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Abstract

The establishment of beneficial alleles is fundamental for the genetic adaptation

of populations to environmental change. Often, a favorable allele is initially

only present in few copies in a population. For adaptive evolution to proceed,

it has to escape stochastic loss and finally rise to fixation. The mathematical

theory of branching processes provides an elegant framework to estimate the

establishment probability and the speed of early growth of a beneficial allele in

a large population. In this thesis, I apply this approach to study adaptation

in ecologically or genetically complex scenarios. A special emphasis is put on

situations where the fitness of the allele is time dependent. The analytical results

are complemented by computer simulations.

The first chapter provides concise analytical approximations for the establish-

ment probability of a single beneficial allele in a variable environment and the time

that it needs to reach a given frequency. It turns out that even slight changes in

the selection pressure over time can strongly alter both quantities. In the second

chapter, the results are applied to the biological problem of evolutionary rescue

in structured populations. I show how various, partially antagonistic effects in-

tertwine, leading to a complex dependence of the rescue probability on ecological

characteristics. The third chapter addresses the topic of adaptive gene intro-

gression. Linked and unlinked deleterious alleles strongly affect the introgression

process of a beneficial allele. Approximations for the introgression probability

and the hitchhiking probability of closely linked deleterious alleles are derived.
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Zusammenfassung

Die Etablierung vorteilhafter Allele ist elementar für die genetische Anpassung

einer Population an veränderte Umweltbedingungen. Ein günstiges Allel liegt

anfangs oft nur in geringer Zahl in einer Population vor. Damit Adaptation statt-

finden kann, darf es nicht durch stochastische Fluktuationen verlorengehen und

muß schließlich fixieren. Die mathematische Theorie der Verzweigungsprozesse

bildet einen eleganten Rahmen, um die Etablierungswahrscheinlichkeit und die

Geschwindigkeit des anfänglichen Frequenzanstiegs des vorteilhaften Allels in

einer großen Population näherungsweise zu bestimmen. In dieser Dissertation

wende ich diesen Ansatz an, um Adaptation in ökologisch oder genetisch kom-

plexen Szenarien zu untersuchen. Ein besonderer Schwerpunkt liegt auf Situatio-

nen, in denen die Fitness des Alles zeitabhängig ist. Die analytischen Ergebnisse

werden durch Computersimulationen ergänzt.

Das erste Kapitel liefert analytische Approximationen für die Etablierungs-

wahrscheinlichkeit eines einzelnen vorteilhaften Allels in einer veränderlichen Um-

welt und die Zeit, die es benötigt, um eine gegebene Frequenz zu erreichen. Es

zeigt sich, daß selbst geringfügige zeitliche Änderungen im Selektionsdruck beide

Größen beträchtlich beeinflussen können. Im zweiten Kapitel werden die Ergeb-

nisse auf die Frage angewandt, ob eine vom Aussterben bedrohte Population ihren

Fortbestand durch genetische Anpassung an die geänderte Umwelt sichern kann

(“evolutionary rescue”). Ich zeige, wie verschiedene, teils antagonistische Effekte

ineinandergreifen und dadurch zu einer komplexen Abhängigkeit der Überlebens-

wahrscheinlichkeit der Population von ökologischen Faktoren führen. Das dritte

Kapitel befaßt sich mit adaptiver Introgression von Genen (d.h. der Etablierung

vorteilhafter Allele einer Art im Genom einer anderen in der Folge von Hybri-

disierung). Gelinkte und ungelinkte schädliche Allele haben einen starken Ein-

fluß auf den Fixationsprozeß des positiv selektierten Allels. Näherungen für die

Etablierungswahrscheinlichkeit des vorteilhaften Allels in der fremden Population

und die Wahrscheinlichkeit, daß schädliche Allele mitfixieren, werden hergeleitet.
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Introduction

Adaptive evolution by natural selection has brought about remarkable mor-

phological, physiological, and behavioral traits that allow organisms to cope with

their biotic and abiotic environment. Of the countless examples, think of the

excellent camouflage of stick or leaf insects: their appearance resembles a twig or

a leaf in form, color, and structure so much that they are almost impossible to

spot among the branches and foliage around them (see Figure 1). The defining

feature of an adaptation is its positive impact in a given environment on fitness,

i.e., on the expected reproductive success of an organism.

Often, we can only observe the outcome but not the process of adaptive evo-

lution because the evolutionary change took place in the past. However, evolu-

tionary change is not necessarily slow, and it is sometimes possible to observe

adaptive evolution in action: examples of immediate relevance are the evolution

of drug or insecticide resistance. The analysis of genomic data moreover allows us

to identify loci that have probably been under recent positive selection. Unam-

biguous identification of these loci is, however, difficult since different processes

can lead to similar patterns in nucleotide diversity, making it hard to infer the

true history of the population. Even if with high probability other hypotheses

(e.g., demographic processes) can be ruled out, the function of the gene is not

necessarily known so that we cannot deduce which trait has evolved as a re-

sponse to selection. Laboratory experiments allow us to follow the evolutionary

process of adaptation in real time. In that way, we can make quantitative mea-

surements about the speed and mode of adaptation and investigate the genetic

basis of adaptive change (for an insightful review on experimental evolution with

microorganisms see Elena and Lenski, 2003).

Adaptive evolution is often triggered by environmental change. If the environ-

ment severely deteriorates, adaptive evolution might be required for persistence

of the population that, without evolution, is doomed to extinction. However, an

immediately precedent change is no prerequisite for adaptive evolution. Adap-

tation also occurs in periods of environmental stasis as fitter variants originate

and become prevalent. In a long-term experiment with E. coli, Richard Lenski

7



INTRODUCTION

(a) Macleay’s Spectre (Extatosoma tiaratum) (b) Walking Leaf Insect (Phyllium giganteum)

Figure 1: Leaf and stick insects possess excellent camouflage.
Photo courtesy of Jeff Whitlock, www.theonlinezoo.com

and his lab observed that adaptation still takes place after tens of thousands of

generations (Elena and Lenski, 2003).

Adaptation occurs through the establishment and fixation of beneficial alle-

les. For a long time, the prevailing belief was that many genes of small effect

contribute to adaptive change (the neo-Darwinian view). We now know that

the genetic architecture of adaptations can take many forms and, frequently, few

genes of large effect are responsible for most of the fitness increase (Orr and

Coyne, 1992; Elena et al., 1996; Elena and Lenski, 2003; Orr, 2005, and

references therein). For some adaptations, mutation at a single locus is suffi-

cient. Such a simple genetic basis has been found repeatedly in the evolution

of insecticide or drug resistance (Milani, 1963; McKenzie et al., 1980; Roush

and McKenzie, 1987; Daborn et al., 2002; Gerstein et al., 2012). The serial

fixation of mutations of large effect leads to a step-like dynamics of the adaptive

process as observed by Elena et al. (1996).

Mutation generates the genetic variation for selection to act on. We can

classify mutations into two categories: mutations that already segregate in the

population prior to environmental change (“standing genetic variation”) and mu-

tations that arise later (“de-novo” or “new mutations”). In many cases, alleles

involve a trade-off: while they are beneficial in one environment, they are dele-

terious in another. For example, alleles that render bacteria resistant to antibi-

otics decrease the competitive ability so that their carriers suffer a disadvantage

with respect to sensitive strains in the absence of drugs. For this reason, alle-
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les that prove beneficial after an environmental change often only segregate at

low frequencies in mutation-selection balance prior to the environmental switch.

Initially, favorable alleles are hence normally rare in the population. This has a

very important consequence: even if beneficial, they are likely to suffer stochastic

loss because the few individuals in this early phase might fail to reproduce by

chance. This is because a beneficial allele increases the expected number of an

individual’s offspring but the variance in offspring number is non-zero. The role

of chance in the adaptive process is hence substantial. Only if an adaptive allele

survives the chance fluctuations when rare, is it picked up by selection to rise in

frequency.

In many mathematical models of the adaptive process, the establishment prob-

ability of beneficial alleles plays a key role. Two classic approaches exist for the

assessment of fixation probabilities: branching process and diffusion theory. Both

methods were first brought up in a seminal paper by Fisher (1922). A few years

later, in 1927, Haldane estimated by means of branching process theory that an

allele with selective advantage σ has a chance of about 2σ to establish in the

population if it appears in a single copy and offspring numbers are Poisson dis-

tributed (Haldane, 1927). Since then, both approaches have been developed

further and applied to many biological scenarios (for a review see Patwa and

Wahl (2008); cf. also Wahl (2011)). Assessing the establishment probability

of beneficial alleles by means of branching process theory is at the core of this

thesis.

Branching processes are a special class of Markov processes that consider the

amplification of individuals or particles; in classical theory as applied in this the-

sis, the state space is discrete, consisting of the natural numbers (including zero).

The distinctive assumption underlying branching processes is that individuals re-

produce and die independently of each other. This special structure of branching

processes allows for the derivation of many beautiful mathematical results. In the

simplest case, there is only one type of individual and the process is furthermore

homogeneous in time. Here we briefly focus on time-homogeneous single-type

branching processes to review some key notions. For a rigorous and compre-

hensive introduction to the theory, we refer to the textbooks by Athreya and

Ney (1972), Jagers (1975), Harris (1963), and Sewastjanow (1974). Let

Pij(t) be the probability that i individuals turn into j individuals in the time

9



INTRODUCTION

interval t. The branching property is then expressed by the following relation

(Sewastjanow, 1974, p. 1):

Pij(t) =
∑

j1+j2+···+ji=j

P1j1(t)P1j2(t) · · ·P1ji(t),

where the right-hand side sums over all possibilities for i individuals having j

descendants. Time can either be discrete (t = 0, 1, 2, . . . ) or continuous (t ∈
[0,∞)). In a process with discrete generations, each individual leaves a random

number of offspring before it dies. Such processes are called Galton-Watson

branching processes. If time is continuous, one usually assumes

P11(h) = 1 + p1h+ o(h),

P1k(h) = pkh+ o(h), k 6= 1

with pk ≥ 0 for k 6= 1 and ∑
k

pk = 0.

If pk = 0 for k > 2, we encounter a special instance of a birth-death process

in which the per-capita birth and death rates are independent of the number of

individuals.

Branching processes display a dichotomy: either the process dies out or it

grows to infinity (except for the degenerate case in which each individual has

exactly one offspring; we will ignore this case in the following). For a discrete-

time process, denote by m the average number of offspring of an individual. For

a continuous-time process, denote by ah+o(h) the expected per-capita change in

the total number of individuals in the time interval h. Depending on m (discrete

time) or a (continuous time), branching processes are classified as subcritical

(m < 1, a < 0), critical (m = 1, a = 0), or supercritical (m > 1, a > 0). Only

supercritical processes have a chance to survive indefinitely.

Generating functions are an efficient tool for the analysis of branching pro-

cesses. In a Galton-Watson branching process, denote by Pk the probability that

an individual produces k offspring. The offspring distribution is characterized by

the probability generating function

F (s) =
∑
k

Pks
k.

10



For the analysis of continuous time branching processes, one relies on the related

generating function

f(s) =
∑
k

pks
k.

A very fundamental result of branching process theory states that the extinction

probability of a branching process is given by the smallest non-negative root of

F (s) = s or f(s) = 0

in [0, 1] (Sewastjanow, 1974, p. 31). For the discrete-time process, it is intu-

itively clear that the extinction probability q is a fixed point of F (s): assume

that the initial individual leaves k offspring. Each of this k offspring founds an

independent lineage. The process goes extinct when all these k lineages go ex-

tinct. Since the lineages are independent, this happens with probability qk. The

probability that the initial individual has k offspring is Pk and therefore

q =
∑
k

Pkq
k = F (q).

It moreover readily follows from the above result that the extinction probability

is one for subcritical and critical processes and smaller than one for supercritical

processes: F (s) is an increasing function with F (0) = P0 ≥ 0 and F (1) = 1 and

F ′(s) < F ′(1) for s < 1. For the slope at s = 1, we obtain F ′(1) =
∑

k kPk = m.

For subcritical and critical processes (m ≤ 1), it therefore holds that F (s) > s for

s ∈ [0, 1). In contrast, for supercritical processes (m > 1), F (s) and s intersect

for some s ∈ [0, 1). This reasoning is illustrated in Figure 2.

The application of branching process theory to the establishment of adapta-

tions relies on the following idea: While rare, carriers of the beneficial allele suffer

nearly independent fates, as do the individuals in a branching process. The early

phase of spread of a beneficial allele in a large population (or a population whose

size is far below carrying capacity) can therefore be modeled by a branching pro-

cess. Once the allele is so frequent that its frequency path starts deviating from

the branching process, it is highly unlikely to get lost. The survival probability

of the branching process hence approximates the establishment probability of the

adaptive allele.

In this thesis, I apply branching process theory to study adaptation at a single

locus in ecologically or genetically complex scenarios. The branching processes

that appear in the analysis are for the most part time inhomogeneous. This

11
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 0

 1

 0  1
s

m < 1

P
0

F(s)

(a) Subcritical process

 0

 1

 0  1
s

m = 1

P
0

F(s)

(b) Critical process

 0

 1

 0  1
s

m > 1

P
0

F(s)

(c) Supercritical process

Figure 2: For subcritical and critical branching processes, F (s) and s do not
intersect in [0, 1). In contrast, for supercritical processes, there exists a fixpoint
of F (s) in [0, 1).

means that the transition probabilties explicitly depend on time: for a time-

inhomogeneous process, Pij(t1, t2) with t1 ≤ t2 is the probability that i individuals

at time t1 leave j descendants at time t2; in contrast to a time-homogeneous

process, the probability does hence not simply depend on the interval t2 − t1.

For processes in continuous time, this implies that the transition rates pi depend

on time (pi = pi(t)). The mathematical literature provides a body of relevant

theory on time-inhomogeneous branching processes (e.g., Kendall, 1948; Cohn

and Jagers, 1994). Yet, these results have only been little applied in population

genetics so far.

From a biological perspective, time inhomogeneity in the adaptive process

arises naturally when ecological changes happen at the same time scale as evo-

lutionary change. Environmental change but also allele frequency shifts at other

loci can entail changes in the strength and even the sign of selection. Likewise,

the population size is often not constant. Chapter 1 of this thesis establishes key

results for the fixation process of a beneficial allele in a variable environment. In

particular, I derive approximations for the building blocks of the process, namely,

the fixation probability of a single beneficial allele and the time that it needs to

reach a given frequency in the population. In Chapter 2, I consider the biolog-

ical problem of evolutionary rescue, i.e., the question of whether a population

can escape extinction through adaptive evolution when faced with severe envi-

ronmental deterioration. The scenario as described in the chapter is an instance

12



where ecological and evolutionary processes happen simultaneously. Chapter 3 is

concerned with adaptive gene introgression, i.e., the transfer of adaptations across

species boundaries. Here, the external environment remains constant. However,

the genomic context of the allele changes so that, effectively, it again experiences

a time-dependent selection pressure. For this chapter, I extend the modeling

framework by multitype branching processes to describe the fate of the various

haplotypes that are generated by backcrossing.

Through the work described in this thesis, we gain a better understanding

of how a dynamical environment impacts evolutionary adaptation. In particu-

lar, the role of spatial and temporal ecological change for adaptive evolution (or

extinction) becomes elucidated. I hope that the insights provided by this work

inspire new ways of thinking about adaptation in an ecological context.

13



Chapter 1

On the fixation process of a

beneficial mutation in a variable

environment

Abstract A population that adapts to gradual environmental change will typ-

ically experience temporal variation in its population size and the selection pres-

sure. On the basis of the mathematical theory of inhomogeneous branching

processes, we present a framework to describe the fixation process of a single

beneficial allele under these conditions. The approach allows for arbitrary time

dependence of the selection coefficient s(t) and the population size N(t), as may

result from an underlying ecological model. We derive compact analytical approx-

imations for the fixation probability and the distribution of passage times for the

beneficial allele to reach a given intermediate frequency. We apply the formalism

to several biologically relevant scenarios, such as linear or cyclic changes in the

selection coefficient, and logistic population growth. Comparison with computer

simulations shows that the analytical results are accurate for a large parameter

range, as long as selection is not very weak.

With minor changes, this chapter has been published as: Uecker H. & Hermisson J. (2011), On
the fixation process of a beneficial mutation in a variable environment. Genetics 188:915–930.

14



1.1. INTRODUCTION

1.1 Introduction

For adaptive evolution to proceed, it is not enough that new beneficial mutations

enter a population. To complete an adaptive step, these mutations also need

to escape stochastic loss due to genetic drift, get established, and finally rise to

fixation. The fixation process of beneficial (or neutral or deleterious) alleles is one

of the building blocks of population genetic theory and many of the key results

on fixation probabilities and times date back to its early days. Two alternative

mathematical frameworks have been developed to derive analytical expressions

for these quantities: branching processes (Fisher, 1922, 1930; Haldane, 1927)

and diffusion theory (Kimura, 1962; Kimura and Ohta, 1969). Today, a large

body of literature exists to study fixation under various ecological scenarios and

genetic conditions (reviewed in Patwa and Wahl, 2008), such as the effects of

population structure (Whitlock, 2003) and spatial heterogeneity (Whitlock

and Gomulkiewicz, 2005), interference due to selection on linked loci (Barton,

1995) or due to epistatic interaction (Takahasi and Tajima, 2005).

In this article, we consider the fixation process in a variable environment,

leading to time-dependent selection coefficients and population sizes. Aspects

of this problem have already been studied in previous work: In particular, the

impact of various scenarios of demographic change (growth, decline, cycles) on the

fixation probability has been treated in a series of papers (Ewens, 1967; Chia,

1968; Kimura and Ohta, 1974; Otto and Whitlock, 1997; Pollak, 2000;

Parsons and Quince, 2007a; Orr and Unckless, 2008). Studies on time-

dependent selection mostly concentrate on stochastic fluctuations of the selection

coefficient (Jensen, 1973; Karlin and Levikson, 1974; Takahata et al., 1975;

Huillet, 2011). Since the distribution of the selection coefficients is constant

across generations, these models are still time homogeneous in a probabilistic

sense. In contrast, surprisingly little is known when the changes of the selection

coefficient s = s(t) follow an explicit trend. Ohta and Kojima (1968) derive

an expression for the fixation probability of a mutation with time-dependent

selective advantage in the context of the evolution of chromosomal inversions.

Apart from that, only particular functions have been considered: Kimura and

Ohta (1969) discuss the case where selection decreases exponentially in time,

and Pollak (1966) derives expressions for the fixation probability under two

alternating selection pressures. No previous work seems to exist where both

population size and selection strength are variable, although this is a generic

15



CHAPTER 1. FIXATION IN A VARIABLE ENVIRONMENT

case under realistic ecological conditions. Also, there does not seem to be an

investigation of fixation or passage times in variable environments.

In the following, we present a formalism to describe the fixation process under

a wide range of scenarios of environmental variation. We use branching processes

in continuous time to derive analytical approximations for the fixation probabil-

ity and the passage time needed for the mutant allele to reach some intermediate

frequency xc. After the introduction of our model, we describe how a general

approximation for the fixation probability can be obtained from known mathe-

matical results on inhomogeneous branching processes. Afterwards, we discuss

applications of this result to several biologically relevant scenarios. In the second

part of the article, we introduce and apply a method to calculate the distribution

of the passage time needed for a beneficial mutation to reach an intermediate

frequency. The method works by combining the stochastic fluctuations from the

branching approximation with the deterministic growth of the full model. This

technique has been used before (for constant selection and population size) by

Desai and Fisher (2007) in a model of clonal evolution. All analytical results

are complemented by computer simulations, which are briefly described in a sep-

arate section. We close with a short discussion. In Appendix A, we discuss a

generalized version of the model to include allele-frequency-dependent popula-

tion demographies. We illustrate how the formalism can be used by applying it

to an illustrative ecological scenario: the fixation probability of a “rescue muta-

tion” in a population that is threatened by extinction (cf. Orr and Unckless,

2008). Additional material is devoted to the Appendices B–D. We discuss in some

detail the scope and limits of the approach and the accuracy of the approxima-

tion. In Appendix C, we present an alternative treatment to derive the fixation

probability in a variable environment from a diffusion approach.

1.2 The model

We consider a large population of haploid individuals with time-dependent pop-

ulation size Nt. The population dynamics are modeled as a time-inhomogeneous

birth-death process with birth and death rates b(t, Nt) and d(t, Nt):

Nt → Nt + 1 : b(t, Nt)Nt,

Nt → Nt − 1 : d(t, Nt)Nt.
(1.1)
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1.2. THE MODEL

The impact of the changes in the external environment on the population size is

reflected in the explicit time dependence of the rates on t. The dependence on

Nt accounts for density dependence (e.g., logistic: b(t, Nt) = b1(t)− b2(t)Nt). We

call r(t, Nt) = b(t, Nt)− d(t, Nt) the growth parameter. Obviously, the expected

change of Nt over a small time intervall dt reads

E[∆N |Nt] = r(t, Nt)Nt dt. (1.2)

Consider now two alleles, a beneficial mutant allele A and the ancestral (res-

ident) allele a, that segregate in the population at a single locus. Recurrent

mutations in both directions are ignored. In general, birth and death rates might

be different for residents and mutants. These rates can depend on time and on

the (absolute) frequencies of both allelic types, allowing for general frequency-

dependent selection. As a consequence, also the population dynamics depends

on the allelic composition and cannot be described by Eq. (1.1) anymore. We

discuss this model in Appendix A. For the main part of the article, however, we

assume that the rates are the same for mutants and residents and that all model

parameters are independent of allele frequencies. This means, in particular that

selection is soft; i.e., changes in the allelic composition due to selection or drift

do not interfere with the population dynamics. Population growth and decline of

the polymorphic population are then correctly described by Eq. (1.1).

In this setting, selection is modeled as competitive replacement between in-

dividuals, which does not change the population size, and is implemented as

follows: At per capita rate ξ(t, Nt) + s(t, Nt), a mutant additionally reproduces

and succeeds in replacing a randomly chosen individual from the population by

its offspring. Residents do the same at rate ξ(t, Nt). Again, the selective ad-

vantage s(t, Nt) of the mutant may thus depend on the external environment

(modeled by the dependence of s(t, Nt) on t) and the population size (modeled

by the dependence on Nt). Changes in the number of mutants then occur at

rates:

nt → nt + 1 :
(
ξ(t, Nt) + s(t, Nt)

)nt(Nt − nt)
Nt

+ b(t, Nt)nt,

nt → nt − 1 : ξ(t, Nt)
nt(Nt − nt)

Nt

+ d(t, Nt)nt.

(1.3)

The model corresponds to a continuous-time Moran model, but with a popu-

lation size that may change in time. Putting b(t, Nt) = d(t, Nt) = 0, ξ(t, Nt) = 1
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and s(t, Nt) = s = const. reproduces the standard Moran model (Moran,

1958a,b; Novozhilov et al., 2006). The free parameter ξ(t, Nt) has been in-

troduced to our model to allow for easy interpolation to other models (see below)

and additionally to make the analysis of density-dependent competition possible.

To further clarify the relation to other models, we calculate how the frequency

of mutants xt := nt/Nt changes over time. Let ∆x be its change in an infinitesimal

time interval dt. The expectation and the variance of ∆x are calculated to be:

E[∆x|xt, Nt] = s(t, Nt)xt(1− xt)dt, (1.4a)

Var[∆x|xt, Nt] ≈ E[(∆x)2|xt, Nt] ≈
xt(1− xt)

Ne,t

dt (1.4b)

with the time-dependent variance effective population size

Ne,t =
Nt

2ξ(t, Nt) + b(t, Nt) + d(t, Nt) + s(t, Nt)
. (1.5)

In the last step we approximated Nt + 1 ≈ Nt and Nt − 1 ≈ Nt (see Appendix D

for the derivation of Eq. (1.4a) and (1.4b)).

We see that the strength of drift, measured as N−1
e,t , is proportional to the

total rate of events in the model. The choice 2ξ(t, Nt) + b(t, Nt) + d(t, Nt) = 2

coincides with the strength of drift in the standard Moran model, while 2ξ(t, Nt)+

b(t, Nt) + d(t, Nt) = 1 is consistent with the scaling in the Wright-Fisher model.

In contrast to many diffusion or coalescent approaches, we do not rescale time

with the effective population size (which would be impractical since Ne,t itself

depends on t). Generation time in the continuous-time Moran model is defined

as the inverse of the total death rate of an individual, (ξ(τ,Nτ )+d(τ,Nτ ))
−1, and

may again depend on time in our model.

1.3 Fixation probability

1.3.1 Analytical theory

Following pioneering work by Haldane (1927) and Fisher (1930), there has

been a long tradition in population genetics to calculate fixation probabilities by

branching process methods (reviewed in Haccou et al. (2005) and Patwa and

Wahl (2008)). For the general time-dependent case, the relevant results have

long been known in the mathematical literature (e.g., Kendall, 1948; Allen,
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2011). However, only specific cases (usually in the context of changing population

sizes) have been discussed in the population genetics context (Ewens, 1967;

Otto and Whitlock, 1997; Pollak, 2000; Wahl and Gerrish, 2001). We

will therefore give a brief outline of the general theory below and show how it

applies to the biological problem at hand. Previous results are recovered as special

cases.

The branching process approximation is based on the following reasoning:

Initially, the fate of a new beneficial mutation arising in a population will be

strongly determined by genetic drift. In most cases, it will actually get lost

again. Once the mutation has survived this early phase, it is, however, almost

sure to get fixed given its selective advantage is large enough. To calculate the

fixation probability it is therefore often sufficient to consider the stage at which

the mutant population size nt is still small relative to the total population size

Nt. In this early phase, the mutant individuals suffer nearly independent fates,

as do the individuals in a Galton-Watson branching process (this assumption is

precisely met in an infinite population). The extinction probability of the latter

can therefore be used as an approximation for the probability that the mutation

gets lost. Because a mutation in a finite population is in the long term either fixed

or lost, the fixation probability is the complementary probability. (We exclude the

unbiological case of a population that increases without bounds, where possibly

neither wildtypes nor mutants become extinct.)

Ignoring terms proportional to xt = nt/Nt in the birth-death model (1.3),

which corresponds to the limit Nt → ∞, leads to transition rates that are pro-

portional to nt. Following standard practice in ecological modeling, we further

ignore stochastic fluctuations in the population dynamics. This is done by re-

placing the stochastic variable Nt by its deterministic approximation denoted as

N(t), with dynamics
dN(t)

dt
= r(t, N(t))N(t). (1.6)

Inserting the deterministic solution N(t) into the rates for birth, death and se-

lection, reduces the dependence of these rates on t and Nt to a dependence on t

only (s(t, Nt) → s(t, N(t)) =: s(t) etc.). We arrive at a branching process with

time-dependent per capita birth and death rates:

birth rate : λ(t) = b(t) + ξ(t) + s(t),

death rate : µ(t) = d(t) + ξ(t).
(1.7)
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As explained above for the birth-death process, the total rate of events determines

the strength of genetic drift, while λ(t) − µ(t) = s(t) + r(t) corresponds to the

absolute expected rate of increase of a small mutant population (its Malthusian

fitness parameter).

To derive the extinction probability of this process, we follow Allen (2011,

p. 278ff). Let pi(n0, t) be the probability that there are i individuals at time t

when the process started with n0 individuals at time t = 0. Using the Kolmogorov

forward equation,

dpi(n0, t)

dt
= λ(t)(i− 1)pi−1(n0, t) + µ(t)(i+ 1)pi+1(n0, t)− (λ(t) + µ(t))ipi(n0, t),

(1.8)

a differential equation for the probability generating function
∞∑
i=0

pi(n0, t)z
i =

Pn0(z, t) of the branching process can be derived (see Allen, 2011, p. 279):

∂Pn0(z, t)

∂t
=
[
λ(t)(z2 − z) + µ(t)(1− z)

] ∂Pn0(z, t)

∂z
, Pn0(z, 0) = zn0 . (1.9)

The solution is known from the mathematical literature (Kendall, 1948; Allen,

2011, p. 280) and given as

Pn0(z, t) =

1 +
1

e−ρ(t)

z−1
−

t́

0

λ(τ)e−ρ(τ)dτ


n0

(1.10)

with

ρ(t) =

tˆ

0

[λ(τ)− µ(τ)]dτ =

tˆ

0

[s(τ) + r(τ)]dτ. (1.11)

To keep notation short, we introduce the abbreviations

A(t) := e−ρ(t), (1.12a)

B(t) :=

tˆ

0

λ(τ)e−ρ(τ)dτ. (1.12b)
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The extinction probability p0(n0, t) is immediately obtained from the generating

function via

p0(n0, t) = Pn0(0, t) =

(
1− 1

(A+B)(t)

)n0

=


t́

0

µ(τ)e−ρ(τ)dτ

1 +
t́

0

µ(τ)e−ρ(τ)dτ


n0

. (1.13)

The probability that the mutation will eventually fix in the population is therefore

given by

pfix(n0) = 1− lim
t→∞

p0(n0, t) = 1−
(

1− 1

A+B

)n0

, (1.14)

where we introduced

A+B = lim
t→∞

(A+B)(t) = 1 +

∞̂

0

µ(t)e−ρ(t)dt =

∞̂

0

λ(t)e−ρ(t)dt. (1.15)

The last equality is valid for lim
t→∞

exp (−ρ(t)) = 0. This condition is met in all

examples considered below. For a single mutant (n0 = 1), it thus holds:

pfix =
1

A+B
=

2

1 +
∞́

0

(λ+ µ)(t) exp

(
−

t́

0

(s+ r)(τ)dτ

)
dt

(1.16a)

=
2

1 +
∞́

0

N(0)
Ne(t)

exp

(
−

t́

0

s(τ)dτ

)
dt

, (1.16b)

where we have used
´ t

0
r(τ)dτ =

´ t
0
Ṅ(τ)
N(τ)

dτ = ln (N(t)/N(0)) for the last equality

and Ne(t) is defined analogously to Eq. (1.5). A similar expression was also

derived by Ohta and Kojima (1968). Restricted to a constant population size

and a Poisson offspring distribution, their result is, however, less general.

The result depends on two independent parameters, which are compositions

of three biologically relevant factors: the strength of selection given by s(t), the

combined rate of birth and death events (λ+ µ)(t), and the changes in the total

population size (modeled by r(t) or N(t)). In the above equation, we formulated

the result via two different combinations of these three variables. In the first ver-

sion (1.16a), it is expressed in terms of the absolute rate of increase of mutants
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in the population (s+ r)(t) and the total rate (λ+µ)(t) at which events happen,

which defines the time scale of the problem and also quantifies the influence of

drift. In the second formulation (1.16b) of the result, we combined the birth- and

death rates and the changing population size to the time-dependent variance effec-

tive population size. The second decisive parameter is the selection coefficient of

the mutation. Depending on the question to be answered, one or the other version

is more favorable. In the first version, the correspondence between a mutation

with time-dependent selective advantage and a mutation in a population of chang-

ing size can be easiliy seen: a mutation with time-dependent selective advantage

s(t) in a population of (on average) constant size (b(t) = d(t) = const.) has the

same chance to reach fixation as a mutation with constant selective advantage

s0 in a population with time-dependent death rate d(t) and growth parameter

r(t) = s(t)−s0. (Note, however, that s0 must be larger than 0, such that fixation

is (almost) certain once the mutation has survived genetic drift.) The second

version is closer to the traditional view in population genetics. It is advantageous

if the variance effective population size is directly given, and allows, in particular,

also for the treatment of discontinuous changes in the population size.

We see that the fixation probability is independent of many details of the in-

dividual level dynamics of the original process (Eq. (1.3)), which depends on four

rates (b(t, Nt), d(t, Nt), s(t, Nt) and ξ(t, Nt)). Further aspects of the stochastic

model are ignored by our deterministic approximation for the population dynam-

ics. In particular, the analytical results become independent of the particular form

of density regulation. As an example, consider three scenarios: (1) a population

with inherently constant size N0 with b(t, Nt) = d(t, Nt) = 0 and ξ(t, Nt) = c; (2)

a population with density regulation according to b(t, Nt) = c+ρ(1−Nt/N0) and

d(t, Nt) = c, with initial size N0, and ξ(t, Nt) = 0; and (3) a population without

density regulation with b(t, Nt) = d(t, Nt) = c, initial size N0, and ξ(t, Nt) = 0.

In all three cases, the deterministic dynamics of the population size are the same

(N(t) = N0) and the analytical predictions for the fixation probability coincide

for arbitrary s(t, Nt). Simulation results of all three scenarios indeed showed no

significant difference, justifying the approximation (see Appendix B). This obser-

vation agrees with findings by Parsons and Quince (2007a) that demographic

stochasticity does not significantly influence the fixation probability of advanta-

geous alleles (Parsons and Quince (2007a) discuss this issue for a population

that starts in the vicinity of the dynamic equilibrium). For concreteness, we will

use the notion of “constant population size” in the following to refer to the case

of a strictly constant population size (b(t, Nt) = d(t, Nt) = 0). We further set
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ξ(t) = ξ = const. in all applications. If not stated otherwise, we use ξ = 1

(corresponding to the Moran model scaling) for the results shown in the figures.

A necessary condition for the branching approximation to yield meaningful

results is that the fate of the mutation is decided as long as the mutant frequency

xt = nt/Nt is still small. As xt increases, mutants are no longer independent in

the original birth-death process (Eq. (1.3)), and both processes differ significantly

from each other. In particular, the birth-death process has a second absorbing

boundary at xt = 1. As a consequence, neutral or even deleterious mutations,

too, can become fixed by genetic drift. In the corresponding branching model, an

upper absorbing boundary does not exist. Consequently, neutral or deleterious

alleles must go extinct in the long term. For an allele with a general time-

dependent selection coefficient, the branching process approximation is thereby

valid only if the allele is “sufficiently beneficial on average”. We can formalize this

condition as follows: Since divergence of the (first) integral in Eq. (1.15) leads

to the wrong prediction of a zero fixation probability, we need to require that

the integral converges. If we assume that µ(t) is bounded below by a constant

Cµ > 0, a necessary condition for the convergence of the integral is divergence

of the integral in Eq. (1.11). More precisely: if we assume that µ(t) has bounds

Cµ > 0, Cµ such that Cµ < µ(t) < Cµ, it must hold that limt→∞ ρ(t) > C ln [t] for

some constant C > 1. A prominent example where this condition is not fulfilled is

a mutation with an exponentially decreasing selection coefficient in a population

of constant size (Kimura and Ohta (1969), cf. also Pollak (1966) and Ohta

and Kojima (1968) for mutations that lose their advantage over time). The

condition is, however, not sufficient to obtain good results: it is also necessary

that the contribution of times beyond the initial phase be negligible. In particular,

changes in the environment at times larger than the fixation time must not have

an impact on the results. As shown in Appendix B, the approximation will

usually be excellent if the estimate of pfix from Eq. (1.16) fulfills pfixN & 10.

By a similar reasoning it is clear that the requirement that the mutation be

beneficial all the time is at this point unnecessarily strict. It is sufficient that

the extinction probability is in both processes – the original birth-death process

and the branching approximation – negligible once the number of mutants has

reached a certain size.
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1.3.2 Applications

Constant selection and constant population size. Setting λ(t) = ξ + s

and µ(t) = ξ yields for the fixation probability

pfix =
s

ξ + s
≈ s

ξ
≈ 2s

Ne

N
. (1.17)

The well-known result found by Haldane (1927) is therefore reproduced for

Ne = N . In the special case of a constant environment, it is possible to calculate

the exact fixation probability from the transition matrix defined via Eq. (1.3)

(see Ewens, 2004, p. 90). One obtains

p
(exact)
fix =

s
ξ+s

1−
(

ξ
ξ+s

)N ≈ s
ξ+s

1− exp (− s
ξ+s

N)
, (1.18)

which shows that the branching approximation is very accurate for large values

of sN/ξ. Furthermore, it is possible to calculate the fixation probability of a

deleterious mutation with selective disadvantage −s. To do so, we switch the

roles of the transition rates defined in Eq. (1.3). Every path leading to fixation

n = N , has now a chance to be realized which is by a factor of (ξ + s)−N lower

than the corresponding path for a beneficial mutation. It immediately follows

that

pfix(−s) =
pfix(s)

(ξ + s)N
ξ=1
≈ pfix(s)

exp (sN)
. (1.19)

Constant selection and changing population size. Otto and Whitlock

(1997) analyzed the fixation probability for several important scenarios of demo-

graphic change. Our general result (Eq. (1.16b)) contains all those scenarios,

among arbitrary others. In addition, it provides some insight into the influence

of the individual-level dynamics on the fixation probability. As an example, we

consider a population that follows logistic growth (or decline) until it has reached

its new carrying capacity K. There are different ways to describe this global dy-

namics at the individual level. We discuss two possibilities, which arise naturally

in a biological context: The first one assumes that a decreasing availability of

resources per individual leads to a lower birth rate while the death rate stays

constant (e.g., fertility is reduced). The second one assumes that the same cir-

cumstances lead to a higher death rate while the birth rate stays constant. The
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selection coefficient s of the beneficial mutant is constant in both cases. In the

first scenario, the birth and death rates are given by

b(t, Nt) = b+ r

(
1− Nt

K

)
,

d(t, Nt) = b.

(1.20)

The total population size thus changes according to

N(t) =
KN0

(K −N0)e−rt +N0

, (1.21)

and using Eq. (1.16b) yields

p
(1)
fix =

s(r + s)

s(s+ r) + (b+ ξ)(s+ rγ0)
(1.22)

with γ0 = N0

K
.

In the second scenario, birth and death rates are then given by

b(t, Nt) = b+ r,

d(t, Nt) = b+ r
Nt

K
.

(1.23)

While the deterministic dynamics at the population level are the same for both

scenarios (given by Eq. (1.21)), this is not true for the fixation probability. From

Eq. (1.16b), we obtain for the fixation probability in the second scenario

p
(2)
fix =

s(r + s)

s(r + s) + (b+ ξ)(s+ rγ0) + γ0r(r + s)
≤ p

(1)
fix , (1.24)

i.e., a reduced probability relative to the first scenario. This is explained by the

fact that genetic drift is stronger in the second scenario. For small values of s and

r, both fixation probabilities are approximately the same p
(1)
fix ≈ p

(2)
fix ≈

s(r+s)
(b+ξ)(s+rγ0)

and reproduce the result found by Otto and Whitlock (1997) if we choose

b+ξ = 0.5 such that the variance of the increase in the mutant number Var[∆n|nt]
is the same as in their model.

Note that for a sudden jump in population size, the result of our theory coin-

cides with the result derived by Otto and Whitlock (1997) (where selection is

effective during the change in population size), while Wahl and Gerrish (2001)
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consider a slightly different situation (where selection is switched off during the

bottleneck; cf. Patwa and Wahl (2008)).

Linearly increasing selection. When environmental conditions develop con-

tinuously in a given direction, the selective advantage of a mutation may gradually

increase during the fixation process. Let us assume that the total population size

stays constant and that the selection coefficient of the mutation linearly increases

in time, thus s(t) = s0 + s1t. We obtain the following expression for pfix from

Eq. (1.16a):

pfix =

[
1 + ξ

√
π

2s1

e
s20
2s1 erfc

(
s0√
2s1

)]−1

, (1.25)

where erfc(x) = 2
π

∞́

x

e−t
2
dt is the complementary error function. For the special

case s0 = 0, the result simplifies,

pfix(s0 = 0) =

[
1 + ξ

√
π

2s1

]−1

≈
√
s1

ξ

√
2

π
. (1.26)

In Figure 1.1 the analytical results are compared to simulation results, showing

very good agreement. The fixation probability increases significantly with s1.

Generally:

pfix(s(t) = s0 + s1t)

pfix(s(t) = s0)
=

ξ + s0

s0 + ξ
√

πs20
2s1

e
s20
2s1 erfc

(
s0√
2s1

)
≈
[√

π

2
ye

y2

2 erfc

(
y√
2

)]−1

=: f(y)

(1.27)

with y := s0√
s1

. The function f(y) is shown in the inset of Figure 1.1. For y = 1

it is evaluated to be f(1) ≈ 1.52. This means that if y ≈ 1, i.e., s0 ≈
√
s1,

we observe an increase in the fixation probability of ∼ 50% in comparison to a

mutation with constant selective advantage. E.g., for initially moderately strong

selection s0 = 0.01 the fixation probability is still increased by ≈ 50% if selection

increases as slightly as s(t) = 0.01 + 0.0001t.

Periodically changing selection. Cyclic environmental changes, such as sea-

sonal changes or cyclic climate fluctuations (like the El Niño phenomenon), are
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Figure 1.1: A: Fixation probability for linearly increasing selection strength s(t) =
s0+s1t in dependence of s1 for various values of s0. Simulations were performed for
a population of 100 000 individuals, and each simulation point is the average over
106 runs. B: Function f(y) (see Eq. (1.27)). The fixation probability increases
significantly with increasing s1.
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frequent in nature. In the following, we consider strictly periodic changes, al-

though our theory does not rely on this condition. Let us assume that again

the total population size stays unaffected, but that the selective advantage of a

mutation changes periodically with time, e.g.,

s(t) = s0 + (smax − s0) cos (ωt+ ϕ). (1.28)

Depending on the parameter values, it is thus possible that the mutation is dis-

advantageous at certain periods of time. We obtain for the fixation probability:

pfix =

1 + ξ

∞̂

0

e−s0t−(smax−s0)(t+ 1
ω

sin (ωt+ϕ)− 1
ω

sin (ϕ))dt

−1

. (1.29)

The integral can be evaluated only numerically. Comparison to simulated data

(see Figure E.5) shows that the theory provides an accurate prediction of the

fixation probability also for scenarios in which the mutation temporarily gets

disadvantageous. For s0 ≤ 0, however, it predicts a fixation probability of zero

and therefore underestimates the true value.

To slightly reduce the parameter space, we concentrate now on the special

case smax = 2s0, i.e.,

s(t) = s0(1 + cos (ωt+ ϕ)). (1.30)

Figure 1.2 shows how the fixation probability changes with ω for various values

of ϕ. For small and intermediate values of ω, the value of ϕ has a strong impact

on the result. If ω increases, the fixation probability converges to the value for

a mutation with selective advantage s = s0 for all values of ϕ. This behavior

is further illustrated in Figure 1.3, which shows the fixation probability and the

initial selection strength in dependence of ϕ for various values of ω. In the

limit ω → 0, the fixation probability equals s(0)/(1 + s(0)) ≈ s(0). It therefore

follows approximately the curve of s(0) for small values of ω. For large values, it

converges to s0 for all values of ϕ. In an intermediate regime s0/10 . ω . 10s0,

more complex behavior is found: here, not only the initial value s(0) but also

the following time-development of the selection strength (i.e., not only s(0) =

s0(1 + cos (ϕ)), but ϕ itself) becomes important. The extrema of pfix(ϕ) are
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Figure 1.2: Comparison between the analytical theory and simulation results
for the fixation probability in the case of periodically changing selection s(t) =
s0(1 + cos (ωt+ ϕ)), s0 = 0.01. Simulations were performed for a population of
100 000 individuals, and every simulation point is the average over 107 runs.

attained for smaller values of ϕ than the extrema of s(0). A straightforward

calculation shows furthermore that

pfix(ϕe) =
s0(1 + cos (ϕe))

1 + s0(1 + cos (ϕe))
, (1.31)

where ϕe is the value where the extremum is attained. We thus see that the fixa-

tion probability at the extrema ϕe are the same for cyclic selection and constant

selection with s = s(0) = s0(1 + cos (ϕe)).

1.4 Time to reach an intermediate frequency xc

1.4.1 Analytical theory

In models of the adaptive process, it is often necessary to know the time that

it takes for a successful mutation to become established and to reach a cer-

tain threshold frequency (e.g., Desai and Fisher, 2007; Kopp and Hermisson,
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Figure 1.3: Fixation probability and initial selection strength s(0) = s0(1 +
cos (ϕ)) in dependence of ϕ for various values of ω when the selection coefficient
changes according to s(t) = s0(1 + cos (ωt+ ϕ)), s0 = 0.01. Again, one observes
the expected limiting behavior for small and for large values of ω. For intermedi-
ate values of ω a non-trivial behavior is found. Simulations were performed for a
population of 100 000 individuals, and each simulation point is the average over
106 runs.
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2009a). It is well-known that the deterministic model of the allele frequency in-

crease yields a poor approximation even for the expected value of this time. The

reason is that a mutation that has survived the initial phase will on average have

grown faster during this phase than predicted by the deterministic model. When

the frequency is finally large enough that stochasticity can be neglected and the

path be modeled deterministically, the frequency will thus be larger than if it had

always grown following the deterministic path. In that phase, it is well described

by the deterministic path that is not started from a single individual, but from an

(on average) larger “effective initial population size”. The method presented here

builds on work by Cohn and Jagers (1994) and Desai and Fisher (2007). It

consists of subsuming all the stochasticity of the path under this effective initial

population size as a single random variable and then modeling the path deter-

ministically. The procedure consists of two steps: in a first step, the distribution

of the effective initial population size is estimated via a branching process. In a

second step, the deterministic approximation of the full birth-death model is used

to describe the allele frequency path starting from the effective initial population

size.

Let us again consider the phase in which the mutation is rare and in which

the dynamics can be described by the time-inhomogeneous branching process

(Eq. (1.7)). The key to the method is that it is possible to separate stochastic

fluctuations and deterministic growth for this process. Here, deterministic growth

coincides with the time-development of the expected number of mutants:

E[nt] = n0 exp (ρ(t)). (1.32)

In the following, we restrict to the case n0 = 1. Define now a new random

variable:

νt :=
nt

E[nt]
= nt exp (−ρ(t)). (1.33)

νt describes all the stochasticity that has accumulated in the branching process

until time t. Crucially, a theorem by Cohn and Jagers (1994) guarantees that

for t → ∞, νt converges (almost surely) to a positive random variable ν that

summarizes the entire stochasticity of the process. Since nt = ν exp (ρ(t)) in

the limit t→∞, we can interprete ν as the random initial population size of an

ensemble of deterministically growing paths that approximate the original process

nt for large t.

For the fixation process, in particular, we are interested in the distribution of

ν conditioned on non-extinction. We proceed as follows: From the probability
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generating function P (z, t) ≡ P1(z, t) (see Eq. (1.10)), we obtain for the prob-

ability pn(t) ≡ pn(1, t) to have n individuals at time t (proof by induction, see

Appendix D):

pn(t) =
1

n!

dnP (z, t)

dzn

∣∣∣∣
z=0

=
Bn−1(t)A(t)

(A+B)n+1(t)
, n ≥ 1. (1.34)

Conditioning on non-extinction (which requires the biologically meaningful con-

dition p0(t) 6= 1) leads to:

Prob[n, t|not extinct] =
pn(t)

1− p0(t)
=
A(t)

B(t)

(
B(t)

(A+B)(t)

)
. (1.35)

By induction, we find:

E[nkt |not extinct] =
1

1− p0(t)
E[nkt ] and E[nkt ] ∼ ekρ(t), (1.36)

i.e., for large times the kth moment grows in the conditioned as well as in the

unconditioned process as ekρ(t). In particular, we obtain for the expected value:

E[nt|not extinct] =
1

1− p0(t)
eρ(t). (1.37)

(Since 1
1−p0(t)

≥ 1, a comparison with Eq. (1.32) confirms that on average the

conditioned path grows faster than the unconditioned path.) The distribution

function of νt|not extinct is immediately obtained from the distribution function

of nt|not extinct:

P (nt ≤ n0|not extinct) = 1−
(

B(t)

(A+B)(t)

)n0

(1.38)

⇒P (νt ≤ ν0|not extinct)

= 1− exp

[
ν0 exp (ρ(t)) ln

(
B(t)

(A+B)(t)

)]
. (1.39)

As lim
t→∞

exp (ρ(t)) ln
(

B(t)
(A+B)(t)

)
= −1

A+B
= −pfix, we obtain in the limit t→∞ the

stationary distribution

P (ν ≤ ν0|not extinct) = 1− exp (−pfixν0). (1.40)
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This effective initial mutant population size may now be used as the starting value

for the deterministic solution of the full model. If the birth and death rates are

the same for mutants and residents, the latter can be obtained from Eq. (1.4a)

and is given by a generalized logistic,

x(t) =
exp (β(t))

N0

ν
− 1 + exp (β(t))

(1.41)

where x(t) is the mutant frequency and

β(t) =

tˆ

0

s(τ)dτ. (1.42)

We want to calculate the time needed to reach an intermediate frequency xc.

Here, intermediate frequency means a frequency at which the dynamics is well

described by Eq. (1.41), i.e., not too close to either 0 or 1. Using Eq. (1.41), we

can express the random variable Txc defined via x(Txc) = xc in terms of ν

Txc =

{
β−1

(
ln
(
xc(N0−ν)
(1−xc)ν

))
, ν < xcN0,

0, ν ≥ xcN0.
(1.43)

For the definition of Txc to be unique for all xc, the condition s(t) > 0 (up to

single points) is necessary. It is possible that the process grows so quickly that

the effective initial mutant population size is already larger than xcN (cf. the

exponential tail in the distribution function for the effective initial population

size ν Eq. (1.40)). In this case, we have set Txc = 0 so that the distribution of

Txc will have a mass on Txc = 0. However, if xc is not too small, this is very

unlikely and the mass will be small. As the deterministic path Eq. (1.41) ignores

stochastic fluctuations, there is only a single passage time in the deterministic

approximation in contrast to the stochastic path in which the frequency xc can

be hit several times. Txc as defined in Eq. (1.43) is best interpreted as the average

over all times at which the path crosses the frequency xc from lower to higher

values.
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By a parameter transformation (ν → Txc using Eq. (1.43)), the distribution

of Txc is found from Eq. (1.40):

P (Txc ≤ T ) = exp

[
− pfixN0

1−xc
xc

exp (β(T )) + 1

]
. (1.44)

Eq. (1.44) constitutes the main result of this section.

β(t) is a function of s(t), and pfix can be expressed in terms of s(t) and Ne(t)

(Eq. 1.16b). Like the fixation probability, the distribution of Txc therefore depends

on two parameters that summarize the time-dependence of the model. For the

fixation probability, we have seen in Eq. (1.16a) that there is a second way to

summarize the dynamics in terms of the absolute rate of increase (s + r)(t) and

the total rate of birth and death events. This is not possible for the distribution

of Txc , linked to the fact that variable selection and demographic change are not

equivalent in this case. While the selection function s(t) has a strong influence on

the deterministic part of the frequency path x(t), changes in the total population

size (with equal effect on mutants and residents) have no influence on the latter.

To calculate moments of the distribution, we perform the parameter transfor-

mation

Txc → Y :=
pfixN0

1−xc
xc

exp (β(Txc)) + 1
. (1.45)

Solving for Txc yields

Txc = β−1

(
ln

[
xc

1− xc

(
pfixN0 − Y

Y

)])
(1.46)

and we obtain for the moments

〈T nxc〉 =

pfixN0xcˆ

0

[
β−1

(
ln

[
xc

1− xc

(
pfixN0 − Y

Y

)])]n
exp (−Y )dY. (1.47)

For constant selection and therefore β(t) = st we obtain for the mean of Txc :

〈Txc〉 =
1

s

[
ln [pfixN0] + γ + ln

[
xc

1− xc

]
− 1

pfixN0

−
(

1

pfixN0

)2

+O

((
1

pfixN0

)3
)]

.

(1.48)
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1.4.2 Applications

Constant selection and constant population size. For the distribution of

the passage time Txc , we obtain with pfix = s/(ξ + s) ≈ 2sNe
N

(see Eq. (1.17))

P (Txc ≤ T ) = exp

[
− s

ξ + s

N
1−xc
xc

esT + 1

]
≈ exp

[
− 2sNe

1−xc
xc

esT + 1

]
. (1.49)

Plots of the probability density for xc = 0.5 and various values of s are depicted

in Figure 1.4A. With increasing selection strength the distribution gets narrower

and is shifted to the left.

In the particular situation of constant selection and population size, additional

results can be obtained. First, we note that Txc can also be interpreted as the age

of a derived allele that is currently found at frequency xc in the population. This

is a consequence of the time-homogeneity of the model. Second, the distribution

of the time to reach fixation at x = 1 starting from a frequency (1 − xc) equals

the distribution of Txc (see Appendix D for an explanation). In particular, the

times needed from 0 to 0.5 and from 0.5 to 1 follow the same distribution. Since

both random variables are independent, we obtain the probability density p̃(tfix)

of the whole fixation time from the density p(T1/2) as

p̃(tfix) =

tfixˆ

0

p(T1/2)p(tfix − T1/2)dT1/2. (1.50)

An alternative expression for the distribution of tfix has been derived before by

Wang and Rannala (2004), using diffusion techniques. We note that our ap-

proximation Eq. (1.50) is simpler than the series expansion in terms of Gegenbauer

polynomials using the eigenvalues of the oblate spheroidal angular function and

the intermediate coefficients of the spheroidal harmonics obtained by these au-

thors. As discussed in Appendix B, it is nevertheless highly accurate if selection

is not very weak or the population size small. The cumulants of the fixation time

are just two times the cumulants of the time to reach frequency 0.5. For the mean

fixation time, in particular, we obtain:

〈tfix〉 =
2

s

(
ln

(
sN

ξ + s

)
+ γ − ξ + s

sN
− (ξ + s)2

(sN)2
+O

(
(ξ + s)3

(sN)3

))
, (1.51)

where γ ≈ 0.577 is the Euler constant.
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For the higher cumulants, approximations of leading order in sN can be ob-

tained by the approximation exp (sT ) + 1 ≈ exp (sT ) in the distribution function

Eq. (1.49) and by extending the integral Eq. (1.47) to infinity. We state the

results for the variance, the skewness and the kurtosis:

κ2 = 〈t2fix〉 − 〈tfix〉2 ≈
1

3

π2

s2
, (1.52a)

κ3 ≈
4ζ(3)

s3
> 0, (1.52b)

κ4 ≈
2

15

π4

s4
> 0, (1.52c)

where ζ(z) is the Riemann Zeta function and ζ(3) ≈ 1.202 is the Apéry constant.

It can be shown that all cumulants of order ≥ 2 are to leading order of the form

κj = cj

(
1

s

)j
(1.53)

with some numerical constant cj.

Since s > 0 is required for the branching approximation, deviations from the

exact values must be expected for weak selection. To estimate the precision of

our approximation in this case, we compare the result for the mean fixation time

to the result obtained from the diffusion approximation. For this purpose we

scale time with N (tfix → τfix = tfix/N) and take the diffusion limit (i.e., s → 0,

N →∞ with α := sN/ξ remaining constant) of Eq. (1.51). We obtain:

〈τfix〉 =
2

α

(
ln (α) + γ − 1

α
− 1

α2
+O

(
1

α3

))
. (1.54)

This is in perfect agreement with the approximation for the mean fixation time

found in Hermisson and Pennings (2005), using the diffusion approximation.

As shown in Appendix B, the deviation of our branching process approximation

from the exact diffusion result is exponentially small in α/2.

Figure 1.4 B and C show the mean time to reach a frequency xc in dependence

of xc. Significant deviations between the theoretical predictions of Eq. (1.49) and

simulation results are found only for values of xc that are extremely close to 1 (or

0). Generally, it holds that the approximation gets less good for xc & 1− 1/α (or

xc . 1/α), as in this regime the deterministic frequency path Eq. (1.41), which
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we used in the derivation, is not a good approximation to the real frequency path

of the mutation (see Ewens, 2004, pp. 167f).

It is interesting to note that the distribution of Txc is the same for beneficial

mutations with selective advantage s and deleterious mutations with selective

disadvantage −s (cf. Ewens, 2004): for every point of a particular path leading

from n = 1 to n = nc, the sum of the birth and the death rate is the same

for both scenarios. This implies that the distribution of the run-time of this

particular path is the same. The chance to be realized differs for each such path

by a constant factor (ξ+s)−nc . If we therefore condition on n = nc being reached,

the distribution of the time to reach nc, is the same for beneficial and deleterious

mutations.

Constant selection and changing population size. Using the expression

for pfix calculated for a logistically growing population, we immediately get the

distribution of the passage time Txc . Figure E.6 shows a comparison to simulation

results for the second scenario. With Eq. (1.48) we obtain the result for the mean

of Txc :

〈Txc〉 ≈
1

s

[
ln

(
N0

s(r + s)

s(r + s) + (b+ ξ)(s+ rγ0) + γ0r(r + s)

)
+ γ + ln

(
xc

1− xc

)]
.

(1.55)

Linearly increasing selection. Putting the expression obtained for pfix Eq. (1.25)

into Eq. (1.44) one obtains the distribution of the time Txc at which a fraction xc
of the population consists of mutant individuals. The distribution can be used to

calculate the mean of Txc numerically. A comparison to simulation results for the

distribution and the mean of Txc in dependence of s1 can be found in Figure E.7.

From Figure 1.5, it can be seen that for small values of s0 even a very slight

increase of the selection strength over time leads to a drastically smaller mean

value of Txc in comparison to an environment with constant selection s = s0.

Periodically changing selection. Figure 1.6 shows the mean time to reach

frequency xc = 0.5 for a periodic selection coefficient s(t) = s0(1 + cos (ωt+ ϕ)).

As for the fixation probability, the initial selection strength s(0) is decisive if the

environment changes very slowly; ϕ itself gains importance with increasing (but

still small) ω. If the environment changes fast, 〈Txc〉 becomes independent of ϕ
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Figure 1.4: A: Probability density of the time to reach frequency xc = 0.5 in
the case of constant selection and constant population size. With decreasing
selection strength, the density function becomes broader and is shifted to the
right. B: Mean time to reach a frequency xc in dependence of xc. Theoretical
results are compared to simulation results. Each simulation point is the average
over 1000 runs. C: Amplification of the region of high frequencies. Simulations
show the mean average passage time. One sees that the theoretical predictions
gets less good for xc > 1 − 1/α. The dotted line is the result for the whole
fixation time obtained by the convolution, i.e., two times the mean time needed
to reach the frequency xc = 0.5. The bars around the simulation points denote
the standard deviation of Txc as obtained from the simulations. In contrast, the
standard error of the simulations is much smaller and vanishes in the symbols.
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and converges to its value for constant selection s(t) = s0. Convergence is much

faster than for the fixation probability.

1.5 Simulations

To test our analytical results, we performed individual based computer simula-

tions for which we use a Gillespie algorithm (Gillespie, 1977). Events happen

at rate (2ξ(t, Nt)+s(t, Nt))nt(Nt−nt)/Nt+b(t, Nt)Nt+d(t, Nt)Nt, where s(t, Nt),

b(t, Nt) and d(t, Nt) are assumed to be constant between events. Once the time

of an event is fixed, which kind of event takes place is determined using the re-

spective probabilities. Subsequently, the values of Nt and nt are updated and the

rates are set to their new values (additional update steps between events did not

change the results).

For most of the simulation runs, we used the first passage time of a given

frequency xc to determine Txc , i.e., we neglected fluctuations around xc, which

for large value of α and not too small or large values of xc has no significant effect.

For the data shown in panel C of Figure 1.4 and in Figures B.3 and B.4, where we
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pushed the boundaries of the theory, we took the average over all passage times,

more precisely the average over all times at which the path crossed the frequency

xc from lower to higher values (cf. section on the analytical theory).

For all simulation results, the number of runs was chosen sufficiently large

that the standard error bars vanish in the symbols. All programs were written

in C, making use of the Gnu Scientific Library (Galassi et al., 2009). We used

Mathematica (Wolfram Research, Champaign, USA) for all numerical evaluation

of integrals.

1.6 Discussion

Adaptation is the evolutionary response of a population to an environmental

challenge: variation in the environmental conditions leads to altered selection

pressures and changing population sizes. In nature, these changes occur on all

time scales, from rapid shifts within a single generation to long-term geological

trends. It therefore seems natural that models on the genetics of adaptation, too,

should account for the ecological dynamics that drives the process. In contrast to

this expectation, however, the vast majority of published studies with a genetic

focus assumes a constant environment (reviewed, e.g., in Orr, 2010). They rely

on the idea that a fast - almost instantaneous - change in the environment is

followed by a period of environmental stasis. If this period is long compared to

the total time it takes for one or several beneficial mutations to appear and to

rise to fixation, ecology and evolution are effectively decoupled. In many cases of

ecological interest, however, this separation of time scales is not appropriate. In

this case, the parameters of the evolutionary model (such as selection coefficients

or population sizes) are turned into time-dependent variables, which must be

determined from an underlying ecological model.

In a series of recent publications by several authors, the impact of the eco-

logical dynamics on the genetics of adaptation has been studied for the so-called

moving optimum model (Bello and Waxman, 2006; Collins et al., 2007; Kopp

and Hermisson, 2007, 2009a,b). The consensus, at least for this model, is that

the adaptive process is strongly affected by the dynamics of the selective envi-

ronment. In this article, we present a more detailed treatment of the most basic

aspect of the genetics of adaptation: the fixation process of a single beneficial

mutation in a variable environment. All relevant parameters of the process, i.e.,

selection coefficient, population size, and the variance in offspring number (or,

equivalently, the birth and death rates of wildtypes and mutants) may depend
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explicitly on time. An example of how this can result from an explicit ecolog-

ical model is given in the Appendix, where we discuss the fixation probability

of a “rescue mutation” in a population that is otherwise doomed to extinction.

Again, the results are strongly influenced by the ecological dynamics, leading to

qualitative differences relative to previous studies that assume constant selection

(Orr and Unckless, 2008).

Even if the external environment is constant, individual alleles in a population

can experience variable selection pressures if multiple selected alleles segregate in

the population and if these alleles interfere due to either epistasis or linkage

(cf. Hartfield and Otto, 2011). Examples include the evolution of compen-

satory mutations or classical problems of clonal interference, where the beneficial

mutation rate is high relative to the recombination rate. Another potential ap-

plication is adaptive gene-flow across a genetic barrier, where adaptations need

to be purged from linked deleterious alleles by recombination.

Using branching process techniques, we obtain analytical approximations for

the fixation probability and the distribution of the time for the mutant to reach

a given frequency xc in the population.

Fixation probability. The derivation of fixation probabilities of rare beneficial

mutations from a supercritical branching process is a standard approach in popu-

lation genetics. In particular, results have previously been obtained for the most

important modes of demographic changes (e.g., Otto and Whitlock, 1997;

Pollak, 2000). A look into the mathematical literature reveals, however, that a

general formalism with arbitrary time-dependent birth and death rates has been

available since the work of Kendall (1948). In contrast to most of the previous

studies in population genetics, which use a branching process in discrete time

(following Haldane, 1927), this approach is based on a continuous-time frame-

work, which simplifies some technical aspects. Our adaptation of this formalism

to the genetic context leads to a compact, yet general formula for the fixation

probability pfix (Eq. (1.16a) and (1.16b)) that covers previous results as special

cases. In Appendix C, we show how an analogous result can also be obtained

using the diffusion approach.

It turns out that the ecological dynamics affect pfix through two independent

variables. In two alternative formulations of the result, these can either be the

time-dependent birth- and death rates of rare mutants (Eq. (1.16a)), or the selec-

tion coefficient s(t) and the variance effective population size Ne(t) (Eq. (1.16b)).

Our applications to various scenarios show that relative to the case with constant
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selection s0, consistent changes in the selection coefficient ∆s per generation of

the order of ∆s ≥ s2
0 have a strong effect on pfix. This is to be expected since,

for constant selection, the fate of a new mutation (fixation or loss) is decided

once the mutant allele reaches a frequency on the order of (Ns0)−1. According

to Eq. (1.48), this will take, on average, in the order of s−1
0 generations. The

observation is of practical importance since it shows that predictions about fix-

ation probabilities cannot be based on short-term fitness assays. Unmeasurably

small fitness changes among generations may have a large effect. The limitations

of the branching approach are the usual ones: The fate of the mutation must

be decided while the mutant frequency is small and the independence assump-

tion of the branching process applies. Deviations from the simulation results are

found in the case of mutations that are almost neutral on average, with fixation

probabilities pfix . 10/N (cf. Appendix B).

Time Txc to reach frequency xc. The usual method in population genetics

to derive fixation times or (more generally) first-passage times for mutant alleles

to reach certain frequencies is diffusion theory. Since this proves difficult for the

time-inhomogeneous case, we again turn to a branching process approach. We

can use the fact that (almost) all stochasticity of a mutant trajectory x(t) is due

to its early phase while the mutant number is still small. We can therefore (ap-

proximately) describe this stochasticity in the branching framework and combine

it with the deterministic growth of the full process. For constant selection and

population sizes, this idea has previously been used by Desai and Fisher (2007)

in the context of a model for clonal evolution.

For the general case, the crucial step of the method has again been anticipated

in the mathematical literature (Cohn and Jagers, 1994). There, it has been

shown that a clean separation exists for the random variable nt of a inhomo-

geneous supercritical branching processes into a growth function that describes

the asymptotic growth and a time-constant random variable ν that describes the

stochastic fluctuations in the large-time limit. We can interpret ν as the “effective

initial size” of the mutant population. It turns out that the distribution function

of ν, P (ν ≤ ν0|not extinct) = 1 − exp (−pfixν0) (Eq. 1.40), is pleasingly simple

even in a variable environment. In particular, the impact of the ecological dynam-

ics is conveniently summarized in the fixation probability pfix. When this initial

size is combined with the deterministic growth of the full model, an approxima-

tion for the distribution function for Txc is obtained by a simple transformation

of the probability density Eq. (1.44).
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Computer simulations show that the results from the branching approach are

usually highly accurate as long as selection is not very weak. This is also confirmed

by a comparison with previous results for the expected value of the fixation time

T1 for constant s and N (Kimura and Ohta, 1969; Ewens, 2004) derived from

the diffusion approximation: the order of the error term for the average fixation

time is o(exp (−Ns/2)) (see Appendix C). Previous results also exist for the entire

probability density of T1 in a constant environment (Wang and Rannala, 2004).

Here, the branching approximation leads to a much simpler analytical result.

As a major caveat of the method, we note that for variable s or N , we do not

obtain a closed expression for the time to reach full fixation xc = 1. More gen-

erally, the approximation is accurate only as long as 1/(sN) . xc . 1− 1/(sN).

For xc close to 0, estimates can easily be found directly from the conditioned

branching process, if needed. For mutant frequencies near 1, the fixation process

enters another stochastic phase when the wildtype alleles become rare. Although

this phase can be described, in principle, as a subcritical branching process, its

details depend on the random time when this stochastic phase is entered, which

complicates the treatment. In natural systems, an allele frequency of xc = 1

is not an absorbing state and may never be reached in the face of back muta-

tion, migration, or ongoing adaptation. For many practical applications, other

thresholds (such as 5%, 50%, or 95%) are therefore more relevant and have pre-

viously been used. For example, Desai and Fisher (2007) use a threshold of

xc = 1/(Ns) to characterize their establishment time τest. Kopp and Hermis-

son (2007, 2009a) use xc = 0.5 as the critical value where the mutant comes to

dominate the population in an analysis of the order and step sizes of adaptive

substitutions.

Although we have formulated our results for haploids, they also apply to

diploids as long as the mutant is not fully recessive (i.e., hs must be sufficiently

large on average). Only the selection coefficients (or birth and death rates) of

heterozygotes enter into the stochastic part of the model described by the branch-

ing process. In contrast, the deterministic frequency path used in the derivation

of Txc depends on the fitness values of both heterozygous and homozygous mu-

tants. In the purely recessive case, the dynamics of rare mutants can no longer

be described by a supercritical branching process. Diffusion methods (for con-

stant selection) show that also the scaling of the fixation time with the selection

parameters is altered in this case (Ewing et al., 2011).

To summarize, our results show that inhomogeneous branching processes pro-

vide a powerful framework to describe the fixation process under a wide range of
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ecological scenarios and genetic conditions. We therefore hope that the methods

and results can provide a step to combine ecological and genetic modelling tra-

ditions to study the genetics of adaptation under realistic ecological conditions.

Note: After acceptance of this article we became aware of a recent preprint by

Waxman on the fixation process under variable selection and demography. Both

articles are complementary: While our approach focuses on analytical approxima-

tions for the fixation process of a definitely beneficial mutant, Waxman (2011)

presents numerical methods to derive fixation probabilities for alleles with arbi-

trary selection coefficients.
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A Appendix: Fixation in general ecological mod-

els

In this Appendix, we describe how the branching process approach can be applied

to a general ecological scenario where the genetic composition of the population

and the population dynamics are mutually dependent. Assume that at time t

a population consists of wt wild-type “residents” and nt mutants. Both types

reproduce and die at different per-capita rates, which may depend on the number

of residents and mutants, wt and nt, and on external factors that are independent

of the population, but also may change over time. A general framework, which
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takes the full dynamics with all kinds of interactions between types into account,

is given by the following scheme of transition rates:

nt → nt + 1 : nt[b
(m)
1 (t) + b

(m)
2 (t)nt + b

(m)
3 (t)wt + . . . ],

nt → nt − 1 : nt[d
(m)
1 (t) + d

(m)
2 (t)nt + d

(m)
3 (t)wt + . . . ],

wt → wt + 1 : wt[b
(w)
1 (t) + b

(w)
2 (t)wt + b

(w)
3 (t)nt + . . . ],

wt → wt − 1 : wt[d
(w)
1 (t) + d

(w)
2 (t)wt + d

(w)
3 (t)nt + . . . ].

(A.1)

Higher order interaction terms with transition rates proportional to any polyno-

mial in nt and wt can be added as needed. The model corresponds to a general

two-dimensional birth-death process with time-dependent coefficients. For such a

model, the corresponding deterministic evolution of nt and wt is generically given

by a system of two coupled differential equations. In most cases, it is impossible

to solve this system analytically. Since the determinstic frequency path of the

mutant is needed for the theory developed to calculate Txc , derivations for Txc
must resort to numerical solutions to apply the methods outlined in the main

text. In contrast, an analytical approximation for the fixation probability (and

thus also the distribution of the effective initial population size ν, cf. Eq. (1.40))

is often still possible.

In the branching limit of rare mutant individuals, all interactions of either

residents or mutants with (other) mutant individuals can be neglected. Mathe-

matically, this corresponds to the approximation nt ≈ 0 in the birth and death

rates of the residents, and negligence of all terms of order O(nt) > 1 in the tran-

sition rates of the mutants. As a consequence, the evolution of the residents is

decoupled from the mutants. In the deterministic limit, the time-development

of the resident population size w(t) ≈ N(t) is then given by an ordinary differ-

ential equation that can frequently be solved explicitly. We can then describe

the dynamics of rare mutants by a one-dimensional branching process. Inserting

the deterministic solution for w(t) into all mutant transition rates of linear or-

der in the mutant number n, the theory developed in the paper can be applied

by choosing λ(t) and µ(t) appropriately. Note, however, that the first expres-

sion for pfix Eq. (1.16a) must be used, since the step leading from Eq. (1.16a)

to Eq. (1.16b) is not possible if the growth rates of mutants and wildtypes are

not the same. Previous results on fixation probabilities in two-dimensional birth-

death chains (with constant coefficients) have been obtained by Parsons and

Quince (2007a). Their approach is based on singular pertubation methods and
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has the advantage that it can be applied to neutral and deleterious mutations,

too (Parsons and Quince, 2007a,b), which is beyond the reach of the branching

model. However, it cannot easily be extended to the time-inhomogeneous case

that is our focus here.

Rescue mutation. Consider, as an example, the following scenario: a popula-

tion is subject to a new and severe selection pressure (e.g., new insecticide, drug,

parasite, competitor . . . ). As a consequence, the population size decreases, and

selection will drive the population to extinction unless a “rescue mutation” can

be established that confers immunity to its carriers. A similar scenario has been

discussed by Orr and Unckless (2008).

A plausible ecological model for this situation could be as follows: the original

resident population evolves under a logistic population dynamics with growth pa-

rameter r and time-dependent carrying capacity K(t). Due to the environmental

challenge, the carrying capacity decreases exponentially like K(t) = K0 exp (−at).
At the individual level, the model can be described in the scheme of (A.1),

b
(w)
1 (t) = r, d

(w)
2 (t) = d

(w)
3 (t) = r

1

K(t)
, (A.2)

with all other coefficients b
(w)
i (t) and d

(w)
i (t) equal to zero. As long as the number

of beneficial mutants is small, the wildtype population size changes according to

w(t) =
K0(a+ r)

a exp (−rt) + r exp (at)
. (A.3)

Assume now that a beneficial mutation – if it survives stochastic loss – restores

population size to its original carrying capacity K0 = K(0), i.e.,

b
(m)
1 (t) = r, d

(m)
2 (t) = d

(m)
3 (t) = r

1

K0
(A.4)
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(and again all other coefficients are equal to zero). Then the fixation probability

of a single mutation arising τ time units after the decline in the carrying capacity

started is then given by:

pfix = 2

1 +

∞̂

0

r

(
1 +

w(τ + t)

K0

)
exp

− tˆ

0

r

(
1− w(τ + x)

K0

)
dx

dt

−1

.

(A.5)

In Figure A.1 the fixation probability of a single mutation and the ratio γ0(τ) =

w(τ)/K0 = N(τ)/K0 are shown in dependence of τ . Note that the fixation

probability increases with τ : While the mutant does not have a higher intrinsic

growth rate than the resident (in a variant of the model, it could even be lower), it

thrives due to relaxed competition as the resident population declines. However,

for a given mutation probability per time unit u from resident to mutant, the new

total rate of beneficial mutations is proportional to the resident population size

and thus decreases with τ . The rate at which new successful mutations arise is

given by θfix(τ) = uw(τ)pfix(τ), which reaches a maximum at some intermediate

time τ ∗ (see Figure A.1). The probability that a successful mutation arises before

time T

P (t ≤ T ) = 1− exp

− T̂

0

θfix(τ)dτ

. (A.6)

The probability that a successful mutation arises at all, i.e., that the population

is rescued from extinction, is therefore given by

Prescue = 1− exp

− ∞̂

0

θfix(τ)dτ

. (A.7)

This probability is equal to 1 if and only if the integral
∞́

0

θfix(τ)dτ diverges,

i.e., if the rate θfix(τ) declines sufficiently slowly. Otherwise the probability that

the population is saved from extinction by a rescue mutation is smaller than 1,

as was also found by Orr and Unckless (2008). For the parameter values

used in Figure A.1, the survival probability of the population is calculated to be

Prescue ≈ 0.39. Given the population is rescued, the probability that the rescuing
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mutation arises in the infinitesimal time interval [τ, τ + dτ ] is given by p(τ)dτ

with

p(τ) =

θfix(τ) exp

[
−

τ́

0

θfix(τ̂)dτ̂

]
Prescue

. (A.8)

For not too large mutation probabilities (u . 0.5/K0 for the chosen parameter

values), this function has a maximum at an intermediate value of τ = τ ∗∗, as also

shown in Figure A.1. This result is in contrast to Orr and Unckless (2008),

who find a monotonic decrease in the (conditioned) probability that a successful

mutation arises in a given generation independently of the mutation rate. This is

due to the assumption in Orr and Unckless (2008) that the selection coefficient

of mutants (and thus the fixation probability pfix) of a single mutant is constant

over time. In our model, selection pressure on mutants is not simply included

by assumption, but results from the underlying ecological dynamics. As such,

it explicitly depends on time. The scenario by Orr and Unckless (2008) is

approximately met only for large τ > τ ∗∗ when competition from the resident

population gets very small.

B Appendix: Accuracy of the approximation

Weak selection. As pointed out in the main text, deviations from the exact

solution are expected for weak selection.

For an allele with constant selective advantage and N = const., a comparison

to the exact solution is immediately possible (see main text).

As a further example, we consider the fixation probability of an allele with

s(t) = s1t and examine the relative error between theoretical prediction and

simulation results in dependence of pfixN (see Figure B.2). A relative error of

less than 2% is found for pfixN < 10. The results for small values of pfixN

can be improved if we correct the branching approximation by a factor 1/(1 −
exp (−pfixN)):

p∗fix =
pfix

1− exp (−pfixN)
. (B.9)

This heuristic approximation is inspired by Eq. (1.18). The relative deviation

from the simulation results is added to Figure B.2. It is seen that the approxi-

mation is considerably improved.

In Figure B.3, we compare the distribution function of T1/2 to simulation

results for various values of s andN where s andN are constant. While agreement
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Figure A.1: A: Fixation probability pfix(τ) of a single rescue mutation, the ratio
γ0(τ) = N(τ)/K0 and the product of the two, which characterizes the rate of
successful mutants, in dependence of the time τ since the onset of the selection
pressure. B: Density function p(τ) which determines the probability that the
successful rescue mutation arises in the time interval [τ, τ + dτ ] conditioned on
population survival. While the fixation probability per mutant increases with τ ,
the latter peaks at an intermediate value for not too large mutation probabilities
u. Simulations were performed for a population of 100 000 individuals, and every
simulation point is the average ove 106 runs.
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Figure B.2: Relative deviation between analytical and simulation results for an
allele with selective advantage s(t) = s1t. The empty dots are obtained from
branching process approximation, the small filled dots from the corrected version
Eq. (B.9). One sees that the corrected version provides a much better approx-
imation for small values of pfixN ; for large values of pfixN , the results coincide.
Simulations were performed for a population of N = 10 000 individuals, and each
simulation point is the average over 5 · 107 runs.
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Figure B.3: Distribution of the time to reach frequency xc = 0.5 for various values
of s and N , where s and N are constant. Analytical and simulation results are
compared. Simulation results are averaged over 5000 runs. A maximum absolute
deviation of ≥ 0.05 between theory and simulations is found for α = Ns . 10
(see panel C).

is excellent for high values of α, deviations increase for decreasing values of α. A

maximum absolute deviation of ≥ 0.05 between theory and simulations is found

for α = Ns . 10.

Mode of density-regulation. To test whether the mode of density-regulation

influences the outcome, some exemplary simulations for three different scenarios

of density regulation were performed (b(t, Nt) = d(t, Nt) = const., Lotka-Volterra

dynamics, i.e., b(t, Nt) = b + ρ(1 − Nt/K) and d(t, Nt) = b, and b(t, Nt) =

d(t, Nt) = 0 with accordingly chosen ξ). Figure B.4 shows a comparison of the

simulation results to the theoretical curve. We see that demographic stochasticity

has only a slight effect (note that we used a relatively low (initial) population

size of N0 = 2000 for the examples to make demographic stochasticity strong).

52



B. APPENDIX: ACCURACY OF THE APPROXIMATION

 0

 0.2

 0.4

 0.6

 0.8

 1

A s = 0.05

N = 2000

 0

 0.2

 0.4

 0.6

 0.8

 1

B

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

T

C

Figure B.4: Distribution function of T1/2 for three different modes of density
regulation. The selection strength is s = 0.05 and the initial population size
N0 = 2000. A: Inherently constant population size, i.e. b(t, Nt) = d(t, Nt) = 0,
with ξ(t, N) = 1. B: Lotka-Volterra dynam ics, i.e. b(t, Nt) = b + ρ(1 − Nt/K)
and d(t, Nt) = b, with b = 1.0, r = 1.0 and K = N0 = 2000. C: Freely fluctuating
population size, i.e. b(t, Nt) = d(t, Nt) = b, with b = 1.0. Simulations are
averaged over 50 000 runs. The maximum absolute deviation is of the same order
of magnitude for all three scenarios.
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C Appendix: Diffusion approximation

Pioneered by Kimura (1957), the diffusion approximation has been established

as the second main approach for the analytical analysis of the fixation process.

In this appendix, we show how an approximation for the fixation probability

with variable selection and population size can be derived within the diffusion

framework. We also use diffusion results for the mean fixation time for constant

s and N to estimate the error of the branching process approach in this case.

As in the main text, we assume that the population inhabits a variable envi-

ronment. All key model parameters may explicitly depend on time. In particular,

let s = s(t) be the selection coefficient of the A allele and N = N(t) the total

population size. Finally, the variance in offspring number is σ2 = σ2(t). Following

standard practice, we can combine N and σ2 in the variance effective population

size, Ne(t) = N(t)/σ2(t).

We can formulate the model as a diffusion process as follows. Let gt(x→ x+ε)

be the transition probability that the allele frequency changes from x at time t to

x+ ε at time t+ dt. The diffusion is characterized by the mean and the variance

of the transition probability in the limit of small dt and ε:

Ex,t[ε]dt =

∞̂

−∞

εgt(x→ x+ ε)dε, (C.10a)

Varx,t[ε]dt =

ˆ ∞
−∞

ε2gt(x→ x+ ε)dε+O[dt2]. (C.10b)

To leading order in N−1
e ,

Ex,t[ε] = s(t)x(1− x), (C.11a)

Varx,t[ε] =
σ2(t)

N(t)
x(1− x) =

x(1− x)

Ne(t)
. (C.11b)

54



C. APPENDIX: DIFFUSION APPROXIMATION

Define f(x, τ |p, t) as the probability density for an allele frequency of x at time

t+ τ , given that the frequency at time t was p. Then

f(x, τ + dt|p, t) =

ˆ ∞
−∞

gt(p→ p+ ε)f(x, τ |p+ ε, t+ dt)dε

≈ f(x, τ |p, t+ dt) +
(∂f(x, τ |p, t+ dt)

∂p
Ep,t[ε] +

1

2

∂2f(x, τ |p, t+ dt)

∂p2
Varp,t[ε]

)
dt.

(C.12)

In the limit dt→ 0, we obtain the Kolmogorov backward equation for the condi-

tional density f(x, τ |p, t) of a time-inhomogeneous diffusion:

∂f

∂τ
− ∂f

∂t
= s(t)p(1− p)∂f

∂p
+
p(1− p)
2Ne(t)

∂2f

∂p2
. (C.13)

If s(t) and Ne(t) are both constant, ∂f/∂t = 0 and (C.13) reduces to the backward

equation of the classical homogeneous case. With time dependence, the state of

the population can no longer be described by the allele frequency x alone; f

depends on both, x and t. Note that we measure time on a generations scale, not

in 2N generations, as it is often done in diffusion theory.

Denote now as P (p, t) the fixation probability of an allele with frequency p in

the population at time t. Since fixation is the probability of eventual absorption

of the diffusion at the boundary x = 1, we can write P (p, t) in terms of the

transition probability as

P (p, t) = lim
τ→∞
y→1

ˆ 1

y

f(x, τ |p, t)dx. (C.14)

Integrating (C.13) over any frequency interval [x1, x2], we see that the Kolmogorov

backward equation also holds for the corresponding probabilities. For the proba-

bility of eventual fixation, in particular, the τ dependence vanishes and we obtain

(Kimura and Ohta, 1974)

− Ṗ (p, t) = s(t)p(1− p)P ′(p, t) +
p(1− p)
2Ne(t)

P ′′(p, t), (C.15)

where Ṗ and P ′ denote derivatives with respect to t and p, respectively. In

contrast to the time-homogeneous case, there is no exact solution to the time-

inhomogeneous equation. However, it is possible to derive an approximate solu-
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tion for small p by setting 1− p ≈ 1 in (C.15). This approximation was first used

by Kimura and Ohta (1974) to derive the fixation probability for a logistically

growing population. As we will see, a full solution of the general time-dependent

model is possible under the same assumption. We use the following Ansatz,

P (p, t) = 1− exp (−Q(t)p). (C.16)

Substituting this relation into the approximated PDE (ignoring 1 − p terms in

Eq. (C.15)) leads to the following ODE for Q(t),

dQ(t)

dt
= −s(t)Q(t) +

Q2(t)

2Ne(t)
. (C.17)

A general solution to this differential equation can be found,

Q(t) =
2

∞́

t

1
Ne(τ)

exp

(
−

τ́

t

s(y)dy

)
dτ

, (C.18)

and we obtain an approximation for the fixation probability from Eq. (C.16). If

the fixation process starts from a single copy of the derived allele that enters the

population at time t = 0, in particular, we find

pfix,diff := P (1/N(0), 0) = 1− exp (−Q(0)/N(0)) ≈ Q(0)/N(0). (C.19)

This expression may be directly compared to the result for the fixation probability

pfix (1.16b) from the branching process derivation. We find that

pfix =
pfix,diff

1 + pfix,diff/2
. (C.20)

Both expressions are thus equal to leading order in pfix,diff (i.e. to leading order

in the selection strength).

The approximate solution from the diffusion implies the absence of competi-

tion among mutant alleles (which appears in (C.15) through the p2 terms). This

is equivalent to the independence assumption of the branching process. Note

also that the approximation is constructed in a way that it fulfills the boundary

condition P (0, t) = 0, but not the condition P (1, t) = 1. It is therefore only valid

if the initial frequency of the allele, p, is sufficiently small.
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For constant selection, the diffusion equation (with correct boundary condi-

tions at p = 0 and p = 1) can be solved exactly. In particular, the derivation

of the mean fixation time is possible (Kimura and Ohta, 1969; Ewens, 2004).

This allows for a comparison of our approximate solution with the exact diffusion

result in this case. From Eq. (1.47), we obtain the following expression for the

mean fixation time in the diffusion limit (s→ 0, α = sN/ξ = const.):

〈τfix〉(1) =
2

α

 α/2ˆ

0

ln

(
α− Y
Y

)
exp (−Y )dY

 . (C.21)

Within the diffusion framework, the mean fixation time is given by (see Ewens,

2004, p. 140ff and p. 167ff),

〈τfix〉(2) =
2

α[exp (α)− 1]

1ˆ

0

[exp (αx)− 1][exp (α(1− x))− 1]

x
dx

=
2

α[exp (α)− 1]

αˆ

0

exp (α)− exp (Y )− exp (α− Y ) + 1

Y
dY

≈ 2

α

 αˆ

0

1− exp (−Y )

Y
dY + exp (−α)

αˆ

0

1− exp (Y )

Y
dY

 .

(C.22)

In the last step, we approximated (exp (α)−1)−1 ≈ exp (−α). This approximation

is of order o(exp (α)). By integration by parts,

αˆ

0

ln

(
α− Y
Y

)
exp (−Y )dY =

αˆ

0

1− exp (−Y )

Y
dY +exp (−α)

αˆ

0

1− exp (Y )

Y
dY.

(C.23)

We thus obtain for the error term ∆(α) of the branching result:

∆(α) = 〈τfix〉(2)−〈τfix〉(1) =
2

α

αˆ

α/2

ln

(
α− Y
Y

)
exp (−Y )dY +o(exp(−α)). (C.24)
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Since

exp
(α

2

)
∆(α) =

2

α

αˆ

α/2

ln

(
α− Y
Y

)
exp

[
−
(
Y − α

2

)]
dY

=

1ˆ

0

ln

(
1− Y
1 + Y

)
exp

(
−α

2
Y
)

dY −−−→
α→∞

0,

(C.25)

we conclude that ∆(α) is of order o(exp (−α/2)).

D Appendix: Additional explanations

Derivation of Eq. (1.4a) and (1.4b). To calculate the expected frequency

change E[∆x|xt, Nt] in an infinitesimal time interval dt, we need to consider all

events that change the frequency xt = n/Nt of mutants in the population. These

events are summarized in Table 1.1. The second and third column give the

probability of the event and the change ∆x induced by it. Taking all events,

their respective probabilities and effects in account, we obtain:

E[∆x|xt, Nt]

=

[
(ξ(t, Nt) + s(t, Nt))

n(Nt − n)

Nt

(
n+ 1

Nt

− n

Nt

)
+ ξ(t, Nt)

n(Nt − n)

Nt

(
n− 1

Nt

− n

Nt

)
+ b(t, Nt)n

(
n+ 1

Nt + 1
− n

Nt

)
+ b(t, Nt)(Nt − n)

(
n

Nt + 1
− n

Nt

)
+ d(t, Nt)n

(
n− 1

Nt − 1
− n

Nt

)
+d(t, Nt)(Nt − n)

(
n

Nt − 1
− n

Nt

)]
dt

= s(t, Nt)xt(1− xt)dt.

(D.26)

Since E[∆x|xt, Nt]
2 is of order O((dt)2), it holds for the variance of ∆x:

Var[∆x|xt, Nt] = E[(∆x)2|xt, Nt]− E[∆x|xt, Nt]
2 ≈ E[(∆x)2|xt, Nt]. (D.27)
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We use again Table 1.1 for the calculation:

E[(∆x)2|xt, Nt]

=

[
(ξ(t, Nt) + s(t, Nt))

n(Nt − n)

Nt

(
n+ 1

Nt

− n

Nt

)2

+ ξ(t, Nt)
n(Nt − n)

Nt

(
n− 1

Nt

− n

Nt

)2

+ b(t, Nt)n

(
n+ 1

Nt + 1
− n

Nt

)2

+ b(t, Nt)(Nt − n)

(
n

Nt + 1
− n

Nt

)2

+ d(t, Nt)n

(
n− 1

Nt − 1
− n

Nt

)2

+d(t, Nt)(Nt − n)

(
n

Nt − 1
− n

Nt

)2
]

dt

=

[
1

Nt

(2ξ(t, Nt) + s(t, Nt))xt(1− xt) +
1

Nt

n(Nt − n)

(Nt + 1)2
b(t, Nt)

+
1

Nt

n(Nt − n)

(Nt − 1)2
d(t, Nt)

]
dt

≈
[

1

Nt

(2ξ(t, Nt) + s(t, Nt))xt(1− xt) +
1

Nt

xt(1− xt)b(t, Nt)

+
1

Nt

xt(1− xt)d(t, Nt)

]
dt

=
2ξ(t, Nt) + b(t, Nt) + d(t, Nt) + s(t, Nt)

Nt

xt(1− xt)dt =
xt(1− xt)

Ne,t

dt,

(D.28)

where we approximated Nt + 1 ≈ Nt and Nt − 1 ≈ Nt in the course of the

calculation.

Derivation of Eq. (1.34). In order to proof Eq. (1.34), we proof the following

relation from which Eq. (1.34) follows immediately by choosing z = 0:

dnP (z, t)

dzn
= n!

[
Bn−1(t)

(A(t)−B(t)(z − 1))n
+

Bn(t)(z − 1)

(A(t)−B(t)(z − 1))n+1

]
, n ≥ 1

(D.29)

with the probability generating function (cf. Eq. (1.10))

P (z, t) = 1 +
z − 1

A(t)−B(t)(z − 1)
. (D.30)
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event probability ∆x

a mutant replaces a resident (ξ(t, Nt) + s(t, Nt))
n(Nt−n)

Nt
dt

(
n+1
Nt
− n

Nt

)
a resident replaces a mutant ξ(t, Nt)

n(Nt−n)
Nt

dt
(
n−1
Nt
− n

Nt

)
a mutant is born b(t, Nt)ndt

(
n+1
Nt+1

− n
Nt

)
a resident is born b(t, Nt)(Nt − n)dt

(
n

Nt+1
− n

Nt

)
a mutant dies d(t, Nt)ndt

(
n−1
Nt−1

− n
Nt

)
a resident dies d(t, Nt)(Nt − n)dt

(
n

Nt−1
− n

Nt

)
Table 1.1: Summary of the events that change the frequency x of mutants in the
population.

We carry out a proof by induction. Eq. (D.29) builds our induction hypothesis.

• Base case n = 1:

dP (z, t)

dz
=

1

A(t)−B(t)(z − 1)
+

B(t)(z − 1)

(A(t)−B(t)(z − 1))2
.

• Inductive step n→ n+ 1:

dn+1P (z, t)

dzn+1
=

d

dz

dnP (z, t)

dzn

=
d

dz

[
Bn−1(t)

(A(t)−B(t)(z − 1))n
+

Bn(t)(z − 1)

(A(t)−B(t)(z − 1))n+1

]
= n!

[
n

Bn+1(t)B(t)

A(t)−B(t)(z − 1))n+1
+

Bn(t)

(A(t)−B(t)(z − 1))n+ 1

+ (n+ 1)
Bn(t)B(t)(z − 1)

(A(t)−B(t)(z − 1))n+2

]
= (n+ 1)!

[
Bn(t)

(A(t)−B(t)(z − 1))n+1
+

Bn+1(t)(z − 1)

(A(t)−B(t)(z − 1))n+2

]
.
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It follows:

pn(t) =
1

n!

dP (z, t)

dzn

∣∣∣∣
z=0

=
Bn−1(t)

(A+B)n(t)
− Bn(t)

(A+B)n+1(t)

=
Bn−1(t)A(t)

(A+B)n+1(t)
, n ≥ 1.

(D.31)

Symmetry of the frequency path in a constant environment. Let Ω1 be

the set of paths which lead from n0 = 1 to n = nc− 1, and Ω2 be the set of paths

which lead from n = N −nc to n = N − 1. Then there exists a bijection between

these two sets f : Ω1 → Ω2 which can basically be constructed by mirroring

the path at xc = 0.5. Concretely: Be ω1 = (n1, . . . , nl) ∈ Ω1 where n1 = 1

and nl = nc − 1. Define then f(ω1) = ω2 = (m1, . . . ,ml) by mi = N − n1+l−i.

Consider now the paths ω′1 = (n1, . . . , nl, nc) and ω′2 = (m1, . . . ,ml, N). It now

holds: (1) The probability that path ω′1 is realized equals the probability that ω′2
is realized as both make the same number of steps in both directions. (2) The

distribution of the run-time along both paths ω′1 and ω′2 is identical because the

transition rates of the Moran model defined in Eq. (1.3) are symmetric. From (1)

and (2) it follows that the distribution of the time to reach fixation starting from

(N − nc + 1)/N ≈ (1 − xc) is the same as the distribution of the time to reach

frequency xc = nc/N starting from 1/N ≈ 0. (This is true whether one considers

the first, the last or the mean passage time; the latter is approximated by our

theory.)

E Appendix: Additional figures

We here compile some additional figures that show results on the fixation prob-

ability and the passage time for various scenarios.
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Figure E.5: Fixation probability for a mutation with periodically changing selec-
tion strength s(t) = s0 + (smax − s0) cos (ωt+ ϕ) in dependence of s0 for various
values of ϕ; smax = 0.02, ω = 0.01. Small values of s0 correspond to relatively
long and pronounced periods of selective disadvantage. As s0 approaches smax the
fixation probability tends to ≈ 2smax as expected. Comparison to simulated data
shows that the theory provides an accurate prediction of the fixation probability
also for scenarios in which the mutation temporarily gets disadvantageous. For
s0 ≤ 0, however, it predicts a fixation probability of zero and therefore underes-
timates the true value. Simulations were performed for a population of 100 000
individuals, and each simulation point is the average over 106 runs.
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average over 5000 runs.
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over 100 runs. B: Distribution function for a fixed value of s1. For the simulation
curve 5000 runs were performed.
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Chapter 2

Evolutionary rescue in structured

populations

Abstract Environmental change, if severe, can drive a population extinct un-

less the population succeeds in adapting to the new conditions. How likely is a

population to win the race between population decline and adaptive evolution?

Assuming that environmental degradation progresses across a habitat, we ana-

lyze the impact of several ecological factors on the probability of evolutionary

rescue. Specifically, we study the influence of population structure and density-

dependent competition as well as the speed and severity of environmental change.

We also determine the relative contribution of standing genetic variation and new

mutations to evolutionary rescue. To describe population structure, we use a gen-

eralized island model, where islands are affected by environmental deterioration

one after the other. Our analysis is based on the mathematical theory of time-

inhomogeneous branching processes and complemented by computer simulations.

We find that in the interplay of various, partially antagonistic effects, the proba-

bility of evolutionary rescue can show non-trivial and unexpected dependence on

ecological characteristics. In particular, we generally observe a non-monotonic

dependence on the migration rate between islands. Counterintuitively, under

some circumstances, evolutionary rescue can occur more readily in the face of

harsher environmental shifts, because of the reduced competition experienced by

mutant individuals. Similarly, rescue sometimes occurs more readily when the

entire habitat degrades rapidly, rather than progressively over time, particularly

when migration is high and competition strong.

This chapter will, with minor changes, be published as: Uecker H. & Otto S. P. & Hermisson J.
(in press), Evolutionary rescue in structured populations. The American Naturalist.
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2.1 Introduction

Environmental change can pose severe challenges to a population. A population,

previously well-adapted to the ecological conditions of its habitat, might become

maladapted and risk extinction. Examples for such serious alterations are man-

ifold and include global warming and its consequences, the invasion of a new

species competing for the same ecological niche, or the onset of drug therapies,

selecting for resistance. There are basically three ways in which a population

might respond to the environmental deterioration: disperse to another still fa-

vorable habitat, adapt by phenotypic plasticity without any change in genotype,

or evolve genetic adaptations. Under which conditions populations can escape

extinction by rapid adaptive evolution is one of the key questions of evolutionary

biology.

Empirical evidence for evolutionary rescue comes from various sources. The

evolution of antibiotic or insecticide resistance in natural populations provides

prominent examples with a considerable amount of data (e.g., Chevillon et al.,

1999; Normark and Normark, 2002; Karasov et al., 2010). A recent survey

of vertebrate studies reports a number of cases of population rescue by successful

adaptation (Vander Wal et al., 2013). In recent years, several lab experiments

have demonstrated the ability of populations to adapt rapidly to highly stressful

conditions. These studies have investigated the role of potentially important

factors such as the speed of environmental deterioration, population size, genetic

variation, the history of stress, modes of dispersal between sub-populations, or

recombination and sexual reproduction (Bell and Gonzalez, 2009; Agashe

et al., 2011; Bell and Gonzalez, 2011; Lachapelle and Bell, 2012; Bell,

2013; Gonzalez and Bell, 2013).

On the theoretical side, research into evolutionary rescue has followed two

directions: one type of study uses a quantitative genetic approach. Many loci

with small effects contribute to fitness, and the additive genetic variance (often

assumed to be constant) plays a key role. Usually, the focus is on a population’s

capacity to track an optimum that gradually changes over time (e.g., Lynch et al.,

1991; Lande and Shannon, 1996; Bürger and Lynch, 1995) or moves in space

(Pease et al., 1989; Polechová et al., 2009; Duputié et al., 2012). Adaptation

after a sudden environmental change has also been analyzed in this framework

(Gomulkiewicz and Holt, 1995). The simulation studies by Boulding and

Hay (2001) and Schiffers et al. (2013), where a finite, but large number of

loci contribute to fitness, are similar in tracking rescue through the spread of
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alleles at multiple loci. The second class of theoretical studies starts from the

other end of the scale: adaptation relying on a single mutation (or sometimes a

series of mutations at a single locus). In this second class, all models published

so far consider a panmictic population that is exposed to a sudden severe change

in its environment (e.g., Gomulkiewicz and Holt, 1995; Iwasa et al., 2003,

2004a; Bell and Collins, 2008; Orr and Unckless, 2008; Martin et al.,

2013) or a series of catastrophes (Martin et al., 2013). As a consequence of

the environmental deterioration, the population size declines. For rescue of the

population, a fitter genotype – either from standing genetic variation or newly

mutated – must establish before the resident population becomes extinct.

In this study, we follow the latter approach and analyze a single-locus model

with two alleles, representing the wildtype and the rescue mutant. However, we

include several key ecological factors that have been left aside in the previous

studies, in particular population structure. We note that this latter aspect has

been shown to be of importance in a recent empirical study by Bell and Gon-

zalez (2011). While all previous one-locus models assume a sudden change in

the environment that affects the whole population at once, we consider an en-

vironmental change that proceeds gradually across the habitat. There are thus

temporal refuges, where the resident population can survive for extended periods

even after environmental degradation has started. Eventually, however, the whole

habitat deteriorates, and the population will go extinct unless a fitter mutant es-

tablishes. This mutant might already exist in the population before the shift in

the environment (evolutionary rescue from standing genetic variation) or arise af-

terwards due to recurrent mutation (evolutionary rescue by de-novo mutations).

In this context, we determine how ecological factors such as density-dependent

competition, migration rates, and the speed and severity of the environmental

change influence the probability of evolutionary rescue.

The rate of adaptive evolution – and hence the probability of evolutionary

rescue – generically depends on the genetic variation (number of mutants) in the

population and on the strength of selection, which determines the establishment

probability of each mutation. The habitat ecology can crucially impact both fac-

tors, either directly or via ecological interactions. Importantly, an environmental

variable can affect the two quantities in various, sometimes antagonistic ways.

Effects on the rate of evolutionary rescue may differ, depending on whether res-

cue occurs mainly from the standing genetic variation or from new mutations.

The intertwined influences on genetic variation and selection can lead to surpris-

ing results. For panmictic populations, it has previously been pointed out that
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harsher environmental change can lead to higher rates of rescue if selection is den-

sity dependent, with important implications for the evolution of drug resistance

(Gatenby, 2009; Gatenby et al., 2009; Read et al., 2011). In the present pa-

per, we examine the non-trivial patterns that can result if an additional layer of

ecological complexity is added, considering gradual deterioration in a structured

environment.

The structure of the paper is as follows: We first introduce our model of

population structure and gradual environmental degradation. We then present

an overview of the phenomena observed in the full model based on simulation

results. Afterwards, we consider a set of simpler sub-models that allow for an

analytical treatment in order to crystallize the main effects and to reveal the

basic principles behind them. All mathematical analyses are presented in the

Appendix.

2.2 The model

Consider a population of haploid individuals that lives in a patchy environment.

We focus on one locus with two alleles: the wildtype and the rescue mutant allele.

Every generation, a fraction m of the offspring enters a migrant pool, which is

thereafter distributed with equal probability over all demes (the “island model”,

Wright (1943)). The migration probability m, along with the number of demes

D, is thus a measure of the degree of fragmentation of the habitat. Initially, selec-

tion is homogeneous across space. The population is well adapted to the ecology

of its habitat, such that the population size in each deme is at its carrying ca-

pacity. The mutant allele has a disadvantage relative to the resident type and

is only present at low frequencies at mutation-selection-migration-drift balance.

Subsequently, the environment starts to deteriorate. Environmental deterioration

does not affect the whole metapopulation at once, but proceeds gradually across

the habitat. We assume that the change progresses at constant speed. That is,

every ϑ generations another patch switches to the new environment (Figure 2.1),

where ϑ = 0 corresponds to an instantaneous degradation of the entire habitat.

While the populations in demes with the original environment can maintain their

size at carrying capacity, the fitness of the wildtype drops below one in the per-

turbed demes, and the population size starts to decline. Whereas the wildtype

cannot persist in the new environment, mutants have – at least at low popu-

lation densities – a fitness greater than one. They are, however, initially rare

(or absent) in the population and therefore likely to suffer stochastic loss. At
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migrant pool

m

t < 0

migrant pool
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migrant pool

m

t ∈ [ϑ, 2ϑ[
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t ≥ (D − 1)ϑ

. . .
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= old environment, = new environment

Figure 2.1: Sketch of the spatial and temporal habitat structure. The population
lives in a patchy environment with D demes. Each generation a fraction m of
the offspring enters a migrant pool, which is then randomly distributed over
the islands. Beginning at time t = 0, the environment changes in intervals of
ϑ generations, affecting one deme at a time, until all demes are affected. The
environmental change is thus idealized as a discrete switch and may, for example,
represent a shift in habitat type, the appearance of an invading species, or an
alteration in climate.
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this stage, the metapopulation corresponds to a source-sink system where the

unperturbed demes act as sources and the perturbed demes as sinks for wildtype

individuals. Because the size of the sink grows over time and the source vanishes,

the metapopulation will ultimately go extinct unless it is rescued by adaptive

mutation.

We denote the carrying capacity for each deme as K and define Ktotal = DK.

N
(i)
w and N

(i)
m are the number of wildtypes and mutants in deme i. The life cycle

is assumed to be:

1. Reproduction and mutation: Each individual of the parent generation, irre-

spective of type, produces a large number X of offspring. A fraction u of the

wildtype offspring mutates. Back mutation is ignored.

2. Migration: A fraction 1 − m of the offspring remains in its home deme, a

fraction m enters the migrant pool. A fraction 1/D of the migrant pool settles

in each deme.

3. Selection & density regulation: Each deme has a hard carrying capacity K.

Under the original environmental conditions, the offspring viability is suffi-

ciently high such that the deme is fully occupied after completion of the life

cycle. Following the classical island model, we determine the genetic composi-

tion of the next generation in an unperturbed deme by binomial sampling of K

individuals from the local offspring pool with frequencies weighted by fitness.

The number of mutants thus follows a binomial distribution with parameter

p =
α(N

(i)′
m + uN

(i)′
w )

(1− u)N
(i)′
w + α(N

(i)′
m + uN

(i)′
w )

, (2.1)

where α is the relative fitness of the mutant in the old environment and

N (i)′
w = (1−m)N (i)

w +
m

D

D∑
k=1

N (k)
w ,

N (i)′
m = (1−m)N (i)

m +
m

D

D∑
k=1

N (k)
m .

(2.2)

We denote by z0 := 1− α the strength of selection against mutants in unper-

turbed demes. Under the deteriorated conditions in the new demes, survival

probabilities are lower, and at least as long as the mutant is rare, the carrying
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capacity will in general not be reached. Wildtype individuals are unable to

replace themselves, and we set the probability of survival for each of their X

offspring to (1 − r)/X. In contrast, mutant individuals are – at least at low

densities – able to positively grow; mutant offspring survive with probability

(1 + Si)/X in deme i. In the limit X →∞, the number of wildtype and mu-

tant individuals after selection but before density-regulation follows a Poisson

distribution:

N (i)
w → Poisson with parameter (1− u)(1− r)N (i)′

w ,

N (i)
m → Poisson with parameter (1 + Si)(N

(i)′
m + uN (i)′

w ).
(2.3)

If necessary, the population size is thereafter reduced to carrying capacity K.

For large r, this is very rarely needed until rescue has occurred.

Note that (unless density regulation is needed) (1−r) plays the role of an absolute

fitness of wildtype parents under the perturbed conditions (ignoring mutation).

We use r as a measure of the severity of the environmental change. Similarly,

(1 + Si) is the absolute fitness of mutant parents in the perturbed deme i, where

we model Si as follows:

Si = max

[
−z, s

(
1− βN

(i)′
w +N

(i)′
m

K

)]
(2.4)

with s, z > 0, β ≥ 0. For β = 0, we have Si = s and fitness is density indepen-

dent. For β > 0, growth of the mutant population is reduced in the presence of

competing wildtype or mutant individuals. For β > 1, this entails an effective

reduction of the mutant carrying capacity in the new environment to K/β. The

parameter z sets a limit to the harmful effects of competition. Choosing z ≤ 1

prevents absolute fitness from becoming negative. For z = 1 − α, the absolute

fitness of mutants in a fully occupied deme is the same under both environmental

conditions. The effect of competition on mutants in a fully occupied deme is

weaker in the new environment for z < 1 − α and stronger for z > 1 − α. For

simplicity, we refrain from explicitly modeling density dependence of the wild-

type fitness. Note that this latter assumption is more a technicality: the relevant

feature of the wildtype population size in the degraded environment is a decay

that is still sufficiently fast at low densities. The rate of decay (the harshness of

the environmental change) is controlled by the parameter r; the specific mode of

the decay is of minor importance. Note also that under certain scenarios, mutant
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fitness might indeed be density dependent, while the wildtype fitness is not. E.g.,

it is possible that mutants are able to convert a particular resource in a manner

that allows them to grow in the new environment; while all individuals use up

this resource, it only affects the growth rate of mutant individuals and only in

the new environment.

All model parameters and further notations used throughout the manuscript

are summarized in Table 2.1.

2.3 Simulations

Algorithm The simulation program implements the discrete-generation life cy-

cle, with offspring numbers in the old and the new demes determined by drawing

from a binomial or a Poisson distribution, following Eq. (2.1) or (2.3) (plus pos-

sibly density-regulation), respectively. We start the simulations with all demes

fully occupied by wildtype individuals and let the population evolve for a large

number of generations to generate mutation-selection-drift equilibrium before the

deterioration of the habitat sets in. After all demes have deteriorated, we track

the population until the wildtype has gone extinct. If any mutants are present

at this point, we let the simulations run, until the mutant has either reached a

threshold density or has gone extinct. As a threshold density, we choose 90%

of the total carrying capacity of the mutant if m > 0 and 90% of the carrying

capacity of the mutant in a single deme if m = 0. The latter implies that the

population is considered as rescued even if only a single sub-population survives.

If not stated otherwise in the figure legend, simulation points represent averages

over 107 replicates. All computer simulations were written in the C programming

language, making use of the Gnu Scientific Library (Galassi et al., 2009).

Observations Our most significant findings from the numerical analysis are

summarized in Figures 2.2, 2.3, and 2.4. We focus on the dependence of the rescue

probability on the strength of migration m, the severity of change (reflected by

r), and the speed of environmental change (modeled by ϑ).

The dependence of the rescue probability on the migration rate is explored in

Figures 2.2A and 2.2B. In all cases, we observe a (local) maximum in the proba-

bility of evolutionary rescue for low, but non-zero levels of migration (mmax ≈ s).

In some cases, rescue increases again for strong migration. This secondary in-
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D, K
number of demes and carrying capacity of a
single deme, Ktotal = KD

N
(i)
w/m, N

(old)
w/m , N

(new)
w/m , N

(total)
w,m

number of wildtype/mutant individuals, re-
spectively, in deme i, the unperturbed (old)
and perturbed (new) part of the habitat, and
in the entire metapopulation

m
fraction of offspring that enter the migrant
pool

u mutation probability

ϑ
intervall between the deterioration of two
demes

α, z0
α = 1 − z0: relative fitness of the mutant in
the old environment

1− r absolute fitness of a wildtype parent in the new
environment

1 + Si
absolute fitness of a mutant parent in deme i
with the new environment (cf. Eq. (2.4))

β
strength of density dependence experienced by
a mutant in the new environment

1− z
minimum absolute fitness of a mutant parent
in the new environment (at high density) if
β > 0

1 + s

maximum absolute fitness of a mutant parent
in the new environment (at low density) if β >
0; absolute fitness of a mutant in deme i if
β = 0

seff
effective strength of selection experienced by a
mutant

p
(i)
est

establishment probability of a single mutant in
deme i

Table 2.1: Summary of notations.
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crease for large m is observed if α (see Figure 2.2A) and r (see Figure 2.2B) are

not too small. The chances of rescue become very high for strong migration, if r

is large (cf. r = 0.4 in Figure 2.2B). All effects of strong migration are observed

across a larger parameter range (i.e., even for smaller values of α and r), if the

total number D of demes is larger. As we will see, the maximum for interme-

diate migration is generated by the interplay of two antagonistic effects: on the

one hand, migration leads to an increased mutational input, on the other hand,

by migration, mutants end up in unperturbed demes where they suffer a disad-

vantage (see section “Evolutionary rescue in an island model without standing

genetic variation”). The potential increase for very large m is a consequence of

relaxed competiton in the old environment (see “Evolutionary rescue in a Levene

model”).

Figures 2.2C and 2.2D and Figure 2.3 summarize the dependence of the res-

cue probability on the severity of the environmental change, Prescue(r). We first

compare Figures 2.2C and 2.2D. As expected, the rescue probability declines

with r for many parameter combinations. However, we observe a counterintu-

itive behavior in a relevant part of the parameter space, where Prescue(r) exhibits

a pronounced minimum. This means that a harsher environmental change (larger

r) can increase the probability of survival in some cases. Figure 2.2C shows the

typical behavior for weak and intermediate migration. In this case, we observe a

non-monotonic behavior for relatively high mutant fitness in the old environment

and strong density dependence in the new environment (high values of both α

and β). Further requirements are a sufficiently large value of s and a large, but

not too large, value of z (i.e., sufficiently strong selection and density dependence

in the new habitat). Figure 2.2D represents extensive migration. In this case, the

parameter space yielding non-monotonic behavior is much enlarged. We observe

a non-monotonic shape even for intermediate mutant fitness α and even in the ab-

sence of any additional density dependence in the perturbed environment (β = 0).

For the parameters explored in Figures 2.2C and D, standing genetic variation

is required in order to observe a minimum in the rescue probability (α > 0).

However, under other parameters, Prescue(r) can display a non-monotonic behav-

ior even when α = 0 and there is hence no standing variation, as illustrated in

Figure 2.3. This occurs if density dependence is strong (β large), selection strong

relative to migration (s large, with larger values of m requiring larger values

of s), and the speed of deterioration slow (ϑ large). As we will explain in the

analysis section, the advantage of a faster decay (higher r) comes about because

of weakened competition either on the islands with the new environment (see
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section ”Evolutionary rescue in scenarios where habitat structure is absent or im-

material”) or on the islands with the old environment (see section “Evolutionary

rescue in a Levene model”). While a harsher change reduces the number of rescue

mutations that appear by mutation, it increases the establishment probability of

each single mutant due to these effects.

Figure 2.4 focusses on the influence of the speed of environmental change

modeled by ϑ. In Figure 2.4A, we see that the probability of evolutionary rescue

can either increase or decrease as a function of ϑ, i.e., a slowly progressing change

can be better or worse for the population than an instantaneous degradation of

the whole habitat. Figure 2.4A demonstrates how this depends on the strength of

density dependence β. Figure 2.4B shows the probability of evolutionary rescue

as a function of m for various values of ϑ. β is fixed to the value for which in

Figure 2.4A, a rapid change was favoured over a slow one. We observe that for

weak and intermediate migration, the survival probability significantly increases

as ϑ gets larger (slower change), while in line with Figure 2.4A, it decreases with

increasing ϑ for strong migration. Overall, we find that a rapid change facilitates

rescue if m, α, z, s, and r are large and β not too small. The reason for this

behavior is similar to that indicated above when considering the harshness of

change (faster degradation can relax competition, see section “Evolutionary res-

cue in a Levene model”), but the parameter range yielding the counterintuitive

behavior is much more restricted. For strong density dependence and migration,

the fitness of mutants gets strongly suppressed in the new environment due to

competition with the immigrating wildtype individuals even for large r. If stand-

ing genetic variation is large and de-novo mutations rare (large α, large r, small

u), the probability of rescue is therefore larger for an instantaneous degradation

of the entire habitat without temporal refugia.

In the following, we will explain within three analytically tractable sub-models

how these patterns arise. In a first step, we will consider a class of models in which

habitat structure is absent or immaterial (D = 1 or m = 0 or ϑ = 0). The second

sub-model is a generalization of the Levene (1953) model (m = 1). Last, we

will analyze an island model with α = β = 0, i.e., where the mutation is lethal

in the original environment and mutant fitness in the perturbed environment is

density-independent.
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Figure 2.2: Panels A and B: The probability of evolutionary rescue as a function
of m. Filled and open symbols indicate the absence or presence of density depen-
dence (beyond the hard carrying capacity K). In Panel A, squares and circles
distinguish scenarios with and without standing genetic variation. In all cases, we
observe a local maximum for intermediate migration. In some cases, the rescue
probability increases again for strong migration. Panels C and D: The probability
of evolutionary rescue as a function of r. Filled symbols correspond to scenarios
with no explicit density dependence (β = 0), while open symbols denote strong
density dependence (β = 10). Squares represent scenarios where the mutation is
lethal under the original conditions (α = 0), circles denote scenarios with stand-
ing genetic variation (α > 0). The plots show that a harsher change (larger r)
is sometimes better for the survival of the population than a milder one. Each
simulation point is the average over 106 replicates. (Parameters: D = 8, z = 0.2,
s = 0.02, K = 2500, ϑ = 250, u = 0.5 · 10−4 = 1/Ktotal)
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Figure 2.3: The probability of evolutionary rescue as a function of r. Prescue(r) can
attain a minimum and a maximum for intermediate values of r. Each simulation
point is the average over 106 replicates. (Parameters: D = 2, z = 0.2, s = 0.02,
m = 0.01, K = 10000, ϑ = 5000, u = 0.5 · 10−4 = 1/Ktotal)

2.4 Analysis

General approach

The probability of evolutionary rescue is determined by the rate of successful

mutants, i.e., the rate of mutants that not only arise but also establish in the

population. In a panmictic population, this rate is proportional to the number of

wildtype individuals, which determines – together with the mutation probability

u – the number of mutants that are generated each generation, and the estab-

lishment probability of a new mutant. In a spatially structured population, both

the mutational input and the establishment probability vary across demes. In a

gradually deteriorating environment, we are inherently far from equilibrium, and

both factors are time-dependent.

In our model, the number of new mutations that arise in generation t and sur-

vive selection and density regulation in that generation is given by the respective

terms in Eq. (2.1) and (2.3). As long as the rescue allele is rare, the binomial dis-

tribution in Eq. (2.1) can be approximated by a Poisson distribution with mean

uαK. Consequently, the number of successful mutants that is generated in deme

i in generation t follows a Poisson distribution with mean uαKp
(i)
est(t + 1) if the
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dependent selection, an instantaneous deterioration of the whole habitat (ϑ = 0)
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change leads to a higher probability of evolutionary rescue than a slow change.
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deme has not yet deteriorated and u(1+Si(t))N
(i)′
w (t)p

(i)
est(t+1) in the deteriorated

environments, respectively. p
(i)
est(t) is the establishment probability of a mutant in

deme i in generation t at the start of the life cycle (i.e., before reproduction) and

N
(i)′
w (t) is defined as in Eq. (2.2). For a given demographic history, the probability

of evolutionary rescue is hence given by

Prescue ≈

1− exp

− D∑
i=1

(i−1)ϑ−1∑
t=−∞

uαKp
(i)
est(t+ 1) +

∞∑
t=(i−1)ϑ

u(1 + Si(t))N
(i)′
w (t)p

(i)
est(t+ 1)

,
(2.5)

where the exponential is the probability that no sucessful mutant is generated in

any deme in any generation. The sum
∑D

i=1

∑(i−1)ϑ−1
t=−∞ captures the contribution of

standing genetic variation (defined as mutations arising before a deme degrades),

the sum
∑D

i=1

∑∞
t=(i−1)ϑ the contribution of de-novo mutations (subsequent to

environmental degradation).

Throughout the paper, we model the dynamics of the wildtype population size

deterministically, i.e., we neglect demographic stochasticity (see Martin et al.

(2013) for a study that includes demographic stochasticity). The establishment

phase of new mutants, however, is characterized by strong stochasticity and thus

requires a probabilistic treatment. Following a long tradition in population genet-

ics, we calculate establishment probabilities via time-inhomogeneous branching

processes (Kendall, 1948; Allen, 2011; Uecker and Hermisson, 2011). This

approach is based on the following reasoning: As long as the mutation is rare in

the population, mutant offspring suffer (nearly) independent fates, and their early

spread is therefore well described by a branching process. In a structured popula-

tion, we must a priori distinguish several types of individuals, according to deme,

and consequently describe the dynamics of the wildtype by a set of coupled dif-

ference equation and the spread of the mutant by a multitype branching process.

In the following sections, we focus, however, on limiting cases which all allow for

an effective reduction of the dimensionality of the problem. In these cases, we can

model the deterministic dynamics of the wildtype by a single difference equation

(see Eq. (A.1), applicable to all three sub-models) and the early phase of mutant

growth by a single-type branching process with a time-dependent effective growth

parameter seff(t).

Details on the analysis can be found in the Appendix. All numerical evalua-

tion of integrals is done in Mathematica (Wolfram Research, Champaign, USA).
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Comparison to computer simulations shows that the analytical results are highly

accurate.

2.4.1 Evolutionary rescue in panmictic populations with

D = 1 and scenarios where habitat structure is im-

material

We first focus on scenarios where habitat structure is either absent (D = 1)

or proves to be immaterial, i.e., does not affect the probability of evolutionary

rescue. We find that habitat fragmentation is irrelevant if individuals do not

migrate (m = 0; rescue is defined as survival of at least one sub-population)

or if the environment changes simultaneously on all islands (ϑ = 0). In both

cases, the probability of rescue is the same as in an unstructured population

of size Ktotal = KD irrespective of the number D of demes. For zero migration,

this initially surprising result essentially follows because in both the unstructured

and the island model, the local population size declines at rate r after the local

environmental shift, regardless of when this shift occurs. If the environment

changes at the same time in the whole habitat (ϑ = 0), the wildtype population

size decays simultaneously in all demes with the same rate r as in the panmictic

case, regardless of the migration rate. Hence, migration of mutants has no effect

on their establishment probability, even if mutant fitness is density dependent. A

formal proof of why the cases D = 1, m = 0, and ϑ = 0 coincide as well as details

on the analysis are given in Appendix B. For simplicity, we stick to D = 1 in the

following. In that case, we naturally deal with only one type of wildtype and one

type of mutant individual.

For density-independent fitness (β = 0), we are able to derive simple analytical

approximations for the rescue probability (see Appendix B). For s and z0 small,

we obtain:

P sgv
rescue ≈ 1− exp

[
−2uK ln

(
s+ z0

z0

)]
= 1−

(
s+ z0

z0

)−2uK

, (2.6)

P dnm
rescue ≈ 1− exp

[
−uK

r
2s

]
, (2.7)

where P sgv
rescue and P dnm

rescue denote the probability of evolutionary rescue by muta-

tions from standing genetic variation and de-novo mutations, respectively. These

formulae agree with the results by Orr and Unckless (2008), who provide a
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detailed discussion of evolutionary rescue in unstructured populations when fit-

ness is density independent. (Note that the absolute fitness of a mutant in the

new environment is 1 + s in our model, while it is 1 + sb − r in Orr and Unck-

less (2008); the parameter z0 corresponds to sd in Orr and Unckless (2008).)

In this case, the decay rate r of the wildtype population size enters the result

solely via the mutational input. As the latter is larger for smaller values of r, the

probability of evolutionary rescue monotonically decreases as r increases. The

probability of evolutionary rescue from standing genetic variation is unaffected

by the severity of change as long as mutant fitness is density independent below

the hard carrying capacity K. In contrast, if fitness is density dependent (β 6= 0),

the establishment probability of mutations from both standing genetic variation

and de-novo mutation depends on how fast the wildtype population size decays,

and more complex behavior may arise.

Figure 2.5 shows the probability of evolutionary rescue as a function of r for

various combinations of β (affecting the strength of density dependence) and α

(affecting the amount of standing genetic variation). If either α or β (or both)

are small, the rescue probability decreases as a function of r (apart from bearly

visible non-monotonic behavior, see Appendix B for details). However, when

both parameters are large, we observe a pronounced minimum in the probability

of evolutionary rescue. How can we understand this behavior? Both de-novo mu-

tations and mutations from standing genetic variation contribute to evolutionary

rescue, and it is helpful to consider both contributions separately. The mutational

input (∼ uNw) during population decline decreases as a function of r, while the

establishment probability pest increases because of weakened competition. The

probability of evolutionary rescue by de-novo mutations depends on both fac-

tors; its overall trend is governed by the declining mutational input. By contrast,

the probability of evolutionary rescue from standing genetic variation increases

with r because mutant fitness is density dependent. The two contributions to

population survival – rescue by de-novo mutations and rescue by mutations from

standing genetic variation – thus exhibit opposite behavior as a function of r.

When β is large, the population size has to be greatly reduced for the mutant

growth parameter to become positive. In that case, the wildtype population size

is already low, by the time that the establishment probability of de-novo muta-

tions becomes significant. Rescue by a de-novo mutation is therefore only likely

if r is very small such that the number of mutants generated before extinction

of the wildtype is nevertheless high. Consequently, P dnm
rescue decays rapidly as a

function of r. At the same time, mutations from standing genetic variation can
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only contribute to rescue if the wildtype individuals are rapidly eliminated such

that the mutants can survive up to the time when their fitness finally exceeds

one. This contribution is substantial if the amount of standing genetic variation

is high (large α). This implies that if β and α are both large, the contribution

from de-novo mutations is high for small r and the contribution from standing

genetic variation is high for large r, while for intermediate r none of the two con-

tributions is particularly strong, leading to a minimum in the total probability

of evolutionary rescue. To illustrate this point, we included the probability of

evolutionary rescue from standing genetic variation and by de-novo mutations

individually in Figure 2.5.

A pronounced minimum is generated if (1) density dependence is strong (suf-

ficiently large β and z in our model) and (2) the rescue probability from standing

genetic variation is high for large r. The latter condition requires large values of

α and s. Furthermore, z must not be too large (in particular, z 6= 1), in order for

mutants from the standing genetic variation to survive the first few generations

after the environmental change, while the population is still large.

We point out that for extreme parameter values, a third pattern is possible:

due to the antagonistic effects of r, P dnm
rescue and along with it the total probability of

evolutionary rescue attains a minimum, then a maximum, and decays afterwards

(Figure B.3). For details, we refer to Appendix B.

In structured populations with m > 0 and ϑ = 0, additional genetic vari-

ation and targets of mutation are provided by immigration of individuals from

the unperturbed to the perturbed demes. For slow change (large ϑ), the wild-

type population in the perturbed demes approaches migration-selection balance.

With density-dependent selection, mutants in these demes will be able to grow

if and only if the density is sufficiently low, which is the case for large r. As a

consequence of wildtype immigration from unperturbed to perturbed demes, the

requirements on α are strongly relaxed, and we find a non-monotonic behavior

even in parameter regions with α = 0 (cf. Figure 2.3).

2.4.2 Evolutionary rescue in a Levene model

As a next step, we investigate the influence of gradually changing heterogeneous

selection with “good” and “bad” islands, but without population structure (i.e.,

m = 1). This leads to a variant of the Levene (1953) model with environmental

deterioration. To begin with, we confine the treatment to density-independent

selection (β = 0).

82



2.4. ANALYSIS

 0

 0.2

 0.4

 0.6

 0.8

 1

amount of standing genetic variation

s
tr

e
n
g
th

 o
f 
d

e
n

s
it
y
 d

e
p

e
n
d

e
n
c
e

α=0.3 α=0.9

β
=

1
β
=

1
0

A
Prescue

Prescue
dnm

Prescue
sgv

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1

r

C

B

0 0.2 0.4 0.6 0.8 1

r

D

Figure 2.5: Evolutionary rescue in an unstructured population (D = 1). Dashed
curves give the probability of rescue from de-novo mutations (i.e. those occur-
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Since all offspring enter the migrant pool, all wildtypes are equivalent, re-

gardless of source population, and the same holds for mutants. Thus, there is

again only one kind of each allelic type, enabling analytical treatment. The cru-

cial quantity for the understanding of the functional behavior of Prescue is the

effective growth parameter of a mutant (which enters the establishment proba-

bility). To derive the growth parameter, consider first a single old patch. The

genetic composition of the next generation is determined by binomial sampling

of K individuals, and the number of mutants follows a binomial distribution with

parameter

αN
(total)
m (t)
D

αN
(total)
m (t)
D

+ N
(total)
w (t)
D

=
αN

(total)
m (t)

αN
(total)
m (t) +N

(total)
w (t)

, (2.8)

where N
(total)
m (t) and N

(total)
w (t) are the number of mutants and residents in the

whole meta-population. As long as mutants are rare relative to the number of

wildtypes, the binomial distribution can be approximated by a Poisson distri-

bution with parameter α(N
(total)
m /N

(total)
w )K. Since the offspring get distributed

with equal probability over the demes, we can also (artificially) assign N
(total)
m /D

mutant parents to each deme. For each mutant individual associated with a

particular unperturbed deme, we thus obtain a Poisson distributed number of

offspring with parameter

α
KD

N
(total)
w (t)

. (2.9)

As N
(total)
w (t)/D will be smaller than K once the environmental deterioration has

started, αDK/N
(total)
w (t) will be larger than α. The reason is relaxed competition

with the wildtype in this pre-disturbance patch: as the wildtype population size

drops, fewer wildtypes contribute to the migrant pool and consequently to the

local offspring pool. We now average the growth parameter of the mutant over all

patches, weighting good and bad demes according to their respective numbers.

For a period with d deteriorated demes, we obtain:

seff(t) =
d

D
(1 + s) +

D − d
D

α
KD

N
(total)
w (t)

− 1. (2.10)
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In Appendix C, we derive an approximation for the growth parameter of the

mutant if ϑ is large enough that N
(total)
w (t) can be replaced by its stationary

value, yielding:

seff(t) ≈


α− 1 for t < 0,

α− 1 + 1−α+s+αr
D

d = for t ∈ [(d− 1)ϑ, dϑ[, d ∈ {1, . . . , D − 1},
s for t ≥ (D − 1)ϑ .

(2.11)

Thus, the growth parameter increases with the number of perturbed demes up

to time (D − 1)ϑ. It might even exceed the growth parameter s in the new

environment, if:

sD−1 = α− 1 +
1− α + s+ αr

D
(D − 1) > s ⇔ α >

1 + s

1 + r(D − 1)
, (2.12)

where sD−1 approximates the growth parameter in the period with D− 1 deteri-

orated demes, following Eq. (2.11). For “infinitely” many islands, in particular,

this condition is always met except for α = 0: the strength of effective selection

goes up to s + αr before it drops to s after the last deme has deteriorated. The

temporal development of the growth parameter for small and large r is depicted

in Figure 2.6A. Figure 2.6B shows the corresponding establishment probabilities.

For large values of r, the effect can be quite strong. Ultimately, this is again a

consequence of density-dependent fitness: density regulation in the old patches

renders the absolute fitness of mutants density dependent, even if the relative

fitness α is constant. When the wildtype population size decreases, competition

is relaxed and the absolute fitness of mutants is increased. For the successful

establishment of a mutation, absolute offspring numbers and thus the density-

dependent absolute fitness matters. These considerations show that again a low

fitness of the wildtype in the perturbed habitat has both a positive effect – the

establishment probability increases with r – and a negative effect – the muta-

tional input decreases. The positive effect gets stronger for larger values of α and

D.

Figure 2.7 shows the probability of evolutionary rescue as a function of α

and r, respectively. As can be seen from all three panels, Prescue significantly

increases with α; the increase is particularly strong for large D (Figure 2.7A) and

r (Figures 2.7B and C). Note that α = 0 implies that evolutionary rescue entirely

relies on de-novo mutations. We also see that due to the antagonistic effects of a

fast decay of the wildtype population size, the probability of evolutionary rescue
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can have a pronounced minimum as a function of r (see Figures 2.7B and 2.7C).

If α is small, the effect of relaxed competition is weak. In this case, the survival

probability decreases as r increases because the total mutational input (and in

particular the mutational input after the last deme has deteriorated) diminishes

with increasing r (solid curve in Figure 2.7C).

We now include density-dependent mutant fitness into the analysis and con-

sider the limits ϑ → 0 and ϑ → ∞. As discussed in the previous section, the

case ϑ = 0 compares to a scenario with no habitat structure. If ϑ is very large,

it is sufficient to focus on times after all demes but one have turned bad: Two

scenarios can be distinguished. Either the mutant fitness in [(D−2)ϑ, (D−1)ϑ[ is

larger than one. In that case, as mutations arise recurrently, the mutant type will

certainly establish during this last period. Or the mutant fitness is smaller than

one. Then, mutations that were generated before time (D − 2)ϑ (i.e., before the

second last deme deteriorated) will not survive up to time (D − 1)ϑ and we can

safely ignore them. We can thus restrict our attention to a single environmental

switch at time (D − 1)ϑ. As m = 1, all wildtype and all mutant individuals

are equivalent with respect to selection. Therefore, the situation is once again

formally equivalent to the one of an unstructured population subject to a sin-

gle environmental shift (see Appendix C for details). For β = 0, the effective

growth parameter of a mutant in the time interval [(D − 2)ϑ, (D − 1)ϑ[ is given

by Eq. (2.11). The generalization to density-dependent mutant fitness is straight-

forward: we simply replace s by S(t) and approximate S(t) by its stationary value

S̄ (see Eq. (C.6)):

sD−1 = α− 1 +
1− α + S̄ + αr

D
(D − 1). (2.13)

As discussed above, if sD−1 is larger than zero and ϑ large, the mutant type will

certainly establish before the last environmental shift. If sD−1 is smaller than

zero, a mutation-selection equilibrium will evolve. With increasing ϑ, the total

probability of evolutionary rescue hence converges to a limit value. The speed of

convergence is set by the time to approach equilibrium.

Figure 2.8 compares an instantaneous shift in all demes (ϑ = 0) to a very

slowly progressing change (ϑ = ∞). While for the parameter values chosen for

Figure 2.8A, a slower change is better, we see in Figure 2.8B that the rescue

probability can be higher for a very fast change than for a very slow one. How

can we explain this? We give an illustrative numerical example for the case of

two demes: With r = 0.5, we find a total equilibrium wildtype population size of
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4K/3 before the last deme turns bad at time ϑ. For β = 2, we obtain S̄ = −0.137,

and if we choose α = 0.99, sD−1 = 0.174 > 0, i.e., mutants have a good chance

to establish. In contrast, for β = 4, we obtain S̄ = −z = −0.685 and with

α = 0.99, sD−1 = −0.1. This means that selection against the mutation is even

stronger in the period [0, ϑ[ than before time 0 because of the strong density

dependence of growth in the new environment. Additionally, the number of

wildtype individuals and thus the mutational input is lower. Consequently fewer

mutants are present in the population at time ϑ than at time 0, which leads to

a lower probability of evolutionary rescue for a very slowly progressing change as

compared to an instantaneous degradation of the whole habitat. We note that

for density-independent mutant fitness β = 0, Prescue(ϑ = 0) is never larger than

Prescue(ϑ→∞); for α = β = 0 and s small, Prescue(ϑ = 0) ≈ Prescue(ϑ→∞) (see

Appendix C for a derivation).

Note that the strength of sD−1 increases with r whenever either α or β is

larger than zero. In that case, a harsher change leads to a higher establishment

probability for the rescue mutant. Consequently, if β > 0, we may observe a

non-monotonic behavior of Prescue even if the rescue mutation is lethal (α = 0)

under the old environmental conditions.

2.4.3 Evolutionary rescue in an island model without stand-

ing genetic variation

We now turn to an island model with arbitrary migration in order to include

population structure. We assume that there is no standing genetic variation in

the population for the locus in question (α = 0), i.e., the mutation is lethal in

the old environment. We also restrict our investigation to density-independent

selection (β = 0).

The analysis is based on the following reasoning: due to the particular migra-

tion pattern of the island model, we can merge all patches in the old environment

into one habitat and all patches with the new environment into a second one.

The number of wildtypes in the old part of the habitat is given by its current

carrying capacity; the number of wildtypes in the new part is governed by a single

difference equation (Eq. (A.1)). As the mutation is lethal in the old environment

(α = 0), we effectively deal with one type of mutant individuals only. As in

the Levene model, it is helpful to consider the effective growth parameter of a

mutant. A mutation that arises in the new environment either stays there with

a probability proportional to the size of the new habitat or migrates to the old
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a function of time for two values of r. Both quantities exceed their value for
constant fitness s (far right) if r is large. The curves for seff and pest(t) follow
Eq. (2.11) and Eq. (A.7). Parameter values: s = 0.02, β = 0, α = 0.85, D = 8,
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Figure 2.7: Evolutionary rescue in a Levene model. The probability of evolution-
ary rescue significantly increases with the fitness α of mutants in the unperturbed
environment (Panel A). For sufficiently large values of α, it has a minimum for
intermediate values of r (Panels B and C). If not specified otherwise, the param-
eter values are: s = 0.02, β = 0, D = 2, Ktotal = 20000, u = 0.5 · 10−4 = 1/Ktotal,
ϑ = 1000; furthermore r = 0.1 for Panel A. The theoretial approximation for
infinitely many islands is compared to simulations with D = 100. The theoretical
curves are based on Eq. (C.5) (finite number of demes) and Eq. (E.12) (infinite
number of demes). Circles denote simulation results.

environment with a probability proportional to the size of the latter. As it cannot

survive in the old habitat, its growth rate is hence reduced by migration out of the

new environment. Since the old habitat shrinks and the new habitat grows, the

effective growth rate of the mutant increases in time. This implies that again, the

early spread of the mutation can be described as a time-inhomogeneous branch-

ing process with a growth rate that gradually increases until the environmental

conditions have changed on all islands. Following this reasoning, the effective

growth parameter is given by

seff(t) =

{
(1 + s)

(
1− D−d

D
m
)
− 1 for t ∈ [(d− 1)ϑ, dϑ[, d ∈ {1, . . . , D − 1},

s for t ≥ (D − 1)ϑ .
(2.14)

Migration thus reduces the effective growth parameter of mutants and along with

it their establishment probablity. At the same time, a large migration probability

keeps the wildtype population size in the new environment high, which means that

there is a large supply of new mutants that might possibly establish. Migration

therefore has two antagonistic effects. As a result, the probability of evolution-

ary rescue has an intermediate maximum as a function of m (Figure 2.9A and
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Figure 2.10): For small m, the positive effect of migration dominates and Prescue

increases with m. As m gets larger, the negative effect gets stronger and finally

prevails such that the probability of evolutionary rescue decreases. For details on

the analysis, we point to Appendix D.

Figures 2.9B–D, illustrate the dynamics for small, intermediate and large val-

ues of m in more detail. For the sake of simplicity, we stick to a two deme model.

Figure 2.9B shows the total number of residents N
(new)
w that live in the bad habi-

tat, Figure 2.9C the establishment probability of a single mutant, and Figure 2.9D

the rate of successful mutants. If individuals do not migrate at all, the number of

wildtypes in the bad habitat exhibits two peaks: one when the first deme turns

bad, the second when the second deme turns bad. The establishment probability

is constant in time (≈ 2s). The rate of successful mutants therefore has two iden-

tical peaks, i.e., a rescue mutation will most likely arise briefly after the change

of the environment has occurred in one of the demes. The other extreme case is

m = 1. In that case, N
(new)
w is kept relatively high. However, the establishment

probability is virtually zero up to a few generations before the second deme turns

bad and then increases almost instantaneousy up to 2s. Therefore, the rate of

successful mutants has only one peak (Figure 2.9D). We find that this peak com-

prises approximately the same area as the two peaks for m = 0 together, leading

to approximately the same probability of evolutionary rescue. For small r and

D = 2, as used in Figure 2.9, this is intuitively clear: The total number of wild-

type individuals stays close to Ktotal until the second deme degrades. Thus, the

number of wildtypes that still exist after time ϑ (and can act as a source for rescue

mutations), too, is twice as large as for m = 0 (see the peak in Figure 2.9B). For

large r and D > 2, we still have Prescue(m = 0) ≈ Prescue(m = 1), although this is

not obvious (see Appendix C for a derivation). For intermediate migration, both

N
(new)
w and pest assume non-negligible values in the period between the deterio-

ration of the first and the second deme, leading to a significant rate of successful

mutants. Consequently, the length of this period strongly influences the survival

probability of the population.

The essential elements of this discussion can also be seen in the following

simple approximation, which captures the characteristic behavior of Prescue(m):

For small s, we can approximate the establishment probability of new mutants

in [0, ϑ[ by

pest ≈ max [2seff(t), 0] = max
[
2
(
s− m

2

)
, 0
]
. (2.15)
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We furthermore approximate the mutational input during this period via the

equilibrium wildtype population size in the deteriorated part of the habitat (cf.

Eq. (D.16))

N̂ (new)
w =

Km(1− r)
m(1− r) + 2r

≈ Km
1− r

2r
, (2.16)

where the approximation is valid for r � m. This neglects the phases where the

wildtype population size decays to its equlibrium or to zero, respectively, after the

first and second deme deteriorates (the “peaks” in Figure 2.9D). We estimate this

contribution by its value for m = 0 (cf. Eq. (2.7)) and obtain for the probability

of evolutionary rescue:

Prescue ≈ 1− exp

[
−2uϑmax

[(
s− m

2

)
, 0
]Km(1− r)

2r
− 2uK

r
2s

]
. (2.17)

This simple approximate is remarkably accurate for small m and s (see Figure D.1

in the Appendix). From its functional form, we see that the speed of deterioration

set by ϑ has a strong effect on Prescue if and only if m is in an intermediate

range, such that both N̂
(new)
w and pest are non-negligible. We also see that the

maximum in Prescue(m) is located at m ≈ s. These results generalize to D > 2

(see Appendix D).

We close with some observations on how various parameters shape Prescue.

First, we observe that the number of demes D only has a moderate influence on

population survival for D ≥ 2 (Figure 2.10A). Further, the peak for intermediate

m gets broader as s increases (Figure 2.10B): the negative effect of migration sets

in later for larger s. Last, as already discussed above, the value of ϑ has a strong

influence on the probability of evolutionary rescue unless migration is extremely

weak or quite strong (Figure 2.10C).

2.5 Discussion

Severe environmental change can drive a population extinct unless it is able to

rapidly adapt to the new conditions. Environmental change is ubiquitous and

greatly enhanced by human interference. A profound understanding of how such

change affects biodiversity might help to develop successful conservation strate-

gies. On the other hand, awareness of the factors that promote rapid evolution

is essential whenever we seek to inhibit it, such as in treatment plans to avoid

the evolution of drug resistance. In scenarios of population extinction or evolu-
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tionary rescue, evolution and ecology are necessarily intertwined. For a thorough

assessment of risks and chances, it is therefore indispensable to be mindful of

both, evolution and ecology.

Many ecological alterations will not affect the whole habitat at once, but

propagate gradually across the species range. In that case, parts of the pop-

ulation still experience the old environment, to which it is well-adapted, while

others already face the new unfavorable conditions. The system corresponds to a

source-sink-system with a shrinking – finally disappearing – source and a growing

sink. Despite the obvious importance of population structure and gradual habi-

tat deterioration for the probability of population survival, these aspects have

not been considered in ecologically explicit models on evolutionary rescue so far.

In this paper, we provide a baseline model of evolutionary rescue in structured

populations and investigate the implications for the probability of evolutionary

rescue. In addition, we allow for density-dependent mutant fitness in the new

environment. On the other hand, we restrict ourselves to the most basic genetic

model of one locus with two alleles. Because of its simplicity, this basic genetic

model can provide insight into the fundamental mechanisms underlying evolu-

tionary rescue in ecologically complex scenarios. In some situations, a simple
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genetic basis may be appropriate. For example, mutation at a single locus can

be sufficient to confer insecticide or drug resistance (Milani, 1963; McKenzie

et al., 1980; Daborn et al., 2002; Gerstein et al., 2012). Analysis of the model

reveals several non-monotonic relationships and unexpected patterns. In this

context, three quantitites – the speed of change, the severity of change, and the

migration probability – are of particular interest.

The speed of change How does the speed at which the deterioration pro-

ceeds across the species range influence the probability of evolutionary rescue?

If m = 0, the survival probability of the population is independent of the speed

of change, as the sub-populations in the single demes suffer independent fates.

For small migration rates, the probability of evolutionary rescue is drastically

increased for a slow compared to a rapid change. This is because for sufficiently

weak migration, wildtype individuals are rare in the altered habitats, competition

is weak, and mutations have a non-negligiable establishment probability, and the

slower the change, the more mutants are generated over time. For strong mi-

gration, a more complicated picture arises: While a slower change is still often

favorable, a slow deterioration of the habitat can sometimes hamper adaptation

of the population if mutant fitness is strongly density dependent. We can un-

derstand this unexpected behavior as follows. For a slow change, the population

encounters extended periods of environmental stasis before the last demes deteri-

orate. If migration is strong, the number of wildtype individuals in the perturbed

demes remains relatively high during this time. As a consequence, mutant fit-

ness, if density-dependent, can be lower than it had been before the environment

started deteriorating. Furthermore, the total wildtype population size and hence

the number of new mutants per generation is lower than it was before time zero.

The total number of mutants that are maintained in the balance of mutation,

selection, and migration can therefore even be reduced relative to the number of

mutants in the standing genetic variation before the environmental detoriation

sets in. As a consequence, long periods of environmental stasis can lead to a

reduced probability of evolutionary rescue. For density-independent mutant fit-

ness, however, our results show that a slow change is always at least as good as

a fast change (cf. Appendix C).

The severity of change The probability of successful adaptation is usually

expected to decrease with increasing maladpatation of the resident population

(cf. Holt and Gomulkiewicz (2004) for an overview): the slower the decay
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of the wildtype population size, the more time for adaptative mutations to oc-

cur. However, it is not enough that mutations arise, they also have to survive

stochastic loss and establish. Due to competition, the growth rate of new mu-

tants will often depend negatively on the population density. In that case, a fast

decay – and thus a harsh change in the environment – increases the establish-

ment probability of mutations. As a consequence, a harsher change (larger r)

is not necessarily worse for population survival than a milder one. Instead, our

results show that the probability of evolutionary rescue can assume a minimum

for intermediate levels of wildtype maladaptation. We find that this occurs if (1)

density dependence in the new environment is strong and either the amount of

standing genetic variation large or selection for the mutant strong relative to mi-

gration and the speed of change slow or if (2) migration is strong and the mutant

reasonably fit in the old environment. The entire parameter space where an in-

verse dependence on the severity of environmental change is observed is generally

larger than the parameter space where faster speed leads to higher rates of rescue.

The advantage of a harsh change is that a fast decrease in the number of wild-

type individuals relaxes competition, either in the new environment (scenario 1)

and/or in the old environment (scenario 2). For panmictic populations without

habitat structure, the first scenario has been described verbally by Read et al.

(2011). In that case, rescue is likely for harsh environmental change because a

fast decay of the wildtype population size enhances the establishment probability

of mutations from standing genetic variation. In structured populations, not only

mutants from standing genetic variation but also mutant descendants of immi-

grants from unperturbed to perturbed demes benefit from reduced competition

in the new environment and experience a higher establishment probability for a

more severe change. If standing genetic variation is low and rescue relies mainly

on de-novo mutations, the probabiliy of evolutionary rescue may decrease again

as r increases further because the reduced mutational input outweighs the bene-

fits of a high establishment probability. The first scenario is also reminiscent of

studies with stable source-sink dynamics, where constant mutational input from

the source and low competition in the sink can lead to high rates of adaptation

(Greulich et al., 2012; Hermsen et al., 2012). In the second scenario with high

migration and a reasonable amount of standing variation, the positive effect of

a harsh change arises for similar reasons. Fundamentally, absolute mutant fit-

ness - and this is what decides the fate of mutations – is density dependent as

a consequence of simple population regulation in the unperturbed demes. This

holds true even if the relative fitness α in the old environment and the fitness
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1 + Si in the new environment are density independent. When the change is

harsh, wildtype individuals get depleted in the perturbed part of the habitat ev-

ery generation. Hence, migration between the old and the new part of the habitat

is strongly unbalanced with increasing effect for stronger migration. As a con-

sequence, competition in the old part of the habitat is relaxed and the absolute

fitness of mutants accordingly enhanced. In this context, note that in our model,

demes in the original environmental state get filled up to carrying capacity every

generation; the genetic composition is determined by binomial sampling. This

represents a certain overidealization and requires that offspring numbers are large

enough. At least for not too large deme numbers D, this requirement is, however,

easily fulfilled.

Awareness that intermediate environments may represent harder challenges

for adaptation could be of striking importance for the design of drug treatment

strategies: our results imply that a fast eradication of the pathogen might not

necessarily be the best strategy to avoid drug resistance. As discussed above, in

the first scenario without habitat structure, the effect is only observed if mutant

fitness is strongly density dependent, which may or may not apply to a particular

species. Read et al. (2011) recently discussed this idea in the context of malaria.

Their arguments are based on a series of data sets showing that standing genetic

variation is usually high in malaria infections and that a fast eradication of the

drug sensitive pathogen allows rare resistant types to quickly amplify. This dis-

cussion of experimental evidence lends empirical support to our theory, which

in turn quantifies the effect. Similarly, a recent study by Peña-Miller et al.

(2013) combining deterministic mathematical models and experimental evolution

in E. coli shows that competitive release due to a harsh treatment with a mixture

of two drugs promotes the rapid emergence of drug-resistant strains.

The migration probability The dependence of the rescue probability on mi-

gration is shaped by four effects: First, migration is advantageous because the old

part of the habitat acts as a source for wildtype individuals that might possible

mutate. Second, mutants migrate to the old habitat where they have a disadvan-

tage with respect to the wildtype. Migration thus reduces the effective growth

rate of mutants. With increasing migration, this effect outweighs the first one

such that the rescue probability has a local maximum for intermediate migration.

Third, when migration gets very strong, the effect of relaxed competition in the

old demes sets in and the rescue probability can become again high. This latter

effect only happens when the relative mutant fitness α in the old habitat, the
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mutant fitness 1 + Si(t) in the new habitat, and the decay rate r of the wildtype

population size in the new habitat are sufficiently large (the parameter range

increases with increasing D). Finally, if mutant fitness in the perturbed demes is

density dependent, migration leads to a reduced fitness of mutants in these demes.

This counteracts the effect of relaxed competition in the old part of the habitat

and can entail a very low probability of evolutionary rescue for strong migration.

The interplay of all four forces can lead to a surprisingly complex dependence of

the rescue probability on the migration probability (see Figures 2.2 and 2.4). A

maximum in the probability of successful adaptation for intermediate migration

rates has been found in previous studies for partially related, partially different

reasons: Gomulkiewicz et al. (1999) analyse the potential of local adaptation

in a sink, which is coupled to a source. Unlike in our model, the source never

degrades and the population hence never dies out. The focus of interest is niche

evolution within the sink. Immigration is necessary to provide targets for mu-

tation to act on (our first effect). The disadvantage of high immigration arises,

because absolute mutant fitness in the sink is assumed to be density dependent

and thus decreases for increasing immigration (our fourth effect). If immigra-

tion is too strong, absolute mutant fitness is depressed below one such that the

mutation cannot spread at all. Note, however, that in our model the local max-

imum in the rescue probability exists even if selection is density independent in

the new habitat due to migration of mutants out of the perturbed demes (our

second effect). Emigration of mutants out of the sink is not taken into account in

Gomulkiewicz et al. (1999). Pease et al. (1989) analyse a model of population

persistence in a spatially continuous habitat. An optimum moves in space, and

the population has both the possibility to adapt and to follow the optimum by

migration. As space is continuous, the quantity of interest is not the migration

probability (which is one), but the mean square distance that individuals travel

per generation. Similar to our model, migration is harmful in that it brings in-

dividuals to unfavorable places (cf. also Kirkpatrick and Peischl, 2013). In

contrast to our scenario, however, the advantage of migration arises because it

is needed for the population to keep track of the moving optimum. The optimal

amount of migration (in the sense of optimal mean square displacement) depends

on the speed of the optimum and the additive genetic variance of the population

among other factors. Likewise, an intermediate dispersal distance maximizes the

probability of evolutionary rescue in a recent simulation study by Schiffers

et al. (2013). The model can be seen as complementary to ours: Schiffers

et al. (2013) consider a population in a deteriorating heterogeneous environment.
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However, the factors creating the spatial heterogeneity differ from the factors

that cause the temporal degradation. In contrast to our model, the heterogene-

ity is thus stable in time, the gradual deterioration homogeneously affects the

entire habitat. Adaptation relies on a reasonably large number of loci (15 loci

per trait), making the model similar to a quantitative genetics model. Within

this framework, migration has two antagonistic effects: as in our model, migra-

tion brings individuals to regions in which they are maladapted. Contrary to our

model, however, this effect does not act via alleles that provide adaptation to

the changing conditions – these alleles are adaptive everywhere –, but on alleles

that determine local adaptation to the stable heterogeneity. On the other hand,

the patches are so small in Schiffers et al. (2013) that migration is necessary

for the establishment of mutations that adapt the population to the globally de-

graded environment. This effect does not appear in our model as deme sizes are

sufficiently large that the mutation can locally establish.

Limitations and extensions of our model Our analysis has several impor-

tant limitations. First, our population follows the migration scheme of an island

model. In particular, this implies that dispersal is global. In order to arrive at

a comprehensive picture of evolutionary rescue in structured populations, local

dispersal and isolation by distance should be included into the model as a next

step. Experimentally, a comparsion of the impact of local versus global disper-

sal for weak migration has been highlighted by Bell and Gonzalez (2011),

showing that the rate of environmental deterioration influences how the dispersal

mode affects rescue. In this context, not only a model with discrete patches, but

also a model in continuous space is of interest. In experimental evolution, serial

transfer of individuals with small inoculum sizes represent regular catastrophes,

which would need to be included in the model for a quantitative comparison of

experimental data and theory (see Martin et al., 2013). Although in some cases

evolutionary rescue relies on single mutations, the simple genetic basis of adapta-

tion is a major restriction of our study. Often, adaptation is more complex, and

mutations at several loci are required to restore fitness above one. Types with

only some of these mutations might potentially even perform worse (or at least

not better) than the wildtype. Adaptation then includes stochastic tunneling:

an inferior (or neutral) genotype is generated and has to produce a fitter mutant

before it goes extinct (Iwasa et al., 2004b; Weissmann et al., 2009; Lynch and

Abegg, 2010; Martin et al., 2013). For panmictic populations, evolutionary

rescue requiring stochastic tunneling has been considered by Iwasa et al. (2003)
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and Iwasa et al. (2004a) with a focus on biomedical applications (evolution of

drug resistance, escape of tumor cells from chemotherapy etc.). Last, many loci

might contribute to adaptation. In that case, a quantitative genetics approach

suggests itself, but also models with an explicit genetic basis of the trait would

be valuable (cf. Boulding and Hay (2001) and Schiffers et al. (2013)).

In conclusion, our results confirm the importance of ecological factors, specif-

ically habitat structure and density-dependent fitness for the probability of evo-

lutionary rescue. They provide insight into how various mechanisms intertwine

to decide the race between population decline and adaptive evolution. As we

have seen, this interplay of mechanisms can lead to surprising patterns in the

probability of evolutionary rescue, with rapid changes in the environment (small

ϑ) sometimes being easier for evolutionary rescue and sometimes harder and with

rescue showing non-monotonic relationships with both migration probability (m)

and the severity of the environmental perturbation (r).
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A Appendix: General notes on the analysis

The wildtype population size We model the dynamics of the wildtype pop-

ulation size deterministically and assume that mutants are rare enough to be

ignored. For the sub-models considered in this paper, it is not necessary to de-

termine the number of wildtype individuals in each single deme. It is sufficient to

determine the total number of wildtypes in the unperturbed (or “old”) and the

total number of wildtypes in the deteriorated (or “new”) part of the habitat. Let

N
(new)
w (t) be the total number of wildtype individuals that live in the new habitat
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at time t before migration and selection. Using Eq. (2.3) and ignoring the effects

of mutation, for t+ 1 > 0:

E[N (new)
w (t+ 1)|N (new)

w (t)] =(1− r)
(

1−m+
dt
D
m

)
N (new)
w (t)

+m
dt
D

(1− r)(D − dt)K

+Kδ
(

(t+ 1) modϑ
)
,

(A.1)

where dt is the number of demes in the new environmental state at time t and

δ(0) = 1 and δ(x) = 0 otherwise. The function δ takes into account that every

ϑ generations a new island turns bad, bringing with it approximately K new

wildtype individuals. As demes in the old environmental state get filled up tp

carrying capacity every generation, the number of wildtypes in the old part of

the habitat is (ignoring rare mutant individuals)

N (old)
w (t) = K(D − dt).

Establishment probabilities As explained in the main text, we restrict our

analytical results to scenarios where we deal with only one type of mutant indi-

vidual. Across the entire life cycle (except for density regulation), each mutant

produces a Poisson distributed number of offspring with mean 1 + seff(t), where

the effective growth parameter seff(t) depends on the specific scenario. To make

use of analytical theory, we approximate the discrete-time branching process by

a continuous-time branching process. As selection can be strong in scenarios of

population decline and evolutionary rescue, details matter in the transition from

discrete to continuous time. For the continuous-time branching process, we use

the following per capita birth and death rates:

λ(t) = 0.5 + 0.5 · sign(ln (1 + seff(t))) ·min[| ln (1 + seff(t))|, 1], (A.2a)

µ(t) = 0.5− 0.5 · sign(ln (1 + seff(t))) ·min[| ln (1 + seff(t))|, 1], (A.2b)

and define

ŝeff(t) := sign(ln (1 + seff(t))) ·min[| ln (1 + seff(t))|, 1]. (A.3)

With the logarithm, we assure that the average long-term growth ŝeff(t) = λ(t)−
µ(t), is the same as in the discrete-time process. The restriction to values between
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−1 and 1 is necessary for rates to remain non-negative. Last, drift has to be scaled

appropriately. In the continuous-time process, the sum λ(t) + µ(t) measures the

strength of drift. In the diffusion limit, λ(t) + µ(t) must be one in order to

match continuous-time and discrete-time dynamics. This leaves some freedom

for the incorporation of selection (affecting the death rate or the birth rate or

both). While this choice is irrelevant in the diffusion limit (and hence for weak

selection), it matters if the growth parameter is large as it can be in our model.

Comparison to computer simulations shows that the best agreement is obtained

if we equally distribute it between the death and the birth rate, as above.

If exp

[
−

t́

T

ŝeff(τ)dτ

]
−→
t→∞

0, the establishment probability of a mutation aris-

ing at time T is given by (Uecker and Hermisson, 2011)

pest(T ) =
2

1 +
∞́

T

exp

[
−

t́

T

ŝeff(τ)dτ

]
dt

. (A.4)

In the following sections, we will encounter effective growth rates that change

stepwise in time:

seff(t) =


s0 for t < 0,

sl for t ∈ [(l − 1)Φ, lΦ[, l ∈ {1, . . . , L− 1},
sL = s for t ≥ (L− 1)Φ,

(A.5)

where the steps occur at regular intervals Φ, depending on the model. ŝeff(t) is

defined accordingly, with:

ŝi = sign(ln (1 + si)) ·min(| ln (1 + si)|, 1) for i ∈ 0, . . . , L,

ŝ = ŝL.
(A.6)

Assuming that ŝk 6= 0 for all k ∈ 0, . . . , L, we obtain (see below for a derivation):

pest(T ) =


2

1+I0(T )
for T < 0,

2
1+Il(T )

for T ∈ [(l − 1)Φ, lΦ[,
2ŝL

1+ŝL
for T ≥ (L− 1)Φ

(A.7)
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with

Il(T ) =
1

ŝl
+ exp [ŝl∆Tl]

L−1∑
k=l

ŝk − ŝk+1

ŝkŝk+1

exp

[
−

k∑
j=l

ŝjΦ

]
, (A.8)

where ∆Tl = T − (l − 1)Φ. For l > 0, ∆Tl is the time that has elapsed since the

lth island deteriorated. If one or more of the ŝk are 0, the result is obtained by

taking the limit ŝk → 0.

We turn to the derivation of Eq. (A.7). We need to evaluate the integral

∞̂

T

exp

− tˆ

T

ŝeff(τ)dτ

dt. (A.9)

For T ≥ (L−1)Φ, the calculation is straightforward. So, we focus on T < (L−1)Φ.

We assume throughout the derivation that ŝk 6= 0 for all k ∈ 0, . . . , L. For T < lΦ,

if l = 0, or T ∈ [(l − 1)Φ, lΦ[, if l ∈ {1, . . . , L− 1}, we have:

Il(T ) =

∞̂

T

exp

− tˆ

T

ŝeff(τ)dτ

dt =

lΦˆ

T

exp

− tˆ

T

ŝeff(τ)dτ

dt+
L−1∑
k=l+1

kΦˆ

(k−1)Φ

exp

− tˆ

T

ŝeff(τ)dτ

dt

+

∞̂

(L−1)Φ

exp

− tˆ

T

ŝeff(τ)dτ

dt.

(A.10)

The first integral gives

lΦˆ

T

exp

− tˆ

T

ŝeff(τ)dτ

dt =

lΦˆ

T

exp

− tˆ

T

ŝldτ

dt =

lΦ−Tˆ

0

exp [−ŝlt]dt

=
1− exp [−ŝl(lΦ− T )]

ŝl
.

(A.11)
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The components of the sum (k ∈ {l + 1, . . . , L− 1}) are:

kΦˆ

(k−1)Φ

exp

− tˆ

T

ŝeff(τ)dτ

dt

=

kΦˆ

(k−1)Φ

exp

− lΦˆ

T

ŝeff(τ)dτ −
k−1∑
j=l+1

jΦˆ

(j−1)Φ

ŝeff(τ)dτ −
tˆ

(k−1)Φ

ŝeff(τ)dτ

dt

= exp

[
−ŝl(lΦ− T )−

k−1∑
j=l+1

ŝjΦ

] Φ̂

0

exp [−ŝkt]dt

= exp

[
−ŝl(lΦ− T )−

k−1∑
j=l+1

ŝjΦ

]
1− exp [−ŝkΦ]

ŝk
.

(A.12)

For the last integral, we obtain:

∞̂

(L−1)Φ

exp

− tˆ

T

ŝeff(τ)dτ

dt

=

∞̂

(L−1)Φ

exp

− lΦˆ

T

ŝldτ −
L−1∑
j=l+1

jΦˆ

(j−1)Φ

ŝjdτ −
tˆ

(L−1)Φ

ŝLdτ

dt

= exp [−ŝl(lΦ− T )] exp

[
−

L−1∑
j=l+1

ŝjΦ

]
1

ŝL
.

(A.13)
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We now use the transformation T → ∆Tl = T − (l − 1)Φ. With this, we

obtain for l ∈ {0, . . . , L− 1}:

Il(T ) =
1

ŝl
− 1

ŝl
exp [ŝl∆Tl] exp [−ŝlΦ]

+ exp [ŝl∆Tl]
L−1∑
k=l+1

exp

[
−

k−1∑
j=l

ŝjΦ

]
1− exp [−ŝkΦ]

ŝk

+ exp [ŝl∆Tl] exp

[
−

L−1∑
j=l

ŝjΦ

]
1

ŝL

=
1

ŝl
− 1

ŝl
exp [ŝl∆Tl] exp [−ŝlΦ]

+ exp [ŝl∆Tl]
L−2∑
k=l

exp

(
−

k∑
j=l

ŝjΦ

)
1− exp [−ŝk+1Φ]

ŝk+1

+ exp [ŝl∆Tl] exp

[
−

L−1∑
j=l

ŝjΦ

]
1

ŝL

=
1

ŝl
− 1

ŝl
exp [ŝl∆Tl] exp [−ŝlΦ]

+ exp [ŝl∆Tl]
L−2∑
k=l


exp

[
−

k∑
j=l

ŝjΦ

]
− exp

[
−

k+1∑
j=l

ŝjΦ

]
ŝk+1


+ exp [ŝl∆Tl] exp

[
−

L−1∑
j=l

ŝjΦ

]
1

ŝL

=
1

ŝl
+ exp [ŝl∆Tl]

L−1∑
k=l

ŝk − ŝk+1

ŝkŝk+1

exp

[
−

k∑
j=l

ŝjΦ

]
,

(A.14)

as given by Eq. (A.8).
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B Appendix: Panmictic populations with D = 1

and scenarios where habitat structure is im-

material

We first treat the case D = 1 and show at the end of the section that the results

coincide with the results for D > 1, replacing K by Ktotal, if either m = 0 or

ϑ = 0.

After the shift in the environment, the wildtype population size decays geo-

metrically:

N (total)
w (t) =

{
K for t < 0,

K(1− r)t for t ≥ 0.
(B.1)

As we model the population size deterministically, the selection coefficient, too,

becomes a deterministic function of time:

seff(t) =

{
α− 1 = z0 for t < 0,

S(N
(total)
w (t)) = S(t) for t ≥ 0.

(B.2)

For the calculation of establishment probabilities, we approximate seff(t) in con-

tinuous-time as a stepped function with each step lasting one generation. We

can then use Eq. (A.7) with Φ = 1 to calculate the establishment probability

of a mutation, setting seff(t) = s (accordingly ŝeff(t) = ŝ) when K(1 − r)t < 1.

Calculations based on a continuous change in seff(t) (see Appendix E) work well

for small r, but break down as r increases, since for large r the differences between

discrete and continuous time dynamics become significant.

Following Eq. (2.5), the overall probability of evolutionary rescue reads:

Prescue ≈ 1− exp

[
−

−1∑
t=−∞

uKαpest(t+ 1)−
∞∑
t=0

uN (total)
w (t)(1 + S(t))pest(t+ 1)

]
,

(B.3)

where for numerical evaluation we again set N
(total)
w (t) = 0 when K(1− r)t < 1.

For β = 0, formula (A.7) for the establishment probability reduces to

pest(T ) =

{
2

1+exp [−ẑ0T ]
(

1
ŝ

+ 1
ẑ0

)
− 1
ẑ0

for T < 0,

2ŝ
1+ŝ

for T ≥ 0
(B.4)
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with

ẑ0 = max[− ln (1− z0), 1]. (B.5)

We can give an explicit formula for the probability of evolutionary rescue:

Prescue ≈ 1− exp

[
−

−1∑
t=−∞

uKαpest(t+ 1)−
∞∑
t=0

uK(1− r)t(1 + s)
2ŝ

1 + ŝ

]

≈ 1− exp

− 0ˆ

t=−∞

uKαpest(t)−
∞∑
t=0

uK(1− r)t(1 + s)
2ŝ

1 + ŝ


= 1− exp

[
−2uK

α

1− ẑ0

ln

(
ŝ+ ẑ0

(1 + ŝ)ẑ0

)
− uK

r
(1 + s)

2ŝ

1 + ŝ

]
for ẑ0 6= 1.

(B.6)

For ẑ0 = 1 (i.e., α ≤ exp [−1]), we obtain:

Prescue ≈ 1− exp

[
−2αuK

ŝ

1 + ŝ
− uK

r
(1 + s)

2ŝ

1 + ŝ

]
. (B.7)

Returning to Eq. (B.6), the respective contributions of mutations from standing

genetic variation and de-novo mutations are given by

P sgv
rescue ≈ 1− exp

[
−2uK

α

1− ẑ0

ln

(
ŝ+ ẑ0

(1 + ŝ)ẑ0

)]
(B.8)

≈ 1− exp

[
−2uK ln

(
s+ z0

z0

)]
(B.9)

= 1−
(
s+ z0

z0

)−2uK

, (B.10)

P dnm
rescue ≈ 1− exp

[
−uK

r
(1 + s)

2ŝ

1 + ŝ

]
≈ 1− exp

[
−uK

r
2s

]
, (B.11)

where the approximation is valid for small s and z0. For small s and z0, our

results coincide with formulas (3) and (5) in Orr and Unckless (2008) (note

that the absolute fitness of a mutant is 1 + s in our model, while it is 1 + sb− r in

Orr and Unckless (2008); z0 corresponds to sd in Orr and Unckless (2008))

and are similar to formula (8) for P sgv
rescue in Hermisson and Pennings (2005).

For β > 0, the formula for the probability of evolutionary rescue does not

reduce to a compact expression. Evaluation of the complex formula and com-
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Figure B.1: Probability of evolutionary rescue as a function of r with a single deme
(D = 1). The plot shows a detailed comparison between theory and simulation
results. The parameters are chosen as in Figure 2.5D. The theoretical curve is
based on Eq. (B.3) and Eq. (A.7). Simulation results are denoted by circles. Each
simulation point is the average of 106 replicates.

parison to computer simulations shows that it yields highly accurate results. In

particular, Figure B.1 demonstrates that the kinks in the graphs are not an arte-

fact of our analytical approximation, but that the theory accurately reproduces

the correct behavior. The existence of kinks can be understood if we consider the

generation Tc at which for the first time S(t) > −z:

Tc = max

[
0, b1

r
ln

(
sβ

s+ z

)
c+ 1

]
, (B.12)

where b·c denotes the floor function, which maps a real number to the largest

previous integer. Tc only takes discrete values and therefore jumps as a function

of r. As a consequence, Prescue(r) is not everywhere differentiable.

We pointed out in the main text that the decay of the rescue probability as

a function of r is not completely monotonic in Figure 2.5C. This can be seen in

more detail in Figure B.2, which zooms in on larger r. A slight local minimum

exists at r = 0.7. This is precisely the point where Tc = Tc(r) jumps from 1 to 2

giving a little advantage to values of r larger than 0.7.

In the main text, we have discussed scenarios where the probability of evolu-

tionary rescue either decays with r or exhibits a mimimum for intermediate values

of r. In addition to these patterns, a third pattern is possible: the probability of
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Figure B.2: Probability of evolutionary rescue as a function of r with a single
deme (D = 1). The plot expands Figure 2.5C, for large values of r, showing a
minimum for r = 0.7. The theoretical curve is based on Eq. (B.3) and Eq. (A.7).

evolutionary rescue attains a minimum, then a maximum, and decays afterwards

(Figure B.3). This pattern can arise, because the probability that a mutation

generated between time 0 and τ0, at which S(t) turns from negative to positive,

rescues the population has a maximum for intermediate r: For large r, only few

mutations are generated; for small r, they have a low establishment probability.

If this maximum is pronounced enough, it shapes the overall curve. This is the

case if β is extremely large such that the period between 0 and τ0 is long and z

small such that the establishment probability is high. The maximum gets masked

if α is very large. The overall effect on the curve is generally weak, however.

It remains to prove that the results for a structured population with m = 0

or ϑ = 0 reduce to the unstructured case with D = 1 (replacing K by Ktotal). To

do so, we consider the general formula Eq. (2.5).

We start with m = 0: The dynamics in the single demes are then independent

from each other. Thus, N
(i)′
w (t) = N

(1)′
w (t− (i− 1)ϑ) and Si(t) = S1(t− (i− 1)ϑ).
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Figure B.3: Probability of evolutionary rescue in an unstructured population
(D = 1). We see that the probability of evolutionary rescue can attain a mini-
mum, followed by a maximum. Parameter values: α = 0.9, z = 0.005, s = 0.01,
β = 40, K = 106, u = 1 · 10−6 = 1/K. The theoretical curve is based on approx-
imation (E.1). Circles denote simulation results. Each simulation point is the
average of 106 replicates.

The latter implies furthermore p
(i)
est(t) = p

(1)
est(t− (i− 1)ϑ). Plugging this into the

formula for Prescue yields:

Prescue ≈ 1− exp

[
−

D∑
i=1

(
(i−1)ϑ−1∑
t=−∞

uαKp
(1)
est(t− (i− 1)ϑ+ 1)

+
∞∑

t=(i−1)ϑ

u (1 + S1(t− (i− 1)ϑ))N (1)′
w (t− (i− 1)ϑ)p

(i)
est(t− (i− 1)ϑ+ 1)

)]

= 1− exp

[
−

D∑
i=1

(
−1∑

t=−∞

uαKp
(1)
est(t+ 1) +

∞∑
t=0

u(1 + S1(t))N (1)′
w (t)p

(1)
est(t+ 1)

)]

= 1− exp

[
−

−1∑
t=−∞

uαDKp
(1)
est(t+ 1) +

∞∑
t=0

u(1 + S1(t))DN (1)′
w (t)p

(1)
est(t+ 1)

]
.

(B.13)

For the wildtype population size, N
(1)′
w (t) = N

(1)
w (t) = K(1 − r)t. Using this,

S1(t) = max(−z, s(1 − β(1 − r)t)). Consequently, the mutant fitness and along
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with it the establishment probability pest of a mutation are independent of the

carrying capacity. A comparison of Eq. (B.13) with Eq. (B.3) completes the proof.

We now turn to ϑ = 0: In that case, the wildtype population size decays

simultaneously on all demes, and we have N
(i)′
w (t) = N

(i)
w (t) = K(1 − r)t and

consequently Si(t) = max(−z, s(1−β(1−r)t)) for all i ∈ {1, . . . , D}. This implies

in particular that the establishment probability is the same in every deme and

again the same as in a population of size KD. We immediately obtain from

Eq. (2.5):

Prescue ≈

1− exp

[
−

−1∑
t=−∞

uαDKp
(1)
est(t+ 1) +

∞∑
t=0

u(1 + S1(t))DN (1)′
w (t)p

(1)
est(t+ 1)

]
,

(B.14)

which again coincides with Eq. (B.3).

The formulae imply that for m = 0 or ϑ = 0, Prescue depends only on the

product DK (i.e., the carrying capacity of an equivalent unstructured population)

and not on D and K separately.

C Appendix: Levene model

We now consider D ≥ 1, but focus on the limiting case m = 1. In a first step, we

furthermore restrict the analysis to β = 0. As derived in the main text Eq. (2.10),

the effective growth parameter of a mutant in the meta-population in a period

with d deteriorated demes is given by

seff(t) =
d

D
(1 + s) +

D − d
D

α
K

N
(total)
w (t)/D

− 1. (C.1)

The total number of wildtypes N
(total)
w (t) = N

(new)
w (t) + K(D − d) is a function

of time. However, after another deme has turned bad, it will quickly decay to its

new steady state (until the next deme deteriorates). For sufficiently large values

of ϑ, we can therefore approximate sd as constant by taking the equilibrium value

N̂
(total)
w,d of the total wildtype population size in the period within which d demes
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are perturbed. The stationary value of the total wildtype population size N̂
(new)
w,d

in the bad environment is found by solving the equation

0 = (1− r) d
D

(
N̂

(new)
w,d + (D − d)K

)
− N̂ (new)

w,d . (C.2)

This yields:

N̂
(new)
w,d =

(1− r) d
D

(D − d)K

1− (1− r) d
D

. (C.3)

And we obtain

N̂
(total)
w,d = N̂

(new)
w,d +K(D − d). (C.4)

Inserting Eq. (C.4) into Eq. (C.1) yields sd as in Eq. (2.11). With Eq. (2.11), we

can now use Eq. (A.7) with Φ = ϑ to determine the establishment probability of

a new mutant.

The probability of evolutionary rescue in a Levene model can be approximated

by (cf. Eq. (2.5)):

Prescue ≈ 1− exp

−u −1∑
t=−∞

KDαpest(t+ 1)− u
(D−1)ϑ−1∑

t=0

N (total)
w (t)(1 + seff(t))pest(t+ 1)


× exp

[
−uN

(total)
w ((D − 1)ϑ)

r
(1 + s)

2ŝ

1 + ŝ

]
,

(C.5)

where N
(total)
w ((D−1)ϑ) is the wildtype population size immediately after the last

deme has deteriorated. The first sum captures the contributions of mutations that

arose before time t = 0. The second sum takes all mutations into account that are

generated as the degradation proceeds across the demes. From time (D−1)ϑ on,

the population size decays geometrically, which leads to the last term in Eq. (C.5).

We now allow for density-dependent mutant fitness (β ≥ 0). We assume that

the periods of environmental stasis are very long. As discussed in the main text,

it is in that case sufficient to consider the two phases where either one or no

deme is unperturbed. We can approximate S(t) during the phase where all but

one deme have deteriorated by its steady state value:

S̄ = max

[
−z, s

(
1− β

N̂
(total)
w,D−1/D

K

)]
(C.6)
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with

N̂
(total)
w,D−1 =

KD

(D − 1)r + 1
. (C.7)

Analogously to Eq. (2.11), we then obtain Eq. (2.13) for the effective growth

parameter during that period. In the main text, we pointed out that the sit-

uation corresponds to an unstructured population with a single environmental

change. We can thus use Eq. (B.3) with the following substitutions to calculate

the probability of evolutionary rescue:

K is substituted by N̂
(total)
w,D−1,

α is substituted by 1 + sD−1,

β is substituted by
βN̂

(total)
w,D−1

DK
.

(C.8)

We close the section with a comparison of Prescue(ϑ→ 0) and Prescue(ϑ→∞)

if β = 0. In order to do so, we approximate the amount of genetic variation which

is present at the time when the last deme deteriorates by its expected value. We

only consider the case sD−1 < 0. For ϑ = 0 and ϑ→∞, we obtain

E[sgv0] = uDK
α

1− α
and E[sgv∞] = uN̂

(total)
w,D−1

1 + sD−1

−sD−1

, (C.9)

respectively. Analogously, we introduce

E[dnm0] =
uKD(1 + s)

r
and E[dnm∞] =

uN̂
(total)
w,D−1(1 + s)

r
(C.10)

for the expected number of de-novo mutations that are generated after deterio-

ration of the last deme in both scenarios. With this notation:

Prescue(ϑ = 0) ≈ 1− exp

[
−(E[sgv0] + E[dnm0])

2ŝ

1 + ŝ

]
, (C.11a)

Prescue(ϑ→∞) ≈ 1− exp

[
−(E[sgv∞] + E[dnm∞])

2ŝ

1 + ŝ

]
. (C.11b)
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We now compare the exponents:

E[sgv∞] + E[dnm∞]

E[sgv0] + E[dnm0]
=
N̂

(total)
w,D−1

DK

1+sD−1

−sD−1
+ 1

r

α
1−α + 1

r

=
N̂

(total)
w,D−1

DK

1− α
−sD−1

r − sD−1(1− r)
1− α + αr


Note: This expression gets minimal

when −sD−1 gets maximal.

−sD−1 as a function of s gets maximal

for s→ 0.


=

1

1 + r(D − 1)

1

1 + (D − 1)r − s+r
1−α(D − 1)

× (r + s+ (1− α)(1− r))(1 + (D − 1)r)− sD
1− α + αr

=
1

1 + (D − 1)r − s+r
1−α(D − 1)

1− α + αr + s− sD
1+r(D−1)

1− α + αr

s→0

≥ 1

1− α
1−α(D − 1)r

≥ 1.

(C.12)

This means that for β = 0, Prescue(ϑ → ∞) ≥ Prescue(ϑ = 0). For α = 0, we

obtain equality. The approximation thus suggests that for arbitrary values of

r, the probability of evolutionary rescue is approximately the same for a very

fast and and a very slowly progressing change if α = 0 and s small, which is

confirmed by computer simulations (not shown). This implies in particular, that

for α = 0, s small, and ϑ large, Prescue(m = 0) ≈ Prescue(m = 1), as can be seen

in Figure 2.10A.

D Appendix: Island model without standing ge-

netic variation

We here restrict ourselves to α = 0 (i.e., mutants are lethal in the old environ-

ment) and β = 0 (no additional density dependence beyond the hard carrying
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VARIATION

capacity). In the main text Eq. (2.14), we derived the following effective growth

rate of a mutant:

seff(t) =


(1 + s)(1−m) + (1 + s)m d

D
− 1 for t ∈ [(d− 1)ϑ, dϑ[,

d ∈ {1, . . . , D − 1},
s for t ≥ (D − 1)ϑ .

(D.13)

Using this, we can calculate the establishment probability with Eq. (A.7), setting

again Φ = ϑ. For the total rescue probability, we obtain (cf. Eq. (2.5)):

Prescue ≈ 1− exp

−u(D−1)ϑ−1∑
t=0

(1 + s)

(
1−m+

dt
D
m

)
N (new)
w (t)pest(t+ 1)


× exp

−u(D−1)ϑ−1∑
t=0

(1 + s)mK(D − dt)
dt
D
pest(t+ 1)


× exp

[
−u(1 + s)

N
(total)
w ((D − 1)ϑ)

r

2ŝ

1 + ŝ

]
,

(D.14)

where N
(total)
w ((D−1)ϑ) is the wildtype population size immediately after the last

deme has deteriorated. The first term takes mutants into account that originate

in the new part of the habitat. The second term considers mutant offspring of

individuals from old demes that migrate to the new part where they can survive.

The last term is the same as in the Levene model. As α = 0, there are no mutants

in the population before time t = 0.

In the main text, we gave an approximation for the probability of evolutionary

rescue for D = 2 (see Eq. (2.17)), which generalizes to more than two islands in

a straightforward way. The stationary value N
(new)
w,d of wildtype individuals in the

perturbed part of the habitat in a period with d deteriorated demes is obtained

as the solution of

0 = (1− r)
(

1− D − d
D

m

)
N

(new)
w,d +m

d

D
(1− r)(D − d)K −N (new)

w,d . (D.15)

This yields:

N̂
(new)
w,d =

d(D − d)Km(1− r)
(D − d)m(1− r) +Dr

. (D.16)
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And with

2seff(t) ≈ 2

(
s−m+m

dt
D

)
, (D.17)

we obtain:

Prescue ≈

1− exp

[
−uϑ

D−1∑
d=1

2 max

[(
s−m+m

d

D

)
, 0

]
d(D − d)Km(1− r)

(D − d)m(1− r) +Dr
− uDK

r
2s

]
.

(D.18)

Figure D.1 shows a comparison between the exact formula (D.14) and the ap-

proximation. The approximation captures the behavior for small m very well. In

particular, it reproduces the maximum in the probability of evolutionary rescue.

As m increases, the approximation becomes worse.

If the number of demes D is large and r � m, we can approximate Eq. (D.18)

by

Prescue ≈

1− exp

−uϑ D̂

0

2 max

[(
s−m+m

d

D

)
, 0

]
d(D − d)Km(1− r)

Dr
dd− uDK

r
2s


= 1− exp

[
−uϑ1

3
D2Km

1− r
r

max

[(
s− 1

2
m

)
, 0

]
− uDK

r
2s

]
.

(D.19)

From Eq. (2.17) and Eq. (D.19), we find that the maximum is at m ≈ s.

E Appendix: Further approximations

Unstructured population, small r and s The calculation of Prescue based on

Eq. (B.3) and (A.7) gets computationally expensive for small r. An approxima-

tion for small r can be obtained when we assume that the selection seff(t) changes

continuously in time and additionally replace sums by integrals in Eq. (B.3).
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Figure D.1: Evolutionary rescue in a two island model. The plot compares the
exact result (D.14) – solid line – with approximation (2.17) – dashed line. The
parameter values are the same as in Figure 2.10.

We furthermore approximate ln (1 + s(1− βNw(t)/K)) ≈ s(1− βNw(t)/K) and

− ln (1− r) ≈ r. For ẑ 6= 0, the establishment probability of a mutation then is

pest(T ) =



2

1+

(
− 1
ẑ0

+e−ẑ0T
(

1
ẑ0
− 1
ẑ

+ 1
ẑ

eẑTc+eẑTc
∞́

0

e−st+
sβ
r erTc (1−ert)dt

)) , T ≤ 0,

2

1+

(
− 1
ẑ

+e−ẑ(T−Tc)

(
1
ẑ

+
∞́

0

e−st−
sβ
r erTc (1−ert)dt

)) , 0 ≤ T < Tc,

2

1+
∞́

0

e−st−
sβ
r erT (1−ert)dt

, T ≥ Tc

(E.1)

with

ẑ0 = max[− ln (α), 1], (E.2)

ẑ = max[− ln (1− z), 1]. (E.3)

To obtain the result for ẑ = 0, use limẑ→0
exp (ẑT )−1

ẑ
= T .

Infinitely many islands We here give an approximation for the probability

of evolutionary rescue, when the number D of demes is large. We take the limits

D →∞, ϑ→ 0, K → 0 with Dϑ = Θ and DK = Ktotal considered constant. We

treat time as continuous and use the correspondence d
D

=̂ t
Θ

.
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We obtain the following differential equation for the number of wildtype in-

dividuals in the new part of the habitat (cf. the difference equation (A.1)):

Ṅ (new)
w (t) = −rN (new)

w + (1− r)m
(
t

Θ
− 1

)
N (new)
w

+m
t

Θ
(1− r)

(
1− t

Θ

)
Ktotal +

Ktotal

Θ
.

(E.4)

We now turn to the establishment probability of a new mutant. Both in the Lev-

ene and in the island model, sd takes the form sd = σ0 +σ1
d
D

, d ∈ {1, . . . , D− 1}.
We can approximate this as seff(t) = σ0 + σ̃1t with σ̃1 = σ1/Θ for 0 ≤ t < Θ. We

state the establishment probability for:

ŝeff(t) =


ŝ0 for t < T

(1)
c ,

ln (1 + σ̃0 + σ̃1t) for T
(1)
c ≤ t < T

(2)
c ,

1 for T
(2)
c ≤ t < Θ

ŝ for t ≥ Θ

(E.5)

with

T (1)
c = min

[
0,

1

σ̃1

(exp [−1]− 1− σ̃0)

]
,

T (2)
c = min

[
Θ,

1

σ̃1

(exp [1]− 1− σ̃0)

]
.

(E.6)

We obtain:

pest(T ) =


2

1+Ĩ0(T )
for T < T

(1)
c ,

2
1+Ĩ1(T )

for T
(1)
c ≤ T < T

(2)
c ,

2
1+Ĩ2(T )

for T
(2)
c ≤ T < Θ,

2ŝ
1+ŝ

for T ≥ Θ

(E.7)
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with

Ĩ0(T ) =
1

ŝ0

+ exp [ŝ0(T − Tc)]

(
− 1

ŝ0

+ exp [f(T (1)
c )]

T
(2)
ĉ

T
(1)
c

exp [f(t)]dt

+
1

ŝ
exp [−f(T (2)

c ) + f(T (1)
c )−Θ + T (2)

c ]

)
,

Ĩ1(T ) = exp [f(T )]

T
(2)
ĉ

T

exp [f(t)]dt

+ exp [−f(T (2)
c ) + f(T )](1− exp [Θ− T (2)

c ])

+ exp [−f(T (2)
c ) + f(T )−Θ + T (2)

c ]
1

ŝ
,

Ĩ2(T ) =

(
1

ŝ
− 1

)
exp [−(Θ− T )] + 1

(E.8)

and

f(t) = −t+
(1 + σ̃0 + σ̃1t) ln (1 + σ̃0 + σ̃1t)

σ̃1

. (E.9)

In the Levene model, we find:

σ0 = α− 1, (E.10)

σ̃1 = (1− α + s+ αr)
1

Θ
. (E.11)

Analogously to Eq. (C.5), we obtain:

Prescue ≈ 1− exp

[
− u

0ˆ

−∞

αKtotalpest(t+ 1)dt

− u
Θ̂

0

(1 + seff(t))

(
N (new)
w +Ktotal

(
1− t

Θ

))
pest(t+ 1)dt

]

× exp

[
−uN

(new)
w (Θ)

r
(1 + s)

2ŝ

1 + ŝ

]
.

(E.12)
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Finally, in the island model with α = β = 0, we have:

σ0 = (1 + s)(1−m)− 1, (E.13)

σ̃1 = (1 + s)m
1

Θ
. (E.14)

The total probability of evolutionary rescue becomes:

Prescue ≈ 1− exp

[
− u

Θ̂

0

(1 + s)

(
N (new)
w (t)

(
1−m+m

t

Θ

)

+m

(
1− t

Θ
Ktotal

t

Θ

))
pest(t+ 1)dt)

]

× exp

[
−uN

new
w (Θ)

r
(1 + s)

2ŝ

1 + ŝ

]
.

(E.15)
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Chapter 3

Adaptive gene introgression after

secondary contact

Abstract By hybridization and backcrossing, alleles can surmount species bound-

aries and get incorporated into the genome of a related species. This introgres-

sion of genes is of particular evolutionary relevance if it involves the transfer of

adaptations between populations. However, any beneficial allele will typically be

associated with other alien alleles, which are often deleterious for various reasons

and hence hamper the introgression process. In order to describe the introgres-

sion of an adaptive allele, we set up a stochastic model with an explicit genetic

makeup of linked and unlinked deleterious alleles. Based on the theory of re-

ducible multitype branching processes, we derive a recursive expression for the

establishment probability of the beneficial allele after a single hybridization event.

We furthermore study the probability that slightly deleterious alleles hitchhike to

fixation. The key to the analysis is a split of the process into a stochastic phase

in which the process establishes itself and a deterministic phase in which the ad-

vantageous allele sweeps to fixation. We thereafter apply the theory to a set of

biologically relevant scenarios such as introgression in the face of several unlinked

or few closely linked deleterious alleles. A comparison to computer simulations

shows that the approximations work well over a large parameter range.

A manuscript is in preparation for the Journal of Mathematical Biology.
The simulations to this chapter have been contributed by Derek Setter.
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3.1 Introduction

Hybridzation between related species is a common phenomenon. Indeed, Mallet

(2005) estimates that at least 25% of plant species and 10% of animal species still

interbreed. Disappearance of natural habitat barriers following environmental

change, the introduction of foreign species, escape of domesticated animals into

the wild, or crop cultivation all create new regions of species range overlap and

consequently cause high rates of hybridization. Despite reproductive barriers,

hybridization between related species is often not completely prohibited and leads

to the production of viable and fertile offspring. In the course of backcrossing with

a parental species, not all alien genetic material might get lost; instead, part of it

can become permanently incorporated into the genome of the sister species. The

introgression of genes from one species into another has been shown to occur over

a wide range of taxa (Rhymer and Simberloff, 1996; Lindner et al., 1998;

Arnold et al., 1999; Arnold, 2004; Miller et al., 2012). The introgression

of genes from feral domestic to wild animals (Adams et al., 2003; Beaumont

et al., 2001; Gottelli et al., 1994; Rhymer and Simberloff, 1996) or from

introduced to native species (Rhymer and Simberloff, 1996; Fitzpatrick

et al., 2010) involves potential ecological risks and can – if extensive – entail a

loss of biodiversity.

In addition, evidence for the transfer of adaptations across species bound-

aries is growing (Arnold et al., 1999; Arnold, 2004; Whitney et al., 2006;

Schwenk et al., 2008; Arnold and Martin, 2009; The Heliconius Genome

Consortium, 2012). Hybridization followed by intogression of genes can hence

take direct influence on the evolutionary routes of a species and speed up adap-

tation. For example, the introduced sunflower species Helianthus annuus is likely

to have acquired resistance genes from the native, locally adapted species H. de-

bilis, which allowed it to expand its species range southwards (Heiser C. B.,

Jr., 1951; Whitney et al., 2006). Similarly, Abi-Rached et al. (2011) suggest

that positively selected immune system alleles from Neanderthals and Densiovians

might have introgressed into modern humans. In agriculture, adaptive gene intro-

gression can potentially constitute a major risk: adaptive herbivore, insecticide,

or pathogen resistance genes from (possibly genetically modified) crops can spread

to wild relatives, severely complicating weed control (Snow, 2002; Snow et al.,

2003). Importantly, Snow et al. (2003) show that a transgene can indeed reduce

herbivory and increase fitness in a wild sunflower under natural conditions.
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Early-generation hybrids, even if not entirely infertile or inviable, frequently

suffer from a strongly reduced fitness. Often, hybrids display an intermediate

phenotype which is maladapted to either parental niche. The low hybrid fitness

can also result from genetic incompatibilities. By backcrossing with one of the

parental species, alleles that prove to be deleterious on the foreign genetic back-

ground or cause maladaptation to the parental niches can be purged and fitness

be restored (Heiser C. B., Jr., 1951; Arnold et al., 1999). The probability

of successful gene introgression critically depends on the strength of this fitness

bottleneck.

Theoretical models on (adaptive) gene introgression that take a reduction in

hybrid fitness into accound usually assume that a pre-defined number of back-

crosses are required in order to lose the deleterious material and obtain a posi-

tively selected type (Demon et al., 2007; Gosh and Haccou, 2010; Gosh et al.,

2012a,b). This basically assumes that the deleterious effects are homogeneously

spread over the genome and that an appreciable amount of deleterious alleles

is required to have a measurable impact on fitness. Focusing on other than ge-

netical aspects of gene introgression such as the impact of a temporally varying

environment (Gosh et al., 2012a) or life history traits (Demon et al., 2007),

these model hence greatly simplify the underlying genetics. A step towards more

realistic population genetic models has been made by Gosh et al. (2012a). Their

analysis remains, however, restricted to the most basic scenario in which a single

deleterious allele is linked to the locus under positive selection.

In this paper, we focus on a single hybridization event and examine the impact

of linked and unlinked deleterious alleles on the introgression process of an adap-

tive allele. We first set up a Moran-like model which describes the evolution of the

population by genetic drift, selection, and recombination. In the first part of the

model analysis, we apply the theory of reducible multitype branching processes

in order to determine by how much deleterious alleles reduce the introgression

probability of a favorable allele, depending on the strength of selection and link-

age. The second part considers the probability that closely linked deleterious

alleles “hitchhike” to fixation. The analysis relies on a separation of the process

into a strongly stochastic phase in which a haplotype carrying the beneficial allele

establishes and a deterministic phase in which it sweeps through the population,

possibly losing deleterious material by recombination with wildtype individuals.

These recombination events and the subsequent establishment or loss of haplo-

types with fewer deleterious alleles are again subject to strong stochasticity. In

this analysis, we again resort to the theory of branching processes. The derived
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A

︸ ︷︷ ︸ ︸ ︷︷ ︸
i j

}
f type (i, j; f) fitness σ(i,j;f)

B

r
(3,4)
(1,4)

type (3, 4) fitness σ(3,4)

r
(1,4)
(1,2)

type (1, 4) fitness σ(1,4)

type (1, 2) fitness σ(1,2)

Figure 3.1: Illustration of the branching model. The dark dot represents the
advantageous allele, the blank dots represent deleterious alleles. i and j give the
number of deleterious allele to the left and right of the advantageous allele and f
the number of unlinked alleles. Panel B illustrates how linked deleterious alleles
are lost by recombination with wildtype individuals.

approximations are applied to a variety of biological scenarios, complemented by

computer simulations. We close the paper by a brief discussion.

3.2 Full model and simulations

We consider a large population of N haploid individuals. The theory also applies

to diploids without dominance if we can assume Hardy-Weinberg equilibrium. We

use, however, the haploid formalism throughout the paper. By a single hybridiza-

tion event, a hybrid individual is introduced into the population (for diploids, the

alien alleles arrive in the foreign habitat at the haploid stage, i.e., for plants, by

pollen dispersal). The hybrid carries an adaptive allele as well as a number of

deleterious alleles. Deleterious alleles are either physically linked to the adap-

tive allele or unlinked. We assume that this initial introgressed haplotype carries
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I and J linked deleterious to the left and the right of the beneficial allele, re-

spectively, and F unlinked alleles. By recombination with wildtype individuals,

haplotypes with fewer introgressed alleles can be generated, leading to a hybrid

swarm. Selection on the deleterious alleles relies on maladaptation to the envi-

ronment and is independent of the genomic context. We assume that there are

no functional differences among wildtype individuals, i.e., all wildtype individ-

uals have the same fitness and introgressed alleles interact identically with all

wildtype backgrounds. The fitness of an individual is thus fully determined by

the introgressed alleles that it carries.

The evolution of the population is described by the following scheme: At

rate N , two individuals are chosen to reproduce and generate a single offspring.

During reproduction, recombination can take place. We restrict ourselves to

single crossover among the linked alleles. Double crossover is unlikely to happen

over recombination distances r with r2 � r so that the model approximates

scenarios of tight linkage. Considering larger recombination distances or gene

conversion requires a straightforward extension of the formalism. Unlinked alleles

are inherited with probability one half. The offspring replaces an individual that

is chosen based on its fitness. For notational simplicity, we assign the numbers

1 to N to the individuals. Individual number k is then chosen with probability
1−σ(k)

N∑
i=1

(1−σ(i))

, where σ(k) = 0 for wildtype individuals. I.e., σ(k) is the Malthusian

fitness of individual k in a wildtype population.

The simulation program implements the successive events without considera-

tion of the time spans between them. As we are only interested in probabilities,

this does not influence the results. The simulation program is written in the

C++ programming language, making use of the Gnu Scientific Library (Galassi

et al., 2009).

The full model does not allow for an analytical treatment. In the following

sections, we therefore consider approximations of the introgression process.

3.3 The early phase of spread

A single evolutionary step involves three individuals: two individuals that repro-

duce and one that dies (where the same individual might be chosen twice). In a

large population, as long as hybrid haplotypes are rare, it is very unlikely that

more than one hybrid individual is engaged in a single event (or the same individ-

ual twice). Formally, this corresponds to negligence of terms of order (nintro/N)
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in the transition rates, where nintro denotes the number of individuals with in-

trogressed material. In the early phase of spread, hybrids consequently suffer

(nearly) independent fates, and the process is therefore well described by a mul-

titype branching process. The branching process is strictly recovered in the limit

N →∞.

The non-interaction of hybrids entails in particular that types with intro-

gressed material only recombine with wildtype individuals. This implies that by

recombination, they can only lose, not gain deleterious alleles, and we encounter

a special instance of a reducible multitype branching process (cf. also Barton

and Bengtsson, 1986; Demon et al., 2007; Gosh et al., 2012b). By recombi-

nation, types that carry only deleterious alleles, but not the beneficial allele are

generated. We do not consider these types in the following (within a branching

process approach, they are doomed to extinction), but focus on carriers of the

advantageous allele. For the main part of the paper, we assume that all unlinked

deleterious alleles have the same effect. A generalization of the main results to

arbitrary effects is given in Appendix C.

We call an individual with i deleterious alleles to the left and j deleterious

alleles to the right of the focal beneficical allele and f unlinked deleterious al-

leles an individual of type (i, j; f) (cf. Figure 3.1A). Its net selection coefficient

is denoted by σ(i,j;f). We set (i, j) ≡ (i, j; 0). Recombinant offspring of a type

(i, j) individual are either of type (i, k) with k < j or of type (k, j) with k < i.

Such recombination events may happen with probabilities r
(i,j)
(i,k) and r

(i,j)
(k,j), respec-

tively. An instance of repeated recombination events is depicted in Figure 3.1B.

The overall probability that a recombination event takes place is given by the

sum r(i,j) =
j−1∑
k=0

r
(i,j)
(i,k) +

i−1∑
k=0

r
(i,j)
(k,j). The number of unlinked deleterious alleles that

are inherited by an offspring individual is binomially distributed with parameter

0.5. We obtain for the per capita transition rates of the possible events in the

branching process:

P ((i, j; f)→ 0) = 1− σ(i,j;f),

P ((i, j; f)→ {(i, j; f); (i, j; g)}) =

(
f

g

)(
1

2

)f
(1− r(i,j)),

P ((i, j; f)→ {(i, j; f); (i, k; g)}) =

(
f

g

)(
1

2

)f
r

(i,j)
(i,k) for k < j,

P ((i, j; f)→ {(i, j; f); (k, j; g)}) =

(
f

g

)(
1

2

)f
r

(i,j)
(k,j) for k < i.

(3.1)
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3.4 The probability of adaptive gene introgres-

sion

First, we focus on the probability that the beneficial allele establishes in the

population. Once the beneficial allele is sufficiently frequent, it is very unlikely to

get lost again. The extinction probability of the branching process as described in

the previous section is thus a good approximation for the extinction probability

of the beneficial allele in the full model. We denote by Q(i,j;f) the extinction

probability of the process which is initiated by exactly one individual of type

(i, j; f).

Theorem 3.4.1. The extinction probability Q(I,J ;F ) can be calculated by recur-

sively solving the system of quadratic equations

(1− r(i,j))

(
1

2

)f
Q2

(i,j;f)

+

f∑
g=0

(
f

g

)(
1

2

)f { i−1∑
k=0

r
(i,j)
(k,j)Q(k,j;g) +

j−1∑
k=0

r
(i,j)
(i,k)Q(i,k;g)

}
Q(i,j;f)

+

f−1∑
g=0

(
f

g

)(
1

2

)f
(1− r(i,j))Q(i,j;g)Q(i,j;f) − (2− σ(i,j;f))Q(i,j;f) + 1− σ(i,j;f) = 0,

i ∈ {0, . . . , I}, j ∈ {0, . . . , J}, f ∈ {0, . . . , F},
(3.2)

where always the smaller root of the equation has to be used.

We only give an illustrative derivation of Eq. (3.2) here and move the full

proof to Appendix A.

Consider a branching process initiated by an individual of type (i, j; f). With

probability
1−σ(i,j;f)

2−σ(i,j;f)
, the founding individual dies before it reproduces, in which

case the lineage is immediately extinct. With probability
(
f
g

) (
1
2

)f 1−r(i,j)
2−σ(i,j;f)

, it re-

produces and generates a non-recombinant offspring with g unlinked alleles, i.e.,

an offspring of type (i, j; g). With probability
(
f
g

) (
1
2

)f r
(i,j)
(i,k)

2−σ(i,j)
(or
(
f
g

) (
1
2

)f r
(i,j)
(k,j)

2−σ(i,j)
),

it reproduces and gives birth to a type (i, k; g) (or (k, j; g)) individual with

0 ≤ k ≤ j (or 0 ≤ k ≤ i). Both individuals that exist after reproduction

are the founding individual of a lineage. In order for the original lineage to go
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extinct, both these lineages have to die out. It therefore holds for the extinction

probability Q(i,j;f):

Q(i,j;f) =
1− σ(i,j;f)

2− σ(i,j;f)

+

f∑
g=0

(
f

g

)(
1

2

)f 1− r(i,j)

2− σ(i,j;f)

Q(i,j;g)Q(i,j;f)

+

f∑
g=0

(
f

g

)(
1

2

)f { i−1∑
k=0

r
(i,j)
(k,j)

2− σ(i,j;f)

Q(k,j;g) +

j−1∑
k=0

r
(i,j)
(i,k)

2− σ(i,j;f)

Q(i,k;g)

}
Q(i,j;f).

(3.3)

By rearrangement of terms, we obtain Eq. (3.2).

For the special case F = 0, Eq. (3.2) simplifies to

0 = (1− r(i,j))Q
2
(i,j) +

j−1∑
k=0

r
(i,j)
(i,k)Q(i,j)Q(i,k) +

i−1∑
k=0

r
(i,j)
(k,j)Q(i,j)Q(k,j)

+ 1− σ(i,j) − (2− σ(i,j))Q(i,j), i ∈ {0, . . . , I}, j ∈ {0, . . . , J}.

(3.4)

In contrast, if all deleterious alleles are unlinked (i.e., I = J = 0; abbreviate

(0, 0; g) ≡ g), Eq. (3.2) yields:

0 =

(
1

2

)f
Q2
f +

(
1

2

)f f−1∑
g=0

(
f

g

)
QgQf + 1− σf − (2− σf )Qf , f ∈ {0, . . . , F}.

(3.5)

Implications of this result are discussed below in section 3.6.

3.5 The hitchhiking probability

3.5.1 General idea

If the effects of closely linked deleterious alleles are not too harmful, namely if

σ(i,j) − r(i,j) > 0, the beneficial allele can drag (some of) these deleterious alle-

les along to fixation. In this section, we develop a framework for determining

the hitchhiking probabilities conditioned on fixation of the beneficial allele. The

approach is based on a split of the process into two phases. After the original

hybridization event, the beneficial allele has to establish itself. We call this the

“stochastic phase”. In the previous section, we have been concerned with the
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establishment probability. Here, we further derive which haplotype (i, j) will es-

cape stochastic loss in this initial phase. We assume that only one haplotype

escapes. This is a very likely outcome of the stochastic phase under many cir-

cumstances because the establishment probability of each type is low. Since this

establishment happens while the introgressed types are rare, we can base the

derivation on the multitype branching process as before. The further increase

in frequency of type (i, j) can be well described by deterministic growth. If no

further recombination events happened, it would rise to fixation following the

logistic equation

ẋ(i,j)(t) = σ(i,j)x(i,j)(t)(1− x(i,j)(t)). (3.6)

However, during the sweep, types with less deleterious material can still be gen-

erated by recombination. If one of these types establishes, it will outcompete

type (i, j). Building on theory by Hartfield and Otto (2011), we describe the

production and possible establishment of these types by a time-inhomogeneous

branching process with immigration. Although the generation and establishment

of new haplotypes is subject to strong stochasticity, we refer to this phase as to

the “deterministic phase” because we model the frequency paths of haplotypes

deterministically once they are established in the population.

We first give a derivation for the case without unliked deleterious material

(F = 0), and subsequently generalize the approximation to F > 0.

3.5.2 The stochastic phase

As a first step, we determine which haplotype “rescues” the introgression process

given that the process does not go extinct. For this initial phase, we again resort

to the multitype branching process as defined in Eq. (3.1). As before, the process

is initiated by a single individual of type (I, J). If σ(I,J)−r(I,J) > 0, type (I, J) has

the chance to establish a permanent lineage of its own type. If σ(I,J)− r(I,J) ≤ 0,

type (I, J) itself will go extinct with probability 1. However, until extinction,

recombinant offspring with fewer deleterious alleles can be generated and rescue

the process. In that case, in order to determine the “rescue type”, we can consider

all recombination pathways that lead to establishment of the beneficial allele and

determine with which (relative) probability the various paths get realized. This

idea is key for the derivation of the approximation in this section.

Throughout the analysis, the total number of recombination events from

type (I, J) to any other type until extinction of type (I, J) constitutes a cen-

tral quantity. This follows Serra (2006) and Serra and Haccou (2007). For
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σ(I,J) − r(I,J) ≤ 0, we denote the corresponding probability generating function

(p.g.f.) by h(s). For σ(I,J) − r(I,J) > 0, we consider the number of recombination

events conditioned on extinction of type (I, J) and denote the p.g.f. by ĥ(s). h(s)

and ĥ(s) can be explicitely calculated for our model and are given by Lemma D.5.

For the following lemma, we group the recombinant offspring of type (I, J)

individuals into two classes: (1) individuals that found processes that survive (2)

individuals that found processes that go extinct. We denote by Y+ and Y− the

random number of recombination events from type (I, J) to type 1 and type 2

individuals, respectively. In the lemma, we rewrite the survival probability of the

process in terms of the expected number of sucessful recombinant lineages and

an error term. This lemma is essentially equivalent to the result in Serra and

Haccou (2007, Eq. (8)). A similar result also appears already in Iwasa et al.

(2004b).

Lemma 3.5.1. Let σ(I,J)− r(I,J) < 0. The survival probability of the process can

be written as

1−Q(I,J) =

(
I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J)) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))

)
d
ds
h(s)|s=1

r(I,J)

−R1,

(3.7)

where the error term R1 is given by

R1 =
∂

∂s0

(
h1(s0, s1)− h1(0, s1)

s0

) ∣∣∣∣
s0=s1=1

(3.8)

with

h1(s0, s1) = h(Psuccesss0 + (1− Psuccess)s1) (3.9)

and

Psuccess =

∑I−1
k=0 r

(I,J)
(k,J)(1−Q(k,J)) +

∑J−1
k=0 r

(I,J)
(I,k) (1−Q(I,k))

r(I,J)

. (3.10)

Proof. A recombinant offspring of a type (I, J) individual founds an infinite lin-

eage with probability Psuccess and a lineage that goes extinct with probability

1− Psuccess. According to Lemma D.6, the joint p.g.f of Y+ and Y− is given by

h1(s1, s2) = h(Psuccesss1 + (1− Psuccess)s2), (3.11)
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and we obtain for the expected number of type 1 individuals:

E[Y+] =
∂

∂s1

h1(s1, s2)|s1=s2=1 = Psuccess
d

ds
h(s)|s=1. (3.12)

Now note:

1−Q(I,J) = P (Y+ > 0) = E[Y+]−R1 (3.13)

with

R1 = E[Y+]− P (Y+ > 0) = P (Y+ = 2) + 2P (Y+ = 3) + 3P (Y+ = 4) + . . .

=
∂

∂s0

(
h1(s0, s1)− h1(0, s1)

s0

) ∣∣∣∣
s0=s1=1

.

(3.14)

I.e., if P (Y+ > 1) ≈ 0, the expected number of recombination events from type

(I, J) individuals to individuals with fewer mutations that found a successful

lineage approximates the survival probability of the process.

In order to proceed, we need a formal definition of a “rescue type”. Analogous

to the lemma, we can then derive a recursive formula for the probability that an

individual of type (i, j) rescues the process.

Definition 3.5.1. We call an (i, j) individual an (i, j) “rescue type”, denoted as

(i, j,+), if

(1) it founds an infinite lineage of type (i, j) individuals

(2) there is no individual in its ancestry that founds an infinite lineage of its own

type.

We denote by X
(k,l)
(i,j,+) the number of rescue types (i, j,+) in a process which

is founded by an individual of type (k, l).

We define

P
(I,J)
(i,j) = Prob(X

(I,J)
(i,j,+) > 0|survival of the process). (3.15)

That is, P
(I,J)
(i,j) gives the probability that there exists an (i, j) rescue type. A

priori, that does not exclude the simultaneous existence of several rescue types.

For the following theorem, we again group the recombinant offspring of a type

(I, J) individual into two classes: (1) individuals that found a lineage resulting
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in at least one individual of type (i, j,+) (2) individuals that do not do that. We

denote the number of recombinants of the first and second type with Y(i,j,+) and

Y(i,j,−), respectively.

Theorem 3.5.1. (1) Let σ(I,J) − r(I,J) < 0. It holds that

P
(I,J)
(i,j) =

(
I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J))P

(k,J)
(i,j) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))P

(I,k)
(i,j)

)
d
ds
h(s)|s=1

r(I,J)
−R1(

I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J)) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))

)
d
ds
h(s)|s=1

r(I,J)
−R2

,

(3.16)

where R1 is defined as before and R2 given by

R2 =
∂

∂s0

(
h2(s0, s1)− h2(0, s1)

s0

) ∣∣∣∣
s0=s1=1

(3.17)

with

h2(s0, s1) = h(P(i,j,+)s0 + (1− P(i,j,+))s1) (3.18)

and

P(i,j,+) =

∑I−1
k=0 r

(I,J)
(k,J)(1−Q(k,J))P

(k,J)
(i,j) +

∑J−1
k=0 r

(I,J)
(I,k) (1−Q(I,k))P

(I,k)
(i,j)

r(I,J)

. (3.19)

(2) For σ(I,J) − r(I,J) > 0, it holds:

P
(I,J)
(I,J) =

1− q(I,J)

1−Q(I,J)

(3.20)

with

1− q(I,J) =
σ(I,J) − r(I,J)

1− r(I,J)

, (3.21)

where q(I,J) is the unconditioned probability that type (I, J) itself goes extinct.
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For (i, j) 6= (I, J), it holds:

P
(I,J)
(i,j) =

(
1−

1− q(I,J)

1−Q(I,J)

)

×

(
I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J))P

(k,J)
(i,j) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))P

(I,k)
(i,j)

)
d
ds
ĥ(s)|s=1

r(I,J)
− R̂1(

I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J)) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))

)
d
ds
h(s)|s=1

r(I,J)
− R̂2

,

(3.22)

where ĥ1, ĥ2, R̂1, and R̂2 are defined analogously to before (using ĥ instead of h).

Proof. We first prove the first part of the theorem. With probability P(i,j,+), a

recombinant offspring founds a lineage resulting in at least one individual of type

(i, j,+). Analogous to before, we obtain

P (Y(i,j,+) > 0) = E[Y(i,j,+)]−R2

= P(i,j,+)
d

ds
h(s)|s=1 −R2

(3.23)

with

R2 =
∂

∂s0

(
h2(s0, s1)− h2(0, s1)

s0

) ∣∣∣∣
s0=s1=1

. (3.24)

It holds:

P
(I,J)
(i,j) (1−Q(I,J)) = P (Y(i,j,+) > 0). (3.25)

Substituting 1−Q(I,J) by the approximation Eq. (3.7) yields Eq. (3.16).

If σ(I,J) − r(I,J) > 0, type (I, J) establishes a lineage of its own type with

probability

1− q(I,J) =
σ(I,J) − r(I,J)

1− r(I,J)

(3.26)

(cf. Lemma D.3). It therefore holds:

P
(I,J)
(I,J) =

1− q(I,J)

1−Q(I,J)

. (3.27)
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The probability that type (I, J) goes extinct conditioned on survival of the process

is accordingly given by

P (type (I, J) goes extinct|survival of the process) = 1−
1− q(I,J)

1−Q(I,J)

. (3.28)

We can now repeat the proof of the first part of the theorem for the process

conditioned on extinction of type (I, J).

Remark. For σ(I,J) − r(I,J) < 0, we have d
ds
h(s)|s=1 =

r(I,J)

r(I,J)−σ(I,J)
. For σ(I,J) −

r(I,J) > 0, we have d
ds
ĥ(s)|s=1 =

r(I,J)

σ(I,J)−r(I,J)
.

For σ(I,J)− r(I,J) < 0 not too close to zero, it is likely that only one of the few

recombinant offspring of type (I, J) individuals founds an infinite lineage, and we

can approximate P (Y + ≥ 2) ≈ 0 and consequently also P (Y(i,j,+) ≥ 2) ≈ 0. This

implies that the error terms R1 and R2 can be ignored. For σ(I,J) − r(I,J) > 0

and r(I,J) small, survival of the process is with high probability contingent on

establishment of type (I, J) so that

P
(I,J)
(i,j) ≈ δI,iδJ,j with δk1,k1 =

{
1 for k1 = k2,

0 else.
(3.29)

We can therefore formulate the following corollary:

Corollary 3.5.1. For σ(I,J) − r(I,J) < 0 not too close to zero and close linkage,

we can approximate

P
(I,J)
(i,j) ≈

P(i,j,+)

Psuccess

=

I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J))P

(k,J)
(i,j) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))P

(I,k)
(i,j)

I−1∑
k=0

r
(I,J)
(k,J)(1−Q(k,J)) +

J−1∑
k=0

r
(I,J)
(I,k) (1−Q(I,k))

(3.30)

with

P
(i,j)
(k,l) ≈ δi,kδj,l (3.31)

for σ(i,j) − r(i,j) > 0. Within this approximation, the P
(I,J)
(i,j) , i ≤ I, j ≤ J , form a

probability distribution with ∑
i,j

P
(I,J)
(i,j) = 1. (3.32)
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The proof for relation Eq. (3.32) is given in Appendix B.

The approximation (Eqs. (3.30) and (3.31)) implies that exactly one rescue

type establishes in the population during the stochastic phase (types with fewer

deleterious alleles can still arise later during the deterministic phase), i.e.,

P (X
(I,J)
(i,j,+) +X

(I,J)
(k,l,+) > 1) = 0 for any pair (i, j), (k, l). (3.33)

This assumption appears to be justified for a large parameter region with tightly

linked deleterious alleles. It is also the basis for most of our analytical anaysis

of particular cases below. As discussed below, the approximation becomes less

accurate if deleterious alleles are relatively loosely linked and/or haplotypes are

only slightly deleterious.

We can extend the approximation to include unlinked deleterious alleles and

obtain for σ(I,J) − r(I,J) < 0:

P
(I,J ;F )
(i,j;0) ≈

A+B

C +D

A =
F∑
l=0

(
F

l

)(
1

2

)F{I−1∑
i=0

r
(I,J)
(i,J) (1−Q(i,J ;l))P

(i,J ;l)
(i,j;0)

+
J−1∑
j=0

r
(I,J)
(I,j) (1−Q(I,j;l))P

(I,j;l)
(i,j;0)

}

B =
F−1∑
l=0

(
F

l

)(
1

2

)F
(1− r(I,J))(1−Q(I,J ;l))P

(I,J ;l)
(i,j;0)

C =
F∑
l=0

(
F

l

)(
1

2

)F {I−1∑
i=0

r
(I,J)
(i,J) (1−Q(i,J ;l)) +

J−1∑
j=0

r
(I,J)
(I,j) (1−Q(I,j;l))

}

D =
F−1∑
l=0

(
F

l

)(
1

2

)F
(1− r(I,J))(1−Q(I,J ;l)).

(3.34)

For σ(I,J) − r(I,J) > 0, we approximate:

P
(I,J ;F )
(i,j;0) ≈ δI,iδJ,j. (3.35)
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3.5.3 The deterministic phase

It remains to determine whether the haplotype that establishes itself in the

stochastic phase rises to fixation or whether types with less deleterious mate-

rial can establish during the sweep of the beneficial allele. In order to arrive at

an approximation for the deterministic phase, we apply and extend an approach

developed in Hartfield and Otto (2011). Hartfield and Otto (2011) de-

termined the hitchhiking probability of a single deleterious allele which is closely

linked to a beneficial one. For a single hitchhiker, their method can easily be

adapted to our model, as shown below. In the Appendix, we further argue that

the approach can be extended to a larger number of hitchhikers. Explicit results

for two hitchhikers are derived in Appendix E.

For a single potential hitchhiker, assume that type (0, 1) with σ(0,1)−r(0,1) > 0

has been introduced and established in the population. It’s further growth can

be well described deterministically as given by the differential equation Eq. (3.6).

However, in the initial phase, it will on average have grown faster than the deter-

ministic path predicts. Following Uecker and Hermisson (2011), we account

for the fast initial increase by the use of an “effective initial population size” ν,

which we use as an initial condition for the solution of Eq. (3.6) (cf. also Desai

and Fisher, 2007). ν is an exponentially distributed random variable with

P (ν ≤ ν0) = 1− exp (−pestν0), (3.36)

where pest = 1− q(0,1) (cf. Eq. (3.26)) denotes the establishment probability of a

single type (0, 1) individual in a wildtype population (Uecker and Hermisson,

2011, Eq. (40)). To leading order approximation, we can approximate the distri-

bution by its mean ν̄ = 1/pest. For the relative frequency of type (0, 1), it then

holds (ignoring recombination):

x(0,1)(t) =
ν̄ exp (σ(0,1)t)

N − ν̄ + ν̄ exp (σ(0,1)t)
. (3.37)

This is a good approximation up to freqency x(0,2) ≈ 1− ν̄
N

. At higher frequencies,

the frequency will again grow faster. Individuals of type (0, 0) are recurrently

generated by recombination at rate r(0,1)Nx(0,1)(1 − x(0,1)). As long as they are

rare, their dynamics is strongly determined by stochasticity and can once again be

approximated by a branching process. Their fitness depends on x(0,1)(t) and hence

on time. The dynamics is thus described by a time-inhomogeneous branching
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process with birth rate 1 and death rate 1 − σ(0,0) + x(0,1)(t)σ(0,1). Following

Eq. (16a) in Uecker and Hermisson (2011), the fixation probability of a single

individual of type (0, 0) generated at time T is given by

p
(0,0)
fix (T ) =

σ(0,0)(σ(0,0) − σ(0,1))

(σ(0,0) − σ(0,1))(1− x(0,1)(T )) + σ(0,0)x(0,1)(T )
. (3.38)

“Successful” individuals of type (0, 0) are generated at rate

r
(0,1)
(0,0)Nx(0,1)(t)(1− x(0,1)(t))p

(0,0)
fix (t). (3.39)

Using this, we obtain for the probability that type (0, 1) fixes in the population:

P
((0,1)→(0,1))
det = exp

− ∞̂

0

Nr
(0,1)
(0,0)x(0,1)(t)(1− x(0,1)(t))p

(0,0)
fix (t)dt


≈ exp

− 1−ν̄/Nˆ

ν̄/N

Nr
(0,1)
(0,0)

1

σ(0,1)

σ(0,0)(σ(0,0) − σ(0,1))

(σ(0,0) − σ(0,1))(1− x) + σ(0,0)x
dx


=

(
σ(0,0) − ν̄

N
σ(0,1)

σ(0,0) − σ(0,1)(1− ν̄
N

)

)−Nr(0,1)
(0,0)

σ(0,0)(σ(0,0)−σ(0,1))

σ2
(0,1)

,

(3.40)

where the last equality holds for ν̄ < 0.5N . For a single introgressed individual

at time t = 0 in a large population, we can approximate ν̄/N ≈ 0 and obtain

P
((0,1)→(0,1))
det ≈

(
σ(0,0)

σ(0,0) − σ(0,1)

)−Nr(0,1)
(0,0)

σ(0,0)(σ(0,0)−σ(0,1))

σ2
(0,1)

. (3.41)

Eq. (3.41) corresponds to Eq. (5) in Hartfield and Otto (2011) up to a model-

specific factor of 2 in the exponent if we identify sa ≡ σ(0,0), sd ≡ σ(0,0) − σ(0,1),

and r ≡ r
(0,1)
(0,0). If N(1− q(0,1)) ≈ Nσ(0,1) is small or if there are already other in-

trogressed haplotypes sweeping in the population as in the generalization to more

potential hitchhikers, it makes a quantitative difference whether one accounts for

the fast initial increase or not, and we cannot approximate ν̄/N ≈ 0 (see Ap-

pendix E). Alternatively, one can resort to a diffusion approach for these cases
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(see Hartfield and Otto (2011) and Appendix F). Note that both approaches

assume that recombination is so weak that by itself, it does not influence the

frequency path of type (0, 1) (i.e., σ(0,1) � r
(0,1)
(0,0)).

3.5.4 Concatenation of the stochastic and the determin-

istic phase

In order to determine which haplotype fixes in the population, we need to con-

catenate the stochastic and the deterministic phase. Let A be the set of all

types with positive fitness. Type (k, l) establishes in the stochastic phase with

probability P
(I,J)
(k,l) as derived and discussed in section 3.5.2 and hence enters the

deterministic phase. We always assume that only one type does so (and it does

so in a single copy). Given establishment of type (k, l), we denote by

P
((k,l)→(i,j))
det (3.42)

the probability that during the deterministic phase, type (i, j) ∈ A is generated

and finally fixes in the population. Summing over all (k, l) ∈ A yields:

P (“type (i, j) fixes”) =
∑

(k,l)∈A

P
(I,J)
(k,l) P

((k,l)→(i,j))
det . (3.43)

If not stated otherwise, the results presented in section 3.6 are based on Eq. (3.43)

with P
(I,J)
(k,l) obtained by Eq. (3.30) and Eq. (3.31). The recursions are performed

by a program written in the C programming language. Approximations for

P
(0,2)→(0,·))
det with σ(2,0) − r(0,2) > 0 and P

(1,1)→(·,·))
det with σ(1,1) − r(1,1) > 0 are

derived in Appendix E. All numerical evaluation of integrals that appear in these

approximations is done in Mathematica (Wolfram Research, Champaign, USA).
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3.6 Application to various biological scenarios

3.6.1 The impact of unlinked alleles

If I = J = 0, the extinction probability is given by Eq. (3.5). For Q0, Q1 and

Q2, we obtain:

Q0 = 1− σ0, (3.44a)

Q1 = 2− σ1 −
1

2
Q0 −

√(
2− σ1 −

1

2
Q0

)2

− 2(1− σ1), (3.44b)

Q2 = 4− 2σ2 −
1

2
Q0 −Q1 − 2

√(
1

4
Q0 +

1

2
− 2 + σ2

)2

− (1− σ2). (3.44c)

How does the number of unlinked deleterious alleles impact the introgression

probability if their total effect is kept constant? A comparison of Q1 with σ1 =

σ0 − 2σ and Q2 with σ1 = σ0 − σ and σ2 = σ0 − 2σ yields:

Q2(σ)/Q1(2σ) = 1 +O(σ2), (3.45)

i.e., unless the deleterious effect is very strong, the extinction probability is ap-

proximately the same for both scenarios (either one deleterious allele of effect 2σ

or two deleterious alleles each of effect σ). Figure 3.2 generalizes this result to

F > 2. One sees that unlinked alleles significantly reduce the introgression proba-

bility. However, it is basically irrelevant whether there is one strongly deleterious

allele or many slightly deleterious alleles. By how much do unlinked deleterious

alleles of compound effect Sdel reduce the introgression probability? Making use

of the previous observation, it is sufficient to consider a single unlinked allele of

effect Sdel. A Taylor expansion yields:

1−Q1

1−Q0

= 1− 2

1 + σ0

Sdel +O(S2
del) ≈ 1− 2Sdel +O(S2

del), (3.46)

i.e., unlinked alleles approximately reduce the introgression probability by a factor

that is independent of σ0.

While unlinked alleles have a significant impact on the probability of adaptive

gene introgression, they do not visibly influence the hitchhiking probability of

closely linked deleterious alleles (cf. Figure 3.3).
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Figure 3.2: The introgression probability as a function of the number of unlinked
deleterious alleles. The total effect on fitness is kept constant. The introgres-
sion probability is approximately the same whether the effect is distributed over
few stronglly or many slightly deleterious alleles. The advantageous allele has
Malthusian fitness σ0 = 0.08. In the absence of deleterious alleles, it would estab-
lish with probability 1 − Q0 = σ(0,0) = 0.08. Crosses denote simulation results.
Each simulation point is the average over 106 introgression attempts.
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Figure 3.3: The hitchhiking probability as a function of the number of unlinked
deleterious alleles. The dotted lines corrspond to the respective values for F = 0.
Unlinked alleles do not visibly impact the hitchhiking probability of closely linked
deleterious alleles. Parameter values are: I = 0, J = 3, σ0 = 0.075, σ(0,1) = 0.07,

σ(0,2) = 0.05, σ(0,3) = −0.015, N = 10, 000, r
(·,·)
(·,·) = 0.0001. Crosses denote

simulation results. Each simulation point is the average over 2000 successful
introgression events.
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3.6.2 The impact of a single deleterious allele

In this section, we consider the impact of a single linked deleterious allele (cf. also

Iwasa et al., 2004a). From Eq. (3.4), we obtain:

Q(0,0) = 1− σ(0,0), (3.47a)

Q(0,1) =
1

2(1− r(0,1))

(
2− σ(0,1) − r(0,1)Q(0,0) (3.47b)

−
√(

2− σ(0,1) − r(0,1)Q(0,0)

)2 − 4(1− σ(0,1))(1− r(0,1))

)
(3.47c)

≈

{
(1− σ(0,1))

(
1− σ(0,0)−σ(0,1)

σ(0,1)
r(0,1)

)
for σ(0,1) > 0,

1 +
σ(0,0)

σ(0,1)
r(0,1) for σ(0,1) < 0.

(3.47d)

The approximation is a first order Taylor expansion in r(0,1), which yields accurate

results for small r if σ(0,1) is not too close to zero. Due to the assumption of single

crossover only, Q(0,1) exactly corresponds to Q1 for r(0,1) = 0.5 (where σ(0,0) ≡ σ0

and σ(0,1) ≡ σ1). How does a single deleterious allele impact the probability of

adaptive gene introgression? We can measure the impact by the relative reduction

of the introgression probability

∆P = 1−
1−Q(0,1)

1−Q(0,0)

= 1−
1−Q(0,1)

σ(0,0)

. (3.48)

If ∆P is close to zero, the deleterious allele has a weak impact; if ∆P is close to

one, it has a strong impact. The influence is obviously strongest for r(0,1) = 0.

If σ(0,1) > 0, the maximal relative reduction in the introgression probability is

given by sdel/σ(0,0) with sdel := σ(0,0) − σ(0,1). For σ(0,1) ≤ 0 and r(0,1) = 0, the

advantageous allele can not introgress at all (except through fixation by drift

which is not considered here). For tight linkage, we use the foregoing Taylor

expansion and obtain

∆P ≈ sdel

σ(0,0)

(
1−

r(0,1)

σ(0,0) − sdel

)
for σ(0,1) > 0, (3.49a)

∆P ≈ 1−
r(0,1)

σ(0,1)

for σ(0,1) < 0. (3.49b)
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The maximal impact is strongest for a weak beneficial mutation (where intro-

gression is easily reduced to zero for tight linkage). The impact gets weaker with

increasing recombination on the scale of σ(0,1). I.e., if either σ(0,0) � sdel, or if

sdel � σ(0,0), the impact declines only slowly. In order to determine the behavior

for strong recombination, we perform a Taylor expansion of ∆P in sdel:

∆P =
1

r(0,1) + σ(0,0)(1− r(0,1))
sdel +O

(
s2

del

)
. (3.50)

For r(0,1) � σ(0,0), the relative reduction becomes independent of the strength of

the beneficial allele. This is in strong contrast to the behavior for tight linkage

case. The impact declines on a scale of sdel and becomes irrelevant for r(0,1) � sdel.

In particular, an unlinked deleterious allele leads to a relative reduction of 2sdel.

If σ(0,1)−r(0,1) > 0, the deleterious allele can hitchhike to fixation. Type (0, 1)

establishes with probability

1− q(0,1) =
σ(0,1) − r(0,1)

1− r(0,1)

, (3.51)

i.e.,

P
(0,1)
(0,1) =

σ(0,1) − r(0,1)

1− r(0,1)

1

1−Q(0,1)

, (3.52)

and

Phitchhiking = P
(0,1)
(0,1)P

((0,1)→(0,1))
det . (3.53)

In order to asses the respective relevance of the stochastic and the deterministic

phase, we first perform a first-order Taylor expansion of P
(0,1)
(0,1) in r(0,1):

P
(0,1)
(0,1) ≈ 1− r(0,1)σ(0,0)

1− σ(0,1)

σ2
(0,1)

≈ 1− r(0,1)

σ(0,0)

σ2
(0,1)

. (3.54)

I.e., changes in P
(0,1)
(0,1) occur on the scale of r(0,1) ∼ σ2

(0,1)/σ(0,0). For the determinis-

tic phase (Eq. (3.41)), the scale is set by r(0,1) ∼ σ2
(0,1)/(Nσ(0,0)sdel). This allows us

to distinguish two parameter regimes: if Nsdel � 1, the deterministic phase dom-

inates. However, if Nsdel ≈ 1 or smaller, the stochastic phase cannot be ignored.

Figures 3.4C and D illustrate how stochastic and deterministic phase combine to

form the probability of hitchhiking for N = 10000 and N = 500, respectively.

For N = 10000, the behavior is dominated by the deterministic phase which de-

cays quickly as a function of r(0,1). In the parameter range, where P
((0,1)→(0,1))
det is
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appreciable, one can ignore the influence of the stochastic phase. For N = 500,

however, P
((0,1)→(0,1))
det decays slowly, and the stochastic phase has a non-negligible

impact on hitchhiking: E.g., for r(0,1) = 0.003, we find P
((0,1)→(0,1))
det ≈ 0.8 and

P
(0,1)
(0,1)P

((0,1)→(0,1))
det ≈ 0.53. Note also that if N(1 − q(0,1)) is small, we have to

account for deviations from the deterministic path. These deviations can be ac-

counted for via the parameter ν̄ as in Eq. (3.40) or via a diffusion approach as

in Hartfield and Otto (2011). In Appendix F, we give the diffusion equation

adjusted to our model and compare the result to Eq. (3.40).

A comparison between Panels A/B with Panels C/D of Figure 3.4 shows

that the introgression probability changes only slightly over the depicted range

of recombination, while the hitchhiking probability significantly decreases with

increasing recombination distance; how quickly, is strongly affected by the popu-

lation size.

3.6.3 The impact of a second deleterious allele

In this paragraph, we start from an individual of type (0, 1) and investigate how a

second deleterious allele affects the introgression and the hitchhiking probability,

depending on the strength of selection and linkage. The results are summarized

in Figures 3.5–3.8.

Figure 3.5 and Figure 3.6 consider the dependence on linkage. One sees that

a strongly deleterious allele significantly affects the introgression probability even

if it is only loosely linked. The impact on the hitchhiking probability is more

subtle, and several cases have to be distinguished. We first turn to Figure 3.5,

in which the second deleterious alleles is on the same side of the beneficial allele

as the first one. Panel C shows the behavior for σ(0,2) − r(0,2) < 0. In that case,

applying Eq. (3.30) with Eq. (3.31), it approximately holds:

P
(0,2)
(0,1) ≈

r
(0,2)
(0,1)(1−Q(0,1))

r
(0,2)
(0,0)(1−Q(0,0)) + r

(0,2)
(0,1)(1−Q(0,1))

≈
r

(0,2)
(0,1)σ(0,1)

r
(0,2)
(0,0)σ(0,0) + r

(0,2)
(0,1)σ(0,1)

, (3.55)
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Figure 3.4: Panels A and B: Introgression probability as a function of linkage.
For the solid line, it holds I = 0, J = 1. For the dashed line, I = J = 0. Panels
C and D: The hitchhiking probability of a single deleterious allele (I = 0, J = 1).
The solid line represents the hitchhiking probability as given by Eq. (3.53). The
dashed and the dotted lines show the impact of the stochastic phase (Eq. (3.52))
and the deterministic phase (Eq. (3.40)), respectively. In Panel C, the solid and
the dotted line are virtually indistinguishable; the deterministic phase dominates.
In Panel D, the stochastic phase has a significant impact on the hitchhiking
probability. Parameter values are: σ(0,0) = 0.012, σ(0,1) = 0.01. Circles denote
simulation results. For Panels A and B, each simulation point is the average over
106 intogresstion attempts. For Panels C and D, each simulation point is the
average over 104 successful introgression events.
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where we have used Q(0,1) ≈ 1− σ(0,1). Hence:

Phitchhiking((0, 2) is introduced) ≈
r

(0,2)
(0,1)σ(0,1)

r
(0,2)
(0,0)σ(0,0) + r

(0,2)
(0,1)σ(0,1)

P
((0,1)→(0,1))
det

≈
r

(0,2)
(0,1)σ(0,1)

r
(0,2)
(0,0)σ(0,0) + r

(0,2)
(0,1)σ(0,1)

Phitchhiking((0, 1) is introduced).

(3.56)

I.e., for close linkage of the second deleterious allele, the hitchhiking probability

gets strongly reduced. However, as linkage gets looser, it converges quickly to its

value in absence of the second allele P
((0,1)→(0,1))
det . Denote by c the percentage by

which the second deleterious allele reduces the hitchhiking probability of the first

one:

c =
Phitchhiking((0, 1) is introduced)− Phitchhiking((0, 2) is introduced)

Phitchhiking((0, 1) is introduced)
. (3.57)

By rearrangement of terms, we obtain

r
(0,2)
(0,1)

r
(0,2)
(0,0)

=
1− c
c

σ(0,0)

σ(0,1)

⇔ c =
1

1 +
r
(0,2)
(0,1)

σ(0,1)

r
(0,2)
(0,0)

σ(0,0)

. (3.58)

Importantly, the selective strength of the second deleterious allele has no effect

(as long as it is strong enough for our approximation to apply). Also the other

selection coefficients only play a minor role. The second deleterious allele is

relevant if

r
(0,2)
(0,1) < r

(0,1)
(0,0)

σ(0,0)

σ(0,1)

≈ r
(0,1)
(0,0) for σ(0,0) � sdel, (3.59)

which is independent of the selection coefficients if σ(0,0) � sdel. The hitchhik-

ing probability is crucially determined by the ratio of recombination distances

r
(0,2)
(0,1)/r

(0,1)
(0,0).

In Panel D, the second deleterious allele can hitchhike to fixation, too (σ(0,2)−
r(0,2) > 0). The total hitchhiking probability of the closest deleterious allele is

then only moderately reduced. For r
(0,2)
(0,1) small, the second deleterious allele fixes,

too. We see that with increasing recombination distance the analytical result

underestimates the true hitchhiking probability. This has two reasons: First, the

approximation P
(0,2)
(0,2) ≈ 1 becomes worse as recombination increases. Second (and
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more importantly here), it is not unlikely that type (0, 1) and type (0, 2) establish

simultaneously while our approximation assumes that type (0, 1) establishes after

type (0, 2). A slight shift in the time of establishment as introduced by our

approach can lead to appreciable deviations of the frequency paths of both types

from the true paths. This, in turn, has a non-negligible impact on the assessment

of the hitchhiking probability.

In Figure 3.6, the beneficial allele is flanked by deleterious alleles. If the

second allele is strongly deleterious, the hitchhiking probability is not visibly

reduced (Panel B). This is because for successful introgression, the allele has to

recombine away very early. The situation in Panel D looks similar to Figure 3.5C.

We have

Phitchhiking((1, 1) is introduced)

≈
r

(1,1)
(0,1)σ(0,1)

r
(1,1)
(1,0)σ(1,0) + r

(1,1)
(0,1)σ(0,1)

Phitchhiking((0, 1) is introduced).
(3.60)

This is formally similar to Eq. (3.56). There is, however, an important differ-

ence: Now, the selection coefficient of the second deleterious allele is crucial. Its

influences ceases with increasing strength. If both deleterious alleles have approx-

imately the same effect (σ(0,1) ≈ σ(1,0)), the behavior is again determined by the

ratio of the recombination distances r
(1,1)
(0,1)/r

(1,1)
(1,0).

Figures 3.7 and 3.8 show how the selective disadvantage of a second closely

linked deleterious allele affects the hitchhiking probability. If it is on the same

side of the beneficial allele as the first one (Figure 3.7), the hitchhiking probability

is greatly reduced unless the selective disadvantage is very slight. The reduction

is greatest for intermediate values of the selection coefficient (see Figure 3.7A).

In this parameter regime, type (0, 2) significantly increases in frequency before a

successful lineage of type (0, 0) or (0, 1) is generated. As a consequence, the time

to fixation of the beneficial allele is relatively long. Even if a sucessful lineage of

type (0, 1) can establish, it is therefore likely that later, a sucessful lineage of type

(0, 0) is generated (see Figure 3.7B for an illustration of this reasoning). If the

beneficial allele is flanked at equal small recombination distances by two delete-

rious alleles as in Figure 3.8, the total hitchhiking probability of the deleterious

allele to the right (fixation of type (0, 1) or type (1, 1)) is barely influenced by the

presence of the second deleterious allele, irrespective of the selective disadvantage

of the latter. Note, however, that recombination is weak in Figure 3.8. For strong

recombination and σ(0,1) ≈ σ(1,0), it is not unlikely that both a successful lineage
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of type (0, 1) and of type (1, 0) establish and coexist for a long time, making the

production of a successful (0, 0) recombinant very likely.

3.6.4 The impact of several linked deleterious alleles

To start with, assume σ(I,J)− r(I,J) > 0. If all recombination distances are small,

we can generalize the result Eq. (3.41) and calculate the probability that all

deleterious alleles hitchhike to fixation. For weak recombination, the frequency

increase of type (I, J) is again well described by the deterministic path x(I,J). At

time t, an individual of type (i, J) has Malthusian fitness

σ(i,J)(t) = σ(i,J) − x(I,J)(t)σ(I,J). (3.61)

Since recombination is assumed to be weak, the number of offspring of its own

type is not significantly reduced by recombination. The establishment probability

p
(i,J)
est (t) of type (i, J) is hence obtained by suitable substitutions in Eq. (3.38).

Taking all possible types into account, sucessful lineages with fewer deleterious

alleles are generated at rate

Nx(I,J)(t)(1− x(I,J)(t))

(I−1)∑
i=0

r
(I,J)
(i,J) p

(i,J)
est (t) +

J−1∑
j=0

r
(I,J)
(I,j) p

(I,j)
est (t)

 . (3.62)

Analogous to the derivation of Eq. (3.41), we obtain for the probability that all

deleterious alleles hitchhike to fixation

Q
(I,J)
det =

I−1∏
i=0

(
σ(i,J)

σ(i,J) − σ(I,J)

)−Nr(I,J)
(i,J)

σ(i,J)(σ(i,J)−σ(I,J))

σ2
(I,J)

×
J−1∏
j=0

(
σ(I,j)

σ(I,j) − σ(I,J)

)−Nr(I,J)
(I,j)

σ(I,j)(σ(I,j)−σ(I,J))

σ2
(I,J)

.

(3.63)

We now turn to σ(I,J) − r(I,J) < 0. Be A the set of all types which have positive

fitness and (i, j) ∈ A. First note:

P ((k, l) ∈ A, k > i or l > j, fixes) < P
(I,J)
(i,j) . (3.64)
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(0,1)
(0,0) = 0.0001. Circles de-
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over 106 introgression attempts. For Panels, C and D, each simulation point is
the average over 2000 successful introgression events.

149



CHAPTER 3. ADAPTIVE GENE INTROGRESSION

 0

 0.02

 0.04

 0.06

 0.08

P
in

tr
o
g
re

s
s
io

n

σ(1,0)−r(1,0)<0 σ(1,0)−r(1,0)>0

A

unlinked allele

only one del. allele
B

only one del. allele

unlinked allele

    0

  0.2

  0.4

  0.6

  0.8

    1

0 0.001 0.002 0.003 0.004 0.005

P
h
it
c
h
h
ik

in
g

r(0,1)
(1,1)

C

0 0.001 0.002 0.003 0.004 0.005

r(0,1)
(1,1)

D

Figure 3.6: Panels A and B: Introgression probability of an adaptive allele linked
to two deleterious alleles. Panels C and D: Hitchhiking probability of a closely
linked deleterious allele. In each Panel, the dashed line gives the respective prob-
ability in the absence of the second deleterious allele. In Panels A and B, the
dotted line gives the introgression probability for one closely linked and one un-
linked allele. For Panels A and C: σ(0,1) = 0.07, σ(1,0) = −0.025, σ(1,1) = −0.03.
For Panels B and D: σ(0,1) = 0.04, σ(1,0) = 0.03, σ(1,1) = −0.005. The other

parameter values are: σ(0,0) = 0.075, N = 10, 000, r
(1,1)
(1,0) = 0.0001. Circles denote

simulation results. For Panels A and B, each simulation point it the average over
106 introgression attempts. For Panels, C and D, each simulation point is the
average over 2000 successful introgression events.
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Consider the special case I = 0, σ(0,j)− r(0,j) > 0, and σ(0,l)− r(0,l) < 0, l > j. For

tight linkage, we can again approximate 1 − Q(0,k) ≈ σ(0,k) for k ≤ j and obtain

(proof by induction):

P
(0,J)
(0,k) ≈

r
(0,J)
(0,k)σ(0,k)

j∑
l=0

r
(0,J)
(0,l) σ(0,l)

. (3.65)

The (j+1)th deleterious allele has a strong effect on the hitchhiking probabilities;

all further alleles have no effect though. Moreover, the strength of the (j + 1)th

allele is irrelevant as long the type (0, j + 1) is sufficiently deleterious that our

approximation is justified.

As another example, consider the special case J = 1, σ(0,1) − r(0,1) > 0, and

σ(i,j) − r(i,j) < 0, i > 0. If linkage is tight, the hitchhiking probability is barely

reduced by additional deleterious mutations.

Finally, be σ(0,1)−r(0,1) > 0 and I and J ≥ 1 arbitrary and σ(i,j)−r(i,j) < 0 for

(i, j) /∈ {(0, 0), (0, 1)}. Figure 3.9 shows how additional deleterious alleles that can

themselves not hitchhike to fixation can influence the hitchhiking probability of a

slightly deleterious allele. The pattern can be understood by consideration of the

various paths which lead to establishment of the beneficial allele: unless I = 0 (or

J = 1), at least two recombination events are necessary to generate a type with

positive Malthusian fitness. The position of the first successful recombination

event depends on the fitness of the types that are generated by recombination.

Since σ(1,0) is only slightly deleterious, the first recombination event is likely to

generate this type if I = 1. In this case, the hitchhiking probability is strongly

reduced (cf. the dip in Figure 3.9). For I > 1, however, type (1, 0) cannot be

generated via a single recombination event, and the reduction is less pronounced,

getting smaller with increasing I. For large I, adding more deleterious alleles to

the left or the right has only a weak effect. Generally, deleterious alleles that

render haplotypes strongly disfavored have to be lost as quickly as possible, and

the pathway to establishment of the beneficical allele does usually not involve

tunneling via more strongly deleterious haplotypes than necessary. As a rule of

thumb, the impact of these deleterious alleles can therefore be accounted for by a

single allele of the compound effect. This virtual allele is located at the position

of these alleles that is closest to the adaptation.
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N = 10, 000. Crosses denote simulation results. Each simulation point is the
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3.7 Discussion

Gene flow between related species is relatively frequent. Although many foreign

alleles burden its carrier with a selective disadvantage, an exchange of genetic

material between populations is often still possible. If neutral or advantageous

alleles survive the fitness bottleneck caused by linked or unlinked deleterious al-

leles they can become permanently incorporated into the genome of the sister

species. Picking up locally adaptive alleles from an indigenous species can help

species to expand their range to originally inhabitable regions. Adaptive gene

introgression is hence a clever evolutionary mechanism that can speed up adap-

tation to novel environments. Human activities create ample opportunity for

hybridization between domestic animals or crop plants with their wild relatives

which can cause permanent ecological damage. In this context, introgression of

alleles from genetically modified organisms (e.g., insecticide resistance genes) into

weed is recognized as a particular risk. A quantitative analysis of the introgression

process is essential both to assess the importance of adaptive gene introgression

as an evolutionary pathway to adaptation and to estimate the ecological risks

associated with unwanted hybridization.

The reduction in hybrid fitness by deleterious alleles is a crucial factor in the

potential introgression of adaptations. If their compound effect outweighs the

benefits of the adaptation, deleterious alleles must be lost before the favorable

allele can establish. Closely linked slightly deleterious alleles might be dragged

along to fixation. In this paper, we developed a framework to investigate the

role of linked and unlinked deleterious alleles for adaptive gene introgression.

The model accounts for an explicit genetic structure and describes the genetic

evolution of a haploid population under the influence of selection, recombination,

and drift after a single hybridization event. The analysis is based on the theory of

branching processes. In particular, the early phase of spread of the advantageous

allele can be well approximated by a reducible multitype branching process with

a special structure: within the branching process approximation, offspring are

either of the same type as their parent or carry fewer deleterious alleles (for

similar setups see Barton and Bengtsson, 1986; Demon et al., 2007; Gosh

and Haccou, 2010; Gosh et al., 2012a,b). This distinctive structure allows for

the analytical treatment of several aspects of the problem.

The introgression probability How likely is it that the advantageous allele

can establish itself in the population? For large populations, the survival proba-
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bility of the branching process is a very good approximation to the probability of

adaptive gene introgression. The extinction probability of a multitype branching

process is in general difficult to determine, and one has to resort to approximate

formulas and numerical methods (e.g., Barton, 1995; Iwasa et al., 2003, 2004b;

Serra and Haccou, 2007). However, in our special case, a recursive solution

can be derived and readily permits to determine the introgression probability for

a specific allele configuration.

We find that deleterious alleles significantly hamper the introgression of an

adaptive allele even if they are only loosely linked or unlinked. A single linked

allele can lead to a strong reduction in the introgression probability. For tight

linkage, its impact ceases with increasing recombination distance at a scale of the

selection coefficient σ(0,1) of the initial type. For strong recombination, the rate

at which its effect fades with recombination is given by the strength sdel of the

deleterious allele and independent of the strength of the adaptation. If strongly

deleterious, the effect of a single deleterious allele can still be appreciable at large

distances and even if it is unlinked. We also find that the influence of several

unlinked alleles is very well approximated by the influence of a single deleterious

allele of the compound effect. They reduce the introgression probability by a

factor which is roughly independent of the strength of the adaptive allele.

It is instructive to compare this to a situation where beneficial and deleteri-

ous alleles appear by mutation rather than introgression as discussed in Barton

(1995). In that case, the deleterious alleles segregate in mutation-selection bal-

ance in the population when the advantageous allele appears. Consider first the

limiting case where a deleterious allele segregates at a single locus at frequency

u. The beneficial mutation can arise on a genome carrying or not carrying the

deleterious allele. Technically, the introgression probability corresponds to the

fixation probability of the beneficial mutation given it arises on a genome with

the deleterious allele (denoted by Pu in Barton (1995)). In that case, its fixa-

tion probability can be significantly reduced. However, the reduction is in general

much weaker than if the two alleles enter the population via a single introgression

event. This is because relative fitness of the double mutant is higher if the delete-

rious allele segregates in the population. A numerical comparison confirms that

the result derived in Barton (1995) (Pu/(2σ(0,0)) as given via Eq. (16) and (17a)

in Barton (1995)) converges to (1 − Q(0,1))/σ(0,0) (cf. Eq. (3.47c)) as the mu-

tation rate and hence the frequency of the deleterious allele tend to zero (note

that the results in Barton (1995) are based on a Poisson distribution of the

offspring number such that the establishment probability of an isolated beneficial
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allele is 2σ(0,0) while it is σ(0,0) in our model). However, whether the beneficial

allele appears on a genome with or without the deleterious allele depends on the

relative frequency u of the deleterious allele in the population, and the biologi-

cal relevant quantitiy is the weighted average of the fixation probabilities on the

two genetic backgrounds. For σ(0,1) < 0 and complete linkage, the weighted fix-

ation probability of the beneficial mutation is reduced by u relative to its value

in absence of the deleterious allele (Barton, 1995, Eq. (17b)). In contrast, the

introgression probability (as well as Pu) are zero in that case. For σ(0,1) > 0, the

relative reduction is at most u(sdel/σ(0,0))
2, i.e., much smaller than for introgres-

sion (sdel/σ(0,0)). Note that the reduction in the weighted fixation probability is

caused by the recurrent generation of deleterious alleles that drop on genomes

carrying the adaptation. The presence of deleterious alleles itself even slightly in-

creases the weighted fixation probability (this term is very small and neglected in

Barton (1995)). Barton (1995) finds that for two loci flanking the beneficical

mutation, the effects of the two deleterious alleles approximately multiply. This

does not hold true for the different biological problem of adaptive gene introgres-

sion. Concerning the impact of unlinked alleles, similarities arise: in both cases,

their impact on fixation of the adaptive allele can be approximated by a factor

that sums the effects of the unlinked loci and is approximately independent of

the strength of the adaptation. However, again, if the deleterious alleles appear

by mutation, multiple genetic backgrounds exist and the adaptation can drop on

any of them, while subsequently to hybridization, adaptive and deleterious alleles

inherently appear together. It is hence not surprising that the factor describing

the reduction in the fixation probability differs for the two scenarios.

Linked deleterious alleles can render successful introgression after a single

hybridization event extremely unlikely. In order to assess whether even intro-

gression probabilities of the order of 10−8 − 10−6 are still evolutionary relevant,

it is helpful to compare these values to the probability of adaptation by de-novo

mutations. With a point mutation probability of ∼ 10−8 and a selective advan-

tage of 1%, the probability that a specific mutation occurs in a specific individual

and thereafter rises to fixation, is ∼ 10−10. For complex adaptations, the prob-

ability is even lower. Depending on the probability of hybridization, adaptive

gene introgression can hence be a relevant evolutionary process. Hybridization

rates are potentially high, and even if the success probability of each single one

is low, the probability that any hybridization event is followed by adaptive gene

introgression is appreciable. This consideration is particularly important in an

agricultural context where (genetically modified) crops grow next to wild plants
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in large areas all over the world for many years. Gosh and Haccou (2010) and

Gosh et al. (2012a,b) therefore suggest the so-called hazard rate as a measure

for risk assessment as the hazard rate takes both the hybridization rate and the

introgression probability into account.

The hitchhiking probability Weakly deleterious alleles that are closely linked

to the adaptive allele can hitchhike to fixation. We developed a framework to

estimate which haplotype finally fixes in the population, depending on the alien

haplotype that was originally introduced. The approach is based on a split of

the process into two phases: the establishment phase of the adaptive allele and

the sweep during which further deleterious alleles can be lost. What is the re-

spective relevance of the stochastic and the deterministic phase in this scenario?

In the simplest case, there are only two loci under selection: one locus with

the advantageous and one locus with a deleterious allele that can hitchhike to

fixation. We can distinguish two parameter regimes: if the product of the selec-

tion coefficient sdel and the population size is small, the impact of the stochastic

phase is significant. However, if the product of selection and population size is

large, the stochastic phase can be ignored and the behavior is dominated by the

deterministic phase. This is different if additional deleterious alleles render the

initial haplotype itself deleterious. In that case, establishment of the adaptation

is contingent on the early loss of deleterious alleles, and depending on the allelic

configuration, the stochastic establishment phase will have a strong impact on

hitchhiking irrespective of the population size. To good approximation, all al-

leles that cause serious maladaptation and are located on the same side of the

beneficial allele can be summarized to a single allele of the compound effect, re-

ducing the dimensionality of the problem. The impact of these additional alleles

fades quickly with increasing recombination distance. Unlinked alleles have no

visible effect on hitchhiking. These insights essentially generalize to more than

one possible deleterious hitchhiker.

Hartfield and Otto (2011) analyze the hitchhiking probability of a single

deleterious allele in the absence of other deleterious alleles. They present two

approaches to the problem: a semi-deterministic approach based on branching

process theory (which also serves as the basis for our analysis of the deterministic

phase), and a diffusion approach. In both cases, however, they condition on

establishment of type (0, 1). Their analysis thus ignores aspects of the stochastic

establishement phase and consequently applies only to the regime of large Nsdel.
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Selection & recombination in the introgression process Summarizing,

we can identify three fundamentally different genomic scales in units of the re-

combination rate that matter for adaptive gene introgression. First, deleterious

alleles on the introgression haplotype affect the introgression probability of the

beneficial allele across distances of the order of the deleterious selection coefficient

(r ∼ sdel). Strong deleterious alleles thus still matter even if they are unlinked.

Importantly, the absolute strength of selection is crucial for the failure or suc-

cess of introgression. For the hitchhiking probability of a single deleterious allele,

we find two relevant scales, stemming from the stochastic and the deterministic

phase of the hitchhiking process, respectively. For the stochastic phase, this scale

is set by the selection coefficient of the haplotype with both the beneficial and

the deleterious allele (r ∼ σ(0,1)). Similarly to the introgression probability it

is thus the strength of selection that matters. In contrast, for the deterministic

phase, the scale is primarily set by the inverse population size (r ∼ 1/N). Usually

(but not always), effects from the deterministic phase are relevant already over

much shorter distances than effects from the stochastic phase and will therefore

dominate. In contrast to the establishment phase, only the ratio of the selec-

tion coefficients matters. Finally, the impact of further deleterious alleles on the

hitchhiking probabilty of a focal deleterious allele may depend on the genomic

configuration in sublte ways. For cases where an additional deleterious allele at

distance R to the hitchhiking allele suppresses the fitness of that haplotype below

one, we find that the relevant scale is primarily set by the recombination distance

between the beneficial allele and the deleterious hitchhiker, i.e., R ∼ r.

Limitations and extensions The mathematical analysis of the model has two

major restrictions. The first one is the common constraint of branching process

approximations for establishment probabilities of beneficial alleles: for small pop-

ulations, the branching process approach underestimates the true probability. In

particular, our multitype branching process can contain supercritical, critial, and

subcritical types. If the population size is small, fixation of deleterious haplo-

types by genetic drift can be more likely than survival of the branching process.

The second restriction concerns the analysis of the hitchhiking probability. The

derived approximations rely on the assumption that initially, a single haplotype

establishes and starts sweeping before haplotypes with less deleterious alleles pos-

sibly establish. This assumption is well justified in many scenarios. However, in

particular, when linkage is not tight, deviations can arise. In that case, it seems

a promising approach to analyse the multitype branching process by means of
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the probability generating function for the number of the various haplotypes in

dependence of time. A differential equation for this p.g.f. can be derived via in-

finitesimal generating functions (cf. Karlin and Taylor, 1975, p. 412ff). This

approch could help answering open questions on the stochastic phase. However,

the results would probably take a complex form and involve numerical evalua-

tion of terms while the approximations derived in this paper constitute intuitive

expressions that can be easily evaluated. Likewise, the approximations for the de-

terministic phase require sufficiently tight linkage, since otherwise, recombination

affects the shape of the deterministic path.

The model assumes a population of haploid individuals or diploids without

dominance, i.e., it does not allow for under- or overdominance of alleles. The

results for the introgression probability can be directly generalized to apply to

diploids with dominance unless the beneficial allele is completely recessive: as

long as introgressed alleles are rare in the population, they only appear in het-

erozygotes. Eq. (3.2) therefore still applies if fitness refers to heterozygote fit-

ness. As soon as the introgressed alleles become more frequent, both copies of

an individual’s chromosome might carry introgressed material. The sweep of a

selectively favored haplotype is therefore strongly altered if the alleles display

over- or underdominance. The length and shape of this frequency path is, how-

ever, crucial for the hitchhiking probability. In principle, our approach can be

extended by this element. The model furthermore assumes that selection against

the deleterious alleles is independent of the genetic background. Recombination

therefore increases the fitness of later generations of hybrids. However, by recom-

bination, incompatibilities can be generated. In that case, later hybrids display

a lower fitness than early generation hybrids until further recombination removes

the incompatible alleles.

Beyond these genetic confinements, the second class of model extensions con-

cerns the ecological setting. The model assumes that the alien genome arrives

by long range dispersal in a panmictic population. An important extension is

the incorporation of spatial structure. If the population cannot be assumed to

be panmictic, the beneficial allele establishes first locally before it spreads by mi-

gration. Even if deleterious alleles can initially increase to high frequencies it is

likely that they become lost later by recombination with wildtype individuals in

other parts of the habitat. On the other hand, hybridization often occurs at the

edge of a species range, and adaptive gene introgression can entail a range expan-

sion. The latter reduces recombination with wildtype individuals and increases

hence the hitchhiking probability of weakly deleterious alleles. A very different
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situation from the one analyzed in this paper arises if dispersal is local and strong

and recurrent gene flow builds up a hybrid zone. Under these circumstances, as

discussed in Barton (1979), a single-locus cline does not significantly hamper

the spread of a beneficial allele from one population to the other.

To summarize, we set up a minimal model in order to reveal fundamental

principles that are effective in the introgression process of a favorable allele. In

particular, the analysis helps to build an intuitive understanding of how deleteri-

ous alleles impact adaptive gene introgression.
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A Appendix: Proof of Theorem 3.4.1

We can reinterprete the branching process as follows: An individual of type

(i, j; f) “dies” at rate 2 − σ(i,j;f) and at death, it produces either zero or two

offspring, one of which is of its own type. We now consider the embedded discrete-

time process:

• With probability
1−σ(i,j;f)

2−σ(i,j;f)
, it has 0 offspring.

• With probability
(
f
g

) (
1
2

)f 1−r(i,j)
2−σ(i,j;f)

, it produces an offspring of its own type

and an offspring of type (i, j; g) with g ≤ f .

• With probability
(
f
g

) (
1
2

)f r
(i,j)
(i,k)

2−σ(i,j;f)
, it produces an offspring of its own type

and an offspring of type (i, k; g) with g ≤ f and k < j.

• With probability
(
f
g

) (
1
2

)f r
(i,j)
(k,j)

2−σ(i,j;f)
, it produces an offspring of its own type

and an offspring of type (k, j; g) with g ≤ f and k < i.
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Within this scheme, the offspring generating function of an individual of type

(i, j; f) is given by

G(i,j;f)(s) =

(
1

2

)f 1− r(i,j)

2− σ(i,j;f)

s2
(i,j;f)

+

f∑
g=0

(
f

g

)(
1

2

)f{ i−1∑
k=0

r
(i,j)
(k,j)

2− σ(i,j;f)

s(k,j;g)+

j−1∑
k=0

r
(i,j)
(i,k)

2− σ(i,j;f)

s(i,k;g)

}
s(i,j;f)

+

f−1∑
g=0

(
f

g

)(
1

2

)f 1− r(i,j)

2− σ(i,j;f)

s(i,j;g)s(i,j;f) +
1− σ(i,j;f)

2− σ(i,j;f)

,

(A.1)

where s is a vector with elements
{
s(k1,k2;g), 0 ≤ k1 ≤ I, 0 ≤ k2 ≤ J, 0 ≤ g ≤ F

}
.

Let G(s) be the vector whose components are the offspring generating functions

of all possible types. According to the general theory of multitype branching

processes, the extinction probability is given by the root of

G(s) = s (A.2)

in the unit cube, which is closest to the origin (Sewastjanow, 1974, p. 115).

First note that Eq. (A.2) is equivalent to Eq. (3.3) (identifying the solution of

Eq. (A.2) with the vector with elements
{
Q(k1,k2;g), 0 ≤ k1 ≤ I, 0 ≤ k2 ≤ J, 0 ≤ g

≤ F
}

).

Eq. (A.2) can be solved recursively starting with type (0, 0; 0), for which we

obtain

Q(0,0;0) = 1− σ(0,0;0) < 1. (A.3)

Following Sewastjanow (1974), in each subsequent step of the recursion, there

exists a unique solution < 1. It remains to show that we obtain this solution
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if we solve the quadratic equation for the smaller root. We use the following

abbreviations:

Σg :=

j−1∑
k=0

r
(i,j)
(i,k)Q(i,k;g) +

i−1∑
k=0

r
(i,j)
(k,j)Q(k,j;g), (A.4)

Σ :=

(
1

2

)f {f−1∑
g=0

(
f

g

)
(1− r(i,j))Q(i,j;g) +

f∑
g=0

(
f

g

)
Σg

}
, (A.5)

a :=

(
1

2

)f
(1− r(i,j)) > 0, (A.6)

b := −(1− σ(i,j;f) + 1− Σ), (A.7)

c := 1− σ(i,j;f) ≥ 0. (A.8)

Note that r ≥ Σg,∀g.

With these abbreviations, the two roots are given by

q1 =
−b+

√
(b2 − 4ac)

2a
, (A.9)

q2 =
−b−

√
(b2 − 4ac)

2a
. (A.10)

We first prove that both roots are real and ≥ 0. As a preliminary step, we

show that (1− Σ) ≥
(

1
2

)f
(1− r(i,j)):

1− Σ = 1−
(

1

2

)f {f−1∑
g=0

(
f

g

)
(1− r(i,j))Q(i,j;g) +

f∑
g=0

(
f

g

)
Σg

}

≥ 1−
(

1

2

)f {f−1∑
g=0

(
f

g

)
(1− r(i,j)) +

f∑
g=0

(
f

g

)
Σg

}

= 1−
(

1

2

)f { f∑
g=0

(
f

g

)[
(1− r(i,j)) + Σg

]
− (1− r(i,j))

}

≥ 1−

{
f∑
g=0

(
f

g

)(
1

2

)f
− (1− r(i,j))

(
1

2

)f}

= (1− r(i,j))

(
1

2

)f
.

(A.11)

163



CHAPTER 3. ADAPTIVE GENE INTROGRESSION

Notice: b < 0 since σ(i,j;f) ≤ 1 and 1− Σ ≥ (1− r(i,j))
(

1
2

)f
> 0.

We now show that b2 − 4ac ≥ 0.

b2 − 4ac = (1− σ(i,j) + 1− Σ)2 − 4(1− σ(i,j))(1− r(i,j))

(
1

2

)f
≥ (1− σ(i,j) + 1− Σ)2 − 4(1− σ(i,j))(1− Σ)2

= (1− σ(i,j) − (1− Σ))2 ≥ 0,

(A.12)

where we have used that (1− r(i,j))
(

1
2

)f ≤ 1− Σ. Since a > 0, we conclude that

both roots are positive.

It remains to prove that q2 ≤ 1. Note that 1 is a root of the equation since

G(1) = 1. We furthermore see that q2 is a decreasing function of Σ and thus of

all Q(k,j) and Q(i,k), if c > 0. For c = 0, it holds that q2 = 0. It is hence clear

that q2 ≤ 1. From Sewastjanow (1974), we even know that q2 < 1 (because

Q(0,0;0) < 1).

Note that instead of considering the embedded discrete time process we could

have directly resorted to the corresponding result for the extinction probability

of the continuous time processes (Sewastjanow, 1974, p. 116), but it seemed

more illustrative in this way.

B Appendix: Proof of Eq. (3.32)

We prove that within approximation (3.30), it holds∑
i,j

P̂
(I,J)
(i,j) = 1, (B.1)

where P̂
(·,·)
(·,·) is defined by the approximative formula (3.30). We carry out a proof

by induction. Eq. (B.1) builds our induction hypothesis.

• Base case (I, J) = (0, 0): Since P̂
(0,0)
(i,j) = δi,0δj,0, it holds

∑
i,j

P̂
(0,0)
(i,j) = 1.
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• Inductive step: Let the hypothesis be true for all pairs (k,m) with k < n

and (n, k) with k < m. We show that it is true for (n,m):∑
i,j

P̂
(n,m)
(i,j)

=

n−1∑
k=0

r
(n,m)
(k,m)(1−Q(k,m))

∑
i,j P

(k,m)
(i,j) +

m−1∑
k=0

r
(n,m)
(n,k) (1−Q(n,k))

∑
i,j P

(n,k)
(i,j)

n−1∑
k=0

r
(n,m)
(k,m)(1−Q(k,m)) +

m−1∑
k=0

r
(n,m)
(n,k) (1−Q(n,k))

=

n−1∑
k=0

r
(n,m)
(k,m)(1−Q(k,m)) · 1 +

m−1∑
k=0

r
(n,m)
(n,k) (1−Q(n,k)) · 1

n−1∑
k=0

r
(n,m)
(k,m)(1−Q(k,m)) +

m−1∑
k=0

r
(n,m)
(n,k) (1−Q(n,k))

= 1.

(B.2)

The proof works analogously if the number of unlinked alleles is larger

than 0.

C Appendix: Unlinked alleles of arbitrary effect

For the main text, we assumed that each unlinked allele has the same selection

coefficient. Here, we give the generalization to arbitrary effects.

Be F = {~e = (e1, e2, . . . , eF ), ei ∈ {0, 1}}. We define |~e| =
F∑
i=1

ei. The set of

unlinked deleterious alleles carried by an individual can be characterized by a

vector in F where 1 and 0 at a given position denote the presence or absence
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of a specific deleterious allele. In this notation, the transitions of the branching

process read with |~ef | = f :

P ((i, j;~ef )→ 0) = 1− σ(i,j;~ef ),

P ((i, j;~ef )→ {(i, j;~ef ); (i, j;~eg)}) =

(
1

2

)f
(1− r(i,j)) for ~ef − ~eg ∈ F ,

P ((i, j;~ef )→ {(i, j;~ef ); (i, k;~eg)}) =

(
1

2

)f
r

(i,j)
(i,k) for k < j,~ef − ~eg ∈ F ,

P ((i, j;~ef )→ {(i, j;~ef ); (k, j;~eg)}) =

(
1

2

)f
r

(i,j)
(k,j) for k < i,~ef − ~eg ∈ F .

(C.1)

The recursive equation for the extinction probability becomes:(
1

2

)f
(1− r(i,j))Q

2
(i,j;~ef )

+
∑

~eg ,~ef−~eg∈F

(
1

2

)f { i−1∑
k=0

r
(i,j)
(k,j)Q(k,j;~eg) +

j−1∑
k=0

r
(i,j)
(i,k)Q(i,k;~eg)

}
Q(i,j;~ef )

+
∑

~eg ,~ef−~eg∈F ,
~ef−~eg 6=~0

(
1

2

)f
(1− r(i,j))Q(i,j;~eg)Q(i,j;~ef ) − (2− σ(i,j;~ef ))Q(i,j,~ef )

+ 1− σ(i,j;~ef ) = 0.

(C.2)

The proof is analogous to before.

Similarly, we can generalize approximation Eq. (3.34):

P
(I,J ;~eF )

(i,j;~0)
=

∑
~el

(
1
2

)F
A~el +

∑
~el 6=~eF

(
1
2

)F
(1− r(I,J))(1−Q(I,J ;~el))P

(I,J ;~el)

(i,j;~0)∑
~el

(
1
2

)F
B~el +

∑
~el 6=~eF

(
1
2

)F
(1− r(I,J))(1−Q(I,J ;~el))

.

A~el =
I−1∑
i=0

r
(I,J)
(i,J) (1−Q(i,J ;~el))P

(i,J ;~el)

(i,j;~0)
+

J−1∑
j=0

r
(I,J)
(I,j) (1−Q(I,j;~el))P

(I,j;~el)

(i,j;~0)

B~el =
I−1∑
i=0

r
(I,J)
(i,J) (1−Q(i,J ;~el)) +

J−1∑
j=0

r
(I,J)
(I,j) (1−Q(I,j;~el))

(C.3)
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For
(

1
2

)F
(1− r(I,J))− (1− σ(I,J ;F )) > 0, we approximate:

P
(I,J ;~eF )

(i,j;~0)
= δI,iδJ,j. (C.4)

D Appendix: General lemmata

We here summarize some general lemmata which we use for the derivation of

hitchhiking probabilities. Although the lemmata are either not new or follow

immediately from known results, we briefly sketch the proofs.

We consider a multitype branching process with N + 1 types. The number

of individuals of type i (i = 0, 1, . . . , N) in generation n is Z
(i)
n . Let Z

(N)
0 = 1

and Z
(i)
0 = 0 if i 6= N , i.e., the process is started by an individual of type N .

Individuals of type i reproduce at rate 1 and die at rate 1− σi. The offspring of

a type N individual be of type i with probability ri. If a type N individual gives

birth to an individual of type i < N , we call this a recombination event from

type N to type i. We define r :=
N−1∑
k=0

rk = 1− rN .

Lemma D.1. The probability generating function (p.g.f.) f(s) of the offspring

distribution of a type N individual is given by

f(s) =
1− p
1− ps

with p =
1

2− σN
. (D.1)

Proof. Individuals have a geometric offspring distribution; for the random off-

spring number X of a type N individual, it holds:

P (X = k) =

(
1

2− σN

)k
1− σN
2− σN

, (D.2)

and therefore

f(s) =
∞∑
k=0

P (X = k)sk =
∞∑
k=0

(
1

2− σN

)k
1− σN
2− σN

sk

=
1− σN
2− σN

1

1− s
2−σN

=
1− p
1− ps

.

(D.3)
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Lemma D.2. The joint p.g.f of (Z
(0)
1 , Z

(1)
1 , . . . , Z

(N)
1 ) is given by

F (s0, s1, . . . , sN) = f(r0s0 + r1s1 + . . . rNsN). (D.4)

Proof. We restrict to N = 1; the generalization to larger N is straightforward.

Be p(k) the probability that an individual of type 1 has k offspring and p(k0, k1)

the probability that it has k0 offspring of type 0 and k1 offspring of type 1. It

holds (cf. Serra, 2006):

F (s0, s1) =
∑
k0,k1

p(k0, k1)sk0
0 s

k1
1 =

∞∑
k=0

k∑
k0=0

p(k0, k − k0)︸ ︷︷ ︸
=p(k)

{
r
k0
0 (1−r0)k−k0( kk0

)
}s
k0
0 s

k−k0
1

=
∞∑
k=0

p(k)
k∑

k0=0

(
k

k0

)
(r0s0)k0(s1(1− r0))k−k0

︸ ︷︷ ︸
=(r0s0+(1−r0)s1)k

=
∞∑
k=0

p(k)(r0s0 + (1− r0)s1)k = f(r0s0 + (1− r0)s1).

Lemma D.3. The extinction probability qN of type N is given by

qN =

{
1−σN
1−r if σN > r,

1 if σN ≤ r.
(D.5)

Proof. The p.g.f. for the number of offspring of its own type is given by f(r +

(1− r)s). From the general theory of single type branching processes, it follows

that qN is the smallest root of

qN = f(r + (1− r)qN). (D.6)

in [0, 1].

Lemma D.4. Offspring of type i be of type j ≤ i only. Consider the process

on the set B =
{
ω : Z

(N)
n → 0 as n→∞

}
. The probability of the event B is

denoted by qN . The joint p.g.f. of (Z
(0)
1 , Z

(1)
1 , . . . , Z

(N)
1 ) in the conditioned process

is given by

F̂ (s0, s1, . . . , sN) =
F (s0, s1, . . . , qNsN)

qN
. (D.7)
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Proof. For simplicity, we stick to N = 1. The generalization to N > 1 is straight-

forward. It holds (cf. Athreya and Ney, 1972, p. 52f):

F̂ (s0, s1) =
∞∑
k0=0

∞∑
k1=0

P (Z
(0)
1 = k0, Z

(1)
1 = k1|B)sk0

0 s
k1
1

=

∞∑
k0=0

∞∑
k1=0

P (Z
(0)
1 = k0, Z

(1)
1 = k1, B)sk0

0 s
k1
1

q1

=

∞∑
k0=0

∞∑
k1=0

P (Z
(0)
1 = k0, Z

(1)
1 = k1)qk1

1 s
k0
0 s

k1
1

q1

=
F (s0, q1s1)

q1

.

Lemma D.5. Offspring of type i be of type j ≤ i only. Condition the process

on extinction of type N . The total number of recombination events from type N

individuals to other types in the whole process is determined by the p.g.f. ĥ(s)

with

ĥ(s) =
1− psr −

√
(1− psr)2 − 4(1− p)p(1− r)

2pqN(1− r)
. (D.8)

Proof. We first proof the relation

ĥ(s) = F̂ (s, ĥ(s)). (D.9)

(cf. Serra, 2006). Be p̃(k) the probability that the total number of recombination

events is k. Be p(kr, kN) the probability that an individual of type N has kN
offspring of type N and kr offspring of other types. First, note that:

p̃(k) =
∞∑

kN=0

k∑
j=0

p(k − j, kN)p̃(j|kN). (D.10)

Furthermore:

∞∑
k=0

∞∑
kN

k∑
j=0

p(k − j, kN)sk =
∑
kr,kN

p(kr, kN)
∑
j

p̃(j|kN)skr+j. (D.11)
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Using this:

ĥ(s) =
∑
k

p̃(k)sk =
∑
kr,kN

p(kr, kN)
∞∑
j=0

p̃(j|kN)sj+kr

=
∑
kr,kN

p(kr, KN)skr

∞∑
j=0

p̃(j|kN)sj︸ ︷︷ ︸
=(ĥ(s))

kN

.
(D.12)

It thus holds:

ĥ(s) = F̂ (s, ĥ(s)) =
F (s, qN ĥ(s))

qN
=
f(sr + qN(1− r)ĥ(s))

qN

=
1

qN

1− p
1− p(sr + qN(1− r)ĥ(s))

.

(D.13)

This leads to a quadratic equation for ĥ(s) which has two solutions. As it must

hold that ĥ(1) = 1, we can exclude one of them and obtain Eq. (D.8).

Lemma D.6. With the assumptions of the previous lemma, the joint p.g.f. of

the number of recombination events from type N to type 0, 1, 2, . . . , N−1 is given

by

h̃(s0, s1, . . . , sN−1) = ĥ(
r0

r
s0 + · · ·+ rN−1

r
sN−1). (D.14)

Proof. analogous to the proof of Lemma D.4.

E Appendix: The deterministic phase

E.1 The process is initiated by an individual of type (0, 2)

We now focus on three types (0, 0), (0, 1), and (0, 2), which all have a positive

selection coefficient, while all other types are assumed to be deleterious (all other

types refers to all types that are taken into account in the theory). An individual

of type (0, 2) starts sweeping. Throughout, we assume that recombination is weak

enough that it does not significantly influence how many offspring of its own type

an individual has.
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The deterministic frequency path is given by

x(0,2) =
ν̄0 exp (σ(0,2)t)

N − ν̄0 + ν̄0 exp (σ(0,2)t)
. (E.1)

Recombination events occur at rate

α(0,2)(t) = α(0,0)(t) + α(0,1)(t) (E.2)

with

α(0,0)(t) = Nx(0,2)(t)(1− x(0,2)(t))r
(0,2)
(0,0)p

(0,0)
est (x(0,2)(t)), (E.3a)

α(0,1)(t) = Nx(0,2)(t)(1− x(0,2)(t))r
(0,2)
(0,1)p

(0,1)
est (x(0,2)(t)), (E.3b)

where p
(0,0)
est and p

(0,1)
est are the establishment probabilities of an individual of type

(0, 0) and (0, 1) respectively and calculated by suitable substitutions in Eq. (3.38).

We assume in the following that we can set ν̄0/N ≈ 0 in the integration bound-

aries. Analogous to Eq. (3.41), the probability that no recombination event takes

place is then given by

P
((0,2)→(0,2))
det = exp

− ∞̂

0

α(0,2)(t)dt


=

(
σ(0,0)

σ(0,0) − σ(0,2)

)−Nr(0,2)
(0,0)

σ(0,0)(σ(0,0)−σ(0,2))

σ2
(0,2) ×

(
σ(0,1)

σ(0,1) − σ(0,2)

)−Nr(0,2)
(0,1)

σ(0,1)(σ(0,1)−σ(0,2))

σ2
(0,2)

.

(E.4)
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The probability that no successful type (0, 0) is generated up to tR is given by

exp

− tRˆ

0

α(0,0)(t)dt


≈ exp

−x(0,2)(tR)ˆ

0

Nr
(0,2)
(0,0)

1

σ(0,2)

σ(0,0)(σ(0,0) − σ(0,2))

(σ(0,0) − σ(0,2))(1− x) + σ(0,0)x
dx


=

(
σ(0,0) − (1− x(0,2)(tR))σ(0,2)

σ(0,0) − σ(0,2)

)−Nr(0,2)
(0,0)

σ(0,0)(σ(0,0)−σ(0,2))

σ(0,2)σ(0,2)

≡ Q
(0,0)
det (x(0,2)(tR)).

(E.5)

The probability that no successful type (0, 1) is generated up to time tR is given

by

exp

− tRˆ

0

α(0,1)(t)dt


≈ exp

−x(0,2)(tR)ˆ

0

Nr
(0,2)
(0,1)

1

σ(0,2)

σ(0,1)(σ(0,1) − σ(0,2))

(σ(0,1) − σ(0,2))(1− x) + σ(0,1)x
dx


=

(
σ(0,1) − (1− x(0,2)(tR))σ(0,2)

σ(0,1) − σ(0,2)

)−Nr(0,2)
(0,0)

σ(0,1)(σ(0,1)−σ(0,2))

σ(0,2)σ(0,2)

≡ Q
(0,1)
det (x(0,2)(tR)).

(E.6)
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The probability that as a first event, an individual of type (0, 0) is generated is

given by

∞̂

0

Q
(0,0)
det (x(0,2)(tR))Q

(0,1)
det (x(0,2)(tR))α1(tR)dtR

=

∞̂

0

Q
(0,0)
det (x(0,2)(tR))Q(0,1)(x(0,2)(tR))α1(tR)dtR

=

∞̂

0

Q
(0,0)
det (x(0,2)(tR))Q

(0,1)
det (x(0,2)(tR))

×Nx(0,2)(t)(1− x(0,2)(t))r
(0,2)
(0,0)p

(0,0)
est (x(0,2)(t))dtR

=
1

σ(0,2)

1ˆ

0

Q
(0,0)
det (x)Q

(0,1)
det (x)Nr

(0,2)
(0,0)p

(0,0)
est (x)dx.

(E.7)

Equivalently the probability that as a first event, an individual of type (0, 1) is

generated is given by

1

σ(0,2)

1ˆ

0

Q
(0,0)
det (x)Q

(0,1)
det (x)Nr

(0,2)
(0,1)p

(0,1)
est (x)dx. (E.8)

In that case, the type (0, 1) might either rise to fixation, or a successful type (0, 0)

individual might be generated in the following process. We now calculate the

probability of these two events given a type (0, 1) individual has been generated

at time tR. In order to calculate the probability for the generation of a sucessful

type (0, 0) individual, we need the frequencies of the three present types (wildtype,

type (0, 2), type (0, 1)) at time t after the recombination event. We have to take

into account that in its early phase of growth, the type (0, 1) increases faster than

predictic by the deterministic path. As before, we therefore replace its initial

frequency by the mean of the effective initial population size ν. We furthermore

assume that type (0, 1) individuals replace in this phase exclusively wildtype
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individuals. It proves that this assumption has no visible influence on the results.

We obtain:

q̃(t|x(0,2)(tR)) =
1− x(0,2)(tR)− ν̄(tR)

N

x(0,2)(tR) exp (σ(0,2)t) + 1− x(0,2)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
,

(E.9)

x̃01(t|x(0,2)(tR)) =
ν̄(tR)
N

exp (σ(0,1)t)

x(0,2)(tR) exp (σ(0,2)t) + 1− x(0,2)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
,

(E.10)

x̃02(t|x(0,2)(tR)) =
x(0,2)(tR) exp (σ(0,2)t)

x(0,2)(tR) exp (σ(0,2)t) + 1− x(0,2)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
.

(E.11)

The time-dependent selection coefficient of type (0, 0) is given by

s̃(0,0)(t|x(0,2)(tR)) = σ(0,0) − σ(0,1)x̃01(t|x(0,2)(tR))− σ(0,2)x̃02(t|x(0,2)(tR)). (E.12)

The establishment probability of a single individual of type (0, 0) that arises at

time t after tR can be calculated similarly to before and is given by

p̃
(0,0)
est (t|x(0,2)(tR)) =

1

A
σ(0,0)(σ(0,0) − σ(0,1))(σ(0,0) − σ(0,2)),

A = (σ(0,0)−σ(0,1))(σ(0,0)−σ(0,2))q̃(t|x(0,2))

+ σ(0,0)(σ(0,0)−σ(0,2))x̃01(t|x(0,2)(tR))

+ σ(0,0)(σ(0,0)−σ(0,1))x̃02(t|x(0,2)(tR)).

(E.13)

The rate of successful type (0, 0) individuals is

α̃(0,0)(t|x(0,2)(tR)) = Nr
(0,1)
(0,0) q̃(t|x(0,2)(tR))(1− q̃(t|x(0,2)(tR)))p̃

(0,0)
est (t|x(0,2)(tR)).

(E.14)
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(Remember: r
(0,1)
(0,0) = r

(0,2)
(0,0).) We assume that we can ignore deviations from the

deterministic frequency path for large t close to fixation of the beneficical allele.

The probability that no successful recombination event takes place is then given

by

Prob(no rec|x(0,2)(tR)) = exp (−
∞̂

0

α̃(0,0)(t|x(0,2)(tR))dt). (E.15)

The probability that type (0, 1) fixes is hence

P
((0,2)→(0,1))
det =

∞̂

0

Q
(0,0)
det (x(0,2)(tR))Q

(0,1)
det (x(0,2)(tR))α2(tR)Prob(no rec|x(0,2)(tR))dtR.

=
1

σ(0,2)

1ˆ

0

Q
(0,0)
det (x)Q

(0,1)
det (x)Nr

(0,1)
(0,0)p

(0,1)
est (x)Prob(no rec|x)dx.

(E.16)

The overall probability that type (0, 0) fixes is obtained as

P
((0,2)→(0,0))
det =

1

σ(0,2)

1ˆ

0

Q
(0,0)
det (x)Q

(0,1)
det (x)Nr

(0,2)
(0,0)p

(0,0)
est (x)dx

+
1

σ(0,2)

1ˆ

0

Q
(0,0)
det (x)Q

(0,1)
det (x)Nr

(0,1)
(0,0)p

(0,1)
est (x)(1− Prob(no rec|x))dx.

(E.17)

E.2 The process is initiated by an individual of type (1, 1)

We now focus on four types (0, 0), (0, 1), (1, 0), and (1, 1), which all have a

positive selection coefficient, while all other types are assumed to be deleterious

(all other types refers again to all types that are taken into account in the theory).

An individual of type (1, 1) starts sweeping. We derive an approximation which

is valid if no more than two successful recombination events happen during the

process, i.e., for weak recombination. We again assume that recombination does

not significantly reduce the number of offspring of any individual’s own type.
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The deterministic path of type (1, 1) is given by

x(1,1) =
ν̄0 exp (σ(1,1)t)

N − ν̄0 + ν̄0 exp (σ(1,1)t)
. (E.18)

Recombination events occur at rate

α(1,1)(t) = α(1,0)(t) + α(0,1)(t) (E.19)

with

α(1,0)(t) = Nx(1,1)(t)(1− x(1,1)(t))r
(1,1)
(1,0)p

(1,0)
est (x(1,1)(t)), (E.20a)

α(0,1)(t) = Nx(1,1)(t)(1− x(1,1)(t))r
(1,1)
(0,1)p

(0,1)
est (x(1,1)(t)), (E.20b)

where p
(1,0)
est and p

(0,1)
est are the fixation probabilities of an individual of type (1, 0)

and (0, 1) respectively and calculated by suitable substitutions in Eq. 3.38. Anal-

ogous to Eq. (3.41), the probability that no recombination event takes place is

given by

P
((1,1)→(1,1))
det = exp

− ∞̂

0

α(1,1)(t)dt


=

(
σ(1,0)

σ(1,0) − σ(1,1)

)−Nr(1,1)
(1,0)

σ(1,0)(σ(1,0)−σ(1,1))

σ2
(1,1) ×

(
σ(0,1)

σ(0,1) − σ(1,1)

)−Nr(1,1)
(0,1)

σ(0,1)(σ(0,1)−σ(1,1))

σ2
(1,1)

.

(E.21)
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The probability that no successful type (1, 0) is generated up to tR is given by

exp

− tRˆ

0

α(1,0)(t)dt


≈ exp

−x(1,1)(tR)ˆ

0

Nr
(1,1)
(1,0)

1

σ(1,1)

σ(1,0)(σ(1,0) − σ(1,1))

(σ(1,0) − σ(1,1))(1− x) + σ(1,0)x
dx


=

(
σ(1,0) − (1− x(1,1)(tR))σ(1,1)

σ(1,0) − σ(1,1)

)−Nr(1,1)
(1,0)

σ(1,0)(σ(1,0)−σ(1,1))

σ(1,1)σ(1,1)

≡ Q
(1,0)
det (x(1,1)(tR)).

(E.22)

The probability that no successful type (0, 1) is generated up to tR is given by

exp

− tRˆ

0

α(0,1)(t)dt


≈ exp

−x(1,1)(tR)ˆ

0

Nr
(1,1)
(0,1)

1

σ(1,1)

σ(0,1)(σ(0,1) − σ(1,1))

(σ(0,1) − σ(1,1))(1− x) + σ(0,1)x
dx


=

(
σ(0,1) − (1− x(1,1)(tR))σ(1,1)

σ(0,1) − σ(1,1)

)−Nr(1,1)
(0,1)

σ(0,1)(σ(0,1)−σ(1,1))

σ(1,1)σ(1,1)

≡ Q
(0,1)
det (x(1,1)(tR)).

(E.23)
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The probability that as a first event, a type (1, 0) individual is generated is given

by

∞̂

0

Q
(1,0)
det (x(1,1)(tR))Q

(0,1)
det (x(1,1)(tR))α(1,0)(tR)dtR

=

∞̂

0

Q
(1,0)
det (x(1,1)(tR))Q

(0,1)
det (x(1,1)(tR))α(1,0)(tR)dtR

=

∞̂

0

Q
(1,0)
det (x(1,1)(tR))Q

(0,1)
det (x(1,1)(tR))

×Nx(1,1)(t)(1− x(1,1)(t))r
(1,1)
(1,0)p

(1,0)
est (x(1,1)(t))dtR

=
1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(1,0)p

(1,0)
est (x)dx.

(E.24)

Equivalently he probability that as a first event, a type (0, 1) individual is gener-

ated is given by

1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(0,1)p

(0,1)
est (x)dx. (E.25)

We now choose without loss of generality σ(1,0) ≤ σ(0,1).

We first consider the case that as a first event, an individual of type (0, 1)

is generated. In that case, the type (0, 1) might either rise to fixation, or a

successful individual of type (0, 0) might be generated in the following process.

We ignore the possibility that an individual of type (1, 0) might be generated

and temporally sweep until it goes extinct. We now calculate the probability

of the two events given an individual of type (0, 1) has been generated at time

tR. A recombination event may generate a successful type (0, 1) individual at

time tR. The type (0, 1) individual will rise to fixation unless a successful type

(0, 0) individual is generated. In order to calculate this probability, we need the
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frequencies of the three present types (wildtype, type (0, 1), (1, 1)) at time t after

the recombination event:

q̃(t|x(1,1)(tR)) =
1− x(1,1)(tR)− ν̄(tR)

N

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
,

(E.26a)

x̃01(t|x(1,1)(tR)) =
ν̄(tR)
N

exp (σ(0,1)t)

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
,

(E.26b)

x̃11(t|x(1,1)(tR)) =
x(1,1)(tR) exp (σ(1,1)t)

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− ν̄(tR)
N

+ ν̄(tR)
N

exp (σ(0,1)t)
.

(E.26c)

The time-dependent selection coefficient of type (0, 0) is given by

s̃(0,0)(t|x(1,1)(tR)) = σ(0,0) − σ(0,1)x̃01(t|x(1,1)(tR))− σ(1,1)x̃11(t|x(1,1)(tR)). (E.27)

The establishment probability of a type (0, 1) individual that arises at time t after

tR can be calculated as before and is given by

p̃
(0,0)
est (t|x(1,1)(tR)) =

1

A
σ(0,0)(σ(0,0) − σ(0,1))(σ(0,0) − σ(1,1)),

A = (σ(0,0)−σ(0,1))(σ(0,0)−σ(1,1))q̃(t|x(1,1)(tR))

+ σ(0,0)(σ(0,0)−σ(1,1))x̃01(t|x(1,1)(tR))

+ σ(0,0)(σ(0,0)−σ(0,1))x̃11(t|x(1,1)(tR)).

(E.28)

The rate of successful type (0, 0) individuals is

α̃(0,0)(t|x(1,1)(tR)) = Nr
(0,1)
(0,0) q̃(t|x(1,1)(tR))x̃01(t|x(1,1)(tR))p̃

(0,0)
est (t|x(1,1)(tR)).

(E.29)
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The probability that no successful recombination event takes place is therefore

given by

Prob(no rec|x(1,1)(tR)) = exp

− ∞̂

0

α̃(0,0)(t|x(1,1)(tR))dt

. (E.30)

The probability that type (0, 1) fixes is therefore given by:

P
((1,1)→(0,1))
det =

∞̂

0

Q
(1,0)
det (x(1,1)(tR))Q

(0,1)
det (x(1,1)(tR))α(0,1)(tR)Prob(no rec|x(1,1)(tR))dtR.

=
1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(0,1)
(0,0)p

(0,1)
est (x)Prob(no rec|x)dx.

(E.31)

We now turn to the case that an individual of type (1, 0) is generated first.

A recombination event may generate a successful type (1, 0) individual at time

tR. The type (1, 0) individual will rise to fixation unless a successful type (0, 0)

or type (0, 1) individual is generated. In order to calculate these probabilities,

we again need the frequencies of the three present types (wildtype, type (1, 0),

(1, 1)) at time t after the recombination event:

Q̃(t|x(1,1)(tR)) =
1− x(1,1)(tR)− µ̄(tR)

N

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− µ̄(tR)
N

+ µ̄(tR)
N

exp (σ(1,0)t)
,

(E.32a)

X̃10(t|x(1,1)(tR)) =
µ̄(tR)
N

exp (σ(1,0)t)

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− µ̄(tR)
N

+ µ̄(tR)
N

exp (σ(1,0)t)
,

(E.32b)

X̃11(t|x(1,1)(tR)) =
x(1,1)(tR) exp (σ(1,1)t)

x(1,1)(tR) exp (σ(1,1)t) + 1− x(1,1)(tR)− µ̄(tR)
N

+ µ̄(tR)
N

exp (σ(1,0)t)
.

(E.32c)
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The time-dependent selection coefficient of a type (0, 0) individual is given by

S̃(0,0)(t|x(1,1)(tR)) = σ(0,0)− σ(1,0)X̃01(t|x(1,1)(tR))− σ(1,1)X̃11(t|x(1,1)(tR)). (E.33)

The time-dependent selection coefficient of a type (0, 1) individual is given by

S̃(0,1)(t|x(1,1)(tR)) = σ(0,1)− σ(1,0)X̃10(t|x(1,1)(tR))− σ(1,1)X̃11(t|x(1,1)(tR)). (E.34)

The establishment probability of a type (0, 0) individual that arises at time t after

tR can be calculated as before and is given by

π̃
(0,0)
est (t|x(1,1)(tR)) =

1

A
σ(0,0)(σ(0,0) − σ(1,0))(σ(0,0) − σ(1,1)),

A = (σ(0,0)−σ(1,0))(σ(0,0)−σ(1,1))Q̃(t|x(1,1)(tR))

+ σ(0,0)(σ(0,0)−σ(1,1))X̃10(t|x(1,1)(tR))

+ σ(0,0)(σ(0,0)−σ(1,0))X̃11(t|x(1,1)(tR)).

(E.35)

and accordingly for the establishment probability of a type (0, 1) individual

π̃
(0,1)
est (t|x(1,1)(tR)) =

1

B
σ(0,1)(σ(0,1) − σ(1,0))(σ(0,1) − σ(1,1)),

B = (σ(0,1)−σ(1,0))(σ(0,1)−σ(1,1))Q̃(t|x(1,1)(tR))

+ σ(0,1)(σ(0,1)−σ(1,1))X̃10(t|x(1,1)(tR))

+ σ(0,0)(σ(0,1)−σ(1,0))X̃11(t|x(1,1)(tR)).

(E.36)

The rate of successful type (0, 0) individuals is

β̃(0,0)(t|x(1,1)(tR)) = Nr
(1,0)
(0,0)Q̃(t|x(1,1)(tR))X̃10(t|x(1,1)(tR))π̃

(0,0)
est (t|x(1,1)(tR)).

(E.37)

The rate of successful type (0, 1) individuals is

β̃(0,1)(t|x(1,1)(tR)) = Nr
(1,1)
(0,1)Q̃(t|x(1,1)(tR))X̃11(t|x(1,1)(tR))π̃

(0,1)
est (t|x(1,1)(tR)).

(E.38)

181



CHAPTER 3. ADAPTIVE GENE INTROGRESSION

The probability that no successful recombination event takes place is therefore

given by

Prob2(no rec|x(1,1)(tR)) = exp

− ∞̂

0

β̃(0,0)(t|x(1,1)(tR)) + β̃(0,1)(t|x(1,1)(tR))dt

.
(E.39)

The probability that type (1, 0) fixes is therefore given by:

P
((1,1)→(1,0))
det =

∞̂

0

Q
(1,0)
det (x(1,1)(tR))Q

(0,1)
det (x(1,1)(tR))α(1,0)(tR)Prob2(no rec|x(1,1)(tR))dtR.

=
1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(1,0)p

(1,0)
est (x)Prob2(no rec|x)dx.

(E.40)

The probability that a successful type (0, 0) individual is generated next at time

τR, is given by

1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(1,0)p

(1,0)
est (x)e

−
τŔ

0

β̃(0,0)(t|x)+β̃(0,1)(t|x)dt
β̃(0,0)(τR|x)dx.

(E.41)

The probability that a successful type (0, 0) is generated next at any time is thus

1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(1,0)p

(1,0)
est (x)

×
∞̂

0

e
−
τŔ

0

β̃(0,0)(t|x)+β̃(0,1)(t|x)dt
β̃(0,0)(τR|x)dτRdx.

(E.42)
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The probability that a successful type (0, 1) individual is generated next, is given

by

1

σ(1,1)

1ˆ

0

Q
(1,0)
det (x)Q

(0,1)
det (x)Nr

(1,1)
(1,0)p

(1,0)
est (x)e

−
τŔ

0

β̃(0,0)(t|x)+β̃(0,1)(t|x)dt
β̃(0,1)(τR|x)dx.

(E.43)

As numerical evaluation of these integrals is computationally expensive, we in-

troduce the following approximation:

∞̂

0

exp

− τRˆ

0

β̃(0,0)(t|x) + β̃(0,1)(t|x)dt

β̃(0,0)(τR|x)dτR

≈
∞̂

0

exp

− τRˆ

0

β̃(0,0)(t|x)dt

β̃(0,0)(τR|x)dτR

×

∞́

0

exp

[
−

τŔ

0

β̃(0,0)(t|x) + β̃(0,1)(t|x)dt

]
(β̃(0,0)(τR|x) + β̃(0,1)(τR|x))dτR

∞́

0

e
−
τŔ

0

β̃(0,0)(t|x)dt
β̃(0,0)(τR|x)dτR +

∞́

0

e
−
τŔ

0

β̃(0,1)(t|x)dt
β̃(0,1)(τR|x)dτR

=

1− exp

− ∞̂

0

β̃(0,0)(t|x)dt



×
1− exp

[
−
∞́

0

β̃(0,0)(t|x) + β̃(0,1)(t|x)dt

]
2− exp

[
−
∞́

0

β̃(0,0)(t|x)dt

]
− exp

[
−
∞́

0

β̃(0,1)(t|x)dt

]

(E.44)

and equivalently for the corresponding integral.

After establishment of type (0, 1), a successful individual of type (0, 0) might

still be generated. We will ignore this probability. This will be a good approxi-

mation when the probability of three successful recombination events is low, i.e.,

in particular when recombination is low.
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F Appendix: Diffusion with killing for I = 0,

J = 1

Hartfield and Otto (2011) derive a diffusion equation for the probability that

type (0, 1) fixes in the population conditioned on fixation of the beneficial allele.

We here give the equation adjusted to our model (for the derivation, we refer to

Hartfield and Otto (2011)). We define:

S(0,0) = Nσ(0,0), (F.1a)

S(0,1) = Nσ(0,1), (F.1b)

ρ
(0,1)
(0,0) = Nr

(0,1)
(0,0). (F.1c)

The scaled version of Eq. (3.38) reads:

π(p) =
S(0,0)(S(0,0) − S(0,1))

(S(0,0) − S(0,1))(1− p) + S(0,0)p
, (F.2)

where p is the relative frequency of type (0, 1). The mean change in p over a

time step measured in N generations is the same in both models. The variance

in change of p is V (p) = 2p(1 − p) in our model (vs V (p) = p(1 − p) in the

Wright-Fisher model). Following Hartfield and Otto (2011), we denote by

P ∗(p) the conditional probability that type (0, 1) fixes if its current frequency is

p. We obtain:

d2P ∗(p)

dp2
+ σ(0,1)

1 + e−pS(0,1)

1− e−pS(0,1)

dP ∗(p)

dp
− ρ(0,1)

(0,0)π(p)P ∗(p) = 0. (F.3)

The differential equation is solved with the boundary conditions

P ∗(1) = 1, (F.4a)

dP ∗(p)

dp

∣∣∣∣
p=0

= 0. (F.4b)

Figure F.1 compares the results for the hitchhiking probability as obtained via

Eq. (F.3) and via Eq. (3.53). Note that the diffusion equation is conditioned on

establishment of type (0, 1), assuming an absolute rate of increase of σ(0,1), while

ν̄ is based on an absolute rate of increase of σ(0,1) − r(0,1).
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Figure F.1: The hitchhiking probability of a linked deleterious allele as a function
of the recombination probability. The solid line is based on Eq. (3.53) as in

Figure 3.4. The dashed line shows P
(0,1)
(0,1)P

∗(1/N) where P
(0,1)
(0,1) and P ∗ are given by

Eq. (3.52) and the solution of Eq. (F.3), respectively. The dotted line represents
P ∗(1/N). The parameter values are the same as for Figure 3.4D. For N = 10000
as in Figure 3.4C, both results are basically indistinguishable.
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