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Abstract 
 

In modern parallel scientific computing applications and interfaces broadcasts are 

one of the most important functions, because they are used in almost all algorithms 

that use multiple cores. Therefore the implementation of a reliable high performance 

algorithm is essential. We will discuss two different kinds of algorithms that are 

mathematically optimal, but differ in the point that one takes care of the underlying 

hardware and is optimized to it and the other one runs on any kind of hardware. The 

condition is of course that each processor can communicate with each other 

processor over a network. We will implement both algorithms on the SCC (Single-

Chip Cloud Computer) from Intel. It is a 48 core chip with a matrix like core 

arrangement. The cores are connected to each other via a network. A big part of our 

work will also be to investigate the SCC and show its advantages and disadvantages. 

The algorithm that takes advantage of the underlying hardware knows that the cores 

are aligned as a matrix and therefore can optimize the communication that only cores 

that are neighbors communicate with each other. The advantage here is that the 

latencies due to the underlying network get minimized. We want to do a lot of 

performance comparisons between the two algorithms to see if it is necessary to 

especially adapt the broadcast algorithm to the hardware, or if the performance gap 

is not that big that it is not worth the effort to implement an algorithm that is especially 

designed for a given hardware. The algorithm that uses the hardware setup may get 

a little bit handicapped when running on the SCC compared to something like a 

cluster, because all cores are on the same chip and therefore the latencies are very 

low in general, but we still expect him to outperform the general approach. 

 

  



 

 

Zusammenfassung 
 

In modernen, parallelen Scientific Computing Anwendungen und Schnittstellen sind 

Broadcasts eine der wichtigsten Funktionalitäten. Sie sind essenziell in fast allen 

Algorithmen die eine Vielzahl an Prozessoren verwenden. Aufgrund dieser 

Abhängigkeit ist die Implementierung eines verlässlichen und performanten 

Algorithmus besonders wichtig. Wir werden zwei verschiedene Broadcast 

Algorithmen präsentieren, die beide mathematisch optimale Laufzeiten haben, aber 

sich darin unterscheiden, dass einer auf ein bestimmtes Hardware Layout 

zugeschnitten ist und der andere auf einem beliebigen Layout läuft. Die 

Einschränkung hierbei ist, dass jeder Prozessor zumindest mit jedem kommunizieren 

kann. Wir werden beide Algorithmen auf dem SCC (Single-Chip Cloud Computer) 

von Intel implementieren. Die Besonderheit des SCC Prozessors ist, dass er 48 

Kerne auf einem Chip hat, die in einer Matrix angeordnet sind. Die Kerne sind über 

ein Netzwerk miteinander verbunden. Ein Großteil unserer Arbeit wird darin bestehen 

die Vor– und Nachteile des SCCs aufzuzeigen. Der Broadcast Algorithmus, der 

Rücksicht auf das zugrunde liegende Hardware Layout nimmt, weiß dass die Kerne 

matrixförmig angeordnet sind und kann die Kommunikation so optimieren, dass nur 

Kerne die benachbart sind miteinander kommunizieren müssen. Dies wiederum 

minimiert die Netzwerk Latenzzeiten. Wir werden die Performanz der beiden 

Algorithmen untersuchen und beurteilen ob es sinnvoll ist einen Broadcast 

Algorithmus zuzuschneiden, oder ob es den Aufwand nicht wert ist und ein 

allgemeiner Algorithmus zufriedenstellende Ergebnisse aufweisen kann. Dadurch 

dass die Implementierung und Messung auf dem SCC erfolgt, hat der allgemeine 

Algorithmus wohl einen Vorteil, da die Latenzzeiten sehr niedrig sind, da sich alle 

Kerne auf einem Chip befinden, im Gegensatz zu einer Implementierung auf einem 

Cluster, der weitaus größere Latenzzeiten aufweist. Dennoch erwarten wir, dass der 

maßgeschneiderte Algorithmus den Allgemeinen schlägt. 
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1 SCC – Single-Chip Cloud Computer 

 

1.1 Introduction 
 

The Single-Chip Cloud Computer is a research chip from Intel that was designed as 

the second part of the Intel Tera – scale Program [1]. The Tera – scale program was 

announced in February in 2007 and was intended to explore today’s state of the art 

multi-core systems by scaling up the number of cores to 100s of cores. With that 

many cores the application developers will be forced to create their programs with 

much more parallelism rather than seriality. This leads to a change of the general 

programming model. Five years later it can be seen as common. The goals of the 

program were to increase the performance and the energy – efficiency by increasing 

the number of cores and slowing down the individual core frequency. Intel first 

designed an 80 core non – IA (Intel Architecture) chip [2] that broke the 1 Teraflop/s 

wall. The second chip that was created in the Tera – scale program is the Single-

Chip Cloud Computer with 48 cores. 

 

 

1.2 Research Goals 
 

This section is based on [3]. Intel’s main goals behind the project are to study the 

“programmability and scalability” of a “shared memory message – passing 

architecture” with many cores on one chip. The results are important for the many – 

core chip development in the near future to gain a feeling how hard it is to get 

programs to run and even more harder to get some reasonable performance out of it. 

Another aspect of the architecture is that the single cores are arranged together as a 

2D matrix. They are connected to each other in this way via a network. This setting 

gives new opportunities for algorithms, because the access time from a core to one 

of its neighbors should be significantly shorter than the time to a more distant one. 

This will be discussed in the later chapters. The SCC chip also has a “software – 

controlled dynamic voltage and frequency scaling” for different areas on the chip. 

That means that the frequency of the cores can be slowed down or sped up as 
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needed to provide better energy consumption. Beforehand we want to say that we do 

not use this feature in our work. 

 

 

1.3 SCC Chip Components  
 

1.3.1 Overview 
 

 
Figure 1, SCC Chip Overview from [4] p. 8 

 

Figure 1 above shows an overview of the SCC chip. The chip mainly consists of 24 

tiles that are arranged in a 4x6 matrix. On each tile are two P54c Intel processors 

with an x86 – Architecture. The tiles also have a routing point “R” that are connected 

together and form a mesh that each processor can be accessed by the others via the 

routing points. The chip also has a VRC controller, which takes care of the voltage 

and frequency regulation, 4 on-die memory controllers (MC) that allow access to 

external storage and a system interface, which is important to get access to the chip. 
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1.3.2 Tile Overview 
 

 
Figure 2, Tile Description from [4] p. 10 

 

A tile has two P54c Intel processors with each of them having a 16KB large L1 data 

and instruction cache. Both processors are connected to their own private L2 data 

cache that has 256KB. As shown in figure 2, each tile has a so called Local Memory 

Buffer (LMB). This buffer is designed for message passing, because every core, even 

from other tiles, and the system interface have access to the LMB. The LMB is 16KB 

large and another aspect is that the L2 cache can be skipped to access the LMB. 

That means that it is not necessary to temporarily save the data in the L2 cache for 

reading from or writing to the LMB. To handle the incoming and outgoing requests to 

other tiles or buffers each tile has a Mesh Interface Unit (MIU). The MIU takes care of 

all network communications. It grants the access to the LMBs and in case of cache 

misses it handles the communication between the tile and the DDR3 memory. The 

last part in the figure above is the GCU or Global Clocking Unit. It is responsible for 

the clock frequency of the mesh and the cores and provides together with the VRC a 

software managed frequency scaling. 
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1.3.3 Memory Controller and DDR3 Memory 
 

On the chip are four memory controllers MC (as shown in Figure 1) that provide 

access to 64GB of DDR3 memory. The DDR3 memory is not directly on the SCC. 

 

 

1.3.4 System Interface and Management Console PC 
 

The system interface provides access for external PCs to the SCC. Usually SCC 

users do not access the SCC directly. They login on the external PC, called 

management PC, write their programs and then launch them on the SCC through the 

management PC. The management PC can reinitialize the SCC system, boot/reboot 

the Linux images on the cores, reset the registers and much more on the SCC via the 

system interface. A picture of the connection from the management PC to the SCC is 

shown in Figure 1. 
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1.3.5 VRC 
 

 
Figure 3, Voltage Regulation Sections from [4] p. 9 

 

The VRC is the voltage regulation controller of the system. Each core or the system 

interface can change the voltage in any of the areas that are surrounded by the red 

dotted lines that are shown in Figure 3. In addition the voltage for the mesh can be 

adjusted too. The most interesting thing about this is that both the power state of the 

areas and the voltage of the mesh can be fully adjusted by the applications. That 

means that every core can change the voltage of any of the areas or the whole 

mesh, as shown in Figure 3 above. When the voltage changes, the cores, the 

memories and the network can be sped up or slowed down. This opens the 

possibility of optimal energy consumption, depending on the requirements the 

running application has. This feature will not be part of our work. We will use a 

constant voltage that never changes. 
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2 RCCE  
 

The following chapter is based on [5]. 

 

2.1 Introduction in Message Passing 
 

Message passing is a communication paradigm between processes. It is used when 

data needs to be passed from one process to another one. The data can be seen as 

a message and the two participating processes are called sender and receiver. 

Message passing can roughly be divided into blocking and non – blocking 

communication. These two methods accomplish the same goal that the receiver has 

the data in the end, but accomplish this goal differently and are used in different 

ways. For our purposes blocking and non – blocking send and receive functions 

provide everything we need, therefore we just want to explain these functions and do 

not go deeper. Our explanations will be based on the Message Passing Interface 

(MPI) [6, 7 p. 197 - 199]. We want to describe later what exactly this is. 

 

When data shall be passed between processes, both processes (the sending and the 

receiving) need to provide a buffer. The sender’s buffer contains the data that shall 

be passed and the receiver’s buffer shall contain the received data after a successful 

transaction. 

 

The difference between a blocking and a non – blocking function is the return point of 

the function. A blocking function returns as soon as the provided buffer can be 

reused again, without any risk that data may get corrupted. This means for the 

sender, that the data he wanted to send got successfully transmitted and he can 

reuse his buffer. The same goes for the receiver. The receiver now has all values 

from the sender in his buffer and can use it. In a non – blocking send the sending 

function will return immediately. That means that the call for the send only got 

initialized but not executed at the moment. The sender now can continue with 

another part of his program and the data gets sent when there is time for it. The 

sender of course can check if the buffer got sent yet or not. The same goes for the 

receiver. A non – blocking receive will return immediately too. It is only an 

initialization. The receiver may execute some other parts of his program and check in 
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between if the data has been received yet. For both (sender and receiver) exists a 

wait function that waits until the buffer has been sent or received. This is necessary if 

the buffer needs to get reused to avoid any data corruption.  

 

For every send a matching receive has to be called. All combinations of blocking and 

non – blocking functions are possible. A sender can for example send with a blocking 

send and the receiver can call a non – blocking receive. 

 

After this basic introduction we will now continue with the description of RCCE. 

 

 

2.2 Introduction in RCCE 
 

The description above was based on MPI [6, 7 p. 197 - 199], which stands for 

Message Passing Interface. MPI is an international established standard for message 

passing. It is a very large library for message passing with a huge set of functions. 

RCCE on the other hand is an MPI like library that is especially designed for the 

SCC, but with much less functionality. In contrast to MPI, RCCE just provides the 

important basic functions that are needed for communication between the cores. 

These will be described in the next chapter. 

  

RCCE provides different interfaces for the programmer, dependent on the required 

hardware closeness. The simple interface is designed for the majority of developers 

and abstracts from hardware synchronization flags. For really advanced users it 

provides a “gory” interface that is much closer to the hardware. The third interface 

gives us the possibility to control and change the power consumption of different 

areas, which we described in Figure 3 before. The power consumption is not part of 

our work. Therefore we will use the simple interface because it provides everything 

we need. In the following we will only refer to the simple interface. 
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2.3 RCCEs Functions 
 

The functions below are not all functions that RCCE provides. These are the 

functions we will use later on in the algorithms. Therefore we want to describe them. 

 

 

2.3.1 Core Functions 
 

int RCCE_init(int *, char***) 

The init function initializes the RCCE engine. It can be called with a parameter list, 

but we do not use this feature, therefore we will skip further explanations. 

 

int RCCE_finalize(void) 

The finalize function is used to shut down the RCCE runtime environment. It has to 

be the last call to the RCCE library. 

 

int RCCE_num_ues(void) 

The num_ues function delivers the number of cores that are used in the program. 

 

int RCCE_ue(void) 

The ue function delivers the rank of the calling unit of execution. It can be seen as a 

core ID. The ID starts from 0 and goes to num_ues – 1. It is the identifier for a core in 

our algorithms. 

 

int RCCE_wtime(void) 

The wtime function is for the time measurement that is necessary for the 

performance evaluation and returns the wall clock time. 

 

 

2.3.2 Communication Functions 
 

int RCCE_send(char *, size_t, int) 

The send function is a blocking send with the buffer in the first parameter, the length 

in bytes in the second parameter and the receivers ID in the third parameter. The 
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function will not return unless the process with the receiver ID calls a matching 

receive.  

 

int RCCE_recv(char *, size_t, int) 

The recv function is the opposite part of the send function. It will return when the 

whole message has been received and is stored in the buffer. 

 

int RCCE_bcast(char *, int, int, RCCE_COMM) 

The bcast function contains a basic broadcast algorithm that is used to distribute data 

over all participating cores. The RCCE_COMM parameter is the communicator that is 

used for the algorithm. A communicator contains the cores that take part in the 

function. It is not necessary that all processes that are used for the full program need 

to execute the function. As example, if the processes with the IDs from 0 to 7 run the 

same program, it can be useful that only processes 4 – 7 call the bcast function and 

the others are not in the communicator. In our case RCCE_COMM is a standard 

communicator that always contains all processes. We will explain later what a 

broadcast is. 

 

 

2.3.3 Synchronization Functions 
 

void RCCE_barrier(RCCE_COMM *) 

The barrier function is a synchronization mechanism to ensure that all cores are on 

the same point in the program. Each core that is in RCCE_COMM has to call this 

function. The processes can continue with their program when all cores have called 

the barrier function. 

 

The standard RCCE library only provides blocking functions. For the second 

algorithm we need non – blocking functions, therefore we use an extension to RCCE, 

called iRCCE.   
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2.4 iRCCE 
 

The following chapter is based on [8]. 

 

2.4.1 Introduction 
 

As mentioned before RCCE supports only blocking send and receive functions. The 

problem with that is that in many algorithms blocking send and receive functions will 

lack in performance. To improve and extend this the iRCCE library was written, which 

provides asynchronous send and receive functions. In addition to them, iRCCE of 

course has some functions to check whether a sent buffer has arrived yet or not. 

Another advantage is that the original send and receive functions match with the new 

asynchronous functions. For example a sender sends a buffer via a blocking send 

and the receiver now can call a non-blocking function and they will still match. In the 

following we want to explain the iRCCE functions that we will use later on in the 

algorithms. 

 

 

2.4.2 Core Functions 
 

iRCCE_init(); 

The init function initializes the iRCCE runtime. It must be called as first iRCCE 

function, but after the general RCCE_init function. iRCCE does not have a own 

finalize function. It finalizes with RCCE_finalize. 

 

 

2.4.3 Communication Functions 
 

int iRCCE_isend(char *, size_t, int, iRCCE_SEND_REQUEST *); 

The isend function has the same parameters than the send function from the RCCE 

library except the request parameter in the end. The request parameter can be seen 

as a handle to the send request. Since the function returns immediately there is 

something needed to identify the send request. This is necessary for the test 

functions to see if the send is completed or not done yet. 
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int iRCCE_irecv(char *, size_t, int, iRCCE_RECV_REQUEST *); 

The irecv function is the same as the isend before, but for the receiver. The request 

parameter is necessary here too for the same reason. The next function may clarify it 

better. 

 

int iRCCE_irecv_wait(iRCCE_RECV_REQUEST *); 

The irecv_wait function gets called with a receive request. Through the request the 

function identifies the irecv call and waits until the message from the call gets 

delivered. An irecv call followed with a wait call has the same semantics as a 

blocking receive. We did not describe an isend_wait, because we did not use it. For 

completeness we want to say it is the same as the irecv_wait, but for the sender.  

 

void iRCCE_init_wait_list(iRCCE_WAIT_LIST*); 

The init_wait_list function initializes a wait list. A wait list stores all send and receive 

requests. This is especially useful if there are many send or receive requests that 

need to get checked for completeness in a loop. The wait list provides many useful 

functions to handle a larger number requests. We are using only one of them and will 

describe it later. 

 

void iRCCE_add_to_wait_list(iRCCE_WAIT_LIST*, iRCCE_SEND_REQUEST*, 

iRCCE_RECV_REQUEST*); 

The add_to_wait_list function adds a send or receive request to the wait list. Usually 

this function gets called immediately after a non – blocking send or receive. It needs 

to be used if there are multiple send or receives, without any wait between them. The 

reason is that the requests get stored in a queue and get executed in their incoming 

order. The first one in gets executed first. The queue guarantees the order and 

without it could lead into buffer problems. 

 

int iRCCE_wait_all(iRCCE_WAIT_LIST*); 

The wait_all function is a very useful functionality of a waitlist. It waits until all 

requests in the wait list are finished and returns after.  

 

 

 



 

20 
 

2.5 Memory Organization 
 

RCCE grants access to the on – chip SRAM and to the off – chip DRAM. But there 

are major differences between the two types of RAMs. The DRAM is mainly handled 

as private memory, where every core has its own data space. Other cores do not 

have access to this area. A part of the off – chip DRAM is considered as shared 

memory among the cores, but it is configurable where this division starts. The shared 

memory feature in the off – chip memory is not fully implemented yet by Intel. On the 

other side the on – chip SRAM that is described above in Figure 2 as Local Memory 

Buffer, is considered as shared memory among the cores. Since every core can 

access every other LMB the LMBs can be seen as one shared buffer. RCCE divides 

this buffer logically into 48 parts, for each core one, with 8KB space.  

 

 

2.6 Caching 
 

The cache behavior for the normal private memory does not differ from other 

architectures. Private memory gets normally cached through the L1 and L2 caches of 

the core. The cores and caches on the same tile do not have any kind of algorithms 

that keep the caches coherent because they are not needed due to separated 

caches. A special feature is that the shared memory buffers (shared memory in the 

DRAM and the MPB) can bypass the L2 cache. 

 

 

2.7 Emulator 
 

RCCE has an emulator that runs under Windows and Linux if OpenMP is supported. 

The emulator was especially needed before the SCC chip was finished, but today it 

still can be useful for improving an application, because it delivers a lot of data from a 

running program. We did not use the emulator for our work.   
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2.8 Functionalities and Programming Model 
 

2.8.1 Send & Receive, Synchronization and Power Management 
 

RCCEs main functionality is to provide an environment that enables communication, 

synchronization and power management among the cores. The communication is 

supported by RCCE through send and receive functions as described before. These 

functions allow a core to send or receive specific data from another core. All send 

and receive statements are executed by copying data from the private memory (L2 

cache or DRAM) in the MPBs (sending) or from the MPBs in the private memory 

(receiving). That means that sending and receiving are transactions between the 

MPBs.  

 

 

2.8.2 Programming Model and Program Execution  
 

RCCE applications always follow the SPMD (Single Program Multiple Data) scheme 

[5, 7 p. 93 - 95]. The program executes as one or more instances, where each of 

them runs exactly the same code. Each instance gets mapped to one core and gets 

executed until it is finished. It is not possible to swap instances between cores. The 

instances therefore can be differed by the core ID where they get executed. This 

works because a core can only run one instance at a given time. It is important that 

there are no ordering dependencies between the instances, like instance 0 always 

has to start before instance 1 starts, because the cores start the execution as soon 

as they receive the instance. As a programmer this needs to be considered that the 

program works no matter what core begins executing first. If a program does not use 

all 48 cores that are available on the SCC, it is still not possible to run another one 

that uses the other cores, because RCCE only allows one parallel program that gets 

executed at a given time on the chip. 
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3 PingPong Measurements and Conclusions  
 

3.1 What is it and what is the use of it? 
 

A PingPong test is a small program that measures the time for different sizes of data 

how long they need to be successfully transferred from one core to another and then 

returned back afterwards. The idea behind this is to get information about the latency 

and bandwidth of the given network between the cores. Since our cores are arranged 

in a matrix, the access times between the cores are expected to differ from each 

other. Cores that are directly connected together (neighbors) or cores that are on the 

same tile should not suffer so much from the latency, because they do not have to 

cross many routing points to gain access to the MPBs of each other. On the other 

hand if for example core 0, which is in the left bottom corner (as shown in Figure 4 

below), wants to send or receive some data from core 47, which is in the right upper 

corner, needs to cross nine routing points. There are nine routing points, because 

one is on his own tile and one for each tile the data needs to pass. So the access 

time should be much longer. This shall be investigated with a PingPong test, because 

if somehow it is not the case, it would not make sense to implement an algorithm that 

is especially designed for a given hardware layout, when it cannot take any 

advantage of it. The exact positions of the cores are shown in Figure 4 below. 
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Figure 4, Core Arrangement 

 

3.2 Results and Conclusions 
 

Our PingPong benchmarks will be based on Figure 4 above. Core 0 is in each 

benchmark the core that has the given data. It sends a buffer with a given buffer size 

to another core and waits until the other core sent the buffer back. We repeated this 

process 10000 times. Sending the same buffer size over and over seems a bit 

unnecessary, but the main reason why we did this is to get away from outliners, due 

to possible network troubles, or other processes that interfere, to get a as clean as 

possible result. For each of the 10000 runs we measured the time and took the 

minimum for the performance graphs. The minimum time shows the run with the least 

interference from any other things that can influence the time. The following code 

snippets show the code that we used for the measurements.  
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The 𝑖 loop in line 35 represents the buffer sizes. 𝑖 counts the rounds and 𝑠𝑖𝑧𝑒 goes 

from a given start size with a step size to the maximum size. We will describe the 

used sizes later in the next chapter. The 𝑏𝑢𝑓𝑓𝑒𝑟 variable is the buffer that we will use 

for the performance measurements. In line 40 we allocate a buffer with the actual 

size from the 𝑠𝑖𝑧𝑒 variable. At the end of the loop the buffer gets freed that it can be 

reallocated in the next run. We do not show this part. The lines 42 – 43 shall ensure 

that the buffer is in the nearest cache. That is needed to eventually copy the buffer to 

the L2 cache from the off – chip DRAM memory if it got allocated there. In line 48 the 

process with the ID 0 sets the buffer values to later check if the buffer was transferred 

correctly. These lines are necessary for the different sizes that we will test. The next 

snippet will show the actual PingPong code. 
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The code lines above show the kernel of the PingPong test. Before we want to start 

in line 56 with our explanations, we want to say that this code snippet will be done for 

each buffer size. The 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 array stores the core IDs from the cores that we 

want to use in our test. The IDs we chose are 1, 2, 10, 37 and 47. Why we chose this 

cores will be described in the next chapter. The 𝑗 loop in line 52 goes through the 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 array to perform the PingPong Test with each core. This is the reason 

why it only goes from 0 to 5. The 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 variable in line 56 gets the core ID for this 

round. Before starting with the benchmark we perform a barrier for the 

synchronization between the cores, which is shown in line 58. The PingPong 

benchmark is now done in the lines 60 – 77. The loop in line 60 performs the 

benchmark 10000 times. The time gets measured after the first run, when all buffers 

have the data once to prevent any kind of possible caching problems. After the 

benchmark is finished the time gets stopped and is written in the 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 array for 

the core in the 𝑗th position and the 𝑖th data size. The following figure shows the 

results of the test. 
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Figure 5, PingPong Test Results 

 

The test was made for all different cores with the same sizes. The buffer size began 

at 256 byte and ended at 8 kilo byte with a step size of 256 bytes. We stopped at 8 

KB, because this is the maximum size that can be stored in the Message Passing 

Buffer. All larger data sizes have to be at least transferred into a cache, which costs 

time and influents the results. The cores were chosen by their different distances in 

the matrix. Core 1 is on the same tile as our starting core 0. That’s why it should need 

the least time. Core 2 is on the neighbor tile of core 0 and core 1. That means that it 

is only two routing points away (one on the tile of core 0 and core 1 and one on its 

own tile). Core 10 and core 37 represent the end of the same row or column and core 

47 is on the furthermost tile. For clearer results we sped up the core frequency from 

533 to 800 MHz and the buffer frequency from 800 to 1066 MHz. The results show 

that the needed time scales with the distance between the cores. Core 47 needs way 

more time than core 1 or core 2.  
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4 Broadcast Algorithms 
 

4.1 Introduction 
 

A broadcast [7 p. 119-120] algorithm distributes a buffer from the root process (the 

process that has the data) to all other processes in the network that take part in the 

operation. Figure 6 below will show the process. 

 

 

 

 

 

 

 

 

 

 

Figure 6, Broadcast in General 

 

We assume that process 0 is our root process that contains the data that shall be 

distributed over all other cores. In the end all cores that participated in the process 

shall have the same data.  

 

The interesting question is how to accomplish this goal?  

 

The easiest approach would be that process 0 sends the data to process 1, then to 

process 2 and at last to process 3. The problem with this is that it would take three 

rounds to finish and process 3 has to wait all three rounds before it can start working 

with the data. For only 4 processes this does not seem to be a big problem, but in 

modern multiprocessor architectures with sometimes 100000 processors it would be 

crucial, when all processors have to wait until all before have been delivered. The 

problem with this approach is that not all processes are used when they already 

received the data. Only process 0 passes the data to other processes. After sending 

the data to process 1, two processes have the data and can send them to the next 

Process 0 Process 1 Process 2 Process 3 

Process 0 Process 1 Process 2 Process 3 

Broadcast 
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processes. If it is done correctly the number of processes each round that can send 

the data to the next doubles. Imagine the example before, but with 8 cores. With the 

first approach it would take seven rounds to finish the broadcast, with the second 

only three. With the condition that a process can perform only one send operation in 

a round. The more processors the larger gets the gap, because we changed the 

order of this algorithm. The first one needed 𝑂(𝑛), where n is the number of 

processors. The duration of the algorithm scales linear to 𝑛. In the second approach 

the order changes to O⌈log2 𝑛⌉, which will result in a huge performance improvement. 

This order is the theoretic optimal solution for algorithms that accomplish the same 

problem, when the whole data is treated as one part. It is important to say that the 

above described formulas do not include any network startup times or bandwidth 

considerations.   

 

This leads into the question why do so many different algorithms exist, if there seems 

to be an optimal solution in the number of rounds? 

 

The problem with this solution is that it is only theoretical. In reality there are not 

always 2n processors. Another problem is that it is not optimal for each data size to 

be sent with only one sending operation. It is very often the case that splitting up the 

data in multiple parts is way faster than sending the whole in one part. To fulfill these 

goals you need an algorithm that can deal with an odd number of processors, 

multiple data chunks and still should provide a near optimal performance. We will 

now start with the description of the two broadcast algorithms. 

 

 

5 General Approach 
 

5.1 Introduction 
 

Our first algorithm that we want to investigate and implement is the algorithm from 

Bin Jia [9]. The algorithm is designed for a fully connected homogenous network, 

where each processor can communicate with any other processor. How exactly the 

underlying hardware is designed does not matter. The algorithm is considered as 

round based. In each round a processor can send a message to a processor and 
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receive a different message from another processor. For each round it is exactly 

determined for each processor which message shall be sent and to which process 

and vice versa for receiving. A round is always a complete action and the next round 

will not start before the previous has been finished. The algorithm provides the 

optimal number of rounds to distribute the whole data over the network. This number 

can be calculated as followed. It depends on the number of parts and the number of 

processors that were used. The parts represent the amount of chunks in which the 

data will be split up. It takes 𝑙𝑜𝑔(𝑛) rounds to finish the broadcast if we always send 

the whole data, as described before. When we use multiple parts we need to adjust 

this a little bit, because it takes the number of parts rounds to pass every piece from 

process 0 to the next one. Therefore all in all this results in 𝑝𝑎𝑟𝑡𝑠 +  𝑙𝑜𝑔(𝑛) 𝑟𝑜𝑢𝑛𝑑𝑠 −

 1. This is the mathematical lower bound for algorithms like this. Our algorithm differs 

if the number of processors is a power of two or not. If it is a power of two, the 

algorithm is simpler and therefore called the basic algorithm. The arbitrary version for 

any amount of processors builds on the basic algorithm and extends it. Therefore we 

will start our explanations with the basic algorithm. 

 

 

5.2 Power of 2 Processors 
 

A broadcast for a power of 2 number of processors is a well-known problem as 

investigated in [10, 11]. Both of these algorithms are theoretical optimal, but as 

described by Bin Jia in [9], they are not very practicable to implement. We want now 

describe the algorithm from [9]. 

 

In every round a process has a partner process. The partners will change from round 

to round. A process interacts only with his partner process. All possible send and 

receive operations are done between it and its partner. If for example process 2 has 

calculated process 6 as its partner, then process 6 also gains process 2 as partner as 

result from the calculation. It is not possible that the calculations of process 6 would 

lead into another partner process. The partner process is defined by the bit pattern of 

the ID of a process. For example process 2 has a binary bit pattern that looks like this 

(0010). In the first round the process flips the first bit from the right. The result will be 

(0011). That means that process 3 is the partner process in the first round. To prove 
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the correctness, when process 3 does this it receives process 2 with (0010) as 

partner. The partner determination needs to be done every round. The following 

formula shows the partner determination for a given round. All formulas that we use 

are from [9]. 

 

𝑃𝑎𝑟𝑡𝑛𝑒𝑟(𝑖, 𝑗) = �𝑖𝑞−1  … 𝑖𝑗′ … 𝑖0�2 

 

The variable 𝑖 stands for the process ID. 𝑗 is the counter for the rounds that shows 

the current round. The expression in the brackets represents the binary bit pattern of 

the process 𝑖. The expression 𝑖𝑗′ in the middle represents the flip of the 𝑗′ bit in the bit 

pattern of the process. The 𝑞 variable stands for the power of 2 to gain 𝑛 (number of 

processors), or simpler 𝑞 = ⌊log(n)⌋. There is one variable left and this is 𝑗′. 𝑗′ is 

depended on 𝑗, because 𝑗′ = 𝑗 𝑚𝑜𝑑 𝑞. 𝑗′ gives us the index of the bit that shall be 

changed. Summing up the explanations and the formula, the partner process of a 

process 𝑖 in the round 𝑗 is determined by flipping the 𝑗′ bit from the right in the binary 

representation of the process. We only look at the first 𝑞 − 1 bits, because every 

possible combination of 0s and 1s is assigned to a process ID, because we have 

2𝑞processors. For a better understanding we want to relate to the following table that 

shows the partner process for every process.  

 

 
 

We have 4 processes. They are represented by their value of 𝑖. The processors are 

numbered from 0 to 3. The column 𝑗 shows the rounds. 𝑞 is a constant value, 

because the number of participating processes does not change. In the first round 

every process flips the rightmost bit in their binary representation. The resulting 

process pairs are (0:1, 2:3). This determination needs to be done in every round from 

every process. 

 

At this point we want to add some pieces of our program code for further 

comprehension. 
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Our counter 𝑗 starts from 0 and runs until 𝑝𝑎𝑟𝑡𝑠 + 𝑞 − 1 as described before. This is 

the theoretically optimal number of rounds. The variable 𝑗𝑗 in line 77 is the same as 

𝑗′. The check in line 78 is necessary, because we only use the last 𝑞 − 1 bits of the 

processor ID. The ID is shown in 𝑀𝐸 and is a normal 4 byte integer as all of these 

variables. We use the variable 𝑠ℎ𝑖𝑓𝑡 for actually flipping the bit. The 𝑠ℎ𝑖𝑓𝑡 variable 

does a left shift at the beginning of each round, except the first one. Therefore it 

starts with a 1 in the last bit and the other bits are sets to 0. After each round the 1 

changes its position and moves a bit left in the representation. In the decimal system 

it would be a multiplication with 2. The 𝑠ℎ𝑖𝑓𝑡 variable always consists of zeroes 

except the one bit that shall be flipped, this is always a 1. The flip is then done by an 

exclusive or in line 81. It does not matter if the bit, where 𝑠ℎ𝑖𝑓𝑡 has a 1, is a 0 or a 1, 

it always flips. This process needs to be done every round by every process. After 

determining the partner process a process needs to calculate which parts shall be 

sent and received. 

 

The calculation of the parts that shall be sent and received is a little bit more 

complicated. We will again show the formula how to calculate it and describe it 

afterwards. 

 

𝑠(𝑖, 𝑗) = 𝑗 − 𝑞 + �1 −  𝑖𝑗′� ∗ 𝐷𝑖𝑠𝑖[𝑗′] 

𝑡(𝑖, 𝑗) = 𝑗 − 𝑞 + 𝑖𝑗′ ∗ 𝐷𝑖𝑠𝑖[𝑗′] 

 

The 𝑠 variable stands for send and the 𝑡 variable for receive. They represent the part 

that shall be sent or received. If 𝑠 or 𝑡 is less than zero, the operation gets skipped 

and nothing will be sent or received. It is also possible that 𝑠 or 𝑡 are greater than the 

number of parts, then they get set to the last part. The 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 is an 𝑞 – sized array 

that each process creates, based on its own binary bit pattern. The array needs to be 

created only once at the beginning. It then contains all necessary data for the 
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algorithm. The formulas can be split up in different terms. The term 𝑗 − 𝑞 acts like a 

barrier in the first rounds, that prevents processes from sending and receiving, 

because 𝑗 starts at 0 and it will add up a negative term to the end result until it 

reaches 𝑞. This causes many send and receive operations to get skipped in the 

beginning, because 𝑠 or 𝑡 is less than 0, which is necessary. We will show an 

example later, for a better understanding. The second term is a distance calculation 

that is necessary to determine the part that can be sent to or received from the 

partner. The terms (1 − 𝑖𝑗′)  and 𝑖𝑗′ in the distance calculation bring in the bit swap in 

the determination of the partner process. Therefore it is ensured that 𝑠(𝑖, 𝑗) of a 

process is the same as 𝑡(𝑖, 𝑗) of its partner process. Each process needs to build up 

its own 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 based on its binary representation. The process starts with the last 

element of the array. The same goes for the bit in the binary representation. He then 

counts how many bits are needed to find the first nonzero bit to the left and writes the 

number in the  𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦. This process gets repeated for every element in the array. 

A wraparound is allowed. When he reaches the left end of the binary bit pattern and 

no nonzero bit has been found he continues with the most right bit. Process 0 has an 

exception from this schema, because it only has zeroes in the binary representation, 

therefore every element in the array gets the value of 𝑞. For an easier understanding 

we want to show an example of the 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 that is also from [9]. 

 

The example is for the processor = 𝑖 = 406 and the number of processors = n = 512 

 

j 8 7 6 5 4 3 2 1 0 

𝑖𝑗 1 1 0 0 1 0 1 1 0 

𝐷𝑖𝑠𝑖[𝑗] 2 1 1 2 3 1 2 1 1 

 

𝑗 in the table above indicates the position in the array. 𝑖𝑗 represents the bit at the 

index of 𝑗 of the process 𝑖 that is 406 in the example. To determine the 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 one 

has to start at position 𝑗 = 0. Then count how many bits to the left it takes to find a 1. 

For index 0, it needs one bit. The count gets stored in the  𝐴𝑟𝑟𝑎𝑦 . The process 

repeats with index 1 and so on. At the end the 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 looks like above. After the 

theoretical explanation we want to show our implementation of this part. 
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The algorithm is straight forward implemented from the pseudo code that is used in 

[9]. The 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 is named 𝑑𝑖𝑠 in the code above. Every processor calculates it 

before the actual algorithm starts, because it only has to be calculated once. 𝑡𝑎𝑖𝑙 gets 

initialized with 0 and 𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡 with -1. Before we will show how we implemented the 

whole basic algorithm, we want to show an example how the whole basic algorithm 

works.  
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Figure 7, Explanation of the Basic Schema 

 

The figure above is an example how the algorithm works. It is used with 8 processors 

in total and two message parts. The different line colors as shown in the legend 

above indicate the different rounds. In general, all arrows show data movement and 

all dashed lines show the connection to the partner process, but there is no data 

movement this round. The first round, in our case with round index 0, is marked with 

blue arrows. Therefore each process flips the last bit to determine its partner process. 

Process 0 has process 1 as partner, process 2 has process 3 and so on. Data 

transfer only happens between process 0 and process 1, as we can see through the 

arrows. All others do not have valid send and receive indexes. In round two, which is 

shown through the green line, the bit in the middle flips to calculate the partner. In 

this round process 0 and process 1 can send their data to the next processes. 

Process 0 sends the second part, in our case part number one and not the first one 

to distribute as many different parts as possible to other processes. The third round is 

marked through the red line and every process flips their first bit. Now we have four 

sending processes. The last round that is marked by the yellow arrows is the most 

interesting one. It shows that the processes have the same partners as in the first 

 000  100 

 001  101 

 010 

 011 

 110 

 111 

0 

1 

1 

0 

0 

1 

0 

1 

1 

0 0 

1 

1 

0 

Round 0 

Round 1 

Round 2 

Round 3 

0 

1 

2 

3 

4 

5 

6 

7 



 

35 
 

round. That means that a process always has the same partners repetitive 

throughout the algorithm, no matter how many different parts need to be sent. As we 

said in the beginning, a process can send and receive a part in a single round. This is 

shown in the last round by the yellow arrows. We will call the algorithm Cube 

algorithm, because it looks like this in the example. In the following we want to show 

the implementation. 
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As explained before every process calculates its partner. This is done from 77 to 81. 

After this the parts that shall be sent and received get calculated. This is done from 

83 to 92. When the calculations are finished the actual sending and receiving can 

begin. There is one important thing we need to take care of and this is to prevent 

deadlocks. Therefore we made the if – statement in line 94. Without this statement 
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partners would maybe both send or receive at the same time and cause a deadlock, 

because they would both keep waiting. The if – statement prevents this by ordering 

the operations due to the processor ID. Before a send or receive function gets 

executed it gets checked if it is valid. If 𝑠 or 𝑡 is below zero the operation gets 

skipped. We will now follow up with the arbitrary version of the Cube algorithm. 

 

 

5.3 Arbitrary Number of Processors 
 

The arbitrary algorithm builds on the algorithm described before. The round based 

idea is still the same and the complexity as well. The algorithm needs the exact same 

number of rounds as the basic algorithm before. The main change in the new version 

is that the processes are combined together in so called units. A unit consists of 

either one or two processes. This results in a total of 2𝑞units. 𝑞 is the same as 

before: 𝑞 = ⌊log(n)⌋. For example if there are 7 processors, 𝑞 will be two. This results 

into one unit with one processor and three units with two processors, summed up into 

four units. The communication in a round is from now on from unit to unit. The unit a 

process belongs to is for the whole algorithm and never changes. Every round each 

process has to determine who in the unit is the process that receives the message for 

the unit and who is the one who sends the message for the unit. They calculate too if 

they need to pass a message to the partner in the unit or not. This is necessary 

because if they would not do this, one process would miss the data. In the end the 

algorithm takes care if every message has been sent to each unit, not to each 

process, therefore they need to pass the messages to their partner in the same unit. 

 

Each process starts by defining his partner. We want to show how this is done 

through our source code. 
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The partner process of the same unit is named 𝑐𝑜 that stands for cooperation 

process. In our source code, 𝑝 represents the process ID. A process that’s ID is 

lower than 2𝑞 will be paired up with a process that’s ID is higher than 2𝑞 or equal 2𝑞. 

Process 0 is an exception, because it is never paired up. The variable 𝑝𝑜𝑤𝑒𝑟𝑜𝑓𝑞 is 

the result of the calculation 2𝑞 and 𝑛 stands for the number of processes. 

 

To represent the unit we will introduce a new variable called 𝑟𝑒𝑝. If the unit has two 

processes 𝑟𝑒𝑝 will be the one with the lower ID. 

 

 
 

If the unit consists of only one processor then 𝑟𝑒𝑝 gets his ID. In [9] they represent 

the following formula to define which process is the sending (𝑜𝑢𝑡) process of the unit. 

 

𝑂𝑢𝑡(𝑖, 𝑗 + 1) = �1 − 𝑅𝑒𝑝(𝑖)𝑗′� ∗ 𝑂𝑢𝑡(𝑖, 𝑗) + 𝑅𝑒𝑝(𝑖)𝑗′ ∗ 𝐼𝑛(𝑖, 𝑗) 

 

As we can see this is an iterative formula, because the result builds on the previous 

one. For the first round (j=0) we have to determine the starting values. Therefore the 

𝑖𝑛 process gets defined with 𝑟𝑒𝑝, that means the smaller one, and the 𝑜𝑢𝑡 processor 

is co(rep), which is his partner. The role switching is of course only necessary if two 



 

39 
 

processors are in the unit. So for the first round the processor with the smaller ID is 

the one who receives data and his partner is the one who sends data. According to 

the formula above the roles can change every round. The role switches depend on 

the binary representation of rep. With the formula above the role switching in the own 

unit can be handled, but there is also a problem with this solution. In every round, 

each unit has a partner unit. Usually each unit sends a message to the partner unit 

and receives a message from the partner unit. In our unit we know exactly who the 

sender is and who the receiver is, because we use our formula, but we do not know it 

for the partner unit. We need to know it because a data exchange can only happen 

between two processes. Therefore we need to know which of the processes in our 

partner unit is in this round the sender and who is the receiver. We could calculate it 

with the formula above, but the problem is that the calculation is iterative. That means 

we need to calculate it for all previous rounds and in the next round we get a new 

partner unit and have to recalculate it again. This does not seem to be an effective 

idea. We know that the role switches depend on the nonzero bits of the binary 

representation of 𝑟𝑒𝑝. To solve the problem in [9] they introduce a switch array that 

stores the number of the 1s in the binary bit pattern of 𝑟𝑒𝑝 between bit 0 and bit 𝑗. At 

this point we want to show an example of the switch array. 

 

The example is for the representator of the unit  = 𝑟𝑒𝑝 = 406 and the number of 

processors = n = 512 

 

j 8 7 6 5 4 3 2 1 0 

𝑟𝑒𝑝𝑗 1 1 0 0 1 0 1 1 0 

𝑆𝑤𝑖𝑡𝑐ℎ𝑖[𝑗] 5 4 3 3 3 2 2 1 0 

 

 

Therefore the number of role switches before a given round 𝑗 can be determined as 

followed. 

 

𝑢(𝑖, 𝑗) = 𝑆𝑤𝑖𝑡𝑐ℎ𝑖[𝑞 − 1] ∗ ⌊(𝑗 − 1)/𝑞⌋ + 𝑆𝑤𝑖𝑡𝑐ℎ𝑖[(𝑗 − 1)𝑚𝑜𝑑 𝑞] 

 

This leads to a new calculation of the role determination. 
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𝑂𝑢𝑡(𝑖, 𝑗) = (1 − 𝑢(𝑖, 𝑗)′) ∗ 𝐶𝑜�𝑅𝑒𝑝(𝑖)� + 𝑢(𝑖, 𝑗)′ ∗ 𝑅𝑒𝑝(𝑖) 

 

In the formula above u(i,j)’ means u(i,j) mod 2. 

 

We know that the bits in the binary representation of our partner unit only differ in a 

single bit. This knowing can be used to speed up the calculations for the partner 

units. The formula for calculating the out process of the partner unit is as follows. 

 

 

𝑂𝑢𝑡(𝑃𝑎𝑟𝑡𝑛𝑒𝑟(𝑅𝑒𝑝(𝑖), 𝑗), 𝑗)

= �1 − 𝑣(𝑖, 𝑗)� ∗ 𝐶𝑜�𝑃𝑎𝑟𝑡𝑛𝑒𝑟(𝑅𝑒𝑝(𝑖), 𝑗)� + 𝑣(𝑖, 𝑗)

∗ 𝑃𝑎𝑟𝑡𝑛𝑒𝑟(𝑅𝑒𝑝(𝑖), 𝑗) 

 

The term 𝑣(𝑖, 𝑗) stands for (𝑢(𝑖, 𝑗)  +  𝑗/𝑞) 𝑚𝑜𝑑 2, which brings in the 

consideration of the one bit that changed for the partner unit. We want to show at this 

point our program code for further explanation and better understanding. 

 

The program starts by calculating all static parts. We consider parts as static parts, 

when they only have to be calculated once and then keep their values and never 

change. The first thing each process has to do is calculating its partner process and 

the representative for his group. This is done in the following lines of code. 

 

 
 

The 𝑐𝑎𝑙𝑐_𝑐𝑜 function in the code snippet above is the same function as described 

before and calculates the partner for a given process. The result is saved in 𝑐𝑜_𝑖. The 

𝑟𝑒𝑝 variable is the representative of the group and gets the smaller ID if it is a group 

with two processors in it. After these two small things we have the 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 and the 

𝑆𝑤𝑖𝑡𝑐ℎ 𝐴𝑟𝑟𝑎𝑦 left for our static calculations. The 𝐷𝑖𝑠 𝐴𝑟𝑟𝑎𝑦 is the same as described 

before in the basic algorithm, therefore we will skip this part here. The 𝑆𝑤𝑖𝑡𝑐ℎ 𝐴𝑟𝑟𝑎𝑦 

is calculated as followed. 
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The 𝑆𝑤𝑖𝑡𝑐ℎ 𝐴𝑟𝑟𝑎𝑦 once again is important for the determination of the role switches. 

In our code it is named 𝑠𝑤𝑖𝑡𝑐ℎ𝑎𝑟𝑟. It stores the number of 1s in the binary bit pattern 

of 𝑟𝑒𝑝 from 0 to in our case named 𝑖, in the code above. 𝑖 runs from 0 to 𝑞 − 1, 

because we do not have more groups. After calculating all this things the iterative 

part of the algorithm starts. 

 

 
 

The code snippet above shows all calculations that have to be done for each round 

by each process, before they can start sending and receiving data. Important is that 

all these calculations are static calculations with a complexity of O(1). We want to 

start with our loop. As one can see in line 169 the loop goes from 0 to 𝑝𝑎𝑟𝑡𝑠 + 𝑞 − 2, 

which is exactly the amount of runs that we said before is the theoretically optimal 

number of rounds. The variable 𝑠ℎ𝑖𝑓𝑡 is only a helper that doubles each round until 
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the actual round 𝑗 reaches 𝑞, then it gets set back to 1.The first thing each process 

has to do is now to determine if it is the sender, in the code above called 𝑜𝑢𝑡, or the 

receiver, in the code above called 𝑖𝑛, in his group. If a group consists only of a single 

process, this process is the sender and the receiver. First we need to calculate the 

switches in the group that have occurred before a given round 𝑗. This is done in line 

175. The variable 𝑢 represents this. As we can see the code looks like the formulas 

before. A special case is the first round, because there was no round before and this 

would lead into an undefined state by the access of the 𝑆𝑤𝑖𝑡𝑐ℎ 𝐴𝑟𝑟𝑎𝑦. In line 176 

each group member calculates a defined cooperation partner of the group 

representative 𝑟𝑒𝑝. 𝑟𝑒𝑝 and 𝑐𝑜 shall have the same values for both group members, 

because this will be used afterwards. And both processes in a group shall receive the 

same result of who is the sender and who the receiver. For a group with a single 

process, the function call is not necessary. Now we can determine the in and the out 

process. The out process gets calculated in line 177 with the formula from above. 

The result gets saved in 𝑜𝑢𝑡. As we can see the variable 𝑐𝑜 is needed for the 

calculations to ensure that both processes gain the same result. Calculating the in 

process is of course way easier, because the in process has to be the cooperation 

partner of the out process. Therefore we can calculate it due to our cooperation 

partner function, which is done in line 178. Our communication partner gets 

calculated like before in the basic algorithm. This is done in line 179. The only 

difference is that it is a group this time. Therefore the in and out processes of our 

partner group have to be determined too. They get calculated from the formulas 

above in the lines 180 to 183. The variables 𝑖𝑛_𝑝𝑎𝑟𝑡𝑛𝑒𝑟 and 𝑜𝑢𝑡_𝑝𝑎𝑟𝑡𝑛𝑒𝑟 represent 

the in and out process of the partner group. After getting all information about the 

different roles, the processes have to calculate which parts shall be sent and 

received. This is the same as before in the basic algorithm, with one little difference. 

The change is in line 185. Every process fits in the representative for the group 

instead of his own ID. The two 𝑖𝑓 statements are necessary, because 𝑠 and 𝑡 could 

be more than the number of parts and in this case they shall be set to the last part. 

These calculations finish the calculations that need to be done for every round. The 

processes have now all information to begin with the send and receive operations. 

When starting the send and receive operations the processes have to differ if their 

group consists of one or two members. If it consists of only one member they have to 

be aware not to cause deadlocks. Deadlocks can happen if it is not well defined 
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when to receive and when to send first. The following code snippet shows the send 

and receive operations and the deadlock avoidance. 

 

 
 

In line 195 we can see the check if a process is his partner process. If this is the case 

it is clear that the group consists of only one process. A deadlock can happen if two 

groups with only one process each try to communicate. If they both send or receive 

at the same time it will result in a deadlock, because both processes will be waiting 

for the other one. The easiest way to fix this problem is to define a fixed order. This is 

done in line 197. The enquiry gives the process with the lower ID the permission to 

send first, as we can see in the following lines. On the other side the process with the 

higher ID has to receive first. Through this simple schema we have a defined order 

and successfully prevented deadlocks. The sending and receiving on its own is pretty 

much the same than in the basic algorithm. 

The following code snippet shows the send and receive operations for normal 

groups, with 2 processes in it.  



 

44 
 

 

 
 

The processes have to determine whether they are the sender or the receiver this 

round. This is done in line 228. The sender then sends his part to the in process of 

the partner group, which is done in the lines 232 and 234. The check in line 236 is to 

determine if a part needs to be received from the in process of the same group, to 

keep the data consistent for both processes. If the process is the in process this 

round, it receives a part from the out process of the partner group, which is shown in 

the lines 246 and 248. Later some parts may be passed to the out process of the 

own group.  

At the end of the loop, there are 2 parts left in each group that need to be passed to 

the group partner if it is a group of two processes. This is shown in the following. 
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The groups have to recalculate their roles and then pass the missing parts to their 

partner. This is not done in the loop because it is only group intern and does not 

affect groups with only one process in it. 

 

 

5.4 Proof of the Algorithm 
 

We did not proof the correctness of the algorithm. The correctness part can be found 

in [9]. We accepted the given formulas and program flows.  

 

 

5.5 Getting out the best Performance 
 

As mentioned before the algorithm is theoretical optimal for a given number of parts, 

but the actual runtime on a given hardware varies when we change the number of 

parts that we want to use in the algorithm. We want to explain this behavior with the 

following example. 

 

Imagine that we have one megabyte of data that we want to distribute among the 

processors. The question is shall we consider it as one part and distribute it over the 

network, or shall we split it up in a thousand parts. The advantage of one part 

obviously is that we do not need many send operations to finish the algorithm and 
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therefore do not suffer that much from the latencies of the network. On the other 

hand splitting up the parts results in better pipelining, because we send smaller parts 

and therefore all processes can begin their work earlier, but we have to deal more 

with network latencies. Additionally to these considerations we need to adjust the 

amount of parts to the cache sizes of the processors. As we can see it is difficult to 

say what the best number of parts for the algorithm is.  

 

To answer this question we have to look closely at the hardware setup that we are 

using. Our processors on the SCC – Chip have an 8 KB message passing buffer 

each. That means one send operation can only send 8 KB in one operation. 

Therefore it makes no sense to choose a larger part size than 8 KB, because our 

algorithm basically sends one piece a round. It could be that smaller sizes than 8 KB 

could be better. This depends on the latency and the bandwidth of the network. 

Therefore we have tested our algorithm with different sizes. Before we said that it 

makes no sense to use larger sizes than 8 KB, but we tested some of them too just to 

validate this assumption. Sometimes the results do not show the expectations. The 

following table shows all results. 

 

 50.000 Bytes 190.000 Bytes 1.900.000 Bytes 

Part Size Min Time Avg Time Min Time Avg Time Min Time Avg Time 

524288 x x x x 0,827701 0,829792 

262144 x x x x 0,701350 0,702657 

131072 x x 0,035007 0,038718 0,651371 0,652171 

65536 x x 0,026863 0,027705 0,638883 0,639950 

32768 0,006345 0,006867 0,024891 0,025497 0,618031 0,619026 

16384 0,004690 0,004715 0,025908 0,026839 0,598216 0,598796 

8192 0,003882 0,003895 0,024354 0,025255 0,583514 0,583881 

4096 0,003405 0,003445 0,025761 0,026348 0,572945 0,573236 

2048 0,003074 0,003178 0,026584 0,027242 0,571021 0,571986 

1024 0,002984 0,003073 0,027664 0,028553 0,569693 0,573153 

512 0,003050 0,003211 0,028557 0,029485 0,572382 0,576368 

256 0,003301 0,003494 0,030058 0,030941 0,577638 0,582565 
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We tested our algorithm for three different data sizes. Why we chose these sizes and 

what is the difference between them, will be described in the performance evaluation 

part. In the performance evaluation we took similar sizes. Overall we decided to take 

a size of 4096 Bytes. That means that the number of parts is the number of the whole 

buffer size that shall be sent divided through the part size. One will think about why 8 

KB is not the best when it looks like the best size on the paper, because it fully uses 

the buffer. Apparently this depends on the latency and bandwidth of the network. 

Sending smaller pieces more often can be better. Another point is that the pipelining 

in the algorithm gets better the smaller the parts are, because the earlier all 

processes can begin to work. For all performance evaluations later on we used a part 

size of 4 KB. This finishes up the cube algorithm and we will continue with a new 

approach. 

 

 

6 Considering the Underlying Hardware (Mesh 

Algorithm) 
 

6.1 Introduction 
 

In the following we want to introduce our second algorithm [12]. In [12] they call it 

DOPL that stands for “Dimensional – Order Pipelined Broadcast”. We will stick with 

that and will call it DOPL in our work too. The approach differs a lot from the first. The 

main difference is that this algorithm is especially designed for a mesh-shaped 

underlying hardware. That means that the cores have to be arranged as a matrix. 

This can be seen in Figure 4. 

As one can see the processors are clearly arranged in a matrix shape. The algorithm 

will take care that only processors that are neighbors will communicate with each 

other. In general the algorithm is round based and needs the same number of rounds 

as the one before. The order of the algorithm is the same, with a slightly different 

complexity. Therefore we do not want to fully explain this. For completeness we want 

to say that the exact lower bound for the algorithm can be found in [12]. The 

algorithm is adaptable to any mesh or torus structured hardware with some 

restrictions. The cores have to be bidirectional connected and the message passing 
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library has to support asynchronous send and receive functions. Both requirements 

are fulfilled on the SCC by the RCCE and iRCCE library. 

 

 

6.2 The Algorithm itself 
 

The algorithm sees the SCC as a matrix. The goal of the algorithm is to pipeline as 

much data as possible. The better the pipelining is the better is the performance in 

the end. The difficulty is how to pipeline the data among the cores that only cores 

who are neighbors have to communicate with each other to keep the latencies low. In 

[12] they present the following schema to handle this problem. We want to explain it 

via an example. 

 

 

Figure 8, Schema of the DOPL Algorithm 
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The idea behind the algorithm is to pipeline a single part in a single round always in 

one direction. In the next round, the direction changes to cover the whole matrix of 

processes. In the example above the squares show processes and the arrows data 

movement. The process in the left upper corner is the source process (process 0) 

that has all the data. In the first round the data gets pipelined over the columns. 

Therefore process 0 sends the first part to his neighbor. His neighbor receives it and 

sends it to his neighbor and so on until all processes in the same row have received 

the first part. The other processes cannot do anything because they do not have any 

parts yet. When round two starts, the direction for the pipelining changes. Processes 

now pipeline over the rows. A process that starts the pipelining is called head. 

Therefore all processes in the first row are head processes. The same goes for tails. 

A tail is the last process in the pipeline. In this case, all processes in the last row. The 

source process brings in a new part to enable a constant pipelining without waiting 

for new parts. The other processes pipeline the first part, because they do not have 

any other. The direction changes again in round three, this time from rows back to 

columns. The source process pipelines the third part in his row and all other the 

second. For the first time a wraparound has to happen, because the processes in the 

first column do not have the first part received yet, except the source. Therefore all 

tail processes wrap around the first part to the head processes of this round. The 

wraparound is a costly factor, because it is not directly supported on the SCC. For 

the last two rounds the schema is the same as for the previous three rounds. The 

pipeline direction changes with every round and the processes keep sending data 

over the direction. 

We want now to explain more detailed what a process or core has to do each round. 

We can say that the cores get mapped to different roles. A role is a description of 

what the core has to do this round. Every round each core calculates which role he 

plays this round. In some special cases a process can have two roles at the same 

time, if all requirements for the roles are met. All in all there are 4 different roles that 

we will describe now. 

  



 

50 
 

The Source: 

The source is the first role we want to describe. This role is dedicated to exactly one 

core. It is impossible that more cores calculate out this role. Being the source is a 

special role because it never changes during the algorithm. In our case it is core 0, 

because core 0 is the core that has all the data. 

 

The Head: 

The source before was dedicated to a single process. In contrast to this the head role 

can be given to many processes. The heads are always the processes that start the 

pipelining. The pipelining goes column or row wise, depending on the actual round as 

described before. If for example process 13 is a head this round, then the pipelining 

goes through the whole row, which would be 13, 15, 17, 19, 21 and at last 23 

according to Figure 4. In the end all these cores have the data from core 13. The 

head of course pipelines a part that he received in a previous round and that is new 

for the other processes in his pipeline. The head is always the first process in his 

dimension (row or column). A process in the middle cannot be the pipeline starter, 

because the pipelining is always over a full dimension to gain the maximum 

performance. The source has a special privilege because it is a head in each round. 

 

The Tail: 

Each pipeline has a head and a tail. The tail is the last process in the pipeline. It only 

receives parts from his previous process to complete the pipeline. When the tail has 

the full data the pipeline is finished. After this the tail may send a part to the head if 

the head needs this. We will call it a wraparound. This can be necessary sometimes. 

We will describe later when these wraparounds can happen. 

 

The Pipeliner: 

The pipeliner is our last possible role. Every process in the middle of the matrix is a 

pipeliner, because it cannot be the head or the tail. Being the pipeliner is the simplest 
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role, because the process receives a part from one of his neighbors and sends it to 

the next neighbor. That’s it. 

 

Further the algorithm maps a Cartesian tuple to each core. This is necessary, 

because the algorithm only deals with the position within the mesh not with the actual 

core ID. The tuple consists of the row and the column the core is in. For example, 

core 17 is in the 3rd row and in the 2nd column, as shown in Figure 4 before, when we 

count from 0 and start in the left bottom corner. We want now continue with our 

source code for further explanations. 

The first snippet shows the creation of the process mapping by their coordinates. It is 

the first thing the algorithm needs to do. 

 

 

 

The variable 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟_𝑚𝑎𝑝 above represents the mapping. The code above is 

especially designed for the structure of the SCC. That’s why the constant values 

occur in the lines 45 and 47. The 12 in the code above can be seen as twice the 

columns. 𝑖 gets set to the number of processor rows that one wants to use, to provide 

the algorithm for 12, 24, 36 or 48 cores. The 𝑗 variable is always a full row.  
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If this array gets printed it would exactly look like this: 

 

0 2 4 6 8 10 

1 3 5 7 9 11 

12 14 16 18 20 22 

13 15 17 19 21 23 

24 26 28 30 32 34 

25 27 29 31 33 35 

36 38 40 42 44 46 

37 39 41 43 45 47 

 

It may confuse that the mapping looks upside down compared to Figure 4 before. We 

did this, because it does not change anything in the algorithm and is easier to 

understand. Each core now has its exact position in the two dimensional mesh. This 

code above runs outside the main loop at the beginning of the program. The array 

needs to get built only once and does not change during the algorithm. Before we 

start with the main loop we have to mention some helper functions. 

 

The 𝑚𝑖𝑛 define above returns the smaller one of the two parameters. The 𝑒𝑞𝑢𝑎𝑙 

define returns true when both Cartesian tuples are equal and false if not. The 𝑎𝑠𝑠𝑖𝑔𝑛 

function assigns a Cartesian tuple to another. Now we want to describe our main 

loop. 

  



 

53 
 

 

Before we want to explain the actual algorithm there is one important thing to 

mention. The data that shall be sent gets split up twice. The main division defines the 

number of total rounds together with the number of processors. It is the division that 

we showed in the example before and which is done in the code snippet above. The 

second division occurs when a single part needs to get passed throughout a row or a 

column, because the passing is implemented via a pipelining mechanism. The part 

gets split up by a pipeline size to perform the actual pipelining. We will describe that 

later.  

The variable 𝑖 represents the actual round. It starts by zero and goes to 𝑘𝑎𝑙𝑡 + 𝑑 − 2. 

𝑘𝑎𝑙𝑡 is the number of the main parts that need to be sent and 𝑑 represents the 
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dimension of the matrix. In our case two. 𝑚𝑒 is the Cartesian coordinates tuple of the 

own process. The other variables like ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 and 𝑠𝑟𝑐 represent the different roles. 

They are Cartesian coordinate tuples too. Each process calculates the head and the 

tail of his row or column. The 𝑖𝑚𝑜𝑑𝑑 variable defines if the pipelining this turn is row 

wise or column wise. If it is 0 then the pipelining goes over the rows and if it is 1 then 

over the columns. There is one variable left for calculating the roles and this is 𝑚. 𝑚 

has the number of processes in the rows and columns as Cartesian tuple. It 

represents the length of the row and the column. This is needed for calculating the 

tail process. Every process now knows the head and the tail process of the row or 

column the pipelining goes over. In line 79 the processes begin to differ and to start 

with their roles. They check if their Cartesian coordinates match the Cartesian 

coordinates from the head, the tail or the source. The roles differ in which parts shall 

be sent or received. Each process calculates now which part shall be received during 

this round. The variable 𝑟 shows that. 𝑟 goes hand in hand with 𝑘𝑟 that determines in 

how many parts the sending buffer shall be split for the pipelining. 𝑘𝑟 is only 

necessary to differ from a wraparound if the process is a tail in this round. If it sends 

the wraparound then the part shall not be pipelined, because only one process 

receives it and that is the head. Therefore 𝑘𝑟 will be one, which means the whole 

buffer shall be sent. In all other cases 𝑘𝑟 will be 𝑘[𝑖𝑚𝑜𝑑𝑑], which is a constant that 

we will explain later. The exact same goes for the part that shall be sent. It is 

represented by 𝑠. As 𝑟 before to 𝑘𝑟, 𝑠 is related to 𝑘𝑠.  

In some special cases 𝑟 or 𝑠 is -1, then the operation will be skipped. This is the 

case, when a tail tries to wraparound and the head is the source. The source of 

course does not need to receive any parts, because it has all data and the tail in this 

round does not need to send the wraparound to the source.  

Each process checks now if he is the head, the tail, the source or just a normal 

process that passes data. The result shows in different values for 𝑟, 𝑘𝑟, 𝑠 and 𝑘𝑠. 

When 𝑘𝑟 and 𝑘𝑠 normally pipe they will get the value of 𝑘[𝑖𝑚𝑜𝑑𝑑]. We will talk about 

that later. There is one thing left and this is the 𝑙𝑒𝑣𝑒𝑙 function. The 𝑙𝑒𝑣𝑒𝑙 function is 

needed for all processes that pipeline. It determines which part needs to be sent. The 

calculation for the part that needs to be sent or received is 𝑖 + 𝑙𝑒𝑣𝑒𝑙 − 𝑑. The function 

gets called with the head, the source and the number of dimensions as parameters. 
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The 𝑙𝑒𝑣𝑒𝑙 function returns in how many dimension the ℎ𝑒𝑎𝑑 variable matches the 𝑠𝑟𝑐. 

In simpler words it says if the head in this round is the source then 𝑟 and 𝑠 will be one 

part higher, because the source brings in a new part every round as we described 

before in the example. If the head is not the source then 𝑟 and 𝑠 are one part lower in 

comparison to the pipeline where the source is the head. 

 

When all necessary parameters for the send and receive operations are calculated 

the processes call the pipeline function. The buffer size calculations in line 107 and 

108 are for the last part, because this one may be smaller as the previous ones. 

𝑟_𝑏𝑢𝑓𝑓𝑒𝑟_𝑠𝑖𝑧𝑒 is the buffer size that shall be received. If 𝑟 matches the last part, then 

the buffer size shall be the last size and not the general one. The same goes for the 

sending. We will continue with the pipeline function calls. 

 

 

 

The pipeline calls differ if the processes want to send, receive or both. All values that 

are necessary for sending and receiving the right parts will be passed to the function. 

The last three parameters are only for the send and receive operations and have 

nothing to do with the algorithm, therefore we will skip that at the moment. The next 

code snippet shows the first part of the pipelining function. 
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At the beginning of the function each process has to do some new buffer size 

calculations. As mentioned before, the buffer gets split up by the pipelining size. Our 

pipelining size is 2048 Bytes as we can see in line 135. We will describe later why it 

is this size. Each process calculates then the previous and the next process in the 

pipeline. This is done in the lines 137 – 141. After this the sending and receiving 
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sizes get adapted to the pipelining size. The queries in line 145 and 163 may look a 

little bit awkward. When the pipelining goes the normal way, then the buffer size is 

8192 Bytes for a single part. This part gets split up in 4 parts, each 2048 Bytes. 

That’s why the 𝑘𝑟 and 𝑘𝑠 variable usually is 4. If it is not 4, then the part buffer shall 

be sent in one piece. This is the case when we have a wraparound. The following 

code shows the different send and receive operations. 

 

 

For the algorithm we need the iRCCE library. It is important that we can use non – 

blocking send and receive functions. If we would use blocking functions the 

performance gain through the pipelining would be very little because of the 

synchronization between the processes. 

The sending and receiving is very simple. If a process receives data, then it calls the 

asynchronous receive functions for it. He calls all receives for all pipeline parts, 

because they are non - blocking. This is done in the lines 179 – 189. As described in 

the iRCCE section before, every send and receive operation gets attached to a 

waitlist. The 𝑎𝑑𝑑_𝑡𝑜_𝑤𝑎𝑖𝑡_𝑙𝑖𝑠𝑡 call is immediately after each send or receive 
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operation. A process always receives from the previous one. This is shown in 183 

and 187 by the parameter processor_map[prev[0][prev[1]]. After this a process has to 

check if the part that he needs to send is the part that he shall receive this round. If it 

is, he of course needs to wait until the part is in his buffer and then starts sending. 

This is the first case of 191. In line 197 he waits for the part until the receiving is 

finished and then sends it to the next process in the line. If the part that he wants to 

send is a different one, then the process can just send it, like the lines from 209 to 

220 show. Before the function gets closed, each process has to wait until all sending 

and receiving functions are finished. When the pipelining function is finished, the next 

round starts and the calculations for the roles and the other variables have to be 

done again. 

 

 

6.3 Getting out the best Performance 
 

It is difficult to choose the buffer size perfectly, because we have to split the buffer 

twice. One time for the number of parts and a second time for the pipelining. For the 

number of parts we take the same consideration as before. It will not make sense to 

choose a larger part size than 8 KB, because it will not fit into the message passing 

buffer. We could choose it smaller but then the pipelining will suffer from it. Thus we 

came to the conclusion that a part size of 8 KB should be perfect. 
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For the pipelining size we made a lot of benchmarks as the following table shows. 

 50.000 Bytes 190.000 Bytes 1.900.000 Bytes 

Pipe Size Time Time Time 

8102 0,001598654999626 0,006509817000452 0,109650387999570 

4096 0,001059310999874 0,005065019999996 0,075469655999823 

2048 0,000858949999947 0,004445106000258 0,065567735000289 

1024 0,000925754000106 0,004538215999976 0,072228716999565 

512 0,001181749999579 0,005174123000448 0,083540251999623 

256 0,001639528999942 0,006994272999804 0,100209688999583 

 

In the test we considered only buffer sizes that divide 8 KB. Other data sizes will 

waste some free space in the last part. As we can see in the table above the best 

size is 2 KB. That means that the part that shall be sent gets split up in 4 pieces and 

these pieces get pipelined. For all benchmarks later we used a pipelining size of 2 

KB. That sums up the description of the mesh algorithm. In the next chapter we will 

discuss the performance evaluation of both algorithms. 

 

 

7 Performance Evaluations 
 

The performance evaluation will show if it is reasonable to implement an algorithm 

especially for a given hardware or if the advantage is not worth the effort in doing 

this. We tested the algorithms with three different kinds of data sizes. These sizes 

represent the different kinds of buffers. The smallest size fits in the Message Passing 

Buffer, the next one in the L2 Cache and the largest one, needs to be stored in the 

DDR 3 off – chip memory. We will further describe them throughout the chapter. 

Additionally we benchmarked the algorithms with 4 different numbers of cores for 

each data size. For the benchmarks we used the two implementations of the above 

described algorithms and the RCCE standard algorithm for broadcasting. The RCCE 

algorithm is not optimized in any kind, but shall be part of the measurements for 

completeness. We will start with the benchmarks for small data sizes. 
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7.1 Small Data Sizes 
 

We consider data sizes as small as long as they fit in the Message Passing Buffer. 

That means that they are not larger than 8 KB.    

 

 
Figure 9, Broadcast of Small Data Sizes (1 – 8001) with RCCE 

  

The starting buffer size is 1, and the buffer increases each round by a 100 until it 

reaches 8101 bytes. The measurement was repeated 1000 times for each size. We 

took the minimum runtime of the 1000 runs, because it is the runtime with the least 

interference and disturbance. One can see at first sight that the RCCE standard 

algorithm is very slow and does not scale well with the increasing buffer size. The 

gap between our algorithms and the RCCE algorithm is huge. We are nearly 10 times 

faster. In the figure above it is hard to see how much the difference between our two 

algorithms is. Therefore we remove the RCCE algorithm from the graphic. 
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Figure 10, Broadcast of Small Data Sizes (1 – 8001), without RCCE 

 

We can see now that the DOPL algorithm is about 20% faster than the Cube 

algorithm. The huge performance jump in the middle of the figure of the Cube 

algorithm is because it splits the sending buffer into two parts at a size of 4 KB or 

greater. This results in a better pipelining and work distribution over all cores. In the 

DOPL algorithm it is nearly the same, but the jump is not that large. At a size of 2 KB 

it also starts to split up the buffer. The Figure above only shows the runtime when all 

48 cores are used, but it is interesting too how well the algorithms scale when we 

change the number of used cores. Therefore we performed another experiment. The 

result is shown in the next figure. 
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Figure 11, Broadcast of Small Data Sizes (1 – 8001), Cube Scaling 

 

The figure above shows the Cube algorithm with 12, 24, 36 and 48 cores. As one can 

see it scales very well with the number of cores for small data sizes. It does not suffer 

much because the pipelining gets better with more cores and the algorithm tries to 

keep all cores busy. Therefore the critical path does not get much longer. The next 

figure shows the DOPL algorithm. 
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Figure 12, Broadcast of Small Data Sizes (1 – 8001), DOPL Scaling 

 

The DOPL algorithm shows nearly the same picture as the Cube algorithm before. As 

we can see in the figure above, when we use 48 cores the runtime goes up faster 

than before, when the data size gets near to 8 KB. We are not sure why exactly this 

is the case. We suppose that the network gets overloaded when all cores are used 

and many parts are sent over the network at the same time, but we cannot proof it. 

Except this behavior the algorithm scales very well when we use more cores. The 

runtime of course goes up when we use more cores, but as we can see when we 

double the cores, the runtime does not nearly double. 

 

 

7.2 Medium Data Sizes 
 

Medium data sizes are sizes that do not fit in the Message Passing Buffer, but can be 

stored in the L2 cache of each core. The size of the buffer has to be larger than 8 KB 

and smaller than 256 KB. We started with a size of 10000 bytes and went to 190000 

bytes with a step size of 5000 bytes. 
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Figure 13, Broadcast of Medium Data Sizes (10k – 190k), with RCCE 

 

The gap between our two algorithm implementations and the RCCE standard 

algorithm became very large. The RCCE algorithm needs about 10 times more time 

than the rest. To compare our two algorithms we exclude the RCCE algorithm again 

from the graphic.  
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Figure 14, Broadcast of Medium Data Sizes (10k – 190k), without RCCE 

 

As we can see in the figure above the gap between our two algorithms, compared to 

the small data sizes, increased too. This is mainly because the pipelining started to 

work well in the DOPL algorithm. Therefore the increasing data size can be handled 

easily. Our Cube implementation is about 5.5 times slower than the DOPL algorithm. 

It seems like that using the advantage of knowing the distances between the cores 

really pays off. The runtimes do not look as smooth as before, because there are a 

lot of buffer movements in it. Data can only be sent over the MPB of the cores. 

Therefore each core has to copy the part he wants to send from the L2 cache to his 

MPB. The same goes for receiving, but the other way round. In the following figures 

we will compare the scalability for both algorithms for medium data sizes. 
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Figure 15, Medium Data Sizes, Cube Scaling 

 

The scaling of the Cube algorithm looks nearly the same as for small data sizes 

before, with the same effect as before when we use all cores.  
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Figure 16, Broadcast of Medium Data Sizes (10k – 190k), DOPL Scaling 

 

The DOPL algorithm shows the same picture again as before for small data sizes. 

The scaling is well again, but when all cores are used the performance slows down a 

bit. 

 

 

7.3 Large Data Sizes 
 

Large data sizes are sizes that do not fit in the L2 cache of the cores. They have to 

be transferred from the off – chip DDR 3 memory to the L2 caches. They may not be 

the best testing sizes, because the performance should suffer a lot from the access 

times of the DDR 3 memory. But it is still something that should be tested for a 

complete overview of the performance of the algorithms. The sizes start from 300000 

bytes and will go up to 1.9 million bytes with a step size of 100000 bytes. 
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Figure 17, Broadcast of Large Data Sizes (300k – 1900k), with RCCE 

 

The benchmark figure with the RCCE algorithm is just for completeness, because we 

cannot see any useful information that is related to the performance difference of our 

two algorithms, but it shows that both our algorithms really took off in comparison to 

the RCCE standard algorithm. In the following graphic we will remove the RCCE 

algorithm as before. 
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Figure 18, Broadcast of Large Data Sizes (300k – 1900k), without RCCE 

 

The gap between our two algorithms grew larger. The DOPL algorithm only needs a 

tenth of the time the Cube algorithm needed. This is mainly because the larger the 

data size is the more parts are sent over the network and the bigger gets the 

advantage of the DOPL algorithm. The fear that the DDR 3 memory access times 

would kill the performance of the DOPL algorithm seems to be unfounded. The 

pipelining is good and the large data sizes are no problem to handle. In the following 

figures we will discuss the two algorithms with a different amount of cores. 
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Figure 19, Broadcast of Large Data Sizes (300k – 1900k), Cube Scaling 

 

As before, we will start with the performance of the Cube algorithm. The scaling looks 

very well, but when all cores are used the performance slows down, similar to the 

results of the DOPL algorithm before.  
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Figure 20, Broadcast of Large Data Sizes (300k – 1900k), DOPL Scaling 

 

This time there is no outliner, when the cores increase. The network seems to handle 

the requirements quite well. It probably helps that the memory access times to the 

DDR 3 memory are quite long and the network does not get that flooded. The scaling 

for large data sizes is very good of the DOPL algorithm. 

 

 

7.4 Performance Conclusion 
 

Both algorithms showed a good performance over all benchmarks. They did not lack 

in performance when they used more and more cores. When we think about the data 

sizes, the DOPL algorithm gains more and more advantage the larger the sizes are. 

This is mostly because the buffers get split up in many single parts and each part 

takes the advantage of being transferred to a neighbor instead of somewhere else. 

All in all we can say that the benchmarks show the same results as the PingPong 

test. The DOPL algorithm outperforms the Cube algorithm by far, especially for 

medium and large data sizes. 
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8 Final Conclusions 
 

To answer the question if the implementation of a broadcast algorithm for a given 

hardware is useful, we want to say that this cannot be said in general. The DOPL 

algorithm performed very well and outperformed the CUBE algorithm by far. When 

we look closer on the hardware, we have to say that the SCC is an accommodation 

for the CUBE algorithm. This is because all cores are on one chip. This has the 

advantage that the latency is minimal compared to for example a cluster. Therefore 

the punishment for communicating with processors that are far away does not hurt 

that much. We can say that the performance gap increases with the distance 

between the cores. Another point is that a broadcast is most of the times a part of 

another algorithm. Therefore it depends a lot on this algorithm how often he uses a 

broadcast. Finally we want to say that is very dependent on the circumstances if it is 

useful to implement a broadcast for a specific hardware, but it definitely has potential. 

Even on the SCC we showed that an especially adapted algorithm outperforms a 

general one by far. 
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11 Appendix 
 

10.1 PingPong Benchmark 
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10.2 Main Program for all Benchmarks 
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10.3 Hypercube 
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10.4 DOPL 
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10.5 Hypercube Best Size Benchmark Main 
 

 

  



 

96 
 

 

  



 

97 
 

10.6 Hypercube Best Size Benchmark 
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10.7 DOPL Size Benchmark 
 

 

  



 

104 
 

 

  



 

105 
 

 

  



 

106 
 

 

  



 

107 
 

 

  



 

108 
 

 

  



 

109 
 

 


	1 SCC – Single-Chip Cloud Computer
	1.1 Introduction
	1.2 Research Goals
	1.3 SCC Chip Components
	1.3.1 Overview
	1.3.2 Tile Overview
	1.3.3 Memory Controller and DDR3 Memory
	1.3.4 System Interface and Management Console PC
	1.3.5 VRC


	2 RCCE
	2.1 Introduction in Message Passing
	2.2 Introduction in RCCE
	2.3 RCCEs Functions
	2.3.1 Core Functions
	2.3.2 Communication Functions
	2.3.3 Synchronization Functions

	2.4 iRCCE
	2.4.1 Introduction
	2.4.2 Core Functions
	2.4.3 Communication Functions

	2.5 Memory Organization
	2.6 Caching
	2.7 Emulator
	2.8 Functionalities and Programming Model
	2.8.1 Send & Receive, Synchronization and Power Management
	2.8.2 Programming Model and Program Execution


	3 PingPong Measurements and Conclusions
	3.1 What is it and what is the use of it?
	3.2 Results and Conclusions

	4 Broadcast Algorithms
	4.1 Introduction

	5 General Approach
	5.1 Introduction
	5.2 Power of 2 Processors
	5.3 Arbitrary Number of Processors
	5.4 Proof of the Algorithm
	5.5 Getting out the best Performance

	6 Considering the Underlying Hardware (Mesh Algorithm)
	6.1 Introduction
	6.2 The Algorithm itself
	6.3 Getting out the best Performance

	7 Performance Evaluations
	7.1 Small Data Sizes
	7.2 Medium Data Sizes
	7.3 Large Data Sizes
	7.4 Performance Conclusion

	8 Final Conclusions
	9 References
	10 Curriculum Vitae
	11 Appendix
	10.1 PingPong Benchmark
	10.2 Main Program for all Benchmarks
	10.3 Hypercube
	10.4 DOPL
	10.5 Hypercube Best Size Benchmark Main
	10.6 Hypercube Best Size Benchmark
	10.7 DOPL Size Benchmark


