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Abstract

Using a one component reduction formalism, we calculate the effective interaction and
the counterion density profile for a microgel consisting of multilayered shell macroions.

We follow a strategy that involves second order perturbation theory and obtain ana-
lytical expressions for the effective interactions by modelling the layers of the particles

as linear combinations of homogeneously charged spheres. Furthermore, we apply the
general result to the important case of core-shell microgels and compare the theory to
the well known result for a microgel consisting of homogeneously charged, spherical

macroions.
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Science is the great antidote to the poison of enthusiasm and superstition.

Adam Smith
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1. Introduction

The notion of a microgel originates from a publication by William O. Baker from 1949
[Bak49]. In this article Baker described cross-linked polybutadiene latex particles. By

cross-linking we refer to chemical bonds that link polymer chains to each other. In this
context, when speaking of a gel, we consider the property of such materials to swell when

added to an organic solvent, whereas micro points out the relatively small diameter of the
gel particles, which is about 1 µm or less. These microgel particles considered by Baker

consist of a polymer network with high molecular weight and are therefore viewed as
single, very large molecules. Nowadays, we describe microgels as colloidal suspension of

gel particles, i. e. the individual particles are considered to be very large compared to the
atomic scale but rather small compared to the macroscopic level, and they are dispersed

in a solvent. The typical range of particles representing such a microgel is about 10 nm to
1000 nm. Dispersion of microgel particles in a solvent causes them to swell. Contrary to

Baker’s original suggestion gel particles can be formed not only by a single molecule but
also by polyelectrolyte complex formation. In that case the individual particles consist

of a number of shorter polymer chains, cf. [FuSa49, Mic65, FPLC07]. One of the most
important properties of microgels is that their swelling is reversible and can depend on

a lot of external parameters such as the pH value of the solvent, the temperature or the
salt concentration. This also allows to tune the pair interaction between gel particles
from hard-sphere-like interactions in the collapsed state to soft repulsions when expan-

ded. However, the swelling does not affect the connectivity within the polymer network,
whose stability originates mostly in strong covalent bonding forces.

In recent years the field of ionic microgels received a considerable amount of attention

in theoretical approaches [SaVi99, SeRi99] as well as in applications [JeGu02, MFea03,
MuSn95]. This field draws its motivation mainly from various applications in industry

and medicine. An important application is, e. g. drug delivery methods where one is
interested in using microgels to encapsulate and release pharmaceuticals in a controlled

way, i. e. through change of an external parameter [MFea03, CHS05]. Further applica-
tions of microgels include sensor technology [RLL03, GSK05], photonic crystals [XKea03,

LSea04] and purification technology [BTH03]. Important examples of ionic microgels in-
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1. Introduction

clude copolymers—that are polymers consisting of two monomeric constituents—made
of N-isopropylacrylamide (NIPAM) or N-vinylcaprolactam (VCL) and an ionizable

monomer such as acrylic acid [BRV05, ImFo11].

In this thesis we study the electrostatic interactions of core-shell microgels. When consid-
ering a particle of an ionic microgel the internal structure of such a macroion is depend-

ent on the strength of the cross-linking. Weak cross-linking usually results in a fairly
homogeneous distribution of the polymer chain and therefore in this case we consider

the macroions to be homogeneously charged. However, increasing the strength of the
cross-linking causes the polymer chains to rearrange in a way that resembles a core-shell

structure [ARF13]. That is, the charge density of the macroion changes with respect to
the distance from the macroions centre. In principle, such an ionic microgel solution is a

multi-component-mixture of macroions, counterions, and ions of the electrolyte solvent.
Since a full analytical treatment in terms of pair interactions in such a multi-body system

is generally quite a keen challenge, the preferred approach is to treat the system at the
level of effective interactions: By tracing out all degrees of freedom up to a single compon-

ent, one obtains an equivalent one-component-system of so called pseudoparticles subject
to an effective interaction. Previous work on this topic has already been carried out by

A. Denton for the case of colloidal suspensions of non-penetrable charged macroions in
[Den99] as well as for the case of solutions of star polymers and homogeneously charged

microgel particles in [Den03]. The aim of this work is to extend the results of Denton
to ionic solutions of core-shell macroions. Therefore, we largely follow the approach
presented in [Den03] and employ second order perturbation theory to derive the coun-

terion density profile and the effective interaction between macroions. For simplicity we
restrict ourselves to a model where we ignore the electrostatic influence of the solvent

ions and just consider a two component system of macroions and counterions. Further-
more, we assume that the macroions are completely penetrable by macroions as well

as counterions and that the external parameters are known and fixed, so is the internal
structure of the macroions.

The thesis is organized in the following way: In Chapter 2, we give a short introduction

to the mathematical framework needed. Then, in Chapter 3, we describe the microgel
model used in the remainder of the thesis and present the theoretical approach to cal-

culate effective interactions via linear response theory. Afterwards, in Chapter 4, we
recapitulate the case of homogeneously charged microgel particles in detail, and Chapter

5 is dedicated to the results for multilayered-shell microgels. Finally, in Chapter 6, we
apply the previously obtained results to so called core-shell macroions.
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2. Mathematical Framework

In this chapter we will give a short overview on the mathematical concepts used within

the remainder of this work. Apart from basic analytic techniques, we mostly rely on dis-
tribution theory to extend the concept of functions, see [Fri98] for a more comprehensive

introduction into this topic. The use of distributions allows us to employ the full power
of Fourier transforms.

2.1. Distributions

As introduced by Laurent Schwartz in [Sch45], we view distributions as continuous lin-
ear functionals acting on some suitable function space. Since in this work we will extens-

ively make use of Fourier transforms, we choose the Schwartz space S(Rn) as underlying
function space to define the tempered distributions.

2.1.1. DEFINITION (Schwartz space): A smooth function ϕ on R
n is considered to be an

element of the Schwartz space S(Rn) if for all multiindices α, β ∈ N
n
0 we have

sup
x∈Rn

|xα∂β ϕ(x)| < ∞.

Here xα denotes the product ∏
n
i=1 xαi

i , similarily we proceed with ∂β. This allows us to

define the tempered distributions as topological dual space of the Schwartz space S(Rn).

2.1.2. DEFINITION (Tempered distributions): We call a continuous linear functional u :

S(Rn) → R a tempered distribution and denote the space of such u by S ′(Rn).

We write ϕ 7→ 〈u, ϕ〉 for the action of a distribution u on a function ϕ or, more frequently,
by slight abuse of notation

〈u, ϕ〉 =
∫

Rn

u(x)ϕ(x)dnx.

3



2. Mathematical Framework

For obvious reasons such a functional u is continuous if and only if there exists a constant
C ≥ 0 and an integer N ≥ 0 such that

|〈u, ϕ〉| ≤ C ∑
|α|,|β|≤N

sup |xα∂β ϕ| for all ϕ ∈ S(Rn).

Examples of such distributions are the Dirac-delta distribution δ defined on the real line

by 〈δ, ϕ〉 := ϕ(0) or the Heaviside function

Θ(x) =





0 for x < 0,

1 for x ≥ 0.

Differentiation of distributions is defined in the following way: For a distribution u the

derivative ∂αu is the distribution that satisfies the identity

〈∂αu, ϕ〉 = (−1)|α|〈u, ∂α ϕ〉. (2.1)

Consider the following example, that shows a relation between the Heaviside function

and the Dirac-delta distribution

2.1.3. EXAMPLE: We calculate the derivative of Θ. By Equation (2.1) we have

〈Θ′, ϕ〉 = −〈Θ, ϕ′〉 = −
∞∫

−∞

Θ(x)ϕ′(x)dx

= −
∞∫

0

ϕ′(x)dx = − lim
t→∞

ϕ(x)

∣∣∣∣
t

x=0
.

Since ϕ ∈ S(R), we have limt→∞ ϕ(t) = 0 and thus 〈Θ′, ϕ〉 = ϕ(0). Therefore we proved
Θ′ = δ in the sense of distributions.

2.2. Fourier transform

A large part of the calculations within the following chapters will be done in Fourier
space. Hence, we will recapitulate the basic definitions and relations concerning Fourier

transforms in this section. A detailed introduction to this topic can be found in [Fri98]. To
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2.2. Fourier transform

begin with, we give the definition of the Fourier transform of a function in the Schwartz
space.

2.2.1. DEFINITION: We define the Fourier transform of a function ϕ in some suitable func-
tions space on R

b, such as the Schwartz space S(Rn), as

Fϕ(k) = ϕ̂(k) :=
∫

Rn

ϕ(x)e−ikx d3x. (2.2)

Note that in case ϕ ∈ S(Rn), so is ϕ̂. Then one can prove that the inverse transform exists
and for a function ϕ reads

F−1
ϕ (x) = ϕ̌(x) :=

1
(2π)n

∫

Rn

ϕ(k)eikx d3k.

We may extend the Fourier transform (2.2) to a tempered distribution u ∈ S ′(Rn) by the

formula ∫

Rn

û(k)ϕ(k)d3k :=
∫

Rn

u(x)ϕ̂(x)d3x, (2.3)

for all test functions ϕ ∈ S(Rn).

2.2.2. EXAMPLE: We calculate the Fourier transform of δ(x) on R
n:

∫

Rn

δ̂(k)ϕ(k)dnk =
∫

Rn

δ(x)ϕ̂(x)dnx =
∫∫

R2n

δ(x)ϕ(k)e−ikx dnk dnx

=
∫

Rn

ϕ(k)
∫

Rn

δ(x)e−ikx dnx dnk =
∫

Rn

1Rn ϕ(k)dnk.

Hence, we have that δ̂ = 1Rn .

Now consider a function ϕ on an n-cube with edge-length L and n-volume V, then we

have

ϕ̂(k) =
∫

V

ϕ(x)e−ikx dnx

and we may represent the function ϕ by its Fourier series

ϕ(x) =
1

(2π)n ∑
k

eikx ϕ̂(k)(∆k)n =
1
V ∑

k

eikx ϕ̂(k),

where ∆k = 2π
L .
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2. Mathematical Framework

Since in our treatment of effective interactions in a large part we deal with spherically
symmetric functions, we also give the following representation of the Fourier transform

for spherically symmetric functions, which is based on the Fourier-Sine transform. Now
let r 7→ f (r) be such a spherically symmetric function on R

3. Without loss of generality,

we choose k parallel to the z-axis of the coordinate system and obtain

f̂ (k) =
∫

R3

f (r)e−ikr d3r =

2π∫

0

∞∫

0

π∫

0

f (r)e−ikr cos ϑr2 sin ϑ dϑ dr dϕ.

We substitute z := − cos ϑ and thus obtain, where obviously f (k) = f (k),

f̂ (k) =2π

∞∫

0

r2 f (r)

1∫

−1

eikrz dz dr = 4π

∞∫

0

r2 f (r)
( eikr − e−ikr

2ikr

)
dr

=
4π

k

∞∫

0

r f (r) sin(kr)dr. (2.4)

Similarily, the inverse Fourier transform for spherically symmetric functions reads

f̌ (r) =
1

(2π)2
2
r

∞∫

0

k f (k) sin(kr)dk.

2.3. Distributions and integrable regulators

A technique of highly practical use is the Fourier transform of locally but not globally
integrable functions via a sequence of convergence factors, called integrable regulator.

Suppose we have a non-integrable function f and a continuous sequence of integrable
funtions ( fλ)λ that converges pointwise to f for λ → 0. Then one wishes to define

f̂ (k) =
∫

Rn

f (x)e−ikx dnx := lim
λ→0

∫

Rn

fλ(x)e−ikx dnx.

When f is viewed as a regular distribution, i. e. we use that L1
loc(R

n) ⊆ S ′(Rn), this defin-
ition may be used in the following sense: Let ϕ be any Schwartz function on R

n and let

fλ ∈ L1(Rn) ⊆ S ′(Rn) such that limλ→0 fλ = f and | fλ| ≤ | f | pointwise. Using Equation
(2.3), we evaluate

lim
λ→0

∫∫

R2n

fλ(x)e−ikx ϕ(k)dnx dnk = lim
λ→0

∫∫

R2n

fλ(x)e−ikx ϕ(k)dnk dnx

= lim
λ→0

∫

Rn

fλ(x)ϕ̂(x)dnx. (2.5)
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2.3. Distributions and integrable regulators

Now, we want to apply the dominated convergence theorem, which allows us to commute
integration and limit.

2.3.1. THEOREM (Dominated convergence): If for some function h on R
n, there exists

a continous sequence (hλ)λ or measurable functions that converges to h pointwise for
λ → 0 and there also exists an integrable dominating function g(x) with |hλ(x)| < g(x)

for all x ∈ R
n and λ > 0, then

lim
λ→0

∫

Rn

hλ(x)dx =
∫

h(x)dnx.

We choose hλ(x) = fλ(x)ϕ̂(x), h(x) = f (x)ϕ̂(x) and g(x) = | f (x)ϕ̂(x)|, thus

lim
λ→0

∫

Rn

fλ(x)ϕ̂(x)dnx =
∫

Rn

lim
λ→0

fλ(x)ϕ̂(x)dnx =
∫

Rn

f (x)ϕ̂(x)dnx =
∫

Rn

f̂ (k)ϕ(k)dnk

(2.6)

and therefore combining (2.5) and (2.6) we obtain

f̂ (k) = lim
λ→0

∫

Rn

fλ(x)e−ikx dnx (2.7)

in the sense of distributions. As an illustration consider the following example, which we

will also use frequently throughout the remainder of this work.

2.3.2. EXAMPLE: We want to calculate the Fourier transform of f (r) = 1
r on R

3. There-
fore, we choose fλ(r) =

exp(−λr)
r . By Equation (2.7), we have

f̂ (k) = lim
λ→0

∫

R3

e−λr

r
e−ikr d3r

Application of Equation (2.4) yields, using integration by parts,

f̂ (k) =
4π

k
lim
λ→0

∞∫

0

e−λr sin(kr)dr =
4π

k
lim
λ→0

k

λ

∞∫

0

e−λr cos(kr)dr

=
4π

k
lim
λ→0


 k

λ2 − k2

λ2

∞∫

0

e−λr sin(kr)dr


 .

Hence
4π

k
lim
λ→0

(
1 +

k2

λ2

) ∞∫

0

e−λr sin(kr)dr =
4π

λ2
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2. Mathematical Framework

and so with 1 + k2

λ2 = λ2+k2

λ2

f̂ (k) = lim
λ→0

4π

λ2 + k2 . (2.8)

Thus, for k 6= 0 we have f̂ (k) = 4π
k2 .

8



3. Microgel model and theory

3.1. Model

We consider the following model of our microgel solution, based on the theory of ionic

liquids that can be found in [HaMc06]: The system contains a number Nm of spherical
macroions with radius a, mass M and over-all charge Ze and a number Nc of point-

like counterions of charge ze and mass m. Here the number e denotes the elementary
charge. The macroions and counterions are dispersed in an electrolyte solvent contained

in some volume V with volume constant ε and temperature T. In general, we assume
the electrolyte solvent to contain the same amount of positively and negatively charged

microions, which all have the same valence |z| but in this presentation for reasons of
simplicity, we ignore the effect of those salt ions.

Since we consider our microgel solution to be globally of neutral charge, it is a require-

ment that Znm + znc = 0, where nm = Nm
V resp. nc = Nc

V are the average macroion
and counterion densities. Thus it follows that the macroion charge Z and the counterion

charge z are of opposite sign. We may assume that there are three regions, where coun-
terions can be observed: Free counterions outside the macroions, counterions within the

macroions but sufficiently far away from the polymer chains and counterions surround-
ing the polymer chains. In our model we simply consider the counterions in the latter

region to renormalize the effective charge of the macroion. Note that at this point we do
not consider the internal structure of the macroions, i. e. we do not decide whether we
have a homogeneously charged particle or a core-shell particle at hand. Changing the

internal structure of the macroions purely results in different pair interactions, which we
will treat in Chapters 4 and 5.

3.2. Theory

The goal of this section is to describe the one-component reduction and the linear re-

sponse approximation for our model microgel solution. A suitable approach, which we

9



3. Microgel model and theory

intend to follow, can be found in [Den99, Den00, Den03]. In the first paragraph, we
mainly focus on the one-component reduction, in the remainder of the section we apply

perturbation theory and derive the equations needed to obtain the approximate coun-
terion density profile and approximate effective interaction taking linear response into

account.

One-component reduction

Therefore, at first we consider the Hamiltonian of our microgel solution. We denote by

Ri, Pi and ri, pi the coordinates as well as the momenta of the macroions and counterions,
respectively. The Hamiltonian consists of three terms: the macroion energy, the coun-

terion energy, and an interaction term

H(Ri, r j, Pi, pj) = Hm(Ri, Pi) + Hc(r j, pi) + Hmc(Ri, r j, Pi, pj). (3.1)

Let us analyse these expressions in detail. The first term represents the kinetic and poten-
tial energy of a gas of macroions and therefore only depends on the macroion coordinates,

thus

Hm(Ri, Pi) = Km(Pi) + Vm(Ri)

=
1

2M

Nm

∑
i=1

P2
i +

Nm

∑
i=1

i−1

∑
j=1

vmm(|Ri − Rj|).

Here the expression vmm(r) constitutes the bare pair potential of two macroions separated

by a distance r. The actual form of vmm depends on the internal configuration of the
macroion and will be calculated in Chapter 4 for the case of a homogeneously charged

macroion and in Chapter 5 for a multilayered particle. In a similar way, the second term
in Equation (3.1)

Hc(ri, pi) = Kc(pi) + Vc(ri)

=
1

2m

Nc

∑
i=1

p2
i +

Nc

∑
i=1

i−1

∑
j=1

vcc(|r i − r j|).

consists of kinetic and potential energy for the counterions, where vcc(r) is just the Cou-
lomb pair potential for two point particles separated at a distance r, i. e.

vcc(r) =
1
ε

z2e2

r
.

10



3.2. Theory

The final term in Equation (3.1), however, constitutes the electrostatic interaction between
macro- and counterions and reads

Hmc =
Nm

∑
i=1

Nc

∑
j=1

vmc(|Ri − r j|) (3.2)

=
∫∫

̺m(R)̺c(r)vmc(|R − r|)d3r d3R (3.3)

with vmc(r) being the macroion-counterion pair interaction. We denote by

̺m(R) =
Nm

∑
i=1

δ(R − Ri) ̺c(r) =
Nc

∑
i=1

δ(r − ri) (3.4)

the number densities of macroions and counterions, respectively. Here, the pair interac-

tion vmc again depends on the internal configuration of the macroions and we will give a
detailed description in Chapters 4 and 5.

We aim at reducing the two-component mixture, consisting of macroions and counter-

ions, to an equivalent one-component system governed by an effective Hamiltonian
Heff(Ri, Pi), which only depends on the macroions coordinates. This can be achieved by

tracing out the counterion degrees of freedom. Since we study a model microgel solution
at a fixed temperature T, we find ourselves in a situation for which a treatment within the

canonical ensemble is preferable. Therefore, we consider the canonical partition function
derived from the microgel Hamiltionian, i. e. with β = 1

kBT we have

Z(β, V) = trm

(
trc

(
e−βH(Ri,Pi,r j,pj)

))
,

where

trα( f ) =
1

h3Nα Nα!

∫∫

VNα×R3Nα

f (rα
i , pα

i )d3Nα p d3Nαr.

Factorizing the microgel Hamiltonian, we obtain the expression

Z(β, V) =
1

h3(Nm+Nc)Nm!Nc!

∫∫

R3(Nm+Nc)

e−β(Km+Kc) d3Nm P d3Nc p

∫∫

VNm+Nc

e−β(Vm+Vc+Hmc) d3Nm R d3Ncr

=
1

Λm
3NmΛc

3Nc Nm!Nc!

∫∫

VNm+Nc

e−β(Vm+Vc+Hmc) d3Nm R d3Ncr,

where Λm =
√

2πh̄β
M and Λc =

√
2πh̄2 β

m denote the thermal de Broglie wavelengths of
the macroions and microions, respectively. The idea behind the reduction to a one-

component system is to carry out the integration over the microion coordinates and write

11



3. Microgel model and theory

the canonical partition function as an integral over e−βHeff with respect to the macroion
coordinates, where Heff = Hm + Fc and Fc can be interpreted as the free energy of a non-

uniform gas of counterions interacting with an external field generated by the macroions
at positions Ri. Thus, we write, separating the counterion degrees of freedom from the

macroion ones,

Z(β, V) =
1

Λm
3Nm Nm!

∫

VNm

e−βVm

∫

VNc

1

Λc
3Nc Nc!

e−β(Vc+Hmc) d3Ncr d3Nm R

=
1

Λm
3Nm Nm!

∫

VNm

e
−βVm+ln

(∫
VNc

1
Λc3Nc Nc !

exp(−β(Vc+Hmc))d3Nc r
)

d3Nm R

=
1

Λm
3Nm Nm!

∫

VNm

e−βVm+ln Z̃ d3Nm R,

where Z̃(β, V, Ri) =
∫

VNc
1

Λc
3Nc Nc!

e−β(Vc+Hmc) d3Ncr. Defining the counterion free energy

by Fc(β, V, Ri) = − 1
β ln Z̃(β, V, Ri), we obtain

Z(β, V) =
1

Λm
3Nm Nm!

∫

VNm

e−β(Vm+Fc) d3Nm R.

Since, when taking the thermodynamic limit, i. e. we let Nm, Nc, V → ∞ such that nm, nc

are constant, we have to take into account divergences related to the long-ranged Cou-

lomb interaction, we introduce a uniform compensating background energy Eb with a
charge equally to that of the macroions. We therefore modify the counterion interaction

such that Vc
′ = Vc + Eb and that Hmc

′ = Hmc − Eb, formally cancelling the infinities
of each part of the Hamiltonian in the thermodynamic limit. Using charge neutrality

Znm = −znc, the background energy Eb is given by (cf. [AsSt78])

Eb =
1
2

nc
2
∫

V

∫

V

z2e2

ε|r − r′| d3r d3r′ + nc

Nm

∑
i=1

∫

V

Zze2

ε|r − Ri|
d3r

=
1
2

nc
2
∫

V

∫

V

z2e2

ε|r − r′| d3r d3r′ − nc
2

nm

Nm

∑
i=1

∫

V

z2e2

ε|r − Ri|
d3r.

In the thermodynamic limit we obtain

Eb =
1
2

nc
2
∫∫

R6

z2e2

εr
d3r d3r′ − nc

2

nm

Nm

∑
i=1

∫

R3

z2e2

εr
d3r

=
1
2

Ncnc

∫

R3

z2e2

εr
d3r − nc

2

nm
Nm

∫

R3

z2e2

εr
d3r

= −1
2

Ncnc

∫

R3

vcc(r)d3r.
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3.2. Theory

We want express the last integral in terms of the Fourier transform of vcc(r). Introducing
an integrable regulator, we therefore consider

∫

R3

vcc(r)d3r =
z2e2

ε
lim
λ→0

lim
k→0

∞∫

0

eλr

r
e−ikr d3r.

We replace the expression on the right hand side according to Equation (2.8) and obtain
∫

R3

vcc(r)d3r =
z2e2

ε
lim
λ→0

lim
k→0

4π

λ2 + k2 = lim
k→0

v̂cc(k)

and finally, we have

Eb = −1
2

Ncnc lim
k→0

v̂cc(k).

We now rewrite the free energy in terms of Hc
′ and Hmc

′ (omitting the macroion coordin-

ates) as

Fc(β, V) = − 1
β

ln

[ ∫

VNc

1

Λc
3Nc Nc!

e−β(Vc
′+Hmc

′) d3Ncr

]
, (3.5)

where Vc
′ can be interpreted as the interaction of a classical one-component plasma,

subject to a uniform compensating background, in the presence of neutral penetrable

macroions.

Approximation by linear response theory

This paragraph is dedicated to the perturbation theory approximation of the free energy,
which later will allow us to calculate the counterion density profile and the effective in-

teraction in second order. As a point of reference, we look at the free energy (3.5) and
regard the macroion-counterion interaction as a perturbation of the counterion Hamilto-

nian, that is Hc(λ) = Kc + Vc
′ + Hmc

′(λ). Thus, the free energy of a one component
plasma of counterions perturbed by some external interaction Hmc

′(λ) is

Fc(β, V, λ) = − 1
β

ln

[ ∫

VNc

1

Λc
3Nc Nc!

e−β(Vc
′+Hmc

′(λ)) d3Ncr

]
=: − 1

β
ln Z̃(β, V, λ).

Differentiating Fc with respect to λ gives

∂

∂λ
Fc(β, V, λ) = − 1

βZ̃(β, V, λ)

∂

∂λ
Z̃(β, V, λ)

=
1

Z̃(β, V, λ)

∫

VNc

1

Λc
3Nc Nc!

e−β(Vc
′+Hmc

′(λ)) ∂

∂λ
Hmc

′(λ)d3Ncr

=

〈
∂

∂λ
Hmc

′(λ)
〉

λ

, (3.6)

13



3. Microgel model and theory

where 〈·〉λ denotes an ensemble average governed by the canonical partition function
Z̃(β, V, λ). More precisely,

〈 f (ri)〉λ =
1

Λc
3Nc Nc! · Z̃(β, V, λ)

∫

VNc

e−β(Vc
′+Hmc

′(λ)) f (ri)d3Ncr.

By integration of Equation (3.6) with respect to λ, we obtain the free energy in terms of〈
∂

∂λ Hmc
′(λ)

〉
λ
. Hence,

Fc(β, V) = FOCP +

1∫

0

〈
∂

∂λ
Hmc

′(λ)
〉

λ

dλ. (3.7)

Here FOCP denotes the free energy of a one-component plasma of counterions, i. e.

FOCP = − 1
β

ln

[ ∫

VNc

1

Λc
3Nc Nc!

e−βVc
′
d3Ncr

]

Let us now consider the following situation: We take a one component-plasma of coun-
terions in the presence of neutral macroions and start to charge adiabatically from zero
to full charge. By λ we denote the fraction of the full charge. Partially charged macroions

correspond to a setting, where Hmc(λ) = λHmc with λ ∈ [0, 1]. As a motivation con-
sider the following closer look on the interaction between macroions and microions: The

interaction is governed by the pair potential vmc between a macroion at the origin and
a counterion with charge q at distance r which can be calculated from on the macroion

charge density ̺ as

vmc(r) =
q

ε

∫

R6

̺(|x|)δ(y − r)

|x − y| d3x d3y.

Partially charging the macroion means replacing ̺(x) by λ̺(x), thus the pair interaction

of a partially charged macroion with a counterion reads

q

ε

∫

R6

λ̺(|x|)δ(y − r)

|x − y| d3x d3y = λvmc(r).

So Equation (3.7) now reads, with Eb properly scaled

Fc(β, V) = FOCP +

1∫

0

〈Hmc
′〉λ dλ. (3.8)

Recall Equation 3.2, we may write vmc in terms of the inverse Fourier transform

Nm

∑
i=1

Nc

∑
j=1

vmc(|Ri − r j|) =
1

(2π)3

Nm

∑
i=1

Nc

∑
j=1

∫
eik(Ri−r j)v̂mc(k)d3k.
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3.2. Theory

Since we are working in a finite volume V, the integration corresponds to a sum over
discrete values of k, so we have

Nm

∑
i=1

Nc

∑
j=1

vmc(|Ri − r j|) =
1
V ∑

k 6=0

Nm

∑
i=1

Nc

∑
j=1

eik(Ri−r j)v̂mc(k) +
1
V

lim
k→0

Nm

∑
i=1

Nc

∑
j=1

eik(Ri−r j)v̂mc(k)

=
1
V ∑

k 6=0

(
Nm

∑
i=1

eikRi

)(
Nc

∑
j=1

e−ikr j

)
v̂mc(k)

+
1
V

lim
k→0

(
Nm

∑
i=1

eikRi

)(
Nc

∑
j=1

e−ikr j

)
v̂mc(k)

We insert the Fourier transforms of Equation (3.4) into the last equation and evaluate the
the limit k → 0. The summation terms obviously amount in the particle numbers for

macroions and counterions. Summarized, this yields

Nm

∑
i=1

Nc

∑
j=1

vmc(|Ri − r j|) =
1
V ∑

k 6=0

ˆ̺m(−k) ˆ̺c(k)v̂mc(k) + lim
k→0

Nmncv̂mc(k).

Hence, we obtain for the ensemble average of the interaction term

〈Hmc
′〉λ =

1
V ∑

k 6=0
ˆ̺m(−k)v̂mc(k)〈 ˆ̺c(k)〉λ + lim

k→0
Nmncv̂mc(k)− Eb. (3.9)

Considering a linear response of the induced counterion density to the external macroion-
counterion interaction, cf. [HaMc06, Chapter 10], we obtain for k 6= 0

〈 ˆ̺c(k)〉λ = λχ(k)v̂mc(k) ˆ̺m(k), (3.10)

where χ(k) = −βncS(k) is the linear response function of a one-component plasma. As
outlined in [HaMc06, Chapter 3] or [Den03] this linear response function is proportional

to the static structure factor, which by the Ornstein-Zernike relation equals S(k) = 1
1−ncĉ(k) .

Here, c(r) = −βvcc(r) denotes the two-particle direct correlation function. If we define

the Bjerrum length λB = βe2

ε and the inverse Debye screening length κ =
√

4πncz2λB, we
obtain

χ(k) = − βnc

1 + κ2

k2

.

Thus, combining Equations (3.8), (3.9), and (3.10), the counterion free energy reads

Fc(β, V) = FOCP

+

1∫

0

(
1
V ∑

k 6=0
λχ(k)[v̂mc(k)]

2 ˆ̺m(−k) ˆ̺m(k) + lim
k→0

Nmncv̂mc(k)− Eb

)
dλ

= FOCP +
1

2V ∑
k 6=0

χ(k)[v̂mc(k)]
2 ˆ̺m(−k) ˆ̺m(k) + lim

k→0
Nmncv̂mc(k)− Eb.
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3. Microgel model and theory

For the effective Hamiltionian Heff = Hm + Fc, we have

Heff = Km +
Nm

∑
i=1

i−1

∑
j=1

vmm(|Ri − Rj|) +
1

2V ∑
k 6=0

χ(k)[v̂mc(k)]
2 ˆ̺m(−k) ˆ̺m(k)

+ FOCP + lim
k→0

Nmncv̂mc(k)− Eb.

Defining the induced interaction v̂ind(k) = χ(k)[v̂mc(k)]2, we recast Heff as

Heff = Km +
Nm

∑
i=1

i−1

∑
j=1

vmm(|Ri − Rj|) +
1

2V ∑
k 6=0

v̂ind(k) ˆ̺m(−k) ˆ̺m(k)

+ FOCP + lim
k→0

Nmncv̂mc(k)− Eb.

Let us look more closely on the macroion pair interaction in Fourier space. We write

Nm

∑
i=1

i−1

∑
j=1

vmm(|Ri − Rj|) =
1
V ∑

k

Nm

∑
i=1

i−1

∑
j=1

eik(Ri−Rj)v̂mm(k)

=
1

2V ∑
k

(
Nm

∑
i=1

eikRi

)(
Nm

∑
j=1

e−ikRj

)
v̂mm(k)

− 1
2V ∑

k

Nm

∑
i=j=1

eik(Ri−Rj)v̂mm(k)

=
1

2V ∑
k

vmm(k)[̺m(k)̺m(−k)− Nm].

So the effective Hamiltonian reads

Heff = Km +
1

2V ∑
k

vmm(k)[̺m(k)̺m(−k)− Nm]

+
1

2V ∑
k 6=0

v̂ind(k) ˆ̺m(−k) ˆ̺m(k)

+ FOCP + lim
k→0

Nmncv̂mc(k)− Eb

Now, in Fourier space we introduce the effective interaction as v̂eff = v̂mm + v̂ind, there-

fore we obtain

Heff = Km +
1

2V ∑
k

veff(k)[̺m(k)̺m(−k)− Nm]

− 1
2V

lim
k→0

v̂ind(k) ˆ̺m(−k) ˆ̺m(k)

+
Nm

2V ∑
k 6=0

v̂ind(k) +
Nm

2V
lim
k→0

v̂ind(k)

+ FOCP + lim
k→0

Nmncv̂mc(k)− Eb.
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3.2. Theory

Expressing the last equation again in terms of functions in real space yields

Heff = Km +
Nm

∑
i=1

i−1

∑
j=1

v̂eff(|Ri − Rj|) + E0,

where by E0 we denote the so called volume energy

E0 = FOCP +
Nm

2V ∑
k 6=0

v̂ind(k) +
Nm

2V
lim
k→0

v̂ind(k)

− 1
2V

lim
k→0

v̂ind(k) ˆ̺m(−k) ˆ̺m(k)

+ lim
k→0

Nmncv̂mc(k) +
1
2

Ncnc lim
k→0

v̂cc(k)

= FOCP +
Nm

2
lim
r→0

eikr

V

(

∑
k 6=0

v̂ind(k) + lim
k→0

v̂ind(k)

)

+ Nm lim
k→0

[
−1

2
nmv̂ind(k) + ncv̂mc(k) +

1
2

Nc

Nm
ncv̂cc(k)

]

Finally, using Fourier inversion and the charge neutrality condition Znm + znc = 0, we

write the volume energy as

E0 = FOCP +
Nm

2
lim
r→0

vind(r) + Nm lim
k→0

[
−1

2
nmv̂ind(k) + ncv̂mc(k)−

Z

2z
ncv̂cc(k)

]
.

So far, we completed the one-component reduction and linear response approximation

of our model microgel solution, and we are left with the task of explicitly calculating
the counterion density profile 〈̺c(r)〉 and the effective interaction energy veff(r) around

a single macroion placed at the coordinate origin. This will be done in the remaining
chapters of this work.
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4. Interaction for homogeneous macroions

4.1. Electrostatic macroion interaction

The interaction energy of two charge distributions on R
3 in a medium with electric per-

mittivity ε reads (integrability assumed)

U =
1
ε

∫

R6

̺1(x)̺2(y)

|x − y| d3x d3y. (4.1)

In this chapter we assume the microgel macroions to be homogeneously charged spheres.

Thus, let ̺1, ̺2 be the charge distributions of two homogeneously charged spheres of ra-
dius a, both with charge Ze and separated by a distance r. Thus, we may set

̺2(x) = ̺1(x − r) and choose ̺1(x) = 3Ze
4πa3 Θ(a − |x|) = ̺0 · Θ(a − |x|), where Θ de-

notes the Heaviside function. Inserting this charge distribution into Equation (4.1), we

obtain the macroion pair interaction as a function of the spheres’ distance r

vmm(r) =
̺2

0

ε

∫

R6

Θ(a − |x|)Θ(a − |y − r|)
|x − y| d3x d3y.

The electrostatic potential per unit of charge density subject to the source ̺1 is given by

Φ(y) :=
∫

R3

Θ(a − |x|)
|x − y| d3x =

∫

Ba(0)

1
|x − y| d3x =

2π∫

0

a∫

0

π∫

0

x2 sin ϑ

|x − y| dϑ dx dϕ.

By employing spherical symmetry of the charge distribution, we may choose y parallel

to the z-axis of the coordinate system. Then, we obviously obtain the squared distance
(x − y)2 = x2 + y2 − 2x · y = x2 + y2 − 2xy cos ϑ, so the potential is

Φ(y) := 2π

a∫

0

x2
π∫

0

sin ϑ√
x2 + y2 − 2xy cos ϑ

dϑ dx (4.2)
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4. Interaction for homogeneous macroions

We substitute u := − cos ϑ, thus

Φ(y) := 2π

a∫

0

x2
1∫

−1

1√
x2 + y2 + 2xyu

du dx

= 2π

a∫

0

x2
( 1

xy
(|x + y| − |x − y|)

)
dx

since
∫ 1√

ax+b
= 2

a

√
ax + b + C. We distinguish between the two cases y ≤ x and y > x.

In the first case we obtain the integrand 2x, in the second case we obtain 2x2

y . Hence we
have for y > a

Φ(y) = 4π

a∫

0

x2

y
dx =

4πa3

3
· 1

y
,

and for y ≤ a

Φ(y) = 4π

( y∫

0

x2

y
dx +

a∫

y

x dx

)
= 4π

(1
3

y2 +
a2

2
− y2

2

)
= 2πa2 − 2π

3
y2

Obviously, Φ is a spherically symmetric function. Thus, altogether this yields

Φ(y) =
4πa2

3





3
2
− 1

2
y2

a2 for y ≤ a, (4.3a)

a

y
for y > a, (4.3b)

or with ̺0 = 3Ze
4πa3 inserted

Φ(y) =





3Ze

2a
− Ze

2a3 y2 for y ≤ a, (4.4a)

Ze

y
for y > a. (4.4b)

Now, we have for the interaction energy

vmm(r) =
̺2

0

ε

∫

R3

Φ(y)Θ(a − |y − r|)d3y.

To calculate this energy, we substitute z = y − r (which, since a translation, leaves the
volume element invariant). This yields

vmm(r) =
̺2

0

ε

∫

R3

Φ(|z + r|)Θ(a − |z|)d3z =
̺2

0

ε

∫

Ba(0)

Φ(|z + r|)d3z.
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4.1. Electrostatic macroion interaction

As a matter of fact, in spherical coordinates we have

vmm(r) =
̺2

0

ε

2π∫

0

a∫

0

π∫

0

Φ(|z + r|)z2 sin ϑ dϑ dz dϕ.

Again, we distinguish between different cases: In case r > 2a the distance |z + r| > a for
z ∈ Ba(0) and thus we have for the potential Φ(|z + r|) = 4πa3

3
1

|z+r| . Spherical symmetry

allows us to choose r parallel to the z-axis and therefore,

vmm(r) =
8π2a3̺2

0

3ε

a∫

0

z2
π∫

0

sin ϑ√
z2 + r2 + 2rz cos ϑ

dϑ dz.

Substitution analogously to Equation (4.2) gives

vmm(r) =
8π2a3̺2

0

3ε

a∫

0

z2
1∫

−1

1√
z2 + r2 − 2rzu

du dz

= −8π2a3̺2
0

3ε

a∫

0

z2
(

1
zr
(|z − r| − |z + r|)

)
dz

=
8π2a3̺2

0
3ε

a∫

0

z2
(

1
zr
(|z + r| − |z − r|)

)
dz.

Since r > 2a and z < a, we have r > z and therefore the integrand reads 2z2

r , so

vmm(r) =
16π2a3̺2

0

3εr

a∫

0

z2 dz =
16π2a6̺2

0

9εr
(4.5)

Again, using ̺0 = 3Ze
4πa3 , we obtain the (spherically symmetric) interaction energy

vmm(r) =
Z2e2

εr
.

Now we turn to the cases a ≤ r ≤ 2a and r ≤ a, which involve somewhat more con-
siderations. Depending on the direction and length of r, we have to consider the po-

tential function Φ(|z + r|) either for |z + r| ≤ a or for |z + r| > a. Again, we choose
r to be parallel to the z-axis, then we have a2 = |z + r|2 = z2 + r2 + 2rz cos ϑ, thus a

circle of radius z around the origin intersects the one of radius a around −r at the angle
ϑ0 = arccos a2−z2−r2

2rz for 0 ≤ ϑ0 ≤ π.

Thus, we conclude that in case a ≤ r for a given value of z ≥ r − a we are outside

Ba(−r) if 0 ≤ ϑ < arccos a2−z2−r2

2rz and inside Ba(−r) if arccos a2−z2−r2

2rz ≤ ϑ ≤ π. Setting
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4. Interaction for homogeneous macroions

u := − cos θ this allows us to write down the interaction energy as a sum of three integrals
to be specified below

vmm(r) =
̺2

0

ε

2π∫

0

a∫

0

π∫

0

Φ(|z + r|)z2 sin ϑ dϑ dz dϕ

= I1 + I2 + I3.

The domains of integration for the integrals I1, I2, I3 are illustrated in Figure 4.1. Here, I1

denotes the integral over the ball Br−a(0), where Φ is of the form (4.3b), I2 denotes the in-
tegral over the domain Ba(0)\(Br−a(0) ∪ Ba(−r)), where Φ is also of the form (4.3b), and

I3 denotes the integral over the domain Ba(0) ∩ Ba(−r), where Φ is of the form (4.3a).

I1

I3

I2a a

r − a z

xy

r

Figure 4.1: Domains of integration for I1, I2, and I3

Since all occurring functions obey azimuthal symmetry, we obtain a factor 2π for the

ϕ-integration. We start calculating I1, so

I1 =
8π2a3̺2

0

3ε

r−a∫

0

1∫

−1

1√
z2 + r2 − 2rzu

z2 du dz

=
8π2a3̺2

0

3ε

r−a∫

0

z2

rz
(|r + z| − |r − z|)dz.
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4.1. Electrostatic macroion interaction

Now z ≤ r − a ≤ r, thus

I1 =
8π2a3̺2

0

3ε

r−a∫

0

z

r
(r + z − r + z)dz (4.6a)

=
8π2a3̺2

0

3ε

r−a∫

0

2z2

r
dz (4.6b)

=
8π2a3̺2

0

3ε
·
(

2a2 − 2a3

3r
− 2ar +

2r2

3

)
. (4.6c)

Similarily, we proceed for I2, and we have

I2 =
8π2a3̺2

0

3ε

a∫

r−a

z2+r2−a2
2rz∫

−1

1√
z2 + r2 − 2rzu

z2 du dz (4.7a)

=
8π2a3̺2

0

3ε

a∫

r−a

(
r + z

rz
− a

rz

)
z2 dz =

8π2a3̺2
0

3ε

a∫

r−a

z(r + z − a)

r
dz (4.7b)

=
8π2a3̺2

0

3ε

(
−2a2 +

2a3

3r
+

5ar

2
− 5r2

6

)
. (4.7c)

Finally, we calculate I3

I3 =
8π2a3̺2

0

3ε

a∫

r−a

1∫

z2+r2−a2
2rz

(
3
2a

− 1
2a3 (z

2 + r2 − 2rzu)

)
z2 du dz (4.8a)

=
8π2a3̺2

0

3ε

a∫

r−a

(
5az

8r
− 3rz

4a
+

r3z

8a3 +
3z2

2a
− r2z2

2a3 − 3z3

4ar
+

3rz3

4a3 − z4

2a3 +
z5

8a3r

)
dz

(4.8b)

=
8π2a3̺2

0

3ε

(
4a2

5
− ar

2
− r2

6
+

r3

8a
− r5

240a3

)
. (4.8c)

Summarized, this yields

vmm(r) =
8π2a3̺2

0

3ε

(
4a2

5
− r2

3
+

r3

8a
− r5

240a3

)

=
Z2e2

εa

[
6
5
− 1

2

( r

a

)2
+

3
16

( r

a

)3
− 1

160

( r

a

)5
]

. (4.9)

The remaining case is r ≤ a. We conclude that in this case, for a given value of
z ≥ a − r, we are outside Ba(−r) if 0 ≤ ϑ < arccos a2−z2−r2

2rz , and we are inside Ba(−r) if

arccos a2−z2−r2

2rz ≤ ϑ ≤ π. Again, we set u := − cos θ and write down the interaction
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4. Interaction for homogeneous macroions

energy as a sum of three integrals U(r) = J1 + J2 + J3, whose domains of integration are
illustrated in Figure 4.2.

J1J2

J3

a a

r − a z

xy

r

Figure 4.2: Domains of integration for J1, J2, and J3

Here J1 denotes the integral over the ball Ba−r(0), where Φ takes the form (4.3a), J2 de-
notes the integral over (Ba(0) ∩ Ba(−r))\Ba−r(0), where Φ is also of the form (4.3a), and

J3 denotes the integral over Ba(0)\Ba(−r). Incorporating azimuthal symmetry again we
have

J1 =
8π2a3̺2

0

3ε

a−r∫

0

1∫

−1

(
3
2a

− 1
2a3 (z

2 + r2 − 2rzu)

)
z2 du dz

=
8π2a3̺2

0

3ε

a−r∫

0

(
3z2

a
− r2z2

a3 − z4

a3

)
dz

=
8π2a3̺2

0

3ε

(
4a2

5
− 2ar +

2r2

3
+

2r3

a
− 2r4

a2 +
8r5

15a3

)
.

We proceed for J2 in the same way, hence

J2 =
8π2a3̺2

0

3ε

a∫

a−r

1∫

z2+r2−a2
2rz

(
3
2a

− 1
2a3 (z

2 + r2 − 2rzu)

)
z2 du dz

=
8π2a3̺2

0

3ε

a∫

a−r

(
5az

8r
− 3rz

4a
+

r3z

8a3 +
3z2

2a
− r2z2

2a3 − 3z3

4ar
+

3rz3

4a3 − z4

2a3 +
z5

8a3r

)
dz

=
8π2a3̺2

0

3ε

(
3ar

2
− 5r2

6
− 15r3

8a
+

2r4

a2 − 43r5

80a3

)
.
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4.2. Effective interaction of microgel macroions

Finally, J3 gives

J3 =
8π2a3̺2

0

3ε

a∫

a−r

z2+r2−a2
2rz∫

−1

1√
z2 + r2 − 2rzu

z2 du dz

=
8π2a3̺2

0

3ε

a∫

a−r

(
r + z

rz
− a

rz

)
z2 dz =

8π2a3̺2
0

3ε

a∫

a−r

z(r + z − a)

r
dz

=
8π2a3̺2

0
3ε

(
a2

2
− a3

6r
− a2

2
+

a3

6r
+

ar

2
− r2

6

)

=
8π2a3̺2

0

3ε

(
ar

2
− r2

6

)
.

Adding up the three integrals, we again obtain exactly (4.9)

vmm(r) =
8π2a3̺2

0

3ε

(
4a2

5
− r2

3
+

r3

8a
− r5

240a3

)

=
Z2e2

εa

[
6
5
− 1

2

( r

a

)2
+

3
16

( r

a

)3
− 1

160

( r

a

)5
]

.

Hence, altogether this yields the interaction energy as an at least continuously differenti-

able function of r, which reads

vmm(r) =





Z2e2

εa

[
6
5
− 1

2

( r

a

)2
+

3
16

( r

a

)3
− 1

160

( r

a

)5
]

for 0 ≤ r ≤ 2a,

Z2e2

εr
for 2a < r.

(4.10)

4.2. Effective interaction of microgel macroions

The bare Coulomb interaction energy between a macroion of charge Ze and a counterion

of charge ze reads

vmc(r) =





Zze2

2εa

(
3 − r2

a2

)
for 0 ≤ r ≤ a, (4.11a)

Zze2

εr
for a < r. (4.11b)

We need the Fourier transform of vmc, thus we calculate for k 6= 0

v̂mc =
4π

k

∞∫

0

rvmc(r) sin(kr)dr

=
4π

k

a∫

0

Zze2

2εa

(
3r − r3

a2

)
sin(kr)dr +

4π

k

∞∫

a

Zze2

ε
sin(kr)dr
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4. Interaction for homogeneous macroions

We split the integration into three additive terms, such that v̂mc = 4πZze2

kε (I1 + I2 + I3).

This yields

I1 =
3
2a

a∫

0

r sin(kr)dr =
3
2a

(
− a

k
cos(ka) +

1
k

a∫

0

cos(kr)dr
)

=
3

2ka

(
−a cos(ka) +

1
k

sin(ka)
)

= − 3
2k

cos(ka) +
3

2k2a
sin(ka),

for I2 we obtain

I2 = − 1
2a3

a∫

0

r3 sin(kr)dr = − 1
2a3

(
− a3

k
cos(ka) +

3
k

a∫

0

r2 cos(kr)dr
)

= − 1
2ka3

(
−a3 cos(ka) + 3

( a2

k
sin(ka)− 2

k

a∫

0

r sin(kr)dr
))

= − 1
2ka3

(
−a3 cos(ka) +

3
k

(
a2 sin(ka)− 2

(
− a

k
cos(ka) +

1
k

a∫

0

cos(kr)dr
)))

= − 1
2ka3

(
−a3 cos(ka) +

3
k

(
a2 sin(ka)− 2

k

(
−a cos(ka) +

1
k

sin(ka)
)))

=
1
2k

cos(ka) − 3
2k2a

sin(ka) − 3
k3a2 cos(ka) +

3
k4a3 sin(ka),

The third integral reads

I3 =

∞∫

a

sin(kr)dr,

which is obviously divergent. Let us consider the follwing modification

I3 =

∞∫

0

sin(kr)dr −
a∫

0

sin(kr)dr.

Introducing an integrable regulator, we obtain by Equation (2.8) that

∞∫

0

sin(kr)dr =
k

4π
F
(

1
r

)
= lim

λ→0

k

λ2 + k2 =
1
k

.

The second part of the integral we simply evaluate and hence, obtain

I3 =
1
k
−
(

1 − cos(ka)

k

)
=

cos(ka)

k
. (4.12)
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4.2. Effective interaction of microgel macroions

The sum of the three integrals yields

I1 + I2 + I3 = − 3
k3a2 cos(ka) +

3
k4a3 sin(ka),

so, finally, for k 6= 0

v̂mc = −12πZze2

k4a2ε

(
cos(ka) − sin(ka)

ka

)
.

We assume the macroions to be at positions Rj, thus the macroion density equals

̺m(k) =
Nm

∑
j=1

δ(r − Rj),

where Nm is the total number of macroions. Obviously ˆ̺m(k) = ∑
Nm
j=1 e−ikRj .

Using the linear response approximation from Equation (3.10), we can calculate the coun-
terion density around a single macroion at the coordinate origin, i. e. ̺m(r) = δ(r), by

〈 ˆ̺c(k)〉 = χ(k)v̂mc(k) (4.13)

since ˆ̺m(k) = 1 and χ(k) = − ελBnc
e2+ελBncv̂cc(k)

with vcc(r) the bare Coulomb interaction

between two counterions of distance r and charge ze. Here λB = βe2

ε denotes the Bjerrum

length, i. e. the distance, where the Coulomb interaction is of comparable magnitude to
the thermal energy. From Equation (2.8), we obtain v̂cc(k) =

4πz2e2

εk2 and so

〈 ˆ̺c(k)〉 =
ελBnc

e2 + 4πλBncz2e2

k2

12πZze2

k4a2ε

(
cos(ka) − sin(ka)

ka

)

=
12πZzλBnc

(k2 + 4πλBncz2)k2a2

(
cos(ka) − sin(ka)

ka

)
. (4.14)

Using the inverse Debye screening length κ :=
√

4πncz2λB, Equation (4.14) reads

〈 ˆ̺c(k)〉 =
Z

z

3κ2

k2a2(k2 + κ2)

(
cos(ka) − sin(ka)

ka

)
.

Application of the inverse Fourier transform gives the counterion density profile as a
function of the distance to the macroion. Hence, we calculate

¯̺c(r) := 〈̺c(r)〉 =
1

(2π)2
2
r

∞∫

0

k
Z

z

3κ2

k2a2(k2 + κ2)

(
cos(ka) − sin(ka)

ka

)
sin(kr)dk

=
6Zκ2

4π2rza2

∞∫

0

sin(kr)

k(k2 + κ2)

(
cos(ka) − sin(ka)

ka

)
dk.
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4. Interaction for homogeneous macroions

We split this expression into two integrals such that ¯̺c(r) =
6Zκ2

4π2rza2 (I1 − I2). Evaluating

the first integral, we obtain

I1 =

∞∫

0

sin(kr) cos(ka)

k(k2 + κ2)
dk

=
1
2

∞∫

0

sin(k(r − a)) + sin(k(r + a))

k(k2 + κ2)
dk. (4.15)

Substitution with x := k
κ in Equation (4.15) and expansion into partial fractions gives

I1 =
1

2κ2

∞∫

0

sin(xκ(r − a)) + sin(xκ(r + a))

x(x2 + 1)
dx

=
1

2κ2

∞∫

0

(sin(xκ(r − a)) + sin(xκ(r + a))

x
− x

sin(xκ(r − a)) + sin(xκ(r + a))

x2 + 1

)
dx.

It is a well known fact, that
∫ ∞

0
sin(λx)

x = π
2 sgn λ and

∫ ∞

0
x sin(λx)

x2+1 = π
2 e−|λ| sgn λ. Hence,

we consider for a, r, and κ > 0

∞∫

0

sin(xκ(r ± a))

x
dx =

π

2
sgn(r ± a)

and
∞∫

0

x sin(xκ(r ± a))

x2 + 1
dx =

π

2
e−κ|r±a| sgn(r ± a).

Summarized, we have

I1 =
π

4κ2 (sgn(r − a)(1 − e−κ|r−a|) + (1 − e−κ(r+a))). (4.16)

Now, we proceed in a similar way for the second integral,

I2 =

∞∫

0

1
k2a(k2 + κ2)

sin(kr) sin(ka)dk

=
1
2a

∞∫

0

cos(k(r − a))− cos(k(r + a))

k2(k2 + κ2)
dk.
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4.2. Effective interaction of microgel macroions

Again, we substitute with x := k
κ and expand into partial fractions, which yields

I2 =
1

2aκ3

∞∫

0

(cos(xκ(r − a)− cos(xκ(r + a))

x2(x2 + 1)

)

=
1

2aκ3

∞∫

0

(cos(xκ(r − a))− cos(xκ(r + a))

x2 − cos(xκ(r − a))− cos(xκ(r + a))

x2 + 1

)
dx.

(4.17)

Consider the first term in (4.17), through integration by parts

∫ cos(λx)

x2 dx = −cos(λx)

x
− λ

∫ sin(λx)

x
dx

we obtain

∞∫

0

cos(xκ(r − a))− cos(xκ(r + a))

x2 dx = − lim
β→∞

lim
α→0

cos(xκ(r − a))− cos(xκ(r + a))

x

∣∣∣∣
β

α

− κ(r − a)

∞∫

0

sin(κ(r − a))

x
dx

+ κ(r + a)

∞∫

0

sin(κ(r + a))

x
dx

= − lim
β→∞

cos(βκ(r − a))

β
+ lim

β→∞

cos(βκ(r + a))

β

+ lim
α→0

cos(ακ(r − a))− cos(ακ(r + a))

α

+
π

2
κ(r + a − |r − a|)

Obviously, since the cosine is a bounded function, both the β-limits tend to zero. How-
ever, the α-limits need some more consideration: Expansion into a power series at α0 = 0

gives

cos(ακ(r − a))− cos(ακ(r + a))

α
=

1
α

∞

∑
n=0

(−1)n κ2n((r − a)2n − (r + a)2n)

(2n)!
α2n

= α
∞

∑
n=1

(−1)n κ2n((r − a)2n − (r + a)2n)

(2n)!
α2n−2,

where the power series ∑
∞
n=1(−1)n κ2n((r−a)2n−(r+a)2n)

(2n)! α2n−2 converges. Thus,

lim
α→0

cos(ακ(r − a))− cos(ακ(r + a))

α
= 0
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4. Interaction for homogeneous macroions

and
∞∫

0

cos(xκ(r − a))− cos(xκ(r + a))

x2 dx =
π

2
κ(r + a − |r − a|)

This leaves us calculating the second term in (4.17). We have
∞∫

0

cos(xκ(r − a))− cos(xκ(r + a))

x2 + 1
dx =

π

2
(e−κ|r−a| − e−κ(r+a))

since
∫ ∞

0
cos(λx)

1+x2 dx = π
2 e−|λ|. Summarized, we obtain

I2 =
π

4κ2

(1
a
(r + a − |r − a|) − 1

κa
(e−κ|r−a| − e−κ(r+a)

)
. (4.18)

Finally, we combine the results of (4.16) and (4.18), so

¯̺c(r) =
Z

z

3
8πra2

(
sgn(r − a)(1 − e−κ|r−a|) + (1 − e−κ(r+a))

− 1
a
(r + a − |r − a|) + 1

κa
(e−κ|r−a| − e−κ(r+a))

)
.

On one hand in case r > a this yields

¯̺c(r) =
Z

z

3
8πra2

(
1 − e−κ(r−a) + 1 − e−κ(r+a) − 2 +

1
κa

(e−κ(r−a) − e−κ(r+a))
)

= −Z

z

3
4πra2

( e−κr

2
(eκa + eκa)− e−κr

2κa
(eκa − e−κa)

)

= −Z

z

3
4πra2 e−κr

(
cosh(κa)− sinh(κa)

κa

)
,

on the other hand in case r < a we have

¯̺c(r) =
Z

z

3
8πra2

(
−1 + e−κ(a−r) + 1 − e−κ(a+r) − 2r

a
+

1
κa

(e−κ(a−r) − e−κ(a+r))
)

= −Z

z

3
4πra2

(
− e−κa

2
(eκr − e−κr)

)
+

r

a
− e−κa

2κa
(eκr − e−κr)

)

= −Z

z

3
4πra2

( r

a
−
(

1 +
1

κa

)
e−κa sinh(κr)

)
. (4.19)

If r = a, we obtain

¯̺c(r) =
Z

z

3
8πra2

(
1 − e−2κa − 2 +

1
κa

(1 − e−2κa)
)

= −Z

z

3
8πra2

(
1 + e−2κa − 1

κa
+

e−2κa

κa

)

= −Z

z

3
8πra2

(
1 − 1

κa
+ e−2κa

(
1 +

1
κa

))

= −Z

z

3
8πra2

(
1 − 1

κa
+ e−κa(eκa − 2 sinh(κa))

(
1 +

1
κa

))

= −Z

z

3
4πra2

(
1 −

(
1 +

1
κa

)
e−κa sinh(κa))

)
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4.2. Effective interaction of microgel macroions

which is exactly (4.19) for r = a. Therefore, the counterion density reads

¯̺c(r) = −Z

z

3
4πa2r





r

a
−
(

1 +
1

κa

)
e−κa sinh(κr) for r ≤ a,

e−κr
(

cosh(κa)− sinh(κa)

κa

)
for r > a.

(4.20)

We obtain the counterion-induced interaction by

v̂ind(k) = χ(k)[v̂mc(k)]
2 = 〈 ˆ̺c(k)〉v̂mc(k)

= −Z

z

3κ2

k2a2(k2 + κ2)

(
cos(ka) − sin(ka)

ka

)12πZze2

k4a2ε

(
cos(ka) − sin(ka)

ka

)

= −36πZ2e2

εk6a4
κ2

k2 + κ2

(
cos(ka) − sin(ka)

ka

)2
.

To calculate the effective interaction, we also have to take the macroion-macroion-interaction
into account, so veff = vind + vmm or in Fourier space v̂eff = v̂ind + v̂mm, respectively. Fol-

lowing the calculation of Section 4.1, by (4.10) we have

vmm(r) =





Z2e2

εa

[
6
5
− 1

2

( r

a

)2
+

3
16

( r

a

)3
− 1

160

( r

a

)5
]

for 0 ≤ r ≤ 2a,

Z2e2

εr
for 2a < r.

Thus we calculate the Fourier transform of vmm, i. e.

v̂mm(k) =
4π

k

∞∫

0

rvmm(r) sin(kr)dr

=
4πZ2e2

kε

2a∫

0

[
6
5

r

a
− 1

2

( r

a

)3
+

3
16

( r

a

)4
− 1

160

( r

a

)6
]

sin(kr)dr

+
4πZ2e2

kε

∞∫

2a

sin(kr)dr

=
4πZ2e2

kε
(I1 + I2).

From (4.12) we immediately obtain I2 =
cos(2ka)

k . The first integral I1 can be solved via the

following iteration formulas based on integration by parts. We have
∫

rn sin(kr)dr = − rn

k
cos(kr) +

n

k

∫
rn−1 cos(kr)dr,

∫
rn cos(kr)dr =

rn

k
sin(kr)− n

k

∫
rn−1 sin(kr)dr.
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4. Interaction for homogeneous macroions

Hence, I1 reads

I1 =
9

2k7a6 − 9 cos(2ka)

2k7a6 − 9 sin(2ka)

k6a5 +
9

2k5a4 +
9 cos(2ka)

2k5a4 − cos(2ka)

k
.

Altogether, we have

v̂eff(k) =
36πZ2e2

εk6a4

[
1

2k2a2 − cos(2ka)

2k2a2 − sin(2ka)

ka
+

cos(2ka)

2
+

1
2

− κ2

k2 + κ2

(
cos(ka) − sin(ka)

ka

)2
]

=
36πZ2e2

εk6a4

[
1

2k2a2 − cos2(ka)

2k2a2 +
sin2(ka)

2k2a2 − 2 sin(ka) cos(ka)

ka

+
cos2(ka)

2
− sin2(ka)

2
+

1
2
− κ2

k2 + κ2

(
cos(ka)− sin(ka)

ka

)2
]

=
36πZ2e2

εk6a4

[
1

2k2a2 − cos2(ka)

2k2a2 − sin2(ka)

2k2a2 − 2 sin(ka) cos(ka)

ka
− cos2(ka)

2

− sin2(ka)

2
+

1
2
+ cos2(ka) +

sin2(ka)

k2a2 − κ2

k2 + κ2

(
cos(ka) − sin(ka)

ka

)2
]

=
36πZ2e2

εk6a4

[
−2 sin(ka) cos(ka)

ka
+ cos2(ka) +

sin2(ka)

k2a2

− κ2

k2 + κ2

(
cos(ka) − sin(ka)

ka

)2
]

=
36πZ2e2

εk6a4

[(
cos(ka)− sin(ka)

ka

)2
− κ2

k2 + κ2

(
cos(ka)− sin(ka)

ka

)2
]

=
36πZ2e2

εk4a4
1

k2 + κ2

(
cos(ka) − (sin(ka)

ka

)2
.

One obtains the effective interaction via the inverse Fourier transform

veff(r) =
1

2π2r

∞∫

0

kv̂eff(k) sin(kr)dk

=
18Z2e2

επa4r

∞∫

0

1
k3(k2 + κ2)

(
cos(ka)− (sin(ka)

ka

)2
sin(kr)dk.

One may solve this integral by expansion of the trigonometric functions, partial fraction
decomposition, and, finally, integration by parts in a similar way as for the microion

density profile ¯̺c. However, the calculation, although being quite straight forward, is
very lengthy and the result is already known (cf. [Den03]). However, we can also derive

this result as a limit of the more general theory on layered-shell particles from Chapter 5.

32



4.2. Effective interaction of microgel macroions

Hence, we have for r ≤ 2a

veff(r) = vmm(r)

− 9Z2e2

2εκ4a4r

{(
1 − e−κr +

1
2

κ2r2 +
1

24
κ4r4

)
·
(

1 − 1
κ2a2

)
+

2
κa

e−2κa sinh(κr)

+

[
e−2κa sinh(κr) + 2κ2ar +

1
3

κ4(4a3r + ar3)

]
·
(

1 +
1

κ2a2

)

−2r

a

(
1 + 2κ2a2 +

8
15

κ4a4
)
− r3

3a3

(
κ2a2 +

4
3

κ4a4
)
− 1

720
κ4

a2 r6
}

and for r > 2a

veff(r) =
9Z2e2

εκ4a4

[
cosh(κa)− sinh(κa)

κa

]2
e−κr

r
.
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5. Interaction in multilayered-shell microgels

Before actually studying the case of core-shell microgels, let us consider a more general

situation: Suppose we have a macroion consisting of a spherically symmetric charge dis-
tribution with n layers of piecewise constant charge densities ˜̺i (which can be positive,

negativ or even zero), where for i > 1 each layer is a spherical shell of width di = ai − ai−1.
Here the ai denote the radii of the spheres bounding the shells. In the case i = 1 we write

the innermost domain just as a spherical core of charge density ˜̺1 with radius a1.

˜̺1˜̺2˜̺n−1˜̺n

a2

a1

an

d2 dn

Figure 5.1: Multilayered-shell macroion

Representing each layer by a difference of Heaviside-Functions we obtain the charge dis-
tribution

̺(x) =
n

∑
i=2

˜̺i[Θ(ai − |x|)− Θ(ai−1 − |x|)] + ˜̺1Θ(a1 − |x|)

= ˜̺nΘ(an − |x|) +
n−1

∑
i=1

( ˜̺i − ˜̺i+1)Θ(ai − |x|). (5.1)
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5. Interaction in multilayered-shell microgels

We define ̺n = ˜̺n and ̺i = ˜̺i − ˜̺i+1 for 1 ≤ i < n, so the charge distribution function
more conveniently reads

̺(x) =
n

∑
i=1

̺iΘ(ai − |x|). (5.2)

5.1. Interaction of multilayered macroions

Considering, as in the previous chapter, a medium of permittivity ε > 0, we obtain for the

pair interaction between two such macroions separated by a distance r the expression

vmm(r) =
1
ε

∫

R6

̺(x)̺(y − r)

|x − y| d3x d3y

=
1
ε

n

∑
i,j=1

̺i̺j

∫

R6

Θ(ai − |x|)Θ(aj − |y − r|)
|x − y| d3x d3y.

We define

Φij(r) :=
∫

R6

Θ(ai − |x|)Θ(aj − |y − r|)
|x − y| d3x d3y

=
∫

R3

Φi(y)Θ(aj − |y − r|)d3y

with

Φi(y) =
∫

R3

Θ(ai − |x|)
|x − y| d3x.

Then it follows that

vmm(r) =
1
ε

n

∑
i,j=1

̺i̺jΦij.

To evaluate the x-integration, we follow the calculation in Section 4.1 and obtain by Equa-
tion (4.3) with a 7→ ai

Φi(y) =
4πa2

i

3





3
2
− 1

2
y2

a2
i

for 0 ≤ y ≤ ai. (5.3a)

ai

y
for y > ai, (5.3b)
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5.1. Interaction of multilayered macroions

In the next step we evaluate the remaining integral, which is essentially – i. e. up to a
constant factor – the pair interaction between two charged spheres of radii ai and aj,

Φij(r) =
∫

R3

Φi(y)Θ(aj − |y − r|)d3y

=
∫

R3

Φi(|z + r|)Θ(aj − |z|)d3z.

The function Φij is actually only dependent on the centre-centre separation of the spheres
and in spherical coordinates, where the ϕ-integration has already been performed, reads

Φij(r) = 2π

aj∫

0

π∫

0

Φi(|z + r|)z2 sin ϑ dϑ dz.

We start with the case r ≥ ai + aj, thus the distance |z + r| > ai for z ∈ Baj
(0) and

Φi(|z + r|) =
4πa2

i
3

ai
y . This corresponds to the case, where the two charged spheres are

completely separated from each other. Choosing r parallel to the z-axis and substituting
u := − cos ϑ, we obtain

Φij(r) =
8π2a3

i

3

aj∫

0

z2
1∫

−1

1√
z2 + r2 − 2rzu

du dz

=
8π2a3

i

3

aj∫

0

z2
(

1
zr
(|z + r| − |z − r|)

)
dz.

Since r ≥ ai + aj and z ≤ aj, we have r − z ≥ ai ≥ 0, and thus the integration simplifies

to

Φij(r) =
16π2a3

i

3r

aj∫

0

z2 dz =
16π2a3

i a3
j

9r
.

Now for the remaining cases let, without loss of generality, be ai ≥ aj. We consider the
case ai ≤ r < ai + aj, that means the two spheres start to overlap. Basically, this turns out

to be a slight modification of the situation a ≤ r < 2a in Section 4.1.

We set Φij(r) = I1 + I2 + I3, where the three integrals are as follows. We have

I1 =
8π2a3

i

3

r−ai∫

0

1∫

−1

1√
z2 + r2 − 2rzu

z2 du dz.

By Equation (4.6c) this yields

I1 =
8π2a3

i

3

(
2a2

i −
2a3

i

3r
− 2air +

2r2

3

)
.
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5. Interaction in multilayered-shell microgels

For the second integral we have to evaluate

I2 =
8π2a3

i

3

aj∫

r−ai

z2+r2−a2
i

2rz∫

−1

1√
z2 + r2 − 2rzu

z2 du dz.

Using Equation (4.7a), we obtain

I2 =
8π2a3

i

3

aj∫

r−ai

z(r + z − ai)

r
dz

=
8π2a3

i

3

(
5ai

3

6r
− 5ai

2

2
− aiaj

2

2r
+

5air

2
+

aj
3

3r
+

aj
2

2
− 5r2

6

)

For the third integral we start with an expression analogous to Equation (4.8a), thus we

have

I3 =
8π2a3

i

3

aj∫

r−ai

1∫

z2+r2−a2
i

2rz

(
3

2ai
− 1

2a3
i

(z2 + r2 − 2rzu)

)
z2 du dz

=
8π2a3

i

3

aj∫

r−ai

(
5aiz

8r
− 3rz

4ai
+

r3z

8a3
i

+
3z2

2ai
− r2z2

2a3
i

− 3z3

4air
+

3rz3

4a3
i

− z4

2a3
i

+
z5

8a3
i r

)
dz

=
8π2a3

i

3

(
aj

6

48ai
3r

− aj
5

10ai
3 +

3aj
4r

16ai
3 − aj

3r2

6ai
3 +

aj
2r3

16ai
3 − r5

240ai
3 − 7ai

3

48r

+
2ai

2

5
− 3aj

4

16air
+

aj
3

2ai
− 3aj

2r

8ai
+

5aiaj
2

16r
+

r3

16ai
− 5air

16

)
.

Finally, the pair interaction up to a constant coefficient, which represents the charge dens-
ities, reads

Φij(r) =
8π2

3

(
ai

6

48r
+

aj
6

48r
− ai

5

10
− aj

5

10
− 3ai

4aj
2

16r
− 3ai

2aj
4

16r
+

3ai
4r

16
+

3aj
4r

16

+
ai

3aj
3

3r
+

ai
3aj

2

2
+

ai
2aj

3

2
− ai

3r2

6
− aj

3r2

6
− 3ai

2aj
2r

8
+

ai
2r3

16
+

aj
2r3

16
− r5

240

)
.

As expected, the expression is symmetric in ai and aj, and setting ai = aj = a we can
retrieve the pair potential for two homogeneously charged spheres as in Equation (4.9).

This result can be extended up to the point r = ai − aj similarily to the case 0 ≤ r ≤ a in
Section 4.1. Although the calculation looks slightly different due to a modified partition

of the integration domain, the result, however, turns out to be the same.
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5.1. Interaction of multilayered macroions

So the next really interesting case is the one, where the larger sphere fully covers the
smaller one, this corresponds to separation distances r < ai − aj. When carrying out the

integration for Φij the angle ϑ is not restricted anymore, and thus we obtain

Φij(r) =
8π2a3

i

3

aj∫

0

1∫

−1

(
3

2ai
− 1

2a3
i

(z2 + r2 − 2rzu)

)
z2 du dz

=
8π2

3

(
ai

2aj
3 − aj

5

5
− aj

3r2

3

)
.

It is worth to mention that this term is not symmetric in ai and aj anymore (it was done

under the assumption of ai ≥ aj), the potential, however, is. Suppose aj > ai, then the
calculation would give

Φij(r) =
8π2

3

(
aj

2ai
3 − ai

5

5
− ai

3r2

3

)
.

Since in the pair interaction both terms are added, the result is again symmetric. Sum-
marized, we have (assumed ai ≥ aj)

Φij(r) =
8π2

3





ai
2aj

3 − aj
5

5
− aj

3r2

3
for 0 ≤ r ≤ ai − aj,

ai
6

48r
+

aj
6

48r
− ai

5

10
− aj

5

10

− 3ai
4aj

2

16r
− 3ai

2aj
4

16r
+

3ai
4r

16

+
3aj

4r

16
+

ai
3aj

3

3r
+

ai
3aj

2

2

+
ai

2aj
3

2
− ai

3r2

6
− aj

3r2

6

− 3ai
2aj

2r

8
+

ai
2r3

16
+

aj
2r3

16
− r5

240





for ai − aj ≤ r < ai + aj,

2a3
i a3

j

3r
for 0 ≤ r ≤ ai − aj.

Since the layer bounds are numbered increasingly from 1 to n, the pair interaction between

two macroions can be recast as

vmm(r) =
1
ε

n

∑
i,j=1

̺i̺jΦij(r)

=
1
ε

n

∑
i=1

̺2
i Φii(r) +

2
ε

n

∑
i=1

i−1

∑
j=1

̺i̺jΦij(r).
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5. Interaction in multilayered-shell microgels

5.2. Interaction of a layered macroion and a point charge

We model the charge density of the macroion as in the previous section, thus

̺(x) =
n

∑
i=1

̺iΘ(ai − |x|).

The Coulomb interaction of such a macroion situated at the origin and a point charge q

separated by a distance r in a medium of permittivity ε > 0 reads

vmc(r) =
1
ε

∫

R6

̺(x)qδ(y − r)

|x − y| d3x d3y

=
q

ε

n

∑
i=1

̺i

∫

R3

δ(y − r)
∫

R3

Θ(ai − |x|)
|x − y| d3x d3y.

We substitute the integral over x with the expression calculated in Equation (5.3a), eval-
uate the δ-distribution and obtain

vmc(r) =
q

ε

n

∑
i=1

̺iΦi(r). (5.4)

5.3. Counterion density and effective interaction

We calculate the counterion density around a single macroion at the coordinate origin as
in Equation (4.13)

〈 ˆ̺c(k)〉 = χ(k)v̂mc(k). (5.5)

Remember, χ(k) = − ελBnc
e2+ελBncv̂cc(k)

is the linear response function and v̂cc(k) =
4πq2

εk2 is the

Fourier transform of the Coulomb interaction between two counterions of charge q. Thus,
we need the Fourier transform of the macroion-counterion interaction vmc(r). Since the

Fourier transform is linear, we immediately obtain from Equation (5.4)

v̂mc(k) =
q

ε

n

∑
i=1

̺iΦ̂i(k). (5.6)

Hence, we can treat every summand Φi(r) as in Section 4.2 and we obtain

Φ̂i(k) =
−16π2ai

k4

(
cos(kai)−

sin(kai)

kai

)
. (5.7)

We substitute the last equation into (5.6) and (5.5), so

〈 ˆ̺c(k)〉 =
4π

q

n

∑
i=1

̺iai
κ2

k2(k2 + κ2)

(
cos(kai)−

sin(kai)

kai

)
(5.8)
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5.3. Counterion density and effective interaction

and apply the inverse Fourier transform. This yields

¯̺c(r) =
2κ2

πqr

n

∑
i=1

̺iai

∞∫

0

sin(kr)

k(k2 + κ2)

(
cos(kai)−

sin(kai)

kai

)
dk,

where the integral is exactly the difference of Equations (4.16) and (4.18), and therefore,

each summand of the counterion density is, up to the coefficient, as in Equation (4.20) for
a = ai. Taking this into account, we obtain

¯̺c(r) = − 1
qr

[
n

∑
i=m+1

̺iai

(
r

ai
−
(

1 +
1

κai

)
e−κai sinh(κr)

)

+
m

∑
i=1

̺iaie
−κr

(
cosh(κai)−

sinh(κai)

κai

)]
, (5.9)

where m is the natural number such that am ≤ r < am+1, with a0 = 0.

We obtain the effective interaction as veff = vind + vmm, where v̂ind(k) = 〈 ˆ̺c(k)〉v̂mc(k).

Combining Equations (5.6)–(5.8) yields

v̂ind(k) = −64π3

εk6
κ2

k2 + κ2

n

∑
i,j=1

̺i̺jaiaj

(
cos(kai)−

sin(kai)

kai

)(
cos(kaj)−

sin(kaj)

kaj

)
.

We also need the Fourier transform of the macroion pair interaction, which reads

v̂mm(k) =
1
ε

n

∑
i=1

̺2
i Φ̂ii(k) +

2
ε

n

∑
i=1

i−1

∑
j=1

̺i̺jΦ̂ij(k).

The function Φij(r) is defined piecewise on [0, ai − aj[, [ai − aj, ai + aj[ and [ai + aj, ∞[,
so the Fourier transform splits into the sum of three integrals on these domains. The

calculation of these integrals involves repeated application of the integration-by-parts
formulas for trigonometric functions. Doing so, we end up with a result similar to Section

4.2,

Φ̂ij(k) =
64π3

k6 aiaj

(
cos(kai)−

sin(kai)

kai

)(
cos(kaj)−

sin(kaj)

kaj

)
.

Since Φ̂ij(k) is symmetric in i and j again, we can write

v̂mm(k) =
64π3

εk6

n

∑
i,j=1

̺i̺jaiaj

(
cos(kai)−

sin(kai)

kai

)(
cos(kaj)−

sin(kaj)

kaj

)
,

and therefore,

v̂eff(k) =
64π3

εk4
1

k2 + κ2

n

∑
i,j=1

̺i̺jaiaj

(
cos(kai)−

sin(kai)

kai

)(
cos(kaj)−

sin(kaj)

kaj

)
.
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So the remaining task is to apply the inverse Fourier transform to the effective interaction,
then

veff(r) =
32π

εr

n

∑
i,j=1

̺i̺jaiaj Iij.

with

Iij =

∞∫

0

1
k3(k2 + κ2)

(
cos(kai)−

sin(kai)

kai

)(
cos(kaj)−

sin(kaj)

kaj

)
sin(kr)dk.

We substitute x := κ
k and obtain

Iij =
1
κ4

∞∫

0

1
x3(1 + x2)

(
cos(aiκx)− sin(aiκx)

aiκx

)(
cos(ajκx)− sin(ajκx)

ajκx

)
sin(rκx)dx

=
1

4κ4

∞∫

0

(
−sin((ai − aj − r)κx)

aiajκ2x5 (x2 + 1)
+

sin((ai + aj − r)κx)

aiajκ2x5 (x2 + 1)

+
sin((ai − aj + r)κx)

aiajκ2x5 (x2 + 1)
− sin((ai + aj + r)κx)

aiajκ2x5 (x2 + 1)
− cos((ai − aj − r)κx)

aiκx4 (x2 + 1)

+
cos((ai − aj − r)κx)

ajκx4 (x2 + 1)
− cos((ai + aj − r)κx)

aiκx4 (x2 + 1)
− cos((ai + aj − r)κx)

ajκx4 (x2 + 1)

+
cos((ai − aj + r)κx)

aiκx4 (x2 + 1)
− cos((ai − aj + r)κx)

ajκx4 (x2 + 1)
+

cos((ai + aj + r)κx)

aiκx4 (x2 + 1)

+
cos((ai + aj + r)κx)

ajκx4 (x2 + 1)
− sin((ai − aj − r)κx)

x3 (x2 + 1)
− sin((ai + aj − r)κx)

x3 (x2 + 1)

+
sin((ai − aj + r)κx)

x3 (x2 + 1)
+

sin((ai + aj + r)κx)

x3 (x2 + 1)

)
dx. (5.10)

By decomposing the integrand of Iij into partial fractions, we obtain terms that can be

integrated by parts in a similar way as in Section 4.2. We exclude this part of the calcula-
tion since it is to lengthy to be included in detail and just give the final result for Iij here.
Further details on this calculation can be found in Appendix A. The expression actually

splits into three cases. At first let 0 ≤ r < ai − aj, then

Iij =
π

12aiajκ6

[
2a3

j κ4r − 3(aiκ + 1)(ajκ − 1)eκ(−ai+aj) sinh(κr)

− 3(aiκ + 1)(ajκ + 1)eκ(−ai−aj) sinh(κr)
]

. (5.11)
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5.3. Counterion density and effective interaction

For the case ai − aj ≤ r < ai + aj, we obtain

Iij =
π

96aiajκ6

[
−3a4

i κ4 + 8a3
i κ4r + 6a2

i κ2
(

a2
j κ2 − κ2r2 − 2

)
− 3a4

j κ4 + 8a3
j κ4r

−6a2
j κ2 (κ2r2 + 2

)
+ κ4r4 + 12κ2r2 + 24 + 12(aiκ + 1)(ajκ − 1)eκ(−ai+aj−r)

+12(aiκ − 1)(ajκ + 1)eκ(ai−aj−r) − 24(aiκ + 1)(ajκ + 1)eκ(−ai−aj) sinh(κr)
]

. (5.12)

For ai + aj ≤ r, we have

Iij =
π

2κ4 e−κr

(
cosh(aiκ)−

sinh(aiκ)

aiκ

)(
cosh(ajκ)−

sinh(ajκ)

ajκ

)
. (5.13)

43



44



6. Application to core-shell microgels

This chapter is dedicated to the evaluation of the effective interaction and the counterion

density profile for model core-shell macroions. In the setting of Chapter 5 this corres-
ponds to a value of n = 2, such that a macroion of radius a2 = a has a core given as a

fraction αa with α ∈]0, 1[ of the macroion radius a and a shell of width d2 = (1 − α)a. We
choose Z ≥ 0 to be the charge of the macroion, which is shared between the core and the

shell, such that Z2 = ζZ and Z1 = (1 − ζ)Z, where we have ζ ∈]∞, ∞[.

(1 − ζ)Z
ζZ

a

αa

(1 − α)a

Figure 6.1: Core-shell macroion

Therefore, the charge density of the macroion by Equation (5.2) reads

̺(x) =
3Zeζ

4πa3(1 − α3)
Θ(a2 − |x|) + 3Ze(α3 + ζ − 1)

4πa3α3(α3 − 1)
Θ(a1 − |x|)

with

̺1 =
3Ze(α3 + ζ − 1)
4πa3α3(α3 − 1)

and ̺2 =
3Zeζ

4πa3(1 − α3)
. (6.1)

For the graphical representation we choose a macroion to have net valence Z = 3, and the

counterions shall be negatively monovalent. We measure the distance from the macroion’s
centre in units of a. We plot the effective energy veff in units of Z2e2

εa and the counterion

density profile ¯̺c in units of 3Z
4πa3 . We consider several cases with different charges of

core and shell of the macroions: At first, we choose macroions with negatively charged

core and positively charged shell, then hollow macroions where all the (positive) charge
is concentrated within the shell, and finally, macroions where the both core and shell are

positively charged but the core carries the higher charge.
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6. Application to core-shell microgels

• Let ζ = 4
3 , this equals Z2 = 4 and Z1 = −1.

In the first plot (Figure 6.2) we see the effective pair interaction between two macro-

ions for different core fractions α, setting κ = 1
2 . We observe a strong dependence

on the negative charge density within the core, subject to the electrostatic attraction

between the oppositely charged cores and shells of the two macroions. Anyway,
we shall see that this effect, even though intuitively expected, may quantitatively
be incorrect, due to the negative counterion density in the core region. We will

explore this situation in more detail below, see Figure 6.3.
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εa
Z2e2 veff

α = 1/8
α = 2/8
α = 3/8
α = 4/8
α = 5/8
α = 6/8

Figure 6.2: Effective interaction, variable α, constant κ = 1
2 , ζ = 4

3

Now we illustrate the counterion density profile around a single macroion for the
same situation as above. We find that qualitatively the counterion density profile

fits our expectation. However, a closer look at Figure 6.3 shows that the result is
of limited reliabilty as we observe unphysically negative values near the macroion

centre for small cores.

46



0.5 1.0 1.5 2.0 2.5 3.0

-0.04

-0.02

0.00

0.02

0.04

0.06

r
a

4πa3

3Z ¯̺c

α = 1/8
α = 2/8
α = 3/8
α = 4/8
α = 5/8
α = 6/8

Figure 6.3: Counterion density profile, variable α, constant κ = 1
2 , ζ = 4

3

This (analytical) behaviour is purely subject to the approximation method used and

needs considerable more attention. Suitable methods for further exploration in-
clude e. g. either computer simulations, higher order perturbation theory, and/or

an alternative approach such as the use of integral equations. It should be men-
tioned that there exists the possibilty that for large negative charge densities within
the core a perturbative ansatz may even be impossible due to the strong interaction.

The next three plots, Figures 6.4, 6.5, and 6.6, cover the dependence on the screening
constant κ. At first, we compare the the effective pair interaction with the one for

a homogenous particle of the same over-all charge and radius, as well as with the
bare macroion pair interaction, which corresponds to the high-temperature limit

κ → 0. Recall thath the relation between the screening constant and the temperature
is given by

κ2 =
4πncz2e2

εkBT
.

We observe that a lower screening κ corresponds either to a higher temperature
T, to a higher permittivity ε or to a lower average counterion density nc. Since the

latter is fixed by the charge neutrality condition nmZ + ncz = 0 and the permittivity
ε is given by the electrolyte used, we consider κ to be mainly dependent on the

temperature.
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Figure 6.4: Effective interaction, variable κ, constant α = 1
2 , ζ = 4

3

Looking at the counterion density profile (Figure 6.5), we observe a similar unphys-

ical behaviour for large values of the screening constant κ as in the case of a small
core.
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Figure 6.5: Counterion density profile, variable κ, constant α = 1
2 , ζ = 4

3

Finally, to confirm the Yukawa-like behaviour for large radii, in Figure 6.6, we give a
semi-logarithmic plot of εr

Z2e2 veff. As expected from Equation (5.13) these graphs are

straight lines as in the well-known theory for homogeneous macroions, cf. [Den03].
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Figure 6.6: Logarithmic plot of the effective interaction, variable κ, constant α = 1
2 , ζ = 4

3

• Let ζ = 1, this equals Z2 = 3 and Z1 = 0.

In Figure 6.7, we plot the effective pair interaction for different values of the core

radius at constant screening κ = 1
2 . For distances from the macroion’s centre larger

than 2a the interaction follows a Yukawa-like fall-off that is nearly independent of

the macroion’s internal configuration.

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

r
a

εa
Z2e2 veff

α = 1/8
α = 2/8
α = 3/8
α = 4/8
α = 5/8
α = 6/8

Figure 6.7: Effective interaction, variable α, constant κ = 1
2 , ζ = 1

Additionally, Figure 6.8 shows the matching counterion density profile. Here, as
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6. Application to core-shell microgels

expected, the counterion density reaches its maximum near the boundary between
core and shell and slightly drops below this value within the neutral core.
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Figure 6.8: Counterion density profile, variable α, constant κ = 1
2 , ζ = 1

Now, we leave the core radius fraction at a constant value of α = 1
2 and instead

consider a variable screening κ. The next two plots, Figures 6.9 and 6.10, show

the effective interaction and the counterion density profile. We also compare the
effective interaction to the one for a homogeneous macroion of same radius and

over-all charge.
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Figure 6.9: Effective interaction, variable κ, constant α = 1
2 , ζ = 1
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Here, we also find that for large radii the theory for core-shell particles approx-
imately matches the case of homogeneous particles. If the shell of one macroion

overlaps with the core of the other, the effective repulsion is slightly weaker than
compared to the situation with homogeneous macroions since the macroions’ cores

are neutral.

The counterion density profile shows the expected behaviour for a neutral core

particle. The counterion density is maximal within the shell of the particle and
decreases within the core, the effect being stronger for a larger screening constant

κ and nearly non-existent in the case of weak screening, as the thermal energy of
the counterions dominates over the electrostatic interaction. In the limit κ → ∞,

i. e. we let the temperature approach absolute zero, the counterion density profile
converges to a step function, such that all counterions are trapped within the shell

of the macroion (actually this situation is not shown in the plot).
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Figure 6.10: Counterion density profile, variable κ, constant α = 1
2 , ζ = 1

In contrast to the case with a negatively charged core, the linear response approx-

imation in this case gives reasonable results for the counterion density profile, even
within the macroion’s core.

Again, to illustrate the Yukawa fall-off for large distances, we include a logarithmic

plot of εr
Z2e2 veff(

r
a ) which according to Equation (5.13) are straight lines.
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6. Application to core-shell microgels
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Figure 6.11: Logarithmic plot of the effective interaction, variable κ, constant α = 1
2 , ζ = 1

• Let ζ = 1
3 , this equals Z2 = 1 and Z1 = 2.

The last case, we consider, is the case of a core shell particle that consists of a pos-

itively charged core as well as a positively charged shell as an approximation of
a macroion with gradually decreasing charge for increasing distance to the centre.

We observe that the effective interaction for small macroion separations is subject
to a strong effect as the charge density within the core increases. Here, we choose

again κ = 1
2 .
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Figure 6.12: Effective interaction, variable α, constant κ = 1
2 , ζ = 1

3

52



A similar effect can be observed for the counterion density profile: A higher charge
density within the core draws a large fraction of the counterions into the core.
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Figure 6.13: Counterion density profile, variable α, constant κ = 1
2 , ζ = 1

3

Now, we set α = 1
2 and vary the screening κ. A plot of the effective interaction for

a core-shell microgel and one consisting of homogeneous macroions also shows a
stronger repulsive potential for core-shell macroions compared to the homogenous

case, cf. Figure 6.14.
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Figure 6.14: Effective interaction, variable κ, constant α = 1
2 , ζ = 1
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6. Application to core-shell microgels

Similarly, the counterion density is significantly higher than in the case of homo-
geneous macroions, see Figure 6.15.
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Figure 6.15: Counterion density profile, variable κ, constant α = 1
2 , ζ = 1

3

The logarithmic plot of the effective interaction illustrates the Yukawa fall-off for
large radii. This situation is shown in Figure 6.16.
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Figure 6.16: Logarithmic plot of the effective interaction, variable κ, constant α = 1
2 , ζ = 1
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A. Fourier integral evaluation

Here, we evaluate the inverse Fourier integral from Equation (5.10). To simplify the
following calculations, we split the integrand of (5.10) into a sum of three terms, i. e.

Iij = Aij + Bij + Cij and define the following auxillary constants:

α := (ai − aj − r)κ β := (ai + aj − r)κ

γ := (ai − aj + r)κ δ := (ai + aj + r)κ

For the first term we obtain

Aij =
1

4κ4

∞∫

0

(
− sin(αx)

aiajκ2x5 +
sin(βx)

aiajκ2x5 +
sin(γx)

aiajκ2x5 − sin(δx)

aiajκ2x5

+
sin(αx)

aiajκ2x3 − sin(βx)

aiajκ2x3 − sin(γx)

aiajκ2x3 +
sin(δx)

aiajκ2x3

− cos(αx)

aiκx4 − cos(βx)

aiκx4 +
cos(γx)

aiκx4 +
cos(δx)

aiκx4

+
cos(αx)

ajκx4 − cos(βx)

ajκx4 − cos(γx)

ajκx4 +
cos(δx)

ajκx4

−sin(αx)

x3 − sin(βx)

x3 +
sin(γx)

x3 +
sin(δx)

x3

)
dx

=
1

4κ4 lim
t→∞(

α cos(αx)

2x
− α2 cos(αx)

6aixκ
+

α2 cos(αx)

6ajxκ
+

cos(αx)

3aix3κ
− cos(αx)

3aj x3κ
− α3 cos(αx)

24aiajxκ2

− α cos(αx)

2aiajxκ2 +
α cos(αx)

12aiajx3κ2

+
β cos(βx)

2x
− β2 cos(βx)

6aixκ
− β2 cos(βx)

6ajxκ
+

cos(βx)

3aix3κ
+

cos(βx)

3ajx3κ
+

β3 cos(βx)

24aiajxκ2

+
β cos(βx)

2aiajxκ2 − β cos(βx)

12aiajx3κ2
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A. Fourier integral evaluation

− γ cos(γx)

2x
+

γ2 cos(γx)

6aixκ
− γ2 cos(γx)

6ajxκ
− cos(γx)

3aix3κ
+

cos(γx)

3ajx3κ
+

γ3 cos(γx)

24aiajxκ2

+
γ cos(γx)

2aiajxκ2 − γ cos(γx)

12aiajx3κ2

− δ cos(δx)

2x
+

δ2 cos(δx)

6aixκ
+

δ2 cos(δx)

6ajxκ
− cos(δx)

3aix3κ
− cos(δx)

3ajx3κ
− δ3 cos(δx)

24aiajxκ2

− δ cos(δx)

2aiajxκ2 +
δ cos(δx)

12aiajx3κ2

− α sin(αx)

6aix2κ
+

α sin(αx)

6ajx2κ
+

sin(αx)

2x2 − α2 sin(αx)

24aiajx2κ2 − sin(αx)

2aiajx2κ2 +
sin(αx)

4aiajx4κ2

− β sin(βx)

6aix2κ
− β sin(βx)

6ajx2κ
+

sin(βx)

2x2 +
β2 sin(βx)

24aiajx2κ2 +
sin(βx)

2aiajx2κ2 − sin(βx)

4aiajx4κ2

+
γ sin(xγ)

6aix2κ
− γ sin(γx)

6ajx2κ
− sin(γx)

2x2 +
γ2 sin(γx)

24aiajx2κ2 +
sin(γx)

2aiajx2κ2 − sin(γx)

4aiajx4κ2

+
δ sin(δx)

6aix2κ
+

δ sin(δx)

6ajx2κ
− sin(δx)

2x2 − δ2 sin(δx)

24aiajx2κ2 − sin(δx)

2aiajx2κ2 +
sin(δx)

4aiajx4κ2

) ∣∣∣∣
t

x=0

+
1

4κ4 lim
t→∞

(
−α4 Si(αx)

24aiajκ2 − α2 Si(αx)

2aiajκ2 +
β4 Si(βx)

24aiajκ2 +
β2 Si(xβ)

2aiajκ2

+
γ4 Si(γx)

24aiajκ2 +
γ2 Si(γx)

2aiajκ2 − δ4 Si(δx)

24aiajκ2 − δ2 Si(δx)

2aiajκ2

− α3 Si(αx)

6aiκ
− β3 Si(βx)

6aiκ
+

γ3 Si(γx)

6aiκ
+

δ3 Si(δx)

6aiκ

+
α3 Si(αx)

6ajκ
− β3 Si(βx)

6ajκ
− γ3 Si(γx)

6ajκ
+

δ3 Si(δx)

6ajκ

+
1
2

α2 Si(αx) +
1
2

β2 Si(βx)− 1
2

γ2 Si(γx)− 1
2

δ2 Si(δx)

) ∣∣∣∣
t

x=0

Obviously, the first part of Aij, containing only sine and cosine functions converges to

zero for t → ∞. To obtain the value for x = 0, we expand these terms into a Taylor series
and observe that the constant term vanishes. More precisely, the series expansion reads

−4
3
(a2

i κ3r + a2
j κ3r − 6κr)x +O(x3).

Since Si(0) = 0, the terms consisting of sine integrals can be evaluated as

lim
x→∞

Si(λx) =
π

2
sgn λ. (A.1)
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We now turn to Bij, which reads

Bij =
1

4κ4

∞∫

0

(
x sin(αx)

aiajκ2 (x2 + 1)
− x sin(βx)

aiajκ2 (x2 + 1)
− x sin(γx)

aiajκ2 (x2 + 1)
+

x sin(δx)

aiajκ2 (x2 + 1)

− sin(αx)

aiajκ2x
+

sin(βx)

aiajκ2x
+

sin(γx)

aiajκ2x
− sin(δx)

aiajκ2x

− cos(αx)

aiκ (x2 + 1)
− cos(βx)

aiκ (x2 + 1)
+

cos(γx)

aiκ (x2 + 1)
+

cos(δx)

aiκ (x2 + 1)

+
cos(αx)

ajκ (x2 + 1)
− cos(βx)

ajκ (x2 + 1)
− cos(γx)

ajκ (x2 + 1)
+

cos(δx)

ajκ (x2 + 1)

− x sin(αx)

x2 + 1
− x sin(βx)

x2 + 1
+

x sin(γx)

x2 + 1
+

x sin(δx)

x2 + 1

+
sin(αx)

x
+

sin(βx)

x
− sin(γx)

x
− sin(δx)

x

)
dx.

We can easily evaluate this expression using (A.1), thus
∞∫

0

cos(λx)

1 + x2 dx =
π

2
e−|λ| and

∞∫

0

x sin(λx)

1 + x2 dx =
π

2
e−|λ| sgn λ.

Finally, for the third expression we obtain

Cij =
1
κ4

∞∫

0

(
cos(αx)

aiκx2 +
cos(βx)

aiκx2 − cos(γx)

aiκx2 − cos(δx)

aiκx2

− cos(αx)

ajκx2 +
cos(βx)

ajκx2 +
cos(γx)

ajκx2 − cos(δx)

ajκx2

)
dx

=
1

4κ4 lim
t→0

(
−cos(αx)

aiκx
− cos(βx)

aiκx
+

cos(γx)

aiκx
+

cos(δx)

aiκx

+
cos(αx)

ajκx
− cos(βx)

ajκx
− cos(γx)

ajκx
+

cos(δx)

ajκx

) ∣∣∣∣
t

x=0

+
1

4κ4 lim
t→0

(
−α Si(αx)

aiκ
− β Si(βx)

aiκ
+

γ Si(γx)

aiκ
+

δ Si(δx)

aiκ

+
α Si(xα)

ajκ
− β Si(βx)

ajκ
− γ Si(γx)

ajκ
+

δ Si(δx)

ajκ

) ∣∣∣∣
t

x=0

The first part of Cij converges to zero for t → ∞, similar to Aij. Again, we expand into a

Taylor series to evaluate this expression for x = 0, this gives

−8x(κr) +O(x3).

For the sine integrals we use again (A.1). Reinserting α, β, γ, and δ yields (5.11), (5.12),

and (5.13) if we employ a case-by-case analysis for the three cases 0 ≤ r < ai − aj,
ai − aj ≤ r < ai + aj, and ai + aj ≤ r.
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Index

background

energy, 12

uniform compensating, 12

Bjerrum length, 15

canonical partition function, 11

charge

density, 14

charge density

core-shell macroion, 45

multilayered macroion, 36

colloid, 1

counterion, 2

density profile, 15

homogeneous charge, 27

multilayered charge, 41

free energy, 12, 15

pair interaction, 10

de Broglie wavelength

thermal, 11

Debye screening length, 15

density profile

counterion, 15

homogeneous charge, 27, 31

multilayered charge, 41

dielectric constant, 9, 19

distribution

derivative of a, 4

tempered, 3
distributional derivative, 4

dominated convergence, 7

effective

Hamiltonian, 16
interaction, 2

homogeneous charge, 33
multilayered charge, 42

energy
background, 12
free, 12

volume, 17

Fourier transform, 5

evaluation, 55
inverse, 5

radial, 6
free energy

counterion, 12, 15
of a one-component plasma, 14

gel, 1
micro, 1

Hamiltonian
effective, 16

of a microgel, 10

induced interaction, 16

homogeneous charge, 31
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Index

multilayered charge, 41
integrable regulator, 6

integral equations, 47
interaction

Coulomb, 10
effective, 2

homogeneous charge, 33
multilayered charge, 42

induced, 16
homogeneous charge, 31

multilayered charge, 41
pair

homogeneous charge, 19
multilayered charge, 36, 39

length
Bjerrum, 15

Debye, 15
linear response

approximation, 13
function, 15

macroion, 2

multilayered, 35
pair interaction, 10, 25

macroion-counterion
pair interaction, 11, 25

multilayered charge, 40
microgel, 1

Hamiltonian, 10
solution, 9

multilayered
macroion, 35

shell
microgel, 35

one-component
plasma

classical, 13

free energy, 14
reduction, 10

pair interaction
counterion, 10

homogeneous charge, 19
macroion, 10, 25

macroion-counterion, 11, 25
multilayered charge, 36, 39

partition function
canonical, 11

permittivity
electric, 9, 19

perurbation theory
higher order, 47

second order, 13
plasma

one-component, 13
free energy, 14

pseudoparticles, 2

reduction

one-component, 10
regulator

integrable, 6

Schwartz space, 3

static structure factor, 15
structure factor

static, 15
suspension

colloidal, 1

tempered distribution, 3

thermal de Broglie wavelength, 11

volume energy, 17
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Zusammenfassung

Wir verwenden den Formalismus der Ein-Komponenten-Reduktion, um die effektive
Wechselwirkung und das Dichteprofil der Gegenionen in einem Mikrogel, das aus Ma-

kroionen besteht, welche sich aus mehreren geladenen Schichten zusammensetzen. Da-
bei folgen wir einem Ansatz, der auf Störungstheorie in zweiter Ordnung basiert und er-

halten analytische Ausdrücke für die effektive Wechselwirkung, indem wir die Schichten
der Makroionen als Linearkombination homogen geladener Kugeln modellieren. Außer-
dem wenden wir das allgemeine Resultat auf den wichtigen Fall der Core-Shell-Mikrogele

an und vergleichen die Theorie mit den bekannten Resultaten für homogen geladene ku-
gelförmige Makroionen.
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