MASTERARBEIT

Titel der Masterarbeit

"N2Sky - A Cloud-based

Neural Network Simulation Environment”

verfasst von

Erwin Mann, BSc

Angestrebter akademischer Grad

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2013

Studienkennzahl It. Studienblatt: A 066 926
Studienrichtung It. Studienblatt: Masterstudium Wirtschaftsinformatik
Betreuer: Univ.-Prof. Dipl.-Ing. Dr. techn. Erich Schikuta

Eidesstattliche Erkldrung

Hiermit versichere ich, die vorliegende Arbeit selbststandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich
gemacht zu haben.

Wien, den 17. September 2013

Unterschrift:

Erwin MANN

Acknowledgements

It gives me great pleasure in acknowledging the individual and personal support of my
supervisor, Prof. Erich Schikuta. He inspired me with his analytical and critical skills and
his patience whilst allowing me the room to work in my own way. Furthermore | would
like to thank Wajeeha Khalil for her guidance through RAVO and Peter Paul Beran who
gave me valuable technical notes on VINNSL and N2Grid.

Contents

1 Introduction
1.1 Motivation
1.2 Terms and Definitions
1.3 Relatedwork
1.3.1 Virtual Organizations for Computational Intelligence
1.3.2 Artificial Neural Network Simulators
2 The N2Sky Architecture
2.1 Requirements Analysis
2.1.1 Questionnaire
2.1.2 Functional Requirements
2.2 The N2Sky Architecture as an Instance of RAVO
2.2.1 |Infrastructure as a Service (laaS)
2.2.2 Platform as a Service (PaaS)
2.2.3 Software as a Service (SaaS) L
2.2.4 Everything as a Service (XaaS)
2.3 Scenarios
2.3.1 A Sample Workflow
2.3.2 N2Sky Use Case: Cancer Cell Classification
3 Components of N2Sky
3.1 laaS: Infrastructure Enabler
3.1.1 Component Archive
3.1.2 DataArchive
3.1.3 Ad-hoc Infrastructure L
3.2 PaaS: Abstract Layer.
321 Registry
3.22 Monitoring
323 SLA ..
3.2.4 Controlling and Accounting
3.2.5 User and Role Management
326 Access Control
3.2.7 Workflow System
3.2.8 Knowledge Management
3.2.9 Component Hosting Platform
3.2.10 Annotation Service

3.3 PaaS: Neural Network Layer 38
3.3.1 Simulation Services 38
3.3.2 Simulation Management L. 38
3.3.3 Business Administration 42
3.3.4 Hosted Components 46

3.4 SaaS: Service Layer 47
341 QuerylInterface 47
342 WebPortal 47
3.4.3 Smartphone App 47
344 Hosted Uls 48

Component Interfaces 49

4.1 laaS: Infrastructure Enabler 51
4.1.1 Component Archive 51
412 DataArchive 52
4.1.3 Ad-hoc Infrastructure 53

42 PaaS: Abstract Layer. 53
421 Registry 53
422 Monitoring 53
423 SLA .. 53
4.2.4 Controlling and Accounting 53
425 User and Role Management 56
426 AccessControl 56
427 \Workflow System 57
428 Knowledge Management 57
4.2.9 Component Hosting Platform 58
4.2.10 Annotation Service 58

4.3 PaaS: Neural Network Layer 59
431 Simulation Services 59
4.3.2 Simulation Management 62
4.3.3 Business Administration 62
434 Hosted Components 63

4.4 SaaS: Service Layer 64
441 QuerylInterface 64
442 WebPortal 64
443 Smartphone App 65
444 HostedUls 65

Tutorial 67

5.1 Paradigm Selection. 67

5.2 Neural Object Creation 67
5.2.1 Layer Definition 67
5.2.2 Parameter Definition 69

53 Training 69

5.4 Evaluation 70

User Guide
6.1 End User Guide
6.1.1 Login
6.1.2 Paradigms and Subsscriptionso
6.1.3 Datastream Queries
6.2 Administration Guide
6.2.1 Virtualization.
6.2.2 Cloudification
6.2.3 Object-Relational Mapping (ORM)
6.24 DBMS
6.25 Cronjobs
6.2.6 Cloud Deployment
6.2.7 N2Sky Credentials
Developer Guide
7.1 Developing a Paradigm
7.1.1 N2SkyService
7.1.2 Tutorial Backprop Service L.
7.1.3 N2SkyNet
7.2 Publishing a paradigm in the N2Sky Service Store
7.3 Developing SaaS Components
7.3.1 Smartphone App - The-M-Project and jQM
7.3.2 Web Portal - Google Web Toolkit
Conclusion and Outlook
8.1 Contributions
8.2 Conclusion and Further Research
8.3 Lessons Learned
8.3.1 Technical Skills.
8.3.2 Publications Related to this Thesis
XML Schema Definitions
A.1 NNServiceDescription - n2sky-description.xsd
A.2 NNDEFINITION - n2sky-definition.xsd
A.3 NNDATA - n2sky-data.xsd
A.4 NNRESULT - n2sky-result.xsd,
A5 TYPES - n2sky-types.xsd
Abstract
B.1 English
B.2 Deutsch

Curriculum Vitae

73
73
73
73
75
79
79
80
82
82
85
85
86

89
89
89
93
93
93
94
94
97

99
100
100
101
101
101

111
111
111
114
114
114

119
119
120

121

Chapter 1

Introduction

1.1 Motivation

Understanding how the human brain works is one of the greatest challenges in science.
The Human Brain Project [1] is an extremely ambitious attempt to answer this question
by trying to create a realistic model of the human brain and simulate it on supercomputers
based on latest findings in neuroscience. If future findings will continue to be as rich as
now, achieving this goal might not seem as impossible as it seems today. One of the key
tasks the research center in Jiilich primarily responsible for is to develop a computing
infrastructure which meets the immodest requirements: It has to be about a factor
of 1000 faster than the most powerful supercomputers currently existing. This means
to break through the border of Exaflop range (i.e. 10'® floating point operations per
second).

Artificial neural networks are also inspired from human or animal central nervous system
as systems of neurons interconnected by “synapses’ (they are called weights) and are
used typically to solve machine learning and pattern recognition tasks. Working with
artificial neural networks is also very time-consuming and “resource-hungry”’. Neural
network training and evaluation tasks cause the main part of the effort. Training tasks
of neural networks containing large training data sets can take several hours or even
days. Resources needed or created in this context should be accessible for the neural
information processing community in a transparent way.

As described by the UK e-Science initiative several goals can be reached by the usage of
new stimulating techniques [2]:

e Fostering more effective and seamless collaboration of dispersed scientific or com-
mercial communities.

e Large-scale applications complying with these requirements should provide a uni-
form "look and feel” to a wide range of resources and location independence of
data and computational resources.

e Enabling transparent access to "high-end” resources from the desktop.

Problem Statement. These considerations lead us to the following more specific
problem description:

e Working with artificial neural networks needs elasticity concerning computing
power as well as size and number of resources.

e Many scientists develop systems for their own neural network applications because
existing programs often fail in providing a comprehensive, easy-to-use, and trans-
parent interface,

e Most of these systems lack a generalized framework for handling data sets and
neural networks homogeneously.

e It should be possible to unify different resources to one single resource and present
it in a standardized way.

e Foster cooperation between members of scientific communities by sharing these
resources.

These problems leads to the basic idea of the present Master's thesis, namely to create
a neural network simulation environment consisting of services in the Clouds that can
be securely accessed from everywhere.

The layout of this Master's thesis is as follows: In Chapter 2 the N2Sky architecture is
described in general whereas Chapter 3 presents every N2Sky component in detail., The
interface of N2Sky is laid out in Chapter 4. The tutorial in Chapter 5 describes how
to create, train and evaluate a simple Backpropagation neural network The User Guide
in Chapter 6 is divided into two parts: End User Guide (6.1) and Administraton Guide
(6.2). Chapter 7 includes a Developer’s Guide The thesis ends with a look at further
developments and research directions in Chapter 8.

1.2 Terms and Definitions

An Artificial Neural Network (ANN) or in short a Neural Network (NN) is an in-
formation processing paradigm that is inspired by the way biological central nervous
systems, such as the brain, process information. Hecht-Nielsen, the inventor of one of
the first neurocomputers, defines an ANN as "a computing system made up of a num-
ber of simple, highly interconnected processing elements, which process information by
their dynamic state response to external inputs’ [3]. An introduction to Computational
Intelligence in general and Neural Networks in detail can be found in [4].

A Virtual Organization (VO) is a logical orchestration of globally dispersed resources
to achieve common goals [5]. A VO couples a wide variety of geographically distributed
computational resources (such as PCs, workstations and supercomputers), databases,
storage systems, libraries and special purpose scientific instruments. This wide range
of resources then is present as one integrated unified resource. Once prepared, such
resources can be provided to communities. In the Computational Intelligence community

these advancements in sharing resources transparently are not used to the maximum
possible extent until now.

For the term Reference Architecture (RA) different definitions exist The one which
is important in our context is presented by IEEE standard making institute. An RA is
defined as a way of documenting good architecture design practice to address commonly
occurring problem [6]. Muller defines a list of criteria for a good RA [7]:

e Understandable for a broad set of heterogeneous stakeholders like customers, prod-
uct managers, project managers or engineers,

e Accessible and actually read or seen by a majority of the organization,
e Addresses the key issues of the specific domain,

e Satisfactory quality,

e Acceptable,

e Up-to-date and maintainable and

e Adds value to the business.

N2Sky is an artificial neural network simulation environment providing basic functions
like creating, training and evaluating neural networks and is presented in this thesis. The
system is Cloud-based in order to allow for a growing user community. Our simulator
interacts with Cloud data resources (i.e. databases) to store and retrieve all relevant
data about static and dynamic components of NN objects. Cloud computing resources
provide elastic processing cycles for "power-hungry NN simulations. N2Sky provides a
standardized description language for describing neural net paradigms and objects called
VINNSL [8] and a business model for researchers and students but also for any interested
customer. Furthermore our system allows to be extended by additional NN paradigms
provided by arbitrary developers.

The term N2Sky was inspired by the emerging Sky computing model described in [9].
Sky computing was defined as an architectural concept that denotes federated Cloud
computing. It allows for the creation of large infrastructures consisting of Clouds of
different affinity, i.e. providing different types of resources, e.g. computational power,
disk space, networks, etc., which work together to form one giant Cloud or, as it were,
a sky computer.

During the last years many experts have tried to define the term Cloud Compting
[10], [11]. For our purpose, Buyya's definition appears most appropriate: "A Cloud is
a type of parallel and distributed system consisting of a collection of interconnected
and virtualised computers that are dynamically provisioned and presented as one or
more unified computing resources based on service-level agreements established through
negotiation between the service provider and consumers” [12]. This recalls the definition
of Virtual Organizations and emphasizes the existence of a business model which is one of
the main differences between Cloud Computing and Grid Computing. A more technical
one is provided by the U.S. National Institute of Standards and Technology where the
essential characteristics of Cloud Computing is to enable ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources like servers,
networks, storage, services and applications. Such resources can be rapidly provisioned
and released with low system administration effort or minimal service provider interaction
[13].

1.3 Related work

Related projects can be classified into two categories: Virtual Organizations for Com-
putational Intelligence and Artificial Neural Network Simulators. The first one focuses
on community building and resource sharing, whereas the second one subsumes only a
small selection of neural network simulation engines already existing.

1.3.1 Virtual Organizations for Computational Intelligence

In the field of Computational Intelligence and Machine Learning we were able to identify
only two existing VOs: RAVO and CIML.

RAVO. The Reference Architecture for Virtual Organizations (RAVO) [14]
was developed by Wajeeha Khalil, a PhD student at the University of Vienna. It is
presented as a standard for building Virtual Organizations (VOs). It gives a starting
point for electronic collaboration in one or more domains for developers, organizations
and individuals RAVO consists of two parts.

1. The guidance for requirements analysis. In the first phase boundaries of the
VO are defined and mandatory and optional components are identified. In case
of evolution of an existing system to a VO, additionally a Gap analysis is also
performed.

2. The blueprint for a layered architecture. The N2Sky architecture pre-
sented in Chapter 2 is derived from RAVO.

CIML. The CIML portal [15] is an international multi-university initiative to form a VO
in the field of Computational Intelligence and Machine Learning. Its primary purpose
is to help facilitate a virtual scientific community infrastructure for all those involved
with or interested in this field. The CIML portal provides both research and education
resources, and specific application-oriented resources residing at the portal or are linked
from the CIML site.

The CIML portal is, besides its goal to gather all type of users interested in Computa-
tional Intelligence and Machine Learning. It provides only a static pool of knowledge
resources and totally lacks other forms of resources and new computing paradigms for
supporting collaborative work. Furthermore it is built without clear design principles. Its
environment is built using a conventional approach and without giving clear information
about the employed IT infrastructure. Therefore the CIML community doesn’t have the
necessary motivation to contribute and we can say that the acceptance of the CIML
portal is relatively low.

1.3.2 Artificial Neural Network Simulators

In the last two decades a large number of neural network simulators have been developed.
The following presents only a few of them.

SOM-PAK. The Self-Organizing Map Program Package (SOM-PAK) [16] was
developed in the early 1990s at the Helsinki University of Technology. It defines the
SOM as “a mapping from the input data space R" onto a regular two-dimensional array
of nodes” [16]. In other words we can say that the SOM is a "nonlinear projection" of
the probability density function p(z) of the high-dimensional input data onto the two-
dimensional display like a flower that is pressed. SOM-PAK provides a set of programs
that run separately from the console.

SNNS. The Stuttgart Neural Network Simulator (SNNS) [17] was developed at
the Institute for Parallel and Distributed High Performance Systems at the University of
Stuttgart since 1989. It consists of four main components:

1. Simulator kernel,

2. Graphical user interface,

3. Batch execution interface batchman and
4. Network compiler snns2c

The GUI can be used to create, manipulate and visualize neural nets directly in various
ways, so it should also be well suited for unexperienced users. An important design
concept is to enable the user to select only those aspects of the visual representation of
the neural net in which he is interested.

Over the last few years several artificial neural network simulation systems were developed
at the University of Vienna fostering up-to-date computer science paradigms:

1. NeuroAccess. NeuroAccess [18] was developed in 1998 and deals with the con-
ceptual and physical integration of neural networks into relational database sys-
tems.

2. NeuroWeb. NeuroWeb [19] is an artificial neural network simulator which exploits
Internet-based networks as a transparent layer to exchange information (neural
network paradigms and neural network objects). NeuroWeb was presented in 2002.

3. N2Grid. The N2Grid system [20] was developed in 2004 reusing several proven
design principles from NeuroWeb. The original idea behind N2Grid was to consider
all components of an artificial neural network as data objects that can be serialized
and stored at some data site in the Grid,

4. N2Cloud. The N2Cloud system [21] is a further evolution step of N2Grid and
was presented in 2010. It is based on a service-oriented architecture (SOA) and
will use storage services provided by a Cloud environment.

5. N2Sky. The presented N2Sky environment takes up the technology of N2Cloud
to a new dimension using RAVO and the virtual organization paradigm.

Chapter 2

The N2Sky Architecture

In this chapter we present a requirements analysis consisting of a questionnaire and a
list of functional requirements, as well as the resulting N2Sky architecture designed to
make use of Cloud technology and service-orientation.

2.1 Requirements Analysis

2.1.1 Questionnaire

This updated and extended questionnaire is based on the N2Sky case study [14] drawn
up in common with Wajeeha Khalil. The first six questions (Q1-Q6) are derived from
phase 1 of RAVO's requirements analysis as they are:

e “Q1: Why to form a VO? What are the reasons of an organization to create a
VO?

e Q2: What is the motivation behind participation? Why should other persons,
institutes, service providers want to participate in a VO?

e Q3: What services are offered by a VO?

e Q4: How are these services fared? What is the type of the resources/business
model?

e Q5: Who are the intended users? Who will eventually use and get benefited from
this VO?

e Q6: What is the life of (membership of) a VO? Are temporal alliance or permanent
participation expected?’ [14].

Question Q7 refers to phase 2 (Identification of Components) whereas Q8 to Q10 initiate
a Gap analysis. According to the RAVO guidance for requirements analysis this additional
analysis is required because N2Sky is not a completely new system but rather is also
based on previous developments.

2.1.1.1 The need for a VO

Question Q1:
What are the reasons to form a Virtual Organization for N2sky?
Answer:

This question can be answered keeping two aspects in mind: technical needs and social
aspects. N2Sky is based on a Cloud infrastructure instead of a Grid infrastructure as
provided by N2Grid. For technical aspects five Cloud characteristics [13] can be
revisited to develop a VO for the neural network community:

1. Shared Pool of Resources. Resources are shared by multiple tenants. A tenant
is defined by the type of Cloud being used. Therefore a tenant can be either a de-
partment, organization, institution, etc. N2Sky shares besides hardware resources
also knowledge resources. This allows the creation of a shared pool of neural net
paradigms, neural net objects and other data and information between researchers,
end users and developers worldwide.

2. On-demand self-service. Consumers can create their computing resources
(server, operating system, or software) within mere minutes of deciding they need
it without requiring human interaction with each service provider. N2Sky allows for
transparent access to "high-end” resources (computing and knowledge resources)
stored within the Cloud on a global scale from desktop or smart phone, i.e. when-
ever the consumer needs is provided independently from the local infrastructure
situation.

3. Broad network access. Users can access computing resources from anywhere
they need it as long as they are connected to the network. N2Sky fosters location
independence of computational, storage and network resources.

4. Rapid elasticity. Computing resources can scale up or scale down based on the
users needs. To end users this appears to be unlimited resources. N2Sky delivers
to the users a resource infrastructure which scales according to the problem. This
leads to the situation that always the necessary resources are available to provide
efficient and standardized solutions for any neural network problem.

5. Measured service. Services of Cloud systems automatically control and optimize
resource use by leveraging a metering capability enabling the pay-as-you-go model.
This allows consumers of computing resources to pay based on their use of the
resource. N2Sky supports the creation of neural network business models. Access
to neural network resources, as novel paradigms or trained neural nets for specific
problem solutions. Resources can be offered for free or following certain business
regulations, e.g. a certain fee for usage or access only for specific user groups.

“For social aspects forming a VO is to bring the people together who are common in
some respect. Sometimes goals unite the people and sometimes problems bring them
closer. So building a community with group of people having problems and those who
have solutions can be achieved in form of a VO. A trusted platform to share their com-

monalities in terms of knowledge, information, applications and procedures makes the
face of a VO well recognized and accepted.” [14]. Besides neural network simulation
methods, N2Sky's main focus is on sharing resources among the neural network com-
munity. Creating a VO helps in forming this community in a structured way.

2.1.1.2 The motivation behind participation

Question Q2:

What is the motivation behind participation? Why should other persons, institutes,
service providers want to participate in N2Sky's VO?

Answer:

“This is the key question, which discovers the needs of participating entities in a VO thus
defining the problem domain. Identification of common needs has an important impact
on the shape of a VO" [14]. Some specific reasons for joining our N2Sky community are
listed as follows:

“Share neural net paradigms, neural net objects and other data and information
between researchers, developers and end users worldwide.

Provide for an efficient and standardized solutions to NN problems.

Transparent access to “high-end” neural resources stored within the Cloud from
desktop or smart phone.

Provide a uniform “look and feel” to NN resources.
Location independence of computational, storage and network resources” [14].

Still no standard exists defining a description language for the exchange of resources
among artificial neural network simulators. VINNSL [8] is a proposal for such a
specification.

Existing neural network simulation systems “lack of a generalized framework for
handling data sets and neural networks homogenously. During the training phase
and the evaluation phase of a neural net the user has to feed the net with large
amounts of data. Conventionally data sets are mostly supported via sequential files
only and the definition of the input stream, output or target stream of a neural
net is often static and extremely complex” [20].

The launch of N2Sky may inspire other researchers to collaborate and share their
individual resources.

Creation, training and evaluation of a great number of neural net resources on a
free basis.

A use case in the problem field of cancer cell classification is described in Subsection

2.3.2.

2.1.1.3 Provided services

Question Q3:
What services are offered by N2Sky's VVO? Which scenarios are supported by N2Sky?
Answer:

Below there is a partial list of supported scenarios including stakeholders involved in
them:

e “Read and discuss turorials, documentations, presentations and research papers
(All stakeholders).

e Publish turorials, research papers and presentations (Contributors).

e Manage stakeholder account: edit data, select payment method, credit account,
cash out (All stakeholders).

e Integrate hardware into N2Sky, e.g. scanner or sensors and select pricing models
to offer (Contributors).

e Simulation services: Create, train and evaluate neural objects (Consumers).

e Create end user bill: calculate and send bill, debit amount and credit parts of it
the contributors (Controller as subclass of Administrator).

e Check stakeholder accounts and send reminders if bills were not paid (Controllers)”
[14].

e Upload input sample data per copy/paste or via database queries (Consumers).

e Upload new paradigm services to N2Sky and choose appropriate pricing model
(Contributors).

e Integrate paradigms after a successfully passed upload (Administrators).

e Query Interface: Query proven solution approaches of the community, currently
i.e. search for neural network problems and their solutions (Consumers).

e Select resources that will be used and choose a pricing model for them (Con-
sumers).

2.1.1.4 Business model

Question Q4:

How are these services fared? What is the type of the resources/business model? Is
there a specific business model as foreseen in RAVO?

Answer:

The goal of our business model is to cover the greatest possible number of different
customer and provider requirements. Currently N2Sky is used in an educational context

10

and offers its services fro free. After implementing additional security concepts we plan
to offer N2Sky also in a commercial context. We plan to implement following pricing
models where the total price will be the sum of paradigm provider fees and Cloud provider
fees in three different SLAs:

1. Pay-per-use. Paradigm usage in three service level variants: Premium, Standard
and Minimal.

2. Flat rate. The user is charged with the pice P for the selected SLA for m months
with a limit of x computation cycles per month.

3. Local execution. For experienced users it is also possible to download paradigm/s
to his own machine (notebook, workstation or server) so he has to pay only for
those paradigm/s and a small manipulation fee to the Cloud provider.

4. Negotiated roles. Large customers who have special requirements are given
the possibility to agree to special conditions which can then be reused for similar
clients.

5. Dynamic negotiation. If the customer wants to use the N2Sky system ex-
tensively it is possible to dynamically negotiate conditions both with the Cloud
provider and the paradigm vendor where these negotiations should be moderated
by the N2Sky system.

A detailed description of N2sky business model and SLA possibilities is provided in
Subsection 3.2.3.

2.1.1.5 Intended VO users

Question Qb:

Who are the intended users? Which stakeholders will eventually use and get benefited
from N2Sky's VO?

Answer:

These following groups of stakeholders will eventually get benefited from N2Sky. In
Subsection 3.2.5 these roles are described in detail.

e Subjects. Subjects are both contributors and consumers, e.g. neural net paradigm
providers and paradigm end users. Possible examples for subjects are neural net-
work researchers, professors, Master's and PhD students.

e End users. Users only consuming but not providing services. Possible examples
are researchers, lecturers, students and commercial users that are interested in
neural network problem solutions

e Developer. Paradigm service developer contribute services and provide it for End
Users either for free or choosing a particular pricing model on a pay-per-use basis,
monthly flat rates or special agreements.

11

e Administrators. Administrators can be either system administrators (N2Sky Ad-
ministrator) or business administrators (N2Sky Controller). The N2Sky controller
controls the business workflow (management of resources and pricing models, pay-
ments, invoicing, bookkeeping, reminders),

2.1.1.6 Duration of the N2Sky VO

Question Q6:
What is the life of the VO? Is permanent participation expected or only temporal alliance?
Answer:

N2Sky is not created for a specific period of time. It is open for updates and im-
provements from authenticated stakeholders. In an educational context at the university
attendees will participate normally for the duration of the course, i.e. 4-5 months but
are invited to extend their membership for further contribution.

2.1.1.7 Components identified

Question Q7:
Which building blocks are missing in N2Sky in comparison to RAVO and CIML VOs?
Answer:

We can identify two missing components for N2Sky: Workflow tools, Provenance and
User authorization:

e Workflow tools. To execute micro flows during neural network training and eval-
uation phases it should be possible to integrate several workflow tools. Workflow
systems are described in Subsection 3.2.7.

e Provenance. To collect metadata for each neural network simulation task it
should be possible to integrate data provenance tools.

e User authorization: Sharing resources in a secure way needs to integrate user
authorization methods. Access control is described in Subsection 3.2.6.

2.1.1.8 Gap Analysis

Question Q8:

What are the existing VVOs in the field of Computational Intelligence and why you based
your development on RAVO?

Answer:
The two existing VOs, RAVO and CIML are characterized in Subsection 1.3.1. | choosed

RAVOQ's architecture because it identifies components within a Cloud SPI stack consisting

12

of five layers. It helped me in identifying and appending components for a special VO in
the field of neural networks. | think RAVO is a better architectural concept than CIML
in establishing VOs because it is optimized to run on Cloud infrastructures. Nevertheless
a collaboration with CIML is also quite conceivable.

| S.NO | FEATURES | N2Grid [20] | N2Cloud [21] [N2Sky |
A PORTAL INFORMATION
1 Introduction Y Y Y
2 Team members Y Y Y
3 Tutorials Y Y Y
4 News/Updates Y Y Y
5 FAQs Y Y Y
6 Contact Y Y Y
B RESOURCE INFORMATION
1 Glossary Y Y Y
2 Publications Y Y Y
3 Presentations Y Y Y
4 Links to related resources Y Y Y
5 Software/Applications Y Y Y
6 Info on techn. architecture Y Y Y
7 Newsletter N N N
C RESOURCES
1 Calendar Y Y Y
2 Blogs/Forum Y Y Y
3 Research communities/Sites Y Y Y
4 Workshops/Seminars Y Y Y
5 Chat/Email N N N
D USER INFORMATION
1 Sign in N N Y
2 Create account N N Y
3 Forgot your password N N N
E TASK INFORMATION
1 Data search N N N
2 Graphical result display Y Y Y
3 Adding services Y Y Y
4 Portal usage statistics N N N
5 Tools N N N
6 Workflow tools N N N
7 Provenance tools N N N

Table 2.1: Gap Analysis - Comparing N2Sky Virtual Organization's characteristics to its
predecessors N2Grid and N2Cloud.?

1Source: Own formation as continuation of Table 5.2 in [14] where N2Grid is compared with existing
VO characteristics in the field of Computation Intelligence and Machine Learning.

13

Question Q9:
On which system is N2Sky an upgrade?
Answer:

N2Sky is based on previous developments at the Workflow Systems and Technology
Group. The Simulation Management component and Simulation Services are further
developments of the N2Grid Service whereas interface specifications are based on the
Neural network specification language VINNSL.

Table 2.1 compares N2sky's VO characteristics with its predecessors N2Grid and N2cloud
classified in five main components identified in [7]: Portal information, Resource infor-
mation, Resources, User information and Task information. In contrast to N2Grid and
N2Cloud N2Sky contains user information, especially a sign-in mechanism and an ac-
count registration form for registering new users.

Question Q10:

Which logical and physical resources are available in N2Sky's resource hierarchy? Was
RAVO's resource categorization applicable to it?

Answer:

Computation and storage are categorized according to RAVO's physical resources
whereas network traffic is appended to our physical resource hierarchy. Logical re-
sources are derived from RAVO and are refined especially for neural network purposes.
We developed a detailed resource hierarchy described in Subsection 3.2.5. Resources
can be bundled to resource groups (e.g. grouping several paradigm variants to a set of
paradigms which can be chosen or subscribed all at once.).

2.1.1.9 Implementation

Question Q11:

Which technologies do you chose for implementing N2sky components? Please justify
your decisions in brief.

Answer:
N2Sky services running on servers:

e Java. N2sky server components are implemented in Java because N2Grid is also
Java-based

e Spring framework. The Spring framework is a lightweight alternative to EJBs
to realize service-based software components. Used features of Spring are Spring
Beans and JPA to implement our domain model.

e Tomcat. The Spring Framework only needs a Java web application container.
We use Tomcat as application server but N2Sky will run on any JVM-compatible
application server.

14

e Maven2. Project management and build tasks are supported by Maven2. A key
factor for Maven is dependency management. Dependencies (Java libraries) and
plugins (adapters to external software) can be managed and were downloaded from
repositories automatically (configured in pom.xml).

e Jersey. We chose Jersey as framework for realizing RESTful Web Services be-
cause its production-ready quality and its large developer community. Jersey is the
reference implementation for RESTful services provided by Sun/Oracle.

N2sky Mobile Web Portal:

e HTML5. The Mobile Web Portal is pure HTML5, CSS3 and JavaScript so iOS
or Android apps can be created over PhoneGap with minimal additional effort.

e jQuery Mobile. As user interface design framework jQuery Mobile (JQM) is used
because it is JavaScript and CSS-based by providing a standardized way of using
stylesheets and Ul elements like buttons, lists or input fields.

e The-M-Project. As jQM-based MVC framework The-M-Project is used to sep-
arate code into three categories: Model, View and Controller.

Cloud Infrastructure:

e Eucalyptus: The freely available Eucalyptus is used to create private Clouds at
our own infrastructure. It is compatible with Amazon Web Services (EC2 and S3).

e AWS. As testing environment we use Amazon Web Services because a variety of
operating systems and data stores are provided just ready to run.
2.1.2 Functional Requirements

The following functional requirements formalize and complete requirements not occured
in answers of the questionnaire presented above.

2.1.2.1 SOA

1. Every component of N2Sky should be available as a Service.

2. Components within the SaaS should be browser-accessible or be downloadable as
desktop or smart phone apps.

3. Components within the Paa$S are connected by Web Services or APls

4. Components within the laaS should be accessible via Web Services or protocols.

2.1.2.2 Cloud Computing

1. All N2Sky components can easily be integrated into a Cloud computing infrastruc-
ture like Eucalyptus or Amazon EC2.

15

It should be possible to integrate a variety of relationsl DBMS to persist N2Sky's
domain model.

Each instance on a Cloud-based node should have access to our relational DBMS,
if more than one RDBMS are running within Clouds, they should be synchronized
automatically.

It should be possible to integrate a variety of key/value stores and document-based
stores like MongoDB. Synchronization between multiple stores is not required.

Every authorized user should be able to query any persistent object within the
Cloud.

A fine-grained access control system should control the visibility of shared resources
depending on stakeholder roles and project memberships (only for commercial use).

Elasticity in terms of computing and storage resources.

2.1.2.3 Neural Networks

1.

2.

Many different neural network paradigms can be offered for one theoretical prob-
lem.

A developer should be able to easily integrate a newly developed neural network
paradigm into N2Sky.

2.1.2.4 User Interface

1.
2.
3.

A uniform "look and feel" should be provided to neural network resources.
The web applications should also be accessible by smart phone browsers.

A Query interface like Google should enable users to search for theoretical problems
and matching their existing solution methods.

A simple and intuitive providing of paradigm services is needed to get it for free
or to purchase it (“iTunes for paradigms”)

2.1.2.5 Business Model

1.

Developers should be given the opportunity to earn money with their neural network
paradigms.

2. End users should be able to choose between different pricing models.

16

2.2 The N2Sky Architecture as an Instance of
RAVO

The basic categorization of the N2Sky architecture depends on the three categories of
the Cloud computing SPI stack as they are: Infrastructure as a Service (laaS), Platform
as a Service (PaaS) and Software as a Service (SaaS).

In the scientific community Cloud computing is sometimes stated as the natural evolution
of Grid computing. Cloud computing therefore became an awesome word after IBM and
Google collaborated in using this computing paradigm followed by the launch of IBM's
Blue Cloud [22].

The N2Sky architecture is derived from the RAVO architecture [14] which is depicted
in Figure 2.1 on the left hand side. The main difference to the standard SPI stack is
that PaaS and laaS each are further divided into two layers. The diagram on the right
hand side in Figure 7?7 depicts the N2Sky architecture at the end of the first integration
phase whereas the extended model as goal of the second integration phase is shown in
Figure 2.2 (yellow components: mandatory, white: phase 1, grey: phase 2). During the
preparation of this thesis mainly mandatory components were implemented respectively
integrated. Integrating the other components remains for further work.

Everything-as-a-Service

4-Service Layer

Neural Network Applications

Domain Specific | | peduce Knowledge from = 4-Service
Application Results/Data Mining Layer

Smartphone App Web Portal

Platform-as-a-Service

3-Neural Network Layer

B Simulation Services Simulation Mgmt. Business Administr. |
[Wader | Vo Trst J J J
Resource Informati S

[and

2-Abstract Layer

Registry | Business Model User Mgmt.
—

Resource perT— J stA | Monitoring || Accounting Access Contro
: orkflow System ccess Control
Workflow || Graphical Manag nt 2-
L ||l Ansitect

Layer

1-Infrastructure Enabler

Infrastructure-as-a-service

1-Infrastructure Enabler | Technology Architecture

Resource Mgmt

0-Factory Layer

Computational . Expert’s
Services DR Knowledge 0- Factory Layer

Physical Resources

Computation Storage Network

Everything-as-a-Service

Figure 2.1: The RAVO architecture and the derived N2Sky architecture model after
integration phase 1.2

2Source of diagram on the left: [14, p. 43].

17

Query Interface Smartphone App Web Portal

Simulation Services | Simulation Mgmt. | Business Administr.

Workflow System

s | o || s

Access Control

Component
Archive

=

Figure 2.2: The N2Sky architecture after integration phase 2.

18

2.2.1 Infrastructure as a Service (laaS)

The laaS layer is all about managing resources, laaS “basically provides enhanced vir-
tualisation capabilities. Accordingly, different resources may be provided via a service
interface” [23]. In the N2Sky architecture the laaS layer consists of two sublayers:
Factory Layer and Infrastructure Enabler Layer. Users need administrative rights for
accessing the resources in Layer 0 over the resource management services in Layer 1.

e Layer 0. The Factory Layer contains physical and logical resources for N2Sky
components. Physical resources comprise of hardware devices for storage, compu-
tation cycles and network traffic in a distributed manner. Logical resources contain
expert's knowledge helping solving special problems like the Paradigm Matching
problem described in Subsection 3.4.1.

e Layer 1. The Infrastructure Enabler Layer allows access to resources provided
by the Factory layer. It consists of protocols, procedures and methods to manage
the desired resources.

2.2.2 Platform as a Service (PaaS)

Paa$ is all about application or service hosting on an abstract or more domain-specific
basis. PaaS provides “computational resources via a platform upon which applications
and services can be developed and hosted. PaaS typically makes use of dedicated APIs
to control the behaviour of a server hosting engine which executes and replicates the
execution according to user requests” [23]. It provides transparent access to resources
offered by the laaS layer and transparent access for applications offered by the SaaS
layer. The Google App Engine, Force.com and Windows Azure are the most common
examples. In the N2Sky architecture it is divided into two sublayers:

e Layer 2. The Abstract Layer contains domain-independent tools that are de-
signed not only for use in connection with neural networks. A slight difference to
RAVO is that we see service level agreements (SLAs) as part of our business model
instead of placing it directly in Layer 1.

e Layer 3. The Neural Network Layer is composed of domain-specific (i.e. neural
network-specific) applications.

2.2.3 Software as a Service (SaaS)

Finally, the SaaS layer on top of the SPI stack consists of Cloud-enabled ready-to-use
applications or services, Saas offers “implementations of specific business functions and
business processes that are provided with specific Cloud capabilities, i.e. they provide
applications / services using a Cloud infrastructure or platform, rather than providing
Cloud features themselves” [23]. Common examples are Google Docs, Microsoft Office
365, SAP Business by Design or Salesforce CRM. In context of N2Sky, SaaS is composed
of one layer, namely the Service Layer.

19

e Layer 4. The Service Layer contains the user interfaces of applications provided
in Layer 3 and is an entry point for both end users and contributors. Components
are hosted in the Cloud or can be downloaded to local workstations or mobile

devices.

2.2.4 Everything as a Service (XaaS)

Each of the five layers provide its functionality in a pure service-oriented manner so we
can say that the N2Sky architecture realizes Everything-as-a-Service.

Table 2.2 again shows the complete list of N2Sky components or technologies including
references to their component and interface descriptions, each assigned to one layer of

the extended SPI stack.

Section Section | Service | Neur. N. | Abstr. | Infr. En

Architect. | Interface | L. (4) L.3) | L (2 L (1)
Web Portal 342 442 X
smart phone App 343 443 X
Query Interface 3.4.1 441 X
Hosted Uls 344 4.4.4 X
Simulation Services 3.3.1 43.1 X
Simulation Management 3.3.2 4.3.2 X
Business Administration 3.3.3 433 X
Hosted Components 3.3.4 4.3.4 X
Comp. Hosting Platform 3.2.9 429 X
Registry 3.2.1 421 X
Monitoring 3.2.2 4.2.2 X
SLA 3.2.3 423 X
Controlling and Acclunting 3.2.4 4.2.4 X
Usermanagement 3.2.5 4.2.5 X
Access Control 3.2.6 4.2.6 X
Workflow System 3.2.7 4.2.7 X
Knowledge Management 3.2.8 4.2.8 X
Annotation Service 3.2.10 4.2.10 X
Component Archive 3.1.1 4.1.1 X
Data Archive 3.1.2 4.1.2 X
Ad-hoc Infrastructure 3.1.3 4.1.3 X

Table 2.2: Components with corresponding layer-assignments.

20

2.3 Scenarios

2.3.1 A Sample Workflow

Before we present N2Sky components in detail we now focus on component collaboration.
Figure 2.3 depicts an overall sample workflow consisting of mandatory and phase-1-
components. The numbers refer to the labels in the diagram.

2 Login

5 Send session ID or deny

6 Query NN paradigms

* Web Services

~ N25KY (Mobile) Web Portal

-

-

8 create /[train Jevaluate

3 check credentials

T

5

Web Service

N2SKY Registry

5 i
. ’
L /
\j-': 11 start evaluation /
¢ check status / get result

4 '1 Usermanagement and Access Control
Simulation Management 4 send session ID or deny access /’/
>
AT & = o
I’ by \\-_‘ "’J
i ki S > Web Services
- Business g -
Monitor : %, / 3 5 g
Admin. b o Simulation Services
- (J 3
S E :
i /10 start training |
Iy e Jcheck status / get result
. e ! 3 Neural Network
N s i e et
LY S 7 E Training
7 Paradigms \ .~ i E

Neural Network
Evaluation

7 ~
/ ~.

<
!
N i
~, 9 Install paradigm on host,” .~

%

~,
\,
S

if not already done [/ g
/

/
v

-~ ~,

v
I

-~ N
B i

Web Services / SQL

N25KY Database
and DE Replication

Web Services

Component Archive

Figure 2.3: A N2Sky sample workflow.

A
a
I
I
1

" Web Services

NN Data Archive

| L L
wwa’

1. The developer publishesa paradigm service to N2Sky as described in Subsection

7.2.

2. Stakeholder login via (mobile) web browser (AJAX request, RESTful Web Service).

3. Simulation management service dispatches login request to User management and

access control component per RESTful Web Service.

deny access.

Callback to Simulation management service either sending a new session id or

5. Callback to (mobile) web browser, redirecting session id or deny access.

6. Query Registry for neural network paradigms for problem solving.

7. Callback to (mobile) web browser by sending paradigm metadata.

21

8. Create new neural object by using selected paradigm for free, start new Eucalyptus
node instance if needed, start training and after them start a new evaluation by
using training result. The stakeholder view of the Simulation Core Process is
described in detail in Subsection 3.3.2.

9. Before a training task is able to start properly, it is checked if the desired paradigm
is provided at this host. If not, a Java EE web archive is deployed to this host by
retrieving it from the Component archive service.

10. Start a new training thread - Simulation management checks training status pe-
riodically until status == 100, then get result and store it over data archive in
database.

11. Start a new evaluation thread - Simulation management checks evaluation status
periodically until status == 100, then get result and store it over data archive in
database.

2.3.2 N2Sky Use Case: Cancer Cell Classification

The following use case based on the BrainMaker Breast Cancer Cell Classification project
[24] demonstrates interactions between N2Sky components in real life. The professional
environment: A team of artificial neural network programmers and cancer researcher
develop a system to search for breast cancer cells in tissue images made by an electron
microscope. Breast cancer diagnoses are created automatically from an artificial neural
network-enabled system on the basis of classified cancer cells. The following N2Sky
components are involved:

e Hosted Ul component. In contrast to the referenced BrainMaker project we
assume that the user interface component is integrated into a rich client appli-
cation at a desktop computer in a hospital whereas the cancer diagnosis service
component is hosted in the Cloud on the Neural Network Layer. This makes sense
because the rich client application profits from an elaborated operation-system-
specific user interface whereas the “power-hungry” neural network component runs
within an elastic Cloud.

e Component Hosting Platform. This platform is based on an Eucalyptus Cloud
infrastructure and provides an easy-to-use method to integrate hosted components
like the Breast cancer cell classification service. We assume that this component is
a Spring-based Java web application deployable on Java web application containers
(in this case Tomcat 6). The domain model is persisted in a RDBMS (in this case
PostgreSQL) over a JPA-based O/R mapping.

e Simulation Management Service. The Cancer cell classification component
calls neural net simulation methods like createNeuralObject, () uploadData()
train() and evaluate() by passing JSON data over RESTful Web Services.
The simulation management component itself calls standardized methods like
train(), evaluate(), checkStatus(), getResult() of a simulation ser-
vice in the same way.

22

Simulation Service. A Backpropagation paradigm service is used for training
and evaluation of images shot by an electron microscope. This service is a standard
image-processing neural network solving various classification problems.

Business Administration Service. The Cost Controller selects a pricing model
(pay-per-use, service level agreement (SLA level B), debits money, adds user ac-
counts for employees working for this project and sets budget limits for each em-
ployee. At the other side, the N2Sky Controller performs billing, payment and
reminder cycles.

Registry. The registry provides information about each available component and
checks every 30 minutes if it is still available. If not, the related component is
removed automatically from the service list.

Business Model. The customer decided to choose a pay-per-use model on
SLA level B for hosting, computation and paradigm usage. The main part of
these revenues will be forwarded to the paradigm service provider, the other part
remains with the N2Sky hoster to cover operating cost. The SLA level B was
chosen because the customer wants to save money and accepts a possibly slower
computation at peak times. A detailed description of pricing models is provided
in Subsection 3.2.3.

Usermanagement. Each End User involved in analyzing electron microscope
images gets an individual N2Sky login. The Head of Institute also gets the Cost
Controller role because he is the project manager and therefore cost bearer and
has the opportunity of setting budget limits for each user within this project.

Access Control. Only the pre-selected Backpropagation paradigm service is
accessible for the End User. To use more paradigms, the contract between End
User and Cost Controller has to be modified and results to higher costs. Thereby
the Cost Controller has to confirm or deny this contract.

Annotation Service. It is possible to annotate images with various medical
information This metadata then is displayed as an additional Ul element as part
of the user interface.

Component Archive. If the simulation service is not available at the current
Cloud node it will be retrieved from the component archive as .WAR file ready
to run on Tomcat. Multiple Cloud nodes are running by using automated load
balancing.

Data Archive. Input and output data is stored and retrieved from a document-
based store, in our case, MongoDB. The Data archive is responsible for this.

Ad-hoc Infrastructure. The electron microscope as an additional special instru-
ment is integrated into the image analyzing system enabling interaction with each
other as simple as possible.

23

Chapter 3

Components of N2Sky

This chapter presents a detailed deescription of each N2Sky component according to the
architecture model of implementation phase 2 depicted in Figure 2.2.

3.1 laaS: Infrastructure Enabler

3.1.1 Component Archive

The Component archive is the central source for storing and retrieving components, es-
pecially neural network paradigm services. Within a Cloud environmentt the Component
archive runs on exactly one single instance, otherwise additional technologies in the field
of Distributed Systems will be required. Component replication is essential in cases of
dynamically adding further components and simulation parallelization to accelerate it.
The BPMN diagram in Figure 3.1 depicts the dynamic component replication process
where the Component archive checks if a replica of a desired paradigm service is located
on a desired host. If not, it will be replicated by copying it from the archive. Only after
this householding activities training and evaluation tasks can be initiated on this host.

3.1.2 Data Archive

The Data archive component is used for storing and retrieving neural network-specific
resources in JSON or XML format. When using OGSA-DAI [25] as data resource man-
agement interface data sources could be either file systems or various RDBMS or XML
database systems. The N2Sky Data archive is derived from this concept, authorized user
are able to store and retrieve JSON data to or from key/value stores or document-based
datastores over RESTful Web Services. We are currently using this approach because
OGSA-DAI does not support key/value and document-based stores in the current version
4.2. Data archive queries are described in detail in Subsection 6.1.3.

25

Dynamic component replication

Simulation Mgmt. Registry Component Archive Simulation Service
2 LS Check if host
' simulation contains replica
Nt service path p

Initiate Copy component

training to desired host
» Train

| neural object
Check status | |
get result g
«| Send status /

result

Training
result
Y

Figure 3.1: Dynamic component replication

3.1.3 Ad-hoc Infrastructure

Given the growing importance of smart phones and other mobile computing devices in our
business world there is an increasing need for networks which can be assembled dynam-
ically. Suppose a scientist attends a conference at a foreign university and wants to use
his own smart phone and laptop.to communicate with other conference participants over
N2Sky or over a conference management system. Traditionally the university provides
computer terminals and WLAN access for free and without having to enter a password.
Although this is just simple for the organization team, but has some drawbacks:

e Anyone can access the system, even those who are outside of the building.
e System usage is free, but is already included in the attendance fee.

e In many cases, terminal computers only provide internet acces and some basic
applications, so that participants prefer to use their own equipment.

e If one's phone is used, high roaming fees are charged by the mobile operator.

Would it be not practical if the phone would automatically detect that WLAN is avail-
able and logs in as a device of a conference participant into an encrypted network? A
personalized and time-limited password can easily be obtained by e-mail via a conference
management system. In this case a secure connection will be established and unau-
thorized persons have no access to the network. Participants are also entitled to share
printers, scanners and other peripherals.

26

In a larger context, a cafe can offer its IT infrastructure to its guests so they are able
to achieve high bandwidth by using their own mobile devices. The coffee house owner
could take advantage of this offer not only to increase its number of guests, but also
earn money. A price list makes costs transparent and the user can specify a cost limit,
to be sure not to receive a surprisingly high bill. Payment may be made via the mobile
phone invoice or via a special transfer system as that in N2Sky.

3.2 PaaS: Abstract Layer

3.2.1 Registry

The Registry is a central component of the N2Sky architecture as it allows other com-
ponents to find any desired service within the Cloud. Each involved service registers at
this component to get known to other components.

Key functions of the Registry are:
e First-time registration of new services.

e Periodically checks if a registered service is still available. If not, it will be dereg-
istered automatically.

e Get information about accepted XML/JSON Schema files
e Get information about stored attributes for each registered service
e Search for services by those stored attributes

At starting time the N2Sky system checks for each service held in the management
database (Resource entities in our domain model) if it is still available. After a positive
check, a service will be registered and after this it will be available for components in
SaaS and PaaS layers. Components in Saa$S layer are able to search for services by stored
attributes which can be also queried. Each registered service gets an ID and is rgistered
for a certain time (it is called holdbacktime, i.e. a configurable number of seconds).
Before it is elapsed, the registry triggers a further availability check and only if this check
is negative, the service will be removed from registry. In case of a positive check the time
of the next check will be set to currentTime + holdbackTime as listed in Subsection
42.1.

3.2.2 Monitoring
The Monitoring component should provide methods for two different types of monitoring
[26]:

1. Business Activity Monitoring (BAM) [27]. Business Activity Monitoring
collects business data and metrics like Key Performance Indicators (KPI) [28] as
a basis of business management decisions.

27

2. Technical or IT Monitoring. It is concentrated on monitoring technical aspects
of an IT system and helps IT professionals in their system administration tasks.
IT monitoring includes usage and performance statistics as well as capacity and
resource planning tasks.

In this context we identified key performance indicators determining success or failure of
a neural net paradigm:

e The accuracy of evaluation results in relation to the time the training task con-

sumed.
e Needed time effort to prepare input data for the chosen paradigm.
e The needed time effort to interpret evaluation results.
e The average number of stars customers have given for a paradigm after testing it.
e The monthly revenue made by providing a paradigm in N2Sky.
3.2.3 SLA

The N2Grid system was used so far only within the research community in a non-
commercial way. To ensure a fair use and to offer the possibility to achieve profits for
Cloud providers and neural network paradigm developers we propose a business model
for N2Sky. Before it can function properly, the security model has to be implemented.
Table 3.1. shows several pricing models for users of N2Sky.

Pricing model Cloud provider SLA Paradigm vendor
A B C
Premium rpa - - Z?:l Yiqi
Standard PR PR - > o Vil
Minimal - e e > o Yidi
Flat rate PXAm PXBm chm Z?:l le
Local execution 0 0 0 o, mQ;
Negotiated roles PXAN PXBN PXC’N QYN
Dynamic negotiat. | f(z,pa) | f(z,pB) | f(z,pc) [y, 9)
Table 3.1: N2Sky pricing models.

User fees are subdivided into two parts, the infrastructure of the Cloud provider and
usage of neural network paradigms. To offer an incentive to develop computing-efficient
paradigms these two parts are calculated separately instead of revenue sharing with
predefined percentage rates. Cloud provider fees are dependent on processing cycles x
and the price per cycle p which on its part is dependent on the chosen Service level
agreement (SLA). We differentiate between three service levels:

e Service level A. Simulation requests will be executed preferentially by reserving
a particular percentage of the system resources for these requests.

28

e Service level B. Simulation requests will be executed in parallel by reserving
another particular percentage of the system resources.

e Service level C. Simulation requests will be executed in parallel by using remain-
ing system resources.

These three levels are assured to the user but if there are no simulation requests with
higher priority the system automatically moves the request into the higher level. Every
artificial neural network paradigm y is offered for the price of ¢ for single use or a price
() to use a paradigm for m months. Only evaluation and eventually training of a neural
network will be charged, the creation of a neural network should be free of paradigm
vendor fees. Users are able to choose between seven different pricing models - Standard,
Premium and Minimal are offered on a pay-per-use base whereas Flat rate and Local
execution have an assessment period of one month.

e Premium. Users pay a price of p4 for every processing cycle x and ¢ for each
selected paradigm y. The guaranteed service level is A.

e Standard. Users pay a price of pp for every processing cycle = and ¢ for each
selected paradigm y. The guaranteed service level is B.

e Minimal. Users pay a price of po for every processing cycle x and ¢ for each
selected paradigm y. The service level is C but will often be B.

e Flat rate. Users are charged with the pice P for the selected SLA for m months
with a limit of & computation cycles per month. If users exceed this limit, they
will be downgraded to the lower service levels during the rest of the month. Only
if they choosed a package with service level C and they exceed the network traffic
limit tthey are asked to use their credits for the following month or to buy a new
package.

e Local execution. For experienced users it is also possible to download paradig-
m/s to his own machine (notebook, workstation or server) so he has to pay only
for these paradigm/s plus a small manipulation fee to the Cloud provider. Each
paradigm is secured by a license key which expires at the end of m months, so the
paradigm subscription has to be renewed if the consumer still wants to use them.

e Negotiated roles. Large customers having special requirements are given the
opportunity to agree to special packages which can then be reused for similar
customers.

¢ Dynamic negotiation. If customers want to use N2Sky extensively it is possible
to dynamically negotiate the terms of use with both the Cloud provider and the
paradigm vendor where the negotiations should be moderated by the system.

As a variant of the pricing models Standard and Minimal limits for the Cloud provider
prices pg and pc could be set by the customer within a predetermined range similar to
bids for spot prices in the context of Amazon EC2 [29] spot instances. In this model, spot
rates are constantly changing depending on system load. Simulation tasks are executed
only if the spot price is not higher than a fixed limit.

29

In addition to pricing models in the context of using neural network paradigms the
pricing model for hosting arbitrary software components (see Subsection 3.2.9) can be
chosen similar to the Amazon EC2 instance purchasing options (On-Demand Instances,
Reserved Instances and Spot Instances).

These pricing models are not only applicable to CPU processing cycles but also to other
harware resources like storage, infrastructure and special instrument where = can be seen
for example as disk space in megabyte, network traffic in kilobyte or square meters of
pages printed wich a special plotter.

3.2.4 Controlling and Accounting

With the term Controlling we mean costing services provided by N2Sky mainly based on
three components: Simulation Management, Business Administration and Monitoring. A
common controlling component is SAP CO providing a large variety of costing methods.

Accounting manages billing and tax handling and can be performed using SAP FI.
As alternative to costly SAP components there are a variety of freely available ERP
(Enterprise Resource Planning) systems like OpenERP [30], SQL-Ledger [31], ADempiere
[32], LedgerSMB [33] or Compiere [34]. One of the most interesting open source ERP
systems is OpenBravo [35] because its GUI is fully web-based and its Java web application
runs on Tomcat. OpenBravo is partly based on Compiere and works with PostgreSQL
or Oracle.

To minimize accounting costs a payment method has to be chosen already during user
registration where end users have to transfer money to their personal credit accounts,
preferably by bank transfer, PayPal or Google Checkout. In the future also secure mobile
credit card payment methods are being considered as described in the mobile gSET [36]
research project.

Figure 3.2 depicts relations between stakeholders, resources and organizations. A stake-
holder is assigned to a Cost Bearer Unit of a company or an other organization which
receives the bill for every N2Sky service used by employees of that unit.

3.2.5 User and Role Management
3.2.5.1 Stakeholder

In the context of Virtual Organizations Stakeholders consume and produce resources
offered by a VO. The IEEE Standard 1471-2000 defines a stakeholder as user of the
system, developer and provider of the system's technology, maintainer of the system
and one responsible by the acquisition of the system [6]. Figure 3.3 depicts the N2Sky
stakeholder hierarchy derived from the stakeholder hierarchy presented in [37]. The four
yellow boxes represent instantiable stakeholder classes.

30

Company/
Institution

- Acronym

- Name
- Address

calculates

Invoice

consists of

1 has *

subunit of

Cost Bearer
Unit/Project

- Acronym
- Name

Invoice Part

- 1D
- Descript.
-X.p

- Tax

employs

consumes/
delivers

Stakeholder

Login
Password
Name

-/

*

Resource

Acronym

Name
Descript.

Figure 3.2: Invoicing of services consumed by employees working on a project.

Stakeholder

AN

Contributor

Administrator

i

N2SKY
Controller

Consumer

N

Developer Subject

i

Cost
Controller

31

N\

End User

Figure 3.3: The stakeholder hierarchy containing abstract and concrete (yellow) roles.

Each user (i.e. stakeholder) can own an arbitrary number of roles for a particular subtree
of the resource tree structured hierarchically (see Figure 3.5). There are four different

basic roles: (see Table 3.2):

e N2Sky Controller. A N2Sky Controller is able to add (+) and remove (-) any

role to any user over a graphical user and role management interface.

e Developer. The Developer of neural network resources has all permissions within
his unit except of the manipulation of Cost Controller roles.

e Cost Controller. A Cost Controller is responsible for expenses of a particular
cost bearer unit and has all permissions within this unit.

e End User. A End User is able to consume services up to the defined budget limit
per month. Budget limit operations have to be approved from the Cost Controller

responsible for this cost bearer unit.

Permission to | N2Sky Contr. (NC) | Developer | Cost Contr. (CC) | End User

+/- NC Role X - - -
Reset Password X - within Unit -

+/- CC Role X - within Unit -
+/- Devel. Role X within Unit within Unit -
+/- End User R. X within Unit within Unit withinUnit
Set Budget Limit | CC approvement CC appr. X CC appr.

Table 3.2: System-wide and unit-specific user permissions

3.2.5.2 Subject

Khalil [37] divide stakeholders into four categories (Consumer, Contributor, Developer
and Administrator) according to the IEEE Standard 1471-2000 [6] and introduces a
new stakeholder type: the Subject. A Subject is defined as “a component of a Virtual
Organization, which can consume the resources offered by a Virtual Organization and
also can act like a resource to be consumed in the Virtual Organization environment.”
[37] and redefines a Virtual Organization as “a set of cooperating building blocks, called
Subjects”.

In the view of above definition a Subject has two main characteristics:
1. Subject can be represented as a subclass of both Contributor and Consumer or

2. Subject can be represented as a subclass of Expertise which in turn is a logical
resource.

The first case is shown in the UML class diagram in Figure 7?7 where Subject is a
subclass of both Contributor and Consumer. For example a researcher runs simulations
as a consumer of N2Sky, on the other hand he offers a new paradigm which he has even
developed. In this case there are two billing options: If the developed paradigm is offered

32

 ———

Stakeholder

#id

role
status
XX

+operation()

Contributor

+contribute()
+operation()

<7 N

Developer

Figure 3.4: Subject is a subclass of both Contributor and Consumer.3

Consumer

+consume()
+operation()

Administrator Subject End User

free of charge, the researcher will get a reward from the Cloud provider otherwise he
earns money depending on how often his paradigm is demanded.

The second case is shown in the class diagram in Figure 3.5 where Subject is a subclass
of Expertise which in turn is a logical resource within the resource hierarchy. In addition
to the resource hierarchy presented in [37] Formal Knowledge and Expertise are seen
as separate subclasses of Logical Resource. Formal knowledge is stored in knowledge
bases as well-structured facts and can be retrieved over various deduction mechanisms
by combining single facts. Subject as a subclass of Expertise represents a human expert
offering personal advisory services. Yellow boxes represent the basic billing unit for each
resource where the aggregation relationship indicates that each resource can be divided
into uniform billable units. Within the subtree of physical resources network resources are
extracted from infrastructure resources because we think that network resources are as
important as computation and storage. In return, infrastructure resources are specified
as standard peripheral infrastructure resources (e.g. printer, scanner, camera).

3.2.6 Access Control

There are a variety of security aspects within a SOA. We concentrate on authentica-
tion, authorization and Public Key Infrastructure (PKI). To establish business models
described in Subsection3.2.3, it is absolutely necessary to secure services provided by
N2Sky. Allowing stakeholders to gain privileges for an entire collection of resources,
every resource is structured within trees (see Figure 3.5), in other words, the stakeholder
owns a single resource or even a complete resource subtree.

3Source: Own illustration on the basis of [37, p. 21].

33

Resource

A

T~

Logical Resource

STTON

Formal A
Software Knowledge Expertise
N2 Knowledge y
Paradigm base SUbIEES
1 1 1
(A Queried Consultation
Subscription P P

Physical Resource

T NI~

Computation Storage Network Peripheral Special
Res. Res. Res. Infrastruct. Instrument
A Electron
Processor Harddisk VLAN Printer Microscope
1 1 1 1 1
Computation ; A
i DisKiSEaeE Data tra}fflc Printed Reserved
quantity pages time slots

Figure 3.5: Resource hierarchy with units of account (yellow boxes).

34

Privilege allocation process

User Cost bearer PKI/PMI

o

ot registerg

> Certifie user

Select a
Pricing model

X User is End

Confirm costs
er

— X —— permissions (ACs) for
User is Contfibutor 4 selected resources

Create

Figure 3.6: The Privilege allocation process.

Privilege verification process

User PKI PMI

: Secure
‘ Login |>4>{ connection ‘

—] Verify privileges/
s R
User/Resource
¢Permissmn ok
Execute
AC nof requested
found method

Figure 3.7: The Privilege verification process.

The BPMN model in Figure 3.6 depicts the Privilege allocation process. During user
registration the PKI generates a keypair for a user certificate. After login the user selects
a pricing model as described in Subsection 3.2.3. If the user is an End User and has

35

no Cost Controller role (i.e. the employing organization bears all cost arising in this
unit), an approvement of this manager is necessary to allocate privileges for requested
resources.

The BPMN model in Figure 3.7 shows the Privilege verification process. The PKI checks
the user certificate and establishs an encrypted connection. After selecting a particular
service, method and resource the Privilege Management Infrastructure (PMI) checks
needed user policies and decides if the requested operation will be permitted or denied.

3.2.7 Workflow System

There is a large number of scientific workflow systems, most of them are designed to
run in Grid or Cloud infrastructures.

Kepler. The scientific workflow system Kepler [38] allows combination of activities to a
single process. Osterweil calls Kepler as “perhaps the most advanced scientific workflow
system project” [39] - among Chimera, Taverna, JOpera and Teuta. Kepler is based on
Ptolemy Il and integrates a broad range of tools to support specification, visualization
and execution of scientific workflows. During process execution, input and output data,
user data and time stamps will be logged. Regarding logging of intermediate steps you
have to consider an important aspect: If an activity returns a very large result, it should
be excluded from step-logging for reasons of performance.

Taverna. The scientific workflow system Taverna [40] is mainly used for bioinformatics
applications. It contains two different types of data provenance: on one hand, a simple
model that tracks data flows and data dependencies between activities and on the other
hand a more advanced model for lightweight annotations to the workflow steps. By
using semantic annotations the context of activities is described even better

Chimera. Chimera [41] is able to find or create workflows of Grid services within a
scientific environment. The Virtual Data Language (VDL) of Chimera allows for
the description of abstract workflows while the included Pegasus Planner maps from
abstract to concrete workflows including data movement jobs for executing workflows in
a Grid environment. Scientific processes are visualized by Data flow graphs (DFGs).

JOpera. JOpera is an Eclipse-based workflow system for modeling and executing het-
erogeneous Grid workflows, It is developed at ETH Ziirich and can be used to compose
processes consisting of RESTful Web Services to meet requirements like dynamic late
binding, content-type negotiation, dynamic typing, and state inspection [42].

Teuta. Teuta. [43] is a graphical editor for composing uml-based scientific Grid work-
flows and is integrated with the Askalon Grid Environment (AGE) [44]. In the
context of AGE, Teuta is used for composition, submission, controlling and monitoring
of scientific Grid and Cloud workflows. The included Domain Specific Language
(DSL) for specifying Grid workflows is based on UML 2.0.

36

3.2.8 Knowledge Management

The Knowledge Management component should provide ontologies helping to solve
various problems, especially supporting the Query Interface described in Subsection 3.4.1.
RDF and OWL are possible description languages for ontologies and Sesame [45] is a
framework for storing and retrieving RDF data as language for describing ontologies.

3.2.9 Component Hosting Platform

The idea of a Component Hosting Platform (CHP) is to deploy and run arbitrary soft-
ware components on a Cloud computing environment like a “Google App Engine for
neural network components’. This should enable N2Sky stakeholders to outsource any
software components, in particular those using neural network services. This results in
the following functional and non-functional requirements:

Functional requirements

e Component interfaces via Web Services (SOAP or REST).

Provision of different runtime environments: Java, .net, Ruby, ...

Provision of different application servers: Apache, Tomcat, JBoss, Microsoft IIS,

Provision of different DBMS: MySQL, PostgreSQL, Oracle, MS SQL Server, ...

Ability to manage databases within the customer’s environment.

Non-functional requirements

e Provision of a higher computing capacity at peak load (elasticity).

3.2.10 Annotation Service

We believe that on a comprehensive graphical interface like N2Sky’s Web Portal there
should be not only room for official scientific facts, but also for informal, personal in-
formation. For this purpose we will develop the hideable Annotation Service. If this
interlayer appears a note for each described object will be added. Descriptions can con-
tain both formal and informal information each labeled with a different color. Notes can
be arranged directly at the object or in a separate column on the right side of the screen
depending on user settings. Every user is able to add comments to any object in order
to facilitate discussions. Scientists should be encouraged to add all those details not
usually included in academic work, especially experiments that have failed and pitfalls to
be avoided.

37

The Annotation Service should also include Web 2.0 features like user ratings for neural
network paradigms and other objects, instant messaging with other users or queries
about individuals (other blog entries, ratings, other offered neural network paradigms).
For this purpose, an integration of Twitter or Xing is conceivable.

3.3 PaaS: Neural Network Layer

3.3.1 Simulation Services

Paradigm Simulation Services provide standardized neural network object functional-
ity (train(), evaluate(), checkStatus(), getResult(), ...). Types and oper-
ations are described in detail in Subsection 4.3.1.

3.3.2 Simulation Management

The purpose of the Simulation management component is to manage neural network
simulation tasks by receiving commands initiated from actions on the web portal or
smart phone app. On the other side this component forwards commands and data to
paradigm-specific neural network simulation services over a standardized interface that
is mandatory for all simulation services.

N2Sky Core Process

7 % Login and
" reload Session o
Problem/
Solution Search
2]

X

Create
Neural Object

[Further
=

search ?

Train
Neural Object
[Further =

creation 7 l

X Evaluate
Trained Object
A/[Funher 2
O training 7
e
evaluation 7

Figure 3.8: The N2Sky core process.

The core process of the Simulation management component is depicted in Figure 3.8
by using the functionality of simulation services which is described in Subsection 3.3.1.

38

After user authentication has been performed successfully, your previous session will be
reloaded. It allows users to find all their subscribed, created, trained or evaluated neural
network paradigms and objects.

The four subprocesses of the core process are the Problem/Solution Search described in
Subsection 3.4.1 (Query Interface) as well as creation, training and evaluation of neural
network objects.

3.3.2.1 Create Neural Object

The BPMN diagram in Figure 3.9 depicts the creation process of a neural network object
either by duplicating an existing neural object or by creating a new one. In both cases
the user has to follow these three steps whereas all default values are copies of defined
values of the original neural object.

Subproc. Create Neural Object

4
L

l [Duplicate 7

Preselected X
Paradigms [no

Create Neural
. Object from
selected Paradigm

My Neural

[yes Objects
Duplicate existing

=R

Neural Object

X

%

Define Layers
and Neurons

:

Define Full
Connections |
Short Cuts

:

Choose Service
Parameters

:

Figure 3.9: The subprocess Create Neural Object.

1. Layer definition. The first step in defining a neural object is to define its layers by
defining the number of input and output neurons as well as the number of hidden
layers and the number of hidden neurons of each hidden layer. The maximum and
minimum possible number of neurons and layers are displayed just to the left of
the input field.

2. Layer connections. On top of the screen user inputs regarding the neural network
(input and output neurons, hidden layers and neurons) are displayed graphically in
a matrix form. The standard value for the connection model is Full-Connections.
If the user does not want to have full connections between particular layers he has
to deselect these layers and can create his own shortcuts by filling out appropriate
input fields.

3. Parameter definition. This page is generated entirely dynamically by using the
selected paradigm'’s service description including default values of every input field.

3.3.2.2 Train

The BPMN diagram in Figure 3.10 depicts activities within the training subprocess which
consists of the following five activities:

Subproc. Train Neural Object

N
| !

l [Retrain 7
Created Meural X Trained
Objects [no/ \ [yes M. Objects

i Select new Select trained
Neural Object Neural Object

Define
Train Sample

Run Training
= Evaluate and
adapt weights

Trained
N. Object

D<.

Figure 3.10: The subprocess Train Neural Object..

1. Select object. Select a recently created or an already trained (retrain case)
neural object.

2. Train sample definition. There are two ways to set input samples: Type or
copy input and output values into the provided text area or upload a sample data
text file. In both cases every values has to be separated by using semicolons . The
number of values per sample has to be exactly the same as defined during creation
(i.e. the number of input and output neurons).

3. Training and status info. After pushing the Train button the train operation
of the Simulation service is called in an asynchronous way, i.e. users don't need
to wait until training has finished, rather they are able to run other tasks at the
same time. Next to each object its completion status is displayed based on the
following traffic light system:

(a) green progress bar: Shows computation status of a training.
(b) green or paradigm icon: Training completed successfully,

(c) red: Training aborted with error(s).

40

4. Training results. Trained input and output values are shown. If this option is
selected a training curve is generated and displayed as an interactive diagram.

5. Retrain. If deltas between sample results and calculated results are not sufficiently
low, the user is able to restart training with further training samples.

3.3.2.3 Evaluate

The BPMN diagram in Figure 3.11 shows activities within the evaluation subprocess
which consists of the following five activities:

Subproc. Evaluate Neural Object

.
ool

Trained
N. Objects

Select trained oo
Neural Object

;

Enter
Evaluation Data

Evaluated Evaluation
N. Object Protocol

““““ Run B
Evaluation

:

:

Figure 3.11: The subprocess Evaluate Neural Object.

1. Check access rights. The Access control component checks if the user is
entitled to evaluate a particular neural object. Permissions are based on the pricing
model the user has chosen.

2. Insert evaluation values. There are two ways to insert input values: Type or
copy input values into the provided text area or upload an evaluation data text
file. In both cases all values have to be separated using semicolons. The number
of values per line has to be exactly the same as defined during creation (i.e. the
number of input neurons).

3. Evaluation and status info. After pushing the Evaluate button the evaluate
operation of the Simulation service is called in an asynchronous manner. Next to
each object its completion status is displayed based on the following traffic light
system:

(a) green progress bar: Shows its computation status
(b) green or paradigm icon: Evaluation completed successfully

(c) red: Evaluation aborted with error(s).

41

4. Evaluation protocol and result. After evaluation was completed, the Account-
ing and Controlling component is supplied with usage data for later billing. Only
then evaluation inputs and results are shown on the screen.

5. Further evaluation. If further evaluation of the same neural object is desired
users are able to input further evaluation data.

3.3.3 Business Administration

3.3.3.1 Use Cases

The Business Administration Service provides operations for managing N2Sky's business
workflow depicted in the following Use Case diagrams. It is intended to develop a
component inspired by Apple's iTunes Connect, a suite of web-based tools to manage
publishing and sales processes of both Mac [46] and iOS [47] apps in the Mac/iOS app
store. The diagram in Figure 3.12 shows relations between use cases during integration
of resources and users. End users and contributors (both simply called Users) have to
register before they are able to use and contribute to N2Sky. To manage commercial or
institutional users, every user is assigned to a unit or a project which in turn belongs to a
company that acts as a legal business partner. To utilize services immediately, users have
to select a payment method and have to credit their accounts by making prepayments.
Software and hardware providers are able to integrate neural network paradigms and
hardware and have to define terms of use or select one of the proposed terms. The entry
point for End users is the Query interface where they are able to search for problems or
paradigms (as problem solution methods).

Contrjbutos Register

<<include»> -~~~ @
& | e
<<extgnd>> <<extend>> [
T N

.

W
Credit account
-
o
P
P

Lo <<extend> >
>

Fs
-
-
e

iy

End User

1
1
<<include>> |
i

Select Terms |
of Use =

: i
<<|nclude>>l

Integrate
Hardware

Software
Provider

Search Neural N
Paradigm

Hardware
Provider

Figure 3.12: Integration of users, software and hardware.

42

Train
Neural N

Neural Net

\

/

e

End User
Contributor

Evalual

< <include >
. Meural

Figure 3.13: Training and evaluation of neural networks.

ge u
accou
- 1 g2
Ad>> ! <<eXtend>>
< <exHmn
et ! i

<<exland>> End User
|

Controller

" Send Remindk

Figure 3.14: Financial controlling Use cases.

43

The Use case diagram in Figure 3.13 shows actions during execution of neural network
sessions. Software and hardware service fees are calculated only during evaluation and
eventually during training of neural network objects.

The Use Case diagram in Figure 3.14 depicts relations between use cases in the financial
controlling area. The administrators own account includes not only changing of user data
but also transfer of money from and to his own account. A Controller is derived from
the Contributor actor and is responsable for financial controlling of the whole N2Sky
system. Creating End user bills contains calculation and clearing of the invoice amount.
Furthermore a Controller is also responsible for checking all user accounts regularly and
for sending them reminders if there is not enough money on their accounts. Such a
business workflow makes sense only if adequate security mechanisms are implemented,
particularly access control and secure data transfer.

3.3.3.2 Domain Model

The UML class diagram depicted in Figure 3.15 shows structure and interconnections of
classes belonging to two different domains: the Neural network domain and the Business
domain.

3.3.3.2.1 The Neural Network Domain The Neural Network domain consists of
Paradigm, Creation and Simulation, whereas Training and Evaluation are subclasses of
Simulation. Training always belongs to a Creation and Evaluation always belongs to a
Training object and does not exist without it.

e Paradigm. A neural network paradigm is a subclass of Resource described in
Subsection 3.2.5. The resource hierarchy in Figure 3.5 depicts its superclasses:
A Paradigm is a Software, Logical Resource and finally, a Resource. The unique
paradigm acronym consists of capitalized characters and numbers whereas the first
four characters always define the paradigm group providing the ability to subscribe
for more than one paradigm at once. For example, BPROTUTO is the acronym for
the Tutorial Backpropagation paradigm, a demo paradigm service especially to
demonstrate the interface mechanism of N2Sky paradigm services. BPRO is the
paradigm group Backpropagation. An acronym can be seen as a “public”’ primary
key so that it should be relatively simple to change it whereas the real primary key
(numerical and automatically generated) will be untouched. Every paradigm has
exactly one neural network service description (NNServiceDescription). The
XML Schema definition (n2sky-description.xsd) is listed in Appendix A.1.

e Creation. A Creation is an instantiation of a neural network paradigm and results
to a neural object consisting of defined parameter values and possibly of input
sample data. Every Creation results in exactly one neural network service definition
(NNServiceDefinition). The XML Schema (n2sky-definition.xsd) is listed
in Appendix A.2. A neural network object can be used on two ways:

— Creation-based on free use of a particular paradigm.

44

Stakeholder

login
password
forst_name
last_name
eMail

Stakeholder_Role

acronym
name
description
root: Bool
approver: Bool

T

1 0..1
has parent

to
institution

 —

Subscription

from_date
to_date
subscribed:
Timestamp
approved:
Bool

acronym
name
description

0..1
has parent

Simulation

acronym
name

address

description

short_"

started: timestamp

finished: timestamp

computation_time:
long

failed: bool

Resource 1 0..1
has parent

acronym — .)
type Service_
name Description
description 1 1
icon e ———
available: Bool
service_path 1

Data_Resource

input
short_description
use for

Creation
description Data_Creation
short_"
definition_file short_description
created: 1

Timestamp input
failed: Bool

[XML_Data

file
simulation_type
uploaded:

Timestamp

~

NNData

NNResult

Figure 3.15: N2Sky's domain model as UML class diagram.

45

— Subscription-based creation of a neural object if the paradigm provider
decided to earn money for provided services based on monthly subscriptions.

e Simulation. The two neural network simulation methods are Training and Eval-
uation. Since these methods are time-consuming depending on sample data size
and error thresholds. Starting and finishing time as well as computation time in
milliseconds are saved. For applying more advanced business models, type and
number of CPU cores as well as the number of CPU micro instructions can be
added to these classes. Every Simulation consumes exactly one neural network
data document (XSD listed in A.3) which consists of an arbitrary number of in-
put/output data samples (for training) or onyl input samples (for evaluation) and
results in exactly one neural network result (NNResult - n2sky-result.xsd)
listed in Appendix A.4.

3.3.3.2.2 The Business Domain The Business domain consists of Stakeholder,
Role, Subscription and Project.

e Stakeholder and Role. Every Stakeholder owns at least one Role (in most
cases an End user role). A stakeholder’'s Role assignment consists of one assigned
role and one project the stakeholder works for. So if a stakeholder woks for more
than one project and owns different roles within these projects, this case can be
configured in N2Sky by adding several Role assignments. Every role except the
root role has a parent role so that a Role hierarchy described in Subsection 3.2.5
can be customized.

e Subscription. If a resource is not for free you can make a Subscription for a
particular time period. To subscribe for a resource it is also mandatory to select
a Project. For billing purpose it is important to know for which Project the
Resource is used. This project has to be part of the list of Stakeholder-Role-
Project assignments of the particular stakeholder.

e Project. Our research is in the field of virtual organizations (VOs), so we use
the term Project instead of Unit (i.e. department) of a company. Every Project
has a unique acronym (capitalized characters and numbers) and has exactly one
parent project for making project hierarchies possible. Furthermore, every Project
belongs to a Company or institution to enable a correct fiscal billing process.

3.3.4 Hosted Components

Hosted components could be arbitrary software components managed by the Component
Hosting Platform described in Subsection 3.2.9.

46

3.4 SaaS: Service Layer

3.4.1 Query Interface

The Query Interface (based on the Problem and Solution Search depicted in Figure 3.16)
should provide a search engine interface like Google's search bar to search either for op-
timization problems or solution methods for such problems on predefined search criteria.
In the context of neural networks this solutions are called neural network paradigms (e.g.
Backpropagation, Quickpropagation, Kohonen net, Jordan net, Self organizing maps).
Expert’s knowledge can be retrieved to solve this Paradigm matching problem by using
the Knowledge Management component (see Subsection 3.2.8). Combining one or more

paradigms with a pricing model can lead to a business case as described in Subsection
3.2.3.

Subproc. Problem/Solution Search

.
| |
A 4

; [Advanced Search 7

Problem)
X

Solution =

Paradigm Search
selected Paradigms

Figure 3.16: The Neural Prroblem/Solution search subprocess.

3.4.2 Web Portal

The Web Portal is the central entry point both for service consumers and providers. As
an extended version of the Smartphone app, it is directly interconnected with Simulation
Management and Business Administration.

3.4.3 Smartphone App

The Smartphone App is the central entry point primarily for service consumers and
provides a graphical user interface (GUI) for the Simulation Core Process described in
Subsection 3.3.2 . So we see this app as the Neural network simulation portal manda-
tory for N2Sky. The extended Web portal described above provides additional business

47

administration tasks both for service consumers and providers. Multiple versions of the
app (iOS, Android) are automatically generated from a mobile web portal of the same
functionality

3.4.4 Hosted Uls

Hosted User Interfaces are Uls for Hosted Components described in Subsection 3.3.4.

48

Chapter 4

Component Interfaces

In this chapter interfaces of components discussed in previous chapter will be specified.
A comparison between some of these interfaces and corresponding RAVO interfaces
prepared in common with Wajeeha Khalil has already been published in [14] (Appendix
A). According to N2Sky's architecture presented in Section 2.2, every component will be
provided as a service (over protocols, Web Services or APIs). The component interface
design of N2Sky is driven by following guiding principles:

Acceptance. To be accepted by the user the system has to provide a flexible and
intuitive user interface with all necessary resources in an easy-to-use way.

Simplicity. The system has to supply functions for manipulating neural networks
in a simple and (more important) natural manner. This can be achieved by an
adequate (i.e. a natural) representation of neural objects in the provided environ-
ment of the system A neural network object has to react and to be administrated
as any other conventional data object during its creation, update and deletion.

Originality. Even though a neural object has to be simple, it has not to loose
its originality. A common framework always runs the risk to modify the original
property structure of the individual object. This leads to the situation that either
objects of different types loose their distinguishable properties or loose some parts
of their functionality. Therefore a suitable neural network simulation framework
has to pay attention to the properties and to the functional power of neural objects
and should give the user an undistorted view on it.

Homogeneity. Neural objects have to be considered as conventional objects,
which can be stored in any data management environment, either in database
systems or in distributed Cloud data stores. From the logical point of view a
neural object is a complex data value which can be stored as any other data
object.

System extensibility. N2Sky offers an easy-to-use interface for neural network
researchers to extend the set of neural paradigms provided as services. This can be
done by uploading and integrating additional paradigms. After successfully passing
the paradigm publishing process it will be made available to any other user.

Following these principles components in the SaaS layer are designed to adapt itself to
various platforms (conventional or mobile web browsers running on workstations, PCs,
Macs, tablets or smart phones) via HTML5, CSS3 and JavaScript. As we use The-M-
Project [48], a MVC framework for mobile (web) applications based on jQuery Mobile,
it is possible to create native iPhone, iPad or Android apps based on our mobile web
application with minimal additional effort.

The rest of this chapter presents interface specifications for every component described
in the previous chapter. Each interface specification table is structured as follows:

e Configuration. It is a design goal that almost every component should be con-
figurable in a simple and flexible way. In most cases configuration is implemented
over configuration files.

e Inbound Interface. This interface is mandatory and is used to control the par-
ticular component itself.

e Outbound Interface. This interface is optional and is used to control other
components in lower layers, e.g. the Smartphone app calls services of the Simu-
lation management component via RESTful Web Services. Outbound interfaces
are not explicitely annotated in the following tables because they are equal to the
inbound interfaces of components listed in line “Used components”.

e Interface type. The suggested interface technology, e.g. Web Services (WS),
Application Programming Interfaces (APIs) or special protocols.

e Parameter name and type. Specified parameter names (input params: IN,
output params: OUT) and data types if the interface technology supports data

types.

e Mandatory (mand.). Indicates if configuration, particular configuration param-
eters, interfaces, operations or used components are needed in every case.

e Synchronous/asynchronous. Indicates if any underlying operation is time-
consuming (asynchr.) or not (synchr.). For example a train method of the neural
network simulation service calls the train method or several methods if training
is distributed over multiple cores, processors or Cloud nodes of a paradigm service.
Duration time depends on paradigm complexity, training data size and further
parameters and can take several seconds, hours or even days. Synchron methods
on the other hand should execute within a few milliseconds. It is important to this
definition of asynchron to distinguish it from asynchronous service or method calls
like Asynchronous JavaScript and XML (AJAX) where the next program step is
executed just after calling the Web Service without weiting for a response. If the
Web Service finished execution it calls the service consumer’s callback function to
continue executing statements that depend on this service result.

e Integration Phases. Regarding to our integration plan there are three types of
components:

— Mandatory (mand.). These core components already existing likewise in
former versions of N2Sky (i.e. N2Grid [20] and N2Cloud [21]).

50

— Integration Phase 1 (P1). Additional components partially integrated
described in Figure 77?.

— Integration Phase 2 (P2). Even more components which are not inte-
grated so far. These mostly in this paper first presented components are
depicted in Figure 2.2,

4.1 laaS: Infrastructure Enabler

4.1.1 Component Archive

The interface specification of the Component Archive Service as shown in Table 4.1
contains methods replicating components in a dynamic way, i.e. they are retrieved from
the archive only at that moment on which they are needed (before the train method
is called). In this context components and hosts are the key resources. In a JVM-based
container a component is a .war file containing the Java web application and a host is
a Java web application container like Tomcat running on an instance on a Cloud node.

Existing instances of the Component Archive Service are:
e N2Sky Component Archive
e N2Grid Component Archive

| Component Archive (mand.) |

Interface, operation, 1/0 | parameter name | param. type | mand.
Configuration *
registryURL URL %
Inbound interface WS, API *
archiveNewComponent() asynchr. *
copyComponentToHost() asynchr. *
getAllArchivedComponents() synchr *
getArchivedComponentsOnHost() synchr. *
hasReplica() synchr.
OUT: hasReplica boolean
deleteComponentFromHost() asynchr.
Used components: Registry
Cloud Infrastructure

Table 4.1: Interface specification of the Component Archive.

51

4.1.2 Data Archive

The interface specification of the Data Archive is described in Table 4.2. The N2Sky
Data Archive contains only a subset of the functionality of OGSA-DAI [25], namely
DRES, Data sink service and Data source service.

Existing instances of the Data Archive:

e N2Sky Data Archive

| Data Archive (mand.)

Interface, service, description \ type \ mand.

Configuration

Inbound interface WS, API

Data request execution service (DRES) synchr. *

Is used to submit workflows, create sessions and get the status of synchronous requests.

Data resource information service (DRIS) synchr. *

Is used to query information about a stored resource.

Data sink service synchr./asynchr. *

Is used to push data to data sinks.

Data source service synchr./asynchr. *

Is used to pull data from data sources.

Session management service synchr. *

Is used to manage the lifetime of sessions.

Request management service synchr. *

Is used to query request execution status subsequently of asynchronous requests.

Used components: Filesystem *
DBMS

Table 4.2: Interface specification of the Data Archive. according to OGSA-DAI

| Ad-hoc Infrastructure (P2) |

Interface, operation, I/O \ parameter name \ param. type \ mand.
Configuration *
registryURL URL *
Inbound interface WS, API *
registerInfrastructureComponent() synchr. *
removelnfrastructureComponent() synchr. *
getPricingModel() synchr *
Used components: Registry *
Infrastructure components *

Table 4.3: Interface specification of the Ad-hoc Infrastructure component.

52

4.1.3 Ad-hoc Infrastructure

The interface of the Ad-hoc Infrastructure component described in Subsection 3.1.3 is
shown in Table 4.3. Currently there is still no existing implementation of this component.

4.2 PaaS: Abstract Layer

4.2.1 Registry

The Registry is a core component in N2Grid and N2Sky therefore there is a detailed
interface specification. A neural network paradigm service is seen as a Resource (see
Domain model in Subsection 3.3.3.2 and Resource hierarchy in Figure 3.5). A formal ser-
vice description of each paradigm service is provided within a NNServiceDescription
XML element listed in Appendix A (A.1) In case of unreachable services (i.e. the trigger
method checkRegisteredServices() returns false) and after calling the method
removeFromRegistry () the service will be removed from the Registry.

An overview of its Interface is shown in Table 4.4. The term Neur. within a column
mandatory means that this method or parameter is only available for neural network
paradigms and not for arbitrary services. Existing instances of the Registry component
are:

e N2Sky Registry
e N2Grid Registry

4.2.2 Monitoring

An Interface definition of the still not integrated Monitoring component is shown in
Table 4.5 according to the Hyperic HQ Web Services API specification [49]

4.2.3 SLA

The interface specification of the not yet implemented SLA component (described in
Subsection 3.2.3) is shown in Table 4.6.
4.2.4 Controlling and Accounting

The interface specification of the not yet implemented Controlling and Accounting com-
ponent (described in Subsection 3.2.4) is shown in Table 4.7.

53

|

Registry (mand.)

Interface, operation, 1/0 \ parameter name \ param. type \ mand.

Configuration *
schemal.ocation URL, directory *
registryURL URL *
searchableAttributes String , sep. *
holdbackTime Long (sec) *

refreshTime < holdbackTime refreshTime Long (sec) *

Trigger
checkRegisteredServices()

currentTime = lastRefresh + refreshTime
removeTime = currentTime + holdbackTime

Inbound interface WS *
getHoldbackTime() synchr. *
holdbackTime Long (sec) *
getSchemalocations() syn. *
ouT schemalocations String[] *
getAllServicelDs() synchr. *
ouT servicelDs Long]] *
getAlINNServicelDs() synchr. Neur.
ouT NNservicelDs Long]] Neur.
submitServiceDescription() synchr. *
IN servicelD or name Long/String *
ouT ServiceDescription String *
submitNNServiceDescription() synchr. Neur.
IN servicelD or name Long, String Neur.
ouT nnDescription nnDescription Neur.
getServicel DsByParadigm() synchr. Neur.
IN paradigm String Neur.
ouT servicelDs Long]] Neur.
getSearchCriteria() synchr.
ouT searchCriteria String]]
searchServicesByCriteria() synchr.
IN searchCriteria String]]
ouT servicelDs Long]]
getTrainingEndpoint() synchr. Neur.
IN servicelD Long Neur.
ouT serviceEndpoint URL Neur.
getEvaluationEndpoint() synchr. Neur.
IN servicelD Long Neur.
ouT serviceEndpoint URL Neur.
registerService() synchr. *
IN acronym, name String *
IN serviceDescription String *
IN serviceEndpoint URL *
IN searchCriteria String]]
IN NNServiceDescript. JSON/XML ~ *
removeFromRegistry() synchr. *
IN servicelD Long

Used components:

Component Archive

Table 4.4: Interface specification of the Registry component.

54

Monitoring (P1)

|

Interface, operation, /O | parameter name

\ param. type \ mand.

Configuration

*

registryURL

URL

*

Inbound interface

WS or API

*

alert
application
autodiscovery
control
dependendy
event
escalation
resource

role

Used components: Registry

Simulation Mgmt.
Business Admin.,

Table 4.5: Interface specification of the Monotoring component..

SLA (P1)

Interface, operation, I/O \ parameter name \ param. type m
Configuration *
registryURL URL *
Inbound interface Web Service *
createSLAContract() synchr. *
IN userlD long *
IN packagelD long *
IN expiry Date/Time *
IN SLALevel String *
ouT SLAContract SLAContract *
getSLAContract() synchr.. *
IN contractID long *
ouT SLAContract SLAContract *
searchSLAContracts() synchr.
IN searchParams String]]
ouT SLAContracts SLAContract]]
Used components: Registry *
DBMS

Table 4.6: Interface specification of the SLA component.

55

’ Controlling and Accounting (P1) ‘

Interface, operation, /O | parameter name | param. type | mand.
Configuration *

registryURL URL *
Inbound interface WS or APl *
buyPackage() synchr. *
bookSingleUseCosts() synchr. *
calculatelnvoice() asynchr. *
bookPayment() synchr. *
checkPayments() asynchr. *
Used components: Registry

Access Control

DBMS

Table 4.7: Interface specification of the Controlling and Accounting component.

4.2.5 User and Role Management

An interface specification of the Usermanagement component described in Subsection
3.2.5 is shown in Table 4.8). The N2Sky Usermanagement is an existing instance of it.

| Usermanagement (P1) |

Interface, operation, I/O \ parameter name \ param. type \ mand.
Configuration *

registryURL URL *
Inbound interface WS or APl *
CRUD User() synchr. *
CRUD Role() asynchr. *
Used components: Registry

Access Control

DBMS

Table 4.8: Interface specification of the Usermanagement component.

4.2.6 Access Control

An Interface specification of the Access Control component described in Subsection
3.2.6 is shown in Table 4.9. Access control has not been integrated into N2Sky so far.

56

| Access Control (P1) |

Interface, operation, 1/O | parameter name | param. type | mand.

Configuration *
registryURL URL *

Inbound interface WS or APl *

CRUD Resource() synchr. *

CRUD Privilege() synchr..

IN resourcelD long

IN userlD long

IN expirationDate DateTime

ouT privilegelD long *

Used components: Registry *
DBMS

Table 4.9: Interface specification of the Access Control component.

4.2.7 Workflow System

Scientific workflow systems described in Subsection 3.2.7 themselves are often large
systems using heterogenous interfaces so it has not been implemented in N2Sky until
now. A basic interface specification of the Workflow system component is shown in
Table 4.10.

| Workflow System (P2) |

Interface, operation, I/O \ parameter name \ param. type \ mand
Configuration *
registryURL URL *
Inbound interface Web Service *
Process Mgmt. synchr. *
Instance Mgmt. synchr./asynchr.. *

Controls the individual process instances

to manage concurrency.

Used components: Registry
Simulation Services

Table 4.10: Interface specification of the Workflow system component.

4.2.8 Knowledge Management

A basic interface specification of the Knowledge Management component is shown in
Table 4.11.

57

| Knowledge Management (P2) |

Interface, operation, /O | parameter name | param. type | mand.
Configuration

Inbound interface WS, or API

CRUD operations over SPARQL queries synchr. *
Used components: Data Archive

Table 4.11: Interface specification of the Knowledge Management component.

4.2.9 Component Hosting Platform

A basic interface specification of the Component Hosting Platform described in Subsec-
tion 3.2.9 is shown in Table 4.12. A N2Sky integration doesn't exist so far.

| Component Hosting Platform (P2) |

Interface, operation, 1/O | parameter name | param. type | mand.
Configuration *
registryURL URL *
Inbound interface Web Service *
getAvailableServer() synchr. *
startServer() asynchr. *
stopServer() asynchr. *
deploy() asynchr. *
undeploy() asynchr. *
getDeploymentURL() synchr. *
getAvailableDBMS() synchr. *
Used components: Registry *
Server *
DBMS
Knowledge Base

Table 4.12: Interface specification of the Component Hosting Platform.

4.2.10 Annotation Service

An Interface specification of the Annotation Service described in Subsection 3.2.10 is
shown in Table 4.13. So far, there is no existing implementation.

58

| Annotation Service (P2) |

Interface, operation, /O | parameter name | param. type | mand.
Configuration

Inbound interface WS or APl *
createAnnotation() synchr. *
IN forObjectID long *
IN text String *
IN annotationType String *
IN attachment File

ouT annotationlD as objectID *
getAnnotations() synchr. *
IN forObjectID long *
ouT annotations Annotation[] *
editAnnotation() synchr. *
IN annotation|D long *
IN changedText String *
ouT changedText String *
deleteAnnotation() synchr. *
IN annotationlD long *
ouT annotationlD long *
Used components: Knowledge Base

Table 4.13: Interface specification of the Annotation Service component.

4.3 PaaS: Neural Network Layer

4.3.1 Simulation Services

Paradigm Simulation Services consist of methods described in Subsection 4.3.1.2 and
provide training and evaluation of neural objects which in turn are instances of neural
network paradigms. In N2Sky each paradigm service has to provide these methods in a
strict manner except createNeuralObject (). Since object creation is similar for each
paradigm we added this functionality to the Simulation Management service. Table 4.15
shows the interface specification of Simulation Services.

Existing instances (to name only a few):
e Backpropagation 01
e Kohonen 02
e Perceptron 01

59

4.3.1.1 Types

Table 4.14 shows the list of neural network data types and their corresponding schema
files used by operations of the Simulation Service.

’ Type \ Schema file ‘
nnDescription n2sky-description.xsd (A.1)
The design parameters of the neural net.
nnDefinition n2sky-definition.xsd (A.2)
Parameters and input values of the neural net.
nnData n2sky-data.xsd (A.3)
The input data for training or evaluation.
simulationResult n2sky-result.xsd (A.4)
The results of training or evaluation operations.

Table 4.14: N2Sky Schema types.

4.3.1.2 Operations

e getServiceDescription(). The operation getServiceDescription returns a
neural network description (nnDescription) of the provided neural network ser-
vice and has no input parameter.

e createNeuralObject(). The operation createNeuralObject is used to create
a new instance of a neural network paradigm or to duplicate an existing neural
object.

e train(). The operation train is used to train a new instantiation or to further
adjust an already trained neural object. The operation returns a submission-ID
as String for later retrieving of a trained neural network. Parameters are the
neural network definition (nnDefinition) and neural network data (nnData: text-
based or binary). The unique callback URL is composed of the URL to the task
management service or a workflow system followed by a submission-1ID.

— evaluate(). By the operation evaluate an already trained neural network
(i.e. a trained neural object compliant to nnDefinition) can be sent to this
service method, accompanied by evaluation data (nnData). This operation
returns a submission-ID as String for later retrieving result data. The
unique callback URL is composed of an URL to the task management service
or a workflow system followed by a submission-ID.

e checkStatus(). The operation checkStatus provides information about a sub-
mitted training or evaluation. The only one input parameter is a submission-ID
as String. It returns an integer number representing the progress with the
following semantic:

— -1: error, 0 to 99: percentage of progress, 100: finished.

60

e getResult(). The operation getResult retrieve result data. The result schema
contains a trained network and other information about the training or only output
data and other information in the case of an evaluation. The only one input
parameter of this operation is a submission-ID as String. A client is able to
save the network for later evaluation runs.

e getNNDefinition(). The operation getNNDefinition returns a neural network
definition (nnDefinition) of the neural object. The only one input parameter is
a submission-ID returned by those operations: createNeuralObject, train
and evaluate.

|

Simulation Service (mand.) |

Interface, operation, I/O | parameter name | param. type | mand.
Configuration *
schemal ocation URL, directory *
registryURL URL *
Inbound interface Web Service *
getServiceDescription() synchr. *
ouT nnDescription nnDescription *
train() asynchr. *
IN nnDefinition nnDefinition *
IN nnData nnData *
IN SLA String {A|B|C}
IN callbackURL URL, unique *
instant output submissionID String *
evaluate() asynchr. *
IN nnDefinition nnDefinition *
IN nnData nnData *
IN SLA String {A|B|C}
IN callbackURL URL, unique *
instant output submissionl|D String *
checkStatus() for train(), evaluate() synchr. *
IN submissionID String *
ouT status int *
getResult() synchr. *
IN submissionID String *
ouT simulationResult simulationResult *
getNNDefinition() synchr. *
IN submissionID String *
ouT nnDefinition nnDefinition *
Callback to operations: train(), evaluate() Web Service *
sendResult() asynchr. *
IN simulationResult simulationResult *
Used components: Registry: registerService(), removeFromREgistry()

Table 4.15: Interface specification of a Simulation Service.

61

4.3.2 Simulation Management

We see Simulation Management and Business Administration componenta as central en-
try point for user interface components in Saa$S Service Layer to underlying components.
An overview of its Interface specification is shown in Table 4.16. The N2Sky Simula-
tion Management is one existing instance of the Simulation Management component
described in Subsection 3.3.2.

| Simulation Management (mand.) |

Interface, operation, I/O \ parameter name \ param. type \ mand.
Configuration *

registryURL URL *
Inbound interface Web Service *
login(), logOut() synchr. *
getSubscriptions() synchr. *
getSubscribeableParadigms() synchr. *
getCreations() synchr.. *
getTrainings/Evaluations() synchr.. *
createNeuralObject() synchr. *
train/retrain/evaluate() asynchr. *
checkStatus() synchr. *
getResult() asynchr.. *
Used components: Simulation Services

Registry

Usermanagement

Table 4.16: Interface specification of the Simulation Management component.

4.3.3 Business Administration

An overview of the Interface specification od the Business Administration component
described in Subsection 3.3.3 is shown in Table 4.17. So far, there is no instance
implemented.

62

| Business Administration (P1) |

Interface, operation, /O | parameter name | param. type | mand.
Configuration *

registryURL URL *
Inbound interface Web Service *
registerUser() synchr.
integrateParadigm() asynchr. *
integrateHardware() synchr.
buyPackage() synchr.. *
debitAccount() synchr. *
creditAccount() synchr. *
createEndUserBill() asynchr. *
checkAccounts() asynchr.. *
Used components: Registry

Controlling and Accounting

Usermanagement

Table 4.17: Interface specification of the Business Administration component.

4.3.4 Hosted Components

A rudimentary Interface specification is shown in Table 4.18. Since the Component
Hosting Platform is not yet implemented, there are also no Hosted Components.

| Hosted Components (P2) |

Interface, operation, I/O \ parameter name \ param. type \ mand.

Configuration *
registryURL URL *

Inbound interface WS, API N

Hosted Component functionality

Used components: Component Hosting Platform *
DBMS

Table 4.18: Interface specification of Hosted Components.

63

4.4 SaaS: Service Layer

4.4.1 Query Interface

A basic Interface specification of the Query Interface described in Subsection 3.4.1 is

shown in Table 4.19. So far, there is no existing implementation for it.

|

Query Interface (P1)

Interface, operation, I/O | parameter name | param. type | mand.
Configuration *
knowledgeBaseURL URL, *
registryURL URL *
Inbound interface Web *
searchForProblem() synchr. *
IN problemName String *
ouT proposedParadigms nnDescription[] *
searchForSolution(() synchr. *
IN paradigmName String *
ouT paradigm nnDescription[] *

Used components:

Knowledge Base

Table 4.19: Interface specification of the Query Interface component.

4.4.2 \Web Portal

A basis Interface specification of the Web Portal is shown in Table 4.20. It includes
both functionality of the Smartphone App and additional Business Use Cases depicted

in Subsection 3.3.3.

|

Web Portal (P1)

Simulation Management
Business Administration
Query interface

Interface, operation, 1/O | parameter name | param. type [mand.
Configuration *
schemalocation URL, directory *
registryURL URL *
Inbound interface Web *
createNeuralObject() synchr. *
train() asynchr. *
retrain() asynchr. *
evaluate() asynchr. *
showStatus() synchr. *
manageUserAccount() synchr.. *
createEndUserBill(() asynchr.
checkAccounts() asynchr.
Used components: Registry

Table 4.20: Interface specification of the Web Portal.

64

4.4.3 Smartphone App

A basic Interface specification of the Smartphone app is shown in Table 4.21. The
existing N2Sky Smartphone app as an iOS build of the Mobile Web Portal primarily acts

as a graphical user interface of the Simulation management component.

’ Smartphone App (mand.)

Interface, operation, I/O \ parameter name \ param. type \ mand.
Configuration *

schemal.ocation URL, directory *

registryURL URL *
Inbound interface Web *
createNeuralObject() synchr.
train() asynchr. *
duplicateObject() synchr.
evaluate() asynchr.. *
showStatus() synchr. *
Used components: Registry

Simulation Management

Business Administration

Query interface

Table 4.21: Interface specification of the Smartphone App.

4.4.4 Hosted Uls

A basic interface specification of a Hosted Ul is shown in Table 4.22. A

Hosted Ul can

be seen as a graphical user interface tor a Hosted component running on the Component

hosting Platform.

| Hosted Ul (P2)

|

Interface, operation, 1/0 \ parameter name \ param. type \ mand.

Configuration *
registryURL URL *

Inbound interface Web *

Hosted Ul functionality

Used components: Hosted Component *

Table 4.22: Interface specification of a Hosted Ul component.

65

Chapter 5

Tutornal

This tutorial describes how to create a simple Backpropagation neural network to solve
the well-known XOR-problem.

5.1 Paradigm Selection

Problem: The logical operation exclusive disjunction, is a type of logical disjunction on
two operands that results in a value of "true" if and only if exactly one of the operands
has a value of "true".

Solution: Using a 2-5-1 Backpropagation neural network. To solve the XOR-problem
we use a fully connected Backpropagation net with 3 layers. The input layer contains
2 input neurons, the hidden layer holds 5 neurons, and finally the output layer encloses
only a single neuron.

The user selects the BPROTUTO Tutorial Backpropagation paradigm and instantiates
a new neural net object based on this paradigm. Subsection 6.1.2 describes how to
subscribe for a paradigm.

5.2 Neural Object Creation

Neural object creation is divided into two steps: Layer and parameter definition. Created
objects are stored in SQL table Creation.

5.2.1 Layer Definition

Figure 5.1 depicts input and output layer definition by specifying the number of neurons
within a paradigm-specific range (a), hidden layer definition by specifying layer name and
number of hidden neurons (b) and connecting layers with Full Connections by tapping
the particular layer (c). Each form contains practicable default values.

AM

Number of Input-Neurons
(min: 2, max: 2)

2

Number of Qutput-Neurons
(min: 1, max: 1)

1

Input/Output La...

Carrier 11:56 AM

LayerName (max. LayerCount: 1)
hidden2

Number of Hidden-Neurons
(min: 1, max: 100)

3

hidden1

A

Hidden Layer

12:13 PM

Connection De

([input
Full Connection disabled

hidden1
FULL

Full connected with autput

=i output
FULL

A

Figure 5.1: Structure definition for a neural object with 2 input, 3 hidden and 1 output

neuron whereas hidden layer is full connected with output layer.

12:15 PM

< Back

sigmolid

30000

Neural object name

BPROTUTO 2/1

Create NN object

A

Parameter Defin...

Carrier & PM

< Back Creation info

Pretty Print Mi

{"PARAMETER":
[{"@ID":"Momentum"," @TYPE""value
","NAME":"Momentum","VALUE":"0.0",
"DEFAULTVALUE":"0.0"},
{"@|D":"ActivationFunction","@TYPE":
"combo”,"NAME":"Activation
Function","DESCRIPTION":"Different
activation
functions","VALUE":"sigmoid"."DEFAU
LTVALUE":"sigmoid"."COMBOOPTIO
NS":{"OPTION":

Carrier 5:52 PM

Creation info

m Parame‘e s

Pretty Print

{"INPUTLayerBLOCK":
{"@ID""input","DIM
IDDENLayerBLOCK!
{"HIDDENLayerBLOCK":
{"@ID":"hidden1","DIM":"1","SIZE":"3"}
}1"OUTPUTLayerBLOCK"™:
{"@ID":"output","DIM":"1" "SIZE":"1"},"
FULLCONNECTIONS":
{"FULLCONNECTION":
[{"FROMBLOCK":"input","TOBLOCK":
"hidden1"},

SIZE":"2"},"H

d

A

68

A

Figure 5.2: Parameter definition and resulting parameter and structure descriptions.

d b

5.2.2 Parameter Definition

There are three types of parameters:
1. value,
2. boolean
3. and combo parameters

Specify a desired numerical value for value parameters, tap the boolean parameter to turn
it on or off and select a predefined entry for a combo parameter. Figure 5.2 depicts value
parameter (P), boolean parameter and combo parameter (CP) definition (screenshot a),
a finished parameter definition (b) and a finished structure definition including layers and
connections (c). These infos can be retrieved by tapping the Creation info button.

5.3 Training

After layer and parameter definition the resulting neural object (Creation) can be trained
and - if supported by the paradigm - retrained (i.e. to optimize a previous training with
additional samples). However, for every creation several separated trainings can be
appended. To input training patterns (and in the next step evaluation data sets) there
are three options:

1. Type in or copy/paste integer or floating point values
2. Get inputs from the data archive (tap the Get samples button)

3. Query data using SQL or NoSQL (JSON-style) query statement for document-
based databases.

CSV is the most basic style for input samples because it includes minimal overhead.
Numerical values separated by semicolons are entered line per line. Every line represents
exactly one input sample. In case of training patterns, CSV inputs are not separated
explicitely from its corresponding outputs as they are in JSON and XML format. For
this reason, metadata is displayed on top of it. In this case inl; in2; outl; indicates 2
input and 1 output value, a semicolon at the end of each line may be omitted. Figure
5.3 depicts CSV training data separated by semicolons (a), a list of current trainings -
the latest with a progress status of 25% (b) and training metadata showing an error rate
diagram (c). Training (and evaluation) samples can also be expressed in JSON or XML
in a matrix syntax (rows and columns).

By tapping the Train button a new training task is started in the Cloud and training
metadata is shown. For refreshing the progress indicator tap the Refresh button. You
don’t have to wait until training is finished. If you want you can start another task or
log out. The started training task will continue to run unaffected thereof. This training
object will appear on top of the Current trainings list showing a chronological overview
of the latest trainings you have initiated. After training completed successfully, training

69

results (calculated weights and result values, etc.) and an error graph are shown and
stored in a database for further usage (e.g. evaluation).

/

Carrier = 12:20 PM

Y Y

Carrier = 6:10 PM Carrier = 12:29 PM
SELECT t.id, t.short_description,
t.started, ticon
FROM training t
WHERE t.stakeholder = 2
ORDER BY t.started DESC

< Back Training Training Info

TutorialBackPropDiagramm
Description: TutorialBackPropDiagramm
X title: Epochs
X description:

X min: 0.0
X max: 30000.0
Y title: Error
Y description:

Y min: 0.0
Y max: 0.9997447664089845

in1; in2; out1;
0:0:0
0;1:1
1;0:1
1:1;0
Query trainings
Training item name

BPROTUTO2/1XOR T

BPROTUTO 2/1 XOR T lon p: 10

. 2013-06-02 18:08:52

Query data Train =

eaa=] BPROTUTO 2/1 XOR T D: o
2013-06-01 22:22:46

Pretty Print Minify

sga=] BPROTUTO 2/1 XOR T D: 8
2013-02-22 12:27:02

P T E A

Home Parad... Trainl... Evalu... Admin

Sga=] BPROTUTO 2/1XOR T D: 7
2013-02-21 23:33:34

csv

4

Figure 5.3: CSV sample data input, a running training and error rate diagram.

5.4 Evaluation

The last step for problem solution is to evaluate the previously trained neural object . By
tapping the trained neural network an empty list of evaluations appears. After tapping
New evaluation... you also have the possibility to define the evaluation data by an
explicit list or a query statement. The difference between training and evaluation is that
evaluation data contains only inputs (INPUTMATRIX) as shown in Figure 5.4 (a), the
resulting samples are in the same style as training results (b). These screenshots depict
a session where a desktop browser (Safari) is employed instead of an iPhone browser

(Mobile Safari).

After a particular evaluation task is performed in the Cloud the finalized evaluation
object is persisted in the data store and appears both in your subscription tree and in
the Current evaluations list. This solution to the given problem then is accessible from
everywhere and can be further processed by other systems.

70

Numerical result samples as shown in Figure 5.4 (b) always have the following structure:

e SAMPLE. A single training pattern or evaluation data set containing input and
output matrices/vectors. In JSON format these samples are combined into an
array which is a child element of SAMPLE.

e INPUT. The sample’s input matrix/vector.
e OUTPUT. The sample's output matrix/vector.

e ROW. A row of a matrix containing column (C) elements.

e C. A single numerical value.
O 00 n2sky O00 n2sky
< | > |+ |Ghup:/localhost8sssmzsky ¢ | (Qr coogle » | «|» ||+ [Ginwp/localhost8888/n2sky & | (Qr Google »
Evaluate ' Evaluation Info
{ h
"INPUTMATRIX":{ {
"ROW™: ["INPUT":{
("ROW": [
IIC\I: [{
"0.16", "c""-0.13"
"0.2", f 1
"-0.13", {
"-0.05", "C":"1.15"
"-0.07" }
]]
By 3
{ "OUTPUT": {
"G ["ROW": {
"0.87", "C":"0.9888386319939264"
"0.4", 1
"1.15", }
"1.04", 3
"0.89" {
] "INPUT":{
} "ROW": [
] {
} "Gr- 10,05
} %
{
/ .04
Evaluation item name }
BPROTUTO2/1XORTE]
%
Evaluate "OUTPUT":{
"ROW":{
| "C":"0.9888845480344621"
. } Y

csv JSON XML 1 b
A r

Figure 5.4: XOR evaluation input and result JSON data.

ol

71

Chapter 6

User Guide

This chapter is divided into two sections according to N2Sky's major stakeholders: End
User and Administrators whereas the next chapter is all about component developers.

6.1 End User Guide

6.1.1 Login

Authentication via username and password is mandatory to identify the stakeholder
and to manage access control. If login proceeded successfully all system-wide attached
database connections are available per default for any user. Figure 6.1 depicts a login
screen (a), the registration page for new users (b) and the subscription list as main page
after a successful login (c).

6.1.2 Paradigms and Subsscriptions

Paradigms are offered as subscribeable services and can be queried using SQL with
following criteria:

e id
e acronym

® Name

drscription
e type
e service path

Figure 6.2 shows such searchable metadata (a), a subscription form (b) and a formal
paradigm description according to the Vienna Neural Network specification language

erwin
Password

Log in

Register Server ad...

Carrier 12:40 PM

Register

< Back

Password
sssses
Confirm password
sesees
First name
Erwin
Last name
Mann
E-mail

erwin.mann@univie.ac.at

Register

Carrier 16 PM

ETELITTANG Y

Subscribe Get for free

Metadata Descriptio...

Paradigm ID

6
Paradigm acronym

BPRO02
Paradigm name

Jordan Backpropagation 02
Paradigm description

lordan Backnronanation 02

Carrier PM

Subscribe

< Back

From date
2013-06-01 01:00

To date
2013-07-31 23:59

Project acronym

WST

Subscribe

Carrier

SELECT s.id, r.acronym, r.name,
s.icon

FROM subscription s, resource r
WHERE s.resource = r.id

AND s.stakeholder = 2

ORDER BY r.acronym ASC

Query subscriptions

BPRO

gas BPROTUTO
e Trial Service B:

S P

Home Parad.. Trainl... Evalu... Admin

Carrier 5:22 PM

<Back NN Service De

Metadata

{"SERVICEACRONYM":"BPRO02","N
AME":"Jordan Backpropagation
02","DESCRIPTION":"Jordan
Backpropagation
02""STRUCTUREDESCRIPTION":
{"INPUTBLOCK":
{"@ID""input","DIMMIN":"1","DIMMAX
""100","SIZEMIN":"1","SIZEMAX":"10
0"},"MAXHIDDENBLOCKS":"0","OUT

< g

o

A A

Figure 6.2: Paradigm metadata, subscription form and paradigm service description.

74

O ~NO OB~ WDN

(VINNSL) [8] stored as XML in the field description file. Paradigms are listed in SQL
table Resource with type PA because there are also paradigm groups with type PG.
Some paradigms can be used for free without subscription but neural objects created
without subscription are not shown in yout personal simulation tree, they can only be
queried using SQL.

6.1.3 Datastream Queries

6.1.3.1 Concept

A highlight of the N2Sky system is the use of standardized and user-friendly database
query languages both for administration tasks and neural network simulation tasks
whereas the user applies the same tool based on a homogenous interface. Adminis-
trative tasks like searching for neural network paradigms and objects retrieve metadata
from our domain model mapped to relational database systems. During neural network
simulation tasks the functional data stream definition described by SQL and NoSQL al-
lows to specify real world training and evaluation data sets in a comfortable and natural
way on a global scale. Training and evaluation data sets can be huge data volumes,
therefore this functional specification by a query language statement is extremely com-
fortable. This unique feature of N2Sky allows for combining globally stored, distributed
data easily.

6.1.3.2 Syntax

To implement the datastream concept we specified a query syntax listed below (Listing
6.1). This interface is intended currently only to read data, the http method GET
corresponds to the SELECT expression in SQL. Such queries can be fired during training,
retraining or evaluation preparation (as depicted in Figure 6.3) by either tapping “Query
data” or “Train/Retrain/Evaluate” to send your query directly to the chosen paradigm
service.

Listing 6.1: Datastream query syntax in EBNF notation

method = "GET":

path "http", { char };

selector =" find?criteria={", { char }, "}" |
"selector={", { char }, "}" |
an arbitrary selector;

url = path, ["?", selector }, { "&", selector };
exclusion = "——exclude '", regex, "'";
query = method, url, { exclusion };

75

6.1.3.3 MySQL Simulation Management DB

The Simulation management DB contains all N2Sky monitoring and business data de-
scribed in Subsection 3.3.3.2 (domain model). Furthermore some simulation input and
result data can be queried from the following tables:

e nndata. Training or evaluation input samples
e nnresult. Training or evaluation result samples generated by paradigms

e data_resource. paradigm-specific input test data specified by the paradigm
developer

e data creation. creation-specific input data stored using the Store samples but-
ton.

Figure 6.3 depicts a SQL query (file contains a XML string) (a) and a MongoDB query
using the syntax described above (b). Database credentials are managed automatically
by the N2Sky system (table nndb). These two screenshots demonstrate how to specity
training data sets via SQL and NoSQL queries. For accessing large training or evaluation
data sets at big data stores the NoSQL approach performs better due to improved
scalability of NoSQL key/value stores. For administrative tasks (choosing neural network
paradigms, trained neural network objects or any business metadata) purely SQL queries
are used because of our domain model is mapped onto relational database systems.

n2sky B eE n2sky
4| > + (G hup://localhost:8888/n2sk, & | (Qr Coogle » 4 | » + (& htp://localhost:8888/n2sk, & | (Qr Coogle »

Training

Data archive item name
BPROTUTO2/1T

Get samples Store samples

SQL Simulation Management DB
Use NNDB
WHERE
ID=35

Replace Query data

in1;in2; outl;
SELECT file
FROM nndata
WHERE ID=35

Training item name

BPROTUTO2/1T

Train

Pretty Print Minify

n el

Training

Data archive item name

BPROTUTO2/1T
Get samples Store samples

MongoDB via REST Sleepy.Mongoose
Use NNDB

_find?criteria=
{"_id""XOR_2_1.T"}

Replace Query data

in1; in2; out1;
GET http://54.214.244.120:27080/nndb/nndata/_find?
criteria=("_id""XOR_2_1_T"}
--exclude ""{\'ok\": 1, V'results\": \['
--exclude], V'id\":\d+\$'

Training item name

BPROTUTO2/1T

Train

Pretty Print Minify -

EN

Figure 6.3: SQL and MongoDB data query.

76

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Listing 6.2: Inserting JSON data using user-defined ID via mongo shell.

>>$ mongo
> use nndb
> db.auth(<user>, <password>)
>t ={ " _id" : "XOR 2 1 T", "INPUTMATRIX" : { "ROW" : [{ "C" : ["0.0",
{ "Tid" : "XOR 2 1 T,
"INPUTMATRIX" : {
"R@/V” [
{
”Cll - [
||0.0||’
"o.o",
10",
||1.0||
|
¥
{
”CII [
||0'0||’
II1.0II’
||0.0||’
||1-0|l
]
}]
3
"OUTPUTMATRIX" : {
IIRW\/" . {
IIC" [
”0.0"’
”1.0”’
”1.0”'
||0.0||
]
}
}
¥

> db.nndata.insert(t)

6.1.3.4 MongoDB

MongoDB [50] is a scalable open source (AGPL license) NoSQL document-based store
written in C++ with some friendly features of SQL like indexes and queries. It is designed
for storing big data on 64 bit systems, an empty database takes up 192 MB and on 32
bit systems address space is limited to 2.5 GB.

The code snippet 6.2 shows how to connect to our NN database, how to authenticate
(line 4) and how to insert valid simulation input data by using an user-defined ID (line
6) instead of an Object/D automatically generated by MongoDB. This enables simple
human-readable queries - this user-defined ID also has to be unique. To be more flexible
we use provided web service interfaces instead of integrating in Java directly. So arbitrary
databases can be used unless REST query interfaces are provided.

6.1.3.4.1 Sleepy.Mongoose for MongoDB Sleepy.Mongoose [51] is a MongoDB
http interface written in Python. Sleepy.Mongoose results are always enveloped within
status information so we have to exclude this if we want to use results directly as input
data for paradigm services. Such a sample query is listed below (6.3).

77

Listing 6.3: MongoDB query via Sleepy.Mongoose with regex for excluding metadata.

GET

http://192.168.56.101:27080/nndb/nndata/ find?criteria={"_id":"XOR-2-1-T"}
—exclude "“\{\"ok\": 1, \"results\": \['

—exclude "\], \"id\": \d+\}$’

AN =

Listing 6.4: MongoDB query via Sleepy.Mongoose with curl.

>>$ host=http://A.B.C.D

>>$ mongoose=%$host:27080

>>$ db=nndb

>>$ connect=%$mongoose’'/$db/ connect’

>>$ auth=username=<username>&password=<password>

>>$% curl —data $auth S$connect

>>$ collection=nndata

>>$ insert=$mongoose’/'$db"'/ $collection '/ insert’

>>$ json="[{"x":1}]"’

>>% curl —data 'docs='$json Sinsert

>>$ escape('{"x":1}")

%7B%22x%22%3A1%7D

>>% criteria="_find?criteria=%rB%22x%22%3A2%7D’

>>% curl =X GET $mongoose’'/ '$db’'/ ' $collection '/ $criteria
equivalent to GET query in browser:
http://A.B.C.D:27080/nndb/nndata/ _findCriteria=%7B%22x%22%3A2%7D

O~NO O~ WN -

= = e
DO WN = OO

Listing 6.4 describes a sample session including connecting to a database, authentication
(lines 1 to 6), inserting JSOn data into a collection and finally constructing a query to
fetch this data.

6.1.3.4.2 DrowsyDromedary for MongoDB DrowsyDromedary [52] is an open
source REST interface for MongoDB written in Ruby. A sample query during training /
retraining / evaluation is listed below (6.5) whereas sample input data with _id “XOR-
2-1-T" will be retrieved. Braces and quotes in the URL will be encoded from N2Sky
automatically.

A DrowsyDromedary query string is composed as follows:

1. GET. The http method get.

2. host/nndb. Our MongoDB neural network databas nndb.
3. nndata. The name of the input sample data collection.
4

. selector={key: value}. DrowsyDromedary’s syntax for querying JSON data.

Listing 6.5: MongoDB query via DrowsyDromedary.
1 GET http://192.168.56.101:9292/nndb/nndata?selector={"_id":"XOR-2-1-T"}

78

6.2 Administration Guide

6.2.1 Virtualization

If you want to create and test your own image on QEMU/KVM or VirtualBox locally
instead of customizing an Eucalyptus sample image you have to do the following steps:

1.

If your Eucalyptus infrastructure contains nodes supporting only images that are
smaller or equal 2 gigabytes (<= 2G) and you want to run your image on it, you
have to create such .raw image with QEMU.

If you want to run this image in VirtualBox, you have to convert the .raw image
to a VMWare VMDK format by using the VBoxManage command line tool which
is part of VirtualBox as performed in Listing 6.6.

Use this VMDK image in VirtualBox and install Debian. The size of a swap
partition does not matter because it will be extracted during cloudification, only
your root partition (put system, applications and data on exactly one partition)
has to be <= 2 GB.

Install Debian including OpenSSH and Apache but without any graphical user
interface to save disk space and RAM.

We have two Debian systems, one physical system on which QEMU, VirtualBox,
euca2ools and other tools are installed. The “virtual” system is our Debian image running
on VirtualBox and will be deployed on Eucalyptus. Listing 6.6 shows how to create a
raw image with KVM and how to convert it to a VMDK image to use it in VirtualBox.

Listing 6.6: Image creation and conversion.

1 # physical
2 >>% kvm—img create —f raw debi.img 2G
3 >>% VBoxManage convertfromraw —format VMDK debi.img debi.vmdk

We use Debian 6 in a 64 bit version because it is stable and doesn't need much disk
space. It also runs within an Eucalyptus infrastructure using a Xen kernel for performance
optimization. Listing 6.7 shows Debian package management commands installing ad-
ditional packages needed to run N2Sky:

1.
2.
3.

A Java Runtime Environment (>= Java SE 6)
Tomcat 6 (or an alternative Java web application container)

Tomcat's administration application for deploying and removing webapps remotely
over a web interface.

MySQL server and client or another RDBMS (you only have to change database.properties
within your JPA configuration).

. PHP 5 and phpMyAdmin (only for MySQL administration).

79

© 00 NO OB W

Listing 6.7: Post-Installs.
virtual
>># apt—get install default—jre
>># apt—get install tomcat6
>># apt—get install tomcat6—admin
>># apt—get install mysql—server mysql—client
>># apt—get install php5 libapache2—mod—php5 phpmyadmin
>># /etc/init.d/apache2 restart

6.2.2 Cloudification

6.2.2.1 Image Preparation

The first and essential cloudification step is to delete Debian's network rules file on the
virtual image as shown in Listing 6.8.

Listing 6.8: Deleting network rules.

virtual
Trap: Delete network rules and shut down
>>% rm —rf /Jetc/udev/rules.d/70—persistent —net.rules

Convert VMDK image to raw format (.img). Hint: Use the original VMDK image,
otherwise you will get an error message (Cannot register hard disk) if you use a copy of
it. Listing 6.9 shows an in-depth example.

Listing 6.9: Converting a VirtualBox image to raw (i.e. .img) format..
physical
>>$ VBoxManage clonehd —format RAW debi—copy.vmdk debi.img
VBoxManage: error: Cannot register the hard disk
".../ debi—copy.vmdk .
".../debi.vmdk’ with UUID {31b...} already exists.
>>% VBoxManage clonehd —format RAW debi.vmdk debi.img
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
As an alternative converting from dynamically growing VDI
>>$ VBoxManage clonehd —format RAW debi.vdi debi.img

A very important step in cloudification of a QEMU or VirtualBox image is to extract
data partition as described in [53]. The resulting image then only contains that partition
without master boot record and swap partitions, otherwise Eucalyptus is not able to
start those images. Listing 6.10 shows a session preparing our N2Sky image.

1. Start parted (a Linux partitioning tool, it doesn’t run on Mac OS X), set partition
table unit to byte., print partition table and quit parted

2. Use dd to extract data partition and take all byte values from this partition table.

80

© 00 NO OB WwN =

=
o

wo~NOOTPhWN -

Listing 6.10: Extracting data partition using parted and dd.
>>% parted debi.img
> unit b
> print
partition table is shown (unit byte)
> quit
>>% dd if=debi.img of=n2sky.img bs=512 skip=2048 count=3880960
End of master boot record / block size
Number of blocks to skip: 1048576 / 512 = 2048
(End — start of data partition) / block size
Number of blocks to read: (1988100095 — 1048576) / 512 = 3880960

6.2.2.2 Eucalyptus Deployment

Listing 6.11 shows a sample session describing an Eucalyptus image/instance lifecycle.
A detailed description is shown in the Google Summer of Code Tutorial [53]. We tested
euca2ools both on Debian 6 and Mac OS X 10.6. By running the eucarc file all needed
environment variables are set needed to connect to your Eucalyptus installation. You have
the choice to bundle kernel and ramdisk files or set references to even uploaded kernel
and ramdisk images. Check if your kernel is compatible to your Eucalyptus infrastructure
and use a Xen kernel to get optimal system performance. If you want to choose another
kernel to run an already uploaded image, you have the possibility to define them as
arguments of the euca-run-instances command.

Listing 6.11: A sample session describing an Eucalyptus image/instance lifecycle.
physical
Credentials: Set environment variables
>>$ source 7 /.euca/eucarc
>>$ euca—describe—availability —zones

Skernel = kernel in /boot of virtual image

$ramdisk = ramdisk in /boot of virtual image

$arch = "i386"|"x86 64" # 32 or 64 bit

>>% euca—bundle—image —i n2sky.img —kernel $kernel —ramdisk $ramdisk

—arch §arch
Generating manifest /tmp/n2sky.img.manifest.xml
>>$ euca—upload—bundle —m /tmp/n2sky.img.manifest.xml —b n2sky—bucket
>>$ euca—register n2sky—bucket/n2sky.img.manifest.xml
Registration successful if image ID was created
>>$ euca—describe—images | grep n2sky
>>$ euca—run—instances <emi—xxx>
Successfully booted if instance ID created and IP address set
>>$ euca—describe—instances | grep n2sky
Shutdown instance
>>% euca—stop—instances <i—xxx>
Delete bundle
>>$ euca—deregister <emi—xxx>
>>$ euca—delete—bundle —b n2sky —clear

81

[y

H O OWO~NOOLAWwN R

6.2.3 Object-Relational Mapping (ORM)

N2Sky's domain model (described in Subsection 3.3.3.2) is implemented using Spring
Data JPA as a lightweight implementation of the Java Persistence API. ORM is managed
by two configuration files in /src/main/resources/META-INF: persistence.xml (see
Listing 6.12 and database.properties for holding individual credentials. The trans-
action type ‘“RESOURCE_LOCAL”’ is always the right choice except if you are using JTA
both for connections to databases on localhost as on remote hosts. Spring uses Hiber-
nate as underlying persistence technology so various Hibernate properties are set. For a
production system please ensure that the value of "hibernate.hbm2ddl.auto" (line
6) is set to ‘‘validate”, this means that no database schema changes can be made
automatically by the Spring Framework.

Listing 6.12: The MySQL persistence unit in persistence.xml.

<persistence—unit name="persistenceUnit" transaction—type="RESOURCE LOCAL">

<provider>org. hibernate.ejb.HibernatePersistence </provider>
<properties>
<property name="hibernate.dialect"
value="org.hibernate.dialect . MySQL5InnoDBDialect"/>
<property name="hibernate.hbm2ddl.auto" value="validate"/>
<property name="hibernate.ejb.naming strategy"
value="org.hibernate.cfg.ImprovedNamingStrategy"/>
<property name="hibernate.connection.charSet" value="UTF-8"/>
</properties>
</persistence—unit>

6.2.4 DBMS
6.2.4.1 MySQL

We decided to use MySQL as target relational database management system (RDBMS)
for our ORM because MySQL is the most popular RDBMS in the Cloud and version
5.6 includes special Cloud replication features described in chapter 14 of O'Reilly’s book
MySQL High Availability [54]. For N2Sky several architectures are possible:

1. One MySQL Master DB on each Cloud instance replicated to one single MySQL
slave DB outside the Cloud on real hardware (works well since MySQL 5.6).

2. Each Cloud image uses one single MySQL DB outside the Cloud (Disadvantage:
Concurrent requests).

3. Using MySQL Cluster (Disadvantage: high configuration effort).
6.2.4.2 MongoDB

MongoDB is a NoSQL document-based store using JSON for semi-structured data stor-
age. It is recommended to install the 64bit version because the 32bit one is limited to

82

O~NO Ok WN -

N RN e
H O WOWoULO~NOOULPAWNNEFE OO

2 GB of data. A sample installation on Debian 6 looks like Listing 6.13. The 10gen
package contains the latest stable release. As installation preparation import the 10gen
public GPG key by typing the command in line two. During installation the mongodb
daemon will be configured so that MongoDB server starts automatically after system
boot. Mongo is the interactive command-line client for MongoDB. and by tping use you
can switch between databases, if it doesn't exist, it will be created automatically. After
an unexpected shutdown you have to remove the mongod.lock file (see last line) after
that MongoDB starts without any exceptions.

Listing 6.13: Installing MongoDB on Debian.

Configure Package Management System (APT)

>># apt—key adv —keyserver keyserver.ubuntu.com —recv 7FOCEBI10

Create a /etc/apt/sources.list.d/10gen. list

file and include the following line for the 10gen repository:

[etc/apt/sources.list.d/10gen. list

deb http://downloads—distro.mongodb.org/repo/debian—sysvinit dist 10gen
Installing

>># apt—get install mongodb—10gen

Collectionspace: /var/lib/mongodb

Logs: /var/log/mongodb

Starting: /etc/init.d/mongodb start
Terminating: /etc/init.d/mongodb stop

Interactive command line client
>>$ mongo
> use nndb

Troubleshooting: Exception after unexpected shutdown:
>># cd /var/lib /mongodb/
>># rm mongod. lock

6.2.4.2.1 DrowsyDromedary. DrowsyDromedary [52], a REST interface for Mon-
goDB is written in Ruby and therefore rubygems and bundler have to be installed before
running DrowsyDromedary as shown in Listing 6.14. The start script in /etc/init.d/
executes Bundler's rackup command in the directory DrowsyDromedary-master. In
a shell script you have to prefix it with bundle exec otherwise you will get a run-
time exception. For a production deployment you should deploy DrowsyDromedary with
Passenger on Apache as described in [52],

6.2.4.2.2 Sleepy.Mongoose. Sleepy.Mongoose [51], a further REST interface for
MongoDB is written in Python and therefore needs a Python environment as shown in
Listing 6.15. After installing Python you have to install mongo-python-driver and
then download source files from github. To start Sleepy.Mongoose, you change to this
source directory (in our case /opt/sleepymongoose/sleepy.mongoose-master/) and
run python httpd.py (python calls Python's interpreter).

83

O~NO O~ WN -

N NN R
NP OWOWWLO~NOOLPA, WNEFE OO

Listing 6.14: Installing and starting DrowsyDromedary on Debian.

Installing
>S>H

git, rubygems and bun

apt—get install git
apt—get install rubygems
apt—get install ruby—rack # to run ‘'rackup’
install rubygems—update

gem
gem

#

install bundler

dler

Download DrowsyDromedary source files

Startup

/etc/init.d/drowsydromedary start

NAME=DrowsyDromedary
DESC="MongoDB Ruby REST server"
export PATH=/var/lib/gems/1.8/bin:${PATH}

case "$1" in
start)

echo "Starting $DESC" "$NAME"
cd /opt/drowsydromedary/DrowsyDromedary—master
bundle exec rackup

executable

script

>># chmod 755 /etc/init.d/drowsydromedary

Listing 6.15: Installing and starting Sleepy.Mongoose on Debian.
Installing python—pkg—resources and python—setuptools

>># apt—get
>># apt—get
Installing

install python—setuptools

install build—essential
mongo—python—driver

>># easy install pymongo

#

python—dev

Download Sleepy.Mongoose source files from github

Startup

/etc/init.d/sleepymongoose start

NAME=Sleepy . Mongoose
DESC="MongoDB http REST interface"

case "$1" in
start)

echo "Starting $DESC" "$SNAME"
cd /opt/sleepymongoose/sleepy . mongoose—master/
python httpd. py

1

executable

script

>># chmod 755 /etc/init.d/sleepymongoose

84

H O OO ~NOOOLPhWwN

[EET Y

6.2.5 Cronjobs

An easy way of running scripts on system startup is to use cron by defining cronjobs. As
described in Listing 6.16, scripts in directory /etc/cron.d/ have to be registered (by
using crontab) for the user root to activate it as cronjobs.

Listing 6.16: Cronjobs after system boot.
/etc/cron.d/drowsydromedary: crontab fragment
for DrowsyDromedary
Q@reboot /etc/init.d/drowsydromedary start

/etc/cron.d/sleepymongoose: crontab fragment
for Sleepy.Mongoose
@reboot /etc/init.d/sleepymongoose start

Activating jobs for root
/etc/cron.d# crontab —u root drowsydromedary
/etc/cron.d# crontab —u root sleepymongoose

6.2.6 Cloud Deployment

One possible variant of deploying N2Sky in the Clouds is depicted in the Cloud deploy-
ment diagram in Figure 6.4.

s
Computation Cloud/,’ . Data Cloud

L=

Simulation Mgmt.

‘ Monitor ‘ | Registry ‘ NN Data Archive
SLA User Mgmt.
A
)]
[1
Businesy Cloud ! \
i / \
] {’ 1 -
JDBC / ODBC | | 4
1 w 4 w 4
v - o - o
u 4 Key / Value Key, Value
|] Store 1 Store 2
RDEMS

Figure 6.4: Cloud deployment diagram

85

Components are deployed on three different Clouds: Computation Cloud, Business Cloud
and Data Cloud.

e Computation Cloud. The Cloud on the left hand side provides strong comput-
ing capabilities for the time-consuming training and evaluation phases of neural
networks.

e Business Cloud. The second Cloud is the administrative Cloud, which does not
provide specific hardware resources but acts as central access point for web and
smart phone applications and acts as mediator to the N2Sky environment, e.g. by
manageing simulation (training/evaluation) tasks or applying business models. A
JDBC connection to relational database systems can be used to access our domain
model.

e Data Cloud. The Cloud on the right hand side offers extensive storage resources
for large amounts of neural network input samples and results. by key/value stores
like Cassandra or document-based stores like MongoDB.

6.2.7 N2Sky Credentials

As described in Subsection 3.2.6 there are several mechanisms to ensure that only autho-
rized stakeholders are able to access fee-based services. Four tables (Stakeholder, Stake-
holderRole, RoleAssignment and Resource) of the Simulation Management database
(see domain model in Subsection3.3.3.2) hold up the corresponding information.

Resource
-password

<<component>> | | Staklehplder
Usermanagement -login
-password
3 Send A
Session ID 2 Check dredentials
5|Check subscription
=
1login | <<component>> | | Transient session =_ —J
— > Simulation Mgmt. table -sessions —|
N2Sky Simulation
4 train / retrain / 6 access password- Mgmt DB (SQL)
evaluate / get result protected resource
A
<<component>> | | Service-specific
Paradigm service -password

Figure 6.5: N2Sky authentication workflow.

86

The adapted component diagram in Figure 6.5 depicts how authentication is imple-
mented in N2Sky and where credentials are saved:

1.

After initial registration a stakeholder has login (i.e. username - 3 to 20 characters)
and password (6 to 20 characters) mandatory for logging in.

Each client request is processed by the Simulation Management component, login
and password is checked by the Usermanagement (i.e. stakeholder management)
component by reading corresponding fields of the Stakeholder table.

If stakeholder authentication succeeds, a unique session id is generated and sent
to the client.

From then on client requests add a sessionid parameter argument to each REST
Web Service call (e.g. train, retrain, evaluate, checkStatus or getResult)
to verify stakeholder identity.

If a desired paradigm service is not freely available, it has to be subscribed for
a particular time period or by another pricing model. If this check succeeds, the
path and password for accessing a particular service is retrieved from the Resource
table (see Resource hierarchy in Figure 3.5).

. With this information a password-protected paradigm service can be accessed.

During initial registration of a service the service provider has to enter this password
into a registration form provided during initial paradigm publishing. and store it
locally so that the developed service is able to access it.

87

Chapter 7

Developer Guide

This chapter is divided into three sections: Paradigm development, Paradigm publishing
and SaaS Component development.

7.1 Developing a Paradigm

To develop N2Sky-compatible paradigms basically RESTful Web Service interfaces have
to be implemented consuming and producing plain text and JSON (mostly XML option-
ally) parameter values. If such paradigms are intended to run on an arbitrary server you
are free to choose your favorite developing language to implement it. In this case you are
responsible for task management (running several simulations in parallel) and security
issues.

In most cases developers prefer to run their paradigm services within N2Sky's Cloud
infrastructure so you are invited to use following Java classes and interfaces.

7.1.1 N2SkyService

The Java Interface N2SkyService stated in Listing 7.1 defines method declarations sum-
marized in Table 7.1. Retrain means to use weights computed during last training as
inputs for further training to achieve more exact training results. Paradigm developers
have the opportunity to implement it or simply return null.

Every neural network paradigm service extends the abstract class AbstractN2SkyService
implenenting N2SkyService (Listing 7.1) for inheriting task management for Training
and Evaluation Tasks. A typical service implementation looks like the TutorialBack-
propService in Listing 7.2.

89

©Cooo~NOOS~WN -

Listing 7.1: The Java Interface N2SkyService.

package at.ac.univie.n2sky.common;

import

[*%

* This specifies the basic methods which MUST be implemented by a
% N2Sky netservice.

*/

public interface N2SkyService extends Remote {

/[*%

* The operation train is used to instantiate a neural network in the

* N2Sky service and to train this new instantiation. The operation
* returns a task—ID (xsd:string) for retrieving a trained neural
* network later. The parameters are structure, parameters and data
* (xsd:string valid to n2sky—x—data.xsd).

*

* @param structure valid to STRUCTURE in n2sky—definition .xsd

* Oparam parameters valid to PARAMETERS in n2sky—definition .xsd

* @param trainData valid to NNDATA/NNBINDATA in n2sky—x—data.xsd
* Q@return taskID

* Othrows java.rmi.RemoteException

*/

public String train(Structure structure, Parameters parameters, N2SkyData trainData)
throws RemoteException;

/[*x

* The operation retrain is used to continue training on an already trained
* neural net service. The operation returns a task—ID (xsd:string)

* for retrieving a trained neural network later. The parameters are the
* N2Sky NetObject (see NETOBJECT in n2sky—result.xsd) and

* data (xsd:string valid to n2sky—x—data.xsd).

*

% @param netObject — the paradigm developer is able to create a

* paradigm—specific implementation

* @param trainData valid to NNDATA/NNBINDATA in n2sky—x—data.xsd

% Q@return taskID

* Othrows java.rmi.RemoteException

*/

public String retrain(String netObject, N2SkyData trainData) throws RemoteException;

/

*

By the operation evaluate an already trained neural network can be sent,
accompanied by evaluation data (xsd:string valid to n2sky—s—data.xsd),

to this service method. The operation returns a task—ID (xsd:string)

for retrieving result data later.

@param netObject (part of n2sky—result.xsd) depending on paradigm developer
@param evaluationData valid to n2sky—x—data.xsd

Q@return taskID

@throws java.rmi.RemoteException

* K X X X X ¥ %

*

*/

public String evaluate(String netObject, N2SkyData evaluationData)
throws RemoteException;

b

JET:
The operation checkStatus provides information about a submitted training
or evaluation. It returns a integer number (xsd:int) representing
the progress with the following semantic:
—1 = error ,

0 to 99 = percent of progress,
100 = finished.
The input parameter of the operation
is the task—ID (xsd:string).
@param taskID
Q@return int value of progress in percent
Othrows java.rmi.RemoteException

* O K X X X X ¥ X X *

*

*/

public int checkStatus(String tasklD) throws RemoteException;

public N2SkyResult getResult(String tasklD) throws RemoteException;

90

OO ~NOOTHA WN -

’ method \ AbstractN2SkyService \ Paradigm Service \ mandatory ‘

train X X
retrain X
evaluate X
checkStatus X
getResult X
getResultProxy X
addTask X
removeTask X

X | X | XX

Table 7.1: Methods implemented in AbstractN25kyService have to be extended in indi-

vidual paradigm services.

Listing 7.2: Tutorial Backprop Service as an example of a paradigm service.

Q@Component ©@Path("/BPROTUTO")
public class TutorialBackpropService extends AbstractN2SkyService {

OPOST @Path("/train")
Q@Consumes({" application/json", "application/xml"})
public String trainDataMapper(N2SkyDefinition def) {
return train(def.getStructure(), def.getParameters(), def.getData());
}

public String train(

@HeaderParam (" structure") Structure netStructure,
@HeaderParam (" parameters") Parameters netParameters,
@HeaderParam("data") N2SkyData data) {

String taskID = (new UID()).toString ();
try {
N2SkyNet theNet = new TutorialBackpropNet(netStructure, netParameters);
this.addTask(tasklD, new TrainingTask(theNet, data));
log .debug("train puts tasklD: " + tasklD 4+ " into HashMap");
} catch (Exception e) {
this.addTask(tasklD, new ErrorTask(e.getMessage()));
b

return taskID;

}

OGET Q@Path("/checkstatus")
public int checkStatus(©@HeaderParam("taskid") String tasklD)
throws RemoteException {

OGET Q@Path("/getresult")
@Produces({"application/json "application/xml"})
public N2SkyResult getResult(@HeaderParam("taskid") String taskID)
throws RemoteException {
N2SkyResult result = super.getResult(tasklD);
return result;

}
protected N2SkyResult getResultProxy(String taskID) { ...}
public String evaluate(...) { ... }

public String retrain(String netObject, N2SkyData data) {
// retrain not implemented
return null;

B]

91

O~NO O~ WN -

OO P PP PEPPEPDDPPEPAEADDPVLWWWWWWWWWNDNNNMNMNMNNMNMNNNHERPRPRREPERRRERRFRERRRE
QO O~NOOODOT P WNFRPROOVWONODOPPWNEFOOOONOOPPWNREFRPOOVOLONOOPWDNDEFE OO

51

(&)
N

public

/

* %k

* This Method

*/

Listing 7.3: Java Interface N2SkyNet.

interface N2SkyNet {

is called in the trainThread to train the net
x @param data as N2SkyData (input and output values)

public void train(N2SkyData data);

/

kX
* This method

x represented

*/

is called from EvaluationThread to evaluate inputs
x Oparam data a N2SkyData where the input samples are

by columns

public void evaluate(N2SkyData data);

/

* %
x Using this
* to the net

method, the tasks subscribe as listeners

to receive

*x the net's status updates.
x Oparam | the StatuslListener to add

*/

public N2SkyNetStatus addStatuslListener(StatuslListener |);

/

* %

x It should return a collection of numerical samples
x containing matches between inputs and outputs of last evaluation.

*

x* Qreturn a collection

*/

of Samples

public Collection<Sample> getResults ();

/

* %

x |t should return a collection of binary samples (e.g. images).

*

* @return a collection

of BinSamples

x @see at.ac.univie.n2sky.common.dto.BinSample

*

/

public Collection<BinSample> getBinResults ();

/

% %
* This should

* |f evaluated

return a diagram, if the net was trained.

it may return null.

x Qreturn a training diagram

*/

public Diagramm getDiagramm ();

/

* %

* This method
*/

must return a string representation of the trained

public String getFlatNetObject () throws JAXBException,

}

IOException ,

SAXException

Exception;

92

net.

7.1.2 Tutorial Backprop Service

TutorialBackpropService (Listing 7.2) is a demo implementation of a paradigm service
annotated with Jersey [55] and JAXB binding annotations. To simplify JSON and
XML posting (http method POST) additional training and evaluation methods are added
enveloping Structure, Parameters and NNData to form a common N2SkyDefinition
object.

7.1.3 N2SkyNet

Every neural network used by a N2Sky paradigm service has to implement N2SkyNet
(Listing 7.3). A neural net typically returns either numerical data (arrays of Java double
values) or binary files (e.g. images) therefore the interface includes both methods
getResults and getBinResults whereas the net implenents only one of them and
returns null at the other.

GetFlatNetObject has to return a JSON string representation of the neural network
specific NetObject because no schema is defined for this object.

7.2 Publishing a paradigm in the N2Sky Service
Store

If your paradigm has been developed and tested properly you are ready to publish your
paradigm. Figure 7.1 depicts the five basic publishing steps derived from Apple's iOS
app publishing process [56].

1. Configure Paradigm Service in N2Sky’s Web Portal. Upload your paradigm
as JVM-compatible .war file as well as the associated service description xml file
valid to n2sky-description.xml listed in Appendix A (A.1).

2. Submit it for approval. After submitting the request form your paradigm service
is checked automatically at first if it meets the N2Sky interface specifications
described above and then is checked manually if it meets all specifications stated
by the paradigm developer.

3. Respond to approver issues. If the service doesn't meet every specification the
approval process will be paused and a mail containing approver issues is sent to
the developer. After clarifying these issues the developer submits it once again by
using N2Sky's web portal.

4. Activate it If all issues are clarified or the approved paradigm was fine from
the beginning, the developer as paradigm provider is invited to activate it so his
paradigm service is available for every N2Sky user.

93

5. Respond to End User issues. As part of our quality assurance strategy also
end users get the opportunity to report issues. After a manual check issues are
forwarded to the paradigm service provider which is again invited to respond.

Configure

Paradigm Service Submit it Respond to N) RESZOSd to
in N2SKY for approval Approver > ctivate it nd User
Web Portal Issues issues

Figure 7.1: Paradigm service publishing process.

The developer is invited to choose a N2Sky-wide unique service acronym for each of
published paradigms. It consists of uppercase characters (paradigm group) and uppercase
characters and/or numbers (paradigm):

e Paradigm group: The first 4 characters of service acronym. (e.g. BPRO for
Backpropagation group).

e Paradigm: Service acronym. Starting from the 5th character or number.

Your service acronym is used in our databases as a further unique identifier beside
a numerical primary key for better human readability and to be better prepared for
reorganizaions of the resource structure. Furthermore the acronym is used to identify
paradigms over Web Service endpoints.

7.3 Developing SaaS Components

7.3.1 Smartphone App - The-M-Project and jQM

We developed our web portal for mobile browsers by using pure HTML5, CSS3 and
JavaScript so iOS or Android apps can be packaged via PhoneGap with minimal ad-
ditional effort. We use jQuery Mobile (JQM) because it is JavaScript and CSS-based
by providing a standardized way of using stylesheets and Ul elements like lists, buttons
or input fields. As jQM-based MVC framework The-M-Project (TMP) [48] is used to
separate code into three categories: Model, View and Controller.

7.3.1.1 Configuration

Listing 7.4 shows a configuration code snippet in JSON style located in our project’s
main directory. Lines 1 to 11 show how to integrate arbitrary JavaScript libraries. Li-
brary names declared by the name property can be used in your JavaScript Controller
code. An array of JavaScript files can be declared using a refs property. In our
app vkbeautify is used to expand (pretty print) and minify input samples or results
in JSON or XML format, raphael is a graphic library and supports visualization of

94

O~NO O~ WN -

N NN e e e
N OWOWWLONODOOITPA, WNEFE OO

Listing 7.4: App configuration in config. json.

"libraries ":|

{
"name": "vkbeautify",
"refs": ["vkbeautify.0.98.01.beta.js"]
I3
{
"name": "raphael",
"refs": ["raphael—-min.js",
"g.raphael—-min.js", "g.line—min.js"]
}
1.
"supportedLanguages": |
"en us",
"de_de”
]
"defaultLanguage": "en us",
"package": {
"mylOSConfig": {
"method": "PhoneGap",
IIOS": lliOSII'
}

various diagrams. Line 12 declares supported languages defined in JSON files in the
<project>/app/resources/i18n/ directory. Finally the package section defines prop-
erties for packaging a TMP web application into a native iOS or Android app. To create
iOS apps, PhoneGap and XCode have to be installed on an OSX system. Furthermore
a valid Apple developer license is needed to get a valid encryption key.

7.3.1.2 MVC Pattern

7.3.1.2.1 Model The mobile HTML5 framework The-M-Project implements the
well-known Model-View-Controller (MVC) design pattern. Models, views and controllers
are separated and stored in different directories. Instead of including the model part into
our app (no local database) we use REST Web Service methods of our Simulation Man-
agement component for querying N2Sky's domain model and managing neural network
training and evaluation tasks.

7.3.1.2.2 View Listing 7.5 presents a code snippet of CurrentTrainingsView. A
M.ListView object defines a list of neural objects already trained or in training state
ordered by training starting time. The design of a single list item is defined within a
separate view file (CurrentTrainingsTemplate, Line 2) whereas the content of list
items is linked to CurrentTrainingsController via contentBinding (lines 3 to 6).
The property idName indicates which property will be passed if a particular ListItem
is clicked. The remaining properties control the design of our list.

95

Listing 7.5: ListView definition in CurrentTrainingsView. js.

1 trainingslList: M. ListView.design({

2 listltemTemplateView: n2sky.CurrentTrainingsTemplate,

3 contentBinding: {

4 target: n2sky.CurrentTrainingsController ,

5 property: 'trainings '’

6 1,

7 idName: 'ID’,

8 hasSearchBar: YES,

9 searchBarlnitial Text:

10 isCountedList: YES,

11 islnset: NO

12 })
7.3.1.2.3 Controller A main task of controllers is to listen to user actions sent by
Views and to send to and retrieve data from the Model. For most of our Views we
created exactly one Controller for processing events initiated on its corresponding View.
The code snippet in Listing 7.6 concentrates on an AJAX REST Web Service call to
retrieve trained neural objects (even finished or unfinished). As we expect to receive
this object list as JSON we indicate this by the property 1sJSON (line 4). Even though
JSON streams are parsed automatically to JavaScript objects you have to distinguish
two different cases: one training object (line 14) or a list of objects (line 9). Note that in
jQuery every Web Service call is performed in an asynchronous way. This means that the
programmer has to manage concurrency, the client doesn’'t wait for a response rather
than subsequent statements are executed immediately after service call initialization.
Only at the time of sending service results, one of our callback methods (onSuccess,
onError) are executed depending on the received http status code. Finally, http header
parameters are set in the beforeSend section (line 22).

Listing 7.6: AJAX Web Service call in CurrentTrainingsController. js.

1 M.Request.init({

2 url: n2sky.AdminController.get('n2s') + '/currenttrainings '

3 method: 'GET',

4 isJSON: YES,

5 onSuccess: function(data, msg, xhr) {

6 if (data != null) {

7 // More than 1 training?

8 if (data.TRAINING.length !'= null) {

9 data = data.TRAINING;

10 for (var i=0; i<data.length; i++4) {

1 data[i]["IDLABEL'] = 'ID:' + data[i]['ID'];

12 1

13 } else {

14 data.TRAINING.IDLABEL = 'ID: ' + data.TRAINING.ID;

15

16 n2sky . CurrentTrainingsController.set('trainings ', data);

17 }

18 :

19 onError: function(xhr, msg) {

20 M. DialogView. alert ({

21 ,

22 beforeSend: function(xhr) {

23 var sid = n2sky.AdminController.get("sessionlD");

24 xhr.setRequestHeader (" sessionid", sid);

25

}
26 }).send();

96

7.3.2 Web Portal - Google Web Toolkit

In addition to our Smartphone App we plan to implement the N2Sky Web Portal as a
unified entry point for every N2Sky stakeholder. It should be a GUI both for our Simu-
lation Management and Business Administration components. In order to realize such
portals we analyzed various Java-based frameworks (including JSF, Spring MVC/Web
Flow and Oracle ADF). Due to browser heterogeneity there is no perfect framework.
However we identified GWT (Google Web Toolkit) that best meets our requirements.

|

‘ The-M-Project / jQuery Mobile ‘ Google Web Toolkit (GWT)

Development

Included tools

TMP, jQ(M) and PhoneGap libs

GWT SDK, Plugin for Eclipse

Included server

Espresso test server

Requirements

Linux or OSX, Node.js >= v0.6

JDK >= v5, Eclipse >=v3.4

Design pattern

Model-View-Controller

Model-View-Presenter

Server stateful / stateless stateless
Client (Browser) stateful / stateless stateful
Develop with Decl. JSON, JavaScript, CSS Java, CSS

Code is generated in

HTML5, JavaScript

browser-specific JavaScript

Code gen. perform.

a few seconds (medium projects)

about 1 hour for large projects

Debugging

Browser tools

Compiler warnings, within IDE

Native iOS apps

included

via mgwt and gwt-phonegap

Deployment

Requirements

Web server (e.g. Apache)

Application server (eg Tomcat)

Server components

not required (as app)

required (model)

Recommended for

all types except Real-Time Syst.

RCP substitution, large-scale

Licensing
Current version 141 251
License MIT ASL (Apache)

Table 7.2: Differences between jQuery Mobile and Google Web Toolkit (GWT) .

The GWT DevGuide [57] provides a good overview where more detailed documentation
solely is offered on Javadoc-level. GWT generally requires high learning effort in order to
obtain optimum results. On the other hand both server side and client side code is Java-
based, browser- and language-specific JavaScript will be automatically generated and you
need not worry about specific browser representations. You have to split JavaScript files
into modules otherwise the complete browser-based rich client application is loaded at
once. It runs autonomously within a browser and requests JSON data via asynchronous
REST Web Service calls. Thus, powerful apps can be developed that eliminate the
need for time-consuming and costly launches of Rich clients. Table 7.2 compares some
characteristics of GWT with those of The-M-Project described in previsous subsection.
GWT's advanced Model-View-Presenter design pattern implementation allows for loosely
coupled components (View doesn’t contain application logic) and considerably simplified
testability. By using via mgwt and gwt-phonegap it is possible to package native mobile
apps so we plan to integrate N2Sky's Smartphone App into our GWT project.

97

Chapter 8

Conclusion and Outlook

This chapter points out contributions during implementation of the prototype system,
it continues with a discussion of aspects not covered in this thesis although they may
influence future work. The chapter ends with things | have learned during the creation
of this thesis.

Section Section | Comp. | Comp.
Architect. | Interface | integr. | implem.
Web Portal 342 442 P P
Smartphone App 343 443 Y Y
Query Interface 34.1 441 N N
Hosted Uls 344 444 N N
Simulation Services 331 431 Y Y
Simulation Management 3.3.2 4.3.2 Y Y
Business Administration 333 433 P P
Hosted Components 334 434 N N
Comp. Hosting Platform 329 429 N N
Registry 321 421 Y Y
Monitoring 3.2.2 4272 P P
SLA 3.2.3 423 N N
Controlling and Acclunting 324 4.2.4 N N
Usermanagement 3.2.5 425 Y Y
Access Control 3.2.6 4.2.6 P P
Workflow System 327 427 N N
Knowledge Management 3.2.8 428 N N
Annotation Service 3.2.10 4.2.10 N N
Component Archive 3.1.1 4.1.1 Y Y
Data Archive 3.1.2 412 Y Y
Ad-hoc Infrastructure 3.1.3 4.1.3 N N

Table 8.1: Integration/implementation states of N2Sky components.

99

8.1 Contributions

In Table 8.1 it is stated (Yes/No/Partly) for each component if it was integrated (i.e.
Web Services, APIs or protocols were applied) or implemented (i.e. the component itself
was developed from the ground up or even existing components were adapted).

8.2 Conclusion and Further Research

The goal of this Master's thesis was both to provide theoretical work and a prototype
system of a Cloud-based framework enabling the Computational Intelligence community
to share and exchange neural network resources within a virtual organization environ-
ment. The N2Sky system provides transparent access to various resources by a layered
Cloud-based architecture via defined interfaces. The N2Sky architecture was designed as
an instance of RAVO allowing easy integration of resources into the Cloud services stack
(SaaS, PaaS and laaS) of service oriented architectures. The presented N2Sky proto-
type system has quite some room for further enhancement. Ongoing research related to
N2Sky is done in the following areas:

e Enhancing VINNSL. We are working on an enhancement of the neural network
paradigm descripion language VINNSL [8] to allow for easier resource sharing be-
tween paradigm providers and customers. We are also aiming to build a generalized
semantic description of resources for exchanging data.

e Query interface. A further purpose of applying semantic descriptions is to find
neural network solvers for given problems, similar to a "Neural Network Google".
In the course of this research we are using ontology alignment by mapping problem
ontology onto neural network solution ontology.

e Parallelize training tasks. Parallelization of neural network training is a further
key for increasing the overall performance of the N2sky system. Based on our
research on neural network parallelization [58] we envision an automatically defi-
nition and usage of parallelization patterns for specific paradigms. A hot topic in
this area is to select capable resources in the Cloud for execution, e.g. multi-core
or cluster systems.

100

8.3 Lessons Learned

8.3.1 Technical Skills

The Cloud computing paradigm: Strengths and weaknesses
e Designing and customizing service oriented architectures.

The idea behind RESTful Web Services: How to use it the right way.

Key/value stores: How and when they work and which kind of common query
language can be used.

Developing HTML5 GUIs (CSS3, JavaScript, jQuery Mobile, The-M-Project).

Writing papers/thesis using IKTEX.

8.3.2 Publications Related to this Thesis

A Cloud-based Neural Network Simulation Environment
Erich Schikuta and Erwin Mann
In: 12th International Work Conference on Artificial Neural Networks.

2013-06-12, Tenerife, Spain (2013)

N2Sky — Neural Networks as Services in the Clouds
Erich Schikuta and Erwin Mann
In: International Joint Conference on Neural Networks,

2013-08-04, Dallas, USA (2013)

101

“The nucleus accumbens is, neither pleasure nor addiction centre, and only
incidentally a happiness centre. Rather, it is our brain‘s own learning booster.
The bad news is: the module of our brain that is responsible for experiencing
happiness is focused not on permanent happiness but on permanently finding
interesting novelties. The good news is: those who have understood that
learning and happiness are very closely linked in our minds will know that
the experience of happiness is always possible throughout life. Thus answers
to the question of happiness can be found precisely where you would least
expect them: in learning!”

Manfred Spitzer, neuroscientist

102

Bibliography

[1]

2]

8]
[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

The Human Brain Project, “HBP website”. http://www.humanbrainproject.eu/,
[Last access: Sept 17, 2013].

UK e-Science, “The UK e-Science Grid website". http://www.escience-grid.org.uk,
[Last access: Sept 17, 2013].

R. Hecht-Nielsen, “Neural network primer: Part i,” Al Expert, pp. 4-51, Feb. 1989.

R. Kruse, C. Borgelt, F. Klawonn et al., Computational Intelligence. ~ Springer,
2012.

|. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scal-
able virtual organizations,’ International Journal of High Performance Computing
Applications,, vol. 15, no. 3, pp. 200-222, Fall 2001.

R. Hilliard, “IEEE Std 1471-2000: Recommended practice for architectural descrip-
tion of software-intensive systems,” /EEE, 2000, http://standards.ieee.org/findstds/
standard/1471-2000.html, 2000, [Last access: Sept 17, 2013].

G. Muller. A reference architecture primer. White paper, Buskerud Univer-
sity College, Kongsberg, Norway, 2008. Accessible at: http://www.gaudisite.nl/
ReferenceArchitecturePrimerPaper.pdf, [Last access: Sept 17, 2013].

P. P. Beran, E. Schikuta, T. Weishaupl, and E. Vinek, “VINNSL - Vienna Neu-
ral Network Specification Language,” in IEEE World Congress on Computational
Intelligence (WCCI 2008). |EEE Computer Society, June 2008.

K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,” Internet
Computing, IEEE, vol. vol. 13, no. no. 5, pp. 43-51, Sept-Oct 2009.

L. M. Vaquero, L. Rodero-merino, J. Caceres et al., “A break in the clouds: Towards
a cloud definition,” ACM SIGCOMM Computer Communication Review, pp. 50-55,
2009.

J. Geelan, “Twenty-one experts define cloud computing,” 01 2009, http://
cloudcomputing.sys-con.com/node/612375, [Last access: Sept 17, 2013].

R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities,” 2008 10th IEEE
International Conference on High Performance Computing and Communications,
pp. 5-13, 2008.

103

http://www.humanbrainproject.eu/
http://www.escience-grid.org.uk
http://standards.ieee.org/findstds/standard/1471-2000.html
http://standards.ieee.org/findstds/standard/1471-2000.html
http://www.gaudisite.nl/ReferenceArchitecturePrimerPaper.pdf
http://www.gaudisite.nl/ReferenceArchitecturePrimerPaper.pdf
http://cloudcomputing.sys-con.com/node/612375
http://cloudcomputing.sys-con.com/node/612375

[13] P.Mell and T.Grance, “The NIST definition of cloud computing,” Computer Security
Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-
8930, USA, NIST Special Publication 800-145, Sept 2011.

[14] W. Khalil, “Reference architecture for virtual organization,” PhD thesis, University
of Vienna, 2012.

[15] CIML, “Computational Intelligence and Machine Learning website". http://www.
cimlcommunity.org/, 2011, [Last access: Dec 10, 2011].

[16] SOM Programming Team SOM-PAK, “The self-organizing map program package
user guide,” 1992.

[17] A. Zell, G. Mamier, M. Vogt et al., “SNNS Stuttgart Neural Network Simulator
user manual. Technical report,” University of Stuttgart, March 1992.

[18] C. Brunner and C. Schulte, “NeuroAccess: The neural network data base system,”
Master's thasis, University of Vienna, 1998.

[19] E. Schikuta, “NeuroWeb: An Internet-Based Neural Network Simulator,” in 14th
IEEE International Conference on Tools with Artificial Intelligence. |EEE Computer
Society Press, November 2002.

[20] E. Schikuta and P. P. Beran, “A gridified artificial neural network resource,” in IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2007). |EEE
Computer Society, October 2007.

[21] A. A. Huggani, L. Xin, P. P. Beran, and E. Schikuta, “N2Cloud: Cloud based

neural network simulation application,” in /EEE World Congress on Computational
Intelligence. |EEE Computer Society, July 2010.

[22] IBM, “IBM Blue Cloud"”. http://www-03.ibm.com/press/us/en/photo/22615.wss,
2007, [Last access: Sept 17, 2013].

[23] K. Jeffery and B. Neidecker-Lutz, “The future of cloud computing, opportunities
for european cloud computing beyond 2010," http://cordis.europa.eu/fp7 /ict/ssai/
docs/cloud-report-final.pdf, 2010, [Last access: Sept 17, 2013].

[24] BrainMaker, “Classify Breast Cancer Cells with BrainMaker Neural Network Soft-

ware”. California Scientific website, http://www.calsci.com/BreastCancer.html,
[Last access: Sept 17, 2013].

[25] OGSA-DAI, “Open Grid Services Architecture Data Access and Integration (OGSA-
DAI)". E-Science Grid Core Project, http://www.ogsa-dai.org.uk/, [Last access:
Sept 17, 2013].

[26] B. Bonev and S. llieva, “Monitoring Java based SOA applications,” in Proceedings
of the 13th International Conference on Computer Systems and Technologies, ser.
CompSysTech '12. New York, NY, USA: ACM, 2012, pp. 155-162.

104

http://www.cimlcommunity.org/
http://www.cimlcommunity.org/
http://www-03.ibm.com/press/us/en/photo/22615.wss
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://www.calsci.com/BreastCancer.html
http://www.ogsa-dai.org.uk/

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

D. McCoy, “Business activity monitoring: The promise and reality,” Gartner, July
2001.

D. Parmenter, Key Performance Indicators: Developing, Implementing,and Using
Winning KPlIs. Wiley, 2011.

Amazon, “Amazon Elastic Compute Cloud (EC2)". http://aws.amazon.com/ec2/,
[Last access: Sept 17, 2013].

OpenERP, “OpenERP website". https://www.openerp.com/de/, [Last access: Sept
17, 2013].

SQL-Ledger, “SQL-Ledger website”. http://www.sql-ledger.com/, [Last access:
Sept 17, 2013].

ADempiere, “ADempiere website”. http://adempiere.org/site/, [Last access: Sept
17, 2013].

LedgerSMB, “LedgerSMB website". http://ledgersmb.org/, [Last access: Sept 17,
2013].

Compiere, “Compiere Community Edition website”. http://www.compiere.com,
[Last access: Sept 17, 2013].

OpenBravo, “OpenBravo website”. http://www.openbravo.com/, [Last access:
Sept 17, 2013].

J. Mangler, E. Schikuta, C. Witzany, J. Oliver, |. U. Haq, and H. Wanek, “Towards
dynamic authentication in the grid: Secure and mobile business workflows using
gset,” January 2010.

W. Khalil and E. Schikuta, “Virtual organization for computational intelligence,” in
Human-Computer Interaction: The Agency Perspective, ser. Studies in Computa-
tional Intelligence. Berlin, Heidelberg: Springer, 2012, vol. 396, pp. 437-464.

[. Altintas, O. Barney, and E. Jaeger-frank, “Provenance collection support in the
Kepler scientific workflow system,” in Proceedings of the International Provenance
and Annotation Workshop (IPAW. Springer-Verlag, 2006, pp. 118-132.

L. J. Osterweil, L. A. Clarke., A. M. Ellison, R. Podorozhny, A. Wise, E. Boose,
and J. Hadley, “Experience in using a process language to define scientific workflow
and generate dataset provenance,” in Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software engineering, ser. SIGSOFT
'08/FSE-16. New York, NY, USA: ACM, 2008, pp. 319-329.

T. Oinn, M. Greenwood, M. Addis et al., “Taverna: lessons in creating a workflow
environment for the life sciences: Research articles,” Concurr. Comput. : Pract.

Exper., vol. 18, pp. 1067-1100, August 2006.

105

http://aws.amazon.com/ec2/
https://www.openerp.com/de/
http://www.sql-ledger.com/
http://adempiere.org/site/
http://ledgersmb.org/
http://www.compiere.com
http://www.openbravo.com/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

|. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera: A virtual data system for
representing, querying, and automating data derivation,” in Proceedings of the 14th
Conference on Scientific and Statistical Database Management, 2002, pp. 37-46.

C. Pautasso, “Composing RESTful Services with JOpera,” in Proceedings of the 8th
International Conference on Software Composition, ser. SC '09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 142-159.

S. Pllana, J. Qin, and T. Fahringer, “Teuta: A tool for uml based composition
of scientific grid workflows,” in Ist Austrian Grid Symposium. Schloss Hagenberg.
Springler Verlag.

ASKALON, “ASKALON cloud and grid application development and computing
environment website"”. http://www.dps.uibk.ac.at/projects/askalon/, [Last access:
Sept 17, 2013].

Sesame, “Sesame RDF website”. http://www.openrdf.org/, [Last access: Sept 17,
2013].

Mac Developer Library, “itunes connect Developer guide for mac developers”. http:
//developer.apple.com/library/mac/iTunesConnectGuide, [Last access: Sept 17,
2013).

Mac Developer Library, “itunes connect Developer guide for ios Developers".
http://developer.apple.com/library/ios/iTunesConnectGuide, [Last access: Sept
17, 2013).

The-M-Project, “The-M-Project Mobile HTML5 JavaScript Framework website”.
http://www.the-m-project.org/, [Last access: Sept 17, 2013].

SpringSource, “Web Services APl of SpringSource Hyperic HQ". http://www.
hyperic.com/, [Last access: Sept 17, 2013].

MongoDB, “MongoDB website”. http://www.mongodb.org/, [Last access: Sept
17, 2013).

Sleepy.Mongoose, “Sleepy.Mongoose website on github®. https://github.com/
kchodorow/sleepy.mongoose, [Last access: Sept 17, 2013].

DrowsyDromedary, “DrowsyDromedary website on github”. https://github.com/
zuk/DrowsyDromedary, [Last access: Sept 17, 2013].

Debian, “Preparation of an eucalyptus-ready cloud image,”“ tutorial from
the 2010 google summer of code project. http://wiki.debian.org/Cloud/
CreateEucalyptuslmage, [Last access: Sept 17, 2013].

C. Bell, M. Kindahl, and L. Thalmann, MySQL High Availability: Tools for Building
Robust Data Centers. O'Reilly, 2010.

Jersey, “Jersey 2.1 user guide”. https://jersey.java.net/documentation/latest/
index.html, [Last access: Sept 17, 2013].

106

http://www.dps.uibk.ac.at/projects/askalon/
http://www.openrdf.org/
http://developer.apple.com/library/mac/iTunesConnectGuide
http://developer.apple.com/library/mac/iTunesConnectGuide
http://developer.apple.com/library/ios/iTunesConnectGuide
http://www.the-m-project.org/
http://www.hyperic.com/
http://www.hyperic.com/
http://www.mongodb.org/
https://github.com/kchodorow/sleepy.mongoose
https://github.com/kchodorow/sleepy.mongoose
https://github.com/zuk/DrowsyDromedary
https://github.com/zuk/DrowsyDromedary
http://wiki.debian.org/Cloud/CreateEucalyptusImage
http://wiki.debian.org/Cloud/CreateEucalyptusImage
https://jersey.java.net/documentation/latest/index.html
https://jersey.java.net/documentation/latest/index.html

[56] Apple iOS Developer Library, “Publishing an App in the App
Store,” http://developer.apple.com/library/ios/#documentation/General /
Conceptual /ApplicationDevelopmentOverview/DeliverYourAppontheAppStore/
DeliverYourAppontheAppStore.html, [Last access: Sept 17, 2013].

[57] GWT Project, “Google Web Toolkit Developer Guide". http://www.gwtproject.org/
doc/latest/DevGuide.html, [Last access: Sept 17, 2013].

[58] T. Weishiupl and E. Schikuta, “Cellular neural network parallelization rules,” CNNA
'04: Proceedings of the 8th IEEE International Biannual Workshop on Cellular
Neural Networks and their Applications, Los Alamitos, CA, USA, IEEE Computer
Society, 2004.

107

http://developer.apple.com/library/ios/#documentation/General/Conceptual/ApplicationDevelopmentOverview/DeliverYourAppontheAppStore/DeliverYourAppontheAppStore.html
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ApplicationDevelopmentOverview/DeliverYourAppontheAppStore/DeliverYourAppontheAppStore.html
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ApplicationDevelopmentOverview/DeliverYourAppontheAppStore/DeliverYourAppontheAppStore.html
http://www.gwtproject.org/doc/latest/DevGuide.html
http://www.gwtproject.org/doc/latest/DevGuide.html

List of Figures

2.1

2.2
2.3

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

51

5.2
53
54

6.1
6.2
6.3
0.4
6.5

7.1

The RAVO architecture and the derived N2Sky architecture model after

integration phase 1. 17
The N2Sky architecture after integration phase 2. 18
A N2Sky sample workflow.o 21
Dynamic component replication 26
Invoicing of services consumed by employees working on a project. 31
The stakeholder hierarchy containing abstract and concrete (yellow) roles. 31
Subject is a subclass of both Contributor and Consumer. 33
Resource hierarchy with units of account (yellow boxes). 34
The Privilege allocation process. 35
The Privilege verification process. 35
The N2Sky core process. 38
The subprocess Create Neural Object. 39
The subprocess Train Neural Object.. 40
The subprocess Evaluate Neural Object. 41
Integration of users, software and hardware. 42
Training and evaluation of neural networks. 43
Financial controlling Use cases. 43
N2Sky's domain model as UML class diagram. 45
The Neural Prroblem/Solution search subprocess. 47

Structure definition for a neural object with 2 input, 3 hidden and 1

output neuron whereas hidden layer is full connected with output layer. . 68
Parameter definition and resulting parameter and structure descriptions. . 68
CSV sample data input, a running training and error rate diagram. . . . 70
XOR evaluation input and result JSON data. 71

Login, registration form and list of subscriptions as simulation tree root. . 74
Paradigm metadata, subscription form and paradigm service description. 74

SQL and MongoDB data query. 76
Cloud deployment diagram 85
N2Sky authentication workflow. 86
Paradigm service publishing process. 94

108

List of Tables

2.1

2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

7.1

8.1

Gap Analysis - Comparing N2Sky Virtual Organization's characteristics

to its predecessors N2Grid and N2Cloud.

Components with corresponding layer-assignments.

N2Sky pricing models

System-wide and unit-specific user permissions

Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
N2Sky Schema types.
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification
Interface specification

of the Component Archive.
of the Data Archive. according to OGSA-DAI
of the Ad-hoc Infrastructure component.
of the Registry component.
of the Monotoring component..
of the SLA component.
of the Controlling and Accounting component.

of the Usermanagement component.
of the Access Control component.
of the Workflow system component.
of the Knowledge Management component.
of the Component Hosting Platform.
of the Annotation Service component.

of a Simulation Service.
of the Simulation Management component.
of the Business Administration component.
of Hosted Components.
of the Query Interface component.
of the Web Portal.
of the Smartphone App.
of a Hosted Ul component.

Methods implemented in AbstractN2SkyService have to be extended in
individual paradigm services.

7.2 Differences between jQuery Mobile and Google Web Toolkit (GWT) .

Integration /implementation states of N2Sky components.

109

Listings

6.1 Datastream query syntax in EBNF notation 75
6.2 Inserting JSON data using user-defined ID via mongo shell. 77
6.3 MongoDB query via Sleepy.Mongoose with regex for excluding metadata. 78
6.4 MongoDB query via Sleepy.Mongoose with curl. 78
6.5 MongoDB query via DrowsyDromedary. 78
6.6 Image creation and conversion. 79
6.7 Post-Installs. 80
6.8 Deleting network rules. oo 80
6.9 Converting a VirtualBox image to raw (i.e. .img) format.. 80
6.10 Extracting data partition using parted and dd. 81
6.11 A sample session describing an Eucalyptus image/instance lifecycle. . . . 81
6.12 The MySQL persistence unit in persistencexml. 82
6.13 Installing MongoDB on Debian. 83
6.14 Installing and starting DrowsyDromedary on Debian. 84
6.15 Installing and starting Sleepy.Mongoose on Debian. 84
6.16 Cronjobs after system boot. 85
7.1 The Java Interface N2SkyService. 90
7.2 Tutorial Backprop Service as an example of a paradigm service. 91
7.3 Java Interface N2SkyNet. 92
7.4 App configuration in config.json. 95
7.5 ListView definition in CurrentTrainingsView.js. 96
7.6 AJAX Web Service call in CurrentTrainingsController.js. 96
A.1 n2sky-description.xsd - Root element. 111
A.2 n2sky-description.xsd: Structure, parameters and data. 112
A.3 Layer block definitions. 112
A4 n2sky-definition.xsd 113
A.5 n2sky-definition.xsd - Structure definition. 113
A6 n2sky-dataxsd 114
A.7 Numerical and binary input data. 114
A8 n2sky-result.xsd 115
A.9 DIAGRAM as part of NNRESULT. 116
A.10 Connection definition. 116
A.11 Matrix definition. 117
A.12 Parameter definition. 117
A.13 Definition of weights between neurons. 117

110

©CoO~NOO S~ WN

Appendix A

XML Schema Definitions

A.1 NNServiceDescription - n2sky-description.xsd

The XML Schema file with root element NNServiceDescription is the formal descrip-
tion of a paradigm service and is divided into three parts (A.1, A.2 and A.3) only in this
documentation for better human readability.

Listing A.1: n2sky-description.xsd - Root element.

<?xml

<xs:include schemalocation="n2sky—types.xsd"/>
<xs:element name="NNServiceDESCRIPTION">

<xs:complexType>

<Xs:sequence>

<xs:element name="SERVICEACRONYM" type="xs:string"/>
<xs:element name="NAME" type="xs:string" default="ParadigmName" />
<xs:element name="DESCRIPTION" type="xs:string"/>
<xs:element name="EXTERNALServicePATH" type="xs:anyURI" minOccurs="0"/>
<xs:element name="STRUCTUREDESCRIPTION">

<xs:element name="PARAMETERS">

<xs:element name="RETRAINABLE" type="xs:boolean"/>
<xs:element name="DATA">

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A.2 NNDEFINITION - n2sky-definition.xsd

NNDEFINITION defines a new neural network as instance of a paradigm service: (Listings
A.4 and A5). Training inputs: Structure, Parameters, NNData, Retraining and
Evaluation inputs: NetObject, NNData.

111

©O~NOOTH WN -

©oOo~NOOA~WN -

NNONNNNRERRERRRR R 2
ORWNROOONOUDWNHO

Listing A.2: n2sky-description.xsd: Structure, parameters and data.

<xs:element name="STRUCTUREDESCRIPTION">
<xs:complexType>
<Xs:sequence>
<xs:element name="INPUTBLOCK" type="BLOCKTYPE"/>
<xs:element name="MAXHIDDENBLOCKS" type="SIZEMAX"/>
<xs:element name="HIDDENBLOCK" type="BLOCKTYPE" minOccurs="0"/>
<xs:element name="OUTPUTBLOCK" type="BLOCKTYPE" minOccurs="0"/>
<xs:element name="FULLCONNECTED" type="xs:boolean"/>
<xs:element name="SHORTCUTS" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="PARAMETERS">

<xs:element name="DATA">
<xs:complexType>
<Xs:sequence>
<xs:element name="DESCRIPTION" type="xs:string" minOccurs="0"/>
<xs:element name="MIMETYPE" type="xs:string" minOccurs="0"/>
<xs:element name="INPUTONLY" type="xs:boolean" default="false"/>
</xs:sequence>
<xs:attribute name="TYPE">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="table| file"/>
</xs:restriction >
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

Listing A.3: Layer block definitions.

<xs:complexType name="BLOCKTYPE">
<xs:sequence>
<xs:element default="1" name="DIMMIN" type="xs: positivelnteger"/>
<xs:element default="1" name="DIMMAX" type="xs: positivelnteger"/>
<xs:element default="1" name="SIZEMIN" type="xs:positivelnteger"/>
<xs:element name="SIZEMAX" type="SIZEMAX"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:ID"/>
</xs:complexType>
<xs:complexType name="BLOCK">
<xs:sequence>
<xs:element default="1" name="DIM" type="xs: positivelnteger"/>
<xs:element name="SIZE" type="xs:positivelnteger"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:ID"/>
</xs:complexType>
<xs:simpleType name="SIZEMAX">
<xs:union memberTypes="xs:nonNegativelnteger">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>
</xs:restriction >
</xs:simpleType>
</xs:union>
</xs:simpleType>

112

©CO~NOOHWN -

fuy
CQOVWO~NOOOTHS WN -

WWWNNNNNNNNNNRERERRFRRERFRREFP -
NHFHFOWOWONODOUPRPWNHOOONODDOID WN

Listing A.4: n2sky-definition.xsd

<xs:include schemalocation="n2sky—types.xsd"/>
<xs:element name="NNDEFINITION">
<xs:complexType>
<Xs:sequence>
<xs:element name="SERVICEACRONYM"/>
<xs:element name="STRUCTURE">

<xs:element name="STRUCTUREUPLOADED" type="xs:dateTime"/>
<xs:element name="PARAMETERS">
<xs:complexType>
<Xs:sequence>
<xs:element name="PARAMETER" type="PARAMETER TYPE"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="PARAMETERSUPLOADED" type="xs:dateTime"/>
<xs:element name="NNDATA" type="NNDATA TYPE" minOccurs="0"/>

<xs:element name="NNDataUPLOADED" type="xs:dateTime" minOccurs="0"/>

<xs:element name="NETOBJECT" type="xs:anyType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Listing A.5: n2sky-definition.xsd - Structure definition.

<xs:element name="STRUCTURE">
<xs:complexType>
<Xs:sequence>
<xs:element name="INPUTLayerBLOCK" type="BLOCK"/>
<xs:element name="HIDDENLayerBLOCKS" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="HIDDENLayerBLOCK" type="BLOCK"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="OUTPUTLayerBLOCK" type="BLOCK" minOccurs="0"/>
<xs:element name="FULLCONNECTIONS" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="FULLCONNECTION" type="FULLCONNECTION"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SHORTCUTS" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="SHORTCUT" type="SHORTCUT"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

113

©O~NOOOTHWN -

[y
LW ~NOOGOP~WNH

e el
A WN =

A.3 NNDATA - n2sky-data.xsd

Neural network input data (Listings A.6 and A.7) is represented either as numerical
(matrices of double values) or binary (image files) data.

Listing A.6: n2sky-data.xsd

<?xml|l version="1.0" encoding="UTF-8"7>
<l—— N2SKY, University of Vienna,
Faculty of Computer Science — Workflow Systems and Technology (WST) —>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:include schemalocation="n2sky—types.xsd"/>
<xs:element name="NNDATA" type="NNDATA TYPE">
<Xs:annotation>
<xs:documentation>
Neural Network input data for N2SKY
</xs:documentation>
</xs:annotation>
</xs:element>
<[xs:
schema>

Listing A.7: Numerical and binary input data.

<xs:complexType name="NNDATA TYPE">
<Xs:sequence>
<xs:element name="COMMENT" minOccurs="0"/>
<xs:element name="INPUTMATRIX" type="MATRIXTYPE"/>
<xs:element name="OUTPUTMATRIX" type="MATRIXTYPE" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="BIN DATA TYPE">
<Xs:sequence>
<xs:element minOccurs="0" name="DESCRIPTION" type="xs:string"/>
<xs:element name="MIMETYP" type="xs:string"/>
<xs:element name="CONTENTURI" type="xs:anyURI"/>
</xs:sequence>
</xs:complexType>

A.4 NNRESULT - n2sky-result.xsd

Neural Network result - 1 result XML/JSON file per Training / Retraining / Evaluation
(Listing A.8) with an included DIAGRAM plotting error sums per epoch (Listing A.9).

A.5 TYPES - n2sky-types.xsd

The following listings define FULLCONNECTION and SHORTCUT (Listing A.10), parameters
(Listing A.12), matrices (Listing A.11) and weights (Listing A.13).

OO~NOOOT A WN -

Listing A.8: n2sky-result.xsd

<xs:complexType>
<Xs:sequence>
<xs:element name="SERVICEACRONYM" type="xs:string"/>
<xs:element name="SOURCE" type="xs:anyURI">
</xs:element>
<xs:element name="GENERATED" type="xs:dateTime"/>
<xs:element name="ERRORMESSAGE" type="xs:string" minOccurs="0"/>
<xs:element name="STATUSMESSAGE" type="xs:string" minOccurs="0"/>
<xs:element name="RESULTS" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="SAMPLE" type="SAMPLETYPE" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="BINRESULTS" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="COMMENT" type="xs:string" minOccurs="0"/>
<xs:element name="BINRESULT" maxOccurs="unbounded">
<xs:complexType>
<Xs:sequence>
<xs:element name="INPUT" type="BIN_ DATA TYPE"
minOccurs="0"/>
<xs:element name="OUTPUT"type="BIN DATA TYPE"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="NETOBJECT" type="xs:anyType" minOccurs="0" />
<xs:element name="DIAGRAM" minOccurs="0">

</xs:sequence>
</xs:complexType>

115

©O~NOOTH WN -

©OO~NOODOT S WN -

NNNNNNNNRE R B R
OO RWNROOONOUIDWNRO

Listing A.9: DIAGRAM as part of NNRESULT.

<xs:complexType name="SAMPLETYPE">

<Xs:sequence>
<xs:element
<xs:element
</xs:sequence>
</xs:complexType>

minOccurs="0" name="INPUT" type="MATRIXTYPE"/>
minOccurs="0" name="OUTPUT" type="MATRIXTYPE"/>

<xs:element name="DIAGRAM" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="TITLE" type="xs:string"/>
<xs:element name="DESCRIPTION" type="xs:string"/>
<xs:element name="XTITLE" type="xs:string"/>
<xs:element name="XDESCRIPTION" type="xs:string"/>
<xs:element name="XMIN" type="xs:double" default="0"/>
<xs:element name="XMAX" type="xs:double"/>
<xs:element name="YTITLE" type="xs:string"/>
<xs:element name="YDESCRIPTION" type="xs:string"/>
<xs:element name="YMIN" type="xs:double" default="0"/>
<xs:element name="YMAX" type="xs:double"/>
<xs:element name="VALUES">
<xs:complexType>
<xs:sequence>

<xs:element name="PAIR" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<Xs:sequence>
<xs:element name="X" type="xs:double"/>
<xs:element name="Y" type="xs:double"/>
</xs:sequence>
</xs:complexType>

</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>

Listing A.10: Connection definition.

<xs:complexType name="FULLCONNECTION">

<Xs:sequence>

<xs:element name="FROMBLOCK" type="xs:IDREF"/>
<xs:element name="TOBLOCK" type="xs:IDREF"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="SHORTCUT">

<Xs:sequence>

<xs:element name="FROM">
<xs:complexType>
<Xs:sequence>
<xs:element name="BLOCK" type="xs:IDREF"/>
<xs:element name="NEURON" type="xs:integer"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="TO">
<xs:complexType>
<xs:sequence>
<xs:element name="BLOCK" type="xs:IDREF"/>
<xs:element name="NEURON" type="xs:integer"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

116

WO ~NOOUD WNH

—

©CoOo~NOO S~ WN -

©CoOo~NOOh~WN -

Listing A.11: Matrix definition.

<xs:complexType name="MATRIXTYPE">
<Xs:sequence>
<xs:element name="ROW" type="MATRIX ROW _ TYPE" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="MATRIX ROW_ TYPE">
<Xxs:sequence>
<xs:element name="C" type="xs:double" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

Listing A.12: Parameter definition.

<xs:complexType name="PARAMETER TYPE">
<xs:sequence>
<xs:element name="NAME" type="xs:string"/>
<xs:element name="DESCRIPTION" type="xs:string" minOccurs="0"/>
<xs:element name="VALUE" type="xs:string"/>
<xs:element name="DEFAULTVALUE" type="xs:string" minOccurs="0"/>
<xs:element name="COMBOOPTIONS" type="COMBOOPTIONS TYPE" minOccurs="0"/>
</xs:sequence>
<xs:attributeGroup ref="PARAMETER ATTRIBUTES"/>
</xs:complexType>
<xs:attributeGroup name="PARAMETER_ ATTRIBUTES">
<xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="TYPE">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="value|bool|combo"/>
</xs:restriction >
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>
<xs:complexType name="COMBOOPTIONS TYPE">
<Xs:sequence>
<xs:element name="OPTION" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

Listing A.13: Definition of weights between neurons.

<xs:complexType name="WEIGHTS">
<xs:sequence>
<xs:element name="FROMBLOCK" type="xs:IDREF"/>
<xs:element name="TOBLOCK" type="xs:IDREF"/>
<xs:element maxOccurs="unbounded" name="FROMNEURON">
<xs:complexType>
<Xs:sequence>
<xs:element name="NUMBER" type="xs:integer"/>
<xs:element name="TONEURON">
<xs:complexType>
<xs:sequence>
<xs:element name="NUMBER" type="xs:integer"/>
<xs:element name="WEIGHT" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

117

Appendix B

Abstract

B.1 English

Working with artificial neural networks typically is very time-consuming and “resource-
hungry”. Neural network training and evaluation tasks cause the main part of the effort.
This problem leads to the basic idea of the present Master's thesis, namely to create
a neural network simulation environment consisting of services in the Clouds. Using a
service-oriented architecture allows for a flexible and reusable component structure and
Cloud computing ensures elasticity in terms of computing power and available resources.
Sky computing is about joining different Clouds to create large infrastructures.

N2Sky is a novel framework implementing these concepts. It provides methods for
processing and exchanging neural network-specific artifacts such as neural paradigms
and objects within a virtual organization environment. Transparent access to various
resources is provided by a layered Cloud-based architecture via defined interfaces. This
allows a large group of users to make use of neural networks as simple as possible - from
beginners to experienced researchers. The reference architecture for virtual organizations
(RAVO) allows easy integration of resources into the Cloud services stack (SaaS, PaaS
and laa$S) of service oriented architectures.

119

B.2 Deutsch

Das Arbeiten mit kiinstlichen neuronalen Netzen ist in der Praxis meist sehr zeit- und
ressourcenintensiv. Das Trainieren und Evaluieren von neuronalen Netzen macht dabei
den Grolteil des Aufwands aus. Diese Problemstellung fiihrt zur Grundidee der vor-
liegenden Masterarbeit, namlich eine service-basierte Simulationsumgebung fiir neuronale
Netze in Clouds zu entwickeln. Die Verwendung einer service-orientierten Architek-
tur ermoglicht eine flexible und wiederverwendbare Komponentenstruktur und Cloud
Computing sorgt fiir Elastizitat hinsichtlich Rechenleistung und verflighbaren Ressourcen.
Sky Computing bedeutet dariiber hinausgehend die Zusammenfiihrung unterschiedlicher
Clouds zu groRen Infrastrukturen.

N2Sky ist ein neu entwickeltes Framework, das diese Konzepte umsetzt. Es stellt Meth-
oden fiir die Verarbeitung und den Austausch von netzspezifischen Artefakten wie neu-
ronalen Paradigmen und Objekten innerhalb einer virtuellen Organisation bereit. Die
in Schichten unterteilte Cloud-Architektur erlaubt den transparenten Zugriff auf unter-
schiedlichste Ressourcen iiber definierte Schnittstellen. Damit soll die Verwendung neu-
ronaler Netze einem grolen Nutzerkreis - vom Einsteiger bis zum erfahrenen Forscher -
so einfach wie moglich gemacht werden. Die Referenzarchitektur fiir virtuelle Organisa-
tionen (RAVO) ermdglicht die einfache Integration von Ressourcen in den Cloud-Service-
Stack (SaaS, PaaS sowie laaS) von service-orientierten Architekturen.

120

Appendix C

Curriculum Vitae

Erwin Mann

Geboren in: Hollabrunn, Niederdsterreich

Ausbildung

Bachelorstudium Wirtschaftsinformatik 2006-2010
Masterstudium Wirtschaftsinformatik 2010-2013

Publikationen

A Cloud-based Neural Network Simulation Environment

Erich Schikuta and Erwin Mann

In: 12th International Work-Conference on Artificial Neural Networks
2013-06-12, Tenerife, Spain (2013)

N2Sky — Neural Networks as Services in the Clouds
Erich Schikuta and Erwin Mann

In: International Joint Conference on Neural Networks
2013-08-04, Dallas, USA (2013)

121

	Introduction
	Motivation
	Terms and Definitions
	Related work
	Virtual Organizations for Computational Intelligence
	Artificial Neural Network Simulators

	The N2Sky Architecture
	Requirements Analysis
	Questionnaire
	Functional Requirements

	The N2Sky Architecture as an Instance of RAVO
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Everything as a Service (XaaS)

	Scenarios
	A Sample Workflow
	N2Sky Use Case: Cancer Cell Classification

	 Components of N2Sky
	IaaS: Infrastructure Enabler
	Component Archive
	Data Archive
	Ad-hoc Infrastructure

	PaaS: Abstract Layer
	Registry
	Monitoring
	SLA
	Controlling and Accounting
	User and Role Management
	Access Control
	Workflow System
	Knowledge Management
	Component Hosting Platform
	Annotation Service

	PaaS: Neural Network Layer
	Simulation Services
	Simulation Management
	Business Administration
	Hosted Components

	SaaS: Service Layer
	Query Interface
	Web Portal
	Smartphone App
	Hosted UIs

	Component Interfaces
	IaaS: Infrastructure Enabler
	Component Archive
	Data Archive
	Ad-hoc Infrastructure

	PaaS: Abstract Layer
	Registry
	Monitoring
	SLA
	Controlling and Accounting
	User and Role Management
	Access Control
	Workflow System
	Knowledge Management
	Component Hosting Platform
	Annotation Service

	PaaS: Neural Network Layer
	Simulation Services
	Simulation Management
	Business Administration
	Hosted Components

	SaaS: Service Layer
	Query Interface
	Web Portal
	Smartphone App
	Hosted UIs

	 Tutorial
	Paradigm Selection
	Neural Object Creation
	Layer Definition
	Parameter Definition

	Training
	Evaluation

	User Guide
	End User Guide
	Login
	Paradigms and Subsscriptions
	Datastream Queries

	Administration Guide
	Virtualization
	Cloudification
	Object-Relational Mapping (ORM)
	DBMS
	Cronjobs
	Cloud Deployment
	N2Sky Credentials

	Developer Guide
	Developing a Paradigm
	N2SkyService
	Tutorial Backprop Service
	N2SkyNet

	Publishing a paradigm in the N2Sky Service Store
	Developing SaaS Components
	Smartphone App - The-M-Project and jQM
	Web Portal - Google Web Toolkit

	Conclusion and Outlook
	Contributions
	Conclusion and Further Research
	Lessons Learned
	Technical Skills
	Publications Related to this Thesis

	XML Schema Definitions
	NNServiceDescription - n2sky-description.xsd
	NNDEFINITION - n2sky-definition.xsd
	NNDATA - n2sky-data.xsd
	NNRESULT - n2sky-result.xsd
	TYPES - n2sky-types.xsd

	Abstract
	English
	Deutsch

	Curriculum Vitae

