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Introduction
The last decades saw the rise of multiple mathematical models which described a respondent’s

behavior when working on a psychological test. Since these models described the interaction
of the respondent population and an item population, models of this kind have been named
item response theory (IRT) models (Embretson & Reise, 2000). An overview given by van der
Linden and Hambleton (1997a) listed several dozen IRT models, but was still far from
exhaustive. In Germany, a similar, but less extensive overview was provided by Rost (2004).
Since the publication of these books, even more IRT models have been described and
reviewed for their practical applicability.

In their introductory book to IRT, Embretson and Reise (2000) note that IRT models are
essential for model-based measurement and describe how a person’s level of a psychological
trait can be optimally described by the responses given to the items of a psychological test. In
general, IRT models make strong assumptions on the underlying relationship between
respondents and items. Psychometricians have recommended to test these assumptions, often
by the means of statistical and graphical model tests, and to select the model showing the best
fit to the test data (cf. Rost, 2004; van der Linden & Hambleton, 1997b).

IRT models have also been used to assess whether a given test meets certain characteristics
which have been considered as desirable. A well-known example is the one-parameter logistic
(1PL) model of Rasch (1960), which can be used to describe the relationship between
respondents and binary items. This model assumes that the probability of a positive response

of respondent v to item i can be described by the formula:

(ColD)
P(+B:,6,) :% v

In formula (1), 6, denotes a respondent-specific parameter, which is interpreted as the
respondent’s ability in many applications of the Rasch model, since the probability of a

positive response is higher for large values of 8,. [5; is an item-specific parameter, which is



often interpreted as the item’s difficulty. The Rasch model makes four strong assumptions on
the relationship between the item and respondent population (cf. Fischer, 1974): First, the
items are regarded to be unidimensional, which means that they measure a single trait.
Second, it is assumed that the probability of a correct response is solely determined by the
trait level of the respondent and can get arbitrarily close to 0 or 1. Third, the sum of correct
responses is a sufficient statistic for the ability of the respondent. The fourth assumption of the
Rasch model is that the items and respondents can be considered as locally independent,
which implies that the response of a respondent to an item does not depend on other person-
item-interactions. Fischer (1974) proved that the Rasch model is the only IRT model which
meets these four assumptions.

Numerous methods have been suggested to test the assumptions of the Rasch model,
including graphical (cf. Rost, 2004), parametric (e.g. Andersen, 1973; Glas, 1984) and non-
parametric (Koller & Hatzinger, 2012; Ponocny, 2001) approaches. Suéarez-Falcon and Glas
(2003) reported the results of a simulation study which compared the power and sensitivity of
some tests for the Rasch model.

Many IRT models including the Rasch model assume the unidimensionality of the test items,
and many authors agree that the assessment of the dimensionality of test items is central for
test development and test evaluation (e.g. Hattie, 1985). As a consequence, multiple
approaches for dimensionality assessment have been described and suggested. An important
distinction can be made between exploratory approaches, which aim to determine the number
of dimensions underlying an item set, and confirmatory approaches, which assume a specific
number of dimensions (cf. Reckase, 2009).

Determining the dimensionality of test items influences practical psychological assessments
as well as the development of psychological theories. Hattie (1985) provided a critical review

of many early exploratory and confirmatory approaches and generally found most of them



unsatisfying. Overviews of specific approaches have been provided by several authors,
including Baker and Kim (2004), Embretson and Reise (2000), Reckase (2009) and van der
Linden and Hambleton (1997a). The three studies contained in this doctoral thesis extend the
findings reported by these authors by investigating new methods of dimensionality assessment

which were developed for the evaluation and development of psychological tests.

Outline Study I
Although IRT and factor analytical methods are among the most widely used methods in

dimensionality assessment, there are other methods which should be described briefly in this
section. Different approaches for dimensionality assessment have suggested the use of cluster
analytical methods (e.g. Bartolucci, 2007; Bartolucci, Montanari, & Pandolfi, 2012; Roussos,
Stout, & Marden, 1998). Reckase (2009) mentions cluster analysis of items as a measure to
confirm the dimensionality of an item set. In this approach, a similarity measure is defined
which describes to which extent two items measure the same dimension. A possible similarity
measure described in the literature is the covariance between two items conditional on the
respondent’s ability, i.e. the number correct score (cf. Roussos et al., 1998). The criterions to
determine the dimensionality of a test using cluster analysis are somewhat subjective, and
different clustering methods may lead to differing results. Moreover, there seems to be no
definite conclusion in the literature which method leads to optimal results. Reckase (2009)
thus recommended cluster analysis as an approach to confirm the dimensionality of a test, and
remarked that cluster analysis may overestimate the number of dimensions underlying a test.

Van Abswounde, van der Ark and Sijtsma (2004) compared several non-parametric methods
for dimensionality assessment which were based on cluster analysis. These methods included
a cluster analytical approach based on Mokken scale analysis (Mokken, 1971; Sijtsma &

Molenaar, 2002), cluster analytical approaches based on the concept of essential



unidimensionality (Stout, 1987, 1990), and cluster analytical approaches based on the
conditional covariance between items (Roussos et al., 1998). They found that some of the
non-parametric approaches accurately detected the underlying dimensionality of an item set in
the presence of multidimensionality. However, these approaches are based on different
theoretical assumptions when compared to common IRT models like the Rasch model, so the
clusters built from these procedures do not necessarily show a good fit to the Rasch model or
comparable models.

Study I describes a possible application of hierarchical cluster analysis to Rasch measurement.
In this approach, fit statistics for the Rasch model are used to construct item clusters showing
a good fit to the Rasch model. The proposed method uses a model fit statistic for the Rasch
model as a similarity measure in a hierarchical cluster analysis.

This paper further compares the results obtained from this approach to the results obtained
from a principal component analysis (PCA) of tetrachoric correlations without applying a
smoothing algorithm by the means of a simulation study. In this simulation study, datasets
were simulated which consisted of the responses of a person sample answering to two scales
each fitting the Rasch model. The simulated datasets differed with respect to the distribution
of the item and person parameters, the sizes of the person and item sample, and the
correlations between the person parameters of the two scales.

In this simulation study, it was found that the proposed algorithm for clustering items more
often led to a correct reconstruction of the two scales when the item set was small, when the
person sample was large, when the standard deviation of the person parameters was large
when compared to the standard deviation of the item parameters, and when the correlation
between the person parameters was small.

The application of PCA often led to more correct results when compared to the cluster

analytical algorithm. However, it was also very often observed that the application of this



method was not possible due to the presence of indefinite correlation matrices. This study was
further examined in study II. Both approaches were further demonstrated by applying them to
a real dataset of a person sample which worked on the intelligence test battery IBF (Blum,

Didi, Fay, Maichle, Trost, Wahlen, & Gittler, 2005).

Outline Study IT
An important assumption of the Rasch model described in study I as well as many other IRT

models is the unidimensionality of the item set. A well-known approach for testing
unidimensionality includes methods based on exploratory factor analysis (EFA) or PCA. This
approach aims to determine the number of factors or components underlying a matrix of
correlations or covariances measured in the analyzed item set. Exploratory and confirmatory
factor analysis is still a field of active research, and papers describing new approaches are
constantly published. The approaches used in practical research differ in several central
aspects, including the method used for factor or component extraction, the method used to
determine the number of critical factors or components, and the nature of the correlations used
for analysis.

Many authors (e.g. Lord & Novick, 1968; Lord, 1980) have already emphasized that the use
of Pearson correlations in EFA or PCA assumes that the underlying variables stem from an
interval scale, and should therefore not be used for ordinal variables. A common example for a
violation of this assumption is the analysis of dichotomous items, which allow only binary
responses (e.g., correct and incorrect). It is well documented in the literature that the
application of EFA or PCA based on Pearson correlations leads to misleading results, and
alternatives have been proposed for this case. An early suggestion was the analysis of
tetrachoric correlations instead of Pearson correlations (cf. e.g. Lord, 1980). A major

advantage of tetrachoric correlations over Pearson correlations is their independence of the



relative frequency of the response categories observed in the data, or in other words, their
independence of the item difficulties. As a consequence, the application of PCA or EFA based
on tetrachoric correlations has been found to lead to more reliable results than the application
of a comparable procedure based on Pearson correlation (e.g. Tran & Formann, 2009; Weng
& Cheng, 2005)

An open question in the application of tetrachoric correlations in factor-analytical methods is
the problem that very often the calculation of tetrachoric correlation leads to indefinite
correlation matrices, i.e. correlation matrices with at least one negative eigen-value. Since it is
not possible to carry out factor-analytical methods with indefinite correlation matrices, a
solution to this problem is necessary to make factor analytical methods applicable in case that
a non-definite correlation matrix is observed in a data set. Possible solutions to this problem
have been suggested by multiple authors. Tran and Formann (2009) mentioned a paper of
Knol and Berger (1991) which described smoothing algorithms in order to convert a non-
definite matrix in a positive definite one. Another solution to this problem was suggested by
Bentler and Yuan (2011).

Once the factors or components underlying a data set have been calculated, an important
question concerns the determination of the number of critical dimensions. This topic was
thoroughly investigated by multiple authors (e.g. Ford, MacCallum, & Tait, 1986; Green,
1983; Guttman, 1954; Horn, 1965; Humphreys & Montanelli, 1975; Kaiser, 1960; Zwick &
Velicer, 1986), and a number of different approaches was proposed and evaluated. A
promising approach which has been recommended by many authors (e.g. Ledesma & Valero-
Mora, 2007; Reckase, 2009) is parallel analysis, which seems to have been proposed first by
Horn (1965). Parallel analysis consists of two major steps: First, the eigenvalues of the factors
or components underlying the analyzed dataset are calculated. In a second step, a number of

datasets which are comparable to the original dataset with respect to the sample size, the
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number of items and the distribution of the responses, but consist of uncorrelated items, are
simulated. Based on these simulated datasets, the distribution of eigenvalues under the
condition that there is no relationship between the items is simulated. Once this distribution is
determined, the number of dimensions underlying the dataset is determined by comparing the
eigenvalues observed in the dataset and the distribution of eigenvalues under the condition
that there is no relationship between the items.

Although parallel analysis is no exact mathematical procedure, it has been found to determine
the correct number of dimensions under many conditions. Many improvements on the original
approach described by Horn (1965) have been suggested (e.g. Glorfeld, 1995; Green, Levy,
Thompson, Lu, & Lo, 2012), which lead to improved results under specific conditions when
compared to Horn’s method.

Besides parallel analysis, several other procedures have been suggested to determine the
number of dimensions in factor analysis, which will not be reviewed here in detail.
Alternatives to parallel analysis include the MAP criterion by Velicer (1976), the scree test
criterion (Cattell, 1966), the eigenvalue-greater-than-one criterion (Kaiser, 1960), and the
Bartlett test (Bartlett, 1950, 1951). Comparisons of these methods showed that under many
conditions, parallel analysis leads to the most accurate results (Zwick & Velicer, 1986).

Study II examined the problem of indefinite correlation matrices in the application of a PCA
of tetrachoric correlations by the means of a simulation study. Parallel analysis was used to
determine the dimensionality of a dataset.

In this simulation study, responses of a person sample working on an item set consisting of
two scales which fitted the two-parameter logistic test model of Birnbaum (1968) were
simulated. The simulated datasets varied with respect to the size of the item set, the person
sample, the distribution of the item and person parameters, the correlation between the person

parameters in the simulated scales, and the smoothing algorithm which was applied when a
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non-definite correlation matrix was obtained. Under each condition, 1000 datasets were
simulated. In each dataset, dimensionality was assessed by applying a parallel analysis and
PCA of tetrachoric correlation matrices.

It was found that indefinite tetrachoric correlation matrix are most often observed in datasets
with large item sets, small person samples, and large discrimination parameters of the scales.
Large correlations between the person parameters more often led to incorrect identifications
of the dimensionality. In this study, also minor differences between the results obtained by
applying the different smoothing algorithms were observed.

In summary, study II proposed and evaluated three smoothing algorithm which can be applied
if indefinite correlation matrices are observed in the application of parallel analysis and PCA
to tetrachoric correlation matrices. It was found that this procedure of dimensionality
assessment often leads to correct results under the conditions simulated in this study.
However, it should be noted that in this simulation study, no conditions were simulated which
violated the assumptions underlying the tetrachoric correlation coefficient (e.g. the presence

of guessing).

Outline Study I1I
While the first two studies investigated methods for testing the unidimensionality of an item

set, the third study used a modern modeling approach, which also assumes the
unidimensionality of an item set, to test a specific hypothesis on gender differences in mental
rotation tasks. Study III thus exemplifies the application of a modern confirmatory IRT
approach to test specific hypotheses on the cognitive processes measured by a psychological
test.

There is a wide consensus in the literature that there are gender differences in some spatial

abilities, although these differences depend on the specific test. In their meta-analysis of
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gender differences in spatial abilities, Linn and Petersen (1985) examined three types of
spatial ability tests, which they named spatial perception, mental rotation and spatial
visualization. They found gender differences in all three task types, with mental rotation
showing the largest gender differences with effect sizes of .73 over all examined age groups.
For spatial perception tests, an effect size of .44 was found, while for spatial visualization
tasks, an effect size of .13 was reported.

Halpern (2011) reported multiple studies which provided evidence for gender differences in
the three types of spatial ability tests described by Linn and Petersen (1985). She also listed
several studies which reported gender differences in spatiotemporal ability tests (e.g.
Contreras, Rubio, Pena, Colom, & Santacreu, 2007; Law, Pellegrino, & Hunt, 1993) and
visual imagery tests (e.g. Dror & Kosslyn, 1994).

Voyer (2011) assumed that gender differences in spatial ability and more specifically in
mental rotation tasks are related to the presence of time limits. His hypothesis was based on
previous studies of Goldstein, Haldane and Mitchell (1990), who found in two experiments
that women work slowly and cautiously on mental rotation tasks when compared with men. It
should be noted that these results could not always be reproduced (Masters, 1998). Goldstein
et al. (1990) suggested that the often reported gender differences in favor of males are caused
by gender differences in the processing speed of male and female respondents when working
on mental rotation tasks. In a meta-analysis Voyer (2011) examined the presence of gender
differences in mental rotation tasks under various time limits. He found gender differences in
favor of males over under all time limit conditions. Voyer also reported that these gender
differences grew larger in the presence of short time limits, however, they were not removed

when no time limits were present, which contradicted the prediction of Goldstein et al. (1990).

13



Study III investigates the presence of gender differences in mental rotation processing speed
by applying a new item response model, which examines the unidimensionality of the
responses and also the item response times.
This approach was first described by van der Linden (2007) and uses an explicit model for
response behavior and working times; the work of van der Linden and colleagues (van der
Linden, 2006, 2007, 2009; Klein Entink, Fox & van der Linden, 2009) mainly elaborated the
psychometric theory for describing the response behavior of binary items. In this approach,
three levels of psychometric models are described. On the first level, two psychometric
models are defined, of which the first describes the response behavior with regard to the given
answer. Two typical choices are the one- and two-parameter normal ogive models, which are
closely related to the Rasch model used in study I and the two-parameter logistic model of
Birnbaum (1968) described in study II (Embretson & Reise, 2000).
The two-parameter normal ogive (2PNO) model defines a person parameter 6; which marks
ability of person 1 to answer items correctly. The model further defines two item parameters
for each item k which define the respective item’s difficulty b, and discrimination a;. This
model contains the one-parameter normal ogive model as a special case, in which the
discrimination parameter is regarded as equal for all items, and which is closely related to the
Rasch model (Rasch, 1960; cf. Embretson & Reise, 2000). In the 2PNO model, the
probability that person 1 answers item k correctly is given by:

P(+16;, ay, by) = P(ayb; + by) (2)
In this formula, @ () denotes the cumulative function of the standard normal distribution.
The second model on the first level of this modeling approach describes the response times
during the test. Van der Linden (2007, 2009) suggested using the one- or two-parameter log-
normal (2PLNO) model for describing the response times. As in the 2PNO model, two item

parameters are defined for each item that describe the respective item’s time intensity and
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time discrimination. For each person i, a speed parameter is defined. This model contains the
one-parameter log-normal model as a special case, in which the time discrimination parameter
is set to a fixed value.
In the 2PLNO model, the log response time Tji of a person 1 working on item k is given by:
Tixe = —Pili + Ak + € 3)
In this formula, {; denotes the respondent’s speed, ¢y denotes an item’s time intensity and ¢y
an item’s time discrimination. g is a residual-term which is assumed to be normal distributed
with an item-specific variance.
On the second level of response time modeling, the interaction between the measured item
and person parameters is investigated. On this level, two variance-covariance matrices are
defined, of which the first matrix describes the variances and covariances of the item
parameters of the response and response time models. The second matrix describes the
corresponding variances and covariances for the person parameters. The approach of van der
Linden thus does not assume the person and item person to be independent, but it assumes a
linear relationship between each pair of item parameters as well as between the two person
parameters used for describing the responses and response times.
On the third and highest level, the relationship between the observed item and person
parameters and covariates for the item and person parameters is described. Similar to models
like the linear logistic test model (LLTM) of Fischer (1995; cf. De Boeck & Wilson, 2004),
the item and person covariates are assumed to explain the observed item and person
parameters. Goldhammer and Klein Entink (2011) presented a study which has successfully
applied this approach to model item difficulty and time intensity in a reasoning test.
Study III applied this method to the datasets of two person samples working on two different
mental rotation tasks, i.e. a cube comparison task and an endless loop task. It is shown that in

both datasets, gender differences in the responses but not in the response times were observed.
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This study thus provided further evidence that the well-known gender differences in mental
rotation tasks can not be attributed to gender differences in mental rotation speed.
Furthermore, a negative correlation between speed and ability was observed, which is in line

with results reported by Goldhammer and Klein Entink (2011).

General Discussion
This doctoral thesis contains three papers which examined different aspects of dimensionality

assessment in test development and test evaluation. The first and second paper described
several methods to assess the dimensionality of an item set, while the third paper described
recently developed methods to model responses and response times of psychological tests and
applied them to investigate gender differences in mental rotation processing speed.

Based on the results presented in these papers, a number of conclusions can be drawn. A first
research question concerns the comparison of the two methods of dimensionality assessment
presented in the first two papers. The first paper presented an approach which assessed the
dimensionality of an item set by clustering items, and compared it to the results of a PCA of
tetrachoric correlations in a simulation study. One of the major results of this first paper was
that the PCA could often not be applied, since the corresponding correlation matrix was not
positive-definite. The second paper examined three possible solutions to this problem and
compared them based on a simulation study.

When compared to the PCA of smoothed tetrachoric correlation matrices, the cluster
analytical approach presented in the first study seemed less sensitive to violations of
unidimensionality. Since this approach is based on a step-wise decision to measure the
dimensionality of an item set, it also capitalizes on chance to some degree, which may lead to
more incorrect decisions in larger item sets. This conclusion is in line with the observed

results for larger item sets. However, the cluster analytical approach has several major
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advantages when compared to a PCA of tetrachoric correlations. First, it does not assume that
a specific model underlies the item set, but searches for clusters of items which fit a specific
model (i.e., the Rasch model) well. Under this perspective, the cluster analytical approach
seems to be more general. The PCA of smoothed tetrachoric correlations, on the other hand, is
based on explicit model assumptions which concern the whole item set, and may not be
appropriate if these assumptions are violated. However, if these assumptions are met, a PCA
of tetrachoric correlations seems more appropriate to assess the dimensionality of an item set
based on the results of study I and II.

The approaches discussed in the first two studies can also be regarded as approaches for
testing specific assumptions of the Rasch model (Rasch, 1960) and the two-parameter logistic
test model of Birnbaum (1968). The cluster analytical approach presented in the first study
aimed at constructing item cluster which showed a good fit to the Rasch model. If this
approach is applied to an item set fitting the Rasch model, it is to be expected that the
application of cluster analytical method presented in the first paper to this item set leads to an
item cluster containing all items of the initial item set. The PCA of smoothed tetrachoric
correlation matrices, which is discussed in the second paper, can be used to test the
unidimensionality of an item set, which is a common assumption of many IRT model,
including the Rasch model and the two-parameter logistic test model. However, both
approaches are restricted to the analysis of binary items, and future work could examine
possible extensions of both approaches to other item types.

Since the Rasch and Birnbaum models are closely related to the one- and two-parameter
normal ogive models (cf. Embretson & Reise, 2000), the approaches presented in the first two
papers are related to the modeling approach of van der Linden (2006), which is used in the

third paper. In contrast to study I and study II, study III does not report the results of a
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simulation study, but demonstrates the application of a recent psychometric modeling
approach in the analysis of the cognitive processes measured by specific ability tasks.

On its first level, this modeling approach consists of two models for the responses and
response times. The response model is very similar to the two-parameter logistic model of
Birnbaum, so the methods presented in the first two papers may be used to test assumptions of
van der Linden’s response model. The response time model is a characteristic feature of this
modeling approach, which marks an important difference to traditional IRT models like the
Rasch model. The application of this modeling approach can be used for testing psychological
theories, as was exemplified by the third paper of this thesis.

As study III shows, the modeling of responses and response times in two mental rotation tasks
led to several conclusions on the cognitive processes underlying mental rotation. First, it was
observed that gender differences in untimed mental rotation tasks can not be explained by
gender differences in mental rotation processing speed, as it was hypothesized by Goldstein et
al. (1990). Second, it was observed that processing speed and ability are negatively correlated
in both mental rotation tasks. Although similar results have been reported for other untimed
ability tests (e.g. Goldhammer & Klein Entink, 2011), this result led to interesting conclusions
on the role of speed-accuracy tradeoff in mental rotation tasks, which were discussed in study
I11.

The modeling approach of van der Linden (2006) is still a field of active research, and future
research may lead to additional tests of model fit for this modeling approach. It appears that
no statistical test has been described yet in the literature which allows testing the equivalence
of this modeling approach’s item parameters over several groups (Klein Entink, personal
communication). This drawback leads to a possible limitation for the third study in this paper,
since a difference of the item parameter estimations between males and females could affect

the interpretation of observed differences in the speed and ability parameters between males
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and females. However, a separate estimation of the item parameters for males and females led
to comparable results for almost all items of both tests examined in study III, so the
differences of the item parameters between males and females were considered as negligible;
this line of reasoning is comparable to that of the well-known graphical model test for the
Rasch model (cf. Rost, 2004). This finding further confirms the theoretical implications of
study III on the gender differences in mental rotation processing speed and mental rotation
processing ability. Nevertheless, future work may improve on this approach.

In the first and third study, methods of dimensionality assessment have been applied to real
data sets of intelligence tests. In the first paper, these data consisted of a person sample who
worked on an intelligence test battery, which contained a version of a cube comparison task
which was presented with a time limit. In the third paper, both a cube comparison task and an
endless loop task were presented without time limit to two separate respondent samples
(although in the used version of the cube comparison task, testing was quitted as soon as a
time limit of 30 minutes had been reached and the last item presented to the respondent had
been answered). The results reported in both papers demonstrate that cube comparison tasks
of this type show a good fit to the Rasch model, which is in line with results reported in
previous studies (e.g. Gittler, 1984, 1986, 1990, 1992; Tanzer, Gittler & Ellis, 1995).

Overall, the methods presented in this doctoral thesis may help to assess the dimensionality of
responses and, if the modeling approach of van der Linden is applied, response times in
psychological and educational tests. Their application may thus be of use in the evaluation of

psychological tests and for the development of psychological theories.

Conclusions
The studies contained in this doctoral thesis evaluated several methods for dimensionality

assessment in psychometric test evaluation. Study I described and evaluated an algorithm for
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item clustering based on model fit statistics for the Rasch model. This algorithm makes no
explicit assumptions on the analyzed item set and may serve as a screening procedure in
dimensionality assessment when no assumptions regarding the dimensionality of the analyzed
item set can be made. In a simulation study, the reported algorithm was found to lead to lead
more often to correct results if the sample of respondents was large and the analyzed item set
was small. The results were also found to be dependent on properties of the item subsets
which fitted the Rasch model well, like the correlations between the person parameters.
However, it was also reported in the first study that under certain conditions, the application
of PA and PCA of tetrachoric correlations led to more correct results than the cluster
analytical algorithm. Study II thus further examined the problem of indefinite tetrachoric
correlation matrices, which was observed in study I. It described and evaluated three different
smoothing algorithms which could make PA and PCA applicable if indefinite correlation
matrices were observed. In study II, the proposed PCA of smoothed tetrachoric correlation
matrices was found to be a valid assessment procedure for the dimensionality of an item set
under many conditions.

Study IIT exemplified a new approach for assessing unidimensionality of responses and
response times. By applying an approach developed by van der Linden and colleagues (van
der Linden, 2006, 2007, 2009; Klein Entink, Fox & van der Linden, 2009) the presence of
gender differences in mental rotation processing speed in two mental rotation tasks was
investigated. This modeling approach is closely related to the psychometric models used in
study I and II. It was found that the observed gender differences in mental rotation ability can

not be attributed to gender differences in mental rotation processing speed.
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Abstract

A new approach to identify item clusters fitting the Rasch model is described and
evaluated using simulated and real data. The proposed method is based on hierarchi-
cal cluster analysis and constructs clusters of items that show a good fit to the Rasch
model. It thus gives an estimate of the number of independent scales satisfying the
postulates of sufficiency of total number of correctly answered items for a person’s
proficiency, unidimensionality, and local independence that can be constructed from
an item set. The method is also compared with the application of a principal compo-
nents analysis based on tetrachoric correlations. In general, the proposed method
was shown to provide practically usable results especially for large person samples.
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Introduction

In this article, a statistical method 1s described that allows the identification of item
scales showing a good fit to the unidimensional Rasch model (Rasch, 1960) in a mul-
tidimensional item set. It thus gives an estimate of the number of independent scales,
satisfying the postulates of sufficiency of total number of correctly answered items
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for a person’s proficiency, unidimensionality, and local independence that can be
constructed from an item set (Fischer, 1974).

The proposed method is intended to be used prior to the application of other model
tests that have power against specific model violations. Appropriate test statistics
have been described elsewhere (e.g., Andersen, 1973; Glas, 1988; Martin-Lof, 1973;
Ponocny, 2002; van den Wollenberg, 1982; Wright & Panchapakesan, 1969). A dis-
cussion of additional test procedures in the context of Rasch measurement was pro-
vided by Linacre (1992), E. V. Smith (2002), and other writers.

Because the application of the Rasch model requires the unidimensionality of the
data, several statistical tests have been proposed or used in the research literature to
test this assumption prior to Rasch analysis. These procedures include principal com-
ponents analysis (PCA; R. M. Smith, 1996) and other approaches based on factor
analysis (e.g., Wirth & Edwards, 2007). Lord (1980), among others, already dis-
cussed some of the problems associated with this approach when analyzing binary
data. Also, in the application of exploratory factor analysis and PCA, determining the
correct number of factors or components plays a crucial role. Recent writers (e.g.,
Tran & Formann, 2009; Weng & Cheng, 2005) evaluated the performance of parallel
analysis, an approach possibly initially suggested by Hom (1965), in solving this
problem. Although Weng and Cheng (2005) found that parallel analysis performed
well in determining the correct number of factors, Tran and Formann (2009) con-
cluded that the usefulness of classical linear factor analysis and PCA is diminished in
the presence of binary data.

In contrast to PCA and methods based on factor analysis, the procedure described
in the article at hand does not assume that a specific model underlies the analyzed
item set. Instead, it is based on the idea of a partial hierarchical cluster analysis,
which uses a test statistic for the Rasch model as a measure of similarity.

There have already been numerous approaches for applying cluster analysis in
item response theory (for an overview, see Reckase, 2009, or van Abswoude, van
der Ark, & Sijtsma, 2004). Many of them try to assign each item to one of several
clusters, and ofien they provide no clear criterion to determine the number of clusters
underlying an item set (for an illustration, see again Reckase, 2009). The application
of cluster analysis described in this article addresses this issue by providing a statistic
of model fit which is used as a strict criterion for selecting items to yield a unidimen-
sional cluster.

The described method could also serve as an altemative to other approaches for
the assessment of unidimensionality in the context of Rasch measurement. [f an item
set fits the Rasch model, it is to be expected that the suggested procedure assigns all
items to a single cluster. For comprehensive reviews of methods for assessing the
dimensionality of an item set, see Hattie (1985).

The procedure described in this article will be evaluated using simulation studies.
As will be shown, it provides results applicable under many circumstances but gener-
ally requires large person samples. To compare the new approach with other methods,
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its results will be compared with those of a PCA and paralle] analysis based on tetra-
choric correlations.

The remainder of this article is organized as follows: In the next section, the pro-
cedure will be described, which includes a discussion of the R,. statistic of Glas
(1988). The subsequent section contains a description of the method of a simulation
study that was used to evaluate the procedure. This is followed by the “‘Resulis of
the Simulation Study™ section. The penultimate section contains results from an
empirical study in which the results of the procedure are compared with other tests
of fit to the Rasch model. The article concludes with a discussion of the procedure
and directions for future research.

Description of the Procedure
The Basic Structure of the Procedure

The method used to assign items to scales that fit the Rasch model will first be for-
mally described. Its principal idea is similar to that of a partial hierarchical cluster
analysis. Given an item set (J, let O, be the set of all sets of items of (), consisting of
n items. By calculating a statistic of fit to the Rasch model, a function f'is defined that
assigns the p value of a statistic of model fit to a subset of O. The procedure starts
with the analysis of all item subsets that are elements of ;. The initial subset 45 in
the scale construction is the subset for which freaches its maximum.

After defining 4 the procedure begins to expand this subset. Let 4, be a subset
of n items already constructed by the procedure. The procedure constructs a new
item subset 4,4+, containing (# + 1) items, by analyzing all elements of (3, + | that
contain all elements of 4,. 4, is defined as the item subset for which / is maxi-
mized. This procedure might terminate as soon as the maximum of f, calculated for
each element of O with a fixed & value, is below a predefined upper threshold, or as
soon as (J; cannot be expanded any further. In the study at hand, the R, statistic of
Glas (1988) was used as the statistic of model fit. This test statistic will be reviewed
in the next section.

Assessing the Model Fit

The R, statistic of Glas (1988) is based on the comparison of the expected and
observed frequencies of persons giving a positive or negative response to item { and
obtaining a score of exactly r. Following Glas (1988), the R, statistic is calculated
by the formula in Equation (1):

Re=) N7'd', W 'd,. (1)

In Equation (1), N, denotes the number of persons obtaining a raw score of r, d,
denotes the vector of deviances between the observed and the expected frequency of
persons obtaining a score of ». W, is a variance—covariance matrix for the vector d .
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The expected frequency of a positive response E(n,;) is calculated by the formula in
Equation (2):

(i)
E(n)=n, =L, (2)
In this formula, vy, denotes the rth elementary symmetric function, and 'y{rﬂ_l
denotes the (» — 1)th elementary symmetric function after item { has been removed
from the vector of item parameters. To calculate the elementary symmetric functions,
we use the summation algorithm described by Gustafsson (1980). The variable n,
denotes the observed frequency of persons obtaining a score of r, and g; = exp(— ;).
where [; is the item parameter of item /. The item parameters [3; were estimated
using the conditional maximum likelihood approach (e.g., Molenaar, 1995).
Following a proof presented by Glas (1988), the R, statistic can be regarded as
being asymptotically xz distributed with (k — 1)(k — 2) degrees of freedom, with &
being the number of items in the test. The Ry, statistic was shown to have power
against multiple violations of assumptions of the Rasch model, such as the axioms of
unidimensionality and parallel item characteristic curves (Glas & Verhelst,
1995;Suarez-Falcon & Glas, 2003). For this reason, the R, statistic was chosen as
test of global model fit for the study at hand.

Method of the Simulation Study

We now conduct a simulation study to analyze the extent to which the algorithm
described in the previous section is correctly able to detect and reconstruct subsets of
items that fit the Rasch model.

To evaluate the algorithm, item samples containing two subsets, both of which fit
the Rasch model, were simulated. In each simulation, it was assessed whether the
scale-constructing algorithm was able to distinguish between the items of the two
scales. One reason for choosing this study design was that, to our knowledge, no
study has been published so far that investigated the power of the R,. statistic to
detect between-item multidimensionality (Adams, Wilson, & Wang, 1997).

In all these simulations, response data were constructed by a computer program
using the following algorithm: first, the item and person parameters were defined
with previously set means and standard deviations. The distribution of the person
parameter was set to be normal, while the item parameters were normally or equally
distributed, depending on the simulation. After the parameters of every simulated
item and every simulated person were set, the probability of a positive reaction and a
random number between 0 and 1 were calculated for every person—item pair. If the
random number was found to be smaller than the calculated probability of a positive
reaction, the reaction was set to be positive for the person—item pair; otherwise, it
was set to be negative.

In every simulation, a set of items was analyzed. Of these items, the first and the
second half were independent item sets that fit the Rasch model. A computer program

33



34

Debelak and Arendasy 379

was written that implemented the algorithm described in the previous sections. In
every simulation, it was assessed whether one of the two item sets fitting the Rasch
model was reconstructed correctly by the algorithm.

The simulations differed in six aspects: the distribution of the item parameters
(i.e., approximately normal or equal distribution), the standard deviations of the item
and the person parameters, the size of the person sample, the size of the item set, and
the correlation between the person parameters of the scales fitting the Rasch model.

Four different types of data sets were defined that varied in the standard deviations
of their item and person parameters. In the first type of data set (defined as Type A),
the person and the item parameters were set to be normally distributed with standard
deviations of 1.0 and 0.5 for the person and item parameters, respectively. In the sec-
ond type of data set (defined as Type B), the person and item parameters were set to
have standard deviations of 1.5 and 0.5, respectively. In the third type of data set
(defined as Type C), the standard deviations of the person and item parameters were
set to be 2.0 and 1.5, respectively. In the fourth type of data set (defined as Type D),
the person and item parameters were set to have standard deviations of 2.5 and 1.5,
respectively.

Each of these data sets was combined, such that 10 different combinations of para-
meter distributions were analyzed. The size of the item sample varied between 10,
30, and 50, and the size of the person sample varied between 250, 500, and 1,000. In
the first half of the simulated data sets, the correlations between the person para-
meters were set to 0.0, and in the second half, they were set to .5.

To perform the simulation study, a computer program was written that implemen-
ted the scale construction procedure with the R, test statistic of Glas (1988) as the test
statistic of item fit, as described in the previous sections. As a termination criterion for
the scale construction, the scale construction was set to halt as soon as the significance
probability would become less than .05 for any further expansion of the scale.

To compare the results of the new method with those of a traditional method, all
simulations were repeated with a PCA based on tetrachoric correlations. Afier each
PCA, a varimax rotation was carried out. It was assessed whether the application of
PCA resulted in two components, with all items of each item subset fitting the Rasch
model showing their highest loading on the same component.

In our study, we calculated the tetrachoric correlations using an algorithm pro-
posed by Brown (1977). In the simulations, parallel analysis (Hom, 1965) was used
to determine the number of components to extract. Following previous studies (e.g.,
Tran & Formann, 2009; Weng & Cheng, 2005), the 95th percentile eigenvalues cal-
culated from 10,000 random data matrices were chosen as the criteria for comparison.
To obtain stable results, 10,000 simulations were carried out under each condition.

Results of the Simulation Study

In this section, the results of the simulation study are presented. For each simulated
condition, the percentage of correct results over 10,000 replications is presented.
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Because of space constraints, only the results of simulations with normally distribu-
ted item parameters are reported. Under all simulated conditions, the form of the dis-
tribution of the item parameters had only negligible effects on the resulis of the
simulations.

To assess the accurateness of the results, the maximum standard error of all simu-
lations was calculated. For all simulations, the standard error of the obtained results
reached a maximum of 0.5.

The time needed to analyze each data set differed depending on the size of the
analyzed person sample and item set. To illustrate a typical example, it should be
reported that the analysis of the responses of 1,000 persons to 50 items took 7 sec-
onds on the average if two data sets of type B were combined with each other using
an Intel Core 17 processor.

Results of the Application of the Cluster Analytical Algorithm

The percentages of correct scale reconstructions under each simulated condition are
given in Table 1 for simulations where the item parameters were approximately nor-
mally distributed.

Results of the Application of Principal Components Analysis

In the application of the PCA, a solution was considered as correct if (a) a two-
component solution was obtained and (b) for each subset fitting the Rasch model, all
items showed their highest loading on the same component. The results of the appli-
cation of PCA and parallel analysis for simulations where the item parameters were
approximately normally distributed are shown in Table 2.

A Practical Application

In this section, a practical application of the method described in this article is pre-
sented. To further evaluate the method, it was applied to dichotomous data obtained
by testing 298 persons with a general battery of intelligence tests, the Basic
Intelligence Functions (Intelligenz-Basis-Funktionen or IBF; Blum et al., 2005). The
purpose of this analysis was to test whether the scales constructed by the algorithm
would also pass traditional tests of fit to the Rasch model.

Description of the Sample

The analyzed sample contained the data of 298 persons (151 male, 147 female) all of
whom participated in the IBF subtesting. The mean age of the sample was 23.9 years,
with a standard deviation of 3.27. In all, 31 persons (10.4%) had an EU educational
level of 2, 49 persons (16.4%) had an EU educational level of 3, 188 persons (63.1%)
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Table 1. Percentage of Correct Scale Reconstructions With No Errors Under Different
Conditions®

n i r AA AB AC AD BB BC BD CC CD DD
250 10 .0 2736 53.18 4099 4481 8928 8444 8788 8892 9153 9359
S5 042 853 908 100 1621 1954 2228 2889 4286 6534

30 .0 lesl 4692 2479 2832 8668 7688 8177 8507 874 8924

S5 00 442 685 767 411 1072 1337 1447 3271 5592

50 .0 723 3691 188 2132 7707 639 7225 7932 8351 86125

S50 00 .75 7.04 876 1.09 821 1381 661 2065 4154

500 10 .0 7801 8491 7305 7689 9207 91.56 93.02 932 9365 9396
S0 331 2031 1005 964 663 4412 3947 T71.29 7795 8923

30 .0 7683 8371 6371 714 9016 8833 8911 89.19 9058 909

S50 036 2222 931 7.83 5536 2507 223 6354 730 8483

50 .0 6311 7373 4981 57.85 8305 8127 8338 8511 B684 870l

S50 002 2063 101 9.56 3491 19.14 1735 47.73 59.7 7699

1,000 10 .0 9148 9209 89.08 9091 926 9276 9228 93.11 930 9357
SO29.07 3202 1226 1015 9093 7546 71.73 8894 9048 9226

30 .0 8739 8899 8571 87.63 9045 9023 9027 8985 904 8988
S502225 3391 11,09 94 8721 5945 5445 8427 8635 87.69

50 .0 7863 862 7606 79.87 8455 8507 8509 8442 8597 8684

S5 1084 3335 1322 1015 77.12 4324 374 7565 7925 8299

a. Values are percentage of correct scale reconstructions with no errors under different conditions of
person sample size (n), item set size (i), and correlation between the person parameters (r) for each
combination of data sets A, B, C, and D when the item parameters were normally distributed.

had an EU educational level of 4, and 30 persons (10.1%) had an EU educational
level of 5.

From the original sample of 298 persons, persons were excluded if they (a) can-
celled the test, (b) showed very short response times combined with poor test perfor-
mance, or (c) did not answer at least 75% of the items in a subtest. After the
exclusion of persons showing deviant response behavior, the data of between 281
and 284 persons were used for the analysis of the four subtests of the IBF.

Description of the Test

The IBF test battery is a computerized intelligence test that consists of six subtests
assessing verbal and numerical intelligence functions, long-term memory, and visua-
lization. Verbal and numerical intelligence functions are each assessed by two subt-
ests, and long-term memory and visualization are each assessed by one subtest. For
each subtest there is a time limit. [tems that are not answered before the end of the
time limit are counted as not solved by the test participant.

In the IBF test, the test result contains the number of correct answers for each
subtest and the factor scores for the verbal, numerical, visualization, and long-term
memory tasks. The two subtests assessing numerical intelligence were not analyzed
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Table 2. Percentage of Correct Results After Application of Principal Components Analysis
Under Different Conditions®

n i r AAA AB AC AD BB BC BD CC CD DD
250 10 .0 9831 9979 99.75 9976 1000 99.84 99.68B 97.97 9647 9435
S 495 6743 6991 7165 9214 9525 96.65 95.94 95.93 943

30 .0 8247 4912 0.14 00 182 0.0 00 00 00 0.0

S 70 129 0.8 00 2203 002 00 00 00 0.0

50 .0 00 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0

S5 00 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0

500 10 .0 9997 100.0 100.0 100.0 1000 100.0 100.0 99.99 99.97 100.0
5 8529 9494 9583 96.05 9983 9992 9997 99.98 9996 99.98

30 .0 1000 100.0 B339 7101 1000 742 58.06 1568 6.01 1.75

S5 9963 9867 813 7011 1000 7672 6221 1834 807 276

50 .0 9946 8831 004 00 4831 00 00 00 00 0.0

S5 9925 882 006 00 5601 00 00 00 00 0.0

1,000 10 .0 100.0 100.0 99.97 9998 1000 9998 99.97 99.94 9991 99.9|
S5 9946 9997 999 9993 1000 9997 99.96 99.96 99.95 99.91

30 .0 1000 100.0 9949 9964 1000 9946 9944 98.67 9804 96.64

S5 1000 9998 9942 9943 1000 9948 9955 98.68 98.11 9739

50 .0 1000 100.0 93.58 8695 1000 9046 7797 2684 953 1.9

.5 1000 1000 9368 8818 1000 9078 8062 3036 1268 3.23

a. Values of percentage of correct results after application of principal components analysis under
different conditions of person sample size (n), item set size (i), and correlation between the persen
parameters (r) for each combination of data sets A, B, C, and D when the item parameters were
normally distributed.

because fewer than 240 test participants were able to answer 75% of the items within
the test’s time limit; we regard the resulting samples as too small for an analysis with
the method described in this article. ltems with missing responses were excluded
from the test analysis. After the exclusion, 13 of the 17 items of the visualization
subtest, 15 of the 20 items of the long-term memory subtest, 12 of the 16 items of
the first verbal intelligence functions, and 15 of the 19 items of the second verbal
intelligence functions subtest were analyzed.

Procedure

A computer program called Raschcon,' which implemented the scale-constructing
algorithm analyzed in the simulation study, was used to analyze the IBF data set.
The item set of each subtest was analyzed separately. The scale construction stopped
as soon as the p values corresponding to the R, test statistics reported by Raschcon
became less than .05. After four item sets had been constructed by Raschcon, their
fit to the Rasch model was assessed by calculating Andersen likelihood ratios
(Andersen, 1973), using the partitioning criteria of age, gender, and mean split on
the basis of the test performance. The Andersen tests were computed using the eRm
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software package (Mair & Hatzinger, 2006). A level of significance of .01 was cho-
sen, and an alpha adjustment was performed using the method of Holm—Bonferroni.
Additionally, several item fit statistics for the Rasch model were calculated using
Winsteps (Linacre, 2007), and a PCA of the residuals was calculated for each subt-
est. As in the simulation study, a PCA and parallel analysis of tetrachoric correlations
were also performed for the data of each subtest.

Results

In the case of all subtests, the scale constructed by Raschcon was identical to the
analyzed item set of the respective subtest. Each of the item sets constructed by
Raschcon were subsequently analyzed for their fit to the Rasch model.

The Andersen tests indicate that the scales constructed by Raschcon fit the Rasch
model with a level of significance of .01 in each subtest. It should be noted, however,
that if a level of significance of .05 had been used, the test statistics used would have
detected violations in three of the four subtests. The mean square infit and outfit sta-
tistics ranged between 1.33 and 0.65 for all four scales. After performing a PCA of
the residuals, the eigenvalues of the first components reached values of 1.4 or less
for the two verbal intelligence subtests and the visualization subtest, indicating that
no additional dimensions were present in the data. In the case of the long-term mem-
ory subtest, the eigenvalue of the first component was 2.0, which could indicate that
a second dimension is present in this subtest. In line with these results, a PCA of tet-
rachoric correlations led to a two-component solution for this subtest. For the visuali-
zation subtest, the PCA of tetrachoric correlations led to a one-component solution,
whereas indefinite correlation matrices were obtained in the remaining two subtests.
In general, the results of the analysis with Winsteps and eRm indicate that the scales
constructed by Raschcon show a good fit to the Rasch model.

Discussion

In this article, a new algorithm was presented for the construction of scales that show
a good fit to the Rasch model. The algorithm is based on a partial hierarchical cluster
analysis and makes no specific assumptions regarding the model underlying the ana-
lyzed item set.

The R, test statistic of Glas (1988) was chosen as a test statistic to evaluate the
practical use of the algorithm in a simulation study. The same algorithm was later
implemented in the Raschcon computer program to apply it to real data. To assess its
usefulness for practical research, a simulation study was carried out that compared
the cluster analytic approach with another well-known method of exploratory data
analysis, a PCA of tetrachoric correlations with varimax rotation.

We can try to identify the conditions under which the algorithm leads to correct
results, and the reasons for the observed incorrect results. In the simulation study, the
algorithm performed best if the simulated person sample was large and if the
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correlation between the person parameters was low. This trend is demonstrated by
the high rate of correct scale reconstruction in simulations with a person sample of
1,000 and in simulations with a correlation of 0.0 between the person parameters. By
comparison, the distribution of the item parameter seems to have only small effects
on the correctness of the results of the algorithm. These results are in line with the
results of previous studies on the R test statistic (e.g., Suarez-Faleon & Glas,
2003).

It can also be observed that the algorithm performed better in data sets with
smaller scales than in data sets that required the reconstruction of large scales. To
some extent, this result can be explained by the higher probability in large item sam-
ples that at least one item has a response vector that is improbable under the assump-
tion of the Rasch model, so the algorithm does not add it to the scale it constructs.
The scale-constructing algorithm generally combines items that show highly prob-
able response patterns under the assumption of a Rasch model. Therefore, items that
happen to show an improbable response pattern are not included in the scale con-
structed by the algorithm, even if they are an a priori part of a scale that fits the
Rasch model. The probability of such errors increases in larger item pools.

The simulation study revealed two different conditions under which the algorithms
failed to correctly reconstruct one of the two scales that fitted the Rasch model. First,
the algorithm leads to incorrect results more often if the person sample is small.
Suarez-Falcon and Glas (2003) have obtained similar results by showing that the
power of the R, test statistic to detect multiple model violations decreases in data
sets with small samples. The second condition that leads to a failure of the algorithm
is the combination of small variances of the item and person parameters and a signifi-
cant correlation between the person parameters of the two scales.

The comparison of the cluster analytical algorithm with PCA and parallel analysis
of tetrachoric correlations showed that the cluster analytical algorithm was in some
cases to be preferred over this classical approach. This is most notably the case with
the analysis of large item sets and small person samples, since the application of
PCA was often not possible in these cases because of the occurrence of indefinite
correlation matrices. Similar results have been previously reported by Weng and
Cheng (2005) and Tran and Formann (2009). As a comparison of the results of both
approaches suggests, the application of PCA may be preferred if there is a significant
correlation between the person parameters. The generalizability of these results is
limited by the generalizability of the conditions simulated in our simulation study.
Since the application of PCA on tetrachoric correlations and the cluster analytical
algorithm is based on different theoretical assumptions, there might be further condi-
tions, such as the presence of guessing, which influence the relative efficiency of
both approaches as well.

Notably, the result of the algorithm should not conclude the analysis process. The
scales constructed by the algorithm meet several of the conditions that are necessary
for fitting the Rasch model, but the application of additional statistical test proce-
dures is recommended to determine the fit of the scales constructed by the Raschcon

39



40

Debelak and Arendasy 385

algorithm to the Rasch model. Several authors (e.g., Linacre, 1992; van der Linden
& Hambleton, 1997) have already emphasized the importance of checking model
assumptions with multiple model tests.

Future research could investigate the performance of the cluster analytical algo-
rithm if alternative test statistics for the fit of the Rasch model are used. Based on the
research by Sudrez-Falcon and Glas (2003), it can be assumed that most of the test
statistics analyzed in their study (e.g., the likelihood ratio test of Andersen, 1973)
would lead to comparable results. Future research could also investigate the applica-
tion of test statistics of other IRT models, such as the three-parameter logistic model
(Birnbaum, 1968).

The application of Raschcon to the IBF data showed that the scales constructed by
Raschcon may fit the Rasch model, even if the sample used for analysis is relatively
small. The results of the simulation study still suggest that the use of larger samples
would lead to more reliable resulis.
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Abstract

The application of principal component analysis and parallel analysis to smoothed tet-
rachoric correlation matrices was investigated in a simulation study. To evaluate the
effect of several smoothing algorithms, 360 different types of data sets were simulated.
Under each simulated condition, two item sets, each fitting a unidimensional two-
parameter logistic model, were combined with each other. The simulations differed in
the size of the simulated item sets, the size of the person samples, the distribution of
the difficulty and discrimination parameters, and the correlation between the person
parameters. In general, the application of a smoothing algorithm led to an improved
performance in the assessment of dimensionality, but minor differences between the
three investigated smoothing algorithms were found. Procedures to apply two of the
three investigated smoothing algorithms via R software packages are presented.
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Introduction

The assessment of the dimensionality of an item set is a central issue in test theory,
and many approaches to dimensionality assessment have been proposed and
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discussed (e.g., Hattie, 1985; Reckase, 2009; Stout, 1987, 1990). Many writers have
already emphasized the impact of a correct dimensionality assessment on practical
psychological measurements (Green, 1983; Hattie, 1985) and the development of
psychological theories (Weng & Cheng, 2005). Some of the standard methods to
assess the dimensionality of an item set are based on exploratory factor analysis
(EFA), which also includes principal axis factoring, and the related principal compo-
nents analysis (PCA). The differences between these methods have been discussed,
among others, by Crawford et al. (2010); Fabrigar, Wegener, MacCallum, and
Strahan (1999); and Glorfeld (1995). These methods are typically based on the analy-
sis of the matrix of Pearson product—moment correlations. In the case of binary items,
this approach has been considered as critical. The factoring of Pearson product—
moment correlations (or phi coefficients) may lead to spurious factors. The magni-
tude of the product—moment correlation of two binary items is limited by their diffi-
culties (Carroll, 1945; Lord & Novick, 1968). Alternatively stated, their bivariate
relation is not linear but nonlinear (McDonald & Ahlawat, 1974). Nonlinearity gives
rise to extra factors.

As an altemative, the use of tetrachoric correlations instead of phi coefficients has
been proposed. In contrast to phi coefficients, tetrachoric correlations are invariant to
the item difficulties as long as the assumption of bivariate normality holds (Carroll,
1945; Lord & Novick, 1968).

To determine the correct number of components underlying a data set, a common
suggestion is the application of parallel analysis (PA), a method originally proposed
by Hom (1965). Several studies found evidence that PA is an accurate method to
determine the number of underlying components (e.g., Humphreys & Montanelli,
1975; Zwick & Velicer, 1986). Since the original presentation of PA, several modifi-
cations to the original method have been proposed, like using the 95th percentile of
the eigenvalue distribution from the simulated data as criterion for assessing the
mumber of underlying components (e.g., Glorfeld, 1995). Recently, Crawford et al.
(2010) compared multiple approaches for PA. Their study suggested that no single
approach is clearly superior to the others, but that the results depended on the under-
lying factor structure. A recent study by Green, Levy, Thompson, Lu, and Lo (2012)
also suggested a revised version of PA, which takes into account of the existence of
prior factors in the determination of the critical eigenvalues of subsequent factors.
Their results suggest that the suggested method leads to improved results in the pres-
ence of certain factor structures when compared with traditional methods.

Recent studies have already investigated the performance of the PA in retrieving
unidimensionality in binary data (Tran & Formann, 2009; Weng & Cheng, 2005).
One of the main problems in the application of PA and PCA of tetrachoric correla-
tions to binary data identified by these studies is the presence of indefinite correla-
tion matrices, which makes the application of PCA impossible.

The purpose of the present study was to investigate the performance of PCA and
PA of smoothed tetrachoric correlations as an assessment of the dimensionality of
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sets of binary items in uni- and multidimensional item sets. We show that the investi-
gated procedures perform well as assessments of dimensionality.

Two of the three investigated smoothing methods can be carried out with freely
available software packages written in R (R Development Core Team, 2011). We
present code that allows performing necessary computations.

This article is organized as follows. In the next section, we discuss several smooth-
ing algorithms for indefinite correlation matrices described in the literature. Then pre-
vious studies on the application of PA to binary data are summarized. Following this
the methods and results of a simulation study on the application of the improved PCA
to matrices of tetrachoric correlations are presented. Finally, results are summarized
and discussed.

Several Smoothing Procedures for Indefinite Matrices

One objection to the application of principal component analysis and factor analytic
methods to tetrachoric correlation matrices is that these matrices might be indefinite
(Lord, 1980). To apply factor analytical methods in these cases, several smoothing
procedures have been suggested, of which some selected algorithms will be described
below. For a general overview of earlier methods, see Devlin, Gnanadesikan, and
Kettenring (1975); for an overview of current methods, see Yuan, Wu, and Bentler
(2010).

The algorithm of Higham (2002) searches for the symmetric positive semidefinite
matrix X with unit diagonal that is nearest to a given matrix 4. The distance between
two matrices is defined by the Frobenius norm, which is defined by
4= Xlz=3_(a —x}gj. In his original work, Higham (2002) also investigated a
more general approach that allowed the specific weighting of rows, columns, or even
specific entries of (4 — X) in order to control changes to the correlation matrix dur-
ing the smoothing process. The smoothing procedure of Higham (2002) has been
implemented in the R package Matrix (Bates & Maechler, 2011).

Knol and Berger (1991) used the following smoothing procedure in their simula-
tion studies: Let R be a possibly indefinite matrix of correlations, and let R=VDV~!
be its eigen decomposition. A positive-definite correlation matrix RT(8) can be
obtained by

R*(3)=[Diag(vD* VY] " vD* V[ Diag(vD* V") " (1)

In this formula, D™ denotes a modified diagonal matrix of eigenvalues obtained
from D by replacing each eigenvalue below a predefined nonnegative threshold &
with 8. Diag(VD* V") denotes a diagonal matrix that contains the diagonal elements
of the matrix ¥D*V~'. Although this algorithm was shown to provide acceptable
results in the simulation studies reported by Knol and Berger (1991), to our knowl-
edge it is not available in a publicly available software package.

Recently, Bentler and Yuan (2011) described another approach for obtaining a
positive definite correlation matrix from an indefinite one. Given a symmetric
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indefinite matrix R, Bentler and Yuan (2011) show that a positive definite matrix R*
can be obtained by

R"=ARyA+ Dy, (2)

In Equation (2), Ry results from R by setting its diagonal entries to 0, Dy is the
diagonal matrix containing the diagonal elements of R. A is a positive definite
matrix that meets the condition that Dg — Az(R — D) is positive definite, where D
is a diagonal matrix with nonzero elements such that (R — D) is positive semidefi-
nite. Like the smoothing approach of Knol and Berger (1991), this method has not
been explicitly implemented in a widely available software package vet. However,
a variation of this method uses minimum trace factor analysis to determine R*, as
is demonstrated by Bentler and Yuan (2011). Functions contained in the R
packages psych (Revelle, 2012) and Resdp (Bravo, 2010) may be used to carry
out this approach in R.

The algorithm of Higham (2002) has been fully implemented in a software pack-
age written in R and can be easily applied to tetrachoric correlation matrices, which
may also be calculated using R software (e.g., with the package psych; Revelle,
2012). In the next section, we investigate the results of several studies on the applica-
tion of PCA on tetrachoric correlation matrices without applying a smoothing
algorithm.

The Use of Parallel Analysis With Binary Variables

Determining the number of factors underlying a data set is important in the applica-
tion of factor analytical methods, and a number of studies have focused on this issue.
One of the most commonly used methods lies in the application of the Kaiser—
Guttman rule, according to which all factors with eigenvalue greater than 1
(Guttman, 1954; Kaiser, 1960) are to be retained. This approach was evaluated by
Bernstein and Teng (1989) with PCA of phi coefficients. They concluded that the
Kaiser—Guttman rule leads to the overextraction of factors when applied to dichoto-
mized variables.

Horn (1965) criticized this rule because it does not take sampling errors into
account. He proposed to calculate a correlation matrix of random data of the same
sample size and variable set size to determine the critical eigenvalues. Horn’s
approach became known as parallel analysis and was recently advocated by several
writers for its use with PCA and EFA (Reckase, 2009; Weng & Cheng, 2005).

Recent studies also discussed the application of PA in detecting the number of
factors in data sets of binary variables. Turer (1998) analyzed the application of PA
to PCA and EFA and concluded that the common approach to determine the critical
eigenvalues based on the size of the item set and the sample size may lead to the
underextraction of factors or components because the presence of real factors in the
data may influence the size of critical eigenvalues of random factors.
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Green (1983) investigated the application of PA to EFA of phi coefficients of uni-
and multidimensional data in which guessing was present. He found that PA of phi
coefficients led to the extraction of spurious factors but argued that these factors
could be identified in well-designed tests.

Weng and Cheng (2005) found that the application of PA performed well if the
method was applied using the 95th or 99th percentile eigenvalues as the criterion for
comparison, an approach that was also suggested by Glorfeld (1995). In their simula-
tions, PA performed better with increasing sample size. Weng and Cheng (2005)
found no difference in the performance of PA, using phi coefficients and tetrachoric
correlations.

Tran and Formann (2009) further studied the performance of PA in PCA based on
tetrachoric correlations. Using simulation studies, they showed that the latent structure
of an item set that conforms to a unidimensional normal ogive model is not reliably
uncovered by PA and PCA based on Pearson correlations, but the performance of this
approach depends on the item discrimination and difficulty parameters. They also
found that PA based on tetrachoric correlations performs better than PA based on
Pearson correlations when applied to PCA of tetrachoric correlations. Nevertheless,
they concluded that the usefulness of PCA is diminished in the presence of binary
data. One reason for their verdict was the problem of indefinite correlation matrices,
which makes the application of PCA impossible. The frequent presence of indefinite
tetrachoric correlations matrices was also reported in other studies (e.g., Knol &
Berger, 1991; Weng & Cheng, 2005). However, to our knowledge, a systematic
investigation on prevalence rates under various conditions was never carried out.

More recently, Timmerman and Lorenzo-Seva (2011) investigated the application
of PA to polytomous items. In their study, they found that a PA based on polychoric
correlations performed best in determining the dimensionality in PCA. However, as
in previous studies, nonconvergence of PCA due to indefinite matrices again posed a
serious problem, with the total convergence rate reaching only 37.01% across their
10,400 simulated data matrices.

Method

We carried out a simulation study to compare results of PCA and PA with and with-
out applying a smoothing algorithm and to investigate the prevalence of indefinite
tetrachoric correlation matrices under different conditions in a more systematic way
than previous research. In each simulation, the responses of a person sample to an
item set consisting of two separate scales each fitting the two-parameter logistic
model (Bimbaum, 1968) were simulated. The simulations varied in the following
aspects: (a) the distributions of the item difficulty and item discrimination parameters
in the simulated item sets (10 distribution combinations), (b) the size of the person
sample (3 sizes), (c) the size of the item set (3 sizes), (d) the correlation between the
person parameters in the simulated multidimensional data sets (4 correlations), and
(e) the applied smoothing algorithm. Under each condition of the 10 X 3 X 3 X 4 X
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3 design, 1,000 data sets were simulated. Similar study designs were used by Tran
and Formann (2009) and van Abswoude, van der Ark, and Sijtsma (2004).

Distributions of the Item Difficulty and Item Discrimination Parameters

Four types of scales were defined that differed in the standard deviation of the item
difficulty parameters and in the mean of the distribution of the item discrimination

parameters. The item difficulty parameters of two scale types (named A and B) fol-

. . . _J/3 3 . .
lowed a uniform distribution in the interval [ = %} (resulting in a standard devia-

tion of 0.5), whereas the item difficulty parameters in the other two scale types
3 3.3

—3v3, 343

(named C and D) followed an uniform distribution in the interval [ ;=% } (result-

ing in a standard deviation of 1.5). The distribution of the item discrimination para-
meters was log normal in all scale types. In scale types A and C, the item
discrimination parameters were distributed LN(In(0.5), 1), whereas in scale types B
and D, the item discrimination parameters were distributed LN(In(1.5), 1). In all
scales types, the person parameter followed a standard normal distribution.

Size of the ltem Sets

The simulated item sets consisted of 10, 30, and 50 items, respectively.

Size of the Person Samples

Three person sample sizes were used, containing 250, 500, and 750 simulated respon-
dents, respectively.

Correlations Between the Person Parameters

The correlations between the person parameters was set 0, 0.4, 0.8, and 1.0, with the
first three values resulting effectively in two-dimensional item sets, while the last cor-
relation value resulted in unidimensional item sets. Given the person parameter 8, in
the first scale, the person parameters 6, in the second scale were calculated using the
formula

0y =Rand + V1 — 2 +8, = r. (3)

In this formula, r is the correlation between the person parameters, and Rand is a ran-
dom variable that is normally distributed with standard deviation 1.

Afier the parameters of every simulated item and every simulated person were set,
the probability of a positive reaction and a random number between 0 and 1 were cal-
culated for each person—item pair. If the random number was smaller than the
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calculated probability of a positive reaction (*°1°7), the reaction was set as positive
for the person—item pair; otherwise, it was set as negative (“0"").

In our study, tetrachoric correlation coefficients and PCA were calculated and car-
ried out using functions of the R package psych (Revelle, 2012). The critical eigenva-
lues for the PCA were determined using a PA based on tetrachoric correlations,
which were also carried out by using functions of the psych package. Horn (1965)
advocated in his original approach comparing whether observed eigenvalues were
greater than expected eigenvalues, that is, the mean of the respective eigenvalue dis-
tribution. We used the median (= 50th percentile) of the respective eigenvalue distri-
bution in our study, calculated from 1,000 random data matrices. Means and medians
differed by less than 0.01 across all eigenvalue distributions in our study, which is in
line with Glorfeld (1995).

If an indefinite correlation matrix was obtained in the simulations, a smoothing
algorithm was applied. In these cases, PCA was applied to the smoothed tetrachoric
correlation matrices. All simulations were replicated using each of the smoothing
algorithms described in the section ‘‘Several Smoothing Procedures for Indefinite
Matrices.” The smoothing algorithm of Higham (2002) was applied with the R pack-
age Matrix (Bates & Maechler, 2011). The smoothing algorithm of Bentler and Yuan
(2011) was applied in R using functions of the packages psych (Revelle, 2012) and
Resdp (Bravo, 2010). See the appendix for R code to use these two algorithms. The
smoothing algorithm of Knol and Berger (1991) was applied using software which
was developed specifically for this study in Java. In this software, the constant & was
set to 0.

Results of the Simulation Study

Our simulations confirmed the results of previous studies, which indicated the fre-
quent presence of indefinite tetrachoric correlation matrices in the application of
PCA to binary variables (Timmerman & Lorenzo-Seva, 2011; Tran & Formann,
2009; Weng & Cheng, 2005). Table 1 displays the relative frequencies of indefinite
correlation matrices in all simulated data sets in which the correlation between the
person parameters was (.

To assess the practical usefulness of PCA of smoothed tetrachoric correlations,
we report the principal results of our simulation study in several tables. Table 2
shows the results without application of a smoothing algorithm to the data. In uni-
dimensional data sets, similar results were obtained. Table 3 shows the results of
the analysis of multidimensional data sets when the correlation matrices were
smoothed according to the algorithm of Higham (2002) before applying PCA. The
smoothing algorithm of Knol and Berger (1991) led to results mostly comparable
to those of the Higham algorithm; therefore, they will not be reported in detail
here. The results of the smoothing algorithm by Bentler and Yuan (2011) are
reported in Table 4.
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Table 1. Rate (in Percent) of Indefinite Correlation Matrices in Simulated Data Sets With a
Correlation of 0.0 Between the Person Parameters for Given Sizes of the Samples (n) and the
Item Sets (i) for Combination of the Scale Types A, B, C,and D

n i A-A AB AC AD B-B BC BD CC CD DD

250 10 0 1.9 04 6.5 8 33 175 06 88 252
30 434 981 652 996 100 984 100 762 998 100
50 100 100 100 100 100 100 100 100 100 100

500 10 0 0.1 0 1.2 0.9 0.l 33 0 1.8 8.
30 35 615 107 875 929 697 982 202 9l 99.8
50 47.1 100 727 100 100 99.9 100 878 100 100

750 10 0 0 0 0.7 0.4 0.1 1.7 0 0.7 43

30 04 317 33 683 714 39 89.6 5.7 73:9 96.7
50 13.7 934 345 99 998 97 999 518 998 100

Table 2. Rate (in Percent) of Correctly Detected Dimensionality for Each Combination of
the Scale Types A, B, C, and D, With Given Size of the Person Sample (n), ltem Set (i), and
Correlation Between the Person Parameters (R) When Smoothing Was Not Applied

R n i AA AB AC AD BB BC BD CC CD D-D

00 250 10 409 641 376 559 844 583 722 353 519 612
30 236 1.7 116 04 0 12 0 5.9 0.1 0

50 0 0 0 0 0 0 0 0 0 0

500 10 478 759 451 704 9 739 895 437 668 B4s

30 618 387 494 1.7 7.7 304 22 368 8.5 0.3

50 388 0.2 158 0 0 0.1 0 6 0 0

750 10 528 806 504 7eB 969 779 942 508 747 901

30 738 68 633 306 295 607 1l6 534 249 4.1

50 736 6.9 479 0.7 0.2 38 0 29.8 04 0

04 250 10 382 582 372 519 817 567 7l 365 475 62
30 255 2 13.8 0.3 0 09 0 7.3 0.1 0

50 0 0 0 0 0 0 0 0 0 0

500 10 464 702 445 676 953 693 896 43.1 659 BS6

30 634 378 49 1.9 8 27.5 1.9 375 8.9 0.7

50 377 04 175 0 0 02 0 6.3 0 0

750 10 528 77 524 742 976 746 943 503 729 913

30 729 707 636 3l 307 606 117 532 254 3.1

50 733 7 48.6 0.5 0.1 44 0 29.7 04 0

08 250 10 259 162 268 187 62 186 87 269 12l 10.9
30 142 04 103 0 0 02 0 58 0 0

50 0 0 0 0 0 0 0 0 0 0

500 10 224 114 241 14 4.1 125 52 245 153 7.8

30 258 119 26 49 76 88 1.8 249 3.7 0.3

50 226 0.4 9.5 0 0 0.1 0 53 0 0

750 10 205 88 214 103 23 103 39 245 13 5.4

30 307 309 305 14 334 277 106 309 124 35

50 549 8 394 04 0.3 36 0 248 0.6 0
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Table 3. Rate (in Percent) of Correctly Detected Dimensionality for Each Combination of
the Scale Types A, B, C, and D, With Given Size of the Person Sample (n), Item Set (i), and
Correlation Between the Person Parameters (R) When the Smoothing Algorithm of Higham
Was Applied

R n i AA AB AC AD BB BC BD CC CD D-D

00 250 10 414 664 383 596 922 62 874 349 574 83l
30 498 898 385 667 994 864 897 309 58.1 755

50 632 96 499 605 99.9 94 84.1 349 485 547

500 10 494 754 48 722 955 754 938 43 704 929

30 655 957 57 812 100 929 963 485 773 886

50 80.1 99.1 673 70.1 100 98.2 878 538 68.7 695

750 10 539 815 4901 789 98 786 978 514 765 965

30 765 984 68 905 100 96.5 983 575 859 954

50 851 996 768 797 100 988 928 661 742 7612

04 250 10 38.7 589 373 545 90.1 575 858 368 547 8312
30 496 889 438 646 997 858 915 329 589 773

50 647 977 516 609 100 938 B85 397 522 587

500 10 473 696 448 691 96.1 706 94 449 67.1 933

30 659 951 578 831 100 939 974 512 766 891

50 76 995 672 733 100 97.7 904 539 688 726

750 10 545 790 528 742 98 753 973 506 741 968

30 732 98 67.5 897 100 968 987 582 865 958

50 86 996 779 796 100 99.7 91 677 755 756

08 250 10 249 le4 274 208 74 182 106 246 232 162
30 242 178 295 282 573 219 574 244 316 596

50 332 409 34 50.3 955 448 B85 334 48,6 54

500 10 225 112 244 148 35 147 51 232 146 10

30 255 344 3l 40.7 91.8 366 B8 328 398 824

50 505 784 498 705 100 798 93 472 686 616

75 10 19 7.7 204 106 25 9.4 33 244 || 4.6

30 296 427 312 485 984 507 967 318 524 9ls

50 651 942 656 808 100 91.5 925 624 774 65

As can be seen from Tables 3 and 4, the algorithm of Bentler and Yuan (2011)
led to more correct solutions compared with the algorithm of Higham (2002) when
the correlation between the person parameters was low, but to fewer correct solutions
when it was high. As was to be expected, the number of correct results in general
increased with person sample size and decreased with the number items. In general,
the number of correct results did not decrease when the correlation between the per-
son parameters of the two item sets increased.

The results of the simulations without application of smoothing in unidimensional
data sets are not reported here in detail, since the results were comparable to those
observed in bidimensional data sets. For the unidimensional data sets, the results
of the application of the smoothing algorithm by Higham (2002) are presented in
Table 5. Table 6 shows the results of the application of the smoothing algorithm of
Bentler and Yuan (2011).
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Table 4. Rate (in Percent) of Correctly Detected Dimensionality for Each Combination of
the Scale Types A, B, C, and D, With Given Size of the Person Sample (n), ltem Set (i), and
Correlation Between the Person Parameters (R) When the Smoothing Algorithm of Bentler
and Yuan Was Applied

R n i AA AB AC AD BB BC BD CC CD D-D

00 250 10 408 637 355 598 921 602 865 362 584 833
30 523 919 46 80.5 997 881 976 40 779 916

50 855 99 83.7 958 100 99.1 994 B8Il.1 941 972

500 10 463 758 432 7I 964 73 932 455 684 932

30 619 953 561 873 999 945 982 483 838 964

50 773 994 732 92 100 987 989 665 882 938

750 10 519 782 529 78 977 786 972 5l 76.3 963

30 725 970 662 914 100 966 993 601 915 969

50 856 99.7 766 914 100 99.2 98 694 899 929

04 250 10 365 595 37.1 568 906 592 B8 388 519 822
30 532 92 47.3 805 994 886 974 426 TI5 926

50 886 995 852 9.1 100 992 994 B46 947 98

500 10 455 687 463 695 97.1 681 943 432 &8 93.6

30 66 958 573 874 99.9 941 99.1 491 846 968

50 806 997 748 895 100 98.6 987 67 89.1 967

750 10 519 76 51.7 774 977 752 961 49 75.6 972

30 729 979 667 91.9 100 966 992 594 899 976

50 86 99.7 806 92 100 993 983 715 904 952

08 250 10 266 169 278 185 69 179 10 27 21.8 124
30 231 135 257 166 447 137 372 269 199 365

50 103 le4 11 126 806 152 633 122 [1.3 479

500 10 21 M. 235 131 4.1 112 47 246 157 7.9

30 276 298 289 335 886 3| 825 339 374 795

50 461 724 42 69.7 100 68.1 989 42 649 933

750 10 20.1 8.9 222 10. 26 102 38 252 38 6.1

30 313 44 308 425 984 458 967 348 5l 94.1

50 66 914 66.1 872 100 21 99 598 83 91.2

In unidimensional item sets, the number of correct results increased with person
sample size but decreased with the number of items. Both in bidimensional and in
unidimensional item sets, the size of the change depended on the distributions of the
item parameters. Similar results have been previously reported by Tran and Formann
(2009) and Weng and Cheng (2005). The smoothing algorithm by Bentler and Yuan
(2011) led to improved results when compared with the smoothing algorithm of
Higham (2002), especially in the analysis of large item sets.

Across all 90 simulation conditions of unidimensional data sets, the algorithm of
Bentler and Yuan led 54 times to better results than the other two algorithms. In two-
dimensional data sets, this number was 52 out of 90. However, when the correlation
was 0.8, the Bentler and Yuan algorithm achieved better results only in 18 out of 90
conditions. Under these conditions, the algorithm of Knol and Berger performed best.
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Table 5. Rate (in Percent) of Correctly Detected Dimensionality for Each Combination of
the Scale Types A, B, C, and D, With Given Size of the Person Sample (n) and ltem Set (i) for
Each Data Set Combination When the Smoothing Algorithm of Higham Was Applied

n i A-A AB AC AD B-B BC BD CC CD D-D

250 10 657 882 621 805 974 847 959 584 78 9.7
30 797 972 7l 84 100 96.7 942 619 748 666
50 876 998 823 739 100 983 84 68 588 295
500 10 759 931 704 905 995 92 99.1 678 895 968
30 873 993 819 935 100 98.7 981 783 869 745
50 951 999 902 835 100 99.6 885 794 696 332
750 10 776 953 765 945 996 943 998 73 92.1 98.4
30 929 995 885 957 100 99.1 989 85 93 8.7
50 976 999 936 788 100 998 914 9l 728 388

Table 6. Rate (in Percent) of Correctly Detected Dimensionality for Each Combination of
the Scale Types A, B, C, and D, With Given Size of the Person Sample (n) and ltem Set (j) for
Each Data Set Combination When the Smoothing Algorithm of Bentler and Yuan Was Applied

n i A-A AB A-C  A-D B-B B-C B-D CC CD D-D

250 10 63l 876 593 80 97.8 852 93 576 771 9le
30 80l 989 77.7 96l 100 97.7 987 76 926 883
50 984 100 974 998 100 100 99.9 97 98.6 90

500 10 744 936 712 903 99.4 931 993 70 864 978
30 874 99.1 837 952 100 99.1 993 78 935 904
50 948 100 932 979 100 99.8 99 895 943 8l

750 10 765 947 75 93.6 99.6 94.1 997 745 9.5 987
30 923 999 9.7 985 100 998 993 872 965 915
50 971 999 944 978 100 99.8 99 91 936 751

We also evaluated how often each smoothing algorithm achieved an accuracy per-
centage of 95% or higher for all simulated conditions. In this evaluation, the
Bentler—Yuan algorithm generally achieved again the best results. In unidimensional
data sets, an accuracy percentage of more than 95% was achieved for 44 out of 90
conditions. The Higham and the Knol-Berger algorithms achieved this accuracy only
in 32 and 21 conditions, respectively. In bidimensional data sets, high accuracy was
achieved less often when the correlation between the person parameters in both
scales increased. When this correlation was 0, the Bentler—Yuan algorithm achieved
an accuracy percentage of more than 95% in 29 simulated conditions, compared with
13 for the Knol-Berger algorithm and 21 for the Higham algorithm. When the corre-
lation between the person parameters was high, all smoothing algorithms achieved
accuracy percentages of more than 95% only in four to six conditions.
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Discussion

The results obtained in the simulation study are in line with the results of past studies
on the PA of tetrachoric correlations (Tran & Formann, 2009; Weng & Cheng, 2005).
The presence of indefinite correlation matrices often precludes the application of
PCA and PA and underlines the need for a smoothing algorithm. In our simulation
study, we observed that indefinite matrices of tetrachoric correlation matrices tended
to occur if the analyzed item set is large, the analyzed person sample is small, and the
discrimination parameters of the item sets are large. We emphasize that the calcula-
tion of the tetrachoric correlation coefficients is not advisable if the assumption of a
bivariate normal distribution of the latent variables is likely to be violated in the data
(e.g., Lord, 1980). This may be the case if guessing is present. It should be noted that
this assumption was not violated in our simulations.

Application of smoothing algorithms generally improved correct identification of
dimensionality when the correlation between the latent dimensions was 0.0 or 0.4 in
our simulations. When the correlation between the person parameters of the two
scales was 0.8, the results were less reliable and more dependent on the size of the
person and item sample. In general, the results improved when the size of the ana-
lyzed multidimensional item set and person sample increased and when the discrimi-
nation parameter increased. We also observed minor differences in the performance
of the three smoothing algorithms used in our study. In data sets with a clear dimen-
sional structure, that is, in unidimensional data sets and multidimensional data sets
with a low correlation between the underlying dimensions, the algorithm of Bentler
and Yuan (2011) performed best, especially when large item sets were analyzed.

In summary, our resulis seem to indicate that the application of PCA and PA to
binary data seems to assess the dimensionality of a multidimensional item set cor-
rectly if the correlations between the dimensions are low to medium and when a
smoothing procedure is applied.

When applied to unidimensional item sets, PCA and PA of smoothed correlation
matrices led to correct results in most cases that were investigated. However, this
was not the case with unidimensional data sets in which a large item pool with high
discrimination parameters and a wide range of difficulty parameters was combined
with a small person sample. Our interpretation of this observation is that in these
cases each simulated data set contained at least some items with a very high or very
low difficulty parameter that were positively answered by almost all (or very few)
persons in the person sample. The tetrachoric correlation coefficients between items
with extreme difficulty parameters were generally very low, which led to the extrac-
tion of multiple components in PCA.

Although our study was based on the original approach of Horn (1965), future
studies should investigate the performance of smoothing algorithms when used in
more recent variations of PA (i.e., using the 95th percentile of the eigenvalue distribu-
tion as criterion). The evidence collected so far in this and similar studies (Crawford
et al., 2010; Green et al., 2012) seems to suggest that no single algorithm leads to
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optimal results, but the results of each algorithm depend on the underlying factor
structure.

Appendix
Sample Code for Matrix Smoothing in R

In our simulation study, we applied two smoothing algorithms using functions of
open source software written in R. This appendix contains sample code that demon-
strates how these algorithms can be applied. It is assumed that R is a symmetric inde-
finite matrix that should be approximated by a positive-definite matrix R2.

The first smoothing algorithm, which was proposed by Higham (2002), uses code
from the Matrix package. The code for using this algorithm is as follows:

library (Matrix)
R2 <- nearPD (R, corr=TRUE)[[1]]

The second smoothing algorithm can be used by functions of the packages psych
and Resdp. The code for using this algorithm will be presented in two steps:

library(psych)

library (Rcsdp)

av <- as.vector(rep(2.5,1))

ew <-glb.algebraic (R, UpBounds=av) $solution

This code calculates the communalities of each variable after applying a minimum
trace factor analysis as values of the vector ew. The used functions require the defini-
tion of upper limits for these communalities. In our code, these limits were defined as
2.5. The number of items is denoted by i. In a second step, the correlations are rescaled
using a scaling constant. In line with the recommendations of Bentler and Yuan
(2011), we used the scaling constant .96. A simple code for rescaling R is as follows:

const <- .96
R2 <-R
for (ainl:1i){
if (ew[ a]l ==1.0){
for (binl:1) {
if(al!=b) {
R2[a,b] <-R[a,b] * sgrt(const/ewl[a])
R2[b,a] <-R[a,b]
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Abstract

There is a wide consensus in the literature that gender differences can be observed in tasks
measuring mental rotation ability. A possible explanation of this finding is the presence of
gender differences in the processing speed of mental rotation tasks. In two studies, we
investigated the dimensionality and the presence of gender differences in mental rotation
processing speed in two mental rotation tasks. By applying a joint modeling approach for
responses and response times, we found that, in both tasks, mental rotation ability and mental
rotation processing speed can be regarded as unidimensional constructs. We replicated
previous findings that gender differences in mental rotation ability can be observed in both
tasks, although we could not find gender differences in mental rotation processing speed. Our
results thus indicate that the observed gender differences in mental rotation ability cannot be

explained by gender differences in mental rotation processing speed.

Keywords: Mental Rotation Ability, Mental Rotation Speed, IRT model, Gender Differences
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1. Introduction
Spatial abilities constitute an important component in current models of human intelligence
(cf. Carroll, 1993; Johnson & Bouchard, 2005; McGrew, 2005). Studies on gender differences
in human intelligence indicate that spatial ability measures exhibit considerable gender
differences in favor of male subjects. Meta-analytic studies show that gender difference is
particularly pronounced in case of three-dimensional mental rotation tasks (e.g., Linn &
Petersen, 1985; Voyer, Voyer, & Bryden, 1995). Although there is evidence that the observed
gender difference in favor of male subjects is stable across cohorts (cf. Masters & Sanders,
1993; Voyer et al., 1995), age (cf. Linn & Petersen, 1985), and culture (Silverman, Choi &
Peters, 2007), there is evidence that the magnitude of the gender difference varies with item
design characteristics (cf. Arendasy & Sommer, 2010) and general design characteristics such
as time limit. Numerous explanations have been proposed to account for the observed male
superiority in three-dimensional mental rotation performance (for an overview: Halpern,
2000). Some models attributed gender differences in mental rotation tasks to gender
differences in working speed. This explanation is based on findings, which indicate that
gender differences in favor of male subjects decrease in effect size once time limits had been
removed from the test (cf. Goldstein, Haldane & Mitchell, 1990). Although this finding has
not usually been consistently replicated (e.g., Masters, 1998), a recent meta-analysis
conducted by Voyer (2011) indicate that gender differences in paper-pencil mental rotation
tasks indeed decrease in size when the psychometric measures were administered without
time limits. This finding could be due to at least two different reasons: (1) the removal of time
limits may allow female respondents that are not well trained in this population to utilize
effective mental rotation strategies (cf. Arendasy, Sommer, Hergovich, & Feldhammer, 2011;
Arendasy, Sommer, & Gittler, 2010), or (2) the observed reduction of the gender difference in

the untimed administration condition could be due to a ceiling effect in the male population
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(Voyer, 2011). Because none of these previous studies assessed mental rotation processing
speed, it is hard to differentiate between these two explanations. With the model by Goldstein
et al. (1990) as basis, one would expect that gender differences in mental rotation processing
speed are either more pronounced or of the same magnitude than gender differences in mental
rotation accuracy. Furthermore, accuracy and processing speed in solving three-dimensional
mental rotation tasks should be at least moderately correlated. By contrast, if the reduced
effect size of the gender difference in three-dimensional mental rotation performance is
mainly attributable to a ceiling effect in the male population in case of untimed mental
rotation tasks, one would expect either no or small effect sizes of the gender differences in
mental rotation processing speed, whereas observed gender differences in mental rotation

accuracy should be large in magnitude compared with the processing speed measure.

1.1. Formulation of the Problem

In this article, we want to evaluate these two conflicting hypotheses using an item response
theory model that enables the simultaneous estimation of accuracy and processing speed
parameters (Klein Entink, Fox & van der Linden, 2009). Another advantage of this
psychometric approach is the possibility of simultaneously evaluating the dimensionality of
accuracy and processing speed measures of mental rotation performance, which have been
debated in the literature for some time because of the possibility of solving mental rotation
tasks using different solution strategies. We investigated this problem in two separate studies,

which used different mental rotation tasks.
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2. Method
2.1. A Multivariate Multilevel Approach for Modeling Speed and Ability
In the literature, multiple approaches for modeling speed have been described (for an
overview of early approaches, see van der Linden & Hambleton, 1997). This study chose an
approach that has been originally proposed by Klein Entink, Fox et al. (2009). To
simultaneously model speed and ability, this approach defines a multivariate multilevel
approach for modeling responses and response times under a Bayesian framework. Under this
framework, prior distributions for each model parameter are assumed, which reflect the
researcher’s beliefs on each parameter’s distribution before data are collected. After data have
been collected, the prior distributions are updated based on the data and Bayes’ theorem,
resulting in a posterior distribution for each model parameter, which can be used for making
inferences. For an introduction to Bayesian item response theory, see Fox (2010).
On the first level of this approach, two separate models for responses and response times are
defined. The model for responses is the two-parameter normal ogive model, which defines a
person parameter 0;, which marks the ability of person i to answer items correctly. The model
further defines two item parameters for each item k, which define the respective item’s
difficulty by and discrimination ax. This model contains the one-parameter normal ogive
model as a special case, in which the discrimination parameter is regarded as fixed for all
items and which is closely related to the Rasch model (Rasch, 1960; cf. Embretson & Reise,
2000). In the two-parameter normal ogive model, the probability that person 1 answers item k

correctly is given by the following:
P(+|0i 1 bk) = (D(akei + bk) 1)
In this formula, ®() denotes the cumulative function of the standard normal distribution. The

response times are described by the two-parameter log-normal model. As in the two-

parameter normal ogive model, two item parameters are defined for each item that describes
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the respective item’s time intensity and time discrimination. For each person i, a speed
parameter is defined. This model contains the one-parameter log-normal model as a special
case, in which the time discrimination parameter is set to a fixed value.
In the two-parameter log-normal model, the log response time Tix of a person i working on
item k is given by the following:

T ==4 & + A+ & 2)
In formula (2), &; denotes the respondent’s speed, A denotes an item’s time intensity, and ¢y is
an item’s time discrimination. gjx is a residual term, which is assumed to be normally
distributed with an item-specific variance.
Following Goldhammer and Klein Entink (2011), the approach of Klein Entink et al. (2009)
assumes that the speed and ability of a person can be regarded as fixed as long as a person is
working on the test and that the responses and response times are independent and conditional
on the respective person parameter.
On the second level, the approach of Klein Entink et al. (2009) defines additional models for
the person and item parameters of the first level models. These second-level models define
joint distributions for the person and item parameters of the first-level models. For the person
parameters defining ability and speed, a bivariate normal distribution is defined as a common
prior distribution:

(e’g)z(ﬂe’ﬂg)+ep 3)
In formula (3), e, follows a bivariate normal distribution with mean 0.
This second level model provides information on the variance of speed and ability in the
investigated population and on the correlation between them. As Klein Entink, et al. (2009)
noted, it can be extended to include person level covariates that may explain some of the

variance of the person parameters.
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For the item parameters describing difficulty, discrimination, time intensity, and time
discrimination, an analogous model, which uses a multivariate normal distribution as prior
distribution, is defined. This second-level model provides information on the variance of all

item parameters and the dependencies between them.

2.2. Model Selection and Estimation

Under the presented Bayesian framework, several criteria have been proposed for model
selection, one of them being the Deviance Information Criterion (DIC) (Spiegelhalter, Best,
Carlin, van der Linde, 2002; see also Fox, 2010; Gelman, Carlin, Stern & Ruben, 2004). This
criterion combines a term measuring the deviance of a model with a term measuring its
complexity. It has been already used in a number of studies for model selection (e.g.,
Goldhammer & Klein Entink, 2010).

In our study, we estimated all model parameters using a Gibbs sampling approach, which has
been implemented in the software package cirt (Klein Entink, 2011) for the statistical software
R (R core development team, 2011). This approach is based on the principal idea of
simulating the multivariate posterior distribution of all model parameters. The distribution of
values drawn from the Gibbs sampler converges to the posterior distribution; therefore,
convergence has to be tested. Values, which were drawn before convergence was reached, are
denoted as burn-in phase and usually not used for further analysis. Based on the drawn values,
the mean of the posterior distribution (EAP) and the highest posterior density (HPD) intervals
can be calculated. HPD intervals are the smallest intervals that contain a given percentage
(e.g., 95%) of the values of the posterior distribution and can be used to test the statistical

significance of model parameters.
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2.3. Model testing

The fit of the response models was assessed in two steps and based on methods described by
Sinharay and colleagues (Sinharay, 2005; Sinharay, Johnson & Stern, 2006). First, the
assumption of local independence of the items was tested using the odds ratio statistic. The
principal idea underlying this model test is to compare the frequencies of identical responses
(0-0 or 1-1) with those of differing responses (0-1 or 1-0) by calculating these frequencies’
ratio for each item pair. If an item response model assuming local independence fits the data
well, it should accurately describe the observed ratio of these frequencies. If the model’s
prediction differs significantly from the observed data, this result indicates the presence of
dependencies between certain items.

In a second step, the frequency of observed score distribution is compared with the score
distribution predicted by the model as an overall measure of model fit. The principal idea
underlying this model test goes back to Hambleton and Han (2004) and Ferrando and
Lorenzo-seva (2001). A severe discrepancy between the observed and predicted score
distribution indicates a misfit of the model to the data.

The fit of the item response time model was measured using a graphical model test, which
compared the distribution of the response times predicted by the model with the observed
response time distributions for each item. The values predicted by the model are plotted
against their observed values. For each item, perfect model fit would be indicated by a linear

plot.

2.4. Investigation of gender differences in mental rotation ability and speed

The original model for the responses and response times was further expanded to contain

gender as a distinct person covariate G; (which took the value 0 for the male population and 1

67



for the female population) and used to measure the influence of gender on speed and ability

by a linear regression model:
0 = o0+ G X Vo + & (4)
G =ro+Gi Xy Ty )
In this model, e is a residual term, which is assumed to be normally distributed. The gender

effect on speed or ability is considered to be insignificant if the respective HPD intervals for

70,01 7, do not contain 0.

3. Study I
Participants. A sample of 208 respondents completed a computer-based test battery including
a computerized cube comparison task. After excluding 9 respondents who did not show
instruction-conforming test behavior, the final sample consisted of 108 female subjects and 91
male subjects aged 17 to 63 years (mean = 37.29, SD = 11.71). Nineteen of the respondents
have completed 9 years of schooling but without vocational training, and 72 of the
respondents have completed vocational training. Eighty-nine of the respondents graduated
from high school and are qualified for an entrance in a university, and 19 of the respondents

had an academic degree.

Measure. Mental rotation was measured by means of a cube comparison task. The mental
rotation test consisted of k = 17 items. The task of the respondent was to compare a reference
cube with a set of six comparison cubes. The respondents were asked to indicate the
comparison cube, which merely differs from the reference cube in terms of its orientation. To
rule out response elimination strategies, Gittler (1990) also included the response alternative
“none of the comparison cubes are identical to the reference cube.” Previous studies using this
item set indicate the item set measures as unidimensional latent trait and that measurement

invariance across age, gender, and educational level can be assumed because of the fit of the
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1PL Rasch model and the invariance of the 1PL item difficulty parameters across these
subpopulations (cf. Gittler, 1990; Tanzer et al., 1995). Furthermore, these studies also showed
that item design features hypothesized to affect the processing demands of mental rotation
tasks account for the estimated 1PL item difficulty parameters as indicated by the good fit of
the linear logistic test model (LLTM; Fischer, 1995). Further evidence on the construct
validity of this measure has been obtained in several exploratory and confirmatory factor
analytic studies, which jointly indicate that items of this type load on the same factor as
mental rotation tasks similar to the Vandenberg and Kuse (1978) test (cf. Arendasy, 2000;

Arendasy, Hergovich & Sommer, 2008; Arendasy et al., 2011).

General Results. In a first step, two models were fitted, which used the one-parameter
normal ogive model for describing responses and the one- or two-parameter log-normal
model for describing response times. For fitting each model, 10.000 iterations using a Gibbs
sampler were used, of which, 1.000 iterations were used as burn-in phase. The convergence of
the iterations was tested using the convergence diagnostics of Geweke (1992) and
Heidelberger and Welch (1983).

We compared the DIC values of the two models using the one- and two-parameter log-normal
model, respectively, for describing the response times and the one-parameter normal-ogive
model for describing the responses. We found a lower DIC value for the model containing the
two-parameter log-normal model and, therefore, used this model for our further analysis.

The fit of the one-parameter normal-ogive model to the observed responses was tested with
the two approaches described in section 2.3. In two item pairs, we observed significant
posterior p-values of the odds ratio statistic, which lie below 0.025 or above 0.975. Overall,

the assumption of local independence did not seem to be violated. By comparing the observed
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and predicted score distributions, only for two sum scores, significant deviations could be
observed. In summary, we found that the one-parameter normal ogive model fits the data well.

The fit of the response time model was measured using the procedure described in
section 2.3. The results of this analysis are presented in Figure 1 for 12 selected items. For
each item, perfect model fit would be indicated by a straight line going from the lower left
corner of the plot to the upper right corner, which would indicate a perfect correlation
between observed and predicted response times. As can be seen, all items fitted the item
response model well.

[Insert Figure 1]

The variances and covariances for the item and person parameters are displayed in Table 1.
There is a remarkable negative correlation between speed and ability, indicating that more
proficient respondents tend to work slower on the test items. The values of the ability and
speed parameters of all respondents are displayed in Figure 2. Only small correlations are
observed between the difficulty, the time discrimination, and the time intensity parameters.
[Insert Table 1]

[Insert Figure 2]

Gender Differences in the Cube Comparison Task. We measured the effects of gender on
speed and ability using the procedure described in section 2.4. The estimations of the
standardized effects are displayed as EAP values in Table 2. We further tested the significance
of the observed gender differences by calculating a 95% HPD interval for the measured
coefficient. The results of this analysis suggest that there is a significant gender difference in
the ability level of the mental rotation task but not in the working speed.

[Insert Table 2]
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Discussion. Our analysis of the data of the cube comparison task provides evidence that both
response and response time can be described well in our modeling framework, which is based
on the work of van der Linden (2006) and Klein Entink, Fox et al. (2009). It follows from our
findings that in the used mental rotation task, both speed and ability can be considered as
unidimensional constructs. This finding is an important prerequisite to compare the speed and
ability of male and female subjects in the cube comparison task. We found a strong negative
correlation between speed and ability in our sample. This finding is in line with similar
findings reported in the literature for other ability tasks (e.g., Goldhammer & Klein Entink,
2011).

As expected, we found significant gender differences in the performance in the cube
comparison task but no gender differences in the mental rotation processing speed, suggesting
that female subjects do not use more time-consuming strategies if no time limit is given for

working on the task.

4. Study 11
Participants. A sample of 245 respondents completed k = 13 items, which were based on the
endless loop paradigm, which will be described below. Seven participants were excluded
from our analysis because they showed a bad test performance combined with short response
times. In the final sample, there were 125 (51.43%) female subjects and 119 (48.57%) male
subjects aged 18 to 64 years (mean 29.5 years, standard deviation 10.8). Seven of the
respondents have completed 9 years of schooling but no vocational training, and 30 of the
respondents have completed vocational training. One hundred fifty-two of the respondents
graduated from high school and are thus qualified for entrance in a university, and 56 of the

respondents had an academic degree.
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Measure. This study investigates the response time and responses in an item set based on the
endless loop paradigm, which has been already described in a line of studies (Arendasy, 2000,
2005; Arendasy & Sommer, 2010; Arendasy, Sommer & Gittler, 2010; Gittler & Arendasy,
2003). Its basic design is comparable to those of classical mental rotation tasks such as those
described by Shepard and Metzler (1971). In this task, a closed and convoluted tube is
presented in two different positions to the respondent. For each tube, the respondent has to
decide under which viewing angle the second position equals the first. Arendasy (2005),
Arendasy and Sommer (2010), and Gittler and Arendasy (2003) described a row of studies,
which investigated the psychometric properties of this task and led to the definition of a set of
rules for the definition of new items. The results of these authors suggest that item sets, which
were constructed according to this rationale showed a good fit to the 1PL Rasch model and
invariance of the 1PL item difficulty parameters across age, gender, and educational level.
Earlier work by Arendasy (2000) further suggests that the ability measured by this task is
highly related to mental rotation ability as assessed by similar tasks. Arendasy and Sommer
(2010) further provided evidence that the 1PL difficulty parameters in items of this type are
determined by item design features, which have been hypothesized to affect the cognitive

processes of mental rotation tasks.

General Results. As in the first study, we first fitted two different models to the data. Both
models used the one-parameter normal ogive model for describing the responses. The first
model described the response times with the one-parameter log-normal model, whereas the
second model used the two-parameter log-normal model. Again, we did not investigate the fit
of any model, which used the two-parameter normal ogive model for describing the responses

because we expected the one-parameter normal ogive model to fit the data well. For fitting
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each model, 10.000 iterations of a Gibbs sampler were used, of which, 5.000 iterations were
used as burn-in phase. The convergence of the iterations was tested again using the
convergence diagnostics of Geweke (1992) and Heidelberger and Welch (1983). We found
that the model, which used the two-parameter log-normal model for describing the response
times, showed a lower DIC value and selected this model for our further analysis.

We found the item response model to fit the data well. In all item pairs, we observed

insignificant posterior p-values of the odds ratio statistic between 0.025 and 0.975. Our results

indicate that the assumption of local independence was not violated. In a second step, we
compared the frequency of observed sum scores with the frequency expected under the
model. For no sum scores, significant deviations could be observed.

The fit of the two-parameter log-normal model to the data was assessed following the
posterior predictive assessment described in section 1.6. The results of this analysis are
presented in Figure 3 for all 15 items. In summary, the model for the response times fits the
data well.

[Insert Figure 3]

The variances and covariances for the item and person parameters are displayed in Table 3.
There is a remarkable negative correlation between speed and ability, indicating that more
proficient respondents tend to work slower on the test items. The values of the ability and
speed parameters of all respondents are displayed in Figure 4. Only small correlations are
observed between the difficulty, the time discrimination, and the time intensity parameters.
[Insert Table 3]

[Insert Figure 4]
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Gender Differences in the Endless Loop Task. The estimations of the standardized effects
are displayed as EAP values in Table 4. We further tested the significance of the observed
gender differences by calculating a 95% HPD interval for the measured coefficient. The
results of this analysis suggest that there is a significant gender difference in the ability level
of the mental rotation task but not in the working speed.

[Insert Table 4]

Discussion. Our analysis of the data of the endless loop task suggests that our chosen
modeling framework (Klein Entink, Fox et al., 2009), which models the responses with the
one-parameter normal ogive model and the response times with the two-parameter log-normal
model, describes the observed data well. Again, it follows from this finding that speed and
ability can be regarded as unidimensional constructs, which is a prerequisite for interpreting
any observed gender differences in them.

As was the case in the cube comparison task, we found significant gender differences in the
performance in the endless loop task but no gender differences in the mental rotation
processing speed. These results suggest that female subjects do not use more time-consuming
solution strategies in solving the endless loop tasks and, thus, contradict the predictions we

made based on the model of Goldstein et al. (1990).

5. General Discussion
Our study investigated the relation between mental rotation processing speed and mental
rotation ability as well as the presence of gender differences in both traits. Our principal
research question concerned the presence of gender differences in mental rotation processing
speed. We investigated this question in two studies, which used two different item types for

assessing mental rotation ability, the first being a cube comparison task based on the rationale
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of Gittler (1990; cf. Arendasy et al., 2011) and the second being an endless loop task
(Arendasy, 2005; Arendasy & Sommer, 2010; Gittler & Arendasy, 2003). Both tasks measure
similar but not identical facets of mental rotation (cf. Arendasy, Hergovich & Sommer, 2008).
Voyer (2011) found in a recent meta-analysis that the well-known gender differences in
mental rotation ability are diminished in paper-pencil tests when no time limit is imposed. He
explained this result by possible ceiling effects in male subjects. The earlier model of
Goldstein et al. (1990) explained the gender differences in mental rotation ability by
differences in mental rotation processing speed but without directly modeling mental rotation
processing speed.

By applying a modeling approach described by Klein Entink, Fox et al. (2009), we showed
that mental rotation processing speed can be regarded as a unidimensional measure in both
investigated mental rotation tests. As expected, we found significant gender differences in
mental rotation ability in both mental rotation tasks but no significant gender differences in
mental rotation processing speed. Our results thus indicate that the observed gender
differences in mental rotation ability cannot be explained by gender differences in mental
rotation processing speed, as was predicted in the model of Goldstein et al. (1990).

A second major finding of our study was the observed negative correlation between mental
rotation processing speed and mental rotation ability. Similar results have been already
reported for figural reasoning tasks (Klein Entink, Kuhn, Hornke, & Fox, 2009; Goldhammer
& Klein Entink, 2011) as well as quantitative and scientific reasoning tasks (Klein Entink,
Fox et al., 2009). The present study extends these findings to mental rotation tasks, which
were presented without time limits. Our findings cannot necessarily be generalized to visual
ability tests, which are presented with time constraints. Future studies will have to investigate

if the modeling approach used in our study can be applied to tests of this type. A discussion of
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speed-accuracy tradeoff in spatial ability tests with limited stimulus presentation times was
provided by Lohman (1986).

For the observed negative correlations, multiple explanations have been offered in previous
studies. Klein Entink, Kuhn et al. (2009) pointed out that test takers who care more about their
results take more time to complete a test. Goldhammer and Klein Entink (2011) explained the
negative correlations of reasoning tasks by the necessity to monitor and validate decisions
while working on the task. A similar explanation may apply to our findings because several
writers suggested that a conformational stadium is part of the cognitive processes involved in
solving mental rotation tasks (e.g., Arendasy & Sommer, 2010; Just & Carpenter, 1985). A
respondent who chooses to work fast but not very accurately may achieve a higher speed
parameter but a lower ability parameter than a respondent with comparable cognitive abilities
who decides to work accurately. A recent description of this speed-accuracy trade-off (Luce,

1986) in the context of educational measurement has been provided by van der Linden (2009).
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Table 1. EAP values for the components of the person and item parameter covariance

matrices in the cube comparison task

Component EAP Correlation
Person Parameters o) 1.00 -
Opr -0.32 -0.65
o} 0.24 -
Item Parameters o; 0.84 -
o 0.13 0.17
oy, 0.08 0.11
o, 0.67 -
O 0.07 0.11
o, 0.64 -




Table 2. Estimated standardized effects of gender on mental rotation ability and speed in
the cube comparison task

95%

EAP HPD
Effect on [-0.59;
Ability 030 o013
Effect on [-0.08;
Speed 007 523
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Table 3. EAP values for the components of the person and item parameter covariance

matrices in the endless loop task

Component EAP Correlation
Person Parameters o) 1.00 -
Opr -0.05 -0.35
o} 0.02 -
Item Parameters o; 1.32 -
o 0.28 0.13
oy, 0.15 0.13
o, 3.33 -
O 0.78 0.42
o, 1.05 -




Table 4. Estimated standardized effects of gender on mental rotation ability and speed in

the endless loop task.

95%

EAP HPD
Effect on [-0.68;
Ability 040 913
Effect on [-0.01;
Speed 003 750g]
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Figure 1. Cumulative probability plots for 12 selected items of the cube comparison task
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Figure 2. Estimated speed and ability parameters for the analyzed sample working on the

cube comparison task.
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Figure 3. Cumulative probability plots for 13 items of the endless loop task
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Abstract
This doctoral thesis describes and evaluates different methods of dimensionality assessment in

psychological test evaluation and development. It consists of three studies, of which the first
two investigate exploratory procedures to determine the dimensionality of an item set. The
first study examined an approach for clustering items in Rasch measurement. The purpose of
the examined algorithm is to find item clusters which show a good fit to the Rasch model
while excluding items which show model violations. This approach was evaluated by the
means of a simulation study, which compared the results of this algorithm with the results
obtained from the application of a principal component analysis of tetrachoric correlations. It
was found that the examined algorithm leads to practically usable results, especially for the
analysis of data from large person samples.

The second study investigated the principal component analysis of smoothed tetrachoric
correlation matrices as a measure of dimensionality, again by the means of a simulation study.
By comparing the results of several smoothing algorithms, it was found that the application of
smoothing algorithms to the principal component analysis of tetrachoric correlations led to
improved results in the assessment of dimensionality under multiple conditions.

The third study exemplified a confirmatory approach for modeling responses and response
times by applying it to two types of mental rotation tasks. This study investigated the
hypothesis that the well-known gender differences in mental rotation ability are caused by
gender differences in mental rotation speed. After modeling both speed and ability, it was
found for both task types that gender differences could only be observed for mental rotation
ability, but not for mental rotation processing speed. Furthermore, a negative correlation
between speed and ability could be observed in both mental rotation tasks, which was in line

with results obtained for other ability tests.
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Zusammenfassung
Die vorliegende Arbeit beschreibt und beurteilt verschiedene Methoden zur Erfassung der

Anzahl zugrundeliegender Dimensionen in der Bewertung und Entwicklung psychologischer
Testverfahren. Sie umfasst drei Studien, von denen die ersten beiden exploratorische
Verfahren zur Beurteilung der Dimensionalitét einer Aufgabengruppe untersuchen. Die erste
Studie untersuchte einen Algorithmus zur Gruppierung von Aufgaben im Kontext des Rasch-
Modells. Das Ziel des untersuchten Algorithmus besteht im Finden von Aufgabengruppen, die
eine gute Passung auf das Rasch-Modell zeigen, und dem AusschlieBen von Aufgaben,
welche Modellverletzungen zeigen. Dieser Ansatz wurde mit Hilfe einer Simulationsstudie
untersucht, welche die Resultate dieses Algorithmus mit denen einer
Hauptkomponentenanalyse tetrachorischer Korrelationen verglich. Es zeigte sich, dass der
untersuchte Algorithmus zu praktisch verwertbaren Ergebnissen fiihrt, insbesondere wenn
Daten von groflen Personenstichproben untersucht werden.

Die zweite Studie untersuchte die Hauptkomponentenanalyse geglitteter tetrachorischer
Korrelationsmatrizen als MaB fiir die Dimensionalitét, wieder durch Anwendung einer
Simulationsstudie. Indem die Ergebnisse verschiedener Glattungsalgorithmen verglichen
wurden, zeigte sich, dass die Anwendung von Gléttungsalgorithmen unter zahlreichen
Bedingungen zu verbesserten Ergebnissen in der Messung der Dimensionalitét fiihrte.

Die dritte Studie veranschaulichte einen konfirmatorischen Ansatz zur Modellierung von
Antworten und Antwortzeiten durch dessen Anwendung auf zwei Aufgabentypen zur
Erfassung mentaler Rotation. Diese Studie priifte die Hypothese, dass die allgemein
bekannten Geschlechtsunterschiede in der Fahigkeit zur mentalen Rotation durch
Geschlechtsunterschiede in der Verarbeitungsgeschwindigkeit mentaler Rotationsaufgaben
verursacht werden. Nachdem Fahigkeit und Verarbeitungsgeschwindigkeit modelliert wurden,
zeigte sich, dass bei beiden Aufgabentypen nur Unterschiede in der Fahigkeit zur mentalen

Rotation gefunden werden konnten, nicht jedoch in der entsprechenden
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Verarbeitungsgeschwindigkeit. Zudem wurde eine negative Korrelation zwischen
Verarbeitungsgeschwindigkeit und Fiahigkeit gefunden, was mit den Ergebnissen, welche fiir

andere Féahigkeitstests gefunden wurde, iibereinstimmt.
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