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Beginnend möchte ich Prof. Christoph Dellago, meinem Doktorvater, danken. Beson-
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namentlich erwähnen, die maßgeblich zur fachlichen Durchführung dieser Doktor-
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Entwicklung und Anwendung von Compu-

tersimulationsmethoden um das Phasenübergangsverhalten von komplexen Substan-

zen wie etwa Wasser zu untersuchen. Wir präsentieren eine Methode, mittels derer

spezielle Bereiche im Phasenraum abgesucht und auf chaotisches Verhalten unter-

sucht werden können. Insbesonders Sattelpunkte in der Landschaft der freien Ener-

gie können mittels dieser Methode gefunden werden. Solche Sattelpunkte spielen bei

Nukleationsprozessen, wie sie bei Phasenübergängen erster Ordnung auftreten, eine

wichtige Rolle. Die sorgfältige Definition eines Ordnungsparameters, welcher den ge-

samten Nukleationsprozess beschreibt, ist ein wesentlicher Bestandteil der Studie, da

eine Methode benötigt wird, um die beteiligten Strukturen eindeutig zu unterschei-

den. Wir stellen in dieser Arbeit eine neue Methode vor, die es ermöglicht, mittels

künstlicher neuronaler Netzwerke diverse Phasen einer Substanz zu unterscheiden.

Dabei wird die Zugehörigkeit eines Einzelteilchens zu einer gewissen Struktur nur

über dessen lokale Umgebung bestimmt. Aufgrund dieser Zuweisung ist es dann

möglich Ordnungsparameter zu definieren, um damit Phasenübergänge zu studie-

ren. Weiters demonstrieren wir die Effizienz unserer Strukturerkennungsmethode

an der Unterscheidung zwischen flüssigen, sowie diversen Nieder- und Hochdruck-

eisphasen. Den zweiten Teil der vorliegenden Arbeit bildet eine Studie über das

Phasenverhalten von Wasser. Wir zeigen dabei Infrarotspektren von kubischem Eis

und prognostizieren basierend auf experimentellen Daten die Eigenschaften einer

möglichen neuen kubischen Eisphase. Weiters zeigen wir Simulationsergebnisse für

die Nukleation von hexagonalem Eis in unterkühltem flüssigen Wasser. Bei einem

Unterkühlungsgrad von 13% besteht der kritische Nukleus aus ungerfähr 300 Mo-

lekülen, wobei die Höhe der freien Energiebarriere 34 kBT beträgt.
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Abstract

This thesis focuses on the development of methods to study phase transitions of

complex substances. In particular, we present a method to generate very atypical

trajectories by biasing the sampling toward a certain degree of chaoticity. Such

trajectories can exhibit the chaotic properties which characterize transition pathways

in first order phase transitions. To track the progress of a transition during the

nucleation process an order parameter only depending on the local environment

of a single particle is needed. We develop a method which exploits the pattern

recognition capabilities of artificial neural networks to differentiate a wide array of

possible structures. In particular, we apply this structure detection method on the

distinction of liquid water and several low and high pressure ice phases. The second

part of this work covers the study of properties of liquid water and ice, for instance

the prediction of a new ice phase by means of infrared spectroscopy. This prediction

is based on experimental, as well as computational results. Furthermore, results of

the study of the nucleation of undercooled liquid water into hexagonal ice using the

aforementioned technique are presented. Here, for a degree of undercooling of 13%

the critical nucleus consists of 300 molecules and the height of the barrier is roughly

34 kBT .
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Preface

The majority of results presented in this thesis have also been published in or sub-

mitted to peer-reviewed journals. In particular, these are:

1. The main part of Chapter 1 is published under the title ”Identifying rare

chaotic and regular trajectories in dynamical systems with Lyapunov weighted

path sampling” in Chemical Physics, 375, 309–315 (2010).

2. An article with the title ”Neural networks for local structure detection in poly-

morphic systems” including Chapters 2 and 4 has been submitted to Journal

of Chemical Physics.

3. Chapter 3 has been submitted to Physical Review B as an article with the title

”Proton ordering of cubic ice Ic: spectroscopy and computer simulations”.
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Introduction

This thesis focuses on two major fields of study mainly examined by computational

methods in chemical physics. In particular, these are the study of solid water phases

and the transition process a system undergoes when it transforms from one phase

to another. This thesis is divided into two parts, the first one describing two novel

methods to study phase transitions and the second containing the applications of

these methods and the simulation of ice in general.

The first technique described here is the Lyapunov weighted path ensemble which

can be used to sample trajectories with atypical chaotic properties. The idea is

to generate a weighted ensemble of trajectories such that a pre-adjusted degree of

chaoticity is achieved. In the language of chaos theory, a phase transition takes

place when the system crosses saddle points in phase space. Such saddle points are

characterized by their ability to ’produce’ chaos. Thus, when favoring trajectories

with high chaoticity the system can be dragged through phase space to produce

reactive trajectories, which connect two thermodynamic states of the system. This

feature can be utilized to study phase transitions where the two states are separated

by high barriers in the free energy landscape. A supercooled liquid for example, stays

in its meta-stable state for long times before a so-called rare event takes place, which

lets the system cross the free energy barrier to the thermodynamically stable solid

phase. Usually, this barrier is high enough to prevent the system from overcoming

the barrier for very long times. This motivates our approach to speed up the system’s

dynamics by sampling only reactive trajectories.

Another approach introduced in this thesis is a newly-developed method to assign

the particles within a simulation box to certain phases. For example, when nucle-

ation processes are studied, crucial insights can be gained from the properties of the

critical nucleus. Here, a cluster of particles of the more stable phase is embedded by

surrounding particles in the initial meta-stable phase. To track the growth of the

nucleus a quantity is needed which classifies the clustered particles and distinguish

them in a unique way. Such local bond order parameters are designed to be sensi-
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Introduction

tive to specific symmetries by using geometrical information of neighboring particles.

While many methods exist to provide bond order parameters, a general procedure

is missing and in principle each molecular substance needs a custom approach. In

particular, for the high pressure phases of ice conventional methods to detect those

structures fail. To overcome this problem we have developed a very unconventional

but powerful method, where we treat this detection problem as a pattern recognition

problem for artificial neural networks. This approach, referred to in the following

as the neural network structure detection method, provides a generalized way to

identify structures based on local spatial information, thus providing a quantity to

describe phase transitions where structural symmetry changes are involved.

The applications part covers a few general properties of liquid water and ice,

for instance a detailed study of proton ordering of cubic (Ic) and hexagonal (Ih)

ice and a study of the nucleation of liquid water into low-density ice Ih. The last

chapter of the applications part covers technical aspects of the computer simulation

of water, in particular the proper treatment of the Coulombic interactions. This

thesis is closed by a comprehensive appendix containing mathematical derivations

and methods used to obtain the results presented here.
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Part I.

Novel methods
In the last decades, the study of physical phenomena using computer simulation

has been established as its own discipline somewhere between experimental and

theoretical physics. In the center of this discipline is the development and the

application of numerical methods.

In this part we introduce two newly-developed techniques mainly used to study

the transition mechanism of nucleation processes. The first method, which uses

principles of chaos theory can be used to search for reactive pathways connecting two

thermodynamically stable states. The second method uses artificial neural networks

to recognize structures only from local spatial information and differentiate between

different polymorphs of a given substance.
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Chapter 1.

Creating reactive pathways with

Lyapunov weighted path sampling

Depending on initial conditions, individual finite time trajectories of dynamical sys-

tems can have very different chaotic properties. Here we present a numerical method

to identify trajectories with atypical chaoticity, pathways that are either more reg-

ular or more chaotic than average. The method is based on the definition of an en-

semble of trajectories weighted according to their chaoticity, the Lyapunov weighted

path ensemble. This ensemble of trajectories is sampled using algorithms borrowed

from transition path sampling, a method originally developed to study rare tran-

sitions between long-lived states. We demonstrate our approach by applying it to

several systems with numbers of degrees of freedom ranging from one to several hun-

dred and in all cases the algorithm found rare pathways with atypical chaoticity. For

a double-well dimer embedded in a solvent, which can be viewed as simple model for

an isomerizing molecule, rare reactive pathways were found for parameters strongly

favoring chaotic dynamics.∗

∗ The main part of this chapter is published in Chemical Physics, 375, 309-315 (2010) under the

title ”Identifying rare chaotic and regular trajectories in dynamical systems with Lyapunov

weighted path sampling”.
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Chapter 1. Creating reactive pathways with Lyapunov weighted path sampling

1.1. Motivation

The phase space of dynamical systems often exhibit regions with qualitatively very

different dynamics. In the Henon-Heiles model or similar low-dimensional Hamil-

tonian systems, for instance, islands of stability are embedded in a chaotic sea [1].

Other examples for this kind of behavior include the Fermi-Pasta-Ulam chain, in

which special initial conditions lead to physically very different soliton and ”chaotic

breather” solutions, and gravitational many-body systems in celestial mechanics,

which, for appropriate initial conditions, produce orbits that are stable for very long

times [2]. Although such particularly regular (or irregular) trajectories may be very

rare, they may be responsible for important physical phenomena as is the case for

chemical reactions, where trajectories passing through unstable saddle points regions

carry the system from one chemical species to another [3, 4].

Identifying and describing such trajectories is therefore of great interest. Recently,

Tailleur and Kurchan [5] presented a powerful new method, the Lyapunov weighted

dynamics (LWD), which is applicable to a broad range of high-dimensional problems.

In this evolutionary approach, a swarm of walkers progress according to the rules

of the underlying dynamics. The walkers proliferate or die depending on the degree

of chaos encountered by the system along a particular trajectory and, after many

generations, only walkers on trajectories with the desired stability properties survive.

Tailleur and Kurchan have demonstrated that their method is capable of finding even

very small stability regions in systems of many degrees of freedom.

Inspired by the work of Tailleur and Kurchan, we introduce here a general and

efficient algorithm for finding trajectories with atypical stability properties, which

is equally applicable to stochastic and deterministic dynamics. The central notion

of our approach lies in the definition of a Lyapunov weighted path ensemble, in

which the statistical weight of trajectories explicitly depends on a measure for the

chaoticity of the underlying dynamics. The degree with which particularly chaotic

trajectories are favored or disfavored depends on the value of a parameter that can

be viewed as conjugate to the measure of chaos, for instance the Lyapunov exponent

[1]. This ensemble of trajectories is then sampled using techniques borrowed from

transition path sampling (TPS), a method originally developed to study rare transi-

tions between long-lived stable states in complex molecular systems [6–9]. Note that

a related combination of transition path sampling with a Lyapunov weighted action

has been suggested before [10, 11]. By construction, the transition path sampling

6



1.2. Lyapunov instablity

procedure generates a Markov chain of trajectories distributed according to the cho-

sen bias function. Following the terminology of Tailleur and Kurchan [5], we call

this approach Lyapunov weighted path sampling. Similar techniques were recently

used by Chandler and collaborators to sample an ensemble of trajectories weighted

by an order parameter describing the mobility of particles in a system undergoing

the glass transition [12].

The remainder of this chapter is organized as follows. In Sec. 1.2 we briefly

introduce the concept of Lyapunov instability and discuss ways to probe chaotic

dynamics along individual trajectories. In Sec. 1.4 we define the Lyapunov weighted

path ensemble and in Sec. 1.5 we explain how it can be sampled with transition path

sampling algorithms. In Sec. 1.6 this approach is then applied to detect particularly

stable and unstable trajectories in various systems. Conclusions are provided in

Sec. 1.7.

1.2. Lyapunov instablity

Chaotic dynamical systems are characterized by a strong sensitivity to small changes

in the initial conditions. To quantify this concept, consider a dynamical system,

described by a set of N coupled first order ordinary differential equations,

ẋ = F(x), (1.1)

where x denotes a point in the N -dimensional phase space. The formal solution of

this differential equations reads

x(t) = φt
(
x0

)
, (1.2)

where the time evolution operator φt is called the propagator and given by

φt = eiLt, iL = F(x) · ∂
∂x
, (1.3)

with Liouville operator L. The time evolution of an infinitesimally small deviation

δx separating two close-by trajectories is then governed by the linearized equations

of motion

δẋ(t) = D(x)δx(t), (1.4)

where D(x) = ∂F/∂x is the Jacobi matrix of the system evaluated at x. Eq. (1.4)

has the formal solution

δx(t) =
∂

∂x0
φt
(
x0

)
δx0. (1.5)
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Chapter 1. Creating reactive pathways with Lyapunov weighted path sampling

In a chaotic system, two points in phase space, initially separated by δx(0) at time

t = 0, will lead to trajectories that, on average, separate exponentially in time,

|δx(t)| ≈ |δx(0)| exp(λt). Here, the vertical lines denote the Euclidean norm of a

vector. The coefficient λ, the long-time averaged growth rate of infinitesimally small

displacements defined as

λ = lim
t→∞

1

t
ln

|δx(t)|
|δx(0)| , (1.6)

is called the Lyapunov exponent of the system. A positive Lyapunov exponent

corresponds to exponential growth of an initially small perturbation and implies

information loss and strong sensitivity to initial conditions, the defining feature of

chaotic dynamics. (It is possible to define whole spectra of Lyapunov exponents

characterizing the growth rates of small perturbation in different directions of phase

space [13, 14]. In this article, however, we will consider only the largest Lyapunov

exponent defined in Eq. (1.6).)

Since Lyapunov exponents are defined as long-time averages, in an ergodic system

every initial condition will yield the same λ. For finite periods of time however,

trajectories can display very different chaotic properties. An example are trajectories

in “sticky regions” in the phase space of the standard map, in which trajectories

can spend a long time before escaping away into more chaotic regions [15, 16].

Other parts of phase space may be filled with regular periodic orbits that have a

vanishing Lyapunov exponents and are dynamically disconnected with the chaotic

surroundings. To describe such behavior of individual trajectories of finite length

it is convenient to consider so-called finite time Lyapunov exponents λf (x0, t) that

depend on the initial condition x0 and on the temporal trajectory length t,

λf (x0, t) =
1

t
ln

|δx(t)|
|δx(0)| . (1.7)

Such finite time Lyapunov exponents can be used to quantify the chaoticity of finite

length trajectories.

One difficulty occurring in the definition of the finite time Lyapunov exponent

of Eq. (1.7), however, is that λf also depends on the initial orientation of the dis-

placement vector δx(0). This vector reorients into the direction of fastest growth,

but, depending on the degree of chaos prevalent in the respective phase space re-

gion, this reorientation may take a time long with respect to the trajectory length

t. In fact, the time τr it takes to turn the displacement vector into the direction

of the fastest growth is inversely proportional to the difference of the two largest

8



1.2. Lyapunov instablity

Lyapunov exponents τr ∝ 1/(λ1 − λ2) [17]. Here, λ1 and λ2 are the largest and the

second largest Lyapunov exponent, respectively. This ambiguity in the definition of

the finite time Lyapunov exponent can be avoided by integrating the equations of

motion backwards for a time t− longer than τr starting from the initial condition

x0. If the equations of motion for the displacement vector δx are then integrated

forward starting from x−t− with an arbitrary orientation of the displacement vector

and following the reference trajectory, the displacement vector has oriented into the

direction of fastest growth when x0 is reached. Then, the displacement vector has a

well defined orientation at t = 0 and the definition of the finite time Lyapunov expo-

nent for the trajectory from x0 to xt is unique. Since the reorientation time τr may

be large, this procedure can require the computation of long additional trajectory

segments causing large computational costs.

An alternative way to quantify the chaoticity of individual finite length trajectories

consists in determining the Relative Lyapunov Indicator (RLI) [18, 19], originally

introduced to detect chaotic dynamics in planetary systems. This measure has been

proven particularly useful to distinguish regular from chaotic trajectories in systems

that are only weakly chaotic. The main idea of the RLI is to exploit the fact that

in the chaotic regions of phase space, finite time Lyapunov exponents vary discon-

tinuously as a function of the initial condition, i.e., adjacent points can have very

different local expansion rates [20, 21]. The RLI is defined as the magnitude of the

difference ∆λ(x0, t) between the finite time Lyapunov exponents of two trajectories

separated by a small but finite amount ∆x0,

∆λ(x0, t) = |λ(x0 +∆x0, t)− λ(x0, t)| . (1.8)

It has been shown that the RLI is insensitive both to the separation ∆x0 as well

as to the initial infinitesimal phase space displacement δx(0) used to calculate the

finite time Lyapunov exponents λ(x0, t). To reduce fluctuations, one can average

the RLI over time,

R(x0, t) = ∆λ(x0,∆t) =
1

t/∆t

t/∆t
∑

i=1

∆λ(x0, i∆t), (1.9)

where ∆t is the time step used for the numerical integration of the equations of

motion. In the following we will use this smoothed version of the RLI to characterize

the chaoticity of individual trajectories in various dynamical systems.

9



Chapter 1. Creating reactive pathways with Lyapunov weighted path sampling

1.3. Numerical determination of finite time Lyapunov

exponents

Due to the finite precision of computer floating point arithmetic Eq. (1.7) cannot be

used to calculate Lyapunov exponents. Since every deviation grows exponentially,

even the smallest possible number (|δx0| = 10−15 for double precision) would exceed

characteristic length scales within short times. To overcome this issue the Lyapunov

exponent can be defined as sum over local Lyapunov exponents

λf ({xn}, t) =
1

t

t/∆t
∑

n=1

λl(xn,xn−1,∆t), (1.10)

where {xn} is the vector of all visited phase space points and

λl(xn,xn−1,∆t) =
1

∆t
ln

|δxn|
|δxn−1|

. (1.11)

Since we are only interested in the stretching factor of the deviation vector δx

between two time steps, we can normalize δxn after each time step. Calculating the

finite time Lyapunov exponent incorporates the following steps:

(a) Choose an arbitrary point in phase space x0 and a randomly orientated unit

vector δx0 as initial values.

(b) Integrate the differential equations governing the time evolution of the system

(Eq. 1.1) for one time step ∆t.

(c) Integrate the linearized equations (Eq. 1.4).

(d) Determine the local Lyapunov exponent λl.

(e) Renormalize the deviation vector.

(f) Repeat steps (b) to (e) until desired trajectory length t is reached.

(g) Finally, calculate λf by summing over all local Lyapunov exponents λl.

A general way to determine the Jacobian for systems with only pairwise interactions

is given in Appendix A.

1.4. Lyapunov weighted trajectory ensemble

As outlined in the Introduction, the goal of the work presented in this chapter is

to identify trajectories that have particular stability properties. For instance, one

10



1.5. Sampling trajectories with TPS

might be interested in locating regions of phase space that are populated by regular

trajectories or in finding those pathways that are most chaotic. To do that, we start

by defining an ensemble of trajectories including an additional weight that favors

trajectories with the desired chaoticity properties. We assume that the dynamics

generate a stationary distribution ρ(x). Since we consider only deterministic systems

here, we represent trajectories of length t by their initial phase space point x0 and

define the Lyapunov weighted path ensemble (LWPE) as

ρL(x0, t) =
1

Q
ρ(x0)e

αtR(x0 ,t), (1.12)

where the factor Q =
∫
dx0ρ(x0)e

αtR(x0 ,t) normalizes the distribution. Here, the

parameter α, which can be viewed as conjugate to the chaoticity indicator R(x0, t),

controls how strongly the weight of initial condition x0 is changed according to the

chaoticity of the trajectory evolving out of x0. An analogous ensemble of trajectories

can be easily defined using finite time Lyapunov exponents if they can be calculated

accurately (simply replacing R(x0, t) with λf (x0, t) in the above equation). Large

positive values of α favor strongly chaotic trajectories with a large chaoticity in-

dicator. For negative α, on the other hand, weakly chaotic or regular trajectories

with a small chaoticity indicator are given a larger weight in the ensemble. Note

that a similar ensemble of trajectories can easily be constructed also for stochastic

dynamics and appropriately defined Lyapunov exponents.

1.5. Sampling trajectories with TPS

We sample the Lyapunov weighted path ensemble with a technique borrowed from

transition path sampling [6, 8, 9], a method originally developed to simulate rare but

important transitions between long-lived stable states as they occur, for instance,

in protein folding, chemical reactions and first order phase transitions. In a transi-

tion path sampling simulation a biased random walk is carried out in the space of

trajectories in a way such that trajectories are sampled according to their weight in

the desired ensemble. This is accomplished using a Monte Carlo (MC) procedure in

which a trial trajectory is generated from the current trajectory and then accepted

according to the Metropolis rule. Iterating this basic step, a set of trajectories with

the correct probability is generated. A particularly efficient way to generate trial

pathways is the so called shooting algorithm [22, 23], also used in the present work.

11
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In this approach, a new trajectory is generated from an old one by first randomly

selecting a point on the old trajectory, and then integrating the equations of motion

starting with perturbed momenta. The magnitude of the perturbation of the mo-

menta controls how different the new trajectory is from the old one and, therefore,

also controls the average acceptance probability of the Monte Carlo procedure.

In more detail, the path sampling procedure of the Lyapunov weighted path en-

semble is carried out in the following way. The first trajectory is created by integrat-

ing the equations of motion starting from an arbitrary initial condition x0. From

this trajectory one then selects a point at random. At this so-called shooting point,

the momenta are slightly changed by addition of a small perturbation drawn from a

Gaussian distribution. The new trajectory is then obtained by integrating the equa-

tions of motion forward to time t and backward to time 0. The new trajectory with

initial condition x
(n)
0 and chaoticity indicator R(x

(n)
0 , t) is accepted with probability

pacc = min

{

1,
ρ(x

(n)
0 )

ρ(x
(o)
0 )

e
αt

[

R(x
(n)
0 ,t)−R(x

(o)
0 ,t)

]

}

. (1.13)

where x
(o)
0 and R(x

(o)
0 , t) denote the initial point and the chaoticity indicator of

the old trajectory, respectively. If the new trajectory is accepted, the procedure

will be repeated with this trajectory. Otherwise the old trajectory is kept as the

current one. The acceptance probability of Eq. (1.13) is derived from the detailed

balance condition and guarantees that trajectories are harvested according to the

Lyapunov weighted path ensemble. Note that to obtain Eq. (1.13) we have assumed

a momentum perturbation that leads to a symmetric generation probability. If this

is not the case, an appropriate factor must be taken into account in the acceptance

probability. The shifting algorithm of transition path sampling [22, 23] can be

adapted in a similar way to sample the Lyapunov weighted path ensemble. In the

next section we discuss the application of this method to various chaotic dynamical

systems.

1.6. Results

In this Section we use the method outlined above to identify particularly stable

and unstable trajectories in various dynamical systems with dimensionality ranging

from two to several hundred. For better comparison, we mostly follow Ref. [5] in

our choice of examples.

12



1.6. Results

1.6.1. Standard map

The standard map is a representation of the dynamics of a free rotor kicked at

regular intervals with an impulsive force in a given direction [1, 24]. For a kicking

period of 1 and a kick strength of k, the standard map is given by

ωn+1 = ωn − k

2π
sin(2πϕn),

ϕn+1 = ϕn + ωn+1, (1.14)

where ωn and ϕn are the angle and the angular momentum of the rotor immediately

after the n-th kick, respectively. Due to the periodicity of the motion, both variable ω

and ϕ are considered on a torus (by taking ω and ϕ modulo 1). The standard map is

area preserving and, depending on the value of k, displays different degrees of chaos.

For vanishing k, the dynamics reduces to the motion of a free rotor and the system is

integrable. Accordingly, the largest Lyapunov exponent vanishes. As the parameter

k is turned on, some chaos develops in particular regions of the two-dimensional

phase space, while other regions originating from KAM-tori remain regular resulting

in a phase space structure consisting of islands of stability embedded in a chaotic

sea [1, 24]. As k is increased, the stable regions shrink and for large values of k

only a very small fraction of initial conditions lead to regular trajectories. In the

following we will sample the Lyapunov weighted path ensemble to find these rare

regular trajectories.

To sample trajectories of the standard map we use the standard shooting algo-

rithm, in which a new trajectory is obtained from the current one by first selecting

a phase space point on the current trajectory. Then, the selected point is slightly

perturbed by addition of a random displacement drawn from a Gaussian distribution

with width σG to both ϕ and ω. Starting form this perturbed initial condition, the

new trajectory is obtained by carrying out an appropriate number of iterations of

the standard map in forward direction and of the inverse map in backward direction.

Finally, the new trajectory is accepted with the acceptance probability of Eq. (1.13).

Using the shooting algorithm we have generated 105 trajectories of length n = 104

with σG = 0.05 for a kicking strength of k = 7.7. In this case, the chaotic sea covers

almost the entire phase space. The magnitude of initial point deviation for the RLI

calculation was |∆x0| = 10−12 and the probability density ρ(x0) of initial conditions

was assumed to be uniform. To find the rare regular trajectories a negative value

of the control parameter α = −4 was used. The right choice of this parameters is
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Figure 1.1.: (a) Phase space plot of the standard map for k = 7.7. The arrows

indicate the locations of the stability islands, which are not visible at

the scale of the figure. (b) Enlarged phase space portraits of the regular

trajectories found by the Lyapunov weighted path sampling algorithm.
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crucial as it controls how phase space is sampled in a way that is analogous to the

effect of the inverse temperature in a regular Monte Carlo simulation. A very large

negative value of α favors regular trajectories very strongly such that the simulation

gets trapped very easily in local minima of the RLI and the most regular trajectories

are not found. A small negative value of α, on the other hand, does not generate a

sufficiently strong bias towards the atypical regular trajectories such they may not be

found in this case either. Using these parameters, several rare regular trajectories

were found in the simulation as displayed in Fig. 1.1. These regular trajectories

correspond to the four stable islands found also in Ref. [5]. For the stable orbits

the RLI values ranged from 10−14 to 10−12 compared to values of 10−4 for typical

trajectories in the chaotic sea. As can be inferred from Fig. 1.1, the regular islands

cover only a very small part of phase space. The fact that regular trajectories are

nevertheless found in the simulation indicates that the landscape of the chaoticity

indicator must have a global funnel-like shape that attracts the simulation towards

the regions of highest regularity.

1.6.2. Spring pendulum

We next consider the spring pendulum evolving according to Hamilton’s equation

of motion. This two-dimensional system consists of a point of mass m exposed to

a constant force of magnitude g in negative y-direction attached to a fixed pivot by

a harmonic spring such that both angle and length of the pendulum can change in

time. The Hamiltonian of the spring pendulum is given by

H =
p2

2m
+
k

2
(r −R)2 + g y, (1.15)

where r =
√

x2 + y2 is the distance of the mass point to the pivot, p2 = p2x + p2y
is the squared magnitude of the momentum, k is the spring constant and R is the

equilibrium length of the spring [21, 25]. In all following calculations, the mass m,

the equilibrium length R and the force constant k are set to unity and the force

strength to g = 2.

For this model, we have carried out a Lyapunov weighted path ensemble simulation

for two different values of the parameter α. In both cases, the total energy was E = 2

and the equations of motion are integrated with a time step of ∆t = 10−3 using the

symplectic time-reversible Forest-Ruth algorithm of fourth order [26] yielding good

energy conservation. The shooting algorithm was carried out in the usual way by
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Figure 1.2.: Very stable and unstable trajectories of the spring pendulum traced out

in configuration space. In both cases the energy is E = 2.

adding perturbations drawn from a Gaussian distribution to the momenta at the

shooting point. Results of these simulations are displayed in Fig. 1.2. The very stable

trajectory of length τ = 100 was obtained after 4000 iterations of the path sampling

algorithm with α = −5 × 1011 favoring regular trajectories. In this calculation the

magnitude of the shooting displacement was σG = 0.5. This trajectory has an RLI

of ∼ 2 × 10−14, a value which is about four orders of magnitude smaller than that

of a typical trajectory.

The unstable trajectory of Fig. 1.2 has been found after 3000 iterations carried

out with α = 106 and a shooting displacement of magnitude σG = 5 × 10−4. This

trajectory has an RLI of ∼ 6×10−3, which is about 6 orders of magnitude larger than

that of typical trajectories. The time evolution of the RLI for both trajectories is

plotted in Fig. 1.3. The qualitative difference between the two trajectories of Fig. 1.2

is remarkable. While the stable trajectory has large amplitude in the angular degree

of freedom, the unstable one displays pronounced stretching movements with smaller

angular oscillations.

To highlight this behavior we have plotted a Poincaré section of the pendulums

phase space, where each point is colored depending on its local Lyapunov exponent

(see Eq. (1.11)). This was done by calculating the local Lyapunov exponent for a
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Figure 1.3.: Time evolution of the RLI for a stable and an unstable trajectory,

respectively.

fine-meshed x−y grid every time px = 0 occurs for a very long trajectory of τ = 109.

Since we have performed constant energy integration, the phase-space of our system

is d = 3. Thus, a Poincaré section (d− 1) is two-dimensional for this system.

1.6.3. Lorentz gas

In 1963 Yakov G. Sinai has studied a dynamical system theoretically, where a disc is

trapped in area with hard walls and a scatterer in its center [27]. This so-called Sinai

billard and very similar systems have been the topic of many studies in the field of

dynamical system and deterministic chaos since. When extended and considered as

a model for a classical gas, such a system is referred to in literature as the Lorentz

gas [28, 29].

Usually modeled with hard discs, here the scatterers are implemented using soft

potentials in order to perform Hamiltonian dynamics, where the Hamiltonian is

given by

H =
p2

2m
+
∑

i

Φ(|r− ri|). (1.16)

Here p is the momentum and r the position vector, respectively. The scatterers

are described by a repulsive potential Φ centered at position ri. We model the

Lorentz gas on a hexagonal lattice, where a cell consisting of one scatterer in its

origin is replicated using periodic boundary conditions. Thus, in Eq. (1.16) the sum
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Figure 1.4.: Poincaré section of the spring pendulum. The color code represents the

size of the largest local Lyapunov exponent, where blue corresponds to

negative values and red to positive values, respectively. Gray colored

areas were not visited during the simulation.

goes from i = 0, .., 3 and the ri are the corners of the box (see Fig. 1.5). We have

used the geometry of a perfect hexagonal lattice with box length a = 1 and height

c =
√
3/2. As scattering potential we used

Φ(r) = 100
(
r2cut − r2

)2
, (1.17)

where r = |r| and the cutoff rcut = (a − 0.025)/2. As for the pendulum we have

employed the Forest-Ruth algorithm to integrate the equations of motion as well

as the linearized equations of motion using the time step ∆t = 10−3. We have

propagated the system over a time period τ = 12.5.

In Fig. 1.5 three different single trajectories are plotted which differ significantly

in the chaotic behavior. The stable trajectory features an RLI of ∼ 10−10 and

was reached after sampling roughly 300,000 trajectories. The shooting displacement
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was chosen as σG = 10−14 and α = −109. The chaotic trajectory was harvested

after about 250,000 iteration steps of our TPS procedure. Here, the parameters are

σG = 10−6 and α = 500 leading to an RLI of ∼ 0.3. It seems that mainly the

number of collisions a trajectory is exposed to determines the degree of chaos. So,

in the chaotic case the particle bounces with a high frequency within the narrowest

corridor of the scatterer, while in the stable case this corridor is freely passed.

1.6.4. Fermi-Pasta-Ulam chain

As an example of a system with higher dimensionality, we search for particularly

stable trajectories of the Fermi-Pasta-Ulam (FPU) chain, originally concocted to

study the thermalization of oscillatory modes in solids [30, 31]. This model consists

of a one-dimensional chain of N point particles with mass m located at positions xi.

The particles are coupled by harmonic springs to which a weak anharmonic part in

form of a quartic potential is added leading to the Hamiltonian

H =
∑

i

p2i
2m

+
∑

i

k

2
(xi+1 − xi)

2 +
β

4
(xi+1 − xi)

4. (1.18)

Here, k is the spring constant of the harmonic spring and β is a parameter controlling

the strength of the quartic potential. Below, we use units in which m = 1, k = 1

and consider the case β = 0.1 with fixed boundary conditions.

Depending on initial conditions, the FPU-chain displays different types of motion.

Starting from a state in which all the energy is concentrated in a high frequency

mode, the system evolves into a so-called breather moving chaotically with the

energy strongly localized in space before equilibration eventually sets in on very long

time scales [32]. Other initial conditions lead to only weakly chaotic solitonic modes,

in which a kink moves through the system with constant speed and a preserved shape

of its sharp front [31, 33]. Here, we use our algorithm to find these weakly chaotic

solitons by using a parameter α = −5×108 highly favoring regular trajectories. Note

that this strongly negative value of α was necessary since chaos in the FPU-chain

in this regime is very weak and it is difficult to distinguish between more and less

chaotic trajectories. Particle traces for a system of N = 32 particles at a total energy

of E = 32 are shown in Fig. 1.6. The equations of motion were integrated with a

time step of ∆t = 0.05 for trajectories of length τ = 5000. The trajectory shown

in Fig. 1.6 was obtained after a couple of thousand iterations of the path sampling

scheme with shooting displacements in momentum space of magnitude σG = 0.5.
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Figure 1.6.: Particle positions of a FPU-chain with N = 32 as a function of time

along part of a trajectory sampled by the Lyapunov weighted path sam-

pling algorithm. Particle positions have been displaced vertically for

better visibility. The trajectory was obtained after a couple of thousand

iterations with α = −5× 108 favoring particularly stable trajectories.

Kinks wandering through the chain at constant velocity and bouncing back and forth

between the chain ends are clearly visible, indicating a solitonic mode of motion.

1.6.5. Double well system

To test whether Lyapunov biased path sampling can be used to find reactive trajec-

tories in systems with multiple stable states separated by barriers, we have studied a

simple double well system in one dimension. The dynamics of the system is governed

by the Hamiltonian

H(x, p) =
p2

2m
+ k(x2 − 1)2, (1.19)

corresponding to a particle of mass m moving on a energy surface with minima at

x = ±1 and a maximum at the origin. The potential energy barrier separating the

two stable states has a height of k. We imagine that the system is in contact with a

heat bath with temperature T , such that the distribution of initial conditions of the

trajectories is canonical, ρ(x, p) ∝ exp{−βH(x, p)}. Here, β = 1/kBT is the recip-

rocal temperature and kB is the Boltzmann constant. Thus, all initial conditions of

the system are in principle accessible in this ensemble, albeit with different statis-
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Figure 1.7.: Phase space plots of a particularly chaotic trajectory crossing the saddle

point in the double well system. Note that at the origin there is a gap

between the upper and the lower branch of the periodic trajectory, but

the gap is too small to be visible at the scale of the figure. The color

code gives the energy difference to the barrier height k.

tical weight. This system is integrable and hence its Lyapunov exponent vanishes.

Nevertheless, finite length trajectories diverge strongly near the barrier top.

Although a canonical distribution of initial conditions implies a coupling of the

dynamics to the degrees of freedom of the heat bath, we assume that this coupling

is so weak that it does not affect the dynamics of the system on the time scale

of the length τ of the trajectories. Hence, each individual trajectory evolves at

constant total energy. Under these conditions, the acceptance probability of the

path sampling procedure is given by

pacc = min
{

1, eατ [R(n,τ)−R(o,τ)]e−β[H(n)−H(o)]
}

, (1.20)

where H(n) and H(o) are the energies of the new and the old trajectories, respec-

tively, and R(n, τ) and R(o, τ) are the respective RLIs. The above acceptance proba-

bility takes into account possible energy changes due to the momentum perturbation

applied at the shooting point.

Since we are interested in reactive trajectories that cross the energetic barrier

between the stable states and the phase space structures near saddle points which

lie at origin of chaos [1], we sample the Lyapunov weighted path ensemble procedure
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with a large value of α = 5×108 strongly favoring chaotic trajectories. The equations

of motion are integrated with a time step of ∆t = 10−2 and trajectories have a total

temporal length of τ = 102. Units where chosen such that m = 1 and k = 1 and

the temperature was set to β = 1. The magnitude of the shooting displacement

to the momenta was σG = 0.05. Starting from a trajectory of energy E = 0.05

oscillating about the bottom of one well, after a few hundred path sampling steps

reactive trajectories connecting the two wells were obtained. The phase space plot

of a reactive trajectory with total energy E = 1.0000019 (just slightly above the

barrier height of k = 1.0) crossing the barrier in close proximity of the saddle point

is shown in Fig. 1.7.

1.6.6. Double well dimer in a solvent

As exemplified by the results of the previous section, the dynamical character of

pathways crossing barriers in the vicinity of saddle points in the potential energy

surface strongly differ from that of trajectories fluctuating around minima [3]. Such

pathways connecting stable states are, for instance, relevant in the context of acti-

vated chemical reactions and there is intense interest in computational methods for

finding such rare barrier crossing pathways along which chemical reactions occurs

[9]. In this section we will study if the Lyapunov weighted path sampling method

can be used to identify reactive trajectories based on their chaoticity. In particular,

we will address the question wether such an approach can be successful for reac-

tions occurring in solution, where the chaoticity of the reactive subsystem may be

overshadowed by that of the solvent.

We study this issue using a simple two-state model dimer embedded in a soft-

sphere solvent [34, 35]. This three-dimensional model consists of N particles of

mass m evolving according to Hamilton’s equations of motion in a cubic box of

volume V and periodic boundary conditions. All particles interact pairwise via the

purely repulsive Weeks-Chandler-Andersen (WCA) potential [36],

VWCA(r) =

{

4ε
[(

σ
r

)12 −
(
σ
r

)6
]

+ ε for r ≤ rc,

0 for r > rc.
(1.21)

Here, r is the interparticle distance, σ is the interaction radius, ε is the strength

of the potential, and rc = 21/6σ is the cutoff radius. In addition, the two particles
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Figure 1.8.: Interatomic distance r of the double well dimer as a function of time t

along reactive trajectories found by the Lyapunov weighted path sam-

pling procedure for particle numbers N = 22 (top), N = 32 (center),

and N = 108 (bottom). In all three trajectories a transition between

the contact and the extended state occurs as evidenced by the sudden

change of r towards the end of the trajectory.

forming the dimer are bonded through the double well potential

Vdw(r) = h

[

1− (r − rc − w)2

w2

]2

, (1.22)

where h and w are constants determining the height and the width of the barrier,

respectively. The distance between the two minima of the double well potential is

2w. For low temperatures, i.e., for h≫ kBT , the dimer mainly exists in two states.

In one state, the contact state, the interatomic distance of the dimer fluctuates about

rc. In the other state, the extended state, the dimer has a bond length of about

rc+2w. Thermally activated transitions between these two states occur very rarely

and are separated by long permanence times in the wells.

In all our simulations we use reduced units in which σ = 1, ε = 1, and m = 1. We
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study this system for particle numbers N = 22, N = 32 and N = 108 at a density

of ρ = N/V = 0.5 and at a total energy per particle of E/N = 1.0 corresponding

to a temperature of about T = 0.55. The dimer barrier height was set to h = 6.0

and its width to w = 0.3. Trajectories of total length τ = 10 were integrated with

a time step of ∆t = 10−3. In the path sampling procedure, different parameters

α and different magnitudes σG of the shooting displacements were used. While for

the smallest system α = 170 and σG = 0.2 were employed, we chose α = 160 and

σG = 0.25 for the system of intermediate size and α = 600 and σG = 0.05 for the

largest system. Starting from non-reactive trajectories, the Lyapunov weighted path

sampling algorithm carried out with these parameters succeeded in finding reactive

trajectory. Examples of the interatomic distance as a function of time are shown in

Fig. 1.8 along reactive trajectories for various system sizes. While for all system sizes

studied here the Lyapunov weighted path sampling simulation converged towards

reactive trajectories, the number of iterations before observing the first reactive path

increased with system size. While for particle number N = 22 the first reactive

event occurred after about 400 path sampling steps, the first reactive trajectory was

found after 1000 iterations for N = 32 and after 2900 iterations for N = 108. These

results indicate that the pronounced chaoticity of barrier crossing trajectories can

be used to identify reactive pathways even for systems with hundreds of degrees

of freedom. Note, however, that not all reactive trajectories are strongly chaotic.

During our simulations it happened repeatedly that reactive pathways were rejected

because their relative Lyapunov indicators were too small. Along these trajectories

the chaoticity associated with the saddle point crossing is apparently compensated

by a particularly stable dynamics of the solvent.

1.7. Conclusions

In this chapter, we have presented a flexible numerical method to find particularly

chaotic or regular trajectories in dynamical systems. The basic idea of the method,

inspired by the work of Tailleur and Kurchan [5] and called Lyapunov weighted path

sampling, is to first define an ensemble of trajectories weighted by a measure of

their chaoticity, for instance their finite time Lyapunov exponent. In this trajectory

ensemble a parameter, which can be viewed as conjugate to the Lyapunov exponent,

can be tuned to favor either very chaotic or very regular trajectories. The trajectory

ensemble is then sampled with methods adopted from transition path sampling.
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Other chaoticity indicators besides finite time Lyapunov exponents can be easily

integrated into the algorithm as well. Since the calculation of finite time Lyapunov

exponents can be computationally demanding, we have, for instance, used relative

Lyapunov indicators (RLI) to bias trajectories according to their level of chaos.

These indicators are particularly sensitive and are capable of distinguishing weakly

chaotic trajectories from regular ones. While in this paper we have used Lyapunov

weighted path sampling to study only systems evolving deterministically, the method

can be applied as easily to stochastic dynamics provided an appropriate chaoticity

indicator is available.

The complexity of the examples studied here ranges from a simple one-dimensional

double well system to the FPU-model and a bistable dimer in a solvent with hundreds

of degrees of freedom. In all cases, the Lyapunov weighted path sampling algorithm

successfully identified trajectories with atypical chaoticity properties. While for

the FPU-model we used Lyapunov weighted path sampling to find weakly chaotic

solitonic modes of motion, we concentrated on highly chaotic trajectories for the

dimer in solution. The results obtained for this simple model of a chemical reaction

indicate that it is possible to use Lyapunov weighted path sampling to find rare

reactive trajectories that pass through saddle points in the potential energy surface

as they connect long-lived stable states with each other. Further studies will be

necessary to clarify to which degree identifying such trajectories is made difficult by

the chaos arising from degrees of freedom not directly coupled to the reaction (for

instance solvent degrees of freedom) and possibly eclipsing the dynamical instability

of the reactive subsystem.

It will also be interesting to investigate whether chaoticity indicators such as the

maximum Lyapunov exponent, the Kolmogorov-Sinai entropy or the relative Lya-

punov indicators used in the present study correlate with the measures of mobility

used by Chandler and collaborators to link the glass transition with a first order

phase transition in trajectory space [12]. In their work, these authors started from

the equilibrium distribution of pathways and added to it a bias that favors trajecto-

ries with low dynamical activity. Chandler and coworkers demonstrated numerically

that this transition displays all the features of a first-order transition occurring in

trajectory space. It would be interesting to study if an analogous bias based on

chaoticity indicators also leads to an equivalent first order transition in path space.

In such research it may be fruitful to combine Lyapunov weighted path sampling with

advanced equilibrium simulation methods such as umbrella sampling [37], metady-
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namics [38], or parallel replica sampling [39] directly acting on chaoticity indicators.
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Chapter 2.

Structure detection using neural networks

The accurate identification and classification of local ordered and disordered struc-

tures is an important task in atomistic computer simulations. Here, we demonstrate

that properly trained artificial neural networks can be used for this purpose. Based

on a neural network approach recently developed for the calculation of energies and

forces, the proposed method recognizes local atomic arrangements from a set of

symmetry functions that characterize the environment around a given atom. The

algorithm is simple and flexible and it does not rely on the definition of reference

frame. Using the Lennard-Jones system as illustrative example, we show that the

neural networks developed here detect amorphous and crystalline structures with

high accuracy even in the case of complex atomic arrangements, for which conven-

tional structure detection approaches are unreliable. ∗

∗ The main part of this chapter has been submitted as an article to the Journal of Chemical

Physics with the title ”Neural networks for local structure detection in polymorphic systems”.
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2.1. The problem of detecting local structures

Atomistic simulations carried out on high performance computers provide a wealth

of detailed information on condensed matter processes. While visualization of these

processes using computer graphics can yield important insights and stimulate our

imagination, a true understanding of the underlying physical mechanisms requires a

quantitative and automated analysis of the generated data. Such an analysis often

involves the detection of particular atomistic structures based on their local environ-

ment. In the simulation of the crystallization of a supercooled liquid, for instance, it

is necessary to differentiate between atoms that are part of the growing crystal and

atoms that belong to the liquid. Similarly, in studying the microscopic mechanism

of structural phase transitions it is crucial to be able to tell apart different crystal

structures on a local level. Also when one investigates the structure and dynamics

of defects in solids it is necessary to recognize particular atomic arrangements and

to follow their motion in time.

The ability to distinguish and classify local atomistic structure is not only im-

portant to analyze the output of computer simulation a posteriori, but also to steer

computer simulations towards interesting regions of configuration space using bias-

ing schemes such as umbrella sampling [37, 40] or metadynamics [38] and to define

long-lived states in path sampling simulations [41, 42]. Furthermore, automatic lo-

cal structure detection schemes are also useful for the analysis of experimental data

obtained with high resolution imaging techniques [43].

Computational methods for structure recognition are usually formulated in terms

of order parameters that, ideally, satisfy several important criteria:

(a) For a given phase, the order parameter should include all configurations belong-

ing to that phase and exclude all others (avoiding mis-assignments is particularly

important, if the order parameter is used to drive a transition).

(b) Structures should be assigned accurately not only in a perfect crystal, but also

in the presence of thermal fluctuations or mechanical distortions.

(c) The order parameter should be local with a well defined and controllable sensi-

tivity region.

(d) The order parameter should be able to distinguish all stable and metastable

phases of a material over a wide range of conditions across the phase diagram.
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2.1. The problem of detecting local structures

(e) The method should recognize defect structures, for instance arising from imper-

fect crystallization, and structures forming at surfaces and interfaces.

(f) The order parameter should be invariant with respect to global rotations and

translations as well as to permutations of identical atoms.

(g) The method should be flexible such that it can be easily adapted to work for

other substances or unexpected phases.

(h) Finally, the method should be computationally inexpensive and easy to imple-

ment.

During the past decades several computational approaches have been developed

for automatic structure detection, which fulfill some but not all of the criteria spec-

ified above. In the common neighbor analysis (CNA) method, originally developed

to distinguish emerging structures in freezing Lennard-Jones clusters [44] and later

used to detect crystalline regions as well as defects in various systems [45, 46], local

structures of individual atoms are assigned based on an analysis of the environment

shared by neighboring atoms. In the centro-symmetric deviation method (CSD),

introduced to study the nucleation and motion of dislocations in centro-symmetric

materials such as fcc-metals [47], the local distortion caused by defects is assessed by

computing a parameter sensitive to the angle formed by opposite bond vectors. A

similar, but more general approach is followed in the bond angle distribution (BAD)

method, in which the distribution of angles formed by nearest neighbor bonds is

used as characteristic feature to distinguish different crystal structures [48]. The

most versatile (and currently most popular) class of methods for local structure

recognition are, however, based on the Steinhardt local bond order parameters [49–

52]. In this approach, explained in more detail later in this thesis, the particular

symmetries of local structures are picked up by combinations of spherical harmonics

that are made invariant against rotations, translations and permutations of identical

particles and serve as characteristic structural fingerprints for different ordered and

disordered structures.

While the methods mentioned in the previous paragraph have been successfully

applied to a variety of problems, they often yield unreliable results particularly for

complex open structures and in the presence of elastic deformations and thermal

fluctuations. For instance, it is notoriously difficult to distinguish local configura-

tions of liquid water and of the various forms of crystalline and amorphous ice [53].

31



Chapter 2. Structure detection using neural networks

The ability to do that, however, is needed to study the nucleation of ice in super-

cooled water. As discussed by Brukhno et al. [54], standard Steinhardt bond order

parameters are ineffective in detecting hexagonal and cubic ice because oxygens

with different tetrahedral hydrogen bonding pattern occur. To resolve this issue,

these authors have introduced the maximum projection method, which is capable

of distinguishing between liquid water and hexagonal and cubic ice, albeit at the

price of introducing a preferred direction and thus breaking rotational invariance.

To remedy this situation, Reinhardt et al. [55] suggested a parameter based on par-

ticular Steinhardt bond order parameters and used it to drive nucleation of ice in

supercooled water. In these simulations it proved necessary to explicitly remove

unphysical chain structures that were forced on the system by a bias on the order

parameter. Another order parameter to distinguish liquid water from hexagonal

and cubic ice was developed by Chau and Hardwick [56, 57] based on detecting local

tetrahedral structures. None of the order parameters developed so far for water

and ice, however, are capable of discriminating between all phases of ice and liquid

water.

In this thesis, we treat the assignment of local structures as a pattern recognition

problem that can be addressed with machine learning algorithms. We show how an

appropriately trained neural network can be used to accurately detect local ordered

structures and demonstrate the practical applicability of the algorithm by distin-

guishing the different phases of the Lennard-Jones system and of water in a broad

range of conditions. Our approach is inspired by the neural network based method

for representing potential energy surfaces for condensed matter systems recently de-

veloped by Behler and Parrinello [58, 59]. In this method, the total energy of the

system is written as a sum of local contributions, each of which is determined by

applying a neural network to a set of numbers characterising the local environment

of individual atoms. The structural fingerprints used as input for the neural are

provided by a collection of symmetry functions that are sensitive to distances and

angles in a small region around the central atom and are furthermore invariant with

respect to rotations, translations and permutations. In our neural network for struc-

ture recognition, we use similar symmetry functions but they are sensitive only to

the positions of the atoms in a small and well defined region around a given particle.

When properly trained using configurations with known structures, the neural net-

work succeeds in recognizing structures even in polymorphic systems with rich phase

diagrams, for which conventional structure assignment methods fail. The method
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proposed here is flexible and can easily be adapted to a variety of substances.

The remainder of this chapter is organized as follows. In Sec. 2.2 we introduce

the method and explain in detail how the neural network is constructed and trained.

The neural network is then applied to a test case in Sec. 2.2.5, where we use it to dis-

tinguish between the various structures in the Lennard-Jones system and compare

the performance of the neural network with that of Steinhardt bond order param-

eters. Additionally, we apply the neural network to the more challenging problem

of distinguishing between the various phases of liquid water and ice over wide range

of pressures and temperatures in Chapter 4 in the second part of this thesis. Using

the neural network, we compute the free energy for the nucleation of an ice crystal

in supercooled water. Subsequent to this application a discussion of the strengths

and weaknesses of the method is provided in Sec. 4.6.

2.2. Neural network for structure recognition

Our approach for assigning local structures is based on the neural network method

for energy and force calculations recently put forward by Behler and Parrinello

[58, 59]. In this method, which provides the accuracy of density functional theory

at a fraction of its cost, the total energy of the system is expressed as a sum of

contributions from local regions centered around individual atoms. Each region is

characterized by a set of generalized coordinates, called symmetry functions, which

are functions of the atomic coordinates and serve as input for a feed-forward neural

network. Based on these structural fingerprints, the neural network then predicts

the local energy contribution of each atom, essentially by interpolation. Here, we

adopt this approach and use the information encoded in the symmetry functions to

detect local atomic structures. In the following sections, we first describe the neural

network, then discuss the definition of the symmetry functions, which are designed

to be sensitive to the local environment of a given atom, and finally explain how the

neural network is trained.

2.2.1. Feed-forward neural network

A neural network can be viewed as a complex non-linear (scalar- or vector-valued)

function that depends on a set of input variables and a possibly very large set of

parameters, which can be tuned to obtain the desired behavior. Inspired by systems
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of biological neurons such as the brain, the basic concept of a neural network is

depicted in Fig. 2.1. A feed-forward network such as the one used in our work

consists of three parts: The input neurons, one or more calculation layers and the

output nodes. The input interface receives the external information and corresponds

to the part of a biological neural network in which sensory stimuli are converted into

signals. The information is then passed to the calculation layers, where the input

signals are weighted and processed. The last part of the neural network is the

output interface, where the final data processing step occurs and the information is

converted into the desired output form. The size and topology of a neural network

is specified using the notation I×H×H×O, where I, H, and O denote the number

of nodes in the input, hidden and output layers, respectively.

Based on this network topology, the structure recognition works as follows. Con-

sider a given system configuration r = {r1, r2, · · · , rN} consisting of the Cartesian

coordinates of all N atoms. For simplicity we assume that there is only one atom

species in the system, but we emphasize that the method can easily be general-

ized to more atoms species. To determine the local structure around atom i one

first computes a set of I symmetry functions {G[i]
l (r)}, which depend on the Carte-

sian coordinates of the atoms in the vicinity of atom i. The symmetry functions,

explained in detail below, are designed to characterize the local environment of a

given atom. The symmetry functions are then turned over to the first layer where

for each of the neurons of this layer a weighted sum,
∑

l w
(1)
mlGl, over the input (i.e.,

the symmetry functions) is computed. Here, the synaptic weight w
(1)
ml connects the

input neuron l with the neuron m of the first hidden layer, which has H neurons.

Each sum is then shifted by a bias (or threshold) b
(1)
m and then passed through an

activation function ϕ(x), thus yielding the output of the first hidden layer of neurons,

a(1)m = ϕ

(
I∑

l=1

w
(1)
mlGl + b(1)m

)

. (2.1)

The output of the first hidden layer is then propagated to the second hidden layer

and processed in a similar way using the weights w
(2)
nm and biases b

(2)
n ,

a(2)n = ϕ

(
H∑

m=1

w(2)
nma

(1)
m + b(2)n

)

. (2.2)

Finally, the output of the neural network, given in form of the vector

y = {y1, y2, · · · , yO}
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2.2. Neural network for structure recognition

Figure 2.1.: Four layer feed-forward neural network with I × H ×H × O topology

for local structure identification. Here, I, H, and O refer to the number

of neurons in the input layer, the hidden layers and the output layer,

respectively. For a given configuration r, depicted schematically on the

left hand side with the central atom shown in yellow, a set of symmetry

functions {Gl(r)} is computed. These symmetry function serve as input

for the first layer of the neural network, from which the data are passed

to the hidden layers. Each neuron, or node, in the calculation layers

takes the values of the neurons of the previous layer, as indicate by the

black arrows, and performs a weighted sum over them. The weights,

assigned during the training phase, define the relative importance of

the connections between neuron pairs. After the sum is formed, a bias

is added to the value of each neuron as indicated by the red arrows.

Also the bias values are determined during the training of the network.

For each node, the result is then fed into an activation function, which

determines how active a neuron is, i.e., how much it contributes to the

output. Finally, the output layer converts the processed information

into a vector in which each component signals the occurrence of one of

the possible structures.
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of O components, is obtained by carrying out another set of weighted sums, shifting

them by the biases b
(3)
p and feeding the results into the activation function ϕ̃,

yp = ϕ̃

(
H∑

n=1

w(3)
pn a

(2)
n + b(3)p

)

. (2.3)

While we use the hyperbolic tangent as activation function for all neurons in the

hidden layer, ϕ(x) = tanh(x), the identity function ϕ̃(x) = x is employed as a

activation function for the output neurons. This choice of activation functions was

found to work well in the case of the neural networks for energy computation [60].

The output vector y has one component for each of the O possible structures the

network is trained to recognize. If the network detects structure i, component yi is

large, while all another components are small. The complete action of the neural

network on the symmetry functions Gl can be written as

yp = ϕ̃

(
∑

n

w(3)
pn ϕ

(
∑

m

w(2)
nm ϕ

(
∑

l

w
(1)
mlGl + b(1)m

)

+ b(2)n

)

+ b(3)p

)

. (2.4)

Due to the form of the activation function ϕ(x), the output values yp of the neural

network depend on the input Gl in a complex non-linear way. The large number

of weights and biases provides the neural network with the flexibility required to

reproduce with high accuracy a given functional dependence of the output from

the input. In the training phase, carried out as explained below, the weights and

biases are adjusted such that the neural network correctly classifies the training set

consisting of configurations with known structures.

2.2.2. Symmetry functions

The information about the spatial arrangement of the atoms within a certain cutoff

of a given atom i is encoded in the so-called symmetry functions {G[i]
l (r)}, which

depend on the Cartesian coordinates of the atoms in this region. The functions,

which are constructed to be invariant with respect to rotations, translations and

the permutation of identical atoms, need to be defined carefully such that they

carry sufficient details to reliably detect and classify structures. By tuning the

parameters of these functions, they can be made sensitive to the various symmetries

the environment of atom i can have. The following types of symmetry-functions

have been proven sufficient for accurate structure detection in the two test cases
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2.2. Neural network for structure recognition

studied in this work:

G
[i]
1 (r) =

∑

j 6=i

fc(Rij), (2.5)

G
[i]
2 (r) =

∑

j 6=i

e−η(Rij−Rs)2fc(Rij), (2.6)

G
[i]
3 (r) =

∑

j 6=i

cos (κRij)fc(Rij), (2.7)

G
[i]
4 (r) =

1

2ζ

∑

j,k 6=i

(1 + λ cos θijk)
ζ

×e−η(R2
ij+R2

ik
+R2

jk
)fc(Rij)fc(Rik)fc(Rjk), (2.8)

G
[i]
5 (r) =

1

2ζ

∑

j,k 6=i

(1 + λ cos θijk)
ζ

×e−η(R2
ij+R2

ik
)fc(Rij)fc(Rik), (2.9)

G
[i]
6 (r) =

1

2ζ

∑

j,k 6=i

(1 + λ cos θijk)
ζfa(Rij)fa(Rik), (2.10)

G
[i]
7 (r) =

1

2

∑

j,k 6=i

sin[η(θijk − α)]fc(Rij)fc(Rik), (2.11)

G
[i]
8 (r) =

1

2

∑

j,k 6=i

sin[η(θijk − α)]fb(Rij)fb(Rik). (2.12)

Here, the summation indices run over all neighboring atoms within a certain cutoff

of the central atom i. As illustrated in Fig. 2.2, Rij is the distance from particle

i to j and θijk is the angle spanned by the triplet of atoms i, j, and k. The

quantities Rs, α, η, λ, and κ are tunable parameters, which need to be carefully

chosen in order to reflect the symmetries characterizing the possible local structures.

While symmetry functions G
[i]
1 (r) to G

[i]
5 (r) were adopted from Ref. [61], where they

were introduced for energy calculation, we developed functions G
[i]
6 (r) to G

[i]
8 (r)

specifically for structure recognition.

Since one usually wants to detect structures in the immediate surrounding of a

given atom, it is important that the symmetry functions are only sensitive to atomic

position in a small and well defined region. We therefore use cutoff functions that are

sharper than the soft cosine-cutoff used in neural networks for energy calculations
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Figure 2.2.: The symmetry functionsG
[i]
l (r) around

atom i, shown in yellow, are constructed using com-

binations of atomic distances Rij and angles θilk.

Only atoms within a certain cutoff Rc contribute

to the symmetry functions of the region centered

around atom i.

[58]. The Fermi cutoff function

fc(R) =







[1 + exp{αc(R−Rc + ǫc)}]−1 if R < Rc,

0 else,
(2.13)

is close to unity for small arguments and then decreases from 1 to 0 in an interval of

width 1/αc centered at Rc − ǫc. In the limit of large values of αc the cutoff function

fc(R) turns into a step function with the step located at Rc − ǫc. In addition, we

defined the cutoff functions

fa(R) =







cos2 [η(R− µ)] if µ− π
2η < R < µ+ π

2η ,

0 else,
(2.14)

and

fb(R) =







cos2 [ν(R− al)] if al − π
2ν < R < al,

1 if al < R < ar,

cos2 [ν(R− ar)] if ar < R < ar +
π
2ν

0 else,

(2.15)

which are used in the angular symmetry functions G
[i]
6 (r) and G

[i]
8 (r). Here, η, µ,

ν, al and ar are free parameters that can be adjusted to make the cutoff functions

sensitive only to specific distance ranges. Some symmetry functions with typical

parameters are shown in Fig. 2.3.

For the neural network to work accurately, the parameters of the symmetry func-

tions need be selected such that the symmetry functions carry a maximum amount of

structural information about the environment of a given atom. To select appropriate
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Figure 2.3.: Various symmetry functions with typical parameter values. The two

left panels show the distance dependence of the terms in the two purely

radial symmetry functions G2 and G3. The two panels on the right side

show the angular parts of G4 and G7. The cutoff function parameters

ǫc = 0.2, αc = 30 and Rc = 4.43352 were used.

parameters while keeping the number of symmetry functions low, we first compute

the distribution of many symmetry function candidates for the various phases of

interest. Then, for each symmetry function, we determine the overlap between the

distributions obtained for the different phases and finally select the symmetry func-

tions which best differentiate between the phases, i.e., those corresponding to small

overlaps. The symmetry functions are also scaled to the best working range of the

neurons, which is from −1 to 1 for the activation functions used in our work.

From the set of symmetry functions determined in this way it is possible to elim-

inate redundant information by carrying out a sensitivity analysis of the neural

network [62–64]. For this purpose, one determines the derivative of the output of

the network with respect to its input. A derivative close to zero then indicates that
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the corresponding input node has little effect on the output and can be eliminated

without compromising the accuracy of the network. Typically, we remove input

notes with a derivative smaller 0.1,% to 1% of the largest value. After the removal

of the redundant symmetry functions the neural network needs to be retrained. Us-

ing this approach it is possible to reduce the number of symmetry functions required

to fully characterize local structures to about 30− 40.

2.2.3. Training the neural network

Once the symmetry functions are defined, the neural network needs to be trained

to recognize and distinguish the desired structures. During the training procedure,

the weights and biases are tuned based on the information contained in a training

set, which consists of a large number of atomic configurations with known struc-

ture. Thus, each entry of the training set T consists of a configuration r and the

corresponding structure vector ỹ,

T =
{

r(τ), ỹ(τ)
}

, (2.16)

where the superscript τ numbers the entries in the training set. The structure

vector ỹ(τ), which corresponds to the output vector of the neural network, encodes

the information about the type of structure of configuration r(τ). If configuration

r(τ) is of structure type p, the component ỹ
(τ)
p of the structure vector is assigned the

value ỹ
(τ)
p = +0.9 and all other components p′ are assigned the value ỹ

(τ)
p′ = −0.9.

The training set can be prepared by running straightforward molecular dynamics

(MD) simulations for the various phases and extracting local atomic environments

from configurations sampled along the MD trajectories. Assuming that during a

particular MD run the system remains in the phase from which the simulation has

been started, all atomic arrangements taken from that run can be assigned the same

structure. Since in the course of the MD run the system can, in principle, turn

into a different phase and change its structure, it is important to verify whether

the original structure still exists at the end of the simulation. This can be done by

visual inspection or by the calculation of some global order parameter for the entire

system. In the unlikely case that a transition to a different phase has occurred,

configurations from this simulation should not be included in the training set. To

make sure that the training set is sufficiently diverse, training configurations for

a particular phase should be sampled from several MD simulations carried out at
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different pressures and temperatures. Also, it has proven to be important to avoid

correlations between entries in the training set. Thus, local environments extracted

from the same trajectory should be significantly separated in time. Typically, the

training set comprises tens of thousands of entries. Training sets of this size are

necessary to guarantee that most thermal fluctuations typical for each phase are

included in the training set.

Based on the information contained in the training set T , the network is then

trained such that for the configurations in the training set the output vectors y of

the neural network best match the corresponding structure vectors ỹ. The training

procedure can be viewed as an optimization problem, in which the weights w
(k)
nm and

the biases b
(k)
n are tuned to minimize the deviation of the predicted structures from

the known structures. The target function for the minimization can be expressed as

the mean square deviation

χ2 =
1

NsetO

Nset∑

τ=1

O∑

p=1

[

yp(r
(τ))− ỹ(τ)p

]2
, (2.17)

where the sum over the index τ runs over all Nset entries of the training set and

y(r(τ)) is the output of the neural network evaluated for structure r(τ).

We have tested several machine learning methods to minimize χ2 including back-

propagation [65] and a nonlinear least squares algorithm [66]. We found, as Behler

and Parrinello did [58, 59], that the extended Kalman filter (EKF) [67, 68] converges

quickly and does not easily get trapped in local minima. This learning method

originates from signal processing theory, where it is used to filter out noise of signals,

and has been widely and successfully used for neural network training [69–71]. The

main idea of the extended Kalman filter is to introduce an error covariance matrix,

which is then improved iteratively. The iteration is stopped when the mean square

deviation χ2 is sufficiently converged. Finally, the predictive quality of the neural

network is tested by computing the mean square deviation between predicted and

true structure vectors for an independent test set, typically of size similar to that of

the training set. For a detailed discussion of the Kalman filter see Refs. [67, 68].

2.2.4. Implementation details

In implementing the extended Kalman filtering method several precautions must

be taken to obtain an accurate and robust neural network for structure prediction.
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The Kalman filter learning technique is an online learning scheme, implying that

each basic iteration step, in which one entry of the training set is processed, leads

to an update of the entire network state (weights and biases). After the learning

procedure has cycled through all entries of the training set, i.e., after on epoch,

and before the next iteration starts, the order of the entries of the training set is

randomly permuted to avoid correlations. The predictive quality of the network can

be improved by a modification of the training scheme called multistreaming [68]. In

this technique, the entries of the training set are bundled into batches consisting of

Nbatch entries each. The Kalman filter is then applied to entire batches rather than

to individual training set entries. While this method improves the outcome of the

training of the Kalman filter, it also increases the computational effort required for

the training procedure ∗ .

It is well known that the extended Kalman filter method suffers from numerical

rounding errors, which may lead to a rapid divergence at some point in the learning

procedure. Two common approaches exist to overcome this instability [68]. The

first method updates the square root of the error covariance matrix rather than

the covariance matrix itself, producing a very robust iteration prescription. Here,

we follow a much simpler approach and introduce some artificial noise in form of

a constant that is added to all diagonal elements of the error covariance matrix at

each iteration. This makes the algorithm not only more stable, but also prevents

the networks from getting trapped in local minima of the target function.

To accelerate the training procedure in the starting stage, the initial values of the

weights are not assigned at random but are pre-conditioned following an extension

of the method proposed in Ref. [72] for neural networks with two hidden layers [73].

∗ This can be seen by comparing the matrix sizes of the usual EKF with the ones of the multi-

stream EKF. Computationally, the most time consuming operations of the usual EKF are the

following two operations: the multiplication of a W ×W with a W ×O matrix and of a W ×O

with an O × W matrix. Here W is the number of weights and biases of the network and O

the number of output neurons. On the other side, when multistreaming is applied then each

matrix dimension O is increased by a factor Nbatch, thus, instead of multiplying a W ×O with

an O × W matrix, the matrix dimensions W × (ONbatch) and (ONbatch) × W have to be to

considered.
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2.2.5. Application to Lennard-Jones systems

In this section we demonstrate the application of the neural network for structure

recognition using the Lennard-Jones system as example.

For the Lennard-Jones system conventional order parameters based on spherical

harmonics [49–52] provide an accurate way to distinguish between the liquid and

the various crystalline phases. We first apply the neural network approach to this

system for comparison. All quantities are given in reduced Lennard-Jones units, i.e.,

distances are given in units of σ, energies in units of ǫ and time in units of
√

mσ2/ǫ,

where ǫ and σ are the Lennard-Jones parameters and m is the particles mass.

Training set

Depending on temperature and pressure, the Lennard-Jones system can exist in the

liquid state as well as several crystalline states including the hexagonal close packed

structure (hcp), the face centered cubic structure (fcc), the body centered cubic

structure (bcc), and a recently discovered distorted bcc-structure (I-43d) [74]. In

order to obtain a neural network that reliably distinguishes between these phases

in all regions of the phase diagram where they are at least metastable, a training

set including all typical local configurations and the fluctuations around them is

required.

In Fig. 2.4 isotherms for the investigated structures are plotted. The main purpose

of studying the isotherms is to find the region of stability of a particular phase. Oth-

erwise, one could generate initial configurations of a certain phase, which accidentally

transform to another phase during the simulation. To calculate the isotherms we

performed simulations in the NV T ensemble and calculated the average pressure for

a given temperature and particle density. We plot only phase-space points where no

transition to a phase other than the initial one occurred. An exception is bcc, where

domain formation as well as transitions into I-43d occur. This mainly happens for

lower densities and temperatures and is indicated by the bend of the bcc-isotherm

at ̺ ≈ 1.04 for T = 0.92 and ̺ ≈ 0.95 for T = 0.6. For each isotherm we calculated

NV T trajectories of length τ = 300 for 50 different densities.

Following each crystalline phase isotherm to lower densities, the system rapidly

melts into a liquid. Liquid Lennard-Jonesium freezes into bcc at increasing densities,

whereas for lower densities cavitation takes place (see for example [75]), i.e., the

system exhibits either vacuum cavities or gaseous bubbles.
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Figure 2.4.: Isotherms for hcp, fcc, bcc, liquid and I-43d structures of Lennard-

Jonesium in their region of mechanical stability are plotted for three

different temperatures .

For the isotherms at T = 0.15 all configurations which were initially in the liquid

phase transform rapidly into a crystalline phase. For densities lower than ρ ≈ 1.0

the pressure at a given density is identical for both bcc and I-43d and a mixture

of both phases occurs. Above ρ ≈ 1.0, a clear separation between the pressures of

these phases can be observed.

We have generated the training set by carrying out molecular dynamics simula-

tions for various densities and temperatures both in the NV T and NPT ensembles

with periodic boundary conditions and a cutoff of 2.6 for the Lennard-Jones pair in-

teraction. The dynamics of the system was followed with time-reversible integrators

using a Nosé Hoover chain thermostat [76, 77] and a time step of ∆t = 5 × 10−3.

In the simulations in the NPT ensemble, we only allowed the rectangular simula-
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tion box to fluctuate isotropically, i.e., all box vectors are scaled equally keeping

their angle fixed. The system sizes were chosen such that a perfect crystal of the

desired structure fits in the simulation box. In particular, these particle numbers

are Nhcp = 1440, Nfcc = 1372, Nbcc = 1458, NI-43d = 2000 and Nliq = 1450. For

each phase, we computed roughly 20 trajectories of length τ = 1.5× 103 at different

pressures and temperatures. To obtain an accurate neural network it has proven

particularly important to train the network with information obtained for a broad

range of pressures/densities. Here we use configurations obtained at T = 0.15 and

T = 0.92 and pressures ranging from P = −5 to P = 15.

From these molecular dynamics simulations we picked 30,000 local configuration

for each phase and to avoid correlations between them we used only every 100th

MD step. From each configuration we extracted only a few local environments to

further reduce correlations. Each local environment is then assigned the structure

of the simulated phase. The assigned structure is encoded in the structure vector as

described in Sec. 2.2. If, for instance, the assigned structure is hcp, the corresponding

structure vector is given by ỹ = {0.9,−0.9,−0.9,−0.9,−0.9}, and other structures

correspond to a different positive component. Note that the value of 0.9 rather than

1.0 is selected, because the activation functions of the neural network are normalized

to return values in the interval from -1 to 1. In total, the training set includes

150,000 local configurations with respective structure vectors. This particular way

of assigning the structure type to the local configurations implicitly assumes that

during the entire length of the molecular dynamics simulation there is no phase

change, not even locally or transiently. We have verified, both by visual inspection

and by monitoring the energy and other quantities, that indeed no phase transitions

take place in our simulations. From the same MD simulations we also extracted a

test set of 22,000 configurations in total.

Symmetry functions

An accurate neural network for the recognition of local configurations relies on sym-

metry functions that carry sufficient information on the geometric features of local

atomic arrangements. Appropriate symmetry functions can be constructed based on

the distributions of distances and angles in the local environment of a given atom as

depicted in Fig. 2.5. The positions and widths of the maxima and minima of the ra-

dial distributions functions shown in panel (a) guide the selection of the parameters
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governing the radial part of the symmetry functions (in particular the symmetry

functions of type 2 and 3). For instance, a symmetry function sensitive to particles

a distance R = 1.55 should provide information to distinguish between hcp and

fcc from liquid and bcc. Similarly, symmetry functions responsive to distances of

R = 1.9 should carry important information because the radial distribution functions

of all crystalline phases have a maximum at this position, which is also the distance

at which the local environments of fcc and hcp start to differ. The angular distribu-

tions of the first and second shell around the central atoms, shown in panels (b) and

(c) of Fig. 2.5, supply useful information for the definition of the angular parts of

the symmetry functions. In the first shell, angles α = 115◦, 120◦ and 150◦ appear to

be important while in the second shell the angles α = 50◦, 80◦, 130◦ and again 115◦

should be considered. Based on such considerations we have defined a set of 45 sym-

metry functions designed to detect the geometrical features of the various structures.

In practice a sub set of the symmetry functions given in subsection 2.2.2 is sufficient

for structure detection. The parameters of these symmetry functions are listed in

Tab. 2.1 at the end of this chapter. For the cutoff function given in Eq. (2.13) we

have used ǫc = 0.2σ and αc = 30σ−1.

Neural network training

Based on the training set and the symmetry functions described above, we have

determined the weights and bias values for a 45 × 35 × 35 × 5 network using the

Kalman filtering technique. In this learning procedure, which takes a few days

of computation time using a highly parallelized CUDA [78] program running on a

cluster of GPUs, a total of 3050 parameters are optimised. The number of output

nodes is given by the number of phases one would like to distinguish and the number

of input nodes is equal to the number of symmetry functions. We selected the number

of hidden nodes to be of the same order of the number of input nodes. We have also

tried neural networks with different number of hidden layers and a different number

of nodes in these layers, but have found that the topology given above results in the

most accurate structure prediction.

In the Kalman filtering technique we used for the learning procedure, the param-

eters of the neural network are adapted iteratively. The iteration is stopped when

the root mean square error (RMSE) between the predicted and the target structure

vectors does not change by more than a certain threshold in subsequent iterations,
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Figure 2.5.: Several spatial distribution functions for different phases of the Lennard-

Jones system. (a) Radial distribution functions g(R), (b) angular distri-

bution functions for particles within a cutoff of Rmax = 1.5, (c) angular

distribution functions in the shell with distance between Rmin = 1.5 and

Rmax = 2.42. Simulations of 3×104 equilibration and 3×104 production

steps were carried out in the NPT ensemble at T = 0.92 and P = 5.68.
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in the Lennard-Jones system. The root mean square error (RMSE)

between the predicted and target structure vectors of the training set

(blue curve) and the test set (red crosses) are shown as functions of the

number of parameter updates in the Kalman filter learning procedure.

The number of epochs, i.e. the number of times the procedure has

looped over the entire training set, is displayed on the x-axis at the top.

or epochs, of the Kalman filtering procedure. The iteration is also stopped if over-

fitting takes place, which may occur if due to the large number of parameters the

learning algorithm tries to generate a unique path through the network for each

entry in the training set, instead of doing this for a class of entries. One knows

that over-fitting takes place, if the RMSE of the training set continues to decrease

in the course of the iteration while the RMSE for the test set increases. A typical

learning curve of the neural network, i.e., the RMSE as a function of the number

of parameter updates, is shown in Fig. 2.6. As can be inferred from the figure, the

RMSE converges to a finite value rather than to zero due to the selected symmetry

functions, which do not contain sufficient information for a perfect structure assign-

ment. The RMSE of the test set and the training set are essentially identical, i.e.,

no over fitting occurs.
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Struture detection

Results for the structure assignment carried out with the neural network for the

Lennard-Jones system are shown in Fig. 2.7. The color-coded bars in this figure

indicate the fraction of structures that have been assigned a particular type. The

colours of the bars indicate to which type a structure is assigned and the labels on

the x-axis indicate the phase from which the structure is taken. As can be inferred

from the figure, the results obtained for the test set (left) are of the same quality as

the results for the training set (right), indicating that no over-fitting has occurred in

training the network. For all phases, structures are assigned with an accuracy better

than 90%. The fraction of misassigned structures is particularly small for structures

from the liquid phase and the I-43d phase, while for the hcp and bcc phases a few

percent of the structures are assigned the wrong type, probably because at lower

densities the local structures can deviate considerably from the perfect crystalline

arrangement due to thermal fluctuations.

2.2.6. Comparison to Steinhardt bond order parameters

For comparison, we have also determined local structure types for the Lennard-

Jones system using Steinhardt bond order parameters constructed from spherical

harmonics [49]. More specifically, we use the bond order parameters q̄4 and q̄6

obtained from the Steinhardt bond order parameters q4 and q6 by averaging over

the first neighbor shell [52] (see below). As shown previously, these order parameters

provide a practical and accurate way to distinguish between all phases occurring in

the Lennard-Jones system.

Given the distance vectors of the Nb neighbors of particle i, {rij} we can define

the complex vector

qlm(i) =
1

Nb(i)

Nb(i)∑

j=1

Ylm(rij), (2.18)

where Ylm(r) are the spherical harmonics. In order to provide a rotationally invariant

quantity, which is also real and a scalar we average over m:

ql(i) =

√
√
√
√

4π

2l + 1

l∑

m=−l

|qlm(i)|2 . (2.19)

The best choice for the neighbor cutoff is roughly the radius of the first solvation

shell. Instead of calculating only the single ql(i)’s, Lechner and Dellago [52] proposed
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Figure 2.7.: Distribution of structures assigned by the neural network for the test

set (left) and the training set (right) for the Lennard-Jones system. For

each of the different phases indicated on the x-axis, the heights of the

colour-coded bars correspond to the fractions of structures that have

been assigned the type specified by the color at the bottom.

averaging over the first solvation shell. This is done in the following way: Instead of

the average in Eq. (2.19) one can first average the qlm over all neighboring particles

q̄lm(i) =
1

Nb(i)− 1

Nb(i)∑

k=0

qlm(k), (2.20)

and then apply the usual average given in Eq. (2.19)

q̄l(i) =

√
√
√
√

4π

2l + 1

l∑

m=−l

|q̄lm(i)|2 . (2.21)

A scatter plot of the order parameters q̄4 and q̄6 computed for the configurations

in the training set of the neural network is shown in Fig. 2.8. The dots in the scatter
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plot are colored according to the phase from which the respective configurations were

taken. To distinguish between the various structures, we divided the (q̄4, q̄6)-plane in

regions as denoted by the lines in Fig. 2.8. Each configuration is then simply assigned

the structure corresponding to the region in which the respective pair of q̄4 and q̄6

is located. (An alternative way to assign structure types consists in determining the

frequency at which (q̄4, q̄6)-pairs occur in the various phases and then selecting the

phase with the highest frequency [42].) Results of the structural analysis carried out

in this way for the training set of the neural network are shown in Fig. 2.9. While

liquid and fcc structures are recognized very accurately, the structure assignment

is less accurate for hcp and, in particular, for bcc and I-43d structures. Thus, the

order parameters q̄4 and q̄6 do not contain sufficient information on these structures

as is also evident from the pronounced overlap of the hcp, bcc and I-43d phases in

the (q̄4, q̄6)-plane. In comparison to the structure assignment based on q̄4 and q̄6,

the neural network yields a roughly uniform accuracy for all phases with a higher

precision on the average.
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2.2.7. Parameters of symmetry functions

In this section we list the parameters of the symmetry functions for the Lennard-

Jones system (Tab. 2.1). Note that the additional use of G4, G5 and G8 type

symmetry functions did not increase the accuracy of structure detection. Hence,

these symmetry functions were omitted for the sake of computational efficiency.

Table 2.1.: Parameters of the symmetry functions for the Lennard-Jones system.

The cutoff parameters used in this case are Rc = 2.6σ, αc = 30σ−1, and

ǫc = 0.2σ. The integers in the first column of each table number the

symmetry functions.

G2 η (σ−2) Rs (Å) G3 κ (σ−2) G7 α (1) η (1)

1 1.38889 1.310 20 0.5 34 0.2 9.0

2 2.00000 1.820 21 1.5 35 0.6 8.4

3 3.12500 1.745 22 2.0 36 0.6 4.8

4 3.12500 2.180 23 3.5 37 0.8 9.9

5 4.08163 1.970 24 4.5 38 0.9 9.0

6 8.00000 1.940 25 6.5 39 1.3 7.8

7 8.00000 2.030 26 8.5 40 1.4 9.6

8 8.00000 2.075 27 10.5 41 2.0 9.6

9 12.5000 1.115 28 12.0 42 2.3 8.7

10 12.5000 1.880 29 14.5 43 2.7 8.7

11 12.5000 2.030 30 18.0 44 2.8 13.2

12 12.5000 2.570 45 2.9 18.0

13 22.2222 2.090

14 50.0000 2.150 G6 η (σ−2) ζ (1) λ (1) µ (σ−1)

15 50.0000 2.375 31 2.50000 7 -1 1.95

16 50.0000 2.600 32 2.85714 16 -1 1.10

17 200.000 2.300 33 3.33333 12 1 2.00

18 200.000 2.510

19 800.000 2.420
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Part II.

Application: Simulation of ice
On earth, under atmospheric conditions water can exist in three states of aggrega-

tion: vapor, liquid and ice. All these states are of crucial importance for life and

have been topic of scientific studies since the earliest civilizations in ancient times.

Nevertheless, many questions are still unanswered, for instance the mechanism of

freezing liquid water into ice. Depending mainly on the pressure applied to the

system, different solid phases can be produced, ranging from the well-known low

density hexagonal ice Ih and cubic ice Ic to the very dense ice X. Currently, six-

teen crystalline ice polymorphs and various non-crystalline amorphous structures

are known to exist.

In this part of the thesis we show computational results for different properties of

ice, such as radial distribution functions and infrared spectra for different ice phases,

a nucleation study of low pressure ice and discuss technical aspects of the simulation

of water.
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Chapter 3.

Proton ordering of cubic ice

It has been discovered that the rich phase diagram of water ice features two types

of first order phase transitions: a transition in which the underlying symmetries of

the molecular lattice undergoes structural changes, and a second type, in which the

molecular lattice remains essentially the same, but a reorientation takes place such

that the lattice symmetries also include the hydrogen atoms. Thus many of the

crystal lattices that ice adopts appear twice in the phase diagram; once with proton

order and once without. We have studied the proton ordered phase of cubic ice,

a phase of particular interest which exists on earth under atmospheric conditions.

So far, only proton disordered cubic ice has been observed, whilst the experimental

evidence of the proton ordered counterpart is missing. We conducted simulations∗ to

predict the characteristic IR spectrum of proton ordered cubic ice so as to provide a

tool by which to detect the presence of this phase in experiments†, thereby observing

proton ordered cubic ice the first time.‡

∗ Ab initio simulations were performed by Markus Macher of the group of Prof. Georg Kresse at

the Faculty of Physics of the University of Vienna.
† All experiments were done by Jürgen Bernard, Josef N. Stern and Thomas Lörting from the

Institute of Physical Chemistry of the University of Innsbruck.
‡ The main part of this chapter has been submitted as an article to Physical Review B with the

title ”Proton ordering of cubic ice Ic: spectroscopy and computer simulations”.
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3.1. Introduction

Despite its simple molecular structure, water has a remarkably complex phase dia-

gram. Application of pressure produces a variety of different solid ice phases with

densities considerably higher than that of ordinary hexagonal ice, ice Ih. To date,

sixteen thermodynamically stable or metastable crystalline phases (labeled with Ro-

man numerals as Ih, Ic, II, III, ..., XV) [79–81] and several amorphous phases [82–84]

have been discovered. While in some crystalline ice structures, including ice Ih as

well as cubic ice, ice Ic, only the oxygen atoms form a regular lattice and the protons

are disordered, in other ice phases, such as ice II, also the protons are arranged in

a regular way. Indeed, there exist pairs of ice structures, such as ice Ih and its pro-

tonically ordered counterpart ice XI, which have nearly identical oxygen sub-lattices

but differ in their proton order. Recently, Salzmann and collaborators have identi-

fied experimentally [80, 81] several previously unknown ice phases, completing the

pairings V/XIII, XII/XIV and VI/XV, which differ only in proton ordering.

For all ice phases, in which water molecules remain intact and are tetrahedrally

coordinated, the arrangement of protons in the protonically disordered structures

is essentially governed by the so-called ice rules, or Bernal-Fowler rules [79]. These

rules posit that (1) there are exactly two protons in proximity to each oxygen atom,

to which they are covalently bonded, and (2) there is exactly one proton between two

oxygen atoms, corresponding to a hydrogen bond between the neighboring molecules.

According to the ice rules, all hydrogen configurations satisfying these two require-

ments are equally probable, implying that the interactions between non-neighboring

molecules are not sufficient to stabilize a particular protonic arrangement. In this

approximation, the ground state is thus strongly degenerate leading to the residual

entropy of ice [79]. At very low temperatures, however, the difference in free energy

between proton ordered and proton disordered configurations can lead to a phase

transition to the proton ordered phase.

Experimentally, proton ordering transitions in crystalline ices are known to take

place at low temperature and to be severely hampered by slow transformation kinet-

ics. The highest ordering transition temperatures have been found for ice VII and

ice III, which order below T ∼ 270K at p > 2GPa to ice VIII [86] and below T ∼
170K at p ∼ 0.3GPa to ice IX [87, 88], respectively. These two hydrogen ordering

transitions in ice are the only ones known to take place in the absence of a catalyst.

Other ordering transitions in the intermediate pressure regime at p ∼ 0.5 – 1.5GPa
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Figure 3.1.: Four distinct proton arrangements in a unit cell of cubic ice contain-

ing 8 water molecules [85]. Green sticks denote hydrogen bonds and

the boundaries of the unit cell are shown as gray lines. Each config-

uration is a representative of one of the four symmetry inequivalent

proton arrangements with different Coulomb energies that exist in a

unit cell of this size. According to the calculations of Lekner [85], the

fully ferroelectric configuration (a) has the highest energy and the anti-

ferroelectric configuration (d) the lowest energy. Configurations (b) and

(c) are weakly ferroelectric and have intermediate electrostatic energies.
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take place at about T = 100 – 150K, namely ice V⇋ice XIII [80], ice VI⇋ice XV

[80] and ice XII⇋ice XIV [80]. These three transitions take place at an observable

rate by using HCl as a dopant, which increases the reorientation rates of individual

water molecules in the ice lattice, presumably by producing rotational Bjerrum L-

defects [79]. Ambient pressure hexagonal ice, ice Ih, shows the lowest experimentally

found ordering transition temperature of T ∼ 72K [89–96]. Such proton ordered

ice XI is typically produced from ice Ih using hydroxide doping, e.g., by freezing a

0.1M KOH solution.

While several protonically ordered ice phases have been prepared and analyzed in

the laboratory, the proton ordered counterpart of cubic ice Ic has not been observed

to date. In ice Ic, which is metastable, the oxygen atoms are arranged on a diamond

lattice corresponding to a ABCABC... stacking of the puckered layers of hexagonal

rings orthogonal to the c-axis. (In hexagonal ice, ice Ih, the stacking sequence is

ABABAB... leading to a Wurtzite-like arrangement of the oxygen atoms.) The first

coordination shell, however, is identical for both ice Ih and Ic such that one may

expect ice Ih and ice Ic to proton order under similar conditions.

To study the energetics of proton arrangements in ice Ic, Lekner computed the

electrostatic energies of all 90 proton configurations satisfying the ice rules in a pe-

riodically replicated unit cell of 8 water molecules [85, 97]. Due to the degeneracy

of the Coulomb energy, there are only four classes of configurations with different

energies, examples of which are shown in Fig. 3.1. Out of these, the perfectly or-

dered anti-ferroelectric proton configuration has the lowest electrostatic energy while

the ferroelectric structure has the highest electrostatic energy. Weakly ferroelectric

configurations have intermediate energies. This general trend is confirmed by calcu-

lations for larger unit cells such that, based on these results, thermodynamically one

expects a transition to an anti-ferroelectric phase for ice Ic at sufficiently low tem-

peratures. The purely electrostatic calculations of Lekner, however, are contrasted

by recent ab initio (density functional theory) calculations, according to which the

ferroelectrically ordered structure is the energetically most stable one. Similar dif-

ferences between ab initio results and calculations based on empirical force fields

have been reported also for the energetic ordering of various proton ordered forms

of hexagonal ice [98]. Most likely, such discrepancies are due to polarization effects

[99], which are fully taken into account in ab initio calculations but are neglected by

most empirical potentials. While the energetics of proton ordering plays an impor-

tant role for the low temperature proton ordered phases of ice, it may be their kinetic
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accessibility that determines which structures are observed in the experiments.

In this chapter, we investigate the proton ordering of ice Ic using a combination of

spectroscopic experiments and computer simulations. As discussed in detail below,

the shape of the librational band of the IR-spectra measured in our work, interpreted

on the basis of computed IR-spectra, indicates that hydroxide doped ice Ic partially

proton orders following an experimental protocol similar to that used previously to

proton order ice Ih. Interestingly, the combination of experiment and theory sug-

gests that cubic ice indeed shows a tendency to ferroelectric proton order, however,

kinetics may strongly influence the ordering transition.

The remainder of this chapter is organized as follows. In Sec. 3.2 we explain the

computational model and methods used to carry out the simulations and report their

results. Experimental procedures and results are described in Sec. 3.3 and discussed

and interpreted in Sec. 3.4 based on the spectra computed in our simulations.

3.2. Simulations

In order to detect proton ordered cubic ice in the laboratory it is important to be

capable of distinguishing the various degrees of protonic order that are consistent

with the ice rules. One possible way to do that is via the signature of proton or-

der on the vibrational spectrum obtained in infrared (IR) or Raman spectroscopy

experiments, methods that have been employed before to study proton order in ice

[100–102]. In the present work, we used molecular dynamics simulations comple-

mented with ab initio calculations to study the structural and dynamical properties

of various proton ordered ice Ic polymorphs. In particular, we determined radial

distribution functions and IR spectra for different proton ordered cubic ice candi-

dates and compared them to the ones for hexagonal ice Ih and its proton ordered

counterpart, ice XI. In doing so, we focused on translational and librational modes,

as these modes carry the most information about proton ordering and provide the

basis for the interpretation of the experimental IR-spectra presented in Sec. 3.3.

3.2.1. Model and Methods

All our molecular dynamics simulations are performed using the TIP4P/ice model

[103], developed to reproduce the properties of the various ice phases and, specifi-

cally, the phase diagram of ice. This model is described in detail in Sec. 5.1. Since
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the TIP4P/Ice model water molecules are rigid, only motions that do not involve

intramolecular vibrations can be studied such that our IR-spectra are limited to

the low frequency bands corresponding to translational and librational modes. To

investigate the higher frequency part of the spectrum a model with flexible water

molecules would be required [104] (comprehensive stuides of dielectric properties of

liquid water using different rigid as well as flexible potential models are presented

in Refs. [105, 106]).

To follow the dynamics of the system, we integrated the equations of motion

with a quaternion based integrator as described in Sec. 5.3 that maintains the rigid

geometry of the water molecules. Electrostatic interactions were treated with Ewald

summation [40] following the implementation details outlined in Sec. 5.4.

The initial configurations of the different proton ordered phases were generated by

periodically replicating the unit cells given in Ref. [85] for cubic ice and Refs. [91, 98]

for ice XI, respectively. The proton disordered counterparts were set up employing

a method suggested by Rahman and Stillinger [107] and modified by Ayala and

Tchijov [108], which is briefly described in section 5.2.

To quantify the structural and dynamical diversity of various degrees of proton

order, we have calculated energies, pair correlation functions as well as infrared

absorption spectra. The pair correlation function gAB(r) measures the conditional

probability to find an atom of species B at distance r from an atom of species A

relative to the same probability in a hypothetical ideal gas with the same density and

composition. In the present case we consider the pair correlation functions gOO(r),

gHH(r), and gOH(r) between pairs of oxygen atoms, pairs of hydrogen atoms, and

oxygen and hydrogen atoms, respectively. All of these functions can be extracted

from data obtained in neutron diffraction experiments [109].

Infrared absorption spectra are calculated in the classical approximation [110, 111]

as the Fourier transform of the time auto-correlation function 〈M(0) ·M(t)〉 of the
total dipole moment M ,

I(ω) ∝
∫ ∞

0
dt 〈M(0) ·M(t)〉 cos ωt , (3.1)

where ω is the vibrational frequency and angular brackets 〈· · · 〉 indicate a time or

ensemble average. The dipole-dipole correlation function can be written in terms of

the dipole moments µi of individual water molecules, which are determined by the

magnitude, sign and location of the charges on the TIP4P/Ice molecules as well as
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3.2. Simulations

by their orientation,

〈M(0) ·M(t)〉 =
∑

i,j

〈µi(0) · µj(t)〉. (3.2)

Note that while the cross correlation terms 〈µi(0) ·µj(t)〉, i 6= j, which quantify the

correlations between the dipole moments of different water molecules, are negligible

for high frequency modes associated with intramolecular stretching and bending

motions, they play an important role for the form of the spectrum in the range

characteristic for translations and librations involving collective motions of multiple

molecules [106, 112].

In general, the calculation of dielectric properties in simulations, as for instance

the dielectric constant of ice, is difficult. In contrast to liquid water, where the

H-bond network is rapidly rearranged, ice structures change only at very long time

scales. In order to sample all important fluctuations an extension of straightforward

molecular dynamics or MC integration has to be employed (see MacDowell and

Vega [113]). Since we are only interested in faster fluctuations of the dipole moment

and not in the computation of the dielectric constant, our calculation of the time

autocorrelation function (ACF) is not affected by this complexity and we could

gather all data from conventional MD trajectories.

We complemented the results of our simulations based on the TIP4P/Ice model

with energies and spectra computed ab initio using the Vienna ab initio simulation

package (VASP)∗ and PAW [114] potentials in the implementation of Kresse and

Joubert [115]. The outermost core radii for the O and H potentials are 1.52 and

1.1 a.u., respectively (corresponding to the standard potentials distributed with the

VASP package). All calculations were performed using the Perdew-Burke-Ernzerhof

(PBE) functional [116], as well as using van der Waals density functional theory

(vdW-DFT) [117]. We specifically used the vdW-DFT of Klimeš et al. termed

“optPBE”(optimized PBE) [118, 119]. The Brillouin zone was sampled at 6× 6× 6

k-points. To determine the equilibrium volume of each structure, all internal pa-

rameters (including relative lattice parameters) were optimized at seven volumes

around the equilibrium volume, and the energy vs. volume curve was fitted using an

equation of state. At the equilibrium volumes (at T = 0K), the vibrational frequen-

cies were evaluated using finite differences: all symmetry inequivalent atoms were

∗ Ab initio calculations were performed by Markus Macher of the group of Prof. Georg Kresse

at the Faculty of Physics of the University of Vienna.
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Chapter 3. Proton ordering of cubic ice

displaced along symmetry inequivalent directions, and the interatomic force con-

stant matrix was completed using symmetry considerations [120]. The vibrational

frequencies were determined at the Γ-point by diagonalization of the force constant

matrix. The dipole activity was calculated from Born effective charge tensors for

oxygen and hydrogen, respectively. For consistency with the molecular dynamics

simulations and to account for thermal expansion, the vibrational frequencies were

evaluated at the average densities computed in the MD simulations. The vdW-DFT

equilibrium volumes (at T = 0K) are, however, only 3 – 4% smaller than the average

MD volumes.

3.2.2. Simulation results

To investigate the structure of ice Ih and ice Ic, we calculated radial distribution

functions using NpT molecular dynamics simulations of N = 1000 (for the parental

cubic ice) and N = 896 (for the parental hexagonal ice) water molecules with or-

thogonal simulation boxes at temperature T = 170K and pressure p =0.1 bar. The

proton ordered counterparts were calculated using the same simulation boxes, but

are of lower space group symmetry, e.g., orthorhombic symmetry in case of ice XI.

Similarly, proton ordering of cubic ice Ic leads to configuration that are not cubic

but display a lower symmetry. When we speak about cubic and hexagonal ordered

structures in the following, we always refer to the symmetry of the disordered parent

structure. For the proton disordered configurations we also carried out simulations

at T = 70K, the temperature to which ice Ic is cooled in the experiments. Note that

at a temperature of T = 170K initially proton ordered configurations immediately

disorder on the experimental time scale. In the simulations, however, no proton

disordering is observed during the entire simulation because the simulation time is

shorter than the time scale of proton disordering. In all simulations, a time step

of 2 fs and a Lennard-Jones cutoff of 3σ were used. The same cutoff was used for

the real space part of the Ewald summation, where for the reciprocal space 1152

k-vectors were employed.

All simulations were performed for a hydrogen mass of mH = 1 and an oxygen

mass of mO = 16, except for the IR spectra at 170 K, where also the deuterium mass

mD = 2 was used. The total length of the simulations was 5 ns in each case. Aver-

age densities and energies computed in these MD simulations are listed in Tab. 3.1

alongside with the electrostatic energies computed by Lekner [85, 97] as well as the
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3.2. Simulations

Table 3.1.: Average densities 〈ρ〉 = mH2ON/〈V 〉 and average potential energies per

molecule 〈Epot〉 for the cubic and hexagonal ice phases at temperatures

T = 70K and T = 170K, respectively, and pressure p = 0.1 bar. Also

shown are the Coulomb energies ECoul calculated by Lekner [85, 97] and

the cohesive energies Ecoh/ERPA per molecule computed using density

functional theory at T = 0K and p = 0bar. All energies are stated with

respect to the corresponding energy of the structure ice Ic (ord. d). The

statistical errors were calculated by block average analysis [40] and are

given as single numbers in round brackets, which correspond to the error

in the last digit.

ice 〈ρ〉
70K

〈ρ〉
170K

〈Epot〉70K a 〈Epot〉170K a ECoul
b Ecoh

c ERPA

phase ( kg
m3 ) ( kg

m3 ) ( kJ
mol

) ( kJ
mol

) ( kJ
mol

) ( kJ
mol

) ( kJ
mol

)

ice Ih 930.17 (2) 919.00 (3) 0.0098 (2) 0.0169 (5)

ice XI (Cmc21) 930.31 (3) 919.12 (2) 0.0471 (2) 0.0547 (5) 0.750 -0.492

ice XI (Pna21) 929.95 (2) 919.25 (3) −0.0195 (2) −0.0250 (5) -0.032 -0.096

ice Ic 932.11 (2) 919.89 (2) 0.0449 (2) 0.0524 (4)

ice Ic (a, I41md) 929.32 (2) 918.39 (2) 0.2319 (2) 0.2299 (5) 0.816 -0.531 -0.521

ice Ic (b, Pna21) 932.29 (2) 920.66 (3) 0.0364 (2) 0.0333 (4) 0.408 -0.261 -0.212

ice Ic (c, P41) 932.24 (2) 920.51 (2) 0.0277 (1) 0.0261 (5) 0.204 -0.106 -0.068

ice Ic (d, P41212) 932.57 (3) 920.63 (3) 0.0000 0.0000 0.000 0.000 0.000

a The total average potential energy per molecule of the reference structure (d) at T = 70K is

〈Epot〉70K = −67.0872 (2) kJ/mol and at T = 170K 〈Epot〉170K = −64.3298 (3) kJ/mol.
b Relative Coulomb energies calculated by Lekner [85, 97] for a simplified model at T = 0K for

the parameters q = 0.5 e, R = 2.75 Å, q2/R ≈ 1.309 eV and f=0.35 in Lekner′s notation.
c The cohesive energy per molecule of the reference structure (d) with respect to infinitely sep-

arated water molecules is Ecoh = −63.813 kJ/mol.

65



Chapter 3. Proton ordering of cubic ice

0

2

4

6

8

g
O

O
(r

)

hexagonal

cubic

disordered
ordered

0

1

2

3

4

5

6

 2  4  6  8  10

g
O

H
(r

)

r (Å)

hexagonal

cubic

disordered
ordered a
ordered b
ordered c
ordered d

Figure 3.2.: Radial distribution functions gOO(r) and gOH(r) for proton disordered

hexagonal and cubic ice as well as their proton ordered counterparts at

T = 170K. Both the oxygen-oxygen as well as the oxygen-hydrogen

radial distribution functions are nearly identical in all cases including

proton ordered and disordered configurations. The curves labeled a, b,

c, and d correspond to the proton orderings shown in Fig. 3.1.Note that

the peaks corresponding to the intramolecular OH- and OO-distances

lie outside the range of the figure.

energies determined in our ab initio simulations. The electrostatic calculations for

the idealized structures and the MD simulations were carried out at T = 170K and at

T = 70K. They agree in the energetic ordering of the various structures both finding

that the anti-ferroelectric structure (d) has the lowest energy and the ferroelectric

structure (a) has the highest energy, while structures (b) and (c) have intermediate
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the various proton ordering patterns shown in Fig. 3.1.
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Chapter 3. Proton ordering of cubic ice

energies. The energies obtained using density functional theory, however, display the

reverse energetic order but agree well with energies computed previously using DFT

methods [121] (for the sake of comparison, we note that the structures (a),(b),(c)

and (d) correspond to the space groups I41md, Pna21, P41, P412, respectively). To

double check the density functional theory data, we performed more accurate calcu-

lations using exact exchange and the random phase approximation (EXX-RPA) for

the correlation energy [122, 123]. These calculations were also extended to ice II,

VIII, for which highly accurate diffusion Monte Carlo results are available [124]. In

these cases (ice II, ice VIII, ice Ih), we found excellent agreement with the published

diffusion Monte Carlo validating the EXX-RPA. The EXX-RPA results confirmed

the order of the cubic phases predicted by density functional theory: The ferro-

electric structure (a) has the lowest energy the anti-ferroelectric structure (d) has

the highest energy, and the structures (b) and (c) have intermediate energies. This

discrepancy, observed before for hexagonal ice [98], is probably due to the neglect

of polarization effects in the TIP4P/ice, which are expected to be particularly pro-

nounced in ferroelectric structures leading to a lowering of their energy. We would

like to emphasize that predicting the correct energetic ordering is known to be dif-

ficult in case of proton ordered ices. Vega et al. [125] have shown that SPC/E,

TIP4P and TIP5P predict a transformation from ice Ih to the anti-ferroelectric

Pna21 structure [126] below 70 K. The ferroelectric Cmc21 structure, which is ob-

tained in experiments, is predicted to be the lowest lying H-bond isomer only in the

model by Nada and van der Eerden (NvdE) [127].

The radial distribution functions of proton disordered hexagonal ice, ice Ih, and

its proton ordered counterpart, ice XI, as well as disordered cubic ice, ice Ic, and

its four proton ordered candidates are given in Figures 3.2 and 3.3. As expected,

the oxygen-oxygen radial distribution functions gOO(r) feature no significant differ-

ences for all the order/disorder ice polymorph pairings. In addition, the oxygen-

hydrogen radial distribution function gOH(r) show only minute deviations and only

the hydrogen-hydrogen radial distribution function gHH(r) differ appreciably. How-

ever, these differences are small making it exceedingly difficult to distinguish between

different variants of protonically ordered cubic ice based on the comparison of pair

correlation functions determined experimentally from X-ray or neutron diffraction

data [109].

More detailed structural information on proton ordering is encoded in vibrational

spectra. For the calculations of the IR spectra using MD simulations we have set
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Figure 3.4.: Normalized velocity ACF of the hydrogen atom for different ice struc-

tures. The correlation functions for the proton ordered systems are

displaced vertically for greater clarity.

up cubic and hexagonal lattices consisting of N = 1000 and N = 896 molecules,

respectively. The time step was set to 2 fs, dipole-dipole time correlation functions

were calculated for times up to 20 ps, and in total each system was propagated for

40 ns using a Nosé-Hoover NV T integrator. Here, the Lennard-Jones cutoff and

the Ewald summation real space cutoff were chosen to be 3σ. The densities for the

different arrangements of hexagonal and cubic ice were set according to Table 3.1.

In order to speed up the convergence of the calculated IR spectra one can use

an approximation of Eq. (3.1), where the total dipole-dipole correlation function

is replaced by a sum over the single molecule velocity auto-correlation functions

〈vO(0) · vO(t)〉, 〈vH(0) · vH(t)〉 and 〈vO(0) · vH(t)〉 [106]. In the librational region

the main contribution comes from the hydrogen-hydrogen correlation function, thus

all other ACFs can be neglected. The auto-correlation functions

Cv(t) =
〈vH(t)vH(0)〉
〈|vH(0)|〉2

for all studied phases are plotted in Fig. 3.4. While the Fourier transform of the total

dipole moment ACF (Eq. (3.1)) was used to generate all IR spectra shown below,

the approximation described here yields almost identical results. The influence of

69



Chapter 3. Proton ordering of cubic ice

In
te

n
s
it
ie

s
 (

a
.u

.)

hexagonal (disord.)

hexagonal (Cmc21)

hexagonal (Pna21)

 0  100  200  300  400  500  600  700  800  900  1000 1100

ω/2πc (cm
−1

)

Figure 3.5.: IR spectra for various proton ordered and disordered forms of hexag-

onal H2O ice obtained from molecular dynamics simulations at T =

70K. Vertical bars in the bottom plots indicate the results of ab initio

simulations at T = 0K and are plotted on a logarithmic scale.

the particular correlation functions on different IR frequency bands in the case of

liquid water is discussed in more details in Ref. [106].

Figures 3.5 and 3.6 show the computed IR spectra (using Eq. 3.1) for hexago-

nal and cubic ice, respectively. In general, the computed spectra are in reasonable

agreement with experimental spectra. The broad librational band near 850 cm−1

is in good agreement with experimental spectra of both cubic and hexagonal ice

(see dashed line in Fig. 3 of Ref. [128]). Also in the far-infrared (0 – 400 cm−1)

the agreement is reasonable, even though there are some discrepancies especially

regarding the band intensities. Hexagonal ice shows three broad bands in this area

[129], which are centered at 160, 230 and 370 cm−1. In our simulations there are

three broad bands centered at 70, 195 and 310 cm−1. The absorption spectra of

the proton disordered forms of hexagonal and cubic ice are clearly distinguishable

from those of the various proton ordered phases, which split up in several bands,
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Figure 3.6.: IR spectra for various proton ordered and disordered forms of cubic H2O

ice. Lines indicate results from the MD simulations carried out at T =

70K. In the topmost plot we also show results for disordered cubic ice

at T = 170K and the experimental spectra (black dotted lines, given

also in Fig. 3.9). Vertical bars in the bottom plots indicate the results

of ab initio simulations at T = 0K.
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Figure 3.7.: IR spectra for various proton ordered and disordered forms of cubic

H2O (solid) and D2O ice (dotted), respectively. All MD simulations

were carried out at T = 170K.

the number and position of which depend on the particular proton ordering pattern.

Thus, these spectra provide a means of detecting the presence of proton order ex-

perimentally. IR spectra computed by density functional theory for proton ordered

cubic ice at T = 0 are shown in Fig. 3.6 as vertical bars and confirm this conclu-

sion. The length of each bar shown in Fig. 3.6 corresponds to the dipole activity

of the corresponding mode. Since the ab initio spectra were determined using a

harmonic approximation, finite temperature broadening of the individual peaks is

entirely absent. The overall structure of the ab initio spectra is, however, fairly

similar to the spectra obtained from the MD simulations, although in the density

functional theory calculations the librational band (550 – 1100 cm−1) is shifted by

about 100 cm−1 to higher frequencies. For instance, for structure (a) a single li-

brational band at 930 cm−1 is predicted using density functional theory, whereas a

20 cm−1 broad peak at 856 cm−1 is observed in the molecular dynamics simulation.

Likewise four peaks are predicted for structure (b), which correspond well to the four
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peak structure observed in the molecular dynamics simulations. A further notewor-

thy difference between the ab initio and the MD results is that the average frequency

calculated ab initio shifts significantly to the blue with increasing ferroelectric or-

dering. We find average frequencies of 930, 900, 880 and 850 cm−1 for cubic ice with

ordering (a) (ferroelectric), (b) (weakly-ferroelectric), (c) (weakly-ferroelectric) and

(d) (anti-ferroelectric), respectively. In the MD simulations the shift is smaller with

frequencies of 849, 833, 826 and 816 cm−1 for the four phases. The difference is most

likely related again to the neglect of polarization effects in the MD simulations using

the TIP4P/ice model.

In addition to the spectra shown in Fig. 3.6, which were obtained for H2O at

70K, in Fig. 3.7 we present also 170K spectra for H2O and D2O. While for heavy

water a clear shift to lower frequencies in the librational region can be observed, the

qualitative form of the spectra remains the same.

We have also investigated the possibility to probe proton order based on the OH-

stretching band using a recently developed computational method [130, 131] that

relates the OH-frequency to the electric field acting on the proton. Such an analysis

can therefore be carried out also for rigid water molecules, in which the geometrical

constraints prevent the OH-bond from vibrating. To first order approximation, the

Raman frequency shift is proportional to the electric field ∆ω ∝ E, where E is the

electric field measured at the hydrogen position and projected onto the O-H bond

axis. Thus, using the electric field distributions one can easily calculate the corre-

sponding Raman spectrum in the O-H stretching region. E-field distributions and

auto-correlation functions for all our structures are plotted in Fig. 3.8. The system

and simulation parameters were the same as described above for the simulations to

calculate the pair correlation functions. The normalized correlation function

CE(t) =
〈E(t)E(0)〉
〈E(0)〉2

was calculated up to 4 ps, where each whole trajectories spanned a period of 1 ns.

The small deviations in these quantities suggest that the resulting spectra would

not show significant differences between the studied structures. This is because

the coupled OH-frequency is less suitable for probing proton ordering than the li-

brational/translational bands and the decoupled OH- or OD-stretching modes for

slightly deuterated H2O samples or slightly hydrogenated D2O samples [87, 132]. For

this reason, we have not undertaken further efforts to calculate the Raman spectra

in this frequency region.

73



Chapter 3. Proton ordering of cubic ice

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000

C
E
(t

)

t (fs)

hexagonal

cubic

 0

 0.005

 0.01

 0.015

−320 −240 −160

p
(E

)

E
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3.3. Experiments∗

As mentioned in the Introduction, ice Ih and ice Ic differ in their layer stacking but

have an identical local structure. One would therefore expect that ice Ic shows a

similar proton ordering transition as ice Ih. The experimental protocol to proton

order ice Ih involves bringing the sample to ∼ 50K, which is thought to produce

some ferroelectric ice XI seeds, and then waiting at ∼ 55 – 67K for several days or

weeks, which allows the ice XI domains to grow [92–96]. Typically, about 50 – 60%

of the hexagonal ice sample orders using this procedure. Since the local ordering

is identical in cubic and hexagonal ice, we anticipate that a similar protocol might

allow for hydrogen ordering in cubic ice. To investigate this possibility we have

carried out experiments on cubic ice. As discussed in detail below, our observations

indicate partial proton ordering detected by comparison of the measured IR-spectra

with the results of our simulations.

∗ This section describes experiments done by Jürgen Bernard, Josef N. Stern and Thomas Lörting

from the Institute of Physical Chemistry of the University of Innsbruck.
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To carry out our experiments, we prepared an aqueous 0.1M KOH solution con-

taining 2mol% of D2O. The use of a small fraction of D2O allows for the observation

of the decoupled OD-stretching mode in infrared spectra, in addition to the coupled

OH-stretching mode. KOH introduces substitutional point defects in the ice lattice,

which increase the proton mobility and hence reorientational dynamics drastically.

We use 0.1M KOH in order to reach a saturation level of these substitutional point

defects. In principle, also lower concentrations such as 0.01 M KOH might be suit-

able for reaching this enhancement in the dynamics. Cubic ice was prepared by

spraying droplets of this solution of about 3µm in diameter into a vacuum-chamber

containing a He-cryostated optical window, where the window was first kept at

∼ 77K. This procedure is known to produce hyperquenched glassy water (HGW),

which crystallizes to cubic ice upon heating to ∼ 160K [133, 134]. Cubic ice pre-

pared in this way shows a comparably low number of hexagonal stacking faults and

high cubicity index as judged from the intensity of the X-ray reflexes corresponding

to the hexagonal faults [134].

The crystallization from HGW to cubic ice was monitored by in situ FT-IR spec-

troscopy, and the librational band of cubic ice at ∼ 160K is depicted as the blue

curve in Fig. 3.9. Cubic ice was then cooled to ∼ 60K for a few hours and then

heated to 70K for about 80 hours. The spectrum recorded after this procedure is

depicted in red in Fig. 3.9. It can clearly be noted that the half-width decreases

for all observed bands. The half-width of the decoupled OD-band at ∼ 2420 cm−1

(not shown in the figure) decreases from 52 to 23 cm−1. The librational band de-

picted in Fig. 3.9 shows a decrease in the full width at half maximum (FWHM) from

251 cm−1 to 196 cm−1, i.e, to about 80%. In addition to the narrowing also some

structuring of the band is apparent such that it can no longer be understood as a

single Gaussian band. The band also looses intensity between 500 and 600 cm−1.

From band decomposition analysis two intense Gaussian components at 837 cm−1

and approximately 905 cm−1, as well as a less intense band at 995 cm−1 are needed to

explain the observed band shape. Note that a similar band narrowing was observed

in IR spectra of the partial ordering of hydrogen atoms in ice Ih [128]. However,

while there is no difference between cubic ice and hexagonal ice at 160K, shoulders

emerge at different positions after partial hydrogen ordering, i.e., the hydrogen order

pattern differs between proton ordered cubic ice and ice XI.

We now turn to the question whether the band changes seen in Fig. 3.9 are a

result of a simple thermal effect or whether proton-ordering can be inferred from
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Figure 3.9.: Librational band of the IR spectra of cubic ice determined experimen-

tally at T = 160K (black line) and after 80 hours at T = 70K (red

line).

the data. Figure 3.10 shows the evolution of the librational band in KOH-doped ice

Ic when changing the temperature step by step from 45K to higher temperatures.

The temperature-broadening of the band is best illustrated in the magnified inset

of Fig. 3.10. It is quite small when increasing the temperature in the range 45

– 70K (6 cm−1 per 25K), but larger when changing the temperature from 70K

to 75K (4 cm−1 per 5K). Above 75K the temperature broadening is again quite

small (5 cm−1 per 25K). This shows that an additional effect, besides thermal

broadening, influences the change in half-width of the librational band between 70K

and 75K, which we interpret to be proton-disordering of partially ordered cubic ice.

The occurrence of the proton disordering temperature between 70K and 75K in

cubic ice seen in Fig. 3.10 compares to the known proton-disordering temperature

of 72K in hexagonal ice [89–96]. This implies that the phase boundary between

ordered and disordered cubic ice is located at almost the same temperature as the

phase boundary between ordered and disordered hexagonal ice. The two thick lines

76



3.3. Experiments

 500  600  700  800  900  1000  1100

In
te

n
s
it
ie

s
 (

a
.u

.)

ω/2πc (cm
−1

)

  45 K
  60 K
  65 K
  70 K
  75 K
  70 K
100 K

750 760 770 780

~ 6 cm
−1

Figure 3.10.: Libration mode of ice Ic doped with KOH at different temperatures,

recorded after the following steps. Ice Ic doped with KOH was prepared

by vitrification of the aqueous solution (200.2 g 0.1 M KOH(aq) + 4.9 g

D2O) at 50K using the technique of hyperquenching and subsequently

crystallizing the amorphous deposit by bringing the sample holder for

half an hour to 140K. The following temperature protocol was then

applied while continuously recording IR spectra: 14 h at 45K, 2 h at

50K; 20.5 h at 60K; 7.5 h at 65K; 22 h at 70K; 23 h at 75K; 7 h at

80K; 2 h at 90K and 2h at 100K. After these steps the temperature

was decreased again to 70K for 18.5 h. Selected spectra as marked

are shown in the figure and magnified in the inset. The two thick

lines show the librational mode after 22 h at 70K (blue line), after the

sample was kept at 45 – 65K before, and after 18.5 h at 70K (black

line), after the sample was kept at 100K before.
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in Fig. 3.10 compare two librational bands recorded for KOH-doped ice Ic, both

determined at 70K after having kept the sample several hours at 70K: the narrower

band (blue line) was obtained after several days of waiting at temperatures below

70K and then heating to 70K, whereas the broader band (black line) was obtained

after cooling from 100K to 70K, without any waiting time at temperatures below

70K. In case of the proton-ordering transition from hexagonal ice to ice XI it was

shown that the proton-ordered phase grows much faster at 70 K if it was nucleated

before at temperatures below 70K, e.g., at 60K [89–96], whereas by cooling from

100K to 70K, without a prior nucleation step at lower temperature, the proton-

ordering is much slower in case of KOH-doped hexagonal ice. We expect this to

be similar in case of KOH-doped cubic ice. The difference in half-width at half-

maximum of about 6 cm−1 between the two spectra taken at 70K seen in Fig. 3.10

clearly demonstrates that this expectation is really seen in the spectra. Indeed,

an effect other than motional narrowing is operative, which we explain as proton-

ordering when the proton-ordered phase was nucleated by keeping the sample for

several days between 45K and 65K.

Figure 3.11 shows a comparison of the two librational bands recorded at 70K

on KOH-doped cubic ice (black and blue traces, both taken from Fig. 3.10) and

on undoped cubic ice (red trace), which was kept several days at 45 - 65K before.

Clearly, the librational band is narrower in the case of KOH-doped ice. In this

case the difference in half-width is even about 10 cm−1. This shows that KOH-

doping is required to achieve proton-ordering in cubic ice, that a smaller degree of

proton-ordering is also reached when cooling directly from 100K to 70K, without

the nucleation step at 45 – 65K, whereas in the case of undoped cubic ice proton-

ordering cannot be inferred from the data. Further systematic studies about the

dependence of the half-width of the librational band on the thermal history using

much longer waiting times (on the order of months) are necessary to find conditions

that might allow for a higher degree of proton-ordering, or even to access the fully

proton-ordered state of cubic ice. Also an investigation of the influence of other

dopants (e.g., NH3, HCl, etc.) is of interest in this context.

3.4. Discussion

Assuming that the band structuring and narrowing that is observed in addition to the

pure thermal narrowing in our spectra indeed arises from partial hydrogen ordering
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3.4. Discussion

in cubic ice, we may now compare the observed band with the predicted spectra

of Fig. 3.6. For protonically disordered cubic ice, the predicted librational band

centered at ∼ 800 cm−1 coincides almost perfectly with the experimentally observed

librational band both in position and width, which is about FWHM ∼ 200 cm−1.

Our MD simulations predict that depending on the particular type of proton ordering

this band splits into up to 6 bands, all of which show a FWHM of about ∼ 20 cm−1.

That is, the FWHM of the ordered forms is about 10% of the FWHM in case of

the disordered form. In the experiment, the FWHM in the possibly ordered form

of cubic ice is reduced to about 80%, thus suggesting that the degree of hydrogen
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Figure 3.11.: Libration mode of ice Ic doped with KOH (preparation see caption

of Fig. 3.10) compared with undoped ice Ic prepared using the same

procedure. The following temperature protocol was then applied while

continuously recording IR spectra for undoped ice Ic: 19 h at 45K, 4 h

at 50K, 19 h at 60K, 20 h at 65K, 7 h at 70K and 16h at 75K. The

red line shows the librational mode of undoped ice after 7 h at 70K

and is compared to the two 70K spectra of KOH-doped ice Ic from

Fig. 3.10.
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Chapter 3. Proton ordering of cubic ice

ordering achieved experimentally is no more than 20%.

Band deconvolution suggests that three bands contribute to the experimental

band shape. The main peak at 837 cm−1 is most likely related to the predominant

disordered cubic ice and shifts only little compared to the original disordered cubic

ice phase (816 cm−1). This small shift of 20 cm−1 might be related to the lower

temperature of 70K compared to 160K. While usually there is a blue shift when

lowering temperature, here we observe a red shift, which is probably related to

the anomalous temperature dependence of ice [79] and may also result in positive

Grüneisen parameters for several modes [135]. Furthermore, in the experiment a

distinct shoulder at 905 cm−1 is observed accounting for about one third of the

integrated intensity.

This band structure of the partially ordered phase seems to be consistent with a

more pronounced ferroelectric order, which both in the DFT calculations as well as

in the MD simulations leads to a pronounced blue shift compared to anti-ferroelectric

order. In particular, for the ferroelectric structure (a) DFT predicts a strong single

peak at 930 cm−1 while the vibrational band of the anti-ferroelectric order (d) is

shifted to the red by about 80 cm−1 on the average. In the TIP4P/ice simulations

the dominant peak for cubic ice (a) as well as (b) is located at a lower frequency of

856 cm−1, a difference of 70 cm−1.

The experiment also shows a weak but clearly resolved shoulder at 995 cm−1 ap-

proximately 90 cm−1 above the main peak arising as a result of the conjectured

partial proton order. This side peak is not accounted for by the ferroelectrically or-

dered structure (a), which shows only one single peak. Such side peaks are, however,

present both in the cubic ordered variants (b) and (c), with structure (b) showing

very similar ratios between the main peak and the higher frequency shoulder as in

the experiment. In fact, the magnitude of the two band splittings is about 70 cm−1

and 90 cm−1 in the experiment, and thus quite similar to the splittings of 90 cm−1

and 90 cm−1 predicted for the ordered structure (b) (see Fig. 3.6). The other three

ordered variants of cubic ice show quite different patterns and splittings. This might

suggest that the transformation occurs into structural variant (b) and not the low-

est energy structure ordered ice (a), so that the experimentally observed ordered

form does not necessarily need to correspond to the thermodynamically most stable

form, especially because kinetics is known to play an important role in the proton

ordering transitions of ice, as for instance observed in ice XIV [80]. It is also possible

that the experimental spectrum might develop into the spectrum of ordered ice (a)
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3.4. Discussion

with increasing time and increasing proton ordering instead of developing the peak

splittings predicted for structure (b).

Interestingly, the ordered variants of cubic ice also show shifts and/or splittings

of the acoustic and optical modes at < 400 cm−1 compared to disordered cubic ice

according to our simulations (see Fig. 3.6). That is, investigation of acoustic and

optical modes in the future by means of IR or Raman scattering seems to be a

promising tool for critically testing the type of proton ordering obtained experimen-

tally in cubic ice.

The temperature dependence of the librational band shape and width suggest

that the proton-order-disorder transition in cubic ice takes place at about 70 – 75K,

which is very similar to the proton-order-disorder temperature of 72K observed in

case of hexagonal ice. Furthermore, the degree of proton-ordering and narrowing

of the bands at 70K is clearly enhanced when employing a “nucleation”step at

temperatures of 45 – 65K. Whereas we observe in our experiments on KOH-doped

cubic ice at T < 75K a band narrowing in addition to the narrowing caused by

motional narrowing, we do not observe such an additional narrowing in case of

undoped, pure cubic ice on the time scale of days.

Finally, we compare our result presented here with the result obtained by Suga

[136], who was unable to observe the onset of proton ordering in cubic ice prepared

in the presence of a mole fraction of 1.8 × 10−3 KOH by measuring heat capacity

and encraty (i.e., the heat capacity divided by the temperature) in the temperature

range 13 – 100K. Suga suggests that his inability to observe proton ordering maybe

related to his route of preparing cubic ice, namely by heating the high-pressure ice

phase III/IX at ambient pressure to 160K. In particular, the fact that ”high-pressure

forms of ice reject their ionic impurities from the specimen” is at the origin of the

inability to produce proton-ordered cubic ice when going via high-pressure forms of

ice. Suga hence concluded that ”In order to realize the hypothetical ordered phase of

Ic, the deposition method of atomized aerosol from a KOH aqueous solution will be

worthy of trial”. This is exactly what we have done here, and so Suga’s expectation

that proton-ordered cubic ice maybe accessible via a route, which does not involve

high-pressure ice phases, has now turned out to be correct.

In summary, we have carried out FT-IR spectroscopy experiments combined with

molecular dynamics and ab initio computer simulations to study the proton order-

ing transition of ice Ic. We find that the librational band of ice Ic displays some

significant changes if the sample is subjected to an experimental protocol similar
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Chapter 3. Proton ordering of cubic ice

to that used before to proton order hexagonal ice. By comparison with theoretical

IR-spectra computed with the TIP4P/Ice model and using ab initio simulations we

find that these changes are best explained by assuming that the ice Ic sample un-

derwent a partial ordering transition. Based on a comparison of the computed and

measured librational spectra no unique assignment of the type of protonic order is

currently possible. While considering the intensity loss at low frequencies implies a

partial ordering into a ferroelectric structure, the number and relative positions of

the peaks obtained from deconvolution of the experimental data point to a weakly

ferroelectric structure. Further experiments and simulations will be necessary to

resolve this issue.
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Chapter 4.

Detection of ice structures

In order to study phase transitions in water and ice under high pressure, such as

the freezing from the liquid phase into high pressure ice phases, or solid-solid tran-

sitions between different ice structures, one requires an order parameter that clearly

distinguishes between the involved phases. In this chapter, we demonstrate that our

neural network detection method described in Chapter 2 can be used for this pur-

pose. We have developed different types of feed forward neural networks to detect

the ice phases Ih, Ic, II, III, V and liquid water. Furthermore, we apply our method

to the study of nucleation of super-cooled liquid water into hexagonal ice Ih.∗

∗ The main part of this chapter has been submitted as an article to the Journal of Chemical

Physics with the title ”Neural networks for local structure detection in polymorphic systems”.
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Chapter 4. Detection of ice structures

4.1. Motivation

As shown in Chapter 2, local bond order parameters based on spherical harmonics

perform well in detecting the various simple crystalline structures such as those

occurring in the Lennard-Jones systems. They are less accurate, however, when

applied to more complex structures such as liquid water and the various phases of

ice [54]. While modifications of these order parameters have been successfully used

to distinguish hexagonal ice (ice Ih) from liquid water [137], the high pressure phases

of ice (ice II, III, ...) are not separated sufficiently in this projection. Distributions

of the Steinhardt bond order parameters q4, q6, q8 and q10 calculated for the various
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Figure 4.1.: (left) Scatter plot in the (q4, q6)-plane for structures taken from liquid

water and from different phases of ice. To calculate the bond order

parameters only the positions of the oxygen atoms were taken into ac-

count. All results are obtained from NV T simulations carried out at

T = 270K and densities ̺Ih = ̺Ic = 910 kg/m3, ̺II = 1145 kg/m3,

̺III = 1115 kg/m3, ̺V = 1210 kg/m3 and ̺liq = 985 kg/m3. (right)

Distributions of q4, q6, q8 and q10 obtained for the same same systems.
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phases of ice, and shown in the right panel of Fig. 4.1, display a pronounced overlap.

The distributions do not separate even if they are spread out in two dimensions, as

shown in the left panel of Fig. 4.1. Note that to generate the plots of Fig. 4.1 we

have used configurations obtained for only a few temperatures and pressures, thus

the distributions overlap becomes even stronger if wider regions in the P -T -plane

are considered. One reason for the inability of the Steinhardt bond order parameters

to distinguish between the high pressure forms of ice is that these phases include

oxygens with different spatial environments. The unit cell of ice III, for instance,

features two distinct oxygen positions and for ice V there are even four unique oxygen

positions. For this reason using the averaged bond order parameters q̄4 and q̄6 leads

to an even worse separation for the high pressure phases of ice.

In an effort to enhance the recognition for ice structures several techniques have

been suggested. Chau and Hardwick [56] have developed an order parameter based

on detecting the occurrence of local tetrahedral structures in ice. (A scaled version,

which is defined in the range 0 to 1, is given in Ref. [57].) This method is very

accurate for the distinction between hexagonal or cubic ice I from liquid water,

but fails for the higher density forms of ice. Similarly, the maximum projection

method of Brukhno et al. [54] can be used to distinguish between liquid water and

hexagonal and cubic ice only. Here we demonstrate that an appropriately trained

neural network can be used to distinguish locally between liquid water and several

phases of ice (Ih, Ic, II, III, and V) over wide ranges of pressure and temperature.

4.2. Training set

All calculations for ice and liquid water were carried out with the TIP4P/Ice model

[103], which is is described in detail in Sec. 5.1. Using molecular dynamics simu-

lations, we generated training and test sets that consist of configurations for the

six studied water phases over a wide range of temperatures and densities, such that

configurations of highly metastable structures are also included. We carried out sim-

ulations in the NV T and isotropic NPT ensembles using a Verlet-like integration

scheme [76, 138, 139] as described in Sec. 5.3.

For each phase, we generated molecular dynamics trajectories at different pres-

sures and densities encompassing the entire range of mechanical stability. System

sizes were chosen such that the simulation box accommodates a defect-free crystal

of the respective type. In particular, molecule numbers of NIh = 896, NIc = 1000,
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Chapter 4. Detection of ice structures

NII = 960, NIII = 768, NV = 756 and Nliq = 940, were used for ice Ih, ice Ic, ice

II, ice III, ice V, and the liquid, respectively. Initial configuration were taken from

literature and prepared according to the methods described in Sec. 5.2.

Each molecular dynamics trajectory was 100 ps long and every 0.1 ps the envi-

ronmental information of a randomly chosen oxygen atom was stored and used to

generate an entry for the training or test set. A total of 100 trajectories were com-

puted yielding 105 configurations. The training and test sets were then generated

by computing the symmetry functions for each configuration and assigning to it the

structure type of the simulated phase. This way to construct the training and test

set relies on the assumption that during the molecular dynamics simulation the en-

tire sample remains in the original phase and defects or excursions to other phases

do not occur even transiently.

We calculated isotherms for each ice phase to identify the regions of mechanical

stability. Results are presented in Fig. 4.2. For each data point we averaged the

pressure over a period of 60 ps and 300 ps for the solid structures and the liquid, re-

spectively. For these calculations smaller simulation boxes were used. In particular,

the system sizes for ice Ih NIh = 360, for ice Ic NIc = 512, for ice II NII = 324, for

ice III NIII = 324, for ice V NV = 336 and for the liquid systems NLiq = 350 were

used.

4.3. Symmetry functions

To define symmetry functions capable of capturing the important details of local

structures we have computed radial distribution functions as well as the distributions

of O-O-O angles for all phases considered here. The results of these calculations are

shown in Fig. 4.3. As one can infer from Fig. 4.3b, for distances smaller than 3.25 Å

the angles α = 50◦, 72◦, 83◦, 105◦, 125◦, 154◦ appear to be useful symmetry function

parameters, where in the shell of distances between 3.5 Å and 5.5 Å α = 45◦, 61◦,

120◦, 136◦ are good candidates. Based on these distribution functions, we have

defined the symmetry functions listed in Tab. 4.1 in the last section of this chapter.

For these symmetry functions we have used a neighbor cutoff of Rc = 6 Å and the

parameters ǫc = 0.2 Å and αc = 30 Å−1, respectively. We have also prepared a set

of symmetry function parameters for a much larger cutoff of Rc = 8.234 Å. In both

cases, only the positions of the oxygen atoms are used to compute the symmetry

functions. Including also hydrogen positions or, equivalently, information on dipole
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Figure 4.2.: Isotherms for the water polymorph ice Ih, Ic, II, III, V and liquid water

for different temperatures.
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Figure 4.3.: Radial and angular distribution functions for different phases of water.

(a) Oxygen-oxygen radial distribution functions gOO(R) for low density

and high density forms of ice as well as liquid water. All curves except

the one for liquid water are shifted for better readability. (b) Distribu-

tions of the OOO-angle for atoms within a distance of Rcut = 3.25 Å from

the central atom. (c) Distributions of the OOO-angle for atoms within

the shell 3.5 Å ≤ R ≤ 5.5 Å around the central atom. All curves were

determined in NV T simulations at temperatures TIh = TIc = 210K,

TII = TIII = Tliq = 270K and TV = 240K. For the densities the values

̺Ih = ̺Ic = ̺liq = 1000 kg/m3 and ̺II = ̺III = ̺V = 1200 kg/m3 were

chosen.
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orientations, may improve the accuracy of the detection further.

4.4. Neural network training and structure detection

Using the training set and the symmetry functions described in the previous section

we have trained two different neural networks to distinguish local structures of ice Ih,

Ic, II, III, V and of liquid water. The two networks differ on the network topology,

35 × 30 × 30 × 6 and 39 × 35 × 35 × 6, and also in the cutoff radius, Rc = 6 Å

and Rc = 8.234 Å. With these cutoffs the local regions encompass two and three

neighbor shells, respectively. Results obtained with these two neural networks are

shown in Fig. 4.4. For the smaller cutoff the detection accuracy is between 85% for

ice V and 98% for ice III. With the larger cutoff the detection accuracy is nearly

100% for all phases. The spatial resolution, however, is reduced with the larger

cutoff.

4.5. Crystallization of supercooled water

In order to demonstrate the practical applicability of the neural network for structure

detection, we have used it to study the freezing of supercooled water to hexagonal

ice. The free energetics of this nucleation process has been studied previously using

metadynamics [140] and umbrella sampling [53, 54, 141]. Here, we determine the

free energy of the system using the size n of the largest crystalline cluster as order

parameter. To compute this order parameter for a particular configuration, first all

water molecules are assigned a structure type by applying the neural network. Then,

crystalline molecules are grouped into connected clusters and the order parameter

is given by the number n of molecules in the largest of these crystalline clusters.

Two molecules are considered to be connected if their oxygen atoms are closer than

3.8 Å.

In these simulations we have used a neural network for structure detection trained

specifically to distinguish only liquid water from ice I, without discriminating be-

tween hexagonal ice Ih and cubic ice Ic. Furthermore, a cutoff radius of Rc =

4.43352 Å was used, implying that only information from the first neighbor shell

was included in computing the symmetry functions. In order to improve the accu-

racy of the structure detection near the surface of the crystalline nucleus, we have

also included crystalline nuclei of cubic and spherical shape embedded in liquid wa-

89



Chapter 4. Detection of ice structures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ih Ic II III V Liq

P
(r

ec
og

ni
ze

d)

test set output

Rc = 6.0Å

Rc = 8.234Å

Ih Ic II III V Liq

train set output

Rc = 6.0Å

Rc = 8.234Å

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ih Ic II III V Liq

P
(r

ec
og

ni
ze

d)

actual phase

Rc = 6.0Å

Rc = 8.234Å

Ih Ic II III V Liq

actual phase

Rc = 6.0Å

Rc = 8.234Å

Ih Ic II III V Liq

Rc = 6.0Å

Rc = 8.234Å

Figure 4.4.: Distribution of structures assigned by the neural network for the test

set (left) and the training set (right) for liquid water and ice Ih, Ic, II,

III, and V. For each of the different phases indicated on the x-axis, the

heights of the colour-coded bars correspond to the fractions of structures

that have been assigned the type specified by the color at the bottom.

Results were obtained for a cutoff of Rc = 6 Å (top) and for a cutoff of

Rc = 8.234 Å (bottom).
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4.5. Crystallization of supercooled water

ter, as well as liquid/solid slab geometries in our training set. We generated these

configurations fixing a fraction of the molecules to their respective positions in the

perfect lattice using harmonic springs. Then we heated the system to melt the mo-

bile molecules and subsequently relaxed it at 235K with removed springs. Note

that for the analysis, however, we have used a neural network that can distinguish

between hexagonal and cubic ice.

To determine the free energy as a function of the order parameter we have used

an umbrella sampling procedure with overlapping windows with hard walls. We

study a system consisting of N = 2880 molecules at temperature T = 235K and

pressure of P = 1atm, corresponding to 13% supercooling with respect to the

melting temperature Tmelt = (270 ± 3)K of TIP4P/ice model [142]. We chose this

particular temperature such that the critical nucleus is of a size that fits in the

simulation box. For this temperature, the growth rate of the crystalline nucleus

is still sufficiently high such that the simulations are not hindered by the sluggish

dynamics of water at low temperatures (see Weiss et al. [143] for a detailed study

of crystal growth kinetics).

For each window, corresponding to a certain range of the order parameter, we

have sampled NPT configurations using the hybrid Monte Carlo method [144], in

which new configurations are generated by performing NV E molecular dynamics

simulations. These short dynamical trajectories are computed without bias and the

constraints on the order parameter imposed by the windows are taken into account

only in the Monte Carlo acceptance step. We have integrated the equations of

motion with a modified version of the algorithm of Miller et al. [138], which follows

the algorithm of Omelyan [145]. This algorithm requires two force evaluations per

integration step and exactly conserves phase space volume as required by the hybrid

Monte Carlo scheme. Five molecular dynamics steps of length ∆t = 7.2 fs are carried

out for each short trajectory, yielding an acceptance probability of roughly 50%. To

improve the sampling efficiency of the simulation we also carry out exchanges of

configuration between adjacent windows following the replica exchange procedure

of Auer and Frenkel [51]. We have carried out 5 × 106 equilibration HMC steps

and 107 production HMC steps in each of the 40 windows. Histograms of the order

parameter obtained from the each window are combined with the self-consistent

histogram method [40] and the free energy is then obtained as the logarithm of the
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Figure 4.5.: Free energy βF (n) as a function of the size n of the largest crystalline

cluster for a system of N = 2280 TIP4P/ice water molecules at tem-

perature T = 235K and pressure P = 1bar corresponding to 13%

undercooling. The pictures at the bottom show snapshots of the system

in different stages of the transition from liquid water to hexagonal ice,

ice Ih. Crystalline hexagonal and cubic molecules and the bonds be-

tween them are shown in green and blue, respectively. The orientation

of the each simulation box is such that the visibility of the crystalline

structure is enhanced.

resulting distribution P (n)

F (n) = −kBT lnP (n) .

The free energy F (n) as a function of the size n of largest crystalline cluster

obtained from our simulations is shown in Fig. 4.5. The shape of this free energy

92



4.6. Summary and conclusions

profile with a barrier separating the supercooled state for small values of n from

the completely crystalline state at large values of n is typical for a phase transition

proceeding via nucleation and growth. In the picture of classical nucleation theory,

which provides a qualitative description of nucleation processes, the barrier is due to

the free energetic cost required to form an interface between the crystal nucleus and

the surrounding metastable phase. Only after the crystalline nucleus reaches the so

called critical size does the lower free energy of the crystalline phase prevail and the

free energy decreases from this size on. This qualitative picture of the mechanism for

crystallization is confirmed by the snapshots in the bottom row of Fig. 4.5, showing

the system at different stages of the crystallization process. Note that the kink in

the free energy profile visible at about n = 140 is most likely the result of insufficient

sampling possibly due to slow shape equilibration.

Our calculations, carried out at T = 235 K and pressure P = 1bar, yield a barrier

height of 34 kBT and a critical crystalline nucleus consisting of n ∼ 300 molecules.

This critical size is smaller than the critical cluster size of 615 molecules found by

Li et al. at 235K for the mW model, which has a melting point of 274.6K [146].

These critical nuclei were identified from a dynamical criterion based on committor

calculations such that no information on the height of the free energy barrier is

available in this case. This discrepancy in the size of the critical nucleus might be

due to difference in the water model, specifically in the melting point, the surface

tension and in the heat of melting, but also to the different ways used to detect

crystallinity.

Previous computer simulation studies carried out by Brukhno et al. [54] as well

as Li et al. [137] have indicated that during the formation of hexagonal ice the

crystalline nucleus may include regions of cubic ice. In contrast, our simulations

yielded only crystalline nuclei with purely hexagonal structure. Single molecules

with cubic environments were found only on the surface of the nucleus as can be

seen in Fig. 4.5.

4.6. Summary and conclusions

In summary, we have developed an artificial neural network for the detection and

the classification of local atomic structures. Different classes of atomic arrangements

are distinguished based on a set of symmetry functions that capture the essential

structural features and are invariant with respect to translations, rotations and per-
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mutations of identical atoms. These symmetry functions are fed into the input layer

of the neural network, which then performs a series of summations and non-linear

operations that finally yield an output vector, in which each component corresponds

to one of the structures to be recognized. Typically, our neural networks have

30 – 40 input nodes (one for each symmetry functions) and 2 hidden layers with

about 40 nodes each. They depend on a few thousand parameters that provide the

flexibility required to adapt the neural network to a variety of different structures.

The parameters are tuned during a learning phase, in which the neural network is

trained based on a training set consisting of several tens of thousands of local atomic

configurations with known structure types. Such a training set, and an independent

test set used to assess the quality of the structure recognition, can be prepared with

molecular dynamics or Monte Carlo simulations performed in the pure phases. The

neural networks developed here can be used to analyze the results of molecular dy-

namics and Monte Carlo simulations a posteriori, but also to drive such simulations

to important but rarely visited regions of configuration space. Applying such a bias

is, for instance, useful in studying nucleation phenomena which involve rare barrier

crossing events. By applying the neural network method to the Lennard-Jones sys-

tem as well as to water/ice we have demonstrated the this approach works well not

only for simple phases but also for complex, open structures for which conventional

structure recognition methods fail.

In the development of a neural network for structure recognition an appropriate

definition of the symmetry functions is the most crucial step and the performance

of the method strongly depends on the quality of the symmetry functions. The

symmetry functions need to be designed such that they provide sufficient information

to distinguish the various structures. Structural features gleaned from distributions

of distances and angles can be useful in this process. While in this work we have used

only symmetry functions of the type developed by Behler and Parrinello for energy

calculations [58, 59], the structure recognition may be enhanced by adding also other

structural fingerprints such as the Steinhard bond order parameters to the input for

the neural network. In the application of the neural network the computation of the

symmetry functions is usually the computationally most time-consuming step while

the processing done by the neural network is relatively inexpensive. Therefore, it

is advantageous to keep the number of symmetry functions as low as possible. A

sensitivity analysis, which determines how strongly the output of a network depends

on a particular input, may help to eliminate redundant symmetry functions without
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sacrificing the accuracy of the structure detection.

Another important factor in the development of a neural network for structure

detection is the generation of an appropriate training set. This set of configurations

needs to include arrangements similar to all structures to which the neural network

is eventually applied. Since the neural network is nothing else than a complicated

fitting function, atomic structures that differ markedly from all structures included

in the training set will not be assigned correctly. In practice, this implies that

structures for the training set must be collected from simulations carried out over a

broad range of pressures and temperatures. We have also found that it is important

that configurations included in the training set are statistically independent from

each other.

The range within which atoms are considered for the calculation of the symmetry

function influences both the accuracy as well as the spatial resolution of the struc-

ture recognition. While including structural information from a large region around

the central atom increases the accuracy of the method, it reduces its resolution and

leads to unwanted averaging effects particularly near inhomogeneities such as inter-

faces and defects. Thus, particularly in the study of nucleation phenomena where

interfaces between different phases play an important role, it is advisable to choose

cutoffs that do not exceed those of other detection methods typically including atoms

up to the second neighbor shell [50–52]. The general method developed here may

be applied also to detect defects such as interstitials, vacancies and dislocations, in

which case a small cutoff is particularly important. While in this thesis we have

explored only the detection and classification of known structures, the neural net-

works developed here may also be used to search for new structures not included in

the training set. For such structure two networks trained separately using the same

training set should give conflicting answers raising the flag for the possible detection

of a new structure.
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4.7. Parameters of symmetry functions

In this section we list the parameters of the symmetry functions for the water system

(Tab. 4.1). This particular set of symmetry functions is not unique. Sets containing

G5, G6 and G7 type symmetry functions were found to give similar results.

Table 4.1.: Parameters of the symmetry functions for water and ice modeled with

the TIP4P/Ice potential. The cutoff parameters used in this case are

Rc = 6 Å, αc = 30 Å−1, ǫc = 0.2 Å and ν = 5 Å−1.

G2 η (Å−2) Rs (Å) G3 κ (Å−2) G8 α (1) η (1) al (Å) ar (Å)

1 0.049857 2.533440 14 0.157888 27 1.22 0.1375 2.00 3.15

2 0.138492 2.533440 15 0.315776 28 0.35 0.1000 2.00 6.00

3 0.406998 3.103464 16 0.473664 29 0.75 0.2275 2.00 6.00

4 0.553970 3.768492 17 0.631552 30 0.63 0.1825 2.00 6.00

5 0.797717 6.143592 18 1.420993 31 0.70 0.1000 3.00 4.00

6 1.246432 2.960958 19 1.736769 32 0.58 0.1000 3.15 6.00

7 1.246432 4.148508 20 1.894657 33 1.05 0.1075 3.15 6.00

8 1.246432 5.241054 21 2.526209 34 0.63 0.1825 3.15 6.00

9 2.215880 2.960958 35 1.05 0.1000 4.00 6.00

10 4.985730 2.770950

11 4.985730 3.293472 G4 η (Å−2) ζ (1) λ (1)

12 4.985730 4.766034 22 0.031578 10.0 -1

13 19.94292 3.103464 23 0.031578 10.0 1

24 0.052629 6.0 -1

25 0.083099 5.5 -1

26 0.143535 14.0 1
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Although a rather simple molecule, water requires very carefully considered imple-

mentation aspects for computer simulation, as illustrated by the large number of

empirical model potentials for water developed over the last decades. It has turned

out that there is no single model which is capable to describe all properties of water

with the same degree of accuracy, but rather a large variety of well-developed models

covering different classes of water properties.

In this chapter we introduce the empirical model and integrator we use, as well

as details of the crystal generation and explain how electrostatic interactions are

implemented.
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Figure 5.1.: Phase diagram of the TIP4P/Ice water model taken from Ref. [103]. The

blue stars are experimental data points and the red lines are coexistence

lines for the TIP4P/Ice model.

5.1. Modeling the water molecule

In the last decades many different model potentials for water in classical simulations

have been employed [147]. While the majority of these models treats the water

molecule as a rigid body by imposing geometrical constraints, many different ap-

proaches to model the water molecule under different conditions exist. In these

rigid models the O-H bond distance and the H-O-H angle are kept constant and the

electrostatic properties of water are modeled using three or more point charges at

certain positions, usually the hydrogen atom positions and in vicinity of the oxy-

gen∗. The HOH-angle as well as the OH-bonds, the charges and the Lennard-Jones

parameters, which model the Van-der-Wals interaction between the oxygen atoms,

are free parameters which are fitted to reproduce either experimentally determined

quantities or data provided by ab initio calculations.

For some studies rigid water models are not appropriate. For these cases flexible

∗ In models with more than three sites the effective charge of the oxygen is modeled by one

or more point charges which are offset from the oxygen position to approximate the electron

density of the water molecule.
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models are available where a harmonic or Morse potential is used to describe the

OH bond, thereby opening, for instance, the study of vibrational modes. Although

due to the required short time step an increased computational cost has to be paid,

integration techniques such as the multiple time step integrator developed by Tuck-

erman, Berne and Martyna [76, 148] exist to reduce the extra computational cost by

increasing the maximum time step size. Essentially, this method separates the inte-

gration for degrees of freedom with a short relaxation time from those with a slower

dynamics. In this algorithm, forces responsible for bond vibrations for instance, are

calculated more often than those which are responsible for translative motion.

Another group of models features polarizability by including charge distributions

which respond to the surrounding electric field. This kind of models are not discussed

in this thesis.

In this work we are mainly interested in properties of solid water, thus we have

chosen the recently developed water model TIP4P/Ice [103] which is fitted to ex-

perimental properties of low and high density ice. In this model (as is the case for

all TIP4P-like models [149]) each molecule is represented by four interaction sites

rigidly connected to each other. These sites, placed at the positions of the oxygen

atom, the two hydrogen atoms and on the bisector of the HOH-angle, interact solely

via pair potentials and polarization effects are neglected. While the oxygen atoms

interact with each other only via a Lennard-Jones potential, all other interaction

sites carry charges that interact Coulombically. Only the O and H site carry a mass,

while the bisector site M is massless. The TIP4P/Ice model reproduces all ice phases

consisting of intact water molecules and leads to a phase diagram with the correct

topology and coexistence lines that are only slightly displaced with respect to the

experimental phase diagram [150], as shown in Fig. 5.1. The model also yields an

accurate prediction of the densities of the ice phases as well as the liquid phase.

5.2. Generation of ice crystal structures

In order to perform simulations of ice phases it is necessary to set up a simulation box

with particle positions derived from the structure of real ice crystals. These initial

conditions were constructed for each crystalline phase by taking the space group of

a cell, its cell parameters and the fractional coordinates from literature. This infor-

mation is then used to build the atomic arrangements used as initial configurations

for our simulations.
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As mentioned in Chapter 3, ice crystals can feature proton ordered arrangements.

Here, molecules are orientated such that all hydrogens sit on a lattice, i.e., a crys-

tallographic cell can be constructed from symmetry operations applied not only to

the oxygens, but to all atoms (see Chapter 3 for details). While the proton ordered

crystals are simply produced using the fractional coordinates for all oxygen and hy-

drogen atoms provided by literature, the disordered phases have to be generated in

a way that obeys the Bernal-Fowler ice rules [79]. The Bernal-Fowler rules ensure

the integrity of the ice crystal, i.e., each oxygen atom has covalent bonds to exactly

two hydrogen atoms as well as H-bonds to exactly two neighboring oxygens.

Here, we have used the method developed by Rahman and Stillinger [107] and

modified by Ayala and Tchijov [108] to generate permitted hydrogen atom disorder

from proton ordered arrangements, which starts from a crystal with perfect proton

order and protons located on the connecting lines between neighboring oxygens. The

proton order is then disrupted by shifting protons from a position close to one oxygen

to the position close to the neighboring oxygen originally accepting the hydrogen

bond involving the shifted hydrogen. As a result, the neighboring oxygen has now

three covalent bonds and only one hydrogen bond. The procedure is repeated for the

neighboring water molecule, where one of the other two hydrogens forming a covalent

bond is selected at random and shifted. In order to keep the water molecules in the

sample intact, this shifting operation has to be carried out along closed loops of

hydrogen bonds. This sequence of basic steps is repeated until every water molecule

has been touched several times and a vanishing total dipole moment is achieved.

At the end of the procedure, the ideal water molecules, which have a geometry

consistent with perfect tetrahedral coordination, are replaced by molecules with

TIP4P geometry.

In the following we give a list of the ice structure we use and their source in

literature. For the proton ordered hexagonal ice two different H arrangements are

studied (see Chapter 3), where both cells were taken from Ref. [98]. From this

arrangement, disordered ice Ih was generated by applying the method described

above to one of these two proton-ordered initial structures. As noted in detail in

Chapter 3 cubic ice Ic and different proton ordered variants are generated according

to Lekner [85]. The proton ordered ice II crystals were generated according to

Ref. [151]. The atomic coordinates and hydrogen site occupancies for ice IX, the

proton ordered counter part of ice III, were taken from Refs. [152, 153]. And finally,

ice V and XIII were set up according to Refs. [80, 153].
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5.3. Equilibrium sampling

When rigid water molecules are considered, the integration of the equations of mo-

tion for different ensembles necessitates a few extensions compared to simple single

atom systems [154]. In the last decades integration schemes which generate the cor-

rect distributions of fluctuations of the state variables have been developed [155].

Such integrators were employed in order to generate configurations of desired en-

sembles for water. In particular, we have carried out molecular dynamics simula-

tions in the NV T and isotropic NPT ensembles using a slightly modified version of

the Verlet-like integrator proposed by Kamberaj et al. [139], based on the Trotter

decomposition schemes applied by Miller et al. [138] and Martyna et al. [76]. In

these integration schemes, the canonical and isothermal-isobaric ensembles are im-

plemented through thermostat chains based on the Nosé-Hoover [156, 157] and the

Andersen [158] approaches. An overview of these integrators is given in Appendix

B.

The determination of the free energy profile of the liquid→ice Ih transition was

done using window sampling combined with self consistent histogramming [40]. In

particular, we have employed hard window walls, i.e., no umbrella function was used

and no bias added in the Metropolis Monte Carlo acceptance criterion. For each

of the overlapping windows we have sampled NPT configurations using the hybrid

Monte Carlo (HMC) method [144]. New configurations for each HMC step were

generated by performing NVE molecular dynamics. Instead of Miller’s integrator

[138] we have employed a higher order Trotter decomposition according to Omelyan

[145] which performs better compared to the former one. Although Miller’s algo-

rithm is fully time-reversible, which is a required property of the integrator when

performing HMC, it can only be used with a maximum time step of 1 to 2 fs when

doing 5 MD steps of a typical system size for the HMC procedure. On the other

hand when using a decomposition according to Omelyan, where the center of mass

degrees of freedom are propagated more accurately, a time step of 9 fs for the same

system size can be used in order to achieve acceptance rates of 50 to 60%. Note

that in the HMC scheme the maximum size of the time step depends on the number

of steps performed at each HMC step as well as the size of the system. A possible

reason for the better accuracy of the Omelyan algorithm lies in the fact that the

Verlet algorithm is accurate to O(∆t4) for the positions but only to O(∆t2) for the

momenta. For the energy fluctuations within the hybrid Monte Carlo scheme this
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asymmetry yields an O(∆t2) overall algorithm. The Omelyan algorithm is symmet-

ric with respect to positions and momenta, but requires two force calculations for

one integration step instead of one. In particular, for the window sampling of the

hexagonal ice system consisting of 2880 molecules we have used a time step of 7.2 fs

and 5 MD steps for each HMC step.

The long range interactions are treated using Ewald summation with 1152 k-

vectors to ensure a good convergence of the Coulombic potential and forces in the

reciprocal space (see Sec. 5.4 for details).

In order to provide a convenient way for the implementation of water in a computer

simulation, we have employed a commonly used set of units . This choice also aids the

comparison with other results from literature. In particular, we use the following set

of units: for length angstroms, for time femtoseconds, for the energy kilojoules per

mole and for the charge we use the elementary charge. Furthermore, the Boltzmann

constant is set to unity, thereby fixing the unit of temperature.

5.4. Electrostatic interactions

The TIP4P model incorporates three point charges located on the two H sites and

on the massless site on the symmetry axis of the molecule slightly off the O position,

respectively. While for finite systems the Coulombic 1/r interaction can be computed

in a straightforward manner, the necessary truncation of the potential in periodic

systems leads to incorrect results. For rapidly decaying potentials the error due to

truncation at a comparatively large cutoff is well defined. In three dimensions, this

means that the integral over the potential beyond this cutoff converges,

∫ ∞

rcut

dr r2 u(r) <∞. (5.1)

Such convergence is possible only for potentials which decay faster than 1/r3. To

account for the much slower decay of the electrostatic potential, a special ansatz has

to be employed. Many useful techniques exist in literature, as for instance the Lekner

summation [159] or the reaction field method [160, 161]. Nevertheless, a widely used

method is the so-called Ewald summation technique [40, 162], where the 1/r point

charges are replaced by charges which are screened by Gaussian charge clouds. To

correct for this additional charge distributions a screening background is introduced

which compensates for the Gaussians. Mathematically, this artifice splits the total
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potential energy into three terms: one which converges in the real space, another

which converges in the reciprocal space and a correction term. Thus, the potential

can be written as

U = Ureal + Urec + Ucorr. (5.2)

Explicitly, these terms are

Ureal =
ke
2

∑

i

∑

α

∑

j 6=i

qiα
∑

β

qjβ
erfc (κriαjβ)

riαjβ
, (5.3)

Urec = ke
2π

V

∑

k 6=0

Q(k)S(k)S(−k), (5.4)

Ucorr = −ke
κ√
π

∑

i

∑

α

q2iα − ke
2

∑

i

∑

α

∑

β 6=α

qiαqjβ
erf(κriαjβ)

riαiβ
, (5.5)

where Q(k) and the atomic structure factor S(k) are defined as

S(k) =
∑

i

∑

α

qiα exp (ik · riαjβ) , (5.6)

and

Q(k) =
1

k2
exp

(−k2
4κ2

)

. (5.7)

In the formulas above, the indices i and j run over all molecules and α and β over

their corresponding charged sites, denoted as qiα and qjβ, respectively. The distance

of interaction sites located on distinct molecules is given by riαjβ = riα − rjβ and

the reciprocal lattice vector by k = 2π(n1/Lx, n2/Ly, n3/Lz)
T , where the ni are

integers ranging from −nmax to +nmax. The condition |n|2 ≤ n2max restricts the

used k-vectors to lie within an ellipsoid. In the definition of the k-vector we have

implicitly assumed a rectangular simulation box, thus the system volume is given

by V = LxLyLz. The Coulomb constant is ke = 1/(4πε0), where ε0 is the vacuum

permittivity and κ is a tunable Ewald parameter. The correction part Ucorr consists

of 2 terms, where the first one corrects for the point self-energy and the second one

corrects for interactions between charges of the same molecule, which are included

in the reciprocal sum (Eq. (5.4)).

The force acting on atom α of molecule i is calculated by taking the negative

gradient of Eq. (5.2),

Fiα = −∂Ureal

∂riα
︸ ︷︷ ︸

Freal
iα

− ∂Urec

∂riα
︸ ︷︷ ︸

Frec
iα

− ∂Ucorr

∂riα
︸ ︷︷ ︸

0

, (5.8)
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Freal
iα = ke qiα

∑

j 6=i

∑

β

qjβ

[

2√
π
κ riαjβ exp (−κ2r2iαjβ) (5.9)

+ erfc (κriαjβ)

]

riαjβ

r3iαjβ
, (5.10)

Frec
iα = −ke qiα

{

4π

V

∑

k 6=0

Q(k)kℑ
[

exp(−i k · riα)S(k)
]
}

, (5.11)

where ℑ[x] denotes the imaginary part of x. The stress tensor (see Refs. [163, 164])

is given by

V Pab =
ke
2

∑

i

∑

α

qiα
∑

j 6=i

∑

β

qjβ

[

2√
π
κ riαjβ exp (−κ2r2iαjβ)

+ erfc (κriαjβ)

]

(rij)a(riαjβ)b
r3iαjβ

+ ke

[

2π

V

∑

k 6=0

Q(k)S(k)S(−k)

(

δab −
2kakb

k2
− kakb

2κ2

)]

−
∑

i

∑

α

(riα − ri)b (F
rec
iα )a , (5.12)

with the Kronecker delta δab.

Although the method of Ewald summation has only one free parameter to opti-

mize, the task of finding a good prescription for κ is not trivial. Particularly for

constant pressure dynamics, where the box can fluctuate such that the volume of

the system can change significantly, a re-evaluation of this parameter at every time

step might be necessary. Another circumstance which one has to consider is the

advantageous use of a real-space cutoff smaller than half of the smallest cell length.

The usage of a real space cutoff, which truncates the potential at a certain distance,

significantly reduces the program execution times by reducing the number of inter-

action partners as well as permitting the employment of O(N) algorithms like the

linked lists or Verlet lists methods [40, 162], respectively.

5.4.1. Convergence parameter

For a cutoff fixed to the half box length many good prescriptions for choosing κ exist

[165, 166]. In addition, there are studies where the influence of the cutoff on the

Ewald parameter κ has been investigated in detail [167–169]. We propose a formula

104



5.4. Electrostatic interactions

0.996

0.998

1.000

1.002

1.004

1.006

1.008

1.010

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

−E
/E

0

κ(Å−1)

R = 0.5, nmax = 10
R = 0.6, nmax =   9
R = 0.7, nmax =   8
R = 0.8, nmax =   7
R = 0.9, nmax =   6
R = 1.0, nmax =   5

Figure 5.2.: Typical convergence behavior of the Coulomb energy as a function of

the Ewald parameter κ. These particular curves were computed for an

equilibrium NVT configuration at T = 300K, ̺ = 1000 kg/m3 with

N = 2000 molecules using the TIP4P water potential. The Coulomb

energy is scaled by its optimal value, which occurs where the slope of the

function is zero. R = 2rcut/L is the scaled cutoff, defined as described

in the main text.

for water, which is inspired by the expressions found by Rycerz [168] for other ionic

systems. While our procedure of finding this prescription is closely related to the

one of Rycerz, the results differ in their analytical form.

We have calculated Coulomb energies for different equilibrium configurations of

different system sizes (ranging from hundreds to many thousands of water molecules)

and different densities ranging from 850 to 1300 kg/m3.

Fig. 5.2 shows the Coulomb energy as a function of the Ewald parameter κ for

an arbitrary configuration. One can see that the function is forming a plateau over

a rather wide range of κ values. On the left hand side, i.e., better convergence of

the Ewald sum in the reciprocal space, the plateau is bordered by insufficient decay

of the error function within the cutoff, where the right border is determined by
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Figure 5.3.: Dependence of the left plateau border αL from a scaled cutoff R. Here,

we show results for several NVT configurations at T = 300 and various

densities and system sizes (points). The solid lines are fits using the

functional form αL(R) = ac/R, where ac is the fit parameter.

the number of terms in the reciprocal part of the Ewald sum (∼ n2max). For a set

number of k-vectors and a fixed cutoff the interaction converges for an interval of

κ values which is indicated by the plateaus in Fig. 5.2. Thus, the goal is to find

an optimal value within a certain range which both optimizes the number of terms

in the reciprocal part of the Ewald sum and the decay of the complementary error

function.

To quantify the plateau boundaries we define the plateau value E0 as the value of

the single curve minimum or else as the value of the point of inflection if the curve

has no minimum. Furthermore, we define the border of the plateau as the last points

αL, αR which are within a small interval around the plateau value |E − E0| /E0 < ε.

In our case we use ε = 0.0002. Following Ref. [167], we employ the dimensionless

cutoff R = 2rcut/L, scaled in units of the box length and a scaled Ewald parameter

α = Lκ.
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Figure 5.4.: Fits to the right plateau border with respect to the system size for

four different values of nmax corresponding to kmax = 518, 783, 1152 and

1661.
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Figure 5.5.: Linear regression fits for the nmax dependence of Eq. (5.15).
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In order to construct an empirical formula describing the left boundary of the

plateau we calculate a fit to the left plateau borders αL, determined using the defi-

nition above, as a function of the scaled real space cutoff (shown in Fig. 5.3). Each

point represents a result for a single configuration rather than a equilibrium average.

The analytic form is obtained by fitting the function

αL(R) = ac/R . (5.13)

This was done for the data of three different water models: TIP4P [170], TIP4P/Ice

(Sec. 5.1) and SPC/E [171]. The resulting fit parameters ac are given in Tab. 5.1.

The right border of the plateau is mainly influenced by the system size and the

maximum number of k-vectors used. In Fig. 5.4 we plot the right plateau boundary

αR for all studied system sizes N and all densities ̺ for four different numbers of

k-vectors. Here we have used the function

αR(N) = ar ln(N) + br, (5.14)

to fit the data for each value of nmax. Fig. 5.4 only shows results for TIP4P/Ice, since

the results for TIP4P and SPC/E are qualitatively very similar. To account for the

nmax dependency we have assumed ar = ar(nmax) and br = br(nmax), respectivley.

In the two plots of Fig. 5.5 one can see the linear fits for ar(nmax) = kanmax + da

and br(nmax) = kbnmax + db. The final formula is then given by

αR(N,nmax) = (kanmax + da) ln(N) + kbnmax + db. (5.15)

Numerical values for the fits in Fig. 5.5 are given in Tab. 5.1.

Merging Eq. (5.13) and Eq. (5.15) together we can give a very accurate estimate

of a good Ewald parameter with both a good convergence in real space as well as in

reciprocal space

κopt =
αopt(N,R, nmax)

L
=

1

2L
[αL(R) + αR(N,nmax)] . (5.16)

108



5.4. Electrostatic interactions

Table 5.1.: Fit parameter ac for the left plateau border αL of Eq. (5.13) and fit

parameters ka, da, kb and db for the right plateau border αR of Eq. (5.15)

for different water models.

model ac ka da kb db

TIP4P 3.5409 0.208068 0.194845 −0.836485 3.959020

SPC/E 3.6925 0.209186 0.200055 −0.810547 3.775885

TIP4P/Ice 3.9613 0.221274 0.236740 −0.926862 3.750335
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Appendix A.

Determination of linearized equation of

motion for pair potentials

A dynamical system, consisting of N particles of mass m and described by the

Hamiltonian H evolves in time according to the equations of motions

ṙi =
∂H
∂pi

= pi/m,

ṗi = −∂H
∂ri

= Fi, (A.1)

derived from the Hamiltonian

H =

N∑

i=1

p2
i

2m
+Φ(r1, ..., rN ) . (A.2)

Here ri is the position vector, pi the momenta vector of the particle i and Φ the

potential energy. For the sake of simplicity, we introduce the phase space vector

x = {r1, ..., rN ,p1, ...,pN} and write the equations of motion by

ẋ = Γ(x). (A.3)

Now, we consider the environment of an arbitrary point in the system’s phase space.

We introduce an infinitesimal displacement vector δx, which denotes a deviation

of the given trajectory at a particular point. This perturbed trajectory evolves

according to
d

dt
(x+ δx) = Γ(x+ δx) ≈ Γ(x) +DΓ

∣
∣
x · δx, (A.4)

where DΓ
∣
∣
x
is the Jacobi matrix of the vector function Γ, determined at the per-

turbation point x. Hence, the deviation vector evolves in tangent space according
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Appendix A. Determination of linearized equation of motion for pair potentials

to the linearized equations of motion

d

dt
δx = DΓ

∣
∣
x
· δx . (A.5)

In the following we give the derivation of a general expression for this Jacobi

matrix for a system of particles interacting only via pair potentials. If the forces are

only functions of the positions Fi = Fi(ri), i.e., no friction term, then the Jacobi

matrix is of the form

DΓ =

(

0 1

−H 0

)

, (A.6)

where (Hij) =
(

∂2

∂ri∂rj
Φ
)

is the Hessian matrix of the potential. For reasons of

simplicity we divide the Hessian matrix into the 3× 3 sub-matrices

Aij =

(
∂

∂ri
Fj

)

, (A.7)

which correspond to the Jacobian matrix of Fj with respect to the positional co-

ordinates ri. In the following we denote the x-component of the vector ri by rxi ,

the distance vector of two particles by rij = rj − ri and one of its components by

rxij = rxj − rxi . For the distance between two particles we introduce rij = |rij |. First
we rewrite the expression in Eq. (A.7) as

Aij = − ∂

∂ri

∂

∂rj
Φ = −1

2

∑

m

∑

n

∂

∂ri

∂

∂rj
Φmn (A.8)

and since Φij = Φij(rij) we can write the gradient of the potential as

∂

∂rj
Φmn =

(
d

drmn
Φmn

)

︸ ︷︷ ︸

Φ′
mn

rmn

rmn
(δnj − δmj), (A.9)

where δij is the Kronecka Delta. Using γmn = rmn
−1Φ′

mn Eq. (A.8) becomes

Aij = −1

2

∑

m

∑

n

∂

∂ri
γmnrmn(δnj − δmj)

= −1

2

∑

m

∂

∂ri
γmjrmj +

1

2

∑

n

∂

∂ri
γjnrjn

= −
∑

m







( ∂
∂ri
γmjr

x
mj)

⊺

...

( ∂
∂ri
γmjr

z
mj)

⊺






, (A.10)
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where in the last equation we have used that rjm = −rmj . For the row elements of

these matrices we get

∂

∂ri
γmjr

x
mj = rxmj

∂

∂ri
γmj

︸ ︷︷ ︸

⊛

+ γmj
∂

∂ri
rxmj

︸ ︷︷ ︸

(δij−δim)êx

, (A.11)

⊛ =
∂

∂ri
Φ′
mjr

−1
mj = r−1

mjΦ
′′
mj

rmj

rmj
(δij − δim)− Φ′

mj

rmj

r3mj

(δij − δim). (A.12)

Using identical derivations for the other components we obtain

∂

∂ri
γmjr

x
mj =

[
χmj rmj r

x
mj + γmj êx

]
(δij − δim),

∂

∂ri
γmjr

y
mj =

[

χmj rmj r
y
mj + γmj êy

]

(δij − δim),

∂

∂ri
γmjr

z
mj =

[
χmj rmj r

z
mj + γmj êz

]
(δij − δim), (A.13)

where

χmj =
Φ′′
mj

r2mj

− γmj

r2mj

. (A.14)

Then Eq. (A.10) becomes

Aij = −
∑

m

(δij − δim) [χmj Qmj + Gmj] , (A.15)

where

Qmj =






rxmjr
x
mj rxmjr

y
mj rxmjr

z
mj

rymjr
x
mj rymjr

y
mj rymjr

z
mj

rzmjr
x
mj rzmjr

y
mj rzmjr

z
mj




 , Gmj =






γmj 0 0

0 γmj 0

0 0 γmj




 . (A.16)

Finally the sum over the Kronecka delta yields

Aij =







−∑m [χmj Qmj + Gmj ] if i = j,

χij Qij + Gij else.
(A.17)

In addition, introducing the dyadic product ⊗ we can rewrite the last equation to

Aij =







−∑m

[

Φ′′
mj r̂mj ⊗ r̂mj +

Φ′
mj

rmj
(13 − r̂mj ⊗ r̂mj)

]

if i = j,

Φ′′
ij r̂ij ⊗ r̂ij +

Φ′
ij

rij
(13 − r̂ij ⊗ r̂ij) else,

(A.18)
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Appendix A. Determination of linearized equation of motion for pair potentials

with r̂ij = rij/rij and the 3× 3 unity matrix is denoted by 13.

This derivation is valid for all pair potentials, i. e., where the value of the poten-

tial only depends on the distances between particles and can be used to determine

Lyapunov exponents, as presented in chapter 1, or the calculation of second order

corrections for the Raman spectrum of water in the O-H bond stretching regime

[130, 172].

For the Ewald summation technique, where the potential depends not only on

the distance of the particles, but also on its absolute positions within the simulation

box, a separate derivation is required, which is given in the appendix of Ref. [130].
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Appendix B.

Time-propagation of rigid water

molecules in various ensembles

The use of a non-flexible water model makes it necessary to employ advanced simu-

lation methods. In particular, here, we consider the proper treatment of rigid bodies

and the Ewald summation to calculate Coulombic interactions. The rigidness of the

water molecules can be ensured either by introducing Lagrangian constraint forces

to the system [162], or by propagating the Euler equations for the rotation of a rigid

body rather than the propagation of each individual atom [162]. The latter approach

has the advantage that integration schemes can be derived which conserve time re-

versibility. This property is not only beneficial for the HMC scheme, where large

time steps are only achieved for time-reversible integrators, but also indispensable

for techniques like transition path sampling [6] and transition interface sampling

[173]. In the following we present integrators based on a quaternion representa-

tion of the molecule orientation rather than the Euler angles. This representation

avoids singularities and also allows the derivation of symplectic and time-reversible

integrators.

B.1. Mathematical basics

In order to understand the integrators presented in this appendix correctly, it is

necessary to recall some mathematical fundamentals first.

While we use a roman numeral as index for the molecules, we number the atoms

in a molecule with a greek letter. For instance, riα is the position of atom α of

molecule i, viα its velocity, miα its mass and so on. The molecule index runs from

i = {1, .., nm} and the atom (or site) index α = {1, .., na}, where nm is the number
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Appendix B. Time-propagation of rigid water molecules in various ensembles

of molecules and na the number of atoms within this molecule. This notation is

consistently used throughout this appendix. Next, we define the center of mass of

the i-th molecule by

Ri =
1

Mi

na∑

α=1

mαriα,

where Mi is its total mass and the center of mass momentum is given by

Pi =

na∑

α=1

mαviα.

To describe the motion of rigid bodies two coordinate systems are used: the space

fixed system (SS), where all coordinates are given with respect to a origin, usually

the center or a corner of the simulation box, and the body fixed coordinate systems

(BS), where the coordinate basis is fixed to the axis of the rigid molecule. The latter

coordinate system is used to derive the rotational part of the equations of motions

for a rigid body, the so-called Euler equations. An important quantity entering

the Euler equations is the moment of inertia tensor, which plays a similar role for

rotations as the mass does for translations. This tensor is defined by

Iij =

na∑

α=1

mα

[
(r∗α)

2δij − (r∗α)i ⊗ (r∗α)j
]

i, j = {1, 2, 3} ,

where (r∗α)i is the i-th component of the distance vector from the origin to the α-th

site in the BS (indicated by a star ∗), r∗α its distance and ⊗ the dyadic product.

For the sake of simplicity we choose the BS identical to the principal axis system by

setting the origin in the center of mass of the molecule and rotating the molecule until

a diagonal inertia tensor is achieved. This is easily done by geometrical consideration

(at least for simple molecules) or with principal axis transformation (for any kind

of complexity).

Given the relation between the angular velocity and the angular momentum L =

I ·ω and the equation of motion d
dtL = M, where M is the torque, it is easy to show

that the rotational degrees of freedom of a rigid body obey the Euler equations [174]

I11ω̇
∗
1 + (I33 − I22)ω

∗
2ω

∗
3 = M∗

1 ,

I22ω̇
∗
2 + (I11 − I33)ω

∗
1ω

∗
3 = M∗

2 ,

I33ω̇
∗
3 + (I22 − I11)ω

∗
1ω

∗
2 = M∗

3 . (B.1)
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B.1. Mathematical basics

The torque is defined by

M∗ =
na∑

α=1

d∗
α × F∗

iα, (B.2)

where F∗
iα is the force on site α of molecule i in the BS.

As noted above, we use quaternions [175] rather then Euler angles to describe

the orientational motion of the water molecules since this leads to fast and time-

reversible integrators. Furthermore, we avoid singularities which are implicitly in-

cluded in the Euler angle representation.

A quaternion is a hypercomplex number

q = q0 + i · q1 + j · q2 + k · q3 ,

which is usually written as the four dimensional vector (q0, q1, q2, q3)
T . i, j and k

are imaginary numbers with i2 = j2 = k2 = −1. A pair of quaternions can be used

to store the information of a molecule’s rotation and its time propagation, i.e., the

Euler equations (Eq. B.1) can be rewritten for the quaternion representation. The

conversion from the Euler angle representation to the quaternion representation is

given by

q0 = cos
θ

2
cos

φ+ ψ

2
,

q1 = sin
θ

2
cos

φ− ψ

2
,

q2 = sin
θ

2
sin

φ− ψ

2
,

q3 = cos
θ

2
sin

φ+ ψ

2
, (B.3)

and consequently the rotation matrix, which transforms between BS and SS reads

A(q) =






q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23




 . (B.4)

Another useful conversion for a rotation quaternion can be achieved when only the

rotation axis n̂ (|n̂| = 1) and the rotation angle α is given. Then the corresponding

rotation quaternion can be created using

q =

(

cos(α2 )
v
v sin

(
α
2

)

)

. (B.5)
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Appendix B. Time-propagation of rigid water molecules in various ensembles

The linear transformation from the SS to the BS and vice versa by means of the

rotation matrix Eq. (B.4) is given by

u∗ = A · u , (B.6)

u = AT · u∗ . (B.7)

Using the orthogonal matrix

Q(q) =









q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0









(B.8)

we can determine the angular velocity

ω
(4)∗ = 2QT (q)q̇, (B.9)

where ω
(4)∗ = (0, ω1, ω2, ω3)

T in the BS. Miller et al. [138] have pointed out that a

rotation can be described by the extended Hamiltonian

Hrot(q,π) =

3∑

k=1

hk(q,π) + φ(q) (B.10)

with the rotational kinetic energy

Erot =
3∑

k=1

hk(q,π), (B.11)

and

hk(q,π) =
1

8Ikk

(
π
TDkq

)2
, (B.12)

where

π = 2Q(q)









0

Ixxω
∗
1

Iyyω
∗
2

Izzω
∗
3









is the conjugate momentum to q such that Hamilton’s equations are fulfilled

q̇ = ∇πHrot(q,π) ,

π̇ = −∇qHrot(q,π) . (B.13)
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B.1. Mathematical basics

Here the three symmetry operations Dkq are given by

D1q = (−q1, q0, q3,−q2)T ,
D2q = (−q2,−q3, q0, q1)T ,
D3q = (−q3, q2,−q1, q0)T . (B.14)

When propagating a molecule using these Hamiltonian equations of motion, its

rigidness is ensured by the identity q2 ≡ 1.

Trotter decomposition

For a system of first order differential equations ẋ(t) = Γ[x(t)] the formal solution

is given by x(t) = exp{iLt}x(0), where iL = Γ[x] · ∇x is the Liouville operator

and x a phase space vector. The operator φt = exp {iLt} is called the propagator

of the system, which is the exact solution for the time evolution (from time 0 to

t) of the system. If the phase space is spanned only by positions and momenta,

i.e., x = x(r,p) and the system is Hamiltonian then the Liouvillian is defined as

iL = ṙ ∂
∂r + ṗ ∂

∂p and the propagator has the form φt = e(A+B)t. Since the operators

A = ṙ ∂
∂r and B = ṗ ∂

∂p are usually not commutative, the decomposition of

e(A+B)t = eAteBt +O(t2)

is correct only up to terms of order t2. Hence, for small times t we can create

numerical integrators of arbitrary order by using different decomposition schemes.

One popular scheme is the Strang decomposition [176], where a given operator

eiL∆t = e(A1+...+Ap)∆t

is symmetrically decomposed to

φt = e∆t/2A1 · · · e∆t/2Ap−1e∆tApe∆t/2Ap−1 · · · e∆t/2A1 +O(∆t3). (B.15)

If the interactions of a given system can be divided into long and short range contri-

butions, Tuckerman et al. [148] have shown that the propagator can be decomposed

such that a multiple time step scheme can be used. For instance, a Hamiltonian

system with the full Liouville operator

iL =

N∑

i=1

{
pi

m

∂

∂xi
+
(

Ffast
i +Fslow

i

) ∂

∂pi

}

= iLpos + iLfast + iLslow
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Appendix B. Time-propagation of rigid water molecules in various ensembles

can be decomposed into

eiL∆t ≈ eiL
slow∆t/2





nc∏

i=1

nys∏

j=1

eiL
fastwj∆t/(2nc)eiL

poswj∆t/nceiL
fastwj∆t/(2nc)



 eiL
slow∆t/2,

(B.16)

where the factors wj are {w1 = w3 = 1/(2− 21/3), w2 = 1−w1} for nys = 3. Higher

order schemes for nys = 5, 7, 9, ... can be constructed too. Using this decomposition

according to Martyna et al. [76], Miller et al. [138] were able to derive a Verlet-like

algorithm for the rotational equations of motion, which is summarized in the next

section.

B.2. Dynamics in the NVE ensemble

We denote the full equations of motion for a molecule i as:

Ṙi =
Pi

Mi
,

Ṗi = Fi ,

q̇i =

3∑

k=1

1

4Ikk

(
π
T
i Dkqi

)
Dkqi ,

π̇i = 2Q(qi)M
(4)∗
i −

3∑

k=1

1

4Ikk

(
π
T
i Dkqi

)
Dkπi . (B.17)

Analogous to ω
(4), M

(4)
i corresponds to the four-dimensional total torque vector in

the BS, where the first component equals zero and the remaining components are

defined in Eq. (B.2).

Propagator

In the case of the NVE integrator according to Miller et al. [138] the decomposed

Liouvillean is given by

iLNVE = iLtrans
1 + iLtrans

2 + iLrot, (B.18)

with

iLtrans
1 =

N∑

i=1

Ṙi ·
∂

∂Ri
=

N∑

i=1

Pi

Mi
· ∂

∂Ri
, (B.19)
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B.2. Dynamics in the NVE ensemble

iLtrans
2 =

N∑

i=1

Ṗi ·
∂

∂Pi
=

N∑

i=1

Fi ·
∂

∂Pi
, (B.20)

and

iLrot =

N∑

i=1

{

q̇i ·
∂

∂q̇i
+ π̇i ·

∂

∂πi

}

=
N∑

i=1

{ 3∑

k=1

[
∂

∂πi
hk ·

∂

∂qi
− ∂

∂qi
hk ·

∂

∂πi

]

︸ ︷︷ ︸

iLrot
k

+2QM
(4)∗
i

∂

∂πi
︸ ︷︷ ︸

iLrot
4

}

. (B.21)

According to Miller the last operator can be rewritten as (from now on we omit the

molecule index i)

eiL
rot∆t =

4∑

k=1

iLrot
k ≈ eiL

rot
4 ∆t/2





nc∏

i=1

nys∏

j=1

Erot
∆t



 eiL
rot
4 ∆t/2, (B.22)

where

Erot
∆t = eiL

rot
3 wj∆t/(2nc)eiL

rot
2 wj∆t/(2nc)eiL

rot
1 wj∆t/nc

×eiLrot
2 wj∆t/(2nc)eiL

rot
3 wj∆t/(2nc).

An exemplary factorization is obtained for nys = 3 with w1 = w3 = 1/(2−21/3) and

w2 = 1− 2w1. We summarize the whole decomposed NV E propagator as

eiLNV E∆t ≈ eiL
trans
2 ∆t/2eiL

rot
4 ∆t/2Erot(∆t)eiL

trans
1 ∆teiL

rot
4 ∆t/2eiL

trans
2 ∆t/2. (B.23)

The action of the translational operators gives the well-known velocity Verlet form

[40]

eiL
trans
1 ∆tRi = Ri +∆t

Pi

Mi
, (B.24)

eiL
trans
2 ∆t/2Pi = Pi +

∆t

2
Fi,

and according to Miller [138] the actions of the rotational operators are given by

eiL
rot
k

∆tqi = cos(ζk∆t)qi + sin(ζk∆t)Dkqi (k = 1, 2, 3),

eiL
rot
k

∆t
πi = cos(ζk∆t)πi + sin(ζk∆t)Dkπi (k = 1, 2, 3),

eiL
rot
4 ∆t/2

πi = πi +
∆t

2
2Q(qi)M

(4)∗, (B.25)
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Appendix B. Time-propagation of rigid water molecules in various ensembles

where

ζk =
1

4Ikk

(
π
T
i Dkqi

)
.

We show an implementation of this integrator in a computer program in Algorithm

B.1. This integration scheme is both time reversible and symplectic and therefore

long term stable and accurate for large time steps.

step 1 propagate position and quaternion a full time step and the conjugate mo-

menta half a timestep (actual time is set to t = 0 and index i for molecules is

omitted)

1. V∆t/2 = V0 +
∆t
2

F0
m

2. R∆t = R0 +∆tV∆t/2

3. π
′ = π0 +

∆t
2 2Q(q0)M

(4)
0 and q′ = q0

4. using ξk = 1
4Ikk

π
′TDkπ

′ calculate

π
′ = cos(ξk δt)π

′ + sin(ξk δt)Dkπ
′

q′ = cos(ξk δt)q
′ + sin(ξk δt)Dkq

′

and iterate 5 times with (k = 3, δt = ∆t/2), (k = 2, δt = ∆t/2), (k =

1, δt = ∆t), (k = 2, δt = ∆t/2) and (k = 3, δt = ∆t/2)

5. π∆t/2 = π
′ and q∆t = q′

step 2 calculate forces F∆t and torques M
(4)
∆t using R∆t and the rotation matrix

A(q∆t)

step 3 propagate conjugate momenta to t+∆t

1. V∆t = V∆t/2 +
∆t
2

F∆t

m

2. π∆t = π∆t/2 +
∆t
2 2Q(q∆t)M

(4)
∆t

Algorithm B.1: Simple scheme of a symplectic and time-reversible NV E integra-

tor for rigid molecules.
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B.3. Dynamics in the NVT ensemble

Instead of NV E dynamics, where the Hamiltonian is a conserved quantity, we can

also perform dissipative dynamics. Systems subjected to these dynamics are typi-

cally defined as systems exchanging energy due to the presence of energy reservoirs,

which can be achieved by adding friction terms to the equations of motion. The

thermodynamic equivalent to a system coupled to a heat bath is the canonical or

NV T ensemble.

Nosé and Hoover have developed a thermostat [156, 157] to implement dynam-

ics of this type in computer simulations. Based on this idea, Martyna et al. [76]

have proposed a time-reversible integrator for the Nosé–Hoover equations of mo-

tion, which has been generalized for rigid molecules by Kamberaj et al. [139]. The

latter approach utilizes the following equations of motion:

Ṙ =
P

M
,

Ṗ = F∗ − ξ
(t)
1 P ,

q̇ =

3∑

k=1

1

4Ikk

(
π
TDkq

)
Dkq ,

π̇ = 2Q(q)M(4)∗ −
3∑

k=1

1

4Ikk

(
π
TDkq

)
Dkπ − ξ

(r)
1 π ,

ξ̇
(x)
1 = G

(x)
1 /Q(x)

p1 − ξ
(x)
2 ξ

(x)
1 , ξ̇

(x)
2 = G

(x)
2 /Q(x)

p2 ,

ṡ
(x)
1 = ξ

(x)
1 ṡ

(x)
2 = ξ

(x)
2 with x = t, r . (B.26)

Note, that the extended equations of motion for rigid bodies given here employ a

chain of two thermostats. Here, ξ
(t)
1 and ξ

(r)
1 play the role of velocities of thermostat

1 coupled to the (t) translational, or (r) rotational degrees of freedom, respectively.

G
(t,r)
x are the thermostat ’forces’, given by

G
(t)
1 = 2Etrans − g

(t)
f kBT0 , G

(r)
1 = 2Erot − g

(r)
f kBT0 ,

G
(t)
2 = Q(t)

p1 (ξ
(t)
1 )2 − kBT0 , G

(r)
2 = Q(r)

p1 (ξ
(r)
1 )2 − kBT0 , (B.27)

where Etrans and Erot (see Eq. (B.11)) are the translational kinetic energy and the

rotational kinetic energy, respectively. Furthermore g
(t)
f adn g

(r)
f are the number of

translational and rotational degrees of freedom, kB the Boltzmann’s constant, T0 is

the desired temperature and Q
(t)
px and Q

(r)
px the thermostat ’masses’. The thermostat
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Appendix B. Time-propagation of rigid water molecules in various ensembles

’positions’ s
(t)
1,2 and s

(r)
1,2 occur only at the left hand side of the equations of motion in

Eq. (B.26) and could be neglected. However, since they are required for determining

the degree to which the extended Hamiltonian is conserved as well as the phase space

compressibility, they are usually also integrated. This extended pseudo Hamiltonian

is given by

HNVT = HNVE + kBT0 ln JNVT +
1

2

2∑

k=1

∑

x=t,r

Q(x)
pk

(ξ
(x)
k )2, (B.28)

where J is the system’s Jacobian, given by

JNVT = exp
[

g
(t)
f s

(t)
1 + g

(r)
f s

(r)
1 + s

(t)
2 + s

(r)
2

]

. (B.29)

The number of degrees of freedom for a system of N rigid molecules is g
(t)
f = g

(r)
f =

dN , where d is the system’s dimension. While physically more or less meaningless,

the quantity HNVT is conserved during the simulation and can be used to check the

implementation, as well as the choice of the time step.

The thermostat ’masses’ are related to the the thermostat fluctuations by

Q(t,r)
p1 = g

(t,r)
f kBT0/ν

2 , Q(t,r)
p2 = kBT0/ν

2 , (B.30)

where ν is the frequency of the system’s temperature fluctuations.

Propagator

The corresponding Liouville operator is

iLNVT = iLNVE + i
∑

x=t,r

L(x)
NHC, (B.31)

where LNVE is given in Eq. (B.18) and LNHC emerges due to the Nosé - Hoover

chain extensions to the equations of motion

iL(x)
NHC = iL(x)

NHC,1 + iL(x)
NHC,2 + iL(x)

NHC,3 + L(x)
NHC,4, (B.32)

with

iL(t)
NHC,1 =

N∑

j=1

[

−ξ(t)1 Vj

]

· ∂

∂Vj
, iL(r)

NHC,1 =

N∑

j=1

[

−ξ(r)1 πj

]

· ∂

∂πj
,

iL(x)
NHC,2 =

[

G
(x)
1

Qp1

− ξ
(x)
2 ξ

(x)
1

]

∂

∂ξ
(x)
1

, iL(x)
NHC,3 =

G
(x)
2

Qp2

∂

∂ξ
(x)
2

,

iL(x)
NHC,4 =

2∑

k=1

ξ
(x)
k

∂

∂s
(x)
k

. (B.33)
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B.3. Dynamics in the NVT ensemble

step 1 update thermostat variables for half a timestep t→ t+∆t/2; repeat all steps

for x = t and x = r, respectively

1. calculate G
(x)
1 /Q

(x)
1 and G

(x)
2 /Q

(x)
2

2. ξ
(x)
2 → ξ

(x)
2 + ∆t

4 G
(x)
2 /Q

(x)
2

3. ξ
(x)
1 →

[

ξ
(x)
1 e−ξ

(x)
2 ∆t/8 + ∆t

4 G
(x)
1 /Q

(x)
1

sinh(ξ
(x)
1 ∆t/8)

ξ
(x)
1 ∆t/8

]

e−∆t/8ξ
(x)
2

4. update velocities:

for x=t do Vj → Vj exp(−ξ(t)1 ∆t/2) and

for x=b do πj → πj exp(−ξ(r)1 ∆t/2) for each molecules j

5. s
(x)
k → s

(x)
k + ξ

(x)
k ∆t/2 for k = 1, 2

6. do substep 3 again

7. do substep 2 again

step 2 apply the NV E algorithm (Algorithm B.2)

step 3 do step 1 again

Algorithm B.2: Simple scheme of a time-reversible NVT integrator for rigid

molecules.

Using the Strang splitting we can denote the full propagator for one time step

φt = exp (i∆tLNVT) according Tuckerman et al. [77, 177] as

φt = ei∆t/2LNHCei∆tLNVEei∆t/2LNHC (B.34)

where the Nosé-Hoover chain variables are propagated by the following decomposed

operator

ei∆t/2LNHC = ei∆t/4L
(r)
NHC,3ei∆t/4L

(t)
NHC,3ei∆t/4L

(r)
NHC,2ei∆t/4L

(t)
NHC,2

× ei∆t/2L
(r)
NHC,1ei∆t/2L

(t)
NHC,1ei∆t/2L

(r)
NHC,4ei∆t/2L

(t)
NHC,4

× ei∆t/4L
(t)
NHC,2ei∆t/4L

(r)
NHC,2ei∆t/4L

(t)
NHC,3ei∆t/4L

(r)
NHC,3 . (B.35)

In Eq. (B.33) three different types of operators occur, where their action is given by
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Appendix B. Time-propagation of rigid water molecules in various ensembles

exp

{

i a x
∂

∂x

}

x = x+ a,

exp

{

i ax · ∂
∂x

}

x = eax,

exp

{

i a(b− c x)
∂

∂x

}

x = xe−a c + abe−
a
2
c

[

sinh
(
a
2c
)

a
2c

]

. (B.36)

Since the action of the last operator Eq. (B.36) requires the evaluation of the singular

function, one can either use the Taylor expansion of sinh(x)/x or use the further

factorization

exp

{

i a(b− c x)
∂

∂x

}

x ≈ exp

(

−a
2
cx

∂

∂x

)

exp

(

abx
∂

∂x

)

exp

(

−a
2
cx

∂

∂x

)

. (B.37)

Using the last results we can derive a scheme for the NV T -integrator given in

Algorithm B.2.

B.4. Dynamics in the NPT ensemble

For isotropic cell fluctuations only the equations of motion for rigid molecules are

given as

Ṙ =
P

M
+ ξǫR

Ṗ = F− ξ
(t)
1 P−

(

1 +
d

gf

)

ξǫP

q̇ =

3∑

k=1

1

4Ikk

(
π
TDkq

)
Dkq

π̇ = 2Q(q)M(4)∗ −
3∑

k=1

1

4Ikk

(
π
TDkq

)
Dkπ − ξ

(r)
1 π − d

gf
ξǫπ

ǫ̇ = ξǫ

ξ̇ǫ = Gǫ/W − ξ
(b)
1 ξǫ

ξ̇
(x)
1 = G

(x)
1 /Q(x)

p1 − ξ
(x)
2 ξ

(x)
1 , ξ̇

(x)
2 = G

(x)
2 /Q(x)

p2

ṡ
(x)
1 = ξ

(x)
1 , ṡ

(x)
2 = ξ

(x)
2 with x = t, r, b. (B.38)

Here, a barostat is coupled to the center of mass positions and momenta, as well

as to the quaternion momenta via ξǫ. Its ’position’ is related to the volume of the

simulation box according to ǫ = ln (V )/3. Furthermore, a chain of thermostats ξ
(b)
1
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B.4. Dynamics in the NPT ensemble

and ξ
(b)
2 is coupled to the pressure bath. The total number of degrees of freedom is

gf = g
(t)
f + g

(r)
f = 6N . The barostat ’force’ is given by

Gǫ = dV (Pint − P0) +
2d

gf
(Etrans +Erot) , (B.39)

where the internal pressure Pint is given below in Eq. (B.49) and Etrans and Erot

are translational and rotational kinetic energy, respectively. The thermostat ’forces’

acting on the pressure bath are

G
(b)
1 =Wξ2ǫ − kBT0 , G

(b)
2 = Q(b)

p1 (ξ
(b)
1 )2 − kBT0. (B.40)

The barostat and thermostat related ’masses’ are given by

Q(b)
p1 = d2kBT0/ν

2
b , Q(b)

p2 = kBT0/ν
2
b ,

W = (gf + d)kBT0/ν
2
b , (B.41)

where νb is the frequency of the volume fluctuations of the system.

The conserved quantity for systems propagating the equations of motion as given

in Eq. (B.38) is

HNPT = HNVE + P0V + kBT0 ln JNPT +
1

2

∑

x=t,r,b

2∑

k=1

Q(x)
pk

(ξ
(x)
k )2 +

W

2
ξ2ǫ , (B.42)

with the Jacobian

JNPT = JNVT × exp
[

s
(b)
1 + s

(b)
2

]

. (B.43)

According to Andersen [158] a good choice of the barostat coupling is ν−1
b = 3

√
V /c,

where V is the volume of the simulation box and c is the speed of sound in the

system.

Propagator

For the isothermal-isobaric ensemble the Liouville operator can be written as

iLNPT = iLtrans
1 + iLtrans

2 + iLrot + iLbaro
1 + iLbaro

2 + i
∑

x=t,r,b

L(x)
NHC ,
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Appendix B. Time-propagation of rigid water molecules in various ensembles

where the particular operators are given by

iLtrans
1 =

N∑

j=1

[
Pj

M
+ ξǫRj

]

· ∂

∂Rj
, iLtrans

2 =

N∑

j=1

[

Fj −
(

1 +
d

gf

)

ξǫP

]

· ∂

∂Pj

iL(b)
NHC,1 = −ξ(b)1 ξǫ

∂

∂ξǫ
, iLrot

4 =

N∑

j=1

[

2QM
(4)∗
i − d

gf
ξǫπj

]

· ∂

∂πj

iLbaro
1 = ξǫ

∂

∂ǫ
, iLbaro

2 =
Gǫ

W

∂

∂ξǫ
. (B.44)

The Liouville operators iLrot1,2,3 and iLNHC,2,3,4 remain unchanged and are defined

in Eqs. (B.19)–(B.21) and (B.33), respectively. Similar to the NVT propagator we

use the following decomposed isotropic NPT propagator:

φt = ei∆t/2L
(b)
NHCei∆t/2L

(t)
NHCei∆t/2L

(r)
NHCei∆t/2Lbaro

2 ei∆t/2Ltrans
2

× ei∆t/2Lrot
4 ei∆tL

(baro
1 )ei∆tLtrans

1 Erot(∆t)ei∆t/2Lrot
4

× ei∆t/2Ltrans
2 ei∆t/2Lbaro

2 ei∆t/2L
(r)
NHCei∆t/2L

(t)
NHCei∆t/2L

(b)
NHC . (B.45)

Here, a new type of operator occurs in addition to the operators of Eq. (B.36),

namely

exp

{

i a(b+ cx) · ∂
∂x

}

x = xea c + bae
a
2
c

[

sinh
(
a
2c
)

a
2c

]

. (B.46)

Using this propagator we summarize the whole NPT integrator in Algorithm B.3.

Internal pressure

For a system of N particles the instantaneous internal pressure is given by the virial

Pint =
1

3V

(

2Ekin +
N∑

i=1

ri · Fi

)

, (B.47)

where ri is the position of particle i and Fi is the force acting on it. Unfortunately,

this definition only holds for non-periodic systems. Extending the virial to systems

with periodic boundary conditions (PBC) in the case of pair potentials, the virial

can be rewritten to

Pint =
1

3V



2Ekin +
N−1∑

i=1

N∑

j=i+1

rij · fij



 , (B.48)
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B.4. Dynamics in the NPT ensemble

step 1 apply step 1 of the NV T algorithm (Algorithm B.2) for the thermostat

variables x = t, x = r as well as x = b. For the thermostat variables coupled

to the box (x = b) add the modification of sub step 4: ξǫ → ξǫ exp(−ξ(b)1 ∆t/2)

step 2 calculate pressure bath ’force’ and update ’velocity’

1. calculate Gǫ according Eq. (B.39)

2. ξǫ → ξǫe
−ξ

(b)
1 ∆t/2

step 3 update center of mass velocities and quaternion ’velocities’ to t+ ∆t
2

1. V → Ve−[1+d/gf ]ξǫ∆t/2 + ∆t
2MFe−[1+d/gf ]ξǫ∆t/4 sinh(ξǫ∆t/4)

ξǫ∆t/4

2. π → πe
− d

gf
ξǫ∆t/2

+ ∆t
2 2QM

(4)∗
i e

− d
gf

ξǫ∆t/4 sinh(ξǫ∆t/4)
ξǫ∆t/4

step 4 rotate molecules for a full timestep according step 4 and 5 of the NV E

algorithm (Algorithm B.1)

step 5 update center of mass positions R → Re∆tξǫ +∆tVeξǫ∆t/2 sinh(ξǫ∆t/2)
ξǫ∆t/2

step 6 Update box ǫ → ǫ + ∆tξǫ, recalculate box dependent quantities like tail

corrections, k-vector for Ewald summation,...

step 7 calculate forces, pressure and torques

step 8 do step 3 again

step 9 do step 2 again

step 10 do step 1 again

Algorithm B.3: Simple scheme of a time-reversible isotropic NPT integrator for

rigid molecules.
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Appendix B. Time-propagation of rigid water molecules in various ensembles

where rij is the distance vector between particle i and j and fij the force on atom

i due to atom j, respectively. In the case of systems with non-pair potential and

periodic boundary conditions the correct virial is given by

Pint =
1

3V

(

2Ekin +
N∑

i=1

ri · Fi

)

− ∂U

∂V
. (B.49)

For a full derivation see [178].

For a molecular system with short range and electrostatic interactions, like TIP4P

water, in a periodically replicated box the internal pressure is given by

Pint =
1

3V



Etrans + Erot +

Ns−1∑

i=1

Ns∑

j=i+1

rij · f sij



+
1

3
Tr
(

PEwald
)

− ∂U

∂V
. (B.50)

where Ns is the number of interaction sites affected by short-ranged pair-additive

forces f s, Tr
(
PEwald

)
is the trace of the pressure tensor of the Coulomb interactions

given in Eq. (5.12) and ∂U/∂V is the contribution due to other additional non-pair

interactions, as for instance Lennard-Jones tail corrections.

Alternatively, the average pressure 〈Pint〉 can be measured more accurately (at

least for small systems) following Ref. [165].

Lennard-Jones tail corrections for systems with fluctuating cells

Due to the usage of finite simulation boxes in computer programs, periodic boundary

conditions are used in order to simulate bulk materials. Hence, interaction partners

are usually selected using the nearest image convention [40, 162].

When a potential is truncated then the contribution of particles beyond this cutoff

are obviously neglected. This introduces an error which can be estimated using so-

called tail corrections. If the potential energy is written as sum over all interaction

pairs then the corrected energy of the system is given by

Ucorr =
∑

j>i

u(rij) + U tail(rcut) . (B.51)

As denoted in Eq. (5.1) this energy tail correction can be estimated by the integral

over the pair potential

U tail = N2π̺

∫ ∞

rcut

dru(r)r2 , (B.52)
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B.4. Dynamics in the NPT ensemble

where N is the number of particles, ̺ = N/V the density, rcut the cutoff and u(r)

the pair potential function. In particular, for Lennard-Jones interactions the tail

correction is given by

U tail
LJ = 8πN̺ε

∫ ∞

rcut

dr

[
σ12

r10
− σ6

r4

]

=
8

3
Nπ̺εσ3

(
1

3

σ9

r9cut
− σ3

r3cut

)

. (B.53)

The estimation given in Eq. (B.52) is only valid for a truncated potential and it

is assumed that beyond the cutoff the density is homogenous. Since this truncation

introduces a discontinuity in the potential function, one can avoid this singularity

by shifting the potential such that ushifted(r) = u(r)−u(rcut). This shift necessitates
a modification of the tail corrections in the following manner

U tail
shifted = U tail(rcut) +Nua(rcut) , (B.54)

where ua(rcut) depends on the average number of particle in the vicinity of an

arbitrary particle, namely

ua(rcut) = Nc(rcut)
u(rcut)

2
, (B.55)

where the average number of interaction partners Nc can be estimated by

Nc(rcut) = ̺Vcut − 1 ≈ ̺Vcut , (B.56)

and Vcut is the volume of sphere with radius rcut.

For truncated and shifted Lennard-Jones interactions, the tail correction (Equa-

tion (B.54)) becomes

U tail
shifted LJ =

8

3
Nπ̺εσ3

(
1

3

σ9

r9cut
− σ3

r3cut

)

+N
8

3
πr3cut̺ε

(
σ12

r12cut
− σ6

r6cut

)

=
16π

3
N̺σ3ε

(
2

3

σ9

r9cut
− σ3

r3cut

)

. (B.57)

While in constant energy or constant temperature simulations these tail correc-

tions do not influence the dynamics of the system, in isobaric simulations (NPH,

NPT, ...) the instantaneous pressure appears in the equations of motion and must

therefore be computed accurately. This becomes obvious when we consider the

definition of the instantaneous pressure Eq. (B.50). Since the potential energy tail

correction depends on the volume of the system the derivative ∂U tail/∂V is non-zero
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Appendix B. Time-propagation of rigid water molecules in various ensembles

and has to be added to the internal pressure. Depending on the way the cutoff is

implemented two different cases exist, which must be considered separately. First,

if a constant cutoff is chosen in cell fluctuating simulations (rather than the ratio of

the box length) then

∂

∂V
U tail
LJ =

∂

∂V
U tail
shifted LJ = −16

3
π̺2σ3ε

(
2

3

σ9

r9cut
− σ3

r3cut

)

=: −P tail
LJ . (B.58)

This result is usually called the pressure tail correction for Lennard-Jones interac-

tions. Note, due to the definition of the internal pressure Eq. (B.50) the negative

sign disappears and the tail correction is simply added to the pressure.

When using a cutoff equal to half of box length rcut = LBox/2 then the derivation

of the potential with respect to the volume differs due to rcut = rcut(V ) and the

alterable potential shift, i.e., at every time step the potential is shifted according to

rcut. If we rewrite Eq. (B.51) to

Ucorr =
1

2

∑

i

∑

j 6=i

[u(rij)− u(rcut)] + U tail(rcut) , (B.59)

and use the approximation

U shift = −1

2

∑

i

∑

j 6=i

u(rcut) ≈ −NNc

2
u(rcut) , (B.60)

as well as
∂U

∂V
=
∂rcut
∂V

∂U

∂rcut
=

1

24r2cut

∂U

∂rcut
(B.61)

and estimate the average particle number within the cutoff as given in equation

(B.56) we can denote

∂

∂V
U shift
LJ =

πN2ǫ

6r3cut

(
4

3

σ12

r12cut
− σ6

r6cut

)

, (B.62)

and
∂

∂V
U tail
LJ = − πN2ǫ

12r3cut

(

2
σ12

r12cut
− σ6

r6cut

)

. (B.63)

Summing up the last two equations gives the final result

∂

∂V

(

U shift
LJ + U tail

LJ

)

= −16π

3
̺2σ3ε

(
2

3

σ9

r9cut
− σ3

r3cut

)

=: −P tail
LJ . (B.64)

This shows that every possible implementation of the cutoff leads to P tail
LJ as the

additional term in the internal pressure Eq. (B.50).
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B.4. Dynamics in the NPT ensemble

Distributions of thermostat and barostat state variables

In order to decrease the time a simulation needs to equilibrate initially, all state

variables should be randomly chosen from the appropriate equilibrium distribution.

Sometimes it can also be necessary to sample state variables at random, for in-

stance in the HMC scheme (see Sec. 5.3). Another possible application is the use

of checkpoints which were previously generated in a certain ensemble as starting

states for the propagation in a different ensemble. Let’s imagine we want to analyze

properties of critical nuclei of a certain system. A convenient way to generate such

configurations is the use of biased Monte Carlo simulations (umbrella sampling).

Unfortunately, the study of time dependent quantities requires time propagation

via real dynamics as provided by molecular dynamics simulations. Since only posi-

tions are available from Monte Carlo simulations, all other state variables have to

be drawn from their equilibrium distributions in order to set up an equilibrated MD

simulation.

The thermostat as well as the barostat enter the equations of motion (Eqs. (B.26)

and (B.26)) as velocities providing additional kinetic energy-like terms to the ex-

tended Hamiltonian (Eqs. (B.28) and (B.42)). Thus the corresponding distributions

are Gaussian with zero mean and the standard deviation

σ =

√

kBT

m
, (B.65)

where the mass m corresponds to one of the thermostat or barostat ’masses’. In

particular, these are Q
(x)
p1 , Q

(x)
p2 for x = t, r, b and W .

Numerical results for the equilibrium distributions of the state variables of the

thermostat and barostat are shown in Fig. B.1.
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Figure B.1.: Probability distributions of the the thermostat and barostat extended

state variables. Left: distributions p
(

ξ
(t)
1

)

, p
(

ξ
(r)
1

)

and p
(

ξ
(b)
1

)

. Cen-

ter: distributions p
(

ξ
(t)
2

)

, p
(

ξ
(r)
2

)

and p
(

ξ
(b)
2

)

. Right: probability

distribution p (ǫ). The black solid lines are the analytically determined

Gaussians, while all dots are simulation results. The simulation pa-

rameters are: system size N = 256, temperature T = 300K, pressure

P = 0bar, trajectory length τ = 10ns and time step ∆t = 1 fs. (All

values in the plots are in reduced units, see Sec. 5.3).
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Artificial neural networks, see Neural

network

Bond angle distribution method, 31

Centrosymmetry deviation method,

31

Common neighbor analysis method,

31

Coulombic interactions

Ewald summation, 102 – 108, 116

Lekner summation, 102

reaction field method, 102

Dimer, 23

Dynamical system, 7

Euler angles, 119

Ewald summation, 64

Feed-forward neural network, 2

Fermi-Pasta-Ulam chain, 6

Forest-Ruth integrator, 18

FPU problem, see Fermi-Pasta-Ulam

chain

Free energy calculation

metadynamics, 30

Umbrella sampling, 30, 91, 101

Free energy calculations

Umbrella sampling, 135

Hybrid Monte Carlo (HMC), 91, 101,

117, 135

Ice

Bernal Fowler rules, 58, 100

ice rules, see Bernal Fowler rules

proton order, 58, 100

Integrator

for the NPT ensemble, 130

for the NV E ensemble, 124

for the NV T ensemble, 128

Internal pressure, 129 – 132

IR absorption spectrum

calculation, 62

of cubic ice phases, 70

of hexagonal ice phases, 70

Jacobi matrix, 113

Kalman filter, 41f

multistreaming, 42

Lennard Jones

angular distribution function, 45

isotherms, 43
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radial distribution function, 45

Lorentz gas, 17

Lyapunov exponent, 8

finite time, 8

Lyapunov weighted path ensemble

(LWPE), 11

Martyna Tuckerman Klein algorithm

distribution of state variables,

134f

equations of motion, 128

Neural network, 33, 39

over-fitting, 49

sensitivity analysis, 39, 94

training, 40f
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[118] J. Klimeš, D. R. Bowler, and A. Michaelides, Chemical accuracy for

the van der Waals density functional, J. Phys.: Condens. Matter 22, 022201

(2010).
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