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Abstract
Several conceptual issues at the interface between quantum mechanics and spe-
cial and general relativity revolve around the notions of locality and causality. In
relativistic quantum field theory, the identification of local degrees of freedom
with quantum observables yields counterintuitive predictions, such as vacuum en-
tanglement. Combining general covariance and the dynamic causal structure of
general relativity with quantum mechanics is one of the main open problems in
theoretical physics and a consistent framework that unifies the two theories is
still missing. In this thesis several foundational questions at the border between
quantum mechanics, special and general relativity are addressed. Basic concepts
such as localisation and causal structure are examined from an operational point
of view, with a special focus on the experimental procedures that allow defining
them. Methods are developed which allow exploring the relation between the
mathematical and the operational notions, as well as understanding under which
conditions counterintuitive features can be observed and in which limit they re-
duce to more intuitive, classical notions.

In the first chapter, the notions of particle and particle detector models in re-
lativistic quantum field theory are investigated. Theoretical models of particle
detectors are often used to give an operational meaning to the notion of particle
in curved spacetime. However, the commonly adopted models feature temporary
transitions from ground to excited state even when the detector is at rest in the
Minkowski vacuum, making the interpretation of “clicks” of the detectors as ab-
sorption of particles unambiguous only if the detector is switched on for infinite
times (in which limit, a detector initially in the vacuum is found in the ground
state). A toy model is considered in which a local interaction between relativistic
fields describes a simple process of absorption of a particle by a detector. Both
the detector and the particles to be detected are represented in terms of dressed
states of relativistic fields, i.e. eigenstates of the full interacting Hamiltonian, as
opposed to the bare states (eigenstates of the non-interacting theory) considered
in typical detector models. An effective model for a two-level detector is then
derived, which reproduces the transition amplitudes of the fundamental model in
the first order of the perturbation theory. Such a model does not predict particle
detection in the Minkowski vacuum and provides a well-defined notion of particle
also for finite detection times. However, the observables effectively “seen” by the
(dressed) detector are not the local relativistic fields: although the underlying the-
ory is local and relativistically invariant, the effective theory, as observed from the
detector’s point of view, appears as non-local.

The second chapter considers the problem of associating a thermodynamic
entropy to a region of space containing a relativistic quantum field in a thermal
state. If one considers a volume of space in thermal equilibrium, its entropy is
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finite and extensive. However, if a subregion is considered, the calculation of
the entropy contains a divergent vacuum contribution which, once an ultraviolet
cut-off is introduced, is proportional to the area of the boundary of the subre-
gion. A new scheme for calculating the thermal entropy is considered, where the
degrees of freedom corresponding to a region of space are associated with the
Newton-Wigner position operators rather than with the local covariant fields. The
calculation shows that the entropy is always finite, without the need of any cut-off

or other additional regularisations. It is found that, in the high temperature/high
volume limit, the entropy is extensive and matches the result for the full space
calculated with standard techniques. For the vacuum state, the entropy vanishes
as a result of the fact that in the Newton-Wigner localisation scheme the vacuum
is a pure product state.

In the third chapter the discrepancies between the classical and quantum no-
tions of entropy in quantum field theory are investigated. It is shown how a clas-
sical notion of entropy can emerge under the assumption that measurements of the
quantum fields are subject to a minimal error. In particular, it is shown that the
entropy of a region of space becomes extensive, i.e. proportional to the volume, if
the field’s amplitude cannot be measured with arbitrary precision. It is also shown
that a minimal error in distinguishing points in space produces a different defini-
tion of local degrees of freedom, according to which the vacuum is a pure product
state.

The fourth chapter addresses the implications of using quantum, rather than
classical, reference frames in experimental tests of quantum mechanics. In partic-
ular directional reference frames are considered, modelled as spin coherent states,
which allow measuring a spin’s orientation without an additional, external ref-
erence frame (i.e. in a rotationally invariant manner). It is shown that quantum
reference frames of finite size limit the ability to demonstrate genuine quantum
features such as violation of local realism. It is found that if quantum features
of macroscopic objects have to be tested, quadratically larger reference frames
are needed, a requirement generally not met in everyday experience. This sug-
gests that there exist fundamental limits in performing arbitrarily accurate meas-
urements and provides a possible explanation for the non-observance of quantum
phenomena at macroscopic scales, that is to say, emergence of classicality.

The last chapter addresses the general question of whether a definite causal
order between events is a fundamental property of nature. The notion of causal
order is defined operationally in terms of signalling: if A can signal to B but B
cannot signal to A, then A precedes B in a causal structure. For operations local-
ised in spacetime, only one-way signalling is possible in an individual run of an
experiment; the main focus of the chapter is understanding whether, in quantum
mechanics, such an assumption can be relaxed and under which conditions it be-
comes necessary. For this purpose, a new framework for multipartite quantum
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correlations is developed that does not presume any notion of global space, time,
or causal structure but simply that experimenters in their local laboratories can
perform arbitrary quantum operations. All known situations that respect def-
inite causal order, including signalling and non-signalling correlations between
time-like and space-like separated experiments respectively, as well as probabil-
istic mixtures of these, can be expressed in this framework. It is found that the
formalism also includes situations where the two experiments are neither causally
ordered nor in a probabilistic mixture of definite causal orders. These correlations
are shown to allow performing a communication task that would be impossible if
the operations were ordered according to a fixed background time. However, it
is proven that classical correlations, i.e. correlations between classical operations,
are always causally ordered, suggesting that a definite causal structure can emerge
in a quantum-to-classical transition.
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Zusammenfassung
Etliche konzeptuelle Fragestellungen, die an der Schnittstelle zwischen Quanten-
mechanik und der Speziellen sowie der Allgemeinen Relativitätstheorie entste-
hen, drehen sich um die Konzepte “Lokalität” und “Kausalität". In relativistischer
Quantenfeldtheorie führt die Identifizierung lokaler Freiheitsgrade mit Quanten-
Observablen zu kontraintuitiven Vorhersagen. Die Verbindung der allgemeinen
Kovarianz und der dynamischen Kausalstruktur der Allgemeinen Relativitätstheo-
rie mit der Quantenmechanik ist eines der großen offenen Probleme in Theoreti-
scher Physik. Ein konsistenter Rahmen, welcher die beiden Theorien vereinheit-
licht, fehlt bis heute. In dieser Doktorarbeit werden einige fundamentale Fragen
an der Grenze zwischen Quantenmechanik, Spezieller und Allgemeiner Relativi-
tätstheorie aufgegriffen. Grundlegende Konzepte, wie z.B. die Lokalisierung und
die Kausalstruktur, werden von einem operationellen Standpunkt untersucht—mit
einem speziellen Fokus auf die experimentellen Techniken, welche die Definiti-
on der Konzepte erlauben. Es werden Methoden entwickelt, die die Erforschung
der Beziehung zwischen den mathematischen und operationellen Begriffen erlau-
ben sowie zum Verständnis beitragen, unter welchen Bedingungen kontraintuitive
Eigenschaften beobachtet werden können und in welchem Limit sich diese Eigen-
schaften auf intuitivere, klassische Begriffe reduzieren.

Im ersten Kapitel werden die Konzepte von Teilchen und Teilchendetektions-
modellen in der relativistischen Quantenfeldtheorie untersucht. Theoretische Mo-
delle von Teilchendetektoren werden oftmals dazu herangezogen, um dem Kon-
zept eines Teilchens in einer gekrümmten Raumzeit eine operationelle Bedeutung
zu geben. Allerdings weisen die üblicherweise angewendeten Modelle zeitweili-
ge Übergänge auf, selbst wenn sich der Detektor im Minkowski-Vakuum in Ruhe
befindet. Ein Toy-Modell wird betrachtet, in welchem eine lokale Wechselwir-
kung zwischen relativistischen Feldern einen einfachen Prozess der Absorption
eines Teilchens von einem Detektor beschreibt. Der Detektor sowie die zu detek-
tierenden Teilchen werden durch bekleidete Zustände relativistischer Felder d.h.
durch Eigenzustände des vollen Wechselwirkungs-Hamiltonischen Operators dar-
gestellt. Ein erfolgreiches Modell für einen Zwei-Level-Detektor wird hergeleitet,
welches die Übergangsamplitude des fundamentalen Models in der ersten Nähe-
rung der Störungstheorie reproduziert und welches keine Teilchen im Minkowski-
Vakuum detektiert und daher ein wohldefiniertes Konzept eines Teilchens für eine
beliebig endliche Zeit liefert. Als Ergebnis folgt, dass die Observablen, die tat-
sächlich vom (bekleideten) Detektor “gesehen"werden, nicht die lokalen relati-
vistischen Felder sind. Obwohl die zugrunde liegende Theorie lokal und relativis-
tisch invariant ist, erscheint die eigentliche Theorie vom Standpunkt des Detektors
nicht-lokal.

Das zweite Kapitel betrachtet das Problem der Thermodynamik in der Quan-
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tenfeldtheorie. Wenn man ein räumliches Volumen im thermischen Gleichgewicht
betrachtet, ist dessen Entropie endlich und extensiv. Wenn man allerdings einen
Teilbereich betrachtet, enthält die Berechnung der Entropie einen divergierenden
Vakuumbeitrag, welcher proportional zur Grenzfläche des Teilbereichs wird, so-
bald ein ultravioletter Cut-Off eingeführt ist. Ein neues Schema für die Berech-
nung der thermischen Entropie wird betrachtet, in dem die mit einem Bereich des
Raums korrespondierenden Freiheitsgrade mit den Newton-Wigner-Ortsoperato-
ren anstatt mit den lokalen kovarianten Feldern assoziiert sind. Die Berechnun-
gen zeigen, dass die Entropie auch ohne einen Cut-Off oder andere zusätzliche
Regularisierungen immer endlich ist. Es wird festgestellt, dass im Limes hoher
Temperaturen/großen Volumens die Entropie extensiv ist und zu den Ergebnissen
für den ganzen Raum passt, die mit den Standardtechniken berechnet wurden. Für
den Vakuumzustand verschwindet die Entropie, da im Newton-Wigner-Lokalisie-
rungsschema das Vakuum ein reiner Produktzustand ist.

Im dritten Kapitel werden Diskrepanzen zwischen den klassischen und den
quantenphysikalischen Begriffen der Entropie in der Quantenfeldtheorie unter-
sucht. Es wird gezeigt, wie ein klassischer Begriff der Entropie unter der An-
nahme zustande kommt, dass Messungen der Quantenfelder minimalen Fehlern
unterworfen sind. Insbesondere wird gezeigt, dass die Entropie eines Bereichs im
Raum extensiv werden kann, d.h. proportional zum Volumen, falls die Feldampli-
tude nicht mit beliebiger Genauigkeit gemessen werden kann. Desweiteren wird
gezeigt, dass ein minimaler Fehler bei der Unterscheidung von Punkten im Raum
eine unterschiedliche Definition lokaler Freiheitsgrade hervorrufen kann, gemäß
derer das Vakuum ein reiner Produktzustand ist.

Das vierte Kapitel beschäftigt sich mit den Auswirkungen der Verwendung
von quantenphysikalischen anstatt klassischer Bezugssysteme in experimentellen
Tests der Quantenmechanik. Insbesondere werden gerichtete Bezugssystemen be-
trachtet, modelliert als Spin-kohärente Zustände, welche die Messung der Orien-
tierung eines Spins ohne zusätzliches äußeres Bezugssystem (d.h. in einer rota-
tionsinvarianten Weise) erlauben. Es wird gezeigt, dass Quantenbezugssysteme
endlicher Größe die Möglichkeit beschränken, echte Quanteneigenschaften wie
z.B. die Verletzung des lokalen Realismus aufzuzeigen. Es wird gezeigt, dass—
falls Quanteneigenschaften makroskopischer Objekte getestet werden sollen—
quadratisch größere Bezugssysteme nötig sind—eine Bedingung, die in der All-
tagserfahrung allgemein nicht erfüllt ist. Dies legt nahe, dass fundamentale Gren-
zen für beliebig genaue Messungen existieren und schafft eine mögliche Erklärung
für das Nicht-Beobachten von Quantenphänomenen auf makroskopischen Skalen,
d.h. das Auftreten der Klassischen Physik.

Das fünfte Kapitel widmet sich der allgemeinen Frage, ob eine bestimmte
kausale Abfolge von Ereignissen eine fundamentale Eigenschaft der Natur sei.
Der Begriff der kausalen Abfolge ist operationell durch Signalübertragung defi-
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niert: Wenn A ein Signal zu B schicken kann, aber B kein Signal zu A schicken
kann, dann geht A in einer kausalen Struktur B voran. Üblicherweise wird an-
genommen, dass in einzelnen Durchläufen eines Experiments nur eine Einweg-
Signalübertragung möglich ist. Der Hauptaugenmerk des Kapitels liegt darin zu
verstehen, ob in der Quantenmechanik solch eine Annahme aufgelockert werden
könnte und unter welchen Umständen dies notwendig werden könnte. Zu diesem
Zweck wird ein neuer Rahmen für vielteilige Quantenkorrelationen entwickelt,
welcher kein Konzept eines globalen Raums, einer globalen Zeit oder einer globa-
len Kausalstruktur voraussetzt, sondern nur voraussetzt, dass die Experimentato-
ren in ihren lokalen Laboratorien beliebige Quantenoperationen durchführen kön-
nen. Alle bekannten Situationen, welche eine bestimmte kausale Abfolge einhal-
ten (Signalübertragungs- und Nicht-Signalübertragungs-Korrelationen zwischen
zeitartig und raumartig getrennten Experimenten miteingeschlossen), als auch de-
ren wahrscheinlichkeitstheoretische Mischungen können in diesem Rahmen aus-
gedrückt werden. Es wird gezeigt, dass der Formalismus auch Situationen bein-
haltet, in denen die zwei Experimente weder kausal gereiht sind noch sich in einer
wahrscheinlichkeitstheoretischen Mischung bestimmter kausaler Abfolgen befin-
den. Es wird gezeigt, dass diese Korrelationen ermöglichen, eine Kommunikati-
onsaufgabe zu erfüllen, welche unmöglich wäre, sofern die Operationen gemäß
einer fixen Hintergrundzeit gereiht wären. Jedoch wird bewiesen, dass klassische
Korrelationen d.h. Korrelationen zwischen klassischen Operationen, immer kau-
sal gereiht sind, was nahe legt, dass eine bestimmte kausale Struktur in einem
Übergang von der Quantenphysik zur klassischen Physik auftreten kann.
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Introduction

Much of the recent progress in the foundations of quantum physics has been
tightly connected with the development of the field of quantum information. The
perspective provided by information theory enables to extract deep conceptual fea-
tures of the theory from complicated phenomena, which can be analysed through
simple gedankenexperiments that can be often formulated as communication tasks
or “games”. The operational attitude developed in such a context helps clarifying
apparent “paradoxes” which can be understood as prime examples of the theory’s
foundations, rather than as problematic aspects of it. In return, the research in
quantum foundations, by highlighting features of quantum mechanics absent in
classical physics, has strongly stimulated the field of quantum information, show-
ing the possibility of numerous applications based on inherently quantum phe-
nomena. The most celebrated example is Bell’s theorem [1]: the observation that
quantum systems feature correlations that cannot be explained in classical terms
is at the same time a key insight into the structure of the theory and the basic
premise for most of the developing quantum technologies, from quantum crypto-
graphy, through quantum communication, to quantum computing.

The interplay of quantum mechanics and special relativity gives rise to new
conceptual challenges over and above those present in quantum mechanics. It has
been recognised that information plays a crucial role in linking the two theories
[2] and recently relativistic quantum information has started to emerge as an in-
dependent field [3]. Information theory, and in a similar way thermodynamics,
provides a theory-independent perspective which becomes particularly useful in
situations in which a coherent theoretical framework has not yet been develop, as
is the case for a theory unifying quantum mechanics and general relativity.

In this thesis, we address several questions at the interface between quantum
mechanics, special and general relativity adopting an operational point of view.
This implies a re-examination of the physical and experimental condition under
which the phenomena into consideration can emerge, as well as the use of tools
and methods inspired by the point of view of quantum information and thermody-
namics.

1



2 INTRODUCTION

Issues at the Interface of Quantum Mechanics, Spe-
cial and General relativity
We review some conceptual issues that constitute the main background of the
work developed in the present dissertation.

Entanglement of the Quantum Vacuum Several counterintuitive features of
quantum field theory are tightly linked the Reeh-Schlieder theorem [4]. The the-
orem states that, given the vacuum state |Ω〉 of a relativistic quantum field and
the algebra of local operators A(O) associated with a region of spacetime O, the
linear space A(O)|Ω〉 generated by acting on the state |Ω〉 with the operators in
A(O) is dense in the Hilbert space. This means that, in principle, by performing
operations localised in an arbitrary spacetime region O, no matter how small, it
is possible to reconstruct any state with arbitrary precision, which can in turn be
detected with measurements in regions space-like separated from O. The theorem
is not limited to the vacuum and extends to arbitrary states of finite energy. For
free fields, the theorem also holds if O is a region of space.

The consequences are quite striking: not only measurements on the vacuum—
the state one would naively think to be empty—can give non-trivial outcomes (in
fact, all possible outcomes of a local measurement have a non-zero probability
to occur), but local measurements in different regions are correlated. In fact, the
vacuum turns out to be an entangled state, which in principle allows violating
Bell’s inequalities via measurements localised in arbitrary space-like separated
regions [5, 6]. Since such a property does not appear in standard experiments,
in which typical observations agree with a more intuitive notion of vacuum, it
is natural to ask to which extent the vacuum entanglement has an operational
meaning and what would be the physical conditions that could make it possible
to observe vacuum correlations. As we are going to see in Chapter 1, a study of
particle detection within quantum field theory produces an effective model that
does not detect particles in the vacuum.

localisation in Quantum Field Theory An interpretative difficulty encountered
in quantum field theory, related to the Reeh-Schlieder theorem, is the notion of
localised objects. One can think of a state |ψ〉 as localised in a region O if, after
tracing the degrees of freedom in O, the reduced state outside that region is in-
distinguishable from the vacuum: TrO|ψ〉〈ψ| = TrO|Ω〉〈Ω| [7, 8]. As it turns out,
states with such a property cannot have a finite number of particles (although they
can approximate finite-particle states arbitrarily closely). More importantly, states
that, according to this definition, are localised in non-overlapping, space-like sep-
arated regions, are not necessarily orthogonal. Thus, after preparing a state local-
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ised in a region O, it should in principle be possible to detect, via a von Neumann
measurement, a state localised in a different region O′. These difficulties, absent
in non-relativistic quantum mechanics, have led some authors to speculate that
the mathematical objects associated with local measurements are not those pre-
scribed by algebraic quantum field theory, on which the Reeh-Schlieder theorem
relies [9, 10]. Such approaches however encounter difficulties related to relativ-
istic invariance and their physical significance is still debated [11, 12, 13].

In this thesis we do not attempt to answer the question of what are the cor-
rect local degrees of freedom at a fundamental level, we however investigate how
specific assumptions about physical measurements affect the concept of localisa-
tion (Chapters 1, 3). In Chapter 2 the consequences of an alternative localisation
scheme on the notion of thermodynamic entropy are considered.

Correspondence Principles The counterintuitive features of Einstein’s theory
of special relativity come together with a well-defined condition for their non-
observability: non-relativistic mechanics is an accurate description as long as re-
lative velocities are small compared with the speed of light. In a similar way,
general relativity can be approximated by Newton gravity for small gravitational
fields and small velocities.

In quantum mechanics the situation is less simple. A first, tentative formu-
lation of a “correspondence principle” was proposed by Bohr in 1920 [14] and
posits that states with large quantum number should behave as classical (a condi-
tion often rephrased as the “~→ 0” limit). Although this principle can be applied
to some extent, for example to coherent states, the general idea is contradicted by
the possibility of having entangled states with arbitrarily large quantum numbers
that can violate some Bell-type inequalities [15]. It is widely recognised that a
crucial role in the emergence of classicality is played by decoherence [16]—the
process through which a macroscopic system loses the internal coherence through
its interaction with the environment. There are however cases where this pro-
cess alone is not sufficient to explain the emergence of classicality. A striking
example is provided again by the vacuum entanglement in quantum field theory.
Since the vacuum is a stable state, it does not evolve and thus does not “deco-
here”. Additionally, since the Reeh-Schlieder theorem applies to any state with
finite energy, one would conclude that all physical states of quantum fields, in-
cluding those encountered in everyday life, are entangled across different regions
of space. This contrasts with the common knowledge that quantum effects are
only observable under very specific laboratory conditions. In particular, detecting
the entanglement of the vacuum, if at all possible, would require measurements
with a formidable accuracy.

Following an idea by Peres [17], it has been proposed that an important clue



4 INTRODUCTION

in understanding the emergence of classicality is indeed the lack of precision in
typical—coarse-grained—measurements [18, 19, 20]. The interesting aspect of
this approach is that it provides an epistemological, rather than dynamical, emer-
gence of classical states within the quantum formalism. It is particularly inter-
esting to understand whether this approach extends to the several counterintuitive
features of quantum field theory. This question is addressed in Chapter 3, where
particular attention is devoted to the “area law” for the entanglement entropy in
quantum field theory.

A related question is whether nature itself provides limitations for the obser-
vation of quantum phenomena, i.e. if there are regimes that can effectively be
considered as classical. From the point of view of the coarse-graining approach,
this translates into the question of what are the limits imposed by nature on the
achievable measurement precision. This question is addressed in Chapter 4, where
the limitations derived from the use of quantum systems as reference frame are
considered.

General Relativity, Quantum Mechanics, and Causal Structures One of the
most pressing problems in modern theoretical physics is the lack of a framework
that unifies quantum mechanics and general relativity. Unravelling the concep-
tual issues at the interface of the two theories is for this reason of special interest.
The concept of time, in particular, has received a considerable attention across the
years [21, 22, 23, 24, 25, 26, 27]. Since tentative full theories of quantum grav-
ity are faced with great technical hindrances, the methods and points of view of
quantum information could provide deep insights in this respect. Their application
in the context of general relativity, however, faces some serious difficulties. Even
though abstract formulations of quantum information do not make explicit refer-
ence to a spacetime geometry, the basic notions of the theory can still be clearly
distinguished in “space-like”, i.e. the properties of states, such as entropy or en-
tanglement, and “time-like”, i.e. the properties of quantum evolutions or more
generally quantum channels, such as information rate or channel capacity. This
contrasts with the unified picture of space and time provided by general relativity,
in which space-like and time-like intervals are just examples of general space-
time intervals with specific properties defined with respect to the covariant metric.
Even more critical is the fact that the spacetime metric, and more generally the
causal structure, of general relativity are dynamical: given a spacetime interval,
fixed with respect to some operationally-defined coordinate system, its space-like
or time-like nature generally depends on the mass-energy content of the surround-
ing region via the Einstein equations. In quantum mechanics, on the other hand,
the causal structure is fixed and can be abstractly formalised in the form of a
quantum circuit, in which operations (or “gates”) are applied to an initial state in
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a pre-determined order [28, 29]. These issues have stimulated the research of an
operational-probabilistic framework with a dynamic causal structure [30, 31] and
constitute the main background behind Chapter 5, in which a particular attention
is devoted to the notion of causal order as an operationally-defined concept.

Outlook of the Work

Chapter 1 is an analysis of the concept of particle and of particle detector mod-
els in quantum field theory. According to the traditional models, typically used to
determine the particle content of quantum field theory on a curved background,
particles can in principle be detected even by devices at rest in the Minkowski va-
cuum, if only finite times are considered. It is proposed that detectors that do not
undergo such temporary transitions provide a more natural notion of particle. The
basic assumption behind the proposed detector models is that the configuration
corresponding to the detector at rest in the vacuum should correspond to an eigen-
state of the full Hamiltonian describing the detector-field interaction. A concrete
model is introduced, in which the detector and its interaction with the field is fully
described within a locally interacting quantum field theory. An effective model
is further considered, derived from the previous one by identifying the relevant
subspaces of the fields describing the detector as “ground" and “excited” state of
a two-level system. At the effective level, the two-level detector does not couple
to the local field operator, although the original underlying theory was fully local.
This suggests that an operational definition of “local degrees of freedom” may not
coincide with the mathematical one.

Chapter 2 explores a new approach to the calculation of thermal entropy in
quantum field theory, based on a re-examination of the identification of local de-
grees of freedom with field operators. In particular, the Newton-Wigner localisa-
tion scheme is considered, which, as opposed to the conventional scheme, allows
a local definition of the particle content of a region of space in agreement with
the global notion of particle. Crucially, the vacuum state is a product state over
subsystems associated with the local Newton-Wigner degrees of freedom, each
local state corresponding to a local vacuum.

A scalar quantum field in a thermal state is considered and the entropy asso-
ciated with the reduced state in a sub-region, defined according to the Newton-
Wigner localisation, is calculated. It is proved that the entropy so defined is free
of the ultraviolet divergences typically found in analogous calculations for sub-
regions associated with the local field operators. A diagrammatic formalism is
developed that allows calculating analytical expression for the entropy in several
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physical limits, including high and low temperature regimes of massive and mass-
less fields in arbitrary space dimensions.

Chapter 3 addresses the general problem of the emergence of classicality in
quantum field theory. More specifically, the main focus is the apparent discrep-
ancy between the quantum and the classical behaviour of the entropy associated to
a region of space containing a field in a thermal state or in the vacuum. Differently
from Chapter 2, the standard localisation is assumed in order to identify subsys-
tems with volumes of space. However, it is assumed that possible measurements
are subject to a minimal precision, both in the localisation of a point in space and
in the measurement of the field’s amplitude. It is found that, for large enough
imprecisions in the measurements of the field, all states appear effectively as sep-
arable and their entropy becomes proportional to the volume, rather than the area
(even for arbitrarily fine space resolution). However, for poor space resolution,
i.e. when only distances larger than the typical correlation length in the field can
be discriminated, the entropy vanishes for the vacuum state, in agreement with the
results of Chapter 2. In the large temperature limit, the von Neumann entropy of
a region becomes equivalent to the Shannon entropy of a classical thermal field.

Chapter 4 addresses the consequences of considering finite-size quantum ref-
erence frames in the measurement of quantum properties: the quantum nature of
physical measurement devices is expected to provide a limitation on the meas-
urement precision, equivalent to a fundamental coarse-graining of the possible
measurements. In particular, the case of directional reference frames is studied.
A classical directional reference frame defines a direction in space along which
the spin of a particle can be measured with arbitrary precision. As a quantum
analogue of a directional reference frame a spin coherent state is considered. In
the absence of additional, external reference frame it is still possible to measure
the relative orientation between the spin of a particle and the reference frame’s
spin. The finite size of the reference frame, however, imposes a limitation on the
accuracy with which such a measurement can be performed. It is studied how this
limitation affects the observation of non-classical effects in various situations.

It is found what the minimal sizes are of the reference frames that allow violat-
ing several local-realistic bounds, such as those given by the Bell-CHSH inequal-
ities for a pair dichotomic observables (e.g. two spin-1/2 particles), the Mermin
inequalities for N dichotomic observables (such as N spin-1/2 particles), and the
Bell inequalities for a pair of observables with arbitrarily many outcomes (e.g.
two particles with arbitrarily large spin). In the latter case, it is found numerically
that the size of the spin reference frames necessary to violate the inequalities must
be at least quadratically larger than the particles’ spin length, suggesting a fun-
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damental limitation for the observation of quantum properties at the macroscopic
scale.

Chapter 5 proposes an approach to the study of causal structures, in which
causal relations are defined in terms of the possibility of signalling. According to
this definition, it is possible to find an operational task—a “causal game”—whose
probability of success is limited for operations performed in a definite causal se-
quence (or even in a probabilistic mixture of causal sequences). A formalism
is then developed that allows describing all the possible multipartite correlations
that can be produced by different agents whose operations are locally described by
quantum mechanics, without making any prior assumption on the existence of a
global spacetime, or even of a causal structure, in which the operations are embed-
ded. A full characterisation of such correlations is found, as well as a convenient
representation in which the possibility of signalling between different parties can
be directly recognised. An example of such correlations is found that allows win-
ning the causal game with a probability of success larger than the causally-ordered
bound. This shows that assuming the local validity of quantum mechanics does
not imply the existence of a global causal structure. In contrast, if locally clas-
sical mechanics is assumed, all the possible multipartite correlations can always
be embedded in a global causal structure. This shows that if a fundamental theory,
possibly unifying general relativity and quantum mechanics, were not to feature a
definite causal structure, such a structure would nonetheless naturally emerge in a
quantum-to-classical transition.
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Chapter 1

Particle Detector Models in Field
Theory

Summary

We analyse the concept of particle in quantum field theory from an operational
point of view, that is, as the result of a detection event of a particle detector.
The commonly adopted Unruh-DeWitt type of detector, based on the coupling
of a discrete quantum system with the local field operators, is known to undergo
temporary transitions to excited states even when at rest and in the Minkowski
vacuum, making an interpretation of the vacuum as a state “devoid of particle”
difficult. We argue that in fact a well-defined notion of particle is possible if one
adopts the natural assumption that the configuration “detector in its ground state
+ vacuum of the field" is, in the non-accelerated case, a stable bound state of
the underlying fundamental theory describing the interaction of the field with the
detector. As a concrete example, we study a local relativistic field theory where
a stable particle can capture a quantum from a lighter field and form a quasi-
stable state. As expected, to such a stable particle correspond energy eigenstates
of the full theory, as it is shown explicitly by using a dressed particle formalism
at the first order in perturbation theory. We derive an effective model of a particle
detector (at rest), where the stable particle and the quasi-stable configurations
correspond to the two internal levels, “ground" and “excited", of the detector. This
detector model provides a well-defined notion of particle, according to which the
vacuum of the field can be interpreted as a state with zero particle content, even
for finite times. The price to pay is an apparent non-locality of the interaction
between the effective detector model and the field.

This chapter is based on and contains material from the publication

9
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• F. Costa and F. Piazza,
“Modeling a Particle Detector in Field Theory”,
New J. Phys. 11, 113006 (2009).

1.1 Particles and Detectors in Relativistic Quantum
Field Theory

In Minkowski spacetime, particles can be identified with the excited modes of
the field Hamiltonian. However, when field quantisation is applied to general
backgrounds, a univocal definition of particle is no longer possible [32]. Still,
with sound operational attitude, one can model a particle detector, calculate its
response along some trajectory and define accordingly the particle content of the
observed state. A requirement usually imposed on a detector model is that it
should reveal no particles in the vacuum when the detector is at rest and long
enough times are considered. However, typical predictions include the possibility
that, for short times, particles can be detected by a detector in inertial motion,
even in Minkowski spacetime. This implies that, according to such models, the
vacuum state contains a finite number of particles for finite-times [33].

Here we attempt to clarify some aspects of particle detector modelling and, in
particular, emphasise the role of the eigenstates of the full Hamiltonian when the
configurations of “field+detector" are taken into consideration. To be specific, we
will introduce two levels of description for the detector model (see Fig. 1.1): the
first level is a bona fide “fundamental" theory, which we take as a weakly coupled
quantum field theory (QFT) with three neutral scalar fields. This theory features
two stable particles (“A" and “C") and one meta-stable state (“B"). The massive
particle A can capture the lighter quantum C and form the unstable particle B,
Fig. 1.1a. Stable particles correspond to eigenstates of the full Hamiltonian, as
is shown explicitly by using a dressed particle formalism. Within this first level
of description, we interpret the capture process as “detection" of the particle C.
The second level of description is effective: it features only a two-level system—
the effective particle detector—and the (otherwise) free field to be detected, Fig.
1.1b. The detector-field interaction is such that the transition rates A → B of
the fundamental theory are faithfully reproduced, at the effective level, as trans-
itions between the two levels (“ground" and “excited" states) of the detector. The
discussion will only concern inertial detectors in Minkowski spacetime.

The main observation at the basis of the present analysis is that the configur-
ation “the detector is in its ground state and the field is in the vacuum" is stable
and therefore should correspond to an eigenstate of the Hamiltonian, both at the
level of the effective detector model and at the level of the more fundamental in-
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(a) (b)

Figure 1.1: The two levels of description of the particle detector. (a) At a fundamental level,
the detector is described by a toy model of locally interacting quantum fields. The model,
besides the particles C to be detected, includes two more species of particles: A, representing
the unexcited detector, and B, representing the detector after having absorbed a particle. The
A and C particles can interact and produce a B particle. (b) At an effective level, the detector
is described as a two-level system that can undergo a transition from ground to excited state
after absorbing a particle with the same probability amplitudes as the corresponding process
in the fundamental theory.

teracting field theory. The commonly adopted Unruh-DeWitt detector [34, 35]
only satisfies a weaker version of this basic request: it sees no particles in the
(Minkowski) vacuum after an infinite time. For finite times, however, it always
undergoes temporary transitions to excited states with finite (albeit small) prob-
ability. It is interesting that the property we are asking for is instead shared by
one of the first photodetector models, proposed by Glauber in 1963 [36], in which
photon detection is associated with the positive-energy components of the elec-
tromagnetic field.

Here we show that the Glauber type of detector corresponds, at the deeper
QFT-level description, to dealing with the properly “dressed" states of the full the-
ory. Therefore, we argue that the Glauber type of detector is more appropriate for
describing finite-time processes. The proposed detector model, although derived
from a perfectly local relativistic field theory, does not couple to the local degrees
of freedom of the field to be detected and, therefore, it is not localised [37, 38] in
the usual sense. This is due to the fact that we are capturing and modelling the
finite time behaviour of the dressed—as opposed to the bare—states of the field
theory itself.

1.2 Detector Models: a Critique
A model detector [34, 35, 36] is a quantum system whose states live in a product
Hilbert space HD ⊗ Hφ (i.e. detector and field) and provided with a Hamiltonian
operator Hm = HD

m + Hφ
m + HI

m (suffix m stands for “model”). In the simplest
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scenario, φ is an—otherwise free—scalar field,

Hφ
m =

∫
d3kE(k)c†~kc~k, where E(k) =

√
k2 + m2 (1.1)

and c†~k and c~k are the usual creation and annihilation operators,

φ(~x) =
1

(2π)3

∫
d3k
√

2E(k)

(
c†~ke

i~k·~x + c~ke
−i~k·~x

)
.

The detector Hamiltonian HD
m accounts for at least two energy levels: unex-

cited, |0〉D, and excited, |E〉D; say that HD
m |E〉D = ∆E|E〉D, HD

m |0〉D = 0. Regardless
of the choice of HI

m, the model state |0〉D ⊗ |0〉 is thus interpreted, by construction,
as “the detector is in its ground state and the field is in its vacuum state".

The traditionally used Unruh-DeWitt detector features an interaction Hamilto-
nian of the type

HI
m = σφ(~x(t), t), (1.2)

where σ is a self adjoint operator acting on HD and containing off diagonal ele-
ments and ~x(t) is the detector’s trajectory. Without loss of generality, we can take
σ = σ↑ +σ↓, where σ↑ = |E〉D〈0| and σ↓ = (σ↑)†. The Hamiltonian (1.2) is based
on the following requests:

1. The detector is a quantum system with discrete energy levels.

2. Transitions between different levels must be possible in order to account
for particle absorption and emission (the simplified version containing two
levels only allows single-particle detection).

3. The detector interacts locally with the field.

4. Asymptotically, no transition has to take place when the detector is at rest.

A striking feature of this traditionally adopted detector is that the state |0〉D⊗|0〉
is not an eigenstate of (1.2), due to the presence of the creation operators c†~k inside
φ. Accordingly, if the system is initially prepared in the configuration |0〉D ⊗ |0〉,
there is always a non-vanishing transition rate to a state of type |E〉D⊗|one particle〉
at finite times, regardless of the state of motion of the detector. In the interaction
picture, and at first order in perturbation theory, the amplitude for this process
reads

A~k(2t) = −i
∫ t

−t
dt′〈~k| ⊗D〈E|HI

m(t′) |0〉D ⊗ |0〉, (1.3)

where |~k〉 = c†~k|0〉, HI
m(t′) = ei(HD

mτ(t)+Hφ
mt)HI

me−i(HD
mτ(t)+Hφ

mt) and τ is the proper time
along the trajectory considered. If the detector is at rest, A~k(2t) ∝ sin[(∆E +



1.2. DETECTOR MODELS: A CRITIQUE 13

E(k))t]/(∆E + E(k)); only for t → ∞, i.e. t � 1/∆E, doesA become proportional
to a delta function of the positive quantity ∆E + E(k), and therefore vanishes. On
the opposite, |A| keeps staying above zero along accelerated trajectories, which is
one of the several derivations of the Unruh effect [34].

Here we consider in detail only the case of a detector at rest. The possibil-
ity that a detector may “click” at finite times in the vacuum but then “erase” the
record later, appears rather mysterious. One may object that the measurement
process cannot be considered finished as long as the detector undergoes quantum
fluctuations, so that only if |A~k(t)| stays definitely above zero in the future can we
fairly say that a particle has been detected. However, in real apparatuses quantum
coherence is usually destroyed over very short times by some amplification pro-
cess; for decoherence times td � 1/∆E, the vacuum fluctuations (1.3) would
become detectable and give rise to observable effects. (The numerical analysis
performed in Ref. [39] showed that such effects could indeed become relevant in
forthcoming experiments in circuit QED.)

An elementary and reasonable detector one may think of is a hydrogen atom
that, by absorbing a photon, can make a transition to an excited state. We can
think of a consistent QED theory with two Dirac fields of opposite charges (elec-
trons and protons) and appropriate masses; the hydrogen atom in its ground state
is arguably contemplated in the spectrum of that theory as a stable bound state.
When written in terms of fundamental fields, we therefore expect the model state
|0〉D ⊗ |0〉 to concretely correspond to a stable state, i.e., strictly, an eigenstate, of
the full Hamiltonian: this is what the unexcited hydrogen atom is in QED and the
detector is not in the Unruh-DeWitt model. It is plausible that even more realistic
detectors, such as a block of germanium crystal, correspond to stable bound states
in appropriate QED-like theories.

The amplitude (1.2) is clearly analogous to the usual perturbative calculation
of S matrix elements. In that formalism, the asymptotic in- and out- states are bor-
rowed from the free theory under the consistent assumption of adiabatic switching
of the interactions. Consider, as an example, a λφ4 theory. Similarly to the Unruh-
DeWitt detector, the Hamiltonian features off-diagonal elements, among others,
of the type 〈four particles|H|0〉, which could suggest that the vacuum could spon-
taneously generate four particle states. Such matrix elements, however, are those
taken the unphysical states of the free theory, while it is well-known that λφ4

has a stable vacuum and stable single-particle states. When written in terms of
those states, the full Hamiltonian has, by definition, only diagonal elements and
no particle is generated from the “true” vacuum, even at finite times. One would
come to wrong conclusions if the states of the free theory were used to study
finite-time processes.

The above reasoning brings us to postulate, as a condition for a good model of
a particle detector, that the configuration “unclicked detector + vacuum", |0〉D⊗|0〉,
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be an eigenstate of the full Hamiltonian Hm of the model at rest. We will refer to
this as the Frog Principle1. This principle can be regarded as a stronger version
of the above Condition 4: the condition of not clicking in the vacuum is extended
from infinite to finite times. It seems that if we make Condition 4 stronger, all four
requirements cannot be satisfied simultaneously. What seems problematic, in par-
ticular, is to reconcile locality (Condition 3) with the frog principle. This is in fact
an instance of the “localisation problem” in quantum field theory and arises from
a well-known consequence of the Reeh-Schlieder theorem, which implies that no
nontrivial, positive, local observable can exist having zero expectation value on
the vacuum [4, 41]. This means that, if a detector performs a von Neumann-type
measurement corresponding to a projector Π, then, either 〈0|Π|0〉 , 0 (the detector
reveals particles in the vacuum) or Π is not local (see also Ref. [2], Sec. IV E).
We suggest that, for particle detector models, Condition 3 can indeed be relaxed,
and that this is perfectly compatible with local relativistic quantum field theory.
In order to make our point stronger, in the following we consider a toy—local
relativistic—“fundamental" field theory where a stable particle plays the role of
the detector in its ground state and the detection process corresponds to the capture
of a light particle and the formation of a meta-stable state. We will then provide
a two-level effective detector model faithfully reproducing the detection rates of
the fundamental theory and satisfying the Frog Principle. A similar toy field the-
ory was sketched already in Unruh’s celebrated paper [34]. The crucial difference
here is that we use the “dressed" rather than the “bare" states of the model.

Studies of Unruh-DeWitt models have gone beyond the perturbative amplitude
(1.3), exact and numerical solutions are available for a variety of trajectories (see
e.g. [42]). Considering exact asymptotic states is particularly appropriate since,
in most cases, preparing the system into the state |0〉D ⊗ |0〉 and then switching
on the interaction is not realistically possible. Crucially, the “dressed" stable con-
figurations of the Unruh-DeWitt detector depend on the trajectory considered and
exhibit radiation at infinity in the accelerated case. Here we show that if dress-
ing is consistently done—in the first place—on all sectors of the underlying field
theory, this produces a different detector model altogether, i.e. a different model
Hamiltonian HI

m (Eq. 1.14 below).

1.3 The Toy Field Theory
Beside the already introduced light field to be detected, φ(x) of mass m (sector
“C” of the theory), we introduce two other neutral scalars, χ(x), of mass M (sector

1Some frogs are known to have eyes sensitive enough to detect a single photon [40]. The postu-
lated triviality of a good detector’s response on the vacuum—and the absence of dark counts—may
be pictorially rephrased as “a frog does not see photons when it is dark".
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“A”), and η(x) of mass M (sector “B”). We choose a local interaction of the type
LI(x) ∼ −µ χ(x)η(x)φ(x), the coupling µ being small with respect to the other
masses2. The full Hamiltonian reads H = H0 + HI , where H0 = HA + HB + HC,
and

HA =

∫
d3k w(k)a†

~k
a~k, w(k)2 = k2 + M2, (1.4)

HB =

∫
d3k W(k)b†

~k
b~k, W(k)2 = k2 + M

2
, (1.5)

HC =

∫
d3k E(k)c†~kc~k, E(k)2 = k2 + m2, (1.6)

HI = (2π)3/2µ

∫
d3x φ(~x)η(~x)χ(~x)

= µ

∫
d[k1k2k3]

√
2w(k1) 2W(k2) 2E(k3)

(a~k1
+ a†

−~k1
)(b~k2

+ b†
−~k2

)(c~k3
+ c†

−~k3
). (1.7)

In the above expression d[k1k2k3] = d3k1 d3k2 d3k3 δ
3(~k1 + ~k2 + ~k3) is the volume

element on the momentum shell. Creation and annihilations operators have been
introduced in the usual way and satisfy usual commutation relations. In the picture
we have in mind φ is a light field (m � M,M) that can be captured by an A-particle
and form a B meta-stable state. The mass difference ∆M = M − M is therefore
supposed to be of the same order as—but slightly bigger than—m, M > M + m.
In order to allow a perturbative treatment, the coupling µ is taken much smaller
than the other masses, µ � m. Particles A and C are stable. C cannot decay
to anything else for kinematical reasons. Moreover, processes such as A → 2C
are not allowed by the form of the interaction: formally, the discrete symmetry
φ→ −φ, χ→ −χ, η→ η + permutations is protected.

We aim to give an effective description of the ABC dynamics in which sec-
tors A and B are described as “internal" to the model detector and in such a way
that the transition amplitudes are faithfully reproduced (at first order in µ). The
one-particle sector A is the detector in its ground state. The excited detector is de-
scribed instead by the meta-stable configurations of the B sector. With the above
assumed relations among the mass parameters, the decay rate of a B-particle is
ΓB ∼ µ2∆M/M2. At the expense of detector’s efficiency, we can assume B’s

2Strictly speaking, this potential is not bounded from below e.g. along the direction χ = φ,
η = −φ. However, the tunnelling decay rate of the perturbative vacuum is suppressed by an
exponential factor of at least e−m2/µ2

which we fix to be small enough to be irrelevant. Moreover,
we can always stabilise the potential with higher order terms that will not be relevant for present
purposes.
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lifetime τB ∼ 1/ΓB to be long enough for the detector to be considered as “per-
manently clicked” for all practical purposes.

As announced, we want the one-particle space of the A sector of this theory
to correspond to the state |0〉D ⊗ |0〉 of the model detector. However, a†

~k
|Ω〉 (here

|Ω〉 is the field theory vacuum, as opposed to the vacuum |0〉 of the field φ in the
detector model (1.2)) is an eigenstate of the free theory but not of HI , due to the
presence in (1.7), e.g., of terms such as ab†c†. On the other hand, we know that
the A-particle is stable and therefore corresponds to a set of eigenstates also in the
full theory. Such states can be expressed, order by order in perturbation theory,
through a “clothing” or “dressing” transformation3. For this purpose, we act with
a unitary transformation U on the whole Hilbert space, |Ω〉 → |Ωd〉 = U |Ω〉, a† →
α† = Ua†U†, b† → β† = Ub†U†, c† → γ† = Uc†U† etc . . . and impose that the
“dressed” states |Ωd〉, α

†|Ωd〉, γ
†|Ωd〉 be eigenstates of the full Hamiltonian. On

the other hand, β†d|Ωd〉 will not be an eigenstate because B-particles are unstable.
Following [45], we write U = eR, where R is an anti-hermitian operator, R =

R − R† that can be written at first order in µ in terms of the bare operators. We
make the ansatz

R = µ

∫
d[k1k2k3]

(
F1a~k1

b~k2
c~k3

+ F2a~k1
b~k2

c†
−~k3

+F3a~k1
b†
−~k2

c~k3
+ F4a†

−~k1
b~k2

c~k3

)
,

(1.8)
where the Fs are functions of the moduli k1, k2 and k3, regular on the momentum
shell ~k1 + ~k2 + ~k3 = 0. Instead of transforming the states we can equivalently
transform the Hamiltonian although, in spirit, what we are doing is really rewriting
the same Hamiltonian in terms of the dressed operators α, β, etc. . . To first order in
µ the transformation reads H → Hd = H + [R,H]. The zeroth order free part H0 is
left unchanged by this transformation. The interaction part gets a contribution of
the type HI → HI

d = HI + [R,H0]. To give an example, let us see this commutator
in detail for terms of type a†bc and ab†c† inside R. Terms of this type would make
the A-particle decay into B + C and therefore are not physical.

[R4,H0] = µ

∫
d[k1k2k3] (−w(k1) + W(k2) + E(k3))

(
a†
−~k1

b~k2
c~k3

+ a~k1
b†
−~k2

c†
−~k3

)
F4.

(1.9)
Note that, by setting 1/F4 = (−w(k1) + W(k2) + E(k3))

√
2w(k1) 2W(k2) 2E(k3) in

(1.8), we can get rid of the corresponding terms inside HI .
Other terms in HI get contributions similar to (1.9), except that the energies

w, W and E appear in different combinations i.e. with appropriate relative signs.

3A QFT formulation in terms of clothed particles dates back to the late 50s [43], although
similar approaches date even earlier. The beautiful paper [44] explores a similar transformation
at the pure level of matrix elements. Our two main references are [45, 46], where a complete
bibliography on the subject can be found.
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Crucially, we cannot get rid of the term ab†c, a†bc†, since the corresponding com-
bination of energies, w(k1)−W(k2)+E(k3), vanishes on a subset of the momentum
shell and the function F3 would be singular there. Note that bare and dressed
particles are bound to give the same S-matrix elements and decay rates, since the
“good terms" such as ab†c, a†bc† can only get harmless corrections that vanish
on the energy shell! By setting F3 = 0 in (1.8) we get the following dressed
interaction Hamiltonian:

HI
d = µ

∫
d[k1k2k3]

√
2w(k1) 2W(k2) 2E(k3)

(
α~k1
β†
−~k2
γ~k3

+ α†
−~k1
β~k2
γ†
−~k3

)
. (1.10)

The above operator is equal to the original Hamiltonian HI (1.7) up to first or-
der in µ. A drawback of this formalism is that it gets rather involved at higher
orders: new dressed operators and Hamiltonians have to be derived at each step.
Lorentz invariance is guaranteed, since the dressing transformation U preserves
the commutation relations among the generators of the Poincaré group. However,
as opposed to (1.7), (1.10) is not written in the local form

∫
d3xV(~x), V(x) being a

scalar commuting at space-like separated events. What is important here is that HI
d

makes the stability of the A and C sectors manifest and reproduces the dynamics
with the required accuracy.

1.4 The Effective Detector Model
We are now ready to build our detector. We first specify the state of the theory
that matches the state |0〉D ⊗ |0〉 of the detector model. In momentum space this
will be expressed by

|0〉D ⊗ |0〉 ' |g〉A ⊗ |0〉B ⊗ |0〉C =

∫
d3kg(~k)α†

~k
|Ω〉. (1.11)

It is not too restrictive to choose the detector at rest in a spherically symmetric con-
figuration centered around some point in space ~x, i.e. g(~k) = g(k)e−i~k~x, g(k) being
a real function. As this state may well describe a macroscopic object, we can also
assume the momentum fluctuations to be small compared to its mass (or, equival-
ently, the spatial extension to be much larger than the Compton wavelength). This
is accomplished by a distribution g(k) non-vanishing only for k2 � M2, which
makes the above state also an approximate eigenstate of the free evolution.

In order to study detector’s response we now populate also the C sector and
consider the state |ψ〉 = |g〉A ⊗ |0〉B ⊗ | f 〉C, where | f 〉C =

∫
d3k f (~k)γ†

~k
|0〉C and now

f can be centered around some ~k , 0. Still, we take the energy of the particle
to be detected much smaller than the mass of the detector, so that typically f (~k)
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is nonzero only for E(k) � M. In interaction picture the evolution of |ψ〉 reads
|ψ(2t)〉 = (1 − i

∫ t

−t
dt′HI

d(t′))|ψ〉. The interaction picture Hamiltonian HI
d(t) is,

in form, very similar to (1.10), with the difference that the operators inside the
brackets get a phase factor, i.e. eiΩtα~k1

β†
−~k2
γ~k3

+c.c., where Ω(k1, k2, k3) = −w(k1)+

W(k2) − E(k3). The amplitude A~k(2t) ≡ 〈Ωd|β~k|ψ(2t)〉 for the creation of a B
particle of momentum ~k thus reads

A~k(2t) = −2iµ
∫

d3kc
√

2w(ka)2W(k)2E(kc)
g(~ka) f (~kc)

sin Ω(ka, k, kc)t
Ω(ka, k, kc)

. (1.12)

In the above formula ~ka = ~k − ~kc. Under the above assumptions, the functions
g, f cut the high momenta in the integral, so that we can make the following
approximations: w(ka) ' M, W(k) ' M, Ω ' M−M−E(kc) = ∆M−E(kc) ≡ Ω(kc).

We now want to consider as “detection" all possible final states of the B field,
regardless of the small recoils ~k that the A-B particle gets from the C particle.
When we integrate the squared amplitude (1.12) to get the detection probability
P(2t) =

∫
d3k|A~k(2t)|2, there appears an interference term of the form

∫
d3kg∗(~k−

~kc)g(~k −~k′c); this term cannot be reproduced by detector models where such recoil
is just ignored. However, it looks reasonable to assume that f be much less spread
than g, since the spread in the momenta is naturally weighted by the respective
masses. Under this assumption, and recalling that g(~k) = g(k)e−i~k~x, inside the
expression for P(2t) we always have g(|~k + ~kc − ~k′c|) ' g(k), and so we can put∫

d3kg∗(~k −~kc)g(~k −~k′c) ' ei(~kc−~k′c)~x. In other words, the configuration g(k) of the A
particle becomes irrelevant in the process whenever the light quantum has a much
more definite momentum. Therefore, in the detector model that follows, the ~x
variable is effectively coarse-grained by the typical spread 1/∆kc of the particles
that are detected. In the limit where f (~kc) = δ3(~kc − ~kparticle) the ~x dependence
drops from the rate and detector’s position becomes irrelevant. The two integrals
inside P(2t) factorise and we finally obtain

P(2t) =
µ2

M2

∣∣∣∣∣∣∣∣∣
∫

d3k√
2E(~k)

f (~k)ei~k·~x sin Ω(~k)t

Ω(~k)

∣∣∣∣∣∣∣∣∣
2

(1.13)

Our model detector has to reproduce the same detection rate for a generic
initial state |0〉D ⊗ | f 〉, where | f 〉 =

∫
d3k f (~k)γ†

~k
|0〉 is the field state in the model.

This is achieved through the effective interaction Hamiltonian

HI
m =

µ

M
(
σ↑Φ

+(~x) + σ↓Φ
−(~x)

)
, (1.14)

where we recall that σ↑, σ↓ are the raising and lowering operators of the two
level detector and the energy gap inside the detector is ∆E = ∆M. The complex
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fields Φ+(~x) and Φ−(~x) are defined in terms of the dressed annihilators as Φ+(~x) =∫
d3kei~k·~xγ~k/

√
2E(k), Φ− = (Φ+)†. Eq. (1.14) has the same matrix structure as

(1.10), where the A→ B transition between Fock spaces is modelled inside a two
level system through the raising operator σ↑.

Passing from bare to dressed states changed the way in which the original
local field theory (1.7) is partitioned in subsystems corresponding to the fields A,
B, and C. As a consequence, Φ+(~x) and Φ−(~x) are not the positive and negative
energy parts of the local field φ, because they are built from the dressed operators
γ and γ†. However, at the pure level of the detector model, the underlying theory
is not relevant: in order to describe what the detector measures one can define
the—otherwise free—field Φ(~x) = Φ+(~x) +Φ−(~x), coupled to the detector through
(1.14). The initial local field theory (1.7) has effectively produced a non-local
detector for the field Φ.

In summary, the derived detector model (1.14) has the same response as a
physical “dressed"—rather than “bare"—particle in an interacting field theory,
since it is built stressing the privileged role of the full theory’s Hamiltonian eigen-
states in describing typical objects and measuring devices. The detector clearly
obeys the Frog Principle, as the state |0〉D⊗|0〉 is stable and no transitions can pos-
sibly occur at any finite time. The derivation is fully consistent only in the case of
an inertial detector, since this is the natural state of motion of the A particle under
the only influence of the field theory Hamiltonian. A consistent way to study the
accelerated case would be to model how this acceleration is produced at the level
of the fundamental field-theory model. For example, one can make the A and
B fields charged and make the detector accelerate under the effect of an external
classical electric field. An analogous set-up has been considered in Refs. [47, 48],
where a direct relation between the Unruh and the Schwinger effects has been
highlighted. It would be interesting, however, to study such an accelerating model
not only in terms of asymptotic “free" states, and consider also its short time be-
haviour in terms of “dressed" objects.

More generally, our analysis seems to suggest that real measuring devices used
for particle detection have no direct access to the local degrees of freedom φ(~x)
and effectively “see" only the positive energy fields Φ+ of the dressed quanta.
Such a circumstance was already pointed out by Glauber 4 in his pioneering paper
[36], where, in fact, a photodetector model analogous to (1.14) was introduced.

4“It has become customary, in discussions of classical theory, to regard the electric field ~E(~x, t)
as the quantity one measures experimentally, and to think of the complex fields ~E±(~x, t) as conveni-
ent, but fictitious, mathematical constructions. Such an attitude can only be held in the classical
domain [. . . ]. Where quantum phenomena are important the situation is usually quite different.
[. . . ] The use of any absorption process, such as photoionisation, means in effect that the field we
are measuring is the one associated with photon annihilation, the complex field ~E+(~x, t)" [36].
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Chapter 2

Renormalised Entropy in Quantum
Fields

Summary
In this chapter we consider a finite region of space as a subsystem of a larger
region, in which a quantum field has reached thermal equilibrium at some finite
temperature. Standard calculations for the entropy of such a system exhibit ultra-
violet divergences which, once a cut-off is introduced, are proportional to the area
of the region. We show that a renormalised entropy can be defined if, instead of the
local field operators, the Newton-Wigner position operators are used to identify
the region of space. This prescription implies that, in order to identify the subsys-
tem corresponding to a certain region, we have to trace away degrees of freedom
that are localised outside the region according to the Newton-Wigner localisation,
but not in the usual sense. However, the difference in the two localisations only
involves distances smaller than the Compton wavelength of the field.

We consider a free scalar field in d + 1 spacetime dimensions prepared in a
thermal state and we show that the entropy associated with the Newton-Wigner
degrees of freedom is free of divergences and has a sound thermodynamic be-
haviour. In the limit of high temperatures/big volumes an extensive entropy is
found, in agreement with the standard quantum field theory calculations once the
divergent contributions are subtracted from the latter. In the limit of low temper-
atures/small volumes the entropy vanishes, but with a dependence on temperature
and volume different from the high temperature regime. Explicit results are found
for both massive and massless fields.
This chapter is based on and contains material from the publication

• S. Cacciatori, F. Costa, and F. Piazza,
“Renormalized thermal entropy in field theory”,

21
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Phys. Rev. D 79, 025006 (2009).

2.1 Thermal States and Local Degrees of Freedom
Thermodynamics is a powerful tool for describing complex physical systems. Be-
side its experimental success in the laboratory, thermodynamics is often applied
to cosmology, for instance when the conservation of entropy is applied to a co-
moving volume of the expanding Universe (see e.g. [49]). On a more speculative
level, the search for a consistent theory of quantum gravity often makes use of
entropic and thermodynamic arguments, since they are supposed to be somewhat
independent of the details of the underlying dynamics. Especially in view of such
applications, it is certainly worth understanding better and better the connection
between thermodynamics and microphysics within those physical regimes which
are best known and under control. The tendency to thermal equilibrium, which
in classical statistical physics relies on ergodic or mixing hypotheses, in quantum
mechanics seems to be naturally driven by the correlations that a subsystem inev-
itably develops with its environment. This view, which has occasionally appeared
in the literature at the level of common wisdom, is now being put on a firmer
ground, e.g. in the book [50] and in related ongoing works. During time evolu-
tion, the reduced quantum state of a subsystem tends in fact to approach that of
a thermal Gibbs state ρthermal ∝ e−βH, H being the Hamiltonian operator of the
subsystem. This happens, under some generic circumstances and on time scales
which are thoroughly discussed in [50], even if the initial state of the subsystem
is very different from ρthermal, e.g. in the case when the entire system is initially
prepared in a product state |subsystem〉 ⊗ |environment〉.

Our most successful microscopic description of physical interactions, quantum
field theory (QFT), faces some difficulties when asked to reproduce coarse-grained
meaningful thermodynamic quantities. In particular, as first noted in [51], the ul-
traviolet divergences encountered in the calculation of entropy are of a relatively
uncommon type. If a finite system is in a thermal state, its entropy can be cal-
culated with standard methods giving a thermodynamically sound result (see e.g.
[52]). For the reasons described above, however, it is also interesting to consider,
instead of the entire system, a subsystem occupying a finite portion of the entire
volume. In this case, the entropy exhibits a UV-divergent “vacuum" contribution
proportional to the boundary of the subsystem.

2.1.1 Thermal Entropy and UV Divergences
To be more definite, consider a system S whose dynamics is described by a QFT
Hamiltonian H and put it in a thermal state ρtotal ∝ e−βH. Then consider a region
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of space P (P stands for “place") of definite volume inside S and call R the rest
of the system. The reduced state in P is obtained by tracing out the degrees of
freedom belonging to R, ρ = TrRρtotal. Calculate then the Von Neumann entropy
S = −Trρ ln ρ, which is the appropriate generalisation of the thermodynamical
entropy for generic quantum states (see e.g. [53, 54]). Schematically, in four
spacetime dimensions, one finds

S = S vac(A,Λ) + S therm(V,T ). (2.1)

Here A and V are the boundary area and the volume of P respectively, Λ is a
UV cut-off (with the dimension of a mass) and T = 1/β is the temperature. The
term S vac is the UV-divergent entanglement entropy of the vacuum (see, among
others [55, 56, 57, 58]), obtained with the same procedure in the limit of zero
temperature, i.e. when ρtotal = |0〉〈0|. The general form of S vac is [59]

S vac = cΛ2A + O(Λ2A)1/2 , (2.2)

c being a regularisation-dependent number of order one, for more general bound-
aries see, e.g. [60]. The expansion (2.2) follows quite generally, e.g. from the
heat kernel methods used in [57]. The finite component S therm(V,T ), on the other
hand, is the meaningful thermodynamic quantity; for a massless field it typically
scales as ∼ VT 3 in the big volume/high temperature limit. A few comments are
now in order.

While the leading area-dependent vacuum divergence (2.2) can be checked in
a variety of ways, bringing out the subleading finite term S therm is not trivial and,
to our knowledge, has been done explicitly only for conformal field theories. In
1+1 dimensions Calabrese and Cardy [61], by exploiting the analytic properties of
the theory, found a structure of the type (2.1). More precisely, for a free massless
bosonic field, it was found

S =
1
3

[
ln

(
Λ

πT

)
+ ln (sinh πLT )

]
+ c1,

where L ≡ V is the length of the subsystem and c1 is a non-universal constant1.
By using insights from the AdS/CFT correspondence, Ryu and Takayanagi have
been able to extend the result to higher dimensions [62]. In any case, it would be
surprising if the entropy did not have the structure (2.1) in general. The entan-
glement of the vacuum is in fact a UV effect and should be there also for generic
finite energy states. The two separate terms in (2.1) are thus expected in any

1Here S vac = 1
3 ln

(
Λ
πT

)
diverges logarithmically with the cut-off because the theory, being

massless, is critical, while an “area term”, in one dimension, would just be a constant. (In generic
d space dimensions, an area term has the form Λd−1Ld−1.)
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plausible QFT theory where the highest energy modes decouple from the low en-
ergy physics. Of course, if thermal entropy did not have the form (2.1) and, say,
some divergent term were also temperature dependent, then the intent of deriving
meaningful coarse-grained quantities would be even more troublesome.

One could object that the volume-dependent term in (2.1) dominates over the
area term in the thermodynamic limit for, say, sufficiently large volumes. In ther-
modynamics, however, volumes usually have to be big in comparison to, say,
the typical distances (powered by the dimension of space) between particles. If
one takes, for instance, a typical cosmological setup (T 2 ∼ MPl × Hubble) and
Λ ∼ MPl, it is easy to see that, taking S vac ∼ Λ2A and S therm ∼ VT 3, the thermo-
dynamic term overcomes in (2.1) only for volumes much larger than the Hubble
scale! One would expect thermodynamics to be applicable in much less extreme
conditions. One could also argue that, since S vac(A,Λ) originates from the entan-
glement of the region considered with the outside, it should be suppressed in the
limit where the full system is in a thermal state with a high enough temperature.
However, such an argument is once again undermined by the divergent nature of
the UV cut-off Λ and could only be applied for unreasonably high temperatures.
Finally, one may also object that only entropy differences are meaningful and get
rid in this way of the divergent area-dependent term. Still, this would not allow for
a clear thermodynamic description of systems whose size is (adiabatically) chan-
ging in time, since the divergent term would not drop from entropy differences in
this case. In this regard, once again, a finite, comoving volume in an expanding
universe is perhaps the cleanest example.

Due to the non trivial dependence of the divergence on area, the quantity (2.1)
cannot be renormalised by standard methods, i.e. by adding local counter terms to
the Lagrangian. Moreover, since the result (2.2) has been carried out for free and
conformal theories, we are bound to have divergences regardless of the asymp-
totic behaviour of the couplings or the UV completion of the theory, as long as
such a completion is still a field theory. Of course, as proposed in [51], one can
always subtract the divergent terms. The latter, however, are not more “spuri-
ous" than the widely accepted entanglement of the vacuum2. Furthermore, the
subtraction of S vac from (2.1) is not a completely consistent procedure, since one

2At times, arguments are put forth that the Von Neumann entropy of a subsystem has a different
meaning depending on whether or not the entire system is in a pure state. In this view, one may
be tempted to conclude that the divergent term S vac, since it originates from entanglement, should
not be included in the evaluation of the thermodynamical entropy. Consider, however, the entire
Universe in a pure state. One can expect thermalisation to occur over some region S after local
equilibrium is reached, i.e. ρS ' e−βH . Deep inside S , one can eventually consider a smaller
subsystem P. The Von Neumann entropy of P is clearly both a thermodynamic entropy—because
S is in a thermal state—and an entanglement entropy—because the whole Universe is in a pure
state.
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could start with the entangled vacuum of QFT and construct from it less and less
entangled states. Such states, although probably not very relevant from a ther-
modynamical point of view, are nonetheless physical but would end up having a
negative entropy after the subtraction of S vac. In plain contradiction with the gen-
eral view/common wisdom illustrated at the beginning of this section, equation
(2.1) is just saying that the state of a generic subsystem in QFT is actually very
far from being thermal!

Since the Hamiltonian operator H is an integral of a local density, i.e. H =∫
d3xH(~x), one may naively expect that a state of the form e−βH would factorise

over contiguous regions of space, giving e−βHP ⊗ e−βHR , where HP and HR are the
integrals of the Hamiltonian density extended only to regions P and R respect-
ively, i.e. HP =

∫
P

d3xH(~x) and HR =
∫

R
d3xH(~x). If this were the case, tracing

over R would trivially give a thermal state in P. However, the energy H hides
a relevant amount of non-extensiveness that does not allow for this factorisation.
The “inside" and “outside" contribution, HP and HR, do not add up to the total
Hamiltonian because of the UV-divergent contact term HI coming from the gradi-
ents across the boundary between P and R. In QFT, because of the singular nature
of the interaction HI between P and its environment R, the general arguments of
[50] are not applicable (or at least not in a straightforward way).

2.1.2 Renormalising the Entropy
The above difficulties can be ascribed to an inconvenient choice of degrees of free-
dom. To see what that means, note that the system/region of space in question has
two complementary descriptions [63, 64, 37]. In compliance to common intuition,
P is described in classical general relativity by a subset P—more specifically, a
submanifold—of the points/events at a given time-like coordinate t. On the other
hand, as a quantum subsystem, P is described by a Hilbert space HP, which is a
factor in the tensor product decomposition (H = HP ⊗ HR) of the total Hilbert
space of the field theory under examination3. In this chapter we show that if we
associate the region of space P with a more suitable—although unconventional—
set of quantum degrees of freedomHP, the entropy is already "renormalised" and
has a perfectly sound thermodynamic behaviour. For a massless, free scalar in
the large volume/high temperature limit we find S = c(d)VT d, where d + 1 is the
dimension of spacetime and c(d) is a numerical factor that can be explicitly calcu-

3Note that partitioning a quantum system [65, 66] is more subtle than making the partition of
a set. While a finite set admits a finite number of possible partitions, a finite number of quantum
degrees of freedom can be divided in an infinite number of inequivalent ways. The simplest
example is a four-dimensional quantum system, H = C4, whose partitions into “two spins”, '
C2 ⊗ C2, are in one to one correspondence with the elements of the infinite group S U(4)/S U(2)2

(see Ref. [37]).
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lated (see Eqs. (2.36)). In this limit, our results are consistent with those obtained
in Refs. [61, 62] once their divergent contribution is subtracted. However, there
is no trace of any area-dependent term in our calculations and no infinities are
encountered except, of the IR type, in the 1 + 1-dimensional massless case in the
limit T → 0. In the same limit, our results differ from the “finite piece" S therm that
is found in (2.1) by using the conventional approach, although entropies tend to
zero in both cases. For T → 0 we find in fact S ∼ −VT d ln(VT d), while [61, 62]
find S therm ∼ (VT d)(d+1)/d. We comment on this in the last section of the chapter.

Before describing our calculation in section 2.2 it is perhaps worth spending
few more words and see in which sense our anomalous renormalisation procedure
underlies a different “localisation scheme" (see Ref. [37] for more details). The
main point here is how to pick a bunch of (local) quantum degrees of freedomHP

out of a larger system. A tensor product structure (TPS)—or quantum partition—
can be assigned by specifying the observables of the individual subsystems [66,
67]. In a composite system HP ⊗ HR two sets of observables A j(P) and Ak(R),
separately defined in P and R respectively, commute by construction:

[A j(P),Ak(R)] = 0 for any j, k. (2.3)

The point here is that such a trivial result can be applied the other way around
[66]: if, within the algebra of observables acting on H , we manage to isolate
two commuting subalgebras A j(P) and Ak(R), they induce a unique bipartition
H = HP ⊗ HR on the whole system4. In the conventional calculation of entropy
(2.1), it is implicitly assumed that the quantum degrees of freedomHP of a region
of space P at time t are those defined by the set of local relativistic fields φ(t, ~x ∈
P) and their conjugate momenta π(t, ~x ∈ P). In fact, thanks to the canonical
commutation relations, the two subalgebras generated by φ and π with labels ~x
inside and outside P satisfy (2.3), and therefore induce a TPS. Such a TPS is the
conventional localisation scheme in QFT.

In order to renormalise the entropy, we use an alternative set of commut-
ing operators—and their corresponding TPS—as a new rationale to isolate the
quantum degrees of freedom of P. We consider a free scalar field in d + 1-
dimensional Minkowski spacetime. The normal-ordered Hamiltonian reads

H =

∫
ddk wk a†

~k
a~k, (2.4)

where wk =
√
~k2 + m2 and the operators a~k satisfy the usual canonical commuta-

tion relations: [a~k, a~k′] = 0, [a~k, a
†

~k′
] = δ3(~k − ~k′). Instead of the relativistic fields

4More precisely, this is true only if the two subalgebras generate the entire algebra of operators
onH [66].
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and their conjugate momenta we introduce the “Newton-Wigner" fields a(~x) just
as the Fourier transforms of a~k:

a(~x) =
1

(2π)d/2

∫
ddk a~k ei~k·~x, a†(~x) =

1
(2π)d/2

∫
ddk a†

~k
e−i~k·~x; (2.5)

The above defined operator a†(~x) is directly related to the Newton-Wigner (NW)
position operator [68] in that, acting on the vacuum, it produces an eigenvector
of eigenvalue ~x. Note that the relativistic invariant measure 1/

√
2wk is absent

from the integrand and therefore those operators are not relativistically invariant.
This amounts to the fact that a particle perfectly NW-localised according to some
observer is instead “spread" when described by a boosted one [69]. Nonethe-
less, the dynamics is still relativistically invariant because we are not changing
the Hamiltonian of the free scalar (2.4) nor the other generators of the Poincaré
group. It is also worth stressing that the non-covariant nature of the NW operators,
usually considered one of the main drawbacks of the whole approach, is not ex-
tremely relevant in the present context, since any thermal state with T > 0 already
breaks Lorentz invariance. Indeed, a system in thermal equilibrium is described
as in a thermal state only in the reference frame with four-velocity parallel to the
expectation value of the momentum operator, 〈Pµ〉, which fixes the natural refer-
ence in which the operators (2.5) are defined. We refer to the extensive literature
for more technical details (e.g. [46, 68, 70]) and philosophical implications [10]
of NW operators. A very introductory comparison between the two localisation
schemes is found in [37].

2.2 Sketches of the Calculation and Main Results

Since the entire problem is stationary, the time coordinate can be dropped through-
out the analysis. At some given time, we divide a d-dimensional, space-like sur-
face of a d + 1-dimensional Minkowski spacetime into two connected regions: P,
of finite volume, and R, such that P ∪ R = R3. (The results are independent of the
particular shape of P.) We distinguish spatial coordinates belonging to different
regions using labels ~p, ~p′, ~p j . . . for points inside P, using ~r, ~r′, ~r j . . . for those in
R and, finally, ~x, ~y . . . for generic points in Rd. One of the basic properties of NW
localisation is that the vacuum of the theory is a product state, i.e. |0〉 = |0P〉 ⊗ |0R〉

[37]. Moreover, starting from the vacuum, we can repeatedly apply a†(~x ∈ P) and
a†(~x ∈ R) and generate two independent Fock spaces:

HP =C ⊕ P1 ⊕ P2 ⊕ . . . ⊕ Pn ⊕ . . .

HR =C ⊕ R1 ⊕ R2 ⊕ . . . ⊕ Rn ⊕ . . .
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This Fock-space decomposition of the regions is the distinctive feature of NW
localisation and allows an intuitive representation of particles localised in space.
Such a construction cannot be carried out in the standard localisation, since the
Reeh-Schlieder theorem forbids the existence of localised states with a finite num-
ber of particles. The most striking consequence is that the vacuum is here a
product state, while it is entangled in the standard scheme. In each Fock subspace
of given particle number we choose the obvious basis

Pn → |~p1 . . . ~pn〉 =
1
√

n!
a†(~p1) . . . a†(~pn)|0〉,

Rn → |~r1 . . .~rn〉 =
1
√

n!
a†(~r1) . . . a†(~rn)|0〉.

(2.6)

In order to calculate traces, one has therefore to integrate on a basis in a Fock
subspace of given particle number and then sum over all Fock subspaces. For
example, if we restrict to block diagonal states (as are all those appearing here),
we have

TrR · = 〈0R| · |0R〉 +

∫
R

ddr〈~r| · |~r〉 +
∫

R
ddrddr′〈~r~r′| · |~r~r′〉 + . . . (2.7)

(Here and in the following we write P, R, for P, R, understanding the identification
of regions with subsystems via the NW scheme).

We consider the entire system in a (non-normalised) thermal state, ρtotal =

e−βH, where H is defined in (2.4). We call ρ the reduced state in P: ρ = TrRρtotal

and we calculate Von Neumann entropy by means of the formula [57]

S ≡ −TrP(ρ ln ρ) =

(
−

d
dn

+ 1
)

ln TrP ρ
n

∣∣∣∣∣∣
n=1

. (2.8)

This formula is particularly useful because it does not require the use of normal-
ised states. Indeed, if one multiplies a state by a numerical factor, ρ → Ωρ, one
gets, from Eq. (2.8),

S → S +

(
−

d
dn

+ 1
)

ln Ωn

∣∣∣∣∣∣
n=1

= S .

It is easy to check that ρ (as well as ρtotal) is block diagonal on the particle
number subspaces of its Fock space. Its matrix elements on each subspace are
expressible in terms of the crucial two-point function defined in the one-particle
sector

K(~p, ~p′) ≡
〈~p| ρ |~p′〉

Ω
, (2.9)
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where Ω ≡ 〈0P| ρ |0P〉 is the vacuum-vacuum matrix element. The function K is
itself an infinite series obtained by tracing ρtotal over R (where each term of the
series is obtained by integrating over the subspace Rn, see Eq. (2.20) below) and
can be conveniently written (see Eq. (2.21)) in the diagrammatic formalism to
be introduced in the next section. Since we are dealing with a free theory, the
generic matrix element 〈~p1~p2 . . . ~pn|ρ|~p′1~p

′
2 . . . ~p

′
n〉 is expressed as a combination

of products of K’s in equation (2.22).
Since ρ is an operator acting on P, when calculating matrix elements of ρn,

integrations over the variables ~p have to be carried out in each Fock subspace. A
final integration over the same variables has to be done in order to obtain TrPρ

n.
The terms in the corresponding series rearrange (see Eq. (2.23)) and this number
can be written in closed form, again, in terms of the two-point function K as

TrP ρ
n = Ωn exp

 ∞∑
j=1

1
j
Tr K j·n

 , (2.10)

where, by definition,

Tr Km ≡

∫
P

dd p1dd p2 . . . dd pm K(~p1, ~p2)K(~p2, ~p3) . . .K(~pm, ~p1).

Note that the normalisation factor Ωn in (2.10) drops when used in formula (2.8).
Note also that each factor K in the above integral is itself a series of integrals over
the ~r variables, obtained by plugging ρ = TrRρtotal in (2.9) and applying (2.7). A
consistent part of the chapter is finally devoted to evaluate the above quantity in
the high temperature, V/βd → ∞, and small temperature, V/βd → 0, limits. Two
distinct behaviours of Tr Kn as a function of n follow.

In the high-temperature limit, the leading term of the series giving Tr Kn is the
one containing only integrations over the ~p variables: the other terms converge
and give a subleading contribution. The only integrations left are those inside
P. Those are all of the same order in VT d, although they scale as 1/nd, where
n is the number of integration variables. The corresponding behaviour of Tr Kn,
when used in (2.10) and (2.8), gives an extensive entropy. In this limit, apart from
numerical factors to be found in Eqs. (2.35) and (2.36), one finds in fact

TrKn '
VT d

nd + O(1), S ' VT d + O(1), 1/VT d → 0. (2.11)

In the low-temperature limit, the external integrals are no longer negligible and
they have to be summed up. The corresponding series can be explicitly calculated
at leading order in VT d. On the other hand, terms with a higher number of internal
integrations are subleading and this gives

Tr Kn ' (VT d)n + O(VT d)n+1, S ' −VT d ln VT d + O(VT d),

VT d → 0.
(2.12)
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The numerical factors are found in Eqs. (2.39) and (2.40) below. In section 2.4.3,
we will also consider massive fields In the low-temperature limit, their entropy
behaves as in Eq. (2.12), except that the quantity VT d is each time suppressed by
the factor e−m/T (see Eq. (2.43) below).

2.3 Formalism and Diagrammatic
After the general setting described above (basically, Eqs. (2.4)–(2.6)) we give
here more details of the calculation. First of all, we need to calculate the matrix
elements of ρtotal = e−βH in position space; using the basis vectors (2.6) and going
to Fourier space, we have

〈~x1 . . . ~xn| e−βH |~x′1 . . . ~x
′
n〉 =

1
m!(n − m)!

∑
σ∈S n

Iβ(~x1− ~x′σ(1)) · · · Iβ(~xn− ~x′σ(n)). (2.13)

Here, of the total n points, m is the number of points inside P, S n denotes the
group of permutations over n elements and

Iβ(~x − ~x′) ≡ 〈~x| e−βH |~x′〉 =
1

(2π)d

∫
ddk e i~k·(~x−~x′)− βwk . (2.14)

Explicit expressions of the two-point function I and its massless limit follow
for d = 1,

Iβ(x) =
mβ

π
√
β2 + x2

K1(m
√
β2 + x2) '

β

π(β2 + x2)
+ O(m2), (2.15)

and d = 3,

Iβ(~x) =
m2β

2π2(β2 + x2)
K2(m

√
β2 + x2) '

β

π2(β2 + x2)2 + O(m2). (2.16)

Here K j are the modified Bessel functions of the second kind. Note that (2.14)
is not the usual QFT thermal correlator and, as such, it is not periodic in β. This
reflects the fact that we are not working in the usual thermic representation, where
traces are taken by functional integration over a compactified Euclidean manifold.

A crucial property of the two-point function Iβ that follows straightforwardly
from its expression (2.14) in Fourier space is∫

ddz Iβ(~x −~z)Iγ(~z − ~y) = Iβ+γ(~x − ~y). (2.17)

By iteration we also have

In
β(~x − ~y) = Inβ(~x − ~y), (2.18)
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where the nth power of Iβ has been implicitly defined in an obvious way.
Matrix elements with a different number of particles on the two sides vanish,

because in transformation (2.5) the number of creation and annihilation operators
is preserved; our matrix ρtotal is thus block diagonal in the subspaces of given
particle number. The same property is retained by the reduced density matrix ρ
with respect to the local Fock space HP, so that we only need to calculate the
matrix elements 〈~p1 . . . ~pn|ρ|~p′1 . . . ~p

′
n〉.

First, we define Ω as the matrix element of ρ on the local vacuum in P:

Ω :=〈0P|ρ|0P〉 = 〈0P|TrRe−βH |0P〉

= (〈0R| ⊗ 〈0P|) e−βH(|0P〉 ⊗ |0R〉) +

∫
R

ddr(〈~r| ⊗ 〈0P|)e−βH(|0P〉 ⊗ |~r〉)

+

∫
R×R

ddr1ddr2 (〈~r1~r2| ⊗ 〈0P|) e−βH(|0〉P ⊗ |~r1~r2〉P) + . . .

In terms of the two-point function Iβ(~x − ~x′), we have

Ω =

∞∑
n=0

1
n!

∫
Rn

ddr1 . . . ddrn

∑
σ∈S n

n∏
j=1

Iβ(~r j − ~rσ( j)) = 1 +

∫
R

ddrIβ(~r − ~r)

+
1
2

∫
R×R

ddr1ddr2

[
Iβ(~r1 − ~r1)Iβ(~r2 − ~r2) + Iβ(~r1 − ~r2)Iβ(~r1 − ~r2)

]
+ . . .

(2.19)

We can write this kind of expressions in a diagrammatic form; in this way, the
vacuum expectation value is given by the sum of all the “bubble diagrams”:

Ω = 1 +��
��
d +

1
2

��
��
d ��
��
d +��
��
d
d  + . . .

Here and in the following, empty circles ◦ are points in R and full circles • points
in P, lines are the two-point function I and two lines getting at the same circle
imply integration. The nth term of the series (2.19) is obtained diagrammatically
by taking n empty circles and connecting them with each other in all possible
ways such that each circle is reached by two lines.

The matrix element of ρ living in the one particle sector is a two-point func-
tion:

〈~p|ρ|~p′〉 = Iβ(~p − ~p′) +

∫
R

ddr
[
Iβ(~p − ~p′)Iβ(~r − ~r) + Iβ(~p − ~r)Iβ(~r − ~p′)

]
+ . . .

(2.20)
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diagrammatically,

〈~p|ρ|~p′〉 = t t +
 t t��
��
d + t d t


+

1
2

 t t��
��
d ��
��
d + 2 t d t��

��
d + 2 t d d t + t t��

��
d
d 

+ . . .

Each term, weighted by a factor 1/n!, consists of all possible ways that the two
external lines with the full circles can connect each other through n empty circles.
Note that the “vacuum contribution” factorises out, leaving

〈~p|ρ|~p′〉 = Ω

 t t + t d t + t d d t + . . .

 . (2.21)

We call the two-point function inside the parenthesis K:

〈~p|ρ|~p′〉 ≡ Ω K(~p, ~p′).

When we consider the matrix elements in the n-particle sector, bubble diagrams
again factorise out, leaving us with an expression of the form

〈~p1~p2 . . . ~pn|ρ|~p′1~p
′
2 . . . ~p

′
n〉 =

Ω

n!

∑(
2n-points connected diagrams

)
,

where now we are summing over all the possible diagrams that connect n points
on the left to n points on the right. As we can have only two lines starting from
each internal point, a diagram is composed by “paths”, each of which connects
one point on the left to one on the right (two points on the same side cannot be
connected). This means that, if we select a pair of points (~pi, ~p′j), we can factorise
an expression equal to the sum of connected diagrams in (2.21), which gives the
two-point function K(~pi, ~p′j). To obtain all the diagrams, we have to consider all
the possible pairs; the result is that we can write all the matrix elements in terms
of functions K(~pi, ~p′j):

〈~p1~p2 . . . ~pn|ρ|~p′1~p
′
2 . . . ~p

′
n〉 =

Ω

n!

∑
σ∈S n

n∏
j=1

K(~p j, ~p′σ( j)) . (2.22)
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Note that this expression has the same structure as (2.13), with Iβ(~x − ~x′) replaced
by K(~p, ~p′). The reason is that, using the NW localisation, local regions have the
same Fock structure as the global space.

We define the powers of the two-point function K by multiplying K as a one-
particle operator acting inside P. Accordingly, we define the trace of the m-th
power of K as

Tr Km ≡

∫
Pm

dp dp′ . . . dp(m−1) K(~p, ~p′)K(~p′, ~p′′) . . .K(~p(m−1), ~p).

These traces are what is needed to calculate TrP ρ
n, which in turn allows finding

the Von Neumann entropy by means of Eq. 2.8. (Which can be applied to ρ
regardless of its normalisation.)

Consider first the case n = 2. Since ρ is block diagonal in the fixed number of
particles subspaces, so is ρ2, and we can write, for the generic matrix element in
the m-particle subspace

〈~p1~p2 . . . ~pm|ρ
2|~p′1~p

′
2 . . . ~p

′
m〉

=

∫
Pm

ddq1 . . . ddqm〈~p1~p2 . . . ~pm|ρ|~q1 . . . ~qm〉〈~q1 . . . ~qm|ρ|~p′1~p
′
2 . . . ~p

′
m〉

=

(
Ω

m!

)2 ∫
Pm

ddq1 . . . ddqm

∑
σ ,σ′∈S m

m∏
i j=1

K(~pi, ~qσ(i))K(~q j, ~p′σ′( j))

=

(
Ω

m!

)2 ∫
Pm

ddq1 . . . ddqm

∑
σ ,σ′∈S m

m∏
j=1

K(~p j, ~qσ( j))K(~qσ′( j), ~p′j)

=
Ω2

m!

∑
σ ∈S m

m∏
j=1

∫
P

ddqK(~p j, ~q)K(~q, ~p′σ( j))

≡
Ω2

m!

∑
σ ∈S m

m∏
j=1

K2(~p j, ~p′σ( j)).

Iterating this procedure we obtain the expression for ρn:

〈~p1~p2 . . . ~pm|ρ
n|~p′1~p

′
2 . . . ~p

′
m〉 =

Ωn

m!

∑
σ ∈S m

m∏
j=1

Kn(~p j, ~p′σ( j)).

Finally, the trace is given by the sum of all the contributions of the m-particle
matrix elements:

TrP ρ
n =Ωn

+∞∑
m=0

1
m!

∑
σ ∈S m

∫
Pm

dd p1 . . . dd pm

m∏
j=1

Kn(~p j, ~pσ( j))

=Ωn det(1 − Kn)−1

(2.23)
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(see, for example, Ref. [71], page 187, formula (4-86)), and then

TrP ρ
n = Ωn exp

 ∞∑
j=1

1
j
Tr K jn

 . (2.24)

Inserting this expression in (2.8), we find

S =

(
−

d
dn

+ 1
) ∞∑

j=1

1
j

Tr K jn

∣∣∣∣∣∣∣
n=1

. (2.25)

The quantities we need to calculate are Tr Kn; we can give for these a diagram-
matic expansion, like in (2.21). For n = 1, we only have to “close” each diagram,
so to match together the full circles at the ends of each factor. We get

TrK = ��
��
t + ��
��
t
d

+ ��
��
td d + . . . (2.26)

Operator K2 is obtained multiplying term by term two copies of the expression for
K:

K2(~p, ~p′) =

 t t + t d t + . . .


 t t + t d t + . . .


= t t t + 2 t t d t + t d t d t+ . . .

When we take the trace, again we have to match the extremes of each diagram,
so that we end up with closed loops with two full circles each and an arbitrary
number of empty circles. The analogue expression for TrKn is a straightforward
generalisation: it contains loops with n full circles and an arbitrary number of
empty circles. The explicit formula is

TrKn =

∫
dd p1 . . . dd pn

+∞∑
j1... jn=0

∫
ddr′1 . . . d

dr′j1d
dr′′1 . . . . . . d

dr(n)
1 . . . ddr(n)

jn

Iβ(~p1 − ~r1
1)Iβ(~r′1 − ~r

1
2) . . . Iβ(~r1

j1 − ~p2)Iβ(~p2 − ~r2
1) . . . Iβ(~rn

jn − ~p1).

2.4 Explicit Evaluations of Entropy
We consider separately the two situations βd � V (high temperature) and βd � V
(low temperature), where V is the volume of the region P under consideration. We
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will mainly consider a massless field, but we will also consider a finite mass m in
the low-temperature limit.

The high-temperature limit, V/βd → ∞, is also the limit of very large volume,
so we may expect to find, at leading order, the entropy that we would find by
considering as our subsystem the whole space. Although this turns out to be the
case, the actual proof is pretty involved and is carried out in the subsection 2.4.2.

2.4.1 The Whole Space
As a first check of our formalism we calculate the entropy of a system (not a
subsystem) in a thermal state. This can be done by standard methods, i.e., by
calculating the partition function Z = Tr e−βH that, in our formalism, using Eq.
(2.13), reads

Z =

+∞∑
n=0

∫
dd x1 . . . dd xn

1
n!

∑
σ∈S n

n∏
j=1

Iβ(~x j − ~xσ( j)) = exp(
+∞∑
j=1

1
j
TrI j

β). (2.27)

We basically used the same derivation as for (2.24). In fact, in this case, K = Iβ
since there is nothing to integrate over outside the system. The operator powers I j

β

are obtained by integration over all space. For this purpose, we use Eq. (2.18) and
find

TrI n
β =

∫
dd xInβ(~x − ~x) = VInβ(0).

On the other hand, for m = 0, we have

Iβ(0) =

∫
ddk

(2π)d e−β|~k| =
Ωd

(2π)d

∫ +∞

0
dkkd−1e−βk =

Ωd

(2π)d

(d − 1)!
βd ,

where Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle. From (2.27) we then
find

ln Z =
V
βd

(d − 1)!Ωd

(2π)d ζ(d + 1),

where ζ is the Riemann zeta function. If we calculate the entropy by using

S =

(
−β

d
dβ

+ 1
)

ln Z,

we find the leading order (2.36) of the more general result in the high-temperature
limit.

2.4.2 High-Temperature Limit
We consider the limit βd/V → 0 in the massless case. Let us first consider the
one-dimensional case where P is the the interval (−L, L).
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The One-Dimensional Case

We need to compute TrKn. For n = 1 it is given by (2.26). By Eq. (2.15) the first
term is simply

��
��
t (β) =

∫ L

−L

β

π(β2 + (x − x)2)
=

2L
πβ
,

where the term in parenthesis after the diagram, here and in what follows, specifies
the suffix β of the corresponding Iβ functions running in the loop. For the second
term, we have

��
��
t
d

(β, β) =��
��
t (2β) −��
��
t
t

(β, β)

=
2L
π2β

−

∫ L

−L
dx

∫ L

−L
dy

β

π(β2 + (x − y)2)
β

π(β2 + (y − x)2)
,

where the property (2.18) has been used. Now,∫ L

−L
dx

∫ L

−L
dy

β

π(β2 + (x − y)2)
β

π(β2 + (y − x)2)

= −
β

2π2

d
dβ

∫ 2L

0
dx

∫ 2L

0
dy

1
β2 + (x − y)2

= −
β

π2

d
dβ

∫ 2L

0
dx

1
β

arctan
x
β

=
1
βπ2

∫ 2L

0
dx

d
dx

(
x arctan

x
β

)
=

2L
βπ2 arctan

2L
β

=
L
πβ

+ O(1),

thus,

��
��
t
d

= O(1).

Thus it seems that terms containing external integrations give finite contributions.
Before checking this to the next order, let us note that

1
πn+2

∫ L

−L
dx0 · · ·

∫ L

−L
dxn+1

m0m1 · · ·mn+1β
n+2

[β2m2
0 + (x0 − x1)2] · · · [β2m2

n+1 + (xn+1 − x0)2]

=
2L
βπn+2

∫ ∞

0
dx1 · · ·

∫ ∞

0
dxn+1

[
m0m1 · · ·mn+1

[m2
0 + x2

1][m2
1 + (x1 − x2)2] · · · [m2

0 + (xn − xn+1)2][m2
n+1 + x2

n+1]

]
+ cyclic terms + . . .

(2.28)
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Here cyclic means with respect to the dependence on mi and the ellipses mean
terms of the next order in β/L (when β/L goes to zero). This can be easily verified
as follows: let us call U(m0, . . . ,mn+1) the left hand side of Eq. (2.28). One must
show that the limit

lim
β→0

β

L
U(m0, . . . ,mn+1)

exists and is given by (2.28). To this end, it is convenient first to rescale all co-
ordinates by β, so that

β

L
U(m0, . . . ,mn+1)

=
1
πn+2

β

L

∫ L
β

− L
β

dx0 · · ·

∫ L
β

− L
β

dxn+1
m0m1 · · ·mn+1

[m2
0 + (x0 − x1)2] · · · [m2

n+1 + (xn+1 − x0)2]
.

(2.29)

Setting z = L/β, it suffices to compute the limit z → ∞ by means of the de
l’Hospital rule, to get the desired result. Indeed the de l’Hospital rule says that we
must look at the limit

lim
z→∞

=
1
πn+2

∫ L
β

− L
β

dx1 · · ·

∫ L
β

− L
β

dxn+1
m0m1 · · ·mn+1

[m2
1 + (x1 − x2)2] · · · [m2

n + (xn − xn+1)2]

×

 1

m2
0 +

(
L
β
− x1

)2

1

m2
n+1 +

(
L
β
− xn+1

)2 +
1

m2
0 +

(
L
β

+ x1

)2

1

m2
n+1 +

(
L
β

+ xn+1

)2


+cyclic,

where we used the obvious relation d
dz

∫ z

−z
f (x)dx = f (z) + f (−z). The two factors

in the square brackets give the same contribution5, so that after the shift xi →

xi + L/β, for all the xi, our limit becomes

lim
z→∞

=
2
πn+2

∫ 2L
β

0
dx1 · · ·

∫ 2L
β

0
dxn+1

m0m1 · · ·mn+1

[m2
1 + (x1 − x2)2] · · · [m2

n + (xn − xn+1)2]
·

·
1

m2
0 + x2

1

1
m2

n+1 + x2
n+1

+ cyclic. (2.30)

It remains to show that indeed the integrals on the right hand side of (2.28) con-
verge. This can be done by introducing the new variables ti such that

ti = xi − xi+1 , i = 1, . . . , n , tn+1 = xn+1.

5the second one is obtained by the first one by changing sign to all the integration variables
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Then, after rewriting the integral, one sees that the integrand is dominated by∏n+1
i=0

mi
m2

i +t2i
.

Now, let us continue our analysis and consider the term

��
��
td d(β, β, β) =��
��
t (3β) −��
��
t
t

(2β, β) −��
��
t
t

(β, 2β) +��
��
tt t(β, β, β).

Using our general formula, find

��
��
t (3β) =

2L
3πβ

+ . . . ,

��
��
t
t

(2β, β) =��
��
t
t

(β, 2β) =
8L
βπ2

∫ ∞

0
dx

1
(1 + x2)(4 + x2)

+ . . . ,

=
8L

3π2β

∫ ∞

0
dx

[
1

1 + x2 −
1

4 + x2

]
+ . . . =

2L
3πβ

+ . . . ,

��
��
tt t(β, β, β) =

6L
βπ3

∫ ∞

0
dx

∫ ∞

0
dy

1
(1 + x2)(1 + y2)[1 + (x − y)2]

+ . . . =
2L
3πβ

+ . . . ,

so that

lim
β→0

β��
��
td d(β, β, β)

 = 0.

This is true for any power of K. For example,

TrK2 =��
��
t
t

+��
��
tt d +��
��
td t + . . .

and, using the above results, we see that

��
��
td t(β, β, β) =��
��
tt d(β, β, β) =��
��
t
t

(β, 2β) −��
��
tt t(β, β, β)

and then the L/β terms drop out. Indeed, one can prove that any loop integral
containing at least a white ball insertion converges in the high-energy limit (see
Appendix A.1).

Finally we get

TrKn =��
��
tt tt t
q qq

(n; β, . . . , β) + . . . , (2.31)
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that is, the leading contribution is given by the loop with exactly n black ball
insertions. Now, being the cyclic terms all coincident, we have

��
��
tt tt t
q qq

(n; β, . . . , β)

=
2nL
βπn

∫ ∞

0
dx1 · · ·

∫ ∞

0
dxn−1

1
(1 + x2

1)(1 + x2
n−1)[1 + (x1 − x2)2] · · · [1 + (xn−2 − xn−1)2]

+ . . .

=
2nL
βπn U(n) + . . .

As we will see soon, the integral can be computed to give

U(n) =
πn−1

n2 ,

so that

��
��
tt tt t
q qq

(n; β, . . . , β) =
2L
nβπ

. (2.32)

Indeed, we can show this as follows. Using the results shown in Appendix A.1,
we can add a loop with a white insertion and n black insertions, without changing
the divergent term, so that

��
��
tt tt t
q qq

(n; β, . . . , β) '��
��
tt tt t
q qq

(n; β, . . . , β) +��
��
dt tt t
q qq

(n; β, . . . , β)

=��
��
tt tt t
q qq

(n − 1; 2β, β, . . . , β),

where ' means equal up to convergent terms. Next we can add the term

��
��
dt tt t
q qq

(n − 1; 2β, β, . . . , β)

to obtain

��
��
tt tt t
q qq

(n; β, . . . , β) '��
��
tt tt t
q qq

(n − 2; 3β, β, . . . , β).

Proceeding in this way, we get

��
��
tt tt t
q qq

(n; β, . . . , β) '��
��
t (nβ), (2.33)
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which gives (2.32). Inserting (2.32) in (2.25), we finally get for the entropy

S =
2πL
3β

+ . . . (2.34)

Note that the above result is finite and extensive, no subtraction of infinities needs
to be made at any step.

The d-Dimensional Case

The computations detailed out for the one-dimensional case can be extended to
any dimension d ≥ 1. Indeed, using (2.14), one finds again that the loops contain-
ing only black insertions dominate so that (2.31) and (2.33) continue to be true.
On the other hand,

��
��
t (nβ) =

V
(nβ)d

(d − 1)!

2d−1π
d
2 Γ(d/2)

+ . . . (2.35)

Thus we can easily compute the entropy and find the result

S d =
V
βd

(d − 1)!

2d−1π
d
2 Γ(d/2)

(d + 1)ζ(d + 1) + . . . (2.36)

It can be useful to separate the odd-dimensional cases from the even-dimensional
ones. Using the duplication formula for the Gamma function, one finds

S 2k =
V
β2k

(2k − 1)!
k!πk22k+1 (2k + 1)ζ(2k + 1) + . . . ,

S 2k+1 =
V

β2k+1

(k + 1)!
πk+1 2ζ(2k + 2) + . . .

For example, for 3 spatial dimensions we find

S 3 =
V
β3

2π2

45
+ . . . (2.37)

2.4.3 Low-Temperature Limits
In this section, we consider two different low-temperature limits. In the first case
we take ν→ 0, with

ν ≡
V

(2πβ)d ,

for fixed values of the product βm between the inverse temperature and the mass
of the field. This can be thought as the small volume limit at fixed values of mass
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and temperature. However, we can also interpret it as the low-temperature limit of
a massless field; thus the mass plays the role of a IR regulator so that successively
the quantity βm must be set to zero.

In the second case, we consider the limit β→ ∞ for fixed values of the volume
V and the mass m, that is the low temperature limit of a massive field.

Small Volumes and Massless Limit

Looking at ν → 0 as a small volume limit, the result may depend on the shape of
P and the way it “shrinks”. To avoid this problem, we will suppose for P to shrink
down isotropically. This means that for any m-dimensional section of P, having
volume Vm, the quantity Vm/β

m must tend to zero when ν → 0. Note that such
condition is automatically satisfied in the low-temperature limit interpretation, as
long as P is contained in a compact region. For integrals over regions shrinking
down isotropically, we can then use the approximation6∫

P
βd

dd p f (~p) = (2π)dν f (0) + O(ν2). (2.38)

To estimate TrKn, we must approximate all loop integrals. The simplest one is the
tadpole integral:

��
��
t =

∫
P

dd pIβ(~p − ~p) = VIβ(0) = ν

∫
ddke−

√
~k2+(βm)2

.

Using (2.38), we see that each integration over P can be simplified giving a factor
ν. For example, for the two-point loop we get

��
��
t
t

=

∫
P×P

dd pddqIβ(~p − ~q)Iβ(~q − ~p)

=
1

(2π)2d

∫
ddkddk′

∫
(

P
βd

)2 dd pddqe−i(~k−~k′)(~p−~q)−
(√

k2+(βm)2+
√

k′2+(βm)2
)

= ν2
(∫

ddke−
√

k2+(βm)2

)2

+ O(ν3).

Note that the last integral depends on the temperature only via the fixed product
βm, so that the resulting expression is of order ν2. In the same way we conclude

6this is the form of the spatial integrals after a substitution ~p → ~p/β; the βd extra factors are
reabsorbed by rescaling the momentum variables as ~k → β~k.
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that the loop with n full circles is of order νn. Diagrams with empty circles can be
computed using the identity∫

R
ddr =

∫
dd x −

∫
P

dd p.

The integrals over the whole space can be reduced using Eqs. (2.17) and (2.18),
whereas each integral over P gives a contribution proportional to ν, which is there-
fore a subleading term with respect to the first one. For example, for the “mixed”
two-point loop we get

��
��
t
d

=

∫
dd x

∫
P

dd pIβ(~p − ~x)Iβ(~x − ~p) − ��
��
t
t

=

∫
P

dd pI2β(0) + O(ν2) = ν
Ωd

2d

∫ +∞

0
dkkd−1e−

√
k2+(2βm)2

+ O(ν2).

In conclusion, to estimate the generic loop integral we can simply remove each
empty circle by means of the substitution

∫
R

ddrIβ(~p − ~r)Iβ̃(~r − ~q) → Iβ+β̃(~p − ~q),
so that the leading order of each diagram is determined by the number of its full
balls. By applying this procedure to all terms in (2.26), we find

TrK =V
+∞∑
j=1

I jβ(0) + O(ν2) = νΩd

+∞∑
j=1

1
jd

∫ +∞

0
dkkd−1e−

√
k2+( jβm)2

+ O(ν2)

=νΩdCd + O(ν2),

where Cd is a multiplicative factor that does not depend on ν.
The diagrammatic expansion of TrKn contains n full circles in every loop, so

that, for the leading term, we get

TrKn =

+∞∑
j1... jn=0

∫
dd p1 . . . dd pnI j1β(~p1 − ~p2) . . . I jnβ(~pn − ~p1) + O(νn+1)

=

n∏
l=1

 +∞∑
jl=0

νI jlβ(0)

 + O(νn+1) = (νΩdCd)n + O(νn+1).

(2.39)

Plugging this result into (2.10) and then into (2.8), we find for the entropy

S = −νΩdCd ln ν + O(ν). (2.40)

Note that, for d > 1, Cd is a finite number. Indeed, it is a function of βm defined
by the series

Cd =

+∞∑
j=1

1
jd

∫ +∞

0
dkkd−1e−

√
k2+( jβm)2

, (2.41)
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whose terms are positive and bounded by the terms of the converging series Cd(0).
Thus

Cd(βm) ≤ Cd(0) =

+∞∑
j=1

1
jd

∫ +∞

0
dkkd−1e−k = (d − 1)!ζ(d).

An IR divergence appears in the one-dimensional massless case. Obviously it
could be cured by an IR cut-off that limits the integrations to the external region
R. However, a natural regularisation is provided by the mass term. Indeed, we can
fix βm at arbitrarily small but positive values, so that the general term in the series
(2.41) satisfies∫ +∞

0
dke−

√
k2+( jβm)2

=

∫ jβm

0
dke−

√
k2+( jβm)2

+

∫ +∞

jβm
dke−

√
k2+( jβm)2

≤ e− jβm jβm +

∫ +∞

jβm
dke−k = e− jβm( jβm + 1),

ensuring convergence. For d > 1, no divergences occur and in the massless case
the entropy (2.40) reads

S ∼ − X ln X,

X =
V
βd 2dπ

d−1
2 Γ(

d + 1
2

)ζ(d) (d > 1, βm = 0).
(2.42)

Again, the above result is finite and no subtractions need to be made.

Low Temperatures for a Massive Field

Let us first consider the one-dimensional case. For β→ ∞, the two-point function
Iβ(x) behaves as

Iβ(x) ∼
√

m
2πβ

e−m
√
β2+x2

.

When x falls inside P, the whole expression can be approximated by a constant:

Iβ(p) ∼ Iβ(0) ∼
√

m
2πβ

e−mβ,

and each integration over P contributes with a term proportional to the volume,
thus we get

��
��
t =

∫ L

−L
dpIβ(p − p) = 2L Iβ(0) ∼ 2L

√
m

2πβ
e−mβ,

��
��
tt tt t
q qq

(n points) ∼
∫ L

−L
dp1 . . .

∫ L

−L
dpn

(
Iβ(0)

)n
∼

(
2L

√
m

2πβ
e−mβ

)n

.
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It follows that a loop with n+1 integrations over P is subleading with respect to one
with n integrations and we can use again the usual trick to substitute integrations
over R with integrations over the whole space, finding

TrK ∼ L
+∞∑
n=1

Inβ(0) .

Now, each addend Inβ(0) is suppressed by a factor
(
e−mβ

)n
, so that only the first

term in the sum is relevant when β → ∞. The same argument can be applied to
TrKn, giving

TrKn ∼

(
2L

√
m

2πβ
e−mβ

)n

,

from which we get the following expression for the entropy

S ∼ − X ln X,

X =2L
√

m
2πβ

e−mβ.
(2.43)

This analysis can be easily extended to any dimension. Indeed, the two-point
function Iβ(p) is still suppressed by a factor e−mβ for p ∈ P, so that all computation
work essentially in the same way, providing for the entropy an expression of the
form (2.43), where the exponential multiplies a function of β with an at most
polynomial growth. We will not enter into more details.

2.5 Interpretation of the Results
In this chapter the problem of computing the entropy of a subsystem confined in
a finite region in quantum field theory has been considered. The subsystem un-
der consideration is assumed to be deep inside a much larger system which has
reached thermal equilibrium and is therefore described by a thermal Gibbs state.
The focus of the present analysis has been the general issue of assigning appropri-
ate quantum degrees of freedom to the considered region. The inside/outside sep-
aration is traditionally realised through the usual localisation prescription, which
attributes to that region the local relativistic fields therein defined, together with
their conjugated momenta. This in fact leads to a tensor product structure (TPS)
of the whole Hilbert space. The entropy of a subsystem defined in this way results
to be divergent in a way that cannot be renormalised by standard methods from
calculations in quantum field theory.

The non-standard regularisation introduced here consists in adopting the NW
(Newton-Wigner) localisation scheme to define the TPS of the quantum fields
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associated to the division of space into regions. In the NW prescription the va-
cuum is a product state, thus the divergent, area-dependent contribution to the
entropy corresponding to the entanglement across regions never appears in the
calculations. The NW operators, unlike the standard local fields, are not relativ-
istically invariant. However, this does not affect the relativistic characterisation
of the dynamics. It simply means that localisation, in this picture, is observer-
dependent. (After all, a place/region of space is always to be defined on some
chosen t = constant hypersurface.) Moreover, Lorentz invariance is naturally
broken by thermalisation. The present analysis suggests that the NW prescription
for identifying local degrees of freedom should be favoured for a proper treatment
of the thermodynamical properties of a quantum field, at least as long as equilib-
rium states are properly described by Gibbs thermal states. In the next chapter we
are going to see that a further justification towards this approach comes from con-
sidering limited resolution in describing a state, or coarse-graining. The finiteness
of the results obtained in this chapter is by itself a strong indication in this dir-
ection: the NW prescription automatically regularises the ultraviolet divergences
and directly gives finite results, without the need of additional renormalisation
steps or subtractions of infinities. This allowed us to analyse various physical
limits.

In the high temperature/large volume limit the calculation gives the expected
thermodynamic result: entropy is extensive and, for a massless field, proportional
to VT d, where V is the volume of the region and d the number of spatial dimen-
sions. At leading order in VT d the results found match the standard calculation of
the entropy of a field system with appropriate conditions at its boundary [52]. In
other words, in the NW approach, a generic subsystem of a larger thermal system
is also approximately thermal and has the same temperature. Again, this seems to
suggest that NW localisation is more appropriate for the spatial coarse-graining
of microscopic quantities.

At low temperature/small volume, the thermal entropy in our calculation goes
to zero but, differently from the standard approach, no unusual subtraction is
needed. In the canonical approach [61, 62], thermal entropy is sub-extensive
at low temperature, S therm ' (VT d)(d+1)/d, whereas our regularised entropy ap-
proaches extensivity from above (S ' −VT d ln VT d for small VT d). Since the
calculations in the two approaches follow quite different routes, it is difficult to
recognise the technical reason for this discrepancy. Note, however, that at very
low temperatures the modes that are typically excited have wavelengths much lar-
ger than the size of the subsystem itself. Such modes are not contemplated in the
spectrum of the locally defined Hamiltonian, whose lowest non-zero eigenvalues
are of order ∼ 1/V1/d. Those long-wavelength correlations between the internal
and the external region dominate in this limit and appear to be the cause of our
super-extensive entropy. Note also that −ε ln ε is the generic asymptotic beha-
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viour of the Von Neumann entropy of a density matrix with a parameter ε which
becomes a pure state in the limit ε → 0.

The “renormalisation” procedure discussed, although unconventional, seems
encouraging. The thermodynamical description of quantum field systems is a
lively subject, which finds its application beyond the physics of complex systems,
especially in contexts involving the interplay between gravitational and quantum
effects, as for example in black hole thermodynamics or in the AdS/CFT corres-
pondence. However, many of such interesting applications are affected by the
problem of the ultraviolet divergences and, apart from some exceptional cases,
many results remain at a qualitative or conjectural level. If holographic entropy
bounds (e.g. [72, 73]) and the area-dependent black hole entropy (see [74], and
also [75, 76] for entropy renormalisation in that context) are to be taken as mean-
ingful signals of quantum gravity effects, one may want to consistently get rid of
the comparable area-dependent contribution that appears already at low energies
in flat space. Because of the automatic regularisation, the finiteness of the ap-
proach presented seems to provide a powerful and concrete computational method
to overcome such technical impasses.



Chapter 3

Classical Entropy in
Coarse-Grained Quantum Fields

Summary

The entropy of classical extended systems is typically proportional to the volume
occupied by the system. As discussed in the previous chapter, quantum systems
show a different behaviour: the entropy of vacuum and thermal states of a sub-
region of space is proportional to the area of the region. If classical systems are
limiting cases of quantum ones, under which conditions does the transition from
area to volume law take place? Here we consider the question within the more
general problem of the emergence of classicality in extended continuous variable
systems, with particular emphasis on the case of the Klein-Gordon field.

The most general system considered can be represented as a lattice of coupled
quantum harmonic oscillators. Two different kinds of measurement imprecision
are considered: i) a finite resolution in distinguishing phase-space points of a
single oscillator, represented as a coarse-graining of the phase space representa-
tions of the quantum states, ii) a limited precision in addressing individual lattice
sites, resulting in the restriction of possible measurements to measurements of
collective operators. In the continuum limit, these correspond to i) introducing
an error in the measurement of the field observables in specific points of space,
ii) introducing a minimal space resolution in distinguishing different points of
space. We find that, under a phase space coarse graining larger than the minimal
quantum uncertainty, all states become separable and, in the continuum limit, the
von Neumann entropy becomes proportional to the volume. The restriction to col-
lective operators, on the other hand, makes all correlations present in vacuum and
thermal states vanish, with the resulting effective state being a tensor product of
states of the different lattice sites. The entropy obtained from considering collect-
ive operators is also proportional to the volume; additionally, it vanishes for small

47
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temperatures, i.e. for the vacuum state, while for large temperatures it converges
to the Shannon entropy of a classical system in a thermal state.

An interesting consequence of the result is that it shows how an extended
system, in particular a quantum field, can be decomposed into subsystems cor-
responding to its fine and large structure, the latter representing the degrees of
freedom accessible through the measurement of collective operators. The area-
scaling correlations are confined in the small-scale subsystem, which has to be
traced out when only limited space resolution is possible. In agreement with the
results of the previous chapter, it appears that a proper thermodynamic description
for quantum fields requires tracing over the appropriate subsystems, which do not
correspond to a sharp division of space into subregions.

A manuscript based on the results of this chapter is under preparation.

3.1 Classical Systems as Coarse-Grained Quantum
Systems

Quantum mechanics differs radically from classical physics, both in experimental
predictions and in the mathematical formulation. The different frameworks in
which the two theories are formulated make it difficult to understand if and under
what conditions one can be approximated by the other. The coarse-graining ap-
proach, outlined in Refs. [18, 19, 20] is promising in this sense, since it provides
a way to interpret classical probability distributions as quantum states subject to a
large enough experimental error.

In this chapter we are going to see how this approach can be applied to exten-
ded quantum systems and, in particular, quantum fields. Consider, as an example,
the measurement of a classical electromagnetic field. The electric and magnetic
components of the field in a point of space can be measured by observing the
response of a charged probe particle located in the chosen position. This meas-
urement is subject to two main sources of imprecision: i) the determination of
the field strength (Fig. 3.1a), dependent on how precisely the particle’s response
can be measured, and ii) the specification of the point at which the measurement
is made (Fig. 3.1b), bounded by the limited precision in positioning the probe
charge. If we want to map the field in a definite region of space, we have to ima-
gine filling the space with probe charges, the observation will finally consist of a
discrete set of points, in each of which a field strength is revealed with some finite
accuracy. For a classical field one can think, in principle, to be able to arbitrar-
ily increase the precision of the measurements, for example by using lighter and
smaller particles. For large enough precision, however, quantum effects will start
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Figure 3.1: Types of imprecisions in the measurement of a field. (a) The value of the field
φ(x) in a point of space x cannot be measured with a precision better than some minimal
precision ∆φ (and similarly for the conjugate momentum π(x)). This kind of imprecision is
represented as a coarse-graining of phase space variables. (b) The position in space at which
a measurement is made can be determined only with limited accuracy, resulting in a minimal
distance ε between the centres of the sampling regions. This source of error is implemented
by restricting the observable degrees of freedom to those accessible via measurement of
collective operators.

to become visible.
As already discussed in the previous chapter, the entanglement of the vacuum

of quantum fields leads to new interpretational issues absent both in classical phys-
ics and non-relativistic quantum mechanics. Of special interest is the divergent,
area-scaling entropy associated with a finite region of space: since entropy can be
given an operational meaning in terms of the work that can be extracted from a
system, how should one interpret its divergent value? Furthermore, the entropy
of a classical system can be interpreted as counting the number of microstates
compatible with a given probability distribution (macrostate) and is expected to
be proportional to the number of degrees of freedom and thus to the volume. If
classical states are limiting cases of quantum states, a transition from an area to a
volume law should be expected under certain conditions; how does such a trans-
ition occur? Such a question extends beyond the realm of quantum field theory,
since area laws are known to hold for a large variety of extended systems with
local interactions, such as lattices of coupled particles

An important point in the present analysis is the tight connection between
entropy, operationally interpreted as a thermodynamic quantity, and the informa-
tion available about a system1. Accordingly, the entropy associated with a system
should be linked with the precision achievable when manipulating the system. As
outlined above, we are going to model two kinds of measurement imprecision.

1As a simple example, consider a particle in a box. If no information is available about the
position of the particle, no work can be extracted from it. However, once position and velocity
are known, one can position a piston in the box that will be moved in a desired direction when hit
by the particle and produce work. A better knowledge of the particle’s state can be used to better
position the piston and extract work more efficiently.
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The lack of precision in measuring the field’s amplitude in a point of space ~x will
be modelled as a coarse-graining in the phase space of the corresponding field
observables, using methods similar to those introduced in Ref. [19]. The limited
resolution in space, on the other hand, corresponds to the measurements of col-
lective operators [78, 79] which, as we are going to see, singles out a subsystem
from the global Hilbert space.

3.2 Coarse Graining in Phase Space

3.2.1 Single Particle
We illustrate at first the coarse-graining formalism for the simple case of a single
one-dimensional particle. This is formally analogous to a bosonic field measured
in a specific point (or in a small region) of space or, more generally, to an arbit-
rary bosonic field mode. The measurement coarse-graining and the emergence of
classicality can be conveniently expressed in the phase-space formalism, which
we will now review. (See Ref. [80] for a more extensive introduction.)

Phase Space Formalism Let q̂ and p̂ be respectively the position and mo-
mentum operators, with canonical commutation relations

[q̂, p̂] = i . (3.1)

We work with dimensionless phase-space variables q, p and units for which ~ =

c = 1. An arbitrary operator on the Hilbert space, and in particular a density
matrix ρ̂, can be fully described by a characteristic function. For an arbitrary
parameter s ∈ [−1, 1], this is a function of the real variables r, t defined as

χs(r, t) := es r2+t2
4 tr

[
ρ̂ei(rq̂+t p̂)

]
. (3.2)

The characteristic functions are the Fourier transforms of quasiprobability distri-
bution, phase-space densities which are also faithful representations of quantum
states:

ρs(q, p) :=
2
π2

∫
drdtχs(r, t)e−i(rq+tp). (3.3)

For different values of the parameter s, the definition (3.3) reduces to specific
quasiprobability distributions. For s = 1, it coincides with the Glauber-Sudarshan
P function [81], which provides a diagonal representation of quantum states (or
arbitrary operators) on the basis of coherent states:

ρ̂ =

∫
d2αP(α)|α〉〈α| , (3.4)
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where P(α) ≡ ρ1(α) = ρ1(q, p), α := 1
√

2
(q + ip),

∫
d2α =

∫
dαRdαI = 1

2

∫
dqdp

and the coherent states |α〉 are defined by

â|α〉 = α|α〉,
â := 1

√
2

(q̂ + ip̂) . (3.5)

For s = −1, (3.3) corresponds to the definition of the Q function [82]

ρ−1(α) ≡ Q(α) :=
1
π
〈α|ρ̂|α〉 , (3.6)

which has the property of being always positive. Finally, for s = 0 the definition
(3.3) reduces to the Wigner function [83]

ρ0(q, p) ≡ Wρ̂(q, p) :=
1
π

∫
dye−2ipy〈q − y|ρ̂|q + y〉 . (3.7)

One of the properties of the Wigner function is that expectation values can be
calculated as phase-space averages: given a state ρ̂ and an observable Ô, together
with their respective Wigner functions Wρ̂(q, p) and WÔ(q, p), the expectation
value of the observable Ô given the state ρ̂ is given by

〈Ô〉ρ̂ := Tr
(
ρ̂Ô

)
= 2π

∫
dqdpWρ̂(q, p)WÔ(q, p). (3.8)

Often, the definition used for the Wigner representation of an observable Ô differs
by a multiplicative factor from (3.7), which is only used for states. Here we do
not make such a distinction and use (3.7) for arbitrary operators, this is the reason
for the 2π factor in front of the integral in Eq. (3.8).

A useful property of the quasiprobability distributions (3.3) is that they can all
be derived as Gaussian convolutions of the P function:

ρs(q, p) =
1

π(s − 1)

∫
dq′dp′e

1
s−1 [(q−q′)2+(p−p′)2]P(q′, p′), −1 ≤ s < 1. (3.9)

Note that, despite some similarities, the quasiprobability distributions (3.3), (3.4),
(3.6), (3.7) cannot generally be understood as classical probability distributions
on phase space. As we are about to see, such an interpretation becomes possible
when a sufficiently large experimental error is introduced.

Coarse-Grained Observables and States In classical physics, one assumes
that it is possible to measure different points of phase space independently and
with arbitrary precision. Observables are functions on phase space O(q, p) and
states are positive probability distributions ρ(q, p). The expectation value of an
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observable O(q, p) given a state ρ(q, p) can be calculated with the phase-space
integral

∫
dqdpρ(q, p)O(q, p), analogous to (3.8). A classical probability distribu-

tion can be arbitrarily concentrated, with ρ(q, p) = δ(q− q0)δ(p− p0) representing
a pure state. As it is well-known, this picture breaks down in quantum mechanics
due to the Heisenberg uncertainty principle, which has consequences on meas-
urements at the scale of phase space areas of the order of the Planck constant ~.
This suggests that, given an experimental error larger than ~, quantum proper-
ties cannot be observed and quantum systems effectively appear as classical. It is
possible to formalise such an intuition thanks to the notion of coarse graining of
quasiprobability distributions.

Consider an experimental situation in which a quantum particle is observed,
but only a limited resolution in phase space is available. This means that, for
example, if one tries to perform a projective measurement on a coherent state |α〉,
a different state |β〉 might be addressed instead with some probability2. Assuming
that the probability of measuring β instead of α is a Gaussian with variance σ2, a
measurement with outcome α corresponds in fact to the measurement of a POVM
(projective operator valued measure) element

Πσ (α) :=
1
πσ2

∫
d2βe−

|α−β|2

σ2 |β〉〈β|. (3.10)

The variance σ2 is the coarse-graining parameter and it quantifies the minimal
measurement error, i.e. the typical distance below which points in phase space
cannot be distinguished (since we use ~ = c = 1, σ2 is measured in units of ~).

An arbitrary quantum observable Ô can be expanded on a basis of coherent
states using its P representation as in Eq. (3.4). This can be thought of as defining
the fine-grained observable, only measurable with arbitrary phase space resolu-
tion. If a minimal error of magnitude σ is present, the best approximation to Ô
that can be measured is obtained by formally substituting the coherent states in
(3.4) with the POVM elements (3.10). We define therefore the coarse-grained
observable as

Ôσ :=
∫

d2αO1(α)Πσ(α) , (3.11)

where the functionO1(α) is defined as in (3.3). If we insert Eq. (3.10) in Eq. (3.11)
and perform a variable change, we can write the coarse-grained observable again
in the form (3.4) as

Ôσ =

∫
d2αOσ1 (α)|α〉〈α|,

2Note that, although different coherent states are not orthogonal, having infinite precision
would in principle allow performing a projective measurement on a single coherent state. For
example, one could perform a measurement on the projectors

{
|α〉〈α|, 11 − |α〉〈α|

}
. A lack in ex-

perimental precision prevents identifying the state |α〉 with arbitrary accuracy and thus performing
such a projective measurement.
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where the coarse-grained P function is defined as the convolution of the original
one with a Gaussian:

Oσ1 (α) :=
1
πσ2

∫
d2β e−

|α−β|2

σ2 O1(β) (3.12)

≡
1

2πσ2

∫
dq′dp′ e−

(q−q′)2+(p−p′)2

2σ2 O1(q′, p′) .

The same Gaussian convolution (3.12) can be applied to an arbitrary phase
space representation (3.3) of an observable Ô, defining the coarse-grained function
(Os)σ (q, p). This is in turn equal to the s representation of the coarse-grained
operator (3.11), i.e. (Os)σ (q, p) = (Oσ)s (q, p). To see this, it is sufficient to note
that, using the relation (3.9), (Os)σ (q, p) can be written as a double Gaussian
convolution of the P representation O1(q, p). The final result is a consequence of
the commutativity of Gaussian convolution, which is apparent from the formula

√
ab
π

∫
dye−a(q−y)2

e−by2
=

√ c
π

e−cq2
, 1

c = 1
a + 1

b . (3.13)

In simple words, the phase space coarse graining Ôσ of an observable Ô can be
defined by convoluting an arbitrary phase space representation of it with a Gaus-
sian function.

It is convenient to represent the imprecise measurements at the level of states:
we want a map ρ̂ → ρ̂σ such that the coarse-grained measurements on arbitrary
states can be written as arbitrary measurements on coarse-grained states, namely

〈Ôσ〉 := Tr
(
ρ̂Ôσ

)
= Tr

(
ρ̂σÔ

)
≡ 〈Ô〉σ. (3.14)

We can see that ρ̂σ can be defined by a Gaussian convolution of one of the qua-
siprobability distributions (3.3) associated with ρ̂. The expectation value (3.14)
can be evaluated using the Wigner representations of ρ̂ and Ôσ through (3.8). It is
then straightforward to verify that∫

dqdpWÔσ(q, p)Wρ̂(q, p) =

∫
dqdpWσ

Ô
(q, p)Wρ̂(q, p)

=

∫
dqdpWÔ(q, p)Wσ

ρ̂ (q, p) ≡
∫

dqdpWÔ(q, p)Wρ̂σ(q, p),

where

Wρ̂σ(q, p) :=
1

2πσ2

∫
dq′dp′ e−

(q−q′)2+(p−p′)2

2σ2 Wρ̂(q′, p′) (3.15)

defines the Wigner function of the coarse-grained state ρ̂σ andWσ always repres-
ents the convolution of the functionW with a Gaussian of variance σ2, as in Eq.
(3.12).
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To summarise, the effect of an imprecision σ in distinguishing points in phase
space can be represented as a coarse graining of the measured states. The coarse-
grained state is defined as a Gaussian convolution of the Wigner function, Eq.
(3.15), or of any other quasiprobability distribution (3.3) with arbitrary parameter
−1 ≤ s ≤ 1. Note that a classical probability distribution on phase space would be
smeared in the same way as (3.15) under the assumption that, in all measurements,
an independent, isotropic and homogeneous error of size σ is introduced.

3.2.2 Many Particles

The above definitions and formalism can be directly extended to the case of n
distinguishable particles. These may represent the positions of ions within a lattice
or a discretised bosonic field. The conjugate position and momentum operators,
together with their commutation relations, can be compactly expressed as

ξ̂ ≡ (q̂1, . . . , q̂n, p̂1, . . . , p̂n) , [ξ̂ j, ξ̂l] = i(δ j+n l − δ j l+n) .

The phase space formalism can be extended in a straightforward way to the n-
particle case. The defining equations for the P, Q and Wigner function are re-
spectively

ρ̂ =

∫
d2nαP(~α)|~α〉〈~α|, (3.16)

Q(~α) :=
1
πn 〈~α|ρ̂|~α〉, (3.17)

W(~q, ~p) :=
1
πn

∫
dnye−2i~p·~y〈~q − ~y|ρ̂|~q + ~y〉, (3.18)

where |~α〉 ≡ |α1〉⊗· · ·⊗|αn〉 is a tensor product of coherent states, α j = 1
√

2

(
q j + ip j

)
and

∫
d2nα =

∫
dnαRdnαI = 1

2n

∫
dnqdn p. The relations between the different

quasiprobability distributions still hold. In particular, (3.9) becomes

ρs(ξ) =

∫
d2nξ′GA(ξ − ξ′)P(ξ′), A =

2
s − 1

112n, −1 ≤ s < 1, (3.19)

where ρs(ξ) is the quasiprobability distribution with parameter s associated with
ρ̂ and we introduced the notation

GA(~x) :=

√
det A

(2π)
n
2

e−
1
2
∑

i j xiAi j x j (3.20)
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for an n-dimensional Gaussian, with A an arbitrary positive definite, symmetric
bilinear form on Rn. Useful properties, that have a simple expression in this nota-
tion, include ∫

dny GA(~x − ~y)GB(~y) = GC(~x), C−1 = A−1 + B−1, (3.21)

GA(a~x) =
1
an Ga2A(~x), a ∈ Rn, (3.22)

GA(~q)GB(~p) = GA⊕B(~q, ~p), (3.23)

GA(~x)→ δ(~x) for
∥∥∥A−1

∥∥∥→ 0, (3.24)∫
dnx

(2π)n/2 GA(~x)ei~k~x =
√

det A GA−1(~k), (3.25)∫
dnx GA(~x)x jxl = (A−1) j l. (3.26)

The coarse graining ρ̂σ of a state ρ̂ is defined by

ρσs (ξ) :=
∫

d2nξ′GA(ξ − ξ′)ρs(ξ′), (3.27)

with A = 1
σ2 112n. (As before, the specific value of s is unimportant, since (3.27)

defines the same state ρ̂σ for all −1 ≤ s ≤ 1.) Notice that expression (3.27) can
be immediately generalised to the case where q j and p j are subject to different
minimal errors ∆q and ∆p, respectively, simply by setting A = 11n

∆q2 ⊕
11n
∆p2 .

The fundamental property of sufficiently large coarse graining in phase space
is that it makes quantum correlations unobservable. In fact, the following theorem
holds:

Theorem. The coarse-graining with parameter σ2 ≥ 1 of any state yields a sep-
arable state.

To prove this, compare (3.19) with (3.27) and notice that the Q function of
a state ρ̂ coincides with the P function of the coarse-grained state ρ̂σ, ρ−1(ξ) =

ρσ1 (ξ), with σ2 = 1. Since the Q function is always positive, this means that
the P function of a coarse-grained state with σ2 = 1 is also positive. Using the
expansion (3.16), ρ̂σ can be written as a mixture of products of coherent states,
thus it is a separable state. Finally, using (3.21), we can write a coarse-grained P
function with σ2 > 1 as Pσ(ξ) =

∫
d2nξ′GA(ξ− ξ′)P1(ξ′), with A = 1

σ2−1 112n. Since
the Gaussian convolution of a positive function is also positive, the positivity of
Pσ(ξ) and hence the separability of ρ̂σ for an arbitrary σ2 ≥ 1 follows.
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3.2.3 Coarse-Grained Harmonic Systems

Consider a cubic d-dimensional lattice with N sites per side and one quantum
harmonic oscillator per site, for a total of n = Nd oscillators, Fig. 3.2. Each site is
labeled by a discrete vector ~j = ( j1, j2, . . . , jd), with every component in the range
js = 1, . . . ,N.

Figure 3.2: A d-dimensional cubic lattice with N sites per side. Each site is identified by
a set of integers ~j = ( j1, j2, . . . , jd), each running between 1 and N, and corresponds to
the equilibrium position of a quantum harmonic oscillator with Hilbert space H~j. The full
system has thus Hilbert spaceH =

⊗
~jH~j. In the picture, d = 2.

We assume that the system is in a generic Gaussian state, i.e. a state with a
Gaussian Wigner function (or, equivalently, a Gaussian characteristic function),
with the additional property 〈q̂~j〉 = 〈 p̂~l〉 = 〈q̂~j p̂~l〉 = 0 (this property is not neces-
sary for the argument, but it simplifies the notation and is satisfied for the states
under consideration). Such a state is fully characterised by the two-point correla-
tion matrices

g~j~l := 〈q̂~jq̂~l〉 = Tr
[
ρ̂ q̂~jq̂~l

]
,

h~j~l := 〈 p̂~j p̂~l〉 = Tr
[
ρ̂p̂~j p̂~l

] (3.28)

and the Wigner function reads

W(~q, ~p) = Gg−1⊕ h−1(~q, ~p), (3.29)

as can be directly verified by calculating (3.28) via (3.8) and using (3.26). Ad-
ditionally, we restrict to the case of translationally invariant states, i.e. such that
g~j ~j+~d = g~l~l+~d, h~j ~j+~d = h~l~l+~d for arbitrary ~j,~l, ~d. In this case, the correlation matrices
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are diagonalised by a discrete Fourier transform3:

g~j~l = 1
Nd

∑
~k g~ke

i 2π
N
~k·(~j−~l),

h~j~l = 1
Nd

∑
~k h~ke

i 2π
N
~k·(~j−~l),

(3.30)

where, for brevity, we write
∑
~k ≡

∑N
k1=1 · · ·

∑N
kd=1. Ground and thermal states of a

harmonic system (such as a non-interacting bosonic field) typically satisfy all the
conditions above.

We consider now a situation in which measurements of each q̂~j, p̂~j are limited
by some minimal precision ∆q, ∆p, respectively. We can calculate the corres-
ponding coarse graining of the Wigner function (3.29) by applying the rule (3.21)
for Gaussian convolution, with A−1= g⊕ h and B−1=

(
∆q211n

)
⊕

(
∆p211n

)
. The res-

ulting state is again Gaussian and is characterised by the coarse-grained two-point
correlation matrices

gσ = g + ∆q2 11Nd = g + σ2

m2 11Nd ,
hσ = h + ∆p2 11Nd = h + m2σ2 11Nd ,

(3.31)

where m :=
√

∆p
∆q is the parameter that specifies the ratio between the errors in the

conjugate observables q̂~j, p̂~j and is assumed to be fixed, while σ :=
√

∆q∆p is the
coarse-graining parameter, with σ2 � ~ defining the classical limit. Note that the
matrices (3.31) are still diagonal in the Fourier basis: the coarse graining has the
effect of adding a constant to their eigenvalues g~k → g~k + σ2

m , h~k → h~k + mσ2.
The Von Neumann entropy of a Gaussian state was first calculated in Ref. [55];

it is possible to express it as function of the matrix C :=
√

g · h (see, e.g., Ref.
[59]):

S = Tr [s (C)] ,

s(x) :=
(
x +

1
2

)
log

(
x +

1
2

)
−

(
x −

1
2

)
log

(
x −

1
2

)
.

(3.32)

Note that one always has C ≥ 1
2 (generalised Heisenberg uncertainty relations),

which means g~kh~k ≥
1
4 . When applied to a coarse-grained, translationally-invariant

state, the expression (3.32) gives S σ =
∑
~k s

(
cσ
~k

)
, with cσ

~k
=

√(
g~k + σ2

m2

) (
h~k + m2σ2

)
.

For any σ > 0 we have cσ
~k
> 1

2 + δ for some δ > 0 independent of ~k. This gives

3The discrete Fourier transform of a matrix A~j~l is Ã~k~k′ = 1
Nd

∑
~j~l ei 2π

N

(
~j·~k−~l·~k′

)
A~j~l. If A is

translationally invariant, i.e. A~j ~j+~d = A~d for all ~j, then Ã~k~k′ = 1
Nd

∑
~j ~d ei 2π

N
~j·
(
~k−~k′

)
ei 2π

N
~d·~k′A~j ~j+~d =

δ~k~k′
∑

~d ei 2π
N
~d·~k′A~d.
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S > Nd s(1
2 + δ), which means that, for N sufficiently large4, the Von Neumann en-

tropy scales as the total number of lattice points, i.e. as the volume of the system.
It is simple to prove that, if the entropy of the whole system scales as the

number of lattice sites, so does the entropy of any sub-region. Consider first the
half-space case: divide the lattice in two identical sub-lattices A and B, containing
Nd

2 sites each. For symmetry reasons, the reduced states over the two half-chains
have the same entropy, S A = S B. We also have that the entropy of all the space is
bounded by the sum of the two reduced entropies, S AB ≤ S A +S B, from which fol-
lows S A = S B ≥

1
2S AB ∝

Nd

2 . The same argument can be used for divisions of the
lattice into an arbitrary number of equal sub-lattices; thus, for every subsystems
containing l sites, we have a bound S l ≥ bl for some positive constant b. We have
thus shown that a coarse-graining of a translationally invariant state of the form
(3.29) results in a volume law for the entropy of an arbitrary sub-lattice. Note
that, in the limit N → ∞ (in particular in the continuum limit defining a quantum
field), any finite, no matter how small, coarse-graining, gives a volume scaling for
the entropy.

3.3 Collective Field Operators
Quantum fields, unlike the systems considered so far, possess infinitely many de-
grees of freedom. However, in practical situations it is impossible to resolve points
in space with arbitrary precision: a measurement of a field must necessarily con-
sist of a sample of a finite number of points, where each point corresponds in fact
to a finite region of space. In this section we consider the effects of such a limited
space resolution on the correlations and entropy of quantum fields.

3.3.1 General Profiles
We consider a bosonic, scalar field in d space dimensions, with conjugate operat-
ors φ̂(~x), π̂(~x) satisfying the canonical commutation relations

[φ̂(~x), π̂(~y)] = i δ(~x − ~y). (3.33)

The d-dimensional space is sampled in a discrete set of points ~j ∈ Zd. Each dis-
crete point represents the position of the centre of an idealised detector described
by a real, positive function f~j(~x) (the detection profile), which determines how
much the field in the point ~x contributes to the measurement outcome of the ~j-th

4The entropy might have other contributions proportional to different powers of N, such as
an area term of the form cNd−1, with c is a constant of order one. However, the volume scaling
overtakes as soon as N > c

s( 1
2 +δ)

.
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detector. Assuming that the detection profile does not depend on the observable
measured, the algebra of accessible observables is generated by the collective field
operators

q̂~j :=
∫

dd x f~j(~x)φ̂(~x),
p̂~j :=

∫
dd x f~j(~x)π̂(~x).

(3.34)

If the functioning of the detector does not depend on its position, a single profile
can be used for all points in space:

f~j(~x) ≡ f (~x − ~jD) , (3.35)

where D is the distance between the sampling points. The collective operators
(3.34) satisfy canonical commutation relations if

∫
dd x f~j(~x) f~l(~x) = δ~j~l. The van-

ishing of the commutator between operators in different points guarantees that
they define different subsystems [65]. The collective operators thus define a dis-
crete harmonic lattice, analogous to the system considered in the previous section,
which represents a subsystem of the continuous filed. In this picture, the whole
system factorises in two subsystems

H = Hcoll ⊗H f ine, (3.36)

where Hcoll =
⊗

~jH~j is the subsystem generated by the algebra of collective
operators, eachH~j being the Hilbert space identified by the conjugate operators q̂~j,
p̂~j, whileH f ine represents the fine-grained, unobservable degrees of freedom. We
will assume, for the general discussion, that the detection profile f has a compact
support contained in a region of size D (thus different profiles do not overlap).

As for the discrete case, we consider a Gaussian, translationally invariant state
with 〈φ̂(~x)〉 = 〈π̂(~x)〉 = 〈φ̂(~x)π̂(~y)〉 = 0, completely specified by the two-point
correlation functions

〈φ̂(~x)φ̂(~y)〉 =
∫

ddk
(2π)d ei~k·(~x−~y)g(~k),

〈π̂(~x)π̂(~y)〉 =
∫

ddk
(2π)d ei~k·(~x−~y)h(~k),

(3.37)

analogously to (3.30). The effective state, as it appears by measuring the observ-
ables generated by the collective operators (3.34), is obtained from the original
one by tracing over the subsystem H f ine. Since tracing is a linear operation, the
resulting state is again Gaussian. The corresponding correlation matrices, defined
as in Eq. (3.28), are given by

g~j~l =
∫

dd xddy f~j(~x) f~l(~y)〈φ̂(~x)φ̂(~y)〉 =
∫

ddk f̃~j(~k) f̃ ∗
~l

(~k)g(~k),

h~j~l =
∫

dd xddy f~j(~x) f~l(~y)〈π̂(~x)π̂(~y)〉 =
∫

ddk f̃~j(~k) f̃ ∗
~l

(~k)h(~k),
(3.38)



60 COARSE-GRAINED QUANTUM FIELDS

where f̃~j(~k) :=
∫

ddk
(2π)d/2 f~j(~x)ei~k·~x is the Fourier transform of the detection profile.

Using (3.35), we have f̃~j(~k) = f̃ (~k)ei~k·~jD and the correlation matrices can be written
as

g~j~l =
∫

ddk| f̃ (~k)|2eiD~k·(~j−~l)g(~k) =
(

D
2π

)d ∫
[0, 2π

D ]d ddk eiD~k·(~j−~l)gD(~k),

h~j~l =
∫

ddk| f̃ (~k)|2eiD~k·(~j−~l)h(~k) =
(

D
2π

)d ∫
[0, 2π

D ]d ddk eiD~k·(~j−~l)hD(~k) ,
(3.39)

where

gD(~k) :=
(

2π
D

)d ∑
~l∈Zd | f̃ (~k + 2π

D
~l)|2g(~k + 2π

D
~l),

hD(~k) :=
(

2π
D

)d ∑
~l∈Zd | f̃ (~k + 2π

D
~l)|2h(~k + 2π

D
~l)

(3.40)

are the eigenvalues of the correlation matrices. Note that the momentum integ-
rals are now bounded by the finite value 2π

D , which therefore plays the role of an
ultraviolet regulator.

The von Neumann entropy of the reduced state can be evaluated using Eq.
(3.32). The matrix (C2)~j~l =

∑
~i g~j~ih~i~l is obtained by multiplying the diagonal ele-

ments (3.40) of the correlation matrices, as they are all diagonal in the same basis.
We find

C~j~l =
(

D
2π

)d ∫
[0, 2π

D ]d ddk eiD~k·(~j−~l)cD(~k) ,

cD(~k) :=
√

gD(~k)hD(~k) .
(3.41)

The entropy is finally given by

S D =
∑
~j

s (C)~j~j =

∑
~j

1

 ( D
2π

)d ∫
[0, 2π

D ]d
ddk s(cD(~k)) , (3.42)

where s is the function defined in (3.32). The expression (3.39), with the infinite
sum

∑
~j 1, is only divergent if we consider the fields (3.33) extended to all Rd.

If we restrict the fields to a finite region of size L, the indices j1, . . . , jd of the
matrices (3.39) run from 1 to N = L

D , so that
∑
~j 1 = Nd = Ld

Dd .
For systems with an energy gap (i.e. systems, such as massive fields, where

the energy difference between ground and first excited state does not vanish in
the continuum limit), the correlation functions typically decay exponentially at
distances larger than some correlation length λ [84]. In such a case, the space
integrals in Eq. (3.39), defining the correlation matrices of the collective operators,
have to be evaluated only for

∥∥∥~x − ~y∥∥∥ . λ. Since in this region, for D � λ, the
integrand f~j(~x) f~l(~y) = f (~x − ~jD) f (~y − ~lD) would vanish unless ~j = ~l. In this case
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one gets

g~j~l ∼ gDδ~j~l, h~j~l ∼ gDδ~j~l, (3.43)

gD :=
∫

ddk| f̃ (~k)|2g(~k), hD :=
∫

ddk| f̃ (~k)|2h(~k). (3.44)

In other words, if the resolution D in space is larger than the correlation length of
the system, no correlations are observable between collective operators at different
points. The state can therefore be written as a product state over the different
points of space5, ρ =

⊗
~j ρ~j. Consequently, the von Neumann entropy is additive

and proportional to the volume:

S = −
∑
~j

Trρ~j ln ρ~j =

( L
D

)d

s(
√

gDhD). (3.45)

The same result holds also for any subregion, because the reduced state in a sub-
region A is simply ρA =

⊗
j∈A ρ j.

3.3.2 Gaussian Profiles

It is possible to prove the vanishing of the correlations, and the result (3.45), for
the specific case of Gaussian detection profiles:

fε(~x) :=
1(

2πε2)d/4 e−
‖~x‖2

4ε2 =
(
8πε2

)d/4
G 1

2ε2
(~x),∣∣∣ fε(~x)

∣∣∣2 = G 1
ε2

(~x),
∣∣∣∣ f̃ε(~k)

∣∣∣∣2 = G4ε2(~k),

where we omit the identity matrix when using the notation (3.20), as for example
G4ε2 ≡ G4ε211d

. This choice of profile is natural if we interpret the smearing (3.34)
as arising from a random error in the identification of a point in space. To guar-
antee that measurements in different points are independent, and that different
collective operators effectively identify different subsystems, we need the overlap
between neighbouring profiles to be small, i.e. ε � D. In this limit, the Gaussian
profiles can be treated as compact-support profiles and the general results of Sec.
3.3.1 apply.

5This only true for Gaussian states, because they are fully determined by their two-point cor-
relations (note that 〈q̂~j〉 = 〈p̂~l〉 = 〈q̂~j p̂~l〉 = 0 is always assumed.)
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The correlation matrices for collective operators read

g~j~l =
(
8πε2

)d/2
∫

dd xddy G 1
2ε2

(~x − ~jD)G 1
2ε2

(~y − ~lD)〈φ̂(~x)φ̂(~y)〉

=
(
8πε2

)d/2
∫

ddy G 1
4ε2

((~j − ~l)D − ~y)〈φ̂(~y)φ̂(0)〉,

h~j~l =
(
8πε2

)d/2
∫

ddy G 1
4ε2

((~j − ~l)D − ~y)〈π̂(~y)π̂(0)〉,

(3.46)

where property (3.21) and the translational invariance of the correlation functions
have been used. We want to find the limit for which condition (3.43) holds. This
occurs when the integrals (3.46) vanish for ~j , ~l. In Appendix B.1 it is shown
that, for any positive, bounded, asymptotically monotonically decreasing function
ϕ, we have ∫

ddy G 1
4ε2

(~a − ~y)ϕ(‖~y‖)→ ϕ(‖~a‖) (3.47)

for ‖~a‖
ε
→ ∞. Assuming that 〈π̂(~y)π̂(0)〉 and 〈π̂(~y)π̂(0)〉 vanish at infinity (as is

typically the case), by applying (3.47) to (3.46) we find that, for D � ε,

g~j~l '
(
8πε2

)d/2
〈φ̂((~j − ~l)D)φ̂(0)〉

h~j~l '
(
8πε2

)d/2
〈π̂((~j − ~l)D)π̂(0)〉

for ~j , ~l. Thus the approximation (3.43) holds when D is large with respect to ε
and when both εd〈φ̂(D)φ̂(0)〉 and εd〈π̂(D)π̂(0)〉 tend to zero6.

For example, in the vacuum state of a Klein-Gordon field of mass M the cor-
relation functions decay exponentially with M, so we can plug ϕ(‖~x‖) ∼ e−M‖~x‖ in
(3.47), which gives the exponential decay e−MD for the off-diagonal elements of
the correlation matrices. This means that, in this case, no correlations between col-
lective operators can be found for DM → ∞, i.e. for spacing between the sampling
points much larger than the Compton wavelength 1

M in the adopted units.

3.3.3 Vacuum and Thermal States of the Klein-Gordon Field
The thermal state of a Klein-Gordon field is a Gaussian state. For an inverse
temperature β, it is characterised by

g(~k) = 1
2ωk

coth(βωk
2 ), h(~k) = ωk

2 coth(βωk
2 ),

ωk =
√

k2 + M2 , k = ||~k||.
(3.48)

6Note that, in order to derive Eq. (3.47), it is not sufficient to use G 1
4ε2

(~x) → δ(~x) for ε →
0, since ε is not dimensionless and has to be compared with a quantity of the same dimension.
Furthermore, the expression (3.47) does not necessarily converge in the limit ‖~a‖

ε
� 1 (e.g. for a

periodic ϕ), for this reason the monotonicity condition is used (although weaker conditions could
also be used).
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(See Ref. [85].) In the limit D � ε � 1
M , the entropy takes the form (3.45).

Additionally, we have
∣∣∣∣ f̃ε(~k)

∣∣∣∣2 → δ(~k), whenever the Gaussian
∣∣∣∣ f̃ε(~k)

∣∣∣∣2 is integrated

with functions g(~k), h(~k) that have small derivative compared to ε. This is the
case when ε � 1

M and ε � β (independently of the relation between β and M).
Using this approximation into Eq. (3.44), one finds gD → g(0) = 1

2M coth(βM
2 ),

hD → h(0) = M
2 coth(βM

2 ). The entropy is thus given by

S =

( L
D

)d

s
(
1
2

coth(
βM
2

)
)
, (3.49)

where the function s is defined in Eq. (3.32).

Vacuum State In the low-temperature limit, βM → ∞, we have coth(βM
2 ) →

1. Since s(1/2) = 0, we find that S → 0. Thus the entropy of the vacuum
state is zero when all available measurements have a minimal precision larger
than the Compton wavelength. This implies that the corresponding state, which
was defined as the vacuum state reduced over the subsystem Hcoll, is pure. We
conclude that the vacuum state |0〉 of the Klein-Gordon field is a product state in
the division in subsystems (3.36):

|0〉 ∼ |Ω〉coll ⊗ |ω〉 f ine, (3.50)

where |Ω〉coll is the effective state that can be measured with the limited space res-
olution and |ω〉 f ine is the reduced state of the remaining subsystem H f ine, which
would require a higher precision to be measured7. Additionally, since the condi-
tion (3.43) holds, no correlations are left among the spacesH~j, which means that
the reduced state is a product |Ω〉 =

⊗
j |Ω j〉.

What we have found is that, under the restriction of measurements with a
minimal precision larger than the Compton wavelength, the vacuum state of the
Klein-Gordon field appears effectively as a pure product state. This is also how
the vacuum appears in the Newton-Wigner localisation, discussed in Chapter 2.
This suggests that the Newton-Wigner localisation naturally emerges when short-
distance correlations are unobservable.

High Temperature The high-temperature limit, in the regime of poor spatial
resolution, is defined as the limit D � ε � 1

M � β. By Inserting (3.48) into

7The factorisation (3.50) is approximate because the Gaussian profile only approximatively
define different subsystems.
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(3.44) with a Gaussian profile we have

gD =

∫
ddkG4ε2(~k)

coth(βωk
2 )

2ωk

=

∫
ddk
βd G4ε2

(
~k/β

)
coth


√
‖~k‖2 + β2M2

2

 β

2
√
‖~k‖ + β2M2

=
β

2

∫
ddkG4 ε2

β2

(
~k
) coth

( √
‖~k‖+β2 M2

2

)
√
‖~k‖ + β2M2

,

where the property (3.22) has been used. Since we are considering the limit

βM → 0, we can make the simplification
√
‖~k‖2 + β2M2 → ‖~k‖. Furthermore,

the integrand falls off exponentially for ‖~k‖ > β

ε
→ 0, so we can use the expansion

coth(‖~k‖) ∼ 1
‖~k‖

for ‖~k‖ → 0. We find8

gD ∼β

∫
ddkG4 ε2

β2

(
~k
) coth

(
‖~k‖
2

)
2‖~k‖

∼ β

∫
ddkG4 ε2

β2

(
~k
) 1

‖~k‖2

=β

 2ε

β
√

2π

d

γd

∫ ∞

0
dkkd−1 1

k2 e−2 ε2

β2 k2

=
γd

πd/2 Γ(
d
2
− 1)

ε2

β
=

4
d − 2

ε2

β
,

with γd = 2πd/2

Γ( d
2 )

. With similar steps one finds hD ∼
1
β
, so that

cD =
√

gDhD ∼ td
ε

β
,

with td =

√
4

d−2 . Using Eq. (3.45), we find for the entropy in the high-temperature
limit

S ∼
( L
D

)d

s(td
ε

β
) ∼

( L
D

)d

log(
ε

β
). (3.51)

8For d ≤ 2 the integral does not converge. This is an artifact of applying the substitution
1

k2+β2 M2 →
1
k2 to small values of k. Keeping the original form of the integrand would result in a

different numerical factor in the result, but the scaling with the parameters ε and β would remain
the same.
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The last approximation is obtained by applying the asymptotic behaviour

s(x) = x log
(
1 +

1
x

+ o(
1
x

)
)

+ log (x + o(x))

= log x + o(log x), x→ ∞,
(3.52)

and neglecting the constant term log(td). As we are going to see in the next section,
the result (3.51) can be interpreted as the entropy of a classical system.

3.4 Emergence of Classical Entropy
To conclude the analysis we compare the results obtained with the entropy of clas-
sical systems. The classical Shannon entropy for a continuous random variable
~x ∈ Rn with probability density p(~x) is defined as

S (p) := −
∫

dnxp(~x) log p(~x). (3.53)

This is not always positive and approaches −∞ as p(~x) approaches a delta func-
tion. It is indeed impossible to define a classical entropy as a positive and finite
quantity, the reason being that an infinite amount of information is required to
specify a pure state (i.e. a single point in Rn). However, as long as one is only
concerned with entropy differences, (3.53) provides a proper definition up to an
additive term proportional to the number of degrees of freedom n. A common
procedure for defining a finite entropy, often used in classical statistical mechan-
ics, is to split the volume in cubic cells of side h, with h > 0 being some arbitrary
constant. One can then identify a discrete probability distribution by averaging the
probability density p(~x) over each cell, p j :=

∫
Cell j

p(~x) dnx and use the discrete
version of the Shannon entropy

S h := −
∑

j

p j log p j, (3.54)

which is always positive. The two definitions are equivalent, up to a constant,
as long as only probability distributions are considered that are approximatively
constant within each cell, which can always be achieved by taking h arbitrarily
small.

Shannon Entropy from Phase Space Coarse Graining Since the classical en-
tropy for continuous variables is well-defined only by assuming some kind of
“coarse graining” (i.e. assuming a minimal resolution, which can in principle be
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as small as possible), it is natural to expect that the introduction of coarse graining
at the level of quantum states can link the quantum with the classical notion of
entropy. This can be seen explicitly for Gaussian states subject to phase space
coarse-graining, as defined in Sec. 3.2.

Recall that the von Neumann entropy of a state with Wigner functionW(~q, ~p) =

Gg−1(~q)Gh−1(~p) is given by Eq. (3.32) and that the generalised Heisenberg uncer-
tainty can be expressed as C ≥ 1

2 , with C =
√

g · h. The limit of large variance
is then given by C � 1

2 (i.e. all eigenvalues of C are much larger than 1
2 ). In this

limit, applying the approximation (3.52), the entropy becomes

S = Trs(C) ∼ Tr log C = log det C =
1
2

log (det g det h) . (3.55)

This can be directly compared with the Shannon entropy of a general Gaussian
probability distribution p(~x) = GA(~x), which can be easily calculated from Eq.
(3.53) and is given by

S (GA) =
1
2

log
(
det A−1

)
+ n const. (3.56)

For ~x ∈ R2n and A = g−1 ⊕h−1 this is equal to Eq. (3.55), up to the aforementioned
volume-proportional constant intrinsic in the definition of classical entropy. Since
the Wigner function of a coarse-grained Gaussian state is determined by C =√(

g + σ2

m2

)
·
(
h + m2σ2), a large coarse-grain parameter σ2 � 1 immediately leads

to the approximation (3.55) and thus to the equivalence of classical and quantum
entropy9.

Classical Thermal Entropy from Collective Operators The thermodynamics
of a classical field is notoriously problematic, suffering of ultraviolet divergences
that are eventually cured only within the quantum formalism. It is however sens-
ible to consider thermal states for classical harmonic systems on a lattice, formally
analogous to classical fields measured with a minimal space resolution, and com-
pare them with the corresponding thermal states of quantum systems.

For a Klein-Gordon field in a d-dimensional box of size L we introduce a short-
distance cut-off ε := L

N , with N a natural number, and the discretised canonical

9Notice that for specific states (e.g. the ground state of a harmonic oscillator) the large coarse-
grain limit implies C ∼ σ, which means that the measurement error completely washes away
the features of the original states. In this case the entropy is given by S ∼ n logσ, i.e. it only
contains the constant factor that can be absorbed in the definition of the classical entropy. However,
there exist states for which the condition C � 1

2 applies independently of the coarse graining. If
det C � σ, one is in the regime of classical states, for which the coarse-graining does not affect
the measurement statistics in an appreciable way. The point is that the condition σ2 � 1 makes it
possible to interpret any state as a classical one.
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variables q~j :=
√

Eεd/2φ(~jε), p~j := εd/2
√

E
π(~jε), with E := 1

ε

√
M2ε2 + 2d. The

Hamiltonian of the discretised Klein-Gordon field can be written as

H(~q, ~p) =
E
2

n∑
j1,..., jd=1

q2
~j

+ p2
~j
− α

∑
s

q~jq~j+~us

 , (3.57)

where α := 2
E2ε2 , ~us are the d-dimensional unit vectors ~u1 = (1, 0, . . . , 0), . . . ,

~ud = (0, . . . , 0, 1), and we assume periodic boundary conditions js + N ≡ js for
s = 1, . . . , d. The continuum limit is found for N → ∞ (see Appendix B.2)10. We
can consider Hamiltonians of the more general form

H(~q, ~p) =
1
2

N∑
j1... jd=1

[
X~j~lq~jq~l + P~j~l p~j p~l

]
, (3.58)

where X and P are real, symmetric, translationally invariant matrices. The state
of the system in thermal equilibrium is represented by the Gibbs probability dis-
tribution

ρβ(~q, ~p) =
e−βH(~q,~p)

Zβ
, (3.59)

where β is the inverse temperature and

Zβ :=
∫

dNd
qdNd

p e−βH(~q,~p) (3.60)

is the classical partition function. The entropy of the thermal state can be either
calculated with Eq. (3.56) or using the formula

S =

(
−β

∂

∂β
+ 1

)
log Zβ = −

1
2

log
[
det (βX) det (βP)

]
+ Nd log (2πe) . (3.61)

In the continuum limit, N → ∞, we have E ∼ 1
ε
, α ∼ 1

d and the Hamiltonian
(3.57) can be written in the form (3.58) using the matrices

X~j~l ∼
1
ε

δ~j~l − 1
2d

∑
s

(
δ~j ~l+~us

+ δ~j+~us ~l

) , P~j~l ∼
1
ε
δ~j~l.

These matrices have eigenvalues x~k = 1
ε

[
1 − 1

d

∑
s cos

(
2π
N ks

)]
and p~k = 1

ε
respect-

ively. For N → ∞ we also have x~k ∼
1
ε
. Finally, from (3.61) we can derive

S ∼ Nd log
(
ε

β

)
+ Ndconst. (3.62)

10The discretised Klein-Gordon Field introduced here is equivalent to the system defined by
collective operators with Gaussian profiles, as introduced in Section 3.3.2, in the limit 1

M � D �
ε.
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Up to the usual volume-proportional term, the expression (3.62) corresponds to
Eq. (3.51). This means that, for poor space resolution and high temperature, the
entropy of a quantum field in a thermal state can be interpreted as the entropy of
a classical, discretised field, also in a thermal state.



Chapter 4

Observing Quantum Effects with
Bounded Reference Frames

Summary

Quantum experiments usually assume the existence of perfect, classical reference
frames, which allow for the specification of measurement settings (e.g. orientation
of the Stern-Gerlach magnet in spin measurements) with arbitrary precision. If the
reference frames are themselves quantum systems with finite quantum numbers
(i.e. the reference frames are “bounded”), the precision with which the measure-
ment settings can be defined is limited, providing a limitation on the possibility of
observing quantum effects. In this chapter we consider the requirements on refer-
ence frame necessary for the violation of local realism in entangled spin systems.
As bounded reference frames for directions, spin coherent states are considered.
We find that, for composite systems of an arbitrary number of spin-1

2 particles,
reference frames of very small size are sufficient for the violation of Bell-like in-
equalities. In contrast, we find numerically that, in order to observe an analogous
violation for macroscopic entangled spins, the size of the reference frame must be
at least quadratically larger than that of the entangled spins. This suggests that the
non-observance of quantum phenomena at the macroscopic scale might be related
to the lack of sufficiently powerful reference frames.

This chapter is based on and contains material from the publication

• F. Costa, N. Harrigan, T. Rudolph, and Č. Brukner,
“Entanglement detection with bounded reference frames”,
New J. Phys. 11, 123007 (2009).
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4.1 Reference Frames in Quantum Mechanics
The Kochen-Specker test of contextuality [86] and Bell’s test of local realism [1]
provide theory-independent tests of the “classicality” of a system. In the latter,
correlations between space-like separated parts of a composite system are meas-
ured for different choices of measurement settings. Certain combinations of these
correlations constitute “test quantities” (Bell’s inequalities) that are bounded in all
classical (local realistic) theories. Violation of these bounds imply that the tested
state has no local realistic explanation. Typically, the choices of the settings cor-
respond to different orientations of the measuring apparatuses (like a polariser or
the Stern-Gerlach magnet). This implicitly assumes the existence of an external
(classical) reference frame (RF), which allows one to specify with arbitrary preci-
sion the directions chosen. But, what if no RF is available? The impossibility of
specifying measurement settings precisely, in the absence of a perfect RF, leads
to a kind of “intrinsic decoherence” [87, 88, 89] that might wash out all quantum
features. What are the minimal RF resources such that quantum features of a
given system can still be observed?

If we adopt the natural assumption that physical resources in the Universe are
finite, we will always be confronted with bounded RFs. Physically, this means
that our measurements will always be imprecise. It is of fundamental interest to
determine the minimal measurement precision required such that one can still
observe genuine quantum features, such as violation of local realism or non-
contextuality (see, for example, [90, 18]). In addition to these foundational reas-
ons, the questions given above are relevant for developing methods to contend
with bounded RFs using relational encodings, particularly in the context of com-
putation, cryptography, and communication [91, 92, 93, 94, 95, 96]. For certain
tasks, such as quantum key distribution [97] or quantum communication com-
plexity [98], entangled states are useful only to the extent that they violate Bell’s
inequalities. It is thus important to quantify the costs in RF resources for the
violation.

To introduce the idea of measuring relative degrees of freedom in the situation
of lacking an external RF consider the problem of determining the direction to-
wards which a spin-1/2 particle points. In general the direction can be defined
as a relative angle to some macroscopic pointer (e.g. the Stern-Gerlach magnet),
which serves as an external RF. Performing many repetitions of the Stern-Gerlach
experiment with the same spin state, we can infer this angle. If we are given
two spin-1/2 particles, one can determine the relative angle between them, by first
measuring the angles between each of the spins and the external RF and from
these computing the relative angle. Now suppose that the experimenter has no
access to such an external Cartesian RF; operationally, this means that she has no
information about her orientation with respect to the rest of the world (but she can
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still control all the devices in her laboratory). In particular, the angles between
her instruments and those used to prepare the particles are not known and may
change in every repetition of the experiment. Nonetheless, the relative orienta-
tion between the two spins can be measured in a manner which is invariant under
rotations. If she measures the total spin of the two particles, this can take the
values 0 and 1. Now we are tempted to say that the two spins add when they are
aligned and subtract when they are anti-aligned, and so we can interpret this as the
measurement of the projection of the first spin along the direction of the second.
This procedure leads unavoidably to errors: e.g. if the spins were initially in the
state |ψ+〉 = 1

√
2
(|z+〉|z−〉 + |z−〉|z+〉), then a measurement on each particle with

respect to an external RF along z would imply that they are anti-aligned along this
direction. However, the measurement of total spin is interpreted as if they were
aligned, because the total spin of |ψ+〉 is 1. As this procedure is proven to be op-
timal [99], there is a fundamental restriction in the determination of the relative
angle between two (finite) spins that the experimenter can achieve in absence of
an external reference frame. One can apply the same procedure using a spin- j
coherent state as the RF; as j becomes larger, the errors introduced decrease and,
eventually, for j → ∞ (unbounded RF) the measurement with the classical RF is
exactly reproduced1.

The question we are interested in is how “strong” the RFs need to be to allow
violation of Bell’s inequalities, if in the Bell test the observers are given bounded
RFs. Since we are interested in violations of local realism in the transition from
quantum to classical RFs, we use the spin coherent states to represent quantum
RFs as they are closest to the notion of a classical direction. As we are going to
see, a pair of spin-1/2 particles exhibits violation of Clauser-Horne-Shimony-Holt
(CHSH) inequality already for jRF >

5
2 . In the case of multi-particle Mermin [100]

inequalities, even if half of the RFs are of minimal size jRF = 1/2, and the other
half “unbounded” (classical), the ratio between the quantum and local realistic
bound remains exponential in the number of entangled spins. Finally, for the case
of two macroscopic spins exhibiting violations of a Bell inequality when classical
RFs are available, we find that the violation is possible with bounded RFs only
if their size is quadratically larger than the size of the spins. Since our everyday
RFs do not meet this requirement of macroscopically large spins, this suggests
an explanation as to why we do not see such violations in everyday life. All the
results are derived for violations of local realism, but they can straightforwardly

1In order to physically implement measurements of total spin, one must be able to entangle the
two particles. In practice, information about the alignment of the beams containing the particles
with respect to the lab would need to be available. However, typically this information about beam
alignment does not contain any information about the particle spins - i.e. the internal degrees of
freedom of the two particles. Therefore, one can lack RF for internal degrees of freedom and still
be able to perform the required measurements in the lab.
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be extended to contextuality proofs as well.

4.2 Measurement of Relative Degrees of Freedom.
Here we only consider directional RFs. Given a classical, external RF, one can
measure the projection of a spin- jS particle along a specific direction, where the
2 jS + 1 possible outcomes m = − jS , . . . , jS , correspond to the projectors Πm =

| jS ,m〉〈 jS ,m|. Given an initial state |ψ〉, the probability of detecting the outcome
m is

pm = 〈ψ|Πm|ψ〉 = |〈 js,m|ψ〉|2.

Assuming experimental conditions in which the resources available are limited,
we consider bounded RFs by replacing the classical RF with a quantum RF in the
form of a coherent state of spin jRF .

Without an external RF, the experimenter can only measure relational degrees
of freedom of the particle and the coherent state | jRF〉. The task is thus to es-
timate the relative angle between them using only rotationally invariant opera-
tions. An optimal procedure consists in performing the projective measurement
onto the subspaces of total spin j of two spins [91], which can take the values
j = | jRF − jS |, . . . , jRF + jS . When the outcome j = jRF + m of total spin is ob-
served, we associate the spin component m along the direction of the bounded RF
to the system. In this way the spin projection measurement relative to a bounded
RF simulates the one relative to an unbounded RF. The projectors associated to
subspaces of total spin are

Π̂ jRF+m =

jRF+m∑
m′=− jRF−m

| jRF + m,m′〉〈 jRF + m,m′| .

The effective measurement on the system alone is represented by the POVM
elements

P̂ jRF
jS m = 〈 jRF |Π̂ jRF+m| jRF〉. (4.1)

These can be expressed in terms of the Clebsch-Gordan coefficients C
j1 j2 j

m1 m2 m
:=

〈 j,m|| j1,m1〉| j2,m2〉 and are given by

P̂ jRF
jS m =

∑
mS nS

C
jRF jS jRF+m

jRF mS jRF+mS
C

jRF jS jRF+m

jRF nS jRF+nS
| jS ,mS 〉〈 jS , nS |.

Using the asymptotic properties of the Clebsch-Gordan coefficients [101], one
has C jr js jr+m

jrms jr+ms
→ δm ms for jr → ∞ and it can be easily seen that P̂ jRF

jS m →
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| jS ,m〉〈 jS ,m| ≡ Π̂m when jRF → ∞. This shows that the relational measurement
with increasingly larger bounded RF tends to the measurement with unbounded
RF.

In the Bell experiment each of the observers chooses between two or more
measurement settings, corresponding, for example, to measurements of spin com-
ponents along different directions ~α1, ~α2,... In our scenario this choice corresponds
to the use of coherent states |~α1〉, |~α2〉,... pointing to different directions as RFs.
Here |~αi〉 is the eigenstate with the maximal eigenvalue of the spin component
along the direction ~αi. One possible way to prepare such states is to apply an ap-
propriate rotation to the given coherent state | jRF〉 pointing towards z axis. Since,
however, Alice and Bob are assumed to have no RF, we consider the following
operational realisation. In every experimental run a third party (Charlie) sends to
both Alice and Bob one coherent state for each possible setting, together with the
entangled pair to be measured. Each coherent state is prepared along the direction
which would be chosen when classical RF were used. Having no RF for direc-
tions, Alice cannot know the angles of the different coherent states, but she can
still distinguish between them (for example, Charlie can send them with a short,
agreed, time delay), then Alice can decide which one to use as a RF, allowing
the freedom of choice necessary in a Bell experiment. It is here assumed that the
channel between Charlie and the observers is subject to a collective noise, that is
to say, all the particles sent to one observer undergo the same unknown rotation
(but a different rotation occurs in different runs and for the different observers),
this is important since we want to exploit relative degrees of freedom. Such an
assumption could be reasonable in some quantum communication schemes.

4.3 Violation of Bell’s Inequalities.
As a first example we consider a Bell experiment on an entangled pair of spin-1/2
particles with bounded RFs. We will determine the minimal size for the spin RFs
such that the outcomes can still violate Bell’s inequalities.

We consider the CHSH inequality [102]

S :=
∣∣∣∣E(~α1, ~β1) + E(~α1, ~β2) + E(~α2, ~β1) − E(~α2, ~β2)

∣∣∣∣ ≤ 2, (4.2)

where E(~αi, ~β j) is the correlation function for the measurement ~αi at one laborat-
ory and ~β j at the other laboratory. In quantum mechanics, for a given state ρ̂ of
the pair, if the first spin is measured along direction ~αi and the second along ~β j,
the correlation function reads E(~αi , ~β j) = Tr

[
ρ̂

(
~αi · ~σ

) (
~β j · ~σ

)]
.

In contrast to the standard Bell experiment in which two distant observers
possess unbounded RFs, we assume that they can only use their coherent states
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(| j1〉 and | j2〉) with respect to which entangled spins can be measured. How large
must j1 and j2 be, such that the CHSH inequality is still violated?

We assume that the pair is in the singlet state |ψ−〉 = 1
√

2
(|z+〉|z−〉 − |z−〉|z+〉).

The two observers can choose between two measurement settings each, the setting
being defined by the direction towards which the RF coherent state is pointing. As
|ψ−〉 is a rotationally invariant state, the only relevant parameter in the correlation
function is the relative angle between the two pointers. It is more mathematically
convenient (but operationally equivalent) to write the state with fixed measure-
ment settings and then to apply a rotation of an angle ϑ to one of the particles.
The corresponding rotated singlet state is

|ψ−(ϑ)〉 =
1
√

2

[
sin

ϑ

2
(|z+〉|z+〉 + |z−〉|z−〉) + cos

ϑ

2
(|z+〉|z−〉 − |z−〉|z+〉)

]
.

If one measures the total spin of the joint particle-RF system at the two laborator-
ies, the outcome probabilities are given by

pm n(ϑ) =
∑

m1 m2

|〈 j1|〈 j2|〈ψ(ϑ)|| j1+ m, j1+ m1〉| j2+ n, j1+ m2〉|
2 , (4.3)

where m, n = −1
2 ,

1
2 . (i.e. p 1

2
1
2
(ϑ) is the probability of finding the two particles

aligned along | j1〉 and | j2〉 respectively, p− 1
2 −

1
2
(ϑ) is the probability of finding both

anti-aligned, etc). To calculate the probabilities (4.3) one needs the coefficients

〈 j|〈z + || j + m, j + n〉 = δn, 1
2
δm, 1

2
,

〈 j|〈z − || j + m, j + n〉 =
δn, − 1

2√
2 j + 1

(
δm, 1

2
+

√
2 jδm,− 1

2

)
, (4.4)

from which one gets

pm n(ϑ) =
1
2

∑
m1 m2

∣∣∣∣∣sin
ϑ

2

[
δm1

1
2
δm 1

2
δm2

1
2
δn 1

2

+
δm1−

1
2
δm2−

1
2√

(2 j1 + 1)(2 j2 + 1)

(
δm 1

2
+

√
2 j1δm− 1

2

) (
δn 1

2
+

√
2 j2δn− 1

2

)
+ cos

ϑ

2

δm1
1
2
δm 1

2

δm2−
1
2√

2 j2 + 1

(
δn 1

2
+

√
2 j2δn− 1

2

)
−

δm1−
1
2√

2 j1 + 1

(
δm 1

2
+

√
2 j1δm− 1

2

)
δm2

1
2
δn 1

2


∣∣∣∣∣∣∣
2
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and thus

pm n(ϑ) =
1
2

sin2 ϑ

2

δm 1
2
δn 1

2
+

(
δm 1

2
+ 2 j1δm− 1

2

) (
δn 1

2
+ 2 j2δn− 1

2

)
(2 j1 + 1)(2 j2 + 1)


+

1
2

cos2 ϑ

2

[ δm 1
2

2 j2 + 1

(
δn 1

2
+ 2 j2δn− 1

2

)
+

δn 1
2

2 j1 + 1

(
δm 1

2
+ 2 j1δm− 1

2

)]
.

Inserting this into the definition of the correlation function

E j1 j2(ϑ) := −

1
2∑

m n=− 1
2

(−1)m+n pm n(ϑ)

one obtains

E j1 j2(ϑ) =
1
2

[
sin2 ϑ

2

(
1 +

1 + 4 j1 j2 − 2 j1 − 2 j2

(2 j1 + 1)(2 j2 + 1)

)
+ cos2 ϑ

2

(
1 − 2 j1

2 j1 + 1
+

1 − 2 j2

2 j2 + 1

)]
=

[
sin2 ϑ

2
1 + 4 j1 j2

(2 j1 + 1)(2 j2 + 1)
+ cos2 ϑ

2
1 − 4 j1 j2

(2 j1 + 1)(2 j2 + 1)

]
(4.5)

and finally

E j1 j2(ϑ) =
1 − 4 j1 j2 cosϑ

(2 j1 + 1)(2 j2 + 1)
. (4.6)

In the limit of large j1 and j2, Eq. (4.6) becomes the familiar expression E(ϑ) =

− cosϑ for the singlet correlations with classical RFs.
The CHSH expression (4.2), applied to the correlation (4.6), is maximised

when the relative angle between all pairs of measurement settings is 3
4π, except

for the pair ~α2, ~β2, for which the angle π
4 has to be chosen2. This choice of meas-

urement settings can be arranged on a plane as shown in Fig. 4.1. Plugging (4.6)
into (4.2) with this choice of settings, the RF-dependent CHSH expression be-
comes

S ( j1, j2) = 2

∣∣∣∣∣∣ 1 + 4
√

2 j1 j2

(2 j1 + 1)(2 j2 + 1)

∣∣∣∣∣∣ . (4.7)

This expression exceeds the local realistic bound of 2 if j1 >
j2

2(
√

2−1) j2−1
. There-

fore, for equal RFs, one needs at least

j1 = j2 =
5
2
. (4.8)

This is the minimal size of coherent-state reference frames necessary in order to
observe a violation of the Bell-CHSH inequality

2Note that, in the correlation (4.6), the term cosϑ is “shifted” by a constant, so that, unlike
the case with classical RFs, the CHSH expression (4.2) is not invariant for ϑ → ϑ + π. For this
reason the optimal measurement settings do not coincide with those traditionally adopted for the
violation of the Bell-CHSH inequality
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Figure 4.1: Measurement settings necessary for the maximal violation of the Bell-CHSH
inequality.

4.4 Mermin Inequalities.
We study now the requirements for the violation of multi-particle Bell’s inequal-
ities with bounded RFs. Consider N spin-1/2 particles (systems S 1, ..., S N), that
are measured along directions ~α1, . . . , ~αN . Each individual measurement can give
±1

2 as result; a specific outcome is thus labelled by a string {µ1, . . . , µN}, where
µk = 1 stands for the k-th spin detected aligned with ~αk, while µk =−1 represents
the spin anti-aligned with ~αk. The multi-particle correlations are defined as

E(~α1, . . . , ~αN) =
∑

µ1,... ,µN=±1

N∏
k=1

µk p(µ1, . . . , µN | ~α1, . . . , ~αN),

where p(µ1, . . . , µN | ~α1, . . . , ~αN) is the probability for observing the outcomes
µ1, . . . , µN given the settings ~α1, . . . , ~αN .

The Mermin inequality is given by [100, 103]

M :=

∣∣∣∣∣∣∣ ∑
x1,... ,xN=0,1

cos[
π

2
(x1 + · · · + xN)]E(~αx1 , . . . , ~αxN )

∣∣∣∣∣∣∣ ≤ 2
N−1

2 . (4.9)

Using classical RFs, the Mermin expression reaches its maximal value of M =

2N−1 for the Greenberger-Horne-Zeilinger (GHZ) state

|ψ〉 =
1
√

2

(
⊗N

k=1|z+〉S k + ⊗N
k=1|z−〉S k

)
and measurement settings ~α0 = X ≡ (π2 , 0) and ~α1 = Y ≡ (π2 ,

π
2 ) for every particle.

Note that the ratio between maximal quantum and local realistic bound increases
exponentially with the number of particles: MQ/MLR = 2

N−1
2 .
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Again, we assume that the k-th observer, k = 1, ...,N, is given a bounded RF
in the form of a coherent state | jk〉. Each of the observers has to measure along
directions ~α0 ≡ (ϑ0, ϕ0) and ~α1 ≡ (ϑ1, ϕ1). As for the two-particle case, such
measurements are reproduced by aligning each coherent state | jk〉 along the pre-
scribed angle and then measuring the total spin of the joint system k-th particle
+ k-th coherent state, interpreting the outcome as the projection of the particle’s
spin along the coherent state’s direction. Since the total-spin projectors are rota-
tionally invariant, this procedure is equivalent to applying an opposite rotation on
each particle S k. The inverse rotation acts on each spin-1/2 system as

R−1(~αk)|z+〉 = cos
ϑk

2
|z+〉 − sin

ϑk

2
|z−〉 ≡ |~αk+〉

R−1(~αk)|z−〉 = e−iϕk

(
sin

ϑk

2
|z+〉 + cos

ϑ

2
|z−〉

)
≡ |~αk−〉.

After rotating all spins, the GHZ state becomes

|ψ(~α1, . . . , ~αN)〉 =
1
√

2

(
⊗N

k=1|~αk+〉S k + ⊗N
k=1|~αk−〉S k

)
. (4.10)

The total-spin projector for the k-th system-RF pair is given by

Π jk+
µk
2

=

jk+
µk
2∑

mk=−( jk+
µk
2 )

| jk +
µk

2
,mk〉〈 jk +

µk

2
,mk| , µk = ±1. (4.11)

The probability for a specific set of outcomes is found by tracing the state (4.10)
with the projectors (4.11):

p(~α1, . . . , ~αN | µ1, . . . , µN) = Tr
[
⊗N

k=1Π jk+
µk
2
|Ref〉〈Ref| ⊗ |ψ(~α1, . . . , ~αN)〉〈ψ(~α1, . . . , ~αN)|

]
,

where |Ref〉 = ⊗N
k=1| jk〉. After a somewhat lengthy but straightforward calculation,

one obtains the following expression for the multi-particle correlations:

E(~α1, . . . , ~αN | j1, . . . jN) =
1∏N

k=1 dk

1
2

 N∏
k=1

(1 + 2 jk cosϑk)

+

N∏
k=1

(1 − 2 jk cosϑk)

 + cos(
N∑

k=1

ϕk)
N∏

k=1

2 jk sinϑk

 , (4.12)

where dk = 2 jk + 1.
Inserting the correlation function (4.12) into the left-hand side of the inequal-

ity (4.9) we find for the Mermin expression:

M( j1, . . . , jk) =
1∏N

k=1 dk

∣∣∣∣∣∣∣√2 cos(N
π

4
) + 2N−1

N∏
k=1

(2 jk)

∣∣∣∣∣∣∣ . (4.13)
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For jk → ∞, this approaches the value 2N−1 when unbounded RFs are used. In the
limit of large number of particles, the Mermin expression becomes

M = 2N−1
N∏

k=1

jk

jk + 1
2

+ O(1) , N → ∞. (4.14)

If all the RFs are of the same size, jk = j ∀ k, the minimal size of RFs that leads
to violation is j = 3/2. One can use, however, even fewer resources if one allows
spins of different lengths for RFs. If one takes N1 spins of size j1 and N2 of size j2,

expression (4.14) becomes M ≈ 2N−1
(

j1
j1+ 1

2

)N1
(

j2
j2+ 1

2

)N2

. In this case the Mermin
inequality is violated if√2

j1

j1 + 1
2

N1
√2

j2

j2 + 1
2

N2

>
√

2. (4.15)

As both factors are positive, (4.15) can hold only if at least one of the two is larger
than 1, which is equivalent to ji >

1
2(
√

2−1)
= 1.21. This implies that some of the

RFs must have spin size equal to or larger than 3
2 . If the parties have N1 spin- 3

2
RFs and N2 = N − N1 spin- 1

2 RFs, the minimal ratio is N1
N � 0.85 for seeing

violation. Therefore the minimal resources needed is 85% of spin- 3
2 and 15% of

spin- 1
2 reference frames.

Another interesting case is when a fraction of the RFs is unbounded, which is
equivalent to taking the limit j2 → ∞ in the inequality (4.15). For N1 RFs of size

j1 and N2 unbounded RFs, it becomes
(√

2 j1
j1+ 1

2

)N1

> 2
1−N2

2 . For j1 = 1/2, this is
satisfied when N2 > N1 +1, which means that when half of the RFs are unbounded
and half are as small as spin- 1

2 , violation of the Mermin inequality is still possible.
Note that in all cases considered – even when using small quantum RFs – the

ratio between the quantum and local realistic bound is still exponential, as can be
easily seen by inserting the results found into the expression (4.14). However, if
a single measurement is replaced with a random guess (corresponding mathemat-
ically to j1 = 0), the inequality is satisfied. Thus a non-trivial RF is required for
every observer in order to see nonclassicality.

4.5 Higher Spins and the Classical Limit.
It was shown in [90] that violation of Bell’s inequalities with entangled systems
of arbitrarily large dimension is possible. This shows that the view that large
quantum numbers are associated with the classical limit is, in general, erroneous.
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We will show that to observe violations of local realism for large spins it is neces-
sary to use the RFs of size sufficiently large compared to the size of the spins. The
scaling of the two sizes is the issue we are interested in.

Following Peres [90], we consider a pair of spin- jS particles in the generalised
singlet state:

|Ψ−jS 〉 :=
1√

2 jS + 1

jS∑
m=− jS

(−1) jS−m| jS ,m〉| jS ,−m〉. (4.16)

and define the parity measurement

P̂ c =

jS∑
m=− jS

(−1) jS−mΠ̂m , (4.17)

with Π̂m = | js,m〉〈 js,m| the projectors onto subspaces of the spin component along
the z axis. The parity measurement takes the value +1 for all even m , and −1 for
all odd m. When the parity operator is defined with respect to spin projection along
some other direction ~α, we will speak about parity measurement P c(~α) along this
direction. For Alice’s measurement along the direction ~α and Bob’s along ~β, the
correlation function is defined as E(~α, ~β) = 〈Ψ−jS |P̂

c(~α) ⊗ P̂ c(~β)|Ψ−jS 〉. The CHSH
inequality (4.2) is violated for parity measurements in the singlet state for arbit-
rarily large spins [90, 15].

To consider violation of the inequality with bounded RFs we introduce a co-
herent state of length jRF for each observer, and replace the projectors Π̂m in (4.17)
with the POVM from Eq. (4.1). When the measurement setting ~α = (ϑ, ϕ) is
chosen, the coherent state |~α〉 aligned in that direction is used. In the basis of the
spin projection along the z axis, it reads

|~α〉 ≡ |ϑ, ϕ〉 =

jRF∑
m=− jRF

|m〉
(

2 jRF

jRF + m

)1/2

cos jRF+m(
ϑ

2
) sin jRF−m(

ϑ

2
)e−imϕ.

The rotated POVM is given by P̂ jRF
jS m(~α) = 〈~α|Π̂ jRF+m|~α〉 and the corresponding

parity operator by P̂ jRF
jS

(~α) =
∑ jS

m=− jS
(−1) jS−mP̂ jRF

jS m(~α). Finally, the RF-dependent
correlations read

E jRF (~α, ~β) = 〈Ψ−jS |P̂
jRF
jS

(~α) ⊗ P̂ jRF
jS

(~β)|Ψ−jS 〉. (4.18)

We consider the situation where all the measurement angles are chosen in the
same plane (ϕ = 0), with the first observer choosing between settings ϑ1 and ϑ3

and the second between ϑ2 and ϑ4. Taking ϑ1 − ϑ2 = ϑ2 − ϑ3 = ϑ3 − ϑ4 ≡ ∆ϑ, the
CHSH inequality reads

S jRF =
∣∣∣3E jRF (∆ϑ) − E jRF (3∆ϑ)

∣∣∣ ≤ 2.
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jS = 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5 11/2 6
jRF ≥ 7/2 23/2 45/2 73/2 107/2 147/2 193/2 123 152 369/2 220 259

Table 4.1: Minimal size of the spin reference frame jRF necessary to observe violation of
local realism in a pair of maximally-entangled spin- jS particles (numerical calculation). The
data are plotted in Fig. 4.2.

For classical reference frames, the angle difference which maximises S in the limit
of large spin jS is ∆ϑ = x

2 jS +1 , with x = 1.054. Note that the angle difference is
inversely proportional to the spin size. In the case of bounded RFs of finite size
jRF , the correlation (4.18) is hard to compute analytically, primarily due to the
presence of a large number of non-trivial Clebsch-Gordan coefficients. It is pos-
sible however to evaluate it numerically, together with the corresponding CHSH
expression. The numerical findings, shown in Tab. 4.1, suggest that one needs the
size of the RFs to scale at least quadratically with the size of entangled spins in
order to observe violation of the inequality.

We can give a heuristic argument to support the numerical findings. Consider
a coherent state of length jRF pointing in a direction (ϑ, ϕ = 0) and a measurement
of spin projection along the z-axis. The probability to obtain outcome m for the
spin z component obeys a binomial distribution p(m) =

(
2 jRF

jRF+m

)
q jRF+m(1 − q) jRF−m,

where q = cos2(ϑ2 ). For large jRF this is approximately a Gaussian centred in
jRF cosϑ and with variance σ2 = 1

2 jRF sin(ϑ) ∼ jRF . It can be visualised as an
arrow pointing toward ϑ with an angle uncertainty 1

σ
∼ 1√

2 jRF
. Using this as a

RF it is impossible to distinguish between directions at angles closer than this
amount. On the other hand, violation of Bell inequality requires us to measure
setting directions at angles that differ at the order of ∆ϑ ∼ 1

jS
. To achieve this

precision one needs 1
σ
< ∆ϑ, which gives the heuristic bound jRF > jS

2. Fitting
our numerical results with a quadratic law we indeed find the formula jRF ' 6 j2

S +

6 jS . The quadratic curve, together with the numerical data, is plotted in Fig. 4.2.
(For higher order fits we obtain coefficients close to zero for the powers higher
than two).

In summary, we have shown how a bounded RF limits the ability of en-
tangled systems to exhibit genuine quantum features, as characterised by viola-
tion of Bell’s inequalities. This can be relevant in situations where, to implement
quantum information tasks, only relational degrees of freedom can be exploited
(for example, when the quantum channel is subject to a global noise). We focused
on the restrictions derived from the lack of a directional RF, considering other
restrictions would impose additional requirements on the resources needed (see,
e.g., [104]). Our results suggest that a fundamental limitation on the appearance
of quantum behaviour at the macroscopic level can arise from the finiteness of re-
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Figure 4.2: Minimal size of (spin) reference frame jRF needed for violation of the Bell
inequality for measurements on a pair of entangled spins of size jS . The dots are calculated
numerically, the line is the extrapolated fit jRF ' 6 j2S + 6 jS .

sources that can be used to measure it. For example, a small iron magnet can have
a magnetic field of around 100 G. According to our analysis, even if an entangled
state of spin size jS '

~100 G
µB
' 1021 (µB is the Bohr magneton) were available,

no violation of local realism is possible, if the RF used does not correspond to a
magnetic field of the order of at least 104 G, which is much larger than what can
be generally found in nature (but still not impossible to be produced).

According to the theory of decoherence [105], quantum correlations in a sys-
tem are lost due to its interaction with the environment but correlations between
system and environment are anyway retained. However, these correlations have
no operational meaning unless a sufficiently strong RF is available. In everyday
experience the size of the RFs used does not exceed that of the environment in-
volved in the decoherence process, whereas our analysis suggests that at least a
quadratic scaling would be required to demonstrate the existence of the quantum
correlations.
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Chapter 5

Quantum Causal Relations

Summary

The notion of causal order as an operationally-defined concept is considered. The
causal order between a pair of events is defined in terms of the possibility of sig-
nalling. We pose the question whether in general operationally-defined theories,
and in particular in quantum theory, events always need to be ordered in a given se-
quence. We consider a particular task, to be performed by two agents, that allows
detecting whether the actions of the agents can be ordered according to a definite
causal structure. If the actions are causally ordered, it is possible to derive a causal
inequality, namely an upper bound on the probability of successfully perform-
ing the task. This is directly analogous to the famous violation of local realism:
quantum systems allow performing a task—the violation of the Bell inequality—
which is impossible if the measured quantities have pre-defined local values. The
inequality considered here, unlike Bell’s, concerns signalling correlations: it is
based on a task that involves communication between two parties. Nevertheless,
it cannot be violated if this communication takes place in a causal spacetime (in-
dependently of the physical systems used, be they classical, quantum, or even
more general).

We further consider a novel framework for quantum correlations, based on
the assumption that such correlations are produced by local operations that can
be fully described by quantum mechanics. We do not, however, impose any con-
straint on the possible causal relations between the operations, not even the exist-
ence of a global spacetime on which the operations can be embedded. We derive
a full characterisation of the most general correlations within the new formalism,
including the special case of causally ordered ones. We further find an example of
correlations that allow violating the causal inequality, showing that local quantum
mechanics is consistent with the lack of a globally defined causal structure. We

83



84 CHAPTER 5. QUANTUM CAUSAL RELATIONS

also show that if locally classical operations are considered instead of quantum
ones, it is always possible to embed the resulting correlations in a definite causal
structure. We finally discuss some of the several possible implications of the res-
ults found.

This chapter is based on and contains material from the publication

• O. Oreshkov, F. Costa, and Č. Brukner,
“Quantum correlations with no causal order”,
Nat. Commun. 2, 1092 (2012).

5.1 An Operational Approach to Causal Relations
Recently, significant progress has been made in understanding quantum theory
and the structure of quantum correlations in the context of operationalism, where
primitive laboratory procedures, like measurements and preparations, are basic
ingredients [106, 107, 108, 109, 110, 111, 112, 113]. Thus far, the ubiquitous ap-
proach towards understanding quantum correlations has been concerned primarily
with space-like separated experiments, the main challenge being the identification
of a complete set of physical principles which select the spatial quantum correl-
ations out of the strictly larger class of no-signalling ones [114, 115, 116, 117,
118, 119, 120]. In this line of research, spacetime is typically regarded as a given,
predefined “stage” in which the causal relations between events are defined. How-
ever, in a purely operational approach one should not rely on pre-existing notions
of space, time, or any causal structure, but rather attempt to understand such no-
tions in terms of primitive laboratory procedures within some general probabilistic
framework.

A way to treat causal relations operationally is through the notion of sig-
nalling. Consider a generic bipartite experiment where to parties, A and B, per-
form some measurements using settings a and b and observe outcomes x and y,
respectively. The statistics of the experiment is defined by the conditional prob-
ability

P(xy|ab). (5.1)

We say that A cannot signal to B if the probability for observing y does not depend
on a:

P(y|ab) :=
∑

x

P(xy|ab) = P(y|b),

If, on the other hand, correlations are found between a and y, signalling from A to
B is possible (signalling from B to A is similarly defined).
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If no additional assumption is made, the probabilities (5.1) are not subject to
any constraint. It is however useful to delimit the physical way in which such
probabilities are generated. The case often considered is the one in which the
measurements A and B are performed at space-like separation and therefore, in
order to comply with special relativity, the probabilities (5.1) have to be non-
signalling in both directions. Here we are interested in deducing the causal rela-
tion between events from the observed statistics, thus less restrictive conditions
should be imposed. A possible way is to imagine that each measurement is loc-
alised in an arbitrarily small region, ideally a single point, of spacetime. Given
this assumption, one can deduce the causal relation between A and B (past-future,
future-past, or space-like) from the direction of signalling in the probabilities (5.1)
produced1.

A different possibility, which will be exploited here, is to assume that each
measurement is performed in a closed laboratory, which can be pictured as a
finite region of spacetime bounded by two space-like surfaces, such that physical
systems can enter in the laboratory only from the past surface and can exit only
from the future one, while no exchange of information is possible through the
time-like boundaries of the region. This implies that information can be sent from
a laboratory A to a laboratory B only if the “entrance” of B (i.e. its past space-
like boundary) is in the causal future of the “exit” of A (i.e. its future space-like
boundary), thus the possible signalling relations between closed laboratories are
the same as the possible causal relations between the spacetime points contained
in the laboratories. Using the idea of closed laboratories thus allows avoiding the
notion of “arbitrarily small” region and at the same allows identifying signalling
relations with the underlying causal structure. In both cases it is necessary, in
order to single out the class of possible probabilities (5.1) that can be produced,
to specify the physical theory describing the operations that can be performed in
the local region2.

In usual situations, where the local operations can be embedded in a global
spacetime (free of closed time-like curves), signalling between closed laborator-
ies is possible at most in one direction. More generally, if the position of the
local laboratories is not known with certainty, probabilistic mixtures of one-way

1We assume here that measurements can be repeated an arbitrary number of times. This means
that, strictly, the measurements A and B cannot be performed in the same spacetime regions for
different runs of the experiment. We can however imagine that the spacetime coordinates defining
these regions, operationally-defined with respect to physical clocks, rulers, etc, are reproduced in
each run (e.g. by restarting the clocks at the beginning of every new experimental run).

2In fact, the notion of spacetime regions in which the operations are performed is not necessary,
at the most general level: the class of operations that an agent can perform on a single system can
be used as an abstract definition of closed laboratory.
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signalling probabilities can be produced:

P(xy|ab) = qPB�A(xy|ab) + (1 − q)PA�B(xy|ab), 0 ≤ q ≤ 1, (5.2)

where PB�A represents a probability distribution that does not allow signalling
from B to A, i.e. PB�A(x|ab) = PB�A(x|a), while PA�B is no-signalling from A to B,
PA�B(y|ab) = PA�B(y|b). The main question addressed in this chapter is whether
local operations must necessarily produce probabilities of this form. Alternatively,
the question is whether more general causal relations are possible, once no global
causal structure is assumed.

In order to appreciate the non-trivial nature of the problem, consider a determ-
inistic model in which each party receives a classical variable, which can take
the values λ = 0, 1. Let us call λA1 , λA2 the value of the variable before and
after passing through the laboratory A, while λB1 , λB2 denote the variable’s val-
ues before and after passing through B, respectively. Imagine now a hypothetical
situation in which A and B cannot be embedded in a global causal structure, for
example, consider the case where perfect correlations can be established in both
directions: λA2 = λB1 , λB2 = λA1 . Signalling is possible in both directions, simply
by performing operations in which the measurement outcomes are the input vari-
ables, x = λA1 , y = λB1 , and the “settings” determine the output variables, a = λA2 ,
b = λB2 . However, our assumption is that in each closed laboratory all possible
operations can be performed (in this case, all possible functions {0, 1} → {0, 1}).
Imagine that the operation λA1 → λA2 = λA1 is performed in the laboratory A and
the operation λB1 → λB2 = λB1 ⊕ 1 (⊕ denotes the sum modulo 2) is performed in
B. From the postulated perfect correlations it follows

λA1 = λB2 = λB1 ⊕ 1 = λA2 ⊕ 1 = λA1 ⊕ 1,

from which one can deduce

λA1 = λA1 ⊕ 1⇒ 0 = 1.

This is an example of the classical “grandfather paradox” and shows that perfect
two-way signalling correlations are incompatible with local deterministic opera-
tions. As we are going to see, a stronger result holds: if the local operations are all
possible classical stochastic operations, then only probabilities of the form (5.2)
can be produced. Surprisingly, this is not true if locally quantum mechanics is
assumed instead.

Note that, in order to interpret the correlations in (5.1) as the effects of a causal
influence, a prior distinction is necessary between freely chosen settings, a and b,
and observed outcomes, x and y. According to Bell [121], freely-chosen vari-
ables are, by definition, those that are only correlated with their future light cones.
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Although this is a viable definition to investigate the limitations that a causal struc-
ture imposes on possible experiments, which we will consider in Sec. 5.2, it cannot
be adopted in situations where no global causal structure is pre-defined. In such a
situation, one can adopt the following notion: a variable a is “freely chosen” if it
can be correlated with an arbitrary variable external to the experiment. This notion
is well-defined as long as it is possible to determine which variables are relevant
for the “experiment” and which ones can be considered as external, a necessary
assumption in any operational framework.

5.2 Causal Inequality
The general setting that we consider involves a number of experimenters—Alice,
Bob, etc.—who reside in separate laboratories. At a given run of the experiment,
each of them receives a physical system (for instance, a spin- 1

2 particle) and per-
forms operations on it (e.g. measurements or rotations of the spin), after which
she/he sends the system out of the laboratory. We assume that during the oper-
ations of each experimenter the respective laboratory is isolated from the rest of
the world—it is only opened for the system to come in and to go out, but between
these two events it is kept closed. It is easy to see that under this assumption,
causal order puts a restriction on the way in which the parties can communicate
during a given run. For instance, imagine that Alice can send a signal to Bob.
Since Bob can only receive a signal through the system entering his laboratory,
this means that Alice must act on her system before that. But this implies that
Bob cannot send a signal to Alice since each party receives a system only once.
Therefore, bidirectional signalling is forbidden. (More generally, probabilities of
the form (5.2) can be generated if the order between the laboratories is not known
with certainty.)

Consider, in particular, the following communication task to be performed by
two parties, Alice and Bob. After a given party receives the system in her/his
laboratory, she/he will have to toss a coin (or use any other means) to obtain a
random bit. Denote the bits generated by Alice and Bob in this way by a and b,
respectively. In addition, Bob will have to generate another random bit b′, whose
value, 0 or 1, will specify their goal: if b′ = 0, Bob will have to communicate
the bit b to Alice, while if b′ = 1, he will have to guess the bit a. Without loss
of generality, we will assume that the parties always produce a guess, denoted
by x and y for Alice and Bob respectively, for the bit of the other (although the
guess may not count depending on the value of b′). Their goal is to maximise the
probability of success

psucc :=
1
2

[
P(x = b|b′ = 0) + P(y = a|b′ = 1)

]
. (5.3)
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Figure 5.1: Strategy for accomplishing communication task by using processes with (a)
definite and (b) indefinite causal order. (a) There exists a global background time according
to which Alice’s actions are strictly before Bob’s. She sends her input a to Bob, who can
read it out at some later time and give his estimate y = a. However, Bob cannot send his bit
b to Alice as the system passes through her laboratory at some earlier time. Consequently,
she can only make a random guess of Bob’s bit. This results in a probability of success of
3/4. (b) If the assumption of a definite order is dropped, it is possible to devise a resource
(i.e. a process matrix W) and a strategy that enables a probability of success 2+

√
2

4 > 3/4 (see
text).

If all events obey causal order, no strategy can allow Alice and Bob to exceed
the bound

pCO
succ ≤ 3/4. (5.4)

Indeed, as argued above, in any particular order of events, there can be at most
unidirectional signalling between the parties, which means that at least one of the
following must be true: Alice cannot signal to Bob, or Bob cannot signal to Alice.
Consider, for example, a case where Bob cannot signal to Alice. Then, if b′ = 1,
they could in principle achieve up to P(y = a|b′ = 1) = 1 (for instance, if Alice
operates on her system before Bob, she could encode information about the bit a
in the system and send it to him). However, if b′ = 0, the best guess that Alice can
make is a random one, resulting in P(x = b|b′ = 0) = 1/2 (see Fig. 5.1). Hence,
the overall probability of success in this case will satisfy psucc ≤ 3/4. The same
holds if Alice cannot signal to Bob. It is easy to see that no probabilistic strategy
can increase the probability of success, that is, all probabilities of the form (5.2)
necessarily produce the bound (5.4).

More generally, it is possible to derive the causal inequality (5.4) from the
following formal assumption:

(i) Causal structure—The main events in the task (a system entering a local
laboratory, the parties obtaining the bits a, b, and b′, and producing the guesses x
and y) are localised in a causal structure. [A causal structure (such as spacetime)
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is a set of event locations equipped with a partial order � that defines the possible
directions of signalling. If A � B, we say that A is in the causal past of B (or B is
in the causal future of A). In this case, signalling from A to B is possible, but not
from B to A. For more details on causal structures, see Appendix C.1.]

(ii) Free choice—Each of the bits a, b, and b′ can only be correlated with
events in its causal future (this concerns only events relevant to the task). We
assume also that each of them takes values 0 or 1 with probability 1/2.

(iii) Closed laboratories—x can be correlated with b only if b � A1, and y
can be correlated with a only if a � B1 (this reflects the idea that each party can
receive information only about events taking place in the causal past of the system
entering her/his laboratory).

A formal derivation of the inequality from these assumptions is presented in
Appendix C.1.

Interestingly, we will see that if the local laboratories are described by quantum
mechanics, but no assumption about a global causal structure is made, it is in prin-
ciple possible to violate the causal inequality in physical situations in which one
would have all the reasons to believe that the bits are chosen freely and the labor-
atories are closed. This would imply that (i) does not hold.

5.3 Framework for Local Quantum Mechanics

The most studied, almost epitomical, quantum correlations are the non-signalling
ones, such as those obtained when Alice and Bob perform measurements on two
parts of an entangled state. Signalling quantum correlations exist as well, such as
those arising when Alice operates on a system which is subsequently sent through
a quantum channel to Bob who operates on it after that. The usual quantum form-
alism does not consider more general possibilities, since it does assume a global
causal structure. Here we want to drop the latter assumption while retaining the
validity of quantum mechanics locally. For this purpose, we consider a multipart-
ite setting of the type outlined earlier, where each party performs an operation
on a system passing once through her/his laboratory, but we make no assumption
about the spatio-temporal location of these experiments, not even that there ex-
ists a spacetime or any causal structure in which they could be positioned (see
Fig. 5.2). Our framework is thus based on the following central premise:

Local quantum mechanics—The local operations of each party are
described by quantum mechanics.
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Figure 5.2: Quantum correlations with no assumption of a pre-existing causal structure,
in particular of a pre-existing background time (here illustrated by the “shifted” relative
orientation of the two laboratories). While the global causal order of events in the two
laboratories is not fixed in advance and in general even not definite, the two agents, Alice
and Bob, are each certain about the causal order of events in their respective laboratories.

5.3.1 Process Matrices

To be specific, we assume that one party, say Alice, can perform all the operations
she could perform in a closed laboratory, as described in the standard spacetime
formulation of quantum mechanics. These are defined as the set of quantum in-
struments [122] with an input Hilbert space HA1 (the system coming in) and an
output Hilbert space HA2 (the system going out). (The set of allowed quantum
operations can be used as a definition of “closed quantum laboratory” with no
reference to a global causal structure.) A quantum instrument can most generally
be realised by applying a joint unitary transformation on the input system plus
an ancilla, followed by a projective measurement on part of the resulting joint
system, which leaves the other part as an output. When Alice uses a given instru-
ment, she registers one out of a set of possible outcomes, labeled by j = 1, . . . , n.
Each outcome induces a specific transformation from the input to the output,
which corresponds to a completely positive (CP) trace-nonincreasing map [123]
MA

j : L(HA1) → L(HA2), where L(HX), X = A1, A2, is the space of matrices
over a Hilbert space HX of dimension dX. The action of eachMA

j on any matrix
σ ∈ L(HA1) can be written as [123]MA

j (σ) =
∑m

k=1 E jkσE†jk, m = dA1dA2 , where
the matrices E jk : HA1 → HA2 satisfy

∑m
k=1 E†jkE jk ≤ 11A1 , ∀ j. If the operation is

performed on a quantum state described by a density matrix ρ, MA
j (ρ) describes

the updated state after the outcome j up to normalisation, while the probability
to observe this outcome is given by P

(
MA

j

)
= Tr

[
MA

j (ρ)
]
. The set of CP maps{

MA
j

}n

j=1
corresponding to all the possible outcomes of a quantum instrument has

the property that
∑n

j=1M
A
j is CP and trace-preserving (CPTP), or equivalently∑n

j=1
∑m

k=1 E†jkE jk = 11A1 , which reflects the fact that the probability to observe any
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of the possible outcomes is unity. A CPTP map itself corresponds to an instrument
with a single outcome which occurs with certainty.

In the case of more than one party, the set of local outcomes corresponds to
a set of CP mapsMA

i ,M
B
j , · · · . A complete list of probabilities P

(
MA

i ,M
B
j , · · ·

)
for all possible local outcomes will be called process3. A process can be seen
as an extension of the notion of state as a list of probabilities for detection res-
ults [108] described by a positive operator-valued measure (POVM), which takes
into account the transformation of the system after the measurement and can thus
capture more general scenarios than just local detection. Here we will consider ex-
plicitly only the case of two parties (the generalisation to arbitrarily many parties
is straightforward). We want to characterise the most general probability distri-
butions for a pair of outcomes i, j, corresponding to CP maps MA

i , MB
j , to be

observed, that is, to characterise all bipartite processes.

Linearity of Processes In quantum mechanics, operations obey a specific al-
gebraic structure that reflects the operational relations between laboratory proced-
ures [108]. Since we are assuming that local operations are described by quantum
mechanics, we also have to assume that the algebraic structure of such operations
is preserved with the usual operational interpretation. From this assumption it
possible to prove that probabilities are bilinear functions of CP maps.

Consider first an instrument {M̃ j}
n
j=1 defined as the randomisation of two dif-

ferent instruments {M j}
n
j=1 and {N j}

n
j=1, where the first is performed with probab-

ility p and the second with probability (1− p). The probability to observe the out-
come j is, by definition, P(M̃ j) = pP(M j) + (1− p)P(N j). In quantum mechanics
randomisation is described as a convex linear combination, M̃ j = pM j+(1−p)N j.
We can then conclude that the probability must respect linear convex combina-
tions: P

(
pM j + (1 − p)N j

)
= pP(M j) + (1− p)P(M j). Consider then the coarse-

graining of an instrument {M j}
n
j=1. This is realised when two or more outcomes,

for example those corresponding to the labels j = n − 1 and j = n, are treated as
a single one. In the resulting instrument {M̃ j}

n−1
j=1 all non coarse-grained outcomes

correspond to the original CP maps M̃ j =M j for j = 1, . . . n − 2, while the prob-
ability of the coarse-grained outcome is given by P(M̃n−1) = P(Mn−1)+P(Mn). In
quantum mechanics, the CP map corresponding to the coarse graining of two out-
comes is represented by the sum of the respective CP maps, M̃n−1 =Mn−1 +Mn,
from which it follows that P (Mn−1 +Mn) = P (Mn−1) + P (Mn). Randomisa-
tion and coarse graining together impose linearity. The argument can be repeated

3It is implicitly assumed that the joint probabilities are noncontextual, namely that they are
independent of any variable concerning the concrete implementation of the local CP maps. For
example, the probability for a pair of maps MA

i , MB
j to be realised should not depend on the

particular set {MA
1 , ...,M

A
i , ...,M

A
n } of possible CP maps associated with Alice’s operation.
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for two (or more) parties, yielding the conclusion that all bipartite probabilities
compatible with a local quantum mechanical description are bilinear functions,
P

(
MA

i ,M
B
j

)
= ω

(
MA

i ,M
B
j

)
∈ [0, 1], of the local CP and trace-nonincreasing

mapsMA
i ,MB

j . Thus the study of the most general bipartite quantum correlations
reduces to the study of bilinear functions of CP maps.

Process Matrices It is convenient to represent CP maps as positive semi-definite
matrices via the Choi-Jamiołkowsky (CJ) isomorphism [124, 125]. The CJ matrix
MA1A2

i ∈ L(HA1 ⊗ HA2) corresponding to a linear mapMi : L(HA1) → L(HA2)
is defined as MA1A2

i :=
[
I ⊗Mi (|φ+〉〈φ+|)

]T, where |φ+〉 =
∑dA1

j=1 | j j〉 ∈ HA1 ⊗ HA1

is a (not normalised) maximally entangled state, the set of states {| j〉}
dA1
j=1 is an or-

thonormal basis ofHA1 , I is the identity map, and T denotes matrix transposition
(the transposition, absent in the original definition, is introduced for later conveni-
ence).

Thanks to the CJ isomorphism, it is possible to represent bilinear functions of
CP maps as bilinear functions of matrices: ω ↔ ω̃ : L(HA1 ⊗ HA2) × L(HB1 ⊗

HB2)→ R. In general, multilinear functions on a set of vector spaces V1×V2× . . .
are isomorphic to linear functions on V1 ⊗ V2 ⊗ . . . , hence the probabilities can
be written as linear functions on L(HA1 ⊗HA2 ⊗HB1 ⊗HB2). Using the Hilbert-
Schmidt scalar product, we can identify each real linear function with an element
of the same space, ω̃↔ WA1A2B1B2 ∈ L(HA1 ⊗HA2 ⊗HB1 ⊗HB2). The probability
for two measurement outcomes can thus be expressed as a bilinear function of the
corresponding CJ operators as follows:

P
(
MA

i ,M
B
j

)
= Tr

[
WA1A2B1B2

(
MA1A2

i ⊗ MB1B2
j

)]
, (5.5)

where WA1A2B1B2 is a matrix in L(HA1 ⊗HA2 ⊗HB1 ⊗HB2).
The matrix W should be such that probabilities are non-negative for any pair of

CP mapsMA
i ,MB

j . This imposes the restriction that W is positive on pure tensors
(POPT) [126] with respect to the partition A1A2 − B1B2. By definition, these are
matrices such that

Tr
[
WA1A2B1B2

(
MA1A2 ⊗ MB1B2

)]
≥ 0, ∀MA1A2 ≥ 0,MB1B2 ≥ 0. (5.6)

The condition has to be imposed for arbitrary positive semidefinite matrices MA1A2

and MB1B2 because these are the CJ matrices of CP maps. We additionally assume
that the parties can share ancillary entangled states and use them in their local
operations4. With this we mean that each party can extend the input space of

4We impose this assumption because we want our formalism to be as close as possible to
standard quantum mechanics, apart from the global causal structure. Without this assumption,
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his/her operations to the ancillas, which we denote by A′1 and B′1 for Alice and
Bob, respectively. The ancillas can be prepared in an arbitrary state. The extended
CP maps are defined asMA : L(HA′1 ⊗HA1)→ L(HA2),MB : L(HB′1 ⊗HB1)→
L(HB2) (one can similarly extend the output systems, but this is not necessary
for our argument). Given the original process matrix WA1A2B1B2 , we require that
its extension to the ancillary systems in a state ψA′1B′1 has the following properties.
Firstly, if only operations on the ancillas are non-trivial, namely if the CP maps
have the formMA′⊗MB′⊗IAB, the system A′1B′1 produces probabilities as the state
ψA′1B′1 . Secondly, if only operations on the systems A1B1 are non-trivial, with CP
maps of the form IA′B′ ⊗MA ⊗MB, the probabilities are given by the expression
(5.5) with the original WA1A2B1B2 . Since, in the current formalism, a state ψA′1B′1 is
represented by a process matrix ψA′1B′1 , these requirements imply that the extended
process matrix is given by WA′1A1A2B′1B1B2 = ψA′1B′1 ⊗ WA1A2B1B2 . If we then require
that the probabilities for extended operations are non-negative, one has

Tr
[
ψA′1B′1 ⊗WA1A2B1B2

(
MA′1A1A2 ⊗ MB′1B1B2

)]
≥ 0, (5.7)

∀MA′1A1A2 ,MB′1B1B2 , ψA′1B′1 ≥ 0.

It was shown in Ref. [126] that condition (5.7) is satisfied if and only if WA1A2B1B2

is positive semidefinite (a class strictly smaller than POPT).
Furthermore, the probability for any pair of CPTP mapsMA,MB to be realised

must be unity (they correspond to instruments with a single outcome). Since a map
MA is CPTP if and only if its CJ operator satisfies MA1A2 ≥ 0 and TrA2 MA1A2 = 11A1

(similarly for MB), we conclude that all bipartite probabilities compatible with
local quantum mechanics are generated by matrices W that satisfy

WA1A2B1B2 ≥ 0 [ non-negative probabilities], (5.8)

Tr
[
WA1A2B1B2

(
MA1A2 ⊗ MB1B2

)]
= 1 (5.9)

∀MA1A2 ,MB1B2 > 0, TrA2 MA1A2 = 11A1 ,TrB2 MB1B2 = 11B1

[ sum of probabilities is one].

We will refer to a matrix WA1A2B1B2 that satisfies these conditions as a process
matrix. Conditions equivalent to Eqs. (5.8) and (5.9) were first derived as part
of the definition of a “quantum comb” [127], an object that formalises quantum
networks. Combs, however, are subject to additional conditions fixing a definite
causal order, which are not assumed here.

general POPT processes would be allowed, thus in particular all the processes here considered.
The final result, the existence of a process that violates causal order, would thus hold in this
scenario too.
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5.3.2 Causally Separable Processes
A process matrix can be understood as a generalisation of a density matrix and
Eq. (5.5) as a generalisation of Born’s rule. In fact, when the output systems A2,
B2 are taken to be one-dimensional (i.e. each party performs a measurement after
which the system is discarded), the expression above reduces to P

(
MA

i ,M
B
j

)
=

Tr
[
WA1B1

(
MA1

i ⊗ MB1
i

)]
, where now MA

i ,M
B
j are elements of local POVMs and

Eq. (5.9) becomes Tr WA1B1 = 1, i.e. WA1B1 is a quantum state. This implies that
a quantum state ρA1B1 shared by Alice and Bob is generally represented by the
process matrix WA1A2B1B2 = ρA1B1 ⊗ 11A2B2 . Signalling correlations can also be
expressed in terms of process matrices. For instance, the situation where Bob is
given a state ρB1 and his output is sent to Alice through a quantum channel C,
which gives P(MA

i ,M
B
j ) = Tr

[
MA

i ◦ C ◦M
B
j

(
ρB1

)]
, is described by WA1A2B1B2 =

11A2 ⊗ (CB2A1)T ⊗ ρB1 , where CB2A1 is the CJ matrix of the channel C from B2 to A1.
The most general bipartite situation typically encountered in quantum mech-

anics (i.e. one that can be expressed in terms of a quantum circuit) is a quantum
channel with memory where, say, Bob operates on one part of an entangled state
and his output plus the other part is transferred to Alice through a channel. This is
described by a process matrix of the form 11A2 ⊗WA1B1B2 . Conversely, all process
matrices of this form represent channels with memory [127]. This is the most
general situation in which signalling from Alice to Bob is not possible, a relation
that we will denote by A � B in accord with the causal notation introduced earlier.
Process matrices of this kind will be denoted by WA�B (note that for non-signalling
processes, both A � B and B � A are true). As argued earlier, if all events are
localised in a causal structure and Alice and Bob perform their experiments inside
closed laboratories, at most unidirectional signalling between the laboratories is
allowed. In a definite causal structure, it may still be the case that the location of
each event, and thus the causal relation between events, is not known with cer-
tainty. A situation where B � A with probability 0 ≤ q ≤ 1 and A � B with
probability 1 − q is represented by a process matrix of the form

WA1A2B1B2 = qWB�A + (1 − q)WA�B. (5.10)

We will call processes of this kind causally separable (note that the decomposition
(5.10) need not be unique since non-signalling processes can be included either in
WB�A or in WA�B). They represent the most general bipartite quantum processes
for which the local experiments can be performed in closed laboratories embedded
in a definite causal structure. In particular, they generate the most general quantum
correlations between measurements that take place at definite (though possibly
unknown) instants of time. It is clear by plugging the form (5.10) into (5.5) that
causally separable processes generate probability distributions of the form (5.2)
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and thus cannot be used to violate the causal inequality5 (5.4).

5.4 A causally Nonseparable Process
The question whether all local quantum experiments can be embedded in a global
causal structure corresponds to the question whether all process matrices are caus-
ally separable6. Mathematically, this corresponds to asking whether all matrices
satisfying conditions (5.8, 5.9) can be decomposed in the form (5.10). In Ap-
pendix C.2, we provide a complete characterisation of the matrices satisfying
(5.8, 5.9) via the terms allowed in their expansion in a Hilbert-Schmidt basis,
which we relate to the possible directions of signalling they allow. The result is
summarised in Tab. 5.1. In Tab. 5.2, the terms not appearing in a process matrix
are listed, along with some possible interpretation (see also Appendix C.3).

TAB. 5.1: Terms appearing in a process matrix. A matrix satisfying condition (5.8) can be
expanded as WA1A2B1B2 =

∑
µνλγ wµνλγσ

A1
µ ⊗ σ

A2
ν ⊗ σ

B1
λ ⊗ σ

B2
γ , wµνλγ ∈ R, where the set of

matrices {σX
µ }

d2
X−1
µ=0 , with σX

0 = 11X , TrσX
µσ

X
ν = dXδµν, and TrσX

j = 0 for j = 1, . . . d2
X − 1,

provides a basis of L(HX). We refer to terms of the form σA1
i ⊗ 11rest (i ≥ 1) as of the type

A1, terms of the form σA1
i ⊗σ

A2
j ⊗11rest (i, j ≥ 1) as of the type A1A2, and so on. In Appendix

C.2 it is proven that a matrix satisfies condition (5.9) if and only if it contains the terms
listed in this table. Each of the terms can allow signalling in at most one direction and can
be realised in a situation in which either Bob’s actions are not in the causal past of Alice’s
(B � A) or vice versa (A � B). The most general unidirectional process is a quantum channel
with memory. Measurements of bipartite states that lead to non-signalling probabilities can
be realised in both situations. The most general process matrix can contain terms from both
rows and may not be decomposable into a mixture of quantum channels from Alice to Bob
and from Bob to Alice.

5The classical “tosses” a, b can be encoded in the choice of the local operations, while the
“guesses” x, y can be decoded from the outcome. Thus a probability (5.1) is generally reproduced
by plugging into (5.5) matrices of the form MA1A2

x (a) and MB1B2
y (b)

6Note that this is not a question about entanglement: all possible entangled states, and more
generally all quantum circuits, correspond to matrices of the form WB�A or WA�B, while the non-
separable processes we are looking for cannot be written as quantum circuits or even as probabil-
istic mixtures of different circuits.
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TAB. 5.2: Terms not appearing in a process matrix. These terms are not compatible with
local quantum mechanics because they yield non-unit probabilities for some completely
positive trace-preserving maps. A possible interpretation of these terms within the present
framework is that they correspond to statistical sub-ensembles of possible processes. For ex-
ample, terms of the type A2 can be understood as postselection. One specific case is when a
system enters a laboratory in a maximally mixed state, is subject to the mapM and, after go-
ing out of the laboratory, is measured to be in some state |ψ〉. The corresponding probability

is given by Tr|ψ〉〈ψ|M(11
d ), generated in the present formalism by WA1A2 = 11

d

A1

⊗ |ψ〉〈ψ|A2 .
Notably, correlations of the type A1A2 have been exploited in models for describing closed
time-like curves [128, 129], as is discussed in Appendix C.3. The pictures are only suggest-
ive of the possible interpretations.

Using such a characterisation, it is simple to see that the following is a valid
process matrix:

WA1A2B1B2 =
1
4

[
11A1A2B1B2 +

1
√

2

(
σA2

z σ
B1
z + σA1

z σ
B1
x σ

B2
z

)]
, (5.11)

where A1, A2, B1, and B2 are two-level systems (e.g. the spin degrees of freedom
of a spin-1

2 particle) and σx and σz are the Pauli spin matrices.
As we are about to see, having such a resource Alice and Bob can play the

game described in Sec. 5.2 and exceed the bound on the probability of success
(5.4) imposed by causal order. Before delving into the proof, notice that if Bob
measures in the z basis and detects one of the states |z±〉, the corresponding CJ
operator contains the factor |z±〉〈z±|B1 . Inserting this, together with Eq. (5.11), into
the expression (5.5) for the probabilities, the term containing σB1

x in the process
matrix is annihilated and what remains corresponds to a noisy channel from Alice
to Bob. If Alice encodes her bit in the z basis with the CJ operator |z±〉〈z±|A2 , this
channel allows Bob to guess Alice’s bit with probability P(y = a) = 2+

√
2

4 . If,
on the other hand, Bob measures in the x basis, Eq. (5.11) is reduced to a similar
noisy channel from Bob to Alice. Bob is thus able to activate a channel in the
desired direction by choosing the measurement basis (we refer to the Appendix for
a detailed calculation and analysis of the protocol). In this way they can achieve

psucc =
2 +
√

2
4

>
3
4

(5.12)

for the success probability (5.3), which proves that (5.11) is not causally separable.
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Protocol for Violating the Causal Inequality The process described by the
matrix (5.11) can be exploited for the task described in Sec. 5.2 in the following
way. Alice always measures the incoming qubit in the z basis, assigning the value
x = 0 to the outcome |z+〉 and x = 1 to |z−〉. She then reprepares the qubit,
encoding a in the same basis, and sends it away. Using the the inverse direction
of the CJ isomorphism,

M(ρA1) :=
(
TrA1

[
ρA1 MA1A2

])T
, (5.13)

it is easy to see that the CP map corresponding to the detection of a state |ψ〉 and
repreparation of another state |φ〉 has CJ matrix |ψ〉〈ψ|A1 ⊗ |φ〉〈φ|A2 . Accordingly,
the possible operations performed by Alice can be represented compactly by the
CJ matrix

ξA1A2(x, a) =
1
4

[
11 + (−1)xσz

]A1 ⊗
[
11 + (−1)aσz

]A2 . (5.14)

Bob adopts the following protocol. If he wants to read Alice’s bit (b′ = 1), he
measures the incoming qubit in the z basis and assigns y = 0, y = 1 to the out-
comes |z+〉, |z−〉, respectively (the repreparation is unimportant in this case). If
he wants to send the bit (b′ = 0), he measures in the x basis and, if the outcome
is |x+〉, he encodes b in the z basis of the outgoing qubit as 0 → |z+〉, 1 → |z−〉,
while, if the outcome is |x−〉, he encodes it as 0 → |z−〉, 1 → |z+〉. The CJ matrix
representing Bob’s CP maps is

ηB1B2(y, b, b′) = b′ηB1B2
1 (y, b) + (b′ ⊕ 1)ηB1B2

2 (y, b), (5.15)

ηB1B2
1 (y, b) =

1
2

[
11 + (−1)yσz

]B1 ⊗ ρB2 , (5.16)

ηB1B2
2 (y, b) =

1
4

[11 + (−1)yσx]B1 ⊗
[
11 + (−1)b+yσz

]B2
, (5.17)

where ρB2 is the arbitrary state prepared when b′ = 1 (with TrρB2 = 1) and ⊕
denotes the sum modulo 2. Note that, in Eq. (5.17), Bob’s assignment |x+〉 → y =

0, |x−〉 → y = 1 for the outcomes of his measurement is arbitrary, since, for b′ = 0
he is not trying to correlate y with a.

The probabilities for different possible outcomes, when the described protocol
is applied to the process (5.11), are given, according to (5.5), by

P(xy|abb′) = Tr
[
WA1A2B1B2

(
ξA1A2(x, a)ηB1B2(y, b, b′)

)]
.

In order to calculate the probability of success (5.3), we need as intermediate
steps the marginals P(y|ab, b′ = 1) =

∑
x P(xy|ab, b′ = 1) and P(x|ab, b′ = 0) =∑

y P(xy|ab, b′ = 0). Notice that when the outcome of one party is ignored, it is
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always possible to identify a specific state in which the other party receives the
qubit. For example, to average out Alice’s outcomes one has to calculate∑

x

Tr
[
WA1A2B1B2

(
ξA1A2(x, a)ηB1B2(y, b, b′)

)]
= TrB1B2

ηB1B2(y, b, b′)TrA1A2

WA1A2B1B2

∑
x

ξA1A2(x, a)


 .

The process observed by Bob is therefore described by the reduced matrix

W
B1B2(a) := TrA1A2

WA1A2B1B2

∑
x

ξA1A2(x, a)

 . (5.18)

The matrix
∑

x ξ
A1A2(x, a) represents the CPTP map performed by Alice when the

outcomes of her measurement are ignored (the explicit dependence on a accounts
for the possibility of signalling). Using (5.14) we find

∑
x ξ

A1A2(x, a) = 1
2 11A1 ⊗[

11 + (−1)aσz
]A2 which, plugged into Eq. (5.18) together with Eq. (5.11), gives

W
B1B2(a) =

1
2

[
11 + (−1)a 1

√
2
σz

]B1

⊗ 11B2 . (5.19)

When this is measured with the map (5.16), we find

P(y|ab, b′ = 1) = Tr
[
ηB1B2

1 (y, b)W
B1B2(a)

]
=

1
2

[
1 +

(−1)y+a

√
2

]
, (5.20)

from which we get P(y = a|b′ = 1) = 2+
√

2
4 .

Consider now the case when b′ = 0. When Bob’s outcomes are ignored, he
performs the CPTP map described by

∑
y η

B1B2(y, b) = 1
2

[
11 + (−1)bσB1

x σ
B2
z

]
. From

this we can calculate, as in the previous case, the effective state received by Alice,
which is

W
A1A2(b, b′ = 0) =

1
2

[
11 + (−1)b 1

√
2
σz

]A1

⊗ 11A2 , (5.21)

from which we find P(x = b|b′ = 0) = 2+
√

2
4 . By averaging the two probabilities

of signalling in the probability of success (5.3), we find

psucc =
1
2

2 +
√

2
4

+
2 +
√

2
4

 =
2 +
√

2
4

>
3
4
.

We see that, depending on his choice, Bob can effectively end up “before”
or “after” Alice, each possibility with a probability

√
2/2. This is remarkable,
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since if Alice and Bob perform their experiments inside laboratories that they
believe are isolated from the outside world for the duration of their operations
(e.g. by walls made of impenetrable material), and if they believe that they are
able to freely choose the bits a, b, and b′ (e.g. by tossing a coin), they will have to
conclude that the events in their experiment do not take place in a causal sequence.
Indeed, the framework only assumes that the local operations from the input to the
output system of each party are correctly described by quantum mechanics, and it
is compatible with any physical situation in which one would have all the reasons
to believe that each party’s operations are freely chosen in a closed laboratory.

Interestingly, both the classical bound (5.4) and the quantum violation (5.12)
match the corresponding numbers in the CHSH-Bell inequality [102], which re-
sembles closely inequality (5.4). However, the physical situations to which these
inequalities correspond is very different: Bell inequalities can be violated in space-
like separated laboratories, while (5.12) cannot be achieved neither with space-
like nor with time-like separated laboratories. It is an open question whether
(5.12) is the maximal possible violation allowed by quantum mechanics.

5.5 Classical Processes Are Causally Separable
It is possible to see that if the operations of the local parties are classical, they
can always be understood as taking place in a global causal structure. This is
a generalisation of the argument given in Sec. 5.1: every combination of clas-
sical operations that does not satisfy a causal order generates some “grandfather
paradox” and is therefore excluded if one assumes that each party must be free
to perform an arbitrary operation. The intuition behind this result is that clas-
sical processes are stochastic mixtures of deterministic processes. Thus, in each
individual run of a classical experiment, there is a classical variable with a well-
defined value associated with the entrance and the exit of each laboratory. On
the other hand, each signalling correlation between the two laboratories can also
be seen as a classical mixture of deterministic functions, connecting the variable
at the exit of a laboratory with the one at the entrance of the other laboratory.
This means that, if a process allows non-separable, bi-directional signalling cor-
relation, for some run of the experiment the variables must be deterministically
correlated. Thus, for those particular experimental runs, the argument leading to
the grandfather paradox can be applied.

The actual proof of this fact is a little more lengthy and goes through the
quantum formalism. Classical operations can be described by transition matrices
M(λ2λ1)

j = P(λ2, j|λ1), where P(λ2, j|λ1) is the conditional probability that the
measurement outcome j is observed and the classical output state λ2 is prepared
given that the input state is λ1. They can be expressed in the quantum formalism as
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CP maps diagonal in a fixed (“pointer”) basis, and the corresponding CJ operators
are M j =

∑
λ1λ2

M(λ2λ1)
j |λ1〉〈λ1|

A1 ⊗ |λ2〉〈λ2|
A2 . Thus, in order to express arbitrary bi-

partite probabilities of classical maps, it is sufficient to consider process matrices
which are diagonal in the pointer basis. In Appendix C.4 we provide a detailed
proof that all such processes are causally separable.

5.6 Possible Implications
We have seen that, by relaxing the assumption of global causal order and requiring
that the standard quantum formalism holds only locally, we obtain the possibil-
ity for global causal relations that are not included in the usual formulation of
quantum mechanics. The latter is reminiscent of the situation in general relativity,
where by requiring that locally the geometry is that of flat Minkowski spacetime,
one obtains the possibility of having more general, curved spacetimes.

The natural question is whether “non-causal” quantum correlations of the kind
described by our formalism can be found in nature. One can speculate that they
may arise in situations in which both quantum mechanics and general relativity are
relevant. Given that the conformal spacetime metric is a description of the causal
relation between spacetime points [130, 131], it is natural to expect that extending
general relativity to the quantum domain would involve some kind of “superpos-
itions of causal orders”. The fact that the most general process matrices contain
terms corresponding to well-defined causal orders (Tab. 5.1), yet are not classical
mixtures of these, suggests that our formalism could describe such superpositions.
Furthermore, our result that classical theories can always be understood in terms
of a global causal structure suggests the possibility that the observed causal order
of spacetime might not be a fundamental property of nature but rather emerge from
a more fundamental theory [132, 133, 63] in a quantum-to-classical transition due
to, for example, decoherence [134] or coarse-grained measurements [18]. Indeed,
once a causal structure is present, it is possible to derive relativistic spacetime
from a causally ordered set of elements under appropriate conditions [135, 136].

It is also worth noting that exotic causal structures already appear in the clas-
sical theory of general relativity. For example, there exist solutions to the Ein-
stein equation containing closed time-like curves (CTCs) [137]. In this context,
it should be noted that any process matrix W in our framework can be interpreted
as a CPTP map from the outputs, A2, B2, of the parties, to their inputs, A1, B1. In
other words, any process can be thought of as having the form of a CTC, where
information is sent back in time through a noisy channel (see also Fig. 5.1 b). The
existence of processes that do not describe definite causal order is therefore not in-
compatible with general relativity in principle. It is sometimes argued that CTCs
should not exist since they generate logical paradoxes, such as an agent going back
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in time and killing his grandfather. The possible solutions that have been proposed
[138, 128, 129, 139, 140, 141], in which quantum mechanics and CTCs might co-
exist, involve non-linear extensions of quantum theory that deviate from quantum
mechanics already at the level of local experiments. Our framework, on the other
hand, is by construction linear and in agreement with local quantum mechanics,
and yet paradoxes are avoided, in accordance with the Novikov principle [142],
due to the noise in the evolution “backward in time”.

We should point out that instances of indefinite causal order may also emerge
in situations closer to possible laboratory implementations. As already noted, our
formalism describes more general correlations than those that can be realised with
a quantum circuit, that is, as a sequence of quantum gates. Recently, a new model
of quantum computation which goes beyond the causal paradigm of quantum cir-
cuits by using superpositions of the “wires” connecting different gates was pro-
posed [143]. This possibility may allow breaking the assumption that events are
localised in a causal structure. Since the instant when a system enters a device
depends on how the device is wired with the rest of the computer’s architecture,
superpositions of wires may allow creating situations in which events are not loc-
alised in time (similarly to the way in which a quantum particle may not be local-
ised in space). While it is an open question whether violating the causal inequal-
ity (5.4) can be achieved by similar means, the findings presented suggest that
new quantum resources for information processing might be available—beyond
entanglement, quantum memories, and even “superpositions of wires”—and the
formalism introduced provides a natural framework for exploring them.

Finally, the present framework can be extended beyond quantum mechanics
to generalised probabilistic theories, where operations are described as elements
of more general convex spaces [108, 144, 145, 146]. It is an interesting research
program to find physical principles which single out quantum correlations, with
and without definite causal structure, out of the more general correlations pre-
dicted by such theories. In this respect, it would be helpful to understand if the
probability for successfully accomplishing our task, psucc = 2+

√
2

4 , is the largest
allowed by quantum mechanics, i.e. if it represents a “Tsirelson bound [147] for
non-causallly ordered correlations”.
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Conclusions and Outlook

The topics addressed in this thesis involve the notions of space, time and causal
structures in quantum mechanics. The results presented bring new insights into
the notions of locality and causality within the quantum formalism.

In regimes of sufficiently low energies, one typically assumes the existence
of a classical spacetime background on which quantum degrees of freedom are
defined. As discussed in the first chapters, even in such regimes (in fact, even for
flat spacetime) the definition of familiar notions such as particles and regions of
space within the quantum formalism gives rise to several conceptual problems. It
is usually assumed in quantum field theory that the observables associated to a
point of space ~x are the covariant fields φ(~x), π(~x). The results of the first chapters
of the present work, however, suggest that such an identification might not ne-
cessarily correspond to the degrees of freedom actually measured by “localised”
devices. As seen in Chapter 1, the particle content of a relativistic quantum field
can be defined operationally in terms of a particle detector model. If the natural
assumption is made that ground and excited states of the detector correspond to
the eigenstates of an interacting theory, the effective degrees of freedom seen by
the detector are not localised in the standard sense.

The standard identification between regions of space and quantum observ-
ables produces unusual divergences in the calculation of thermodynamic quantit-
ies. As seen in Chapter 2, these can be cured if, instead of the covariant fields,
the Newton-Wigner position operators are used to identify the region of space.
This result does not answer the question of which degrees of freedom should be
associated with regions of space “at a fundamental level”. The Newton-Wigner
localisation is problematic in this respect, since the corresponding field operat-
ors are not covariant and would yield superluminal signalling. The results of
Chapter 3 suggest that a solution to this problem might be that different local-
isations should be adopted for regimes of different measurement accuracies. The
results show that, given a minimal space resolution, the Hilbert space H of a
field decomposes into a tensor product H = Hcoll ⊗ H f ine, where Hcoll contains
the degrees of freedom measurable with the given resolution (via measurement of
collective operators), while the fine-structure degrees of freedom in H f ine cannot
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be accessed. Therefore, given a decomposition of space in two regions R1, R2,
one should not consider a corresponding decomposition in subsystems of H , but
rather of Hcoll = HR1 ⊗ HR2 . If only a resolution worse than typical correlation
lengths in the field is available, the vacuum turns out to be a product state in the
resulting tensor decomposition, just as in the Newton-Wigner localisation7. One
can imagine, by arbitrarily increasing the resolution, to access regimes where the
vacuum entanglement becomes more and more accessible, although the divergent
entropy associated with it will always be confined in theH f ine subsystem. In this
picture, the standard localisation associated with the covariant fields does not have
any direct operational meaning, since it could only be approximated in the limit
of infinite precision but never reached exactly.

Thermodynamic considerations in relativistic quantum field theory (addressed
in Chapters 2 and 3) are based on non-covariant notions: a thermal state is defined
in some given inertial reference frame and the related thermodynamic quantities
are calculated in the corresponding space-like plane. Notions such as regions of
space, entanglement, coarse-graining, and collective operators all depend on the
assigned space-like surface on which they are defined. In applications to special
and general relativity, it would be natural to seek generalisations of such notions
to covariant spacetime properties. A starting point for constructing such notions
could be the general framework of information theory, which has already been
shown to provide solid foundations to thermodynamics and statistical mechanics
[150]. However, quantum information too, although formulated with no direct
reference to a physical space, does assume a sharp division between “space-like”
objects (such as quantum states) and “time-like” ones (such as unitary operators).
The framework outlined in Chapter 5 goes beyond such a division and can be a
starting point for the construction of a “covariant” quantum information, which
could in turn provide the basis for relativistic thermodynamics. In the formalism
developed, quantum states and evolutions are special instances of more general
objects, which we called processes. A process describes a general situation where
a number of local operations are performed, with no prior assumption about how
such operations are embedded in a global spacetime. The local operations corres-
pond to the most general quantum operations that can be performed in a localised
spacetime volume, thus one can think of them as defining a small region of space
time (in the limit, a point). A process describes all the possible measurement
outcomes of the local operations and can then be seen as an abstract description

7Note that, as in the NW localisation, the decomposition Hcoll = HR1 ⊗ HR2 is not covariant
(in fact, covariance is already broken in the definition of coarse-graining, i.e. in the decomposition
H = Hcoll ⊗H f ine). However, such a lack of covariance does not lead to possible non-local effects
(such as signalling between space-like separated regions), because the effective localisation is only
a consequence of the lack of precision in determining the position of local operations which, at a
fundamental level, are still defined according to the covariant fields φ(x), π(x).
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of the geometry in which such regions are embedded. In Chapter 5 the causal
relations between regions defined by processes have been studied, the structure
and properties of processes are however still largely unexplored; it is still to be
understood what the sensible notions are that generalise information-theoretical
concepts such as entanglement, entropy, channel capacity, etc. It is natural to ex-
pect that “covariant” properties of processes would provide a better insight into
the foundational issues regarding relativistic quantum systems considered in the
first chapters.

The analysis of causal relations in quantum theory opens several possible re-
search directions. An important aspect is understanding when and how situations
with no causal order, such as the abstract example given in Chapter 5, can arise in
nature. A viable approach is to consider gedankenexperiments that could lead to
superpositions of spacetime metrics in the light of the new formalism developed.
It is important to stress that the treatment of such experiments should not rely
on detailed calculations in some quantum-gravity formalism. Rather, similarly
to the EPR and Bell examples, only minimal assumptions about the underlying
theory should be used. It is however also interesting to understand whether differ-
ent approaches to quantum gravity lead to different possible operationally-defined
causal relations.

A theme underlying large part of the work is the correspondence principle. If
fundamental theories have counterintuitive features, one should also find a reason
why such features are not observable at the level of everyday experience. More
generally, it is important to assess the range of validity of specific theories and
under which conditions they reduce to less fundamental, effective theories. The
coarse-graining approach has proved surprisingly versatile in providing a general
guiding line for understanding emergent properties. It has been shown in Chapter
3 that all quantum measurements in phase space can be described in terms of
classical probability distributions as long as the measurement precision is small
enough. This suggest a general criterion for the emergence of classicality: the
classical limit can be understood as the ~

σ2 → 0 limit, where σ2 quantifies the
minimal precision available in the measurement of phase space observables. It is
noteworthy that the classical limit seems to provide “for free” a limit of causal
order. As seen in Chapter 5, the assumption of local classical operations implies
the existence of a global causal structure. There are however regimes, nowadays
largely accessible in the laboratory, where quantum phenomena can be observed
(thus far from the classical limit), but for which a global causal structure seems
to be well-defined. A possible explanation is that the observed causal structure
in quantum experiments relies on the fact that the spacetime location of quantum
operations and measurements is determined by instruments well into the classical
limit, which therefore define “classical reference frames” for spacetime. In the
presence of large superpositions of mass-energy one could expect such reference
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frames not to be available. An interesting possibility is to consider such situations
in terms of relative degrees of freedom between quantum systems and quantum
reference frames, applying the methods used in Chapter 4. A possible develop-
ment is a reconsideration of the equivalence principle to include reference frames
in quantum superpositions, which could provide a new approach to the study of
the interplay between general relativity and quantum mechanics.



Appendix A

A.1 Convergence of High-Energy Loops
Let us consider the integral

J =

∫
R0

dx0 · · ·

∫
Rn+1

dxn+1
m0m1 · · ·mn+1

[m2
0 + (x0 − x1)2] · · · [m2

n+1 + (xn+1 − x0)2]
,(A.1)

where the ranges Ri can be the interval IL = [−L/β, L/β] or the set EL = (−∞,−L/β]∪
[L/β,∞), and n ≥ 1 (the case n = 0 can be verified by a direct computation).
Without loss of generality, we can assume Rn+1 = EL. We can perform the integ-
ration in dxn+1 by means of the formula∫

dx
ab

[a2 + (x − y)2][b2 + (z − x)2]
=

=
b[b2 − a2 + (z − y)2] arctan x−y

a + a[a2 − b2 + (z − y)2] arctan x−z
b

[(y − z)2 + (a + b)2][(y − z)2 + (a − b)2]

−
ab(y − z) log a2+(x−y)2

b2+(x−z)2

[(y − z)2 + (a + b)2][(y − z)2 + (a − b)2]
, (A.2)

so that

W(mn,mn+1; xn, x0; β) =

∫
EL

dxn+1
mnmn+1

[m2
n + (xn − xn+1)2][m2

n+1 + (xn+1 − x0)2]
=

= −
mn+1[m2

n+1 − m2
n + (x0 − xn)2] arctan

L
β−xn

mn

[(xn − x0)2 + (mn + mn+1)2][(xn − x0)2 + (mn − mn+1)2]

−
mn[m2

n − m2
n+1 + (x0 − xn)2] arctan

L
β−x0

mn+1

[(xn − x0)2 + (mn + mn+1)2][(xn − x0)2 + (mn − mn+1)2]

+

mnmn+1(xn − x0) log
m2

n+( L
β−xn)2

m2
n+1+( L

β−x0)2

[(xn − x0)2 + (mn + mn+1)2][(xn − x0)2 + (mn − mn+1)2]
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−(β→ −β) +
π(mn+1 + mn)[(mn+1 − mn)2 + (x0 − xn)2]

[(xn − x0)2 + (mn + mn+1)2][(xn − x0)2 + (mn − mn+1)2]
.(A.3)

Next, a very careful analysis is needed, distinguishing the cases if R0, Rn are of
type IL and/or EL. Note that it is an odd function of β, apart from a term which
does not contain β. Indeed such term imply W(mn,mn+1; xn, x0; β)→ 0 if β→ 0+.
It is possible to see that one can find a set of positive constants Kab such that

W(a, b; xn, x0; β) ≤
Kab

(xn − x0)2 + (a + b)2

β

L
. (A.4)

After substitution in (A.1), we see that in the worst case1 J takes the form (2.29)
so that the limit β→ 0+ exists.

1that is, when all the remaining insertions are the black ones



Appendix B

B.1 Estimation of Gaussian Convolution
Consider the integral

I :=
∫

ddy G 1
4ε2

(~a − ~y)ϕ(‖~y‖), (B.1)

where ϕ is a positive bounded function, 0 ≤ ϕ(y) ≤ ϕ0 ∀y ≥ 0, with ϕ(y′) ≤ ϕ(y)
∀y′ ≥ y, y > r, for some r > 0. In order to find an upper bound for I we write, for
some α > r,

I =

(∫
‖~y‖≤α

+

∫
‖~y‖>α

)
ddy G 1

4ε2
(~y)ϕ(‖~y + ~a‖)

≤ ϕ(|a − α|)
∫
‖~y‖≤α

ddy G 1
4ε2

(~y) + ϕ0

∫
‖~y‖>α

ddy G 1
4ε2

(~y)

≤ ϕ(|a − α|) + ϕ0

∫
‖~y‖>α

ddy G 1
4ε2

(~y),

where a = ‖~a‖ and we used
∫

ddy G 1
4ε2

(~y) = 1. By integrating the angular degrees
of freedom, one obtains∫

‖~y‖>α
ddy G 1

4ε2
(~y) =

1(
8πε2)d/2γd

∫ ∞

α

dr rd−1e−
r2

4ε2 =
2

Γ( d
2 )

∫ ∞

α
2ε

dr rd−1e−r2
,

where γd = 2πd/2

Γ( d
2 )

is the surface of the d-sphere and Γ is the Euler gamma function.
For α � ε, one has

I ≤ ϕ(|a − α|) +
2ϕ0

Γ( d
2 )

e−
α2

4ε2

[(
α

2ε

)d−2
+ O

(
α

2ε

)d−4
]
.

By choosing α = sa for some s ∈ (0, 1), we obtain the upper bound

I ≤ ϕ((1 − s)a) +
2ϕ0

Γ( d
2 )

e−
s2a2

16ε2

[( sa
4ε

)d−2
+ O

( sa
4ε

)d−4
]
, (B.2)
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from which we derive ∫
ddy G 1

4ε2
(~a − ~y)ϕ(‖~y‖)→ ϕ(a)

for a
ε
� 1. (It is enough to take s→ 0 in (B.2), e.g. by setting s =

√
ε
a .)

B.2 Discretisation of the Klein-Gordon Field
We review the relation between a massive, scalar, bosonic field and a lattice of
harmonic oscillators in d space dimension. The same correspondence holds both
for quantum and classical systems; here we only present it in the quantum form-
alism. A field of mass M confined in a d-dimensional box of size L is described
by the Hamiltonian

Ĥ =
1
2

∫
[0,L]d

dd x

M2φ̂2(~x) + π̂2(~x) +

d∑
s=1

[
∂

∂xs
φ̂(~x)

]2
 , (B.3)

where the conjugate field operators satisfy the continuous canonical commutation
relation

[φ̂(~x), π̂(~y)] = i δ(~x − ~y). (B.4)

We assume periodic boundary conditions, such that, for s = 1, . . . , d, φ̂(~x +

~usL) = φ(~x), π̂(~x + ~usL) = π(~x), where ~us are the d-dimensional unit vectors
~u1 = (1, 0, . . . , 0), . . . , ~ud = (0, . . . , 0, 1).

The integral (B.3) is the N → ∞ limit of the expression

Ĥdis =
εd

2

N∑
j1... jd=1

M2φ̂2(~jε) + π̂2(~jε) +

d∑
s=1

 φ̂((~j + ~us)ε) − φ̂(~jε)
ε

2 , (B.5)

where ε = L
N and φ((~j+~us)ε)−φ(~jε)

ε
is the discretised partial derivative along the s-th

coordinate. The fields evaluated at discrete points have commutation relations
[φ̂(~jε), π̂(~lε)] = i δ

(
(~j − ~l)ε

)
= 1

εd δ~j~l. A convenient choice of dimensionless, dis-
crete degrees of freedom with canonical commutation relations is

q̂~j :=
√

Eεd/2φ̂(~jε), p̂~j :=
εd/2

√
E
π̂(~jε),

with E := 1
ε

√
M2ε2 + 2d. Substituting these into (B.5) we can write the discretised

Hamiltonian has

Ĥdis =
E
2

N∑
j1,..., jd=1

q̂2
~j

+ p̂2
~j
− α

d∑
s=1

q̂~jq̂~j+~us

 , (B.6)
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where α := 2
E2ε2 = 1

d+ 1
2 ε

2 M2 .
The Hamiltonian (B.6) can be diagonalised introducing the operators

â~k :=
1
√

2Nd

N∑
j1,..., jd=1

ei 2π
N
~j·~k

(
√
ν~kq̂~j +

i
√
ν~k

p̂~j

)
,

â†
~k

:=
1
√

2Nd

N∑
j1,..., jd=1

e−i 2π
N
~j·~k

(
√
ν~kq̂~j −

i
√
ν~k

p̂~j

)
,

(B.7)

where ν~k :=
√

E
(
1 − α

∑d
s=1 cos 2π

N ks

)
. The inverse relation reads

q̂~j =
1
√

2Nd

N∑
k1,...,kd=1

1
√
ν~k

(
e−i 2π

N
~j·~kâ~k + ei 2π

N
~j·~kâ†

~k

)
,

p̂~j = −
i
√

2Nd

N∑
k1,...,kd=1

√
ν~k

(
e−i 2π

N
~j·~kâ~k − ei 2π

N
~j·~kâ†

~k

)
,

which, plugged into Eq. (B.6), gives the diagonalised Hamiltonian

Ĥdis =

N∑
k1,...,kd=1

ν~k

(
â†
~k
â~k +

1
2

)
. (B.8)
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Appendix C

C.1 Formal Derivation of the Causal Inequality

A causal structure (for instance, spacetime) is a set of event locations equipped
with a partial ordering relation � that defines the possible causal relations between
events at these locations. If A and B are two such locations, A � B reads “A is
in the causal past of B”, or equivalently, “B is in the causal future of A” (e.g.
if A and B are spacetime points, A � B corresponds to A being in the past light
cone of B). Operationally, if A � B, an agent at A can signal to an agent at B by
encoding information in events at A that get correlated with events at B which the
other agent can observe. The fact that the relation � is a partial order means that
it satisfies the following conditions: 1) A � A (reflexivity); 2) if A � B and B � C,
then A � C (transitivity); and 3) if A � B and B � A, then A = B (antisymmetry).
The last condition says that if A and B are two different locations, there can either
be signalling from A to B, or vice versa, but no signalling in both directions is
possible (i.e. there are no causal loops). If A is not in the causal past of B, we will
write A � B. Note that in a causal structure both A � B and B � A may hold (as in
the case when A and B are space-like separated), and at least one of the two must
hold for A , B. We will denote the situation where both A � B and B � A hold
by A �� B.

Since every event specifies an event location, we will use the same notation
directly for events. For instance, if X and Y are two events such that the location
of X is in the causal past of the location of Y , we will write X � Y (similarly for �
and ��).

The main events in our communication task are the systems entering Alice’s
and Bob’s laboratories, which we will denote by A1 and B1, respectively, and
the parties producing the bits a, b, b′, x, and y, which we will denote by the
same letters as the corresponding bits. The fact that Alice generates the bit a and
produces her guess x after the system enters her laboratory means that A1 � a, y.
Similarly, we have B1 � b′, b, y.

113
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The assumptions behind the causal inequality are:

(i) Causal structure—The events A1, B1, a, b, b′, x, y are localised in a causal
structure.

(ii) Free choice—Each of the bits a, b, and b′ can only be correlated with
events in its causal future (this concerns only events relevant to the task). We
assume also that each of them takes values 0 or 1 with probability 1/2.

(iii) Closed laboratories—x can be correlated with b only if b � A1, and y can
be correlated with a only if a � B1.

We want to show that these assumptions imply

psucc =
1
2

p(x = b|b′ = 0) +
1
2

p(y = a|b′ = 1) ≤
3
4

(C.1)

for the success probability that Alice and Bob can achieve in their task.

First, notice that assumption (ii) implies that the bits a, b, and b′ are independ-
ent of each other. Indeed, there are two general ways in which the three bits could
be correlated—two of them are correlated with each other while the third one is
independent, or each of them is correlated with the other two. In the first case, the
free-choice assumption implies that the two correlated bits would have to be in
each other’s causal pasts, which is impossible. In the second case, each of the bits
would have to be in the causal past of the other two, which is again impossible.
Hence, the bits are uncorrelated.

Next, consider the following three possibilities that can be realised in a causal
structure: A1 � B1, B1 � A1, A1 �� B1. Since these possibilities are mutually
exclusive and exhaustive, their probabilities satisfy p(A1 � B1) + p(B1 � A1) +

p(A1 �� B1) = 1. From assumption (ii) it follows that the bits a, b, and b′ are
independent of which of these possibilities is realised. To see this, consider for
instance b′. Since B1 � b′, we have that b′ must be independent of whether A1

takes place in the causal past of B1 or not, i.e. p(A1 � B1|b′) = p(A1 � B1).
Similarly, b′ must be independent of whether A1 takes place in the larger region
which is a complement of the causal future of B1, which implies p(B1 � A1|b′) =

p(B1 � A1). But p(B1 � A1|b′) = p(A1 � B1|b′) + p(A1 �� B1|b′) = p(A1 �

B1) + p(A1 �� B1|b′), while p(B1 � A1) = p(A1 � B1) + p(A1 �� B1), which
implies p(A1 �� B1|b′) = p(A1 �� B1). Finally, since p(A1 � B1|b′) + p(A1 ��
B1|b′) + p(B1 � A1|b′) = p(A1 � B1) + p(A1 �� B1) + p(B1 � A1|b′) = 1 = p(A1 �

B1) + p(A1 �� B1) + p(B1 � A1), we have p(B1 � A1|b′) = p(B1 � A1). An
analogous argument shows that a and b are also independent of the causal relation
between A1 and B1.
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Using the above, the success probability can be written

psucc =
1
2

p(x = b|b′ = 0) +
1
2

p(y = a|b′ = 1)

=
1
2

p(x = b|b′ = 0; A1 � B1)p(A1 � B1)

+
1
2

p(x = b|b′ = 0; B1 � A1)p(B1 � A1)

+
1
2

p(x = b|b′ = 0; A1 �� B1)p(A1 �� B1)

+
1
2

p(y = a|b′ = 1; A1 � B1)p(A1 � B1)

+
1
2

p(y = a|b′ = 1; B1 � A1)p(B1 � A1)

+
1
2

p(y = a|b′ = 1; A1 �� B1)p(A1 �� B1)

=

(
1
2

p(x = b|b′ = 0; A1 � B1) +
1
2

p(y = a|b′ = 1; A1 � B1)
)

×p(A1 � B1)

+

(
1
2

p(x = b|b′ = 0; B1 � A1) +
1
2

p(y = a|b′ = 1; B1 � A1)
)

×p(B1 � A1)

+

(
1
2

p(x = b|b′ = 0; A1 �� B1) +
1
2

p(y = a|b′ = 1; A1 �� B1)
)

×p(A1 �� B1). (C.2)

If A1 � B1 (which implies B1 � A1), from the transitivity of partial order it
follows that A1 � b (and thus b � A1). From assumption (iii), x can only be
correlated with b if b is in the causal past of A1, thus p(b|x; A1 � B1) = p(b|A1 �

B1) = 1
2 [the last equality follows from the independence of b from the causal

relations between A1 and B1, together with assumption (ii)]. Using also that b and
b′ are independent, we thus obtain p(x = b|b′ = 0; A1 � B1) = p(b = 0; x = 0|b′ =

0; A1 � B1) + p(b = 1, x = 1|b′ = 0; A1 � B1) = p(b = 0|x = 0; b′ = 0; A1 �

B1)p(x = 0|b′ = 0; A1 � B1)+ p(b = 1|x = 1; b′ = 0; A1 � B1)p(x = 1|b′ = 0; A1 �

B1) = 1
2 p(x = 0|b′ = 0; A1 � B1) + 1

2 p(x = 1|b′ = 0; A1 � B1) = 1
2 .

If B1 � A1 (which implies A1 � B1), by an analogous argument we obtain
p(y = a|b′ = 1; B1 � A1) = 1

2 . Finally, if A1 �� B1, we have both p(y = a|b′ =

1; A1 �� B1) = 1
2 and p(x = b|b′ = 0; A1 �� B1) = 1

2 . Substituting this in
Eq. (C.2), we obtain
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psucc =

(
1
4

+
1
2

p(y = a|b′ = 1; A1 � B1)
)

p(A1 � B1)

+

(
1
2

p(x = b|b′ = 0; B1 � A1) +
1
4

)
p(B1 � A1)

+

(
1
4

+
1
4

)
p(A1 �� B1)

≤
3
4

p(A1 � B1) +
3
4

p(B1 � A1) +
3
4

p(A1 �� B1) =
3
4
. (C.3)

This completes the proof.

C.2 Characterisation of Process Matrices
We derive necessary and sufficient conditions for a matrix to satisfy Eqs. (5.8) and
(5.9) in terms of an expansion of the matrix in a Hilbert-Schmidt basis. A Hilbert-
Schmidt basis of L(HX) is given by a set of matrices {σX

µ }
d2

X−1
µ=0 , with σX

0 = 11X,
TrσX

µσ
X
ν = dXδµν, and TrσX

j = 0 for j = 1, . . . d2
X − 1. A general element of

L(HA1 ⊗HA2 ⊗HB1 ⊗HB2) can be expressed as

WA1A2B1B2 =
∑
µνλγ

wµνλγσ
A1
µ σ

A2
ν σ

B1
λ σ

B2
γ , wµνλγ ∈ C (C.4)

(we omit tensor products and identity matrices whenever there is no risk of con-
fusion). Since a process matrix has to be Hermitian, we consider only the cases

wµνλγ ∈ R. (C.5)

We will refer to terms of the form σA1
i ⊗ 11rest (i ≥ 1) as of the type A1, terms

such as σA1
i ⊗ σ

A2
j ⊗ 11rest (i, j ≥ 1) as of the type A1A2, and so on. The properties

of a process matrix can be analysed with respect to the terms it contains. For
example, terms of the type A1B1 produce non-signalling correlations between the
measurements, terms such as A2B1 correlate Alice’s outputs with Bob’s inputs,
yielding signalling from Alice to Bob, etc., as illustrated in Tab. 5.1. Note that not
all terms are compatible with the condition (5.9). We will prove that a matrix W
satisfies condition (5.9) if and only if it only contains the terms listed in Tab. 5.1.

The CJ (Choi-Jamiołkowsky) matrix of a local operation can be similarly writ-
ten MX1X2 =

∑
µν rµνσ

X1
µ σ

X2
ν , rµν ∈ R. The condition TrX2 MX1X2 = 11X1 is equivalent

to the requirement r00 = 1
dX2

, ri0 = 0 for i > 0. Thus CJ matrices corresponding to
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CPTP maps have the form

MX1X2 =
1

dX2

11X1X2 +
∑
i>0

aiσ
X2
i +

∑
i j>0

ti jσ
X1
i σ

X2
j

 , (C.6)

ai, ti j ∈ R.

Let us consider first the case of a single party, say, Alice. Since the set of
matrices MA1A2 ≥ 0 is a substantial set, condition (5.9) can be equivalently im-
posed on arbitrary matrices of the form (C.6) and, for a single party, it can be
rewritten as

1
dA2

Tr

WA1A2

11A1A2 +
∑
i>0

aiσ
A2
i +

∑
i j>0

ti jσ
A1
i σ

A2
j


 = 1,

∀ ai, ti j ∈ R.

Using an expansion of the process matrix in the same basis in a similar way,
WA1A2 =

∑
µν wµνσ

A1
µ σ

A2
ν , wµν ∈ R, the above condition becomes

dA1

w00 +
∑
i>0

w0iai +
∑
i j>0

wi jti j

 = 1,

∀ ai, ti j ∈ R,

and one obtains w00 = 1
dA1

, w0i = wi j = 0 for i, j > 0. Thus the most general
process matrix observed by a single party has the form

WA1A2 =
1

dA1

11A1A2 +
∑
i>0

viσ
A1
i

 , (C.7)

vi ∈ R, WA1A2 ≥ 0,

which can be recognised as a state. This result—that all probabilities a single
agent can observe are described by quantum states—is an extension of Gleason’s
theorem from POVMs [148, 149] to CP maps (note that here the linear structure
of quantum operations is assumed, while in Gleason’s theorem for POVMs it is
derived from different hypotheses. However, by a similar argument one could
derive linearity for CP maps too).

Let us now consider a bipartite process matrix, WA1A2B1B2 =
∑
µνλγ wµνλγσ

A1
µ σ

A2
ν σ

B1
λ σ

B2
γ ,

wµνλγ ∈ R. We have to impose (5.9) for arbitrary matrices MA1A2 , MB1B2 of the form

(C.6). First, if we fix MB1B2 = 11B1B2

dB2
, we obtain

dA1dB1

w0000 +
∑
i>0

w0i00ai +
∑
i j>0

wi j00ti j

 = 1

∀ ai, ti j ∈ R,
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which imposes w0000 = 1
dA1 dB1

and w0i00 = wi j00 = 0 for i, j > 0. Similarly, by

fixing MA1A2 = 11A1A2

dA2
, we can derive w000i = w00i j = 0 for i, j > 0. Finally,

imposing (5.9) for arbitrary

MA1A2 =
1

dA2

11A1A2 +
∑
i>0

aiσ
A2
i +

∑
i j>0

ti jσ
A1
i σ

A2
j

 ,
MB1B2 =

1
dB2

11B1B2 +
∑
k>0

bkσ
B2
k +

∑
kl>0

sklσ
B1
k σ

B2
l

 ,
we obtain ∑

ik>0

w0i0kaibk +
∑
ikl>0

w0iklaiskl

+
∑
i jk>0

wi j0kti jbk +
∑

i jkl>0

wi jklti jskl = 0,

∀ ai, ti j, bk, skl ∈ R,

from which we conclude that the most general matrix that satisfies (5.9) has the
form

WA1A2B1B2 =
1

dA1dB1

(
11 + σB�A + σA�B + σA��B

)
,

σB�A :=
∑
i j>0

ci jσ
A1
i σ

B2
j +

∑
i jk>0

di jkσ
A1
i σ

B1
j σ

B2
k ,

σA�B :=
∑
i j>0

ei jσ
A2
i σ

B1
j +

∑
i jk>0

fi jkσ
A1
i σ

A2
j σ

B1
k ,

σA��B :=
∑
i>0

viσ
A1
i +

∑
i>0

xiσ
B1
i +

∑
i j>0

gi jσ
A1
i σ

B1
j ,

where ci j, di jk, ei j, fi jk, gi j, vi, xi ∈ R.

This form, together with the condition WA1A2B1B2 ≥ 0, completely characterises
the most general bipartite process matrix.

C.3 Terms not Appearing in Process Matrices
The terms not-allowed in a process matrix (i.e. those incompatible with the nor-
malisation condition (5.9)) are listed in Tab. 5.2, along with possible interpret-
ations. Particularly interesting are the cases involving terms of the type A1A2.
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These would correlate Alice’s output with her input and not give unit probab-
ilities for some CPTP maps that she can choose to perform. This kind of cor-
relations resemble a “backward in time” transmission of information: one can
imagine that they can be generated by a quantum channel “in the inverse or-
der”, from the output A2 to the input A1. It is worth noting that a recently pro-
posed model of closed time-like curves [128, 129] can be expressed precisely
in this way. Using our terminology, such a model considers an agent receiv-
ing two quantum systems in her laboratory: a chronology-respecting system A
and a second system A′ which, after leaving the laboratory, is sent back in time
to the laboratory’s entrance, see Fig. C.1. This can be described by the pro-
cess matrix WA1A′1A2A′2 = σA1 ⊗ 11A2 ⊗

(
U ⊗ 11|φ+〉〈φ+|A

′
1A′2U† ⊗ 11

)
, where σA1 is

the state of the chronology-respecting system when it enters the laboratory and(
U ⊗ 11|φ+〉〈φ+|A

′
1A′2U† ⊗ 11

)
is a process matrix corresponding to a unitary U from

A′2 to A′1, describing the evolution back in time of the chronology-violating sys-
tem. (The labels A1, A′1 represent the two systems entering the laboratory, while
A2, A′2 represent the systems going out. Note that, here, the two systems A and A′

pass through the same laboratory and thus they can undergo any joint operation.)
In this model, probabilities have to be renormalised in order to sum up to one:
if the agent performs a quantum instrument described by the set of CJ matrices
{MA1A′1A2A′2

j }, the probability of observing the outcome j is given by

P(MA1A′1A2A′2
j ) =

Tr
[
MA1A′1A2A′2

j WA1A′1A2A′2

]
Tr

[∑
j M

A1A′1A2A′2
j WA1A′1A2A′2

] .
This makes the probabilities non-linear functions of the local operations MA1A′1A2A′2

j ,
therefore the model violates our original assumptions (in particular, as opposed to
quantum mechanics, probabilities are contextual in this model, since it is neces-
sary to specify the events that do not occur in order to perform the renormalisation
step). A similar conclusion can be drawn for Deutsch’s model of closed time-like
curves [138], which is also non-linear (although it uses a different mechanism
to obtain well-defined probabilities) and thus violates our premise that ordinary
quantum mechanics holds locally in each laboratory.

C.4 Casual Order in the Classical Limit
Let us now show that in the classical limit all correlations are causally ordered.
Classical operations can be described by transition matrices M(ki)

j = P(k, j|i),
where P(k, j|i) is the conditional probability that the measurement outcome j is
observed and the classical output state k is prepared given that the input state is i.
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Figure C.1: Nonlinear model of closed time-like curve. In the model of closed time-like
curves considered in Refs. [128, 129], a chronology-respecting system A, initially in a state
σ, interacts with a second system, A′, which travels back in time according to a unitary U.
This model can be represented in our formalism by an “unphysical” process matrix, i.e. one
for which probabilities do not sum up to one.

They can be expressed in the quantum formalism as CP maps diagonal in a fixed
(“pointer”) basis, and the corresponding CJ matrices are M j =

∑
ki M(ki)

j |i〉〈i|
A1 ⊗

|k〉〈k|A2 . In order to express arbitrary bipartite probabilities of classical operations,
it is sufficient to consider process matrices of the standard form

WA1A2B1B2 =
1

dA1dB1

(
11 + σB�A + σA�B

)
, (C.8)

where σB�A and σA�B are diagonal in the pointer basis. Probabilities are still given
by Eq. (5.5).

We will show that any such diagonal process matrix can be written in the form

WA1A2B1B2 =
1

dA1dB1

(
ρA1A2B1 ⊗ 11B2 + ρA1B1B2 ⊗ 11A2

)
, (C.9)

where ρA1A2B1 and ρA1B1B2 are positive semidefinite matrices. This is sufficient to
conclude that WA1A2B1B2 is causally separable. Indeed, if WA1A2B1B2 can be written
in the form (C.9), we know that ρA1A2B1 does not contain Hilbert-Schmidt terms
of the types A1A2 or A2 (which are not allowed in a process matrix), since by
assumption these terms are not part of WA1A2B1B2 . Therefore, the matrix

WB�A ≡
ρA1A2B1

TrρA1A2B1
dA2dB2 , (C.10)

which is positive semidefinite, has trace dA2dB2 , and contains only terms of the
allowed types, is a valid process matrix with no signalling from B to A. Similarly,

WA�B ≡
ρA1B1B2

TrρA1B1B2
dA2dB2 (C.11)

is a valid process matrix with no signalling from A to B. The whole process matrix
can then be written in the causally separable form

WA1A2B1B2 = qWB�A + (1 − q)WA�B, (C.12)
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where

q ≡
TrρA1A2B1

dA1dA2dB1dB2

. (C.13)

Note that 0 ≤ q ≤ 1 since ρA1A2B1 and ρA1B1B2 in Eq. (C.9) are positive semidefinite
and TrWA1A2B1B2 = dA2dB2 .

To prove Eq. (C.9), we will construct ρA1A2B1 and ρA1B1B2 from the general form
in Eq. (C.8). Let the minimum eigenvalue of σB�A + σA�B be m. Since WA1A2B1B2

is positive semidefinite and σB�A + σA�B is traceless, we have m ∈ [−1, 0]. Define
the matrices

κA1A2B1 = −m11 + σB�A, (C.14)

κA1B1B2 = σA�B. (C.15)

The full process matrix can then be written

WA1A2B1B2 =
1

dA1dB1

(
(1 + m)11 + κA1A2B1 + κA1B1B2

)
, (C.16)

where κA1A2B1 + κA1B1B2 is positive semidefinite.
We are now going to modify κA1A2B1 and κA1B1B2 by adding matrices of the form

κA1B1 to κA1A2B1 and subtracting them from κA1B1B2 (therefore leaving κA1A2B1+κA1B1B2

unchanged), until we transform both κA1A2B1 and κA1B1B2 in Eq. (C.16) into positive
semidefinite matrices.

Denote the pointer basis of system X by |i〉X, i = 1, ..., dX, X = A1, A2, B1, B2.
All matrices we consider are diagonal in the basis {|i〉A1 | j〉A2 |k〉B1 |l〉B2}. Let m1(i, j, k, l)
denote the eigenvalues of κA1A2B1 corresponding to the eigenvectors |i〉A1 | j〉A2 |k〉B1 |l〉B2 ,
and let m2(i, j, k, l) be the eigenvalues of κA1B1B2 corresponding to the same vectors.
For every i and k, we do the following. Define

m̃1(i, k) = min
j,l

m1(i, j, k, l), (C.17)

m̃2(i, k) = min
j,l

m2(i, j, k, l). (C.18)

Note that m1(i, j, k, l) do not depend on l since κA1A2B1 acts trivially on B2, and
similarly m2(i, j, k, l) do not depend on j. This means that for given i and k, the
minimum of the eigenvalues of κA1A2B1 + κA1B1B2 for all eigenvectors of the type
|i〉A1 | j〉A2 |k〉B1 |l〉B2 is equal to m̃1(i, k)+m̃2(i, k). But by construction κA1A2B1 +κA1B1B2

is positive semidefinite, so we have

m̃1(i, k) + m̃2(i, k) ≥ 0. (C.19)
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Now, if both m̃1(i, k) and m̃2(i, k)} are non-negative, we will not modify κA1A2B1 and
κA1B1B2 . However, if one of these numbers is negative, say m̃1(i, k) < 0 (both cannot
be negative due to (C.19)), we will add the term −m̃1(i, k)|i〉〈i|A1⊗11A2⊗|k〉〈k|B1⊗11B2

to κA1A2B1 and subtract the same term from κA1B1B2 . After this step, the modified
κA1A2B1 is such that the eigenvalues m1(i, j, k, l) have been changed to m1(i, j, k, l)−
m̃1(i, k) ≥ m̃1(i, k) − m̃1(i, k) = 0, i.e. κA1A2B1 does not have any more negative
eigenvalues m1(i, j, k, l) for the given i and k. The same holds for κA1B1B2 since the
eigenvalues m2(i, j, k, l) change to m2(i, j, k, l) + m̃1(i, k) ≥ m̃2(i, k) + m̃1(i, k) ≥ 0.
In other words, the eigenvalues of the modified κA1A2B1 and κA1B1B2 satisfy

m1(i, j, k, l), m2(i, j, k, l) ≥ 0, ∀ j, l. (C.20)

By performing this procedure for all i and k, we eventually transform κA1A2B1 and
κA1B1B2 into matrices all of whose eigenvalues are non-negative. Denote the result-
ant positive semidefinite matrices by κ̃A1A2B1 and κ̃A1B1B2 . We can now add the term
(1 + m)11 in Eq. (C.16) for instance to κ̃A1A2B1 (recall that m ∈ [−1, 0]), defining the
positive semidefinite matrices

ρA1A2B1 ≡ (1 + m)11 + κ̃A1A2B1 , (C.21)

ρA1B1B2 ≡ κ̃A1B1B2 . (C.22)

We thus arrive at the desired form (C.9) which implies (C.12) as argued above.
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