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1 Introduction: Automatic animal training and test-

ing

It is often the case in animal behavioral biology that a large amount of human re-
sources, time, and data storage (such as video recordings) are required in animal
observation and training. Some representative examples of these cases are:

• Observation of certain species continuously or monitoring for specific events,
which occur irregularly, when behavior of certain species during any time
period or specific time period, such as nocturnal behaviors, are investigated.

• Certain experiments require a prolonged training period, sometimes over a
year. This type of experiment requires reliable responses, which may not
correspond to usual behavior patterns, from animals in tasks. Therefore,
training may require a long period of time until the subject is ready to be
tested. Additionally, long periods of human supervised training can introduce
unintended cues and biases for animals.

In the first case, an autonomous system for observing animals can save hu-
man resources and reduce the amount of data storage. The reduced amount of
data can also conserve other types of human resources such as investigation and
maintenance of large-scale data. There have been attempts to build autonomous
observing or surveillance systems in the fields of biology, such as Kritzler et al.
[1]’s work (Figure 1), and security systems, such as Belloto et al. [2], Vallejo et
al. [3], for instance. There are also commercial products for surveillance systems
with various degrees of automation, or incorporating artificial intelligence. How-
ever, the intelligence of each system is case-specific and it is difficult to apply
these specific systems to novel situations without considerable adjustments.

In the second case, an autonomous system for prolonged, intensive training
can also save human resources and eliminate potential cues and biases caused
by humans. Training with an autonomous system is an extension of traditional
operant conditioning chambers and many modern and elaborated versions have
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Figure 1: Photo of SNE device for mice, Kritzler et al. [1]

been developed and used, such as in Markham et al. [4], Takemoto et al. [5],
Kangas et al. [6], Steurer et al. [7], and Fagot & Bonte [9]. However, many of
the previous devices use commercial software. Also, they do not possess the
observational features developed in the current project.

It would be useful to have an open-source, relatively low-budget, and modu-
larized system which could be customized for the observation, training and the
experimentation on animal subjects of various species. CATOS, the system built
in the present study, fulfills these necessities.

The difference between the previous systems and CATOS (Computer Aided
Training/Observing System) in the present work is that the animals do not have
to be captured or transported to a separated space at a specific time in order to
be trained. The disadvantages of separating animals (e.g., primates) are well-
known, and include stress on animals separated from their group or moved from
their usual confines, the risky catching procedure for both animal and human (cf.
Fagot & Bonte [9]). Similar arguments apply to most animal species, especially
when they are social.

The automatic learning device for monkeys (ALDM; Figure 2) described in
Fagot & Bonte [9] is very similar to the trainer aspect of CATOS described in
the present work, but CATOS is different in following features. First of all, it aimed
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Figure 2: Schematic drawing of ALDM(left-side) and photos(right-side) of devices,
Fagot & Paleressompoulle [8]/Fagot & Bonte [9]

to be open-source based and more modular so that it can be more easily ad-
justed and adopted to different species and experiments. Another feature is that
CATOS is equipped with various observational features, including visual and au-
ditory recording and recognition through video camera and microphone, which
make the system able to interact with the subjects, such as reacting immediately
to a subject with a motion detection from a camera or a sound recognition from a
microphone.

CATOS should offer the following advantages.

• The system should be flexible in terms of its adjustability and the extendibility
to various projectsand species. The software should be open-source, and
both software and hardware components should be modularized as much
as possible, so that they can easily be reassembled for various projects.

• The system should have various observational features applicable to a broad
range of animal species and observational purposes.
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• The system should perform continuous monitoring, and it should record
video and/or sound only when a set of particular conditions is fulfilled. This
would reduce the amount of data produced during the procedure.

• The system should have actuators to react in certain situations, which allows
it to act as a trainer/experimenter. The human trainer/experimenter designs
the procedure by adjusting parameters and modules, but the actual perfor-
mance should be done by the system. In this way, the system could help re-
ducing the amount of time required for training, and eliminating cues/biases
which might be induced by the human interferences.

• With this system, the animal should not have to be transported to a certain
space, or separated from its group, for training. The animals should be able
to choose when to start a trial on their own.

Two CATOS prototypes have been built during this study. The first build of
CATOS has 3 pushbuttons as a main input device for cats and the second build
has a touch-screen as a main input device. The first build was an initial attempt
to build and test such a system. The second build is the final product of the
study. The basic structures of these two builds are more or less the same. The
differences are that the second version has improved functions and it uses the
touch-screen instead of pushbuttons.

The first build of CATOS was tested with domestic cats (Felis catus) to train
them to press three different buttons differently depending on the auditory stimuli
(three different human speech sounds). The final goal of this training is to inves-
tigate human speech perception in cats. There is no doubt in that many animal
species can recognize some words in human speech. The examples of speech
perception in dogs and chimpanzees can be found in the work of Kaminski et al.
[10] and Heimbauer et al. [11] respectively. In some cases, animals can even
properly produce words with specific purposes. An example of speech perception
and production in a parrot can be found in the work of Pepperberg [12]. Despite
these findings, there is ongoing debate about whether the same perceptual mech-
anisms are used in speech recognition by humans and animals (Fitch [13]). To
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Software (Tested) Version Website
Operating system (Mac OSX) 10.7 apple.com

Python language 2.7 python.org
OpenCV library 2.3 & 2.4 opencv.org

ffmpg 1.1 ffmpeg.org
HTK 3.4 htk.eng.cam.ac.uk

pyaudio 0.2 people.csail.mit.edu/hubert/pyaudio
numpy 1.6 scipy.org
scipy 0.11 scipy.org

wxPython 2.9 wxpython.org
pyserial 2.6 pyserial.sourceforge.net
arduino 1.0 arduino.cc

matplotlib 1.2 matplotlib.org

Table 1: Summary of CATOS system dependencies

investigate this issue, animals have to be trained to show different and reliable re-
sponses to different human speech sounds. Then, we can test which features of
human speech are necessary for different animal species to understand it. Thus,
the final aim of the training in this study would be to obtain cats showing differ-
ent responses to different human speech sounds with statistical significance (over
75%). Before reaching this final goal, several smaller steps and goals are required.
These steps and goals will be described in later sections.

2 Base Technologies

At the heart of the CATOS system is a commercial computer (Apple miniMac,
OS 10.7). The main computer language used is Python (Version 2.7.3, retrieved
in November 2012, from http://www.python.org/), and several external packages.
See the table 1.

The current sensory information processing of CATOS is built based on the
computer vision algorithms (using OpenCV library; version 2.3.1a, retrieved on
Feb. 12th, 2012, from http://www.opencv.org/), the Hidden Markov Model (using
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HTK, Hidden-markov-model Tool Kit; Version 3.4.1, retrieved on Nov. 21st, 2012,
from
http://htk.eng.cam.ac.uk/), and several sensors via a microcontroller. In the sec-
ond build, a touch-screen with the Surface Acoustic Wave touch-technology was
integrated.

2.1 Computer vision (OpenCV)

The current visual perception feature of CATOS is based on motion detection.
This was accomplished using common web-cams and the open-source library
called OpenCV, which is a library for real time computer vision and has over 500
functions [14]. The use of OpenCV means that many additional functions can be
easily added depending on what the training and/or observing project requires.

Figure 3: Categories of OpenCV functions;
from http://opencv.willowgarage.com/wiki/
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2.2 Hidden Markov model toolkit (HTK)

The current auditory perception feature of CATOS is based on Hidden Markov
Models. This was accomplished using a recording through a microphone and
HTK, which is a toolkit with a set of library modules and tools for building Hidden
Markov models. It is primarily designed for building HMM-based speech recog-
nizers. (Young et al. [17]). The auditory perception of CATOS was not a required
feature for the cat training program, which was performed with the first build of the
system. But it was nevertheless implemented and tested as proof of concept.

2.3 Physical computing using a microcontroller

The interface between the computer and several sensors/actuators was imple-
mented using a microcontroller called Arduino (see http://www.arduino.cc/). Ar-
duino is a low-cost, extendable system intended for hobbyists, which has a wide
variety of extension systems (”shields”) for different purposes.

3 Description of CATOS

(Computer Aided Training/Observing System)

The overall system is composed of a combination of software and hardware com-
ponents. (Figure 4).

The software components are mainly composed of the Python script named
as ’AA.<version>.py’ and the program for the microcontroller. The ’AA’ runs all
of the necessary processes and communicates with the microcontroller program.
The microcontroller program operates sensors and actuators as it communicates
with the ’AA’ program.

The hardware components are composed of various devices, some of which
are directly connected to the computer via USB cables. Some other devices only
have GPIO (General Purpose Input Output) pins; therefore they are connected
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to the microcontroller. The microcontroller itself is connected to the computer via
a USB cable. The hardware devices, which are directly connected via USB ca-
bles, can be accessed using various software modules, which are imported into
the ’AA’ program. The access to other devices only using GPIO pins is performed
in the microcontroller and the ’AA’ program simply communicates with the micro-
controller program via a serial connection for sending commands to actuators and
receiving values from sensors.

Figure 4: Schematic diagram of the overall system; Black lines denote the mes-
sage exchange between the modules. Blue lines denote the control connection
between the software and the hardware component

3.1 Device design

The design of the first build is depicted in Figure 5 (except 2 webcams attached
on the walls). The design of the second build is depicted in Figure 6. Beside
small changes in the design of the feeder, the big differences between the first
and the second build are that the second build uses the touch-screen instead of
pushbuttons, and many electronics, which should not be exposed to the subject,
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Figure 5: The design of the device of the first build

are embedded in a protective case. Three side panels of this protective case can
be attached and detached easily via using magnets.

3.2 Software in the overall structure

The software for this system is called AA (Agent for Animals) as depicted in Figure
4. Once it starts, it constantly runs 7 processes in parallel until the user terminates
the program. The number of processes can be changed as some of them can be
turned on or off. These processes include a video-in process for each camera, a
video-out process, an audio-in process, an audio-out process, a schema process,
and a message-board process. Even though some of these processes have quite
simple tasks, they were separated in order to prevent them from interfering with
each other and/or becoming the bottleneck. The system has to process the visual,
auditory, and other sensory and motor information simultaneously to recognize the
change of the environment and respond to it properly.

The output data such as captured video input images, recorded WAV files,
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Figure 6: The design of the device of the second build
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movement-records, CSV files for trial results, and the log file are temporarily stored
in the ’output’ folder. After the daily session is finished, all of these output files go
through an archiving process which can include, but is not restricted to, generating
movies, generating images with the movement analysis, labeling sound files, and
moving different types of files into the categorized subfolders of an archiving folder
named with a timestamp.

3.3 Message-board process

The message-board process facilitates the flow of messages among modules, and
between the program and the microcontroller.

3.4 Schema process

The schema process mainly takes care of running trials, but it also handles other
types of scheduled tasks such as sending emails periodically and logging system
messages periodically.

A typical trial procedure, as used in this study and described in detail in later
sections, proceeds as follow; one of the several feeding sounds is played with a
certain time interval. The feeding sound for the trial is randomly determined and
the time interval between trials is also randomly determined on each trial within a
certain range. The process asks other modules for messages to check the cat’s
movements and the button-presses. It also sends messages to actuators to re-
act appropriately to the cat’s responses. This is a typical example of using this
process, but the schema process is very flexible, and can be coded and param-
eterized differently for different training procedures and experiments (Figure 7).
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Figure 7: Flow of the current program’s schema process
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3.5 Video-In process

The video-in process is used for recognizing a movement, extracting moving ob-
jects (background subtraction) and recording it. The sequence of images is ob-
tained constantly from 2 web-cams, positioned about 3 meters above on the wall
of the experimental room. Once any motion is detected, the program starts to
store the images (JPEG format) to a temporary folder until no motion is detected
for 3 seconds. It also stores the records of movements such as the center point
of movements and center points of foreground blobs. The stored series of JPEG
images in a folder, from a motion-detection to 3 seconds of no-motion period, are
compressed into one MP4 movie file using FFmpeg (http://www.ffmpeg.org) when
the daily session is finished.

The two main algorithms in this process are described below.

3.5.1 Motion detection

This function searches for any change in recently obtained series of images and
returns the center point of overall change. The key procedures to obtain this
motion-detection information are as following (Bradski & Kaehler [14]):

1. The average of the recent images was obtained by the cv.RunningAvg func-
tion. The description of the cv.RunningAvg is :

• image - Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each
channel of multi-channel image is processed independently)

• acc - Accumulator with the same number of channels as input image,
32-bit or 64-bit floating-point

• alpha - Weight of input image

• mask - Optional operation mask

The accumulator, acc, is given by the following formula:

acc(x, y) = (1− α) · acc(x, y) + α · image(x, y), if mask(x, y) 6= 0
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• x - x coordinate of the image

• y - y coordinate of the image

• α - alpha parameter, which regulates the update speed (how fast the
accumulator forgets about previous frames)

2. The absolute difference between the current frame image and the average
image is calculated using the cv.AbsDiff function. The description of the
cv.AbsDiff is :

• src1 - The first input array

• src2 - The second input array; Must be the same size and same type
as src1

• dst - The destination array; it will be the same size and same type as
src1

3. The outline of the differences are detected by the Canny edge detector of
Canny [15], using the cv.Canny function. The description of the cv.Canny is
:

• img - single-channel 8-bit input image

• edges - output edge map; it has the same size and type as img

• lowThresh - first threshold for the hysteresis procedure

• highThresh - second threshold for the hysteresis procedure

• apertureSize - aperture size for the Sobel() operator

4. The coordinates of fragments of the outline are obtained by the algorithm of
Suzuki & Abe [16] using the cv.FindContours function. The description of the
cv.FindContours is :

• img - 8-bit single-channel input image

• storage - indicating memory in which to record the contours
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• mode -

– CV RETR EXTERNAL: Retrieves only the extreme outer contours

– CV RETR LIST: Retrieves all the contours and puts them in the list

– CV RETR CCOMP: Retrieves all the contours and organizes them
into a two-level hierarchy, where the top-level boundaries are ex-
ternal boundaries of the components and the second- level bound-
aries are boundaries of the holes

– CV RETR TREE: Retrieves all the contours and reconstructs the
full hierarchy of nested contours

• method -

– CV CHAIN CODE: Outputs contours in the Freeman chain code;
all other methods output polygons (sequences of vertices)

– CV CHAIN APPROX NONE: Translates all the points from the chain
code into points

– CV CHAIN APPROX SIMPLE: Compresses horizontal, vertical, and
diagonal segments, leaving only their ending points

– CV CHAIN APPROX TC89 L1 or CV CHAIN APPROX TC89 KCOS:
Applies one of the flavors of the Teh-Chin chain approximation al-
gorithm

The images showing the example of motion-detection can be found in Figure
8

The motion detection described here is important for the system since it does
not only triggers a recording, but also triggers certain responses of the system to
the animal subjects.

3.5.2 Background subtraction

The background subtraction is activated only when motion is detected. The back-
ground subtraction is useful for reducing the time needed to analyze the video
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Figure 8: Example of motion-detection processing
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data later. Obtaining a clear image of foreground blobs is not a critical step for
the real-time process. Therefore, it was performed in a very simple way rather
than using sophisticated algorithms. The program stores an image when a ses-
sion starts and uses it as a background image. The program distinguishes the
foreground blobs from the background image, mainly using the combination of the
cv.AbsDiff and the cv.Threshold functions. The cv.AbsDiff function was already
mentioned and the cv.Threshold functions generates a binary image depending
on the threshold parameters. This function’s description is :

• src - Source array(single-channel, 8-bit or 32-bit floating point)

• dst - Destination array; will have the same size and the same type as src

• threshold - Threshold value

• max value - Maximum value to use with THRESH BINARY and THRESH BINARY INV
thresholding types

• threshold type -

– CV THRESH BINARY; dsti = (srci >T), otherwise 0

– CV THRESH BINARY INV; dsti = (srci >T), otherwise max value

– CV THRESH TRUNC; dsti = (srci >T), otherwise src

– CV THRESH TOZERO INV; dsti = (srci >T), otherwise src

– CV THRESH TOZERO; dsti = (srci >T), otherwise 0

The background image can be updated if a foreground blob is persistent over a
certain prolonged time. This helps to prevent recognizing certain changes in the
background. An example case would be if an inanimate object was moved by the
animal and it remains as a foreground blob continuously.
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3.6 Video-Out process

The video-out process takes care of displaying certain images on the touch-screen
and accepting touches from it for a trial. It uses the wxPython-2.9 graphical user
interface library (retrieved from http://www.wxpython.org in March, 2013). This
process was not implemented in the first build. In the second build, this process
offers access to the touch-screen interface to the animal subject.

3.7 Audio-In process

The audio-in process is for recording any sound around the microphone. Similar
to the video-in process, when the Root Mean Square amplitude goes above the
threshold, it starts to record the sound as a WAV file until the amplitude drops
under the threshold for 3 seconds. It also applies a high frequency pass filter
before the measurement of RMS, to prevent the false recording of a door closing
or other noises caused by humans in other spaces than the experimental space.

All the stored WAV files were automatically labeled with a model trained by
HTK, Hidden-markov-model Tool Kit, program (Version 3.4.1, retrieved on Nov.
21st, 2012, from http://htk.eng.cam.ac.uk/), which is an open-source toolkit for
building and manipulating HMM, Young et al [17]. A brief diagram of Figure 9 and
Figure 10 depicts the general work-flow of HTK.

A Hidden Markov Model was trained using HTK to facilitate the human recogni-
tion of the WAV files by automatic pre-labeling of files. In the cat training/observation
project reported in this study, the label was simply ”eating”(crunching sound made
by a cat eating the dry food used as a reward) or ”etc”(all other sounds).

The HMM was not crucial for the training performed in this study, but it is a
potentially important feature for future usages such as training/experimenting on
any animal species whose vocal communication in a group is active or for training
animals to vocalize. Namely, the HMM recognizer can act like the motion detection
in the video-in process for responding toward animal subjects in real-time to their
vocalizations.
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Figure 9: Simple diagram showing the general work-flow of HTK, Young et al
[17]:p.2

Figure 10: HTK processing stages, Young et al [17]:p.17
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3.7.1 Preparing the sample WAV files

Several hundred WAV files (most of them were 3 to 5 seconds long), which were
automatically recorded by the system as it was explained in 2.3, were used as
input to train the HMM. Then, they were sliced into smaller WAV files containing
segments only with ”eating” or ”etc” sound. This editing process was manually
done using a program, Praat [18].

Figure 11: Making a sample WAV file

3.7.2 Training Hidden Markov Model

Several different Hidden Markov models were trained and tested using several
tools in HTK such as ’HCopy’, ’HInit’, ’HRest’, ’HERest’, and ’HHEd’.

The common aspects for all the different trained models were as following:

• The ’targetkind’ of the configuration file was ’MFCC E D A’, Mel-frequency
cepstral coefficients.

• The grammar was ’(eating — etc)’ meaning the wave data is either ”eating”
or ”etc”.

• The proto model files for both ”eating” and ”etc” were same.
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The distinct aspects for the different trained models were as following:

• The first type of model is depicted in 1) of Figure 12. These models were
trained with ’HRest’ of HTK. In this first type, different values for parameters,
’NUMCHANS (Number of filter-bank channels to use in the analysis)’ and
’NUMCEPS (Number of cepstral coefficients)’ were tried, and also various
numbers of Gaussian distributions using ’HHed’ of HTK was tried.

• The second type of model is depicted in 2) of Figure 12. These models had
one more state than the first type. Similarly to the first type, different param-
eterizations and different numbers of Gaussian distributions were tried.

• The third type of model is depicted in 3) of Figure 12. There was a tied
state between ”eating” and ”etc” models. These models were trained with
’HERest’ of HTK. Also, different parameterizations and different numbers of
Gaussian distributions were tried. One of these models became the final
models of the system.

Refer to Figure 12 for the different structures of the above 3 models.

3.7.3 Testing HMM

The first and the second type of models were not very successful. 5 ”eating”
sounds and 5 ”etc” sounds were randomly picked up out of the WAV files recorded
by the system. These 10 files were tested using the trained model with ’HVite’
and ’HResults’ of HTK. Most of them, if not all, were labeled as ”etc”. For the
third model, various parameters and the number of Gaussian distributions were
tried. Several preliminary tests on the third model with various parameters were
performed in two sample groups. One group had all the sample WAV files, which
were used for training the HMM models. Another group had 10 to 20 WAV files.
Half of them were ”eating” and another half of them were ”etc”. They were ran-
domly chosen from all the WAV files recorded by CATOS during sessions. These
models were trained twice more later due to the application of the high-frequency
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Figure 12: HMMs’ states transition probabilities. * The numbers besides the ar-
rows are the transition probabilities. ** The first and the last state(grey color states)
are not emitting states. *** The state #3 of the third model is a tied state between
”eating” and ”etc” accounting for short silent moments between sounds.
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Parameters Correctness rate
(NUMCHANS, Raw WAV files Sliced WAV files
NUMCEPS, used for training
Number of HMM

Gaussian dist.) eating etc eating etc
First training 6,6,2 100.0 100.0 99.6 84.6

6,6,4 100.0 100.0 99.8 90.9
Second training: 6, 12, 1 0.0 100.0 - -

Training after adding 6,12,2 0.0 100.0 - -
the high frequency 6,12,4 0.0 100.0 - -

pass filter 6,12,8 90.0 100.0 100.0 99.1
The second training; 6, 12, 10 90.5 100.0 - -

Training after
adding more

samples
Third training: 26, 24, 8 82.1 72.4 100.0 92.7
Training after
adding more

samples, which
have both sounds

Table 2: Test results of the third HMM models; The first training: Number of raw
WAV files were only 5 for each label, The second training: Number of raw WAV
files were 10 for each label, The third training: Number of raw WAV files were 57.
Forty of them were from the previous training, and an additional eight ”eating” and
nine ”etc” sound files contained both ”eating” and ”etc” sounds in one file

pass filter and adding more samples, which had both sounds, ”eating” and ”etc”,
in the same WAV file. The results after testing with the different versions of the
third model are depicted in the Table 2.

The last trained model (the colored row in Table 2) from the second training
was applied for the system because the third training did not improve the model
significantly. When the AA program finished each daily session, it labeled each
WAV file using this model. After running this procedure for a few weeks, all the
WAV files recorded in three randomly chosen days were manually evaluated. The
total number of evaluated WAV files were 287. The correctness-rate was about
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95%.

3.8 Audio-Out process

The audio-out process plays auditory stimuli (WAV files) through the loudspeaker(s).

3.9 Feeder

The two feeders (Figure 13) used in this study is a device mainly comprising the
Arduino microcontroller; (refer http://www.arduino.cc/), a motor-shield for the mi-
crocontroller, a servomotor, and a frame encasing the whole feeder. Both Feeder
variants work in a similar way, by rotating the servomotor by a certain number of
degrees, although the second feeder shows better performance in terms of con-
sistent amount of food released, due to the usage of an Archimedes’ screw.

Initially, an estimate of the amount of food left in the food container was ob-
tained using an IR distance sensor, but this feature was discarded in the second
build since the distance information from the IR sensor was not accurate enough
for this application.

The second feeder confirms the emission of a food reward via the piezoelectric
sensor, which is positioned right below the Archimedes’ screw.

3.10 Physical computing using a microcontroller

Communication between the Arduino chip and the main computer was accom-
plished by using the Arduino module of the ’AA’ program.

The circuit for the first build is depicted in Figure 14.

• The three mechanical buttons provided the interface used to obtain a re-
sponse from the cats.

• The IR distance sensor was used for measuring the amount of food left.
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Figure 13: Feeders for the first and the second CATOS builds
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• The servomotor dispense the food via a brief opening of the food container
at the bottom.

The circuit for the second build is depicted in Figure 15.

• The temperature sensor measures the temperature inside of the protective
wooden platform.

• The photocell sensor measures the ambient light level.

• The light bulb can be turned on when the photocell sensor indicates the
ambient light level is below a user-defined threshold.

• Two fans are turned on when the temperature sensor indicates the temper-
ature is too high in the platform.

• The piezoelectric sensor is read while the servomotor is actuating, in order
to confirm the occurrence of the food reward. This sensor reading is required
because occasionally the food dispensing fails due to the combination of the
short motor activation time (<0.5 seconds) and the shape of the dry food
pieces (which can fit into other pieces easily and then fail to emrege).

• The servomotor is responsible for the food dispense by turning the Archimedes’
screw back and forth.

3.11 Utility program; AA Data viewer

Besides combining all the above modules and implementing some common func-
tions, one more Python program was implemented to facilitate the process of an-
alyzing the recorded data. The program is called ”AA DataViewer”. It loads the
log file, the result CSV (comma separated values) file containing the results of the
trial, the movement-record CSV files, the MP4 movie files, and the WAV files from
one folder containing all data collected for one session (day). In the Figure 16,
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Figure 14: Circuit diagram of the microcontroller in the first build

Figure 15: Circuit diagram of the microcontroller in the second build
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Figure 16: Screenshot of AA DataViewer; Browsing various data from a session

there is a JPEG image showing the movements of the blobs. The circles repre-
sent the positions of the blobs and their color represents the time-flow, with the
black corresponding to the beginning of the movie, and the white to the end of the
movie. A line connecting multiple circles means that those blobs occurred at the
same time.

Another feature of this program is its ability to generate a graph with selected
sessions as in Figure 17. In the ’archive’ folder, there are sub-folders, each of
which contains all the data for a session. When the ’select sessions’ button is
clicked, a pop-up window appears for selecting multiple folders. The result data
from these selected sub-folders of ’archive’ folder is drawn as a graph using an
external Python library called Matplotlib. By visualizing the data for certain period,
it helps the trainer or experimenter quickly assess the current status of the training
procedure.
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Figure 17: Screenshot of AA DataViewer; Graphical representation of perfor-
mances across sessions

4 Testing the system; Procedures for training the

cat

The two pet cats in this study were originally obtained from an animal shelter in
June of 2012, and had not been exposed to any training since June of 2012 until
the beginning of the training for this study in October, 2012. Both were approxi-
mately 2.5 years old. One was a neutered male and another was an intact female.

This study was performed in the cats’ residence. The spaces were as depicted
in Figure 18. The room #1 (blue colored area; 5 meters long and 2 meters wide
room) was used for this study, but they could access any of the spaces depicted
in Figure 18.

The setup in Room #1 was as Figure 19.

34



Figure 18: Spaces in which cats can access. Room #1 was the experimental
space.

4.1 Session and trials

Each daily session lasted between 8-12 hours depending on the training state.
A sound from the possible trial sounds was randomly chosen to be played with
a random inter-trial interval. After this playback, if there was no reaction such
as a motion-detection or button-press within the duration of the trial, which could
be between 20 and 60 seconds depending on the training state, then it was not
recorded as a trial in the result CSV file. If there was a reaction within the duration
of the trial, then the trial officially started, which means logging and writing a trial-
entry in the result CSV file.

At the beginning, there was no limit on the number of trials per day. In this case,
the cats approached the feeder on the playback of the sound for the trial only when
they wanted to do so, and they ignored the sound otherwise. Later, when the diffi-
culty level was increased, a limit of the number of trials per day was implemented
in order to restrict the cats from randomly pressing buttons repeatedly to obtain
food rewards.
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Figure 19: Setup of the experiment room
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Figure 20: Female cat approaching the feeder right after CATOS played the feed-
ing sound

4.2 Training phase #1 Approaching the feeder in response to
sound playback

The goal of this phase was to train the cats to learn to associate a sound playback
through the loudspeaker with a potential food reward. The sound stimulus was the
experimenter’s recorded speech calling the cats’ names. If any movement was
detected around the feeder, a small amount of food was dispensed. Figure 20. If
there was no movement around the feeder for 20 seconds after playing the feeding
sound, the trial ended without dispensing any food.

4.3 Training phase #2 Pressing a button in response to sound
playback

The goal of this phase was to train the cats to press a button after the sound
stimulus playback in order to obtain the food reward. The trial length, or in other
words, the time period during which a cat can press a button to obtain the food
reward, was 30 seconds long.
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Figure 21: spectrogram of each feeding sound for 3 buttons
-

4.4 Training phase #3 Pressing a specific button correspond-
ing to a specific sound stimulus

The goal of this phase was to train the cats to associate a specific feeding sound
with a specific button when there are multiple buttons. The trial length was 60
seconds long. Through this phase, new buttons were added one by one. In to-
tal, three buttons were implemented, and the 3 different feeding sounds, each
of which corresponding to a button. The sound stimuli are the experimenter’s
recorded speech, ’Dong-g-ran’, ’Sam-gak-hyeong’, and ’Ne-mo-nan’ respectively.
The spectrograms of these sounds are shown in Figure 21. They have similar
duration and mean intensity. The durations are 1.35, 1.30, 1.40 seconds respec-
tively, and the mean intensities are all 64.5 dB. However, these sounds are quite
different in terms of the prosody. The first syllables of each of them use different
vowels, ’o’, ’a’, and ’e’, to make the differences between them more noticeable.

This phase was the longest of all three training phases. A number of param-
eters and assisstance features were implemented or deactivated. Some of them
were as follows: various trial lengths, negative feedback sound, sound playback
once more on the correct button response, repetition of the same trial on incor-
rect response, punishment time (no-reaction of the device on any button-press
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with the LED light on), and so on. None of these variations yielded significant
improvement. Then, three speakers were implemented right behind each of the
three buttons to help the cats to differentiate the sounds, at least by localization.
These three speakers were at the height of the buttons for the initial implementa-
tion, but were later elevated to 30cm, 45 cm, 60cm, and 120cm above the buttons
to prevent the cats from relying only on localization cues to choose the correct
button (Figure 22). After they were elevated 120 cm above the buttons, the three
speakers were also gathered together around the middle speaker, meaning that
they were positioned approximately in the same location.

5 Results

5.1 Results from system design and manufacture

5.1.1 Reduced data storage

The two web-cams observed the experimental area (room #1 of Figure 18) for 8
to 12 hours per day for about 5 months (from the middle of October 2012 to the
middle of March 2013). The movement records, MP4 movie files, JPEG image
files, and WAV sound files generated during this period took 37.35 Giga bytes of
storage.

To obtain a rough idea of the degree of reduction in data storage that was
achieved using the system, the number of recorded frames in the video recording
was assessed. Data for 15 days were taken to calculate it. The total observation
period was 406138 seconds, corresponding to 112.8 hours. The number of frames
recorded was 206024 and the average FPS(Frame Per Second) was 7.5, there-
fore, approximately, the video recordings were stored for 27470 seconds (=7.6
hours), which is about 6.7% of entire observation period.

These specific numbers are not very meaningful since they can fluctuate with
the increase or decrease of the subject’s movements, but the point is that the most
of the meaningless recordings were successfully filtered out by CATOS.
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Figure 22: Three speakers at different heights; views from two webcams

40



Trial# Trial start time Correct response Response Response time Correctness Actively

involved

individual

000 2013 03 17 10 54 13 965895 button2-press button3-press 2013 03 17 10 54 15 388055 INCORRECT White

001 2013 03 17 11 12 10 886611 button3-press button3-press 2013 03 17 11 12 15 867220 CORRECT White

002 2013 03 17 11 29 12 784309 button2-press button2-press 2013 03 17 11 29 16 663150 CORRECT White

003 2013 03 17 11 44 10 316059 button1-press button3-press 2013 03 17 11 44 25 102358 INCORRECT White

004 2013 03 17 12 04 11 212958 button1-press button1-press 2013 03 17 12 04 15 334470 CORRECT White

005 2013 03 17 12 15 11 635546 button2-press button2-press 2013 03 17 12 15 20 902902 CORRECT White

006 2013 03 17 12 35 12 568855 button3-press button3-press 2013 03 17 12 35 18 499058 CORRECT White

007 2013 03 17 12 48 24 338224 button1-press button3-press 2013 03 17 12 48 37 354654 INCORRECT White

008 2013 03 17 14 53 20 438590 button1-press button3-press 2013 03 17 14 53 34 863212 INCORRECT White

009 2013 03 17 15 06 13 043957 button1-press button1-press 2013 03 17 15 06 25 565992 CORRECT White

010 2013 03 17 15 22 17 607862 button2-press button2-press 2013 03 17 15 22 25 693059 CORRECT White

011 2013 03 17 15 49 16 225613 button3-press button3-press 2013 03 17 15 49 21 977289 CORRECT White

012 2013 03 17 16 18 13 924841 button1-press button3-press 2013 03 17 16 18 19 795965 INCORRECT White

013 2013 03 17 16 29 14 719158 button1-press button1-press 2013 03 17 16 29 21 202002 CORRECT White

014 2013 03 17 16 40 15 896583 button1-press button3-press 2013 03 17 16 40 21 633403 INCORRECT White

015 2013 03 17 16 52 17 723957 button1-press button3-press 2013 03 17 16 52 31 705759 INCORRECT White

016 2013 03 17 17 04 15 963706 button2-press button2-press 2013 03 17 17 04 22 467897 CORRECT White

017 2013 03 17 17 22 17 300355 button3-press button2-press 2013 03 17 17 22 22 520951 INCORRECT White

018 2013 03 17 19 37 46 166803 button1-press TIMEOUT 2013 03 17 19 38 15 833813 TIMEOUT Black

Table 3: Example of the result CSV file

5.1.2 Reduced time & effort of trainer/experimenter

First of all, human presence is not necessary. Data transfer from one computer to
another, maintenance, or modification of the system requires human interaction,
but no time and effort is required concerning the training and testing sessions.

Because no one attends the sessions, a periodic analysis of the animal’s per-
formance with the system is required. A simple assessment of how much food the
animals took, or more specifically, how many correct and incorrect trials occurred,
can be done quickly since this information is already stored in result CSV file dis-
playing the number of correct and incorrect trials generated with timestamps at
the end of each session. Table 3 is an example of this result file. A more de-
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tailed assessment, such as watching recorded videos, takes some more time, but
the total amount of data is already greatly reduced as described previously. Also,
the aforementioned data-viewer utility program displays all the timestamps and
its JPEG image, which presents a brief report on the movement detected in the
recorded video-clip as shown in Figure 16 . Thus, simply browsing the JPEG im-
ages is often enough to assess the session. If it is not enough, then one can
obtain a more detailed assessment by playing the video-clips recorded around the
trial times.

5.2 Results of training phase #1

This phase lasted for about three weeks. The task was simple and the food was
clearly visible and could be smelled. Both cats learned that they could obtain food
reward after the sound playback. The female cat showed reliable responses in a
few days as depicted in Figure 23

5.3 Results of training phase #2

This phase lasted for about four weeks. Both cats avoided pressing the button.
Replacements of the button in various ways were tested for a few weeks, in order
to entice the cats to press the button. The final position of the button is shown in
the Figure 24. The male cat’s training was not considered any more at this point
because he never succeeded in learning to press the button more than a few times
during this period.

After the female cat succeeded in learning to press the button, the feeding
algorithm was re-programmed so that only when the feeding sound for the button1
was played, the button could be pressed in the following 60 seconds. Otherwise,
the button-press was ignored. The cat did not have much difficulty with this. The
cat pressed the button 12 times with the food reward on the first session as shown
in Figure 25. This success is due to her many attempts at obtaining food reward
with a number of button presses. These incorrect attempts with a number of button
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Figure 23: Performance in the training phase #1; * Approximately 10 instances
of food rewarding were enough amount of food for a day for a cat. ** The male
cat’s performance on the day-3 was 0, because only the first cat approaching the
feeder was counted. However, he approached the feeder right after the female cat
several times.

Figure 24: The position of the first button in the phase #2
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Figure 25: The cat obtaining the food reward in the training phase #2; (1) The
cat is approaching to the feeder after hearing the feeding sound (2) When she
was moving in ROI for motion-detection, the feeding sound was played once more
(3)&(4) The button was pressed. (5) Food was dispensed

presses decreased quickly over the next three days as shown in Figure 26.

5.4 Results of training phase #3

This training phase has already lasted for about four months and its goals have
still not been achieved so far. In this phase, the number of buttons was gradually
increased to three. The female cat could press any of the three buttons to obtain
the food (Figure 27). Over a month the female cat associated the feeding sound,
a button-press, and the possible food-reward. Although she pressed any of the
three buttons, she failed to associate the three different feeding sounds with three
different buttons. Various parameters and methods were tested to facilitate the
association of each feeding sound with each button, but these failed to guide the
cat.

After a period of about two months, three speakers were implemented behind
each button. The result data obtained after this modification was implemented,
along with other important setup changes, are depicted in the Figure 28.

The performance did not reach above 75% over a few days in a row since the
loudspeakers were elevated to 60 cm on March 5th, which implied that the cat
could successfully distinguish the correct button by the localization of the sound,
but did not associate each of the three sounds to a specific button yet. A foil stim-
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Figure 26: Button-press performance after re-programming of the feeding algo-
rithm; One incorrect attempt means that the cat pressed the button outside of a
trial period. (The trial period lasted for 60 seconds after the start of the trial.)

Figure 27: The cat pressing each button to obtain the food reward
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Figure 28: The result data of the three buttons & three speakers with some im-
portant changes; * ’02.24; evenly distributed rewards on each button’ means that
the system counted the correct-responses(food rewards), and if the reward was
released more with a certain button-press, that button-trial would be removed from
the next random trial selection. ** ’03.23; added foil stimulus (33% chance)’ mean-
ing that, at the random stimulus selection, the system played the ’foil’ stimulus with
33% of chance. As soon as any motion was detected during this trial, the negative
feedback sound was played.
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Figure 29: Performance in foil trials: the subject quickly learned that no food was
available when the foil sound was played, and stopped approaching.

ulus was implemented on March 23rd to test whether the cat could pay attention
and distinguish the sound whose prosody is different from the other three sounds.
This foil stimulus was also the experimenter’s recorded speech, ’Yuk-gak-hyeong’,
which is similar in duration and mean intensity with other speeches of the three
buttons, however, different in prosody. The female cat showed a fast learning
curve in discriminating this foil stimulus as in Figure 29.

6 Conclusions & Future directions

In this project, I successfully designed and built two versions of an automatic an-
imal observation and training system called CATOS, and tested this system in a
pilot project with domestic cats, implementing an auditory discrimination task.
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6.1 Building CATOS

• As discussed in section 5.1, the large amount of data storage and human re-
sources required to train animals and analyze the stored data were reduced
by the use of CATOS.

• During the testing period, the system successfully acted as a trainer start-
ing a trial, waiting for a given time duration to accept the response, dis-
pensing the food reward for the correct response or giving negative feed-
back(sound/light) for the incorrect response.

• It was not necessary to take an animal to a separated place or remove it
from its group and/or its own living space for training sessions.

• Modularity has been the main goal of the system from the beginning. The
software and hardware of the system are functionally divided for easy ad-
justments, extensions or modifications in the future.

6.2 Testing the system: Training cats

During this training on cats for testing the system, both cats learned that approach-
ing the feeder on a playback sound could lead to a food reward. Then the female
cat further learned that pressing one out of three buttons could lead to a food re-
ward. She also showed a different behavior to a foil sound stimulus as shown
in figure 29. The training of the association between each sound stimuli and
each button is an ongoing process as depicted in the figure 28. Although her
performance on discriminating 3 sound stimuli fluctuates to a great extent, her
performance is often significantly high (>75%). Perhaps with enough time, this
individual will fully learn the task.
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7 Further work & Discussion

I now discuss some changes and additions that would be worthwhile in future
implementations.

7.1 Access restriction to ROI zone

Although the animal should not be separated from its own residence or group, the
system would benefit by having only one subject at a time in its ROI (region of
interest) zone. The benefits of this would include individual identification, individ-
ually different tasks and rewards, and so forth. The procedure allowing only one
individual in the ROI should be performed by animal subjects on their own in order
to minimize their stress level. Also, the individual in the ROI should be able to
leave the zone at any time. This access restriction system could be introduced in
the following order.

1. CATOS is first implemented without the access restriction system.

2. Once the subjects are used to obtaining food from the feeder, a transparent
tunnel-unit for access restriction would be implemented.

3. A few more transparent tunnel-units are attached in a row if necessary.

An example of the proposed access restriction tunnels is depicted in Figure 30.

7.2 Individual identification

In this study, when it was necessary for the analysis to recognize which animal
was responsible for a specific trial, this was determined from video files manually
after the session. With the help of the aforementioned program, AA DataViewer,
these determination did not require much effort. However, if the goal is to have
the system respond differently to each individual, it will be necessary for the sys-
tem to recognize individuals automatically. RFID (Radio frequency identification)
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Figure 30: Example of using tunnels for restricting access; * In this example,
3 tunnel-units are assembled. ** A gate of each tunnel unit can block animals
entering into the tunnel-unit from outside (distal side from the device). An animal
inside a tunnel would be allowed to leave the tunnel-unit (away from the device) at
any time.
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technology or a computer vision technology exploiting a specific color or shape
are both being considered. Either technology, or both, might be used in the future
depending on the type of animals.

7.3 Slave units through a wireless network

The observation feature of the current system can cover a small area such as a
room used in this study. But if multiple slave units with microcontrollers or single-
board computers, which can send information to a master computer, are imple-
mented in different places, the system can expand its scope to a larger and more
complex area. This multi-unit system could prove particularly useful for animal
observation tasks.

7.4 Testing with other animals including other species

In this study, CATOS was tested only with cats, but the system is not designed for
any specific species. Therefore it will be helpful to improve the system to test it
with several completely different species. Currently, rats and marmoset monkeys
are being considered. Figure 31.

7.5 Artificial intelligence

7.5.1 Advanced artificial intelligence implementation

Currently, CATOS is a simple reflex agent in terms of AI(Artificial Intelligence), ac-
cording to the definition of Russell & Norvig [19]. As a long-term goal, CATOS
could adopt more advanced AI technologies. The improvements in AI could in-
clude :

• Coping with uncertainties using probability theory; Many aspects of an ani-
mal’s behavior have uncertainties which are not easily manageable with sim-
ple set of production rules.
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Figure 31: Screenshot of a video-clip generated by CATOS during a pilot test with
a rat.

• Decision making and/or planning as an utility-based agent; A utility-based
agent could suggest possible next approaches for a successful training based
on the analysis of previous result data.

7.5.2 Developing an intelligent agent for interaction with living organisms

The main purpose of CATOS is training animals and/or investigating animal cog-
nition. But, there is another possible side effect of the system considering the de-
velopment of Artificial intelligence. As Brooks [20] emphasized, testing an agent
in the real world is very important in developing an intelligent agent. CATOS sys-
tem might face more realistic or natural problems than other systems working with
humans. When a system is working with humans, the users typically understand
the purpose of the system and tend to cooperate to achieve the overall goal of the
system (or sometimes intentionally try to break the rules of the system for debug-
ging). However, CATOS will work on animal subjects without human interference
and the animal subjects will be blind to the goal of the system. This may result
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in valuable challenges for artificial intelligence design and development, beyond
those encountered with human users and those not considered in current theory.
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Appendices

A Abstract

A.1 Abstract in German

In der Ethologie sind mehrere Fälle denkbar, in denen eine autonome Beobach-
tung von Tieren/ein Trainingssystem nützlich sein würde. 1) Zur kontinuierlichen
Beobachtung bestimmter Arten, oder zur Dokumentation spezifischer unregelmäßig
auftretender Ereignisse; 2) Zum Langzeit Training von Tieren in der Vorbereitung
von Verhaltensexperimenten; und 3) Zum Trainieren und Testen von Tieren ohne
menschliche Einflussnahme um potenzielle, unbeabsichtigte Hinweise und da-
raus folgende Datenverfälschungen durch den Experimentator zu vermeiden. Das
primäre Ziel dieser Studie ist es, ein System namens CATOS zu erstellen (Com-
puter Aided Training / Observing System) das in den oben genannten Situatio-
nen verwendet werden kann. CATOS wurde als ”Proof of Concept” gebaut und
in einem Pilotversuch getestet, in dem Katzen geschult wurden drei Tasten zu
drücken als Antwort auf drei verschiedene Töne (menschliche Sprache), um Fut-
ter als Belohnungen zu erhalten. Nach der Erstellung des Systems wurde es im
Laufe von ca. 6 Monaten kontinuierlich verbessert und zwei Katzen konnte erfol-
greich trainiert werden.

A.2 Abstract in English

In animal behavioral biology, there are several cases in which an autonomous
observing/training system would be useful. 1) Observation of certain species con-
tinuously, or for documenting specific events, which happen irregularly; 2) Long-
term intensive training of animals in preparation for behavioral experiments; and
3) Training and testing of animals without human interference, to eliminate po-
tential cues and biases induced by humans. The primary goal of this study is to
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build a system named CATOS (Computer Aided Training/Observing System) that
could be used in the above situations. As a proof of concept, the system was built
and tested in a pilot experiment, in which cats were trained to press three buttons
differently in response to three different sounds (human speech) to receive food
rewards. The system was built in use for about 6 months, successfully training two
cats. One cat learned to press a particular button, out of three buttons, to obtain
the food reward.

B Curriculum vitae

B.1 Profile

Enthusiastic, dedicated, diligent, organized, problem solver with good written and
verbal communication skills and work well both independently and in a team en-
vironment. I have had a great interest and enthusiasm in animal’s cognition and
various types of intelligence since 2005 when I transferred to the biology depart-
ment of the Andong National University. My ultimate goal has been a researcher
focusing on studying cognition since then.

B.2 Education
• University of Vienna/ Cognitive Science (MEi:CogSci)/ Master’s degree/ Sep. 2011 - Present

• Andong National University/ General Biology/ Bachelor’s degree/ Mar. 2005 - Feb. 2011

• Shinheung College/ Computer Science - Multimedia/ Associate Degree/ Mar. 1998 - Feb.
2001

B.3 Scholarships
• Andong National University/ High GPA Scholarship (Partial)/ 2nd semester in 2010

• Andong National University/ High GPA Scholarship (Full)/ 1st semester in 2010

• Andong National University/ High GPA Scholarship (Full)/ 2nd semester in 2005
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• Shinheung College/ High GPA Scholarship (Full)/ 2nd semester in 2000

• Shinheung College/ High GPA Scholarship (Partial)/ 1st semester in 2000

B.4 Work experience

• University of Vienna/ Vienna (Austria)/ Python programmer/ Jun. 2011 -
Present: While I have been working in University of Vienna, I have been
programming for various experiments on human and animal species. Ad-
ditionally, I worked on some minor engineering and electronic engineering
tasks because these were closely related problems in many animal experi-
ment cases.

• Seoul National University/ Seoul (S.Korea)/ Research intern/ Jul. 2010: In
Seoul National University internship period, I worked on video coding and
simple scripting using Excel macro function. The video coding was con-
ducted on experiment video clips for Mexican Jay (Aphelocoma wollweberi).

• Ridgewood veterinary hospital/ New Jersey (U.S.A.)/ Vet. assistant/ Sep.
2007 - Oct. 2009: In Ridgewood veterinary hospital, I assisted in various
medical practices on different animal species. These include restraining,
care-taking, EKG, taking and developing X-ray, drawing blood, preparing
blood, urine, and stool samples, running blood tests such as CBC, Blood
chemistry, and Electrolytes, injections via SQ/IM/IV, administering various
medications, surgery preparation and assisting including vital sign moni-
toring, handling various surgical instruments, and sterilizing surgical instru-
ments.

• Andong National University/ Andong (S.Korea)/ Lab assistant/ May. 2005 -
Dec. 2005: In Andong National University, I helped graduate students for
collecting and identifying sample insects.

• Taxworld/ Seoul (S.Korea)/ Web programmer/ Jun. 2000 - Oct. 2002: In Tax-
world, I developed several web-sites using either PHP or ASP and MySQL
or MS-SQL database.
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