines (SVM) offer better flexibility,

while neural networks are often straightforward to use.

5. Drift classifier: handles concept drift detection. The idea is to control the

number of errors produced during classification prediction. An increase in the

error may signify changes in distribution of incoming stream instances.

MOA offers several algorithm for online clustering including methods based on

k-means, micro-clusters, classification trees and others. More details can be found

in [27].

Furthermore, MOA includes methods to test and evaluate the accuracy and

effectiveness of data stream algorithms. What is more important for us, MOA

contains several data stream generators, that can be used to produce data streams

for testing.

4.1.2 Details on MOA data stream generators

One of the problems in the area of data stream processing is the lack of suitable and

publicly available real-world benchmark data sets. There are several large datasets

stored in KDD [18] archive, but they are still not large enough to test data stream

methods. MOA collects several data stream generators described below. An impor-

tant remark is that a data stream has to be stored as and .arff file before it may

be used by an external remote application. In other words, original MOA genera-

tors cannot model the situation of a potentially infinite data stream generated by a

remote source. However, the MOA generators do have a potential to be converted

into such.

Here we shortly describe the generators presented in the current version of

MOA [9].

1. Random Tree Generator is based on the generator proposed by Domingos and

Hulten [12]. It produces concepts that should theoretically prefer decision tree

learners. The generator chooses attributes at random to split and assigns a

random class label to each leaf, thus constructing a decision tree. When such

a tree is built, the generator produces new examples by assigning uniformly

distributed random values to attributes. This determines the class label via

the tree.
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2. Random RBF (Radial Basis Function) Generator aims to construct a more

sophisticated type of concept. It should not be easily captured with a decision

tree model. The generator produces a fixed number of random centroids. Each

center is positioned randomly, has a single standard deviation, class label and

weight. To produce new examples, a center is chosen at random but according

to weights, i.e., centers with higher weight are chosen with higher probability.

A random direction is chosen and a random length of displacement is chosen

according to a Gaussian distribution corresponding to the centroid. This allows

the generator to offset the attribute values from the center. Moreover, the

class label is also determined by the centroid. The constructed examples form

a normally distributed hypersphere that surrounds each centers with varying

densities.

This generator also has a modification suitable to model data evolution. Drift

is introduced by moving the centroids with constant speed. The speed is

initialized by a drift parameter.

3. LED Generator was described in the CART book [10]. The goal is to predict

the digit displayed on a seven-segment LED display, where each attribute has

a 10% chance of being inverted.

4. Waveform Generator also comes from [10]. The generator constructs three

types of waveforms as a combination of two or three base waves. The goal is

to determine the wave type.

5. Function Generator was introduced by Agrawal et al. in [4]. The gener-

ated stream should model loan application profiles. The generator produces

a stream, each instance of which consists of nine attributes: six numeric and

three categorical.

6. SEA Concepts Generator [36] contains abrupt concept shift. It is generated

using three attributes, but the relevant attributes are only the first two of

them. All the attributes have values between 0 and 10.

7. STAGGER Concepts Generator was described by Schlimmer and Granger in

[34]. The concept is described by a collection of elements, where every element

is a Boolean function of attribute-valued pairs and is represented by a disjunct

of conjuncts.
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8. Rotating Hyperplane was used in [19]. Hyperplanes are helpful for simulation

of time-changing concepts. Their orientation and position may be smoothly

changed by modifying the relative size of the weights.

9. The newest release of MOA also contains a multi-label data stream genera-

tor [26], not described in [9].

The corresponding Java classes available to generate streams are the follow-

ing [26]:

1. moa.streams.generators.RandomTreeGenerator,

2. moa.streams.generators.RandomRBFGenerator,

3. moa.streams.generators.RandomRBFGeneratorDrift,

4. moa.streams.generators.LEDGenerator,

5. moa.streams.generatorLEDGeneratorDrift,

6. moa.streams.generators.WaveformGenerator,

7. moa.streams.generators.WaveformGeneratorDrift,

8. moa.streams.generators.AgrawalGenerator,

9. moa.streams.generators.SEAGenerator,

10. moa.streams.generators.STAGGERGenerator,

11. moa.streams.generators.HyperplaneGenerator,

12. moa.streams.generators.multilabel.MetaMultilabelGenerator.

In what follows, we consider only MOA stream generators for single-valued data.

All such MOA data stream generators implement the moa.streams.InstanceStream

interface. In particular, the following methods are of interest for us:

1. prepareForUse()

The method is used at the very beginning to prepare the stream for use.

2. nextInstance()

This method is used to generate and return the next instance of the stream.
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The next methods are not necessary at the current stage of the development of

the DataStream activity, but may turn useful in future.

3. hasNextInstance()

Return true if the stream has more instances.

4. getHeader()

This method returns the header of the stream which is useful to know at-

tributes and classes.

5. getPurposeString()

Returns a description of the purpose of the stream.

6. Further methods specific for concrete streams to configure parameters.

The generators presented above have further methods to set up various param-

eters to control the number of classes, attributes, attribute labels, when necessary,

the number of attributes with drift, the depth of the tree, etc. Again, we stress that

MOA does not provide an opportunity to simulate an infinite data stream which is

generated by a remote source and sent continuously to a user.

4.2 OGSA-DAI

Our second main component is OGSA-DAI which will allow us to generate a poten-

tially infinite data stream and deal with it.

In general, OGSA-DAI [30] is a framework that allows one to access and combine

data resources (such as relational or XML databases, files or web services) via web

services on the web or within grids or clouds. Via these web services, one can then

transform, update, query and combine the data according to one’s needs. The main

focus of OGSA-DAI is on dealing with distributed data.

The following tasks may be performed (see[31]):

• Data access: structured data contained in distributed data resources may be

accessed.

• Data transformation: e.g. data in schema X may be transformed to be exposed

to users as data in schema Y .
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• Data integration: e.g. multiple databases may be integrated to be exposed to

users as a single virtual database.

• Data delivery: whenever a data delivery is needed, do it using appropriate

means, such as web service, e-mail, HTTP, etc.

4.2.1 OGSA-DAI main notions

To perform the tasks stated in the previous subsection, OGSA-DAI executes work-

flows. Workflows can be considered as equivalent to programs or scripts and contain

activities. An activity is an analogue of programming language methods. In other

words, each activity contains an algorithm to performs a well-defined data-related

task (e.g., running an SQL query, performing a data transformation or data deliv-

ery). Activities are connected to each other in such a way that the data flows from

activities to other activities. The connection is one-directional. The outputs of dif-

ferent activities may be represented in different formats. The expected formats for

inputs may be different as well. The transformation of formats is done by special

transformation activities. Workflows are submitted by clients to OGSA-DAI web

services as depicted in Figure 4.2 below:

OGSA-DAI
Server

Activity 1

Client
Activity 2

Activity 3

Workflow

Results

Figure 4.2: Interaction between a client and an OGSA-DAI server.
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4.2.2 OGSA-DAI activities

Each activity can have 0 or more named inputs and 0 or more named outputs. Blocks

of data from an activity’s output are sent to another activity’s input. Activity may

have optional or required inputs. If an input is optional then a default value is

usually defined.

OGSA-DAI clients provide parameters using the notion of input literals to OGSA-

DAI workflows. Depending on a client, each input value to an activity is provided

by the client or as the output of another activity in the workflow.

It is compulsory that all the required inputs of an activity are connected to the

output of another activity or have an associated input literal. Activity inputs only

accept blocks of specific types. Similarly, activity outputs only produce blocks of

specific types, e.g., Object, String, char[], Tuple, etc.

When executing, an activity iterates. On each its input, it provides one block

of data. The behavior of an activity depends on its implementation. For example,

in our case the DataStream activity will generate a new instance of a specified data

stream at each iteration. As long as the activity receives a new input signalizing

that more instances of the chosen stream are needed, it performs the nextInstance

method of the corresponding stream to generate a new instance, and outputs the

generated instance, as Figure 4.3 shows:

DataStream 
activity

 
WHILE NOT end-of-work
nextInstance()

Generated
instances

Time t

Obj
t
:Obj
t

Time t-1

Obj
t-1

Time t-2

Obj
t-2

…

t=t+1        

Figure 4.3: An iterating stream generator activity.
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These properties provide perfect conditions to implement a data stream generator

satisfying our requirements from Section 2.

4.3 The ADMIRE Project

The ADMIRE project (“Advanced Data Mining and Integration Research for Eu-

rope”) [1], partially implemented at the University of Vienna, aims to provide an

advanced, distributed data analysis platform that enables data stream processing

and mining [1, 6].

Combining strategies, skills and technology, the ADMIRE Project provided a

single platform for knowledge discovery. It contains tools for data access, integra-

tion, pre-processing, data mining, statistical analysis, post-processing, transforma-

tion and delivery [1]. The machinery developed in ADMIRE is useful for various

groups of experts, such as:

1. Domain experts : these are specialists in a particular application domain, such

as engineers, medical specialists, financial workers, geologists, etc. Domain

experts possess profound knowledge of their particular domain. They are able

to describe and deal with interesting phenomena. They know methods that

allow them to characterize, model and process these phenomena. The domain

experts are aware of the most important open questions in their field and the

way to represent the results to make them accessible by their colleagues.

2. Data analysis experts : these are specialists at extracting information from

data, i.e., at knowledge discovery. To achieve their goals, data analysis experts

use various statistical methods, machine learning, data mining, text mining,

signal analysis, image analysis, etc. They are aware what methods are the

most efficient to solve a particular problem or a class of problems and what

are the restrictions of each method. They can also transform the task in order

to make the methods applicable and estimate the trustworthiness of the ob-

tained results. Data analysis experts usually work using special environments

dedicated to develop knowledge discovery algorithms, such as R, MATLAB,

Excel, etc.

3. Data intensive engineers : these are computer scientists, software and hardware
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engineers, information system architects. Their aim is to develop infrastruc-

ture and frameworks for data intensive computations. They keep abreast of

the modern innovations in business and technology and use the new oppor-

tunities to offer more efficient and more responsive systems to perform data

processing. They apply various methods to analyze and optimize data in-

tensive computational platforms. They deal with distributed computational

systems.

Figure 4.4 explains the architecture of the ADMIRE. One distinguishes two main

levels:

• the tool level represented by the DISPEL development environment, and

• the enactment level based on OGSA-DAI.

The interaction between the levels is executed through the gateway.

Enactment level:                                               Server side

OGSA-DAI-based 
Execution platform

Tool level:                                                         Client side

DISPEL development 
environment

Gateway

Figure 4.4: The ADMIRE layers.

We now consider each component in more detail.
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4.3.1 The tool level

The upper layer, the tool level, is intended to support the work of both domain

experts and data analysis experts. It makes it possible to resolve the diverse tasks

posed by both of the communities, as it contains an extensive and evolving collection

of tools and environments.

At this level human creativity is required, as only human reasoning may make

business decisions and pose related questions. After a correct question was posed, it

drives the process of creating a workflow which is then realized by the corresponding

program. The tool level provides the necessary support to deal with permanently

changing concepts.

4.3.2 The enactment level

The lower layer, the enactment level, is intended to provide the necessary machin-

ery for the community of providers who deliver data and data intensive enactment

environments as an evolving infrastructure. This infrastructure is called the “data

intensive platform” and supports all the work done at the upper layer. Data inten-

sive engineers do their work at this level. Also, some data analysis experts work at

this level: they develop standard libraries optimized for the enactment level.

At this level, human creativity is again needed. It is a complicated task to

map a code onto physical computational resources and data sources. Profound

expertise, optimization and further levels of automatization are required to deal at

this evolving level. The main reason is rapidly and constantly changing technology,

as well as business requirements. Therefore, the necessary creativity is not only

technological, but also business driven, as new business models imply changes in the

realization.

4.3.3 The gateway

The crucial innovation is the gateway, which is a tightly defined and stable interface

for communication between the upper and the lower levels. To provide secure work of

the upper and the lower communities, any change in this interface has to be managed

very carefully. For this reason, the gateway should be as simple and controlled by

standards as it is possible.
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No creativity should appear at this level, as it would interfere with the stability

of the interaction between the developers and the enactment platforms. At the

present time there exist no standard protocols for languages defining the gateway.

ADMIRE’s language DISPEL (see further Subsection 4.3.5) is intended to serve

as such a stable mean of interaction. It is devoted to enable exposition of the

information content which passes through the gateway. Even though DISPEL is

a formal language that ensures stable interactions of the both sides around the

gateway, it is challenging to identifying the right level of abstraction for the language.

The corresponding ADMIRE’s main developments reflecting the described ar-

chitectural levels are:

• the ADMIRE Platform (the tool level),

• the DISPEL Language, as the canonical form of interaction through the gate-

way, and

• the ADMIRE workbench (the enactment level).

Below we discuss them all in more detail.

4.3.4 The ADMIRE platform

The ADMIRE Platform denotes the “server side” part of the software that im-

plements the canonical gateway together with associated components. One of the

main features of the ADMIRE platform is a streaming execution engine. The en-

gine serves to remove data bottlenecks. Another important feature is a rich semantic

descriptions of typical workflow elements which is based on a common network of

ontologies.

As listed in [1, 6], the ADMIRE Platform constitutes of the following compo-

nents:

1. A Gateway service (both REST and WSDL), including:

• DISPEL processor;

• pluggable optimisation framework;

• workflow execution monitor;

• performance database.
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2. An enactment framework based on OGSA-DAI v4.0, including components

providing:

• relational database access services

• file access services

• data stream and block manipulation services

• data transformation services

• data delivery services

• XML database services

• federation and distributed query services

3. ADMIRE Data Mining Services v1.0, including:

• classification services built from the WEKA library;

• parallel decision tree services;

• specialist services for gridded binary (GRIB) file access and manipulation.

4. A Registry service, fronting a Jena RDF-based ontology store, which provides

rich semantic descriptions of all Platform components, processing elements,

workflow patterns etc.

5. A Repository service, which provides storage for executable implementations

of processing elements, for analysis results, for arbitrary digital entities.

4.3.5 DISPEL

The Data Intensive Systems Process Engineering Language (DISPEL) is syntacti-

cally close to Java.

As already mentioned above, separation of concerns below and above the gate-

way is the principal design challenge for DISPEL. At the same time, the language

has to be powerful enough to enable the interaction through the gateway, however

simple enough to avoid undesired complexity. In particular, DISPEL should uncon-

ditionally guarantee independent development of the two levels.

DISPEL is used to define data intensive processes, and this is the most important

side of the language. The main components defining the processes are process ele-

ments that are interconnected by connections. Connections carry streams of data.
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In general, the whole picture of a data intensive process may be visualized as a di-

rected graph of process elements representing encapsulations of reusable algorithms,

with the edges representing connections.

A processing element (PE) is a reusable pattern, an algorithm that receives

input data from zero or more connections and delivers data to zero or more output

connections. If a processing element is implemented in some other language, it is

called primitive. Otherwise it is implemented in DISPEL as a directed graph of

simpler PE instances connected by connections. In this case it is called composite.

At each moment of time, a PE consumes one value from each of its input connections

and outputs one value through each of its output connections. The algorithm is

applied automatically as soon as the necessary input values arrive. This allows a

PE to store only the minimum indispensable amount of data during the work.

To carry the values of a data stream from an output of a PE instance, which

is a source of data, to one or more destinations given by inputs of other PE in-

stances,connections are used. Data carried by connections may be of any type.

To illustrate the main ideas of DISPEL, Figures 4.5 and 4.6 show an example of

a workflow and the corresponding DISPEL code from [6]. The details are explained

below.

SQL
Query

“last 24 hours”

input

data

tr

uk.ac.bgs.earthquakes

output  Trans-
  former

input
Results

res

name

sq

source

expression

“SELECT...
  FROM...
  WHERE...”

Figure 4.5: A sample workflow scheme.
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package book.examples.seismology {

use dispel.db.SQLQuery;

use book.examples.seismo.Transform;

use dispel.lang.Results;

SQLQuery sq = new SQLQuery;

Transform tr = new Transform;

Results res = new Results;

sq.data => tr.input;

tr.output => res.input;

|- "uk.ac.bgs.earthquakes" -| => sq.source;

|- "SELECT ... FROM ... WHERE ..." -| => sq.expression;

|- "last 24 hours" -| => res.name;

submit res;

}

Figure 4.6: A sample DISPEL code from [6].

The workflow contains several typical processing elements. One of the is SQL-

query which iterates, at each step consuming values from the input streams and

outputting the stream of resulting values. At each moment the input to the SQL-

query instance sq consists of an URI (a Web address) through the “source” input

together with an SQL query expression through the “expression” input. For the cur-

rent example, the data source is “uk.ac.bgs.earthquakes” and the query expression

is “SELECT ...FROM ...WHERE ...”.

At each its iteration, sq produces the results of the query on the source. The

resulting sq’s output data is sent trough a connection to the input of the transformer

tr. An iteration of tr results in the corresponding transformation of the data. The

output data is further sent as a stream through a connection to the input of res

which delivers the final results to the client that submitted the DISPEL request.

To do this, it combines the input data with the name supplied on “name”. In the
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current example the name is “last 24 hours”.

Each application of sq outputs a list, each of which is then separately pro-

cessed by tr. As soon as there is no more input for sq, it outputs an end marker

endofstream and shuts down. After tr has received this marker, it cleans up its work

and send the marker further to res which is then shut down in a similar manner.

4.3.6 The ADMIRE Workbench

To develop, submit and monitor DISPEL workflows, the ADMIRE Workbench is

used. It is the main ”client side” tool of the ADMIRE project.

The core properties provided by the ADMIRE workbench are the following

• All the components, including PEs, functions and types should be easily dis-

coverable and usable.

• All the above mentioned components should be provided with an easily ac-

cessible documentation. Illustrating examples should be integrated into the

workbench. In particular, the workbench should suggest PEs that are con-

nectable to the current output. For each of suggested PEs the documentation

should be accessible through a link provided by the workbench.

• One of the most important purposes of the workbench is to create and maintain

new components. Furthermore, it should be possible to find and use the newly

created components from inside the workbench.

The ADMIRE workbench is supposed to be mostly used by data-analysis ex-

perts and data-intensive engineers, as well as occasionally by domain experts. The

workbench allows its users to develop DISPEL workflows. In particular, software

developers may develop software for knowledge discovery which is then used by

knowledge discovery experts to implement algorithms for domain experts. On the

other side, data-intensive engineers may analyze the performance of various PEs,

run various tests, conduct optimization of calculations, etc.

The following Figure 4.7 is a screenshot of the ADMIRE workbench from [6]:
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Figure 4.7: The ADMIRE workbench [6].

The ADMIRE Workbench is based on the Eclipse platform. It provides a pro-

fessional, feature-rich IDE which is further configurable by adding various specific

plugins. As stated in [6], the workbench offers:

• DISPEL aware text editor.

• graphical DISPEL editor.

• registry viewer and searcher.

• processes view which monitors running processes and supports retrieval of re-

sults.

• visualization plugins for viewing process output as charts, diagrams or plain

text.

• semantic knowledge sharing assistant which integrates with the registry to sug-

gest DISPEL documents and other resources related to the users domain.

• diagnostic tools including workflow performance analysis.

For domain experts, especially helpful will be the graphical DISPEL editor, rep-

resented on Figure 4.8 below (from [6]). The graphical editor allows one to create

and edit DISPEL workflows through a GUI.



4.4 Other software tools 40

Figure 4.8: The graphical DISPEL editor [6].

Later in Section 5.10 we use further visualization tools from the ADMIRE to

demonstrate the work of our DataStream activity generating various data streams.

Adding visualization plugins for a domain is a nice way domain experts can further

customize the environment to their domain.

4.4 Other software tools

In this section we mention further tools we also used together with a short description

available from the corresponding web–pages.

• Apache Ant 1.8.4 (available at: http://ant.apache.org/):

Apache Ant is a Java library together with a command-line tool used to drive

processes described in build files as targets and extension points dependent

upon each other. Ant is mostly used to build Java applications. There are

several built-in tasks supported by Ant, that allow compilation, assembling,

testing and running of Java applications. More generally, Ant can be used to

pilot any type of process which can be described in terms of targets and tasks.

• Apache Tomcat 7 (available at: http://tomcat.apache.org/):

Apache Tomcat is an open source web server and servlet container devel-

oped by the Apache Software Foundation (ASF). Tomcat implements the Java

http://ant.apache.org/
http://tomcat.apache.org/
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Servlet and the JavaServer Pages (JSP) specifications from Oracle Corpora-

tion, and provides a “pure Java” HTTP web server environment for Java code

to run.



Chapter 5

Implementation of the Services

In this chapter we explain how to implement the DataStream activity. We start with

a description of the overall architecture of the system. We then give an overview of

the concrete tools used for implementation. After that, we describe the DataStream

activity in detail. We illustrate the work of the activity with a very simple client

which allows one to choose what generator should be used and to display the gener-

ated stream instance by instance on the screen. Finally, we conclude with another

illustration via visualization of a generated stream.

5.1 General picture

We adopt the architectural paradigm explained in Section 4.3. In [6] it is referred to

as the hourglass architecture for the reason clear from the picture below. As already

explained in Section 4.3, the main advantage of the architecture is the ability to

map interests of several communities to the structural levels of the proposed data

stream generator. By applying the hourglass architectural principles, we separate

two different types of tasks:

1. support of the application, and

2. strategies for providing the service.

As before, we will distinguish: the tool level, the gateway, and the enactment level

with their functional assignment described above in Section 4.3. Applied to the

case of data stream generation, the hourglass architecture from [6] is depicted in

Figure 5.1:
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Figure 5.1: The hourglass architecture applied to design of data stream generators.

In other words, the contributions to a functionable, applicable to solve arising

problems data stream generator are distributed among different areas:

• Server side: Flexible data stream generation including configuration of stream

quality, behavior, etc. We chose to port the MOA data stream generators dis-

cussed in Section 4.1.

• Client side: Clients should be able to submit a chosen stream generation

type and its configuration. Furthermore, clients should include system specific

adaptors that connect the output stream produced by the chosen generator to

the corresponding stream processing system.

• Standard intermediate data format: To enable further developments on

both sides as well as their stable interaction, a decoupled intermediate common

data format is required.

The detailed functionality concept of a data stream generator reflecting the above

points is presented in Figure 5.2 and discussed in Sections 5.2, 5.3 and 5.4 below.
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Figure 5.2: Detailed scheme of a functionalbe extendable stream generation system.

We now discuss the requirements on the server side, the intermediate data format

and the client side in more detail.

5.2 Server side. Data stream generator

We expect from a generator to simulate data streams that occur in the real world,

e.g., in business, engineering, science, etc. Thus, a data stream generator must

mimic the main features of real data streams. To reflect the properties typical for

real data streams the following requirements should be taken into account:

1. The generated stream should be potentially infinite, the data arrives continu-

ously.

2. The stream may evolve with time, i.e., change its behavior.

3. The data may arrive at different speed.

Furthermore, a data stream should be produced by a source that is external to

the stream consumer. The consumer specifies the incoming parameters to configure
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the main properties of the stream and has no further influence on the generated

stream. Another important feature of the implementation should be its potential

extendability.

We chose MOA data stream generators and incorporated them into an OGSA-

DAI activity. Such a combination of MOA and OGSA-DAI potential gives an ex-

tendable and flexible solution to the above requirements. Below we analyze these

requirements and further issues in more detail.

5.2.1 Data stream generation

Recall that we consider a data stream as a possibly infinite series of objects

obj0, obj1, , . . . , objt−1, objt, . . .

where objt denotes the object observed at time t.

Each object contains one or more items that behave according to some distribu-

tion. The number of items may be fixed or varying. This should be taken into the

account by generation rules. To deal with complex hierarchically organized objects,

a tree-like structure of a special kind may be generated first (as in [40]).

Parameters that should be specified at this stage:

• fixed- vs. various-dimensional stream;

• dimension or its distribution respectively;

• number and types of attributes;

• distribution of items.

The current collection of MOA generators allows only fixed-dimensional stream

generation. Different generator have different number and types of attributes. One

can configure parameters for distributions of attributes.

5.2.2 Stream evolution

Data streams may change their behavior with time. The temporal locality of data

streams is one of the most important properties that should be reflected by a gener-

ator. As discussed in Section 2.2, the main concepts here are concept drift, concept

shift and distribution change.
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Parameters to be specified are:

• timepoint of change t0;

• length of change;

• optionally, a smoothing function.

Stream evolution is represented in several MOA generators with all the above

parameters being configurable.

5.2.3 Data stream speed

Each object (transaction) is identified by its time of arrival. In real data streams

data may arrive with different speed. The generator should be able to simulate

such kind of behavior. A possible strategy would be to define a function f(i) which

would output ti − ti−1. It may make sense to create a list of functions that reflect

speed changes. For the beginning: f(i) = const, f(i) = some periodic function (for

example, reflecting traffic intensity changes during the day), f(i) random according

to some distribution.

Furthermore, an object of the stream may be valid for some period of time. In

this case it is characterized by both the start (arrival) time and the end (expiry)

time. The validity interval may be constant or changing. In the latter case one

should consider reasonable functions to represent it.

Parameters to be specified are:

• rate function;

• temporal validity function.

This feature is missing in MOA generators. Further research in this direction is

necessary.

5.2.4 Quality of generated streams

A current method described in [40] is to compare the distribution of generated values

against that of an existing real data stream. This method allows evaluation of static

properties. It does not give a hint how to evaluate the dynamic behavior of generated

data streams. Further investigation is necessary.
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5.2.5 Extendability

Our DataStream activity contains a collection of data stream generators that may

be used according to clients’ needs. However, it is important to provide a possibility

to extend it with further generators that a client might find useful. The DataStream

activity has this feature. The way to extend it with new generators is explained in

Appendix A.

5.3 Common data format

Each instance of a generated stream should belong to a class that implements the

interface weka.core.Instance from Weka 3.7 [39]. The Instance interface was

designed by Weka developers to handle various kinds of instances. The current

class implementations are DenseInstance and SparseInstance. Figure 5.3 and

the explanation below reflect the general structure of a Weka–instance:

weka.core.Instance

Attribute 1

...

Attribute 2 Attribute k

Name 2

Value 2
Of

Type Y

Name 1 Name k

Value 1
Of

Type X

Value k
Of

Type Z

Value 2
Of

Type Y

Data Stream Instance

...

Weka.core.Attribute

Figure 5.3: The structure of a Weka–instance.

Confusingly, items contained in a Weka–instance are called attributes (compare

to Definition 1) and are implemented by the weka.core.Attribute class. Each
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Weka–attribute has a name and a value. To reflect the idea that each item may

itself have one or several attributes, Weka introduces relational attributes. Further

Weka–attributes can store numeric, nominal, string and date values. Note that a

Weka–instance only contains a name and a finite collection of Weka-attributes (i.e.,

items), it has no predefined time of arrival (identifier in terms of Definition 1). Such

an identifier should be set, if needed, externally by the user.

Example 9. Consider a weather data stream. Each stream object (instance) con-

tains information about the current temperature, pressure, humidity, precipitation,

wind speed and direction, etc. — these are the item-names (Weka–attribute names).

A concrete instance corresponding to the Vienna weather on February 26, 2013 at

14:00 is presented on Figure 5.4. Note that the item “Wind” has itself two attributes,

so in Weka’s terms “Wind” is a relational attribute.

weka.core.DenseInstance

Weka-Attribute 1 Weka-Attribute 2 Weka-Attribute 5

PressureTemperature Precipitation

4oC 997mb

Weather Stream Instance

Weka.core.Attribute

Weka-Attribute 3

Humidity

84% Mist

Wind

WNW

14km/h

Weka-Attribute 6

...

Figure 5.4: An instance of a weather data stream.

We require that generated stream instances belong to classes implementing the

weka.core.Instance interface. In particular, the MOA generators satisfy the re-

quirement. Furthermore, as we aim for an extendable stream generator, in Appendix

A we stress once again that the weka.core.Instance interface is also meant to be
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implemented by classes used for output instances of possible new generators extend-

ing the current version of the DataStream activity.

5.4 Client side

A client should provide interaction with the data stream generator. We list possible

requirements expected from a client implementation. The user should be able:

• to specify a type of a data stream;

• to configure the chosen stream with the corresponding set of parameters;

• to get instances of the resulting stream as an output (e.g., simply to the screen);

• to get the stream saved to a file, if desired;

• to submit a more elaborate workflow, e.g., which includes visualization of the

stream;

• to connect the stream as input to the user’s workflow, realized in a stream

processing system of the user’s choice, such as ADMIRE, StreamInsight, etc.

The last item, in particular, means that the clients should provide corresponding

adaptors from the fixed common data format discussed in Section 5.3, as shown in

Figure 5.2.

5.4.1 ADMIRE adaptor

The DataStream activity was designed with the goal in mind to be easily incor-

porated into the ADMIRE. The ADMIRE platform contains Weka’s data mining

functionality [16], thus, there is no need to create an adaptor from our DataStream

activity to the ADMIRE.

5.4.2 StreamInsight adaptor

StreamInsight is developed using the Microsoft’s .NET framework. Thus, we will

assume that the client has a suitable Java–to–.NET adaptor, for example, from

JNBridge (http://www.jnbridge.com/index.htm). We describe the structure of

http://www.jnbridge.com/index.htm
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StreamInsight representation of a data stream object as given in [29]. StreamInsight

stream elements are called events. Each event consists of a header and a payload.

• A header contains information about the event kind, its time of arrival and

(optionally) the temporal validity interval for the event. The timestamps are

given by the .NET DataTimeOffset objects.

• A payload is a .NET structure storing items contained in a stream event and

their attributes (see Definition 1). This structure is defined by the user and

depends on the concrete application.

There are two event types :

1. INSERT–type events are ordinary new stream events with their payloads rel-

evant for the content and behavior of the stream.

2. CTI–type (current time increment) events mark the “completeness” of a group

of events. Before the arrival of such a CTI–signal, the server accumulates

incoming INSERT–events. As soon as a CTI–event arrives, the server orders

the accumulated events in time, if necessary, and performs the query.

The above described structure of StreamInsight data stream events is envisioned

on Figure 5.5:

StreamInsight Event

Header

Payload

End time:   t2

Field 1

Field 2
…

Field k

empty

Event kind: INSERT

Start time: t1

Event kind: CTI

Start time: t1

INSERT-event CTI-event

Figure 5.5: The StreamInsight event structure.
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Thus, to enable usage of streams generated by the DataStream activity in StreamIn-

sight applications, the input adaptor should perform the following steps.

1. Create an event header. All the generated instances will receive the INSERT–

type. Furthermore, for each instance, the adaptor should assign its time of

arrival to the StreamInsight server. There is no validity interval specified for

the current version of the stream generator, so its End time equals its Start

time.

2. For each incoming instance, its attributes should be converted into a suitable

.NET structure using the Java–to–.NET adaptor.

3. The adaptor should insert CTI–type events according to the client’s strategy,

such as, for instance, specified interval window size, see Section 2.1.

5.4.3 Esper adaptor

Esper is written in Java and accepts Java objects, so no specific adaptor is needed.

However, an appropriate reconfiguration of Esper is required, as explained below.

In Esper, data stream objects are also called events [13]. The state of an event is

given by the event properties that conceptually correspond to items in Definition 1

or Weka–attributes as described in Section 5.3 above.

In Chapter 2 of [37], several options to represent events are given, among them

POJOs (plain-old Java objects), implementations of the java.util.Map interface,

arrays of objects (type Object[]), application classes, etc. For the default Esper

configuration, it is also required that the event classes have JavaBeans–style getter

methods (see Section 2 of [37] for details) to provide Esper with access to the event

properties. That is, for a property called “property”, there should be a getter

method getProperty().

On the other hand, Esper is also able to deal with events that do not have

JavaBean–style getter methods. This is exactly what we need, as Weka provides

non–JavaBean–style methods to access attributes of an instance. As described in

Section 15.4.1.3 “Non-JavaBean and Legacy Java Event Classes” of [37]:

Esper can process Java classes that provide event properties through

other means then through JavaBean-style getter methods. It is not nec-

essary that the method and member variable names in your Java class
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adhere to the JavaBean convention — any public methods and public

member variables can be exposed as event properties via the below con-

figuration.

To achieve this, one need to change the settings for the accessor style attribute,

which is by default “javabean”, to “public” or “explicit”, see Section 15.4.1.3 of [37]

for details. In particular, in the case of “public” settings, each public method and

each public variable will get an event property in Esper, which will have the same

name as the method or variable itself. Therefore, after appropriate reconfiguration

Esper can access Weka–attributes of instances generated by a chosen data stream

generator.

5.5 More information on OGSA-DAI activities and

resources

An extensive overview of OGSA-DAI activities and resources can be found in [31].

In this section we only briefly summarize information about the tools necessary to

implement the DataStream activity.

OGSA-DAI activities are categorized into types according to actions they per-

form with their inputs and outputs. In particular, this determines the base class

used to implement the activity. The activity class we use for the DataStream activ-

ity generating streams of data is MatchedIterativeActivity. Before we give an

explanation on the class, we need to introduce the concept of logical values.

Streams of blocks that an activity receives as its input are usual Java objects.

There are also special list begin and list end markers that are used to group several

data blocks together. When using the term logical value, we refer to one of the

following:

• Any single block that is not a list marker, such as java.lang.Integer,

java.lang.String or uk.org.ogsadai.tuple.Tuple.

• A sequence of blocks beginning with a list start marker and ending with the

corresponding list end marker. In its turn, this sequence of blocks may also

consist of further nested matched pairs of list begin and list end markers.
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5.5.1 About MatchedIterativeActivity

A matched activity is an activity that, on each input, always receives the same

number of logical data blocks. An iterative activity is an activity that performs the

same actions in a repeated manner over successive inputs. The activity iterates on

successively arriving input blocks until there is no more input. Iterative activities

are often also matched.

For activities that are simultaneously iterative and matched, the class

uk.org.ogsadai.activity.MatchedIterativeActivity is used. Among all the

base classes used to implement activities, this one is the most commonly used. It

possesses methods to deal with the functionality common to these types of activities.

In particular, it checks and handles unmatched input data.

When one extends from this class, one has to implement four methods: one

method to get and configure the inputs, which is getIterationInputs, and

three methods to execute the functionality of the activity, namely, preprocess,

processIteration and postprocess. Together, these do all the work needed to

implement the DataStream activity we are aiming for.

The MatchedIterativeActivity class implements the following algorithm [31]:

preprocess();

WHILE more processing to do

processIteration(Object[] iterationInputs);

END-WHILE

postprocess();

cleanUp();

• The preprocess method is called when the activity is started. Usually, the

only two actions one should do in the preprocess method are validate the

output and and get the BlockWriter.

• The getIterationInput method is used to tell the super class about the

activity’s inputs. The ActivityInput interface is implemented by various

classes. A suitable class should be chosen, depending on the expected input

type. A client will receive a notification each time the input pipe receives a

block of an inappropriate type.
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• During the execution of the activity, the base class reads the input values from

the input pipe and calls the processInteration method once for each input

value.

• When there is no more data, the postprocess method is called.

• There is also an empty method that can be overridden: cleanUp. This method

is called whenever an exceptions arises during the main loop.

5.5.2 OGSA-DAI resources

OGSA-DAI resources are named components which can be accessed, or referred

to, by clients. For example, the data request execution resource is responsible for

the workflow execution. Every client uses this resource when executing a workflow.

OGSA-DAI also offers other data resources, such as database abstractions, data

sinks, data sources, etc. All of them are available for use by clients.

Each OGSA-DAI resource can be considered as an encapsulation of OGSA-DAI

state and behavior. Drawing analogies to object-oriented programming, resources

are similar to objects. The following are the main functions of resources according

to [31].

1. Resources hold state: similar to objects, at each point of time OGSA-DAI

resources are characterized by the data they contain. The state is represented

by resource properties. Each property has a unique name within its resource.

2. Resources expose some state using resource properties: each resource sup-

ports various operations enabling state exposure to clients, such as, e.g.,

GetResourceProperty or GetMultipleResourceProperties, etc.

3. Resources can be dynamically created: a client may create a resource by exe-

cuting the corresponding workflow, and the resource ID is then passed within

OGSA-DAI workflows.

4. Resources can have associated lifetime management operations: for instance,

one can manage termination of a resource by using SetTerminationTime or

Destroy.
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5. Resources support functionality specific to the type of resource: different types

of resources support different operations. For instance, data sources (see Sub-

section 5.5.3) support GetBlock operation, which gets a block of data from the

data source. Furthermore, depending on the resource implementation, other

resource properties and operations may be supported. This enables extensi-

bility of OGSA-DAI resources.

6. Resources can have associated auditing, logging and accounting operations:

e.g., a request resource may provide information about the status of a currently

executing request.

7. Resources provide possibility of authorization: e.g., it may be required that a

client submits a username and a password to access a relational data resource.

5.5.3 Data sources

OGSA-DAI data sources are OGSA-DAI resources that allow clients to obtain data

in small chunks. As a result of this streamable and scalable approach to deliver

data, the client is able to receive significantly larger data sets. Data sources are

often a more conveniet alternative to using the OGSA-DAI request status to deliver

data.

Data sources are created using the CreateDataSource activity. Data is streamed

into sources by sending a request via the WriteToDataSource activity. Using the

OGSA-DAI data source service, a client streams the data from the data source

further through the workflow.

Alternatively, a client can request that another server streams the data by send-

ing a request that contains the ObtainFromDataSource activity. Data sources sup-

port a “pull” mode of data delivery.

Delivery via data sources is suitable in the following situations [31]:

• if there is a need to transfer huge sets of data.

• if there is no access to an FTP server.

Data sources may be used in both synchronous and asynchronous requests. How-

ever, one should remember that the client will be blocked in the case of synchronous

requests until the execution completes. In cases when huge sets of data have to
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be transferred, this may cause problems. Another issue to be aware of is a limited

storage capability of data sources. If the data source is filled, the request will also

block. Due to these remarks, we use asynchronous requests.

To create a data source, one can use the client toolkit instead of submitting a

workflow that invokes the CreateDataSource activity. The corresponding step is:

DataSourceResource dataSource =

ResourceFactory.createDataSource(serverProxy, drer);

This is exactly what we use for our purposes.

5.5.4 Data sinks

OGSA-DAI data sinks are OGSA-DAI resources. They allow a client to push one

or more blocks of data at each moment of time. Naturally, it is usually infeasible

to push all the blocks of data simultaneously. The optimal number of blocks to be

pushed at once depends on the scenario and may be determined experimentally.

Data sinks are created using the CreateDataSink activity. Data is streamed from

them by sending a request via the ReadFromDataSink activity. Using the OGSA-

DAI data sink service, a client streams data into the sink and further into a workflow

via the OGSA-DAI data sink service.

Alternatively, a client may request that another server stream the data by sending

a request that contains the DeliverToDataSink activity. Data sinks support a “push”

mode of data delivery.

Delivery via data sinks is suitable in the following situations [31]:

• if there is a need to transfer huge sets of data.

• if there is no access to an FTP server.

To create a data sink, one can use the client toolkit instead of submitting a

workflow that invokes the CreateDataSink activity. The corresponding step is:

DataSinkResource dataSink =

ResourceFactory.createDataSink(serverProxy, drer);

This is exactly what we use for our purposes.
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5.6 DataStream activity

We discuss the implementation of the DataStream activity which outputs instances

of a stream generated according to the algorithm chosen by the client.

5.6.1 Specification summary

This is a specification of the DataStream activity, written in a way compliant with

the way one documents activities in OGSA-DAI.

Summary:

An activity that outputs instances generated by a specified data stream generator.

Activity name as exposed by OGSA-DAI: ogsadai.meets.moa.DataStream.

Server class: ogsadai.meets.moa.activity.DataStreamActivity.

Client toolkit class: ogsadai.meets.moa.activity.client.DataStream.

Inputs:

Input of type: Integer — client’s choice of a stream generator.

Outputs:

Output of type: an implementation of weka.core.Instance — a generated stream

instance.

Configuration parameters: none.

Activity input/output ordering: none.

Activity contracts: none.

Target data resource: none.

Behavior:

This activity outputs instances generated by a stream generator which is speci-

fied by submitting a generator type as input. The activity is written extending

uk.org.ogsadai.activity.MatchedIterativeActivity.

We now discuss the methods we have to specify.

5.6.2 preprocess

For our activity we validate the output, get the BlockWriter and also initialize the

data stream generators.
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5.6.3 getIterationInput

This method is used to tell the super class about the activity’s inputs. Here, we are

interested in the type of the generator we need to use to generate the data stream.

The activity has a single input called input that expects to receive data of type

Integer. This can be improved to get also configuration parameters specific for the

chosen generator.

5.6.4 processIteration

In the processIteration method we simply need to generate a new instance of the

chosen stream and write to the output. At each iteration, the corresponding new

instance is generated using the nextInstance method of MOA. It is then sent to

the output of the activity.

5.6.5 postprocess

For the DataStream Activity there is no post-processing to do.

5.7 Client proxy

The client proxy class has the name “DataStream” and inherits from:

uk.org.ogsadai.client.toolkit.activity.BaseActivity.

The DataStream proxy class is standard, as described in [31]. It implements the

abstract protected methods getInputs, getOutputs and validateIOState, as well

as provides methods to connect inputs and outputs of activities to form workflows

by implementing getOutput, connectInput and addInput.

To provide methods for clients to access data, the methods hasNextOutput and

nextOutput are implemented.

All in all, no non-standard actions were taken in this part. Everything corre-

sponds to the description given in [31].

5.8 Deployment

The deployment of the activity to the server and further configuration of a resource

to expose the activity is performed in accordance with the OGSA-DAI guide (see
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Section 51 of [31]). Here we indicate the necessary steps.

We assume that the file dataStreams.jar has been copied to a temporary folder

tmp. To deploy the activity onto the server, one should create an OGSA-DAI con-

figuration file config-dm.txt with the following content:

Activity add ogsadai.meets.moa.DataStream

ogsadai.meets.moa.activity.DataStreamActivity ”A data stream activity”

Resource addActivity DataRequestExecutionResource

ogsadai.meets.moa.DataStream ogsadai.meets.moa.DataStream

Afterwards, one should run

$ ant -Dtomcat.dir=$CATALINA HOME -Dconfig.file=config-dm.txt

-Djar.dir=tmp configure

and restart the container. For more details consult [31].

5.9 A simple command line client

A simple command line client was implemented to illustrate the work of the DataS-

tream activity. The user chooses which of the MOA data stream generators to use

and submits the choice through the keyboard. The choice is then sent to the server

where the corresponding stream generator produces instances of a stream. Those

are then sent back to the client through the data source and output onto the screen.

The client first uses the workflow

CreateDataSink=⇒ DeliverToRequestStatus

to create a new data sink. This returns the ID of the new data sink. The created

data sink allows a client to submit data to OGSA-DAI and a workflow can then

read data from this data sink.

The client then uses the workflow

CreateDataSource =⇒DeliverToRequestStatus

to create a data source. This returns the ID of the new data source. The created

data source allows a client to pull data from OGSA-DAI.
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As discussed above, these workflows may be submitted using the client toolkit.

The uk.org.ogsadai.client.toolkit.resource.ResourceFactory class provides

methods createDataSourceResource and createDataSinkResource that tell the

server to create a data source and sink. Moreover, the corresponding proxy objects

DataSourceResource and DataSinkResource are also created and can then be used

to deal with the source and the sink.

The next step is to submit the following

ReadFromDataSink =⇒ DataStream =⇒WriteToDataSource

workflow. ReadFromDataSink takes as input the ID of the data sink and likewise

WriteToDataSource the ID of the data source.

What the client then does is:

WHILE NOT end-of-work:

SUBMIT signal TO data sink

GET instance FROM data source

Figure 5.6: The command line client algorithm.

The client sends the signal to the server, where it is submitted into the data sink.

As soon as all the necessary inputs are put into the data sink, the workflow detects

this, pulls the input data from the data sink and passes it into the DataStream

activity. The output of the DataStream activity is submitted into the data source.

Then the client’s invocation of GET would force the server to return the instance to

the client which then displays the instance on the screen. Figure 5.7 below illustrates

the workflow.
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OGSA-DAI

Data Sink

Client
WHILE NOT end-of-work 

SUBMIT signal TO data 
sink

GET instance FROM 
data source

Submit signal

Results

Data Source

DataStream 
Activity

AgrawalGenerator
Etc.

Client side Server side

Get instance

Figure 5.7: Outputting a generated stream to the screen.

After starting the client, the following text with the existing options appears:

Figure 5.8: A screenshot of the command line client.

After choosing an option, which is “Agrawal generator” in this case, we start

receiving instances of the stream directly displayed on the screen:
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Figure 5.9: First instances of a stream generated by the Agrawal generator.

The instances are output to the screen as long as the user keeps the application

running. There is no limit on the size of the stream. For example, here is a screenshot

of instances with ID’s > 1 000 000:

Figure 5.10: A potentially infinite stream generated by the Agrawal generator.

5.10 Data stream visualization

Our second client connects the DataStream activity to the visualization tool from

the ADMIRE project [20]:

DataStream =⇒ Stream Vizualisator.

The ADMIRE’s visualization tool provides a graphic way to represent statistical

properties of a data stream. Several approaches are available. The corresponding

visualizers display the output in various formats. Below we shortly describe the
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available options using an example of a data stream generated by the Agrawal

generator.

1. Histogram intends to graphically represent the distribution of several chosen

attributes of the data stream instances. The user may specify the number of

instances that have their attributes displayed simultaneously.

Figure 5.11: Histogram visualizing a generated data stream.

2. Pie chart displays the proportion of values for a chosen attribute of the data

stream instances in form of sectors.
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Figure 5.12: Pie chart visualizing a generated data stream.

3. Bar chart also represents proportions for a fixed attribute, but in the form of

rectangular bars.

Figure 5.13: Bar chart visualizing a generated data stream.
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Evaluation

In this chapter we evaluate our DataStream activity by incorporating it into a work-

flow which performs an important task of data stream outlier detection. Note that

our main goal is to illustrate usefulness and topicality of the DataStream activity in

testing further methods of data stream analysis. Performance is not an issue, thus,

we do not run any test of this kind.

6.1 Outlier detection

In this section we show how to use the DataStream activity to test an outlier detec-

tion method.

The aim of an outlier detector is to discover anomalies in a data stream at arbi-

trary moments of time. This task may be of high importance for such applications as

fraud detection, network flow monitoring, telecommunications, data management,

as an exceptional object may signify that immediate human attention is needed.

We start with a description of the method STORM (STream OutlieR Miner)

from [5]. We explain how to turn it into an activity. We then show how to use our

DataStream activity to test the STORM algorithm.

6.1.1 Description of the STORM method

The method described in [5] uses the sliding window model W [t − w + 1, t] (see

Section 2.1), where w is the size of the window W . That is, we look for statistically

exceptional elements with respect to data within the current window W .
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To determine the objects that significantly deviate from a given collection of

data, we adopt the distance-based approach from [23] :

Definition 2. Let S be a set of objects, obj an object of S, k a positive integer,

and R a positive real number. Then, obj is a distance-based outlier (or, simply, an

outlier) if less than k objects in S lie within distance R from obj.

Definition 3. Objects lying at distance at most R from obj are called neighbors

of obj.

Due to evolution, stream characteristics may change over time and, hence, it

may be misleading to evaluate an object for outlierness at its arrival time. It may

be much more meaningful to classify objects upon request, i.e., exactly when such

an analysis is required. Besides correct outlier detection, this approach has another

advantage, namely, it may capture a concept change (see Section 2.2), which is a

typical and challenging characteristics of data streams. For these reasons, queries

are supported at arbitrary moments of time, called query times. At each query

time the whole population in the window is analyzed for outlierness, and not only

the incoming data stream instance. This idea is realized in STORM via one-time

queries.

The authors of [5] present three algorithms. The first algorithm exactly answers

outlier queries at any time, but has larger space requirement. The second algorithm

reduces memory requirements and returns an approximate answer based on esti-

mations with a statistical guarantee. The third algorithm is a modification of the

approximate algorithm which works with strictly fixed memory requirements. As

our main objective is to test our DataStream activity, we consider only the exact

algorithm, though the second and the third algorithms can also be easily imple-

mented.

The STORM algorithm consists of two main parts:

• the Stream Manager and

• the Query Manager.

At each stage t, the Stream Manager updates necessary information about ele-

ments inside the window. This information is then used by the the query manager

which counts the number of neighbors, for each element inside the window. In case
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the node has less than k neighbors, the Query Manager declares it an outlier. A

detailed description of the STORM method is presented in Appendix B.

6.1.2 Outlier activity

We now describe some details of implementation of the Outlier activity. At each

iteration stage, the activity receives a new instance of the stream to be analyzed. It

performs the two steps of the STORM algorithm described above and in Appendix

B and outputs the ID’s of those instances of the stream that are considered to be

outliers at the current stage.

This is a specification of the Outlier activity, written in a way compliant with

the way one documents activities in OGSA-DAI.

Summary:

An activity that outputs the list of outlier ID’s at the current stage.

Activity name as exposed by OGSA-DAI: ogsadai.meets.moa.Outlier.

Server class: ogsadai.meets.moa.activity.OutlierActivity.

Client toolkit class: ogsadai.meets.moa.activity.client.Outlier.

Inputs :

Type: Double — a 1-dimensional stream instance.

Outputs :

Type: ArrayList<Integer> — the list of outliers’ identifiers (times of arrival).

Configuration parameters: none.

Activity input/output ordering: none.

Activity contracts: none.

Target data resource: none.

Behavior:

This activity outputs the list of the ID’s (times of arrival) of all the outliers detected

at the current stage by the STORM algorithm. The stream is provided as an input:

one instance at each iteration. Further inputs may be parameters like the size of

the window w, number of neighbors k and radius R.

The Outlier activity extends the class:

uk.org.ogsadai.activity.MatchedIterativeActivity.
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6.1.3 Deployment

As for the DataStream activity, the deployment of the Outlier activity to the server

and further configuration of a resource to expose the activity is performed in ac-

cordance with the OGSA-DAI guide (see Section 51 of [31]). Here we just shortly

indicate the necessary changes.

Again, we assume that the file dataStreams.jar has been copied to a temporary

folder tmp. To deploy the activity onto the server, one should create an OGSA-DAI

configuration file config-ou.txt with the following content:

Activity add ogsadai.meets.moa.Outlier

ogsadai.meets.moa.activity.OutlierActivity ”An outlier detection activity”

Resource addActivity DataRequestExecutionResource

ogsadai.meets.moa.Outlier ogsadai.meets.moa.Outlier

Afterwards, one should run

$ ant -Dtomcat.dir=$CATALINA HOME -Dconfig.file=config-ou.txt

-Djar.dir=tmp configure

and restart ther container. For more details consult [31].

6.1.4 A sample workflow

The following workflow illustrates the use of the DataStream and the Outlier activi-

ties together. The user submits parameters specifying the type of the stream gener-

ator as input to the DataStream activity. The generated instances are subsequently

submitted to the Outlier activity, together with necessary parameters submitted by

the user. The output of the Outlier activity is then submitted to Results which can

be then output to the user’s screen, visualized, or used in some other way.

Figure 6.1 illustrates the described workflow in form of a directed graph. The

corresponding DISPEL code is shown below in Figure 6.2.
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DISPEL

DataStream 
PE

Outlier PE

Results PEParam

Param

Param

“Outliers”

Figure 6.1: Workflow combining a stream generator and an outlier detector.

package eu.admire.master.thesis {

use dispel.ef.DataStream;

use dispel.ef.Outlier;

use dispel.lang.Results;

DataStream generator = new DataStream();

Outlier outdetector = new Outlier();

Results results = new Results();

|- XY -| => generator.parameter;

generator.output => outdetector.input;

|-Z-| => outdetector.parameter;

outdetector.output => results.input;

|- "Outliers" -| => results.name;

submit results;

}

Figure 6.2: DISPEL code for the outlier detection workflow.
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Note that in its current form the outlier detection activity is suitable only for

one-dimensional streams, as the authors of [5] give their STORM algorithm only for

this case. It is noted however, that the algorithm may be reworked to be suitable

for multi-dimensional streams as well.

A screenshot of the Outlier activity results listed out for each stage of (the first

coordinate of) a stream generated by the Agrawal generator looks as follows:

Figure 6.3: Results delivered by the Outlier activity on a stream generated by the
DataStream activity.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Analyzing state of the art of the data stream management and mining, we discovered

lack of data streams with predictable behaviour, suitable for evaluation and testing

of data stream processing methods. There exist very few well studied huge real-life

data sets that may be treated as approximations to data streams. Furthermore, all

the existing data stream generators also store their results only as files and, thus,

can not model all the properties of real data streams. In this thesis we propose our

solution to the problem by incorporating selected data stream generators into the

data intensive ADMIRE platform.

We adapt the ADMIRE’s “hourglass” architectural paradigm which allows map-

ping of interests of various communities to the structural levels of the data stream

generator. As the starting point for our work, we chose the data stream generators

available in MOA (Massive Online Analysis) which allow storing generated instances

in .arff files. We then create an OGSA-DAI activity, named DataStream, which facil-

itates potentially infinite generation of configurable data streams. Furthermore, as

explained below in Appendix A, the resulting activity is easily extendable to include

other data stream generators, for instance, those we have mentioned in Chapter 3.

We created several simple workflows illustrating the work of the DataStream

activity. First of all, with the help of a command line client, a user can configure

the DataStream activity to use a generator of user’s choice and output the results to

the screen. Moreover, a user can visualize the generated stream using the ADMIRE
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visualization tool. Finally, we also create the Outlier activity which detects excep-

tional instances (outliers) of a stream. We used it together with streams generated

by the DataStream activity. The results are also output on the user’s screen.

All our achievements are summarized in Figure 7.1 and illustrated by Figure 7.2

below:

Achieved Results:

1. the DataStream activity based on MOA generators,

2. the Outlier activity based on STORM algorithm,

3. a command line client,

4. visualization of generated streams using the ADMIRE visualization tool.

Figure 7.1: List of the achieved results.

OGSA-DAI

StreamGenerator
Activity

AgrawalGenerator
Etc.

Client
Command line/

Visualization

Parameters

Results Outlier 
Activity
based on 

STORM algorithm

DataStream 
Activity

AgrawalGenerator
Etc.

Client side Server side

Figure 7.2: The server side and the client side presented in the current work.
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7.2 Future work

Further work with the DataStream activity can be conducted in two directions in-

dicated by the “hourglass” architectural paradigm we have adapted. First of all, on

the tool level, it can be applied as a tool to test and evaluate new methods that

arise as solutions to real-life problems in the area of data stream management and

mining. Furthermore, on the enactment level, DataStream activity itself and other

components we have created can be improved and optimized to gain broader appli-

cation areas and comfort of usage. No changes should be made at the intermediate

format level, see Section 5.3.

7.2.1 Tool level applications

The DataStream activity may be especially useful when further combined with ac-

tivities implementing:

1. classification methods,

2. clustering methods,

3. outlier detection methods,

4. frequent pattern mining,

5. concept drift/shift detection, etc.

for evaluation and testing of the methods. In particular, an important application

may be performance measurement of various methods solving the same problem

(e.g., various classification methods). Due to configurability, predictable behavior

and diversity of proposed generators, it is possible to identify the best methods

depending on the original statistical properties of the stream.

7.2.2 Enactment level improvements

On the enactment side, one can undertake the following steps to improve the work

of DataStream activity and other components.

1. Include more generators.
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One of the main goals of the presented design of the DataStream activity was

to offer a possibility to easily extend it by incorporating new data stream

generators. Some of interesting generators and stream generating models were

mentioned in Chapter 3. With no doubt, more will appear in the literature.

Appendix A contains detailed instructions how to add new stream generators

to the DataStream activity.

2. Add the configuration feature to the stream generators.

It is important to control the statistical properties of generated streams. For

each of its generators, MOA offers several parameters that can be configured

to control distributions of attributes, time and type of the stream evolution,

etc. It would be useful to add this feature to the DataStream activity and to

the client.

3. Include the stream speed regulation feature.

One of the main features of a real-life data stream is uncontrollable arrival

rate of the stream instances. This feature is still missing in the DataStream

activity. As discussed in Section 5.2, one may add a list of rate functions

with the option to configure the stream generator by choosing one of the rate

functions. It would be also useful to add the possibility of interval events, i.e.

events, that are valid for a certain time, by specifying yet another function

which outputs the lifetime of an instance.

4. Create a more usable client.

The current client is a very simple command-line tool that provides only the

most basic functionality. Usage of a GUI client or a client accessed through a

web browser may extend the functionality and make the interaction with the

DataStream activity more comfortable.

Furthermore, it would be useful to implement input adaptors for various

stream processing systems to submit generated streams as inputs.

5. Extend the Outlier activity.

The presented outlier detection activity is interesting by itself as it implements

one of the algorithms suggested to solve the outlier detection problem. The

authors of [5] develop two approximated versions of the STORM algorithm
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that are more space efficient and give correct results with high probability.

One may add them to the Outlier activity. Furthermore, one may use the

DataStream activity to compare the performance of the STORM algorithm

with that of other outlier detection methods.



Appendix A

Stream Generator Extensions

In its current form, the DataStream activity contains 11 data stream generators

offered by MOA. The design of the DataStream activity makes it possible to integrate

new data stream generators into the activity. In Chapter 3 we mentions several other

generators and data stream models such as SASE stock data generator, traffic model,

waveform models, etc. Here we explain how to extend the DataStream activity to

include these or other new data stream generators.

As discussed in Section 5.3, the generator should output instances that be-

long to a class implementing the weka.core.Instance interface. Furthermore, it

is desirable that a new data stream generator class implements MOA’s interface

moa.stream.InstanceStream. At the very least, the following methods have to be

implemented for the correct functioning of the generator activity:

1. prepareForUse — prepares the chosen stream for use according to the given

parameters.

2. nextInstance — generates the next instance of the chosen stream.

Moreover, it would be useful to implement also the following methods. They are

not necessary for the current version of the activity to work correctly, but may be

needed if one improves its work according to the suggestions from Chapter 7.

3. hasNextInstance() — returns true if the stream has more instances.

4. getHeader() — returns the header of the stream which is useful to know

attributes and classes.

5. getPurposeString() — returns a description of the purpose of the stream.
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6. Other methods that improve configurability of the new stream generator.

As soon as a JAR file containing the new generator has been created and de-

ployed to the server, one can extend the existing DataStream activity by simply

adding another option to the list of 11 stream generators. As mentioned above, the

activity was designed to have the extendability feature, so it is very easy to add

new generators. One only need to initialize the generator using prepareForUse and

add the new option with nextInstance execution. Furthermore, it is also obvious

how to extend the command line client: add the corresponding new option to the

existing list of offered generators.
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The exact STORM algorithm

We present the exact STORM algorithm from [5]. As discussed in Section 6.1, the

STROM algorithm consists of two main parts:

• the Stream Manager SM and

• the Query Manager QM.

We follow the notations from Section 2.1. The Stream Manager receives the

incoming data stream objects and efficiently updates a suitable data structure.

This structure is then exploited by the Query manager to effectively answer outlier

queries.

We start with the definition of a node from [5]:

Definition 4. A node n is a record consisting of the following parts:

• n.obj: a data stream object;

• n.id: the identifier of n.obj, that is the arrival time of n.obj;

• n.count after: the number of succeeding neighbors of n.obj;

• n.nn before: a list, having size at most k, containing the identifiers of the

most recent preceding neighbors of n.obj. At query time, this list is used to

recognize the number of preceding neighbors of n.obj.

In order to maintain a summary of the current window, a data structure ISB

(Indexed Stream Buffer) storing information about nodes is employed. ISB provides

a function range query search, that, for an object obj and a real number R ≥ 0 (the
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radius), returns the nodes in ISB associated with objects that lie at distance not

greater than R from obj.

The Stream Manager

The Stream Manager takes as input a data stream DS, a window size w, a radius

R and the number k of nearest neighbors to consider.

For each incoming data stream object obj, a new node ncurr is created with

ncurr.obj = obj. Then the range query search is performed in ISB, for the center

ncurr.obj and radius R. The result contains the list of nodes associated with the

preceding neighbors of obj stored in ISB.

For each such node nindex returned by the range query search, the object

obj is a succeeding neighbor of nindex.obj. Thus, we increment the counter

nindex.count after. Moreover, since the object nindex.obj is a preceding neighbor

or obj, we update the list ncurr.nn before to include nindex.id.

If the counter nindex.count after becomes equal to k, the object nindex.obj be-

comes a safe inlier, i.e., it will never in future become an outlier. Therefore, it will

not belong to the answer of any future outlier query. Despite this important prop-

erty, a safe inlier cannot be discarded from ISB, since it may be a preceding neighbor

of a future stream object. However, we can delete the list nindex.nn before since it

is no longer needed. Finally, the node ncurr is inserted into ISB. This terminates the

description of the procedure Stream Manager.

The Query manager

When invoked by the user, the Query Manager performs a single scan of ISB

in order to efficiently answer queries. In particular, for each node n of ISB, it

determines the number prec neighs of identifiers stored in n.nn before associated

with non-expired objects.

As for the number succ neighs of succeeding neighbors of n.obj, it is stored

in count after. Thus, if prec neighs + succ neighs ≥ k then the object n.obj is

recognized as an inlier, otherwise it is an outlier and is included into the answer of

the outlier query.

Figure B.1 presents the exact STORM algorithm [5]:
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Procedure Stream Manager

Input: DS is the data stream;

w is the window size;

R is the neighborhood radius;

k is the number of neighbors.

Method: For each data stream object obj with identifier t:

1. remove the oldest node noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id =

t, ncurr.nn before = ∅, ncurr.count after = 1;

3. perform a range query search with center obj and radius R into

ISB. For each node nindex returned by the range query:

(a) increment the value nindex.count after;

(b) update the list ncurr.nn before with the object identifier

nindex.id;

4. insert the node ncurr into ISB.

Procedure Query Manager

Output: the distance-based outliers in the current window;

Method:

1. For each node n stored in ISB:

(a) let prec neighs be the number of identifiers stored in

n.nn before associated with non-expired objects, and let

succ neighs be n.count after;

(b) if prec neighs+succ neighs ≥ k then mark n.obj an inlier,

else mark it as an outlier;

2. return all the objects marked as outliers.

Figure B.1: The STORM distance-based outlier detection algorithm [5].
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Note that the exact STORM algorithm is not suitable in cases when interesting

windows turn out to be too large or in other scenarios with only limited memory. In

such situations, when the memory allocated for the window is limited, approximate

algorithms can be applied. These algorithms represent a trade off between spatial

requirements and answer accuracy and turn out to be very efficient in the described

situations. An interested reader should consult [5] for further details. As the Outlier

activity presented in Chapter 6 is a self-contained tool of independent interest, it

may be useful to extend it by including approximate algorithms.
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