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Abstract

Abstract
This diploma thesis is dedicated to the study of affine crystallographic groups, i.e. prop-
erly discontinuous cocompact subgroups of Aff(Rn).
We start off with a brief overview of the historical roots of such groups by giving a
heuristic introduction to crystallographic groups, see section 0.1. The structure of these
groups is very well understood owing to the famous Bieberbach theorems, see 1.2.
Crystallographic groups are chosen as a starting point because of two reasons. First,
they are easier to handle than affine crystallographic groups. However, there are still
many similarities between them and their affine counterparts, see for example sections
1.3 and 2.3, and thus they serve as a fitting introduction to the topic at hand. Second,
examinations of affine crystallographic groups are in large part inspired by the classical
case of crystallographic groups, see chapter 3.
Chapter 4 is devoted to a famous conjecture by Auslander, namely the question whether
every affine crystallographic group is virtually solvable. We will not only present said
conjecture, 4.1.3, and variations thereof, we will also cite another conjecture, namely one
by Milnor, 4.1.5, which asks whether properly discontinuous affine groups are virtually
solvable. For the latter, we will present a counterexample due to Margulis, see section
4.2. Auslander’s conjecture on the other hand is still an open matter. Until today there
is no known counterexample and proofs have been given for special cases only. In sec-
tions 4.3 through 4.7 we will present some of these proofs. If Auslander’s conjecture
were proven to be true in general, we would gain profound insight into the structure of
affine crystallographic groups. In particular, we would have nice generalizations of the
Bieberbach theorems for the affine setting, see theorems 3.3.6, 3.4.6 and 3.5.3.
The last chapter of this diploma thesis serves to outline possible future developments
in the field of affine crystallographic groups. In section 5.1 we cite two problems by
Abels, Margulis, and Soifer which could be central for proving Auslander’s conjecture
in dimension 7. Section 5.2 is concerned with a very natural generalization of affine
crystallographic groups, namely so called NIL-affine crystallographic groups. A part of
the motivation for examining this setting stems from Milnor’s ’converse Auslander con-
jecture’, 4.1.4, which does not hold in the affine case, yet holds in the NIL-affine one,
5.2.4.

Zusammenfassung
Im Zentrum dieser Diplomarbeit stehen affin-kristallographische Gruppen, i.e. eigentlich
diskontinuierliche kokompakte Untergruppen von Aff(Rn).
Wir geben zunächst einen Überlick über die historischen Ursprünge von diesen Gruppen,
indem wir kurz kristallographische Gruppen anschaulich präsentieren, siehe Abschnitt
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0.1. Die Struktur ebendieser Gruppen ist dank der Bieberbach Theoreme sehr gut ver-
standen, siehe dazu 1.2.
Das Studium der affin-kristallographischen Gruppen wird aus zwei Gründen mit einer
Auseinandersetzung mit kristallographischen Gruppen begonnen. Erstens gibt es einige
Parallelen zwischen diesen beiden Klassen von Gruppen, vergleiche beispielsweise 1.3
und 2.3, wobei die Theorie der kristallographischen Gruppen deutlich einfacher ist als die
ihrer affinen Pendants. Zweitens ist ein großer Teil der Theorie affin-kristallographischer
Gruppen von dem klassischen Fall der kristallographischen Gruppen inspiriert, siehe
dazu Kapitel 3.
In Kapitel 4 beschäftigen wir uns mit Auslanders berühmter Vermutung, also mit der
Frage, ob jede affin-kristallographische Gruppe virtuell auflösbar ist, siehe 4.1.3. Wir
werden nicht nur einige Variationen dieser Vermutung präsentieren, sondern auch noch
eine zweite, nämlich Milnors Vermutung. Diese fragt, ob jede eigentlich diskontinuier-
liche affine Gruppe virtuell auflösbar ist, 4.1.5. Margulis zeigte, dass dies nicht der
Fall ist, siehe Abschnitt 4.2. Ob Auslanders Vermutung wahr ist oder nicht, ist bis
heute offen - weder ist ein Gegenbeispiel bekannt, noch wurde ein Beweis gefunden.
Lediglich Spezialfälle konnten bewiesen werden, einige davon werden wir in den Ab-
schnitten 4.3 bis 4.7 präsentieren. Ein Beweis für Auslanders Vermutung wäre ein
großer Schritt in Richtung eines umfassenden Verständnisses der Struktur von affin-
kristallographischen Gruppen. So wären beispielsweise schöne Verallgemeinerungen der
Bieberbach-Theoreme möglich, siehe 3.3.6, 3.4.6 und 3.5.3.
Das letzte Kapitel dieser Diplomarbeit bietet einen Ausblick auf mögliche zukünftige
Entwicklungen im Bereich affin-kristallographischer Gruppen. Zunächst werden zwei
Probleme präsentiert, die zentral für einen Beweis von Auslanders Vermutung in Di-
mension 7 sein könnten, siehe 5.1. In Abschnitt 5.2 werden so genannte NIL-affin-
kristallographische Gruppen vorgestellt, welche eine natürliche Verallgemeinerung von
affin-kristallographischen Gruppen sind. Ein Teil der Motivation für die Auseinander-
setzung mit ebendiesen folgt aus Milnors ’umgekehrter Auslander Vermutung ’, 4.1.4,
welche im affinen Fall falsch ist, im NIL-affinen jedoch stimmt, 5.2.4.
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0 Preface

0.1 Origin & generalizations of crystallographic groups

Crystallographic groups arose during the task of classifying space fillings. Heuristically
speaking, a space filling is just some (real) affine space (of finite dimension) endowed
with a periodic pattern that fills the whole space. For example in dimension 2 we may
have something like this:

Figure 0.1: M.C. Escher, Regular Division of the Plane with Birds, 1949.

Speaking a little bit more mathematically, we can describe this as follows: we start
with a small (compact and connected) section of the space, a so called fundamental do-
main, and translate it until we have covered the whole space. For example, to achieve a
space filling such as in figure 0.1, we could choose any white bird and an adjacent black
one.

Obviously, we can also let the translations operate on the space itself and see that they
don’t change the way the space looks, i.e. they respect the pattern - those translations
are symmetries.

Of course, depending on the chosen pattern, one may also find other symmetries:
rotations and/or reflections. The set of such symmetries forms a group. In dimension
2 such a group of symmetries is called a wallpaper group, in dimension 3 we call such
groups space groups.

In general dimension, one calls such groups of symmetries crystallographic groups.

1



2 Chapter 0. Preface

This notion is derived from the following: if we ’forget’ that a crystal is a finite object,
we can describe it as a set of atoms which are arranged in a periodic pattern that fills
the 3-dimensional affine space.

The beauty of the correspondence of space fillings and their accompanying symmetries
is that by classifying all possible groups which can act as such groups of symmetries,
one also classifies all the possible space fillings. On a side note: crystals were also
classified in this way. For every crystallographic group a crystal was found, and there
is not one crystal that does not have a crystallographic group as its group of symmetries.

Although plane fillings by regular polygons were already studied in 1618 by Johannes
Kepler, it was not before the end of the 19th century that space fillings received rigid
mathematical inquiry. Independently, Fedorov, Schönflies and Barlow classified the 3-
dimensional crystallographic groups, and thus also all possible periodical fillings of the
3-dimensional affine space.

Further investigation of crystallographic groups was then fueled by one of Hilbert’s
famous problems. One part of his 18th problem was the question whether or not there
are only finitely many different crystallographic groups in any given dimension. Not only
was Bieberbach able to positively answer this question, he also provided other theorems
which give a very good insight into crystallographic groups. Due to him, we know the
’structure’ of such groups. Furthermore, one of his theorems yields a suitable equivalence
relation for crystallographic groups.

There are many ways to generalize crystallographic groups.
For example, instead of filling some affine space, i.e. a space with zero curvature, we

could do the same with a space of positive or negative curvature. The corresponding
groups of symmetry are then called non-Euclidean-crystallographic groups. Figure 2
shows such a filling for the 2-dimensional hyperbolic space in the Poincaré disk model.

Another possible generalization is the following: by definition we have that if Γ is a
crystallographic group for the n-dimensional affine space, then we can find n linearly
independent translations in Γ. If one requires Γ to have at most n− 1 linearly indepen-
dent translations, one arrives at so called quasicrystallographic groups which correspond
to aperiodic space fillings and quasicrystals.

The generalization we want to pursue is as follows: Obviously, crystallographic groups
are not only groups of symmetry, they are even isometries. We will drop this assumption
and instead analyze so called affine crystallographic groups. To put this into mathe-
matical terms, rather than examining certain subgroups of the group of all isometries
Isom(E) ∼= RnoO(Rn), we will be concerned with subgroups of Aff(E) ∼= RnoGL(Rn),
with E denoting the real affine space of dimension n.
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Figure 0.2: M.C. Escher, Circle Limit III, 1959.
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0.2 Preliminaries

This chapter serves two purposes. First, it settles basic notations. Second, it is a
reminder of a variety of different definitions that will be used thereafter without further
reference.

0.2.1 Notations

We start with
Sets

N . . . the set of positive integers including 0
Z . . . the set of integers
R . . . the set of real numbers
N×,Z×,R× . . . the respective set without 0
A×B . . . direct product of A and B
A⊕B . . . direct sum A and B of sets with an algebraic structure
B ⊆ A . . . B is subset of A
B ⊂ A . . . B is a proper subset of A

Groups
G ∼= H . . . G and H are isomorphic as abstract groups
H ≤ G . . . H is a subgroup of G
H < G . . . H is a proper subgroup of G
H EG . . . H is a normal subgroup of G
N oQ . . . semidirect product of N by Q, i.e. N EN oQ
Aut(X) . . . automorphism group of X
Aff(X) . . . group of affine motions of X
Isom(X) . . . group of isometries of X
rankR(G) . . . real rank of G
G . . . the topological closure of (a topological group) G
G0 . . . identity component of G
G/H . . . the cosets of H in G for H ≤ G
G\X . . . the orbit space for a group action of some group G on some space X
<S> . . . the span of a S ⊆ G, i.e. the set of all finite products of elements in S

0.2.2 Definitions

This section is dedicated to basic definitions. First we give an overview of central defi-
nitions concerning groups. After that, we have a brief summary of the basics of group
actions, exact sequences and the cohomological dimension of groups. The last portion
then adresses some basics concerning manifolds.
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Groups Let G be a group.
Given a subgroup H ≤ G, the quantity of cosets |G/H| is called the index of H in G

and will be denoted by [G : H]. Recall that for H2 ≤ H1 ≤ G we have multiplicity of
the index, i.e. [G : H2] = [G : H1][H1 : H2].

If S is a subset, S ⊆ G, then the normal subgroup CG(S) := {g ∈ G | gs = sg ∀s ∈ S}
is called the centralizer of S in G and by the subgroup NG(S) := {g ∈ G | gS = Sg} we
denote the nomalizer of S in G.

Given g ∈ G with g 6= e. If there is an n ∈ N, such that gn = e, we say that g is
a torsion element and accordingly, that G is a torsion group if every element of G is a
torsion element. On the other hand, if there is no such g, then we call G torsion free.

We say that a group G is linear, if there is an embedding G ↪→ GL(Rn).
If a group G is endowed with a topology, such that both the multiplication (g, h) 7→ gh

and the inversion g 7→ g−1 are continuous with respect to the topology in question, G
is called a topological group. If the topology in question is the discrete one, G is said to
be a discrete group. And if G is a topological group, any subgroup H ≤ G is called a
discrete subgroup, if it is discrete with respect to the induced topology.

A group, which is endowed with a smooth manifold structure in such a way, that the
multiplication as well as the inversion are smooth maps, is called a Lie group. For a
detailed study of the theory of Lie groups and Lie algebras see for example [Kn02] and
for the theory of discrete subgroups of Lie groups see [OV00].

If G is a group and at the same time an algebraic variety with the property that the
multiplication and inversion are regular functions, G is said to be an algebraic group. If
H ≤ G is closed with respect to the Zariski topology, then we say that H is an algebraic
subgroup.

Group actions Given a triple (G,O, ϕ) consisting of a group G, some set O and a
group homomorphism ϕ : G→ Aut(O), we call the map

G×O → O
(g, x) 7→ ϕ(g)(x)

a group action of G on O. If the homomorphism ϕ is unambiguous, for example if
G ≤ Aut(O) and ϕ = id, we will omit it and just write gx rather than ϕ(g)(x). Fur-
thermore, if a group G is acting on some O, we will write G 	 O.

Given any subgroup G of the automorphism group of some X, we call the action given
by (g, x) 7→ id(g)(x) the natural action from G on X. For example, if G ≤ GL(Rn), the
natural action G 	 Rn is given by matrix multiplication.

A group action G 	 O is called free, if for every g ∈ G with gx = x for any x ∈ O
we have that g = e. Equivalently, an action is free, if gx = hx, g, h ∈ G, x ∈ O, implies
g = h.

If S is a subset of O, we call StabG(S) := {g ∈ G | gS ⊆ S} the stabilizer of S in G.
If S is a singleton, i.e. S = {x}, we will write Gx := StabG(x).

If there is a subset S of O with GS := {gs | g ∈ G, s ∈ S} ⊆ S, we say that G acts
invariantly on S. Of course, in this situation there is also an induced action G 	 S.
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For a group action of G on O and a fixed x ∈ O, the set Gx := {gx | g ∈ G} is called
the orbit of x under G. Trivially,

⋃
x∈O,g∈G gx = O. Furthermore, such orbits, or rather

the action of G on O, define an equivalence relation ∼G via x ∼G y, x, y ∈ O, iff there
is a g ∈ G such that gx = y. Of course, this yields a partition into equivalence classes
[x] := {y ∈ O | x ∼G y} = Gx. The set of all these classes G\O := O/ ∼G:=

⋃
x∈O[x] is

called the orbit space or quotient space of O modulo G.

Exact sequences of groups A sequence of groups Gi with homomorphisms ϕi

· · · −→ Gi−1
ϕi−→ Gi

ϕi+1−→ Gi+1 −→ · · ·

is called exact, if for every j we have im(ϕi) = ker(ϕi+1).
Thus, given a short exact sequence

1 −→ N
ι−→ G

π−→ Q −→ 1,

we immediately know that ι is injective, ker(ι) = 1, and hence N may be viewed as a
subgroup of G. Furthermore, N is even a normal subgroup, because N = im(ι) = ker(π).
Also, π is surjective, im(π) = ker(Q → 1) = Q. In this situation we will say that G is
an extension of N by Q.

Such a short exact sequence splits, i.e. there is a homomorphism σ : Q → G with
π ◦ σ = id, iff G is the semidirect product of N by Q, written G = N oQ. It should be
noted that in general there is no splitting homomorphism σ, although there is always a
set theoretical map that is a right inverse for π.

Cohomological dimension of a group Let G be a group and R a ring with unit
and let RG be the group ring. Furthermore, Hk(G,M) shall denote the k-th cohomology
group of G. The smallest n ∈ N such that Hk(G,M) = 0 ∀k > n, with k ∈ N, for any
RG-module M , is called the cohomological dimension of G with coefficients in R. If
R = Z, we just say that G has cohomological dimension n and drop the references on
the coefficients.

Equivalently, the cohomological dimension of G with coefficients in R equals n, if there
is a projective resolution of length n of the trivial RG-module R, and this resolution is
minimal with respect to the length.

More on the cohomology of groups can be found in [Br82].

Manifolds We say that M is a Riemannian manifold, if for every tangent space
TpM , there is an inner product gp, such that for all vector fields X and Y the map
p 7→ gp(X(p), Y (p)) is smooth
. A Riemannian manifold M is called a complete, if M satisfies one of the following
equivalent assertions:

(i) when viewed as a metric space, M is complete

(ii) M is geodesically complete
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(iii) if K is a closed and bounded subset of M , then K is compact.

This equivalence is due to the so called Hopf-Rinow theorem.
If M is Riemannian and if furthermore the curvature tensor R(u, v)w := ∇u∇v(w)−
∇v∇u(w)−∇[u,v]w is identically 0, with u, v, w tangential vectors and ∇ the Levi-Civita
connection, then M is said to be flat.

We say that M with atlas A is compact, if there is a finite atlas B ≤ A for M .





1 Crystallographic groups & the
Bieberbach theorems

1.1 Crystallographic groups

In the preface we have used a geometrical approach to introduce crystallographic groups.
Besides looking at them as certain groups of symmetries, there are a couple of ways to
describe crystallographic groups and we will present two of them. At first we will give
an algebraic definition and later, subsection 1.3, we will show a topological viewpoint on
such groups.

We start by defining crystallographic groups via group actions.

1.1.1 Definition (Properly discontinuous & crystallographic actions). Given some
group Γ and a locally compact Hausdorff space X. An action Γ 	 X is called proper if
for every compact K ⊆ X we have that {γ ∈ Γ | γK ∩K 6= ∅} is compact. If this set is
even finite, the action is said to be properly discontinuous.

If we have a properly discontinuous group action Γ 	 X with the additional property
that the orbit space Γ\X is compact with respect to the quotient topology, said action is
called crystallographic.

An equivalent property to cocompactness, i.e. compactness of the quotient Γ\X, is
quasitransitivity, which means that there is a compact set K ⊂ X such that X =⋃
γ∈Γ γK.
Of course, if we are given a crystallographic action Γ 	 X and a compact K with

X =
⋃
γ∈Γ γK, such that K is minimal, i.e. there is no compact K̃ with K̃ ⊂ K and

X =
⋃
γ∈Γ γK̃, then the connected components of K are the fundamental domains of a

space filling.

1.1.2 Remark (Properly discontinuous versus discrete). While in general a group that
admits a properly discontinuous action is discrete, the converse is not true, i.e. not every
action of a discrete group is automatically properly discontinuous.

E.g. consider the group Λ(λ) := {λkI | k ∈ Z} for a fixed λ ∈ R\{0,±1}, with I being
the identity element of GL(Rn). Of course, Λ(λ) is a discrete group. The natural action
Λ(λ) 	 Rn, however, is not properly discontinuous, because by the very definition of a
properly discontinuous action, the stabilizer group Λ(λ)x := {g ∈ Λ(λ) | g(x) = x} has
to be finite for every x ∈ Rn. Setting x0 := (0, . . . , 0) it is obvious that Λ(λ)x0 is not
finite.

Furthermore, the same argument can be used to show that there is no discrete infinite
subgroup of GL(Rn) whose natural action is properly discontinuous.

9
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The setting of crystallographic groups is a very well known one: let E denote the real
affine space of dimension n and let Isom(E) be the group of Euclidean motions of E.
Crystallographic groups are certain subgroups of Isom(E):

1.1.3 Definition (Properly discontinuous, crystallographic & Bieberbach groups). As-
sume that Γ ≤ Isom(E). If the natural action of Γ on E is properly discontinuous, Γ
is called a properly discontinuous group. Analogously, we will call Γ a crystallographic
group if the natural action Γ 	 E is crystallographic.

If Γ is a torsion free crystallographic group, it is called a Bieberbach group.

As stated before, not every discrete group acts properly discontinuously. However,
we have that a subgroup Γ ≤ Isom(E) is discrete iff it is properly discontinuous. This
follows directly from the fact that Isom(E) = Rn o O(Rn) acts properly on E, because
the action Rn 	 E is clearly proper, and so the same holds for the action of an extension
of Rn by a compact group and O(Rn) is well known to be compact.

It is also possible to define crystallographic groups without employing group actions.
One can show that the following definition is equivalent to the one given before:

1.1.4 Definition ((Uniform) lattices & crystallographic groups). Let Γ be a discrete
subgroup of a locally compact topological group G.

(i) Γ is called a lattice, if the quotient space G/Γ has finite invariant Haar-measure.

(ii) If G/Γ is even compact, then Γ is said to be a uniform lattice.

(iii) A unifrom lattice Γ ≤ Isom(E) is called a crystallographic group.

Crystallographic groups are very well understood, especially the three Bieberbach the-
orems offer a lot of insight into the structure of such groups.

1.2 The Bieberbach theorems

The three Bieberbach theorems were first proven in [Bi11] and [Bi12]. Before citing these
three theorems, we give a definition in order to be able to state the first theorem.

1.2.1 Definition (Virtually). Given a group G and a property P , we say that G is
virtually P , if we can find a subgroup H ≤ G of finite index that has property P .

1.2.2 Theorem (Bieberbach’s first theorem). If Γ is a crystallographic group, then Γ
is virtually abelian.

We can actually be more precise. The above theorem tells us that there is an abelian
subgroup of finite index in Γ. However, we do know more about this subgroup. Namely,
it is even a normal subgroup of Γ and can be written as Γ ∩ Rn. Furthermore, it is a
uniform lattice in Rn, and thus isomorphic to Zn.

Hence, if we are given a crystallographic group, we can always think of it as Zn ex-
tended by a finite group. Note, however, that in general Γ is only an extension of Zn by
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some finite group but not a semidirect product of Zn by some finite group.
Also note that because Γ is a finite extension of Zn, we also immediately have that Γ

is finitely generated.
Viewing Γ as a group of symmetries, we have that Γ is virtually a group of (discrete)

translations.

While the theorem above tells us about the nature of a single crystallographic group,
Bieberbach’s second theorem reveals information about the possible relationship of two
such groups:

1.2.3 Theorem (Bieberbach’s second theorem). Let Aff(E) be the group of affine mo-
tions of E and let Γ, Γ̃ be crystallographic groups. Then we have:

Γ ∼= Γ̃ ⇐⇒ Γand Γ̃ are conjugate in Aff(E)

One part of Hilbert’s 18th problem is the question whether one can find infinitely many
different crystallographic groups in Isom(E) for a fixed dimension. The last of the three
Bieberbach theorems answers this question:

1.2.4 Theorem (Bieberbach’s third theorem). Up to dimension and up to isomor-
phisms, there are only finitely many different crystallographic groups.

In addition to this, crystallographic groups have been completely classified for dim(E) ≤
6. For instance, there are, up to isomorphism, 17 ’different’, i.e. not isomorphic/conjugate,
such groups if dim(E) = 2. If dim(E) = 3, we can find 219 ’different’ crystallographic
groups in Isom(E).

The classification for dim(E) = 3 was given independently by Fedorov [Fe91], Schönflies
[Sc91] and Barlow [Ba94]. For the case dim(E) = 4 see [BBNWZ78], dim(E) = 5 and
dim(E) = 6 are treated in [PS00].

Over time, quite a few considerably different proofs for these theorems have been given.
Bieberbach’s proof for his first theorem uses a theorem by Minkowkski about simultane-
ous Diophantine approximation [Mi07]. In [Fr11] Frobenius used the commutativity of
unitary matrices. A more modern approach that relies on results by Gromov on almost
flat manifolds can be found in [Bu85]. While all these proofs are more geometrical in
nature, there are also purely algebraic ways to prove the Bieberbach theorems.

For example, there is a cohomological approach to the Bieberbach theorems. In this
regard the main theorem is the following.

Let Γ be an n-dimensional crystallographic group and G := Γ/Zn and let N(G,Zn)
denote the normalizer of G in Aut(Zn). Furthermore, H1(G,Rn/Zn) shall be the first
cohomology group of G with coefficients in Rn/Zn. Then we have the following result.

1.2.5 Theorem. There is a bijection between the conjugation classes (in Aff(Rn)) of
crystallographic groups and the orbits N(G,Zn)\H1(G,Rn/Zn).

Proof. A proof may be found in [Sch80].
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It should be noted that there is an isomorphism: H1(G,Zn) ∼= H1(G,Rn/Zn).
From the above theorem, Bieberbach’s third follows immediately. The only thing that
needs to be shown is that H1(G,Rn/Zn) is finite, which is easy to show, see for example
[Sch80] or [Br82].

As mentioned before, we present three viewpoints on crystallographic groups. So
far we have described crystallographic groups as symmetries as well as by their algebraic
properties - lattices of Isom(E) that act on E in a certain way. Now we will turn to a
topological viewpoint:

1.3 Crystallographic groups and flat manifolds

Let us assume that Γ is a Bieberbach group, i.e. a subgroup of Isom(E), that, in addition
to being crystallographic, is torsion free. Then we have that Γ 	 E is free, if we let Γ
act on E in the usual way.

It can be shown that the quotient space M := Γ\E has the following properties: it is
a complete, compact, flat Riemannian manifold M with fundamental group π1(M) ∼= Γ.
Moreover, any complete, compact, flat Riemannian manifold can be constructed this
way.

It should be noted, that being torsion free is indeed necessary for Γ\E to be a manifold.
Before we move on, we want to state what is known about the quantity of torsion free

crystallographic groups for small dimension. Let dim(E) = n, then:

(i) if n = 2, we can only find two crystallographic groups in Isom(E) that are torsion
free: Z2 and Z o Z. The corresponding manifolds are the torus and the Kleinian
bottle, respectively [Ku53].

(ii) if n = 3, 4 respectively, there are only 6, 75 respectively, torsion free crystallo-
graphic groups.

In the last section we presented the Bieberbach theorems in algebraic terms. Now that
we have acquired a new viewpoint on crystallographic groups, we want to carry over the
said theorems. In the light of the geometric interpretation, one can state Bieberbach’s
first and third theorem in the following way:

1.3.1 Theorem (Bieberbach’s first theorem - geometric version). Assume M to be a
complete, compact, flat Riemannian manifold of dimension n. It follows that M is
covered by the n-torus.

1.3.2 Theorem (Bieberbach’s third theorem - geometric version). With respect to home-
omorphism we can only find finitely many different n-dimensional manifolds, that are
complete, compact, flat and Riemannian.

Of course, viewing crystallographic groups as fundamental groups is not something
entirely different as opposed to viewing them as symmetries of the affine space. After all,
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those symmetries are deck transformations of the cover E→ (Γ\E). This also explains,
why we have to assume Γ to be torsion free. The affine space E is path connected, and
thus, using the unique lifting property of paths, we immediately have that the action
Γ 	 E is free and certainly any γ ∈ Γ that acts freely on E cannot be of finite order.
Actually, freely acting properly discontinuous Γ are torsion free and vice versa, see 2.3.2.





2 Affine crystallographic groups

2.0.3 Remark. If we speak about linear spaces, we assume them to be real and of finite
dimension.

As stated above, there are a lot of ways one can try to generalize the theory of
crystallographic groups, the direction we are interested in is the one of so called affine
crystallographic groups. At first, they will be defined in algebraic terms and later the
connection between them and certain manifolds will be given. However, before we give
a definition, we start with a short reminder.

2.1 Affine spaces, affine maps & affine transformations

Affine crystallographic groups are certain symmetry groups of real, finite dimensional
affine spaces. In order to understand these groups better, we will give a little overview
of such affine spaces.

2.1.1 Definition (Simply transitive action and affine spaces). Given a group G acting
on some set X. This action is called simply transitive, if we have that for any x, y ∈ G
there is exactly one g ∈ G such that gx = y. If we have such an action G 	 X, then X
is said to be a principal homogeneous space for G.

Assume G = V , with V a linear space, dim(V ) = n. Then we call a principal homo-
geneous space E the affine space of dimension n.

Let us examine simply transitive actions a little bit. They are a powerful tool because
such actions G 	 X allow us to define a group structure on X in such a way that G ∼= X
via the following: at first, we have to choose a basepoint x0 ∈ X. For the pointed set
(X,x0) we can write gx0 = x for any x ∈ X with an appropriate choice of g ∈ G. Thus,

(X,x0)× (X,x0)→ (X,x0)

(x, y) = (gx0, hx0) 7→ (ghx0).

Clearly, this composition gives rise to a group structure on (X,x0). x0 is the neutral
element and for x = gx0 we have x−1 = g−1x0. Now look at

G→ (X,x0),

g 7→ ϕ(g) = gx0.

Obviously, ϕ is not only a homomorphism but, by the virtue of the simple transitivity
of G 	 X, even an isomorphism. However, although G ∼= (X,x0), there is no canonical

15
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isomorphism between G and X, because one has to choose a basepoint in order to define
a group structure.

In view of this, a more informal approach to affine spaces is to say that they are just
vector spaces without addition or, maybe better, without origin.
If we are given an action V 	 E we will write this action as

V × E→ E,
(v, x) 7→ x+ v,

while for a fixed v ∈ V we will write

Tv : E→ E,
Tv(x) 7→ x+ v

and call this mapping a translation by v. Accordingly, TE := V is called the linear
space of translations. Of course, any affine space can be endowed with a smooth atlas,
for example via an isomorphism like ϕ given above. So we can speak in differential
geometric terms about E: we have that TE is the tangent space of any x ∈ E and, of
course, no tangent space comes without tangent maps Lf :

Suppose we are given a mapping f : E→ B between two affine spaces. We will call f an
affine map, if we can find an x ∈ E and a linear map A such that f(x+v) = f(x)+A(v)
for all v. If we have found such an x, the same holds for any other element of E. Now
the tangent map of an affine map is defined as its linear part, i.e. Lf := A. Of course,
we have: f is an isomorphism of affine spaces iff Lf is an isomorphism of linear spaces.

The group of affine transformations of E, i.e. automorphisms that respect the action
V 	 E, will be denoted by Aff(E). It is easy to see that Aff(E) ∼= Aff(V ) = {ψ(v) 7→
Av+b | A ∈ GL(V ), b ∈ V }, i.e. the group of affine transformations of V . Furthermore,
we have that TE is a normal subgroup of Aff(E) and that the quotient Aff(E)/TE is
isomorphic to GL(TE). This leads to a short exact sequence:

1 −→ TE −→ Aff(E)
L−→ GL(TE) −→ 1,

It is also easy to check that this sequence splits, thus we have Aff(E) ∼= TEoGL(TE) -
actually, we even have for every x ∈ E a splitting homomorphism σx : GL(TE)→ Aff(E)
via σx(A)(x+ v) = x+Av.

Taking all of the above in consideration, we see that affine spaces and vector spaces
are, from a certain point of view, essentially the same thing. Furthermore, of course
every linear space acts simply transitively on itself by addition. Thus, it is somewhat
justified if we switch from affine to linear spaces, and vice versa, when ever we see fit.

To complete this section, a few words about homogenization. We described an affine
space E as a principal homogeneous space for some linear space V , as well as a linear
space without origin. Another point of view would be to characterize affine spaces of
dimension n as affine hyperplanes in a linear space of dimension n+ 1. Starting with an
affine space E and TE = V we can embed our affine space into V ⊕R via the following:
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(i) Of course, the affine hyperplane B := {(v, 1) | v ∈ V } ⊆ V ⊕ R is an affine space
with TB = V .

(ii) On the other hand, let us start with an affine space E and fix an x ∈ E. Then any
y ∈ E can be written unambiguously as y = Tv(x) for some v ∈ V . Now the map

φx : E→ B
φx(y) = φx(Tv(y)) 7→ (v, 1)

is an isomorphism of affine spaces.

This identification allows us to view Aff(E) in another light, namely as a subgroup of
GL(V ⊕ R) via the obvious isomorphism

Aff(E) ∼=
{(

Lf v
0 1

)
| f ∈ Aff(E), v ∈ V

}
≤ GL((V ⊕ R),

or, in other words: every affine group is also a linear one.
Lastly, the composition of two affine maps f(x) := Ax+v and g(x) := Bx+w is given

by fg(x) = B(Ax+ v) + w, or in the homogenized version

fg(x) =

(
AB Bv +A
0 1

)
,

and we immediately see that any group G of affine motions gives rise to a short exact
sequence

1→ L(G)→ G→ G/L(G)→ 1,

whereas the map L : G→ GL(V ) is defined to be the projection on the linear part, i.e.
for of every f ∈ G with f(x) = Ax+ v we have L(f) = A.

Be aware that in general such an exact sequence does not split.

As promised, we are now introducing affine crystallographic groups.

2.2 Affine crystallographic groups

Whereas crystallographic groups are certain subgroups of Isom(E), their affine counter-
parts lie in Aff(E):

2.2.1 Definition (Affine crystallographic groups). Let Γ ≤ Aff(E) act on the affine
space E in the natural way. If this action is crystallographic, we call Γ an affine crystal-
lographic group.

In section 1.3 we showed the connection of crystallographic groups and differential
geometry, i.e. that they are exactly the fundamental groups of compact, complete, flat,
Riemannian manifolds, if they are torsion free. We will now establish such a connection
for affine crystallographic groups:
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2.3 Affine crystallographic groups and flat manifolds

2.3.1 Definition (Affine manifolds & affine lines). Given a smooth manifold M and
an atlas A. We call A an affine atlas, if for all charts (U,ϕ), (V, ψ) ⊆ A the transition
maps

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

are locally restrictions of affine maps. M is then said to be an affine manifold.
An injective map

ι : I →M , with I an open interval in R

into such a manifold is called affine line segment. If this map is even defined on all of
R, it is called affine line.

If we now have a flat affine manifold M in which every affine line segment is the
restriction of an affine line, we will say M is complete.

We now present a few well-known facts:

2.3.2 Facts. Let M be a flat affine manifold, dim(M) = n. It follows,

(i) that the universal cover M̃ of M is a flat affine manifold, too. Furthermore,

(ii) M is complete iff M̃ is complete, and

(iii) if M̃ is indeed complete, we have: M̃ ∼= Rn.

It can be shown, that these facts yield a variation of the Hopf-Killing theorem, i.e.
they imply that the fundamental group Γ := π1(M) is actually a properly discontinuous
subgroup of Aff(Rn), and thus an affine crystallographic group, with the addition that
all stabilizer groups Γx, x ∈ Rn, are all trivial. On a group level this means the following:
Γ is torsion free, because we have the following: let G be a subgroup of Aff(Rn), that
acts, in the usual way, properly discontinuous on Rn, then G is torsion free iff Gx is the
trivial group for every x ∈ Rn:

(i) ”⇒” Assume G is torsion free and acts properly discontinuously on Rn and suppose
that 1 < |Gx| for some x ∈ Rn and fix a g ∈ Gx. Of course, gx = x implies gk = x
for every k ∈ Z, thus <g> ≤ Gx. Now |Gx|, and a fortiori <g>, has to be finite,
otherwise it would be a contradiction to our assumption that G 	 Rn is properly
discontinuous. On the other hand, the span <g> also cannot be a finite subgroup
of G, otherwise the assumption on G to be torsion free would be contradicted.
Thus, all stabilizer groups Gx are trivial, i.e. G acts freely on Rn.

(ii) ”⇐” It is easily shown that every finite group H in Aff(Rn) acting on Rn in the
standard way has a fixed point. But this immediately implies the claim: if a group
G is acting on Rn freely, there is no subgroup H of finite order, which means that
G is torsion free.
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As stated above, the fundamental group of a compact, complete, affine manifold is tor-
sion free and affine crystallographic. This also works the other way around: if Γ ≤ Aff(E)
is a torsion free, affine crystallographic group, one can show the quotient space Γ\E is
a complete flat affine manifold with π1(Γ\E) ∼= Γ. Of course, by the very definition of
crystallographic, Γ\E is also compact.

Later, right after corollary 3.4.5, we will show, that any compact, complete, affine
manifold is covered by a complete affine solvmanifold.

It should also be noted, that when one is talking about compact, complete, affine man-
ifolds, one may not simply drop the assumption on completeness, because in contrast to
the Riemannian case, the Hopf-Rinow theorem does not hold for affine manifolds, or in
other words, there are compact, affine manifolds that are not complete.

Now that we have defined affine crystallographic groups algebraically and given a
geometric description of them, we ask ourselves which properties these groups possess.
Of course, an obvious question is, whether we can prove Bieberbach-like theorems for
these groups as well.





3 Bieberbach-like theorems for affine
crystallographic groups?

This section is devoted to two tasks. At first we show the following:

(i) Affine crystallographic groups are not virtually abelian.

(ii) (Abstract) Isomorphic affine crystallographic groups are not conjugate in Aff(E).

(iii) There are infinitely many isomorphism classes of affine crystallographic groups.

To summarize: we cannot directly generalize Bieberbach’s theorems for affine crystal-
lographic groups. In fact, we can show that the first and the third Bieberbach theorem
already fail in dimension 3, if we replace crystallographic with affine crystallographic.
see 3.1. To show that a naive ’affine’ version of the second Bieberbach theorem does not
hold, we will assume E to be of dimension 6, section 3.2.

After we have shown via examples that the above claims hold, we will pursue the
second task of this section: we will explore possible generalizations of Bieberbach’s the-
orems for affine crystallographic groups.

While the generalizations of Bieberbach’s first theorem, which will be presented in
this section, are somewhat technical, we will examine a conjectured generalization in
section 4, which is more straight-forward. This conjecture - Auslander’s - states that
every affine crystallographic group is virtually solvable. For a thorough definition of the
term solvable see definition 4.1.1.

Back to our examples: At first we will construct a subgroup Γ(1) of Aff(R3), that will
be affine crystallographic on the one hand, but on the other hand has no free abelian
subgroup of rank 3. To deduce the latter, we will show that for any set S, |S| = 3, that
generates a free abelian subgroup, one can easily construct a generating set S̃, |S̃| = 2,
that yields the same subgroup, hence every free abelian subgroup is of rank at most 2.
As a last step, we will use all those generating sets to deduce that Γ(1) cannot be virtu-
ally abelian and thus invalidating a direct generalization of Bieberbach’s first theorem.

Next we will generalize the construction of Γ(1) to get infinitely many affine crystal-
lographic groups Γ(i), i ∈ N×, which are pairwise not isomorphic. These constructions
are due to Auslander [Au56].

In the last example, which is due to Grunewald and Segal, [GS94], we will show how to
construct a familiy of affine crystallographic and virtually polycyclic groups {Γk | k ∈ N},

21
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which are all isomorphic to each other. Then we will deduce that they are conjugate iff
k = l, l ∈ N.

Thereafter, we will first give a generalization of Bieberbach’s first theorem, which not
only covers the affine situation but is more general. The second generalization is only
concerned with the affine setting.

Then we will present a generalization of Bieberbach’s second theorem.
The main theorem of the last subsection is a generalization of Bieberbach’s third

theorem.

3.1 Bieberbach’s first and third theorem do not hold in the
affine case

As promised, we will now construct an affine crystallographic group Γ that is not virtually
abelian. As stated before, this example along with the necessary propositions and their
respective proofs are due to Auslander [Au56].

3.1.1 Example (There are affine crystallographic groups that are not virtually abelian).
To construct such a group Γ(1) we will think of its homogenized version, i.e. Γ(1) <
Aff(R3) < GL(R4). We set Γ(1) :=<I, J >, with

I :=


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 and J :=


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Furthermore we set K := JIJ−1I−1. We immediately see that

K =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

KI = IK, (3.1)

KJ = JK, and that (3.2)

JnIm = KnmImJn ∀n,m ∈ Z. (3.3)

Now the equalities (3.1) through (3.3) immediately yield that any fixed γ ∈ Γ(1) may
be written as

γ = KnImJ l =


1 l 0 n
0 1 0 m
0 0 1 l
0 0 0 1

 (3.4)
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with an appropriate choice of n,m, l ∈ Z. We will now show that Γ(1) is indeed an affine
crystallographic group.

3.1.2 Proposition. The orbit space M(Γ(1)) := Γ(1)\E is a compact, complete, flat,
affine manifold.

Proof. According to [Th97] we have the following: let Γ be a group which acts freely
and wandering on a connected (Hausdorff) manifold X. Then the quotient space Γ\X
is a manifold, whereas by wandering action Γ 	 X we mean, that for every point in X
we can find a neighborhood N such that only finite many γN intersect with N , γ ∈ Γ.
We will now show that the natural action Γ(1) 	 E, with E being the real affine space of
dimension 3, is a free action without accumulation points, and thus also wandering. By
the virtue of equation (3.4), we may find n,m, l ∈ Z, such that any γ(x), γ ∈ Γ, x ∈ E,
can be written in the following way:

γ(x) = KnImJ l(x) =


x1 + lx2 + n
x2 +m
x3 + l

1

 (3.5)

If we can show that the Euclidean distance between the two points x and γ(x) is
always at least 1, as long as n,m and l are not equal to 0 at the same time, which is
only the case if γ is the neutral element e ∈ Γ(1), we immediately have that Γ(1) acts
freely and wandering on E, which in turn yields that M(Γ(1) is indeed a manifold.

For the distance we have

d(γ(x), x) =
√

(x1 + lx2 + n− x1)2 + (x2 +m− x2)2 + (x3 + l − x3)2 + (1− 1)2

=
√

(lx2 + n)2 +m2 + l2.

Obviously, if at least one of {n,m, l} is not equal to 0, we have d(γ(x), x) ≥ 1.
Let us move on to the question of compactness of M(Γ(1)). Let F denote the unit

cube of E:

F :=

x =

x1

x2

x3

 | x ∈ E, 0 ≤ xi ≤ 1, 1 ≤ i ≤ 3


From equation (3.5) we deduce that under the action of Γ(1) any x ∈ E is equivalent to
an element in F and furthermore that any two elements of F are certainly not equivalent
under this action, because, as stated above, the distance between x and γ(x) is always at
least one ∀γ 6= e. Thus F is a fundamental domain and therefore M(Γ(1)) is compact.

We will now deduce that M(Γ(1)) admits an affine structure. Of course, the affine
space E has a canonical flat linear connection ∇, which is invariant under affine trans-
formations. It can be shown, that ∇ induces a flat affine connection on every Γ\E, if Γ
is a discrete and torsion free subgroup of Aff(E). But from the very definition of Γ(1)
and equation (3.4) it follows that Γ(1) is discrete as well as torsion free, which yields
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the existence of a flat affine connection for M(Γ(1)). Considering the fact that the exis-
tence of such a connection is equivalent to the existence of an affine atlas, we follow that
M(Γ(1)) is an affine manifold. There is one last property, completeness of M(Γ(1)), to
be checked, in order to finalize our proof.

Clearly, E is complete. It is also the universal cover for M(Γ(1)). Therefore M(Γ(1))
is complete as well because a manifold is complete iff its universal cover is complete.

By using the considerations from section 1.3 in conjunction with the proposition, i.e.
Γ(1) is the fundamental group of the compact, complete, flat, affine manifold M(Γ(1)),
we deduce that Γ(1) is an affine crystallographic group. We will now show that it is not
virtually abelian by proving the following proposition.

3.1.3 Proposition. Γ(1) has no free abelian subgroup of rank 3.

Proof. Let γ1, γ2, γ3 ∈ Γ(1). Once again, with an appropriate choice of integers ni,mi, li,
1 ≤ i ≤ 3, we have

γi = KniImiJ li .

This, together with the equations (3.1) - (3.3), yields

γiγj = Kni+nj+limjImimjJ lilj , and (3.6)

γjγi = Kni+nj+ljmiImimjJ lilj .

We conclude that γiγj = γjγi if and only if limj = milj . In order to prove the proposi-
tion, we will look at the five different cases, in which γ1, γ2 and γ3 commute with each
other. Then we will examine the rank of the free abelian subgroup < γ1, γ2, γ3 > ≤ Γ(1).

Case 1 : m1 = m2 = m3 = 0.
In this case all γi are reduced to the form γi = KniJ li . Recall that KJ = JK. Hence,
we see that the span < γ1, γ2, γ3 > is a subgroup of the free abelian group < K, J >.
Clearly a free abelian group of rank 2 does not have a free abelian subgroup of rank 3.
It follows that <γ1, γ2, γ3> is of rank at most 2.

Case 2 : l1 = l2 = l3 = 0.
In this case we can make the exact same argument as we did in Case 1.

Case 3 : m1 6= 0,m2 = m3 = 0.
Here we have to have l2 = l3 = 0 if we want γ1 to commute with γ2 as well as with γ3.
Looking at Case 2, the only thing to check is what happens if l1 6= 0. Assuming this
is case, we have γ1 = Kn1Im1J l1 , γ2 = Kn2 and γn3

3 . This time, we conclude that the
span of the γi has to be equal to the span of K and Im1J l1 . hence <γ1, γ2, γ3> is the
free abelian group of rank 2.

Case 4 : m1 6= 0,m2 6= 0,m3 = 0.
We want γ3 to commute with γ1 and γ2. For this to be the case l3 has to be 0. This
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implies that γ1 = Km1In1J l1 , γ2 = Km2In2J l2 and γ3 = Km3 . In order for γ1 and γ2

to commute, we need that l1m2 = m1l2. This is true, if either l1 = l2 = 0 or if l1 6= 0
and l2 6= 0. The first possibility would lead to Case 2, so let us move on to the second
one. If both l1 and l2 are not equal to 0 it follows that γl21 γ

−l1
2 = Ka for some integer

a. Furthermore, n3 may not be equal to 0, otherwise γ3 would be the neutral element
and < γ1, γ2, γ3 > would be the free abelian group of rank 2. Thus we assume n3 6= 0
and define d to be the greatest common divisor of n3 and a. Thus we have a = dr and
n3 = ds for some r, s ∈ Z. From γ3 = Kn3 = (Kd)s we deduce <γ3> ≤ <Kd>, which
yields <γ1, γ2, γ3> ≤ <γ1, γ2,K

d>. Let’s have a closer look at <γ1, γ2,K
d>:

The equation

γl21 γ
−l1
2 = Ka = (Kd)r

yields the following relation for our group <γ1, γ2,K
d>:

γl21 γ
−l1
2 (Kd)−r = e.

Now, a free abelian group does not have any relations, besides the ones denoting
commutativity of course. Therefore, the group <γ1, γ2,K

d> cannot be of rank 3, and
consequently its subgroup <γ1, γ2, γ3> cannot be of rank 3 either.

Case 5 : m1 6= 0,m2 6= 0,m3 6= 0 as well as l1 6= 0, l2 6= 0, l3 6= 0.
At first assume m1 = m2 = m3 = m, m ∈ Z. For < γ1, γ2, γ3 > to be abelian we then
also have to have l1 = l2 = l3 = l ∈ Z and therefore

γ1 = Kn1ImJ l

γ2 = Kn2ImJ l

γ3 = Kn3ImJ l.

From this, it immediately follows that < γ1, γ2, γ3 > ≤ <K, ImJ l > with <K, ImJ l >
obviously being free abelian with rank 2 and so its subgroup <γ1, γ2, γ3> cannot be free
abelian of rank 3. Hence we drop the assumption m1 = m2 = m3 and instead demand
m1 6= m2 as well as n1 6= n2. This gives us

m1
(l2 − l3)

(l2 − l1)
+m1

(l3 − l1)

(l2 − l1)
= m3

l1
(m2 −m3)

(m2 −m1)
+ l2

(m3 −m1)

(m2 −m1)
= l3.

With milj = mjli, 1 ≤ i, j ≤ 3 in mind, so that γ1, γ2, γ3 commute pairwise, we follow

(l2 − l3)

(l2 − l1)
=

(m2 −m3)

(m2 −m1)
=: k1, and

(l3 − l1)

(l2 − l1)
=

(m3 −m1)

(m2 −m1)
=: k2.
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These two sets of equations yield

m1k1 +m2k2 = m3,

l1k1 + l2k2 = l3.

Using this and formula (3.6) above, which tells us what γiγj looks like, and an appropriate
choice of a ∈ Z, we get

γk11 γk2
2 = KaIm1k1+m2k2J l1k1+l2k2

= KaIm2J l2

= Ka(K−rKr)Im2J
l2

= Ka−rγ3.

This yields <γ1, γ2, γ3> = <γ1, γ2,K
a−r>. In order to prove that <γ1, γ2, γ3> is not

free abelian of rank 3, it suffices to proof this for <γ1, γ2,K
a−r>, but this situation is

exactly the same as in Case 4.
Furthermore, these were obviously all the cases in which γ,γ2 and γ3 commute pairwise,

and of course all the cases are without loss of generality. Hence we have finished our
proof, as well as our example, i.e. we showed that Γ(1) is an affine crystallographic
group that is not virtually abelian of rank 3.

Our next task is to use the generating sets for free abelian subgroups of Γ(1) we
constructed in the above proposition, to show that

3.1.4 Proposition. Γ(1) is not virtually abelian.

Proof. We start by observing that no abelian subgroup Γ̃ ≤ Γ is finite. That this is
indeed the case, can be immediately deduced by looking at (3.4) or (3.6). Hence, any
abelian subgroup of Γ(1) is also free abelian and further, in view of proposition 3.1.3,
any such subgroup is of rank either 1 or 2.

(i) If the rank of Γ̃ is 1, we trivially have that |Γ(1)/Γ̃| is not finite by using that
Γ̃ =<KnImJ l>, for some n,m, l ∈ Z, at least one of them being not equal to 0,
and our multiplication formula (3.6).

(ii) Similarly, if the rank of Γ̃ is 2, we immediately know generating elements of
Γ̃ by looking at the different cases we examined in proposition 3.1.3. Using this
along with (3.6), we also have that |Γ(1)/Γ̃| cannot be finite.

The main point in both arguments is, that we always have at least π(<I >) ∼=<I > or
π(<J>) ∼=<J>, with π being the natural projection from Γ(1) onto Γ(1)/Γ̃.

We will now construct infinitely many affine crystallographic subgroups Γ(i) ≤ Aff(E),
i ∈ N+, E being the real affine space of dimension 3, that are pairwise not isomorphic
and thus we show that Bieberbach’s third theorem does not hold if one substitutes affine
crystallographic for crystallographic.
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3.1.5 Example (There are infinitely many different conjugacy classes of affine crystal-
lographic groups in Aff(E)). The groups we construct build upon the definition of Γ(1).
So, as in the example above, we think of Aff(R3) as a subgroup of GL(R4) and define

I :=


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 and J :=


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Furthermore, we fix an i ∈ N+ and set

K(i) :=


1 0 0 1

i
0 1 0 0
0 0 1 0
0 0 0 1

 .

By definition K(1) is our K from above, i.e. K(1) = K = JIJ−1I−1. Now we define
Γ(i) :=<I, J,K(i)>. Every element γ ∈ Γ(i) is of the form

γ = (K(i))a(K(1))nImJ l

for some integers a, n,m, l. Additionally we have 0 ≤ a < i. From the equation above
we deduce that we can write the product of two elements γ1 and γ2 in Γ(i) in this way:

γ1γ2 = (K(i))a1(K(1))n1Im1J l1(K(i))a2(K(1))n2Im2J l2

= (K(i))b(K(1))n1+n2+l1m2+kIm1+m2J l1l2 ,

whereas
b+ ki = a1 + a2, with 0 ≤ b < i.

Of course, looking at the multiplication formula, we see that K(1) commutes with I, J
and K(i). Actually, we have more: The commutator subgroup [Γ(i),Γ(i)] is exactly
the span of K(1). Using this, together with the rule for multiplication, we deduce that
Γ(i)/[Γ(i),Γ(i)] ∼= Zi × Z × Z. This yields Γ(i) ∼= Γ(j) iff i = j. Hence, there are
infinitely many isomorphism classes. Of course, this immediately yields that there are
also infinitely many different conjugacy classes.

To show that Γ(i)\E is a compact, complete, flat affine manifold, and thus that Γ(i)
is a (torsion free) affine crystallographic group, an analogous argument to the one given
can be made to show that the special case for Γ(1) holds. Therefore we have shown that
there are infinitely many isomorphism classes of affine crystallographic groups in Aff(E).

3.2 Bieberbach’s second theorem does not hold in the affine
case

Now that we have shown that one cannot go the easy route when generalizing Bieber-
bach’s first and third theorem, we will present that a direct generalization of the second



28 Chapter 3. Bieberbach-like theorems for ACGs?

one also fails.
The construction, which yields the desired example as well as necessary propositions

are due to Grunewald and Segal, [GS94].

3.2.1 Example (There are isomorphic affine crystallographic groups that are not conju-
gate in Aff(E)). To prove the claim, the procedure is as follows: At first we will construct
a simply transitive group G and afterwards an affine crystallographic subgroup Γ ≤ G.
We will go on by defining a family of groups Γk, k ∈ N×, such that Γ = Γ1

∼= Γk for
any k. Then we will show that two such groups Γk and Γl are conjugate iff k = l, which
clearly gives us a counterexample to Bieberbach’s second theorem in the affine case.

We start by defining a couple of maps. The first one is defined as

ν : R6 → Aff(R6)

(r, y, x̃, z̃) 7→ ν(r, y, x̃, z̃) =


1 0 x̃t 0 r + 1

2 ||x̃||
0 1 0 0 y
0 0 I2 0 x̃
0 0 0 I2 z̃
0 0 0 0 1

 ,

with r, y ∈ R, x̃, z̃ ∈ R2 and I2 denoting the 2 × 2-identity matrix. Clearly, ν is a
homomorphism, and thus U := ν(R6) is an abelian and unipotent group. Furthermore,
ν is injective and we have R6 ∼= U .

The second map we will make use of is defined as follows

E : R→ Gl(R2)

r 7→ E(r) =

(
cos 2πr sin 2πr
− sin 2πr cos 2πr

)
.

We also set

τ : R6 → Aff(R6)

(r, y, x̃, z̃) 7→ τ((r, y, x̃, z̃)) = diag(1, 1, (E(r), ey, e−y, 1),

with (r, y, x̃, z̃) as before and diag(·) denoting the diagonal matrix with the respective
entries. The map τ is a homomorphism and consequently so is the map θ := τ ◦ν−1 : U →
S =: im(τ). For the kernel of θ we have

ker(θ) = ν(ker(τ)) = ν(Z⊕ 0⊕ R4). (3.7)

We fix g1, g2 ∈ R6, gi = (ri, yi, x̃i, z̃i), 1 ∈ {1, 2} and set z̃1 = (z1, z2). Then we have

θ(ν(h)−1ν(g)ν(h)) = diag(r1, y1, x̃1E(r2), e−y2z1, e
y2 − z2), and (3.8)

[θ(g), θ(h)] = diag(0, 0, x̃E(r2)− x̃, e−y2z1 − z1, e
y2z2 − z2).

We see [U, S] ≤ ker(θ) and hence

G := {gθ(g) | g ∈ U} = {ν(v)τ(v) | v ∈ R6} ≤ Aff(R6}
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is a simply transitive group. This can be deduced from [GS94], theorem 5.5. Further-
more, ψ : R6 → G, ψ(v) := ν(v)τ(v) is a surjective homeomorphism.

We go on by fixing an L ≤ R4 with L ∼= Z4 and choosing an approriate α ∈ R and
β ∈ R×, such that

Lt

E(α) 0 0
0 0 e−β

0 0 eβ

 = Lt. (3.9)

At the end of this section, we will show that such L,α and β exist indeed.
We set

γ := ψ(α, β, 0, 0, 0, 0)

and deduce from equation (3.8) that for A ≤ R2 we have

γ−1ν(A⊕ L)γ = ν(A⊕ L).

This yields
ΓA := ν(A⊕ L) <γ> ≤ Aff(R6).

Let (a, b) ∈ A⊕ L. Using equation (3.7) we see

ν(a, b) ∈ G ⇐⇒ (ab) ∈ Z⊕ 0 ⇐⇒ ν(a, b) = ψ(a, b).

Now, if Z⊕0 ≤ A, then ΓA∩G = ΓZ⊕0 =: Γ. Furthermore, recalling that U is abelian, we
have ΓCΓA. Equation (3.8) implies that γ lies in the normalizer of ν(Z⊕0⊕L). We also
have Γa/Γ ∼= A/(Z⊕ 0), because ν is an isomorphism. Thus, setting A(k) := k−1Z⊕ 0,
k ∈ N×, and Γk := ΓA(k), we see ΓC Γk as well as |Γk : Γ| = k and Γk ∩G = Γ.

Of course, we also have Γk ∼= Γl for any k, l ∈ N×, especially Γ = Γ1
∼= Γk ∀k.

3.2.2 Proposition. Γ is an affine crystallographic group, if α is irrational.

Proof. Our group Γ can be written as

Γ = {ψ(m+ nα, nβ, a) | m,n ∈ Z, a ∈ L},

and we see that Z6 ∼= ψ−1(Γ) ≤ ψ−1(G) = R6. In other words, ψ−1(Γ) is discrete and
cocompact in ψ−1(G). Thus, because ψ is a homeomorphism, we have that Γ is discrete
and cocompact in G. Furthermore, one can show that Γ is Zariski dense in G iff <E(α)>
is Zariski dense in SO(R2) iff α is irrational.

Because G is simply transitive, we can employ [GS94], theorem D, which basically
says that in such a situation, Γ is an affine crystallographic group.

From now on we will assume α to be irrational, so that Γ is affine crystallographic.
For L we require

(1, 0, z1, z2) ∈ L, z1, z2 ∈ R, and (3.10)

(x̃, z̃) ∈ L→ ||x̃|| is an algebraic integer. (3.11)

That we may impose such obstructions on L and α will also be shown at the end of this
section.

We are now ready to prove the main proposition of this section.
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3.2.3 Proposition. Γk and Γl are conjugate in Aff(R6) iff k = l.

Proof. Now let k, l ∈ N×. We assume there is a g ∈ Aff(R6), such that g−1Γkg = Γl.
Because u(ΓA) = ν(A⊕ L) is the maximal normal unipotent subgroup of ΓA, we have

ν(Ak ⊕ L)g = gν(Al ⊕ L).

The center of ΓA is exactly ν(A⊕0), because by assumption α is irrational. Furthermore,
we have

ν(Ak⊕)g = gν(Al ⊕ 0). (3.12)

If gij is the (i, j)-entry of g, then we get from equation (3.12), that

k−1Z = g11l
−1Z, and

0 = gi1l
−1Z ∀ 2 ≤ i ≤ 6.

Consequently,

g11 = ± l
k

, and (3.13)

g21 = · · · = g61 = 0. (3.14)

We choose a ∈ Ak, b ∈ Al and x, y ∈ L, such that

ν(a+ x)g = gν(b+ y).

Then we have the following set of linear equations:

x1g33 + x2g43 = g11y1, (3.15)

x1g34 + x2g44 = g11y2, as well as (3.16)

x1g35 + x2g45 = 0, and (3.17)

x1g36 + x2g46 = 0. (3.18)

By the power of equation (3.13), we have

x1 = g33y1 + g34y2 + g35y3 + g36y4, and (3.19)

x2 = g43y1 + g44y2 + g45y3 + g46y4. (3.20)

Choosing x1 and x2 linearly independent, equations (3.17) and (3.18) imply

g35 = g45 = g36 = g46 = 0. (3.21)

Recalling assumption (3.10), we set (y1, y2) := (1, 0) and deduce from (3.19) through
(3.21) that (x1, x2) = (g33, g43). Furthermore, equations (3.15) and (3.16) yield ||(x1, x2)|| =
g11, which equals ± l

k according to (3.13). We also assumed (3.11), and hence, l
k is an

algebraic integer. Consequently, k|l and, because of symmetry, l|k. But this means
k = l.



3.3. Three generalizations of Bieberbach’s first theorem for the affine case 31

Though we have shown that our claim holds, there is one last thing to check, namely
that such L,α and β exist indeed. To proof this, it suffices to give an algebraic number
field K over Q of degree 4 that admits two real and two non-real complex embeddings

σ1, σ2 : K→ R, and

µ, µ : K→ C,

and furthermore has a unit ε 6= ±1 in the ring of integers OK such that

σ1(ε) = σ2(ε) > 0, and

||µ(ε)|| = 1.

To achieve this, we can for example define ε to be a root of x4 − 4x3 + 4x2 − 4x+ 1 and
set K := Q(ε).

We can now define L via the map

ξ := µ× σ1 × σ2 : OK → C⊕ R2.

If we set

L := im(ξ),

α :=
1

2
arg(µ(ε)), and

β := −log(σ1(ε)),

one can check that L ∼= Z4 and also that assumption (3.9) holds. The definitions above
also satisfy β 6= 0 and the irrationality of α. And from (1, 0, 1, 1) = ξ(1) ∈ L we
deduce that we may also assume (3.10). Lastly, (3.11) is also not violated because, if
(x̃, z̃) = ξ(c), then we have ||x̃|| = µ(c)µ(c).

3.3 Three generalizations of Bieberbach’s first theorem for the
affine case

To state the three generalizations, we need the Zariski topology. Thus, we start with a
short recap thereof.

3.3.1 Definition (Zariski topology, affine varieties and algebraic (sub)groups). For a
fixed set S of polynomials over C with n variables we set

V (S) := {x ∈ B | f(x) = 0 ∀f ∈ S},

and call V (S) an algebraic set. The Zariski topology on Cn is then defined via these
algebraic sets, namely they are exactly the closed sets of this topology.

Of course, the real linear space Rn embeds into Cn, and we define the Zariski topology
on Rn to be the restriction of the Zariski topology on Cn to Rn.
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If we are given a nonempty algebraic set V , that is not the union of two proper algebraic
sets, we say that V is an affine variety. Any affine variety V can naturally be equipped
with the Zariski topology by defining a set W ⊆ to be closed if W is an algebraic set.

An affine variety that is also a group is called an algebraic group. Lastly, if G is an
algebraic group, then we call H ≤ G an algebraic subgroup, if H is closed with respect
to the Zariski topology on G.

The definition of the Zariski topology we just presented is the classical approach. A
more modern one would be to define closed sets as follows: Let A be an abelian ring.
Then the Zariski closed sets are defined to be the sets V (I) := {P ∈ Spec(A) | I ⊆ P},
with IER being an ideal and Spec(A) := {P ER | P is a proper prime ideal} being the
spectrum of A.

One of the most prominent examples of algebraic groups is Aff(Cn). Thus, it makes
sense to talk about the Zariski closure of any (real) linear group.

We can now state a generalized version of Bieberbach’s first theorem.

3.3.2 Theorem (Bieberbach’s first theorem - generalized version). Given a Lie group
G, a closed connected solvable subgroup R E G with natural projection π : G → G/R.
If H is a closed subgroup of G, and if the identity component H0 is solvable, then the

identity component of the Zariski closure of the projection of H, π(H)
0
, is also solvable.

Proof. A proof may be found in [Au63] or [Ra72].

Of course, setting G := Aff(Rn), R := Zn and assuming H to be crystallographic, we
immediately see that Bieberbach’s theorem is a corollary.

Besides Bieberbach’s first theorem, there is another useful corollary derived in [Ra72].
We will make use of both the theorem and the corollary later in section 4.

3.3.3 Corollary. Given a Lie group G with radical R. If Γ ≤ G is discrete and π(Γ) is
Zariski dense in G/R, then π(Γ) is also discrete.

It should be noted that two other corollaries in [Ra72], 82.5 and 8.28, do not hold, as
Witte showed according to Abels, [Ab01].

We go on by giving another generalization of the first of the Bieberbach theorems,
namely for discrete subgroups of Aff(Rn). In order to state the proposition we need a
definition and a little more notation.

3.3.4 Definition (Unipotent element and unipotent group). Given a ring R with 1
being the identity element of the multiplication. An r ∈ R is called unipotent, if (r− 1)
is nilpotent, i.e. if there is a k ∈ N×, such that (r − 1)k = 0.

Accordingly, a linear group is called unipotent, if all its elements are unipotent.

Furthermore, set Γnd := Γ ∩ L−1(L(Γ)
0
). Abels suggests, [Ab01], to think of Γnd,

respectively L(Γ)nd := L(Γ) ∩ L(Γ)
0

as the non-discrete part of Γ, L(Γ) respectively.
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3.3.5 Proposition (Bieberbach’s first theorem - an affine version). Given a discrete
subgroup Γ ≤ Aff(Rn). In this case Γnd is a nilpotent, finitely generated group. If
furthermore Γ is crystallographic, we have that Γnd as well as L(Γnd) are unipotent.

Proof. This assertion was proven in [CD89].

To end this section, we present yet another generalization that holds for affine crys-
tallographic groups, if we furthermore assume them to be virtually solvable.

To put the upcoming theorem into perspective we recall that Bieberbach’s first theo-
rem says, that any crystallographic group Γ contains a subgroup ∆ ∼= Zn, that is given
via Γ ∩ Rn = ∆. Trivially, ∆ is a subgroup of an abelian group that acts simply transi-
tively, via translations, on Rn. In view of this, we have the following generalization for
virtually solvable affine crystallographic groups:

3.3.6 Theorem (Bieberbach’s first theorem - another affine version). Given a virtually
solvable affine crystallographic group Γ ≤ Aff(Rn), there is closed connected solvable Lie
group G ≤ Aff(Rn), such that

(i) G 	 Rn is simply transitive,

(ii) ∆ := Γ ∩ G is a finite index subgroup of Γ and the quotient G/∆ is compact,
and

(iii) for the Zariski closures of ∆ and G we have ∆ = H.

Proof. See [FG83].

On a side note, it is also possible to achieve more general results, see theorems 3.4.1
and 3.4.3.

We can also put the above assertion into geometric terms: because G acts simply
transitively, it is possible to pull back the affine structure on E, i.e. the affine atlas, to
G via any evaluation map from G to E. Furthermore, if the pulled back affine structure
on G is invariant under muliplication from the left, it induces an affine atlas on Γ\G.
If we require Γ to be torsion free, we then have that the complete affine manifold Γ\E
is affinely equivalent to the complete affine solvmanifold Γ\G. In the light of this and
the above corollary, we deduce that M is a compact complete affine manifold, such that
if the fundamental group is virtually solvable, then M is covered by a complete affine
solvmanifold.

3.4 A generalization of Bieberbach’s second theorem for the
affine case

While the generalizations we want to present for Bieberbach’s second and third theorem
are quite different from each other, they are both based on common definitions and
results due to Fried and Goldman, [FG83]. These results also serve as a corner stone
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for the classification of affine crystallographic virtually solvable groups - once again we
refer to 4.1.1 for a comprehensive definition of the term solvable.

3.4.1 Theorem. Suppose Γ ≤ Aff(Rn) is a properly discontinuous group and virtually
solvable. Then there is a G ≤ Aff(Rn) with Γ ≤ G, such that

(i) G decomposes into finitely many components G1, . . . , Gk with Gi ∩ Γ 6= ∅ ∀1 ≤
i ≤ k,

(ii) the quotient G/Γ is compact,

(iii) for the Zariksi closures of Γ and G we have Γ = G, and

(iv) Gx is finite ∀x ∈ E.

Furthermore, G is unique, if there is a Γ̃ ≤ Γ with finite [Γ : Γ̃], such that all γ ∈ L(Γ̃)
have only real eigenvalues.

Proof. This theorem is proven in [FG83].

3.4.2 Definition (Crystallographic hull). Let Γ and G be as in theorem 3.4.1. Then G
is called a crystallographic hull of Γ.

Before we go on, we present a short example of crystallographic hulls, in order to see
that in general they are indeed not unique. This example is taken from [FG83].

We think ’homogenizised’ and set

Γ :=



rk cos(kθ) −rk sin(kθ) 0 0
rksin(kθ) rk cos(kθ) 0 0

0 0 1 k
0 0 0 1

 | k ∈ Z

 ,

with r ∈ R+ and θ
2π ∈ R being irrational. It can be checked that Γ is a properly

discontinuous, yet not affine crystallographic, group, and that for any m ∈ Z the group

Gm :=



rt cos t(θ + 2πm) −rt sin t(θ + 2πm) 0 0
rtsint(θ + 2πm) rt cos t(θ + 2πm) 0 0

0 0 1 t
0 0 0 1

 | t ∈ R


is a crystallographic hull for Γ.

Note that uniqueness of G is also not given if Γ is affine crystallographic. For example,
let Γ ∼= Z3 o Z. We pick an A ∈ SL(Z3), such that A has only one real eigenvalue and
is of infinite order. If Γ acts on R4 via the following, it is easy to see that Γ is an affine
crystallographic group:

We decompose R4 = V ⊕R. The Z3-part of Γ shall act by three linearly independent
translations on V and the part corresponding to Z shall act by A on V and by a (non-
trivial) translation in the fourth direction, i.e. on {0} × R.
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From the fact that there are infinitely many B ∈ sl(R3), one can deduce that there
are infinitely many crystallographic hulls for Γ.

A more general analogon for crystallographic hulls is motivated by the following the-
orem:

3.4.3 Theorem. Suppose H ≤ GL(Rn) is virtually solvable. Then there is a G ≤
GL(Rn) with H ≤ G, such that

(i) G decomposes into finitely many components G1, . . . , Gk with Gi ∩H 6= ∅ ∀1 ≤
i ≤ k,

(ii) there is a compact set K ⊂ G with G = KH,

(iii) for the Zariksi closures of H and G we have H = G, and

(iv) dimG ≤ rankH.

Furthermore, G is unique, if there is a H̃ ≤ G with finite [H : H̃], such that all h ∈ L(H̃)
have only real eigenvalues.

Proof. This theorem is proven in [FG83].

3.4.4 Definition (Syndetic hull). Let H and G be as in theorem 3.4.3. Then G is called
a syndetic hull of H.

An immediate corollary to theorem 3.4.1 is the generalized version of Bieberbach’s
first theorem we presented at the end of the last subsection, theorem 3.3.6:

3.4.5 Corollary. Suppose Γ ≤ Aff(Rn) is an affine crystallographic group and virtually
solvable. Then there is a G ≤ Aff(Rn), such that G 	 Rn is simply transitive, Γ∩G ≤ G
is discrete, G/(Γ ∩G) is compact and [Γ : Γ ∩G] is finite.

Back to the main concern of this section, i.e. generalizing Bieberbach’s second theo-
rem. We present an approach by Fried and Goldman, [FG83].

Given a linear space Rn, and a diffeomorphism f : Rn → Rn, with the property that
both f and its inverse f−1 are polynomial mappings, we call f a polynomial automor-
phism of Rn.

3.4.6 Theorem (Bieberbach’s second theorem - an affine version). Suppose we are given
two affine crystallographic and virtually solvable groups Γ1,Γ2 ≤ Aff(Rn). If there is an
isomorphism ϕ : Γ1 → Γ2, then it is induced by a polynomial automorphism f of Rn, i.e.
there is an f such that following diagram commutes for every γ ∈ Γ1:

Rn

Rn

Rn

Rn

γ

f

f

ϕ(γ)
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In other words: Γ1
∼= Γ2 iff there is such an f with fΓ1f

−1 = Γ2.

Proof. The proof, which is based on the properties of crystallographic hulls, can be found
in [FG83].

There are two more observations to be made.
Of course, this statement holds also for crystallographic groups, because they are

conjugate by linear map, i.e. a constant polynomial function.
The second observation is the fact that any property of an affine crystallographic and

virtually solvable group Γ that can be expressed via polynomials holds for any other
affine crystallographic group in the isomorphism class of Γ. For example, if Γ is affine
crystallographic and virtually solvable, then the de Rham cohomology of the manifold
Γ\Rn can be computed from the complex of differential forms, with coefficients being
expressable as polynomial functions of the affine coordinates, on M - for a proof see
[Go82].

3.5 A generalization of Bieberbach’s third theorem for the
affine case

Before we state the main theorem of this subsection, which is due to Grunewald and
Segal, [GS94], we first like to recall certain properties of crystallographic groups. We
also have to introduce some definitions.

We have seen that any crystallographic group Γ ≤ Isom(Rn) is an extension of Zn
by some finite group. In other words, there is a finite index subgroup Zn ∼= ∆ ≤ Γ.
Combining Bieberbach’s second and third theorem, we see that up to conjugation there
are only finitely many different extensions of ∆, i.e. only finitely many isomorphism
classes of crystallographic groups.

The main point of the theorem we are going to present shortly is that it provides a
’reasonable’ way to separate virtually solvable affine crystallographic groups into classes,
such that in each class there are only finitely many conjugacy classes. Thus, the said
theorem provides a finiteness result for affine crystallographic groups.

Our first task at hand is finding a suitable replacement for Zn in the affine situation.

3.5.1 Definition (Fitting subgroup). It can be shown that any virtually polycyclic group
Γ has a unique maximal nilpotent normal subgroup. Such a subgroup is called a fitting
subgroup for Γ and denoted by Fitt(Γ).

A definition of polycyclic can be found in 4.1.1. Also note that any (virtually) poly-
cyclic group is (virtually) solvable, whereas the contrary does not hold. It does however
for discrete subgroups of Aff(Rn). Hence, any discrete virtually solvable affine group
possesses a fitting subgroup and consequently the same is true for virtually solvable
affine crystallographic groups.

We can now define the replacement for Zn:
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3.5.2 Definition ((Geometrically) strict (normal) extension). Given two affine crys-
tallographic and virtually solvable groups ∆ ≤ Γ ≤ Aff(Rn). If |Γ : ∆] is finite and
Fitt(Γ) ≤ ∆, then we say that Γ is a strict extension of ∆.

If furthermore ∆E Γ, then we call Γ a strict normal extension of ∆.
Given two polycyclic subgroups ∆ ≤ Γ ≤ GL(Rn) with |Γ : ∆| finite, we say that Γ is

a geometrically strict extension of ∆, if there is a syndetic hull G for ∆ with G∩Γ = ∆.

On a side note: while the definition of syndetic hull used in [GS94] differs from the
one we presented, definition 3.4.4 which is due to [FG83], they coincide for affine crys-
tallographic groups.

We need one more definition: if we have for an affine crystallographic group Γ ≤ G ≤
Aff(Rn), we will say that Γ is of type G. For example, if Γ is of type Isom(Rn), then
this is just the classical case of crystallographic groups.

Accordingly, if Γ is additionally also torsion free, we say that the manifold Γ\Rn is of
type G.

We can now state the promised finiteness result.

3.5.3 Theorem. [Bieberbach’s third theorem - an algebraical affine version] Given a
virtually solvable affine crystallographic group ∆ of type G. Then we have the following:

(i) there are only finitely many conjugacy classes in NG(∆) of strict normal exten-
sions of ∆ of type G, and

(ii) there are only finitely many conjugacy classes in G of strict extensions of ∆.
Furthermore, the index of ∆ in these strict extensions is bounded.

Proof. The proof, which relies on finiteness properties of so called arithmetic groups,
may be found in [GS94]. In the cited paper, one may also find a thorough definition of
arithmetic groups at the beginning of chapter 3.

The above theorem is not the only one concerned with finiteness of equivalence classes
of extensions of virtually solvable affine crystallographic groups. We also have the fol-
lowing.

3.5.4 Theorem. Assume ∆ to be a solvable affine crystallographic group. It follows,
that there are only finitely many isomorphism classes of geometrically strict extensions
of ∆.

Proof. This assertion is also shown to be true in [GS94].

Based on theorem 3.5.3, Grunewald and Segal prove the following: To state this next
result, once again, we need some notation. We say that a Lie group K is of type NP,
if its identity component K0, with respect to its manifold structure, is nilpotent and
K/K0 is polycyclic
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3.5.5 Theorem. If Γ is a virtually solvable affine crystallographic group of type G, then
there is a closed normal subgroup K ≤ NG(∆), such that K is of tpye NP and NG(Γ)/K
is isomorphic to an arithmetic group.

The geometric interpretation of this result is as follows: suppose that Γ and Γ̃ are
virtually solvable torsion free affine crystallographic groups. We set M := Γ\Rn and
N := Γ̃\Rn and suppose that both manifold are of type G. A map α : M → N is called
an isometry, if α is a homeomorphism and if its lift α̃ : Rn → Rn is an automorphism.
That this definition of isometry is exactly the usual one, is shown in [Wo67], lemma
2.5.6.

Let AutG(M) be the group of all self-isometries of M . Then, by using the identity,
one can show the following corollary to the above theorem.

3.5.6 Corollary. Let M be as above. Then the group of self-isometries AutG(M) is an
extension of a Lie group of type NP by some arithmetic group.

There is also a geometric version of theorem 3.5.3. Suppose that ∆ ≤ Γ are two
torsion free affine crystallographic groups of type G. Then there is a covering map
p : ∆\Rn → Γ\Rn. If Γ is a strict (normal) extension of ∆, p is called a strict (normal)
covering.

Furthermore, given two such covers p : M → N and q : M → L, we say that these
covers are equivalent, if there is an isometry β : N → L and an α ∈ AutG(M), such that
the following diagram commutes:

M

N

M

L

α

p

β

q

3.5.7 Theorem (Bieberbach’s third theorem - a geometrical affine version). Given two
complete compact affine flat manifolds M and N , both of type G. Then we have the
following:

(i) there are only finitely many equivalence classes of strict normal coverings M →
N , and

(ii) there are only finitely many isometry classes for N , if M → N is a strict
covering. Furthermore, these coverings have bounded multiplicites.

In the last three subsections we have seen that there are powerful theorems - 3.3.6,
3.4.6 and 3.5.3 -, which generalize the three Bieberbach theorems in a very nice way.
However, each of these theorems relies on the assumption that the groups in question are
not only affine crystallographic but also virtually solvable. Thus, it is worth asking in
what way these two terms are related to each other. The whole next section is devoted
to this question.



4 Auslander’s conjecture

4.1 Two conjectures - Auslander’s & Milnor’s

In this section we will examine two conjectures - Auslander’s and Milnor’s. To put them
in perspective we will start with definitions:

4.1.1 Definition (Nilpotent, solvable and polycyclic groups and the radical of groups).
Let G be a group and set [H,G] := (h−1g−1hg | h ∈ H, g ∈ G) for any subgroup
H ≤ G. [G,G] is called the commutator subgroup of G. Now define G(0) := G,G(n−1) :=
[G(n), G], ∀n ∈ N+.
Consider the following series, called the lower central series of G:

G = G(0) BG(1) BG(2) · · ·

Assume this series terminates, i.e. there is an n such that G(n) = [G(n), G] = G(n+1).
Furthermore, assume that

G = G(0) BG(1) BG(2) · · ·G(n−1) BG(n) = {e}, (4.1)

with {e} being the trivial group. If this is the case, G is called nilpotent. If we want to be
more specific we say that G is n-step-nilpotent or G is of nilpotency class n, assuming
that n is minimal with respect to property 4.1. We now define G(0) := G,G(n) :=
[G(n−1), G(n−1)],∀n ∈ N+. We call

G = G(0) BG(1) BG(2) · · ·

the derived series of G. Assume this series terminates, i.e. there is an n such that

G = G(0) BG(1) BG(2) · · ·G(n) = [G(n), G(n)] = G(n+1).

G(n) is then said to be a perfect group.
If we furthermore have that G(n) is the trivial group, G is called solvable. It follows

that any solvable group can be constructed via extending an abelian group finitely many
times.

The maximal solvable subgroup rad(G) ≤ G is called the radical of G.
Given a solvable group G with the addition that every quotient G(n)/G(n−1) is finitely
generated and abelian, G is called polycylic.

Before we continue, a few words on the relationship of the just defined properties as
well as on solvable groups:

39
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If G is an abelian group, we have [G,G] = {e}, i.e. G is nilpotent. It is also easy
to check that G(n) ≤ G(n), and thus we deduce that nilpotency implies solvability. It
can also be shown that finitely generated nilpotent groups are polycyclic, whereas the
condition of being finitely generated is indeed necessary.

On the other hand, polycyclic does not imply solvable does not imply nilpotent does
not imply abelian.

Trivially, if G is solvable, so is every subgroup H ≤ G and the image of G under any
group homomorphism is also solvable. From this, in conjunction with the fundamental
theorem on group isomorphisms, it follows directly that if G is a group, N is a normal
subgroup of G, then G is solvable iff N as well as G/N are solvable.

Now we turn back to affine crystallographic groups. In [Au64] Auslander stated that
the radical rad(Γ) of a finitely generated fundamental group Γ of a complete locally
affine manifold has finite index in Γ.

As a second step in his paper, Auslander used this result to show that if Γ is the
fundamental group of compact, complete, flat affine manifold M of dimension n, then
M is finitely covered by a solvmanifold, or equivalently: one may find a subgroup Γ̃ ≤ Γ,
[Γ : Γ̃] finite, such that Γ̃\E, E being the real n-dimensional affine space, is homeo-
morphic to a solvmanifold. By using the technique concerning the transition from such
manifolds via their fundamental groups to properly discontinuous subgroups of Aff(E),
we can put the theorem into algebraic terms: affine crystallographic groups are virtually
solvable.

Auslander then went on by using these results to associate certain Lie groups, so called
algebraic hulls, to the fundamental groups in question in order to prove that two com-
pact, complete, flat affine manifolds are homemorphic, if their respective fundamental
groups are isomorphic.

However, as Auslander later discovered, there unfortunately is a gap in the proof given
for his second theorem - he did not use the assumption of compactness. This led to the
following conjecture:

4.1.2 Conjecture (Auslander - geometric version). Every compact, complete, flat, affine
manifold is finitely covered by a solvmanifold.

As before, we can state this conjecture algebraically:

4.1.3 Conjecture (Auslander - algebraic version). Every affine crystallographic group
is virtually solvable.

There is also a slight variation of the algebraic version of Auslander conjecture. Of
course, a polycyclic group is always solvable. However, the converse is certainly not
true, i.e. solvable groups in general are not polycyclic. On the other hand, every
discrete solvable subgroup of GL(Rn) is indeed polycyclic, for a proof see [Mi77] or
[Ra72]. Thus, one could ask as well, whether every affine crystallographic subgroup of
Aff(E) is virtually polycyclic.

It should be noted that the ’converse’ of Auslander’s cojecture does not hold. In [Mi77]
Milnor asked the following:
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4.1.4 Problem (Milnor’s converse Auslander conjecture). Can any torsion free virtually
polycyclic group be realized as an affine crystallographic group? I.e., given a torsion free
virtually polycyclic group Γ, is there always an embedding ι : Γ→ Aff(Rn), such that the
induced action of Γ on Rn is crystallographic?

There are indeed such Γ that cannot be realized as affine crystallographic groups, see
[BG95] or [Be95]. On the other hand, there is a least one setting in which a variation of
the above problem holds, see theorem 5.2.3.

Now we go on to the second conjecture we like to examine - compared to Auslander’s,
it is a less strict one.

4.1.5 Conjecture (Milnor - algebraic version). Every properly discontinuous subgroup
of Aff(E) is virtually solvable.

Of course, we can also express the conjecture geometrically:

4.1.6 Conjecture (Milnor - geometric version). Every complete, flat, affine manifold
is finitely covered by a solvmanifold.

Milnor’s conjecture stems from the following: in [Mi77] Milnor proved that a torsion
free virtually polycyclic group Γ is always isomorphic to the fundamental group of some
complete, affine, flat manifold M . In the light of this, he asked, whether these Γ are
the only possible fundamental groups, which is exactly the same question the conjec-
ture yields, considering the discussion above about the relationship of polycyclic and
solvability and the following theorem. A proof can be found in [Se60] or [Ra72].

4.1.7 Theorem (Selberg’s lemma). If Γ is a finitely generated subgroup of GL(Cn),
then we can find a torsion free subgroup Γ̃ ≤ Γ such that Γ̃ has finite index in Γ.

Thus, when one is examining a virtual property P of some finitely generated group
Γ ≤ GL(Cn), one may, without loss of generality, always pass on to a subgroup Γ̃ that
is torsion free, because, due to the multiplicity of the index ([Γ : Γ1][Γ1 : Γ2] = [Γ : Γ2]
for any two subgroups Γ2 ≤ Γ1 ≤ Γ), the torsion free subgroup Γ̃ virtually hands over
all its (virtual) properties to Γ. Trivially, we have Γ ≤ Aff(Rn) ≤ Aff(Cn), and thus can
apply Selberg’s lemma to affine crystallographic groups.

Yet another way of looking at Auslander’s conjecture, respectively Milnor’s, can be
achieved via Tits’ famous theorem, a proof can be found in [Ti72].

4.1.8 Theorem (Tits alternative). Given a group Γ ≤ Aff(Cn). Then Γ is either
virtually solvable or Γ has a free subgroup that is not abelian.

In view of this theorem, we may transform the conjectures into the following: does a
(cocompact) properly discontinuous group Γ ≤ Aff(Rn) contain a free subgroup?

In section 3.1.1 we have seen that in general affine crystallographic groups are not
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(virtually) abelian. Yet, the groups Γ(i) we constructed are nilpotent. Indeed, they are
subgroups of the group of stricly upper triangular matrices, which are very well-known
to be nilpotent and obviously subgroups of nilpotent groups are nilpotent. Thus, one
could be inclined to propose a stronger version of Auslander’s conjecture, respectively
Milnor’s, namely the question if all (cocompact) properly discontinuous subgroups of
Aff(Rn) are (virtually) nilpotent.

However, an easy example shows, that affine crystallographic groups, and thus prop-
erly discontinuous groups, are in general not (virtually) nilpotent.

4.1.9 Example (There are (cocompact) properly discontinuous groups, that are not
(virtually) nilpotent). Let Γ ≤ Aff(E), E being the real affine space of dimension n, and
let Γ be generated by {ei, γ | 1 ≤ i ≤ n− 1}, with ei being the i-th standard vector and

γ(x) = Ax+ en, whereas A =

 B

0
...
0

0 · · · 0 1

 , with B ∈ GL(Zn−1).

Now Γ is an affine crystallographic group that is nilpotent iff B is unipotent.
And of course, if B is not unipotent, we immediately see that our group cannot be

virtually nilpotent either.

Now that we looked at various variations of the two stated conjectures, equivalent and
less strict ones, our next task is to present what is actually known about them.

So far, Auslander’s conjecture could neither be proven nor disproven. On the one
hand, to date no counterexample has been constructed. On the other hand, until today
proofs can only be given for certain special cases. Auslander’s conjecture holds, if

(i) L(Γ) ≤ O(Rn), which is just the classic case of the Bieberbach theorems,

(ii) Γ ≤ Aff(Rn) for n ≤ 6. A proof for the case n ≤ 3 was first given by Fried and
Goldman, [FG83], see section 4.3. The cases 4 ≤ n ≤ 6 are proven by Abels,
Margulis and Soifer in [AMS12],

(iii) L(Γ) ≤ O(Rn−1,1), due to Goldman and Kamishima, [GK84], see section 4.4,

(iv) L(Γ) ≤ O(Rn−2,2), due to Abels, Margulis and Soifer, [AMS05],see section 4.5,

(v) L(Γ) ≤ G whereas G is a reductive group and rankR = 1, due to Grunevald and
Margulis, [GM88], see 4.6,

(vi) if a special representation of Γ
0

satifies certain properties, due to Kawabe, [Ka98].
These conditions are presented in 4.7, and

(vii) L(Γ) ≤ G, whereas for the maximal semisimple subgroup S of G0 we have that S
is an almost direct product of simple Lie groups S1 . . . , Sr and rankR(Si) = 1 ∀1 ≤
i ≤ r, due to Tomanov, [To90].
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Milnor’s conjecture however has been settled. As it turns out, already in dimension
3 it is not true. Be aware that this also invalidates the ’proof’ Auslander has given for
the second step in his paper [Au64] discussed above.

The first counterexample to Milnor’s conjecture is due to Margulis, [Ma87], and it has
not only impacted said conjecture but also Auslander’s. The techniques used by Margulis
to construct a properly discontinuous group, which has a free non-abelian subgroup,
are heavily used by Abels, Margulis and Soifer in the course of proving Auslander’s
conjecture in the special cases of L(Γ) ≤ O(Rn−2,2), section 4.5, and Γ ≤ Aff(Rn) for
4 ≤ n ≤ 6.

We will now present Margulis’ counterexample. Counterexamples constructed by a
different approach can be found in [Bu96] for example.

4.2 Margulis’ counterexample to Milnor’s conjecture

4.2.1 Example (There are properly discontinuous groups that are not virtually solv-
able). The main result in this example, which is, along with the needed propositions and
their proofs, due to Margulis, [Ma87], is a theorem that provides us with a class of free
groups that act properly discontinuously on R3, and hence anwsers Milnor’s conjecture
negatively.

In order to do so we first have to introduce some notation and concepts and then
break the example into parts, i.e. into a couple of lemmata and theorems.

Let x ∈ R3. As always, let ||x|| denote the Euclidean norm of x. If A,B are two
straight lines or planes in R3, we denote by ∠(A,B) the angle between A and B mod π

2 .
For the distance, with respect to the Euclidean metric, between points/sets and other
points/sets we write d(·, ·). We furthermore define a bilinear form:

B(x, y) = x1y1 + x2y2 − x3y3 ∀x, y ∈ R3,

and set B(x,A) = c = min{B(x, y) | y ∈ A}. Moreover, W := {x | (B(x, x) = 0}. By
H we denote the identity component of the indefinite orthogonal group O(2, 1), which
clearly leaves the bilinear form B invariant. Set G = R3 oH, and thus we can write any
g ∈ G as g = vh with appropriately chosen v ∈ R3 and h ∈ H. As before, let L be the
natural projection:

L : G→ H

x = vh 7→ L(vh) = h

A g ∈ G is called hyperbolic, if L(g) has a real eigenvalue that is not equal to 1. If g is
hyperbolic, L(g) is diagonalizable and every eigenvalue is greater than 0. Actually, we
can be a bit more precise: one eigenvalue is 1; for the second eigenvalue, called λ(g), we
have λ(g) < 1. Finally, the third one is λ(g)−1 and thus greater 1. All of this is may
be shown by using the fact that H ∼= PSL(R2) and that the given presentation of H is
equivalent to its adjoint representation.
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A basic observation:

λ(gk) = λ(g)|k|, ∀k ∈ Z\{0}. (4.2)

From now on, let and x ∈ R3 and g ∈ G, g fixed and hyperbolic. Then the eigenspaces
are

A0
g = {x | π(g)x = x},

A−g = {x | π(g)x = λ(g)x},
A+
g = {x | π(g)x = λ(g)−1x}, and we set

D−g := A0
g ⊕A−g , as well as

D+
g := A0

g ⊕A+
g .

Trivially, we have
R3 = D−g ⊕A+

g = D+
g ⊕A−g .

Using the fact, that L(g) preserves our bilinear form B, we see that

A−g ,A+
g ⊂W ,

D−g = {x | B(x,A−g ) = 0}, and

D+
g = {x | B(x,A+

g ) = 0}.

Now consider a straight line L ⊂ W . It follows that {x | (B(x, L) = 0} is a plane
that is tangential to W and hence the planes D−g and D+

g are tangential to W . Clearly,
A0
g = D−g ∩ D−g and therefore B(x, x) > 0, if x ∈ A0

g\{0}.
If we choose an orientation for R3, we also have a unique positively oriented basis

associated to g, namely (x0(g), x−(g), x+(g)). Appropriately choosing a decomposition
of W\{0} = W− ∪W+, we have for this basis

x0(g) ∈ A0
g, x

−(g) ∈ A−g ∩W−, x+(g) ∈ A+
g ∩W+, and

B(x0(g), x0(g)) = ||x−(g)|| = ||x+(g)|| = 1.

Furthermore

x0(gn) = x0(g), x−(gn) = x−(g), x+(gn) = x+(g) ∀k ∈ Z+, and (4.3)

x0(gn) = −x0(g), x−(gn) = x−(g), x+(gn) = x+(g) ∀k ∈ Z−. (4.4)

Because L(g) is diagonalizable and the dimension of A0
g is 1, there exists exactly one line

Cg, that is parallel to A0
g as well as invariant under the action of g. To be more precise,

the restricted action g 	 Cg is just a translation by some tg ∈ A0
g. For Cg and tg we

have the equalities

Cgk = Cg, tgk = ktg ∀k ∈ Z\{0}. (4.5)

Set
α(g) := B(tg, x

0(g)).
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From B(x0(g),A−g ) = B(x0(g),A+
g ) = 0 we deduce

α(g) = B(gx− x, x0(g)). (4.6)

This equation, together with (4.3) through (4.5), yields

α(gk) = |k|α(g) ∀k ∈ Z\{0}. (4.7)

From this we deduce that g and g−1 have the same sign. We go on by defining E−g to
be the plane that contains Cg and is parallel to D−g . Analogously, let E+

g be the plane
containing Cg that is parallel to D+

g . It follows

E−
gk

= E−g , E+
gk

= E+
g ∀k ∈ Z+, and (4.8)

E−
gk

= E+
g , E+

gk
= E−g ∀k ∈ Z−. (4.9)

Further, we denote by B−g (x), B+
g (x) respectively, the line that goes parallel to A−g , A+

g

respectively, through the point x.
Assume that g ∈ G and, in addition to g being hyperbolic, we have that the distance

d(x−(g), x+(g)) > ε > 0 for some ε ∈ R, then g is called ε-hyperbolic. Given another
hyperbolic element h ∈ G, we will say that g and h are ε-transversal, or just transversal,
if the distance between x−(g) or x+(g) and x−(h) or x+(h) is greater than ε > 0.
Equivalently, g and h are transversal, if {x−(g), x+(g)} ∩ {x−(h), x+(h)} = ∅.

Now consider two functions f1 and f2 from an arbitrary but fixed subset S ⊂ Gk =
{(g1, . . . , gk | gi ∈ G}, 1 ≤ i ≤ k ∈ N+, to R+. Assume we can find a p(ε), such that
f1(g1, . . . , gk) ≤ p(ε)f2(g1, . . . , gk) for all (g1, . . . , gk) ∈ S, given that all the gi are ε-
hyperbolic as well as pairwise ε-transversal. If this is the case, f1 is said to be of an
order not exceeding f2, written f1 4 f2. If we have both f1 4 f2 as well as f2 4 f1, we
call them equivalent and denote this by f1 ∼ f2.

For some hyperbolic g, h ∈ G we define

τ(g) := ∠(D−g ,D+
g ), and

θ(g, h) := min{∠(X,Y ) | X ∈ {D−g ,D+
g }, Y ∈ {A−h ,A

+
h }}.

Since D−g , D+
g respectively, and W have x−(g), x−(g) respecively, as a common point

we get

τ(g) ∼ 1 and θ(g, h) ∼ 1. (4.10)

This, along with A0
g = D−g ∩ D+

g , implies

d(x0(g),W ) ∼ 1 and ||x0(g)|| ∼ 1, (4.11)

which in turn gives us

|α(g)| ∼ ||tg||. (4.12)

Now that we have settled our notations and definitions, we start with the actual proof.
As said before, it is broken down into a few parts.
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4.2.2 Lemma. Let g, h ∈ G = R3 oH, with H the identity component of O(R2,1), be
ε-hyperbolic and ε-transversal. Then one can find an a(ε) > 1 with λ(g), λ(h) < a(ε)−1,
such that

(i) <g, h> is a free group,

(ii) gh is hyperbolic,

(iii) a(ε)−1λ(g)λ(h) < λ(gh) < a(ε)λ(g)λ(h),

(iv) d(x+(gh), x+(g)) < a(ε)λ(g),

(v) d(x−(gh), x−(h)) < a(ε)λ(h),

(vi) ∠(E+
gh, E

+
g ) < a(ε)λ(g),

(vii) ∠(E−gh, E
−(h)) < a(ε)λ(h),

(viii) d(x0(gh),B+
g (x0(g)) < a(ε)λ(g),

(ix) d(x0(gh),B−h (x0(h)) < a(ε)λ(h).

Proof. Some further needed notations:

g(x) :=
g(x)

||x||
, h(x) :=

h(x)

||x||
,

U(x, ε) := {y ∈ R3 | d(x, y) ≤ ε),
D(g, h) := ({x−(g), x+(g)},D−h ∪ D

+
h ), and

V (g, h) :=

(
x−(g),

B(g, h)

3

)
∪
(
x+(g),

B(g, h)

3

)
.

The equalities in (4.10) imply D(g, h) ∼ 1. Using this, one can show that indeed an
a(ε) > 1 exists for any ε and any g, h ∈ G, g, h ε-hyperbolic and ε-transversal. The
other requirement, λ(g), λ(h) < a(ε)−1, also follows.
Now, we fix a p ∈W+, ||p|| = 1. We have

d(x+(h), h
k
({p} ∪ V (g, h))) < min

(
a(ε)λ(h),

D(h, g)

3

)
∀k ∈ Z+ (4.13)

d(x−(h), h
k
({p} ∪ V (g, h))) < min

(
a(ε)λ(h),

D(h, g)

3

)
∀k ∈ Z−, and (4.14)

a(ε)
−1
2 λ(h)||x|| < ||h(x)|| < a(ε)

1
2λ(h)||x|| ∀x ∈ V (g, h). (4.15)

Certainly, the inequalities above still hold if we switch g and h. From (4.13) and (4.14)
we deduce that for all k ∈ Z\{0}

h
k
({p} ∪ V (g, h)) ⊂ V (h, g), and (4.16)

gk({p} ∪ V (h, g)) ⊂ V (g, h). (4.17)
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Because of this and p /∈ V (g, h) ∪ V (h, g), ||p|| = 1, we deduce that we can apply
Proposition 1.1 of [Ti72] and hence (i) holds.

Using inequality (4.13) and the inclusions (4.16) and (4.17), we see that

gh(V (g, h)) ⊂ V (g, h), and

d(x+(g), gh(V (g, h))) < a(ε)λ(g)

Restricting gh to V (g, h), we see that, by the virtue of (4.15), (4.16), (4.17) and Brouwer’s
fixed point theorem, there is an eigenvector x ∈ V (g, h), ||x|| = 1, for π(gh), that lies
in the open ball around x with radius a(ε). The associated eigenvalue λ(gh) has the
property that a(ε)−1λ(g)λ(h) < λ(gh) < a(ε)λ(g)λ(h). This gives us (ii) through (iv).

Of course, we get (v) from (iv), by simply substituting g, respectively h, with h−1,
g−1 respectively.

That (vi) - (ix) hold, can be followed from (4.11), (iv) and (v), along with using
the following: we have that B+

g (x0)) = {x ∈ D+
g | B(x, x) = 1} and B−h (x0)) = {x ∈

D−h | B(x, x) = 1}, as well as that the two bases (x, y, x+(g)) and (x, x−(h), y) have
positive orientation if y ∈W+\{x+(g)}, y ∈W+\{x−(h)} respectively.

4.2.3 Lemma. Let g, h ∈ G = R3 oH, with H the identity component of O(R2,1), be
ε-hyperbolic and ε-transversal, and fix an v ∈ R3. Then one can find an c(ε) > 1 such
that

d(v, E+
gh) ≤ d(v, E+

g + c(ε)λ(g)(|α(g)| (4.18)

+ d(v, Cg) + d(v, Ch)) + c(ε)λ(gh)|α(h)|
d(v, Cgh) < c(ε)(λ(g) + λ(h)(d(v, Cg) + c(ε)(d(v, Ch) (4.19)

+ d(v, E+
g + λ(g)|α(g)|+ λ(h)|α(h)|),

|α(gh)− α(g)− α(h)| ≤ c(ε)(d(Cg, Ch) + λ(g)|α(g)|+ λ(h)|α(h)|). (4.20)

Proof. We choose an x ∈ Cg with the property d(v, x) = d(v, Cg) and let y := B−g (g−1x)∩
E−(h−1) and z := B−

h−1 ∩ Ch. From (4.10) together with tg = x− g−1x follows

d(g−1x, y) 4 d(x, Ch) + ||tg||, and (4.21)

d(y, z) 4 d(x, Ch) + ||tg||. (4.22)

Using (4.21) together with the fact y ∈ B−g (g−1x), we get

d(x, gy) 4 λ(g)(d(x, Ch) + ||tg||). (4.23)

Combining (4.21) with (4.23) and once again tg = x− g−1x, we deduce

d(gy, y) ≤ d(x, gy) + d(x, g−1x) + d(g−1x, y) 4 d(x, Cg) + ||tg||. (4.24)

Analogously, we have the following by using th = z − h−1z along with (4.22):

d(y, h−1) 4 d(x, Ch) + ||tg||+ ||th||. (4.25)
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Now we combine (4.24) and (4.25) and get

d(h−1y, gy) 4 d(x, Ch) + ||tg||+ ||th||.

But we also have h−1y = (gh)−1gy. With this in mind we see

d(gy, E+
gh) 4 λ(gh)(||tg||+ ||th||+ d(x, Ch)), (4.26)

if we further use the following inequality, which is implied by the fact that d(g−1x, E+
g ) =

λ(g)−1d(x, E+
g ),

d(x, E+
g ) ≤ λ(g)

1− λ(g)
d(x, g−1x).

Now recall that we have chosen our x such that x ∈ E+
g and d(v, x) = d(v, Cg). From

(4.23) we deduce

d(gy, E+
g ) 4 λ(g)(||tg||+ d(x, Ch), and

d(v, gy) 4 d(v, Cg) + λ(g)(||tg||+ d(x, Ch)).

We also have
d(x, Ch) ≤ d(v, x) + d(v, Ch) = d(v, Cg) + d(v, Ch),

and, using lemma 4.2.2,

∠(E+
g , E+

gh) 4 λ(g) 4 λ(gh).

Taking this into account, we conclude, in conjunction with (4.26), that

|d(v, E+
gh)− d(v, E+

g )| 4 d(gy, E+
gh) + d(gy, E+

g ) + ∠(E+
g , E+

gh)d(v, gy) 4 (4.27)

4 λ(g)(||tg||+ d(v, Cg) + d(v, Ch)) + λ(gh)||tg||.

The above inequality, together with (4.12), yields the inequality (4.18).
In order to proof (4.19), we need gh to be ε

2 -hyperbolic. Thus, from now on we
assume λ(g), λ(h) < a(ε)−1 ε

4 . That we can do so without loss of generality is ensured
by 4.2.2. Thus, gh is ε

2 -hyperbolic. We also have Cgh = E+
gh ∩ E

−
gh and hence d(v, Cgh) 4

d(v, E+
gh) + d(v, E−gh). Along with (4.18), (4.27) and λ(gh) 4 λ(g), λ(h), which can once

again be deduced from our lemma above, we arrive at

d(v, Cgh) 4 d(v, E+
g ) + d(v, E−h ) + λ(g)|α(g)|+ λ(h)|α(h)|

+ (λ(g) + λ(h))(d(v, Cg) + d(v, Ch)) 4

4 d(v, E+
g ) + d(v, Ch) + λ(g)|α(g)|+ λ(h)|α(h)|

+ (λ(g) + λ(h))d(v, Cg),

and thus have proven (4.19).
In order to prove the last part of this lemma, (4.20), we pick a u ∈ Cg with d(u, Ch) =

d(Cg, Ch) and set a := B−g (u) ∩ E+
h , b := B−

h−1(a) ∩ Ch. Using (4.10) yet another time,
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we see d(u, a), d(u,w) 4 d(Cg, Ch), which in turn yields d(gu, ga) 4 λ(g)d(Cg, Ch) as
well as d(h−1a, h−1b) 4 λ(h)d(Cg, Ch). We also have tg = gu − u and th = b − h−1b.
Consequently, d(ga− a, tg), d(a− h−1a, th) 4 d(Cg, Ch) and thus

d(ga− h−1a, tg + th) 4 d(Cg, Ch).

Now, we combine the above inequality with the following: (4.6), ga = ghh−1a and
||x0(gh)||, which follows from (4.10) and the assumption on gh to be ε

2 -hyperbolic, we
have

|α(gh)−B(tg + th, x
0(gh)| = |B(ga− h−1v, x0(gh))−B(tg + th, x

0(gh))|
4 d(Cg, Ch). (4.28)

From (viii) and (ix ) it follows

d(x0(gh),B+
g (x0(g))) 4 λ(g),

d(x0(gh),B−g (x0(h))) 4 λ(h).

Together with the equalities B(tg,B+
g (x0(g))) = α(g) and B(th,B−g (x0(h))) = α(h), this

yields

|B(tg, x
0(gh))− α(g)| 4 α(g)||tg||, and

|B(th, x
0(gh))− α(h)| 4 α(h)||th||.

Now, applying (4.28), we arrive at

|α(gh)− α(g)− α(h)| 4 d(Cg, Ch) + λ(g)||tg||+ λ(h)||th||.

This inequality, in the light of (4.12), yields (4.20) and we have finished the proof.

Before we go on, we want to talk a little about (4.20): assume that the distance
between the lines Cg and Ch as well as the eigenvalues λ(g) and λ(h) are ’sufficiently’
small, in such a way that α(gh) − α(g) − α(h) is ’almost’ equal 0, or in turn that we
’almost’ have α(gh) = α(g) + α(h). Thus, for g and h which have the same sign with
respect to α, considering (4.12), we would get

||tg||+ ||th|| ∼ |α(g) + α(h) = |α(g) + α(h)| = |α(gh)| ∼ ||tgh||.

Also note the following: If one would substitute g, h respectively, with gh, h−1, one
might conclude that not only is α(gh) ’almost’ the same as α(g) + α(h), but also that
α(gh) ’almost’ equals α(g) − α(h). But this is not possible. One cannot use (4.20) for
gh and h−1 because lemma 4.2.2 (iv) tells us that gh and h−1 are not ε-transversal if
λ(h) is ’sufficiently’ small.

4.2.4 Proposition. Given hyperbolic and transversal h1, h2 ∈ G = R3 oH, with H the
identity component of O(R2,1), we set ∆ :=<h1, h2>. If we have either
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(i) thi = 0 for any i ∈ {1, 2}, or

(ii) h1 and h2 do not have the same sign,

then the action ∆ 	 R3 is not properly discontinuous.

Proof. We want our group ∆ to be a free group and we can assume so without loss of
generality by remembering equation (4.2). We may always find large enough k1 and k2

in N0 such that hk11 and hk2
2 satisfy the condition of lemma 4.2.2 and then (i) of said

lemma tells us that <hk11 , h
k2
2 > is a free group. Hence, by possibly replacing h1 and h2

with hk11 and hk22 we may assume ∆ to be a free group.
Assuming that either (i) or (ii) holds, we can find a sequence {mi, ni}i∈N\{0} such

that supi {|miα(h1) + niα(h2)|} < ∞. We set h(i) := hmi
1 hni

2 and pick a v ∈ R3. By
using (4.2), (4.5), (4.7), (4.8), (4.9) as well as (4.19) and (4.20) we see that L(v) :=
sup
i
{d(v, Ch(1))} < ∞ and also M := sup

i
{|α(h(i))|} < ∞. Let g be any hyperbolic

element of G and consider the following sets:

U(v, d(v, Cg) + |α(g)|), and

gU(v, d(v, Cg)).

Both sets contain gw, w ∈ Cg with d(v, w) = d(v, Cg), and therefore their intersection is
not empty. Now because g was arbitrary, we have for any i that

U(v, d(v, L(v) +M) ∩ h(i)U(v, L(v)) 6= ∅.

This clearly yields that ∆ 	 R3 is not properly discontinuous.

There is one more lemma that we need to prove in order to get the final results of this
section.

4.2.5 Lemma. Given h1, h2 ∈ G = R3 oH, with H the identity component of O(2, 1),
such that h1 and h2 are 2ε-hyperbolic and 2ε-transversal, with 0 < ε < 1

10 , and assume
that they act freely on R3 and that they have the same sign with respect to α. We set

L := min(|α(h1)|, |α(h2)|), and

δ := d(Ch1 , Ch2),

and define a(ε), c(ε) > 1 as in lemmata 4.2.2 and 4.2.3 and let h be a word of length j
composed by h1 and h2. If we have

λ(hi)
−1 > 20(c(ε)2 + a(ε))ε−1, i ∈ {1, 2}, and (4.29)

L ≤ 60c(ε)2δ, (4.30)

then there exists a g ∈ G with gh being ε-hyperbolic and the additional property

|α(gh)| ≥ jL

2
. (4.31)
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Proof. Because of ε < 1
10 there are x1, x2 ∈ W+ with ||x1|| = ||x2|| = 1 and d(x1, x2) <

2ε. Moreover, we can choose x1 and x2 such that the distances d(xi, x
−(hj)) and

d(xi, x
+(hj)), i, j ∈ {1, 2}, are always greater than 2ε.

Let x0 ∈ R3\{0} such that B(x0, x1) = B(x0, x2) = 0. Our three vectors x0, x1, x2

will then be a basis for R3. Now let g̃ ∈ H be the linear transformation defined by
g̃x0 = x0, g̃x1 = 2x1, g̃x2 = 1

2x2. From x+(g̃) = x1 and x−(g̃) = x2 we deduce that g̃ is
2ε-hyperbolic and 2ε-transversal with respect to h1 and h2. We fix an v ∈ Ch1 with the
property d(v, Ch2) = δ. Multiplying g̃ by an appropriately chosen translation yields an
g ∈ G that is 2ε-hyperbolic and 2ε-transversal with respect to h1 and h2 and furthermore
has the property α(g) = 0. Moreover, we have v ∈ Cg. By possibly substituting g with
gn, n ∈ N, we may assume

λ(g) < a(ε)−1 ε

4
, c(ε)2ε. (4.32)

Let {il}l∈N ⊂ {1, 2} and {kl}l∈N ⊂ Z\{0} be sequences with il 6= il+1. We now set

g0 := g, gl := gl−1h
kl
il

, and

K0 := 1, Kl = K − l − 1 + |kl| = 1 +

l∑
m=2

|km|.

By the virtue of lemma 4.2.2, (4.2), (4.3), (4.4), (4.29), (4.32) and induction on l, we see
that the following inequalities hold for all l:

d(x−(gl+1), {x+(hil+1
), x−(hil+1

)}) < ε

4
, (4.33)

d(x+(gl+1), x+(gl)) < ε2Kl, (4.34)

ε(1 + 21−Kl) < d(x+ (gl){x−(h1), x+(h1), x−(h2), x+(h2)}) (4.35)

λ(gl+1) < 2−Kl+1λ(g), (4.36)

and furthermore we have that gl and hil+1
are hyperbolic and ε-transversal and we will

denote this statement by (A).
We set

al := d(v, E+
gl

), bl := d(g, Cgl), tl := α(gl),

fl := α(hil), sl := λ(hil), T := max(|α(h1)|, |α(h2)|).

Combining (A) and (4.18) and with the help of (4.5), (4.7), (4.32) and (4.33) through
(4.36), we see

al+1 ≤ al + c(ε)λ(gl)(|tl|+ bl + δ) + c(ε)λ(gl+1)|kl+1||fl+1 ≤ (4.37)

≤ al + 2−Kl(bl + |tl|+ δ) + 2−Kl+1 |kl+1|T ≤
≤ al + 2−Kl(bl + |tl|+ δ + T ).
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Using (A) and (4.19) together with (4.2), (4.5), (4.7), (4.29) and (4.33) through (4.36),
we have

bl+1 ≤ c(ε)
(
λ(gl) + s

|kl+1|
l+1

)
bl + c(ε)

(
δ + al + λ(gl)|tl|+ s

|kl+1|
l+1 |kl+1||fl+1|

)
≤

≤ bl
2

+ c(ε)δ + c(ε)al + c(ε)2−Klλ(g)|tl|+
T

20c(ε)
. (4.38)

Now we use (A) and (4.20) together with (4.2), (4.5), (4.7), (4.29), (4.33) through (4.36)
and d(Cgl , Chil ) ≤ bl + δ in order to deduce

|tl+1 − tl − |kl+1|fl+1| ≤ c(ε)(bl + δ + λ(gl)|tl|+ s
|kl+1|
l+1 |kl+1||fl+1|) ≤ (4.39)

c(ε)bl + c(ε)δ + c(ε)2−Klλ(g)|tl|+
T

20c(ε)
.

By the virtue of this inequality along with (4.32) we have

|tl+1| ≤ (1 + 2−Kl)|tl|+ c(ε)bl + c(ε)δ + 2|kl+1|T. (4.40)

We set

κl := max{100c(ε)2al, 10c(ε)bl, |tl|K−1
l , 100c(ε)2δ, 100c(ε)T}, and

Q :=
∞∏
i=1

(1 + 200c(ε)2iKl2
−i).

For κl we have, by the power of (4.32), (4.37), (4.38) and (4.40)

κl+1 ≤ κl(1 + 200c(ε)2Kl2
−Kl), (4.41)

and hence for any l it holds that

κl ≤ κ0Q. (4.42)

Inequalities (4.33) through (4.37) and (4.42) give us

al+1 ≤ al + 2c(ε)κ0QKl2
−Klλ(g). (4.43)

Furthermore, recall v ∈ Cg and α(g) = 0, we have

a0 = b0 = t0 = 0. (4.44)

This result, together with (4.44) and L ≤ T , yields

κ0 = 100c(ε)T. (4.45)

If we combine (4.43) through (4.45) and set R := 2c(ε)Q
∞∑
i=1
i2−i we arrive at

al ≤ a0 +Rκ0λ(g) = 100c(ε)Rλ(g)T. (4.46)



4.2. Margulis’ counterexample to Milnor’s conjecture 53

Once again, by substituting g with an gk, k ∈ N+ if necessary, we have

100c(ε)2(R+Q)λ(g) <
1

30c(ε)
. (4.47)

The following inequalities can be derived from putting together (4.30), (4.38), (4.42),
(4.45) - (4.47) as well as L ≤ T , |tl| ≤ κlKl and Kl2

−Kl < 1.

bl+1 ≤
bl
2

+
L

50c(ε)
+ 100c(ε)2Rλ(g)T + 100c(ε)2QKl2

−Klλ(g)T +
t

20c(ε)
≤

≤ bl
2

+
T

60c(ε)
+ 100c(ε)2(R+Q)λ(g)T +

T

20c(ε)
≤

≤ bL
2

+
T

60c(ε)
+

T

30c(ε)
+

T

20c(ε)
=
bl
2

+
T

10c(ε)
.

As stated above we have b0 = 0, so, in the light of the above inequality, via induction
on l, we see

bl ≤
T

5c(ε)
. (4.48)

By using (4.42) and (4.45), we get from |tl| ≤ κlKl to |tl| ≤ 100c(ε)TQKl, which gives
us, considering (4.47) and 2−KlKl < 1 the following:

bl ≤
T

5c(ε)
. (4.49)

Now, we use (4.39), via (4.30), (4.32), (4.49) and L ≤ T , to see

tl+1 ≥ tl + |kl+1|fl+1 − c(ε)bl − c(ε)δ − c(ε)2−Klλ(g)|tl| −
T

20c(ε)
≥ (4.50)

≥ |tl|+ |kl+1|fl+1 −
T

5
− T

60c(ε)
− T

30
− T

20c(ε)

> tl + |kl+1|fl+1 −
T

3
.

By assumption h1 and h2 have the same sign. Without loss of generality we can choose
the orientation for R3 such that α(h1), α(h2) > 0. From this we infer fl > 0. We also
defined that il+1 6= il+2. Hence, fl+1 + fl+2 = T + L. This equation and (4.50) imply

tl+2 ≥ t2 + |kl+1|fl+1 + |kl+2|fl+2 −
2T

3
=

= tl + fl+1 + fl+2 + ((|kl+1| − 1)fl+1 + (|kl+2| − 1)fl+2)− 2T

3
≥

≥ tl + T + L− 2T

3
+ (|kl+1|+ |kl+2| − 2)L > tl + (|kl+1|+ |kl+2| − 1)L ≥

≥ tl +
1

2
(|kl+1|+ |kl+2|)L, (4.51)
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whereas the last inquality follows from the fact that 1 < |kl+1, |kl+2|. Also, be aware
that (4.51) is a strict inequality.

To finish the proof we use b0 = t0 = 0 and 1 < |k1| in conjunction with (4.29), (4.30)
and (4.39) to see

t1 ≥ |k1|f1 − c(ε)δ − c(ε)s|k1|1 |k1|f1 ≥
1

2
|k1|L.

This inequality, together with (4.51), shows using t0 = 0 and induction on l, yields

α(g) = tl ≥
Kl

2
,

which, considering (A), proves the lemma.

Now we are able to prove the main theorem of this section:

4.2.6 Theorem. Given ε > 0 and h1, h2 ∈ G = R3 oH, with H the identity component
of O(R2,1), with h1 and h2 satisfying the assumptions of lemma 4.2.5. Then the group
Γ :=<h1, h2> is free and the action Γ 	 R3 is properly discontinuous.

Proof. Define g ∈ G as in lemma 4.2.5: let g̃ ∈ G be defined by the equations g̃x0 =
x0, g̃x1 = 2x1, g̃x2 = 1

2x2, whereas we set x1, x2 such that ||x1|| = ||x2|| = 0, d(x1, x2) <
2ε, and furthermore d(x1, x

−(hj)), d(xi, x
+(hj)) > 2ε for i, j ∈ {1, 2}. We picked x0 such

that B(x0, xi) = 0. Finally, it may be necessary, but possible without loss of generality,
to substitute g̃ with gk for a large enough k ∈ N+.

Let K be a compact subset of R3. Lemma 4.2.5 tells us then, in view of (4.6) and
(4.11), that {γ ∈ Γ | gγK ∩ gK 6= ∅} = {γ ∈ Γ | γK ∩ K 6= ∅} < ∞. This finiteness
together with lemma 4.2.2 (i) yields the theorem.

In proposition 4.2.4 we have seen that for hyperbolic and transversal h1, h2 ∈ G
acting freely on R3, < h1, h2 > is not a properly discontinuous subgroup, if h1 and h2

have different sign with respect to α. The following corollary tells us what happens if
we assume the opposite:

4.2.7 Corollary. Given hyperbolic and transversal h1, h2 ∈ G = R3 oH, that have the
same sign with respect to α and act freely on R3, one can find a k ∈ N, such that for
all m,n > k with m,n ∈ N the group <hm1 , h

n
2 > is free and <hm1 , h

n
2 >	 R3 is properly

discontinuous.

Proof. This corollary follows from theorem 4.2.6 in conjunction with (4.2), (4.5) and
(4.7).

In order to apply theorem 4.2.6 to hyperbolic and transversal h1 and h2 one has to
check quite a few things. The next theorem we present is a special case of theorem 4.2.6,
which imposes fewer assumptions on h1 and h2.
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4.2.8 Theorem. Given h1, h2 ∈ G = R3oH, with H the identity component of O(2, 1).
Let h1 and h2 be 2ε-hyperbolic and 2ε-transversal and suppose further that h1 and h2

have the same sign with respect to α and that they act freely on R.
If we have that

(i) Ch1 ∩ Ch2 6= ∅, and

(ii) λ(hi)
−1 > 20(c(ε)2 + a(ε))ε−1 for i ∈ {1, 2}, then

the group <h1, h2> is free and <h1, h2> 	 R3 is properly discontinuous.

Now, by using proposition 4.2.4 and theorem 4.2.8, along with lemma 4.2.2 (i) and
a little more notation, we arrive at the final statement of this section. Said statement
not only wraps things up nicely, but also tells us how one may find free groups that act
properly discontinuously on R3, once hyperbolic h1 and h2 are found.

If we are given hyperbolic h, g ∈ G, we will call them similar if we have Cg = Ch as
well as λ(g) = λ(h).

4.2.9 Corollary. One can find hyperbolic h1, h2 ∈ G, with Ch1 ∩ Ch2 6= ∅, such that: if
we have h̃1, h̃2 ∈ G with h̃i being similar to hi for i ∈ {1, 2}, then we have

(i) <h̃1, h̃2> is a free group, and

(ii) the action < h̃1, h̃2 > 	 R3 is properly discontinuous iff h̃1 and h̃2 have the
same sign with respect to α and act freely on R3.

Now that we have shown that Milnor’s conjecture does not hold, we would like to give
some positive results, i.e. present some cases in which Auslander’s conjecture is known
to be true.

4.3 Auslander’s conjecture holds in dimension 2 & dimension 3

This section is dedicated to affine crystallographic groups of ’small’ dimension, i.e. 2
and 3. For these dimensions, it is not only possible to show that Auslander’s conjecture
holds, one can even proof stronger theorems, i.e. that these affine crystallographic groups
are even solvable. All of these proofs are due to Fried and Goldman, [FG83].

At first we will examine the case of dimension 2 and later go on to dimension 3.
For dimension 2 we will actually prove that properly discontinuous groups are virtually
solvable. Similarly, we will prove that a properly discontinuous group Γ ≤ Aff(R3)
is virtually solvable, if either Γ\R3 is compact, and thus Γ crystallographic, or if the
projection onto the linear part L(Γ) has no subgroup that preserves a Lorentzian inner
product.

In either case, by the power of Selberg’s lemma, theorem 4.1.7, we may assume that
an affine crystallographic group Γ ≤ Aff(Rn), n ∈ {2, 3}, is torsion free and therefore
no γ 6= e, γ ∈ Γ, has a fixed point. Because of this, we can, and will, make use of the
following lemma.
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4.3.1 Lemma (Eigenvalue-1-criterion). Given a γ ∈ Aff(Rn) that acts freely on Rn.
Then we have that 1 is an eigenvalue of L(γ).

Proof. As stated before, the action of any γ ∈ Aff(Rn) can be written as γ(v) = Av+ b,
with L(γ) = A ∈ GL(Rn), b ∈ Rn. Using this, we deduce the following:

γ has a fixed point ⇐⇒ ∃v ∈ Rn : Av + b = v ⇐⇒ b ∈ Im(A− I).

Hence, if γ does not have any fixed point, it follows that b /∈ Im(A− I), or equivalently,
that (A− I)Rn < Rn, which yields that (A− I) is not invertible. It is a standard result
of linear algebra, that if T is a linear map and (T − λI) is not invertible, then λ is an
eigenvalue for T . Thus, we conclude that for any γ acting freely, L(γ) = A has 1 as an
eigenvalue.

To proceed, we need two important observations about the Zariski closure. First,
Aff(Rn) is an algebraic subgroup of GL(Rn+1), thus for any Γ ≤ Aff(Rn) we have
Γ ≤ Aff(Rn). This yields the second important fact, which is due to Konstant and
Sullivan, [KS75], namely the following corollary to our lemma about eigenvalues of freely
acting affine groups, .

4.3.2 Corollary. Given a Γ ∈ Aff(Rn) that acts freely on Rn. Then we have that 1 is
an eigenvalue of L(g) for every g ∈ Γ.

Proof. This follows immediately from the fact that the condition on having 1 as an
eigenvalue is based on the polynomial equation det(L(g)− I) = 0.

The second important fact about the Zariski closure is the following: the identity

component, with respect to the Zariski closure, G
0

of G is always a normal subgroup of
finite index in G. Thus, when dealing with virtual properties of an affine crystallographic
group Γ, we may always assume, that, in addition to Γ being torsion free and it acting

freely, Γ ≤ Γ
0
, because Γ ∩ Γ

0
has finite index in Γ.

There is one more thing we need, before we can start to prove that Auslander’s
conjecture is true in dimensions 2 and 3.

4.3.3 Definition (Levi decomposition and Levi factor). In the light of the Levi-Malcev
theorem, every Lie algebra g can be seen as a semi-direct product g = rad(g)os, whereas
rad(g) denotes the radical of g, i.e. its (unique) maximal solvable ideal, and s is an
arbitrary but fixed maximal semisimple subalgebra of g. For such an s we always have
g/rad(g) ∼= s.

This semidirect product is called a Levi decomposition of g and the maximal semisim-
ple subalgebra is called a Levi factor of g. Note that while in general s is not unique,
every two maximal semisimple subalgebras are not only isomorphic but also conjugate.

Now let G be a Lie group with Lie algebra g = rad(g) o s. The maximal semisimple
connected subgroup S of G corresponding to the Levi factor s of g will be called a Levi
factor of G. If G is connected, it can be decomposed as G = rad(G)S.

If G is a subgroup of Aff(Rn), it can be shown that its Levi factor S can be conjugated
to lie in SL(Rn).
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The Levi factors of the Zariski closure of properly discontinuous/crystallographic
groups are the corner stones for the proofs of Auslander’s conjecture in dimension 2
and 3. They are Lie groups, and thus by the classification of Lie algebras and Lie
groups, we know a great deal about them, especially because they are of small dimen-
sion.

Basically, the approach to the proofs we present is as follows: we use the fact, that

the Levi factor S of G
0

is isomorphic to a subgroup S̃ of SL(Rn). This allows us to split
the proof into disjoint cases.

4.3.4 Theorem. A properly discontinuous subgroup Γ of Aff(R2) is virtually solvable.

Proof. Every such Γ has a torsion free subgroup Γ1 of finite index. Additionally, we

assume Γ1 ≤ Γ1
0
. According to corollary 4.3.2, every g ∈ Γ1

0
has 1 as an eigenvalue.

Furthermore, because Γ1
0

is a connected Lie group, we have Γ1
0

= rad(Γ1)0S, with S

being the Levi factor of Γ1
0
.

As stated above, because Γ1
0

is an affine group, S can be conjugated into SL(R2).
However, by virtue of the classification of simple Lie algebras, we know that SL(R2)
has no proper semisimple subgroups, and thus we either have that S is the trivial group
or that S ∼= SL(R2). But SL(R2) certainly has elements that do not have 1 as an
eigenvalue, and hence, assuming the latter case would yield a contradiction. Therefore,

the first case is the only possible one, but we immediately have that Γ1
0

= rad(Γ1)0, if

S is trivial. By definition, Γ1
0

is solvable, and a fortiori so is Γ1. This proves that Γ is
virtually solvable.

Before we go on to examine affine crystallographic subgroups of Aff(R3), a few more
words on the 2-dimensional case.

We start by defining three subgroups of Aff(R2):

H :=

{(
et 0
0 1

)
,

(
0
t

)
| t ∈ R

}
,

T :=

{(
1 0
0 1

)
,

(
s
t

)
| s, t ∈ R

}
,

P :=

{(
1 t
0 1

)
,

(
s
t

)
| s, t ∈ R

}
.

In this definition the letters H, T and P correspond to properties of their respective
groups: hyperbolic, translation and parabolic.

Using these groups, we get a nice characterization of affine subgroups of Aff(R2). A
proof for the following assertion can be found in [Ku53].

4.3.5 Proposition. The natural actions of H, T and P on R2 are proper, therefore if
Γ is a discrete subgroup of any of these groups, the natural action Γ 	 R2 is properly
discontinuous.

On the other hand, in every properly discontinuous group Γ ≤ Aff(R2) there is a
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subgroup Γ̃ ≤ Γ of finite index, that is isomorphic to a discrete subgroup of either H, T
or P . In other words, every Γ is virtually (isomorphic to) a subgroup of one of these
three groups.

It is worth noting that, aside from the trivial case Γ = {e}, there is only one possibility
for Γ to virtually be a subgroup of two of these groups at the same time, namely if Γ is
a group of translations, then it lies virtually in T ∩ P .

The following corollary follows directly from the classification above.

4.3.6 Corollary. Given Γ ≤ Aff(R2), Γ properly discontinuous. Then we have

(i) Γ is virtually abelian, and

(ii) Γ is crystallographic iff it is virtually isomorphic to Z2.
In geometric terms we have, assuming that Γ is torsion free, that

(iii) Γ\R2 is diffeomorphic to either the cylinder S1 × R2 or the torus S1 × S1.

The second assertion of this corollary can also be stated in the following way, which
also holds for higher dimensions: a properly discontinuous group Γ ≤ Aff(Rn) is crys-
tallographic iff its cohomological dimension is n. This assertion will be used shortly,
namely during the course of proving Auslander’s conjecture in dimension 3, to which we
will proceed now.

4.3.7 Theorem. A properly discontinuous group Γ of Aff(R3) is virtually solvable, if
either

(i) there is no subgroup of L(Γ) of finite index, that preserves a Lorentzian inner
product, or

(ii) Γ\R3 is compact, i.e. Γ is affine crystallographic.

Proof. The first assertion follows from propositions 4.3.9 and 4.3.13. Proposition 4.3.14
then completes the proof.

We can narrow down the situation at hand, i.e. we present what we can assume with-
out loss of generality analogously to the 2-dimensional case:

From now on we are only concerned with finite-index subgroups Γ1 of properly dis-
continuous groups Γ, such that Γ1 is torsion free and acts freely on R3. Furthermore, we
may assume such a group Γ1 to lie in the identity component of its algebraic hull, i.e.

Γ1 ≤ Γ1
0
. Recall that we have that every element in Γ1 has 1 as an eigenvalue and so

the same applies to the Levi factor S of Γ1
0
. Moreover, S is isomorphic to a connected

subgroup of SL(R3), which has to be proper because of the eigenvalue-criterion and

lastly we have Γ1
0

= rad(Γ1
0
)S. This, together with S ∼= L(S), immediately yields that

the Levi factor of L(Γ1
0
) = L has to be isomorphic to S.

The fact S ∼= L(S) follows directly from S ∼= S̃ ≤ SL(Rn), because we immediately
see that every element of S acts without a translation.

Before we start the proof, we want to put (i) and (ii) into perspective. To do so we
need the following lemma:



4.3. Auslander’s conjecture holds in dimension 2 & dimension 3 59

4.3.8 Lemma. SL(R3) has only three proper semisimple connected subgroups, namely:

(i) SO(R2)× {1} :=

(
SO(R2) 0

0 1

)
,

(ii) SO(R3), and

(iii) SO(R2,1)0, i.e. the identity component of the group that preserves the bilinear
form B : R3 × R3 → R, B(x, y) 7→ x1y1 + x2y2 − x3y3.

Proof. This assertions follows from the classification of Lie algebras as well as from the
classification of Lie groups.

In our situation, this lemma means that the Levi factor S of L(Γ1
0
) has to be con-

jugate to one of these three groups, and thus assertion (i) of theorem 4.3.7 is just a
combination of the first two cases of the lemma. Indeed, to prove that Γ1 is virtually
solvable, if S is conjugate to either SO(R2)× {1} or SO(R3), we do not have to require
cocompactness of Γ. Propositions 4.3.9 and 4.3.13 will be concerned with these cases.

Only for the last case, proposition 4.3.14, we certainly need the quotient Γ\R3 to
be compact. Indeed, this assumption cannot be dropped: Looking at Margulis’ coun-
terexample, we see the following: in corollary 4.2.7 a properly discontinuous group is
constructed, that is not cocompact but a free group on two elements and thus not virtu-
ally solvable. Said group is a subgroup of R3 oO(R2,1)0 and hence we see that the Levi
factor of its algebraic hull is conjugate to SO(R2,1)0.

Now that we have settled the situation at hand, let us start with our proof.

4.3.9 Proposition. Let Γ1 ≤ Γ be defined as above. If we have for the Levi factor S of

Γ1
0

that S ∼= SO(R2)× {1}, then Γ is virtually solvable.

Proof. It can be shown that any connected groupG with Levi factor S may be conjugated
in such a way, that it is a subgroup of one of the following groups.

Either G ≤ G1 =

GL(2,R)
a
b

0 0 c

 , or

G ≤ G2 =

GL(2,R)
0
0

a b c

 ,

with a, b, c ∈ R, not fixed. Moreover, the conjugation can be chosen, such that, under
the projection to GL(R2), G is mapped onto at least SL(R2).

Now, as above, S ∼= L(S) and hence L(Γ1
0
) ∼= L(rad(Γ1)0)S . From this we see that

S is also the maximal semisimple subgroup of L(Γ1
0
). If we set G = LΓ1

0
), we have

that the last slot on the main diagonal has to be 1 in either of the two cases. Indeed,
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SO(R2) ≤ L(Γ1
0
), but every γ ∈ L(Γ1

0
) has to have 1 as an eigenvalue, and hence,

either L(Γ1
0
) ≤ G̃1 =

GL(2,R)
a
b

0 0 1

 , or

LΓ1
0
) ≤ G̃2 =

GL(2,R)
0
0

a b 1

 ,

At first we examine what happens if L(Γ1
0
) ≤ G̃1. If we look at the linear functional

x3 : (x, y, z) 7→ z, we see that it is invariant under L(Γ1). Hence, we have that the parallel
form dx3 on E is invariant under the action of Γ1. Now we use the linear functional x3

to construct a homomorphism:

ϕ : Γ1 → R
ϕ(γ) 7→ x3(γ(v)))− x3(v), with v ∈ R3, v arbitrary but fixed.

Clearly, due to the invariance mentioned above, ker(ϕ) = {γ ∈ Γ | γ((x1, y1, z)) =
(x2, y2, z)). In other words, every subspace (x, y, z), with x, y ∈ R, x, y not fixed, and
z ∈ R, z fixed, is invariant under the action of ker(ϕ). Of course, ker(ϕ) ≤ Γ1 acts
properly discontinuous, and considering that it acts invariantly on a 2-dimensional space,
we may view ker(ϕ) as a subgroup of Aff(R2), therefore it is virtually solvable by the
power of theorem 4.3. This yields that Γ1 itself is virtually solvable, because it is an
extension of ker(ϕ) by an abelian group, namely R, and extending a (virtually) solvable
group by a solvable group results in a (virtually) solvable group.

Now, on to the case L(Γ1
0
) ≤ G̃2 for which we need the two following lemmata:

4.3.10 Lemma. Let G ≤ Aff(Rn). Then we have:

G is solvable ⇐⇒ L(G) ∩ SL(Rn) is solvable.

Proof. ”⇒” G is solvable, and thus L(G) is, too. Of course, every subgroup of L(G) is
also solvable.
”⇐” Recall that GL(Rn) = SL(Rn) oR×, and hence we have a short exact sequence:

1→ SL(R)n → GL(Rn)
det→ R× → 1

Similarly, for L(G) ≤ GL(Rn), we have

1→ L(G) ∩ SL(R)n → L(G)
det→ det(L(G))→ 1

Certainly, det(L(G)) ≤ R× is abelian and thus solvable. By assumption, the section
L(G) ∩ SL(R)n is also solvable and we deduce that the same is true for L(G), because
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it is the extension of a solvable group by a solvable group.
Since L is an homomorphism, there is an exact sequence

1→ T → G
L→ L(G)→ 1.

Looking at

1→ Rn → Aff(Rn)
L→ GL(Rn)→ 1.

we see that T is abelian and thus solvable. Using the exact same argument as above we
see that G has to be solvable.

4.3.11 Lemma. Let G ≤ GL(2,R) and suppose G is not solvable. Then there are
hyperbolic g1, g2 ∈ G ∩ SL(2,R) such that they do not have a common eigenspace.

Proof. Without loss of generality, we may assume G ≤ SL(R2). Because G is not
solvable, the representation of G on R2 has to be irreducible. This fact allows us to
use the Burnside theorem as done in [CoGu74], which implies the existence of some
hyperbolic g1 ∈ G. From the irreducibility of the representation we deduce that there
is an h ∈ G which is either elliptic, i.e. h has complex conjugate eigenvalues, or its
eigenspaces are different from the eigenspaces of g1. Now, if h is hyperbolic, we set
g2 := h. If it is not, there is an n ∈ N such that g2 := gn1h is hyperbolic and that g1 and
g2 have no shared eigenspace.

In situation of L(Γ1
0
) ≤ G̃2 we have that every vector (0, 0, z) is invariant under the

action of L(Γ1) and thus the linear functional x3, defined as above, is also invariant
under L(Γ1). Consequently, the vector field d

dx3
is invariant under the action of Γ1. We

set M := Γ\R3 and ζ shall be the parallel vector field on M , that is induced by d
dx3

, and
by {ζt}t∈R we denote its flow. The vector field ζ is completely integrable on M , because
d
dx3

is completely integrable on R3.
From now on, we will assume that Γ1 is not solvable. Our goal is to show that this

leads to a contradiction.
According to the first of the two lemmata 4.3.10 and 4.3.11, we have that the section

L(Γ1) ∩ SL(R2) is not solvable. Recalling that L(Γ1) ≤ G2, we see that we can map
L(Γ1)∩SL(R2) homomorphically into GL(R2), such that the image is not solvable. Using
the second lemma, we know that in this image there are hyperbolic g1, g2 ∈ GL(R2) that
share no eigenspace. Now, fix γi such that the L(γi) is in the preimage of gi, for i ∈ {1, 2}.
L(γi) has to look as follows:

L(γi) =

 gi
0

0

a b 1

 ,

with a, b ∈ R. From the hyperbolicity of gi we follow that there is a unique line li in R3

that is invariant under the action of γi as well as parallel to ∂
∂x3

. This yields that the
image σi of li in M under the natural projection is a closed orbit of ζ. The Poincaré map
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around this orbit is g±1
i . Furthermore this orbit is hyperbolic in the sense of a smooth

dynamic system (for more details see [Sm67]).
We set

Wi := {m ∈M | ξt(m)→ σi for t→ +∞}.

These stable manifolds Wi are covered by planes Pi in R3 parallel to the (vi,
∂
∂x3

)-plane,
if vi is an eigenvector of L(γi) with eigenvalue 6= 1 - this can be seen by passing on
to the covering space R3/{γni | n ∈ Z}. Because the eigenvalue associated to vi is not
equal 1, vi has to correspond to the gi-part of L(γi). As stated above, g1 and g2 do not
share an eigenspace, so the eigenvectors v1 and v2 are not parallel and we conclude that
m := P1 ∩ P2 is a line parallel to ∂

∂x3
.

Now we fix a complete Riemannian metric on M and lift it to R3. Let 0 < ε ∈ R. By
Ni we denote the ε-tubular neighborhood of li in R3. Because Ni is invariant under γi,
we see that the positive rays of m lie in N1 ∩N2, see figure 4.1.

Figure 4.1: Fried and Goldman, Stable manifolds of an impossible parallel flow, [FG83].

We conclude that the following inequalities for distances: d(σ1, σ2) ≤ d(l1, l2) ≤ 2ε.
But ε was chosen arbitrarily, thus, from the compactness of the σi, we deduce that σ1

and σ2 are identical. Consequently, the two lifts l1 and l2 of σ1 also have a distance of 0
and therefore l1 = l2. This yields that the properly discontinuous action <γ1, γ2> 	 l1
consists of pure translations and hence our assumption on no shared eigenspaces is
contradicted.

Hence, we have proven that Γ1 is solvable if the Levi factor S of the algebraic hull of
Γ1 is isomorphic to SO(R2)× {1} and consequently Γ is virtually solvable.
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For the cases S ∼= SO(R3) and S ∼= SO(R2,1)0 we need the following well-known
proposition on connected Lie groups.

4.3.12 Proposition. Let G be a connected Lie group G and let K be a maximal compact
subgroup. It follows that G decomposes into a topological direct product G = K×Rk, for
some k ∈ N.

It is worth noting that in general K is not unique, yet all maximal compact subgroups
of G are conjugate in G. Also, a maximal compact subgroup is not always a maximal
subgroup. Further, while G can be written as a topolocigal direct product, there is not
necessarily a group-isomorphism between G and the direct product of the groups K and
Rk.

4.3.13 Proposition. Let Γ1 ≤ Γ be defined as above. If we have for the Levi factor S

of Γ1
0

that S ∼= SO(R3), then Γ is virtually solvable.

Proof. By assumption S contains only elements without a translational part, thus we

have S ∼= L(S), which implies that the Levi factor of L(Γ1
0
) = L(rad(Γ1

0
))L(S) is iso-

morphic to S, because homomorphisms respect solvability, and hence, L(S) is a maximal
semisimple subgroup.

Of course, L(Γ1
0
) is a connected Lie group and S a compact subgroup, because L is

continuous and thus preserves connectedness and compactness. In the light of proposi-
tion 4.3.12, it is now easy to see that GL(R3) contains only two connected subgroups
whose Levi factor is isomorphic to S, namely S itself and S × {λI | λ ∈ R+} and hence

L(Γ1
0
) has to be isomorphic to either one of these groups. However, once again, using the

fact that every γ ∈ Γ1
0

has to have 1 as an eigenvalue, we deduce that L(Γ1
0
) ∼= SO(R3),

but this means that L(Γ1) ≤ SO(R3). Consequently, we have Γ1 ≤ Isom(R)3 and
hence, by applying the first Bieberbach theorem, we see that Γ1, and thus Γ, is virtually
abelian.

Clearly, in the view of lemma 4.3.8, by combining propositions 4.3.9 and 4.3.13 we see
that 4.3.7 (i) indeed holds. And thus, by showing that the next proposition is true, we
will complete the proof of 4.3.7.

4.3.14 Proposition. Let Γ1 ≤ Γ be defined as above with the addition that Γ is crystal-

lographic. If we have for the Levi factor S of Γ1
0

that S ∼= SO(R2,1)0, then Γ is virtually
solvable.

In [So96] this proposition is shown to even hold for semigroups. This proof is also
different in nature to the approach we will present - Soifer’s proof is more geometric and
relies on the dynamics of affine maps.

Proof. Analogously to the proof for proposition 4.3.13, we observe that besides SO(2, 1)0

there is only one connected subgroup of GL(R3): the product SO(2, 1)0 × R+, but we
can rule out the latter, once again, by applying the lemma about eigenvalues. This leads

to L(Γ1) ≤ L(Γ1
0
) ∼= SO(R2,1).
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We are now interested in restriction of L to Γ1. There are two possibilities: either
L(Γ1) is Zariski dense in SO(R2,1), or it is not.

We start by assuming the first possibility and claim that in this situation

(i) L(Γ1) is discrete in SO(R2,1), and

(ii) L|Γ!
: Γ1 → SO(R2,1) is injective.

We will then show that (i) in conjunction with (ii) contradicts crystallographicness.
The first assertion follows directly from corollary 3.3.3.
In order to prove the second assertion we will now, for the first time in this proof for

our theorem 4.3.7, require that Γ, and thus Γ1, is not only properly discontinuous but
crystallographic, i.e. we assume that Γ\R3 is compact.

Now we will prove that L|Γ1 is injective. Suppose the opposite, i.e. that ker(L|Γ1) is
not trivial. This implies that ker(L|Γ1) is a lattice in the group of translations T , because
the representation of SO(R2,1) on R3 is irreducible, and so the same is true for L(Γ1),
from which we deduce that ker(L|Γ1) is an L(Γ1)-module and that ker(L|Γ1) is discrete in
T . Furthermore, the compact space Γ1\R3 is a covering space for ker(L|Γ1)\R3, which is
also compact, because Γ1 is torsion free. This leads to the fact that ker(L|Γ1) is of finite
index in Γ1. However, this means that L(Γ1) ∼= Γ̃/ ker(L|Γ1) is finite, which contradicts
that Γ1 is Zariski dense in SO(R2,1) and assertion (ii) follows.

Let X be the space, such that Sym(X) ∼= SO(R2,1). For example, the complex upper
half plane is a model of X and we deduce that X is an aspherical manifold of dimension
2. Now, because every discrete subgroup of SO(R2,1) acts properly discontinuously on
X, the same holds for L(Γ1) and therefore L(Γ1) has virtual cohomological dimension
of at most 2. However, the action Γ1 	 R3 is crystallographic and therefore Γ1\R3 is a
closed aspherical manifold of dimension 3. We conclude that the virtual cohomological
dimension of Γ1 has to be 3 and arrive at a contradiction.

To complete the proof, we have to examine what happens if L(Γ1) is not Zariski dense
in SO(R2,1). As seen above, at least one of the following statements has to be true:

(i) L(Γ1) is not discrete in SO(R2,1), or

(ii) L|Γ1 : Γ̃→ SO(R2,1) is not injective.

We start with (i): if L(Γ1) is not discrete in SO(R2,1), then L(Γ1)
0

is not the trivial group
and furthermore it is normalized by L(Γ1). By virtue of the generalized first theorem

of Bieberbach, 3.3.2, L(G)
0

is solvable, if G ≤ Aff(R3) is discrete. Consequently, L(Γ1)
normalizes a nontrivial solvable subgroup of SO(R2,1) and therefore must be solvable.

Now we suppose that L|Γ1 is not injective: we start with the observation that any
subgroup of SO(R2,1) which leaves invariant a linear space of dimension either 1 or 2
has to be solvable. Of course, Γ1 and thus L(Γ1) acts invariantly on

ker(L|Γ1) = {γ ∈ L(Γ1) | γ is a translation}.

Hence, if L(Γ1) is not solvable, ker(L|Γ1) has to be of dimension 3 and we can find three
linear independent translations in Γ1. Because ker(L|Γ1)\R3 is compact, we have that
Γ1, and thus Γ, is virtually solvable.
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In the course of the proofs for propositions 4.3.9, 4.3.13 and 4.3.14, we have seen that
actually there is only one situation in which Γ is not virtually solvable, namely if the
linear projection L(Γ1) is Zariski dense in SO(R2,1) - in all the other cases and subcases
thereof we do not need Γ to be crystallographic.

More on the Zariski closure of properly discontinuous groups can be found in [AMS97]
and [AMS02]. The main results are:

4.3.15 Theorem. One can find a properly discontinuous group Γ ≤ Aff(R2n+1), with
n ∈ N, such that L(Γ) is Zariski dense in SO(Rn+1,n), if n is odd.

4.3.16 Theorem. One cannot find a properly discontinuous group Γ ≤ Aff(R2n+1), with
n ∈ N, such that L(Γ) is Zariski dense in SO(Rn+1,n), if n is even.

4.3.17 Theorem. One cannot find a properly discontinuous group Γ ≤ Aff(Rp+q), with
p, q ∈ N, such that L(Γ) is Zariski dense in O(Rp,q), if |p− q| 6= 1.

The proof of the first of these theorems is in part based on Margulis’ construction of
a free properly discontinuous group, see section 4.2.

4.4 Auslander’s conjecture holds if L(Γ) ≤ O(Rn−1,1)

In this section we will examine affine crystallographic Γ, whose linear part L(Γ) is a
subgroup of the orthogonal group O(Rn−1,R1), that preserves the Lorentzian bilinear
form B(x, y) = x1y1 + . . . + xn−1yn−1 − xnyn. We will derive that such Γ are virtually
solvable. The proof we present is due to Goldman and Kamishima, [GK84].

4.4.1 Theorem. A crystallographic subgroup Γ of Aff(Rn) is virtually solvable, if L(Γ) ≤
O(Rn−1,1).

Proof. The proof for this theorem is done in three parts. At first, we will prove a spe-
cial case of the theorem, namely we will assume that the linear projection of Γ\Rn is
discrete - proposition 4.4.9. Then, we will drop this assumption and face two disjoint

cases: either L(Γ)
0

is compact (propostion 4.4.11) or it is not (proposition 4.4.12).
To prove that the theorem holds if the first case is true, we will show that Γ, respec-

tively a ’nice’ subgroup of it, Γ̃, projects to a discrete group L(Γ̃), and thus we can
employ proposition 4.4.9.

For the second case, it suffices to assume Γ to be discrete instead of requiring it to be
crystallographic.

Throughout this section we will use the theory of connected subgroups of O(Rk) - a
detailed examination thereof can be found in [ChGr74] or [Gr82].

This theorem is not the only thing known about such crystallographic groups. A
complete classification of such Γ up to abstract commensurability was given in [GM88].
Before we are to prove the just presented theorem, we state the said classification. To
write it down we need definitions and notation.
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4.4.2 Definition (abstract commensurable groups). Given two groups G1 and G2 with
finite index subgroups H1 ≤ G1 and H2 ≤ G2. If H1

∼= H2, we say that G1 and G2 are
abstractly commensurable.

We start with a positive definite quadratic form qm(x) := m1x
2
1 + · · · + mkx

2
k, with

m := (m1, . . . ,mk) ∈ (2N)k, and let

L(
√
m) := {x1

√
m1, . . . , xk

√
mk | x1, . . . ;xk ∈ Z}.

We define, for an appropriate choice of di, 1 ≤ i ≤ 3,

Γ1(n+ 1, k,m) :=



1 0 0 −x −1
2x

tx r
0 Id1 0 0 0 z
0 0 Id2 0 0 x
0 0 0 Id3 x y
0 0 0 0 1 s
0 0 0 0 0 1

 | r, s ∈ Z, x, y ∈ L(
√
m), z ∈ Zn−1−2k


,

and if k < n−1
2 , we set e1 to be the first standard vector in Zn−1−2k and define

Γ2(n+ 1, k,m) :=



1 −2set1 0 −x −1
2(4s2 + xtx) r

0 Id1 0 0 2se1 z
0 0 Id2 0 0 x
0 0 0 Id3 x y
0 0 0 0 1 s
0 0 0 0 0 1

|r, s ∈ Z, x, y∈L(
√
m), z∈Zn−1−2k


.

Given two groups Γi(n+ 1, k,m) and Γj(ñ+ 1, k̃, m̃), they are abstractly isomorphic
iff i = j, n = ñ, k = k̃ and if the quadratic forms qm and qm̃ are integrally equivalent up
to their respective sign. Two such groups are abstractly commensurable iff one replaces
the equivalence of qm and qm̃ with the following property: there is a α ∈ Q× such that
qm and αqm̃ are equivalent over Q.

These two classes of groups yield the following classification of virtually nilpotent Γ.

4.4.3 Theorem. Given an affine crystallographic group Γ with L(Γ) ≤ O(Rn−1,1). If
Γ is virtually nilpotent, then it is abstractly commensurable to either a group of type
Γ1(n+ 1, k,m) or to a group of type Γ2(n+ 1, k,m).

For those Γ, which are not virtually nilpotent, we need the following.
Let A ∈ GL(Zn) be of Lorentz-type, i.e. A shall be diagonalizable. We also require

for the eigenvalues to be 1, λ, λ−1, a1, . . . , an−3, with λ ∈ R× and |ai| = 1, for all 1 ≤ i ≤
n− 3.

We now define Γ(n+1, A) := ZnoAZ, with the action of Z on Zn is given by 1Zz := Az
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for z ∈ Zn.
For two maps A and B, both being of Lorentz-type, we have that Γ(n + 1, A) ∼=

Γ(n+1, B) iff A is conjugate to either B or B−1 in GL(Zn). And they are commensurable
iff there is an r and an s in Z×, such that Ar is conjugate to Brs in GL(Q).

4.4.4 Theorem. Given an affine crystallographic group Γ with L(Γ) ≤ O(Rn−1,1). If Γ
is not virtually nilpotent, then it is isomorphic to a group Γ(n+ 1, A) with A ∈ GL(Zn)
being of Lorentz-type.

Furthermore, any such Γ(n+ 1, A) can be embedded into Aff(Rn−1,1), such that Γ(n+
1, A) 	 Rn is a properly discontinuous action.

We now start to collect some information needed in order to prove theorem 4.4.1.
Let Isom(Rn−1,1) be the group of isometries Rn → Rn that preserves the Lorentzian
inner product B(x, y) = x1y1 + . . . + xn−1yn−1 − xnyn. Certainly, we can decompose
Isom(Rn−1,1) = ToO(Rn−1,1), with T being the group of pure translations. The identity
component of Isom(Rn−1,1) can be written as Isom(Rn−1,1)0 = T o SO(Rn−1,1)0. And
as always, let L denote the natural projection L : Isom(Rn−1,1)→ O(Rn−1,1).

The following theorem plays a prominent role in our proof. Before stating it, we give
a definition:

4.4.5 Definition (amenable Lie group). A connected Lie group G is called amenable,
if there is a solvable S EG and a compact K ≤ G, such that G = S oK.

4.4.6 Theorem. Let ∆ be a discrete subgroup of a connected Lie group G. If G is
amenable, then ∆ is virtually polycyclic.

Proof. See [Mi77], 2.2.

In view of this theorem, we can prove the following:
an affine crystallographic Γ ≤ Isom(Rn−1,1) is virtually solvable, if its linear part L(Γ)
is a discrete subgroup of an amenable subgroup G of O(Rn−1,1), such that G has only
finitely many components.

We fix k, n ∈ N\{0}, such that k < n and set V := Rk < Rn. By GV we denote
the stabilizer of V . Let B the quadratic form that corresponds to O(Rn−1,1) and set
B̃(x) := B(x, x). The restriction of B̃ to V will be called B̃V . This restricted form may
be positive or negative definite, indefinite or degenerate. Now we take a look at these
different situations and then use the results to prove an upcoming lemma.

4.4.7 Facts. If B̃V is

(i) positive definite, one may find a g ∈ O(Rn−1,1) with

gV = Rk × {0} < Rn.

Furthermore, conjugating GV by g yields the subgroup

O(Rk)×O(Rn−k−1,1) < O(Rn−1,1).
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(ii) indefinite or negative definite, in the case of k = 1, V is of the form

{0} × Rk < Rn

and the stabilizer GV is conjugate to

(Rn−k)×O(Rk−1,1) < O(Rn−1,1).

(iii) is degenerate, then we immediately see ker(B̃V ) = 1. In this situation

GV ∼= Rn−2 o (R× × SO(Rn−2))

and GV clearly is an amenable Lie group. With the help of theorem 4.4.6 we
deduce that Γ ≤ Isom(Rn−1,1) is virtually solvable, if L(Γ) normalizes a linear
subspace on which the restriction of a Lorentzian inner product is degenerate.

4.4.8 Lemma. Given a subgroup G of O(Rn−1,1) with normalizer N(G). Suppose G to
be nontrivial, closed, connected and amenable. Then we have:

(i) G is noncompact ⇒ N(G) is amenable, and

(ii) G is compact ⇒ N(G) is either compact, or there is an k ∈ N, 1 ≤ k ≤ n− 1,
and a g ∈ O(Rn−1,1) with

g−1N(G)g < O(Rk)×O(Rn−k−1,1) < O(Rn−1,1), and

g−1Gg < O(Rk)× {1} < O(Rn−1,1).

Proof. The proof for this lemma is based on properties of the set C := {x ∈ Rn | 0 <
xn, B̃(x) < 0, i.e. the positive half of a light cone. By C we denote its closure, and δC
shall be its boundary, i.e. δC = B̃−1(0) ∩ {x ∈ Rn | 0 ≤ xn}.

By assumption G is amenable, and thus there is at least one x ∈ C, such that x is
not only an eigenvector for any g ∈ G, but also gx ∈ C - for a proof see [Gr82]. We
will denote the set of all such vectors by Λ and set Σ := < Λ >. Because Λ is invariant
under the action of N(G), so is Σ.

From now on let G be noncompact. We start by showing Λ ⊂ δC by contradiction.
Assuming the opposite, one may find an x ∈ C such that gx ∈ C for every g ∈ G.
Actually, because the restriction of B̃ on C is nondegenerate, we have gx = x for every
g ∈ G. From this, together with the fact that G respects B̃, we conclude there is a
quadratic form B̂, also respected by G, such that B̃ ≡ B̂ on x⊥ while restricting both
forms to x yields −B̃ ≡ B̂. This shows that B̂ is positive definite. But a real linear Lie
group G preserves a positive definite bilinear form iff G is compact, which contradicts
our assumption on G and therefore Λ ⊂ δC.

We are now ready to prove assertion (i) and at this point we split the proof into two
disjoint cases, namely Σ ⊂ δC and Σ 6⊂ δC.

In the first case, Σ ⊂ δC, Σ has to be 1-dimensional. It follows that its stabilizer
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O(Rn−1,1) is isomorphic to Rn−2o (R××O(Rn−2)) and thus it is amenable. Once again,
because closed subgroups of amenable groups are amenable, we deduce that N(G) is
amenable.

In order to prove the second case of (i) we need to show that Σ is a proper subspace
of Rn. Suppose the opposite: Σ = Rn. This implies that there are linearly independent
v1, . . . , vn ∈ C and every vi, 1 ≤ i ≤ n, would be an eigenvector for every g ∈ G. Let
us look at the orthogonal complement Oj of <v1, . . . , vj−1, vj+1, . . . , vn>. In any such
Oj we can find a line lj that does not lie in C\{0}, such that there is a vector wj ⊂ lj
with B̃(wj) = 1. Now the set of all wj , 1 ≤ j ≤ n, is linearly independent and all wj
are eigenvectors for all g ∈ G with eigenvalue 1, because G respects B̃. But trivially,
if G is a group with gwj = wj for all g ∈ G, G is the trivial group and we arrive at a
contradiction. Thus, Σ is a proper subspace.

Now we assume Σ 6⊂ δC. At first we observe that the intersection of Σ and C is
nonempty and hence the restricted form B̃|Σ is indefinite. This yields that there is a

g ∈ O(Rn−1,1) such that gΣ = {0} × Rn−k, with k being the dimension of Σ. Further-
more we have gΣ⊥ = Rk × {0}. Because both Σ and Σ⊥ are invariant subspaces, we
have g−1N(G)g < O(Rk)×O(Rn−k−1,1). As shown above, Σ is a proper subspace, thus
0 < k < n. This allows us now to use induction on n:

In the case of n = 2, Isom(R1,1) is an amenable group and thus we have that
the closed subgroup N(G) is also amenable. So let’s suppose (i) has been shown
for all 2 ≤ m < n, with m ∈ N. By assumption G is noncompact and therefore
its projection into O(Rn−k−1,1) has to be a noncompact amenable subgroup. Now
g−1N(G)g < O(Rk)×O(Rn−k−1,1) together with our induction hypothesis implies that
the projection of N(G) into O(Rn−k−1,1) yields a closed amenable subgroup. The pro-
jection of N(G) into O(Rk) is a closed, and thus compact, group. Consequently, N(G) is
an extension of a closed amenable group by a compact group and thus amenable. Hence,
we have shown that (i) holds.

On to the second assertion of the lemma. Because G is compact, so is Gv for any
v ∈ C. The barycenter of this orbit lies in C and for the vector v corresponding to it we
have Gv = v. This implies that Λ∩C 6= ∅ and Σ =<Λ∩C>. But the action G 	 (Λ∩C)
is trivial and therefore G|Σ is the trivial group.

If dim Σ ≥ 2, then, analogous to the proof for (i), we know there is a g ∈ O(Rn−1,1),
such that gΣ = {0} × Rn−k, gΣ⊥ = Rk × {0} and hence g−1N(G)g < O(Rk) ×
O(Rn−k−1,1). But G is trivial on Σ and thus g−1Gg < O(Rk)× {e}.

If dim Σ = 1, we have that G fixes a unique vector in C, then the same applies to
N(G) and N(G) has to be compact. This shows that (ii) holds and we have completed
the proof.

We are now going to prove the following special case of theorem 4.4.1.

4.4.9 Proposition. A crystallographic subgroup Γ of Aff(Rn) is virtually solvable, if
L(Γ) ≤ O(Rn−1,1) is discrete.
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Proof. Exactly as in section 4.3, we may without loss of generality replace Γ with a
torsion free subgroup Γ̃, such that Γ̃ has finite index in Γ and Γ̃ ≤ Isom(Rn−1,1)0.
To prove the proposition we will use induction on the dimension n. If n = 1, then there
are exactly two possibilites. Either Γ ∼= Z or Γ ∼= Z o Z2. In both cases, Γ evidently is
virtually solvable. From now on, let 1 < n and assume that the proposition holds for
every m < n with m ∈ N.

Also as before, for the projection L onto the linear part, we have that the kernel is
the set of all translations, i.e. ker(L|Γ̃) is the discrete subgroup Γ̃ ∩ T . Our first task is
to show that this is indeed a proper group.

Assume ker(L|Γ̃) to be the trivial group. Equivalently, Γ̃ ∼= L(Γ̃). If this is the case,

then the space of double cosets L(Γ̃)\(SO(Rn−1,1)/O(Rn−1) is a hyperbolic complete
Riemannian manifold of dimension n-1 with fundamental group Γ̃. Thus, the cohomo-
logical dimension of Γ̃ cannot exceed n − 1. However, Γ̃ is also the fundamental group
of the compact aspherical manifold Γ̃\Rn, which has dimension n, and therefore the
cohomological dimension of Γ̃ is n and we arrive at a contradiction. This yields, that
ker(L|Γ̃) is indeed a proper group and the linear space V :=<ker(L|Γ̃)> has dimension

k > 0. Of course, V is invariant under the action of L(Γ̃).
We denote by B|V the restriction of the Lorentzian bilinear form to V . There are

three possibilities:

(i) B|V is degenerate,

(ii) B|V is positive definite, i.e. has signature (k, 0), and

(iii) B|V is indefinite, i.e. has signature (k − 1, 1).

If B|V is degenerate, and because V is invariant under L(Γ̃), we deduce from 4.4.7, that

Γ̃, and thus Γ, is virtually solvable.
In order to prove the other two cases, we first have to establish a few things. Of course,

Rn can be decomposed into V ×V ⊥. By O(V, V ⊥) ≤ O(Rn−1,1) we denote the symmetry
group of (V ×V ⊥, B|V ×B|V ⊥). This group naturally splits into O(V )×O(V ⊥), i.e. the

symmetry groups of V and V ⊥ together with the respective restrictions of B.
Clearly, we have the following isomorphism:

Isom(V × V ⊥) ∼= T o (R× ×O(V × V ⊥)) ∼= Isom(V )× Isom(V ⊥)

and

Isom(V ) ∼= T|V o (R× ×O(V ))

as well as

Isom(V ⊥) ∼= T|V ⊥ o (R× ×O(V ⊥)),

with T|V , respectively T|V ⊥ , denoting the translations restricted to V , respectively V ⊥.

Lastly, by L̃ we denote the projection from Isom(V × V ⊥) onto Isom(V ⊥).
Using Selberg’s lemma one more time, Γ̃ may be chosen in such a way that Γ̃ yields a
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torsion free group if its mapped from Isom(V × V ⊥) into O(V ).
Let M̂ := (Γ̃ ∩ T )\Rn. Of course, M̂ is a covering space for M := Γ̃\Rn. If we let V

act on Rn by translations, we have an induced action Tk 	 M̂ , with Tk = (Γ̃ ∩ T )\V
being the k-torus - recall 0 < dimV = k.

To prove the proposition in cases (ii) and (iii), we need the following lemma.

4.4.10 Lemma. The action L̃(Γ̃) 	 V ⊥ is properly discontinuous.

Proof. We start by showing that the action V oΓ̃ 	 Rn is proper, whereas the semidirect
product is the one induced from the natural action of Γ̃ on V ⊥. We fix a compact
subset F ⊂ V , with the property that it meets every (Γ̃ ∩ T )-coset. Furthermore, let
K1,K2 ⊂ Rn be compact subsets. It follows that

{(vγ) ∈ V o Γ̃ | (vγ)K1 ∩K2 6= ∅}

is a closed subset of F ({γ ∈ Γ̃ | γK1 ∩K2 6= ∅}). Hence, V o Γ̃ 	 Rn is a proper action.
Of course, V is mapped under L̃ to the trivial group and Γ̃ is a discrete subgroup of

Isom(V × V ⊥, therefore L̃(Γ̃) is a discrete subgroup of Isom(V ⊥) and we deduce that
L̃(Γ̃) 	 V ⊥ is indeed properly discontinuous.

To complete the proof of proposition 4.4.9 we need one more thing, namely that
ker(L̃) = ker( L|Γ̃) = Γ̃ ∩ T . If L̃(γ), γ ∈ Γ̃, is the identity element, then the action of γ

on V ⊥ is trivial. Thus, if we look at the induced action of γ on the covering space M̂ ,
we conclude that γ acts invariantly on every Tk-fiber of M̂ → V ⊥. Furthermore, γ acts
properly discontinuously on M̂ and thus it acts properly discontinuously on every Tk
as well and we see that L(γ) coincides with L(γ)|V , its restriction to V . Furthermore,

L(γ)|V has to have finite order, but Γ̃ was chosen to be a torsion free group, and so
its image must be under any homomorphism, too. Thus, there is only one choice for
L(γ) = L(γ)|V to avoid a contradiction, namely L(γ) = 1, i.e. γ is a translation and we
have proven the claim.

This immediately translates into the existence of an exact sequence

Zk → Γ̃→ L̃(Γ̃),

and we immediately see that Γ̃ is virtually solvable iff Γ̃ is virtually solvable.
We are finally ready to finalize the proof. Assume that B|V is positive definite. It

follows that the orthogonal complement V ⊥ has a flat Lorentz-structure that is invariant
under L̃(Γ̃) and the quotient space L̃(Γ̃)\V is compact. This, together with lemma 4.4.10
yields that L̃(Γ̃) is a crystallographic group and because dimV ⊥ < n we can make use of
the induction hypothesis from the beginning of this proof. We get that L̃(Γ̃) is virtually
solvable and by virtue of the discussion above the same applies to Γ̃. Thus we have
proven that (ii) holds.

The last thing to check is what happens if BV is indefinite. But in this situation L̃(Γ̃)
is a subgroup of Euclidean isometries, i.e. L̃(Γ̃) < Isom(Rn−k−1) and hence we can apply
Bieberbach’s first theorem to conclude that L̃(Γ̃) is virtually abelian. A fortiori, Γ̃ is
virtually solvable.
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Now that we have seen that a crystallographic Γ is virtually solvable, if L(Γ) <
O(Rn−1,1) is discrete, we are left to examine what happens if we drop this assumption.

As stated above, we will now look into two disjoint cases, based on whether L(Γ)
0

is
compact (proposition 4.4.11) or not (proposition 4.4.12).

4.4.11 Proposition. If Γ is a crystallographic subgroup of Isom(Rn−1,1), such that

L(Γ)
0

is compact, then Γ is virtually solvable.

Proof. Once again, applying theorem 3.3.2 yields that G := L(Γ)
0

is solvable. Actually,
it is even abelian, because G is compact and connected. Furthermore, using assertion
(i) of lemma 4.4.8, we have that the normalizer N(G) is either compact or conjugate to
a subgroup of O(Rk)×O(Rn−k−1,1). In the latter case, we also have G ∼= O(Rk).

If N(G) is compact, then Γ ≤ T oN(G), which clearly is an amenable group. From
4.4.6 we conclude that Γ is virtually solvable.

To complete this proof, we will assume G ≤ O(Rk)× {1} as well as

L(Γ̃) ≤ N(G) ≤ O(Rk)×O(Rn−k−1,1),

with Γ̃ being a torsion free subgroup of Γ, such that [Γ : Γ̃] is finite.
There is a composition of natural projections:

Γ̃→ L(Γ̃) < O(Rk)×O(Rn−k−1,1)→ O(Rn−k−1,1).

We call this composition π : Γ̃→ O(Rn−k−1,1) and set Γ̂ := ker(π). Immediately we see
that Γ̂ is a group of Euclidean isometries. Since the action Γ̃ 	 Rn is free, the same
holds for the action of Γ̂ on Rn and hence Γ̂\Rn is a complete flat Riemannian manifold.
Due to a result by Wolf, [Wo67], the submanifold Γ̂\B is a compact, totally geodesic
deformation retract, with B being an affine subspace of Rn on which Γ̂ acts invariantly.
Any two such subspaces B1 and B2 are parallel and the union E :=

⋃
i∈I Bi, I being

an appropriate index set, is also an affine subspace of Rn. Of course, Γ̂ E Γ̃ and thus
Γ̃(Bi) = Bj for some j ∈ I. Consequently, E is a Γ̃-invariant subspace. However, in this
situation we have E = Rn, according to [FGH81].

We fix an B ⊂ Rn, such that Γ̂ 	 B is crystallographic and Euclidean. This yields
that Γ̂ 	 (v + B), v ∈ Rn, is also crystallographic and Euclidean and thus if γ̂ ∈ L(Γ̂),
then all eigenvalues of γ̂ are roots of unity. However, Γ̃ was chosen to be torsion free,
thus there is only one value that may occur as an eigenvalue for any element γ in Γ,
namely 1, because otherwise there would be an 0 < m ∈ N, such that γm = I. In other
words, Γ̂ is a group of translations.

As a last step of this proof, we show that L(Γ̃) is discrete. From G < O(Rk)×{1} we
deduce that π(Γ̃) is a discrete subgroup of O(Rn−k−1,1). But this means that the image
of L(Γ̃) < O(Rk)×O(Rn−k−1,1) is discrete. From the fact that L(Γ̃) = 1 if π(Γ̃) = 1 we
conclude that L(Γ̃) is discrete. Proposition 4.4.9 completes the proof.

There is only one more case to check in order to prove that 4.4.1 holds.
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4.4.12 Proposition. If Γ is a discrete subgroup of Isom(Rn−1,1), such that L(Γ)
0

is
noncompact, then Γ is virtually solvable.

Proof. From theorem 3.3.2 we conclude that G := L(Γ)
0
< O(Rn−1,1) is a connected,

closed and solvable group, which by assumption is noncompact. We also have that
L(Γ) normalizes G. By assertion (i) of 4.4.8 L(Γ) is a subgroup of the amenable group
N(G) < O(Rn−1,1). This yields that Γ is a subgroup of the amenable group T oN(G) <
Isom(Rn−1,1). Because we assumed Γ to be discrete, we can employ theorem 4.4.6 to
conclude that Γ is virtually solvable.

Now that the main theorem of this section is shown to be true, we are ready to move
on to our next task.

4.5 Auslander’s conjecture holds if L(Γ) ≤ O(Rn−2,2)

In this section we are concerned with affine crystallographic groups Γ, whose linear part
is a subgroup of O(Rn−2,2), i.e. the orthogonal group that preserves a nondegenerate
bilinear form B of signature (n − 2, 2). We will prove that for such Γ Auslander’s
conjecture holds, however we will give the proof, which is due to Abels, Margulis and
Soifer, [AMS05], not in full detail.

One might think that methods similar to those used to prove the case of L(Γ) <
O(Rn−1,1) will be applied in order to show that the claim holds, however the techniques of
this section will be vastly different in nature - they built upon Margulis’ counterexample
to Milnor’s conjecture, see section 4.2

A different approach can be found in [KW96], where the assertion is proven under the
assumption that in the unipotent radical of the Zariski closure of Γ there is a g with
L(g) 6= I.

4.5.1 Theorem. A crystallographic subgroup Γ of Aff(Rn) is virtually solvable, if L(Γ) ≤
O(Rn−2,2).

Proof. To prove this theorem it suffices to show that the Zariski closure L(Γ) of L(Γ) is
virtually solvable, because in this case Γ is the extension of an abelian group - ker(L)
is just the group of translations - by a virtually solvable group L(Γ) and thus Γ itself is
virtually solvable. For the Zariski closure we can assume connectedness, because as in

section 4.3, there is a finite-index subgroup in Γ, such that its linear part maps to L(Γ)
0
.

Our claim will be shown by contradiction. Hence, we assume Γ and L(Γ) to not be
virtually solvable and choose n in such a way that n is minimal with respect to all
dimensions in which our claim fails.

Before we start this section properly, we give a rough sketch of the proof. A more
detailed one is then to be found on page 80. Every γ ∈ Γ can be decomposed into two
components corresponding to the action of γ on either W or W⊥, whereas W⊕W⊥ = Rn
is a certain decomposition, that will be introduced shortly.

Proposition 4.5.11 tells us, that there is some sort of ’coming-back effect’ for certain
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elements of Γ. Furthermore, corollary 4.5.12 states that the word length of such an
element can be controlled. There are exponentially many of these elements such that
the W -component comes back closely to where it started. Comparing the exponential
growth of the quantity of such elements with the polynomial growth of the volume of
some compact K ⊂ Rn yields that one can find infinitely many elements in Γ, such that
the W⊥ component also comes back closely to where it started, which ultimately leads
to a contradiction to the assumption of Γ being properly discontinuous.

We start with a definition.

4.5.2 Definition (Standard subgroup). Given a vector space V and a quadratic form
B with O(B) denoting the orthogonal group Sym(V,B). Let H < O(B) be a connected,
simple group. If there exists an orthogonal decomposition of V = W ⊕W⊥ with respect
to B, such that

(i) W and W⊥ are invariant under the action of H,

(ii) π : H → O(B|W ) is an epimorphism, and

(iii) hW⊥ is the trivial action for every h ∈ H,

then we call H a standard subgroup of O(B).

We are now ready to formulate the first lemma of this section.

4.5.3 Lemma. Let H be a connected, simple subgroup of O(Rn−2,2) with rankR(H) = 2.
It follows that H is a standard subgroup.

A thorough definition of the real rank rankR of some Lie group can be found in
definition 4.6.3.

Proof. According to [OV00], the Lie algebra g of O(Rn−2,2) can be written as g = {A ∈
Mn(R) | AJ = JAt}, with Mn(R) denoting the real n× n-matrices and

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

... In−4
...

...
0 1 · · · 0 0
1 0 · · · 0 0

 .

In O(Rn−2,2) we can find a maximal R-split torus T = (R×)d, for an appropriate d ∈ N,
with Lie algebra t. Any t ∈ t can be written as

t =


ε1 0 · · · 0 0
0 ε2 · · · · · ·
...

... 0n−4
...

...
0 0 · · · −ε2 0
0 0 · · · 0 −ε1

 ,
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for an appropriate choice of ε1, ε2 ∈ R. By 0n−4 ∈Mn−4 we denote the matrix in which
every slot is equal to 0.

We see that the positive roots are α = ε1, β = ε2, α+ β = ε1 + ε2 and α− β = ε1− ε2

and for the dimension of the respective root spaces we have: dimVα = dimVβ = n − 2
and dimVα+β = dimVα−β = 1.

If we define G0 to be the smallest connected, simple subgroup of O(Rn−2,2), such that
T ≤ G0, then we have G0 ≤ H, because by assumption H is connected and simple
and furthermore rankR = 2 and thus we may suppose without loss of generality that
T ≤ H. Of course, the Lie algebra g0 of G0 contains t and thus also the root spaces
Vα+β, V−(α+β), Vα−β and V−(α−β).

We set U+ := Vα ⊕ Vβ and U− := V−α ⊕ V−β. The Lie algebra of H will be denoted
by h. Then we have that the intersection h ∩ U+ is a proper subspace and invariant
under the action of T , which yields that h ∩ Vα 6= {0} 6= h ∩ Vβ. Furthermore we can
find a w1 in the Weyl group of G0 with w1Vαw

−1
1 = Vβ, which immediately gives us

w1(h ∩ Vα)w−1
1 = h ∩ Vβ.

The centralizer of T in O(Rn−2,2) acts transitively on U+ and U−. Furthermore, there
is a w2 in the Weyl group of G0 with w2U

+w−1
2 = U− and hence there is a standard

subgroup H̃ with Lie algebra h̃, such that h̃ ∩ U+ = h ∩ U+ and h̃ ∩ U− = h ∩ U−. We
deduce that every unipotent element of H and every unipotent element of H̃ lies in the
intersection H ∩ H̃. But since the unipotent elements are a generating set of H as well
as of H̃ we have H = H̃ and H indeed is a standard subgroup.

In [AMS05] the authors claim that this proof can be generalized in such a way, that
if H ≤ O(Rn−k,k), H connected and simple with rankR = k, then H is also a standard
subgroup.

Before we can make use of the just proven lemma, we need some definitions.

4.5.4 Definition (Unipotent radical and reductive algebraic groups). Let G be an al-
gebraic group with radical rad(G). The subgroup U ≤ rad(G) that consists of all the
unipotent elements is called unipotent radical of G. If the unipotent radical is trivial, G
is said to be a reductive group.

4.5.5 Lemma. Given a crystallographic Γ that is not virtually solvable with L(Γ) ≤
O(Rn−2,2). It follows that the Zariski closure G of L(Γ) is a reductive group.

Proof. We denote by S the semisimple part of G. Our crystallographic group Γ is virtu-
ally solvable, if for every connected, simple subgroup S̃ of S we have that rankR(S̃) ≤ 1,
see [To90]. But by assumption Γ is not virtually solvable and thus there is such an S̃ ≤ S
with rankR(S) = 2.

By the virtue of lemma 4.5.3, Rn decomposes into W⊕W⊥, such that these two spaces
are invariant under the action of S̃ and furthermore W and W⊥ are orthogonal with re-
spect to our bilinear form B. We also have S̃|W = O(B|W ) as well as the fact that B|W⊥
is positive definite. We define V to be the subspace {v ∈ V | tv = v ∀t ∈ U} ≤ Rn.Now
there are two possibilities for this G-invariant space: either V ≤ W⊥ or V = Rn. How-
ever, it can be checked that the first of these two possibilities is not possible. But if
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V = Rn, then U has to be the trivial group because every element in U fixes every vector
in Rn. Thus, G is reductive.

To proceed we need some notation. Given a bilinear form B on some linear space
Rn with signature (p, q), such that p + q = n and q ≤ p. Not surprisingly we set
SO(B) := {t ∈ O(B) | det(t) = 1}. Let g ∈ SO(B) be semisimple, i.e. if V is g-
invariant subspace of Rn, then there is a W ≤ Rn, such that W is also g-invariant and
W is a complete for V in Rn.

If g ∈ SO(B) is semisimple, we can decompose Rn = A+
g ⊕ A−g ⊕ A0

g such that we
have the following correspondence: A+

g is the subspace on which all eigenvalues of the
restriction of g are greater than 1, A−g is the subspace on which all eigenvalues of the
restriction of g are less than 1 and A0

g is the subspace on which all eigenvalues of the
restriction of g are equal to 1.

Such a semisimpile g is called hyperbolic if dimA0
g = p−q and of course the definition

given in Margulis’ counterexample, section 4.2, is just a special case of the one just
presented. Accordingly, we set D−g := A0

g ⊕A−g , as well as D+
g := A0

g ⊕A+
g . Also recall

D−g ∩ D+
g = A0

g.
Furthermore, we set

s+(g) := max{|λg| | λg is an eigenvalue of g and λg < 1},
s−(g) =: s+(g−1), and

s(g) := max{s+(g), s−(g)}.

The metric d on Rn, derived from the standard inner product || · ||, induces a metric
d̂ on the projective space PRn. Similarly to the situation in Margulis’ counterexample,
we say that a hyperbolic g is ε-hyperbolic if d̂(A+

g ,A−g ) > ε > 0 for some ε ∈ R+ and if

g and h are both hyperbolic and additionally d̂(A+
g ,A−h ), d̂(A+

h ,A
−
g ) > ε > 0, then we

call them ε-transversal.
For two ε-hyperbolic and ε-transversal elements of Hb we have an isometry ρ : A0

h →
A0
g via the following: We set A0

g,h := D−g ∩ D+
h and

ρ : A0
h → A0

g,h → A0
g.

Thus ρ is the composition of two maps, both being chosen to be the respective natural
projection. For the first one we have that it is parallel to A+

h , whereas the second one is
parallel to A−g . If we are given ε-hyperbolic and pairwise ε-transversal g0, g1, . . . , gn ∈
SO(B), then we have for every (gi, gi−1), 0 < i ≤ n, an isometry ρi from A0

gi to A0
gi−1

.
The composition of these isometries will be denoted by πi := ρ0 · · · ρi. Let og := g|A0

g

and õgi := πiogiπ
−1
i , i.e. we have a composition

õgi : A0
g0

π−1
i−→ A0

gi

ogi−→ A0
gi

πi−→ A0
g0 ,

which is an orthogonal transformation on A0
g0 . We also immediately see that õligi = õ

g
li
i

for every li ∈ N. If l = (l0, l1, . . . , ln) ∈ Nn, then we set gl := gl00 g
l1
1 · · · glnn and ol :=
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õl0g0 õ
l1
g1 · · · õ

ln
gn .

The following lemma was first proven in [PR03].

4.5.6 Lemma. Given a Zariski dense group Γ ≤ SO(B) and ε̃-hyperbolic and ε̃-
transversal g and h in Γ. Then there is an ε ∈ R+ and gi ∈ Γ, 1 ≤ i < n, such
that

(i) g = g0, g1, . . . , gn1 , gn = h are ε-hyperbolic as well as pairwise ε-transversal, and

(ii) {ol}l∈Nn is Zariski dense in the connected component of O(Bg0).

Proof. Assertion (i) follows from the fact that Γ is a Zariski dense subgroup of O(Rn)
and results from [AMS02].

To show that the second assertion also holds, it suffices to prove that there are ε-
hyperbolic and pairwise ε-transversal g1, . . . , gn such that there is a Zariski open U ⊂
{ol}l∈Nn . Among all (n − 1)-tupels of elements of Γ provided by (i) we choose the gi,

1 ≤ i < n in such a way that {ol}l∈Nn has maximal dimension. Now, {ol}l∈Nn is a
constructible set. This implies that there are subsets Ki, Ui ⊂ O(Bg0), 1 ≤ i ≤ m, Ki

Zariski closed, Ui Zariski open, such that {ol} =
⋃m
i=i(Ki ∩ Ui). According to [PR03]

the set

S1 := {γ ∈ Γ | γ is hyperbolic and R-irreducible}

is nonempty. And because we also have that the set

S2 := {γ ∈ Γ | γ and gn−1 are transversal}

is nonempty, the same of course holds for the intersection S := S1 ∩ S2 6= ∅.
We fix a γ ∈ S and denote by ρ : A0

γ → A0
gn−1

the isometry we constructed right before
this lemma. Furthermore we set πn+1 = πnρ and

Tγ := {t ∈ SO(B) | t is regular, A+
γ = A+

t ,A−γ = A−t }.

Of course, for any t ∈ Tγ we also have A0
γ = A0

t . Using that γ is R-irreducible, it can be
shown that

T̃ := {otokγot−1 | k ∈ N, t ∈ Tγ}

is Zariski dense in O(Bγ). Putting γ(t) := tγt−1 the above yields that

T := {t ∈ SO(B) | {õ(γ(t))k}k∈N ⊂ K :=
m⋃
i=1

Ki}

is open as well as nonempty. We now fix a t ∈ T ∩ S and a γ ∈ S and set gn := γ(t).
Adding gn to the set of gi, 1 ≤ i ≤ n − 1, would increase the dimension of {ol}l∈Nn ,
which cannot be because {ol}l∈Nn was chosen to be of maximal dimension, which yields
that there has to be an i such that Ki equals O(Bg0). Hence, there are Zariski open
subsets in {ol}l∈Nn and we have finished the proof.
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We go on by giving some more notation.

D(B) := {(W, g) |W ≤ Rn maximal among all B-anisotropic spaces, g ∈ O(B|W }.

By anisotropic we mean that there are no null vectors, i.e. there is no 0 6= w ∈ W with
B(w,w) = 0.

Furthermore let g ∈ O(B) be hyperbolic. Then we set Xg := (A0
g, og) ∈ D(B).

We will also use D(Γ) := {Xg | g ∈ Γ, g is hyperbolic} and Dε(Γ) := {Xg | g ∈
Γ, g is ε-hyperbolic}.

4.5.7 Lemma. Given a group Γ, that is Zariski dense in O(B). Then

(i) W = A0
Γ with γ ∈ Γ, γ hyperbolic ⇒ (W, g̃) ∈ D(Γ) if g̃ ∈ O(B|W ), and

(ii) (W, g) ∈ Dε(Γ)⇒ (W, g̃) ∈ Dε(Γ) if g̃ ∈ O(B|W ).

Let Xi := (Wi, gi) for some i ∈ N. Given a sequence {Xi}i∈N, we say it converges to
X ∈ D(B) and write {Xi}i∈N ⇒ X, if

(i) d̂(Wi,W )→ 0 for i→∞, and

(ii) for every ε ∈ R+ and every (a, b) ∈ (W,Wi) with |a| = |b| = 1 there is an m ∈ N,
such that for all i > m we have

||a− b|| − ε ≤ ||ga− gib|| ≤ ||a− b||+ ε.

4.5.8 Remark (From linear hyperbolic and transversal maps to affine hyperbolic and
transversal maps). In contrast to section 4.2, where we started right away with hyper-
bolic and transversal affine maps, so far we have only been talking about linear maps.
Of course, we are more interested in affine ones. The transition from the linear to the
affine setting is done in the obvious way.

By AB we denote the subgroup of Aff(Rn) whose elements are mapped under the
projection L onto their linear part into SO(B). If for such a g ∈ AB the linear part
L(g) is hyperbolic, we say that g itself is hyperbolic. Accordingly, we will use the de-
notation A−g ,A+

g and A0
g instead of A−L(g),A

+
L(g) and A0

L(g). Subsequently, we will also

write D−g ,D+
g and D0

g rather than D−L(g),D
+
L(g) and D0

L(g)
Also as in Margulis’ counterexample, if g ∈ AB is hyperbolic and there is a unique line

that is invariant under the action of g, we will denote the said line by Cg. Of course, if g
is not only hyperbolic but lies in a group Γ with Γ 	 Rn being a properly discontinuous
action, then there will be such a Cg. Also, if g is an element of such a Γ, then g 	 Cg
is a parallel translation given by some vector tg ∈ A0

g. Evidently, Bg(tg, tg) > 0. If

vg :=
tg

Bg(tg ,tg) , then Bg(vg, vg) = 1 and thus for any x ∈ Rn we have B(gx− x, vg) = tg.

Furthermore E+
g , respectively E−g , shall denote the plane that contains Cg and is paral-

lel to D+
g , respectively D−g . The intersection E+

g ∩E−g will by denoted by Fg. Obviously,
we have Cg ⊆ Fg. Lastly, we call πg the natural projection πg : Rn → Fg, which is
parallel to A+

g ⊕A−g .
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Using these notations, the following lemma, which is a generalization from results
derived in the course of Margulis’ counterexample, can be achieved.

4.5.9 Lemma. Given 2ε-hyperbolic elements g, h1, . . . , hm ∈ AB, which are pairwise
2ε-transversal. We set H :=<h1, . . . , hm> ≤ AB and define cgh = d(v,Fgh) for a fixed
v ∈ Rn. It follows that there is a c ∈ R such that for all h ∈ H

(i) gh is ε-hyperbolic, and

(ii) cgh ≤ c.

Let Da(B) := {(X, v) | X = (W, g) ∈ D(B), v ∈ W,B(v, v) = 1}. The motivation
for adding the index a to this set is the following: from the said set we can deduce
information not only about L(g) but also about the affine map g.

Given a sequence {(Xi, vi)}i∈N, (Xi, vi) ∈ Da(B), and a pair (X, v) ∈ Da(B) with
Xn ⇒ X and vn → v, then way say that {(Xi, vi)}i∈N converges to (X, v). We also set

Dε
a(Γ) := {(X, v) ∈ Da(B) | X ∈ Dε(Γ), v ∈W,B(V, v) = 1}.

We are now ready to state two key results for the proof of the main theorem of this
section.

4.5.10 Proposition. Given a group Γ ≤ Aff(Rn) and a nondegenerate bilinear form B
of signature (p, q), p ≥ q. If

(i) either 2 ≤ p− q or q ≤ 2,

(ii) L(Γ) is a Zariski-dense subgroup of O(B), and

(iii) every hyperbolic γ ∈ Γ acts freely,

then there are X1, . . . , Xm, Y1, . . . , Ym ∈ D(B) with

(i) Xi, Yj ∈ Dε
a(Γ), i, j ∈ {1, . . . ,m}, such that

(ii) Xi = (W, gi, vi) and Yj = (W, gj ,−vj), and

(iii) the set {v1, . . . , vm} is a basis for W .

4.5.11 Proposition. If a group Γ ≤ Aff(Rn) and a bilinear form B are both defined
as in proposition 4.5.10, one can find an ε ∈ R+, such that there are ε-hyperbolic and
ε-transversal γ1, . . . , γs ∈ Γ, a compact K ⊂ Rn and constants

c1(γ1, . . . , γs), c2(γ1, . . . , γs),

1 < a(γ1, . . . , γs), and

b(γ1, . . . , γs) < 1,

such that



80 Chapter 4. Auslander’s conjecture

(i) Γ̃ :=< γ1, . . . , γs > is a free group and the γi, 1 ≤ i ≤ s, i ∈ N, form a free
generating set for Γ̃,

(ii) if γ ∈ Γ is ε-hyperbolic and ε-transversal with respect to every γi, 1 ≤ i ≤ s,
and if a(γ1, . . . , γs) ≤ a(γ, γ1, . . . , γs), then Γ̂ :=< γ, γ1, . . . , γs > is a free group
and γ, γ1, . . . , γs are free generators for Γ̂, and

(iii) if for such a γ we have c1(γ1, . . . , γs) < dBγ (K) as well as a(γ1, . . . , γs) ≤
a(γ, γ1, . . . , γs), then there are k, l ∈ N, 1 ≤ k ≤ s, l ≤ dBγ (K)c2, such that

γ̃ := γlkγ yields dBγ̃ (K) ≤ bdBγ (K).

Propositions 4.5.10 and 4.5.11, along with Lemma 4.5, yield the following corollary.

4.5.12 Corollary. Let the same notation and assumptions apply as in proposition 4.5.11
and let furthermore w denote the word metric on Γ̃ =< γ1, . . . , γ2 >. If γ ∈ Γ is
an element provided by proposition 4.5.11 then there is a γ̂ ∈ Γ̃ and a c ∈ R, with
w(γ̂) ≤ (dBγ (K)c)2 and dBγ̂γ(K) ≤ c1.

We are now ready to sketch the proof for theorem 4.5.1.

proof of theorem 4.5.1. As stated above, we will prove this proposition by contradiction.
Thus, let Γ ≤ Aff(Rn) be a properly discontinuous, yet not virtually solvable group. This
yields that G := L(Γ) is semisimple and that we can decompose Rn = W ⊕W⊥ such
that both subspaces are invariant under the action of G and W is even irreducible with
respect to G. Furthermore, B|W is a bilinear form of signature (n− 2, 2) whereas B|W⊥
is positive definite. Of course, the natural projections πw respectively πW⊥ from Rn onto
W respectively W⊥ induce homomorphisms from Γ into Aff(W ) and Aff(W⊥).

It can be shown that πW (Γ) is Zariski dense in O(BW ). Thus, there are γ1, . . . , γs ∈ Γ
with πW (γ1), . . . , πW (γs) satisfying the assumptions of proposition 4.5.11. Then, us-
ing results from [AMS95] or [AMS97], it follows that there are γ̃1, γ̃2 ∈ Γ such that
π(γ̃i), π(γj), 1 ≤ i ≤ 2, 1 ≤ j ≤ s, are ε̃-hyperbolic and pairwise ε̃- transversal.

One can show then that there is an k ∈ N, such that for any γ ∈< γ̃k1 , γ̃
k
2 > the

following holds:

(i) πW (γ) is ε̃
2 -hyperbolic,

(ii) πW (γ), πW (γ1), . . . , πW (γs) are pairwise ε̃
2 -transversal, and

(iii) a(πW (γ1), . . . , πW (γs)) ≤ a(πW (γ), πW (γ1), . . . , πW (γs)).

Without loss of generality one can assume k = 1. For ease of notation we also set
ε := ε̃

2 . Furthermore, let Γ∗ :=<γ̃1, γ̃2, γ1, . . . , γs> with word metric w. Then we have
for compact KW ⊂W and KW⊥ ⊂W⊥

(i) dBW

πW (γ)(KW ) < w(γ), and

(ii) d
B

W⊥
π
W⊥ (γ)(KW⊥) < w(γ).
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Set Dl := {γ ∈< γ̃1, γ̃2 > | w(γ) ≤ l} for l ∈ N. It can be shown that |Dl| ≥ 3l − 1.
By corollary 4.5.12, we have that if γ ∈ Dl, then there is a γ̂ ∈ Γ̃, such that w(γ̂) ≤
(dBγ (K)c)2 and dBγ̂γ(K) ≤ c1.

Thus, choosing an appropriate c3, we have for

Tl := {γ ∈ Γ∗ | w(γ) ≤ c3l
2, dBW

πW (γ)},

that |Tl| ≥ 3l − 1.
Let v ∈ W and γ ∈ TL. Then (i) and (ii) show, that γv is in the c3l

2-ball around

w. This ball has volume smaller than l2 dimW⊥ . However, |Tl| grows exponentially for
l→∞. We deduce that for every δ ∈ R+ we have |Pl| → ∞ for l→∞, whereas

Pl := {(γ̂,γ̂2) ∈ Tl × Tl | BW⊥(πW⊥(γ̂1)p− πW⊥(γ̂2)p) ≤ δ}.

If w ∈ Rn is properly chosen, then d(γ(w), w) is bounded if γ = γ̂1γ̂
−1
2 . This shows that

Γ 	 Rn cannot be properly discontinuous, we arrive at a contradiction and have thus
finished the proof.

4.6 Auslander’s conjecture holds if L(Γ) ≤ G, G reductive,
rankR(G) = 1

In this section, we are going to prove that

4.6.1 Theorem. A crystallographic subgroup Γ of Aff(Rn) is virtually solvable, if L(Γ) ≤
G, with G having only finitely many connected components as well as being reductive and
of real rank 1.

Proof. As in the sections before, the proof, which is due to Grunewald and Margulis,
[GM88], will be done in a couple of steps. As always, we begin by collecting some
definitions and results.

Then, the actual proof will be done by using induction on the dimension of Rn. Also,
there will be a case-by-case study. At first we assume that Γ contains no subgroup of
translations.

After having settled the situation above, we will look into the opposite one, i.e. the
case of Γ having a subgroup of translations. We will examine what happens if L(Γ) is
either discrete or not. In both these subcases, by using cohomological arguments exactly
as in the cases Γ ≤ Aff(R4) and L(Γ) ≤ O(Rn−1,1), we will show that either of these
possibilities leads to a contradiction, i.e. there has to be a subgroup of translations in
Γ.

The proof can be found on page 84.

As a consequence we have

4.6.2 Corollary. Let Γ be as in theorem 4.6.1. Then there is a series of groups

1E Γ0 E Γ1 E Γ2 E Γ3 E Γ,

such that
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(i) Γ0 is abelian,

(ii) Γ1/Γ0 is 2-step nilpotent,

(iii) Γ2/Γ1 is abelian,

(iv) Γ3/Γ2 is abelian, and

(v) Γ/Γ3 is finite.

Proof. Right after we finish the proof for the main theorem, we will show that this
assertion holds, see page 85.

To start, we give a detailed definition of the real rank of a connected Lie group; a
definition of the term reductive can be found in 4.5.4.

4.6.3 Definition (Cartan decomposition and real rank of a connected Lie group). Let G
be a semisimple real Lie group and denote its associated Lie algebra by g. Furthermore let
B(·, ·) be the Killing form of g, i.e. for X,Y ∈ g we have B(X,Y ) = trace(ad(X)ad(Y ))
with ad(X)(·) = [X, · ].

An automorphism θ of g is called Cartan involution if θ2 = id and Bθ(X,Y ) =
−B(X, θY ). Such an automorphism exists for any Lie algebra and any two such auto-
morphisms are equal modulo the inner automorphisms of g. Because θ2 = id, θ has only
two distinct eigenvalues, namely, 1, with eigenspace t, and -1, with eigenspace p. We
call (t, p) a Cartan pair and the decomposition g = t⊕ p a Cartan decomposition of g.

The real rank of G, denoted by rankR(G), is then defined as the dimension of a max-
imal abelian subalgebra of p.

On a sidenote: the Cartan decomposition can be viewed as the generalization of the so
called polar-decomposition of a single matrix.

We will now give a series of results needed for the proof of the main theorem of this
section.

We start by defining two homomorphisms. Let V ≤ Rn. We have the natural projec-
tions

rV : StabGL(Rn)(V )→ GL(Rn/V ), and

ρV : L−1(StabGL(Rn)(V ))→ Aff(Rn/V ),

whereas for the latter homomorphism we have

ρv

((
A b

0 · · · 0 1

))(
w + V

1

)
=

(
Aw + b+ V

1

)
,

and the kernel of ρV looks as follows:

ker(ρV ) = StabAff(Rn)(V ) ∩ L−1(kerr(V )).

4.6.4 Lemma. Given V ≤ Rn and a crystallographic group Γ ≤ Aff(Rn). If
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(i) L(Γ) ≤ StabGL(Rn)(V ), and

(ii) the action ker(ρV ) ∩ Γ 	 Rn is properly discontinuous,

then ρV (Γ) ≤ Aff(Rn/V ) is also crystallographic.

Proof. Cocompactness of ρV (Γ) is obvious, thus we are left to check whether the action
is properly discontinuous.

We fix a compact subset K ⊂ Rn/V and let K̃ ⊂ Rn, such that K̃ is also compact
and maps onto K under the natural projection Rn → Rn/V . Furthermore, we require⋃

γ∈(ker(ρV )∩Γ)

γ(K̃ ∩ V ) = V.

It follows, that for every coset θ ∈ ρv(Γ) with K ∩ θK 6= ∅ there is a γ ∈ θ such that
γK̃ ∩ K̃ 6= ∅. Consequently, ρV (Γ) is a properly discontinuous group and we finished the
proof.

To state the next proposition of this section, we will first give a definition.

4.6.5 Definition (Borel subgroup and parabolic subgroup). Given an algebraic group
G and an algebraic subgroup B ≤ G. If B is a maximal Zariski closed, connected and
solvable group, we call B a Borel group.

Subgroups P with B < P < G are called parabolic groups.

4.6.6 Proposition. Given a linear algebraic group G and a Zariski closed subgroup
H < G. If G is reductive, and if furthermore the unipotent radical of H is not trivial,
then the normalizer NG(H) lies in a parabolic subgroup of G.

Proof. For a proof see [Mo56] and [Pl69].

As an immediate corollary we have:

4.6.7 Corollary. Let H < G be defined as in proposition 4.6.6. If rankR(G) ≤ 1, then
either

(i) the 1-component of H is a reductive group with real rank at most 1, or

(ii) NG(H) ≤ S oK, with S solvable and K compact.

Proof. This follows from the fact, that any parabolic P < G can be written as a semidi-
rect product of a solvable group by a compact one.

The proof for the next result can be found in [Ra72].

4.6.8 Lemma. Given a connected Lie group H = SoK with S solvable and K compact.
If Γ ≤ H is discrete, then Γ is virtually polycyclic.

The following proposition is the special case of a result by Auslander, [Au63]. See also
theorem 3.3.2.
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4.6.9 Proposition. If Γ ≤ Aff(Rn) is discrete, then L(Γ)
0

is solvable.

Once again, in order to proceed, we need more definitions.

4.6.10 Definition (Almost direct product of groups). Given an algebraic group G with
algebraic subgroups G1, . . . , Gn, n ∈ N. If

G1 × · · ·Gn → G

(g1, . . . , gn) 7→ g1 · · · gn

is an endomorphism with finite kernel, then we say that G is an almost direct product
of the Gi, 1 ≤ i ≤ n.

4.6.11 Definition (Isogeny of Lie groups). Given two Lie groups G and H. A map
φ : G → H is called isogeny if φ is a Lie group homomorphism as well as a covering
map.

Two groups G,H are then called isogenous if there is an isogeny either from G onto
H or from H onto G.

4.6.12 Definition (Symmetric space attached to G). Given a linear semisimple Lie
group G, such that G has only finitely many components and rankR = 1. Let K be a
maximal compact subgroup of G. We set XG = G0/K and call XG the symmetric space
attached to G.

4.6.13 Proposition. Given a real semisimple Lie group G, such that G has only finitely
many components and rankR = 1. Choose n such that ρ : G → GL(Rn) is a faithful
representation. If G is not isogenous to an almost direct product of some compact K̃
and O(R2,1), then we have dimXG < dimRn.

Proof. Our group in question can be viewed as an almost direct product of a compact
group K and an almost simple group H of real rank 1. Of course, ρ induces also a
faithful representation of H and thus there is a nontrivial representation of hC, i.e. of
the complexification of the Lie algebra h associated to H. Such an hC is always simple,
unless H is isogenous to O(R3,1). If this is indeed the case, then hC ∼= sl2(C)⊕ sl2(C).

Using [Ti67], one can determine which irreducible representations of hC are real. Then
checking the lower bound for the minimal dimension of an irreducible representation of
hC finishes the proof.

This lower bound can be deduced from Weyl’s dimension formula, see [Ma49].

We have now collected enough data to prove theorem 4.6.1.

proof for theorem 4.6.1. Of course, the theorem holds for dimension up to 3. Thus, be-
cause we use induction on the dimension of Rn, we may assume n ≥ 3.

If Γ ≤ Aff(Rn) has a proper subgroup of pure translation, the claim follows from our
results 4.6.4, 4.6.7 and 4.6.8 in conjunction with the induction hypothesis.
Thus, from now on we assume that the subgroup of pure translations is trivial. There
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are two disjoint cases, either L(Γ) is a discrete subgroup of G or it is not.

Case 1: L(Γ̃) is discrete.
As before, we are not concerned with Γ directly, but instead pass on to a finite-index
subgroup Γ that is torsion free. Furthermore, without loss of generality, we may assume
that Γ̃ preserves orientation.

We start by observing that Γ̃\Rn is a compact, orientable n-dimensional manifold.
Using Poincaré-duality, we have the following isomorphism:

Hn(Γ̃,R) ∼= Hn(π1(Γ̃\Rn),R) ∼= Hn(Γ̃\Rn,Rn) ∼= R.

However, because Γ̃ is discrete and torsion free, the action Γ̃ 	 XG is properly discon-
tinuous. Furthermore, from π1(Γ̃\XG) ∼= Γ̃ and dim(Γ̃\XG) < n, proposition 4.6.6, we
deduce that the cohomological dimension of Γ̃ is also less than n and we arrive at a
contradiction.

Also note that, because we assumed n ≥ 3, the exceptional case mentioned in propo-
sition 4.6.6 cannot arise.

Case 2: L(Γ̃) is not discrete.

In this situation H := L(Γ̃)
0

is a nontrivial, connected and solvable group, according to
propostion 4.6.9.

There are two possibilities for H, either the unipotent radical is trivial or not. If it is
nontrivial, then corollary 4.6.7 and lemma 4.6.8 yield the desired result.

Thus, we assume that H contains no unipotent elements at all, otherwise they lie in
the radical. In this case H is a torus. It follows that the centralizer CG(H) is of finite in-
dex in NG(H). We choose a subgroup Γ0 ≤ Γ̃, such that [Γ̃ : Γ0] <∞ and Γ0 ≤ NG(H).
Furthermore, let Γ1 := L−1(H) ∩ Γ0 ≤ Γ̃.

Because Γ0 centralizes L(Γ1), we have for the commutator [Γ1,Γ0] ≤ TΓ̃ := {γ ∈
Γ̃ | γ is a translation}. Thus, Γ1 ≤ Z(Γ0).

We fix a γ ∈ Γ1, γ 6= e, and set Vγ := {v ∈ Rn | (I−L(γ))v = 0}. Because γ commutes
with every element of Γ0, Vγ is left invariant under L(Γ0).

The map L(γ) is semisimple and therefore (1 − L(γ)) is invertible on Rn/Vγ . Con-
sequently, there is a unique coset w + Vγ , such that the affine space (w + Vγ , 1) is left
invariant under γ. It is possible to conjugate Γ0 in such a way that w = 0. This yields
that Γ0 acts invariantly on Vγ and that Γ0 	 Vγ is properly discontinuous.

Without loss of generality, we may assume Γ0 to be torsion free. We deduce that Γ0\Vγ
and Γ0\Rn are both compact manifolds. However, they are of different dimension. Once
again employing the cohomological dimension of Γ0, we arrive at a contradiction.

Now that we have proven our theorem, as promised we are going to show that corollary
4.6.2 holds.

proof for corollary 4.6.2. It is easy to show that the assertion holds if G is not algebraic,
thus we assume it is.
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Because Γ is virtually solvable, there is torsion free solvable subgroup Γ̃ ≤ Γ, such
that Γ̃ has finite index. This yields that Γ̃ is the extension of the abelian group ker(L|Γ̃)

by the group L(Γ̃).

The Zariski closure L(Γ̃) is either a torus or it has unipotent elements. In the first
case, it is an abelian group.

If there are unipotent elements in L(Γ̃), then, by the power of proposition 4.6.6, there
is a parabolic subgroup P < G, such that L(Γ̃) ≤ P . Such a parabolic P is an almost
semidirect product by some compact K and a group S = U oR, with U being unipotent
of class less than 2. Using that L(Γ̃) ≤ K/(K ∩ S) is abelian, finishes the proof.

4.7 Auslander’s conjecture holds if Kawabe’s conditions are
met

In order to state the main theorem of [Ka98], we need a little notation and a proposition.
Given an n-dimensional crystallographic group Γ. From now, let G be the Zariski

closure of L(Γ), i.e. G := L(Γ). For G we then have G0 = SR, with S being a maximal
semisimple subgroup of G0 and R being the solvable radical of G0. Furthermore, P
shall be a maximal reductive subgroup of G0 such that there is a Levi factor for G with
S ≤ P .

By using representation theory of algebraic groups, one can show that the following
proposition holds:

4.7.1 Proposition. There is a basis of Rn, such that G0 can be written with respect to
the said basis as 


ρ1 ∗ · · · ∗

0 ρ2
. . .

...
...

. . .
. . . ∗

0 · · · 0 ρr


 ,

such that ρi is an irreducible presentation of P .
Furthermore, if we have that the restriction ρi|S̃ is reducible we have the decomposition

ρi|S̃ = σi1 ⊕ · · · ⊕ σiti(S),

with the σij being irreducible representations of S̃ and 1 ≤ j ≤ ti.

Let H ∈ {SL(Rn), Sp(R2m), SO(R2m)} and ν shall be the standard representation of
H. Then we say that the representation τ : S → GL(Rm) is of type Sm, if

(i) it is irreducible, and if

(ii) τ = ν ◦ τ̃ with τ̃ being an homomorphism from S into H.

We can now state the main theorem of [Ka98].
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4.7.2 Theorem (Kawabe’s conditions). A crystallographic subgroup Γ of Aff(Rn) is vir-
tually solvable, if the following holds for the identity component of G = L(Γ) represented
as in proposition 4.7.1:

(i) every σij(S) is of type Smj , and

(ii) every trivial representation is either at top σ1j(S), i.e. 1 ≤ j ≤ t1, or at bottom
σrj, i.e. s ≤ j ≤ tr.

Proof. This theorem is proven in [Ka98]. The crucial part of the proof is the construction
of a certain virtually torsion free Γ̃ ≤ Aff(Rn) which admits a properly discontinuous
action Γ̃ 	 Rn.





5 Perspectives

As the title suggests, in the last chapter we would like to offer perspectives on future
developments of the study of affine crystallographic groups.

In the first subsection we will present two problems and one conjecture, all of which
are due to Abels, Margulis and Soifer, [AMS12]. Solving these three problems could be
a big step towards answering Auslander’s conjecture in dimension 7.

For reasons explained in said subsection, one might have to come up with techniques
vastly different from those that were used in the proofs we presented for special cases of
Auslander’s conjecture.

At this point it should be noted that approaches to Auslander’s conjecture already
exist, which are entirely different from those we have seen used in section 4. For example,
Friedland uses invariant probability measures to examine a so called weak version of the
conjecture, see [Fr95].

The second subsection is devoted to so called NIL-affine crystallographic groups, which
turn out to be a very natural generalization of (affine) crystallographic groups. Further-
more, in this setting a question posed by Milnor, which was answered negatively in the
affine case, can be confirmed. Also, one can state a generalized version of Auslander’s
conjecture and prove it in special cases.

5.1 Auslander’s conjecture in dimension 7

In [AMS12], Abels, Margulis and Soifer proved that Auslander’s conjecture holds if 4 ≤
dim(E) ≤ 6 by mainly using dynamical arguments, similar to the techniques employed
in Margulis’ counterexample, 4.2 as well as to the ones presented in the proof of the
special case L(Γ) ≤ O(Rn−2,2), see section 4.5.

One of the crucial parts in the course of proving that Auslander’s conjecture holds in
dimension 6 is the possibility of changing the sign of hyperbolic elements - said sign is
similar to the one defined in order to construct Margulis’ counterexample, see equation
(4.7).

However, according to Abels, Margulis and Soifer, for a hyperbolic g ∈ SO(R4,3),
there is no easy way to change its sign. This fact motivated the authors to pose the
following question in [AMS12]:

5.1.1 Problem (AMS-Problem 1). Is there a crystallographic Γ ≤ Aff(R7) with L(Γ)
being a Zariski dense subgroup of SO(R4,3)?

89
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In the same paper, the three authors also pose a second problem, which they believe
to be also of utter importance for a possible proof of Auslander’ conjecture in dimension
7.

If G is the simplest representation of a simple Lie group of type G2
∼= Aut(O), i.e. the

automorphism group of the octonions, it can be shown that G < O(R4,3).

5.1.2 Problem (AMS-Problem 2). Is there a crystallographic Γ ≤ Aff(R7) with L(Γ)
being a Zariski dense subgroup of G?

Abels, Margulis and Soifer claim, [AMS12], that a negative answer to the problem
above results in a positive one to the following conjecture:

5.1.3 Conjecture (Abels, Margulis and Soifer). Given a connected Lie group, such that
no simple non-abelian connected subgroup of G has real rank greater 2. It follows that
every crystallographic group Γ ≤ G is virtually solvable.

Also note that another argument widely used in proofs for special cases of Auslander’s
conjecture cannot be used in dimension 7.

In dimension 3, 4.3, in the cases of L(Γ) ≤ O(Rn−1,1), section 4.4, and L(Γ) ≤ H, H
reductive, rankR(H) = 1, as well as in [AMS12] an argument concerning the cohomo-
logical dimension of the crystallographic group Γ ≤ Aff(Rn) was used, namely that said
dimension equals n = dim(Rn).

Unfortunately, this argument cannot be employed in dimension 7, because a Γ de-
fined as in one of the above problems has virtual cohomological dimension 7, yet the
corresponding symmetric spaces are of dimension at least 8.

5.2 NIL-affine crystallographic groups

A part of the motivation for studying NIL-affine crystallographic groups is what we
called the ’converse Auslander conjecture’, 4.1.4, which was stated by Milnor, [Mi77].

5.2.1 Problem. Can any torsion free virtually polycyclic group be realized as an affine
crystallographic group?

As stated right after problem 4.1.4, the answer to this problem is known - there are
indeed such groups which cannot be realized as affine crystallographic groups.

However, there is a setting in which the problem above can be answered affirmatively.
Furthermore, one can carry over many concepts from affine geometry to this new set-
ting, which then can be used to approach a generalized version of Auslander’s conjecture.

Recall that an affine crystallographic group is a subgroup of the group of affine motions
Aff(Rn) = Rn o GL(Rn). In this section, we want to present subgroups of Aff(N) =
NoAut(N), withN being a simply connected nilpotent Lie group, which is diffeomorphic
to some Rn. The action Aff(N) 	 N is given by

Aff(N)×N = (N oAut(N))×N → N

(n, α)(m) 7→ nα(m)
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Before we move on, a few words on the justification of the notation Aff(N): similar to
the case of Aff(Rn), Aff(N) is exactly the group of diffeomorphism of N which preserve
any left invariant affine connection on N . A proof for this assertion can be found in
[KT68].

5.2.2 Definition (NIL-affine crystallographic group). Given a subgroup Γ ≤ Aff(N). If
the action Γ 	 N is crystallographic, we call Γ a NIL-affine crystallographic group.

For such groups, a variation of the problem mentioned above holds.

5.2.3 Theorem. If Γ is a torsion free virtually polycyclic group, then it can be realized
as a NIL-affine crystallographic group, i.e. there is an embedding

ι : Γ→ Aff(N)

for some simply connected nilpotent Lie group N , such that ι(Γ) 	 N is crystallographic.

Proof. The proof can be found in [De03].

Consequently, an obvious question is the following:

5.2.4 Conjecture (Auslander’s conjecture - generalized version). Given a simply con-
nected nilpotent Lie group N and a crystallographic group Γ ≤ Aff(N). It follows that
Γ is virtually polycyclic.

A proof for this conjecture in low dimension was given by Burde, Dekimpe and De-
schamps in [BDD05].

5.2.5 Theorem. A crystallographic subgroup Γ of Aff(N) is virtually solvable, if dim(N) ≤
5.

The proof for the case dim(n) ≤ 3 can be deduced from the following proposition in
conjunction with the fact that any nilpotent Lie algebra of dimension at most 3 is of
nilpotency class 2, which implies the same for any nilpotent Lie group of dimension at
most 3. The final step then is to use the main results from section 4.3, namely that
Auslander’s conjecture holds in dimensions 3 and 4.

5.2.6 Proposition. Given a simply connected Lie group N of nilpotency class 2. If
Γ ≤ Aff(N) is NIL-affine crystallographic, then there is an affine crystallographic action
Γ 	 Rn.

A proof of this assertion is given in [BDD05].

The proofs of theorem 5.2.5 for dimensions 4 and 5 are even more involved. They rely
on the translation of ideas, for example (pseudo)hyperbolic elements and transversality
of two such elements, developed in [AMS02] for the affine setting to the NIL-affine one.
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