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Abstract
In this thesis I develop theoretical methods to facilitate, assess, and interpret  macroscopic
matter-wave interference experiments with molecules and nanoparticles, as conceived and
implemented in the Quantum Nanophysics Group at the University of Vienna. Introducing a
theoretical framework to describe the interaction of  polarizable particles with  light,  I first
study the feasibility of dissipative slowing and trapping of  sub-wavelength molecules and
dielectric nanospheres by means of high-finesse cavities and strong laser fields – an essential
prerequisite  to  facilitate  matter-wave  interferometry  with  heavy nanoparticles.  I  proceed
with an in-depth analysis of  matter-wave near-field interferometry,  focusing on the most
recent implementation of the Talbot-Lau scheme with pulsed optical gratings. In particular, I
assess  the  feasible  mass  limits  of  this scheme,  as  well  as  the  influence  of  hypothetical
macrorealistic models.  Finally, I turn to the question of how to quantify the macroscopicity
of  mechanical  quantum  phenomena  in  general,  developing  a  systematic  and
observation-based  answer.  From  this  I  derive  a  physical  measure  for  the  degree  of
macroscopicity  of  superposition  phenomena,  which  admits  an  objective  comparison
between arbitrary quantum experiments on mechanical systems. 

Zusammenfassung
Die  vorliegende  Arbeit  umfasst  die  theoretischen  Grundlagen  und  Methoden  zur
Beschreibung  makroskopischer Materiewelleninterferenzexperimente,  wie  sie  in  der
Quantennanophysikgruppe  an  der  Universität  Wien  mit  Molekülen  und  anderen
Nanoteilchen  durchgeführt  werden.  Ich  bespreche  zunächst  die  Wechselwirkung  von
polarisierbaren  Teilchen  mit  Lichtfeldern,  um  anschließend  die  dissipative  Wirkung  von
Laserfeldern und optischen Resonatoren auf die Teilchen zu beschreiben.  Damit lassen sich
die  Voraussetzungen  für  das  optische  Bremsen  und  Einfangen  großer Nanoteilchen
diskutieren,  das  für Interferenzexperimente mit solch massiven Objekten  benötigt wird. Es
folgt  eine  ausführliche  theoretische  Beschreibung  von  Nahfeldinterferometrie.  Dabei
konzentriere ich mich auf das Wiener Talbot-Lau-Interferometer mit gepulsten Lasergittern
und diskutiere, welchen Massenbereich man damit prinzipiell erreichen kann.  Es zeigt sich,
dass  gängige  makrorealistische  Hypothesen  zum  quanten-klassischen  Übergang
überprüfbar  werden,  was  mich  anschließend  zu  der  Frage  führt,  was  Makroskopizität
eigentlich  bedeutet.  Im  letzten  Abschnitt  der  Dissertation  entwickle  ich  eine
physikalisch-empirische  Interpretation  des  Makroskopizitätsabegriffs  für  Quanteneffekte.
Daraus lässt sich schließlich ein Maß für den Grad an Makroskopizität ableiten, mit dem man
beliebige  Superpositionsexperimente  in  mechanischen  Systemen  objektiv  erfassen  und
vergleichen kann.
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Chapter 1.

Introduction

“�e most essential characteristic of scienti�c technique is that it
proceeds from experiment, not from tradition.”

— Bertrand Russell

It goes without saying that quantum mechanics has stood its grounds over the decades as an im-
mensely powerful and successful theory to describe the physics on microscopic scales. Even more
so, it has proven to be astonishingly reliable and robust whenever one has tried to push it one step
further to the extreme; both into the relativistic subnuclear domain of high-energy physics, and into
the meso-to-macroscopic low-energy regime which was originally thought to be ruled by classical
physics. In fact, relativistic quantum �eld theory has led to the standard model of particle physics,
which is currently being tested to an unprecedented degree at CERN, while research on standard
quantummechanics has led to the discovery and understanding of large-scalemany-body quantum
phenomena such as superconductivity, Bose-Einstein condensation, and molecular interference. It
is quite remarkable that, even with the continuous growth in system sizes over the years and up
to the present day, no sign has appeared whatsoever that would indicate the slightest breakdown
of good ol’ Schrödinger’s equation. Yet, many open questions are still to be answered and the two
‘breaking points’ of the theory, the measurement problem and the incompatibility to general rela-
tivity, have remained unsolved.
Hence, although all previous attempts to falsify quantum mechanics on extreme and originally

unintended scales have utterly failed, people do raise serious doubts whether this might still be true
for long. Among others, Anthony Leggett was studying this problem intensely with the advent of
the �rst experiments verifying the collective quantum behaviour of billions of Cooper-paired elec-
trons generating currents through superconducting loops [1, 2]. He regarded this as the �rst truly
macroscopic quantum observation and coined the term “macroscopic realism” in his timely article
of 2002 [3], suggesting that there should be some kind of breakdown of the superposition principle
somewhere along the way from the atom to the feline if we want to reconcile quantum theory with
our classical world view (including the concepts of gravity and measurements). At the same time,
also matter-wave experiments took one major step beyond the atomic size regime when the �rst
large molecules were interfered at the turn of the millennium [4, 5]. Continued progress towards
the macroscopic domain has occured in various �elds ever since, and we may soon witness the �rst
quantum superposition experiments with heavy nanoobjects or even micromechanical oscillators.
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�e theoretical assessment of macroscopic quantum superposition phenomena is not just count-
ing beans or, to be precise, atomic mass units in superposition. It rather breaks down into several
problems which must be tackled separately and by quite di�erent means:

☀ Physical understanding of a system of interest �e relevant physical behaviour of a given
system must �rst be understood su�ciently well to be able to devise means to interact with
it and control it in the experiment. Molecule interferometry, for instance, requires that we
know how to produce, control, di�ract and detect large molecules.

☀ Conception of feasible macroscopic quantum experiments We must identify a concrete
quantum phenomenon and develop a feasible experimental scheme that can be implemented
in the lab. Needless to say, the theorymust produce quantitative predictions thatwouldmatch
the experimental data.

☀ Theoretical consequences of macroscopic quantum experiments What can we learn about
the system or about possible new physics by measuring a given macroscopic quantum e�ect
systematically? Molecule interference data, for instance, can give us information on the struc-
ture and dynamics of the molecules. It also allows us to assess environmental decoherence
or possible non-standard modi�cations of quantum theory.

☀ Meaningful de®nition of the term ‘macroscopic’ �is may sound like nitpicking, but it is in
fact a fundamental and nontrivial theoretical task. How do we de�ne ‘macroscopicity’ in a
universal and objective manner, irrespectively of the concrete physics of an observed e�ect?
What is it that makes a given quantum observation more macroscopic than another one?
And what is the best way to improve in macroscopicity in future experiments?

Readers are invited to keep these basic issues in the back of their head when working through the
following text. �ey can be regarded as the common thread connecting all the concrete problems
that will be dealt with below.
�is thesis covers most of the theoretical and conceptual work I have contributed to the Quan-

tum Nanophysics group of Markus Arndt in Vienna in close collaboration with my experimental
colleagues and with Klaus Hornberger, Klemens Hammerer, Helmut Ritsch and Claudiu Genes.
�e main results have all been published separately [6–14], but they are layed out here in more
detail and presented retrospectively in a common theoretical framework. What is to follow will
be divided into three main chapters, which can be regarded as three major steps in approaching
the macroscopic world and probing Schrödinger’s quantum mechanics by means of matter-wave
experiments with large objects.
�e�rst and foremost step is to develop themeans to control andmanipulatematterwaves, and to

assess their basic quantum mechanical behaviour under experimental conditions. �ese methods
will be the basis of all that is to follow. In Chapter Two, I will focus on coherent optical means,
mostly lasers and cavities, to interact with matter waves. I will lay out general theoretical tools
to describe the motion of polarizable particles under the in�uence of coherent light �elds, optical
high-�nesse resonators, or simply the vacuum radiation �eld. Everything will revolve around the
somewhat complementary issues of light-induced dissipation and coherence, ultimately joining a
stale punchline: “size matters”. Nevertheless, the inclined reader can expect results less boring than
that1.
1 In addition, the appendix of this chapter features the longest and ugliest mathematical expressions of this thesis.
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I will study how cavities can be employed to dissipatively slow down large polarizable particles,
how laser �elds can be employed as di�ractive elements for the very same particles, and how these
e�ects will scale as the particles approach the dimension of optical wavelengths in size. Such large
objects may exhibit low-�eld seeking behaviour, and they could even be dissipatively captured in
Gaussian cavity modes under realistic conditions. A�er all, optical di�raction and cavity cooling
techniques have been studied, perfectionized and routinely implemented with atomic matter waves
for decades [15–18], and it is time to take this over from this community and do some ‘big’ business
again2.
Having all necessary tools at hand,Chapter�reewill be dedicated to the theory behindmodern

matter-wave interference techniques with nanoparticles, that is, with large molecules and clusters
ranging between several hundred and a billion atomic mass units. Naturally, the Talbot-Lau inter-
ferometer (TLI) scheme will be at the center of attention there, as it is not only the top dog in this
�eld holding the mass records of interference to date. In fact, the TLI is the only setup capable of
interferingmolecules of several thousandmass units at themoment [13,19]. Despite the fact that sig-
ni�cant progress has also been made in conventional far-�eld interference of large molecules [20],
and that conceptually di�erent methods to show the wave nature of molecules [9, 21, 22] or large
nanospheres [23–25] are currently pursued in various groups, the TLI scheme still o�ers greatest
potential to venture to the highest possible mass regime. And the experiment already works, too!
I will therefore spend most of the time in the third chapter discussing the theoretical description

and the mass-limitating factors in Talbot-Lau interferometry. A time-domain implementation us-
ing ionizing standing-wave laser pulses will turn out to be most promising for this purpose, and it
may facilitate the test of hypotheticalmodi�cations of quantumphysics in themacroscopic domain.
Moreover, I will show that the Talbot-Lau setup can also be employed as a sensitive measurement
device for the optical properties of the interfering particles.
In order to avoid the impression that I am truly obsessedwith Talbot and Lau, I will actually begin

the chapter with an in-depth discussion of another near-�eld interference phenomenon, which
seems to be applicable to large masses as well: Poisson’s spot. At �rst glance, the observation of
a bright spot in the shadow region behind a circular obstacle appears to be a clear signature of
quantum interference. But we will �nd out that this is not true anymore when highly polarizable
particles are concerned, which interact dispersively with the walls of real-sized obstacle. On the
long run, Poisson’s spot will thus be more strictly limited in mass than the Talbot-Lau scheme, and
one should better bet on the latter (hence my obsession).
�e detailed discussion of the mass limits of matter-wave interferometry, and of how far we can

push quantumwave behaviour towards the classical world of macroscopic objects, ultimately raises
the pivotal question: What does it mean to be ‘macroscopic’? People working in molecule interfer-
ometry would intuitively argue that it means to be as massive as possible. Obviously, this is how
they would try to persuade funding agencies. �en again, there are many physicists working hard
to realize superposition states of nanomechanical oscillators of much greater mass in the lab nowa-
days [26, 27]. Atomic physicists, on the other hand, could argue that it is not only the mass that
counts, but also the interference ‘arm separation’ and the time that separates macroscopic from
microscopic superpositions, and the men from the boys. To make matters worse, one could also
criticize that all the various interferometry experiments merely involve a single motional degree
of freedom, whereas truly macroscopic quantum phenomena should be many-body phenomena.

2No o�ence, if you are an atomic physicist. You’re doing a great job.
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Purely formal arguments and intuition fail to give an answer to this very physical question ofmacro-
scopicity.
InChapter Four I develop a novel answer based on physical principles, which puts intuition back

on the ground of hard empirical facts. For this purpose I will adopt Leggett’s famous common-sense
argument of “macroscopic realism” [3]: If we believe in our century-old classical reasoning to de-
scribe the physics of the macroscopic everyday world we live in, and if, at the same time, we accept
the quantum superposition principle in all its weirdness as we observe it on the microscopic scale,
then there should be a breakdown of standard quantum theory somewhere in between3. Macro-
scopicity can then be de�ned in an objective and physical manner by the amount to which an ob-
served quantum phenomenon excludes such possible breakdown mechanisms of quantum theory.
While this sounds like a fair and straightforward approach to settle the controversy ofmacroscopic-
ity inmechanical quantum systems, there is no free lunch, of course. Turning this idea into a robust
quantitative statement requires a whole lot of tedious and formal reasoning, which will await the
bold reader in all its bone-dry glory throughout most of the fourth chapter.
I will show that the mathematical form of reasonable breakdown mechanisms, or ‘classicalizing

modi�cations’ of quantum mechanics, can be pinned down by demanding that fundamental sym-
metry and consistency principles, such as the invariance underGalilean symmetry transformations,
must not be violated. With this we will be able to quantify and compare the macroscopicity of arbi-
trary quantum experiments withmechanical systems, past and proposed, in a neutral and objective
manner. Yet, we will �nd that molecule interferometry is still ahead by a nose at the moment, even
without bias. �e pinnacle of my theoretical reasoning will be the description of an ordinary house
cat as a 4 kg sphere of water just to prove that a superposition state à la Schrödinger would cor-
respond to a macroscopicity value of something like 57—a value where everything quantum must
certainly end, and also this thesis.
I will close with a short conclusion and outlook in the ��h chapter.

3 For the sake of this fundamental argument, environmental decoherence cannot be the breakdown mechanism. Sup-
porters of macrorealistic theories would argue that decoherence does not resolve the core issue of quantum theory,
the measurement problem, nor does it exclude macroscopic superpositions by principle.
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Chapter 2.

Interaction of polarizable particles with light

“More light!”
— Johann Wolfgang von Goethe (last words)

A proper understanding of the mechanics and susceptibility of nanoparticles under the in�uence
of coherent light �elds will be a core ingredient throughout this thesis. It will be required for the
description of new matter-wave interferometry schemes and of optical methods to manipulate the
motion or measure the optical properties of molecules and clusters. �is chapter is dedicated to
the light-matter interaction in the presence of coherent laser �elds, of high-�nesse cavity modes
and not least of a (thermally occupied) radiation �eld. �e latter will mainly be useful to describe
decoherence processes by the emission, absorption and scattering of photons, whereas the coherent
interaction with laser �elds and cavity modes is the basis of optical interference gratings and cavity-
induced slowing and trapping methods.
I will start by introducing the basic e�ect of coherent light �elds on the center-of-mass motion

of small particles in Section 2.1. In the limit of short interaction times this directly leads to the
description of optical gratings, as commonly used in matter-wave interferometry. I will proceed
with the more complex long-time dynamics of polarizable point particles (PPP) coupled to strong
laser �elds in Section 2.2, where I will present in detail the in�uence of high-�nesse cavity modes.
�ey can be used to dissipatively slow down single particles, or to cool themotion of a hot ensemble
of particles, respectively [8].
In Section 2.3 I eventually take a step beyond the point-particle approximation and study the

e�ect of standing-wave �elds on wavelength-sized dielectric spheres using Mie theory [28,29]. �e
results derived there will be directly applied in Section 2.3.3 where I discuss the radial slowing and
trapping of microspheres in a strongly pumped cavity mode.

2.1. Mechanics of polarizable point particles in coherent light ®elds

In a �rst and most elementary approach to the light-matter problem let us study the classical and
quantum dynamics of a polarizable point particle (PPP) in the presence of a classical electromag-
netic �eldmode. �epoint-particle idealization is considered valid inmany experimental situations
where subwavelength molecules or clusters are coupled to high-intensity light �elds of laser beams
or strongly pumped cavity modes. Consequences and applications of the basic e�ect are discussed
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here, before the restriction to point particles and classical light �elds will successively be li�ed in
the next sections.
For the moment let us represent the light by a single-mode electric and magnetic �eld

E (r, t) = E0e−iωtu (r) , H (r, t) = E0
iµ0ω

e−iωt∇× u (r) (2.1)

with a harmonic time dependence on the frequency ω = ck. It will be convenient to work with
complexi�ed �elds and allow for complex mode-polarization functions u (r) ∈ C, as discussed in
Appendix A.1. �e physical �elds are then represented by the real parts Re{E} and Re{H}. We
will mostly deal with the important case of linearly polarized standing or running waves,

Esw (r, t) = E0e−iωtex f (x , y) cos (kz) , Hsw (r, t) = iE0
µ0c

e−iωtey f (x , y) sin (kz) , (2.2)

Erw (r, t) = E0ex f (x , y) exp (ikz − iωt) , Hrw (r, t) = E0
µ0c

ey f (x , y) exp (ikz − iωt) , (2.3)

with f (x , y) the transversemode pro�le. Realistic light �elds occupy only a �nite region in space, as
described by their mode volume V = ∫ d3r ∣u (r)∣2, and we may associate with the �eld of strength
E0 a complex amplitude α =

√
ε0V/2ħωE0 and a mean photon number ∣α∣2. With this the Hamil-

tonian, that is, the �eld energy contained in the mode, takes the well-known form

Hf =
1
2 ∫V d3r [ε0Re{E (r, t)}2 + µ0Re{H (r, t)}2] = ħω

2
(α∗α + αα∗) = ħω ∣α∣2 . (2.4)

�e amplitude is replaced by the photon annihilation operator a when generalizing to quantum
�elds. A Gaussian mode1 is described by two waist parameters wx ,wy and the transverse mode
pro�le f (x , y) = exp (−x2/w2x − y2/w2y).

2.1.1. The linear response of a polarizable point particle to light

In order tomodel the interaction of a polarizable point particle with harmonic light �elds one gener-
ally associates to the particle a scalar polarizability χ = χ (ω), which represents its linear response
to the electric light �eld E. In most cases beyond the level of a single atom, the polarizability is
taken to be a phenomenological frequency-dependent parameter2. It determines the induced elec-
tric dipole moment d = χE and the associated Lorentz force [32], F (r, t) = (Re{d} ⋅ ∇)Re{E}+
µ0Re{∂td} ×Re{H}. It involves only real physical quantities. �e �rst term represents the net
Coulomb force of the electric �eld component E (r) acting on the dipole d at position r, whereas

1�e full mathematical description of Gaussian light �elds, as generated by focused laser beams or found in curved-
mirror cavities, is a little bit more involved than presented here. I give a detailed formula for symmetric Gaussian
mode functions with wx = wy = w in Appendix A.2. Strictly speaking, the above representations (2.2) and (2.3) are
zeroth order approximations of the Gaussian mode �elds in the waist parameter 1/kw, and additional polarization
components must be taken into account for higher orders.

2Note that the light-atom interaction can also be modeled by a complex linear polarizability provided the light is far
detuned from any internal electronic transition and the transition is not strongly driven. In the latter case the atom’s
response saturates at su�ciently high �eld intensities, as described by the Jaynes-Cummings model [30, 31].
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the second term describes the force exerted by the magnetic �eld component H (r′) on the asso-
ciated current density j (r′) = ∂tdδ (r − r′). We �nd that the overall force oscillates rapidly at the
given optical frequency, and it is therefore expedient to restrict to the time-averaged expression3

⟨F (r)⟩t = ⟨(Re{χE (r) e−iωt} ⋅ ∇)Re{E (r) e−iωt} + µ0Re{−iωχE (r) e−iωt} ×Re{H (r) e−iωt}⟩t
= 1
2
Re{χ [E (r) ⋅ ∇]E∗ (r)} + 1

2
Re{χE (r) × [∇ × E∗ (r)]}

= Re{χ}
4

∇ ∣E (r)∣2 − Im{χ}
2

Im{[∇ ○ E∗ (r)]E (r)} . (2.5)

In the absence of absorption, Im{χ} = 0, the average force is conservative, and it can be written as
the negative gradient of the time-averaged dipole interaction potential,

Hint (r) = −
1
4
Re{χ} ∣E (r)∣2 . (2.6)

�e second term in (2.5) represents the non-conservative radiation pressure force related to the
net absorption of �eld momentum per time. It appears only in the case of complex running-wave
�elds with a directed momentum �ux, and it acts only on particles with a nonzero light absorption
cross-section σabs = σabs (ω), which determines the imaginary part of the complex polarizability
χ. We �nd the relation σabs = kIm{χ} /ε0 between both parameters by looking at the average
power absorbed by the dipole. It is determined by the average rate of work the �eld does on the
dipole [33, 34],

Pabs (r) = ⟨ ∫ d3r′Re{ j (r′, t)} ⋅Re{E (r′, t)}⟩
t
= 1
2
Re{[∂td (r)]∗ ⋅ E (r)}

= ω
2
Im{χ} ∣E (r)∣2 ≡ σabsI (r) , (2.7)

with I (r) = cε0 ∣E (r)∣2 /2 the local electric �eld intensity.
Another contribution to the radiation pressure e�ect on the particle is due to the Rayleigh scat-

tering of light from the coherent �eld into free space. �e absorption cross-section σabs is thus
complemented by the elastic light scattering cross-section σsca = k4 ∣χ∣2 /6πε20, as given by the total
radiated power of the oscillating dipole [34],

Psca (r) =
ω4

12πε0c3
∣d∣2 = ck4 ∣χ∣2

12πε0
∣E (r)∣2 ≡ σscaI (r) . (2.8)

�e cross-section σext = σabs+σsca describes the combined extinction of the light by absorption and
Rayleigh scattering. �e in�uence of Rayleigh scattering on the force (2.5) can usually be neglected
for point-like particles of diameter a ≪ λ. Since their polarizability is roughly determined by the

3�e vector identities [33],

∇(a ⋅ b) = a × (∇ × b) + b × (∇ × a) + (b ⋅ ∇) a + (a ⋅ ∇) b,
(∇ ○ b) a = a × (∇ × b) + (a ⋅ ∇) b,

might occasionally be useful here and in the following. �e dyadic term B = ∇ ○ b is de�ned as the matrix B jk =
∂bk/∂x j .
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volume, χ ∼ a3, the scattering contribution to the total force is then strongly suppressed by the
factor (ka)3 ≪ 1.
�e conservative part of the interaction generalizes to the case of a quantumparticle in a straight-

forward manner; we simply replace the position r by the operator r and add the dipole potential
Hint (r) to the Hamiltonian of the free particle,

HPPP =
p
2

2m
− Re{χ}

4
∣E (r)∣2 = p

2

2m
+ ħU0 ∣α∣2 ∣u (r)∣2 . (2.9)

In the second equation I have introduced the coupling frequency

U0 = −
ω
2ε0V

Re{χ} , (2.10)

which represents the single-photon interaction strength or, in the case of a high-�nesse cavity �eld,
the cavity resonance shi� due to the presence of the particle. A full quantum treatment of both
light and matter is obtained by replacing ∣α∣2 → a

†
a and adding the single-mode Hamiltonian

Hf = ħωa
†
a.

�e quantum counterpart of the non-conservative light-matter interaction cannot be obtained by
such simple means as it cannot be expressed in terms of the particle’s Hamilton operator. We expect
that, apart from exerting a net radiation pressure force, it also contributes a di�usion inmomentum
space as the particle randomly absorbs and scatters single photons from the �eld mode. �at is to
say, the full quantum dynamics of the particle must be phrased in terms of a Lindblad-type master
equation [35, 36].

2.1.2. Absorption, emission and Rayleigh scattering of photons

Aphysical derivation of the nonconservative radiation pressure forces, of momentum di�usion and
the associated decoherence e�ects requires a full quantum description of the coupling to both the
coherent light �eld and the free-space mode vacuum. �is will be given in Section 2.2. At this point
we take a more intuitive, operational approach to arrive at the same results based on a formulation
in terms of quantum jumps [36].
�e absorption, emission, or scattering of single photons can be understood as a stochastic Pois-

son process, where the random variable N (t) ∈ N0 denotes the number of absorbed, emitted, or
scattered photons at each point in time t starting from N (0) = 0. Given a mean rate of events Γ the
Poisson process is determined by the time evolution of the probability P (n, t) of counting a total
of n events until time t,

d
dt

P (n, t) = Γ [P (n − 1, t) − P (n, t)] , P (n, 0) = δn,0. (2.11)

As time evolves, the number of events increases stepwise by the increment dN (t) = N (t + dt) −
N (t) ∈ {0, 1} in each coarse-grained time step4 dt, with the expectation value E [dN (t)] = Γdt.

4 Stochastic di�erential equations can serve to describe the e�ective time evolution of open systems in contact with an
environment inducing rapid (uncontrollable) state transitions that cannot be examined with the coarse-grained time
resolution of observation [35]. �e transitions thus show up as random events, or ’jumps’. Using a Poissonian model
we assume single infrequent jumps that can be clearly distinguished.
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�e binary random variable dN (t) = dN2 (t) can now be employed in the stochastic time evo-
lution of the quantum state of motion ∣ψ (t)⟩ of a particle absorbing, emitting or scattering pho-
tons at an average rate Γ. Let us suppose that the system state undergoes the transition ∣ψ⟩ ↦
A∣ψ⟩/

√
⟨ψ∣A∣ψ⟩ in the case of an event (which would correspond to a momentum kick in our case),

while it evolves coherently under the in�uence of the Hamiltonian H otherwise. �e random tra-
jectory of the system state is then described by the stochastic Schrödinger equation [36]

d∣ψ (t)⟩ = (− i
ħ

H + Γ ⟨ψ (t) ∣A
†
A∣ψ (t)⟩ − A

†
A

2
) ∣ψ (t)⟩dt

+
⎛
⎜
⎝

A√
⟨ψ (t) ∣A

†
A∣ψ (t)⟩

− 1
⎞
⎟
⎠
∣ψ (t)⟩dN (t) , (2.12)

where the antihermitian addition to the coherent time evolution in the �rst line ensures norm con-
servation. An ensemble average over all random trajectories leads to a master equation for the
motional state ρ of the system, which is of the renowned Lindblad form,

∂tρ = − i
ħ
[H, ρ] + Γ (AρA

†
− 1
2
{A
†
A, ρ}) ≡ − i

ħ
[H, ρ] + L(ρ) . (2.13)

Additional Lindblad superoperators L appear in the presence of several statistically independent
jump processes in�uencing the system.
We are le� with specifying the rate constants Γ and the jump operators A of the Lindblad terms

that correspond to photon absorption, emission and scattering at a PPP,

∂tρ = − i
ħ
[HPPP, ρ] + Labs (ρ) + Lemi (ρ) + Lsca (ρ) (2.14)

2.1.2.1. Photon absorption

Complex polarizabilities represent point-like particles that absorb light. Dividing the average ab-
sorption power (2.7) by the energy of a single photon yields the rate constant Γabs = Pabs/ħω ≡
γabs ∣α∣2, which can be expressed as a product of the photon number in the �eld times the single-
photon absorption rate γabs = cσabs/V = ωIm{χ} /ε0V .
Each absorbed photon modi�es the particle momentum state according to the mode function

u (r) of the coherent light �eld. In the simple case of a plane wave, for instance, the absorbed pho-
ton shi�s the particle by ħk inmomentum space, so that the jump operator reads asA = exp (ik ⋅ r).
Di�erent mode structures emerge when plane waves are re�ected and transmitted at particular ge-
ometries. We restrict our view here to modes with a �xed (linear, circular or elliptic) polarization
vector, u (r) = єu (r). �e spatial structure of the mode is then contained in the scalar mode func-
tion5 u (r), which can be decomposed into a Fourier sum of polarized plane-wave components,

5Using a �xed polarization є (r) = є is a good approximation in many practical cases such as Gaussian TEM
modes, where position-dependent corrections are negligibly small. A detailed description of modes with a position-
dependent polarization vector is more involved and requires a speci�c physical model of the particle’s response dur-
ing the absorption process. �is is because the orientation of the induced dipole moment then contains information
about the position of the particle in the �eld mode, which is traced out when only the center-of-mass state is moni-
tored.
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u (r) = ∑k uk exp (ik ⋅ r). �e momentum components uk being indistinguishable, photon ab-
sorption transforms a momentum state ∣p⟩ of the particle into the superposition state

∣p⟩ ↦∑
k
uk ∣p + ħk⟩ = ∑

k
uke ik⋅r∣p⟩ = u (r) ∣p⟩, (2.15)

accordingly. �e jump operator is thus given by A = u (r), and the corresponding Lindblad term of
photon absorption reads as

Labs (ρ) = γabs ∣α∣2 [u (r) ρu∗ (r) − 1
2
∣u (r)∣2 ρ − 1

2
ρ ∣u (r)∣2] . (2.16)

Note that this form of the superoperator fully accounts for the local intensity distribution of the
�eld. If the particle state is localized, say, at the node of a standing-wave �eld (2.2), where the mode
function vanishes, the Lindblad term will not contribute to the master equation of the particle. In
contrast, the particle is most strongly a�ected in the antinodes.
From the resultingmaster equation ∂tρ = −i [HPPP, ρ] /ħ+Labs (ρ)we can deduce themean force

acting on the particle by means of the Ehrenfest theorem. �e time derivative of the momentum
operator expectation value in the Heisenberg picture should correspond to the expected classical
force expression (2.5). A straightforward calculation (using the commutator identity [p, f (r)] =
−iħ∇ f (r)) reveals that this is indeed the case,

∂t ⟨p⟩ = tr(−
i
ħ

p [HPPP, ρ] + pLabs (ρ))

= i
ħ
⟨[Hint (r) ,p]⟩ + γabs

2
∣α∣2 ⟨[u∗ (r) ,p]u (r) + u∗ (r) [p, u (r)]⟩

= −ħU0 ∣α∣2 ⟨∇ ∣u (r)∣2⟩ + ħγabs ∣α∣2 ⟨Im{u∗ (r)∇u (r)}⟩

= Re{χ}
4

⟨∇ ∣E (r)∣2⟩ − Im{χ}
2

⟨Im{[∇ ○ E∗ (r)]E (r)}⟩ , (2.17)

with the electric �eld E (r) = E0єu (r). �e absorption superoperator (2.16) reproduces the classical
radiation pressure force correctly, but it also contributes a di�usion of the particle momentum. �e
time derivative of the energy expectation value ∂t ⟨HPPP⟩ becomes non-zero due to the presence of
the absorption-induced momentum di�usion6,

∂t ⟨HPPP⟩ = tr(
p
2

2m
Labs (ρ)) = γabs ∣α∣2

4m
⟨[u∗ (r) ,p2]u (r) + u∗ (r) [p2, u (r)]⟩

= ħγabs ∣α∣2

m
⟨Im{u∗ (r)∇u (r)} ⋅ p⟩ + ħ2γabs ∣α∣2

2m
⟨∣∇u (r)∣2⟩ . (2.18)

�e �rst term is related to the radiation pressure force exerted by directed running waves; it van-
ishes in the case of standing-wave modes u (r) ∈ R. �e positive second term is always present, it
describes the heating of the particle by momentum di�usion, and it represents the main quantum
correction to the classical derivation of the non-conservative radiation pressure force.

6Here I have used the identity [p2 , f (r)] = −ħ2∆ f (r) − 2iħ∇ f (r) ⋅ p = ħ2∆ f (r) − 2iħp ⋅ ∇ f (r), as well as the fact
that the mode function by construction solves the Helmholtz equation ∆u = −k2u.
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�is raises the question as to whether, or when, the di�usion correction becomes relevant in
practice. Given that the mode function solves the Helmholtz equation ∆u = −k2u we can estimate
the magnitude of the gradient by ∣∇u∣ ∼ k, which leads to an energy increase per time of the order
of γabs ∣α∣2 ħ2k2/2m = Γabsħωr due to di�usion. �at is, the energy grows at the total absorption
rate Γabs in units of the so-called recoil energy ħωr = ħ2k2/2m, or recoil frequency ωr if units of ħ
are discarded. �is di�usion heating must be compared to the rate of change in potential energy
∼ 2ħkvU0 ∣α∣2 when the particle ismoving at the velocity v. �e ratio of non-conservative heating to
the conservative change in potential energy γabsωr/2U0kv then scales as the quotient of recoil fre-
quency over Doppler frequency ωr/kv = ħk/2mv—a tiny quantity in many practical cases dealing
with fast and large molecules or clusters.
�e di�usion e�ect becomes relevant in the quantum limit of motion, where particles are so

slow that their momentum p = mv becomes comparable to the photon momentum ħk. �e min-
imal kinetic energy a particle can reach in the presence of the photon �eld is then given by the
recoil energy ħωr . �e absorption, emission, or scattering of photons induces a random walk in
momentum space and thereby prevents the particle from reaching even lower velocities.
A purely classical treatment of the radiation pressure forces may su�ce far above the quantum

limit as long as decoherence is of no concern. On the other hand, if the particle is prepared in a
nonclassical state of motion, the Lindblad superoperator (2.16) accounts for the coherence loss due
to photon absorption.

2.1.2.2. Photon emission into free space

�e discussed absorption model eventually runs into constraints once the total absorbed photon
energy during the time scale of the experiment reaches a critical level where it signi�cantlymodi�es
or destroys the internal structure of the particle such that the linear response regime breaks down.
On the other hand, an internally hot or excited particle may gradually reduce its internal energy

by �uorescence or thermal emission of radiation, which results in a similar di�usion and decoher-
ence e�ect as in the absorption process. �e associated Lindblad term can be modeled as a random
unitary process [37]. Each emitted photon with a wave vector k exerts a momentum kick of −ħk
onto the particle, as described by the unitary transformation Uk = exp (−ik ⋅ r). Given the spec-
tral emission rate γemi (ω) and the normalized angular distribution R (n) of the emitted radiation,
∫∣n∣=1 d

2n R (n) = 1, the Lindblad term reads as

Lemi (ρ) = ∫ ∞

0
dω γemi (ω) [ ∫ d2n R (n) e−iωn⋅r/cρe iωn⋅r/c − ρ] . (2.19)

While the details on the radiation spectrum γemi (ω) and pattern R (n) depend on the nature of
the emission process, we should certainly expect that there is no preferred direction of emission,
∫ d2n R (n) n = 0. �is is ful�lled in the case of an isotropic radiation pattern, R (n) = 1/4π. As
a consequence, the emission process does not contribute another net force term to (2.17), but it
naturally contributes to the momentum di�usion e�ect,

⟨p2Lemi (ρ)⟩ = ∫ ∞

0
dω γemi (ω) (ħω

c
)
2
, (2.20)
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as well as to decoherence. For instance, nondiagonal elements in the position representation decay
like

⟨r∣Lemi (ρ) ∣r′⟩ = − ∫ ∞

0
dω γemi (ω) [1 − ∫ d2n R (n) exp(−iωn ⋅ r − r′

c
)] ⟨r∣ρ∣r′⟩ (2.21)

due to emission. �e decay saturates at the maximum rate Γemi = ∫ dω γemi (ω) for nondiagonal
elements that are further apart than the spectrum of emitted wavelengths. We can distinguish be-
tween three types of emission spectra:

☀ Fluorescence Some species of excited molecules or clusters may get rid of their excess en-
ergy by emitting a �uorescence photon, which typically happens within nanoseconds a�er
the excitation [6]. �e emission spectrum is expected to be narrow, but it is o�en red-shi�ed
with respect to the excitation energy due to fast internal relaxation before reemission. In fact,
these energy conversion processes may be so e�cient that the particle hardly �uoresces at all.
One generally observes a low quantum yield of �uorescence P�uo ≪ 1 in a variety of complex
organic molecules which may even absorb energies beyond the ionization threshhold emit-
ting neither an electron nor a �uorescence photon [38, 39]. Such particles then simply heat
up internally and will cool down slowly by thermal radiation.

☀ Thermal radiation of a hot particle Large and hot particles with many internal degrees of
freedom can be regarded as a (microcanonical) heat bath of �xed energy [40]. Neglecting
small corrections due to the �nite number of excited degrees of freedom (�nite heat capac-
itance CV < ∞), we may approximate the particle as a canonical heat bath at a temperature
T that is much higher than the temperature T0 of the environment. �e particle can thus
freely emit photons into the essentially unoccupied free-space radiation �eld, at a rate given
by the spectral free-space mode density, the frequency-dependent photon absorption (and
emission) cross-section σabs (ω) and a Boltzmann factor relating the internal density of states
before and a�er the emission of ħω [41],

γemi (ω) = ω2σabs (ω)
π2c2

exp(− ħω
kBT

) . (2.22)

If thermal emission is to be observed over a long period of time the gradual temperature
decrease must be taken into account, which may also impact the absorption cross section.

☀ Blackbody radiation in thermal equilibrium �e radiation spectrum changes if the particle
and the environment are in thermal equilibrium, T = T0. We may then approximate the
particle as a blackbody radiator with an aperture given by its photon absorption cross section,
and the emission spectrum is of the well-known Planck form

γemi (ω) = ω2σabs (ω)
π2c2

[exp( ħω
kBT

) − 1]
−1
. (2.23)

�e particle becomes a colored body if �nite-size corrections are taken into account [41].
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2.1.2.3. Elastic light scattering into free space

�e e�ect of Rayleigh scattering on the particle can now be understood as a combination of photon
absorption from the coherent light �eld followed by a reemission of the same energy into free space.
Hence, the net momentum transfer of a single scattering event is described by applying the mode
function operator u (r) times the unitary operator exp (−ik ⋅ r) on the particle state, with ∣k∣ = k
the wave number of the original light mode. Averaging over all possible scattering directions (in
the same way as in the emission case (2.19)) yields the Lindblad term

Lsca (ρ) = γsca ∣α∣2 [ ∫ d2n R (n)u (r) e−ikn⋅rρe ikn⋅ru∗ (r) − 1
2
{∣u (r)∣2 , ρ}] , (2.24)

with the single-photon scattering rate γsca = ck4 ∣χ∣2 /6πε20V . �e Rayleigh scattering pattern of
the PPP is that of a radiating dipole [34], R (n) = 3 sin2 θ/8π, where θ denotes the angle of n with
respect to the polarization direction є of the electric �eld (and therefore of the induced dipole).
Rayleigh scattering contributes to both the radiation pressure force and themomentum di�usion

e�ect. �e former has the same form as the absorption term in (2.17), as is immediately understood
by viewing a scattering event as a subsequent absorption and emission process. �e latter does not
induce any net force since there is no preferred direction of emission, ∫ d2n R (n) n = 0.
In summery, we �nd that the total non-conservative radiation-pressure part of the force on a PPP

reads as

Fnc = ⟨p [Labs (ρ) + Lsca (ρ)]⟩ = ħ (γabs + γsca) ∣α∣2 ⟨Im{u∗ (r)∇u (r)}⟩ . (2.25)

It complements the conservative force from the optical potential, Fc = −ħU0 ∣α∣2 ⟨∇ ∣u (r)∣2⟩. Both
the absorption and the reemission part of the scattering process induce momentum di�usion,

⟨p2Lsca (ρ)⟩ = ħγsca ∣α∣2 ⟨2Im{u∗ (r)∇u (r)} ⋅ p + ħ ∣∇u (r)∣2 + ħk2 ∣u (r)∣2⟩ . (2.26)

�e total increase of kinetic energy due to absorption, emission and elastic light scattering then
becomes

∂t ⟨HPPP⟩ =
ħ (γabs + γsca) ∣α∣2

2m
⟨2Im{u∗ (r)∇u (r)} ⋅ p + ħ ∣∇u (r)∣2⟩

+ ħ2k2 ∣α∣2

2m
γsca ⟨∣u (r)∣2⟩ + ∫ ∞

0

dω
2m

γemi (ω) (ħω
c

)
2
. (2.27)

�e emission part can be safely neglected in the presence of strong coherent �elds, ∣α∣2 ≫ 1, and
the scattering part is only relevant if the particle does not absorb considerably at that particular
wavelength.
In the course of this work, I will focus on twomain types of applications of the developed formal-

ism, corresponding to two distinct interaction regimes between the PPP and the strong coherent
light �eld:

☀ Cavity-assisted motion control �e non-conservative nature of the light-matter coupling
can be exploited to dissipatively manipulate and slow down the motion of hot and free-�ying
polarizable particles while they interact with the strong coherent �eld inside a high-�nesse
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optical cavity. �is requires su�ciently long interaction times, as compared to the time scale
of the cavity �eld dynamics. I will present a basic classical assessment of the general e�ect
in the next Section 2.1.3, before turning to a more rigorous quantum model in Section 2.2,
and before I generalize the description to objects beyond the point-particle approximation
in Section 2.3.

☀ Diªractionelements for matter-wave interferometry Coherent light �elds act as beam split-
ters and optical di�raction elements for matter waves of polarizable particles in the limit of
short interaction times (i.e. passage times through the �eld mode). Modern-day interference
experiments with molecules and clusters [12] rely on the coherent part of the light-matter
interaction to create optical gratings for matter waves, while the non-conservative part of the
interaction plays only a minor role in these applications. I will discuss in Section 2.1.4 how
light �elds can coherentlymodulate the phase or the amplitude ofmatter waves of polarizable
particles. �is e�ect will be an essential ingredient in the general assessment of matter-wave
interferometry in Chapter 3 of this thesis.

2.1.3. Classical dynamics of a polarizable point particle coupled to a strongly

pumped cavity mode

Both the conservative and the non-conservative light forces can be employed to dissipate kinetic
energy of a PPP when it is coupled to the retarded dynamics of a high-�nesse optical resonator.
O�-resonant cavity-assisted slowing is a well-studied e�ect [15, 42, 43] (so far only observed in
experiments with atoms [44–47]), whose potential lies in its applicability to arbitrary polarizable
particles without the need to address a distinct internal level structure [8, 48].
To begin with, let me present the cavity-assisted slowing e�ect by the example of a PPP inside

an ideal Fabry-Pérot standing-wave cavity. A sketch of the geometry is given in Figure 2.1. For the
time being, I shall restrict the view to a classical one-dimensional treatment of the particle motion,
assuming that it stays far above the quantum limit of motion (where momentum di�usion would
have a strong impact) and that wemay neglect weak light forces perpendicular to the standing-wave
direction due to the �nite-size intensity pro�le f (x , y) of the cavity mode7.

2.1.3.1. Intra-cavity ®eld dynamics

�e �eld dynamics is comprised of the pump laser power Pin leaking through the mirrors into the
Fabry-Pérot resonator and the power loss Pout leaking out. In the steady-state situation when no
particle is present, the net power �ow must cancel, Pin = Pout (assuming other scattering losses at
the mirrors are negligible). �e description of the �eld dynamics is based on the simple di�erential
equation

∂tα (t) = −iωcα (t) + ηe−iωP t − κα (t) . (2.28)

It complements the harmonic oscillation of the intra-cavity �eld amplitude α (t) at its resonance
frequency ωc by the input term η exp (−iωP t) and the output term −κα (t). �e former represents
the driving of the amplitude by a strong pump laser at frequency ωP that leaks into the resonator
volume at a rate η. �e latter represents the loss of �eld amplitude due to the �nite re�ectivity of the

7 In this approximation, the intensity pro�le merely limits the interaction time between the �eld mode and the PPP
traversing the cavity volume.
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Figure 2.1. Sketch of the experimental situation when a polarizable point particle (PPP) passes a standing-wave Fabry-
Pérot cavity pumped by a strong laser �eld through one of the cavity mirrors. �e steady-state amplitude of the
cavity is determined by the pump rate η, the cavity decay rate κ, and the detuning ∆ between the cavity resonance
and the pump laser frequency. �e PPP couples coherently to the intra-cavity �eld through the single-photon
coupling frequency U0 , and it may also scatter or absorb cavity photons at the total extinction rate γext .

mirrors. Equation (2.28) describes a harmonically driven damped oscillator, where the steady-state
amplitude

αss (t) =
η

κ + i∆
e−iωP t (2.29)

oscillates at the driving frequency ωP . �e steady-state intensity ∝ ∣αss ∣2 = ∣η∣2 / (κ2 + ∆2) has a
Lorentzian shape as a function of the detuning ∆ = ωc − ωP between cavity resonance and pump
frequency, with κ the cavity linewidth. For far detuned driving frequencies, ∣∆∣ ≫ κ, the cavity vol-
ume inside the Fabry-Pérot mirror geometry is impenetrable, and the pump �eld is totally re�ected
on the outside. On resonance, ∆ = 0, the cavity becomes perfectly transmissive, and the intra-cavity
�eld energy assumes its maximum Ef = ħωP ∣η∣2 /κ2. �e transmitted power is obtained by decom-
posing the standing-wave �eld into two running-wave components; only the forward-directed part
can be transmitted. �is amounts to 50% of the intra-cavity amplitude, or 25% of the intra-cavity
intensity, which leaks out at the rate κ, or 2κ, respectively. �e fully transmitted input power thus
reads as Pin = Pout = 2κEf/4 = ħωP ∣η∣2 /2κ, which determines the pump rate η up to an arbitrary
phase by ∣η∣ =

√
2κPin/ħωP .

2.1.3.2. Coupled cavity-particle dynamics

Inserting a PPP into the cavity mode volume modi�es the steady-state �eld amplitude by detuning
the cavity resonance frequency and by introducing an additional damping channel. �e detun-
ing scales with the single-photon coupling frequency U0 of the particle, and it is accounted for by
adding the dipole interaction potential Hint (r) from Equation (2.6) to the �eld Hamiltonian. �e
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Figure 2.2. Trajectories of a model particle along the standing wave of a Fabry-Pérot cavity for positive (blue, bottom
curve) and negative (red, top curve) cavity-pump detuning, ∆ = ±κ. �e le� and the right panel depict the particle’s
position and velocity, respectively. Natural, cavity-related units are used. �e simulation is based on Equations
(2.30) and (2.31), using the parameters η = 103κ, U0 = −0.1κ, γext = 0, ωr = 10−6κ. We assumed an initial velocity
of kvz = 0.5κ. While the red trajectory is constantly accelerated, the blue trajectory is slowed until trapping occurs
a�er about 100 cavity lifetimes.

additional damping is given by the combined photon absorption and scattering rate of the particle,
γext = γabs + γsca; the �eld amplitude decays at half this rate. One usually formulates the resulting
�eld evolution equation in a rotating frame, which removes the fast oscillation at the optical pump
frequency ωP from the much slower particle-�eld dynamics [49],

∂tα (t) = −(i∆ + κ) α (t) + η − (iU0 +
γext
2

) α (t) ∣ f (x , y)∣2 cos2 kz (t) . (2.30)

�e motion of the particle along the cosine pattern of the standing wave is then governed by the
z-component of the dipole force (2.5),

∂2t z (t) =
2ħk
m

U0 ∣α (t) f (x , y)∣2 sin kz (t) cos kz (t) = 2ωrU0
k

∣α (t) f (x , y)∣2 sin 2kz (t) . (2.31)

�ere is no radiation pressure force in the standing-wave case. �e two coupled di�erential equa-
tions (2.30) and (2.31) describe the one-dimensional particle-cavity dynamics in the classical limit
if transverse light forces are neglected. For a particle traversing the cavity we can introduce a �nite
time window of the interaction by setting x = x0 + vx t and y = y0 + vy t.
Figure 2.2 depicts two simulated trajectories of a model particle moving along the central z-axis

of a pumped standing-wave cavity (x = y = 0). �e upper (red) and lower (blue) trajectories
correspond to a negative and positive detuning ∆ between the cavity and the laser, respectively. In
both cases we observe a sinusoidal velocity modulation as the particle moves along the periodic
optical potential of the standing-wave cavity �eld. Indeed, if the cavity �eld α were not modi�ed by
the presence of the particle, Equation (2.31) would describe the oscillatorymotion of amathematical
pendulum.
On a time scale larger than the cavity reaction time 1/κ, the trajectories exhibit a gradual de-

crease (blue, bottom curve) or increase (red, top curve) in velocity, which cannot be explained by
the conservative dipole force. In the former case, the particle is eventually trapped in the optical
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potential, and its total energy becomes negative. Its velocity then oscillates between negative and
positive values as it bounces between the walls of the standing-wave potential.
It is the delayed reaction of the cavity to the particle that is responsible for the e�ective dissipation

(or heating) of the kinetic energy. �is e�ect establishes the basis of potential cavity-induced slow-
ing and trapping methods for molecules, clusters and other polarizable objects. In the following I
will study this e�ect in more detail, including also an assessment of its strength and applicability
under realistic conditions.

2.1.3.3. Estimated friction force

�e characteristics of the dissipation e�ect are best studied in a �rst order approximation of the
delayed reaction of the cavity to the moving particle. For this we expand the �eld amplitude α (t) =
α0 (t) + α1 (t) into the modi�ed steady-state term

α0 (t) =
η

κ + i∆ + (iŨ0 + γ̃ext/2) cos2 kz (t)
=∶ η
Ω (t) , (2.32)

which would be the solution if the �eld adjusted instantaneously to the current position z (t) of
the particle, and the term α1 (t) incorporating the corrections due to the �nite reaction time scale
of the cavity. Here I have absorbed the transverse coordinates into the coupling parameters Ũ0 =
U0 ∣ f (x , y)∣2, γ̃ext = γext ∣ f (x , y)∣2. Neglecting again their time dependence, we �nd that the cor-
rection term evolves according to

∂tα1 (t) = η ∂tΩ (t)
Ω2 (t) −Ω (t) α1 (t) , (2.33)

which can be formally solved by applying the same expansion procedure iteratively,
α1 (t) = η∂tΩ/Ω3 + α2 (t) etc. Let us, however, stop the iteration at the �rst order correction
term, α1 (t) ≈ η∂tΩ (t) /Ω3 (t), neglecting all higher-order delayed reaction contributions. �is is
valid if the particle does not couple too strongly to the cavity and moves slowly along the standing
wave pro�le so that the �eld amplitude can keep up. In other words, the approximation holds for
coupling frequencies U0 and Doppler frequencies kv smaller than the parameters κ and ∆ which
determine the reaction time scale of the cavity. �e approximate �eld amplitude now also depends
on the velocity v (t) = ∂tz (t) of the particle,

α (t) ≈ η
Ω (t) [1 − kv (t)

Ω2 (t) (iŨ0 +
γ̃ext
2

) sin 2kz (t)] , (2.34)

which results in a velocity-dependent force when inserted into the equation of motion (2.31). Look-
ing only at the friction force term that is linear in velocity, Fv = mβv, we �nd as the approximate
friction coe�cient

β = −ωr ∣
η
Ω3

∣
2
sin2 2kz [−8κ∆Ũ20 − 2 (κ2 − ∆2) Ũ0γ̃ext

−2κŨ0 (γ̃2ext + 4Ũ20) cos2 kz − Ũ0γ̃ext (γ̃2ext + 2Ũ20) cos4 kz] . (2.35)

Only the �rst two terms in the square brackets can change their sign by varying the detuning ∆.
Given that most polarizable particles in question are high-�eld seeking, U0 < 0, we observe that
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a negative friction coe�cient β can only be obtained for positive detuning ∆ > 0. �at is to say,
dissipative slowing requires the pump laser to be red-detuned with respect to the cavity resonance,
whereas a blue-detuned laser will always lead to the opposite e�ect.
�e basic physical picture underlying the slowing e�ect is sketched in Figure 2.3. Suppose the

pump laser is red-detuned to the steep �ank of the Lorentzian cavity resonance line, ∆ ∼ κ, and
the particle moves towards the antinode of the intra-cavity standing-wave �eld. As it enters the
high-insensity region its potential energy decreases immediately, and it speeds up until it reaches
the potential minimum at the antinode. At the same time, the particle shi�s the cavity resonance
towards the laser frequency, thereby e�ectively decreasing the detuning ∆ and increasing the �eld
intensity. �is leads to a slightly delayed lowering of the optical potential ’valley’, while the particle
is already moving out of the minimum and up the potential ’hill’, which is now higher than it was
when the particle came in. Hence, if the cavity delay matches the particle’s velocity, kv < κ, the
latter must on average climb up more than it falls down, gradually losing kinetic energy.
Are the simulated results comparable to a realistic scenario? I list the light coupling parame-

ters of di�erent polarizable particles in Table 2.1. �e selection covers a mass range of 9 orders
of magnitude between a single lithium atom and a gold nanosphere. �e coupling parameters are
evaluated for a standing-wave cavity operating at the IR wavelength λ = 1.56 µm with κ = 1MHz
linewidth, which is pumped at the detuning ∆ = −κ by a laser of Pin = 1W continuous-wave
power. �ese rather demanding parameters should be feasible using a resonator geometry with
25mm curved mirrors that are positioned at L = 1mm distance [56]8. By pumping a Gaussian
TEM00 mode with a waist of w = 40 µm it should be possible to achieve a mode volume as small
as V = πLw2/4 = 0.0013mm3, which trumps our earlier estimates for the light-matter coupling
parameters in [8] by orders of magnitude. �is leads to considerable friction rates ∣β∣, as given by
the position-averaged expression (2.35). �e latter predicts an average dissipation of the z-velocity
on a time scale ∼ 1/ ∣β∣. Within the boundaries of the above model, the obtained values that can
be as small as a few nanoseconds for the heaviest nanoparticles in the table. Being 100nm large
in diameter, these are at the top end of the point particle regime; the description of larger objects
will be discussed in Section 2.3. Moreover, a more rigorous quantum treatment of the dissipative
slowing e�ect in the limit of weakly coupling point particles will be discussed in detail in Section
2.2.

2.1.4. Optical gratings for matter waves

Having discussed the classical long-time dynamics of a PPP in the presence of a (classical) strong
cavity �eld I now turn to quite the opposite regime: �e short-time e�ect of strong coherent �elds
on the propagation of PPP matter waves. Rather than trying to explicitly solve the time evolution
in the presence of the �eld, I am going to adhere to the scattering picture and implement the short
presence of the �eld as a scattering event that transforms an incoming matter-wave state ρ to an
outgoing, scattered state ρ′ = S (ρ).
�e coherent standing-wave (or running-wave) light �eld in question shall be generated by a

strong laser that is (or is not) retrore�ected o� a mirror (rather than by a driven high-�nesse res-

8A cavity linewidth of 1MHz corresponds to a so-called cavity �nesse parameter F = πc/2κL ≈ 5 × 10−5 . �e latter is
related to the re�ectivity R of both mirrors via the relation F = π

√
R/ (1 − R) in the absence of additional losses in

the resonator [57]. �e suggested cavity setup requires 1 − R ≈ 7 × 10−6 .
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Figure 2.3. Schematic energy diagram of Fabry-Pérot cavity and particle for two di�erent particle positions (red and
green circles). �e initial detuning of the pump laser to the red side �ank of the cavity resonance line (∆ = ωc−ωP >
0) facilitates a dissipative slowing e�ect. A high-�eld seeking particlemoving fromanode (red circle) to an antinode
(green circle) of the standing wave is accelerated due to the change in optical potential. In addition, it tunes the
cavity resonance closer to the pump frequency, thereby lowering its own optical potential. As the latter e�ect lags
behind due to the �nite reaction time of the cavity, the particle must climb up a steeper potential hill, and gradually
loses kinetic energy, when moving towards the next �eld node.

Table 2.1. Coupling parameters between the standing-wave �eld of an IR high-�nesse cavity (λ = 1.56 µm, κ = 1MHz,
V = 0.0013mm3) to various polarizable (high-�eld seeking) particles ranging from a single lithium atom to
nanospheres of 50 nm radius. �e dielectric functions of bulk lithium (ε = −50.41 + 7.55i), gold (ε = −91.49 +
10.35i), silicon (ε = 12.05) and silica (ε = 2.1 + 6 × 10−12 i) are used to estimate the cluster parameters [50, 51].
�eir polarizabilities are given by the standard formula [52], χ = 4πε0R3 (ε − 1) / (ε + 2), with R = 3

√
3m/4πρ the

sphere radius and ρ the bulk mass density. �e polarizability of C60 is taken from [53], and the static value per atom
is used for the Li atom and the He droplet [54, 55]. We neglect the absorption of the IR-transparent particles. �e
position-averaged friction coe�cient β is evaluated at the cavity-laser detuning ∆ = κ.

Particle m (amu) ωr (Hz) ∣U0∣ (Hz) γabs (Hz) γsca (Hz) ∣β∣ (Hz)

Li 7 7.4 × 104 0.14 — 3.0 × 10−10 1.2 × 104

C60 720 715 0.50 2.4 × 10−4 3.6 × 10−9 1.4 × 103

He1000 4000 129 1.2 — 2.1 × 10−8 1.5 × 103

Li1000 7000 74 33 0.59 1.6 × 10−5 6.4 × 105

(SiO2)1000 60 000 8.6 18 1.4 × 10−10 4.4 × 10−6 2.1 × 104

Au1000 197 000 2.6 25 0.19 9.2 × 10−6 1.3 × 104

SiO2 sphere 6.9 × 108 7.4 × 10−4 2.0 × 105 1.6 × 10−6 592 2.9 × 108

Si sphere 7.3 × 108 7.1 × 10−4 5.9 × 105 — 5.1 × 103 3.2 × 109

Au sphere 6.1 × 109 8.5 × 10−5 7.8 × 105 5.8 × 103 8.8 × 103 6.9 × 108
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onator mode, as in the previous section). �e laser may either be shortly pulsed9 or continuous, in
which case we shall assume the particle to be fast in traversing the light mode. �is regime provides
the means to employ light �elds as di�ractive elements in matter-wave interferometry, as will be
discussed in the following with a focus on the Viennese near-�eld interference experiments with
molecules and clusters [12].

2.1.4.1. Coherent grating interaction

In the absence of photon absorption and Rayleigh scattering the interaction between the laser �eld
and the particle is entirely coherent. �at is to say, the impact of the short �eld presence on the
quantum state of motion can be described by a unitary scattering transformation S (ρ) = SρS

†
,

S
†
S = I. An explicit form is obtained in the basis of plane wave states by the renowned eikonal

approximation [58–60],

⟨r∣p⟩ ↦ ⟨r∣S∣p⟩ = exp [− i
ħ ∫

∞

−∞
dt Hint (r +

pt
m

)] ⟨r∣p⟩, (2.36)

with Hint (r) = −Re{χ} ∣E (r)∣2 /4 the optical dipole potential of the particle in the �eld. �e
approximation holds in a semiclassical high-energy limit where the classical action associated to
the motion of the particle over the course of the short interaction time exceeds by far the eikonal
action integral over the optical potential in (2.36) [60]. �e transformation describes a coher-
ent phase modulation of incoming matter waves. In the case of a standing-wave �eld, E (r) =
E0є f (x , y) cos kz, it constitutes a one-dimensional periodic phase grating.
In practice, one can employ an even simpler form of the transformation that acts only on the

reduced one-dimensional state of motion along the z-axis, thus omitting the generally weak mod-
ulation e�ect in the x- and y-direction due to the transverse mode pro�le f (x , y). Moreover, if the
velocities vz constituting the state of motion of the particle are su�ciently small10, we may take the
position distribution on the z-axis to be at rest during interaction time. We arrive at the transfor-
mation rule

⟨z∣ψ⟩ ↦ exp (iϕ0 cos2 kz) ⟨z∣ψ⟩ (2.37)

for any state vector ∣ψ⟩ for the one-dimensional z-motion of the particle that complies with the
above constraints. �is longitudinal eikonal approximation is commonly used to describe thin opti-
cal transmission gratings inmatter-wave interferometry [7,18,61], and it will be presumed through-
out the remainder of the manuscript. I refer the reader to [59, 60] for an exhaustive study of semi-
classical corrections to the eikonal approximation. �e eikonal phase factor ϕ0 is obtained by in-
tegrating the interaction potential over the intensity pro�le of the laser. We distinguish two imple-
mentations regarding the interferometry of large molecules and clusters:

☀ Kapitza-Dirac Talbot-Lau interferometer (KDTLI) �e KDTLI setup is a three-grating near-
�eld interferometer where the interference e�ect is related to the periodic phase modulation
at the central grating, a standing laser wave [7]. A collimated beam of fast molecules traverses

9 Since the wavelength of the laser is required to be su�ciently well de�ned for the present purposes, ultrashort pulses
with a broad frequency spectrum are excluded here.

10 To be more concrete, the travelled distance vzτ during the interaction period τ between the particle and the �eld must
be small compared to the laser wavelength, ∣vzτ∣ ≪ λ. Given the reduced one-dimensional quantum state of motion
ρz , the condition should cover its entire velocity distribution ⟨mvz ∣ρ∣mvz⟩.
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the three-grating geometry along the x-axis, and it is aligned in such a way that it crosses the
laser grating centrally and (almost) perpendicular to the standing-wave z-axis11. �is ismade
possible by using a cylindrical lens system to narrow the laser spot (down to a few tens of
microns) in the direction of �ight x, while keeping a large waist (of roughly one millimeter)
along y. We may thus assume that the collimated molecule beam passes the laser grating in
the xz-plane, setting y ≈ 0. �e phase factor (2.37) then reads as

ϕ0 =
Re{χ} ∣E0∣2

4ħ ∫ ∞

−∞

dx
v

f 2 (x , 0) , (2.38)

assuming a �xed longitudinal velocity v of the molecules12. Assuming a Gaussian intensity
pro�le f (x , y) = exp (−x2/w2x − y2/w2y)withwaist parameterswx ,y and an input laser power
PL, we �nd [7]

ϕ0 =
4
√
2πRe{χ} PL
hcε0vwy

. (2.39)

Given molecular velocities of the order of 100m/s and an x-waist of wx = 20 µm each mole-
cule spends less than a microsecond in the laser grating. It can travel not more than 100nm
along the grating axis during that period, as themolecule beam is typically collimated to a few
milliradians opening angle. Hence, the longitudinal eikonal approximation is well justi�ed.

☀ Optical time-domain ionizing Talbot-Lau interferometer (OTITLI) �eOTITLI13 is a Talbot-
Lau setup in the time domain where the gratings are generated by three short laser pulses,
which are retrore�ected o� a mirror [10]. A small cloud of nanoparticles �ying alongside the
mirror surface illuminated this way may be ionized in the antinodes of the pulses; they play
the role of the thin transmission gratings of a regular Talbot-Lau setup. �ephasemodulation
in each pulse is given by

ϕ0 =
4πRe{χ} EL

hcε0aL
(2.40)

if we assume that the particle ensemble is always well localized in the center of focus,
f (x , y) ≈ f (0, 0) = 1, when illuminated by grating laser pulses of su�ciently large spot size
aL = ∫ dxdy f 2 (x , y) (or a �at-top shaped spot pro�le). �e pulse energy EL = ∫τ dt PL (t)
is obtained by integrating the laser power over the temporal pulse shape of length τ. Again,
the eikonal expression (2.37) is only valid if the particles are approximately at rest over the
pulse duration τ. �e present experimental realization of the OTITLI setup in the Vienna
group operates with vacuum-ultraviolet (VUV) laser pulses of τ ≲ 10 ns at a wavelength of
λ = 157 nm. �e particle velocities therefore must be restricted to below 10m/s in z-direction
by means of collimation, for instance.

11Note that the direction of the grating is commonly referred to as the x-axis in the interferometry literature, whereas
the standing wave is directed along z in the present notation, which is conventionally used in the description of light
scattering at spherical particles. I will resort to the x-notation in Chapter 3.

12A realistic description of the molecular beam state involves a broad distribution of velocities v, and the resulting ϕ0-
dependent interferogram must be averaged accordingly.

13Also referred to as OTIMA: optical time-domain ionizing matter-wave interferometer.
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�e general working principle of Talbot-Lau interferometry will be discussed in detail in Chapter
3. �ere I will show how the periodic phase modulation at a standing-wave grating leads to matter-
wave interferograms. A full assessment of thin optical gratings, however, must also account for
non-conservative e�ects, most prominently, photon absorption.

2.1.4.2. Amplitude modulation by means of optical depletion gratings

�e absorption of light from an optical standing-wave grating does not necessarily imply the loss of
matter-wave coherence. �e latter can be avoided (or suppressed) if the absorption of one or more
photons removes the particle from the interfering ensemble present in the experiment. Depending
on the internal properties of the particles and the selectivity of the detection scheme with respect
to these properties, the removal can in principle be achieved by the ionization, fragmentation, iso-
merization, excitation, or simply internal heating, that may be triggered by the deposited photon
energy. Consequently, the particle ensemble is depleted in the antinodes, whereas nothing happens
in the nodes of the standing-wave grating. �e resulting periodic modulation of the matter-wave
amplitude renders the standing laser wave an optical generalization of a material di�raction mask,
with the nodes representing the apertures and the antinodes representing (semi-transmissive) walls
of the grating.
Optical depletion gratings of this kind have been used in atom interferometry [62], where the

absorption of a single photon induces an internal state transition and the atoms are post-selected
according to their energy level in the detector. �e experimentalists working on the OTITLI setup
in the Vienna lab make use of photon-induced ionization to generate depletion gratings fromVUV
laser pulses14, as the energy of a single UV photon exceeds the ionization threshold of most molec-
ular and atomic cluster particles.
Let me now describe the action of an optical depletion grating on the matter waves interact-

ing with the standing-wave �eld, in analogy to material di�raction masks. An ideally thin one-
dimensional di�raction grating, where the slits are periodically arranged along the z-axis, is de-
scribed by a periodic aperture function P (z), which can only take the values zero (wall) or one
(opening). Given an incoming matter-wave state ψ (z) = ⟨z∣ψ⟩ we �nd the density distribution of
particles behind the grating to be P (z) ∣ψ (z)∣2. �at is to say, the grating transformationmodulates
the matter-wave state by the square root of the transmission probability, ψ (z) ↦

√
P (z)ψ (z), up

to a prefactor that accounts for the renormalization of the state vector.
In the case of a thin optical depletion grating, the transmission probability P (z) may take any

value between zero and one, depending on the local standing-wave intensity (with P (z) = 1 at the
nodes of the standing wave). Including also the phase modulation e�ect (2.37) due to the dipole in-
teraction, as discussed in the preceding section, we can introduce a complex transmission function
t (z) to describe the full modulation of the matter-wave state,

⟨z∣ψ⟩ ↦
√
P (z) exp (iϕ0 cos2 kz) ⟨z∣ψ⟩ ≡ t (z) ⟨z∣ψ⟩. (2.41)

�e density operator ρ transforms as ρ ↦ t (z) ρt∗ (z). Using a Poissonian model for the pho-
ton absorption, as discussed in Section 2.1.2, and following the same arguments as for the phase
modulation, we can express the transmission probability in terms of the mean number of absorbed

14�e ionized particles are in practice removed from the ensemble with the help of a constant electric �eld applied to
the interferometer setup.
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photons, n (z) = n0 cos2 kz. In the case of fast particles crossing a stationary thin laser beam of
power PL, the value n0 at the antinodes reads as

n0 =
8σabsPLλ√
2πhcvwy

, (2.42)

and in the case of illumination by a short laser pulse of energy EL as

n0 =
4σabsELλ
hcaL

. (2.43)

When a single absorbed photon su�ces to remove a particle from the ensemble (e.g. by ionization)
the transmission probability can be written as the Poisson probability p0 (z)of zero absorption,
P (z) = p0 (z) = exp [−n (z)], and the transmission function becomes

t (z) = exp [(−n0
2
+ iϕ0) cos2 kz] . (2.44)

In the inverted situation, where it is the non-absorbing particles that are removed from the ensem-
ble, we arrive at

tinv (z) =
√
1 − exp (−n0 cos2 kz) exp (iϕ0 cos2 kz) . (2.45)

More generally, one could also conceive situations where the depletion threshold is reached by ab-
sorbing N or more independent photons, in which case the transmission function reads as

tN (z) =

¿
ÁÁÀN−1
∑
n=0

1
n!

(n0 cos2 kz)n exp [(−
n0
2
+ iϕ0) cos2 kz] . (2.46)

Here one must be careful with using the simple Poissonian model of absorption. �e latter is only
meaningful when subsequent absorption events can be regarded as statistically independent, and
it ceases to be valid when the internal state and the absorption cross-section σabs of the particle are
noticeably modi�ed by each absorption. Moreover, one must also take into account the photon
momenta transferred to all those particles that did not absorb enough photons to be removed.

2.1.4.3. Momentum transfer by absorption and scattering

Any full description of optical elements, which are not based on single-photon depletion, must in-
clude the momentum transfer due to the possible absorption and Rayleigh scattering of laser pho-
tons. �is generally comes with the loss of matter-wave coherence, an unwanted side-e�ect in opti-
cal gratings. For instance, it would be inexpedient to try interfering strongly absorptive molecules
in a KDTLI setup, where the purpose of the laser grating is to modulate coherently the phase of
the matter waves. On the other hand, for most polarizable subwavelength particles the inevitable
coherence loss due to Rayleigh scattering is usually a negligible e�ect in the short-time interaction
regime relevant for interferometry at optical gratings.
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Absorption I presented amodel of the absorption-inducedmomentum transfer in Section 2.1.2.1.
In accordancewith the longitudinal eikonal approximation for the coherent grating transformation,
let me omit any action of the Lindblad term (2.16) on the transverse motion in the �eld mode. �is
results in the e�ective one-dimensional transformation

Labs (ρ) = Γabs (t) [cos (kz) ρ cos (kz) − 1
2
{cos2 (kz) , ρ}] (2.47)

of the quantum state ρ of motion along the standing-wave axis z. �e time-dependent rate term
relates to the mean number of absorbed photons n0 = ∫ dt Γabs (t) through an integration over
the transverse laser beam pro�le in a co-moving frame along the particle trajectory, Eq. (2.42), or
over the temporal shape of the laser pulse, Eq. (2.43). �e above part of the master equation can
be explicitly integrated in the position representation ⟨z∣ρ∣z′⟩, which amounts again to omitting
motion during the interaction time,

⟨z∣eLabs tρ∣z′⟩ = exp [−n0 (
cos2 kz
2

+ cos
2 kz′

2
− cos kz cos kz′)] ⟨z∣ρ∣z′⟩

= exp [−2n0 sin2 (k
z + z′

2
) sin2 (k z − z′

2
)] ⟨z∣ρ∣z′⟩ ≡ Rabs (z, z′) ⟨z∣ρ∣z′⟩. (2.48)

�edecohering e�ect is evident: All nondiagonalmatrix elements are damped except for z−z′ = nλ,
the strongest e�ect occuring between nodes and antinodes15.
In the position representation the transformation simply reduces to a multiplication of the den-

sity matrix by the positive decoherence function 0 < Rabs (z, z′) ≤ 1. Recalling that the coher-
ent grating transformation also contributes a mere multiplication by t (z) t∗ (z′) in this repre-
sentation, we are allowed to combine both factors to obtain the overall grating transformation
⟨z∣ρ∣z′⟩ ↦ t (z) t∗ (z′)Rabs (z, z′) ⟨z∣ρ∣z′⟩.

Scattering �e Rayleigh scattering of photons into free-space discussed in Section 2.1.2.3, no
matter how weak in practice, can be incorporated in the same manner. Tracing out the transverse
part of the motion, the reduced one-dimensional version of the scattering Lindblad term (2.24)
reads as

Lsca (ρ) = Γsca (t) [ ∫ d2n R (n) cos (kz) e−iknzzρ cos (kz) e iknzz − 1
2
{cos2 (kz) , ρ}]

= Γsca (t) [ ∫ dΩ 3 sin
2 θ

8π
cos (kz) e−ik sin θ sin φzρ cos (kz) e ik sin θ sin φz − 1

2
{cos2 (kz) , ρ}] .

(2.49)

Note that the solid angle integration over the dipole radiation pattern R (n) = 3 sin2 θ/8π must be
performed on a sphere with its poles oriented along the polarization є of the electric light �eld,

15�is is intuitively clear since the absorption of a photon reveals the information that the particle is not located at a
node. On the other hand, the photon cannot distinguish two positions z and z′, which di�er by an integer multiple
of the wavelength.
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which is perpendicular to the z-axis. �e explicit expression for the decoherence function be-
comes16,

Rsca (z, z′) = exp{−nsca [
cos2 kz + cos2 kz′

2
− 3 cos kz cos kz

′

8π ∫ dΩ sin2 θe ik(z
′−z) sin θ sin φ]}

= exp{−nsca [
cos2 kz + cos2 kz′

2
− 3 cos kz cos kz

′

2 ∫ π/2

0
sin3 θdθ J0 (k (z′ − z) sin θ)]}

= exp{−nsca [
cos2 kz + cos2 kz′

2
− 3 cos kz cos kz′ sin k (z′ − z) − j1 (k (z′ − z))

2k (z′ − z) ]} .

(2.50)

Here, nsca gives the mean number of scattered photons in the antinodes. It is obtained from the
expressions (2.42) and (2.43) by replacing the absorption cross section with σsca.
A slightly di�erent and somewhat simpler result would be obtained if the particle scattered the

light isotropically, a frequently used simpli�cation,

Rsca,iso (z, z′) = exp{−nsca [
cos2 kz + cos2 kz′

2
− cos kz cos kz′ sinck (z′ − z)]} . (2.51)

In most cases relevant for interferometry, however, the mean number of scattered photons is negli-
gibly small, nsca ≪ 1, and one may omit the Rayleigh scattering e�ect alltogether.
Taking both the absorption and the scattering e�ect into account, the overall matter-wave state

transformation at an optical standing-wave grating becomes

⟨z∣ρ∣z′⟩ ↦ t (z) t∗ (z)Rabs (z, z′)Rsca (z, z′) ⟨z∣ρ∣z′⟩. (2.52)

We note that the present absorption and scattering transformations are based on an elementary
Markovianmodel where the lasermode is linearly coupled to an initially cold reservoir of free-space
vauum modes (in case of scattering) and of internal degrees of freedom of the particle (in case of
absorption). In particular, the model accounts for the correct momentum state of a standing-wave
photon, a superposition of two counterpropagating plane waves, which is coherently transferred to
the particle upon absorption. �is improves the probabilistic argument presented in [7], where the
absorption of standing-wave photons is implemented as a purely classical binary randomwalk with
50% chance to be kicked by +ħk or −ħk.
�is classical model is indistinguishable from the present treatment in the case of photon ab-

sorption from a running-wave �eld, say, directed into the positive z-direction. �e corresponding
Lindblad term is then of random unitary type,Labs (ρ) = Γabs [exp (ikz) ρ exp (−ikz) − ρ], and the

16 I made use of the integral representation of the Bessel function ∫ 2π
0 dφ exp (iξ sinφ) = 2πJ0 (ξ), as well as of the

integral identity [63]

∫ π/2

0
dθ J0 (β sin θ) sin θ cos2r+1 θ = 2rβ−1−rΓ (r + 1) Jr+1 (β) ,

with r = ±1/2 and the Gamma function Γ (3/2) =
√

π/2 = 2Γ (1/2). �e identity leads naturally to spherical Bessel
function expressions jn (β) =

√
π/2βJn+1/2 (β), where j0 (β) = sincβ.
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quantum state of motion transforms as

⟨z∣ρ∣z′⟩ ↦ exp{−n0 [1 − e ik(z−z
′)]} ⟨z∣ρ∣z′⟩ = e−n0

∞

∑
n=0

nn0
n!

⟨z∣e inkzρe−inkz
′ ∣z′⟩

≡ ⟨z∣
∞

∑
n=0

pnUnρU
†
n∣z′⟩. (2.53)

�is expression is a probabilistic sum of unitarymomentum kick transformationsUn = exp (inkz),
which also follows from a classical Poissonian ansatz.

2.2. Quantum mechanics of polarizable point particles in

high-®nesse cavities

�e preceding study of polarizable point particles interacting with coherent light �elds has lead to a
�rst assessment of cavity-induced slowing in Section 2.1.3, where both the PPPmotion and the �eld
were treated classically, and to the description of optical di�raction gratings of PPP matter waves
in Section 2.1.4, where the strong coherent �eld remained a classical degree of freedom.
Let me now proceed with a full quantum treatment of both the light and the particle, a neces-

sary prerequisite to assess the di�usive and dissipative e�ects arising from the coupling between
a PPP and one or more driven or empty high-�nesse cavity modes. A rigorous derivation of the
friction and di�usion parameters in the presence of one strongly driven pump mode will be given
in the weak-coupling limit where the particle-induced �eld �uctuations are small. �is assumption
of weak coupling holds true for many subwavelength molecules and clusters, which do not exhibit
a distinct internal resonance that could be addressed by the cavity light. Table 2.1 lists several ex-
amples where the rateU0 de�ned in Equation (2.10), at which the particle may induce �eld shi�s, is
by orders of magnitude smaller than realistic decay rates κ ∼ 1MHz of optical high-�nesse cavities.
�is does not mean, however, that it is a lost cause to study the dynamics of weakly coupling par-

ticles in a cavity. I will show how a large coherent driving �eld can e�ectively enhance the coupling
to the empty cavity modes by orders of magnitude. �e weak coupling model, as presented in the
following, will then admit a systematic assessment of the main dissipative e�ects of the enhanced
coupling. In particular, we will �nd that the cavity-induced friction force increases with each empty
cavity mode that is accessible for the pump light—a potential application for confocal resonator ge-
ometries with a large spectrum of degenerate modes. �e presented results have been published
in [8].

2.2.1. Quantum model of a PPP coupled to multiple cavity modes

I start by quantizing the light-matter interaction model of Section 2.1 for the generic con�guration
of one particle in the presence ofM empty cavitymodes and one strongly driven pumpmode, which
provides the necessary �eld input to enhance the coupling of the PPP with the cavity. In practice,
one of the cavitymodes can play the role of the pumpmodewhen driven by a strongmode-matched
laser. An alternative two-dimensional implementation is sketched in Figure 2.4, where the pump
�eld is generated in a di�erent (free laser or driven cavity) mode oriented perpendicularly to the
empty cavity axis. �is con�gurationmay be favourable in practice, as it avoids a strong dipole force

26



Figure 2.4. Sketch of an exemplary two-dimensional mode con�guration with a strongly driven �eld mode u0 directed
along the y-axis and a multitude of M empty standing-wave cavity modes un along the z-axis. In the overlapping
region, a particle of polarizability χ redistributes photons between the modes thereby inducing dissipation. Each
mode is damped by the rate κn and detuned by ∆n with respect to the driving �eld. �e latter generates a steady-state
amplitude α in the absence of the particle.

along the cavity axis as well as the need for selective single-mode driving of a (possibly degenerate)
multimode cavity.
�e described con�guration is characterized by the following parameters:

☀ �e driving �eld is described by the steady-state pump amplitude α (in the absence of the
particle) and by the pump frequency ωP . �e latter serves as the fast reference frequency,
and I will switch to the corresponding rotating frame to describe the �eld dynamics of all
other modes.

☀ �e behaviour of each �eld mode (including the pump) is determined by its detuning ∆n =
ωn −ωP with respect to the pump frequency, its decay rate κn, its mode function un (r), and
its mode volume Vn = ∫ d3r ∣u (r)∣2, where n = 0, 1, . . . ,M, and n = 0 is representing the
pump mode. �e �eld polarization vectors are omitted by assuming the same polarization
throughout17.

☀ �e particle of mass mP is described by a scalar polarizability χ, which leads to the e�ec-
tive coupling frequencies Umn = −

√
ωnωm/VnVmRe{χ} /2ε0 between the nth and the mth

mode.

17�e coupling strength between �elds of di�erent polarizations through a PPP may vary, most notably if the particle is
described by a tensorial polarizability. I omit this additional modulation of the coupling for simplicity.
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2.2.1.1. Quantum description of a driven cavity mode

Before introducing the coupling to the particle, I �rst translate the classical description of a driven
high-�nesse cavity mode in Section 2.1.3.1 into the quantum picture. Here I make use of the canon-
ical �eld quantization procedure [64–66] and replace the coherent �eld amplitude and its complex
conjugate by the annihilation and creation operators in the expressions for the physical �elds,

E (r, t) ↦
√
2ħω0
ε0V0

a0єu0 (r) , H (r, t) ↦ −ic
¿
ÁÁÀ 2ħ

µ0ω0V0
a0∇× єu0 (r) . (2.54)

�is results in the free �eldHamiltonianH0 = ħω0 (a
†
0a0 + 1/2), where the constant term is dropped

for convenience. In order to describe a driven cavitymode onemust include the driving �eld leaking
into the cavity and the losses leaking out. Both e�ects are covered by a linear couplingmodel, where
the exchange of �eld amplitude with an external mode b is described by a coupling Hamiltonian of
the form18 ∝ a0b

†
+ h.c. �at is, the coupling of the modes can be understood as an exchange of

single photons between the �eld states.
Based on this physical picture we may pin down the loss and driving terms heuristically. �e

cavity �eld loss can be seen as a random and uncontrolled elimination of photons as they escape
through the cavitymirrors or by scattering into free space at a total rate 2κ0. Inmathematical terms,
this is well modelled by a Poisson jump process of the same type as in (2.13), with the jump operator
given by the photon annihilator a0, Lloss (ρ) = κ0 (2a0ρa

†
0 − {a

†
0a0, ρ}).

�e same linear description can be applied to the driving by the mode b of a strong laser illu-
minating the cavity mirror. �e quantum representation of a strong coherent laser �eld is given in
terms of coherent states [65]

∣β⟩ = D (β) ∣0⟩ = e−∣β∣
2
/2

∞

∑
n=0

βn
√
n!

∣n⟩ = exp (βb
†
− β∗b) ∣0⟩, (2.55)

with β the complex �eld amplitude and ∣β∣2 the mean photon number. Coherent states are de�ned
as displaced vacuum states, and they are the eigenvectors of the annihilation operator, b∣β⟩ = β∣β⟩.
Mimicing the behaviour of classical monochromatic light �elds they oscillate harmonically at the
laser frequency ωP , ∣β (t)⟩ = exp (−iωP tb

†
b) ∣β⟩ = ∣β exp (−iωP t)⟩. �ey can be understood as

the vacuum state in a displaced and rotating frame19. In the classical limit ∣β∣ ≫ 1 the vacuum
�eld �uctuations around the displacement amplitude are small compared to ∣β∣, and we may sub-
stitute the laser mode operator b by β exp (−iωP t) (assuming there is no relevant backaction of
the cavity �eld onto the state of the driving laser). �e driving Hamiltonian thus assumes the form
Hpump (t) ∝ β∗ exp (iωP t) a0 + h.c. We get rid of the time dependence by switching to a frame

18�e form is easily obtained by adding the quantized physical �elds (2.54) of the modes a0 and b to an overall electric
and magnetic �eld. When the corresponding �eld energy density is integrated over the volume in (2.4) the cross
terms between both modes yield the above linear coupling Hamiltonian. Terms of the form a0b and a

†
0b are omitted

in the rotating wave approximation [65], since they oscillate rapidly at twice an optical frequency, ωP + ω0 , and thus
do not a�ect the actual mode coupling.

19A rotating frame is de�ned through the unitary state transformation U (t) = exp (iωP∑n a
†
nan), with ωP the cor-

responding rotation frequency. Given the quantum state ρ (t) of a system of �eld modes {an} in the Schrödinger
picture, the state in the rotating picture reads as ρ′ = U (t) ρ (t)U

†
(t). Analogously, a displaced frame is de�ned via

the unitary displacement operator, ρ′ = D
†
(β) ρD (β). Field observables are displaced as D

†
(β)bD (β) = b + β.
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rotating at the optical pump frequency ωP , introducing the cavity-pump detuning ∆0 = ω0 − ωP
and the e�ective pump rate η. �is leaves us with the master equation for the �eld state of a driven
cavity mode,

∂tρ = −i [∆0a
†
0a0 + iηa

†
0 − iη∗a0, ρ] + κ0 (2a0ρa

†
0 − {a

†
0a0, ρ}) . (2.56)

�equantumexpectation value of the �eld amplitude evolves in the sameway as the classical version
(2.28),

∂t ⟨a0⟩ = − (i∆0 + κ0) ⟨a0⟩ + η. (2.57)

It is then straightforward to show that the coherent state ρss = ∣α⟩⟨α∣ is the steady-state solution of
the above master equation for the same steady-state amplitude α = η/ (κ0 + i∆0) as in the classical
case. An elegant and convenient way to incorporate the driving is to work with quantum states in
the displaced frame, ρ ↦ ρα = D

†
(α) ρD (α), where the steady-state amplitude shi�s the state of

the mode from ∣α⟩⟨α∣ to the ground state↦ ∣0⟩⟨0∣. �e resulting master equation,

∂tρα = −i [∆0a
†
0a0, ρα] + κ0 (2a0ραa

†
0 − {a

†
0a0, ρα}) , (2.58)

does not contain the explicit driving term anymore, and the �eld operator a0 now represents the
quantum �eld �uctuations on top of the coherent steady state.

Derivation of the loss term Note that the non-Hamiltonian loss term in the master equation
(2.56) can also be derived using a standard textbook approach [35, 67]. For this let us couple
the cavity mode linearly to a bath of harmonic oscillators, Henv = ∑ j ħω jb

†
j b j. It represents the

environmental vacuum of modes, which can be populated by a photon escaping the cavity. We
shall assume a linear coupling term of the form Hint = ∑ j ħg ja0b

†
j + h.c., with g j the e�ective

photon exchange rates between cavity and environment. �e coupled dynamics of the combined
state ρSE (t) of system and environment is most conveniently assessed in the interaction frame,
ρSE ,I (t) = U (t) ρSE (t)U

†
(t), with U (t) = exp [i (H0 + Henv) t/ħ]. A formal integration and re-

insertion of the von Neumann equation yields the integro-di�erential equation for the combined
state,

∂tρSE ,I (t) = −
i
ħ
[HI (t) , ρSE ,I (0)] −

1
ħ2 ∫

t

0
dτ [HI (t) , [HI (τ) , ρSE ,I (τ)]] , (2.59)

where
HI (t) = U (t)HintU

†
(t) = ∑

j
ħg je i(ω j−ω0)ta0b

†
j + h.c. (2.60)

We obtain a closed equation for the reduced cavity state ρI = trE (ρSE ,I) by tracing out the envi-
ronment and subsequently applying the so-called Born approximation: �e cavity leaves the en-
vironment practically una�ected at all times, ρSE ,I (t) ≈ ρI (t) ⊗ ∣vac⟩⟨vac∣. Every photon that
espaces disperses almost immediately, and the cavity is thus e�ectively surrounded by vacuum20 on

20Optical frequencies in the environmental mode spectrum are practically unoccupied even at �nite temperatures. I
thus use the zero-temperature vacuum state here, since the cavity only couples to modes of similar frequencies.
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all relevant time scales. We �nd

∂tρI (t) = −
1
ħ2 ∫

t

0
dτ trE ([HI (t) , [HI (t − τ) , ρI (t − τ) ⊗ ∣vac⟩⟨vac∣]])

= ∑
j
∫ t

0
dτ ∣g j∣

2 e−i(ω j−ω0)τ {a0ρI (t − τ) a
†
0 − a

†
0a0ρI (t − τ)} + h.c. (2.61)

Next we can apply theMarkov approximation: �e environment shall notmemorize the cavity state
at earlier times and the time evolution equation shall become time-local. �at is to say, we may set
ρI (t − τ) ≈ ρI (t) and integrate up to in�nity. �is is formally justi�ed if the cavity �eld couples to
a su�ciently broad frequency range such that∑ j ∣g j∣

2 exp [i (ω0 − ω j) τ] ≈ κδ (τ) and

∂tρI (t) ≈ κ [2a0ρI (t) a
†
0 − a

†
0a0ρI (t) − ρI (t) a

†
0a0] . (2.62)

�e desired master equation (2.56) follows by combining this with the above driving term of a
classical coherent laser �eld.

2.2.1.2. A particle, a driving laser, and a handful of empty cavity modes

With the quantum model of a driven cavity mode at hand we can now collect all ingredients to
model the system of a single pump mode, M empty cavity modes and a PPP, as sketched in Figure
2.4. It will be expedient to work in a frame rotating at the optical frequency ωP of the driving laser,
with the pump mode displaced by the steady-state amplitude α. �is results in a master equation
term of the above form (2.58) for each of theM + 1 modes.
�e presence of a polarizable particle comes with an additional Hamiltonian representing the

optical potential, as well as with scattering and absorption contributions, which couple the motion
of the particle to the �eld degrees of freedom. We obtain directly the optical potential term by
quantizing the electric �eld expression E (r) in the PPP Hamiltonian (2.9). However, we must bear
in mind that the electric �eld is now given by a sum of allM cavity modes plus the displaced pump
mode. �is results in the total particle Hamiltonian

HPPP =

≡HP³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p
2

2mP
+ ħU00 ∣αu0 (r)∣2 +

≡HI³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M
∑
n=0

ħU0n [αa
†
nu∗n (r)u0 (r) + h.c.]+

M
∑
k,n=0

ħUkna
†
naku∗n (r)uk (r) .

(2.63)

�e �rst termHP describes the particle motion in the steady-state dipole potential, the second term
HI represents the pump-enhanced linear coupling of the particle to the �eld �uctuations in each
cavitymode, and the remainder represents the inter-mode coupling, which also causes the position-
dependent resonance shi� of the modes.
�e above Hamiltonian must be complemented by the �eld energy term in the displaced and

rotating frame, HC = ∑n ħ∆na
†
nan. �e free �elds are thus included via the superoperator

LC (ρ) = −i
M
∑
n=0
∆n [a

†
nan , ρ] +

M
∑
n=0

κn (2anρa
†
n − {a

†
nan , ρ}) . (2.64)
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It describes the �eld evolution in the absence of the particle. In addition, the time evolution of the
combined state of cavity and particle contains another two �eld loss terms Labs and Lsca due to
absorption and scattering,

∂tρ = − i
ħ
[HPPP, ρ] + LC (ρ) + Labs (ρ) + Lsca (ρ) . (2.65)

Both cause additional coupling between the particle motion and the �eld �uctuations. �e explicit
form of these terms is found by combining the original expressions (2.16) and (2.24) for a classical
�eld with the above derivation of the Lindblad term (2.62), which represents the incoherent loss of
single �eld quanta. Keeping the displacement of the pump mode in mind, we arrive at

Labs (ρ) =
M
∑
n=0

cσabs
Vn

[(an + αδn0)un (r) ρ (an + αδn0)
†
u∗n (r)

− 1
2
{(an + αδn0)

†
(an + αδn0) ∣un (r)∣2 , ρ}] , (2.66)

Lsca (ρ) =
M
∑
m=0

cσsca
Vm

[ ∫ d2n R (n) (am + αδm0)um (r) e−ikn⋅rρ (am + αδm0)
†
e ikn⋅ru∗m (r)

− 1
2
{(am + αδm0)

†
(am + αδm0) ∣um (r)∣2 , ρ}] . (2.67)

�ermal or �uorescent photon emission from the particle into free space is neglected, as well as
internal heating of the particle due to photon absorption21. In the following I will simplify the
overall master equation (2.65) to the case of weak coupling.

2.2.2. Eliminating the quantum ®eld dynamics in the weak coupling limit

With the quantum model of the coupled cavity-particle dynamics at hand, I will now assess the
general e�ect of the dynamical quantum �eld on the motion of the PPP. �e goal is to �nd an
e�ective description of the reduced particle state by eliminating the explicit �eld dynamics. We
should expect that such a separation can formally be achieved only in the limit of weak coupling
between the particle and the �eld. I will therefore introduce two weak coupling assumptions which
will facilitate a low-order expansion of the coupling e�ect. Although the resulting model will be
strictly valid under those assumptions only, we might retain its qualitative predictions even beyond
the weak coupling limit.

2.2.2.1. The ®rst weak-coupling assumption

I assume that the coupling rates of the polarizable particle to the modes are signi�cantly smaller
than the mode damping rates, ∣Umn∣ ≪ κn ∀m, n. �is means that the particle-induced cavity
�eld �uctuations are limited to a few photons, as they typically escape the cavity much faster than
they can be redistributed by the particle. �e strong pump amplitude ∣α∣ ≫ 1 then represents the
only potential source of large photon numbers that may populate empty modes through coherent

21 Practical implementations of the present cavity dissipation scheme are restricted to non-absorbing particle species.
�e typically large pump �eld intensities might otherwise lead to the destruction of the particle.
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scattering at the particle. We may thus omit those coupling terms in the Hamiltonian (2.63) which
are of second order in the �eld �uctuations, HPPP ≈ HP + HI .
Secondly, if we extend the above weak-coupling assumption for the coherent inter-mode scat-

tering rates to the rates of photon absorption and Rayleigh scattering, we may approximate the
Lindblad terms (2.66) and (2.67) as

Labs (ρ) ≈ γabs ∣α∣2 [u0 (r) ρu∗0 (r) − 1
2
{∣u0 (r)∣2 , ρ}] , (2.68)

Lsca (ρ) ≈ γsca ∣α∣2 [ ∫ d2n R (n)u0 (r) e−ikn⋅rρe ikn⋅ru∗0 (r) − 1
2
{∣u0 (r)∣2 , ρ}] . (2.69)

�e terms γabs,sca = cσabs,sca/V0 denote the absorption and the Rayleigh scattering rate with respect
to the pumpmode volumeV0. According to our assumption, both the absorption and the scattering
rate must be small compared to the cavity decay rates, and we can safely neglect their contribution
to the particle-cavity dynamics. We are le� with the momentum di�usion caused by the absorption
and scattering of pump photons in (2.68) and (2.69); the only relevant non-conservative contribu-
tions to the model, apart from the cavity damping terms in LC .
�e �rst weak-coupling assumption simpli�es considerably the quantum description of cavity

and particle at almost no costs. In fact, the assumption is very well ful�lled in practice by a wide
range of nanoparticles, as can be seen from the exemplary Table 2.1. Using infrared light it remains
valid up to a mass of roughly 108 amu. �e quantum description of the weakly coupling system
splits into the two separate superoperators LC and LP (ρ) = −i [HP , ρ] /ħ + Labs (ρ) + Lsca (ρ)
acting solely on the cavity and particle subspace, respectively. �e coupling of both subsystems is
mediated by the e�ective interaction Hamiltonian

HI =
M
∑
n=0

ħU0nαa
†
nu∗n (r)u0 (r) + h.c. (2.70)

It resembles the standard linear coupling Hamiltonian, but with a coupling rate ∣U0nα∣ enhanced
by the strong pump �eld α. In principle, this allows a weakly coupling particle to enter the strong
coupling regime ∣U0nα∣ ≳ κn with the help of a su�ciently strong pump laser. Note that it requires
only one driving mode to enhance the coupling of the particle to all the other modes that overlap
with the pump �eld. However, cavity modes with a large detuning ∆n cannot be addressed in prac-
tice, given that their oscillating amplitude an averages out in the interaction Hamiltonian. What
counts are degenerate or near-degenerate resonator modes with a detuning of the order of the cav-
ity linewidth. Only they contribute to the interaction. I will analyze the bene�t of a large degenerate
mode spectrum for cavity-induced cooling in Section 2.2.3.4.
While previous weak-coupling approaches towards the cavity-induced slowing of atoms [68] did

not yet consider the pump enhancement (because it was not necessary there), it is a practiced tech-
nique in the �eld of optomechanics [26] to reach the strong coupling regime [69, 70]. �ere, how-
ever, the interaction is restricted to a single oscillatory degree of freedom of a rigid system such as
a mirror or membrane. It is typically coupled to a single driven cavity mode a0, and a low-order
expansion of the respective mode function u0 (r) around the equilibrium value of the oscillator
yields the standard optomechanical interaction Hamiltonian [71].
�e pump enhancement facilitates the strong coupling of a weakly interacting nanoparticle to

high-�nesse cavity modes. It thus has the potential of inducing a substantial dissipative slowing
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e�ect. We have seen this already in the simple classical model calculation in Section 2.1.3.1, and
I will study the strong coupling regime further in Section 2.3.3. On the other hand, an e�ective
master equation for the reduced particle state can only be derived by adiabatically eliminating the
cavity degrees of freedom. �is requires an even stronger assumption.

2.2.2.2. The second weak-coupling assumption

I now assume in addition that even the pump-enhanced coupling rates are small compared to the
decay rates of all relevant cavity modes, ∣U0nα∣ ≪ κn ∀n. In other words, any excitation of the
cavity �eld will always leak out much faster than it can be built up by the in-mode scattering of
pump photons o� the particle. As a consequence, the M cavity modes (and the pump mode) will
remain empty (relative to the pump displacement) at almost all times, ⟨a

†
nan⟩ ≪ 1.

Obviously, the second weak-coupling assumption represents a very restrictive condition, which
one should be anxious to violate in actual experiments in order to achieve a signi�cant slowing
e�ect. Still, I make the assumption here to de�ne an e�ective quantum description of the particle
motion under the dissipative in�uence of the cavity. It will provide us with a clear and rigorous
understanding of the origin of cavity-induced friction and di�usion e�ects. Judging from com-
plementary semiclassical treatments and numerical simulations [17,68], we should expect the basic
features and qualitative behaviour of those e�ects to remain valid in a strong-coupling regimewhere
our e�ective quantum model will break down.
In the following I derive the e�ective master equation for the reduced particle state by employing

the projection formalism [72–74]. For this let me de�ne a superoperator P as the projection of the
combined cavity-particle state on the cavity ground state in the displaced frame, Pρ = trC (ρ) ⊗
∣vac⟩⟨vac∣. �e complementary projection shall be denoted byQ = id−P . As both superoperators
represent orthogonal projections in operator space (P2 = P , Q2 = Q and PQ = QP = 0), the
master equation ∂tρ = −i [HI , ρ] /ħ + LC (ρ) + LP (ρ) can be divided into two coupled equations
for Pρ andQρ with help of the following relations:

☀ Both superprojectors P and Q commute with the master equation term LP , that is, PLP =
LPP = PLPP andQLP = LPQ = QLPQ. �e reason is that the projectors act solely on the
�eld degrees of freedom, whereas LP operates on the particle subspace.

☀ �e relation LCP = 0 is obviously true since P singles out the cavity vacuum state.

☀ �e �ipped relation PLC = 0 holds as well since LC is restricted to the cavity subspace and
traceless by construction, tr (LCρ) = trC (LCρ) = 0.

☀ It follows immediately from the previous two points thatQLC = LCQ = QLCQ.

☀ �e relation PLIP = 0, with LI (ρ) = −i [HI , ρ] /ħ, can easily be veri�ed by plugging in the
explicit form of the coupling Hamiltonian (2.70) and noting that ⟨vac∣HI ∣vac⟩ = 0.

Putting everything together we arrive at the coupled equations

∂tPρ (t) = PLPPρ (t) + PLIQρ (t) , (2.71)
∂tQρ (t) = Q(LP + LC)Qρ (t) +QLIPρ (t) +QLIQρ (t) . (2.72)
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�e initial conditions at time t = 0 shall be given by the initial state ρP (0) of the particle and the
steady state of the cavity system, Pρ (0) = ρP (0) ⊗ ∣vac⟩⟨vac∣ and Qρ (0) = 0. �e second weak-
coupling assumption will now form the basis of three steps of approximation that will �nally lead
to a closed equation for Pρ (t) and for the reduced particle state ρP (t) = ⟨vac∣Pρ (t) ∣vac⟩.
Recall that any particle-induced �eld excitations in the weak-coupling limit are assumed to decay

before they can add up or disperse over the system of modes. �e state of the cavity is thus well
approximated by the vacuum at almost all times, and the componentQρ can be regarded as a small
correction to the full quantum state ρ = Pρ + Qρ. �is component will only be occupied at the
e�ective coupling rates ∣U0nα∣ via the term QLIPρ in (2.72), while the term QLCQρ causes it to
decay on amuch faster time scale of the order of the cavity lifetimes 1/κn. �e assumption ∣U0nα∣ ≪
κn allows us to neglect the ‘second order’ term QLIQρ, which would describe the back-action of
persistent �eld excitations on the particle. �e remainder can be formally integrated respecting the
initial conditionQρ (0) = 0,

Qρ (t) = ∫ t

0
dτQe(LC+LP)(t−τ)QLIPρ (τ) . (2.73)

Inserting this into Equation (2.71), we arrive at a closed integro-di�erential equation for the vacuum
component,

∂tPρ (t) = PLPPρ (t) + ∫ t

0
dτPLIQe(LC+LP)(t−τ)QLIPρ (τ)

= LPPρ (t) + ∫ t

0
dτPLIe(LC+LP)τLIPρ (t − τ) , (2.74)

which depends on the whole past trajectory of Pρ. �e integral represents the small correction to
the particle state evolution in the absence of �eld �uctuations. A standard way of converting the
above expression to a time-local di�erential equation is to expand it as Pρ = Pρ0 +Pρ1 + . . . using
the following iteration process: First one formally solves the time-local equation in the absence of
the integral term to obtain the zeroth order solution Pρ0 (t) = exp [LP (t − t0)]Pρ0 (t0). �is is
then plugged into the correction term to obtain an equation for the �rst-order term Pρ1, which is
again solved in the absence of the next-order correction, and so forth. Here we are only interested
in the lowest order, which leaves us with the equation

∂tPρ (t) ≈ LPPρ (t) + ∫ t

0
dτPLIeLC τeLPτLIeLP(t−τ−t0)Pρ (t0) , (2.75)

with t0 > 0 an arbitrary initial time. I have separated the time evolution underLC andLP since the
superoperators commute as they act on distinct subsystems.
Unfortunately, we are now running into trouble when we try to make this equation time-local

by setting t0 = t. Temporal inversion of the particle evolution LP is not allowed due to the non-
unitary contributions Labs,sca of absorption and Rayleigh scattering, which increase the entropy of
the particle state by di�usion.
Fortunately, we can generally neglect the non-unitary parts when the weak-coupling conditions

hold. �is is because the past-trajectory integral in (2.75) involves only time periods τ of the order
of the cavity lifetimes 1/κn as the rapid cavity decay term in exp (LCτ) suppresses the coupling term
LI . During that period, absorption and scattering events changing the particle momentum in units
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of ħk occur at the rates γabs,sca ∣α∣2. We can safely ignore them if they do not modify the particle’s
momentum mPv = ⟨∣p∣⟩ too much,

γabs,sca ∣α∣2

κn
∣2ωr
kv

∣ ≪ 1 ∀n. (2.76)

As once again illustrated in Table 2.1 typical nanoparticles (in the absence of strong internal reso-
nances close to the laser frequency) exhibit scattering and absorption rates smaller than their re-
spective coupling frequencies. �e weak-coupling limit thus implies γabs,sca ∣α∣ ≪ ∣U0α∣ ≪ κn.
At the same time, the massive molecules and nanoparticles of interest feature sub-kHz recoil fre-
quencies ωr = ħk2/2mP when interacting with infrared light. �is must be compared to Doppler
frequencies of kv ∼ 4MHz≫ ωr at rather low velocities of v ∼ 1m/s; such slow particles are still
orders of magnitude away from the quantum limit of motion.
Moreover, given that the integral in (2.75) is restricted by the integrand to times τ ≲ 1/κn, we can

replace the upper integral bound by in�nity. �is leaves us with the time-local equation

∂tPρ (t) ≈ [LP + ∫ ∞

0
dτPLIeLC τLI (τ)]Pρ (t) , (2.77)

where LI (τ) represents the von Neumann commutator with the back-in-time-evolved coupling
Hamiltonian

HI (τ) = e−iHPτ/ħHIe iHPτ/ħ =
M
∑
n=0

ħU0nαa
†
nu∗n (r,p; τ)u0 (r,p; τ) + h.c., (2.78)

un (r,p; τ) = un (exp [−
ip2τ
2mPħ

− iU00 ∣αu0 (r)∣2 τ] r exp [ ip2τ
2mPħ

+ iU00 ∣αu0 (r)∣2 τ]) . (2.79)

2.2.2.3. Eªective time evolution of the reduced particle state

�e time-local expression (2.77) is now easily turned into an e�ective time evolution equation for
the reduced particle state ρP (t) = trC [ρ (t)],

∂tρP (t) = ⟨vac∣∂tPρ (t) ∣vac⟩ = − i
ħ
[HP , ρP (t)]

− 1
ħ2 ∫

∞

0
dτ trC {[HI , eLC τ [HI (τ) , ρP (t) ⊗ ∣vac⟩⟨vac∣]]} . (2.80)

�e free evolution under LC and the trace over the cavity subsystem can be performed straightfor-
wardly22,

∂tρP (t) = LPρP (t) −
M
∑
n=0

∣U0nα∣2 ([u∗0 (r)un (r) , gnρP (t)] + h.c.) . (2.81)

Here I introduce the so-calledmemory operators

gn = ∫ ∞

0
dτ e−(κn+i∆n)τu∗n (r,p; τ)u0 (r,p; τ) . (2.82)

22Applying the interaction Hamiltonian to the vacuum state leads to nondiagonal elements of the form ∣1n⟩⟨vac∣, with
∣1n⟩ = a

†
n ∣vac⟩ a single-excitation multimode Fock state. One can easily show that these nondiagonals evolve like

exp (LC t) ∣1n⟩⟨vac∣ = exp (−κn t − i∆n t) ∣1n⟩⟨vac∣
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�ey collect the particle-induced coupling between the pump �eld and the cavity modes over a
short period of time before the present time t. In other words, they represent the delayed reaction
of each cavity mode to the position of the particle that continuously scatters pump light into them.
�e delay, or memory time scale, is determined by the damping rate κn and the detuning ∆n of each
mode.
Once again, we can approximate the past trajectory of su�ciently fast particles by neglecting the

in�uence of the optical potential on short time scales. We may follow the same line of argument as
in the case of absorption and Rayleigh scattering. �e optical dipole potential of a standing-wave
pumpmode23 can be viewed as a coherent backscattering process of pumpphotonswithin themode
and at the rate U00 ∣α∣2. As each backscattering event transfers 2ħk of momentum to the particle,
we �nd that the optical potential is negligible in the limit of

∣U00 ∣α∣
2

κn

4ωr
kv

∣ ≪ 1 ∀n. (2.83)

If this is the case we can explicitly write

gn ≈ ∫ ∞

0
dτ e−(κn+i∆n)τu∗n (r − pτ

mP
)u0 (r − pτ

mP
) . (2.84)

�e memory operators then average the inter-mode coupling over an approximately straight par-
ticle trajectory reaching a few mode lifetimes into the past. Note that the above condition (2.83) is
only relevant for a standing-wave pumpmode directed along the axis of the other cavity modes. In
an orthogonal con�guration with a running-wave pump �eld, as depicted in Figure 2.4, the optical
dipole force merely scales with the transverse pump laser pro�le24.
I will discuss in the following section that the delay e�ect is responsible for cavity-induced fric-

tion forces and the potential slowing of the particle. It vanishes in the limit of far-detuned or bad
cavity modes, when the �eld �uctuations can follow the moving particle almost instantaneously.
�is happens in the limit of ∣kv∣ ≪ κn , ∣∆n∣, as the Doppler frequency determines the rate at
which the particle-induced coupling changes during motion. We may then approximate gn ≈
u∗n (r)u0 (r) / (κn + i∆n) leaving us with the completely positive Lindblad-type master equation

∂tρP = −
i
ħ
[HP −

M
∑
n=0

ħ∆n ∣U0nα∣2

κ2n + ∆2n
∣u0 (r)un (r)∣2 , ρP] + LabsρP + LscaρP

+
M
∑
n=0

κn ∣U0nα∣2

κ2n + ∆2n
[2u∗n (r)u0 (r) ρPu∗0 (r)un (r) − {∣u0 (r)un (r)∣2 , ρP}] . (2.85)

Apart from the addition to the Hamiltonian, it features a positive Lindblad term, which is form-
equivalent to the Rayleigh scattering term (2.69). Bad cavity modes simply act as an additional
di�usion channel for the particle. On the other side, even good cavity modes will result in a mere
momentum di�usion when the particle is su�ciently slow.

23 Running-wave modes do not exhibit a wavelength-scale oscillatory intensity pattern. �eir in�uence on the particle
through the optical potential is considerably weaker.

24 Condition (2.83) would be alleviated by a factor kw ≪ 1 in the case of a Gaussian pro�le with waist w.
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2.2.3. Semiclassical description of friction and diªusion

Based on the e�ective evolution equation (2.81) and the memory operator (2.84) for a particle in
the presence of a strongly driven pump and M empty cavity modes, I will formulate the resulting
dissipative dynamics using a semiclassical phase-space picture.
To keep things simple and clear let me trace out the particle’s xy-motion and resort to a one-

dimensional version of the presentmodel along the z-axis of the standing-wavemodes of the cavity,
un (x , y, z) ↦ fn (x , y)un (z). �is is where a moving particle can cause the fastest �eld modula-
tion and the most delayed reaction by the cavity. Dissipative e�ects, and indeed any �eld-induced
forces on the particle, are expected to bemuchweaker in the xy-directions, given that the transverse
mode pro�les of the cavity fn (x , y) extend over muchmore than a wavelength. To be concrete, the
delayed cavity-backaction on the transverse motion is negligible for velocities ∣vx ,y/wn∣ ≪ κn , ∆n,
with wn the characteristic transverse width of the nth mode (as given by the waist in case of an
xy-symmetric Gaussian mode pro�le).
We are le� with the one-dimensional memory operator

g(z)
n = ∫ ∞

0
dτ e−(κn+i∆n)τu∗n (z − pτ

mP
)u0 (z − pτ

mP
) . (2.86)

for the z-state of the particle, at �xed transverse coordinates x and y. �e latter can be su�ciently
well described by a straight classical trajectory (xt , yt) if we assume that the particle is hardly
a�ected in its transverse motion while it passes the high-intensity region of the cavity. �is ef-
fective parametric time dependence can be incorporated, if necessary, in the coupling frequen-
cies, Ũmn (t) = Umn f ∗m (xt , yt) fn (xt , yt), as already done in the simple classical model of cavity-
induced slowing in Section 2.1.3. For the time being I will simply ignore the transverse trajectory
when assessing the one-dimensional friction and di�usion e�ects. Nevertheless, one should take
notice of this time dependence when estimating the overall e�ect in realistic scenarios. �e one-
dimensional slowing of the z-motion of a particle crossing the cavity, for instance, would have to
be averaged over its limited residence time inside the pump mode. In the complementary case of
a trapped particle that overlaps with the cavity modes, one could average the slowing e�ect over
each trapping cycle. In such scenarios, the cavity system could well be given by the con�guration
sketched in Figure 2.4, or by the simpler setup of Figure 2.1, where a single Fabry-Pérot mode is
directly pumped by a laser.
�e starting point shall now be the master equation for the one-dimensional state of motion ρ,

as obtained from (2.85) using the discussed simpli�cations,

∂tρ = − i
ħ
[ p2

2mP
+ ħŨ00 ∣αu0 (z)∣2 , ρ]

−
M
∑
n=0

∣Ũ0nα∣2 ([u∗0 (z)un (z) , g(z)
n ρ] + h.c.)

+ γ̃abs ∣α∣2 [u0 (z) ρu∗0 (z) − 1
2
{∣u0 (z)∣2 , ρ}]

+ γ̃sca ∣α∣2 [ ∫ d2n R (n)u0 (z) e−iknzzρe iknzzu∗0 (z) − 1
2
{∣u0 (z)∣2 , ρ}] . (2.87)
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2.2.3.1. Friction and diªusion terms in the Fokker-Planck equation

�e e�ective friction force and di�usion e�ect can now be extracted in a standard procedure [75]
from the phase-space representation of the above master equation (2.87); the resulting partial dif-
ferential equation can be expanded in orders of ħ, and the respective friction and di�usion terms
can be identi�ed by comparison to the standard form of a Fokker-Planck equation [35, 49, 76].
For this purpose I introduce the Wigner function,

w (z, p) = 1
2πħ ∫ ds e ips/ħ⟨z −

s
2
∣ρ∣z + s

2
⟩, (2.88)

which represents the one-dimensional quantum state of motion ρ in a phase-space picture with
position and momentum coordinates (z, p) ∈ R2. It is a real-valued and normalized function,
∫ dzdpw (z, p) = 1, and it can be regarded as the natural quantum generalization of the phase-
space distribution function f (z, p) ≥ 0 of a classical particle state [59, 77]. �e Wigner function
of su�ciently mixed states, such as the thermal state ρth ∝ exp (−p2/2mPkBT), is in fact indistin-
guishable from its counterpart in a purely classical description, the Maxwell-Boltzmann distribu-
tion wth (z, p) = fth (z, p) ∝ exp (−p2/2mPkBT). At the same time, the time evolution equation
for theWigner function equals the classical Liouville equation up to second order in Planck’s quan-
tum of action ħ if it is governed by a conservative force �eld [77]. See Appendix A.3 for detailed
expressions. In particular, the time evolution under atmost harmonic potentialsV (z) = a+bz+cz2
is exactly the same in both the quantum and the classical case.
Using the phase-space translation rules given in Appendix A.3 we can translate the above master

equation (2.87) into a partial di�erential equation for the corresponding Wigner function. If, in
addition, we omit any derivatives higher than second order in position and momentum we will
arrive at a Fokker-Planck-type equation (FPE) of the generic form [35]

∂tw (z, p) = −∂z [gz (z, p)w (z, p)] − ∂p [gp (z, p)w (z, p)] + 1
2
∂2z [Dzz (z, p)w (z, p)]

+ 1
2
∂2p [Dpp (z, p)w (z, p)] + ∂z∂p [Dzp (z, p)w (z, p)] + O (ħ3) . (2.89)

We note that this approximation can also be understood as a semiclassical expansion of theWigner
time evolution up to the second order in ħ. Each term in the FPE has a clear physicalmeaningwhich
becomes evident when looking at the time evolution of the position and momentum expectation
values as well as their second moments25,

∂t ⟨z⟩ = ∫ dzdp z∂tw (z, p) = ∫ dzdp gz (z, p)w (z, p) , (2.90)

∂t ⟨p⟩ = ∫ dzdp gp (z, p)w (z, p) , (2.91)

∂t ⟨z2⟩ = ∫ dzdp [2zgz (z, p) + Dzz (z, p)]w (z, p) , (2.92)

∂t ⟨p2⟩ = ∫ dzdp [2pgp (z, p) + Dpp (z, p)]w (z, p) , (2.93)

∂t ⟨zp + pz⟩ = 2 ∫ dzdp [pgz (z, p) + zgp (z, p) + Dzp (z, p)]w (z, p) . (2.94)

25Here I make use of the procedure of integration by parts and of the fact that a well-behaved and normalizable Wigner
function should vanish at the in�nities.

38



�e term gz describes the overall dri� of the position coordinate, the other dri� term gp represents
the force �eld acting on the ensemble state. �e combined di�usion of both the position and the
momentumcoordinate, which leads to an increase in the occupied phase-space area, is related to the
di�usionmatrix26D jk (z, p). An alternative way to describe the semiclassical motion of a particle is
to work with a set of stochastic Langevin equations for position and momentum random variables,
which reproduces the same ensemble-averaged time evolution as the FPE [49].
Let me split the phase-space representation of the state evolution (2.87) into a coherent part as

well as a dissipative and a di�usive part,

∂tw (z, p) = [∂tw (z, p)]coh + [∂tw (z, p)]dis + [∂tw (z, p)]dif , (2.95)

following my notation in [8]. �e �rst part is associated to the �rst line in (2.87) which describes
the conservative motion under the optical potential of the pumped mode. �e second part repre-
sents the second line and contains the delayed reaction of all cavity modes. �e remainder, that
is, the momentum di�usion by absorption and elastic light scattering, is contained in the last part.
All three parts are Taylor-expanded and brought into the semiclassical FPE form in a tedious but
straightforward calculation with help of the tools in the appendix.

The coherent part A second-order expansion of the coherent part yields

[∂tw (z, p)]coh = −
p
mP

∂zw (z, p) + ħŨ00∂z ∣αu0 (z)∣2 ∂pw (z, p) +O (ħ3) . (2.96)

�is equation describes a deterministic evolution of the system along classical trajectories in the
dipole force �eld the pump mode. �e conservative motion does not lead to any di�usion e�ect.
�is semiclassical approximation amounts to omitting any di�raction e�ects and treating the mo-
tion through the optical potential in a purely classical manner27. �e lowest order quantum correc-
tions originate from the non-conservative parts of the time evolution.

The dissipative part Ourmain interest lies in the dissipative part of the motion, which contains
the cavity-induced friction force. �e phase-space representation of the memory operators (2.86),

Gn (z, p) = ∫ ∞

0
dτ e−(κn+i∆n)τu∗n (z −

pτ
mP

)u0 (z −
pτ
mP

) , (2.97)

and several steps of calculation lead to the following additions to the force and to the di�usion:

g(dis)p (z, p) =
M
∑
n=0

∣Ũ0nα∣2Re{2iħGn (z, p) ∂zu∗0 (z)un (z) − ħ2 [∂pGn (z, p)] ∂2zu∗0 (z)un (z)} ,

(2.98)

D(dis)
pp (z, p) =

M
∑
n=0
2ħ2 ∣Ũ0nα∣2Re{[∂zGn (z, p)] ∂zu∗0 (z)un (z)} , (2.99)

D(dis)
zp (z, p) = −

M
∑
n=0

ħ2 ∣Ũ0nα∣2Re{[∂pGn (z, p)] ∂zu∗0 (z)un (z)} . (2.100)

26�e di�usion matrix generally should be positive semide�nite in order to ensure that the occupied phase-space area
increases and that the time evolution produces physical states at all times.

27�is would be a bad approximation if the underlying quantum state would be a delocalized matter-wave state that
could be di�racted by the standing-wave structure of the pump mode (see Section 2.1.4).
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�ere is no dissipative contribution to the dri� and the di�usion of the position coordinate, g(dis)z =
D(dis)

zz = 0. �ememory e�ect due to the delayed cavity reaction lies in the memory termGn (z, p).
It is responsible for the velocity dependence of the dissipation forcewhichmay result in a net friction
e�ect. I will analyze the dissipative contributions in more details for speci�c cavity con�gurations
below.

The diªusive part �e absorption and elastic scattering of pump photons contributes an ad-
ditional momentum di�usion e�ect, as we have already seen in Section 2.1.2. It complements the
non-conservative in�uence of the high-�nesse cavity by the following terms:

g(dif)p (z, p) = 2ħ (γabs + γsca) ∣α∣2 Im{u0 (z) ∂zu∗0 (z)} , (2.101)

D(dif)
pp (z, p) = ħ2 ∣α∣2 [(γabs + γsca) ∣∂zu0 (z)∣2 + γscak2 ⟨n2z⟩ ∣u0 (z)∣

2] . (2.102)

�ey must be added to Eqs. (2.98) and (2.99), respectively. Scattering and absorption mainly en-
hance the momentum di�usion by D(dif)

pp ≥ 0. Only for complex running-wave modes u0 with a
directed net momentum �ow, there is a radiation-pressure addition g(dif)p to the dissipative force
(2.98). �e di�usion e�ect consists of two parts related to the absorption and to the scattering of
pump photons. �e latter depends on the angular scattering distribution of the particle, which
is given by the dipole pattern R (n) = 3 [1 − (n ⋅ є)2] /8π in the case of a PPP and a pump mode
polarization є perpendicular to the z-axis28. �is leaves us with ⟨n2z⟩ = ∫ d2n R (n) n2z = 2/5.

2.2.3.2. Conditions for cavity-induced slowing

�e velocity-dependent part of the overall force acting on the particle lies solely in the expression
(2.98) which is a sum over M + 1 single-mode force terms, g(dis)p (z, p) = ∑M

n=0 g
(n)
p (z, p). �e

potential motional damping induced by each mode can be made explicit by a �rst-order expansion
in the limit of low particle velocities,

g(n)p (z, p) = g(n)p (z, 0) + β(n) (z) p +O (p2) . (2.103)

�e delayed reaction of the nth cavity mode damps the motion when the respective friction coe�-
cient β(n) (z) is negative, otherwise it accelerates the particle. To be concrete, the above low-velocity
expansion is valid when theWigner function of the particle coversmainly those velocities v = p/mP
that correspond to a Doppler shi� ∣kv∣ < κn. �e �eld �uctuations in the nth mode then lag behind
the particle motion only a little and we may expand the memory function (2.97) to

Gn (z, p) =
u∗n (z)u0 (z)

κn + i∆n
− p
mP

∂zu∗n (z)u0 (z)
(κn + i∆n)2

+ p2

m2P

∂2zu∗n (z)u0 (z)
(κn + i∆n)3

+O (p3) . (2.104)

We arrive at the friction coe�cient

β(n) (z) = −
4ħ ∣Ũ0nα∣2 κn

mP (κ2n + ∆2n)
2

⎡⎢⎢⎢⎣
∆n ∣∂zu∗0 (z)un (z)∣

2 +
ħ (κ2n − 3∆2n)
2mP (κ2n + ∆2n)

∣∂2zu∗0 (z)un (z)∣
2⎤⎥⎥⎥⎦
. (2.105)

28 Rayleigh scattering can be viewed as absorption and immediate reemission of a pump photon into free space. �e
absorption is responsible for the radiation pressure force, whereas the reemission does not contribute on average
because there is no preferred direction of scattering, ⟨nz⟩ = ∫ d2n R (n) nz = 0.
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Note that the z-derivative of the mode function is proportional to ∂z ∼ k. Hence, the two terms
in the brackets correspond to �rst and second orders in the recoil frequency ωr = ħk2/2mP , which
is assumed to be small, ωr ≪ κn , ∣∆n∣. We may thus neglect the second order contribution for all
practical purposes (except for the marginal cases where the �rst order term vanishes) and focus
entirely on the �rst term.
I conclude that damping may only occur for blue-detuned cavity modes, ∆n > 0, which agrees

with the classical model from Section 2.1.3 illustrated in Figure 2.3. Moreover, we �nd a similar pa-
rameter dependence as in the classical expression (2.35), which is was derived with less rigour from
a slightly di�erent set of assumptions. �e slowing rate (2.105) is modulated by the z-dependence
of the mode, but it does not �ip sign and accelerate the particle for a given set of cavity parameters.
It appears strongest neither at the nodes nor at the antinodes of each cavity mode, but rather in
between, at the steepest points of the overlap u∗0un. If we average over all z-positions we �nd that
each cavity mode overlapping with the pump mode contributes a mean velocity damping rate of
∣β(n)∣ ∼ 8ωrκn∆n ∣Ũ0nα∣2 / (κ2n + ∆2n)

2. It is maximized for a detuning of ∆n = κn/
√
3.

2.2.3.3. Case study: A single strongly pumped standing-wave mode

It is instructive to apply the results to the most elementary case of a PPP inside a single driven
Fabry-Pérot standing-wave mode, as already discussed earlier and sketched in Figure 2.1. If we set
u0 (z) = cos kz we can compute the memory function explicitly,

G (z,mPv) =
1

2 (κ + i∆) +
1
4
[ exp (2ikz)

κ + i (∆ + 2kv) +
exp (−2ikz)

κ + i (∆ − 2kv)]

= 1
2ν

+ ν cos 2kz + 2kv sin 2kz
2 [ν2 + (2kv)2]

, (2.106)

with the complex damping-detuning parameter ν = κ + i∆. �e non-conservative force term be-
comes

g(dis)p (z,mPv) = ħk ∣Ũ0α∣
2 [Im{ 1

ν
+ ν cos 2kz + 2kv sin 2kz

ν2 + (2kv)2
} sin 2kz

+Re

⎧⎪⎪⎨⎪⎪⎩

sin 2kz
ν2 + (2kv)2

− 2kv ν cos 2kz + 2kv sin 2kz
[ν2 + (2kv)2]2

⎫⎪⎪⎬⎪⎪⎭
4ωr cos 2kz

⎤⎥⎥⎥⎥⎦
. (2.107)

Once again, we may neglect the second line because of its higher-order dependence on the recoil
frequency ωr . Let us, for the moment, focus on the velocity dependence of the remaining term by
averaging over the position in the standing wave,

g(dis)p (mPv) =
−4 ∣Ũ0α∣

2 ωrκ∆

∣ν2 + (2kv)2∣2
mPv +O (ω2r) . (2.108)

I plot the velocity dependence for di�erent positive detunings, which correspond to a net slowing
e�ect, in Figure 2.5. Given a �xed cavity-pump detuning ∆ > 0, we observe that only a limited
range of velocities is e�ciently slowed. If we increase the detuning, the maximum of the friction

41



velocity  kv/ĸ

av
. f

ric
tio

n 
fo

rc
e 

in
 u

ni
ts

 o
f  

(ħ
k)

 ĸ
−4 −2 0 2 4

−3

−2

−1

0

1

2

3
x 10−3

Figure 2.5. Position-averaged friction force (2.108) of a pumped Fabry-Pérot cavity as a function of velocity for di�erent
cavity-pump detunings [8]. It is positive on the le� and negative on the right of v = 0, which means that it slows
the particle. I use an e�ective coupling rate of ∣Ũ0α∣ = 0.1κ. �e solid, the dashed, and the dotted lines correspond
to ∆ = κ/

√
3, 2κ and 5κ, respectively. Both velocity and force are plotted in natural cavity-related units of κ/k and

(ħk) κ.

force shi�s to larger velocities, and faster particles are more e�ciently slowed at the expense of not
capturing already slow ones. In the limit of very large detunings ∆≫ κ the velocity capture range is
determined by kv ≈ ∆. On the other hand, we observe the strongest damping e�ect (steepest slope)
for small velocities at the detuning ∆ = κ/

√
3 (solid line). �is is no surprise since we have found

one section earlier that this detuning corresponds to an optimal friction coe�cient β.
�e friction force is accompanied bymomentum di�usion, which prevents the cavity from slow-

ing a particle arbitrarily close to zero velocity,

D(dis)
pp (z,mPv) = 2 (ħk)2 ∣Ũ0α∣

2
Re{ν sin2 2kz − 2kv sin 2kz cos 2kz

ν2 + (2kv)2
} , (2.109)

D(dis)
pp (mPv) =

(ħk)2 κ ∣Ũ0α∣
2

∣ν2 + (2kv)2∣2
[∣ν∣2 + (2kv)2] . (2.110)

Although the position-averaged di�usion coe�cient is strictly positive, this does not hold every-
where in the standing wave. �e di�usion coe�cient (2.109) is plotted as a function of z in Figure
2.6 for various particle velocities. In the vicinity of the antinodes of the standing wave the di�u-
sion coe�cient assumes negative values at nonzero velocities. �e positive regions clearly dominate
for slow particles, ∣kv∣ ≲ κ, where the position-averaged expression (2.110) assumes its maximum.
Moreover, the positive and negative parts nearly compensate for faster particles (solid line). Any-
way, the overall momentum di�usion e�ect vanishes in this case, because the cavity dynamics can
no more keep up with the moving particle.
Completely positive Lindblad-type master equations must always yield positive semide�nite dif-

fusion matrices D jk (z, p). In the present case, we have a vanishing position di�usion, D(dis)
zz = 0,
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Figure 2.6.Momentumdi�usion coe�cient (2.109) of a pumped Fabry-Pérot cavity as a function of position for di�erent
particle velocities. We use the e�ective coupling rate ∣Ũ0α∣ = 0.1κ and the detuning ∆ = κ/

√
3. �e solid, dashed,

dash-dotted, and dotted line correspond to kv = 5κ, κ, 0.5κ, and 0, respectively. �e di�usion coe�cient and the
position are expressed in cavity-related units of (ħk)2 κ and 1/k.

and a non-diagonal element given by

D(dis)
zp (z,mPv) = 2ħωr ∣Ũ0α∣

2
Re

⎧⎪⎪⎨⎪⎪⎩

4νkv cos 2kz + [(2kv)2 − ν2] sin 2kz

[ν2 + (2kv)2]2
⎫⎪⎪⎬⎪⎪⎭
sin 2kz. (2.111)

�e resulting determinant is negative and the di�usion matrix is inde�nite. �is shows that the
underlyingmaster equation (2.87) is non-Markovian and cannot be cast into the completely positive
Lindblad form. I attribute this to the memory e�ect of the cavity [78–80]. Its �eld does not adjust
to the change in particle position instantaneously, but it reacts retardedly to the trajectory that is
accumulated over the cavity lifetime 1/κ. �e negativity in the di�usionmatrix is negligible in most
practical cases when the cavity-induced slowing of large polarizable particles is concerned. �e
di�usion e�ect hardly a�ects the motional state of fast particles, which are far above the quantum
limit of motion, as I will discuss in the following.
�e whole cavity-induced damping-di�usion process can be understood as a random walk in-

duced by the recoil related to the coherent scattering of pump photons between the two running-
wave components of the standing-wave cavity mode. Amoving particle emits Doppler-shi�ed light
which is blue-detuned in the direction of motion and red-detuned in the opposite direction. By de-
tuning the pump laser to the red side of the cavity resonance, we enhance the coherent scattering of
photons into the direction of motion, thereby gradually taking away kinetic energy over many ran-
dom walk cycles. It is then intuitively clear that the cavity-induced slowing e�ect cannot decrease
the kinetic energy of a particle further than the so-called recoil limit ħωr . �e accompanying mo-
mentum di�usion in units of ħk simply cannot be overcome.
Is it then, at least in principle, possible to reach the recoil limit a�er a su�ciently long waiting

time? Let me answer this question by estimating the �nal kinetic energy that can be obtained in
the limit of t → ∞. For this purpose consider again the time evolution equation (2.93) of the
second moment in momentum, and ignore the z-modulation by averaging both the force and the
di�usion term over the standing-wave pro�le. �is cancels the conservative dipole force and leaves
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us with the dissipative terms (in the absence of absorption and Rayleigh scattering). Given the
above expressions (2.108) and (2.110) in the limit of small particle velocities, ∣kv∣ ≪ κ, we �nd that
the average kinetic energy has a �xed point at the value29

⟨ p2

2mP
⟩
∞

= −
pD(dis)

pp (p)

4mP g(dis)p (p)
≈ ħ
8
(∆ + κ2

∆
) . (2.112)

Ensembles of initially faster particles are eventually slowed down towards this limitingmean kinetic
energy value. It depends on the cavity reaction time scale, and it reads as ħκ/2

√
3 in the case of the

optimal detuning ∆ = κ/
√
3. Note that this limit is considerably higher than the fundamental recoil

limit since ωr ≪ κ. It illustrates that the cavity-induced slowing e�ect is in practice already limited
by the �nite cavity lifetime and the associated energy uncertainty. In the presence of absorption and
Rayleigh scattering we must take the respective di�usion term (2.102) into account, which leads to
the increased slowing limit

⟨ p2

2mP
⟩
∞

≈ ħ
8

⎡⎢⎢⎢⎢⎣
∆ + κ2

∆
+

(κ2 + ∆2)2

2Ũ20κ∆
(γabs +

7
5

γsca)
⎤⎥⎥⎥⎥⎦
. (2.113)

Concerning the interplay between friction and di�usion, I conclude: While the friction force deter-
mines the rate at which the kinetic energy of the particle is gradually dissipated through the cavity
overmany lifetime cycles of its �eld, the overall di�usion term sets the kinetic energy of the limiting
velocity, which cannot be undercut in the present slowing scheme. Current sources for molecules
and nanoparticles, which are used in matter-wave interferometry, are typically far above this limit.
Assuming a cavity linewidth of κ ∼ 1MHz, the cavity-slowing limit corresponds to motional tem-
peratures of the order of microkelvins.

2.2.3.4. Multimode enhancement in degenerate resonator con®gurations

Having studied the generic dissipation e�ect in the instructive case of a single Fabry-Pérot cavity
mode, I now turn to a more practical multimode con�guration, as sketched in Figure 2.4. Each of
the M > 1 empty cavity modes represents a dissipation channel which adds to the overall friction
e�ect along the z-axis of the cavity. �e strong pump mode is directed along the y-direction and
should overlap with the cavity volume as much as possible to maximize the e�ective interaction
region for each passing particle.
An experimental realization may be feasible in a setup where a large manifold of degenerate

modes can be created in a confocal resonator con�guration with two circularly symmetric curved
mirrors. If the distance d between themirrors is exactly the same as their radii of curvature, then, in
principle, the resonator will support an almost in�nite spectrum of higher-order transverse modes
that share the same resonance frequency with a given fundamental standing-wave mode. �ese
higher-order modes exhibit a larger e�ective mode waist, and the mode spectrum is in practice
limited to a �nite numberM due to the �nite aperture of real-life mirrors. In addition, if the setup
is not precisely confocal, the contribution of higher-order modes to the friction force will decrease
with shi�ing resonance frequency.

29�e expression (2.112) ceases to be valid for large velocities and at ∆ = 0, where the �rst-order friction term (2.108)
vanishes.

44



�e controlled optical driving of one of the degenerate modes would require good mode match-
ing, and it would lead to strong conservative dipole forces modulating themotion of particles along
the standing wave. Both the modematching and the dipole force can be avoided by shining a broad
running-wave laser mode perpendicular to the cavity axis. It acts as an optical pump mode where
it overlaps with the cavity modes, but it does not induce any signi�cant dipole force along the cavity
axis. Moreover, the absorption-induced momentum di�usion along the z-axis is also suppressed.
�is perpendicular pump con�guration comes at the price of less available pump power. It could
be enhanced by means of another cavity, of course.
In the following I will discuss the enhancement of the cavity-induced friction by the numberM

of accessible cavity modes. Once again, we restrict our view to the z-motion along the cavity axis,
omitting any in�uence on the transverse motion of the particle. �e resulting friction and di�usion
terms still depend on the o�-axis xy-coordinates of the particle, and we can average them over the
trajectory of a particle traversing the cavity for an estimate of their mean e�ects30.
�emodes of a confocal standing-wave resonator [57,81–83] are characterized by one longitudi-

nal mode index n ∈ N and two transverse mode indices m, ℓ ∈ N0. From the boundary conditions
at the curved mirror surfaces follow the respective resonance frequencies [83]

ωn,m,ℓ =
πc
d

(n +m + ℓ + 1
2

) , (2.114)

with d themirror distance (and radius of curvature). A given fundamental mode (n0, 0, 0) of wave-
length λ = 2π/k shares the same resonance frequency with a huge manifold of transverse modes
(n < n0,m, ℓ), since n0 = 2d/λ is typically a large number. We can assign the e�ective waist pa-
rameter wn,m,ℓ = w0

√
2m + ℓ + 1 to each higher-order transverse mode [82, 83]; it describes the

growing mode volume with respect to the fundamental mode of waist w0 =
√
dλ/2π. If the waist

is aperture-limited by wn,m,ℓ ≲ aw0, then both 2m and ℓ + 1 are restricted to values less or equal
to a2, which leads to a total number of supported modes M ≲ a4/2. (�e quantity a measures the
aperture in units of w0.)
�e �eld distribution of eachmode can be approximated by Laguerre-Gaussian functions31 in the

case of large-aperture mirrors [82], a2 ≫ 1. We obtain the explicit form of the three-dimensional
mode function [83] by assuming linear polarization and omitting any o�-axis corrections to the
�eld polarization due to the transverse mode pro�le (see Appendix A.2 for the speci�c case of a
Gaussian mode, m = ℓ = 0). In cylindrical coordinates the full three-dimensional mode functions
un,m,ℓ (r) = є fm,ℓ (r, ϕ, z)un,m,ℓ (r, z) factorize into the on-axis standing-wave mode functions
un,m,ℓ, the Laguerre-Gaussian transverse mode pro�les fm,ℓ, and a �xed polarization vector є,

un,m,ℓ (r, z) =
⎧⎪⎪⎨⎪⎪⎩

cos
sin

⎫⎪⎪⎬⎪⎪⎭
[kz (1 + 4r2

d2ξ2 (z)) − (2m + ℓ + 1) arctan(2z
d

)] ∀
⎧⎪⎪⎨⎪⎪⎩

n odd
n even

⎫⎪⎪⎬⎪⎪⎭
, (2.115)

fm,ℓ (r, ϕ, z) =
cos (ℓϕ)

ξ (z) (
√
2r

w0ξ (z)
)
ℓ

Lℓm ( 2r2

w20ξ2 (z)
) exp( −r2

w20ξ2 (z)
) . (2.116)

30�is corresponds to the experimental situation when a dilute beam of molecules or nanoparticles crosses the cavity,
such that there is on average only one particle inside the cavity at a given time.

31 Laguerre-Gaussian modes can only be used if the mirror system exhibits a cylindrical symmetry. �is symmetry may
be violated in applications with birefringent mirrors. In this case one must use the rectangular Hermite-Gaussian
modes instead [82], which yield similar results as presented here.
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Here, Lℓm denotes the associated Laguerre polynomial [63] and ξ (z) =
√
1 + 4z2/d2. We obtain a

simple expression for the mode volume in the case of large apertures,

Vn,m,ℓ =
π
8
w20d (1 + δℓ0)

(ℓ +m)!
m!

, (2.117)

if we approximate the on-axis function in the volume integral by an unmodi�ed standing wave,
∫ d/2
−d/2 dz u

2
n,m,ℓ (r, z) ≈ d/2.

I now assess the contribution of each mode to the overall slowing e�ect in terms of its friction
coe�cient (2.105). To keep things simple, I assume that all contributing modes share the same
linewidth κ and the optimal detuning ∆ = κ/

√
3, and I con�ne the analysis to the center of the

cavity, ∣z∣ ≪ d, where ξ (z) ≈ 1. Moreover, we can safely omit the z-derivative of the orthogonally
oriented pump mode. �is leaves us with the estimate for the friction coe�cient,

β(n,m,ℓ) (r, ϕ, z) ≈ − 3
√
3m!ωr ∣U0α∣2

(ℓ +m)! (1 + δℓ0) κ2
∣u0 (r, ϕ, z) fm,ℓ (r, ϕ, 0)∣2 (1 +

4r2

d2
− 4m + 2ℓ + 2

kd
)
2

×
⎧⎪⎪⎨⎪⎪⎩

sin2

cos2
⎫⎪⎪⎬⎪⎪⎭
[kz (1 + 4r

2

d2
− 4m + 2ℓ + 2

kd
)] ∀

⎧⎪⎪⎨⎪⎪⎩

n odd
n even

⎫⎪⎪⎬⎪⎪⎭
, (2.118)

to �rst order in the recoil frequency ωr and in the parameters32 z/d and 1/kd. Here, the term
U0 is de�ned as the coupling rate between the pump mode and the fundamental Gaussian cavity
mode (n0, 0, 0). �e pump mode shall be given by a Gaussian running wave of the same waist w0,
∣u0 (r, ϕ, z)∣2 = exp (−2z2/w20 − 2r2 cos2 ϕ/w20).
�e total friction coe�cient of the cavity is the sum over the terms (2.118) of all degeneratemodes

that are accessible by the pump laser. �e overall cavity-induced slowing rate is ampli�ed by the
number of transverse modes supported by the cavity. �is is demonstrated in Figure 2.7 for a set
of exemplary parameters. �ere, the friction rate is averaged over the o�-axis coordinates33 and
plotted as a function of z close to the center of the resonator. �e plot compares the contribution of
the fundamental mode (dotted curve) to the collective friction rate ofM = 15 (dashed) andM = 55
(solid) degenerate modes. Notice that, besides the overall multimode enhancement, the standing-
wave modulation of the friction rate is also reduced. �is is due to the equal contribution of both
sine and cosine standing-wave modes in the confocal con�guration. Hence, there is a nonzero
slowing e�ect everywhere on the standing-wave axis.
In a real-life experiment the number of supported higher-order modes can be much higher, de-

pending on the quality and aperture of the cavity mirrors. In Figure 2.8 I plot the position-averaged
friction rate of the resonator versus the number M of degenerate modes that were taken into ac-
count in the computation. �e plotted data are normalized to the single-mode value. �e rightmost
point corresponds to M = 406 indicating an ampli�cation of the single-mode friction e�ect by al-
most two orders of magnitude. �e increase per mode gets diminished with growing mode volume
due to the decreased overlap with the pump mode.

32 Second order terms of the form z2/d2 , 1/k2d2 and z/kd2 are dropped. �e inverse tangent is linearized as
arctan (2z/d) ≈ 2z/d.

33�e average friction rate depends on the size of the averaging area. A larger area covers more space outside the cavity
where the friction e�ect is zero. Nevertheless, the average value is a meaningful quantity to assess the net slowing of
particles that are trapped in or passing the chosen region in a given amount of time.
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Let me close this section on the cavity-induced slowing of a PPP in the weak coupling regime
with a few remarks. I have developed a rigorous quantum description of the dissipative motion
of a particle in the presence of pump �eld and cavity by means of an e�ective (non-Markovian)
master equation. It has led us to the understanding of the emergent friction and di�usion e�ects
using a semiclassical phase-space approach. A�er studying the basic phenomena in an idealized
single-mode con�guration, I have provided a detailed assessment of the multimode case. At this
point we should note that not only the friction force is enhanced by the presence of many modes,
but also the accompanying momentum di�usion e�ect. While the former determines the e�ective
rate at which the motion of the particle is damped, the latter raises the ultimate cooling limit. In
other words, more modes imply a larger limiting kinetic energy value, down to which the particle
can be damped by the cavity. Absorption and Rayleigh scattering contribute to this limit as well.
In many potential laboratory applications with molecules and clusters, one must o�en deal with

particle ensembles whose initial temperature is far above this limit. In practice, it would be much
more important to boost the e�ective damping rate from the unsuitably low values, as implied by
the parameters listed in Table 2.1, to a feasible regime. �is requires one to leave the weak coupling
regime by increasing the pump �eld strength or by using even larger particles, as I will discuss in the
next section. Another option is to increase the number of particles that interact with the cavity at
the same time. In Appendix A.4 I show how to generalize our quantum treatment and the e�ective
master equation to N > 1 particles inM driven or empty modes. �ere, however, the validity of the
resulting friction and di�usion terms is restricted to an even more rigid weak-coupling limit. �is
is because the individual �eld �uctuations induced by each particle may add up. By breaking the
weak-coupling limitwithmany particles onemay bene�t from strong cavity-mediated inter-particle
correlations and from collective phenomena such as self-organisation [84, 85].

2.3. Mechanics of spherical particles in coherent light ®elds

So far I have discussed the (o�-resonant) light-matter interaction, and its mechanical action on
matter waves, in terms of point-like particles characterized by a scalar complex dipole polarizabil-
ity χ. Whereas this is a good approximation for many molecules and clusters, which are by orders
of magnitude smaller than the wavelength of the light they interact with, it ceases to be valid for
nano- and microparticles of the same size as the wavelength or larger. �e light scattering prop-
erties get more complex as higher-order multipole components take over, and a rigorous quantum
description of both the light and the matter degrees of freedom is a di�cult task due to several
reasons:

☀ �e quantization of the center-of-mass motion of the particle depends on explicit expres-
sions for the force and the optical potential induced by the light �eld. However, we will see
below that the force on extended particles cannot be reduced to a simple analytical expres-
sion anymore, but must be evaluated numerically in practice. Moreover, the result contains
both the conservative light force and the radiation pressure force due to light absorption and
Rayleigh scattering. Consequently, the optical potential cannot be directly deduced. We can
avoid these di�culties in the e�ectively one-dimensional situation ofmatter-wave di�raction
at optical standing-wave gratings in Section 2.3.2.
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☀ If a large particle couples strongly to a high-�nesse cavity �eld, itmay change the spatialmode
structure of the resonator. �is is intuitively clear since the particle becomes a semitranspar-
ent mirror for the cavity �eld if it is large enough. Whereas one may bene�t from the strong
coupling when trying to observe cavity-induced slowing of large particles, the theoretical
modelling requires a proper treatment of the modi�ed boundary conditions. I will present
an approximate solution when I discuss the classical slowing of spherical particles in Section
2.3.3.

☀ A rigorous quantum description of the dynamics of both the light �eld and the particle re-
quires an elaborate model for light scattering at extended material objects. �is is a matter
of current research [86], and it has gained interest with the upcoming of proposals to ob-
serve the ground-statemotion of optically trappedmicrospheres [23,24]. One possiblemodel
treats the extended object as an assembly of point-like scatterers at which single photons can
scatter along multiple paths [86]. �e resulting master equation gives proper account to the
scattering-induced decoherence and di�usion e�ects, provided that the local �elds are cor-
rectly described for each scatterer. Another possibility is to model the particle as a dielectric
medium, which then requires the canonical quantization of the macroscopic �eld inside this
medium [87]. However, this approach requires one to determine the precise momentum car-
ried by the radiation �eld inside the dielectricmediumwhen trying to assess the force density
acting on the material—an old and controversial issue [32, 88].

☀ Apart from the center-of-mass e�ect, an extended dielectric object may also experience elas-
tic stress due to light-induced bending and shearing forces. �is may, in turn, deform the
particle and modify its response to the light �eld depending on its sti�ness properties [89].
Here, I avoid this additional complication by assuming rigid atomic clusters. Nevertheless,
we must keep in mind that this might be an issue when dealing with hot or �uid particles,
such as nanodroplets.

In this thesis I focus on generally hot and fast ensembles of particles far above the quantum limit
of motion, which interact with strong coherent light �elds. In the e�ective description of such
particles, we may therefore avoid many of the aforementioned di�culties by assuming a stationary
mode con�guration and ignoring the full quantum nature of the photon �eld dynamics.
Moreover, I restrict the considerations to homogeneous dielectric spheres34, which is a good rep-

resentation of many heavy clusters consisting of N ≫ 1 atoms [52]. We can employ the Mie theory
of light scattering at spherical objects [28, 29, 34, 90] to understand the light-matter interaction, as
outlined in Appendix A.6. �e idea is to start with a given light �eld E0 in the absence of the sphere,
and to expand it in the basis of spherical vector harmonics, that is, multipole components which
respect the spherical symmetry of the problem. �e origin of the coordinate systemmust be shi�ed
to the center of the sphere r0, accordingly. �e spherical wave expansion is outlined in Appendix
A.5.
Putting the sphere into the game introduces a di�erent �eld Eint inside the dielectric medium,

and it modi�es the external �eld by adding a scattering component, E0 → Eext = E0 + Esca. �e

34Nonspherical particles scatter light in di�erent patterns, that is, themultipole composition of the scattered �eld deviates
from the spherical case. �e basic consequences of leaving the subwavelength size regime are similar to the spherical
case, with the additional complication of coupling to the rotation of the object.
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expansion coe�cients of the new �eld components Eint and Esca are obtained from the boundary
conditions at the sphere surface. I have done this explicitly for plane running and standing waves,
and for Gaussian modes in Appendix A.6. In the following, let me discuss the consequences for the
mechanical action of light onto the particle.

2.3.1. Light extinction and light-induced forces

Mie theory provides us with the �eld con�guration when a dielectric sphere of relative permittivity
ε is placed into an electromagnetic �eld {E0,H0} at the position r0. Following Appendix A.6, the
�eld outside of the sphere is then complemented by the scattering component

Esca =
∞

∑
ℓ=1

ℓ
∑
m=−ℓ

⎡⎢⎢⎢⎢⎣
αℓC(M)

ℓ,m hℓ (kr) Xℓ,m (θ , ϕ) +
βℓC(E)

ℓ,m
k

∇× hℓ (kr) Xℓ,m (θ , ϕ)
⎤⎥⎥⎥⎥⎦
, (2.119)

with hℓXℓ,m and ∇ × Xℓ,mhℓ the partial-wave multipole solutions (see Appendix A.5). �e terms
C(M,E)
ℓ,m are the multipole expansion coe�cients of the original �eld E0, which depend on the po-
sition r0 of the sphere. �e coordinates r = (r, θ , ϕ) are de�ned relative to r0. �e scattered �eld
di�ers from the original �eld mainly by the scattering coe�cients αℓ and βℓ. �ey read as

αℓ =
jℓ (

√
εkR) ∂R [Rjℓ (kR)] − jℓ (kR) ∂R [Rjℓ (

√
εkR)]

hℓ (kR) ∂R [Rjℓ (
√

εkR)] − jℓ (
√

εkR) ∂R [Rhℓ (kR)]
, (2.120)

βℓ =
ε jℓ (

√
εkR) ∂R [Rjℓ (kR)] − jℓ (kR) ∂R [Rjℓ (

√
εkR)]

hℓ (kR) ∂R [Rjℓ (
√

εkR)] − ε jℓ (
√

εkR) ∂R [Rhℓ (kR)]
, (2.121)

for a dielectric sphere of radius R, as given in theAppendix. (�ere I also present the case of a hollow
sphere, which leads to more cumbersome expressions.) Note that the coe�cients are independent
of the chosen mode structure of the light �eld, as given by the C(M,E)

ℓ,m . �ey are the same in a
running wave as in a standing wave. In the case of a point-like particle, kR ≪ 1, we �nd that the
lowest-order contribution is given by35 β1 ≈ 2i (kR)3 (ε − 1) /3 (ε + 2). All other coe�cients are of
higher order in kR and thus negligible. One can convince oneself, using the identities and relations
of Appendix A.5, that this yields the scattering �eld of the induced dipole χE0 (r = 0), with the
complex polarizability of a subwavelength sphere [52],

χ ≈ 4πε0R3
ε − 1
ε + 2 if kR ≪ 1. (2.122)

Hence, the point-particle limit is properly reproduced by the Mie expansion. Having the Mie ex-
pression (2.119) at hand, we are now able to study the light extinction properties of the sphere, as
well as the light-induced force acting on it. I will focus on standing-wave light modes, as opposed
to running waves, since they are the basis of the optical di�raction gratings and the two-mirror
cavities studied here.

35 I use that the spherical Bessel functions can be approximated by jℓ (x) ≈ x ℓ/ [1 ⋅ 3 ⋅ . . . ⋅ (2ℓ + 1)] and yℓ (x) ≈
− [1 ⋅ 3 ⋅ . . . ⋅ (2ℓ − 1)] /x ℓ+1 to lowest order in x ≪ 1, while the spherical Hankel function becomes hℓ (x) ≈ iyℓ (x).
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2.3.1.1. The Poynting vector and the extinction power of the sphere

Scattering and absorption of light by �nite geometries can be treated formally bymeans of the Poyn-
ting vector S = Re{E} ×Re{H}. It has the dimension W/m2 and describes the net energy �ux
per unit surface ∣S∣ into the direction S/ ∣S∣ in vacuum36 [33,34,91]. �at is, the time-averaged �eld
energy �owing through a small surface element dA = r2dΩ at position r into direction n per unit
time is given by Pn (r) = ⟨n ⋅ S⟩t = −r2dΩRe{E (r) ⋅ [n ×H∗ (r)]} /2. From this it is intuitively
clear how to obtain the total �eld energy per time scattered or absorbed by the sphere.
In order to assess the scattered power (2.123) we must take the outward-directed Poynting vector

corresponding to the scattering �eld Esca and integrate it over the sphere surface [29, 34]. �e
absorbed power (2.124) is given by the net energy �ux into the sphere, that is, by the integrated
inward-directed Poynting vector corresponding to the total external �eld Eext = E0 + Esca. �e
extinction power (2.125) is de�ned as the sum of both contributions.

Psca = −
R2

2 ∫ dΩRe{Esca (Rn) ⋅ [n ×H∗
sca (Rn)]} (2.123)

Pabs =
R2

2 ∫ dΩRe{Eext (Rn) ⋅ [n ×H∗
ext (Rn)]} (2.124)

Pext = Psca + Pabs =
R2

2 ∫ dΩRe{E0 (Rn) ⋅ [n ×H∗
sca (Rn)] + Esca (Rn) ⋅ [n ×H∗

0 (Rn)]}
(2.125)

A straightforward calculation using the orthogonality properties of the multipole expansion given
in Appendix A.5 leads to the explicit forms

Psca =
cε0
2k2 ∑ℓ,m

[∣αℓC(M)

ℓ,m ∣
2
+ ∣βℓC(E)

ℓ,m∣
2
] ,

Pext = −
cε0
2k2 ∑ℓ,m

[Re{αℓ} ∣C(M)

ℓ,m ∣
2
+Re{βℓ} ∣C(E)

ℓ,m∣
2
] , (2.126)

and Pabs = Pext − Psca. If the medium is non-absorptive, that is, if the refractive index
√

ε is real,
then one can easily check that Pabs = 0 and ∣αℓ∣2 = −Re{αℓ}, ∣βℓ∣2 = −Re{βℓ}. We observe that
the extinction power is a sum over the independent contributions of electric (E) and magnetic (M)
multipole components.
�e expressions simplify further in the case of a cosine-type standing wave,

Psca,ext (z0) =
πI0
k2

[Π(+)

sca,ext +Π
(−)

sca,ext cos 2kz0] , (2.127)

with z0 the z-coordinate of the sphere center and I0 = cε0 ∣E0∣2 /2 the �eld intensity at the antinodes.
�e o�set factors (+) and the modulation factors (−) read as

Π(±)
sca = ∑

ℓ
(2ℓ + 1) (±)ℓ [∣αℓ∣2 ± ∣βℓ∣2] ,

Π(±)

ext = −∑
ℓ
(2ℓ + 1) (±)ℓ [Re{αℓ} ±Re{βℓ}] . (2.128)

36All the calculations can be done in the vacuum surrounding the sphere, thus avoiding the discussion [88] which form
of the Poynting vector to choose inside the medium.
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Figure 2.9. Mean value (le�) and modulation (right) of the UV light extinction power of gold spheres as a function of
the sphere radius. We use the bulk permittivity of gold [50], εAu = 0.9 + 3.2i at λ = 157 nm. �e solid, the dashed,
and the dotted lines correspond to the extinction, the scattering, and the absorption power, respectively. �emean
value on the le� diagram is plotted in dimensionless units πI0/k2 relative to the �eld intensity I0 , as given by the
Π(+)-factors in (2.128). �emodulation contrast on the right is given by the ratio of the modulation amplitude and
the mean value.

It is once again easy to verify that the dipolar values (2.7) and (2.8) for the absorbed and scattered
power are assumed in the limit kR ≪ 1, with the polarizability given by (2.122).
Similar expressions hold in the case of a Gaussian standing-wavemode. �emultipole expansion

in (2.126) then includes corrections due to the �nite Gaussian waistw, as listed in Appendix A.5. In
many practical situations, however, one is only interested in the standing-wave modulation of the
scattering and absorption power as a function of the on-axis coordinate z0. If we neglect corrections
of the order of 1/kw, then formula (2.127) applies also to theGaussianmode; wemust simply append
theGaussianmodepro�le to the �eld intensity, I0 → I (x0, y0) = cε0 ∣E0∣2 exp [−2 (x20 + y20) /w2] /2.
Figure 2.9 illustrates the standing-wave light extinction as a function of the radius for gold spheres

at the UV wavelength λ = 157 nm (εAu = 0.9 + 3.2i is taken from [50]). �e solid line on the le�
panel represents the o�set factor Π(+)

ext , that is, the z0-averaged extinction power (2.127) divided by
πI0/k2, as a function of the radius on a logarithmic scale. �e dashed and the dotted line represent
the o�set factors of the scattered power and the absorbed power, respectively. �emean absorption
power grows like the volume, in proportion to (kR)3, when the �eld fully penetrates the sphere
in the subwavelength regime, kR < 1. �e Rayleigh scattering power, which scales like (kR)6, is
strongly suppressed in this regime. �e scattering contribution slowly takes over for larger radii,
where the total extinction scales like the sphere surface, in proportion to (kR)2. Absorption and
re�ection prevent the light �eld from entering deeply into the large sphere. �e varying power laws
in kR are nicely visible in the double-logarithmic plot.
�e right panel in Figure 2.9 shows the contrast of the z0-modulation, Π(−)/Π(+), for the ex-

tinction power (solid), the scattering power (dashed), and the absorption power (dotted). It starts
at unity in the point-particle limit, decreases to smaller values and oscillates �nally between pos-
itive and negative values. We �nd that the standing-wave modulation is strongly suppressed once
the particle extends over more than a single wavelength. Note that a negative value means that the
sphere scatters more light when it is centered at a node of the standing wave. �is can be explained
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Figure 2.10.On-axis force on �nite-size gold spheres in a vacuum-UV standing-wave �eld (λ = 157 nm, εAu = 0.9+3.2i),
as predicted by the Mie expression (2.130). �e le� panel is a density plot of the force versus the center position z0
(in units of λ) and the normalized radius kR = 2πR/λ of the sphere. �e right panel depicts the maximum force
with respect to z0 as a function of the radius. �e solid line represents the result of the full Mie calculation, whereas
the dotted line corresponds to the point-particle approximation. �e force data are plotted in natural units relative
to the �eld intensity, I0/ck2 .

by higher multipole (e.g. the quadrupole) components which are more dominantly addressed at
the �eld nodes.

2.3.1.2. Maxwell stress tensor and optical forces

�e light-induced forces acting on a dielectric are related to the Maxwell stress tensor

T = ε0 [Re{E} ○Re{E} − I
2
Re{E} ⋅Re{E}] + µ0 [Re{H} ○Re{H} − I

2
Re{H} ⋅Re{H}] ,

(2.129)
with (a ○ b) jk = a jbk the dyadic product and I the three-dimensional identity matrix. In general,
the change of the momentum carried by the �eld inside a �nite volume of free space is given by
the corresponding surface integral of the stress tensor [34, 91]. �is implies that, if we take that the
dielectric spheres to be rigid [89], the time-averaged force acting on the center of mass reads as

F = R2

2 ∫ dΩRe{ε0 [(n ⋅ Eext)E∗ext −
n
2
∣Eext∣2] + µ0 [(n ⋅Hext)H∗

ext −
n
2
∣Hext∣2]} . (2.130)

�e external �elds in the integral are evaluated on the sphere surface, r = Rn. �e force is always
proportional to the intensity parameter I0 = cε0 ∣E0∣2 /2 of the input light mode E0.
In the idealized case of a plane standing or runningwave the forcemust point into the z-direction,

and it can only depend on the coordinate z0 of the sphere. Transverse force components are ex-
cluded due to the symmetry under x0- and y0-translations. �e le� panel in Figure 2.10 shows a
density plot of the standing-wave force Fz on gold spheres as a function of z0 and of the normalized
sphere radius kR. I evaluated the integral (2.130) numerically, using the representation of the scat-
tering �eld (2.119) and the expansion coe�cients of a standing wave given in Appendix A.5. �e

53



Figure 2.11. Sketch of the optical forces on a small and a large dielectric sphere in a standing-wave �eld. Both sphere
centers are between an antinode and a node of the �eld. �e net force on the small sphere points towards the high
�eld since most of its volume is subject to the same �eld polarization and dipole force. �e large sphere experiences
a net force towards the low �eld. Di�erent parts of the sphere experience are subject to opposite �eld polarizations
and are drawn to opposite directions.

force is given in proportion to the �eld intensity, that is, in units of I0/ck2. We observe that the
symmetry of the standing wave sets the z0-modulation of the force to be Fz (z0) = −F0 sin 2kz0,
irrespective of the sphere size. In particular, the force is always zero at the nodes and antinodes of
the �eld. At the same time, the radius R does a�ect the force amplitude F0 signi�cantly. �e latter
even �ips its sign for kR ≳ 2, in clear contradiction to the behaviour of a polarizable point particle.
�e disparate behaviour of point particles and extended spheres is more clearly seen on the right

panel, where I have plotted the force amplitude F0 = Fz (−λ/8) versus the radius (solid line). I com-
pare it to the maximum PPP force (dashed line), FPPP = 2πI0kR3Re{(ε − 1) / (ε + 2)} /c, which
would be obtained if the sphere were approximated by a point-like particle with the polarizability
(2.122). �is approximation ceases to be valid already for kR ≳ 0.5. From this point on the force
does not grow with the sphere volume any longer. We observe quite a contrary behaviour; the force
term oscillates between positive and negative values. In other words, the sphere may become an
e�ective low-�eld seeker. An explanation for this remarkable size e�ect is illustrated in Figure 2.11
depicting a small and a large sphere placed in between a node and an antinode of the standing-
wave �eld. Suppose that we decompose each sphere into small volume elements, and assume that
the individual elements are subject to the local dipole force (We neglect both the modi�cation of
the local �eld and the absorption inside the sphere). We arrive at the total force by adding the in-
dividual contributions. �is leads to a high-�eld seeking behaviour of the small sphere because all
constituents are drawn to the same antinode of the �eld. �e net force on the large sphere, on the
other hand, points to the low �eld, because di�erent parts are drawn to opposite directions.
Let me now turn to the more realistic case of a Gaussian standing-wave mode with �nite waistw.

Here wemust distinguish between the force Fz along the standing-wave axis and the non-vanishing
o�-axis forces Fx ,y. Considering the former, we should merely expect small corrections to the ideal
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Figure 2.12. Density plot of the transverse forces on gold spheres in a Gaussian standing-wave mode versus the sphere
radius and the on-axis position. �e le� and the right panel correspond to the force components Fx ,y in the direction
of and perpendicular to the electric �eld polarization, respectively. �ey are obtained from aMie-theory calculation
(λ = 157 nm, εAu = 0.9 + 3.2i) and evaluated in units of I0/ck2 at the sphere coordinates x0 = y0 = w/2. I use the
same axes and color scaling for better comparison, and so the right panel is restricted to appropriate axis boundaries.

standing-wave modulation studied before. �is follows by comparing the multipole expansion
of the ideal standing wave with the Gaussian one, as given in Appendix A.5. Corrections to the
standing-wave modulation are of the order of the waist parameter 1/kw ≪ 1, and we may neglect
them for most practical purposes37. In this case we may again use the standing-wave results a�er
replacing the standing-wave intensity parameter I0 by the local intensity I (x0, y0) in the Gaussian
mode.
�e same argument does not apply to the o�-axis transverse forces Fx ,y which are by themselves

terms of the order of 1/kw. A numerical evaluation of the transverse forces reveals some peculiar
size e�ects which become evident when we compare the numerical results with the subwavelength
approximation based on the polarizability expression (2.122),

⎛
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F(PPP)
x (r0)

F(PPP)
y (r0)

⎞
⎠
= −

⎛
⎝
x0
y0

⎞
⎠
4πR3I0
cw2

Re{ ε − 1
ε + 2} e−2(x

2
0+y20)/w2 (1 + cos 2kz0)

= −2FPPP
kw2

e−2(x
2
0+y20)/w2
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⎛
⎝
x0
y0

⎞
⎠
+
⎛
⎝
x0
y0

⎞
⎠
cos 2kz0

⎤⎥⎥⎥⎥⎦
. (2.131)

At �rst one might think that, if one took the average of the transverse force over one period of the
standingwave, the point-particle approximationwould be still valid for particles that are larger than
the wavelength, and yet smaller than the waist. �is would be a wrong assertion, as demonstrated
in Figure 2.12, once again for the exemplary case of gold spheres in vacuum-UV light. Here I plot
the x-force (le�) and the y-force (right) at x0 = y0 = w/2, as obtained from the full Mie calculation,

37�is argument holds as long as the sphere is not too far away from the focus of the Gaussian mode. �e reason is that
the representation of theGaussianTEM00mode given inAppendixA.2 ceases to be valid for far-o� center coordinates
∣r0 ∣ ≫ w. �is limit should hardly be of relevance in any practical implementation.
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Figure 2.13. O�set factors F(+)

x ,y (solid lines) and modulation factors F(−)

x ,y (dotted lines) of the transverse forces (2.132)
as a function of the normalized radius kR of gold spheres in a Gaussian standing-wave mode (λ = 157 nm, εAu =
0.9+3.2i). �e data were computed with help of theMie expression (2.130) and plotted in units of I0/ck2 . �e dark
green curves correspond to the x-direction, which is also the main polarization direction of the electric �eld. �e
light orange curves represent the y-direction. �e two modulation factors (dashed) are almost identical, except for
small numerical uncertainties.

versus the sphere radius R and the on-axis coordinate z0. �e forces are again plotted in units of
I0/ck2. I have assumed a realistic waist of w = 100 λ. Judging from an extensive numerical analysis
and from the plotted data, I have found a similar functional dependence of the two components
Fx ,y of the Mie force (2.130) on r0 as in the point-particle approximation,
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. (2.132)

Figure 2.12 shows that the force components di�er signi�cantly from a point-particle behaviour at
sphere radii kR ≳ 1. At smaller radii, the average force is negative (i.e. pointing inwards the center
of the Gaussian mode) and exhibits a pronounced standing-wave modulation. �en, however, the
modulation dies o� quickly, and we notice a non-recurring inversion of the sign once the sphere
diameter approaches the wavelength, kR ≲ π. �e gold spheres turn into low-�eld seekers; they
are e�ectively pushed away from the center of the Gaussian mode pro�le, although their radii are
still much smaller than themode waist. Moreover, we observe that the cylindrical symmetry breaks
down, since the x- and the y-components are no longer the same.
We see this more clearly in Figure 2.13, where the four terms F(±)

x ,y extracted from a numerical
evaluation of (2.132) are plotted as a function of R. �e di�erences between the two transverse
directions indicate the presence of non-conservative forces. If the two transverse components were
identical, F(±)

x = F(±)
y , and if the modulation factors matched the on-axis force factor, F(−) = F0,

then the force could be written as the gradient of the potential V (r0) = − exp [−2 (x20 + y20) /w2]
(F(+) + F(−) cos 2kz0) /2k. Evidently, no such potential exists for (su�ciently large) gold spheres
in the Gaussian mode. �e non-conservativity is related to the radiation pressure induced by the
absorption and free-space scattering of light, and it leads to notable asymmetries and a low-�eld
seeking behaviour at large radii, as shown in the diagram.
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One important practical consequence is the following: One cannot deduce the optical potential
of wavelength-sized particles coupled to Gaussianmodes from the electromagnetic force alone. We
must �nd a di�erent method to extract the position-dependent coupling energy between such a
particle and a high-�nesse cavity mode in order to assess cavity-induced dissipation e�ects. I will
deal with this issue in Section 2.3.3. Before that, let me brie�y discuss the e�ect of optical standing-
wave gratings on extended spherical particles.

2.3.2. Optical standing-wave gratings

With the extensive discussion of Mie theory in the preceding section at hand, I will now generalize
the model of optical standing-wave gratings developed in Section 2.1.4. �ere I discussed how a
coherent standing-wave �eld can act as a di�raction grating for matter-wave states of polarizable
point particles in the limit of short interaction times. Two separate processes can contribute to the
di�raction e�ect: �e periodic phase modulation of the matter wave due to the action accumulated
in the optical dipole potential and the amplitude modulation that occurs if the absorption of single
photons depletes the matter-wave state.
In the following, I will generalize both e�ects to dielectric spheres of �nite radius. Wewill see that

the e�ective grating modulation becomes less e�ective with growing particle size.A more detailed
analysis of the consequences for mater-wave interferometry will be given in Chapter 3.
Note that the grating modulation acts along the standing-wave axis, and we are only concerned

with the reduced one-dimensional z-state of the matter waves. �e latter are assumed to interact
su�ciently shortly with the light �eld such that any transverse forces and corrections due to the
�nite mode waist can be safely omitted. We can therefore reduce our Mie-theory considerations to
the case of an ideal standing wave with a Gaussian intensity pro�le.

2.3.2.1. Phase modulation eªect

�e phase modulation is described by the eikonal phase factor (2.36) for a point particle. If we
neglect any z-motion during interaction time we arrive at the standing-wave expression (2.37). It
is equivalent to the transformation rule ⟨z∣ψ⟩ ↦ exp [i (ϕ0/2) cos 2kz] ⟨z∣ψ⟩ for a given matter-
wave state ∣ψ⟩ up to a constant global phase. �e term ϕ0 denotes the eikonal phase collected at the
antinodes of the standing-wave �eld.
Fortunately, the transformation rule can be adopted to the case of dielectric spheres of larger

radii without further trouble. �e reason is that, according to Section 2.3.1.2, the on-axis force
on a dielectric sphere is always of the form Fz (z) = −F0 sin 2kz, if higher-order corrections by
the Gaussian mode pro�le are neglected. Since there are no transverse forces to be considered
either, we are le� in a one-dimensional situation with no non-conservative corrections. �e force
can be integrated to obtain an expression for the optical potential (up to an arbitrary constant),
V (z) = −(F0/2k) cos 2kz. �e force factor F0 must be computed by means of the Mie formula
(2.130); it will be proportional to the standing-wave intensity I0 = cε0 ∣E0∣2 /2 at the antinodes.
Comparing this to the point-particle model in Section 2.1.4.1, we must simply substitute

Re{χ} ↦ 4F0
k ∣E0∣2

≡ 2cε0
k

f0 (2.133)
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in all the eikonal phase terms ϕ0 to generalize from point particles to �nite-size spheres. Here I
have removed the �eld intensity using the convenient notation F0 = f0I0 in terms of the factor f0.

2.3.2.2. Amplitude modulation eªect

Standing-wave gratings can modulate the amplitude of matter waves by optical depletion if the
absorption of one or a few photons ionizes, fragments, or removes a particle by other means from
the matter-wave ensemble. I have discussed in Section 2.1.4.2 that the corresponding transmission
probability can be obtained in a Poissonian model from the mean number of absorbed photons.
For point particles, this quantity can be written as n (z) = (n0/2) (1 + cos 2kz), where n0 ∝ σabsI0.
�e o�set factor and the z-modulation factor are the same in this expression, and no photons are
absorbed in the �eld nodes.
�is is di�erent in the case of larger spheres. Here we must distinguish between the o�set and

the standing-wave modulation. We must replace the PPP-absorption power σabsI0 by the Mie ex-
pression Pabs (z) = Pext (z) − Psca (z), as obtained from (2.127). We arrive at the form n (z) =
n+ + n− cos 2kz with two di�erent coe�cients n±. �e transformation n0/2 ↦ n± from the PPP-
expressions given in Section 2.1.4.2 to the generalized form for �nite spheres is done by substituting
the absorption cross section, σabs ↦ 2πΠ(±)

abs /k
2. �e absorption terms Π(±)

abs = Π(±)

ext − Π
(±)
sca are

determined by the Mie expressions (2.128).
Putting everything together, the following gratingmodulation parametersmust be used for sphe-

rical particles passing a thin standing-wave beam of input laser power PLandwaistwy at the velocity
v:

ϕ̃0 =
8 f0PL√
2πħkvwy

, n± =
4
√
2πΠ(±)

abs PL
ħck3vwy

. (2.134)

If the grating is realized by a short laser pulse of energy EL and spot area aL, we �nd

ϕ̃0 =
4 f0EL
ħkaL

, n± =
4πΠ(±)

abs EL

ħck3aL
. (2.135)

I will mostly refer to the case of single-photon depletion, where the absorption of one photon al-
ready removes the particle from the ensemble. �en the grating transmission function (2.41), which
describes the matter-wave state transformation ⟨z∣ψ⟩ ↦ t (z) ⟨z∣ψ⟩, reads as

t (z) = exp [−n+ + (i ϕ̃0
2
− n−) cos 2kz] . (2.136)

We notice here a general complication for wavelength-sized spheres: While the position-averaged
overall transmission probability decreases exponentially with the term n+, the modulation contrast
between the nodes and the antinodes of the grating depends on n−. As seen for the exemplary
case of gold spheres in vacuum-UV gratings in Figure 2.9, the ratio n−/n+ = Π(−)

abs /Π
(+)

abs is strongly
suppressed for large spheres. �at is to say, a pronounced optical grating mask goes along with a
massive loss of matter-wave signal in the case of wavelength-large spheres. �is will impose a hard
mass limitation of optical matter-wave interferometry, as will be discussed in Chapter 3.
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Another limitationmight arise from the decoherence associatedwith the increased scattering38 of
photons at large dielectric spheres. �is side e�ect does not generalize in a straightforward manner
from the point-particle case discussed in Section 2.1.4.3 to large spheres. �e reason is that we
cannot adopt the local �eld coupling model, which describes the momentum transfer by scattering
and absorption in terms of Lindblad master equations Lsca,abs, if the coupling extends over a large
volume. A proper description of decoherence would, for instance, require a rigorous multipath
scattering model of light at an extended dielectric object, as presented in [86]. �is goes beyond
the scope of the present work. As I will show later, the proposed scheme of high-mass matter-
wave interferometry [10, 11] studied in the present work is already more or less con�ned to the
subwavelength regime due to the above mentioned tradeo� between transmission and modulation
at optical depletion gratings.

2.3.3. Slowing and trapping of microspheres by a cavity

Let me conclude the present chapter with a �nal glance at the cavity-induced slowing of polariz-
able particles. I have started from a classical one-dimensional model of the mechanical action of a
driven cavity mode on a polarizable particle in Section 2.1.3. �ere I could simulate the slowing and
trapping of a strongly coupled particle in a high-�nesse standing-wave cavity, as plotted in Figure
2.2. Later I reassessed the e�ect in amore realistic scenario withmolecules and nanoclusters, which
exhibit a much weaker coupling strength and slowing rate. �is led to the rigorous weak-coupling
quantum model in Section 2.2.
We are now in a position to be able to reconsider the strong-coupling situation. Mie theory o�ers

us the means to describe the optical properties of realistic particles that are su�ciently extended to
couple strongly enough to be eventually trapped by a cavity. Let me show that it is indeed feasible
in a realistic setting to trap wavelength-sized dielectric spheres crossing a strongly pumped cavity
mode. �e corresponding experiments are prepared and conducted in the labs of my group in
Vienna and elsewhere [25].
I resort to the exemplary case of silicon spheres (ρSi = 2300 kg/m3) at the IR telecommunications

wavelength λ = 1560nm. �e reason is that the silicon material is highly refractive and almost
perfectly transparent at this wavelength. No heating losses or absorption-induced di�usion need
to be taken into account. I will estimate the sphere permittivity by the bulk value εSi = 12.1 [50].
Moreover, I will consider the following demanding but feasible resonator con�guration for the cav-
ity [56]: Two 25mm-curved high-re�ectivity mirrors shall be placed at 1mm distance, constituting
a resonator with a narrow linewidth κ = 1MHz. �e TEM00 standing-wave resonator mode shall
have the waist w = 40 µm, which results in the mode volume V = 0.0013mm3. (See Appendix A.2
for details on the Gaussian mode.) It is driven by a laser with several Watts of continuous-wave
input power.
For a preliminary assessment of the coupling let us assume that the silicon spheres of radius R

are described by the subwavelength polarizability (2.122). �en both the cavity resonance shi� and
the optical dipole force depend on a single coupling rate parameter, U0 = −2πω (R3/V) (εSi − 1) /
(εSi + 2). A coupling rate of, say, U0 = −κ would correspond to R = 59nm. �e subwavelength
approximationmay still seem reasonable in this case, which represents the bottomendof the strong-

38Decoherence by absorption becomes relevant, too, but only if the optical depletion e�ect requires more than one
photon to be triggered.
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coupling regime. Larger spheres should also be taken into consideration. Hence, before we can
continue solving the classical cavity-particle equations of motion, we must address a yet omitted
issue: �e e�ect of the particle on the cavity �eld.

2.3.3.1. Cavity resonance shift induced by microspheres

�roughout the preceding sections I applied Mie theory to study the optical forces and the light
extinction properties of large spherical particles. �eMie ansatz is based on a stationary scattering
situation: One starts from a given �eld con�guration {E0,H0} in the absence of the scatterer, which
is, in principle, determined by some asymptotic boundary conditions at in�nite distance. Parts of
these �elds are scattered o� the sphere in the form of outgoingmultipolar waves {Esca,Hsca}, which
do not involve the asymptotic boundary conditions.
�is is where the Mie ansatz runs into problems. By construction, it cannot account for the

modi�ed boundary conditions in a �nite-size resonator due to the presence of the sphere. On the
other hand, we know that small refractivemodi�cations within the resonator con�guration amplify
to a substantial change of the intra-cavity light that cycles many times between the mirrors. We did
not run into these di�culties in the point-particle limit, since the optical dipole potential was there
responsible for both the light-induced forces and the cavity resonance shi�. In the present case, the
optical potential cannot be deduced from the light force anymore.
One way to resolve this issue, at least to a reasonable degree of approximation, is to invoke the

principles of cavity perturbation theory [92]. Let us assume that the presence of the dielectric sphere
leads to a small shi� of the cavity resonance frequency, ∣δω∣ ≪ ω, which modi�es the Maxwell
equations in the resonator volume,

∇×
⎧⎪⎪⎨⎪⎪⎩

E0
H0

⎫⎪⎪⎬⎪⎪⎭
= iω

⎧⎪⎪⎨⎪⎪⎩

µ0E0
−ε0H0

⎫⎪⎪⎬⎪⎪⎭
→ ∇×

⎧⎪⎪⎨⎪⎪⎩

E
H

⎫⎪⎪⎬⎪⎪⎭
= i (ω + δω)

⎧⎪⎪⎨⎪⎪⎩

µ0E0
−ε (r) ε0H0

⎫⎪⎪⎬⎪⎪⎭
. (2.137)

Here I denote by {E ,H} the intra-cavity �elds in the presence of the sphere. �e permittivity ε (r)
is piecewise constant; it assumes εSi inside the sphere and unity outside. Bymaking use of the vector
identity ∇ ⋅ (a × b) = b ⋅ (∇ × a) − a ⋅ (∇ × b) we can combine the above four equations to obtain
the two mixed identities

∇ ⋅ (H × E∗0) = −i (ω + δω) ε (r) ε0E∗0 ⋅ E + iωµ0H∗
0 ⋅H , (2.138)

∇ ⋅ (H∗
0 × E) = iωε0E∗0 ⋅ E − iωµ0H∗

0 ⋅H . (2.139)

�ese, in turn, can be combined to

− i∇ ⋅ (H × E∗0 +H∗
0 × E) = ωε0 [1 − ε (r)]E∗0 ⋅ E − δω [ε (r) ε0E∗0 ⋅ E + µ0H∗

0 ⋅H] . (2.140)

At this point we can explicitly use the cavity boundary conditions by integrating the expression
over the resonator volume V . It follows from Gauss’ theorem that the le� hand side must vanish
due to the vanishing boundary conditions at the mirror sufaces. We are le� with an equation that
determines the shi� δω from the �elds,

δω
ω

=
−ε0 ∫r<R d

3rRe{(εSi − 1)Eint ⋅ E∗0}
∫V d

3rRe{ε (r) ε0E ⋅ E∗0 + µ0H ⋅H∗
0}
, (2.141)
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where I have taken the real part to arrive at physical expressions in the end. �e integral in the
numerator extends merely over the polarization density P = ε0 (εSi − 1)Eint inside the sphere. �e
denominator can be rewritten as

∫V d3rRe{εε0E ⋅ E∗0 + µ0H ⋅H∗
0} = 4Hf + ∫V d3rRe{ε0 [εE − E0] ⋅ E∗0 + µ0 [H −H0] ⋅H∗

0} ,
(2.142)

with Hf = ħω ∣α∣2 the free energy of the unmodi�ed cavity �eld. We are still not able to compute
δω in practice since we must know the exact form of the modi�ed �elds {E ,H}, which depend
on the frequency shi�, too. If we regard the sphere as a small perturbation, however, we should
not only expect that the relative shi� δω/ω is small, but also that the �elds are hardly modi�ed in
most of the resonator volume. We can therefore neglect the addition to the �eld energy term in the
denominator, and we can insert the Mie expression for the internal �eld Eint from Appendix A.6,
to obtain the approximate formula

δω
ω

= − ε0
4Hf ∫r<R d

3rRe{(εSi − 1)Eint ⋅ E∗0} . (2.143)

A tedious but straightforward calculation using themultipole expansion properties fromAppendix
A.5, and a few additional integration steps39, yield the expansion

δω = −ω
2k3V ∣E0∣2

∑
ℓ,m

[Im{βℓ} ∣C(E)
ℓ,m∣

2
+ Im{αℓ} ∣C(M)

ℓ,m ∣
2
] . (2.144)

Here I have used that εSi is real. If we focus again on the standing-wavemodulation of the resonance
shi�, then we can neglect higher-order corrections in the waistw of the Gaussianmode pro�le. �e
resonance shi� reduces to the simple form

δω (r0) =
1
2
e−2(x

2
0+y20)/w2 [U(+) +U(−) cos 2kz0] ,

U(±) = − πω
k3V

∞

∑
ℓ=1

(±)ℓ (2ℓ + 1)Im{αℓ ± βℓ} , (2.145)

with r0 the position of the sphere center. �e form is very similar to the expression (2.127) for the
extinction power in a standing wave. It is easily checked that the two coupling ratesU(±) reduce to
the point-particle value in the limit of small radii, U(±) ≈ U0 = −2πR3ω (εSi − 1) / (εSi + 2)V .
Similar e�ective coupling rates can be de�ned for the on-axis z-force,

Fz (r0) = ħkUz ∣α∣2 exp [−2
x20 + y20
w2

] sin 2kz0, (2.146)

39�e following integral identities for spherical Bessel functions must be used [63]:

∫ X

0
dx x2 jℓ (x) jℓ (nx) =

X2

1 − n2
[ jℓ+1 (X) jℓ (nX) − n jℓ (X) jℓ+1 (nX)]

∫ X

0
dx {ℓ (ℓ + 1) jℓ (x) jℓ (nx) + [x jℓ (x)]′ [x jℓ (nx)]′} =

X2

1 − n2
[n2 jℓ+1 (X) jℓ (nX) − n jℓ (X) jℓ+1 (nX)]

+ (ℓ + 1) X jℓ (X) jℓ (nX)
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as well as for the transverse forces Fx ,y (r0). In the latter case, the coupling rates are determined
from (2.12) by the terms F(±)

x ,y = −ħk ∣α∣2U(±)
x ,y . All the various coupling ratesU(±), Uz , U(±)

x ,y reduce
to U0 in the limit R → 0. Any substantial di�erence from U0 indicates a breakdown of the point-
particle approximation. I list the coupling rates of various silicon sphere sizes inTable 2.2, whichwas
generated from aMie calculation based on the given cavity parameters. We observe that the point-
particle breakdown occurs already at relatively small radii compared to the wavelength. �is is due
to the large refractive index of silicon. �e table also contains the light extinction rate parameters
γ(±)

ext = 2πcΠ
(±)

ext /k2V , as determined by the Mie expressions (2.127) and (2.128).
We notice that the point-particle limit already fails at R = 60nm. At the same time, however,

all the o�set terms (+) and modulation terms (−) of the coupling rates are practically identi-
cal for spheres smaller than R = 200nm; the cylindrical symmetry remains valid. In this quasi-
conservative size regime the cavity resonance shi� and the mechanical action of the light �eld on
the spheres are fully characterized by the e�ective optical potential

V (r0) =
1
2
ħ ∣α∣2 exp [−2x

2
0 + y20
w2

] (U(+) +U(−) cos 2kz0) . (2.147)

2.3.3.2. Classical simulation of slowing and trapping

With the relevant parameters at hand we can �nally draw our attention to the cavity-induced slow-
ing e�ect in a realistic strong-coupling scenario with silicon spheres. �e e�ect will be studied in
the classical regime, far above the quantum limit of motion. Hence, I will not account for any kind
of di�usion or other quantum corrections, and I base my considerations on the coupled classical
equations of motion for the center-of-mass r0 (t) of the particle and the intra-cavity �eld α (t). I
have derived a set of equations for the one-dimensional point-particle case in Section 2.1.3. Using

Table 2.2. Table of light coupling and extinction parameters for silicon spheres of di�erent radii (εSi = 12.1) in a standing-
wave cavity at the IR wavelength λ = 1560nm. We assume a Gaussian mode of waist w = 40 µm and volume
V = 0.0013mm3 .

Radius 30 nm 60 nm 150 nm 200 nm 250 nm

m in amu 1.57 × 108 1.25 × 109 1.96 × 1010 4.64 × 1010 9.07 × 1010

ωr in mHz 3.29 0.411 0.0263 0.0111 5.68 × 10−3

U(+) in MHz −0.130 −1.09 −23.7 −103 −24.0
U(−) in MHz −0.128 −1.02 −13.5 10.2 −122
Uz in MHz −0.128 −1.02 −13.5 12.0 −79.1

U(+)
x in MHz −0.130 −1.09 −23.7 −105 −75.5

U(−)
x in MHz −0.128 −1.02 −13.5 12.0 −79.1

U(+)
y in MHz −0.130 −1.09 −23.8 −101 16.9

U(−)
y in MHz −0.128 −1.02 −13.5 12.0 −79.1

γ(+)

ext in MHz 2.41 × 10−3 0.0160 5.36 56.1 208
γ(−)

ext in MHz 2.41 × 10−3 0.0160 4.74 −2.18 94.5
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the results fromMie theory, the equations (2.30) and (2.31) can be readily generalized to the case of
silicon spheres of mass m = 4πρSiR3/3 in three dimensions,

∂tα = η −
⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∆ + κ +

g (
√
x20 + y20)
2

⎡⎢⎢⎢⎢⎣
iU(+) + γ(+)

ext
2

+
⎛
⎝
iU(+) + γ(+)

ext
2

⎞
⎠
cos 2kz0

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
α, (2.148)
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⎛
⎝
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x
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y

⎞
⎠
+
⎛
⎝
x0U(−)

x

y0U(−)
y

⎞
⎠
cos 2kz0

⎤⎥⎥⎥⎥⎦
, (2.149)

∂2t z0 =
ħk
m

Uz ∣α∣2 g (
√

x20 + y20) sin 2kz0. (2.150)

Here, theGaussian pro�le is denoted by g (r0) = exp (−2r20/w2). Note that the light extinction e�ect
merely adds to the cavity loss channel since I neglect its contribution to momentum di�usion. �e
driving term η =

√
2κPin/ħω is related to the power Pin of the driving laser. In the following, I shall

�x the cavity-pump detuning to ∆ = κ, which is where the Lorentzian intra-cavity intensity is most
sensitive to the refractive index change induced by the particle.
Table 2.2 shows that the strong-coupling condition is already ful�lled for relatively small spheres.

Wemay restrict our considerations to the quasi-conservative size regime, where the forces are sym-
metric and the angularmomentum L = x0py−y0px is conserved. �is reduces the equations (2.149)
and (2.150) to two equations of motion for the radius r0 (t) and the axial position z0 (t) in cylin-
drical coordinates, r0 = (r0, φ0, z0). �ey evolve under the forces resulting from the e�ective radial
potential

Ve� (r0, z0) =
ħ ∣α∣2

2
g (r0) (U(+) +U(−) cos 2kz0) +

L2

2mr20
(2.151)

�e angular coordinate follows ∂tφ0 = L/mr20. �e centrifugal barrier in the e�ective potential
prevents particles from reaching the center of focus if they impinge on the cavity mode with a �nite
impact parameter. Let us, for the moment, assume that the cavity adjusts instantaneously to the
presence of the particle, so that we may set α = η/Ω (r0, z0), with Ω the curly-bracketed term in
(2.148). We are le� with a strictly conservative motion in the adiabatic potential

Vad (r0, z0) =
ħη2g (r0)
2 ∣Ω (r0, z0)∣2

(U(+) +U(−) cos 2kz0) +
L2

2mr20
, (2.152)

and no dissipation e�ect can occur. �e potential is positive for su�ciently large or small r0, where
the centrifugal term dominates. In between it may assume a minimum at negative values, depend-
ing on the light coupling parameters.
�e adiabatic potential proves useful when discussing the conditions for radial slowing and trap-

ping, in addition to the conventional standing-wave slowing of the z0-coordinate which we have
found in Section 2.1.3. A trapping of both r0 and z0 means that the particle is captured in the Gaus-
sian mode and that it orbits around the center of focus r0 = 0 with a constant angular momentum,
while it oscillates around a �eld antinode along the z-direction. If we assume that the z-coordinate
is already trapped then the radial coordinate evolves approximately under the one-dimensional
potential Vad (r0, 0). In the purely conservative case, a particle would be accelerated towards the
center, r0 = 0, until it hits the centrifugal barrier and gets re�ected. �e particle would pass the
cavity on a de�ected trajectory in the xy-plane.
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Figure 2.14. Simulated trajectory of a silicon sphere of 60 nm radius that is captured and trapped by aGaussian standing-
wave cavity mode. All parameters are taken from Table 2.2; the initial conditions are given in the text. �e xy-
projection of the trajectory is plotted on the le�, where the background shading indicates the Gaussian intensity
pro�le of the mode. �e z-component is plotted on the right versus time. �e full simulation based on the coupled
cavity-particle dynamics (solid line) is compared with a hypothetical trajectory (dotted line), where the cavity is
assumed to react without delay to the particle. �e simulation was run up to t = 50 µs.

�e delayed cavity reaction modi�es this adiabatic trajectory and may dissipate kinetic energy
from the radial motion. For trapping to occur the parameters must be chosen such thatVad exhibits
a pronounced local minimum close to the centrifugal barrier into which the particle could be cap-
tured. �is happens if the particle has lost enough kinetic energy to remain bounded a�er it has
been re�ected at the centrifugal barrier.
In Figure 2.14 I plot a simulated trapping trajectory for the 60nm silicon sphere from Table 2.2.

�e particle approaches the cavity with the initial velocity v0 (0) = (10, 0, 1)m/s starting from the
point r0 (0) = (−200, 30, 0) µm. �e cavity is pumped with an input power of Pin = 1W, which
amounts to a steady-state number of about 8×1012 intra-cavity photons in the absence of the particle.
�is value is almost doubled as the particle gets trapped and shi�s the cavity closer to resonance. �e
solid line in the le� panel of Figure 2.14 represents the xy-projection of the particle trajectory. (�e
shading of the background mimics the Gaussian intensity pro�le g (r0).) We �nd that the particle
is at �rst de�ected and then eventually trapped in a stable orbit precessing around the central cavity
axis.
Notice that the centrifugal barrier keeps the particle away from the center, which explains the

empty spot in the middle of the bound orbit. For comparison I have also plotted the strictly conser-
vative trajectory (dotted line), which would be obtained if the particlemoved under the in�uence of
the adiabatic potential (2.152). No dissipation can occur in this case. �e particle is merely de�ected
on its passage through the cavity. �e z-component of both trajectories is plotted as a function of
time on the right panel. Also here the trapping e�ect appears only in the simulated trajectory that
includes dissipation (solid line).
�e cavity-induced slowing cycles are clearly seen in Figure 2.15. On the right panel, the above

trajectory is depicted in an energy diagram. �e total energy of the sphere is given by the sum of
kinetic and potential energy, E = mv20/2 + Ve� (r0, z0). It is plotted relative to the initial value E0 =
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Figure 2.15. Energy and �eld intensity diagrams for the simulated trajectory of Figure 2.14. In the le� panel we plot the
total (kinetic plus potential) energy of the particle versus its o�-axis distance r0 =

√
x20 + y20 in units of its initial

kinetic energy E0 . �e dashed line represents the adiabatic potential Vad (r0 , 0), as de�ned in the text. On the right
we plot the intra-cavity photon number ∣α∣2 versus time. It is normalized to the maximum possible value (η/κ)2

on resonance.

E (0) = m ∣v0 (0)∣2 /2 versus the radial coordinate r0. We notice that the energy is dissipated over
many slowing cycles while the particle orbits around the central cavity axis. �e particle gets deeper
and deeper trapped in a potential well approximately given by the adiabatic potential Vad (r0, 0)
(dashed line). At the same time, the cavity is shi�ed more and more towards resonance, which
increases the photon number ∣α∣2 towards the on-resonance value (η/κ)2. �e ratio between the
photon number and the on-resonance value is plotted against time in the right panel. It starts at the
steady-state value 0.5 corresponding to the initial detuning ∆ = κ in the absence of the sphere.
With this I have demonstrated that the strong coupling and radial trapping of subwavelength

nanospheres by a standing-wave cavity is feasible in a realistic setup. I should remark, however,
that the exemplary trapping behaviour shown here does not necessarily improve when going to
even larger particles with coupling rates way beyond the cavity decay rate κ. Coupling rates of the
order of 100κ imply that the particle is able to shi� the cavity resonance by 100 linewidths, and
the initial cavity-pump detuning ∆ would have to be adjusted accordingly. Otherwise the particle
would simply kick the cavity out of resonance and switch o� the �eld immediately upon entrance.
Amore serious obstruction is related to the large light extinction rate that comes with the coupling.
Recall that the dissipation e�ect can only be achieved with high-�nesse resonator modes, which
exhibit a long lifetime on the scale 1/κ of the intra-cavity �eld. �is prerequisite becomes obsolete,
and the cavity will e�ectively loose �nesse, when the particle directly extincts the cavity �eld at a
much faster rate. As a result, the particle e�ectively depletes the cavity by its presence.
Here ends the �rst part of this thesis, which contains a detailed overview of the principles and

consequences of the linear coupling between polarizable objects and light. �e possibility to cool
and trap dielectric nanoparticles by cavity light represents one of the key results regarding potential
applications in the lab. (It is in fact being implemented in the Vienna group as I write these lines.)
�e other key topic of this chapter, optical di�raction gratings for molecules and nanoparticles, will
be applied in the next chapter on high-mass matter-wave interference methods.
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Chapter 3.

Near-®eld interference techniques with heavy

molecules and nanoclusters

“Never express yourself more clearly than you are able to think.”
—Niels Bohr

We will now devote our attention to one of the boldest enterprises in the �eld of matter-wave
physics: Single-particle interference experiments with large molecules and clusters far beyond a
single atom. �is chapter is dedicated to the drudgery of my experimental colleagues down in the
gloomy basement vaults of the Quantum Nanophysics Group in Vienna, who are as committed as
ever to break their own current mass records and to demonstrate the quantum nature of larger and
larger objects.
While atom interferometry has gained tremendously in (phase) sensitivity, stability and preci-

sion over the last decade, opening up for numerous applications in metrology [18, 93–95], the ex-
perimentalists in Vienna have managed to observe quantum interference of molecules with masses
from several hundred to about 104 atomic mass units [12, 96]. New and improved interferometer
designs may promise a further increase by two orders of magnitude in lab-based experiments over
the next decade [10]. Starting from the �rst far-�eld di�raction experiments with fullerenes [4] in
1999, the group’s main interest shi�ed towards the conceptually more di�cult near-�eld interfer-
ometry, which turned out to be more suitable for higher masses. Apart from an ongoing branch
of di�raction experiments in the conventional far-�eld geometry [20], the three-grating Talbot-
Lau interferometer (TLI) scheme has become the working horse setup in the group’s striving for
highest masses. Most of this chapter thus will be dedicated to the TLI scheme and, in particular,
to its modern manifestations employing optical standing-wave gratings. (Matter-wave Talbot-Lau
interferometry was pioneered by John Clauser using material gratings [97, 98].)
�e theoretical description of near-�eld interference is more involved than the far-�eld case,

and it must be properly distinguished from potential classical shadow e�ects in order to assure a
quantum origin of the observed pattern. �is is preferably done in the phase-space representation
by means of Wigner functions [77], as it was advocated and worked out elsewhere [7, 40, 59].
Before we will delve into the TLI scheme and its applications, I will �rst discuss a di�erent near-

�eld interference e�ect with the help of the phase-space framework: �e matter-wave analogue
of Poisson’s spot, a di�raction phenomenon originally proposed to demonstrate the wave nature
of light [99] by the observation of a bright spot in the shadow region behind a circular aperture.
At �rst one may might think that, if the same idea were implemented with particles instead of
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light, the appearance of such a bright spot would be a striking demonstration of quantum matter-
wave interference. Poisson’s spot was in fact observed with electrons and deuterium molecules
[21,100,101]. However, I will show that for the cases of largemolecules and nanoparticles interacting
with the di�ractive element during passage the appearance of a spot could also be explained by
classical theory [9]; it would not demonstrate the quantum wave nature of the particles.
I will proceed with a detailed theoretical description of the generic TLI e�ect in Section 3.2,

focusing on its current implementations employing one optical phase grating (KDTLI) or three
optical ionizing gratings (OTITLI). �e KDTLI was �rst proposed for molecules in [102]; its �rst
demonstration can be found in [103], a detailed assessment in [7]. �e OTITLI scheme was �rst
conceived in [104], fully worked out and proposed in [10], and �rst observed in [13]. Both setups are
also suitable formetrological applications. In fact, de�ectometric measurements of static molecular
polarizabilities are regularly carried out in the Vienna group [105,106]. In Section 3.3 I will describe
a method to measure the absorption cross section of interfering particles in the TLI scheme, as we
have proposed it in [6].
�e chapter closes with an in-depth outlook on future time-domain experiments in the OTITLI

setup, which are most suited to reach masses beyond 105 amu. �ere I will start by discussing the
technical details and the �rst measurement results of the present implementation of the OTITLI
scheme in the Vienna lab [13]. �is sketch of the experimental methods and challenges will then be
helpful in the subsequent analysis of all relevant e�ects that would eventually bound the reachable
mass to less than about 109 amu in future experiments with the current scheme. Moreover, we will
see that macrorealistic modi�cations to the Schrödinger equation may become testable with the
present setup by operating in this high-mass regime [11].

3.1. The Poisson spot interferometer (PSI)

Poisson’s spot, or Arago’s spot, is an interference phenomenon dating back to the early 19th cen-
tury, when Fresnel pushed his wave theory of light a�er a century-old academic dispute. Poisson
discovered a peculiar implication of Fesnel’s di�raction theory, which was then con�rmed experi-
mentally by Arago [99]: If a circular obstacle was illuminated by a (su�ciently collimated) beam of
light, a bright spot would appear in the center of the shadow region behind the obstacle—a striking
demonstration of the wave nature of light.
So far, Poisson’s spot has been demonstrated by means of matter waves only with electrons [100,

101] and deuteriummolecules [21]. Similar phenomena, such as the one-dimensional di�raction at
thin wires or the two-dimensional di�raction at Fresnel zone plates, were observed with neutrons
[107, 108] and atoms [109, 110]. Recent theoretical works, including our own, study the feasibility of
the Poisson spot setup for fullerenes [22] and gold clusters [9].
�e generic layout of a Poisson spot interferometer (PSI) is sketched in Figure 3.1. It has a cylin-

drical symmetrywith respect to the interferometer axis z. �e source, the obstacle and the detection
plane are located at z = 0, z = L1 and z = L1 + L2, respectively. In all practical implementations, the
source is given by a circular pinhole of radius R0. It represents the circular analogue of the primary
collimation slit in a conventional Young double-slit geometry, and it emits a rather uncollimated
beam of particles (or light), which is to be di�racted at an opaque circular obstacle of radius R at
the distance L1. In most cases, this obstacle is a thin disc (as depicted), but it could also be imple-
mented by a sphere, as I will discuss later. �e single-particle di�raction pattern is then detected
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Figure 3.1. Sketch of the Poisson spot interferometer (PSI) layout for matter waves. An uncollimated beam of particles
enters the interferometer through a source pinhole of radius R0 , it crosses the distance L1 along the z-axis to the
circular obstacle of radius R, and it is detected on a screen a�er another distance L2 . Multi-path interference around
the obstacle leads to the appearance of a bright spot in the center of the shadow region behind the obstacle. It is
named a�er S. D. Poisson, who predicted the e�ect for light in 1818 [99].

on a screen at the distance L2 behind the obstacle. Its most prominent feature, Poisson’s spot, is a
bright di�ractionmaximum in the center, surrounded by higher-order maxima. �ey are the result
of constructive interference between the wavelets di�racted all around the obstacle. Outside of the
classical shadow projection of the obstacle the intensity on the screen approaches the classically
expected �at density.
�e required transverse coherence of thematter-wave (or light) beam is achievedwhen the source

pinhole is placed su�ciently far away from the obstacle, L1 ≫ R, R0. In this case, only a well-
collimated sub-ensemble of particles (or light rays) will actually reach the vicinity of the obstacle
and take part in the di�raction process. (In the far-�eld limit, L1 → ∞, the obstacle would be
illuminated by a plane wave.) �e brightest spot is produced by a perfect point source, R0 → 0; it
ejects an ideal Huygens wavelet whose di�raction components coincide in phase at the center of
the screen.

Basic properties of the elementary Poisson-spot eªect Before moving on to a full assess-
ment of Poisson’s spot with matter waves, let me �rst summarize the basic e�ect in the idealized
situation where monochromatic matter (or light) waves of wavelength λ illuminate a perfectly thin
disc [111, 112]. Most of its characteristic features and parameters can be already understood under
these restrictions, before presenting all the technical details of the full theory a�erwards.
In the ideal case, the central bright spot is a direct indication of the wave nature of the particles

emitted by the source. No signal would be detected in the shadow region behind the disc according
to a classical ballistic description, where the particles are assumed to follow rectilinear trajectories
from the source to the screen1. �e parameter ℓ = (L1 + L2) /L1 determines the radius of the shadow

1�e ballistic description corresponds to the limit of geometric ray optics in the case of light.
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projection of the obstacle on the detection screen, Rcl = ℓR, as follows from elementary geometry
(intercept theorem).
Poisson’s spot can be observed with waves both in the near �eld and in the far �eld behind the

obstacle. �e regimes are distinguished by the parameter k = R2/L2λ, which compares the char-
acteristic length scale R2/λ of di�raction patterns to the screen distance L2. �e far-�eld regime is
given by k ≪ 1. �e quasi-classical short-wave limit λ → 0, on the other hand, implies k →∞.
Some characteristics of the ideal Poisson spot can be understood in terms of the Fresnel zone

construction [99]: �e radius rn =
√
nλL1L2/ (L1 + L2) = R

√
n/kℓ de�nes the nth Fresnel zone

on the obstacle plane (n > kℓ). It implies a path length of about L1 + L2 + nλ/2 from the center
of the source to the center of the screen. �at is, the spherical Huygens wavelets emanating from
neighbouring zones interfere destructively at the screen center. Since the di�raction angle required
to reach the screen center from the nth zone (the so-called inclination angle according to [99])
grows with n, higher-order zones contribute less to the central maximum on the screen. We thus
expect a most pronounced Poisson spot at small values of kℓ ∼ 1, which permits contributions of
low orders n.
�e exact shape of the ideal di�raction pattern on the screen can be deducedwith help ofBabinet’s

principle [99]: �e superposition principle implies that thewave amplitudesψP (r) behind a circular
pinhole of radius R and ψD (r) behind the corresponding disc of the same radius must sum up
to the �at undisturbed solution in the absence of any di�ractive element, ψP (r) + ψD (r) = 1.
�e same principle holds trivially for the geometric shadow projections ID (r) = Θ (r − ℓR) and
IP (r) = 1 − ID (r) obtained from a simple ray model. Hence, the di�raction amplitudes on top of
the geometric shadow projection di�ers in both cases merely by a negative sign, ψP (r) − IP (r) =
ID (r) − ψD (r).
Moreover, if the disc is illuminated by a perfect point source, we can roughly estimate the width

of the central di�raction maximum: �e distances between points r1 = (R cos ϕ, R sin ϕ) on the
disc edge to a point rs = (Rs , 0) on the screen range approximately between L2 + (R ± Rs)2 /2L2.
�e average path di�erence of two arbitrary points r1,2 on the disc and the screen coordinate rs
reads as RRs/L2. If we assume that the �rst dark ring around the center spot corresponds to a mean
path di�erence of λ/2, we arrive at the estimate Rs ≈ L2λ/2R = R/2k for the radius of the Poisson
spot.
In all realistic cases the Poisson spot is washed out due to the �nite source coherence related to

a nonzero radius R0 of the source pinhole. For each o�-center point in the source the Poisson spot
moves away from the screen center by at most L2R0/L1. A pronounced spot is observed as long
as this shi� is small compared to the spot size Rs, which results in the condition R0 < L1λ/2R =
L1R/2L2k. At the same time, the source radius must be bounded by R0 < ℓR, or else there would
be no shadow region of the disc on the screen plane.
�e informed readermay notice that the condition on the required source coherence is similar to

the case of far-�eld di�raction at a grating [9]. Given the grating period d, an incoming beammust
have a divergence angle smaller than λ/d. �is leads to the condition D < 2L1λ/d for a collimation
slit of width D placed at the distance L1. �e advantage of the PSI setup lies in the condition kℓ ∼ 1
for observing a pronounced spot: It admits disc radii R larger than typical grating periods d for a
given wavelength λ, which should make the PSI suitable for heavy (and fast) particles with small
de Broglie wavelengths.
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On the other hand, important features of the di�raction pattern are modi�ed in the presence of a
dispersive interaction between the matter waves and the obstacle. We will �nd out in the following
that this modi�es the width and the height of the central Poisson spot, invalidating the Fresnel zone
construction and Babinet’s principle. More importantly, I will show that a central bright spot could
also appear in the case of classical particles passing the obstacle on de�ected trajectories due to the
attractive force towards the obstacle. �is obscures the distinction between the quantum and the
classical description for large interaction strengths, such that the appearance of the spot per se does
not indicate the wave nature of the particles.

3.1.1. Phase-space description of the ideal eªect

�e present theoretical model of the PSI for matter waves will be based on the phase-space repre-
sentation of quantum states in terms of Wigner functions, which I have used already in Chapter
2. �e basic features of this representation are given in Appendix A.3. Most notably, it serves as a
common and descriptive framework for both quantum and classical descriptions of the setup.
Moreover, I will consider only the paraxial regime, where the di�raction e�ect is con�ned to

those transverse coordinates r = (x , y) on the source, the obstacle, and the detection plane, which
are small compared to the longitudinal extension of the interferometer, R, R0 ≪ L1,2. �is repre-
sents the standard regime for many matter-wave di�raction experiments with collimated beams of
particles. In this case the dimensionality of the problem reduces e�ectively to the two transverse
coordinates (x , y). �e only role of the longitudinal velocity vz is to determine the arrival times
T1,2 = L1,2/vz at the obstacle and the detection screen, and we may simply average the resulting
density pattern on the screen over the velocity distribution of the particle ensemble.
In the following I derive the di�raction and shadow e�ect at an ideal circular aperture, that is,

at an arbitrarily thin and non-interacting disc of radius R. �is will be the quantitative assessment
of the previously discussed properties. �e dispersive interaction between the particles and the
obstacle will be implemented a�erwards.

3.1.1.1. Ideal diªraction pattern

�e two-dimensional Wigner function for a given quantum state of motion ρ reads as

w (r, p) = 1
(2πħ)2 ∫ d2s e ip⋅s/ħ⟨r −

s
2
∣ρ∣r + s

2
⟩. (3.1)

It resembles a classical phase-space probability distribution f (r, p) in the case of incoherent mix-
tures. I therefore describe the initially uncollimated ensemble state behind the source pinhole as

w0 (r, p) =
1

πR20
Θ (R0 − r)D (p) ≡ S (r)D (p) , (3.2)
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with Θ the Heaviside function and D (p) an isotropic and normalized distribution of transverse
momenta ejected from the source2. An ideal point source would correspond to the pure state3
w0 (r, p) = S (r) = δ (r).
�e propagation of the beam from source to aperture is given by the shearing transformation

w0 (r, p) ↦ w0 (r −
p
m
T1, p) , (3.3)

withm the particle mass. We arrive at the plane of the obstacle, which acts here as an ideal circular
transmission mask for the matter waves. It modulates the matter-wave state by the isotropic trans-
mission function t (r) = Θ (r − R) of the ideal disc, ⟨r∣ρ∣r′⟩ ↦ t (r) t∗ (r′) ⟨r∣ρ∣r′⟩ in the position
representation. �is corresponds to the Wigner function transformation [40, 59]

w (r, p) ↦ ∫ d2q T (r, p − q)w (r, q) (3.4)

with the transmission kernel

T (r, p) = 1
(2πħ)2 ∫ d2s e ip⋅s/ħt (r −

s
2
) t∗ (r + s

2
) . (3.5)

A�er a subsequent free propagation to the screen plane we arrive at the Wigner function

w (r, p) = ∫ d2q T (r − pT2
m
, p − q)w0 (r −

pT2
m

− qT1
m
, q) . (3.6)

�e density pattern w (r) on the screen is obtained by integrating over the momentum coordinate.
A substitution of the momentum coordinate leaves us with

w (r) = m2

T22 ∫ d2r0d2p0 S (r0)D (p0)T (r0 +
p0T1
m
,m r − r0

T2
− T1 + T2

T2
p0) . (3.7)

At this point I make use of the Fourier transform of the momentum distribution (i.e. its character-
istic function),

D̃ (s) = D̃ (s) = ∫ d2p e−ip⋅s/ħD (p) ,

D (p) = ∫ d2s
(2πħ)2

e ip⋅s/ħD̃ (s) (3.8)

with D̃ (0) = 1. A�er plugging the explicit form of the kernel (3.5) into the density pattern (3.7),
several steps of calculation lead to the expression

w (r) = [ m
2πħ (T1 + T2)

]
2

∫ d2r0d2s S (r0) D̃ (s)ψ [r + T2
T1

(r0 −
s
2
)]ψ∗ [r + T2

T1
(r0 +

s
2
)] ,

(3.9)

2�is is admissible as long as the transverse coherence of the ensemble is of no concern, that is, if the occupied phase-
space region is much larger than Planck’s quantum of action, R0P0 ≫ ħ, with P0 the width of the momentum distri-
bution D (p).

3�is state is an improper position eigenstate that cannot be normalized. �e correspondingWigner function does not
contain a �nite momentum distribution due to quantum uncertainty, whereas this would be very well possible in a
classical model.
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with the dimensionless amplitude term

ψ (r) = mℓ
2πħT2 ∫ d2r1 exp [

im
ħT2

( ℓ
2
r21 − r1 ⋅ r)] t (r1)

= kℓ ∫ d2u exp [iπkℓu2 − 2πiku ⋅ rR ] t (Ru) . (3.10)

Here I have introduced the dimensionless variable u = r1/R, which represents a two-dimensional
position vector on the obstacle plane in units of the obstacle radius. �is admits a convenient no-
tation in terms of the geometry parameters k = mR2/hT2 and ℓ = (T1 + T2) /T1. See Appendix B.1
for details on how to compute the di�raction amplitude of an ideal disc in practice.

Weak-collimation approximation �e amplitude term (3.10) can be read as the Fourier trans-
form of a function of u with the characteristic length scale of variation δu ∼ 1, asmainly determined
by the transmission function. It is then possible to write ψ (r + δr) ≈ ψ (r) for ∣δr∣ ≪ R. Specif-
ically, we can apply this approximation to drop the s-dependence in (3.9) if the ensemble exiting
the source is poorly collimated, that is, if the spread P0 of the momentum distribution D (p) is
large, P0R ≫ ħ. �e reason is that the Fourier transform D̃ (s) is then con�ned to small arguments
∣s∣ ≪ R. �is leaves us with the conventional form of the di�raction pattern,

w (Ru) = m2D (0)
π (T1 + T2)2 ∫u0≤1 d

2u0 ∣ψ (Ru + L2
L1

R0u0)∣
2
, (3.11)

which is completely su�cient for all practical purposes4. Note that I have plugged in the source
aperture from (3.2) and introduced the dimensionless source coordinate u0 = r0/R0. �e prefactor

I0 =
m2D (0)
(T1 + T2)2

(3.12)

is given by the constant particle density on the screen that would be obtained if the di�racting
disc were removed and the matter waves could transit unobstructedly. �is is shown explicitly in
Appendix B.1.

3.1.1.2. Poisson’s spot

�e characteristic features of the di�raction pattern behind an ideal disc are most pronounced if
we assume the disc to be illuminated by a perfect point source in the center of the source plane.
�e density distribution on the screen then reduces to the simple expression w (r) = I0 ∣ψ (r)∣2.
We note that the di�raction image (3.11) of a �nite-size source may be viewed as an average of
displaced point-source images over the source aperture.

4�e approximation ceases to be valid only in the limit kℓ ≫ 1, or if the obstacle were illuminated by a strongly colli-
mated beam. �e latter case would already imply di�raction at the source pinhole. �e former case would result in
a very narrow Poisson spot that could hardly be observed in an experiment.
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In Appendix B.1, I simplify the expression (3.10) for the di�raction amplitude at an ideal disc,

ψ (r) = 2πkℓ ∫ ∞

1
du u exp (iπkℓu2) J0 (2πku

r
R
)

= i exp(−iπ kr2

ℓR2
) − 2πkℓ ∫ 10 du u exp (iπkℓu2) J0 (2πku

r
R
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ψ1(r)

. (3.13)

�e second line represents a numerically stable form of the solution which shall be used in the
computational analysis of the e�ect. �e �rst term in the second line is a pure phase factor of
modulus one and the second term represents the di�raction amplitude ψ1 (r) of a circular aperture
of radius R, in accordance with Babinet’s principle.
Let me �rst discuss the asymptotic behaviour of the di�raction amplitude far away from the

screen center, r ≫ R/k. For this we can approximate the Bessel function in the integral by its
asymptotic form for large arguments [113], J0 (x) ≈

√
2/πx cos (x − π/4). I show in Appendix B.1

that the magnitude of ψ1 (r) is bounded from above by

∣ψ1 (r)∣ ≤
4kℓ
3

√
R
kr
ÐÐÐÐ→
kr/R→∞

0. (3.14)

�is con�rms the intuitive picture that far outside the shadow projection (but still inside the screen
area illuminated by the weakly collimated matter-wave beam) the intensity on the screen is not
a�ected by the di�raction at the obstacle, w (r →∞) → I0.
At the same time, the density distribution exhibits a central di�raction maximum in the shadow

region behind the disc, Poisson’s spot, as easily shown by evaluating the amplitude function (3.13)
at r = 0. We �nd that ψ (0) = i exp (iπkℓ), and that the central intensity, w (0) = I0, is as large as it
would be without the obstacle. In other words, the ideal di�raction image of a point source always
exhibits a peak in the center of the disc shadow, whose height and position are independent of the
PSI geometry and the particle velocities.
O� center, however, the di�raction image does depend on these parameters, as demonstrated in

Figure 3.2. �ere, I plot radial cuts of the Poisson-spot di�raction images of a perfect monochro-
matic point source for di�erent geometry parameters. �e density distributions are normalized to
the unobstructed value I0. �e le� and the right panels correspond respectively to k = 0.2 and
k = 2. �e distances L1,2 are assumed to be equal, ℓ = 2, in the top panels, whereas we chose an
asymmetric con�guration, ℓ = 1.2, for the bottom panels. We observe that the width of the central
spot depends mainly on the parameter k; it gets narrower with larger values of k. We can estimate
the width Rs of the central peak by the �rst zero of the Bessel function5 in (3.13), J0 (2πkRs/R) = 0
at Rs ≈ 0.4R/k. An upper limit for the source radius R0, at which a pronounced Poisson spot is still
visible, is obtained in the same way,

R0 ≲ 0.4
L1R
L2k

= 0.4 hT1
mR
. (3.15)

5 For larger values r > Rs the integral in the second line of (3.13) extends over positive and negative intervals of the
Bessel function. �ey cancel in parts and should therefore decrease the di�raction amplitude ψ1 (r) signi�cantly.
Of course, the quality of this estimate varies with di�erent values of kℓ, which enters the same integral through the
complex Gaussian function.
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Figure 3.2. Radial cuts of the ideal Poisson spot pattern from a monochromatic point source for di�erent geometry
parameters k, ℓ (see text). �e k-value is given by 0.2 in both panels on the le�, and by 2 on the right. I plot the
results for a symmetric con�guration, ℓ = 2, in the top row, and for the asymmetric case ℓ = 1.2 in the bottom row.
�e black dotted line represents the geometric shadow projection of the obstacle on the screen. �e vertical axis is
normalized to the constant intensity I0 in the absence of the obstacle. All four cases exhibit a central di�raction
maximum of the same height, Poisson’s spot.
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At larger source radii, the Poisson spot would be smeared out by more than its own width.
Concludingly, we can distinguish two rami�cations for a realistic implementation of the PSI with

matter waves:

☀ �e di�raction pattern must be averaged over the �nite longitudinal velocity distribution of
the matter-wave beam. In the absence of any particle-obstacle interaction, this a�ects merely
the geometry parameter k = k (vz), that is, the width of the Poisson spot and the o�-center
features of the di�raction pattern. It does not diminish the central spot—one of the crucial
advantages of the PSI setup.

☀ �e di�raction pattern must be averaged over realistic source apertures R0 > 0, which must
be made large enough to transmit a detectable number of particles. �is may diminish the
visibility of the Poisson spot signi�cantly in practical implementations with fast particles and
large k-values, as shown in Figure 3.3. In the le� panel I plot the idealmonochromatic di�rac-
tion images for k = 0.2 (solid line) and k = 2 (dashed line) assuming a source radius of
R0 = R/2 and ℓ = 2. �e central maximum almost vanishes in the latter case. �is is to be
compared to the corresponding point-source images in Figure 3.2. �e quantitative depre-
ciation of the Poisson spot maximum is shown in the right panel, where the height of the
central spot is plotted as a function of the source radius for both cases.

A third main rami�cation, yet to be analyzed, is the in�uence of dispersive interactions between
the particles and the obstacle. We will see below how this can modify the di�raction pattern dra-
matically in the case of large particles.

3.1.1.3. Classical ideal shadow projection

I mentioned the ideal geometric shadow projection of the obstacle in the preceding section to em-
phasize the quantum nature of the Poisson spot phenomenon. �e shadow image on the screen of a
disc of radius R illuminated by a perfect point source has a radius of ℓR. �is follows from geomet-
ric considerations if we assume that the particles that are ejected from the source in all directions
and travel to the screen on classical rectilinear trajectories.
We can describe this mathematically by replacing the two-dimensionalWigner functionw (r, p)

with the classical phase-space distribution function f (r, p) in the above phase-space framework. In
fact, the initialmixed ensemble state f0 (r, p) at the source is identical to the initialWigner function
(3.2) of the quantummodel. �e essential di�erence between the classical and the quantum phase-
space model lies in the state transformation at the obstacle. Classically, the ideal disc of radius R
simply masks the incoming particle ensemble by blocking the ones that hit the disc, f (r, p) ↦
∣t (r)∣2 f (r, p). It results in the classical transmission kernel

Tcl (r, p) = ∣t (r)∣2 δ (p) = Θ (r − R) δ (p) , (3.16)

which must be compared to the quantum kernel (3.5). �e latter results in a partially negative
Wigner function characterizing a quantum superposition state, whereas the former upholds the
compulsory positivity of the classical distribution function.
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By replacing the transmission kernel in the quantum formula (3.7) we arrive at the classical den-
sity distribution on the screen,

f (r) = m2

(T1 + T2)2 ∫ d
2r0 S (r0)D (m r − r0

T1 + T2
) ∣t (T1r + T2r0

T1 + T2
)∣
2
. (3.17)

Once again, if we restrict to screen coordinates r = Ru that are well within reach of the unobstructed
particle beam we are le� with the screen image of an uncollimated particle beam partially blocked
by the disc,

f (Ru) = I0
π ∫u0≤1 d2u0Θ (∣L1Ru + L2R0u0

L1 + L2
∣ − R) . (3.18)

�is is the classical counterpart of (3.11). It vanishes for all u < ℓ − L2R0/L1R. In other words,
there exists a classical shadow region behind the disc as long as the source radius satis�es R0 <
R (L1 + L2) /L2. Any observation of particles in this shadow region would indicate their quantum
nature.

3.1.2. Modi®ed eªect in the presence of interaction

In practice, the quantum-classical distinction in a matter-wave PSI is obscured by the dispersive
interaction between the circular obstacle and a passing particle. Given the polarizability of the
particle and the dielectric properties of the obstacle material, mutually induced virtual dipoles give
rise to a van der Waals-type potential attracting the particle towards the obstacle if it is su�ciently
close to its walls. In the following I will restrict to (dielectric or metallic) spheres and thin discs, the
most relevant obstacle candidates for practical implementations.
So far I have modelled the obstacle as an arbitrarily thin opaque disc on the obstacle plane at

distance z = L1 from the source, as sketched in Figure 3.1. In the following I will consider obstacles,
which are su�ciently thin so that we can still specify an obstacle plane and a two-dimensional
binary function ∣t (r)∣ describing the transmission of matter waves through the plane6.

3.1.2.1. Modi®ed diªraction pattern

�e weak short-time interaction between a collimated matter-wave beam and a thin di�ractive
element can be assessed by means of the standard eikonal phase [40, 59, 60]

ϕ (x , y) = − 1
ħvz ∫ dz V (x , y, z) . (3.19)

It approximates the classical action and the wave front curvature accumulated by the matter waves
when they scatter at the interaction potential V (x , y, z) with a large longitudinal velocity vz . �e
expression is valid in the longitudinal high-energy limit, where the kinetic energy of the particles
exceeds by far the average interaction strength, andwhere the transversemotion of thematter-wave
state is restricted to small momenta, ∣px ,y∣ ≪ mvz , playing no role during interaction. I refer the
reader to my previous work [59, 60] for a detailed analysis of the eikonal approximation and its
validity.

6�e use of thick obstacles would be counterproductive in practice, because it would also aggravate the interaction
e�ect and its destructive in�uence on the quantum visibility.
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Here we consider a cylindrically symmetric potential V (x , y, z) = V (
√
x2 + y2, z) and append

the corresponding eikonal phase factor exp [iϕ (r)] to the transmission function of the obstacle. In
the case of an attractive potential wemust not forget an important additional e�ect: Particles in close
vicinity of the obstacle may be captured and absorbed by its walls, increasing the e�ective obstacle
radius by ηR. �e parameter η depends on the speci�c potential and on the particle velocity as well,
which adds to the dispersive nature of the interaction e�ect. �e modi�ed transmission function
reads as t (r) = Θ (r − R − ηR) exp [iϕ (r)], and the modi�ed di�raction pattern is obtained by
replacing the amplitude function in (3.11) with

ψ (r) = 2πkℓ ∫ ∞

1+η
du u exp [iπkℓu2 + iϕ (Ru)] J0 (2πku

r
R
) . (3.20)

�e concrete evaluations of the modi�ed amplitude will be implemented below using the numeri-
cally stable expression

ψ (r) = i exp(−iπ kr2

ℓR2
) − 2πkℓ ∫ 1+η

0
du u exp (iπkℓu2) J0 (2πku

r
R
)

+ 2πkℓ ∫ ∞

1+η
du u exp (iπkℓu2) J0 (2πku

r
R
) [e iϕ(Ru) − 1] . (3.21)

�e �rst line is given by the stable form of the ideal di�raction amplitude with an increased obstacle
radius, the second line is an in�nite integral over the di�erence between the ideal and the modi�ed
case. I note that the latter converges much better than (3.20) in numerical implementations because
the integrand drops to zero outside the limited range of the interaction potential.

3.1.2.2. Modi®ed shadow pattern

�e particle-obstacle interaction potential V (r, z) also modi�es the classical shadow projection
on the screen, as the attractive force Fr = −∂rV (r, z) de�ects those particles towards the screen
center whose trajectories come close to the obstacle walls. �e de�ection of each particle can be
approximated by the net momentum kick

q (r) = − ∫ dzvz ∂rV (r, z) r
r
= ħ∂rϕ (r) r

r
(3.22)

given the same parameter constraints as for the eikonal phase (3.19). �e classical transmission
kernel (3.16) is turned into

Tcl (r, p) = Θ (r − R − ηR) δ [p − q (r)] , (3.23)

which represents the classical counterpart of the eikonal approximation [59, 60]. It will be conve-
nient to express the momentum kick in terms of the dimensionless function

Q (r) = − R
hk

q (r) ⋅ r
r
= R
hkvz ∫ dz ∂rV (r, z) = −R∂rϕ (r)

2πk
, (3.24)

which is always non-negative in the case of an attractive interaction. Moreover, themomentumkick
will induce arbitrarily large de�ections of those trajectories that come close to the obstacle surface,
Q (u → 1 + η) ≫ 1, if we assume a divergent van der Waals potential.
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Putting everything together, the ideal classical density distribution (3.18) changes to

f (r) = I0
πR20 ∫ d

2r0Θ [R0 − ∣r0 −
T1
T2

r + q (T2r0
ℓT1

) T1
m

∣]Θ [r0 −
ℓT1
T2

(1 + η)R] . (3.25)

In particular, the intensity at the center of the screen becomes

f (0) = 2I0 ∫ ∞

0
du0 u0Θ [1 − ∣u0 −

RT1
R0T2

Q (T2R0u0
ℓT1

)∣]Θ [u0 −
RT1
R0T2

ℓ (1 + η)] . (3.26)

We notice that the two Heaviside functions do overlap for those values of u0 which correspond
to su�ciently large momentum kicks close to the obstacle. �is shows that the classical model
also predicts a non-vanishing intensity at the center behind the obstacle, f (0) > 0. �erefore the
observation of a signal at r = 0 cannot be taken as a proof of the quantum nature of the matter
waves in the presence of interactions any longer. �is highlights that the analysis of matter-wave
experiments must include a quantitative comparison of the data with both the quantum and the
classical model.
�e appearance of a ‘classical Poisson spot’ can be made more explicit in the limit of a perfect

point source. In this case the classical shadow pattern on the screen plane becomes

f (r) = I0ℓ
2

r
{ r+
∣ℓ − RQ′ (r+)∣

+ r−
∣ℓ − RQ′ (r−)∣

} for r± ≥ (1 + η)R., (3.27)

as shown inAppendix B.2. �e density distribution at each point on the screen is thusmade up by at
most two contributions r+ and r−, which can be understood from basic reasoning. To see this, let us
consider an arbitrary point r on the screen plane. We may set r = (r, 0) without loss of generality
due to the radial symmetry of the problem. Given that r is the endpoint of rectilinear particle
trajectories from the obstacle plane, only two such trajectories are allowed by the symmetry: One
must originate from a point (r+, 0) on the positive x-axis, and one from another point (−r−, 0) on
the negative x-axis. Given that these two points would be mapped to (±ℓr±, 0) on the screen plane
in the absence of the interaction, the momentum kick must provide the appropriate de�ection,

∣q (r±)∣
T2
m

= RQ (r±) = ℓr± ∓ r. (3.28)

�e solutions of these two implicit equations, if there are any, represent the two coordinates r± on
the obstacle plane contributing to the density (3.27). Of course, they must also be larger than the
e�ective obstacle radius, r± ≥ R + ηR, to constitute valid solutions. �e derivative of the condition
(3.28) with respect to those coordinates determines the weight of both contributions, as it relates
the particle �ux through a surface element on the obstacle plane with the intensity arriving at a
surface element on the screen.
If we assume an attractive force of the obstacle that diverges at its walls, then Equation (3.28)

will yield non-vanishing contributions reaching the screen center, r = 0. We note that the cor-
responding density distribution (3.27) diverges like 1/r at the center. However, this constitutes a
non-essential singularity, which disappears as soon as we integrate the particle density over a �nite
surface, or average it over a �nite size of the source. �e relevant quantities remain �nite for all
practical settings.
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3.1.2.3. Interaction potential at dielectric discs and spheres

I proceed by specifying the obstacle-particle interaction for spheres and discs in order to assess the
interaction e�ect in practical implementations of the PSI setup. Here, I will resort to a simpli�ed
and approximate treatment of the interaction. An exact description is beyond the scope of this work
as it would require an in-depth analysis of the Casimir force between the polarizable particles and
the obstacle material, as well as a detailed knowledge about their dielectric properties.
�e simpli�ed present model will be based on the asymptotic Casimir-Polder formula V (d) =

−C4/d4 for the retarded van der Waals interaction between a polarizable point particle and an in-
�nite conducting surface at the distance d [114]. �is rough estimate certainly overestimates the
interaction strength at large distances d ≳ R from the obstacle surface, but a proper assessment
would involve sophisticated numerical methods [115,116]. �e present model depends solely on the
static dipole polarizability χ = χ (ω = 0) of the particle, which determines the interaction strength
through the asymptotic Casimir-Polder parameter C4 = (3ħc/8π) χ/4πε0. I estimate the e�ective
increase ηR of the obstacle radius by the critical distance to the surface below which a classical
particle would hit the surface during passage. We distinguish two obstacle geometries:

Diªraction at a metallic sphere In the case of a spherical conductor obstacle centered in the
obstacle plane at z = L1, I estimate the potential by the asymptotic Casimir-Polder expression using

V (x , y, z) = −C4/ [
√

x2 + y2 + (z − L1)2 − R]
4
. �e corresponding eikonal phase integral (3.19)

can be carried out explicitly [63],

ϕ (Ru) = C4
ħvzR3

⎧⎪⎪⎨⎪⎪⎩

2 + 13u2

3 (u2 − 1)3
+ u4 + 4u2

(u2 − 1)7/2
⎡⎢⎢⎢⎢⎣

π
2
+ arctan

⎛
⎝

√
1

u2 − 1
⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (3.29)

�e radial coordinate is once again written in units of the obstacle radius, r = Ru. �e phase is
measured in units of the prefactor

ϕsph =
C4

ħvzR3
= 3c
8πvz

χ
4πε0R3

, (3.30)

while the coordinate dependence is entirely determined by the term in the curly brackets. �e
classical momentum kick (3.24) reads as

Q (Ru) =
ϕsph
2πk

⎧⎪⎪⎨⎪⎪⎩

5u (10 + 11u2)
3 (u2 − 1)4

+
u (3u4 + 24u2 + 8)

(u2 − 1)9/2
⎡⎢⎢⎢⎢⎣

π
2
+ arctan

⎛
⎝

√
1

u2 − 1
⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (3.31)

�e relative increase η > 0 of the obstacle size is derived in Appendix B.3 by means of a classical
scattering approach. It is (implicitly) de�ned by the classical turning point of the particle trajectory
de�ected by the sphere,

η =
√
2 (υ + 1)3

υ + 2 − 1, with υ5

υ + 2 =
C4
ER4

. (3.32)

�e term E > 0 denotes the kinetic energy of the incoming particle. In the paraxial limit considered
here, the latter is almost entirely covered by the longitudinal motion, and we can safely approximate
E ≈ mv2z/2.
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Diªraction at a metallic disc I model the van der Waals attraction of a disc obstacle of radius
R and thickness b by the two-dimensional potential V (x , y) = −C4/ (

√
x2 + y2 − R)

4
, which only

acts on the particle while it passes by the side wall of the disc. �is happens during the time interval
t = b/vz , which results in the eikonal phase and momentum kick

ϕ (Ru) = C4b
ħvzR4

1
(u − 1)4

≡ ϕdisc
(u − 1)4

, (3.33)

Q (Ru) = 2ϕdisc
πk

1
(u − 1)5

. (3.34)

We obtain the e�ective increase η of the disc radius from the time tc it takes a particle to hit the
surface surrounding the disc if it is initially at rest above this surface. �e particles that pass the
disc in close proximity will be absorbed by its walls before they can leave, tc < b/vz . �is results in
the condition

tc = ∫ Rc

R
dr

√
− m
2V (r) =

√
m
2C4

(Rc − R)3

3
!< b
vz

(3.35)

for all Rc < (1 + η)R. We �nd η = (3b
√
2C4/m/R3vz)

1/3
.

A direct comparison between the disc and the sphere reveals that the characteristic interaction
strengths di�er in proportion to the disc thickness, ϕdisc/ϕsph = b/R.

3.1.2.4. Numerical analysis of realistic scenarios

We are now in a position to analyze the modi�ed Poisson spot pattern of realistic cluster particles
in an exemplary PSI setup. �e distances between the source, the obstacle and the screen shall be
equal, ℓ = 2, and the geometry parameter shall be �xed to k = 0.2. �e obstacle shall be given by a
suspended gold nanosphere of radius R = 500nm or, alternatively, by a b = 10 nm-thick disc of the
same radius. As test particles I shall consider

(I) the C60 fullerene with the massm = 720 amu, the longitudinal velocity vz = 200m/s, and the
static polarizability χ/4πε0 = 90Å3 [117]. In this case the setup extends over the distances
L1 = L2 = 45 cm. Bright beams of fullerenes are routinely created in the lab, and they have
been used in di�raction experiments for more than a decade [12].

(II) as amore ambitious particle, the nanocluster Au100 consisting of 100 gold atomswith the total
mass m = 19700 amu, the velocity vz = 2m/s, and the polarizability7 χ/4πε0 = 400Å3. �is
requires distances of L1 = L2 = 12 cm. Gold clusters can be formedwith themagnetron sputter
technique [118], and they are considered good candidates for future interference experiments
[10].

In order to detect the Poisson spot patterns, the particles could be deposited on a �at atomic surface
and imaged by means of scanning tunneling microscopy. �is lithographic detection method has
already proven successful in other di�raction experiments with fullerenes [119].

7 I use the standard formula χ = 4πε0R3 for the static polarizability of an ideal metal sphere of radius R [52]. �e latter
is estimated by means of the bulk mass density ρ = 19300 kg/m3 of gold, R = (3m/4πρ)1/3 ≈ 7.4Å.
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Figure 3.4. Radial cuts of the interaction-modi�ed quantum (solid) and classical (dashed) Poisson spot pattern from a
monochromatic point source for di�erent particle-obstacle con�gurations. �e geometry parameters are �xed at
(k, ℓ) = (0.2, 2). �e upper row corresponds to a spherical obstacle of radius R = 500nm, the lower row to a disc
of 10 nm thickness. �e le� and the right column represent particle species (I) and (II), respectively (see text). �e
ideal shadow projection of the obstacle (dotted line) is also plotted for reference. I have normalized the intensity to
the unobstructed value I0 , as in Figure 3.2.
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Figure 3.5. Quantum (solid) and classical (dashed) Poisson spot maximum as a function of the source radius R0 . Once
again, I have �xed the con�guration at (k, ℓ) = (0.2, 2), and I assume that the gold clusters (II) are di�racted at a
spherical obstacle (le�) and at a disc (right) of 500nm radius. �e corresponding point-source patterns are shown
in the le� column of Figure 3.4.
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In the upper panels of Figure 3.4 I plot the quantum di�raction and the classical shadow image of
a spherical obstacle, which is illuminated by both particle species from a perfect point source. �e
le� and the right panel correspond to species (I) and (II), respectively. �e quantum (solid) and the
classical (dashed) results were obtained by employing the above van der Waals interaction model
and evaluating the expressions (3.21) and (3.27) numerically. �e dotted black line represents the
ideal geometric shadow projection of the obstacle for reference.
�e plotted results are to be compared to the ideal di�raction pattern in the top-le� panel of

Figure 3.2. We notice an enhanced central di�raction maximum due to the focusing e�ect of the
interaction, as well as the divergence of the classical intensity that we encountered in Section 3.1.2.2.
Whereas the fullerene pattern is only slightly perturbed by the interaction e�ect, the gold results
exhibit a drastic change with respect to the ideal pattern. �e modi�cation is less severe at the disc
obstacle, as shown in the bottom panels of Figure 3.4.
In toto, the quantum and the classical point-source patterns are well distinguishable by their

shape. �is is no longer true when the density distribution on the screen is smeared out over re-
alistic source radii. �e central di�raction peak broadens and attenuates until it cannot be distin-
guished from the classical maximum. �is is illustrated in Figure 3.5, where the height of the central
maximum of the quantum (solid) and the classical (dashed) pattern is plotted as a function of the
source radius. Here, we restrict ourselves to the gold clusters (II).�e case of a sphere is depicted on
the le�, and the one of a disc on the right. Assuming a realistic source radius of R0 ≈ R = 500nm,
a clear distinction between the quantum and the classical Poisson spot can at most be made using
the thin disc.
Finally, I should also mention the issue of surface corrugations, which cannot be avoided when

using nanofabricated spheres or discs as obstacles. Such irregularities disturb the radial symmetry
of the problem by adding a random angular �uctuation of the obstacle radius, which deteriorates
the visibility of the central di�raction maximum. �ese �uctuations are expected to play no role as
long as they are smaller than the interaction-induced increase ηR of the e�ective obstacle size. In
fact, the �uctuations can be kept on the nanometer level with present-day technology, and they are
thus not considered here.
�e present analysis demonstrates that the PSI scheme, although useful to intrefere relatively

largemolecules such as fullerenes [22], is not sowell suited to test the quantumwave nature of heavy
nanoparticles beyond the level of 104 amu, which can be achieved nowadays using optical di�raction
gratings in the Talbot-Lau scheme [96]. �e PSI shares this drawbackwith other schemes ofmatter-
wave di�raction at material apertures. At one point or another, they all su�er from the destructive
in�uence of dispersive particle-wall interactions, whichmakes it di�cult to observe a distinguished
quantum interference signal.

3.2. Talbot-Lau interferometer (TLI) scheme

A�er a detailed assessment of the PSI scheme, including itsmain drawbacks when it comes to heavy
particles, I now turn to a di�erent single-particle interference scheme in the near �eld, the Talbot-
Lau interferometer (TLI). It is based on the Talbot e�ect of optical self-imaging at a periodic grating
[120–123]: One observes a recurring image of the grating mask at multiples of the characteristic
distance LT = d2/λ behind the grating (of period d) if it is illuminated by a monochromatic plane
wave of wavelength λ. Fractional images appear in the intensity distribution at other distances L in
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between, which leads to the emergence of the so-called Talbot carpet [123]. In practice, the �nite
number of illuminated slits N con�nes this self-imaging e�ect to the near �eld behind the grating8,
L ≤ NLT.
�e multi-grating Talbot-Lau scheme produces a similar near-�eld interference e�ect and op-

erates with less stringent coherence requirements [122–124], which facilitates matter-wave inter-
ference with thermal ensembles of particles [61]. �e quantum interference e�ect appears in the
form of a periodic fringe pattern whose amplitude varies strongly with the distance L between the
gratings of the interferometer. Also here, recurrences appear in steps of the Talbot length LT.
Until the present day, matter-wave TLI experiments have been conducted with atoms, molecules

and molecular clusters [12, 18, 97]. I focus here on the molecular TLI experiments that have been
performed in Vienna for more than a decade using three di�erent implementations of the scheme.
�ey are sketched in Figure 3.6.
�e conventional TLI scheme [61] with three identical material gratings is depicted in Panel (a).

An incoherent beam of particles9 enters the interferometer through the �rst gratingmaskG1, which
acts as an array of collimation slits. �is imprints a certain amount of spatial coherence over mul-
tiple grating periods d onto the matter-wave beam state, a�er it has traversed the distance L along
the z-axis of the interferometer to the second gratingG2. Here, the actual di�raction takes place, as
G2modulates the amplitude and/or the phase of the impingingmatter waves. �e outgoingwavelets
interfere and a periodic fringe pattern appears in the density distribution of the beam a�er exactly
another distance L behindG2. In a sense, each slit ofG1 represents a partially coherent matter-wave
source producing a Talbot interference image behind G2, but there is no phase coherence between
neighbouring source slits. A visible fringe pattern can therefore only be established at �xed dis-
tances behind G2, where the individual Talbot images overlap ‘in phase’. Slight deviations from this
‘resonance con�guration’ (of equal distances and equal grating periods)10 lead to the disappearance
of the interference fringes.
�e third grating G3 merely serves the purpose of detecting the fringe pattern when a spatially

resolving screen is unavailable or impractical11. One simply shi�s G3 with respect to the other
two in the direction of the grating, de�ned as the x-axis in the following. �e fringe pattern is
reconstructed by recording the total outgoing particle �ux modulated by G3 as a function of the
shi�.

8�e so-called Talbot length LT gives the distance behind the grating where the two �rst order interference maxima
between neighbouring grating slits are separated by a single grating period (in the paraxial approximation). At the
distance L = NLT behind the grating, the maxima would be split over all N illuminated grating slits.

9An incoherent beam is understood here as an essentially uncollimated beam with a broad distribution of velocity
components along the grating axis x. �is is equivalent to stating that the corresponding density operator ρ of the
transverse motion does not exhibit any o�-diagonal elements, i.e. spatial coherences, between neighbouring grating
slits.

10 In general there is more than one such ‘resonance con�guration’ of grating periods and distances permitting a visible
Talbot-Lau fringe pattern [60, 61]. I will restrict most of the analysis to the symmetric arrangement implemented in
Vienna, where all three gratings have the same period d and inter-grating distance L, as depicted in Figure 3.6. A
generalization of the theory presented in Section 3.2.1 to arbitrary con�gurations will be sketched in Appendices B.4
and B.5.

11�is is o�en the case considering that the grating period is of the order of a few hundred nanometers and that the
source brightness and detection e�ciency of many large molecules is low. Nevertheless, Talbot-Lau interference
with fullerene molecules was demonstrated also by depositing the molecules on an silicon surface instead of using a
third grating [119].
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(a)

(b)

(c)

G1

G2

G3

gravity

Figure 3.6. �e three-grating con�gurations currently used in Talbot-Lau interferometry withmolecules and clusters, as
described in the text. An incoherent matter-wave ensemble enters from the le�. Coherence is prepared at the �rst
grating G1 , di�raction takes place at G2 , and the interference fringes are detected with help of a third grating G3 .
(a) �e conventional TLI scheme with three identical grating apertures of equal period d and distance L. (b) �e
KDTLI scheme, where G2 is implemented by a standing laser wave and the interference e�ect results from a pure
phase modulation of the matter waves. (c) �e OTITLI scheme with three optical standing-wave gratings, which
are realized by ionizing laser pulses re�ected o� a mirror. �e OTITLI is a time-domain con�guration where the
grating pulses illuminate a moving cloud of particles at three �xed instants in time, t = 0, T , 2T , whereas the (a)
and (b) are stationary con�gurations where a continuous beam of particles passes a �xed spatial arrangement of
gratings at z = 0, L, 2L.
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�e TLI is a single-particle near-�eld scheme where the di�erent di�raction orders behind G2
overlap in space and interfere to form the fringe pattern, as opposed to, say, a three-grating Mach-
Zehnder con�guration in the far �eld [125] where only a few di�raction orders are involved. Two
points speak in favour of the near-�eld scheme. First, the setup requirements are less demanding for
higher masses than in the far �eld. �e fringe pattern can be observed when the distance between
the gratings is at least of the order of the Talbot length, L ≳ LT = md2vz/h, with m and vz the mass
and the longitudinal velocity of the particles [12]. At �xed interferometer length L and growingmass
m, the grating period d decreases merely like 1/√mvz , as opposed to a far-�eld scheme with linear
scaling. Second, unlike in far-�eld di�raction, there is no need to collimate the initial matter-wave
beam to a transverse momentum spread of less than the grating momentum h/d at the expense of
most of the signal in order to observe the interference e�ect.
It turns out, however, that the dispersive van der Waals interaction between the particles and

the walls of the second grating introduces a strong and uncontrollable velocity dependence of the
interference fringes [5,102]. �is is because near-�eld interference involves many di�raction orders
and is thus more sensitive to distortions of the exact shape and curvature of the di�racted matter-
wave fronts, which are induced by the van der Waals interaction close the grating walls. Slower
particles are more strongly a�ected since they spendmore time in the vicinity of the grating. Hence
the dispersive nature (i.e. velocity dependence) of the interaction e�ect.
For heavy particles a high fringe visibility can be achieved only by means of a narrow velocity

selection at the cost of overall signal [102]. It was found that one could alleviate this problem by
replacing the central grating with a standing laser wave [103], as depicted in Figure 3.6 (b). �e
interference e�ect in this Kapitza-Dirac Talbot-Lau Interferometer (KDTLI) scheme is induced by
the pure phase modulation of matter waves at the light grating, rather than by di�raction at an
aperture. �e phase modulation is related to the dispersive dipole interaction of the particles with
the optical �eld, which has a weaker velocity dependence and can be controlled by varying the laser
power. We will have a closer look on the KDTLI in Section 3.2.2. It is currently the working-horse
setup in Vienna and it has led to the latest mass records of the order of 104 amu [96].
Still, the dispersive nature of such a stationary grating con�guration represents a major obstacle

to reaching substantially greater masses, even more so since van der Waals interactions remain
present in the �rst and the third grating. Although the interaction-induced phase modulation of
thematter waves is of no concern atG1 andG3 (since their purpose is to actmerely as a transmission
mask), the attraction to the walls may become so strong that large particles will ultimately stick to
them and clog the grating slits [10]. One could consider making the walls of the grating masks
thinner, but then they are more prone to break upon the heavy-particle bombardment.
Such problems are alleviated by changing to a pulsed con�guration with optical depletion grat-

ings, that is, with standing-wave gratings that remove particles in the matter-wave state at the �eld
antinodes. Figure 3.6 (c) depicts the current implementation of this scheme, the Optical Time-
Domain Ionizing Talbot-Lau Interferometer (OTITLI), which has been applied so far to small
molecular cluster particles [13]. Here, the gratings are generated by three equally timed vacuum-
ultraviolet (VUV) laser pulses re�ected o� a single mirror [10, 104]. Photo-ionizable particles are
injected in the form of dilute clouds �ying alongside the mirror surface to the detector; they are
exposed to the three grating pulses at �xed moments in time, t = 0, T , 2T , irrespectively of their
precise position and velocity (as opposed to a stationary con�gurationwhere the timing depends on
the particle velocity vz). �e gratingsmodulate both the phase and the amplitude of the illuminated
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matter waves, as they ionize and remove particles from the ensemble via single-photon absorption
in the �eld antinodes. In this way, the standing-wave pulses form absorptive masks, as required
for the �rst and the third grating. I have presented the working principle of optical depletion or
ionization gratings already in Chapter 2 on page 18�. Here, I will develop a theoretical model of the
OTITLI scheme in Section 3.2.3.
An important property of the TLI scheme in general is that it admits a classical moiré shadow

e�ect. �at is to say, a fringe patternmay as well appear in a classical hypothetical description of the
scheme in terms of ballistic particle trajectories. As they are partially blocked and/or de�ected by
the grating apertures, a periodic density modulation can occur behind the second grating as well,
albeit with a di�erent dependence on the inter-grating distance (or particle velocity). �erefore,
a non-vanishing fringe contrast by itself does not prove that the particles have interfered. As in
Poisson’s spot experiment, we must provide both the quantum and the classical model for the TLI
and we must compare the results of both models quantitatively with the measured data.

3.2.1. Generic description of the Talbot-Lau scheme

Before discussing the details of the variousmanifestations of the TLI scheme, let me �rst present the
underlying theoretical model applicable to all of them. It is based on the one-dimensional phase-
space description of generic Talbot-Lau interferometry developed in [40, 59, 60]. �e present for-
mulation will be done entirely in the time domain, that is, I will describe the e�ect of the three
gratings by quasi-instantaneous state transformations separated by two long stretches of free evo-
lution in between [10]. �e corresponding time intervals, T1 and T2, will be of the order of the
Talbot time,

TT =
md2

h
. (3.36)

It depends on the particle mass m and on the grating period d. In a stationary TLI setup, where
the gratings are arranged at �xed distances L1,2 on the z-axis, the time intervals depend also on
the longitudinal velocity vz of the particles, T1,2 = L1,2/vz . �is can easily be taken into account
in the description by averaging the results over the initial velocity distribution of the matter-wave
ensemble12. In the following assessment of the dispersive TLI scheme we will always assume (and
the results will be dependent on) a �xed velocity parameter vz .
�e transverse y-coordinate can be omitted, provided that the gratings are su�ciently extended

along the y-axis and that thematter-wave ensemble is at all times located well within this extension.
Generally speaking, I assume here that all particles see the same one-dimensional grating pro�les,
irrespectively of their y-z-position13. Hence, we may work with the one-dimensionalWigner func-
tion,

w (x , p) = 1
2πħ ∫ ds e ips/ħ⟨x −

s
2
∣ρ∣x + s

2
⟩, (3.37)

12�is parametric treatment is only allowed in the paraxial limit, where the transverse state of the matter-wave beam
remains separable from its longitudinal motion taking place at much larger velocities, and where the gratings act
solely on the transverse part. �e same formal limitation applies to the description of Poisson’s spot, as noted in
Section 3.1.1. It is automatically ful�lled in all relevant experiments, where the grating structures are much smaller in
size than the required distances between them.

13 In the case of the pulsed OTITLI scheme, this implies that the lasers have a su�ciently wide beam pro�le and that the
particle ensemble is well centered in the laser beam during each grating pulse.
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as given in Appendix A.3. �e classical description of the TLI will be given in the same framework,
using the classical phase-space distribution f (x , p) instead of the Wigner function.

3.2.1.1. Coherent grating transformation in phase space

�e coherent state transformation at each of the short (resp. thin) gratings k = 1, 2, 3, is convention-
ally described in terms of a complex transmission function, t(k) (x) = ∣t(k) (x)∣ exp [iϕ(k) (x)],
modulating both the amplitude and the phase of the matter waves. I have introduced it in Section
2.1.4 on page 18�. An incoming wavefunction transforms as ⟨x∣ψ⟩ ↦ t(k) (x) ⟨x∣ψ⟩. �e periodicity
of the grating admits a Fourier expansion of the transmission function,

t(k) (x) =
∞

∑
n=−∞

b(k)n exp(2πinx
d

) , (3.38)

which unfolds the grating transformation in momentum space: A momentum eigenstate ∣p⟩ is
transformed into a superposition of discrete plane-wave components ∣p+ nh/d⟩ separated by mul-
tiples of the elementary grating momentum h/d,

⟨x∣p⟩ ↦ t(k) (x) ⟨x∣p⟩ =
∞

∑
n=−∞

b(k)n exp(2πinx
d

) ⟨x∣p⟩ =
∞

∑
n=−∞

b(k)n ⟨x∣p + n h
d
⟩. (3.39)

Each Fourier component b(k)n corresponds to a di�erent order of di�raction.
�e modulus of the transmission function is responsible for the amplitude modulation e�ect;

its square determines the probability of transmission at each position x. �e latter is given by the
aperture function, ∣t(k) (x)∣2 = ∑n Θ ( f d/2 − ∣x − nd∣), for material gratings with a slit opening
fraction f ∈ (0, 1). �e phasemodulation term ϕ(k) (x) is determined in the eikonal approximation
by an action integral over the particle-grating interaction potential, Eq. (3.19). �is approximation
is valid only for short (resp. thin) gratings, where the free transverse evolution of the matter waves
can be neglected during the interaction. We can describe the van der Waals-type interactions with
the walls of a material grating in the same way as done in the PSI case in Section 3.1.2. A detailed
model for the transmission function of optical standing-wave gratings is presented in the preceding
chapter, Section 2.1.4 on page 18�. Incoherent modi�cations of the grating transformation will be
included below.
In the phase-space representation, the coherent grating transformation is given by a convolution,

w (x , p) ↦ ∫ dp0 T(k) (x , p − p0)w (x , p0), with T(k) a one-dimensional transmission kernel of
the same form as the two-dimensional kernel (3.5) in the Poisson-spot case. Let me introduce the
Talbot coe�cients in Fourier space to obtain a convenient Fourier notation of the kernel,

B(k)
n (ξ) =

∞

∑
j=−∞

b(k)j (b(k)j−n)
∗

exp [iπ (n − 2 j) ξ] , (3.40)

T(k) (x , p) = ∑
j,n
exp(2πinx

d
) b(k)j (b(k)j−n)

∗

δ [p − ( j − n
2
) h
d
]

= 1
2πħ∑n

exp(2πinx
d

) ∫ ds e ips/ħB(k)
n ( s

d
) . (3.41)
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�e e�ect of the grating transformation on momentum states in (3.39) is re�ected in the explicit
form of the transmission kernel (3.41), which sums over momentum displacements by multiples of
h/d. Note that the Talbot coe�cients are 2π-periodic in ξ, and that the Fourier components of the
grating transmission probability ∣t(k) (x)∣2 are given by B(k)

n (0) = B(k)
n (2πN).

�e classical phase-space transformation has two components, following the same line of argu-
ment as in the description of Poisson’s spot in Sections 3.1.1.3 and 3.1.2.2. �e �rst component is the
ideal grating transformation, which masks an initial phase-space distribution by the aperture func-
tion, f (x , p) ↦ ∣t(k) (x)∣2 f (x , p). �is must be complemented a second component, the eikonal
momentum kick, q(k) (x) = ħ∂xϕ(k) (x). It represents the integrated particle-grating force trans-
ferred to the classical ensemble, f (x , p) ↦ f (x , p − q(k) (x)). Both components can be expanded
in a Fourier series. �e combined classical transmission kernel reads as

T(k)
cl (x , p) = ∣t(k) (x)∣

2
δ [p − q(k) (x)] = 1

2πħ∑n
exp(2πinx

d
) ∫ ds e ips/ħC(k)

n ( s
d
) ,

C(k)
n (ξ) = ∑

j
B(k)
n− j (0) c

(k)
j (ξ) , c(k)n (ξ) = 1

d ∫ d/2

−d/2
dx exp [−2πinx

d
− iξ q

(k) (x) d
ħ

] .

(3.42)

�e classical Talbot coe�cients C(k)
n (ξ) are a convolution of the transmission mask coe�cients

B(k)
n (0) with the eikonal kick coe�cients c(k)n (ξ). In contrast to the quantum coe�cients, the
classical ones are not periodic in the argument ξ. What can be said is that the quantum and the
classical Talbot coe�cients are identical at ξ = 0, where the particle-grating interaction has no
in�uence, C(k)

n (0) = B(k)
n (0).

3.2.1.2. Step-by-step derivation of the Talbot-Lau fringe pattern

With the transmission kernels (3.41) and (3.42) at hand I now derive the Talbot-Lau fringe pattern
in a uni�ed phase-space framefork; the quantum and classical results can be directly related by
interchanging B(k)

n (ξ) ↔ C(k)
n (ξ) at each grating.

�e initial particle ensemble in front of the �rst grating is assumed to be an incoherent mix-
ture uniformly distributed over many grating slits14. In other words, the initial state occupies a
large phase-space area with a spatial extension X0 ≫ d and a momentum spread P0 ≫ h/d mak-
ing it indistinguishable from a classical mixture of the same size. Introducing the normalized and
positive transverse momentum distribution D (p), the initial Wigner function reads asw0 (x , p) =
D (p) /X0, and the passage throughG1 transforms it tow1 (x , p) = ∫ dp0T(1) (x , p − p0)D (p0) /X0.
Note that the initial momentum distribution may depend on the longitudinal momentum pz =

mvz of the particle ensemble in a stationary TLI con�guration, where the particle beam is char-
acterized by a �xed divergence angle α = P0/pz [60]. In the pulsed OTITLI scheme, the function
D (p) is given by the marginal of the full three-dimensional momentum distribution µ (p) of the
particle cloud, D (p) = ∫ dpydpzµ (p, py , pz) [10].

14 I disregard any fringe e�ects related to the �nite number of illuminated grating slits. A way to incorporate these
e�ects is discussed in [59,60] for material grating masks. Here, I will assume an unlimited periodicity of the gratings
throughout the calculation.
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�e free evolution to G2 is given by a shearing transformation in phase space, see (3.3) for the
two-dimensional case. Let me add a constant acceleration a acting on the particles along the x-
axis. It allows us to include, say, gravity or an external de�ection �eld into the model, and it will
lead to an e�ective shi� of the resulting fringe pattern. Free propagation over a time t under the
in�uence of a then shears and displaces both the quantum and the classical state according to the
map w (x , p) ↦ w (x − pt/m + at2/2, p −mat). We arrive at the particle state w3 (x , p) at G3 by
subsequently applying onw1 (x , p) the shearing-displacement rule for the time t = T1, then applying
the second grating kernel T(2) (x , p), and then another shearing-displacement for t = T2.

w3 (x , p) =
1
X0 ∫ dp1 T(2) (x − pT2

m
+ a
2
T22 , p − p1 −maT2)

× ∫ dp0 T(1) (x − pT2
m

− p1T1
m

+ a
2
(T21 + T22 ) , p1 − p0 −maT1)D (p0) (3.43)

�e Talbot-Lau fringe pattern is to appear in the spatial density distribution at G3, which we ob-
tain by integrating the w3 (x , p) over the momentum coordinate. A�er plugging in the Fourier
expansions (3.41) of the transmission kernels and a few steps of calculation, we are le� with

w3 (x) =
1
X0
∑
ℓ,k

D̃ (kT1 + ℓT2
TT

d)B(1)
k (kT1 + ℓT2

TT
)B(2)

ℓ−k (
ℓT2
TT

)

× exp{2πi
d

[ℓx − ℓ a
2
(T1 + T2)2 + (ℓ − k) a

2
T21 ]} . (3.44)

Here, I have introduced the Fourier transform of the momentum distribution (i.e. its characteristic
function),

D̃ (x) = ∫ dp e−ipx/ħD (p) , (3.45)

which is normalized to D̃ (0) = 1 and whose characteristic width is given by h/P0 ≪ d.

Resonance approximation �e sharply peaked function D̃ narrows down the number of index
pairs (ℓ, k) that contribute appreciably to the Fourier sum in (3.44). Non-vanishing contributions
can only come from indices that ful�ll ∣kT1 + ℓT2∣ ≪ TT. �is is always so for the zeroth component,
k = ℓ = 0, which represents the constant average particle density transmitted through G1 and G2.
Non-zero Fourier indices k, ℓ ≠ 0, which constitute the Talbot-Lau fringe oscillation, are uniquely
paired through the above relation. For each integer ℓ there is at most one integer k ful�lling the
above condition, if we restrict our attention to the relevant cases where the grating separation is at
least of the order of the Talbot time, T1,2 ≳ TT. Large integers ∣k∣ , ∣ℓ∣ ≫ 1 will hardly contribute to
the signal as the corresponding high-order Talbot coe�cients are expected to be vanishingly small.
A pronounced fringe oscillation, if there is any, can only be due to small values of ∣k∣ and ∣ℓ − k∣.
It depends very much on the ratio of grating distances T2/T1 whether such index pairs exist at all,
according to the above pairing condition.
Let us resort here to the most relevant case in practice, where the distance ratio is close to an

integer, T1 = T and T2 = NT+τ, with ∣τ∣ ≪ TT. �emore general case, including also the possibility
of di�erent grating periods, is presented in Appendix B.4. We can now simplify the expression
(3.44) for the fringe pattern by means of the resonance approximation,

D̃ (kT1 + ℓT2
TT

d) ≈ δk,−NℓD̃ ( ℓτ
TT

d) , (3.46)
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which explicitly yields the pairing relation k = −Nℓ. We are le� with the fringe pattern

w3 (x) =
1
X0
∑
ℓ
D̃ ( ℓτ

TT
d)B(1)

−Nℓ (
ℓτ
TT

)B(2)
(N+1)ℓ (ℓ

NT + τ
TT

) exp [2πiℓ
d

(x + δxa)] . (3.47)

It is e�ectively shi�ed by the amount

δxa = −
aT2

2
N (N + 1) − aTτ (N + 1) − aτ2

2
(3.48)

due to the acceleration a acting on the particles. Equation (3.47) is a Fourier sum, where each non-
vanishing component of order ℓ ≠ 0 contributes to the oscillation amplitude of the fringe pattern.

Detection signal and visibility �e fringe pattern is detected in practice bymeasuring the total
transmitted particle density S (xS) behind the third grating and varying its shi� xS with respect to
the other two. Here, in order to obtain S (xS), we must apply the shi�ed transmission kernel of G3
on the Wigner function (3.43) and integrate the transformed function over the whole phase space,
S (xS) = ∫ dxdpdp0 T(3) (x − xS , p − p0)w3 (x , p0). One can easily check that this boils down to
a convolution of the fringe pattern w3 (x) with the transmission probability at the shi�ed grating,

S (xS) = ∫ dx w3 (x) ∣t(3) (x − xS)∣
2
= ∑

ℓ
Sℓ exp [

2πiℓ
d

(xS + δxa)] ,

Sℓ = D̃ (ℓ τ
TT

d)B(1)
−Nℓ (ℓ

τ
TT

)B(2)
(N+1)ℓ (ℓ

NT + τ
TT

)B(3)
−ℓ (0) . (3.49)

�e signal gives the per-particle probability for transmission through the three gratings of the TLI.
As follows from its Fourier components, it contains all the fringe amplitudes of w3 (x), multiplied
by the Fourier coe�cients B(3)

−ℓ (0) of the third grating aperture. Hence, the third grating does
nothingmore thanmasking the outgoing particle state; the interaction of the particles withG3 does
not in�uence the signal15. We note that the fringe pattern can also be recorded without moving the
third grating if one is able to vary the de�ection shi� δxa in the external acceleration �eld a. �e
classical moiré signal is obtained by replacing the Talbot coe�cients in (3.47) and (3.49) with their
classical counterparts (3.42).
�e amplitude of the fringe oscillation exhibited by the positive-valued and periodic signal is

commonly measured in terms of the relative fringe contrast, or visibility,

V = Smax − Smin
Smax + Smin

. (3.50)

�e terms Smin and Smax represent the minimum and the maximum values of the fringe signal, re-
spectively. �e visibility ranges from zero (no fringes) to a maximum of 100% if the local minima
of the signal are zero, Smin = 0. O�en the fringe oscillation is dominated by the �rst Fourier ampli-
tude, which results in a near-sinusoidal pattern. �e fringe contrast is then well described by the

15�is applies only to the interaction-induced phase modulation of the matter waves. �e van der Waals attraction still
reduces the e�ective slit opening of material gratings. Particles in close vicinity to the walls may hit them and will
not be transmitted.
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sinusoidal visibility,

Vsin = ∣2S1
S0

∣ = 2
RRRRRRRRRRRR
D̃ ( τd

TT
)
B(1)
−N (τ/TT)B(2)

N+1 [(NT + τ) /TT]B(3)
−1 (0)

B(1)
0 (0)B(2)

0 (0)B(3)
0 (0)

RRRRRRRRRRRR
. (3.51)

One obtains this value experimentally by �tting a sine curve to the recorded signal data. �is is
the standard method of analysis in most TLI experiments. Note that Vsin may assume values larger
than 100% if the underlying fringe signal di�ers from a sinusoidal pattern.
We �nd that the grating separation time T enters the detected fringe amplitudes (3.49) and the

visibility (3.51) exclusively through the argument of theTalbot coe�cients (3.41), which are periodic.
�is explains the periodic revival of interference fringes in unit steps of the Talbot time (3.36),
which also constitutes the characteristic mass dependence of the Talbot-Lau interference e�ect and
distinguishes it from a classical moiré e�ect.

Resonant and symmetric con®guration In order to observe a signi�cant fringe contrast in
most realistic settings, the grating asymmetry number N ∈ N in (3.49) and the resonance deviation
∣τ∣ ≪ TT must be su�ciently small. From the visibility expression (3.51) we read that a large asym-
metry N implies that the fringe oscillation is generated by high-order Talbot coe�cients. �ese
Fourier coe�cients generally fall o� rapidly with increasing order, which decreases the maximum
achievable contrast to low values. �erefore, the symmetric con�guration N = 1 is most suitable for
all practical purposes where distinct fringes are intended.
For the same reason, the time deviation τ is also limited, ∣τ∣ ≲ hTT/P0d = md/P0, due to the

momentum spread P0 of the particle ensemble. �e latter typically covers several thousand grating
momenta in the molecular TLI experiments considered here, in which case we can safely neglect
the in�uence of τ on the Talbot coe�cients and on the fringe shi� in (3.49),

Sℓ ≈ D̃ ( ℓτ
TT

d)B(1)
−Nℓ (0)B

(2)
(N+1)ℓ (

ℓNT
TT

)B(3)
−ℓ (0) , δxa ≈ −

aT2

2
N (N + 1) . (3.52)

�is implies that a resonancemismatch τ ≠ 0mainly diminishes the fringe visibility as it reduces the
non-zero Fourier components of the fringe pattern (3.47) and (3.49) by the factor ∣D̃ (ℓτd/TT)∣ < 1
for ℓ ≠ 0. Moreover, the result shows that no fringes would appear if G1 were a pure phase grating,
since this would imply ∣t(1) (x)∣2 = 1 and B(1)

n (0) = δn,0. Both G1 and G3 must be amplitude
gratings; their phase modulation properties do not enter the result.
Let me remark that the situation is di�erent if one works with a well-collimated ensemble of

particles, where P0 is of the order of the gratingmomentum h/d. In this case, larger time deviations
τ are permitted, and an o�-resonant fringe pattern at τ ≠ 0 may appear even if G1 is a pure phase
grating. Such a transient e�ect was demonstrated with thermal atom ensembles in standing-wave
gratings [62, 126]. Here, we restrict our view to the resonant and symmetric con�guration, N = 1
and τ = 0, which is best suited to achieve high contrast with incoherent particle ensembles. �is has
been the standard con�guration of all molecular TLI experiments so far. �e quantum and classical
fringe signal di�er solely by the Talbot coe�cients of G2,

⎧⎪⎪⎨⎪⎪⎩

S (xS)
Scl (xS)

⎫⎪⎪⎬⎪⎪⎭
= ∑

ℓ
B(1)
−ℓ (0)

⎧⎪⎪⎨⎪⎪⎩

B(2)
2ℓ (ℓT/TT)

C(2)
2ℓ (ℓT/TT)

⎫⎪⎪⎬⎪⎪⎭
B(3)
−ℓ (0) exp [2πiℓ

d
(xS − aT2)] . (3.53)
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3.2.1.3. Incoherent eªects and decoherence events

I have now presented a phase-space model for the coherent propagation of matter waves through a
generic TLI scheme. Yet, this will not necessarily su�ce to describe the Talbot-Lau e�ect in a real-
istic setting. Environmental decoherence and other stochastic processes may a�ect the coherence
properties of the state and modify the interference e�ect depending on the experimental condi-
tions. In the following, I distinguish incoherent grating e�ects and free-space decoherence events.
�e latter can occur randomly at any time and any place while the particles evolve freely from one
grating to another. �e former modify the grating transformation and take on the same periodic
spatial dependence.
For our purposes it will su�ce to consider only norm-preserving and stochastic momentum

transfer processes, which are described by state transformations of the form ⟨x∣ρ∣x′⟩ ↦ R(x , x′)
⟨x∣ρ∣x′⟩. Such processes randomly redistribute momentum and thus a�ect the spatial coherence
properties of the state, but they leave the spatial density distribution invariant,R(x , x) = 1 for all
x. �e latter follows from norm conservation,

∫ dxR(x , x) ⟨x∣ρ∣x⟩ = ∫ dx ⟨x∣ρ∣x⟩ = 1, (3.54)

which must hold for arbitrary density operators ρ. Explicit forms of the decoherence function
R(x , x′) will be speci�ed later. �e corresponding phase-space transformation is given by a mo-
mentum convolution,

w (x , p) ↦ ∫ dq R̃ (x , q)w (x , p − q) ,

R̃ (x , q) = 1
2πħ ∫ ds e iqs/ħR(x − s

2
, x + s

2
) . (3.55)

A phase-space transformation of this type can also be conceived in a purely classical picture: A
stochastic process that kicks a particle at position x with a random kick distribution R̃ (x , q) can
be described by the transformation f (x , p) ↦ ∫ dq R̃ (x , q) f (x , p − q). It washes out the mo-
mentum distribution of the ensemble state.

Incoherent grating eªects Apart from the coherent modulation of the matter-wave state, each
grating Gk may also contribute an incoherent processR(k) (x , x′) if it couples to internal degrees
of freedom of the particles in an uncontrollable manner. �e absorption and the elastic scattering
of single photons from an optical standing-wave grating are the most important processes, which
will be of relevance. I have elaborated on the corresponding decoherence functions,Rabs,sca (x , x′),
in the context of the light-matter interaction in Section 2.1.4.3, see Eqs. (2.48) and (2.50) on page
24f. �e periodicity of the grating implies that the decoherence function is periodic in both x and
x′, too. Hence, we can perform a Fourier expansion with respect to (x + x′) /2,

R(k) (x , x′) =
∞

∑
n=−∞

R(k)
n (x

′ − x
d

) exp [2πin
d

(x + x′

2
)] ,

R(k)
n (ξ) = 1

d ∫ d/2

−d/2
dxR(k) (x − ξ d

2
, x + ξ d

2
) exp(−2πinx

d
) , (3.56)
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where R(k)
n (0) = δn,0. Putting the coherent and the incoherent part together yields a double convo-

lution of theWigner function with the coherent transmission kernel T(k) (x , p) and the incoherent
kernel R̃(k) (x , p), which can be subsumed under the modi�ed grating kernel,

T̃(k) (x , p) = ∫ dq R̃(k) (x , p − q)T(k) (x , q)

= 1
2πħ∑n

exp(2πinx
d

) ∫ ds e ips/ħ∑
j
B(k)
n− j (

s
d
)R(k)

j ( s
d
) . (3.57)

We obtain the modi�ed fringe pattern if we replace the quantum and classical Talbot coe�cients
by the modi�ed versions,

B̃(k)
n (ξ) = ∑

j
B(k)
n− j (ξ)R(k)

j (ξ) , C̃(k)
n (ξ) = ∑

j
C(k)
n− j (ξ)R(k)

j (ξ) . (3.58)

Here, I implicitly assume that R̃(k) can be interpreted as amomentum averaging process that would
act on a classical particle ensemble in the same way as it acts on a quantum state in phase space.
We notice that the value of the Talbot coe�cients at ξ = 0 remains unchanged, B̃(k)

n (0) =
B(k)
n (0). �e incoherent modi�cation is therefore only relevant at the second grating, k = 2, where
the spatial coherence properties (themomentum structure) of the particle state a�ect the �nal fringe
signal (3.53).

Free-space decoherence events �e other important class of incoherent modi�cations of the
Talbot-Lau e�ect are free-space events thatmay occur uniformly during the propagation time. �ey
include, for instance, environmental decoherence by gas collisions, or by the absorption, emission,
and scattering of thermal photons. Moreover, they can be employed in metrological applications,
where such events are evoked on purpose to manipulate the fringe contrast in a controlled way. I
will discuss the example of absorption spectrocopy in Section 3.3.
Let us consider a single decoherence event R occuring at a time t ∈ [−T1, T2] before or a�er

the second grating. If we assume that the underlying process is uniform in space, then the state
transformation will not depend on the position of each ensemble particle, R(x , x′) = R(x′ − x)
and R̃ (x , p) = R̃ (p) in (3.55). �is momentum averaging transformation must be inserted at
the right moment into the phase-space scheme that has led us to the Wigner function (3.43) and
to the fringe pattern w3 (x) at G3. I do this explicitly for the general case in Appendix B.5. Here,
the discussion is restricted to the resonant symmetric con�guration where the fringe pattern is
e�ectively smeared out by the kick distribution, w̃3 (x) = ∫ dq R̃ (q)w3 [x − q (T − ∣t∣) /m], as
follows from (B.25). �e form of the equation implies that the averaging e�ect is most severe if the
event occurs directly at the second grating, t = 0, and it does not depend on whether the event
takes place before or a�er G2. �e modulated Fourier components of the detection signal (and of
the fringe pattern) read as

S̃ℓ = R(ℓd T − ∣t∣
TT

) Sℓ . (3.59)

Environmental decoherence can be understood as a random series of such events that may occur
uniformly at all times t. One can establish a time-dependent rate equation based on the individual
event transformation (3.59) and solve it to obtain the mean overall contrast reduction by decoher-
ence [40].
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3.2.2. The Kapitza-Dirac Talbot-Lau interferometer (KDTLI)

Letme illustrate the just developed phase-spacemodel by discussing the basic features of theKDTLI
setup, Figure 3.6 (b), as currently operated in Vienna in measurements on large organic molecules.
It replaces the former TLI setup with three material gratings, which had become obsolete due to the
growing highly dispersive van der Waals interaction between the molecules and the grating walls.
On the theoretical side, the beauty of the KDTLI scheme lies in the fact that it can be assessed in
analytic terms.
�e Vienna KDTLI is a horizontal grating arrangement, where G2 is a standing wave of period

d = λ/2 = 266nm, as generated in the focus of a green laser of wavelength λ illuminating a mirror.
�e other gratings are material masks of the same period with an opening fraction f ≲ 0.5. �e
grating distance is set to L = 10.5 cm, and the corresponding time T varies with the velocity of the
interfered particle species.
Normally, there is no external acceleration acting on the particles, a = 0, that would shi� the

�nal fringe pattern16. For metrological applications, however, a static electric �eld E can be applied
between two electrodes, which de�ects the particles on their way from G1 to G2 and shi�s the in-
terference fringe pattern by the same amount. �e de�ection is proportional to the dipole force,
Fx = χ (0) ∂x ∣E∣2 /2, that acts on the particle while it passes the electrodes. �e interference fringe
pattern allows one to resolve the de�ection on the sub-micrometer level and, therefore, to measure
the static electric polarizability χ (0) of the particles at high precision [105, 106, 117, 127, 128].

3.2.2.1. Coherent description

I will now give an overview of the theoretical description of the KDTL interference e�ect in the
absence of free-space Rayleigh scattering and absorption at the grating. An exhaustive treatment
can also be found in [7]. �e results will be required in the subsequent modi�cation of the e�ect
due to single-photon absorption, drawing from the results of Chapter 2, page 18�. �ere, I have
developed a detailed description of the optical grating interaction.
According to Section 2.1.4.1, the transmision function of a pure standing-wave phase grating can

be written as t(2) (x) = exp (iϕ0 cos2 kx), with k = 2π/λ = π/d the wave number of the laser and
ϕ0 the eikonal phase factor (2.39) de�ned on page 21. �e latter is related to the dipole interaction
with the laser �eld; it is proportional to the polarizability of the particle, the laser power, and the
inverse of the longitudinal velocity vz . �e d-periodic transmission function can be expanded as
a Fourier sum of Bessel functions [113], Equation (3.38) with b(2)n = in exp (iϕ0/2) Jn (ϕ0/2). �e
associated Talbot coe�cients (3.40) are obtained with help of Graf ’s addition theorem for Bessel
functions [113]. It states that

[u − v exp (−iφ)
u − v exp (iφ) ]

±n/2

Jn (w) =
∞

∑
j=−∞

J j+n (u) J j (v) e±i jφ , (3.60)

where φ ∈ [0, π] without loss of generality. (�e sign change allows for larger phase angles φ.) �e
term w =

√
u2 + v2 − 2uv cosφ = u

√
1 + (v/u)2 − 2v cosφ/u is the analytic continuation of the

positive root, w → +u, in the limit v → 0.

16 Inertial forces such as the Coriolis force can be safely neglected in the velocity and mass regime considered so far.
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In the present case, we have u = v = ϕ0/2 and φ = 2πξ, which leads to the Talbot coe�cients

B(2)
n (ξ) = ine iπnξ∑

j
J j (

ϕ0
2
) J∗j−n (

ϕ0
2
) e−2πi jξ = Jn (ϕ0 sin πξ) . (3.61)

We immediately �nd that B(2)
n (N) = δn,0 for N ∈ N0, as expected from a pure phase grating. �e

classical Talbot coe�cients are obtained from (3.42), using the eikonal momentum kick expression
q(2) (x) = −(πħ/d) sin 2πx/d [7]. �is yields

C(2)
n (ξ) = c(2)n (ξ) = Jn (ϕ0πξ) . (3.62)

�e �rst and the third gratings are given by a periodic mask of material slit apertures, ∣t(1,3) (x)∣2 =
∑n Θ ( f1,3d/2 − ∣x − nd∣), with the slit opening fractions f1,3. �eir Fourier coe�cients read as
B(1,3)
n (0) = f1,3sinc (πn f1,3). �is leaves us with the quantum and classical Fourier components of
the detection signal,

⎧⎪⎪⎨⎪⎪⎩

S (xS)
Scl (xS)

⎫⎪⎪⎬⎪⎪⎭
= ∑

ℓ
f1 f3sinc (πℓ f1) sinc (πℓ f3)

⎧⎪⎪⎨⎪⎪⎩

J2ℓ (ϕ0 sin πℓT/TT)
J2ℓ (ϕ0πℓT/TT)

⎫⎪⎪⎬⎪⎪⎭
exp(2πiℓxS

d
) . (3.63)

It depends on the longitudinal particle velocities through ϕ0 and T = L/vz , and it must be averaged
over a realistic vz-distributionwhen comparing it to experimental data. We notice that the quantum
and the classical expression converge in the quasi-classical limit, vz →∞, or T/TT ≪ 1.
�e sinusoidal visibilities (3.51) read as

⎧⎪⎪⎨⎪⎪⎩

Vsin
Vclsin

⎫⎪⎪⎬⎪⎪⎭
= 2

RRRRRRRRRRR
sinc (π f1) sinc (π f3)

⎧⎪⎪⎨⎪⎪⎩

J2 (ϕ0 sin πT/TT)
J2 (ϕ0πT/TT)

⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRR
. (3.64)

�e fringe contrast vanishes at T = 0 in both cases. However, only the quantum interference signal
exhibits a periodic revival of this zero in visibility at integer multiples of the Talbot time. �is
is where the phase modulation at G2 cancels, and where a Talbot-Lau fringe pattern mimics the
ideal shadow projection of the aperture, as in the case of the ideal Talbot e�ect. A pure phase
grating cannot produce any interference fringes there, whereas the classical model may lead to
visible fringes due to the de�ection of the particle trajectories in the standing-wave �eld. At the
same time, the achievable shadow fringe contrast decreases with growing grating separation T as
the oscillation amplitude of the Bessel function converges to zero. �e sinusoidal visibility is largest
when the Bessel function J2 (x) assumes its maximum, max J2 (x) ≈ 0.49, at x ≈ ±3.05. Fixing
the grating phase shi� at ϕ0 ≳ π, this can only be reached at a single time T < TT in the classical
case, whereas it appears repeatedly for periodic T-values between two subsequent Talbot orders
in the quantum case. �e quantum nature of the fringe pattern can thus be easily veri�ed in the
experiment by varying the grating distance L or the particle velocity vz .

3.2.2.2. Modi®cation due to the absorption of grating photons

�e coherent description of the KDTLI is only valid for subwavelength particles with negligible
absorption and Rayleigh scattering cross sections, that is, if the mean number of absorbed and
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scattered grating photons n0,sca ≪ 1. See Eqs. (2.42) on page 23 and (2.50) on page 25 for a de�nition
of these terms. �is limit can be appropriate for the assessment of experiments with a subset of non-
absorbing molecules, such as the C60-fullerene. But there are other examples, such as C70, where
the absorption of single photons does in�uence the interference contrast noticeably [7]. On the
other hand, Rayleigh scattering has not yet been an issue since all particles used so far were orders
of magnitude smaller than the grating wavelength.
I have layed out everything necessary to incorporate the in�uence of absorption and scattering

on the overall grating transformation in a few steps of calculation. �e combined decoherence
function, R(2) (x , x′) = Rabs (x , x′)Rsca (x , x′), consists of the absorption term (2.48) and the
scattering term (2.50), which were obtained by solving the associated master equations in Section
2.1.4.3. �e coe�cients of the Fourier expansion (3.56) can be given explicitly in terms of modi�ed
Bessel functions [113] a�er applying a few trigonometric identities,

R(2)
n (ξ) = exp{−n0

1 − cos πξ
2

− nsca
2

[1 − 3 cos πξ sin πξ − j1 (πξ)
2πξ

]}

× In {n0
1 − cos πξ
2

+ nsca
2

[3sin πξ − j1 (πξ)
2πξ

− cos πξ]} . (3.65)

With this we arrive at the modi�ed quantum and classical Talbot coe�cients (3.58) that include
both e�ects.
Let us now restrict to the point-particle limit where no free-space scattering takes place in the

grating, nsca ≈ 0. We can apply Graf ’s addition theorem (3.60) another time17 to obtain an explicit
form of the modi�ed Talbot coe�cients,

B̃(2)
n (ξ) = e−ζabs(ξ) [ ζcoh (ξ) + ζabs (ξ)

ζcoh (ξ) − ζabs (ξ)]
n/2

Jn [sgn{ζcoh (ξ) − ζabs (ξ)}
√

ζ2coh (ξ) − ζ2abs (ξ)] ,

(3.66)
with ζcoh (ξ) = ϕ0 sin πξ and ζabs (ξ) = n0 sin2 (πξ/2) = βϕ0 (1 − cos πξ). �e modi�ed sinusoidal
visibility reads as

Vsin = 2 ∣sinc (π f1) sinc (π f3)∣ exp{βϕ0 [cos(
πT
TT

) − 1]}

×
RRRRRRRRRRRR

β + sin (πT/TT) − β cos (πT/TT)
β − sin (πT/TT) − β cos (πT/TT)

J2
⎡⎢⎢⎢⎢⎣
ϕ0

√
sin2 (πT

TT
) − 4β2 sin4 ( πT

2TT
)
⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR
. (3.67)

Both ϕ0 and n0 are controlled by the laser power. In order to mimic this dependence, it will be
convenient to introduce the parameter

β = n0
2ϕ0

= σabsλε0
2πRe{χ} = σabsd

4π2α
, (3.68)

17Here, we make use of the speci�c formulation [7]

[u − v
u + v

]
n/2

J−n [sgn (u + v)
√
u2 − v2] =

∞

∑
j=−∞

J j (u) I j+n (v)

for u, v ∈ R, u ≠ v. It can be derived from the general form (3.60) using the relation In (v) = (−i)n Jn (iv).
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Figure 3.7. Absorption-modi�ed sinusoidal visibility in an exemplary KDTLI setup versus the grating distance T in
units of the Talbot time. �e le� and the right panel correspond to di�erent laser powers, respectively ϕ0 = 3 and
ϕ0 = 5. �e modi�ed visibility (3.67) is plotted as a solid line, whereas the dashed line represents the analoguous
result as predicted in [7]. I take β = 0.25, and I use the same slit opening fraction as in [7], f1 = f3 = 0.42, for the two
material grating masks G1,3 . �e shaded area depicts the interference contrast (3.64) in the absence of absorption.

a constant which depends solely on the grating period and on the absorption cross section σabs and
dipole polarizability α = Re{χ} /4πε0 (in cgs units) of the particle. A variation of the laser power
changes both ϕ0 and n0 proportionally while leaving the ratio β unchanged. Given the grating
power PL, its y-waist wy, and the particle velocity vz , we can write ϕ0 = 8

√
2παPL/ħcvzwy and

n0 = 2βϕ0.
Expression (3.66)must be compared to the result in the previous treatment of the KDTLI scheme

in [7]. �ere, the absorption of single photons from the standing-wave grating was described by
a classical random walk model which did not properly incorporate the coherence of the standing-
wave �eld in the absorption process. �e two counter-propagating running-wave components of
the standing-wave mode were implicitly taken to be distinguishable. For instance, this implied that
the absorption of one photon would transform the pure matter-wave eigenstate ∣p⟩ into a mixture
of two contradirectionally kicked eigenstates ∣p ± ħk⟩. In fact, the running-wave components are
indistinguishable and themomentum statemust be transformed into a superposition of kicked eigen-
states, accordingly. I have given the underlyingmaster equationmodel (2.47) in Section 2.1.4.3, page
24. Here, it is only the conditional state transformations corresponding to di�erent numbers of ab-
sorbed photons which are mixed incoherently. �e di�erence between the present and the former
result amounts to a mere sign �ip18, ζcoh (ξ) → −ζcoh (ξ).
I illustrate the di�erence in Figure 3.7 where the sinusoidal interference visibility is plotted versus

the grating distance T in units of the Talbot time. �e laser power is assumed to be �xed at a value
that corresponds to the eikonal phase ϕ0 = 3 (right panel) and ϕ0 = 5 (le� panel). Here, I assume
a �cticious particle with a rather large absorption cross section, β = 0.25, to see a pronounced
modi�cation. �at is, each value of ϕ0 corresponds to n0 = 0.5ϕ0. �e solid line represents the

18Note that the former treatment is based on a sine-type standing wave mode, whereas I use a cosine mode. However,
this di�erence merely determines the parity of the resulting fringe pattern, but it is not responsible for a change in
the fringe visibility.
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present model, Equation (3.67), whereas the dashed line represents the result taken from [7]. �e
unmodi�ed visibility (β = 0) is depicted as a shaded area in the background. We observe that the
absorption e�ect generally diminishes the interference contrast, but it suppresses only every second
Talbot order to a large extent. �e present result a�ects exactly those Talbot orders more, which are
less a�ected by the former result, and vice versa.

3.2.3. The optical time-domain ionizing Talbot-Lau interferometer (OTITLI)

Let me now turn to the most recent version of the TLI scheme using a pulsed arrangement of ion-
izing laser gratings in the time domain, as depicted in Figure 3.6 (c) on page 85. We proposed the
OTITLI scheme as a viablemethod to interfere large polarizable nanoparticles in [10], wherewe also
gave a full feasibility study for the realization of this schemewithmetal clusters of less than 106 amu.
Meanwhile, the experiment has been set up in Vienna, and it has led to the �rst proof-of-principle
results with small clusters of anthracene molecules [13].
In this section I formulate the theoretical description and assess its main predictions. Details on

the experiment, as well as general mass limits of the OTITLI will be studied in Section 3.4.

3.2.3.1. Coherent description and results

�e coherent description of the OTITLI scheme follows straightforwardly from the theory of opti-
cal depletion gratings presented in Section 2.1.4.2, page 22f. Here, I assume that the absorption of a
single photon from the grating always ionizes the particle and removes it from the interrogated en-
semble. �e associated transmission function reads as t(k) (x) = exp [(iϕ(k)

0 − n(k)
0 /2) cos2 πx/d],

with ϕ(k)
0 and n(k)

0 the eikonal phase and the mean number of absorbed photons in the antinodes
of Gk . �e associated Fourier components are given by modi�ed Bessel functions,

b(k)n = exp
⎛
⎝
i
ϕ(k)
0
2

−
n(k)
0
4

⎞
⎠
In

⎛
⎝
i
ϕ(k)
0
2

−
n(k)
0
4

⎞
⎠
. (3.69)

We arrive at the Talbot coe�cients by applying Graf ’s addition theorem (3.60) once again,

B(k)
n (ξ) = e−n

(k)
0 /2 [ ζcoh (ξ) − ζion (ξ)

ζcoh (ξ) + ζion (ξ)]
n/2

Jn [sgn{ζcoh (ξ) + ζion (ξ)}
√

ζ2coh (ξ) − ζ2ion (ξ)] ,

(3.70)
with ζcoh = ϕ(k)

0 sin πξ and ζion = (n(k)
0 /2) cos πξ. Notice the subtle but essential di�erences be-

tween this expression and the absorption-modi�ed KDTLI coe�cients (3.66). In particular, the
coe�cients here do not vanish at ξ = 0,

B(k)
n (0) = (−)n exp

⎛
⎝
−
n(k)
0
2

⎞
⎠
In

⎛
⎝
n(k)
0
2

⎞
⎠
. (3.71)

As mentioned above, these terms represent the Fourier coe�cients of the transmission probability
at each standing-wave grating pulse Gk , and they are all that is needed to describe the �rst and the
third grating mask of the OTITLI scheme. A convolution of these terms with the eikonal kick coef-
�cients yields the classical version (3.42) of the Talbot coe�cients. We note that the kick coe�cients

99



vi
si

bi
lit

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

absorbed photons at G2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

grating distance T/ TT

visibility

Figure 3.8. Predicted OTITLI fringe visibility as a function of the grating distance T in units of the Talbot time (le�)
and of the mean number n(2)

0 of absorptions at the second grating (right). �e other two gratings are kept �xed at
n(1,3)
0 = 8, and the particles shall be characterized by β = 1. �e data on the le� and on the right are evaluated at

n(2)
0 = 8 and T = TT , respectively. I plot the sinusoidal quantum visibility (solid line), the conventional quantum
contrast (dashed line), and the classical ‘shadow’ contrast (dotted line).

are the same as in the KDTLI scheme, c(k)n (ξ) = Jn (ϕ(k)
0 πξ). We thus �nd that the classical Tal-

bot coe�cients C(k)
n (ξ) can be brought into the same form as the quantum coe�cients (3.70), but

with di�erent parameters, ζclcoh = ϕ
(k)
0 πξ and ζclion = n(k)

0 /2. �is implies that the quantum and the
classical description converge in the limit ξ → 0. In practice, this corresponds to the limit of large
masses and relatively small pulse separation times, T ≪ TT. �e sinusoidal interference visibility
reads as

Vsin = 2
I1
⎛
⎝
n(1)
0
2

⎞
⎠
I1
⎛
⎝
n(3)
0
2

⎞
⎠

I0
⎛
⎝
n(1)
0
2

⎞
⎠
I0

⎛
⎝
n(3)
0
2

⎞
⎠

RRRRRRRRRRRRRRRRRR

β cos(πT
TT

) − sin(πT
TT

)

β cos(πT
TT

) + sin(πT
TT

)
J2

⎡⎢⎢⎢⎢⎣

n(2)
0
2β

√
sin2 (πT

TT
) − β2 cos2 (πT

TT
)
⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRR

,

(3.72)
and the classical counterpart is obtained by substituting cos (πT/TT) by 1 and sin (πT/TT) by
πT/TT.
In Figure 3.8 I plot the sinusoidal interference visibility as a function of the grating separation

T/TT (le� panel, �xing n(2)
0 = 8) and of the mean absorption number n(2)

0 atG2 (right panel, �xing
T = TT). It is given by the solid line in the plot. �e dashed line represents the conventional interfer-
ence contrastV , as de�ned by the relative di�erence between themaximumand theminimumof the
fringe signal in (3.50). By construction, it cannot be greater than unity, whereas the sinusoidal visi-
bilitymay exceed this value. �e reason is that the fringe signal deviates from a sinusoidal pattern in
the high-contrast regions close to integer values of T/TT, where higher-order Fourier components
must be taken into account. �e same is true in between the integer Talbot orders, where the �rst-
order Fourier components of the signal, and with them the sinusoidal visibility, vanish. �e theory
then predicts the appearance of a higher-order harmonic fringe oscillation, which is re�ected in
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Figure 3.9. Density diagrams of the quantum (le�) and the classical (right) fringe contrast as a function of the grating
separation time and the absorption number at the second grating. I plot the conventional visibility V using the
same OTITLI con�guration as in Figure 3.8, n(1,3)

0 = 8 and β = 1.

the conventional visibility V (dashed line in the le� panel). �e classical moiré visibility is repre-
sented by the dotted line in the two panels. Its dependence on the laser power (through n(2)

0 ) and
on the separation time is very di�erent from the quantum version. In particular, it does not exhibit
the recurring visibility maxima at integer Talbot orders, which are characteristic for the Talbot-Lau
interference e�ect.
�is striking di�erence between the quantum and the classicalmodel is also clearly demonstrated

in Figure 3.9. It depicts the interference (le�) and the ‘shadow’ (right) fringe contrast V as a density
plot versus the grating separation and the absorption number. For the results plotted here and in
Figure 3.8 I have assumed a �xed material parameter β = 1, as well as a �xed laser power at G1 and
G3, n(1)

0 = n(3)
0 = 8.

At �rst sight, amaterial constant β of the order of unity seems not like a generic choice, but it actu-
ally covers the speci�c implementations of theOTITLI withmetal clusters conceived in our original
proposal [10]. If we describe the cluster by a homogeneous dielectric sphere of radius R and relative
permittivity ε, then we obtain both its dipole polarizability, α = Re{χ} /4πε0, and its absorption
cross section, σabs = kIm{χ} /ε0, from the complex polarizability χ = 4πε0R3 (ε − 1) / (ε + 2). See
Section 2.3 on page 48�. for details on this model. It is valid as long as the sphere is much smaller
than the grating wavelength, kR ≪ 1. �e associated β-parameter,

β = 3Im{ε}
∣ε∣2 +Re{ε} − 2

, (3.73)

depends solely on the dielectric function, which we can estimate by the bulk value of the material
[52]. �e latter can be found in the literature for various materials and light wavelengths [50]. In
the case of VUV light of 157 nm wavelength, for instance, we �nd β = 1.0 for gold, β = 9.2 for silver,
and β = −1.3 for cesium. �e last value is negative because cesium behaves like a low-�eld seeker at
this wavelength.
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Figure 3.10. Sinusoidal interference visibility for di�erent particles versus the grating distance in units of the Talbot
time. �e solid, the dashed and the dotted line are associated to particle species with β-values of 1.0, −1.3 and 9.2,
respectively (see text). �e three laser gratings are always set to the same absorption number, n(1,2,3)

0 = 8.

�e three exemplary cases are compared in a visibility-versus-time plot in Figure 3.10. �e solid
line (β = 1.0) is a part of the respective curve in the le� panel of Figure 3.8, whereas the dashed
and the dotted lines correspond to the cesium (β = −1.3) and the silver (β = 9.2) case. All other
parameters are �xed at the same values as before, n(1,2,3)

0 = 8. We observe that small values of
∣β∣ shi� the visibility maximum further away from integer multiples of the Talbot time than large
values. �e reason lies in the growing in�uence of the coherent phase modulation at the grating the
smaller the magnitude of β.

Last but not least, the fringe contrast is also varied by tuning the laser power of the �rst and the
third grating. �e solid line in the le� panel of Figure 3.11 shows how the sinusoidal visibility grows
as the increasing absorption number n(3)

0 shrinks the e�ective aperture of transmission through the
nodes of the third gratingmask. �e right panel plots the associated overall transmission probability
through the interferometer on a logarithmic scale. It is given by the zeroth Fourier coe�cient of
the fringe signal, S0 = B(1)

0 (0)B(2)
0 (0)B(3)

0 (0), and the plot looks the same no matter whether the
power of the �rst, the second or the third grating is varied. Here, we vary only n(3)

0 , keeping the
other gratings �xed at n(1,2)

0 = 8, and setting T = TT and β = 1.

�e dashed line shows the predicted visibility and transmission in an inverted detection scheme,
where the recorded OTITLI fringe signal is not comprised of the neutral particles transmitted, but
of the particles ionized at the third grating. �is may be useful to facilitate the detection of particles
behindG3 as it allows one to dispense with the ionization stage in conventionalmass spectrometers.
�e inverted grating is straightforwardly incorporated into the theoretical model by inverting the
transmission probability, ∣t(3) (x)∣2 ↦ 1 − ∣t(3) (x)∣2. �is results in a change of the associated
Fourier coe�cients, B(3)

n (0) ↦ δn,0−B(3)
n (0). In this case we �nd that the transmissivity increases

with growing laser power since a larger fraction of the particle cloud is ionized atG3. However, this
comes at the price of an overall reduction of visibility, because the antinodes of an inverted grating
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Figure 3.11. In�uence of a varying power of the third grating laser on the sinusoidal interference visibility (le�) and on
the transmission probability through the interferometer (right). �e laser power is given in terms of the absorbed
photon number n(3)

0 . �e other parameters are �xed at the reference values of the preceding diagrams, n
(1,2)
0 = 8,

T = TT and β = 1. �e dashed line corresponds to the inverted con�guration, where the ionized particles are
detected behind G3 instead of the neutrally transmitted ones.

mimic an aperture with a broader e�ective slit width than the nodes of a conventional ionization
grating.

3.2.3.2. Incoherent modi®cation due to Rayleigh scattering

Judging from the concrete predictions of the coherent model I have just assessed in detail, the OTI-
TLI scheme appears to be the most promising implementation of the Talbot-Lau e�ect with heavy
particles. It o�ers full and �exible control over all relevant setup parameters, while avoidingmost of
the limitations associated to a stationary TLI con�guration (with material grating masks). On the
other hand, one incurs additional decoherence e�ects by employing optical gratings, which may
restrict the scope of the interferometer to a limited range of particle species. We have observed in
Section 3.2.2.2 how the interference visibility in the KDTLI scheme is diminished for particles with
large absorption cross sections.
Here, photon absorption, if it is always accompanied by ionization, is an explicit prerequisite

for the ionization gratings to work, and radiative decoherence may only arise due to the elastic
scattering of grating photons into free space. �e Fourier coe�cients R(2)

n (ξ) of the scattering de-
coherence function can be taken from Equation (3.65), which describes the combined decoherence
e�ect of scattering and absorption in a pure phase grating. Setting the absorption number n0 = 0
in that expression leaves us with the mere scattering e�ect,

R(2)
n (ξ) = exp

⎧⎪⎪⎨⎪⎪⎩

n(2)
sca
2

[3 cos πξ sin πξ − j1 (πξ)
2πξ

− 1]
⎫⎪⎪⎬⎪⎪⎭
In

⎧⎪⎪⎨⎪⎪⎩

n(2)
sca
2

[3sin πξ − j1 (πξ)
2πξ

− cos πξ]
⎫⎪⎪⎬⎪⎪⎭
.

(3.74)
�e modi�ed Talbot coe�cients of the second grating are then given by the convolution (3.58) of
these coe�cients with the coherent Talbot coe�cients (3.70). �e modi�cation in�uences neither
the �rst nor the third grating mask since R(1,3)

n (0) = δn,0, as already noted above.
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Figure 3.12. Interference visibility as a function of the grating separation time in the presence of light scattering. I
evaluate the visibility for di�erent scattering cross sections, while keeping the other parameters �xed at β = 1 and
n(1,2,3)
0 = 8. �e dashed, the solid and the dash-dotted line correspond respectively to a scattering cross section
of 0.1, 1 and 10 times the size of the absorption cross section. �e shaded area in the background represents the
visibility in the absence of scattering.

�e impact of the scattering-induced decoherence on the fringe visibility depends once again
on the particle properties via the ratio of the scattering and absorption cross section, n(2)

sca /n(2)
0 =

σsca/σabs. �is ratio should be minimized for an optimal interference e�ect, as demonstrated in
Figure 3.12. �ere, I plot the sinusoidal fringe visibility versus the grating separation time using
three di�erent ratios: σsca/σabs = 0.1, 1 and 10, respectively for the dashed, the solid and the dash-
dotted line. All other parameters are set to the same values as before, n(1,2,3)

0 = 8 and β = 1. �e
fringe visibility for the coherent case σsca = 0 is depicted by the shaded area. We observe a strong
deterioration of contrast when the scattered power gets comparable to the absorbed power.
In practice, however, the scattering modi�cation is rarely of concern since the OTITLI scheme

will bemostly applied to polarizable subwavelength particles with a large absorption cross section19.
�e associated scattering cross section, which is of second order in the particle’s linear response to
the �eld, is then expected to be smaller, as discussed in detail on page 8�. in Chapter 2. For spherical
cluster particles in the dipole approximation20, we �nd

σsca
σabs

= 2
9
(kR)3 ∣ε − 1∣2

Im{ε} = 4π
2m

3ρλ3
∣ε − 1∣2

Im{ε} . (3.75)

Here, m and R denote the mass and the radius of the sphere, while ρ and ε are the mass density
and the relative permittivity of the cluster material. To give an example, the ratio is of the order of
10−9 per atomic mass unit for the case of gold clusters in VUV laser gratings at λ = 157 nm. �is
case corresponds also to β = 1.0, and we may thus associate a mass to each of the curves in Figure

19 I assume that the absorption of a single photon ionizes the particle at 100% e�ciency. �is generally implies a pro-
nounced imaginary part of the complex dipole polarizability, that is, β ∼ 1.

20�e scattering and absorption cross sections of a polarizable point particle read as σsca = k4 ∣χ∣2 /6πε20 and
σabs = kIm{χ} /ε0 . �e complex polarizability of small dielectric spheres of radius R ≪ λ is given by χ =
4πε0R3 (ε − 1) / (ε + 2) [52].
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3.12. �e dashed line corresponds to gold spheres of 108 amu in mass and 26nm in diameter, which
is where light scattering at G2 starts to a�ect the interference e�ect. �e solid and the dash-dotted
lines would then be related to a mass of 109 amu (56nm diameter) and 1010 amu (121 nm diameter),
respectively.
At about 109 amu, however, we are leaving the subwavelength regime and the present theoret-

ical model ceases to be valid. It turns out that this point constitutes a major mass limitation for
conceivable implementations of the OTITLI scheme, as I will discuss in Section 3.4.

3.3. Absolute absorption spectroscopy in the TLI scheme

A�er having studied the theoretical description of Talbot-Lau interferometry in the preceding sec-
tion, and before assessing its limits in the next section, I now turn to its application for themetrology
of large polarizable particles. In the beginning of Section 3.2.2 I mentioned already that the present
KDTLI experiment in Vienna is regularly used for de�ectometric measurements of the dipole po-
larizability of the interfering molecules [105, 106, 117, 127, 128]. Let me focus here on a di�erent
example proposed in [6], which is yet to be implemented in the lab.
We can exploit the sensitivity of the Talbot-Lau interferogram to single-photon momenta im-

parted on the interfering particles to devise an absolute and precise measurement of their ab-
sorption cross-section. �is is of potential value in the �eld of molecule and cluster spectroscopy
[52,129,130], where the absolute absorption cross-sections of many large molecules and clusters are
poorly known. Conventional optical methods can be used to measure the overall absorption power
of a given particle gas or beam, but this does not conveymuch information about the single-particle
cross section without prior knowledge about the particle density. In fact, optical absorption spectra
are routinely measured nowadays, even with large nanoparticles, but the data is o�en insigni�cant
or imprecise when it comes to absolute values for the single-particle cross-sections (due to the di�-
culty of measuring particle densities precisely). Obviously, it would su�ce to measure the absolute
cross-section σabs (ω) at a single optical frequency to normalize the whole spectrum.
In the following I will present an interferometric technique to measure the value of σabs in a

non-destructive manner: By shining a laser in between the gratings of the TLI one can induce
a controlled modulation of the interference fringe pattern as a function of the laser power and
position. I will show that this allows one to extract information about the optical absorption and
�uorescence properties of individual molecules.

3.3.1. Experimental setup and theoretical description

Talbot-Lau interferograms are periodic fringe structures sensitive to any kind of de�ection of the
matter waves between the gratings and on the scale of the fringe period. �e basic idea behind
the following measurement scheme is to trigger such de�ections by the absorption of one or more
photons from a running-wave laser (pulse) that is added to the interferometer and that illuminates
the interfering particles either before or a�er the second gratingG2. �is results in amodi�ed fringe
pattern which is a mixture of discretely shi�ed interferograms, and, therefore, exhibits a reduced
overall contrast depending on the laser parameters and on σabs.
�e complemented three-grating Talbot-Lau arrangement is sketched in Figure 3.13 for the ex-

emplary case of a KDTLI scheme, where G2 is an optical phase grating. �e reasoning applies also
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Figure 3.13. Sketch of the proposed arrangement for measuring the absorption cross section of particles interfering in
a symmetric Kapitza-Dirac Talbot-Lau setup (with grating distance L and period d, see Figure Section 3.2.2). A
recoil laser is added between the gratings G2 and G3 , which generates a thin running-wave beam of wavelength
λL parallel to the grating fringes at the distance D to G3 . Interfering particles may experience a momentum recoil
by absorbing one or more photons when they cross the beam. �e shi�ed interferograms sum up to a modi�ed
interference signal, which depends on the absorption probability per particle.

to any other implementation of the TLI, but I will focus here on the present KDTLI and OTITLI
setups.
�e standard KDTLI scheme in the sketch consists of two material grating apertures G1,3 and

a standing-wave phase grating G2 of the same period d placed at equal distances L = vzT , with
T the grating separation time for a �xed longitudinal velocity class. �e additional recoil laser
is now introduced at a distance D = vz t in front of G3. It shall produce a running-wave beam
of the wavelength λL that runs parallel to the gratings along the positive x-axis. Just like for the
grating laser, we require the beam pro�le to be narrow in the z-dimension and widely extended
in the y-direction such that it illuminates all the interfering particles uniformly. �e analoguous
arrangement in the OTITLI scheme would be three identical standing-wave pulses separated by the
time T and another short running-wave pulse at the time t before G3, which also covers the whole
interfering particle cloud.

3.3.1.1. Theoretical description

Given a power PL and a Gaussian beam pro�le of the recoil laser, each particle absorbs on av-
erage n(rec)

0 =
√
2/πσabsPLλL/hcwyvz photons from the beam21, with wy the waist parameter in

y-direction. A recoil laser pulse of energy EL and spot area aL in the time-domain con�guration

21Once again, I assume that the beam is su�ciently thin in the z-direction, such that we can neglect the transverse
motion of the particles while they cross it.
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corresponds to the mean number n(rec)
0 = σabsELλL/hcaL, accordingly. I refer the reader to the

preceding chapter for a detailed derivation of the absorption e�ect. In particular, we have found
on page 26 that the probabilistic absorption of running-wave photons leads to the random unitary
state transformation (2.53). �e short particle-laser interaction transforms the one-dimensional
quantum state of motion as

ρ ↦
∞

∑
n=0

Pn (nrec0 ) exp(2πinx
λL

) ρ exp(−2πinx
λL

) , with Pn (nrec0 ) =
(n(rec)
0 )

n
exp (−n(rec)

0 )
n!

.

(3.76)
�e term Pn (n(rec)

0 ) represents the Poisson probability of absorbing n photons. No quantum co-
herence is generated in this transformation, and we can understand it in classical terms. �e corre-
sponding Wigner function transformation,

w (x , p) ↦
∞

∑
n=0

Pn (n(rec)
0 )w (x , p − n h

λL
) , (3.77)

resembles a random distribution of discrete momentum kicks. Its impact on the �nal Talbot-Lau
fringe signal is readily obtained using the generic decoherence formalismoutlined in Section 3.2.1.3.
Introducing the kick distribution R̃ (q) = ∑n Pn (n

(rec)
0 ) δ (q − nh/λL) we arrive at the expected

result for the modi�ed fringe pattern w̃3 (x), which is a weighted sum of the shi�ed Talbot-Lau
fringe patterns,

w̃3 (x) =
∞

∑
n=0

Pn (n(rec)
0 )w3 (x −

nht
mλL

) . (3.78)

Due to the symmetric grating con�guration, the same result is obtained if we insert the recoil laser
between G1 and G2, at the time t (distance D) a�er the �rst grating. Note that the per-photon shi�
ht/mλL contributes an additional velocity dependence in the KDTLI case, where t = D/vz .
�e associated modulation of the fringe signal follows from Equation (3.59),

S̃ℓ = Sℓ exp [n(rec)
0 exp(−2πiℓtd

TTλL
) − n(rec)

0 ] ≡ R(rec)
ℓ Sℓ . (3.79)

In particular, the sinusoidal fringe visibility Vsin reduces by the factor ∣R(rec)
1 ∣. �e strongest reduc-

tion, R(rec)
1 = exp (−2n(rec)

0 ), occurs when the recoil laser is positioned such that each absorbed
photon shi�s the interferogram by half a period, ht/mλL = (2k + 1) d/2 with integer k. In this case,
the modi�ed fringe pattern (3.78) simpli�es to

w̃3 (x) = exp (−n(rec)
0 ) [cosh (n(rec)

0 )w3 (x) + sinh (n(rec)
0 )w3 (x −

d
2
)] . (3.80)

On the other hand, the fringe pattern remains unaltered when the interferogram is shi�ed by mul-
tiple periods per photon, that is, when the timing condition ht/mλL = kd is precisely met22.
�e probabilistic recoil shi� does not only manifest in the reduction of contrast, but it may also

lead to the appearance of characteristic new features in the fringe signal. �is happens when the

22�is is impossible in the KDTLI experiment because of the �nite velocity spread of the particle beam.

107



3rd grating position xS / d

de
te

ct
io

n 
pr

ob
ab

ili
ty

 in
 ‰

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

Figure 3.14.Modi�ed interference signal of aOTITLI setup in the presence of a recoil laser that induces half-period recoil
shi�s per absorbed photon. It is given in terms of the per-particle detection probability (vertical axis). �e dashed
curve corresponds to the unmodi�ed fringe signal, as predicted by the model in Section 3.2.3 for the parameters
T = TT and n(1,2,3)

0 = 20. I assume that the third grating can be e�ectively scanned over three periods d (horizontal
axis). �e recoil laser intensity shall yield an average of n(rec)

0 = 0.5 photon absorptions per particle.

latter is a sharply peaked pattern so that the emergence of shi�ed fringes with growing laser power
becomes clearly visible against a �at background. Let me exemplify this for the OTITLI case in
Figure 3.14, where I compare the fringe signal with and without recoil23. �e OTITLI intererogram
typically exhibits pronounced fringes at integer Talbot orders, T = NTT, when the optical grating
pulses are cranked up in energy and hardly transmit particles through the antinodes. �e dashed
curve represents the interferogram predicted by the coherent model in Section 3.2.3, using a mean
absorption number of n(1,2,3)

0 = 20. Suppose now that we insert the recoil laser pulse between the
second and the third grating in such a way that it induces a half-period shi� per photon. According
to Equation (3.80), additional peaks should then appear in the middle between the original fringes,
whereas the latter are partly depleted with growing recoil laser power. �is is depicted as the solid
curve, assuming a mean absorption of n(rec)

0 = 0.5 photons. �e side peaks grow until the shi�ed
and the unshi�ed fringe pattern are equally occupied in the limit of large absorptions, n(rec)

0 > 1,
where the sinh-term and the cosh-term in (3.80) are approximately equal.
In most practical situations, however, we are faced with almost sinusoidal fringe patterns, and

the the sole noticeable e�ect of the recoil laser is a reduction of fringe visibility. It can be used for
a quantitative analysis of the absorption properties of the particle, as I will show in the following.
First I should remark, however, that the present treatment implies a few additional assumptions,
which may not be automatically ful�lled and must be checked in practice:

☀ Modelling the probabilistic absorption of recoil photons as a homogeneous Poisson process
implies treating subsequent absorptions as statistically independent. �at is, I assume that the
absorption cross-section of the particle does not signi�cantly change upon photoexcitation.

23A similar diagram was presented in our article [6]. �ere, we studied the e�ect using the speci�c example of an
H2TPP molecule in a conventional TLI setup with three material gratings of 991 nm period. Since such a TLI setup
is no longer used, I give a more relevant OTITLI example here.
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�is is not guaranteed in practice, some molecules are indeed known to be ‘optically limited’
absorbers [131]. We canminimize the in�uence of such uncertainties if we restrict our analysis
to low absorption powers, n(rec)

0 < 1.

☀ Expression (3.79) for the recoil-induced fringe reduction implies that the detection e�ciency
of the particles behind the third grating does not depend on their internal state, that is, on
the number of absorbed photons. In principle, this assumption could be tested separately by
looking at the average transmission through the interferometer as a function of the absorp-
tion power

☀ An additional contrast reductionmay occur if the excited particles that have absorbed one or
more recoil photons decohere either by �uorescence or by emitting thermal radiation. �e
latter e�ect is expected to be negligible for largemolecules with a heat capacityC ≫ kB. �eir
internal temperature can only rise by at most ∆T = hc/λLC per photon. �e �uorescence
e�ect, on the other hand, must be taken into account if present. We can assess it separately
in settings where the recoil laser induces full-period shi�s per photon, as I will discuss below
in Section 3.3.2.

☀ Last but not least, I assume that it is possible to induce half- and full-period shi�s by posi-
tioning or timing the recoil laser adequately. However, the largest possible shi� is limited by
the restriction that the recoil laser cannot be farther away from the �rst or third grating than
the second one, t < T . Hence, a full-period shi� can only be achieved if hT/mλL ≥ d. �at is,
one must go beyond the �rst Talbot order if one uses a spectroscopy laser with a wavelength
larger than the grating period, T/TT ≥ λL/d.

3.3.1.2. Quantitative analysis

Based on the explicit description of the recoil e�ect on the fringe signal, Equation (3.79), let me now
devise a measurement routine for the absorption cross-section of the interfering particle species:
One �rst measures the unmodi�ed fringe visibility Vsin in a given Talbot-Lau experiment with the
recoil laser switched o�. �en one measures the reduced visibility, Ṽsin (PL) = ∣R(rec)

1 ∣ Vsin, for
di�erent powers PL of the recoil laser and plots the data on a logarithmic scale versus PL. �e above
model predicts a linear dependence,

ln Ṽsin = lnVsin − n(rec)
0 [1 − cos( 2πtd

TTλL
)] , (3.81)

since the mean number of absorbed photons is proportional to the product of the absorption cross-
section and the power, n(rec)

0 ∝ σabsPL. �e slope parameter of a straight line �t through the data
reveals the absorption cross-section, given the power and the time of the laser. Note that the particle
density does not enter the measurement result here (as opposed to other spectroscopy schemes)
since it is based on single-particle interference e�ect. In a time-domain setting the power variable
is replaced by the pulse energy EL.
�e relevant �tting parameter is independent of the unmodi�ed visibility; only the recoil-induced

reduction relative to the original value enters the routine. In principle, this renders our method
independent of the precise theoretical prediction of the fringe contrast and robust against many
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phase-averaging and decoherence e�ects in the experiment (that is, if they do not �uctuate between
di�erent steps of the measurement procedure). In practice, however, this is only strictly true in the
OTITLI setting where the velocity of the particles does not enter the description. In a conventional
KDTLI scheme both the timing t and the the absorption strength n(rec)

0 are inversely proportional
to the longitudinal particle velocity vz , and we must average the results over a given velocity distri-
bution. We are le� with a more complicated expression of the ratio between the reduced and the
unreduced fringe visibility,

R =
RRRRRRRRRRRRR
⟨B(2)
2 ( πL

vzTT
)⟩

−1

vz
⟨B(2)
2 ( πL

vzTT
) exp

⎧⎪⎪⎨⎪⎪⎩

√
2
π

σabsPLλL
hcwyvz

[exp(− 2πiDd
TTλLvz

) − 1]
⎫⎪⎪⎬⎪⎪⎭
⟩
vz

RRRRRRRRRRRRR
, (3.82)

where L denotes the grating distance and B(2)
2 is the Talbot coe�cient (3.66) determining the

KDTLI fringe visibility (3.67). �e measured reduction must be compared to the averaged expres-
sion R, and a simple �t based on the linear form (3.81) for a �xed velocity will introduce errors in
the measurement result for σabs. It can be kept at a minimum by optimizing the velocity depen-
dence of the original fringe visibility and of the recoil shi� per photon, hD/mvzλL. �e former is
achieved by adjusting the KDTLI setup to a visibility maximum, where ∂Vsin/∂vz is small at a given
mean velocity vz of the particles. �e latter is achieved by keeping the mean recoil shi� small but
e�ective; the ideal value is one half period, hD/mvzλL = d/2. Larger shi�s would only lead to a
larger variation of the reduction e�ect over the velocity.
To be speci�c, let us consider a symmetric distribution of velocities over the interval of length

2∆vz around its mean value vz , which ful�lls those minimality criteria. In particular, the contrast
reduction shall converge to exp(−2n(rec)

0 ) for ∆vz → 0. By performing a second-order Taylor
expansion of the bracketed terms in (3.82) with respect to the velocity deviation from the mean,
vz − vz , we �nd that the velocity-averaged reduction varies around this value like

R ≈ exp (−2n(rec)
0 ){1 + 2n(rec)

0 (∆vz
vz

)
2
[(n(rec)

0 − 1)(1 − π2

4
) + vz

∂ lnVsin
∂vz

]} . (3.83)

Here, n(rec)
0 and Vsin are evaluated at the mean velocity vz . �e relative uncertainty in the fringe

reduction is of merely quadratic order in the velocity width ∆vz . Hence, the systematic error ∆σabs
on the measured cross section, which we would disregard by modelling the data according to the
simple linear relation (3.81) at vz = vz , is of the same order in the velocity variance.
Figure 3.15 demonstrates that a reasonable velocity selection of ∆vz/vz ≲ 10% su�ces to measure

the absorption cross-section with a precision on the percent level in practice. For this I have simu-
lated a realistic KDTLI experimentwith a blue recoil laser of λL = 420nmwavelength in the existing
Vienna setup (L = 10.5 cm, d = 266nm, wy = 900 µm, f1 = f3 = 0.42)24. I take H2TPP molecules
at vz = 175m/s as test particles using an absorption cross-section of σabs = 15Å2 for the blue recoil
photons, and 0.17Å2 for the green grating photons at 532nmwavelength [38,39]. �e polarizability
is approximated by the measured static value [132], α = 105Å3, which yields a β-parameter of 0.11,
according to Equation (3.68). �e grating laser shall have 8W input power, which corresponds to
the phase modulation factor ϕ0 = 3.4 and to Vsin = 29%. A recoil shi� of d/2 is attained by placing
the recoil laser at D = 1.5 cm distance from the third grating. Both lasers in the experiment shall
have the same waist.
24 See Section 3.2.2 for all necessary details to compute the KDTLI fringe signal.
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Figure 3.15. Simulated measurement of the absorption cross-section of H2TPP molecules at 420nm wavelength with
help of a recoil laser in the KDTLI setup. �e dotted linemarks the actual value, σabs = 15Å2 , and the data points are
the simulated results for molecule beams of di�erent velocity spreads (horizontal axis). Details on the experimental
settings are given in the text. �e error bars show the statistical uncertainty at 95% con�dence (see text).

I performed a Monte Carlo simulation of the cross-section measurement in 14 runs, each corre-
sponding to a di�erent width parameter ∆vz of a Gaussian velocity distribution around the mean
value vz . �e results plotted in Figure 3.15 are based on the following algorithm:

(A) A sample of 104 molecules is generated by drawing random velocities vz from a Gaussian
distribution with themean value vz = 175m/s and a given standard deviation ∆vz . Given also
the recoil laser power PL and the position xS of the third grating, the detection probability
for each molecule in the sample is computed by means of the above theoretical model. It is
then used to generate a random number N (xS , PL; ∆vz) of detected molecules.

(B) Routine (A) is iterated over 100 positions xS of the third grating, which is scanned over �ve
grating periods in steps of d/20. A sine curve is �tted through these 100 data points, and
the ratio between amplitude and o�set then gives a ‘measured’ value for the sinusoidal fringe
visibility, Vsin (PL; ∆vz), for a �xed recoil laser power and velocity width. �e statistical error
of the �t is recorded as well.

(C) �e recoil laser power PL is ramped up from zero to 0.5W in 20 steps, and (B) is repeated in
each step. �e resulting visibility values are weighted by their �tting error and plotted on a
logarithmic scale against PL. �e mean velocity vz is then inserted into Equation (3.81) and
used as the basis of a linear �t through the data. �is serves as an estimate of the absorption
cross-section, σabs (∆vz), including statistical uncertainties.

(D) Routine (C) is repeated for various standard deviations of the Gaussian velocity distribution,
and the results are plotted in Figure 3.15.

We observe that the actual value of σabs is well reproduced by the simulated measurement when
the molecular beam is velocity-selected to less than 10% deviation from the mean. At this point
the velocity spread hardly adulterates the measurement. �e statistical error in the data is mostly
determined by the shot noise, which could be reduced using larger molecule samples.
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Note that the suggested method is minimally invasive on the molecules because it does not rely
on a strong optical depletion process to measure the net absorption of the molecular ensemble. �e
recoil laser in the given example yields an average of less than one photon absorption per molecule.
Nevertheless, we can attain a shot-noise limited measurement accuracy on the percent level in real-
istic settings25, irrespectively of the precise particle �ux. Moreover, the latter could bemuch smaller
than what would be required for a conventional extinction measurement of the net absorption. In
fact, Talbot-Lau interference is still observable with dilute and optically thin molecular beams.

3.3.2. Dealing with °uorescence

�e simulation results suggest that an interferometric measurement of σabs is viable by means of
the recoil-induced contrast reduction in the existing KDTLI setup. However, I have ignored here
another contrast-reducing factor related to the absorption: �uorescence. As long as no photo-
depletion e�ect occurs, an excitedmolecule can either distribute the extra photon energy internally
among its rovibrational degrees of freedom or it can reemit the energy in the form of a �uorescence
photon. �e former would lead to internal heating, which is o�en negligible in the case of large
molecules. �e latter corresponds to an immediate decoherence event, which is likely to occur
within nanoseconds a�er the excitation. �e likelihood of this event is referred to as the quantum
yield, P�uo ≤ 1, of a given molecule. It is about 11% in the above example of H2TPP.
�e�uorescence e�ect is readily incorporated into themodel by employing once again the generic

description of decoherence events outlined in Section 3.2.1.3. We merely require the knowledge
of the relative �uorescence spectrum, F (ω), as an additional input. No absolute emission rates
are required, and the spectrum shall be normalized to ∫ dω F (ω) = 1. Moreover, it is reason-
able to assume that each photon is emitted isotropically. Putting everything together, a single
�uorescence event e�ectively transforms the one-dimensional center-of-mass state of the mole-
cule as ρ ↦ ∫ d3k cF (ck) exp (−ikxx) ρ exp (ikxx). �e associated decoherence function reads as
R�uo (x) = ∫∞0 dω F (ω) sinc (ωx/c), and the Fourier components of the interference fringe signal
are modulated byR�uo (ℓdt/TT), according to Equation (3.59). Because of the short �uorescence
time scales, we may assume that the absorption and the emission events occur approximately at the
same point t in the interferometer.

With these ingredients the �uorescence e�ect can be incorporated into the probabilistic recoil
model in Equation (3.79). Given that n photons have been absorbed from the recoil laser, we
model the conditional probability of reemitting k < n photons by a binomial distribution, p (k∣n) =
(nk)P

k
�uo (1 − P�uo)n−k . Once again, this implies that P�uo does not change with the number of ex-

citations, like the absorption cross-section before. It is an uncritical assumption if we restrict to
low absorption numbers, n(rec)

0 < 1. �e emission of k photons modulates the fringe signal by
[R�uo (ℓdt/TT)]k in Fourier space; an average over all possible k leads to the �uorescence-modi�ed

25 Systematic errors due to the imprecise knowledge of the setup parameters, say, the laser powers, must be included in
practical implementations.
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fringe amplitudes,

S(n)ℓ =
n
∑
k=0

p (k∣n) [R�uo (
ℓdt
TT

)]
k
Sℓ =

n
∑
k=0

(n
k
) (1 − P�uo)n−k [P�uoR�uo (

ℓdt
TT

)]
k
Sℓ

= [1 − P�uo + P�uoR�uo (
ℓdt
TT

)]
n
Sℓ . (3.84)

given the absorption of n recoil photons. Finally, we multiply this conditional result by the phase
factor exp (2πiℓntd/TTλL) associated to n recoil shi�s and average it over n to arrive at the reduced
fringe amplitudes,

S̃ℓ =
∞

∑
n=0

Pn (n(rec)
0 ) exp(2πinℓtd

TTλL
) S(n)ℓ

= exp{n(rec)
0 [1 − P�uo + P�uoR�uo (

ℓdt
TT

)] exp(2πiℓtd
TTλL

) − n(rec)
0 } Sℓ . (3.85)

�is is the generalization of the above result (3.79) to nonzero quantum yields, P�uo > 0.
Let me close this section by discussing the primary cases of interest, half- and full-period shi�s.

Here, the sinusoidal fringe visibility reduces in the following way:

ln Ṽsin = lnVsin − 2n(rec)
0 + P�uon

(rec)
0 [1 −R�uo (

λL
2
)] if td

TTλL
= 1
2

(3.86)

ln Ṽsin = lnVsin − P�uon
(rec)
0 [1 −R�uo (λL)] if td

TTλL
= 1 (3.87)

Such linear models are valid descriptions for time-domain interference, and they can also be good
approximations for velocity-selectedmolecule beams in the KDTLI con�guration, as I have veri�ed
explicitly in the zero-�uorescence case. Here, we �nd the combined e�ect of reduction by recoil
and by �uorescence. Although the e�ect is still strongest for half-period shi�s, the absorption cross
section σabs is no more accessible by the devised measurement if the quantum yield P�uo is not
known either. �e latter should then be measured separately in a con�guration where the recoil
laser induces a full-period shi�. �e contrast is then solely a�ected by the reemission of photons,
and a �t of Equation (3.87) to the data would reveal the value of the term P�uoσabs, provided the
relative �uorescence spectrum is known. Combining this with the results of the other half-period
measurement would then result in a value for both σabs and P�uo. One could take this principle
even further and map the whole parameter space of absorption and �uorescence with a movable
and tunable recoil laser.
Note, however, that this interferometric method can only measure thermally averaged values

of the cross-section and the quantum yield, which are predetermined by the available molecule
sources. Additional measurement uncertainties not covered here could be caused by optical lim-
iting or enhanced thermal radiation, as listed at the end of Section 3.3.1.1. A nonlinear power de-
pendence of the logarithmic contrast reduction would be a �rst indication of whether such e�ects
might be relevant for a speci�c molecule. One should then restrict the analysis to the linear regime
at su�ciently small powers. �e thermal e�ects could be studied separately by systematic heating
experiments.

113



3.4. Mass limits of the OTITLI scheme

I close this chapter with an outlook into the future of matter-wave interferometry with ultra-heavy
objects, speci�cally for Talbot-Lau interferometry with nanoclusters. What is the highest mass that
could be brought to interference in a feasible experiment using available matter-wave techniques?
In the following I will answer this question on the basis of the Talbot-Lau interferometer scheme
with optical ionization gratings operating in the time domain. �is OTITLI scheme was worked
out in [10] and described in detail in Section 3.2.3.
So far, Talbot-Lau interferometry has proven to be the method of choice for demonstrating the

quantum wave nature of ever larger objects. It holds the current mass record, and it o�ers a greater
�exibility andmore favorablemass scaling than othermore conventional interference techniques, as
I have illustrated throughout this chapter. In particular, the OTITLI scheme has been designed and
optimized precisely for the purpose of reaching the highest possible masses. Its limitations, which
I discuss in the following, will apply in a similar manner, if not more severely, to other conceivable
matter-wave experiments.
Finally, we will see in Section 3.4.3 that a class of alternative theories beyond the level of standard

quantummechanics will become testable in the reachable high-mass regime. �ese theories predict
a breakdown of the superposition principle and induce classical behaviour on the macro-scale.

3.4.1. Experimental methods and challenges

A concrete study of the required technology and the e�ort necessary to implement the OTITLI
scheme of Section 3.2.3 with heavy metal clusters was provided when we �rst proposed it [10]. In
addition, the �rst experimental demonstration with small molecular clusters in [13] has proven that
the proposed design is indeed feasible with present-day technology.
Let me give a short overview of the experimental methods and challenges related to this imple-

mentation, including the interferometer design as well as the creation and detection of appropriate
particle ensembles.

3.4.1.1. Particle candidates and sources

�eamplitudemodulation e�ect of the optical gratings in the proposedOTITLI scheme is based on
single-photon ionization. We must therefore choose the particles according to whether they ionize
at a given wavelength of the grating lasers. Moreover, the ionization process should take place on
a short time scale and at an e�ciency close to 100%, since absorption events without subsequent
ionization would lead to additional decoherence. �e proposedVUV laser gratings at 157 nmwave-
length provide a single-photon energy of 7.9 eV, which exceeds the ionization threshold of many
large molecules26 or the work function of most cluster materials. �e latter has a typical value of
around 5 eV such that ultraviolet or optical laser gratingswithwavelengths larger than about 250nm
would narrow down the range of usable materials signi�cantly. Nevertheless, optical depletion pro-
cesses, such as multi-photon ionization, photo-isomerization or fragmentation, may still facilitate
Talbot-Lau interferometry with optical absorptive gratings.

26 Complex biomolecules o�en do not photoionize, or at best at low e�ciency, even if the absorbed photon provides
enough energy. �e latter is then deposited and distributed among many other internal degrees of freedom of the
molecule.
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�e availability of large ionizable particles for OTITLI experiments is mostly related to the avail-
ability of stable sources volatilizing a su�cient amount of these particles that can be passed on to
the grating pulses. Viable sources for large and complex molecules exist for tailor-made species on
the 103-104 amu scale [19]. However, it seems more sensible with current technology to focus on
atomic or molecular cluster aggregation sources, which o�er a broad range of masses and hold out
the prospect of generating pulsed beams of nanoparticles up to 106 amu and beyond. Here, individ-
ual atoms and molecules are typically desorbed or sputtered from a substrate and then swept away
in a cold gas jet where they condense and aggregate to clusters of a broad size distribution [118]. If
necessary, the ejected cluster ensemble can be slowed down in a bu�er gas cooling stage [133] to
achieve su�ciently long residence times in the active interferometer region. �e anthracene clus-
ters in the �rst demonstration of the OTITLI scheme were formed in a cold jet of noble gas a�er the
pulsed injection of anthracene vapour from an Even-Lavie valve [13, 134]. Although their interfer-
ence was clearly observed, a systematic ab initio assessment of the measured results was obstructed
by the fact that the optical properties of these clusters were practically unknown.

Laser acoustic desorption from atomic surfaces [135] represents an alternative way of produc-
ing large nano- or even microclusters that could be used in matter-wave interferometry. Recently,
there has been growing interest and progress in optical manipulation, cooling, and interference
techniques with single levitated nanospheres on the quantum level of motion [23–25, 136, 137].

3.4.1.2. Interferometer design

Having a working pulsed particle source at hand, the design of the interferometer is a relatively
simple matter. �e basic OTITLI setup consists of a single �at high-re�ectivity mirror and a set of
one to three identical pulsed laser systems with tunable pulse energy and timing. I restrict here to
the working setup [13] with three F2 excimer lasers producing 7ns long pulses of a few mJ energy
at the vacuum ultraviolet (VUV) wavelength λ = 157.63 nm. �ey illuminate a polished highly
re�ective CaF2 surface of two inches in diameter vertically from below. Each pulse is retrore�ected
from the mirror and forms a short standing-wave grating of 80nm period that extends coherently
over a longitudinal coherence length of roughly 1 cm. A weak electric �eld is applied in the vacuum
chamber containing the mirror to remove the particles ionized in each grating.

For the interference e�ect to occur it is vital to have precise control over the pulse timing. We
read from the resonance approximation in Section 3.2.1.2 that the delay times between the three
grating pulses must be equal up to a small deviation ∣τ∣ ≪ TT. �e time window le� for unavoidable
pulse jitters and timing imprecisions can be adjusted by the initial collimation of the matter-wave
ensemble along the standing-wave axis. It was measured to be 48ns in the anthracene experiment
[13], a value larger than the pulse duration and the jitter of the lasers.

Besides the initial collimation of the particles, it might be necessary to guarantee that they are
su�ciently slow and do not average over the standing-wave pro�le for the duration of each grating
pulse. �e dimensions and positions of the laser spots must be optimized accordingly, because
di�erent parts of the particle cloud may experience di�erent laser intensities, and the observed
visibility is averaged over the ensemble spread in velocity and position.
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Figure 3.16. Signature of anthracene cluster interference in the mass spectrum [138], as observed in the �rst OTITLI
experiment [13] for two di�erent pulse delays, T = 26 µs (le�) and 19 µs (right). �e bottom panels contain the
resonant (black) and the o�-resonant (red) mass spectra; their relative di�erence is given by the green bars in the
histograms above. Fringes can appear only in the resonant case, and so the normalized signal di�erence is a direct
measure for the fringe contrast. A comparison to the theoretical predictions plotted in the same histogram veri�es
the quantum nature of the fringes. �e �gure is courtesy of the authors of [13] and reprinted with their permission.

3.4.1.3. Signal detection

�e number of particles passing the three grating pulses is measured in a time-of-�ight mass spec-
trometer with help of an additional ionization laser. �is admits the simultaneous detection of a
broad distribution of cluster sizes in each shot of the experiment. However, there is no straight-
forward way to scan the interference fringe pattern by shi�ing the third grating with respect to the
other two, because all three standing waves are de�ned by the same mirror surface. Hence, one is
forced to seek di�erent means to e�ectively observe the fringe pattern:

☀ One obtains a �rst fringe signature by varying the pulse delay time and by comparing the
on-resonant signal at τ = 0 with the o�-resonant case at τ ≠ 0. �e fringe amplitude van-
ishes if τ is increased beyond the above mentioned resonance time window, implying that
one should observe a change in the detection signal (i.e. number of particles detected in the
mass spectrometer). �e signal di�erence is proportional to the fringe contrast. Hence, by
subtracting the on- and o�-resonantmass spectra in the detector, one expects to see the same
characteristic mass dependence as predicted by the theory and depicted in the diagrams of
Section 3.2.3 Figure 3.16 is an excerpt from the publication [13] of the anthracene experi-
ment, where the di�erence in the recorded mass spectra is plotted for two di�erent runs of
the experiment. �e on- and o�-resonant mass spectra are depicted as black and red curves
in the lower panel, whereas the normalized signal di�erence is plotted in the top panel. �e
uncertainty between the data and the theoretical prediction is due to the lack of knowledge
about the cluster properties.
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☀ Ane�ective grating scanwas also achieved in the anthracene experimentwith help of a simple
trick: By varying slightly the incidence angle of one of the lasers onto the mirror, the authors
e�ected a change in the grating period along the standing-wave axis. �is change was small
enough to not a�ect the Talbot-Lau resonance and the grating coherence length too much,
but it accumulated a su�ciently large grating shi� of up to one period a fewmillimeters away
from the mirror surface.

☀ A cleaner way to scan and resolve the interference fringe pattern is to make use of an ex-
ternal acceleration, which de�ects the particle trajectories in a controlled manner between
the gratings. A constant acceleration a along the standing-wave axis yields the e�ective shi�
δxa = −aT2 of the fringe pattern, as discussed in Section 3.2.1.2. �e fringes can be scanned
by varying either a or the grating separation time T . �e latter also in�uences the fringe
visibility. A tunable acceleration, for instance, could be generated by a static electric �eld
that produces a constant dipole force on polarizable particles along the grating axis. �is
technique is commonly used for de�ectometric measurements in the KDTLI setup, as men-
tioned in Section 3.2.2. Alternatively, one can simply employ gravity, a = g, in the vertical
grating alignment if the particles are su�ciently massive. A particle of, say, 105 amu corre-
sponds to the Talbot time TT ≈ 1.6ms, and it would fall more than 300 grating periods in the
current OTITLI setup if we assume a pulse separation of T = TT. �at is, one could easily
scan the fringe pattern by varying T over less than one per cent.

3.4.2. Standard mass limitations

Having discussed the experimental techniques, I proceed with the relevant mass-limitating factors
in the OTITLI scheme, as published in [11]. I resort to the currently available implementation using
VUV lasers with a grating period of d = 80nm and variable separation time T . Spherical gold
clusters of variable radius R in the nanometer regime will be used as reference particles of mass
m = 4πρR3/3, adopting the bulk values for the mass density and the relative dielectric permittivity,
ρ = 19320 kg/m3 and ε = 0.9 + 3.2i [50].

3.4.2.1. Temporal stability and inertial forces

�e most obvious limitation is related to the feasibility and stability of long-time interferometers.
Given a mass-proportional Talbot time of 16 ns per atomic mass unit, a reliable and distinguished
observation of quantum interference fringes requires the particles not to leave the interferometer
for at least 2T ∼ 32ns per amu. �is implies the following practical mass limitations:

☀ Velocity limit A su�ciently rigid and �at reference mirror for all three laser gratings cannot
be made arbitrarily large, and the use of separate mirrors for each grating would come at
the price of harsh stability and adjustment requirements. Particles must therefore be slow
enough to stay within the range of themirror for at least the time 2T . Let us assume a realistic
mirror length of about 5 cm, as currently used in the lab. A particle of, say, 106 amu must
then be injected with a velocity of less than 1.6m/s to not traverse the mirror in less than
the required 32ms27. Most known sources produce much faster particle ensembles. �at

27A similar velocity limit applies along the other spatial directions in order to prevent the particles from leaving the
coherent high-intensity parts of the standing-wave beam pro�le.
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is, one must �rst develop and implement e�cient methods to slow, guide, or even trap the
motion of polarizable particles before being able to do interference experiments with masses
of more than 105 amu. In this respect, optical and electromagnetic manipulation techniques
have attracted growing interest and undergone progress over the years, see e.g. [8,23,48, 136,
139–142].

☀ Gravitational limit I have mentioned above that the presence of gravity may be of help in
resolving the interference fringe pattern of large particles. At even higher masses, however,
the free fall of particles must be balanced or suppressed in order to keep them in place for a
su�ciently long time. �e free-fall distance during interference increases quadratically with
the Talbot time from already 5mm at 106 amu to the out-of-reach value of 5 km at 109 amu.
�is would have to be counteracted on the nanometer or millimeter level in a vertical or hor-
izontal grating arrangement. Experiments with trapped particles or in a microgravitational
environment [143] might be the only possibilities to beat the level of a million mass units.

3.4.2.2. Decoherence

Environmental decoherence is another limitating factor in high-mass interferometry. It is a well-
understood phenomenon that was assessed both theoretically and experimentally in the context
of Talbot-Lau interferometry with molecules [40, 144, 145]. �e two relevant free-space decoher-
ence processes for matter waves propagating through the interferometer are due to collisions with
residual gas particles and due to the interaction with thermal radiation. �e third relevant process,
grating decoherence due to the elastic scattering of laser photons in each pulse, will be omitted
here. It has been covered in Section 3.2.3.2, and I have shown that it is hardly of signi�cance for
subwavelength particles with masses < 109 amu.
�e overall free-space decoherence rate depends on the internal temperature of the particles and

on the background pressure and temperature of the environment. �e shielding of ever larger par-
ticles from decoherence requires us to decrease both temperature and vacuum pressure to the same
extent as the cross-section for gas collisions, and for the emission, absorption, and Rayleigh scat-
tering of thermal radiation increases.
�e in�uence of free-space decoherence on the interference visibility can be obtained using the

formalism layed out in [40] and the terminology developed in Section 3.2.1.3. Each type of deco-
herence is modelled as an independent random process of scattering events with a mean event rate
Γ (t). A single scattering event transfers a randomly distributed momentum recoil ħk to the parti-
cle, as described by the random unitary transformation, ρ ↦ ∫ d3k P (k) exp (ikxx) ρ exp (−ikxx),
of the reduced one-dimensional state of motion. �e probability distribution P (k) is normalized
to unity. Following the argumentation in Section 3.2.1.3, we arrive at the associated decoherence
function in the position representation, R(∆x) = ∫ d3k P (k) exp (−ikx∆x). If we suppose that
the event occurs at the time t before or a�er the second grating, we can use (3.59) to establish the
rate equation,

d
dt

S̃ℓ = Γ (t) [R(ℓd T − ∣t∣
TT

) − 1] S̃ℓ , (3.88)
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for the decay of the ℓth Fourier component of the interference fringe signal. Solving this di�erential
equation yields a relation between the decohered and the unmodi�ed signal components,

Rℓ =
S̃ℓ
Sℓ

= exp{ ∫ T

−T
dt Γ (t) [R(ℓd T − ∣t∣

TT
) − 1]} , (3.89)

with R0 = 1. Each independent decoherence process contributes a separate reduction factor Rℓ. I
assume, for simplicity, that each scattering event is isotropic28, P (k) = P (k), and that the event
rate Γ does not change over time in all the following processes. So we are le� with reduction factors
of the form

Rℓ = exp{−2Γ [T − ∫ T

0
dt ∫ ∞

0
dk 4πk2P (k) sinc(ℓkd t

TT
)]} . (3.90)

Absorption and emission of thermal radiation �e interfering nanoclusters can be regarded
as hot composite systems constantly absorbing and emitting thermal photons from and into the
radiation �eld of the environment. For the present estimates I assume the clusters to be in thermal
equilibrium with the environment, as also described in Section 2.1.2.2. Corrections of the radiation
law due to the �nite heat capacitance of the clusters, as given in [40], will be neglected. �e spectral
absorption and emission rates are identical and given by the Planck formula, Equation (2.23) on
page 12, at the temperature Tenv,

4πΓk2P (k)dk = γemi (ω)dω = σabs (ω)ω2dω
π2c2 [exp (ħω/kBTenv) − 1]

. (3.91)

By plugging this into (3.90) we obtain the reduction factors of emission and absorption, R(abs)
ℓ =

R(emi)
ℓ . In the alternative case of a hot particle, Tint ≫ Tenv, the decoherence is dominantly due
to emission, and the temperature dependence of the spectral rate is given by a Boltzmann factor,
Equation (2.22),

4πΓk2P (k)dk = σabs (ω)ω2dω
π2c2

exp(− ħω
kBTint

) . (3.92)

Elastic scattering of thermal radiation An elastic photon scattering event can be understood
as a combined absorption and emission process, averaged over the in- and outgoing wave vec-
tor with the scattering probability P (k → k′) proportional to γsca (ck) δ (k − k′) and the unitary
double-recoil operator given by exp [i (kx − k′x) x]. �e associated decoherence function reads as
R(∆x) = ∫ d3kd3k′ P (k → k′) exp [−i (kx − k′x)∆x], and the reduction factor becomes

R(sca)
ℓ = exp{−2 ∫ ∞

0
dω γsca (ω) [T − ∫ T

0
dt sinc2 (ℓ dωt

cTT
)]} . (3.93)

In full equivalence to the spectral emission rate (3.91), the scattering rate per frequency ω is taken
to be proportional to the Rayleigh scattering cross-section times the Planck energy density of the
surrounding radiation �eld, γsca (ω) = (ω/π)2 σsca (ω) [exp (ħω/kBTenv) − 1]−1. We expect that
the impact of scattering on nanoparticle interference is small, given the large average wavelengths
of thermal photons at temperatures below 1000K.

28�eoverall e�ect is practically the samewhether the scattering pattern is isotropic or, say, a dipolar patternwith respect
to a �xed polarization axis.
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Collisions with gas particles �e decoherence by elastic scattering of background gas particles
can be modeled in full analogy to the elastic light scattering. In addition, we can make use of a
further simpli�cation [146]: In contrast to thermal blackbody photons, most gas particles deliver
(and experience) a comparatively large momentum recoil upon collision, which exceeds by far the
elementary gratingmomentum h/d describing the reciprocal interference path separation. In other
words, wemay assume that each collision event by itself leads to a complete loss of coherence on the
length scale d, and that the resulting interference fringes decay uniformly with the mean number
of collisions in the interferometer, R(col)

ℓ ≈ exp (−2ΓcolT) for all ℓ ≠ 0. �e collision rate follows
from a van der Waals scattering model [40, 146],

Γcol ≈
4πΓ (0.9)
5 sin (π/5) (3πC6

2ħ
)
2/5 pgv3/5g

kBTenv
, (3.94)

given the pressure pg and the temperature Tenv of the residual gas. �e approximation holds for
nanoclusters that are slow with respect to the mean thermal velocity vg =

√
2kBTenv/mg of the gas

particles of mass mg . We estimate the van der Waals coupling constant by means of the London
formula [147], C6 ≈ 3αg IgαI/2 (I + Ig), based on the static polarizability α in cgs units and the
ionization energies Ig and I of the gas and the cluster particles.
Putting everything together, environmental decoherence reduces the sinusoidal fringe visibility
Vsin by the combined factor R1,

lnR1 = − 2ΓcolT − 4 ∫ ∞

0
dω γabs (ω) [T − cTT

dω
Si(dωT

cTT
)]

− 2 ∫ ∞

0
dω γsca (ω){T [1 + sinc2 (dωT

cTT
)] − cTT

dω
Si(2dωT

cTT
)} , (3.95)

where Si (x) denotes the sine integral function29 [113].
Figure 3.17 shows under which temperature and vacuum conditions one may still observe inter-

ference with gold clusters ranging from 105 to 109 amu in the OTITLI.�e contour lines correspond
to those background pressures pg and temperatures Tenv where the sinusoidal fringe visibility is re-
duced by a factor of two at m = 106..9 amu. �at is, the interference e�ect should be largely visible
within the enclosed parameter region, whereas it is prevented by decoherence everywhere in the
shaded outside area. I have takenN2 as the background gas, with Ig = 15.6 eV and αg = 1.74Å3 [148].
�e grating separation time is set to T = 2TT for each mass. Everything is assumed to be in thermal
equilibrium. �e dielectric properties of the gold clusters for all relevant thermal wavelengths are
estimated by means of the Drude model,

ε (ω) = 1 −
ω2p
ω2

+ iγp
ω2p
ω3
, (3.96)

using the bulk values for the plasma frequency and width, ωp = 1.3 × 1016Hz and γp = 1.1 × 1014Hz
[149]. Given the cluster radius R and the complex polarizability χ = 4πε0R3 (ε − 1) / (ε + 2), this

29 It is de�ned by the integral Si (x) = ∫ x
0 dy sinc (y). In addition, I have used the integral identity

∫ x

0
dy sinc2 (ay) = 1

a
Si (2ax) − xsinc2 (ax) .
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Figure 3.17. Area plot of the ambient temperatures and pressures required for interfering gold clusters of variousmasses.
�e contour line associated to each of the depictedmasses gives the critical temperatures and residual gas pressures
where decoherence reduces the visibility by a factor of two. Interference is largely suppressed in the shaded exterior
areas. I assume that interference is observed in the second Talbot order, T = 2TT , and that the particles and the
apparatus are in thermal equilibrium.

sets the values for the absorption and scattering cross sections at all relevant frequencies. Moreover,
the static polarizability is approximated by the ideal metal value, α = R3, and the work function of
the bulk material is taken as an estimate for the ionization energy, I = 5.4 eV.
Although decoherence does not pose an absolute mass limit in interferometry, we �nd that it

would be quite demanding to shield large nanoclusters su�ciently well from the environment. A
pressure of about 10−9mbar at room temperature, which is easily achieved in practice, may be just
enough for 106 amu clusters. But it is already too high for greater masses. �e setup would have to
be cooled and evacuated to below 200K and 10−12mbar in order to see 108 amu clusters interfere.

3.4.2.3. Particle size eªect

Probably themost fundamental and inevitable mass limit in Talbot-Lau interferometry with optical
depletion gratings is related to the growing size of the particles. �e point-particle approximation
used so far breaks down as soon as they approach the dimension of the grating fringes, and this
alters the amplitude and phase modulation properties of the optical gratings severely. Although
this does not necessarily imply that the grating modulation, and with it the interference e�ect, will
vanish, it does mean that the e�ect will ultimately become unobservable in practice.
We can study the implications of �nite-sized particles for the case of spherical gold clusters by ap-

plying the Mie theory description of the interaction between dielectric spheres and standing waves
given in Chapter 2, page 48�. According to the results of Section 2.3.2, we can allow for a �nite
sphere radius R in our description of the OTITLI (in Section 3.2.3) if we replace each grating trans-
mission function t(k) (x) by the modi�ed version (2.136),

t(k) (x) = exp [−n(k)
+ + ( i

2
ϕ̃(k)
0 − n(k)

− ) cos(2πx
d

)] . (3.97)
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�e transverse coordinate x represents the center-of-mass position of the sphere. �e mean ab-
sorption n(k)

+ and the amplitude and phase modulation factors, n(k)
− and ϕ̃(k)

0 , are de�ned by the
Mie expressions (2.135) on page 58. �ey reduce to the point-particle parameters, n(k)

± ≈ n(k)
0 /2

and ϕ̃(k)
0 ≈ ϕ(k)

0 , in the subwavelength limit, R/d ≪ 1.
�e phase-space model of the interferometer is retained, and we accomodate the generalized

grating parameters by changing the Talbot coe�cients (3.70) into

B(k)
n (ξ) = e−n

(k)
+ [ ζcoh (ξ) − ζion (ξ)

ζcoh (ξ) + ζion (ξ)]
n/2

Jn [sgn{ζcoh (ξ) + ζion (ξ)}
√

ζ2coh (ξ) − ζ2ion (ξ)] ,

with ζcoh (ξ) = ϕ̃(k)
0 sin πξ, ζion (ξ) = n(k)

− cos πξ. (3.98)

�e classical Talbot coe�cients are modi�ed accordingly, using ζclcoh (ξ) = ϕ̃(k)
0 πξ and ζclion = n(k)

− .
A comparison with Equation (3.70) shows that the change is subtle, but its implications are far-

reaching. On the one hand, we �nd that the visibility of the interference e�ect does not depend
on the mean absorption n(k)

+ , which appears only in the form of a constant exponential damping
factor in the Tablot coe�cients. �emean value growsmonotonously with the sphere size, whereas
the modulation terms, ϕ̃(k)

0 and n(k)
− , are bound to much lower values and regularly �ip signs at

large radii, see Figures 2.9 and 2.10. �e dotted curves on the le� and the right of Figure 2.9 on
page 52 depict the mean absorption (in di�erent dimensionless units) and the ratio n(k)

− /n(k)
+ as a

function of the cluster size, respectively. �e solid line in the le� panel of Figure 2.10 represents ϕ̃(k)
0

(in di�erent units). All this implies that even the largest gold spheres (except for the critical sizes at
which the modulation terms vanish) could in principle be interfered at high contrast with the right
experimental parameters.
On the other hand, the total transmissivity of the interferometer, as given by the zeroth Fourier

component of the fringe signal, does depend on the mean absorption. For the speci�c case where
all three grating pulses are equal, n(1,2,3)

± = n±, we �nd

S0 = B(1)
0 (0)B(2)

0 (0)B(3)
0 (0) = exp (−3n+) I30 (n−) . (3.99)

High contrast can be attained at the same time if we match the pulse timing to one of the Talbot
orders, T = NTT, where the sinusoidal fringe visibility (3.72) simpli�es to

Vsin = 2
I21 (n−) I2 (n−)

I30 (n−)
. (3.100)

Suppose that we adjust the laser power in each grating pulse to, say, n− = 4, which yields a pro-
nounced fringe visibility of Vsin = 85%. �is amounts to an average of n0 = 8 absorbed pho-
tons at the grating antinodes and to a transmissivity of S0 = 1% in the point-particle limit, where
n+ = n− = n0/2. However, a realization of the same fringe visibility with wavelength-sized gold
spheres is accompanied by a drastic loss in transmissivity. �is is shown in Figure 3.18 where I plot
the transmissivity S0 as a function of the sphere mass at a �xed 85% visibility (solid line, le� scale).
�e energy �ux EL/aL in each grating pulse (dashed line, right scale) must be decreased accord-
ingly to keep n− = 4 and the visibility constant. (EL denotes the energy and aL the spot area of the
grating pulse, as de�ned on page 21 in Section 2.1.4.1.)
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Figure 3.18. Transmissivity of the OTITLI setup for gold nanospheres as a function of their mass. �e transmissivity
(solid line) is given by the probability that a neutral cluster is transmitted by the three laser gratings and arrives at
the detector. �e dashed line represents the energy �ux of each grating (right scale) required to �x the sinusoidal
fringe visibility at 85% for all masses. �is plot was published in [11].

A 106 amu gold sphere with a radius of less than 3nm can still be regarded as a point particle,
and it is transmitted with 1% probability, according to the data in the diagram. �e transmissivity
drops by almost one order of magnitude to about 0.1% at m = 108 amu and R = 13 nm. From this
point onwards, however, the overall signal loss grows exponentially to an unfeasibly large degree.
We �nd an unacceptably low transmission probability of 4 × 10−12 at the other end of the plotted
scale, where the clusters are 109 amu heavy and 27nm in radius.
In practice, the OTITLI experiment is thus limited to masses of the order of 108 amu and below.

Moreover, we should keep in mind that the size e�ect may lead to more restrictive mass limits if
other, less dense cluster materials than gold are used. One can only gain in mass by increasing the
grating wavelength, but this is only possible to a limited extent: the photon energy must su�ce for
the photo-ionization of the clusters, or for another absorption-induced depletion e�ect. Concep-
tually di�erent interferometer schemes in the high-mass regime, such as the cavity-based double
slit for silica nanospheres [25], are less sensitive to the discussed size e�ect. �en again, they are
typically bound by prohibitively strict initial conditions and coherence requirements. For example,
the scheme proposed in [25] requires the nanospheres to be initially trapped close to the quantum
ground state of an optical potential.

3.4.3. Test of spontaneous localization models

We have concluded that Talbot-Lau interferometry with heavy nanoparticles is limited to masses
below 109 amu. While this will probably not be the ultimate limit for matter-wave interferometry
in general, it sets an evident feasibility bound for the discussed setup (and other endeavours of
this kind) at the moment. Nevertheless, this bound still lies orders of magnitude above what has
been achieved today. Hence, it is worthwile to look whether hints of new physics besides standard
decoherencemay appear at yet unprecedentedmass scales and bridge the gap between the quantum
and the classical world.
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�emajority of postulates and theories on thismatter build upon the concept ofmacrorealism, as
coined by Leggett [3]. One modi�es standard quantum theory in such a way that a realist ‘classical’
description of physics emerges on amacroscopic scale, whereas quantum superpositions of distinct
states are con�ned to the microscopic world. �e growing in�uence of gravity in large and mas-
sive systems is o�en held responsible for such a modi�cation by researchers in this �eld [150–152].
Other suggestions stipulate a fundamental stochasticity of space or space-time that has the desired
e�ect and ampli�es with the system size [153–156]. �ey all have in common that they introduce
a nonlinear stochastic addition to the Schrödinger equation, whose main observable consequence
is the e�ective destruction of quantum coherence in large systems similar to the e�ect of environ-
mental decoherence. I will study a broad class of such models from a more general perspective in
Chapter 4.
Here, we will focus on one of the best studied models of this kind, the full-�edged theory of

continuous spontaneous localization (CSL) [154, 155, 157]. I will assess its concrete predictions for
high-mass interferometry and show that it will become testable in the proposed OTITLI setup with
the heaviest gold clusters.

3.4.3.1. The CSL master equation

�e CSL model adds a stochastic momentum di�usion term to the Schrödinger equation of me-
chanical systems, which continuously localizes the wave function in space. �is di�usion occurs
spontaneously and is not related to any kind of environmental interaction, as in the case of Brown-
ian di�usion, for instance. On the microscopic level, the predicted e�ect is too weak to be observed
in quantum experiments to date. On the macroscopic level, however, the e�ect is ampli�ed by the
system mass to such an extent that any delocalized wave function would localize within unobserv-
ably short times.
�e elementary quantum description of composite mechanical objects is given in terms of many

constituent species of bosons and fermions. According to theCSL hypothesis, each such constituent
particle experiences the localization e�ect in proportion to its mass mk , and the many-body wave
function is then subject to an ampli�ed di�usion process that is the sum of the individual e�ects. In
a second-quantization formulation, it is represented by the position-averagedmass density operator

m (r) = ∫ d3r′ g (r − r′)∑
k
mknk (r′) , (3.101)

with nk (r) = ψ̂
†
k (r) ψ̂k (r) the number density operator of the kth species. �e function g (r) =

(2π)−3/2 r−3c exp (−r2/2r2c) is a normalized and isotropic Gaussian distribution, whose width rc is
a free parameter of the model. It is commonly �xed at rc = 100nm in the literature [155, 157, 158],
although the precise value may di�er within one order of magnitude [159,160]. An arbitrary many-
body density operator ρ̂ (in second quantization) is now subject to the modi�ed time evolution
∂t ρ̂ = −i [H, ρ̂] /ħ + LCSL ρ̂, where the von Neumann equation is complemented by the Lindblad
term30

LCSL ρ̂ = 8π
3/2r3cλ0
m20 ∫ d3r [m (r) ρ̂m (r) − 1

2
{ρ̂,m2 (r)}] . (3.102)

30Note that I will study generalizedmodi�cations of this kind in Chapter 4. �ere, I will construct them from basic prin-
ciples, and their Lindblad operators will exhibit a similar mass dependence. Note also that the second-quantization
form already implies that the exchange symmetry of indistinguishable particles is conserved by the model.
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�e constant λ0, the second free parameter of the model, denotes the localization rate at a �xed
but arbitrary reference mass m0. �e reference rate is conventionally given at the nucleon mass,
m0 = 1 amu. Superposition states of nuclei delocalized over more than rc = 100nm are decayed
into mixtures at this rate. It was originally assumed to be λ0 = 10−16Hz [153], a conservative
estimate, which made the originally proposed model [153] consistent with all quantum experi-
ments on microscopic scales at the time. Later reasonings based on the image formation on pho-
tographic plates or in the human eye, for instance, have led to the substantially larger estimate
λ0 = 1010±2Hz [159, 161, 162].
�e divergence in the estimates is related to the quadratic mass dependence of the e�ective lo-

calization rate in heavier compound systems, such as molecules or nanoparticles. As long as they
are smaller in size than the localization length rc , their center-of-mass degree of freedom evolves
under the modi�ed master equation ∂tρ = −i [H, ρ] /ħ + Lρ,

Lρ = ( m
m0

)
2

λ0 [8π3/2r3c ∫ d3r g (R − r) ρg (R − r) − ρ] . (3.103)

Here,m andR denote themass and the center-of-mass position operator of the object. �e origin of
this Lindblad form can also be understood in terms of a stochastic process of single random events
(instead of a continuous di�usion process), where the events occur at the rate λ = λ0 (m/m0)2 and
project the wave function of the compound to localized Gaussian states of the form g (R − r).
�is indicates a formal resemblance to decoherence master equations [163]. In fact, a Fourier

transform of the Gaussian functions converts the CSL term (3.103) into the form

Lρ = ( m
m0

)
2

λ0
⎡⎢⎢⎢⎢⎣
( rc√

π
)
3

∫ d3k e−k2r2c exp (ik ⋅ R) ρ exp (−ik ⋅ R) − ρ
⎤⎥⎥⎥⎥⎦
. (3.104)

It resembles the standard collisional decoherence master equation with a Gaussian distribution of
momentum kicks exerted on the particle.

3.4.3.2. Contrast reduction predicted by the model

�e converted form (3.104) of the CSL modi�cation allows us to treat it in full analogy to the deco-
herence e�ects of Section 3.4.2.2. �e decoherence function becomesR(x) = exp (−x2/4r2c), and
we �nd that the corresponding reduction factors (3.89) take on the form

lnRℓ = −2λ0T ( m
m0

)
2
[1 −

√
πrcTT
ℓdT

erf( ℓdT
2rcTT

)] . (3.105)

�ey describe the reduction of the interference fringe amplitudes in the OTITLI setup as predicted
by the CSL model. In particular, the sinusoidal fringe visibility reduces by

Vsin → Vsin exp{−2ξλ0T0 (
m
m0

)
3
[1 −

√
πrc

ξd
erf( ξd

2rc
)]} . (3.106)

Letme express the pulse separation in units of the Talbot time, T = ξTT, and introduce the reference
Talbot time T0 = m0d2/h ≈ 16 ns in order to highlight the cubic mass dependence of the predicted
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Figure 3.19. Required mass for testing the CSL model with gold cluster interferometry as a function of the localization
rate λ0 and the localization length rc (right panel), and as a function of only the rate parameter λ0 (le� panel). �e
solid curves give the critical mass at which the interference visibility is predicted to decrease by a factor of twowhen
the grating separation is �xed at the second Talbot order, T = 2TT . �e dashed lines on the right mark the critical
masses associated to the existing estimates for the localization rate λ0 .

decay31. �e square-bracketed term is always positive and smaller than unity. It converges to unity
in the limit where the e�ective separation of neighbouring interference paths is large compared to
the CSL length, ξd ≫ rc .
In Figure 3.19 I plot the critical mass of gold clusters (solid lines) at which the OTITLI fringe

visibility would be reduced by a factor of two due to CSL, at a �xed ξ = 2. �e right diagram shows
it as a function of the localization rate parameter λ0, assuming the standard value for the localization
length, rc = 100nm. All masses below the solid line experience a visibility reduction of less than
1/2, whereas the shaded area above the line marks the mass regime where interference is essentially
prohibited by CSL. �e dashed lines indicate the masses that must be reached in order to test the
existing (old and new) estimates for the rate parameter, λ0 = 10−16Hz and 10−10±2Hz. �e le� panel
is a contour plot of the critical mass, where I allow the localization length rc to deviate from the
standard value by at most one order of magnitude. (�e diagrams were published in [12] and [11].)
Concludingly, we �nd that the old and the new estimate for the CSL rate will become testable

with gold clusters of 9 × 107 and 105.9±0.7 amu, respectively. We have seen in the preceding sections
that this mass regime can still be reached, in principle, with the proposed OTITLI scheme if we are
able to keep the particles on a stable trajectory and su�ciently well shielded from the environment.
�e limiting size e�ect of Section 3.4.2.3 kicks in signi�cantly only at larger masses. If present, the
CSL e�ect could also be distinguished from standard decoherence e�ects bymeasuring the contrast
reduction as a function of varying pressure and temperature of the apparatus.
In the next chapter, I will exploit the idea of testing modi�cations of standard quantum theory

by means of experiments further and from a more general perspective. By constructing a broad
generic class of such modi�cations and matching its predictions with observational data we will be
able to quantify and compare the amount of ’macroscopicity’ in di�erent quantum experiments.

31 It stems from the fact that we require ξ ∼ 1 (i.e. T = TT) for a successfull proof of quantum interference.
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Chapter 4.

Classicalization and the macroscopicity of

quantum superposition states

“Under the ideal measure of values there lurks the hard cash.”
—Karl Marx

�e attentive reader should have recognized as a leitmotif throughout this thesis the exploration
of the fundamental limits to controlling and interfering massive particles at the borderline to the
classical world. A concrete assessment of these limits was done in Section 3.4 of the preceding chap-
ter, which showed the potential of the OTITLI scheme for time-domain Talbot-Lau interferometry
with nanoclusters. We have seen there that, apart from classical confounding factors due to inertial
forces, �nite particle size or setup imprecisions, the interference of heavy particles would mainly
be a�ected by environmental decoherence or by certain objective collapse models which have been
proposed for the sake ofmacroscopic realism [3]. Both e�ects lead to a decay of superposition states
in the position and in themomentumvariable of the interfering particle over time, while at the same
time maintaining the classical correspondence of the respective expectation values, as given by the
Ehrenfest theorem [164]. One generally describes the observable consequences of such a modi�ed
time evolution by adding a term to the von Neumann equation of the state operator ρ that repre-
sents the motion of the particle. I will refer to the modi�cation as classicalization, or classicalizing
modi�cation, in the following.
In this chapter I take a broader perspective and turn the question of the classical limitation to

heavy-particle interference into the question of themacroscopicity of quantum superposition states
in general. What makes, say, a particular many-body superposition state more macroscopic than
another one? If we stick to an intuitive conception of macroscopicity as some kind of yardstick
indicating how far beyond the microscopic (atomic) scale quantum behaviour might still be ob-
served in nature, then the answer to the latter question must be grounded in empirical facts. So
the macroscopicity should rather be assigned to a concrete physical observation than to the formal
representation of the quantum state itself. Recall that I motivated this argument already in the In-
troduction Chapter by referring to Leggett’s hypothesis of macroscopic realism [3, 165]. It will be
carried out rigorously in what is to follow.
�e demonstration of the quantum superposition principle with ever larger systems has in fact

become a key challenge in modern-day experiments. �ey range from atom interference with large
path separations and long interrogation times [166,167], observed superpositions withmany super-
condensed electrons [1, 2, 168] or Bose-Einstein condensates [169], to proposed measurements of
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quantum coherence with micromirrors in their oscillatory ground state [170]. In the cited exam-
ples, as well as in many other realized and conceivable superposition experiments, the systems
under investigation consist of material degrees of freedomwith a direct correspondence in classical
mechanics: One may associate with them a distribution of moving point masses. �e time evolu-
tion of the corresponding quantum states of motion is expected to be a�ected in a similar way both
by the same decoherence e�ects and by (speculative) classicalizing modi�cations. So, in a sense,
all those experiments are testing the same basic hypothesis, the validity of quantum mechanics, in
di�erent settings and to a di�erent degree—a common feature that may ultimately serve as a basis
to compare all those experiments in an unbiased way.
�e central result of this chapter will be the de�nition of an objective measure of macroscopicity

in Section 4.3, which allows us to quantify how macroscopic various quantum superposition states
are, which have been or may soon be observed in past and future experiments on mechanical sys-
tems. To achieve this I will �rst construct a generic class of classicalizing modi�cations in Section
4.1, which a�ect standard quantum theory only minimally and leave its basic symmetry and consis-
tency principles intact. Having studied their observable consequences in Section 4.2, we can then
assess the macroscopicity of quantum superposition states by quantifying the extent to which such
minimal modi�cations are ruled out once they are observed in an experiment1.
�e present approach di�ers from the reasoning behind other measures of macroscopicity that

can be found in the literature [3, 165, 171–176]. �ese measures are o�en restricted to a subclass of
quantum systems and state representations, or they refer to a preferred choice of macroscopically
distinct observables or operational resources required to analyze a given quantum state. Hence they
reveal an inherent problem underlying the de�nition of macroscopicity within quantum theory:
�e Hilbert space of complex many-body systems can be decomposed into many di�erent tensor
products, in some of which speci�c quantum states may look elementarily simple or particularly
complex. De Broglie interference of large molecules is, a�er all, described by one single center-of-
mass degree of freedom. Iwill discuss in this chapter inwhich sensemolecule interference should be
regardedmoremacroscopic than, say, neutron interference. �e results of this work were published
in a condensed form in [14].

4.1. A minimal modi®cation of quantum mechanics

As a �rst step let me specify the form and the properties of a hypothetical modi�cation of quantum
mechanics which shall be weakly invasive in the sense that it conserves basic symmetry princi-
ples as well as the operational framework underlying both quantum and classical mechanics. �e
principal focus here lies on the conservation of Galilean invariance in order to avoid a preferred ref-
erence frame of the modi�cation, but we shall also account for the exchange symmetry of identical
quantum particles. Moreover, the modi�cation shall consistently scale and apply to arbitrary sys-
tems of mechanical degrees of freedom, from the free motion of individual particles to the complex
dynamics of interacting many-body systems.
�e conditions sketched above will be su�cient to specify the observable consequences of this

minimalmodi�cation, that is, its explicit form on the level of the density operator ρ for themotional

1�e concept of macroscopicity presented here only applies to quantum systems with a direct classical correspondence
in nonrelativistic mechanics. �is excludes, by de�nition, systems of genuinely quantum degrees of freedom such as
spins.
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state of an arbitrary mechanical system. It is important to note that there exist already explicit
macro-realistic theories [150, 155, 157, 177], which enforce classical behaviour on the macroscale by
adding a nonlinear and stochastic term to the Schrödinger equation of a systemofmaterial particles.
�ey meet the above requirements and can thus be regarded as special cases of a classicalizing
modi�cation.

4.1.1. The operational framework and the dynamical semigroup assumption

�e theory of both quantum and classicalmechanics can be elegantly formulated in an common op-
erational framework [178,179] of preparations, transformations and measurements. �is approach,
minimizing the interpretational overhead on top of the pure mathematical formalism, underlines
the empirical and statistical nature of both theories and allows us to assess their common features
most clearly.
One of these features is the general concept of the state ρ associated to a given ensemble of prepa-

rations of a system, a mathematical object that contains all the necessary information to reproduce
the statistics of any measurement on that system. In quantum theory the state is given by a linear,
positive and normalized2 operator ρ ∈ B (H) on the Hilbert spaceH associated to the underlying
quantum system. �e most elementary quantum system with a counterpart in classical mechanics
is that of an elementary moving point mass m in free space, H = L2 (R3). In this case, a given
quantum state ρ may be represented in terms of the real-valued and normalizedWigner function
w (r, p) in phase space (see Appendix A.3 for the one-dimensional case). A classical state of the
same system is given by a positive and normalized distribution function f (r, p) of the phase space
coordinates (r, p) ∈ R6. �e respective distribution functions for general mechanical systems con-
sisting of N particles with arbitrary masses are then de�ned on the 6N-dimensional phase space
R6N .
An important aspect of the operational concept of states is state mixing: Repeating many times a

routine P, where a given system is prepared in the state ρ1 with probability p1 or in a di�erent state
ρ2 with probability p2 = 1 − p1, yields the state ρ = p1ρ1 + p2ρ2 for the overall ensemble. �at is
to say, the set of all possible states is convex. Moreover, if the experimenter decides to transform
the state by Φ ∶ ρ ↦ Φ (ρ) each time a�er preparing it, we can speak of a di�erent mixing routine
P’ of the states ρ′1 = Φ (ρ1) and ρ′2 = Φ (ρ2). Consistency then requires the transformation to be a
convex linear map,

Φ (p1ρ1 + p2ρ2) = p1Φ (ρ1) + p2Φ (ρ2) . (4.1)

In addition, the map Φmust then also conserve the normalization and the positivity of states (even
when the transformation is performed only on parts of a larger system). One speaks of a linear,
completely positive and trace-preserving (LCPT) map. �is must hold, in particular, for the free
time evolution of states, as described by a family of transformations {Φt ∣ t ≥ 0}. It should then be
clear that any modi�cation of the standard quantum time evolution must be LCPT in order to stay
consistent with the underlying operational framework.
Standard time evolutions in both quantum and classical mechanics exhibit another important

property – their dynamical semigroup character – which should not be easily abandoned when
modifying it. �e semigroup property of a given one-parameter family {Φt ∣ t ≥ 0} of LCPT time

2�e normalization tr (ρ) = 1 implies that the state is a norm-bounded operator. �e set of bounded operators B (H)
on a separable Hilbert spaceH is also a Hilbert space.
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transformations means that the time evolution of a state can be decomposed into successive time
steps by splitting the respective time evolution asΦt○Φs = Φt+s, with t, s ≥ 0 andΦ0 = id [180]. �is
property is also known as the Markov condition, which is usually only violated when the evolving
system is part of a larger system, and the (delayed) back-action of its other part on the degrees of
freedom of the subsystem cannot be neglected.
Nevertheless, we may always consider, at least in principle, mechanical systems that are su�-

ciently well isolated from any environment and that evolve coherently in time, according to the von
Neumann equation ∂tρ = −i [H, ρ] /ħ or its classical counterpart. It is therefore natural to assume
that a modi�cation of the coherent time evolution (of isolated systems) conserves the semigroup
property of this equation. Recall that the modi�cation is introduced solely for the purpose of in-
ducing the quantum-classical transition on themacro-scale, where in both limits the time evolution
for arbitrary self-contained systems is Markovian. One might argue that a physical realization of
such a modi�cation could embody non-Markovian back-action e�ects on the small time scales of
an underyling physical process. We do not exclude this possibility from our considerations, imply-
ing that the Markov condition might be strictly ful�lled only on the coarse-grained time scales of
actual experiments.
�e quantum dynamical semigroup of the modi�ed time evolution Φt can be expressed in terms

of the master equation3

∂tρ (t) = LΦρ (t) = − i
ħ
[H, ρ (t)] + Lρ (t) , (4.2)

with ρ (t) = Φt (ρ) the time-evolved initial state ρ and LΦ the generator of the semigroup [180].
A�er subtracting the (unmodi�ed) coherent time evolution under the in�uence of the Hamilton
operator H, one arrives at the generator L of the modi�cation. It is of the Lindblad form [180–182]

Lρ = ∑
j

γ j (L jρL
†
j −
1
2
{L
†
j L j , ρ}) . (4.3)

�e constituting Lindblad operators L j and coe�cients γ j ≥ 0 will be speci�ed further using basic
symmetry and consistency arguments in the following.

4.1.2. Galilean covariance

Weare looking for amodi�cationwhose form is invariant under arbitraryGalilean symmetry trans-
formations, that is, the modi�ed time evolution must be interchangeable with arbitrary coordinate
transformations between di�erent inertial reference frames. �is property is called Galilean co-
variance. It should hold universally, even if the concrete Hamiltonian H of the mechanical system
under consideration is not invariant under Galilean transformations due to an external potential,
for instance.
In general, the symmetry covariance of a dynamical semigroup is de�ned with respect to a group
G of symmetry transformations g ∈ G. In a mechanical system they are given by transformations
of the phase space coordinates (r1, . . . , rN , p1, . . . , pN) of N arbitrary particles. �e corresponding

3An additional technical assumption is required apart from the semigroup property and the LCPT nature of the one-
parameter family {Φt ∣ t ≥ 0}: Expectation values must evolve continuously in time, that is, the function ⟨A (t)⟩ =
tr (AΦt (ρ))must be continuous in t for any state ρ and any bounded operator A ∈ B (H).
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transformations of a quantum state are represented by unitary operatorsUg associated to each group
element. �e semigroup of maps Φt is covariant with respect to G if Φt (UgρU

†
g) = UgΦt (ρ)U

†
g

holds for all ρ, g and t. Written in terms of the generator the covariance condition reads as

LΦ (UgρU
†
g) = UgLΦ(ρ)U

†
g ∀ g , ρ. (4.4)

By inspecting Equations (4.2) and (4.3) one easily sees that covariance is ful�lled for G-symmetric
Hamiltonians H = UgHU

†
g and for Lindblad operators that are symmetric up to a complex phase,

UgL jU
†
g = e iϕ jL j.

�ings are a bit more complicated in case of Galilean transformations, which can be explicitly
time-dependent. Adi�erent equality holds then for the generator of the time evolution, corrected by
the kinetic energy of a mechanical system. �e Lindblad-generatorL of the modi�cation, however,
ful�lls the above covariance condition (4.4), as will be shown in Section 4.1.2.3 below.

4.1.2.1. The Galilei symmetry group

�e Galilei group G of transformations between inertial reference frames consists of time transla-
tions, spatial translations, velocity boosts, rotations and combinations of those [183]. A space-time
point transforms as

g ∶ (r, t) ↦ (Rgr + sg +wg t, t + tg) , (4.5)

where Rg denotes a three-dimensional rotation matrix. Hence the group G is a direct product of
the one-parameter group of time translations, the rotation group and the six-parameter group GB
of Galilean boosts in position and velocity. �e most natural physical representation of the Galilei
symmetry is a free particle of mass m [183].
I focus here on the boost subgroup GB, rotations will be discussed separately at a later stage.

Time translations will have to be excluded from our considerations. �e invariance of a system
under time translations is implies energy conservation, which is generally not compatible with a
classicalizing modi�cation of the time evolution that leads to an overall loss of quantum coherence
in mechanical systems, as we will see later4.
We are now le� with the abelian subgroup of general boost transformations

GB ∋ gs,w ∶ (r, t) ↦ (r + s +wt, t) ,
gs,w ○ gs′ ,w′ = gs+s′ ,w+w′ . (4.6)

Each group element is determined by a position translation s and a velocity translation w. Obvi-
ously, the group is abelian and isomorphic to R6. In order to �nd a representation of the group
in terms of unitary transformations of quantum states in arbitrary mechanical systems, we need to
introduce the concept of characters: �ey are the irreducible one-dimensional representations of
abelian groups such as GB and serve as the building blocks of the unitary representations on in�nite
dimensional Hilbert spaces that we will be using [184]. A character χ is a continuous homomor-
phism from GB to the set T = {z ∈ C ∣ ∣z∣ = 1} of complex numbers of modulus one,

χ ∶ GB → T continuous, χ (g ○ h) = χ (g) χ (h) ∀ g , h ∈ GB . (4.7)

4�eunitary representation of time translations in a systemwithHamiltonianH is given by the time evolution operators
U(tg) = exp [−iHtg/ħ]. �e time translation-covariant Lindblad generator of a modi�cation of the coherent time
evolution would require the Lindblad operators to commute with U (tg) up to a complex phase.
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�e set of all characters, together with the pointwisemultiplication, forms the dual group G̃B, which
is again isomorphic to R6. �at is to say, every character is speci�ed by two coordinates r, v and
can conveniently be written as

χr,v ∶ gs,w ↦ exp [
i
ħ
m0 (v ⋅ s −w ⋅ r)] , (4.8)

with m0 an arbitrary reference mass to set the unit dimensions right.

4.1.2.2. The projective unitary representation of Galilean boosts

�e standard representation of Galilean boosts on the Hilbert space L2 (R3) of a free particle of
mass m is expressed in terms of the unitaryWeyl operators [183, 185],

W1 (s,w) = exp [ i
ħ
(p ⋅ s −mw ⋅ r)] (4.9)

= exp [ imw ⋅ s
2ħ

] exp [ ip ⋅ s
ħ

] exp [− imw ⋅ r
ħ

]

= exp [− imw ⋅ s
2ħ

] exp [− imw ⋅ r
ħ

] exp [ ip ⋅ s
ħ

] ,

with r and p the position andmomentum operators5. �eWeyl operators are the quantum pendant
of a phase space translation, as can be seen from

W1(s,w)∣r⟩ = e−imw⋅(2r−s)/2ħ∣r − s⟩, (4.10)

W1(s,w)∣p⟩ = e i(2p−mw)⋅s/2ħ∣p −mw⟩, (4.11)

W1(s,w)
⎛
⎝

r

p

⎞
⎠

W
†
1 (s,w) =

⎛
⎝

r + s
p +mw

⎞
⎠
. (4.12)

�e operators form a projective unitary representation (or unitary ray representation) of Galilean
boosts [183–185], that is, they conserve the group operation and commute with each other up to a
complex phase,

W1 (s1,w1)W1 (s2,w2) = e im(w1 ⋅s2−w2 ⋅s1)/2ħW1 (s1 + s2,w1 +w2)
= e im(w1 ⋅s2−w2 ⋅s1)/ħW1 (s2,w2)W1 (s1,w1) . (4.13)

�is is also known as theWeyl relation [186]. �e phase factor in the second line is given by the
character (4.8), with m0 = m.

5An operator exponential can be split according to eX+Y = eXeYe−[X,Y]/2 when the commutator is a C-number. From
this follows also the identity eXYe−X = Y + [X, Y].
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In the general case ofN particles (withmassesm1, . . . ,mN ) the boosts are represented by a tensor
product of the single-particle representations,

WN (s,w) =
N
⊗
n=1
exp [ i

ħ
(pn ⋅ s −mnw ⋅ rn)] = exp [

i
ħ
(P ⋅ s −Mw ⋅ R)] (4.14)

= exp [ iMw ⋅ s
2ħ

]
N
⊗
n=1
exp [ ipn ⋅ s

ħ
] exp [− imnw ⋅ rn

ħ
]

= exp [− iMw ⋅ s
2ħ

]
N
⊗
n=1
exp [− imnw ⋅ rn

ħ
] exp [ ipn ⋅ s

ħ
] .

Comparing the right hand side of the �rst line with (4.9) we see that this e�ectively boosts only the
center-of-mass coordinates R = ∑n mnrn/M and P = ∑n pn, with M = ∑n mn the total mass. �e
respective Weyl relation reads as

WN (s1,w1)WN (s2,w2) = e iM(w1 ⋅s2−w2 ⋅s1)/2ħWN (s1 + s2,w1 +w2) . (4.15)

�emany-particle Weyl operators can also be formulated in second quantization by expressing the
position and momentum operators of identical particles in terms of Fock operators,

W(s,w) = exp [ i
ħ∑k

( ∫ d3p p ⋅ s a
†
k(p)ak(p) −mk ∫ d3rw ⋅ r ψ̂

†
k(r)ψ̂k(r))] . (4.16)

Here, the sum extends over di�erent bosonic or fermionic particle species labeled by k. In partic-
ular, it extends over the di�erent spin states of each particle. �e terms ak(p) and ψ̂k(r) denote
the Fock annihilation operators for momentum p and position r, respectively. �e Weyl relation
becomes

W (s1,w1)W (s2,w2) = e iM(w1 ⋅s2−w2 ⋅s1)/2ħW (s1 + s2,w1 +w2) , (4.17)
with the operator M = ∑k mkNk counting the total mass via the number operators Nk of each
species. Projective unitarity holds within each subspace of �xed particle number, where the expo-
nential term reduces to a phase factor, as in (4.15). I will mostly use the �rst quantization form
in the following, when discussing the general implications of Galilean covariance on the modi�ed
time evolution of mechanical systems.

4.1.2.3. Galilean covariance of the modi®ed time evolution

�e modi�ed time evolution Φt of a mechanical system is covariant with respect to the Galilean
boost transformations (4.6) if it stays the same whether one applies it in, say, the system’s rest frame
or in another inertial frame. In mathematical terms, this condition reads as [187, 188]

Φt [WN (s,w) ρW
†
N (s,w)] = WN (s −wt,w)Φt (ρ)W

†
N (s −wt,w) ∀ ρ, s,w , t. (4.18)

It di�ers from the covariance condition (4.4) due to the explicit time-dependence of the boost trans-
formation: �e system coordinates with respect to the moving reference frame are constantly relo-
cated bywt over time. �e covariance condition for the generatorLΦ is obtained by di�erentiating
with respect to time at t = 0,

LΦ [WN (s,w) ρW
†
N (s,w)] = WN (s,w){LΦ (ρ) − i

ħ
w ⋅ [∑

n
pn , ρ]}W

†
N (s,w) . (4.19)
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As already mentioned, this only holds in systems where the coherent time evolution is governed
by a Galilei-invariant Hamiltonian without external potential. In fact, the second term in the curly
brackets corrects for the phase-space translation of the kinetic energy term L0 (ρ) =
−i∑n [p2n/2mn , ρ] /ħ, which is always part of the Hamiltonian. One checks this easily using the
identity (4.12). By subtracting the coherent part from the generator of the time evolution one �nds
that the Galilei-covariant modi�cation (4.3) then must ful�ll the condition (4.4) in terms of the
Weyl operators,

L[WN (s,w) ρW
†
N (s,w)] = WN (s,w)L(ρ)W

†
N (s,w) . (4.20)

�e identity shall hold universally, including the cases where theHamiltonianH breaks the Galilean
covariance of the coherent time evolution.

4.1.2.4. Implications for the form of the modi®cation

A theorem by Holevo [189, 190] restricts the form of the modi�cation generator L based on the
above condition (4.20). He studied the generic form of quantum dynamical semigroups which are
covariant with respect to a certain class of abelian symmetry groups, including the Galilean boost
group GB studied here. I follow the proof presented in [189], which does not only apply to single-
particle Hilbert spaces but to arbitrary many-body systems. Holevo states his result for unitary
representations of the symmetry group, but the relevant steps in the proof remain valid also for
projective unitary representations, as in the present case. �e result is valid for norm-bounded
quantum dynamical semigroups {Φt}, that is, ∥Φt (A)∥ ≤ C ∥A∥ ∀A ∈ B (H), with C ≥ 0 and ∥A∥
the operator norm [191].
According to Holevo’s theorem, the GB-covariant generator (4.20) can be decomposed in terms

of an integral over the dual group G̃B ≅ R6 of characters (4.8),

L(ρ) = ∑
j
∫ d3sd3w [L j (s,w) ρL

†
j (s,w) − 1

2
{L
†
j (s,w) L j (s,w) , ρ}] . (4.21)

�e Lindblad operators ful�ll the relation

L j (s,w)WN (s′,w′) = χs,w (gs′ ,w′)WN (s′,w′) L j (s,w)

= exp [ i
ħ
m0 (w ⋅ s′ −w′ ⋅ s)]WN (s′,w′) L j (s,w) , (4.22)

and the operator-valued integral ∫ d3sd3w ∑ j L
†
j (s,w) L j (s,w) is pointwise convergent (i.e. it con-

verges to a �nite value with respect to the weak-* topology in B (H) [191]). �e latter, however,
means that unbounded di�usion terms such as double commutators [r, [r, ρ]] are excluded [188,
192]. Such terms occur in the Caldeira-Leggett model of quantum Brownian motion [35, 193], for
instance. �ey are typically the result of approximating scattering processes in the limit of weak
momentum exchange [194], and they give rise to a signi�cantly more drastic classicalizing modi�-
cation of the coherent time evolution when they are universally applied beyond that limit. I have
therefore omitted unbounded terms in the construction of a minimally invasive modi�cation.
We still have to account for the rotation transformations to obtain full Galilean covariance of the

modi�cation. However, it will be more convenient to incorporate them a�er studying the concrete
implications of the covariance condition (4.22) on the Lindblad operators L j (s,w).

134



4.1.3. The modi®ed time evolution of a single particle

In the case of a single particle of mass m one can explicitly construct the Lindblad operators of the
modi�cation (4.21) from the covariance condition (4.22), which reduces to

exp [− i
ħ
(p ⋅ s′ −mw′ ⋅ r)] L j (s,w) exp [ i

ħ
(p ⋅ s′ −mw′ ⋅ r)] = e im0(w⋅s

′−w′⋅s)/ħL j (s,w) . (4.23)

Since this must hold for arbitrary (s′,w′) ∈ R6, we obtain two independent conditions by setting
either the position or the velocity variable to zero. For w′ = 0 the matrix elements of the operator
in momentum representation ful�ll the identity

e i(p
′−p)s′/ħ⟨p∣L j (s,w) ∣p′⟩ = e im0w⋅s

′/ħ⟨p∣L j (s,w) ∣p′⟩ ∀ s′. (4.24)

A non-zero value of the matrix element is only possible for p′ = p+m0w. Using the transformation
rule (4.11) we may thus expand the operator as

L j (s,w) = L j (s,w;p) exp [
i
ħ
m0w ⋅ r] , (4.25)

where the function L j can only depend on the momentum operator p of the particle. Plugging this
into (4.23) for s′ = 0 leads to the condition

e imw′(r−r′)/ħ⟨r∣L j (s,w;p) ∣r′⟩ = e−im0w
′⋅s/ħ⟨r∣L j (s,w;p) ∣r′⟩ ∀w′, (4.26)

in position representation. Here, a non-zero matrix element is only possible for r′ = r + m0s/m.
�e form of L j is thus obtained from the rule (4.10) and we are �nally le� with

L j (s,w) = ℓ j (s,w) exp [ i
ħ
m0 (w ⋅ r − p ⋅ s

m
)] = ℓ j (s,w)W

†
1 (

m0
m

s, m0
m

w) , (4.27)

where ℓ j denotes an arbitrary complex-valued function. Itmust be square-integrable since themod-
i�cation (4.21) is norm-bounded. �is allows us to introduce a time parameter τ > 0 and a positive
phase-space distribution function g (s, q) by

1
τ
= ∫ d3sd3w ∑

j
∣ℓ j (s,w)∣2 , (4.28)

g (s, q) = m3τ
m60
∑
j
∣ℓ j (

m
m0

s, q
m0

)∣
2
, (4.29)

where the latter is normalized to ∫ d3sd3q g (s, q) = 1. �e time parameter and the position-
momentum distribution function specify completely the modi�cation for a single particle,

L1 (ρ) = 1
τ
[ ∫ d3sd3q g (s, q)W

†
1 (s,

q
m

) ρW1 (s,
q
m

) − ρ] . (4.30)
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4.1.3.1. Covariance with respect to rotations

In order to achieve full Galilean covariance of (4.30) rotational transformationsmust be considered
as well. �ey are described in terms of orthogonal rotation matrices R ∈ SO (3), RRT = RTR = I,
with unit determinant. �eir unitary representation in mechanical systems transforms the position
and momentum operator of a particle as

UR
⎛
⎝

r

p

⎞
⎠

U†R =
⎛
⎝
Rr

Rp

⎞
⎠
. (4.31)

�e identity a ⋅ Rb = (RTa) ⋅ b holds for scalar products of three-dimensional vectors. Given an
arbitrary rotation R, we �nd that the generator (4.30) transforms as

URL1 (ρ)U
†
R =

1
τ
[ ∫ d3sd3q g (s, q)W

†
1 (R

T s, R
Tq
m

)URρU
†
RW1 (RT s, R

Tq
m

) − URρU
†
R]

= 1
τ
[ ∫ d3sd3q g (Rs, Rq)W

†
1 (s,

q
m

)URρU
†
RW1 (s,

q
m

) − URρU
†
R] (4.32)

Rotational covariance is then obtained for isotropic (and inversion-symmetric) distribution func-
tions, g (s, q) = g (s, q), where s = ∣s∣ and q = ∣q∣. �e �nal form of the Galilei-covariant modi�ca-
tion of the time evolution of a single particle then reads as

L1 (ρ) = 1
τ
[ ∫ d3sd3q g (s, q)W1 (s,

q
m

) ρW
†
1 (s,

q
m

) − ρ] . (4.33)

4.1.3.2. Decay of coherence

�e main feature of the Galilei-covariant modi�cation is its inherent classicalizing e�ect on the
quantum state of a single particle. It induces a combined decay of o�-diagonal matrix elements of
the state operator ρ in both position and momentum representation. �is becomes evident already
in the speci�c case where translations occur only in themomentumdirection, g (s, q) = δ (s) h (q).
�e modi�cation (4.33) then resembles the generic form of collisional decoherence master equa-
tions [195]. Such master equations can be interpreted as a random position measurement with a
limited spatial resolution given by the spread of the Fourier transform of h (q). Quantum states re-
main practically una�ected if they are localized below this limit, whereas coherent superpositions
stretching over a larger distance decay into a classical mixture within the time scale τ.
Moreover, the observable consequences of certain objective collapse models [150, 153, 155, 157,

177], which explicitly modify the quantum dynamics of mechanical systems on the level of the
Schrödinger equation, are described by the same generic form [163]. In the model of continuous
spontaneous localization [155, 157], for instance, the function h (q) is given by a Gaussian distri-
bution (and the same holds true in the previous version [153] of that model). Diósi’s gravitational
collapse model [150, 177] leads to the modi�cation term

LD (ρ) = −κG
4ħ ∫ d3s1d3s2 1

∣s1 − s2∣
[ f (s1 − r) , [ f (s2 − r) , ρ]] (4.34)

136



for a single particle, with G the gravitational constant, κ a free scaling factor of the collapse rate
and f (r) the local mass density of the particle6. �e expression can be brought into the covari-
ant standard form (4.33) by introducing the Fourier transform f̃ (q) of the mass density f (s) =
∫ d3q e iq⋅s/ħ f̃ (q) / (2πħ)3, and by noting that the gravitational potential transforms as

∫ d3s exp (ik ⋅ s)s
= lim

α→0 ∫ d3s exp (−αs + ik ⋅ s)
s

= 4π
k2

(4.35)

into Fourier space. We arrive at

LD (ρ) = κG
(2πħ)2 ∫ d3q

∣ f̃ (q)∣2

q2
[W1 (0,

q
m

) ρW
†
1 (0,

q
m

) − ρ] , (4.36)

which is Galilei-covariant if f (s) = f (s).
In the more general case (4.33) the classicalizing e�ect can be made explicit by representing the

state in terms of its characteristic function. �e latter is given by the expansion coe�cients of the
state operator ρ in terms of the Weyl operators, which form a complete basis set of bounded oper-
ators,

χ (r, p) ∶= tr(ρW
†
1 (r,

p
m

)) = ∫ d3r′d3p′w (r′, p′) e i(p⋅r′−p′⋅r)/ħ . (4.37)

It is normalized to χ (0, 0) = 1, and it relates to theWigner functionw (r, p) by a Fourier transform.
Spatial coherences, that is, o�-diagonal matrix elements of ρ in position representation, can be
extracted from the characteristic function via

⟨r0 −
r
2
∣ ρ ∣r0 +

r
2
⟩ = ∫ d3p

(2πħ)3
e−ip⋅r0/ħ χ (r, p) , (4.38)

and similarly for momentum coherences. �e above single-particle modi�cation (4.33) maps the
characteristic function to

L1 ∶ χ (r, p) ↦ 1
τ
[ ∫ d3sd3q g (s, q) e i(q⋅r−p⋅s)/ħ − 1] χ (r, p)

= − 1
τ
[1 − g̃ (r, p)] χ (r, p) , (4.39)

where I have introduced the Fourier transform of the phase space distribution function

g̃ (r, p) = ∫ d3sd3q g (s, q) exp [− i
ħ
(p ⋅ s + r ⋅ q)]

= ∫ ∞

0
dsdq (4πqs)2 g (s, q) sinc( ps

ħ
) sinc(qr

ħ
) . (4.40)

It is real and bounded by ∣g̃ (r, p)∣ ≤ 1 due to the normalization of the distribution g. �e modi-
�cation thus e�ects a decay of the characteristic function in (4.39) and, as a consequence, of o�-
diagonal matrix elements in position and momentum representation. �is happens at a decay time
scale given by the parameter τ. �e range of a�ected superposition states is limited, as the decay is

6 Point particles with f (r) = mδ (r) are not allowed in this model because they would lead to a diverging modi�cation
term. One must assume a �nite mass density, or �nite size, for every particle, even including electrons, for instance.
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suppressed for small-scale coherences extending only over distances r in position or p in momen-
tum for which g̃ (r, p) ≈ 1.
It is interesting to note that the modi�cation (4.33) for a free particle is covariant with respect to

time translations in the speci�c case of zero momentum translations, g (s, q) = h (s) δ (q). �is
is because the Lindblad operators commute with the free unitary time evolution operator U0 (t) =
exp [−ip2t/2mħ], and the modi�cation does not a�ect the conservation of energy. However, this
also means that plane wave states7 ρ = ∣p⟩⟨p∣, which are delocalized and clearly non-classical, are
not a�ected by the modi�cation. Momentum translations are therefore necessary to classicalize the
motion of free particles.

4.1.4. The modi®ed time evolution of a many-particle system

While the form of the modi�cation for a single particle can be speci�ed up to a time constant and
a phase space distribution function, this is not so in the case of N > 1 particles. Using (4.14) the
covariance condition (4.22) for the Lindblad operators can be stated as

exp [− i
ħ
(P ⋅ s′ −Mw′ ⋅ R)] L j (s,w) exp [ i

ħ
(P ⋅ s′ −Mw′ ⋅ R)]

= e im0(w⋅s
′−w′⋅s)/ħL j (s,w) ∀ s′,w′, (4.41)

with M = ∑N
n=1mn the total mass. �is relation means that the Lindblad operators must translate

the center-of-mass momentum P = ∑n pn by the amount −m0w, and the center-of-mass position
R = ∑n mnrn/M by −m0s/M. Let us therefore switch to center-of-mass and relative coordinates
and factorize the operator as

L j (s,w) = Lrelj (s,w) ⊗ exp [ i
ħ
m0 (w ⋅ R − P ⋅ s

M
)] = Lrelj (s,w) ⊗W

†
N (m0

M
s, m0

M
w) (4.42)

where the factor Lrelj (s,w) represents an operator acting solely on the Hilbert space of the relative
coordinates of theN-particle system. With this the covariance condition is ful�lled by construction.
�e possible choices of the remaining factor correspond to di�erent ways of distributing the

phase-space translation of the center of mass over the individual constituents. �e simplest way is
to divide the translation equally among all constituents, which yields a unitary representation in
terms of the N-particle Weyl operator,

L(U) (s,w) =
√

M3

τ(N)
g(N) (s,Mw)W

†
N (s,w) . (4.43)

It represents a straightforward generalization of the single-particle form (4.30), where I have re-
scaled the argument of theWeyl operator accordingly and omitted the j-index. �e parameter τ(N)

determines the time scale at which coherence decays in the system, while g(N) denotes a positive
and normalized phase-space distribution function. �e latter must be isotropic to �x the rotational
covariance, as in the single-particle case. However, it will be explained below that this N-particle

7Although plane waves are improper states, i.e. not normalizable, they serve as a helpful idealization in many concrete
situations.
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form is not suitable to consistently describe a universal classicalizing modi�cation for arbitrary
many-particle systems.
Another natural way to e�ect the above center-of-mass translation is to superimpose individual

single-particle translations of all constituents,

L(S) (s,w) =
N
∑
n=1

ℓn (s,w) exp [ i
ħ
(m0w ⋅ rn −

m0
mn

pn ⋅ s)] , (4.44)

where the weights ℓn of the summandsmust be equal for indistinguishable particles in order to con-
serve the exchange symmetry of bosons and fermions. Each summand describes the translation of
the position andmomentum of the nth particle by −m0s/mn and −m0w, which e�ects a net shi� of
the center-of-mass coordinates by −m0s/M and −m0w. Rotational covariance is again achieved by
isotropic coe�cient functions8 ℓn (s,w), in analogy to the single-particle case discussed in Section
4.1.3.1. �e representation (4.44) treats individual particles independently, and a consistent scaling
of the classicalization e�ect to arbitrary mechanical systems can be achieved, as will be demon-
strated below.
In principle, the N-particle Lindblad operators could also be constructed out of phase-space

translations of arbitrary subsets of 2, . . . ,N − 1 particles, or a linear combination of all these pos-
sibilities. Picking one of these possibilities, however, would be an unduly complication of matters
without any clear advantages to the natural N-particle form (4.44). In particular, it seems unlikely
that a scale invariance property similar to the one explained in Section 4.1.4.4 below would hold in
such a case.
Finally there is also the possibility to ascribe independent generators L(n)

1 (ρ) to the individ-
ual particles and add them up9 to LN (ρ) = ∑N

n=1L
(n)
1 (ρ) in the N-particle case. Each generator

must then be of the single-particle form (4.33). Such an approach was in fact pursued by the au-
thors of the so-called GRWmodel [153], an earlier version of the continuous spontaneous localiza-
tion model [155] which falls under the class of classicalizing modi�cations studied here. �is form,
however, breaks the fundamental exchange symmetry in systems of indistinguishable quantumpar-
ticles (as was pointed out in [196] for the GRW case). Separate generators L(k) could be admissible
only for di�erent particle species k, which are inherently distinguishable, but this would lead to a
complicated nonuniform scaling behaviour of the classicalizing e�ect in large systems consisting
of various kinds of particles. I have avoided this complication by restricting to a single Lindblad
generator to describe the modi�cation in any mechanical system of N particles, that is, I dropped
the j-summation in the general form of the generator (4.21).

4.1.4.1. Basic consistency and scaling requirements

�e selection of a speci�c N-particle form of the modi�cation must be based on two other formal
requirements besides the Galilean covariance, which guarantee that the modi�cation is universally
applicable to any system of mechanical degrees of freedom.

8�e coe�cient functions could actually share a common phase factor exp [iθ (s,w)] which needs not be isotropic.
Such a global phase factor in the Lindblad operator L(S) (s,w) may, however, always be omitted without loss of
generality.

9�is corresponds to the j-summation in the general Galilei-covariant form of the modi�cation (4.21), which is other-
wise omitted.
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Bystander criterion Firstly, we demand a consistent treatment of single particles, whether they
are isolated or constituents in a larger (possibly interacting) system of particles. No additional cor-
relations between individual particles should originate from the N-particle modi�cation. �at is
to say, the single-particle form (4.33) must always be reobtained from the general N-particle mod-
i�cation (4.21) a�er tracing over N − 1 ‘bystanding’ particles. In particular, the local description
of the state of a particle should not be altered by appending the state of an uncorrelated system of
particles, which may be completely detached and far away from the particle of interest. �is avoids
any superluminar action at a distance induced by the modi�cation.

Composition criterion In both quantum and classical mechanics we can describe the time evo-
lution of a compoundmany-body system by a single center-of-mass degree of freedom if its internal
structure does not in�uence the overallmotion. �enotion of a ‘single particle’ thus not only applies
to elementary building blocks of matter, but may also be used to describe the motion of composite
objects. In the same vein, we demand that the single-particle form (4.33) must e�ectively apply to
the center-of-mass description of a compound N-particle object, if the modi�cation does not a�ect
notably the (coherent) internal dynamics of the constituents. �is may be applicable (i) if the com-
pound can be regarded as a point-like particle, that is, if the constituent particles extend over a small
region where the modi�cation shows no ponderable impact10, or (ii) if the constituent particles of a
larger compound are rigidly localized around their equilibrium positions in the body-�xed frame.
In both cases we demand that the Lindblad operators (4.42) should (in some approximate sense)
reduce to

L (s,w) ≈ e iθ(s,w)

¿
ÁÁÀ m60

M3τcm
gcm (m0

M
s,m0w)W

†
N (m0

M
s, m0

M
w) , (4.45)

to obtain the form (4.33) for the center-of-mass degree of freedom, with a time parameter τcm and
distribution function gcm (s, q) determining the e�ective strength of the classicalizing e�ect on the
motion of the compound. A complex phase θ j may appear in the approximation, which drops out
again in the corresponding generator.
To achieve the required classicalization onmacroscopic scales, the modi�cation should act more

strongly on the whole compound than on each constituent individually; there must be an ampli�-
cation of the e�ect with growing size of the compound object. I will show how this in�uences the
general form of the modi�cation in many-particle systems. Let me denote, in the following, by τn
and gn the time parameter and the distribution function of the nth particle in the system.

4.1.4.2. Center-of-mass translations

As already mentioned, the simplest generalization of the modi�cation to arbitrary states ρ of N
particles is given by the Weyl operator (4.43),

L(U)
N (ρ) = 1

τ(N)
[ ∫ d3sd3q g(N) (s, q)WN (s, q

M
) ρW

†
N (s, q

M
) − ρ] , (4.46)

10 It was noted in Section 4.1.3.2 that the single-particle modi�cation is characterized by a minimal length scale where
it a�ects superpositions. Smaller-scale coherences are hardly in�uenced, and the internal dynamics of a su�ciently
small compound object should therefore remain una�ected under the same conditions.
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with M = ∑n mn the total mass. Tracing over all but the nth particle in the system yields the
expression

trN−1 [L(U)
N (ρ)] = 1

τ(N)
[ ∫ d3sd3q g(N) (s, q)W1 (s,

q
M

) ρnW
†
1 (s,

q
M

) − ρn] (4.47)

= 1
τ(N)

[M
3

m3n ∫ d
3sd3q g(N) (s, M

mn
q)W1 (s,

q
mn

) ρnW
†
1 (s,

q
mn

) − ρn]

for its reduced state ρn = trN−1 [ρ]. We �nd that for τ(N) = τn and g(N) (s, q) =
(mn/M)3 gn (s,mnq/M) the bystander criterion is met, that is, the expression equals the single-
particle form (4.33) for ρn. On the other hand, the composition criterion is met by construction,
with τcm = τ(N) and gcm = g(N), as (4.46) acts only on the center-of-mass coordinate.
With both criteria taken into account the present form of the modi�cation is not capable of in-

ducing classical behaviour on the macro-scale, while imposing only a negligible disturbance of the
dynamics of microscopic quantum systems. �is is because the rate of coherence decay induced
by the modi�cation does not amplify with the size of a compound system. �e time parameter
τ(N) = τn = τ is the same for all kinds of particles, irrespective of their mass and composition. �e
only feature that grows with the mass M of the compound is the momentum spread of the phase-
space distribution function g(N), which merely increases the range of a�ected superposition states,
as discussed in Section 4.1.3.2. In addition, the time evolution of the relative coordinates within a
(possibly large) compound system is not subject to any e�ect, because the modi�cation only acts
on center-of-mass coordinates. Nomatter howmacroscopic the systemmay be, its internal degrees
of freedom could stay in a superposition and would never be classicalized.

4.1.4.3. Single-particle translations

Having discarded the representation in terms of N-particle Weyl operators, let us proceed to de-
scribe the N-particle Lindblad operators as the sum of single-particle translations (4.44),

L(S)
N (ρ) =

N
∑
k,n=1

∫ d3sd3w ℓn (s,w) ℓ∗k (s,w) [W
†
1 (

m0
mn

s, m0
mn

w) ρW1 (
m0
mk

s, m0
mk

w)

− 1
2
{W1 (

m0
mk

s, m0
mk

w)W
†
1 (

m0
mn

s, m0
mn

w) , ρ}] . (4.48)

Here and in the following, the single-particleWeyl operators act on the Hilbert space of the particle
n that is indicated by the mass variable mn in their argument. In order to check the bystander
criterion we must trace again over all but the nth particle, as denoted by trN−1, and obtain

trN−1 [L(S)
N (ρ)] = ∫ d3sd3w ∣ℓn (s,w)∣2 [W

†
1 (

m0
mn

s, m0
mn

w) ρnW1 (
m0
mn

s, m0
mn

w) − ρn] + ∆ρ,
(4.49)

with ∆ρ given by (4.51). Comparing the �rst Lindblad term to the single-particle form gives

ℓn (s,w) = e iθn(s,m0w)

¿
ÁÁÀ m60

m3nτn
gn (

m0
mn

s,m0w), (4.50)
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with θn (s,w) an arbitrary phase that may be di�erent for each (distinguishable) particle in the
system. �e bystander criterion is now met if the remaining term,

∆ρ = i∑
k≠n

∫ d3sd3w Im{ℓn (s,w) ℓ∗k (s,w)}

× [W
†
1 (

m0
mn

s, m0
mn

w) , trN−1 (W1 (
m0
mk

s, m0
mk

w) ρ)] , (4.51)

vanishes. �is is achieved if the phases θn are multiples of π, notwithstanding any global phase
for all single-particle contributions. Moreover, the phases must be zero for identical particles to
conserve their bosonic or fermionic exchange symmetry11.
�e composition criterion is also met, as can be seen explicitly by neglecting the relative motion

of the constituents in a point-like compound and approximating the coordinates of each particle by
rn ≈ R and pn ≈ mnP/M. �is leads to approximate Lindblad operators of the form (4.45), where
the modi�cation parameters for the center-of-mass motion are given by

1
τcm

gcm (s, q) =
RRRRRRRRRRR

N
∑
n=1

e iθn(Ms/m0 ,q)
√

M3

m3nτn
gn (

M
mn

s, q)
RRRRRRRRRRR

2

. (4.52)

Integrating this expression yields the decay rate 1/τcm of center-of-mass coherence,

1
τcm

= ∑
n

1
τn

+ 2∑
k<n

∫ d
3sd3q

√τnτk

¿
ÁÁÀ m60

m3nm3k
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m0
mn

s, q) gk (
m0
mk

s, q) cos [θn (s, q) − θk (s, q)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=±1

.

(4.53)
A clearer view is obtained by introducing the normalized functions

fn (s, q) =

¿
ÁÁÀm30

m3n
gn (

m0
mn

s, q) e iθn(s,q)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

=±1

(4.54)

for the square root of the phase-space distributions gn appearing in (4.50). �e particle mass
mn must be replaced by the total mass M in the case of the center-of-mass compound, as rep-
resented by fcm. Each function is real and square-integrable, fn ∈ L2 (R6), with norm ∥ fn∥ =√

( fn , fn) = 1 by construction. �e L2-scalar product is de�ned in the usual way as ( f , g) =
∫ d3sd3q f ∗ (s, q) g (s, q), and the Cauchy-Schwarz inequality implies −1 ≤ ( fk , fn) ≤ 1 ∀ k, n.
Using this notation the composition criterion (4.52) can be expressed as

1√τcm
fcm (s, q) =

N
∑
n=1

1√τn
fn (s, q) , (4.55)

and, in particular,
1

τcm
= ∥

N
∑
n=1

1√τn
fn∥

2

≤ ∣
N
∑
n=1

1√τn
∣
2

. (4.56)

11 Invariance with respect to particle exchange is ful�lled if the Lindblad operators L(S) (s,w) of the modi�cation com-
mute with the exchange of any two out of N identical particles n,m up to a complex phase factor exp [iϕnm (s,w)].
Since this must generally hold for any N ≥ 2, all relative phases θn between indistinguishable particles in (4.50) must
be set to zero. �is makes the Lindblad operators exchange-symmetric sums of single-particle operators.
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Here it becomes evident how the use of single-particle translations produces the intended ampli-
�cation of the classicalizing e�ect with the system size (as opposed to the description in Section
4.1.4.2): �e center-of-mass coherence decay rate grows quadratically with the number N of con-
stituents (for a �nite number of particle species). Concretely, one obtains τcm = τ/N2 in the case of
N identical particles, with τn = τ.

4.1.4.4. Universality and scale invariance of the modi®cation

Using the single-particle descriptionwe are le�with the freedomof choosing the timeparameters τn
and the real functions fn (s, q) of each individual particle species in order to fully specify the general
form of the classicalizing modi�cation. Di�erent functions (by e.g. varying their shapes, widths
and signs) for di�erent constituents would lead to even another distribution for the compound
particle, according to the composition rule (4.55). �is compound could then be combined with
another species to a di�erent compound, and so on, and each with its own distribution function.
Ultimately, one would have to deliberately choose a �xed reference set of elementary point particles,
which serve as the building blocks for all matter subject to the classicalization, and assign individual
phase-space distribution functions and rate parameters to each of them. Should one decompose
the superposition of, say, a C60-fullerene in terms of 60 carbon atoms or in terms of an overall 1080
protons, neutrons and electrons?
We can avoid such questions of preferred choice by once again taking advantage of the composi-

tion rule (4.55). It implies that theweighted function fn/
√τn is an extensive property of (point-like)

composite systems which increases with each constituent. We thus obtain a universal description,
which does not favour a particular decomposition of compound objects into smaller units, by re-
lating the composition rule (4.55) to the mass—the basic extensive property of mechanical objects,
which comes naturally with the Galilean covariance condition. �at is to say, we can de�ne the
weighted root function of any point-like particle with mass mn relative to a �xed reference mass
m0,

1√τn
fn (s, q) ∶=

mn
m0

1√τ0
f0 (s, q) , (4.57)

by introducing only a single reference time parameter τ0 and a single reference function f0. �e
latter boils down (without loss of generality) to a positive, normalized and isotropic reference distri-
bution function g0 (s, q) = ∣ f0 (s, q)∣2, according to (4.54). �e time parameter and the distribution
for each particle species n is then given by

τn = (m0
mn

)
2

τ0, gn (s, q) = (mn
m0

)
3
g0 (

mn
m0

s, q) , (4.58)

which holds consistently for point-like compound particles,

τcm = (m0
M

)
2

τ0, gcm (s, q) = ( M
m0

)
3
g0 (

M
m0

s, q) , (4.59)

as follows from the identities (4.55) and (4.56). �e classicalization of point-like particles is thus
universally described by the (mass-rescaled) expressions (4.58), which are independent of decom-
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posing those particles into smaller mass units12. �e classicalizing e�ect is obviously ampli�ed for
large particles, as the coherence decay time parameter τcm decreases quadratically with growing
mass, according to (4.59). At the same time the distribution function is compressed in the position
coordinate, weakening the classicalization-induced position di�usion for heavy objects.

4.1.4.5. General form of the modi®cation

Putting everything together we arrive at a universal and consistent form of the classicalizing mod-
i�cation for arbitrary mechanical systems comprised of N point-like particles,

LN (ρ) = 1
τ0 ∫ d3sd3q g0 (s, q) [AN (s, q) ρA

†
N (s, q) − 1

2
{A
†
N (s, q)AN (s, q) , ρ}] , (4.60)

AN (s, q) =
N
∑
n=1

mn
m0
exp [ i

ħ
(pn ⋅

m0
mn

s − q ⋅ rn)] =
N
∑
n=1

mn
m0

W1 (
m0
mn

s, q
mn

) . (4.61)

It is completely determined by specifying the time parameter τ0 and the distribution function
g0 (s, q) at the reference mass m0.

4.1.4.6. Second quantization formulation

�e general Lindblad operators (4.61) are sums of single-particle operators. Due to the constant
weight for particles of identical mass, they conserve the exchange symmetry of indistinguishable
bosons and fermions, that is, quantum particles of the same species j and in the same spin state σ .
It follows that we may consistently formulate the modi�cation generator (4.60) in second quanti-
zation,

L(ρ) = 1
τ0 ∫ d3sd3q g0 (s, q) [A (s, q) ρA

†
(s, q) − 1

2
{A
†
(s, q)A (s, q) , ρ}] , (4.62)

Here, the Lindblad operators can be expanded in terms of the single-particle creation and annihi-
lation operators in the momentum or position basis,

A (s, q) = ∑
j,σ
∫ d3pd3p′ A j,σ (s, q; p, p′) a

†
j,σ (p) a j,σ (p′)

= ∑
j,σ
∫ d3rd3r′ A j,σ (s, q; r, r′)ψ

†
j,σ (r)ψ j,σ (r′) , (4.63)

or in any other basis of single-particle wavefunctions over con�guration space13 [197, 198]. �e
momentum and the position basis represent the most natural choices; they ful�ll the canonical

12 Evidently, I assume that there exist (besides elementary point particles) point-like compound particles whose internal
structure remains practically una�ected by the classicalizing e�ect. �is is certainly a weaker prerequisite than estab-
lishing a �xed reference set of elementary particles with individual classicalization rates and distribution functions,
and it can be justi�ed a posteriori by limiting the strength of the classicalization e�ect in compliance with experimen-
tal observations on the microscopic scale. In practice one should describe electrons, protons, neutrons and nuclei as
point particles, or otherwise even femtometer-sized superpositions of elementary particles would be a�ected. In this
case one could keep microscopic systems una�ected only by limiting the classicalization rate of macroscopic systems
to unsatisfactorily low values, as was discussed in the case of spontaneous localization models in [160].

13 Spins are �nite-dimensional degrees of freedom and their basis states are thus labelled by a single running index σ .
�e classicalizing modi�cation only acts on mechanical degrees of freedom, and the internal dynamics of spin states
remains una�ected.
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commutation relations (CCR)

[aσ (p) , aσ ′ (p′)]± = [a
†
σ (p) , a

†
σ ′ (p

′)]
±
= 0, [aσ (p) , a

†
σ ′ (p

′)]
±
= δσσ ′δ (p − p′) ,

[ψ̂σ (r) , ψ̂σ ′ (r′)]± = [ψ̂
†
σ (r) , ψ̂

†
σ ′ (r

′)]
±
= 0, [ψ̂σ (r) , ψ̂

†
σ ′ (r

′)]
±
= δσσ ′δ (r − r′) , (4.64)

where the anticommutator (+) is used for fermions and the commutator (−) for bosons. Any
(spin-independent) single-particle operator is readily translated into second quantization by �rst
expanding it, say, in themomentum representation and thenmapping ∣p′⟩⟨p∣ ↦ ∑σ a

†
σ (p′) aσ (p).

�e Lindblad operators (4.61) of the modi�cation then become

A (s, q) = ∑
j

m j

m0 ∫ d3p e ip⋅m0s/m jħ∑
σ

a
†
j,σ (p − q) a j,σ (p)

= ∑
j

m j

m0 ∫ d3r e−iq⋅r/ħ∑σ ψ̂
†
j,σ (r − m0

m j
s) ψ̂ j,σ (r) , (4.65)

up to an irrelevant complex phase factor. �e second line follows from the �rst with help of the
basis transformation rule

ψ̂ (r) = ∫ d3p
(2πħ)3/2

a (p) e ip⋅r/ħ ↔ a (p) = ∫ d3r
(2πħ)3/2

ψ̂ (r) e−ip⋅r/ħ . (4.66)

In the case of one particle species of mass m the modi�cation reads as

L(ρ) = 1
τ ∫ d3sd3q g (s, q) [A (s, q) ρA

†
(s, q) − 1

2
{A
†
(s, q)A (s, q) , ρ}] ,

A (s, q) = ∫ d3p e ip⋅s/ħ∑
σ

a
†
σ (p − q) aσ (p) ,

g (s, q) = ( m
m0

)
3
g0 (

m
m0

s, q) , τ = (m0
m

)
2

τ0. (4.67)

�e e�ect of the modi�cation (4.62) on single-particle expectation values of the form
⟨ψ̂
†
σ (r′) ψ̂σ (r)⟩, or arbitrary linear combinations of this, is the same as for the corresponding ma-

trix elements of the single-particle density operator, as discussed in Section 4.1.3.2.

Formulation with discretized momenta So far this chapter has covered themotion of particles
in free space, with a continuum of positions and momenta. When the motion is con�ned to a
�nite volume V , as is the case for electrons in a crystal lattice, we must work instead with discrete
momenta and a discretized formulation of the modi�cation.
A box geometry of the dimensionV = LxLyLz yields discretemomenta in steps of ∆p j = 2πħ/L j,

j ∈ {x , y, z}, each of which occupies a momentum cell of volume Vc = (2πħ)3 /V . Following the
convention to express momenta in terms of wave vectors k = p/ħ, let us introduce the discrete
momentum annihilation operators

cσ (k) = ∫V
d3r√
V

ψ̂σ (r) e−ik⋅r ↔ ψ̂σ (r) = 1√
V
∑
k

cσ (k) e ik⋅r , (4.68)
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which ful�ll the CCR [cσ (k) , c
†
σ ′ (k

′)]
±
= δσσ ′δkk′ . �e summation extends over wave vectors

of the form k j = 2πn/L j, n ∈ Z. By integrating the phase-space distribution g (s, q) for identi-
cal particles in (4.67) over the occupied momentum cell around each k we obtain the discretized
distribution function

G (s, k) = ∫ πħ/Lx

−πħ/Lx
dqx ∫ πħ/Ly

−πħ/Ly
dqy ∫ πħ/Lz

−πħ/Lz
dqz g (s, ∣ħk − q∣) = ∫Vc

d3q g (s, ∣ħk − q∣) . (4.69)

It simpli�es in two limiting cases: (i) if the elementary cell volume Vc is so large that it covers the
support of g in the momentum coordinate we have G (s, k) ≈ δk,0 ∫ d3q g (s, q), and (ii) if the
volume Vc is so small that g is approximately constant there then G (s, k) ≈ Vc g (s, ħk).
In the generic case that the volume V is much larger than the support of the discretized distri-

bution in the s-coordinate, the latter is normalized to

∫V d3s∑k G (s, k) ≈ ∫ d3s∑
k
G (s, k) = 1. (4.70)

�e discretized modi�cation then reads as

L(ρ) = 1
τ ∫V d3s∑k G (s, k) [A (s, k) ρA

†
(s, k) − 1

2
{A
†
(s, k)A (s, k) , ρ}] ,

A (s, k) = ∑
σ ,ℓ

e iℓ⋅sc
†
σ (ℓ − k) cσ (ℓ) . (4.71)

In the limit of truly macroscopic volumes V , a continuum approximationmay be applied a�er car-
rying out calculations in the discretized picture in order to evaluate the resulting expressions nu-
merically. It consists of replacing sums over momentum-dependent terms by integrals,

∑
k
f (k) Ð→ V

(2π)3 ∫ d3k f (k) = 1
Vc

∫ d3p f ( p
ħ
) . (4.72)

�is is a valid approximation, for instance, in large crystals where the dimensions are orders of
magnitude larger than the lattice constants. It turns the discretized modi�cation (4.71) into the
original one.

4.1.5. Center-of-mass motion of rigid compounds

With the general N-particle modi�cation (4.60) at hand, one can compute the classicalizing e�ect
on large compound systems, and see how it ampli�es with growing system size. While this can
be a hard task when studying the full N-body problem, the e�ective description of the classical-
izing e�ect on the collective motion of the compound turns out to be manageable. Many tests of
the quantum superposition principle with mechanical systems are in fact done by interfering com-
pound objects (atoms, nanoparticles, micromirrors) in their center-of-mass coordinates, as will be
discussed below.
It was shown in the previous section 4.1.4.4 how the composition property leads to an e�ective

single-particle treatment of the center-of-mass motion of point-like compound objects, where the
joint contribution of all constituents collectively enhances the classicalization of the center of mass.
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�is is related to the fact that a superposition state in the center-of-mass coordinate of the com-
pound should in fact be viewed as an entangled state, where the N constituent particles are either
all here or all there; even if only a single one of them gets localized due to classicalization the whole
superposition state reduces to a classical mixture. In the following, this argument will be general-
ized to spatially extended compounds of rigidly bound particles, provided that the constituents are
con�ned around their �xed equilibrium positions and that the center-of-mass motion decouples
from their relative motion.
On the other hand, we expect a di�erent behaviour of the classicalizing e�ect in a system of N

noninteracting particles, which need not be correlated andmay even be located far away from each
other. �ey are subject to individual classicalizing modi�cations, in accordance with the bystander
property of Section 4.1.4.1. �erefore it is in general not possible to describe the center-of-mass
coordinate as a single rigid particle.

4.1.5.1. Case study: The two-particle modi®cation

�e di�erent behaviour of compound and non-interacting systems of particles can be illustrated
instructively for the case of two particles of equal mass m, which for simplicity shall be given by
the reference mass, m = m0. Rewriting the two position and momentum operators r1,2 and p1,2 in
terms of the center-of-mass and relative coordinates, r1,2 = R ± r/2 and p1,2 = P/2 ± p, we �nd that
the Lindblad operators (4.61) of the modi�cation factorize as

A2 (s, q) = exp [
i
ħ
(P ⋅ s
2

− q ⋅ R)] ⊗ (exp [ i
ħ
(p ⋅ s − q ⋅ r

2
)] + h.c.)

= 2 exp [ i
ħ
(P ⋅ s
2

− q ⋅ R)] ⊗ cos(p ⋅ s
ħ

− q ⋅ r
2ħ

) . (4.73)

We trace over the relative coordinates in the two-particle modi�cation (4.60) to obtain the reduced
center-of-mass form

trrel [L2 (ρ)] = 4
τ0 ∫ d3sd3q g0 (s, q) (exp [

i
ħ
(P ⋅ s
2

− q ⋅ R)] trrel [cos2 (
p ⋅ s
ħ

− q ⋅ r
2ħ

) ρ]

× exp [− i
ħ
(P ⋅ s
2

− q ⋅ R)] − trrel [cos2 (
p ⋅ s
ħ

− q ⋅ r
2ħ

) ρ]) . (4.74)

�is form resembles the generator L1 of the single-particle modi�cation for a particle of total mass
2m0, but it does not act directly on the reduced center-of-mass state ρcm = trrel (ρ). Instead, the
state of relative motion in�uences the center-of-mass classicalization by modulating the e�ective
distribution of phase-space translations imposed on the center of mass. �is can be made explicit
in the case of a product state ρ = ρcm ⊗ ρrel, where the reduced center-of-mass generator,

trrel [L2 (ρ)] = 4
τ0 ∫ d3sd3q g0 (s, q) ⟨cos2 (

p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel

× (exp [ i
ħ
(P ⋅ s
2

− q ⋅ R)] ρcm exp [−
i
ħ
(P ⋅ s
2

− q ⋅ R)] − ρcm) , (4.75)

147



is actually equivalent to the single-particle form (4.33), but with an e�ective time parameter and
distribution function14

1
τcm

= 4
τ0 ∫ d3sd3q g0 (s, q) ⟨cos2 (

p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel
, (4.76)

gcm (s, q) = 4τcm
τ0
8g0 (2s, q) ⟨cos2 (

2p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel
, (4.77)

which both depend on the state of relative motion ρrel. We distinguish three limiting cases:

☀ Point-like compound �e two particles are closely bound in a point-like con�guration, such
that

⟨cos2 (p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel
≈ 1 (4.78)

for all s, q where the distribution function g0 (s, q) di�ers (noticeably) from zero. If we char-
acterize this region in phase space by the standard deviations σs and σq of g0, then the point-
like con�guration is attained once the variance in relative position and momentum is con-
�ned by ∆r =

√
⟨r2⟩ − ⟨r⟩2 ≪ ħ/σq and ∆p ≪ ħ/σs, respectively. In practice, this would be

realized by, say, a diatomic molecule much smaller in size than ħ/σq. In this case the center
of mass can be treated like a point particle of total mass M = 2m0, as already discussed in
Section 4.1.4.4. �e classicalization rate 1/τcm ≈ 4/τ0 is quadratically enhanced by the mass
since the contributions of both particles are added ‘in phase’.

☀ Rigid dumbbell �e above case can be generalized to a dumbbell-shaped con�guration,
where the two particles are rigidly bound at a relative position r = ⟨r⟩ like two weights �xed
to the ends of a rod,

⟨cos2 (p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel
≈ cos2 (q ⋅ r

2ħ
) = 1
2
+ 1
2
cos(q ⋅ r

ħ
) . (4.79)

�e �uctuations of the relative coordinate around r are neglected for all relevant s, q in this
case. Once again, this implies ∆r ≪ ħ/σq and ∆p ≪ ħ/σs, whereas the �xed equilibrium
distance r can be arbitrarily large, in principle. One could think of two atoms bound in a sti�
crystal lattice at a distance ∼ ħ/σq, for instance. �e center of mass classicalizes like a single
2m0-particle at a reduced rate, 1/τcm ≈ 2 (1 + g̃0 (r, 0)) /τ0, with g̃0 the Fourier transform of
the distribution g0 (which is real-valued and ≤ 1). It vanishes for large distances r in the case
of reasonably smooth distribution functions g0.

☀ Unbound system If the particles are moving independently and far apart from each other
such that their motional state covers a broad distribution with large values of the relative
coordinates, we may approximate

⟨cos2 (p ⋅ s
ħ

− q ⋅ r
2ħ

)⟩
rel
≈ 1
2

(4.80)

14Note that the modulated distribution function in (4.75) is not normalized; a renormalization to unity leads to an
e�ective center-of-mass time parameter 1/τcm < 4/τ0 . Note also that we have to substitute the integration variable s
by s/2 to arrive at the single-particle form (4.33).
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almost everywhere15. �e center of mass then classicalizes at double the rate of each particle,
1/τcm ≈ 2/τ0; a value one arrives at by treating the two particles independently and adding up
their separate single-particle modi�cations L1. �is conforms to the general rule of treating
uncorrelated states of separated systems individually.

4.1.5.2. Rigid compounds of many particles

�e rigid dumbbell con�guration of two particles can be readily generalized to a rigid con�guration
of N constituents in extended molecules, clusters or solids, for example. To this end, one expands
the single-particle position and momentum operators in terms of the center-of-mass operators R =
∑n mnrn/M and P = ∑n pn, and the set of N − 1 relative coordinates,

rn = R +
N−1
∑
j=1

cn j̃r j , pn =
mn
M

P +
N−1
∑
j=1

dn jp̃ j . (4.81)

�e position expectation values of the N constituent particles in the body-�xed frame are denoted
by rn = ⟨∑N−1

j=1 cn j̃r j⟩, de�ned over the Hilbert space of the N − 1 relative coordinates16.
A rigid con�guration is given if the deviations of the relative coordinates from the mean equi-

librium con�guration of the N-particle compound are negligible within the range of the classical-
izing modi�cation (4.60), as set by the standard deviations σs,q of the reference distribution g0.
(Such deviations include vibrations of the constituents around their (stable) equilibria as well as
rotations of the whole object.) In concrete terms, the variances of the N body-�xed positions and
momentamust be small compared to ħ/σq and ħ/σs, respectively, in order to justify the approxima-
tion rn ≈ R + rn and pn ≈ mnP/M. �e Lindblad operators (4.61) of the modi�cation then reduce
to

AN (s, q) ≈ ∑
n

mn
m0
exp [ i

ħ
(P ⋅ m0

M
s − q ⋅ (R + rn))] =

ρ̃ (q)
m0

exp [ i
ħ
(P ⋅ m0

M
s − q ⋅ R)] . (4.82)

�e term
ρ̃ (q) = ∑

n
mne−iq⋅rn/ħ = ∫ d3r ρ (r) e−iq⋅r/ħ (4.83)

represents the Fourier transformof the localmass density of the compound in the body-�xed frame17,

ρ (r) = ∑
n
mnδ (r − rn) , ∫ d3r ρ (r) = ρ̃ (0) = M . (4.84)

�e density can be replaced by a constant average value in the case of homogeneous solids, pro-
vided that the microscopic structure of the crystal lattice is not a�ected by the classicalization. �e
contribution of free electrons in the solid can safely be neglected due to their much smaller mass.
With the approximate Lindblad operators (4.82) we �nd that the center of mass classicalizes like

a single particle, as given by equation (4.33), with an e�ective mass

me� =
√
∫ d3sd3q ∣̃ρ (q)∣2 g0(s, q) ≤ M . (4.85)

15�e approximation ceases to be valid su�ciently close to the origin s = q = 0, but we neglect this contribution to the
integral over the phase space distribution g0 (s, q).

16�e N vectors rn are linearly dependent. �ey sum up to∑n mnrn = 0.
17�is resembles the continuum approximation in [155, 157] for the speci�c case of spontaneous collapse models.
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It determines the scaling of the e�ective single-particle time parameter and distribution function
for the center-of-mass motion,

τe� = ( m0
me�

)
2

τ0, ge� (s, q) = ( M
m0

)
3
g0 (

M
m0

s, q) ∣̃ρ (q)∣2

m2e�
. (4.86)

Note that the e�ective distribution function is not isotropic in q anymore if the shape of the com-
pound is anisotropic, but the inversion symmetry q ↦ −q still holds. �e e�ective mass is smaller
than the totalmassM, and for �xedM it decreases with growing size of the compound. It reaches its
maximum, me� ≈ M, in the limit of a point-like compound, as discussed above. We can generally
distinguish two limiting cases by looking at the expressions (4.85) and (4.86):

☀ Point-like compound If the mass density ρ (r) is su�ciently localized around the origin
r = 0, such that ρ̃ (q) ≈ ρ̃ (0) = M holds for all momenta q covered by the distribution
function g0, the e�ective mass (4.85) becomes me� ≈ M. �e compound can then be treated
as a point particle of total mass M, since its internal structure is practically not a�ected by
the classicalization. �is is exactly true for ρ (r) = Mδ (r).

☀ Large rigid body In the limit of large and dense compounds (e.g. macroscopic pieces of
solid matter) the Fourier transform of the density ρ̃ (q) is narrowly peaked around q = 0.
Once the peak width is smaller than the standard deviation σq, one may set

me� ≈
√
∫ d3q ∣̃ρ (q)∣2 ∫ d3s g0(s, 0), (4.87)

ge� (s, q) ≈
me�
m30

g0 (
me�
m0

s, 0) ∣ρ̃ (q)∣2 . (4.88)

�emomentumdependence of the e�ective phase-space distribution function is thenmainly
determined by the mass density and geometrical shape of the compound.

4.2. Observable consequences of the modi®cation

Having derived the speci�c form of the classicalizing modi�cation let me now analyze its e�ect
in concrete physical situations where superposition states of mechanical systems are observed. I
study in the following the destructive in�uence of the modi�cation on single-particle interference,
including the accompanying di�usion e�ect, as well as on superposition states of condensed quan-
tum gases.

4.2.1. Eªects of the single-particle classicalization

Many interference experiments can be described by the state ρ of a single mechanical degree of
freedom of mass m, which evolves under the in�uence of a Hamiltonian H. �e modi�ed time
evolution is of the form

∂tρ = − i
ħ
[H, ρ] + 1

τ
[ ∫ d3sd3q g (s, q) e i(p⋅s−q⋅r)/ħρe−i(p⋅s−q⋅r)/ħ − ρ] . (4.89)
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�e terms τ and g are given by the expressions (4.58) in the case of a point particle, or by (4.86)
in the case of a rigid compound. It was already discussed in Section 4.1.3.2 that the modi�cation
induces a decay of coherences in both the position and the momentum representation of the state.
�is alone, however, does not yet guarantee the emergence of classical behaviour. It should be

granted additionally that the particle moves according to the classical equations of motion of the
system governed by the classical Hamilton function H (r, p) = p2/2m+V (r) corresponding to H.
To this end, we must con�rm the validity of Ehrenfest’s theorem [199] under the in�uence of the
modi�cation, because it predicts that the centers of well-localized wave packets basically move on
classical trajectories in phase space. �is is due to the quasi-classical time evolution equations for
the expectation values of the position andmomentum operators. �ey are indeed una�ected by the
modi�cation,

∂t ⟨r⟩ =
⟨p⟩
m

+ 1
τ
E [s] = ⟨p⟩

m
, (4.90)

∂t ⟨p⟩ = − ⟨∇V (r)⟩ + 1
τ
E [q] = −∇⟨V (r)⟩ , (4.91)

since the �rst moments E [s] and E [q] of the distribution function g vanish due to its inversion
symmetry. Here, I denote expectation values with respect to g by

E [ f (s, q)] = ∫ d3sd3q g (s, q) f (s, q) . (4.92)

4.2.1.1. Diªusion and energy increase

Whereas the time evolution equations for the expectation values of position and momentum are
una�ected by themodi�cation, this does not hold for higher-order expectation values. In particular,
the position andmomentum variances of the particle are in�uenced, as the secondmoments E [q2]
and E [s2] are generally positive (whereas E [q ⋅ s] = 0). �is leads to position and momentum
di�usion, as described by

∂t ⟨r2⟩ =
1
m

⟨p ⋅ r + r ⋅ p⟩ + 1
τ
E [s2] , (4.93)

∂t ⟨p ⋅ r⟩ =
1
m

⟨p2⟩ − ⟨r ⋅ ∇V (r)⟩ = ∂t ⟨r ⋅ p⟩ , (4.94)

∂t ⟨p2⟩ = − ⟨p ⋅ ∇V (r) + ∇V (r) ⋅ p⟩ + 1
τ
E [q2] . (4.95)

�ese equations, together with (4.90) and (4.91), are an explicitly solvable closed set of equations
in the case of free propagation (V = 0), constant acceleration (V ∝ r), or harmonic oscillation
(V ∝ r2).
As an important consequence, the modi�cation induces an increase of the particle’s energy over

time at an average rate given (for time-independent Hamiltonians) by

∂t ⟨H⟩ = 1
2mτ
E [q2] + 1

τ
⟨E [V (r + s) − V (r)]⟩ ≈ 1

2mτ
E [q2] + 1

2τ
E [s2] ⟨∇ ⋅ ∇V (r)⟩ . (4.96)

On the right the potential is Taylor-expanded up to second order, using the fact that the isotropy of
the distribution g in s yields the relation E [s jsk] = E [s2] δ jk/3. In the case of free motion or con-
stant acceleration the particle heats solely by the rate E [q2] /2mτ. A particle that is harmonically
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bound with trapping frequencies ωx ,y,z experiences a mean heating rate of

∂t ⟨H⟩ = 1
2mτ
E [q2] +

m (ω2x + ω2y + ω2z)
2τ

E [s2] , (4.97)

which constitutes a measureable side e�ect of the classicalization. Considering that no signi�cant
heating e�ects of this kind have been observed in experiments on quantum systems so far, this
introduces empirical upper bounds for the rate 1/τ and for the second moments of the distribution
function18. �e classicalization-induced heating, however, does not depend on how nonclassical
a given system state is. Classically mixed states are a�ected in the same way as geniune quantum
superposition states.
In the case of a point-like particle we can express the heating rate in terms of the reference

time parameter, τ = (m0/m)2 τ0, and in terms of the standard deviations σs and σq of the ref-
erence distribution function g0 (s, q), by noting that E [s2] = (m0/m)2 σ2s and E [q2] = σ2q , as
follows from equation (4.58). We arrive at a heating rate expression proportional to the mass,
∂t ⟨H⟩ = (m/m0) [σ2q/2m0τ0 +m0σ2s (ω2x + ω2y + ω2z) /2τ0]. Similarly, the average increase of in-
ternal energy U for an ideal gas of particles without internal degrees of freedom increases with
growing particle numberM/m, ∂tU = Mσ2q/2m20τ0, whereM denotes the total mass of the gas.

4.2.1.2. Discussion of the coherence decay eªect

I have already discussed in Section 4.1.3.2 how the classicalizing modi�cation leads to a decay of
coherences in both position and momentum representation. �e e�ect is most easily evaluated in
the characteristic function representation (4.37) of the single-particle state, where the modi�cation
reads as L1 [χ (r, p)] = [g̃ (r, p) − 1] χ (r, p) /τ, as given by (4.39). �e Fourier transform g̃ of
the distribution function g is de�ned in Equation (4.40). Since g is a positive and normalized
distribution function with �nite moments, its Fourier transform g̃ can also be regarded a well-
behaved function that is bounded by ∣g̃ (r, p)∣ ≤ g̃ (0, 0) = 1 and that decays su�ciently fast for large
arguments (r, p). �e values of the characteristic function at di�erent positions r or momenta p
re�ect the o�-diagonal elements of the density operator in position or momentum representation,
as seen from the expressions

χ (r, 0) = ∫ d3r0⟨r0 − r
2
∣ρ∣r0 +

r
2
⟩, (4.98)

χ (0, p) = ∫ d3p0⟨p0 − p
2
∣ρ∣p0 +

p
2
⟩, (4.99)

for the accumulated o�-diagonals.
Disregarding the coherent evolution of the quantum state, themodi�cationL1 describes a contin-

uous decay of the characteristic function almost everywhere, with the exception of small arguments
(r, p) close to the origin where g̃ (r, p) ≈ 1. �at is to say, a�er waiting a su�ciently long time the

18Note that, in particular, the classicalizing modi�cation can only make physical sense if the distribution g (s, q) is a
well-behaved function with �nite moments.
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characteristic function is basically reduced to a narrow peak around its �xed value χ (0, 0) = 1 at
the origin—a state resembling a hot classical mixture19.
Moreover, the rate at which coherences decay is limited by the time scale τ, the latter being deter-

mined by the reference time parameter τ0. Even superposition states of arbitrarily distant positions
and momenta will maintain coherence for a time scale of τ, if they are only subject to the classical-
ization. Generally speaking, the coherence time of a mechanical object of mass m evolving under the
in�uence of the classicalizing modi�cation must be at least (m0/m)2 τ0, given a �xed time parameter
τ0 at the reference massm0. �is statement is not restricted to point particles; it holds for arbitrary
compound systems of total massm where the center-of-mass classicalization depends more weakly
on m, as was shown in Section 4.1.5.
Putting everything together, we conclude that the main observable consequence of the modi-

�cation is the classicalization of the motion of particles in the sense originally introduced in the
beginning of this Chapter: On the one hand, it predicts the described gradual decay of quantum
coherence over time. On the other hand, it leaves the Ehrenfest equations for position and mo-
mentum una�ected, (4.90) and (4.91). Both aspects indicate the emergence of classical behaviour
in mechanical systems over time. �is is supported by the fact that the single-particle modi�ca-
tion can be viewed as a generalization of the well-studied class of collisional decoherence master
equations with velocity-independent scattering amplitudes [194, 195], for wich σs = 0. �is class
is known to have solitonic pointer states as stable solutions in the long-time limit, which move on
classical trajectories [200].
�e classicalization e�ectmay happen almost instantaneously at themacro-scale and, at the same

time, be practically negligible if only a few elementarymasses are involved, depending on the choice
of time parameter τ0 and reference distribution g0.
Finally, I would like to add that the existence of a minimal coherence time is related to the norm-

boundedness of the modi�cation, and it will be essential for de�ning a measure of macroscopicity
based on the modi�cation. �is would be di�erent if unbounded di�usion terms were present. In
fact, a standard di�usion master equation,

Ldi� (ρ) = −
γpp

2
[p, [p, ρ]] − γrr

2
[r, [r, ρ]] − γpr [p, [r, ρ]] , (4.100)

also classicalizes the motion of a single particle, leaves the Ehrenfest equations untouched, yields
a constant energy increase per time, and is even Galilei-covariant, as can be easily checked. (�e
di�usion matrix γi j must be positive semi-de�nite in this case.) What distinguishes it from the
bounded single-particle modi�cation L1 is the rate at which it destroys coherences. We see this
again most clearly in the characteristic function representation, where

Ldi� [χ (r, p)] = −(
γpp

2
p2 + γrr

2
r2 + γprp ⋅ r) χ (r, p) . (4.101)

19�e thermal state ρ = exp (−p
2/2mkBT) / (2πmkBT)3/2 of a free particle corresponds to the characteristic function

χ (r, p) = δ (p) exp (−mkBTr
2/2ħ2). It is improperly normalized because the spatial coordinate extends over the

whole coordinate spaceR3 . Regardless of this issue, which could be �xed by restricting to a �nite volume, with grow-
ing temperature T the peak of the characteristic function around the origin gets more narrow. �e same happens to
the state under the in�uence of the classicalizingmodi�cationwith growing time, which relates to the classicalization-
induced di�usion heating discussed before.
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�e decay rate grows quadratically with r and p, which approximates the bounded case in the limit
of small arguments20. However, the unbounded case is valid for arbitrary arguments, that is, super-
positions of far apart positions or momenta decay almost instantaneously. �ere is no lower limit
to the coherence time, not even for elementary particles. I have therefore discarded this muchmore
invasive possibility in the �rst place by restricting to a norm-bounded modi�cation.

4.2.2. Explicit solution for harmonic potentials

�e modi�ed time evolution for a single particle, ∂tρ = −i [H, ρ] /ħ + L1 (ρ), can be integrated
explicitly in the presence of atmost harmonic potentials, that is, potentials with a linear or quadratic
dependence on the position. �e solution obtained can be used to describe many standard matter-
wave interference experiments. Let me proceed by deriving the general solution in a rather lengthy
but straightforward calculation, before I state the results for the most common cases.

4.2.2.1. Derivation of the explicit solution

It is well known that there exists an analytic solution to the Schrödinger evolution of a single-particle
state ρ in the presence of a harmonic potential,

V (r) = V0 −ma ⋅ r + 1
2
rT ⋅ K ⋅ r, K = KT . (4.102)

�e time evolution resembles its classical counterpart in the phase space representation, that is, the
Wigner function propagates in phase space along the classical trajectories corresponding to the po-
tential, exactly like the classical phase space distribution does [77]. �is is related to the fact that
the classical equations of motion are linear and hence there exist closed expressions for the corre-
sponding time-evolved quantum observables in the Heisenberg picture. �e classical equations for
the position rt and the momentum pt as a function of the initial values r0 and p0 read as

d
dt

⎛
⎝
rt (r0, p0)
pt (r0, p0)

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

0 I/m
−K C

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

⎛
⎝
rt (r0, p0)
pt (r0, p0)

⎞
⎠
+
⎛
⎝
0
ma

⎞
⎠
. (4.103)

Here I have introduced the additional traceless matrix C, tr (C) = 0, to account later for possible
conservative velocity-dependent forces such as the Coriolis force. Together with the spring matrix
K of the potential, it forms the full evolution matrix A ∈ R6×6 which yields the solution (and its
inverse)

⎛
⎝
rt
pt

⎞
⎠
= eAt

⎛
⎝
r0
p0

⎞
⎠
+ ∫ t

0
dτ eA(t−τ) ⎛

⎝
0
ma

⎞
⎠
,

20 To see the small-argument limit explicitly, expand the Fourier transform g̃ (r, p) of the distribution function to the
lowest non-vanishing order around the origin, g̃ (r, p) ≈ 1 − E [s2] p2/2ħ2 − E [q2] r2/2ħ2 . �is leads to

L1 [χ (r, p)] ≈ −
⎛
⎝
E [s2]
2ħ2τ

p2 +
E [q2]
2ħ2τ

r2
⎞
⎠

χ (r, p) ,

which is equivalent to the di�usion expression (4.101).
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⎛
⎝
r0
p0

⎞
⎠
= e−At

⎛
⎝
rt
pt

⎞
⎠
− ∫ t

0
dτ e−Aτ ⎛

⎝
0
ma

⎞
⎠
. (4.104)

�e inversion is guaranteed by construction because the matrix exponential is norm-conserving,
det [exp (At)] = exp [tr (A) t] = exp [tr (C) t] = 1. �e coherent time evolution of the quantum
state in the Wigner function representation is then given by

wt (r, p) ≡ wt

⎡⎢⎢⎢⎢⎣

⎛
⎝
r
p
⎞
⎠

⎤⎥⎥⎥⎥⎦
= w0

⎡⎢⎢⎢⎢⎣
e−At

⎛
⎝
r
p
⎞
⎠
− ∫ t

0
dτ e−Aτ ⎛

⎝
0
ma

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.105)

Note that I use here a more convenient phase-space vector notation for the arguments which is
better suited to implement the expression (4.104) for the classical trajectory. Let me rephrase the
characteristic function (4.37) in a similar manner as

χt (r, p) ≡ χt
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
= ∫ d3r′d3p′wt

⎡⎢⎢⎢⎢⎣

⎛
⎝
r′

p′
⎞
⎠

⎤⎥⎥⎥⎥⎦
exp

⎡⎢⎢⎢⎢⎣

i
ħ
⎛
⎝
p
−r

⎞
⎠

T
⎛
⎝
r′

p′
⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.106)

A negative sign is added to the argument in order to keep track of the variable substitutions in the
following steps. �e time evolution is solved by plugging in the form of the time-evolved Wigner
function (4.105) making a change of variables in the integral. We �nd

χt
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
= exp

⎡⎢⎢⎢⎢⎢⎣

i
ħ

⎡⎢⎢⎢⎢⎣
eA

T t ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦

T

∫ t

0
dτ e−Aτ ⎛

⎝
0
ma

⎞
⎠

⎤⎥⎥⎥⎥⎥⎦
χ0

⎡⎢⎢⎢⎢⎣
eA

T t ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.107)

�e time dependence can be absorbed by inverting the above expression (4.107),

χ̃t
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
∶= exp

⎡⎢⎢⎢⎢⎣
− i
ħ
⎛
⎝
p
−r

⎞
⎠

T

∫ t

0
dτ e−Aτ ⎛

⎝
0
ma

⎞
⎠

⎤⎥⎥⎥⎥⎦
χt

⎡⎢⎢⎢⎢⎣
e−A

T t ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.108)

�is adapted form is identical to the characteristic function at initial time, χ̃0 (s, q) = χ0 (s, q), and
it remains constant over time, ∂t χ̃t = 0.
We are now in a position to add the classicalizing modi�cation L1 from Equation (4.39) to the

coherent time evolution of the characteristic function,

L1
⎧⎪⎪⎨⎪⎪⎩

χt
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
= 1

τ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ d3sd3q g (s, q) exp

⎡⎢⎢⎢⎢⎣
− i
ħ
⎛
⎝
p
−r

⎞
⎠

T
⎛
⎝
s
q
⎞
⎠

⎤⎥⎥⎥⎥⎦
− 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
χt

⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦

= 1
τ

⎧⎪⎪⎨⎪⎪⎩
g̃
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
− 1

⎫⎪⎪⎬⎪⎪⎭
χt

⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.109)

�e only e�ect of this term is that it equips the adapted function (4.108) with a time dependence,

∂t χ̃t
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
= 1

τ

⎧⎪⎪⎨⎪⎪⎩
g̃
⎡⎢⎢⎢⎢⎣
e−A

T t ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
− 1

⎫⎪⎪⎬⎪⎪⎭
χ̃t

⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (4.110)
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�is time-di�erential equation is easily integrated, and via the relation (4.108) we arrive at the �nal
solution of the modi�ed time evolution,

χt
⎡⎢⎢⎢⎢⎣

⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
= χ0

⎡⎢⎢⎢⎢⎣
eA

T t ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
exp

⎡⎢⎢⎢⎢⎣

i
ħ
⎛
⎝
p
−r

⎞
⎠

T

∫ t

0
dτ eAτ ⎛

⎝
0
ma

⎞
⎠

⎤⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎣

1
τ ∫ t

0
dτ

⎧⎪⎪⎨⎪⎪⎩
g̃
⎡⎢⎢⎢⎢⎣
eA

T τ ⎛
⎝
p
−r

⎞
⎠

⎤⎥⎥⎥⎥⎦
− 1

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (4.111)

�e vector notation of the arguments will be dropped in the following discussion of common ex-
amples.

4.2.2.2. Free propagation in the presence of a constant acceleration

In many cases of single-particle interference, the particles propagate freely or under the in�uence
of a constant acceleration, say earth’s gravity. �e free evolution matrix then reads as

A =
⎡⎢⎢⎢⎢⎣

0 I/m
0 0

⎤⎥⎥⎥⎥⎦
, A2 = 0 ⇒ eAt =

⎡⎢⎢⎢⎢⎣

I It/m
0 I

⎤⎥⎥⎥⎥⎦
, (4.112)

and the modi�ed time evolution of the state (4.111) yields

χt (r, p) = χ0 (r − p
t
m
, p) exp{ i

ħ
(p ⋅ a t

2

2
−mat ⋅ r) + 1

τ
[ ∫ t

0
dτ g̃ (r − p

τ
m
, p) − t]} , (4.113)

where it was used that g̃ is of even parity in both arguments. �e constant acceleration, if present,
merely contributes a phase factor, but it does not a�ect the classicalization-induced decay term. �is
is because it does not a�ect the path di�erence in phase space between two interfering trajectories
of a superposition state.
At this point it is appropriate to make a side remark on the role of the position and momentum

distribution g (s, q) of the modi�cation. If we assume that the distribution involves only momenta,
g (s, q) = h (q) δ (s), then quantum coherence will still be guaranteed to decay over time under any
circumstances. �e reason is that the Fourier transform g̃ (r, p) = h̃ (r) predicts an exponential
decay of the characteristic function in (4.113) for all arguments (r, p) ≠ (0, 0). �e classicalizing
e�ect does not vanish in the absence of position di�usion.
�e situation is quite di�erent in the absence of momentum translations, g (s, q) = f (s) δ (q),

where the freely evolving characteristic function would not be a�ected on the whole position axis
(r, 0)21. Consequently, a delocalized and therefore highly nonclassical planewave state ρ = ∣p0⟩⟨p0∣,
whose characteristic function is given by χ (r, p) = δ (p) exp (−ip0 ⋅ r/ħ), would not lose any of
its coherence. We see that the absence of momentum di�usion undermines the classicalizing e�ect
of the modi�cation and should be excluded from our considerations. �e reference distribution
g0 (s, q) underlying the classicalizingmodi�cationmust therefore extend over �nitemomenta, σq ≠
0. Naturally, this comes at the price of an increase in kinetic energy over time.

21�is casemight be appealing as it also conserves the energy of a free particle, i.e. the invariance under time translations.
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4.2.2.3. The description of lower dimensional motion

Many mechanical superposition experiments probe coherence only with respect to the motion in
one or two dimensions. �emodi�ed time evolution for the lower-dimensional degrees of freedom
is then obtained by tracing over the irrelevant dimension(s) in the single-particle modi�cation L1,
which amounts to using the reduced phase-space distributions

g2D (sx , sy , qx , qy) = ∫ dszdqz g (s, q) , g1D (sx , qx) = ∫ dsydqydszdqz g (s, q) . (4.114)

In practice, the formal solution (4.111) is readily applied also to characteristic functions of one- or
two-dimensional quantum states by replacing the term g̃ (r, p) with its one- or two-dimensional
counterpart g̃1D (x , p) = g̃ (x , 0, 0, p, 0, 0) or g̃2D (x , y, px , py) = g̃ (x , y, 0, px , py , 0), respectively.

4.2.2.4. Harmonic solution in 1D

As a �nal example, let us consider the case of a one-dimensional harmonic oscillator. Assuming a
point mass m oscillating with a frequency ω, we obtain the time evolution matrix for position and
momentum as

A =
⎡⎢⎢⎢⎢⎣

0 1/m
−mω2 0

⎤⎥⎥⎥⎥⎦
, A2 = −ω2I ⇒ eAt =

⎡⎢⎢⎢⎢⎣

cosωt sinωt
mω

−mω sinωt cosωt

⎤⎥⎥⎥⎥⎦
. (4.115)

Plugging this into the formal solution (4.111), reduced to one dimension, we �nd

χt (x , p) = exp{
1
τ
[ ∫ t

0
dt′ g̃1D (x cosωt′ − p

mω
sinωt′, p cosωt′ +mωx sinωt′) − t]}

× χ0 (x cosωt − p
mω

sinωt, p cosωt +mωx sinωt) . (4.116)

4.2.3. Classicalization of Bose-Einstein condensates

A�er the detailed study of the classicalizing e�ect on the dynamics of single particles and point-like
compounds let us turn to quantum many-body systems. Bose-Einstein condensation is one of the
most prominent and best-studied collective quantum e�ects, and such condensates have become a
standard tool in the experimental observation of many-body phenomena [201].
�e coherence properties are related to the bosonic single-particle nature of the condensate wave

function, which gets macroscopically occupied when the BEC phase is formed below a certain
critical temperature. �e state of the condensate may then be represented by a single collective
matter-wave �eld Ψ (r, t), the “condensate wave function”. It follows the nonlinear Gross-Pitaevski
equation [202], which accounts for interactions between the condensed particles. �is description,
however, disguises the microscopic single-particle origin of the BEC state. It remains largely unaf-
fected by the loss of single particles due to heating or di�usion mechanisms, as induced also by the
classicalizing modi�cation, for instance.
Interference experiments with spatially separated BECs (e.g. [169, 203]) have clearly demon-

strated the coherence of the condensate state. So the natural question to ask is how this amount
of coherence compares to superposition states of single atoms in the same con�guration.
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Note that the in�uence of interactions on BEC interference will not be discussed in this work.
It was shown elsewhere [204] that they do considerably modify the coherent time evolution of the
condensate wave function Ψ (r, t), and thus the observed interference pattern22. Here, we focus
our attention on the expectation values of the observables that are actually used in the experiment
to detect the interference e�ect, and on how they are classicalized over time.
In the �rst observation of interference between two separated sodium BECs [169], and in many

following experiments, the fringe pattern typically appears in snapshots of the single-particle den-
sity n (x) = ψ̂

†
(x) ψ̂ (x) of the interfering condensates for each single run of the experiment. �e

motion of the condensed atoms is described by a one-dimensional degree of freedom in second
quantization, where ψ̂ (x) denotes the annihilation operator of a bosonic atom of mass m. �e ex-
periment [169] resembles the well-known double-slit con�guration: Initially, a superposition of two
condensates separated by the center-to-center distance d is created in a double-well trap potential.
It is then released, and a snapshot of the density is recorded a�er a free time of �ight t when both
condensates have overlapped. In the ideal non-interacting case one should expect to see a fringe
modulation of the density with period λ = ht/md. �e latter must be adapted in the presence of
interactions [204].
�e phase of the fringe pattern is random in each run since the relative phase between both con-

densates is not controlled when the double condensate is created. Consequently, the expectation
value ⟨n (x)⟩ does not reproduce the fringe pattern since it corresponds to an average over many
runs. �e in-depth analysis provided in [204, 208] suggests two approaches to model the inter-
ference e�ect in single runs theoretically. In the �rst approach the single-run interference pattern
can be recovered in the single-particle density n (x) by replacing the bosonic operator ψ̂ (x) with
the collective wave function Ψ (x , t) of the double condensate. �e second, and more rigorous,
solution is to seek signatures of the interference e�ect in second order correlation functions of the
condensate, rather than directly in the expectation value of the single-particle density.
I will now discuss the in�uence of classicalization in both approaches, using the second quanti-

zation formulation of the modi�cation (4.67) for a single spinless boson species of mass m in one
dimension,

L(ρ) = 1
τ ∫ dsdq g1D (s, q) [A (s, q) ρA

†
(s, q) − 1

2
{A
†
(s, q)A (s, q) , ρ}] ,

A (s, q) = ∫ dp e ips/ħa
†
(p − q) a (p) = ∫ dx e−iqx/ħψ̂

†
(x) ψ̂ (x + s) . (4.117)

4.2.3.1. Eªective single-particle description of BEC interference

�e free expansion of a BEC can be fully accounted for by using the second-quantization Heisen-
berg picture in the absence of interactions. �e expectation values of single-particle observables B,
that is, operators of the form ψ̂

†
(r) ψ̂ (r′) and linear combinations thereof, evolve like their coun-

terparts in �rst quantization (see Section 4.1.4.6 on page 144, where the second quantization form

22 Controllable nonlinear interactions are the crucial ingredient in interference experiments with squeezed multi-
component BECs to achieve longer coherence times and better phase sensitivity [205–207].
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of the modi�cation is introduced). �eir time evolution is e�ectively described by the Heisenberg
equation of motion for the observable23, ∂tB = i [H, B] /ħ + L(B).
As a consequence, the single-particle density n (x) evolves e�ectively like the spatial probability

distribution of a single particle. �is can be made explicit by introducing the second quantization
form of the characteristic function,

χ̂ (x , p) = ∫ dx0 e ipx0/ħψ̂
†
(x0 +

x
2
) ψ̂ (x0 −

x
2
) = ∫ dp0 e−ip0x/ħa

†
(p0 +

p
2
) a(p0 −

p
2
) ,
(4.118)

in close analogy to the line of arguments in [204]. It e�ectively evolves in time like its counterpart
in �rst quantization. In particular, one can easily verify by means of the bosonic CCR (4.64) that it
classicalizes like a single particle of mass m,

L[ χ̂ (x , p)] = 1
τ
[g̃1D (x , p) − 1] χ̂ (x , p) . (4.119)

Solving the modi�ed Heisenberg evolution of χ̂ (x , p) for freely expanding BECs then yields the
same analytic result as given in Section 4.2.2.2 for a single particle.
At the same time, the characteristic function is directly related to the Fourier amplitude of a

fringe modulation of the single-particle density with period λ,

χ̂ (0,−h
λ
) = ∫ dx e−2πix/λn (x) . (4.120)

�is expression serves to quantify the interference visibility observed in each run of a BEC inter-
ference experiment. If no coherence is lost, the visibility is obtained by substituting the number
operator with the fully evolved condensate wave function [204], n (x) ↦ ∣Ψ (x , t)∣2. �e exact
form of the wave function, as well as the amplitude and the period of the resulting fringe pattern,
change in the presence of interactions.
�e Heisenberg analysis of the modi�ed time evolution of χ̂ (x , p), cf. Equation (4.119), indi-

cates that the collective BEC interference e�ect is merely subject to single-particle classicalization.
�at is to say, the double-condensate wave function decays at the rate of a comparable single-atom
superposition state. �is is con�rmed by the following analysis.

4.2.3.2. Interference in terms of second order correlation functions

A more rigorous way to unveil the single-run BEC interference pattern was discussed in [208].
Instead of looking at the expectation value of the single-particle density ⟨n (x)⟩, which ensemble-
averages over the random relative phase of the double condensate, one should analyze the inter-
ference e�ect by means of the normally ordered second-order correlation function C (x , ∆) =
⟨ψ̂
†
(x) ψ̂

†
(x + ∆) ψ̂ (x + ∆) ψ̂ (x)⟩. �e latter is related to the joint probability of �nding a boson

at position x and, at the same time, a second boson at position x + ∆. It is intuitively clear that this
joint probability must reveal the interference fringe pattern irrespectively of its phase, given a �xed

23�e e�ective Heisenberg equation of motion for an observable B is obtained by taking the time derivative of the ex-
pectation value, ⟨∂tB⟩ ≡ ∂t ⟨B⟩ = ∂ttr (ρB), and using the cyclic property of the trace to shi� the master equation
∂tρ = −i [H, ρ] /ħ+L(ρ) toB. �is results in the conjugate equation ∂tB = i [H, B] /ħ+L

†
(B), whereL

†
(B) = L(B)

holds due to the isotropy of the classicalizing modi�cation (4.117).
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fringe period. We can illustrate this by the idealized case of a BEC superposition state, ρ = ∣Ψ⟩⟨Ψ∣
,where 2N atoms are condensed in two di�erent plane wave states,

∣Ψ⟩ =
√
2πħ
L
1
N!

[a
†
(−p0)]

N [a
†
(p0)]

N ∣0⟩. (4.121)

Here, the state vector is normalized with respect to a �nite trap length L. One immediately checks
that the single-particle density does not show any signature of interference, ⟨n (x)⟩ = 2N/L, where-
as the correlation function exhibits a fringe modulation with period λ = h/2p0,

C (x , ∆) L2 = 4N2 − 2N + 2N2 cos(2p0∆
ħ

) . (4.122)

In order to account for the in�uence of classicalization on this second order interference e�ect, it is
expedient to introduce the normally ordered second-quantization counterpart of the two-particle
characteristic function,

χ̂2 (x1, p1, x2, p2) = ∫ dx0dy0 e i(p1x0+p2 y0)/ħψ̂
†
(x0 +

x1
2
) ψ̂
†
(y0 +

x2
2
) ψ̂ (y0 −

x2
2
) ψ̂ (x0 −

x1
2
) .

(4.123)
�e correlation function can be obtained from this expression by

C (x , ∆) = ∫ dp1dp2(2πħ)2
⟨ χ̂2 (0, p1, 0, p2)⟩ e−ip1x/ħ−ip2(x+∆)/ħ . (4.124)

�e modi�ed Heisenberg time evolution of χ̂2 follows from a tedious but straightforward calcula-
tion that mainly relies on the use of the bosonic CCR. In the absence of external forces one arrives
at the integro-di�erential equation

∂t ⟨ χ̂2 (x1, p1, x2, p2)⟩ = [− p1
m
∂x1 −

p2
m
∂x2 +

g̃1D (x1, p1) + g̃1D (x2, p2) − 2
τ

] ⟨ χ̂2 (x1, p1, x2, p2)⟩

−4
τ ∫ dsdq g1D (s, q) sin( p2s − qx2

2ħ
) sin( p1s − qx1

2ħ
) ⟨ χ̂2 (x1 + s, p1 + q, x2 − s, p2 − q)⟩ .

(4.125)

Although a general solution of this equation is hard to �nd, an upper bound to the rate of the
coherence decay can be given. Recall that ⟨ χ̂2⟩ corresponds to the characteristic function of a two-
particle state in �rst quantization. As such, its classicalization rate cannot be larger than four times
the single-particle rate 1/τ, as seen in the exemplary discussion of the two-particle modi�cation in
Section 4.1.5.1. If the double-condensate superpositionwere to be observed bymeans of the second-
order correlation functionC (x , ∆), it would classicalize notmore than a single particle ofmass 2m.
�is should come as no surprise: Genuine N-partite coherence, as would be the case if the particles
were entangled in a so-called NOON superposition state of being either altogether in the le� or
in the right well, can neither be established nor identi�ed on the level of two-particle observables
alone.
In summary, collective interference with many Bose-condensed atoms is not subject to an en-

hanced classicalization e�ect beyond the level of a single or few atoms as far as only single- or few-
particle observables are concerned. �e situation changes when higher order correlations are taken
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into consideration, e.g. in experiments with so-called NOON states. �ey may o�er a high degree
of N-atom entanglement similar to center-of-mass superposition states of atomic compounds such
as molecules or clusters. Hence, they can be subject to an enhanced many-particle classicalization,
but they are also increasingly hard to handle both experimentally and theoretically.

On the other hand, a detailed analysis of the coherence properties of strongly interacting con-
densates, where repulsive interactions countervail the bosonic nature of the constituent particles,
would require a better understanding of the many-body structure underlying the collective wave
function Ψ. Interference experiments with such condensates might be more strongly a�ected by
classicalization than on the level of single particles, depending on what observables would be mea-
sured. I leave this as a matter for future studies.

4.2.4. Classicalization of Cooper-paired electrons

Now that we have seen the in�uence of classicalization on collective quantum interference e�ects
with Bose-condensed atoms, let me turn to macroscopic quantum superposition phenomena in
fermionic many-body systems. �e single-particle nature of the collectively occupied condensate
state did not give rise to a pronounced many-particle ampli�cation of the total classicalizing e�ect
in the bosonic case. With fermions. however, the situation is somewhat di�erent since no two
fermions may occupy the same state. Collective quantum phenomena involve the condensation of
fermions into Cooper-pairs as in the case of electrons in superconductors [202].

In close analogy to the BEC case one may associate a macroscopic wave function Ψ (r, t) =√
Ns/V exp (iφ (r, t)) to the condensate, which represents the collective state occupied by Ns

Cooper pairs and which embodies their macroscopic phase coherence throughout the supercon-
ductor of volume V [3]. It can be used to explain the characteristic electrodynamical proper-
ties of a superconductor: its perfect conductance and its perfect diamagneticity. �e latter pre-
vents magnetic �elds from entering the superconducting material by building up a phase gradient
in the pair wave function that compensates the corresponding electromagnetic vector potential,
ħ∇φ (r, t) = 2eA(r, t). �is results in the �ux quantization e�ect [209, 210]: �e magnetic �ux Φ
threading a closed superconducting loop must be quantized in units of the Cooper pair �ux quan-
tum Φ0 = h/2e, because the wave function Ψ is only well de�ned if the total phase accumulated
over the loop ∫∮ ∇φ ⋅ dr = 2e ∫∮ A ⋅ dr/ħ = 2eΦ/ħ is a multiple of 2π.
I focus here on the exemplary situation where the many-electron state of a superconducting ring

is brought into a superposition of counter-rotating persistent current states; this was observed in
various experiments [1, 2, 168] and is commonly regarded as a paradigm of macroscopic quantum
phenomena [3, 211]. �e basic e�ect is intuitively understood by means of the �ux quantization
condition. If an external �ux of Φ0/2 is applied to the loop, the superconducting state may take on
two equivalent possibilities. One where a negative �ux is induced to counteract the external �ux,
Φ = 0, or one where the external �ux is augmented to one quantum, Φ = Φ0. �e two states have
opposite phase gradients and can be understood as states of counter-rotating persistent currents, as
will shortly be discussed. Breaking the loop with a so-called Josephson junction allows both states
to tunnel and couple with each other giving rise to superposition states.
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Figure 4.1. Schematic of a superconducting loop geometry with a single Josephson junction. Given the magnetic �ux
Φ threading the area surrounded by the superconducting lead, a phase di�erence ∆ϕ falls o� across the thin slab
of insulating material (see text). It drives the tunneling current I = Ic sin ∆ϕ of Cooper pairs and builds up the
charge imbalance Q = C (dΦ/dt) across the junction. �e �ux Φ consists of the externally applied Φext and the
�ux induced by the ring current Φind = LI. On the right, the potential energy of the loop U (Φ) is sketched for
one quantum of external �ux, Φext = Φ0/2. �e associated quantum ground state corresponds to a superposition
of persistent loop currents.

4.2.4.1. Experimental situation

�e experimental con�guration can essentially be broken down to the geometry sketched in Figure
4.1 [212]: a closed loop of superconducting material, which is interrupted by one or more thin slabs
of insulating material (Josephson junctions), in the presence of a tunable magnetic �eld [1, 213,
214]. �e Josephson junction acts as a tunnel barrier for Cooper pairs, and a net tunnel current
I = Ic sin ∆ϕ may �ow if the phase of the pair wave function Ψ di�ers by ∆ϕ across the junction.
A su�ciently thin tunnel junction is fully characterized by the critical current parameter Ic , its
coupling energy is given by EJ = −Ic (Φ0/2π) cos ∆ϕ [202]. �ephase di�erence across the junction
arises as one modi�es the �ux Φ through the loop by switching on the magnetic �eld. �is is
because the phase di�erence accross the junction must again match the phase accumulated in the
superconductor due to the �ux, ∆ϕ + 2πΦ/Φ0 = 2πn. At the same time, any �ux Φ −Φext induced
by the Cooper pairs as a reaction to the applied �ux Φext increases the energy of the system by the
inductive term EL = (Φ −Φext)2 /2L, with L the self-inductance of the loop [3]. �e dynamical �ux
variable Φ thus fully determines the potential energy of the system,

U (Φ) = EL + EJ =
(Φ −Φext)2

2L
− IcΦ0
2π

cos(2π Φ
Φ0

) . (4.126)
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On the other hand, the charge imbalance across the Josephson junction building up with grow-
ing phase di�erence must also be taken into account. It gives rise to a ‘kinetic’ energy term EC =
C (dΦ/dt)2 /2, with C the capacitance of the junction24.
�e potential exhibits several local minima in Φ depending on the externally applied �ux Φext

and on the systemparameters L, Ic . A symmetric double-well potential appears in the case of Φext =
Φ0/2, as depicted on the right of Figure 4.1. �eminima are separated by a tunnel barrier at the point
Φ = Φ0/2 where no �ux is induced by the Cooper pairs. �e two wells correspond to clockwise
(↻) and anti-clockwise (↺) persistent loop currents, that is, to phase gradients of opposite sign
in the collective Cooper pair wave function.
�equantummechanical ground state of such a double-well con�guration is then given by a sym-

metric combination of both single-well ground states with a reduced energy, (∣ ↻⟩ + ∣ ↺⟩) /
√
2,

while the antisymmetric combination corresponds to a higher energy. A similar con�guration holds
when the loops are interrupted by more than a single Josephson junction [215].
Microwave spectroscopy serves to measure the level splitting (also known as anti-crossing) in the

experiments [1, 2, 168], thereby verifying that the system has occupied the superposition state for a
su�cient lifetime inversely proportional to the energy di�erence.

4.2.4.2. Theoretical description of the superconducting state

�e microscopic derivation and many-body description of the superconducting state of a metal
is covered by the famous BCS theory [216]. It explains the pairing of conductance electrons in
a solid material by means of an attractive electron-electron interaction which is mediated by the
polarization of the crystal lattice reacting to the Coulomb charge of a moving electron. �at is to
say, two electrons may attract each other through the exchange of virtual phonons.
When no external forces are present this leads to the pairing of electrons with opposite spin

and momentum25 (k ↑,−k ↓) close to the Fermi surface where electron-phonon scattering is not
forbidden by the Pauli principle. �e wave functions associated to the electron pairs are super-
positions of those momenta, Ψ12 (r1, r2) = ∑k Ak exp [ik (r1 − r2)], which exhibit a large spatial
extension26 [210]. From the coherent overlap of these states emerges the superconducting zero-
current phase. �e associated collective wave function Ψ (R) is determined by the center-of-mass
dependence exhibited by the states Ψ12 (R + r/2,R − r/2) of the participating Cooper pairs [202].
One �nds that Ψ (R) =

√
Ns/V exp (iφ) is constant, and no phase gradient ∇φ is present, since

the momenta of each pair cancel. We will see later that this changes for �nite-current states where
each Cooper pair carries a non-zero momentum.
�e microscopic many-body nature of the superconducting state is made evident in the second

quantization formulation of Bardeen, Cooper and Schrie�er [216]. At zero temperature the Fermi

24�e law of induction tells us that any change of magnetic �ux through an open loop induces an electric potential
di�erence u = −dΦ/dt. Here, the voltage u must build up across the tunneling junction, which can be regarded as
a capacitor C. �is is in accordance with the Josephson equation d∆ϕ/dt = 2eu/ħ = 2πu/Φ0 that generally relates
the phase di�erence with the voltage across a Josephson junction [202]. �e voltage gives rise to a charge imbalance
Q = Cu and to a capacitive energy EC = Cu2/2.

25We restrict our view to s-type superconductors with electrons pairing in a spin singlet state.
26�emomentum spread of the superposition is much smaller than the Fermi wave number kF as only the momentum
states close to the Fermi surface are accessible by electron-phonon scattering. �e spatial extension of the superpo-
sition is therefore much larger than the de Broglie wavelength 2π/kF of the Fermi electrons.
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sea of conductance electrons in a superconducting metal occupies the BCS ground state27

∣0⟩ = ∏
k

[uk + vkc
†
↑ (k) c

†
↓ (−k)] ∣vac⟩, (4.127)

where ∣vac⟩ represents the electronic vacuum state. �e product ranges over all discrete electron
wave numbers k in the solid crystal, and v2k (u

2
k = 1−v2k) represents the probability that the respective

pair of electrons (k ↑,−k ↓) is occupied (unoccupied),

v2k =
1
2

⎛
⎜
⎝
1 − k2 − k2F√

(k2 − k2F)
2 + (2me∆k/ħ2)2

⎞
⎟
⎠
. (4.128)

Electrons close to the Fermi surface, k ≈ kF , formCooper pairs due to the phonon-mediated attrac-
tive interaction. �is reduces their total energy by the the pairing energy ∆k > 0, whereas ∆k = 0
for momentum states further away from the Fermi surface, which are inaccessible by phonon scat-
tering. Given the characteristic Debye cuto� frequency ωD of the lattice vibrations, Cooper pairs
are only formed in a small energy shell at the Fermi surface, ∣k2 − k2F ∣ ≤ 2meωD/ħ. �e occupa-
tion of momentum states outside of the shell is the same as in a normal metal at zero temperature,
vk = Θ (kF − k).
�e pairing term ∆k plays the role of an energy gap; it stabilizes the superconducting phase

against disturbances, since any excitation of the BCS ground state requires an energy input of at
least 2∆k to break a Cooper pair. If we approximate ∆k by a constant value ∆ within the Debye shell
(and zero elsewhere), we can identify ∆ with the phenomenological value for the zero-temperature
energy gap ∆ = 1.76kBTc , with Tc the critical temperature of the superconductor.
A�er discussing the state of a superconductor ‘at rest’ let me turn to the description of stationary

dissipationless supercurrents. Assume that a given current density js = 2ensvs is carried by the
entire pair condensate of density ns = Ns/V , which must be moving at the constant velocity vs. �e
continuity equation for probability then relates the velocity to the phase gradient of the condensate
wave function, as the current density associated to Ψ (R) is given by js (R) = 2eħns∇φ (R) /2me .
�is requires that the electrons are paired in the con�guration (k +mevs/ħ ↑,−k +mevs/ħ ↓)with
total momentum 2mevs, giving Ψ (R) ∝ exp (2mevs ⋅ R/ħ).
Hence, the quantum state underlying the persistent supercurrent derives from a momentum

translation of the zero-current BCS state. One achieves this formally applying the second quan-
tization Weyl operator (4.16),

W (0, vs) = exp{−
i
ħ ∫ d3r mevs ⋅ r [ψ̂

†
↑ (r) ψ̂↑ (r) + ψ̂

†
↓ (r) ψ̂↓ (r)]} , (4.129)

27 Strictly speaking, the BCS ground state does not describe a �xed number of electrons, but rather a distribution of
numbers around the expectation value N = ⟨BCS∣N∣BCS⟩. �e e�ect of this uncertain number of electrons can be
neglected as N is very large in most practical cases.
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to the crystal electrons28. It describes a displacement of the electronic Fermi sphere in momentum
space, and the BCS state associated to the persistent supercurrent js = 2ensvs reads as

∣ js⟩ = W
†
(0, vs) ∣0⟩ = ∏

k
[uk + vkc

†
↑ (k +

mevs
ħ

) c
†
↓ (−k +

mevs
ħ

)] ∣vac⟩. (4.130)

Note that, in realistic situations, the Cooper pair current density js is accompanied by the presence
of external �elds represented by a vector potential A(r). In this case the measured net electrical
current density j = js + je contains also the canonical term je (r) = −2e2nsA(r) /me . �e �ux
quantization e�ect discussed above follows from the condition j = 0 inside a superconducting lead
which encircles an external magnetic �eld.

4.2.4.3. Classicalization of current superposition states

Let me now show how the classicalization e�ect acts on superposition states of di�erent supercur-
rents, as they have been observed in experiments with Josephson loops. We shall assume in the
following that the two branches of the superposition correspond to the pure BCS states ∣ j1⟩ and
∣ j2⟩, disregarding impurities due to �nite temperature. �ese states can be understood as BCS-
Fermi spheres which are displaced by the momentum ħ∆k = me ( j1 − j2) /2ens with respect to
each other. We shall further assume macroscopically distinct supercurrents, that is, a signi�cant
displacement ∆q between the branches so that the two Fermi spheres di�er by more than a few
electrons (in the non-overlapping region). In particular, this implies orthogonality, ⟨ j1∣ j2⟩ = 0.
�e classicalizing modi�cation (4.71) of the electron motion in the crystal volume V reads as

L(ρ) = 1
τ ∫V d3s∑k G (s, k) [A (s, k) ρA

†
(s, k) − 1

2
{A
†
(s, k)A (s, k) , ρ}] ,

A (s, k) = ∑
ℓ
e iℓ⋅s [c

†
↑ (ℓ − k) c↑ (ℓ) + c

†
↓ (ℓ − k) c↓ (ℓ)] . (4.131)

Here, the Lindblad operator A describes the phase-space displacement of a single (spin-↑ or -↓)
electron by the momentum ħk and the position s.
�e above assumptions imply that the modi�cation cannot induce direct transitions between

states of distinct supercurrents,

⟨ j1∣A (s, k) ∣ j2⟩ = 0, ⟨ j1∣A
†
(s, k)A (s, k) ∣ j2⟩ = 0. (4.132)

Nevertheless, it gradually undermines the coherence of the respective superposition by progres-
sional dephasing and di�usion of the displaced Fermi spheres.
�is can be estimated by means of the classicalization-induced decay rate of the nondiagonal

matrix element ⟨ j1∣ρt ∣ j2⟩ at initial time, Γ = −⟨ j1∣L (ρ0) ∣ j2⟩/⟨ j1∣ρ0∣ j2⟩, given that the initial state
is a coherent superposition of the form ρ0 = (a∣ j1⟩ + b∣ j2⟩) (h.c.). Note that a similar approach
was followed in [217] to study the impact of the continuous spontaneous localization model on

28Discretizedmomentamust be used, as introduced in Section 4.1.4.6 on page 145. �eWeyl operatorW (r, v) describes
a translation of both the position and the momentum coordinate, which transforms the momentum creation oper-
ator toW (r, v) c

†
σ (k)W

†
(r, v) = exp (ik ⋅ r −mev ⋅ r/2ħ) c

†
σ (k −mev/ħ), as can be checked in a straightforward

calculation using the CCR (4.64) on page 145.
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superposition states of distinct currents. �e present treatment contains the previous study as a
special case29.
At this point, it helps to recall theGalilean covariance of themodi�cation. �eLindblad operators

A (s, k) commute with the Weyl translationsW (r, v) up to a phase,

W (r, v)A (s, k) = e imev⋅s/ħ−ik⋅rA (s, k)W (r, v) , (4.133)

as easily checked using the identity given in footnote 28. Combining this with the de�nition of
the Weyl-translated BCS ground state (4.130), and with the above assumption (4.132), leads to the
expression

Γ = 1
τ ∫V d3s∑k G (s, k) [⟨0∣A

†
(s, k)A (s, k) ∣0⟩ − e i∆k⋅s ∣⟨0∣A (s, k) ∣0⟩∣2] . (4.134)

Both the overlap of the BCS ground statewith the vectorA (s, k) ∣0⟩ and the normof the latter can be
computed using the explicit form of the BCS ground state (4.127). �e term A (s, k) ∣0⟩ describes a
state where all but two electrons are paired with opposite momenta in the BCS con�guration, while
one of the two remaining electrons obtains a phase shi� and gets displaced in momentum by −ħk
(provided the displaced momentum state is yet unoccupied).
It follows immediately that the transformed vector overlaps with the unmodi�ed BCS state ∣0⟩

only if no displacement takes place, k = 0. In this case the Lindblad operator simpli�es to the
expression A (s, 0) = ∑ℓ [n↑ (ℓ) + n↓ (ℓ)] exp (iℓ ⋅ s), which gives a phase shi� to each occupied
momentum state. Applied to the BCS state it yields

A (s, 0) ∣0⟩ = ∑
ℓ
∏
k′≠ℓ

[uk′ + vk′c
†
↑
(k′) c

†
↓
(−k′)] e iℓ⋅svℓ∣ℓ ↑,−ℓ ↓⟩

+∑
ℓ
∏
k′≠−ℓ

[uk′ + vk′c
†
↑
(k′) c

†
↓
(−k′)] e iℓ⋅sv−ℓ∣ − ℓ ↑, ℓ ↓⟩

= ∑
ℓ
2vℓ cos (ℓ ⋅ s) ∏

k′≠ℓ
[uk′ + vk′c

†
↑
(k′) c

†
↓
(−k′)] ∣ℓ ↑,−ℓ ↓⟩. (4.135)

Here, ∣k1 ↑, k2 ↓⟩ = c
†
↑
(k1) c

†
↓
(k2) ∣vac⟩ denotes the vacuum state occupied by two electrons; one

with spin-↑ in the k1-state and one with spin-↓ in the k2-state. We thus �nd the results

⟨0∣A (s, k) ∣0⟩ = δk,0∑
ℓ
2v2ℓ cos (ℓ ⋅ s) , (4.136)

⟨0∣A
†
(s, 0)A (s, 0) ∣0⟩ = [∑

ℓ
2v2ℓ cos (ℓ ⋅ s)]

2

+∑
ℓ
4u2ℓv2ℓ cos2 (ℓ ⋅ s) . (4.137)

Clearly, the �rst term of the right hand side in the second line is identical to the square of the �rst
line (for k = 0). �ey both cancel in the expression (4.134) for the decay rate at k = s = 0, that
is, when neither dephasing nor di�usion are present. �e physical nature of the second term in
(4.137), however, must be doubted. �is is because it would produce a nonzero decay rate even in

29 Recall that the observable consequences of the CSLmodel [155,157] are described by a speci�c classicalizing modi�ca-
tion of the present form with a Gaussian momentum distribution and no position di�usion, as discussed in Section
4.1.3.2 on page 136.
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the limit of vanishing classicalization, that is, if we switch o� the classicalizing e�ect by setting the
distribution function to G (s, k) = δ (s) δk,0,

Γ no e�ectÐÐÐÐ→ 1
τ∑ℓ

4u2ℓv2ℓ ≠ 0. (4.138)

�e reason for the appearance of this term lies in the de�nition of the BCS ground state (4.127),
which is not a Fock state of electrons, that is, an eigenstate of the number operator N = ∑ℓ,σ nσ (ℓ).
�e second quantization form of the classicalizing modi�cation, however, presupposes a �xed elec-
tron number. Considering that A (0, 0) = N, the above term in fact represents the variance in the
total electron number. A fully realistic description of the superconducting statemust assume a �xed
number of electrons, and the term must therefore be regarded as an artefact of the BCS model. It
will be subtracted from the expression (4.137) in the following.
What remains open is the generalization of the expression (4.137) to the case of nonzeromomen-

tum displacement k ≠ 0. Here, the transformed vector

A (s, k) ∣0⟩ = ∑
ℓ
∏

k′≠ℓ,ℓ−k
[uk′ + vk′c

†
↑
(k′) c

†
↓
(−k′)] e iℓ⋅suℓ−kvℓ∣ℓ − k ↑,−ℓ ↓⟩

+∑
ℓ
∏

k′≠−ℓ,k−ℓ
[uk′ + vk′c

†
↑
(k′) c

†
↓
(−k′)] e iℓ⋅suk−ℓv−ℓ∣ − ℓ ↑, ℓ − k ↓⟩

= ∑
ℓ
∏

k′≠ℓ,ℓ−k
[uk′ + vk′c

†
↑
(k′) c

†
↓
(−k′)] (uℓ−kvℓe iℓ⋅s + uℓvℓ−ke i(k−ℓ)⋅s) ∣ℓ − k ↑,−ℓ ↓⟩

(4.139)

represents a sum over BCS states where all but two of the Cooper pair states (k′ ↑,−k′ ↓) are oc-
cupied by either no or both electrons. �e remaining ℓ-th and ℓ− k-th Cooper pair con�gurations
are only singly occupied. �erefore, in the scalar product of the vector (4.139) with itself, the only
nonzero summands are those where the same pairs are broken on both sides,

⟨0∣A
†
(s, k)A (s, k) ∣0⟩ = ∑

ℓ
{v2ℓu2ℓ−k + v2ℓ−ku

2
ℓ + 2vℓuℓ−kvℓ−kuℓ cos [(2ℓ − k) ⋅ s]} . (4.140)

Altogether, the coherence decay rate (4.134) consists of two distinct contributions, Γ = Γdeph + Γdi� .
�e �rst is a pure dephasing term which does not rely on any momentum displacement induced by
the classicalizing modi�cation,

Γdeph =
1
τ ∫V d3s G (s, 0) [∑

ℓ
2v2ℓ cos (ℓ ⋅ s)]

2

(1 − e i∆k⋅s) . (4.141)

It is sensitive to the momentum di�erence ħ∆k between the two displaced Fermi spheres of the
superposition. �e further they are apart the more which-state information can be extracted by
the classicalization-induced dephasing. �e rate thus grows quadratically with the number of elec-
trons in each Fermi sphere which do not overlap with the other Fermi sphere, Γdeph ∼ (N∆k/kF)2,
as follows from a thorough assessment of the decay rates in Appendix C.1. In a sense, it is merely
the electrons in those disjunct zones at the opposite ends of the two spheres that constitute the
two separate ‘arms’ of the superposition in momentum space. �e bulk of indistinguishable elec-
trons occupies the same states in both branches, ∣ j1⟩ and ∣ j2⟩. Hence, the quadratic dependence of
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the dephasing rate on the electron number (i.e. mass) in the two disjunct arms can be viewed as
the analogue to the quadratic mass dependence of the coherence decay rate for the center-of-mass
superpositions of compound particles studied in Section 4.1.5.
�e second decay term Γdi� is related to heating (and pair-breaking) by momentum di�usion,

Γdi� =
1
τ ∫V d3s∑k≠0G (s, k)∑

ℓ
{v2ℓu2ℓ−k + v2ℓ−ku

2
ℓ + 2vℓuℓ−kvℓ−kuℓ cos [(2ℓ − k) ⋅ s]} , (4.142)

which leads to a gradual coalescence of both Fermi spheres. Note that this decay rate generally em-
bodies the heating loss of the occupation of the BCS ground state (whether it carries a supercurrent
or not), and therefore does not depend on the actual displacement of the two superimposed persis-
tent current states. Similar to the di�usion heating of compound objects studied in Section 4.2.1.1,
one would expect the di�usion rate Γdi� to grow linearly in proportion to the total number of avail-
able electrons N = 2Ns. It is shown in Appendix C.1 that the rate is in fact limited by Γdi� ≤ N/τ.
�is maximum, however, is only reached once the momentum standard deviation of the distribu-
tion function G (s, k) is greater than the Fermi momentum, σq > ħkF . For lower values of σq, the
inner electrons of the Fermi sea are inaccessible and cannot be li�ed into unoccupied momentum
states due to the Pauli exclusion principle and the superconducting energy gap.
In summary, the classicalization-induced decay of a superposition state of distinct supercurrents

is generally enhanced by the number N of electrons in the metal. �e larger the underlying su-
perconducting loop the stronger the classicalizing e�ect would act on such superpositions in the
experiment. It turns out that, in practice, the di�usion e�ect outdoes the dephasing part for the
most part, and so the coherence decay scales at most linearly with the loop size. A concrete exam-
ple will follow in Section 4.3.2.4.

4.3. The measure of macroscopicity

A�er the detailed discussion of the implications of generic classicalizing modi�cations, we are �-
nally in a position to formulate the central result of this chapter: a quantitative measure of macro-
scopicity. �is measure µ, which will be introduced in the following, quanti�es the class of classi-
calizing modi�cations which are ruled out by the concrete observation of a quantum phenomenon,
that is, the extent to which the validity of quantum mechanics is tested against the hypothesis of
classical macroscopic realism. �e latter being grounded in the striking empirical evidence that
the everyday world follows the laws and principles of classical (Newtonian) physics, it quali�es as
the most natural footing for quantifying and comparing the degree of macroscopicity achieved in
quantum experiments on arbitrary mechanical systems.
�e bene�ts of such an approach are clear. It depends neither on the formal representation of

quantum phenomena in terms of speci�c classes of states and observables nor on the complexity
thereof. Quite contrarily, the measure µ is derived from the hypothetical predictions of classicaliz-
ing modi�cations and their falsi�cation by observation. �e natural scaling behaviour of the clas-
sicalization e�ect with the size and complexity of mechanical systems is based on only two basic
invariance principles (see Section 4.1.4.1), and it thus provides a minimal and unbiased gauge for
the quantum-to-classical transition. Evenmore so, the approach respects and builds upon the well-
established symmetry principles behind both Schrödinger quantummechanics andNewtonianme-
chanics, most prominently Galilean covariance. It does not refer to any particular macro-realistic
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extension of the standard Schrödinger equation by nonlinear and stochastic terms which might
embody new physics beyond the scope of standard nonrelativistic quantum theory, such as quan-
tum e�ects of gravity [151, 177]. Instead it refers merely to the observable consequences of a generic
hypothetical classicalization e�ect that are described by the minimally invasive modi�cation of the
time evolution of the many-body state operator studied in this chapter. Quantum superposition
states decay into classical mixtures over time while the Newtonian equations of motion are kept
intact.

4.3.1. De®nition of the macroscopicity measure

�e strength of the classicalization e�ect is determined by the distribution function g0 (s, q) and
the time parameter τ0 associated with a �xed but arbitrary reference mass m0. �e realization of
nonclassical states in a given experiment immediately rules out a certain parameter set of the hypo-
thetical modi�cation which would predict a higher loss of quantum coherence than observed. �e
rationale behind the present measure of macroscopicity is to call one quantum state more macro-
scopic than another if the experimental demonstration of the former rules out a larger parameter
set than the latter. What remains to be found is a robust way of quantifying the size of the excluded
parameter set.
As will be shown in the following, the time parameter τ0 turns out to be the apparent and most

natural candidate. �e reason is that the classicalizing modi�cation always predicts a minimal co-
herence time for every given mechanical system and irrespectively of the functional form of the
distribution g0. It is, in a sense, the universal property of all modi�cations falling under the generic
class studied here. Nevertheless, a concrete numerical assessment of the macroscopicity requires
additional restrictions on the form of the distribution function (without a�ecting the generality of
the results). �ey will motivated in the following, before the formal de�nition of µ will eventually
be given in Section 4.3.1.4. �e remainder of this chapter will then be spent applying the measure
to the various manifestations of quantum superpositions in large mechanical systems which have
been and will be observed in past and future experiments.

4.3.1.1. The electron as a natural reference point particle

At this point it is time to decide for the reference mass m0 �xing the reference time parameter and
the reference phase-space distribution in all the quantitative considerations to follow. �e domain
of standard, nonrelativistic, quantummechanics begins at the level of electrons and nuclei, and the
theory was originally developed to understand and assess the nonclassical behaviour of atoms. �e
quantumdescription ofmore complex systems ofmatter is o�en brokendown into these elementary
building blocks whose physical behaviour is well understood. Indeed, when observing quantum
behaviour in larger systems of matter, scientists are o�en inclined to count the number of electrons
or atoms involved in order to get an idea about the ‘size’ of the quantum observation.
Hence the electron, being the canonical elementary point particle in (nonrelativistic) quantum

mechanics, quali�es naturally as the reference mass unit for the present purposes. From now on,
the reference mass is once and for all set to m0 = me . �e classicalization e�ect is then fully
determined by specifying the coherence time parameter τ0 = τe and the distribution function
g0 (s, q) = ge (s, q) for an electron.
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4.3.1.2. Minimizing parameter space with a Gaussian distribution

�roughout the discussion we have found that, when it comes to parametrizing the strength of the
classicalization e�ect, three parameters mainly determine its generic behaviour: �e time parame-
ter τe and the two standard deviations σs and σq of the positive, normalized and isotropic distribu-
tion function ge (s, q). �e most natural implementation of these parameters is then obtained by
means of the Gaussian form

ge (s, q) =
1

(2πσsσq)
3 exp(−

s2

2σ2s
− q2

2σ2q
) . (4.143)

It represents the most natural choice of a zero-mean distribution function, which is solely deter-
mined by its second moments, and it does not exhibit any particular di�cult-to-justify features
that would involve additional parameters to describe them. I therefore operate with this Gaussian
form in the following in order to minimize the numerical e�ort as well as the number of ad-hoc pa-
rameters introduced with the classicalization e�ect. �e Fourier transform (4.40) of the reference
distribution reads as

g̃e (r, p) = exp
⎛
⎝
−

σ2q r2

2ħ2
− σ2s p2

2ħ2
⎞
⎠
. (4.144)

4.3.1.3. Parameter limitations on the subatomic scale

At �rst sight, the three parameters (σs , σq , τe) of our model could in principle assume any value
larger than zero, and they would only be constrained by the experimental observation of quantum
phenomena in mechanical systems. �ere is, however, also a fundamental restriction due to the
limited scope of the underlying framework. Although standard quantum theory is well suited to
assess the electronic level structure of atoms, it fails in describing the internal binding and structure
of nuclei. �is is where nonrelativistic mechanics ceases to be valid, and, with it, the classicalizing
modi�cation that builds upon its basic principles. We must therefore exclude the (sub-)nuclear
domain from our considerations by restricting the parameter space in the following way:
According to Section 4.1.5, the classicalization of a compound object will start depending on the

internal motion of its constituents once theirmean variance in the relative position andmomentum
coordinates becomes comparable to the parameters σs,q. For example, the classicalization of an atom
will depend on its electronic level structure if ħ/σq ≲ 1Å ≲ σs. Similarly, the relative state of motion
of protons and neutrons inside atomic nuclei becomes relevant for ħ/σq ≲ 10 fm ≲ (me/1 amu) σs.
In order to avoid this, the classicalization parameters should be limited to σs ≲ 20pm and ħ/σq ≳
10 fm. �e exact numbers will be of no relevance, and they could easily be varied by a few orders of
magnitude without altering the upcoming results.

4.3.1.4. Formal de®nition of the macroscopicity

Let me �nally state the formal de�nition of the measure of macroscopicity µ, assuming the Gaus-
sian form (4.143) of the classicalization distribution and respecting the above nuclear constraint on
σs,q. �e macroscopicity of a quantum superposition state is de�ned with respect to to a concrete
experimental realization. Assuming the existence of the classicalizing modi�cation, the measure-
ment rules out those parameter values (σs , σq , τe) which would predict a lower ‘visibility’ of the
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superposition state than observed. To be concrete, the experiment rules out all coherence time
parameters smaller than a certain boundary value τe (σs , σq) for any �xed value of (σs , σq). �e
function τe (σs , σq), which is de�ned on the constrained set of (σs , σq) in this way, separates the
excluded parameter range from the rest.
I suggest to measure the macroscopicity by the maximum of this function, that is, by the greatest

excluded time parameter τmax
µ = log10 (

τmax
1 s

) . (4.145)

�e time is expressed in units of seconds to �x a scale, and the logarithm is taken to handle the vast
spread of τmax-values when comparing the numerous real experiments with one another. Positive
values of µ are obtained, for instance, by demonstrating the wave nature of electrons over more
than one second.
In the following, I will illustrate with the help of concrete examples why the greatest excluded

time parameter appears as the most natural and robust choice to quantify macroscopicity. I will
then proceed with the evaluation of µ for a broad selection of quantum superposition experiments.

4.3.2. Assessing the macroscopicity of quantum experiments

In order to compute the macroscopicity µ for a concrete quantum experiment, the classicalizing
modi�cation must be incorporated into the underlying theoretical model, and the modi�ed solu-
tion must be compared with the measurement data as a function of the classicalization parameters
(σs , σq , τe) ∈ R3+. �is calls for an individual procedure in each case which results in the speci�ca-
tion of a functional dependence τe (σs , σq) describing the boundary between the compatible and
the incompatible parameter region. Nevertheless, the general form of the boundary, as well as a
generic estimate of the macroscopicity, can be obtained for most standard cases.
Figure 4.2 provides an overview of typical experiments that narrow down the allowed parameter

range of the classicalization e�ect, as will be discussed one by one in the following. Here, the largest
excluded time parameters are plotted as a function of the length scale ħ/σq associated to the mo-
mentumwidth σq of theGaussian reference distribution, and at the �xed positionwidth σs = 20pm.
�e case of de Broglie interference with point particles is represented by the solid line, as obtained
from the optical Mach-Zehnder type interference experiment with cesium atoms in [166]30. A dif-
ferent behaviour is observed when the interfering particles are composed of more than a single
nucleus. �e dashed line in the diagram corresponds to the Talbot-Lau interference experiment
with gold clusters of 107 amu proposed in [11] and discussed in Chapter 3, page 114�. �e other end
of the spectrum, where the interfering object is much larger than the interference path separation,
is represented by the dash-dotted line. It derives from the proposed superposition experiment [170]
with oscillatory states of ground-state cooled micromirrors. Finally, the dotted curve stands for a
genuine many-body quantum phenomenon: �e superposition of counter-rotating persistent cur-
rents in a superconducting loop, as observed in [1].
Before proceeding in the discussion of the listed cases I note once again that the classicalization

can also be tested by means of purely classical experiments. �is is due to the inherent di�usion
e�ect which leads to an average energy increase in both classical and quantum systems alike. As an

30�e atommass is mainly concentrated in the femtometer-sized nucleus, and the small contribution of the electrons is
negligible. It can therefore be regarded as a point particle in the present context.
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Figure 4.2. Upper bounds from various experiments on the excluded time parameter τe (σq) at the �xed position width
σs = 20 pm. �e curves are shown for the relevant range of momentum widths σq as a function of the associated
length scale ħ/σq . All parameter values below each curve are ruled out by the respective experiment. �e solid line
represents the single-atom interferometer realized in [166], while the dotted line results from the demonstration
of superpositions of counter-rotating supercurrents in [1]. �e dashed and the dash-dotted lines correspond to
proposed interference experiments with heavy gold clusters [11] and oscillating micromirrors [170]. �e shaded
area represents the parameters ruled out by a classical temperature measurement (see text for details).

example, the shaded area in Figure 4.2 represents the parameter range excluded by a hypothetical
precision measurement of temperature: Assume that one measures the temperature increase of a
free gas of rubidium atoms to be less than, say, 1 µK/s. �en the momentum di�usion rate would
be limited by

(87 amu
me

)
2 σ2q
2meτe

< 3
2
kB × 1

µK
s
. (4.146)

It does not make sense, however, to ascribe a macroscopicity to such a classical experiment as it
does not depend on the quantum behaviour of the system. Hence, it does not actually test quantum
predictions against classical physics.

4.3.2.1. De Broglie interference of point-like particles

�e simplest and most instructive class of mechanical superpositions is given by de Broglie inter-
ference experiments with point-like particles. �ey can be described by a single center-of-mass
degree of freedom which dynamically evolves into a quantum superposition state (with the help of
di�ractive elements in the experimental setup).
From the perspective of the classicalization e�ect, a point particle is generally understood as a

(rigid) body of total mass m, which is smaller than the length scale ħ/σq associated to the momen-
tum spread of the reference distribution. �e internal structure of the object then remains unaf-
fected, as discussed in Section 4.1.5. Disregarding the light electronic shell, atoms can always be
regarded as point particles because the classicalization e�ect is restricted to the super-femtometer
regime. �e solid line in Figure 4.2 stands as a prime example for atomic point-particle interfer-
ence. More generally, we may speak of point-particle interference if the particle size a is by orders
of magnitude smaller than the interference path separation D of a given setup.
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Figure 4.3. Schematic view of a double slit interferometer with point-like particles of diameter a. Given a su�ciently
coherent initial state, the particles may traverse the interferometer along two distinct paths to the detection point
on the screen. �e characteristic path separation is determined by the slit distance D. Constructive interference is
observed at points of distance d where the accumulated phase di�ers between the arms by multiples of 2π.

Let me illustrate this by the simple double-slit setup sketched in Figure 4.3. Many interferometer
setups can be broken down to a similar scheme. An incoming point-like particle may follow two
(ormore) distinct paths from the source to the detection screen, which are separated bymany times
the particle size at almost every instant during passage. In the end an interference fringe pattern in
the density distribution ⟨r∣ρ∣r⟩ is detected (e.g. on a screen). Its ‘visibility’ depends on the Fourier
amplitude of the observed fringe oscillation, which can be expressed in terms of the characteristic
function (4.37) of the state ρ. �e expression

χ (0,−h
d
n) = ∫ d3r ⟨r∣ρ∣r⟩ exp(−2πin ⋅ rd

) (4.147)

describes the Fourier component of an oscillatory contribution to the detection signal along the axis
n with period d. �e latter determines the position of the �rst interference maximum, d = ht/mD,
given the time of �ight t to the detection plane.
�e classicalization e�ect is easily implemented using the single-particle solution derived in Sec-

tion 4.2.2. For every stretch of free propagation over the time t between the coherent source, the
di�ractive element(s) and the detector of a given setup the above visibility term (4.147) is damped
by an exponential factor, as stated in Equation (4.113). Following the example of Figure 4.3, the time
of �ight between the double slit and the detection screen results in a reduction of the visibility by
the factor

Rt (
h
d
) = exp{( m

me
)
2 1

τe
[ ∫ t

0
dt′ g̃e (

ht′

md
n,−meh

md
n) − t]} .

= exp{( m
me

)
2 t

τe
[
√π
2

ħ
σqD

exp [− 1
2
(2πmeσs

md
)
2
] erf(

σqD√
2ħ

) − 1]} (4.148)

173



�e propagation from the coherent source to the double slit must be taken into account as well. It
yields another factor of this form. �e interference visibility is altogether reduced by Rt0Rt , with
ttot = t + t0 the time of �ight from the source to the detector.
Note that the position spread σs of the classicalization is an irrelevant factor for all practical pur-

poses, as it is bound by σs ≲ 20pm. �e mass-rescaled width meσs/m for the classicalization of
atoms and other large particles is even smaller, and the fringe period d of any realistic interfer-
ence pattern surpasses it by many orders of magnitude. �e σs-dependence in (4.148) can safely be
neglected.
We distinguish two limiting cases for the visibility reduction by classicalization.

☀ The saturated regime �e strongest e�ect is achieved in the limit of large momentum
spreads σq of the classicalization distribution where the associated length scale is much
smaller than the arm separation, ħ/σq ≪ D. �e decay of coherence then saturates at the
rate given by the mass-scaled coherence time scale, 1/τ = (m/me)2 /τe , and we may approx-
imate the reduction factor (4.148) by

Rt ≈ exp [−( m
me

)
2 t

τe
] . (4.149)

In total, the visibility is reduced by the factor Rt0Rt ≈ exp [−m2ttot/m2eτe]. �is is the strong-
est reduction the classicalizing modi�cation may cause. It explains the le� part of the solid
curve in Figure 4.2, which saturates at length scales below the 1mm path separation of the
interferometer [166]. It also explains the �at maximum of the dashed curve that roughly
extends from ħ/σq ∼ 10 nm to 100nm. �e saturated classicalization of point-like particles is
a valid approximation in the length scale regime a ≪ ħ/σq ≪ D.

☀ Thediªusive regime If themomentumwidth σq is very small, ħ/σq ≫ D, the classicalization
e�ect hardly distinguishes the di�erent paths through the interferometer, and the visibility
reduction is suppressed. We obtain the approximate reduction factor

Rt ≈ exp
⎡⎢⎢⎢⎢⎣
− 1
6
(

σqD
ħ

)
2

( m
me

)
2 t

τe

⎤⎥⎥⎥⎥⎦
(4.150)

a�er expanding the error function in (4.148) to the lowest order. �e exponent is quadrat-
ically suppressed by σqD/ħ ≪ 1 with respect to the saturated case. As before, the time t
must be replaced by the total time of �ight ttot to obtain the full visibility reduction. �e
quadratic dependence of the logarithmic reduction of visibility on the momentum width σq
represents a general feature of the di�usive limit where spatial superposition states are too
small to be resolved31. In particular, it explains that the solid, the dashed and the dash-dotted
interference curves exhibit the same slope of 2 vertical orders of magnitude per horizontal
order of magnitude on the right side of the double-logarithmic plot in Figure 4.2. �is is
easily checked by taking the logarithm of (4.150) and expressing the time parameter τe as a
function of log (ħ/σq).

31One observes the same behaviour in the case of thermal decoherence at low temperatures [218], where the average
photon wavelength is greater than the path separation.
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�e visibility reduction by classicalization can now be compared to the measured fraction f < 1
of the interference visibility predicted by standard quantum theory. In realistic interference ex-
periments, the measurement is always a�ected by noise, uncertainties and limited accuracy, and it
therefore never reaches the full 100% of the theoretically predicted visibility. Even if the recorded
data �ts to the theory within an error range of, say, 5%, then the fraction cannot be larger than
f = 95%.
By varying the momentum width parameter σq we obtain time parameters τe (σq) that are ruled

out by the measurement, as plotted in Figure 4.2. �eir maximum determines the macroscopicity
value (4.145). For interference experiments with point-like particles the maximum is found in the
saturated regime, where the visibility reduction factor reads as (4.149). Given the observed fraction
f , the reduction factor is bound from below by Rt ≥ f , and wemay approximate themacroscopicity
by

µ ≈ log10 [∣
1
ln f

∣ ( m
me

)
2 ttot
1 s

] . (4.151)

�e time ttot should include all stretches of free propagation pieced together from the coherent
source to the detection plane32. In the case of the cesium interferometer in [166] coherence was
maintained for over ttot = 320ms, and a fringe visibility of f = 62% instead of the ideally expected
100%was recorded (see Figure 19 of [166]). Using amass ofm = 137 amu leads to themacroscopicity
µ = 10.6. �at is to say, the greatest time parameter excluded by this experiment is τmax = 4× 1010 s,
the value to which the solid curve in Figure 4.2 saturates.
In principle, the expression (4.151) can be used to compute the macroscopicity of arbitrary de

Broglie interference experiments with point-like particles (i.e. a ≪ D). In practice, however, it is
not always obvious how to obtain a value for the fraction f of con�dently measured versus theo-
retically expected interference visibility. (If the latter is a loosely de�ned quantity, for instance.) I
proceed by presenting methods to extract estimated values for f and µ from various matter-wave
experiments.

Mach-Zehnder setup Mach-Zehnder-type interferometers [18] o�er a direct relation between
the observed fringe visibility and the reduction factor f . Many modern high-precision atom in-
terferometers with large arm lengths and long interrogation times, e.g. [166, 167], are based on an
optical Mach-Zehnder scheme comprised of a sequence of three laser pulses. Each pulse consists
of two counterpropagating laser waves driving a Raman transition between the initial state ∣0⟩ and
the metastable state ∣1⟩ of an atom. Each transition comes with a net momentum kick of ±ħk along
the direction of the laser waves, denoted here as the x-axis. �e center-of-mass motion of the atom
may thus be treated in one dimension.
�e �rst π/2-pulse splits the incoming atoms coherently among two diverging paths correspond-

ing to the internal states ∣0⟩ and ∣1⟩, where the latter di�ers in momentum by ħk. �is is described
by the unitary splitting transformation

Uπ/2 =
1√
2
(∣0⟩ + e ikx∣1⟩) ⟨0∣ + 1√

2
(∣1⟩ − e−ikx∣0⟩) ⟨1∣ (4.152)

32We must only include those parts of the setup where a loss of coherence in the particle state a�ects the interference
visibility. �is excludes, for instance, anything that happens before the �rst collimation slit in a double-slit experiment
representing the point source. In a Talbot-Lau setup we must only consider the passage from the �rst to the second
and from the second to the third grating.
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acting on the initial product state of the atomic ensemble ρ0⊗ ∣0⟩⟨0∣. �e second π-pulse at time T
�ips the internal state and exerts opposite momentum kicks in each arm,

Uπ = e ikx∣1⟩⟨0∣ + e i∆ϕe−ikx∣0⟩⟨1∣, (4.153)

which makes both arms converge again. �e term ∆ϕ is added here to account for a tunable net
phase di�erence between the two arms. �ey rejoin a�er another time T , where another π/2-pulse
is applied to close the path scheme. By detecting the atoms a�er the third pulse in one of its internal
states, say ∣0⟩, one records the sinusoidal interference pattern I (∆ϕ) = ⟨0∣tr (Uπ/2ρ2TU

†
π/2) ∣0⟩ as a

function of the phase di�erence ∆ϕ. �e state ρ2T before applying the third laser pulse reads as

ρ2T = T {Uπ [T (Uπ/2ρ0 ⊗ ∣0⟩⟨0∣U
†
π/2)]U

†
π} , (4.154)

where the superoperator T denotes the modi�ed free evolution33 of the motional state by the time
T . We �nd that the fringe contrastV is directly given by the characteristic function of the quasi-state
operator ⟨0∣ρ2T ∣1⟩,

V = 2 ∣⟨0∣tr (e ikxρ2T) ∣1⟩∣ = 2 ∣χ⟨0∣ρ2T ∣1⟩ (0, ħk)∣ . (4.155)

A visibility of V = 100% is predicted in the absence of classicalization, and we may thus identify the
fraction f with the measured interference contrast. �e classicalizing modi�cation contributes a
reduction factor RT (ħk) of the form (4.148) for each free propagation T , and the visibility reduces
to

V = R2T (ħk) = exp{( m
me

)
2 2T

τe
[
√π
2

m
σqkT

erf(
σqkT√
2m

) − 1]} , (4.156)

where the σs-term has been neglected. Identifying this reduction with the measured visibility f < 1
yields the critical time parameter,

τe (σq) = ∣ 1
ln f

∣ ( m
me

)
2
[2T −

√
2πm
σqk

erf(
σqkT√
2m

)] . (4.157)

All values below τe (σq) are ruled out by the experiment. �e solid curve in Figure 4.2 displays this
function using the parameters m = 133 amu, T = 160ms and ħk/m = 7.0mm/s from [166].
�e function (4.157) saturates at the maximum value τmax = 2Tm2/m2e ∣ln f ∣ for large σq ≫

m/kT , which con�rms the macroscopicity formula (4.151). A more recent experiment of the same
type [167] yielded a visibility of f ≈ 1/3 (as extracted from Figure 3 in the reference) at a time of
�ight 2T = 800ms, which results in amacroscopicity of the same size, µ = 10.6. Signi�cantly higher
values can be reached in atom interferometry only by increasing the interrogation time T beyond
the currently feasible range. In [219] the authors proposed to realize a similar cesium interferometer
with T ≈ 2000 s between far apart satellites in space. It would correspond to µ = 14.5 if a contrast
of f = 0.5 were to be measured.
Apart from the three-pulse interferometer, Mach-Zehnder schemes are also realized by means

of three material gratings [18]. �e above reasoning applies here as well, except that the two arms
are given by two subsequent di�raction orders at the grating.

33�e presence of a constant acceleration would only contribute to the phase di�erence.
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Speci�cally, let us consider theNa2-interferometer setupwith three identical 200nmgratings and
30% opening fraction in [125]. �e two arms originate from the 0th and the 1st order di�raction
components of the �rst grating, followed by a 1st order and −1st order di�raction at the second
grating. Standard di�raction theory states that their weight ratio P1/P2 is given by the squared
ratio between the 1st and the 0th Fourier component of the periodic grating aperture function,
P1/P0 = (b1/b0)2 = sinc2 (0.3π) = 0.74. Interactions with the grating walls are negligible. �e
sinusoidal fringe pattern is detected through the movable third grating mask, which modulates the
contrast by another factor b1/b0 = 0.86. In total, the unmodi�ed interference visibility is limited
to V = 2b1

√
P1P0/b0 (P1 + P0) = 0.85. �e authors of [125] depict a fringe pattern with about 30%

contrast in their Figure 4, that is, a fraction f = 0.3/0.85 = 0.35 of the theoretical value. �e Na2
molecules (m = 46 amu) traverse the total distance L = 2.1m from the coherent source to the
third grating at the mean velocity v = 820m/s [125, 220], which results in the macroscopicity value
µ = 7.2.

Ramsey-Bordé setup Besides the optical Mach-Zehnder setup, the coherent path splitting by
light coupled to an internal transition is also used in the Ramsey-Bordé interferometer scheme
[221]. It consists of two separated pairs of co-propagating running-wave lasers, where each laser
splits an incoming particle beam into two momentum-displaced arms corresponding to di�erent
internal states. �e arms rejoin at the second laser pair pointing into the opposite direction, and the
resulting interference pattern ismeasured by state-selective detection as a function of the phase shi�
between the arms. In general, however, more than two arms are mixed into the detection signal.
A Ramsey-Bordé experiment with I2 molecules (m = 254 amu) was realized in [222], where a

total of four di�erent paths overlapped at the detector. Two of those paths are Doppler-shi�ed
with respect to each other, that is, their phase di�erence depends on the transverse velocity of the
particles. �eir interference is thus averaged out over the velocity distribution of the particle beam,
and the fringe pattern is only due to the other two paths. �is limits the fringe contrast to 50%. We
can read o� a measured value of roughly 400/2400 = 1/6 from the central fringe plotted in Figure
2 of [222], which results in the fraction f = 1/3. �e I2 molecules traverse the interferometer of
about 35mm length with a mean velocity of 350m/s in t = 100 µs. Formula (4.151) then yields an
approximate macroscopicity of µ = 7.3.

Diªraction at one-dimensional structures �e biggest class of matter-wave interference ex-
periments involves the di�raction at small one-dimensional structures in the near and far �eld. Slits,
double-slits and thin gratings are the most commonly used di�ractive elements; they are mathe-
matically described by a transmission function t (x), which is multiplied to the wave function upon
traversal. Standard Fresnel di�raction theory in the paraxial approximation tells us that the result-
ing interference pattern for particles from a monochromatic point source at x0 = 0 is given by
Svz (x) ∝ ∣∫ dx1 ψ (x1; x)∣2, with

ψ (x1; x) = t (x1) exp [
im
2ħ

(x
2
1
T1
+ x21 − 2xx1

T2
)] . (4.158)

�e x-variable represents the position on the detection plane, the terms T1 and T2 denote the times
of �ight from the source to the di�ractive element and from there to the detection plane, respec-
tively. In most cases the latter depend on the velocity vz of the particles traversing the distances
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L1 and L2 between the setup elements. We must therefore average the interference signal over the
distribution F (vz) of velocities present in the beam. In addition, the signal must be averaged over
the �nite source aperture AS (xS) to account for realistic ori�ces, and it must be convolved with the
function AD (xD) to account for the �nite x-resolution of a realistic detector. �e resulting signal
formula,

S (x) = ∫ dvz F (vz) ∫ dxS AS (xS) ∫ dxD AD (xD) Svz (x + xD −
T2
T1

xS) , (4.159)

may then be used to predict realistic values for the fringe visibility observed in the experiment. On
the other hand, the averaging is irrelevant in the assessment of the coherence-reducing e�ect due to
the classicalizingmodi�cation. Once again we �nd that the latter modulates the ideal fringe pattern
by reduction factors of the form (4.148),

Svz (x) = ∫ dx1dx2 R (x2 − x1)ψ (x1; x)ψ∗ (x2; x) ,

R (x) = RT1 (
mx
T1

)RT2 (
mx
T2

)

≈ exp{( m
me

)
2 T1 + T2

τe
[
√π
2

ħ
σqx
erf(

σqx√
2ħ

) − 1]} . (4.160)

�e in�uence of position translations is neglected in the last line; they are practically irrelevant
as σs ≲ 20pm. Equation (4.160) is easily derived in the characteristic function representation,
starting from the initial state of the coherent point source χ0 (x , p) ∝ δ (x) and ending at the
signal formula Svz (x) ∝ ∫ dp χT1+T2 (0, p) exp (−ipx/ħ) /2πħ. �e di�raction transformation
⟨x∣ρ∣x′⟩ ↦ t (x) ⟨x∣ρ∣x′⟩t∗ (x′) yields the convolution χ (x , p) ↦ ∫ dq T̃ (x , p − q) χ (x , q), with
the di�raction kernel34

T̃ (x , q) = 1
2πħ ∫ ds e iqs/ħt (s −

x
2
) t∗ (s + x

2
) . (4.161)

Using Formula (4.113) for the modi�ed time evolution we arrive at the expression for the �nal state,

χT1+T2 (0, p) = T̃ (− pT2
m
, p + pT2

T1
)RT2 (−p)RT1 (p

T2
T1

) . (4.162)

A few more steps of substitution result in the signal formula (4.160), up to a normalization factor.
�emacroscopicity of a concrete experiment is obtained bymatching the computed signal (4.160)

to the measured data as a function of the momentum spread, which yields the excluded time pa-
rameter curve τe (σq). However, there is a way to avoid an elaborate �tting procedure for every
individual case and to estimate the macroscopicity by means of the approximation (4.151). Re-
call that the greatest excluded time parameter is always found at the largest possible values of σq in
point-particle interference, where the associated length scale ħ/σq is much smaller than any di�rac-
tive aperture used in practice. �e reduction factor in (4.160) assumes its minimum R (∞) for all
relevant values ∣x2 − x1∣ ≫ ħ/σq. We may thus approximate

Svz (x) ≈ R (∞) ∣ ∫ dx1 ψ (x1; x)∣
2
+ ∫ dx2 [R (x2) − R (∞)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∼few ħ/σq

∫ dx1 ∣t (x1)∣2 , (4.163)

34�e kernel is similar to the di�raction kernels used in Chapter 3 to describe near-�eld interference in the Wigner
function representation, except that the integration is over the center position here. See for instance page 72.
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where the �rst summand represents the original interference pattern diminished by the factor
R (∞) and the second term adds a small constant background to the signal. �e latter is negligible
when the fringe signal is only slightly reduced because the bracketed integral evaluates to merely a
few times ħ/σq.
I estimated the macroscopicity of a given di�raction experiment from the recorded fringe pat-

tern as follows: First, I normalized the recorded signal by integrating over all data points and com-
pared it to the theoretically expected interference pattern (4.159), which I computed using the same
normalization (and standard numerical tools provided by MATLAB). �e fraction f between the
measured and the computed height of the �rst order di�raction peak then serves as a rough es-
timate for R (∞). Finally, I evaluated the macroscopicity by means of the approximation (4.151),
using velocity-averaged times of �ight T1 and T2 from the source to the detector. Table 4.1 lists the
results and all necessary experimental parameters for a selection of di�raction experiments with
neutrons [223, 224], atoms [225–227] and molecules [4].

Table 4.1. Estimatedmacroscopicities for a selection of di�raction experiments with neutrons, atoms andmolecules. �e
�rst order di�raction peak value was compared in each cited interference plot to the theoretical prediction based
on the experimental parameters; the ratio of both de�nes the fraction f . In the vertically aligned setup [226] atoms
fall through a double slit and into the detector within 200ms; the fraction f is determined as the ratio between the
peak values in Figs. 3b (measured) and 3g (computed). �e neutron interference at a biprism in [223] is modelled
as a superposition of two virtual sources separated by d, at the distance L1 + L2 from the detector. I obtained f by
comparing the data points (150 a.u. peak height) to the �tted curve (200 a.u. peak height) in Fig. 9, a�er subtracting
a dark count rate of 60 a.u. In all other cases I computed the expected di�raction pattern of N-slit gratings of period
d, which I averaged over the apertures of source and detector and over Gaussian velocity distributions of mean ⟨vz⟩
and variance ∆v2z . (In [4] the C60-molecules were detected by a Gaussian laser of waist D, and I used the velocity
distribution provided in the article.) Macroscopicities are obtained from (4.151) with help of the average source-
grating and grating-detector passage times T1,2 = L1,2/ ⟨vz⟩.

Reference [223] [224] [225] [226] [227] [4]
Figure 9 7 2b 3b,g 1 2a

particle n n 23Na 20Ne 84Kr C60
distance L1 4m 5m 1m 8cm 45 cm 1.14m
distance L2 5.7m 5m 1.5m 11 cm 52 cm 1.25m

number of slits N 2 2 50 2 100 100
slit distance d 107 µm 126 µm 200nm 6 µm 100nm 100nm
slit opening n. a. 17% 50% 33% 43% 38%

source aperture S 10 µm 15 µm 10 µm 20 µm 10 µm 10 µm
detector aperture D 30 µm 30 µm 25 µm 20 µm 25 µm 8 µm
mean velocity ⟨vz⟩ 907m/s 216m/s 1 km/s ≲ 1m/s 396m/s 226m/s

velocity width ∆vz/ ⟨vz⟩ — 0.05 0.12 — 0.1 0.6
estimated fraction f 0.6 0.9 0.5 0.8 0.8 0.6

macroscopicity µ 4.8 6.2 6.8 9.1 8.3 10.6
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Talbot-Lau setup �eTLI schemewas extensively studied in Section 3.2, page 83�. �e resulting
interference signal in the detector forms a periodic fringe pattern S (x) = ∑ℓ Sℓ exp (2πiℓx/d) as a
function of the lateral position x of the third grating. �e classicalization e�ect can be incorporated
in the same way as standard decoherence processes with a similar master equation [40].
�e explicit result follows from the above expression (4.160) describing the classicalized interfer-

ence pattern generated by a generic di�raction element t (x). In the TLI scheme the latter is given
by the second grating, the �rst grating de�nes the source aperture, and the movable third grating
represents the detection mask for the resulting interference signal S (x), according to (4.159). A
Fourier transformation reveals that the Fourier components Sℓ are modi�ed by the factors

Sℓ ↦ SℓR (ℓ hT2
md

) = SℓRT1 (ℓ
h
d
T2
T1

)RT2 (ℓ
h
d
) . (4.164)

�ey must be averaged over a longitudinal velocity distribution F (vz) in stationary TLIs where the
times T1,2 are determined by the �xed distances L1,2 = vzT1,2 between the gratings. We �nd that the
sinusoidal visibility of Talbot-Lau interference is reduced by

Vsin ↦ Vsin exp
⎧⎪⎪⎨⎪⎪⎩
( m
me

)
2 ⎡⎢⎢⎢⎢⎣

erf (
√
2πσqT/md)

√
2πσqτe/md

exp(−2π
2m2eσ2s
m2d2

) − 2T
τe

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(4.165)

in the standard con�guration, T1 = T2 = T , and at �xed velocity. Apart from the negligible in�uence
of the position width σs ≪ d, the reduction factor resembles the expression (3.106) on page 125. It
describes the e�ect of the particular macrorealistic model of continuous spontaneous localization
[157] discussed in Section 3.4.3.
Unless the reduced visibility �uctuates signi�cantly over the distribution of particle velocities we

may dispense with a velocity averaging of the expression (4.165). �e simpli�ed formula (4.151)
can be used to obtain the macroscopicities for most of the TLI experiments. Table 4.2 lists the µ
values for a representative selection of the molecular TLI experiments conducted in Vienna. �e
two experiments [5, 228] employ three material gratings, whereas a standing laser wave is used as
the second grating in the more recent KDTLI setup [7, 19].

Table 4.2. �e greatest macroscopicity values achieved in Talbot-Lau interferometry with large molecules, according to
Eq. (4.151). �e passage time through the interferometer is approximated by the mean value 2L/ ⟨vz⟩. I assumed a
reasonable value for the ratio f between observed and predicted visibility by means of the theory results and the
error bars of the measured data at high visibilities, as provided in the references.

Reference [5] [228] [7] [19]

molecule C70 C60F48 C60F48 PFNS8
mass m 840 amu 1632 amu 1632 amu 5672 amu

grating distance L 22 cm 38 cm 10.5 cm 10.5 cm
mean velocity ⟨vz⟩ 115m/s 105m/s 116m/s 75m/s
observed fraction f ≳ 0.9 0.75 ≳ 0.9 ≳ 0.8

macroscopicity µ 10.9 11.3 11.2 12.1
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4.3.2.2. Center-of-mass interference of extended objects

�e classicalization e�ect on interference experiments with point-like particles is always expressed
in terms of reduction factors of the form (4.148). �ey saturate at largemomentumwidths σq where
the classicalizing modi�cation a�ects the coherence between the interfering paths at its full decay
rate 1/τ = m2/m2eτe , as demonstrated by the solid curve in Figure 4.2.
�e situation changes in the case of extended particles. �e internal structure of the particlemust

be taken into account as soon as the critical classicalization length scale ħ/σq becomes compara-
ble to the particle size. According to the e�ective treatment of compound particles presented in
Section 4.1.5, we �nd that at smaller length scales only a fraction of the particle’s mass contributes
to the classicalization-induced coherence decay in the center-of-mass motion. �e e�ective clas-
sicalization time and phase-space distribution of the object thus depend on its size. �e explicit
dependence is derived in Appendix C.2 for spherical, cuboidal and cylindrical bodies.
To give a practical example, let us describe the classicalization e�ect on small homogeneous

spheres of mass M and radius R. For instance, double-slit interference with silica nanospheres
is proposed in [25], and Talbot-Lau interference with gold nanoclusters in [11] (see Section 3.4 on
page 114�.).
We can adopt all the results for the treatment of point particle interference if we simply replace

the coherence time parameter and the distribution function for a point mass m by the e�ective
classicalization parameters for a sphere, as given in Appendix C.2.1. �e visibility reduction factor
(4.148) of a point particle changes into

Rt (p) = exp [
M2

m2eτe
e−(meσs p/Mħ)2/2 ∫ ∞

0
dq 9

√
2Mħ3√

πpqσ3qR2
Si( qpt

Mħ
) e−q2/2σ 2q j21 (

qR
ħ

)

− M2t
m2eτe

γsph (
σqR
ħ

)] . (4.166)

It di�ers signi�cantly for σqR/ħ ≳ 1, as demonstrated by the dashed line in Figure 4.2. �e curve
determines the time parameters τe , which would be excluded by successfully interfering gold clus-
ters of M = 107 amu in the Talbot-Lau setup [11]. It corresponds to the condition R2T (h/d) = 1/2,
that is, it assumes that at least 50% of the expected interference contrast are detected using �uorine
laser gratings with period d = 80nm and delay time T = 2TT = 32ms. We can estimate a radius of
R ≈ 6nm for the gold cluster (ρ = 19320 kg/m3), which roughly equals the length scale ħ/σq below
which the dashed line declines again. �e curve assumes its maximum in a small window of length
scales between the mean interference path separation and the cluster size yielding the macroscop-
icity µ = 20.4. �e same experiment with smaller clusters of 105 amu would yield µ = 14.5, whereas
the feasible upper limit of 108 amu (R ≈ 13 nm) corresponds to µ = 23.3. If we approximated the
clusters as point particles, we would obtain µ = 14.5, 20.5 and 23.5, respectively. At even higher
masses the particle size becomes comparable to the path separation and the point-particle approx-
imation ceases to be valid.
�e macroscopicity of the proposed double-slit experiment [25] with silica nanospheres (ρ =

2200 kg/m3) of up to 20nm radius can be assessed in a similar manner. As discussed in the point-
particle case, the Fourier amplitude associated to the interference fringe oscillation behind the dou-
ble slit is reduced by the factor R (D) = RT1 (MD/T1)RT2 (MD/T2). Here, D = 52nm denotes the
slit distance, and the times of �ight between source, double slit and detector are set to be T1 = 3.3ms
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and T2 = 125ms. Assuming a measured fringe amplitude of more than 50% of the predicted value,
R (D) ≥ 1/2, we �nd themacroscopicity µ = 20.5. If the nanospheres were treated as point particles,
we would obtain the overestimated value 21.1.

4.3.2.3. Superpositions of micromechanical oscillations

A rather novel class of macroscopic quantum phenomena seems to be coming into reach in the
rapidly developing �eld of quantum optomechanics. Improved methods of nanofabrication and
optical control have led to the cooling ofmicrometer-sizedmechanical oscillators down to the quan-
tum limit of motion (see e.g. [229–231]), and couldmake it possible to observe nonclassical states of
motion with such systems in the near future. �ese would test the laws of quantum mechanics on
a much larger mass scale than ever before, but having said that, they would also operate on length
scalesmuch smaller than any of the arm separations realized inmatter-wave interferometry. In fact,
they operate in the opposite domain where the dimensions of the system exceed by far the spatial
extension of its quantum state of motion.
A �rst concrete proposal to test the quantum coherence of micromechanical oscillators was pre-

sented in [170]. �e authors suggest to use a vibrating micromirror in an optical cavity placed in
one arm of a Michelson interferometer. �emirror shall be initially cooled close to its ground state
of motion. When a photon enters the interferometer it splits between the two arms and coherently
drives a small oscillation of themicromirror in one arm, which entangles both systems with one an-
other. A photon escaping the cavity a�er one full period of oscillation fully retrieves its coherence,
and it is expected to interfere in the output channel with 100% contrast.
In the presence of classicalization, however, the interference visibility of the photon would be

reduced due to the loss of quantum coherence in the mirror system. �e explicit visibility loss,

V (2π
ω

) ≈ exp [− 3π
ωτe

(Mgx0
meωb

)
2

γ21 (
σqb
ħ

)(1 − e−σ 2q b2/2ħ2)] (4.167)

follows from a tedious calculation carried out in detail in Appendix C.3.2. �e mirror is modelled
as a homogeneous silica cube (see Appendix C.2.2) of edge length b = 10 µm and massM = 2.3 ng.
�e values for the mirror frequency ω/2π = 500Hz, the coupling time t = 2π/ω, the ground state
amplitude x0 =

√
2ħ/Mω = 170 fm, and the photon-mirror coupling strength g/ω = 1.63 are taken

from the reference. If we assume that the experiment were actually performed and 50% visibility
were observed a�er one mirror cycle, V (2π/ω) = 0.5, this would rule out all classicalization time
parameters τe below the dash-dotted curve in Figure 4.2. It would give rise to a macroscopicity of
µ ≈ 19.0.
Present-day experiments are still far away from the proposed size and time scale. In the last

years the oscillator design has evolved towards smaller, more sophisticated geometries with an in-
creased optomechanical coupling, which improved the ability to cool and control such systems.
For instance, the authors of [230] demonstrated the ground-state cooling of the �exural mode of a
M = 48pg heavy aluminium micromembrane vibrating at ω/2π = 10.56MHz—a constitutive step
ahead, but the quantum nature of the membrane motion remains yet to be proven.
Would the membrane system in [230] test quantum physics at an unprecedented level? Suppose

that the membrane of [230] could be brought into a superposition of its ground and its �rst excited
state for a su�ciently long time, say 1000 oscillation cycles. To give a good upper estimate of the
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resulting macroscopicity, let us approximate the membrane motion by the axial vibration of a rigid
homogeneous cylinder (see Appendix C.2.3) of radius R = 7.5 µm and thickness b = 100nm. A
lengthy calculation presented in Appendix C.3.1 then results in the classicalization-induced decay
of coherence

⟨1∣ρ2πn/ω∣0⟩
⟨1∣ρ0∣0⟩

≈ [1 + nπ
ωτe

(Mx0
meb

)
2

γ� (
σqR
ħ

)(1 − e−σ 2q b2/2ħ2)]
−2

. (4.168)

Assuming that this matrix element does not decay by more than 50% in n = 1000 cycles gives rise
to the macroscopicity µ ≈ 11.5—a value that was already topped with matter-wave interferometry,
as shown in Figure 4.4.

4.3.2.4. Superpositions of persistent loop currents

�e theoretical prediction and the experimental veri�cation ofmany-body quantum superpositions
in superconducting systems has initiated much of the discussion on how to measure macroscop-
icity, and it is still regarded as a prime example of macroscopic quantum phenomena. �e �rst
experiments to verify the existence of superposition states between counter-rotating currents of
notable magnitude in superconducting loop geometries were carried out in 2000 [1, 2]. �ey were
used as the key reference inmany attempts to assess the degree ofmacroscopicity in pair-condensed
electron systems over the years [3, 171, 172, 174, 175, 213, 214]. In later experiments, the general in-
terest shi�ed towards applications in quantum information processing, which resulted in smaller,
more compact loop designs at the expense of higher macroscopicity. Despite the small coherence
time observed, the original SUNY experiment [1] still provides a benchmark for the magnitude of
macroscopicities reached in superconducting systems, as for instance in the 6-year-later Berkeley
experiment [168].
I evaluated the macroscopicity of the three cited experiments based on the approximation dis-

cussed in Section 4.2.4 and Appendix C.1: I estimated the classicalization-induced decay rate Γ of
a given current superposition state by its initial value (4.134) and compared it to the measured co-
herence times T2. �e experimentally falsi�ed classicalization parameters are then obtained from
the condition Γ ≥ 1/T2, which can be assessed numerically from the simpli�ed expressions pro-
vided in Appendix C.1. Table 4.3 lists all parameters entering the computation and the resulting
µ-values for the three experiments [1, 2, 168]. It includes, in addition, a hypothetical future experi-
ment beyond the current level of feasibility, based on extrapolated values for the loop size and the
coherence time. �e current di�erences ∆I between the two arms of the superposition are taken
from [213]. However, they do not in�uence the macroscopicity values in the end since the coher-
ence decay is dominated by momentum di�usion in all cases, which does not depend on the value
of the supercurrents.
�e combined e�ect of di�usion and dephasing due to classicalization is illustrated by the dotted

curve in Figure 4.2, which represents the time parameters τe excluded by the SUNY experiment [1].
It saturates at its global maximum NT2 for large momentum widths σq of the order of the Fermi
momentum ħkF in the superconducting material, where all N conductance electrons in the Fermi
sphere would be exposed to momentum di�usion in the presence of classicalization. Cooper pairs
would be broken, and even the electrons deep in the Fermi sea would be displaced in momentum
space at the rate 1/τe . �e coherence time of the current superposition state is then limited in pro-
portion to the number of conductance electrons, Γ ≈ N/τe . �is explains the maximum of the
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dotted curve, τmax ∼ 105 s, which corresponds to a macroscopicity of µ = 5.2. �e described di�u-
sion e�ect weakens at larger length scales where the average momentum transfer σq is not su�cient
to overcome the energy gap ∆ for breaking a Cooper pair. �is explains the decline of the curve
starting from about ħ/σq ≳ 1/k∆ = ħ

√
2me∆ = 5nm. �e di�usion e�ect eventually breaks down

at roughly ħ/σq ∼ V 1/3 = 14 µmwhere the average momentum transfer does not even reach the ele-
mentary momentum unit of electrons in a discrete lattice of volume V . What remains at this point
is the coherence decay due to a dephasing between the two branches of the superposition, as repre-
sented by the constant value on the right hand side of the diagram. �e dephasing in momentum
space is induced by the average position transfer exerted by the classicalizing modi�cation, and it
depends merely on the classicalization parameter σs = 20pm. In the absence of dephasing, σs = 0,
the dotted curve in Figure 4.2 would drop exponentially with growing ħ/σq.

4.3.2.5. Survey of past and future experiments

I conclude this chapter with an overview of the macroscopicities attained in various matter-wave
experiments so far, and with an outlook comparing several proposals for future experiments on the
basis of the macroscopicity measure. �e following data unites all the numerical values evaluated
in the preceding subsections.
�e historical diagram in Figure 4.4 shows the rising trend inmacroscopicities achieved in a rep-

resentative selection of mechanical superposition experiments. Atomic and molecular interferom-
etry have reached the highest values with the advent of pulsed optical atom experiments [166, 167]
and the molecular Talbot-Lau experiments in Vienna. �e highest macroscopicity amounts to not
less than 1012 seconds lifetime of an isolated electron in a nonclassical state if it were subject to
classicalization.

Table 4.3. Setup parameters and macroscopicities of superposition experiments in superconducting loops, as given in
the references. Additional material parameters are taken from [209, 213]. For the two experiments [1, 168] the
coherence time T2 is estimated by the smallest frequency splitting observed in the spectroscopical analysis of the
superposition states. �e third value is given by the authors of [2], which is also used as the basis of the hypothetical
experiment on a much larger loop.

Experiment Del� [2] SUNY [1] Berkeley [168] hypothetical

superconducting material Al Nb Al Al
Fermi wave number kF 1.74Å−1 1.18Å−1 1.74Å−1 1.74Å−1

energy gap ∆ 0.17meV 1.44meV 0.17meV 0.17meV
Debye energy ħωD 36.9meV 23.7meV 36.9meV 36.9meV

loop length L 20 µm 560 µm 180 µm 20mm
material cross-section A 36000nm2 5 µm2 1 µm2 100 µm2

current di�erence ∆I 900nA 3 µA 292nA —
coherence time T2 15ns ≳ 1ns ≳ 10ns 1ms

number of electrons N 1.28 × 1011 1.55 × 1014 3.20 × 1013 3.56 × 1017

macroscopicity µ 3.3 5.2 5.5 14.5
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Figure 4.4.Macroscopicities of a representative selection of quantum superposition experiments with mechanical sys-
tems plotted against their publication date. I distinguish matter-wave interferometry with neutrons [223, 224]
(squares), atoms [166, 167, 169, 225–227] (triangles), or molecules [4, 5, 7, 19, 125, 222, 228] (dots), and the super-
position experiments [1, 2, 168] with persistent supercurrents (stars). �e numerical µ-values of the data points are
given in the calculations presented in this section.

Note that the �rst BEC interference experiment [169] is included among the atom inteferometers
in the timeline. I estimated its macroscopicity by means of the single-particle expression (4.151):
f = 75% out of a maximum 100% contrast were measured a�er 40ms time of �ight of the coher-
ently split sodium BEC, which yields µ ≈ 8.4. �e interference fringes were recorded by measuring
the single-particle density distribution in single runs of the experiment35. Following the argumen-
tation presented in Section 4.2.3 there is no reason to assume an enhancement of themacroscopicity
beyond the level of a single atom, despite the macroscopic occupation of the interfering BEC state.
On the other hand, persistent-current experiments in superconducting loops seem to promise

a large macroscopicity due to the sheer number of Cooper-paired electrons contributing to the
superposition state. However, they clearly lag behind because of the short coherence times observed
so far. �is de�cit could only be overcome by increasing both the loop size and the coherence
time signi�cantly: �e hypothetical large setup introduced in the previous section yields the value
µ ≈ 14.5, assuming 1ms coherence time in a 20mm long aluminium loop of 100 µm2 wire cross-
section—challenging parameters to implement in the experiment, to say the least.
Other proposed quantum superposition experiments promise a comparable or even larger de-

gree of macroscopicity, as estimated in the previous subsections. �eir values are listed in Table
4.4. We �nd that the hypothetical Cooper-pair superposition experiment compares well with the
space-based cesium interferometer proposed in [219], which is supposed to realize much larger co-
herence times of the order of 1000 s. �is makes up for the huge overall mass di�erence between
one cesium atom and the entire 1017 conductance electrons of the superconductor. �e same degree
of macroscopicity, however, should also be achievable in more easily feasible experiments, such as
the next-generation matter-wave interferometers based on the Talbot-Lau scheme studied in Sec-

35�e phase sensitivity and the coherence time of the BEC interferometer were increased in a later experiment [203].
However, I estimated a smaller macroscopicity in this case, µ ≈ 8.3, since only f = 15% visibility was found a�er
200ms time of �ight.
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tion 3.4, and involving masses of 105 amu. �is is due to the favorable scaling of the macroscopicity
of de Broglie interference experiments with the mass of the particles. Since the latter could be in-
creased by another three orders of magnitude, the proposed Talbot-Lau setup [11] turns out to be
the most promising vehicle to test the quantum-to-classical transition. Quite remarkably, it o�ers
the greatest degree of macroscopicity among the listed proposals, which is only rivalled by a com-
parable double-slit experiment with silica spheres of 107 amu [25], and by the superposition of a
1015 amu-heavy micromirror �rst proposed in [170]. Despite the large mass, the latter is limited
in its macroscopicity because of the femtometer-sized oscillation amplitude of the mirror, as fol-
lows from the assessment in Section 4.3.2.3. �e same problem applies even more severely to other
nanomechanical oscillators with larger eigenfrequencies and smaller ground-state amplitudes. �e
vibrational superposition of an exemplary 48pg-heavymicromembrane, whichwas recently cooled
to its ground state in [230], would yield a considerably lower µ-value of 11.5 under similar experi-
mental conditions. It represents the lowest entry in Table 4.4.
Nevertheless, none of the listed suggestions comes anywhere near the ‘classical’ everyday world.

A simple gedankenexperiment illustrates this fact: If we could keep an idealized cat (i.e. a homoge-
neous 4 kg sphere of water) in a superposition of 10 cm distance for about 1 s then we would roughly
obtain the macroscopicity µ ∼ 57, as follows from the treatment of spherical particle interference in
Section 4.3.2.2. �is value is the equivalent of a single isolated electron staying in a superposition
state for 1057 seconds or 1040 times the age of the universe.

4.3.3. Concluding remarks and future directions

�eproposedmatter-wave experiments listed in Table 4.4 will take on the rising trend in themacro-
scopicity of fundamental quantumexperiments, which originates from the breakthroughs in atomic
and molecular matter-wave interferometry over the last two decades. Increasing e�ort is put into
the �eld today, and even space-based experiment designs are being considered. �emacroscopicity
measure introduced in this chapter o�ers an objective and unbiased way to compare these di�erent
experimental ideas, and itmay guide future research in probing the quantum-to-classical transition.

Table 4.4. Macroscopicities for a variety of hypothetical quantum superposition experiments, as conceived here or
proposed by various research groups in the �eld of matter-wave interferometry. �e listed values are collected
from the detailed macroscopicity assessments presented throughout this section.

Hypothetical & proposed experiments Macroscopicity µ

Oscillating micromembrane 11.5
Large superconducting loop 14.5

Talbot-Lau interference [11] atM = 105 amu 14.5
Cesium interferometer on a satellite [219] 14.5

Oscillating micromirror [170] 19.0
Double-slit interference of nanospheres [25] 20.5
Talbot-Lau interference [11] atM = 108 amu 23.3

Superposition of a 4 kg house cat ∼ 57
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Yet some questions remain to be answered about the notion of macroscopicity in general. �e
present work provides a physical interpretation of this notion exclusively for mechanical systems
with a direct correspondence in classical Newtonian physics. In fact, the symmetries and consistent
scaling principles underlying both quantum and classical mechanics are the essential ingredients
of the minimally invasive, classicalizing modi�cation the present approach builds upon. It is clear
from this standpoint that geniunely quantum degrees of freedom, most prominently spin systems,
cannot classicalize as they do not have a classical counterpart. Spin superposition experiments thus
cannot be assigned a macroscopicity if mechanical superpositions are absent, irrespective of the
great number of entangled spins achieved nowadays [232]. �ere is simply no reasonable alternative
to quantum theory available in spin systems, hence there is also no classical ‘boundary’ of the theory
that could be probed in experiments and exploited to de�ne a notion of macroscopicity for spins.
We encounter a similar problem in modern BEC interferometers [205–207], where nonlinear

interactions and superpositions of internal atomic states are employed to beat the classical precision
limit in phase sensitivity by means of number squeezing. As in the case of spin ensembles, the
superposition is made of many atoms entangled in their internal degrees of freedom, which are not
directly subject to classicalization. A macroscopicity value can be assigned only to the motional
part of such an entangled many-body state.
One may think accordingly that photonic systems, which are not prone to the classicalization

e�ect developed here, are simply not accessible by this notion of macroscopicity either. At the same
time, we �nd that current attempts to create nonclassical states of light involve an increasing number
of photons entangled or superimposed in various degrees of freedom [233–236]. It should be noted
that electromagnetic degrees of freedom do have a classical counterpart described by the Maxwell
equations. �e derivation of a minimally invasive classicalization e�ect from �rst principles, and
the de�nition of a macroscopicity measure for quantum states of light, should be of priority in
subsequent studies.
Other attempts to de�ne a macroscopicity measure [3, 165, 171–176] have circumvented the men-

tioned restrictions by referring to speci�c many-body representations or classes of measurement
operations, which serve to characterize a given quantum state. �e �rst systematic assessment of
macroscopicity was provided by Leggett [3, 165]. He identi�ed two aspects of macroscopic super-
position states: A large di�erence in the expectation values of an appropriate observable between
the two branches of the superposition (so-called extensive di�erence, measured in atomic reference
units), and a large degree of entanglement between all the constituent atomic particles taking part in
the superposition (so-called disconnectivity)36. While these two aspects appear to be reasonable and
intuitively clear characteristics for the size of typical quantum phenomena, they are not objectively
de�ned and therefore leave room for bias and interpretation37. Nevertheless, various measures of
macroscopicity have been proposed that are related to one or the other aspect.

36�is aspect preventsmany-body product states of the form ∣ψN⟩ ∝ (∣A⟩ + ∣B⟩)⊗N from being consideredmoremacro-
scopic than the single-particle state ∣ψ1⟩ ∝ ∣A⟩ + ∣B⟩. On the other hand, the disconnectivity of a GHZ-type state,
∣ψ⟩ ∝ ∣A⟩⊗N + ∣B⟩⊗N , would increase with the number of particles N .

37�is triggered an interesting and illustrative debate on the macroscopicity of many-body quantum phenomena.
Leggett’s prime example of a macroscopic quantum e�ect was the superposition of persistent currents in a super-
conducting Josephson loop, �rst observed in [1, 2]. He claimed that the disconnectivity of the measured state was
given by the total number of Cooper-paired electrons, more than a billion to be precise, �owing either clockwise or
anticlockwise through the loop. A proper many-body analysis, however, reveals that the state is given by a super-
position of two slightly displaced but largely overlapping Fermi spheres, as found by Korsbakken et al. [213, 214].
Hence, the vast majority of indistinguishable electrons occupies the same momentum space region in both branches
of the superposition, and only a few hundred to thousand are actually disconnected, i.e. found in di�erent states.
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Several proposals were derived from information-theoretic considerations and emphasize the
high degree of many-body correlations in a given representation of macroscopic quantum states
[171, 173, 174, 176], whereas others measure the sensitivity of such states to decoherence and de-
phasing in a preferred basis of eigenstates [172, 175]. However, the decomposition of many-body
quantum states into correlated constituent degrees of freedom is not unique, nor is the choice of a
relevant basis to represent the state. Hence, there is a priori no unique standard of macroscopicity
that one could refer to.
In this chapter, I have presented such a standard by referring to classical physics and by adhering

to the consistent mass scaling properties of composite mechanical systems, which makes it applica-
ble to arbitrary such systems without bias. It exploits Leggett’s hypothesis of macrorealism, accord-
ing to which the only way to reconcile the quantumdescription of the atomic world and the classical
description of the everyday world is to introduce a modi�cation of quantum mechanics that car-
ries out the quantum-classical transition somewhere in between. In principle, such a classicalizing
modi�cation could be of almost any kind, as long as it assuredly turns quantum superpositions into
classical mixtures and conserves the well-established classical equations of motions on large scales.
Leggett proposed to test his hypothesis in the lab by trying to observe quantum phenomena as

macroscopic as possible; in this way one would exclude the possibility that those modi�cations
would have kicked in too early and induced a breakdown of the observed e�ect. Here, we have
arrived at a universal macroscopicity benchmark by turning this statement upside down: We can
call an observed quantum phenomenon more macroscopic than another one if it leaves less room
for the objective quantum-classical transition to occur.
In order to derive a quantitative measure out of this, I have restricted the analysis in Section

4.1 to ‘minimal’ modi�cations. �ey are just intrusive enough to do the job and avert quantum
superpositions in the macroworld without doing harm to fundamental symmetry and consistency
principles that are sacrosanct for both quantum and classical theory. By keeping other, more severe
modi�cations out of the game we could develop the logarithmic quantity µ in Section 4.3, which
naturally meets the requirements for a sound measure of macroscopicity.
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Chapter 5.

Conclusion and outlook

“People who have visions should go see a doctor.”
—Helmut Schmidt

Let me close by reviewing the three main parts of this work, Chapter Two, �ree and Four, from a
broader perspective. In the �rst two of these we were driven by concrete practical considerations in
the context of de Broglie wave interferometry, as pursued in Vienna: how to steer and interfere the
center-of-massmotion of heavy nanoparticles. In summary, we developed a number of answers and
predictions that have proven useful, or will become important, for current and future experiments:

☀ Feasibility of cavity-mediated cooling of molecules and nanoparticles Slow and cold en-
sembles of molecules and nanoparticles are an essential prerequisite for high-mass matter-
wave interferometry. However, unlike atoms, large molecules do not exhibit distinct inter-
nal resonances that could be coherently addressed by conventional laser cooling techniques.
�us e�cient methods of motional cooling and control are lacking. I discussed in Chapter
Two how and to what extent Sisyphus-type cooling can still be achieved for polarizable parti-
cles with help of a strongly driven optical high-�nesse cavity. Using the right parameters, the
delayed reaction of the cavity �eld to themoving particle is able to cause a velocity-dependent
friction force as the particle modulates the cavity resonance while travelling across the �eld
mode. We saw that this e�ect is small in realistic settings, but it could be enhanced by em-
ploying spherical resonator geometries with a large degenerate mode spectrum. �ere, each
mode would contribute an additional velocity damping channel that increases the overall
friction e�ect. �e e�ect was studied in a weak-coupling master equation model. Yet, a prac-
tical implementation with single molecules remains challenging, and it would be interesting
to combine it with ion-trapping techniques, or to study also collective self-organization ef-
fects [84] in the case of many molecules.

☀ Cavity cooling and trapping of large nanospheres �e growing mass and polarizability of
large nanoparticles alleviates the problem of weak coupling and thus facilitates an e�cient
cavity-induced slowing under realistic conditions. �is goal is pursued by several groups at
the moment [23, 24, 137, 237, 238], mainly using silica nanospheres and infrared cavities. We
saw with the help of Mie scattering theory in Chapter Two that not only the coupling of large
nanospheres increases, but also the behaviour changes when their diameter gets comparable
to the wavelength of the standing-wave cavity �eld. �eir absorption and scattering proper-
ties get insensitive to the standing-wave �eld modulation, the radiation pressure may turn
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them into e�ective low-�eld seekers at certain size regimes, and their overall �eld extinction
power increases to an extent that facilitates a position-sensitive detection via the scattered
light. Moreover, I also assessed the transverse forces in a Gaussian light mode and showed
for a realistic setting that they can be employed to capture nanospheres in the center of the
mode. Practical simulations and the application in experiments of the Vienna group are a
matter of ongoing research.

☀ Optical gratings for matter waves From the detailed assessment of the light-matter inter-
action between nanoparticles and standing waves, we could understand how the latter can
be employed as di�ractive elements for matter waves. Not only do they serve as phase grat-
ings, as conventionally implemented in molecule interferometry, but they can also act as
amplitude gratings by optical depletion—a convenient alternative to material grating masks.
�is requires the particles to be altered by photo-absorption such that they can be sorted
out or distinguished from the others in a reliable fashion. In the simplest case, a single pho-
ton su�ces to ionize the particle, which can then be removed by an electric �eld; this way
the standing-wave acts as an absorptive masks with the nodes playing the role of the grating
slits. Such single-photon ionization gratings have been proven to work [13], demonstrating
the interplay between absorptive and di�ractive e�ects on the most elementary level. Other
possible depletion methods involving more than a single photon and internal conversion
processes are being considered and should be assessed next.

☀ Poisson’s spot with large molecules In Chapter�ree I turned to matter-wave interferome-
try techniques with molecules and nanoparticles, and I started by analyzing a peculiar near-
�eld phenomenon that had been conceived almost two centuries ago to verify thewave nature
of light: Poisson’s spot, also known as Arago’s spot. Although the appearance of a bright in-
tensity maximum in the shadow center behind an opaque disc seems to be a decisive proof
of wave interference, I showed that this ceases to be the case for large nanoparticles. �e rea-
son is that a classical ballistic model may lead to a similar prediction due to the strong van
der Waals interaction between the particles and the walls of the obstacle. �is makes it hard
to distinguish quantum interference from classical de�ection above a certain particle size.
However, my analysis was based on a simpli�ed treatment of the interaction potential, and
more re�ned predictions should be based more sophisticated models [116].

☀ Talbot-Lau interferometry with optical gratings Apart from Poisson’s spot, Chapter �ree
was mostly about the Talbot-Lau near-�eld scheme, which is most suited to interfere large
masses. I provided a full-�edged phase-space model for Talbot-Lau interferometry with op-
tical gratings, and the main result was the detailed description of a time-domain Talbot-Lau
interferometer with optical ionization gratings for heavy nanoclusters. �e Vienna group
has implemented the scheme in the lab by now, and the �rst interference was observed with
anthracene clusters [13].

☀ Interferometric metrology techniques �enanometer-sized and periodic interference frin-
ges produced in a Talbot-Lau setup are highly sensitive to random or controlled phase shi�s
that may occur while the matter waves pass the three gratings of the interferometer. �is
can be utilized in precision metrology of the internal properties of the particle, such as the
static polarizability or the optical absorption cross-section. �e absolute value of the latter
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can bemeasured at benchmark precision in the interferometric scheme discussed in Chapter
�ree. By shining in an additional laser between the gratings we can make use of the photon
recoil upon absorption to extract the absorption cross section and �uorescence yield from
the subsequent reduction of interference contrast as a function of laser power. �e idea was
originally proposed in [6] and awaits its �rst implementation.

☀ Mass limitations of matter-wave interferometry Finally, I took all relevant limitations in
Talbot-Lau interferometry into consideration and gave an accurate estimation of the high-
est possible masses that could be interfered in the time-domain Talbot-Lau scheme with
vacuum-ultraviolet laser gratings, as conceived and developed in my group. We found on
the one hand that the combined in�uence of gravity, environmental decoherence, and the
�nite cluster size limits the attainable mass to below a billion atomic mass units. On the
other hand, we saw that hypothetical new physics at the macroscale may become testable
already at about a million amu. �e famous model of continuous spontaneous localization
(CSL) [155, 157] is expected to kick in at this scale, inducing an e�ective loss of coherence
which would be re�ected in a mass-dependent drop of interference contrast.

The question of macroscopicity �e long-term analysis of future mass limitations in macro-
scopic cluster interferometry, as conceived and implemented in Vienna, led us away from practical
problems and to the deeper theoretical question of what it means to be macroscopic. In Chapter
Four, this forced us to look at the bigger picture, where center-of-mass interferometry is only one
example of a macroscopic quantum phenomenon, and where the mass is only one aspect of macro-
scopicity. As much as my colleagues and me are intuitively biased towards this aspect, so may
physicists working on atom interference, many-body quantum phenomena, and nanomechanical
oscillators be biased towards other aspects. �is is why we felt it is necessary to part from our pre-
judice and conceive a general methodology to tackle the question of macroscopicity in arbitrary
settings.
In Chapter Four I presented a universal way tomeasuremacroscopicity inmechanical systems by

referring to the hypothesis of macroscopic realism and by quantifying the extent to which this hy-
pothesis is ruled out by the observation of a quantum phenomenon. Macroscopicity is thus de�ned
by means of empirical facts rather than the theoretical representation of the given phenomenon.
Hence, the quality and nature of the experiment matters as much as the formal complexity of the
underlying quantum state. It will be worthwile to study this connection further and explore the
common features and interfaces between the formal size measures proposed by others [171–176]
and the present empirical measure of macroscopicity.
Finally, let me remark that the macroscopicity standard de�ned here can be applied only to sys-

tems with a direct counterpart in classical physics. Quantum spin states, however large and com-
plex, are therefore excluded because they do not possess such a classical reference. �is does not
mean that one cannot go further than this. �e discussion in Chapter Four was restricted to nonrel-
ativistic mechanical systems having their counterpart in Newtonian mechanics, and it is clear what
to do next: One should try to extend the analysis also to relativistic and electromagnetic systems.
�is would eventually allow one to access the vast �eld of photonic quantum experiments bymeans
of the presented method.
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Appendix A.

Light-matter interaction

A.1. Complex ®eld amplitude and quantization

�e macroscopic Maxwell equations for electromagnetic �elds refer to real-valued quantities. In
case of a source-free medium, they read as∇⋅D = ∇⋅B = 0,∇×H = ∂tD,∇×E = −∂tB. It is, how-
ever, convenient to use a complexi�ed version when dealing with time-harmonic electromagentic
waves, that is, �elds oscillating at a �xed (optical) frequency ω. �e time dependence of all �elds is
then of the form E (r, t) = E (r) exp (−iωt), and the time derivative can be replaced by ∂t ↦ −iω.
I will always presuppose homogeneous, isotropic, linear and non-magnetic media characterized

by a relative dielectric permeability ε = ε (ω) and a magnetic permeability µ = 1. Note that ε can
take complex values in the case of absorbing media. �e electric �eld E and the magnetic �eld B
are related to the electric displacement �eld D and to the magnetizing �eld H via D = εε0E and
B = µ0H. �e Maxwell equations become

H (r) = 1
iµ0ω

∇× E (r) , E (r) = i
εε0ω

∇×H (r) , (A.1)

interrelating the complex electric and magnetic �elds, with∇ ⋅H = ∇ ⋅ εE = 0. Hence, this reduces
to a single vector wave equation, or Helmholtz equation, for both �elds,

∇×
⎡⎢⎢⎢⎢⎣
∇ ×

⎧⎪⎪⎨⎪⎪⎩

E (r)
H (r)

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
= −∇2

⎧⎪⎪⎨⎪⎪⎩

E (r)
H (r)

⎫⎪⎪⎬⎪⎪⎭
= εk2

⎧⎪⎪⎨⎪⎪⎩

E (r)
H (r)

⎫⎪⎪⎬⎪⎪⎭
, (A.2)

where k = ω/c denotes the vacuum wavenumber throughout this thesis. I will only describe waves
in vacuum (ε = 1) or in piecewise homogeneous media, where the dielectric function ε does not
depend on position except on boundary surfaces.
�e physical �elds are obtained from the complexi�ed expressions by taking the real part,Re{E}

and Re{H}. In the case of a derived expression involving products of �elds, this rule must be
applied to each factor [33]. For an arbitrary product ‘○’ between two complexi�ed vector �elds a
and b, we arrive at the physical expression by

a (r, t) ○ b (r, t) →Re [a (r) e−iωt] ○Re [b (r) e−iωt] . (A.3)

Doing a time-average ⟨⋅⟩t over the fast optical oscillation then yields the simple form

⟨a (r, t) ○ b (r, t)⟩t →
1
2
Re [a (r) ○ b∗ (r)] . (A.4)
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A standard way to describe both the coupling between distinguished wave components and to
quantize wave �elds lies in the separation of amplitude and mode. �e mode de�nes the spatial
structure and polarization of the �eld, whereas the complex amplitude encodes the stored energy
and phase evolving in time. One �rst chooses an orthogonal basis set of eigenfunctions {un (r)}
that solve the above Helmholtz equation (A.2) and ful�ll the electric �eld boundary conditions of
the physical system in question. �e complementary set of solutions {k−1∇× un (r)} must ful�ll
the boundary conditions of the magnetic �eld, respectively. For example, the vector-valued func-
tions can be plane waves with a �xed polarization, uk (r) = є exp (i

√
εk ⋅ r), or standing waves in a

Fabry-Pérot con�guration. �ey are called mode-polarization functions, or mode functions in the
case of a �xed polarization vector є. I adhere to the convention [239] of de�ning them as dimen-
sionless functions and introducing theirmode volume Vn through the orthogonality conditions

∫ d3r u∗n (r) ⋅ um (r) = 1
k2 ∫ d3r [∇ × u∗n (r)] ⋅ [∇ × um (r)] = δnmVn . (A.5)

With this mode picture at hand, and allowing for di�erent frequency components, we can expand
any electric �eld in vacuum as

E (r, t) = ∑
n
En (t)un (r) = ∑

n

√
2ħωn
ε0Vn

αn (t)un (r) , (A.6)

where the expansion coe�cients En (t) determine the amplitude of the �eld. �e expansion of H
follows from (A.1) accordingly. �e time evolution of the wave �eld is now reduced to a (possi-
bly coupled) time evolution of the individual complex amplitudes αn (t) =

√
ε0Vn/2ħωnEn (t),

keeping the spatial mode structure �xed1.
In the canonical quantization procedure one simply replaces the complex amplitudes αn and α∗n

by bosonic annihilation and creation operators, an and a
†
n. �e expression for the energy Hf stored

in the vacuum �eld translates into the standard Hamiltonian of multiple harmonic oscillators,

Hf =
1
2 ∫ d3r [ε0Re{E (r, t)}2 + µ0Re{H (r, t)}2] = ∑

n

ħωn
2

(α∗nαn + αnα∗n)

→ Hf = ∑
n
ħωn (a

†
nan +

1
2
) . (A.7)

�e Heisenberg time evolution of the bosonic operators under the �eld Hamiltonian Hf remains
harmonic, an (t) = an exp (−iωt).

A.2. Gaussian modes

Gaussian light modes are encountered in many experimental situations. �e most common ex-
amples are fundamental standing-wave cavity modes with spherical mirrors and running laser
waves. �ey are described by TEM00-modes with a symmetric Gaussian mode pro�le of waist
w [81, 82, 240]. �e simple expression E (r) ∝ є exp (−r2/w2 + ikz) represents only a rough ap-
proximation for a linearly polarized Gaussian running wave directed towards the positive z-axis. It

1A spatial motion of the wave �eld would be described by a redistribution of amplitudes between di�erent modes in
this picture.
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solves theHelmholtz equation (A.2) only to zeroth order in the expansion parameter s = 1/kw. Tak-
ing the rotation of this function yields also correction terms as compared to the linear polarization
of the corresponding magnetic �eld.
A rigorous formulation of Gaussian modes treating (on equal footing) electric and magnetic

�eld components involves vector potentials of a �xed polarization along the x- or y-axis [240]. As a
consequence, the linear �eld polarization, say, along x, is appended by a longitudinal z-component
and a y-component of higher order in s. A Gaussian running wave directed towards the positive
(+) or negative (−) z-direction, and centered at r = 0, is approximately described by the �elds2

E± (r) = E0q±e−q±ρ2±ikz
⎛
⎜⎜
⎝

1 + s2 (ρ2q2± + 2q2±x2/w2 − ρ4q3±) +O (s4)
2s2q2±xy/w2 +O (s4)
∓2isq±x/w +O (s3)

⎞
⎟⎟
⎠
, (A.8)

H± (r) = ±cε0E0q±e−q±ρ2±ikz
⎛
⎜⎜
⎝

2s2q2±xy/w2 +O (s4)
1 + s2 (ρ2q2± + 2q2±y2/w2 − ρ4q3±) +O (s4)

∓2isq±y/w +O (s3)

⎞
⎟⎟
⎠
, (A.9)

with ρ2 = (x2 + y2) /w2 and q± = 1/ (1 ± 2iz/kw2). I chose the parameters such that the electric
�eld is mainly x-polarized. �e lowest order addition to both the electric and the magnetic �eld is a
longitudinal polarization component. �e strict orthogonality between the direction of propagation
and of polarization holds only for pure plane- or standing-wave modes. A cosine-type standing
electric-�eldwave is obtained by combining Esw = (E+ + E−) /2. �e correspondingmagnetization
�eld Hsw = (H+ +H−) /2 is then of sine type.
If we look at theGaussianwave from a coordinate system, which is shi�ed to the neworigin r0, we

must simply replace r by r + r0 in the above �eld expressions. �is will be of use when considering
scattering situations at spherically symmetric geometries. If in addition the size of the scattering
object in question is small compared to the waist of the �eld, we should consider expanding the
translated �eld expressions in r/w ≪ 1 as well. Let me introduce the abbreviations

ρ20 =
x20 + y20
w2

, ρ21 =
2xx0 + 2yy0

w2
, (A.10)

A = ρ20 − ρ40 − 2
z20
w2

(ρ20 − 2)
2 , B = ρ20 − 1 + (2 − ρ20) ρ21 , C = ρ41

2
− ρ21 −

x2 + y2

w2
. (A.11)

�e following �eld expressions are valid up to second order in both s and r/w (i.e. terms of the form
sn (r/w)m are dropped if n +m ≥ 3).

E± (r + r0) ≈ E0e−ρ20±ik(z+z0)
⎛
⎜⎜
⎝

1 + C ± 2is [Bz0 + (ρ20 − 1) z] /w + s2 (A+ 2x20/w2)
2s2x0y0/w2

∓2is [(1 − ρ21 ) x0 + x] /w + 4s2 (ρ20 − 2) x0z0/w2

⎞
⎟⎟
⎠

(A.12)

H± (r + r0) ≈ ±cε0E0e−ρ20±ik(z+z0)
⎛
⎜⎜
⎝

2s2x0y0/w2

1 + C ± 2is [Bz0 + (ρ20 − 1) z] /w + s2 (A+ 2y20/w2)
∓2is [(1 − ρ21 ) y0 + y] /w + 4s2 (ρ20 − 2) y0z0/w2

⎞
⎟⎟
⎠
(A.13)

2Note that I use a harmonic time dependence of the form exp (−iωt), as opposed to [240]. �e present �eld expressions
are thus given by the complex conjugates of the ones from the reference.
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A.3. Phase space representation of states and observables

Bound operators on the Hilbert space L2 (R) of a one-dimensional motional degree of freedom
can be represented by means of an arbitrary complete set of orthogonal operators (with respect to
the Hilbert-Schmidt scalar product (A, B) = tr (A

†
B)). �e Wigner-Weyl formulation of quantum

mechanics is obtained by using the basis of re�ection operators

Rz,p =
1
2 ∫ ds e ips/ħ∣z +

s
2
⟩⟨z − s

2
∣, tr (R

†
z,pRz′ ,p′) = πħδ (z − z′) δ (p − p′) . (A.14)

One de�nes theWeyl symbol of an operator A as the expansion coe�cient

A(z, p) = 2tr (Rz,pA) = ∫ ds e ips/ħ⟨z − s
2
∣A∣z + s

2
⟩, . (A.15)

�e operator can be fully reconstructed from its Weyl symbol by A = ∫ dzdp A(z, p)Rz,p/πħ. �e
Wigner function of a given quantum state ρ is de�ned as the normalized Weyl symbol

w (z, p) = 1
2πħ ∫ ds e ips/ħ⟨z −

s
2
∣ρ∣z + s

2
⟩ ∈ R, ∫ dzdpw (z, p) = 1. (A.16)

We can interpret it as the quantum generalization of the phase space density distribution, f (z, p) ≥
0, of a classical state of motion:

☀ �eWigner function reproduces the same marginals as its classical counterpart. We obtain
the spatial density distribution by integrating over the momentum variable, ∫ dpw (z, p) =
⟨z∣ρ∣z⟩, and the momentum distribution by integrating over position.

☀ Classically mixed states with vanishing quantum coherence can be described by a positive
Wigner function that is identical to the according phase-space distribution function in a clas-
sical description.

☀ Quantum expectation values of observables A can be expressed as a Wigner function aver-
age of the corresponding Weyl symbol, ⟨A⟩ = ∫ dzdp A(z, p)w (z, p). �e same is true for
phase-space observables in a classical model.

☀ Given that the quantum state evolves coherently under the in�uence of the Hamiltonian H =
p2/2mP + V (z), its Wigner function solves the quantum-Liouville equation [77]

[∂t +
p
mP

∂z − V ′ (z) ∂p]w (z, p) =
∞

∑
ℓ=1

(−ħ2/4)ℓ

(2ℓ + 1)! V
(2ℓ+1) (z) ∂2ℓ+1p w (z, p) . (A.17)

It is identical to the classical Liouville equation in a semiclassical approximation to second
order in ħ2, where all higher-than-second-order derivatives are omitted. More generally, if
Lindblad-type master equations are translated into phase space the same semiclassical ap-
proximation will yield a Fokker-Planck type equation (2.89) which has a clear classical cor-
respondence.
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�e Weyl symbols of the position and the momentum observable are the respective phase-space
coordinates. However, due to the noncommutative nature of quantum observables, there is no
such simple correspondence most other cases. Given two non-commuting operators A and B we
�nd that the Weyl symbols for their products read as [77]

(AB) (z, p) = A(z − ħ
2i
∂p , p +

ħ
2i
∂z)B (z, p) , (A.18)

(BA) (z, p) = [A∗ (z − ħ
2i
∂p , p +

ħ
2i
∂z)B∗ (z, p)]

∗

. (A.19)

�e di�erential operators in the arguments are to be understood by means of the Taylor expansion

A(z − ħ
2i
∂p , p +

ħ
2i
∂z) =

∞

∑
n,m=0

1
m!n!

A(m,n) (z, p) (− ħ
2i
∂p)

m
( ħ
2i
∂z)

n
. (A.20)

Any master equation can be translated to a phase-space partial di�erential equation by subsequent
applications of the above translation rules.

A.4. Weak-coupling dynamics of N particles in M modes

Here I generalize the weak-coupling master equation (2.81) for a single particle in the presence of a
single driven andM empty cavity modes to a more general con�guration of N (identical) particles
in M driven or empty modes. Each mode shall be either empty, αn = 0, or pumped to a large
steady-state amplitude, ∣αn∣ ≫ 1. I restrict my considerations to the simple yet relevant case where
the driving is realized by a single laser of frequency ωP . Coupling it into the cavity thus singles out
one or a few degenerate pump modes.
If we apply the �rst weak coupling assumption of Section 2.2.2.1, ∣Umn∣ ≪ κn, to each individual

particle, we arrive at the following light-matter master equation in the ωP-rotating and displaced
frame,

∂tρ = − i
ħ
[HP + HI , ρ] + LC (ρ) + Labs (ρ) + Lsca (ρ) , (A.21)

LC (ρ) = −i [
M
∑
n=1
∆na

†
nan , ρ] +

M
∑
n=1

κn (2anρa
†
n − {a

†
nan , ρ}) , (A.22)

HP =
N
∑
j=1

⎡⎢⎢⎢⎢⎣

p
2
j

2mP
+

M
∑

m,n=1
ħUmnα∗mαnu∗m (r j)un (r j)

⎤⎥⎥⎥⎥⎦
, (A.23)

HI =
N
∑
j=1

M
∑

m,n=1
ħUmnα∗manu∗m (r j)un (r j) + h.c. (A.24)

�e apsorption and scattering terms are given by sums over all driven modes,

Labs (ρ) = γ(n)
abs ∣αn∣2

N
∑
j=1

[un (r j) ρu∗n (r j) −
1
2
{∣un (r j)∣

2 , ρ}] , (A.25)

Lsca (ρ) = γ(n)
sca ∣αn∣2

⎡⎢⎢⎢⎢⎣

N
∑
j=1
∫ d2n R (n)un (r j) e−ikn⋅r j ρe ikn⋅r ju∗n (r j) −

1
2
{∣un (r j)∣

2 , ρ}
⎤⎥⎥⎥⎥⎦
, (A.26)
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with the respective extinction rates γ(n)
abs,sca = cσabs,sca/Vn and the mode volumes Vn. In the next

step of the weak-coupling approximation I assume that all cavity modes remain empty (relative to
the steady-state amplitude) at almost all times. �is requires the e�ective rate of �eld �uctuations
induced by the entirety of particles to be small compared to the cavity decay rate. �at is to say,
the second weak coupling condition becomes ∣NUmnαn∣ ≪ κm ∀m, n, which places a quite rigid
bound on the allowed particle number in practical situations.
In full analogy to the line of arguments in Sections 2.2.2.2 and 2.2.2.3 we arrive at the e�ective

N-particle master equation

∂tρP = LPρP −
N
∑
j=1

M
∑

n,ℓ,m=1
UℓmUmn (α∗ℓ αn [u∗ℓ (r j)um (r j) , gmnρP] + h.c.) , (A.27)

gmn ≈ ∫ ∞

0
dτ e−(κm+i∆m)τ

N
∑
k=1

u∗m (rk −
pkτ
mP

)un (rk −
pkτ
mP

) . (A.28)

Note that, as a result of the second weak coupling condition, the non-retarded part of the time
evolution, LPρP = −i [HP , ρP] /ħ + LabsρP + LscaρP , reduces to a sum of uncoupled single-particle
terms. �e inter-particle coupling is mediated by the delayed cavity reaction, as represented by the
memory operators gmn.
With the e�ective N-particle master equation at hand we can identify the cavity-induced friction

and di�usion e�ect in phase space. For this let me again restrict our view to the one-dimensional
motion along the z-axis of the cavity. Introducing the N-particle Wigner function

w (z1, p1, . . . , zN , pN) =
1

(2πħ)N ∫ ds1 . . . dsN exp⎛⎝
i
ħ∑j

p js j
⎞
⎠
⟨z1 −

s1
2
, . . . ∣ρ∣z1 +

s1
2
, . . .⟩ (A.29)

we can convert the above master equation into a semiclassical Fokker-Planck-type equation for the
2N-dimensionalWigner function. �e phase-space translation rules fromAppendix A.3 generalize
naturally to N particles. I once again de�ne the memory integrals per particle as the phase-space
counterparts of the memory operators,

Gmn (z, p) = ∫ ∞

0
e−(κm+i∆m)τu∗m (z − pτ

mP
)un (z −

pτ
mP

) . (A.30)

A tedious but straightforward calculation reveals the dissipative force term

g(dis)p j (z1, p1, . . .) =
M
∑

n,ℓ,m=1
ħŨℓmŨmnRe{2iα∗ℓ αn [∂z ju∗ℓ (z j)um (z j)]

N
∑
k=1

Gmn (zk , pk)

− ħα∗ℓ αn [∂2z ju
∗
ℓ (z j)um (z j)] ∂p jGmn (z j , p j)} (A.31)

as well as the di�usion coe�cients

D(dis)
p j pk (z1, p1, . . .) =

M
∑

n,ℓ,m=1
2ħ2ŨℓmŨmnRe{α∗ℓ αn [∂z ju∗ℓ (z j)um (z j)] ∂zkGmn (z j , p j)} , (A.32)

D(dis)
z j pk (z1, p1, . . .) = −

M
∑

n,ℓ,m=1
ħ2ŨℓmŨmnRe{α∗ℓ αn [∂zku

∗
ℓ (zk)um (zk)] ∂p jGmn (z j , p j)} . (A.33)

198



�e �rst order friction force term (�rst line) for the jth particle is a�ected by the accumulated
trajectory of all other particles. �at is, the particles couple through the cavity-mediated friction
force. �e second-order force terms for each particle are independent. �e di�usion coe�cients
correlate all particles uniformly. A particle couples to the �rst-order �eld �uctuations caused by
itself or by any other particle via the same memory integral expression. We should expect that
this would lead to a strongly correlated interacting many-body system beyond the weak coupling
regime. As a consequence, collective self-organization e�ects are expected to occur [84, 85].

A.5. Spherical wave expansion

�e spherical wave expansion is an essential method to work with �elds under spherically sym-
metric boundary conditions. Here, I use it to solve the Mie scattering problem of electromagnetic
waves at spherical dielectrics [28, 29]. �e idea is to expand the electric and magnetic �elds in a
given setup in the basis of spherical vector harmonics [34]. Given a harmonic �eld component of
frequency ω = ck in a dielectric medium of (complex) refractive index n =

√
ε, we may expand the

electric and the magnetization �eld as

E (r) =
∞

∑
ℓ=1

ℓ
∑
m=−ℓ

[C(M)

ℓ,m fℓ (nkr) Xℓ,m (θ , ϕ) + 1
k
C(E)
ℓ,m∇× gℓ (nkr) Xℓ,m (θ , ϕ)] , (A.34)

H (r) = cε0
i

∞

∑
ℓ=1

ℓ
∑
m=−ℓ

[n2C(E)
ℓ,m gℓ (nkr) Xℓ,m (θ , ϕ) + 1

k
C(M)

ℓ,m ∇× fℓ (nkr) Xℓ,m (θ , ϕ)] . (A.35)

�e radial functions fℓ and gℓ must be linear combinations of spherical Bessel functions of the �rst
and second kind, jℓ and yℓ. In practice, two possibilities matter: Regular wave solutions, which are
�nite and di�erentiable everywhere, must be given in terms of the Bessel functions fℓ = gℓ = jℓ.
Outgoing scattered wave solutions are given by the spherical Hankel functions hℓ ∶= jℓ + iyℓ. �ey
diverge at r = 0, and they become spherical waves in the far �eld, hℓ (kr) ≈ i−ℓ−1e ikr/kr for kr ≫ 1.
�e spherical vector harmonics are de�ned by [34]

Xℓ,m (θ , ϕ) = r ×∇
i
√
ℓ (ℓ + 1)

Yℓ,m (θ , ϕ) = (−)m+1 X∗
ℓ,−m (θ , ϕ)

= 1
2
√
ℓ (ℓ + 1)

⎛
⎜⎜
⎝

√
(ℓ −m) (ℓ +m + 1)Yℓ,m+1 +

√
(ℓ +m) (ℓ −m + 1)Yℓ,m−1

i
√

(ℓ +m) (ℓ −m + 1)Yℓ,m−1 − i
√

(ℓ −m) (ℓ +m + 1)Yℓ,m+1
2mYℓ,m

⎞
⎟⎟
⎠
,

(A.36)

for ℓ > 0. �ey are tangential to the unit sphere, r ⋅ Xℓ,m = 0, and they form an orthonormal set of
vector-valued functions on the unit sphere, just like thewell-known spherical harmonicsYℓ,m (θ , ϕ)
do for scalar functions. �e latter are de�ned in terms of associated Legendre polynomials [63],

Yℓ,m (θ , ϕ) =
¿
ÁÁÀ2ℓ + 1

4π
(ℓ −m)!
(ℓ +m)! e

imϕPm
ℓ (cos θ) , Yℓ,−m = (−)m Y∗

ℓ,m ,

Pm
ℓ (x) =

(−
√
1 − x2)

m

2ℓℓ!
∂ℓ+mx (x2 − 1)ℓ ∀m ≥ 0. (A.37)
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�e orthogonality relations read as

∫ dΩ X∗
ℓ′ ,m′ ⋅ Xℓ,m = ∫ dΩ [n × X∗

ℓ′ ,m′] ⋅ [n × Xℓ,m] = ∫ dΩY∗
ℓ′ ,m′Yℓ,m = δℓℓ′δmm′ , (A.38)

with n = r/r the unit vector pointing in the directionΩ. �e terms {n × Xℓ,m} form an independent
and complementary set of basis functions, ∫ dΩ X∗

ℓ′ ,m′ ⋅ [n × Xℓ,m] = 0. Combining the vector
harmonics with the spherical Bessel functions leads to basis solutions of the vector wave equation,

∇× [∇ × fℓ (nkr) Xℓ,m (θ , ϕ)] = εk2 fℓ (nkr) Xℓ,m (θ , ϕ) . (A.39)

�is can be checked using the identity [34]

∇× f (r) Xℓ,m (θ , ϕ) = 1
r
∂r [r f (r)] n × Xℓ,m (θ , ϕ) +

i
√
ℓ (ℓ + 1)
r

f (r) nYℓ,m (θ , ϕ) . (A.40)

�e di�erential equation underlying the Bessel-type functions and a few addition theorems [113]
are also required,

ℓ (ℓ + 1) fℓ (x) = x2 f ′′ℓ (x) + 2x f ′ℓ (x) + x2 fℓ (x) , (A.41)

f ′ℓ (x) = fℓ−1 (x) −
ℓ + 1
x

fℓ (x) =
ℓ
x
fℓ (x) − fℓ+1 (x) , (A.42)

1
x2

= jℓy′ℓ − j′ℓyℓ = −i [ jℓh′ℓ − j′ℓhℓ] . (A.43)

In a concrete physical situation, one is o�en le� with speci�c electromagnetic �eld distributions,
such as standing-wave modes or Gaussian modes, which must be expanded in the above partial-
wave basis. �e expansion coe�cients can be obtained by means of the integrals

C(E)
ℓ,m gℓ (nkr) =

−ik√
ℓ (ℓ + 1) ∫ dΩY∗

ℓ,m (θ , ϕ) [r ⋅ E (r, θ , ϕ)] , (A.44)

C(M)

ℓ,m fℓ (nkr) =
k

cε0
√
ℓ (ℓ + 1) ∫ dΩY∗

ℓ,m (θ , ϕ) [r ⋅H (r, θ , ϕ)] . (A.45)

Whether the integrals on the right hand side evaluate to the Bessel-type dependence on the radial
coordinate imposed by the le� hand side, depends verymuch on the (approximate) functional form
of a given �eld mode. One may be forced to invoke complicated numerical methods to extract the
partial-wave expansion coe�cients from the above relations [241].
A direct evaluation of the integrals is possible for the most elementary cases. An x-polarized

vacuum plane-wave mode running along the positive or negative z-axis, E(±) = E0ex exp (±ikz),
gets expanded as [34]

E(±) (r) = E0
2

∞

∑
ℓ=1

(±)ℓ ιℓ ∑
m=±1

[ jℓ (kr) Xℓ,m ±
m
k
∇× jℓ (kr) Xℓ,m] , (A.46)

H(±) (r) = cε0E0
2i

∞

∑
ℓ=1

(±)ℓ ιℓ ∑
m=±1

[±mjℓ (kr) Xℓ,m +
1
k
∇× jℓ (kr) Xℓ,m] . (A.47)
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Here I have introduced the abbreviation ιℓ = iℓ
√
4π (2ℓ + 1). We notice that the plane wave only

supports partial waves with ’helicity numbers’m = ±1. (Each component represents one of the two
circular polarizations.)
�e same holds for standing waves. Let us consider a symmetric standing-wave �eld from a

coordinate system where the origin is shi�ed from zero to z0, Esw = E0ex cos k (z + z0). From a
linear combination of the above expressions we obtain

Esw (r) = E0
2

∞

∑
ℓ=1

ιℓ ∑
m=±1

[ζℓ jℓ (kr) Xℓ,m + ζℓ+1
m
k
∇× jℓ (kr) Xℓ,m] , (A.48)

Hsw (r) = cε0E0
2i

∞

∑
ℓ=1

ιℓ ∑
m=±1

[ζℓ+1mjℓ (kr) Xℓ,m + ζℓ
1
k
∇× jℓ (kr) Xℓ,m] , (A.49)

with ζℓ = cos kz0 for even ℓ, and ζℓ = i sin kz0 for odd ℓ.
�ings get messier in the case of Gaussian modes. We can expand the approximate expressions

(A.12) and (A.13) for Gaussian running-wave �elds in positive or negative z-direction explicitly. A
terribly tedious and dull calculation leaves us with seven ℓ-dependent expansion coe�cients cor-
responding to ∣m∣ = 0, 1, 2, 3:

C(E,±)
ℓ,0 = E±0

i (±)ℓ ιℓ
√
ℓ (ℓ + 1)x0

kw2
[1 ∓ 2iz0

kw2
(2 − ρ20)] ,

C(M,±)
ℓ,0 = E±0

∓(±)ℓ ιℓ
√
ℓ (ℓ + 1)y0

kw2
[1 ∓ 2iz0

kw2
(2 − ρ20)] (A.50)

C(E,±)
ℓ,∣m∣=1 = (±)ℓ+1 ιℓE±0 {m

2
[1 ± 2iz0

kw2
(ρ20 − 1)] −

iℓ (ℓ + 1) x0y0
2k2w4

+ m
2k2w2

[A+ ℓ (ℓ + 1) x20
w2

+ (ℓ − 1) (ℓ + 2)
2

(ρ20 − 2)]} ,

C(M,±)
ℓ,∣m∣=1 = (±)ℓ ιℓE±0 { 1

2
[1 ± 2iz0

kw2
(ρ20 − 1)] +

mℓ (ℓ + 1) x0y0
2k2w4

+ 1
2k2w2

[A+ ℓ (ℓ + 1) y20
w2

+ (ℓ − 1) (ℓ + 2)
2

(ρ20 − 2)]} (A.51)

C(E,±)
ℓ,∣m∣=2 = (±)ℓ ιℓE±0

i
√

(ℓ − 1) (ℓ + 2)
2kw2

(i my0
∣m∣ − x0)[1 ± 2iz0

kw2
(ρ20 − 2)] ,

C(M,±)
ℓ,∣m∣=2 = (±)ℓ ιℓE±0

∓
√

(ℓ − 1) (ℓ + 2)
2kw2

(i mx0
∣m∣ + y0)[1 ± 2iz0

kw2
(ρ20 − 2)] (A.52)

C(E,±)
ℓ,∣m∣=3 = (±)ℓ ιℓE±0

∓m
√

(ℓ − 2) (ℓ − 1) (ℓ + 2) (ℓ + 3)
4 ∣m∣ k2w4 (i my0

∣m∣ − x0)
2

,

C(M,±)
ℓ,∣m∣=3 = (±)ℓ ιℓE±0

−
√

(ℓ − 2) (ℓ − 1) (ℓ + 2) (ℓ + 3)
4k2w4

(i my0
∣m∣ − x0)

2

(A.53)

I use the notation of Appendix A.2, plus E±0 = E0 exp (−ρ20 ± ikz0). No other m-components are
involved. �e expansion coe�cients of the corresponding Gaussian standing-wave �eld Esw =
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(E+ + E−) /2 read as

C(E)
ℓ,0 = ιℓE0e−ρ20

√
ℓ (ℓ + 1)x0
kw2

[iζℓ + ζℓ+1
2z0
kw2

(2 − ρ20)] ,

C(M)

ℓ,0 = ιℓE0e−ρ20

√
ℓ (ℓ + 1)y0
kw2

[−ζℓ+1 + iζℓ
2z0
kw2

(2 − ρ20)] , (A.54)

C(E)
ℓ,∣m∣=1 = ιℓE0e−ρ20 {m

2
[ζℓ+1 + iζℓ

2z0
kw2

(ρ20 − 1)] − iζℓ+1
ℓ (ℓ + 1) x0y0
2k2w4

+mζℓ+1
2k2w2

[A+ ℓ (ℓ + 1) x20
w2

+ (ℓ − 1) (ℓ + 2)
2

(ρ20 − 2)]} ,

C(M)

ℓ,∣m∣=1 = ιℓE0e−ρ20 { 1
2
[ζℓ + iζℓ+1

2z0
kw2

(ρ20 − 1)] + iζℓ
mℓ (ℓ + 1) x0y0

2k2w4

+ ζℓ
2k2w2

[A+ ℓ (ℓ + 1) y20
w2

+ (ℓ − 1) (ℓ + 2)
2

(ρ20 − 2)]} , (A.55)

C(E)
ℓ,∣m∣=2 = −ιℓE0e−ρ20

√
(ℓ − 1) (ℓ + 2)
2kw2

(my0
∣m∣ + ix0)[ζℓ + iζℓ+1

2z0
kw2

(ρ20 − 2)] ,

C(M)

ℓ,∣m∣=2 = −ιℓE0e−ρ20

√
(ℓ − 1) (ℓ + 2)
2kw2

(i mx0
∣m∣ + y0)[ζℓ+1 + iζℓ

2z0
kw2

(ρ20 − 2)] , (A.56)

C(E)
ℓ,∣m∣=3 = −ιℓE0e−ρ20

m
√

(ℓ − 2) (ℓ − 1) (ℓ + 2) (ℓ + 3)
4 ∣m∣ k2w4 ζℓ+1 (i

my0
∣m∣ − x0)

2

,

C(M)

ℓ,∣m∣=3 = −ιℓE0e−ρ20

√
(ℓ − 2) (ℓ − 1) (ℓ + 2) (ℓ + 3)

4k2w4
ζℓ (i

my0
∣m∣ − x0)

2

. (A.57)

A.6. Mie scattering at spherical dielectrics

�e Mie problem of electromagnetic wave scattering at spherical dielectrics has been assessed in
its many facets since the beginning of the 20th century [28, 29, 34, 90]. In many cases the situation
of a plane running wave impinging on a spherical dielectric has been studied, whereas here, I will
consider spherical particles brought into a Gaussian standing-wave mode.
In the simplest case of a homogeneous dielectric sphere of relative permittivity ε, exposed to an

electromagnetic wave in vacuum, the Mie scattering problem is solved as follows: First the original
�elds {E0,H0} in the absence of the sphere are expanded in spherical harmonics, see Appendix
A.5, Equations (A.34) and (A.35). As a regular wave solution with no divergencies, the expansion
reads as

⎧⎪⎪⎨⎪⎪⎩

E0
iH0/cε0

⎫⎪⎪⎬⎪⎪⎭
= ∑
ℓ,m

⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

C(M)

ℓ,m
C(E)
ℓ,m

⎫⎪⎪⎬⎪⎪⎭
jℓ (kr) Xℓ,m +

1
k

⎧⎪⎪⎨⎪⎪⎩

C(E)
ℓ,m

C(M)

ℓ,m

⎫⎪⎪⎬⎪⎪⎭
∇ × jℓ (kr) Xℓ,m

⎤⎥⎥⎥⎥⎦
. (A.58)

Note that I chose the origin of the coordinate system to be the sphere center. In the presence of
the sphere we can make the ansatz Eext = E0 + Esca for the �eld outside of the sphere, with yet
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undetermined outgoing scattered-wave �elds

⎧⎪⎪⎨⎪⎪⎩

Esca
iHsca/cε0

⎫⎪⎪⎬⎪⎪⎭
= ∑
ℓ,m

⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

αℓC(M)

ℓ,m
βℓC(E)

ℓ,m

⎫⎪⎪⎬⎪⎪⎭
hℓ (kr) Xℓ,m +

1
k

⎧⎪⎪⎨⎪⎪⎩

βℓC(E)
ℓ,m

αℓC(M)

ℓ,m

⎫⎪⎪⎬⎪⎪⎭
∇ × hℓ (kr) Xℓ,m

⎤⎥⎥⎥⎥⎦
. (A.59)

Due to the symmetrywe expect the same angular �eld distribution, and that the unknown scattering
coe�cients αℓ and βℓ depend only on the index ℓ of the radial part. A similar ansatz is used for the
�elds inside the dielectric sphere, which must be regular and �nite at r = 0,

⎧⎪⎪⎨⎪⎪⎩

Eint
iHint/cε0

⎫⎪⎪⎬⎪⎪⎭
= ∑
ℓ,m

⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

aℓC(M)

ℓ,m
nbℓC(E)

ℓ,m

⎫⎪⎪⎬⎪⎪⎭
jℓ (nkr) Xℓ,m +

1
k

⎧⎪⎪⎨⎪⎪⎩

bℓC(E)
ℓ,m/n

aℓC(M)

ℓ,m

⎫⎪⎪⎬⎪⎪⎭
∇ × jℓ (nkr) Xℓ,m

⎤⎥⎥⎥⎥⎦
, (A.60)

with n =
√

ε the (complex) refractive index. �e unknown coe�cients are obtained from the
boundary condition that the tangential components of the �elds must be continuous everywhere.
We thus have n × Eint (Rn) = n × [E0 (Rn) + Esca (Rn)] on the surface of the sphere with radius
R. �e same holds for the magnetization �elds. �e tangential component of each summand in the
expansion is easily obtained with help of (A.40),

n × [∇ × f (r) Xℓ,m] = −∂r [r f (r)] Xℓ,m . (A.61)

Recall that {Xℓ,m} and {n × Xℓ,m} form two independent orthonormal sets of functions on the
unit sphere. �e two boundary conditions for E and H thus yield four independent equations for
each ℓ to determine the unknown parameters by comparing the expansion coe�cients. We obtain
the well-known expressions for the scattering coe�cients [29],

αℓ =
jℓ (nkR) ∂R [Rjℓ (kR)] − jℓ (kR) ∂R [Rjℓ (nkR)]
hℓ (kR) ∂R [Rjℓ (nkR)] − jℓ (nkR) ∂R [Rhℓ (kR)]

=∶ Aℓ
Fℓ
, (A.62)

βℓ =
n2 jℓ (nkR) ∂R [Rjℓ (kR)] − jℓ (kR) ∂R [Rjℓ (nkR)]
hℓ (kR) ∂R [Rjℓ (nkR)] − n2 jℓ (nkR) ∂R [Rhℓ (kR)]

=∶ Bℓ
Gℓ
, (A.63)

and aℓ = 1/ikRFℓ, bℓ = n/ikRGℓ. �ese radial coe�cients for a homogeneous sphere are used
throughout this thesis to describe the light force, absorption and scattering at spherical particles.
Finally I brie�ymention the slightly more involved example of a hollow dielectric sphere of outer

radius R and inner radius R0 < R. It hints at how to solve generic situations of spherically symmetric
dielectrics with arbitrary interfaces. In this case we have three regions and two interfaces: �e �elds
in the outer region, r > R, are given by {Eext,Hext} like above. For the �elds in the inner vacuum
region, r < R0, we startwith an undetermined expression similar to (A.59), where αℓ, βℓ are replaced
by two di�erent coe�cients cℓ, dℓ, and where the Hankel function hℓ is replaced by the regular
Bessel function jℓ. �e latter guarantees that the �eld is �nite at the origin. �is condition does not
have to be ful�lled inside the dielectric, R0 < r < R, anymore. �at is to say, we replace the terms
aℓ jℓ and bℓ jℓ in (A.60) by the general linear combinations of Bessel functions, aℓ jℓ + i ãℓyℓ and
bℓ jℓ + ib̃ℓyℓ. We are le� with eight unknown ℓ-coe�cients, which are determined by the boundary
conditions at the two interfaces. Using a short-hand notation without arguments for hℓ = hℓ (kR),
jℓ = jℓ (kR), y(n)ℓ = yℓ (nkR), y(n,0)ℓ = yℓ (nkR0), j(n)ℓ = jℓ (nkR), j(n,0)ℓ = jℓ (nkR0), and j(0)ℓ =
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jℓ (kR0), we �nd

αℓ =
1
Cℓ

{[ jℓ (Rj(n)ℓ )
′

− j(n)ℓ (Rjℓ)′] [ j(0)ℓ (R0y(n,0)ℓ )
′

− y(n,0)ℓ (R0 j(0)ℓ )
′

]

− [ jℓ (Ry(n)ℓ )
′

− y(n)ℓ (Rjℓ)′] [ j(0)ℓ (R0 j(n,0)ℓ )
′

− j(n,0)ℓ (R0 j(0)ℓ )
′

]} , (A.64)

βℓ =
1
Dℓ

{[ jℓ (Rj(n)ℓ )
′

− n2 j(n)ℓ (Rjℓ)′] [ j(0)ℓ (R0y(n,0)ℓ )
′

− n2y(n,0)ℓ (R0 j(0)ℓ )
′

]

− [ jℓ (Ry(n)ℓ )
′

− n2y(n)ℓ (Rjℓ)′] [ j(0)ℓ (R0 j(n,0)ℓ )
′

− n2 j(n,0)ℓ (R0 j(0)ℓ )
′

]} , (A.65)

aℓ =
y(n,0)ℓ (R0 j(0)ℓ )

′

− j(0)ℓ (R0y(n,0)ℓ )
′

ikRCℓ
, ãℓ =

j(n,0)ℓ (R0 j(0)ℓ )
′

− j(0)ℓ (R0 j(n,0)ℓ )
′

kRCℓ
, (A.66)

bℓ =
n2y(n,0)ℓ (R0 j(0)ℓ )

′

− j(0)ℓ (R0y(n,0)ℓ )
′

ikRDℓ/n
, b̃ℓ =

n2 j(n,0)ℓ (R0 j(0)ℓ )
′

− j(0)ℓ (R0 j(n,0)ℓ )
′

kRDℓ/n
, (A.67)

cℓ =
i

nk2RR0Cℓ
, dℓ =

in
k2RR0Dℓ

. (A.68)

�e denominators are

Cℓ = [hℓ (Ry(n)ℓ )
′

− y(n)ℓ (Rhℓ)′] [ j(0)ℓ (R0 j(n,0)ℓ )
′

− j(n,0)ℓ (R0 j(0)ℓ )
′

]

− [hℓ (Rj(n)ℓ )
′

− j(n)ℓ (Rhℓ)′] [ j(0)ℓ (R0y(n,0)ℓ )
′

− y(n,0)ℓ (R0 j(0)ℓ )
′

] , (A.69)

Dℓ = [hℓ (Ry(n)ℓ )
′

− n2y(n)ℓ (Rhℓ)′] [ j(0)ℓ (R0 j(n,0)ℓ )
′

− n2 j(n,0)ℓ (R0 j(0)ℓ )
′

]

− [hℓ (Rj(n)ℓ )
′

− n2 j(n)ℓ (Rhℓ)′] [ j(0)ℓ (R0y(n,0)ℓ )
′

− n2y(n,0)ℓ (R0 j(0)ℓ )
′

] . (A.70)
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Appendix B.

Matter-wave interferometry

B.1. Ideal Poisson spot diªraction

�ePoisson spot di�raction pattern behind an ideal disc of radius R is determined by the amplitude
function (3.10) and the transmission function of the disc, t (r) = Θ (r − R),

ψ (r) = kℓ ∫u>1 d2u exp [iπkℓu2 − 2πik
u ⋅ r
R

] . (B.1)

�e function is isotropic, ψ (r) = ψ (r), which can be made explicit by switching to polar co-
ordinates and by employing the integral representation of the Bessel function [113], 2πJ0 (x) =
∫ 2π0 dϕ exp (ix cos ϕ).

ψ (r) = 2πkℓ ∫ ∞

1
du u exp (iπkℓu2) J0 (2πku

r
R
) (B.2)

A direct evaluation of this integral is problematic because of the asymptotic x−1/2-scaling of the
Bessel function which impedes the numerical convergence of the integral. On the other hand, the
unrestricted integral over R2,

ψ0 (r) = kℓ ∫ d2u exp [iπkℓu2 − 2πiku ⋅ rR ] , (B.3)

must exist since it determines the unmodulated matter-wave density that would be observed in
the absence of the di�racting obstacle. �e integral represents the Fourier transform of a complex
Gaussian, which results in another complex Gaussian, as obtained from the formula [63]

∫ ∞

0
dx xe±iax

2
J0 (bx) = ±

i
2a

e∓ib
2/4a . (B.4)

We are le� with a phase term of unit modulus,

ψ0 (r) = 2πkℓ ∫ ∞

0
du u exp (iπkℓu2) J0 (2πku

r
R
) = i exp(−iπ kr2

ℓR2
) . (B.5)

Plugging this into the expression (3.11) yields the constant density I0 = m2D (0) / (T1 + T2)2 of an
uncollimated matter-wave beam that emerges from the source and hits the screen with no obstacle
in between. �e exact geometric projection of a beam with a �nite collimation angle is obtained
from (3.9),

w0 (r) = [ m
(T1 + T2)

]
2

∫ d2r0 S (r0)D ( m
T1 + T2

∣r + T2
T1

r0∣) . (B.6)
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�e trick now is to apply Babinet’s principle and split the di�raction amplitude intoψ (r) = ψ0 (r)−
ψ1 (r). �e di�erence term,

ψ1 (r) = 2πkℓ ∫ 10 du u exp (iπkℓu2) J0 (2πku
r
R
) , (B.7)

is a bound integral which can be easily computed using standard numerics so�ware, such as MAT-
LAB. It represents the di�raction amplitude of a circular aperture of radius R.
A simple calculation reveals the amplitudes at the center of the screen, r = 0,

ψ1 (0) = i (1 − e iπkl) , ψ (0) = ie iπkl . (B.8)

�e amplitude can also be given explicitly in the limit of large screen coordinates, r ≫ R/k. For this I
insert the lowest-order asymptotic expansion of the Bessel function [113], J0 (x) ≈√
2/πx cos (x − π/4), into the integral (B.7). Its magnitude is then asymptotically bounded from

above by

∣ψ1 (r)∣ ≈
√
4kℓ2R

r
∣ ∫ 10 du

√
u exp (iπkℓu2) cos(2πku r

R
− π
4
)∣

≤
√
4kℓ2R

r ∫ 10 du
√
u = 4kℓ

3

√
R
kr
, (B.9)

which vanishes in the limit kr/R →∞.

B.2. Classical Poisson spot of a point source

In the limit of a perfect point source, R0 → 0, the modi�ed classical density distribution (3.25) on
the screen behind the obstacle becomes

f (r) = I0 ∫ d2r0 δ [r0 −
T1
T2

r + q (T2r0
ℓT1

) T1
m

]Θ [r0 −
ℓT1
T2

(1 + η)R]

= I0ℓ2 ∫r0≥(1+η)R
d2r0 δ [ℓr0 − r + q (r0)T2

m
] . (B.10)

We can split the δ-function into its x- and y-component, using polar coordinates and noting that
the momentum kick q (r0) points into the inward radial direction,

δ [ℓr0 − r + q (r0)T2
m

] = δ {[ℓr0 − RQ (r0)] cos θ − r} δ {[ℓr0 − RQ (r0)] sin θ} . (B.11)

�e polar angle θ is de�nedwith respect to the screen coordinate r = (r, 0). �e second term can be
evaluated in the angular coordinate with help of the identity δ [g (x)] = ∑n δ (x − xn) / ∣g′ (xn)∣,
where {xn} denote the simple zeros of the function g (x). Here, they are θ = 0, π, which leads to

δ [ℓr0 − r + q (r0)T2
m

] = δ [ℓr0 − RQ (r0) − r] δ (θ) + δ [ℓr0 − RQ (r0) + r] δ (θ − π)
∣ℓr0 − RQ (r0)∣

= δ [ℓr0 − RQ (r0) − r] δ (θ) + δ [ℓr0 − RQ (r0) + r] δ (θ − π)
r

. (B.12)
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Plugging this into the above expression (B.10) leaves us with the result

f (r) = I0ℓ
2

r ∫ ∞

(1+η)R
dr0 r0 {δ [ℓr0 − RQ (r0) − r] + δ [ℓr0 − RQ (r0) + r]}

= I0ℓ
2

r
{ r+
∣ℓ − RQ′ (r+)∣

+ r−
∣ℓ − RQ′ (r−)∣

} if r± ≥ (1 + η)R. (B.13)

�e radii r± in the obstacle plane are the solutions of the transcendental equations ℓr±−RQ (r±)∓r =
0, and they constitute the two contributions to the density distribution. Each contribution is present
only if the respective solution is larger than the e�ective radius of the obstacle, r± ≥ (1 + η)R.

B.3. Capture range of a spherical obstacle

Consider the three-dimensional scattering of a particle at a sphere of radius R, which is located at
r = 0. It shall attract the particle by means of the radial potential V (r) = −C4/ (∣r∣ − R)4. �e
particle shall approach the sphere from z = −∞ with an asymptotic velocity vz > 0 and an impact
parameter r0 > R. �e goal is to �nd the greatest value r0 = ηR at which the incoming particle is
captured and ultimately collides with the sphere.
Trajectories with a greater impact parameter are merely de�ected and leave the vicinity of the

sphere a�erwards, that is, they are characterized by a perihelion ∣r∣ = rmin > R. At this point, the
radial velocity vanishes, ∂t ∣r∣ = 0, and the particle velocity vmin is purely tangential to the sphere.
Angular momentum conservation relates the perihelion to the initial values, r0vz = rminvmin. �e
initial kinetic energy, E = mv2z/2, is also conserved, E = mv2min/2 + V (rmin). Combining both
equations leads to a relation between the impact parameter and the turning point,

r0
R
= rmin

R

¿
ÁÁÀ1 + C4

E (rmin − R)4
= (υ + 1)

√
1 + C4

ER4υ4
, (B.14)

where I have expressed rmin = R (υ + 1). Given that there exists a turning point υ > 0, the for-
mula yields the corresponding impact parameter r0 = r0 (υ). It turns out that this function has a
unique minimum, r0 = ηR, which is easily found by setting the derivative to zero, ∂υr0 (υ) = 0, and
plugging the solution υ back into the above form. �is leads to the result (3.32) given in the main
text.

B.4. General form of the Talbot-Lau fringe pattern

I repeat the derivation of the Talbot-Lau fringe pattern for the more general case of di�erent pulse
separation times, T1 ≠ T2, and a di�erent periods of the �rst two gratings, d1 ≠ d. I start from
(3.43), plug in the Fourier expansions of the kernels with di�erent periods and perform all possible
Dirac-δ integrations to obtain

w3 (x) =
1
∆x∑n,k

D̃ {d T2
TT

[k d
d1

(1 + T1
T2

) + n]}B(1)
k ( dT2

d1TT
[k d

d1
(1 + T1

T2
) + n])

× B(2)
n [(n + k d

d1
) T2
TT

] exp{2πi (n
d
+ k
d1

) [x − a
2
(T1 + T2)2] +

iπna
d

T21 } . (B.15)
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Once again, we are only interested in the cases where the separation times are at least of the order
of the Tablot time, T1,2 ≳ TT, and where the grating constants d, d1 do not di�er by orders of
magnitude. (In practical implementations, the latter di�er at most by a small integer factor.) �en
the incoherent initial illumination, P0 ≫ h/d, implies that the only non-vanishing contributions to
(B.15) are those summands which ful�ll

∣n + k d
d1

(1 + T1
T2

)∣ ≪ 1. (B.16)

�is is because the width of the Fourier transform D̃ of the initial momentum distribution is bound
by about h/P0 ≪ d. Note that n and k are integers. In the limit of no coherence, P0 →∞, the relation
can only be ful�lled if the ratios of grating constants, ν = d1/d, and separation times, η = T2/T1, are
rational numbers [60], (η + 1) /ην = r/s. �e coprime integers r, s ∈ N constitute the completely
reduced representation of this resonance condition, and they restrict the double sum in (B.15) to
index pairs (n, k) with sn = −rk. In principle, almost any chosen set of pulse separation times and
grating periods will constitute a rational fraction r/s in the above sense. In practice, however, a
pronounced fringe visibility can only by expected for small values of r and s, which include low-
order Talbot coe�cients in the Fourier sum.
We can relax the formal resonance condition in realistic situations with limited momentum

spread by introducing the small deviations, ∣δ∣ ≪ d and ∣τ∣ ≪ T , from the resonance con�guration,
T1 = T , T2 = ηT + τ, d1 = νd + δ. We may then approximate

D̃ {d T2
TT

[k d
d1

(1 + T1
T2

) + n]} = D̃ {d ηT + τ
TT

[ k
ν + δ/d (1 + 1

η + τ/T ) + n]}

≈ D̃ {d ηT + τ
TT

[k r
s
(1 − δ

νd
− τ

η (η + 1)T ) + n]}

≈ δsn,−rkD̃ [− kr
sTT

(η
ν
Tδ + dτ

η + 1)] . (B.17)

�e remaining argument determines the loss of fringe visibility due to small deviations from reso-
nance. It can be used to estimate the required precision in the adjustment of the TLI setup [60].
Introducing a new summation index, sℓ = −k, we �nd

w3 (x) =
1
∆x∑ℓ

D̃ [ rℓ
TT

(η
ν
Tδ + dτ

η + 1)]B
(1)
−sℓ [

rℓ
νTT

(η
ν
Tδ + dτ

η + 1)]

× B(2)
rℓ [ sℓT

νTT
(1 + τ

ηT
+ ηδ

νd
)] exp [2πisℓx

ηνd
(1 + ηδ

νd
)]

× exp{− iπarℓT
2

d
[η + ηδ

νd
(η + 1) + 2τ

T
]} , (B.18)

to �rst order in the deviations. �e recorded signal behind the third grating, and its visibility, are
obtained by a convolution with the third grating mask, as given in the main text. Notice, however,
that the period of the fringe pattern is here given by

d3 =
ηνd
s

(1 + ηδ
νd

)
−1
, (B.19)
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and the period of G3 must be adapted accordingly. If we set d3 as the period of G3 then the Fourier
components of the detection signal S (xS) are obtained by multiplying the Fourier components in
(B.18) with the mask coe�cients B(3)

−ℓ (0). �e exponent in the third line of (B.18) represents the
e�ective shi� of the fringe pattern due to the acceleration a.

B.5. Decoherence events in the general TLI scheme

Here I study how the general Talbot-Lau fringe pattern is modi�ed due to a single decoherence
event R(x′ − x) occuring at the time t ∈ [−T1, T2] before or a�er the second grating. �e event
corresponds to a momentum averaging transformation in (quantum and classical) phase space,
w (x , p) ↦ ∫ dq R̃ (q)w (x , p − q), with R̃ (q) the Fourier transform of the decoherence function
R, as de�ned in (3.55). We obtain the modi�ed Wigner function at G3 by inserting this transfor-
mation as an additional step into the phase-space derivation of the unmodi�ed result (3.43). We
distinguish two cases: If the event occurs before G2, t ∈ [−T1, 0], we arrive at

w̃3 (x , p) =
1
∆x ∫ dp0dp1dq R̃ (q)D (p0)T(2) (x − pT2

m
+ a
2
T22 , p − p1 −maT2)

× T(1) (x − pT2
m

− p1T1
m

+ q
m

(T1 + t) + a
2
(T21 + T22 ) , p1 − p0 − q −maT1) . (B.20)

If it occurs later, t ∈ [0, T2], the Wigner function reads as

w̃3 (x , p) =
1
∆x ∫ dp0dp1dq R̃ (q)D (p0)T(2) (x − pT2

m
+ qt
m
+ a
2
T22 , p − p1 − q −maT2)

× T(1) (x − pT2
m

− p1T1
m

+ qt
m
+ a
2
(T21 + T22 ) , p1 − p0 −maT1) . (B.21)

�e modi�ed fringe pattern is given by the momentum-integrated Wigner function. In the latter
case we immediately obtain a simple result,

w̃3 (x) = ∫ dq R̃ (q)w3 (x + q t − T2
m

) , ∀t ∈ [0, T2] , (B.22)

with w3 (x) the unmodi�ed pattern. �e fringe pattern is e�ectively smeared out over the mo-
mentum distribution. Expectedly, the e�ect on the fringe pattern is the strongest when the event
happens close to the second grating, t = 0, and it vanishes when the event happens in the end,
t = T2.
�e e�ect ismore complicated in the case of t ∈ [−T1, 0] due to the interplay between the coherent

grating kernels of G1 and G2,

w̃3 (x) =
1
∆x ∫ dpdp0dp1dq R̃ (q)D (p0 + q t

T1
)

× T(1) (x − qT2
m

( t
T1
+ 1) − pT2

m
− p1T1

m
+ a
2
(T21 + T22 ) , p1 − p0 −maT1)

× T(2) (x − qT2
m

( t
T1
+ 1) − pT2

m
+ a
2
T22 , p − p1 −maT2) . (B.23)
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However, the result can be simpli�ed if we restrict our view to the incoherent limit, where the initial
momentum distribution D (p0) is much broader than the kick distribution R̃ (q). In this case we
may approximate D (p0 + qt/T1) ≈ D (p0) in the above integral, and we obtain a similar result as
in the other case. By introducing the relative event time,

ϑ =
⎧⎪⎪⎨⎪⎪⎩

1 − t/T2 for t ∈ [0, T2]
1 + t/T1 for t ∈ [−T1, 0]

⎫⎪⎪⎬⎪⎪⎭
∈ [0, 1] , (B.24)

the modi�ed fringe pattern can be expressed in a uni�ed form,

w̃3 (x) ≈ ∫ dq R̃ (q)w3 (x −
qT2
m

ϑ) . (B.25)

Inserting the Fourier expansion (B.18) of the unmodi�ed fringe pattern in the resonance approxi-
mation, w3 (x) = ∑ℓWℓ exp (2πiℓx/d3), we �nd that each of its Fourier components is modulated
by a reduction factor,

w̃3 (x) = ∑
ℓ
R(hℓT2ϑ

md3
)Wℓ exp(

2πiℓx
d3

) , (B.26)

with d3 the fringe period (B.19).
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Appendix C.

Classicalization and Macroscopicity

C.1. Decay of persistent current superpositions

�e coherence decay rates (4.141) and (4.142) of current superposition states in superconducting
loops, as de�ned in Section 4.2.4, become numerically accessible in the continuum approximation
(4.72), where the sums over discrete wave vectors are replaced by integrals. We arrive at the expres-
sions

Γdeph =
4V 2

(2π)6 τ ∫ d3s ∫
(2πħ)3/V

d3q g (s, q) (1 − e i∆k⋅s) ∣ ∫ d3k v2ke ik⋅s∣
2
, (C.1)

Γdi� =
2V

(2π)3 τ ∫ d3s ∫
∣k1−k2 ∣≥2π/V 1/3

d3k1d3k2 g (s, ħ ∣k1 − k2∣)uk1vk2

× (uk1vk2 + uk2vk1 e
i(k1+k2)⋅s) . (C.2)

It is assumed that the superconductor volumeV is su�ciently large to extend the s-integration to in-
�nity, and that both the distribution function g and the occupation amplitude vk = vk are isotropic.
Recall that the latter takes the complicated form (4.128) only within a small shell k ∈ [k−, k+]
around the Fermi surface k = kF which is determined by the phononic Debye cuto� frequency,
k± =

√
k2F ± 2meωD/ħ. �e occupation amplitude outside the shell is given by the simple Fermi

expression vk = Θ (kF − k) = v2k . With this we are able to compute the term

∫ d3k v2ke ik⋅s = ∫k≤kF d3k e ik⋅s + ∫k∈[k− ,k+] d3k [v2k −Θ (kF − k)] e ik⋅s

= 4πk
2
F

s
j1 (kF s) + 4π ∫ k+

k−
dk k

s
sin (ks) [v2k −Θ (kF − k)]

= 4πk
2
F

s
j1 (kF s) − 4π ∫ k+

k−
dk k

s
sin (ks)

⎡⎢⎢⎢⎢⎢⎣

k2 − k2F
2
√

(k2 − k2F)
2 + k4∆

− sgn (k − kF)
2

⎤⎥⎥⎥⎥⎥⎦

= 4πk
2
F

s
j1 (kF s) −

π
s ∫

k2D

−k2D
dξ sin(

√
ξ + k2F s)

⎡⎢⎢⎢⎣
ξ√

ξ2 + k4∆
− sgn (ξ)

⎤⎥⎥⎥⎦
, (C.3)

where j1 denotes a spherical Bessel function [113], kD =
√
2meωD/ħ and k∆ =

√
2me∆/ħ. In the

last step the integrand k is substituted by ξ = k2−k2F . A�er expanding sin (
√

ξ + k2F s) ≈ sin (kF s)+
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ξs cos (kF s) /2kF we obtain the fully analytical expression

∫ d3k v2ke ik⋅s ≈ 4πk3F
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 (kF s)
kF s

+ k4D
4k4F

cos (kF s)
⎡⎢⎢⎢⎢⎣
1 −

¿
ÁÁÀ1 +

k4∆
k4D

− k2∆
k2D
ln

⎛
⎝
k2D +

√
k4D + k4∆
k2∆

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(C.4)
�is approximation builds upon the fact that typical Debye energies ħωD are roughly two orders of
magnitude smaller than typical Fermi energies EF = ħ2k2F/2me . We infer from the expression that
we can also safely neglect the Cooper pairing term since k4D ≪ k4F . �is yields

Γdeph ≈
36πN2

k2Fτ ∫ ∞

0
ds j21 (kF s) [1 − sinc (∆ks)] ∫

(2πħ)3/V
d3q g (s, q) ,

≈ 6π
τ

(N ∆k
kF

)
2

∫ ∞

0
ds ∫

(2πħ)3/V
d3q s2 j21 (kF s) g (s, q) , (C.5)

where the total number N = 2Ns of electrons in the superconductor enters through the relation
k3F = 3π2N/V . In the second line I assume that the distribution g (s, ⋅) covers only microscopic
positions, ∣s∣ ≪ 1/∆k, and that the displacement of the Fermi spheres is small compared to their
extension, ∆k ≪ kF , which is typically the case. In this limit the dephasing term is quadratically
enhanced by the number of electrons found in the non-overlapping volume of the two displaced
Fermi spheres, Γdeph ∝ (N∆k/kF)2. �e result can be used to compute realistic values for the
dephasing term Γdeph.
�e di�usion part (C.2) can be divided into two parts, Γdi� = 2V (I1 + I2) / (2π)3 τ. �e domi-

nant �rst part represents the contribution of the integrals outside the pairing shell [k−, k+],

I1 = ∫k1≥k+ d
3k1 ∫k2≤k− d3k2 ∫ d3s g (s, ħ ∣k1 − k2∣) . (C.6)

�e smaller second part I2 contains the rest of the integral with k1, k2 ∈ [k−, k+] (assuming that
the shell contains more than one elementary unit qV = 2πħ/V 1/3 of momentum). An estimated
upper bound can be obtained in the limit of a broad distribution function g (⋅, q), I1 ≲ 4πk3−/3. If
we neglect all corrections due to Cooper pairing, I2 ≈ 0 and k− ≈ k+ ≈ kF , we arrive at Γdi� ≲ N/τ.
We are now able to evaluate the decay rates in order to estimate the macroscopicity of concrete

experiments, as done in Section (4.3.2.4). For this I set τ = τe , and I use the Gaussian reference
distribution g (s, q) = ge (s, q)with thewidth parameters σs, σq. A�er a few steps of integration [63]
we �nd that the approximated dephasing part (C.5) becomes

Γdeph =
3
4τe

(N ∆k
kF

)
2
[erf( qV√

2σq
) −

√
2qV√
πσq

exp(− q2V
2σ2q

)]

×
(kFσs)2 − 1 + [(kFσs)2 + 1] exp (−2k2Fσ2s )

(kFσs)4
. (C.7)
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An analytical, but rather cumbersome, expression can also be given for the dominant contribution
I1 to the di�usion part,

I1 =
2π
3

{k3− − (k3+ + k3−) erf [
ħ (k+ + k−)√

2σq
] + (k3+ − k3−) erf [

ħ (k+ − k−)√
2σq

]}

+
√
2
π
2πσq
3ħ

exp [−ħ
2 (k+ + k−)2

2σ2q
]
⎛
⎝
k+k− − k2+ − k2− +

σ2q
ħ2

⎞
⎠

+
√
2
π
2πσq
3ħ

exp [−ħ
2 (k+ − k−)2

2σ2q
]
⎛
⎝
k+k− + k2+ + k2− −

σ2q
ħ2

⎞
⎠
. (C.8)

�e remaining part I2 must be evaluated by means of numerical quadrature methods,

I2 = ∫K d3k1d3k2 exp(−
ħ2 ∣k1 − k2∣2

2σ2q
)uk1vk2 [uk1vk2 + vk1uk2 exp(−

σ2s ∣k1 + k2∣2

2
)] , (C.9)

where the integration volume K contains all k1,2 in the Debye shell, k− ≤ k1,2 ≤ k+, that ful�ll
ħ ∣k1 − k2∣ ≥ qV .

C.2. Geometry factors of spheres, cuboids and cylinders

�e classicalization of the center-of-mass degree of freedom of rigid compound objects with mass
M generally depends on their geometrical shape and consistence, as studied in Section 4.1.5. �e
e�ective classicalization times τe� andphase-space distributions ge� must be used in caseswhere the
spatial extension of the center-of-mass state is smaller than (or comparable to) the object size; they
di�er from the point-particle expressions τ = (me/M)2 τe and g (s, q) = (M/me)3 ge (Ms/me , q)
as a function of the particle size and themomentumwidth σq of the Gaussian reference distribution
ge , de�ned in (4.143).
Here the e�ective parameters are listed for the center-of-mass classicalization of elementary bod-

ies: homogeneous spheres, cuboids and cylinders. �eir functional dependence is determined by
two factors: �e Fourier transform (4.86) of the homogeneous mass density ρ (r) of the body, and
the e�ective mass expression (4.85). �e latter describes the reduction of the e�ective rate 1/τe�
with respect to the point-particle value, which will be denoted in the following by the geometry
factors

γ = τ
τe�

= (me�
M

)
2
= ∫ d3q exp (−q

2/2σ2q)

(2πσ2q)
3/2 ∣ ρ̃ (q)

M
∣
2

. (C.10)

C.2.1. Homogeneous spheres

Homogeneous spheres of massM and radius R are described by the isotropic mass density ρ (r) =
3MΘ (R − r) /4πR3. Its Fourier transform reads as

ρ̃ (q) = 3Mħ3

q3R3
[sin(qR

ħ
) − qR

ħ
cos(qR

ħ
)] = 3Mħ

qR
j1 (

qR
ħ

) , (C.11)
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with j1 a spherical Bessel function [113]. Several steps of integration yield the explicit form of the
spherical geometry factor,

γs (ξ) = 3
2ξ6

[1 − 3ξ2 + (1 − ξ2) exp (−2ξ2) +
√
2πξ3erf (

√
2ξ)] , (C.12)

as well as the resulting e�ective parameters,

1
τe�

= ( M
me

)
2

γs (
σqR
ħ

) 1
τe
,

ge� (s, q) = ( M
2πmeσsσq

)
3

γ−1s (
σqR
ħ

) exp(− M2s2

2m2eσ2s
− q2

2σ2q
)[ 3ħ

qR
j1 (

qR
ħ

)]
2

. (C.13)

One can easily verify the point-particle limit γs (ξ → 0) = 1. �e characteristic momentum width
of the e�ective phase-space distribution is either governed by the σq-parameter, or by the inverse
sphere size ∼ ħ/R, depending on what quantity is smaller.
�is leads to the Fourier transform of the e�ective phase-space distribution,

g̃e� (r, p) = exp(−
m2eσ2s p2

2M2ħ2
) γ−1s (

σqR
ħ

) ∫ ∞

0

√
2dq√
πσq

exp(− q2

2σ2q
) sinc(qr

ħ
)[ 3ħ

σqR
j1 (

qR
ħ

)]
2

.

(C.14)
which is necessary to compute the classicalized time evolution of the sphere.
�e σs-term is safely negligible in the limit of macroscopic masses M ≫ me . Moreover, we may

expand the sinc-function in the integrand, sinc (x) ≈ 1 − x2/6, in the di�usive regime where path
separations are small, ∣r∣ ≪ R, ħ/σq. �e integration can then be carried out, yielding

g̃e� (r, p) ≈ g̃e� (r) = 1 −
3r2

4R2
e−2(σqR/ħ)

2
[1 + (σqR/ħ)

2] + (σqR/ħ)
2 − 1

(σqR/ħ)
4 γs (σqR/ħ)

. (C.15)

C.2.2. Homogeneous cuboids

A cuboid of constant mass density and side lengths bx ,y,z corresponds to

ρ (r) = M
bxbybz

Θ (bx
2
− ∣x∣)Θ(

by
2
− ∣y∣)Θ (bz

2
− ∣z∣) ,

ρ̃ (q) = Msinc(qxbx
2ħ

) sinc(
qyby
2ħ

) sinc(qzbz
2ħ

) . (C.16)

�e resulting geometry factor is written, accordingly, as a product of three cartesian components,

γ1 (ξ) = 2
ξ2

[exp(− ξ2

2
) − 1 +

√π
2

ξerf( ξ√
2
)] ,

1
τe�

= ( M
me

)
2

γ1 (
σqbx
ħ

) γ1 (
σqby
ħ

) γ1 (
σqbz
ħ

) 1
τe
. (C.17)
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If we restrict our considerations to the one-dimensional motion of the cuboid along, say, the x-axis,
we are le� with the e�ective distribution function

g1D (s, q) = M
2πmeσsσq

γ−11 (
σqbx
ħ

) exp(− M2s2

2m2eσ2s
− q2

2σ2q
) sinc2 (qbx

2ħ
) (C.18)

Once again we can omit the s-distribution for the large masses M that are usually considered,
g1D (s, q) ≈ g1D (q) δ (s). �e momentum width is given by the smaller quantity among the refer-
ence width σq and the inverse dimension ħ/bx of the cuboid.
�e di�usion approximation of the Fourier transform g̃1D (x) = ∫ dq g1D (q) exp (−iqx/ħ) in

the limit of small arguments ∣x∣ ≪ ħ/σq , bx is obtained by expanding the integrand up to second
order,

g̃1D (x) ≈ 1 − 2γ−11 (
σqbx
ħ

) x2

b2x ∫
dq√
2πσq

e−q
2/2σ 2q sin2 (qbx

2ħ
) = 1 − x2

b2x

1 − exp (−σ2qb2x/2ħ2)
γ1 (σqbx/ħ)

.

(C.19)

C.2.3. Homogeneous cylinders

A homogeneous cylinder of height b and radius R is best described in cylindrical coordinates r =
(r�, ϕ, z),

ρ (r) = M
πR2b

Θ (b
2
− ∣z∣)Θ (R − r�) , ρ̃ (q) = 2Mħ

q�R
J1 (

q�R
ħ

) sinc(qzb
2ħ

) . (C.20)

�e Bessel function J1 is obtained using standard integral formulae from [63]. �e resulting geom-
etry factor splits into a cartesian factor γ1 and the circular part

γ� = ∫ d2q� exp (−q
2
�/2σ2q)

2πσ2q
[
2σq
ξq�

J1 (
ξq�
σq

)]
2

= 2
ξ2
−
2 exp (−ξ2)

ξ2
[I0 (ξ2) + I1 (ξ2)] , (C.21)

which follows once again from nontrivial integral formulae [63]. �is results in the e�ective time
parameter

1
τe�

= ( M
me

)
2

γ1 (
σqb
ħ

) γ� (
σqR
ħ

) 1
τe
. (C.22)

�e one-dimensional distribution function of the cuboid, Equations (C.18) and (C.19), can be ap-
plied also here (a�er replacing the term bx by b) if we are only interested in the classicalizedmotion
of the cylinder along its z-axis.

C.3. Superpositions of harmonic oscillator states

Here the dynamical in�uence of the classicalizingmodi�cation on twodi�erent superposition states
in harmonically oscillating mechanical systems is evaluated in one dimension. See Section 4.2.2.4
for the explicit form of the modi�ed time evolution of harmonic systems, given the e�ective time
parameter and the one-dimensional phase-space distribution.
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C.3.1. Superposition of the oscillatory ground and excited state

Suppose that a harmonic oscillator (H = ħωa
†
a) of mass M is initially brought into the balanced

superposition of ground and �rst excited state, ∣ψ0⟩ = (∣0⟩ + ∣1⟩) /
√
2. In the ideal unmodi�ed

case the coherence between both states would be maintained, that is, the magnitude of the nondi-
agonal matrix element ⟨1∣ρt ∣0⟩ would remain constant over time. �is changes in the presence of
classicalization, which heats up the system and thus depletes the low-energy state occupation and
coherence.
�e matrix element can be expressed in terms of the characteristic function with help of the

spatial representation of the energy eigenstates [164]

ψn (x) = ⟨x∣n⟩ = 1√
2nn!

(Mω
πħ

)
1/4

Hn
⎛
⎝

√
Mω
ħ

x
⎞
⎠
e−Mωx2/2ħ , (C.23)

where the two lowest order Hermite polynomials read as H0 (x) = 1 and H1 (x) = 2x. A straight-
forward calculation yields

⟨1∣ρt ∣0⟩ = ∫ dx1dx2 ψ∗1 (x1)ψ0 (x2) ⟨x1∣ρt ∣x2⟩

= ∫ dxdx0dpψ∗1 (x0)ψ0 (x + x0) χt (x , p) exp [−
i
ħ
p (x0 +

x
2
)]

= −
√

Mω
2ħ ∫ dxdp2πħ

(x + i p
Mω

) exp [−E (x , p)
2ħω

] χt (x , p) , (C.24)

with the energy function E (x , p) = (p2 +M2ω2x2) /2M. �emodi�ed time evolution of the char-
acteristic function is given by Equation (4.116),

χt (x , p) = Rt (x , p) χ0 (x cosωt − p
Mω

sinωt, p cosωt +Mωx sinωt) ,

Rt (x , p) = exp [ ∫ t

0

dt′

τe�
g̃1D (x cosωt′ − p

Mω
sinωt′, p cosωt′ +Mωx sinωt′) − t

τe�
] , (C.25)

and it remains to specify the characteristic function of the initial state. For this we note that the char-
acteristic function can also be understood as the quantum expectation value of the displacement
operator D (α) = exp (αa

†
− α∗a), with α =

√
Mω/2ħ (x + ip/Mω). �e energy state representa-

tion of the displacement operator is given by [242]

⟨m∣D (α) ∣n⟩ =
√

n!
m!

αm−ne−∣α∣
2
/2

n
∑
k=0

(−)k (n +m
n − k

)∣α∣
2k

k!
(C.26)

which yields

χ0 (x , p) = tr
⎛
⎝

D
⎡⎢⎢⎢⎢⎣

√
Mω
2ħ

(x + i p
Mω

)
⎤⎥⎥⎥⎥⎦

ρ0
⎞
⎠
= e−E(x ,p)/2ħω [1 − E (x , p)

2ħω
+ i p√

2ħMω
] . (C.27)
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Switching into dimensionless integration variables we �nally arrive at

⟨1∣ρt ∣0⟩ = ∫ dQdPπ
(Q + iP) e−Q2−P2Rt

⎛
⎝

√
2ħ
Mω

Q ,
√
2ħMωP

⎞
⎠

× (Q
2 + P2

2
− 1 − iP cosωt − iQ sinωt) . (C.28)

�e expression simpli�es considerably in the macroscopic di�usion limit of large massesM ≫ me
and small ground state oscillation amplitudes,

√
Mω/2ħ ≪ 1Å, which admits the approximation

g̃1D (x , p) ≈ g̃1D (x) ≈ 1−Ax2. Explicit values for the term A are given in Appendix C.2 for oscillat-
ing spheres, cuboids and cylinders. If we consider only full oscillation cycles, t = 2πn/ω, we obtain
the simpli�ed reduction factor

R2πn/ω (x , p) ≈ exp [−2πnA
ωτe�

(x
2

2
+ p2

2M2ω2
)] = exp(− At

τe�
E (x , p)
Mω2

) . (C.29)

It is an even function in both x and p. So the odd terms in the integral (C.28) cancel,

⟨1∣ρ2πn/ω∣0⟩ = ∫ dQdPπ
P2 exp [−(Q2 + P2)(1 + 2πħAn

Mω2τe�
)] = 1

2
(1 + 2πħAn

Mω2τe�
)
−2
. (C.30)

C.3.2. Coherent state superposition by photon entanglement

Reference [170] describes a method to entangle an oscillating cubic mirror of mass M with a sin-
gle photon and thereby test the quantum coherence between its oscillatory ground state ∣0⟩ and
a displaced coherent state ∣α (t)⟩ driven by the interaction with the photon. �is is achieved by
placing the oscillator as a cavity mirror in one arm of a Michelson interferometer and coupling
in a single photon. A beam splitter brings the latter into a superposition of being either in arm A
or B, which coherently displaces the mirror in arm A and results in the entangled state ∣ψ (t)⟩ =
cA∣A⟩∣α (t)⟩ + cB∣B⟩∣0⟩.
Both arms are brought to interference when the outgoing photon hits the beam splitter once

again a�er a time t and is detected in one of the output ports. �e visibility depends on the degree
of photon-mirror entanglement, and it is therefore also sensitive to the amount of coherence that
could be lost in the mirror system.
�e vibrating mirror shall be modeled as a single harmonic oscillator with frequency ω and free

Hamiltonian H0 = ħωa
†
a = (p2 +M2ω2x2) /2M, which is initially cooled to its ground state

∣0⟩. If the photon enters the corresponding cavity in arm A, the radiation pressure term H1 =
−ħg (a + a

†
) = −

√
2ħMωgx is added to H0, which drives the the mirror into a displaced state with

amplitude α (t) = (g/ω) [1 − exp (−iωt)]. We �nd that at each full oscillation cycle, tn = 2πn/ω,
the displacement vanishes and the photon disentangles from the mirror. Any reduction of interfer-
ence visibility at this point must be due to coherence loss in the mirror.
Following the theoretical treatment in [243] the visibility can be given in terms of the o�-diagonal

matrix element of the reduced photon state, V (t) = ∣⟨A∣tr (ρ) ∣B⟩∣ = ∣tr (ρAB)∣. �e term ρ denotes
the combined state of photon and mirror system, whereas ρAB = ⟨A∣ρ∣B⟩ represents a quasi-state
operator on the mirror system. �e latter evolves according to the non-hermitian equation

∂tρAB (t) = −iω [a
†
a, ρAB (t)] + ig

√
2Mω
ħ

xρAB (t) + L1 [ρAB (t)] , (C.31)
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in the presence of the classicalizing modi�cation L1. �e initial value is given by the ground state,
ρAB (0) = ∣0⟩⟨0∣. �e solution to this di�erential equation will be developed in the following.
First the free harmonic evolution must be separated from the other terms by switching to the

interaction frame with respect toH0. �e transformed state ρ(I)
AB = exp (iH0t/ħ) ρAB exp (−iH0t/ħ)

ful�lls

∂tρ(I)
AB (t) = ig

√
2Mω
ħ

xt (x,p) ρ(I)
AB (t) + L(I)

1 [ρ(I)
AB (t)] , (C.32)

with the same initial condition. �e harmonic trajectories are abbreviated by

xt (x , p) = x cosωt + p
Mω

sinωt, pt (x , p) = p cosωt −Mωx sinωt. (C.33)

Noting that the one-dimensional Weyl operators (4.9) transform as

exp( i
ħ

H0t)W1 (s,
q
M

) exp(− i
ħ

H0t) = W1 (x−t (s, q) ,
1
M

p−t (s, q)) , (C.34)

the classicalizingmodi�cationL(I)
1 in the interaction frame is obtained bymapping the phase-space

distribution function g1D (s, q) to the time-dependent expression g(I)1D (s, q; t) =
g1D (xt (s, q) , pt (s, q)).
�e non-hermitian term in the time evolution can be eliminated by introducing the unitary op-

erator

Vt = e ig
2(ωt−sinωt)/ω2 exp

⎡⎢⎢⎢⎢⎣
−ig

√
2Mω
ħ ∫ t

0
dt′ xt′ (x,p)

⎤⎥⎥⎥⎥⎦

= e ig
2(ωt−sinωt)/ω2 exp

⎧⎪⎪⎨⎪⎪⎩
i g
ω

√
2Mω
ħ

[ p
Mω

(cosωt − 1) − x sinωt]
⎫⎪⎪⎬⎪⎪⎭

= e ig
2(ωt−sinωt)/ω2W1

⎛
⎝
g
ω

√
2ħ
Mω

(cosωt − 1) , g
ω

√
2ħω
M
sinωt

⎞
⎠
, (C.35)

the time derivative of which yields ∂tVt = −ig
√
2Mω/ħxt (x,p)Vt . Note that the phase factor in

Vt accounts for the fact that the time derivative of the operator-valued exponent does not commute
with the exponent itself. Hence, another transformation of the state operator, ρ(V)

AB ∶= Vtρ(I)
AB , cancels

the non-hermitian term and yields the simpli�ed equation

∂tρ(V)

AB (t) = L(V)

1 [ρ(V)

AB (t)] = VtL(I)
1 [V

†
t ρ(V)

AB (t)] , (C.36)

with the initial value ρ(V)

AB (0) = ∣0⟩⟨0∣. �e commutation rule for the Weyl operators (4.13) gives

VtW1 (s,
q
M

)V
†
t = W1 (s,

q
M

) exp
⎧⎪⎪⎨⎪⎪⎩
i g
ω

√
2Mω
ħ

[s sinωt − q
Mω

(cosωt − 1)]
⎫⎪⎪⎬⎪⎪⎭

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Ct(s,q)

. (C.37)
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So the classicalizing modi�cation in the (V)-picture is obtained by replacing the original distribu-
tion function with

g(V)

1D (s, q; t) = g1D (xt (s, q) , pt (s, q))Ct (s, q) . (C.38)

�is renders the di�erential equation (C.36) formally equivalent to the modi�ed time evolution
of a single particle in the interaction picture, as studied in Section 4.2.2. It can be solved in the
characteristic function representation of ρ(V)

AB (t),

χ(V)

t (x , p) = tr(ρ(V)

AB (t)W
†
1 (x ,

p
M

)) = exp [ ∫ t

0

dt′

τe�
g(V)

1D (x , p; t′) − t
τe�

] χ(V)

0 (x , p) , (C.39)

with the initial value

χ(V)

0 (x , p) = ⟨0∣W
†
1 (x ,

p
M

) ∣0⟩ (C.27)= ⟨0∣D
⎡⎢⎢⎢⎢⎣

√
Mω
2ħ

(x + i p
Mω

)
⎤⎥⎥⎥⎥⎦
∣0⟩

(C.26)= exp(−Mω
4ħ

∣x + i p
Mω

∣
2
) , (C.40)

and the time-dependent function

g(V)

1D (x , p; t) = ∫ dsdq g1D (xt (s, q) , pt (s, q))Ct (s, q) e i(qx−ps)/ħ

= ∫ dsdq g1D (s, q) exp{i p−t (s, q) x − px−t (s, q)
ħ

}

× exp
⎧⎪⎪⎨⎪⎪⎩
i g
ω

√
2Mω
ħ

[x−t (s, q) sinωt − p−t (s, q)
Mω

(cosωt − 1)]
⎫⎪⎪⎬⎪⎪⎭

= g̃1D (xg (1 − cosωt) − xt (x , p) , pt (x , p) −Mωxg sinωt) . (C.41)

Here, I have introduced the mean position displacement xg = (g/ω)
√
2ħ/Mω. All this eventually

leads to the �nal form of the visibility

V (t) = ∣tr (ρ(I)
AB (t))∣ = ∣tr (V

†
t ρ(V)

AB (t))∣ = χ(V)

t (xg (cosωt − 1) ,Mωxg sinωt)

= exp [ g
2 (cosωt − 1)

ω2
− t

τe�
+ ∫ t

0

dt′

τe�
g(V)

1D (xg (cosωt − 1) ,Mωxg sinωt; t′)]

= exp{ g2 (cosωt − 1)
ω2

+ ∫ t

0

dt′

τe�
[g̃1D (xg (1 − cosωt′) ,Mωxg sinωt′) − 1]} . (C.42)

�e argument of g̃1D represents the path di�erence in phase space between the ground state and
the dynamically displaced state of the mirror. �e large mass ofM ∼ 1018me and the subatomic dis-
placement xg ∼ 10−13m proposed in [170] admit the di�usive approximation g̃1D (x , p) ≈ g̃1D (x) ≈
1 − Ax2,

V (t) ≈ exp{ g2

ω2
[cosωt − 1 − ħA

Mωτe�
(3t − 4

ω
sinωt + 1

2ω
sin 2ωt)]} . (C.43)

Any reduction of the visibility at full oscillation cycles tn = 2πn/ω can then be attributed to the
classicalization e�ect, V (tn) = exp (−3πnAx2g/ωτe�).
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