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Abstract

Since the liberalization of the electricity markets in Europe at the beginning of
the 1990s several models were developed to strengthen the abilities of electric
companies to compete. Many of these models are also used by researchers in
their analysis of market data. My diploma thesis provides an introduction to the
various models that are used in this analysis. Part 1 of my thesis focuses on how
the usage of game theoretical developments of John Nash’s different equilibrium
strategies impacts companies in the spot market. In part 2, I incorporate the supply
function equilibrium and the Cournot equilibrium without capacity constraints to
the forward market. In my final part, I discuss the effects of capacity constraints
on the Cournot equilibrium model for companies with limited resources.
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Zusammenfassung

Seit Beginn der Liberalisierung der Elektrizitätsmärkte in Europa Anfang der
neunziger Jahre wurden verschiedene Modelle entwickelt, die die Konzerne ver-
wenden um ihre Wettbewerbsfähigkeit zu stärken, die auch unter anderem für
die Marktanalyse des jeweiligen Marktes dienen. Diese Diplomarbeit gibt eine
Einführung in die verschiedenen Modelle, die zu diesem Zweck verwendet wer-
den. Der erste Teil behandelt unter Einsatz der spieltheoretischen Entwicklungen
von John Nash die verschiedenen Strategien der Konzerne auf dem Spotmarkt.
Im zweiten Teil stelle ich das Gleichgewichtsmodell fr Angebotsfunktionen und
das Cournot-Gleichgewichtsmodell für den Terminmarkt ohne Nebenbedingun-
gen vor. Zum Schluss befasse ich mich mit dem Terminmarkt unter Einbeziehung
von Kapazitätsnebenbedingungen und deren Auswirkungen auf das Marktmodell.
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Chapter 1

Introduction

Electricity markets are really complex. The non-storability1 of electricity, the high
variation of supply and demand, and various environmental and energy political
interventions lead to a remarkable price- and quantity-dynamic. This holds for
both short and long term markets. That the demand and supply are inelastic is
well-known if the capacity reserves are getting tight. For example This leads to
an increased market power potential [29].

Market power is defined as the ability to raise the market price up to a prof-
itable amount. Market power on the electricity market can practiced by reserving
some of the production capacity.2 This diploma thesis provides an introduction to
the electricity market, how companies compete in the spot and forward markets
by using various methods for maximizing their profit.

The seminal development of John Nash’s equilibrium in a strategic game from
game theory in 1950 is in fact the main instrument to solve the problem of com-
peting companies.

This diploma thesis provides an overview of the Austrian electricity market

1Exception storager plants like pump storage plants which are used for load balancing. These
plants consist of a high-level reservoir, a low-level reservoir and a pump turbine. The pump-
turbine is able to store electricity in off-peak hours and sell it in the peak hours by pumping the
water upwards or downwards, respectively [17].

2See OCKENFELS [29]
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CHAPTER 1. INTRODUCTION

and of several models for competitors try to maximize their profit leading to equi-
libria in an electricity market. There are several of these equilibrium models. The
most common models are based on Cournot- and supply function equilibrium
(SFE) competition.

The supply function equilibrium approach was introduced by KLEMPERER

& MEYER [26] and applied by GREEN & NEWBERY [22] and GREEN [20] and
VON DER FEHR & HARBORD [35], as a contrary to the SFE which is based on
discrete supply auctions, to the electricity spot market in England and Wales.

NEWBERY [28] generalized the SFE model considering contracts in the mar-
ket which was applied to the electricity market in England and Wales in GREEN

[21].

The second model which will be discussed in more detail in this diploma thesis
is the cournot model with existing contracts. This model was developed first by
ALLAZ & VILA [7]. GANS et al. [16] adopted the result of ALLAZ & VILA [7]
and approved it. MURPHY & SMEERS [27] showed that the ALLAZ & VILA [7]
results do not hold if there exist capacity constraints in the market. But models
will be discussed in more detail later.
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Chapter 2

Background

In the last 30 years the European electricity markets have evolved from a monopoly
to an oligopoly. The liberalization of the European electricity market has started in
the beginning of the 1990s with the collaboration of Great Britain and the Scandi-
navian countries. The European Union directive on the internal electricity market
is in force since February 1997. The member states had two years granted to
transpose the directive into domestic legislation. The aim of that directive was to
strengthen the European industry against competition from the USA and Japan. In
Amsterdam the Amsterdam Power Exchange (APX) was established in 1999, in
2000 the energy market European Energy Exchange (EEX) in Frankfurt and the
Leipzig Power Exchange (LPX) fusioned to become the EEX located in Leipzig
in 2002. The spot market of the EEX was transformed in 2009 into the EPEX
SPOT SE [3].

2.1 Energy Market Liberalization in Austria

Austria put the European Union directive into practice with the ’Elektrizitätswirt-
schafts- und Organisationsgesetz 1998 (ElWOG)’. ’Energie-Control’ (e-control)
as the regulatory authority was installed to regulate these legislative frameworks.
E-control has published in 2011 a resume of the liberalization in Austria for the
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CHAPTER 2. BACKGROUND

tenth anniversary ”10 years energy market liberalization”. This will be the main
source of this chapter.

The ElWOG aims of the liberalization were [2]:

• To harmonize the Austrian electricity regulations with the EU-directive.

• To create a legal framework and increase the competitiveness of the domes-
tic industry in an international environment as a consequence.

The principles that have been defined for this internal energy market of the
European Union are sustainability, security of supply, and competitiveness. At the
same time the objectives of the Austrian energy policy (environmental and social
sustainability, security of supply and cost minimization) were to be continued with
the new EIWOG.

The main issues of EIWOG are as follows [31]:

1. Unbundling the businesses of the electricity companies in generation, trans-
mission, distribution and other to ensure transparency.

2. Price- and tariff politics

• Price determination: This is implemented by the corresponding elec-
tricity price regulation system. This system has to ensure the com-
petitiveness of the Austrian energy market and at the same time to
maintain the interests of the consumers by setting price limits.

• No pass through of loss of revenues to small customers.

• Fixing a tariff for a system use of the electricity network.

3. Business and industrial parks will also be regarded as points of consumption
to gain a better position for a larger group of companies at the electricity
market.

4. Gradual opening of the electricity market from February 1999 to 2009 for
end users and distribution companies.
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2.1. ENERGY MARKET LIBERALIZATION IN AUSTRIA

• from February 1999 with annual consumption > 40GWh

• from February 2000 with annual consumption > 20GWh

• from February 2003 with annual consumption > 9GWh

The reason for this gradual liberalization is to give participating electricity
utilities, consumers, and public authorities time to adjust.

Finally, the Austrian electricity market is fully liberalized and subject to the
rules of free competition since October 2001.

2.1.1 Effects of the liberalization

Liberalization has positive economic consequences. The gross domestic product
of Austria would be approximately 1% lower if the liberalization had not hap-
pened (=̂ 3bn e). The consumer expenditure would be nearly 500m e lower [2].

The situation of energy companies has improved as new strategies have been
developed and expansion has started.

Production companies shared in the increases in earnings. After some Austrian
companies got rid of their old debts at the beginning of the liberalization, they
could make revenues already at relatively low prices. Furthermore, the increasing
electricity prices since 2003/2004 have increased their benefits by 126 % between
2001 and 2010 [2].

Not forgetting, the benefits for the consumers. Between 2001 and 2009 the
consumers saved overall approximately 10bn e due to the lower electricity prices
and 1.3bn e due to the lower gas prices as compared to a situation where lib-
eralization had not taken place due to Kratena’s (2011) calculations as shown in
Table 2.1 [2].
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CHAPTER 2. BACKGROUND

EFFECTS OF LIBERALISATION ON CONSUMERS (2001-2009, bn e)
Electricity Gas

Business consumers 8.90 1.20
Households 1.30 0.08
Total 10.20 1.28

Table 2.1: Savings of the Consumers [2]

2.1.2 Market Structure for Electricity

In the following I will introduce the structure of the three main components of the
electricity market.

(i) Wholesale Market
The wholesale market for electricity creates a link between production and
subordinated markets. Since the implementation of liberalization is com-
pleted trading of power does not only have the role of exchange of physical
power, moreover it serves as hedging, investing and arbitrage [2].

The wholesale electricity market has the following trading forms[2]:

• OTC (Over the counter) trade, which is based on bilateral contracts
usually settled outside of an exchange trade market.

• Stock exchange trade, which can be partitioned in spot and forward
markets.

• Financial derivative trade

(ii) Generating Electricity

Because of the absence of bottlenecks the Austrian and German wholesale
markets generally are a single price area. The four leading suppliers in the
Austrian and German market area are [2]:

• EnBW ’Energie Baden-Wurttemberg’,

• E.ON,
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2.1. ENERGY MARKET LIBERALIZATION IN AUSTRIA

• RWE,

• Vattenfall.

The above mentioned four German companies have a total market share of
more than 75 % and so Austrian electricity producers do not play a price
making role on the market because of their small market share. If or how
they practice their market power is the theme of several analyses [2].

Concentration numbers like the HHI1 on Table 2.2 show that the electricity
market is absolutely highly concentrated. Through different measures the
market share of the above mentioned companies has been reduced from year
to year [2].

Year Capacity(HHI) Generated Amount (HHI)
2003-2005 1914 2143

2007 2093 2183
2008 2045 2145

Table 2.2: HHI by installed capacity and generated amount [2]

The electricity generation mix in Austria and Germany has changed in the
last decade. Not only because of the catastrophy of Fukushima in 2011, but
also the price support for renewable generation by means of injection tariffs
and the introduction of the European Union Trading Scheme have made
investment in coal and nuclear power plants less attractive and have greatly
accelerated the development of wind power in Germany (Figure 2.2). In
Austria electricity generation is based on a hydro-thermal system. The most
important energy source for electricity generation is hydro power. But as
we can see in Figure 2.1 there is a decrease of hydrodynamic power which
is replaced by an increase of wind, biomass and gas facilities, which are
distributed mainly by the Austrian Power Grid (APG). APG owns more
than 92% of the 380 kV (total 1145 km) and 220kV (total 1902km) of the
Austrian grid [19].

1The Herfindahl-Hirschman-Index (HHI) is a degree of concentration of a market. A market
with a HHI over 1800 is called highly concentrated.
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Figure 2.1: Production-Mix in Austria in % source: [2]
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Figure 2.2: Production-Mix in Germany in % source:[2]
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2.1. ENERGY MARKET LIBERALIZATION IN AUSTRIA

(iii) Trading Electricity
Since the electricity market has been liberalized the trading with electricity
went through essential changes. For example companies like banks, finan-
cial institutions, or industrial companies now also trade electricity. These
arbitragers try to make profit from price fluctuations [2].

The major electricity stock exchanges in Europe are EPEX Spot/EEX, APX-
ENDEX, and Nordpool. EXAA is the Austrian electricity spot market.

In addition to trading electricity there are system services which are also very
important for the electricity sale and are necessary for the maintenance of the
system. Table 2.3 shows the temporal structure of different trading forms [2].

System
Services

control energy procurement procurement costs
for grid losses

OTC
Market

Spot maket Forwards/Options and structured products

Financial
Market

Intraday Day-
Ahead

Weakly-
/Monthly-
contracts

futures and options

today tomorrow 1 month 1 year 2 years 3 years

Table 2.3: Temporal structure of different trading forms[2]

2.1.3 EXAA2

”With the aim of increasing competition in production and support the liberal-
ization of the Austrian electricity market began in 1999. The Energy Exchange
Austria (EXAA) was founded in June 2001 as a spot market for power and carbon
dioxide. But trading of carbon dioxide electricity has began in March 2002. Since
the start of trading the number of market participants, which are not only energy
companies but also banks and financial service companies, have increased from
12 to 90. There are traders from 16 different countries.”[3]

2See also http://www.exaa.at
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CHAPTER 2. BACKGROUND

”In addition to the classical tasks related to exchange trading, EXAA is also
responsible for the settlement of financial transactions (clearing) and assumes the
counter party risk for all trades executed. Over the years, the trading territory and
tasks at EXAA have been enlarged.” [3]

One of the advantages for a market participant of trading at the stock exchange
compared to OTC is minimizing the counterpart risk, i.e., the risk that the trade
partner can not fulfill the contract conditions. Exchange participants have to pro-
vide a security at any conclusion of contracts to ensure also the longterm forward
contracts. These securities are called margins. Table 2.4 shows how much elec-
tricity was traded in the last five years at EEX and EXAA [2].

Spot Market Volumes, TWh
2007 2008 2009 2010 2011

EEX, Germany 124 146 203 279 314
EXAA, Austria 2 3 4.6 6.4 7.6

Forward Market Volume, TWh
EEX, Germany 1150 1165 1025 1208 1075

At EXAA there does not exists a futures market

Table 2.4: Traded Spot and Future Market Volumes since 2007 at EEX and
EXAA /source: [1, 3]

To generators and retailers the greatest risk posed by electricity pools is the
financial consequences of fluctuating pool prices. Pool prices will vary each hour
(in Austria) and will be determined by the balance of supply and demand. Whilst
the level of demand can be estimated, the availability of generation capacity in the
market is less predictable. Generators themselves will choose how much electric-
ity they will offer to produce. The power station with the highest marginal bid that
is operating at any point in time (and the price they require to operate) determines
the pool price [16].
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2.2. MATHEMATICAL STRUCTURE

2.2 Mathematical Structure

From a mathematical point of view, research development of electricity market
modeling follows three trends which are presented in VENTOSA et al. [34] in
more detail:

(i) Optimization models: are maximization problems for one company.

(ii) Equilibrium models: represent the overall market behavior considering com-
petition between all companies.

(iii) Simulation models: are used if consideration of all the market participants
in the equilibrium model is too complex to be addressed within a formal
framework.

(i) and (ii) are schematically represented in Figure 2.3. In the simulation mod-
els the market is synthesized in the representation of the price clearing process,
which can be modeled as exogenous to the optimization program or as depending
on the quantity supplied by the company of interest [34].

be optimized subject to a set of technical and economic
constraints. In contrast, both equilibrium and simula-
tion-based models consider the simultaneous profit
maximization program of each firm competing in the
market. Both types of models are schematically repre-
sented in Fig. 2, where Pf represents the profit of each
firm fAf1;y;Fg; xf are firm f’s decision variables; and
hf ðxÞ and gf ðxÞ represent firm f’s constraints.

2.2. Market modeling

Equilibrium and simulation-based models represent
market behavior considering competition among all
participants. On the contrary, optimization models only
represent one firm. Consequently, in the latter models,
the market is synthesized in the representation of the
price clearing process, which can be modeled as
exogenous to the optimization program or as dependent
of the quantity supplied by the firm of interest.

2.3. Computational tractability

While complex mathematical programming methods
are required to deal with equilibrium-based models,
powerful and well-known optimization algorithms
bestowing a more detailed modeling capability can be
applied to solve optimization-based models. Simulation
models provide a more flexible way to address the
market problem than equilibrium models although, in
general, they are based on assumptions that are
particular to each study.

2.4. Major uses

The previously mentioned differences in mathematical
structure, market modeling and computational tract-
ability provide useful information in order to identify
the major uses of each modeling trend. For example, the
better computational tractability of optimization models
enables them to deal with difficult and detailed
problems, such as building daily bid curves in the

short-term. On the contrary, equilibrium models are
more suitable to long-term planning and market power
analysis since they consider all participants. The
modeling flexibility of simulation models allows for a
wide range of purposes although there is still some
controversy as to the appropriate uses of agent-based
models. The major uses of existing electricity models are
presented in more detail in Section 7.

3. Single-firm optimization models

In this paper, approaches based on the profit
maximization problem of one firm are grouped together
into the single-firm optimization category. These models
take into account relevant operational constraints of the
generation system owned by the firm of interest as well
as the price clearing process. According to the manner in
which this process is represented, these models can be
classified into two types: price modeled as an exogenous
variable and price modeled as a function of the demand
supplied by the firm of study.

3.1. Exogenous price

The lowest level of market modeling represents the
price clearing process as exogenous to the firm’s
optimization program, i.e., the system marginal price
is an input parameter for the optimization program.
Consequently, as the price is fixed, the market revenue—
price times the firm’s production—becomes a linear
function of the firm’s production, which is the main
decision variable in this approach. In view of that,
traditional Linear Programming (LP) and Mixed Integer
Linear Programming (MILP) techniques can be em-
ployed to obtain the solution of the model. Unfortu-
nately, this type of optimization model can only
properly represent markets under quasi-perfect competi-
tion conditions because it neglects the influence of the
firm’s decisions on the market clearing price.
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M. Ventosa et al. / Energy Policy 33 (2005) 897–913 899

Figure 2.3: Mathematical structure of single-company optimization
and equilibrium models [34]

21



CHAPTER 2. BACKGROUND

Single-company optimization models can be classified into two types [34].

• price modeled as exogenous variable

• price modeled as a function of the demand supplied by the company of
study.

The equilibrium models will be the main part of this diploma thesis and will
be discussed in the following chapters.
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Chapter 3

Nash Equilibrium

3.1 Nash Equilibrium

The following chapter will give an introduction to the fundamental game theory
concepts, Nash equilibrium as a strategic game and will summarize the main ap-
plications and definitions. For this I will closely follow the books ’A course in
game theory’ by OSBORNE & RUBINSTEIN [30] and ’A Primer in Game Theory’
by GIBBONS [18].

In order to explain the Nash equilibrium model and its conclusion the following
definitions have to be made:

Definition 3.1.1. (Preference Relation):

Let A be a non-empty set. A relation� is called preference relation, if the follow-

ing properties are satisfied:

• Reflexivity:

For all a ∈ A : a� a

• Completeness:

For a,b ∈ A with a 6= b : a� b or b� a

23



CHAPTER 3. NASH EQUILIBRIUM

• Transivity:

For all a,b,c ∈ A if a� b and b� c then a� c

Definition 3.1.2. (Strategic Game):

A strategic game Γ is defined as a triple 〈N,(Ai)i∈N ,(�i)i∈N〉 with:

(i) N is a finite set of companies.

(ii) Each company i is assigned the non-empty set Ai; each element ai ∈ Ai is

called decision or strategy of the company i and Ai its set of strategies.

(iii) �i is a preference relation for the company i.

The Play Γ is called finite if the set Ai is finite for all i.

Important

Decisions of the companies are done independent from each other, i.e., each com-
pany makes its own choice without being informed about the selection of other
companies.

Notation

We write A := ∏i∈N Ai.

Let a = (ai)i∈N be a strategy profile (a∈ A = ∏i∈N Ai). Then a−i := (a j) j∈N\i and
(a−i,ai) := (a j) j∈N = a.

Definition 3.1.3. (Nash Equilibrium):

Let Γ = 〈N,A,�〉 be a strategic game. A strategy profile (strategy-combinations

of the n companies) a∗ ∈ A such that for all i ∈ N:

a∗ = (a∗−i,a
∗
i )�i (a∗−i,ai) for all ai ∈ Ai, is called Nash Equilibrium.

Remark

In a Nash equilibrium no company changes its strategy onesided, because the
impact of this decision will not lead to an improvement.
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3.2. APPLICATIONS

Definition 3.1.4. (Best-Response Function):

For all a−i ∈ A−i define Bi(a−i) to be the set of the best actions of company i’s

given a−i: B(a−i) = {ai ∈ Ai : (a−i,ai)�i (a−i,a′i) ∀a′i ∈ Ai}. We call the func-

tion Bi the best response function of company i.

Remark
A Nash equilibrium is a profile a of actions for which a ∈ Bi(ai) for all i ∈ N.
Based on this consequence Nash equilibria can be determined by the following
procedure.

1. Calculate the best-response function of each company i.

2. Find a profile a∗of actions for which a∗ ∈ Bi(a∗−i) for all i ∈ N.

3. Solve the n equations in the n unknowns.

A strategic game can also be represented by its normal form. For this, we replace
the preference relation �i by a payoff function ui : A→ R, in the sense if a �i b

then ui(a)≥ ui(b) and define 〈N,A,ui〉 as follows:

Definition 3.1.5. (Nash Equilibrium)

In the n-company normal form game 〈N,A,ui〉 the strategies (a∗1, . . . ,a
∗
n) are a

Nash equilibrium if a∗i is player i’s best response to the strategies of the other

n−1 companies:

ui(a∗1, . . . ,a
∗
i , . . . ,a

∗
n)≥ ui(a∗1, . . . ,a

∗
i , . . . ,a

∗
n)

for all i.

3.2 Applications

The development and the results of the Nash equilibrium have been used in sev-
eral types of strategy games. In the financial market the main usage of the Nash
equilibrium is in models concerning competition. Thus, it is the main game plan
to compete with other rivals.
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CHAPTER 3. NASH EQUILIBRIUM

3.2.1 Cournot Model

Cournot (1838) anticipated the Nash equilibrium model one century ago by focus-
ing on duopoly markets. Subject to the best response function companies regulate
their quantities simultaneously by choosing their best response against the other
companies’ previous outputs. It is easy to see that this dynamic converges to a
Nash equilibrium whenever it converges.

Below a simple derivation of the Cournot game in a duopoly market is presented.
The case of n companies can be obtained simply by replacing j by q−i = ∑

j 6=i
q j

and will be represented in Section 4.

Let qi be the quantities produced by company i and P(Q) = a−Q be the inverse
demand function when the total quantity on the market is the sum of the quantities
which are sold by the market participants. In our case Q = qi + q j. Assume that
the total cost for company i to produce quantity qi is linear, Ci(qi) = cqi.

To find the Nash equilibrium of the Cournot game where the players choose their
quantities simultaneously, we first express the problem in its normal form. To de-
fine and solve the equilibrium we assume that the company’s payoff is its profit.
Hence, the payoff ui(ai,a j) in a duopoly game can be denoted as

πi(qi,q j) = qi[P(qi +q j)− c] = qi[a− (qi +q j)− c]

For every feasible strategy ai ∈Ai the strategy pair (a∗i ,a
∗
j) is a Nash equilibrium if

ui(a∗i ,a
∗
j)≥ ui(ai,a∗j)

for each company i. This is equivalent to the fact that for each company i, a∗i must
solve the optimization problem

max
ai∈Ai

ui(ai,a∗j).
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The quantity pair (q∗i ,q
∗
j) in the Cournot model is a Nash equilibrium if q∗i solves

max
0≤qi<∞

πi(qi,q∗j) = max
0≤qi<∞

qi[a− (qi +q∗j)− c]

for all i.

Now assume q∗j < a− c, the first order condition for company i’s optimization
problem is necessary and sufficient, which leads to

qi =
1
2
(a−q∗j − c).

Therefore, if (q∗1,q
∗
2) is a Nash equilibrium, the companies’ quantity choices have

to satisfy

q∗1 =
1
2
(a−q∗2− c)

and analogously for q∗2. Solving these two equations we get

q∗1 = q∗2 =
a− c

3
,

which is really less than a− c, as assumed.

One can intuitively expect that each company would like to be a monopolist in
the market. In that case the company would choose qi to maximize πi(qi,0)
with a corresponding quantity of qm = a−c

4 which yields the monopoly profit

πi(qm,0) =
(a−c)2

4 . In a market that consists of two companies, the total quantity
of the duopoly profit would be maximized if the sum q1+q2 would be equal to the
monopoly quantity qm. But the monopoly quantity is low and the corresponding
price P(qm) is high. The companies would like to increase their quantity at this
price. However the increase leads to a decrease of the market-clearing price.

A second way to solve the Nash equilibrium is graphically. Figure 3.1 shows the
Nash equilibrium for a Cournot duopoly with the best response functions. Indeed
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a− c

a− c

R2(q1)

R1(q2)

(q∗1,q
∗
2)

Figure 3.1: Cournot Equilibrium

assuming that company 1 satisfies q1 < a− c, company 2’s best response is

R2(q1) =
a−q1− c

2
;

analogous for company 2

R1(q2) =
a−q2− c

2
.

As seen in Figure 3.1 these two best response functions intersect only once, at
(q∗1,q

∗
2) which is our equilibrium.

Example 3.2.1. Let the inverse demand function be

P(Q) = 100−Q

and the cost function

ci = 10qi.

Let qi be the output of company i and q j that of company j. Therefore Q = qi+q j

and the profit functions are:
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πi(qi,q j) = qi[100− (qi +q j)]−10qi

π j(qi,q j) = q j[100− (qi +q j)]−10q j.

Remembering the Nash equilibrium; an equilibrium is a pair of outputs (q∗i ,q
∗
j)

such that

πi(q∗i ,q
∗
j)≥ πi(qi,q∗j) ∀qi ≥ 0

πi(q∗i ,q
∗
j)≥ π j(q∗i ,q j) ∀q j ≥ 0.

Therefore, if we fix q j at the value q∗j and consider πi as a function of qi on its

own, this function is maximal at qi = q∗i if it satisfies the first order condition

∂πi

∂qi
(q∗i ,q

∗
j) = 0.

Analogous for q j.

Now we can obtain the Nash equilibrium by solving the following two equations:

∂πi

∂qi
(q∗i ,q

∗
j) = 90−2qi−q j = 0

∂π j

∂q j
(q∗i ,q

∗
j) = 90−qi−2q j = 0.

The equilibrium pair is:

(q∗i ,q
∗
j) = (30,30)

Therefore,

P = 40 and πi = π j = 900.

If we compare this solution with the monopoly outcome where q = Q and hence
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the profit function is as follows:

π(Q) = (100−Q−10)Q = (90−Q)Q.

The first order condition for maximization yields Q=45 which implies

P = 65 and π = 2025.

Remark

• Example 3.2.1 illustrates that every competitor would like to act like a mo-
nopolist.

• Of course, companies can have different cost functions. But it is not difficult
to compute the equilibrium in this case. The approach is the same.

3.2.2 Bertrand Model

Bertrand’s (1883) idea is based on the assumption that companies actually choose
prices instead of quantities like in Cournot’s model. Therefore, Bertrand’s model
differs in strategy spaces, pay off functions, and the behavior in the Nash equilibria
from Cournot’s model. But there is no difference in the equilibrium concept used
in both games. In both games Nash equilibria are used.

Consider a market with homogeneous goods and two companies (duopoly). As in
the previous model, the Nash equilibrium was determined by first translating the
problem into a normal form game. By assuming that negative prices are not fea-
sible, each company’s strategy space can represented as Ai = [0,∞), and a typical
strategy ai is to choose a price pi ≥ 0.

Let the profit of company i when choosing price pi and the competitor chooses p j

be
πi(pi, p j) = qi(pi, p j)[pi− c] = [a− pi + p j][pi− c].
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Hence, the pair (p∗1, p∗2) is a Nash equilibrium if, for each company i, p∗i solves

max
0≤pi<∞

πi(pi, p∗j) = max
0≤pi<∞

[a− pi + p∗j ][pi− c].

The solution of the optimization problem of company i is

p∗i =
1
2
(a+ p∗j + c).

(p∗1, p∗2) is a Nash equilibrium if

p∗1 = p∗2 =
a+ c

2
.

That means that two competing companies can sell their products if they set the
same market prices. If for example pi < p j then company i will sell its total output
and company two can only sell the residual demand and vice versa.

Suppose the price which is chosen by the companies is pi = p j > c. This case
cannot be an equilibrium, since company i or j can decrease its price and so the
consumers would buy from i or j, respectively.

The only price which would prevent mutual underbidding is equal to the marginal
cost1.

3.2.3 Stackelberg Model

The Stackelberg model (1934) concentrates on an oligopoly market in which a
leader company moves first and then the follower companies move successively.
We will discuss the case where the companies choose their quantities. Basically,
companies can either choose quantities or prices.

Assuming two companies in the market, the schedule of the game is:

1Marginal cost is the derivative of the total production costs with respect to the level of quantity,
i.e. let ci(q) be the cost function then ∂

∂q ci(q) denotes the marginal cost.
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1. company 1 chooses a quantity q1 ≥ 0,

2. company 2 observes q1 and then makes the choice of quantity q2,

3. The payoff function of company i is given by

πi(qi,q j) = qi[P(Q)− c].

In order to solve the backward induction2 result of this game, the reaction of
company 2 to an arbitrary quantity of company 1 is computed.

R2(q1) is a solution of

max
q2≥0

π2(q1,q2) = max
q2≥0

q2[a−q1−q2− c].

This implies for q1 < a− c

R2(q1) =
a−q1− c

2
.

Note that in Section 3.2.1 the equation for R2(q1) was the same. The difference
is that here R2(q1) is company 2’s reaction, compared to Cournot’s model where
R2(q1) is company 2’s best answer to an unknown choice of company 1.

Now, company 1’s problem in the first stage of the game is

max
q1≥0

π1(q1,R2(q1)) = max
q1≥0

q1[a−q1−R2(q1)− c]

= max
q1≥0

q1
a−q1− c

2
,

and by backward induction we obtain

q∗1 =
a− c

2
and R2(q∗1) =

a− c
4

as the result of the Stackelberg game for a duopoly market.
2That means we take the best response for company 2 at first and substitute it into the profit

function of company 1. For n > 2 we start with the company which moves last and so on.
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Example 3.2.2. We take the same inverse demand and cost function as in Example

3.2.1

P(Q) = 100−Q and ci = 10qi.

Therefore the follower −i has to solve

max
q−i

[(100− (qi +q j)−4]q j = 90q j−qiq j−q2
j .

The first order conditions yield

q−i =
90−qi

2
,

which is the best response function like in the Cournot game.

If the leader company i would put qi into the market it knows that company −i’s

best response would be 90−qi
2 . Therefore, company i must take 90−qi

2 into account

in its profit maximization:

max
q1

[100− (qi +
90−qi

2
−4)]qi = 45qi− 3

2q2
i .

After differentiating the first order conditions yield

qi = 45.

Thus, the amount which is sold by company j is

q j = 22.5,

which yields us the market price p = 32.5. And therefore, the profits of the com-

panies are

πi = 1012.5 and π j = 506.25, respectively.

Table 3.1 summarizes the results of every single model described above. As you
can see, in a monopoly market the highest profit can be reached although the
quantity which is sold is the smallest.
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Game qi q j P πi π j πi +π j
Monopoly 45 65 2025 2025
Cournot 30 30 40 900 900 1800
Stackelberg 45 22.5 32.5 1012.5 506.25 1519.75

Table 3.1: Table of Outcomes
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Chapter 4

Spot Market

Spot market is a market in which the commodities are traded for immediate de-
livery. The electricity spot market is not like any other market, not only because
electricity is difficult to store but also the prices are determined for each degree of
demand expected during the whole day for every half hour in England and every
hour in Austria. In order to model such a market it has to be considered whether
generators sell to a central auction (POOLCO) or bilaterally to customers. The
POOLCO model includes also independent arbitragers that can influence the mar-
ket price [23].
In the following the different strategies which companies can use in their models
will be summarized. Some of them are already discussed in Chapter 3.

4.1 Strategies

4.1.1 Perfect Competition

Pure Competition is a market strategy in which companies sell products without
having any influence on the product price. Therefore, the companies are price-
takers not price-makers. qi is a decision variable of the company i’s revenue pqi.
p is fixed. The Karush-Kuhn-Tucker conditions (KKTs) for profit maximization
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yield [13]:

∂ (pq)/∂q = p. (Marginal Revenue(MR))

The KKT conditions are equal to the marginal cost because the price does not
change with the amount of quantity sold (p(q) = 0).

4.1.2 Bertrand Strategy (”Game in Prices”)

HOBBS [24] used Bertrand strategy in electricity market for studying the restruc-
turing of the electricity industry in the US. Because of the difficulty to store elec-
tricity, it leads to a short term price competition, thus to a Bertrand model [33].

As shown in the previous chapter Bertrand follows a duopoly market form strategy
in which companies set the prices pi. He describes interactions among companies
and their customers that choose quantities at price pi. In this strategy if pi is
not greater than the lowest price of the rivals then i can sell as much as it wants,
otherwise qi = 0.

4.1.3 Cournot Strategy1 (”Game in Quantities”)

The Cournot model is one of the most used schemes in industrial organizations.
As already showed in the previous chapter, the Cournot model is a game in which
each company chooses its quantity that is going to be sold in the market. As there
are more than two competing companies in the electricity market the case of n

competing companies in an oligopoly market should be analyzed.

Let qi, i = 1, . . . ,n be the quantities produced by n companies. Hence, the market
clearing price is

1See FRIEDMAN [15]
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P(Q) =

{
a−Q, Q < a

0, Q≥ a

with P(Q) = a−Q and Q =
n
∑

i=1
qi. Assume that the cost function of company i

is linear c(qi) = cqi. So we choose as the marginal cost constant c with c < a.
Suppose again that the companies choose their quantities simultaneously. The
profit function for company i can be written as:

πi(q1, . . . ,qn) = qiP(Q)− c(qi).

then the Cournot oligopoly has one equilibrium that can be determined to be

qi =
a− c
n+1

, ∀i ∈ 1, . . . ,n.

For n = 1 and n = 2 we get the solution for monopoly and duopoly as already
shown in the previous chapter.

4.1.4 Supply Function Equilibria (SFE)

KLEMPERER & MEYER [26] developed the supply function equilibrium concept.
They modeled an oligopoly market whose participants are confronted with uncer-
tain demand. Each company is creating its own strategy by determining a supply
function q(p). The supply functions map for every price p the quantity q of goods
that the company is willing to sell at this price. GREEN & NEWBERY [22] ap-
plied the supply function model of Klemperer and Meyer to the British electricity
spot market. They pointed out that the uncertainty of the demand is equivalent to
a time dependent demand and they used the SFE model in the electricity market
in England and Wales to generate optimal supply functions. Since then the SFE
model has been widely used to analyze the bidding behavior in electricity spot
markets. BALDICK et al. [11] analyzed the existence of supply function equilibria
by considering price caps. BALDICK [9] showed that the equilibrium also depends
on the parameterization of the supply functions [8].
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Table 4.1 shows several developments of the SFE model under different assump-
tions.

Author Marginal
Costs

Demand
Curve

Supply Func-
tions

Solution
Method

KLEMPERER &
MEYER [26]

Convex Concave C2 Necessary
conditions

GREEN & NEW-
BERY [22]

Quadratic Linear C2 Numerical In-
tegration

GREEN [21] Linear Linear Affine Closed-form
expression

FERRERO et al.
[14]

Affine Inelastic Affine Exhaustive
enumeration

RUDKEVICH

et al. [32]
Stepwise Inelastic Differentiable Closed-form

expression
BALDICK et al.
[10]

Affine Linear Piecewise
linear

Heuristics

BERRY et al. [12] Affine Linear Affine Heuristics
HOBBS et al. [25] Affine Linear Affine MPEC

Table 4.1: Characterization of SFE models [34]

First we will observe the case of a duopoly, which can be generalized to an n-
company oligopoly. I will closely follow GREEN & NEWBERY [22] and assume
that the load duration curve of supply at any moment is predictable with certainty
and is given by D(p, t), where t denotes time (number of hours of demand higher
than D), and p is the spot price. Klemperer and Meyer discuss also the case under
certainty. Now assume for all (p, t) that −∞ < Dp < 0, Dpp ≤ 0, and Dpt = 0.

The company i is confronted with the net demand D(p, t)−S j(p) at time t where
S j(p) is the supply schedule of the other company j. Let the generating costs of
supplying the quantity q be C(q) with marginal cost C′(q). Now, the aim of com-
pany i is to develop a function which maps price to a level of output independent
of time, t : Si : [0,∞)→ (−∞,∞). Each company presents the supply function si-
multaneously to the dispatcher, and the dispatcher establishes the spot price and
the supply of company i by solving the price output pair that equates supply to
demand at each time t. I.e., the dispatcher assigns the lowest price p(t) such that
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D(p(t), t) = Si(p(t))+S j(p(t)), if it exists. The companies earn nothing if there is
no such a price. Assume that the profit maximizing price-output can be described
by a supply function qi = Si(p) for all t. Thus, the profit-maximizing solution can
be determined by maximizing πi(p) = pqi−C(qi) with respect to p:

πi(p) = p[D(p, t)−q j(p)]−C
(
D(p, t)−q j(p)

)
.

The first order condition for this problem is:

0 = D−q j(p)+ p
(

Dp−
∂q j(p)

∂ p

)
−C′(D−q j(p))

(
Dp−

∂q j(p)
∂ p

)
which is equal to:

∂q j(p)
∂ p

=
qi

p−C′(q)
+Dp.

The assumption of symmetry, qi = q j = q, leads to

∂q(p)
∂ p

=
q

p−C′(q)
+Dp.

Let us observe the points (q, p) such that

C′(q)< p <C′(q)− q
Dp

.

For these points 0 < ∂q
∂ p < ∞ holds, and the corresponding trajectory through this

points exhibits a positive directional slope which is well-defined. Now, consider
the stationaries C′(q) and C′(q)− q

Dp
. For p = C′(q) we have ∂q

∂ p = ∞ and so
∂ p
∂q = 0. This curve describes a perfectly competitive company’s supply schedule.
Every trajectory that meets C′(q) has a horizontal slope at the intersection, see
Figure 4.1, and after the intersection the slope of the trajectory will be smaller
then zero.

If the trajectory meets the monopoly solution, its slope will be ∂q
∂ p = 0 respectively

∂ p
∂q = ∞ at that point. It will intersect the monopoly solution, which is also called
the Cournot supply schedule, and then bend back. Thus, the profit-maximizing
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choice of p satisfies
qi +[p−C ∗ (qi)]Dp = 0,

and
C′(q)− q

Dp
,

respectively.

0 5 10 15 20 25 30 35

0

50

100

X

Z

Y

Monopoly Solution

Marginal Cost

Supply

Demand

Output

pr
ic

e,
co

st

Figure 4.1: Feasible supply function equilibria [22]

Normally, the duopoly schedules are between the competitive and Cournot sched-
ules along a curve such as 0X in Figure 4.1. Possible equilibria supply schedules
need not intersect either stationary over the range of possible price-output pairs.
KLEMPERER & MEYER [26] prove that if the demand schedule can be arbitrarily
high, then there is a unique solution; if there is not such a unique point there may
be a set of equilibria which is bounded above and below by the supply schedules.
Thus in Figure 4.1, if Y Z is the maximum demand D(p,0), then all solutions of
the differential equation above which are between 0Y and 0Z are possible. Now,
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we know that if company i is known to choose its schedule qi(p) and if there exist
no supply constraints, then the solution q j(p) of the differential equation is the
profit-maximizing response of company j.

Example 4.1.1.

(i) Duopoly

By adopting the linear demand and cost function from the previous chapter

and make the latter also dependent on time t = [0,1] we get:

Q = D(p, t) = 100+5(1− t)− p, ci = 10qi.

For t = 1, peak time, we had our solutions of the Nash Cournot equilibrium:

qi = q−i = 30, p = 40.

By solving the differential equation

∂q
∂ p

=
q

p−10
−1

we obtain

q = A(p−10)− (p−10) log(p−10),

where A is a constant of integration which we can compute by determining

the boundary condition, for example where supply intersects the Cournot

solution. Therefore,

q = (1+ log(30))(p−10) log(p−10).

The solution of our example is shown in Figure 4.2.

(ii) Oligopoly

Assume there are n> 2 symmetric companies that are companies competing

with a homogenous product and equal cost functions in the market. Then

a−bp− (n−1)q(p)
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Figure 4.2: Supply Function Equilibrium

is the net demand which each company is concerned with. The first order

condition for profit maximizing yields

(n−1)
∂q
∂ p
− q

p− c′
=−b.

By applying this to the numerical example p = 100−Q and ci = 10qi for

n = 5 then

4∗ ∂q
∂ p
− q

p
=−1,

since the constant marginal cost c′ is normalized to zero. By solving this

ordinary differential equation the result is

q = Ap1/4− p
3
,

for a constant of integration A which can be determined by boundary con-

ditions.
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4.1.5 Conjectured Supply Function2 (CSF)

The conjectured supply function model was developed by DAY et al. [13]. The
production output of the competitors in this model are anticipated. The company
i has to react to corresponding function q−i(p). The CSF model is like the SFE
model superficially and has four components for the bilateral market [13].

(i) Generation Companies Model

(ii) Independent System Operator (ISO) Model

(iii) Arbitrager Model

(iv) Market Clearing Conditions

Notation

In the following we use the index i = 1, . . . ,n for companies, f = 1, . . . ,m for
nodes at which electricity is traded, h = 1, . . . , l for generators, and t = 1, . . . ,k for
flowgates between nodes.

C′i f h . . .[e/MWh] Marginal cost of generator h at node f owned by i

Gi f h . . .[MW] Upper bound of generation

w f . . .[e/MWh] Price of transmission

ci f . . .[e/MWh] Generation cost

α f . . .Assumed price intercept of the CSF for i at f

gi f h . . .[MW] Production of generator h at node f owned by i

si f . . .[MW] Sales of i to consumers at f

s−i f . . .∑
j 6=i

s f j

a f . . .[MW] is the net amount of power sold by arbitragers at f

γi f . . .dual variable of generation limit

2See DAY et al. [13]
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ϕ f . . .dual variable of sales

ηi f . . .dual variable of generation

PDT Ff k . . .Power Distribution Factor for flowgate k at node f

y f . . .[MW]transmission service provided from the hub3 to f

λt . . .dual variable upon the flow constraint for flowgate t

(i) Generation Companies Model

Generation companies have to solve the following problem

max π f = ∑
f
(pi f −w f )si f −∑

f ,h
(Ci f h−w f )gi f h

s.t.: si f + s−i f +a f = q f (pi f ) ∀ f (Demand Functions)

s−i f = s−i f (pi f ) ∀ f (CSFs)

gi f h ≤ Gi f h ∀ f ,h (Generation Limits)

∑
f

si f = ∑
f ,h

gi f h (Energy Balance)

∀si f ,gi f ≥ 0

In region f the electricity price pi f is an affine function of the total sales S f :

pi f = Pf −
Pf

Q f
(S f +ai f ),

where
S f = ∑

f
s f i.

The model assumes that the s−i f are linear functions of pi f :

si f = s∗−i f +βi f (p∗f ,s−i f )(pi f − p∗f ),

where (p∗f ,s
∗
−i f ) is an equilibrium (price,sales) pair, and the function βi f (x,y)
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has one of the two forms:

(a) a positive constant: βi f , (fixed slope)

(b) a rational function: y
x−αi f

. (fixed intercept)

The first case leads to the equation

pi f = (p∗f −
s∗−i f

βi f
)+

1
βi f

s−i f =⇒

βi f = 0, (Cournot)

βi f = ∞, (Bertrand)

and in the second case

pi f = αi f +
p∗f −αi f

s∗−i f
s−i f =⇒ αi f =−∞. (Cournot)

By substituting s−i f into pi f in case of fixed intercept

pi f =
Q f − si f −ai f +

αi f
p∗i−αi f

s∗−i f

Q f
Pf

+
s∗−i f

p∗f−αi f

.

Thus, the problem is reduced to

max∑
i
(pi f −w f )si f −∑

f ,h
(Ci f h−w f )gi f h

s.t.: gi f h ≤ Gi f h

∑
f

si f = ∑
f ,h

gi f h

∀si f ,gi f ≥ 0.

The KKT conditions for this model yield a Mixed Complementarity Prob-
lem that is either linear (in case (i)) or nonlinear (in case (ii)).

The KKTs are

45



CHAPTER 4. SPOT MARKET

0≤ si f ⊥−pi +
∑ j∈N si j

∑ j∈N(
Q j
Pj
+

si j
p∗j−α j

)
+ϕi ≥ 0,

0≤ gi f ⊥ ci f −w f + γi f −ϕi ≥ 0,

0≤ γi f ⊥Ci f −gi f ≥ 0,

0 = ∑
f∈N

(si f −gi f ).

(ii) The ISO model

The independent system operator coordinates, controls, and observes the
operation of the electrical power system. Its model represents the efficient
rationing of transmission capacity. There are two types of variables:

• y f . . . the amount of transmission service provided from the hub which
is the main distribution node to f

• λt . . . the dual variable for the flow constraint for flowgate t

The model maximizes the value of services ∑ f w∗f y f subject to the DC load4

flow, yielding KKTs:

• for y f , ∀ f : w f −∑k PT DFf kλk

• for λt , ∀k : 0≤ λt ⊥ (∑ f PT DFf ty f −Tt)

(iii) The arbitrgers’ model

The arbitrager can buy power in one location and sell it in another. The
only cost the arbitrager incurs is the ISO’s transmission fees between the

4The DC load flow is an approximation for the real AC flow, called the DC approximation
which is quite precise if the network parameters are well-known. It uses Kirchhoff’s laws to
compute the so called power transfer distribution factors (PTDF) which describe the rate of flow
over all transmission links if all inputs and outputs at the nodes are known.
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two locations. In equilibrium, arbitrage will eliminate any price differences
between nodes that are not based on cost, implying that:

p∗f = p∗hub +w∗f ∀ f 6= hub.

(iv) Market clearing conditions

A market-clearing condition is an equation (or other representation) stating
that supply equals demand. A market-clearing price is a price that causes
supply and demand to be equal.
For all i, f :

y f = ∑
j

s j f +a∗f −∑
j,h

g j f h

pi f = p∗f .

Together with the conditions of the ISO model, arbitrager model, and the
market clearing conditions the KKT conditions for each generator i yield a
mixed complementarity problem.

The advantages of a CSF model are [13]:

• q−i(p) can be modeled as a smooth function.

• CSF gives modelers the flexibility to consider more realistic supply
responses unlike Cournot.

• It is feasible for large problems unlike SFE models.
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Chapter 5

Forward Market

5.1 Preliminaries

The aim of this diploma thesis is to model an electricity market where also a
forward market exists. First a two stage game using Cournot equilibria according
to ALLAZ & VILA [7] and then using the supply function equilibria according
to GREEN [21] will be described. In the next chapter we will discuss the case
of a model with three stages where also capacity constraints exist according to
MURPHY & SMEERS [27].

In the first case we denote two periods:

• Contract Market

• Spot Market

Allaz and Vila generalized this also to the case of m > 2 periods in the forward
market.
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5.1.1 Types of Contracts

We differ two types of contracts [16]:

(i) one-way contracts,

(ii) two-way contracts.

ad (i)

One-way contracts, as shown in Figure 5.1, are sold at a strike price to a purchaser.
If the spot price is less than the strike price purchaser pays the spot price. But if the
price is bigger than the strike price the production company pays the difference to
the purchaser. These types of contracts are in principle the same as a call option.
If the strike price and the pool price coincide the parties are risk-neutral. Hence
the aim of the production companies is to sell the contracts at the future spot price
to minimize the contract trading costs [16].

Producer pays
purchaser

strike price

Time

Po
ol

Pr
ic

e

Figure 5.1: One-Way Contracts [16]
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ad (ii)

The difference between one-way contracts and two-way contracts is that the price
of the two way contract is fix for the purchaser and the producer as shown in
Figure 5.2. Two way contracts are equivalent to forward contracts which are sold
at the strike price. From now on the latter ones will be discussed [16].

Producer pays
purchaser

strike price

retailer pays
producer

retailer pays
producer

Time

Po
ol

Pr
ic

e

Figure 5.2: Two-Way Contracts [16]

This chapter shows the emmergence of trading forward contracts and the effect on
the profit and behavior of the producers.

5.2 Market Model as Cournot Game

ALLAZ & VILA [7] first present the market model as a Cournot game. They
documented the equilibrium solutions of a duopoly at first with two and then with
m periods. Following ALLAZ & VILA [7] I will also show the equivalence of an
existing forward market to the Prisoner′s Dilemma.
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5.2.1 Spot Market Equilibrium

Two production companies with a homogenous good and equal marginal cost c′

in a two period model are considered. In the first period, both companies simulta-
neously choose the quantity of forward sales that they want to sell in the forward
market for delivery in the second period. The amount of the forward sales is
denoted by xi and the forward price by p′ [7].

Given the producers’ forward choice x1 and x2, the production game in the spot
market is defined by the two payoff functions

π1(x1,x2) = p(q1 +q2)(q1− x1)− c1(q1)

π2(x1,x2) = p(q1 +q2)(q2− x2)− c2(q2)

Obviously, if one company has already sold xi in the first period, it can only sell the
amount qi− xi in the spot market. If xi is more than the amount of the production
capacity the difference has to be bought in order to compensate the residual. In
this case the producer i has to buy the residual amount from its competitor j (at
the spot price) or the contract can be redeemed [7].

Following ALLAZ & VILA [7] assume that the inverse demand and the cost func-
tions are linear:

c1(q1) = cq1;

c2(q2) = cq2;

p(Q) = a−Q;

0 < c < a.

Thus,

π1(x1,x2) = (a−q1−q2)(q1− x1)− cq1,

π2(x1,x2) = (a−q1−q2)(q2− x2)− cq2.
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The best response function is then given by

R1(q2) =
a− c+ x1−q2

2
.

Proposition 5.2.1. There exists only one Nash equilibrium with

qi =
a− c+2xi− x j

3
i 6= j,

p =
a+2c− xi− x j

3
i 6= j.

Proof. Follows directly from Section 3.2.1.

If only one of the production companies is able to trade forward contracts then
that producer faces the following game: Find an x such that the Nash equilibrium
output in the second spot market is optimal [7].

Proposition 5.2.2. The equilibrium output is the solution of the Stackelberg output

of the Cournot duopoly game without a forward market when company 1 is the

leader:

x1 =
a− c

4
; q1 =

a− c
2

; q2 =
a− c

4
; p =

a+3c
4

.

Proof. Follows directly from Section 3.2.3.

Only the company which can trade forward contracts is able to increase profits.
Comparing Proposition 5.2.1 and Proposition 5.2.2 shows that the total output
increases from 2(a−c)

3 to 3(a−c)
4 .

If producer 1 can trade forward contracts, he gains great profit. Thus, producer
2 wants to trade forward contracts too in order to improve its profit. This proven
fact is the reason of emmergence of the forward market [7].
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5.2.2 Forward Market Equilibrium

In deciding how many contracts one company to offer in the forward market,
company i has the following total profit function:

π
′
i = p′(qi,q j)xi +πi(xi,x j)

by substituting

π
′
i (xi,x j) = (p(xi,x j)qi(xi,x j)− cqi(xi,x j))+(p′(xi,x j)− p(xi,x j))xi

qi and p are already given from Proposition 5.2.1 The first term in this equation
is the standard Cournot profit and the second one is the arbitrage profit. For the
arbitrager the following condition holds:

cqi(xi,x j)+(p′(xi,x j)− p(xi,x j))xi = 0.

Proposition 5.2.3. There exists only one forward market equilibrium such that

qi = q j =
2(a− c)

5
, (5.1)

xi = x j =
a− c

5
, (5.2)

p = c+
a− c

5
. (5.3)

Proof. The payoff function of the first producer depending on xi and x j is:

πi(xi,x j) = (p− c)qi =
1
9(a− c− xi− x j)(a− c+2xi− x j).

The first order condition of maximizing π ′i (∂π ′i/∂xi = 0) yields the best response
function

Ri(q j) =
1
4
(a− c− x j).
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Analogous

R j(qi) =
1
4
(a− c− xi).

Thus, (5.1)-(5.3) hold in equilibrium.

Remark:

(i) Obviously, when one of the producers is able to trade forward contracts, he
benefits a lot from doing so. But if both trade forward contracts, their profit
eventually become worse compared to the case where they do not enter into
the forward market. Hence, trading forward contracts is equivalent to the
Prisoner’s Dilemma.

(ii) We can also point out that the solution of Proposition 5.2.3 is more compet-
itive than the Cournot game where only a spot market exists. Allaz and Vila
proved moreover in their Proposition 3:
If there exists a forward market with N periods, in equilibrium for N → ∞

the residual production of the spot market tends to 0 and the price p tends
to the marginal cost c.

Example 5.2.4.
Let

P = 100−Q,

ci = 10qi,

for i = 1,2 be the inverse demand function and the cost functions of the

companies.

We will solve the problem backwards. First we will determine the Nash

equilibrium for the spot market as a function of the amount of the contracts

which are sold in the contract market. By Proposition 5.2.1

q1 =
1
3(90+2x1− x2),

q2 =
1
3(90+2x2− x1),
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and p = 1
3(90− x1− x2).

The payoff functions of the first producer depending on x1 and x2 are:

π1(x1,x2) = (p− c)q1 =
1
9(90− x1− x2)(90+2x1− x2)

π2(x1,x2) = (p− c)q2 =
1
9(90− x1− x2)(90+2x2− x1).

The first order conditions for both π1 and π2 are

0 = 1
9(90−4x1− x2) and

0 = 1
9(90− x1−4x2).

Therefore, we have an equilibrium by Proposition 5.2.3 at

q1 = q2 = 36

x1 = x2 = 18

p = 28.

Comparing the results of the market equilibrium with and without forwards

(Table 5.1) we see that the total profit of the companies decrease by trading

forward contracts.

Game qi q−i xi, x j P πi π−i πi +π−i
Monopoly 45 65 2025 2025
Cournot 30 30 40 900 900 1800
Stackelberg 45 22.5 32.5 1012.5 506.25 1519.75
Cournot with
contracts

36 36 18 28 648 648 1296

Table 5.1: Result of trading forward contracts
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5.3 Market Model with Supply Function Equilibria

NEWBERY [28] and GREEN [21] represent models with forward markets using
supply functions in the spot market. For modeling the electricity market with SFE
I will follow GREEN [21].

5.3.1 Spot Market

Goods which are sold in the spot market have to be delivered immediately at the
spot price. The spot price is determined by the market clearing condition where
demand equals supply, i.e. a− bp∗ = Q. Every production company wants to
maximize its profit, given by the net forward contract sales minus the production
costs

πi = pqi(p)+(p′− p)xi− ci(qi(p)).

In order to rewrite this terminus as a function of the market price, the residual
demand has to be inserted instead of the companys output:

πi(p) = p(D(p, t)−q j(p)− xi)+ p′xi− ci(D(p, t)−q j(p))2

Maximizing this function with respect to p the first order conditions yield:

0 = D(p, t)−q j(p)− xi +(p− ci(D(p, t)−q j(p)))
(
−b− dq j

d p

)
. (?)

This leads to a differential equation as can be seen from Chapter 4,

qi(p) = xi +(p− ciqi(p))
(

b+ dq j
d p

)
.

Analogous we can apply this method to q j(p). These two equations can be solved
simultaneously to obtain the two supply function equilibria.

GREEN [21] proved in his Proposition 1 that for any equilibrium supply function,
a company will offer a quantity equal to the amount covered by its contracts at a
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price equal to its marginal cost at that output level. This result is a generalization
of Allaz and Vila’s Proposition 3 for any positive sloping supply function. Green
assumed that his supply function is linear because of the uniqueness of the equi-
librium for each pair of contract sales. In the non linear case many solutions for
equation (?) can be found. GREEN [20] showed that the linear supply function can
be determined straightforward and that supply function equilibrium of company i

is independent of the contract sales of company j. In the non-linear case, supply
functions depend on each company’s contract sales. Considering the linear case
qi = αi +βi p leads to

αi +βi p = xi +(p− ci(αi +βi p))(b+β j).

This equation holds for
αi =

xi

1+ ci(b+β j)

and
βi =

b+β j

1+ ci(b+β j)
.

The second derivative of the profit function with respect to the price is

d2πi

d p2 =−(b+β )(2+ ci(b+β )),

Which is negative. Hence, the supply function gives a maximum. If company i

and j both have linear supply functions, the equilibrium price will be

p =
1

b+βi +β j

(
a− xi

βi

b+β j
− x j

β j

b+βi

)
.

The output of company i can then be obtained from its supply function

qi =
βi

b+βi +β j

(
a− x j

β j

b+βi
+ xi

)
.

Of course xi and x j can reach a value smaller than zero. In this case in some
markets, e.g. in the EXAA the market rules would set these to zero.
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5.3.2 Contract Market

Compared to the spot contracts where the goods are delivered immediately by
selling them, in the futures contracts the payment and the delivery of the goods
are at a fixed date. In electricity markets, generators often sell contracts in order
to reduce their risks.

The contract market is actually the first stage of this model. Again I will closely
follow GREEN [21] and assume that the production companies have the same
marginal costs, i.e., the slopes of the supply functions in the spot market are equal.
With the offering of contracts by the production companies the purchasers can
establish the market clearing price. Green also assumed that a sufficiently large
proportion of the purchasers in the contract market are risk-neutral with rational
expectations. For this reason the determined contract price p′ should be equal to
the expected spot price p. Hence, the price of the contract depends on the amount
of contracts that are going to be sold

p′ =
1

2β +b

(
a− β

β+b

)
Now we can define the company’s profit function in terms of the futures price

πi = p′(xi,x j)qi(xi,x j)− 1
2cqi(xi,x j)

2.

The first order condition for profit maximizing yields after some simplifications

xi =−qi
(2β +b)dx j

dxi

β +b−β
dx j
dxi

. (5.4)

An equilibrium in the forward market consists of a pair of forward contract sales
that solves (5.4) for i = 1,2, given the conjectural variations of the companies.

Remark
The actions that happen in the market can be summarized as follows:
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• The producers choose their forward contract amounts xi simultaneously
(first period).

• The producers choose the quantity qi of the goods that they are going to
put into the market supply functions q(p) −again simultaneously (second
period).

• The spot price can be determined by the inverse demand function.

• The payoffs of the production companies can be denoted as

πi = p′xi + p(qi)− ci(xi).

Example 5.3.1.1

Again for the case p= 100−Q and the linear cost function ci = 10qi with marginal

cost c′ = 10 the first order condition yields

∂q j

∂ p
=

qi− xi

p
−1, i 6= j,

where the marginal cost is normalized to zero and it can be solved by

qi = xi +Ap− p log(p), i = 1,2, qi > xi, p > 0,

qi = xi, i = 1,2, p = 0,

qi = xi +Bp+ p log(−p), i = 1,2, qi < xi, p < 0.

The last line is the case where companies are overcontracted. In this case they are

willing to drive the spot price down.

The first case holds if the minimum demand crosses the supply function at a price

greater then zero. That happens if the amount of all contracts X is less than the

competitive baseload demand a1−bp(1), i.e., X :=∑xi≤ a1, where p(1) is zero if

X = a1 and t = 1 is the time of minimal demand. Therefore, we have the aggregate

Cournot schedule

Qc = ∑qc
i = ∑(xi + p) = X +2p.

1See NEWBERY [28]
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By summing up qi = xi+Ap− p log(p) we can determine the total supply Q which

equals the demand D

Q≡∑
i

qi = X +2Ap−2p log p,

Q≤ Qc = X +2p, X ≤ a1,

Q = D = a(t)− p.

If A is given p(t) can be obtained by

2Ap(t)+ p(t)−2p(t) log p(t) = a(t)−X .

Obviously, the total demand and price depends only on X, the aggregate contract

supply, not on the individual forward positions of the companies.

The next step is to find the value of A and the choice of the contracts xi. Therefore,

p∗ = p(0) is denoted as the market clearing price for maximal demand. Let ao−
p∗ at t = 0, where ao ≡ a(0). Solving

A(X , p∗) =
a0−X

2p∗
+

(
log p∗− 1

2

)
, X ≡ xi + x−i ≤ a1.

p∆ is the maximum value of p∗, which is given by intersecting the Cournot solution

with the maximal demand, i.e.,

∑qc
i =: Qc = X +2p∆,

or

p∆ =
a0−X

3
.

Therefore, the value of A is equal to

1+ log
(

a0−X
3

)
,
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and the corresponding supply function is

qi = xi + p
[

1+ log
(

a0−X
3p

)]
, p≤ a0−X

3
, X ≤ a1 < a0.

The variation of aggregate forward positions on price ∂ p(t)
∂X depends on how com-

panies coordinate on their choice of supply positions. The three choices are as

follows

∂ p
∂X

=
−p

a(t)−2p−X
, holding A constant,

∂ p
∂X

=
−p
(

1− p
p∗

)
a(t)−2p−X

, holding p∗ constant,

∂ p
∂X

=−
(

a0−2p−X
a(t)−2p−X

)(
p

a0−X

)
, highest price-bid decision.

For X ≤ a1 we have ∂ p(t)
∂X < 0 in all three cases. The higher the forward position,

the more competitively the companies will act in the spot market, and the less the

prices will be at each t. The time-weighted average price in the spot market is

P =
∫ 1

0
p(t)dt = P(X ,A).

For arisk-neutral contract retailer the contract price p′ has to be equal to the

time-weighted spot price

p′ = P(X ,A),

where A is again fixed by p∗ and p∆. The decision of forward position is taken by

each company as in a Cournot game. Therefore,

∂ p
∂xi

=
∂ p
∂X

,

and the average daily operating profit for company i is

πi =
∫ 1

0
pqi(p)dt + xi

∫ 1

0
(p′− p)dt =

∫ 1

0
pqi(p)dt.
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Therefore the companies make their forward decisions as follows:

• Each company will have zero forward positions, if they suppose that their

positions do not change the forward positions of their competitors.

• Each company will offer the same forward position, if they adjust supply to

gain a given highest spot price.
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Chapter 6

Capacity Constraints

Obviously, the problems of Chapter 5 do not contain capacity constraints. That
means that the generators can deliver infinite quantities. What happens to the re-
sults if there exist such constraints? To solve this problem I will follow MURPHY

& SMEERS [27] and their appendix [6].

MURPHY & SMEERS [27] and in their appendix [6] proved that the result of AL-
LAZ & VILA [7] does not hold when capacities are endogenously limited. This
means that if there are capacity constraints the forward contracts do not necessar-
ily mitigates market power. In this regard they replaced the two-stage model by a
three-stage model:

• investment / capacity game

• forward market

• spot market

Including a forward market in a model, the spot market equilibrium is derived
given the capacities and forward contracts. The equilibrium in the forward market
can be obtained by given capacities, taking into account the subsequent equilib-
rium of the spot market.
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Some notations:

• P = a−Q1 (Inverse demand function)

• di (Investment cost parameter, measured in e/MW)

• ci (Operating cost parameter, measured in e/MWh)

• The quantity variables for i = 1,2

– yi (The quantity invested by company i)

– xi (The quantity of company i’s forward) contracts

– qi(a) (Output of company i after the demand realization a)

6.1 Stochastic Demand

What MURPHY & SMEERS [27] obtain in the spot market is a model leading to
an equilibrium problem subject to equilibrium constraints (EPEC):

6.1.1 The Spot Market

Under uncertainty of demand the inverse demand function can be obtained after
the companies’ decisions. For each a, the companies act as Cournot competitor.

We will denote qi(a) as the energy delivered by company i when a is realized.

Now, each company i takes the production q−i of the rivals as given and solves

max
qi

πi = (a−qi−q−i)(qi− xi)− ciqi

s.t. 0≤ qi

0≤ yi−qi

1a is a random intercept with density f (a) defined over (l,u). l = u yields the deterministic
case and a is used as the intercept.
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I.e., after the decision of the forward amount at the forward price the motivation
to influence the market by restricting qi is bounded by the residual amount qi−xi.

The first order conditions for this problem which the companies solve simultane-
ously are

0≤ a−2qi−q−i− ci + xi−λi +µi ⊥ qi ≥ 0 i = 1,2

0≤ yi−qi ⊥ λi ≥ 0 i = 1,2

0≤ qi ⊥ µ ≥ 0 i = 1,2.

Obviously, a parametric complementarity problem is obtained, where λ and µ are
the dual variables of the constraints.

Hence we have a spot market profit after solving the EPEC for qi and q−i of

(a−qi−q−i− ci)(qi− xi).

Example 6.1.1.
Let

p(Q) = 100−Q and ci = 10qi

and denote the investment cost as di = 4, i=1,2 e/Mw.

This example is modeled in AMPL [4] and solved with the MINOS [5] solver. The

input is as follows.

Listing 6.1: Numerical solution of spot market with investments

param a := 100 ;

param c := 10 ; # o p e r a t i o n c o s t

param d := 4 ; # i n v e s t m e n t c o s t

param y := ( a−c−d ) / 3 ; # c a p a c i t y e q u i l i b r i u m

v a r q1 >=0 ;

v a r q2 >=0 ;

v a r w; #dua l v a i r a b l e

v a r lambda=a−2*q1−q2−c+w; #dua l v a r i a b l e
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v a r p=a−q1−q2 ; # p r i c e

v a r p r o f i t 1 =p *( q1)−q1 *( c−d ) ; # p r o f i t

s u b j t o comp1 :

y−q1 >= 0 complements l >= 0 ;

s u b j t o comp2 :

q1 >= 0 complements w >= 0 ;

s u b j t o e q u i :

q1=x ;

The results are as follows

q x p profit
company 1 28.667 28.667 42.667 1051.11
company 2 28.667 28.667 42.667 1051.11

6.1.2 The Forward Market

Let us assume that xi is sold at the expected value of the spot price, such that the
distribution f (a) of the parameter a as a risk neutral probability is obtained from
the forward sales. The forward price that the companies can expect is∫ u

l
(a−qi−q−i) f (a)da.

The profit of company i where x−i is the forward position of company −i is

xi

∫ u

l
(a−qi−q−i) f (a)da+

∫ u

l
(a−qi−q−i)(qi− xi) f (a)da =∫ u

l
(a−qi−q−i)qi f (a)da.

So the companies have to solve the following problem.

max
xi

∫ u

l
(a−qi−q−i)qi f (a)da,
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where qi and q−i are the solutions of the complementarity problem of the spot
market.2

From the uniqueness of the solution of the EPEC follows that there exists unique
functions

qi(xi,x−i;a) and q−i(xi,x−i;a)

that solve the EPEC. Which leads by substitution to

max
xi

g(yi,y−i) =
∫ u

l
(a−qi(xi,x−i;a)−q−i(xi,x−i;a))qi(xi,x−i;a) f (a)da

Obviously, the result is a standard Nash equilibrium problem and not an EPEC.

6.1.3 Capacity Game

Let the net profit of the company i be:

πi(yi,y−i) = g(yi,y−i)−diyi

Thus, the companies simultaneously solve

max
xi≥0

πi(yi,y−i).

6.1.4 Solutions of the Three Stage Game

(i) Spot Market

Under the assumptions the equilibrium of the spot market always exists
and is unique. The equilibrium is distinguished by the constraints. We
distinguish the following cases:

2Striking out the integrals, gives the deterministic case.

69



CHAPTER 6. CAPACITY CONSTRAINTS

• None of the companies is constrained:

0 < qi(a)< yi i = 1,2.

• One of the companies is constrained:

0 < qi(a)< yi 0 < q−i(a) = y−i.

• All are constrained:

0 < qi(a) = yi i = 1,2.

• One does not produce anything:

0 < qi(a)≤ yi 0 < q−i(a) = y−i.

• None produces anything:

0 < qi(a)≤ yi i = 1,2.

These cases appear in the deterministic and stochastic demand schemes.
Sufficiently, its enough to consider only equilibria for which qi > 0 holds.
Therefore, only the first three cases will be discussed. The EPEC problem
from Subsection 6.1.1 can be simplified to

a−2qi−q−i− ci + xi +λi = 0 i = 1,2,

0≤ yi−qi ⊥ λi ≥ 0 i = 1,2,

respectively.

Which of the three cases holds depends on the value of a. Two definitions
are introduced: Let

αi(y,x) and α−i(y,x)
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be the smallest values of a such that

q−i(a) = y−i and qi(a)< yi for a = α−i(y,x),

q−i(a) = y−i and qi(a) = yi for a = αi(y,x).

Setting x = 0 yields a model without forward markets and obviously we get

α−i(y,x)< αi(y,x).

Comparing our three cases in the spot market with forward contracts:

• Case 1 (no capacity constrains):
By solving

0 = a−2qi−q−i− ci + xi i = 1,2

the following result is obtained.

q∗i =
1
3 [a−2(ci− xi)+(c−i− x−i)],

which yields a spot market profit of

1
9(a− xi− x−i−2ci + c−i)(a−2ci +2xi + c−i− x−i)

and the market clearing price

p(a) = 1
3 [a+(ci− xi)+(c−i− x−i)].

The same result was derived by Allaz and Vila (1993) although differ-
ent cost functions were used. Murphy and Smeers (2010) presented an
adapted version and showed that the forward market positions of the
companies are

xi =
1
5 [
∫ u

l
a f (a)da−3ci +2c−i],

x−i =
1
5 [
∫ u

l
a f (a)da−3c−i +2ci].
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• Case 2 (one is constrained):
qi is obtained by solving

a−2qi−q−i− ci + xi +λi = 0 i = 1,2

for company i such that q−i = y−i and qi < yi. This yield

a−2qi− y−i− ci + xi = 0

or
qi =

a− y−i− ci + xi

2
.

Therefore, the profit of the company i together with the profit from the
forward contracts is

1
4(a− y−i− ci− xi)(a− y−i− ci + xi) =

1
4 [(a− y−i− ci)

2− x2
i ],

and for company −i

1
2(a− y−i−2c−i + ci− xi)yi,

respectively.

• Case 3 (both are constrained): The profit is

(a− yi− y−i− ci)yi,

since qi = yi for i = 1,2.

In the stochastic case α−i is the value where the profit function turns from
Case 1 into Case 2 and αi from Case 2 into Case 3. We have

y−i =
1
3 [a−2(c−i− x−i)+(ci− xi)]

or
α−i(x,y) = 3y−i +2(c−i− x−i)− (ci− xi).
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This follows from the fact that α−i(x,y) is the value where the spot market
equilibrium of Case 1 equals capacity y−i.

Analogous
αi(x,y) = 2yi + y−i + ci− xi.

(ii) Forward Market

Assume there is a forward market under uncertain demand. Together with
the relation α−i(y,x) < αi(y,x) the profit functions πi and π−i of the com-
panies i and −i are defined as

πi(y,x) =1
9

∫
α−i(y,x)

l
(a− xi− x−i−2ci + c−i)

(a+2xi− x−i−2ci + c−i) f (a)da

+1
4

∫
αi(y,x)

α−i(,x)
[(a− y−i− ci)

2x2
i ] f (a)da

+
∫ u

αi(y,x)
(a− yi− y−i− ci)yi f (a)da−diyi

and

πi(y,x) =1
9

∫
α−i(y,x)

l
(a− xi− x−i + ci−2c−i)

(a− xi +2x−i + ci−2c−i) f (a)da

+1
2

∫
αi(y,x)

α−i(,x)
(a− y−i + ci−2c−i− xi)x−i f (a)da

+
∫ u

αi(y,x)
(a− yi− y−i− c−i)y−i f (a)da−d−iy−i.

This follows by adding the profits of the three cases. If αi < u and α−i >

l then πi and π−i are differentiable. So the equilibrium is calculated by
solving the first order conditions

∂πi(y,x)
∂xi

=
∂π−i(y,x)

∂x−i
= 0,
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given that such an equilibrium exists. For the existence and uniqueness the
second order conditions are

∂ 2πi(y,x)
∂x2

i
< 0 and

∂ 2π−i(y,x)
∂x−i2

< 0,

which are discussed in the e-companion appendix of MURPHY & SMEERS

[27]. They show in their work that if capacity constraints exist in the for-
ward market than there is no certainty that the market has an equilibrium.

(iii) Capacity Game

The Capacity game profit function with a forward market can be obtained
after substituting xi by the equilibrium solution x(y) of the forward market:

πi(y) = πi[y,x(y)] i = 1,2.

The capacity game profit functions without a forward market of the com-
pany i and−i are obtained by setting xi and x−i zero (πi(y,0) and π−i(y,0)).

Example 6.1.2.
The first order conditions of the forward market as already mentioned are

∂ pi

∂xi
=

∂ p−i

∂x−i
= 0.

This implies

∂ pi

∂xi
=

1
9

∫
α−i(x,y)

l
(a−4xi− x−i + ci−2c−i) f (a)da−

xi

2

∫
αi(x,y)

α−i(x,y)
f (a)da = 0

and
∂ p−i

∂x−i
=−1

9

∫
α−i(x,y)

l
(a− xi−4x−i− ci−2c−i) f (a)da = 0.
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The solution of these equations when

α−i(x,y) = 3y−i +2(c−i− x−i)− (ci− yi)

αi(x,y) = 2yi + y−i + ci− xi

is applied is a possible equilibrium on the forward market.

For example it is obvious that for

xi = 0 and α−i(x,y) = l

the previous conditions hold. Thus the constraint α−i(x,y)> l has to be added.

6.2 Deterministic Demand

The result of ALLAZ & VILA [7] that trading forwards mitigate market power do
not hold in a model with capacity constraints. This fact will be shown next and
can also be found in the appendix [6] of MURPHY & SMEERS [27].

6.2.1 Single Stage Game

Assume an open-loop model, where companies choose their strategy simultane-
ously. This game can be interpreted as a game where both companies generate
capacity and immediately sell the whole amount on the forward market. In this
case no spot market exists.

A solution of the Cournot equilibrium (y∗i ,y
∗
−i) can be reached when y∗i solves

max
yi≥0

[a− (yi + y∗−i)]yi− (ci +di)yi, i = 1,2.

There exists only one solution in this game. To make the comparison of the three
games efficient, the case with a strictly positive equilibrium is observed. The first
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order conditions of the above optimization problem yield:

a−2yi− y−i− (ci + ki) = 0

a− yi−2y−i− (c−i + k−i) = 0.

Therefore,

yi =
1
3 [a−2(ci +di)+(c−i +d−i)] i = 1,2,

p = a− yi− y−i =
1
3 [a+(ci +di)+(c−i +d−i)],

π
◦
i = 1

3 [a−2(ci +di)+(c−i +d−i)],

πi =
1
9 [a−2(ci +di)+(c−i +d−i)]

2.

where p is the electricity price, π◦i the unit profit and πi is the total profit. Obvi-
ously, yi is strictly positive if and only if

a−2(ci +di)+(c−i +d−i)> 0 i = 1,2.

Proposition 6.2.1. qi = yi, i = 1,2 in the open-loop game.

Proof. Applying the solution of Section 3.2.1 the Cournot solution is

qi =
1
3 [a−2(ci +di)+(c−i +d−i)],

which is equal to that of the capacity output.

6.2.2 Two Stage Game
(Investment/Spot Model)

In this game companies invest in capacities and trade on the spot market. This
case can be observed in the Austrian3 and Spanish markets as there is no forward
market. Working backward from spot to the capacity market will be the approach
to obtain the equilibrium of this model.

3Austrian companies trade forward contracts in the EEX forward market.
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Let yi be the amount of capacity adopted from the investment stage. Then each
company has to solve the following problem

max
0≤qi≤yi

[a− (qi +q−i)]qi− ciqi.

The first order conditions yield a complementarity problem whose solution is the
unique equilibrium.

a−2qi−q−i− ci +µi = λi,

xi−qi ≥ 0 λi ≥ 0 (yi−qi)λi = 0, (CP1)

qi ≥ 0 µi ≥ 0 qiµi = 0,

for i = 1,2.

The solution of these equilibrium conditions results in a function q(y) of capacities
y adopted from the capacity stage. This function q(y) is continuous and linear and
in addition continuously differentiable in y.

Again three cases will be observed in which the equilibrium satisfies 0 < qi ≤ yi.
For i = 1,2

• 0 < qi(a)< yi

• 0 < qi(a)< yi 0 < q−i(a) = y−i

• 0 < qi(a) = yi

The next step is to derive the equilibrium in the capacity market that affects the
companies’ attitude in the spot market.

Definition 6.2.2. (Closed-loop4 equilibrium)

A closed-loop equilibrium of the two-stage game y∗, q∗(y) satisfies the following

conditions.

(i) q∗(y) is a Nash equilibrium of the spot market game for every feasible y
4A closed loop game is a game where all past datas are known.
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(ii) y∗ is a Nash equilibrium of the capacity market game where the payoffs of

the agents are

ui(yi;y−i) = ui[yi,q∗i (y);y−i,q−i(x)], i = 1,2.

If there exists a closed-loop equilibrium y∗, q∗(y), then there exists a feasible
neighborhood N(y∗) of y∗ such that

• q∗(y) is a Nash equilibrium in the spot market for all points y, y ∈ N(y∗).

• y∗ is a Nash equilibrium of the capacity market with payoffs ui(yi,y−i) for
i = 1,2 in N(y∗).

y∗, q∗(y) is a local equilibrium if y∗, q∗(y) is located in a feasible neighborhood
around y∗. This fact can be redefined as

Definition 6.2.3. (Local closed-loop equilibrium)

A local closed-loop equilibrium of the two-stage game is a closed-loop equilib-

rium of the game where y is restricted to a non-empty full dimensional subset of

the capacity space.

For extending Proposition 6.2.6 into a two-stage game the case 0 < qi < yi and the
case 0 < qi < yi; 0 < q−i = yi for i = 1,2 cannot hold in an equilibrium.

Lemma 6.2.4. Suppose there is a closed-loop equilibrium of the two stage game.

Then the case where both are constrained (0 < qi < yi, i = 1,2) cannot hold at

this equilibrium.

Proof. Assume
0 < q∗i < y∗i i = 1,2.

Then the complementarity system becomes

a−2q∗i −q∗−i− ci = 0 i = 1,2
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or
q∗i =

1
3 [a− (2ci− c−i)].

There exists a By∗ , a ball with center y∗, such that for all y ∈ By∗ q∗(y) = y∗ is
the best response. It follows that (y∗,q∗(y∗)) is a local optimum of the capacity
market. For this equilibrium the payoff of i before paying its investments is

1
9 [a− (2ci− c−i)]

2.

Thus, the profit is
1
9 [a− (2ci− c−i)]

2−diy∗i .

But this cannot be a local maximum of the profit of i with respect to yi because
we can decrease yi in order to improve the profit.

Lemma 6.2.5. Assume there is a closed-loop equilibrium of the two stage game.

Then the case where one of the companies is constrained (0 < qi < yi; 0 < q−i =

y−) cannot hold at this equilibrium.

Proof. Suppose
0 < q∗i < y∗i and q∗−i = y∗−i.

Again this assumption with our complementarity problem (CP1) yields:

q∗i =
1
2(a− y∗−i− ci)

q−i = y∗−i

So

qi(x) = 1
2(a− y−i− ci) and

q−i(x) = y−i.

Again as in Lemma 6.2.1 we can reduce yi by a small amount and receive a higher
profit.

79



CHAPTER 6. CAPACITY CONSTRAINTS

Proposition 6.2.6. A closed-loop equilibrium of the two stage game satisfies

q∗i = y∗i , i = 1,2,

if it exists.

Proof. This follows from the process of elimination by Lemma 6.2.1 and Lemma
6.2.2.

If the closed-loop equilibrium exists Proposition 6.2.2 allows to relate the open-
loop to the closed-looped equilibrium

Theorem 6.2.7. The open-loop equilibrium of the single stage game is equivalent

to the closed-loop equilibrium of the two stage game, if it exists.

Proof. Assume yc
i and qc

i , i = 1,2 are the closed-loop solution of the two stage
game such that qc

i = yc
i , i = 1,2 (Proposition 6.2.2), if it exists. Therefore,

α−2yc
i − yc

−i− ci = λ
c
i ≥ 0, i = 1,2.

If yi would decrease while keeping y−i = yc
−i then qi = yi, i = 1,2 satisfies the first

order conditions of the two-stage game. Therefore, the result for the first-stage
objective function of i is

ui(yi;yc
−i) := (α− yi− yc

−i− ci)yi−diyi,

where yi is decreased with y−i = yc
−i. ui reaches a maximum at yc

i for y−i = yc
−i

because of the closed-loop equilibrium. We have

α−2yc
i − xc

−i− ci− ki ≥ 0

thus
λ

c
i ≥ di > 0.
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This result (λ c
i > 0) implies that there exists a neighborhood U of yc such that

for y ∈U setting qi = yi satisfies the complementarity system (CP1) of our first
order conditions in that neighborhood. Adapting the above reasoning to variations
of yi in excess of yc

i one finds λ c
i = ki. Therefore, the closed-loop equilibrium of

the two-stage game yc, if it exists, satisfies the same conditions as the open loop
equilibrium [27].

6.2.3 Three Stage Game

Now I want to analyze the three-stage game where the market participants can
sell their invested goods by forward contracts and the residual in the spot market.
Therefore, the definitions of the closed-loop equilibrium are extended by intro-
ducing additional notation.

Let q be the vector of total production in the spot market,

x the amount sold by forward contracts,

y the invested capacity.

The three stage game can be again solved backwards. A spot market equilibrium
q is a vector-valued function q(y,x) where qi solves

max
0≤qi≤xi

{us
i (y,x;qi,q∗−i) = [a− (qi +q∗−i)](qi− xi)− ciqi}.

If such an equilibrium exists write

u f
i (y;x) := us

i [y,x;q(y,x)].

Thus, the forward equilibrium defines a set valued map x : Rn→∏
m
i=1PRki with
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xi(y) being the solution of

max
xi

t f
i (y;xi;x∗−i) for i = 1,2 (6.1)

If such a solution exists, we define using

max
yi≥0

[a− (yi + y∗−i)]yi− (ci +di)yi i = 1,2. (Single stage game)

we define
qi(y) = qi[y;x(y)]. i = 1,2.

The fact that qi(y) is a unique point although the solutions of (6.1) are not unique
will be shown below. Therefore we can define

ui(yi,y−i) = {a− [qi(yi,y−i)+q−i(yi,y−i)]− ci}qi(i,y−i)−diyi for i = 1,2.

The equilibrium solution of the investment stage is a vector y∗ where y∗i is a solu-
tion of

max
0≤yi

ui(yi,y∗−i) i = 1,2.

Now we can extend Definition 6.2.1 to

Definition 6.2.8. A closed loop equilibrium (y∗,x∗(y),q∗(y,x)) of the three stage

game satisfies the following three conditions.

(i) q∗(y,x) is a Nash equilibrium of the spot market for every feasible y, x

(ii) x∗(y) is a Nash equilibrium of the forward market for every feasible y

(iii) y∗ is a Nash equilibrium of the capacity market.

The next approach is to calculate the different stages of this equilibrium.

Spot market equilibrium with forwards
The equilibrium conditions of the spot market for given forward positions of the
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companies are

a−2qi−q−i− ci + xi +µi = λi,

xi−qi ≥ 0 λi ≥ 0 (yi−qi)λi = 0, (CP2)

qi ≥ 0 µi ≥ 0 qiµi = 0,

for i = 1,2.

Since companies can sell and buy forwards xi can have positive and negative con-
sequences. Suppose there exists an equilibrium (y∗,x(y∗),q[y∗;x(y∗)]) and that
both companies have positive production. Then the equilibrium of the spot mar-
ket q∗ = q[y∗,x(y∗)] satisfies one of the following conditions

(i) 0 < q∗i < y∗i i = 1,2

(ii) 0 < q∗i < y∗i 0 < q∗−i = y∗−i

(iii) 0 = q∗i < y∗i 0 < q∗−i < y∗−i.

The following lemmata will show like in Section 6.2.2 that the first two cases do
not hold in equilibrium.

Lemma 6.2.9. If an equilibrium exists, then case (i) does not hold.

Proof. Assume y∗,x∗ = x(y∗),q∗ = q[y∗,x(y∗)] is the equilibrium which satisfies
condition (i). The equilibrium conditions are for i = 1,2

a−2q∗i −q∗−i− ci + x∗i = 0

a−q∗i −2q∗−i− c−i + x∗−i = 0

0 < q∗i < y∗i .

Substituting ci +di by ci−x∗i in the solution of the single-stage (open-loop) game
yields

q∗i = q∗i (x
∗) = 1

3 [a−2(ci− x∗i )+(c−i− x∗−i)].
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0 < qi(y∗,x)< y∗i holds in a neighborhood N(x∗) of x∗ thus an equilibrium of the
spot market is obtained. Therefore

u f
i [y
∗,x] = 1

9 [a−2(ci− xi)+(c−i− x∗−i)]
2.

The first order condition yields

x∗i =
1
5 [a− (3ci−2c−i)]

and
q∗i =

2
5 [a− (3ci−2c−i)].

Therefore, there exists a neighborhood N(y∗) of y∗ such that

x∗(y) = x∗

and
q∗(y) = q∗[y,x∗(y)] = q∗

are the best responses to any y ∈ N(y∗). For all y ∈ N(y∗)

ui(y) = 2
25 [a− (3ci−3c−i)]

2−diyi.

Obviously one can increase the payoff by decreasing y like in Lemma 6.2.4.

Lemma 6.2.10. If an equilibrium exists, then case (ii) does not hold.

Proof. Assume y∗,x(y∗),q[y∗,x(y∗)] is an equilibrium satisfying case (ii). Thus

a−2q∗i −q∗−i− ci + x∗i = 0 0 < q∗i < y∗i

a−q∗i −2q∗−i− c−i + x∗−i = λ
∗
−i 0 < q∗−i = y∗−i.

If it is an equilibrium, it is also a local equilibrium. Keeping y fixed at y∗ and
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letting x move around x(y∗), leads to the following solution

qi =
1
2(a− y∗−i− ci + xi)

λ−i = a−2y∗−i− c−i + y−i− 1
21(a− y∗−i− ci + xi)

= a
2 −

3
2y−i∗− 1

2(2c−i− ci)+
1
2(2x−i− xi).

What happens to the payoff of i if xi varies for fix x∗−i in the forward market? For
the spot price the result is

a−qi− y∗−i = a− 1
2(a− y∗−i− ci + xi)− y∗−i =

(
a − y∗−i + ci− xi).

The associated profit of company i in the forward market is

(a−qi− y∗−i− ci)qi =
1
2(a− y∗−i− ci− xi)

1
2(a− y∗−i− ci + xi)

= 1
4 [(a− y∗−i− ci)

2− x2
i ].

Whereas x∗i maximizes the payoff of i, i.e. x∗i must be zero. Therefore, the medium
term payoff of i on the forward market is 1

4 [(a− y∗−i− ci)]
2. In this case the profit

is
1
4 [(a− y∗−i− ci)]

2−diy∗i .

A suficiently small decrease of y∗i to yi < y∗i , keeps xi = 0 as the optimal strategy on
the futures market and qi stays as before and strictly less than yi. This procedure
improves the payoff of company i in the capacity market. Thus, the profit was not
an optimum.

These two lemmata imply

Proposition 6.2.11. A closed loop equilibrium of the three-stage game satisfies

qi = yi, i = 1,2, if one exists.

Proof. By Lemma 6.2.9 and Lemma 6.2.10.

The lemmata and the proposition from the two stage game are now applied for the
three stage game. The next aim is to adapt Theorem 6.2.7 to the three stage game.

85



CHAPTER 6. CAPACITY CONSTRAINTS

Therefore, the space of investment variables are partitioned into various subsets
and their equilibrium properties can be characterized.

In the following consider the case qi < yi. As already shown in the previous
lemmata this cannot hold at an equilibrium. But it can be a characteristic of a
disequilibrium point if one wants to show that there does not exist an equilib-
rium. Therefore the characteristic of the forward and spot market equilibria for all
possible yi > 0 is considered.

Assume the case where the investment variables satisfy a− 2yi− y−i− ci > 0,
i = 1,2 (both companies use all of their investment capacity in the spot market).
The next lemma shows the property of the equilibrium in the forward market for
that case.

Lemma 6.2.12. Let (yi,y−i) satisfy

a−2yi− y−i− ci > 0 i = 1,2

then

xi ≥ x̃i(x) =−(a−2yi− y−i− ci)< 0, i = 1,2

is a closed-loop equilibrium of the forward market.

Proof. Let the invested capacity y be given and x̃i = x̃i(y) be the optimal reaction
of i to a forward position x−i ≥ x̃−i of −i. Assume xi > x̃i, then

a−2yi− y−i− ci + xi = λi > 0

a− yi−2y−i− c−i + x−i = λ−i ≥ 0

and qi = xi stays an equilibrium on the spot market. Taking xi > x̃i therefore
keeps the profit of company i unchanged independent of −i’s decision as long as
x−i > x̃−i. Let xi < x̃i, x−i ≤ x̃−i. The total output gets smaller than the forward
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position and the equilibrium conditions of the spot market are

a−2qi− y−i− ci + xi = 0

a−qi−2y−i− ci + x−i = λ−i > 0.

Thus
qi =

1
2(a− y−i− ci + xi)

and
u f

i (y;xi,x−i) =
1
4 [(a− y−i− ci)

2− x2
i ].

The maximum profit of company i is achieved for xi = 0 with a payoff equal to
1
4(a− y−i− ci)

2 which is the global optimum of i if and only if

0 = xi < x̃i =−(a−2yi− y−i− ci)< 0

which cannot hold.

Thus, to x−i ≥ x̃−i the optimal reaction of company i cannot be xi < x̃i. That
implies that x̃i(y), i = 1,2 is a closed-loop equilibrium of the forward market and
any xi ≥ x̃i, i = 1,2 is also a closed-loop equilibrium of the forward market.

The next lemma shows that −i can always force i out of the forward market by
selecting x−i large enough.

Lemma 6.2.13. Let (yi,y−i) be given. xi = 0 is the optimal response of i to any

x−i ≥ x̃−i(y) if a−2yi− y−i− ci < 0 and a− yi−2y−i− c−i > 0.

Proof. Assume −i has a forward position x̄−i ≥ x̃−i. Then we suppose that the
equilibrium in the spot market is

a−2qi− y−i− ci = 0

a−qi−2y−i− c−i + x̄−i = λi ≥ 0.

That holds because
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• there exists some qi < yi since a− 2yi− y−i− ci < 0 such that qi solves
a−2qi− y−i− ci = 0.

• a−yi−2y−i−c−i+ x̃−i(y) = 0 by the definition of x̃−i(y). Thus, any qi < yi

and x−i > x̃−i(y) satisfies a−qi−2y−i− c−i + x−i = λ−i ≥ 0, which yields
the equilibrium at qi < yi and q−i = y−i.

Consider the reaction of −i to x−i > 0. a− yi− 2y−i− c−i + x−i > 0 and a−
qi− 2y−i− c−i > 0 for all qi < yi since x−i ≥ x̃−i(y). Thus, q−i = y−i whenever
x−i ≥ x̃−i(y), whatever the position of i on the forward market is.

Consider the subsequent strategies of i on the forward market. Since the objective
function depends on the value of xi, we analyze two cases:

(i) xi ≥ x̃i(y) =−(a−2yi− y−i− ci)> 0

(ii) xi ≥ x̃i(y) =−(a−2yi− y−i− ci)< 0

The payoff of company i in case (i) stays constant at (a− yi− y−i− ci)yi for all
xi ≥ x̃i(y). Thus, company i cannot improve its payoff by choosing xi ≥ x̃(y) and
obtain a global optimum for the case (ii).

The payoff of company i in case (ii) can be obtained as follows. Since xi ≤ x̃i(y),
qi ≤ yi and qi solves

a−2qi− y−i− ci + xi = 0

a−qi−2y−i− c−i + x−i = λ−i > 0.

The best response of company i by Lemma 6.2.12 is

qi =
1
2(a− y−i− ci + xi)< yi)

and
u f

i (y;xi,x−i) =
1
4 [(a− y−i− ci)

2− x2
i ].
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The maximum profit can be reached for xi = 0 if the company’s payoff is equal to
1
4(a− y−i− ci)

2. This is the global solution of the payoff of company i if it has
both

0 = xi < x̃(y) =−(a−2yi− y−i− ci)> 0

and
1
4(a− y−i− ci)

2 > (a− yi− y−i− ci)yi. (?)

By assumption, the first condition holds. In order to check the second order con-
dition, (?) must be rewritten as

(a− y−i− ci)
2−4(a− y−i− ci)yi +4y2

i > 0

or
(a−2yi− y−i− ci)

2 > 0.

Therefore, if company −i chooses x−i ≥ x̄−i and a− 2yi− y−i− ci < 0 the best
response of company i is xi = 0. The result is unique because of the strict concavity
of the objective function.

Company −i (which did not exhaust his capacity, i.e. a− yi− 2y−i− c−−i > 0)
can always force to sell its capacity in the spot market, does not matter what
company i (which overinvestet, a− 2yi− y−i− ci < 0) decides, by taking any
forward position x−i ≥ x̃−i(y).

Since q−i = y−i and is invariant with xi, the profit function of company i in the
forward market is

πi(y,x) = 1
4 [(a− y−i− ci)

2− x2
i ].

This profit is maximized if xi is equal to zero as proved in the next Lemma.

Lemma 6.2.14. Assume a− yi− 2y−i− c−i > 0 and a− 2yi− y−i− ci < 0. The

best response of company −i to xi = 0 is x−i = x̃−i.

Proof. Let xi be zero and define q̃i such that a−2q̃i−y−i−ci = 0. Therefore, q̃i is
less than the maximal capacity of company i, because a−2yi− y−i− ci < 0. The
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following three strategies of company −i on the forward market will be assigned,
due to the form of the objective function of company −i. It depends on how the
spot positions are at capacity.

(i) The forward positions are chosen to ensure q−i = y−i.

(ii) The forward positions are chosen to maximize the payoff in the region
where qi < yi, q−i < y−i.

(iii) The forward positions are chosen to maximize the payoff in the region
where qi = yi, q−i < y−i.

The payoff of company −i for the three cases is:

(i) Company −i ensures the full recovery of its capacity in the forward market
and it takes x−i ≥ x̂(y) where x̂−i(y) is defined by

a− q̃−2y−i− c−i + x̂(y) = 0.

For xi and x−i ≥ x̂−i the equilibrium in the spot market is qi = q̃i and q−i =

q̄−i. Thus, the payoff of company −i is

(a− q̃i− y−i− ci)y−i =
1
2(a− y−i− ci)yi.

(ii) Assume that x−i = x̂−i(y)− ε−i where ε−i is small enough to ensure that qi

hits the capacity and that q−i does not reach zero. Then the system

a−2qi−q−i− ci = 0,

a−qi−2q−i− c−i + x−i = 0

can be solved with qi and q−i as a function of x−i. The payoff function of−i

is obtain by setting yi = 0 in the payoff function u f
i [y
∗,x] in Lemma 6.2.9.

u−i f [y;0,x−i] =
1
9 [a−2(c−i− x−i)+ ci]

2.
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Deriving u f
−i with respect to y−i yields

4
9 [a−2(c−i− x−i)+ ci].

This evaluates to

4
9 [a− (2c−i + ci)+ x̂−i] =

4
9y−i > 0

at x̂−i, when q−i reaches the capacity amount y−i. Since the derivate of u f
−i

is positive at x̂−i and is concave in x−i it is still increasing at that point.
Therefore, the maximum of u f

−i cannot be x−i < x̂−i(y), which means that
x−i = x̂−i− ε−i cannot be the optimal reaction of company −i.

(iii) Again we will use the same concavity argument to show that u f
−i[y;0,x−i]

cannot be maximized by decreasing x−i to a level where the total output of
company i is equal to the capacity xi or that the total output of company −i

reaches zero. Therefore, there is no benefit for company −i to decrease its
forward positions if its total output reaches zero before qi = yi. It would
imply that its payoff would be zero. One other case is that qi reaches yi and
q−i > 0. This happens for some q̄−i such that

a−2yi− q̄−i− ci = 0

Now we show that decreasing of the forward position of company i cannot
increase the profit by the resulting price.

Let q−i = q̄−i + ε . Therefore the profit of company −i is

(a− yi− q̄−i− ε− c−i)(q̄−i + ε).

If this term is derived at ε = 0 then

3yi +(2ci− c−i)−a,
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which is greater than zero. Since

2(−a+2yi + y−i + ci)+(a− yi−2y−i− c−i)> 0

by assumption, this means that company i cannot reduce the forward po-
sition xi beyond the point where qi = yi. Therefore x−i ≥ x̃−i ensures the
optimal profit of company −i if the forward position of company i is zero.

If company i has excess capacity the following result will emerge.

Lemma 6.2.15. Assume that (yi,y−i) is such that

a−2yi− y−i− ci < 0

a− xi−2y−i− c−i > 0

x̃−i(y) =−(a− yi−2y−i− c−i).

Then

xi = 0,

x−i ≥ x̃−i(y)

is a closed loop equilibrium of the forward market. At the equilibrium qi < yi

holds.

Proof. This follows from the combination of the Lemmata 6.2.13 and 6.2.14.

Lemma 6.2.16. There does not exists an equilibrium of the capacity game with a

forward market such that a−2yi− y−i− ci < 0 and a− yi−2y−i− c−i > 0.

Proof. Suppose such an equilibrium exists. Then xi = 0 and x−i ≥ x̄−i is the equi-
librium on the forward market with the corresponding spot market equilibrium
qi =

1
2(a−y−i−ci), q−i = y−i. This spot market equilibrium yields qi < yi which

is a contradiction to Proposition 6.2.6.
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Lemma 6.2.17. A capacity game equilibrium with a forward market cannot sat-

isfy a−2yi− y−i− ci < 0, i = 1,2.

Proof. By Proposition 6.2.6 the equilibrium, if it exists, satisfies qi = yi for i =

1,2. Since the marginal revenue of both companies is negative at that point, it
cannot be an optimal choice for both of them.

The conclusion of the above is that a capacity equilibrium with a forward market
satisfies a−2yi−y−i−c− i≥ 0, for i = 1,2, if it exists. The result is summarized
in the following proposition.

Proposition 6.2.18. A Capacity game equilibrium with a forward market satisfies

ai−2y∗i − y∗−i− ci ≥ 0, i = 1,2, if it exists.

Proof. That is proved in Lemmata 6.2.16 and 6.2.17.

Theorem 6.2.19. A capacity game equilibrium, is the open-loop equilibrium, if it

exists.

Proof. Suppose an equilibrium of the three-stage game exists. a−2yi−y−i−ci≥
0, i = 1,2 holds by Proposition 6.2.18. a−2yi− y−i− ci is also the marginal rev-
enue of company i from its actings in the spot and forward market. The marginal
revenue is equal to di because of the optimality of the action in the capacity game
of company i. Therefore

a−2yi− y−i− ci−di = 0, i = 1,2,

which are the open-loop equilibrium conditions.

Remark
If an equilibrium in the three-stage game exists, it is the open-loop equilibrium.
Therefore, one cannot enlarge the production in the spot market by using a forward
market. As a consequence of the capacity game, the companies are faced with
the destructive competition as a result of the existence of a forward market. They
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block this possibility by setting capacity levels. If we compare the two equilibrium
conditions the same solutions will be reached. Thus, the capacity stage produce a
contradiction to the ALLAZ & VILA [7] result that the the initiation of a forward
game mitigates market power.
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Conclusion

In my diploma thesis I have discussed several equilibrium models that are used by
companies in the electricity market. The complexity of the electricity market cre-
ates many risks for companies, forcing them to trade forward contracts to reduce
those risks. However, trading forward contracts induces other risks such as a po-
tential decrease of a company’s profits therefore reducing the company’s market
power. This proven fact is equivalent to the Prisoner’s Dilemma, however, if we
insert capacity constraints into the model this favorably impacts the results espe-
cially, since we have seen that forward contracts do not change the equilibrium, if
it exists, in a model with deterministic demand.

As further developments of my thesis, it would be interesting to extend this model
by pump storage plants. This however would make the model much more complex
since these plants can effectively store electricity.
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