
MASTERARBEIT

Titel der Masterarbeit

„Cognitive aspects of Designing Dialogues in

Theorem-Prover Based Mathematics Assistants

Implementation of Error-Patterns Guiding Dialogues in ISAC“

Verfasserin

 Gabriella Daróczy, MSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 066 013

Studienrichtung lt. Studienblatt: MEi:CogSci – Middle European Interdisciplinary Master
Programme in Cognitive Science

Betreuerin / Betreuer: ao. Univ.-Prof. Dipl.-Ing. Dr. Franz-Markus Peschl

Abstract

The thesis reviews theories from cognitive science relevant for learning mathematics
and applies the findings to a specific design and implementation of error patterns for calcu-
lating with fractions in the experimental ISAC system.

Since identifying the kind of design and the topic for implementation was part of the
thesis, the work started from a general view: Research results on the basic structures and
processes in the human brain doing and learning mathematics are reviewed; respective
research results are related to the issues of abstraction and of errors in mathematics.

Particular attention is given to cognitive theories specifically developed for designing
educational mathematics software; respective software products are considered in those
aspects which are interesting for comparison with ISAC.
ISAC is described as a prototype for an upcoming kind of educational mathematics as-

sistants, which are based on Computer Theorem Proving — emphasising the advantages
of this technology over other systems: (1) automated derivation of user input from log-
ical context and (2) automated proposal of next steps towards a solution in (symbolic)
calculations for step-wise problem solving close to traditional calculations by pencil and
paper. These services open novel chances for automated generation of dialogue guidance
— demonstrating the use of these chances is the concrete point of this thesis.

The concrete design of error patterns and their implementation for fractions is described
such that the description can serve as guideline for continuation of the work: The code im-
plementing the error patterns is written in the programming language of ISAC’s mathemat-
ics engine; this code comprises a few dozens of lines. The code implementing a demon-
strator for user guidance is written in the rule-based language of an expert system; this code
comprises four rules.

The implementation demonstrates generality and efficiency of the design: (1) the error
patterns for fractions generalise to all other kinds of calculations like differentiation, equa-
tion solving, etc., (2) the implementation transfers to all usages of respective calculations
in engineering and science and (3) the efficiency is show by the fact, that four rules suffice
to cover all generalisation and transfer mentioned in (2) and (3).

Finally the demonstrated generality and efficiency of the error patterns gives raise to
previews to the future: how these advances promise support for independent learning by
trial and error also in mathematics, like simulations and games provide support in other
subjects. And how such software supports renewal of learning culture.

Keywords
cognitive science, error-pattern, dialogue, feed-back, learning, fractions,

computer theorem proving, automation, rewriting, matching, Lucas interpretation.

Contents

0.1 Introduction . 5

1 Mathematics Education and Cognitive Science 7
1.1 Cognitive Science Meets Mathematics . 8
1.2 Mathematics and the Brain . 10
1.3 Abstraction and Algebra . 12
1.4 Fractions . 15
1.5 Mathematical Errors . 17
1.6 Computer in Education and as Learning Environments 19

2 TP-Based Mathematics Assistants
Introduction to ISAC 22
2.1 Features of Software Based on Theorem-Proving (TP) 23
2.2 Stepwise Problem-Solving Modelled in Software 25
2.3 The State of ISAC’s Dialogue Component 27

3 Contributions from Cognitive Science 30
3.1 Solving Examples in the Domain of Fractions 32
3.2 Knowledge Needed in Mathematics . 34
3.3 Systems Used in Mathematics Education 36
3.4 Tutoring . 38

3.4.1 Feedback and Hints . 40
3.5 Guidelines from Cognitive Aspects for the Development of Dialogue System 41
3.6 Selection of Examples for the Thesis . 43

3.6.1 Models of Errors and Towards of Computerization? 44
3.7 Error-Patterns in Algebra and in the Domain of Fractions? 46
3.8 Error-Patterns for ISAC . 50

4 Implementation in ISAC
Modelling “Next Step Guidance” 52
4.1 Example Dialogues for Fractions . 52
4.2 Error-Patterns . 54

4.2.1 Information, Designing Counters 54
4.2.2 A General Collection of Patterns 58
4.2.3 How to Implement Error-Patterns in ISAC 60

4.3 Hint-Pages . 61
4.4 Rewrite Rules . 65
4.5 Fill-Forms . 66
4.6 Dialogue Modes . 67
4.7 Implementation of Dialogue-Rules . 68

2

5 Embedding ISAC into Learning Scenarios 72
5.1 Examples of Errors in the Domain of Algebra 72
5.2 Guiding Through an Example . 74
5.3 Proposals for Extending ISAC . 78

6 Summary and Conclusion 82
6.1 Summary . 82
6.2 Conclusion . 83

Appendices 97

A General Collection on Examples in the Domain of Fractions 97

B Error-Patterns, Fill-Patterns and Fill-Forms, Hint-Pages 99
B.1 Error-Patterns . 99
B.2 Fill-Patterns and Fill-Forms . 103
B.3 Rules Testing for Error-Patterns . 113
B.4 Hint-Pages . 113

C Deutsche Zusammenfassung 115

D Curriculum Vitae 117

3

List of Figures

1.1 Fractions Represented as a Piece of Cake. 16

2.1 Reaction on Good and Bad Entry in ISAC 24
2.2 Dialogue with ISAC . 24
2.3 Balcony Under Load. 25

4.1 Interaction with ISAC . 53
4.2 ISAC’s Front-End with Incorrect Input . 54
4.3 Hint-Pages Overview . 62
4.4 Hint-Page for Special Cases . 63
4.5 The WorksheetDialog with Connections. 68
4.6 State-Diagram of the Dialogue-Rules . 70

4

0.1 Introduction
”I know that two and two make four.”

George Gordon Byron

The thesis relates the possibilities of an upcoming new generation of Theory-Prover
based educational mathematics assistants with the potential of cognitive science, and also
to meet the challenge to design a user-friendly learning environment/dialogue system that
is compatible with how the human mind actually works. The domain of mathematics is
huge, as well as the domain of algebra, so we will focus on development for a concrete
case: simplification of fractions, how people actually learn to use fractions, and how we
can react on errors happening in this domain.

The software we use for practical work in this thesis is ISAC, an educational mathemat-
ics assistant based on Lucas-Interpretation (LIP): LIP supports step-wise solving mathe-
matics problems in science and technology by ”next-step-guidance” ,where the system can
provide the next step, a novel technology developed at TU Graz and RISC Linz, indicates
potential to proceed from reactive to active systems. Reactive systems are: Mechanized
mathematics assistants (MMA), Computer Algebra Systems and Dynamic Geometry Sys-
tems: Where the user provides input, and the system reacts with an output. This kind of
behaviour carried over to educational MMAs so far. Active systems provide more possi-
bility for interaction with the computer. Designing the dialogue system based on cognitive
aspects is a complex task, there are many questions and aspects to be taken into consid-
eration: how to provide individual answers (in a face-to face human teaching process, the
teacher is mostly able to provide individual answers for different learners), how to deal
with the social aspect of learning...etc, and how to react on errors. The dialogue system
will not want to solve the mathematical task in the dialogue process, but guide the learner
through the learning process, with showing strategies, hints, patterns, supporting individual
learning strategies, and most important: react on errors. Identifying how ISAC should react
on the last is the main focus of this thesis. Source of quotes: ([107], [108], [109], [110],
[111], [112]).

The first part of the thesis identifies the human way of thinking in mathematics, and tries
to answer, how learning happens, and what are the innate processes in mathematics and how
this could be applicable in computer based education, how could we support the learning
process in the next-step-guidance system, ISAC. Understanding the thinking involved in the
learning and doing mathematics is a key aspect to build educational software. The first part
of the thesis also introduces the key features of ISAC. These include the first two chapters.

Cognitive science is relatively new in the field of mathematics education. It claims, that
mathematics is a product of adaptive human activities,is a human-made system based on
our biological and bodily experiences, and is produced by the brain abstraction, large part
of mathematics are happening on the unconscious level, and mathematical ideas are quite
stable over hundred years. The human brain, as also animals, has some innate arithmetic,
for example comparing small numbers, and many ideas are metaphoric (Nunez [103]).
Question of the thesis is how we can support the bodily based learning process, or which
cognitive aspects can we take into consideration for the dialogue.

The second main part of the thesis deals with the concrete implementation of error-
patterns in ISAC. This part will explain why we can use and work with pre-defined typical
error-patterns. The notion of error-patterns is not new in mathematics education. Reacting
on them, and providing solution strategies, hints in the right moment to solve the problem,
is essential. Each learner possesses a different knowledge level, and different experiences,
supporting individual way of thinking is also an important point. We try to support indi-
vidual way of thinking with multiple strategies by accepting all correct answers to the step
in the problem class. Secondly we try to support, that human cognitive system, and also

5

mathematics knowledge is fallible and learning happens partly through trials and errors,
also by patterns, with responding group of error-patterns. Fractions belong to algebra, and
are number made up of other numbers. Simplifying fractions might be a difficult problem
for the learners.

Later, based on this work, it would be also possible to create user-models, and develop
a more effective dialogue system between learner and computer. Developing and design-
ing the concrete dialogue system in ISAC involves computer science and rule based-system,
focusing on interdisciplinary aspect, connecting human cognition with concrete computer
application in a real time human-computer interaction. Using a computer software in edu-
cation enables the possibility to response at individual learning strategies.

Detailed structure of the thesis: As already mentioned above, the first big part of the
thesis deals with general concepts about mathematics, and the domain of fractions, the
second part introduces ISAC and the main task of the thesis, the third part covers the task-
relevant more concrete cognitive aspects, and than go into the concrete implementation,
and end with a summary. Chapter §1 reviews the state-of-the-art in mathematics education
as related to cognitive science.

Chapter §2 introduces an upcoming generation of educational mathematics assistants,
based on Theorem Proving (TP) technology, and a respective prototype, ISAC, selected
for implementation. §2.1 introduces respective key features, §2.2 clarifies what “problem
solving” means in this context, and focuses on “next step guidance (NSG)” aiming at im-
plementation.

Chapter §3 focuses on cognitive science aspects, errors in the domain of fractions, the
dialogue. It also introduces guidelines from cognitive aspects, and the error-patterns chosen
in this thesis for ISAC.

Chapter §4 describes the first attempt of “dialogue authoring” in ISAC realised by this
thesis. So a significant result is the manual in §4.2.3.

Chapter §5 comes back to the general aims stated in §1 and discusses how to embed the
work from §4 in to learning scenarios The final section summarises interesting questions
and selects a topic for practical implementation. Chapter §6 concludes with a summary and
a conclusion.

6

Chapter 1

Mathematics Education and
Cognitive Science

”As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,

they do not refer to reality.”
Albert Einstein

The following thesis: Error-patterns Guiding Dialogues in Theorem-Prover Based
Mathematics Assistant sets the goal to design the basis for a computer guided dialogue
system for an existing educational software: The ISAC for a concrete field: fraction, and for
reacting errors in this domain. Teaching and guiding mathematics is a complex task. Dur-
ing a real life interaction a teacher is mostly able to react on the learner, can correct errors,
may have intuitions where and what kind of a help a learner needs, including even: dealing
with emotional problems, like overcoming frustration during an example. In education the
most successful learning method is the one-to-one teaching, the apprenticeship like learn-
ing, but this need enormous personal costs. One way to support teaching is with the help
of an emerging field of education software, because they may enable the possibility for
an individual learning experience, like we would wait from a one-to-one tutoring system.
According to (Nunez [101]) ”primary mathematical classroom children and work modern
mathematics classroom would be much better equipped to respond to children mathemati-
cal questioning and learning. But in designing the software we should be careful, because
basically there are two ways: the first is to let the learners learn the software, and the in-
teraction, kind of adopting them to the software, or to design a software that adopts to the
learner. The theory of mathematical education is very broad: from sociological anthropo-
logical perspectives (cultural processes, social interaction, individual cognition, emergent
mathematical environments),constructivism (conceptual schemes, abstraction, generalisa-
tion,) to cognitive theories (conceptual fields, metaphor models, development of mathe-
matical reasoning (Cobb et al. [29])). Before going into concrete design task we have the
following questions during investigating the theoretical background, and identify necessary
elements to be used in ISAC:

1. What are the cognitive processes of mathematics with the sub-questions what is
mathematics? If there exists, what are the innate processes? These questions are
important in the design process because we have to identify what is the subject of
investigation we are extending the computer education system ISAC.

2. How does learning happen in the domain of mathematics education, and what are the
aspects we can use in an educational computer software for making the interaction
more human-near.

7

3. Identifying the concrete elements regarding the algebra, fractions concentrating fur-
ther on errors in fractions.

Summarizing, the guiding questions: we would like to get an insight how does math-
ematics learning and teaching works, and what can we apply in a computer software in a
concrete field of the fraction? In the end we will try to merge theory with real life appli-
cation, into the educational software ISAC. Of course educational software still have their
limitations, so many suggestions will be included in the last part of the thesis (See Chapter
§5).

1.1 Cognitive Science Meets Mathematics
”Mathematics is a language with which

God has written the universe”
Galileo Galileo

Cognitive science has rather various research focuses, and interests in mathematics ed-
ucation. Besides the notion of embodiment, situatedness, concept images, schemas, and
metaphors according to (Fazio and Siegler [47]) Cognitive science also deals with the fol-
lowing topics: understanding cognition before school, the reason of pitfalls (Understanding
the last would be a benefit for educational software, because they enable the possibility to
collect), the discovery and insight, the way of analytical thinking, and also in the domain
of learning, the conceptual, procedural, and cooperative learning, basically how people un-
derstand and learn mathematics. We will deal more with the domain of learning connected
to the already mentioned sub-field, the algebra and fraction.
Before going to details lets define the notion of mathematics.

What is mathematics at all? Many would agree, that mathematics is one of the most
unloved and feared subjects at school (Jennison and Beswick [62]), where most people
think, mathematics needs special kind of inborn talent. For a comparison we would like
to give several definition, starting with historical definitions from Greece, and ending with
the definition from cognitive science. First, in the history of mathematics, it was hold to be
something mysterious:

1. The notion mathematics comes from the word ”Mathematikoi” (Pythagoras called
his students ”Mathematikoi” who studied for a longer time), and originally meant
researcher (Dahl and Nordqvist [31]). Pythagorean believed that the principles of
mathematics were the explanation for the whole word. Later on during the develop-
ment of mathematics people came to a more realistic definition:

2. According to Oxford Dictionary (Dictionaries. [41]) mathematics is: ”the abstract
science of number, quantity, and space, either as abstract concepts (pure mathemat-
ics), or as applied to other disciplines such as physics and engineering (applied math-
ematics)”, and originates from Latin (ars) mathematica ’mathematical (art)’ and from
Greek mathmatik (tekhn), from the base of manthanein ’learn’. Originally (Amador
[2]) mathematics is an art of learning which might point out the connection to the
underlying thinking processes.

3. Our last definition from a cognitive science domain according to (Nunez [102]) math-
ematics is about human ideas, grounded in everyday cognitive mechanisms:
”Mathematics is a product of adaptive human activities in the world shared and
made meaningful language and based ultimately on biological and bodily experi-
ences unique to our species.” The concept of embodiment is supported by many re-
searches, according to (Koestler [71]) mathematics is a conceptual metaphor system,

8

as also Nunez (Nunez [99]) states. (Rittle-Johnson et al. [117]) argues that ”children
understand and produce their embodied concepts ins mathematics, that mathematics
models are embedded in the mental world”.

4. We dont want to focus on understanding the thinking of mathematicians, because
this might be very different from the thinking of learners(Hadamard [58]), but we
would like to add still a nice definition from (Borovik [16]) about what a mathemati-
cian is: a mathematician is someone who rectifies abstract concepts intentionally
and purposely and who can reuse, in compressed form, the psychological experi-
ences of previous rectifications; the mathematician actively seeks new or known, but
previously ignored, representations and interpretations of his or her objects; a math-
ematician has an instinctive tendency to favour objects, processes and rules with the
simplest possible descriptions or formulations.”

The main question was if mathematics exists outside of the world, also without human,
for example in the nature, in plants, or mathematics is a human product which arises during
our evolutionary development. This debate is still not closed nowadays, but in this thesis we
will accept the platonic (Linnebo [80]) view of mathematics: that mathematical concepts
exists in our brain. Choosing this option is important, because we would like to understand
aspects from mathematics which are needed in a cognitively supportive computer learning
scenario, and by a design of ISAC.

Shortly summarizing, what is mathematics from cognitive science point of view:

1. Mathematics is a language, developed by human from the centuries. (Nunez [100])
mathematics develops within a history of collective arguments and description (Lakatos
[78]).

2. Mathematics is based on real bodily experiences is embodied, grounded and situated
(Nunez [101]).

3. Mathematics involves the process of abstraction, and these abstract concepts are
product of the human brain.

4. Arithmetic and algebra have different processes, involve different brain parts (De-
lazer et al. [38]).

5. Education and learning environment influences the success of education.

We have chosen fractions because they are present in other domains of mathematics:
for example in engineering, or economy studies, where you have to calculate with frac-
tions. One might understand the process of calculation but might do errors during these
steps. These design presented in this thesis is exactly for these group: who once learned
it (knew the basics, so the thesis will deal with the common, in the beginning usual visual
representation of fractions but will operate on higher algebraic level), but for some reason
they cannot properly deal with fraction, and this hinders them to solve a problem on an
engineering or economic domain. In this case a personalised guidance through a software
like ISAC could be very useful.

Our guiding question automatically arises: What are the features of mathematics, and
what special features are important in defining the cognitively important points for the
educational software, ISAC?
One, that that is surely special about mathematics is, that it is precise, consistent, stable
across time and communities, understandable across culture , calculable, generalizable,
and a general tool for description (Nunez [101]). Also we can say, that mathematics is
the language, most people talk. To understand the important features of mathematics we
should understand which processes are involved in successfully learning mathematics. For
example transition/changing between domains, or according to (Borovik [16]), or dealing
successfully with abstraction.

9

The next chapter will be guided from the following questions: What are the cognitive
processes in mathematics? In details:

1. Where is mathematics in the brain?

2. Why is abstraction important in mathematics?

3. What are errors in mathematics?

4. What is special about algebra, and fractions?

5. What is the role of a learning environment?

1.2 Mathematics and the Brain
”Mathematician work where

demons lurk-deep in the interior of the mind”
Keith Devlin

If we would like to understand mathematical thinking, the first question is, whether
mathematics has inborn capacities, and if there exists innate processes. The question is
important, because if mathematics is mostly inborn, it is ”pre-determined” who is better
in learning mathematics, and who not. If we are able to define the parts of mathematical
capabilities and skills which arise during the learning process we can work on them to
build support software, or create learning environment which helps in the learning process.
There is also the philosophical question we already dealt with in the first chapter whether
mathematics is created by the human brain or mathematics exists outside of our cognition.
However, there are people who believe in the ”universality” of mathematics and the lat-
ter view was a leading view among mathematicians, and other people, mathematics is a
production of the brain, there is no mystery: ”Mathematics is produced from our brain”
(Borovik [16], Nunez [101], Devlin [40]), ”and depends on the historical development” (as
mentioned above).

As we could see, by the definition of cognitive science, mathematics is created by hu-
man mind, and mathematics conceptual are constructed as a common set of neural and
bodily structures, and mathematical theories are grounded in experience of embodied ideas
(as defined above). Especially arithmetic is based on physical experiences, space size and
motion. Of course how is also a still open research question. Very interesting is the book
from the mathematician: (Borovik [16]) Mathematics under the microscope , who also
states that we cannot understand the nature of mathematics without understanding first the
interaction between learned and/or invented mathematical processes and underlying pow-
erful built- in, inborn algorithms of our brain, and we have to take care at the individual
cognition, if we want to understand the process of mathematics, the patterns of the brain”.

Our key focus of this section is to find out if algebra is somewhere hard-wired in the
brain or not. According to (of Teachers of Mathematics and Mathematical Sciences Ed-
ucation Board [104]), algebra is more, than fluency in manipulating symbols, It involves
representing analysing and generalizing patterns, using tables, graphs, words, and symbolic
rules relating and comparing different representation. But is it inborn?

Because mathematical ideas are quite stable, we could think that most mathematical
ideas are innate from nature, and the question is do we share things with animals?

1. Rhesus monkeys capabilities are similar to the infants. Babies, chimpanzees share
many abilities: Babies with seven month were able to decide number equivalence be-
tween arrays of objects. Chimpanzees can do simple mathematics: They understand

10

some simple fractions, like 1
4 , 3

4 , 1
2 and are also able to tough to learn calculate using

numerical symbols (Lakoff and Nunez [79]).

2. Every innate process seems to be connected to the so called number sense, that term
was introduced by (Danzig [33]) that is that ”the brain is born with a very basic sense
of quantity-this is what we share we animals- and the role is to subitizing very small
objects”.

Other conclusions are: there is no innate number line (Nunez [103]), or higher mathematics
in the brain, rather some basic ability to compare, judge numbers, estimate the number of
objects in a group, order, pair, memory, exhaustion detection, and pattern recognition. And
we cant forget, that mathematical concepts are attached to minimal innate arithmetic, and
only small numbers could be hard-wired.
This answers question of basic levels, but not the level mathematics education takes place.
Higher mathematical thinking, is still an open question: It seems there is no inborn higher
mathematics, usually it is learned through the years. So the way of teaching is a key in
higher mathematical thinking processes, and its development is quite long for such an ab-
stract notions like 0, -, imaginary numbers.

It is also very interesting which brain parts are involved in mathematical processes. For
this question we can shortly examine research results from fMRI studies.

1. Pre-frontal cortex is involved in the complex structuring used in arithmetic calcu-
lation.(Blair et al. [12]): inferior parietal cortex is involved in symbolic numerical
abilities. This part is responsible for the knowledge of number sequence, and is
highly associated, connected with audition, vision, and touch (Grabner et al. [56]).
Memorization, and multiplication tables are associated with basal ganglia, memory,
pattern. (Kucian et al. [75])

2. ”Neuroimaging studies show a link between mental calculation and the angular gyru,
which is to be hypothesised to be related to arithmetical abilities which also depends
on the level of training” (Grabner et al. [55]).

3. Other fMRI studies (Cantlon et al. [23]) has shown, that ” Adult humans, infants,
pre-school children, and non-human animals appear to share a system of approximate
numerical processing for non-symbolic stimuli such as arrays of dots or sequences
of tones. and their results support the claims that there is a neurophysiological link
between non-symbolic and symbolic numerical processing in adulthood.” But math-
ematical processes are also culture dependant (Cantlon et al. [23]).

4. However, there are studies connecting brain parts to numerical abilities: For example
according to (Grabner et al. [55]): ”Functional neuroimaging studies have revealed
that parietal brain circuits sub-serve arithmetic problem solving and that their recruit-
ment dynamically changes as a function of training and development.” That means,
that even if we have inborn mathematical capabilities, it might be changed through
training.

5. The role of short and long-term memory (Borovik [16]) is also an important question.
Thus we would like to decrease the cognitive load..etc. Cognitive load is important
as human we are limited in our observation. Very important is, that algebraic cal-
culation, and arithmetic seem to be very different, and do belong to different brain
regions. According to (Devlin [40]) algebraic calculation and arithmetic are in dif-
ferent brain region, and also other talk about the cognitive gap between arithmetic
and algebra.

11

What connects mathematics to other thinking processes? Mathematics might also in-
volve cognitive processes, which we not only use in mathematics, but also in other do-
mains: ”How much of mathematical understanding makes use of the same kind of concep-
tual mechanism that are used in the understanding of ordinary non-mathematical domains
(Nunez [99])? That raises the question, that which domains we have to take into considera-
tion during planing the software. Since mathematics is embodied, and mainly unconscious,
the ability to adapt other cognitive mechanism for mathematical purposes is also part of
higher mathematical thinking, that according to (Graber et al. [54]), because the neural
motor-control program has the same structure. For example to ”create mental imaginary
without visual input” (Mitchelmore and White [88]) fundamental mathematical ideas are
closely related to the real world and their learning involves empirical concepts.

Our conclusion for design decisions However, current neuroscience studies cannot pro-
vide enough information how the higher cognition of mathematics work, and what we can
use in a practice, but these studies shows, that mathematical abilities depend on training
and education. There are some innate processes in the field of arithmetic (Nunez [99]), but
algebra is obviously a learned process, in those, being possible to support this learning pro-
cess through a software. Basic number sense also differentiates from higher mathematical
thinking, and mathematics is connected to other domains. Higher mathematical thinking is
strongly involved in solving fraction, and algebra problems, so in the next chapter we will
focus on the abstraction, and exploring patterns.

1.3 Abstraction and Algebra
”I have created a new universe from nothing”

Janos Bolyai

We have to investigate the question of abstraction, because it is directly or indirectly
connected to fraction. (Booker [15]) states: ”Fractions are the first abstracted mathematics
met by the young learners” . It is usually said, that mathematical concepts are abstract
concepts. In the process of mathematical abstraction (the process includes generalisation)
the dependence on real world objects will be removed.

Abstraction is a key concept in mathematical thinking, because it helps to reveal con-
nection between different areas of mathematics, a known results in one area can suggest
conjecture in a related area, and techniques and methods from one area can be applied
to prove results in a related area. (Mitchelmore and White [89]) argues, that an abstract
mathematical object takes its meaning only from the system within which is defined, be-
cause every single world, syntax is defined precisely, and even if mathematics uses every-
day words, their meaning is not their everyday meaning in mathematics. Investigating the
question of abstraction would bring up arguments against embodiment: according to (Reif
[113]) scientific and mathematical concepts are significantly different from everyday con-
cepts. As we have seen above, that mathematicians dont think the same way as learners of
mathematics do, we have to raise the following question: What does abstraction mean, is
the above mentioned mathematical definition the valid one also in educational settings, and
learning scenarios? As in many fields, this concept has also different interpretation, and is
defined in various fields differently.

Definition of abstraction in teaching and learning: Even if it seems that abstraction in
mathematics is separated from real world objects, however if we think of it, the notion of
abstraction originates from Latin: past participle of abstrahere, meaning to draw away. If
we think, drawing away still means a connection from the original concept. According to

12

(Mitchelmore and White [89], and (Koedinger et al. [70]), in learning processes, mathemat-
ical abstraction are different. (Mitchelmore and White [89]) defined the notion of empirical
abstraction, which later will became a mathematical abstraction with linking mathemati-
cal objects to empirical objects. According to (Skemp [120]) in empirical abstraction is:
”Abstracting is an activity by which we become aware of similarities ... among our ex-
periences”. (Nunez [101]) states that embodied mathematics also involve generalization
over poly-semi, influence of patterns, new examples of conventional mapping, conceptual
blending: (conceptual combination of two distinct cognitive structure with fixed correspon-
dence between them, and symbol associated with the concept. We mentioned these things
in the beginning of this chapter, because, these are all connected somehow to abstraction
processes, and the thesis deals with a section of algebra, these are the domain of fractions.
How does this abstraction working? Maybe that is the most open question in mathemat-
ics at all. (Nunez [101]): ”Mathematics is a highly technical domain characterized y the
fact, that the very entities that constitute is are idealized mental abstraction. These enti-
ties cannot be perceived directly through senses. Even the simplest entity in say Euclidean
geometry cannot actually be perceived. I will build on the increasing evidence showing
the extremely close relationships between speech, thoughts, and gesture production at a
behavioural developmental psychological an cognitive linguistic level.”

Process of abstraction and cognitive skills required to solve algebra problems The
problem with abstraction is, that some parts seem to be not easy to learn. Part of the
abstraction seems to be there from a quite early age (Koedinger et al. [70]). (Warren and
Cooper [135]) states, that formal algebraic notion are not easy to learn.

One important part in the abstraction process might definitely be the patterns. There
are many patterns in mathematics: like binomial forms, or numbers are very pattern based.
Learning to see this relationships between mathematical objects, the transformations, group-
ing pattern, generalization is very important in functional thinking. This functional thinking
is present from very early on. Also young children are capable for thinking functionally
(Cheng [25]). Part of understanding the process of mathematical learning is to understand
the thinking involved in doing and learning mathematics.

Besides being able to make abstractions: as mentioned before it is already clear, that
algebra requires completely different abilities, and understanding, and teaching methods
as arithmetic. Algebra is very interesting, because being good at algebra requires different
cognitive abilities, than arithmetic.For example, the cognitive abilities for arithmetic are
the following: Grouping ordering, paring, memory capacity, exhaustion capacity, which
are present in the process of abstraction.

Not only the process of abstraction, but also the transition between different domains is
very important. (However, it is out of scope of the thesis, in an ideal case a software would
also provide help to support the process of transition, so we found important to show some
existing theories on it.)

”Cryptomorhism” or ”transition between domains” We can also see mathematics as
system of abstraction and representation, and transitions between these representations.
Compared to other abstraction systems mathematics and science are more rigid, and fix.
Still the concepts and symbols are quite easy to change. Like a may be replaced by b,
c, or any other kind of symbols, not always the name is important, but the features, and
the rules of the current representation system. According to (Michene [86]) understanding
mathematics also contains creating associations of many kinds, and differentiation between
various kinds of items. Transition between domains is strongly related to multiple repre-
sentations are also said to support cognitive processes in learning (Ainsworth [1]). Multiple
representations help also to overcome the problem of the transition between domain, also
helping the constructivist approach to education. Other goals would be to ”promote ab-
straction, to encourage generalisation and to teach the relation between representation”

13

(Ainsworth [1]), because one single mathematical object can have multiple readings.
This field is not well researched, but this kind of changes, or connections to other

domains are called ”crypthomorphism” (Borovik [16]), or ”transition between domains”.
This means switching between two representation, and with these also realizing what are
the similarities, and differences between the two representation, this is something we do
since we are small kids, as well as described by (Borovik [16]), this domain needs further
investigation, and clarifying basic notions. Transition of domains may pay an important
role in transforming knowledge, and changing strategies, creating solutions (Rittle-Johnson
and Siegler [116]), that is why we definitely need to focus on it, because this is strongly
involved in the learning process.

Transition of domain occurs quite early in other form of thinking processes too, like
analogies: (Clement [28]) dealt with the research question: where do spontaneous analo-
gies come from? ”An analogy involves a shift in the problem representation. ”However, it
is a shift of a special kind-this is a horizontal change, and a vertical change is if to move
to a more abstract representation.” Using an analogy is the most creative of these three
strategies in the sense that one is shifting ones attention to a different problem, not just to
an abstract version of the same problem ”features ordinarily assumed fixed in the original
situation are different”.

Does technology support ”cryptomorphism”? (Ainsworth [1]) states that technologies
are also able to support multiple representations, and ”it should be supported to maximise
learning outcomes and for using more than one representation is that this is more likely to
capture a learners interest and in so doing, play an important role in promoting conditions
for effective learning”. In ISAC different representations can be supported in the html con-
tent. Also in educational software (Brown and Burton [19]) transition between domains
were taken into consideration regarding the errors: ”lack of transfer is often referred to as
shallow learning, that occurs in many form of instruction and in many domains.”

Conclusion of the chapter: Mathematics works on the level of the abstraction (object
is present, object known but present, learned imagined object, or there is no simple link
to the world), on the last level. Research on the learning of algebra is still in its infancy
since we have not yet been able to see what the long-term effects of different computer-
supported interventions are, the findings presented in this section should be taken primarily
as indications of areas in algebra where the use of computer has already yielded interesting
results and where ”further research is likely to be even more fruitful” (Kieran [66]): to
build a good educational software, we have to pay attention both to the differences between
arithmetic and algebra and the process of abstraction till it is key in learning, discovery in
science, process (Clancey [27]). According to (Mitchelmore and White [89]) : Abstract
general embody general properties of the real world. Different kind of mathematical mind,
meta-theoretical correlation, concept image and concept(Dreyfus [44]).

However, it is not a question in this thesis how learners develop and conceptualize these
representations, rather the goal is to develop an interactive dialogue between a learner and
software (Ritter et al. [115]).definition.

14

1.4 Fractions
”Either mathematics is too big for the human mind

or the human mind is more than a machine. ”
Kurt Godel

The aim of this sub-chapter is to focus closer to the domain of fractions, the typical
errors occurring during problem solving by this domain, why learners dont like fraction.
Without loosing focus: with the help of these findings we work towards defining the cog-
nitive elements important in the design question for this specific domain. For this domain
of mathematics described in this thesis there was, in principle partly, free choice for all do-
mains of mathematics, but in fact limited to the domains already implemented in the ISAC
prototype. Learning in this domain causes well-researched difficulties (Kieran [66]), and is
most unloved subject in mathematics education among learners.

What are fraction, and why are they so scary? Complex problems of fractions are
fascinating, because they involve many skills and knowledge previously learned: learners
have to be able to carry out (in right time, and order) almost all previously learned mathe-
matical examples and knowledge. Examples in this domain vary from simple to difficult.
For example simplifying the following fraction: 5a

a is rather simple, and simplifying the

following one: 12y
x−5 + 2y

x+3 + 16y
x2−2x−15 is rather difficult, and thus involves also for ex-

ample addition, factorisation of terms.

As fractions are also part of algebra, there are many rules one should take into consid-
eration by solving an example (Associativity, commutativity, distributivity, and there are
several, sometimes even different rules for the operations too, e.g.: nominator and denom-
inator dont behave the same way).

Definition of Fractions:

1. According to Oxford Dictionary (Dictionaries [43]) fractions are: ”a numerical quan-
tity that is not a whole number (e.g. 1/ 2, 0.5), basically they are mathematical ob-
jects, which also represent a relationship between two numbers”.

2. According to (Nunez [100]) the embodied view fractions are number made up of
other numbers, a part of a unity object made by splitting a unit object into n parts.
We can split up to simple fraction 1/n, a complex fraction: n/m. From embodied point
of view we can do some action with these objects. The action for the fractions can be
following: to divide, to bind the parts, to measure, and to do operations. However, the
above represented example which also included addition surely involves also other
concepts.

What can we do with fraction, how do they look like, and what do they represent?
Fractions are especially hard, because their domain summons and requires many different
mathematical skills: as the learners has to be able to understand the difference between
variable, and numbers, to be able to correctly operate on single elements and on whole
fraction, to recognize well known, and previously learned patterns: binomial formats.

Typical operations usually carried out with fractions are the following, and are repre-
sented in the correct way (no errors here!):

Division: a
b : c = a

b·c or a
b : cd = a·d

b·c

Multiplication: a
b · c =

a·c
b or a

b ·
c
d = a·c

b·d

15

Addition or subtraction: a
b +−c =

a+b·c
b or a

b +−
c
d = a·d+c·b

b·d or a
b +−

c
b =

a+−c
b

Extension: a
b = a·c

b·c

Fractions vary the form, e.g. from a mixed form 2 3
5 to 13

5 or 2.6, (see also figure,
where each fraction is the same and represents the same value)

2 3
5 = 2 + 3

5 = 13
5 = 2, 6 = 23

5 + 0 = 2 3+0
5 = 13

5+4−4 =
√
(2 3

5)
2 = 130

50 = 13·4
5·4

Fractions represent, and establish relationship between two numbers, involve multiple
representation:

1. Division 13
5 = 13/5 ,

2. proportion 13:5 = a:b = 26 : 10 ,

3. Linear change δy=13 δx=5 ,

4. Simple value 2,6 , etc.

5. Relation to real world objects: fractions are thought (especially in the beginning):
like a piece of cake, a pizza (as shown in in Fig.5 on p.16. Thus this is a very
common method in teaching fractions, and we can consider this as an embodied
aspect, we have chosen in this thesis to concentrate on higher processes, and assume
that students already have these real-world connections.

Figure 1.1: Fractions Represented as a Piece of Cake.

(Carraher [24]) states: ”the field of fraction still lacks a coherent account of how fractions
fit into learners mathematical understanding, beginning from early childhood and extend-
ing into late adolescence, and how this are linked to representations, schemes, ideas, and
concepts as decimal numbers (e.g.: decimal numbers).” For example: most learner do not
think that 3:4 expresses the fraction 3/4!

If we investigate fractions, we also have to deal with the so called special numbers, as
1 , and 0 . The first represents the whole, the second something which exists, but in the

same time does not exists: empty, nothing, destruction, low. (We should pay attention, that
understanding special numbers is very intuitive (Lakoff and Nunez [79])

Emotional aspects and fractions As mentioned above, fractions are one of the most
”hated” mathematical domains among learners. Generally we can say, the process of learn-
ing mathematics is often bound to emotions like anxiety and frustration (Hembree [59]),
and also reported by (Jennison and Beswick [62]), when learners conduct error, and this
frustration decreases motivation of learning mathematics a lot, ”missing knowledge in a

16

single domain influences overall mathematical skills, and learners lack of competence with
fractions is a major influence on their overall mathematics competence”.
These emotion may arise due to several reasons: because of teachers, parents, teaching
according to (Turner et al. [129]) or learners lack of competence in skills, or simply due
to individual differences, till not everybody is learning mathematical concepts at the same
speed in schools.
How to deal with emotions in a computer based learning environment is out of question of
the current thesis, till they are severe enough, to be mentioned, and to be taken into con-
sideration during the design process. As a benefit, computer software might also decrease
the anxiety bound for example to persons, and provide a platform where learners might
experiment freely with mathematics in their own rhythm, without pressure . However in a
mixed learning environment, where teacher is also present, it would be important to deal
with this question separately.
An other way of overcoming frustration is to gain confidence and filling up the gaps by the
domain of the fractions.

1.5 Mathematical Errors
”I could never have gone far in any science

because on the path of every science
the lion Mathematics lies in wait for you.”

C.S. Lewis

Errors in mathematics, and its domain algebra have been in the center of investigation
quite a long time ago (Buckingham [22]),and were theorized due to several possible factors.
One of an earlier example according to (Young and OShea [140]) subtraction are ”due to the
use of incorrect strategies rather than to the recall of number facts”. This can be interesting
and important for us, because the domain of subtraction can be also found in fractions,
since they involve several domains: subtraction, arithmetic, and variable, and investigating
this question could also answer, what can we do in the case learners conduct an error, and
how to answer in this case.

Our guiding questions of this section are:

1. What causes errors?

2. Are there typical errors, or patterns of errors?

3. Error-patterns in algebra and fractions?

What causes errors? Typical errors are called in the didactics of mathematics miscon-
ceptions, a mistaken idea, a misunderstanding, which notion would suggest from cognitive
science point of view, that we knew what a learner does not understand. This is clearly in
contradiction with the findings out of how mathematical thinking works.
However in the field of mathematics didactics lot of topics deal with misconceptions, it
might be, that these originate from a very natural way of human thinking, and are neces-
sary part of the learning process, as also (Swan [125]) states: ”misconception is not wrong
thinking..., it may in fact be a natural stage of development”. According to the empirical
study of elementary errors from (Payne and Squibb [105]): ”Important insight into the na-
ture of cognitive skills and its acquisition can be gained by examining errors. ”
And we have to take into consideration that trials and errors might also be part of the learn-
ing process. That means, we should leave a free place to try out things, and to make errors

17

during solving the mathematical tasks. However, that might be also other processes in-
volved, not only the process of trial and error. According to (Sloman [123]) ”human are
born with a sophisticated, evolved, acknowledgement about how to learn in a complex three
dimensional world containing more or less complex structures and processes, opportunities
and obstacles, and also other intelligent individuals”. He also argues, that human possess
a biologically useful productive laziness (mathematicians consider themselves very often
”lazy”, and explain why they are looking for an easy, elegant solution, or generalisation)
which reduced or eliminates the need for empirical trial and error, avoiding empirical ex-
periments that could be dangerous or even fatal. However, the mechanism are not infallible,
testing and debugging may be required. Even if errors are natural part of learning process
or not, this last statement also supports the need for allowing making errors.

Errors due to communication Mathematical objects undergo when transmitted between
people and institution. Many errors happen due to communication problems, or are realised
as errors, since understanding what the other (in this case learner) understand in mathemat-
ics is also a social process. Mathematics can be seen as a socially shared and logically
structured conceptual system (Godino [51]). So it might happen that the problems are not
in the heads of the learner, but due to the communicational, ontological problems. Mathe-
matics is transmitted via natural language, and additionally via a very strict mathematical
formal language. And being able to manipulate the mathematical language might take
years, so even if a younger learner would think of a good concept, but would not be able to
communicate it correctly.

Communication in ISAC is limited compared to human conversation. We use text, and
visual inputs, but no voice, or gestures.

Where do these errors originate? Where these errors originate is a really hard question:
according (Brown and VanLehn [20]) ”there is no simple one to one relationship between
the types of errors and the type of faults. One has to look the relationships between un-
derlying faults and the entire collection of errors a child makes on a set of problem”. The
question is complex, because: Even if one has the right idea, one can still miscalculate.
Two issues in contemporary research into the teaching of mathematics are that learners can
sometimes obtain correct answer by the use of principled but incorrect strategies, and their
adaptation of correct but untaught alternative methods. This is also valid vice versa: Also
can get incorrect answer by the use of correct strategies.
There are many possibilities why error occur: E.g.: Not knowing the rules. Due to thinking
of a different thing, different representation, and actually the transition between domains is
not working, due to the process of learning, or simple due to the communication between
teacher and learners. By learning new concepts, learners usually go through a repetitive
process, which contains different stages: first the learner gets familiar with some domain,
notifies certain generalisation, and other stages may also involve, diverting, debugging,
deploying the knowledge. Errors may happen on any of these learning stages.

Do this errors happen randomly? The question is important, because if errors happen
only randomly, and there is no system behind the whole procedure, we should collect thou-
sands of possible errors, and it would make not much sense to focus on errors in the first
place in designing guidance. But according to (Brown and Burton [19]) ”Errors are made
because certain component is missing” and found to be quite pattern like, and depend on
complex factors: procedural knowledge, incorrect strategies, mental representation of vari-
ables, explanations of teachers, learning environment..etc.

Errors in mathematics (we will investigate this question in the next section of these
chapter) are thought to be due to misconceptions ”An essential point would be to help
learners to identify the sources of their misconceptions and their systematic procedural

18

errors. This thesis will not deal with the sources of the misconceptions, rather we will
focus on these pattern like non-random errors which happen during learning process, are
not random, and happen usually and we will talk about ”error-patterns”, and we will use
this notion to describe errors, . error-patterns are no knew concepts (Kim and Kang [67])
collected error-patterns in division and fractions, by elementary learners, and also (Brown
and VanLehn [20], Young and OShea [140]) dealt with the trouble with error-patterns of
children.

1.6 Computer in Education and as Learning Environments
”We must regard classical mathematics as a

combinatorial game played with symbols.”
John Neumann

So as we have seen in above chapters the ideal case would be to understand the thinking
involved in the learning and doing mathematics and to build an adequate software: To
support learning and teaching. Some people argue on the effective of education software,
the usage of any kind of digital, and new media is increasing, and very helpful. The use of
computer software is natural in the daily part of their life for some generations.

However, using computer in education is a developing area. New media may provide
the possibility to change education in a way that fits human cognition better, and focus on
individual aspects. Taking individual aspects into consideration during the teaching pro-
cess is very hard to realise in a classroom from a resource point of view, simply because
the number of teachers is limited. (Balacheff [7]) states that ”Cognitive processes need
certain tools for their adequate execution. Such tools are, for example language, graphical
representations, concepts and prototypic representatives, symbols and symbolic operators,
mental images, and models of material situations. The computer appears able to offer quan-
titative new thinkings tools... Such a system should involve a learner model. This means
that in the course of the teaching and tutoring process the computer tutor constructs a model
of the cognitive structures of the learner from the learners reactions as far as they pertain to
the intended learning process.”

In these thesis these responses should be based on interaction answering the ques-
tions: How should ISAC respond if errors happen?

If we want to plan guidance for ISAC we should investigate generally the question:
Where does learning takes place? Can we see the computer, as a learning environment, or
if we plan to use computer as a tool in the classroom, how can it be used ideally?
According to (Nunez [99]), learning takes place within embedding social context that influ-
ence the whole learning process. Can we see computer also as social context? To see them
as a social context, and not only a passive place, computers should give first (adequate) re-
sponse. We can also see computer environments as ”microwords”. The notion comes from
(Edwards [45]) and ”can be said to embody mathematical or scientific ideas addressed.”

Environment in learning plays a significant role: experiments with children (Taylor
and Schwartz [127]) have shown, that the physical environment can support the develop-
ment of fraction concepts. The above mentioned experiment has also shown, that ”children
who learned by adapting relatively unstructured environment transferred to new materi-
als better than children who learned with ”well-structured environment”. That supports
one one hand the concept, and importance of embodiment in mathematical teaching, on
the other hand it supports, that to design an educational software, we should be relatively
domain independent. Learning environment is also very important because mathematical

19

objects undergo a change when transmitted between people and institution (Godino [51]).

Learning environment also depend on the actual curricula offered in the given coun-
try, or classroom: learning environments, and the ways of teaching mathematics changed
through the years according to (Blair et al. [12]) in the US, ”At the turn of the 20th century,
much of the mathematics instruction for children in the upper elementary grades was rigid,
formalistic, and emphasized drill and rote memorization. In the 1980s and 1990s gave rise
to dramatically different kinds of texts that are increasingly complex, comprehensive, and
cognitively challenging”. Also technologies created a new perspective on learning envi-
ronments, which includes social environment, since teaching and learning situation can be
considered as a whole (Bottino and Chiappini [17]).

ISAC is planned for various environments . On one hand for individual learning, and
also for classroom teaching (even for collaboration), where a teacher is present. As learning
environment we define for ISAC the following: a social broader environment, the teacher
who guides the learners, and also the individual or learner with his/her own cognitive abil-
ities:

1. Social environment:
Mathematics was developed during long centuries, and social interaction played a
key role. Human beings are able to construct mutual understanding through social
interaction. But also an open question, does a child need an environment to come
up with a mathematical knowledge (Sloman [123])? Mathematics has cultural and
historical dimensions, so we might understand social environment. This includes:
Situated learning, community of practices (situated learning, learning skill). In so-
cial learning, there is also the notion of scaffolding that provides support the learner
as they carry out different activity, and it gives advice when the learner does not know
what to do or is confused, guides tours on how to do things, hints when needed. Re-
flecting on the learning is very important in order to look back on their performance
in a all situation, and compare to others. (Fleener [48]) et al argued for the impor-
tance of social groups, learning circles. Computer programs can provide a micro
world of representation, supporting so the idea of embodiment (Edwards [45]).

2. Teacher:
Teacher are also very important part of the social environment - Teacher is impor-
tant because everybody has his/her own conceptual system, that they transform for
the learners (Sloman [123]). Learners are influenced of the teachers external repre-
sentation, in both procedural and conceptual knowledge (Bills [11]). That might be
a reason why some learners might have problems with mathematics. According to
(De Corte [37] et al important is the teacher-learning environment.

3. Individuality:
As we mentioned that mathematics roots in embodied concepts, till everybody thinks
individually, one can have totally different induction about the notion of infinity for
example, or about paradoxes of mathematics: like how can be something at the same
time limited and infinite, however, what are the key features explaining the stability
of mathematical ideas. ”At certain point, each children express their individual-
ity. ” However, intuitiveness is not subjective, but might result from patterns (Nunez
[102]). But we mentioned that letting learners choose their individual strategies helps
them to get better. Software and their individual dialogue systems open the possibil-
ity to individual learning, and to pay attention at the differences. (Koedinger et al.
[70]) supports computer as an environment for exploration of fundamental ideas.
ISAC collects the learner’s steps in problem solving, and this thesis shall use them to
promote learning as described above.

20

Short summary: (Kok [72]) discussed the importance of learning environments designed
on cognitive perspectives, and there is an ongoing change in education. Important is also
to design a learning environment, which is cognitively demanding, and also engaging in
the same time. ”both human cognition and technology have their own weaknesses and
strengths the key to constructing the most efficient systems would be through understanding
the characteristics of human cognition and technology and then integrate their advantages.”
One possibility is to create so called mixed reality, or blended learning environment, what
the teachers can use as support tool at learning and school, and at guiding cognitive.

21

Chapter 2

TP-Based Mathematics Assistants
Introduction to ISAC

”the mathematical sciences particularly exhibit
order, symmetry, and limitation; and these are

the greatest forms of the beautiful.”
Aristotle

This chapter provides the prerequisites for the major part in the thesis, an implementa-
tion of error-patterns in a novel type of mathematics assistants. The implementation con-
cerns a few lines of highly abstract code written in the “Standard Meta Language (SML)”
(Milner et al. [87]) for computer mathematics, four (indeed, only four) rules for the di-
alogue component of ISAC, one of these novel mathematics assistants — and creates a
significant high impact on ISAC’s dialogue guidance.

The previous section already stated some high level requirements on tutoring by soft-
ware in mathematics education, and requirements planned for ISAC. In this section reasons
need to be presented, which make approaches more promising than traditional types of
educational software when fulfilling such requirements.

The significant reason for more promising approaches is a technological advancement:
while up to now the most powerful educational math tutors are based on Computer Algebra
Systems 1, whereas ISAC is based on technology provided by the Computer Theorem Prover
(TP) Isabelle (Nipkow et al. [98]).
ISAC is an experimental system, initiated at Graz University of Technology in 2002

and presently developed at the Institute for Software Technology2, the Institute for Infor-
mation Systems and Computer Media3, as well as at the Research Institute for Symbolic
Computation (RISC)4 at the University of Linz.

Before going into technical details of ISAC the principal advances of TP technology for
educational mathematics assistants are discussed.

1With only two exceptions, (Back [6]) and (Melis and Siekmann [85]).
2http://www.ist.tugraz.at
3http://www.iicm.tugraz.at
4http://www.risc.jku.at

22

2.1 Features of Software Based on Theorem-Proving (TP)
”If only I had the theorems!

Then I should find the proofs easily enough.”
Georg Bernhard Riemann

The discipline of (Computer) Theorem Proving is as old as the discipline of Computer
Algebra. While the latter provides systems indispensable in practice of engineering and
of science (e.g. Maple(Meade [84]) or Mathematica(Wolfram [138]) for decades, TP only
recently comes to the foreground (e.g. Coq(development team [39]) or Isabelle(Nipkow
et al. [98]) with systems indispensable for coping with increasing complexity and depend-
ability of software: in the same way other engineering disciplines evolved to sciences by
strengthening mathematical foundations and methods, software engineering evolves to a
science with TP as fundamental tools.

The ISAC-system does not use Isabelle as is, but uses specific components of Isabelle
and assembles them to a system with novel features, which might be considered constitutive
for a new generation of mathematics assistants (Neuper [94, 96]). Such features are:

1. Check user input automatically, flexibly and reliably: Input establishes a proof sit-
uation (for automated proving) with respect to the logical context provided by TP.
Without TP technology the check for each step required separate code, which can-
not be accomplished for all the variants desirable in problem solving. Thus step-
wise problem solving, the predominant activity in contemporary math classes, is not
covered by contemporary educational software (with two exceptions, (Back [6] and
(Melis and Siekmann [85]) mentioned above).

2. Give explanations on request by learners: Due to the ”LCF-paradigm” (Gordon et al.
[53]) (almost) all mathematics knowledge underlying a TP system is implemented
in predicate calculus (and not in some programming language), i.e. in traditional
mathematical notation. So these sources of knowledge are human readable and thus
are ready for inquiry by learners5. The challenge for development of educational
software is not anymore, to create such knowledge, but just to filter out specific parts
of the knowledge relevant for specific learning situations.

3. Propose a next step if learners get stuck: This feature is a most recent achieve-
ment in combining deductive technologies from TP with computational technologies
from programming languages. Lucas-Interpretation (Neuper [95]) provides so-called
“next-step-guidance”, where a program “knows” an algorithm solving a problem at
hand, and from that algorithm calculates a next step towards the solution of a prob-
lem. The technological challenge is to combine such steps with maintaining the
logical context, which preserves feature no.1 above.

Fig.2.1 represents ISAC‘s reaction on a correct (good) and on a incorrect (bad) entry.
These three features of TP technology give raise for a completely new role of edu-

cational mathematics software: The traditional roles have been previously discussed, the
new role is: being an interactive and transparent model of mathematics itself (and not be-
ing specific tools for particular tasks), reflecting essential features of mathematics such,
that learners can learn by watching the model at work, by interacting with it and obtaining
feed-back from “trial and error” — similar to the kind or learning chess which is featured
by good chess software. TP-based software might be a model of mathematics in the same
way, as chess software might be considered an interactive model of chess. However, the
latter is not “transparent” in the sense of pt.2 above: there is nothing to learn from the
(program) code, which would be relevant for playing chess.

5Isabelle’s knowledge can be reviewed at http://isabelle.in.tum.de/dist/library/HOL/
index.html.

23

http://isabelle.in.tum.de/dist/library/HOL/index.html
http://isabelle.in.tum.de/dist/library/HOL/index.html

Figure 2.1: Reaction on Good and Bad Entry in ISAC

The three features are exploited by ISAC’s services, which provide technological pre-
requisites for implementation of error-patterns in this thesis as follows:

1. Check user input automatically, flexibly and reliably: This service allows to detect
error-patterns within arbitrary steps in problem solving. This service also allows to
check input formulas within the dialogue developed in this thesis. This specific us-
age of the service actually involves only basic mechanisms of TP technology (typed
matching and first order unification).

2. Give explanations on request by learners: This service, derived from the human
readable mathematics knowledge, is not used by the error-patterns as implemented
in this case study. How this feature can be used in further developments, this is
addressed in §5 and §6.

3. Propose a next step if learners get stuck: This service is used to compute the correct
formula in case an error-pattern has been identified. The correct formula then is
presented to the learner with specific gaps to be filled in (see “fill-forms” in §4.5);
respective feedback is again created automatically by the above service no.1.

Fig.2.2 shows several possibilities for interaction with ISAC

Figure 2.2: Dialogue with ISAC

Since TP technology is highly complex, ISAC is designed such that the tasks of “di-
alogue authors” is strictly separated from the tasks of “mathematics knowledge authors”:
the latter are not concerned with dialogues at all, not even with input/output of the system
(Ročnik [118]). On the other side, dialogue authors are concerned with input/output, feed-
back and user guidance only — they only need intuitive understanding of the TP features
above, they are provided a fairly simple interface, which hides the technicalities of TP and
allows to focus on the comprehensive task of dialogue design.

24

2.2 Stepwise Problem-Solving Modelled in Software
”There is no one giant step that does it.

It’s a lot of little steps.”
Peter A. Cohen

As mentioned above, “step-wise problem-solving” can expect specific and novel sup-
port from TP technology — and this kind of activity is predominant in teaching math-
ematics: math classes at high-school, academic courses on applied mathematics in sci-
ence, technology and engineering (STEM)6 exercise “step-wise problem-solving” in order
to demonstrate the usefulness of theory, in order to transfer theoretical insight to practical
problem solving, in order to prepare learners for practice in engineering and science, etc.
This is an example problem from a textbook in structural engineering:

Determine the bending line of a beam of length L, which consists of homoge-
neous material, which is clamped on one side and which is under constant line
load q0; see the Figure below.

Figure 2.3: Balcony Under Load.

Scientific methodology in applied mathematics separates the problem solving process
into these (at least) three phases:

1. Modeling transfers structures from the “real world” to the world of mathematical for-
mulas, develops bodies of formalised knowledge and proves properties of relations
between knowledge items.

In the example above such knowledge items are “beam” or “constant line load”. Re-
lation between such items are described by mathematical theories (or mathematical
theories applied to physical phenomena); an example of such a relation is the theory
of “bending lines”.

“Stepwise” in this phase addresses the method of mathematical proof: a theorem
about relations between knowledge items is established by proof steps, each of which
can be justified with respect to some logical calculus. Such proofs are supported by
TP, theorem provers. The discipline using TP that way is called “Formal Methods”.

2. Specifying relates a problem at hand to a body of formalised knowledge: which ob-
servations about the problem relate to which kind of knowledge, which items are
known in order to solve the problem, what kind of items could be regarded as solu-
tions to the problem, what are their properties ?

In the example above the problem might be the construction of a balcony, which
might be related to the theory of “bending lines”, the known items (input) might be
the function which determines the constant line load q0 and the length of the beam;
the output is another function y(x) which determines the bending line, the properties
of y(x) are described by the postcondition. The result of this phase for the example

6STEM abbreviates science, technology, engineering and mathematics as a world-wide concern of educational
efforts.

25

is a so-called “formal specification” as follows:

input : function q0, length L

precondition : q0 is integrable in x ∧ L > 0

output : function y(x)

postcondition : y(0) = 0 ∧ y′(0) = 0 ∧ V (0) = q0.L ∧ Mb(L) = 0

Tool support in this phase concerns searching theories (see for instance 7), com-
paring the problem at hand with general patterns of problems (see for instance 8)
and assigning methods (see for instance 9) solving the specified problem. ISAC can
provide user guidance, if (a set of) specifications are prepared for the problem to be
exercised.

3. Solving starts from a formal specification for the problem at hand, and constructs a
solution for the problem following an algorithm determined in the previous phase.

“Stepwise” solving means that the construction goes on in steps, similar to a calcu-
lation with paper and pencil, where each step is justified by some theorem(s) found
in the knowledge.

Tool support in this phase requires a formal specification and a mechanised algorithm
solving the problem at hand. And tool support relies on all features and services from
above.

These three phases are non-sequential in two directions: First, the phases are iterated
during problem solving: observations during “solving” (phase 3) might motivate to revisit
“modeling” (phase 1) and revise the theory used, etc. And second the phases come as a
cascade, if a problem is divided into sub-problems. For instance, the above example divides
the problem of finding bending lines into sub-problems, one of which is integration: when
coming to this point in phase 3, the method of integration needs to be selected (phase 2
again), etc. Actually, integration relies on the sub-problem of simplifying fractions — so
this example also might apply the dialogues developed in this thesis.

The choice for “fractions” in the case study within the thesis shifts emphasis to one of
the phases:

1. Modeling is not relevant in the case study, because at the age learners learn to operate
on fractions (years 11 to 15), abstract algebra and term rewriting are considered out
of scope of mental maturity. However ISAC’s knowledge is organised such, that
multimedia add-ons is possible to each item (Griesmayer [57]). For instance, the
theorem a·c

b·c = a
b ∧ c 6= 0 can be accompanied with several kinds of multimedia

presentations on cancellation. Such presentations then can be invoked by dialogue
guidance.

2. Specifying is not relevant in the case study, because learning sequences on fractions
focus the domain of rational numbers (and multivariate terms), neglect naturals, inte-
gers or complex domains within such sequences and thus avoid explicit specification
of the domain for simplification for good reasons. The respective specification is
done automatically by ISAC.

3. Solving is the only phase relevant in the case study.

The studies’ emphasis on phase 3 is in line with current educational practice: Field tests
(Neuper [92, 93], Neuper and Reitinger [97]) showed, that teachers appreciated ISAC’s

7http://www.ist.tugraz.at/projects/isac/www/kbase/thy/index thy.html
8http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index pbl.html
9http://www.ist.tugraz.at/projects/isac/www/kbase/met/index met.html

26

abilities to support stepwise problem solving; however, they found it hard to use ISAC’s
features to let learners explore theories (phase 1) or or let them proceed in trials and errors
with variants of algorithms (phase 2), etc. Concerns of the first two phases are preferably
taught in ex-cathedra style — so the teachers’ (and learners’) emphasis is probably a matter
of teaching (and learning) style.

2.3 The State of ISAC’s Dialogue Component
”One cannot really argue with a mathematical theorem”.

Stephen Hawking

As mentioned above, ISAC is designed such that dialogue authoring is not distracted by
technicalities of the mathematics-engine or details of the mathematics knowledge. The for-
mer technicalities have already sufficiently be covered by §2.2 and §2.3, the latter comprise
algebraic simplification (Goldgruber [52]) and cancellation of multivariate polynomials
(Karnel [63]).

So only ISAC’s dialogue component needs to be considered in more detail. ISAC does
not follow the predominant “model view controller” architecture, but separates the dia-
logue component from the rest of the system (Krempler [73]). The consideration’s scope
is further narrowed by separating dialogue authoring from Java programming (where ISAC
comprises 40.000 lines of Java code; so programming would occupy most resources of
a thesis and neglect the specific challenges of dialogue design). This narrowing follows
from work by (Kienleitner [64] and (Kober [68]), who integrated a rule- engine into ISAC’s
dialogue component.

The goals of this work (Kienleitner and Kober [65, 65]) has been summarised as fol-
lows:

1. ”How can the wealth of research and experience in didactics of mathematics con-
cerning misconceptions made be fruitful for dialogue design ? error-patterns ?”

2. ”Designing dialogues relies on trial and error. As long as there are no experiences
and no models to learn from, dialogue authors will proceed mainly by trial and error.”

3. ”[. . .] establish a data base (DB) structure for retrieving individual performance [. . .]
create a history for analysis by cognitive scientists”. This DB structure can be easily
used for further user modeling, or understanding better the learners behaviour in
ISAC.

The development work in this case study is the first check to which extent the above
goals are realised and ready for practice in dialogue authoring. The rule-engine integrated
into ISAC’s dialogue component is part of a professional expert system (Amador [3]); the
engine is free-ware with professional support, but not open source (while all the other
components of ISAC are open source with liberal licenses).

Below the detailed consideration of ISAC’s dialogue component starts from the users’
(and dialogue authors’) point of view (while the technicalities will be addressed in §4).

Basic services of the dialogue component are atoms prepared for combination within
adaptive user guidance. Prior to the begin of this thesis there was no combination at all,
the thesis provided the first rules for how to combine some of the atoms. Below there is a
complete list of atoms already implemented in ISAC plus one point, Pt.7, which has been
developed due to the suggestions from the side of this thesis. Pt.7 is marked by italic font,
and so are the points immediately enabled by the implementation of Pt.7, error-patterns.

The list of atoms below takes into account, that the case study only concerns the phase
of “solving” as discussed above. This focus allows to omit all the atoms concerned with

27

the other two phases, and it allows to simplify the presentation (for instance, the notion of
“tactics” can be circumvented, because in this phase all tactics concern “rewriting”. Thus
the notion of “(rewrite-)rule” is sufficient, which is quite intuitive).

1. the system proposes a formula as a next step . . .

(a) . . . resulting from application of . . .

i. . . . one rule (the <next> button)
ii. . . . all rules until . . .

A. . . . the final solution is found (the <auto> button)
B. . . . the solution of the current sub-problem is found
C. . . . the next sub-problem begins

(b) . . . with fill-in gaps determined by a fill-form

2. user inputs a formula as a next step,

(a) a complete formula and
the systems gives feed-back: formula is derivable from the context or not

(b) a part in a formula with fill-in gaps and
the systems gives feed-back: formula is derivable from the current rule

3. the system proposes rules for application to the current formula,

(a) one complete rule

(b) a list for selection of one rule, where the list

i. contains applicable rules only
ii. contains a mix of applicable and not applicable rules

(c) a rule with fill-in gaps determined by a fill-form

4. the user inputs a rule for application to the current formula,

(a) a complete rule

(b) a rule selected from a list, where the list

i. contains applicable rules only
ii. contains a mix of applicable and not applicable rules

(c) some or all parts of a rule with fill-in gaps

5. combinations from Pt.1 and Pt.3 for more detailed help, for instance combination of
Pt.3a and Pt.1b in order to help with application of a certain rule, a + b

c = a·c
c + b

c ,
where . . . indicate the fill-in gaps in the formula:

= π + 1 + 1
3 =

a+ b
c =

a·c
c + b

c
= π + 1·...

... + 2
3

6. switch the focus within the lines of a calculation, i.e. determine an arbitrary formula
on the worksheet to be the current formula by placing the cursor respectively.

7. announce the detection of an error-pattern.

28

A first survey on the above points shows that the Pt.1 and Pt.3 are symmetric to Pt.2
and Pt.4: the former see the system active (in proposing a formula or a rule), the latter see
the learner active (by input of a formula or a rule). This symmetry might indicate a kind of
“dialogue between partners on an equal base”.

In case the system is active, such activity is triggered by request of the learner in gen-
eral; exceptions are the first formula in a calculation, which is automatically extracted from
the specification by the system. In case of such a requested activity of the system the
learner is free to continue with whatever she or he wants: delete the formula, look-up some
knowledge, go back to an earlier formula, etc. In case the learner is active, the system’s
feed-back is immediately connected to the respective input.

Some years ago (Krempler and Neuper [74]) gave an early preview to the possibili-
ties for combining the dialogue atoms to dialogue sequences. However, this work did not
anticipate the error-patterns developed within this thesis.

29

Chapter 3

Contributions from Cognitive
Science

”The scientist is not a person who gives the right answers,
he’s one who asks the right questions.”

Claude Levi-Strauss

Cognitive science is relatively new in the field of mathematics education. It is a chal-
lenge to understand the underlying structure of mathematical thinking ([34]), and identify
the elements of human cognition which might be applicable for computer education, and
very specifically to the educational software: ISAC. Cognitive science claims, that math-
ematics is a product of adaptive human activities, grounded and embodied in everyday
cognitive mechanism, involving the process of abstraction, and that mathematical ideas are
quite stable for about hundred years (Nunez [101]). As already mentioned in the introduc-
tory chapter: There is a cognitive gap between algebra and arithmetic: humans, and also
animals, have basic innate arithmetic, the so called number sense (Bobis [13] and (Gelman
and Gallistel [49]). In this chapter we will focus on the aspect of computer supported learn-
ing and cognitive science, and so the following questions arise: What is the object of our
investigation, and how does mathematical learning and teaching work in a computer-based
learning environment. It is important to think of the cognitive processes and involve them
in the design for the dialogue. Thus the dialogue shall adapt to the thinking processes, and
not vice versa, the human would have to adapt to the software. To reach this goal we need
to identify what is important in the learning and teaching process, and how we can answer
such an interdisciplinary questions, involving both computer science and human cognition.
However there might be serious limitations in regards of technology of background knowl-
edge, we have taken a closer look at many of these questions shortly in the introductory
chapter, the guiding goal of this thesis is as follows:

To design the basics of a user-friendly learning environment and a dialogue in ISAC
that aims to be compatible how the human mind actually work

Under user-friendly learning environment we understand also non-stressful learning
environment, where learners can enjoy mathematical activities without experiencing usual
pressure and fear.

Meaning and participants of ”Dialogues”: According to Oxford Dictionary: ”dialogue
can be a discussion between two or more people or groups, especially one directed towards
exploration of a particular subject or resolution of a problem”.(Dictionaries. [42]) Between
which of the following groups do we define the dialogue: learner and tutor, or learner and
other learner (Considering social dynamics, motivation), or learner and real world (which
comprises mathematics among others?)?. In our case the subject is mathematics, and the

30

resolution of a problem is a specific mathematical task in the domain of fractions. This
thesis relates on a dialogue between learner and ISAC, seeing ISAC as a tutor. Second im-
portant aspect would be the dialogue between learner and the subject mathematics, which
we hope, that through a careful design might be realised to some extend. ISAC is designed
to be a learning environment which also contains the tutor (or the teacher) and other peers
of the learner, thus serving as a help for establishing a better dialogue between learner and
teacher, learner and their peers, and secondary between learner and the real world. Such
learning environment is an extremely complex scenario, investigating all aspects would ex-
ceed the scope of this thesis, we still found it important to include these aspects shortly into
the guidelines showing the possibilities for dialogue authors.

Cognitive Aspects relate to general aspects of learning mathematics (e.g.: cognitive
load, working memory), to dialogues in learning mathematics. However, the process of
learning mathematics can be very close to other learning processes, the thesis raises the
questions: what are the special cognitive aspect relating only to learning mathematics (in
our case to fraction), which knowledge, skills are needed to solve an example, and last but
not least which are the key cognitive processes relating to errors in the domain of math-
ematics. The thesis concentrates on the questions of errors, and how to implement these
in the dialogue between learner and ISAC. That means we also have to investigate which
cognitive aspects relate in a broader sense to dialogues, as part of the learning process,
and especially for examples dialogues in learning mathematics, language used in math-
ematics (e.g.: the different meanings, and ontologies used in mathematics can influence
understanding).

However, answering all questions from above goes beyond the scope of this thesis, but
as general guidelines, ISAC’s design aims to address the following issues:

1. Providing mathematical knowledge, supporting individual learning and the concept
of tutoring

2. Supporting stepwise calculation within a selected problem class and providing feed-
back involving the learner into interaction. In the process of teaching mathematics
with a computer software it is very important, that the software gives feedback, re-
flects on errors (Collins [30]), and provides ”answers” for example in form of hints
when needed.

3. Furthermore providing a blended learning environment to engage teachers and broader
social environments.

Learning Models To which learning models do the above mentioned dialogues fit? Nu-
merous theories and learning models exists, which differ from person to person or school
to school (Rogoff et al. [119]): as curriculum-centred, learner-centred (e.g.: Piaget), and
sociocultural models (e.g.: Vyogtskys Zones of Development), which require different role
from both learner (from passive-active-collaborative) and teacher (transmitting curriculum,
creating environment for individual learner, matching both individual and collective curric-
ula to learners need).
At current stage of development there is no strong connection in ISAC to the above men-
tioned theories. Second reason is that ISAC is designed to be a tool for mathematics edu-
cation, thus fitting various models, and being flexible for adapting other learning environ-
ments through dialogue authors. However to state, that the current design is independent
from curriculum would go too far, since the topics of fractions and their usual way of so-
lution are addressed in the curriculum, and also at public schools usually we can find the
curriculum-centred view, so ISAC has to be able to address this.

31

In case we have to choose a theory: the design guidelines are more close to the theory
the social-cultural theory and to scaffolding: that means to allow learner as much as they
can on their own, and intervene and provide assistance when it is needed (Rogoff et al.
[119]). This also requires to understand at which knowledge and skill level the learners
are we can build up (this is open at the current design, so we decided to leave a freedom
of interaction for learners.). in order to ”learners develop new cognitive abilities when a
teacher leads them through a task-oriented interaction” (Rogoff et al. [119]).

Understanding knowledge-level of the learners is also an open question (Godino [51])
in mathematical education, because it involves the already mentioned, terms, expressions,
abstractions, and structure of entities, but a very important question, since the goal to reach
in mathematics education is: that learners understand the subject. The problem of under-
standing is directly linked with problem of knowledge. We have already seen in the previ-
ous chapter, what kind of knowledge does ISAC provide. (Godino [51]) states: ”Teaching
and learning processes should recognize the dialectic duality between the personal and
institutional facets of knowledge and understanding”.

3.1 Solving Examples in the Domain of Fractions
”With my full philosophical rucksack

I can only climb slowly up the mountain of mathematics.”
Ludwig Wittgenstein

In this section we will introduce and solve some examples in the domain of fractions. It
is important to show, what are the typical examples, the learners are ”struggling with”, and
to have the same representation about our domain of investigation(fraction). The appendix
will provide more examples.

In order to be able to simplify a fraction one has to be able to do basic operation on
algebra as well as::

1. Adding/ subtracting
2y + x+ y + 4x+ x = 3y + 6x
−5a− (−7a) = −5a+ 7a = 2a

2. Multiplying Terms:
(3a) ∗ (2b) = 6ab
3x2 ∗ 7x3 = 21x5

(a+ 3) ∗ (2a+ 5) = 2a2 + 5a+ 6a+ 15 = 2a2 + 11a+ 15

3. Factorizing Terms
6x+ 6 = 6(x+ 1)
48x5 − 12x3 = 12x3(x2 − 1) = 12x3(x− 1)(x+ 1)
(3a) ∗ (2b) = 6ab

All these basics are required to multiply, divide, add, subtract fractions, and in the end
be able to solve an example like that:

1. 3a−6b
2a+b ∗

4a+b
9a−18b = 3(a−2b)

2a+b ∗
4a+b

9(a−2b) =
1

2a+b ∗
4a+b
3 = 4a+b

6a+3b

Tip: To solve this task one has to be able to factorize: from: 3a − 6b, to 3(a − 2b),
then: 9a− 18b = 9(a− 2b), which makes possible to cancel with: 3(a− 2b).

32

2. (1+ 1
x)

(x2−1) = (x
x+ 1

x)

(x−1)(x+1) =
x+1
x

(x−1)(x+1) =
(x+1)

x(x−1)(x+1) =
1

x(x−1)

Tip: 1 = x
x and x2 − 1 = (x + 1)(x − 1), this task involves special numbers, and

also the ability to recognize patterns, namely the binomial forms, and also requires
the knowledge of how to divide and add fraction.

3. 4a2−16b2
18ab2 ∗ 6a2

8a+16b = 4a2−16b2
18ab2 ∗ 6a2

8a+16b = 4(a+2b)(a−2b)
18ab2 ∗ 6a2

8(a+2b) = 4(a−2b)
18ab2 ∗

6a2

8 = 2(a−2b)
9b2 ∗ 3a

4 = (a−2b)
3b2 ∗ a2 = (a−2b)a

6b2

Tip: 4a2 − 16b2 = 4(a2 − 4b2) = 4(a + 2b)(a − 2b)) 8a + 16b = 8(a + 2b), also
involves pattern recognition, cancellation, and factorisation.

The following more difficult example (which is not necessary part of the curriculum)
shows that the domain of fractions connects also to other mathematical domains: as equa-
tion solving, number theory..etc. Solving such an example requires also some creativity.
The example is introduces as a text example, The example is taken from (Daniel [32] and
is designed for children aged 13-14.

The task is: Given the equation with x and y natural numbers, determine the least
(positive) value of y such that the equation holds.

1√
y−
√
y2−1

+ 1√
y+
√
y2−1

= x

At first sight that might look terrible. One might have an internal pictures of lot of
numbers, and their last sign. To be able to solve it, one needs to reform it, first creating the
common denominator for the fractions.√

y+
√
y2−1√

y−
√
y2−1·

√
y+
√
y2+1

+

√
y−
√
y2−1√

y+
√
y2−1·

√
y−
√
y2−1

= x

since√
y +

√
y2 − 1 ·

√
y −

√
y2 − 1 =

√
y2 − (y2 − 1) =

√
y2 − y2 + 1) = 1√

y+
√
y2−1

1 +

√
y−
√
y2−1

1 = x√
y +

√
y2 − 1 +

√
y −

√
y2 − 1 = x

Now we still cannot solve it, we should raise the whole equation at 2.

y +
√
y2 − 1 + 2 · 1 + y −

√
y2 − 1 = x2

2 · y + 2 · 1 = x2 so 2 · (y − 1) = x2

Paying attention that x,y are positive natural number, it is sure that we can divide x2

with 2, so we can also divide x with 2. That means, that x is for sure an even number, and
we can make a change of representation in the form of

x = 2k
2 · (y + 1) = 4 · k2
y = 2 · k2 − 1

and we already knew that x = 2k.
This enables to find out the last number of y are: k=1,2,3,4,...etc..

33

3.2 Knowledge Needed in Mathematics
”Found, but not proven.”

Euclides

In the above section we have mentioned the notion of knowledge several time, and
showed some for the domain relevant examples. The question is: what kind of mathemat-
ical knowledge should we provide in ISAC. With HINT pages there is the possibility to
provide knowledge in mathematics, and also there is the possibility in ISAC to look up for
theorems. What other knowledge could be useful to solve a mathematical problem cor-
rectly? Knowledge, the information gained through education plays a crucial role, since
depending on learning models, its definition differs through theories (Rogoff et al. [119]).

We have seen, in order to solve examples in a correct way, one needs to have knowl-
edge about mathematics. There are several kinds of mathematical knowledge (Michene
[86]): knowledge of items and relations(generalization and specialization, general strate-
gics..etc.), meta-knowledge, epistemological, and representational knowledge, the last ”of
knowing how to organize and keep track of what one knows such as through maps and
networks of items and relations, and a good part of understanding mathematics contains of
building up a knowledge base.
The domain of fractions involves both algebra and arithmetic, and we already knew, that
arithmetic and algebra does not exactly require the same background knowledge. (McNeil
and Alibali [83]) states that mathematics is a domain in which early competence with ”basic
skills” (arithmetic) is thought to be necessary for advanced thinking and problem solving,
and learners learn it many years before they are introduced to complex algebra problems,
and because of that learners are well versed in the perceptual patterns of arithmetic prob-
lems. But arithmetic and algebra is not all about mathematics. According to (Michene [86])
a mathematician ”possesses much more knowledge than that which concerns the deductive
aspects of theorems and proofs he has a sense of what to use and when to use it. He has an
intuitive feeling forth subject, how it hangs together, and how it relates to other theories.”
If mathematical knowledge is so many sided and layered, what kind of special knowledge
do we need for algebra?

Individual knowledge Individual differences are very well present in mathematics: Ac-
cording to (McNeil and Alibali [83]) this differences depend on perceptual patterns indi-
viduals had in the past problem-solving experience, on their strategies (supported also by
(Fazio and Siegler [47])).

Knowledge about real and abstract world Mathematics contains abstract symbols which
however are abstract representations distanced from any physical references, but according
to (Koedinger et al. [70]) there is grounding to real life in abstract symbols. (Mitchelmore
and White [89]) distinguishes between levels on abstraction in mathematics and in the pro-
cess of learning mathematics: ”The term abstraction has different meanings in relation to
mathematics and the learning of mathematics, and he distinguished between empirical ab-
straction, which play a key role in the formation of the fundamental mathematical ideas,
and he means mathematical objects needs to be linked to real world objects. (Mitchelmore
and White [89]) states that mathematical abstraction is firstly based on empirical concepts,
and first ”children have to learn about the relationships between the empirical concepts”,
and first they have to learn about this, which is very close to the embodied concepts. This
is also supported by (Koedinger et al. [70]) who ”demonstrated performance benefits of
grounded representations over abstract representationslearners were better at solving sim-
ple real life problems than the analogous equations, and they hypothesize that grounded
representations are more effective than abstract representations for simpler problems like
those typically encountered early in learning”. This process can be also called emergent

34

modelling (Strom et al. [124]).
(Koedinger et al. [70]) speaks about external abstract representation (written on a paper,
and ”leave out any direct indication of the physical objects and events they refer to”), and
internal mental representation , and grounded representation, ”that are more concrete and
specific, in the sense that they refer to physical objects and everyday events,” and he called
real-world problem situations as ”story problems”, which because they refer to familiar
objects and also ”Besides being more familiar, grounded representations tend to be more
reliable, in the sense that learners are less likely to make errors and more likely to detect
and correct them when they are made.” However even professional mathematician use em-
pirical concepts as an aid to intuition (Boero et al. [14], Devlin [40], Borovik [16]), later in
the learning process these empirical concepts are not explicitly present, and the learners get
the confidence to operate only on abstract symbols. We will also introduce in a guided ex-
ample this two levels of abstraction in ISAC, because of course operating on abstract objects
in mathematics on complex problems has its advantages: called ”symbolic advantage” by
(Koedinger et al. [70]). After a time compared to an analogous real-life problem, abstract
representation are more effective for more complex problems: ”Abstract representations
may be more error prone than grounded. Working with abstract representations can be fast
and efficient because their concise form allows for quick reading, manipulating, and writ-
ing, because they need less working memory than grounded representation.”

But on the other side there is strong evidence that many learner ”difficulties in learn-
ing mathematics can be traced to the fact that, when they learned about an abstract-apart
mathematical object, they made no link to the corresponding abstract-general concept”
(Mitchelmore and White [88]). Some ideas depend on other abstract concepts, some seem
not to have any counterpart in normal experience. In order to have this abstract concepts
you need to have a specific amount of knowledge also implemented in ISAC. Referring
to the individual aspects of learning mathematics: everybody needs to establish their own
connection of basic objects to real world, in order to successfully manipulate mathematical
symbols to learn to operate within an abstract system, which as becoming more and more
complex, gets more and more ”abstract”, having less and less connection to real world. In
this system: new mathematical objects are constructed by ” the establishment of connec-
tions, such as inventing a mathematical generalization, proof, or a new strategy of solving
a problem ”.

But besides taking into consideration the need for connecting mathematical concepts to
real world problems: do we know enough about the process of abstraction in order to sup-
port this important process in the computer software? According to (Koedinger et al. [70]),
if we would know more of the process of abstraction, than in some learning environment
we could know when to present empirical/representations things for example before or after
formal abstract exercises. This is supported by to (Boero et al. [14]) ”we are still far from
a comprehensive theoretical answer to the challenge of mathematical abstraction in math-
ematics education clear response to this challenge would be of great value to researchers
and teachers alike.”

Knowledge about rules and processes If one wants to solve mathematical examples:one
needs to know which rule to applies, and when, or when is a rule not applicable. For
example: 5 + 6 = 11, but 5

4 + 6
3 isnot

11
7 . Besides rules, processes, procedures, and skills

are also important: based also on the empirical study of with more than 20.000 samples:
(Brown and Burton [19]) concluded that learners are ”remarkably competent procedure
followers, but that they often follow the wrong procedures”, which can be the source of
errors.

Knowledge from explaining It is important to involve learners in the learning process as
much as possible, and guide them (According to (Strom et al. [124]) learners need also to

35

participate in argument). (Vincent et al. [132]) supports, that one should let learner think,
because self-explanations are a very effective meta-cognitive strategies to use in a cognitive
tutor in a classroom environment that supports guided learning by doing. Self-speech: ”Is
the foundation of all higher cognitive powers”(Ben-Zeev [10]). (Williams and Lombrozo
[137]) states that explaining plays a key role in learning and generalization: ”When learners
provide explanations, they learn more effectively and explaining guides learners to interpret
what they are learning in terms of unifying patterns or regularities” (Renkl [114]).

Limits of knowledge and the cognitive load Solving a mathematical example success-
fully might also stop on limits (Sweller [126]): ”The cognitive load imposed on a person
using a complex problem solving strategy such as means-ends analysis may be an even
more important factor in interfering with learning during problem solving.” In easier cases
the learners simply forgot the rules, and with working one/two times with ISAC, working on
their own, they can refresh it, but the program should also provide a basis of understanding
mathematical concepts.

In our case we dont involve in ISAC learners on a verbal level, but give the possibility
to look up every necessary information on their own, and with the hits, we dont tell the
solutions so easily. Self-explanation is a very successful method but hard to implement,
thus we will be focus on, how to make an computer guidance, and a paper like solving
method. However, It would be impossible at current stage of ISAC to investigate all above
mentioned knowledge levels, and to build all into a computer software.

3.3 Systems Used in Mathematics Education
”Life is good for only two things,

discovering mathematics and teaching mathematics”
Simon Poisson

How do other computer software deal with the above defined challenges? This section
will introduce some examples on computer software designed, developed for mathematics
education, and be shortly compared with ISAC

Buggy System The first computer-based coach (and maybe to ISAC the most close re-
garding its error diagnosis capacities) was the Buggy System (Brown and Burton [19]) for
diagnosing procedural errors in elementary mathematics. In some twenty years ago, there
were much more systems that tried to work with errors in mathematics of learners.
(Brown and Burton [19]) created a ”diagnostic modelling system for automatically syn-
thesizing a deep-structure model of a learner’s misconceptions or bugs in his basic math-
ematical skills provides a mechanism for explaining why a learner is making a mistake as
opposed to simply identifying the mistake with a procedural network”. The system worked
on the domain of arithmetic and subtraction, where they developed a ”computer-based tu-
toring/gaming system developed to teach learners and learner teachers how to diagnose
bugs strategically as well as how to provide a better understanding of the underlying struc-
ture of arithmetic skills”.
Regarding mathematical knowledge (Brown and Burton [19]) stated that the correct model
of an educational software must contain all of the knowledge that can possibly be misun-
derstood by the learner or else some learner, they tried to realise in Buggy.
The goals of Buggy System is very different to ISAC system. The system ISAC does not try
to explain why learners does a certain error. Another difference is, that Buggy did not deal
with algebraic problems because that would have needed much more rules (Brown and Bur-
ton [19]), however gave a possible direction in building such system with analysing what
skills does one need in algebra: ”These include not only the generally recognized rules
of algebra, but also such normally implicit skills as the reading of formulas, the parsing

36

of expressions, and the determination of which rules to apply next. This shows, that such
education systems can also be used for investigation research question.

Wiris Wiris is a random learning with Moodle used in mathematics curriculum. With
Moodle they created random learning questions.
Wiris is used in calculus, algebra, and geometry using quizzes and creates multiple choice
questions, but doesnt have tutoring or guidance (Mora et al. [90]).

Falcon Falcon is a CAS (Computer Algebra System) system used in mathematics cur-
riculum by architect learners. CAS deliver solutions without explaining intermediate steps,
and are used usually in higher education (Falcon [46]).

T-Algebra T-algebra system (Prank et al. [106]) is on the educational software side a
very good example, providing ”interactive learning environment for exercises in four areas
of school algebra calculation of the values of numerical expressions; operations with frac-
tions; solving of linear equations, inequalities and linear equation systems; operations with
monomials and polynomials.” T-algebra is also a stepwise solving system (as ISAC), with
more than 50 task types (however in ISAC the type of tasks are not limited). The learners
can select operations, sub expression, and the system gives feedback and hints. This is a
system with error diagnostics recording solution process and mistakes.

Early Algebra Problem Solving (Koedinger and Maclaren [69]) developed in 2002 the
so called Early Algebra Problem Solving (EAPS) that contains comprehension processes,
represented as ACT-R production rules and predicts learner error-patterns and frequencies
in the domain of equation solving based on the idea, that verbal skills of the learners are
better than their comprehend skills on equations.

Automath, Macsyma Automath (Bruijn [21]), and Macsyma (Moses [91]) are other
older systems on both education and on mathematics theorem proven site. Automath in-
cluded automated proof checker, with verifying correctness of mathematical theories. The
reason Automath did not became successful, that it was not widely publicized. Macsyma
is a computer algebra system developed at MIT as part of Project MAC. Macsyma was the
first comprehensive symbolic mathematics system and one of the earliest knowledge based
systems.

Cognitive Architectures, Cognitive Tutors On cognitive science sides, ACT-R model
was often adopted for cognitive tutors, in the educational software e.g.: as of (Koedinger
et al. [70]) from Pittsburg Science of Learning Center. A cognitive tutor is an intelligent
tutoring system which develops a cognitive model of a learner as he or she interacts with
the program, providing problems and individualized instruction based on this model. Some
of the most successful applications, like the Cognitive Tutor for Mathematics, are used in
thousands of schools across the United States. Some Cognitive Tutors are scenario and
mathematical domain related. However, these systems come from instructions, with trying
to guess, the difficulties the learner has with. Compared to this system if ISAC find an error
it is not only a guess, because it is a more find-grading, we can consider ISAC as a bottom-
up design, and we can look at cognitive tutors as top-down design. Cognitive Tutors are
the following:

1. Tutors like (Anderson [4], Melis and Siekmann [85]) implement powerful genera-
tion of adaptive user-guidance in several aspects, in particular in their reaction to
erroneous input during stepwise calculation. The power of this kind of tutors results
from their conception which addresses modelling mental processes — which, how-
ever, causes multiple efforts, when dealing with basic errors recurring in advanced

37

procedures; the respective software structure does not reflect the systematic built-up
of mathematics.

2. Also, tutors based on the concepts of Computer Algebra like (Beeson [9], Prank et al.
[106]) very efficiently create user-guidance in stepwise calculation. However, this
kind of systems lack logical foundations to combine several procedures of Computer
Algebra. The incapability in combining several procedures carries over to error-
handling in more complex mathematics problems, for instance in advanced problems
in applied mathematics.

3. Additional to the features of these kinds of tutors, the general technology introduced
in §2 is able to model the systematic build-up of mathematics and re-uses elementary
procedures for implementing advanced procedures. So, for instance, a program for
tutoring integral transformations (Ročnik [118]) re-uses the procedure for simplifi-
cation of fractions, and thus makes all the machinery dealing with errors on fractions
available also within the advanced topic.

3.4 Tutoring
”I am always ready to learn,

but I do not always like being taught.”
Sir Winston Churchill

The challenge for cognitive science is to understand the underlying structure of mathe-
matical thinking, and identify also the elements applicable for computer education.

In previous chapter we dealt with the questions like: knowledge needed in mathematics
in the domain of fractions. This chapter introduced the importance of error-patterns, and ar-
gues, that if a computer could support the process of error detection, and correction it would
make the work of a teacher easier, and point out the importance of individual tutoring. Ac-
cording to (Payne and Squibb [105]): ”achieving ”cognitive diagnosis” of learners error
may be an important step towards meaningful individualized tutoring” we focus on identi-
fying error patterns necessary to be detected, and corresponding hints to support learners.
However in adaptive user guidance not only detection of errors is important, but also the
balanced individual feedback. “Balanced” means to give that amount of information learn-
ers need to accomplish a current challenge, and not more — accomplishment motivates to
tackle the next step in the course of learning by doing. Thus we will correspond this chapter
to tutoring, and whether cognitive architecture is needed in ISAC.

Definition for Cognitive Tutoring

According to (Walker [134]): ”A cognitive tutor is a type of intelligent tutor that com-
pares learner actions during problem solving to a model of correct problem solving steps
and provides context-sensitive hints, error feedback, and individualized problem selection.”

According to (Wenger [136]) Cognitive Tutor a kind of intelligent tutoring system, to pro-
vide support for guided learning by doing.

Why is tutoring effective?

The ”one to one” human tutoring seems to be much more effective over any other
teaching method, even compared to traditional classroom teaching. Tutoring was found
even more effective than collaborating, and single learning (Collins [30]) about Cognitive
Apprenticeship). The question is why is tutoring so effective, and what are its limits, what

38

are the aspects from single learning and collaborating which are worth to take into consid-
eration or even implement in ISAC environment to gain benefit?
(Chi et al. [26]) seek why human tutoring is so effective, and states, that learning from
observing: from actions or behaviour is a very old method of learning, also the one the
job apprenticeship learn which is also called imitative learning and tutoring also involves
active, constructive interaction. Also in the case learners dont see the underlying mathe-
matics watching at the teachers explanations helps enorm (That is one reason, that we wont
completely eliminate during the ”dialogue” the Auto button from ISAC). Also Vygothsky
believed that the ideal learning relationship was that of an apprentice under the tutelage
of an expert, and the guided learn provides individualised support for guided learning by
doing.
According to (Chi et al. [26]), there are three main hypothesis why tutoring is so important:

1. Tutoring contains pedagogical benefits as: explaining, scaffolding, giving feedback,
motivating (ISAC we will concentrate on explaining, giving feedback). The content of
tutoring contains the strategic knowledge,methods,reflection, exploration, sequenc-
ing: as increasing complexity, diversity.

2. Tutor does typically control lead and dominate the tutoring conversation.

3. However, different learners need different level of collaboration, and type of feed-
back (that means for example, good learners need less feedback, poor learners re-
quire more help, because conduct do probably more errors), tutors are very adaptive
to learners and can choose appropriate moves, and know when to interact (This last,
is definitely the challenging part in ISAC).

4. According to (Brown and Burton [19]) ”One of the greatest talents of tutors is their
ability to synthesize an accurate ”picture,” or model, of a learner’s misconceptions
from the meagre evidence inherent in his errors.”

Can tutoring fail? Results of tutoring depend also on the teacher. ”If a tutor cannot
accurately access a tutees misunderstanding from a learners perspective, then he cannot
be adaptive from this learner-model perspective.” So tutoring is only effective if the tutor
is very good (Chi et al. [26]). The same is valid for classroom learning/teaching (Bills [11]).

Unfortunately,because its very small teacher to learner ratio schooling replaces appren-
ticeship like learning. In the future computer based learning environments provide each
learner an apprenticeship-like experience. With tutoring we can also focus on cognitive
skills. This is the same as the so called Socratic method, where learners have personal con-
tact, and more attention as it is possible in the current class-education. As computer-based
learning environments become more pervasive, there is likely to be continued development
of new ways to embody these principles in design. The benefit of using software in educa-
tion is, that people have individual strategies in solving mathematical problems, and also
individual ways of learning, also taking into consideration different learning and thinking
types. Since we dont know how does abstraction in mathematics work, in the design of the
software guiding is an applicable way (Attard and Northcote [5]).
Other need would be to use the cognitive tutor collaborate (Walker [134]). He states, that
it is ”likely that learners would show further learning gains if they were able to use the
tutors collaboratively, and unfortunately these collaborative tools do not occur often in
classrooms”. We have also thought for the same reasons, that in the learning scenario, ISAC
should be designed to be able to do collaborative work, and satisfy a joint way of learning
together, under supervision or learning alone.

Cognitive Tutor and Feedback In the dialogue design of ISAC we would like to focus on
error detection and feedback, and we would like to investigate how the feedback in tutoring

39

could looks like.
According (Mathan et al. [82]), learners need feedback in order to develop cognitive skills,
as well as error detection to provide adequate feedback. It is also important to provide
ready solutions, but to have the quittance, and an external feedback. ”Further we take the
point of view that the system must provide assistance in the form of feedback on learners
explanations and hints in how to explain.”
Feedback has also the role of helping by the diagnosis of global misunderstanding (Mathan
et al. [82]), and the importance of shave into the learners both the correct procedure and
pointing out the incorrect steps.

Need for a Cognitive Architecture? However, this is not in the scope of this thesis, and
currently there is no cognitive architecture implemented into the system, ISAC could benefit
from the use of a Cognitive Architecture, and this need further investigation.

3.4.1 Feedback and Hints
”Do not train children to learning by force and harshness,

but direct them to it by what amuses their minds.”
Plato

In feedback we should also take the following into consideration:

1. Mathematics is directly connected to the language processing (Devlin [40]). Not only
with the written, but also the spoken phrases, visual signs, gestures (Nunez [101]).
This is involved with representing, analysing, and generalizing patterns, using tables,
graphs, words, and symbolic rules relating and comparing different representation,

2. According to (Nunez [101]) we should demystifying proof definitions, formulas,
underlying human ideas, because mathematics is created by human, so there are
more ways of proofed, formulas are part of language, and can be part of culture.

3. Algebra contains of patterns, patterns recognition, mirroring reflection, order and
symmetry, grouping, iteration, linearity, symmetry, transition (Dreyfus [44]).

4. Abstraction process is very important along multiple representation: generalization,
operations. (Borovik [16]). (Zhang [141]) states: comparing, combining representa-
tions is also very important, since children are better if they allowed to choose their
strategies (Graber et al. [54]).

(Mathan et al. [82]) states: traditional intelligent tutoring systems provided feedback on
the expert model which means a set of production rules, and the goal is to have an error free
performance. On the other side cognitive modelling allows making errors, and provides a
guidance. ISAC lies somewhere in-between with its underlying new technological solution.
That means that there is a rule model, we havent had implemented a cognitive model (yet).
Still the system is able to detect errors, allows making errors, without provide ready so-
lutions, ”forces” the learner to think on his/her own, because according to (Mathan et al.
[82]) immediate feedback may prevent the development of important skills and cognitive
processes.
Hints are important to help learners to proceed, when they cannot rely on other feedback.

How, and when should a system answer? According (Sleeman et al. [122])”Compare
different styles of error-based remediation (Swan [125]) found that conflict approach (point-
ing out errors made by learner and demonstration their consequences) was more effective
than a simple reteaching-some found no different, and it was a study with human instruc-
tor” ISAC should be able to point out errors, and provide feedback on them.

40

(Laborde et al. [76]) states, that technology can offer an opportunity for new ways of
giving feedback. ISAC’ design is ready to support that human cognitive system is fallible
and to acknowledge that trials and errors are natural part of the learning process (Sloman
[123]): error-patterns etc. could be introduced to ISAC in a straightforward manner, because
general and powerful TP-based services are available in ISAC’s mathematics engine.

3.5 Guidelines from Cognitive Aspects for the Develop-
ment of Dialogue System

”In mathematics you don’t understand things.
You just get used to them.”

Johann von Neumann

During the stage of the dialogue system development, we have to take into considera-
tion also how people interact with information technology.
General question is whether information technology changes the way of thinking of not,
because if yes, it should be taken into consideration, that an interaction with a computer
triggers different cognitive processes as would be for example by a simple task solving on
a traditional paper. One benefit from computer is the off-loading processes, ”leading to
embowering higher ode thinking processes” (Barzilai and Zohar [8]). (Lajoie [77]) states:
there are four types of cognitive tools: that support cognitive and meta-cognitive processes,
tools that share the cognitive load by providing support for lower level cognitive skills,
tools that engage learners in cognitive activities that would be out of their reach, tools to
generate and test hypothesis in the context of problem solving.

(Barzilai and Zohar [8]) conducted an interview with twenty-four academic researches
if information technology changed the human way of thinking or not. Part of the results
were, ”that information technology amplified existing thinking strategies without their na-
ture, or be able to create connections between previous unconnected pieces of data” -the
last would be relevant to the current thesis, because ISAC‘s goal could be: evaluation of
information, validation of models.

From (Lajoie [77]) we can take the following: supporting to decrease cognitive load,
which might be high in mathematics, support cognitive and meta-cognitive processes, and
engage the learners. Technology also might help to compare existing models, validate
ideas, see a global picture. It is also challenging to design ISAC to be at the same time
rewarding, and at the same challenging.

With educational software we can support the following:

1. Support classroom teaching as well as individual learning. Some features would be
hard to realize in the current software, but in this thesis we can provide a basis to
identify: where ISAC can support teacher during a class work, based on a one-to-one
tutoring and adopting to the learners need.

2. Language: Support both visual language (Pictures, patterns), written language. (On
interesting remark: Mathematicians do not use language to think about mathematics
(Hadamard [58]). However, gestures and spoken are not part of the current design:
implementing gestures (diagrams, pictures connected to gestures) involved in one
mathematical concepts could be a possible way

3. We choose to guide in ISAC, and a teacher can provide a guidance without completely
understanding where errors originate from, and how mathematical thinking work.
Computer environments are also an ideal tool to sport curricular implementing this
line of though (Dreyfus [44]).

41

In ideal case ISAC should react on an error with the following:

1. Know if it is only bad counted, or a process/thinking is bad. Most of the times,
learners dont have misconceptions, but learn a rule, and over apply it. People are
born with a good number sense, human dont tend to loose it, but generally it is hard
to connect numbers with abstract symbols.

2. Show patterns, next step, half of the next step, hints, rules, good solution

3. Encourage to make mistakes and count the bad example till the end, let make repe-
titions in basics till the learner does it correctly, tell how often a error happens. These
errors are necessary to see sometimes where a rule is valid,and where not: Search for
errors, count something till the end, even if there is a error, compare good, and bad
solution, and look for the why.

The following table shows a comparison between human teacher and possibilities of
ISAC from the above mentioned perspectives.

Human Teacher Computer
Show a good solution, or give a hint Hints, Fill-Form, Auto, Next
Show strategy Show tactics/strategy
Show a rule Show rule
Show differences/parallelism Giving Hints
Knew what is the error (miscalculating or error) Hints, Fill-Form error-pattern
Let the learner guide to find the error Dialogue Modes, Fill-Form
Show special cases (count with concrete numbers) Giving Hints (Future)
Compare good/bad solution Future Implementation
Give new easier/similar example/repeat Future Implementation
Let the learner count even if it is wrong Future Implementation
Change representations, Make real world example Future Implementation
Gestures, react on emotion, frustration..etc. Future Implementation

Table 3.1: Comparing Teacher with Computer and ISAC

Some of the above described belong to the Chapter: ”Proposal for Extending ISAC”,
because at current stage of development some features are not possible to be implement.
Analysing the theoretical background: we established the following broader guidelines for
ISAC (This section summarises the previous ones by raising some questions this thesis is
particularly interested in. These questions are already exemplified by the selection of a
topic for realisation in ISAC):

Guidelines for ISAC:

1. Supporting individual learning with different knowledge level, maybe for some an-
swers, only some keywords.
. . . for all steps in calculations within a selected problem class.

2. Supporting individual way of thinking with multiple strategies (Question is how)
. . . by accepting all correct answers to the steps in this problem class.

3. Supporting that human cognitive system is fallible (responding at error-patterns defined-
maybe also two group of error-patterns: one for the error caused by not know-
ing/remembering the rules, the second due to thinking on wrong concepts)
. . . with reaction on errors.

42

4. Taking into consideration, that mathematics is human made, developed through cen-
turies (maybe putting sometimes a small story how the thing developed)
. . . so we are free to define 1

0 = 0, for instance. And then the system has to demon-
strate the consequences by some illustrative examples.

5. Trying to support the way how humans learn:

(a) Patterns, repetitions, analogies, connection to different concepts and aspects.
. . . error-patterns deserve in-depth investigation and generalisation.

(b) Social aspect of learning: trying to support the own thinking, and not influenc-
ing too much from a teachers own representation. And the system as guiding.
. . . learning scenarios could realise these aspects.

Scanning the various aspects and challenges in mathematics learning from the side of
cognitive science as mentioned above, and scanning the potential of “next-step-guidance”
from the side of Computer Mathematics, we identified the following issue as particularly
promising from both sides:

Introduction of integration in a calculus course, for instance, captures all attention for
advanced concepts and procedures like limit and infinitesimal quantities; however, inte-
gration builds upon arithmetic and algebra like addition of fractions, for instance — so
frustration might be caused, if errors from the basic level, e.g. in adding fractions, recur on
the current level of integration and inhibit success in learning (frustration for both, teachers
and learners, because individual tutoring is limited in classes).

As mentioned above, lessons cannot easily be structured alongside errors, errors occur
individually for each learner from a large, but finite set of error-patterns as mentioned
above, while a teacher hardly can satisfy the individual requests. So the following goal has
been established for the thesis ([35]):

Extend the general machinery of “next-step-guidance”
Generalise automated generation of user-guidance

with concurrent detection of errors
recurring during systematic build-up of mathematics. In all math topics and learning

scenarios to avoid frustration by basic errors in learning advanced procedures.

Automated generation of user-guidance is successfully accomplished in several tutoring
systems, in particular for tutoring symbolic computation of fractions

3.6 Selection of Examples for the Thesis
”I’m a mathematical optimist:

I deal only with positive integers.”
Tendai Chitewere

For concurrent detection of errors in ISAC we have to answer the questions if there are
typical errors, patterns of errors, are there any models for these, and what are special errors
for algebra, and fractions taking cognitive aspects also into consideration.

Are there typical errors, or patterns of errors? This question is important, because
if there are no typical patterns, and all errors are random without common features, us-
ing error-patterns would be not the optimal choice for ISAC. In mathematics patterns are
extremely important (Vogel [133]), and these connect not only to mathematical domains,
but also to everyday experience patterns are increasingly important analysing; One could
even go so far as to say that identifying and describing patterns is elementary for math-
ematics. Practising good interacting with patterns supports not only the active learning
of mathematics but also a deeper understanding of the world in general. Patterns can be

43

explored, identified, extended, reproduced, compared, varied, represented, described and
created.” The thesis tries to make benefit from this understanding. ”There are also pat-
terns that teachers can find in analysing the errors learners make during their calculations
(error-patterns) as well as patterns that are inherent to mathematical problems.

It might seem, that mathematical errors happen randomly, but (VanLehn et al. [131])
argues that ”The realization that errors that appear ”random” are often the surface man-
ifestations of a systematic underlying bug is a major conceptual breakthrough for many
learner teachers.” and in their error detecting system: ”Buggy”, and later called ”Debuggy”
analysed thousands of examples, and constructed a catalogue of systematic errors for place-
value subtraction (This would be also a relevant application for ISAC). Buggy could detect
regular patterns of errors ”The diagnostician’s job is to discover exactly what is the un-
derlying misconception”. They stated: ”A childs errors are said to be systematic if there
exists a procedure that produces his erroneous answers, which was found in nearly all case
of them”. And they called these precisely defined ”erroneous variations of a procedures as
bugs”. Furthermore they divided between random and systematic errors, and constructed
the repair theory, which said, if a learner had unsuccessfully applied a procedure to a given
problem, he will attempt a repair, and they also states that the theory has domain indepen-
dence, but was not applied to other domains.

Of course the question is if it is possible to make patterns, we could use in the ISAC
program, what how consistent are these errors by learners, how it is likely to make that
error on its other occasion? Because if they happen regularly, and are stable, we can help
the learners to solve the problem. According to (Brown and VanLehn [20]) two third of the
patterns are identifiably consistent patterns of behaviour, and maybe they have hierarchic
relation too: error-patterns are quite stable errors.

Small conclusion: In this thesis the errors are represented in form of a pattern, sup-
ported by (Brown and VanLehn [20]) in their subtraction analysis, which states: that ”errors
are quite clear patterns”. The above mentioned example dealt mostly with subtraction, now
we will investigate which error-patterns are common in the domain of algebra and fraction.

3.6.1 Models of Errors and Towards of Computerization?
”Real mathematics must be justified as art

if it can be justified at all.”
G.H. Hardy

Modelling errors? The causes of errors are not absolutely clear yet, especially from
cognitive science point of view, and the question for us is whether we need model for mis-
conceptions in order to teach learners with the computer? According to (Brown and Burton
[19]) ”a detailed model of a learner’s knowledge, including his misconceptions, is a pre-
requisite to successful re-mediation”. Also according to (Balacheff [7]) ”All the predefines
chapters make it clear that, beyond merely observing learners errors while they performed
some mathematical task-that is to say considering errors in facts that we can count and
classify,- we need to propose explanations of their origins.” Before planning the system,
and the errors, at least we have to take a look on their possible origin. For example as we
mentioned before the importance of multiple representation, many learners struggle with
these feature of fractions (Bills [11]). Usually children do a lot of errors in using ”algebraic
motion”. From educational point of view to understand what is missing, we have to focus
more on this algebraic thinking. It is very important is to identify exactly the variations
of internal structure of mathematics that generate the misconceptions (Lakoff and Nunez
[79]).

44

According to (Brown and Burton [19] ”children make errors because they have faulty
versions of certain components and skills. Errors are made because certain component is
missing, and we should examine their relationship to the correct one”. (We would like to
make the readers attention for this sentence, because later in the design we will see it again.)
Models can also provide some problems. (Brown and Burton [19]) faced the following
problems: It was often difficult to infer a learners bug from his answers, also combinations
of primitive bugs would not be detected, or random mistakes. ”Buggy produces models
that behave functionally as the..., these models are not very convincing as psephological
models” (Young and OShea [140].

However, the originating of misconceptions or errors depends on a lot of factor (individ-
ual, social, cognitive factors), like how the teacher explains the task (Classrooms activity in
the early year focus on mathematical product rather than to mathematical processes! This
can be also a reason, that it would be much better for some skills to be developed in the ear-
lier years, especially in the domain of algebra), what kind of ”inexistent” rules the learner
creates, due to processes which cognitively work, depending also on previous knowledge
and other domains, problem solving strategies. Usually introducing realistic examples, the
number of mistakes can be decreased
Generally in mathematics according to (Brown and Burton [19], VanLehn [130]) children
make errors because the task contains something they have never learned, forgot, or, miss
some skills, or, learned something else, or, have representation problems.

It is still an open question, whether we will be able to design a system which can detect,
and originate the cause of errors regarding the focus on: what the learner is thinking.

Production System model and Repair theory There are several models of errors exist-
ing on the Production system models (Young and OShea [140]), which contains a collection
of rules mixtures of different strategies. Other theory is the so called repair theory: ”a situa-
tion which the core procedure is unable to proceed, and deleting the individual rules” Child
might switch between a number of different bugs even within the course by a simple script.
(Brown and Burton [19], VanLehn et al. [131]) deleted steps from procedure (Brown and
Burton [19]) called ”bug migration” with the same type of task, the learner may display
different bugs both during the same test-period and between different tests. ”learners store
the path, and merely uses it with the new task. Error detection can be also seen as the notion
of debugging: which means also to identify the but, and to repair the bug.

Diagnostic Model (Brown and Burton [19]) distinguished between procedural knowl-
edge and skills, and intended to recognize both with the software. ”We introduce the term
diagnostic model that mean a representation of a learner’s procedural knowledge or skill
that depicts his internalization of a skill as a variant of a correct version of that skill.The
breakdown of the skill into shared sub skills can also account for the recurrence of similar
errors in different skills.” They build a diagnostic model.

Cognitive Tutors, Cognitive Architecture, Cognitive Theory :
Cognitive Tutors (As mentioned in previous chapter) are grounded in the ACT-R theory
of cognition and learning. (Payne and Squibb [105]) states: ”Central claim is that many
errors can be explained by the learners mental representation and application of a faulty
procedure, called either a bug or a ”mal” rule they can be generated by some plausible
cognitive theory.”

Leeds Modelling System According to (Sleeman et al. [122])” ITS intelligent tutoring
system reteaching us re mediation diagnosis of the errors in more difficult than re media-
tion. If one inferred an accurate model of learner error it is than relatively straightforward
to me that model to direct a re-mediate dialogue reteaching = reteaching the correct meth-
ods” (Sleeman [121]) created the Leeds Modelling System (lms) for learners error.. LMS

45

is a rule based databases (with diagnostic capacities for the majority of errors)and a pro-
cess oriented explanation for learner error which generative mechanism uses a collection
of primitive bugs. ”First the practical aim by producing teaching systems which are truly
adaptive to the needs of the learners, and second the theoretical interest involved in formu-
lating these activities as algorithm.

We dont want to explain in the first hand why these errors occurs so we have chosen
a rather ”safe” way: and grouped the set of errors in a way, that in the cases we surely
knew which should have been the correct solution. There might be an underlying model,
structure, hierarchy as mentioned before, but this fine-grading level we take the possibility
to build up later further analysis. Our advantage is that we connect errors/errors to the cor-
rect solutions. Before the implementation is described, we consider design issues, because
there is for instance an abundance of learners’ errors concerning fractions described in the
literature. Many of them have been experienced by the authors as well.

3.7 Error-Patterns in Algebra and in the Domain of Frac-
tions?

”Anyone who has never made a mistake has never tried anything new.”
Albert Einstein

Learning mathematics is not always easy. At which time one has to apply a specific
rule is crucial in solving an example successfully.
It would be important to know, and also would be a great benefit of ISAC, if we could locate,
and individually detect at which part (e.g.: Due to rules, do to patterns..etc.) do learner
have problems. In order to investigate the question lets see in more details, where are the
typical errors, and what happens there, because this will influence our design decisions on
choosing error-patterns.
(Koedinger et al. [70]) state ”learners errors in the symbolic format often revealed serious
difficulties with the syntax and semantics.” or learners made errors in comprehending and
manipulating algebraic expressions (Sleeman [121]).

To be successful in algebra you have to be able to operate for example with different
objects, you have to know what are numbers, variables, and what are their features:

Objects

1. Numbers(e.g.: 1, 3, 3/4, 0, 4..etc), Can be added with numbers, can be changed in
forms. (e.g.: fraction, decimals..etc.)

2. Variables (e.g.: a, b.x, x3,ax,..etc.) Variable are more complex, because they repre-
sent a concrete number, or even set of numbers like, x = a = b, They can represent
the same set of numbers/number, or not. Variable have names. It is possible to
choose their names as one likes, but not always (e.g.: like in an equation, if I change
the name of the x, I have to change all name of the x.) (Not mentioned parameters
which are somewhere in-between a number and a variable).
Also hard is to learn, which variable are the same, like x cannot be added to x2, but
they represent the same possible number(s). This is a contradiction, the brain has to
deal with, and one has to learn.
Numbers and variables appear usually together in terms: 2 · x+ 3 · x = 5 · x
Errors in variables, numbers belong also to identified learners difficulties with alge-
braic symbols (Clement [28], McNeil and Alibali [83]):

(a) For example: 3m+ 6 could be interpreted as 9m or,

46

(b) a+b+ab+a+b could also make problem, and could be simplified as 3a+3b,
because

(c) the meaning of letters, and numbers might be confusing.

Operations: +, -, /, *, () What are operators is not so easy to understand. Sometimes
the equal sign could be also interpreted as a logical connector (Clement [28], McNeil and
Alibali [83]).

1. 3(m+ 2) could be also 9 or

2. 1
2 + 1

4 = 2
6

3. 1
a + 1

b = 1
a+b

4. a ∗ a ∗ a = 3a however 3a = a+ a+ a

Patterns: (e.g.: (a+ b)2 = a2 + 2ab+ b2)

Rules (e.g.: Commutativity: a + b = b + a, a ∗ b = b ∗ a Associativity (ab)c = a(bc),
(a+ b) + c = a+ (b+ c), Distributivity: a ∗ (b+ c) = ab+ ac,)
Operation have basic priority rules: Which operation are to be carried out first should be
grounded in an early educational level:

1. 3 + (2/5) is not the same as (3 + 2)/5

2. Sometimes things disappear (Special cases)

3. 1 ∗ a = 1a, but 2 ∗ 3 is not 23

4. 0 ∗ a = 0 =

5. Sometimes different variables are the same
a = b = c = d

6. Sometimes same variables are different
you cannot add these: x

2

5 + x3

5

End-result: For some learner it is also confusing, what is an end result, when to stop
solving an example(Tirosh et al. [128]). The already mentioned 3m + 6 just simply could
not look like an end result, and could be simplified further.

Where do errors of algebra and fractions originate? Error-patterns of fractions related
of course to the error-patterns of algebra. If we speak about errors, what kind of errors can
happen during learning fraction, when do typical errors happen? These errors of fractions
are often systematic and rule-based rather than random: (Yetkin [139], Giaquinto [50])
average learners around the world have difficulties in learning about fraction. One of the
problem according to (Giaquinto [50]) is, that it is very difficult in fractions that many
properties are not any more true for all numbers.”For example, with fractions, multipli-
cation does not always lead to an answer larger than the multiplicands, division does not
always lead to an answer smaller than the dividend, and numbers do not have unique suc-
cessors. Many typical errors happen with dealing with the intuitive special numbers, 1 and
0. For some it can be very confusing if the fractions are bigger than the whole, or change
from or to mixed form. It can be also very hard to compare numbers, change between
forms, because the same denominator is not the easier concept, also understanding which
fractions are the same is crucial in a successful solving of example.

47

We have chosen the following domains of errors (and causes) to be relevant for this
thesis:

1. Problems with representation:
error-patterns may originate due to thinking on different representation (e.g.: pro-
portion, division, fraction). (Fazio and Siegler [47]) states, that according to age you
need different representations and support different strategies in teaching fraction.
For example using the results that children understand the concept of equal sharing,
proportional relations.

2. Problems with different levels of abstraction:
Learner may correctly answer a problem, and give a wrong solution. These problems
might arise because of the connections between real-world problems and fraction
notation. Transforming text into mathematical symbols is very challenging task.

3. Numerator and Denominator are not the same:
Usual problem is: Treating fractions numerators and denominators as separate whole
numbers instead of treating fractions as unified number. Thus leading to one of the
most common errors: Leaving the denominator unchanged. (Fazio and Siegler [47]),
as well as to errors in addition, subtraction of fraction.

4. Misunderstanding mixed numbers:
”Some learners ignore the fractional parts and focus only on the whole number. Oth-
ers decide that the whole numbers have the same denominator as the fractions, or
adding the whole number to the numerator of the fractional part”(Fazio and Siegler
[47]).

5. Misunderstanding exact values of fraction:

(a) What is exactly the value of the fractions: for example ”being confused of the
meaning of fraction larger than 1”

(b) Comparing fractions

(c) What are the equal numbers?: 1
2 of 6, or 0.5 of 6, or 50 percent of 6 are all

the same. decimals and fractions are different types of numbers. Changing
between forms might be challenging, and also not obvious for the first sight,or
when it is really needed.

6. Problems due to learning process:
According to (Ma [81]) most learners modify their errors as time goes by even though
they make errors about already learned contents. ”Children often confuse the rules
of whole number arithmetic with those of fraction arithmetic. Learners will gain
greater conceptual understanding of fraction arithmetic when they understand why
the procedures from whole numbers do not work, rather than just learning a new
procedure for fractions (Ma [81]).

7. Problems with Operators:
According to (Davis et al. [36]) algebra learners tend to overgeneralise from instances
using ”old” operator instead of a more recently introduces one. Operators involve
multiplication, division, addition, subtraction:

(a) Multiplication:
Usually multiplication increases a number, but in fractions it can happen both,
because multiplying fractions may mean finding a ”fraction of a fraction” so
multiplication can both increase or decrease a number.

48

(b) Division:
Dividing a whole numbers by fractions means e.g.: 3 : 1

4 = 3
4 .

(Ma [81]) analysed empirically the repeated error-patterns in the division of
fractions by elementary learners in Seoul. Their conclusion was: ”most learn-
ers that continually make errors cause reciprocals of natural numbers in the
divisor when calculating on (fraction) = (natural number) secondly most learn-
ers recognize that the divisor has to change the reciprocal.” The meaning or
representation of division is more complex: dividing by fractions mean how
many times the divisor can go into the dividend. Additionally: ”Few learners
understand why one inverts a fractional divisor before multiplying” (Carraher
[24]).

(c) Addition and subtraction:
By adding fractions it is very important to understand what is a common de-
nominator: ”Children who understand why a common denominator is nec-
essary when adding fractions are more likely to remember the correct proce-
dure than children who do not understand why common denominators are re-
quired.”The common error of trying to add fractions by first adding the numer-
ators and then adding the denominators stems in part from not understanding
that fractions are numbers with magnitudes.” This is a typical example, that a
previous learned operations (in that case addition 1 + 3 = 4) dominates over
the new learned rule (common denominator).
Also the error-patterns on the addition and subtraction of fractions were stud-
ied empirically in Malaysia (Idris and Narayanan [61]). ”The findings indicate
that errors in addition operations are 29.8 percent of careless errors, negligence
errors 26.3 percent and 11.1 percent of systematic random errors. In system-
atic errors, 50.6 percent of learners have a problem converting to the lowest
common denominator, 26.2 percent encounter problems in the process of un-
derstanding, and 14.9 percent have problems dealing with improper fractions.
As for the subtraction of fractions, there are 26.4 percent or systematic errors,
10.3 percent of careless errors, and 2.5 percent of random errors. In systematic
errors, 47.9 percent of of learners faced problems in the process of understand-
ing.” The reason might be, that automatically what you see, so the visual input
is stronger, than understanding what exactly 1/3 and 1/4 means.

8. Special cases:

(a) 0, 1: In the work of (Brown and VanLehn [20]) the majority of the bugs/errors
had to do with zero. (If this is valid also to other domains, than we could
hypothesis, that also by fractions one of the main errors would be due to special
numbers as 0, and 1).

(b) negative numbers (e.g.: −8 + 2 = 6)

(c) binomial formats are very often present in fraction examples.

Short conclusion: Why do these errors in fractions happen? First of all, this is an open
question (Breiteig and Grevholm [18]). Further cognitive research should be needed to find
out on how learners develop their understanding of fraction: modelling and developing,
what is a whole, partitioning, comparing, number lines, density, equivalent fraction, addi-
tion and substitution, directly implementing causes would be an early step to ISAC, but we
can include this causes of errors in the design of the feedback.

49

3.8 Error-Patterns for ISAC
”Experience is simply the name we give our mistakes.”

Oscar Wilde

From previous chapter we can conclude, that it is possible to create error-patterns for
detecting errors in ISAC, because most of the errors are clearly pattern like. The causes of
such errors, and errors in the domain of fractions compiled a long list, which then can be
separated into groups based on the causes of such error. Separation into groups is important
because several different patterns can be related to the same cause of such errors (e.g.: there
are more clear error-patterns in addition of fraction), Error-patterns, their belonging to a
group in ISAC is in principle a delicate design decision by the dialogue author. In our case
we made up decisions about: the kind and amount of error-patterns, and their separation.
By separating error-pattern we mean grouping them. Groups make it possible to give at
some point of the interaction the same feedback (e.g.: hint-pages from Table 4.1).

The clear advantage of error-patterns is, that we can define exact points in the calcula-
tion where we knew for sure what went wrong. In our case they also mean, what should
have been the good solution (e.g.: in addition, see Table 4.1 the learner should have carried
out an addition but for some reason he/she entered an in-correct formula), and we can give a
feedback and in a form of a hint-page explain how a successful addition looks like.In some
cases it might be hard to decide which error-pattern to which groups belong (see group no.
4: Special cases with 0 and group no. 5: Special cases with 1 or
-1). In our case we collected error-patterns from typical errors by learners(e.g.: these may
happen during examples involving special numbers (0,1), or in the transition between dif-
ferent domains as addition can be confused with multiplication or vice versa). Advantage
is, that in this way we can grasp points, where we surely can give a hint for the learner.

Having too much error-patterns is costly in resources, because it would slow down the
calculation process, so we have to choose carefully which and how much error-patterns we
choose.

In our case we made up the following groups of error-patterns (Each group shows some
example from the group, and is incomplete, see further details in the Appendix):

1. Addition or Subtraction a
c ±

b
c = a±b

2·c , ab ±
c
d = a±c

b±d , ab ±
c
d = a±c

b∗d , ab ±
c
d =

a∗c
b∗d , a

b ±
c
d = a·c

b·d , a ± b
c = a±b

c , a ± b
c = a·b

c These errors might result from
not remembering, not knowing (..etc) that different operational rules are valid for
numerator and denominator. Subtraction is very similar to addition.

2. Multiplication: a
c ·

b
c = a·b

c , c
a−b ·

d
c = c·d

a−b·c , a
b ·

c
b = a+c

b Because in the do-
main of fractions the learner might confuse multiplication with addition we found it
important to separate them into two groups.

3. Division:ab ÷
c
d = a·c

b·d ,ab ÷
c
d = a÷c

b·d We grouped divisions in a different group,
because the rule of solving these examples differs significantly from addition and
multiplication, and involves the mathematical notion of reciprocal.

4. Cancellation of Fraction: a+ba+c =
b
c , a+ba = b, a·c+ba = b+ c, a+bxc+dx = a+b

c+d In order
to successfully simplify rational terms, the learner should be able first to factorize,
and also understand that cancelling off only a portion of a factor would not lead to a
correct result.

5. Factorization: c + c · b = c · (0 + b) These rules not necessarily connect strongly
to fraction, but also to other domains. Still many learners struggle with them, so we
found necessary to mention them in this domain.

50

6. Special cases with 0: b
c −

a
c = b−a

0 , aa = 0 Zero is a challenge because it results
from embodied ideas (Nunez [101], represents existing nothing, both involves many
special rules a learner should know (e.g.: Zero, divided by any non-zero number is
zero, but the division with zero as the denominator is not defined...etc.)

7. Special cases with 1 or (-1): a−bb−a = 1, − a
−a = −1 The Number 1 results also from

embodied experiences, represents the whole, some of the special rules to remember
are for example: Any non-zero number divided by itself equals one, Multiplying a
number by one does not change its value..etc.

8. Binomial forms: a−b
a2−b2 = a− b, (a− b)2 = a2 − b2, (a+ b)2 = a2 + b2 We took

binomial forms in the error-patterns, because usually fractions involving variables
always contain one of the tree listed binomial terms. In this case not remembering
the adequate rule might cause problems.

9. Changing between forms: a bc = a+b
c , a bc = a·d+b

c Changing between the different
forms (mixed form, decimal number, simple fraction) is also challenging.

10. Priority Rules: a − b · c = (a − b) · c Similar to factorization this is also a rather
basic rule, and we will not focus on them in this thesis.

These groups are result of several design decisions. For instance, both groups: addition,
and multiplication, address multiplication and addition: addition can be confused with
multiplication or vice versa, so a dialogue author has to decide where a certain error fits
better.

51

Chapter 4

Implementation in ISAC
Modelling “Next Step Guidance”

”If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.”

John von Neumann

The choice for the mathematical domain to concretely work on within this thesis was
free, in principle. In fact the choice was limited to the domains already implemented in
the ISAC prototype. Solving problems with fractions involves complex cognitive abilities
(Kieran [66], one can vary the form of them, e.g. from a mixed form 2 3

5 to 13
5 or 2.6,

one can carry out different operations (addition, multiplication, etc.). Also, fractions estab-
lish relationship between two numbers, involve multiple representation (proportion, linear
change, simple value, etc). This chapter will describe the kinds of dialogues to be mod-
elled in ISAC, the definitions required by ISAC’s mathematics engine to automatically detect
error-patterns and to create specific formulas (fill-forms) and hint-pages for help, and the
rules telling ISAC’s dialogue module how to react in case of error-patterns.

4.1 Example Dialogues for Fractions
”Mathematicians do not study objects,

but relations between objects.”
Henri Poincare

It is out of scope of this thesis to show how learners develop mental representations
of fractions, rather the goal is to develop an interactive dialogue between a learner and
software (Ritter et al. [115]) — and this goal also conforms to the quote of Henri Poincare
above.

For a better overview we would like to represent the dialogue in the Fig.4.1 about
the interaction planned and implemented in ISAC. In Fig.4.1 we see an example where a
learner enters an error, which is detected by ISAC providing a hint in the first step. In case
the learner has no idea what to do next, he/she can request help, and as a response, gets the
fill-forms, where learners have the only possibility to fill-in a term contain space-holders.
These are connected to error-patterns, and activated at clicking on a HELP button. The
reason for introducing fill-forms is: instead of providing the learner the whole correct next
step, we would like to engage the learner to try solving the example on their own (according
to theoretical background described in previous chapters), and ISAC shows only the part of
the solutions, and the missing parts (space holders) are to be filled out by the learner. In
case an error-pattern is detected: first a HINT page pups up, and there is no possibility to

52

request the whole next step by hitting NEXT button, or an automatic solution by the AUTO
button. If the learner still cannot solve the example, he or she may still request help by
clicking on the newly appeared HELP button, which activates the fill-form. (During the
whole process it is still possible to browse in the knowledge materials of ISAC) Depending
on how many fill-forms in ISAC for this error-pattern exists, the learner can request further
help, and only as a last step the whole correct next step appears. This process is shown in
Fig. 4.1.

Figure 4.1: Interaction with ISAC

It might also happen, that during this process an other Error-Pattern is detected. A more
detailed example can be seen in the Fig. 4.2, which represents a screen shot from ISAC.

For mechanised dialogues we design how to react on what the learner is doing. For that
purpose we need to collect information about the learners action. In ISAC this is information
the learner is looking up, the formula he/she is typing in during calculation, etc. An input
formula might be correct or incorrect. In the case of a correct formula, there is not much to
do, in the case of an incorrect formula we can give feedback. The interaction is based on
reflection, and the dialogue gives hints if the learner requests for. In Fig.4.2, as a feedback
for the (incorrect) input 8·x

8·y , a “hint-page” popped up with the hint "This is not the

correct way of addition. Please look up here !". Since ISAC uses HTML
technology, dialogue authors will be free to exploit the ever increasing features of HTML.
In the right upper corner Fig.4.2 indicates buttons changing during the subsequent inter-
actions. The case of input of an incorrect formula shown in the screen-shot on Fig.4.2.

This example will proceed from the situation in Fig.4.2 to interactions, where the
learner requests more help and the software presents “fill-forms” with place-holders to
be completed by the learner: ..+.... , ..+..4y , or 5x+..

4y .
Tab.4.1 shows the situation in Fig.4.2 in lines 00..02. Line 03 assumes the learner

pushing the HELP button appearing instead of NEXT and AUTO (which would allow
to request the next step or even the final result from the system). Lines 04..05 show the
fill-form requested by the learner, but not filled correctly. So in line 06 the system presents
the tactics applying a

c + b
c = a+b

c which leads to a correct input by the learner finally.
rule 1-4 in the right-most column will be discussed §4.7.

In our opinion the examples above show that it is possible to come closer to a paper-like
learning experience with more interaction.

In the next sections we explain, how the technological background works: especially
error-patterns, hint-pages, Fill-Forms, Fill-Patterns, and Rules, and how these establish the
prerequisites for dialogue guidance.

53

Figure 4.2: ISAC’s Front-End with Incorrect Input

no. learner’s action user-interface system’s action dialogue-rule
00 5x

4y + 3x
4y =

01 types in −→ 8x
8y

02 hint-page 1 ←− pops up rule 1

03 hit help button −→ ..+..
.. = ←− show fill-form rule 2

04 hit help button −→ ..+..
4y = ←− next fill-form rule 3

05 hit help button −→ 5x+..
4y = ←− next fill-form rule 3

06 hit help button −→ Tactics ←− no more fill-form rule 4
07 types in −→ 8x

4y correct
. . .

Table 4.1: Interactions for EP “add-fractions”

4.2 Error-Patterns
”How is an error possible in mathematics?”

Henri Poincare

This section describes how the prototype of ISAC detects the error-patterns above, how
the counters are connected to them (and to fill-patterns); examples of error-patterns are
described exactly as implemented in ISAC’s mathematics engine.

4.2.1 Information, Designing Counters
”The essence of mathematics is not to make simple things complicated,

but to make complicated things simple.”
S. Gudder

After examining the first question of the thesis: if there are typical even systematic (that
means non-random) error-patterns we can use, and detect, the second question arises: what
do we do with these error patters? Sure, we have to react on it, but could we get an extra

54

benefit of using statistical analysis of the error-patterns, or some additional benefit from
the so called ”counters”? In this chapter we will examine the question, how counters could
be taken into account in designing the dialogue more efficiently, and what would be their
the benefit. The overall goal is to keep the interaction, and the learning experiences a good
experience, and an effective process for the learner, and also to have tools in the hands of
the dialogue authors, which enables them to design the learning scenario as they require,
and to design ISAC react in a requested way, and time.

In designing dialogues it is also important what can be observed (e.g.: which informa-
tion can we collect), described, and how, and what is prescribed by the software before
and after implementing error-patterns. During the interaction with ISAC we can observe
for example what the learner is clicking on, if he/she requests help, e.g.: how often does
conduct a specific error-pattern. On one hand we have the possibility to collect as many in-
formation as possible from the learner to design further interaction possibilities. Counters
could exactly serve this purpose. Before introducing counters in details, we have to take
into account several questions. For example: How do we know for example if the learner
only miscalculated something, or needs a detailed explanation? It is easy to see, that if
ISAC provides a long detailed explanation in the first case, this would be as demotivating
as making a small hint in the second case. One way, which needs validation to find out
what is a miscalculation only: is maybe the frequency of error-patterns. Miscalculation
might happen fewer times, than real errors. This chapter will introduce the counters, but
we should take into consideration, that this design of counters is only one possibility.

Design addresses part of mathematics as well as part of learning mathematics in respect
of knowledge needed, whether error-pattern exists and can be used for ISAC, and cognitive
science and dialogues in respect of processes on individual and social level involved tutor-
ing and what kind of feedback, hints are needed, comparing also other computer education
systems, and human interaction to address also design guidelines.

For the counters in ISAC we will take into account the following guiding design ques-
tions:

Questions about information Where can we collect information, what is ISAC automat-
ically collecting, which can be used. As in details:
What kind of information is already stored in the system, and what do we want to store
during a session?
Answer: In ISAC there is a database, which stores all possible interaction, e.g.: clicks. So
the questions is whether to make (and if yes, which information) this accessible during the
interaction/session for dialogue designers or not.
During a current session we want to store as many information as possible because we are
interested in the whole learning process, and we are interested about any kind of informa-
tion the learner is doing, in order to make ”judgement” later: like did the learner learn the
current task? How well did he/she perform, where are the points, where there is a need for
a different interaction,more help, or what should he/she repeat?
However we cant focus on all of the information, because that would be contra-productive,
and the question is which information will we be focusing on?

What are time-intervals we would like to focus on? Answer: Basically there are three
big time-interval when we can collect information, the first is during a concrete task (an
example is open in a window), during a session (this contains more examples which can
be opened parallel, and also after one another), or during the entire learning process (this
is dedicated to one learner, and would make the possibility for example to come back to
examples, which were not solved successfully in the last session, and the next session could
start with capturing in a different learning mode).

55

1. During concrete task:
Concrete task means if the user opens an example in a windows in order to solve it,
e.g.: simplify(6a+3b)/3a. It is possible, that the user may have opened several tasks
parallel, so it is important, he/she can switch between each of these task. It matters
in what kind of an example does he/she conduct an error or requests a help.

2. During a session:
Session is a period between logging in and logging out. During one session the
learner may open several tasks, solve them, or close, look up for help, request
hints..etc. The current thesis focuses on the counters which we can get from a single
session. We have to make distinction in ISAC in which task.

3. During the whole learning scenario:
The whole interaction contains all learning session, made up from several sessions
and belong to a single user. This is important, because in this way we can make
later a user profile, and record what the learner may improve, or forget things during
sessions. However planning a whole learning scenario is not the core question of
this thesis, but maybe in the close future it might be interesting to check if a learner
remembers learned examples, or can solve a similar example struggled with in the
previous session, or get back to problems he/she could not solve yet,because learning
might also happen during a resting period.

What else do we have to take into consideration? For example: how do we know, that
an example is successfully or not successfully solved?
With the following list we try to categorizes some possibilities ISAC could take into ac-
count, and their numbers could be important: Number of opened examples
These includes all examples the learner opened, including all examples where he/she en-
tered a formula, and including all examples where not. Some cases might also happen
where he/she is searching for an example she likes to solve, opens more of them, and
chooses in the end only one or some of them.

1. Number of begin examples
Examples where the learner entered a formula:the number where he/she tried to enter
a solution

2. Successfully solved tasks
Examples solved alone, or tasks solved with the auto button. The question is if we
should add the number of examples solved with the auto button to the number of
successfully solved task. It might be the case that the learner did see the solution and
also might understand it. It would be an other possibility to give back the example
solved with the auto button for a later check. It is also a design question what we call
as: the tasks solved alone.

3. Unsolved task
Unsolved task are also design question, because what do we call as unsolved exam-
ple: if the last entering is wrong, and the example was closed, or the learner logged
out of the session?
Under such design questions, would it make sense at all to count for example the
ratio of successfully solved and unsolved tasks? In the next point we will list up the
interactions where we have very less information, and we can have only a guess:

What can we count at all during a session, and what can we not count? The first, and
the easiest and in this stage of ISAC development the most useful information we get during
an interaction, is if the learner enters a correct or a non correct formula, but we have no
information about:

1. If the learner understand the task, or does a miscalculation,

56

2. If the learner is motivated, or interested, if he/she is under an emotional blockade.

3. Possible errors: Currently for ISAC it is not possible to tell in the beginning of exam-
ple to tell which fails can be possibly occur. This information would be very useful,
because we could know if in a concrete example a learner conducted an expected
error or not? However there are more possible way of capturing learners in a very
concurrent error (see Dialogue Modes).

We can count or get information under the following conditions, from the following inter-
action items:

1. During entering or working with the formula

(a) Number of error-patterns detected and the number of correct Formulas

(b) Number of requested Hints (Fill-Formula) in a concrete example

(c) Number of requested Automatic Solution

2. From searching for information, clicking on them

(a) Number of viewed Theorems, Pages, Hints

(b) Number of viewed Explanation

3. Numbers resulting from the interaction:

(a) Number of examples solved, opened

(b) Number of time invested in solving an example

Other possibilities currently not implemented in ISAC

1. Set up pages
What the teacher or dialogue author thinks is necessary to visit, or recommends to
visit. That means during the interaction ISAC could check if the learner did click on
these pre-set pages which match error-patterns. If not, the system could just show
also the page automatically, the learner has not visited yet.

2. User Models
With user models it opens the possibility for a controlled way of interaction. Maybe
teacher, and researcher would be interesting how often does a learner just do one
specific error-pattern, and not the whole pre-defined error-patterns. For example,
user models, and statistics would enable the following: ISAC could detect errors also
the next day, and suggest the learner to go through on selected examples again.

In the ISAC system, there are also other possibilities, a learner can do with the system,
but due to the complexity of the problem, in this thesis we wont deal whit these other
questions.

In designing counters we have to answer the following questions: What is the begin-
ning value? When will it be increased? when will it be decreased? Do we set it back to
original value, if yes, why?
Currently in ISAC Dialogues we have implemented two main counters: One for error-
patterns, and an other for a very special case: If the learner is captured in an error-pattern
and requests a hint. Further use is described in the rules, see Appendix, and also description
of pseudo codes.

57

error-pattern for session:

1. Name of the Counter: ep counter

2. After each session it is stored in a database or matrix

3. For every defined error-pattern during the session

4. If an ep is detected, the value increases +1 Beginning value is 0

5. After each session set back to 0

6. System reaction on the counter
1) if EP detected- hint-page pops up
2) if EP is bigger than 5 different reaction
3) if EP is bigger than 10 give easier tasks to solve

Counting number of requesting fill-forms:

1. Name of the Counter: help counter

2. The value is not stored after a session, only if the learner is caught by an error-pattern,
and requests a hint. In this case a fill-form is shown.

3. In case the learner clicks again on the HINT button the value increases +1, and a new
fill-form is shown, till there is a fill-form available. Beginning value of the counter
is 0.

4. After there is no more fill-form available the value is set back to 0, and automatically
the next step will be shown. Also in case the learner closes the window, or steps out
of the fill-form requesting system, the value is set back to 0.

4.2.2 A General Collection of Patterns
”Creativity involves breaking out of

established patterns in order to
look at things in a different way.”

Edward de Bono

These patterns were already introduces in an earlier chapter from cognitive science
point of view since we found it important to introduce them at that early point of the thesis,
and show which pattern will be used in the domain of fractions in ISAC, and why we have
chosen this.
In this case for a better overview we also show some concrete examples with concrete
numbers (Without a correct solution), for the reason, that with concrete numbers sometimes
it is easier to read the examples. This list of error-patterns is a very limited and short list, a
lot more error-patterns can be found in the Appendix.

1. Addition and subtraction of fractions:

(a) a
b ±

c
d = a±c

b±d , example: 1
3 ±

2
3 = 1±2

3±3 ,

(b) a− b
c =

a−b
c , example: 1− 2

3 = −1
3 ,

2. Multiplication of fractions:

(a) a
c ·

b
c =

a·b
c , example: 1

3 ·
2
3 = 1·2

3 ,

(b) c
a−b ·

d
b = c·d

a−2b , example: 2
7−4 ·

4
3 = 2·4

7−2∗3

58

(c) a
b ·

c
b =

a+c
b , example: 23 ·

4
5 = 2+4

3

3. Division of fractions:

(a) a
c : bc =

a·b
c , examples: 1

3 : 2
3 = 1·2

3 ,

(b) c
a−b :

d
b = c·d

a−2b , example: 2
7−4 : 3

4 = 2·3
7−2∗4

4. Cancellation of fractions:

(a) a+b
a = b, example: 2+3

2 = 3, 2+3
2 = 3

1

(b) a+b
a+c =

b
c , example: 2+3

2+4 = 3
4

5. Factorisation

(a) c+ c · b = c · (0 + b) , example: 5 + 5 · x = 5 · (0 + x)

6. Special Cases with 0:

(a) b
c −

a
c = b−a

0 , example: 3
x −

4
x = 3−4

0

(b) a
0 = 0 or a0 = a , example: 5

0 = 0 or 5
0 = 5

(c) a
a = 0 , example: 3

3 = 0

7. Special Cases with 1 and -1:

(a) a−b
b−a = 1 , example: 4−5

5−4 = 1

(b) −ab = a
b , example: − 4

5 = 4
5

8. Binomial Forms:

(a) (a± b)2 = a2 ± b2, example: (3± x)2 = 32 ± x2

(b) (a− b)2 = a2 − b2, example: (3− x)2 = 32 − x2

9. Changing between forms:

(a) a bc =
a+b
c , example: 3 4

5 = 3+4
5

(b) a bc =
a·b
c , example: 3 4

5 = 3·4
5

10. Priority rules:

(a) a− b · c = (a− b) · c, example: 5− 6 · 2 = (5− 6) · 2
(b) a+ b · c = (a+ b) · c , example:5 + 6 · 2 = (5 + 6) · 2

However, the number of error-patterns are not limited to the above described, and it
might depend on the specific learning scenario.

The next sections has been written during a close cooperation with the ISAC developers,
and specific parts can also be found on specific page of the ISAC wiki 1, and 2

1http://www.ist.tugraz.at/isac/Rule-based Dialog
2http://www.ist.tugraz.at/isac/Rule-based Dialog

59

4.2.3 How to Implement Error-Patterns in ISAC
”Some mathematician has said pleasure lies

not in discovering truth, but in seeking it.”
Tolstoy

Error-patterns (EPs) are ISAC’s formalization of ”misconceptions” in mathematics. They
are recognized mechanically by TP-technology and they are a prerequisite for automated
generation of adaptive dialogues. For instance, 1+3

2+3 = 1
2 is an error well-known to ev-

erybody who teaches calculating with fractions. This misconception can modelled as an
error-patterns in an ML structure as follows:

01 val errpats =
02 [("cancel",
03 [parse_patt thy "(?a + ?b)/?a = ?b",
04 parse_patt thy "(?a + ?b)/?b = ?a",
05 parse_patt thy "(?a + ?b)/(?b + ?c) = ?a / ?c",
06 parse_patt thy "(?a + ?c)/(?b + ?c) = ?a / ?b",
07 parse_patt thy "(?a + ?c)/(?b + ?c) = ?a / ?c",
08 parse_patt thy "(?a + ?b)/(?c + ?a) = ?b / ?c",
09 parse_patt thy "(?a*?b + ?c)/?a = ?b + ?c",
10 parse_patt thy "(?a*?b + ?c)/?b = ?a + ?c",
11 parse_patt thy "(?a + ?b*?c)/?b = ?a + ?c",
12 parse_patt thy "(?a + ?b*?c)/?b = ?a +. ?b",
13 parse_patt thy "(?a + ?b*?e)/(?c + ?d*?e) = (?a + ?b)/(?c + ?d)"],
14 [@{thm real_times_divide_1_eq}, @{thm real_times_divide_1_eq}])
15 ("addition"), [(*patterns*)], [(*theorems*)]]: errpat list;

Error-patterns Definition can be found in Appendix.
In our case we have seen the groups of error-patterns in the previous sub-section. These

groups are result of several design decisions.
The decision for the case study appears in the implementation of the error-pattern in

ISAC’ mathematics engine. The latter is implemented in SML (Milner et al. [87]) (as is the
underlying TP Isabelle); the implementation of group addition, in SML is as follows:

01 val errpats =
02 [("add-fractions",
03 [parse_patt thy "(?a / ?c + ?b / ?c) = (?a + ?b)/(?c + ?c)",
04 parse_patt thy "(?a / ?b + ?c / ?d) = (?a + ?c)/(?b + ?d)",
05 parse_patt thy "(?a / ?b + ?c / ?d) = (?a * ?c)/(?b * ?d)",

06 parse_patt thy "?a + (?b /?c)= (?a + ?b)/ ?c",
07 parse_patt thy "?a + (?b /?c)= (?a * ?b)/ ?c"],

08 [@{thm rat_add1}, @{thm rat_add2}, @{thm rat_add3}])]: errpat list;

According to its definition (See Appendix) an error-pattern is a triple: The first element
is the identifier id, above
"add-fractions"; the second element are a list of patterns p, above [parse patt thy

"(?a / ?c + ?b / ?c) = ..., ...] ([] indicate lists); the third element is a list of
rewrite-rules, above [@thm rat add1, ...]. The latter is syntax of Isabelle, addressing
the theorem with identifier rat add1. The ? above indicate a kind of variable which can
take other values; this kind of variable allows to detect error-patterns.

In Tab.4.1 on p.54 the error is detected when: the formula 5·x
4·y + 3·x

4·y on line 00 in
Tab.4.1 matches the left-hand-side (lhs) of the pattern in line 03 above. The match is
possible because of the ?variables: these are mapped to respective values ?a→ 5 ·x, ?c→
4 · y, ?b→ 3 · x. With this map the right-hand-side (rhs) of the pattern in line 03 above is
instantiated to 5·x+3·x

4·y+4·y ; and this rhs equals the incorrect input 8·x
8·y on line 01 in Tab.4.1.

The detection of error-patterns is costly in resources: If error-patterns is detected, the
process enforces to check all patterns for an input formula, if this formula is not related to

60

any error-pattern. All eight groups of error-patterns listed would comprise several hundred
patterns.

The above structure errpats contains two items ”cancel” and ”addition”, ”cancel” is
complete and ”addition”, as an example for dialogue authors of how to extend the structure.
Each item contains

1. the name, a unique identifier for the error-pattern (for instance, ”cancel”)

2. the patterns, a list of specific patterns for the same general kind of error (for instance,
cancelling in a wrong way)

3. the theorems, a list of theorems which have a left-hand-side (lhs) which match the
lhs of the patterns.

For instance, these theorems have the same lhs as the ”cancel” error pattern:

01 ML {* @{thm frac_eq_eq};
02 @{thm divide_cancel_left};
03 @{thm divide_cancel_right}; *}
04 val it = "?y ˜= 0 ==> ?z ˜= 0 ==>

(?x / ?y = ?w / ?z) = (?x * ?z = ?w * ?y)": thm
05 val it = "(?c / ?a = ?c / ?b) = (?c = (0?’a) ?a = ?b)": thm
06 val it = "(?a / ?c = ?b / ?c) = (?c = (0?’a) ?a = ?b)": thm

The error-patterns are stored in the programs, which guide the calculations within which
respective errors are expected. See, for instance, store met .. ”met diff onR” in file Knowl-
edge/Diff.thy.

What happens if no single error-pattern is detected? In this case ISAC works as before:
the learner can click on NEXT (providing the next whole step) and AUTO (providing whole
automatic solution) button, and search for further information, web content, tactics..etc..
However, in order to ”force” learners to think on their own, one further possibility would
be to replace the NEXT whole step with Fill-Forms.

4.3 Hint-Pages
”Logic doesn’t apply to the real world.”

Marvin Minsky

One possibility to automatically create dialogue guidance by use of error-patterns is
connection with a ”hint-page”. hint-pages can show e.g.: short texts, tips, contain a
link..etc.. In most cases for a face-to face learning experience this is completely enough.
learners are usually able to correct themselves. For example the following description
shows one possibility, how to match these short things with our defined error-patterns.
This is of course a design decision, which would be open for any dialogue author to create.
and the ability to link a concrete web page to an internet or create complex pages for a
learning scenario:

1. error-pattern: Addition/Subtraction You can add fractions if they have the same
denominator!

2. error-pattern: Multiplication Multiplication: Nominator with nominator (denomi-
nator with denominator)

3. error-pattern: Division Division: Multiplication with inversion

61

4. error-pattern: Cancellation Something wrong with cancellation! You can cancel if
both nominator and denominator are in a form of product

5. error-pattern: Factorization Something wrong with factorization of fraction!

6. error-pattern: Special Case 0 0 (zero) is a special case! You cannot divide with 0!

7. error-pattern: Special Case 1 Special cases: 1 or -1!

8. error-pattern: Binomial Form There must be somewhere a binomial form!

9. error-pattern: Changing between forms Take care, how to change forms!

10. error-pattern: Priority Rules Take care of priority rule!

Currently there are the following hint-pages are implemented in the knowledge of ISAC
as basic and additional rules, special cases, strategies, and different representations, as it
would be required from theoretical point of view. (see Fig.4.3 on p.62).

Figure 4.3: Hint-Pages Overview

This contains a very much comprehended list containing correct rules, or short helps as
described below (e.g.: in special cases see also Fig.4.4 on p.63):

1. Basic Rules: Contains very simple symbolic explanations how to carry out the fol-
lowing operations on fractions, in order to refresh the necessary knowledge, and
collect everything important in a dense form:

(a) Addition/Subtraction
E.g.: Correct way of addition or subtraction if they have the same denominator:
a
b +

c
b =

a+c
b , in case not, you have to find the common denominator, which in

case bd for b and d looks like the following: ab +
c
d = a·d

bd + c·b
bd = ad+cb

bd

(b) Multiplication/Division
E.g.: Correct way of multiplication: ab ·

c
d = ac

bd of ab · c =
ac
b E.g.: Correct way

of division: ab : cd = a
b ·

d
c = ad

bc

(c) Forms of Fraction-Changing between forms
E.g.: Correct way of changing between forms:

(d) Simplifying Fraction
E.g.: Correct way of simplification fraction:abcb = a

c

62

(e) Extending Fraction
E.g.: Correct way of extending fraction: ab = a·3

b·3 = a·c
b·c = (a)c

(b)c

2. Special Cases

(a) Zero (0) e.g.: ac = 0, ifa = c, a0 = Notpossible

(b) One (1) e.g.: aa = 1, a1 = a, 11 = 1

(c) +/- (negative) e.g.: −ab = −a
b = −1·a

b = −1 · ab or −ax−b = −1 ·
a
x−b =

a
b−x

3. Additional rules

(a) Brackets, Variables, rules

(b) binomial forms e.g.: the first binomial form: (a + b)2 = a2 + 2ab + b2, the
second binomial form: (a− b)2 = a2 − 2ab+ b2, and the third binomial form:
(a+ b)(a− b) = a2 − b2

4. Strategies

(a) Strategies for examples which contain only numbers

(b) Strategies for examples which contain also variable

5. What are fraction?

(a) List of Different Representation

Figure 4.4: Hint-Page for Special Cases

As described above, besides a short hint, hint-pages can be more complex: for example
containing tips of the whole domain: and letting learners click on further descriptions, as
the hint-pages can show examples of correct solution, as shown in the Fig.4.4, and Fig.4.3,
or contain even strategies, which is fitted to the mathematical language level of the learners.
These settings depend on the dialogue author, and the teacher who planned the education
setting. An example of a strategy is described below:

1. If the task contains numbers and variables.

(a) Try to bring the nominator in the form of a product (A*B, multiplication) with binomial form, or
with factoring terms

(b) If there are more fraction: look for the common denominator, and bring fractions to common
denominator

63

(c) Dissolve Brackets in the nominator, and summarize everything that is possible

(d) Try to do the same with the denominator too

(e) Try to simply the fraction

2. If the task contains only numbers

(a) First change mixed fractions to non-mixed fractions

(b) If you have more fractions in a brace,
first you have to bring them to common denominator and make one fraction

(c) Take care of signs, and carry out multiplication or division

(d) If possible simplify fraction

How to implement hint-pages into ISAC? Answering this question leads to the question
how to extend ISACs knowledge. The process how to add Content in HTML format is
detailed described in the Reference, and there is not only a possibility to create HTML
”knowledge” sites, but also to add additional examples for problem solving, and this is
simple ”because this cannot overwrite knowledge prepared in SML data structures”

Hint-pages for error-patterns In case ISAC’s math-engine detects an error-pattern, the
dialogue might pop up a page, which gives hints about this specific error. This means
we have to connect error-patterns to hint-pages. In order to implement this possibility,
the file ...hint pages.properties must get specific entries; for instance, the first two lines
implement a hint-page found in the ExampleBrowser’s file hierarchy at Examples, Etc,
Fractions, Hints, Hint 3.

01 HierarchyKey_cancel=Examples,Etc,Fractions,Hints,Hint_3
02 KEStoreKey_cancel=exp_Etc_Frac_Hint_EP3 #
03 HierarchyKey_chain-rule-diff-both=Examples,IsacCore,
04 Calculus,Differentiation,
05 Introduction,chained functions
06 KEStoreKey_chain-rule-diff-both=exp_IsacCore_CDi_chain #

This file contains ”keyv̄alue” pairs, where each error-pattern has two ”keyv̄alue”pairs:

01 the HierarchyKey pointing at the hierarchy in the Examplebrowser
02 key: "HierarchyKey_" + "error-pattern"
03 value: the HierarchyKey: pay attention to have no blanks around ","
04 the KEStoreKey, ISAC’s unique identifier for files
05 key: "KEStoreKey_" + "error-pattern"
06 value: the KEStoreKey usually pointing to xmldata/exp

Both, the HierarchyKeys and the KEStoreKeys, are found in the respective hierarchy,
i.e. in xmmldata/exp/exp hierarchy.xml. The format of the strings in ...hint pages.properties
is not yet fixed in detail.

64

4.4 Rewrite Rules
”A mathematician is a device for turning coffee into theorems”

Paul Erdös

Rewrite-rules are the third important element in an error-pattern. We want the learner to
do a correct step; however, a step is only correct if we have a rewrite-rule for it. According
to the definition of error-pattern rewrite-rules in a error-pattern have a left-hand-side (lhs)
matching the lhs of some patterns. Via the matching patterns an appropriate rewrite-rule is
identified; for instance, among the three rewrite-rules in error-pattern “add-fractions” there
are two matching the pattern: rat add1, rat add2:

01 ML {* @{thm rat_add};
02 @{thm rat_add1};
03 @{thm rat_add2};
04 @{thm rat_add3}; *}

01 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==> ?d is_const
02 ==> ?a / ?c + ?b / ?d = (?a * ?d + ?b * ?c) / (?c * ?d)": thm
03 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==> ?d is_const
04 ==> ?a / ?c + (?b / ?d+?e)=(?a * ?d + ?b * ?c)/(?d * ?c) + ?e":thm
05 ?a / ?c + ?b / ?c = (?a + ?b) / ?c": thm
06 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
07 ?a / ?c + (?b / ?c + ?e) = (?a + ?b) / ?c + ?e": thm
08 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
09 ?a / ?c + ?b = (?a + ?b * ?c) / ?c": thm
10 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
11 ?a / ?c + (?b + ?e) = (?a + ?b * ?c) / ?c + ?e": thm
12 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
13 ?a + ?b / ?c = (?a * ?c + ?b) / ?c": thm
14 val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
15 ?a + (?b / ?c + ?e) = (?a * ?c + ?b) / ?c + ?e": thm

rat add1 ::
?a

?c
+

?b

?c
=

?a+?b

?c

rat add2 ::
?a

?c
+

?b

?d
=

?a·?d+?b·?c
?c·?d

rat add assoc ::
?a

?c
+

?b

?d
=

?a·?d+?b·?c
?c·?d

rat add1 assoc ::
?a

?c
+

?b

?c
=

?a+?b

?c

rat add2 ::
?a

?b
+?c =

?a+?b·?c
?b

rat add2 assoc ::
?a

?b
+?c =

?a+?b·?c
?b

rat add3 :: ?a+
?b

?c
=

?a·?c+?b

?c

rat add3 assoc :: ?a+
?b

?c
=

?a·?c+?b

?c

Associativity:
The law of associativity enforces to double the number of theorems because in our case it
says: 5x

2y +(3x2y +1) = (5x2y +
3x
2y)+1 and in order to detect the error-pattern of the example

in the representation of the RHS we need theorems add assoc, add assoc1..etc.).

65

4.5 Fill-Forms
”Mathematics is as much an aspect of culture

as it is a collection of algorithms.”
Carl Boyer

Fill-patterns are associated with rewrite-rules addressed in error-patterns. Fill-patterns
contain fill-in-patterns with space-holders and the prototype uses fill-patterns to provide
services for adaptive user-guidance. These are left blank when instantiated: for instance,
in Tab.4.1 line 00 the formula 5·x

4·y + 3·x
4·y matches line 03 of the error-pattern, as already

mentioned. From the error-pattern’s rewrite-rules rat add1 is selected, and rat add1’s fill-
patterns are implemented in SML as follows: (However, there could be generated automat-
ically, these are set manually), and with each new request on help, the number of space-
holders are decreasing, providing less help in the beginning, and more in the end. In our
case the following list (because of space-issues the list does not contain all possibilities, e.g.
subtraction) shows the fill-patterns for the error-pattern add-fractions. It was important to
distinguish between a

b +
c
d and a

b +
c
d , because they require different fill-patterns

1. For the running example a
c +

b
c =

a+b
2c , ac +

b
c =

+..
.. , or = ..+..

c , or = a+..
c

2. For ab +
c
d = a+c

b+d , a·..+..·.....·.. , or = a·d+..·...
b·.. , or = a·..+..·...

b·d ..etc.

3. For a+ b
c =

a+b
c , or a+ b

c =
..·..+..
c ,or = ..·c+..

c , or = a·c+b
..

These fill-patterns are defined in ML code similar to rewrite-rules. Because of space
issues we show only the ML code for the running example from the Table 4.1:

01 val fillpat =
02 [("fill-addition-first1",
03 parse_patt @{theory Rational} "

(?a / ?c + ?b / ?c) = (_ + _) / (_)",
04 ["add-fractions"]),
05 ("fill-addition-first2",
06 parse_patt @{theory Rational}

"(?a / ?c + ?b / ?d) = (_ + _) / (?c) ",
07 ["add-fractions"]),
08 ("fill-addition-first3",
09 parse_patt @{theory Rational}

"(?a / ?c + ?b / ?d) = (?a + _) / (?c ",
10 ["add-fractions"]),
11 ...
12]: fillpat;

01 ("fill-addition-second1",
02 parse_patt @{theory Rational} "?a + (?b /?c) = (_ * _ + _)/ ?c",
03 ["addition-of-fraction"]),
04 ("fill-addition-second3",
05 parse_patt @{theory Rational} "?a + (?b /?c) = (_ * ?c + _)/ ?c",
06 ["addition-of-fraction"]),
07 ("fill-addition-second5",
08 parse_patt @{theory Rational} "?a + (?b /?c) = (?a *?c + ?b)/ _",
09 ["addition-of-fraction"]),

Here exactly those fill-in-patterns are shown, which generated the lines 03..05 in
Tab.4.1; the place-holders are represented as . It is imaginable to create the place-holders
automatically. It is noted, that the third element in a fill-pattern’s triple,
e.g. "add-fractions" above, are provided for future services for the dialogue not yet
implemented.

66

Other examples for fill-pattern
1. a

c ·
b
c =

a·b
c , c

a−b ·
d
b = c·d

a−2b or ab ·
c
b =

a+c
b possible answers:

a
c ·

b
c =

..·..

..·.. ,
a
c ·

b
c =

a·b
..·.. ,

a
c ·

b
c =

..·..
c·c

2. a · bc =
a·b
a·c , possible answers:

a · bc =
..·..
.. , a · bc =

..·..
c , a · bc =

a·..
c

3. a
b : cd = a:c

b:c possible answers:
a
b : cd = ..

.. ·
..
.. ,

a
b : cd = a

b ·
d
.. ,

a
b : cd = a

.. ·
d
.. ,

a
b : cd = a

.. ·
d
c

One group of error-pattern might contain several different patterns, which request dif-
ferent fill-forms. Grouping error-patterns has the advantage, for example in the case of
hint-pages,that we can give the same hint-page for a branch of groups of patterns, but this
not influences the capacity that the correct fill-form and fill-pattern will be shown to the
learner in case it is requested.

4.6 Dialogue Modes
”It is with children that we have the best chance

of studying the development of logical knowledge,
mathematical knowledge, physical knowledge, and so forth.”

Jean Piaget

Possible Problems, limits of the error-pattern detection: There are some steps, where
the machine has no chance to detect a error. Often happens, that learners just jump many
steps, and write a very short solution. Without recounting the example step by step, in this
cases also a human teacher would make a hard time to detect where the error occurred. With
some experiences, teacher might develop an intuition. This might also be supported in ISAC
with the help of statistical empirical data. Because that might be in the beginning of the
implementation a lower possibility of detecting errors, we introduce the so called dialogue
modes (DM) Dialogue Mode comprises settings which are the same for all learners at each
level etc. Presently there are two modes.

1. normal-mode: the dialogue checks input for EPs; if an EP is found, normal handling
is done: EP counter, etc.

2. check-EPs-mode: forces the individual learner to formulas, where only one EP can
happen. This mode is switched on by error patterns to check

3. Guiding Through an Example: allows steps which

The dialogue might have recorded, that this individual learner has already activated the
”cancel” error-pattern several times. On the other hand, fill patterns can be used even if
there is no related error-pattern; for the latter case there is a special identifier ”no-error-
pattern”. In ideal case ”Dialogue Modes” would help to choose the best teaching and
learning strategy, based on the collected data as: background information (e.g.: what is the
goal of the learner, how much time is available), and would be also able to detect the level
of knowledge, skills.

The rule-based dialogue engine has just been implemented (Kienleitner [64], Kober
[68]), the Java code switching between rule-sets was a stub at the beginning of this thesis;
this stub has been extended in parallel to the development of the rule-sets in this thesis.

This section is a first record of guidelines for dialogue authors; it has been written
during cooperation with the ISAC developers, this section is mirrored on a specific page
of the ISAC wiki3, the subsequent paragraph “architecture of ISAC’s Dialog Guide” is at
http://www.ist.tugraz.at/isac/index.php/Dialog Architecture.

3http://www.ist.tugraz.at/isac/index.php/Guidelines for Dialog Authoring

67

The architecture of ISAC’s Dialog Guide separates the dialogues clearly from the other
components in ISAC. This is shown in Fig.4.6 on p.68. The relevant components are

Figure 4.5: The WorksheetDialog with Connections.

WorksheetDialog manages the dialogue for exactly one Worksheet

Worksheet ”Worksheet displays exactly one calculation, which might consist of sub-problems.
Within the Worksheet also the specification phase is done in a separate window.”

MathEngine ”MathEngine does all calculations requested by the learner (via Worksheet)
and by the WorksheetDialog. The latter, for instance, wants to check which error-
patterns are related to the current step of calculation. This check involves ”matching”
of formulas, which can only be done by the MathEngine.”

DialogGuide ”DialogGuide serves all dialogs, in particular the WorksheetDialogs and the
dialogs for the browsers for examples, theories, problems and methods. The Dialog-
Guide manages the hint-pages, several counters etc. ”

4.7 Implementation of Dialogue-Rules
”Reserve your right to think,

for even to think wrongly is better
than not to think at all.”

Hypatia of Alexandria

Error-patterns and fill-patterns are implemented in ISAC’s mathematics-engine (ME)
which is appropriate because they involve rewriting, a technique from Computer Mathe-
matics. Dialogue-rules are implemented in the Java-based part of ISAC, where the dialogue
component resides, mediating between the learner working on the Workhseet (WS) and the
ME, so it is called WorksheetDialog (WD) 4. The software architecture has been designed
such, that via dialogues users (learners and teachers) can watch the Worksheets of others,
or even can input to them. These features will be exploited as soon as basic user-guidance
is implemented in the DialogGuide (DG).

The behaviour of ISAC’s dialogue is determined by dialogue-rules interpreted by Drools
Expert (Amador [3]), a knowledge-based expert system. These rules are triggered by events
addressing the WD on top from left and right, and the rules in the WD can determine actions
directed towards left (WS) and right (ME) ([35]).

1. notifyUserAction notifies the WorksheetDialog about an action of the user on the
Worksheet by an EUIElement. For instance, in rule 2 the trigger is EUIElement

4The Workhseet on the front-end is accompanied by further windows accepting user-input; these windows
have their own dialogues and are out of scope of this thesis

68

==

UI SOLVE HELP ENTERING FORMULA indicating that HELP has been pushed.

2. doUIAction notifies the Worksheet about what to display. This methods uses the
same EUIElement as (1.) compound with appropriate data (i.e. the actions between
WS (learner) and WD (the ’system’) are symmetrical). The rules in the running
example do not involve such notifications, because fill-in-forms are passed to the
WS by CalcChanged without intervention of the WD.

3. calcResponse notifies the WorksheetDialog about the result of the MathEngine for
the last request for calculation from the WorksheetDialog by a CalcEvent. This can
be of 2 kinds:

(a) CalcChanged notifies about a successful step of calculation. This case occurs
when an error-situation is quit by a correct input which “changes the calcu-
lation” by adding a new line. Since the dialogue cannot interpret formulas,
CalcChanged passes formulas to the WS by-passing the dialogue. Thus the
rules concerning error-patterns are not triggered by CalcChanged, but only by
CalcMessage, see rule 1 ([35]).

(b) CalcMessage notifies about a error of the MathEngine trying to do the last
requested step of calculation. For instance, in rule 1 on line 03 an error-
pattern is reported together with an errorID, in the running example add-
fractions.

4. IToCalc#methods request services from the MathEngine, which is addressed via
interface IToCalc, an abstraction of the calculation on the Worksheet with respec-
tive positions, formulas and tactics/rules. For instance, rule 2 sets the action
ME#requestFillformula(err patt, fill patt).

5. Services from DialogGuide (DG) are access to hint-pages, update of counters etc.
For instance, rule 1 contains DG#showHintPage (err patt).

The executable format of Drools’ rules involves distracting technicalities, so the rules
below are written in a pseudo-code which is both, comprehensible for a non-programmer
(like a dialogue-author) and succinct enough for a programmer translating them to exe-
cutable code 5.

01 rule "1: show a hint-page if an error-pattern is detected"
02 when
03 CalcMessage == "error-pattern#errorID#"
04 then
05 error_pattern_ = CalcMessage.getErrorPattern()
06 error_patterns_.add(error_pattern_)
07 DG#showHintPage (err_patt_)
08 DG#EP_counter (err_patt_) ++
09 help_counter_ = 0
10 WS#addHelpButton()
11 WS#removeNextAndAutoButtonForWorksheet()
12 end

Besides giving hints it is also important to involve learners actively in the learning
process, and let them think. We don’t let them just request the next correct step or formula
(see line 11 above), but make them struggle a bit. However, line 10 adds a HELP button
(see Fig.4.2) for requesting fill-forms.

01 rule "2: from ME request fill-patterns"

5 The ISAC-project expects to develop a dialogue-language which copes with the need of both, authors and
programmers, within one single format

69

02 when
03 EUIElement == UI_SOLVE_HELP_ENTERING_FORMULA
04 then
05 fill_patts_ = ME#findFillpatterns(err_patt_)
06 fill_patt = DG#selectFillPattern(fill_patts_, help_counter_)
07 ME#requestFillformula(err_patt, fill_patt)
08 help_counter_ ++
09 end

rule 3 repeats the request for a fill-form. The DG knows which one to select from
the help counter , see line 07 below. Finally, rule 4 proposes the tactics, i.e. the
rule, leading to the correct next formula.

01 rule "3: for incorrect fill-form request other fill-form"
02 when
03 CalcMessage == "fill-form incorrect"
04 && help_counter < length(fill_patts_)
05 then
06 fill_patt =
07 DG#selectFillPattern(fill_patts_, help_counter_)
09 help_counter ++
10 end

Given the 37 dialogue-rules handling interactions with NEXT , AUTO , input of a
formula, etc ([35]). The above 4 dialogue-rules are sufficient to extend ISAC’s dialogue
behaviour in the decisive way described in this thesis.

01 rule "4: fill-forms did not help, show rule"
02 when
03 ((CalcMessage)calc_event).getText() == "fill-form incorrect"
04 && help_counter >= fill_pats_no
05 then
06 calc_tree.fetchProposedTactic();
07 end

The dynamic behaviour of the four rules is shown in Fig.4.6 on p.70. The reader may
note, that the four rules are neither specific for addition, nor fractions — they are general
such that they handle all domains of mathematics.

Figure 4.6: State-Diagram of the Dialogue-Rules

70

These rules also involve some counters (helping to get more information from the dia-
logue process):

1. Counter for the fill-pattern, and counter for the error-pattern. The first counter for
the fill-pattern is important because we want to implement, that by requesting the
first fill-pattern the learner gets relatively small help, and if they are requesting more
help, they get more information.

2. The second one, the counter for the error-pattern is important, because: if the learner
conducts the same error-pattern during the learning session, he/she cannot get always
the same reaction. The computer should provide a variety of answers. After the first
1-2 times, detecting the same error-pattern, the hint-page for example will not appear
again, but some different reaction.

For creating other own rules dialogue authors have to look up directly in the java-file.
These contain further possibilities (partly described in this thesis), and the following list
tries to show how these might look like:

1. Show or request tactics in the following situation

(a) What tactics would the mathematics engine apply UI SOLVE GET PROPOSED TACTIC

(b) List of tactics to the active formula UI SOLVE GET APPLICABLE TACTICS

(c) Set the tactic applied to the current formula UI SOLVE SET NEXT TACTIC

(d) Show the tactics applicable for this formula UI SOLVE SHOW APPLICABLE TACTICS

(e) Which tactic was applied? UI SOLVE TACTIC APPLIED

2. Show theorem, Show browser, Show intermediate step

3. Calculate till a sub-problem is solved UI SOLVE CALCULATE SUBPROBLEM

4. Buttons in ISAC: Help Button (UI SOLVE HELP ENTERING FORMULA), Auto, Next,

5. Formulas

(a) Request editing the currently active formula UI SOLVE EDIT ACTIVE FORMULA

(b) Currently active formula is finished UI SOLVE EDIT ACTIVE FORMULA COMPLETE

(c) New formula after the currently active formula UI SOLVE APPEND USER FORMULA

(d) Make the reference formula the currently active formula
UI SOLVE MOVE ACTIVE FORMULA

71

Chapter 5

Embedding ISAC into Learning
Scenarios

”I came to the . . . open gate of mathematics.”
M.C.Escher

What would be a concrete example of the benefit that could be created if cognitive
science is applied to ISAC? This chapter will show a possibility for a dialogue guidance,
and implementation of a concrete scenario.

Staying with the example of the fraction, we would like to compare real life examples
with the possibilities of ISAC.

5.1 Examples of Errors in the Domain of Algebra
”Perfect numbers like perfect men are very rare.”

Descartes

A question is, if the above described errors are elaborate and inclusive enough, to detect
errors from learners. In this paragraph we will show some examples of errors conducted
by a learner age fifteen (collected during observation in a case study). These examples
were collected on a sheet of paper, but for a better readability, we will show the errors in
the following way: Examples will be shown in a frame followed by the learner’s solution,
followed again by the correct solution, and a short explanation.

Example 1: x− 1
x

(1+x)
x

=
x2−1

x
1+x
x

= x2−1
x ∗ 1+�x

�x

Correct solution: x−
1
x

(1+x)
x

=
x2−1

x
1+x
x

= x2−1
x ∗ x

1+x = ���(x+1)(x−1)

�x
∗ �x
��1+x

= x− 1

As we can see, the last step step contains errors:

1. Error in Division: One can divide fractions if we multiply with the reciprocal of the
divisor. In the above example, the multiplication was ”correct”, but the reciprocal
of the fraction was obviously forgotten. This pattern can be found in the group:
”Division”, and it would be possible for ISAC to detect it.

2. Error in Cancellation: 1+�x
�x

would only be correct if instead of + there would be a
multiplication sign. This pattern can be found in our group: ”Cancellation”

3. Recognizing binomial form: It is obvious, that in order to solve the example, the
learner should have realised that x2− 1 = (x+1)(x− 1). This pattern can be found
in our group: ”Binomial Form”

72

The above example indicates a difficulty: the difficulty to detect error-patterns, if sev-
eral of occur in one step. In such cases it might be possible for a teacher, what are these
errors, and what is their nature. In the above case ISAC would not detect both errors at the
same time, only if the learner was be asked to go on step by step. However, error-pattern
“Division” could be detected, and the system could answer with x2−1

x ∗ x
... , for instance.

Example 2: This example was part of a task, where the denominator was to be simplified:
2(x−1)∗x
(x−1)∗x = 2x−2x

(x−1)∗x

Correct solution: 2(x−1)∗x
(x−1)∗x = (2x−2)x

(x−1)∗x = 2x2−2x
(x−1)∗x

This is quite a common error in term multiplications and erasing brackets. This could be an
example of our error-pattern, algebraic sign, and in case of a request for a help ISAC could
answer with the following fill-form: 2(x−1)∗x

(x−1)∗x = (...−...)∗x
(x−1)∗x

Example 3: 1
a+1 + 1

a−1 = 1���(a−1)
(a+1)���(a−1) +

1���(a+1)

���(a+1)(a−1) =
1

(a+b)(a−b) and

100
a + 10

b = 110
ab

Correct solution: 1
a+1 + 1

a−1 = 1(a−1)
(a+1)(a−1) +

1(a+1)
(a+1)(a−1) =

a+1+a−1
(a+b)(a−b) =

2a
(a+b)(a−b)

Correct solution: 100a + 10
b = 100b

ab + 10a
ba = 100b+10a

ab
This is a great example for our error-pattern ”Addition”. However, also an example for
how hard it might be to understand where error-patterns originate from. In the first case of
the Example 3 we cannot know if it is simply an error in the nominator 1 + 1 = 1, or the
pattern: a

b + a
c = a∗a

bc . Nor a human teacher without further interaction with the learner,
nor can ISAC make a decision here. But in this case ISAC would recognise it as the second
pattern: a

b + a
c = a∗a

bc , and in a case of requesting help, besides a hint-page, ISAC could
give the following help: ..+..

(a+b)(a−b)

Example 4: 36x5 − 12x3 =12(2x5 − x3)
Correct solution:36x5 − 12x3 = 12(3x5 − x3) = 12x3(x2 − 1) = 12x3(x+ 1)(x− 1)
Sometimes learners dont know when to end an example, as mentioned in the previous
chapter as well. In this case ISAC can give the following help, and fill-form: 12(2x5−x3) =
12 ∗ ..(..− 1)

Example 5: 1
a+1 ∗

1
a−1 = 1���(a−1)

(a+1)���(a−1) ∗
1���(a+1)

(a−1)���(a+1) =
1

(a+1)(a−1)

Correct solution: 1
a+1 ∗

1
a−1 = 1

(a+1)(a−1)
This example is very interesting to show how the learning process takes places: sometimes
applying a ”wrong” rule (In this case there was no need of extending the fractions to apply
the multiplication) might lead to good solutions. This shows that in this case extending and
cancelling fractions worked out well, but for some reasons there was a failure in multipli-
cation .The same learner can make an error in the next example forgetting how to extend
fractions.

Example 6: −5a− (−7) =2a
Correct solution:−5a− (−7) = −5a+ 7
There are some error-patterns that are not mentioned in this thesis, as the Example 6. This
thesis shows the possibility of error-patterns but does not have the goal to establish all sub-
domains connected to fractions.

There could be a lot more examples, but not all can be connected to or be found in
theoretical background. From a cognitive science point of view it would be very interesting

73

to understand where these errors originate from, what is their underlying structure, and
implement this knowledge into an educational software.

The conclusion is, that there is a high possibility, that learners conduct several errors
at the same time. In the above show cases it was rather easy to see where the error was,
but if the learner commits several mistakes at the same time, it becomes rather complicated
also for a teacher him/herself to detect these errors. It would be an interesting question to
ask: which errors happen together, or with higher probability at the same time. At present
it seems best to lure students into proceeding in small steps where multiple errors do not
occur. How to give help in a stepwise solution is described subsequently.

5.2 Guiding Through an Example
”Some people believe in imaginary friends.

I believe in imaginary numbers.”
R.M. ArceJaeger

Simplifying fractions follows algorithms which allow support (by Lucas-Interpretation)
for step-wise approaching a result similar to paper and pencil work. Each step comprises
application of one or more rules, so we can take different knowledge levels of the learners
into consideration.

In curricula simplification of fractions often starts with addition of fractions (see ex-
amples in the Appendix), because it is more complex than simplification of one fraction,
secondly addition requires to compute the common denominator. Let’s assume, that in
this concrete chapter the goal is to add/subtract two/more fractions and to simplify them
(e.g.: a+1

a2−a + b+1
ab−b). This needs specific background knowledge, and learners might be on

different knowledge levels.
Using the knowledge from cognitive science described in the above chapters we can de-

sign the interaction basically for two groups, however we should assume, they both already
knew the basics. One group requiring a different abstraction level and closer connection to
real-world examples. That means: blending the task to a different representation (for the
other group we can use the common mathematical language). This abstraction level close
to real-life is supported by (Koedinger et al. [70]), he called it ”storyfing” and stated: at
some level of knowledge a kind of ”storyfing” is needed, and later on we can move on to
more mathematical abstraction. We will also take this notion and use it in the further steps.
Vygotskian theory says that learning proceeds from the concrete to the abstract (Rogoff
et al. [119]).

The following mathematical knowledge is necessary to successfully add and subtract
fractions. Basically they are different parts of mathematics and are considered separately
(sometimes even in different years), and this task of adding and subtracting fractions re-
quires learners to integrate all this knowledge and to apply rules in the right order:

1. Factoring terms
This means the learner has to be able to:

(a) cancel a number from the term

(b) cancel a single variable or a whole sub-term

(c) recognize a binomial form

2. simplify terms or fractions (which involves knowing when a task ends)

3. create common denominators (LCM) of algebraic terms

4. expand fractions according to a desired denominator (In this task learners conduct
often errors with brackets)

74

5. operate with the basic rules of algebra (associativity, commutativity, etc)
The process described above usually involves the following steps:

(a) remove brackets (taking into account precedence questions, taking care of mi-
nus signs before brackets)

(b) carry out addition/subtracting terms (for that one has to understand which terms
can be added, which not)

(c) factor terms if possible, where we come back again to a same process.

(d) know where to put the brackets, what to do with minus signs, etc.

During a personal face to face session with the learner it is possible to tell the necessary
strategy et each point. In this situation the teacher can identify, with respect to which of the
background knowledge described above the learner struggles, what is missing, etc..

The problem with the procedure described above is the unlikeness of finding an un-
derlying error-pattern during normal use of ISAC. To increase the possibility of finding an
error-pattern, and knowing what exactly the learner tries to do, ISAC could guide him/her
trough an example, and capture at single moments, where a limited amount of error-patterns
might occur and where we could benefit from the fill-forms. With the technological back-
ground, its fine-grained detection of error-patterns, its universal usable fill-forms, ISAC
would bring the possibility to capture learners in a very single moment, and look not only
on a level of single error-pattern where the problems are, but also identify the crucial pro-
cesses e.g: that most errors occur during factorisation. That way we could get much closer
to the source of the errors than with human observation and guessing.

The quite simple following strategy (or algorithm) for adding and simplifying fractions
(Multiplication and division would need a different strategy)-also experienced by the user
can be implemented within ISAC (If the example only involves simplification of a single
fraction, the strategy is much easier. It contains just: Factorization, and simplification.–
First and second step in the following list.)

1. First step is to factorising all nominators and denominators, Usually the problem is
that the learners forget, or do not know how to factorise an algebraic term, which
is a key in finding the LCM.(knowledge needed: being able to factorise an algebraic
term is key).

2. and look if one can simplify any of the fractions (knowledge needed: simplifying
fraction), because mathematics goes with ”the usually the simpler the better”.

3. Look for common denominator, if they are unlike. Finding the common denomina-
tor might be the challenge because it involves the concept of LCM(= Smallest/least
common multiple or common denominator)
(Knowledge needed: finding LCM) Learners usually struggle with the following
problems here:

(a) Dont remember that they can add fractions only if they have the same denomi-
nator

(b) Dont understand the concept of LCM, especially if the expression involves al-
gebraic terms

4. Rewrite the fractions as equivalent fractions with the LCM as the denominator, and
find the expansion factor for that (Knowledge needed: Expanding Fraction, recog-
nizing what is missing from the nominator)

5. Successfully carry out the addition (knowledge needed: manipulating terms)

6. Factorizing nominator and denominator (knowledge needed: factorization)

75

7. Simplify again if needed (knowledge needed: Simplification, and to know when to
end an example)

Usual tips for preventing a lot of errors and miscalculation during the whole process
are:

1. Look if you have all the brackets you need

2. Look at minus signs

3. Look again if each number, and sign is correct, and the same as in the previous lines.

Another problem is, that learners dont know the line up of a single steps they have to follow.
Basically it is always the same, however in the learning process they might get mixed up.

This strategy could be successfully implemented into ISAC and be considered in the
examples above. Once again we have to choose an approach according to the two levels
described in this chapter: One with concrete mathematical language, and the second for a
more, or less abstract, and blended way: as a ”game”. For the ”game” we will create the
following rules in ISAC, and the next table shows the rules on both ”storyfied” and normal
mathematical language. First we would like to show the concrete plan of the interaction
with normal mathematical language, than introduce the ”game” which uses a different ab-
straction level, and different language. Basically both scenarios are logical identical, and
guide the learner through the problems as described above.

Concrete example of interaction: How to read the tables? Each table has four rows.
The first row shows the actual example on the worksheet (in the table called: display), the
second line is the guiding text which can be seen on the screen. The third line shows the
learners possible interaction (Because this guided mode is on purpose limited in interaction,
these are the steps we could allow the learners to do). The last line shows ISACs possible
reaction on the learners input. In the background ISACs automatic error detection is still
on, and the fact that we limit the learner in his/her interaction makes it possible to exclude
multiple errors happening at the same time, and makes also possible to detect the error-
patterns, and to identify at which step, and/or process do these errors occur.

1. Step: Here we can check if the learner is able to recognize if fractions have the same
denominator or not

Example on the display a+1
a2−a + b+1

ab−b
Text on the display Do they have the same denominator?
learners reaction Click on YES or NO
ISACs reaction right/or no answer (in case no:Hint)

2. Step: We are in the process of factorization
Example on the display a+1

.... + b+1
ab−b

Text on the display Factorize the first denominator
learners reaction Correct, or request Help (Fill-Form)
ISACs reaction Fill-Form: a(..− ..)

3. Step: Still in the process of factorization
Example on the display a+1

a(a−1) +
b+1
..

Text on the display Factorize the second denominator
Possible reaction of the learner Correct, or request Help (Fill-Form)
Possible reaction of the ISAC E.g.: Fill-Form: ..(a− 1)

4. Step: If all denominators are correctly factorized, we can go the the process of cre-
ating the LCM

76

Example on the display (a+1)·(..)
.. + (b+1)·(..)

..

Text on the display What is the common denominator?
Possible reaction of the learner Fill in or Request Fill-Form/hint-page
Possible reaction of the ISAC hint-page as table seen above:

In this case it is only possible to write in the part of the denominator, and the re-
quested hint-page is the same as the table seen above, only with missing common
denominator, and an explanation what it is. If needed with highlighting all common
parts. (As pattern matching)

5. Step: If the common denominator was found, it is possible to step to expansion
Example on the display (a+1)·(..)

CD + ..
CD

Text on the display Find the expanding factor for the 1. fractions!
Possible reaction of the learner Correct, or request interactive Help Page
Possible reaction of the ISAC Produce the interactive page

The interactive page would refer separately for the actual fraction, and highlight the
corresponding patterns and parts.

Name Denominator Factorized den. Expanding factor
1. Fraction a2 − a = a(a− 1) b
2. Fraction ab− b = b(a− 1) a

Common Denominator .. ab(a− 1) ...

6. Step: If we have the common denominator, and first expanding factor correctly (Pro-
cess of Expansion)

Example on the display (a+1)·(b)
CD + (b+1)·(..)

CD

Text on the display Find the expanding factor for the 2. fractions!
Possible reaction of the learner Correct, or request an interactive Help Page
Possible reaction of the ISAC Produce for each pairs interactive page

7. Step: After all expanding factors were found one can carry out addition or subtraction
Example on the display

ab(a−1)
Text on the display Add/Subtract the fraction
Possible reaction of the learner Correct, or request interactive Help Page
Possible reaction of the ISAC Hint can show the first part or (auto) solve

The above described strategy used common mathematical language, the next describes
the ”blended” version which can be more suitable for some learners.

Description of the ”Game” :
Overall Goal is:make two or more fractions ”play” together.
For example: a+1

a2−a + b+1
ab−b want to ”play together”, but this requires some special rules,

and a ”preparation” from the learner.
(This case of playing is the equivalent of addition or subtraction. For multiplication and
division we would need a different rules, and different games. Basically this game builds
up on already existing knowledge.)
General Rules are: Two or more fractions ”can play together” if they have the same com-
mon ”rule-set” Each fraction has its own rule-set, which can be found in the ”lower” part of
the fraction. Sometimes rules can appear complicated, and are built from so called ”basic
rules”, or ”basic building elements”. The first task to always find which are the basic rules.
(Through factorization).

For example the following fraction: b+1
ab−b , has its own rule: ab− b, which contains the

basic rules or basic building elements: b and a− 1, since: ab− b = b(a− 1). (In this step
of the game we should assume that the learner knows the way of factorisation, or ISAC will

77

provide help with the fill-forms described below as well).

Generally keeping things simple is always a good way, so if at all possible, we work
with ”basic rules” For two fractions to be able to play together they have to have the same
rule-sets, as already mentioned. First before playing ”they have to learn” multiplying the
whole above part of the fractions with the not yet known rule. The common rule set: is all
basic rules (but once, only once!) which can be found in all fraction.

The following table, usually used also in mathematics teaching, shows for our example
a+1
a2−a +

b+1
ab−b for each fractions separately which own rules, own basic rules they have, and

which rules does the learner have to learn.
Name Own ruleset =known basic rules Rules to learn

1. Fraction a2 − a = a(a− 1) b
2. Fraction ab− b = b(a− 1) a

Common Rules .. ab(a− 1) ...
As we can see the first fraction has the rule: a and a − 1, the second b and a − 1, so

both know already a − 1, the first miss b the second:a, which we have to teach them first
before they can play. The first fraction with b, the second one with a:

(a+1)·b
(a2−a)·b +

(b+1)·a
(ab−b)·a

Now, when both know the same rules they are able to ”play” together as shown:

(a+1)·b−(b+1)·a
(ab(a−1)

From this point on we refer to the knowledge of addition and subtraction, and multipli-
cation within terms. This kind of ”game” is good for learners who struggle with the notion
of the common denominator, as well as with the expansion of fractions containing terms.
This is equivalent to the use of normal mathematical language, as adding..etc.

The whole process could be connected to a rewarding point collecting system. This
implemented guided design would be an example to represent the possibilities of ISACs
general error detection capabilities as well.

5.3 Proposals for Extending ISAC
”To understand the things that are at our door

is the best preparation for understanding those that lie beyond.”
Alexandria of Hypatia

The need and relevance to design technology-integrated environments to support math-
ematical thinking is increasing. The case study above led to a novel kind of such support
and TP technology suggests further research and development.

Extension of machinery for user-guidance is generalised as follows:

1. A few additional lines of code provide automatic detection of an error-pattern wher-
ever a respective error occurs. Such additions are generally applicable: they refer to
a particular set of theorems, and theorems are the means to justify any step of cal-
culation in any topic of mathematics. So the extended machinery generalises to all
kinds of mathematics.

2. An additional error-pattern, for instance dealing with cancelling fractions, carries
over to any re-use of the respective theorems in any other application. For in-
stance, error-patterns implemented for calculating with rational, carry over to all
calculations with rational, because the respective program code serves both (due to

78

Lucas-Interpretation): (1) the creation of next-step-guidance and (2) the re-use in
programs on more advanced problems. So the machinery generalises over all re-
uses in the course of systematic build-up of mathematics without additional code for
user-guidance.

3. Four dialogue rules extended user-guidance by three adaptive system reactions: (1)
show a hint-page (and probably follow the links on this page), (2) suggest an incom-
plete next step (and check respective input) and (3) propose the rule to be applied.
These four rules can easily be changed for other kinds of adaptive user-guidance; and,
of course, the small number of rules indicates best prerequisites for well-structured
extensions by many, many other rules. So the dialogue machinery generalises and
scales to high complexity in accordance to future requests.

4. Additional interaction elements could improve the whole learning scenario: For ex-
ample: step back to the last good point and show a tactic, make a list of examples (or
list of pages) to solve for a specific error-pattern. Or transfer a problem automatically
to a new worksheet (even from the list of proposed examples.)

Counters are the first point raising questions for further research and development. Coun-
ters occur in all of the rules in §4.7, see EP counter and help counter . However,
nothing has been said about these questions:

Which value does a counter start with? Always zero? If not zero, do counters take
previous sessions into account? What is the correlation between EP counter and
help counter ? If counters are stored for many sessions, what is relevant? Their aver-
age? Do these counters provide information useful for user-guidance and for assessment?

These questions and others cannot be bypassed on the way to a user-model.

Recording user-actions is already implemented in ISAC: The EUIElements represent
steps which promote the construction of a solution within a logical context and a user
not aware of the context will fail to make such a step’, closely related to comprehensive
mathematical activities.

So a history of user-actions is ready to be used for statistical analysis — but can
the abundance of data be seriously related to cognitive processes involved in mathemat-
ics (Clancey [27], to problem-solving expertise? What structures and correlations can be
expected from statistical analysis over large populations? What about comparison of dif-
ferent populations?

Hint-pages can pop up due to adaptive user-guidance like in Fig.4.2 on p.54 — but there
is HTML-technology available with exciting new multimedia features (videos, pictures,
diagrams, graphics...etc.). These shall connect individual thinking with support for multiple
representations. This aspect is important because according to (Rittle-Johnson et al. [117])
multiple representation is key in the abstraction process. Further improvement for hint-
pages could also be: highlighting patterns, taking actual example and solving parts of it,
also as the following:

1. Getting more information from web/other sources

(a) Show real world connections

(b) Find a game, or other examples, forums, blogs..etc (by pointing at a word, or
part of the formula)

2. Examples in the hint-page

(a) Compare bad and good solutions, by counting the version of the learner till the
end

79

(b) Count only a part of the whole example, where the learners get stuck (that is
also possible in a new window)

(c) Count the example with concrete numbers

(d) Possibility to change numbers in a small (concrete) example (What happens if
we put there one, two..etc)

(e) Show: when does the value change, when not.

(f) Pattern matching with colors. -highlighting errors, important points

Blended learning environments of a new kind can be assembled from components en-
visaged above. This opens new possibilities for complex learning activities: support for
learning in a social environment; for involving the teacher (learners are influenced by the
teachers external representation in both procedural and conceptual knowledge(Bills [11]),
and also the individual way of thinking. People have individual strategies in solving math-
ematical problems and individual ways of learning (Rittle-Johnson et al. [117]).

Regarding error-patterns, and the interaction , interesting research questions arise
(also from a cognitive science point of view).

1. Which errors occur together (is there maybe an underlying structure, or is it depend-
ing on the way of learning?), and how should it be assessed, that the learner can
sometimes apply a rule, and sometimes not.

2. The current machinery in ISAC opens the possibility with small changes to design
different learning scenarios and environments, to identify which errors do happen
at identified factors (e.g.: To which extend does it depend from the environment,
teacher, or the type of example? How can we support and make the process of
learning abstraction easier? Why do specific errors happen?)

3. A general improvement for ISAC would be to identify which errors are due to miscal-
culation, or lack of concentration compared to ”real” errors where the learner would
need a wider explanation, not just a short hint.

Technology acceptance Technological environments change constantly and rapid at our
times. Paradoxically to the fact that children and young adults have a higher and faster tech-
nology acceptance, in education the technology acceptance is slower than in other parts of
life: i.e. daily in working life (See how many are using computers, smart-phones on a day
to day basis, and how many computers are used in schools.) We still have to take into
consideration, that future technological developments proceeds very fast in the direction
of fusion of the following: human-centred and context sensitive design; going online, on-
line platforms, social collaboration; different devices: computers, smart-phones, sensors,
multi-touch, Apps, involving multimedia content (video, image, audio, text); personalised
education in order to create an education that one can access on the basis of what she/he
needs, at the time of need, and to learn at the speed that is comfortable for the individ-
ual. We believe, that an educational software, independent from its domain, should meet
the challenge of this rapid development and flexibility. ISAC provides a possibility for a
flexible technological environment to meet parts of the above mentioned criteria.

Pilot studies in regular classes have not been done yet, with good reasons: We do not
expect significant results from a study limited to a few lessons. Rather, the strength of
the error-pattern technology described in this thesis is embedding into complex learning
scenarios — errors cannot be planned, rather errors should be handled at the moment they
occur; the strength comes to bear with frequent use of this technology. For that reason
the system would need to cover most of mathematics taught at high-school (which is not

80

the case in present ISAC). For instance, error-patterns for fractions are helpful again when
exercising in different domains: e.g. integration in higher grades for some learners, but
not for all: this is one of the strengths of the approach of ISAC. However, we did several
case studies with colleagues, which led to one remarkable result: More frequently than
expected users make several errors at once, and these combinations can not (yet?) be
detected by the technology described. There are ideas, how to tackle this problem in a
specific dialogue mode, where the learner is led into situations, where they cannot make
more than one error; these ideas are out of scope of this thesis. The other question is the
age of the learner: There is a need for younger learners, and also altering the systems for
their age. As in most cases, technologies used in mathematical education are designed for
older learners (Highfield and Goodwin [60]). This thesis presents the first implementation
of error-patterns, and in order to conduct relevant field studies further implementations are
necessary, and it needs long-term tests, how ISAC would adapt to different ages, because
it is quite a fine graded detection of errors, how learners using ISAC perform compared to
non-ISAC users. By analysing protocol of learners collected during learning sessions we
can get new insight into learning about this domain.

81

Chapter 6

Summary and Conclusion

”I seldom end up where I wanted to go,
but almost always end up where I need to be.”

Douglas Adams

6.1 Summary
Experience with the general R&D process showed that several iterations were neces-
sary, in order to come from the starting question to an executable implementation in the
ISAC prototype.

The question was as general as “What can cognitive science can contribute to the de-
velopment of ISAC?”. The iterated approach from this general question pays off by the fact,
that ISAC is a prototype of an upcoming generation of educational mathematics assistants,
which is based on Computer Theorem Proving.

As a prototype, ISAC required considerable effort for installation; and then interacting
with the system was not as intuitive as promised. However, the essential features became
apparent with some experience. Nevertheless, it was a challenge to cut down the expecta-
tions to what is realisable in a computer.

Personal experience with teaching mathematics in private lessons and in courses had
sharpened personal expectations of how computer support in learning mathematics should
look like.

So iterations proceeded by learning how to use limited technical means in order to
accomplish a maximum of the expectations — and to advocate appropriate theories and
respective references from Cognitive Science in order to provide scientific grounds for the
expectations.

The contents of the thesis

1. Chapter introduced points common to cognitive science and to mathematics. The
guiding questions were: what is mathematics, are there innate processes, what is the
role of abstraction in learning, what is special about algebra and fraction, where do
errors in mathematics originate from, and how we can use computers in mathematics
education.

2. Chapter explained the existing features of the TP-based system: ISAC, its next step
guidance. showing the starting state of its dialogue component.

3. Chapter investigated deeper the possible contributions from cognitive science: How
do learners solve problems and calculate examples in the domain of fractions, what
kind of knowledge is needed in mathematics, and what is needed for an effective

82

guiding/tutoring. The chapter also compared existing computer systems used in
mathematical education. Summarizing the above described elements we established
guidelines for ISACs dialogue design. As having a focus on reacting on errors we also
investigated the question whether errors are patterns like, and which error patterns
could be useful for the dialogue in ISAC.

4. Chapter showed the concrete implementation of error-patterns, hint-pages, rewrite
rules, fill-forms, dialogue rules and dialogue modes in ISAC.

5. Chapter compared real-world examples with the possibilities of error-detection in
ISAC. The Chapter contained also how we can embed the above described findings
into learning scenario, proposals for guided example, and as well as for future ex-
tending (e.g.: user models, pilot studies).

The implementation in ISAC was surprisingly little effort, after research in the cognitive
science literature and cooperation with ISAC developers had led to a concise design in §4.2.

About hundred lines of code in SML define the error-pattern for addition of fractions
and respective fill-forms; further error-patterns as shown in the appendix §B have not been
implemented. Given these definitions according to the respective design, ISAC’s mathe-
matics engine detects error-patterns automatically; the code required for detection has been
implemented by the ISAC development team.

Detection of error-patterns needs to be exploited by ISAC’s dialogue module. This
module is a rule-based engine from an expert system and dialogues are determined by rules,
which can be fairly easily implemented. So it was tempting to start trials with these rules —
however, we decided to confine this thesis to a minimum of rules, just as a demonstration
of feasibility: Finally four rules were sufficient to determine the learning sequence with the
hint-page and the fill-forms as described in §4.1.

However, only the hint-page can be demonstrated, not the fill-form (which would have
required further R&D on ISAC’s user interface).

Guidelines for further development are provided by this thesis: §4 give detailed de-
scriptions which are meant as guidelines for successors in R&D, who want to implement
further error patterns for other kinds of calculations in other areas of mathematics, and who
want to extend the set of rules in ISAC’s dialogue module.

In the course of further R&D details of the current design might change, so §4 has
already by transferred into a wiki by the ISAC development team:
http://www.ist.tugraz.at/isac/Guidelines_for_Dialog_Authoring

6.2 Conclusion
The first attempt to amend ISAC’ dialogues with expertise from cognitive science was suc-
cessful: it has clarified foundations, and although not all the goals have been achieved, the
advancements in technology are breaking new grounds.

What the thesis has clarified provides solid grounds for ISAC’s cognitive design of dia-
logues, demonstrated fruitful in this thesis and giving direction to further R&D.

Concepts in cognitive science have been identified in learning mathematics, which can
be modeled in TP-based software in a straight forward manner: this is demonstrated by
“errors” and the implementation of “error patterns”, further ideas mentioned in the thesis
§5.3 are considered a glimpse on future possibilities.

On the other hand concepts in cognitive science have been identified, which are hard to
model in software or even are principally not feasible in software: embodiment of learn-

83

http://www.ist.tugraz.at/isac/Guidelines_for_Dialog_Authoring

ing, adapt to emotions, directly support the process of abstraction. These findings suggest
particular care when designing complex user models in the future.

The terrain between the extremes, “straight forward implementation” and “principally
not feasible in software”, has been clarified within the limited scope of the thesis: reaction
on all possible errors occurring during the learning process cannot be expected, because
some errors are ad-hoc, some errors are hard to identify for technical reasons (for instance,
if there are several conceptual errors, i.e. error patterns, in one input formula) or some kinds
of errors have not yet identified. In particular, the relations between errors and respective
patterns of occurrence, seem promising for research.

What has been not achieved results from several reasons.
The interaction on fill-forms is not implemented as described in §4.1. The reason for

that is a technical feature required in ISAC’s worksheet, which was detected missing during
the work on the thesis, and which could not be provided in time.

The implemented error-patterns were not tested with students. §5.3 gave the reason
“error cannot be planned in pilot studies”; or course, other reasons are still missing user
models and more elaborated dialogues required for concisely proving advancements.

Many ideas have been mentioned but not realised, for instance adaptive and interactive
hint pages. The reasons for that are simply lack of time; also the usability of ISAC’s author-
ing tools is still very low. However, these considerations led to a more general design.

The advancements in technology are significant and demonstrate the potential of com-
bining expertise from Cognitive Science with the novel features of Theorem-Proving tech-
nology. The error patterns for fractions

1. generalise to virtually all other kinds of calculations: to calculations with roots,
with complex numbers, with trigonometric functions, to differentiation and integra-
tion, etc. Error patterns address a level of skills considered basic, but indispensable
for succeeding in any formal discipline.

2. transfer to all applications of calculations: For instance, fractions occur in “real
world problems” at high-school, in integration of polynomials, in equation solving,
etc. And since systems like ISAC build all applications from elementary modules like
simplifications of fractions, the mechanisms automatically carry over to any applica-
tion in engineering and technology1.

3. Efficiency of the technology is demonstrated by the fact, that only four additional
rules suffice to expand the dialog module for handling error-patterns. The small
number promises scalability of adaptive user guidance into a new level of complexity,
significantly beyond the present state-of-the-art; §5.3 presents some ideas.

Advantages for research in Cognitive Science resulting from the advancements in TP-
based technology have been identified in this thesis as follows.

1. Cognitive design is free to focus structures of human learning in joint develop-
ment of educational math software: TP-based systems, in principle, model some
essence of mathematics, which is reliable handling of logical relations between for-
mal facts. Given that software structure, development is free to focus human aspects,
e.g. of errors.

2. Cognitive design has powerful services at disposal when building upon TP-based
technology: (1) automated check of (fairly free) user input (2) automated proposal
of a next step when the learner gets stuck and (3) human readable format of all

1Observations from academic courses show, that there are students who would take profit from re-instruction
on elementary skills, precisely at the occasion when they run into problems.

84

underlying mathematics knowledge. The design of error-patterns only gives a tiny
preview to future possibilities.

3. A new level of complexity of dialogues comes within reach when exploiting the
above mentioned services: Four (4!) additional rules were shown sufficient to ex-
ploit error detection (see “generalisation” and “transfer” above). The thesis identi-
fies further exploitations: reflect on errors, give information if requested, refresh the
knowledge at the moment where forgotten, etc.

4. Novel opportunities for research in cognitive science arise from tutoring sys-
tems with complex dialogues. With current technological and theoretical back-
ground there is little support for understanding and finding out the thoughts of the
learner. ISAC, for instance, protocols high-lever interaction between system and
learner, which result in a wealth of significant data.

85

Acknowledgements

I would like to express my very great appreciation to Dr. Walther Neuper from University
of Graz, for his advices given in my questions regarding mathematics, education, and this
thesis, and he has been a great help in understanding ISAC, and I am particularly grateful for
his assistance. I would like to thank for Jürgen Markus Donko for helping with the German
translation, and for all persons involved in the organisation of the MEi:CogSci program and
curricula which enriched my view on research and science.

Bibliography

[1] S. Ainsworth. The functions of multiple representations. Computers & Education,
33:131–152, 1999.

[2] L. Amador. Drools developers cookbook: over 40 recipes for creating a robust
business rules implementation by using JBoss Drools rules. Birmingham, U.K. :
Packt, 2012.

[3] L. Amador. Drools developers cookbook: over 40 recipes for creating a robust
business rules implementation by using JBoss Drools rules. Birmingham, U.K. :
Packt, 2012.

[4] J.R. Anderson. Intelligent tutoring and high school mathematics. Techni-
cal Report 20, Carnegie Mellon University, Department of Psychology, 2008.
http://repository.cmu.edu/psychology/20.

[5] C. Attard and M. Northcote. Teaching with technology. Australian Primary Mathe-
matics Classroom ISSN 1326-0286, 17(1):29–32, 2012.

[6] R.-J. Back. Structured derivations: a unified proof style for teaching mathematics.
Formal Aspects of Computing, 22(5):629–661, 2010.

[7] N. Balacheff. Future perspectives for research in the psychology of mathematics
education. In Mathematics and Cognition, A Research Synthesis by the International
Group for the Psychology of Mathematics Education, 1990.

[8] S. Barzilai and A. Zohar. How does information technology shape thinking? Think-
ing Skills and Creativity, 1:130–145, 2006.

[9] M. J. Beeson. Mathpert: Computer support for learning algebra, trig and calcu-
lus. In A. Voronkov, editor, Proceedings of the International Conference on Logic
Programming and Automated Reasoning (LPAR’92), volume 624 of LNAI, pages
454–456, St. Petersburg, Russia, July 1992. Springer Verlag. ISBN 3-540-55727-X.

[10] T. Ben-Zeev. The nature and origin of rational ediys in arithmetic thinking: Induction
from examples and prior knowledge. Cognitive Science, 19:341–376, 1995.

[11] C. Bills. The influence of teachers representation on pupils mental representation.
Research in Mathematics Education, 2, Issue 1:45–60, 2000.

[12] C. Blair, S. Gamson, S. Thorne, and D. Baker. Rising mean iq: Cognitive demand of
mathematics education for young children, population exposure to formal schooling,
and the neurobiology of the prefrontal cortex. Intelligence, 33:93–106, 2005.

[13] J. Bobis. Visualisation and the development of number sense with kindergarten
children. In J. Mulligan and M. Mitchelmore, editors, Children’s Number Learning,
page 1733. Adelaide: AAMT & MERGA, 1996.

87

[14] P. Boero, T. Dreyfus, K. Gravemeijer, E. Gray, R. Hershkowitz, B. Schwarz, A. Sier-
pinska, and D. Tall. Abstraction: Theories about the emergence of knowledge struc-
tures. Proceedings of the 26th annual conference of the International Group for the
Psychology of Mathematics Education, Vol. 1:113–138, 2002.

[15] G. Booker. Theories of Mathematical Learning, chapter 22 Constructing Mathe-
matical Conventions Formed by the Abstraction and Generalization of Earlier Ideas:
THe development of Initial Fraction Ideas, pages 241–266. Lawrence Erlbaum As-
sociates, Inc., 1996.

[16] A. V. Borovik. Mathematics under the microscope. Notes on cognitive aspects of
mathematical practice. Providence, RI: American Mathematical Society (AMS),
2010.

[17] R. M. Bottino and G. Chiappini. Advanced technology and learning environments.
their relationships within the arithmetic problem-solving domain. In Handbook of
international research in mathematics education. English, Lyn D. et al, 2002.

[18] T. Breiteig and B. Grevholm. The transition from arithmetic to algebra: to reason,
explain, argue, generalize and justify. Proceedings 30 th Conference of the Interna-
tional Group for the Psychology of Mathematics Education, 2:225–232, 2006.

[19] J. S. Brown and R. R. Burton. Diagnostic models for procedural bugs in basic math-
ematical skills*. Cognitive Science, 2:155–192, 1978.

[20] J. S. Brown and K. VanLehn. Repair theory: A generative theory of bugs in proce-
dural skills. Cognitive Science, 4:379–426, 1980.

[21] N.G. Bruijn. Automath archive, 2012. URL http://www.win.tue.nl/
automath/.

[22] G. E. Buckingham. Diagnostic and remedial teaching in first year algebra. Chicago,
IL: Northwestern Universiity School Education. Series, 11, 1933.

[23] J.F. Cantlon, E.M. Brannon, E.J. Carter, and K. A. Pelphrey. Functional imaging
of numerical processing in adults and 4-y-old children. PLoS Biology, 4, Issue 5.:
844–855, May 2006.

[24] D. W. Carraher. Theories of Mathematical Learning, chapter 14 Learning About
Fraction, pages 241–266. Lawrence Erlbaum Associates, Inc., 1996.

[25] P. C. H. Cheng. Unlocking conceptual learning in mathematics and science with ef-
fective representational systems. Computers in Education, 33(2-3):109–130., 1999.

[26] M. T. H. Chi, M. Royb, and R. G. M. Hausmann. Observing tutorial dialogues
collaboratively: Insights about human tutoring effectiveness from vicarious learning.
Cognitive Science, 32:301–341, 2008.

[27] B. Clancey. Modeling the perceptual component of conceptual learning–a coordi-
nation perspective. In P. Grdenfors and P. Johansson, editors, Cognition, Education
and Communication Technology, pages 109–146. Mahwah, NJ: Lawrence Erlbaum
Associates, 2005.

[28] J. Clement. Observed methods for generating analogies in scientific problem solv-
ing. Cognitive Science, 12:563–586, 1988.

[29] P. Cobb, G. A. Goldin, and B. Greed. Theories of Mathematical Learning. Lawrence
Erlbaum Associates, Inc., 1996.

88

http://www.win.tue.nl/automath/
http://www.win.tue.nl/automath/

[30] A. Collins. Cognitive apprenticeship. In Keith R. Sawyer, editor, Cambridge Hand-
book of the Learning Sciences. MIT Press, Washington University, St Louis, 2006.
ISBN:9780521845540.

[31] K. Dahl and S. Nordqvist. Zahlen, Spiralen und magische Quadrate. Verlag
Friedrich Oetinger, Hamburg, 2009.

[32] Arany Daniel. Matematikai verseny. URL http://matek.fazekas.hu/
portal/feladatbank/egyeb/feladatok/aranydani.html.

[33] T. Danzig. Number, the Language of Science. New York: Free Press, 1954.

[34] G. Daroczy. Cognitive aspects of designing rule based dialogue
guidance in educational mathematical assistant. In MEi:CogSci
Conferences, MEi:CogSci Conference 2012, Bratislava, 2012.
http://www.univie.ac.at/meicogsci/php/ocs/index.php/meicog/meicog2012/paper/view/367.

[35] G. Daroczy and W. Neuper. Error-patterns within next-step-guidance in tp-based
educational systems. eJMT the Electronic Journal of Mathematics and Technology,
7(2), (Special Issue February):175–194, 2013.

[36] R.B Davis, E. Jockusch, and C McKnight. Cognitive processes in learning algebra.
The Journal of Childrens Mathematical Behaviour, 2(1):10–320, 1987.

[37] E. De Corte. Technology-supported learning in a stage of transition: the case of
mathematics. In Lessons from Learning, pages 113–123, 1993.

[38] M. Delazer, A. Ischebeck, F. Domahs, L. Zamarian, F. Koppelstaetter, C.M. Sieden-
topf, L. Kaufmann, T. Benke, and S. Felber. Learning by strategies and learning by
drill-evidence from an fmri study. Neuroimage, 25:838–849, 2005.

[39] Coq development team. Coq 8.3 reference manual. http://coq.inria.fr/reman, 2010.
INRIA.

[40] K. Devlin. The Math Gene. Basic Books, 2000.

[41] Oxford Dictionaries. ”mathematics”., April 2010. URL http://
oxforddictionaries.com/definition/english/mathematics.

[42] Oxford Dictionaries. ”dialogue”., April 2010. URL http://
oxforddictionaries.com/definition/english/dialogue.

[43] Oxford Dictionaries. ”fraction”. 25 march 2013, April 2010. URL <http://
oxforddictionaries.com/definition/english/fraction>.

[44] T. Dreyfus. Advanced mathematical thinking. In Mathematics and Cognition, A
Research Synthesis by the International Group for the Psychology of Mathematics
Education, 1990.

[45] L. D. Edwards. Embodying mathematics and science: microworlds as representa-
tions. J. Math. Behav., 17(1):53–78, 1998.

[46] R.M Falcon. Integration of a cas/dgs as a cad system in the mathematics curriculum
for architecture students. Int. J. Math. Educ. Sci. Technol., 42(6):737–750, 2011.

[47] L. Fazio and R. Siegler. Teaching fractions. Educational Practices Series, Interna-
tional Academy of Education (IAE), 22, 2011.

[48] J. Fleener. Mathematics and Knowledge. University of North Carolina at Chapel
Hill, 1980. URL http://books.google.at/books?id=gRUPOAAACAAJ.

89

http://matek.fazekas.hu/portal/feladatbank/egyeb/feladatok/aranydani.html
http://matek.fazekas.hu/portal/feladatbank/egyeb/feladatok/aranydani.html
http://oxforddictionaries.com/definition/english/mathematics
http://oxforddictionaries.com/definition/english/mathematics
http://oxforddictionaries.com/definition/english/dialogue
http://oxforddictionaries.com/definition/english/dialogue
<http://oxforddictionaries.com/definition/english/fraction>
<http://oxforddictionaries.com/definition/english/fraction>
http://books.google.at/books?id=gRUPOAAACAAJ

[49] R. Gelman and C. Gallistel. The Child’s Understanding of Number. Cambridge,
MA: Harvard University Press., 1978.

[50] M. Giaquinto. Visual Thinking in Mathematics. Oxford University Press, 2007.

[51] J. D. Godino. Mathematical concepts, their meaning and understanding. Proceed-
ings of XX Conference of the International Group for the Psychology of Mathematics
Education, 2:417–425, 1996.

[52] M. Goldgruber. Algebraische Simplifikation mittels Rewriting in ISAC. Master’s
thesis, University of Technology, Institute for Softwaretechnology, Graz, Austria,
Sept 2003.
http://www.ist.tugraz.at/projects/isac/publ/DA-M02-main.ps.gz.

[53] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic
of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag,
1979.

[54] R.H. Graber, D. Ansari, G. Reishofer, E. Stern, F. Ebner, and C. Neuper. Individ-
ual differences in mathematical compentence predict paretal brain activation during
mental calculation. Neuroimage, 38:346–356, 2007.

[55] R. H. Grabner, D. Ansari, G. Reishofer, E. Stern, F. Ebner, and C. Neuper. Individ-
ual differences in mathematical competence predict parietal brain activation during
mental calculation. NeuroImage, 38:346–356, 2007.

[56] R. H. Grabner, A. Ischebeck, G. Reishofer, K. Koschutnig, M. Delazer, F. Ebner,
and C. Neuper. Fact learning in complex arithmetic and figural-spatial tasks: The
role of the angular gyrus and its relation to mathematical competence. Human Brain
Mapping, 30(9):2936–2952, 2009. ISSN 1097-0193. doi: 10.1002/hbm.20720.
URL http://dx.doi.org/10.1002/hbm.20720.

[57] A. Griesmayer. Architecture and Knowledge-Represenation of the Web-based Math-
Learning-System ISAC. Master’s thesis, University of Technology, Institute for
Softwaretechnology, Graz, Austria, Oct 2003.
http://www.ist.tugraz.at/projects/isac/publ/da-griesmayer.pdf.

[58] J. Hadamard. The Mathematician’s Mind: The Psychology of Invention in the Math-
ematical Field. Princeton University Press, 1996.

[59] R. Hembree. The nature, effects, and relief of mathematics anxiety. Journal for
Research in Mathematics Education, 21(1):33–46, 1990.

[60] K. Highfield and K. Goodwin. A review of recent research in early mathematics
learning and technology. In K. Makar M. Goos, R. Brown, editor, Navigating Cur-
rents and Charting Directions (Proceedings of the 31st Annual Conference of the
Mathematics Education Research Group of Australasia), pages 259 – 264. MERGA,
2008.

[61] N. Idris and L. M. Narayanan. Error patterns in addition and substraction of fractions
among form two students. Journal of Mathematics Education, 4(2):35–54, 2011.

[62] M. Jennison and K. Beswick. Student attitude, student understanding and mathemat-
ics anxiety, shaping the future of mathematics education. In proceedings of the 33rd
annual conference of the Mathematics Education Research Group of Australasia, 3
- 7 July 2010, Fremantle, Western Australia, pp. 280-288., 2010.

90

http://dx.doi.org/10.1002/hbm.20720

[63] S. Karnel. Grösste gemeinsame Teiler in Polynomringen und Implementierung im
ISAC-Projekt. Master’s thesis, University of Technology, Institute of Mathematics,
Graz, Austria, August 2002.
http://www.ist.tugraz.at/projects/isac/publ/GGTs-von-Polynomen.ps.gz.

[64] M. Kienleitner. Towards ”nextstep userguidance” in a mechanized math
assistant. Master’s thesis, IICM, Graz University of Technology, 2012.
http://www.ist.tugraz.at/projects/isac/publ/mkienl bakk.pdf.

[65] M. Kienleitner and F. Kober. Logging of High-Level Steps in a Mechanized Math As-
sistant. PhD thesis, Bakkalaureate Thesis at IICM, Graz University of Technology,
2012.

[66] C. Kieran. Cognitive processes involved in learning school algebra. In Mathematics
and Cognition, A Research Synthesis by the International Group for the Psychology
of Mathematics Education, 1990.

[67] K. M. Kim and W. Kang. An analysis on the repeated error patterns in division of
fraction by elementary students. J. Korea Soc. Math. Educ. Ser., 11(1):1–19, 2008.

[68] F. Kober. Logging high-level interactions in a mechanized math as-
sistant. Master’s thesis, IICM, Graz University of Technology, 2012.
http://www.ist.tugraz.at/projects/isac/publ/fkober bakk.pdf.

[69] K. R. Koedinger and B. A. Maclaren. Developing a pedagogical domain theory of
early algebra problem solving. Technical report, Carnegie Mellon University, 2002.

[70] K. R. Koedinger, M. W. Alibabi, and M. L. Nathan. Trade-offs between grounded
and abstract representations: Evidence from algebra problem solving. Cognitive
Science, 32:366–397, 2008.

[71] A. Koestler. The Act of Creation. Hutschinson, 1964.

[72] A: Kok. Understanding the technology enhanced learning environments from a cog-
nitive perspective. International Education Studies, 2(4), 2009.

[73] A. Krempler. Architectural design for integrating an interactive dialogguide into a
mathematical tutoring system. Master’s thesis, University of Technology, Institute
for Softwaretechnology, Graz, Austria, March 2005.
http://www.ist.tugraz.at/projects/isac/publ/da-krempler.pdf.

[74] A. Krempler and W. Neuper. Formative assessment for user guidance in single step-
ping systems. In Michael E. Aucher, editor, Interactive Computer Aided Learning,
Proceedings of ICL08, Villach, Austria, 2008.
http://www.ist.tugraz.at/projects/isac/publ/icl08.pdf.

[75] K. Kucian, T. Loenneker, T. Dietrich, M. Dosch, E. Martin, and M. Aster. Impaired
neural networks for approximate calculation in dyscalculic children: a functional
mri study. Behavioural and Brain Function, 2:3:1, 2006.

[76] C. Laborde, C. Kynigos, K. Hollebrands, and R. Strasser. Teaching and learning
geometry with techonology. In A. Gutierrez & Pl. Boero, editor, Handbook of re-
search on the psychology of mathematics education: Past, present and future, pages
275–304. Rotterdam, The Netherlands: Sense Publischer, 2006.

[77] S. P. Lajoie. Computer environments as cognitive tools for enhancing learning. In
S. P. Lajoie, editor, Computers as Cognitive Tools. Hillsdale, NJ: Lawrence Erlbaum
Associates., 1993.

91

[78] I. Lakatos. Proofs and refutations: the logic of mathematical discovery. British
Journal for the Philosophy of Science, 14:1–25, 1963. Edited by John Worrall and
Elie Zahar, Cambridge University Press, 1976.

[79] G. Lakoff and R.E: Nunez. Where Mathematics Comes From. Basic Books: ISBN-
10: 0465037712, 2001.

[80] O. Linnebo. Platonism in the philosophy of mathematics. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Fall 2011 edition, 2011.

[81] L. Ma. Knowing and teaching elementary mathematics: Teachers understanding of
fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence
Erlbaum Associates., 1999.

[82] S. Mathan, J. R. Anderson, A.T. Corbett, and C. Lovett. Recasting the feedback
debate: Benefits of tutoring error detection and correction skills. In In, pages 13–20.
Press, 2003.

[83] N. M. McNeil and M. W. Alibali. Youll see what you mean: Students encode equa-
tions based on their knowledge of arithmetic. Cognitive Science, 28:451–466, 2004.

[84] D. Meade. Getting Started with Maple, 3rd ed. Wiley, 2009.

[85] E. Melis and J. Siekmann. An intelligent tutoring system for mathematics. In
L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L.A. Zadeh, editors, Seventh
International Conference Artificial Intelligence and Soft Computing (ICAISC),
number 3070, in LNAI, page 91101. Springer-Verlag, 2004. doi: 10.1007/
978-3-540-24844-6\ 12.

[86] E. R. Michene. Understanding understanding mathematics. Cognitive Science, 2:
361–383, 1978.

[87] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, Cambridge, London, 1997.

[88] M. C. Mitchelmore and P. White. Abstraction in mathematics: Conflict, resolution
and application. Mathematics Education Research Journal, 7(1):50–68, 1995.

[89] M. C. Mitchelmore and P. White. Teaching mathematics concepts: Instruction for
abstraction. ICME-10 Proceedings, 2008.

[90] A. Mora, E. Marida, and R. Eixarch. Random learning units using wiris quizzes in
moodle. Int. J. Math. Educ. Sci. Technol., 42(6):751–763, 2011.

[91] J. Moses. Macsyma:a personal history. Invited Presentation in Milestones in
Computer Algebra, Tobago, 2008. URL http://esd.mit.edu/Faculty_
Pages/moses/Macsyma.pdf.

[92] W. Neuper. Angewandte Mathematik und Fachtheorie. Technical Report 357, IMST
– Innovationen Machen Schulen Top!, University of Klagenfurt, Institute of Instruc-
tional and School Development (IUS), 9010 Klagenfurt, Sterneckstrasse 15, 2006.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte Mathematik und Fachtheorie.

[93] W. Neuper. Angewandte Mathematik und Fachtheorie. Technical Report 683, IMST
– Innovationen Machen Schulen Top!, University of Klagenfurt, Institute of Instruc-
tional and School Development (IUS), 9010 Klagenfurt, Sterneckstrasse 15, 2007.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte Mathematik und Fachtheorie 2006/2007.

[94] W. Neuper. Common grounds for modelling mathematics in educational software.
Int. Journal for Technology in Mathematics Education, 17(3), 2010.

92

http://esd.mit.edu/Faculty_Pages/moses/Macsyma.pdf
http://esd.mit.edu/Faculty_Pages/moses/Macsyma.pdf

[95] W. Neuper. Automated generation of user guidance by combining computation and
deduction. In Pedro Quaresma and Ralph-Johan Back, editors, Proceedings First
Workshop on CTP Components for Educational Software, Wrocław, Poland, 31th
July 2011, volume 79 of Electronic Proceedings in Theoretical Computer Science,
pages 82–101. Open Publishing Association, 2012. doi: 10.4204/EPTCS.79.5.

[96] W. Neuper. On the emergence of tp-based educational math assistants. volume 7,
pages 110–129, February 2013. URL https://php.radford.edu/˜ejmt/
ContentIndex.php#v7n2. Special Issue “TP-based Systems and Education”.

[97] W. Neuper and J. Reitinger. Begreifen und Mechanisieren beim Algebra Einstieg.
Technical Report 1063, IMST – Innovationen Machen Schulen Top!, University of
Klagenfurt, Institute of Instructional and School Development (IUS), 9010 Klagen-
furt, Sterneckstrasse 15, 2008.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Begreifen und Mechanisieren beim Algebra-Einstieg.

[98] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[99] R. Nunez. Embodied cognition as grounding for situatedness and context in mathe-
matics education. Educational Studies in Mathematics, 39 (1-3):45–66, 1999.

[100] R. Nunez. Conceptual metaphors and the cognitive foundation of mathematics. In
B.Baaqui & P. Pang (Eds.) Metaphor and the Cognitive Foundation of Mathematics:
Actual Infinity and Human Cognition, 2003.

[101] R. Nunez. Embodied cognition and the nature of mathematics: Language, gesture,
and abstraction. In Proceeding of the 26th Annual Conference of the Cognitive Sci-
ence Society (pp.36-37), 2004.

[102] R. Nunez. What is mathematics? pauli, jung, and contemporary cognitive science. In
H. Altmanspacher & H. Primas (Eds.), Recasting Reality: Wolfgang Paulis Philo-
sophical Ideas and Contemporary Science, New York: Springer, 2008.

[103] R. Nunez. No innate number line in the human bain. Journal of Cross-Cultural
Psychology,, 45(4):651–668, 2011.

[104] National Council of Teachers of Mathematics and National Research Council Math-
ematical Sciences Education Board. The Nature and Role of Algebra in the K-14
Curriculum:Proceedings of a National Symposium. The National Academies Press,
1998. ISBN 9780309061476. URL http://www.nap.edu/openbook.php?
record_id=6286.

[105] R. J. Payne and H.R. Squibb. Algebra mal-rules and cognitive accounts of error.
Cognitive Science, 14:445–481, 1990.

[106] R. Prank, M. Issakova, D. Lepp, E. Tonisson, and V. Vaiksaar. T-algebra - interactive
learning environment for expression manipulation. In 7th International Conference
on Technology in Mathematics Teaching, volume 1, pages 26–29, Bristol, UK, July
2005.

[107] Quotes. Quotes on mathematics (collection), . URL http://www.
quotationspage.com/subjects/mathematics/.

[108] Quotes. Quotes on mathematics (collection), . URL http://www.
brainyquote.com/quotes/keywords/mathematics.html.

[109] Quotes. Quotes on mathematics (collection), . URL http://www.math.
okstate.edu/˜wli/teach/fmq.html.

93

https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
http://www.nap.edu/openbook.php?record_id=6286
http://www.nap.edu/openbook.php?record_id=6286
http://www.quotationspage.com/subjects/mathematics/
http://www.quotationspage.com/subjects/mathematics/
http://www.brainyquote.com/quotes/keywords/mathematics.html
http://www.brainyquote.com/quotes/keywords/mathematics.html
http://www.math.okstate.edu/~wli/teach/fmq.html
http://www.math.okstate.edu/~wli/teach/fmq.html

[110] Quotes. Quotes on mathematics (collection), . URL http://www.m4maths.
com/maths-quotes.php.

[111] Quotes. Quotes on mathematics (collection), . URL http://www.goodreads.
com/quotes/tag/mathematics.

[112] Quotes. Quotes on mathematics (collection), . URL http://www.
searchquotes.com/quotation.

[113] F. Reif. Interpretation of scientific or mathematical concepts: Cognitive issues and
instructional implication. Cognitive Science, 11:395–416, 1987.

[114] A. Renkl. Learning from worked-out examples: A study on individual differences.
Cognitive, 21:1–29, 1997.

[115] S. Ritter, J.R. Anderson, K.R. Koedinger, and A. Corbett. Cognitive tutor: Applied
reserach in mathematics education. Psychonomic Bulletin & Review, 14 (2):249–
255, 2007.

[116] B. Rittle-Johnson and R. S. Siegler. The relation between conceptual and procedural
knowledge in learning mathematics: A review. In The development of mathematical
skills. Studies in developmental psychology. England: Psychology Press/Taylor &
Francis (UK), 1998.

[117] B. Rittle-Johnson, R.S. Siegler, and M.W. Alibali. Developing conceptual under-
standing and procedural skill in mathematics: An iterative process. Developing con-
ceptual understanding and procedural skill in mathematics: An iterative process.,
93:346–362, 2001.

[118] J. Ročnik. Trials with tp-based programming for interactive course material. vol-
ume 7, pages 91–109, February 2013. URL https://php.radford.edu/

˜ejmt/ContentIndex.php#v7n2. Special Issue “TP-based Systems and Ed-
ucation”.

[119] B. Rogoff, B. Matusov, and S. White. Models of teaching and learning: Participation
in a community of learners. In In D. Olson & N. Torrance, editor, The Handbook of
Cognition and Human Development, pages 388–414. Oxford, UK, Blackwell, 1996.

[120] R. K. Skemp. The Psychology of Learning Mathematics. Harmondsworth, England:
Penguin, 1986.

[121] D. Sleeman. An attempt to understand students understanding of basic algebra*.
Cognitive Science, 8:387–412, 1984.

[122] D. Sleeman, A.E. Kelly, R. Martinak, R.D. Ward, and J.L. Moore. Studies of di-
agnosis remediution and with high school algeb students. Cognitive Science, 13:
551–568, 1989.

[123] A. Sloman. If learning maths requires a teacher, where did the first teacher come
from? In Paper for Mathematical Cognitive Symposium, AISB2010, March 29-30,
2010.

[124] D. Strom, V. Kemeny, R. Lehrer, and E. Forman. Visualizing the emergent structure
of childrens mathematical argument. Cognitive Science, 25:733–773, 2001.

[125] M.B. Swan. Dealing with misconceptions in mathematics. Issues in Mathematics
Teaching, pages 147–165, 2001.

[126] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12:257–285, 1988.

94

http://www.m4maths.com/maths-quotes.php
http://www.m4maths.com/maths-quotes.php
http://www.goodreads.com/quotes/tag/mathematics
http://www.goodreads.com/quotes/tag/mathematics
http://www.searchquotes.com/quotation
http://www.searchquotes.com/quotation
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2

[127] M. Taylor and D. L. Schwartz. Physically distributed learning: Adapting and rein-
terpreting physical environments in the development of fraction concepts. Cognitive
Science, 29(4):587–625, 2005. ISSN 1551-6709. doi: 10.1207/s15516709cog0000
15. URL http://dx.doi.org/10.1207/s15516709cog0000_15.

[128] D. Tirosh, Even R., and Robinson M. Simplifying algebraic expressions: Teacher
awareness and teaching approaches,. Educational Studies in Mathematics, 35:51–
64, 1998.

[129] J. C. Turner, Midgley C., Meyer D. K., Gheen M., Anderman E. M., and Kang Y.
T. he classroom environment and students’ reports of avoidance strategies in math-
ematics: A multimethod study. Journal of Educational Psychology,, 94 (1):88–106,
2002.

[130] K. VanLehn. Analogy eventy: How examples are used during problem solving.
Cognitive Science, 22:347–388, 1998.

[131] K. VanLehn, A.C. Graesser, G.T. Jackson, P. Jordan, A. Olney, and C. P. Rose.
When are tutorial dialogues more effective than reading? Cognitive Science, 31:
3–62, 2007.

[132] A.W. Vincent, M.M. Aleven, and K.R. Koedinger. An effective metacognitive strat-
egy: learning by doing and explaining with a computer-based cognitive tutor. Cog-
nitive Science, 26:147–179, 2002.

[133] R. Vogel. Patterns - a fundamental idea of mathematical thinking and learning. ZDM,
Zentralbl. Didakt., 37(5):445–449, 2005.

[134] E. Walker. Mutual peer tutoring: A collaborative addition to the cognitive tutor
algebra i. accepted as a young researcher’s track paper at. In the International Con-
ference on Artificial Intelligence and Education, 2005.

[135] E. Warren and T. Cooper. Using repeating patterns to explore functional think-
ing: Elizabeth warren and tom cooper lead us through a series of teaching activities
desing to develop young childrens algebraic thinking. Australian Primary Mathe-
matics Classroom ISSN 1326-0286, 2012.

[136] E. Wenger. Artificial intelligence and tutoring systems: Computational and cognitive
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann
Publishers., 1987.

[137] J. J. Williams and T. Lombrozo. The role of explanation in discovery and general-
ization: Evidence from category learning. Cognitive Science, 34:776–806, 2010.

[138] S. Wolfram. The Mathematica Book. Wolfram Research Inc., 1999.

[139] E. Yetkin. Students difficulties in learning elementary mathematics.
http://www.tpdweb.umi.com/tpweb, 2003.

[140] R. M. T. Young and OShea. Errors in childrens subtraction. Cognitive Science, 5(2):
153177, 1981.

[141] J. Zhang. The nature of external representations problem in solving. Cognitive
Science, 21:179–217, 1997.

95

http://dx.doi.org/10.1207/s15516709cog0000_15

Appendices

96

Appendix A

General Collection on Examples
in the Domain of Fractions

The appendix contains a detailed representation of the data implemented (or to be imple-
mented) in this thesis for use by ISAC’s dialogue guide. The representation serves as an
interface to mathematics authors.

Factorisation

3+6·a
3+9·b =

16+4·a
4a =

x·y+y
z·y+y =

a−b
b−a =

Multiplication of Fraction

x2+6x+9
x2+6x+8 ·

3x+6
3x+9 =

(x2 − 9) · 3
4x−12 =

3a
5 ·

a2

21 =

x2−4
9x6 · 6x3

2x−4 =

Binomial Form

25·x2+40·x−9
−45·x2+4·x+1 =

10·x2+68·x−14
x2+4·x−21 =

32·x2+48·x+16
−32·x2+12·x+20 =

−35·x2+66·x−16
21·x2+43·x−14 =

Addition and Subtraction of Fraction

97

a
5 + b

5 =

8
x4 + 16

x4 =

3
7·a + 2

14·a =

2·x
y2·z2 + 3

y·z =

Dividing Fraction

2·x−6·y
3

3·x2−9·x·y
2·y

=

a+ 1
2

b− 1
2

=

4·a·b
c

2·a·b
c

=

5·(x−y)2
3·x−3·y

a

=

Simplification of Fraction

4
2x+4 =

3x3+x2+3x+1
15x2+5x =

1
2x+3y + 3

8x+12y −
1

6x+9y =

1
x−1 + 2x2−3

x2−1 −
2x
x+1 =

Mixed examples

1
x+5 + 19 + 1

x−2 −
2x+3

x2+3x−10 =

3x+1
x+1 + x+2

x−1 −
x+5
x2−5 =

4x
4x−6y + 2x

6x+9y −
3x

24x2−54y2 =

(6x−3x−y −
6x+3
x+y) :

36x2−16
x+y =

98

Appendix B

Error-Patterns, Fill-Patterns and
Fill-Forms, Hint-Pages

B.1 Error-Patterns
Definition error-pattern [35]: Given a triple (id , P,R) with id a string called identifier, P a
set of terms with equality called patterns and R a set of rewrite-rules, this triple is called
an error-pattern iff

(i) ∀p ∈ P. ∃r ∈ R. match (lhs(p), lhs(r)) 6= ∅. This r is called the rule belonging to p

(ii) ∀r ∈ R. ∃p ∈ P. match (lhs(p), lhs(r)) 6= ∅

Although implemented at different locations in the ML code, respective error-patterns
and fill-patterns are listed together in order to support design considerations. For the same
reason all the patterns are first given by LATEXformulas, while the code is represented “ver-
batim” in order to ease copying to the ML code.

1. Addition of fractions (Same can be used for substraction):

(a) a
b +

c
d = a+c

b+d ,

(b) a+ b
c =

a+b
c ,

(c) a+b
c+d = a

c +
b
d ,

val errpats =
[("addition-of-fractions",

[parse_patt thy "(?a / ?b + ?c / ?d) = (?a + ?c)/(?b +?d)",
parse_patt thy "(?a / ?b + ?c / ?d) = (?c + ?a)/(?b +?d)",
parse_patt thy "(?a / ?b + ?c / ?d) = (?c + ?a)/(?d +?b)",
parse_patt thy "(?a / ?b + ?c / ?d) = (?a + ?c)/(?d +?b)",
((b) $a+\frac{b}{c}=\frac{a+b}{c}$)
parse_patt thy "(?a + ?c)/(?d +?b)= (?a / ?d)+(?c / ?b)",
parse_patt thy "(?a + ?c)/(?d +?b)= (?a / ?b)+(?c / ?d)",
parse_patt thy "(?a + ?c)/(?d +?b)= (?c / ?d)+(?a / ?b)",
parse_patt thy "(?a + ?c)/(?d +?b)= (?c / ?b)+(?a / ?d)",
parse_patt thy "?a + (?b /?c)= (?a + ?b)/ ?c"
],
[@{thm rat_add}, @{thm rat_add_assoc}, @{thm rat_add1},
@{thm rat_add1_assoc}, @{thm rat_add2}, @{thm rat_add2_assoc},
@{thm rat_add3}, @{thm rat_add3_assoc}])

]: errpat list;

Theorems for Addition:
ML {*

99

@{thm rat_add};
@{thm rat_add_assoc};
@{thm rat_add1}; (*this is the only rule for addition

in case of variables*)
@{thm rat_add1_assoc};
@{thm rat_add2};
@{thm rat_add2_assoc};
@{thm rat_add3};
@{thm rat_add3_assoc};

*}
val it = "?a is_const ==> ?b is_const ==> ?c is_const
==> ?d is_const ==>
?a / ?c + ?b / ?d = (?a * ?d + ?b * ?c) / (?c * ?d)": thm

val it = "?a is_const ==> ?b is_const ==> ?c is_const
==> ?d is_const ==>
?a / ?c + (?b / ?d + ?e)
= (?a * ?d + ?b * ?c) / (?d * ?c) + ?e": thm

?a / ?c + ?b / ?c = (?a + ?b) / ?c": thm
val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
?a / ?c + (?b / ?c + ?e) = (?a + ?b) / ?c + ?e": thm

val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
?a / ?c + ?b = (?a + ?b * ?c) / ?c": thm

val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
?a / ?c + (?b + ?e) = (?a + ?b * ?c) / ?c + ?e": thm

val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
?a + ?b / ?c = (?a * ?c + ?b) / ?c": thm

val it = "?a is_const ==> ?b is_const ==> ?c is_const ==>
?a + (?b / ?c + ?e) = (?a * ?c + ?b) / ?c + ?e": thm

2. Multiplication and division of fractions:

(a) a
c ·

b
c =

a·b
c ,

(b) a
b · c =

a·c
b ,

(c) c
a−b ·

d
b = c·d

a−2b

(d) a
b ·

c
b =

a+c
b

val errpats =
[("multiplication-of-fractions",
[parse_patt thy "(?a / ?c) * (?b / ?c) = (?a * ?b) / ?c",
parse_patt thy "(?a / ?b) * ?c = (?a * ?c) / (?b * ?c)",
parse_patt thy "(?a / ?c) * (?b / ?c) = (?b * ?a) / ?c",
parse_patt thy "(?a / ?b) * (?c / ?b) = (?a + ?c) / ?b",
parse_patt thy "(?c / (?a - ?b)) * (?d / ?b)
= (?c * ?d) / (?a - 2 * ?b)"],
[@{thm rat_mult}, @{thm rat_mult2} (*...*)])]: errpat list;

Theorems for multiplication:
ML {*

@{thm rat_mult};
@{thm rat_mult2};
(*...*)

*}
val it = "?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)": thm
val it = "?a / ?b * ?c = ?a * ?c / ?b": thm

3. Division:
a
b ·

c
b =

a+c
b

val errpats =
[("division",

[parse_patt thy "(?a / ?b) / (?c / ?d)= (?a / ?c) / (?b / ?d)",
parse_patt thy "(?a / ?b) / (?c / ?d)= (?a * ?c) / (?b * ?d)",

],
[@{thm ...}, @{thm ...}])

("addition"), [(*patterns*)], [(*theorems*)]]: errpat list;

100

4. Cancellation of fractions:

(a) a+b
a = b

(b) a+b
b = a

(c) a+b
a+c =

b
c

(d) a+c
b+c = a

b

(e) a+b
b+c = a

c

(f) a+b
c+a = b

c

(g) a·b+c
a = b+ c

(h) a·b+c
b = a+ c

(i) a+b·c
b = a+ c,

(j) a+b·c
c = a+ b,

(k) a+bx
c+dx = a+b

c+d

(l) a
c +

a
c = a+b

2·c

(m) a
c +

a
c +

d
c = a+b+d

3·c

(n) a
b +

c
2·b =

a+c
3·b

val errpats =
[("cancel",

[parse_patt thy "(?a + ?b)/?a = ?b",
parse_patt thy "(?a + ?b)/?b = ?a",
parse_patt thy "(?a + ?b)/(?b + ?c) = ?a / ?c",
parse_patt thy "(?a + ?c)/(?b + ?c) = ?a / ?b",
parse_patt thy "(?a + ?c)/(?b + ?c) = ?a / ?c",
parse_patt thy "(?a + ?b)/(?c + ?a) = ?b / ?c",
parse_patt thy "(?a*?b + ?c)/?a = ?b + ?c",
parse_patt thy "(?a*?b + ?c)/?b = ?a + ?c",
parse_patt thy "(?a + ?b*?c)/?b = ?a + ?c",
parse_patt thy "(?a + ?b*?c)/?b = ?a + ?b",
parse_patt thy "(?a + ?b*?e)/(?c + ?d*?e) = (?a + ?b)/(?c + ?d)"],
[@{thm real_times_divide_1_eq}, @{thm real_times_divide_1_eq}])

("addition"), [(*patterns*)], [(*theorems*)]]: errpat list;

Theorems for Cancellation:

ML {*
@{thm frac_eq_eq};
@{thm divide_cancel_left};
@{thm divide_cancel_right};

*}
val it = "?y \= (0?’a) ==> ?z \= (0?’a)
==> (?x / ?y = ?w / ?z) = (?x * ?z = ?w * ?y)": thm
val it = "(?c / ?a = ?c / ?b) = (?c = (0?’a) ?a = ?b)": thm
val it = "(?a / ?c = ?b / ?c) = (?c = (0?’a) ?a = ?b)": thm

5. Special Cases with 0:

(a) c+ c · b = c · (0 + b)

(b) b
c −

a
c = b−a

0

(c) a
0

val errpats =
[("special_0", ()

[parse_patt thy " ?c+ (?c * ?b) = ?c * ?b ",

101

parse_patt thy "(?b / ?c - ?a / ?c = ?b - ?a",
parse_patt thy "?a / ?b = ?a / 0",
]
[@{thm name_special_0}, @{thm name_special_0}])

("special_0"), [(*patterns*)], [(*theorems*)]]: errpat list;

6. Special Cases with 1:

(a) a−b
b−a = 1

(b) −ab = a
b

(c) a
b−x = −a

b−x = −1 · a
b−x

(d) a
a = 0

(e) 1
1 = 0

(f) −a+ b = −(a+ b)

(g) −a+ b = a+ b

(h) a− b · c = (a− b) · c
(i) a+ b · c = (a+ b) · c

val errpats =
[("special_1", (**)

[parse_patt thy "(?a - ?b)/(?b - ?a) = 1",
parse_patt thy "-(?a / ?b) = (?a / ?b)",
parse_patt thy "-?a + ?b = - ?a - ?b",
parse_patt thy "-?a + ?b = ?a + ?b",
parse_patt thy "(?a / (?b - ?c) = - ?a / (?b - ?c)",
parse_patt thy "(?a / (?b - ?c) = -1 * (?a / (?b - ?c)) ",
parse_patt thy "?a - (?b * ?c)= (?a - ?b)* c",
parse_patt thy "?a + (?b * ?c)= (?a + ?b)* c",
parse_patt thy "(?a / ?a) = 0 "],
[@{thm special_one}, @{thm special_1}])

("special_one"), [(*patterns*)], [(*theorems*)]]: errpat list;

7. Binomial Form:

(a) a−b
a2−b2 = a− b

(b) (ab + c2 = a2

b2 + c2

(c) (a+ b)2 = a2 + b2

(d) (a− b)2 = a2 + b2

(e) (a− b)2 = a2 − b2

val errpats =
[("binom", (**)

[parse_patt thy "(?a - ?b)/ (?a ˆ{2} - ?bˆ{2}) = ?a - ?b",
parse_patt thy "(?a + ?b)ˆ{2} = ?aˆ{2} + ?bˆ{2}",
parse_patt thy "(?a - ?b)ˆ{2} = ?aˆ{2} - ?bˆ{2}",
parse_patt thy "(?a - ?b)ˆ{2} = ?aˆ{2} + ?bˆ{2}",
parse_patt thy "(?a / ?b)+ ?c ˆ{2} = ?aˆ{2} / ?bˆ{2} + ?cˆ{2} "
],
[@{thm binom_1}, @{thm binom_2}])

("binom"), [(*patterns*)], [(*theorems*)]]: errpat list;

8. Changing between forms:

(a) a bc =
a+b
c

(b) a bc =
a·d
c·d

102

(c) a bc =
a·d+c
c·d

val errpats =
[("changeform", (**)

[parse_patt thy "a(?b / ?c)/?a = (?a + ?b) / ?c",
parse_patt thy "a(?b / ?c)/?a = (?a * ?b) / (?c * ?b)",
parse_patt thy "a(?b / ?c)/?a = (?a * ?b + ?c) / (?c * ?b)"],
[@{thm changeform_1}, @{thm changeform_2}])

("changeform"), [(*patterns*)], [(*theorems*)]]: errpat list;

B.2 Fill-Patterns and Fill-Forms
Definition [35]: Fill-Pattern Given a rewrite-rule r and an ordered set (enumerable by N ,
the natural numbers) of triples φ = {φi. 1 ≤ i ≤ n ∈ N ∧ φi = (id i, pi,Pi(id ε))},
where id i is a string called identifier, pi a term with equality called fill-in-pattern and
Pi(id ε) a set of error-patterns’ identifiers, such a set is called a fill-pattern of r if

(i) ∀i. 1 ≤ i ≤ n⇒ lhs(pi) = lhs(r)

(ii) ∀i. 1 ≤ i ≤ n ⇒ match(rhs(pi), rhs(r)) 6= ∅ and the lhs(pi) “contain less place-
holders with growing i”

For terms f and fI we say ’fI is filled into φ ’ iff f →r fI .

1. Fill Pattern: Addition of fractions:

(a) a
b +

c
d = a+c

b+d ,
a
b +

c
d = ..·..

..·.. +
..·..
..·.. ,

a
b +

c
d = a·..

b·.. +
c·..
d·.. ,

a
b +

c
d = ..·d

..·d + ..·b
..·b ,

a
b +

c
d = ..·d

b·.. +
..·b
c·.. ,

a
b +

c
d = a·d

b·.. +
..·b
c·.. ,

a
b +

c
d = ..·..+..·..

..·.. ,
a
b +

c
d = a·..+c·..

..·d ,
a
b +

c
d = ..·d+..·b

b·.. ,
a
b +

c
d = a·..+c·b

b·d ,

(b) a+ b
c =

a+b
c ,

a+ b
c =

..·..
.. + ..

.. ,
a+ b

c =
..·..
.. + b

c ,
a+ b

c =
..·..
c + b

c ,
a+ b

c =
..·c
c + b

c ,
a+ b

c =
..·..+..
c ,

a+ b
c =

..·c+..
c ,

a+ b
c =

a·c+b ,

(c) a
c +

b
c =

a+b
2·c

a
c +

b
c =

..+..
..

a
c +

b
c =

..+..
c

a
c +

b
c =

a+b
..

a
c +

b
c =

a+..
c

(d) a
c +

b
c +

d
c = a+b+d

3·c
a
c +

b
c =

..+..+..
..

a
c +

b
c =

a+..+..
c

a
c +

b
c =

a+b+..
..

103

(e) a
b +

c
d·b =

a+c
(d+1)·b

a
b +

c
d·b =

..·..
d·b + c

d·b
a
b +

c
d·b =

a·..+..
..·..

a
b +

c
d·b =

..·d+..
d·b

a
b +

c
d·b =

..·d+c
d·..

ML {*
val fillpat =
([("fill-addition-first1",

parse_patt @{theory Rational}
"(?a / ?b + ?c / ?d)
= (_ * ?d + _ *?b) / (_ * _)",

[" name1", " name2", " name3"]),
("fill-addition-first2",

parse_patt @{theory Rational}
"(?a / ?b + ?c / ?d)
= (?a * ?d + ?c *?b) / (?b * ?d) ",

[" name1", " name2", " name3"]),

("fill-addition-first3",
parse_patt @{theory Rational}
"(?a / ?b + ?c / ?d)
= (?a * ?d / ?b *?d) + (?c * ?b / ?b * ?d)",

[" name1", " name2", " name3"]),

("fill-addition-first4",
parse_patt @{theory Rational}
"(?a / ?b + ?c / ?d) = (?a * ?d + ?c *?b) / (?b * ?d)",
[" name1", " name2", " name3"]),

("fill-addition-first5",
parse_patt @{theory Rational}
"(?a / ?b + ?c / ?d) = (?a * ?d + ?c *?b) / (?b * ?d)",
[" name1", " name2", " name3"]),

("fill-addition-second1",
parse_patt @{theory Rational}
"?a + (?b /?c) = (_ * _ + _)/ ?c",
[" name1", " name2", " name3"]),

("fill-addition-second2",
parse_patt @{theory Rational}
"?a + (?b /?c) = (_ * _)/ _ + (_ / ?c)",
[" name1", " name2", " name3"]),

("fill-addition-second3",
parse_patt @{theory Rational}
"?a + (?b /?c) = (?a * _ + _)/ ?c",
[" name1", " name2", " name3"]),

("fill-addition-second4",
parse_patt @{theory Rational}
"?a + (?b /?c) = (_* _)/ ?c + (?b / ?c)",
[" name1", " name2", " name3"]),

("fill-addition-second5",
parse_patt @{theory Rational}
"?a + (?b /?c) = (?a *?c +_)/ ?c",
[" name1", " name2", " name3"]),

("fill-addition-second6",
parse_patt @{theory Rational}
"?a + (?b /?c) = (?a * _)/ ?c + (?b / ?c)",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

2. Pattern for multiplication:

(a) a
c ·

b
c =

a·b
c , possible answers:

104

a
c ·

b
c =

..·..

..·..
a
c ·

b
c =

a·b
..·..

a
c ·

b
c =

..·..
c·c

(b) a · bc =
a·b
a·c , possible answers:

a · bc =
..·..
..

a · bc =
..·..
c

a · bc =
a·..
c

(c) c
a−b ·

d
b = c·d

a−2b possible answers:
Here it can have one of the same answers as by (a)

(d) a
b ·

c
b =

a+c
b possible answers:

Here it can have one of the same answers as by (a)

ML {*
val fillpat =
([("fill-multiplication-first1",

parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?c) = (_ * _) / (_ * _)",
[" name1", " name2", " name3"]),

("fill-multiplication-first2",
parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?c) = (?a * _) / (?c * _)",

[" name1", " name2", " name3"]),
("fill-multiplication-first3",

parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?c) = (?a * ? b) / (?c * _)",
[" name1", " name2", " name3"]),

("fill-multiplication-first4",
parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?c) = (?a * _) / (?c * ?c)",
[" name1", " name2", " name3"]),

("fill-multiplication-second1",
parse_patt @{theory Rational}
"(?a / ?b) * ?c = (_ * _) / _ ",
[" name1", " name2", " name3"]),

("fill-multiplication-second1",
parse_patt @{theory Rational}
"(?a / ?b) * ?c = (_ * _) / ?b ",
[" name1", " name2", " name3"]),

("fill-multiplication-second1",
parse_patt @{theory Rational}
"(?a / ?b) * ?c = (_ * ?c) / ?b ",

[" name1", " name2", " name3"]),

("fill-multiplication-third1",
parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?d) = (_ * _) / (_ * _)",
[" name1", " name2", " name3"]),

("fill-multiplication-third1",
parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?d) = (_ * _) / (?c * ?d)",
[" name1", " name2", " name3"],

("fill-multiplication-third1",
parse_patt @{theory Rational}
"(?a / ?c) * (?b / ?d) = (_ * ?b) / (?c * _)",
[" name1", " name2", " name3"]),

("fill-multiplication-fourth1",
parse_patt @{theory Rational}
"(?c / (?a - ?b)) * (?d / ?b)
= (?c * ?d)/ (?a * ?b - ?b * ?b)",

[" name1", " name2", " name3"]),

105

("fill-multiplication-fourth1",
parse_patt @{theory Rational}
"(?c / (?a - ?b)) * (?d / ?b)
= (?c * ?d)/ (_ * ?b - _ * ?b)",

[" name1", " name2", " name3"]),
("fill-multiplication-fourth1",

parse_patt @{theory Rational}
"(?c / (?a - ?b)) * (?d / ?b)
= (_ * _)/ (?a * ?b - ?b * ?b)",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

• a
c ·

b
c =

a·b
c

val errpat =
("frac-mult-same-denom",
[parse_patt thy "(?a / ?c) * (?b / ?c) = (?a * ?b) / ?c"],
[@{thm times_divide_times_eq}
(* "?x / ?y * (?z / ?w) = ?x * ?z / (?y * ?w)" *),
@{thm rat_mult} (* "?a / ?b * (?c / ?d) =
?a * ?c / (?b * ?d)" *)]): errpat;

Fill-patterns for times divide times eq (the same as for rewrite-rule rat mult):

• a
c ·

b
c =

a·b
... | = a·...

c·... | = a·b
c·c

val fillpats =
([("fill-frac-mult-same-denom-1",

parse_patt @{theory Rational}
"(?a / ?b) * (?c * ?d) = (?a * ?c) / _",
"frac-mult-same-denom"),
("fill-frac-mult-same-denom-2",
parse_patt @{theory Rational}
"(?a / ?b) * (?c * ?d) = (?a * _) / (?b * _)",
"frac-mult-same-denom"),
("fill-frac-mult-same-denom-3",
parse_patt @{theory Rational}
"(?a / ?b) * (?c * ?d) = (?a * ?c) / (?b * ?d)",
"frac-mult-same-denom")],

SOME hint-page): fillpat list;

3. Patterns for division:

(a) a
b : cd = a:c

b:c possible answers:

(b) a
b : cd = ..

.. ·
..
..

(c) a
b : cd = a

b ·
..
..

(d) a
b : cd = a

.. ·
d
..

(e) a
b : cd = a

.. ·
d
c

ML {*
val fillpat =
([("fill-division-left-num",

parse_patt @{theory Rational}
"(?a / ?b) / (?c / ?d) = (?a * _) / (_ / ?c)",
[" name1", " name2", " name3"]),

("fill-division-left-den",
parse_patt @{theory Rational}
"(?a / ?b) / (?c / ?d) = (_ * _) / (?b / ?c)",
[" name1", " name2", " name3"]),

106

("fill-division-none",
parse_patt @{theory Rational}
"(?a / ?b) / (?c / ?d) = (?a * _) / (?b / ?c)",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

4. Cancellation of fractions:

(a) a+b
a = b,
a+b
a = ..

a + ..,
a+b
a = b

.. + 1

(b) a+b
b = a,
a+b
a = a + 1
a+b
a = b + 1

(c) a+b
a+c =

b
c ,

(d) a+c
b+c = a

b ,

(e) a+b
b+c = a

c ,

(f) a+b
c+a = b

c ,

(g) a+bx
c+dx = a+b

c+d
a+b
c+a = a+b

..+·..
a+b
c+a = ..·..

c+·a
a+b
c+a = a·..

c+·a

(h) a·b+c
a = b+ c,

(i) a·b+c
b = a+ c,

a·b+c
a = ..

.. + ..,
a·b+c
a = ..

a + 1,
a·b+c
a = b

a + ..,

(j) a+b·c
b = a+ c,

(k) a+b·c
c = a+ b,

a+b·c
a = ..+ ..

.. ,
a+b·c
a = 1 + ..

a ,
a+b·c
a = ..+ b

a ,

(l) a+b
c+d = a

c +
b
d

a+b
c+d = ..+..

..+..
a+b
c+d = a+..

c+..
a+b
c+d = a+b

c+..

ML {*
val fillpat =
([("fill-cancel-left-add1",
parse_patt @{theory Rational}
"(?a * (?b + ?c)) / (?a * (?d + ?c))
= (_ + _) / (_ + _)", "cancel"),
("fill-cancel-left-add2",
parse_patt @{theory Rational}
"(?a * (?b + ?c)) / (?a * (?d + ?c))
= (?b + _) / (_ + _)", "cancel"),
("fill-cancel-left-add3",
parse_patt @{theory Rational}
"(?a * (?b + ?c)) / (?a * (?d + ?c))

107

= (?b + _) / (?d + _)", "cancel"),
("fill-cancel-left-add4",
parse_patt @{theory Rational}

"(?a * (?b + ?c)) / (?a * (?d + ?c))
= (?b + ?c) / (?d + ?c)", "cancel")

("fill-cancel-left-num",
parse_patt @{theory Rational} "(?a * ?b) / (?a * ?c)
= _ / ?c",
["cancel", "cancel+/+", "cancel0/_"]),

("fill-cancel-left-den",
parse_patt @{theory Rational} "(?a * ?b) / (?a * ?c)
= ?b / _",
["cancel", "cancel+/+", "cancel0/_"]),

("fill-cancel-none",
parse_patt @{theory Rational} "(?a * ?b) / (?a * ?c)
= ?b / ?c",

["cancel", "cancel+/+", "cancel0/_"])],
NONE): fillpat;
SOME "exp_Etc_Frac_Hint_EP5"): fillpat;

*}

5. Special Cases with 0:

(a) b
c −

a
c = b−a

0
b
c −

a
c = ..−..

..
b
c −

a
c = ..−..

c
b
c −

a
c = a−..

c

(b) a
0

(c) c+ c · b = c · (0 + b)
c+ c · b = .. · (..+ ..

..)
c+ c · b = .. · (1 + 1

..)
c+ c · b = c · (..+ 1

b)
c+ c · b = c · (1 + ..

b)

ML {*
val fillpat =
([("fill-special-null-first-1",

parse_patt @{theory Rational}
" ?c+ (?c * ?b) = _ * (_ + _)",
[" name1", " name2", " name3"]),

("fill-special-null-first-2",
parse_patt @{theory Rational}
" ?c+ (?c * ?b) = _ * (1 + _)",
[" name1", " name2", " name3"]),

("fill-special-null-first-3",
parse_patt @{theory Rational}
" ?c+ (?c * ?b) = ?c * (1 + _)",
[" name1", " name2", " name3"]),

("fill-special-null-second-1",
parse_patt @{theory Rational}
"(?b / ?c - ?a / ?c = (_ - _)/ _ ",
[" name1", " name2", " name3"]),

("fill-special-null-second-1",
parse_patt @{theory Rational}
"(?b / ?c - ?a / ?c = (_ - _)/ ?c",
[" name1", " name2", " name3"]),

("fill-special-null-second-1",
parse_patt @{theory Rational}
"(?b / ?c - ?a / ?c = (?b - _)/ ?c",
[" name1", " name2", " name3"]),

("fill-special-null-third-1",

108

parse_patt @{theory Rational}
"?a / ?b = _ / _ ",
[" name1", " name2", " name3"]),

("fill-special-null-third-1",
parse_patt @{theory Rational}
"?a / ?b = ?a / _ ",
[" name1", " name2", " name3"]),

("fill-special-null-third-1",
parse_patt @{theory Rational}
"?a / ?b = _ / ?b ",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

6. Special Cases with 1 or -1:

(a) a−b
b−a = 1
a−b
b−a = −1·(..+..

b−a
a−b
b−a = a−b

(−1)·(..+..)
a−b
b−a = −1·(−a+..

b−a
a−b
b−a = a−b

(−1)·(−b+..)

(b) −ab = a
b

−ab = .. ·
−ab = (−1) · a..
−ab = (−1)·a

..

(c) a
b−x = −a

b−x = −1 · a
b−x

a
b−x = ..

(−1)·(..+..)
a
b−x = ..

(−1)·(−b+..)
a
b−x = ..

(−1)·(..−..)
a
b−x = ..

(−1)·(x−..)
a
b−x = a

(..)·(x−b)

(d) a
a = 0
a
a = ..
a
a = 1
a
a = .. ·
a
a = a · 1..
a
a = .. · 1a

(e) −a+ b = −(a+ b)

(f) −a+ b = a+ b
−a+ b = .. · (..+ ..)
−a+ b = −1 · (a− ..)
−a+ b = 1 · (−a+ ..)

ML {*
val fillpat =
([("fill-special-one-first-1",

parse_patt @{theory Rational}
"(?a - ?b)/(?b - ?a) = ((_ - _)/
(-1* (_ - _))",
[" name1", " name2", " name3"]),
("fill-special-one-first-2",

parse_patt @{theory Rational}
"(?a - ?b)/(?b - ?a) = ((?a - _)/
(-1* (- _ + _))",
[" name1", " name2", " name3"]),
("fill-special-one-first-3",

109

parse_patt @{theory Rational}
"(?a - ?b)/(?b - ?a) = ((?a - ?b)/
(-1* (_ - _))",
[" name1", " name2", " name3"]),
("fill-special-one-first-4",

parse_patt @{theory Rational}
"(?a - ?b)/(?b - ?a) = ((_ - ?b)/
(_ * (-?b - ?a))",

[" name1", " name2", " name3"]),
("fill-special-one-first-5",

parse_patt @{theory Rational}
"(?a - ?b)/(?b - ?a) = ((?a - ?b)/
(-1* (?a - _))",
[" name1", " name2", " name3"]),

("fill-special-one-second-1",
parse_patt @{theory Rational}
"-(?a / ?b) = - 1* (_ / _)",
[" name1", " name2", " name3"]),

("fill-special-one-second-2",
parse_patt @{theory Rational}
"-(?a / ?b) = - _ / ?b",
[" name1", " name2", " name3"]),

("fill-special-one-second-3",
parse_patt @{theory Rational}
"-(?a / ?b) = - 1* (_ / _)",
[" name1", " name2", " name3"]),

("fill-special-one-third-1",
parse_patt @{theory Rational}
"(?a / (?b - ?c) = - 1* _ / (_ - _)",
[" name1", " name2", " name3"]),

("fill-special-one-third-2",
parse_patt @{theory Rational}
"(?a / (?b - ?c) = _ / (-1 (_- _)",
[" name1", " name2", " name3"]),

("fill-special-one-third-3",
parse_patt @{theory Rational}
"(?a / (?b - ?c) = -1 *?a / (_ - ?b)",

[" name1", " name2", " name3"]),
("fill-special-one-third-4",

parse_patt @{theory Rational}
"(?a / (?b - ?c) = ?a / (-1 (_ - ?c)",
[" name1", " name2", " name3"]),

("fill-special-one-fourth-1",
parse_patt @{theory Rational}
"?a - (?b * ?c) = _ - _ * ?c",
[" name1", " name2", " name3"]),

("fill-special-one-fourth-2",
parse_patt @{theory Rational}
"?a - (?b * ?c) = ?a - _ * ?c",
[" name1", " name2", " name3"]),

("fill-special-one-fifth-1",
parse_patt @{theory Rational}
"-?a + ?b = = -1* (_ - _)",
[" name1", " name2", " name3"]),

("fill-special-one-fifth-2",
parse_patt @{theory Rational}
"-?a + ?b = = 1* (- _ + _)",
[" name1", " name2", " name3"]),

("fill-special-one-fifth-3",
parse_patt @{theory Rational}
"-?a + ?b = = -1* (?a - _)",
[" name1", " name2", " name3"]),

110

("fill-special-one-fifth-4",
parse_patt @{theory Rational}
"-?a + ?b = = 1* (- _ + ?b)",
[" name1", " name2", " name3"]),

("fill-special-one-six-1",
parse_patt @{theory Rational}
"(?a / ?a) = 1* (_ / _)",
[" name1", " name2", " name3"]),

("fill-special-one-six-2",
parse_patt @{theory Rational}
"(?a / ?a) = _ * (?a / ?a)",
[" name1", " name2", " name3"]),

("fill-special-one-six-3",
parse_patt @{theory Rational}
"(?a / ?a) = 1* (?a / _)",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

7. Binomial Form:

(a) a−b
a2−b2 = a− b
a−b
a2−b2 = ..−..

(..+..)·(..−..)
a−b
a2−b2 = a−..

(a+..)·(a−..)
a−b
a2−b2 = a−b

(a+b)·(a−..)
a−b
a2−b2 = 1

..+..
a−b
a2−b2 = 1

a+..

(b) (a+ b)2 = a2 + b2

(a+ b)2 = ..2 + 2 · .. · ..+ ..2

(a+ b)2 = a2 + 2 · .. · ..+ b2

(a+ b)2 = ..2 + 2 · a · b+ ..2

(c) (a− b)2 = a2 − b2

(d) (a− b)2 = a2 + b2

(a+ b)2 = ..2 − 2 · .. · ..+ ..2

(a+ b)2 = a2 − 2 · .. · ..+ b2

(a+ b)2 = ..2 − 2 · a · b+ ..2

ML {*
val fillpat =
([("fill-binom-first-1",

parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(_ - _)/ ((_ - ?b)(_ + ?b))",
[" name1", " name2", " name3"]),

("fill-binom-first-2",
parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(_)/ (_ + _)",
[" name1", " name2", " name3"]),

("fill-binom-first-3",
parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(?a - _)/ ((?a - _)(?a + _))",
[" name1", " name2", " name3"]),

("fill-binom-first-4",
parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(_)/ (_ + ?b)",
[" name1", " name2", " name3"]),

111

("fill-binom-first-5",
parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(?a - ?b)/ ((?a - ?b)(?a + _))",
[" name1", " name2", " name3"]),

("fill-binom-first-6",
parse_patt @{theory Rational}
"(?a - ?b)/ (?a ˆ{2} - ?bˆ{2})=
(1)/ (_ + ?b)",
[" name1", " name2", " name3"]),

("fill-binom-second-1",
parse_patt @{theory Rational}
"(?a + ?b)ˆ{2} = _ ˆ{2} +2 * _ * _ + _ˆ {2}?,
[" name1", " name2", " name3"]),
("fill-binom-second-2",

parse_patt @{theory Rational}
"(?a + ?b)ˆ{2} = _ ˆ{2} +2 * ?a * _ + _ˆ{2}?,
[" name1", " name2", " name3"]),
("fill-binom-second-3",

parse_patt @{theory Rational}
"(?a + ?b)ˆ{2} = ?a ˆ{_} + _ * ?a * ?b + ?bˆ{2}?,
[" name1", " name2", " name3"]),

("fill-binom-third-1",
parse_patt @{theory Rational}
"(?a - ?b)ˆ{2} = _ ˆ{2} - 2 * _ * _ + _ˆ {2}?,
[" name1", " name2", " name3"]),
("fill-binom-third-2",

parse_patt @{theory Rational}
"(?a - ?b)ˆ{2} = _ ˆ{2} - 2 * ?a * _ + _ˆ{2}?,

[" name1", " name2", " name3"]),
("fill-binom-third-3",

parse_patt @{theory Rational}
"(?a - ?b)ˆ{2} = ?a ˆ{_} - _ * ?a * ?b + ?bˆ{2}?,

[" name1", " name2", " name3"]),
NONE): fillpat;

*}

8. Changing between forms:

(a) a bc =
a+b
c

(b) a bc =
a·d
c·d

(c) a bc =
a·d+c
c·d

a bc =
a·..+..
..

a bc =
..·c+..
c

a bc =
a·c+..
..

a bc =
a·c+.b
..

ML {*
val fillpat =
([("fill-changeform-left-num",

parse_patt @{theory Rational} "a(?b / ?c)/?a = _ / ?c",
[" name1", " name2", " name3"]),

("fill-changeform-left-den",
parse_patt @{theory Rational} "a(?b / ?c)/?a = ?b / _",
[" name1", " name2", " name3"]),

("fill-changeform-none",
parse_patt @{theory Rational} "a(?b / ?c)/?a= ?b / ?c",
[" name1", " name2", " name3"]),

NONE): fillpat;

*}

112

B.3 Rules Testing for Error-Patterns
The following rules directly step towards a theorem which is related to an error-pattern
contained in a list error patterns to check determined by the dialogue.

These rules reside at the side of the MathEngine, see Fig.4.6 on p.68.

rule "go to a step with an error-pattern given by DG"
when

DG#errorPatternsToCheck() != null &&
intersection (

ME#fetchProposedTactic().getErrorPatterns(),
DG#errorPatternsToCheck()) != null

then
ME#stepToErrorPatterns (intersection

(ME#fetchProposedTactic().getErrorPatterns(),
error_patterns_to_check_))

stepping_to_error_pattern_ = true
end

In between these rules no user interaction is expected: the former results in a CalcCha-
nged (the ME is expected to produce no error, i.e. no CalcMessage) which in turn actives
the following rule:

rule "present the step where an EP could occur"
when
stepping_to_error_pattern_

then
ME#stepOnErrorPattern() //show fill-form on WS
fill_pat = ME#getFillpattern()
WS#showErrorpattern(fill_pat) //show lhs of fill-pattern
stepping_to_error_pattern_ = false

end

Now the learner can input to the fill-form correctly or not (and no further cases, because
the dialogue restricted the situation to this case concerning only one specific EP.)

rule "stepping_to_error_pattern: input correct"
when
CalcChanced

then
stepping_to_error_pattern_ = false
DG#setEPcounter(err_patt_, 0)
err_patt_ = ""
help_counter_ = 0

end

rule "stepping_to_error_pattern: input NOT correct"
when
CalcMessage == "stepToErrorPattern: input incorrect"

then
stepping_to_error_pattern_ = false
....

end

B.4 Hint-Pages
Hint-pages are associated with error-patterns (EPs) in a table 1 like the following.

Hint-pages in App.B.4 are within the scope of dialog authors, while error-patterns and
fill-patterns in App.B are handled by ISAC’s mathematics engine and thus implemented in
ML structures are within the scope of mathematics authors.

1There are further hint-pages associated to fill-patterns, see App.B.

113

Also the implementation of the dialog-rules for the dialog guide are still out of scope of
dialog authors. But these will come into charge of this implementation task as soon as the
language of the DialogGuide has matured (i.e. respective methods have been implemented).

The above table is preliminiarly implemented as a property file named
error patterns hint pages.properties and located in the file system at repos/xmldata.

114

Appendix C

Deutsche Zusammenfassung

Kognitive Aspekte des Designs von Dialogen in einem Theorem-Beweis Basierten Math-
ematischen Assistenten
Implemetierung von Fehlermustern zur Steuerung von Dialogen in ISAC

Diese Masterarbeit setzt sich mit den Theorien aus den Kognitionswissenschaften au-
seinander, die für das Erlernen von Mathematik relevant sind. Die daraus gewonnen Erken-
ntnisse werden verwendet, um die Erkennung von Fehlermustern auf spezifische Art in das
experimentelle System ISAC zu implementieren.
Da es für diese Masterarbeit nötige war, erst diese spezifische Zugangsweise zu finden,
beginnt die Arbeit mit einer generellen Beschau des Themas: Die Auseinandersetzung mit
den Forschungsergebnissen über die grundlegenden Strukturen und Prozesse des Gehirns
im Moment der Anwendung bzw. des Erlernens von Mathematik. Im speziellen wird
auf Forschungsergebnisse eingegangen, die sich auf die Abstraktionsfähigkeit und die,
in der Anwendung von Mathematik begangenen, Fehler beziehen. Besondere Aufmerk-
samkeit wurde den Kognitionstheorien geschenkt, die sich spezifisch damit auseinander-
setzen, mathematische Lernsoftware zu entwickeln. Im speziellen wird auf Aspekte ex-
istierender Software eingegangen, die mit ISAC vergleichbar ist.
ISAC wird dabei als im Entstehen begriffener Prototyp eines auf computerisiertem Theo-
rembeweis basierten Systems gesehen, der als Assistent für das Erlernen von Mathematik
agiert — mit groem Schwerpunkt auf den Vorteilen dieses Systems gegenüber anderen.
(1) automatisierte Ableitung der Benutzereingabe durch den logischen Kontext und (2)
automatische Vorschläge über die nächsten Schritte hin zu einer Lösung in (symbolis-
chen) Rechenbeispielen, ähnlich einer traditionellen stufenweisen Herangehensweise an
die Lösung mit Stift und Papier. Diese Dienste eröffnen neue Möglichkeiten einer automa-
tisierten Benutzerführung mittels Dialogen — Das Beweisen der Nützlichkeit dieser neuen
Möglichkeiten ist das Hauptanliegen dieser Masterarbeit.
Das konkrete Design von Fehlermustern und deren Implementierung beim Bruchrech-
nen werden so beschrieben, dass diese Beschreibung als Anleitung für die Weiterarbeit
an diesem System aufgefasst werden kann: Der Code, in dem die Implementierung der
Fehlermuster vorgenommen wurde, deckt sich mit der Programmiersprache von ISACs
Mathematik-Engine; Der Code besteht aus ein paar dutzend Zeilen. Der Code, der die
Benutzerführung implementiert, ist in der regelbasierten Spreche eines Expertensystems
geschrieben; dieser Code beinhaltet vier Regeln.
Die Implementierung zeigt den generellen Zugang und die Effizienz des Designs: (1)
Die Fehlermuster für Brüche werden verallgemeinert und gelten auch für alle anderen
Rechenarten, wie Differenzialrechnung, Lösen von Gleichungen, usw. (2) Die Imple-
mentierung lässt sich auf alle Berechnungen im Bereich technischer Planung und wis-
senschaftlicher Arbeit übertragen und (3) die Effizienz zeigt sich dadurch, dass alle unter

115

(1) und (2) erwähnten Beispiele mit nur vier Regeln abgedeckt werden können. Schlielich
kann man aus der Effizienz und allgemeinen Gültigkeit Aussagen über zukünftige An-
wendungsbereiche machen: Diese Fortschritte versprechen auf Versuch und Irrtum” auf-
bauende, unabhängige Lernunterstützung nun auch in der Mathematik, wie es Spiele und
Simulationen bereits in anderen Bereichen vorgeben. Diese Art von Software erneuert so
die Art des Lernens.

Der Inhalt der Masterarbeit:

1. Kapitel: Stellt allgemeine Begriffe von Kognitionswissenschaften und Mathematik
vor. Die führenden Fragestellungen sind: Was ist Mathematik, gibt es angeborene
Prozesses, was für eine Rolle spielt Abstraktionsfähigkeit beim Lernen, was ist das
Besondere an Algebra uns Bruchrechnungen, was sind die Ursachen für Fehler in
der Mathematik, wie kann man Computer im Mathematikunterricht einsetzen.

2. Kapitel: Erklärt die bereits existierenden Funktionen des Theorem-Beweissystems
ISAC: Die Hilfe beim nächsten Schritt. Dabei wird auf die Ausgangssituation bei
seinem Dialogsystem eingegangen.

3. Kapitel: erläutert ausführlicher den möglichen Beitrag der Kognitionswissenschaften:
Wie lösen Schüler Beispiele aus dem Bereich der Bruchrechnungen, welche Art von
Wissen braucht man für Mathematik, und was benötigt man für eine effektive Be-
nutzerführung. Das Kapitel vergleicht dazu auch existierende Computerprogramme,
die im Mathematikunterricht verwendet werden. Indem wir die eben beschriebenen
Elemente zusammenfassen, erstellen wir Anweisungen für ISACs Dialogdesign. Da
wir uns auf die Reaktion auf Fehler konzentrieren, gehen wir auch auf die Frage
ein, ob Fehler Mustern folgen, und welche Muster nützlich für Dialoge in ISAC sein
könnten.

4. Kapitel: Zeigt die konkrete Implementierung von Fehlermustern, Seiten mit Tips,
Umformungsregeln, Lückentexten, Dialogregeln und Arten von Dialogen in ISAC.

5. Kapitel: Vergleicht Beispiele aus dem Unterrichtsalttag mit den Möglichkeiten der
Fehlererkennung in ISAC. Dieses Kapitel setzt sich auch damit auseinander, wie man
die oben beschriebenen Erkenntnisse in das Lernszenario integrieren kann: Vorschläge
für geführte Beispiele und Möglichkeiten der künftigen Erweiterung (zB.: Benutzer-
modelle, Pilotstudien)

Stichwörter: Kognitionswissenschaften, Fehlermuster, Dialog Bruchrechnungen,
Lernen, computerisierter Theorem-Beweis, Umformung, Matching, Lukas Interpretation

116

Appendix D

Curriculum Vitae

Gabriella Daróczy, 2013

Education

2010-2013 Middle European Interdisciplinary Master Programme in Cognitive Science
(MEi:CogSci), University of Vienna

2005-2008 M.Sc. in Engineering and Management
Faculty of Mechanical Engineering and Information Technology
University of Miskolc, Hungary

Work Experience

2012-current Research Assistant,
eMediaMonitoring GmbH, Vienna

2012-current Volunteering as Mathematical Instructor
Lerntafel, Vienna

2010-2012 Private Mathematical Instructor
Kogler Karl-Heinz Mag. KEG Nachhilfeinstitute, Vienna

2008-2010 Research and Development in EMCC KIRAS Project
Leonardo Internship
Rosenbauer International AG, Leonding

117

Internships, Scholarships, Presentations

2013 Error-Patterns within ”Next-Step-Guidance” in TP-based Educational Systems.,
Gabriella Daróczy, Walther Neuper
eJMT the Electronic Journal of Mathematics and Technology
Volume 7, number 2 (Special Issue February), pages 175-194

2011 autumn CEEPUS-Scholarship Comenius University of Bratislava
Measuring the EEG mu rhythm desynchronization associated with motor actions
Supervisor: Prof. Igor Farkas

2011 autumn Semester Project: Nature of Human Consciousness and Narrativity
Institute of Philosophy, Slovak Academy of Science, Bratislava
Supervisor: Prof. Silvia Gáliková

2011 spring Learning effects in Reckon and Choose (L4S)
OFAI, Vienna (Austrian Institute of Artificial Intelligence)
Supervisor: Dr. Paolo Petta

2011-2012 Science and Art: Effect of Different frames and alignments of a painting on
the distribution of viewing directions in human perception.
Laboratory for Empirical Image Science,
Department of History of Art University Vienna
Supervisor: Prof. Raphael Rosenberg

2007 TDK (Scientific Students’ Associations Conference University Miskolc)
I. Place, Lifetime Management of Steel Bridges
Supervisor: Dr. János Lukács

2008 autumn DAAD-Scholarship, Heinrich Heine University,
Düsseldorf, Germany

2005 spring Erasmus-Scholarship, Tampere University of Technology,
Tampere, Finland

2005, 2007, 2008 Scholarship of the Hungarian Republic
2003-2005 Member of Mathematical Self-Education Circle

University of Miskolc, Hungary
2004 Remarks in the History of Mathematics (Presentation)

6th Junior Mathematical Congress Stockholm (23.-28. Juni)

118

