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Abstract

Perovskite transition metal oxides (TMOs) which fall under the so-called “strongly-

correlated” systems exhibit an interplay of structural, electronic and magnetic

phenomena which lead to complex orbital- and spin-ordered states which have

attracted a lot of attention, theoretically and experimentally. Among this class of

TMOs the orthorhombic RMnO3 perovskites (where R3+ is a rare-earth cation),

are mainly known as the parent compounds of colossal-magneto resistance (CMR)

manganites. Theoretically, these compounds have been historically studied using

(a) First-principles simulations (b) Model Hamiltonians. First principles sim-

ulation studies are based on two main theories namely the Hartree-Fock (HF)

and Density Functional Theory (DFT) in which the intractable many-body prob-

lem is mapped into a simplified one-electron theory. Model Hamiltonians are

typically based on Hubbard Hamiltonians or tight-binding (TB) Hamiltonians.

Another approach to study these compounds are based on combination of both

First-principles simulations and the Model-Hamiltonians, as done for instance in

DFT+DMFT (Dynamical mean field theory) schemes.

In this thesis, we investigate the electronic and magnetic properties of the

parent compounds of manganites RMnO3 (R = La, Pr, Nd, Sm, Eu and Gd), by

performing first-principles calculations and downfold the physically important 3d

eg bands by means of maximally localized Wannier functions (MLWFs) by using

the VASP2WANNIER90 interface. The ab initio analysis was conducted at dif-

ferent levels of theory for what concern the treatment off the exchange-correlation

interaction: (i) DFT in the Perdew-Burke-Ernzerhof (PBE) approximation; (ii)

PBE+U, where U is the on site Hubbard-like electron-electron repulsion; (iii) Hy-

brid Functionals, a suitable mixing of DFT and HF via the inclusion of a portion

(1/4) of exact HF exchange in the PBE functional and (iv) GW. We calculate

the tight binding parameters for an effective eg tight-binding Model Hamiltonian

using two types of model parametrization: (a) el-el interaction is treated implic-

itly: the changes in the beyond-DFT treatment are incorporated and reflected in

the TB parameters. (b) el-el interaction is treated explicitly and the value for

Hubbard-U is obtained.

We have first investigated the ground state electronic and magnetic properties

at PBE, PBE+U, HSE and GW level of the whole RMnO3 series and then we have

mapped the obtained ab initio bandstructure into a TB description. The eg TB

dispersion at all levels of calculations (PBE, PBE+U, HSE, GW0) are found to
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match closely the MLWFs. We provide a complete set of TB parameters, includ-

ing both on-site and hopping interactions, which should serve as a guidance for

the interpretation of future studies based on many-body Hamiltonian approaches.

In particular, we found that the Hund’s coupling strength (JH), the Jahn-Teller

coupling strength and Hubbard-U remain nearly constant in all members of the

RMnO3 series (and this reflects the fact that the band gap and the screening

properties do not change much from LaMnO3 to GdMnO3, and that all RMnO3

compounds remain in a Mott-Hubbard insulating state), whereas the nearest

neighbour hopping amplitudes shows a monotonic attenuation as expected from

the trend of the tolerance factor.

In addition to this, by mapping the first principles total energies for different

magnetic configurations into a classical Heisenberg Hamiltonian we have com-

puted the most relevant exchange parameters and derived a mean field estima-

tion of the Néel temperatures (TN) across the RMnO3 series. We show that the

evolution of the computed TN follows very closely the corresponding measured

values. The observed monotonic decrease of TN can be nicely correlated with the

modulation of the structural properties, and in particular with the progressive

rectification of the Mn-O-Mn angle which is associated with the quenching of the

volume and the decrease of the tolerance factor due to the reduction of the ionic

radii of R going from La to Gd.
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Zussamenfassung

Perovskite sind Übergangsoxide (TMO, kurz für Transition Metal Oxides), gehören

zu den so genannten stark-korrelierten Systemen und zeigen ein Wechselspiel

von strukturellen, elektronischen und magnetischen Phenomänen. Dieses Wech-

selspiel führt zu komplexen Orbital- und Spin-geordneten Zuständen, welche

große theoretische und experimentelle Beachtung finden. Zu dieser Klassse der

TMO gehört zum Beispiel der orthorhombische RMnO3 Perovskite, der auch

als Ausgangsstoff für die sogenannten colossal-magneto resistance (CMR) Man-

ganite dient. Aus theoretischer Sicht wurden diese Verbindungen mittels ab

initio Methoden und Model-Hamiltonians behandelt. Ab initio Simulationen

basieren auf zwei wesentlichen Theorien: der Hartree-Fock (HF) und der Dichte-

Funktional-Theorie (DFT). Letztere beruht auf der Abbildung des vollständig

wechselwirkenden Vielteilchen-Problems auf ein vereinfachtes nichtwechselwirk-

endes Einteilchen-Problem. Auf der anderen Seite basieren Model-Hamiltonians

typischerweise auf modifizierte Hubbard-Hamiltonians oder Tight-Binding-Hamiltonians.

Ein weiterer Ansatz ist die Kombination von ab-initio Methoden und Model-

Hamiltonians, wie es zum Beispiel in der Dynamical-Mean-Field Theorie (DFT+DMFT)

verwendung findet.

In dieser Dissertation untersuchen wir die elektronischen und magnetischen

Eigenschaften der Ausgangsstoffe folgender Manganite RMnO3 (R = La, Pr, Nd,

Sm, Eu and Gd). Mit Hilfe von ab initio Berechnungen betrachten wir insbeson-

dere die 3d eg Bänder im Sinne von maximal lokalisierten Wannier-Funktionen

(MLWFs, Maximal Localized Wannier Functions). Diese wurden mittels dem

VASP2WANNIER90 Interface bestimmt. Zur Bestimmung der Austausch- und

Korrelationsenergie werden folgende Approximationen angewendet: (i) DFT mit-

tels Perdew-Burke-Enzerhof (PBE), (ii) PBE+U, mit U als on-site Hubbard

Elektron-Elektron Abstoßung, (iii) Hybrid Funktionale, mit einer Mischung aus

DFT und HF durch Hinzunahme von 1
4

des exakten Austauschbeitrags aus HF

im PBE Funktional, sowie (iv) die GW-Methode. Desweiteren berechnen wir

Parameter für einen effektiven eg TB-Hamiltonian über folgende zwei Model

Parametrisierungen: (a) implizite Elektron-Elektron Wechselwirkung (WW): der

Effekt durch die beyond-DFT Methoden reflektieren sich in veränderten TB Pa-

rametern; (b) explizite Elektron-Elektron WW ergibt den Hubbard-U Parameter.

Nach der Bestimmung von den elektronischen und magnetischen Grundzus-

tandseigenschaften der RMnO3 Reihe auf dem Level von PBE, PBE+U, HSE und

GW wurden die ab-initio Bandstrukturen in eine TB Beschreibung übergeführt.
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Die eg TB Dispersion aus allen Methoden stimmt gut mit denen aus der MLWF

überein. Wir stellen einen kompletten Satz von TB Parametern zur verfügung,

welche on-site und hopping-Parameter beinhalten und als Richtlinie für zukünftige

Untersuchungen von Vielteilchen-Hamiltonians dienen. In unserer Untersuchung

stellen wir fest, dass die Hund’sche Kopplungsstärke (JH), die Jahn-Teller Kop-

plungsstärke und der Hubbard-U Parameter nahezu in allen Elementen derRMnO3

Reihe konstant bleiben. Das spiegelt sich in der Tatsache wieder, dass sich die

Bandlücke und die Abschirmeigenschaften nicht stark zwischen LaMnO3 und

GdMnO3 unterscheiden und dass alle RMnO3 Elemente die Eigenschaft eines

Mott-Hubbard Isolators aufweisen. Außerdem beobachten wir eine monotone

Abnahme der Hopping-Amplitude für die am nächsten benachbarten Mn Atome.

Dies wird auch durch die Veränderung des Toleranzfaktors bestätigt. Es wurden

Gesamtenergien von verschiedenen magnetischen Konfigurationen in einen klas-

sischen Heisenberg Hamiltonian abgebildet. Die daraus berechneten Austausch-

parameter dienten zur Ableitung der Nèel Temperatur (TN) in einer mean-field

Abschätzung für die komplette RMnO3 Serie. Wir zeigen, dass sich die Nèel

Temperatur entlang der RMnO3 Serie genauso entwickelt wie im Experiment

festgestellt wird: Die monotone Abnahme von TN korreliert mit der Modula-

tion der strukturellen Eigenschaften. Dies zeigt sich in der ganzen RMnO3 Reihe

durch die Abnahme der korrigierten Winkel zwischen Mn-O-Mn, des Volumens

und des Toleranzfaktors.
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2.5.3 TB with Ĥel−el : Model B-2 . . . . . . . . . . . . . . . . . 84

2.6 Influence of each TB parameter on the bandstructure . . . . . . . 87

2.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 93

3 RMnO3 (R = La, Pr, Nd, Sm, Eu, Gd) 95

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Ab-initio results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Tight-binding parametrization . . . . . . . . . . . . . . . . . . . . 110

3.3.1 Model B-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.2 Model B-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Evolution of the TB parameters as a function of rR . . . . . . . . 117

4 Summary and Conclusions 121

Appendix 124

A 125

A.1 Model parameters in the extended p− d basis . . . . . . . . . . . 126

x



CONTENTS

B 131

B.1 Bandstructures and PDOS - RMnO3 . . . . . . . . . . . . . . . . 132

B.2 LaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 PrMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.4 NdMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.5 SmMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.6 EuMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.7 GdMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

References 157

Conferences and Publications 170

Curriculum Vitae 171

xi



CONTENTS

xii



List of Figures

1.1 Schematic representation of two-center matrix elements of s and

pi = {/px,py,py/} orbitals separated by the displacement vector R 26

1.2 Schematic flowchart showing the scheme used in this work to com-

bine the FP and MH approaches. . . . . . . . . . . . . . . . . . . 31

1.3 Figure showing pseudopotentials. . . . . . . . . . . . . . . . . . . 36

2.1 Different structural modifications of LaMnO3 viewed along the z-

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Orbital diagram, HSE bandstructure and PDOS of LaMnO3 . . . 45

2.3 Different JT distortion modes. . . . . . . . . . . . . . . . . . . . . 48

2.4 Representation of the nn and 2nn hoppings . . . . . . . . . . . . . 51

2.5 Representation of the first nn and second nn hoppings in the JT

distorted structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Calculated band structure of LaMnO3 along certain high-symmetry

directions within the BZ at various levels of calculations. . . . . . 60

2.7 Comparison between experimental and calculated valence and con-

duction band spectra for PBE, PBE+U , HSE, and GW0. . . . . . 63

2.8 Effective eg MLWF bands for LaMnO3 superimposed to the ab ini-

tio electronic bands and associated normalized PDOS correspond-

ing to Mn(eg) , Mn(t2g), and O(p) character. . . . . . . . . . . . . 69

2.9 Real space representation of the four eg MLWFs of LaMnO3 cor-

responding to a certain Mn site, projected on the xy plane cutting

through the Mn site . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.10 Charge density isosurfaces of the orbitally ordered states . . . . . 72

2.11 Charge density isosurfaces of the highest occupied eg orbitals . . . 72

2.12 Effect of structural distortions on the band structure of LaMnO3 . 74

xiii



LIST OF FIGURES

2.13 FM majority and minority and A-AFM bandstructures and eg ML-

WFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.14 Non-zero matrix elements plotted as a function of the intersite

distance |∆R| in the ideal cubic perovskite structure (FM majority

spin channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.15 Variation of different matrix elements with the amount of disortion

from cubic to JT. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.16 Variation of the different matrix elements as a function of the

amount of GFO disortion. . . . . . . . . . . . . . . . . . . . . . . 78

2.17 Variation of the on-site off-diagonal matrix elements with the amount

of distortion from (a) cubic to JT (b) cubic to GFO (c) cubic to

JT-GFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.18 DFT and MLWFs bands for the A-AFM experimental Pbnm struc-

ture, Comparison of the MLWFs and the refined TB model and

Comparison of the MLWFs and the simple TB model . . . . . . . 80

2.19 Hamiltonian matrix elements in the basis of MLWFs for the ex-

perimental Pbnm structure . . . . . . . . . . . . . . . . . . . . . . 81

2.20 Comparison of the Model B-1 TB band dispersion corresponding

to MLWFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.21 Influence of t↑↑, t↓↓, txy, t2z on the eg bands . . . . . . . . . . . . 88

2.22 Effect of ηs on the eg bands . . . . . . . . . . . . . . . . . . . . . 89

2.23 Effect of λ̃ on eg bands . . . . . . . . . . . . . . . . . . . . . . . . 90

2.24 Effect of JH on the eg bands . . . . . . . . . . . . . . . . . . . . . 90

2.25 Effect of λs on the eg bands . . . . . . . . . . . . . . . . . . . . . 91

2.26 Effect of ηλ on the eg bands . . . . . . . . . . . . . . . . . . . . . 92

2.27 Effect of U (Uλ
W on the eg bands . . . . . . . . . . . . . . . . . . . 92

3.1 Phase diagram - RMnO3 . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Ionic radii of R3+ Vs. structural properties of RMnO3 . . . . . . . 98

3.3 VASP band structure (black) and MLWFs (red) of RMnO3 (R=La,

Pr, Nd, Sm, Eu, Gd) at PBE, HSE and GW0 levels. . . . . . . . . 102

3.4 The variation of band gap and magnetic moment with the ionic

radius of R3+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5 Effective eg MLWF bands for PrMnO3 and the VASP bands and

the associated normalized PDOS (Mn (eg), Mn (t2g ) and O(p) . . 105

xiv



LIST OF FIGURES

3.6 Charge density isosurfaces of the highest occupied eg orbitals (from

the fermi energy to the lower bound of the eg bands) of PrMnO3

at PBE and HSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Plot showing the variation of Jab and Jc and the calculated TN as

a function of the ionic radii of R3+. . . . . . . . . . . . . . . . . . 108

3.8 Plot showing the real and imaginary parts ε1 and ε2 of the dielectric

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9 eg TB bands obtained using Model B-1 parametrization and the

eg MLWFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.10 eg TB bands obtained using Model B-2 parametrization and the

eg MLWFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.11 rR Vs. tight-binding hopping parameters. . . . . . . . . . . . . . . 119

3.12 rR Vs. tight-binding onsite parameters. . . . . . . . . . . . . . . . 120

3.13 Ionic radii of R3+ Vs. Uλ
W . . . . . . . . . . . . . . . . . . . . . . . 120

A.1 Figure showing Onsite energies of the d-p model for the major-

ity/minority spins, Onsite off-diagonal elements, Splitting ∆ε be-

tween on-site energies of the two eg-like MLWFs . . . . . . . . . . 127

A.2 Plots showing the variation of onsite energies and the JT splitting

in both d-p and eg models . . . . . . . . . . . . . . . . . . . . . . 128

B.1 VASP bandstructure (black) and MLWFs (red) of LaMnO3 - JT

distorted structure (A-AFM). . . . . . . . . . . . . . . . . . . . . 135

B.2 VASP bandstructure (black) and MLWFs (red) of LaMnO3 - Ex-

perimental Pbnm structure. . . . . . . . . . . . . . . . . . . . . . 136

B.3 VASP bandstructure (black) and MLWFs (red) of PrMnO3 - JT

(AAFM) distorted structure. . . . . . . . . . . . . . . . . . . . . 139

B.4 VASP bandstructure (black) and MLWFs (red) of NdMnO3-JT-

distorted structure (A-AFM). . . . . . . . . . . . . . . . . . . . . 142

B.5 VASP bandstructure (black) and MLWFs (red) of NdMnO3 - Ex-

perimental Pbnm structure. . . . . . . . . . . . . . . . . . . . . . 143

B.6 VASP bandstructure (black) and MLWFs (red) of SmMnO3-JT-

distorted structure (A-AFM) . . . . . . . . . . . . . . . . . . . . . 146

B.7 VASP bandstructure (black) and MLWFs (red) of SmMnO3-Experimental

Pbnm structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.8 VASP bandstructure (black) and MLWFs (red) of EuMnO3-JT-

distorted structure (A-AFM) . . . . . . . . . . . . . . . . . . . . . 150

xv



LIST OF FIGURES

B.9 VASP bandstructure (black) and MLWFs (red) of EuMnO3-Experimental

Pbnm structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.10 VASP bandstructure (black) and MLWFs (red) of GdMnO3-JT

distorted structure . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.11 VASP bandstructure (black) and MLWFs (red) of GdMnO3-Experimental

Pbnm structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xvi



List of Tables

1.1 Table of two-center matrix elements proposed by Slater-Koster . . 25

2.1 Collection of calculated (present work and previous studies) and

experimental value for the indirect (Ei) and direct (Ed) band gap

of LaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 PBE, PBE+U , HSE and GW0 derived magnetic exchange param-

eters (meV) and magnetic moment at Mn sites µ (µB). . . . . . . 66

2.3 Collection of the parameters obtained using a simple model and

Model A (parameters from MLWFs) . . . . . . . . . . . . . . . . 80

2.4 The TB model parameters as derived from PBE and beyond-PBE

band structures (Model B-1, in PBE+U ,U=3 eV has been used) . 83

2.5 The interaction parameters determined in Model B-2 . . . . . . . 85

2.6 TB parameters of LaMnO3 obtained by using Model B-1 at PBE

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1 The table showing the Wyckoff positions corresponding to room

temperature experimental structure, JT and GFO. x, y and z are

the coordinates w.r.t. the orthorhombic lattice vectors . . . . . . 99

3.2 Table showing the values of band gap and magnetic moment of

RMnO3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Table showing magnetic exchange interactions within the orthorhom-

bic ab plane (Jab) and along c direction Jc calculated at HSE level 107

3.4 TB parameters - RMnO3 (Model B-1 ) . . . . . . . . . . . . . . . 112

3.5 TB parameters - RMnO3 (Model B-2 ) . . . . . . . . . . . . . . . 114

3.6 Model B-2 ∆n↑, ∆ε↑ . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvii



LIST OF TABLES

B.1 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of LaMnO3 (Room tem-

perature structure) . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the experimental Pbnm structure of LaMnO3 . . . . . . . . . . 134

B.3 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of PrMnO3 . . . . . . . . 137

B.4 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the experimental Pbnm structure of PrMnO3 . . . . . . . . . . 138

B.5 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of NdMnO3 . . . . . . . . 140

B.6 The table shows the matrix elements obtained from PBE, HSE and

GW0 corresponding to the experimental Pbnm structure of NdMnO3141

B.7 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of SmMnO3 . . . . . . . . 144

B.8 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the experimental Pbnm structure of SmMnO3 . . . . . . . . . . 145

B.9 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of EuMnO3 . . . . . . . . 148

B.10 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the experimental Pbnm structure of EuMnO3 . . . . . . . . . . 149

B.11 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the JT-distorted (A-AFM) structure of GdMnO3 . . . . . . . . 152

B.12 Matrix elements obtained from PBE, HSE and GW0 corresponding

to the experimental Pbnm structure of GdMnO3 . . . . . . . . . . 153

xviii



xix



Acronyms

Acronyms

TMOs Transition Metal Oxides
FP First-Principles
MH Model-Hamiltonian
TB Tight-Binding
HF Hartree-Fock
DFT Density Functional Theory
LDA Local Density Approximation
LSDA Local Spin Density Approximation
MC Monte Carlo
LDA+U Local Density Approximation + Coulombic U
PSIC Pseudo Self-Interaction Correction
CMR Colossal Magneto-resistance
GMR Giant Magneto-resistance
MLWFs Maximally Localized Wannier Functions
el-el Electron-electron
SE Schrödinger Equation
BO Born-Oppenheimer
CI Configuration Interaction
MP Møller Plesset
HK Hohenberg-Kohn
KS Kohn-Sham
OFDFT Orbital-Free Density Functional Theorem
GGA Generalized Gradient Approximation
PBE Perdew-Burke-Ernzerhof
B3LYP Becke-3 parameter-Lee-Yang-Parr
VWN Vosko-Wilk-Nusair
GWA Green’s Function -G, Screened Coulomb potential-W Approximation
LCAO Linear Combination of Atomic Orbitals
SK Slater-Koster
WFs Wannier Functions
BZ Brillouin Zone
DMFT Dynamical Mean-Field Theory
VMC Variational Monte Carlo

xx



IR Ionic Radii
FM Ferromagnetic
AFM Antiferromagnetic

xxi



Acronyms

xxii



Introduction

Strongly correlated systems are a class of materials that have been known to

challenge the theory of electronic structure. In these systems, the state of each

electron depends on the state of one another or in other words, the correlation be-

tween electrons in these systems often determine the physics. Perovskite Transi-

tion Metal Oxides (TMOs) are a class of compounds that fall under these so-called

strongly correlated systems. They exhibit an interplay of structural, electronic

and magnetic phenomena that lead to the formation of complex orbital- and spin-

ordered states, polaronic formation, spin-charge separation, non-Fermi liquid be-

haviour etc. These compounds pose a challenge to the theory and consequently

to the computations due to their strongly correlated nature [1], [2], [3], [4]. The

theoretical study of TMOs include understanding these underlying complexities

and to come up with efficient description of their properties.

The electronic structure of TMOs are usually studied using 2 different ap-

proaches: (1) First-Principles (FP)/ab-initio methods (2) Model Hamiltonians

(MH) typically based on tight-binding (TB) models. The most representative FP

methods are Hartree-Fock (HF) theory and Density Functional Theory (DFT).

HF theory is a wavefunction-based variational approach in which the many-body

wavefunction is approximated by a single Slater determinant. The other widely-

used FP approach, DFT is a density-functional based approach in which the

ground state is obtained from the charge density.

The most difficult term in the many-body Hamiltonian is the exchange and

correlation of the electron. The HF theory treats exchange in an exact way

whereas the correlation part is completely neglected. DFT treats both the ex-

change and correlation in an approximate way. The mother of all exchange-

correlation potentials used in DFT is the Local Density Approximation (LDA).

In LDA, the exchange correlation potential is replaced by the results of a uniform

electron gas suitably derived from quantum Monte Carlo (MC) calculations. This

gives good results when the electron density does not have large spatial variations,
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which is found in metallic systems. But, in strongly correlated electron systems,

the electrons become nearly localized wherein the electron density fluctuations

are quite high with large spatial dependence, and so LDA does not work well.

However there are more elaborate FP methods such as the Local Density Approx-

imation + Coulombic U (LDA+U), Pseudo Self-Interaction Correction (PSIC),

Hybrid Functionals and GW to improve over conventional DFT.

Another way to study the theory of electronic structure is by using Model

Analysis which is based on the well-known Hubbard Hamiltonian. The field of

model condensed matter has made a great progress in treating this many-body

problem related to the strongly-correlated systems. The model systems which

had to deal with a limited number of parameters proved to work, but when the

complexity of the problem increased it became necessary to evaluate the model

in terms of the choice and the number of parameters.

A way to overcome this difficulty is to combine FP and MH approaches

through a procedure called the downfolding. In strongly-correlated systems,

there exists a well-defined group of bands, isolated from the rest of the bands and

located near the Fermi level, which predominantly determines the ground state

properties. The basic idea of downfolding is to construct the Hamiltonian for

this subset of bands from the first principles by making it free of any adjustable

parameters. MH could be then solved by solvers such as Dynamical Mean-Field

Theory (DMFT), Variational Monte Carlo (VMC), path-integral renormalization

group etc. Thus downfolding method would enable us to deal with the many-

problem confined to a restricted subspace of the Hilbert space i.e. we would have

a solution to an “effective” many-body problem. The model analysis would help

in understanding the underlying physics of materials at the microscopic level.

A class of TMOs called the Manganite systems which possess the formula

R1−xAxMnO3 (R = trivalent rare earth cation, A = Divalent alkaline earth cation

e.g. La1−xCaxMnO3, Pr1−xSrxMnO3, Nd1−xSrxMnO3 etc.) has been an area of

active research for many decades since its discovery in the late 1940s [5], owing to

its rich phase diagram and technological importance. These compounds exhibit

very rich phase diagram as a function of temperature and doping. A phenomena

called the “Colossal magneto-resistance” (CMR) which paves way to the possibil-

ity of replacing the Giant magneto-resistance (GMR) materials in the hard disk

drives with CMR materials has been observed in these manganite systems. The

magnetoresistance is the change in the resistance in the presence of a magnetic

field. The understanding of manganite systems could also help in understanding

the fundamental physics behind these interesting observations.
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A widely studied compound is LaMnO3 which is also the parent compound

for the CMR manganites. This compound is a well-known example for strongly

correlated systems in which the electronic and magnetic properties are controlled

by the Mn3+ eg states that lie near the Fermi level. The theoretical model for

manganites is based on an effective two-band tight-binding model for the Mn3+

eg electrons. The corresponding TB Hamiltonian typically contains the kinetic

energy term, local terms like the Jahn-Teller coupling terms and Hund’s coupling

term that describes the coupling of the t2g spins with the eg spins and the electron-

electron (el-el) Coulomb repulsion term. It has been shown in [6] that using

such a model where the parameters are partly obtained from the first-principles

and partly from the experiments, a phase diagram as a function of doping and

temperature found in manganites systems could be reproduced.

The combination of FP and the TB Hamiltonian in the case of LaMnO3 have

been explored by the authors of [7] where the validity of the TB model was tested

by comparing the energy dispersion calculated for the TB model with the full KS

bandstructure calculated with the Local Spin Density Approximation (LSDA) to

DFT. In [8], the authors demonstrated that Maximally Localized Wannier Func-

tions (MLWFs) (via WANNIER90 code) based on KS bandstructures provide a

systematic way to construct realistic, materials-specific TB models. The obtained

parameters were compared to the commonly used TB models for the mangan-

ites. Using this approach, the parameters of the model can be simply read off

and no fitting procedure is required. This approach thus allows to identify any

discrepancies that arise from the simple models and the full DFT band structure.

In this thesis, we will discuss the mapping procedure (FP ⇒ MLWFs ⇒ TB)

using the VASP2WANNIER90 interface for LaMnO3 using different FP schemes.

These include conventional DFT with and without additional on-site Hubbard

U term, hybrid functionals and partially self-consistent GW. The method depen-

dent changes of the calculated TB parameters and their interplay with the el-el

interaction term (U) will be discussed and interpreted. Two alternative model

parametrizations are introduced: one in which the effects of the el-el interaction

are implicitly incorporated in the otherwise non-interacting TB parameters and

the other one includes an explicit mean-field el-el interaction term in the TB

Hamiltonian. We will also explore the evolution of the electronic, structural and

magnetic properties of RMnO3 where R = La, Pr, Nd, Sm, Eu, Gd in order to

understand the phase diagram shown by Kimura et al. in [9]. The obtained pa-

rameters are discussed, compared and interpreted. This study gives an indepth
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insight of the effects due to the structural and the magnetic configurations of

RMnO3.

The thesis is organized as follows: The theory part employed in this work

is discussed elaborately in Chapter 1. The construction of the TB Hamiltonian

is discussed for the widely studied compound LaMnO3 and the results obtained

through the mapping procedure (DFT/beyond-DFT ⇒ MLWFs ⇒ TB) is ex-

plained for LaMnO3 in Chapter 2. In Chapter 3, we will discuss the application

of the mapping procedure to RMnO3 (R=La, Pr, Nd, Sm, Eu, Gd) and the evo-

lution of the structural, electronic and magnetic properties and the changes in

the calculated TB parameters as a function of ionic radii (IR) of R3+. The thesis

ends with Summary and Conclusions presented as Chapter 4.
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Chapter 1

Theory

1.1 Introduction

TMOs have been studied theoretically during the past few decades by two his-

torically distinct solid state communities namely MH and FP approaches. MH

approaches are based on the celebrated Hubbard model which has its origin in

the seminal work by Anderson, Kanamori and Hubbard in which the many-body

problem is solved by using a small set of bands and short-ranged interactions

[10],[11],[12]. The FP methods are classified into two categories: HF and DFT.

In HF theory (which is a variational wavefunction-based theory), an explicit form

for the wavefunction is written in terms of a single Slater determinant and the

solutions are arrived at by using this wavefunction. The other widely used FP

approach is DFT which is a density-based theory in which the ground state is

obtained from the charge density. There are more elaborate treatments available

for these complex TMOs such as LDA+U, PSIC, Hybrid Functionals and GW.

Another useful way to study the complex TMOs is by combining the two distinct

methods i.e. FP and the MH by a downfolding procedure. While there are many

ways to downfold the relevant bands, in this work, the downfolding procedure is

carried out via MLWFs in order to map the FP with an effective TB MH.

1.2 The Schrödinger equation

The fundamental equation that describes the behaviour of energy and matter

at atomic level is the Schrödinger equation (SE). By solving this problem of in-
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1. THEORY

teracting particles moving in an external potential, equilibrium properties such

as crystal structure, cohesive energy, charge density, elastic constants, magnetic

properties, phonons, etc and excited state properties such as excitation, optical

properties, transport etc. could be studied. But, analytical solution is possible

only for very few systems such as the Hydrogen atom, Harmonic oscillator, parti-

cle in a box etc. For many other systems of interest that involve many interacting

particles, numerical methods have to be employed.

The full Hamiltonian for a system of electrons and nuclei (interacting system)

(adopting Hartree units) is given as,

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂e

− 1

2

∑
I

∇2
I︸ ︷︷ ︸

T̂N

−
∑
i,I

ZI
|ri −RI |︸ ︷︷ ︸
Ûe−N

+
1

2

∑
i 6=j

1

|ri − rj|︸ ︷︷ ︸
Ûe−e

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |︸ ︷︷ ︸
ÛN−N

(1.1)

where the indices i and I stand for electrons and nuclei respectively. T̂e and T̂N
denote the kinetic energy of the electrons and nuclei respectively. Ûe−N is the

potential due to the electron-nucleus Coulombic interaction which involves one

electron at a time. Ûe−e is a Coulombic interaction involving a pair of electrons.

The el-el Coulombic interactions are very difficult to deal with in practice. Al-

most all the electronic structure calculations employ approximations to treat this

difficult term.

For more than 3 particles, the solution to the above equation becomes impos-

sible. It therefore becomes important to introduce some approximations. One

such useful approximations is the Born-Oppenheimer (BO) approximation [13]

that decouples the electronic and nuclei degrees of freedom. The concept of BO

approximation is that the degrees of freedom connected with the motion of the

nuclei can be separated from those of the electron because the nuclei are much

heavier than the electrons. The full Hamiltonian is now given as,

Ĥe = T̂ + Ûe−N + Ûe−e (1.2)

A stationary electronic state (for N electrons) is then described by a wavefunction

ψ(r1, r2, · · · , rN) fulfilling the many-body SE given as,

Ĥe|Ψ〉 = (T̂ + Ûe−N + Ûe−e)|Ψ〉 (1.3)

The wavefunction Ψ must be antisymmetric (fermionic property) , i.e. Ψ(r1, r2,

· · · , rN) = -Ψ(r2, r1, · · · , rN) = -Ψ(r1, rN , · · · , r2) etc.
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1.3 Hartree-Fock theory

In the next section, we will discuss the two alternative ways under the FP

approach to solve the SE namely the HF theory and the DFT.

1.3 Hartree-Fock theory

HF theory assumes that the exact N -body wavefunction could be approximated

by a Slater determinant which by variational principle leads to a set of N -coupled

equations for the N one-electron wavefunctions [14]. Thus the starting point for

the HF theory is a set of approximate one-electron wavefunctions (spin-orbitals).

In this theory it is assumed that the electron feels the presence of the other elec-

trons in an average manner. Slater determinant which satisfies the antisymmetric

property of electrons is given as

ΨAS =
1√
N!


ψ1(r1, s1) ψ2(r1, s1) · · · ψN(r1, s1)
ψ1(r2, s2) ψ2(r2, s2) · · · ψN(r2, s2)

...
...

. . .
...

ψ1(rN, sN) ψ2(rN, sN) · · · ψN(rN, sN)

 (1.4)

Variational method applied to Eqn. 1.3 (〈ΨAS|Ĥe|ΨAS〉) leads to Fock operator

which is given as F̂ = ĥ+Ĵ-K̂ where ĥ is the single-particle operator, Ĵ is the

Coulomb operator and K̂ is the exchange operator. These operators are given as,

ĥψ(r) =

[
−1

2
∇2 −

∑
n

Zn
|r−Rn|

]
ψ(r) (1.5)

Ĵk(r)ψ(r) =

∫
ψ∗k(r′)

1

r12

ψk(r′)ψ(r)dr′ (1.6)

K̂k(r)ψ(r) =

∫
ψ∗k(r′)

1

r12

ψ(r′)ψk(r)dr′ (1.7)

The Fock operator is an effective one-electron Hamiltonian. The Coulomb oper-

ator Ĵ corresponds to the classical interaction of the electron distributions and

the exchange operator K̂ which has no classical analog is a direct result of the

antisymmetry property of the wavefunction.

Thus the HF equation that is to be solved is an eigenvalue equation given as

F̂ψk = εkψk. Since the Fock operator depends on the orbitals used to construct

the Fock matrix, the eigenfunctions of the Fock operator are in turn new orbitals

which can be used to construct a new Fock operator. Thus, the HF orbitals

7



1. THEORY

are optimized iteratively until the difference between the total energies of two

successive iterations reaches a value that is below a given threshold. Thus, a set

of self-consistent one-electron orbitals are calculated. According to Koopman’s

theorem, each eigenvalue of the Fock operator gives the energy required to remove

an electron from the corresponding single-electron states (ionization potential).

The total HF energy is given as

EHF =
∑
k

[
εk −

1

2
〈ψk|Ĵ− K̂|ψk〉

]
(1.8)

In practice, the one-particle wavefunctions have to be expanded in a finite

basis χp (Slater type orbitals or Gaussian orbitals or plane waves) as

ψk(k) =
M∑
p=1

Cpkχp(r) (1.9)

Thus F̂ψk = εkψk becomes FCk = εkSCk (in matrix notation) (Roothaan

equation).

The HF calculations are widely used by the chemistry community. HF theory

could be used for geometry optimizations, for studying chemical reactivity, to

calculate vibrational and molecular properties. In HF theory, all correlations are

neglected except those required by the Pauli Exclusion Principle. However there

are other methods which are based on wavefunctions that include the correla-

tion effects such as CI (Full and truncated CI) and perturbation theory based

approaches such as MP (MP2, MP3, MP4).

1.4 Density Functional Theory

DFT has been a popular theory used in solid-state physics since 1970s. Till 1990s,

DFT was not considered as an accurate theory for certain quantum chemical

calculations, but it started becoming popular after attempts were made to refine

the exchange and correlation interactions.

The basic idea of DFT is that any property of a system of many interacting

particles can be written as a functional of the ground state density n0(r) i.e. in

principle, n0(r) (a function of the positions r) gives all the information in the

many-body wavefunctions for the ground state. This idea greatly simplifies the

problem of solving the full many-body SE that involves 3N degrees of freedom

for N electrons.
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1.4 Density Functional Theory

Although DFT has its roots in the Thomas-Fermi model, theoretically it is

firmly rooted on the famous Hohenberg-Kohn (HK) theorems [15]. The formu-

lation of DFT by Hohenberg and Kohn applies to any system in an external

potential Vext(r) and could be applied to the problem of interacting electrons

and fixed nuclei in the BO approximation described by the Hamiltonian as given

below:

Ĥe = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(1.10)

In Eqn. 1.1, the term Ûe−N =
∑

i Vext(ri).

The HK theorems are stated below:

Theorem 1 For any system of interacting particles in an external potential Vext(r),

the potential is determined uniquely, except for a constant, by the ground state

particle density n0(r)

Corollary 1 All properties of the system are completely determined given only

the ground state density n0(r).

Theorem 2 A universal functional for the energy F[n] in terms of the density

can be defined, valid for any Vext(r). A variational principle exists such that the

global minimum value of this functional is the exact ground state energy. The

density that minimizes this functional is n0(r).

Corollary 2 The functional F[n] alone is sufficient to determine the exact ground

state energy and density.

The energy functional that is mentioned in the theorem 2 is given as,

EHK[n] = FHK[n] +

∫
d3rVext(r)n(r) (1.11)

Where FHK [n]=〈ψ[n]|T̂ + Ûe−e|ψ[n]〉, Vext is the external potential and ψ[n]

is the ground state wave function that has n as its ground state density. The

functional FHK [n] must be universal since it does not depend explicitly on the

external potential but depends only on the electronic density.
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1. THEORY

1.4.1 Kohn-Sham approach

The practical implementation of HK theorems has been realized by the Kohn-

Sham (KS) approach. Though there have been other formulations like the OFDFT

(Orbital-Free Density Functional Theory), KS approach is more popular and

widely used. In 1965, Kohn and Sham proposed the idea of replacing the in-

tractable many-body problem of the interacting electrons in a static external po-

tential into a tractable problem involving an auxiliary system of non-interacting

electrons moving in an effective potential. The KS construction of an auxiliary

system is based on 2 assumptions: (i) The exact ground state density can be

represented by the ground state density of an auxiliary system of non-interacting

particles (“V-representability”). (ii) The auxiliary Hamiltonian consists of the

usual Kinetic operator and an effective local potential acting on an electron at a

given position and spin.

Kohn and Sham derived a coupled set of differential equations so that the

ground state density n0(r) could be found. The KS approach to the full many-

body interacting system is to rewrite the energy functional (Eqn.1.11) as,

Es[n] = Ts[n] +

∫
d3rVs,ext(r)n(r) (1.12)

Where the subscript ’s’ refers to non-interacting electron system. The above

equation is minimized using Lagrange’s multipliers, such that,

δEs[n]

δ[n]
=
δTs[n]

δ[n]
+ Vs,ext(r) = λn(r) (1.13)

Where λ is the Lagrange multiplier constraint that leads to
∫

d3r n(r) = N. One

can solve KS equations of the auxiliary non-interacting system:[
−1

2
∇2 + Vs,ext(r)

]
φk = εkφk (1.14)

Which yields the orbitals that reproduces the density n(r) of the original system:

n(r)
def
= ns(r) =

1∑
k=1

|φk(r)|2 (1.15)

For the many-electron system which is non-interacting system + el-el interaction,

the energy functional is given as,

E[n] = Ts[n] +

∫
d3rVs,ext(r)n(r) +

1

2

∫
d3r

∫
d3r′n(r′)

1

|r− r′|n(r) + Exc[n]

(1.16)
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Where,

• Ts[n] → kinetic energy functional of the non-interacting electron gas

•
∫

d3n(r) Vs,ext(r) → External energy

•
∫

d3(r)
∫

d3(r′) n(r′) 1
|r−r′| n(r) → Hartree energy

• Exc[n] → unknown correlations.

Now we need to vary this equation w.r.t. the density under the condition that∫
d3r n(r) = N. Using the method of Lagrange’s multipliers, we obtain,

δE[n]

δ[n]
=
δTs[n]

δ[n]
+
δExc[n]

δ[n]
+

∫
d3r′n(r′)

1

|r− r′| + Vs,ext(r) = λn(r) (1.17)

The above equation is similar to the non-interacting case, the only difference

being the “effective” potential which is given as,

Veff (r) =
δExc[n]

δ[n]
+

∫
d3r′n(r′)

1

|r− r′| + Vs,ext(r) (1.18)

Where Vxc[n]= δExc[n]
δ[n]

. The corresponding KS independent particle SE can now

be solved. [
−1

2
∇2 + Veff (r)

]
φk = εkφk (1.19)

with

Veff (r) =
δExc[n]

δ[n]
+

∫
d3r′n(r′)

1

|r− r′| + Vs,ext(r) (1.20)

which yields the orbitals φk that reproduce the density n(r) of the original many-

body system:

n(r)
def
= ns(r) =

N∑
k=1

|φk(r)|2 (1.21)

11
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The sum of the eigenvalues of the Eqn. 1.19 leads to:

N∑
k=1

εk = Ts +

∫
d3rVxc[n](r)n(r) +

∫
d3r

∫
d3r′n(r′)

1

|r− r′| +

∫
d3rV(r)n(r).

(1.22)

Comparing the above equation with the energy-functional of the many-body sys-

tem (Refer to Eqn. 1.16), we obtain,

E =
N∑
k=1

εk −
1

2

∫
d3rd3r′n(r′)

1

|r− r′|n(r)−
∫
d3Vxc[n](rn(r). (1.23)

Vxc in Eqn.1.23 is mostly approximated within the LDA, GGA or meta-GGA

within DFT.

In LDA, it is assumed that the density can be treated locally as an uniform

homogenous electron gas (HEG); the exchange-correlation energy at each point

in the system is the same as that of an uniform electron gas of the same density.

The local exchange-correlation energy is a simple function of the local charge

density εxc(n), given as

ELDA
xc [n] =

∫
d3rεxc[n(r)](r) (1.24)

In practice, it is important to determine the exchange-correlation energy for

an uniform electron gas of a given density. The εxc(n) is given as,

εxc(n) = εx(n) + εc(n) (1.25)

The exchange term takes on a simple analytical form for the HEG:

ELDA
x [n] = −3

4

(
3

π

)1/3 ∫
n(r)4/3dr (1.26)

The correlation term is given as

Ec =

∫
d3rεc[n(r)](r) (1.27)

The analytic forms for the correlation energy in the case of HEG is not known

except for the high and the low density limit given as,

High density limit : εc = A ln(rs) + B + rs(C ln rs + D)

Low density limit : εc = 1
2

(
g0

rs
+ g1

rs

3/2 + · · ·
)

Where 4
3
πr3

s = 1
n
. Interme-

diate values for the density could be obtained by using accurate Monte-Carlo

12
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simulations and interpolation [16, 17, 18, 19]. LDA works for finding properties

such as structure, phase stability and vibrational frequencies. Usually, the lattice

constant is underestimated, binding energies are overestimated. However LDA

reasonably works due to the cancellation of errors resulting from the underesti-

mation of the exchange energy and the overestimation of the correlation energy,

but it doesn’t work for the “so-called” strongly correlated systems.

The other exchange-correlation potentials within DFT are Generalized Gra-

dient Approximation (GGA) and meta-GGA. Non-locality is introduced into ex-

change and correlation by the gradient of density. The GGA functional is defined

as follows,

EGGA
xc [n↑, n↓] =

∫
d3rεxc[n(r),∇n(r)](r) (1.28)

Meta-GGA functional is a developed form of the GGA functional that includes

a dependence on the kinetic energy density (τ), i.e. on the Laplacian of the

orbitals, apart from the dependence on the density and the gradient of density.

Meta-GGA functional is given as,

EMGGA
xc =

∫
d3rεxc[n(r),∇n(r), τs(n(r))](r) (1.29)

The form of the exchange-correlation potential used in the present work is the

PBE potential which is a form of GGA functional.

1.5 Hybrid functionals

The hybrid approach to constructing density functional approximations was in-

troduced by Axel Becke in 1993 [20]. The idea of Hybrid functionals proposed

by Becke has its origins in the adiabatic connection formula which is a rigorous

formula for the exchange-correlation energy Exc of KS DFT. The most convenient

of all possible forms is given as,

Exc =

∫ 1

0

Uλ
xcdλ (1.30)

where λ is an interelectronic coupling-strength parameter that ”switches on” the

1/r12 Coulomb repulsion between electrons and Uλ
xc is the potential energy of

exchange correlation at intermediate coupling strength λ. λ = 0 represents the

non-interacting KS reference system while λ = 1 represents the full interacting

13



1. THEORY

real system. So this formula connects the KS reference system with the full

interacting real system through a continuum of partial interacting systems all of

which have the same density. This equation is very important in the KS DFT

for it provides the foundation for the construction of the approximate exchange-

correlation functionals. Approximating the λ dependence of the integrand in

Eqn.1.30 by linear interpolation, Exc becomes

Exc ≈
1

2
U0
xc +

1

2
U1
xc (1.31)

Where U0
xc is the exchange-correlation potential energy of the non-interacting

reference system and U1
xc is the exchange-correlation potential energy for the fully-

interacting real system. It could be observed that U0
xc is nothing but the pure

exchange energy of the KS Slater determinant and therefore could be evaluated

exactly. On the other hand, it was proposed by Becke that U1
xc be estimated by

a LSDA given as,

U1
xc ≈ ULSDA

xc =

∫
εxc[nα(r), nβ(r)]d3r (1.32)

Where nα and nβ denote the spin densities, εxc is the exchange-correlation potential-

energy density of a spin-polarized electron gas.

Equation 1.30 is modified to obtain the hybrid form which is given as,

Exc ≈
1

2
Ex +

1

2
ULSDA
xc (1.33)

The above equation represents a true hybrid because it is impossible to decide

if it is an exact-exchange correction to LSDA or an LSDA correction to exact

exchange. Using HF theory, the band gap is large because it includes full exchange

and no correlation, whereas DFT includes approximate exchange and correlation.

Combination of HF exchange and DFT’s approximate exchange and correlation

should therefore give a better value for the band gap.

Thus, a hybrid exchange-correlation functional can be in principle constructed

as a linear combination of the HF exact-exchange functional EHF
x given as,

EHF
x =

1

2

∑
i,j

∫ ∫
ψ∗i (r1)ψ∗j (r1)

1

r12

ψi(r2)ψj(r2)dr1dr2 (1.34)

and any number of exchange and correlation explicit density functionals.
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1.6 LDA+U

A popular hybrid functional used in the quantum chemistry community is

B3LYP (Becke-3 parameter-Lee-Yang-Parr) exchange-correlation functional [21],[22]

which is given as,

EB3LY P
xc = ELDA

xc +a0(EHF
x −ELDA

x )+ax(E
GGA
x −ELDA

x )+ac(E
GGA
c −ELDA

c ) (1.35)

Where a0 = 0.20, ax = 0.72, ac = 0.81. EGGA
x and EGGA

c are GGA functionals

(Becke 88 exchange functional [23] and the correlation functional of Lee, Yang

and Parr for B3LYP [24] and ELDA
c is the VWN (Vosko-Wilk-Nusair) LDA to

correlation functional [16]. The three parameters were taken from [25].

Other widely used Hybrid functionals are PBE0 and HSE functionals. The

PBE0 functional [26], [27] mixes 1
4

of exact (HF) exchange with 3
4

of PBE ex-

change, and describes correlation in the GGA (PBE),

EPBE0
xc =

1

4
EHF
x +

3

4
EPBE
x + EPBE

c (1.36)

The HF calculations under periodic boundary conditions are quite expensive due

to the fact that the decay of the exchange interaction with distance is very slow.

Heyd et al. [28] proposed an idea to overcome this difficulty, i.e. to separate the

Coulomb kernel into short-range and long-range parts, i.e.

1

r
=
erfc(ωr)

r
+
erf(ωr)

r
(1.37)

where erfc(ωr)
r

denotes the short-range part which is a complementary error func-

tion of ωr and erf(ωr)
r

denotes the long range part which is an error function of r.

ω is an adjustable parameter. The HSE functional which is used in the present

work is given as,

EHSE
xc =

1

4
Esr,HF
x +

3

4
Esr,PBE
x + Elr,PBE

x + EPBE
c (1.38)

The optimum range separation parameter ω ≈ 0.2 Å
−1

is said to be a good choice

[29].

1.6 LDA+U

LDA and GGA fails for strongly correlated systems, i.e. systems with localized

d and f electrons. Localization in these systems is due to the fact that elec-

trons cannot come close to each other due to the presence of strong repulsion in
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short-ranged part of the Coulomb interaction. LDA treats the distribution of the

interacting electrons as that averaged over the space. However, it does not treat

the electron configuration avoiding each other and so consequently predicts an

incorrect metallic solution for systems such as Mott insulators. In antiferromag-

netic systems and orbital-ordered systems, there is a symmetry breaking and the

electron distribution of each spin or orbital loses its uniformity. If these symmetry

breaking is taken into account then the localization could be described. LDA+U

is one of the corrective approaches that aims at improving the accuracy of the

DFT functionals in describing the ground state of correlated systems. It is based

on using Hubbard Hamiltonian to describe the ”strongly correlated” electronic

states (localized ’d’ or ’f’ electrons) while the rest of the valence electrons are

treated at DFT level of approximation.

The Hubbard Hamiltonian is given as,

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ (1.39)

where 〈i, j〉 represents the nearest-neighbour atomic sites, c†i,σcj,σ represent the

creation and annihilation operators for electrons of spin σ at sites i,j respectively

and ni,σ denotes the number operator (spin σ and site i).

Within LDA+U, the total energy of the system is given as,

ELDA+U [n(r)] = ELDA[n(r)] + EHub[n
Iσ
mm′ ]− Edc[n

Iσ] (1.40)

Where EHub is the term that contains the el-el interactions as modeled in

the Hubbard Hamiltonian and m labels the localized states of the same atomic

site I. When EHub is added, the Coulomb interaction that is already counted in

the exchange correlation potential in LDA is doubly counted and Edc models the

contribution to the DFT energy from correlated electrons as a mean-field approx-

imation to EHub. The Hubbard correction is applied only to the localized states

of the system. It is a functional of the occupation numbers that are defined as

the projections of occupied Kohn-Sham orbitals (ψσk,b) on the states of a localized

basis set (φIm) which is given as

nIσm,m′ =
∑
k,b

fσkb〈ψσkb|φm′〉〈φIm|ψσkb〉 (1.41)

Where fσkb represents the Fermi-Dirac occupations of the KS states and k and b

represent the k-point and the band indices.
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1.6 LDA+U

Equation 1.40 gives the general structure of the LDA+U energy functional.

Anisimov et al. [30], [31], [32] were the first to introduce LDA+U and it consists

of an energy functional that can be written as

E = ELDA +
∑
I

[
U I

2

∑
m,σ 6=m′,σ′

nIσm nIσ
′

m′ −
U I

2
nI(nI − 1)

]
(1.42)

Where nIσm = nIσmm and nI =
∑

m,σ nIσm . The second and the third terms

represent the Hubbard and the double counting terms of Eqn.1.40 respectively.

The action of the Hubbard corrective potential on the Kohn-Sham wavefunc-

tions needed for the minimization process can be defined using the atomic orbital

occupations given in Eqn.1.41. It is given as,

V|ψσk,b〉 = VLDA|ψσk,b〉+
∑
I,m

U I

(
1

2
− nIσm

)
|φIm〉〈φIm|ψσk,b〉 (1.43)

The KS equations obtained from Eqn.1.42 will thus yield the ground state

one-body density matrix of the system. If nIσm < 1/2 i.e. for half-filled orbitals,

the Hubbard potential is repulsive and for others it is attractive. This favours

fully occupied or fully unoccupied states and opens a gap of the order U I . The dif-

ference between the potential acting on the occupied and unoccupied states gives

the measure of the energy gap opening between their eigenvalues. Therefore,

the explicit account of on-site el-el interactions favours the electronic localiza-

tion and may lead to the band gap opening in the KS spectrum, provided the

on-site Coulomb repulsion prevails on the kinetic energy , minimized through

delocalization.

The LDA+U approach described above has a discrepancy that is, the for-

mulation given by Eqn.1.42 is not invariant under rotation of the atomic orbital

basis set that is used to define the occupation of d states nIσm which produces

an undesirable dependence of the results on the specific choice of localized ba-

sis set. A. Liechtenstein and coworkers [33] introduced a formulation which is a

rotationally-invariant formulation in which the EHub and Edc are given a more
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general expression borrowed from the HF method, which is given as,

EHub[(n
I
mm′)] =

1

2

∑
m,σ,I

[〈m,m′′|Vee|m′m′′〉nIσmm′nI−σm′′m′′′

+ (〈m,m′′|Vee|m′m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉) nIσmm′n
Iσ
m′′m′′′ ]

Edc[(n
I
mm′)] =

∑
I

(
U I

2
nI(nI − 1)− J I

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)]

)

Though this formulation proves to be the most complete formulation of LDA+U

based on a multi band Hubbard model, in many occasions, a much simpler ex-

pression of the Hubbard correction (EHub) introduced by Dudarev et al. [34] is

actually implemented and adopted. The energy functional is given as,

EU

[
nIσmm′

]
= EHub[n

I
mm′ ]− Edc[n

I ]

=
∑
I

U I

2

[
(nI)2 −

∑
σ

Tr[(nIσ)2]

]
−
∑
I

U I

2
nI(nI − 1)

=
∑
I,σ

U I

2
Tr[nIσ(1− nIσ)]

This simplified version of the Hubbard correction has been successfully used

in several studies and will be the one adopted in the present thesis.

1.7 GW method/approximation

In the DFT formulation, the ground state energy is written as a functional of the

ground state density which gives a minimum when variational theorem is applied

w.r.t that density. Once this energy functional is known or approximated, the

solution of the many-body problem is given by a set of self-consistent solution of

effective one-particle equation. One of the practical computational schemes is the

LDA functional as the exchange correlation functional. The obtained KS eigen-

values have no physical meaning. They are often considered as single particle

excitation energies i.e. energy needed to remove an electron or add an electron

to the system. There are no theoretical justification for this consideration. More-

over in the KS approach we map the interacting system to a non-interacting

system. Though the interactions are incorporated through exchange and cor-

relation terms, still the description is a one-particle description. The electrons
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1.7 GW method/approximation

could be more accurately described when they are considered to be quasipar-

ticles. So the proper treatment for calculation of the quasiparticle excitation

energies is required. One of the best methods available at present for calculating

the quasiparticle energies is the GW approximation [35], [36]. The basic idea of

the GW approximation is the expansion in the series of the screened Coulomb

interaction for the proper treatment of the screening effects in solids [35], [37],

[38]. The initial works on GW method include the study of the electron gas by

Quinn and Ferrel in which they attempted to include the correlation effects and

work on electron gas in the high density region. In 1965, Hedin derived an exact

closed set of equations for the self-energy in which the self- energy was expanded

in powers of the screened Coulomb potential. Lundquist did extensive calcula-

tions of the electron gas self-energy and spectral functions [39]. Hybertson and

Louie performed GW calculations on semiconductors and found that the band

gap problem of DFT is cured [40]. The all-electron GW calculations were done

by Aryasetiawan in 1990’s. GW calculations can now be performed for systems

containing more than 50 atoms [41],[42].

For an inhomogenous system, the quasiparticle energies and wavefunctions

are calculated by using the equation,

(T + Vext + VH)ψkn(k) +

∫
dr′
∑

(r, r′; Enk)ψkn(r′) = Eknψkn(r) (1.44)

Where
∑

is the self-energy which can be evaluated by using the Green’s function

based formula given by Hedin [35]. The basic quantity of the GWA is the one-

particle Green’s function given as,

G(1, 2) = i〈N|T[ψ̂(1)ψ̂†(2)]|〉, (1.45)

where |N〉 is the ground state of the N electron system, T is the time-ordered

product, ψ̂ and ψ̂† are field operators and 1=(r1,t1) is the composite space-time

variable. Starting from the equation of motion of the Green’s function, Hedin

derived a set of equations between the Green’s function G, self-energy
∑

, screened

Coulomb interaction W, polarization function P and vertex correction Γ:∑
(1, 2) = i

∫
G(1, 3+)W(14)Γ(3, 2, 4)d(34), (1.46)

W(1, 2) = v(1, 2) + i

∫
v(1, 3)P(3, 4)W(4, 2)d(34), (1.47)
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P(1, 2) = −i
∫

G(1, 3)Γ(3, 4, 2)G(4, 1+)d(34), (1.48)

Γ(1, 2, 3) = δ(1−2)δ(1−3)+

∫
δ
∑

(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d(4567), (1.49)

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)

∑
(3, 4)G(4, 2)d(34), (1.50)

To solve the above equations, one must find the self-energy
∑

. In the GWA,

the vertex correction is approximated as

Γ(1, 2, 3) = δ(1− 2)δ(2− 3), (1.51)

which leads to the self-energy that is given as,

GW∑
(1, 2) = iG(1, 2)W(1, 2), (1.52)

In real materials, the GW calculations can be carried out non self-consistently

on top of the DFT solution as well as partially self-consistent (in G) or fully self-

consistent (in G and W). The starting Green’s function equivalent to Eqn.1.45 is

G0(r, r′;ω) =
occ∑
v

ψv(r)ψ∗v(r
′)

ω − εv − iδ
+

unocc∑
c

ψc(r)ψ∗c (r
′)

ω − εc − iδ
, (1.53)

where ψv and ψc are the eigenstates of the KS equation. The polarizability from

which the W is computed is given as,

P0(r, r′;ω) =
occ∑
v

unocc∑
c

[
ψv(r)ψ∗c (r)ψc(r

′)ψ∗v(r
′)

ω − (εc − εv) + iδ
− ψ∗v(r)ψc(r)ψ∗c (r

′)ψv(r
′)

ω − (εc − εv) + iδ

]
(1.54)

By substituting W in Eqn.1.52,
∑

is computed. Once the self-energy is

computed, the Green’s function is obtained by solving the Dyson equation 1.50.

Its spectral function, A(k,ω), is given as

A(k, ω) =
1

π

∑
n

|〈ψkn|ImG(ω)|ψkn〉|, (1.55)

A(k,ω) is the one-electron excitation spectrum for electron addition or re-

moval. This is the quantity that is to be compared with the photoemission
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measurements. The peak position of the spectral function i.e. the quasiparticle

energy is given as

EQP
kn = εkn +Re〈ψkn|

∑
(EQP

kn )− vxc|ψkn〉 (1.56)

Since it is often assumed that the self-energy is weakly frequency dependent,

it is safely expanded around the Kohn-Sham eigenvalue. Eqn. 1.56 is reduced to

EQP
kn = εkn + ZknRe〈ψkn|

∑
(εkn)− vxc|ψkn〉, (1.57)

where the renormalization factor Z is defined by

Zkn =

(
1− ∂Re

∑
kn

∂ω
|ω=εkn

)−1

(1.58)

1.8 Tight-Binding model and Maximally Local-

ized Wannier Functions

1.8.1 Tight-binding method

TB model is a one-electron model which is based on the idea that atomic-like

orbitals could be used as a basis to expand the crystal wavefunctions. “Tight-

binding” refers to the tightly-bound electrons in solids. This model works very

well for the electrons that are tightly-bound to the atom. TB method is also very

closely related to the LCAO (Linear Combination of Atomic Orbitals) which

is widely used in chemistry. TB method provides a basis for the construction

of many-body theories such as the Hubbard model and the Anderson impurity

model.

After the establishment of the idea of an orbital by Robert Mulliken in 1928,

LCAO for molecules was developed by Finklestein and Horowitz whereas LCAO

for solids was developed by Bloch [43]. In 1954, a parametrized tight-binding

method which involves a simpler interpolation scheme for studying the electronic

structure (especially for the d-electrons of the transition metals) was conceived

by J.C.Slater and G.F.Koster [44]. Slater and Koster call it a ”tight-binding” or

the “Bloch” method and their celebrated paper provides a systematic procedure

for formulating a tight-binding model. Their paper provides the famous “Slater-

Koster” table that is used to build a TB Hamiltonian. There are fundamentally 3
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ways in which TB fomulation plays an important role in electronic structure. (1)

It provides the simplest understanding of the fundamental features of electronic

bands. (2) Empirical TB methods: In this, a form for the Hamiltonian and

overlap matrix elements are assumed without any specification regarding the

orbitals except for the symmetry. The values of the matrix elements may be

derived approximately or could be found by fitting with the experimental data

or other theory. (3) Using local orbitals like Gaussians to carry out a full self-

consistent solution of independent-particle equations. We will now move on with

the detailed discussion of the TB method.

Let us consider a crystal where the atoms in the unit cell are at positions τκ,j

where κ indicates the type of atoms and j indicates the number of atoms of type

κ. Consider a set of orbitals that form a basis χα(r - RI), each associated with

an atom at position RI . Letting m denote the composite index [κ, j, α] we allow

the entire basis to be specified by χm(r - (τm + T)), where T is a translational

vector. Within this atomic-like Bloch basis, we can solve the Schrödinger equation

by computing the Hamiltonian and the overlap matrix elements Hm,m′ and Sm,m′ .

The matrix elements of the Hamiltonian of a state m in the cell at the origin and

state m′ in the cell labelled by the translation vector T is given as,

Hm,m′(T) =

∫
drχ∗m(r− τm)Ĥχm′ [r− (τm′ + T)], (1.59)

The above equation applies to any orbitals m and m′ in cells that are separated

by the translation T, since the crystal is translationally invariant. The overlap

matrix is given by

Sm,m′(T) =

∫
drχ∗m(r− τm)χm′ [r− (τm′ + T)] (1.60)

According to Bloch’s theorem, the basis state with wavevector k can be writ-

ten as,

χmk(r) = Amk

∑
T

eik·Tχm[r− (τm + T)], (1.61)

where Amk is a normalization factor. Wavevector k is restricted to the first Bril-

louin zone and this is sufficient because when reciprocal lattice vector is added the

phase factor eik·T is unchanged. The translational invariance of the Hamiltonian
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shows that the matrix elements of the Hamiltonian with the basis functions χmk

and χm′k′ are non-zero only for k = k′, with

Hm,m′(k) =

∫
drχ∗mk(r)Ĥχm′k(r) =

∑
T

eik·THm,m′(T), (1.62)

and

Sm,m′(k) =

∫
drχ∗mk(r)χm′k(r) =

∑
T

eik·TSm,m′(T), (1.63)

Since the Hamiltonian conserves k, an eigenfunction of the SE in a basis can

be written in the form

ψik(r) =
∑
m

cm(k)χmk(r), (1.64)

and the secular equation for wavevector k is given as,

∑
m′

[Hm,m′(k)− εi(k)Sm,m′(k)]ci,m′(k) = 0 (1.65)

Local orbitals are different from other basis because the locality of χm(r −
(τm + T) causes Hm,m′ and Sm,m′ to decrease and become negligible for large

distances |τm-(τm′+T)|.
The Hamiltonian and the overlap matrix elements (Eqns. 1.59 and 1.60) can

be divided into one-, two-, and three-center terms. The Hamiltonian matrix

elements arise from a Hamiltonian that has the form ,

Ĥ = −1

2
∇2 +

∑
Tκj

Vκ[|r− (τκj + T)|], (1.66)

where the first term is the kinetic energy term and the second term is the potential

decomposed into a sum of spherical terms centered on each site κ, j in the unit

cell. The kinetic part of the Hamiltonian matrix element always involves one or

two centers. But the potential terms may depend on the positions of other atoms

and they can be divided into the following:

• One-center - where both the orbitals and the potential are centered on the

same site and these terms have the same symmetry as an atom in free space.
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• Two-center - The orbitals are centered on different sites and the potential

is on one of the two and these terms have the same symmetry as the other

two-center terms.

• Three-center - The orbitals and the potential are all centered on different

sites.

The two-center matrix elements play an important role in calculations involv-

ing local orbitals. The orbitals can be classified in terms of the azimuthal angular

momentum about the line between the centers, i.e. the value of m with the axis

chosen along the line, and the only non-zero matrix elements are between the

orbitals with the same m=m ′. Slater and Koster proposed that the Hamiltonian

matrix elements could be approximated with the two-center form and fitted to

theoretical calculations. Within this approach, all the matrix elements have the

same symmetry and this is a very useful approach to understanding electrons in

materials. Examples for two-center matrix elements of s and pi= {/px,py,pz/}
orbitals separated by displacement vector R are shown in Fig.1.1. Matrix ele-

ments are related to σ and π integrals by the transformation to a combination

of orbitals that are aligned along R and perpendicular to R. These two-center

matrix elements are given in SK table shown in the Tab.1.1. The table gives the

transformation of the matrix elements (Eqn. 1.59) in terms of Vmm′ where m and

m ′ refers to the orbitals at different sites (for example Vssσ). In the table, this is

referred to as En,m where n,m represents s, x (px), y (py) , z (pz), xy (dxy) etc.

and the integrals could be expressed as

En,m(p, q, r) =

∫
ψ∗n(r)Hψm(r− pai− qaj− rak)dv (1.67)

The above equation is taken from the original paper by Slater and Koster [44]

which are given using a different notation in this section by Eqns. 1.59, 1.62.

If the atoms are located at the vector positions pai+qaj+rak, where p, q, r are

integers, a is the lattice constant and l, m and n are the direction cosines and

l=p(p2+q2+r 2)−
1
2 , m=q(p2+q2+r 2)−

1
2 and n=r(p2+q2+r 2)−

1
2 .

To obtain the Hamiltonian matrix elements in k-space, Eqn. 1.59 has to be

multiplied by the Bloch phase factors (Fourier-transformed) as given by the Eqn.

1.62.
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Es,s Vssσ

Es,x lVspσ

Ex,x l2Vppσ + (1− l2)Vppπ

Ex,y lmVppσ − lmVppπ
Ex,z lnVppσ − lnVppπ
Es,xy

√
3lmVsdσ

Es,x2−y2

√
3

2
(l2 −m2)Vsdσ

Es,3z2−r2 [n2 − (l2 +m2)/2]Vsdσ

Ex,xy
√

3 l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz
√

3lmnVpdσ − 2lmnVpdπ

Ex,zx
√

3l2nVpdσ + n(1− 2l2)Vpdπ

Ex,x2−y2

√
3

2
l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ

Ey,x2−y2

√
3

2
m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ

Ez,x2−y2

√
3

2
n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ

Ex,3z2−r2 l[n2 − (l2 +m2)/2]Vpdσ −
√

3ln2Vpdπ

Ey,3z2−r2 m[n2 − (l2 +m2)/2]Vpdσ −
√

3mn2Vpdπ

Ez,3z2−r2 n[n2 − (l2 +m2)/2]Vpdσ +
√

3n(l2 +m2)Vpdπ

Exy,xy 3l2m2Vddσ + (l2 +m2 − 4l2m2)Vddπ + (n2 + l2m2)Vddδ

Exy,yz 3lm2nVddσ + ln(1− 4m2)Vddπ + ln(m2 − 1)Vddδ

Exy,zx 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Exy,x2−y2
3
2
lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ + lm(l2 −m2)/2Vddδ

Eyz,x2−y2
3
2
mn(l2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ +mn[1 + (l2 −m2)/2]Vddδ

Ezx,x2−y2
3
2
nl(l2 −m2)Vddσ + nl[1− 2(l2 −m2)]Vddπ − nl[1− (l2 −m2)/2]Vddδ

Exy,3z2−r2

√
3 [lm(n2 − (l2 +m2)/2)Vddσ − 2lmn2Vddπ + lm(1 + n2)/2Vddδ]

Eyz,3z2−r2

√
3 [mn(n2 − (l2 +m2)/2)Vddσ +mn(l2 +m2 − n2)Vddπ −mn(l2 +m2)/2Vddδ]

Ezx,3z2−r2

√
3 [ln(n2 − (l2 +m2)/2)Vddσ + ln(l2 +m2 − n2)Vddπ − ln(l2 +m2)Vddδ]

Ex2−y2,x2−y2
3
4
(l2 −m2)Vddσ + [l2 +m2 − (l2 −m2)2]Vddπ + [n2 + (l2 −m2)2/4]Vddδ

Ex2−y2,3z2−r2

√
3 [(l2 −m2)[n2 − (l2 −m2)/2]Vddσ/2 + n2(m2 − l2)Vddπ + (1 + n2)(l2 −m2)/4Vddδ]

E3z2−r2,3z2−r2 [n2 − (l2 −m2)/2]2Vddσ + 3n2(l2 +m2)Vddπ + 3
4
(l2 +m2)Vddδ

Table 1.1: Table of two-center matrix elements proposed by Slater-Koster [44]
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Figure 1.1: Schematic representation of the two-center matrix elements of s and pi =

{/px,py,py/} orbitals separated by the displacement vector R.

1.8.2 Maximally Localized Wannier Functions

MLWFs provide an alternative representation of the electronic structure in terms

of the functions localized in real space. These functions are obtained by the

Unitary transformation from the energy eigenfunctions, thus providing the full

equivalent description. MLWFs provide an insightful physical picture through

their center, their extension and their shape. The electron orbitals can be visu-

alized. We will discuss the formulation in detail in the following section.

In the independent particle approximation, the eigenstates of a solid (crystal)

are represented in the form of Bloch functions which are written as a periodic

function times a phase factor (plane wave) [43],

ψnk(r) = unk(r)eik·r (1.68)

The Bloch functions at different k points have different phase factor or the

envelope function. Wannier functions could be obtained using the following ex-

pression:

w0(r) =
V

(2π3)

∫
BZ

dkψk(r) (1.69)

Where V is the Real-space primitive cell volume.
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More generally, by including a phase factor e−ik·R (where R → lattice trans-

lation vector), WFs can be constructed by using the equation below:

|Rn〉 =
V

(2π)3

∫
BZ

dke−ik·R|ψnk〉 (1.70)

Where the Dirac notation |Rn〉 refers to the WF wnR in cell R associated with

band n.

The Bloch functions and the Wannier functions are related by Fourier trans-

form:

|ψnk〉 =
∑
R

eik·R|Rn〉 (1.71)

The problem is that the WFs that are obtained via the above formula are

not unique, because of the fact that ψnk possesses “gauge freedom” which means

that a certain Bloch function could be constructed by any real function that

is periodic in the reciprocal space. So while Fourier transforming from Bloch

function to Wannier function, for the same wavevector, it could be possible that

there exists different WFs.

The task of constructing N WFs from a set of isolated bands becomes greatly

difficult. The expression for WFs for this case can written as shown below:

|Rn〉 =
V

(2π3)

∫
BZ

dke−ik·R

[
N∑
m=1

U(k)
mn|ψmk〉

]
(1.72)

But there are infinitely many Unitary transformations. This “non-uniqueness”

posed a great challenge making the construction of the WFs very difficult.

To solve this problem of non-uniqueness, many localization procedures were

introduced to fix U. A widely used approach to localize the WFs has been de-

veloped by Marzari and Vanderbilt and the resulting functions are termed as

“Maximally Localized Wannier Functions” [45]. There are other approaches to

obtain a well-localized WFs like the WFs by projection technique [46, 47, 48].

The broad picture is that, a quantity that measures the sum of the quadratic

spreads of the N MLWFs in the unit cell around their centers, called the Localiza-

tion functional is defined. The goal is to find the Unitary matrix that minimizes

this localization functional. The localization functional is defined as given below:

Ω =
∑
n

[
〈0n|r2|0n〉 − 〈0n|r|0n〉2

]
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=
∑
n

[
〈r2〉n − r2

n

]
(1.73)

The localization functional measures the sum of the quadratic spread of the WFs

around their centers. The choice of the localization functional is in such a way that

it is decomposed into a “gauge-invariant” part and a “gauge-variant” part. Gauge

invariance means that the quantity is invariant under any Unitary transformation.

Hence, the minimization means that it is the “gauge-variant” part that is actually

minimized. For practical purposes, the localization functional has to be converted

into its equivalent Bloch space representation.

The localization functional is written as :

Ω = ΩI + Ω̃ (1.74)

Where ΩI → Gauge-invariant part and Ω̃ → Gauge-variant part and they are

written as shown below:

ΩI =
∑
n

[
〈0n|r2|0n〉 −

∑
Rm

|〈Rm|r|0n〉|2
]

(1.75)

Ω̃ =
∑
n

∑
Rm6=0n

|〈Rm|r|0n〉|2 (1.76)

For practical purposes, it is important to convert the useful quantities into

equivalent Bloch representation. The matrix elements of the position operator

between WFs take the form as shown by Blount are given as [49]:

〈Rn|r|0m〉 = i
V

(2π)3

∫
dkeik·R〈unk|∇k|umk〉 (1.77)

and

〈Rn|r2|0m〉 = − V

(2π)3

∫
dk

∫
dkeik·R〈unk|∇2

k|umk〉 (1.78)

Where 〈unk| stands for Bloch orbitals that were calculated on a regular k-point

mesh. The important step now is to determine the reciprocal space derivatives.

The information on the reciprocal space derivatives are encoded in the overlaps

M
(k,b)
mn between the Bloch orbitals at neighbouring k-points,

M(k,b)
mn = 〈umk|un,k+b〉 (1.79)
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The different terms involved should be expressed in terms of the overlaps. The

Marzari-Vanderbilt expressions for rn and 〈r2〉n are given as,

rn = − 1

N

∑
k,b

wbbImlnMnm(k,b) (1.80)

〈r2〉n =
1

N

∑
k,b

wb

([
1− |M(k,b)

nn |2
]

+
[
ImlnM(k,b)

nn

]2)
(1.81)

The gauge invariant and the gauge-variant terms are written as:

ΩI =
1

N

∑
k,b

wb

(
J −

∑
mn

|M(k,b)
mn |2

)
(1.82)

Where the band indices m,n run from 1 to J. and

Ω̃ =
1

N

∑
k,b

wb

∑
m6=n

|M(k,b)
mn |2 +

1

N

∑
k,b

wb

∑
n

(
−ImlnM(k,b)

mn − b · rn
)2

(1.83)

The main goal is to find the Unitary matrix that minimizes the localization

functional. This involves an updating of the Unitary matrices in order to reach

the minimum. To begin with, all the Uk
mn are initialized to δmn. Through the

steepest descent procedure, ∆W (infinitesimal anti-Hermitian Unitary matrix) is

calculated for a small step in the direction opposite to the gradient defined by

Gk =
dΩ

dW k
= 4

∑
b

wb

(
A
[
R(k,b)

]
− S

[
T(k,b)

])
(1.84)

Where A and S are superoperators defined as A[B] = (B-B†)/2 and S[B]=(B+B†)/2i.

After each step described above, the Unitary matrices are updated according to ,

U(k) → Ukexp[∆W(k)] (1.85)

and the overlaps are also updated accordingly as,

M(k,b) = U(k)†M(0)(k,b)U(k+b) (1.86)

It could be possible that the localization functional could display multiple

local minima. In order to avoid these, Marzari-Vanderbilt procedure involves the

preparation of a set of reference Bloch orbitals |u(0)
nk〉 by projection from a set of

initial trial orbitals gn(r) corresponding to some very rough initial guess gn(r) for

the WFs.
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The above procedure outlined is when we are starting with a set of isolated

bands. But there is another case where we start with a set of entangled bands.

Entangled bands are those bands which lie within a limited energy range but

overlap and hybridize with other bands which extend further out in energy.

The entangled bands are difficult to treat because, it is not clear exactly which

states to choose initially that could form the correct set of WFs. In this case,

before applying the localization procedure, some prescription for constructing

N WFs from a large band-manifold for each k-point is to be formulated. The

computation of constructing well-localized WFs starting from entangled bands

are broken down into 2 steps: 1. Subspace selection [50] 2. Gauge selection.

In the subspace selection step, a smooth Bloch manifold is constructed. In the

gauge selection step, the constructed subspace is represented using a set of N

Bloch functions (now smooth functions of k ) such that the corresponding WFs

are well localized.

To choose smoothly varying Bloch-like states, starting from a larger set of

Bloch bands, we employed energy windows. The procedure is as follows: Starting

from a set of N localized trial orbitals gn(r), they are projected onto the space

spanned by the chosen eigenstates at each k,

|φnk〉 =

Qk∑
m=1

|ψmk〉〈ψmk|gn〉 (1.87)

(Qk ≥ N)

The resulting orbitals are then orthonormalized to produce a set of N smoothly-

varying Bloch-like states across the BZ,

|ψ̃nk〉 =
N∑
m=1

|φmk〉
〈φmk|φnk〉1/2

(1.88)

This procedure simultaneously achieves the goals of subspace selection and

gauge selection. The gauge selection can be further refined by minimizing Ω̃

within the projected subspace.

1.8.3 Downfolding

Combination of the FP and MH involves the construction of effective Hamiltonian

from first principles. The basic idea of the downfolding method is to calculate

the renormalization effect to the low-energy degrees of freedom caused by the
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(1) First

principles/ab-

initio (LDA/GGA,

SIC, LDA+U,

Hybrid functionals,

GW method etc)

(2) Down-

folding

(3) Model Hamil-

tonians (Effective

TB Models)

via WFs TB parameters

Figure 1.2: Schematic flowchart showing the scheme used in this work to combine

the FP and MH approaches.

elimination of the high-energy ones. In many strongly correlated materials, there

exists a well-defined group of bands near the Fermi level which are isolated from

the bands away from the Fermi level. In TMOs, this group consists of the bands

whose main component is 3d orbitals at the transition metal atoms. The low

energy degrees of freedom may be further restricted to either t2g or eg orbitals

only, if the crystal-field splitting is large as in many cases with perovskite TMOs

like SrVO3 or LaMnO3. In general, a complete basis set can be constructed from

the basis functions of the Hamiltonian obtained by ignoring the el-el interaction.

In this basis, the second quantized total Hamiltonian of electrons equivalent to

the electronic part of the full Hamiltonian is written as,

H[c†, c] =
∑
µ,ν

hK(µ, ν)c†µcν +
∑

µ,µ′,ν,ν′

hV (µ, µ′, ν, ν ′)c†µc
†
µ′cνcν′ (1.89)

The above Hamiltonian is nothing but the Hubbard Hamiltonian written using a

different notation (Refer to Eqn.??). The first term represents the kinetic energy

which includes the one-body term and the second term is the Coulomb interaction

in the present basis representation with the electronic degrees of freedom µ. If

one employs the basis of LDA eigenfunctions for KS equation, then µ denotes a

LDA band, spin and momentum. The first step of the downfolding procedure i.e.

to derive the low-energy effective model, we have to construct a set of localized

orbitals that span the Hilbert space of the low energy electronic states. There are

many ways to obtain these localized orbitals, one of which is MLWFs [45], [50]

which was discussed in the previous section. An alternative approach to finding

the Wannier orbitals is the Anderson Wannier orbitals. MLWFs are more general

because it does not depend on any particular bandstructure calculation method.

Although Wannier orbitals could be chosen in an arbitrary way, it is better to find
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maximally localized orbitals to make the range of transfers and interactions in the

effective lattice models as short as possible. Once the bands are downfolded and

the effective Hamiltonian is obtained, the last step is to solve this Hamiltonian.

For solving the Hamiltonian, DMFT, VMC etc. are usually employed.

A schematic representation of the whole procedure (as employed in this the-

sis) is illustrated in the Fig.1.2. The illustration provided in the Fig.1.2 could be

described as follows: Electronic structure methods are basically divided into two

categories: FP and MH approaches. Starting from FP methods like the PBE,

PBE+U, Hybrid functionals and GWA, a set of bands (for eg. the 3d correlated

subspace of Mn3+ of RMnO3) are downfolded via MLWFs. TB parameters corre-

sponding to an effective TB model Hamiltonian are extracted from the MLWFs.

In this thesis, we will discuss the TB parametrization obtained by starting

from DFT, DFT+U, Hybrid functionals and GW. The reason for this is explained

in the follwoing: The quality and characteristics of the Wannier representation

inevitably depend on the underlying Kohn-Sham states. It is well known that

the mean-field-type one-particle description of the electronic structure within the

standard LDA [51] or GGA [27] approximations to DFT is incapable to correctly

describe exchange and correlation effects in the so called strongly-correlated ma-

terials, resulting, among other failures in much too small band gaps and magnetic

moments [1]. It has been noted that the underestimation of the band gap and

related failures are of course also partly due to the intrinsic limitation of the

KS approach, which is not meant to describe quasi-particle excitations correctly.

For this reason, the DFT-derived subset of orbitals is typically employed as ref-

erence for the one-electron (i.e. non-interacting) part of the effective Hamilto-

nian, where all approximated contributions coming from LDA/GGA exchange-

correlation effects are subtracted in order to avoid double-counting. For example,

in the DFT+DMFT method [52], the effective Hamiltonian can be written as

Ĥ = ĤDFT − Ĥdc + ĤU , where ĤDFT is the KS Hamiltonian, Ĥdc accounts for the

double-counting correction, and ĤU represents the Hubbard-like term which de-

scribes the electronic interactions in the strongly correlated bands. A critical issue

of the DFT+DMFT approach is that a well defined expression for the double-

counting potential is not known and several forms have been suggested. Karolak

and coworkers have recently addressed this issue by treating the double-counting

term as an adjustable parameter and suggested that the best agreement with

experiment is achieved by setting the double-counting potential in the middle of

the gap of the impurity spectral function [53]. Within this context, it is there-

fore justified to construct effective Hamiltonians starting from band structures
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obtained using different schemes, such as e.g. LDA+U [54] or hybrid functionals,

which usually provide much better gaps for semiconducting materials than con-

ventional DFT approximations and could therefore represent a more appropriate

“non-interacting” reference for model calculations.

1.8.4 MLWFs ⇒ TB parameters

In this section we will discuss how the MLWFs and TB Hamiltonian are connected

so that we could obtain the TB parameters from the MLWFs.

A set of N localized WFs |wnT〉 corresponding to a group of N bands that

are described by delocalized Bloch states |ψmk〉 is defined by the following trans-

formation:

|wnT〉 =
V

(2π)3

∫
BZ

dk

[
N∑
m=1

U (k)
mn|ψmk〉

]
e−ik·T , (1.90)

where T is the lattice vector of the unit cell associated with the WF, m is a band

index, k is the wave-vector of the Bloch function, and the integration is performed

over the first Brillouin zone (BZ) of the lattice. Different choices for the unitary

matrices U(k) lead to different WFs, which are thus not uniquely defined by

Eqn.1.90. A unique set of MLWFs can be generated by minimizing the total

quadratic spread of the Wannier orbitals as already discussed in Sec.1.8.2 [45].

After obtaining a set of MLWFs, the corresponding Hamiltonian matrix,

H(W )(k) is constructed by a Unitary transformation,

H(W )(k) = (U (k))†H(B)(b)(U (k)) (1.91)

from the diagonal Hamiltonian matrix in the Bloch basis, H
(B)
nm(k) = εnkδnm with

the eigenvalues εnk.

Once the transformation matrices U(k) are determined, a TB representation

of the Hamiltonian in the basis of MLWFs is obtained:

Ĥ =
∑
T,∆T

h∆T
nm ĉ†nT+∆TĉmT + h.c. , (1.92)

with

hT
nm =

V

(2π)3

∫
B

Zdk

[∑
l

(
U

(k)
ln

)∗
εlk U

(k)
lm

]
e−ik·T . (1.93)

Here, εlk is the eigenvalue corresponding to Bloch function |ψlk〉. We note that

T and ∆T in Eqns.1.90-1.93 indicate lattice translations, whereas for crystal
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structures with more than one atom per unit cell, n and m generally represent

combined orbital, spin, and site indices, specifying the various orbitals at all sites

within the primitive unit cell.

1.9 Electronic structure calculations using VASP

All the calculations (PBE,HSE and GW) presented in this work has been done

using VASP (Vienna Ab-initio Simulation Package). VASP is a complex ab-

initio simulation package that performs simulation using pseudopotentials or the

projector-augmented wave (PAW) method within a plane wave basis set [55],

[56], [57], [58]. In VASP, the four essential input files are INCAR, POSCAR,

POTCAR and KPOINTS. INCAR file is a tagged free-format ASCII file that

determines “what to do and how to do it”. POSCAR file contains the position

of the ions. KPOINTS file determines the kpoint settings. POTCAR contains

the pseudopotential and the information about the atoms. VASP uses a self-

consistent cycle with a Pulay mixer and iterative matrix diagonalisation scheme

to calculate the KS ground state. At each electronic step the wavefunctions are

iteratively improved and the charge density is refined.

We will discuss the basic ideas behind implementation of the theory in practise

and PAW method under this section. In a one-particle theory like KS-DFT or

HF, the task of finding the solution to the many-body problem i.e. ψ (r1, r2, · · · ,
rN) is reduced to calculating ψnk (r) at a discrete set of kpoints k in the first BZ,

for a number of bands that are of the order of the number of electrons in a unit

cell. Each electronic state |ψnk〉 obeys the Bloch theorem which is given as,

ψnk(r + R) = ψnk(r)eik·R (1.94)

Where R is the translational lattice vector that leaves the Hamiltonian invariant.

Therefore the problem is transferred from the real space to the reciprocal space

(momentum space/k-space). The problem of infinite number of electrons in the

real space is now mapped on to the problem of expressing the wavefunction in

terms of an infinite number of reciprocal space vectors within the first Brillouin

zone k. In practice, it is not possible to deal with an infinite number of vectors.

This problem could be solved by sampling the BZ at special set of kpoints. Sam-

pling of k-points could be done by various methods, popular methods being the
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Monkhorst-Pack and the Chadi-Cohen methods [59, 60]. The total wavefunction

at each point is expressed in terms of a discrete plane-wave basis set given as,

ψnk(r) =
1

Ω1/2

∑
G

CGnkei(G+k)r (1.95)

where ψnk (r) is the Bloch wavefunction, Ω is the volume of the first BZ, k is the

wavevector and G the reciprocal lattice vector. Other important quantities are

the charge density of an electron which is given as,

n(r) =
∑
G

nGe
iGr (1.96)

and the potential

V (r) =
∑
G

VGeiGr (1.97)

which also are expanded in a plane-wave basis set. In principle, the plane-wave

basis set must be infinite in number, but it could be considered converged for

large values of (G+k) in practise by introducing an energy cut-off, given as

1

2
|G + k|< Ecutoff (1.98)

The energy cut-off depends on the system that one is working with and there-

fore it becomes necessary to test the convergence of the energy for a given cut-off

value. Using plane waves, both the vacuum and the high-density regions have

been forced to be described with high accuracy and therefore a large number of

plane waves are necessary. There are 2 distinct regions in an atom/molecule/solid:

(1)Region near the nuclei (large potential): where the one-electron wavefunction

ψ oscillates rapidly (2) Interstitial region (small potential) : where ψ oscillates

slowly. Plane waves are convenient but they fail to describe the region efficiently

where the one-electron wavefunction oscillates rapidly and too many plane waves

are needed in order to circumvent this problem. To treat these regions while solv-

ing DFT equations, two different traditional approaches have been introduced:

• All-electrons approaches (using exact potentials) such as the augmented

plane wave methods (Eg. Full potential Linear Augmented Wave (FLAPW)

method) which is very accurate but expensive.

• Pseudopotential approach which is less accurate but inexpensive.
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In the FLAPW method, the region near the nuclei is described by radial

function and spherical harmonics, whereas PW are used in the interstitial part.

The partial solutions of the different regions are matched with value and derivative

at the interface between atomic and interstitial regions.

The pseudopotential approach was first introduced by Hans Hellmann in 1934.

The basic idea of pseudopotentials is to replace the strong Coulomb potential of

the nucleus and the effects of the tightly bound core electrons by an effective

ionic potential acting on the valence electrons (Fig.1.3). This idea is justifiable

because in most materials the core electrons do not contribute to bonding. The

Figure 1.3: Figure showing pseudopotentials.

price to pay when using pseudopotentials is that all information on the charge

density and the wavefunctions near the nucleus is lost. An efficient alternative to

FLAPW and PP approaches is the PAW method.

The PAW method which was first introduced by Blöchl is a combination

of the augmented plane wave methods and the pseudopotential approach, which

incorporates their fundamental aspects into a unified electronic structure method.

As already mentioned, the valence wavefunctions tend to have rapid oscilla-

tions near the ion cores due to the requirement that they have to be orthogo-

nal to the core states. This is problematic because many Fourier components

are required to describe the one-elctron wavefunctions accurately. In the PAW
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method, the problem is addressed by transforming these rapidly oscillating wave-

functions into smooth wavefunctions that are more computationally convenient.

The all-electron wavefunction is written as a linear transformation of a pseudo

wavefunction (PS WF) and the linear transformation that transforms the pseudo

wavefunction |ψ̃〉 to the all-electron wavefunction |ψ〉 is given as,

|ψ〉 = T|ψ̃〉 (1.99)

and transformation T is given as,

T = 1 +
∑
R

T̂R (1.100)

where T̂R is non-zero only within some spherical augmentation ΩR enclosing atom

R. The true wavefunction is written in terms of partial waves and for each partial

wave φi, a pseudo partial wave φ̃i. ’i’ refers to the atomic site R, the angular

quantum numbers (l,m) with an additional index that labels the different partial

waves at that site. Within the augmentation region, every pseudo wavefunction

is expanded into pseudo partial waves:

|ψ̃〉 =
∑
i

|φ̃i〉ci (1.101)

|φi〉 = T|φ̃i〉 (1.102)

The all-electron WF is expressed as

|ψ〉 = |ψ̃〉+
∑
i

|φi〉ci −
∑
i

φ̃ici (1.103)

where ci is to be determined. ci is given as

ci = 〈p̃i|ψ̃〉 (1.104)

where 〈p̃i| represents the projector functions . According to Blöch’s formulation,

the projector function is defined as

〈p̃i|=
∑
j

([
〈fk|φ̃l〉

])−1

ij
〈fj| (1.105)

The all-electron partial waves |φi〉 = T |φ̃i〉 are typically chosen to be solutions

to the KS SE for an isolated atom. The transformation T is thus specified by
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a set of all-electron partial waves |φi〉, set of pseudo partial waves |φ̃i〉 and a set

of projector functions 〈p̃i|. Outside the augmentation region, the pseudo partial

waves are equal to the all-electron partial waves and inside they could be any

smooth function such as combination of polynomials or Bessel’s functions.

1.9.1 VASP2WANNIER90 interface

In this section, we will discuss the practical instructions for the use of VASP2WANNIER90.

VASP uses WANNIER90 in library mode to generate all ingredients which are

required to run the wannier90 code as a post-processing tool. The main input

file for wannier90 code is the wannier90.win. Apart from this file, the other main

input files are (i) the overlaps between the cell periodic parts of the Bloch states

(wannier90.mmn), (ii) the projections of the Bloch states onto the trial localized

orbitals (wannier90.amn) and (iii) the eigenvalues file (wannier90.eig). These files

are generated by VASP by setting LWANNIER90 = .TRUE. in the main VASP

input file (INCAR). These files are generated provided that the instructions for

a given problem is specified in the wannier90.win file. If the wannier90.win file

is not already present, then VASP generates the file wannier90.win and this has

to be then modified according to the problem under consideration following the

instructions given in the wannier90 code manual and then on rerunning VASP

with the modified wannier90.win file, the other input files for the wannier90 run

(i-iii) are generated. To construct the UNK files (the periodic part of the Bloch

states represented on a regular real space grid) that are required in order to

plot the MLWFs, it is necessary to set LWRITE UNK = .TRUE. in the IN-

CAR file. In a spin-polarized calculation two sets of input files are generated.

VASP2WANNIER90 is employed only once to generate the files wannier90.mmn,

wannier90.amn and wannier90.eig.

An example of the input wannier file wannier90.win (LaMnO3 Experimental

Pbnm structure (majority spin channel) ) is given below:

num wann=4

num bands=112

Begin Projections

f=0.5,0.0,0.25:l=2,mr=1,4:z=0,0,1:x=1,1,0

f=0.0,0.5,0.25:l=2,mr=1,4:z=0,0,1:x=1,1,0

End Projections
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dis win min =8.2

dis win max = 11.3

dis num iter = 1000

guiding centres=true

# BS flags

bands plot = true

begin kpoint path

T -0.5 0.0 0.5 Z 0.0 0.0 0.5

Z 0.0 0.0 0.5 G 0.0 0.0 0.0

G 0.0 0.0 0.0 M 0.5 0.5 0.0

M 0.5 0.5 0.0 A 0.5 0.5 0.5

end kpoint path

begin unit cell cart

5.5391978 0.0000000 0.0000000

0.0000000 5.6990978 0.0000000

0.0000000 0.0000000 7.7174968

end unit cell cart

begin atoms cart

La 2.8048792 3.0974585 3.8587484

La 0.0352803 5.4511882 0.0000000

La 2.7343187 2.6016393 0.0000000

La 5.5039176 0.2479096 3.8587484

Mn 2.7695989 0.0000000 1.9293742

Mn 0.0000000 2.8495489 1.9293742

Mn 2.7695989 0.0000000 5.7881226

Mn 0.0000000 2.8495489 5.7881226

O 2.3635790 5.6381181 3.8587484

O 5.1331779 2.9105287 0.0000000

O 3.1756188 0.0609798 0.0000000

O 0.4060199 2.7885691 3.8587484

O 4.0197981 1.7177092 2.2264940
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O 1.2501992 1.1318397 1.6322544

O 1.5193997 3.9813886 6.0852424

O 4.2889981 4.5672582 5.4910028

O 1.5193997 3.9813886 1.6322544

O 4.2889981 4.5672582 2.2264940

O 4.0197981 1.7177092 5.4910028

O 1.2501992 1.1318397 6.0852424

end atoms cart

mp grid = 4 4 4

begin kpoints

0.0000000 0.0000000 0.0000000

0.2500000 0.0000000 0.0000000

0.5000000 0.0000000 0.0000000

0.0000000 0.2500000 0.0000000

.

.

.

-0.2500000 -0.5000000 -0.5000000

end kpoints

We have so far discussed the underlying theory for this thesis work i.e. Combi-

nation of FP and MH via MLWFs (FP⇒ MLWFs⇒ TB (MH)). We will discuss

the application of the theory to LaMnO3 and then to RMnO3 in the subsequent

chapters.
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Chapter 2

FP+MH study: LaMnO3

We discussed the theory part behind this work (PBE, Hybrid Functionals, GW

method, LDA+U), MLWFs, TB method and the combination of the FP and MH

in the previous chapter. In this chapter, we will discuss the application of the FP

⇒ MLWFs ⇒ MH approach (Refer to the schematic representation (Fig. 1.2)

given in Chapter 2) to the widely studied antiferromagnetic insulator, LaMnO3.

2.1 Introduction

A prototypical textbook example of perovskite TMOs is the antiferromagnetic

insulator LaMnO3. The ground state electronic structure of LaMnO3 is char-

acterized by the crystal-field induced breaking of the degeneracy of the Mn3+

3d4 manifold in the high-spin configuration (t2g)
3(eg)

1, with the t2g orbitals lying

lower in energy than the two-fold degenerate eg ones. Due to the non-spherical

symmetric crystal field (surrounding oxygen octahedra), the point charges of the

ligands interact with the d -metal ions and therefore the degeneracy of the 3d or-

bitals is lifted. As a general rule of thumb, the electrostatic energy is increased for

the d orbitals oriented towards the region of high electron density and vice versa.

The eg orbitals are directly pointing towards the oxygen ligands whereas the t2g
electrons are pointing between the oxygen ligands so that these electrons have an

energy which is less affected by the Coulomb interactions between the Mn3+ 3d

electrons and the oxygen 2p electrons than the eg electrons. Thus, the eg electrons

have an energy raised by this Coulomb interaction. Due to the strong Hund’s rule

coupling, the spins of the fully occupied majority t2g orbitals (S=3/2) are aligned
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2. FP+MH STUDY: LAMNO3

parallel with the spin of the singly occupied majority eg states (S=1/2) on the

same site. The orbital degeneracy in the eg channel is further lifted via cooper-

ative Jahn-Teller (JT) distortions [61, 62, 63, 64], manifested by long and short

Mn-O octahedral bonds alternating along the conventional orthorhombic basal

plane (See Fig.2.3), which are accompanied by GdFeO3-type (GFO) checkerboard

tilting and rotations of the oxygen octahedra [65, 66, 67]. As a result, the ideal cu-

bic perovskite structure is strongly distorted into an orthorhombic structure with

Pbnm symmetry [65, 66] and it has been experimentally confirmed that the or-

bital ordering is of C-type where two kinds of orbitals are alternately aligned in the

xy-plane and the planes are stacked along the z axis [68]. The corresponding occu-

pied eg orbital can be written as |θ〉 = cos θ
2
|3z2−r2〉+sin θ

2
|x2−y2〉 [54, 69, 70, 71],

with the sign of θ ∼ 108◦ alternating along x and y and repeating along z. This

particular orbital ordering is responsible for the observed A-type antiferromag-

netic arrangement below TN = 140 K [65, 72]. It was found that long-range order

disappears above 750 K, whereas a local JT distortion (without long-range order)

remains (dynamically) active up to > 1150 K [63, 64, 70]. Figure 2.1 shows the

various structural distortions as mentioned above. The ideal cubic perovskite

structure (Fig.2.1(a)) requires a single unit cell whereas the other structures (JT,

GFO and experimental Pbnm) (Fig.2.1(b)-(d)) requires two unit cells. The orbital

and the spin-ordering features along the c axis corresponding to the orthorhombic

structure of LaMnO3 (taken from Ref.[9]) is shown in Fig.2.1(e). It could be seen

that the orbital and the spin ordering along the c axis is of staggered and uniform

order.

To get an overall picture of the electronic structure of LaMnO3, an orbital

energy diagram representation of the Mn(3d) states and O(p) states in LaMnO3

is presented in Fig.2.2(a). HSE bandstructure and the corresponding PDOS with

Mn (eg), Mn(t2g) and O(p) characters are presented in Fig.2.2(b). The splitting

of the Mn3+ 3d4 manifold into t2g and eg is shown in the non-spin polarized case

(Fig.2.2(a)) and there is also a hybridization between the eg and O(p) states.

In the spin-polarized case, we show the Jahn-Teller distortion which reduces the

symmetry from octahedral to tetragonal and breaks the degeneracy of the eg
orbitals (both high and low spins) and opens a gap. In Fig.2.2(b), the orbital

diagram representation is reflected in the HSE bandstructure and the correspond-

ing PDOS. The four eg bands (represented by red filled area on the left panel)

that lie near the Fermi level represent the local majority spin bands out of which

2 bands that lie below the Fermi level are occupied and the other 2 above the
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2.1 Introduction

(a) Ideal cubic perovskite

structure

(b) Jahn-Teller distorted

structure

(c) GdFeO3 (GFO) distorted

structure

(d) Experimental Pbnm struc-

ture

(e) Orbital and spin order-

ing in Experimental structure

of LaMnO3.

Figure 2.1: Different structural modifications of LaMnO3 viewed along the z-direction.

Ideal perovskite structure (a) requires a single unit cell, other structures ((b)-(d)) requires

2 unit cells. Pictures generated using VESTA [73]. (e) The orbital and the spin ordering

as seen along the c axis for the Experimental orthorhombic structure of LaMnO3 (taken

from Ref.[9]).

43



2. FP+MH STUDY: LAMNO3

Fermi level are unoccupied (2 unit cells). It could be observed that the unoc-

cupied local minority eg bands (red-filled area on the right panel) are strongly

hybridized with the t2g bands (green lines) which is due to the tilting and rota-

tion of the oxygen octahedra. There is obviously hybridization that is observed

between the Mn(d) and O(p) (blue lines) states. A very elaborate discussion of

the ab− initio electronic bands at various levels of calculation follows later in this

chapter. This picture has been presented to give an overall idea of the electronic

states of LaMnO3.

The question of whether the origin of orbital ordering should be attributed

to a superexchange mechanism (O-mediated virtual hopping of electrons be-

tween nearest neighbor S = 2 Mn cations, associated with a local Coulomb

electron-electron interaction: d4
i d

4
j 
 d3

i d
5
j) or to an electron-lattice coupling ef-

fect (structural-induced splitting of the degenerate eg levels) [69] has been the

subject of numerous studies [6, 54, 70, 74, 75, 76, 77, 78, 79, 80]. Considering

that there is no clear experimental evidence to support one mechanism over the

other, the employment of theoretical models and computer simulations has be-

come an essential tool to explain the complicated coupling between structural

and electronic degrees of freedom and to interpret the experimental observations.

On the basis of model calculations, it has been recognized that the simultane-

ous inclusion of both superexchange and JT interactions is crucial to provide, to

some extent, a satisfactory description of the observed transition temperatures

TN, TOO and TJT [54, 70, 74]. This approach typically relies on a suitable mapping

between a realistic band structure calculated e.g. via DFT [51] and an effective

many-body Hamiltonian, which is often achieved by downfolding the relevant

bands and constructing a localized Wannier basis [8, 32, 54, 70, 81].

As discussed in the previous chapter, the MLWFs can be used to extract an

effective TB description of the eg subspace in LaMnO3 [8, 81]. The calculated

TB parameters can then be used to construct a simplified TB Hamiltonian in

the form that is very often used for the description of manganites, ĤTB = Ĥkin +

ĤHund + ĤJT + Ĥe−e, which then provides a very accurate representation of the

underlying KS band structure.

In the following sections, we will describe the construction of the TB Hamil-

tonian for LaMnO3 and we will present and interpret the obtained results.
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Figure 2.2: (a) An orbital diagram representation of the Mn(3d) states and O(2p)

states in the experimental structure. (b) HSE bandstructure (black lines) and

associated normalized PDOS (to the left and right of the band structure plots) of

LaMnO3 corresponding to Mn(eg) (red-filled areas), Mn(t2g) (green lines) and O(p)

character (blue dots). In the left/right PDOS plots, Mn(d) PDOSs correspond to

the local majority/minority Mn sites while the O(p) PDOS is calculated as an

average over all the sites.
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2.2 TB Hamiltonian

The effective electronic Hamiltonian for the eg manifold in manganites is generally

described within the TB formalism as a sum of the Kinetic energy Ĥkin and several

local interaction terms such as the Hund’s rule coupling to t2g core spin ĤHund,

the JT coupling to the oxygen octahedra distortion ĤJT , and eventually the el-el

interaction Ĥe−e, which can be written as,

Ĥkin = −
∑

a,b,R,∆R,σ

ĉ†σ,a(R+∆R)tσ,a(R+∆R)b(R)ĉσ,b(R) , (2.1)

ĤHund = −JH

∑
R

SR

∑
a,σ,σ′

ĉ†σ,a(R)τσσ′ ĉσ′,a(R) , (2.2)

ĤJT = −λ
∑

a,b,R,i,σ

ĉ†σ,a(R)Q
i
Rτ

i
abĉσ,b(R) , (2.3)

Ĥe−e =
1

2

∑
a,b,c,d,σ,σ′

Uabcdĉ
†
σ,a(R)ĉ

†
σ′,b(R)ĉσ′,d(R)ĉσ,c(R) . (2.4)

1. Ĥkin. It represents the kinetic part which describes the electron hopping

between orbital |a〉 at site R and orbital |b〉 at site R+∆R. It is assumed

that the sites are translationally equivalent so that the hopping amplitudes

tab(∆R) depend only on the relative positions of the two sites. Representing

the eg orbital subspace within the usual basis |1〉= |3z2-r2〉 and |2〉=|x2-y2〉,
and assuming cubic symmetry, the nearest-neighbour hopping along the

three Cartesian coordinates has the following form:

t(±acẑ) =

(
t 0
0 t′

)
(2.5)

t(±acx̂) = t

(
1
4
−
√

3
4

−
√

3
4

3
4

)
+ t′

(
3
4

√
3

4√
3

4
1
4

)
(2.6)

t(±acŷ) = t

(
1
4

√
3

4√
3

4
3
4

)
+ t′

(
3
4
−
√

3
4

−
√

3
4

1
4

)
(2.7)

ac is the lattice constant of the underlying cubic perovskite structure. t ′ rep-

resents the hopping between two neighbouring |x 2-y2〉-type orbitals along

ẑ and the value is small due to the planar shape of the orbital and it is
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2.2 TB Hamiltonian

therefore often neglected. So, the nearest neighbour hopping depends only

on a single parameter t, the hopping along ẑ between |3z 2-r2〉-type orbitals.

In matrix notation, t(±ẑ), t(±x̂) and t(±ŷ) are given as,

t(±ẑ) = −1

2
t(1 + τ z), (2.8)

t(±x̂) = −1

4
t(2 · 1−

√
3 · τx − τ z), (2.9)

(and analogously for t(±ŷ)), where τ z, τx represent the corresponding Pauli

matrices. These Hamiltonian matrix elements could be obtained from the

two-center integrals given in the Slater-Koster table 1.1 (Refer to Chapter

1).

E3z2−r2,3z2−r2 = [n2 − (l2 −m2)/2)]2Vddσ + 3n2(l2 + m2)Vddπ +
3
4

[l2 + m2]Vddδ (2.10)

Ex2−y2,3z2−r2 =
√

3[(l2−m2)[n2−(l2−m2)/2]Vddσ/2+n2(m2−l2)Vddπ+(1+n2)(l2−m2)/4Vddδ]

(2.11)

Ex2−y2,x2−y2 =
3
4

(l2−m2)Vddσ+[l2+m2−(l2−m2)2]Vddπ+[n2+(l2−m2)2/4]Vddδ (2.12)

2. ĤHund. It represents the effect of the strong Hund’s rule coupling between

the t2g spin and the eg spin. JH is the Hund’s rule coupling strength. In

order to simplify the model, SR which represents the t2g spin (S=3/2) at

site R is normalized as |SR| = 1. sR =
∑

a,σ,σ′ c
†
σ,a(R)τσσ′cσ′,a(R) is the

corresponding eg valence spin and τσσ′ are the Pauli matrices.

3. ĤJT . It represents the JT coupling to the oxygen octahedra. λ is the JT

coupling constant which describes the strength of the JT coupling. There

are 2 types of JT distortion modes (Qz and Qx). The distortion mode

called Qx distorts the octahedron resulting in two long, two short and two

medium Mn-O bonds. Qz distortion mode distorts the octahedron, resulting

in two long, four short (or four long and two short) Mn-O bonds. If Qi
R

denotes the amplitude of a particular JT mode (i=x,z) and τ iab represents the
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(a) Qx

x

y

z

(b) Qz

x

y

z

Figure 2.3: Different JT distortion modes Qx and Qz. Red solid circles denote oxygen

anions and the blue one denotes the Mn3+ cation.

corresponding Pauli matrices, then the quantities Qx
R and Qz

R that describe

the distortion of the oxygen octahedron surrounding the site R are given

as,

Qx
R =

1

2
√

2
(dxR − dyR) (2.13)

Qz
R =

1

2
√

6
(2dzR − dxR − dyR) (2.14)

where dxR, dyR and dzR represent the O-O distances along the x,y and z

directions, corresponding to the oxygen octahedron located at site R (shown

in Fig. 2.3).

4. Ĥe−e. This represents the Coulomb interaction between four orbitals a, b,

c and d which raises the energy by Uabcd.

The general expression for the Coulomb matrix element Uabcd as represented

in Eqn.2.4 is given as,

Uabcd =

∫ ∫
drdr′φ∗aσ1

(r)φ∗bσ2
(r′)gr−r′φcσ1(r)φdσ2(r′) (2.15)

where gr−r′ is the screened Coulomb potential, and φaσ(r) is the Wannier

function for an electron with spin σ1 in the a-orbital at position r. In

Eqn.2.4, we have spin σ1 associated with a and c orbitals and spin σ2 asso-

ciated with b and d orbitals.
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In our TB analysis, we will only consider the el-el interaction within a mean-

field approximation and use a simplified version of Eq. (2.4) corresponding

to Uaaaa = Uabab = UW and all other interaction matrix elements set to

zero, which is consistent with the PBE+U treatment according to Dudarev

et al. [34]. The resulting shift in the one-electron potential due to the el-el

interaction then becomes

Vσ,ab = UW

(
1

2
δab − nσ,ab

)
(2.16)

where UW is the Hubbard parameter in the basis of MLWFs and nσ,ab are

the corresponding occupation matrix elements.

2.3 Calculation of MH parameters

The various structural distortions as shown in Fig. 2.1 include: (a)Ideal cu-

bic perovskite strcuture (b) Jahn-Teller distorted structure (c) GdFeO3 (GFO)

distorted structure (d) Experimental Pbnm structure.

In the work by Kovac̀ik et al. [8] it was shown that, at least at the PBE

level, the influence of the individual structural distortion (JT or GFO) on the

Hamiltonian matrix elements h∆R
nm expressed in the basis of eg-like MLWFs is,

to a great extent, independent from the other distortion, and that furthermore

the magnetic configuration has only a weak influence in the resulting model pa-

rameters. The TB parameterization was therefore based on the various model

structures with both FM (which always leads to a metallic system) and A-AFM

order, with individual structural distortion modes frozen in. We will call this as

Model A. Due to the significantly increased computational cost of the HSE and

GW0 methods in comparison with PBE (in particular for the metallic state for

which a dense k -point mesh is required to achieve a well-converged solution), it

is desirable to derive the TB parameters from as few (and if possible insulating)

model structures as possible. Unlike Model A, TB parametrization in Model B

is constructed from only two crystal structures: the purely JT (Qx) distorted

structure and the experimental Pbnm structure, in both the cases with A-AFM

order, which then yields an insulating solution. As we will see, the results of

Model B are essentially identical to those of Model A, at PBE level.
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2.3.1 Model A - Model parameters in effective eg basis

(PBE)

The model parametrization which we call “Model A” has been proposed by

Kovac̀ik et al. [8]. In their work, MLWFs corresponding to Mn3+ eg states of

LaMnO3 has been constructed based on GGA. The real-space Hamiltonian ma-

trix elements in the MLWF basis for different structural modifications as shown in

Fig. 2.3 are calculated and the obtained results are compared with assumptions

made in commonly used two-band TB models for manganites. The authors have

shown that the MLWF approach automatically leads to a TB parametrization of

the relevant bands so that the parameters of the model can be simply “read-off”

(from wannier90 hr.dat file) and no fitting procedure is required. We will discuss

the work of Kovac̀ik et al. [8] in this section. The electronic Hamiltonian for

Model A is given as,

Ĥ = Ĥkin + ĤHund + ĤJT (2.17)

(Refer to Sec. 2.2).

The parameters to be calculated are: Spin-dependent nearest-neighbour hop-

ping (t↑↑, t↓↓), Next-nearest neighbour hopping txy and t2z, JT induced eg split-

ting λ̃, JT coupling strength (λ↑, λ↓), Hund’s rule coupling strength (JH), GFO

reduction factor (η↑, η↓).

The procedure to calculate the parameters is given below:

1. t↑↑. This parameter is the nearest-neighbour hopping amplitude of majority

spin eg electrons t as given in the Eqns.2.5, 2.6, 2.7 i.e. hopping of electron

from the origin to its nearest-neighbour in the ẑ-direction. This parameter

is read directly from the wannier hr.dat file corresponding to FM majority

spin channel of ideal cubic perovskite structure.

h z11 → 0 0 1 1 1 -0.638466(t ) 0.000000

h z12 → 0 0 1 2 1 0.000000 0.000000

h z21 → 0 0 1 1 2 0.000000 0.000000

h z22 → 0 0 1 2 2 0.010314(t′) 0.000000

It is to be noted that indexing is site-based i.e. h0 denotes onsite matrix

elements (∆R=0), hx represents the hopping in x-direction (∆R=±acx̂), hz

represents the hopping in z-direction (∆R=±acẑ) and hxz denotes hopping
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t
t xy

y

Mn

x

Figure 2.4: Representation of the first nn and second nn hoppings corresponding

to the case of an ideal cubic perovskite structure within the xy plane. Mn atoms

are represented by filled blue circles, the hopping t and txy refer to hopping between

the eg orbitals.

between the second nearest neighbours (∆R=ac(±x̂ ± ẑ)). As it has been

already mentioned, t′ is much smaller than t and could be neglected.

Fig.2.4 represents the hopping directions in the case of ideal cubic perovskite

structure. If each Mn site has eg orbitals labelled as 1,2 then the hopping

amplitudes could be read-off from the wannier hr.dat file as shown above

(hz11, hz12, hz21 and hz22).

2. t↓↓. This parameter is the nearest-neighbour hopping amplitude of minority

spin eg electrons which is read directly from the wannier hr.dat file corre-

sponding to FM minority spin channel of cubic perovskite structure.

0 0 1 1 1 -0.516465(t ) 0.000000

0 0 1 2 1 0.000000 0.000000

0 0 1 1 2 0.000000 0.000000

0 0 1 2 2 -0.002043(t′) 0.000000

3. txy. This parameter represents the next-nearest neighbour hopping i.e.

hopping between the |3z 2-r 2〉-type orbitals along the ±acx̂±acŷ directions.

txy is taken as spin average over the corresponding MLWF matrix elements

hxy11 calculated for the ideal cubic perovskite structure.
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h
xy
11(↑) → 1 1 0 1 1 -0.021083 0.000000

h
xy
11(↓) → 1 1 0 1 1 -0.015174 0.000000

4. t2z. This parameter represents the hopping between second nearest neigh-

bours along the coordinate axes [t(±2acx̂), t(±2acŷ), t(±2acẑ)] that has

been included according to the ideal cubic symmetry relations given by

Eqns. 2.5, 2.6, 2.7 with ac replaced by 2ac (t=t2z and t ′) where t2z is

calculated from the purely GFO distorted structure.

h 2z
11(↑) → 0 0 1 1 1 -0.020686 0.000000

h 2z
11(↓) → 0 0 1 1 1 -0.021812 0.000000

5. η (η↑ and η↓). This parameter represents the reduction of the hopping

amplitudes (reduction factor) due to GdFeO3 distortion. The main effect

of GFO distortion is a systematic reduction of all hopping amplitudes by

≈ 20-30 %, which is consistent with the report [7]. Even though there is

a significant spread in the reduction factors for the various hopping pa-

rameters, the overall reduction is approximately described as hx/z(αGFO) =

hx/z(0)(1-ηα2
GFO) where αGFO refers to the amount of GFO distortion. hx/z

and hx/z(0) refer to MLWF Hamiltonian matrix elements (hopping in x̂- or

ẑ-directions) corresponding to GFO distorted and ideal cubic perovskite

structures respectively.

6. λ̃. This parameter represents the JT-induced splitting of the non-diagonal

elements of the hopping matrix within the x-y plane and it is determined

from the average splitting over all hopping amplitudes in the purely JT-

distorted structure.

7. λ↑, λ↓. This parameter represents the JT coupling strength. The effect of

the JT distortion (Qx
R, Qz

R) in the model is a linear coupling to the on-site

terms at site R according to the equation,

t0 =

(
e0 − λQz

R −λQx
R

−λQx
R e0 + λQz

R

)
(2.18)

Where Qz
R=0 and Qx

R=±αJTQx
0 and e0 is the on-site energy of the eg

orbitals.

8. JH . This parameter represents the Hund’s rule coupling strength. It is

calculated from the ideal cubic structure considering the fact that the energy
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2.3 Calculation of MH parameters

difference between the majority and the minority spin channel configuration

equals to 2JH .

2.3.2 Model B

Model B could be constructed in two ways: (1) An effectively ’non-interacting’

case in which the term Ĥe−e is neglected and the influence of the more sophisti-

cated beyond-PBE treatment of the exchange-correlation kernel on the hopping,

JT and the GFO-related parameters is treated ‘implicitly’. We will call this as

Model B-1. (2) An explicit treatment of Ĥe−e in the model Hamiltonian within the

mean-field approximation. This allows us to obtain estimates for the correspond-

ing on-site interaction parameters, by keeping the conventional PBE description

as reference. We will call this Model B-2.

1. tss (t↑↑, t↓↓, where ’s’ denotes the spin) - This parameter represents the

nearest-neighbour hopping amplitude. It is calculated using the MLWF

Hamiltonian matrix elements corresponding to the purely JT (Qx)-distorted

A-AFM structure. The formula is given as,

tss =

(
1

2
hx11 −

3

2
hx22

)s
(2.19)

Where hx11 and hx11 represents |3z2-r2〉 - |3z2-r2〉 hopping and |x2-y2〉-|x2-y2〉
hopping in the x-y plane respectively. The Hamiltonian matrix elements

are denoted by a notation h∆R
ab , where a and b correspond to two effective

eg orbitals centered at individual Mn sites separated by ∆R. To further

simply the notation, one Mn site is chosen as the origin and x̂ and ŷ axes

are aligned with the directions corresponding to the long and short Mn-O

bonds of the JT (Qx) mode. The vectors x̂, ŷ and ẑ are defined according

to the nearest-neighbour spacing of the Mn sites along the respective axes.

Fig.2.5 shows the representation of the hoppings (for the two unit cell struc-

ture (JT)). If 1,2 and 3,4 represent the orbitals at different sites as shown

in the figure, the value of t↑↑ and t↓↓ are calculated by the matrix elements

from the wannnier hr.dat file.
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Mn
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t xy
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y
x

1,2

3,4

Figure 2.5: Representation of the first nn and second nn hoppings in the JT and

Experimental Pbnm structures. Here one Mn site is chosen as the origin and the x̂

and ŷ axes are aligned with the directions corresponding to long and short Mn-O

bonds of the JT (Qx) mode. 1,2 and 3,4 represent the eg orbitals (majority spin)

within a single unit cell. The minority spin eg orbitals which are not shown in the

figure are labelled as 5,6 and 7,8.

h x11(↑) → 1 0 0 1 3 -0.147887 0.000000

h x22(↑) → 1 0 0 2 4 -0.463337 0.000000

h x11(↓) → 1 0 0 5 7 -0.118779 0.000000

h x22(↓) → 1 0 0 6 8 -0.377113 0.000000

2. txy and t2z- These parameters represent the second nearest-neighbour hop-

ping amplitudes. The second nearest-neighbour hoppings txy in the x-y

plane are determined by the JT-distorted structure. It is given as,

t(±x̂± ẑ) = −txy
(
−2

√
3√

3 0

)
(2.20)

t(±x̂± ŷ) = −txy
(

1 0
0 −3

)
(2.21)

The matrices related to t2z parameter take the same form as equations 2.9.

Both txy (second nn hopping) and t2z (second nn hopping along the x, y

and z axes) are determined as,

txy = −1

2

[
(hxy11)↑ + (hxy11)↓

]
(2.22)
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2.3 Calculation of MH parameters

t2z = −1

2

[
(h2z

11)↑ + (h2z
11)↓
]

(2.23)

3. λ̃. This parameter (as explained in Model A) determines the magnitude of

the JT induced eg level splitting. The formula to calculate this parameter

is given as,

∆tss(±x̂) = λ̃Qx
R

(
0 1
1 0

)
(2.24)

(And analogously for ∆t(±ŷ)).

Thus λ̃ is given as,

λ̃ =
1

2Qx

(
1

2
(hx12 − hx21)↑ +

1

2
(hx12 − hx21)↓

)
(2.25)

Where the MLWF Hamiltonian matrix elements are read from the purely

JT (Qx) distorted structure (A-AFM).

4. λs (λ↑, λ↓).This parameter (as already explained) represents the JT cou-

pling strength which are determined from the splitting of the eigenvalues

of the onsite Hamiltonian and the JT amplitude Qx for the purely JT(Qx)

distorted structure. They are spin-dependent and are calculated using the

formula given as,

λs =
∆εs

2|Qx| (2.26)

The JT induced eigenvalue splitting ∆ε of the eg subspace 2 × 2 onsite

matrix calculated as,

∆ε =
[
(h0

11 − h0
22)2 + (2h0

12)2
]1/2

(2.27)

5. ηst (η↑t , η
↓
t ). These parameters represent the reduction in the hopping am-

plitudes due to GdFeO3 distortion. As a result of the GFO distortion, the

hopping amplitudes t↑↑ and t↓↓ are reduced by a factor (1-ηst ), where ηst is

calculated from the ratio of the tss calculated for the Pbnm and the JT(Qx)

structures. The equations are shown below:

ηst = 1− tss[Pbnm]

tss[JT (Qx)]
(2.28)
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Where tss[Pbnm] is the nearest-neighbour spin dependent hopping ampli-

tude calculated for the experimental Pbnm structure and the term tss[JT(Qx)]

is the hopping amplitude calculated for the JT distorted structure.

6. ηλ. This parameter represents the reduction of the Jahn-Teller coupling

strength due to GdFeO3 distortion. Similar to the hopping amplitudes, λs

is reduced by a factor (1-ηsλ) due to the GFO distortion, ηsλ is determined

as shown below:

ηλ = 1− ∆ε↑[Pbnm]

∆ε↑[JT (Qx)]

|Q[JT (Qx)]|
|Q[Pbnm]| (2.29)

Where |Q| =
√

(Qx)2 + (Qz)2.

7. JH . This parameter represents the Hund’s rule coupling strength. This

value is calculated from the experimental Pbnm structure using the formula,

JH =
1

4

[
(h0

11 + h0
22)↓ − (h0

11 + h0
22)↑
]

(2.30)

8. UW . As already mentioned, this parameter describes the el-el interaction

and it is calculated in the Model B, where the modifications induced by the

beyond-PBE methods are treated as perturbation to the ”non-interacting”

PBE description by explicitly considering the el-el interaction and using

the simplified mean-field approximation in the TB Hamiltonian Uaaaa =

Uabab = UW and all the other interaction matrix elements set to zero, which

is consistent with the PBE+U treatment according to Dudarev et al. The

resulting shift in the one-electron potential due to the el-el interaction then

becomes

∆Vσ,ab = UW

(
δab
2
− nσ,ab

)
(2.31)

where UW is the Hubbard parameter in the basis of MLWFs and nσ,ab
are the corresponding occupation matrix elements. The occupation matrix

elements are calculated in the MLWF basis as,

nMLWF
mm′ =

∫ EF

−∞
dε

∫
BZ

dk
∑
l

(U
(k)
lm )∗δ(ε− εlk)U

(k)
lm′ (2.32)
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2.3 Calculation of MH parameters

We will now discuss the two alternative ways to evaluate UW by using 2

different parametric expressions involving JH , λ↑, λ↓ and the occupation

matrix elements nMLWF
mm′ .

(A) Since it is not straightforward to parametrize the hopping amplitudes

in terms of UW , we will limit ourselves to analyzing the effect of Eqn. 2.31

on the local Hamiltonian, which is represented as 2×2 matrix in terms of

the two local eg states in the following form:

Ĥs
local =

˜̂
Hs

0 − UW n̂s (2.33)

with
˜̂
Hs

0 = 1

(
1

2
UW − JH · s

)
− λsQxτ̂x − λsQz τ̂ z (2.34)

n̂s → Occupation matrix.

We calculate the local spin splitting by identifying Eqn.2.33 with the cor-

responding MLWF matrix. The Hamiltonian Ĥs
local could be written as:

Ĥs
local =

(
1
2
UW − JH · s− λsQz −λsQx

−λsQx 1
2
UW − JH · s+ λsQz

)
−UW

(
nsaa nsab
nsba nsbb

)
(2.35)

For majority spin,

Ĥ↑local =

(
1
2
UW − JH − λ↑Qz −λ↑Qx

−λ↑Qx 1
2
UW − JH + λ↑Qz

)
− UW

(
n↑aa n↑ab
n↑ba n↑bb

)
(2.36)

For minority spin,

Ĥ↓local =

(
1
2
UW + JH − λ↓Qz −λ↓Qx

−λ↓Qx 1
2
UW + JH + λ↓Qz

)
− UW

(
n↓aa n↓ab
n↓ba n↓bb

)
(2.37)

By identifying Ĥs
local with the MLWF Hamiltonian, the local spin splitting

from the MLWF matrix elements is readily obtained from Eqns. 2.36 and

2.37 as:

(h0
aa)
↓ − (h0

aa)
↑ = UW (n↑aa − n↓aa) + 2JH + (λ↑ − λ↓)Qz (2.38)
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Since UW calculated using the above equation is predominantly determined

by the on-site Hund’s rule coupling parameter JH i.e. from the difference

between the majority and the minority on-site matrix elements, we call it

U
(J)
W . The term ∆λ

(J)
W = (λ↑-λ↓)Qz is a correction term of the order of ≈

0.1 eV. Note that JH , λ↑ and λ↓ is calculated at the PBE level.

(B) Since the bandgap in LaMnO3 is largely controlled by the JT-induced

splitting between occupied and unoccupied majority spin eg bands λ↑, the

Hubbard parameter UW can also be calculated from the total JT induced

splitting within the majority spin eg orbital manifold:

∆ε↑ = 2λ↑
√

(Qx)2 + (Qz)2 + UW∆n↑ (2.39)

where

• ∆ε↑ =
√

((h0
aa)
↑ − (h0

bb)
↑)2 + 4((h0

ab)
↑)2 represents the difference in eigen-

values of the local majority spin Hamiltonian as computed at beyond-

PBE level,

• 2λ↑
√

(Qx)2 + (Qz)2 is the corresponding PBE value (∆ε↑(PBE)),

• UW∆n↑ is the UW -induced correction with ∆n↑ =
√

((n0
aa)
↑ − (n0

bb)
↑)2 + 4((n0

ab)
↑)2

representing the difference in the majority spin eigenvalues of the

MLWF occupation matrix.

The observation that both
˜̂
H0 and n̂ can be diagonalized by the same Uni-

tary transformation, has been used. If
˜̂
H0 and n̂ can be diagonalized by

the same Unitary transformation, then their eigenvalue difference could be

related as given by Eqn.2.39 with UW being the slope. This parameter UW

is calculated from the MLWF Hamiltonian of the Pbnm structure.

In this case, UW is determined as a correction to the JT gap (λ↑), so we

call it Uλ
W . Since the correlation-induced increase of the spin-splitting is

only partially covered by the el-el term, this is corrected by introducing an

empirical correction to the Hund’s rule coupling:

∆J
(λ)
W = JH − J (PBE)

H − 1

4
U

(λ)
W (2.40)
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2.4 First-principles results

If the correction ∆J
(λ)
W is neglected, the local majority spin bands around

the band gap are still described quite well, even though the splitting with

respect to the local minority spin bands will be underestimated, which might

be acceptable for certain applications.

Summing up, we have shown that we can parametrize UW either by U
(J)
W

and ∆λ
(J)
W (i.e. by deriving the el-el interaction through the difference

between the majority and minority on-site matrix elements), and suitably

introducing an appropriate correction ∆λ
(J)
W , or by using U

(λ)
W and ∆J

(λ)
W

(i.e., employing the JT-induced splitting between the occupied and the

unoccupied eg bands) plus an appropriate correction ∆J
(λ)
W .

The results obtained by these two alternative procedures will be discussed

for the case of LaMnO3 in this chapter. However, we emphasize that, since

the fundamental band gap in RMnO3 (early series) (R = La-Gd) is largely

controlled by the JT-induced splitting between occupied and unoccupied

eg bands, and since in a TB model for RMnO3 it seems most desirable to

describe the band gap correctly, U
(λ)
W has been chosen to model the el-el

interactions at TB level for the whole RMnO3 series (Chapter 3).

2.4 First-principles results

In the following sections, we will discuss the electronic and magnetic ground

states obtained within the various levels of approximation (PBE, PBE+U , HSE

and GW0), results of TB parameterizations corresponding to effective eg models,

either with or without explicit el-el interaction term and implications of the

different underlying band-structures.

2.4.1 Computational details

The calculations presented in this chapter are based on DFT within the PBE

approximation to the exchange-correlation energy. The one-particle Kohn-Sham

orbitals are computed within a plane-wave basis employing 2 different codes :

ultrasoft PP based PWscf and PAW method based VASP. The PWscf program

is used to benchmark the implementation of the VASP2WANNIER90 interface

at the PBE and PBE+U level. PWscf calculations have been performed in col-

laboration with Kovac̀ik and Ederer [82].
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Figure 2.6: Calculated band structure along certain high-symmetry directions

within the BZ. Each panel reports results obtained by a different method, as spec-

ified in the panel title. E=0 is aligned to the middle of the gap.

An identical setup is adopted for VASP and PWscf calculations. All ground

state electronic and magnetic properties are calculated for the experimental low

temperature Pbnm structure reported in [65] using a regular Γ-centered 7 × 7 × 5

and 6 × 6 × 6 k -point mesh in PWscf and VASP respectively (reduced to 4 × 4 ×
4 at the GW0 level), and a plane wave energy cutoff of 35 Ryd (≈ 476 eV) and 300

eV in PWscf and VASP, respectively. Spin-polarized calculations were performed

within a collinear setup without the inclusion of spin-orbit effects. The PBE

and PBE+U results shown in this chapter correspond to PWscf except where

otherwise noted, whereas HSE and GW0 results are obtained using VASP. In

both PWscf and VASP, the Mn(3s), Mn(3p), La(5s) and La(5p) semi-core states

in the valence. In PWscf, the unoccupied La(4f) states are excluded from the

ultrasoft pseudopotential, whereas they are present in the corresponding VASP

PAW potential.

2.4.2 Results and discussion

The calculated band structures are displayed in Fig.2.6 and the corresponding

indirect (Ei) and smallest direct (Ed) band gaps are listed in Tab.2.1. The cal-

culated valence and conduction band spectra and the PDOS (corresponding to

Mn(eg), Mn(t2g), and O(p) states), are represented in the Fig. 2.7 and Fig.2.8,

respectively.

It can be seen from Fig.2.6 that the eigenvalue dispersion in LaMnO3 is char-

acterized by an insulating state with an indirect energy gap. By comparing with
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2.4 First-principles results

This Work

HSE GW0@PBE PBE PBE+U

U = 2 U = 3 U = 4

Ei 2.25 1.41 0.38 0.82 0.98 1.10

Ed 2.55 1.68 0.75 1.15 1.30 1.42

Previous studies

B3LYP[87] G0W0@LDA[88] GGA[86] GGA+U [86] Expt.

U=2

Ei 2.3 0.82 0.27 0.81

Ed 1.00 0.70 1.18 1.1a, 1.9b, 2.0c,d, 1.7e

Table 2.1: Collection of calculated (present work and previous studies) and ex-

perimental value for the indirect (Ei) and direct (Ed) band gap of LaMnO3. The

measured values refer to optical conductivity [89, 90, 91], Raman [92], and photoe-

mission [93] experiments.

aRef. [89], bRef. [90], cRef. [91], dRef. [92], eRef. [93],

the PDOS shown in Fig.2.8, it becomes clear that within all methods the Mott-

Hubbard gap is opened between occupied and empty states with predominant

Mn(eg) character. While the width of the band gap differs strongly between the

various methods, each one is in good agreement with previous LDA/GGA [83,

84, 85, 86], (LDA/GGA)+U [84, 86], and hybrid functionals [87], respectively

(see Tab.2.1). The partially-self consistent GW0 that has been employed in this

work cannot be directly compared with the single-shot G0W0 results of Nohara

et al.[88] since the latter depend much more on the initial LDA wavefunction and

consequently convey a smaller bandgap.

Due to the inadequate treatment of exchange-correlation effects, conventional

PBE-DFT leads to a significant underestimation of EPBE
d = 0.75 eV compared

to the experimental values obtained from optical conductivity measurements

(1.1 eV [89], 1.9 eV [90], 2.0 eV [91]), Raman (2.0 eV [92]), and photoemis-

sion data (1.7 eV [93]). In addition, the uppermost filled Mn(eg) bands (with

energies in the region between −1.3 eV and 0.0 eV) are well separated from the

lower-lying mostly Mn(t2g)- and O(p)-like states (below −1.5 eV). In contrast,
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while the lower part of the group of bands immediately above the gap (up to

about 2 eV) exhibits predominant local majority spin eg character, these bands

are strongly entangled with local minority spin t2g states at slightly higher ener-

gies (between approximately 1-2 eV). The inclusion of the on-site interaction term

within the PBE+U approach, separates these higher-lying local minority spin t2g
states from the local majority eg bands directly above the gap for U > 2 eV.

Furthermore, increasing U also increases the band gap i.e. EPBE+U
d changes from

1.15 eV to 1.42 eV on changing U from 2 eV to 4 eV respectively and lowers the

filled eg states relative to the bands with dominant Mn(t2g) and O(p) character,

which leads to an appreciable overlap between these sets of bands around the Γ

point for U = 4 eV.

Changing to a more elaborate treatment of the exchange-correlation kernel,

it is seen that HSE provides a value of the bandgap (EHSE
d = 2.55 eV) that is

significantly larger (by ≈ 0.5 eV) than the experimental measurements. This is

in line with previous hybrid functional estimates based on the B3LYP approach

implemented within a Gaussian basis set [87]. By comparing the PBE and HSE

band gap one could argue that a smaller portion of exact HF exchange should be

included in the hybrid functional framework in order to obtain a better agreement

with experiment. Indeed, a reduced mixing parameter amix = 0.15 shrinks the

direct gap down to 1.79 eV, almost on par with the photoemission measurements

of Saitoh and coworkers [93], and with the more recent optical conductivity data of

Jung et al.[90, 91], and Krüger et al.[92]. LaMnO3 therefore seems to represent

another example for which the one-quarter compromise (mixing 1/4 of exact

exchange with 3/4 of DFT exchange) is not the ideal choice [94]. Finally, the

parameter-free GW0 technique leads to a quite satisfactory prediction of the band

gap, EGW0
d = 1.68 eV, and about significantly larger than the only previous

single-shot (i.e. perturbative) G0W0 study of Nohara et al. based on initial LDA

wavefunctions [88]. Similarly to HSE and PBE+U (for U = 3 eV), GW0 deliver

eg bands around EF well separated from the O(p) and Mn(t2g) bands below and,

to a lesser extent, above (there is an appreciable mixing of Mn(eg) and Mn(t2g)

states along the T-Z-Γ path around 2 eV), in clear contrast with the PBE picture

which predicts a certain degree of overlap between the eg bands and the higher

lying t2g bands.

In order to provide further assessment of the quality of the various meth-

ods in describing the electronic structure of LaMnO3, the simulated valence and

conduction band spectra is compared with the corresponding photoemission spec-

troscopy and X-ray absorption spectroscopy data [95] (See Fig. 2.7) . For negative
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Figure 2.7: Comparison between experimental [95] (blue squares) and calculated

valence and conduction band spectra for PBE, PBE+U (U = 3 and 4 eV), HSE,

and GW0. The calculated and measured spectra have been aligned by overlapping

the valence band maxima and conduction band minima.
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energies (occupied states) none of the four methods differs dramatically from the

experimental spectrum, even though the multi-peak structures in the range of

−7 eV to −4 eV seen within PBE+U and HSE do not have a clear experimen-

tal correspondence, whereas PBE and GW0 profiles better follow the main three

experimental peak/shoulders. The situation is more critical for the unoccupied

region, since none of the methods is capable to correctly reproduce the two-peaks

structure characterizing the onset of the conduction band right above EF. These

two peaks could be interpreted as formed by eg (lower one) and t2g (second ones)

contributions and are described differently by the various schemes, following the

corresponding band dispersions discussed in Fig. 2.6: (i) PBE both peaks merge

in one single strong electronic signal, reflecting the large overlap between eg and

t2g bands right above EF; (ii) in PBE+U the two peak are much too separated,

reflecting the wide eg-t2g band splitting; (iii) HSE and GW0 are rather similar.

Their spectra are characterized by a lower eg small bunch of states (onset of the

conduction band spectra) associated to a more intense t2g-like peak, but the GW0

eg/t2g splitting (≈ 1.4 eV) better matches the experimental one (≈ 1.1 eV) as

compared to the larger HSE splitting (≈ 1.7 eV). From these results it can be in-

ferred that GW0 and HSE convey the most satisfactory picture in terms of peak

position and corresponding spectral weight for both occupied and unoccupied

states, with GW0 better reproducing the splitting between the two lower conduc-

tion peaks. However, it should be noted that the relative weights of the two lower

conduction peaks do not match with experiment, indicating that it is necessary

go beyond the GW approximation to obtain a refined agreement with experi-

ment. It is underlined once more that unlike PBE+U and HSE (in which the

proper adjustment of the parameters U and amix can cure the bandgap problem

and lead to values of the gap close to the experimental ones), the parameter-free

GW0 scheme is capable to provide a rather accurate picture without the need of

any adjustable parameter.

Next, we will analyze the magnetic properties in terms of the nearest-neighbor

magnetic exchange interactions within the orthorhombic ab plane (Jab) and along

c (Jc) [87, 96, 97]. This will provide further insights into the performance of the

various methods with respect to energetic properties of LaMnO3. By mapping

the calculated total energies for different magnetic configurations onto a classical

Heisenberg Hamiltonian H = −1
2

∑
i 6=j Jij Si · Sj, the following equations for Jab

and Jc can be obtained (see also [87, 97]):

EFM − EAAF = −32Jc (2.41)
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ECAF − EFM = 64Jab . (2.42)

Here, EFM corresponds to the total energy for the FM configuration, whereas

EAAF and ECAF indicate the total energies associated with AFM ordering along

z, and a two-dimensional checker-board like arrangement within the xy plane,

respectively [87]. The values of Jab and Jc obtained using the various methods

considered within this work are listed in Tab.2.2 along with the calculated mag-

netic moments at the Mn site. It is noted that, due to the neglect of orbital

degrees of freedom which in LaMnO3 are strongly coupled to spin degrees of

freedom, it is not obvious whether a classical Heisenberg model is well suited to

give a complete picture of the magnetic properties of LaMnO3. Nevertheless it

can still provide an accurate parameterization of the energy differences between

the various magnetic configurations. However, the quantitative comparison with

the experimental coupling constants derived from spin-wave spectra, i.e. small

fluctuations around the AFM ground state, should be taken with care. In view of

this, the following conclusions could be drawn about the efficiency of the various

DFT and beyond-DFT methods employed in the present study: (i) the magnetic

energy differences exhibit appreciable variation between VASP and PWscf lead-

ing to differences of about 1-2 meV in the magnetic coupling constants. This is

most likely due to the different pseudopotential technique employed in the two

codes (PAW method vs. ultrasoft pseudopotential), which lead to qualitative

differences especially at PBE+U level, as discussed below.

A more elaborate discussion on the performance of different functionals and

methods in predicting the magnetic couplings is given in Refs. [86, 97], where it

is concluded that the PAW values are very similar to the full potential FLAPW

ones. (ii) In both codes PBE gives the correct A-AFM ground state, delivering

a negative Jc (JVASP
c = −2.13 meV, JPWscf

c = −0.81 meV) and a positive Jab
(JVASP
ab = 3.22 meV, JPWscf

ab = 4.56 meV). (iii) The “+U” correction to PBE

decreases the EFM−EAAF energy difference and eventually leads to the prediction

of a FM ground state for U larger than a certain value. This critical value is

rather different within the two codes used in this study: Jc becomes positive

for U = 2 eV and U = 4 eV, in PWscf and VASP, respectively. We note that

this difference is almost entirely due to the difference in the corresponding PBE

results. The U -induced changes in the magnetic coupling constant Jc relative

to the U = 0 reference are nearly identical within the two codes. (iv) While Jc
within HSE and PBE+U(VASP) are very similar for U between 2-3 eV, the ratio
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Jab Jc µ

PWscf

PBE 4.56 −0.81 3.67

U = 2 eV 5.02 0.37 3.82

U = 3 eV 5.30 0.98 3.89

U = 4 eV 5.63 1.55 3.96

VASP

PBE 3.22 −2.13 3.50

U = 2 eV 3.54 −0.84 3.68

U = 3 eV 3.57 −0.30 3.76

U = 4 eV 3.61 0.17 3.83

HSE 2.56 −0.53 3.74

GW0 3.51

Previous studies

GGA+U (U = 2 eV)a −1.30 3.46

B3LYPb 2.09 −1.01 3.80

Expt 1.66c −1.16c 3.87c, 3.7±0.1d, 3.4e

1.67f −1.21f

Table 2.2: PBE, PBE+U , HSE and GW0 derived magnetic exchange parameters

(meV) and magnetic moment at Mn sites µ (µB). The experimental and previ-

ously published computed data are taken from: a Ref. [86], b Ref. [87], c Ref. [98],
d Ref. [65], e Ref. [99], and f Ref. [100].
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2.4 First-principles results

between Jc and Jab is rather different within the two approaches. (v) Within

the limitations regarding the applicability of a Heisenberg picture to LaMnO3

stated above, HSE seems to be most consistent with the values of the magnetic

coupling constants derived from neutron diffraction measurements of spin-wave

spectra [98] and magnon data [100]. This further confirms the predictive power of

HSE in describing exchange interactions in transition metal oxides, as compared

to other available beyond-DFT schemes [101].

We can also see that all methods result in values for the local magnetic mo-

ments of the Mn cation that are within the range of variation of the experimental

data. Generally, increasing U within PBE+U leads to a more localized magneti-

zation density compared to PBE, and thus increases the local magnetic moments.

On the basis of the above analysis both of the electronic and magnetic proper-

ties of LaMnO3, we can conclude that HSE and, when applicable, GW0 (the cal-

culation of magnetic energies at GW level to extract exchange coupling constants

is presently not possible, or at least extremely difficult) are the most consistent

with the available experimental data in terms of spectral properties, electronic

structure and magnetic exchange interactions of LaMnO3.

We can now proceed to the discussion of the Wannier-based description of the

eg bands and the associated TB parameterization. In a TB picture, these ML-

WFs can be seen as “antibonding” bands resulting from the σ-type hybridization

between the Mn(d) and O(p) atomic orbitals. Note that in this and the following

sections the discussion of the PBE+U results refers to the representative value

of U = 3 eV, unless explicitly stated otherwise.

Fig. 2.8 shows the PBE and beyond-PBE (PBE+U , HSE and GW0) band

structures and the corresponding PDOS with Mn(eg), Mn(t2g), and O(p) char-

acter. Apart from the obvious hybridization between Mn(d) and O(p) states,

“eg-like” orbitals at a certain site can hybridize with “t2g-like” orbitals at a neigh-

boring site as a result of the tilt and rotation of the oxygen octahedra. This leads

to bands with mixed eg/t2g character (note the bands around the gap with strong

PDOS components of both eg and t2g character). Due to this strong mixing it

is not possible to construct 8 eg character MLWFs within one energy window

used in the disentanglement procedure. The corresponding energy window would

inevitably also contain the local minority spin “t2g” bands. Since due to the

GFO distortion these bands can hybridize with the minority spin “eg” bands,

this would lead to MLWFs with strongly mixed eg/t2g character. To circumvent

this problem, two separate sets of 4 local majority and 4 local minority spin

MLWFs using two different energy windows [8] are constructed. These energy
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2. FP+MH STUDY: LAMNO3

windows have to be chosen carefully for each individual method. (This problem

is not present for the purely JT(Qx) distorted structure, from which we derive

most of the model parameters. In this case we calculate a full set of 8 MLWFs).

To find a suitable energy window is quite straightforward for the local majority

spin case. The upper bound of the energy window is determined by the upper

bound of the highest (in energy) peak of the local majority spin Mn(eg) PDOS,

while the lower bound of the energy window should be placed above the occupied

bands with strong O(p) and/or local majority spin Mn(t2g) character. It can be

seen from Fig.2.8, that both the lower and the upper bound fall within small

gaps separating the bands within the energy window from other bands at lower

and higher energies. Furthermore, for PBE+U and HSE the MLWFs can be

constructed from a completely isolated set of bands, whereas in the case of PBE

and GW0 additional bands with predominant minority spin Mn(t2g) character

are included in the energy window. However, due to the different local spin

projection, these latter bands have no noticeable effect on the final MLWFs.

For the local minority spin MLWFs, the upper bound of the energy window

can be found in the same way as for the local majority spin bands. Within

PBE the lower bound is also easily determined, since it falls within a small gap

separating the local minority spin bands with predominant eg and t2g character.

However, no such gap exists within PBE+U , HSE, and GW0, and it is thus not

possible to fully exclude the t2g character from the resulting MLWFs. Instead,

the lower bound of the energy window has to be carefully adjusted by manually

checking the eg character of the calculated MLWFs in real space.

The band dispersion of the so-obtained MLWFs is shown in Fig.2.8 as thick red

lines. The 4 (energetically lower) local majority MLWF bands follow very closely

the underlying PWscf/VASP bands and the overall dispersion is very similar

for all methods. Despite the strong band-entanglement, the dispersion of the 4

(energetically higher) local minority MLWF bands is also very similar within all

methods. Only the energetically lowest local minority spin band within PBE+U

and HSE exhibits strong deviations from the corresponding PBE and GW0 case.

This is due to the above-mentioned difficulty to exclude the t2g character in a

controlled way. Conclusions drawn from such sets of MLWFs should therefore

be taken with care. Overall, the similarities in the band structure and PDOS

between PBE and GW0 as well as between PBE+U and HSE has been noted,

regarding the degree of hybridization between Mn(eg), Mn(t2g) and O(p) orbitals,

that have been pointed out in the previous section, are also reflected in the MLWF

bands.
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2.4 First-principles results

Figure 2.8: Effective eg MLWF bands (thick red lines) for LaMnO3 superim-

posed to the ab initio electronic bands (gray thin solid/dotted lines) and associated

normalized PDOS (to the left and right of the band structure plots) correspond-

ing to Mn(eg) (red filled areas), Mn(t2g) (green lines), and O(p) character (blue

dots). In the left/right PDOS graphs, Mn(d) PDOSs correspond to the local ma-

jority/minority Mn sites while the O(p) PDOS is calculated as an average over all

O sites. The two energy windows used in the wannier-downfolding are indicated

by dashed and dot-dashed lines. The Fermi level (E=0 eV) is set in the middle of

the gap. It is to be noted that Fig.2.2 (that was shown in the introduction section)

corresponds to HSE bands and PDOS for room-temperature data whereas this plot

corresponds to the optimized results.
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To further demonstrate the similarities between MLWFs calculated at different

levels of theory, the real space representation of the 2 MLWFs localized at a

certain Mn site, projected on the xy plane are shown in Fig.2.9. The dominant eg

character at the central Mn site together with the “hybridization tails” of mostly p

character at the surrounding O sites is clearly visible for all MLWFs and methods.

For the local majority spin MLWFs (first and third row), there is essentially no

visible difference in orbital character between PBE and PBE+U , only the O(p)

tails are marginally stronger if the Hubbard U correction is applied. At the HSE

level, both local majority MLWFs exhibit significant x/y asymmetry, leading to

more pronounced O(p) hybridization tails along the short and long Mn-O bond

for the |3z2 − r2〉-like and |x2 − y2〉-like function, respectively. Within GW0, the

central eg-like part as well as the O(p) tails are less asymmetric than for HSE, and

appear similar to PBE/PBE+U for both local majority MLWFs. In comparison

with the local majority MLWFs, the O(p) hybridization tails of the local minority

MLWFs (second and fourth row) are generally less pronounced. There is no

significant difference between the local minority spin MLWFs calculated using the

different methods. Even at the PBE+U and HSE levels, for which the admixture

of the t2g character could not be controlled systematically, there is no apparent

difference in comparison with PBE.

The orbitally ordered states resulting from this set of MLWFs basis set is

shown in Fig.2.10 in terms of charge density isosurfaces of the highest occupied

and lower unoccupied orbitals associated to the eg bands below and above EF

in the lower energy window as defined in Fig. 2.8. This plot clearly shows the

staggered ordering at neighbouring Mn sites and the significant p− d hybridiza-

tion at the oxygen sites. As a comparison, the corresponding staggered ordering

associated to the highest occupied eg-like bands as obtained from the full ab initio

self-consistent charge density (without downfolding) within the various methods

employed in the present study is shown in Fig.2.11. The similarities between

the ab initio and wannierized orbital ordering is a further demonstration of the

quality and reliability of the wannierization procedure.
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2.4 First-principles results

Figure 2.9: Real space representation of the four eg MLWFs corresponding to

a certain Mn site, projected on the xy plane cutting through the Mn site. Black

iso-lines correspond to ±N/
√
V with integer N ≥ 1, the white region is defined by

values in the interval [−1/
√
V ,+1/

√
V ], where V is the volume of the unit cell.

Blueish/reddish hue denotes negative/positive values of MLWFs and Mn and O

atoms are shown as blue and red spheres, respectively.
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2. FP+MH STUDY: LAMNO3

Figure 2.10: Charge density isosurfaces of the orbitally ordered states associated

to the highest occupied (a) and lower unoccupied (b) MLWFs orbitals. Color

coding and symbols are the same as in Fig. 2.9.

PBE
PBE+U HSE

Figure 2.11: Charge density isosurfaces of the highest occupied eg orbitals (from

EF to the lower energy bound as defined in Fig.2.8) showing the orbitally ordered

state of LaMnO3 obtained using the different methodologies employed in this study.
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2.5 TB results

2.5 TB results

2.5.1 TB without Ĥel−el: Model A

The TB model Hamiltonian to be parametrized is the following (i.e. MH without

the el-el interaction term, Ĥel−el):

Ĥ = Ĥkin + ĤHund + ĤJT (2.43)

(Refer to Sec. 2.2).

We will discuss the TB parametrization (Model A) for the TB Hamiltonian

presented above (as proposed by the authors of [8]) in detail in this section and

also discuss the results obtained i.e. Model parameters in effective eg basis based

on various model structures with both FM (which always leads to a metallic

system) and A-AFM order, with individual structural distortion modes frozen in

(using PBE). The TB parameters at PBE level obtained in [8] using the PWscf

code and the VASP results will be compared in this section. This will serve

as a benchmark for our computational machinery which will then be elaborated

further for Model B.

As already introduced, the parameters to be determined are: Spin-dependent

nearest-neighbour hopping (t↑↑, t↓↓), Next-nearest neighbour hopping txy and t2z,

JT induced eg splitting λ̃, JT coupling strength (λ↑, λ↓), Hund’s rule coupling

strength (JH), GFO reduction factor (η↑, η↓).

Starting from the ideal cubic perovskite structure, the effect of each distortion

is analysed by gradually increasing the amount of distortion. A linear superposi-

tion of the Wyckoff postions in the cubic perovskite structure and the distortion

(JT or GFO) is considered which is represented as

R(αx) = (1− αx)R(i) + αxR
(x) (2.44)

αx is taken to vary between 0 to 1. Ri refers to the Wyckoff positions in the

case of cubic structure and x= JT or GFO distortions.

We will now discuss the results obtained for the various structural distortions

and also the role of the distortion in the computed TB parameters.

The effect of structural distortions on eg bands is compared in Fig. 2.12. All

the bands shown in the Fig.2.12 refer to calculations performed on experimental

unit-cell volume. Comparing the eg bands obtained using different structural

modifications we observe the following: In the cubic structure, the eg bands
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2. FP+MH STUDY: LAMNO3

Figure 2.12: The effect of structural distortions on the band structure. These band

structures were calculated by the authors of [8] wherein the calculations were performed

using PwSCF (DFT at GGA level). It is seen in the figure that the JT opens up the gap

and the GFO reduces the bandwidth.

exhibit a metallic character. In the JT distorted structure, a gap opens up. The

GFO structure shows a metallic behaviour, and in the JT+GFO structure, an

insulating gap opens up. It could also be observed that the bandwidth of the

eg bands in the cubic and JT distorted structure are very similar in magnitude

whereas the bandwidth in the GFO and JT+GFO structures decreases by around

16% when compared to the cubic and JT distorted structures.

In the ideal cubic perovskite structure, two eg MLWFs are constructed for

the FM configuration (Fig. 2.13(a) and (b)) and 2 pairs of MLWFs, localized at

the two Mn sites within the unit cell, are constructed for the AAFM magnetic

configuration (see Fig.2.13(c)). In Fig.2.13(c), A-AFM cubic refers to the bands

corresponding to an ideal cubic perovskite structure doubled in the ẑ direction,

whereas in Fig. 2.12, “cubic” refers to a cell in which a=b=ac
√

2 (ac - ideal cubic

perovskite cell lattice parameter) and doubled in ẑ direction. To get an overall

picture of all the hoppings in the MLWFs basis, the magnitudes of all hoppings

in the case of FM majority spin channel cubic perovskite structure is shown in

the Fig. 2.14. It could be seen that the hopping along the Cartesian axes are the

most dominant and also it decays slowly with respect to the intersite distance

∆R and as a result, the terms corresponding to intersite distances ∆R = 2ac and

3ac are comparable with the second nearest neighbour hopping for which ∆R =√
2ac.
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Figure 2.13: FM majority and minority and A-AFM bandstructures and eg ML-

WFs. The A-AFM bandstructure has been constructed by considering an ideal

cubic perovskite structure doubled in the ẑ-direction.
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Figure 2.14: All the non-zero matrix elements plotted as a function of the intersite

distance |∆R| in the ideal cubic perovskite structure (FM majority spin channel). Blue

filled circles represent the hopping along the Cartesian axes. Diamond symbols represent

the hopping between nnn, Red filled circles represent all the other hoppings.
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In the JT distorted structure, 4 eg MLWFs are constructed for FM configura-

tion (up and down) and 8 MLWFs for the AAFM configuration. The effect of the

JT distortion is analysed by using the Eqn. 2.44 by varying αJT from 0 (cubic)

to 1 (fully JT distorted structure). As already introduced, the JT term in the

TB Hamiltonian is given as,

ĤJT = λ
∑

R,σ,a,b

ĉ†aRσ(Qx
Rτ

x
ab +Qz

Rτ
z
ab)ĉbRσ (2.45)

Where τx and τ z are the respective Pauli matrices. So, it could be seen that

within the model, the effect of the JT distortion is a linear coupling to the onsite

terms according to

t0 =

(
e0 − λQz

R −λQx
R

−λQx
R e0 + λQz

R

)
(2.46)

Where e0 is the onsite energy. The variation of different matrix elements in the

JT distorted structure are presented in the Fig. 2.15.

To find the parameter λ, the slope of linear variation of h0
12 which is shown in

Fig.2.15(a) is considered. The slope could be written as -λQx
0 and it is identical for

FM and AAFM majority spin channels whereas it is smaller in the case of minority

spin channel, the reason for this could be attributed to the hybridization with

the surrounding oxygen orbitals. When this value is compared with the previous

results [7], it is observed that the value is atleast a factor of two larger. This could

be explained by the strong linear splitting observed for the off-diagonal in-plane

nn hopping as shown in Fig.2.15(c) and (d) that is caused by the JT distortion.

This linear splitting is taken into account by the parameter which is represented

as λ̃.

Next we consider the variation from the cubic to GFO distorted structure.

As in the case of JT distorted structure, 4 eg MLWFs are constructed for FM

configuration (up and down) and 8 MLWFs for the AAFM configuration. The

effect of the GFO distortion is the reduction of the bandwidth (seen in the Fig.

2.12) and the reduction in the hopping parameters in the x-y plane could be

observed in the Fig. 2.16. The hopping parameters along the ẑ direction also

varies similar to that of the variation in the xy plane. The parameter in the TB

model which is introduced due to the GFO distortion is η which is calculated

from the ratio of the hx/z(αGFO) to hx/z(αGFO=0) according to the equation,

hx/z(αGFO) = hx/z(0)(1− ηα2
GFO) (2.47)
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Figure 2.15: Variation of different matrix elements with the amount of disortion from

cubic to JT.
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The parameter, Hund’s rule coupling strength JH is calculated by noting the

fact that Hund’s coupling leads to an onsite splitting equal to 2JH . It could be

calculated by taking the difference between the onsite terms in the case of FM

majority and FM minority spin channels divided by 2. The value turns out to be

nearly equal for each of the individual structural distortions which ranges from

1.3 to 1.5 eV.

The effects of the JT, GFO and the combined JT+GFO as a function of the

amount of distortion is shown in Fig. 2.17. The plot shows the variation of the

onsite off-diagonal elements as a function of the amount of distortion αx (x =

JT, GFO and JT+GFO). There is a strong linear dependence of the off-diagonal

matrix elements h0
12 seen on varying the amount of distortion from cubic to JT.

On varying the distortions from cubic to GFO, h0
12 increases and then drops at

αGFO = 1 i.e. fully distorted GFO structure. Comparing Fig.2.17(a) and (c),

it is seen that the GFO distortion reduces the on-site matrix elements which

are otherwise proportional to the JT distortion. This is seen to be an evidence

for the ligand-field nature of the JT coupling, that it is mediated by the Mn-O

hybridization (which is reduced by the GFO distortion).

The TB parameters are compared with a simple model [7] that includes only

the nearest-neighbours and the parameters of this model have been chosen by

the typical simplified fitting procedure. The difference between the simplified

model and the refined model (parameters from MLWFs) is that the simple model

included only the hopping parameters t(ac), λ and JH whereas the refined model

includes the further nearest neighbours, the local spin-dependent and non-local

terms, JT coupling terms and the reduction due to GFO disortion. The obtained

parameters from the simple model and the refined model have been compared in

Tab.2.3. It is seen that in the refined model, where the TB parameters are cal-

culated from the MLWFs, the TB dispersion follows very closely the underlying

eg MLWFs. The simple model, which does not take into account the GFO reduc-

tion factor (η) and the next-nearest-neighbour hoppings, deviates much stronger

from the MLWF bands than the refined model, but still pretty much captures

the overall band dispersion quite well.

Thus the authors of [8] have shown that the MLWFs proves to be an excellent

tool to calculate the model parameters. It enables the refinement of the models

to arbitrary accuracy towards MLWF description.
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Refined [8] Refined (VASP) Simple [7]

t↑↑ (eV) -0.648 -0.638 -0.492

t↓↓ (eV) -0.512 -0.516 -0.492

t↑↓ (eV) -0.569 -0.577 -0.492

η 0.26 0.25

λ̃ (eV/Å) 0.53 0.421 0

λ↑ (eV/Å) 3.19 2.873 1.64

λ↓ (eV/Å) 1.33 1.546 1.64

txy (eV) -0.018 -0.021 0

t2z (eV) -0.020 -0.020 0

JH (eV) 1.5 1.257 1.805

Table 2.3: Collection of parameters obtained using a simple model [7] and Model

A parameters and comparison between the PWscf results [8] with VASP.

Figure 2.18: Figure from [8] showing (a) DFT and MLWFs bands for the A-AFM

experimental Pbnm structure (b) Comparison of the MLWFs and the refined TB model

(c) Comparison of the MLWFs and the simple TB model.

80



2.5 TB results

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-3
-2
-1
0
1
2
3
4
5
6

h
0
11

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
0
22

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
0
11

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
0
22

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.2

0

0.2

0.4

0.6

0.8

1

E
 (

eV
)

h
0
12

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
0
12

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
 (

eV
)

h
x
11

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
h

x
12

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
h

x
21

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
h

x
22

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
h

x
11

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
x
12

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
x
21

PB
E 1 2 3 4 5 6

PB
E

H
SE

G
W

0

U (eV)

h
x
22

(a) (b) (c) (d)

Figure 2.19: Hamiltonian matrix elements in the basis of MLWFs for the ex-

perimental Pbnm structure: nearest-neighbor terms corresponding to local ma-

jority (a) and minority (b) spin projection, diagonal (c) and off-diagonal (d) on-

site terms. Local majority and minority spin projections are indicated by up and

down triangles, respectively. Left/right parts of the horizontal axis corresponds to

PWscf/VASP results.

2.5.2 TB without Ĥel−el :Model B-1

Under this model, we attempt to parametrize the Hamiltonian which is given as,

Ĥ = Ĥkin + ĤHund + ĤJT (2.48)

(Refer to Sec. 2.2). by constructing the TB parametrization from only two crys-

tal structures: purely JT (Qx) distorted structure and the experimental Pbnm

structure, in both the cases with A-AFM order, which then yields an insulat-

ing solution. Within model, only two contributions to the on-site part of the TB

Hamiltonian are considered: the Hund’s rule coupling ĤHund and the JT coupling

ĤJT. The strength of the Hund’s rule coupling JH is determined from the spin

splitting of the on-site diagonal matrix elements h0
aa for the Pbnm structure, av-

eraged over both orbitals . The JT coupling strength λs for local spin-projection

s is determined from the splitting of the eigenvalues of the on-site Hamiltonian

matrix h0 and the JT amplitude Qx for the purely JT(Qx) distorted structure. As

can be seen from Fig.2.19(c,d), the corresponding matrix elements are strongly

spin-dependent, leading to large differences in the corresponding JT coupling con-

stants. Similar to the hopping amplitudes, λs is reduced by a factor (1− ηsλ) due

to the GFO distortion, which is determined from the ratio between λs calculated

for the Pbnm and JT(Qx) structures.
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Table 2.4 lists the obtained TB parameters corresponding to Model B-1 (TB

without Ĥel−el) calculated within the various levels of approximation. Both hop-

ping amplitudes and JT coupling strength correspond to the case without GFO

distortion. It can be seen from the first two rows of Tab.2.4 that the parameter-

ization that is used in the present study yields only marginal differences for the

PBE hopping parameters and Hund’s rule coupling in comparison with [8]. This

corroborates the quality of our TB parameterization based on only two structures

(JT(Qx) and Pbnm with A-AFM order). Note, that a crystal structure derived

from low-temperature measurements [65] has been used here, whereas in [8] the

room temperature measurements of Ref. [66] have been used. The JT coupling

parameters differ slightly more from [8] due to the revised definition of λs used

in the present study. Another important change arises from the use of 3 separate

GFO reduction factors η↑t , η
↓
t , and ηλ, instead of using one averaged value as it

was done in [8]), which provides a more accurate TB description of the MLWF

bands. It can be also seen from Tab.2.4 that at the PBE level, there is essen-

tially no difference between the hopping amplitudes calculated using PWscf and

VASP. There is a 12 % difference in JH between PBE(VASP) and PBE(PWscf),

which could be related to the noticeable differences in the energetics of the various

magnetic configurations discussed earlier.

Comparing the parameters obtained from the beyond-PBE methods with the

pure PBE case, it could be seen that the hopping parameter t↑↑ is generally in-

creased in all beyond-PBE methods. As was shown in [81], this can be understood

within an extended nearest neighbor TB model including both Mn(d) and O(p)

states, from which an effective eg-only model can be derived in the limit of large

energy separation εdp between the d and p orbitals. The effective hopping teff
dd in

the eg model is then given in terms of the nearest neighbor hopping amplitude

tdp of the extended d-p model as teff
dd = t2dp/εdp (Refer to Appendix for details on

the eg model and d-p model). The increase of t↑↑ is therefore consistent with

the observation that all beyond-PBE methods lower the eg bands relative to the

lower-lying oxygen p bands. The small decrease of t↓↓ within PBE+U (for small

values of U . 2 eV) can be explained in the same way, since here the correspond-

ing energy separation between O(p) and Mn(eg) increases. The JT parameter λ̃ is

generally very similar for PBE, PBE+U , and GW0, while a strong enhancement

of λ̃ can be seen for HSE, which is consistent with the strong x/y asymmetry

of the corresponding MLWFs seen in Fig. 2.9(c). Since the changes of the al-

ready rather small further-neighbor hoppings within the beyond-PBE methods

are very small, the corresponding PBE values are used for simplicity. The GFO
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2.5 TB results

Hopping parameters On-site parameters

t↑↑ t↓↓ λ̃ txy t2z η↑t η↓t JH λ↑ λ↓ ηλ

PWscf

PBE [8] 648 512 530 18 30 0.26 0.26 1.50 3.19 1.33 0.26

PBE 632 512 523 12 51 0.28 0.39 1.56 3.35 1.07 0.22

PBE+U 748 482 516 12 51 0.41 (0.39) 2.16 5.22 (1.07) 0.21

VASP

PBE 630 503 516 13 50 0.35 0.42 1.33 3.21 1.02 0.23

HSE 750 497 707 13 50 0.40 0.20 2.42 10.25 0.96 0.28

GW0 746 469 490 13 50 0.24 0.41 1.90 4.43 0.88 0.04

Table 2.4: The TB model parameters as derived from PBE and beyond-PBE band

structures (Model B-1, in PBE+U ,U=3 eV has been used). Since the PBE+U

values of η↓t and λ↓ are unreliable (see text), the corresponding PBE values (in

brackets) to compute the TB bands displayed in Fig.2.20 are used. Units: t↑↑, t↓↓,

txy, t2z in meV; λ̃ in meV/Å; JH in eV; λ↑, λ↓ in eV/Å; η↑t , η
↓
t , ηλ are unit-less.

reduction factors for the hopping amplitudes, η↑t and η↓t , are slightly decreased

within GW0, whereas η↑t is increased for PBE+U and HSE, and η↓t is strongly

decreased in HSE. Due to the strong mixing between minority spin eg and t2g
bands within PBE+U (see also Fig.2.20(b)), the determination of η↓t is rather

unreliable in this case, and therefore the corresponding PBE value has been used.

It could be noted that the same effect also leads to the strong changes in the local

minority hopping matrix elements within the xy plane calculated within PBE+U

for U & 3 eV (see Fig.2.19(b)). Using the HSE and GW0 methods this problem

is not encountered.

For all beyond-PBE methods, a significant increase of JH and λ↑ can be ob-

served, which in the TB model gives rise to an increase of the spin splitting and

the band gap, respectively. The change of λ↓ compared to PBE is very small for

both HSE and GW0. Due to the inaccurate treatment of the minority spin bands,

PBE+U gives an unrealistically small value of λ↓ = 0.30 eV/Å, which is therefore

substituted with the corresponding PBE value. While ηλ does not change signif-

icantly for small values of the Hubbard U , a small increase (significant decrease)

is observed for HSE (GW0).
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Figure 2.20: Comparison of the band dispersion corresponding to MLWFs (red

lines), the TB Model B-1 using parameters given in Tab.2.4 (blue circles), and the

TB Model B-2 with interaction parameters given in Tab.2.5 (green crosses).

To assess the quality of the parameterization, the TB parameters tabulated in

Tab.2.4 to compute the resulting eg band structure is used. In Fig.2.20(a) and (c),

the band dispersions of the TB model (blue filled circles) and the MLWFs (thick

red lines) for the experimental Pbnm structure within the PBE approximation

are compared. Despite the many simplifications made in the construction of the

model parameters, the TB model can reproduce the MLWF bands to a remarkable

accuracy (for both PWscf and VASP). The reliability of the beyond-PBE TB

representation can be appreciated by the overall excellent match between the TB

and MLWFs bands shown in Fig.2.20(b), (d) and (e), which exhibit the same

quality as observed at the PBE level. This is particularly true for the band gap,

whose method-dependent changes (see Tab.2.1) are perfectly reflected in the TB

description.

2.5.3 TB with Ĥel−el : Model B-2

Now, we will discuss the alternative TB parameterization in which the modifica-

tions induced by the beyond-PBE methods are treated as a perturbation to the

“noninteracting” PBE description by explicitly considering the el-el interaction

and using the simplified mean-field approximation in the TB Hamiltonian.

We have already discussed the procedure for calculating UW ( this corresponds

to that calculated in the Model B-2 which is different from U corresponding to

PBE+U) under the section 2.3.2. We will discuss the results in this section.
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2.5 TB results

Interaction parameters

JH ∆ε↑ ∆n↑ U
(J)
W U

(λ)
W ∆J

(λ)
W

PWscf

PBE 1.56 1.09 0.71 - - -

PBE+U 2.16 1.66 0.80 2.40 0.70 0.42

VASP

PBE 1.33 1.04 0.70 - - -

HSE 2.42 3.10 0.89 4.37 2.31 0.51

GW0 1.90 1.80 0.70 2.30 1.09 0.30

Table 2.5: The interaction parameters determined in Model B-2. Note, that in

Model B-2 the on-site parameters are set to the PBE values while the hopping

parameters are set to the values given in Tab.2.4. Units: all quantities are in eV

except ∆n↑ which is unit-less.

It can be seen that within PBE+U , the parameter U
(J)
W is almost as large

as the value of U = 3 eV used for the Hubbard parameter within the PBE+U

calculation, whereas the parameter U
(λ)
W is significantly smaller than that. We

note that, as discussed in [81], the Hubbard correction within PBE+U is applied

to rather localized atomic-like orbitals, whereas the parameter UW corresponds to

more extended eg-like Wannier orbitals. The JT splitting is strongly affected by

hybridization with the surrounding oxygen ligands and is thus quite different for

atomic-like and extended Wannier states [81]. As a result, U
(λ)
W is quite different

from the U value used within PBE+U , and the smaller value of U
(λ)
W can thus be

related to the fact that the el-el interaction is more screened in the more extended

effective eg Wannier orbitals. On the other hand, the similarity between U
(J)
W and

the U value used within PBE+U indicates that the local spin-splitting is more

or less the same for both sets of orbitals, which is consistent with the view that

this splitting is essentially an atomic property. A similar difference between U
(J)
W

and U
(λ)
W is also observed for HSE and GW0. The large values of UW delivered

by HSE reflects the larger spin splitting and band gap in the corresponding band

structure compared to PBE+U and GW0.

The large difference between the two parameters U
(J)
W and U

(λ)
W also indicates

that it is not possible to map the electron-electron interaction effects manifested

in the on-site matrix corresponding to effective eg orbitals to only one interaction
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parameter while using PBE as “noninteracting” reference. Similar conclusions

have already been reached in [81] for the PBE+U case. From the current study

we can conclude that the modification of the local spin splitting (described by

U
(J)
W ) and the enhancement of the JT induced orbital splitting (described by U

(λ)
W )

that arise in the KS or GW0 quasiparticle band structures due to the beyond-PBE

treatment of exchange and correlation, are not compatible with a simple mean-

field Hubbard-like correction to an otherwise “non-interacting” TB Hamiltonian

with two effective eg orbitals per Mn site and only one parameter describing the

el-el interaction. This leads to an important conclusion of the present study

with regard to methods such as LDA+U or LDA+DMFT, which supplement a

“non-interacting” KS Hamiltonian with a Hubbard interaction between a strongly

interacting subset of orbitals: using different methods for obtaining the nonin-

teracting reference can lead to significant differences, and it is by no means clear

whether PBE (GGA) or even LDA always provides the best starting point for

a more sophisticated treatment of correlation effects. Our results also empha-

size the importance of finding improved ways to account for the double counting

correction when using different electronic structures as noninteracting reference.

In order to see how, within the limitations discussed in the preceeding para-

graph, a TB Hamiltonian can reproduce the MLWF band dispersion, a modified

parameterization using U
(λ)
W to model the el-el interactions is considered. Since

in that way the correlation-induced increase of the spin splitting is only partially

covered by the el-el term , it is corrected by introducing an “empirical” correction

to the Hund’s rule coupling:

∆J
(λ)
W = JH − J (PBE)

H − 1

4
U

(λ)
W (2.49)

Note, that as already discussed (Refer to Sec.2.3.2), we could choose U
(J)
W as the

el-el interaction parameter and define an appropriate correction to λ↑.

Figure 2.20 also shows the dispersion calculated from such a modified TB

model with explicit el-el interaction, where the correlation induced change of

the spin splitting and band gap is described by two interaction parameters, U
(λ)
W

and ∆J
(λ)
W , while JH, λ↑, λ↓, and ηλ are fixed at their respective PBE values. In

addition, the hopping amplitudes are set to the values given in Tab.2.4. The band

dispersions using these sets of parameters (shown as green crosses in Fig.2.20)

again almost perfectly follow the MLWF bands. The agreement between the

bands calculated within the two parameterizations (Model B-1 and B-2) also

reflects the transferability of the on-site parameters between the structures with

and without the GFO distortion.
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2.6 Influence of each TB parameter on the bandstructure

Hopping parameters On-site parameters

t↑↑ t↓↓ λ̃ txy t2z η↑ η↓ JH λ↑ λ↓ ηλ

PBE

LaMnO3 0.621 0.506 0.544 0.013 0.052 0.27 0.37 1.34 3.082 0.941 0.21

Table 2.6: TB parameters corresponding to the room temperature structure of LaMnO3

obtained by using Model B-1 at PBE level.

2.6 Influence of each TB parameter on the band-

structure

Let us now discuss the influence of each TB parameter on the bandstructure.

We will consider the bandstructure at PBE level of calculations. The TB bands

calculated using the obtained values are shown in Fig. 2.21. The obtained values

are tabulated in Tab.2.6.

1. Influence of t↑↑, t↓↓, txy, t2z. It is a well known fact from the TB model

that the bandwidth is related to the hopping amplitude i.e. as a thumb

rule, the bandwidth is linearly proportional to the hopping amplitude. As

per this relation, the variation of t↑↑ and t↓↓ leads to a linear variation

in the bandwidth of the local majority bands and the bandwidth of the

local minority bands respectively. This is graphically shown in Fig.2.21 in

which the changes in the bandstructure upon decrease and increase of the

hopping amplitudes (Fig.2.21(b)-(e)) as compared to the obtained values

(Fig.2.21(a)). A plot of hopping amplitudes Vs. bandwidth and the effect

of hopping amplitudes on the eg bands are shown in (f) and (g) of Fig. 2.21.

The linear relation between band width and the hopping parameter t is

clearly evident from the plots. The obtained values of the second nearest-

neighbour hoppings are already very small in magnitude, and therefore

changing these values does not largely influence the bandstructure.

2. Influence of η↑ and η↓. Plots showing the effect of varying ηs are shown in

the Fig.2.22. We have seen in the Sec. 2.3.2 the formula to calculate η↑ and

η↓ which is given as,

ηs
t = 1− tss[Pbnm]

tss[JT(Qx)]
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Figure 2.21: Influence of t↑↑, t↓↓, txy, t2z on the eg bands. Panel(a) shows the obtained

TB bands (grey) and the MLWFs (red). In Panels (b)-(e), (h)-(k), the grey bands repre-

sents the obtained bands whereas the blue bands represent the modified TB bands by the

decrease and increase of a given TB parameter. The obtained values of t↑↑, t↓↓, txy, t2z in

the units of eV are 0.621, 0.506, 0.013 and 0.052 respectively.

Where ’s’ denotes up/down spin. Varying the value of η basically means

that we are varying the ratio between tss[Pbnm] and tss[JT (Qx)]. We have

seen that the hopping amplitude is related to the bandwidth and there-

fore, increasing ηs means that the ratio of the hopping amplitudes de-

creases. Since hopping amplitude is proportional to the bandwidth, de-

creasing ηs should increase the bandwidth of the corresponding major-

ity/minority group of bands and increasing ηs should decrease the band-

width and this is exactly what is seen in Fig.2.22.

3. Influence of λ̃. The effect of λ̃ on the eg bands is given in the Fig.2.23.

In the model, λ̃ is calculated as,
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Figure 2.22: Effect of ηs on the eg bands. The obtained values of η↑ and η↓ are 0.27

and 0.37 respectively.

λ̃ =
1

2Qx

(
1

2
(hx

12 − hx
21)↑ +

1

2
(hx

12 − hx
21)↓
)

λ̃ is defined as the JT-induced splitting of the non-diagonal elements of the

hopping matrix, and in the model we calculate the value by taking into

account the average of the splitting of the non-diagonal elements of both

majority and minority spin channels. It is mentioned in [8] that within the

TB model, when this splitting term λ̃ is taken into account, the effect of the

on-site JT term on the band dispersion is cancelled i.e. including λ̃ reduces

the JT gap. In the figure 2.23, we show a plot by considering λ̃=0, the

bandgap in this case is 0.37 eV whereas, for the case when λ̃ is included,

the value of the gap is 0.35. Therefore, the effect of λ̃ is mainly to correct

the JT induced gap, but the size of the correction is almost negligible.

4. Influence of JH . The effect of increasing and decreasing the value of JH is

shown in Fig.2.24.

JH denotes the Hund’s rule coupling of t2g spins to the eg spin. In the

model, JH is calculated as,

JH =
1

4
[(h0

11 + h0
22)↓ − (h0

11 + h0
22)↑]

Where h0
11 and h0

22 denotes the Hamiltonian matrix elements in the eg basis

where 1,2 denote the site indices. Variation of JH means that we are varying

the difference between (h0
11 + h0

22)↓ and (h0
11 + h0

22)↑, i.e. it influences the
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Figure 2.23: Effect of λ̃ on eg bands. The obtained value of λ̃ is 0.544 eV.

splitting between the majority spin channel bands and the minority spin

channel bands. Indeed, Fig.2.24 shows that by decreasing JH from 1.34 to

0.7, the minority bands are pushed down and ultimately overlap with the

majority bands. And, on increasing the value from 1.34 to 2.34, the two

group of bands are further separated.
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Figure 2.24: Effect of JH on the eg bands. The obtained value of JH is 1.34 eV.

5. Influence of λs where s is ↑ or ↓. The effect on the eg bands with the

variation of λs is shown in the Fig. 2.25.

λs denotes the JT coupling strength which calculated in the model from

the JT(AAFM) structure using the formula given as,

λs =
∆εs

2|Qx|
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The JT induced eigenvalue splitting ∆ε of the eg subspace 2 × 2 onsite

matrix calculated as,

∆ε =
[
(h0

11 − h0
22)2 + (2h0

12)2
]1/2

Therefore, varying the value of λs means that we are varying the JT induced

eigenvalue splitting calculated in the model as ∆ε which means nothing but

the bandgap. Similarly on increasing the value of λ↓ to a value similar in

magnitude to λ↑, we notice a splitting in the local minority bands.

T Z Γ S R
-2

-1

0

1

2

3

4

5

E
ne

rg
y 

(e
V

)

λ↑ 
 = 1.00 eV/Å

T Z Γ S R

λ↑
 = 5.00 eV/Å

T Z Γ S R

λ↓
 = 0.741 eV/Å

T Z Γ S R

λ↓
 = 1.141 eV/Å

(a) (b) (c) (d)

3 3.5 4 4.5 5 5.5 6

λ↑

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
an

dg
ap

 ∆
(e

V
)

(e)

Figure 2.25: Effect of λs on the eg bands. Panel (e) shows the plot of bandgap Vs. λ↑.

The obtained values of λ↑ and λ↓ are 3.082 and 0.941 eV/Å.

6. Influence of ηλ. The effect of ηλ on the eg bands is shown in the Fig.2.26.

ηλ represents the reduction of the JT coupling strength due to GFO distor-

tion. This on-site parameter enters the onsite Hamiltonian matrix elements

as (1-ηλ) multiplied by the JT coupling constant λ↑. This value is calculated

only for the spin-up case. The variation is similar to varying ηs which influ-

ences the hopping. ηλ is inversely proportional to the JT-induced splitting

∆ε. Therefore, decreasing ηλ increases the gap between the occupied local

majority spin and the local minority spin bands (band gap) and vice versa.

7. Influence of U (Uλ
W ). The effect of UW on the eg bands is shown in the

Fig. 2.27. UW is the el-el Coulomb repulsion term which is calculated in

the model from the total JT induced splitting within the majority spin eg
orbital manifold, expressed as a difference in the eigenvalues of the local

Hamiltonian corresponding to the Pbnm structure, which is given as,
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Figure 2.26: Effect of ηλ on the eg bands. The obtained value of ηλ is 0.21.

∆ε↑ = ∆ε↑PBE + Uλ
W∆n↑

Uλ
W =

∆ε↑ −∆ε↑PBE

∆n↑

Where ∆n↑ is the difference in the majority spin eigenvalues of the MLWF

occupation matrix. In accordance with the above equation, it could be seen

that the variation of UW influences the splitting between the occupied and

the unoccupied local majority bands. On increasing U from the obtained

value of 2.34 to 3.34, we see the local majority bands splits and separates

into 4 highly localized bands (evident from the DOS shown in Fig. 2.27).

A decrease in U pushes down the unoccupied local majority bands along

with the local minority bands.
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Figure 2.27: Effect of U (Uλ
W ) on the eg bands. The obtained value is 2.34 eV.
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2.7 Summary and Conclusions

In this chapter we have discussed the application of the FP ⇒ MLWFs ⇒ MH

approach to LaMnO3 and the following conclusions could be drawn from the

studies:

(i) Ab initio electronic structure results. We find that all methods consistently

find a orbitally-ordered (JT) insulating state. GW0 provides the best agree-

ment with experiments in terms of bandgap value, and both GW0 and HSE

convey a satisfactory description of valence and conduction band spectra.

While in the PBE+U and HSE cases a suitable adjustment of the param-

eters U and amix can selectively improve the performance with respect to

either bandgap or magnetic exchange interactions, a universal value that

provides all quantities with good accuracy cannot be found. Even though

the standard value amix = 0.25 in HSE seems to provide rather accurate

magnetic coupling constants, clearly a smaller amix is necessary to obtain a

better Mott-Hubbard gap. While the two different codes used in the present

study lead only to marginal differences in the KS band structure and the

corresponding TB parameterization, the relative energies of different mag-

netic configurations depend on subtle details of the used methods, which

hampers a concise comparison between the different energy functional (it

should be noted however, that the PAW approach is usually considered

superior to pure pseudopotential schemes). Within VASP a value for the

Hubbard U between 2-3 eV leads to similar magnetic coupling along c as

HSE, but somewhat stronger FM coupling within the ab planes. Despite

all its well-known limitations when applied to strongly-correlated materials,

PBE does not seem to perform too badly (of course the fact the experimen-

tal structure has been used, helps in that respect, since PBE is known to

fail in properly reproducing the JT distortion in LaMnO3 [86]).

(ii) MLWFs. Despite the difficulties to fully disentangle the effective eg bands

from other bands with similar energies, which are most pronounced within

PBE+U and HSE, the resulting MLWFs and associated ordering (Fig.2.11)

look rather similar and are in good agreement with the precedent plots of

Yin[54]. This represents a further proof of the quality and reliability of the

Wannier construction of the eg |3z2 − r2〉 and |x2 − y2〉 orbitals. Despite

these similarities, the differences in the underlying band structures lead to

distinct differences in the Hamiltonian matrix elements in reciprocal space,
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2. FP+MH STUDY: LAMNO3

and allow for an accurate quantitative analysis of the differences between

the various approximations for the exchange-correlation kernel.

(iii) TB parameterization. We have discussed two types of model parametriza-

tions: Model A and Model B (1 and 2). We have adopted the general

scheme of calculating the parameters which is Model B which includes

Model B-1 and Model B-2 and we have demonstrated the methods-derived

changes in the TB parameters due to the different treatment of the el-el

exchange-correlation kernel in conventional and beyond-PBE approaches

for using these 2 routes: (a) TB without el-el interaction (Model B-1)

(ĤTB = Ĥkin + ĤHund + ĤJT). In this model the TB Hamiltonian does not

explicitly incorporate an el-el interaction term. All changes in the beyond-

PBE band structure with respect to the “noninteracting” PBE bands are

integrated in the hopping, JT and Hund parameters (in particular t↑↑, λ↑,

and JH).

(b) TB with el-el interaction (Model B-2) (ĤTB = Ĥkin + ĤHund + ĤJT +

Ĥe−e). In this second type of parameterization the el-el term in the TB

Hamiltonian has been treated explicitly. The el-el interaction effects are

treated by parameterizing the on site Hund and JT parameters into a non-

interacting (PBE) and interacting (dependent on U
(λ)
W and U

(J)
W ) part. Since

it has been found that U
(λ)
W 6= U

(J)
W , in order to achieve a correct param-

eterization it is necessary to fix one UW channel (U
(λ)
W ) and evaluate the

changes on the remaining one (∆J
(λ)
W ). Both the models , yield excellent

TB bands, essentially overlapping with the underlying MLWFs ones.

It is to be noted that the different levels of approximation for the non-

interacting band structure can lead to significant changes in the hopping

amplitudes, which cannot easily be accounted for by a local double-counting

correction. In addition, it has also been shown that the influence of the

beyond-PBE treatment on the model parameters of the local Hamiltonian

cannot be captured by a simple mean-field Hubbard term with only one

interaction parameter. For an accurate many-body or effective model treat-

ment of LaMnO3 and similar materials it thus seems most desirable to start

from the most realistic single particle band-structure (i.e. not necessarily

LDA or GGA) and use an appropriate double counting correction. The

exact form of such a correction term, however, is still unclear at this point.
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Chapter 3

RMnO3 (R = La, Pr, Nd, Sm,

Eu, Gd)

In the previous chapter, we discussed the electronic and magnetic properties

of LaMnO3 and discussed in detail the application of TB parametrization to

LaMnO3. In this chapter, we will discuss the electronic, structural and magnetic

properties of the less investigated orthorhombic RMnO3 (R = La, Pr, Nd, Sm,

Eu, Gd) and the application of TB parametrization to these compounds. Then,

we will discuss the evolution of the structural, electronic and magnetic properties

and the TB parameters as a function of the IR of R3+ (rR). To be consistent

with the results, the room temperature structural data has been used for all

the compounds including LaMnO3 as no low temperature experimental data are

available in the literature for the early series orthorhombic RMnO3 compounds.

3.1 Introduction

Since the discovery of CMR phenomena in R1−xAxMnO3 (R=rare-earth and

A=Sr, Ca, Ba, Pb) [102, 103, 104, 105, 106], these compounds have become

the subject of numerous studies. CMR phenomenon has been observed in ma-

terials like Pr1−xCaxMnO3, Pr1−xBaxMnO3, Pr1−xKxMnO3 and Nd0.5Sr0.5MnO3

apart from the well-known hole-doped LaMnO3 [106, 107]. Interesting properties

like switching from non-magneto electric to magneto electric by means of tun-

ing the Mn3+ magnetic structure through the changes of the rare earth cationic

radius, have been observed in RMnO3 (R=Nd, Sm, Eu) [9, 108]. The undoped
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3. RMNO3 (R = LA, PR, ND, SM, EU, GD)

RMnO3 compounds has also garnered special interest since the discovery of the

large magneto electric effects in these compounds [109] and the studies on these

compounds involve understanding the complex relationship between lattice dis-

tortion, magnetism etc. There are numerous studies available in the literature

for the compound LaMnO3 and studies on compounds with smaller R3+ radii like

TbMnO3, DyMnO3 that are said to exhibit multiferroic properties are also quite

widely available [54, 61, 62, 63, 64, 65, 68, 70, 71, 74, 75, 76, 77, 78, 79, 80, 109].

However, experimental [63, 110, 111, 112, 113, 114, 115, 116, 117, 118] and theo-

retical [119, 120, 121, 122, 123] studies on early RMnO3 are found in less number

despite their interesting properties.

Figure 3.1: Phase diagram - RMnO3 from [9](a) Orbital ordering temperature and (b)

Spin ordering temperature as a function of the in-plane Mn-O-Mn bond angle

Kimura et al. [9] first reported a phase diagram of RMnO3 (see Fig. 3.1) in

which they showed the trends of the orbital and the spin ordering temperatures

as a function of the Mn-O-Mn angle (φ). This study was the first work which

reported the multiferroic behaviour within the orthorhombic manganites followed

by the work of T.Goto, Kimura et al [108]. The following could be understood

from the report by Kimura et al. [9] and the phase diagram given in Fig. 3.1:

When the La3+ cation is replaced by the smaller cations, a successive increase

in the orthorhombic distortion manifested by a decrease of φ (Mn-O-Mn bond

angle) i.e. an increase of the GdFeO3-type distortion is observed. The orbital
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3.1 Introduction

ordering temperature TOO monotonically increases with decreasing rR whereas

the spin-ordering temperature TN decreases steadily from 140 K (for LaMnO3)

to 40 K (GdMnO3) with decreasing rR. Spin-ordering temperature or the Nèel

temperature (TN) Vs. φ (Mn-O-Mn bond angle) shows that the rare-earth man-

ganites which have a larger rR (R = La -Sm), exhibit only one magnetic phase

transition (paramagnetic to A- AFM type ordering). The transition temperature

decreases as the radius of the R3+ ion decreases. The Mn-O-Mn bond angle is

reduced by the smaller R3+ ion which in turn increases the tilting of the oxygen

octahedra thereby weakening the A-AFM ordering.

Particularly detailed and interesting theoretical findings for the RMnO3 se-

ries have been reported by Kunihiko et al. in Ref.[119]. By adopting the fully

optimized structure these authors have shown that the JT distortion is underes-

timated using DFT (LDA/GGA). However the situation improves only slightly

when DFT+U is employed. In fact DFT+U works well for LaMnO3, but for

more distorted manganites the agreement with the experimental structural data

get worse. In [82], it has been pointed out that the inclusion of U in the GGA

functional partially cures this problem but it was found that for values of U

larger than a certain value ( U ≥ 4 eV), the FM ordering becomes again the

most favourable one. The deficiency of DFT in predicting the magnetic proper-

ties has also been pointed out. While the experiments have shown that at T=0,

the A-AFM phase is the spin ground state even in GdMnO3 (Refer to Fig.3.1),

DFT shows a total energy trend where E-AFM and A-AFM phases are found

to be degenerate in SmMnO3 and E-AFM phase is shown to be the most stable

ordering for GdMnO3. The limitation in describing the magnetic ground state is

also reflected in the exchange interactions: the nearest neighbour interplane cou-

pling in LaMnO3 is found to be weakly FM, in disagreement with the expected

AFM behaviour. Therefore, the validity of a bare GGA treatment for LaMnO3

is questionable as already been pointed out in [124].

Table 3.1 shows the experimental room-temperature Wycoff positions ofRMnO3

corresponding to different structural modifications (JT, GFO and Experimental

structures). Let us now discuss the evolution of the various structural parameters

(Refer to Fig. 3.2).

1. rR Vs. Unit-cell parameters (a,b,c) and Volume (V). When the rR changes,

the major effect is the shrinking of the volume due to the fact that we are

adding protons to the nuclei (lanthanide contraction). The outermost 3d

electrons remain unchanged which means that the screening remains almost
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3. RMNO3 (R = LA, PR, ND, SM, EU, GD)

unchanged. In case the screening had changed, it would have contrast the

shrinking of volume across the series. The plot shown Fig. 3.2(a) is very

similar to the one shown in the work of Alonso et al. [125], though SmMnO3,

EuMnO3 and GdMnO3 are not discussed in their work. From the plot,

it could be seen that variation of b parameter is very small compared to

that of a and c. The reason has been attributed to the tilting scheme of

MnO6 octahedra in the Pbnm perovskites in which the distortion driven

by a reduction of the R3+ size leaves b almost unchanged [125]. It is also

seen that the decrease in the volume V scales with the R3+ size. In [125],

it has been pointed out that the c/
√

2 < a < b is a characteristic of an

orthorhombic structure, which has its origin in the strong cooperative JT

effect, inducing an orbital ordering and distorting the MnO6 octahedra.

Going by the above points, it is seen that RMnO3 (R = La, Pr, Nd, Sm,

Eu and Gd) exhibit the characteristics of an orthorhombic Pbnm structure

as pointed out in the experimental work by Alonso et al.

2. rR Vs. Mn-O-Mn bond angles (φ1, φ2) and tilting angle (ω). φ1 is the Mn-

O-Mn bond angle taken in the ab-plane. φ2 is the angle in the c-direction.

The tilting angle of the oxygen octahedra ω is calculated by the formula: ω

= 180 - 〈φ〉 where 〈φ〉 is the average of φ1 and φ2. According to Zhou and

Goodenough [127] the transition temperatures TJT , TN and TOO should

depend linearly on the average of the cos2 φ. The TN Vs. φ plots are

revised by incorporating the correct values for φ for Sm, Eu and Gd (which

are now available in the literature [126]) and the expected linear behaviour

is recovered as shown in Fig. 3.2(e).

3. rR Vs. JT distortion amplitudes (Qx and Qz). The local JT distortion

modes are defined as Qx=(l -s)/
√

2 and Qz=(2m-l -s)/
√

6 where l, s and

m stand for long, short and medium Mn-O bond distances. With respect

to the reference LaMnO3 case, Qx/Qz are found to be increased by about

30% in the other members of the RMnO3 series, as a consequence of the

progressive decrease of volume.

4. rR Vs. Tolerance factor ( t). An important quantity in the physics of CMR

manganites is the tolerance factor which gives indication on the octahedral

tilting and distortions. It is defined as t =
√

2(rB + rO)/rA + rO where

rA, rB and rO represent the ionic radii of A, B and O, respectively. Al-

ternatively, it could be defined as t = dA−O/(
√

2dMn−O), where dA−O is
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3.2 Ab-initio results

the distance between the A site and the oxygen anions and dMn−O is the

distance between the Mn site and the oxygen anions. For an undistorted

cube, t is 1. In real systems, the A ions are too small to fill the space in

the cube and the oxygen anions tend to move from their ideal positions and

so the distances dA−O and dMn−O vary and also the Mn-O-Mn bond angle

becomes less than 180◦ resulting in tolerance factors of values less than 1

down the series from R=La to Gd. The trend of t down the series is shown

in the Fig.3.2. The trend of the tolerance factor t is in accordance with the

trend of the Mn-O-Mn bond angle φ.

3.2 Ab-initio results

The ground state electronic and magnetic properties (PBE, HSE and GW0(at

PBE)) have been calculated from the experimental data taken from [66] for

LaMnO3, for RMnO3 (R=Pr, Nd) taken from [125] and RMnO3 (R=Sm, Eu,

Gd) taken from [126]. A regular Γ-centered 6 × 6 × 6 Monkhorst-Pack kpoint

mesh has been used for all the PBE calculations whereas for HSE and GW0

calculations, a 4 × 4 × 4 kpoint mesh (Monkhorst Pack) has been employed.

In the calculations, R(5s), R(5p), Mn(3s, 3p, 3d, 4s) are included. Unoccupied

R(4f) states have not been used for the calculations except for LaMnO3. All the

calculations are spin-polarized calculations.

The calculated band structures of RMnO3 along with the corresponding eg
MLWFs at different levels of calculations are shown in Fig. 3.3.

The eigenvalue dispersion for PBE, HSE and GW0 level of calculations in

RMnO3 (R = La, Pr, Nd, Sm, Eu, Gd) is characterized by an insulating state

with an indirect energy gap. The band gaps of RMnO3 and the magnetic moments

of Mn3+ at different levels of calculations are presented in the Tab.3.2 and the plot

of the same has been shown in the Fig.3.4. Despite its known limitations, PBE

is able to find the correct insulating state solution but the band gap is seriously

underestimated. It could be seen that the magnetic moments calculated at the

PBE and GW0 level is comparable with that of the experimental results, whereas

the tendency of HSE to overlocalize leads to larger values of the magnetic moment.

PDOS and the band structures corresponding to PrMnO3 are shown in the

Fig. 3.5. The PDOS and band structures for the other compounds have been

included in the appendix since they display qualitatively very similar features. It

is seen clearly in the Fig. 3.5 that within all methods the Mott-Hubbard gap is
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opened between occupied and empty states with predominant Mn(eg) character.

In Fig.3.5 (which corresponds to PrMnO3), it could be observed that ’eg-like’

orbitals at a certain site hybridize with ’t2g-like’ orbitals at a neighbouring site

as a result of the tilt and rotation of the oxygen octahedra. This leads to bands

with mixed eg/t2g character in the early series of RMnO3 (R = Pr, Nd, Sm, Eu,

Gd). This mixing makes the construction of eight eg character MLWFs within

one energy window used in the disentanglement procedure quite difficult. This is

because the single energy window contains strongly mixed eg/t2g character due to

the GFO distortion. This problem is overcome by constructing two separate sets

of four local majority and four local minority spin MLWFs using two different

energy windows. The problem of finding suitable energy windows has already

been discussed in the previous chapter for the case of LaMnO3. In the band

structure and MLWFs plot corresponding to PrMnO3 (as shown in the Fig. 3.5),

it is seen that the four (energetically lower) local majority MLWF bands and the

local minority bands follow very closely the underlying VASP bands (despite the

strong band entanglement). At HSE level, the bandwidth of the local minority

bands reduces when compared with that of PBE and the band gap increases. The

wavy character that is observed in the dispersion of the local minority eg bands

within GW0 could be due to the size of the k-point mesh (4 × 4 × 4). With a

larger mesh, the band dispersion could be improved at the cost of huge time for

the computations.

103



3. RMNO3 (R = LA, PR, ND, SM, EU, GD)

B
an

d
gap

(eV
)

M
agn

etic
m

om
en

t
(µ

B
)

R
M

n
O

3
P

B
E

H
S
E

G
W

0
E

x
p
t.

P
B

E
H

S
E

G
W

0
E

x
p
t.

L
aM

n
O

3
0.13

1.94
0.96

1.1
[89],

1.9
[90],

2.0
[91,

92],
1.7

[93]
3.401

3.748
3.5195

3.65
[128],

3.87
[98],

3.7±
0.1

[65],
3.4

[99]

P
rM

n
O

3
0.28

2.35
1.28

1.75
[21]

3.518
3.743

3.516
3.5

[115]

N
d
M

n
O

3
0.3

2.46
1.5

1.75
[21]

3.551
3.742

3.516
3.22

[112]

S
m

M
n
O

3
0.43

2.56
1.62

3.497
3.73

3.494
3.3

[129],
3.5

[130]

E
u
M

n
O

3
0.22

2.22
1.18

3.552
3.77

3.549

G
d
M

n
O

3
0.397

2.66
1.69

3.45
3.74

3.45

T
ab

le
3.2:

T
able

show
ing

the
values

of
band

gap
and

m
agnetic

m
om

ent
of
R

M
nO

3 .

104



3.2 Ab-initio results

00.511.52

DOS (eV
-1

)

-4

-2

0

2

4

6

8
Majority 

T Z Γ S R

(a) PBE 

0 0.5 1 1.5 2

DOS (eV
-1

)

Minority

T Z Γ S R

(b) HSE

00.511.52

DOS (eV
-1

)

-4

-2

0

2

4

6

8

E
ne

rg
y 

(e
V

)

DOS (eV
-1

)

00.511.52

DOS (eV
-1

)

E
ne

rg
y 

(e
V

)

T Z Γ S R

(c)GW0

-2-1.5-1-0.50

DOS (eV
-1

)

Figure 3.5: Effective eg MLWF bands (thick red lines) for PrMnO3 and the VASP bands

and the associated normalized PDOS (Mn (eg red-filled areas), Mn (t2g green lines) and

O(p) blue dots. Left/right PDOSs correspond to local majority/minority Mn sites while

O(p) PDOS is calculated as an average over all the O sites.
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(a) PBE (b) HSE

Figure 3.6: Charge density isosurfaces of the highest occupied eg orbitals (from the

fermi energy to the lower bound of the eg bands) showing the orbitally ordered state of

PrMnO3 obtained using the different levels of calculations (PBE and HSE).

In Fig.3.6, the staggered ordering associated with the highest occupied eg-like

bands as obtained from the full ab-initio self-consistent charge density (without

downfolding) at various levels of calculations are shown.

We will now analyze the magnetic properties in terms of the nearest-neighbour

magnetic exchange interactions within the orthorhombic ab plane (Jab) and along

c direction (Jc) [87, 96, 97]. As we know from the work of Kunihiko et al. [119]

that DFT does not provide a good prediction for the exchange parameters, they

have been calculated at HSE level. The calculated HSE total energies are mapped

onto a classical Heisenberg Hamiltonian H =-1
2

∑
i 6=j JijSi · Sj (for S=2) and the

following equations are obtained:

EFM − EAAF = −32Jc (3.1)

ECAF − EFM = 64Jab (3.2)

(3.3)

Where EFM , ECFM and EAFM corresponds to the total energy for the ferro-

magnetic, C-type antiferromagnetic (a 2D checker board like arrangement within

the xy plane) and A-type antiferromagnetic configurations((1,0,0) planes of fer-

romagnetically aligned Mn ions are coupled antiferromagnetically to each other)

respectively. The obtained J are shown in Tab.3.3 and graphically represented

in Fig. 3.7. Fig.3.7 shows the sum of the Jab and Jc: this energy is said to be

proportional to TN within the mean-field approximation and indeed the trend is
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3.2 Ab-initio results

Jc Jab

LaMnO3 0.21 3.92

LaMnO3 (lowT) -0.26 2.92

PrMnO3 -0.26 2.25

NdMnO3 -0.28 2.00

SmMnO3 -0.26 1.55

EuMnO3 -0.12 1.53

Table 3.3: Table showing magnetic exchange interactions within the orthorhombic

ab plane (Jab) and along c direction Jc calculated at HSE level. For LaMnO3, both

room temperature and low temperature results are reported.

in good agreement with the experimental results showing a steep decrease of TN

down the series.

Within a mean-field picture, the TN can be expressed in terms of the sum of

the J, as:

TNmean−field
=

2S(S + 1)

3kB

(Jab + Jc) (3.4)

Where s denotes orthorhombic ab plane and c-direction. By using the HSE

values, mean-field TN have been obtained, which are in very good agreement

with the experiment, as shown in the Fig. 3.7 and the values follow well the steep

decrease from La to Eu.

We will now discuss the plot of dielectric function for RMnO3 as shown in

Fig.3.8(a)-(e). The dielectric function contains information about the direct or

indirect optical transitions or fundamental excitations in a solid like phonons,

polarons, magnons etc. The dielectric function is a complex function: ε(ω) =

ε1(ω)+iε2(ω). The real and imaginary parts of the dielectric function are directly

related to each other through Kramers-Kronig transformation. In Fig.3.8(a)-(e)

the real and imaginary parts (ε1 and ε2) of the dielectric function calculated from

the GW0 routines by fixing the screened Coulomb interaction term W0 to PBE

level. The computed values are compared with the experimental data obtained

from the spectroscopic ellipsometry measurements [121]. The coloured dashed

lines shows the theoretical results whereas the corresponding coloured square

symbols represents the experimental data taken from Ref. [121].
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Figure 3.7: Plot showing the variation of Jab and Jc and the calculated TN as a

function of the ionic radii of R3+.

The experimental plot of the dielectric function which was measured at a

range of energy between 0.5 to 5.5 eV shows two intensive, broad optical features

peaked at 2 eV and 4.5 eV respectively for LaMnO3 (Fig.3.8(a)). For the other

RMnO3 compounds (Fig.3.8(b)-(e)), the intensive broad peak is peaked at 2.2 eV.

While the authors of [77, 131] assign the peaks to d-d charge transfer excitations,

the authors of [121] argue that the peaks are due to the interplay of both p-d

and d-d transitions. The same two peaks are suppressed by a factor of 1.5 in the

case of other RMnO3 (R = Pr, Nd, Sm, Eu) compounds. These experimental

results also correspond with the results of Kim et al. [21]. The PBE results show

the supression that is being observed experimentally, but the intensity at zero

photon energy is quite high when compared with that of the experimental results.

A better agreement with experiment could be achieved by treating the screened

exchange at beyond-PBE level (i.e. within a fully self-consistent GW framework)

but this is beyond the scope of the present study (as the corresponding calculation

would be computationally very demanding).
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Ref. [121].
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3. RMNO3 (R = LA, PR, ND, SM, EU, GD)

3.3 Tight-binding parametrization

3.3.1 Model B-1

Let us now discuss the results of Model B-1 in which the term Ĥe−e is neglected i.e.

the electron-electron interaction is implicitly accounted for in the tight-binding

model.

Table 3.4 gives the obtained TB parameters corresponding to Model B-1 cal-

culated within the various levels of approximation and Fig. 3.9 shows the TB

obtained using the Model B-1 along with the MLWFs.

(i) PBE - The TB band dispersion and the MLWFs match closely in the case

of LaMnO3, the bandwidth of the local majority and local minority TB bands

are slightly increased when compared to that of the MLWFs. In the case of

PrMnO3, the TB band dispersion of the local majority eg bands match closely

with the MLWFs whereas the bandwidth of the local minority bands is increased

by around 32 % when compared with the MLWFs. In the case of NdMnO3,

the local minority TB bands matches very well with the MLWFs whereas the

bandwidth of the local majority TB bands is lesser than the bandwidth of the

corresponding MLWFs by around 8 %. In the case of SmMnO3, the bandwidth

of both the local majority and the local minority TB bands decreases by around

10 % as compared to that of the corresponding MLWFs. The same trend as

SmMnO3 is observed in EuMnO3. In the case of GdMnO3, the local minority

TB bands matches very closely with the MLWFs whereas there is around 10 %

decrease in the bandwidth of the local majority TB bands when compared to thc

corresponding MLWFs.

(ii) HSE - The reason for the increase in the values of t↑↑ in all-beyond PBE

methods has been explained in the previous chapter. It has been shown that the

increase in t↑↑ could be understood within an extended nearest-neighbour TB

model including both Mn(d) and O(p) states, from which an effective eg-only

model could be derived in the limit of large energy separation εdp between the d

and the p orbitals [81]. Comparing with PBE, it could be seen that the values of

JH and λ↑ have increased in the case of HSE and this is reflected in the TB model

by the increase in spin-splitting and the band gap respectively. In the case of HSE,

overall, the TB band dispersion and the MLWFs matches reasonably good. The

main observation is that in all the compounds the bandwidth of the occupied

local majority TB bands are slightly lesser when compared to the corresponding
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3.3 Tight-binding parametrization

MLWFs and the band width of the local minority TB bands is reduced when

compared with the corresponding MLWFs.

(iii) GW0 - At GW0 level of calculations, TB bands follow the MLWFs quite

well. There is a decrease in the bandwidth of the local minority bands that is

observed starting from PrMnO3 and also slight mismatch in the bandwidth of

the local majority TB bands in the case of LaMnO3, SmMnO3 and EuMnO3.

Overall, at all the levels of calculations, the TB bands obtained using Model

B-1 follows reasonably quite closely the MLWFs. For details on the influence of

each TB parameter on the eg band dispersion, refer to Sec.2.6 of the previous

chapter.

3.3.2 Model B-2

Let us discuss the results of the alternative TB parametrization in which the

modifications induced by the beyond-PBE methods are treated as perturbation

to the ’non-interacting’ PBE description by explicitly considering the el-el in-

teraction and using the simplified mean-field approximation. As discussed in the

previous chapter, this parametrization applies only for the beyond-PBE methods.

The value of Uλ
W is explicitly calculated and to correct the correlation-induced

increase of the spin splitting, we calculate an empirical correction to the Hund’s

rule coupling ∆J
(λ)
W . The onsite parameters are set to the corresponding PBE

values. All the parameters calculated using Model B-2 are listed in the Tab.3.5.

The dispersion of the eg states calculated from this model and the corresponding

MLWFs for RMnO3 are shown in the Fig.3.10. The interaction parameters JH ,

∆ε↑, ∆n↑ that are used in the calculation of Uλ
W are given in the Tab.3.6. A more

detailed discussion of the evolution of the various TB parameters is given in the

next section.
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3.3 Tight-binding parametrization

(a) PBE
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Figure 3.9: Figure showing eg TB bands (blue) obtained using Model B-1 parametriza-

tion and the eg MLWFs(red).
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Figure 3.10: Figure showing eg TB bands (blue) obtained using Model B-2 parametriza-

tion and the eg MLWFs(red).
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RMnO3 JH ∆ε↑ ∆n↑

HSE

LaMnO3 2.483 2.852 0.87

PrMnO3 2.442 3.206 0.906

NdMnO3 2.406 3.267 0.910

SmMnO3 2.415 3.310 0.919

EuMnO3 2.426 3.292 0.92

GdMnO3 2.421 3.411 0.927

GW0

LaMnO3 1.874 1.362 0.616

PrMnO3 1.805 1.832 0.737

NdMnO3 1.753 2.011 0.751

SmMnO3 1.797 2.093 0.75

EuMnO3 1.802 2.027 0.778

GdMnO3 1.828 2.195 0.796

Table 3.6: Table showing the values of JH , ∆n↑, ∆ε↑ obtained at HSE and GW0 level

of calculations.
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3.4 Evolution of the TB parameters as a function of rR

3.4 Evolution of the TB parameters as a func-

tion of rR

The evolution of various TB parameters are shown in the Figs. 3.11, 3.12, 3.13.

In general, an overall consistent qualitative description of the TB bands has

been found for the compounds down the series at PBE, HSE and GW0 level of

calculations. However, in some cases, some quantitative deviations are observed in

the GW0, which could be attributed to the difficulties in achieving well-converged

results at GW level (for instance, the upper local minority bands are not well

reproduced in the case of Nd and Sm).

1. Hopping parameters first nn hoppings t↑↑, t↓↓, second nn hoppings txy, t2z

and ( η↑, η↓, λ̃). There is not much variation seen in the magnitude of the

nearest-neighbour hopping parameter (t↑↑) at PBE, HSE and GW0 levels

of calculations. At GW0 level, t↓↓ is pretty much a constant down the series

at PBE and HSE levels, whereas at GW0 level, the value of t↓↓ decreases

by about 0.1 eV in the case of Pr and Nd. The variation of λ̃ down the

series is pretty much a constant from La to Gd at PBE, HSE and GW0.

The magnitude of the next-nearest neighbours (txy and t2z) is already quite

small in magnitude, and so the variation of this value down the series could

be considered as negligible. t↑↑, t↓↓ calculated for the Pbnm structure shows

a decrease in the values down the series. η↑ and η↓ are calculated from the

ratio of the t(Pbnm) to t(JT). Therefore as t(Pbnm)(↑ and ↓) decreases

down the series, the values of η(↑ and ↓) are expected to increase, and this

could be seen from the plots of η↑ and η↓ Vs. rR. It is a fact that the

hopping amplitude is proportional to cos φ where φ is the Mn-O-Mn bond

angle [132]. Comparing the trends of t↑↑(Pbnm) and t↓↓(Pbnm) down the

series explains the observed rapid drop of the TN which is also proportional

to cos2φ. The trend also is in very good agreement with the fact that the

hopping amplitudes are monotonically related to the tolerance factor.

2. Onsite parameters (J, λ↑, λ↓, ηλ). The onsite parameters J (Hund’s rule

coupling strength) calculated at PBE, HSE and GW is nearly constant down

the series. Even when the volume decreases down the series, the J and λ↑

(except for EuMnO3) are nearly constants, this leads to an interesting con-

clusion that the Hund’s rule coupling strength and the Jahn-Teller coupling

constants could be considered as universal constants in the RMnO3 series
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3. RMNO3 (R = LA, PR, ND, SM, EU, GD)

although at GW0 level of calculations a higher value of λ↑ is obtained for

EuMnO3 (43 % increase) when compared with the average of the λ values

obtained for the other RMnO3 compounds. The value of λ↓ is less in the

case of HSE when compared with that of PBE and GW0. Unlike λ↑, λ↓ does

not show a constant behaviour down the series. The value of λ↓ decreases

by about 75 %. The value of ηλ is pretty much a constant down the series.

3. Interaction parameters (U λ
W ). The value of Uλ

W is constant down the series.

If the screening remains unchanged, the band gap and U is expected to be

unchanged. This shows the compounds of the early RMnO3 series remains

an orbitally-ordered JT insulator.

118



3.4 Evolution of the TB parameters as a function of rR
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Figure 3.11: rR Vs. tight-binding hopping parameters (First nn hoppings t↑↑ and t↓↓,

second nn hoppings txy and t2z, JT splitting λ̃, GFO reduction factors- η↑ and η↓.
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3. RMNO3 (R = LA, PR, ND, SM, EU, GD)
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Chapter 4

Summary and Conclusions

In this thesis, the combination of first-principles and tight-binding model Hamil-

tonian via Maximally localized Wannier functions (MLWFs) has been applied to

the parent compounds of manganites, RMnO3 (R=La, Pr, Nd, Sm, Eu, Gd). The

eg MLWFs have been obtained using VASP2WANNIER90 interface. The tight-

binding parameters corresponding to the model Hamiltonian have been obtained

and analyzed. We have discussed 2 different ways to obtain the TB parame-

ters: (i) Model A - the tight-binding parametrization is based on the various

model structures with both FM (which always leads to a metallic system) and

A-AFM order [8, 81] (ii) Model B - TB parametrization is constructed from only

two crystal structures: purely JT distorted structure and the experimental Pbnm

structure, in both of which yield an insulating solution (A-AFM). We could ob-

tain the parameters in 2 ways: (a) Considering an effectively non-interacting case

in which the term Ĥe−e is neglected and the influence of the beyond PBE are con-

sidered implicitly within the model. We have called this model as Model B-1. (b)

The alternative model in which the term Ĥe−e is treated explicitly by calculating

the Hubbard-U using a mean-field treatment.

We have first discussed the case of LaMnO3 in Chapter 3, the results of which

have been published in [82]. We have employed four of the ab-initio methods

to study LaMnO3 : PBE , PBE+U, HSE and GW0 (at PBE). The structural

data for LaMnO3 in Chapter 3 correspond to the optimized structure. All the

methods consistently produce an orbitally-ordered JT insulating state. GW0

produces values for the band gap comparable with the experiments while both

GW0 and HSE provide satisfactory description of valence and conduction band

spectra. Inspite of the limitations within PBE approach, it does not perform too
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4. SUMMARY AND CONCLUSIONS

badly. The proof of the quality and the reliability of the Wannier construction of

the eg |3z2-r2〉 and |x2-y2〉 orbitals is represented by the resulting MLWFs, inspite

of the difficulties to fully disentangle the effective eg bands from the other bands

with similar energies which are most pronounced in the case of PBE+U and HSE.

The different TB routes used in this study (Model-A and Model-B) yield very

good TB bands, overlapping with the underlying MLWFs. Overall, it has been

demonstrated that the MLWFs could be efficiently used to accurately interpolate

the HSE and GW0 band structure from the coarse uniform k -point mesh to the

desirable symmetry lines thereby remedying the fundamental practical limitation

of HSE and GW0 scheme in computing the energy eigenvalues for selected k -

points.

Using the same methodology we have studied the early series of the parent

compounds of manganites RMnO3 (R = La, Pr, Nd, Sm, Eu, Gd). For quali-

tative and quantitative comparison, we have used the room temperature lattice

constants and structures for all the compounds including LaMnO3. The phase

diagram shown by Kimura et al. [9] has been used as the basis for the work. We

have attempted to investigate this phase diagram which shows the trend of the

transition temperatures (TOO and TN) by studying the evolution of the struc-

tural, electronic and magnetic properties and the tight-binding parameters. The

plots of structural properties such as volume (V), unit-cell parameters (a, b, c),

Mn-O-Mn bond angles (φ1, φ2) and the octahedral tilting angle ω, JT distortion

amplitudes (Qx, Qz) and the tolerance factor has been shown as a function of

the ionic radii of R3+. When the ionic radii of R3+ decreases, the major effect

is the shrinking of the volume because of the fact that we are adding protons to

the nuclei (Lanthanide contraction). The decrease of the Mn-O-Mn bond angles,

the tolerance factor and the Volume follow the same trend as the experimental

TN . All the methods produce a consistent Mott-Hubbard insulating state for all

RMnO3 (R = La -Gd). Despite the difficulties in the disentanglement of the eg
states mainly at HSE level, the obtained MLWFs are in very good agreement with

the underlying VASP bands and also at PBE and GW0 level, the MLWFs are in

very good agreement with the underlying VASP bands. The exchange interaction

parameters namely Jab and Jc have been calculated at HSE level and the sum has

been employed to estimate TN within a mean-field approach. The trend matches

very well with the experimental TN . The theoretical dielectric function matches

fairly well with the experimental dielectric function.

Like in the case of LaMnO3, the method-derived changes in the TB parameters

due to the different treatment of the el-el exchange-correlation kernel at PBE,
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HSE and GW0 has been demonstrated and has been accounted for using Model

B-1 and B-2. In general, an overall consistent qualitative description of the TB

trend has been found for the compounds down the series at PBE, HSE and

GW0 level of calculations. However, certain deviations are observed when GW0

is employed (for Pr and Nd) and this could be attributed to the difficulties in

achieving well-converged results. Also the upper local minority eg bands are not

very well described for the case of NdMnO3 and SmMnO3. The trends of the

hopping parameters (t↑↑, t↓↓ (JT and Pbnm), λ̃, η↑ amd η↓) have been shown.

The trends of hopping amplitudes t↑↑ (Pbnm) , t↓↓ (Pbnm) are comparable with

that of the volume, tolerance factor, φ and TN . The fact that the hopping

amplitudes and the tolerance factor are monotonically related has been proven.

Another interesting result is that of JH (Hund’s rule coupling strength) which

remains practically a constant at all levels of calculations. Also U and λ↑ remains

pretty much a constant except for EuMnO3 at GW0 level. Thus JH , λ↑ and U

can be regarded as universal constants.
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A.

A.1 Model parameters in the extended p−d ba-

sis

In this section we will briefly review the results based on p-d TB model and

compare it with the eg model as discussed in the work by Kovac̀ik et al. in [81].

Unlike the eg-only model which only includes the eg states, the d-p model includes

atomic-like orbitals corresponding to both Mn(d) and O(p) states in the TB basis.

The effect of Jahn-Teller distortions within the d-p model has been studied

and then the TB representations for both the models obtained from GGA+U cal-

culations (with different values of the Hubbard parameter U) has been compared.

The on-site energy splitting is given as δ=
√

(ε1 − ε2)2 + 4q2, where ε and q are

onsite diagonal and onsite off-diagonal matrix elements respectively. The plots

from [81] are shown in fig. A.1. In fig. A.1, it is observed that the onsite diagonal

matrix elements are constant with the increase of the Qx/Qx
0 while δ (splitting

of eg states) and the value of the onsite off-diagonal matrix elements are found

to increase linearly. There is also difference in the values corresponding to the

majority/minority spin channels and this has been attributed to the admixture of

other states. It could be attributed to the combined crystal-field and ligand-field

effect.

In the d-p model, it has been found that the effect of U is mostly local and

this leads to U-dependent shifts of the on-site energies and an increase in the JT

splitting, whereas the corresponding hopping amplitudes are only weakly affected

by U (See fig.A.2). The change of the onsite energies and the JT splitting calcu-

lated for the different values of U, are distinctly different from the corresponding

mean-field model Hamitlonian. It is important to see how the GGA+U and the

U-dependence of the onsite matrix elements are related. For each value of U

(GGA+U) using the occupation matrix elements obtained from the correspond-

ing GGA+U calculations, the potential shift according to Dudarev et al. [34]

which is given as

∆Vmm′ = U

(
δmm′

2
− nmm′

)
(A.1)

is evaluated, and it is shown in the study that the GGA+U potential shifts and

the U -dependence on the onsite MLWF matrix elements correspond well with

each other. The reason for this is attributed to the fact that the MLWFs of the

extended d-p model are rather similar to the atomic orbitals used as projector
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A.1 Model parameters in the extended p− d basis

Figure A.1: Figure from [81] showing (a)/(b) Onsite energies of the d-p model

for the majority/minority spins (c) Onsite off-diagonal element q (d) Splitting ∆ε

between on-site energies of the two eg-like MLWFs
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A.

(a) Onsite energy (d-p) (b) JT splitting (d-p)

(c) Onsite energy (eg) (d) JT splitting

Figure A.2: Plots from [81] showing the variation of onsite energies and the JT splitting

in both d-p and eg models

functions within the GGA+U approach. The similarity is further demonstrated

by comparing the occupation of the corresponding MLWFs which is given as,

nMLWF
mm′ =

∫ EF

−∞
dε

∫
BZ

dk
∑
l

(U
(k)
lm )∗δ(ε− εlk)U

(k)
lm′ (A.2)

The effect of U within the effective eg model shows that the U-dependence is

weaker than in the d-p model. This indicates that the U dependence of the onsite

energies for the effective eg MLWFs is still determined by the GGA+U potential

shifts, but is renormalized by the extent of the overlap between the extended

MLWFs and the corresponding eg atomic orbital. It is seen that the effect of U

on the hopping amplitudes is strongly enhanced in the case of eg only.

In summary, the authors of [81] have discussed the differences in the MLWF-

derived TB parametrization of LaMnO3 that result from different values of the

128



A.1 Model parameters in the extended p− d basis

Hubbard U used in the GGA+U calculations from which the MLWFs are ob-

tained. Two different models (d-p and eg-only models) have been discussed. A

similarity between the “+U” correction to the GGA functional and the mean-field

approximation of the el-el interaction in the corresponding model Hamiltonian.

This similarity explains the observed trends in the MLWF TB parameters and

the difference between the two different TB models. The authors have noted the

fact that the similarity between DFT and the mean-field Hubbard model is not

present if the electronic structure is calculated using other “beyond LDA/GGA”

methods like SIC, Hybrid functionals or the GW approximation.
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B.

B.1 Bandstructures and PDOS - RMnO3

In this appendix, PDOS, bandstructures (PBE, HSE and GW0) and the eg ML-

WFs corresponding to both JT-distorted structure (A-AFM) and experimental

Pbnm structure for all RMnO3 are presented.
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B.2 LaMnO3

B.2 LaMnO3

h∆R PBE HSE GW0

hx11(↑) -0.147887 -0.242665 -0.22265

hx22(↑) -0.463337 -0.639777 -0.571604

hx11(↓) -0.118779 -0.135318 -0.13223

hx22(↓) -0.377113 -0.404526 -0.356921

hx12(↑) 0.171214 0.258705 0.270957

hx21(↑) 0.382034 0.513952 0.490653

hx12(↓) 0.155312 0.146439 0.170482

hx21(↓) 0.273032 0.298212 0.245432

hxy11(↑) -0.012782 -0.019338 -0.025599

hxy11(↓) -0.012507 -0.01268 -0.01781

h2z
11(↑) -0.051763 -0.029109 -0.030363

h2z
11(↓) -0.05156 -0.03583 -0.116522

h0
11(↑) 9.596297 9.000637 6.992145

h0
12(↑) 0.432207 1.483219 0.637367

h0
22(↑) 9.250851 8.128786 6.578301

h0
11(↓) 11.874463 13.311348 9.950342

h0
12(↓) 0.141168 -0.144577 0.115559

h0
22(↓) 11.841471 13.387414 10.082227

Table B.1: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of LaMnO3.
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B.

h∆R PBE HSE GW0

hx11(↑) -0.074443 -0.075828 -0.154411

hx22(↑) -0.328799 -0.373085 -0.44891

hx11(↓) -0.097383 -0.127387 -0.099391

hx22(↓) -0.243554 -0.252342 -0.234014

h0
11(↑) 9.783282 8.735374 6.785627

h0
12(↑) 0.373543 0.964386 0.568115

h0
22(↑) 9.449427 6.634623 6.035349

h0
11(↓) 12.459359 12.721685 10.261764

h0
22(↓) 12.133419 12.580955 10.054899

Table B.2: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of LaMnO3.
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B.2 LaMnO3
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Figure B.1: VASP bandstructure (black) and MLWFs (red) of LaMnO3 - JT

distorted structure (A-AFM). 135
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Figure B.2: VASP bandstructure (black) and MLWFs (red) of LaMnO3 - Exper-

imental Pbnm structure. 136



B.3 PrMnO3

B.3 PrMnO3

h∆R PBE HSE GW0

hx11(↑) -0.143484 -0.136679 -0.220591

hx22(↑) -0.462969 -0.514964 -0.594461

hx11(↓) -0.115414 -0.119939 -0.12003

hx22(↓) -0.377134 -0.393028 -0.293243

hx12(↑) 0.159159 0.088998 0.288149

hx21(↑) 0.395107 0.651933 0.516809

hx12(↓) 0.137391 0.131907 0.107527

hx21(↓) 0.297312 0.325052 0.230764

hxy11(↑) -0.011922 -0.008874 -0.041828

hxy11(↓) -0.010732 -0.012615 -0.027929

h2z
11(↑) -0.051776 -0.055852 -0.046466

h2z
11(↓) -0.051931 -0.05707 -0.08388

h0
11(↑) 7.206051 7.237943 8.035657

h0
12(↑) 0.525828 1.307839 0.786964

h0
22(↑) 6.775836 5.156393 7.575524

h0
11(↓) 9.474095 10.88187 10.732289

h0
12(↓) 0.200397 -0.07418 0.128232

h0
22(↓) 9.389982 10.880788 10.882625

Table B.3: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of PrMnO3.
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B.

h∆R PBE HSE GW0

hx11(↑) -0.041079 -0.054348 -0.161338

hx22(↑) -0.262187 -0.310247 -0.437342

hx11(↓) -0.085787 -0.117547 -0.066355

hx22(↓) -0.203873 -0.149344 -0.169829

h0
11(↑) 6.135555 6.276391 8.515796

h0
12(↑) 0.389847 0.902014 0.801047

h0
22(↑) 5.448305 3.625999 7.62784

h0
11(↓) 8.658983 9.886314 11.871325

h0
22(↓) 8.205297 9.785574 11.492162

Table B.4: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of PrMnO3.
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B.3 PrMnO3
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Figure B.3: VASP bandstructure (black) and MLWFs (red) of PrMnO3 - JT

(AAFM) distorted structure. 139



B.

B.4 NdMnO3

h∆R PBE HSE GW0

hx11(↑) -0.16864 -0.137047 -0.2181

hx22(↑) -0.498857 -0.517797 -0.574269

hx11(↓) -0.126805 -0.12753 -0.127403

hx22(↓) -0.385152 -0.397951 -0.312218

hx12(↑) 0.206304 0.091428 0.297574

hx21(↑) 0.364604 0.654064 0.544947

hx12(↓) 0.1577 0.15398 0.114424

hx21(↓) 0.275982 0.306741 0.256753

hxy11(↑) -0.013508 -0.008531 -0.037822

hxy11(↓) -0.012151 -0.013518 -0.033208

h2z
11(↑) -0.025392 -0.056323 -0.056284

h2z
11(↓) -0.028711 -0.057195 -0.083558

h0
11(↑) 7.022166 7.241499 8.052973

h0
22(↑) 6.711146 5.14978 7.550218

h0
12(↑) 0.561618 1.321549 0.814227

h0
11(↓) 9.338348 10.887348 10.739633

h0
22(↓) 9.294104 10.862009 10.870879

h0
12(↓) 0.233337 -0.066553 0.171835

Table B.5: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of NdMnO3.
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B.4 NdMnO3

h∆R PBE HSE GW0

hx11(↑) -0.038422 -0.068766 -0.161338

hx22(↑) -0.257813 -0.315873 -0.437342

hx11(↓) -0.080705 -0.106217 -0.066355

hx22(↓) -0.196361 -0.192411 -0.169829

h0
11(↑) 6.046113 6.144002 8.515796

h0
22(↑) 5.325463 3.568329 7.62784

h0
12(↑) 0.399448 1.004765 0.801047

h0
11(↓) 8.55903 9.78862 11.871325

h0
22(↓) 8.081982 9.547402 11.492162

Table B.6: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of NdMnO3.
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B.4 NdMnO3
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B.

B.5 SmMnO3

h∆R PBE HSE GW0

hx11(↑) -0.148792 -0.144406 -0.222187

hx22(↑) -0.47518 -0.53043 -0.571119

hx11(↓) -0.126293 -0.125711 -0.128979

hx22(↓) -0.394062 -0.413696 -0.371814

hx12(↑) 0.171992 0.103332 0.260402

hx21(↑) 0.39442 0.65231 0.487537

hx12(↓) 0.172997 0.146003 0.135985

hx21(↓) 0.273961 0.325607 0.298862

hxy11(↑) -0.012381 -0.008926 -0.023488

hxy11(↓) -0.011974 -0.013245 -0.003007

h2z
11(↑) -0.052123 -0.056488 -0.035757

h2z
11(↓) -0.051999 -0.056568 -0.089837

h0
11(↑) 7.06894 7.09751 7.948509

h0
22(↑) 6.670591 5.077934 7.494789

h0
12(↑) 0.527261 1.342226 0.73506

h0
11(↓) 9.313243 10.779414 10.621519

h0
22(↓) 9.279891 10.790282 10.734815

h0
12(↓) 0.208825 -0.075533 0.208521

Table B.7: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of SmMnO3.
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B.5 SmMnO3

h∆R PBE HSE GW0

hx11(↑) -0.033273 -0.049174 -0.148348

hx22(↑) -0.244358 -0.282878 -0.375663

hx11(↓) -0.089049 -0.107945 -0.056794

hx22(↓) -0.177362 -0.176662 -0.130018

h0
11(↑) 5.754329 5.981308 7.014783

h0
22(↑) 4.988071 3.145501 5.405091

h0
12(↑) 0.399524 0.853958 0.668695

h0
11(↓) 8.347355 9.504737 10.016262

h0
22(↓) 7.837813 9.281237 9.591797

Table B.8: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of SmMnO3.
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distorted structure (A-AFM)

146



B.5 SmMnO3
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B.

B.6 EuMnO3

h∆R PBE HSE GW0

hx11(↑) -0.14947 -0.147963 -0.35679

hx22(↑) -0.478246 -0.536403 -0.747159

hx11(↓) -0.120906 -0.126515 -0.136764

hx22(↓) -0.39401 -0.417446 -0.389562

hx12(↑) 0.173521 0.107897 0.379587

hx21(↑) 0.39684 0.651522 0.672778

hx12(↓) 0.148604 0.147303 0.159093

hx21(↓) 0.302891 0.328876 0.298035

hxy11(↑) -0.012411 -0.009193 -0.022919

hxy11(↓) -0.011013 -0.013249 -0.015136

h2z
11(↑) -0.052251 -0.05654 -0.057498

h2z
11(↓) -0.052431 -0.056452 -0.104267

h0
11(↑) 7.118311 7.204796 8.047724

h0
22(↑) 6.71806 5.198054 7.44001

h0
12(↑) 0.535423 1.3658 1.097081

h0
11(↓) 9.376238 10.895284 11.26275

h0
22(↓) 9.30569 10.902206 11.420105

h0
12(↓) 0.215127 -0.069327 0.213976

Table B.9: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of EuMnO3.
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B.6 EuMnO3

h∆R PBE HSE GW0

hx11(↑) -0.025256 -0.046155 -0.091573

hx22(↑) -0.227339 -0.278408 -0.323988

hx11(↓) -0.071666 -0.101623 -0.055141

hx22(↓) -0.175123 -0.10882 -0.138213

h0
11(↑) 5.793459 5.849622 6.771829

h0
22(↑) 4.928424 3.02166 5.093764

h0
12(↑) 0.369338 0.842907 0.568721

h0
11(↓) 8.256467 9.317415 9.747873

h0
22(↓) 7.725225 9.259594 9.326106

Table B.10: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of EuMnO3.
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Figure B.8: VASP bandstructure (black) and MLWFs (red) of EuMnO3-JT-

distorted structure (A-AFM)
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B.6 EuMnO3
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B.

B.7 GdMnO3

h∆R PBE HSE GW0

hx11(↑) -0.148679 -0.147827 -0.225868

hx22(↑) -0.479834 -0.538303 -0.581533

hx11(↓) -0.120739 -0.126021 -0.125482

hx22(↓) -0.397134 -0.418775 -0.385391

hx12(↑) 0.171505 0.107892 0.260729

hx21(↑) 0.401356 0.653903 0.497362

hx12(↓) 0.147766 0.145456 0.14227

hx21(↓) 0.307212 0.33373 0.313797

hxy11(↑) -0.012167 -0.009125 -0.020378

hxy11(↓) -0.010791 -0.01291 -0.012909

h2z
11(↑) -0.052324 -0.056513 -0.030976

h2z
11(↓) -0.052248 -0.056706 -0.070578

h0
11(↑) 7.370674 7.478384 8.189757

h0
22(↑) 6.947569 5.424153 7.695851

h0
12(↑) 0.561695 1.401407 0.793921

h0
11(↓) 9.624017 11.14847 10.913429

h0
22(↓) 9.541347 11.137289 10.969709

h0
12(↓) 0.233526 -0.047579 0.25342

Table B.11: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

JT-distorted (A-AFM) structure of GdMnO3.
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B.7 GdMnO3

h∆R PBE HSE GW0

hx11(↑) -0.029476 -0.062886 -0.108061

hx22(↑) -0.216817 -0.275215 -0.310108

hx11(↓) -0.080031 -0.105673 -0.06752

hx22(↓) -0.172734 -0.167832 -0.140862

h0
11(↑) 5.906388 6.131504 7.203631

h0
22(↑) 4.946926 3.137636 5.275897

h0
12(↑) 0.330352 0.817002 0.524399

h0
11(↓) 8.350782 9.618906 10.15595

h0
22(↓) 7.774725 9.335723 9.635297

Table B.12: Matrix elements obtained from PBE, HSE and GW0 corresponding to the

experimental Pbnm structure of GdMnO3.
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Figure B.10: VASP bandstructure (black) and MLWFs (red) of GdMnO3-JT

distorted structure
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B.7 GdMnO3
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[43] Bloch F. “über die quantenmechanik der elektronen in kristallgittern”. Z.

Physik 52, 555, 1928. 21, 26

[44] Slater J.C. and Koster G.F. “Simplified LCAO Method for the periodic

potential problem”. Phys. Rev. 94,6, 1954. 21, 24, 25

[45] Marzari N and Vanderbilt D. “Maximally localized generalized Wannier

functions for composite energy bands”. Phys. Rev. B 56 12847, 1997. 27,

31, 33

[46] J. des Cloizeaux. “Orthogonal Orbitals and Generalized Wannier Func-

tions”. Phys. Rev. 129, 554, 1963. 27

160



REFERENCES

[47] J. des Cloizeaux. “Energy Bands and Projection Operators in a Crystal:

Analytic and Asymptotic Properties”. Phys. Rev. 135, A685, 1964. 27

[48] J. des Cloizeaux. “Analytical Properties of n-Dimensional Energy Bands

and Wannier Functions”. Phys. Rev. 135, A698, 1964. 27

[49] Blount E.I. “Formalisms of Band theory”. Solid State Phys. 13, 305, 1962.

28

[50] Marzari N Souza I and Vanderbilt D. “Maximally localized Wannier func-

tions for entangled energy bands”. Phys. Rev. B 65 035109, 2001. 30,

31

[51] Kohn W and Sham L J. “Self-Consistent Equations Including Exchange

and Correlation Effects”. Phys. Rev. 140 A1133, 1965. 32, 44

[52] Krauth W Rozenberg M J Georges A, Kotliar G. “Dynamical Mean Field

theory of strongly correlated fermion systems and the limit of infinite di-

mensions”. Rev. Mod. Phys. 68 13, 1996. 32

[53] Karolak M et al. “Double counting in LDA + DMFTThe example of NiO

”. J. Electron Spectrosc. Relat. Phenom 181 11, 2010. 32

[54] Volja D Yin W-G and Ku W. “Orbital Ordering in LaMnO3: Electron-

Electron versus Electron-Lattice Interactions”. Phys. Rev. Lett. 96 116405,

2006. 33, 42, 44, 93, 96

[55] Kresse G and Joubert D. “From ultrasoft pseudopotentials to the projector

augmented wave method”. Phys. Rev. B 59 1758, 1999. 34

[56] Kresse G and Furthmüller J. “Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set”. Phys. Rev. B 54 11169,

1996. 34

[57] Kresse G and Furthmüller J. “Efficiency of ab-initio total energy calcula-

tions for metals and semiconductors using a plane-wave basis set”. Comput.

Mat. Sci. 6 15, 1996. 34
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