DISSERTATION

Titel der Dissertation
"Toward a Total Synthesis of Bielschowskysin"
verfasst von
Mag. Martin Himmelbauer
angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat.)

Wien, 2013

Studienkennzahl It. Studienblatt: A 091419
Dissertationsgebiet It. Studienblatt:
Chemie
Betreuet von:
Univ.-Prof. Dr. Johann Mulzer

dedicated to Theresa and my family

Acknowledgement

First of all, I thank my research advisor and teacher Prof. Dr. Johann Mulzer for giving me the freedom to pursue my own ideas and for his patience when things stood still. He always provided me with fruitful ideas during our discussions about synthetic problems and offered great guidance when help was needed. Furthermore, I have to thank him for giving me the opportunity to improve my theoretical and practical chemical skills within such an interesting and challenging research topic.

I thank the members of the so called "big-" and "Ösi-lab", Dr. Harald Weinstabl, Dr. Peter Siengalewicz, Dr. Tanja Gaich, Dr. Kathrin Prantz, Dr. Konrad Tiefenbacher, Dr. Andreas Gollner, Dr. Thomas Magauer, Dr. Ela Rosenbeiger, Dr. Nina Tölle, Dr. Martin Ariger, MSc Johannes Preindl, MSc Christian Leitner, MSc Simon Baldauf, Martina Drescher, Martin Lux-Amon, Sabine Schneider, Fikret Nasufi as well as Dr. Harry Martin, Dr. Valentin Enev, Dr. Alexey Gromov, Dr. Stefan Marchart, Mag. Rita Fürst, Mag. Christoph Lentsch, Mag. Christian Aichinger and Dr. Uwe Rinner for providing me with great ideas, practical tips and hints and for the numerous fruitful and motivating conversations. I want to thank all of the actual and former Mulzer group members for the constructive and comfortable working atmosphere and for being good colleagues and friends.

I thank the NMR department, Dr. Lothar Brecker, Dr. Hans-Peter Kählig and Susanne Felsinger, for providing accurate spectra and fast and professional help with any kind of problem as well as the whole technical staff for good infrastructure at work. Furthermore, I thank the Mass-department, Ing. Peter Unteregger, Josef Plangger and Lenka Vakermanova as well as Dr. Vladimir Arion and Alexander Roller - for X-ray analysis - for their reliable and solution-oriented work.

Special thanks go to Dr. Julien Gagnepain and DI Jean-Baptiste Farcet, my Bielschowskysin-team mates and friends, for the countless hours of productive work in the lab, great discussions and the fun we shared.

My friends, some of whom I already know for two thirds of my life, were a great support during the many days of long and hard work as they always knew how to get my mind off chemistry when I needed a rest.

Of course I have to thank my parents, Gerda and Karl, not only for financial support, but also for their patience and confidence that I will pursue my academic education as serious as possible. I want to thank my mother for her thoroughgoing love and support until the last day of her life as well as my father for being a great guide. I also thank Renate and my brother Jakob for the countless wonderful hours and for being a great enrichment to our family life. I want to thank my brother and
friend Robert, who - as long as I can remember - was a role model for me, due to his persistence with which he manages his life and his numerous talents.

Finally, I thank Theresa, my partner, for her appreciation for the numerous working hours I invested in this project. Her support and the patience with which she listened to my problems and the empathy she felt are invaluable and for sure the corner-stones for my development.

Graphical Abstract

Central [2+2]-Photocycloaddition Approach

 cyclizatio

VII

ylatio
halo-lactonization

lization

\qquad Heck-macrocyclization

aldol reaction

(-)-malic acid

D-(+)-glucose

Pauson-Khand Approach

Alternative [2+2] Approach

MOMO, $/$$\Delta$ O $2+2]$	$\text { TBSO. } / \mathrm{H} \quad \mathrm{H}$
$\mathrm{H}_{2}{ }^{6}$	11
O-	H [2+2]
O	TBSO
XVIII	XIX

Abstract

Bielschowskysin (1), a highly oxygenated furanocembranoid isolated from the gorgonian octocoral Pseudopterogorgia kallos, is currently one of the most pursued targets in natural product synthesis. Besides its challenging molecular structure, bearing an unprecedented tricyclo [9.3.0.0 ${ }^{2,10}$]tetradecane ring system and eleven stereogenic centers, it was found to exhibit interesting cytotoxic activity against human cancer cell lines and shows biological activity against Plasmodium falciparum, the main causative organism of malaria.

Herein, synthetic efforts towards a total synthesis of bielschowskysin, centered upon a biomimetic [2+2]-photocycloaddition to construct the western bicyclo[3.2.0]heptane core, are described. Starting from (-)-malic acid and D-(+)-glucose, a stereoselective synthetic approach was initiated.

An aldol reaction was the method of choice for coupling between western allene building block I and tetrasubstituted eastern tetrahydrofuran IV. By utilizing a custom-made photoreactor, the envisaged biomimetic [2+2]-photocycloaddition regio- and stereoselectively allowed the synthesis of common central intermediate VI. The ease of the crucial cycloaddition is remarkable considering the high complexity of the substrate. A scalable route to the common intermediate allowed us to test several different macrocyclization reactions. Unfortunately, cutting-edge transition metal catalysis, including $\mathrm{Au}(\mathrm{I})$ salts, failed. Adventurous, but not unpromising, we envisaged powerful ruthenium based metathesis catalysts as tools for the macrocyclization, which remained unrewarded.

Nonetheless, in regard of the numerous successful examples for palladium catalyzed cyclizations in total synthesis, we decided to tackle an endo-selective Heck-macrocyclization. Unexpectedly, an unprecedented reproducible palladium catalyzed carbo-oxygenation was observed under these conditions. The resulting highly advanced tricyclo[8.3.0.0 $\left.0^{2,8}\right]$ tridecane carbon ring system XII contains 8 stereogenic centers of desired configuration, including the crucial all carbon quaternary center at C12. Ring enlargement strategies to the desired tricyclo[9.3.0.0 $0^{2,10}$]tetradecane ring system of the natural product have been proposed and will be pursued in due course.

Aside this central approach, the flexible synthesis of the eastern fragment enabled us to tackle alternative approaches towards bielschowskysin. Thus, coupling with two western fragments, bearing the bicyclo[3.2.0]heptane carbon core, by either metal-halogen exchange or NHK-coupling lead to completion of the southern XIV and northern hemisphere XIII of the natural product.

Zusammenfassung

Bielschowskysin (1), ein hoch oxygeniertes Furanocembranolid isoliert aus der gorgonischen Oktokoralle Pseudopterogorgia kallos, ist zur Zeit eines der meist verfolgten Ziele in der Naturstoffsynthese. Neben seiner herausfordernden Struktur, welche ein neuartiges Tricyclo[9.3.0.0 ${ }^{2,10}$]tetradecan Ringsystem und elf stereogene Zentren beinhaltet, weist es interessante zytostatische Aktivität gegen menschliche Krebszelllinien und biologische Aktivität gegen Plasmodium falciparum, dem Haupterreger von Malaria, auf.

Unsere zentrale Retrosynthese von Bielschowskysin baut auf einer biomimetischen [2+2]-Photocycloadditon auf, welche den Cyclobutanring und drei stereogene Zentren auf einen Schlag aufbauen soll. Diese stereoselektive Synthese hat mit (-)-Äpfelsäure und D-(+)-Glucose billige und chirale Ausgangsmaterialen. Für die Verknüpfung eines westlichen Allen-Baustein I mit einem östlichen vierfachsubstituierten Tetrahydrofuranring IV war eine Aldolreaktion die Methode der Wahl. Duch Bestrahlung mit einem sonderangefertigten Photoreaktor wurde die regio- und stereoselektive Synthese des zentralen Intermediates VI gewährleistet. Die Einfachheit, mit der diese kritische Cycloaddition vonstattenging, ist im Hinblick auf die Komplexizität des Substrates bemerkenswert. Mehrere Makrocyclisierungen konnten aufgrund der zuverlässigen Synthese des zentralen Intermediates in Angriff genommen werden. Die Anwendung von innovativer Übergangsmetallkatalyse, unter anderem mit $\mathrm{Au}(\mathrm{I})$ Salzen, und leistungsfähiger Ringschlußmetathese, war ambitioniert aber nicht utopisch und führte nicht zu dem gewünschten Ergebnis.

Im Hinblick auf die zahlreichen erfolgreichen Palladium-katalysierten Cyclisierungen in der Totalsynthese wurde eine endo-selektive Heck-Makrocycliserung anvisiert. Diese Versuche führten über eine neuartige und reproduzierbare Carbo-Oxygenierung zu dem unerwarteten, hochfunktionalisierten Tricyclo[8.3.0.0 ${ }^{2,8}$]tridecan Kohlenstoffringsystem XII. Die erhaltene hochentwickelte, makrocyclische Struktur enthält acht stereogene Zentren, unter anderem den wichtigen quaternären C12 Kohlenstoff mit gewünschter Konfiguration. Strategien für eine Ringerweiterung zum gewünschten Tricyclo[9.3.0.0 ${ }^{2,10}$]tetradecan Ringsystem sind beschrieben und werden zu gegebener Zeit ausgeführt.

Neben diesem zentralen Ansatz befähigte uns die flexible Synthese des östlichen Fragments dazu alternative Zugänge zu Bielschowskysin zu unternehmen. Die Verknüpfung durch konventionellen Halogen-Metall-Austauch oder NHK-Kupplung mit zwei westlichen Fragmenten, welche den Bicyclo[3.2.0]heptan Kohlenstoffkern beinhalten, führte zur Ausbildung der südlichen (XIV) sowie nördlichen Hemisphäre (XIII) des gewünschten Naturstoffs.

Publications, Oral and Poster Presentations as well as Awards

Publications

"An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy"; Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Eur. J. Org. Chem. 2013, submitted for publication.
"An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the Non-Photochemical Strategy"; Farcet, J.-B., Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, submitted for publication.
"Photochemical and Thermal [2 + 2] Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin"; Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, 4379.
"A Palladium-Catalyzed Carbo-oxygenation: The Bielschowskysin Case"; Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Org. Lett. 2013, 15, 3098.
"A Non-Photochemical Approach to the Bicyclo[3.2.0]heptane Core of Bielschowskysin"; Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Org. Lett. 2012, 14, 2195.

Oral Presentations

„Recent Developments towards the Total Synthesis of Bielschowskysin"; Himmelbauer, M.; invited speaker at VISOC 2011; Vienna, Austria; May 2011.
„Towards a Total Synthesis of Bielschowskysin"; Himmelbauer, M.; invited speaker at institute colloquium, Technical University of Graz, Austria; January 2011.
„Auf dem Weg zu Bielschowskysin"; Himmelbauer, M.; invited speaker at 40. Naturstofftreffen; Würzburg, Germany; November 2010.

Poster Presentations

"Towards a Total Synthesis of Bielschowskysin"; Himmelbauer, M.; Syngenta Workshop for Talented Young Chemists 2012; Stein, Switzerland; September 2012.
"Towards a Total Synthesis of Bielschowskysin"; Himmelbauer, M.; ICOS-18; Bergen, Norway; August 2010.

Awards

Syngenta Workshop for Talented Young Chemists 2012; $2^{\text {nd }}$ best contribution to all sessions; Himmelbauer, M.; Stein, Switzerland; September 2012.

Table of Contents

Acknowledgement 1
Graphical Abstract III
Abstract IV
ZUSAMMENFASSUNG V
Publications, Oral and Poster Presentations as well as Awards VI

1. Introduction 1
2. Structure and Biosynthesis of Terpenes 2
2.1. The Mevalonate Pathway 3
2.2. The Non-Mevalonate Pathway (Rhomer-pathway) 4
2.3. From Open-Chain to Cyclic and Polycyclic Terpenes. 6
2.4. Biogenetic Cyclizations of GGPP (37) Yielding Diterpenes 7
2.4.1. Type A Cyclization 7
2.4.2. Type B Cyclization 7
2.4.3. Mixed Cyclization Types: Type A - B and Type B - A Cyclizations 8
2.5. Marine Derived Diterpenes: Furanocembranoids, Pseudopteranes and Gersolanes 9
2.5.1. The Biosynthetic Correlation between Marine Derived Diterpenes 9
2.5.2. The Biosynthesis of Bielschowskysin (1) 12
3. Selected Syntheses of Cembranoids 16
3.1. DAUBEN’s SYNTHESIS OF (\pm)-Cembrene (68) 16
3.2. PAQUETTE'S SYNTHESIS OF ACEROSOLIDE (141) 17
3.3. Marshall's Synthesis of ent-Rubifolide (152) 18
3.4. Donohoe's Synthesis of (-)-(Z)-Deoxypukalide (164) 19
3.5. Trauner’s Studies on the Biosynthetic Relationship among Furanocembranoids: Relay Synthesis of Furanocembranoids 20
3.5.1. Total Synthesis of (-)-Bipinnatin J (83). 20
3.5.2. Total Syntheses of (+)-Rubifolide (174), (+)-Isoepilophodione B (175) and (+)-Intricarene (47) . 21
3.5.3. Total Syntheses of Coralloidolides A, B, C and E 22
3.6. Mulzer's Synthesis of 11-Gorgiacerol (191) 23
4. PHOTOCHEMICAL REACTIONS AS C-C BOND FORMING STRATEGIES IN NATURAL PRODUCT SYNTHESIS 24
4.1. РнотосүCLIZATIONS 24
4.2. Norrish-Yang Cyclization 25
4.3. Norrish-Type I Cleavage 26
4.4. РнотоснEmical Rearrangements 27
4.4.1. 1,2- and 1,3-Acyl Migration 27
4.4.2. Photo-Fries Rearrangement - Mulzer's Total Synthesis of (-)-Kendomycin (237) 28
4.4.3. meta-Photocycloaddition - Mulzer's Synthesis of (-)-Penifulvin A (250) 29
4.5. Paternò-BÜchi Reaction 30
4.6. [2+2]-PнотосуCLOADDItion 31
4.6.1. General Discussion 31
4.6.2. $[2+2]-P h o t o c y c l o a d d i t i o n ~ P r o d u c t s ~ a s ~ I n t e r m e d i a t e s ~ i n ~ T o t a l ~ S y n t h e s i s ~$ 32
5. BIELSCHOWSKYSIN 36
6. Previous Synthetic Efforts towards Bielschowskysin 38
6.1. Sulikowski's Contribution 38
6.2. LEAR's CONTRIBUTION. 39
6.3. Nicolaou's Synthetic Studies 40
6.4. MuLZer's Non-Photochemical Approach 41
6.5. Ghosh's CONTRIBUTION 42
6.6. Stoltz' Attempts to form the Cyclobutane-Moiety 43
7. Results 45
7.1. Photochemical and Thermal [2+2]-Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin 45
7.2. A Palladium-Catalyzed Carbo-oxygenation: The Bielschowskysin Case 78
7.3. An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy 83
7.4. An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the Non-Photocyclization Strategy 230
8. On the Carbo-Oxygenation 238
8.1. General Introduction 238
8.2. The Heck Reaction 238
8.3. Discussion of the Carbo-Oxygenation and its Mechanism 240
9. Conclusion and Outlook 242
10. List of Abbreviations 244
11. References 246
12. Curriculum Vitae 249

1. Introduction

Some plants are well known for their pleasant or unpleasant smell, specific taste and/or have found application in traditional medicine for the treatment of a wide range of diseases. These properties are related to the ingredients, natural compounds, which the plant produces to fulfill a specific task. The use of such compounds may be of a wide variety reaching from protection from natural enemies or as an attractant for insects, which are indispensable for pollination. Terpenes represent one of the major families of natural compounds exhibiting such properties. In general all natural compounds with a carbon skeleton built up by a different number of isoprene units are referred to as terpenes. ${ }^{1}$ Predominantly, these natural compounds originate from plants but some are produced by insects, for example as pheromones.

Figure 1 Various Terpenes and Terpene-derived Compounds and their Application
Steam distillation and extraction are the traditional methods to obtain large quantities of the desired terpenes as essential oils. In this way roses, lavender, thyme, citrus fruits, eucalyptus amongst many other natural sources are treated providing large quantities of fragrances and flavoring agents for the industry. In cases where the desired terpene is of little concentration in the plant or the plant itself is scarce in nature and/or a protected species the common extraction methods seem inappropriate both ethically as well as economically. At this point a demand for a synthetic access to the desired molecule arises. This need becomes even stronger, if the target substance exploits pharmacological activity and therefore is a potential drug for the treatment of a specific disease. Besides the importance of a synthetic access itself, the possibility for the derivatization of the natural compound displays a flexibility which allows the improvement of its pharmaceutical activity.

2. Structure and Biosynthesis of Terpenes ${ }^{1}$

The basic structure of all terpenes is related to one common building block, the isoprene unit (9). One or more of these 2-methylbutadiene entities are linked together building up the carbonframework of this class of natural products, which therefore are also referred to as isoprenoids. This simple but consistent finding is referred to as the isoprene-rule introduced by Ruzicka and Wallach. ${ }^{2}$

According to the number of linked isoprene units the natural products are classified as hemi- $\left(C_{5}\right)$, mono- $\left(C_{10}\right)$, sesqui- $\left(C_{15}\right)$, di- $\left(C_{20}\right)$, sester- $\left(C_{25}\right)$, tri $\left(C_{30}\right)$, tetra- $\left(C_{40}\right)$ and polyterpenes $\left(C_{5}\right)_{n}$ (Figure 2$)$. The 2-methylbutane subunits are predominantly linked in a head-to-tail fashion, with the isopropyl part of isoprene referred to as head and the ethyl part as tail. Merely, the sester-, tri- and tetraterpenes feature tail-to-tail connections.

Various degrees of oxygenation of these carbon skeletons as well as a manifold of different cyclizations during the biosynthesis of terpenes result in numerous subfamilies with about 30.000 different known congeners.

Figure 2 Basic Hydrocarbons of Terpenes
Terpenes are said to be built up along two different biogenetic pathways. Both, the acetate-mevalonate- and the Rhomer-pathway (also known as activated acetaldehyde-glyceraldehyde-3phosphate pathway or non-mevalonate pathway), lead to the same C_{5}-intermediates, namely isopentenyl pyrophosphate (IPP, 22) and dimethylallyl pyrophosphate (DMAPP, 23). These biogenetic building blocks are later connected to give the basic hydrocarbon skeletons of the different isoprenoids.

2.1. The Mevalonate Pathway ${ }^{1}$

The MVA-pathway (Scheme 1) starts with the biogenetic Claisen condensation of two molecules of acetyl-coenzyme A (Ac-CoA, 17), which is also known as activated acetic acid, forming acetoacetylCoA (18). ${ }^{1,3}$ This biological acetoacetate equivalent reacts as an electrophile with a third acetyl-CoA molecule in an aldol-reaction to give (S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA, 19), which is subject to an enzymatic reduction with NADPH/ H^{+}. The resulting R-(-)-mevalonic acid (MVA, 20) is phosphorylated twice by adenosine triphosphate (ATP) to give mevalonate-5-phosphate (21), which consecutively undergoes decarboxylative fragmentation leading to isopentenyl pyrophosphate (IPP, 22). Finally, a Mg^{2+} or Zn^{2+} dependent isomerase converts IPP (22) to γ, γ-dimethylallyl pyrophosphate (DMAPP, 23). Both indispensable building blocks for the first time contain the branched C_{5} isoprenic skeleton in the biogenesis of terpenes.

Scheme 1 Biosynthesis of IPP (22) and DMAPP (23) via the Mevalonate Pathway

2.2. The Non-Mevalonate Pathway (Rhomer-pathway) ${ }^{1,4}$

In 1996, Rhomer and coworkers reported an alternative non-mevalonate pathway for isoprenoid biosynthesis. Incorporation of ${ }^{13}$ C-labeled glycerol or pyruvate into ubiquinone Q8 of Escherichia coli mutants and into the triterpenoids of the hopane series of Zymomonas mobilis, whereas metabolism of ${ }^{13} \mathrm{C}$-labeled acetate failed, indicated that in some organisms IPP does not stem from the mevalonate pathway. ${ }^{4}$

Thus, pyruvate (24) forms an adduct with deprotonated TPP (vitamin B_{1} or thiamine pyrophosphate), the coenzyme of the pyruvate-dehydrogenase (Scheme 2). Intermediate 25 undergoes decarboxylation accompanied by Umpolung of the carbonyl-carbon atom. Consequently, the former electrophilic carbon of the ketone attacks the second biogenetic precursor, glyceraldehyde-3phosphate (G3P, 27), resulting in 28. Consecutive retro-aldol reaction liberates TPP and 1-deoxyxylulose-5-phosphate (DXP, 29). MEP (2C-methyl-D-erythritol-4-phosphate, 30) is generated in an acyloin rearrangement/reduction sequence with $\mathrm{NADPH} / \mathrm{H}^{+}$. In multiple phosphorylations cyclic pyrophosphate MEcPP (32) is established, which is said to be reduced to IPP (22), presumably by a Fe^{2+}-dependent enzyme. Again a Mg^{2+} - or Zn^{2+}-dependent isomerase is said to convert IPP (22) to γ, γ-dimethylallyl pyrophosphate (DMAPP, 23).

Scheme 3 Biosynthesis of the Carbon Back Bone of Terpenes
The two known biogeneses of IPP (22) and DMAPP (23) combine at this stage in the biosynthesis generating mono- to polyterpenes as follows. An Alder-Ene like reaction connects IPP (22), acting as the ene with its nucleophilic methylene group, with DMAPP (23), as the corresponding enophile, giving geranyl pyrophosphate (GPP, 35), the basic intermediate to all known monoterpenes (Scheme 3). Elongation of GPP (35) with another IPP (23) along the same reaction mechanism, building up a second tail-to-tail connection, establishes sesquiterpenoid farnesyl pyrophosphate (FPP, 36). The C_{20} carbon backbone of diterpenes in geranylgeranyl pyrophosphate (GGPP, 37) is generated from FPP (36) via another C_{5} elongation with IPP (23). Various oxygenation and cyclization steps starting from 36 generate more complex diterpenes such as bielschowskysin (1) and intricarene (47). After a consecutive C_{5} elongation in a head-to-tail fashion leading to sesterterpenes,
tail-to-tail connectivities are possible for tri-, tetra- and polyterpenes by either combining FPP (36) molecules or GGPP (37) molecules.

2.3. From Open-Chain to Cyclic and Polycyclic Terpenes ${ }^{1}$

Dissociation of the pyrophosphate anion in $\mathbf{3 5}$ to $\mathbf{3 8}$ is assumed to generate a carbocation. This leaves plenty of opportunities for the formation of new carbon-carbon bonds and one or more carbocycles. Thus, a broad variety of terpenes with mono- to polycyclic carbon cores arise from their parent open-chain precursors. Not enough, the formation of diastereomers, enantiomers as well as nonclassical carbocations, 1,2-hydride shifts, Wagner-Meerwein-rearrangements (1,2-alkyl-shifts) and sigmatropic reactions add further paths to terpenes of high diversity. Scheme 4 depicts the biogenesis of some basic mono- and sesquiterpenes including most of the aforementioned operations.

2.4. Biogenetic Cyclizations of GGPP (37) Yielding Diterpenes ${ }^{1,5}$

Though geranylgeranyl pyrophosphate (GGPP, 37) is the sole cyclization precursor for all known diterpenes, the structure and connectivity of their carbon frameworks partly differ drastically due to a variety of possible cationic cyclization mechanisms (vide infra). The natural product family of diterpenes is divided in several subfamilies, each of which is defined by a common carbon core, which also determines the numbering of the contained carbon atoms of all its members.

2.4.1. Type A Cyclization ${ }^{5}$

Similar to the already discussed syntheses of cyclic mono- and sesquiterpenes, GGPP (37) forms an allylic carbocation (65) at C2 via dissociation of the pyrophosphate group, which initiates the Type A cyclization (Scheme 5). Consecutively, the $\Delta^{1,15}$-double bond acts as a nucleophile generating a 14-membered carbon macrocycle under formation of a stabilized carbocation at C15 (66). The next step is a junction opening three different paths. On one hand construction of a $\Delta^{15,16}$-double bond upon abstraction of a proton leads to neocembrene (67). Alternatively, 1,3-hydride shift and consecutive proton abstraction biogenetically yields cembrene (68). Along the third path, on the other hand, casbene (69) is derived by formation of a cyclopropane ring via 8-proton abstraction. The 14 -membered cembrane macrocycle 67 is the biogenetic precursor of the family of furanocembranoids which will be discussed in detail in the next section of this work.

Scheme 5 Type A and Type B Cyclization of GPP (37)

2.4.2. Type B Cyclization ${ }^{5}$

In contrast to Type A cyclizations, Type B cyclizations are not initialized by disproportion of OPP${ }^{-}$, but by protonation of the $\Delta^{3,4}$-double bond of GGPP-conformer ($\mathbf{7 0}$, Scheme 5). The following cyclization cascade forms C4-C5 and C10-C11 single bonds along with a decaline system, the carbon skeleton of labdane diterpenoids (71).

2.4.3. Mixed Cyclization Types: Type A - B and Type B-A Cyclizations ${ }^{5}$

Type A - B cyclizations, as the name already indicates, is initiated as Type A by dissociation of the pyrophosphate, generating an allylic carbocation (65, Scheme 6). Depending on the biogenetic surrounding and therefore on the conformation of the GG-cation, the carbenium ion proceeds in the formation of either the 4,14-cyclocembrene skeleton (72) or the verticillane skeleton (73) of diterpenes. These two macrocycles are transformed in either isoprenoids of the fusicoccane-family (74) or of the taxane-family (75) by a consecutive Type B cyclization initiated by the protonation of one double bond. Consequently this pathway is referred to as Type A - B.

Scheme 6 Type A - B and Type B - A Cyclization of GPP (37)
Hence, not surprisingly, Type $B-A$ cyclizations start with the protonation of a double bond and generation of a carbocation which forms new CC single bonds (37 to 71, Type B, Scheme 6). After proton abstraction this pathway proceeds in the formation of additional carbocyclic rings by disproportionation of the pyrophosphate in a Type A fashion ($\mathbf{7 6}$ to $\mathbf{7 8}, \mathbf{7 7}$ to 79). Basically, via this Type B - A cyclization and optional Wagner-Meerwein rearrangements the carbon skeletons of primarane- (77), kaurane- (79) and pleuromutilin-isoprenoids (78) are constructed.

As a rule of thumb, Type A and Type A - B cyclizations generally form large to medium sized carbocycles. On the contrary, Type B and Type B - A cyclizations result in the formation of smaller rings. In particular, a decaline system is initially formed.

2.5. Marine Derived Diterpenes: Furanocembranoids, Pseudopteranes and Gersolanes ${ }^{6,7}$

2.5.1. The Biosynthetic Correlation between Marine Derived Diterpenes

The marine environment is an immeasurable source of interesting natural products, which often possess interesting biological activities (antitumor, anti-inflammatory and antimicrobial among others) besides fascinating molecular structures. Due to these facts the scientific community developed a broad interest in the investigation of the ingredients and constituents of corals. One of the largest families found in this milieu are cembranoid macro- and polycyclic diterpenes most commonly found in gorgonian and soft corals. These isoprenoids, biogenetically stemming from GGPP (37) via Type A cyclization to neocembrene (67), are interconnected by a network of oxygenation processes as well as rearrangements, ring contractions and transannular cyclizations. According to the carbon skeletons arising from this manifold of biochemical operations, the group of marine derived diterpenes has been divided into three basic subfamilies (Scheme 7). The by far largest subfamily featuring a cembrane-skeleton is characterized by a 14-membered carbon macrocycle. Furthermore, an oxygen-bridge between C3 and C6 of the cembrane, establishing a furan ring in the northern hemisphere is another attribute, which together with the macrocycle act as eponyms of this subfamily, the "furanocembranoids" (80, Scheme 7). Additionally, a butenolide moiety along C10 to C12 and C20 is a common structural motive and the reason for the older name "furanocembranolides".

Other prevalent common structural features of furanocembranoids are:

- \quad C1 is usually (R)-configured
- Oxygenated C2
- C18 can occur in the oxidation states of an aldehyde, carboxylic acid or ester. But, to date, no congener is known bearing a hydroxy functionality at C18
- No representative with C 18 as $\mathrm{CO}_{2} \mathrm{Me}$ bearing an oxygenated C 2
- The furan moiety (C 3 to C 6) may occur as enedione
- The $\Delta^{11,12}$-double bond often is oxygenated exclusively from the α-face (often as an epoxide)
- The $\Delta^{7,8}$-double bond often is oxygenated almost exclusively as the (E)-isomer and usually from the α-face (as epoxides or diol-derivatives)
- C13 often appears with an oxygen substituent, frequently with an acetate

Scheme 7 Subfamilies of Marine Derived Cembranoids
Marine derived diterpenes of the second most abundant subfamily are referred to as "pseudopteranes" (81, Scheme 7). Structural motives of this pool of natural products are a rearranged 12-membered macrocycle as well as a furan ring and a butenolide. Members of the "gersolanes" (82), the third known subfamily, contain a characteristic bicyclo[11.1.0]tetradecane carbon macrocycle (Scheme 7). As for the other two subfamilies the furan ring and the butenolide are common structural features.

Scheme 8 Biosynthetic Photochemical Relation between Cembranoids
Several synthetic studies concerning the biosynthesis of diterpenes and two excellent reviews by Trauner ${ }^{6}$ and Pattenden ${ }^{7}$ point out, that all highly oxygenated and polycyclic diterpenes might biosynthetically arise from simpler common congeners. Thus, a series of oxygenations, presumably mediated by cytochrome P450 monooxygenases, could convert neocembrene skeleton 67 to bipinnatin J (83), amongst other simple congeners. As demonstrated by Rodríguez et al., irradiation of bipinnatin J gave pseudopterane 84, known as kallolide A, via photochemically allowed $\left[\sigma 2_{\mathrm{s}}+\pi 2_{\mathrm{s}}\right]$-cycloaddition, as the main product (1,3-sigmatropic rearrangement, Scheme 8). ${ }^{8}$ Additionally, this was accompanied by the formation of small amounts of gersolane pinnatin A (85), presumably via $\left[\sigma 2_{a}+\pi 2_{a}\right]$-cycloadditions (1,2-sigmatropic rearrangement). Inversion of the hydroxy group at C2 in 85 is observed, most likely via a furanoxonium intermediate. These seminal findings
are a strong indication that pseudopteranes and gersolanes have a furanocembranoid as biogenetic origin.

Along with the rearrangement an isomerization of the $(Z)-\Delta^{7,8}$-double bond to the (E)-diastereomer 86 is observed. Alternatively to the concerted ring-contraction, a radical mechanism has been proposed. Excitation of the $\Delta^{7,8}$-double bond in either isomers is said to result in diradical 87, which can undergo homolytical C9-C10 bond cleavage (Scheme 8). Intermediary formed 88 finally recombines between former C7 and C10 to give the pseudopterane skeleton in kallolide A (84). Interestingly, furanocembranoids featuring a $(Z)-\Delta^{7,8}$-double bond are very rare congeners and those with an epoxide at this juncture exclusively stem from the (E)-diastereomers, with one known exception, 8 -epilopholide ($\mathbf{8 9}$, Scheme 9). Additionally, epoxidation of this double bond seems to occur almost exclusively from the less hindered α-face of the cembrane-skeleton, generating substitution patterns as found, for example, in providencin (92). As already mentioned in a previous section this natural occurring furanocembranoid is the only one besides bielschowskysin (1), featuring a cyclobutane core.

8-epilopholide (89)

bipinnatin $E(90)$

91

providencin (92)

Scheme 9 Cembranoids with an Oxygenated $\Delta^{7,8}$-Double Bond and the Photochemical Biosynthesis of Providencin (92)
Again, a photoinduced reaction has been postulated to in vivo generate the methylenecyclobutanol ring system from bipinnatin $\mathrm{E}(\mathbf{9 0})$ - which itself is biogenetically derived from lopholide, the C8-epimer of 8-epilopholide (89) - as depicted in Scheme 9. ${ }^{7,9}$ This Norrish-Type II reaction (NorrishYang reaction) ${ }^{10}$ is a formal insertion of the aldehyde functionality at C 16 into the $\mathrm{C} 2-\mathrm{H}$ bond. The initiating step is photochemical excitation of the $\alpha, 6$-unsaturated aldehyde and abstraction of a hydrogen in the γ-position forming biradical 91 . Finally, radical combination closes the cyclobutane ring in 92.

Scheme 10 Biogenesis of Rearranged Furanocembranoid Sarcofuranocembranolide B (100)
The structure of skeletal rearranged furanocembranoid sarcofuranocembranolide $B(100)$ is quite remarkable and deserves some mechanistic explanation at this place (Scheme 10). Furthermore, it is another example for a photochemically induced biogenesis of a furanocembranoid. Excitation of $\Delta^{7,8}$ in 93 is presumed to generate diradical 94, which via a radical 4-exo-trig cyclization expels an acetate radical giving cyclobutane 95. Next, fragmentation of the C8-C9 σ-bond generates allylic radical 96, which itself takes part in a 5-exo-trig cyclization generating the C10-C13 bond in 97 . Consecutively, via a second 5-exo-trig cyclization followed by fragmentation (C12-C13) and a formal H-radical quench at C 13 , rearranged cembranoid scaffold 99 is formed. Finally, dihydroxylation of the $\Delta^{7,8}$-double bond and a translactonization provide sarcofuranocembranolide B (100).

2.5.2. The Biosynthesis of Bielschowskysin (1)

Besides intricarene (47) and verrillin (117), bielschowskysin (1) (amongst others) is said to biosynthetically origin from bipinnatin J (101) as depicted in Scheme 11. ${ }^{11}$ Enzymatic oxidation of C13 and C16, followed by cyclization to the hemiacetal in 101 is likely to construct the eastern part of the natural product. On one hand, face-selective dihydroxylation (102), of the $\Delta^{7,8}$-double bond and consecutive $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction could deliver enol ether cyclic hemi-ketal 104. A photoinduced $[2+2]$-cycloaddition of this enol-intermediate with the $\Delta^{11,12}$-double bond of the southern butenolide has been proposed to contract the 14 -membered cembranoid macrocycle, creating the hexacyclic skeleton in bielschowskysin (1).

Scheme 11 Photochemical Biosynthesis of Bielschowskysin (1)
Alternatively, hydration of $\Delta^{7,8}$ and an oxidative cleavage of the furan ring should give enedione 103, which simply is a tautomer of cyclization precursor 104. This oxidative furan cleavage is a common functionalization among diterpenes and may proceed either via a [4+2]-cycloaddition with photochemically derived singlet oxygen via peroxide 106 or by an Achmatowicz-type oxidation via epoxide 108, as depicted in Scheme 12. ${ }^{7}$

Scheme 12 Biogenetic Oxidative Furan Cleavage

Another path for the formation of enol ether cyclic hemiacetal 104 may be initiated by the enzymatic epoxidation of $\Delta^{7,8}$ according to biosynthetic studies by Pattenden and coworkers, which are outlined in Scheme 13. ${ }^{12}$ Hence, after epoxidation of 110 to 111 an acid catalyzed opening of the epoxide presumably gave furanoxonium ion 112 , which was quenched by methanol forming (E)-enol ether 113, which in analogy to the biosynthesis depicted in Scheme 12 may proceed in a [2+2]cycloaddition.

[^0]So far, all biosyntheses described in this work contain one or more photoinduced or photochemically allowed reactions according to the rules of orbital symmetry. ${ }^{13}$ This is very remarkable and deserves further discussion, as marine derived natural products have been isolated from soft and gorgonian corals which usually are found in shallow water, 15 to 50 m beyond ocean surface. ${ }^{14}$ In consideration of the habitat of these invertebrates and the amount of light available at this depth, the photochemical steps might be arguable. It is possible that at least some of the mentioned photoinduced reactions are enzyme mediated or are facilitated by a binding protein. ${ }^{6}$ Furthermore, the conditions under which the marine sources are harvested and prepared for investigation might be the reason for some observed structures. In particular, the common method of drying the species under sunlight might be the reason for structural rearrangements and therefore some of the isolated furanocembranoids might be artifacts rather than natural products. However, as for bielschowskysin (1), further investigations and comparison with the biosyntheses of related compounds might reveal plausible biosynthetic pathways, which proceed without a photoinduced step.

Scheme 14 Stepwise Related Biosyntheses of Verrillin (117) and Bielschowskysin (1)
As already mentioned earlier, verrillin (117) has been isolated from the same gorgonian octocoral as bielschowskysin (1). Thus, their skeletons might emerge from the same biogenetic precursor, namely bipinnatin J (83). Therefore, enediones 114 and 103 are proposed to form new C7-C11 σ-bonds via Michael-additions, giving enolates 115 and 118 respectively (Scheme 14). The biogenetic path to verrillin proceeds with an acyl migration from O 13 to the enolate-O at C20 resulting in oxygen anion 116. ${ }^{7}$ This specific oxygen initiates the formation of a hemiacetal at C6, which consecutively cyclizes onto C3, finalizing the biogenesis of 117. On the other hand, the proposed non-photochemical biogenesis of bielschowskysin continues with an aldol reaction of the intermediary formed enolate
118. Thus, the cyclobutane-moiety and the 9-membered carbon macrocycle in 119 are generated by formation of the C6-C12 junction. Finally, hemiketal formation at C3 results in bielschowskysin (1).

Figure 3 Increasing Complexity and Oxygenation Level of Marine Derived Cembranoids
To conclude this section, Figure 3 shows a number of different cembranoids with various grades of oxygenation and increasing complexity, most of which have already appeared in this section. Bielschowskysin (1) likely is the most complex of all known congeners. Probably, this is one reason why this natural compound has gained such intensive attention by the scientific synthetic community, which will be discussed later in this thesis.

3. Selected Syntheses of Cembranoids

In the following section a selection of cornerstones in total synthesis of marine derived natural products of differing complexity are given. All accomplished natural products are structurally related to bielschowskysin.

3.1. Dauben's Synthesis of (\pm)-Cembrene $(68)^{15}$

In 1974, Dauben and coworkers published a racemic synthesis of the basic macrocyclic hydrocarbon diterpene cembrene (52) centered upon a $\mathrm{Ni}(\mathrm{CO})_{4}$ mediated macrocyclization between two terminal allylic bromides. ${ }^{16}$ Their convergent synthetic strategy started with ketone 123 (Scheme 15). Nucleophilic addition of 2-imine-ethyllithium 124, followed by hydrolysis, dehydration and reduction of the aldehyde led to allylic alcohol 125. Finally, protection of the alcohol and a reduction/oxidation sequence provided aldehyde building block 126. Second building block 130 of this convergent synthesis was obtained after Johnson-Claisen rearrangement ${ }^{17}$ of allylic alcohol 127 with triethyl orthoacetate and addition of lithium dimethyl methylphosphonate (129). Horner-Wadsworth-Emmons-reaction, ${ }^{18}$ to couple fragments 126 and 130, was followed by reduction of the resulting enone and acylation yielding intermediate 131. Before the nickel-mediated macrocyclization (132) was elaborated, removal of the THP-protecting groups and conversion of the diol to the corresponding dibromide was performed. To accomplish the racemic total synthesis of cembrene (68), the C18 methyl group was installed by 1,2-addition of MeLi to C4-ketone and consecutive acidic dehydration, regioselectively installing the labile diene in the target molecule.

Scheme 15 Dauben's Synthesis of (\pm)-Cembrene (68)

3.2. Paquette's Synthesis of Acerosolide (141) ${ }^{19}$

Paquette and Astles introduced one of the first routes to furanocembranoids by the publication of the total synthesis of acerosolide (141) in 1993. Their retrosynthetic consideration was based on the early introduction of the furan moiety, to which a butenolide moiety in the southern entity should be appended before closing the 14-membered macrocycle by a chromium mediated intramolecular Nozaki-Hiyama-Kishi reaction (NHK). ${ }^{20}$ Thus, known trisubstituted furan 133^{21} was initially coupled with aldehyde 134 via a tin-mediated allylation reaction resulting in (E)-isomer 135 in acceptable yield. Acid catalyzed cyclization of the lactone, double phenylselenide introduction at C2 and C12 and sequential oxidative removal of the selenide residues provided butenolide $\mathbf{1 3 6}$. Stille-coupling at C2, via the corresponding furfuryl-bromide, with vinyl stannane 137 introduced carbons C1 and C1517 in 138. Suitable macrocyclization precursor 140 was obtained after conversion of the THP ether to the allylic bromide by treatment with 1,2-bis(diphenylphosphino)ethan tetrabromide (139) and an deprotection/oxidation sequence at C14. Nozaki-Hiyama-Kishi reaction closed the macrocycle generating an inconsequential single diastereomer at C14, presumably via a six-membered Zimmermann-Traxler transition state. This was further oxidized with PDC finalizing the total synthesis of acerosolide (141). A similar macrocyclization strategy will later be discussed in Trauner's total synthesis of bipinnatin J (83) (Section 3.5.1.), creating the C1-C2 single bond.

Scheme 16 Paquette's Synthesis of Acerosolide (141)

3.3. Marshall's Synthesis of ent-Rubifolide (152) ${ }^{22}$

Marshall et al. reasoned the low yielding steps in Paquette's synthesis of acerosolide (141) due to a) the sensitivity of the early introduced trisubstituted furan moiety and to the fact that b) the macrocyclization might be energetically too high to overcome the arising ring strain as well as unfavorable enthalpic and entropic factors of the macrocyclization. To proof this assumption, Marshall's related total syntheses of rubifolide (152) and deoxypukalide (164) ${ }^{23}$ were centered upon prior formation of a macrocycle and downstream intraannular furan cyclization. As the assignment of the absolute configuration of rubifolide was planned, enantiopure (S)-(-)-perillyl alcohol (142) was chosen as starting material for the total synthesis (Scheme 17). This terpene was transformed into intermediate 143 in five steps. After a reduction/oxidation sequence and C1 homologation, utilizing the Seyferth-Gilbert reagent (diethyl (diazomethyl)phosphonate), ${ }^{24}$ alkyne 144 was derived in good yield.

Scheme 17 Marshall’s Synthesis of ent-Rubifolide (152)
Aldehyde 147 was synthesized in overall five steps from 145 containing an epoxidation, regioselective opening of the same, protecting group operations and a Swern oxidation. Fragments 144 and 147 were coupled along C10-C11 via the lithium acetylide. Protecting group operations, $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction of a tributylstannyl cuprate onto a propargylic mesylate as well as oxidation of C3 furnished precursor 149, suitable for the envisaged macrocyclization. Upon treatment with Lewis-acid, bond formation between C3 and C4 was accomplished followed by oxidation of the alcohol. With $\mathbf{1 5 0}$ in
hands the silver-mediated furan-cyclization was performed, ${ }^{25}$ which was followed by deprotection/dehydration, stereoselectively establishing the (Z)-configured $\Delta^{7,8}$-double bond. The propargylic alcohol was converted into a single diastereomer by a substrate controlled oxidation/reduction sequence giving intermediate 151. A $\mathrm{Pd}(0)$-catalyzed carbonylation followed by in situ AgNO_{3} mediated butenolide-cyclization of the intermediary formed allene ${ }^{26}$ finished the total synthesis of ent-rubifolide (152). All spectroscopic data was identical with that of a natural sample of the target molecule, solely the optical rotation was equal in magnitude but of opposite sign, indicating that the enantiomer was synthesized. Nonetheless, the absolute configuration of rubifolide (174) was thus assigned. However, by applying (R)-(+)-perillyl alcohol as starting material, naturally occurring rubifolide (174) would be accessible in 5% via this 22 steps counting sequence.

3.4. Donohoe's Synthesis of (-)-(Z)-Deoxypukalide (164) ${ }^{27}$

Donohoe et al. tested a methodology developed in their own laboratories ${ }^{28}$ in a total synthesis of the furanocembranoid (-)-(Z)-deoxypukalide (164). Thus, the retrosynthesis was based on formation of the trisubstituted furan and late-stage formation of the southern butenolide via ring-closing metathesis (RCM) with a macrolactone (163) as key intermediate (Scheme 18).

Scheme 18 Donohoe's Synthesis of (-)-(Z)-Deoxypukalide (164)
Due to economic reasons, (S)-(-)-perillyl alcohol (142) was chosen as starting material, resulting in the enantiomer of the target compound after successful synthesis. Reaction of the aldehyde intermediate from ozonolysis of 142 with vinylalane 153, which is derived from hydroalumination of
methylpropionate, and formation of the acetal with $\mathbf{1 5 4}$ under acidic conditions readily furnished 155. RCM reaction followed by acidic workup allowed the formation of the furan moiety giving 156. ${ }^{28}$ Along three consecutive reaction steps building block 157 of this convergent synthesis was finished. Double deprotonation of $\mathbf{1 5 7}$ and formation of the zinc species was followed by Negishi cross-coupling with 160, which itself was derived from (S)-glycidol (158), leading to macrolactonization precursor $\mathbf{1 6 1}$ after deprotection. Activation of the carboxylic acid with MNBA $(162)^{29}$ allowed the closure of macrolactone 163 . Finally, RCM reaction, generating the $\Delta^{11,12}$-double bond, finished the total synthesis of (-)-(Z)-deoxypukalide (164).

3.5. Trauner's Studies on the Biosynthetic Relationship among

 Furanocembranoids: Relay Synthesis of Furanocembranoids ${ }^{6,11}$Members of the furanocembranoid family have been preferred synthetic targets of the research group of Trauner for a long time. Starting with bipinnatin J (83) in 2006, ${ }^{30}$ this research group published a total of eight total syntheses of marine derived cembranoids. Based on profound understanding of the biosynthetic correlation among this family of natural products ${ }^{6,11}$ seven of these targets were accomplished in a biomimetic way from bipinnatin J as the common starting point. ${ }^{31}$

3.5.1. Total Synthesis of (-)-Bipinnatin J (83) ${ }^{11,30}$

Shortly after the research group reported a racemic synthesis of bipinnatin J $(83)^{30}$ a stereoselective total synthesis of the target molecule via a slightly modified sequence was published. ${ }^{11}$ Their synthesis started with literature known alcohol 165, ${ }^{32}$ which was readily converted into enantiopure propargylic alcohol 166 including a stereoselective reduction with (S)-alpine borane (Scheme 19). C1-Elongation to intermediate 167 was accomplished via a series of protecting group operations and coupling of the corresponding lithium acetylide with ethyl chloroformate. Ruthenium catalyzed intermolecular Alder-ene reaction ${ }^{33}$ of 167 with allylic alcohol (168), stereoselectively yielded the butenolide moiety in 169. (E)-Selective HWE-reaction ${ }^{18}$ and a series of reduction oxidation steps set the stage for the Stille-coupling ${ }^{34}$ of 2-methylfurfurylstannane 172 and vinyl iodide 171. After Appel reaction ${ }^{35}$ of the allylic alcohol to bromide 173 the macrocyclization was scheduled. Thus, similar to Paquette's synthesis of acerosolide (141, vide supra), a chromium mediated Nozaki-Hiyama-Kishi reaction ${ }^{36}$ was used to diastereoselectively form (-)-bipinnatin J (83).

Scheme 19 Total Synthesis of (-)-Bipinnatin J (83)
With a viable stereoselective total synthesis of (-)-bipinnatin J(83) over 16 steps, starting from alcohol 165 and 8% overall yield, Trauner et al. were able to tackle their endeavor to access other congeners via biomimetic steps from this natural product as relay compound.
3.5.2. Total Syntheses of (+)-Rubifolide (174), (+)-Isoepilophodione B (175) and $(+)$-Intricarene (47) ${ }^{11}$

Bipinnatin J (83) was directly converted to two more natural products by consecutive simple one step procedures (Scheme 20). Thus, ionic deoxygenation of the benzylic position by trifluoroacetic acid and triethylsilane ${ }^{37}$ readily furnished (+)-rubifolide (174). Treatment of 174 with either mCPBA or singlet oxygen lead to formation of the enedione in (+)-isoepilophodione B (175), completing another total synthesis and confirming earlier proposed biomimetic correlations.

[^1]Treatment of bipinnatin J (83) with mCPBA, via an Achmatowicz reaction, ${ }^{38}$ resulted in a dihydropyran which was directly converted to 176 by acylation. Various conditions were screened until heating of 176 in DMSO and 2,2,6,6-tetramethylpiperidine yielded (+)-intricarene (47) by an intramolecular 1,3-dipolar cycloaddition of oxidopyryliumbetaine 177 with the butenolide, stereoselectively forming $\Delta^{2,12}$ - and $\Delta^{6,11}-\sigma$-bonds. A few months earlier the research group of Pattenden et al. published an almost identical endgame in their total synthesis of 47, only differing in the reagents applied. ${ }^{39}$

3.5.3. Total Syntheses of Coralloidolides A, B, C and E ${ }^{31}$

(+)-Rubifolide (174), which itself is available in one step from bipinnatin $\mathrm{J}(83)$, served as a precursor for another four natural products (Scheme 21). Scheffer-Weitz epoxidation ${ }^{40}$ of the butenolide in 174 provided coralloidolide $\mathrm{A}(178)$ as a single diastereomer by attack from the less hindered α-face. Upon oxidative cleavage of the furan moiety the next furanocembranoid, coralloidolide E (179), was synthesized. Treatment with scandium triflate resulted in hydration of the enedione and transannular epoxide opening, which established the oxygen bridged tetracyclic coralloidolide B (180). The fourth and so far last furanocembranoid synthesized by Trauner et al. is coralloidolide C (181). Formation of the cyclopentenone in 181 was accomplished by treatment of 179 with DBU, presumably via γ-deprotonation at C19 and transannular aldol reaction closing the C3-C7 connection followed by migration of the resulting double bond in conjugation to the carbonyl at C6.

Scheme 21 Total Syntheses of Coralloidolides A, B, C and E

3.6. Mulzer's Synthesis of 11-Gorgiacerol (191) ${ }^{41}$

Our research group has been working on a number of terpenoids such as bielschowskysin (1), providencin (92) ${ }^{42}$ and 11-gorgiacerol (191). The synthesis of the latter was recently accomplished by Weinstabl and Mulzer utilizing the biomimetic Rodríguez-Pattenden ring contraction ${ }^{43}$ of a 14-membered carbocyclic precursor. The synthesis of 191, which belongs to the pseudopterane family of furanocembranoids, commenced with literature known ester 182, derived from (R)-(-)carvone in four steps. ${ }^{44}$ Reduction of the ester, aldol reaction with methylacetate and subsequent oxidation furnished 183 (Scheme 22), which was further alkylated with propargyl iodide 184 to 185. Furan cyclization according to a procedure reported by Wipf ${ }^{45}$ and subsequent acidic cleavage of the dimethylacetal provided aldehyde 186. Aldol coupling with seleno lactone 187^{42} and oxidative elimination of the selenide ensued. By application of Grubbs II catalyst in refluxing benzene, $\mathbf{1 8 8}$ was readily converted to 14 -membered carbon macrocycle 189 with the newly formed $\Delta^{7,8}$-(Z)-double bond. As generally proposed for the biosynthesis of pseudopteranes (biosynthesis of kallolide A (84), Scheme 8) irradiation lead to contraction of the cembrane to the pseudopterane skeleton completing the total synthesis of 11-gorgiacerol (191), presumably via diradical 190. Similar to the studies by Pattenden, ${ }^{46}$ initial formation of the $\Delta^{7,8}-(E)$-isomer was observed. Furthermore, the completion of this synthesis and the synthesis of the C11 epimer lead to revision of the structure of the natural compound.

Scheme 22 Mulzer's Synthesis of 11-Gorgiacerol (191)
The syntheses by Trauner and Mulzer elegantly represent the application of biomimetic strategies in total synthesis. The biomimetic photoinduced ring contraction utilized in Mulzer's total synthesis of 11-gorgiacerol (191) displays a suitable connection to the following section of this thesis, which deals with the application of photochemical reactions as key steps in natural product synthesis.

4. Photochemical Reactions as C-C Bond Forming Strategies in Natural Product Synthesis

The design of natural product syntheses is a challenging field for synthetic organic chemists and demands a deep seated knowledge of a broad number of chemical transformations as well as certain creativity in setting the retrosynthetic cuts. Photochemical reactions add a wide range of different, often underestimated transformations to the toolbox of synthetic chemists. The following section is devoted to photochemical C-C bond forming processes with an emphasis on the [2+2]-photocycloaddition, as this transformation has the largest impact of all photochemical reactions on total synthesis and a main part of this thesis is centered upon this reaction. An insight into the role of molecular orbitals in each of these reactions is not given, as this is part of numerous excellent articles and books and would go beyond the scope of this thesis. ${ }^{47}$

4.1. Photocyclizations ${ }^{48}$

Conrotatory $[6 \pi]$ - and disrotatory $[4 \pi]$-photocyclizations are photochemically allowed according to the Woodward-Hoffmann-rules ${ }^{13}$ and are among the most important light induced pericyclic ring closing reactions. Phenanthrenes are readily accessed by $[6 \pi]$-cyclizations forming the central benzene ring under oxidative conditions. For example combretastatin C-1 (194) was synthesized from stilbene 192 utilizing this pericyclic reaction (Scheme 23). ${ }^{49}$ Irradiation of stilbene 192 in the presence of iodine, as oxidant of an intermediary formed cyclohexadiene, gave the desired phenanthrene scaffold 193.

Scheme 23 Application of a [6r]-Photocyclization in the Total Synthesis of Combretastatin C-1 (194)
Substrates halogenated ortho to the alkenyl-bridge have also been applied, leading to the rearomatization of the central benzene ring by elimination of $H X$ under neutral conditions. ${ }^{50}$ Amongst others, further substrates of this pericyclic process were enamides of benzoic acid giving isoquinolines and derivatives. ${ }^{51}$

Pyridinium salts as 195 were applied in [4 π]-photocyclizations in natural product synthesis (Scheme 24). The disrotatory reaction yields carbenium ion 196, which is saturated in the presence
of water. A consecutive $\mathrm{S}_{\mathrm{N}} 2$ opening of aziridine 197 and acylation afforded amino cyclopentene 199, which was proceeded to (+)-mannostatin (200) by Mariano et al. ${ }^{52}$

Scheme 24 Application of a [4]]-Photocyclization in the Total Synthesis of (+)-Mannostatin (200)
[4 π]-photocyclization of a cycloheptatrienone of general structure 201 is known to result in bicyclo[3.2.0]cycloheptane 202 (Scheme 25), which might be a suitable intermediate for the elaboration of bielschowskysin's western carbon core (vide infra).

Scheme 25 Proposed [4 π]-Photocyclization to Generate the Bicyclo[3.2.0]cycloheptane Core of Bielschowskysin (1)

4.2. Norrish-Yang Cyclization ${ }^{48}$

Photoexcitation of a carbonyl group may result in the abstraction of a hydrogen in γ-position, leading to a short lived 1,4-diradical, which recombines closing a cyclobutane moiety. This process is referred to as Norrish-Yang cyclization (Norrish type II reaction). ${ }^{10}$ As an example (Scheme 26), the reaction was used to construct the trans-fused cyclobutane ring in the total synthesis of (-)-punctaporonin (206). ${ }^{53}$ Competitive cleavage of diradical 204 (Norrish type II cleavage), giving isobutene and a ketone in the substrate, were found to be the reason for the moderate yield.

[^2]Mechanistically, the excitation may result in a triplet state carbonyl, which abstracts the γ-hydrogen, where after spin-flip to the singlet state (ISC, inter-system-crossing) facilitates recombination of the 1,4-diradical. The Norrish Yang cyclization has also been reported to form cyclopentanes in cases where no γ-hydrogen but a δ-hydrogen was present. ${ }^{54}$ Furthermore, irradiation of $\alpha, 6$-unsaturated carbonyl compounds was found to lead to the deconjugated b, γ-unsaturated equivalents by abstraction of a γ-hydrogen. ${ }^{55}$

4.3. Norrish-Type I Cleavage ${ }^{48}$

The following section deals with the Norrish-Type I reaction, which refers to the α-cleavage of photoexcited carbonyl compounds. ${ }^{10}$ Homolytic cleavage of the σ-bond next to the carbonyl results in the formation of a diradical, which offers different paths for further reactions. For example, excitation of cyclohexanone 207 led to formation of unconjugated exocyclic aldehyde 209 via diradical 208 (Scheme 27). In particular, the acyl-radical (208) abstracts the δ-hydrogen (C5) and the $\Delta^{5,6}$-double bond is formed by recombination of the C5-C6 diradical. Compound 209 served as intermediate in the total synthesis of sesquiterpene (+)-juvabione (210). ${ }^{56}$

Scheme 27 Norrish-Type I Cleavage in the Total Synthesis of (+)-Juvabione (210)
Formation of ketene 213 by Norrish-Type I reaction, which directly underwent cyclization to butyrolactone 214 was used in the total synthesis of leukotriene- B_{4} (215, Scheme 28). ${ }^{57}$ Irradiation of cyclobutanone 216 in acetic acid was used to establish mixed bisketal 219 in the total synthesis of (-)-deacetoxyalcyonin 220. ${ }^{58}$ After homolytic bond cleavage to 1,4-diradical 217, formation of oxacarbene 218 and trapping by the solvent resulted in the desired ring-enlargement.

Scheme 28 Norrish-Type I Cleavage in the Total Syntheses of Leukotriene- B_{4} (215) and (-)-Deacetoxyalcyonine (220)

4.4. Photochemical Rearrangements ${ }^{48}$

4.4.1. 1,2- and 1,3-Acyl Migration

These photochemical reactions are closely related to the Norrish-Type I reaction, starting with homolytic cleavage of the bond in α-position to the photoexcited carbonyl group. The 1,3 -acyl migration presumably is a singlet state process, whereas the 1,2-acyl-migration, also known as oxo-di-r-methane rearrangement, is a triplet process requiring a sensitizer. Scheme 29 gives an example for the latter. Mechanistically, the excited triplet carbonyl in b, γ-unsaturated ketone 221 - via 1,2-acyl migration - generates 1,3-diradical 223, which recombines affording cyclopropane 224. Three more steps, including a reductive cleavage of the cyclopropane ring under Birch conditions, ${ }^{59}$ finalized the total synthesis of [3.3.3]propellane (\pm)-modhephene $\mathbf{2 2 5}$. ${ }^{60}$

Scheme 29 Photochemical 1,2-Acyl Migration in the Total Synthesis of the [3.3.3]Propellane (\pm)-Modhephene (225)

4.4.2. Photo-Fries Rearrangement - Mulzer's Total Synthesis of (-)-Kendomycin (237)62

In contrast to the thermal variant of the Fries rearrangement, ${ }^{61}$ the photoinduced modification does not require strong Lewis acidic conditions, facilitating the acyl-migration by irradiation with light of short wavelengths. Magauer and Mulzer reported an application of the photo-Fries reaction for the construction of a macrocycle in their total synthesis of (-)-kendomycin (237). ${ }^{62}$ Their highly convergent synthesis was based on the connection of three building blocks 231, 228 and 227. The latter two were accessed from aldehyde 226 in one and ten steps, respectively (Scheme 30). Connection of these two intermediates by esterification was followed by Claisen-Ireland rearrangement ${ }^{63}$ and reduction of the resulting carboxylic acid providing (E)-alkene 230. Further transformations and chain elongation with Evans ketoimide $\mathbf{2 3 1}{ }^{64}$ under Lewis acidic conditions led to intermediate 232. Diastereoselective reduction to the 1,3-anti diol ${ }^{65}$ and further manipulations afforded seco acid 233, setting the stage for the macrolactonization. After successful lactonization, irradiation of macrolactone 234 in cyclohexane resulted in intermediate 236 with the correct ring size via photo-Fries reaction. Finally, a series of protecting group operations, reductions and oxidations completed the total synthesis of (-)-kendomycin (237).

[^3]
4.4.3. meta-Photocycloaddition - Mulzer's Synthesis of (-)-Penifulvin A (250) ${ }^{48,66}$

 This singlet process usually between an electron-rich arene and a double bond is one of the most fascinating photochemical reactions applied in total synthesis. As the intermolecular case of this reaction rarely gives satisfying yields it is most often carried out in an intramolecular fashion of an arene with an alkenyl side chain. Along the path of this transformation three single bonds are formed with up to six stereogenic centers. Gaich and Mulzer's synthesis of sesquiterpenoid (-)-penifulvin $\mathrm{A}(\mathbf{2 5 0}),{ }^{67}$ which is outlined in Scheme 31, is a very elegant example for the application of this reaction in total synthesis.

Scheme 31 Mulzer's Total Synthesis of (-)-Penifulvin A (250) via meta-Photocycloaddition
Centered upon Wender's previous work on this photocycloaddition, ${ }^{66}$ the synthesis commenced with o-tolylacetic acid (238). Elongation in the benzylic position in stereoselective manner by Myers' alkylation (240), utilizing pseudoephedrine ((R, R)-NMPE), ${ }^{68}$ afforded 241 after reductive cleavage of the chiral auxiliary. Next, the meta-photocycloaddition was scheduled. On irradiation a singlet state exciplex is said to be formed which reacts in a formal [3+2]-cycloaddition, preferentially as the anticonformer 243, due to reduced 1,3-allylic strain. In two different paths diradical 244 is able to recombine, generating either linear triquinane system $\mathbf{2 4 5}$ or the angular 246. As a rule of thumb, donor-substituents on the arene usually end up at the newly formed bridge head atom, forming a quaternary center. Tetracycle 246 was further proceeded to $\mathbf{2 4 7}$ by Birch ${ }^{59}$ reduction cleaving the
cyclopropane ring and an oxidation sequence to the carboxylic acid. Ozonolysis of the double bond, cyclization of intermediary dialdehyde $\mathbf{2 4 8}$ to hemiketal 249 and PDC oxidation completed the total synthesis of (-)-penifulvin $\mathrm{A}(\mathbf{2 5 0})$ in eight steps and 8% overall yield.

4.5. Paternò-Büchi Reaction 48,69

The photocycloaddition of a carbonyl with an olefin, providing an oxetane, is a well established photochemical reaction referred to as Paternò-Büchi reaction. ${ }^{69}$ Usually the reaction precedes on the triplet hypersurface, involving 1,4-diradicals, and therefore it is a stepwise rather than a concerted process. As oxetanes are rare structural motives in natural products, they are most often used as intermediates and usually cleaved. Both inter- and intramolecular cases are feasible in total synthesis. An example for the former is given in Scheme 32 in the total synthesis of $(+)$-preussin (255). ${ }^{70}$ In the photochemical reaction enamine 252 was treated with benzaldehyde giving intermediate 254, which is the formal anti-aldol product due to the inherent 1,3-functionality. Hydrogenolysis of 2-phenyloxetane 254 and reduction of the amide were the remaining steps to conclude the total synthesis of (+)-preussin (255).

Scheme 32 Application of the Paternò-Büchi Reaction in the Total Synthesis of (+)-Preussin (255)

4.6. [2+2]-Photocycloaddition ${ }^{48}$

4.6.1. General Discussion

The [2+2]-photocycloaddition is the most utilized photochemical reaction in natural product synthesis. Even though cyclobutanes are scarce motives, they are often used as intermediates in syntheses mimicking a variety of structural features. Besides inter- and intramolecular cases the [2+2]-photocycloaddition can be classified into three different pathways.
(A) Most commonly, $\alpha, 8$-unsaturated usually cyclic carbonyl compounds react with olefins in a stepwise fashion via comparatively long lived $\pi \pi^{*}$ triplet states, similar to the Paternò-Büchi reaction via 1,4 diradicals.
(B) [2+2]-photocycloadditions utilizing triplet sensitizers such as acetone, acetophenone or benzophenone. This pathway enables photoexcitation of olefins with rather low triplet energy, for example dienes and styrenes.
(C) [2+2]-photocycloadditions employing copper(I) salts as catalysts. This reaction is only useful for 1,6-dienes, establishing bicyclo[3.2.0]heptanes or corresponding heterocycles. Mechanistically, the charge-transfer band of the copper-alkene complex is excited at wavelengths of about 250 nm , resulting in [2+2]-photocycloadditions.

Whether on the singlet or triplet hypersurface, the [2+2]-photocycloaddition is the direct way to cyclobutanes. Thus, whenever such a moiety is present in the scaffold of a natural product, this process can immediately be recognized as a central retrosynthetic step. Scheme 33 gives examples for the application of all three general pathways discussed above in intramolecular fashion.

In the racemic total synthesis of punctaporonin C (260) an intramolecular [2+2]-photocyclization was employed to construct the tetrahydrofuran moiety of an oxygen linked butenolide with excellent regio- and stereoselectivity (Scheme 33). ${ }^{71}$ Excitation of butenolide 256 and formation of 1,4-diradicals 257 and/or 258, after spin-flip to the singlet state, results in recombination and formation of tetracycle 259.

1,3-bridged cyclobutanes like 263 are available from [2+2]-photocyclizations of 1,5-dienes, which are said to react in crossed regioselectivity via their triplet states according to the so called rule of five ${ }^{72}$ not to be confused with the Lipinski rules (RO5). ${ }^{73}$ The former describes the preference for the formation of five membered rings in triplet-state reactions, whereas the latter is used to predict the druglikeness of chemical compounds. Thus, by excitation of $\mathbf{2 6 1}$ in the presence of benzophenone as sensitizer 1,4-diradical 262 is formed by closure of a cyclopentane ring. By inter-system-crossing to
the singlet state, recombination becomes feasible and the bridged cyclobutane $\mathbf{2 6 3}$ is constructed. Further transformations allowed the synthesis of rac-trans-bergamotene (264). ${ }^{74}$

Type C

Scheme 33 [2+2]-Photocycloaddition Types and their Application in Total Syntheses
The photocyclization of $\mathbf{2 6 5}$ to $\mathbf{2 6 6}$ represents the third general case. 1,6-Diene $\mathbf{2 6 5}$ was irradiated in the presence of copper(I)triflate giving the cyclobutane in good overall yield and excellent regio- and stereoselectivity. Further steps, including an epimerization, led to the racemic synthesis of kelsoene (267). ${ }^{75}$

4.6.2. [2+2]-Photocycloaddition Products as Intermediates in Total Synthesis

 The following section discusses the different ways in which cyclobutanes have been used as intermediates in total synthesis. The potential of this strategy strongly depends on both reaction partners and the outcome of the [2+2]-photocycloaddition itself.The racemic total synthesis of periplanone $B(273)$ by Schreiber and Santini utilized an allene/[2+2]-photocycloaddition of cyclohexenone $\mathbf{2 6 9}$ to yield bicycle $\mathbf{2 7 0}$ in a regioselective head-to-head fashion as an inconsequential 2:1 diastereomeric mixture (Scheme 34). ${ }^{76}$ Addition of a vinyl
appendage and consecutive oxy-Cope rearrangement ${ }^{77}$ provided cyclobutene 271. Thermal conrotatory ring opening followed by double-bond isomerization afforded (E)-cyclodecenone 272, which could be proceeded to the desired natural compound 273.

Scheme 34 Head-to-Head Allene/[2+2]-Photocycloaddition in the Total Synthesis of rac-Periplanone B (273)
Alkenes with electron-donor substituents at the double bond preferentially react in a head-to-tail fashion. Thus, [2+2]-photocycloaddition of 1,1-dialkoxyalkene 274 with cyclohexene 275 regioselectively afforded bicycle 276 as reported by Smith and Richmond (Scheme 35). ${ }^{78}$ The latent cyclobutanone was subjected to Baeyer-Villiger oxidation ${ }^{79}$ affording γ-butyrolactone $\mathbf{2 7 8}$, which was converted to rac-paniculide B (279).

Scheme 35 Head-to-Tail [2+2] Photocycloaddition in the Total Synthesis of rac-Paniculide B (279)
So far, only racemic total syntheses containing [2+2]-photocycloadditions have been discussed. However, there are stereoselective cases utilizing chiral complexing agents or chiral auxiliaries. As an example for such an enantioselective photocycloaddition, irradiation of a mixture of quinolone $\mathbf{2 8 0}$ and silyl enol ether $\mathbf{2 8 1}$ in the presence of enantiopure $\mathbf{2 8 2}$ afforded $\mathbf{2 8 3}$ with excellent regio- and diastereoselectivity (Scheme 36). Fragmentation of the cyclobutane moiety was achieved under basic conditions providing enone 284, which was further proceeded to (+)-meloscine (285) by Bach et al. ${ }^{80}$

Scheme 36 Enantioselective Intermolecular Head-to-Tail [2+2]-Photocycloaddition by Bach et al.
Silyloxy or alkoxy substituted double bonds are frequently used in de Mayo reaction sequences. ${ }^{81}$ This strategy was applied by Oppolzer and Godel to the total synthesis of (+)-longifolene (289), as depicted in Scheme 37. ${ }^{82}$ Intramolecular [2+2]-photocycloaddition of 1,3-dicarbonyl surrogate 286 resulted in caged intermediate 287. Upon cleavage of the benzyloxycarbonyl protecting group (Z) at the tertiary alcohol by hydrogenolysis, retro-aldol reaction (the second step in the de Mayo reaction) afforded tricyclic $\mathbf{2 8 8}$ which could be proceeded to desired natural product 289.

Scheme 37 Photochemical de Mayo Reaction in the Total Synthesis of (+)-Longifolene (289)
Another very elegant example for an intramolecular [2+2]-photocycloaddition is the racemic synthesis of (\pm)-hirsutene (295) by Mehta, outlined in Scheme $38 .{ }^{83}$ Photocycloaddition precursor 292 was derived by Diels-Alder reaction of cyclopentadiene (290) and para-benzoquinone 291. Irradiation of the [4+2]-cycloaddition product gave pentacyclic cubic intermediate 293. Thermal cleavage of the cyclobutane resulted in the formation of the linear triquinane scaffold 294 of (\pm)-hirsutene (295). Overall, the sequence from 292 to 294 can be seen as stepwise photothermal metathesis.

Scheme 38 [2+2]-Photocycloaddition in Mehta's Synthesis of rac-Hirsutene (295)
Crimmins et al. also utilized a [2+2]-photocycloaddition/fragmentation sequence in their remarkable synthesis of ginkgolide B(300). ${ }^{84}$ In their complex retrosynthetic considerations the intramolecular cycloaddition between an enone and a furan moiety was envisaged to stereoselectively form spiroconnectivity between three central rings (A, B and C). Thus, photoexcitation of $\mathbf{2 9 6}$ led to formation of tetracycle 297, which was proceeded to 298 in three more steps (Scheme 39). After installation of the enone functionality via the α-phenylselenyl ketone, the degradation of the cyclobutane ring was performed. Thus, epoxidation of the dihydrofuran ring in the presence of water was accompanied by a retro-aldol reaction resulting in cleavage of the cyclobutane ring in 299, which was further converted to desired natural product 300.

Scheme 39 [2+2]-Photocycloaddition/Fragmentation Sequence in the Total Synthesis of rac-Ginkgolide B (300)
A series of applications of photochemical reactions and the [2+2]-photocycloaddition has been discussed in this chapter, pointing out that these transformations are useful operations in total synthesis only requiring light as "reagent". Photochemical transformations, if designed carefully, are very selective, high yielding and atom-economic processes leaving no waste at the end of the reaction. As most of the presented syntheses were racemic, further elaboration of stereoselective versions of these reactions is desirable. The good experience with photochemical reactions in our group and the great potential of the [2+2]-photocyclization to construct cyclobutanes as intermediates in total synthesis or as structural motives of natural products, encouraged us to utilize this reaction in our efforts towards a total synthesis of bielschowskysin as outlined in the following chapters.

5. Bielschowskysin

The research group of A. Rodríguez has devoted a large part of its research to the investigation of marine invertebrates and natural products isolated from them. Trying to find new types of therapeutics and possible drug leads, the research group intensively studied extracts from specimen of soft and gorgonian corals. Starting with a publication in 2004, this research group has reported the isolation of more than 25 different cembranoid diterpenes from the gorgonian octocoral Pseudopterogorgia kallos (Bielschowsky, 1918). Extracts of this specimen, collected near the Old Providence Island located in the Southwestern Caribbean Sea off the coast of Colombia (Figure 4), ${ }^{85}$ revealed the isolation of a furanocembranoid with an unprecedented carbon skeleton, bielschowskysin (1). ${ }^{86}$

Figure 4 Location of Old Providence Island and a Photography of Pseudopterogorgia kallos
From 1.07 kg of air-dried animal specimen, 166 g of a crude dry extract were obtained by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1). After a standardized extraction procedure and purification by flash chromatography followed by normal-phase HPLC, 39.6 mg of pure crystalline $\mathbf{1}$ were obtained, which equates $0.024 \mathrm{wt} \%$ of the crude extracts.

The carbon scaffold of bielschowskysin consists of a novel tricyclo[9.3.0.0 ${ }^{2,10}$]tetradecane ring system, which was confirmed by single-crystal X-ray diffraction analysis (Figure 5). Accompanied by 2D-NMR analysis, the relative configuration of the natural product could be assigned as depicted in Figure 5. Furthermore Rodríguez et al. proposed a new class of regular diterpenes, bielschowskyanes, named after the so far sole representative 1.

The biogenesis of bielschowskysin is interrelated to the biosyntheses of its congeners and has therefore been treated in context with them in a previous section of this work.

Figure 5 Crystal Structure of Bielschowskysin (1)
The unprecedented hexacyclic skeleton of $\mathbf{1}$ contains eleven stereogenic centers, seven of which are part of or contiguous to the cyclobutane ring. This cyclobutane ring is encompassed by a fused cyclopentane in the west (along C7-C11), a butyrolactone in the south (along C11-C12) and a spiro-2-oxo-dihydrofuran ring in the north-east (C6). The natural product with the molecular formula $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{9}$ features one all-carbon quaternary center (C12) and a total of nine oxygen atoms. Thus, with a statistical carbon to oxygen ratio of 2.4:1 the level of oxygenation is remarkably high amongst diterpenes. These oxygen atoms are part of two cyclic hemiacetals at C3 and C16, an acetoxy-group at R-configured C13, a lactone bridging between C10 and C20, as well as a tertiary alcohol at S-configured C8.

Besides the isolation and the assignment of the dense polycyclic structure, Rodríguez et al. reported significant biological activity of bielschowskysin (1). Compound 1 was found to exhibit in vitro cytotoxicity against two human cancer cell lines, EKVX nonsmall cell lung cancer ($\mathrm{Gl}_{50}<50 \mu \mathrm{M}$) and CAKI-1 renal cancer. More interestingly it showed antiplasmodial activity against Plasmodium falciparum ($\mathrm{IC}_{50}=10 \mu \mathrm{~g} / \mathrm{ml}$), the number one malaria causing parasite. With an estimated number of 200 million global cases and an annual mortality of more than one million people according to the WHO, malaria is one of the most life-threatening diseases. ${ }^{87}$ Additionally, the parasite, whose vector is the female anopheles fly, is well known to rapidly form resistances against common commercial drugs. Therefore, an enormous interest of the scientific community concerning the investigation of this disease and a pressing need for new therapeutics against Plasmodium species exists. With its remarkable antiplasmodial activity, bielschowskysin (1) may serve as possible drug against P. falciparum or at least as a promising drug lead. Thus, combined with its challenging structural features, 1 represents a very attractive target for synthetic chemists, which is reflected by the numerous contributions reported in literature. The following section is going to review all present synthetic efforts towards a total synthesis of bielschowskysin.

6. Previous Synthetic Efforts towards Bielschowskysin

In the following sections, synthetic efforts towards a total synthesis of bielschowskysin (1) by different research groups, including our own, are disclosed in full detail and in chronological order. To anticipate, though several approaches have been reported, no total synthesis was accomplished so far.

6.1. Sulikowski's Contribution ${ }^{88}$

In 2006, only two years after the isolation of bielschowskysin (1) was reported, Sulikowski and coworker published a synthesis of a tetracyclic fragment of the natural product utilizing a biomimetic [2+2]-cycloaddition to construct the cyclobutane ring (Scheme 40). Their endeavors started with literature known ester 301, which is readily available from malic acid. Introduction of an alkyne appendage via the Weinreb-amide ${ }^{89}$ and transacetalization with mesitaldehyde dimethylacetal under acidic conditions furnished 1,3-dioxane 302 in good overall yield. Oxidation of the primary alcohol to the aldehyde was followed by a Still-Gennari olefination ${ }^{90}$ with compound 303 providing (Z)-enoate 304 in good overall yield. Palladium mediated Sonogashira coupling ${ }^{91}$ with vinyl iodide 305 and a two-step oxidation sequence - DMP oxidation to the aldehyde followed by Pinnick oxidation ${ }^{92}$ - lead to carboxylic acid 306. Silver-mediated cyclization of the carboxylic acid onto its conjugated triple-bond gave the alkylidene butenolide ${ }^{93}$ followed by acidic cleavage of the mesitylene-acetal leading to formation of the second butenolide, providing [2+2]-photocyclization precursor 307 in low yield.

[^4]After irradiation of a solution of $307 \mathrm{in} \mathrm{CHCl}_{3}$ with a sun lamp for 2 h , a $3.6: 1$ mixture of 307 and diastereomeric 308 was observed. Prolonged irradiation resulted in a complex mixture of products. By replacing CHCl_{3} with acetone as solvent the reaction was much cleaner allowing the isolation of a 5:1 diastereomeric mixture of [2+2]-photoadducts 311 and 312. Sulikowski explained the diastereomeric outcome of the photocyclization by stereoelectronic effects and, according to the rule of five, ${ }^{72}$ by a two-step mechanism along with the formation of 1,4-diradical intermediates 309 and 310, which are in equilibrium by bond rotation. Thus, with 1,4- and 1,6-dienes, as observed for 307, parallel addition is favored, whereas 1,5-dienes are said to preferentially form the crossadducts. This rule of five is regarded as general and applies where photosensitizers as acetone are used generating triplet-state excimers or exciplex.

6.2. Lear's Contribution ${ }^{94}$

Three years after the publication of Sulikowski, Lear and coworkers reported a biomimetic intramolecular [2+2]-photocyclization generating the cyclobutane moiety in a north-south manner between an allene and a butenolide (Scheme 41). Their endeavors started from malic acid giving intermediate 313 via a similar reaction sequence as in the previous publication, with the only difference being a benzylidene instead of mesitylene acetal. Cyclization precursor 314 was obtained by acidic deprotection of the acetal accompanied by closure of the butenolide, protection of the tertiary alcohol and copper mediated allene-formation with formaldehyde via a protocol developed by Searles and Crabbé. ${ }^{95}$ Irradiation of 314 in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes with three conventional UV-lamps at a wavelength of 254 nm , appertaining to the UV-C range, gave the western bicyclo[3.2.0]heptane core 315 in regio- as well as diastereoselective manner and good yield.

Scheme 41 Lear's Synthesis of the Bicyclo[3.2.0]heptane Core of Bielschowskysin (1)
Both so far discussed approaches formed the cyclobutane moiety via [2+2]-cycloadditions along $\Delta^{6,7}$ and $\Delta^{11,12}$. Though caged ring systems 311 and 315 contain five respectively four stereocenters with the correct configuration, both lack the crucial all-carbon quaternary at C12. Apparently, neither the research group of Sulikowski nor that of Lear was able to report an accomplished total synthesis of the target molecule so far, utilizing these advanced intermediates. Presumably, an elongation at C12
could not be carried out as deprotonation of this bridge-head atom might be unfeasible according to Bredt's rule. ${ }^{96}$

6.3. Nicolaou's Synthetic Studies ${ }^{97}$

Six years after the isolation of bielschowskysin (1), Nicolaou and coworkers published results on a biomimetic transannular [2+2]-photocycloaddition of a simplified macrocycle. Similar to the proposed biosynthesis (vide supra), irradiation of a macrocyclic enol ether cyclic ketal 328 should give the tricyclo[9.3.0.0 ${ }^{2,10}$]tetradecane ring system present in the natural product. The synthesis of the macrocyclic test system commenced with a stereoselective reduction of acyl furan 316, utilizing Noyori's catalyst 317 and sodium formate (Scheme 42). ${ }^{98}$ Consecutive treatment of a mixture of alcohol 318 and 8 -keto ester 319 with CAN resulted in diastereomeric enol ether $\mathbf{3 2 5}$ in modest yield. ${ }^{99}$ Mechanistically, CAN initially forms radical 320, which creates the $\Delta^{6,7}$-bond. Thereafter, a series of SETs (Single Electron Transfers) and deprotonations give enol ether furanoxonium ion 324, which is finally quenched by methanol, installing the ketal at C3. RCM reaction of the enantiopure α-epimer of 325 with Grubbs I catalyst 326 provided macrocycle 327 in good yield.

Scheme 42 Nicolaou's Synthetic Studies on Bielschowskysin (1)
Initial [2+2]-photocyclization attempts with 327, bearing a carbonyl group at C8, failed, presumably because of too high ring strain imposed by the sp^{2}-hybridized center. Thus, after NaBH_{4} reduction to the corresponding alcohol, irradiation of 328 resulted in contraction of the macrocycle along C7-C11
and C6-C12 furnishing the carbocyclic core 331, representing the carbon scaffold of bielschowskysin (1). Nicolaou proposed a stepwise mechanism for the [2+2]-photocycloaddition, explaining the stereochemical outcome of the reaction. Photoexcitation of the enol-ether $\left(\Delta^{6,7}\right)$ is said to generate a diradical, which after bond rotation to 329 forms the C7-C11 σ-bond. Finally, recombination of diradical 330 between C6 and C12 forms the cyclobutane and installs the spiro-dihydrofuran. The unprecedented tricyclo[9.3.0.0 ${ }^{2,10}$]tetradecane ring system was accessed in only five steps from achiral acyl furan 316, but a lot of work seems to be necessary to incorporate this fast sequence in a total synthesis of 1 . The accomplished model structure 331 lacks six carbon atoms (C15-17, C19-20) of the cembranoid carbon backbone, the all carbon quaternary C 12 as well as oxygenation at C 10 , C13, C16 and C20. The ester-functionality at C7 is redundant, but may be necessary to stabilize the crucial enol-ether cyclic ketal 325 and to guarantee the CAN mediated C-C bond formation.

6.4. Mulzer's Non-Photochemical Approach ${ }^{100,101,102}$

Very recently, our research group reported a non-photochemical approach towards bielschowskysin generating an advanced bicyclo[3.2.0]heptane fragment, which for the first time in literature contained the crucial all-carbon quaternary center at C12. This synthetic entry to the western fragment is not part of this PhD-thesis and is included in this section to complete all previous contributions towards a total synthesis of bielschowskysin (1). ${ }^{102}$

Scheme 43 Mulzer's Non-Photochemical Approach towards Bielschowskysin (1)
This approach, in contrast to the preliminary publications by other research groups, was not centered on a [2+2]-photocyclization to generate the cyclobutane moiety, but on the stepwise introduction of the necessary functionalities on secondary alcohol 334 (Scheme 43). This starting material - which itself is available by a thermal [2+2]-cyclization between cyclopentadiene (332) and 2,2-dichloroketene (333), reduction and enzymatic resolution (Lipase SAM-II) of the corresponding chloroacetate - is an old acquaintance in our research group and has previously been used in
synthetic efforts towards a total synthesis of providencin. ${ }^{42}$ However, enantiopure 334 was converted to α, β-unsaturated ketone 335 including a photooxygenation with molecular oxygen, acetic anhydride and porphyrin, ${ }^{103}$ a 1,4-addition of a methyl-group and consecutive Saegusa-Ito oxidation. ${ }^{104}$ After Luche-reduction ${ }^{105}$ and protection of the secondary alcohol as a MOM-ether the stage was set for a Mukaiyama-Isayama oxidation-hydration reduction. ${ }^{106}$ Thus, tertiary alcohol 336 was installed utilizing catalytic amounts of cobalt-catalyst, molecular oxygen and phenylsilane as hydrogen source. A series of protecting group operations, oxidation and double alkylation with formalin gave diol 337. Protection of the free alcohols and olefination of the ketone with Petasis' reagent $\left(\mathrm{Cp}_{2} \mathrm{TiMe}_{2}\right)$ was followed by treatment with Jones' reagent ${ }^{107}$ leading to deprotection of the primary and secondary alcohols, oxidation to the diacid and in situ formation of the lactone. Finally, a reduction/oxidation sequence via a carbonate gave the desired bicyclo[3.2.0]heptane core 338 containing all-carbon quaternary C 12 as well as an aldehyde at C 13 , suitable for further functionalization, in overall 16 steps and 11% yield from enantiopure 334. Despite initial difficulties, this sequence evolved as a reliable and scalable route to the cyclobutane-moiety in our laboratory.

6.5. Ghosh's Contribution ${ }^{108}$

Scheme 44 Ghosh's Copper(I) Catalyzed [2+2]-Approach
While our first publication in Organic Letters ${ }^{100}$ was published, the ongoing research by Gosh et al. was dealing with the installation of the all-carbon quaternary center and the introduction of the oxygen at C13 with the correct configuration. As depicted in Scheme 44, their synthesis started with known glucofuranose derivative 339. Oxidation and chain elongation with homoallyl-magnesium bromide resulted in allylic alcohol 341, which was converted to a first [2+2]-photocyclization precursor 342 within three more steps. The photocyclization to 343 was carried out with a 450 W Hanovia medium pressure mercury vapor lamp in the presence of CuOTf, proofing the feasibility of the copper catalyzed [2+2]-photocyclization to install the C12 quaternary center. Alternatively, $\mathbf{3 4 1}$
was directly subjected to irradiation, stereoselectively providing 344 in acceptable yield, accompanied by degeneration of one of the acetonides. Sequential selective degradation of one acetonide to the allylic formate and the other acetonide to an aldehyde gave intermediate 345 . Finally, Jones' oxidation ${ }^{107}$ followed by substrate controlled stereoselective reduction of the C10 ketone and cleavage of the formate furnished Ghosh's bicyclo[3.2.0]heptane intermediate 346. Though this caged fragment contains the C13 oxygen with correct configuration, it lacks crucial structural features such as the tertiary alcohol at C8 and a functionalization at C6 for the downstream introduction of any carbon appendage.

6.6. Stoltz' Attempts to form the Cyclobutane-Moiety ${ }^{109}$

Early this year (2013), Stoltz and coworkers reported their endeavors to access the bicyclo[3.2.0]heptane core of bielschowskysin (1) via a Lewis acid mediated cyclopropane fragmentation/Michael addition sequence. ${ }^{110}$ Initially, furan 347 was converted to racemic α-furanyl enone 349 in four steps including a Suzuki-coupling ${ }^{111}$ with iodide 348 (Scheme 45). Next, reduction of the enone under Luche conditions ${ }^{105}$ and palladium(II) catalyzed oxidative kinetic resolution, utilizing (-)-sparteine as chiral ligand, ${ }^{112}$ afforded optically active 350 in 40% yield and 93% ee. In the following, face-selective reduction, protecting group operations and esterification with 2-diazoacetoaceticacid (351) afforded diazo compound 352. Cyclopropanation mediated by Cu^{2+} gave tetracycle 353. Attempts to form a cyclopropane ring between $\Delta^{7,11}$ and C 12 with numerous Cu and Ru catalysts with a ketone present at C8 proofed unsuccessful, presumably due to too little electron-density in the olefin.

Scheme 45 Stoltz' Attempted Construction of the Western Fragment of Bielschowskysin (1)

Next acetate cleavage and oxidation with DMP were scheduled. Subsequent Lewis-acid mediated cyclopropane-fragmentation to furanoxonium ion 354 was envisaged to be followed by an intramolecular Michael-addition between C6 and nucleophilic C12, forming the spiro dihydrofuran moiety and closing the cyclobutane ring in tetracycle 355.

Scheme 46 Stoltz' Results towards a Total Synthesis of Bielschowskysin (1)
Unfortunately, the removal of the acetate protecting group in 353 resulted in a transesterification (Scheme 46). Thus by applying DMP, the alcohol at C10 in 356 was oxidized instead of C8. Finally, treatment with $\mathrm{La}(\mathrm{OTf})_{3}$ in methanol resulted in unexpected fused lactone 357, the absolute configuration and connectivity of which was confirmed by X-ray analysis of a p-bromobenzoic ester analog.

7. Results

This year overall four articles concerning synthetic efforts towards a total synthesis of bielschowskysin have been submitted for publication by our research group. Two of them are still pending for publication. As substantial input was made to all of these manuscripts, they have been attached in this section with a short discussion ahead. The notation that has been used for structures, tables and schemes in the publications section is in analogy to the published articles for better understanding.

7.1. Photochemical and Thermal [2+2]-Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin ${ }^{101,102}$

Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, 4379.

Planning: Farcet, J.-B.; Himmelbauer, M.; Mulzer, J.

Experimentation: Farcet, J.-B.; Himmelbauer, M.

Manuscript preparation: Farcet, J.-B.; Himmelbauer, M.; Mulzer, J.

Discussion

Contributions have been made to the planning of the described approach. Preparation of all thermal [2+2]-precursors (Table 1, Entries 12-14) as well as the cycloaddition and the characterization of these intermediates have been carried out by Martin Himmelbauer (M. H.). Furthermore, the successful intermolecular photochemical [2+2]-cycloaddition furnishing tricycle (-)-50 pointed out that ring strain was the reason for all unfruitful [2+2]-attempts carrying a carbonyl functionality at the later C20 of the desired natural product. At this time ongoing attempts to construct the cyclobutane moiety of the natural product by a photochemical [2+2]-cycloaddition between an allene and a butenolide ${ }^{113}$ as well as attempts utilizing a Pauson-Khand/Wolff rearrangement ${ }^{114}$ sequence (see section 7.3.) have been substantial for the successful cycloaddition of (+)-52 to (+)-53 (Table 1, Entry 17 and Scheme 5). Furthermore, significant contribution to the manuscript concerning phrasing of the article and the experimental procedures has been made by the author of this thesis.

Entries in the experimental section of the publication, which are irrelevant for this thesis and ascribed to the first author, have been omitted.

Photochemical and Thermal [2+2] Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin

Jean-Baptiste Farcet, ${ }^{[a]}$ Martin Himmelbauer, ${ }^{[a]}$ and Johann Mulzer* ${ }^{[a]}$

Keywords: Total synthesis / Natural products / Terpenoids / Photochemistry / Oxidation

A bicyclic core fragment of the marine diterpenoid bielschowskysin has been synthesized. First, a large library of precursors for a photochemical [2+2] cycloaddition was prepared and tested, but with limited success. In the end, a ther-
mal [2 + 2] cycloaddition followed by appropriate regio- and stereocontrolled functionalization efficiently gave access to the desired bicyclo[3.2.0]heptane core. An optimized route to this remarkable molecular structure is presented.

Introduction

Furanocembranoids are diterpenoids that have, to date, been isolated exclusively from marine sources, in particular from gorgonian corals. The combination of significant bioactivity and interesting architectural structures has aroused the interest of the scientific community over the last decade. Notwithstanding their wide structural diversity, all members seem to be related and have biogenetic interconnections. ${ }^{[1]}$ Although bielschowskysin (1) has an uncommon bicyclo[3.2.0]heptane core, ${ }^{[2]}$ it probably originates from an

bielschowskysin (1)

sethukarailide (3)

verrillin (2)

4 (unnamed)

Figure 1. Furanocembranoid family members.

[^5]intramolecular [2 + 2] cycloaddition of an "ordinary" diterpenoid precursor. ${ }^{[3]}$

It has been suggested that exo enol ethers or known cembranoids such as sethukarailide (3) or unnamed compound 4 are stable key intermediates in the biosynthesis of more complex polycyclic diterpenes. ${ }^{[1]}$ These metabolites could undergo transannular additions to form a furan-2(5H)-one moiety en route to more complex furanocembranoids such as bielschowskysin (1) and verrillin (2; Figure 1).

To design a biomimetic route to bielschowskysin (1), we investigated the suitability of a nucleophilic insertion into the furan ring of 5 as a potential precursor in the biosynthesis of bielschowskysin (Scheme 1). However, before starting with the construction of the complex and fully substituted furanocembranoid macrocycle, it seemed reasonable to test

possible bielschowskysin precursor (5)

7

Scheme 1. Biosynthesis of bielschowskysin.

Scheme 2. Synthesis of a test system. CAN = ceric ammonium nitrate.
the cycloaddition in a model system. Epoxide 10 was chosen as a model for the reactivity of $\mathbf{5}$ (Scheme 2).

Results and Discussion

To prepare alcohol $\mathbf{9}$, Wittig olefination of known aldehyde $\boldsymbol{8}^{[4]}$ was used to generate a trisubstituted double bond. This was followed by regioselective halogen-metal exchange with isopropylmagnesium chloride $(i \mathrm{PrMgCl})$ and addition of the resulting intermediate to isobutyraldehyde to form secondary alcohol 9 . The hydroxy group was protected as a methoxymethyl (MOM) ether to mimic the acetal group in the target molecule. When a solution of dimethyldioxirane (DMDO) was added, oxirane $\mathbf{1 0}$ was the only product formed. By stirring 10 in methanol in presence of pyridinium para-toluenesulfonate (PPTS), compound $\mathbf{1 2}$ was isolated as single product after work-up and chromatographic purification (Scheme 2). This was not surprising, as Pattenden and co-workers have already reported the formation of intermediate $\mathbf{1 3}$ and its rapid isomerization into $\mathbf{1 2}{ }^{[5]}$

The lability of intermediate $\mathbf{1 3}$ discouraged us from pursuing this approach further. Instead, we considered the photo-[2 +2] cycloaddition of enoate $\mathbf{1 4}$, which could be accessed from known enantiomerically pure prostaglandin
precursor (-)-15, readily available from furfuryl alcohol ${ }^{[6]}$ (Figure 2).

Figure 2. Retrosynthesis based on photo-[2 + 2] cycloaddition.

A protection-deprotection sequence was used to convert $(-)-15$ into (+)-16, whose esterification with known carboxylic acid $\mathbf{1 7}{ }^{[7]}$ under Mitsunobu conditions ${ }^{[8]}$ delivered ester (-)-18. However, the desired photo-cyclization to cyclobutane 19 was not observed under various photochemical activation conditions (Table 1, entry 3). Instead, malonate (-)20 was isolated in moderate yield (Scheme 3).

Next, we envisaged that compound (-)-27, containing a push-pull system, could be a suitable precursor for the photo-[2 + 2] reaction. Hence, mixed ester 22 was formed quantitatively from potassium malonate $21^{[9]}$ and methyl 2bromoacetate. Tetronic acid derivative $\mathbf{2 3}$ was obtained as
crystalline tetrabutyl ammonium salt from 22 upon treatment with TBAF in THF. Methylation followed by debenzylation gave carboxylic acid 25 in an excellent overall yield

Table 1. Screening of [2+2] cyclization substrates and conditions.

Entry	$[2+2]$ Precursor	Outcome,	Irradiation
	Yield	yield	conditions $^{[a]}$

1

2

4

5

6
35% from $(-)-34^{[b]}$ and 31 ${ }^{[b]}$
(Scheme 4). As the Mitsunobu protocol failed to deliver ester (-)-27 directly from alcohol (+)-16 and carboxylic acid 25, the desired inversion was effected in a two-step pro-

Entry	$[2+2]$ Precursor	Outcome,	Irradiation
	Yield	yield	conditions $^{[a]}$

$(-)-27$
66\% from (-)-26 and 25

$(-)-30$
72% from (-)-29 ${ }^{[\mathrm{b}]}$ and 25

11

52\%, 97\% b.r.s.m. from (+)-16 and aspirin

starting material recovered + decomposition

12
(-)-20
($81 \%, 99 \%$ b.r.s.m.) from (+)-16 and 17

$(-)-32$
87\% from (+)-16 and $31^{[b]}$

60% from (-)-29 ${ }^{[b]}$ and $31^{[b]}$

$(-)-35$
decomposition
A, B
decomposition
$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{F}, \mathbf{G}$,
H
-

10

71% from $(-)-29^{[b]}$
starting material recovered + decomposition

A, B, F

$$
\text { and } \mathbf{3 9}^{[b]}
$$

$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{E}$
no reaction, then decomposition
from (-)-26 and suboxide
decomposition $\quad \mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{F}, \mathbf{I}, \mathbf{J}$
 MOMO,
 $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{F}, \mathbf{G}$.

46\%
-

6

(-)-33
decomposition

decomposition

13

no reaction, then decomposition

$$
\text { from }(-)-\mathbf{4 5}{ }^{[b]}
$$

48

$$
\text { from }(-)-26 \text { and } 47^{[b]}
$$

no reaction, then decomposition

J

K

K

Table 1. (continued).

Entry	$[2+2]$ Precursor	Outcome,	Irradiation
	Yield	yield	conditions $^{[a]}$

7
decomposition $\quad \mathbf{A}, \mathbf{B}, \mathbf{F}, \mathbf{G}, \mathbf{H}$

Entry	$[2+2]$ Precursor Yield	Outcome, yield	Irradiation conditions $^{[a]}$
15	Intermolecular reaction from $(-)-49^{[b]}$ and maleic anhydride	TBSO	

8
MOMO,

starting material
recovered +
decomposition

$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{E}$,
and $\mathbf{3 7} 7^{(+)}-16$

no reaction, then decomposition $\mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{F}, \mathbf{H}$ (+)-51
83%, 2 steps from $(+)-44^{[b]}$ and propargyl bromide

99\% from (+)-16 and $39^{[b]}$
starting material
recovered + decomposition and $37^{[b]}$

A, B, F
17

(+)-52
$29 \%, 3$ steps from (+)-44 ${ }^{[\text {b] }}$ and propargyl bromide

(+)-53
60\%

G

9

(-)-36
62\% from paraformaldehyde and (-)-32
[a] Irradiation conditions: A: UV-A lamps $8 \times 16 \mathrm{~W}$, acetone, B: UV-B lamps $8 \times 16 \mathrm{~W}$, acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$, C: Sun lamp 750 W , duran filter, pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$, D: Sun lamp 750 W , duran filter, acetone, E : Sun lamp 750 W , quartz filter, pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1, \mathrm{~F}$: Sun lamp 750 W , quartz filter, acetone, G: UV-B lamp $2 \times 16 \mathrm{~W}$, quartz filter, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}: \mathrm{UV}-\mathrm{B} \operatorname{lamp} 2 \times 16 \mathrm{~W}$, quartz filter, $\mathrm{Et}_{2} \mathrm{O}+\mathrm{cat}^{2} \mathrm{Cu}(\mathrm{OTf})_{2}$, I: Sun lamp 750 W , quartz filter, $\mathrm{Et}_{2} \mathrm{O}+$ cat. $\mathrm{Cu}(\mathrm{OTf})_{2}$, J: THF, $0^{\circ} \mathrm{C} 90 \mathrm{~min}$, then room temp. 6 h , K : DCE, room temp. 6 h , then reflux 2 h . [b] For preparation and characterization, see Supporting Information. [c] Formed in situ, not isolated.

(-)-15

(-)-20 46\%

Scheme 3. Synthesis of $[2+2]$ precursor $(-)-\mathbf{1 8} . \mathrm{TBAF}=$ tetra- n-butylammonium fluoride; $\mathrm{TBS}=$ tert-butyldimethylsilyl; b.r.s.m. $=$ based on recovered starting material.

Scheme 4. Synthesis of [2 + 2] precursor (-)-27. DIAD = diisopropyl azodicarboxylate; DIC $=N, N^{\prime}$-diisopropylcarbodiimide; DMAP $=$ 4-dimethyl aminopyridine.
cedure to give (-)-26 in good yield. Carbodiimide-mediated esterification eventually gave [2+2] precursor (-)-27. Unfortunately, this substrate only underwent decomposition under photo-cyclization conditions, and polycycle 28 was not formed (Scheme 4 and Table 1, entry 1). Nevertheless, a broad screening of potential photo-[2 +2] substrates under various irradiation conditions was initiated (Table 1).

When enone (-)-30 (Table 1, entry 2) was used to promote a stepwise ionic mechanism via zwitterionic intermediates, decomposition occurred after a few minutes of UV irradiation (conditions A and B). Similarly, irradiation of buta-2,3-dienoic esters (-)-32, (-)-33, (-)-35, (-)-36, and $(-)-38$ led to the formation of complex product mixtures, none of which contained the desired tricycle (Table 1, entries 4-8). Furylacrylic esters (-)-40 and (-)-41 (Table 1, entries 9 and 10) were more stable to irradiation, but under various conditions (conditions A, B, and F) only the starting material was recovered. Substituted phenyl ester (-)-42 (Table 1, entry 11) did not lead to cycloaddition, even after a prolonged irradiation time. Our attention turned to thermally driven $[2+2]$ cycloadditions, but no product was de-
tected when ketene $\mathbf{4 3}$ or ketene iminium salts 46 and 48 (Table 1, entries 12-14) were stirred at room temperature or even heated to reflux.

On reviewing these results, we suspected that cycloaddition could have been prevented not only by electronic effects, but also by conformational issues. Hence, an intermolecular cycloaddition was performed between alkene (-)-49 and an excess of maleic anhydride (Table 1, entry 15) in acetone under UV-A irradiation (conditions A). Tricycle (-)-50 was formed as a single isomer in satisfactory yield. Next, the carbonyl group was exchanged for a methylene group to give more flexibility to the allenic side-chain. Thus, alcohol $(+)-\mathbf{4 4}^{[6]}$ was alkylated with propargyl bromide in quantitative yield. A Searles-Crabbé reaction ${ }^{[10]}$ gave desired allene (+)-51, which was unreactive to photoirradiation (conditions A, B, D, F, H, Table 1, entry 16, Scheme 5). However, when (+)-51 was converted into enone $(+)-52$ by TBAF deprotection and oxidation of the allylic alcohol, irradiation of (+)-52 with UV-B light led to tricycle (+)-53 as a volatile liquid in good overall yield (Table 1, entry 17, Scheme 5).

$(+)-44$

(+)-54

Scheme 5. Synthesis of polycycle (+)-53.

From this screening, we concluded that precursors with a carbonyl group in the position α to the reacting double bond were unsuitable for intramolecular [2 +2] photocyclization under various conditions. Nevertheless, an intermolecular cycloaddition seemed possible. More interestingly, we showed that an intramolecular cycloaddition between homoallenic ether and enone indeed gave tricyclic core (+)53. While further investigations to elaborate this intermediate were underway, we capitalized on the abundant nonphotochemical availability of functionalized bicyclo[3.2.0] systems such as (+)-56. ${ }^{[11]}$ This compound was used in a stereocontrolled synthesis of a fully substituted western fragment (-)-55 ${ }^{[2 \mathrm{dd}]}$ of bielschowskysin (1), including its allcarbon quaternary center (Figure 3). Here, we disclose the full details of this route, as well as optimized procedures for nine steps of the sequence.

(+)-56

Figure 3. Retrosynthesis based on a non-photochemical approach.
Our synthesis started with TBS protection of enantiomerically enriched $(+)-56$, which was obtained in a fourstep sequence from commercially available racemic mate-
rial, ${ }^{[11]}$ to give $(-)-57$. To functionalize the five-membered ring, photooxygenation ${ }^{[12]}$ with molecular oxygen in the presence of acetic anhydride and base was chosen. This oxidation was exceptionally easy to carry out, even on a molar scale, and produced α, β-unsaturated ketone (-)-58 with high regioselectivity (isomeric ratio: 20:1). Conjugate addition of dimethyl cuprate and trapping of the enolate with trimethylsilyl chloride (TMSCl) gave enol ether (-)-59, which was used in a Saegusa-Ito oxidation ${ }^{[13]}$ to provide enone (-)-60. The success of this oxidation crucially depended on the use of dimethyl sulfoxide (DMSO) as solvent and molecular oxygen as co-oxidant. Otherwise, the reaction was difficult to scale up and suffered from inconsistent yields. Moreover, TMS enol ether (-)-59 was prone to desilylation to form undesired ketone (-)-61. It was shown that this side-reaction was highly dependent on the batch of palladium(II) acetate used and, on a larger scale, the ratio of products (-)-60 and (-)-61 was not reproducible. However, it was possible to recover (-)-61 by chromatography, and to reconvert it into (-)-59 in quantitative yield. This procedure led to a 10% increase in the overall yield (Scheme 6).

Scheme 6. Synthesis of enone (-)-60. TMSOTf $=$ trimethylsilyl trifluoromethanesulfonate.

Taking advantage of the "open-book" geometry of bicycle (-)-60, the enone was epoxidized diastereoselectively under Scheffer-Weitz conditions. ${ }^{[14]}$ No conditions could be found for the opening of epoxide (-)-62 to install the required tertiary alcohol. For instance, a Wharton transposition ${ }^{[15]}$ did provide allylic alcohol (-)-63, but it turned out to be highly unstable and impractical for the synthesis. Alternatively, the carbonyl group was reduced diastereoselectively under Luche conditions, ${ }^{[16]}$ and the product was proected with a MOM group to give compound (-)-64. This sequence could be carried out in 85% overall yield from (-)-57 (Scheme 7).

$(-)-60$

(-)-64
99\%
$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ $\mathrm{MeOH}, 30 \mathrm{~min}, 0^{\circ} \mathrm{C}$

(-)-62

(-)-63

Scheme 7. Synthesis of enone (-)-63 and (-)-64.

Molecular oxygen, a catalytic amount of a cobalt complex, and phenylsilane promoted the Mukaiyama-Isayama oxidation-reduction-hydration sequence ${ }^{[17]}$ in a regio- and stereoselective manner, leading to tertiary alcohol (-)-65. The yield could be increased from 64 to 87% by using a 24 h aqueous workup, a time that presumably allowed the peroxide intermediate to rearrange and hydrolyse completely. After an optimized protection-deprotection sequence, the five-membered ring in bicycle (-)-66 was appropriately substituted, and the installation of the quaternary center could be envisaged (Scheme 8). Oxidation with 2iodoxybenzoic acid (IBX) smoothly formed the ketone, which underwent a double aldol reaction with formalin to deliver key intermediate (-)-67. Triethylsilyl (TES) protection of the two primary alcohols and Petasis' olefination gave (-)-68 (Scheme 8). The four-step sequence from (-)-66 to (-)-68 was performed with a single final purification step, and allowed a quick and high-yielding substitution of the bicycle.

Scheme 8. Synthesis of olefin (-)-68. acac = acetylacetonate; DBU $=1,8$-diazabicyclo[5.4.0]undec-7-ene; $\mathrm{Cp}=$ cyclopentadiene.

To assign the relative configuration by single crystal diffraction, racemic crystalline acetoxy diol rac-71 was prepared by an analogous sequence (Scheme 9). ${ }^{[18]}$

1. $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}, \mathrm{MeOH}$,
$30 \mathrm{~min}, 0^{\circ} \mathrm{C}$

Scheme 9. Synthesis and X-ray structure of rac-71.
To form lactone rac-77, the two TES protecting groups were removed to give diol rac-72. Subsequent Swern oxidation led to dialdehyde rac-73 in excellent yield. However, during evaporation of the volatiles at bath temperatures $>30^{\circ} \mathrm{C}$, a decarbonylation with concomitant double-bond shift was observed, which led exclusively to compound rac74. Similarly, Pinnick oxidation of crude dialdehyde rac-73 and subsequent esterification of the product with trimethylsilyl diazomethane $\left(\mathrm{TMSCHN}_{2}\right)$ gave dimethyl ester rac-75 and decarboxylated methyl ester rac-76 as a nearly $1: 1$ mixture. Gratifyingly, dimethyl ester rac-75 could be transformed into lactone rac-77 in good yield (Scheme 10).

After some experimentation, an optimized cascade reaction was developed to create the tricyclic core of bielschowskysin directly from (-)-68. Thus, under the acidic conditions of the Jones' reagent, deprotection of the two TES protecting groups was followed by oxidation of the resulting diol to the dicarboxylic acid. Concomitantly, the MOM protecting group was removed, and lactonization of the resulting alcohol with the cis carboxy group occurred spontaneously. Without purification, the free carboxylic acid was transformed into a mixed carbonate with ethyl chloroformate, and this product was reduced with NaBH_{4} to give alcohol (-)-78 in 54% overall yield over eight transformations ($>92 \%$ each) starting from (-)-68. Swern oxidation gave desired aldehyde (-)-55 (Scheme 11).

1. $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} 30 \mathrm{~min}, 0^{\circ} \mathrm{C}$
2. TMSCHN_{2}, benzene $\xrightarrow[50 \% \text { rac- } 75+40 \% \text { rac- } 76]{\mathrm{MeOH}, \quad 15 \mathrm{~min}, 0^{\circ} \mathrm{C}}$

rac-75

rac-76
3. $\mathrm{AcCl}, \mathrm{MeOH}, 5 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to r.t.
4. TBSOTf, 2,6-lutidine, THF, $45 \mathrm{~min}, 0^{\circ} \mathrm{C}$ 80%

Scheme 10. Synthesis of bicyclo[3.2.0]heptane lactone rac-77.

1. Jones' reagent,

Scheme 11. Synthesis of aldehyde (-)-55. Jones' reagent $=\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ in water; $\mathrm{IPA}=$ isopropyl alcohol.

Conclusions

After screening various substrates to obtain the bicyclo[3.2.0]heptane core of bielschowskysin by [$2+2$] photocycloaddition, we developed a stereoselective and optimized
scalable non-photochemical route to aldehyde (-)-55 [$>30 \%$ overall yield from known alcohol (+)-56]. This tricyclic building block bears promising functional groups for connection with an eastern fragment and completion of the total synthesis of bielschowskysin.

Experimental Section

General Remarks: All moisture- and oxygen-sensitive reactions were carried out in flame-dried glassware under a slight argon overpressure. All solvents (except dichloromethane and methanol) were purchased as the highest available grade from Sigma-Aldrich, Acros Organics, or Fischer Chemicals. Anhydrous dichloromethane was purified by filtration through alumina under argon immediately before use. Methanol was heated at reflux for several hours over sodium and then distilled. $\mathrm{NEt}_{3}, i \mathrm{Pr}_{2} \mathrm{NEt}$, and 2,6-lutidine were distilled from CaH_{2} before use. All other reagents were used as received from Sigma-Aldrich, Acros Organics, Fischer Chemicals, TCI, or ABCR, unless otherwise stated. Preparative column chromatography was performed with silica gel 60 from Merck ($0.040-0.063 \mu \mathrm{~m}, 240-400 \mathrm{mesh}$). NMR spectra were measured with Bruker AV400, DRX400, or DRX600 spectrometers. Chemical shifts are given in ppm and are referenced to the solvent residual peaks ($\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, \delta=77.16 \mathrm{ppm}$). Infrared spectra were recorded as thin films of pure products on an ATRunit with a Bruker Vertex 70 instrument. High-resolution mass spectra were measured with a Bruker MaXis (ESI-TOF) instrument at a resolution of 10000 . A P341 Perkin-Elmer polarimeter equipped with in a 10 cm cell and a Na lamp (589 nm) was used for the measurement of optical rotation.
1-[3-Bromo-5-(2-methylprop-1-en-1-yl)furan-2-yl]-2-methylpropan-1ol (9): Potassium tert-butoxide ($5.7 \mathrm{~g}, 51.0 \mathrm{mmol}$) was added in one portion to a solution of isopropyl(triphenyl)phosphonium iodide $(2.5 \mathrm{~g}, 56.7 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C} .4,5$-Dibromofuran-2carbaldehyde ($\mathbf{8} ; 7.20 \mathrm{~g}, 28.4 \mathrm{mmol}$) in THF (50 mL) was added rapidly to the prepared solution. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 60 min , after which TLC indicated complete consumption of the starting material. Water $(300 \mathrm{~mL})$ was then added. The dark solution was filtered through a pad of Celite, and the phases were separated. The aqueous phase was extracted with EtOAc ($2 \times$ 150 mL). The combined organic extracts were washed with brine $(50 \mathrm{~mL})$ and dried with $\mathrm{MgSO}_{4} . \mathrm{SiO}_{2}(25 \mathrm{~g})$ was added to the solution before it was concentrated under reduced pressure. The material was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane) to give a light yellow oil $(6.03 \mathrm{~g}, 76 \%)$ that darkened within a few hours. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.20(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~m}, J=1.1 \mathrm{~Hz}$, 1 H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=155.6,138.3,120.2,113.1,111.9,102.8,27.0,20.2 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OBr}_{2}[\mathrm{M}]^{+}$277.8942; found 277.8940 . IR: $\tilde{v}=1780,1553,1440,1267,1205,951,935,925,788,586 \mathrm{~cm}^{-1}$. R_{f} (hexane/EtOAc, 20:1): 0.93 .
A solution of dibromoalkene ($5.3 \mathrm{~g}, 19.1 \mathrm{mmol}$) in THF (200 mL) was cooled to $-35^{\circ} \mathrm{C}$. A solution of isopropylmagnesium chloride (2 m in ether; $11.5 \mathrm{~mL}, 23.0 \mathrm{mmol}$) was added slowly, and the resulting solution was stirred at the same temperature for 60 min . Freshly distilled isobutanal ($2.28 \mathrm{~mL}, 24.8 \mathrm{mmol}$) was added, and the reaction mixture was stirred for 4 h at $-35^{\circ} \mathrm{C}$, and then it was allowed to warm to room temp. over $3 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ (saturated aq.; 40 mL) was added, and the aqueous phase was extracted with EtOAc $(3 \times 45 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL) and dried with MgSO_{4}. After removal of the solvent, the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1) to give $9(4.07 \mathrm{~g}, 78 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.15$ (s, 1 H), $6.00-5.97$ (m, $1 \mathrm{H}), 4.41(\mathrm{dd}, J=5.5, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95$ (s, 3 H$), 1.91(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.1,149.7,137.6,113.9,110.6,99.3,71.7,33.8,27.2,20.4$, 19.1, 18.6 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}]^{+}$
272.0412; found 272.0413. IR: $\tilde{v}=3370,2963,2872,1468,1384$, 1142, 1013, 844, 633, $537 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 10:1): 0.21 .
3-Bromo-5-(3,3-dimethyloxiran-2-yl)-2-[1-(methoxymethoxy)-2-methylpropylfuran (10): MOMCl ($3.77 \mathrm{~mL}, 41.7 \mathrm{mmol}$) was added dropwise to a solution of alcohol $9(3.8 \mathrm{~g}, 13.9 \mathrm{mmol})$ in DIPEA $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. A few crystals of NaI were added, and the solution was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then for a further 20 h at room temp. Water $(100 \mathrm{~mL})$ and EtOAc (100 mL) were added, and the phases were separated. The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic extracts were washed with brine (30 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1) to give the MOM-protected alkene $(3.47 \mathrm{~g}, 79 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.15(\mathrm{~s}, 1 \mathrm{H}), 6.02-5.98(\mathrm{~m}, 1$ H), $4.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.90$ $(\mathrm{s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.5,147.8,137.6,114.0,110.3$, 101.7, 94.5, 74.8, 55.8, 32.3, 27.2, 20.4, 19.7, 18.7 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}]^{+} 316.0674$; found 316.0665. IR: $\tilde{v}=2959,1471,1386,1154,1098,1032,971,923,784,561 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 10:1): 0.43.
A solution of dimethyldioxirane $(2.8 \mathrm{~mL}, 0.13 \mathrm{mmol})$ was added to a magnetically stirred solution of the MOM-protected alkene $(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ in acetone $(1.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min at $0^{\circ} \mathrm{C}$, the solvent was removed to give pure oxide $\mathbf{1 0}(42 \mathrm{mg}, 99 \%)$ as a $1: 1$ mixture of diastereoisomers. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.25$ and $6.24(2 \mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.33$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ and $3.70(2 \mathrm{~s}, 1 \mathrm{H}), 3.36$ and $3.34(2 \mathrm{~s}, 3$ H), 2.28-2.17 (m, 1 H$), 1.44$ and $1.43(2 \mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.10$ $(2 \mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.79$ and $0.76(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.3,150.3,111.8$ and 111.7, $100.8,94.7$ and 94.6, 74.9, 61.7 and 61.7, 58.7 and 58.6, 55.9 and 55.8, 32.3, 24.2, 19.7 and 19.6, 18.7, 18.6 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{BrNa}[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}$387.0783; found 387.0796. IR: $\tilde{v}=2977,2871,1676,1461,1370,1099,1010,979,840$, $653 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.34 .

1-\{4-Bromo-5-[1-(methoxymethoxy)-2-methylpropyl]furan-2-yl\}-1-

 methoxy-2-methylpropan-2-ol (12)Procedure A: PPTS (1 mg) was added to a solution of epoxide $\mathbf{1 0}$ $(26 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{MeOH}(0.8 \mathrm{~mL})$, and the solution was stirred at room temp. for 15 min . The reaction mixture was quenched with water (1.5 mL) and extracted with EtOAc ($3 \times$ 5 mL). The combined organic extracts were washed with brine (5 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was purified over a short column $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $\left.4: 1\right)$ to give undesired tertiary alcohol $\mathbf{1 2}(26 \mathrm{mg}, 91 \%)$ as a $1: 1$ mixture of diastereoisomers.
Procedure B: Ceric ammonium nitrate ($90 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added to a solution of epoxide $\mathbf{1 0}(13.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ in MeOH $(2.7 \mathrm{~mL})$. The reaction mixture was stirred for 4 min before being cautiously quenched with sodium hydrogen carbonate (saturated aq.; 2 mL). The mixture was diluted with water (5 mL) and EtOAc $(10 \mathrm{~mL})$, and the phases were separated. The aqueous phase was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1) to give undesired tertiary alcohol $\mathbf{1 2}(13.5 \mathrm{mg}, 91 \%)$ as a $1: 1$ mixture of diastereoisomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.36$ and $6.34(2 \mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.34$ and $4.32(2 \mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ and $3.96(2 \mathrm{~s}, 1 \mathrm{H}), 3.35$ and
$3.34(2 \mathrm{~s}, 3 \mathrm{H}), 3.32$ and $3.30(2 \mathrm{~s}, 3 \mathrm{H}), 2.45$ (br. s, 1 H$), 2.29-2.18$ $(\mathrm{m}, 1 \mathrm{H}), 1.19$ and $1.18(2 \mathrm{~s}, 3 \mathrm{H}), 1.17$ and $1.14(2 \mathrm{~s}, 3 \mathrm{H}), 1.11$ and $1.09(2 \mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ and $0.76(2 \mathrm{~d}, J=2.6 \mathrm{~Hz}, 3$ H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.8$ and $152.4,150.2$ and $150.1,112.9$ and $112.2,100.9$ and $100.7,94.8$ and $94.7,84.6$ and $84.4,75.2$ and $75.0,72.7,57.9$ and $57.7,55.8,32.3$ and 32.2 , 26.1 and $26.0,24.6$ and $24.4,19.6,18.6 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+} 387.0783$; found 387.0797. IR: $\tilde{\mathrm{v}}=$ 3466, 2981, 2877, 2401, 1370, 1137, 1098, 1035, 779, $597 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.42 .
(1R,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-enol [(+)-16]: $i \operatorname{Pr}_{2}$ NEt $(757 \mu \mathrm{~L}, 4.33 \mathrm{mmol})$ and $\mathrm{MOMCl}(225 \mu \mathrm{~L}, 2.96 \mathrm{mmol})$ were added to a stirred solution of tertiary alcohol (-)-15 (450 mg, $1.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temp. until the reaction was complete (after 24 h , only traces of starting material remained). After slow addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated aq.; 0.5 mL), the mixture was diluted with water $(25 \mathrm{~mL})$ and EtOAc (35 mL), and the phases were separated. The aqueous phase was extracted with EtOAc $(2 \times 60 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1) to give methoxy methyl ether ($434 \mathrm{mg}, 81 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.82(\mathrm{dd}, J=1.0, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ $(\mathrm{dd}, J=1.9, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.66$ $(\mathrm{m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=7.1$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=4.5, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $\left.0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(2 \mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(400MHz,CDCl}_{3}\right): \delta$ $=138.2,135.8,91.9,86.1,75.0,55.2,47.9,27.4,26.0(3 \mathrm{C}), 18.3$, -4.5 (2 C) ppm. HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$ 257.1573; found 257.1572. IR: $\tilde{v}=2930,2858,1365,1255,1100$, $1039,836,632,534,504 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=+7.2\left(c=1.00, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.57.

Methoxy methyl ether ($381 \mathrm{mg}, 1.40 \mathrm{mmol}$) was dissolved in THF $(9 \mathrm{~mL})$, and TBAF (1 m in THF; $1.82 \mathrm{~mL}, 1.82 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temp. for 1 h . The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1)$ to give free alcohol (+)-16 (205 mg, 93%) as a colorless oil. Alternatively, the crude methoxy methyl ether could be used directly to give the product in 90% yield over two steps. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.10(\mathrm{dd}, J=2.4, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{dd}, J=7.4, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=2.3, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.1$, 137.3, 92.0, 86.5, 75.6, 55.0, 46.9, 27.6 ppm . HRMS (EI): calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$143.0708; found 143.0712. IR: $\tilde{v}=3402$, $2972,2891,1444,1354,1220,1144,1091,1035,773 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=$ $+115.7\left(c=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.11 .

1-[(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl] 3Methyl 2-(1,3-Dioxolan-2-ylidene)malonate [(-)-18]: Triphenylphosphane ($318 \mathrm{mg}, 1.2 \mathrm{mmol}$) was dissolved in THF (3 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. DIAD $(236 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ was added very slowly, and the mixture was stirred for 30 min . At this stage, a milky precipitate formed. Acid $17(226 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added in one portion, and then a solution of alcohol $(+)-\mathbf{1 6}(95 \mathrm{mg}$, $0.60 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 20 h . Water $(15 \mathrm{~mL})$ was added, and the aqueous phase was extracted with EtOAc ($3 \times$ 20 mL). The combined organic extracts were washed with brine $(15 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated. The residue
was purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1$ to $\left.0: 1\right)$ to give recovered starting material (+)-16 (18 mg, 19\%) and ester $(-)-18(160 \mathrm{mg}, 81 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00(\mathrm{~s}, 2$ H), $5.83(\mathrm{dd}, J=2.9, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $2.54(\mathrm{dd}, J=7.2, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=2.9, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5$, $165.5,165.0,141.6,132.4,92.0,87.5,80.9,78.8,67.8,67.7,55.2$, 51.8, $44.1,27.1 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$351.1056; found 351.1048. IR: $\tilde{v}=2926,1724,1686,1471$, $1304,1270,1084,1031,983,954 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=-131.8(c=1.11$, $\left.\mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}(\mathrm{EtOAc}): 0.23$.
(1R,4R)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl Methyl Malonate [(-)-20]: Ester (-)-18 (13 mg, 0.04 mmol$)$ was dissolved in degassed $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ in a quartz vial. One crystal of $\mathrm{Cu}(\mathrm{OTf})_{2}$ was added, and the mixture was irradiated with two 16 W UV-B lamps (Irradiation conditions H) at room temp. for 50 min . The solution was diluted with ice $(15 \mathrm{~g})$ and $\mathrm{NH}_{4} \mathrm{OH}(0.5 \mathrm{~mL})$, and extracted with EtOAc. The organic phase was washed with brine (5 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $1: 1$ to $1: 2$) to give undesired (-)-20 (6 mg, 46\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.03(\mathrm{dd}, J=5.7, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.7, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.56$ $(\mathrm{dd}, J=7.3, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=3.1, J=14.7 \mathrm{~Hz}, 1$ H), 1.47 (s, 3 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.1$, $166.5,142.3,131.7,92.1,87.3,80.1,55.3,52.6,44.1,41.6$, 27.2 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 281.1001; found 281.1003. IR: $\tilde{v}=2920,2852,1736,1439,1349$, $1275,1144,1029,641,597 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=-95.6\left(c=0.09, \mathrm{CHCl}_{3}\right)$. R_{f} (EtOAc): 0.61.

Benzyl (2-Methoxy-2-oxoethyl) Malonate (22): Methyl bromoacetate $(2.61 \mathrm{~mL}, 28.4 \mathrm{mmol})$ was added dropwise to a suspension of monopotassium carboxylate $21(6.00 \mathrm{~g}, 25.8 \mathrm{mmol})$ in DMF $(51 \mathrm{~mL})$ at $35^{\circ} \mathrm{C}$. The mixture was stirred for 1 h . The solvent was removed (water bath at $55^{\circ} \mathrm{C}$), and the residue was partitioned between water $(100 \mathrm{~mL})$ and toluene $(100 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with toluene $(100 \mathrm{~mL})$. The organic phases were combined, washed with brine (50 mL), dried with MgSO_{4}, and concentrated to give analytically pure malonate $22(6.87 \mathrm{~g}, 99 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.30-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (s, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6,165.8$, 165.7, 135.2, 128.6, 128.5, 128.3, 67.4, 61.3, 52.3, 41.0 ppm. HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}[\mathrm{M}]^{+} 266.0790$; found 266.0784. IR: $\tilde{v}=$ $1755,1737,1383,1337,1274,1214,1145,633,535,498 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.40.

Tetrabutylammonium 4-[(Benzyloxy)carbonyl]-5-oxo-2,5-dihy-drofuran-3-olate (23): TBAF (1 m in THF; $19.3 \mathrm{~mL}, 19.3 \mathrm{mmol}$) was slowly added to a solution of malonate $22(3.43 \mathrm{~g}, 12.9 \mathrm{mmol})$ in THF $(26 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temp. for 15 h . The reaction mixture was concentrated, and the residue was heated to reflux in $\mathrm{EtOAc}(50 \mathrm{~mL})$. The suspension was cooled to room temp. The precipitate was filtered off and washed with cold EtOAc (20 mL). After drying under high vacuum, $23(4.89 \mathrm{~g}, 80 \%)$ was obtained as pure white crystals. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23$ (m, 2 H), 7.21-7.15 (m, 1 H), $5.24(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.18-3.10$ $(\mathrm{m}, 8 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 8 \mathrm{H}), 1.40-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.6,176.5$, $164.8,138.9,128.2$ (2 C), 127.2 (2 C), 126.9, 85.0, 70.4, 63.4, 58.8
(4 C), 24.0 (4 C), 19.8 (4 C), 13.7 (4 C) ppm. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{5}\left[\mathrm{M}-\mathrm{NBu}_{4}\right]^{-}$233.0450; found 233.0452. IR: $\tilde{v}=2959$, $2873,1742,1684,1634,1432,1056,736,698,609 \mathrm{~cm}^{-1}$, m.p. 151$153^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.00 .
Benzyl 4-Methoxy-2-oxo-2,5-dihydrofuran-3-carboxylate (24): Ammonium salt $23(2.0 \mathrm{~g}, 4.20 \mathrm{mmol})$ was dissolved in THF (21 mL). Dimethyl sulfate ($0.42 \mathrm{~mL}, 4.41 \mathrm{mmol}$) was added at room temp., and the mixture was stirred for 2 h before further dimethyl sulfate (1 equiv.) was added. Stirring was continued for a further 3 h , and then the mixture was concentrated under reduced pressure. The residue was filtered through a chromatography column $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:1 to $0: 1$) to give methylated product $24(928 \mathrm{mg}$, 89%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.40$ (m, 2 H), 7.40-7.27 (m, 3 H), $5.30(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.5,168.6,160.8$, 135.8, 128.7 (2 C), 128.3, 128.2 (2 C), 97.2, 66.7, 65.1, 59.9 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 271.0582$; found 271.0583. IR: $\tilde{v}=1768,1709,1623,1478,1411,1338,1262,1066$, $1025,606 \mathrm{~cm}^{-1}$, m.p. $172-173{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (EtOAc): 0.28 .
4-Methoxy-2-oxo-2,5-dihydrofuran-3-carboxylic Acid (25): Benzyl ester $24(928 \mathrm{mg}, 3.74 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(75 \mathrm{~mL})$, and $\operatorname{Pd}(5 \%$ on $\mathrm{C} ; 50 \mathrm{mg})$ was added under Ar. Then a gentle flow of $\mathrm{H}_{2}(1 \mathrm{~atm})$ was bubbled through the solution for 60 min at room temp. The heterogeneous mixture was filtered through a Celite pad and concentrated to give carboxylic acid $25(587 \mathrm{mg}, 99 \%)$ as a white solid that turned pale yellow after a few days. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{methanol}$): $\delta=5.06(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{4}\right]$ methanol): $\delta=187.7,172.9,163.7,96.3,66.7$, 60.4 ppm . HRMS (EI): calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$140.0110; found 140.0108. IR: $\tilde{v}=2921,1748,1615,1464,1285,1145,1087$, $1059,903,701 \mathrm{~cm}^{-1}$, m.p. $157-159^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (EtOAc): 0.05 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-enol [(-)-26]: Secondary alcohol (+)-16 ($133 \mathrm{mg}, 0.84 \mathrm{mmol}$), triphenylphosphane ($662 \mathrm{mg}, 2.52 \mathrm{mmol}$), and p-nitrobenzoic acid $(821 \mathrm{mg}$, 2.52 mmol) were dissolved in THF (4 mL), and the solution was cooled to $0{ }^{\circ} \mathrm{C}$ under Ar. DIAD ($480 \mu \mathrm{~L}, 2.44 \mathrm{mmol}$) was added slowly, and the mixture was stirred for 40 min . The mixture was diluted with EtOAc (50 mL) and water (30 mL), and the aqueous phase was extracted with EtOAc (30 mL). The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(2 \times$ 20 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was then purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 7:1) to give the para-nitrobenzoic ester ($218 \mathrm{mg}, 84 \%$) as a clear semi-solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.31-8.22(\mathrm{~m}, 2 \mathrm{H})$, $8.22-8.14(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{dd}, J=0.7, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}$, $J=2.0, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-6.00(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=35.9$, $J=7.4,2 \mathrm{~Hz}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dd}, J=14.7, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.99 (dd, $J=14.8, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.6,150.7,142.6,135.9,131.7,130.8$ (2 C), 123.7 (2 C), $92.1,87.3,80.5,55.3,44.3,27.3 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 330.0954$; found 330.0961. IR: $\tilde{v}=1721,1608,1528,1340,1271,1143,1102,1031,842,720 \mathrm{~cm}^{-1}$. $[a]_{\mathrm{D}}^{20}=+158.4\left(c=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.14.

The p-nitrobenzoic ester ($205 \mathrm{mg}, 0.67 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(13 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{K}_{2} \mathrm{CO}_{3}$ ($92 \mathrm{mg}, 0.67 \mathrm{mmol}$) was added in one portion, and the mixture was stirred for 35 min before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}$. Almost all of the organic solvent was removed under reduced pressure, and EtOAc (20 mL) was added. The aqueous phase was removed and extracted with EtOAc (20 mL). The combined organic extracts were washed with brine $(2 \times 10 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated. The residue was purified by flash chromatog-
raphy $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1) to give alcohol $(-)-26(86 \mathrm{mg}$, 82%) as a colorless oil. Alternatively the crude product from the Mitsunobu reaction could be used, which gave the product in 78% yield over two steps. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.96(\mathrm{dd}, J$ $=5.6, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=5.6, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-$ $4.96(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=31.7, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, 2.53 (dd, $J=14.4, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=14.3, J=3.9 \mathrm{~Hz}$, 1 H), 1.67 (br. s, 1 H), 1.48 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR (400 MHz , CDCl_{3}): $\delta=138.9,137.0,92.0,87.8,76.4,55.2,47.8,27.8 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$143.0708; found 143.0712. IR: $\tilde{v}=3371,2932,1449,1356,1143,1091,1030,918$, $634,537 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=-99.4\left(c=1.05, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}($ hexane $/ \mathrm{EtOAc}$, 1:1): 0.45 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl 4-Meth-oxy-2-oxo-2,5-dihydrofuran-3-carboxylate [(-)-27]: Secondary alcohol (-)-26 ($40 \mathrm{mg}, 0.25 \mathrm{mmol}$) and carboxylic acid $\mathbf{2 5}(96 \mathrm{mg}$, $0.61 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.1 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. DIC ($47 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added, followed by DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then it was allowed to warm to room temp., and stirring was continued overnight. The volatiles were removed, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:1 to 1:2) to give starting material (-)-26 ($22 \mathrm{mg}, 55 \%$) and ester (-)$27(30 \mathrm{mg}, 40 \%, 88 \%$ based on recovered starting material) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.08-6.00(\mathrm{~m}, 2 \mathrm{H})$, $5.89(\mathrm{dt}, J=7.2, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=34.3$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=14.6, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=14.7, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.7,168.5,160.9,142.4$, 131.8, 97.6, 92.1, 87.4, 79.7, 65.0, 59.9, 55.3, 44.1, 27.0 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 321.0950$; found 321.0951. IR: $\tilde{v}=2931,1771,1709,1626,1413,1264,1143,1028$, $632,538 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-140.6\left(c=0.55, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}(\mathrm{EtOAc}): 0.22$.
(S)-4-Oxocyclopent-2-en-1-yl 4-Methoxy-2-oxo-2,5-dihydrofuran-3carboxylate [(-)-30]: Secondary alcohol (-)-29 ($40 \mathrm{mg}, 0.41 \mathrm{mmol}$) and carboxylic acid $25(77 \mathrm{mg}, 0.49 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}(3: 1 ; 4 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. DIC ($76 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) was added, followed by DMAP (10 mg , 0.08 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then it was allowed to warm to room temp., and stirring was continued overnight. The volatiles were removed, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1 to $\left.0: 1\right)$ to give starting material (-)-29 ($4 \mathrm{mg}, 10 \%$) ester (-)-30(88 mg, 78\%) as a white solid that turned yellow on contact with air. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64(\mathrm{dd}, J=2.4, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, $J=1.3, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}$, $3 \mathrm{H}), 2.87(\mathrm{dd}, J=6.3, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=2.2, J=$ $18.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.7,183.5$, 168.1, 160.3, 158.7, 137.5, 96.6, 72.7, 64.9, 59.8, 41.1 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 261.0375$; found 261.0377. IR: $\tilde{v}=1766,1711,1619,1479,1409,1341,1261,1066,1026$, $794 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=106.8\left(c=0.50, \mathrm{CHCl}_{3}\right)$, m.p. $148-149^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (EtOAc): 0.25 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl Buta-2,3dienoate [(-)-32]: Triphenylphosphane ($935 \mathrm{mg}, 3.57 \mathrm{mmol}$) was dissolved in THF (30 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. DIAD ($702 \mu \mathrm{~L}, 3.57 \mathrm{mmol}$) was added very slowly, and the mixture was stirred for 30 min . At this stage, a milky precipitate formed. Allenic acid $31(300 \mathrm{mg}, 3.57 \mathrm{mmol})$ was added in one portion, and a solution of alcohol $(+)-\mathbf{1 6}(470 \mathrm{mg}, 2.97 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was then added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 2 h . Water (45 mL) was added, and the re-
sulting mixture was extracted with EtOAc $(3 \times 80 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 6:1) to give ester $(-)-32(580 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.00(\mathrm{dd}$, $J=0.8, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=2.1, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-$ $5.76(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.61(\mathrm{dd}, J=7.3, J=33.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $7.3, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=3.3, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.0,165.7$, 141.7, 132.2, $92.0,88.14,87.3,79.4,79.3,55.2,44.2,27.2 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$209.0814; found 209.0808. IR: $\tilde{v}=2929,1714,1450,1350,1256,1163,1144,1032$, $632,535 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-187.3\left(c=1.04, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}($ hexane $/ \mathrm{EtOAc}$, 4:1): 0.22 .
(S)-4-Oxocyclopent-2-en-1-yl Buta-2,3-dienoate [(-)-33]: Alcohol $(-)-29(100 \mathrm{mg}, 1.02 \mathrm{mmol})$ and carboxylic acid 31 (103 mg , 1.22 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.1 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. DIC ($189 \mu \mathrm{~L}, 1.22 \mathrm{mmol}$) was added, followed by DMAP ($41 \mathrm{mg}, 0.20 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then it was allowed to warm to room temp. and stirring was continued overnight. The volatiles were removed, and the residue was purified by chromatography column $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:1 to $1: 2$) to give ester $(-)-33(100 \mathrm{mg}, 60 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58(\mathrm{dd}, J=2.5, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.33 (dd, $J=1.2, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=6.3, J=$ $18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=2.3, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.4,204.8,165.2,158.9,137.2,87.5,79.8$, 72.5, 41.1 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}]^{+}$164.0473; found 164.0475. IR: $\tilde{v}=3451,2927,2856,1713,1659,1442,1362$, $1231,1184,1102 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-132.54\left(c=1.00, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}($ hexane/EtOAc, 1:1): 0.48 .
(1S,4S)-4-Hydroxy-4-methylcyclopent-2-en-1-yl Buta-2,3-dienoate [(-)-35]: Triphenylphosphane ($172 \mathrm{mg}, 0.66 \mathrm{mmol}$) was dissolved in THF (6.6 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. DIAD $(129 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ was added very slowly, and the mixture was stirred for 30 min . At this stage a milky precipitate formed. Allenic acid $31(55 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added in one portion, and a solution of alcohol (-)-34 ($75 \mathrm{mg}, 0.66 \mathrm{mmol}$) in THF (1 mL) was then added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 2 h . Water (25 mL) was added, and the resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1) to give ester (-)-35 $(41 \mathrm{mg}, 35 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.00(\mathrm{dd}, J=0.9$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=2.3, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.80(\mathrm{~m}$, $1 \mathrm{H}), 5.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{dd}$, $J=7.1, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=3.1, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.91 (br. s, 1 H), 1.48 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.9,165.6,143.6,130.8,88.0,82.1,79.3$ (2 C), 46.6, 28.6 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}]^{+}$180.0786; found 180.0783. IR: $\tilde{v}=3407,1970,1942,1707,1348,1256,1164,1086,854$, $631 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=-130.3\left(c=0.95, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}($ hexane/EtOAc, 1:1): 0.26 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl 2-(Hy-droxymethyl)buta-2,3-dienoate [(-)-36]: A solution of DABCO (predried under vacuum for $30 \mathrm{~min} ; 5 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise to a suspension of paraformaldehyde (predried under vacuum at $50^{\circ} \mathrm{C}$ for $30 \mathrm{~min} ; 33 \mathrm{mg}, 1.12 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, and then a solution of ester $(-)-32(50 \mathrm{mg}$,
$0.22 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added to the mixture. The reaction mixture was allowed to warm to room temp. and stirred for 7 h . The reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated aq.; 3 mL). The phases were separated, and the aqueous phase was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (5 mL), dried with MgSO_{4}, filtered and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 3:1) gave product (-)-36 ($35 \mathrm{mg}, 62 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.03(\mathrm{dd}, J=0.7, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=2.1, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.80(\mathrm{~m}, 1$ H), $5.21(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=7.2, J=33.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.31(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=7.2, J=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (br. s, 1 H), 1.85 (dd, $J=3.1, J=14.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 1.46$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.3$, 166.7, 142.1, 132.0, 100.0, 92.1, 87.3, 80.5, 79.6, 61.1, 55.3, 44.2, 27.1 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{5}[\mathrm{M}]^{+} 239.0919$; found 239.0906. IR: $\tilde{v}=3220,2930,1713,1449,1361,1214,1142,1091$, $1030,631 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-172.0\left(c=0.27, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/ EtOAc, 1:1): 0.29 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl 2(Ethoxy Methyl)buta-2,3-dienoate [(-)-38]: Secondary alcohol (+)16 ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$), triphenylphosphane ($232 \mathrm{mg}, 0.88 \mathrm{mmol}$), and carboxylic acid $37(180 \mathrm{mg}, 1.26 \mathrm{mmol})$ were dissolved in THF (6.3 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$ under Ar. DIAD $(174 \mu \mathrm{~L}, 0.88 \mathrm{mmol})$ was slowly added, and the mixture was stirred for 30 min . The mixture was diluted with EtOAc (30 mL) and water $(15 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(30 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(2 \times 15 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated. The residue was then purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 8:1) to give ester $(-)-38(104 \mathrm{mg}, 58 \%)$ as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=6.01(\mathrm{dd}, J=0.7, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=2.0$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.62(\mathrm{dd}, J=7.4, J=32.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}, J=7.2, \mathrm{~J}=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85(\mathrm{dd}, J=3.1, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=214.6$, 165.8, 141.7, 132.0, 98.3, 91.9, 87.2, 79.5, 79.2, 67.2, 66.0, 55.1, 44.1, 27.0, 15.1 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$305.1365; found 305.1359. IR: $\tilde{v}=2975,2873,1967,1710$, 1371, 1259, 1143, 1091, 1031, $535 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-115.9(c=1.00$, CHCl_{3}). R_{f} (hexane/EtOAc, 3:1): 0.29.
(E)-(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl 3-(Furan-2-yl)acrylate [(-)-(40)]: Secondary alcohol (+)-16 (100 mg, 0.63 mmol), triphenylphosphane ($249 \mathrm{mg}, 0.95 \mathrm{mmol}$), and carboxylic acid 39 ($131 \mathrm{mg}, 0.95 \mathrm{mmol}$) were dissolved in THF (4.2 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$ under Ar. DIAD ($187 \mu \mathrm{~L}$, 0.95 mmol) was slowly added, and the mixture was stirred for 20 min . The mixture was diluted with EtOAc (20 mL) and water $(15 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(40 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc , 6:1) to give ester $(-)-40$ $(175 \mathrm{mg}, 99 \%)$ as a crystalline product. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=1.8, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.84(\mathrm{~m}, 1 \mathrm{H}), 4.63$ (dd, $J=7.3, J=32.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=7.3, J$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=3.3, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,151.1,144.9,141.6$, $132.5,131.3,116.0,114.9,112.4,92.1,87.4,78.8,55.3,44.3$,
27.3 ppm . HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}]^{+}$278.1154; found 278.1097. IR: $\tilde{v}=2930,1706,1638,1448,1302,1259,1209,1163$, $1110,1032 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{11}=-242.9\left(c=1.50, \mathrm{CHCl}_{3}\right)$, m.p. $74-75^{\circ} \mathrm{C}$, R_{f} (hexane/EtOAc, 3:1): 0.31 .
(S, E)-4-Oxocyclopent-2-en-1-yl 3-(Furan-2-yl)acrylate [(-)-(41)]: Secondary alcohol (-)-29 ($500 \mathrm{mg}, 5.10 \mathrm{mmol}$) and carboxylic acid $39(845 \mathrm{mg}, 6.12 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.5 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$. DIC $(947 \mu \mathrm{~L}, 6.12 \mathrm{mmol})$ was added, followed by DMAP ($201 \mathrm{mg}, 1.02 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then it was allowed to warm to room temp., and stirring was continued overnight. The volatiles were removed under reduced pressure, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $6: 1$ to $4: 1$) to give ester (-)$41(788 \mathrm{mg}, 71 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.61(\mathrm{dd}, J=2.5, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (dd, $J=1.8, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=1.3, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.29(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.94(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=6.5$, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=2.2, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.9,166.3,159.1,150.6,15.1$, 137.0, 132.1, 115.5, 114.5, 112.4, 71.9, 41.1 ppm . HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}[\mathrm{M}]^{+}$218.0579; found 218.0562. IR: $\tilde{v}=2933$, $1708,1635,1479,1353,1282,1207,1156,1016,753 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{21}=$ $-243.1\left(c=4.00, \mathrm{CHCl}_{3}\right)$, m.p. $80-81^{\circ} \mathrm{C}, R_{\mathrm{f}}($ hexane $/ \mathrm{EtOAc}, 3: 1)$: 0.21 .
(1S,4S)-4-(Methoxymethoxy)-4-methylcyclopent-2-en-1-yl 2-Acetoxybenzoate [(-)-42]: Secondary alcohol (+)-16 (100 mg, 0.63 mmol), triphenylphosphane ($199 \mathrm{mg}, 0.76 \mathrm{mmol}$), and 2-acetoxybenzoic acid ($137 \mathrm{mg}, 0.76 \mathrm{mmol}$) were dissolved in THF $(6.3 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$ under Ar. DIAD $(149 \mu \mathrm{~L}, 0.76 \mathrm{mmol})$ was added slowly, and the mixture was stirred for 40 min . The mixture was diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(50 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and brine $(2 \times 40 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated. The residue was then purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 6:1) to give ester $(-)-\mathbf{4 2}(106 \mathrm{mg}, 52 \%)$ and recovered starting material ($45 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{dd}, J=1.8, J=7.9 \mathrm{~Hz}, 1$ H), $7.54(\mathrm{dt}, J=1.7, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=1.2, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{dd}, J=1.2, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.98-$ $5.93(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=7.4, J=34.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $2.64(\mathrm{dd}, J=7.3, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=$ $3.4, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=169.7,164.4,150.7,142.0,133.9,132.3,131.9,126.1$, 123.9, 123.6, 92.1, 87.3, 79.5, 55.3, 44.3, 27.3, 21.2 ppm. HRMS (EI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$343.1158; found 343.1184. IR: $\tilde{v}=2932,1770,1717,1607,1368,1289,1191,1029,961$, $915 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{20}=-147.5\left(c=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 3:1): 0.32 .

Ketene 43: $\mathrm{Et}_{3} \mathrm{~N}(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ was added to a solution of alcohol (-)-26 ($15 \mathrm{mg}, 0.09 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min at this temperature, the resulting clear reaction mixture was slowly added to a pre-formed solution of suboxide at $0{ }^{\circ} \mathrm{C}[$ Ketene preparation: A solution of malonyl dichloride ($18 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was treated with $i \mathrm{PrEt}_{2} \mathrm{~N}(35 \mu \mathrm{~L}, 0.21 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was kept at this temperature for 30 min , resulting in an orange suspension]. The resulting suspension was stirred at the same temperature for 90 min , and then it was allowed to warm to room temp. After 6 h , no starting material was left, as indicated by TLC. Water (5 mL) and then EtOAc $(5 \mathrm{~mL})$ were added to the reaction mixture. The mixture was ex-
tracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and then dried with MgSO_{4}. After filtration, the solvents were removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$ of the resulting yellow oil led neither to the recovery of starting material nor to the isolation of the desired cyclization product or ketene 43.
Ketene Iminium Ion 46: A solution of amide (-)-45 (48 mg, $0.14 \mathrm{mmol})$ and collidine ($19 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) in DCE $(2.0 \mathrm{~mL})$ was treated with a solution of triflic anhydride ($25 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at room temp. The reaction mixture was stirred at this temperature for 6 h . As no reaction was indicated by TLC, the reaction vessel was sealed with a stopper and heated to reflux for an additional 2 h . Water $(5 \mathrm{~mL})$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 5 mL). The combined organic extracts were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and then dried over MgSO_{4}. After evaporation of the volatiles, flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc) did not result in isolation of the desired cylization product or 46.

Ketene Iminium Ion 48: A solution of alcohol (-)-26 (30 mg, 0.19 mmol), acid $47(33 \mathrm{mg}, 0.21 \mathrm{mmol})$, and DMAP (3 mg , $0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ was treated with DIC $(35 \mu \mathrm{~L}$, 0.23 mmol) dropwise at $0^{\circ} \mathrm{C}$ under an Ar atmosphere. The resulting pale beige suspension was allowed to warm to room temp. and stirred for 24 h . As TLC indicated full consumption of the starting material, ammonium chloride (saturated aq.; 5 mL) was added to the reaction mixture. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 10 mL), MgSO_{4} was added to the combined organic extracts. Filtration followed by removal of the volatiles resulted in a pale yellow oil, which was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$ to give the desired amide (56 mg , quant. yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.01(\mathrm{dd}, J=5.6, J=0.9 \mathrm{~Hz}, 1$ H), 5.97 (dd, $J=5.6, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $14.7, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6,164.4,142.0$, 132.0, 92.1, 87.3, 79.8, 55.3, 47.3, 46.1, 44.1, 42.7, 27.2, 26.2, 24.6 ppm. HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 320.1474; found 320.1473. IR: $\tilde{v}=2973,2881,1736,1646,1442$, $1344,1259,1144,1032,750 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=-97.7\left(c=0.60, \mathrm{CHCl}_{3}\right)$. R_{f} (hexane/EtOAc, 1:1): 0.19.
A solution of amide ($56 \mathrm{mg}, 0.19 \mathrm{mmol}$) and collidine ($26 \mu \mathrm{~L}$, $0.19 \mathrm{mmol})$ in DCE $(2.0 \mathrm{~mL})$ was treated with a solution of triflic anhydride ($34 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at room temp. The reaction mixture was stirred at this temperature for 6 h . As no reaction was indicated by TLC, the reaction vessel was sealed with a stopper and heated to reflux for an additional 2 h . Water $(5 \mathrm{~mL})$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and then dried over MgSO_{4}. After evaporation of the volatiles, flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$ did not result in isolation of the desired cyclization product or 48.
Anhydride (-)-50: A quartz vial of 1 cm diameter was charged with cyclopentene (-)-49 ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$), maleic anhydride (29 mg , 0.29 mmol), a magnetic stirrer bar and acetone (6.0 mL). The vial was sealed with a rubber septum and equipped with an argon balloon. The reaction vessel was placed in an ultrasound bath, and the reaction mixture was degassed by passing a gentle stream of argon through the solution. After 30 min , the quartz vial was placed 1 cm in front of $8 \times 16 \mathrm{~W}$ UV-A lamps, and irradiated for
a period of 8 h . After full consumption of the cyclopentene, as judged by TLC, the solvent was removed under reduced pressure. The colorless semi-solid was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) to give desired tricycle (-)-50 (15 mg, 58%) as a colorless oil, which partially crystallized upon storage in the fridge. During purification by chromatography, as well as upon dissolving and storing in CDCl_{3}, partial hydrolysis of the anhydride functionality was observed, resulting in a small amount of impurity in the NMR spectra. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.26(\mathrm{dt}, J$ $=10.7, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=6.5, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ $(\mathrm{dd}, J=6.5, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dt}, J=6.7, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{dd}, J=6.1, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.7, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11$ $(\mathrm{s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,173.4,76.7,70.2,51.6,45.7,44.5$, 38.9, 35.9, 29.8, 29.4, 26.0 (3 C), 25.9 (3 C), 18.2, $-2.2,-2.3,-4.7$, -4.8 ppm . HRMS (EI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{NaO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{MeOH}+$ $\mathrm{Na}]^{+}$495.2574; found 495.2592. $[\alpha]_{\mathrm{D}}^{20}=-127.8\left(c=0.75, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=2973,2879,1875,1834,1642,1601,1332,1269,1144$, $834 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 6:1): 0.58 .
tert-Butyldimethyl\{I($1 R, 4 S$)-4-(prop-2-yn-1-yloxy)cyclopent-2-en-1-yl]oxy\}silane [(+)-54]: A solution of (+)-44 (1.00 g, 4.66 mmol$)$ in THF (3.5 mL) was added to a suspension of NaH (450 mg , $18.66 \mathrm{mmol})$ in THF $(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temp., and after the evolution of H_{2} had subsided, the mixture was cooled again to $0^{\circ} \mathrm{C}$. Propargyl bromide (80 wt .$\%$ in toluene; $1.51 \mathrm{~mL}, 13.99 \mathrm{mmol}$) was then slowly added, and the reaction mixture was stirred overnight while it warmed to room temp. The reaction was quenched with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(15 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$, and dried with MgSO_{4}, and the solvent was removed in vacuo. Purification by chromatography column $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 15:1) gave (+)-54 $(1.38 \mathrm{~g}, 99 \%)$ as a slightly viscous liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.97-5.90(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.17$ $(\mathrm{dd}, J=2.4, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{td}, J=7.2, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{td}, J=5.3, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.98$ (s, 9 H$), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=138.0,132.2,81.2,80.4,74.8,74.0,55.6,41.2,25.9(3$ C), 18.1, $-4.6(2 \mathrm{C}) \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}-$ $t \mathrm{Bu}]^{+}$195.0841; found 195.0841. IR: $\tilde{\mathrm{v}}=2955,2931,2857,1372$, 1253, 1081, 1059, 905, 837, $777 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=+32.7(c=1.05$, CHCl_{3}). R_{f} (hexane/EtOAc, 3:1): 0.48 .
$\{[(1 R, 4 S)-4-(B u t a-2,3-d i e n-1-y l o x y) c y c l o p e n t-2-e n-1-y l] o x y\}(t e r t-$ butyl)dimethylsilane $[(+)-51]$: Paraformaldehyde (416 mg , $13.85 \mathrm{mmol})$, DIPA $(1.0 \mathrm{~mL}, 7.13 \mathrm{mmol})$, and $\mathrm{CuBr}(331 \mathrm{mg}$, 2.31 mmol) were sequentially added to a solution of alkyne (+)-54 $(1.17 \mathrm{~g}, 4.38 \mathrm{mmol})$ in dioxane $(30 \mathrm{~mL})$. The reaction mixture was heated at reflux overnight. After the reaction was complete (TLC monitoring), the solvent was removed in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:0 to $20: 1)$ to give $(+)-51(1.04 \mathrm{~g}, 84 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.94-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1$ H), $4.78(\mathrm{td}, J=2.5, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1$ H), $4.05(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=7.2, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{td}, J$ $=5.6, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.2,137.5,132.7,88.2$, 81.1, 75.6, 74.9, 66.3, 41.5, 25.9 (3 C), 18.2, -4.6 (2 C) ppm. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 289.1600$; found 289.1592. IR: $\tilde{v}=2955,2931,2857,1368,1253,1079,940,905$, 837, $777 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=+10.4\left(c=0.85, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 15:1): 0.49 .
(S)-4-(Buta-2,3-dien-1-yloxy)cyclopent-2-enone [(+)-52]: Compound (+)-51 (500 mg, 1.88 mmol$)$ was dissolved in THF (2 mL), and TBAF (1 m in THF; $2.40 \mathrm{~mL}, 2.40 \mathrm{mmol}$) was added at room temp. After TLC had indicated an almost complete conversion, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12 \mathrm{~mL})$ was added. Then $\mathrm{MnO}_{2}(4.89 \mathrm{~g}, 56.25 \mathrm{mmol})$ was added, and stirring was continued overnight at room temp. The mixture was filtered through Celite, and, after gentle evaporation of the solvent in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}, 2: 1\right)$ to give (+)-52 $(164 \mathrm{mg}, 58 \%)$ as a volatile greenish-yellow liquid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.61(\mathrm{dd}, J=2.3, . J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=1.4, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{td}, J=2.4, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=5.9, J=18.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{dd}, J=2.3, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}): $\delta=209.5,205.8,161.0,135.8,87.5,76.5,76.1$, 67.7, 41.8 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 150.0681; found 150.0699. IR: $\tilde{v}=2926,2856,1719,1351,1184$, $1105,1074,996,849,792 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=+5.14\left(c=1.23, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}$ (Pentane/Et ${ }_{2} \mathrm{O}, 2: 1$) : 0.20.
(3aS)-1-Methylenehexahydro-3-oxacyclobuta[cd]pentalen-5(1a1H)one [(+)-53]: Enone $(+) \mathbf{- 5 2}(30 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in diethyl ether $(6 \mathrm{~mL})$. The solution was irradiated with UV-B light under $2 \times 16 \mathrm{~W}$ lamps (Irradiation conditions G) in a quartz vial for 6 h . After TLC indicated partial conversion, the solvent was removed under reduced pressure. The residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 2: 1$) to give $(+)-53(18 \mathrm{mg}, 60 \%)$ as a volatile liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.16(\mathrm{~m}, 1$ H), $5.00(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1$ H), $3.70(\mathrm{dd}, J=4.2, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{ddd}, J=0.6, J=5.0, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=214.1,145.2,111.7,79.3,73.9,51.8,48.7,48.3$, 42.7 ppm. HRMS (EI): calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}]^{+} 150.0681$; found 150.0692. IR: $\tilde{v}=2965,2831,1747,1291,1114,1056,1001,943$, $819,732 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{21}=+12.1\left(c=0.90, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}\left(\right.$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$, 2:1): 0.14 .
[(1S,5R,6S)-Bicyclo[3.2.0]hept-2-en-6-yloxy](tert-butyl)dimethylsilane [(-)-57]: TBSCl $(9.36 \mathrm{~g}, 59.0 \mathrm{mmol})$ was added to a solution of alcohol $(+)-56(5.00 \mathrm{~g}, 45.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(91 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , and then $\mathrm{Et}_{3} \mathrm{~N}(10.1 \mathrm{~mL}, 72.6 \mathrm{mmol})$ and DMAP $(277 \mathrm{mg}, 2.30 \mathrm{mmol})$ were added. The reaction mixture was allowed to warm to room temp. overnight. $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated aq.; 50 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed in sequence with $\mathrm{HCl}(0.5 \mathrm{~m} ; 40 \mathrm{~mL})$, water $(40 \mathrm{~mL})$, and brine $(2 \times$ 50 mL), and dried with MgSO_{4}. The volatile materials were removed under reduced pressure to give a crude product. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane) gave protected alcohol $(-)-57(9.52 \mathrm{~g}, 94 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.85-5.75(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.04(\mathrm{~m}$, $1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.56(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.6,133.0,65.6,44.1,40.8$, 39.1, 31.5, 26.0 (3 C), 18.3, -4.7 (2 C) ppm. HRMS (EI): calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OSi}[\mathrm{M}-t \mathrm{Bu}]^{+}$167.0892; found 167.0890. IR: $\tilde{v}=2930$, 2857, 1709, 1471, 1254, 1125, 1004, 879, 837, $777 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{22}=-0.2$ ($c=1.0, \mathrm{CHCl}_{3}$). R_{f} (hexane): 0.49 .
(1R,5R,6S)-6-[(tert-butyldimethylsilyl)oxy]bicyclo[3.2.0]hept-3-en-2one [(-)-58]: A solution of alkyne (-)-57 (9.36 g, 41.7 mmol$)$, acetic anhydride ($4.34 \mathrm{~mL}, 45.9 \mathrm{mmol}$), pyridine ($1.69 \mathrm{~mL}, 20.9 \mathrm{mmol}$), DMAP ($305 \mathrm{mg}, 2.50 \mathrm{mmol}$), and tetraphenylporphyrin $(25.6 \mathrm{mg}$, $41.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(52 \mathrm{~mL})$ was irradiated with a halogen lamp $(500 \mathrm{~W})$ for 7 d under vigorous stirring while O_{2} was bubbled con-
tinuously through the solution. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed in sequence with NaHCO_{3} (saturated aq.; 50 mL), water $(50 \mathrm{~mL}), \mathrm{CuSO}_{4}$ (saturated aq.; 50 mL), and brine (50 mL), and dried with MgSO_{4}. The volatile materials were removed under reduced pressure to give crude enone $(-)-58(10.0 \mathrm{~g}$, 100%) as a dark red oil containing $<5 \%$ of starting material. An aliquot was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ EtOAc, 5:1) for analytical purposes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66(\mathrm{dd}, J=2.8, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=1.1, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.84-$ $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9$ H), $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.3,162.7,136.8,65.3,49.4,36.9,35.4,25.8$ (3 C), 18.1, -4.7, -4.9 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si} 238.1389$; found 238.1389. IR: $\tilde{v}=2953,2857,1706,1252,1183,1122,949,870$, 837, $777 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{25}=-179.5\left(c=1.0, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.25 .

Optimized Procedure for TMS Enol Ether (-)-59

Procedure A, From Enone (-)-58: MeLi (1.6 m in $\mathrm{Et}_{2} \mathrm{O} ; 336 \mathrm{~mL}$, $503 \mathrm{mmol})$ was slowly added to a suspension of CuI $(47.9 \mathrm{~g}$, $252 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(840 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then cooled to $-78^{\circ} \mathrm{C}$. A solution of enone (-)-58 ($60.0 \mathrm{~g}, 252 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was slowly added to the solution over 25 min . The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then warmed quickly to $0^{\circ} \mathrm{C}$. TMSCl $(39.9 \mathrm{~mL}, 315 \mathrm{mmol})$ was rapidly added, followed immediately by $\mathrm{Et}_{3} \mathrm{~N}(43.8 \mathrm{~mL}, 315 \mathrm{mmol})$. The mixture was stirred for 16 h at $0^{\circ} \mathrm{C}$ and then ether $(300 \mathrm{~mL})$ and water $(300 \mathrm{~mL})$ were slowly added. The organic phase was extracted with $\mathrm{NH}_{4} \mathrm{OH}(10 \%$ aq.; $3 \times$ $100 \mathrm{~mL})$, water $(3 \times 150 \mathrm{~mL})$, and brine $(200 \mathrm{~mL})$, dried with MgSO_{4}, and filtered. The volatiles were removed to give pure TMS enol ether (-)-59 (82.2 g, quantitative).

Procedure B, From Ketone (-)-61: TMSOTf ($17.2 \mathrm{~mL}, 95.1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(23.2 \mathrm{~mL}, 166 \mathrm{mmol})$ were slowly added to a suspension of ketone $(-)-61(12.1 \mathrm{~g}, 47.6 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(237 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at $0^{\circ} \mathrm{C}$ and then NaHCO_{3} (saturated aq.; 500 mL) was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 250 \mathrm{~mL})$, and the combined organic extracts were washed with water $(2 \times 150 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$, dried with MgSO_{4}, and filtered. The volatiles were removed to give pure TMS enol ether (-)-59 (15.4 g, 99 \%) .

Optimized Procedure for Enone (-)-60: Crude TMS enol ether (-)59 ($82.2 \mathrm{~g}, 252 \mathrm{mmol}$) was dissolved in DMSO (840 mL), and the solution was warmed to $32{ }^{\circ} \mathrm{C}$ and saturated with oxygen by bubbling gas through the solution for 10 min . Under an O_{2} atmosphere, $\mathrm{Pd}(\mathrm{OAc})_{2}(28.2 \mathrm{~g}, 126 \mathrm{mmol})$ was added in one portion. After 3 h , the reaction mixture was filtered through Celite $(10 \mathrm{~cm}$ thick). The filtrate was diluted with EtOAc $(400 \mathrm{~mL})$, and the filtration through Celite (10 cm thick) was repeated. A mixture of water (200 mL) and crushed ice $(200 \mathrm{~g})$ was added with vigorous agitation. After separation of the phases, the organic phase was washed with water $(2 \times 100 \mathrm{~mL})$. The combined aqueous phases were extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The organic extracts were combined, washed with water $(3 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated under reduced pressure. NMR analysis showed a $4: 1$ mixture of enone (-)-60 and ketone $(-)-61$. Compounds $(-)-60$ and $(-)-61$ were separated by column chromatography (hexane/EtOAc, 20:1 then $5: 1$) to give ketone $(-)$ $61(12.1 \mathrm{~g}, 19 \%)$ and enone $(-)-60(51.4 \mathrm{~g}, 81 \%)$. Data for enone (-)-60: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.09(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{q}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52$ $(\mathrm{m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3$
H), $0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.9$, $177.4,132.3,65.2,51.9,38.2,34.9,25.7$ (3 C), 19.9, 17.9, -4.77, -5.05 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}$252.1546; found 252.1548. IR: $\tilde{v}=2929,2857,1698,1613,1253,1183,1117$, $955,838,778 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=-238.0\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}$ (hexane/ EtOAc, 3:1): 0.32.
Data for ketone (-)-61: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=4.43$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ $(\mathrm{s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=220.9,64.6,50.9,47.2,39.6,36.3,27.3,25.9(3 \mathrm{C})$, $21.6,18.1,-4.6,-4.9 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}-$ $\left.\mathrm{CH}_{3}\right]^{+}$239.1467; found 239.1465. IR: $\tilde{v}=2954,2857,1735,1252$, 1187, 1118, 949, 887, 837, $777 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{25}=-96.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$. R_{f} (hexane/EtOAc, 4:1): 0.24.
(1R,2R,4R,6R,8S)-8-[(tert-Butyldimethylsilyl)oxy]-2-methyl-3-oxatricyclo[4.2.0.02,4]octan-5-one [(-)-62]: Enone (-)-60 (150 mg, $0.59 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(6.1 \mathrm{~mL})$, and the solution was cooled to $-20^{\circ} \mathrm{C}$. $\mathrm{NaOH}(1 \mathrm{~m} \mathrm{aq} . ; 179 \mu \mathrm{~L}, 0.179 \mathrm{mmol})$ was added, followed by the dropwise addition of hydrogen peroxide ($30 \mathrm{wt} .-\%$; $750 \mu \mathrm{~L}$). The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After 1 h at this temperature, the reaction was quenched with $\mathrm{HCl}(0.5 \mathrm{~m}$ aq.; 2 mL) and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (saturated aq.; 5 mL). The solution was diluted with water $(40 \mathrm{~mL})$ and $\mathrm{EtOAc}(60 \mathrm{~mL})$, the phases were separated, and the aqueous phase extracted with EtOAc $(60 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried with MgSO_{4}, filtered and concentrated. The crude product ($160 \mathrm{mg}, 99 \%$) was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.49-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.77$ (ddt, $J=1.1, J=4.1, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $211.0,65.9,64.2,63.8,47.4,38.8,35.2,25.8$ (3 C), 18.0, 16.8, -4.6, -5.0 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 291.1392; found 291.1383. IR: $\tilde{v}=2931,2587,1743,1399,1254$, $1124,1070,922,834,776 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{22}=-32.8\left(c=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.45 .
($1 R, 2 S, 5 S, 7 S)-7-[($ tert-Butyldimethylsilyl)oxy]-2-methylbicyclo-[3.2.0]hept-3-en-2-ol [(-)-63]: $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(27 \mu \mathrm{~L}, 0.56 \mathrm{mmol})$ and $\mathrm{AcOH}(80 \mu \mathrm{~L}, 1.40 \mathrm{mmol})$ were added to a solution of epoxide $(-)-62(75 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min at this temperature, TLC showed no remaining starting materials, and the hydrazine intermediate and a new product spot had appeared. The mixture was stirred for a further 15 min . The mixture was then heated to reflux for 2 h . Then water (5 mL) was added. The solution was neutralized with NaHCO_{3} and extracted with EtOAc $(3 \times$ 15 mL). The combined organic extracts were washed with brine $(15 \mathrm{~mL})$ and dried with MgSO_{4}. Removal of the solvent by rotary evaporation and purification by flash column chromatography (hexane/EtOAc, 6:1) gave tertiary alcohol (-)-63 (29 mg, 40\%) as an unstable colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.93$ $(\mathrm{dd}, J=2.4, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1$ $\mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$, $0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.0,136.7$, $85.4,65.8,54.7,39.2,38.6,29.7,25.8$ (3 C), 24.1, $-3.6,-4.8 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 277.1600$; found 277.1583. IR: $\tilde{v}=2998,2787,1319,1124,1099,1021,977,902$, $874,736 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=-5.9\left(c=1.2, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.17 .

Alkene (-)-64: Cerium chloride heptahydrate ($5.79 \mathrm{~g}, 15.6 \mathrm{mmol}$) was added to a stirred solution of enone (-)-60 (3.27 g, 13.0 mmol$)$
in $\mathrm{MeOH}(65 \mathrm{~mL})$ at room temp. After 5 min , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(539 \mathrm{mg}, 14.3 \mathrm{mmol})$ was added portionwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until the starting material had been completely consumed (30 min). The reaction was quenched by the addition of acetic acid ($1: 1 \mathrm{in}$ water; 5 mL). Water $(100 \mathrm{~mL})$ and EtOAc $(150 \mathrm{~mL})$ were added, and the heterogeneous mixture was extracted with EtOAc $(4 \times 80 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 75 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, and the solvent was removed under reduced pressure to give crude allylic alcohol (3.30 g, quantitative) as a viscous oil.

The crude alcohol ($3.30 \mathrm{~g}, 12.9 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(43 \mathrm{~mL})$, and $i \operatorname{Pr}_{2} \mathrm{NEt}(6.78 \mathrm{~mL}, 38.9 \mathrm{mmol})$ and MOMCl $(2.45 \mathrm{~mL}, 32.3 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temp. for 15 h . After the addition of water $(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, the organic phase was washed with $\mathrm{NaHCO}_{3}(5 \%$ aq.; 75 mL$)$ and brine $(3 \times 60 \mathrm{~mL})$, then dried with MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $20: 1)$ to give alkene (-)-64 (3.29 mg, 85%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.41$ (br. s, 1 H), 4.80 (dq, $J=1.7$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1$ H), $4.27(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.19$ (br. s, 1 H$), 2.55-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (br. s, $3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=144.0,127.4,96.3,85.0,65.4,55.6,55.3,32.3,31.7$, 26.0 (3 C), 18.2, 17.1, $-4.5,-4.8 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 321.1862$; found 321.1866. IR: $\tilde{v}=2929$, $2857,2361,2342,1375,1254,1122,1042,835,776 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{24}=$ $81.4\left(c=1.1, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.55.

Optimized Procedure for Alcohol (-)-65: $\mathrm{Co}(\mathrm{acac})_{2}(741 \mathrm{mg}$, $2.88 \mathrm{mmol})$ was added to a solution of alkene $(-)-64(8.60 \mathrm{~g}$, $28.8 \mathrm{mmol})$ in THF $(300 \mathrm{~mL})$ in a 2 L flask at room temp. The reaction mixture was then saturated with $\mathrm{O}_{2}(40 \mathrm{~min})$, and then $\mathrm{PhSiH}_{3}(14.2 \mathrm{~mL}, 115 \mathrm{mmol})$ was added over 45 min using a syringe pump, while a gentle flow of O_{2} was blown 5 cm above the well-stirred solution. The O_{2} flow was reduced, and stirring was maintained for 15 h at room temp. The reaction mixture was diluted with EtOAc $(250 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and stirred for a further 24 h . The organic phase was separated, and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 200 \mathrm{~mL})$. The aqueous phase was saturated with solid NaCl and further extracted with EtOAc $(2 \times 200 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 3:1) to give tertiary alcohol (-)-65 (7.93 g, 87\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.60$ (d, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.34$ (s, 3 H$), 2.69-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1$ H), 2.08-1.96(m, 2 H$), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (br. s, 1 H$), 0.88$ (s, 9 H), $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=96.1,79.7,78.9,64.7,55.5,55.4,44.5,33.5,30.3,26.0$ (3 C), $25.5,18.2,-4.6,-5.0 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 339.3968$; found 339.3964. IR: $\tilde{v}=3405,2955,2884$, $2362,1254,1132,1044,869,867,777 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{24}=-1.73(c=1.1$, CHCl_{3}). R_{f} (hexane/EtOAc, 2:1): 0.25 .

Optimized Procedure for Alcohol (-)-66: Alcohol (-)-65 (18.3 g, 57.8 mmol) was dissolved in THF (290 mL), and the solution was cooled to $0^{\circ} \mathrm{C} .2,6$-Lutidine $(26.9 \mathrm{~mL}, 231 \mathrm{mmol})$ and then TBSOTf ($26.6 \mathrm{~mL}, 116 \mathrm{mmol}$) were rapidly added to the reaction vessel, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched by the addition of $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$, and the mix-
ture was diluted with water $(100 \mathrm{~mL})$ and diethyl ether $(200 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with diethyl ether $(2 \times 150 \mathrm{~mL})$. The organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $15: 1)$ to give the di-TBS-protected alcohol (25.5 g , quantitative) contaminated with TBS-OH and 2,6-lutidine. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=4.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.45-4.32 (m, 2 H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=96.3,82.2,79.7$, 65.0, 55.9, 55.5, 45.6, 33.7, 30.3, 26.0 (3 C), 25.9 (3 C), 24.9, 18.2, 18.1, $-2.0,-2.2,-4.6,-5.0 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{4-}$ $\operatorname{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$453.2832; found 453.2813. IR: $\tilde{v}=2929,2856$, $1253,1108,1076,1043,1001,939,832,772 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{24}=-9.3(c=$ $1.0, \mathrm{CHCl}_{3}$). R_{f} (hexane/EtOAc, 5:1): 0.61 .

The crude residue was dissolved in THF (116 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, TBAF (1 m in THF; 69.6 mL , 69.6 mmol) was added over 15 min . The reaction mixture was allowed to warm slowly to room temp. overnight, and then the volatiles were removed under reduced pressure at $30^{\circ} \mathrm{C}$. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 3:1) to give alcohol (-)-66 (17.1 g, $93 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.42$ $(\mathrm{m}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 2 \mathrm{H})$, $2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=96.3,81.9,79.6,65.0,55.5,55.4$, 45.9, 33.7, 28.9, 25.8 (3 C), 24.9, 18.1, -2.0, -2.2 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 339.1968$; found 339.1961. IR: $\tilde{v}=3444,2930,2856,1461,1252,1107,1036,995$, 832, $772 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}^{20}=-34.8\left(c=1.0, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 3:1): 0.30 .

Optimized Procedure for Diol (-)-67: Alcohol (-)-66 (8 g, 25.3 mmol) was dissolved in EtOAc (168 mL), and IBX (14.1 g , 50.6 mmol) was added to the solution. The heterogeneous mixture was heated to reflux for 3 h and then cooled to room temp. Hexane (150 mL) was added, and stirring was continued for 15 min . The suspension was filtered through a Celite pad (3 cm), and the filtrate was concentrated to give the ketone ($7.90 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.65(\mathrm{~s}, 2 \mathrm{H}), 4.63-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.43-$ 4.37 (m, 1 H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1$ H), 2.95-2.86 (m, 1 H), 2.15 (ddd, $J=1.9, J=6.4, J=13.0 \mathrm{~Hz}, 1$ H), $1.63(\mathrm{dd}, J=11.1, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9$ H), $0.10(\mathrm{~s}, 36 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.1,96.5,79.5,78.9,76.0,55.7,45.3,45.2,31.4,25.8$ (3 C), 24.5, 18.0, -2.2, -2.5 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 337.1811$; found 337.1804. IR: $\tilde{v}=2929,2856,1777$, $1253,1147,1109,1042,833,773,696 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=-151.6(c=1.4$, CHCl_{3}). R_{f} (hexane/EtOAc, 2:1): 0.55 .

DBU ($11.2 \mathrm{~mL}, 75.4 \mathrm{mmol}$) was slowly added to a solution of crude ketone $(7.90 \mathrm{~g}, 25.1 \mathrm{mmol})$ in formalin $(65 \mathrm{~mL})$. A cold water bath was used to avoid a slight increase of temperature. The water bath was then warmed to $30^{\circ} \mathrm{C}$, and the solution was stirred vigorously for a further 30 min . The reaction mixture was diluted with water $(120 \mathrm{~mL})$ and EtOAc $(200 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(6 \times 80 \mathrm{~mL})$. The combined organic extracts were washed with brine $(40 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated under reduced pressure to give diol (-)-67 (10.1 g, quantitative) contaminated with polymethylene ether derivatives. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.79-4.70(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{~d}, J=12.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.92(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=2.0, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.20$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br. s, 1 H), 2.28 (ddd, $J=2.0, J=6.5$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.71(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz , CDCl_{3}): $\delta=210.0,97.3,80.6,80.0,71.5,71.4,67.3,61.9,55.9,46.9$, 39.8, 25.8 (3 C), 24.5, 18.1, 0.0, -0.2 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$397.2022; found 397.2022. IR: $\tilde{v}=3416$, 2929, 2856, 1766, 1254, 1153, 1109, 1001, 835, $774 \mathrm{~cm}^{-1} .[a]_{\mathrm{D}}^{25}=$ $-91.6\left(c=1.05, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.25 .

Optimized Procedure for Alkene (-)-68: Imidazole (8.55 g, $126 \mathrm{mmol})$ was added to a solution of crude diol (-)-67 (10.1 g, $25.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(251 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and then neat TESCl $(9.28 \mathrm{~mL}, 55.3 \mathrm{mmol})$ was added. The resulting mixture was allowed to warm slowly to room temp. overnight before it was quenched with NaHCO_{3} (saturated aq.; 120 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 80 \mathrm{~mL})$. The combined organic extracts were washed with water ($3 \times 90 \mathrm{~mL}$) and brine (50 mL), dried with MgSO_{4}, and concentrated under reduced pressure to give the desired ketone (17.2 g , quantitative) contaminated with TES-OH. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.80-4.72(\mathrm{~m}, 1$ H), $4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1$ H), $3.81(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=2.0, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=2.2, J=6.4$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.62-0.53$ (m, 12 H), 0.09 (s, 3 H), 0.08 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=212.3,96.0,79.4,78.4,73.0,71.3,65.0,60.2,55.3$, 47.7, 39.0, 25.8 (6 C), 24.7, 18.1, 6.9 (3 C), 4.5 (6 C$),-2.3$, -2.6 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 625.3752; found 625.3740. IR: $\tilde{v}=2954,2877,1772,1461,1085$, 1046, 1003, 834, 805, $740 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{25}=-113.6\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}$ (hexane/EtOAc, 1:1): 0.75 .
$\mathrm{Cp}_{2} \mathrm{TiMe}_{2}$ ($19 \mathrm{wt} .-\%$ in toluene; $54.7 \mathrm{~mL}, 42.7 \mathrm{mmol}$) was mixed with the carbonyl compound ($17.2 \mathrm{~g}, 25.1 \mathrm{mmol}$) and the mixture was stirred under argon at $65^{\circ} \mathrm{C}$ for 3 d . The mixture was diluted with hexane (150 mL), stirred for 30 min , and then cooled in the fridge overnight. The resulting yellow-orange precipitate was removed by filtration (two or three filtrations were required), and the filtrate was concentrated. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1) to give alkene (- - -68 ($14.2 \mathrm{~g}, 94 \%, 93 \%$ over 4 steps) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.49$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}$, $3 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9$ H), $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.54(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.54(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6$ H), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.2,112.1,97.6,83.5,80.2,68.5,64.3,57.9,57.5,54.9,48.4$, 45.1, 28.5 (3 C), 26.4, 20.3, 9.2 (3 C), 9.2 (3 C), 6.9 (3 C), 6.9 (3 C), $0.0,-0.1 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{64} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+} 623.3959$; found 623.3952 . IR: $\tilde{\mathrm{v}}=2954,2878,1461,1253$, $1072,1046,1004,836,773,742 \mathrm{~cm}^{-1} .[a]_{\mathrm{D}}^{25}=-60.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$. R_{f} (hexane/EtOAc, 40:1): 0.26.
Acetate rac-69: Cerium chloride heptahydrate ($1.24 \mathrm{~g}, 3.33 \mathrm{mmol}$) was added to a stirred solution of crude enone rac-60 700 mg , 2.77 mmol) in $\mathrm{MeOH}(14 \mathrm{~mL})$ at room temp. After 5 min , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(115 \mathrm{mg}, 3.05 \mathrm{mmol})$ was added portionwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until
the starting material had been completely consumed (30 min). The reaction was quenched by the addition of a few drops of acetic acid (50% aq.) to reach neutral pH . Water $(30 \mathrm{~mL})$ and EtOAc $(50 \mathrm{~mL})$ were added, and the heterogeneous mixture was extracted with EtOAc $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with water $(2 \times 15 \mathrm{~mL})$ and brine $(2 \times 15 \mathrm{~mL})$, and dried with MgSO_{4}. The solvent was removed under reduced pressure to give the crude allylic alcohol as a viscous oil.

Acetic anhydride $(394 \mu \mathrm{~L}, 4.15 \mathrm{mmol})$, pyridine $(448 \mu \mathrm{~L}$, 5.54 mmol), and 4-(dimethylamino)pyridine ($34 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added to a solution of the crude alcohol ($705 \mathrm{mg}, 2.77 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temp. overnight. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12 \mathrm{~mL})$, washed in sequence with NaHCO_{3} (saturated aq.; 15 mL), water $(15 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, and dried with MgSO_{4}. The volatile materials were removed by evaporation to give the crude product. Purification over a short column $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1) gave acetate rac-69 (673 mg, 82\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.66-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.41$ (br. s, 1 H), 4.29 $(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.17-2.09 (m, 2 H), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=171.3,146.2,125.4,82.65,65.14,55.18,31.99,31.49,26.00(3$ C), 21.11, 18.21, 17.16, $-4.61,-4.81 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.1705$; found 319.1678. IR: $\tilde{v}=2929$, 2858, 1735, 1372, 1242, 1123, 1021, 872, 836, $777 \mathrm{~cm}^{-1} \cdot R_{\mathrm{f}}$ (hexane/ EtOAc, 5:1): 0.54.

Alcohol rac-70: $\mathrm{Co}(\mathrm{acac})_{2}(18 \mathrm{mg}, 67 \mu \mathrm{~mol})$ was added to a solution of acetate rac-69 ($100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$. The reaction mixture was then saturated with $\mathrm{O}_{2}(20 \mathrm{~min})$, and then PhSiH_{3} $(166 \mu \mathrm{~L}, 1.35 \mathrm{mmol})$ was added over 15 min . Stirring was continued under a static O_{2} atmosphere for 15 h at room temp. The reaction mixture was then diluted with EtOAc $(15 \mathrm{~mL})$, washed with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1)$ to give tertiary alcohol rac-70 (71 mg, 67%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.40$ (m, 1 H), 2.85-2.77 (m, 1 H), 2.66-2.59 (m, 1 H), 2.30-2.15 (m, 2 H), 2.13-2.06 (m, 1 H), 2.03 ($\mathrm{s}, 3 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.18$ (br. s, 1 H$), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,79.6,76.3,64.7$, $55.1,43.6,33.4,30.2,26.0$ (3 C), 25.2, 21.2, 18.2, $-4.7,-4.9 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 337.1811$; found 337.1821. IR: $\tilde{v}=3420,2930,2857,1737,1374,1250,1131,1041$, 837, $778 \mathrm{~cm}^{-1}$. R_{f} (hexane/EtOAc, 1:1): 0.48 .

Diol rac-71: TBAF (1 m in THF; $159 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added to a stirred solution of alcohol rac-70 $(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temp., and after stirring for 1 h , the reaction was quenched by the addition of NaHCO_{3} (saturated aq.; 10 mL). The mixture was diluted with water $(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic phases were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil. This residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:1) to give diol rac-71 ($27 \mathrm{mg}, 85 \%$), which crystallized from CHCl_{3} as a colorless plates. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.31(\mathrm{dt}, J=7.1, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3$ H), 1.99-1.90 (m, 1 H), 1.64 (br. s, 1 H), 1.53 (s, 3 H), 1.33 (br. s, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,79.4,76.2$,
64.7, 54.6, 43.7, 33.2, 28.7, 25.6, 21.2 ppm . HRMS (EI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$223.0946; found 223.0937. IR: $\tilde{\mathrm{v}}=3367$, 2925, 1714, 1377, 1264, 1173, 1107, 1039, 853, $612 \mathrm{~cm}^{-1}$, m.p. 117$120^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (EtOAc): 0.40.
\{(1R,2S,4S,5S)-2-[(tert-Butyldimethylsilyl)oxy]-4-(methoxymeth-oxy)-2-methyl-7-methylenebicyclo[3.2.0]heptane-6,6-diyl\}dimethanol [(-)-72]: HF (70% in pyridine; $269 \mu \mathrm{~L}, 9.22 \mathrm{mmol}$) was slowly added to a solution of (-)-68 ($277 \mathrm{mg}, 0.46 \mathrm{mmol}$) in THF (3 mL) in a teflon vial at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at the same temperature, after which time TLC analysis indicated a clean conversion. The reaction was carefully quenched with NaHCO_{3} (saturated aq.; 10 mL) and the mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water (30 mL) and brine (50 mL), dried with MgSO_{4}, concentrated under reduced pressure, and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1) to give diol (-)-72 (170 mg, 99%) as a viscous colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.88(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1$ H), $4.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.1, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.63(\mathrm{~m}$, 3 H), 3.37 (s, 3 H), 3.20 (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07-2.98 (m, 2 H), 2.12 (ddd, $J=1.4, J=6.4, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.0,108.8,97.1,81.6$, $80.8,71.7,65.7,55.9,55.1,52.2,45.6,43.9,25.8$ (3 C), 24.0, 18.1, $-2.2,-2.3 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$395.2230; found 395.2219. IR: $\tilde{v}=3435,2929,1462,1372$, $1253,1151,1106,1034,835,772 \mathrm{~cm}^{-1} .[a]_{\mathrm{D}}^{20}=-64.4(c=1.0$, CHCl_{3}). R_{f} (hexane/EtOAc, 2:1): 0.12 .

Dialdehyde rac-73: DMSO ($118 \mu \mathrm{~L}, 0.1 .66 \mathrm{mmol}$) was added to a solution of oxalyl chloride $(70 \mu \mathrm{~L}, 0.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . Compound rac- $72(50 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was then added slowly to the reaction mixture. The solution was stirred at $-78^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(290 \mu \mathrm{~L}, 2.08 \mathrm{mmol})$ was added to the mixture, and stirring was continued at $-78^{\circ} \mathrm{C}$ for 15 min and then at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine (15 mL), dried with MgSO_{4}, and concentrated under reduced pressure (water bath temperature: $30^{\circ} \mathrm{C}$) to give pure dialdehyde rac-73 ($29 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.88(\mathrm{~s}, 1 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}), 5.30$ (dd, $J=1.6, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=1.5, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{dt}, J=6.8, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.07-$ $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=1.4, J=6.7, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (dd, $J=11.6, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 196.4, 194.6, 141.4, 115.8, 96.6, 82.0, 79.0, 71.3, 56.4, 46.2, 44.3 , 25.8 (3 C), 23.6, 18.1, 8.8, -2.2, 2.3 ppm . HRMS (EI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$391.1917; found 391.1903. IR: $\tilde{v}=2929$, $2855,1728,1700,1254,1153,1109,1042,835,774 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 2:1): 0.38 .

Aldehyde rac-74: While trying to synthesize rac-73, undesired product rac-74 was formed almost quantitatively if the concentration of the organic phases was done in a water bath warmer than $30^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.69(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.52(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, 2.02 (ddd, $J=1.7, J=3.4, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=10.6$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.2,162.6$,
$140.4,95.8,78.0,74.0,59.0,55.4,44.5,43.9,25.8$ (3 C), 25.6, 18.2, 15.4, -2.1, -2.1 ppm . HRMS (EI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$363.1968; found 363.1962. IR: $\tilde{v}=2928,2855,1678,1254$, 1150, 1101, 1040, 918, 860, $772 \mathrm{~cm}^{-1}$. R_{f} (hexane/EtOAc, 2:1): 0.49.

Dimethyl Ester rac-75: A solution of dialdehyde rac-73 (40 mg, 0.11 mmol) and 2-methylbutene ($300 \mu \mathrm{~L}$) in $t \mathrm{BuOH}(1.4 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, then a solution of $\mathrm{NaClO}_{2}(122 \mathrm{mg}, 1.09 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(180 \mathrm{mg}, 1.30 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ was added. The mixture was stirred for 30 min . The solution was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq} . ; 15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (15 mL), dried with MgSO_{4}, and concentrated. The crude dicarboxylic acid was dissolved in benzene $/ \mathrm{MeOH}(3: 2 ; 2 \mathrm{~mL})$, and then $\mathrm{TMSCHN}_{2}(2 \mathrm{~m}$ in $\mathrm{Et}_{2} \mathrm{O} ; 200 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$. The solution was stirred at this temperature for 2 h , and then it was allowed to warm to room temp. overnight. After concentration, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $15: 1$) to give an inseparable mixture (39 mg) containing dimethyl ester rac-75 ($23 \mathrm{mg}, 50 \%$) and methyl ester rac-76 ($16 \mathrm{mg}, 40 \%$). Data for rac-75: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.37$ (dd, $J=$ $0.8, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=0.9, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-$ $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $3.10-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,169.3,143.6,115.4,95.8,81.3$, 77.1, 59.2, 58.1, 56.4, 53.2, 52.3, 44.9, 44.2, 25.8 (3 C), 23.7, 18.1, $-2.2,-2.3 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 451.2128; found 451.2143. R_{f} (hexane/EtOAc, 5:1): 0.28 .

Data for rac-76: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.83$ (d, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dt}, J=6.7, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.76-$ $2.73(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (dd, $J=10.5, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $169.3,159.8,131.5,95.5,73.6,59.1,55.5,55.2,51.0,44.4,43.7$, 25.8 (3 C), 23.7, 18.2, 16.1, $-2.0,-2.1 \mathrm{ppm}$. HRMS (EI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$391.2073; found 391.2083. R_{f} (hexane/ EtOAc, 5:1): 0.28.

Lactone rac-77: AcCl (10 drops) was added to an ice-cold solution of dimethyl ester rac- $\mathbf{7 5}(54 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(6.3 \mathrm{~mL})$. The resulting solution was stirred at the same temperature for 5 h , and then allowed to warm to room temp. to be stirred for a further 40 h . The mixture was concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1) to give the tricycle $(30 \mathrm{mg}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 5.63 (dd, $J=1.9, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 2 \mathrm{H}), 3.89$ (dd, $J=6.5, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (ddd, $J=1.7, J=7.8, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=5.0, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.45 (s, 3 H), 1.30 (br. s, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,167.1,141.3,117.3,83.3,82.4,57.5$, 53.4, 48.5, 46.9, 29.9, 24.3 ppm . HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$261.0739; found 261.0738. IR: $\tilde{\mathrm{v}}=3498$, 2928, 1771, 1734, 1437, 1302, 1227, 1156, 1030, $906 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (EtOAc): 0.42 .
The tricycle ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in THF (1.2 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. Lutidine ($59 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) and then TBSOTf ($58 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) were added to the reaction vessel, and the mixture was stirred for a further 45 min at $0^{\circ} \mathrm{C}$. The reaction was quenched by the addition of water (5 mL), and diluted with additional sodium hydrogen carbonate (aq.; 3 mL) and diethyl ether (30 mL). The phases were separated, and the aqueous
phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by column chromatography (SiO_{2}, hexane/EtOAc, 10:1) to give lactone rac-77 ($36 \mathrm{mg}, 81 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=5.58(\mathrm{dd}, J=1.8$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=$ $6.6, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=1.7, J=$ $7.8, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=5.5, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42$ (s, 3 H), $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,167.3,141.7,117.0,84.6,83.6,58.3$, $57.9,53.4,49.3,47.1,25.7$ (3 C), 23.3, 18.0, -2.3 (2 C) ppm. HRMS (EI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 375.1604$; found 375.1613. IR: $\tilde{v}=2954,2857,1779,1734,1254,1151,1038,990$, $836,775 \mathrm{~cm}^{-1} . R_{\mathrm{f}}$ (hexane/EtOAc, 5:1): 0.34.

Alcohol (-)-78: Cold Jones reagent (2.5 m in water; $665 \mu \mathrm{~L}$, 1.66 mmol) was added to a stirred cooled (water/ice bath, $0^{\circ} \mathrm{C}$) solution of alkene $(-)-68(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in acetone $(3.3 \mathrm{~mL})$. Stirring was continued for 40 min . The excess of the Jones reagent was quenched by the addition of IPA $(1.5 \mathrm{~mL})$. The suspension was stirred for 5 min at $0^{\circ} \mathrm{C}$ and for 10 min at room temp. The clear greenish supernatant was decanted, and the remaining green solid residue was extracted with EtOAc $(5 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine $(2 \times 5 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed to give the crude carboxylic acid.
A solution of the crude carboxylic acid in THF (3.7 mL) was stirred at $0^{\circ} \mathrm{C}$ under Ar while $\mathrm{Et}_{3} \mathrm{~N}(43 \mu \mathrm{~L}, 0.31 \mathrm{~mL})$ was added. The solution was stirred for 30 min , and then ethyl chloroformate ($40 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was added. The reaction mixture became cloudy as it was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . At this point, IPA (1 mL) was added, followed by $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}) 5 \mathrm{~min}$ later. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h , then it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, treated dropwise with $\mathrm{HCl}(5 \%$ aq.; 2 mL$)$, and poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{HCl}(1 \%$ aq.; 20 mL$)$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, and the combined organic extracts were washed with NaHCO_{3} (saturated aq.; $2 \times 20 \mathrm{~mL}$) and brine (20 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1) to give primary alcohol (-)-78 ($29 \mathrm{mg}, 54 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 5.31 (dd, $J=1.4, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=5.5, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{dd}, J=1.6, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=7.1, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=5.6, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=$ $6.0, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (ddd, $J=1.9, J=$ $7.9, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=5.5$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.0,144.9$, 114.5, 84.9, 84.0, 63.4, 57.1, 55.6, 49.3, 44.8, 25.7 (3 C), 23.2, 18.0, $-2.3,-2.3 \mathrm{ppm}$. HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 347.1655$; found 347.1648. IR: $\tilde{v}=3446,2930,2856,1764$, $1252,1153,1047,988,835,774 \mathrm{~cm}^{-1} .[a]_{\mathrm{D}}^{20}=-52.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$. R_{f} (hexane/EtOAc, 3:1): 0.20 .

Aldehyde (-)-55: DMSO ($16 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) was added to a solution of oxalyl chloride ($9 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, then alcohol $(-)-78(18 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was slowly added to the reaction mixture. The solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(46 \mu \mathrm{~L}, 0.33 \mathrm{mmol})$ was added, and stirring was continued for 15 min at $-78^{\circ} \mathrm{C}$ and then for 1 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(2 \times$ 20 mL). The combined organic extracts were washed with brine $(15 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated under reduced pres-
sure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 3:1) gave aldehyde (-) $\mathbf{5 5}(17 \mathrm{mg}, 94 \%)$ as an amorphous white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.83(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=5.7, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{dd}, J=6.2, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.52$ (ddd, $J=1.8, J=7.8, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=5.6, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.5,171.8,142.7$, 116.2, 84.8, 84.2, 63.6, 57.8, 49.3, 42.7, 25.7 (3 C), 23.1, 18.0, -2.3 (2 C) ppm. HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 345.1498; found 345.1490. IR: $\tilde{v}=2931,2856,1768,1721,1253$, $1145,1047,987,836,775 \mathrm{~cm}^{-1} \cdot[a]_{\mathrm{D}}^{22}=-87.6\left(c=0.7, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}$ (hexane/EtOAc, 3:1): 0.28.
Supporting Information (see footnote on the first page of this article): Preparation/characterization of (-)-29, 31, (-)-34, 37, 39, (+)44, (-)-45, 47, and (-)-49. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds: 9, 10, 12, (+)-16, (-)-18, (-)-20, 22, 23, 24, 25, (-)-26, $(-)-27,(-)-30,(-)-32,(-)-33,(-)-35,(-)-36,(-)-38,(-)-40,(-)-41$, $(-)-42,(-)-50,(+)-54,(+)-51,(+)-52,(+)-53,(-)-57,(-)-58,(-)-60$, $(-)-61,(-)-62,(-)-63,(-)-64,(-)-65,(-)-66,(-)-67,(-)-68$, rac-69, rac-70, rac-71, (-)-72, rac-73, rac-74, rac-75, rac-76, rac-77, (-)-78, (-)-55.

Acknowledgments

Financial support from the University of Vienna (doctoral program, Initiativkolleg Functional Molecules IK I041-N) and from the Austrian Science Fund (FWF) (project number P22180) is gratefully acknowledged. The authors thank H. P. Kählig, L. Brecker, and S. Felsinger for assistance with NMR spectroscopy, M. Drescher for experimental work, and A. Roller and V. Arion (all of the University of Vienna) for X-ray analysis.
[1] a) P. A. Roethle, D. Trauner, Nat. Prod. Rep. 2008, 25, 298317.
[2] Isolation article: J. Marrero, A. D. Rodriguez, P. Baran, R. G. Raptis, J. A. Sanchez, E. Ortega-Barria, T. L. Capson, Org. Lett. 2004, 6, 1661-1664. For efforts toward a total synthesis see: a) B. Doroh, G. A. Sulikowski, Org. Lett. 2006, 8, $903-$ 906; b) R. Miao, S. G. Gramani, M. J. Lear, Tetrahedron Lett. 2009, 50, 1731-1733; c) K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Angew. Chem. 2011, 123, 5255-5258; Angew. Chem. Int. Ed. 2011, 50, 5149-5152; d) J.-B. Farcet, M. Himmelbauer, J. Mulzer, Org. Lett. 2012, 14, 2195-2197; e) A. Jana, S. Mondal, Md. F. Hossain, S. Ghosh, Tetrahedron Lett. 2012, 53, 68306833.
[3] Y. Li, G. Pattenden, Nat. Prod. Rep. 2011, 28, 1269-1310.
[4] J. Chiarello, M. M. Joullie, Tetrahedron 1988, 44, 41-48.
[5] Y. Li, G. Pattenden, J. Rogers, Tetrahedron Lett. 2010, 51, 1280-1283.
[6] a) T. T. Curran, D. A. Hay, Tetrahedron: Asymmetry 1996, 7, 2791-2792; b) A. Roy, S. W. Schneller, J. Org. Chem. 2003, 68, 9269-9273; c) M. W. Gilbert, A. Galkina, J. Mulzer, Synlett 2004, 14, 2558-2562.
[7] A. Rutar, F. Tratar, D. Kikelj, Synthesis 1995, 512-514.
[8] O. Mitsunobu, Y. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
[9] P. C. B. Page, D. C. Leach, C. M. Hayman, A. S. Hamzah, S. M. Allin, V. McKee, Synlett 2003, 7, 1025-1027.
[10] S. Searles, Y. Li, B. Nassim, M. T. Lopes, P. T. Tran, P. Crabbé, J. Chem. Soc. Perkin Trans. 1 1984, 747-751.
[11] a) T. Gaich, H. Weinstabl, J. Mulzer, Synlett 2009, 9, 13571366; b) PhD Thesis Harald Weinstabl, University of Vienna, 2011.
[12] E. D. Mihelich, D. J. Eickhoff, J. Org. Chem. 1983, 48, 41354137.
[13] Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011-1013.
[14] E. Weitz, A. Scheffer, Ber. Dtsch. Chem. Ges. 1921, 54, 23272344.
[15] a) P. S. Wharton, D. H. Bohlen, J. Org. Chem. 1961, 26, 36153616; b) C. Dupuy, J.-L. Luche, Tetrahedron 1989, 45, 34373444.
[16] J.-L. Luche, J. Am. Chem. Soc. 1978, 100, 2226-2227.
[17] S. Isayama, T. Mukaiyama, Chem. Lett. 1989, 18, 1071-1074.
[18] CCDC-884126 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: March 13, 2013
Published Online: June 7, 2013

Eur. J. Org. Chem. 2013 • © WILEY-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2013•ISSN 1099-0690

SUPPORTING INFORMATION

DOI: 10.1002/ejoc. 201300382
Title: Photochemical and Thermal $[2+2]$ Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin
Author(s): Jean-Baptiste Farcet, Martin Himmelbauer, Johann Mulzer*

Table of contents:

```
Preparation/Characterization of (-)-29, 31, (-)-34, 37, 39, (+)-44, (-)-45, 47, (-)-492-4
Copies of \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra for compounds: \(\mathbf{9}, \mathbf{1 0}, \mathbf{1 2},(+)-\mathbf{1 6},(-)-\mathbf{1 8},(-)-\mathbf{2 0}, \mathbf{2 2}, \mathbf{2 3}\),
24, 25, (-)-26, (-)-27, (-)-30, (-)-32, (-)-33, (-)-35, (-)-36, (-)-38, (-)-40, (-)-41, (-)-42, (-)-50,
\((+)-54,(+)-51,(+)-52,(+)-53,(-)-57,(-)-58,(-)-60,(-)-61,(-)-62,(-)-63,(-)-64,(-)-65,(-)-66\),
\((-)-67,(-)-68\), rac-69, rac-70, rac-71, (-)-72, rac-73, rac-74, rac-75, rac-76, rac-77, (-)-78, (-)-55

Preparation/characterization of (-)-29, 31, (-)-34, 37, 39, (+)-44, (-)-45, 47, (-)-49.
Alcohol (-)-29:


For preparation protocol and full characterization see: Ref [6] in main article.
(-)-29

\section*{Carboxylic acid 31:}


For preparation protocol of ethyl buta-2,3-dienoate see: Organic Syntheses, Coll. Vol. 7, p. 232 (1990); Vol. 62, p. 202 (1984).

Saponification see patent: PCT Int. Appl., 2007111948, 04 Oct 2007
31
Diol (-)-34:
HO, For preparation protocol and full characterization see: Ref [6b] in main article.

\section*{2-(ethoxymethyl)buta-2,3-dienoic acid (37):}


A solution of ethyl 2-(hydroxymethyl)buta-2,3-dienoate ( \(950 \mathrm{mg}, 6.68 \mathrm{mmol}\) )(Preparation see: Eur. J. Org. Chem. 2006, 127137, characterization see: Org. Lett., 2008, 10, 3359-3362) and \(\mathrm{Et}_{3} \mathrm{~N}(1.49 \mathrm{~mL}, 10.69 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.7 \mathrm{~mL})\) was treated dropwise with TBSCl ( \(1.38 \mathrm{~mL}, 8.69 \mathrm{mmol}\) ) and DMAP ( 2 crystals) at \(0{ }^{\circ} \mathrm{C}\). The reaction was allowed to warm to rt and stirred for 36 h being diluted with \(\mathrm{Et}_{2} \mathrm{O}(110 \mathrm{~mL})\) and quenched with water \((30 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaHCO}_{3}(50 \mathrm{~mL})\). The aqueous phase was extracted with \(\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})\). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\), filtered and the volatiles were removed under reduced pressure. The resulting slightly yellow oil was purified by column chromatography
\(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=10 / 1\right)\) giving \(1.18 \mathrm{~g}(69 \%)\) of the TBS intermediate as colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\) \(5.23(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})\) ppm. \({ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.5,165.9,101.5,80.4,61.0,60.1,26.9\) (3C), 18.4, 14.2, -5.3 (2C) ppm. HRMS (EI) \((\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\) : 279.1392 , found: 279.1398. IR \(\left(\mathrm{cm}^{-1}\right): 2930,1971,1712,1464,1255\), 1123, 1070, 835, 776, 633. R f : (Hex/EtOAc 3/1) 0.55.
To a solution of the TBS intermediate ( \(1.18 \mathrm{~g}, 4.60 \mathrm{mmol}\) ) in \(\mathrm{EtOH}(9.2 \mathrm{~mL})\) was added to an aqueous solution of LiOH ( 1 \(\mathrm{M}, 30 \mathrm{~mL}, 30 \mathrm{mmol})\) at rt . After \(24 \mathrm{~h}, \mathrm{~K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{~g}, 21.7 \mathrm{mmol})\) was added. The white solution was stirred overnight and acidified with an aqueous solution of \(\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})\). The reaction mixture was diluted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})\) and the aqueous phase was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})\). The combined organic phase was extracted with water ( 10 mL ) and brine ( 10 mL ) followed by the addition of \(\mathrm{MgSO}_{4}\). Filtration and evaporation of the volatiles gave 650 mg ( \(99 \%\) ) of \(\mathbf{3 7}\) as a white semi solid. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.31(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{q}, \mathrm{J}\) \(=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.3,170.4,97.7,79.9,67.0,66.1,15.0 \mathrm{ppm}\). HRMS (EI) \((\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{Na}: 165.0528\), found: 165.0225. IR \(\left(\mathrm{cm}^{-1}\right): 3395,2943,2840,1981,1707\), 1207, 1101, 1064, 842, 791, R \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.00.

\section*{Furylacrylic acid (39):}


For preparation protocol see: Organic Syntheses, Coll. Vol. 3, p. 425 (1955); Vol. 25, p. 51 (1945).

\section*{(1S,4R)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol ((+)-44):}

TBSO For preparation protocol and full characterization see: Ref [6] in main article.

(+)-44
Amide (-)-45:


A solution of alcohol (+)-44 (100 mg, 0.47 mmol\()\) in THF ( 3.0 mL ) was treated with \(\mathrm{Et}_{3} \mathrm{~N}(71 \mu \mathrm{~L}, 0.51 \mathrm{mmol})\) at rt . After 15 min the resulting colorless solution was cooled to \(0^{\circ} \mathrm{C}\) followed by the dropwise addition of a solution of malonyl dichloride \((226 \mu \mathrm{~L}, 2.30 \mathrm{mmol})\) in THF \((4.0 \mathrm{~mL})\). The resulting reaction mixture was aged at this temperature for 1 h . Thereafter, pyrrolidine ( \(570 \mu \mathrm{~L}, 7.00 \mathrm{mmol}\) ) in THF \((3.5 \mathrm{~mL})\) was added dropwise to the reaction within 5 min . The resulting white suspension was stirred at \(0^{\circ} \mathrm{C}\) for 3 h , filtered through a pad of Celite and the solvents were removed under reduced pressure. The resulting slightly yellow solid was subjected to column chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1\) to EtOAc) to yield 141 \(\mathrm{mg}(85 \%)\) of the desired amide (-)-45 as colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.98(\mathrm{~d} \mathrm{br}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d} \mathrm{br}\), \(\mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t} \mathrm{br}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t} \mathrm{br}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38\) \((\mathrm{s}, 2 \mathrm{H}), 2.82\left(\mathrm{ddd}, \mathrm{J}_{1}=14.5 \mathrm{~Hz}, \mathrm{~J}_{2}=7.5 \mathrm{~Hz}, \mathrm{~J}_{3}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.96(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.64\left(\mathrm{ddd}, \mathrm{J}_{1}=13.9 \mathrm{~Hz}, \mathrm{~J}_{2}=5.0 \mathrm{~Hz}\right.\), \(\left.\mathrm{J}_{3}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5,164.4,139.4,131.0\), \(78.1,75.0,47.3,46.1,42.6,41.2,29.8,26.2,26.0(3 C), 24.6,-4.49,-4.55 \mathrm{ppm}\). HRMS (EI) \((\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NSiNa}: 376.1920\), found: 376.1937. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2930,2857,2361,1739,1652,1439,1105,1049,837\). \([\alpha]_{\mathrm{D}}{ }^{20}:-5.04\left(\mathrm{c}=0.26 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{EtOAc}) 0.66\).

\section*{Acid 47:}

\(5 \% \mathrm{Pd}(\mathrm{C}), \mathrm{H}_{2}(1 \mathrm{~atm})\) MeOH, 5 h, rt

Benzylic alcohol ( \(50 \mu \mathrm{~L}, 0.48 \mathrm{mmol}\), in THF ( 3.0 mL ) was treated at \(0{ }^{\circ} \mathrm{C}\) with \(\mathrm{Et}_{3} \mathrm{~N}(74 \mu \mathrm{~L}, 0.53 \mathrm{mmol})\) and stirred for 15 min . Consecutively, the resulting solution was dropwise added to malonyl dichloride ( \(103 \mu \mathrm{~L}, 1.06 \mathrm{mmol}\) ) in THF ( 3.0 mL ) within 8 min . After one hour at this temperature pyrrolidine ( \(261 \mu \mathrm{~L}, 3.19 \mathrm{mmol}\) ) in THF ( 3.0 mL ) was added. After 1 h the reaction mixture was allowed to warm to rt and stirred for additional 2 h . The resulting white suspension was quenched by addition of \(1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})\). The aqueous phase was extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic phase was extracted with water \((10 \mathrm{~mL})\) and brine \((10 \mathrm{~mL})\) followed by the addition of \(\mathrm{MgSO}_{4}\). Filtration and evaporation of the volatiles was followed by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\). Finally \(74 \mathrm{mg}(63 \%)\) of the desired amide were isolated as colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=\) \(6.8 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.96-1.81(m, 4H) ppm. \({ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5,164.3,135.7,128.7\) (2C), 128.5, 128.4 (2C), 67.2, 47.3, 46.1, 42.7, 26.1, 24.6 ppm . HRMS (EI) (m/z): \([\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}: 270.1106\), found: 270.1103. IR \(\left(\mathrm{cm}^{-1}\right): 2971,2877,1735,1638,1437,1306,1255,1149,984,750 . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.40\).
Benzyl ester ( \(150 \mathrm{mg}, 0.60 \mathrm{mmol}\) ) was dissolved in \(\mathrm{MeOH}(6.0 \mathrm{~mL})\) in a 25 mL round bottomed flask equipped with a magnetic stirring bar and a rubber septum. To the resulting slightly yellow solution a spatula tip of Pd/C was added. In the following, hydrogen was gently bubbled through the black suspension over a period of 5 h . Filtration through Celite and removal of the volatiles resulted in 95 mg (quantitative) of a slightly yellow oil. Crude acid 47 was used without further purification in the next reaction.

\section*{Alkene (-)-49:}


A solution of alcohol (-)-15 (500 mg, 2.19 mmol\()\) and 2,6-lutindine \((1.02 \mathrm{~mL}, 8.76 \mathrm{mmol})\) in DMF \((4.4 \mathrm{~mL})\) was treated dropwise with TBSOTf \((1.51 \mathrm{~mL}, 6.57 \mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\). The reaction was allowed to warm to rt and was finally warmed to \(40{ }^{\circ} \mathrm{C}\) overnight before being diluted with \(\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})\) and quenched with water ( 30 mL ) and sat. aq. \(\mathrm{NaHCO}_{3}(30 \mathrm{~mL})\). The aqueous phase was extracted with \(\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})\). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\), filtered and the volatiles were removed under reduced pressure. The resulting slightly yellow oil was purified by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=20 / 1\right)\) giving \(549 \mathrm{mg}(73 \%)\) of the desired alkene \((-)-49\) as slightly yellow oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right): \delta=5.78\left(\mathrm{dd}, \mathrm{J}_{1}=1.4 \mathrm{~Hz}, \mathrm{~J}_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62\left(\mathrm{dd}, \mathrm{J}_{1}=1.8 \mathrm{~Hz}, \mathrm{~J}_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.68-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.35\left(\mathrm{dd}, \mathrm{J}_{1}=\right.\) \(\left.6.9 \mathrm{~Hz}, \mathrm{~J}_{2}=12.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.84\left(\mathrm{ddd}, \mathrm{J}_{1}=0.5 \mathrm{~Hz}, \mathrm{~J}_{2}=5.5 \mathrm{~Hz}, \mathrm{~J}_{3}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.26(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}\), \(9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=146.6,135.6,84.6,77.5\), 54.1, 32.2, 28.1 (3C), 28.0 (3C), 20.2, 20.1, \(0.0,-0.1,-2,3,-2.4 \mathrm{ppm}\). HRMS (EI) (m/z): \([\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}: 365.2308\), found: 365.2322 . IR \(\left(\mathrm{cm}^{-1}\right): 2956,2995,2857,1472,1362,1166,1120,1098,836,775\). \([\alpha]_{\mathrm{D}}{ }^{20}:-15.4\left(\mathrm{c}=1.0 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.80\).











(-)-26





\title{
7.2. A Palladium-Catalyzed Carbo-oxygenation: The Bielschowskysin Case \({ }^{113}\)
}

Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Org. Lett. 2013, 15, 3098.

Planning: Himmelbauer, M.; Farcet, J.-B.; Mulzer, J.

Experimentation: Himmelbauer, M.

Manuscript preparation: Himmelbauer, M.; Farcet, J.-B.; Mulzer, J.

\section*{Discussion}

All experiments, characterization of all intermediates as well as the preparation of the manuscript have been carried out by M. H. To avoid redundancy, experimental procedures have been omitted as they are also part of the full paper (see section 7.3.). \({ }^{114}\)

\title{
A Palladium-Catalyzed Carbooxygenation: The Bielschowskysin Case
}

\section*{2013}

\author{
Martin Himmelbauer, Jean-Baptiste Farcet, Julien Gagnepain, and Johann Mulzer* \\ University of Vienna, Department of Organic Chemistry, Währinger Str. 38, 1090 Vienna, Austria \\ johann.mulzer@univie.ac.at
}

Received May 10, 2013


An asymmetric synthesis of an advanced tetracyclic intermediate toward the synthesis of bielschowskysin (1) is described. A biomimetic [2 + 2]photocyclization was used to establish the cyclobutane core of bielschowskysin. Macrocyclization under Heck conditions led to an unprecedented carbo-oxygenation of a 1,1 -disubstituted double bond.

Over the past years the Rodríguez group has reported the isolation of a stunning variety of terpenoids from the Caribbean Sea plume Pseudopterogorgia kallos, among which bielschowskysin (1) \({ }^{1}\) (Scheme 1) has attracted an unusual amount of interest.

Partly this is due to its significant antiplasmodial activity against the malaria causing protozoan parasite Plasmodium falciparum and its cytotoxic activity against two human cancer cell lines. Most significantly, its densely functionalized polycyclic diterpenoid structure including an unprecedented tricyclo[9.3.0.0 \({ }^{2,10}\) ]-tetradecane ring system and 11 stereogenic centers has rendered bielschowskysin a highly competitive target in synthetic chemistry.

So far, activities from numerous research groups, including our own, \({ }^{2}\) have resulted in several advanced intermediates \({ }^{3}\) and test systems. \({ }^{4}\)

According to the studies by Roethle and Trauner the biosynthesis of different furanocembranoids could be related to bipinnatin \(\mathbf{J}(\mathbf{2})\) and should therefore be accessible

\footnotetext{
(1) Marrero, J.; Rodríguez, A. D.; Baran, P.; Raptis, R. G.; Sanchez, J. A.; Ortega-Barria, E.; Capson, T. L. Org. Lett. 2004, 6, 1661-1664.
(2) (a) Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Org. Lett. 2012, 14, 2195-2197. (b) Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013accepted for publication.
(3) (a) Doroh, B.; Sulikowski, G. A. Org. Lett. 2006, 8, 903-906. (b) Miao, R.; Gramani, S. G.; Lear, M. J. Tetrahedron Lett. 2009, 50 , 1731-1733. (c) Jana, A.; Mondal, S.; Md. Hossain, F.; Ghosh, S. Tetrahedron Lett. 2012, 53, 6830-6833.
(4) (a) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew. Chem., Int. Ed. 2011, 50, 5149-5152. (b) Meyer, M. E.; Phillips, J. H.; Ferreira, E. M.; Stoltz, B. M. Tetrahedron 2013, 1-9.
}


Scheme 1. Biosynthesis and Reported [2 +2 ]-Approaches

from this natural product within a short number of steps including oxidations, rearrangements, and cycloadditions. \({ }^{5,6}\) In particular, it is proposed that epoxidation of the \(\Delta^{7,8}\) double bond of bipinnatin \(\mathbf{J}(\mathbf{2})\) followed by the addition of water and a consecutive formal \([2+2]\)-cycloaddition could lead to bielschowskysin (Scheme 1).

To date this biomimetic [2 +2\(]\)-photocycloaddition strategy has been pursued by four groups. However, the

\footnotetext{
(5) (a) Roethle, P. A.; Trauner, D. Org. Lett. 2006, 8, 345-347. (b) Roethle, P. A.; Hernandez, P. T.; Trauner, D. Org. Lett. 2006, 8 , 5901-5904. (c) Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 8, 298-317.
(6) Li, Y.; Pattenden, G. Nat. Prod. Rep. 2011, 28, 1269-1310.
}
intermediates advanced by Sulikowski (3), \({ }^{3 \mathrm{aa}}\) Lear (4), \({ }^{3 \mathrm{bb}}\) Nicolaou (5), \({ }^{4 \mathrm{a}}\) and Gosh (6) \({ }^{3 \mathrm{c}}\) are deficient in functionalization and \(3-5\) lack the crucial all-carbon quaternary center at C-12 (Scheme 1).

Scheme 2. Retrosynthetic Analysis


Our retrosynthetic plan (Scheme 2) is centered around key intermediate \(\mathbf{8}\), which was to be assembled from components 9 to 11. An allylation with 2-bromo-3-trimethylsilyl propene (9) should lead to vinyl bromide \(\mathbf{8}\) as the substrate of a palladium mediated Heck macrocyclization. Hopefully, this would furnish cyclononadiene 7 which might be carried on to the final target by allylic oxidation and formation of the dihydrofuran ring.

The synthesis of allene \(\mathbf{1 0}\) (Scheme 3) started with known alkyne 12, easily available from (-)-malic acid. \({ }^{3 a, b, 7}\) Conversion to epoxide \(\mathbf{1 4}\) was followed by regioselective ring opening with diethylmalonate. In situ lactonization and Krapcho decarboxylation \({ }^{8}\) gave butyrolactone 15 in 56\% yield from 12. The Searles-Crabbé protocol \({ }^{9}\) was used for generating the allene. Finally, deprotonation of the lactone, treatment with chlorotrimethylsilane, and addition of phenylselenyl chloride furnished building block \(\mathbf{1 0}\) as a \(1: 1.5\) mixture of diastereomers in \(83 \%\) yield.

Coupling partner 11 (Scheme 4) was prepared from known \(\alpha\)-d-ribofuranose \(17^{10}\) via lactone 18 (diastereomerically pure). On subjecting the protected diol 19 to Swern oxidation conditions, the primary triethylsilyl protecting group was selectively removed and aldehyde \(\mathbf{1 1}\) was obtained in \(97 \%\) yield.

Both building blocks \(\mathbf{1 0}\) and \(\mathbf{1 1}\) are readily available in gram quantities and easy to couple by aldol addition. Thus, deprotonation of the seleno lactone \(\mathbf{1 0}\) at low temperature followed by addition of aldehyde \(\mathbf{1 1}\) resulted in a mixture of all four diastereomeric adducts which was used without separation in the next step (Scheme 5).

Regioselective oxidative elimination of the phenylselenide gave an inseparable 1:1 mixture of diastereoisomers

\footnotetext{
(7) Saito, S.; Hasegawa, T.; Inaba, N.; Nishida, R.; Fujii, T.; Nomizu, S.; Muriwake, T. Chem. Lett. 1984, 1389-1392.
(8) Krapcho, P. A.; Weimaster, J. F.; Eldridge, J. M.; Jahngen, E. G. E., Jr.; Lovey, A. J.; Stephens, W. P. J. Org. Chem. 1978, 43, 138-147.
(9) Searles, S.; Li, Y.; Nassim, B.; Lopes, M.-T. R.; Tran, P. T.; Crabbé, P. J. Chem. Soc., Perkin Trans. 1 1984, 747.
}

Scheme 3. Preparation of the Allene Building Block


Scheme 4. Preparation of the Coupling Partner


Scheme 5. Fragment Coupling and [2 +2\(]\)-Photocycloaddition

(20 and 21) which was irradiated in degassed cyclohexane in quartz tubes with commercially available UV-C-lamps in a homemade UV-reactor for 4 h to provide the tetracyclic photoadducts \(\mathbf{2 2}\) and \(\mathbf{2 3}\) in \(67 \%\) combined yield.

Additionally regioisomers \(\mathbf{2 4}\) and \(\mathbf{2 5}\), originating from the cyclization of the terminal allenic double bond, were isolated in a \(15 \%\) combined yield. Flash column chromatography at this stage provided us with pure isomers \(\mathbf{2 2}\) and 23 for the envisaged Heck macrocyclization.

Scheme 6. Preparation of Single Crystals for X-ray Analysis


For the assignment of the newly created stereocenters, olefin 22 was epoxidized with a freshly prepared solution of dimethyldioxirane with a d.r. of 6.7:1 (Scheme 6). Standard acetylation provided 26, suitable for single crystal diffraction.

The synthesis was separately carried on with diastereomerically pure \(\mathbf{2 2}\) and \(\mathbf{2 3}\). To unify the silyl protecting groups, global deprotection with acetic acid in THF was followed by treatment with chlorotriethylsilane to give TES-derivative 27 and 28 in excellent yield (Scheme 7). Again, under the Swern oxidation conditions the primary silyl group was removed selectively. Gratifyingly, BaeyerVilliger oxidation of the aldehyde with meta-chloroperbenzoic acid in dichloromethane at \(0^{\circ} \mathrm{C}\) was much faster than the epoxidation of the exo-methylene group so that formates \(\mathbf{2 9}\) and \(\mathbf{3 0}\) were generated in fair yield. Lewis acid mediated allylation with silane 9 gave trans-isomers 31 and 32 as single diastereomers, presumably via an oxonium intermediate which was attacked from the less hindered ring face. \({ }^{11,12}\) Obviously, the formate is such a superior leaving group that the second anomeric center at \(\mathrm{C}-16\) is not touched.

With an appropriate bromoallyl appendage in place we tackled the Heck macrocyclization. Although a preference for exo-mode Heck cyclizations exists, \({ }^{13}\) endo-type reactions have also been observed, \({ }^{14,15}\) generally when the

\footnotetext{
(10) (a) Rosenthal, A.; Nguyen, L. B. J. Org. Chem. 1969, 34, 10291034. (b) Xie, M.; Berges, D. A.; Robins, M. J. Org. Chem. 1996, 61, 5178-5179 and references cited therein.
(11) (a) Martinez, H. O.; Reinke, H.; Michalik, D.; Vogel, C. Synthesis 2009, 11, 1834-1840. (b) McDevitt, J.; Lansbury, P. T., Jr. J. Am. Chem. Soc. 1996, 118, 3818-3828.
(12) Schmitt, A.; Reißig, H.-U. Eur. J. Org. Chem. 2000, 3893-3901.
(13) Overman, L. E. Pure Appl. Chem. 1994, 66, 1423-1430. Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2963. Schulman, J, M.; Friedman, A. A.; Panteleev, J.; Lautens, M. Chem. Commun. 2012, 48, 55-57.
(14) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. 1994, 33, 2379-2411.
(15) Rigby, J. H.; Hughes, R. C.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 7834-7835 and references cited therein.
}

Scheme 7. Introduction of the Bromoallyl Appendage

exo-pathway is precluded. A general mechanistic picture (Scheme 8) suggests that the usual oxidative addition generates \(\sigma\)-alkenylpalladium(II) complex II which adds to the exo-methylene double bond in a exo-trig fashion forming neopentylpalladium intermediate III. As \(\beta\)-hydride elimination at this stage is impossible, a 3-exo-trig ring closure to cyclopropane IV should occur (Scheme 8, path A). Elimination of palladium would then give the desired diene \(\mathbf{V}\) in a formal overall endo-trig cyclization.

Scheme 8. Mechanistic Rationalization


A wide variety of Heck conditions were applied to precursors 31 and 32 (Table 1, Supporting Information).

For 31, a standard procedure \({ }^{16}\) led to a complex product mixture, in which traces of the desired diene \(\mathbf{3 3}\) were detected by mass analysis (Scheme 9). Trying to improve this result, we used the findings by Rigby et al., \({ }^{15}\) who have reported that electronic effects and a relatively small metal coordination sphere of the palladium tend to favor the endo-pathway in Heck cyclizations. On this basis, we subjected 31 to Jeffery conditions. \({ }^{17,18}\) To our surprise, this reaction stereoselectively led to product 34 in \(55 \%\) yield. Thus, the exo-methylene group has been attacked from the less hindered face of the cage-shaped precursor to form a tricyclo[8.3.0.0 \(0^{2,9}\) tridecane ring system instead of the desired "natural" tricyclo[9.3.0.0 \(\left.{ }^{2,10}\right]\) tetradecane framework (Scheme 9). The stereochemistry and connectivity of \(\mathbf{3 4}\) were determined by 2D NMR analysis (see Supporting Information).

Scheme 9. Macrocyclization and Carbo-oxygenation


So, obviously unlike the carbohalogenations reported by Lautens \({ }^{19}\) and Tong, \({ }^{20}\) acetoxy-palladation of I to VI is followed by syn-addition and reductive \(\beta\)-bromide

\footnotetext{
(16) \(\mathrm{Pd}(\mathrm{OAc})_{2}\) ( 0.1 equiv), \(\mathrm{PPh}_{3}\) ( 0.2 equiv), \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) ( 3.0 equiv), \(4 \AA\) MS, toluene \((0.01 \mathrm{M}), 80^{\circ} \mathrm{C}, 3 \mathrm{~d}\). For a detailed procedure, see Supporting Information.
(17) (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287-1289. (b) Jeffery, T. Synthesis 1987, 70-71. (c) Jeffery, T. Tetrahedron 1996, 52, 10113-10130.
(18) \(\mathrm{Pd}(\mathrm{OAc})_{2}\) ( 0.1 equiv), NaOAc ( 5.0 equiv), \(\mathrm{Bu}_{4} \mathrm{NCl}\) ( 2.0 equiv), 4 A MS, DMF \((0.01 \mathrm{M}), 85^{\circ} \mathrm{C}, 1.5 \mathrm{~h}\). For a detailed procedure, see Supporting Information.
}
elimination leading to 34 (path B). Thus, an eight-membered macrocycle (34) and a newly formed carbon-oxygen bond were generated in a single step from vinyl bromide \(\mathbf{3 1}\) in acceptable overall yield.

To our knowledge this reaction which converts a 1,1-disubstituted olefin into an allylic neopentyl acetate so far has not been described in the literature.

In conclusion, we have developed a stereocontrolled route to an advanced macrocyclization precursor 31 within a longest linear sequence of 15 steps from the literature known alkyne \(\mathbf{1 2}\) with an overall yield of \(13 \%\). A biomimetic [ \(2+2]\) photocyclization was used to install the all-carbon quaternary center at C-12. In this step the western [3.2.0]-carbon core of bielschowskysin with all-carbon atoms of the cyclobutane moiety is set up correctly. Moreover, the stereocenters at \(\mathrm{C}-1\) and \(\mathrm{C}-2\) have been introduced with acetal building block 11, which could be a suitable building block for other syntheses. The Heck macrocyclization of \(\mathbf{3 1}\) revealed an unprecedented carbo-oxygenation reaction of a vinyl bromide onto a 1,1-disubstituted double bond. This led to the complex macrocycle 34 featuring a tricyclo[8.3.0.0.8.8]tridecane ring system and an allylic neopentyl acetate. Work to generalize this methodology is in progress.

Acknowledgment. Financial support from the University of Vienna (doctoral programm, Initiativkolleg Functional Molecules IK I041-N) and from the Austrian Science Fund (FWF, Project No. P22180) is gratefully acknowledged. We thank H. Kählig, L. Brecker, and S. Felsinger for NMR assistance and A. Roller and V. Arion (University of Vienna) for X-ray analysis.

Supporting Information Available. Experimental procedures and full characterization including copies of \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra and crystal structure analysis of \(\mathbf{2 6}\) (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

\footnotetext{
(19) (a) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778-1780. (b) Newman, S. G.; Howell, J. K.; Nicolaus, N.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916-14919.
(20) Liu, H.; Li, C.; Qiu, D.; Tong, X. J. Am. Chem. Soc. 2011, 133, 6187-6193.
}

The authors declare no competing financial interest.
7.3. An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy \({ }^{114}\)

Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Eur. J. Org. Chem. 2013, accepted for publication.

Planning: Himmelbauer, M.; Farcet, J.-B.; Mulzer, J.

Experimentation: Himmelbauer, M.; Gagnepain, J.

Manuscript preparation: Himmelbauer, M.; Farcet, J.-B.; Mulzer, J.

\section*{Discussion}

All experiments, characterization of all intermediates as well as the preparation of the manuscript have been carried out by M. H. The contribution of Julien Gagnepain lies in the development of the synthesis of the allene building block, in particular in the application of the Searles-Crabbé procedure installing the allene functionality.

\title{
An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy
}

\author{
Martin Himmelbauer, \({ }^{[a]}\) Jean-Baptiste Farcet, \({ }^{[a]}\) Julien Gagnepain \({ }^{[\text {a] }}\) and Johann Mulzer* \({ }^{[a]}\)
}

Keywords: bielschowskysin / terpenoids / total synthesis / asymmetric synthesis / cycloaddition /

Several macrocyclization attempts of highly advanced precursors toward a total synthesis of marine diterpene bielschowskysin are disclosed. Biomimetic [2+2]-photocyclizations were applied to
[a] Department of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
Fax: Fax number
E-mail: johann.mulzer@univie.ac.at
Homepage: http://mulzer.univie.ac.at/
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.xxxxxxxxx.

\section*{Introduction}

In 2003 Rodríguez et al. reported the isolation of bielschowskysin (1) along with other congeners from the Caribbean Sea plume Pseudopterogorgia kallos, \({ }^{[1]}\) among which 1 and providencin \((\mathbf{2})^{[2]}\) are the only ones bearing unusual cyclobutane moieties. Due to its densely functionalized furanocembranoid structure featuring an unprecedented tricyclo[9.3.0.0 \(0^{2,10}\) ]tetradecane ring system and eleven stereogenic centers, bielschowskysin has attracted considerable interest from the scientific community. \({ }^{[3]}\) Furthermore, the compound shows significant biological activity against the malaria causing protozoan parasite Plasmodium falciparum and two human cancer cell lines.

bielschowskysin (1)

providencin (2)

Figure 1. Structures of bielschowskysin and providencin.

The members of the furanocembranoid family display a wide degree of functionalization. Nonetheless, they appear to be biogenetically interconnected. \({ }^{[4]}\) Thus, the cyclobutane moiety of bielschowskysin has been postulated to arise from a transannular [2+2]-cycloaddition of a much simpler macrocyclic precursor 3 (Scheme 1). We report two entirely different approaches to the full carbon backbone of bielschowskysin. The present article deals with the biomimetic [2+2]-photocyclization, whereas the following paper presents a non-photochemical access. \({ }^{[5]}\)

\section*{construct the cyclobutane core in these intermediates, which could be accessed along scalable high yielding reaction sequences from cheap enantiopure starting materials.}


(3)

\section*{Results and Discussion}

Our retrosynthetic considerations were centered around the photochemical ring contraction \({ }^{[6]}\) of a 14-membered carbocycle 4 (Scheme 2). A gold-mediated cyclization \({ }^{[7]}\) of macrocyclic enyne 5 was envisaged to generate the required exo-methylene dihydrofuran ring. Palladium mediated intramolecular Sonogashira reaction \({ }^{[8]}\) of vinyl iodide 6 should close the 14 -membered carbon macrocycle. As outlined in Scheme 2, precursor 6 should be assembled from three rather simple building blocks. Thus, aldol reaction of seleno lactone 9 and aldehyde \(\mathbf{8}\) was planned to form the southern part and the enone functionality in 6, which is essential for the \([2+2]\)-cycloaddition, should be established by regioselective oxidative elimination of the selenide. After that, vinyl magnesium species 7 should introduce the vinyl moiety for the later macrocyclization.


Scheme 2. Initial retrosynthesis based on a transannular [2+2]cycloaddition.


Scheme 3. Synthesis of the eastern fragment 8.

The synthesis of aldehyde \(\mathbf{8}\) commenced with D-mannitol, which was converted to enantiomerically pure butenolide 12 in five steps (Scheme 3). \({ }^{[9]}\) We noticed that the bulky TBDPS-protecting group in 12 was essential for the stereochemical outcome of the copper mediated Michael addition of vinylmagnesium bromide. Unexpectedly, the introduction of the \(\alpha\)-hydroxymethylene group met with problems. Neither in situ generation of formaldehyde \({ }^{[10]}\) nor introduction of gaseous formaldehyde gave satisfying results. However, deprotonation of the \(\gamma\)-butyrolactone followed by addition of a freshly prepared solution of formaldehyde in THF (see 14 in Experimental Section) resulted in a \(4: 1\) mixture of diastereomers 13 and 14. As expected, 2,3-cis lactone 13 could be epimerized to all-trans \(\mathbf{1 4}\) with DBU at elevated temperature. Finally, PMB protection, reduction of the lactone, acetalization of the anomeric center and a hydroboration/oxidation sequence provided desired aldehyde 8 .


Scheme 4. Synthesis of the western alkyne 19.

For the synthesis of the western alkyne building block 9 (Scheme 4), the known acetonide \(\mathbf{1 6}^{[3 \mathrm{a}, \mathrm{b}]}\) was converted to epoxide 17 in \(68 \%\) yield over four steps. Various attempts to form \(\alpha\)-phenylselenyl lactone 9 in a single step by opening of the epoxide with the dianion of phenylselenyl acetic acid failed. \({ }^{[11]}\) Thus, epoxide 17 was converted to \(\gamma\)-butyrolactone 19 by opening the epoxide with diethylmalonate followed by Krapchodecarboxylation \({ }^{[12]}\) and protection of the terminal alkyne. Unfortunately, 19 could not be \(\alpha\)-selenylated by any means. Thus,
we coupled intermediates 19 and 8 (Scheme 5) and tried to introduce the selenide in the next step. Unfortunately, the yield of the aldol reaction was unacceptably low.


Scheme 5. Building block coupling.

In view of these failures we decided to add fragment \(\mathbf{8}\) to seleno lactone 23 (Scheme 6), which is readily available from \((R)\)-glycidol in three steps \({ }^{[11]}\) (Scheme 7). If the coupling indeed gave 22, elaboration of the isopropenyl moiety (Scheme 6) might still lead to our envisaged intermediate \(\mathbf{6}\).


Scheme 6. Altered retrosynthesis.

To our delight, the aldol reaction smoothly furnished the desired coupling product as a mixture of all four possible diastereomers (Scheme 7). Oxidative elimination of the phenylselenyl group gave butenolide 22 as a mixture of two diastereomers, which was used as such in the next reaction. After protection of the free secondary alcohol a SAD-reaction was performed. Interestingly but unproductively, the primary product 26 underwent a \(\mathrm{S}_{\mathrm{N}} 2\) '-reaction under OMOM-elimination to generate compound 27.


At this juncture we decided to abandon the transannular [2+2]approach and to modify our strategy as shown in Scheme 8. Thus, aldol addition of \(\mathbf{3 2}\) and \(\mathbf{8}\) should provide precursor 31, which in an
allene-olefin-[2+2]-photocyclization should lead to polycycle \(\mathbf{3 0}\). Further transformations should be directed toward 29 as the substrate of a RCM reaction to give dihydrofuran 28.


Scheme 8. Retrosynthesis based on an allene-olefin-[2+2]-photocyclization.

To start with, epoxide \(\mathbf{3 6}\) was synthesized from \(\mathbf{3 3}\) in two steps (Scheme 9). Regioselective addition of diethylmalonate, cyclization to the corresponding lactone and Krapcho decarboxylation gave \(\gamma\)-butyrolactone 37 in fair yield. Coppermediated formation of the allene via the Searles-Crabbé protocol \({ }^{[13]}\) proceeded with high yield and was exceptionally easy to carry out. Protection of the tertiary alcohol and \(\alpha\)-selenylation delivered lactone \(\mathbf{3 2}\) in scalable seven steps with an overall yield of \(35 \%\). Interestingly, in situ formation of a trimethylsilyl enol ether and the use of phenylselenyl chloride instead of the more reactive bromide were essential to stop the reaction after mono-selenylation.


Scheme 9. Synthesis of the western allene building block 32.

Aldol coupling of building block 32 with \(\mathbf{8}\) and regioselective oxidative elimination of the selenide uneventfully gave \(\mathbf{3 9}\) as a mixture of diastereomers (Scheme 10). Without separation, a plethora of irradiation conditions was tested, some of which are outlined in Table 1. In many cases complex product mixtures were formed, and we found that irradiation of 39 with a sunlamp destroyed the starting material within few minutes. On narrowing the spectrum we either reisolated starting material or detected traces of presumptive product in the mass-spectrum of the reaction mixture. Eventually, irradiation of 39 with UV-B light in cyclohexane for 2.5 h allowed the isolation of \(10 \%\) (Entry 13, Table 1) of the desired [3.2.0]-carbocycle 40 as a diastereomeric mixture. Purification by column chromatography allowed partial
separation of the C13-epimers. Thus, for the first time the crucial all-carbon quaternary center at \(\mathrm{C}-12\) of \(\mathbf{1}\) was established.


Scheme 10. Fragment coupling and [2+2]-photocyclization.

Table 1. [2+2]-photocyclization conditions of 39 to 40.
\begin{tabular}{cccc}
\hline Entry \(^{[\text {a] }}\) & Solvent & Conditions \({ }^{[\mathrm{bb}}\) & Yield \\
\hline 1 & EtOH & \(750 \mathrm{~W},>100 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\) & decomp. \\
2 & acetone & \(750 \mathrm{~W},>100 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\) & decomp. \\
3 & \(\mathrm{Hex} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\) & \(750 \mathrm{~W},>100 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\) & decomp. \\
4 & \(\mathrm{Hex} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\) & \(6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 3 \mathrm{~h}\) & SM \\
5 & EtOH & \(6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 3 \mathrm{~h}\) & SM \\
6 & Hex & \(6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 9 \mathrm{~h}\) & SM \\
7 & MeOH & \(6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 9 \mathrm{~h}\) & SM \\
8 & acetone & \(2 * 6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 9 \mathrm{~h}\) & SM \\
9 & cy & \(750 \mathrm{~W},>100 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\) & \(\mathbf{4 0}\), traces \\
10 & cy & \(750 \mathrm{~W},>350 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\) & decomp. \\
11 & cy & \(2 * 6 \mathrm{~W},>350 \mathrm{~nm}, \mathrm{rt}, 7 \mathrm{~h}\) & \(\mathbf{4 0}\), traces \\
12 & cy & \(8 * 6 \mathrm{~W}, 320-400 \mathrm{~nm}, \mathrm{rt}, 7 \mathrm{~h}\) & SM \\
13 & cy & \(8 * 6 \mathrm{~W}, 280-320 \mathrm{~nm}, \mathrm{rt}, 1.5 \mathrm{~h}\) & \(\mathbf{4 0}, 10 \%\) \\
\hline
\end{tabular}
[a] All solutions were 0.001 M and freshly degassed prior to use. [b] In all entries quartz tubes were used as reaction vessels.

We reasoned that the formation of complex mixtures in the photoreaction might be due to the presence of the aryl chromophores in our substrate and decided to remove the PMB and the TBDPS-protecting groups in the [2+2]-cycloaddition precursor. The synthesis of the eastern tetrahydrofuran ring was redesigned accordingly (Scheme 11).

To circumvent the experimentally tedious 1,4-addition \(\alpha\)-alkylation procedure of \(\mathbf{1 2}\) (Scheme 3) we started from diacetone D-glucofuranose (41) (Scheme 11), from which known \(\alpha\)-D-ribofuranose \(\mathbf{4 2}^{[14]}\) was prepared in five steps along an optimized scalable sequence. Thus, IBX oxidation of \(\mathbf{4 1}\) was followed by Horner-Wittig reaction giving an \(\alpha, \beta\)-unsaturated ester. In contrast to the literature procedures, which either required aqueous workup, prolonged reaction times or high pressure for acquiring acceptable yields, we were able to hydrogenate the double bond with Raney-nickel in ethanol in an ultrasound bath at 1 atm of hydrogen pressure within 2 h . Removal of the acetonide, glycol cleavage and reductive workup yielded primary alcohol 42. Acid catalyzed acetalization of the anomeric center and protection of the primary alcohol gave lactone 43. After reduction to the diol, silyl protection and subsequent Swern-oxidation afforded the desired aldehyde 45.


Scheme 11. Synthesis of the new eastern building block.

Deprotonation of 32, addition of \(\mathbf{4 5}\) and oxidative elimination of the phenylselenide furnished the [2+2]-photocyclization precursor 46 (Scheme 12) with a dr of about 1:1. Capitalizing on our earlier results a solution of \(\mathbf{4 6}\) in freshly degassed cyclohexane was irradiated with UV-B light for 18 h to give \(57 \%\) of diastereomeric cyclobutanes 49 and \(\mathbf{5 0}\). As the UV-spectrum of 46 revealed an absorption maximum at 235 nm , UV-light of \(200-280 \mathrm{~nm}\) was applied. Gratifyingly the reaction time was reduced to 2 h and the yield of cyclization products \(\mathbf{4 9 / 5 0}\) was increased to \(67 \%\). Additionally \(15 \%\) of the undesired regioisomers \(47 / 48\) were formed. After separation of the isomers, the "wrong" diastereomer 50 was recycled to 49 by an oxidation-reduction sequence, and all ensuing reactions were carried out with enantiomerically pure 49 and 50.


Scheme 12. Fragment coupling and improved [2+2]-photocyclization. a) TPAP, NMO, \(4 \AA\) MS, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad 0{ }^{\circ} \mathrm{C}\); b) (S)-2(-)-methyl-CBS oxazaborolidine, \(\mathrm{BH}_{3}\).THF, THF, -78 to \(-40^{\circ} \mathrm{C}\)., \(33 \%+66 \%\) of \(\mathbf{5 0}\).

Next we epoxidized the exo-methylene group of 49 with DMDO and found that a free \(13-\mathrm{OH}\) group was necessary to obtain reasonable diastereoselectivity (6:1) (Scheme 13). In presence of a 13-OAc (13-OTMS) the dr dropped to \(2: 1\) (1:1). With \(m\) CPBA the reaction was much faster and gave higher yields with a dr of \(4: 1\). To assign the relative configuration, crystalline acetate \(\mathbf{5 2}\) was prepared and subjected to single crystal diffraction. \({ }^{[15]}\)

For the opening of the epoxide, a number of nucleophiles were tested both with the free alcohol and the acetate, to no avail (Table 2). Interestingly, on 52 the lithium acetylide ethylendiamine complex acted as base and furnished pentacycle \(\mathbf{5 3}\) in quantitative yield within 15 min at \(0^{\circ} \mathrm{C}\), whereas 51 led to complex product mixtures. The exo-methylene group of 47 was subjected to a variety of alternative functionalizations (dihydroxylation,
ozonolysis, hydroboration, 1,3-dipolar cycloaddition) with disappointing results.


Scheme 13. Synthesis and X-ray structure of 52 and formation of pentacycle 53.

Table 2. Conditions for the epoxide opening.
\begin{tabular}{|c|c|c|}
\hline Entry & Conditions & Yield \\
\hline 1 & 52, Me \({ }_{3} \mathrm{SI}, n \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 8 \mathrm{~h}\) & SM \\
\hline 2 & 52, Me \({ }_{3} \mathrm{SI}, n \mathrm{BuLi}, \mathrm{THF},-2{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}\) & SM \\
\hline 3 & 52, \(\mathrm{Me}_{3} \mathrm{SI}, n \mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}\) to rt, 10 h & SM \\
\hline \multirow[t]{2}{*}{4} & 52, \(i\)-propenylMgBr, CuI, THF & SM \\
\hline & \(-78{ }^{\circ} \mathrm{C}\) to \(0{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\) & \\
\hline 5 & 52, \(\mathrm{Me}_{3} \mathrm{SBF}_{4}, n \mathrm{BuLi}, \mathrm{THF},-2{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\) & SM \\
\hline 6 & 52, \(\mathrm{Me}_{3} \mathrm{SBF}_{4}, n \mathrm{BuLi}\), THF, \(-21{ }^{\circ} \mathrm{C}\) to rt, 24 h & SM \\
\hline \multirow[t]{2}{*}{7} & 52, \(\mathrm{CH}_{2} \mathrm{CHMgBr}, n \mathrm{BuLi}, \mathrm{CuCN}, \mathrm{THF}\) & SM \\
\hline & \(-78{ }^{\circ} \mathrm{C}\) to rt, 12 h & \\
\hline \multirow[t]{2}{*}{8} & 52, \(\mathrm{CH}_{2} \mathrm{CHMgBr}, n \mathrm{BuLi}, \mathrm{CuCN}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\) & SM \\
\hline & THF, \(-78{ }^{\circ} \mathrm{C}\) to rt, 12 h & \\
\hline 9 & 52, \(\mathrm{PhSH}, 0.5 \mathrm{M} \mathrm{NaOH}\), dioxane, reflux, 16 h & decomp. \\
\hline \multirow[t]{2}{*}{10} & 52, Lithium acetylide ethylenediamine complex & 53, quant \\
\hline & THF, DMSO, \(0^{\circ} \mathrm{C}, 15 \mathrm{~min}\) & \\
\hline
\end{tabular}

Being aware of the rich potential of transition metal catalyzed CC-connections between olefins and alkynes, \({ }^{[7]}\) we envisaged propargylic alcohol 56 as a suitable substrate for closing both the nine-membered carbocycle 55 and the furan moiety in 54 in a single step (Scheme 14). The introduction of the alkyne into 49/50 via aldehydes \(\mathbf{5 9}\) and \(\mathbf{6 0}{ }^{[3 \mathrm{~h}]}\) is outlined in Scheme 15.


Scheme 14. Retrosynthesis based on transition metal mediated cyclization of the carbon core of bielschowskysin.

At the end, propargylic alcohol \(\mathbf{6 1}\) was formed in good overall yield as a single diastereomer, and subjected to macrocyclization (Table 3, Scheme 15). Though mass analysis indicated the formation of the desired product in some cases, we were not able to obtain suitable NMR-spectra.


Scheme 15. Introduction of the alkyne and transition metal mediated cyclization attempts.

Table 3. Conditions for the transition metal mediated cyclization.
\begin{tabular}{|c|c|c|c|}
\hline Entry & SM & Conditions \({ }^{[\mathrm{c}]}\) & Yield \\
\hline 1 & 61 & \[
\begin{gathered}
{\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Au}\right] \mathrm{NTf}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \text { to }} \\
0{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}
\end{gathered}
\] & 63, traces \\
\hline 2 & 61 & \(\mathrm{PtCl}_{2}\), toluene, \(75{ }^{\circ} \mathrm{C}, 2 \mathrm{~d}\) & 64, traces \\
\hline 3 & 61 & \[
\begin{gathered}
{\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Au}\right] \mathrm{Cl}, \mathrm{AgSbF}_{6}, \mathrm{CH}_{2} \mathrm{Cl}_{2},} \\
0^{\circ} \mathrm{C}, 1 \mathrm{~h}
\end{gathered}
\] & \begin{tabular}{l}
61 - global \\
TES
\end{tabular} \\
\hline 4 & 61 & \[
\begin{gathered}
{\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Au}\right] \mathrm{Cl}, \mathrm{AgSbF}_{6}, \mathrm{MeOH},} \\
0^{\circ} \mathrm{C}, 6 \mathrm{~h}
\end{gathered}
\] & 61 - global TES \\
\hline 5 & 61 & \(\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}\), toluene, \(80^{\circ} \mathrm{C}, 5 \mathrm{~h}\) & 63, traces \\
\hline 6 & 61 - global TES & \[
\begin{gathered}
{\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Au}\right] \mathrm{NTf}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}} \\
\text { to rt, } 1 \mathrm{~h}
\end{gathered}
\] & decomp. \\
\hline
\end{tabular}

Trying to close a macrocyclic ether \(\mathbf{6 6}\) by treating enyne \(\mathbf{6 1}\) with NBS \({ }^{[16]}\) (Scheme 16) only led to the formation of \(\mathbf{6 5}\) (connectivity and relative configuration of the bromides were determined by 2DNMR analysis). In another attempt, aldehyde \(\mathbf{5 9}\) was oxidized to carboxylic acid 67 which was subjected to several halolactonization and Wacker cyclization conditions (Scheme 16, Table 4), \({ }^{[17]}\) but the substrate either was unreactive or decomposed without revealing any trace of products 68-71.


Scheme 16. Additional macrocyclization attempts.

Table 4. Conditions for alternative macrocyclizations.
\begin{tabular}{|c|c|c|c|}
\hline Entry & SM & Conditions & Yield \\
\hline 1 & 61 & NBS, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}\) & 65, 66\% \\
\hline 2 & 67 & NIS, \(\mathrm{CDCl}_{3}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}\) & SM \\
\hline 3 & 67 & \(\mathrm{I}_{2}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 6 \mathrm{~h}\) & SM \\
\hline 4 & 67 & NBS. \(\mathrm{CH}_{3} \mathrm{CN}, 82{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}\) & decomp. \\
\hline 5 & 67 & \(\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}, \mathrm{DMF}, \mathrm{rt}, 16 \mathrm{~h}\) & decomp. \\
\hline 6 & 67 & \(\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}, \mathrm{NaHCO}_{3} \mathrm{DMF}\), rt, 16 h & decomp. \\
\hline 7 & 67 & \(\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{CO}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{MeOH}\), \(140{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}\) & SM \\
\hline 8 & 67 & \(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{CuCl}, \mathrm{CO}, \mathrm{CH}_{3} \mathrm{CN}\), \(\mathrm{MeOH}, 140{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}\) & SM \\
\hline
\end{tabular}

To get more flexibility in the eastern building block and to obtain a suitable protecting group pattern we decided to modify the synthesis of 46 and prepared derivatives 75, 76 and 77 along scalable and reliable routes (Scheme 17).

Metal halogen exchange of iodide 76 and addition of the lithium derivative to aldehyde 81, which was derived from our earlier intermediate \(\mathbf{8 0}{ }^{[3 f, \mathrm{~g}]}\) in three steps, delivered \(\mathbf{8 2}\) with a dr of \(4: 1\) at C-13 but low yield (Scheme 18).

1) \(\mathrm{AcCl}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}\) to rt, \(3 \mathrm{~h} 68 \%\) 2)i) \(\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}\), rt ii) \(\mathrm{NaBH}_{4}, 1 \mathrm{~h}, 86 \%\)
3) TESCl , imidazole, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{~h}\), \(0^{\circ} \mathrm{C}, 96 \%\)


> i) \(\left(\mathrm{COCl}_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\),
> -78 to \(-55^{\circ} \mathrm{C}, 3 \mathrm{~h}\)
ii) \(\mathrm{NEt}_{3},-78^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%\)


74


1) \(\mathrm{O}_{3}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1 / 3\) then \(\mathrm{NaBH}_{4}, 1 \mathrm{~h}\) \(-78^{\circ} \mathrm{C}, 76 \%\) 2) \(\mathrm{I}_{2}, \mathrm{PPh}_{3}\), imidazole,

\(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 81 \%\),

\(\xrightarrow[\substack{\text { 2) } \mathrm{SO}_{3} \text { py, } \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMSO} \\ 4 / 1,0^{\circ} \mathrm{C} \text { to rt., } 16 \mathrm{~h}, 93 \%}]{\substack{\text { 1) } \mathrm{BH}_{3} \text {. } \mathrm{THF}, \mathrm{THF} \text {, then } \mathrm{H}_{2} \mathrm{O}_{2} \\ 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 76 \%}}\)


Scheme 17. New flexible route to the eastern tetrahydrofuran moiety.


Scheme 18. Alternative synthesis of the southern hemisphere of Bielschowskysin.

In parallel, we repeated the aldol coupling by using partners \(\mathbf{8 3}\) and \(\mathbf{7 7}\) and now adduct \(\mathbf{8 4}\) was formed in high yield and a dr of 3:1. The [2+2]-photocycloaddition of the diastereomeric mixture gave pure \(\mathbf{8 2}\) in \(51 \%\) yield after separation (Scheme 19).


Scheme 19. Improved [2+2]-photocyclization to 82.

With a straightforward synthesis of \(\mathbf{8 2}\) in hand we started out to close the macrocycle. On one hand we envisaged an endo-selective Heck-reaction \({ }^{[18]}\) of \(\mathbf{8 6}\) to form a suitable nine-membered carbon macrocycle (Scheme 20). Alternatively a ring-closing-metathesis reaction \({ }^{[19]}\) of \(\mathbf{8 7}\) was tried to construct the tricyclo[9.3.0.0 \(0^{2,10}\) ]tetradecane framework of bielschowskysin.


Scheme 20. Heck- and RCM-macrocyclization strategies.

The results of the Heck-reaction have already been described in detail. \({ }^{[3 h]}\) Suffice it to say here that instead of the desired diene 91 the acetate \(\mathbf{9 2}\) was obtained (Scheme 21), presumably along an unprecedented mechanistic pathway as outlined in Scheme 22.


 and supporting information


Scheme 21 Results from the palladium catalyzed macrocyclization attempts.

An interesting detail is the formation of vinyl cyanide 93. Though we have no plausible explanation yet, in all experiments leading to \(93 \mathrm{Pd}(\mathrm{OAc})_{2}\) has been used as catalyst and dimethylformamide as solvent and plausible "CN" source.



Scheme 22. Mechanistic explanation for the carbo-oxygenation.

Not necessarily the formation of the wrong ring sized macrocycle \(\mathbf{9 2}\) is to put an end to our synthesis. After all, there are a number of options to achieve a suitable ring expansion, one of which is tentatively suggested in Scheme 23.




Scheme 23. Tentative conversion of \(\mathbf{9 2}\) to desired macrocycle 91 .

Thus, saponification of the acetate group at C-5 in 92 followed by oxidation to the aldehyde and Baeyer-Villiger oxidation should provide III. Dihydroxylation of the exo-methylene bond, mesylation of the primary alcohol at C-5' followed by WagnerMeerwein rearrangement forming the \(\Delta^{6,5^{\prime}}\) bond should deliver the desired nine-membered macrocycle and the ketone at \(\mathrm{C}-4\) in \(\mathbf{V}\). Elimination of the formate and an olefination should give diene 91 which can be processed to the natural product within a few reactions mainly consisting of protecting group operations and oxidations

In parallel to the Heck type cyclization we tried to set the stage for the RCM approach and various attempts to introduce an allyl appendage at aldehyde \(\mathbf{5 9 / 6 0}\) were initiated (Scheme 24). Conventional treatment with allylmagnesium halides, allyl-zinc species, Brown-allylation \({ }^{[20]}\) and Duthaler-Hafner allyl complex \({ }^{[21]}\) all failed. Finally, reaction of \(\mathbf{5 9 / 6 0}\) with allyltrimethylsilane or ( \(Z\) )-crotyltrimethylsilane (94) and tin tetrachloride afforded 95 to 98 as inseparable mixtures of diastereomers along with some unreacted aldehyde. These mixtures were used in the RCM-experiments (Scheme 24, Table 5).


Scheme 24. Ring closing metathesis attempts.

Table 5. Metathesis conditions
\begin{tabular}{|c|c|c|c|}
\hline Entry & SM & Conditions & Yield \\
\hline \(1{ }^{\text {[a] }}\) & 96 & \[
\begin{aligned}
& 99 \text { ( } 0.4 \text { eq.), benzene }(0.001 \mathrm{M}), \\
& \text { reflux, } 24 \mathrm{~h}
\end{aligned}
\] & 105, traces \\
\hline \(2^{[a]}\) & 96 & 102 ( 0.4 eq.), benzene ( 0.001 M ), reflux, 24 h & 108, traces \\
\hline \(3^{[a]}\) & 96 & \[
\begin{aligned}
& 102 \text { ( } 0.4 \text { eq.), toluene }(0.001 \mathrm{M}) \text {, } \\
& \text { reflux, } 24 \mathrm{~h}
\end{aligned}
\] & 105, traces. \\
\hline \(4^{[a]}\) & 95 & \[
\begin{aligned}
& 102 \text { ( } 0.3 \text { eq.), toluene }(0.001 \mathrm{M}) \text {, } \\
& \text { reflux, } 30 \mathrm{~h}
\end{aligned}
\] & 104, traces \\
\hline \(5^{[a]}\) & 97 & 102 ( 0.3 eq.), toluene ( 0.0005 M ), reflux, 18 h & 109, \(15 \%\) \\
\hline \(6^{[a]}\) & 97 & \[
\begin{aligned}
& 101(0.2 \mathrm{eq} .) \text {, toluene } \\
& (0.0005 \mathrm{M}) \text {, reflux, } 36 \mathrm{~h}
\end{aligned}
\] & SM \\
\hline \(7^{[a]}\) & 97 & 103 ( 0.2 eq.), toluene ( 0.0005 M ), reflux, 36 h & SM \\
\hline \(8^{[b]}\) & 97 & 103 ( 0.2 eq.), toluene ( 0.0005 M ), reflux, 16 h & SM \\
\hline \(9^{[a]}\) & 97 & \(103(0.2\) eq. \()\), toluene
\((0.0005 \mathrm{M})\), reflux, 20 h & 109, \(25 \%\) \\
\hline \(10^{[a]}\) & 97 & 99 ( 0.2 eq.), hexafluorobenzene ( 0.001 M ), reflux, 38 h & 109, \(24 \%\) \\
\hline \(11^{[b]}\) & 97 & \[
\begin{gathered}
99 \text { ( } 0.1 \text { eq.), isobutene }(0.01 \mathrm{M}), \\
\text { reflux, } 16 \mathrm{~h}
\end{gathered}
\] & SM \\
\hline \(12^{[b]}\) & 97 & \[
\begin{gathered}
99 \text { (0.1 eq.), isobutene ( } 0.01 \mathrm{M} \text { ), } \\
45^{\circ} \mathrm{C}, 24 \mathrm{~h}
\end{gathered}
\] & SM \\
\hline \(13^{[b]}\) & 97 & \[
\begin{gathered}
102 \text { ( } 0.3 \text { eq.), isobutene ( } 0.01 \mathrm{M} \text { ), } \\
45^{\circ} \mathrm{C}, 24 \mathrm{~h}
\end{gathered}
\] & SM \\
\hline \(14^{[a]}\) & 111 & \[
\begin{gathered}
102(0.4 \text { eq.), toluene }(0.001 \mathrm{M}) \text {, } \\
\text { reflux, } 48 \mathrm{~h}
\end{gathered}
\] & 112, traces \\
\hline
\end{tabular}
[a] Catalyst constantly added as 0.005 M solution via syringe pump within 8 h [b] Catalyst added in one portion as a solid.

A broad spectrum of catalysts and solvents were employed (Table 5). Specifically, the conventional Grubbs \(2^{\text {nd }}\) generation \(\mathbf{9 9}^{[22]}\), Grubbs-Hoyveda II catalyst 102, 100, Stevens catalyst \(101{ }^{[23]}\), fast initiating Nitro-Grela catalyst \(\mathbf{1 0 3}^{[24]}\) and additionally, the doping-effect of poly-fluorinated solvents on the RCM reaction were tested. \({ }^{[25]}\) In most cases complex product mixtures were obtained and indeed, in some cases traces of the desired macrocycle \(\mathbf{1 0 4}\) to \(\mathbf{1 0 7}\) were identified in the mass spectrum. Predominantly however, homodimers 108 and 109 were obtained.

From the dimerization products we reasoned that replacing the terminal vinyl group by an isobutene appendage would facilitate the RCM reaction with the exo-methylene group in neo-pentyl position. \({ }^{[26]}\) Therefore, cross-metathesis of \(\mathbf{9 7}\) to \(\mathbf{1 1 0}\) with isobutene was initiated (Table 5, Entries 11 - 12; Scheme 25), but no reaction occurred under these conditions. Finally, the free 3-OH in 96 was protected as the silyl ether 111. Disappointingly, this did not improve the outcome of the RCM reaction either (Table 5, Entry 14; Scheme 25), leading only to traces of the desired macrocycle 112.


Scheme 25. Additional metathesis experiments.

Having sizeable quantities of iodide 76 in hand, we thought of accessing the western [3.2.0]-carbocyclic structure of bielschowskysin via a totally different strategy (Scheme 26). This approach was centered around a Pauson-Khand reaction \({ }^{[27]}\) of 115 to form cyclopentenone 114, which after 1,4-addition and contraction of the five membered ring by either Favorskii- \({ }^{[28]}\) or Wolff-rearrangement \({ }^{[29]}\) should lead to cyclobutane 113.


Scheme 26. Pauson-Khand strategy to construct the cyclobutane moiety.


Scheme 27. Pauson-Khand reaction cascade.

Thus, prostaglandin precursor \(\mathbf{1 1 6}^{[30]}\) was readily converted to 115 (Scheme 27). After formation of the stable hexacarbonyldicobalt complex a trimethylamine- \(N\)-oxide (TMANO) induced Pauson-Khand reaction (PKR) was performed. Interestingly, the intra-molecular PKR to \(\mathbf{1 1 8}\) was followed by an inter-molecular PKR with a second molecule of \(\mathbf{1 1 5}\) to furnish the highly functionalized poly-cycle 119 in excellent yield. This remarkable cascade generated three carbocycles and three stereogenic centers, including an all carbon quaternary center, in a single step. After conducting the reaction at lower temperatures and at higher dilution intermediate \(\mathbf{1 1 8}\) could be identified in an inseparable mixture with an uncharacterized side product. As pentacycle 119 features a cis,trans,cis-triquinane terpene type core, this serendipitous result may be useful in other synthetic ventures.

\section*{Conclusions}

In conclusion, in this part of our bielschowskysin project we were able to synthesize several advanced macrocyclization precursors. Stereoselective high yielding syntheses of building blocks representing the eastern hemisphere of the target compound have led to the optically active tetrahydrofuran building blocks 8 , 45, and 75-77 which may be also useful in other syntheses. Our initial synthetic plan was modified and optimized, so that the biomimetic [2+2]-photocyclization could be carried out on a large scale and provided the [3.2.0]-carbocyclic core of bielschowskysin in a stereoselective manner. Except for an epoxidation, the exomethylene group proved exceptionally unreactive to numerous transformations. Various RCM reactions, instead of closing the desired nine-membered macrocycle, exclusively led to dimers 108 and 109. However, macrocyclization under Jeffery-Heckconditions was successful, and, via an unprecedented carbooxygenation, led to the highly functionalized macrocycle 92, which had the wrong ring size, but eight correctly substituted stereocenters in place. At present, synthetic efforts to enlarge the eight-membered ring to the desired nine-membered one are well under way in our laboratory.

\section*{Experimental Section}

General remarks: All moisture and oxygen sensitive reactions were carried out in flame-dried glassware under a slight argon overpressure. All solvents (except dichloromethane and methanol) were purchased as the highest available grade from Sigma-Aldrich, Acros-Organics or FischerChemicals. Anhydrous dichloromethane was purified by filtration through alumina under argon immediately before use. Methanol was heated at reflux for several hours over sodium before being distilled. \(\mathrm{NEt}_{3}, i \mathrm{Pr}_{2} \mathrm{NEt}\) and 2,6 -lutidine were distilled over \(\mathrm{CaH}_{2}\) before use. All other reagents were used as received from Sigma-Aldrich, Acros-Organics, FischerChemicals, TCI or ABCR unless otherwise stated. Preparative column
chromatography was performed with silica gel 60 from Merck (0.040-0.063 \(\mu \mathrm{m}, 240-400 \mathrm{mesh})\). All NMR spectra were measured on a Bruker AV400, DRX400 or DRX600. Chemical shifts are given in ppm and referenced to the solvent residual peaks \(\left(\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}, \delta=77.16 \mathrm{ppm}\right)\). Infrared spectra were recorded as thin films of pure products on an ATRunit on a Bruker Vertex 70. High-resolution mass spectra were measured on Bruker MaXis (ESI-TOF) with a resolution of 10,000. A P341 PerkinElmer polarimeter equipped with in a 10 cm cell and a Na-lamp ( 589 nm ) was used for the measurement of optical rotation.
(3R,4S,5S)-5-(((tert-Butyldiphenylsilyl)oxy)methyl)-3-(hydroxymethyl)-4-vinyldihydrofuran-2(3H)-one (14): In a round-bottomed flask copper chloride ( \(35 \mathrm{mg}, 0.35 \mathrm{mmol}\) ) and lithium chloride ( \(37 \mathrm{mg}, 0.87 \mathrm{mmol}\) ) were gently dried with a heat gun in vacuo. The flask was carefully purged with argon and equipped with a rubber septum. The solids were digested in THF \((20 \mathrm{~mL})\) at room temperature and cooled to \(-78{ }^{\circ} \mathrm{C}\). Vinylmagnesium bromide ( \(5.7 \mathrm{~mL}, 5.70 \mathrm{mmol}\) ) was added to the vigorously stirred mixture via syringe within 10 min . After 30 min to the resulting beige milky suspension a solution of butenolide \(12(1.54 \mathrm{~g}, 4.37 \mathrm{mmol})\) was dropwise added in THF ( 20 mL ) via cannula within 30 min at \(-78^{\circ} \mathrm{C}\). After 1 h the resulting yellow solution was warmed to \(-40{ }^{\circ} \mathrm{C}\) and stirred for an additional hour. The resulting dark red reaction mixture was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})\) and warmed to room temperature. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 40 mL ), sat. aq. NaCl ( 40 mL ) dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\left.\mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) afforded the desired 1,4 adduct as slightly yellow gum ( \(1.38 \mathrm{~g}, 3.62 \mathrm{mmol}\) ) in \(83 \% .{ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.78-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.76\) (ddd, \(J=17.6,9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=9.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.25\) (ddd, \(J=6.8,3.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93\) (dd, \(J=11.6,2.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dddd}, J=8.9,8.4,8.0,6.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.82(\mathrm{dd}, J=17.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=17.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=175.9,136.4,136.0,135.5,132.9,132.5\), 129.9, 127.8, 117.3, 104.5, 84.6, 63.3, 40.7, 35.0, 26.7, 19.2.

Preparation of the formaldehyde solution: Paraformaldehyde ( \(3.8 \mathrm{~g}, 126\) mmol ) was placed in a two-necked round-bottomed flask equipped with a rubber septum and an argon inlet on one side and a glass-bridge filled with fresh calcium chloride on the other. The glass-bridge was connected to a second two-necked round bottomed flask as a water-trap which was cooled to \(0{ }^{\circ} \mathrm{C}\). The second neck was equipped with a rubber septum and a thick teflon cannula which reaches into dry THF ( 28 mL ) at \(-40^{\circ} \mathrm{C}\) in a third two necked round bottomed flask equipped with a bubbler on the remaining neck. In the following the flask containing formaldehyde was heated in an oil bath to \(150{ }^{\circ} \mathrm{C}\) under a constant stream of argon (one bubble per second in THF). Heating was continued for 15 min after all the formaldehyde was gone (overall 2 h ). The resulting clear solution was kept at \(-40^{\circ} \mathrm{C}\) and used immediately as such in the alkylation.
A solution of diisopropylamine \((1.75 \mathrm{~mL}, 12.3 \mathrm{mmol})\) in THF \((16 \mathrm{~mL})\) was dropwise treated with \(n \mathrm{BuLi}(1.6 \mathrm{M}\) in hex, \(7.4 \mathrm{~mL}, 11.7 \mathrm{mmol})\) at \(-21^{\circ} \mathrm{C}\). 5 min after the addition the resulting solution was warmed to \(0{ }^{\circ} \mathrm{C}\) for 30 min . At \(-40^{\circ} \mathrm{C}\) a solution of the 1,4 -adduct ( \(3.9 \mathrm{~g}, 10.2 \mathrm{mmol}\) ) in THF ( 12 mL ) was dropwise added within 15 min and the resulting solution was aged for 1 h . The freshly prepared cold solution of formaldehyde was added via teflon cannula within 2 min and the resulting turbid reaction mixture was allowed to stir for additional 30 min . The reaction was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})\). The aqueous phase was separated and extracted with diethyl ether ( 2 x 40 mL ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(40 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo resulting in a \(2: 1\) mixture of diastereomers. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) yielded \(14(2.21 \mathrm{~g}, 5.40\) \(\mathrm{mmol})\) and \(13(1.11 \mathrm{~g}, 2.69 \mathrm{mmol})\) as single diastereomers in combined \(79 \%\) yield. Analytic data for 13: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.67-\) \(7.65(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.88(\mathrm{dt}, J=17.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.20\) \((\mathrm{m}, 1 \mathrm{H}), 5.19-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{dt}, J=5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.84(\mathrm{~m}\), 2 H ), 3.92 (dd, \(J=11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.72 (dd, \(J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.29 \((\mathrm{td}, J=14.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}),, 2.18(\mathrm{dd}, J=7.0\), \(4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\) 176.8, 135.8 (2C), 135.7 (2C), 134.7, 133.1 (2C), 132.9, 130.0, 128.0 (4C), 119.9, 83.2, 62.4, 59.8, 48.8, 43.2, 26.9 (3C), 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 433.1811\), found 433.1815.
Epimerization of 13: Alcohol \(13(611 \mathrm{mg}, 1.15 \mathrm{mmol})\) was dissolved in toluene ( 5 mL ) and DBU \((170 \mu \mathrm{~L}, 1.13 \mathrm{mmol})\). The resulting solution was heated to \(60{ }^{\circ} \mathrm{C}\) for 3 h . The organic phase was washed with \(1 \mathrm{~N} \mathrm{HCl}(2 \times 5\) mL ) and water ( 5 mL ), dried with \(\mathrm{MgSO}_{4}\), filtered, concentrated under reduced pressure and subjected to column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 6/1). Desired alcohol \(14(529 \mathrm{mg}, 1.0 \mathrm{mmol})\) was isolated as colorless oil in \(86 \%\) yield. \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ): \(\delta=7.68-7.65\) (m,

4H), 7.46-7.37 (m, 6H), 5.68 (ddd, \(J=16.9,10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}\) ), 5.21-5.16 (m, 2H), 4.22 (ddd, \(J=9.5,4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J\) \(=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.18(\mathrm{dt}, J=11.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=11.6,5.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35\) \((\mathrm{dd}, J=7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\) \(178.3,135.8\) (2C), 135.7 (2C), 133.9, 133.0 (2C), 132.6, 130.1, 128.0 (4C), \(119.4,84.2,63.8,60.3,46.3,43.9,26.9\) (3C), 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 433.1811\), found 433.1816. IR \(\left(\mathrm{cm}^{-}\right.\) \(\left.{ }^{1}\right): 3481,2932,1859,1770,1472,1428,1113,1047,929,703 .[\alpha]_{D}^{23}:+12.7\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.2\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.28\).

2-((2S,3S,4R,5S)-2-((( tert-Butyldiphenylsilyl)oxy)methyl)-5-methoxy-4-
(((4-methoxybenzyl)oxy)methyl)tetrahydrofuran-3-yl)acetaldehyde (8): To a solution of alcohol \(14(5.0 \mathrm{~g}, 12.2 \mathrm{mmol})\) and freshly prepared 4-methoxybenzyl-2,2,2-trichloroacetimidate ( \(7.0 \mathrm{~g}, 24.9 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(80\) \(\mathrm{mL})\) was added CSA \((140 \mathrm{mg}, 0.6 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The resulting pale yellow solution was allowed to warm to room temperature overnight. After 18 h water ( 50 mL ) was added and stirring was continued for an additional hour. The organic phase was separated, dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 12/1) yielded the desired PMB protected alcohol ( \(5.94 \mathrm{~g}, 11.2\) \(\mathrm{mmol}, 92 \%)\) as pale yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.68-7.66\) \((\mathrm{m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}\), \(2 \mathrm{H}), 5.66\) (ddd, \(J=17.0,10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=\) \(11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=9.5,4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})\), 3.93 (dd, \(J=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.81-3.78 (m, 1H), , 3.79 (s, 3H), 3.75 (dd, \(J=11.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H})\), \(2.62(\mathrm{dt}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) : \(\delta=175.8,159.3,135.8(2 \mathrm{C}), 135.7\) (2C), 135.4, 133.3, 133.0, 130.2, \(129.93,129.92,129.3\) (2C), 127.9 (4C), 119.1, 113.9 (2C), 82.7, 73.1, 65.6, 62.8, 55.4, 47.7, 43.3, 26.8 (3C), 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 553.2386\), found 553.2388 . IR \(\left(\mathrm{cm}^{-1}\right): 3000,2858\), \(1777,1513,1247,1113,1008,823,702,504 .[\alpha]_{\mathrm{D}}^{20}:+0.63,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.64) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.37 .
To a solution of the PMB-ether \((4.34 \mathrm{~g}, 8.2 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})\) was added DIBALH ( \(25 \mathrm{wt} \%\) in toluene, \(9.3 \mathrm{~mL}, 16.3 \mathrm{mmol}\) ) with a syringe at \(-78{ }^{\circ} \mathrm{C}\) within 10 min . the resulting reaction mixture was allowed to stir at this temperature for 1 h before the reaction was carefully quenched with sat. aq. \(\mathrm{Na} / \mathrm{K}\) tartrate ( 100 mL ). The resulting biphasic mixture was vigorously stirred for 2 h . The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic phases were washed with water \((100 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(100 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\) and filtered. Evaporation of all volatiles provided the desired lactol at a dr of 2:1 as pale yellow oil which was used without further purification in the next reaction.
The residue was dissolved in trimethylorthoformate ( 40 mL ) and PPTS \((18 \mathrm{mg}, 0.1 \mathrm{mmol})\) was added. The reaction was stirred at room temperature for 24 h after which sat. aq. \(\mathrm{NaHCO}_{3}(20 \mathrm{~mL})\) was added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ). The combined organic phases were washed with water \((40 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(40 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}\right.\) \(6 / 1)\) yielded the desired acetal ( \(3.6 \mathrm{~g}, 6.6 \mathrm{mmol}, 80 \%\) ). Major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.70-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H})\), \(7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{ddd}, J=16.9,10.1\), \(8.8,1 \mathrm{H}), 4.95(\mathrm{dd}, J=10,1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=2.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=\) \(8.7,7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}\), \(J=11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.35\) \((\mathrm{m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=16.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})\). \({ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=159.3,138.1,135.9\) (2C), 135.8 (2C), 133.8 (2C), 130.6, 129.7 (2C), 129.3 (2C), 127.75 (2C), 127.73 (2), 116.7, 113.9 (2C), 107.6, 82.8, 72.7, 69.4, 64.2, 55.4, 55.2, 52.8, 47.4, 27.0 (3C), 19.5. HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 569.2699\), found 569.2697. IR \(\left(\mathrm{cm}^{-1}\right): 2999,2931,2858,1613,1513,1248,1112\), 1007, 823, 703. \([\alpha]_{\mathrm{D}}{ }^{23}:+15.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.42\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.48\). To a solution of the acetal \((1.3 \mathrm{~g}, 2.38 \mathrm{mmol})\) in THF \((24 \mathrm{~mL})\) was added \(\mathrm{BH}_{3} \cdot \mathrm{THF}\left(1.0 \mathrm{M}\right.\) in THF, \(7.2 \mathrm{~mL}, 7.2 \mathrm{mmol}\) ) at \(0{ }^{\circ} \mathrm{C}\) within 10 min . After 5 h of stirring at \(0^{\circ} \mathrm{C} 1 \mathrm{M} \mathrm{NaOH}(6 \mathrm{~mL})\) and hydrogen peroxide ( \(30 \mathrm{wt} \%, 3\) mL ) were added sequentially and the resulting biphasic mixture was stirred for an additional hour at that temperature. Sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})\) was added, the aqueous phase was separated and extracted with diethyl ether (3 x 20 mL ). The combined organic phases were washed with water ( 20 mL ) and sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\) and concentrated under reduced pressure. After column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) the desired alcohol ( \(1.0 \mathrm{~g}, 1.7 \mathrm{mmol}, 75 \%\) ) was obtained as pale yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.20\) \((\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=\)
\(11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=8.2,4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})\), 3.79 (s, 3H), 3.77 (dd, \(J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.65-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{dd}, J=8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=\) \(9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.58-\) \(1.51(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=159.5,135.9\) (2C), 135.8 (2C), 133.6, 133.5, 129.84 (2C), 129.83 (2C), 129.7, 127.83 (2C), 127.81 (2C), 114.0 (2C), 107.3, 84.3, 73.2, 71.7, 65.2, 61.2, 55.4, 54.6, 51.4, 40.0, 36.1, 27.0 (3C), 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 587.2805\), found 587.2814 . IR \(\left(\mathrm{cm}^{-1}\right): 3470,2932\), \(2859,1613,1472,1249,1112,1080,823,703 .[\alpha]_{\mathrm{D}}^{21}:+20.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 0.30 ). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.21 .

A suspension of the alcohol ( \(244 \mathrm{mg}, 0.43 \mathrm{mmol}\) ) and IBX ( \(242 \mathrm{mg}, 0.86\) mmol ) in EtOAc ( 4.3 mL ) was refluxed for 16 h . The fine suspension was cooled to room temperature and hexane ( 5 mL ) was added. The mixture was filtered through a pad of Celite, which was rinsed with hexane ( 5 mL ) The remaining colorless filtrate was concentrated under reduced pressure The residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}\right.\) \(8 / 1\) ), which gave the desired aldehyde 8 ( \(239 \mathrm{mg}, 0.42 \mathrm{mmol}, 98 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.65(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})\), 7.69-7.65 (m, 4H), 7.45-7.35 (m, 6H), \(7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=\) \(8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=\) \(11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.34\) \((\mathrm{m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{ddd}, J=17.6,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=\) \(17.6,5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16\) (m, 1H), 2.15-2.10 (m, 1H), 1.06 (s, 9H) \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.3,159.1,135.7\) (2C), 135.6 (2C) 133.3, 133.3, 130.3, 129.73, 129.71, 129.2 (2C), 127.69 (2C), 127.78 (2C), 113.8 (2C), 107.2, 82.9, 72.7, 70.4, 64.9, 55.2, 54.6, 52.4, 48.1, 36.4, 26.9 (3C), 19.3. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}\) 585.2648, found 585.2665. IR \(\left(\mathrm{cm}^{-1}\right): 2932.5,1759.8,1613.7,1514.5\), \(1428.5,1249.3,1180.5,1112.2,823.9,704.0 .[\alpha]_{\mathrm{D}}^{22}:+0.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.1\right)\) \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.44.
tert-Butyldimethyl(((S)-2-methyl-1-((S)-oxiran-2-yl)but-3-yn-2-
yl)oxy)silane (17): Tertiary alcohol \(16(5.96 \mathrm{~g}, 32.3 \mathrm{mmol})\) and 2,6 -lutidine \((7.6 \mathrm{~mL}, 65.3 \mathrm{mmol})\) were dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})\) and cooled to \(0^{\circ} \mathrm{C}\). TBSOTf ( \(8.2 \mathrm{~mL}, 35.7 \mathrm{mmol}\) ) was dropwise added via syringe within 10 min . The resulting pale yellow solution was stirred at that temperature for 16 h followed by the addition of sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})\). The organic phase was separated, dried with \(\mathrm{MgSO}_{4}\) and concentrated under reduced pressure providing the crude TBS-ether \((9.0 \mathrm{~g}, 30 \mathrm{mmol}, 93 \%)\) which was exceptionally clean and used in the next step without further purification. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.37-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.1\), \(5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=13.8\), \(4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.35\) \((\mathrm{s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100\right.\) \(\mathrm{MHz}): \delta=107.9,88.1,72.8,72.7,70.4,67.3,48.8,31.4,27.0,26.0,25.9\) (3C), 18.2, -2.7, -3.06. HRMS (EI) (m/z): calculated for \(\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NaO}_{3} \mathrm{SiNa}\) \(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+} 283.1729\), found 183.1722 .
The alkyne ( \(50 \mathrm{mg}, 0.17 \mathrm{mmol}\) ) was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})\) and cooled to \(0{ }^{\circ} \mathrm{C}\). TFA ( \(85 \mu \mathrm{~L}, 1.1 \mathrm{mmol}\) ) was added. After 3 h sat. aq. \(\mathrm{KHCO}_{3}(10 \mathrm{~mL})\) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})\). The combined organic phases were dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure giving the desired vicinal diol ( \(39 \mathrm{mg}, 15 \mathrm{mmol}, 90 \%\) ) as colorless oil, which was clean enough to proceed without further purification. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}\), \(1 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.2\), \(9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69\) (dd, \(J=14.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56\) (s, 3H), 0.89 (s, 9H), 0.26 \((\mathrm{s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=86.6,73.7,70.9\), 70.3, 66.9, 47.3, 32.0, 25.7 (3C), 18.0, -2.6, -3.1. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}\)281.1549, found 281.1555. IR (cm \({ }^{1}\) ): 3311, 2929, 2858, 1670, 1463, 1254, 1120, 983, 838, 778. \([\alpha]_{\mathrm{D}}{ }^{20}=-1.6\) \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.25\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1) 0.50\).
To a solution of the vicinal diol \((1.2 \mathrm{~g}, 4.6 \mathrm{mmol})\) and tributyltin oxide ( 25 \(\mathrm{mg}, 0.02 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) ( 50 mL ) was added tosyl chloride ( \(970 \mu \mathrm{~L}, 5.1\) \(\mathrm{mmol})\) followed by triethylamine \((711 \mu \mathrm{~L}, 5.1 \mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\). The resulting mixture was warmed to room temperature after 15 min and stirred for further 4 h . Water ( 30 mL ) was added, the aqueous phase was separated and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})\). The combined organic phases were dried with \(\mathrm{MgSO}_{4}\), filtered and the volatiles were removed under reduced pressure. The remaining residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\left.\mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) yielding the desired terminal tosylate ( \(1.68 \mathrm{~g}, 4.1\) mmol ) as colorless oil in \(87 \% .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.80(\mathrm{~d}, J\) \(=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H})\), 3.97 (s, 1H), \(3.65(\mathrm{~s}, 1 \mathrm{H}), 2.51\) (s, 1H), 2.43 (s, 3H), 1.83 (dd, \(J=14.3\), \(9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=14.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}, \mathrm{s})\), \(0.22(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=144.9,133.0\), 129.9 (3C), 128.2 (3C), 86.1, 74.0, 73.2, 70.6, 67.7, 47.1, 31.9, 25.7 (3C),
21.7, 18.0, 17.6, -2.62, -3.16. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 435.1637\), found 435.1644. IR \(\left(\mathrm{cm}^{-1}\right): 3286\) 2984, 2921, 2887, 1463, 1409, 1298, 1164, 1126, 999. [ \(\alpha]_{\mathrm{D}}{ }^{20}:-21.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 1.0). R f : (Hex/EtOAc 4/1) 0.48 .

At \(0{ }^{\circ} \mathrm{C} \mathrm{K}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}, 10.3 \mathrm{mmol})\) was added to a solution of the tosylate \((1.64 \mathrm{~g}, 3.97 \mathrm{mmol})\) in methanol ( 40 mL ). After \(30 \mathrm{~min} \mathrm{Et}_{2} \mathrm{O} / \mathrm{Hex} 1 / 1\) (30 mL ) was added and the resulting solids were removed by filtration. The organic phase was washed with water ( 20 mL ), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Crude epoxide 17 ( \(877 \mathrm{mg}, 3.65\) \(\mathrm{mmol}, 92 \%\) ) was used in the next step without further purification. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.54(\mathrm{dd}, J=5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{s}), 1.97(\mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.80(\mathrm{dd}, J=13.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=87.9,72.7,67.9,49.1,48.0,46.9,31.1,25.8\) (3C), 18.2, -2.7, -3.1. HRMS (EI) (m/z): calculated for \(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}\) [M\(\left.\mathrm{CH}_{3}\right]^{+} 225.1311\), found 225.1306. IR \(\left(\mathrm{cm}^{-1}\right): 2992,2956,2987,1473,1427\), 1304, 1165, 1135, 1047, 996. \([\alpha]_{\mathrm{D}}{ }^{20}:-9.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 4/1) 0.81 .

\section*{(R)-5-((S)-2-((tert-Butyldimethylsilyl)oxy)-2-methyl-4-}
(trimethylsilyl)but-3-yn-1-yl)dihydrofuran-2(3H)-one (19): Sodium \((0.93 \mathrm{~g}, 40.5 \mathrm{mmol})\) was added to ethanol \((42 \mathrm{~mL})\) at rt . After the evolution of gas ceased diethylmalonate ( \(3.8 \mathrm{~mL}, 25.2 \mathrm{mmol}\) ) was dropwise added. The resulting solution was stirred for 1 h at room temperature. A solution of epoxide \(17(1.22 \mathrm{~g}, 5.1 \mathrm{mmol})\) in \(\mathrm{EtOH}(12 \mathrm{~mL})\) was added within 10 min and the resulting mixture was stirred for 16 h . Diethyl ether ( 100 mL ), sat. aq \(\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})\) and water \((100 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 50 mL ), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure providing the desired malonate as a mixture of diastereomers which was used as such in the next reaction.
A solution of the malonate ( \(2.0 \mathrm{~g}, 5.6 \mathrm{mmol}\) ) and \(\mathrm{LiCl}(480 \mathrm{mg}, 11.3 \mathrm{mmol})\) in DMSO ( 12 mL ) and water ( 0.1 mL ) was heated to \(140{ }^{\circ} \mathrm{C}\) and stirred at this temperature for 5 h . The resulting brown mixture was cooled to room temperature and quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\). The aqueous phase was extracted with diethyl ether \((3 \times 20 \mathrm{~mL})\) and the combined organic phases were dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a viscous brown oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\left.\mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) afforded the desired lactone \((1.43 \mathrm{~g}, 5.1 \mathrm{mmol}\), \(91 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.79\) (ddd, \(J=12.1\), \(8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=9.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.48(\mathrm{~s}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.99\) (m, 1H), \(1.98(\mathrm{dd}, J=14.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.5(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.194(\mathrm{~s}\), \(3 \mathrm{H}), 0.191\) (s, 3H). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=177.2,87.9,77.7\), 73.0, 67.1, 50.4, 31.3, 29.5, 29.0, 25.8 (3C), 18.2, -2.7, -3.0. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 305.1549\), found 305.1546. IR \(\left(\mathrm{cm}^{-1}\right): 2929,2856,1780,1463,1253,1166,1113,1002,838,778 .[\alpha]_{\mathrm{D}}{ }^{20}:-\) \(27.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.54\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.31\).
To a solution of alkyne ( \(50 \mathrm{mg}, 0.18 \mathrm{mmol}\) ) in THF ( 2 mL ) was dropwise added LiHMDS \((390 \mu \mathrm{~L}, 0.39 \mathrm{mmol})\) at \(-78{ }^{\circ} \mathrm{C}\). TMSCl \((52 \mu \mathrm{~L}, 0.41\) mmol ) was dropwise added via syringe. In the following the resulting mixture was gradually warmed to \(-21{ }^{\circ} \mathrm{C}\) within 3 h . The reaction was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})\) and diethyl ether \((5 \mathrm{~mL})\) was added to the biphasic mixture. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) of the remaining residue gave 19 ( \(31 \mathrm{mg}, 0.08 \mathrm{mmol}, 49 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.78(\mathrm{dq}, J=8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=\) \(9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41\) (sext, 1H), \(2.19(\mathrm{dd}, J=14.1\), \(5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dq}, J=12.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.1,6.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.50(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=177.3,109.7,89.2,77.9,77.2,67.3,50.2,31.5,29.4\), 29.0, 25.9 (3C), 18.2, 0.2 (3C), -2.7, -3.0. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 377.1944\), found 377.1949 . IR \(\left(\mathrm{cm}^{-1}\right): 2956\), 2857, 1780, 1462, 1360, 1251, 1165, 1110, 1000, 838. \([\alpha]_{\mathrm{D}}{ }^{23}:-16.4,\left(\mathrm{CHCl}_{3}\right.\), \(\mathrm{c}=0.7) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.45\).

Secondary alcohol 21: To a solution of 19 ( \(30 \mathrm{mg}, 0.08 \mathrm{mmol}\) ) in THF \((1 \mathrm{~mL})\) was added LiHMDS \((93 \mu \mathrm{~L}, 0.09 \mathrm{mmol})\) at \(-78{ }^{\circ} \mathrm{C}\). The resulting pale yellow solution was cooled to \(-40^{\circ} \mathrm{C}\) for 30 min , then to \(-78^{\circ} \mathrm{C}\) and a solution of \(\mathbf{8}(52 \mathrm{mg}, 0.09 \mathrm{mmol})\) in THF \((1 \mathrm{~mL})\) was added. The reaction was warmed to \(-40^{\circ} \mathrm{C}\) within 1 h and stirred for 2 h . The reaction was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})\) and diethyl ether \((5 \mathrm{~mL})\) was added to the biphasic mixture. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under
reduced pressure. Purification of the residue by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 10 / 1\right)\) provided 21 as inseparable mixture of all four possible diastereomers ( \(7 \mathrm{mg}, 0.01 \mathrm{mmol}\) ). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta\) \(=7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}\), \(2 \mathrm{H}), 4.86-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.10\) \((\mathrm{m}, 1 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 5 \mathrm{H}), 3.54-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.23-\) \(3.17(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H})\), 1.99-1.84 (m, 2H), \(1.49(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H})\), 0.16 (s, 6H), 0.13 (s, 3H). \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.6,159.5\), \(150.3,135.9\) (2C), 135.7 (2C), 133.3, 133.3, 130.3, 129.9, 129.8, 129.2 (2C), 127.9 (2C), 127.8 (2C), 114.2 (2C), 107.3, 107.4, 84.6, 84.2, 78.2, \(73.4,72.8,71.7,66.9,64.8,55.4,54.6,52.4,47.1,41.0 .40 .1,38.7,29.8\), 27.9 (3C), 26.9 (3C), 19.3, 19.5. 2.4 (3C), -2.7, -3.0. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 939.4695\), found 939.4685. IR (cm \(\left.{ }^{1}\right): 3479,2988,2878,1721,1501,1453,1393,1267,1101,992 .[\alpha]_{D}{ }^{20}\) : 11.3, \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.3\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.38\).

Butyrolactone 22: To a solution of diisopropylamine ( \(150 \mu \mathrm{~L}, 1.06 \mathrm{mmol}\) ) in THF ( 2.8 mL ) was dropwise added \(n \mathrm{BuLi}(1.6 \mathrm{M}\) in hexane, \(633 \mu \mathrm{~L}, 1.0\) mmol ) at \(-21{ }^{\circ} \mathrm{C} .10 \mathrm{~min}\) after the addition the resulting solution was put to \(0{ }^{\circ} \mathrm{C}\) for 30 min and thereafter cooled to \(-78{ }^{\circ} \mathrm{C}\). A solution of seleno lactone \(22(274 \mathrm{mg}, 0.93 \mathrm{mmol})\) in THF ( 3.6 mL ) was dropwise added within 10 min . The mixture was allowed to warm to \(-60^{\circ} \mathrm{C}\) before aldehyde \(8(475 \mathrm{mg}, 0.84 \mathrm{mmol})\) in THF ( 3.6 mL ) was added within 10 min . The mixture was further warmed to \(-45^{\circ} \mathrm{C}\) within 1 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})\) was added, the layers were separated and the aqueous was extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 20 mL ) and sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\) and concentrated under reduced pressure. The obtained yellow oil was used without purification in the next step.
The mixture of diastereomers was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.8 \mathrm{~mL})\), cooled to \(0{ }^{\circ} \mathrm{C}\) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(0.8 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%, 1.6 \mathrm{~mL}, 14 \mathrm{mmol})\) were added. After 1 h sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})\) was added and stirring was continued for additional 30 min . The separated aqueous layer was extracted with diethyl ether ( \(3 \times 15 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 15 mL ), sat. aq. \(\mathrm{NaCl}(15 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1\) ) gave \(22(512 \mathrm{mg}, 0.73\) \(\mathrm{mmol}, 86 \%)\) as a mixture of diastereomers. Diastereomer A: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, J=\) \(8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96\) (ddt, \(J\) \(=7.7,6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.55-\) \(4.51(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H})\), \(3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(3.71(\mathrm{dd}, J=11.2,4.6 \mathrm{~Hz}\), 1 H ,), \(3.58(\mathrm{dd}, J=8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(3.30(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=9.0,1.1 \mathrm{~Hz}\), 1 H ,), \(3.22(\mathrm{dd}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=14.4\), \(6.1 \mathrm{~Hz}, 1 \mathrm{H},), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=13.8,10.7,3.1 \mathrm{~Hz}, 1 \mathrm{H})\), 1.78 (br s, 3H), 1.66 (ddd, \(J=13.7,9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(1.06(\mathrm{br} \mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.1,159.6,148.6,140.0,137.1,135.9\) (4C), 135.8 (2C), 133.54, 133.49, 129.8 (4C), 129.5, 127.9 (2C), 127.8 (2C), 114.3, 114.1 (2C), 107.1, 84.2, 80.1, 73.4, 71.7, 65.6, 64.7, 55.4, 54.5, 51.5, 41.5, 38.82, 38.77, 27.0 (3C), 23.1, 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 723.3329\), found 723.3325. IR \(\left(\mathrm{cm}^{-1}\right): 3386,2967\), 2930, 2889, 1773, 1752, 1467, 1365, 1277, 1034. \([\alpha]_{\mathrm{D}}{ }^{20}:-16.6,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 0.8). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.29. Diastereomer B: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=\delta=7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H})\), 6.87-6.84 (m, 2H), 5.03-4.99 (m, 1H), 4.91 (br s, 1H), 4.81 (br s, 1H), 4.70 \((\mathrm{s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=8.5\), \(6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.39\) (dd, \(J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}\), \(1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}) 1.07(\mathrm{br} \mathrm{s}, 9 \mathrm{H})\). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=171.6,159.1,148.6,139.9,137.0,135.9\) (2C), 135.8 (2C), 133.6, 133.5, 129.9, 129.8, 129.7 (2C), 129.4, 127.91 (2C), 127.85 (2C), 114.4, 114.1 (2C), 107.3, 84.5, 80.1, 73.3, 71.6, 67.1, 64.8, 55.4, 54.6, 52.4, 41.6, 40.9, 39.9, 27.1 (3C), 23.1, 19.5. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 723.3329\), found 723.3334. IR \(\left(\mathrm{cm}^{-1}\right): 3407,2975,2936,2904,1779,1746,1467,1392,1292,1015\). \([\alpha]_{\mathrm{D}}^{20}:-11.2,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.65\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.28\).

Pyran 27: To a solution of \(22(1.27 \mathrm{~g}, 1.8 \mathrm{mmol})\) as a mixture of diastereomers in diisopropylethylamine ( 3.0 mL ) was dropwise added MOMCl \((410 \mu \mathrm{~L}, 5.4 \mathrm{mmol})\). The resulting solution was stirred at room temperature for 16 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) and diethyl ether ( 20 mL ) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic layers were washed with sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the crude oil gave the desired MOM-protected
secondary alcohol ( \(1.05 \mathrm{~g}, 1.4 \mathrm{mmol}, 78 \%\) ) as pale yellow oil. Diastereomer A: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.72-7.66(\mathrm{~s}, 4 \mathrm{H}), 7.42-\) \(7.35(\mathrm{~s}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})\), \(4.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.51\) \((\mathrm{s}, 2 \mathrm{H}), 4.42-4.40(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.9\), \(5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J=\) \(14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=6.4 \mathrm{~Hz}\), \(2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}\), \(100 \mathrm{MHz}): \delta=171.6,159.3,149.7,139.9,135.9\) (2C), 135.8 (2C), 135.6, \(133.69,133.66,130.5,129.8\) (2C), 129.5 (2C), 127.80 (2C), 127.78 (2C), \(114.5,113.9\) (2C), 107.7, 96.0, 83.8, 79.9, 72.7, 71.1, 70.8, 64.8, 56.1, 55.4, 54.6, 52.2, 41.6, 38.7, 38.2, 27.0 (3C), 23.1, 19.43. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 767.3591\), found 767.3582. IR (cm \({ }^{-}\) \({ }^{1}\) ): 2954, 2928, 2888, 1756, 1749, 1421, 1383, 1227, 1117, 987. \([\alpha]_{\mathrm{D}}{ }^{20}:-\) 26.1, \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.5\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.48\). Diastereomer B: \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.72-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.22\) \((\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-4.91(\mathrm{~m}\), \(1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.45(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.31(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=11.3,3.0 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.30\) \((\mathrm{m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})\), \(1.31-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=171.4\), 159.3, 150.4, 139.8, 135.9 (2C), 135.8 (2C), 134.8, 133.8, 133.6, 130.5, \(129.8,129.7,129.4\) (2C), 127.81 (2C), 127.78 (2C), \(114.4,113.9\) (2C), \(107.4,95.6,84.3,79.8,72.8,71.0,70.8,65.3,55.9,55.4,54.6,52.6,41.4\), 38.6, 38.5, 27.01 (3C), 23.1, 19.4. HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 767.3591\), found 767.3596. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2928\), \(2888,1756,1749,1421,1383,1227,1117,987 .[\alpha]_{\mathrm{D}}^{20}:-23.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 0.6). R f : (Hex/EtOAc 3/1) 0.41 .

The MOM-protected mixture of diastereomers ( \(100 \mathrm{mg}, 0.13 \mathrm{mmol}\) ) was dissolved in \(t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} 1 / 1(1.4 \mathrm{~mL})\), methylsulfonamide ( \(12 \mathrm{mg}, 0.28\) \(\mathrm{mmol})\) and AD-mix- \(\alpha(190 \mathrm{mg}, 0.27 \mathrm{mmol})\) were added. The resulting mixture was stirred for 16 h , diethyl ether \((10 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaHS}_{2} \mathrm{O}_{3}(5\) mL ) were added. The aqueous phase was extracted with diethyl ether ( 3 x \(10 \mathrm{~mL})\). The combined organic extracts were washed with sat. aq. \(\mathrm{NaCl}(10\) mL ), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the oil by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) gave pyran \(27(80 \mathrm{mg}, 0.11 \mathrm{mmol})\) in \(83 \%\) yield. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})\), 6.87-6.85 (m, 3H), \(5.15(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84\) (br s, 1H), \(4.38(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=\) \(11.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.36-3.22(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{dd}, J=14.4\), \(6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.12(\mathrm{~s}\), \(3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=169.6,159.4,145.1\), 135.82 (2C), 135.77 (2C), 133.51, 133.46, 130.4, 130.2, 129.90, 129.87, 129.4 (2C), 127.9 (2C), 127.8 (2C), 114.0 (2C), 107.4, 85.9, 83.4, 83.2, \(77.4,72.9,70.5,68.2,64.9,55.4,54.8,51.9,41.3,39.3,34.0,27.0\) (3C), 24.4, 19.4. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}\) 739.3278, found 739.3287. IR \(\left(\mathrm{cm}^{-1}\right): 3461,2943,2917,2875,1763,1741\), 1453, 1399, 1202, 1016. \([\alpha]_{\mathrm{D}}^{22}:-41.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / E t \mathrm{OAc}\) 1/1) 0.63 .
(S)-2-Methyl-1-((S)-oxiran-2-yl)but-3-yn-2-ol (36): Alkyne 33 ( 2.40 g , \(13.0 \mathrm{mmol})\) was dissolved in a mixture of acetic acid ( 27 mL ) and \(\mathrm{H}_{2} \mathrm{O}(1.4\) \(\mathrm{mL})\) at room temperature. The clear colorless solution was stirred for 24 h and concentrated under reduced pressure. The remaining pale yellow residue was evaporated with toluene ( \(3 \times 10 \mathrm{~mL}\) ) till the smell of AcOH was gone. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}\right.\) \(2 / 1)\) afforded the corresponding triol as colorless gum \((1.67 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ): \(\delta=4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{dd}\), \(J=11.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=10.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33\) (br s, 1H), 2.51 \((\mathrm{s}, 1 \mathrm{H}), 2.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=14.4\), \(2.1 \mathrm{~Hz}, 1 \mathrm{H}) 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=87.0,72.3,71.3\), 68.3, 66.8, 43.9, 31.2. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}]^{+}\) 144.0786, found 144.0791. IR ( \(\mathrm{cm}^{-1}\) ): 3298, 2983, 2359, 1418, 1133, 1109, \(1058,1036,1016,908 .[\alpha]_{\mathrm{D}}^{20}:-7.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 2)\) 0.19 .

A solution of aforementioned triol ( \(3.8 \mathrm{~g}, 26.4 \mathrm{mmol}\) ) in THF ( 40 mL ) was added to a suspension of \(\mathrm{NaH}(5.2 \mathrm{~g}, 132 \mathrm{mmol})\) in THF \((100 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\). The resulting heterogeneous mixture was stirred at \(0{ }^{\circ} \mathrm{C}\) for 30 min , allowed to warm to room temperature and aged for 30 min before being cooled to \(0^{\circ} \mathrm{C}\) again. Solid trisylimidazole \(34(11.5 \mathrm{~g}, 34.3 \mathrm{mmol})\) was added in three portions under a constant stream of argon. The resulting reaction mixture was vigorously stirred at \(0{ }^{\circ} \mathrm{C}\) for 1 h before it was quenched with \(\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\) and brine ( 20 mL ). The aqueous phase was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})\), the combined organic phases were
dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a brown oil. Purification by flash column chromatography ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1\) ) afforded epoxide 36 as colorless oil \((2.36 \mathrm{~g}, 78 \%) .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.34-\) \(3.29(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=4.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=4.9\), \(2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=4.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd} ., J=\) \(14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=87.0\), 72.1, 67.2, 49.5, 46.7, 45.5, 30.2. HRMS (EI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\) \(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+} 111.0446\), found 111.0441. IR \(\left(\mathrm{cm}^{-1}\right): 3408,3283,2985,2926\), \(1450,1410,1304,1165,1135,1047 .[\alpha]_{\mathrm{D}}{ }^{20}:-20.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/2) 0.58.

\section*{(R)-5-((S)-2-Hydroxy-2-methylbut-3-ynyl)dihydrofuran-2(3H)-one}
(37): Sodium ( \(1.08 \mathrm{~g}, 46.8 \mathrm{mmol}\) ) was added as small pieces under a constant stream of argon to EtOH ( 100 mL ). After all solids were dissolved, diethylmalonate \((14.2 \mathrm{~mL}, 94 \mathrm{mmol})\) was added dropwise. A solution of epoxide \(36(2.36 \mathrm{~g}, 18.7 \mathrm{mmol})\) in \(\mathrm{EtOH}(100 \mathrm{~mL})\) was added after stirring at room temperature for 15 min . The reaction mixture was aged at this temperature for 16 h and quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}\) \((50 \mathrm{~mL})\). The aqueous phase was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})\) and the combined organic phases were dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a pale yellow oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \quad \mathrm{Hex} / \mathrm{EtOAc} 4 / 1\right)\) afforded a (1:1.45) diastereoisomeric mixture of the desired malonate as colorless oil ( 3.86 g , \(86 \%)\). Major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.98-4.91(\mathrm{~m}\), \(1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.12,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61\) (dd, \(J=11.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=9.1\), \(6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=11.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=14.8\), \(8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=171.2,167.7,86.5,76.9,72.8,66.6,62.4\), 48.0, 46.8, 32.9, 30.5, 14.2. Minor diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.19-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}\), \(J=6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=11.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}\), \(1 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=171.2,167.7,86.4,77.9,72.9,66.6,62.5,48.1,46.5\), 32.9, 30.5, 14.2. HRMS (EI): (m/z): calculated for \(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{5}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\) 225.0763, found 225.0765. IR \(\left(\mathrm{cm}^{-1}\right): 3473,2984,1767,1450,1371,1260\), 1156, 1095, 1035, 1008. \([\alpha]_{\mathrm{D}}{ }^{20}=-33.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 1/1) 0.51 .
Aforementioned malonate ( \(3.8 \mathrm{~g}, 15.83 \mathrm{mmol}\) ) was heated to \(140^{\circ} \mathrm{C}\) in the presence of \(\mathrm{LiCl}(1.33 \mathrm{~g}, 31.66 \mathrm{mmol})\) in a mixture of DMSO \((32 \mathrm{~mL})\) and water \((1 \mathrm{~mL})\) and stirred for 5 h . The resulting brown mixture was cooled to room temperature and quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}(30\) \(\mathrm{mL})\). The aqueous phase was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \times 10 \mathrm{~mL})\) and the combined organic phases were dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a viscous brown oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) afforded alcohol 37 as colorless oil ( \(2.5 \mathrm{~g}, 94 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.03-4.97(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.54(\mathrm{dd}\), \(J=9.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}\), \(1 \mathrm{H}), 2.09-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\) 176.3, 86.6, 78.5, 72.7, 66.9, 48.2, 30.5, 28.9, 28.3. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\)153.0552, found 153.0557. IR \(\left(\mathrm{cm}^{-1}\right)\) : \(3430,3280,2985,2934,1760,1357,1173,1124,1035,1008 .[\alpha]_{D}{ }^{20}=-67.2\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 2) 0.41\).
(R)-5-((S)-2-Methyl-2-(trimethylsilyloxy)penta-3,4-
dienyl)dihydrofuran-2(3H)-one (38): A heterogeneous mixture of alcohol \(37(2.5 \mathrm{~g}, 14.9 \mathrm{mmol})\), paraformaldehyde ( \(1.29 \mathrm{~g}, 44.6 \mathrm{mmol}\) ), \(i \operatorname{Pr}_{2} \mathrm{NH}(3.2\) \(\mathrm{mL}, 22.32 \mathrm{mmol})\) and \(\mathrm{CuBr}(1.07 \mathrm{~g}, 7.45 \mathrm{mmol})\) in 1,4-dioxane ( 30 mL ) was stirred at \(125^{\circ} \mathrm{C}\) for 6 h . The resulting greenish reaction mixture was cooled to room temperature, filtered through a pad of Celite followed by the addition of sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})\). The aqueous phase was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})\) and the combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a brown oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\left.\mathrm{Hex} / \mathrm{EtOAc}, 2 / 1\right)\) afforded the desired allene as colorless oil \((1.9 \mathrm{~g}, 86 \%) .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.31(\mathrm{t}, J=6.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.83-4.76(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=9.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02(\mathrm{dd}, \mathrm{J}\) \(=14.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), 100 MHz ): \(\delta=205.5,176.9,99.4,79.1,78.1,70.4,47.7,29.4,28.9,28.7\). HRMS (EI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{+} 164.0839\), found 164.0837. IR ( \(\mathrm{cm}^{-1}\) ): 3423, 2978, 2934, 1956, 1760, 1727, 1457, 1419, 1357, 1289, \(1223,1179,1114,1075,1012,986,917,850 .[\alpha]_{\mathrm{D}}^{20}:-49.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 1.0). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/1) 0.18 .

2,6-Lutidine ( \(8.0 \mathrm{~mL}, 69.1 \mathrm{mmol}\) ) and TMSOTf ( \(6.3 \mathrm{~mL}, 34.6 \mathrm{mmol}\) ) were sequentially added to a solution of the tertiary allenic alcohol \((4.2 \mathrm{~g}, 23.0\)
\(\mathrm{mmol})\) in THF \((50 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\). After removal of the cooling bath and additional 30 min the reaction was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})\). The aqueous phase was extracted with hexanes \((10 \mathrm{~mL})\) and the combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a crude colorless oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 4 / 1\right)\) afforded lactone 38 as colorless oil \((5.1 \mathrm{~g}, 87 \%)\). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.25(\mathrm{t}, J=6.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.70(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=8.4,2.5\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36\) (sext., \(J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.84\) \((\mathrm{m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=206.3\), 177.4, 99.8, 78.1, 77.9, 72.8, 49.4, 29.8, 29.0, 27.7, 2.4 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 277.1233\), found 277.1236. IR \(\left(\mathrm{cm}^{-1}\right): 2955,1956,1773,1249,1154,1110,1078,1001,982,916,836\). \([\alpha]_{\mathrm{D}}{ }^{20}:-42.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1) 0.64\).

2-Phenylselenyl- \(\boldsymbol{\gamma}\)-butyrolactone 32: LiHMDS (1.0 M in toluene, 6.5 mL , \(64.9 \mathrm{mmol})\) and \(\mathrm{TMSCl}(0.83 \mathrm{~mL}, 64.9 \mathrm{mmol})\) were sequentially added to a solution of lactone \(39(1.50 \mathrm{~g}, 5.9 \mathrm{mmol})\) in THF \((30 \mathrm{~mL})\) at \(-78{ }^{\circ} \mathrm{C}\). After 2 h at \(-78^{\circ} \mathrm{C}\) a solution of \(\mathrm{PhSeCl}(1.24 \mathrm{~g}, 64.9 \mathrm{mmol})\) in THF ( 30 mL ) was added within 10 min . After 30 min at \(-78^{\circ} \mathrm{C}\), the reaction was quenched with sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})\). The aqueous phase was extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ) and the combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(40 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a colorless oil. Purification by flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 20/1) afforded a 1:1.5 diastereoisomeric mixture of lactone 32 as colorless oil \((2.0 \mathrm{~g}, 83 \%)\). \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.71-7.63\) \((\mathrm{m}, 3 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 4.6 \mathrm{H}), 5.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=6.6 \mathrm{~Hz}\), \(0.5 \mathrm{H}), 4.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 0.5 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 1 \mathrm{H})\), \(4.02(\mathrm{dd}, J=10.1,9.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.91(\mathrm{dd}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.69\) \((\mathrm{m}, 0.5 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{dt}, J=13.3,10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.92(\mathrm{dd}\), \(J=14.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1.5 \mathrm{H}), 1.70(\mathrm{dd}, J=14.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.35(\mathrm{~s}, 1.5 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 4.5 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), 100 MHz ): \(\delta=206.1,175.8,136.0,135.9,135.6,128.7,127.1,126.8,99.6\), \(99.6,77.8,76.6,76.4,72.6,49.2,48.9,38.3,37.0,27.5,2.2\) (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SeSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 433.0709\), found 433.0715. IR \(\left(\mathrm{cm}^{-1}\right): 2956,1956,1769,1483,1251,1112,1022,840,740\). \([\alpha]_{\mathrm{D}}{ }^{20}:-53.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \operatorname{EtOAc} 8 / 1) 0.27\) (major), 0.32 (minor).

Butenolide 39: A freshly prepared solution of LDA ( \(810 \mu \mathrm{~L}, 0.5 \mathrm{M} \mathrm{THF}\), 0.40 mmol ; see 22) was dropwise added to a solution of \(\mathbf{3 2}(153 \mathrm{mg}, 0.37\) \(\mathrm{mmol})\) in THF \((1.5 \mathrm{~mL})\) at \(-78^{\circ} \mathrm{C}\). The resulting pale yellow solution was stirred for 30 min before \(\mathbf{8}(190 \mathrm{mg}, 0.34 \mathrm{mmol})\) in THF ( 2 mL ) was added within 10 min . The reaction mixture was gradually warmed to \(-40{ }^{\circ} \mathrm{C}\) within 2 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) and diethyl ether \((10 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 10\) \(\mathrm{mL})\). The combined organic layers were washed with water ( 15 mL ) and sat. aq. \(\mathrm{NaCl}(15 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. NMR-analysis of the crude mixture of four diastereomers indicated full consumption of \(\mathbf{3 2}\). The crude mixture was used as such in the next step.
The crude oil was dissolved in a mixture of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})\) and pyridine \((350 \mu \mathrm{~L})\) and cooled to \(0^{\circ} \mathrm{C}\). Hydrogen peroxide ( \(230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}\) ) was added and the resulting biphasic mixture was stirred at that temperature for 1 h . Sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})\) and diethyl ether \((20 \mathrm{~mL})\) were added and the resulting biphasic mixture was stirred for another hour. The aqueous phase was extracted with diethyl ether \((2 \times 10 \mathrm{~mL})\). The combined organic layers were washed with sat. aq. \(\mathrm{CuSO}_{4}(2 \times 15 \mathrm{~mL})\) water \((15 \mathrm{~mL})\) and water \((15\) mL ), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) afforded desired butyrolactone \(39(224 \mathrm{mg}, 0.28 \mathrm{mmol})\) as inseparable mixture of diastereomers. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-\) \(7.37(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 0.4 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H})\), \(5.27(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=\) \(8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 0.5 \mathrm{H}), 4.48-4.40(\mathrm{~m}, ~, 2.5 \mathrm{H}), 4.06(\mathrm{~d}, J=4.2 \mathrm{~Hz}\), \(0.5 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1.5 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.31-\) \(3.27(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 0.5 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 0.5 \mathrm{H})\), \(2.07-2.01(\mathrm{~m}, 0.5 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})\), \(1.09(\mathrm{~s}, 4 \mathrm{H}), 1.08(\mathrm{~s}, 5 \mathrm{H}), 0.15(\mathrm{~s}, 5 \mathrm{H}), 0.14(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (CDCl \({ }_{3}, 100\) \(\mathrm{MHz}): \delta=206.3,172.5,172.4,159.6,159.5,150.4,150.2,136.0,135.9\), \(135.8,135.8,135.7,133.6,133.5,133.42,133.38,133.3,129.82,129.80\), 129.78, 129.6, 127.9, 127.83, 127.80, 127.77, 114.1, 114.0, 107.3, 107.1, \(99 ., 84.5,84.2,78.8,78.7,78.2,78.1,73.3,73.2,72.82,72.77,71.7,71.5\), \(66.9,65.7,64.7,64.5,55.3,54.5,54.4,52.4,51.5,47.1,47.0,40.7,40.0\), \(38.8,38.6,27.78,27.76,27.02,26.98,19.41,19.39,2.39\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)837.3830, found 837.3823.

IR ( \(\mathrm{cm}^{-1}\) ): 3433, 2971, 2921, 2879, 1776, 1429, 1227, 1164, 1023, 973. \([\alpha]_{\mathrm{D}}{ }^{20}:-13.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 2 / 1) 0.51\).

Cage-shaped cyclobutane 40: A 1:1 diastereomeric mixture of \(\mathbf{3 9}(25 \mathrm{mg}\), 0.03 mmol ) was dissolved in freshly degassed cyclohexane ( 13 mL ) and placed 1 cm in front of UV-B lamps. The resulting colorless solution was irradiated for 1.5 h . The volatiles were removed under reduced pressure and the resulting yellow oil was subjected to column chromatography ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 8 / 1\) ) leading to the isolation of a diastereomeric mixture of 40 \((3 \mathrm{mg}, 0.003 \mathrm{mmol}, 10 \%) .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.71-7.66(\mathrm{~m}\), \(4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})\), 5.31 (dd, \(J=2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J\) \(=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}\), \(1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}\), \(1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{qd}, J=12.4\), \(1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7\), \(5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{td}, J=19.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})\), 0.12 (s, 9H). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=177.2,159.5,144.8,135.91\) (2C), 135.86 (2C), 133.7, 133.5, 130.0, 129.80, 129.78, 129.5 (2C), 127.82 (2C), 127.79 (2C), 114.5, 114.0 (2C), 107.4, 84.9, 83.9, 83.7, 73.0, 71.5, \(69.7,65.5,57.90,57.88,55.4,54.6,51.7,49.5,44.4,39.6,35.2,27.0\) (3C), 23.5, 19.4, 2.44 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+}\)837.3830, found 837.3809. IR \(\left(\mathrm{cm}^{-1}\right): 3433,2971,2921,2879\), \(1776,1429,1227,1164,1023,973 .[\alpha]_{\mathrm{D}}{ }^{20}:-33.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.08\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 2/1) 0.60.

Ethyl
2-((3aR,5S,6R,6aR)-5-(hydroxymethyl)-2,2dimethyltetrahydrofuro \([2,3-\mathrm{d}][1,3]\) dioxol-6-yl)acetate (42): A mixture of diacetone-(D)-glucofuranose ( \(34.4 \mathrm{~g}, 127.3 \mathrm{mmol}\) ) and IBX ( \(82 \mathrm{~g}, 292.8\) \(\mathrm{mmol})\) in EtOAc ( 1 L ) was heated to reflux for 26 h . After the thick suspension reached room temperature, hexane ( 500 mL ) were added and the resulting suspension was filtered through a pad of Celite. The volatiles were removed under reduced pressure and the crude ketone ( 35.4 g ) was used as such in the olefination. \(\mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} / E t O A c 1 / 1) 0.25\).
To a solution of \(\mathrm{PPh}_{3}(55 \mathrm{~g}, 209.6 \mathrm{mmol})\) in \(\mathrm{EtOAc}(360 \mathrm{~mL})\) was added a solution of methyl bromoacetate ( \(32.3 \mathrm{~g}, 211 \mathrm{mmol}\) ) in EtOAc \((90 \mathrm{~mL})\) via dropping funnel within 45 min at \(0^{\circ} \mathrm{C}\). The resulting thick white suspension was allowed to warm to room temperature and stirred for 20 h . The solids were collected by filtration, digested in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})\) in a separatory funnel and vigorously shaken with \(1 \mathrm{M} \mathrm{NaOH}(300 \mathrm{~mL})\) for 30 min . The aqueous layer was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})\). The organic phases were washed with sat. aq. \(\mathrm{NaCl}(200 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure yielding the Wittig-ylide ( \(70 \mathrm{~g}, 209.3 \mathrm{mmol}\) ) as white solid after extensive drying under high vacuum for 2 h .
A solution of the ylide ( \(50.4 \mathrm{~g}, 150.7 \mathrm{mmol}\) ) in \(\mathrm{CHCl}_{3}(500 \mathrm{~mL})\) was added via cannula to a solution of the ketone ( \(35.4 \mathrm{~g}, 137.1 \mathrm{mmol}\) ) in \(\mathrm{CHCl}_{3}(500\) mL ) at \(0{ }^{\circ} \mathrm{C}\) within 30 min . After the addition the reaction mixture was warmed to room temperature and stirred for 16 h resulting in a dark red solution. The volatiles were evaporated and the dark gum was subjected to filtration through a short pad of silica (Hex/EtOAc 2/1). After evaporation the orange gum \((40 \mathrm{~g}, 127.3 \mathrm{mmol}, 93 \%)\) was used as such in the next step. \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/1) 0.70 .
To a solution of the \(\alpha, \beta\)-unsaturated ester ( \(20 \mathrm{~g}, 63.6 \mathrm{mmol}\) ) in EtOH ( 250 mL ) was added Raney-Nickel \(2400(10 \mathrm{~g})\). The round-bottomed flask was sealed with a rubber-septum. A rubber-balloon charged with \(\mathrm{H}_{2}\) was connected to a needle which reached into the solution. A gas outlet was installed and the flow of the gas was regulated with a hose clamp to about 4 bubbles per second. The round-bottomed flask was placed in an ultra sound bath and treated for 2 h in a well fumed hood. The balloon was replaced by a balloon filled with argon and the reaction mixture was purged in the ultra sound bath for 30 min . The nickel catalyst was filtered off through a pad of Celite, which was washed with \(\mathrm{EtOH}(2 \times 100 \mathrm{~mL})\). Removal of the solvent under reduced pressure gave the desired product as a clean single diastereomer ( \(20.0 \mathrm{~g}, 63.2 \mathrm{mmol}, 99 \%\) ) and colorless gum, which was used as such in the next reaction. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.77(\mathrm{~d}, J=\) \(3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 1 \mathrm{H})\), 4.00-3.97 (m, 1H), 3.96-3.92 (m, 1H), 3.69 (dd, \(J=9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2,81\) (dd, \(J=17.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}\), \(1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.15\) \(\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.5,112.0,109.8,105.2,81.7\) 81.1, 78.0, 68.0, 60.7, 44.7, 30.2, 26.9, 26.8, 26.5, 25.4, 14.4. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 353.1576\), found 353.1586. IR \(\left(\mathrm{cm}^{-1}\right): 2986,2938,1734,1381,1333,1241,1213,1065,1016,847 .[\alpha]_{\mathrm{D}}{ }^{22}\) : \(+69.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1) 0.70\).
The crude diacetonide ( 20.0 g 63.2 mmol ) was digested in \(\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} 2 / 1\) \((60 \mathrm{~mL})\). After all of the crude gum was dissolved the solution was stirred at room temperature for 18 h . The volatiles were removed under reduced
pressure and the resulting slightly yellow residue was co-evaporated with toluene ( \(5 \times 50 \mathrm{~mL}\) ) till the smell of acetic acid was gone. The desired vicinal diol ( \(17.7 \mathrm{~g}, 63.2 \mathrm{mmol}, 100 \%\) ) was used in the next reaction without further purification. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.78\) (d, \(J=\) \(3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=4.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J\) \(=10.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H})\), \(2.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})\), \(1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\) 173.1, 112.1, 104.9, 81.9, 81.6, 73.6, 64.1, 61.0, 43.3, 30.6, 26.9, 26.6, 14.4. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 313.1263\), found 313.1256. IR ( \(\mathrm{cm}^{-1}\) ): 3438, 2924, 2854, 1732, 1460, 1377, 1218, 1168, 1016, 772. \([\alpha]_{\mathrm{D}}^{20}=+10.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.35\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1) 0.18\).

The gum ( \(17.7 \mathrm{~g}, 63.2 \mathrm{mmol}, 100 \%\) ) was dissolved in \(\mathrm{MeOH}(160 \mathrm{~mL})\) and \(\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})\). The solution was cooled to \(0{ }^{\circ} \mathrm{C}\) and \(\mathrm{NaIO}_{4}(13.6 \mathrm{~g}, 63.6\) mmol ) was added under vigorous stirring at once. After 1 h at that temperature glucose ( \(0.5 \mathrm{~g}, 2.77 \mathrm{mmol}\) ) was added to the thick suspension. After 15 min the solids were removed by filtration through a pad of Celite. The residue was washed with \(\mathrm{MeOH}(50 \mathrm{~mL})\). The combined liquids were cooled to \(0{ }^{\circ} \mathrm{C}\) followed by the careful addition of \(\mathrm{NaBH}_{4}(3.50 \mathrm{~g}, 92.5\) mmol ) in three portions. After an additional hour acetic acid was added carefully till pH 6 of the solution was reached. The volatiles were removed and the residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 1/1) yielding the desired \(\alpha\)-D-ribofuranose \(\mathbf{4 2}(13.5 \mathrm{~g}, 51.8\) \(\mathrm{mmol}, 82 \%) .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})\), 4.78 (dd, \(J=4.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.59-\) \(3.54(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dd}\), \(J=16.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=\) \(7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.4,111.9,104.9,81.8\), 81.5, 61.6, 61.0, 39.8, 30.0, 26.8, 26.5, 14.3. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 283.1158\), found 283.1153. IR \(\left(\mathrm{cm}^{-1}\right): 3474,2985\), 2937, 1731, 1374, 1214, 1167, 1112, 1013, 874. \([\alpha]_{\mathrm{D}}{ }^{20}:+62.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 1.0). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/1) 0.33 .

\section*{(3aR,4S,6R,6aR)-4-(((tert-Butyldimethylsilyl)oxy)methyl)-6-}
methoxytetrahydrofuro[3,4-b]furan-2(3H)-one (43): A mixture of trifluoroacetic acid ( 60 mL ) and \(\alpha\)-D-ribofuranose \(42(9.8 \mathrm{~g}, 37.7 \mathrm{mmol})\) in \(\mathrm{MeOH}(370 \mathrm{~mL})\) was heated to reflux for 16 h . The resulting pale yellow solution was concentrated in vacuo and the remaining oil was co-evaporated with toluene ( 3 x 50 mL ). Purification by flash column chromatography ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1 \rightarrow 1 / 2\) ) afforded the desired lactone as pale yellow oil \((5.7 \mathrm{~g}, 81 \%)\). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.08\) (s, \(1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=12.2\), \(2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.19(\mathrm{~m}\), \(1 \mathrm{H}), 2.86(\mathrm{dd}, J=18.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=18.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25\) (br s, 1H). \({ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=175.5,107.8,89.6,87.7,64.7\), \(55.9,38.1,34.1\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 211.0582, found 211.0582 . IR \(\left(\mathrm{cm}^{-1}\right): 3412,2923,1776,1454,1377,1161\), 1106, 1049, 959, 813. \([\alpha]_{\mathrm{D}}{ }^{25}:-40.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 4)\) 0.29 .

To a solution of the primary alcohol \((4.1 \mathrm{~g}, 21.8 \mathrm{mmol})\) and imidazole ( 3.6 \(\mathrm{g}, 52.3 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})\) was added tert-butyldimethylsilyl chloride ( \(3.9 \mathrm{~g}, 26.1 \mathrm{mmol}\) ) as a solid in three portions under an argon stream at room temperature. After stirring for 2 h the resulting pale yellow reaction mixture was quenched by the addition of water ( 100 mL ). The aqueous layer was separated and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})\). The combined organic phases were washed with water \((100 \mathrm{~mL})\) and aq. sat. \(\mathrm{NaCl}(100 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\) and filtered. After evaporation of all volatiles flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) of the residue gave lactone \(43(6.0 \mathrm{~g}, 91 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.06(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=8.3,5.1\), \(4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.8,8.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.34(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=18.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J\) \(=18.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.59(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100\right.\) \(\mathrm{MHz}): \delta=175.8,107.4,88.1,87.3,65.8,55.0,40.3,34.5,25.9\) (3C), 18.3, \(-5.2,-5.3\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}\) 325.1447, found 325.1448. IR \(\left(\mathrm{cm}^{-1}\right): 2953.6,2930.1,2857.2,1787.9\), \(1471.8,1254.4,1154.0,1106.7,1004.4,837.7 .[\alpha]_{\mathrm{D}}{ }^{20}:-88.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.6) . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} / \mathrm{EtOAc} 1 / 2) 0.73\).

\section*{tert-Butyl(((2S,3R,4R,5R)-5-methoxy-4-((triethylsilyl)oxy)-3-(2- \\ ((triethylsilyl)oxy)ethyl)tetrahydrofuran-2-yl)methoxy)dimethylsilane} (44): A solution of lactone \(43(11.7 \mathrm{~g}, 38.8 \mathrm{mmol})\) in diethyl ether ( 200 mL ) was added to a suspension of freshly powdered lithium aluminium hydride pellets ( \(2.5 \mathrm{~g}, 66.1 \mathrm{mmol}\) ) in anhydrous diethyl ether \((100 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) within 30 min under vigorous stirring in a 1 L round-bottomed flask. After 1 h sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})\) was carefully added at \(0{ }^{\circ} \mathrm{C}\) followed by the addition of sat. aq. \(\mathrm{Na} / \mathrm{K}\) tartrate ( 200 mL ). The resulting turbid biphasic system was stirred for 2 h and warmed to room temperature. The aqueous
phase was separated and extracted with diethyl ether ( \(5 \times 100 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(200 \mathrm{~mL})\) and dried with \(\mathrm{MgSO}_{4}\). After evaporation of all volatiles under reduced pressure the desired diol was isolated as colorless sticky oil ( 11.9 g , quant.) which was used without further purification in the next reaction. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), \(400 \mathrm{MHz}): \delta=4.83(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=8.6,5.5\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.67(\mathrm{~m}\), \(1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{br} \mathrm{s}\), \(1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=109.0,84.3,77.2,66.8,62.0,54.6,43.9,28.9\), 26.1 (3C), 18.5, -5.24, -5.26. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 329.1760\), found 329.1749. IR \(\left(\mathrm{cm}^{-1}\right): 3394\), 2929, 2857, 1471, 1254, 1103, 1061, 1036, 951, 837. \([\alpha]_{\mathrm{D}}{ }^{20}:-28.2,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 1.1). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/1) 0.19 .

To a solution of the crude diol \((10.9 \mathrm{~g}, 35.6 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})\) and imidazole ( \(9.7 \mathrm{~g}, 142.5 \mathrm{mmol}\) ) was added triethylsilyl chloride ( 13.1 mL , 78.2 mmol ) via syringe within 15 min . The resulting pale yellow solution was aged at room temperature for 2 h during which a white precipitate formed. Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})\) was added and stirring was continued for another 30 min . The aqueous layer was separated and extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic phases were washed with water \((100 \mathrm{~mL})\), sat. aq. \(\mathrm{NaCl}(100 \mathrm{~mL})\) and dried with \(\mathrm{MgSO}_{4}\). After removal of all volatiles a pale yellow oil was obtained which yielded tetrahydrofuran \(44(17.3 \mathrm{~g}, 91 \%)\) as colorless oil after flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 20/1). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.67(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J\) \(=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=9.3,5.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.8,3.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}\), \(1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{dt}, \mathrm{J}=8.1,4.3 \mathrm{~Hz}, 18 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.65-\) \(0.58(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=109.3,84.8\), \(77.3,66.3,61.8,54.5,40.2,28.9,26.1\) (3C), 18.6, 6.9 (6C), 5.1 (3C), 4.6 (3C), \(-5.2(2 \mathrm{C})\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{26} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 557.3490, found 557.3477. IR \(\left(\mathrm{cm}^{-1}\right): 2953,2877,1461,1251,1102,1041\), 1003, 958, 834, 775. \([\alpha]_{\mathrm{D}}{ }^{20}:+6.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.2\right) \cdot \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 10 / 1)\) 0.36 .

2-((2S,3R,4R,5R)-2-(((tert-Butyldimethylsilyl)oxy)methyl)-5-methoxy-4-((triethylsilyl)oxy)tetrahydrofuran-3-yl)acetaldehyde (45): To a solution of oxalyl chloride ( \(2.0 \mathrm{~mL}, 23.4 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})\) in flame dried 50 mL round-bottomed flask equipped with a bubbler was dropwise added dimethylsulfoxide ( \(3.4 \mathrm{~mL}, 48.1 \mathrm{mmol}\) ) within 5 min at \(-78^{\circ} \mathrm{C}\). After the evolution of gas had ceased the bubbler was removed and stirring was continued for further 10 min at \(-78{ }^{\circ} \mathrm{C}\). Tetrahydrofuran \(44(2.5 \mathrm{~g}, 4.7\) \(\mathrm{mmol})\) dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})\) was added to the resulting reaction mixture via syringe within 10 min . After 3 h at \(-78^{\circ} \mathrm{C}\) an intermediate formed (TLC, Hex/EtOAc 3/1, \(\mathrm{R}_{\mathrm{f}}=0.18\) )). The reaction mixture was dropwise treated with \(\mathrm{Et}_{3} \mathrm{~N}(6.5 \mathrm{~mL}, 46.7 \mathrm{mmol})\). The turbid solution was quenched by the addition of sat. aq. \(\mathrm{NaHCO}_{3}(20 \mathrm{~mL})\) after 4 h and warmed to room temperature. The aqueous layer was separated and extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 30 mL ) and sat. aq. \(\mathrm{NaCl}(30 \mathrm{~mL})\) and dried with \(\mathrm{MgSO}_{4}\). Removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 20 / 1\right)\) of the remaining residue gave aldehyde \(45(1.9 \mathrm{~g}\), \(97 \%\) ) as pale yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.79(\mathrm{~s}, 1 \mathrm{H})\), \(4.69(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{ddd}, J=8.4,5.5,0.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.74(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})\), 2.79 (ddd, \(J=17.3,8.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H})\), \(0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{ddd}, J=17.3,7.5,0.9 \mathrm{~Hz}, 6 \mathrm{H})\), \(0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.2,109.5\), 83.3, 77.1, 66.4, 54.7, 41.0, 39.4, 26.1 (3C), 18.5, 6.9 (3C), 4.9 (3C), -5.3 (2C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 441.2468\), found 441.2476. IR ( \(\mathrm{cm}^{-1}\) ): 2955, 2929, 2879, 1728, 1462, 1254, 1127, 1108, 1039, 837. \([\alpha]_{\mathrm{D}}{ }^{20}:+1.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.2\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 8 / 1) 0.68\).

Butenolide 46: LiHMDS ( \(720 \mu \mathrm{~L}, 1.0 \mathrm{M}\) in toluene, 5.6 mmol ) was added to a solution of butyrolactone \(32(2.0 \mathrm{~g}, 4.9 \mathrm{mmol})\) in THF \((22 \mathrm{~mL})\) at \(-40^{\circ} \mathrm{C}\) within 10 min . After 30 min a solution of aldehyde \(45(2.05 \mathrm{mg}\), 4.9 mmol ) in THF ( 25 mL ) was dropwise added within 20 min . After 2 h at \(-40{ }^{\circ} \mathrm{C}\) the reaction mixture was quenched by the addition of sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})\) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})\). The aqueous phase was separated and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})\). The combined organic phases were washed with water ( 40 mL ) and sat. aq. \(\mathrm{NaCl}(40 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. NMR analysis of the crude pale yellow oil indicated consumption of butyrolactone 32 and showed a complex mixture of four diastereomers \((4.5 \mathrm{~g}, 4.9 \mathrm{mmol})\) and traces of aldehyde 45 .
\(\mathrm{H}_{2} \mathrm{O}_{2}\) ( \(3.7 \mathrm{~mL}, 32.6 \mathrm{mmol}\) ) was added under vigorous stirring to the aforementioned complex mixture in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})\) and pyridine \((5 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\). The resulting biphasic mixture was aged at this temperature for 1 h ,
quenched by the addition of sat. aq. \(\mathrm{NaS}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})\) and stirred for additional 30 min . The aqueous phase was separated and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})\). After the combined organic phases were washed with water ( 50 mL ) and sat. aq. \(\mathrm{NaCl}(50 \mathrm{~mL}), \mathrm{MgSO}_{4}\) was added followed by filtration. Evaporation of the volatiles and flash column chromatography ( \(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 12 / 1\) ) of the remaining oil yielded desired butenolide 46 as inseparable \(1: 1\) mixture as pale yellow oil \((3.01 \mathrm{~g}, 4.5 \mathrm{mmol}, 92 \%)\). Diastereomer A: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.30(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.26(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}\), \(1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.06(\mathrm{dt}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H})\), 3.69-3.65 (m, 1H), 3.31 (s, 3H), 2.42-2.35 (m, 1H), 1.98-1.90 (m, 2H), 1.81 \((\mathrm{dd}, \mathrm{J}=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.9\) \(\mathrm{Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{br} \mathrm{s}, 6 \mathrm{H})\). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.7,150.1,136.0,109.0,99.7,83.9\), 79.0, 78.6, 78.2, 78.0, 72.8, 66.7, 66.2, 54.7, 47.1, 41.7, 32.1, 27.8, 26.1 (3C), 18.6, 6.9 (3C), 5.0 (3C), 2.4 (3C), -5.3 (2C).Diastereomer B: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.31(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.24-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H})\), \(4.13(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=9.0,4.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.79(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.31(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=\) \(7.9 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79\) (dd, \(J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.47(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H})\), \(0.14(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.8,150.2\), 135.9, 109.2, 99.7, 83.9, 78.9, 78.6, 78.2, 78.0, 72.8, 66.5, 66.1, 54.8, 47.2, 41.1, 32.3, 27.8, 26.1 (3C), 18.6, 6.9 (3C), 5.0 (3C), 2.4 (3C), -5.3 (2C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)693.3650, found \(693.3650 . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.57\).

Cage-shaped lactones 49 and 50 (+ 47 and 48): A solution of a diastereomeric mixture of 46 ( \(\mathrm{dr}=1: 1,490 \mathrm{mg}, 0.7 \mathrm{mmol}\) ) in freshly degassed cyclohexane (four pump-freeze-thaw cycles, 80 mL ) was split in 8 equal parts and transferred to quartz tubes of a diameter of 1 cm and a total height of 16 cm , which were equipped with a magnetic stirring bar. These charged quartz vials were placed 0.5 cm in front of a UV-C lamp (SYLVANIA G8W T5, 8W) in a custom-made reactor and irradiated for 2 h while stirring. The contents of all vials were combined and the volatiles were removed under reduced pressure. The remaining slightly yellow oil was subjected to flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 20 / 1\right)\) yielding undesired [4.2.0]ring systems 47 and \(48(76 \mathrm{mg}, 15 \%\) combined yield) as well as the desired caged [2+2]-photocyclization products 49 (170 \(\mathrm{mg}, 35 \%)\) and \(50(169 \mathrm{mg}, 34 \%)\) as colorless oils. Analytic data for 49: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.40(\mathrm{dd}, J=2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=\) \(2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{td}, J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=\) \(4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dt}, J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.75(\mathrm{dd}, J=10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.4\), \(5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{qd}, J=12.4\), \(1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.67\) \((\mathrm{m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=\) \(8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100\right.\) \(\mathrm{MHz}): \delta=177.7,144.0,115.1,109.0,84.9,84.1,83.7,77.5,70.4,67.0\), \(57.8,57.7,54.6,49.6,44.8,41.4,27.9,26.2\) (3C), 23.4, 18.6, 7.0 (3C), 5.1 (3C), 2.4 (3C), \(-5.2,-5.3\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+} 693.3650\), found 693.3629. IR \(\left(\mathrm{cm}^{-1}\right): 3500,2954,1767,1462\), \(1375,1301,1251,1186,1104,988 .[\alpha]_{\mathrm{D}}{ }^{20}:-38.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.1\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 4/1) 0.45. Analytical data for 50: \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)\) : \(\delta=5.27(\mathrm{dd}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{td}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J\) \(=2.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=\) \(11.7,5.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96\) (ddd, \(J=8.1,5.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79\) (dd, \(J=\) \(10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.6,6.1 \mathrm{~Hz} \mathrm{1H}), 3.43(\mathrm{dd}, J=8.2,6.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{qd}, J=\) \(12.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=14.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87\) (ddd, \(J=14.1,8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=14.0,11.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42\) (s, 3H), \(0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.12\) \((\mathrm{s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=176.8\), \(145.4,114.5,109.2,85.0,84.0,83.6,79.1,70.2,67.1,59.6,57.7,54.7,49.8\), 43.5, 41.6, 28.9, 26.2 (3C), 23.6, 18.7, 6.9 (3C), 5.1 (3C), 2.4 (3C), -5.3 (2C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)693.3650, found 693.3647. IR \(\left(\mathrm{cm}^{-1}\right): 3484,2954,1768,1462,1348,1251,1187\), 1106, 1040, 991. [ \(\alpha]_{\mathrm{D}}{ }^{20}:-26.7,\left(\mathrm{CHCl}_{3}, \mathrm{C}=0.6\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.39\). Analytic data for 47: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.76-5.74(\mathrm{~m}, 1 \mathrm{H})\), \(4.75(\mathrm{dt}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=4.9\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=\) \(10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.74\) (dd, \(J=13.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.4,5.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.95(\mathrm{dd}, J=15.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=6.0,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}\), \(3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.10(\mathrm{~s}\),
\(6 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=179.1,137.9,127.9\), \(108.8,83.1,78.3,76.6,71.1,70.1,67.0,55.6,54.5,47.9,44.8,42.8,38.8\), \(31.2,29.2,25.9\) (3C), 18.4, 6.7 (3C), 4.8 (3C), 2.2 (3C), -5.5 (2C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 693.3650\), found 693.3650. IR \(\left(\mathrm{cm}^{-1}\right): 3476,2955,2930,1768,1462,1251,1111,1042,1005\), 839. \([\alpha]_{\mathrm{D}}{ }^{20}:-44.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=2.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.28\).

Oxidation/reduction sequence of \(\mathbf{5 0}\) to 49: At \(0^{\circ} \mathrm{C}\) crushed \(4 \AA\) molecular sieves ( 100 mg ), NMO ( \(52 \mathrm{mg}, 0.45 \mathrm{mmol}\) ) and tetrapropylammonium perruthenate ( \(5 \mathrm{mg}, 0.05 \mathrm{mmol}\) ) were added sequentially to a solution of \(\mathbf{5 0}\) ( \(100 \mathrm{mg}, 0.15 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})\). The reaction mixture was allowed to warm to room temperature and stirred for 18 h . Diethyl ether ( 10 mL ) was added and the resulting mixture was filtered through a pad of Celite. Removal of the volatiles and column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}\right.\) \(6 / 1\) ) gave the desired ketone ( \(74 \mathrm{mg}, 0.11 \mathrm{mmol}, 74 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.52(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=2.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.22(\mathrm{dt}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.93(\mathrm{dt}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=\) \(10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.64 (dd, \(J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.33 (s, 3H), 3.22 (dd, \(J\) \(=19.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=19.4,9.9 \mathrm{~Hz}, 1 \mathrm{H})\), 2.54-2.46 (m, 2H), 1.94 (dd, \(J=14.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44\) (s, 3H), 0.92 (t, \(J=\) \(8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.54(\mathrm{dd}, J=8.0\), \(3.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\) 200.0, 171.7, 144.0, 115.7, 109.5, 84.8, 83.7, 83.4, 76.9, 66.5, 65.1, 57.5, \(54.6,49.5,44.6,39.5,34.9,26.1\) (3C), 23.5, 18.6, 6.9 (3C), 5.0 (3C), 2.4 (3C), \(-5.2,-5.3\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 691.3494, found 691.3495. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2929,1769,1714,1464,1252\), 1149, 1108, 1039, 840. \([\alpha]_{\mathrm{D}}{ }^{20}:-77.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.3\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 6 / 1)\) 0.66.

To a solution of the ketone \((15 \mathrm{mg}, 0.02 \mathrm{mmol})\) and \((S)\)-2-methyl-CBSoxazaborolidine ( \(45 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1.0 \mathrm{M}\) in toluene, ) in THF ( \(500 \mu \mathrm{~L}\) ) was added \(\mathrm{BH}_{3} \cdot \mathrm{THF}\left(45 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1.0 \mathrm{M}\right.\) in THF) at \(-78{ }^{\circ} \mathrm{C}\). No reaction was observed monitored by TLC (Hex/EtOAc 4/1) till reaching \(0^{\circ} \mathrm{C}\). The reaction misture was stirred at \(0{ }^{\circ} \mathrm{C}\) for 6 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5\) mL ) and diethyl ether ( 5 mL ) were added. The aqueous layer was separated and washed with diethyl ether ( \(2 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(5 \mathrm{ml})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo giving a \(1: 2\) mixture of \(\mathbf{4 9}\) and \(\mathbf{5 0}(15 \mathrm{mg})\) in quantitative yield. For analytic data see above.

Cage shaped epoxide 52: At \(0{ }^{\circ} \mathrm{C}\) alcohol \(49(10 \mathrm{mg}, 0.07 \mathrm{mmol})\) was dissolved in a freshly prepared solution of DMDO \((0.4 \mathrm{~mL}, 0.08 \mathrm{M}, 0.03\) \(\mathrm{mmol})\) in acetone. The resulting colorless reaction mixture was allowed to warm to room temperature overnight. Additional DMDO ( \(0.4 \mathrm{~mL}, 0.08 \mathrm{M}\), 0.03 mmol ) was added and the reaction was stirred for additional 24 h . As TLC-analysis (Hex/EtOAc 4/1) still indicated remaining starting material DMDO ( \(0.4 \mathrm{~mL}, 0.08 \mathrm{M}, 0.03 \mathrm{mmol}\) ) was added again and the reaction was stirred for another 24 h . The volatiles were removed under reduced pressure in a cold water bath \(\left(15^{\circ} \mathrm{C}\right)\). The resulting colorless residue was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 12 / 1\right)\) yielding desired epoxide \(\mathbf{5 1}(9 \mathrm{mg}, 85 \%)\) as colorless oil.
Alternatively: To a solution of \(49(32 \mathrm{mg}, 0.05 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})\) was added \(\mathrm{NaHCO}_{3}(12 \mathrm{mg}, 0.14 \mathrm{mmol})\) and \(m \mathrm{CPBA}(25 \mathrm{mg}, 0.14 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). Prior to use, the commercially available \(m \mathrm{CPBA}\) was purified by extraction of solution in diethyl ether \((\mathrm{ml} / \mathrm{g})\) with pH 7.5 buffer ( \(3 \mathrm{x} \mathrm{mL} / \mathrm{g}\) ) and evaporation of the organic solvent in a water bath at \(20^{\circ} \mathrm{C}\). After 4 h at \(0^{\circ} \mathrm{C}\), sat. aq. \(\mathrm{NaHCO}_{3}(5 \mathrm{~mL})\) and diethyl ether \((5 \mathrm{~mL})\) were added, the aqueous phase was separated and extracted with diethyl ether ( \(2 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. The residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) yielding desired epoxide \(51(30 \mathrm{mg}, 94 \%)\) as a \(4: 1\) diastereomeric mixture. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.21-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=4.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.03(\mathrm{dt}, J=8.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=\) \(10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.31(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{sbr}, \mathrm{OH}), 3.07(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=4.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=14.7,7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=14.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.32(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H})\), 0.11-0.09 (m, 15H). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=176.2,109.1,83.9\), 83.5, 82.9, 77.6, 67.5, 67.0, 62.9, 58.0, 56.9, 54.6, 50.7, 47.7, 42.1, 41.7, 27.9, 26.2 (3C), 23.4, 18.9, 6.9 (3C), 5.0 (3C), 2.4 (3C), -5.2, -5.3. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 709,3555\), found 709.3598. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2930,1768,1462,1376,1252,1143,1040,991\), 840. \([\alpha]_{\mathrm{D}}{ }^{20}:-32.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.53\).

A solution of epoxide ( \(21 \mathrm{mg}, 0.03 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})\) was cooled to \(0{ }^{\circ} \mathrm{C}\) and pyridine ( \(7 \mu \mathrm{~L}, 0.09 \mathrm{mmol}\) ), acetic anhydride ( \(6 \mu \mathrm{~L}, 0.06\) mmol ) and DMAP ( \(1 \mathrm{mg}, 0.01 \mathrm{mmol}\) ) were sequentially added. The round-
bottomed flask was sealed with a stopper and the reaction mixture was warmed to room temperature overnight. Diethyl ether ( 5 mL ) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{CuSO}_{4}(10 \mathrm{~mL})\), water ( 10 mL ) and sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 12 / 1\right)\) of the residue gave desired acylated epoxide 52 ( 22 mg , quant.) as needle-shaped crystals which were subjected to X-ray analysis. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=\) \(5.31(\mathrm{dd}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})\), \(4.23(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=9.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.3\), \(4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=8.7,7.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.27(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70\) (d, \(J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dq}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94\) \((\mathrm{m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})\), \(0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.69(\mathrm{q}, J=8 \mathrm{~Hz}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H})\), \(0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=174.9,170.3,109.5,83.5\), 83.4, 82.6, 76.4, 68.2, 66.3, 62.2, 57.9, 55.8, 54.6, 50.2, 47.0, 42.4, 40.7, 26.1 (3C), 25.7, 23.1, 21.3, 18.5, 7.0 (3C), 4.9 (3C), 2.4 (3C), -5.3 (2C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 751.3705\), found 751.3704. \(\mathrm{mp}=93-95^{\circ} \mathrm{C}\). \(\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2955,2928,1768,1744,1231\), 1124, 1041, 991, 843, 776. \([\alpha]_{\mathrm{D}}{ }^{20}:-23.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.4\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 4/1) 0.53 .

Hemiacetal 53: To a solution of 51b ( \(5 \mathrm{mg}, 0.01 \mathrm{mmol}\) ) in THF/DMSO \(2 / 1(450 \mu \mathrm{~L})\) was added lithium acetylide ethylenediamine complex ( 50 mg , \(0.54 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). After 15 min diethyl ether ( 5 mL ) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) ( 5 mL ) were added. The aqueous phase was extracted with diethyl ether ( 2 x 5 mL\()\). The combined organic layers were washed with water \((10 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification by column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 6/1) gave hemiacetal \(53(5 \mathrm{mg}, 0.01 \mathrm{mmol})\) in quantitative yield. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.96(\mathrm{dd}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.71(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93\) (dt, \(J=8.86,5.13 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.72 (dd, \(J=10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.62 (dd, \(J=\) \(10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=4.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=15.3\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.73\) (s, OH), \(2.70(\mathrm{dd}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13.9,7.0\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.32-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}\), \(9 \mathrm{H}), 0.68(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ): \(\delta=169.1,109.1,108.0,86.1,85.7,84.1,79.6\), \(76.9,66.5,60.6,57.7,54.6,54.2,50.6,49.5,48.0,45.4,41.2,26.2,26.1\) (3C), 24.0, 18.4, 7.0 (3C), 5.2 (3C), 2.4 (3C), \(-5.2(2 \mathrm{C})\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 751.3705\), found 751.3694. IR (cm \(\left.{ }^{1}\right): 2955,2929,1760,1413,1375,1252,1146,1121,1021,838 .[\alpha]_{D}{ }^{20}\) : \(+28.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.25\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.31\).

Acetate 57: To a solution of alcohol \(49(250 \mathrm{mg}, 0.37 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \((4.0 \mathrm{~mL})\), pyridine \((90 \mu \mathrm{~L}, 1.12 \mathrm{mmol})\), acetic anhydride \((70 \mu \mathrm{~L}, 0.70\) \(\mathrm{mmol})\) and DMAP ( \(5 \mathrm{mg}, 0.04 \mathrm{mmol}\) ) were sequentially added at \(0^{\circ} \mathrm{C}\). The reaction mixture was allowed to warm to room temperature overnight. Diethyl ether ( 20 mL ) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{CuSO}_{4}(20 \mathrm{~mL})\), water ( 20 mL ) and sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. The desired acetylated product (266 mg , quant.) was isolated as colorless amorphous solid, which was used without further purification in the next reaction. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.48(\mathrm{dd}, J=11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.20(\mathrm{dd}, J=2.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dt}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})\), \(4.14(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dt}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.4\), \(4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.27(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.47\) (ddd, \(J=14.8,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08\) \((\mathrm{s}, 3 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.92(\mathrm{~s}\), \(9 \mathrm{H}), 0.69(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), \(100 \mathrm{MHz}): \delta=174.2,170.7,144.1,115.8,109.4,84.8,83.7,82.9,76.5\), 71.0, 66.1, 57.6, 57.2, 54.6, 49.6, 44.7, 40.5, 26.1 (3C), 25.5, 23.6, 21.0, 18.5, 7.0 (3C), 5.0 (3C), 2.4 (3C), -5.3 (2C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 735.3756\), found 735.3769. IR \(\left(\mathrm{cm}^{-1}\right): 2954\), \(1772,1747,1462,1372,1251,1150,1040,991,840 .[\alpha]_{\mathrm{D}}{ }^{20}:-15.8,\left(\mathrm{CHCl}_{3}\right.\), \(\mathrm{c}=0.7) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 5 / 1) 0.52\).
The acylated substrate was taken up in an \(\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\) 2/1/1 mixture \((2.8 \mathrm{~mL})\) and aged at room temperature for 24 h . All volatiles were removed under reduced pressure and the remaining pale yellow residue was subsequently co-evaporated with toluene ( \(3 \times 20 \mathrm{~mL}\) ) till the smell of acetic acid was gone.
To a solution of the resulting crude colorless amorphous solid ( 144 mg ) and imidazole ( \(600 \mathrm{mg}, 8.75 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})\) was added
chlorotriethylsilane ( \(650 \mu \mathrm{~L}, 3.85 \mathrm{mmol}\) ) via syringe under vigorous stirring within 5 min . After 16 h , diethyl ether ( 20 mL ) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) \((20 \mathrm{~mL})\) were added to the resulting suspension. The aqueous layer was separated and extracted with diethyl ether ( 3 x 20 mL ). The combined organic phases were washed with water ( 20 mL ) and sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\) before being dried with \(\mathrm{MgSO}_{4}\). The solids were removed by filtration and the filtrate was concentrated under reduced pressure. Flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 10 / 1\right)\) gave desired globally TESprotected acetate \(57(265 \mathrm{mg}, 94 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.48(\mathrm{dd}, J=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})\), 5.19 (dd, \(J=2.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})\), \(4.14(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=8.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.3\), \(5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.28(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=14.7,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08\) \((\mathrm{s}, 3 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 27 \mathrm{H}), 0.69(\mathrm{q}, J=8.0\) \(\mathrm{Hz}, 6 \mathrm{H}), 0.65-0.55(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.3\), \(170.6,144.3,115.7,109.4,84.4,83.7,83.0,76.5,71.0,66.1,57.8,57.2\) \(54.6,49.7,44.8,40.8,25.5,23.4,21.0,7.1\) (3C), 7.0 (3C), 6.9 (3C), 6.6 (3C), 5.1 (3C), 4.5 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+} 777.4225\), found 777.4195 . IR \(\left(\mathrm{cm}^{-1}\right): 2954,2877,1772,1371\), \(1230,1150,1040,991,807,743 .[\alpha]_{\mathrm{D}}^{22}:-17.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.7\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 3/1) 0.59

Acetate 58: Alcohol 50 ( \(284 \mathrm{mg}, 0.42 \mathrm{mmol}\) ) was subjected to the identical procedure as alcohol 49 (see above, 57) giving the corresponding globally TES-protected acetate \(\mathbf{5 8}(278 \mathrm{mg}, 87 \%)\) as a colorless oil.
Analytic data for the intermediate: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.48\) (dd, \(J=11.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=2.1\), \(1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=4.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.9\), \(6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.13(\mathrm{~m}, 1 \mathrm{H})\), 2.47 (ddd, \(J=14.7,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07\) \((\mathrm{m}, .1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}\), \(3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=8.13 \mathrm{~Hz}, 6 \mathrm{H}), 0.11(\mathrm{~s}\), \(9 \mathrm{H}), 0,08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.7,170.1,144.4\), 115.6, 109.2, 85.1, 84.9, 83.1, 77.9, 71.9, 66.8, 58.1, 58.0, 54.8, 49.4, 44.2, \(40.9,26.2\) (3C), 26.1, 23.4, 21.2, 18.6, 6.9 (3C), 5.1 (3C), 2.4 (3C), 5.1, -5.2. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 735.3756, found 735.3759. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2878,1774,1748,1461,1372\), \(1250,1149,1040,991 .[\alpha]_{\mathrm{D}}{ }^{20}:-46.6,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.5\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 5 / 1)\) 0.48 .

Analytic data for acetate 58: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): ~ \delta=5.49\) (dd, \(J=\) \(11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=2.1,1.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.19\) (dt, \(J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})\), 3.93-3.89 (m, 1H), \(3.73(\mathrm{dd}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.8,6.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.42\) (dd, \(J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 2.45\) (ddd, \(J=14.7,7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.01\) \((\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=14.4,5.4,2.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}\), \(J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.7,170.1,144.5,115.5,109.2,85.2,84.6\), 83.2, 76.9, 72.0, 66.6, 58.19, 58.16, 54.7, 49.5, 44.2, 41.1, 26.1, 23.3, 21.2, 7.1 (3C), 6.9 (3C), 6.9 (3C), 6.6 (3C), 5.1 (3C), 4.5 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 777.4225\), found 777.4232. IR ( \(\mathrm{cm}^{-1}\) ): 2955, 2877, 1775, 1749, 1229, 1150, 1108, 1077, 1042, 1001 \([\alpha]_{\mathrm{D}}{ }^{23}:-45.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.7\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.52\).

Aldehyde 59: To a solution of oxalyl chloride ( \(660 \mu \mathrm{~L}, 7.7 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})\) in flame dried 50 mL round-bottomed flask equipped with a bubbler was dropwise added dimethylsulfoxide ( \(1.1 \mathrm{~mL}, 15.5 \mathrm{mmol}\) ) within 5 min at \(-78{ }^{\circ} \mathrm{C}\). After the evolution of gas had ceased the bubbler was removed and stirring was continued for further 10 min at \(-78{ }^{\circ} \mathrm{C}\). Acetate 57 \((1.16 \mathrm{~g}, 1.5 \mathrm{mmol})\) dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})\) was added to the resulting reaction mixture via syringe within 10 min . After 3 h at \(-78{ }^{\circ} \mathrm{C}\) an intermediate formed (TLC, Hex/EtOAc 2/1, \(\mathrm{R}_{\mathrm{f}}=0.23\) ). The reaction mixture was dropwise treated with \(\mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{~mL}, 15.5 \mathrm{mmol})\). The turbid solution was quenched by the addition of sat. aq. \(\mathrm{NaHCO}_{3}(15 \mathrm{~mL})\) after 4 h and warmed to room temperature. The aqueous layer was separated and extracted with diethyl ether ( \(3 \times 15 \mathrm{~mL}\) ). The combined organic phases were washed with water \((20 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(20 \mathrm{~mL})\) and dried with \(\mathrm{MgSO}_{4}\). Removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) of the remaining residue gave aldehyde 59 ( \(666 \mathrm{mg}, 67 \%, 89 \% \mathrm{brsm}\) ) as pale yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), \(400 \mathrm{MHz}): \delta=9.57(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.31(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=\) \(7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=9.7,3.0\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H})\) 2.45 (ddd, \(J=14.7,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.98\)
\(1.79(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.71(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100\right.\) \(\mathrm{MHz}): \delta=202.4,174.2,170.7,144.3,115.6,110.6,86.5,84.4,83.2,75.7\), \(70.6,58.0,57.4,55.2,49.7,44.5,40.4,25.2,23.5,21.0,7.1\) (3C), 6.9 (3C), 6.6 (3C), 5.0 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}\) \([\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}\)693.3466, found 693.3467. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2877,1770\), \(1745,1459,1373,1231,1151,1038,808 .[\alpha]_{\mathrm{D}}{ }^{20}:-39.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.6\right)\). \(\mathrm{R}_{\mathrm{f}}\) : \(\left.\mathrm{Hex} / \mathrm{EtOAc} 2 / 1\right) 0.50\)

Aldehyde 60: Aldehyde \(\mathbf{6 0}(310 \mathrm{mg}, 87 \%, 97 \% \mathrm{brsm})\) was prepared according to the procedure for \(59 .{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.57(\mathrm{~d}\), \(J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{td}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.11\) (dd, \(J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03\) (t, \(J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=\) \(8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=\) \(8.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.4,174.6,170.3,144.1\), \(116.0,110.3,87.2,84.7,83.3,77.6,71.4,58.2\) 58.1, 55.2, 49.5, 44.1, 40.6, 26.5, 23.3, 21.1, 7.1 (3C), 6.9 (3C), 6.6 (3C), 5.02 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+} 693.3466\), found 693.3458. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2912,2877,1773,1748,1231,1150,1106,1040\), 1017. \([\alpha]_{\mathrm{D}}^{23}:-50.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.6\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.43\).

Alkyne 61: A solution of \(59(72 \mathrm{mg}, 0.11 \mathrm{mmol})\) in THF ( 1 mL ) was treated with a 0.5 M solution of ethynylmagnesium bromide ( \(340 \mu \mathrm{~L}, 0.17\) mmol ) in THF at \(-78{ }^{\circ} \mathrm{C}\). The resulting solution was allowed to warm to \(-20^{\circ} \mathrm{C}\) within 4 h and aged at this temperature for 16 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5\) mL ) and diethyl ether ( 5 mL ) were added. The aqueous phase was separated and extracted with diethyl ether ( 2 x 5 mL ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the residue by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) gave the desired propargylic alcohol \(61(45 \mathrm{mg}, 0.07 \mathrm{mmol}, 93 \% \mathrm{brsm})\) as single diastereomer. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.47\) (dd, \(J=11.7,2.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.34(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=2.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dt}\), \(J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{dt}, J=3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=\) \(4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.36(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}\), \(1 \mathrm{H}), 2.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H})\), \(2.11(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}\), \(3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70(\mathrm{q}, J=8.0 \mathrm{~Hz}\), \(6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.2\), \(170.9,144.3,115.6,109.7,85.9,84.5,83.1,81.4,76.5,74.8,71.0,63.4\), \(57.7,57.2,55.5,49.7,44.8,38.1,26.1,23.5,21.1,7.1\) (3C), 7.0 (3C), 6.6 (3C), 5.0 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 687.3361, found 687.3366. IR \(\left(\mathrm{cm}^{-1}\right): 3484,2955,2877,1770,1745,1459\), 1231, 1151, 1039, 991. \([\alpha]_{\mathrm{D}}{ }^{20}:-9.04,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.37\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 3/1) 0.28 .

Dibromide 65: NBS ( \(4 \mathrm{mg}, 0.02\) ) was added as solid to a solution of 61 (11 \(\mathrm{mg}, 0.02 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})\). the round-bottomed flask was sealed with a stopper and heated to \(50{ }^{\circ} \mathrm{C}\) for 5 h . The volatiles were removed under reduced pressure and the remaining residue was subjected to column chromatography ( \(\mathrm{SiO}_{2}\), Hex/EtOAc 12:1). trans-dibromo compound 65 (4 \(\mathrm{mg}, 0.01 \mathrm{mmol}, 30 \%, 66 \% \mathrm{brsm}\) ) was obtained as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.66(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=11.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31\) (dd, \(J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dt}, J=8.0,5.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.32 \mathrm{~Hz}, 1 \mathrm{H}), 3.45\) (dd, \(J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.54(\mathrm{~m}\), \(1 \mathrm{H}), 2.45\) (ddd, \(J=14.7,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H})\), \(1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(9 \mathrm{H}), 0.72(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), 100 MHz ): \(\delta=189.9,174.3,170.8,144.4,131.6,130.8,115.5,110.6,84.6\), \(84.4,83.3,75.9,70.6,57.9,57.5,55.5,49.7,44.5,40.9,25.9,23.5,21.0\), 7.2 (3C), 7.0 (3C), 6.6 (3C), 4.9 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)845.1550, found 845.1547. IR \(\left(\mathrm{cm}^{-1}\right): 2955\), \(2877,2349,1770,1702,1460,1373,1232,1151,1042 .[\alpha]_{\mathrm{D}}{ }^{20}:-11.1\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.02\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.48\).

Carboxylic acid 67: A solution of \(\mathrm{NaClO}_{2}(34 \mathrm{mg}, 0.37 \mathrm{mmol})\) and \(\mathrm{NaH}_{2} \mathrm{PO}_{4}(62 \mathrm{mg}, 0.45 \mathrm{mmol})\) in water \((450 \mu \mathrm{~L})\) were added via Pasteur pipette to a solution of aldehyde \(59(24 \mathrm{mg}, 0.04 \mathrm{mmol})\) in 2-methyl-2butene \((300 \mu \mathrm{~L})\) and \(t \mathrm{BuOH}(800 \mu \mathrm{~L})\) at \(0{ }^{\circ} \mathrm{C}\). The resulting solution was allowed to warm to room temperature and stirred for 16 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) \((5 \mathrm{~mL})\) and diethyl ether \((10 \mathrm{~mL})\) were added. The aqueous phase was separated and extracted with diethyl ether ( \(2 \times 10 \mathrm{~mL}\) ). The combined organic layers were washed with water \((10 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\),
dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure Column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 1 / 1\right)\) afforded desired acid 67 \((24 \mathrm{mg}, 0.37 \mathrm{mmol}, 98 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=\) 9.6 (br s, 1H), \(5.50(\mathrm{dd}, J=11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=2.6,1.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=\) \(4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 1 \mathrm{H})\), \(3.10-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{qd}, J=12.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10-\) \(1.88(\mathrm{~m}, 4 \mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{s}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=\) \(7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.73(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.3,173.4,170.9,144.5,115.4,111.0,84.4,83.3\), 80.7, 75.6, 70.4, 58.1, 57.5, 49.7, 44.4, 42.9, 29.9, 25.6, 23.5, 21.0, 7.15 (3C), 6.89 (3C), 6.62 (3C), 4.95 (3C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{NaO}_{10} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 677.3153\), found 677.3135 . IR \(\left(\mathrm{cm}^{-1}\right): 3218\), 2922, \(2853,1769,1743,1460,1374,1231,1137,990 .[\alpha]_{\mathrm{D}}{ }^{20}:-14.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.5) . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} /\) EtOAc 1/1) 0.14 .
(3aR,5S,6R,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-6vinyltetrahydrofuro \([\mathbf{2 , 3}-\mathrm{d}][1,3]\) dioxole (73): To a suspension of freshly powdered LAH ( \(911 \mathrm{mg}, 24 \mathrm{mmol}\) ) in diethyl ether ( 150 mL ) was added a solution of ester \(72(7.6 \mathrm{~g}, 24 \mathrm{mmol})\) in diethyl ether \((100 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) within 15 min . After 1 h at that temperature, sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})\) was carefully added followed by sat. aq. \(\mathrm{Na} / \mathrm{K}\) tartrate \((100 \mathrm{~mL})\). The resulting biphasic mixture was stirred at room temperature for 1 h . The aqueous phase was extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic layers were washed with sat. aq. \(\mathrm{NaCl}(100 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. The alcohol was isolated as colorless gum ( \(6.31 \mathrm{~g}, 21.9 \mathrm{mmol}, 91 \%\) ) and used without purification in the next reaction.
To a solution of the alcohol ( \(6.3 \mathrm{~g}, 21.9 \mathrm{mmol}\) ), triphenylphosphine \((17.2 \mathrm{~g}\), \(65.7 \mathrm{mmol})\) and imidazole ( \(4.5 \mathrm{~g}, 65.7 \mathrm{mmol}\) ) in \(\mathrm{CH}_{3} \mathrm{CN} /\) benzene \(1 / 2(210\) mL ) was added iodine ( \(16.7 \mathrm{~g}, 65.6 \mathrm{mmol}\) ) in 6 portions within 30 min at \(0{ }^{\circ} \mathrm{C}\). The resulting mixture was stirred for 1 h where after sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) \((50 \mathrm{~mL})\) was added. The organic phase was separated, washed with water \((50 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(50 \mathrm{~mL})\), dried with MgSO , filtered and concentrated under reduced pressure. Filtration (Hex/EtOAc 3/1) through a short pad of silica gave the desired iodide ( \(8.5 \mathrm{~g}, 21.3 \mathrm{mmol}, 97 \%\) ) as slightly yellow oil, which was used without further purification in the next step. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=\) \(3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=6.7,5.3 \mathrm{~Hz}, 1 \mathrm{H})\), 3.91 (dd, \(J=8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79\) (dd, \(J=9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.38\) (m, \(1 \mathrm{H}), 3.25(\mathrm{dt}, J=9.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04\) \((\mathrm{m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=112.1,109.8,105.1,81.5,80.8,77.7,67.6,49.0\), 29.2, 26.9, 26.8, 26.6, 25.4, 4.9. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{IO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 421.0488\), found 421.0485. IR \(\left(\mathrm{cm}^{-1}\right): 2986,2934\), \(1454,1380,1256,1214,1171,1065,1017,847 .[\alpha]_{\mathrm{D}}{ }^{20}:+76.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.9) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 1/1) 0.67.
To a solution of the iodide ( \(11.7 \mathrm{~g}, 29 \mathrm{mmol}\) ) in THF ( 300 mL ) was added \(t \mathrm{BuOK}(9.9 \mathrm{~g}, 88 \mathrm{mmol})\) in three portions at \(0{ }^{\circ} \mathrm{C}\) within 30 min . The resulting mixture was stirred at that temperature for 2 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) ( 100 mL ) was added and the layers were separated. The aqueous phase was extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic layers were washed with water ( 100 mL ) and sat. aq. \(\mathrm{NaCl}(100 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) gave desired diacetonide 73 ( \(7.7 \mathrm{~g}, 28.5 \mathrm{mmol}, 97 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.87(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.28\) (ddd, \(J=17.3,1.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.62(\mathrm{dd}, J=4.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=4.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=\) \(10.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=8.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=8.2,6.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.62(\mathrm{dt}, J=4.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})\), \(1.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=132.5,119.2,112.0,109.7\), 104.9, 83.9, 80.0, 76.3, 65.5, 50.7, 26.9, 26.6, 26.4, 25.4. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)293.1365, found 293.1362. IR \(\left(\mathrm{cm}^{-1}\right): 2986,2935,1372,1251,1214,1167,1102,1065,1015,848 .[\alpha]_{\mathrm{D}}{ }^{22}:\) \(+94.5,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 2 / 1) 0.38\).

Triethyl(((2S,3R,4R,5R)-5-methoxy-4-((triethylsilyl)oxy)-3-vinyltetrahydrofuran-2-yl)methoxy)silane (74): To a solution of diacetonide \(73(330 \mathrm{mg}, 1.22 \mathrm{mmol})\) in \(\mathrm{MeOH}(13 \mathrm{~mL})\) was added acetyl chloride \((260 \mu \mathrm{~L}, 3.66 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The resulting solution was warmed to room temperature and stirred for \(3 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})\) was added and the volatiles were removed under reduced pressure. The remaining white residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)\) giving the desired triol ( \(170 \mathrm{mg}, 0.83 \mathrm{mmol}, 68 \%\) ) as colorless gum. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.\), \(400 \mathrm{MHz}): \delta=5.91\) (ddd, \(J=17.9,9.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.32(\mathrm{~m}, 1 \mathrm{H})\), \(5.30(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}\), \(J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})\),
\(3.08(\mathrm{td}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=5.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.09(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=133.2\), 120.2, 109.2, 83.0, 78.4, 73.8, 63.6, 55.5, 47.0. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 227.0895\), found 227.0891. IR \(\left(\mathrm{cm}^{-1}\right)\) : \(3363,2926,1438,1420,1306,1195,1154,1103,1033,943 .[\alpha]_{\mathrm{D}}^{22}:+10.5\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.6\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{EtOAc}) 0.29\).
Glycol cleavage of the vicinal diol ( \(11.0 \mathrm{~g}, 53 \mathrm{mmol}\) ) was done according to the procedure for \(\mathbf{4 2}\) giving the desired diol \((8.1 \mathrm{~g}, 46.5 \mathrm{mmol}, 86 \%)\) as colorless gum. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.89(1 \mathrm{H}, \mathrm{ddd}, J=17.2\), \(10.5,8.1 \mathrm{~Hz}), 5.30-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{ddd}\), \(J=9.3,4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=11.9,4.3\), \(2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{td}, J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.10(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), \(100 \mathrm{MHz}): \delta=132.3,120.1,109.2,83.1,78.2,63.2,55.8,46.3\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)197.0790, found 197.0783. IR ( \(\mathrm{cm}^{-1}\) ): 3397, 2924, 1640, 1451, 1352, 1305, 1248, 1092, 1035, 970. \([\alpha]_{\mathrm{D}}^{22}:+14.6,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.7\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{EtOAc}) 0.5\).
To a solution of the crude diol \((8.1 \mathrm{~g}, 46.5 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})\) was added imidazole ( \(19.0 \mathrm{~g}, 279.0 \mathrm{mmol}\) ). Triethylsilyl chloride ( 19.5 mL , 117.5 mmol ) was added via syringe within 10 min . The resulting suspension was stirred for 6 h . Water ( 100 mL ) was added and the separated aqueous phase was extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic layers were washed with sat. aq. \(\mathrm{NaCl}(100 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 30 / 1\right)\) afforded \(74(17.8 \mathrm{~g}, 44.2 \mathrm{mmol}\), \(96 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.86(1 \mathrm{H}, \mathrm{dt}, J=\) \(18.0,9.3 \mathrm{~Hz}), 5.15(\mathrm{dd}, J=5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{br} \mathrm{s}\), \(1 \mathrm{H}), 4.11\) (ddd, \(J=9.7,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73\) (dd, \(J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{td}\), \(J=9.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.61\) \((\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.60(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) : \(\delta=134.3,118.4,109.5,83.8,79.4,65.0,54.5,48.6,6.89\) (3C), 6.87 (3C), 4.9 (3C), 4.5 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+} 425.2519\), found 425.2518. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2912,2877,1459\), \(1415,1239,1120,1042,1004,917 .[\alpha]_{\mathrm{D}}{ }^{20}:+12.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.2\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 2/1) 0.89.
(2S,3R,4R,5R)-5-Methoxy-4-((triethylsilyl)oxy)-3-vinyltetrahydrofuran-2-carbaldehyde (75): \(74(5.0 \mathrm{~g}, 12.4 \mathrm{mmol})\) was subjected to the same Swern-oxidation procedure as 57 (to 59) giving desired aldehyde 75 ( 3.3 g , \(11.4 \mathrm{mmol}, 92 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.56(\mathrm{~d}\), \(J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=17.1,10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.21(\mathrm{~m}, 1 \mathrm{H})\), \(5.20-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=9.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=\) \(4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{dt}, J=9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(9 \mathrm{H}), 0.61(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.0\), 131.9, 119.9, 110.6, 85.9, 78.6, 55.1, 48.8, 6.8 (3C), 4.9 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 309.1498\), found 309.1479. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2832,1737,1460,1415,1314,1239,1120,1002,836 .[\alpha]_{D}{ }^{20}\) : \(+10.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.65\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.45\).

\section*{Triethyl(( \(2 R, 3 R, 4 R, 5 S)\)-4-(iodomethyl)-2-methoxy-5-}

\section*{(((triethylsilyl)oxy)methyl)tetrahydrofuran-3-yl)oxy)silane}
(76): Through a solution of \(74(1.3 \mathrm{~g}, 3.2 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3 / 1(40 \mathrm{~mL})\) was bubbled an ozone/air mixture at \(-78{ }^{\circ} \mathrm{C}\) till the color of the solution turned blue ( 10 min ). The resulting solution was degassed with a stream of air till colorless and \(\mathrm{NaBH}_{4}(490 \mathrm{mg}, 12.9 \mathrm{mmol})\) was added. The reaction mixture was warmed to \(0{ }^{\circ} \mathrm{C}\) and stirred for 1 h . Water ( 30 mL ) and diethyl ether ( 30 mL ) were added and the aqueous phase was extracted with diethyl ether ( \(3 \times 20 \mathrm{~mL}\) ). The combined organic layers were washed with sat. aq. \(\mathrm{NaCl}(30 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the residue by column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 10/1) gave the desired alcohol ( \(1.0 \mathrm{~g}, 2.5 \mathrm{mmol}, 76 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.64(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78\) \((\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=9.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=\) \(5.72,1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(9 \mathrm{H}), 0.63(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.61(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), 100 MHz ): \(\delta=109.3,82.8,79.0,66.2,61.0,54.6,48.9,6.8\) (3), 6.7 (3C), 4.8 (3C), 4.3 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+} 465.3180\), found 465.3172. IR \(\left(\mathrm{cm}^{-1}\right): 3471,2954,2912,2877\), \(1460,1240,1113,1006,957,810 .[\alpha]_{\mathrm{D}}{ }^{20}:-27.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 6/1) 0.43.
At \(0{ }^{\circ} \mathrm{C}\), to a solution of the alcohol (112 mg, 0.28 mmol ), triphenylphosphine polymer-bound ( \(1.6 \mathrm{mmol} / \mathrm{g}, 344 \mathrm{mg}, 0.55 \mathrm{mmol}\) ) and imidazole ( \(56 \mathrm{mg}, 0.83 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}\) ) was added a solution of freshly sublimated and crushed iodine ( \(140 \mathrm{mg}, 0.55 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (2 ml ). The reaction mixture was warmed to rt and stirred for 6 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) solution ( 10 mL ) and sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) solution ( 5 ml ) were added
and the aqueous layer was extracted with diethyl ether ( \(3 \times 50 \mathrm{~mL}\) ). The combined organic layers were washed with brine ( 20 mL ) and dried over \(\mathrm{MgSO}_{4}\). After removal of the solvent the crude product was purified by flash chromatography ( \(\mathrm{SiO}_{2}\), Hex/EtOAc 20/1) delivering iodide 76 (115 \(\mathrm{mg}, 0.20 \mathrm{mmol}, 81 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=\) \(4.68(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dt}, J=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\) (dd, \(J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})\), \(3.32-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.50(\mathrm{~m}, .1 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=\) \(8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.69(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=108.5,82.6,77.8,66.3,54.6,49.8,7.0\) (3C), 6.9 (3C), 5.2 (3C), 4.50 (3C), 0.64. HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 539.1486\), found 539.1487. IR \(\left(\mathrm{cm}^{-1}\right): 2954\), 2876, \(1459,1415,1237,1186,1119,1071,1005,888 .[\alpha]_{\mathrm{D}}{ }^{20}:+21.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.75) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 5/1) 0.84 .

\section*{2-((2S,3R,4R,5R)-5-Methoxy-4-((triethylsilyl)oxy)-2-}
(((triethylsilyl)oxy)methyl)tetrahydrofuran-3-yl)acetaldehyde (77): To a solution of \(74(250 \mathrm{mg}, 0.62 \mathrm{mmol})\) in THF \((6 \mathrm{~mL})\) was added \(\mathrm{BH}_{3} \cdot \mathrm{THF}\) \((1.9 \mathrm{~mL}, 1.9 \mathrm{mmol})\) within 10 min at \(0{ }^{\circ} \mathrm{C}\). After 4 h sat. aq. \(\mathrm{NaHCO}_{3}(6\) \(\mathrm{mL})\) and \(\mathrm{H}_{2} \mathrm{O}_{2}(170 \mu \mathrm{~L}, 1.49 \mathrm{mmol})\) were added. The resulting biphasic mixture was vigorously stirred for 1 h at \(0{ }^{\circ} \mathrm{C}\) before sat. aq. \(\mathrm{NaS}_{2} \mathrm{O}_{3}(10\) mL ) was added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 10 mL ) and sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 12/1) yielded the desired alcohol ( \(200 \mathrm{mg}, 0.48 \mathrm{mmol}, 76 \%\) ). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.66(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})\), 4.03-3.99 (m, 1H), 3.72 (ddd, \(J=10.4,5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 3 \mathrm{H})\), \(3.30(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 0.96\) \((\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.66-0.58(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=109.2,84.0,78.1,66.6,61.6,54.5,41.6,29.5,6.9\) (3C), 6.8 (3C), \(5.0(3 \mathrm{C}), 4.4\) (3C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443.2625\), found 443.2622 . IR \(\left(\mathrm{cm}^{-1}\right): 3458\), 2954, 2912, 2877, 1459, 1415, 1239, 1128, 1041, 1005. \([\alpha]_{\mathrm{D}}{ }^{20}:-9.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) 1.50). \(\mathrm{R}_{f}\) : (Hex/EtOAc 6/1) 0.33 .

At \(0^{\circ} \mathrm{C} \mathrm{SO}_{3} \cdot\) py ( \(170 \mathrm{mg}, 1.07 \mathrm{mmol}\) ) was added in one portion to a solution of the alcohol ( \(150 \mathrm{mg}, 0.36 \mathrm{mmol}\) ) and \(\mathrm{Et}_{3} \mathrm{~N}(250 \mu \mathrm{~L}, 1.78 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMSO} 4 / 1(4.0 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\). The resulting mixture was warmed to room temperature and stirred for further 16 h . Sat. aq. \(\mathrm{NaS}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})\) and diethyl ether ( 5 mL ) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 5 mL ) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) gave the desired aldehyde \(77(139 \mathrm{mg}, 0.33 \mathrm{mmol}\), \(93 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ): \(\delta=9.78\) (br s, 1 H ), \(4.68(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}\), \(J=10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.82-\) \(2.74(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=\) \(7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63-0.54(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.2\), \(109.5,83.3,77.1,66.3,54.6,41.1,39.6,6.84\) (6C), 4.9 (3C), 4.5 (3C) HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 441.2468\), found 441.2469 . IR \(\left(\mathrm{cm}^{-1}\right): 2955,2912,2877,1728,1458,1386,1239\) 1107, 1007, 958. \([\alpha]_{\mathrm{D}}{ }^{20}:+7.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.45\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 6 / 1) 0.67\).

Aldehyde 81: To a solution of alcohol \(\mathbf{8 0}(40 \mathrm{mg}, 0.12 \mathrm{mmol})\) in MeOH \((4.1 \mathrm{~mL})\) was added \(\mathrm{AcCl}(35 \mu \mathrm{~L}, 0.49 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The mixture was warmed to room temperature and stirred for further 4 h , the volatiles were removed under reduced pressure and the residue was dried under high vacuum for 2 h to yield 23 mg ( \(89 \%\) ) of the diol as slightly pink solid. \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ): \(\delta=5.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{br} \mathrm{s}\), \(1 \mathrm{H}), 4.01(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=6.2 \mathrm{~Hz}\), 1 H ), 3.21 (br s, 1H), 2.48 (dd, \(J=7.7 \mathrm{~Hz}, 15.1 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.04 (dd, \(J=4.7 \mathrm{~Hz}\), \(15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta\) \(=176.8,144.4,115.0,83.7,82.7,63.3,56.8,55.9,48.6,44.8,24.1\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 233.0790\), found: 233.0781. IR \(\left(\mathrm{cm}^{-1}\right): 3370,2925,1743,1352,1158,1056,995,906,729\), 647. \([\alpha]_{\mathrm{D}}{ }^{21}:-26.7\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.1\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 1 / 1) 0.15 . \mathrm{mp} .: 110-\) \(112^{\circ} \mathrm{C}\).
The crude diol ( \(15 \mathrm{mg}, 0.07 \mathrm{mmol}\) ) was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})\) and cooled to \(0{ }^{\circ} \mathrm{C}\). 2,6-lutidine ( \(50 \mu \mathrm{~L}, 0.43 \mathrm{mmol}\) ), followed by TESOTf ( 64 \(\mu \mathrm{L}, 0.29 \mathrm{mmol}\) ) were rapidly added to the reaction vessel and the mixture was stirred at \(0{ }^{\circ} \mathrm{C}\) for 45 min . The reaction was quenched by addition of \(\mathrm{NaHCO}_{3}(10 \mathrm{~mL})\), diluted with water \((10 \mathrm{~mL})\) and diethyl ether \((30 \mathrm{~mL})\). The phases were separated and the aqueous phase was extracted with diethyl ether ( \(2 \times 15 \mathrm{~mL}\) ). The organic layers were washed with sat. aq. \(\mathrm{NaCl}(15 \mathrm{~mL})\), dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated under vacuum. The residue was purified by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}\right.\) \(15 / 1\) ) furnishing 30 mg ( \(96 \%\) ) of the desired TES protected diol as colorless
oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.22-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{dd}, J=1.5\), \(2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47\) (dd, \(J=6.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=1.8,7.8,14.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.92(\mathrm{dd}, J=5.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63-0.54(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) : \(\delta=176.3,145.7,113.6,84.7,83.5,62.9,57.4,56.4,49.9,44.8,23.6,7.1\) (3C), 6.8 (3C), 6.6 (3C), 4.5 (3C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 461.2519\) : , found: 461.2517. IR \(\left(\mathrm{cm}^{-1}\right): 2954\), \(2876,1773,1458,1239,1146,1107,991,805,742 .[\alpha]_{\mathrm{D}}{ }^{24}:-12.7\left(\mathrm{CHCl}_{3}, \mathrm{c}\right.\) \(=1.5) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 10 / 1) 0.54\).
The TES protected diol ( \(18 \mathrm{mg}, 0.04 \mathrm{mmol}\) ) was subjected to the same Swern-oxidation procedure as for 59 . Purification by flash chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(\left.\mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) furnished \(11 \mathrm{mg}(83 \%)\) of aldehyde \(\mathbf{8 1}\) as amorphous white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.83(\mathrm{~s}, 1 \mathrm{H}), 5.44\) \((\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.80(\mathrm{dd}, J=6.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=1.8,7.8\), \(14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=5.6,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.9\) \(\mathrm{Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=192.5\), 171.8, 142.7, 116.2, 84.8, 84.2, 63.6, 57.8, 49.3, 42.7, 7.1 (3C), 23.1, 6.6 (3C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 345.1498\), found: 345.1490 . IR \(\left(\mathrm{cm}^{-1}\right)\) : 2931, 2856, 1768, 1721, 1253, 1145, 1047, 987, 836, 775. \([\alpha]_{\mathrm{D}}{ }^{22}:-87.6\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.7\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / E t O A c 3 / 1) 0.28\).

Cage-shaped cyclobutane 82: To a solution of \(76(48 \mathrm{mg}, 0.09 \mathrm{mmol})\) in THF \((700 \mu \mathrm{~L})\) was dropwise added \(t \mathrm{BuLi}(120 \mu \mathrm{~L}, 1.7 \mathrm{M}\) in THF, 0.20 \(\mathrm{mmol})\) at \(-78^{\circ} \mathrm{C}\). After 30 min a solution of crude aldehyde \(\mathbf{8 1}(30 \mathrm{mg}, 0.09\) \(\mathrm{mmol})\) in THF \((700 \mu \mathrm{~L})\) was added within 5 min . The resulting mixture was allowed to warm to \(0{ }^{\circ} \mathrm{C}\) within 3 h . Sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})\) and diethyl ether ( 5 mL ) were added. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 5 mL ) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) provided \(\mathbf{8 2}\) with a dr of \(4: 1(8 \mathrm{mg}\), \(0.01 \mathrm{mmol}, 12 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.39\) \((\mathrm{dd}, J=2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=1.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{td}, J=8.1\), \(5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=8.8,5.7 \mathrm{~Hz}\), 1 H ), 3.98 (dt, \(J=9.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=\) \(10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=8.2,6.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=14.6,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.42\) \((\mathrm{s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.7 \mathrm{~Hz}\), \(9 \mathrm{H}), 0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.57(\mathrm{q}, J=8.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), 100 MHz ): \(\delta=177.6,144.3,114.9,109.1,84.6,84.1,83.8,77.6,70.5,67.0\), \(58.0,57.8,54.6,49.6,44.8,41.7,28.2,23.3,7.1\) (3C), 6.93 (3C), 6.88 (3C), 6.6 (3C), 5.1 (3C), 4.4 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 735.4120\), found 735.4125. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2876\), \(1767,1460,1376,1300,1240,1104,990,906 .[\alpha]_{\mathrm{D}}{ }^{20}:-38.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.\) \(0.55) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 4/1) 0.42 .

\section*{(5S)-5-((S)-2-Methyl-2-((triethylsilyl)oxy)penta-3,4-dien-1-yl)-3-}
(phenylselanyl)dihydrofuran-2(3H)-one (83): Alcohol 37 was subjected to the same procedure as for \(\mathbf{3 2}\) using TESOTf for the protection instead of TMSOTf. Protection: Allenic alcohol ( \(5.4 \mathrm{~g}, 29.6 \mathrm{mmol}\) ), 2,6-lutidine ( 10 \(\mathrm{mL}, 88.9 \mathrm{mmol})\), TESOTf ( \(10 \mathrm{~mL}, 44.5 \mathrm{mmol}\) ), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})\). TESprotected allenic alcohol ( \(8.2 \mathrm{~g}, 27.6 \mathrm{mmol}, 93 \%\) ). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})\), \(4.80-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{br} \mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})\), 2.39-2.31 (m, 1H), 2.00-1.85 (m, 3H), \(1.40(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=206.4\), 177.4, \(99.9,78.1,77.9,72.4,49.7,29.9,29.1,27.7,7.1\) (3C), 6.6 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 319.1705\), found 319.1708. IR ( \(\mathrm{cm}^{-1}\) ): 2953, 2876, 1957, 1777, 1459, 1379, 1155, 1110, 1003, 917. \([\alpha]_{\mathrm{D}}{ }^{20}=-36.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} / \mathrm{EtOAc} 2 / 1) 0.21\).

The phenylselenyl group was introduced according to the procedure for \(\mathbf{3 2}\). TES-protected allenic alcohol ( \(2.5 \mathrm{~g}, 8.4 \mathrm{mmol}\) ), LiHMDS \((8.9 \mathrm{~mL}, 1.0 \mathrm{M}\) in toluene, 8.9 mmol\()\), TMSCl \((1.2 \mathrm{~mL}, 9.3 \mathrm{mmol}), \mathrm{PhSeCl}(1.9 \mathrm{~g}, 9.7\) \(\mathrm{mmol})\). Phenylseleno lactone \(83(3.31 \mathrm{~g}, 7.3 \mathrm{mmol}, 87 \%)\) with a dr of \(1: 1\) as pale yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.40-\) \(7.29(\mathrm{~m}, 6 \mathrm{H}), 5.21(\mathrm{dt}, J=8.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.72-4.62\) \((\mathrm{m}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=10.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H})\), 2.75 (ddd, \(J=13.6,9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H})\), \(1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=\) \(7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.55(\mathrm{q}, J=\) \(7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=206.3,136.0,135.8,129.5\), \(129.5,129.2,128.9,127.3,127.1,99.8,78.0,77.2,76.8,76.5,72.4,72.3\), \(49.6,49.3,38.5,37.9,37.9,37.3,27.6,7.18\) (3C), 7.15 (3C), 6.62 (3CH), \(6.59(3 \mathrm{CH})\). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SeSiNa}[\mathrm{M}+\mathrm{Na}]^{+}\) 475.1184, found 475.1190. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2875,1956,1770,1458,1414\),

1354, 1180, 1112, 1003. \([\alpha]_{\mathrm{D}}{ }^{20}:-23.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 6/1) 0.36 .

Butenolide 84: Phenylseleno lactone 83 ( \(842 \mathrm{mg}, 1.86 \mathrm{mmol}\) ) was coupled with aldehyde \(77(820 \mathrm{mg}, 1.96 \mathrm{mmol})\) according to the procedure for 46 . A mixture of four diastereomers ( 1.63 g ) was obtained as colorless oil which was used without further purification in the next reaction. The oxidative elimination of the phenylselenide was carried out according to the procedure for 22. A mixture of four diastereomers \((1.63 \mathrm{~g})\) gave the desired butenolide \(\mathbf{8 4}(1.1 \mathrm{~g}, 1.54 \mathrm{mmol}, 83 \%\) over 2 steps) with a dr of \(3: 1\) as colorless gum which was used as such in the next reaction. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.30(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})\), 5.28-5.23 (m, 8H), 4.84-4.83 (m, 8H), 4.68-4.66 (m, 4H), 4.52-4.46 (m, \(4 \mathrm{H}), 4.16(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H})\), \(3.81-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 9 \mathrm{H})\), \(3.30(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 6 \mathrm{H})\), \(1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 0.99-0.93(\mathrm{~m}\), \(108 \mathrm{H}), 0.67-0.58(\mathrm{~m}, 72 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=206.42\), 206.41, 172.7, 172.6, 150.1, 150.0, 136.2, 136.1, 109.2, 109.0, 99.7, 83.8, 83.7, 78.94, 78.87, 78.7, 78.17, 78.15, 77.2, 72.39, 72.37, 66.8, 66.5, 66.4, 66.0, 54.7, 54.6, 47.4, 47.2, 42.5, 41.5, 32.5, 32.5, 27.9, 27.8, 7.1, 6.9, 6.8, 6.6, 5.0, 4.4, 4.3. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+} 735.4120\), found \(735.4128 . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} /\) EtOAc 6/1) 0.30 .

Cage-shaped cyclobutanes 82 and 85: A diastereomeric mixture of 84 \((153 \mathrm{mg}, 0.21 \mathrm{mmol})\) was treated with UV-C light according to the procedure for \(\mathbf{4 7 / 4 8}\) giving \(\mathbf{8 2}(78 \mathrm{mg}, 0.11 \mathrm{mmol})\) and \(\mathbf{8 5}(38 \mathrm{mg}, 0.05\) \(\mathrm{mmol})\) ) as colorless gums. For analytic data of \(\mathbf{8 2}\) see above. Analytic data for 85: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.26(\mathrm{dd}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.20(\mathrm{td}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=2.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})\), 4.18-4.12 (m, 2H), 4.02-3.96 (m, 1H), 3.78 (dd, \(J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59\) (dd, \(J=10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.31(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H})\), \(1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 27 \mathrm{H})\), \(0.68-0.53(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=176.8,145.5,114.4\), \(109.3,84.7,83.9,83.7,79.1,69.9,66.9,59.6,58.0,54.6,49.8,43.4,41.9\), 29.2, 23.5, 7.1 (3C), 6.92 (3C), 6.86 (3C), 6.6 (3C), 5.0 (3C), 4.3 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 735.4120\), found 735.4123. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2912,2877,1769,1459,1414,1240\), 1107, 1042, 1006. \([\alpha]_{\mathrm{D}}{ }^{20}-107.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.2\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1)\) 0.35 .

Formate 89: The acylation of \(\mathbf{8 2}(246 \mathrm{mg}, 0.34 \mathrm{mmol})\) was performed according to the procedure for \(\mathbf{5 7}\) giving the desired acetate ( 260 mg , quant) as colorless oil. For the preparation of aldehyde \(\mathbf{5 9}\) and for analytic data see above.
To a suspension of aldehyde \(59(207 \mathrm{mg}, 0.3 \mathrm{mmol})\) and \(\mathrm{NaHCO}_{3}(82 \mathrm{mg}\), \(0.1 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})\) was added \(m \mathrm{CPBA}(111 \mathrm{mg}, 0.7 \mathrm{mmol})\), which was purified by extraction of a solution in diethyl ether with pH 7.5 buffer prior to use, in one portion under vigorous stirring at \(0^{\circ} \mathrm{C}\). After 2 h the reaction was quenched by the addition of dimethyl sulfide ( \(300 \mu \mathrm{~L}, 4\) \(\mathrm{mmol})\). After additional 30 min diethyl ether ( 10 mL ) and sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}\) \((10 \mathrm{~mL})\) were added at \(0{ }^{\circ} \mathrm{C}\). The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic extracts were washed with sat. aq. \(\mathrm{NaHCO}_{3}(15 \mathrm{~mL})\), water \((15 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(15 \mathrm{~mL})\). After drying with \(\mathrm{MgSO}_{4}\) and filtration, the volatiles were removed under reduced pressure. Purification of the remaining residue by flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) gave desired formate \(89(169 \mathrm{mg}, 79 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.11\) (s, \(1 \mathrm{H}), 6.14(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=10.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=\) \(2.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=2.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=8.0,5.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=5.0,0.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}\), 1 H ), 3.35 (s, 3H), 3.11-3.09 (m, 1H), 2.45 (ddd, \(J=14.7,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.39-2.33 (m, 1H), 2.08 (s, 3H), 2.04-1.94 (m, 2H), \(1.90(\mathrm{dd}, J=14.6,5.3\) \(\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67\) \((\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) : \(\delta=174.3,170.7,160.7,144.1,115.9,110.9,102.4,84.5,83.2,76.2,71.2\), \(57.8,57.4,55.6,49.6,44.9,44.7,25.0,23.4,21.1,7.1\) (3C), 6.9 (3C), 6.6 (3C), 4.9 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\) 677.3153, found 677.3136. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2877,1769,1740,1227,1152\), 1111, 1039, 1017, 990. \([\alpha]_{\mathrm{D}}{ }^{25}=-9.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.8\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} /\) EtOAc 3/1) 0.55 .

Aldehyde 60: Secondary alcohol \(\mathbf{8 5}(284 \mathrm{mg}, 0.42 \mathrm{mmol})\) was subjected to the identical acylation procedure as \(\mathbf{5 7}\) (see above) giving acetate 58 (300 mg , quant) as colorless oil (for analytical data see there). For the preparation of aldehyde \(\mathbf{6 0}\) and for analytical data see there.

Vinyl bromide 86: To a slightly turbid mixture of formate 89 ( 186 mg , \(0.28 \mathrm{mmol})\) and bromoallylsilane \(90(112 \mu \mathrm{~L}, 0.65 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.6\) \(\mathrm{mL})\) was dropwise added \(\mathrm{SnCl}_{4}(454 \mu \mathrm{~L}, 0.45 \mathrm{mmol})\) via syringe at \(-78{ }^{\circ} \mathrm{C}\). The reaction was stirred till TLC-analysis (Hex/EtOAc 6/1) indicated full consumption of the starting aldehyde. Thereafter, a mixture of MeOH and sat. aq. \(\mathrm{NaHCO}_{3} 2 / 1(6 \mathrm{~mL})\) and diethyl ether ( 6 mL ) were sequentially added. The resulting heterogenic mixture was warmed to room temperature and water was added till all solids were dissolved. The resulting clear aqueous phase was extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic extracts were washed with \(\mathrm{Na} / \mathrm{K}\) tartrate \((15 \mathrm{~mL})\), water \((15 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(15 \mathrm{~mL})\). After drying with \(\mathrm{MgSO}_{4}\) the solids were removed by filtration and the filtrate was concentrated under reduced pressure giving a colorless oil. The residue was taken up in a minimum amount of Hex/EtOAc 6/1 and purified by filtration over a short pad of silica (Hex/EtOAc, 6/1) yielding desired vinyl bromide 86 ( \(194 \mathrm{mg}, 94 \%\) ) after removal of the volatiles as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)\) : \(\delta=5.64(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=\) \(2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=1.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=8.0,5.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, J=10.3,8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.79\) (dd, \(J=14.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=\) \(14.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.66(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})\). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.4,170.7,144.2,131.8,118.7,115.8\), \(108.5,84.4,83.2,77.9,77.1,71.5,57.7,57.3,55.0,49.6,45.5,44.8,40.0\), 23.8, 23.4, 21.1, 7.1 (3C), 6.9 (3C), 6.6 (3C), 4.9 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{BrN}_{2} \mathrm{O}_{8} \mathrm{Si}_{2} \quad\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CCN}+\mathrm{NH}_{4}\right]^{+} 789.3364\), found 789.3349. IR ( \(\mathrm{cm}^{-1}\) ): 2954, 2877, 1770, 1747, 1459, 1372, 1226, 1151, 1049, 990. \([\alpha]_{\mathrm{D}}{ }^{25}:-50.1,\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.5\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.55\).

Macrocycle 91: To a solution of vinyl bromide 86 ( \(14 \mathrm{mg}, 0.02 \mathrm{mmol}\) ) in freshly degassed toluene \((0.8 \mathrm{~mL})\) were added \(\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{mg}, 0.002\) \(\mathrm{mmol})\), triphenylphosphine ( \(1 \mathrm{mg}, 0.004 \mathrm{mmol}\) ), \(\mathrm{Ag}_{2} \mathrm{CO}_{3}(16 \mathrm{mg}, 0.058\) \(\mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 100 mg ). After stirring at \(80^{\circ} \mathrm{C}\) for 3 days the reaction mixture was cooled to room temperature at which diethyl ether ( 5 mL ) and water ( 5 mL ) were added. The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with water ( 5 mL ) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\) followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue and mass analysis of the collected fractions indicated the formation of desired macrocycle 91. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2} \quad\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{NH}_{4}\right]^{+}\) 707.4117, found 707.4108.

Macrocycle 92: A suspension of vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ), \(\mathrm{NaOAc}(11 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NCl}(15 \mathrm{mg}, 0.053 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 150 mg ) in freshly degassed DMF ( 2.7 mL ) was added \(\mathrm{Pd}(\mathrm{OAc})_{2}(0.6 \mathrm{mg}, 0.003 \mathrm{mmol})\) as a solid at room temperature. The flask was sealed and immediately heated to \(85^{\circ} \mathrm{C}\) in an oil bath under vigorous stirring. After 1.5 h the starting material was consumed. The reaction mixture was cooled to room temperature followed by the addition of diethyl ether ( 5 mL ) and water ( 5 mL ). The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether ( 3 x 5 mL ). The combined organic phases were washed with water \((5 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\) followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 8:1) of the residue resulted in isolation of carbo-oxygenation product 92 ( \(10 \mathrm{mg}, 55 \%\) ) and vinyl nitrile 93 ( \(4 \mathrm{mg}, 22 \%\) ). Analytic data for 92: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.50(\mathrm{dd}, J=11.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.33(\mathrm{dd}, J=2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=1.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=5.4\), \(8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=10.8,8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.09(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.11-\) 3.09 (m, 1H), 2.55 (dd, \(J=15.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45\) (ddd, \(J=14.7,7.8,1.7\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})\), \(1.90(\mathrm{dd}, J=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=\) \(8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}\), \(J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=174.4,170.6,169.3\), \(154.0,144.2,115.8,108.8,103.4,84.4,83.2,77.6,76.8,71.4,57.7,57.3\), \(55.1,49.6,44.8,40.1,37.7,23.7,23.4,21.3,21.0,7.2\) (3C), 6.9 (3C), 6.6 (3C), 6.4 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{NaO}_{10} \mathrm{Si}_{2}\) \(\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CCN}+\mathrm{NH}_{4}\right]^{+} 731.3623\), found 731.3628. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2915,1769\),

1371, 1226, 1207, 1101, 1051, 1018, 990. \([\alpha]_{\mathrm{D}}{ }^{15}=-50.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.4\right)\). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 4/1) 0.27.

Vinyl nitrile 93: A round bottomed flask was charged with vinyl bromide \(\mathbf{8 6}(15 \mathrm{mg}, 0.021 \mathrm{mmol})\) in freshly degassed DMF ( 5.3 mL ). \(\mathrm{Pd}(\mathrm{OAc})_{2}(2.0\) \(\mathrm{mg}, 0.009 \mathrm{mmol}\) ), triphenylphosphine ( \(5 \mathrm{mg}, 0.021 \mathrm{mmol}\) ), \(\mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}\), \(0.21 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 100 mg ) were added. The reaction was stirred at \(125{ }^{\circ} \mathrm{C}\) for 3 h and allowed to cool to room temperature at which diethyl ether \((10 \mathrm{~mL})\) and water \((10 \mathrm{~mL})\) were added. The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether (3 x 10 mL\()\). The combined organic phases were washed with water \((10 \mathrm{~mL})\) and sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\) followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue gave vinyl nitrile 93 \((7 \mathrm{mg}, 50 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.92(\mathrm{~s}, 1 \mathrm{H})\), \(5.76(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.22(\mathrm{~s} \mathrm{br}, 1 \mathrm{H})\), 5.18 (dt, \(J=5.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.29\) (ddd, \(J=10.8,8.6,2.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.08(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})\), 3.13-3.10 (m, 1H), \(2.58(\mathrm{dd}, J=14.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=14.8,7.9\), \(0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{br} \mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})\), \(1.91(\mathrm{dd}, J=14.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=\) \(7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=\) \(7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.4,170.7,144.2,132.4\), \(120.8,118.9,115.8,108.6,84.5,83.2,78.1,77.0,71.4,57.7,57.3,55.0\), 49.6, 44.8, 40.2, 39.1, 23.7, 23.4, 21.1, 7.1 (3C), 6.9 (3C), 6.6 (3C), 4.9 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CCN}+\mathrm{NH}_{4}\right]^{+}\) 734.4226, found 734.4215. IR \(\left(\mathrm{cm}^{-1}\right): 2955,2914,2877,2259,1769,1747\), 1373, 1227, 1152, 1050. \([\alpha]_{\mathrm{D}}{ }^{18}:-69.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.35\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 4/1) 0.58 .

General procedure for the tin mediated allylation; Homoallylic alcohol 97: To a solution of the aldehyde \(59(25 \mathrm{mg}, 0.04 \mathrm{mmol})\) and \((Z)\) crotylsilane ( 94 ) ( \(41 \mu \mathrm{~L}, 0.23 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})\) was dropwise added \(\mathrm{SnCl}_{4}\left(120 \mu \mathrm{~L}, 1.0 \mathrm{M}\right.\) in \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.12 \mathrm{mmol}\right)\) at \(-78{ }^{\circ} \mathrm{C}\). The reaction mixture was stirred at his temperature for 4 h . A suspension of sat. aq. \(\mathrm{NaHCO}_{3} / \mathrm{MeOH} 1 / 2(3 \mathrm{~mL})\) was rapidly added at \(-78^{\circ} \mathrm{C}\). The cooling bath was removed and diethyl ether ( 5 mL ) and water ( 2 mL ) were added. The separated aqueous phase was extracted with diethyl ether ( \(3 \times 5 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{Na} / \mathrm{K}\) tartrate ( 5 mL ) and sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 8 / 1\) ) gave homoallylic alcohol \(97(27 \mathrm{mg}, 0,039 \mathrm{mmol}, 98 \%)\) as a mixture of diastereomers, which was used as such in the next reaction. Major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.75\) (ddd, \(J=17.2,10.3\), \(8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dt}, J=11.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.20(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{td}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{ddd}, J=\) \(17.3,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 2 \mathrm{H})\), \(3.36(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}) 2.09\) \((\mathrm{s}, 3 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=\) \(6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.92(\mathrm{~m}, 18 \mathrm{H}), 0.73-0.67(\mathrm{~m}, 6 \mathrm{H}), 0.61-0.55(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.3,170.9,144.3,141.2,116.0,109.9\), \(84.4,84.3,83.1,76.1,73.5,73.1,70.9,57.7,57.2,55.6,49.7,44.8,43.1\), \(38.4,24.9,23.4,21.9,17.0,7.2\) (3C), 6.9 (3C), 6.6 (3C), 5.0 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 717.3830\), found 717.3833. IR \(\left(\mathrm{cm}^{-1}\right): 2958,2933,2909,1775,1752,1238,1147,1101,1015\), 988. \([\alpha]_{D}{ }^{20}:-43.3,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.4\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 2 / 1) 0.48\).

Homoallylic alcohol 95: Aldehyde \(59(26 \mathrm{mg}, 0.04 \mathrm{mmol})\) and allyltrimethylsilane ( \(26 \mu \mathrm{~L}, 0.16 \mathrm{mmol}\) ) were treated with \(\mathrm{SnCl}_{4}(81 \mu \mathrm{~L}\), 0.08 mmol ) according to the general procedure for the tin mediated allylation giving \(95(25 \mathrm{mg}, 0.04 \mathrm{mmol}, 93 \%)\) as a mixture of diastereomers. Major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.96-5.82(\mathrm{~m}, 1 \mathrm{H})\), 5.50-5.44 (m, 1H), 5.35-5.29 (m, 1H), 5.21.-5.20 (m, 1H), 5.19-5.08 (m, \(3 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.43\) \((\mathrm{m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{br} \mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.29(\mathrm{~m}, 3 \mathrm{H})\), 2.27-2.14 (m, 1H), 2.10-1.96 (m, 5H), 1.94-1.87 (m, 2H), 1.41 (br s, 3H), 1.01-0.92 (m, 18H), 0.73-0.67 (m, 6H), 0.61-0.55 (m, 6H). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=175.2,171.0,144.8,135.2,117.2,115.7,110.3\), 87.1, 84.8, 83.6, 78.2, 71.6 (2C), 58.3, 58.2, 55.9, 49.6, 44.0, 39.6, 39.5, 27.7, 22.9, 20.8, 7.2 (3C), 6.9 (3C), 6.5 (3C), 5.0 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}_{2} \quad\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{NH}_{4} \mathrm{Cl}\right]^{+} \quad 739.4385\), found 739.4388. IR \(\left(\mathrm{cm}^{-1}\right): 2962,2946,2928,1781,1741,1243,1178,1119,1024\), 998. \([\alpha]_{\mathrm{D}}{ }^{20}:-11.7,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.2\right) . \mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} /\) EtOAc \(2 / 1) 0.50\).

Homoallylic alcohol 96: Aldehyde \(60(30 \mathrm{mg}, 0.05 \mathrm{mmol})\) and allyltrimethylsilane ( \(26 \mu \mathrm{~L}, 0.16 \mathrm{mmol}\) ) were treated with \(\mathrm{SnCl}_{4}(71 \mu \mathrm{~L}\),
0.07 mmol ) according to the general procedure for the tin mediated allylation giving \(96(30 \mathrm{mg}, 0.04 \mathrm{mmol}, 94 \%)\) as a mixture of diastereomers. major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.91\) (ddt, \(J=17.2\), \(10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=11.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.24(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{td}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14\) (ddd, \(J=\) \(17.1,3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{br} \mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.13\) (d, \(J\) \(=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J\) \(=8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})\), 2.45 (ddd, \(J=14.7,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.09-\) \(2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=14.8,8.6\), \(2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.64(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100\right.\) \(\mathrm{MHz}): \delta=174.8,170.4,144.5,135.4,117.2,115.6,110.1,87.3,84.7,83.4\), \(78.5,71.3\) (2C), 58.23, 58.17, 55.7, 49.5, 44.2, 39.6, 39.5, 27.1, 23.3, 21.1, 7.1 (3C), 6.9 (3C), 6.6 (3C), 5.0 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{37} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{NH}_{4} \mathrm{Cl}\right]^{+} 739.4385\), found 739.4388 . IR \(\left(\mathrm{cm}^{-1}\right)\) : 2955, 2935, 2912, 1773, 1748, 1231, 1153, 1105, 1040, 1017. [ \(\alpha]_{\mathrm{D}}{ }^{20}:-44.0\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.2\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 2 / 1) 0.37\).

Homoallylic alcohol 98: Aldehyde \(60(30 \mathrm{mg}, 0.05 \mathrm{mmol})\) and \((Z)\) crotylsilane (94) ( \(26 \mu \mathrm{~L}, 0.16 \mathrm{mmol}\) ) were treated with \(\mathrm{SnCl}_{4}(71 \mu \mathrm{~L}, 0.07\) \(\mathrm{mmol})\) according to the general procedure for the tin mediated allylation giving 98 ( \(30 \mathrm{mg}, 0.04 \mathrm{mmol}, 94 \%\) ) as a mixture of diastereomers. Major diastereomer: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.94-5.88(1 \mathrm{H}, \mathrm{s}), 5.67(\mathrm{~d}, J\) \(=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{br} \mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{br} \mathrm{d}, J\) \(=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.82(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.35(\mathrm{~m}, 1 \mathrm{H})\), \(3.32(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{br} \mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{td}\), \(J=10.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 1 \mathrm{H})\), 2.07-2.02 (m, 4H), 1.92 (dd, \(J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=14.9\), \(8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})\), \(0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})\). \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=175.0,171.6,144.2,139.2,116.3,115.8\), \(109.7,85.6,84.6,83.4,78.8,77.7,72.1,58.3,58.2,55.2,49.5,44.0,41.7\), 40.0, 27.8, 23.3, 21.3, 17.5, 7.1 (3C), 6.9 (3C), 6.6 (3C), 4.9 (3C). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 717.3830\), found 717.3836. IR ( \(\mathrm{cm}^{-1}\) ): 3490, 2956, 2877, 1774, 1459, 1373, 1236, 1150, 1106, 997. \([\alpha]_{\mathrm{D}}{ }^{24}:-35.6,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.25\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.57\).

Dimer 109: To a degassed solution of \(97(42 \mathrm{mg}, 0.06 \mathrm{mmol})\) in toluene \((120 \mathrm{~mL})\) at reflux was added catalyst \(\mathbf{1 0 3}(8 \mathrm{mg}, 0.01 \mathrm{mmol})\) as a solid in one portion. After 20 h , air was bubbled through the solution for 15 min to destroy the active catalyst. The volatiles were removed and the residue was subjected to column chromatography, where after, dimer 109 ( \(10 \mathrm{mg}, 0.02\) \(\mathrm{mmol}, 25 \%)\) was isolated as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=\) \(5.58-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=11.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=2.5,1.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.20(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{td}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H})\), \(4.16(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=4.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45\) (ddd, \(J=14.7,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87\) \((\mathrm{m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(9 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.69(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}\), \(6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.2,170.8,144.2,135.2,122.1\), \(115.8,109.7,85.4,84.5,83.0,78.6,76.2,70.9,57.7,57.0,55.3,49.7,44.8\), \(39.6,25.0,23.4,21.0,13.2,7.12\) (3C), 6.98 (3C), 6.60 (3C), 5.01 (3C). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{70} \mathrm{H}_{120} \mathrm{O}_{18} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\)1383.7449, found 1383.7454. IR \(\left(\mathrm{cm}^{-1}\right): 2956,2914,2877,2369,1771,1746,1373\), 1222, 1151, 1043. \([\alpha]_{\mathrm{D}}{ }^{20}=-5.0,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.2\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.29\).

Diene 111: A solution of \(96(32 \mathrm{mg}, 0.05 \mathrm{mmol})\) and 2,6 -lutidine ( \(27 \mu \mathrm{~L}\), \(0.23 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})\) was treated with TMSOTf \((27 \mu \mathrm{~L}, 0.15\) \(\mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\). The resulting mixture was stirred for 3 h , sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(5\) mL ) and diethyl ether ( 5 mL ) were added. The separated aqueous layer was extracted with diethyl ether ( \(2 \times 5 \mathrm{~mL}\) ). The combined organic layers were washed with sat. aq. \(\mathrm{NaCl}(5 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Purification of the residue by column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 6 / 1\right)\) gave TMS protected allylic alcohol \(111(27 \mathrm{mg}, 0.04 \mathrm{mmol}, 76 \%)\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400\right.\) \(\mathrm{MHz}): \delta=5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=\) \(2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-517(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=17.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-\) \(5.03(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.1\), \(3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})\), 3.15-3.12 (m, 1H), 2.45 (ddd, \(J=14.7,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H})\), 2.25-2.15 (m, 2H), 2.14-2.07 (m, 1H), 2.04 (s, 3H), \(1.92(\mathrm{dd}, J=14.7\), \(5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=14.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{br} \mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=\) \(8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (CDCl \({ }_{3}, 100\) \(\mathrm{MHz}): \delta=174.8,170.1,144.5,135.9,117.1,115.5,108.7,85.5,84.7,83.3\),
77.4, 73.2, 72.2, 58.23, 58.1, 54.7, 49.4, 44.2, 39.7, 38.1, 24.9, 23.3, 21.2, 7.10 (3C), 6.91 (3C), 6.61 (3C), 5.16 (3C), 0.62 (3C). HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{38} \mathrm{H}_{68} \mathrm{O}_{9} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 775.4069\), found 775.4050. IR \(\left(\mathrm{cm}^{-1}\right)\) : 2955, 2877, 1775, 1747, 1372, 1229, 1150, 1107, 1041, 993. [ \(\alpha]_{\mathrm{D}}{ }^{20}:-51-8\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.8\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.56\).
(3S,5S)-3-(Methoxymethoxy)-3-methyl-5-(prop-2-yn-1-yloxy)cyclopent-1-ene (115): A solution of alcohol \(117(150 \mathrm{mg}, 0.95 \mathrm{mmol})\) in THF ( 6 mL ) was dropwise added to a suspension of \(\mathrm{NaH}(164 \mathrm{mg}, 3.80 \mathrm{mmol})\) in THF \((9 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\). After 1 h propargyl bromide \((310 \mu \mathrm{~L}, 2.80 \mathrm{mmol})\) was added via syringe and the resulting mixture was warmed to room temperature. After 16 h sat. aq. \(\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})\) was added and the aqueous phase was separated and extracted with diethyl ether ( \(3 \times 10 \mathrm{~mL}\) ). The combined organic phases were washed with sat. aq. \(\mathrm{NaCl}(10 \mathrm{~mL})\), dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under reduced pressure. Column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3 / 1\right)\) of the residue afforded desired propargyl ether 115 ( \(184 \mathrm{mg}, 0.94 \mathrm{mmol}, 99 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR (d \({ }^{6}\)-DMSO, 400 MHz ): \(\delta=6.05\) (dd, \(\left.J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.89(J=5.6,1.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.72-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=16.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, \mathrm{J}=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}\), \(\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, \mathrm{J}=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, \mathrm{J}=\) \(14.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (d \({ }^{6}\)-DMSO, 100 MHz ): \(\delta=139.3\), 133.7, 91.2, 86.6, 82.1, 80.8, 76.8, 55.8, 54.4, 43.9, 27.1. HRMS (EI) (m/z): calculated for \(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\)181.0865, found 181.0862. IR \(\left(\mathrm{cm}^{-1}\right)\) : \(3290,2930,1632,1444,1361,1270,1142,1095,1031,916 .[\alpha]_{D}{ }^{20}:-88.7\), \(\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.54\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.42\).

Poly-cycle 119: To a solution of propargyl ether \(\mathbf{1 1 5}(66 \mathrm{mg}, 0.34 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})\) was added \(\mathrm{Co}_{2}(\mathrm{CO})_{8}(133 \mathrm{mg}, 0.37 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The resulting mixture was warmed to room temperature and stirring was continued for 16 h . The volatiles were removed under reduced pressure and the crude residue was used without purification in the next reaction.
To a solution of the crude cobalt complex ( \(12 \mathrm{mg}, 0.03 \mathrm{mmol}\) ) in THF ( 0.5 mL ) was added TMANO ( \(6 \mathrm{mg}, 0.08 \mathrm{mmol}\) ) at \(-21^{\circ} \mathrm{C}\). The resulting mixture was allowed to warm to room temperature and stirred for 1 h . The precipitate was removed by filtration through a short pad of Celite which was rinsed with diethyl ether \((5 \mathrm{~mL})\). The volatiles were removed and the remaining residue was subjected to column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 3/1) leading to the isolation of dimer 119 ( \(10 \mathrm{mg}, 0.02 \mathrm{mmol}\), \(90 \%\) ) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.47(\mathrm{t}, J=1.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=5.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-\) \(4.83(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.63(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{d}, J=\) \(8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=14.3,6.6\), \(1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=14.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=14.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.48(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=205.5,196.1\), 158.1, 143.8, 139.9, 133.8, 91.9, 91.4, 90.4, 85.8, 84.2, 77.9, 68.9, 63.04, \(62.95,60.38,58.0,55.74,55.68,55.1,46.7,44.3,27.2,20.5\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 471.1995\), found 471.2006. IR \(\left(\mathrm{cm}^{-1}\right): 2923,2852,1747,1700,1466,1366,1270,1145,1081,1030\) \([\alpha]_{\mathrm{D}}^{22}:-75.9,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.25\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} /\) EtOAc 1/1) 0.17 .

Supporting Information (see footnote on the first page of this article): Details on the Heck-macrocyclization conditions

\section*{Acknowledgments}

Financial support from the University of Vienna (doctoral programm, Initiativkolleg Functional Molecules IK I041-N) and from the Austrian Science Fund (FWF, Project No. P22180) is gratefully acknowledged. We thank H. Kählig, L. Brecker, and S. Felsinger for NMR assistance and A. Roller and V. Arion (University of Vienna) for X-ray analysis.
[1] J. Marrero, A. D. Rodríguez, P Baran, R. G. Raptis, J. A. Sanchez, E. Ortega-Barria, T. L. Capson, Org. Lett. 2004, 6, 1661-1664.
[2] J. Marrero, A. D. Rodríguez, P. Baran, R. G. Raptis, Org. Lett. 2003 , 5, 2551-2554
[3] a) B. Doroh, G. A. Sulikowski, Org. Lett. 2006, 8, 903-906; b) R. Miao, S. G. Gramani, M. J. Lear, Tetrahedron Lett. 2009, 50, 17311733; c) K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Angew. Chem. Int. Ed. 2011, 50, 5149-5152; d) A. Jana, S. Mondal, Md. F. Hossain, S. Ghosh, Tetrahedron Lett. 2012, 53, 6830-6833; e) M. E. Meyer, J. H. Phillips, E. M. Ferreira, B. M. Stoltz, Tetrahedron 2013, 69 7627-7635; f) A. P. G. Macabeo, C. W. Lehmann, O. Reiser Synlett

2012, 23, 2909-2912; g) A. Saitman, S. D. E. Sullivan, E. A. Theodorakis Tetrahedron Lett. 2013, 54, 1612-1615; h) J.-B. Farcet, M. Himmelbauer, J. Mulzer, Org. Lett. 2012, 14, 2195-2197; i) J.-B. Farcet, M. Himmelbauer, J. Mulzer, Eur. J. Org. Chem 2013, 43794398; j) M. Himmelbauer, J.-B. Farcet, J. Gagnepain, J. Mulzer, Org. Lett. 2013, 12, 3098-3101.
[4] a) P. A. Roethle, D. Trauner, Org. Lett. 2006, 8, 345-347; b) P. A. Roethle, P. T. Hernandez, D. Trauner, Org. Lett. 2006, 8, 5901-5904; c) P. A. Roethle, D. Trauner, Nat. Prod. Rep. 2008, 8, 298-317; d) Y. Li, G. Pattenden, Nat. Prod. Rep. 2011, 28, 1269-1310.
[5] J.-B. Farcet, M. Himmelbauer, J. Mulzer, Eur. J. Org. Chem 2013, following paper.
[6] a) T. Bach, Synthesis 1998, 683-703; b) For a review on photochemical reactions in total syntheses see T. Bach, J. P. Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000-1054.
[7] a) A. Stephen, K. Hashmi, M. Rudolph Chem. Soc. Rev. 2008, 37, 1766-1775; b) V. Belting, N. Krause, Org. Biomol. Chem. 2009, 7, 1221-1225; c) M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett. 2005, 7, 3925-3927; d) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, Chemistry Eur. J. 2006, 12, 1677-1693; e) C. NietoOberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402-2406; f) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 22712296.
[8] K. Sonogashira, J. Organomet. Chem. 2002, 653, 46-49.
\([9]\) a) C. R. Schmid, J. D. Bryant, Org. Synth. 1995, 72, 6; b) J. Mann, A. C. Weymouth-Wilson, Org. Synth. 1998, 75, 139; c) W. Felzmann, V. B. Arion, J. L. Mieusset, J. Mulzer, Org. Lett. 2006, 8, 3849-3851.
\([10]\) a) G. Deguest, L. Bischoff, C. Fruit, F. Marsais, Org. Lett. 2007, 9, 1165-1167; b) K. Maruoka, A. B. Concepcion, N. Murase, M. Oishi, N. Hirayama, H. Yamamoto, J. Am. Chem. Soc. 1993, 115, 39433949.
[11] T. Gaich, H. Weinstabl, J. Mulzer, Synlett 2009, 9, 1357-1366.
[12] P. A. Krapcho, J. F. Weimaster, J. M. Eldridge, E. G. E. Jr. Jahngen, A. J. Lovey, W. P. Stephens,. J. Org. Chem. 1978, 43, 138-147.
[13] S. Searles, Y. Li, B. Nassim, M.-T. R. Lopes, P. T. Tran, P. Crabbé, J. Chem. Soc., Perkin Trans. 1 1984, 747.
[14] a) A. Rosenthal, L. B. Nguyen, J. Org. Chem. 1969, 34, 1029-1034; b) M. Xie, D. A. Berges, M. Robins, J. Org. Chem. 1996, 61, 51785179 and references cited therein.
[15] CCDC-943950 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[16] J.-P. Dulcère, J. Crandall, R. Faure, M. Santelli, V. Agati, M. N. Mihoubi, J. Org. Chem. 1993, 58, 5702-5708.
[17] For a review see: E. M. Becalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318-5365.
[18] a) L. E. Overman, Pure \& Appl. Chem. 1994, 66, 1423-1430; b) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945-2963.
[19] For a review see: K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527.
[20] U. S. Racherla, H. C. Brown, J. Org. Chem. 1991, 56, 401-404.
[21] A. Hafner, R. O. Duthaler, R. Marti, G. Rihs, P. Rothe-Streit, F. Schwarzenbach, J. Am. Chem. Soc. 1992, 114, 2321-2336.
[22] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29 and references cited therein.
\([23]\) I. C. Stewart, T. Ung, A. A. Pletnev, J. M. Berlin, R. H. Grubbs, Y. Schrodi, Org. Lett. 2007, 9, 1589-1592.
[24] K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem. Int. Ed. 2002, 41, 4038-4040.
[25] C. Samojlowicz, M. Bieniek, A. Zarecki, R. Kadyrov, K. Grela, Chem. Comm. 2008, 47, 6282-6284.
[26] A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am Chem. Soc. 2003, 125, 11360-11370.
\([27]\) a) I. Khand, G. R. Knox, P. L. Pauson, J. Chem. Soc., Perkin Trans 1 1973, 977-981; b) P. L. Pauson, Tetrahedron 1985, 41, 5855-5860.
[28] For a review see: A. S. Kende, Org. React. 1960, 11, 261-316.
[29] For a review see: H. Meier, K. P. Zeller, Angew. Chem. 1975, 87, 5263.
[30] a) T. T. Curran, D. A. Hay, Tetrahedron: Asymmetry 1996, 7, 2791-
2792 ; b) A. Roy, S. W. Schneller, J. Org. Chem. 2003, 68, \(9269-1\)
9273 ; c) M. W. Gilbert, A. Galkina, J. Mulzer, Synlett 2004, 14,
2792 ; b) A. Roy, S. W. Schneller, J. Org. Chem. 2003, 68, \(9269-14\)
9273 ; c) M. W. Gilbert, A. Galkina, J. Mulzer, Synlett 2004, 14, 2558-2562.

\section*{Entry for the Table of Contents ((Please choose one layout.))}

\section*{Layout 1:}

\section*{Total Synthesis}

Asymmetric syntheses of various highly functionalized intermediates toward the total synthesis of bielschowskysin (1) are described. In particular a biomimetic [2+2]-photocycloaddition strategy, forming the cyclobutane core, was followed by various macrocyclizations attempts.


Martin Himmelbauer, Jean-Baptiste Farcet, Julien Gagnepain and Johann
Mulzer* ....... Page No. - Page No.

An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy

Keywords: bielschowskysin /
terpenoids / total synthesis /
cycloaddition / macrocyclization /

\section*{Supporting Information}

\title{
An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy
}

\author{
Martin Himmelbauer, Jean-Baptiste Farcet, Julien Gagnepain and Johann Mulzer*
}

University of Vienna, Department of Organic Chemistry, Währinger Straße 38, 1090 Vienna, Austria
johann.mulzer@univie.ac.at






Table 1 Heck macrocyclization attempts.
\begin{tabular}{|c|c|c|c|}
\hline Entry & Conditions & Product & Yield \\
\hline 1 & \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) ( 0.5 eq.), \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) (3.0 eq.), \(\mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{M}), 4 \AA \mathrm{MS}, 90^{\circ} \mathrm{C}, 24 \mathrm{~h}\) & Starting material recovered & - \\
\hline 2 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{eq} .), \mathrm{PPh}_{3}(0.2 \text { eq. }), \\
\mathrm{Ag}_{2} \mathrm{CO}_{3}(3.0 \text { eq. }), 4 \AA \mathrm{MS} \text {, toluene ( } 0.01 \\
\mathrm{M}), 80^{\circ} \mathrm{C}, 3 \mathrm{~d}
\end{gathered}
\] & 91 & traces \\
\hline 3 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \text { eq. }), \text { DIPEA ( } 15.0 \text { eq.) }, \\
\mathrm{Bu}_{4} \mathrm{NCl}(10.0 \text { eq. }), 4 \AA \mathrm{MS}, \mathrm{DMF}(0.02 \\
\mathrm{M}), 110^{\circ} \mathrm{C}, 1 \mathrm{~h}
\end{gathered}
\] & 92 & 41\% \\
\hline 4 & \[
\begin{gathered}
\left.\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{eq} .), \mathrm{PPh}_{3} \text { ( } 1.0 \text { eq. }\right), \\
\mathrm{K}_{2} \mathrm{CO}_{3}(10.0 \text { eq.), } 4 \AA \text { MS, DMF ( } 0.004 \\
\mathrm{M}), 125^{\circ} \mathrm{C}, 3 \mathrm{~h}
\end{gathered}
\] & 93 & 50\% \\
\hline 5 & \[
\begin{gathered}
{\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.1 \mathrm{eq} .), \mathrm{Et}_{2} \mathrm{NH}(0.4} \\
\text { eq. }), \mathrm{Et}_{3} \mathrm{~N}(5.0 \text { eq. }), \mathrm{DMF}(0.004 \mathrm{M}), \\
100^{\circ} \mathrm{C}, 4 \mathrm{~h}
\end{gathered}
\] & 93 & 37\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 6 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2} \text { (0.1 eq.), } \mathrm{Bu}_{4} \mathrm{NCl}(2.0 \text { eq. }), \\
\mathrm{Ag}_{2} \mathrm{CO}_{3}(3.0 \text { eq.), } 4 \AA \mathrm{~A} \mathrm{MS}, \mathrm{DMF}(0.004 \\
\mathrm{M}), 80^{\circ} \mathrm{C}, 5 \mathrm{~d}
\end{gathered}
\] & 93 & \(35 \%{ }^{\text {b }}\) \\
\hline \(7^{\text {a }}\) & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2} \text { ( } 0.2 \text { eq.), } \mathrm{KOAc}(1.5 \mathrm{eq} .) \\
\mathrm{K}_{2} \mathrm{CO}_{3}(5.0 \text { eq. }), \mathrm{Bu} 4_{4} \mathrm{NCl}(2.5 \mathrm{eq} .) \\
\mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{M}), 140^{\circ} \mathrm{C}, 1 \mathrm{~h}
\end{gathered}
\] & 92 & 16\% \\
\hline \(8^{\text {a }}\) & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.2 \mathrm{eq} .), \mathrm{K}_{2} \mathrm{CO}_{3}(5.0 \mathrm{eq} .), \\
\mathrm{Bu}_{4} \mathrm{NCl}(2.5 \mathrm{eq} .), \mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{M}), \\
120^{\circ} \mathrm{C}, 0.5 \mathrm{~h}
\end{gathered}
\] & 92 & traces \\
\hline \(9^{\text {a }}\) & \[
\begin{gathered}
\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \text { (0.2 eq.), } \mathrm{Et}_{3} \mathrm{~N} \text { (0.1 eq.) } \\
\mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{M}), 120^{\circ} \mathrm{C}, 0.5 \mathrm{~h}
\end{gathered}
\] & Complex mixture & - \\
\hline 10 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.3 \text { eq. }), \mathrm{PPh}_{3}(0.6 \text { eq. }), \\
\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 \text { eq. }), \operatorname{DMF}(0.01 \mathrm{M}), \\
130^{\circ} \mathrm{C}, 1.5 \mathrm{~h}
\end{gathered}
\] & 92 & traces \\
\hline 11 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{eq} .), \mathrm{KOAc}(5.0 \text { eq. }), \\
\mathrm{Bu}_{4} \mathrm{NCl}(2.0 \text { eq. }), 4 \AA \mathrm{MS}, \operatorname{DMF}(0.01 \\
\mathrm{M}), 85^{\circ} \mathrm{C}, 4 \mathrm{~h}
\end{gathered}
\] & 92 & 54\% \\
\hline 12 & \[
\begin{gathered}
\mathrm{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{eq} .), \mathrm{NaOAc}(5.0 \mathrm{eq} .), \\
\mathrm{Bu} \mathrm{u}_{4} \mathrm{NCl}(2.0 \text { eq. }), 4 \AA \mathrm{MS}, \mathrm{DMF}(0.01 \\
\mathrm{M}), 85^{\circ} \mathrm{C}, 1.5 \mathrm{~h}
\end{gathered}
\] & 92, 93 & 55\%, 22\% \\
\hline 13 & \[
\begin{gathered}
{\left[\mathrm{Pd}\left(\mathrm{dppf}_{2} \mathrm{Cl}_{2}\right](0.4 \mathrm{eq} .), \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0\right.} \\
\text { eq.), } \mathrm{nBu}_{4} \mathrm{NCl}(3.0 \text { eq. }), 4 \AA \mathrm{MS}, \mathrm{DMF} \\
(0.01 \mathrm{M}), 90^{\circ} \mathrm{C}, 2 \mathrm{~h}
\end{gathered}
\] & Complex mixture & - \\
\hline 14 & \[
\begin{gathered}
{\left[\mathrm{Pd}\left(\mathrm{dppf}_{2} \mathrm{Cl}_{2}\right] \text { ( } 0.4 \mathrm{eq} .\right), \mathrm{PBu}_{3}(0.8 \mathrm{eq} .),} \\
\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 \mathrm{eq} .), 4 \AA \mathrm{MS}, \operatorname{DMF}(0.01 \\
\mathrm{M}), 90^{\circ} \mathrm{C}, 16 \mathrm{~h}
\end{gathered}
\] & Complex mixture & - \\
\hline 15 & \[
\begin{gathered}
{\left[\mathrm{Pd}\left(\mathrm{dppf}_{2} \mathrm{Cl}_{2}\right](0.4 \mathrm{eq} .), \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0\right.} \\
\text { eq. }), \mathrm{PPh}_{3}(0.8 \mathrm{eq} .), 4 \AA \mathrm{MS}, \mathrm{DMF}(0.01 \\
\mathrm{M}), 9{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}
\end{gathered}
\] & Complex mixture & - \\
\hline 16 & A ( 0.4 eq.\(), \mathrm{Cs}_{2} \mathrm{CO}_{3}\) (3.0 eq.), toluene (0.01 M), \(90^{\circ} \mathrm{C}, 24 \mathrm{~h}\) & Complex mixture & - \\
\hline
\end{tabular}
a) Microwave assisted heating was used instead of conventional heating in an oil bath, b) based on recovered starting material

General procedure A: "standard" Heck reaction: Freshly degassed solvent was added at room temperature under an argon atmosphere to a mixture of the vinyl bromide, a phosphine ligand, base and crushed \(4 \AA\) molecular sieves (where stated). Subsequently, the palladium species was added to the reaction mixture as a solid, the flask was sealed with a plastic stopper and immediately heated in an oil bath under vigorous stirring. The reaction was monitored by TLC-analysis (Hex/EtOAc 3/1). The reaction mixture was allowed to cool to room temperature at which diethyl ether and water were added. The resulting heterogeneous mixture was filtered through a short pad of

Celite. The aqueous phase was separated and extracted with diethyl ether three times. The combined organic phases were washed with water and sat. aq. NaCl followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue gave the depicted product.

General procedure B: phosphine free Heck reaction: Freshly degassed solvent was added at room temperature under an argon atmosphere to a mixture of the vinyl bromide, base and crushed \(4 \AA\) molecular sieves (where stated). Freshly degased solvent was added at room temperature under an argon atmosphere. The palladium species was added to the reaction mixture as a solid and the flask was sealed with a plastic stopper and immediately heated in an oil bath under vigorous stirring. The reaction was monitored by TLC-analysis (Hex/EtOAc 3/1). The reaction mixture was allowed to cool to room temperature at which diethyl ether and water were added. The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether three times. The combined organic phases were washed with water and sat. aq. NaCl followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue gave the depicted product.

General procedure C: Jeffery-Heck reaction: Freshly degassed solvent was added at room temperature under an argon atmosphere to a mixture of the vinyl bromide, base, tetrabutylammonium chloride and crushed \(4 \AA\) molecular sieves (where stated). The palladium species was added to the reaction mixture as a solid and the flask was sealed with a plastic stopper and immediately heated in an oil bath under vigorous stirring. The reaction was monitored by TLC-analysis (Hex/EtOAc 3/1). The reaction mixture was allowed to cool to room temperature at which diethyl ether and water were added. The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether three times. The combined organic phases were washed with water and sat. aq. NaCl followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue gave the depicted product.

General procedure D: microwave assisted Heck reaction: A microwave tube was charged with the vinyl bromide, base, tetrabutylammonium chloride (where stated) and freshly degased solvent under an argon atmosphere. The palladium species was added to the reaction mixture as a solid and the tube was sealed with a plastic stopper and immediately heated with a Biotage Initiator \({ }^{\mathrm{TM}}\) Microwave Synthesizer under stirring. The reaction was monitored by TLC-analysis (Hex/EtOAc 3/1). At room temperature diethyl ether and water were added. The resulting heterogeneous mixture was filtered through a short pad of Celite. The aqueous phase was separated and extracted with diethyl ether three times. The combined organic phases were washed with water and sat. aq. NaCl followed by drying with \(\mathrm{MgSO}_{4}\). Filtration of the solids, removal of the volatiles under reduced pressure and flash column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8: 1\right)\) of the residue gave the depicted product.

Table 1, Entry 1
Vinyl bromide \(99(20 \mathrm{mg}, 0.03 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{B}\) using \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.01\) \(\mathrm{mmol})\) and \(\mathrm{Ag}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.8 \mathrm{mmol})\) in acetonitrile \((4.0 \mathrm{~mL})\) as solvent. After 24 h at \(90{ }^{\circ} \mathrm{C}\) no reaction was observed and starting material was recovered.


Table 1, Entry 2
Vinyl bromide \(86(14 \mathrm{mg}, 0.02 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{A}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{mg}, 0.002\) \(\mathrm{mmol})\), triphenylphosphine ( \(1 \mathrm{mg}, 0.004 \mathrm{mmol}\) ), \(\mathrm{Ag}_{2} \mathrm{CO}_{3}(16 \mathrm{mg}, 0.058 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve \((100 \mathrm{mg})\) in toluene \((0.8 \mathrm{~mL})\) as solvent. After 3 d at \(80^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue and mass analysis of the collected fractions indicated the formation of desired macrocycle 91.
HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CN}+\mathrm{NH}_{4}\right]^{+} 707.4117\), found 707.4108.


92
Table 1, Entry 3: tricyclo[8.2.0.0 \(\left.{ }^{2,9}\right]\) tridecane ring system 92
Vinyl bromide \(86(20 \mathrm{mg}, 0.027 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{C}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(3.0 \mathrm{mg}, 0.014\) mmol), DIPEA ( \(70 \mu \mathrm{~L}, 0.41 \mathrm{mmol}\) ), \(\mathrm{Bu}_{4} \mathrm{NCl}(78 \mathrm{mg}, 0.27 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 70 mg ) in DMF ( 0.8 mL ) as solvent. After 1 h at \(110{ }^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue resulted in isolation of carbo-oxygenation product \(92(8 \mathrm{mg}, 41 \%)\) as a single diastereomer.
\({ }^{1} \mathbf{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.50(\mathrm{dd}, J=11.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=1.92\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=5.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=10.8,8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J\) \(=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.1,10.8 \mathrm{~Hz}, 1 \mathrm{H})\), 2.45 (ddd, \(J=14.7,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J\) \(=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=\) \(8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathbf{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=174.4,170.6,169.3,154.0,144.2,115.8,108.8,103.4,84.4,83.2,77.6,76.8\), \(71.4,57.7,57.3,55.1,49.6,44.8,40.1,37.7,23.7,23.4,21.3,21.0,7.2\) (3C), 6.9 (3C), 6.6 (3C), 6.4 (3C).
HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{NaO}_{10} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CCN}+\mathrm{NH}_{4}\right]^{+} 731.3623\), found 731.3628.
IR \(\left(\mathrm{cm}^{-1}\right): \widetilde{v}=2955,2915,1769,1371,1226,1207,1101,1051,1018,990\).
\([\alpha]_{\mathbf{D}}{ }^{15}=-50.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.4\right)\).
\(\mathbf{R}_{\mathbf{f}}\) : (Hex/EtOAc 4/1) 0.27.


93
Table 1 Entry 4: Vinyl nitrile 93
Vinyl bromide \(86(15 \mathrm{mg}, 0.021 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{A}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.009\) mmol ), triphenylphosphine ( \(5 \mathrm{mg}, 0.021 \mathrm{mmol}\) ), \(\mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.21 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve \((100 \mathrm{mg})\) in DMF \((5.3 \mathrm{~mL})\) as solvent. After 3 h at \(125^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue gave vinyl nitrile 93 ( \(7 \mathrm{mg}, 50 \%\) ) as colorless oil.
\({ }^{1} \mathbf{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.92(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H})\), \(5.22(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=5.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=10.8,8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}\), \(J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.1,11.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=14.8,7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{br} \mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}\), \(3 \mathrm{H}), 1.91(\mathrm{dd}, J=14.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{t}, J\) \(=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathbf{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=174.4,170.7,144.2,132.4,120.8,118.9,115.8,108.6,84.5,83.2,78.1,77.0\), \(71.4,57.7,57.3,55.0,49.6,44.8,40.2,39.1,23.7,23.4,21.1,7.1\) (3C), 6.9 (3C), 6.6 (3C), 4.9 (3C).
HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{CCN}+\mathrm{NH}_{4}\right]^{+} 734.4226\), found 734.4215 .
IR \(\left(\mathrm{cm}^{-1}\right): \widetilde{v}=2955,2914,2877,1769,1747,1373,1227,1152,1050,990\).
\([\alpha]_{\mathbf{D}}{ }^{18}=-69.4,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.35\right)\).
\(\mathbf{R}_{\mathbf{f}}\) : (Hex/EtOAc 4/1) 0.58.

Table 1 Entry 5: Vinyl nitrile 93
Vinyl bromide \(86(15 \mathrm{mg}, 0.021 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{B}\) using \(\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](1.5 \mathrm{mg}\), \(0.002 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(1 \mu \mathrm{~L}, 0.008 \mathrm{mmol})\) and \(\mathrm{Et}_{3} \mathrm{~N}(28 \mathrm{mg}, 0.21 \mathrm{mmol})\) in DMF \((5.0 \mathrm{~mL})\) as solvent. After 4 h at \(100{ }^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue gave vinyl nitrile \(93(5 \mathrm{mg}, 37 \%)\) as colorless oil.

Table 1 Entry 6: Vinyl nitrile 93
Vinyl bromide 86 ( \(14 \mathrm{mg}, 0.020 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{C}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{mg}, 0.002\) \(\mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(16 \mathrm{mg}, 0.57 \mathrm{mmol}), \mathrm{Bu}{ }_{4} \mathrm{NCl}(11 \mathrm{mg}, 0.38 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 70 mg ) in DMF ( 5.0 mL ) as solvent. After 5 d at \(80^{\circ} \mathrm{C}\) the reaction was quenched. Purification of the residue resulted in isolation of vinyl cyanide \(\mathbf{9 3}(3 \mathrm{mg}, 23 \%, 35 \% \mathrm{brsm})\) as colorless oil.

\section*{Table 1, Entry 7: tricyclo \(\left[8.2 .0 .0^{2,9}\right]\) tridecane ring system 92}

Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{D}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 0.005\) \(\mathrm{mmol}), \mathrm{KOAc}(4 \mathrm{mg}, 0.041 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(19 \mathrm{mg}, 0.137 \mathrm{mmol})\) and \(\mathrm{Bu}_{4} \mathrm{NCl}(19 \mathrm{mg}, 0.068 \mathrm{mmol})\) in acetonitrile \((2.7 \mathrm{~mL})\) as solvent. After 1 h at \(140{ }^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue resulted in isolation of carbo-oxygenation product \(\mathbf{9 2}(3 \mathrm{mg}, 16 \%)\) as colorless oil.

Table 1, Entry 8: tricyclo[8.2.0.0 \({ }^{2,9}\) ]tridecane ring system 92
Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{D}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 0.005\) \(\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(19 \mathrm{mg}, 0.137 \mathrm{mmol})\) and \(\mathrm{Bu} \mathrm{A}_{4} \mathrm{NCl}(19 \mathrm{mg}, 0.068 \mathrm{mmol})\) in acetonitrile \((2.7 \mathrm{~mL})\) as solvent. After 30 min at \(120^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue and mass- as well as NMR-analysis of the collected fractions indicated the formation of carbo-oxygenation product 92.

\section*{Table 1, Entry 9}

Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{D}\) using \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.3 \mathrm{mg}, 0.005\) \(\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(38 \mu \mathrm{~L}, 0.273 \mathrm{mmol})\) in acetonitrile \((2.7 \mathrm{~mL})\) as solvent. After 30 min at \(120^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue did not lead to isolation of any previously described products.

Table 1, Entry 10
Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure A using \(\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.008\) mmol ), triphenylphosphine ( \(4 \mathrm{mg}, 0.016 \mathrm{mmol}\) ) and \(\mathrm{Cs}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.082 \mathrm{mmol})\) in DMF ( 3.0 mL ) as solvent. After 1.5 h at \(130^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue and mass- as well as NMR-analysis of the collected fractions indicated the formation of carbo-oxygenation product 92.

Table 1, Entry 11: tricyclo[8.2.0.0 \({ }^{2,9}\) ]tridecane ring system 92
Vinyl bromide 86 ( \(32 \mathrm{mg}, 0.044 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{C}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 0.004\) \(\mathrm{mmol}), \mathrm{KOAc}(22 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{Bu} \mathrm{NCl}^{2}(25 \mathrm{mg}, 0.088 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 150 mg ) in DMF ( 1.8 mL ) as solvent. After 4 h at \(85^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue resulted in isolation of carbo-oxygenation product \(\mathbf{9 2}(16 \mathrm{mg}, 54 \%)\) as a single diastereomer.

Table 1, Entry 12: tricyclo[8.2.0.0 \({ }^{2,9}\) ]tridecane ring system 92 and vinyl nitrile 93
Vinyl bromide \(86(20 \mathrm{mg}, 0.027 \mathrm{mmol})\) was subjected to general procedure \(\mathbf{C}\) using \(\mathrm{Pd}(\mathrm{OAc})_{2}(0.6 \mathrm{mg}, 0.003\) \(\mathrm{mmol}), \mathrm{NaOAc}(11 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NCl}(15 \mathrm{mg}, 0.053 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 150 mg ) in DMF ( 2.7 mL ) as solvent. After 1.5 h at \(85^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue resulted in isolation of vinyl nitrile \(\mathbf{9 3}(4 \mathrm{mg}, 22 \%)\) and carbo-oxygenation product \(\mathbf{9 2}\) ( \(10 \mathrm{mg}, 55 \%\) ).

Table 1, Entry 13
Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{C}\) using \(\left[\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}\right](7 \mathrm{mg}, 0.011\) \(\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.082 \mathrm{mmol}), \mathrm{Bu} 4 \mathrm{NCl}(15 \mathrm{mg}, 0.053 \mathrm{mmol})\) and crushed \(4 \AA\) molecular sieve ( 100 mg ) in DMF ( 2.7 mL ) as solvent. After 2 h at \(90^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue lead to a complex mixture of products.

Table 1, Entry 14
Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{A}\) using \(\left[\mathrm{Pd}\left(\mathrm{dppf}_{2}\right)_{2} \mathrm{Cl}_{2}\right](7 \mathrm{mg}, 0.011\) mmol ), tributylphosphine ( \(5.5 \mu \mathrm{~L}, 0.022 \mathrm{mmol}\) ), \(\mathrm{Cs}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.082 \mathrm{mmol})\) in DMF ( 2.7 mL ) as solvent. After 16 h at \(90^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue lead to a complex mixture of products.

Table 1, Entry 15
Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{A}\) using \(\left[\mathrm{Pd}\left(\mathrm{dppf}_{2}\right)_{2} \mathrm{Cl}_{2}\right](7 \mathrm{mg}, 0.011\) mmol ), triphenylphosphine ( \(6 \mathrm{mg}, 0.022 \mathrm{mmol}\) ), \(\mathrm{Cs}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.082 \mathrm{mmol}\) ) and crushed \(4 \AA\) molecular sieve \((100 \mathrm{mg})\) in DMF ( 2.7 mL ) as solvent. After 24 h at \(90^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue lead to a complex mixture of products.

\section*{Table 1, Entry 16}

Vinyl bromide 86 ( \(20 \mathrm{mg}, 0.027 \mathrm{mmol}\) ) was subjected to general procedure \(\mathbf{B}\) using allyl palladium catalyst \(\mathbf{A}\) ( 6 \(\mathrm{mg}, 0.011 \mathrm{mmol})\) and \(\mathrm{Cs}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.082 \mathrm{mmol})\) in toluene ( 2.7 mL ) as solvent. After 24 h at \(90^{\circ} \mathrm{C}\) no starting material was left. Purification of the residue lead to a complex mixture of products.

\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


ob

\section*{\({ }^{13} \mathrm{C}\) NMR, \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) \\  \\ }

\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)




\({ }^{13} \mathrm{C}\) NMR, \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\footnotetext{
\(\pm\)
}























\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 169.6 & - \\
\hline 2 & 159.4 & - \\
\hline 3 & 145.1 & 6.87-6.85 \\
\hline 4 & 135.82 & 7.69-7.66 \\
\hline 5 & 135.77 & 7.69-7.66 \\
\hline 6 & 133.51 & - \\
\hline 7 & 133.46 & - \\
\hline 8 & 130.4 & - \\
\hline 9 & 130.2 & - \\
\hline 10 & 129.90 & 7.44-7.36 \\
\hline 11 & 129.87 & 7.44-7.36 \\
\hline 12 & 129.4 & 7.20 \\
\hline 13 & 127.9 & 7.44-7.36 \\
\hline 14 & 127.8 & 7.44-7.36 \\
\hline 15 & 114.0 & 6.87-6.85 \\
\hline 16 & 107.4 & 4.84 \\
\hline 17 & 85.9 & - \\
\hline 18 & 83.4 & 5.04 \\
\hline 19 & 83.2 & 3.90-3.86 \\
\hline 20 & 77.4 & 5.15 \\
\hline 21 & 72.9 & 4.38 \\
\hline 22 & 70.5 & 3.32-3.22 \\
\hline 23 & 68.2 & 3.47, 3.32 \\
\hline 24 & 64.9 & 3.76, 3.72 \\
\hline 25 & 55.4 & 3.80 \\
\hline 26 & 54.8 & 3.33 \\
\hline 27 & 51.9 & 2.10-2.03 \\
\hline 28 & 41.3 & 1.95 \\
\hline 29 & 39.3 & 2.42, 2.08 \\
\hline 30 & 34.0 & 2.63-2.48 \\
\hline 31 & 27.0 & 1.06 \\
\hline 32 & 24.4 & 1.12 \\
\hline 33 & 19.4 & - \\
\hline OH & - & 1.88 \\
\hline
\end{tabular}

HMBC-Correlation:
\(20 \leftrightarrow 3 \leftrightarrow 1 ; 3 \leftrightarrow 8\)
\(32 \leftrightarrow 17,32 \leftrightarrow 29,32 \leftrightarrow 23\)
\(20 \leftrightarrow 18 \leftrightarrow 17\)
COSY-Correlation:
\(3 \leftrightarrow 30\),



\(\mathrm{HSQC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


NOESY, \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)



|l \(1 / 15\) | / 11

\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)
Submitted to the European Journal of Organic Chemistry


\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)

ผ



\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


 

\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\footnotetext{
(200
}


\section*{\({ }^{13}\) C NMR: CDCl \(3,100 \mathrm{MHz}\)}




\section*{\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)}



\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 177.2 & - \\
\hline 2 & 159.5 & - \\
\hline 3 & 144.8 & - \\
\hline 4 & 135.91 & 7.71-7.66 \\
\hline 5 & 135.86 & 7.71-7.66 \\
\hline 6 & 133.7 & - \\
\hline 7 & 133.5 & - \\
\hline 8 & 130.0 & - \\
\hline 9 & 129.80 & 7.44-7.35 \\
\hline 10 & 129.78 & 7.44-7.35 \\
\hline 11 & 129.5 & 7.21 \\
\hline 12 & 127.82 & 7.44-7.35 \\
\hline 13 & 127.79 & 7.44.7.35 \\
\hline 14 & 114.5 & \(5.31{ }^{\text {a }}\) 5.17-5.11 \({ }^{\text {b }}\) \\
\hline 15 & 114.0 & 6.85 \\
\hline 16 & 107.4 & 4.75 \\
\hline 17 & 84.9 & - \\
\hline 18 & 83.9 & 3.84 \\
\hline 19 & 83.7 & 5.17-5.11 \\
\hline 20 & 73.0 & 4.45; 4.40 \\
\hline 21 & 71.5 & 3.46-3.41; 3.30-3.25 \\
\hline 22 & 69.7 & 4.01-3.99 \\
\hline 23 & 65.5 & 3.76-3.74 \\
\hline 24 & 57.90 & 3.09 \\
\hline 25 & 57.88 & - \\
\hline 26 & 55.4 & 3.80 \\
\hline 27 & 54.6 & 3.30 \\
\hline 28 & 51.7 & 2.26-2.20 \\
\hline 29 & 49.5 & \(2.45{ }^{\text {a }}, 1.92{ }^{\text {b }}\) \\
\hline 30 & 44.4 & 3.30-3.25 \\
\hline 31 & 39.6 & 2.06-1.99 \\
\hline 32 & 35.2 & 1.65; 1.42-1.38 \\
\hline 33 & 27.0 & 1.06 \\
\hline 34 & 23.5 & 1.42-1.38 \\
\hline 35 & 19.4 & - \\
\hline 36 & 2.44 & 0.12 \\
\hline OH & - & 3.49 \\
\hline
\end{tabular}

NOE- correlation:
\(14 \mathrm{a} \leftrightarrow 24,29 \mathrm{a} \leftrightarrow 19\)
HMBC-correlation:
\(30 \leftrightarrow 3 \leftrightarrow 14 \mathrm{a} \leftrightarrow 24\)

\section*{\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)}

\(\qquad\) 4

\({ }^{13}\) C NMR: CDCl \(3,100 \mathrm{MHz}\)

今








\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\(\iiint\left|\int\right|\)

\(\qquad\)




\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\({ }^{13}\) C NMR: CDCl3, 100 MHz






47
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[p p m]\) & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 179.1 & - \\
\hline 2 & 137.9 & - \\
\hline 3 & 127.9 & 5.75 \\
\hline 4 & 108.8 & 4.66 \\
\hline 5 & 83.1 & 4.13 \\
\hline 6 & 78.3 & 4.09 \\
\hline 7 & 76.6 & 4.75 \\
\hline 8 & 71.1 & 3.91 \\
\hline 9 & - & \(3.91(\mathrm{OH})\) \\
\hline 10 & 70.1 & - \\
\hline 11 & 67.0 & \(3.84,3.61\) \\
\hline 12 & 55.6 & - \\
\hline 13 & 54.5 & 3.29 \\
\hline 14 & 47.9 & 3.50 \\
\hline 15 & 44.8 & \(2.53,1.95\) \\
\hline 16 & 42.8 & 2.31 \\
\hline 17 & 38.8 & \(3.26,2.74\) \\
\hline 18 & 31.2 & 1.36 \\
\hline 19 & 29.2 & 1.77 \\
\hline 20 & 25.9 & 0.91 \\
\hline 21 & 18.4 & - \\
\hline 22 & 6.7 & 0.96 \\
\hline 23 & 4.8 & 0.62 \\
\hline 24 & 2.2 & 0.10 \\
\hline 25 & -5.5 & 0.06 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 177.7 & - \\
\hline 2 & 144.0 & - \\
\hline 3 & 115.1 & 5.40, 5.20 \\
\hline 4 & 109.0 & 4.69 \\
\hline 5 & 84.9 & - \\
\hline 6 & 84.1 & 4.02 \\
\hline 7 & 83.7 & 5.16 \\
\hline 8 & 77.5 & 4.14 \\
\hline 9 & 70.4 & 3.98 \\
\hline 10 & 67.0 & 3.75, 3.66 \\
\hline 11 & 57.8 & 3.13 \\
\hline 12 & 57.7 & - \\
\hline 13 & 54.6 & 3.33-3.29 \\
\hline 14 & 49.6 & 2.45, 1.94 \\
\hline 15 & 44.8 & 3.33-3.29 \\
\hline 16 & 41.4 & 2.40 \\
\hline 17 & 27.9 & 1.79-1.67 \\
\hline 18 & 26.2 & 0.91 \\
\hline 19 & 23.4 & 1.43 \\
\hline 20 & 18.6 & - \\
\hline 21 & 7.0 & 0.96 \\
\hline 22 & 5.1 & 0.62 \\
\hline 23 & 2.4 & 0.11 \\
\hline 24 & -5.2 & 0.08 \\
\hline 25 & -5.3 & 0.09 \\
\hline 26 & - & 3.71 (OH) \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[\mathrm{ppm}]\) & \({ }^{1} \mathrm{H}[\mathrm{ppm}]\) \\
\hline 1 & 176.8 & - \\
\hline 2 & 145.4 & - \\
\hline 3 & 114.5 & \(5.27,5.15\) \\
\hline 4 & 109.2 & 4.69 \\
\hline 5 & 85.0 & - \\
\hline 6 & 84.0 & 3.96 \\
\hline 7 & 83.6 & 5.19 \\
\hline 8 & 79.1 & 4.17 \\
\hline 9 & 70.2 & 4.12 \\
\hline 10 & 67.1 & \(3.79,3.65\) \\
\hline 11 & 59.6 & - \\
\hline 12 & 57.7 & 3.11 \\
\hline 13 & 54.7 & 3.31 \\
\hline 14 & 49.8 & \(2.45,1.93\) \\
\hline 15 & 43.5 & 3.43 \\
\hline 16 & 41.6 & 2.41 \\
\hline 17 & 28.9 & \(1.87,1.67\) \\
\hline 18 & 26.2 & 0.91 \\
\hline 19 & 23.6 & 1.42 \\
\hline 20 & 18.7 & - \\
\hline 21 & 6.9 & 0.97 \\
\hline 22 & 5.1 & 0.63 \\
\hline 23 & 2.4 & 0.12 \\
\hline 24 & -5.3 & \(0.11,0.12\) \\
\hline 25 & - & \(3.05(\mathrm{OH})\) \\
\hline
\end{tabular}


(
\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)


52
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[p p m]\) & \({ }^{1} \mathbf{H}[p p m]\) \\
\hline 1 & 174.9 & - \\
\hline 2 & 170.3 & - \\
\hline 3 & 109.5 & 4.65 \\
\hline 4 & 83.5 & - \\
\hline 5 & 83.4 & 3.83 \\
\hline 6 & 82.6 & 5.19 \\
\hline 7 & 76.4 & 4.23 \\
\hline 8 & 68.2 & 5.31 \\
\hline 9 & 66.3 & \(3.71,3.57\) \\
\hline 10 & 62.2 & - \\
\hline 11 & 57.9 & 3.02 \\
\hline 12 & 55.8 & - \\
\hline 13 & 54.6 & 3.27 \\
\hline 14 & 50.2 & \(2.58,1.91\) \\
\hline 15 & 47.0 & \(2.88,2.70\) \\
\hline 16 & 42.4 & 3.54 \\
\hline 17 & 40.7 & 2.00 \\
\hline 18 & 26.1 & 0.92 \\
\hline 19 & 25.7 & \(1.84-1.75\) \\
\hline 20 & 23.1 & 1.31 \\
\hline 21 & 21.3 & 2.14 \\
\hline 22 & 18.5 & - \\
\hline 23 & 7.0 & 0.97 \\
\hline 24 & 4.9 & 0.69 \\
\hline 25 & 2.4 & 0.12 \\
\hline 26 & -5.3 & 0.08 \\
\hline & & \\
\hline
\end{tabular}




NOE- correlation:
\(5 \leftrightarrow 14 \leftrightarrow 13 ; 14 \leftrightarrow 7 \leftrightarrow 17 \mathrm{a}, 15 \leftrightarrow 21 \leftrightarrow 16 \mathrm{a}\)
HMBC-correlation:
\(1 \leftrightarrow 17 \leftrightarrow 11 ; 17 \leftrightarrow 3\)
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[\mathbf{p p m}]\) & \({ }^{1} \mathbf{H}[\mathbf{p p m}]\) \\
\hline 1 & 169.1 & - \\
\hline 2 & 109.1 & 4.71 \\
\hline 3 & 108.0 & - \\
\hline 4 & 86.1 & - \\
\hline 5 & 85.7 & 4.96 \\
\hline 6 & 84.1 & 3.93 \\
\hline 7 & 79.6 & 4.53 \\
\hline 8 & 76.9 & 4.19 \\
\hline 9 & 66.5 & \(3.72^{\mathrm{a}} ; 3.62^{\mathrm{b}}\) \\
\hline 10 & 60.6 & - \\
\hline 11 & 57.7 & - \\
\hline 12 & 54.6 & 3.29 \\
\hline 13 & 54.2 & 2.70 \\
\hline 14 & 50.6 & 3.40 \\
\hline 15 & 49.5 & \(3.02^{\mathrm{a}} ; 3.00^{\mathrm{b}}\) \\
\hline 16 & 48.0 & \(2.36^{\mathrm{a}} ; 2.25^{\mathrm{b}}\) \\
\hline 17 & 45.4 & \(2.87^{\mathrm{a}} ; 2.77^{\mathrm{b}}\) \\
\hline 18 & 41.2 & 2.29 \\
\hline 19 & 26.2 & \(2.19-2.07\) \\
\hline 20 & 26.1 & 0.89 \\
\hline 21 & 24.0 & 1.34 \\
\hline 22 & 18.4 & - \\
\hline 23 & 7.0 & 1.0 \\
\hline 24 & 5.2 & 0.68 \\
\hline 25 & 2.4 & 0.08 \\
\hline 26 & -5.2 & \(0.07 ; 0.06\) \\
\hline 27 & \(0 H\) & 2.73 \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}


\footnotetext{
\({ }^{13} \mathrm{CNMR:} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)
}



\(\mathrm{HSQC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)




\({ }^{13}\) C NMR: CDCl \(3,100 \mathrm{MHz}\)


\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)


(





\footnotetext{
\({ }^{13}\) C NMR: CDCl \(3,100 \mathrm{MHz}\)
}








NOE- correlation: \(\quad 16 \leftrightarrow 6 \leftrightarrow 9 ; 6 \leftrightarrow 19\)
HMBC-correlation: \(19 \leftrightarrow 1 \leftrightarrow 6 \leftrightarrow 5\)
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[p p m]\) & \({ }^{\mathbf{1}} \mathbf{H}[p p m]\) \\
\hline 1 & 189.9 & - \\
\hline 2 & 174.3 & - \\
\hline 3 & 170.8 & - \\
\hline 4 & 144.4 & - \\
\hline 5 & 131.6 & 8.66 \\
\hline 6 & 130.8 & \(5.31^{\mathrm{a}} ; 5.19^{\mathrm{b}}\) \\
\hline 7 & 115.5 & 4.75 \\
\hline 8 & 110.6 & 4.61 \\
\hline 9 & 84.6 & - \\
\hline 10 & 84.4 & 5.16 \\
\hline 11 & 83.3 & 4.21 \\
\hline 12 & 75.9 & 5.50 \\
\hline 13 & 70.6 & 3.09 \\
\hline 14 & 57.9 & - \\
\hline 15 & 57.5 & 3.25 \\
\hline 16 & 55.5 & \(2.45^{\mathrm{a}} ; 1.90^{\mathrm{b}}\) \\
\hline 17 & 49.7 & 3.45 \\
\hline 18 & 44.5 & 2.58 \\
\hline 19 & 40.9 & \(1.90^{\mathrm{a}}, 1.80^{\mathrm{b}}\) \\
\hline 20 & 25.9 & 1.40 \\
\hline 21 & 23.5 & 2.09 \\
\hline 22 & 21.0 & 0.95 \\
\hline 23 & 7.2 & 1.00 \\
\hline 24 & 7.0 & 0.58 \\
\hline 25 & 6.6 & 0.72 \\
\hline 26 & 4.9 & \\
\hline & & 0 \\
\hline
\end{tabular}

\(146\)



\(\mathrm{HSQC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)



NOESY, \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)



\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)



\section*{\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)}







जू


\({ }^{13} \mathrm{CNMR:}^{\mathrm{CDCl}} 3,100 \mathrm{MHz}\)




\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)

A




\[
{ }^{1} \mathrm{H} \text { NMR: } \mathrm{CDCl}_{3}, 400 \mathrm{MHz}
\]



\({ }^{13}\) C NMR: CDCl \(3,100 \mathrm{MHz}\)


\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)
Submitted to the European Journal of Organic Chemistry

/f \(1 /\)

Mand



\begin{tabular}{c|c}
\(\underset{\sim}{\infty}\) \\
\(\underset{\sim}{\infty}\) & \(\underset{\sim}{\sim}\) \\
\(\underset{\sim}{2}\)
\end{tabular}

-



\section*{\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)}


\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)

\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)

\(\square\)


\({ }^{13}\) C NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\({ }^{13} \mathrm{C}\) NMR: CDCl \(3,100 \mathrm{MHz}\)


\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)

⿷匚
 (15 s " \(1 / 1,1\)

\(\alpha\)
 renchidar

\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)



\(\stackrel{\infty}{\circ}\)
 -

\section*{NOE-Correlation}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|c|}{\[
5^{\mathrm{a}} \stackrel{\mathrm{NOE}}{\longleftrightarrow} 18
\]} \\
\hline \multicolumn{3}{|c|}{\[
12 \stackrel{\mathrm{NOE}}{\longleftrightarrow} 17
\]} \\
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 174.3 & - \\
\hline 2 & 170.7 & - \\
\hline 3 & 160.7 & 8,11 \\
\hline 4 & 144.1 & - \\
\hline 5 & 115.9 & \(5.33{ }^{\text {a }}, 5.21^{\text {b }}\) \\
\hline 6 & 110.9 & 4,79 \\
\hline 7 & 102.4 & 6,14 \\
\hline 8 & 84.5 & - \\
\hline 9 & 83.2 & 5,17 \\
\hline 10 & 76.2 & 4,26 \\
\hline 11 & 71.2 & 5,49 \\
\hline 12 & 57.8 & 3,1 \\
\hline 13 & 57.4 & - \\
\hline 14 & 55.6 & 3,35 \\
\hline 15 & 49.6 & \(2.45^{\text {a }}, 1.90^{\text {b }}\) \\
\hline 16 & 44.9 & 2,36 \\
\hline 17 & 44.7 & 3,4 \\
\hline 18 & 25.0 & 2.04-1.94 \\
\hline 19 & 23.4 & 1,41 \\
\hline 20 & 21.1 & 2,08 \\
\hline 21 & 7.1 & 0,94 \\
\hline 22 & 6.9 & 0,98 \\
\hline 23 & 6.6 & 0,58 \\
\hline 24 & 4.9 & 0,67 \\
\hline
\end{tabular}



\section*{NOE-Correlation}

\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[p p m]\) & \({ }^{\mathbf{1}} \mathrm{H}[\mathrm{ppm}]\) \\
\hline 1 & 174.4 & - \\
\hline 2 & 170.7 & - \\
\hline 3 & 144.2 & - \\
\hline 4 & 131.8 & - \\
\hline 5 & 118.7 & \(5.64^{\mathrm{a}}, 5.50^{\mathrm{b}}\) \\
\hline 6 & 115.8 & \(5.33,5.21\) \\
\hline 7 & 108.5 & 4.72 \\
\hline 8 & 84.4 & - \\
\hline 9 & 83.2 & 5.17 \\
\hline 10 & 77.9 & 4.40 \\
\hline 11 & 77.1 & 4.07 \\
\hline 12 & 71.5 & 5.52 \\
\hline 13 & 57.7 & 3.11 \\
\hline 14 & 57.3 & - \\
\hline 15 & 55.0 & 3.31 \\
\hline 16 & 49.6 & \(2.45^{\mathrm{a}}, 1.90^{\mathrm{b}}\) \\
\hline 17 & 45.5 & \(2.79,2.44\) \\
\hline 18 & 44.8 & 3.39 \\
\hline 19 & 40.0 & 2.4 \\
\hline 20 & 23.8 & \(1.89,1.82\) \\
\hline 21 & 23.4 & 1.41 \\
\hline 22 & 21.1 & 2.11 \\
\hline 23 & 7.1 & 0.94 \\
\hline 24 & 6.9 & 0.98 \\
\hline 25 & 6.6 & 0.58 \\
\hline 26 & 4.9 & 0.66 \\
\hline
\end{tabular}




NOE-Correlation


HMBC-Correlation
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(6 \longleftrightarrow 156^{\mathrm{a}} \longleftrightarrow 5 \mathrm{5}\) 5} \\
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 174.4 & - \\
\hline 2 & 170.6 & - \\
\hline 3 & 169.3 & - \\
\hline 4 & 154.0 & - \\
\hline 5 & 144.2 & - \\
\hline 6 & 115.8 & \(5.33^{\text {a }}, 5.21^{\text {b }}\) \\
\hline 7 & 108.8 & 4.73 \\
\hline 8 & 103.4 & 4.83 \\
\hline 9 & 84.4 & - \\
\hline 10 & 83.2 & 5.18 \\
\hline 11 & 77.6 & 4.25 \\
\hline 12 & 76.8 & 4.09 \\
\hline 13 & 71.4 & 5.50 \\
\hline 14 & 57.7 & 3.10 \\
\hline 15 & 57.3 & - \\
\hline 16 & 55.1 & 3.31 \\
\hline 17 & 49.6 & \(2.45{ }^{\text {a }}, 1.90^{\text {b }}\) \\
\hline 18 & 44.8 & 3.40 \\
\hline 19 & 40.1 & 2.34 \\
\hline 20 & 37.7 & \(2.55^{\text {a }}, 2.33^{\text {b }}\) \\
\hline 21 & 23.7 & 1.84 \\
\hline 22 & 23.4 & 1.41 \\
\hline 23 & 21.3 & 2.15 \\
\hline 24 & 21.0 & 2.08 \\
\hline 25 & 7.2 & 0.94 \\
\hline 26 & 6.9 & 0.98 \\
\hline 27 & 6.6 & 0.58 \\
\hline 28 & 6.4 & 0.67 \\
\hline
\end{tabular}



\(\operatorname{coSY}, \mathrm{CDCl}_{3}, 600 \mathrm{MHz}\)


92


HSQC, \(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\)


92

\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 600 \mathrm{MHz}\)


92


NOESY, \(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\)




93
NOE-Correlation
\[
\begin{aligned}
& 11 \longleftrightarrow 4^{\mathrm{b}} \longleftrightarrow 20^{\mathrm{b}} \longleftrightarrow 12 \longleftrightarrow 13 \\
& \text { HMBC-Correlation }
\end{aligned}
\]
\[
4^{\mathrm{b}} \longleftrightarrow 20 \longleftrightarrow 4^{\mathrm{a}} \longleftrightarrow 6 \longleftrightarrow 20^{\mathrm{a}}
\]
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathrm{C}\) [ppm] & \({ }^{1} \mathrm{H}\) [ppm] \\
\hline 1 & 174.4 & - \\
\hline 2 & 170.7 & - \\
\hline 3 & 144.2 & - \\
\hline 4 & 132.4 & \(5.92{ }^{\text {a }}\) 5.76 \({ }^{\text {b }}\) \\
\hline 5 & 120.8 & - \\
\hline 6 & 118.9 & - \\
\hline 7 & 115.8 & \(5.33^{\text {a }}, 5.22^{\text {b }}\) \\
\hline 8 & 108.6 & 4.72 \\
\hline 9 & 84.5 & - \\
\hline 10 & 83.2 & 5.18 \\
\hline 11 & 78.1 & 4.29 \\
\hline 12 & 77.0 & 4.08 \\
\hline 13 & 71.4 & 5.52 \\
\hline 14 & 57.7 & 3.12 \\
\hline 15 & 57.3 & - \\
\hline 16 & 55.0 & 3.30 \\
\hline 17 & 49.6 & \(2.46{ }^{\text {a }}, 1.91^{\text {b }}\) \\
\hline 18 & 44.8 & 3.40 \\
\hline 19 & 40.2 & 2.39 \\
\hline 20 & 39.1 & \(2.58{ }^{\text {a }}, 2.34^{\text {b }}\) \\
\hline 21 & 23.7 & 1.87 \\
\hline 22 & 23.4 & 1.42 \\
\hline 23 & 21.1 & 2.12 \\
\hline 24 & 7.1 & 0.58 \\
\hline 25 & 6.9 & 0.67 \\
\hline 26 & 6.6 & 0.95 \\
\hline 27 & 4.9 & 0.98 \\
\hline
\end{tabular}

\({ }^{13} \mathrm{CNMR:}^{\mathrm{CDCl}} 3,150 \mathrm{MHz}\)




93



93

\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


93



93



\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)




\(\qquad\)


\footnotetext{
\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)
}


\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)

 111111 1 11 \(11111111 / 11\)
\(\qquad\)

4

\begin{tabular}{lllllllllll} 
& 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{tabular}



\({ }^{13} \mathrm{C}\) NMR: \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)


\(212\)



\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{d}^{6}\)-DMSO, 400 MHz









\(\stackrel{N}{a}\)



119
NOE- correlation:
\(21 \mathrm{a} \leftrightarrow 10 \leftrightarrow 20 \leftrightarrow 15 ; 12 \leftrightarrow 13 ; 23 / 24 \leftrightarrow 5\)
HMBC-correlation:
\[
20 \leftrightarrow 1 \leftrightarrow 14 ; 17 \leftrightarrow 3 \leftrightarrow 2 ; 3 \leftrightarrow 15 \leftrightarrow 4 ; 10 \leftrightarrow 12 \leftrightarrow 13
\]

COSY-correlation:
\(21 \leftrightarrow 10 \leftrightarrow 20 \leftrightarrow 14\)
\begin{tabular}{|c|c|c|}
\hline No. & \({ }^{13} \mathbf{C}[\mathrm{ppm}]\) & \({ }^{\mathbf{1}} \mathbf{H}[\mathrm{ppm}]\) \\
\hline 1 & 205.5 & - \\
\hline 2 & 196.1 & - \\
\hline 3 & 158.1 & 7.47 \\
\hline 4 & 143.8 & - \\
\hline 5 & 139.9 & 5.94 \\
\hline 6 & 133.8 & 6.03 \\
\hline 7 & 91.9 & \(4.67-4.55\) \\
\hline 8 & 91.4 & \(4.67-4.55\) \\
\hline 9 & 90.4 & - \\
\hline 10 & 85.8 & 4.86 \\
\hline 11 & 84.2 & 4.70 \\
\hline 12 & 77.9 & \(4.00 ; 3.98\) \\
\hline 13 & 68.9 & 3.26 \\
\hline 14 & 63.04 & 3.04 \\
\hline 15 & 62.95 & 4.15 \\
\hline 16 & 60.38 & - \\
\hline 17 & 58.0 & - \\
\hline 18 & 55.74 & 3.34 \\
\hline 19 & 55.68 & 3.33 \\
\hline 20 & 55.1 & 3.48 \\
\hline 21 & 46.7 & \(2.41 ; 1.68\) \\
\hline 22 & 44.3 & \(2.46 ; 1.77\) \\
\hline 23 & 27.2 & 1.48 \\
\hline 24 & 20.5 & 1.46 \\
\hline
\end{tabular}

COSY, \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


119

\(\mathrm{HSQC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


119

\(\mathrm{HMBC}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


119


NOESY, \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\subsection*{7.4. An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the Non-Photocyclization Strategy \({ }^{102,115}\)}

Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, accepted for publication.

Planning: Farcet, J.-B.; Himmelbauer, M.; Mulzer, J.

Experimentation: Farcet, J.-B.; Himmelbauer, M.

Manuscript preparation: Farcet, J.-B.; Himmelbauer, M.; Mulzer, J.

\section*{Discussion}

Substantial contribution to this publication has been made in planning the approach as well as by the synthesis of the indispensable eastern building block 6. Furthermore, contribution as an author of the manuscript concerning phrasing has been made by M. H.

As the experimental work mainly results from the first author, the supporting information was omitted.

\title{
An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the NonPhotochemical Strategy
}

\author{
Jean-Baptiste Farcet, \({ }^{[a]}\) Martin Himmelbauer, \({ }^{[a]}\) and Johann Mulzer* \({ }^{[a]}\)
}

Keywords: Total synthesis / Natural products / Terpenoids / Chromium / Hydroalumination

The stereocontrolled synthesis of a complex and highly substituted polycyclic synthetic precursor \(\mathbf{2}\) of the diterpene bielschowskysin is presented. Key steps include a regio- and stereoselective
hydroalumination as well as an optimized \(\mathrm{Cr} / \mathrm{Ni}\) mediated carbon-carbon bond formation between two complex fragments to establish the northern hemisphere of the natural product.
[a] University of Vienna, Institute of Organic Chemistry, Währinger Straße 38, 1090 Vienna, Austria Fax: +43-1-4277-9521
E-mail: johann.mulzer@univie.ac.at
\(\square\) Homepage: http://mulzer.univie.ac.at/
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.xxxxxxxxx.

\section*{Introduction}

The diterpene bielschowskysin, isolated in 2003 from the gorgonian octocoral Pseudopterogorgia kallos, \({ }^{[1]}\) is probably the most complex natural product from the furanocembranoid group. \({ }^{[2]}\) Over the past few years, the attractive molecular architecture has created a challenge for many synthetic groups, \({ }^{[3]-[9]}\) including ours. \({ }^{[10]-[11]}\) In the preceding paper \({ }^{[12]}\) we have described a photochemical access to tetracycle 1 (Figure 1), which contains the full carbon skeleton of bielschowskysin, though with a wrong ring size. In this article, a non-photochemical alternative to a similarly advanced intermediate \(\mathbf{2}\) is presented. The functionalization is basically different in both compounds: \(\mathbf{1}\) was prepared by a ring closure in the northern part and has a correct substitution pattern in the southern region, whereas 2 has a fully developed northern hemisphere and waits for a southern CC-connection.

bielschowskysin


1
furanocembranoid skeleton



2

Figure 1. Bielschowskysin and the furanocembranoid skeleton, as well as two advanced synthetic intermediates \(\mathbf{1}\) and \(\mathbf{2}\).

\section*{Results and Discussion}

We recently published a stereoselective and optimized scalable synthesis of the tricyclic alcohol 4 from known alcohol 3. \({ }^{[10]-[11]}\) For further elaboration, we reasoned that after formation of oxirane \(\mathbf{5}\), an epoxide opening with acetylide and subsequent formation of a vinyl halide would set the stage for chromium mediated coupling with aldehyde 6 (Scheme 1).



Scheme 1. Previous work and retrosynthetic considerations.

Hence, 4 was epoxidized with a \(d r\) of \(6: 1\) from the convex side of the tricycle. TES protection furnished precursor 7, which failed to deliver the allylic alcohol \(\mathbf{8 a}\) with Alcaraz protocol \({ }^{[13]}\) (trimethylsulfonium iodide and \(n \mathrm{BuLi}\) ) or the homopropargylic alcohols 8b-c with acetylides. A similar epoxide inertness towards nucleophiles has been observed in our previous approach. \({ }^{[12]}\)



Scheme 2. Investigations to open the epoxide 7 and invert the stereochemistry of the tertiary alcohol \(\mathbf{1 0}\).

Finally, allylic alcohol \(\mathbf{1 0}\) was readily formed from ketone \(9,{ }^{[10]-[11]}\) but the undesired configuration of the tertiary alcohol could not be inverted via the Mislow-Evans rearrangement protocol (Scheme 2). \({ }^{[14]}\)

Reasoning that the presence of the lactone bridge strongly interferes with epoxide openings at the vicinal position, we returned to our previous intermediate \(\mathbf{1 2},{ }^{[10]-[11]}\) which was converted to epoxide 5 as a single diastereomer (Scheme 3). Now, the addition of commercially available lithium acetylide ethylenediamine complex provided pure homopropargylic alcohol 13 in excellent yield (Scheme 3).


Scheme 3. Epoxide opening and formation of \(\mathbf{1 3}\).
In parallel, diastereomerically and enantiomerically pure aldehyde 6 was prepared in 11 steps from D-(+)-glucose. \({ }^{[12]}\) A number of procedures for coupling of fragments \(\mathbf{6}\) and \(\mathbf{1 3}\) were tested. As Takai conditions \({ }^{[15]}\) failed, \(\left(\mathrm{CrCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PPh}_{3}\right.\), DMF) we converted the alkyne into a suitably metalated vinyl derivative (Scheme 4). In fact, trimethyltin derivative \(\mathbf{1 5}\) could be obtained in moderate yield, though with excellent regio- and stereoselectivity. However, to our disappointment, its Swern oxidation did not furnished dialdehyde 16. Instead, enone 17 was obtained as the single product (Scheme 4), presumably via base induced Grob-type fragmentation \({ }^{[16]}\) of the activated alcohol intermediate followed by oxidation of the allylic alcohol. This reaction could be extended to several other substrates and may be an interesting access to highly functionalized cyclopentanes.


Scheme 4. Grob-type rearrangement under Swern conditions and formation of product \(\mathbf{1 8}\) during the protection attempt of \(\mathbf{1 3}\).

To avoid fragmentation, tertiary alcohol \(\mathbf{1 3}\) was protected with TMSOTf and 2,6 -lutidine. Unfortunately, yet not unexpectedly, this afforded 18 as sole product (Scheme 4). \({ }^{[17]}\) Hence, we decided to carry on without protection and to use the tertiary alcohol as an anchor for the formation of the envisaged vinyl halide. First, according to an established protocol \({ }^{[18]}\) (cat \(t \mathrm{BuOK}, \mathrm{DMSO}\) ), the homopropargylic alcohol 13 was isomerized to crystalline propargylic alcohol 19 (Scheme 5), whose structure was confirmed by single crystal diffraction. \({ }^{[19]}\) Hydroalumination of 19 led to intermediate 20, which was quenched with iodine to give ( \(Z\) )-vinyl iodide 21 with excellent regio- and stereocontrol (Scheme 5). \({ }^{[20]}\)




Scheme 5. Synthesis of vinyl iodide 21.

First coupling experiments of vinyl iodide 21 and aldehyde 6 were attempted via iodine-lithium exchange. With equimolar amounts of both partners, dehalogenated starting material 23 was formed as the single product of the reaction. Obviously, the vinyl lithium species once formed is immediately quenched by proton transfer from the tertiary alcohol. Indeed, when alcohol 21 was first deprotonated with LiHMDS and then the iodine-lithium exchange was performed with \(t \mathrm{BuLi} / \mathrm{LiCl}\), the coupling product 22 was isolated in \(10 \%\) yield along with \(80 \%\) of \(\mathbf{2 3}\) (Scheme 6). As vinyl lithium is too basic for our purposes, we turned to the Nozaki-

Hiyama-Kishi (NHK) reaction \({ }^{[21]-[22]}\) as a prime option for adding vinyl iodides to aldehydes. We carefully screened conditions to optimize the coupling of fragments 21 and \(\mathbf{6}\) (Scheme 6, Table 1).



Scheme 6. Coupling of vinyl iodide 21 and aldehyde 6.

Table 1. Optimization of the NHK coupling reaction.
\begin{tabular}{|c|c|c|c|}
\hline Entry & Conditions & \[
\begin{aligned}
& \text { \% Yield }{ }^{[a]} \\
& \text { of } \mathbf{2 2}(d r)
\end{aligned}
\] & \[
\begin{gathered}
\text { \% Yield }{ }^{[a]} \\
\text { of } \mathbf{2 3}
\end{gathered}
\] \\
\hline 1 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1)\) in DMSO \(10{ }^{\circ} \mathrm{C}\) & 49 (1.7:1) & 33 \\
\hline 2 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}\) (0.1) in DMSO rt & 50 (3.6:1) & 31 \\
\hline 3 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1)\) in DMSO \(40{ }^{\circ} \mathrm{C}\) & 30 (4.5:1) & 30 \\
\hline 4 & \(\mathrm{CrCl}_{3} / \mathrm{LiAlH}_{4}+\mathrm{NiCl}_{2}(0.1)\) in DMSO rt & 52 (3.4:1) & 36 \\
\hline 5 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}\) (0.1) in DMF rt & 30 (3.8:1) & 54 \\
\hline 6 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}\) (0.1) in DMA rt & 16 (8.0:1) & 74 \\
\hline 7 & \[
\begin{gathered}
\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1) \text { in } \mathrm{DME} / \mathrm{DMSO} \\
(10: 1) 60^{\circ} \mathrm{C}
\end{gathered}
\] & 0 (n.d.) & 64 \\
\hline 8 & \[
\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1) \text { in } \mathrm{DMSO} / \mathrm{HMPA}
\] & 52 (2.1:1) & 28 \\
\hline 9 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1)\) in DMSO rt \({ }^{\text {[b] }}\) & 17 (3.7:1) & 76 \\
\hline 10 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(0.1)\) in DMSO rt \({ }^{\text {[c] }}\) & 24 (2.8:1) & 38 \\
\hline 11 & \(\mathrm{CrCl}_{2}+\mathrm{Pd}(\mathrm{OAc})_{2}(0.1)\) in DMSO rt & 15 (n.d.) & 69 \\
\hline 12 & \(\mathrm{CrCl}_{2}+\mathrm{Ni}(\mathrm{acac})_{2}(0.1)\) in DMSO rt & 57 (3.8:1) & 29 \\
\hline 13 & \(\mathrm{CrCl}_{2}+\mathrm{Ni}(\mathrm{acac})_{2}(3)\) in DMSO rt & 54 (3.0:1) & 39 \\
\hline 14 & \(\mathrm{CrCl}_{2}+\mathrm{NiCl}_{2}(3)\) in DMSO rt & 64 (2.4:1) & 25 \\
\hline
\end{tabular}

Standard conditions: \(0.05 \mathrm{M}, 50 \mathrm{mg}\) of 21, 2 equiv. of \(\mathbf{6}, 7\) equiv. of [Cr] + co-catalyst.[a] isolated yield, [b] addition of 21 by syringe pump over 1 h , [c] in ultra sound bath. n.d. not determined.

Using standard conditions (Table 1, entry 2) alcohol 22 was formed in \(50 \%\) isolated yield together with \(31 \%\) of side product 23. Varying the reaction temperature (Table 1, entries 1-3) mainly altered the diastereoisomeric ratio. Similarly, changing the source of chromium and generating \(\mathrm{CrCl}_{2}\) in situ (Table 1, entry 4) did not reduce the amount of side product \(\mathbf{2 3}\). Changing the solvent from DMSO to DMA significantly increased the diastereoselectivity, but not the yield (Table 1, entry 6). Slow addition of \(\mathbf{2 1}\) or performing the reaction in an ultra sound bath (Table 1, entries 9 and 10) or the use of \(\mathrm{Pd}(\mathrm{OAc})_{2}\) as co-catalyst (Table 1, entry 11) gave unsatisfactory results. However, using \(\mathrm{Ni}(\mathrm{acac})_{2}\) (Table 1, entry 12) instead of \(\mathrm{NiCl}_{2}\), or administering the Ni-reagent in excess (Table 1, entries 13 and 14) both helped to promote CC-connection vs. proton transfer, so that \(\mathbf{2 2}\) was formed in \(54-64 \%\) yield.

In all cases alcohol 22 was obtained as an inconsequential diastereomeric mixture, which was oxidized to furnish hemiacetal 2 in a 5:1 anomeric ratio (Scheme 7).


Scheme 7. Formation of hemiacetal 2.


Scheme 8. Hypothetical endgame.

A hypothetical endgame is suggested in Scheme 8. Introduction of a sulfone would be followed by acid promoted removal of the acetonide, oxidation and formation of dicarbonyl intermediate 24. This has already been performed with a simpler analogue. \({ }^{[10]-[11]}\) Base induced cyclization and reductive removal of the sulfone \({ }^{[23]}\) would lead to \(\mathbf{2 5}\), which is about five steps away from the target.

\section*{Conclusions}

A synthesis of an advanced precursor of bielschowskysin has been presented in 21 steps and \(7.4 \%\) overall yield starting from known alcohol 3. Formation of the properly substituted vinyl halide by regio- and stereoselective hydroalumination was followed by an optimized NHK coupling, which furnished pentacycle \(\mathbf{2}\) after oxidation. On evaluating intermediates \(\mathbf{1}\) and \(\mathbf{2}\), we tend to favor the route leading to \(\mathbf{1}\). So this will be our preferred line, and \(\mathbf{2}\) will remain as back-up.

\section*{Experimental Section}

General Experimental Details: Data are reported as follows: chemical shift, multiplicity ( \(\mathrm{s}=\) singlet, \(\mathrm{d}=\) doublet, \(\mathrm{t}=\) triplet, \(\mathrm{q}=\) quartet, \(\mathrm{m}=\) multiplet, br s = broad singlet), coupling constant \(J\), integration. Infrared spectra were recorded as thin films of pure product on an ATR-unit. High-resolution mass spectra were measured as ESI-TOF with a resolution of 10,000 . Standard work up: The reaction was then diluted with \(\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} / 0.1\) \(\mathrm{mmol})\) and \(\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL} / 0.1 \mathrm{mmol})\), the phases were separated and the aqueous phase was extracted with \(\mathrm{Et}_{2} \mathrm{O}\) ( \(2 \mathrm{x} 5 \mathrm{~mL} / 0.1 \mathrm{mmol}\) ). The combined organic phases were washed with water ( \(5 \mathrm{~mL} / 0.1 \mathrm{mmol}\) ), brine ( \(5 \mathrm{~mL} / 0.1 \mathrm{mmol}\) ), dried over \(\mathrm{MgSO}_{4}\) and concentrated under reduced pressure.

\section*{(1S,1aR,3aS,5S,5aR)-5-\{[tert-butyl(dimethyl)silyl]oxy\}-5-methyl-1a-} \{[(triethylsilyl)oxy]methyl\}hexahydro-2H-spiro[3-
oxacyclobuta[ \(c d]\) pentalene-1,2'-oxiran]-2-one (7): A solution of DMDO \((0.07 \mathrm{M}\) in acetone, 0.55 mmol\()\) was added to primary alcohol \(4(30 \mathrm{mg}\), 0.09 mmol ). The resulting mixture was stirred at rt for 5 days and was evaporated to yield 31 mg (quantitative) of the epoxide intermediate. To a solution of free alcohol ( \(31 \mathrm{mg}, 0.09 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})\) was added Im ( \(15 \mathrm{mg}, 0.23 \mathrm{mmol}\) ) followed by TESCl \((20 \mu \mathrm{~L}, 0.12 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred for 1 h at rt . Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 30 / 1\right)\) furnishing

20 mg ( \(48 \%\) over 2 steps) of the TES protected 7 as colorless oil in a \(d r\) of 6:1. Main diastereoisomer : \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\) ): \(\delta=5.23\) (dt, \(J_{1}=\) \(\left.5.5 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.56\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.06\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=7.0\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56\left(\mathrm{ddd}, J_{1}=\right.\) \(\left.2.1 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, J_{3}=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.94\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=14.6 \mathrm{~Hz}\right.\), \(1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=8.0 \mathrm{~Hz}\), \(6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\) 177.1, 83.7, 83.0, 61.0, 59.2, 57.3, 50.4, 47.1, 42.7, 29.8, 25.7(3C), 23.1, 18.0, 6.8(3C), 4.5(3C), \(-2.3,-2.4 \mathrm{ppm}\). HRMS (EI) (m/z): calculated for \(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 477.2468\), found: 477.2454. IR \(\left(\mathrm{cm}^{-1}\right): 2954,2877\), \(1770,1461,1254,1142,1103,990,834,729 .[\alpha]_{\mathrm{D}}^{22}-41.8\left(\mathrm{c}=0.55 ; \mathrm{CHCl}_{3}\right)\). \(\mathrm{R}_{\mathrm{f}}\) : \((\mathrm{Hex} / \mathrm{EtOAc} 5 / 1) 0.44\).
(1S,2S,4S,5R,6R)-4-\{[tert-butyl(dimethyl)silyl]oxy\}-6-ethenyl-2-(methoxymethoxy)-4-methyl-7,7-
bis \(\{[(\) triethylsilyl \()\) oxy \(] m e t h y l\}\) bicyclo[3.2.0]heptan-6-ol (10): At \(0{ }^{\circ} \mathrm{C}\) vinyl \(\mathrm{MgBr}\left(1 \mathrm{M}\right.\) in \(\left.\mathrm{Et}_{2} \mathrm{O}, 564 \mu \mathrm{~L}, 0.56 \mathrm{mmol}\right)\) was added to a solution of ketone 9 ( \(200 \mathrm{mg}, 0.28 \mathrm{mmol}\) ) dissolved in \(\mathrm{Et}_{2} \mathrm{O}(2.8 \mathrm{~mL})\). The reaction vessel was stirred overnight at rt. Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 20 / 1\right.\) then \(\left.10 / 1\right)\) furnishing \(207 \mathrm{mg}(99 \%)\) of alcohol 10 as colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( 400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.94\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=17.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.17\left(\mathrm{dd}, J_{1}=\right.\) \(1.3 \mathrm{~Hz}, J_{2}=17.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(5.04\left(\mathrm{dd}, J_{1}=1.4 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.64(\mathrm{~d}, J\) \(=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}\), \(5 \mathrm{H}), 2.64(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52(\mathrm{t}, J\) \(=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98\left(\mathrm{ddd}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.48\) \((\mathrm{s}, 3 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 18 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.64-0.54(\mathrm{~m}, 12 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})\), 0.07 (s, 3H) ppm. \({ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.9,112.4,95.4\), \(82.4,78.9,75.3,64.5,60.9,55.3,52.1,51.4,47.3,40.8,25.9(3 \mathrm{C}), 24.3\), 18.1, \(7.0(3 \mathrm{C}), 6.9(3 \mathrm{C}), 4.6(6 \mathrm{C}),-2.0,-2.2 \mathrm{ppm}\). HRMS (EI) (m/z): calculated for \(\mathrm{C}_{32} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}: 653.4065\right.\), found 653.4068 . IR \(\left(\mathrm{cm}^{-}\right.\) \({ }^{1}\) ): 2954, 2878, 1461, 1253, 1100, 1046, 1004, 834, 806, 742. [ \(\left.\alpha\right]_{\mathrm{D}}{ }^{22}-59.2\) (c \(\left.=1.0 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 10 / 1) 0.69\).

\section*{tert-butyl\{[(1'R,2'S,4'S,5'S,7'S)-4'-(methoxymethoxy)-2,2,2'-}
trimethyldispiro[1,3-dioxane-5,6'-bicyclo[3.2.0]heptane-7',2'-oxiran]-2'-yl]oxy \}dimethylsilane (5): To a solution of \(\mathbf{1 2}\) ( \(277 \mathrm{mg}, 0.46 \mathrm{mmol}\) ) in THF ( 3 mL ) in a teflon vial was slowly added a \(70 \% \mathrm{HF}\) solution in pyridine \((269 \mu \mathrm{~L}, 9.22 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred for 30 min at this temperature while tlc analysis indicated clean conversion. Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 2/1) furnishing \(170 \mathrm{mg}(99 \%)\) of the diol intermediate as viscous colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.88(\mathrm{~d}, J=1.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{dd}, J_{1}=3.1 \mathrm{~Hz}, J_{2}\right.\) \(=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.07-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.12\left(\mathrm{ddd}, J_{1}=1.4 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, J_{3}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right)\), \(1.86(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}\), \(3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.0,108.8,97.1,81.6,80.8\), 71.7, 65.7, 55.9, 55.1, 52.2, 45.6, 43.9, 25.8(3C), 24.0, 18.1, -2.2, -2.3 ppm. HRMS (ESI) \((\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}\)calculated for \(\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}: 395.2230\), found: 395.2219 . \(\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3435,2929,1462,1372,1253,1151,1106\), 1034, 835, 772. \([\alpha]_{D}{ }^{20}:-64.4\left(\mathrm{c}=1.0 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / E t O A c 2 / 1) 0.12\).

To a solution of the diol \((1.15 \mathrm{~g}, 3.09 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(61 \mathrm{~mL})\) was added purified \(m\) CPBA \((1.60 \mathrm{~g}, 9.26 \mathrm{mmol})\) at rt . After 5 h the mixture was diluted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})\) and sat. aq. \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})\) were added. The organic phase was washed with aq. \(\mathrm{KOH}(1 \mathrm{M}, 2 \times 30 \mathrm{~mL})\) and brine \((30 \mathrm{~mL})\) and dried over \(\mathrm{MgSO}_{4}\), filtered, and concentrated to yield 1.20 g (quantitative) of the epoxide intermediate as colorless viscous oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ): \(\delta=6.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.53\left(\mathrm{dd}, J_{1}=\right.\) \(\left.10.0, J_{2}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=4.1,1 \mathrm{H}), 2.87\left(\mathrm{dd}, J_{1}=2.2\right.\) \(\left.\mathrm{Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68\) \(\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22\left(\mathrm{ddd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, J_{3}=\right.\) \(12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92\left(\mathrm{dd}, J_{1}=11.3, J_{2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}\), \(9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=97.1\), 80.7, 80.1, 68.0, 63.7, 62.1, 55.9, 54.6, 48.4, 47.6, 46.8, 40.6, 25.8(3C), \(24.4,18.1,-2.2,-2.4 \mathrm{ppm}\). HRMS (EI) (m/z): calculated for \(\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}\) [M]: 388.2276, found: 388.2263 . \(\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3470,2928,2855,1254,1152\), 1103, 1036, 979, 832, 773. \([\alpha]_{\mathrm{D}}{ }^{20}-19.7\left(\mathrm{c}=1.0 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc}\) 2/1) 0.14 .

At \(0^{\circ} \mathrm{C}\), PPTS \((71 \mathrm{mg}, 0.28 \mathrm{mmol})\) was added to a solution of the diol (2.20 \(\mathrm{g}, 5.66 \mathrm{mmol})\) and 2,2-dimethoxypropane ( \(6.96 \mathrm{ml}, 56.6 \mathrm{mmol}\) ) in acetone \((57 \mathrm{~mL})\). After 10 min at \(0{ }^{\circ} \mathrm{C}\) the reaction was warmed to rt and stirring was continued for 30 min . Standard work up gave acetonide 52.18 g (90\%)
as colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.67(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00\) \(\left(\mathrm{dd}, J_{1}=2.0, J_{2}=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86\left(\mathrm{dd}, J_{1}=2.0, J_{2}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83(\mathrm{~d}\), \(J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=5.2,1 \mathrm{H}), 3.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.77\left(\mathrm{dd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16\) (ddd, \(\left.J_{1}=2.1 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.81(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.40(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}\), \(3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=97.4,96.6,80.7,79.4,66.5\), 65.2, 63.7, 55.5, 54.8, 47.5, 47.3, 41.3, 40.7, 27.2, 25.8(3C), 24.4, 20.4, 18.0, -2.2, -2.3 ppm . HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}\) \([\mathrm{M}+\mathrm{Na}]^{+}: 451.2492\), found: 451.2500 . \(\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2933,2856,1467,1371\), \(1256,1152,1080,1045,834,774 .[\alpha]_{\mathrm{D}}{ }^{25}-59.7\left(\mathrm{c}=0.3 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 2/1) 0.36 .
(1R,2S,4S,5S,7S)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-4-(methoxymethoxy)-2,2',2'-trimethyl-7-(prop-2-yn-1-
yl)spiro[bicyclo[3.2.0]heptane-6,5'-[1,3]dioxan]-7-ol (13): To a solution of crude epoxide \(5(595 \mathrm{mg}, 1.39 \mathrm{mmol})\) in DMSO \((13.9 \mathrm{~mL})\) was added lithium acetylide ethylenediamine complex ( \(1.02 \mathrm{~g}, 11.1 \mathrm{mmol}\) ) in one portion at rt. Next, the mixture was warmed to \(50^{\circ} \mathrm{C}\) and stirred for 1 h . Standard work up yielded 630 mg (quantitative) of crude and pure tertiary alcohol 13 as light brown viscous oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\) \(4.60(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}\), \(J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24\left(\mathrm{dd}, J_{1}=2.7, J_{2}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98\left(\mathrm{dd}, J_{1}=2.8, J_{2}\right.\) \(=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.14\left(\mathrm{dd}, J_{1}=2.7, J_{2}\right.\) \(=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.81\left(\mathrm{dd}, J_{1}=2.7, J_{2}=17.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52\) \(\left(\mathrm{dd}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12\left(\mathrm{ddd}, J_{1}=\right.\) \(\left.1.9 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.13(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66\left(\mathrm{dd}, J_{1}=\right.\) \(\left.11.1 \mathrm{~Hz}, J_{2}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}\), \(9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=98.1\), \(96.7,81.6,81.4,80.1,75.8,72.4,66.5,63.4,58.5,55.5,47.9,43.3,39.9\), 28.8, 25.8(3C), 25.7, 24.6, 19.1, 18.1, -2.1, -2.9 ppm . HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 477.2648\), found: 477.2643 . IR( \(\mathrm{cm}^{-}\) \({ }^{1}\) ): 3464, 2928, 2855, 1200, 1151, 1107, 1073, 1042, 834, 773. [ \(\left.\alpha\right]_{\mathrm{D}}{ }^{20}-31.3\) \(\left(\mathrm{c}=1.0 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.20\).
(1S,2S,4S,5R,6S)-4-\{[tert-butyl(dimethyl)silyl]oxy\}-6-[(2Z)-3-[dimethyl(phenyl)silyl]-2-(trimethylstannanyl)prop-2-en-1-yl]-7,7-bis(hydroxymethyl)-2-(methoxymethoxy)-4-
methylbicyclo[3.2.0]heptan-6-ol (15): To a solution of acetonide 13 (120 \(\mathrm{mg}, 0.25 \mathrm{mmol})\) in \(\mathrm{MeOH}(2.6 \mathrm{~mL})\) was added CSA \((6.1 \mathrm{mg}, 0.03 \mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\). After 1 h tlc analysis showed an almost completed reaction. Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}\right.\), \(\mathrm{EtOAc} /\) Hex \(2 / 1\) to \(1 / 1\) ) furnishing the diol intermediate \(102 \mathrm{mg}(93 \%)\) as amorphous white solid. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.66(\mathrm{~s}, 1 \mathrm{H}), 4.66\) \((\mathrm{s}, 1 \mathrm{H}), 4.55-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.75\left(\mathrm{dd}, J_{1}=4.6 \mathrm{~Hz}, J_{2}=9.9\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.51\) (br s, 1H), 3.36 (s, 3H), 2.84 (br s, 1H), 2.75-2.55 (m, 4H), \(2.21\left(\mathrm{ddd}, J_{1}=1.8 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.16(\mathrm{t}, J=2.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.78\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})\), 0.09 (s, 3H), \(0.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=97.1,81.2\), \(80.6,80.5,76.2,73.2,66.5,60.7,59.3,55.9,50.6,47.4,39.7,25.8(3 \mathrm{C})\), \(25.5,24.8,18.1,-2.2,-2.3 \mathrm{ppm}\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 437.2335\), found: 437.2322. IR \(\left(\mathrm{cm}^{-1}\right): 3413,2952\), \(2856,1254,1157,1104,1037,976,836,774 .[\alpha]_{\mathrm{D}}{ }^{25}+4.0\left(\mathrm{c}=0.7 ; \mathrm{CHCl}_{3}\right)\). \(\mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 2/1) 0.19 .

To a solution of the alkyne diol ( \(27 \mathrm{mg}, 0.07 \mathrm{mmol}\) ) in THF ( 0.2 mL ) was added trimethylstannyldimethylphenyl silane ( \(29 \mu \mathrm{~L}, 0.07 \mathrm{mmol}\) ) followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{mg}, 0.01 \mathrm{mmol})\). This mixture was stirred at \(70{ }^{\circ} \mathrm{C}\) for 45 min . The crude reaction mixture was concentrated and directly applied onto a column chromatography \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 5 / 1\right.\) to \(\left.2 / 1\right)\) to afford 23 mg ( \(50 \%\) ) of the desired diol 15 as a single regio- and stereoisomer. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})\), \(4.67(\mathrm{~s}, 2 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.8(\mathrm{~m}, 5 \mathrm{H}), 3.64\left(\mathrm{dd}, J_{1}=3.9 \mathrm{~Hz}, J_{2}=\right.\) \(17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.97\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71(\mathrm{~d}\), \(J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}\), \(\left.J_{1}=1.7 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20\left(\mathrm{ddd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, J_{3}=12.3\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 1.89\left(\mathrm{dd}, J_{1}=11.3 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})\), \(0.38(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ): \(\delta=166.8,146.4,139.1,134.3(2 \mathrm{C}), 129.2\), 128.0(2C), 97.0, 81.6, 80.7, 79.8, 66.9, 62.5, 61.6, 55.9, 52.7, 49.3, 47.5, 39.6, 25.9, 25.8(3C), 18.1, -0.6, -0.7, -2.1, -2.3, -4.9(3C) ppm. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{SnNa}[\mathrm{M}+\mathrm{Na}]^{+}\): 737.2692, found: 737.2693. IR \(\left(\mathrm{cm}^{-1}\right): 3390,2953,2856,1253,1157,1110,1036,836,731\), 702. \([\alpha]_{\mathrm{D}}{ }^{23}-15.0\left(\mathrm{c}=0.6 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1) 0.23\).

2-[(1S,2S,3S,5S)-3-\{[tert-butyl(dimethyl)silyl]oxy \}-2-[(3Z)-4-
[dimethyl(phenyl)silyl]-3-(trimethylstannanyl)but-3-enoyl]-5-
(methoxymethoxy)-3-methylcyclopentyl]prop-2-enal (17): To a solution
of oxalyl chloride ( \(9 \mu \mathrm{~L}, 0.11 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})\) at \(-78{ }^{\circ} \mathrm{C}\) was added DMSO ( \(14 \mu \mathrm{~L}, 0.20 \mathrm{mmol}\) ). The solution was stirred 20 min at \(-78{ }^{\circ} \mathrm{C}\) then alcohol \(15(12 \mathrm{mg}, 0.02 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})\) was slowly added to the reaction mixture. The solution was stirred at \(-78{ }^{\circ} \mathrm{C}\) for \(1 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(46 \mu \mathrm{~L}, 0.33 \mathrm{mmol})\) was introduced and stirring was continued at \(-78{ }^{\circ} \mathrm{C}\) for 1 h , then the reaction was warmed to \(-40{ }^{\circ} \mathrm{C}\) within 2 h . Standard work up was followed by column chromatography of the residue ( \(\mathrm{SiO}_{2}\), \(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1\) ) furnishing 12 mg (quantitative) of aldehyde \(\mathbf{1 7}\) as amorphous white solid. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.37(\mathrm{~s}, 1 \mathrm{H})\), 7.51-7.47 (m, 2H), 7.35-7.32 (m, 3H), \(6.47(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=\) \(0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.40\) \((\mathrm{m}, 2 \mathrm{H}), 3.97\left(\mathrm{dt}, J_{1}=0.7 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{dd}, J_{1}=1.1 \mathrm{~Hz}, J_{2}=\right.\) \(16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.30\left(\mathrm{dd}, J_{1}=1.3 \mathrm{~Hz}, J_{2}=16.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.24(\mathrm{dd}\), \(\left.J_{1}=0.9 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.28\left(\mathrm{ddd}, J_{1}=1.1 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, J_{3}=13.5\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.19\left(\mathrm{dd}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})\), \(0.36(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\) ): \(\delta=209.4,194.9,160.5,146.8,145.8,139.9\), 134.1(2C), 129.1, 127.9(2C), 96.3, 82.2, 78.0, 66.7, 64.0, 55.6, 48.8, 40.8, 29.8, 25.9(3C), 25.2, 18.1, 0.8, 0.8, -2.1, -2.1, -6.0(3C) ppm. HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{SnNa}[\mathrm{M}+\mathrm{Na}]^{+}: 717.2429\), found: 717.2433. IR \(\left(\mathrm{cm}^{-1}\right): 2927,2853,2358,1695,1252,1150,1111,1043,835\), 773. \([\alpha]_{\mathrm{D}}{ }^{20}-23.1\left(\mathrm{c}=0.33 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 10 / 1) 0.36\).
(1S,1aR,2S,3aS,7aR,7bS)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-2-methyl-1-(prop-2-yn-1-yl)-7a-\{[(trimethylsilyl)oxy]methyl\}octahydro-4,6dioxacyclobuta[ \(\boldsymbol{c d}\) ] azulen-1-ol (18): To a solution of acetonide 13 (192 \(\mathrm{mg}, 0.42 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) was sequentially added 2,6-lutidine ( \(221 \mu \mathrm{~L}\), \(1.90 \mathrm{mmol})\) and TMSOTf \((229 \mu \mathrm{~L}, \mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\). After 1 h standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 10/1) to yield 100 mg ( \(52 \%\) ) of ether \(\mathbf{1 8}\) as colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ): \(\delta=4.91(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.63(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.96\left(\mathrm{dd}, J_{1}=2.0, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31\) \(\left(\mathrm{dd}, J_{1}=2.6, J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72\left(\mathrm{dd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62\) \(\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.58\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=16.3 \mathrm{~Hz}, 1 \mathrm{H}\right)\), \(2.38(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20\left(\mathrm{dd}, J_{1}=8.9 \mathrm{~Hz}, J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.08(\mathrm{ddd}\), \(\left.J_{1}=1.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, J_{3}=13.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.04(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}\), \(3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\) \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=93.5,83.7,81.5,81.3,80.3,71.5,68.0,66.2,59.3\), \(54.3,46.4,41.9,25.7(3 \mathrm{C}), 25.5,25.1,18.0,2.1(3 \mathrm{C}),-2.1,-2.2 \mathrm{ppm}\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 477.2468\), found: 477.2473. IR \(\left(\mathrm{cm}^{-1}\right): 2953,2928,2854,1253,1168,1102,1073,1014,838\), 773. \([\alpha]_{D}{ }^{20}-7.0\left(c=0.5 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.57\).
(1R,2S,4S,5S,7R)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-4-(methoxymethoxy)-2,2',2'-trimethyl-7-(prop-1-yn-1-
\(\mathbf{y l})\) spiro[bicyclo[3.2.0]heptane-6,5'-[1,3]dioxan]-7-ol (19): To a solution of terminal alkyne \(13(200 \mathrm{mg}, 0.44 \mathrm{mmol})\) in DMSO ( 4.4 mL ) was added \(t \mathrm{BuOK}(25 \mathrm{mg}, 0.22 \mathrm{mmol})\) in one portion. The mixture was stirred at rt for 5 h . Standard work up was followed by column chromatography of the residue to yield 128 mg ( \(64 \%\) from \(\mathbf{1 2}\) ) of internal alkyne 19 as crystalline light yellow solid. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.31\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=\right.\) \(12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{~d}, J=12.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45\left(\mathrm{dd}, J_{1}=\right.\) \(\left.2.0 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.28\left(\mathrm{dd}, J_{1}=11.1 \mathrm{~Hz}, J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22(\mathrm{t}, J\) \(=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98\left(\mathrm{ddd}, J_{1}=1.8 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.93(\mathrm{~s}\), \(3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07\) (s, 3 H ) ppm. \({ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=98.1,96.7,86.1,81.8,80.3\), \(79.0,72.6,66.5,64.8,58.0,55.6,46.1,44.0,39.3,29.1,26.0(3 \mathrm{C}), 22.6\), 19.1, 18.2, 4.1, -2.0, -2.1 ppm. HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 477.2648\), found: 477.2637. IR \(\left(\mathrm{cm}^{-1}\right): 3448\), 2928, \(2855,1372,1257,1151,1078,1044,835,773 . \mathrm{mp}: 124-125{ }^{\circ} \mathrm{C} .[\alpha]_{D}^{22}-\) \(45.9\left(\mathrm{c}=1.2 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 4 / 1) 0.13\). X-ray: see ref \({ }^{[17]}\)

\section*{(1R,2S,4S,5S,7R)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-7-[(1Z)-2-iodoprop-} 1-en-1-yl]-4-(methoxymethoxy)-2,2',2'-
trimethylspiro[bicyclo[3.2.0]heptane-6,5'-[1,3]dioxan]-7-ol (21): A solution of alkyne 19 ( \(2.15 \mathrm{~g}, 4.73 \mathrm{mmol}\) ) dissolved in THF ( 20 mL ) was added to a suspension of \(\mathrm{MeONa}(1.12 \mathrm{~g}, 20.8 \mathrm{mmol})\) in \(\mathrm{LiAlH}_{4}(0.15 \mathrm{M}\) in THF, \(69.3 \mathrm{~mL}, 10.4 \mathrm{mmol}\) ) at \(-20^{\circ} \mathrm{C}\). The mixture was slowly warmed to rt and stirred for 36 h . The solution was cooled to \(0{ }^{\circ} \mathrm{C}\) and \(\mathrm{EtOAc}(924 \mu \mathrm{~L}\), 9.46 mmol ) was added. After 10 min the solution was further cooled to \(-21^{\circ} \mathrm{C}\) and treated with a solution of \(\mathrm{I}_{2}(3.59 \mathrm{~g}, 14.2 \mathrm{mmol})\) in THF ( 12 mL ). The reaction was stirred at this temperature for 30 min and warmed to \(0{ }^{\circ} \mathrm{C}\) within 1 h . Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 10 / 1\right)\) furnishing 1.78 g ( \(65 \%\) ) of vinyl iodide 21 as viscous colorless oil. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( 400 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta=6.49(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})\),
4.46-4.38 (m, 1H), \(4.23\left(\mathrm{dd}, J_{1}=2.9 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20(\mathrm{~d}, J=13.0\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.07\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.35(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.62\left(\mathrm{dd}, J_{1}=1.8 \mathrm{~Hz}\right.\), \(\left.J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10\left(\mathrm{ddd}, J_{1}=1.8 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}\right.\), \(\left.J_{3}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.65\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46(\mathrm{~s}, 3 \mathrm{H})\), \(1.45(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ): \(\delta=124.5,98.2,96.8,96.7,81.6,80.3,76.2,67.0\), \(63.7,59.3,55.6,47.9,45.3,39.8,37.3,29.2,25.8(3 \mathrm{C}), 23.8,19.0,18.1,-2.1\), -2.3 ppm . HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{O}_{6} \mathrm{SiINa}[\mathrm{M}+\mathrm{Na}]^{+}\): 605.1771, found: 605.1751. IR \(\left(\mathrm{cm}^{-1}\right): 2929,2856,1255,1200,1152,1098\), 1072, 1045, 835, 774. [ \(\alpha]_{\mathrm{D}}{ }^{22}-25.1\left(\mathrm{c}=0.45 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 3 / 1)\) 0.37 .

\section*{(1R,2S,4S,5S,7S)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-7-[(1Z)-3\(\{(2 S, 3 R, 4 R, 5 R)\)-3-ethenyl-5-methoxy-4-}
[(triethylsilyl)oxy]tetrahydrofuran-2-yl\}-3-hydroxy-2-methylprop-1-en-1-yl]-4-(methoxymethoxy)-2,2',2'-trimethylspiro[bicyclo[3.2.0]heptane-6,5'-[1,3]dioxan]-7-ol (22a/22b): A mixture of vinyl iodide 21 ( 50 mg , \(85.8 \mu \mathrm{~mol})\) and aldehyde \(6(49 \mathrm{mg}, 172 \mu \mathrm{~mol})\) was dried by azeotrope distillation in benzene. The dried starting materials were dissolved in degassed DMSO \((1.8 \mathrm{~mL})\) and \(\mathrm{CrCl}_{2}(74 \mathrm{mg}, 601 \mu \mathrm{~mol})\) and \(\mathrm{NiCl}_{2}(33 \mathrm{mg}\), \(257 \mu \mathrm{~mol})\) were sequentially added at rt . The resulting mixture was stirred at rt for 20 h . Standard work up was followed by column chromatography of the residue \(\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 8 / 1\right)\) giving \(12 \mathrm{mg}(19 \%)\) of \(\mathbf{2 2 b}\) as minor diastereoisomer, \(10 \mathrm{mg}(25 \%)\) of \(\mathbf{2 3}\), and \(29 \mathrm{mg}(45 \%)\) of 22a as major diastereoisomer.
Major diastereoisomer 22a: (2D NMR analysis: see supporting information) \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\) ): \(\delta=5.94\) (ddd, \(J_{1}=9.0 \mathrm{~Hz}, J_{2}=\) \(\left.10.0 \mathrm{~Hz}, J_{3}=17.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.28\left(\mathrm{dd}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=17.4\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}\), \(J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H})\), \(4.20\left(\mathrm{dd}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J\) \(=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}\), \(3 \mathrm{H}), 2.91\left(\mathrm{dt}, J_{1}=4.3 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62\left(\mathrm{dd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}\right.\), \(1 \mathrm{H}), 2.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06\) (ddd, \(J_{1}=2.2\) \(\left.\mathrm{Hz}, J_{2}=7.0 \mathrm{~Hz}, J_{3}=13.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.77\left(\mathrm{dd}, J_{1}=\right.\) \(\left.11.1 \mathrm{~Hz}, J_{2}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J\) \(=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}\), \(3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.9,135.3,128.1,118.6\), \(110.8,97.8,96.6,83.3,81.8,80.3,80.2,76.7,74.0,67.0,63.6,60.3,56.5\), \(55.5,50.2,48.0,45.7,39.7,26.7,25.9(3 \mathrm{C}), 23.3,21.2,20.3,18.1,6.9(3 \mathrm{C})\), 4.9(3C), \(-2.1,-2.2 \mathrm{ppm}\). HRMS (ESI) (m/z): calculated for \(\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}\) \([\mathrm{M}+\mathrm{Na}]^{+}: 765.4405\), found: 765.4427. IR \(\left(\mathrm{cm}^{-1}\right): 3452,2953,2358,1372\), \(1256,1199,1077,1044,1002,835 .[\alpha]_{\mathrm{D}}{ }^{20}-31.2\left(\mathrm{c}=0.25 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}\) : (Hex/EtOAc 5/1) 0.16.
Minor diastereoisomer 22b \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.11(\mathrm{~d}, J=\) \(11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.79\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, J_{3}=17.4\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.28\left(\mathrm{dd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}=17.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.19\left(\mathrm{dd}, J_{1}=\right.\) \(\left.2.1 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=\) \(6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=13.1 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.09(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.07\left(\mathrm{dt}, J_{1}=\right.\) \(\left.3.9 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51\left(\mathrm{dd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.25\left(\mathrm{dd}, J_{1}\right.\) \(\left.=8.6 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.06\left(\mathrm{ddd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=12.7 \mathrm{~Hz}\right.\), \(1 \mathrm{H}), 1.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.71\left(\mathrm{dd}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.44\) \((\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})\), \(0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100\) \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.8,133.3,126.5,119.9,111.0,97.9,96.8,83.3,81.8\), 80.7, 79.3, 76.0, 71.3, 67.2, 64.0, 59.1, 56.9, 55.6, 47.8, 47.4, 45.9, 39.4, 26.3, 25.8(3C), 25.8, 23.8, 19.2, 18.1, 6.8(3C), 4.8(3C), \(-2.1,-2.3 \mathrm{ppm}\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}\): 765.4405, found: 765.4396. IR \(\left(\mathrm{cm}^{-1}\right): 3464,2973,2339,1381,1261,1190,1065\), 1041, 1023, 834. \([\alpha]_{\mathrm{D}}{ }^{22}-30.0\left(\mathrm{c}=0.5 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 5 / 1) 0.30\).
(1R,2S,4S,5S,7S)-2-\{[tert-butyl(dimethyl)silyl]oxy\}-4-(methoxymethoxy)-2,2',2'-trimethyl-7-[(1E)-prop-1-en-1-yl]spiro[bicyclo[3.2.0]heptane-6,5'-[1,3]dioxan]-7-ol (23): \({ }^{1} \mathrm{H}\)-NMR (400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.11\left(\mathrm{dq}, J_{1}=1.4 \mathrm{~Hz}, J_{2}=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{dq}, J_{1}=6.6\right.\) \(\left.\mathrm{Hz}, J_{2}=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.24\left(\mathrm{dt}, J_{1}=1.1 \mathrm{~Hz}, J_{2}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12-4.10(\mathrm{~m}\), \(2 \mathrm{H}), 3.73(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.50\left(\mathrm{dd}, J_{1}=2.0\right.\) \(\left.\mathrm{Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10\left(\mathrm{ddd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}=6.9\right.\) \(\left.\mathrm{Hz}, J_{3}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}\), \(3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right): \delta=131.5,124.4,98.0,96.7,81.8,80.6,67.6,64.1,59.1,55.6,48.0\), \(44.9,39.3,29.8,28.9,25.8(3 \mathrm{C}), 23.9,18.9,18.2,18.1,-2.1,-2.2 \mathrm{ppm}\). HRMS (ESI) \((\mathrm{m} / \mathrm{z})\) : calculated for \(\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}\): 479.2805, found: 479.2796 . \(\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2930,2856,1372,1255,119,1106,1073,1043\), 835, 773. \([\alpha]_{\mathrm{D}}{ }^{21}-39.1\left(\mathrm{c}=0.5 ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 5 / 1) 0.22\).
(1'R,2'S,4'S,5'S,5'S,7'S)-2'-\{[tert-butyl(dimethyl)silyl]oxy\}-5'-
\(\{(2 S, 3 R, 4 R, 5 R)\)-3-ethenyl-5-methoxy-4-[(triethylsilyl)oxy]tetrahydrofuran-2-yl\}-4'-(methoxymethoxy)-
2,2,2',4'-tetramethyl-5' 'H-dispiro[1,3-dioxane-5,6'-
bicyclo[3.2.0]heptane-7',2'-furan]-5'-ol (2): To a solution of oxalylchloride \((2.5 \mu \mathrm{~L}, 30 \mu \mathrm{~mol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})\) at \(-78^{\circ} \mathrm{C}\) was added DMSO \((4.2 \mu \mathrm{~L}, 59 \mu \mathrm{~mol})\). The solution was stirred at \(-78{ }^{\circ} \mathrm{C}\) for 20 min . Alcohol \(22(11 \mathrm{mg}, 15 \mu \mathrm{~mol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})\) was slowly added to the reaction mixture. The solution was stirred at \(-78{ }^{\circ} \mathrm{C}\) for \(1 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(12 \mu \mathrm{~L}, 89\) \(\mu \mathrm{mol}\) ) was added to the mixture and stirring was continued at \(-78{ }^{\circ} \mathrm{C}\) for 15 \(\min\) and warmed to \(-60{ }^{\circ} \mathrm{C}\). Standard work up furnish the crude ketone (Hex/EtOAc \(\left.5 / 1 \mathrm{R}_{\mathrm{f}}=0.20\right)\). After 24 h in the fridge \(\left(4^{\circ} \mathrm{C}\right)\) the residue no longer contained the former product. Purification by column chromatography \(\left(\mathrm{SiO}_{2}\right.\), Hex/EtOAc 5/1) delivered 5 mg ( \(47 \%\) ) of half acetal 2 as a \(5 / 1\) anomeric mixture. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.85\) \(\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=19.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.12-5.04\) \((\mathrm{m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=\) \(6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26\left(\mathrm{dd}, J_{1}=1.8\right.\) \(\left.\mathrm{Hz}, J_{2}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=4.61 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.88\left(J_{1}=1.6 \mathrm{~Hz}, J_{2}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.67(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})\), \(3.35(\mathrm{~s}, 3 \mathrm{H}), 2.89\left(\mathrm{dt}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.76\left(\mathrm{dd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}\right.\) \(=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11\left(\mathrm{ddd}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right.\), \(\left.J_{3}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41\) \((\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})\), \(0.60(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100\) \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.5,135.9,124.6,117.6,108.9,108.6,98.0,96.8,90.0\), \(85.3,80.5,80.5,80.3,66.0,63.2,58.4,55.5,54.3,47.8,47.5,45.5,39.3\), 25.9, 25.9(3C), 24.8, 20.6, 18.1, 13.0, 6.9(3C), 4.9(3C), -2.3, -2.6 ppm . HRMS (ESI) ( \(\mathrm{m} / \mathrm{z}\) ): calculated for \(\mathrm{C}_{38} \mathrm{H}_{68} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 763.4249\), found: 763.4247. IR \(\left(\mathrm{cm}^{-1}\right): 3469,2927,1409,1256,1205,1111,1046\), 1001, 834, 773. \([\alpha]_{\mathrm{D}}^{22}+22.4\left(\mathrm{c}=0.25 . ; \mathrm{CHCl}_{3}\right) . \mathrm{R}_{\mathrm{f}}:(\mathrm{Hex} / \mathrm{EtOAc} 5 / 1) 0.11\).

Supporting Information (see footnote on the first page of this article):
Copies of \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\) NMR spectra of all products as well as COSY, HMBC, HSQC and NOESY spectra of 22a.

\section*{Acknowledgments}

Financial support from the University of Vienna (doctoral program, Initiativkolleg Functional Molecules IK I041-N) and from the Austrian Science Fund (FWF) (Project P22180) is gratefully acknowledged. We thank H.P. Kählig, L. Brecker, and S. Felsinger for NMR assistance, M. Drescher for experimental work and A. Roller and V. Arion (all University of Vienna) for X-ray analysis.
[1] J. Marrero, A. D. Rodriguez, P. Baran, R. G. Raptis, J. A. Sanchez, E. Ortega-Barria, T. L. Capson, Org. Lett. 2004, 6, 1661-1664.
[2] Y. Li, G. Pattenden, J. Rogers, Tetrahedron Lett., 2010, 51, 12801283.
[3] B. Doroh, G. A. Sulikowski, Org. Lett. 2006, 8, 903-906.
[4] R. Miao, S. G. Gramani, M. J. Lear, Tetrahedron Lett. 2009, 50, 1731-1733.
[5] K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Angew. Chem. Int. Ed., 2011, 50, 5149-5152
[6] A. Jana, S. Mondal, Md. F. Hossain, S. Ghosh, Tetrahedron Lett. 2012, 53, 6830-6833.
[7] M. E. Meyer, J. H. Phillips, E. M. Ferreira, B. M. Stoltz, Tetrahedron 2013, 69, 7627-7635.
[8] A. P. G. Macabeo, C. W. Lehmann, O. Reiser, Synlett 2012, 23, 2909-2912.
[9] A. Saitman, S. D. E. Sullivan, E. A. Theodorakis, Tetrahedron Lett. 2013 12, 1612-1615.
[10] J.-B. Farcet, M. Himmelbauer, J. Mulzer, Org. Lett. 2012, 14, 21952197.
[11] J.-B. Farcet, M. Himmelbauer, J. Mulzer, Eur. J. Org. Chem. 2013, 20, 4379-4398.
[12] M. Himmelbauer, J.-B. Farcet, J. Gagnepain, J. Mulzer, Org. Lett. 2013, 12, 3098-3101; M. Himmelbauer, J.-B. Farcet, J. Gagnepain, J. Mulzer, Eur. J. Org. Chem. 2013, submitted (preceding paper).
[13] L. Alcaraz, J. J. Harnett, C. Mioskowski, J. P. Martel, T. Le Gall, D.S. Shin, J. R. Falck, Tetrahedron Lett. 1994, 35, 5449-5452.
[14] D. A. Evans, G. C. Andrew, Acc. Chem. Res. 1974, 7, 147-155 and references cited therein.
[15] K. Takai, S. Sakamoto, T. Isshiki, Org. Lett. 2003, 5, 653-655.
[16] K. Prantz, J. Mulzer, Chem. Rev. 2010, 110, 3741-3766.
[17] N. A. Powell, W. R. Roush, Org. Lett. 2001, 3, 453-456.
[18] S. Takano, Y. Sekiguchi, N. Sato, K. Ogasawara, Synthesis 1987, 2, 139-141.
[19] CCDC-943957 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[20] E. J. Corey, J. A. Katzenellenbogen, G. A. Posner, J. Am. Chem. Soc. 1967, 89, 4245-4247.
[21] H. Jin, J.-I. Uenishi, W. J. Christ, Y. Kishi, J. Am. Chem. Soc. 1986, 108, 5644-5646.
[22] K. Takai, M. Tagashira, T. Kuroda, K. Oshima, K. Utimoto, H. Nozaki, J. Am. Chem. Soc. 1986, 108, 6048-6050.
\([23]\) B. M. Trost, H. C. Arndt, P. E. Strege, T. R. Verhoeven, Tetrahedron Lett. 1976, 39, 3477-3478 and references therein.

Received: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

\section*{Entry for the Table of Contents ((Please choose one layout.))}


An approach to the northern part of the complex diterpenoid bielschowskysin is described. Formation of the dihydrofuran ring moiety was achieved by stereoselective epoxidation, followed
by alkyne opening and stereoselective formation of a vinyl halide suitable for a chromium mediated coupling. A final oxidation step furnished the hemiacetal.

Jean-Baptiste Farcet, Martin
Himmelbauer, Johann Mulzer*.
Page No. - Page No.

An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the Non-
Photochemical Strategy

Keywords: Total synthesis / Natural products / Terpenoids / Chromium / Hydroalumination

\section*{8. On the Carbo-Oxygenation}

\subsection*{8.1. General Introduction \({ }^{116}\)}

Carbon-carbon bond formation is one of the most important and challenging transformation in organic chemistry. Ample methods to forge carbons have been developed including the well studied and frequently used classic examples like the Diels-Alder reaction, \({ }^{117}\) the aldol reaction \({ }^{118}\) and all sorts of olefinations like the Wittig reaction \({ }^{119}\) in all its variations. Moreover, the use of organo metal reagents for alkylation from Grignard reagents to zinc-organyls is undoubtedly a must-have in the tool box of every organic chemist. The fields of application of these reactions are numerous and their use in organic chemistry and natural product synthesis are of utmost importance.

A new paradigm of carbon-carbon bond formation has emerged in the last quarter of the \(20^{\text {th }}\) century by the use of transition metals. The development of tungsten and ruthenium based metathesis \({ }^{120}\) on one hand and the manifold of palladium catalyzed reactions are undoubtedly most astonishing and useful. Not surprisingly, these fields of research have been honored with two Nobel prizes in Chemistry during the last 10 years. Schrock, Chauvin and Grubbs received this honor for their work on transition metal based metathesis reactions in 2005. \({ }^{121}\) Five years later, on the development of C-C bond formation under palladium catalysis, Suzuki, Negishi and Heck were awarded the Nobel Prize in Chemistry in 2010, which was only a question of time considering the immense impact their research has had on the field of synthetic chemistry.


Scheme 47 Nobel Prize Winning Palladium-Catalyzed C-C Bond Forming Reactions

\subsection*{8.2. The Heck Reaction}

The coupling of alkenyl or aryl halides ( \(\mathrm{sp}^{2}\) hybridized) and triflates (359) with alkenes (358) by palladium catalysis are generally referred to as Heck reaction (Scheme 47). \({ }^{116}\) From today's point of view, first examples of this reaction have been independently published by Mizoroki (1971) \({ }^{122}\) and Heck (1972). \({ }^{123}\) Till now various variations, including stereoselective, inter- and intramolecular examples have found acceptance and application by the broader scientific community. \({ }^{124,125}\) Cascade reactions, formations of quaternary carbon centers \({ }^{126}\) as well as carbonylation reactions \({ }^{127}\) are just a few indispensable examples for the further development of the general reaction.


Scheme 48 General Mechanism for the Heck Reaction
Mechanistically, the Heck reaction is said to proceed via three related catalytic cycles determined by the formal charge of the first formed palladium(II)-alkene complex, namely cationic, neutral or anionic pathway. \({ }^{124,125,128}\) In general 14-electron palladium(0) species I, usually derived from neutral \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) by ligand dissociation or from in situ reduction of \(\mathrm{Pd}(\mathrm{II})\)-precatalysts as \(\mathrm{Pd}(\mathrm{OAc})_{2}\) or \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\), is the active catalytic species (Scheme 48). As depicted in the general catalytic cycle in Scheme 48, haloalkenes or haloarenes (II) oxidatively add to the active catalyst, generating a cis- \(\sigma\) alkenyl or cis- \(\sigma\)-arylpalladium(II) complex III. After adoption of the thermodynamically favored transorientation of the halide and the alkenyl rest (IV) the \(\operatorname{Pd}(I I)\) species forms a \(\pi\)-complex (VI) with alkene V. Presumably, after dissociation of another ligand, the alkene and the alkenyl substituent adopt the crucial cis-configuration in \(\eta^{2}\)-complex VII which is necessary for the migratory insertion in syn-manner providing \(\sigma\)-alkylpalladium species VIII. Finally, rotation around the newly formed carbon-carbon bond and consecutive syn 8 -hydride elimination liberates desired alkene \(\mathbf{X}\) and closes the catalytic cycle by formation of active catalyst I after deprotonation of hydridopalladium complex XI.

\subsection*{8.3. Discussion of the Carbo-Oxygenation and its Mechanism}

The general mechanism of Scheme 48 also applies for intramolecular Heck reactions, which are said to proceed with an overwhelming preference for the exo- over the endo-mode cyclization. According to findings by Rigby et al., \({ }^{129}\) it should be possible to invert this preference by applying Heck conditions with reduced coordination sphere on the palladium. Additionally, substrates in which the exo-pathway seems to be precluded - for example when no 6 -hydrides for reductive elimination are available - should preferentially lead to the endo-trig cyclization product.

We realized that these findings would ideally apply to the envisaged endo-selective Heck macrocyclization of substrate 367 (Scheme 49). An exo-selective Heck reaction would lead to \(\sigma\)-alkylpalladium(II) species 368, which is unable to undergo 6 -hydride elimination with a newly formed C4-C6 single bond. As described in our publication, cyclopropyl formation via a consecutive Heck-reaction of 368 and cyclopropylmethyl-homoallyl rearrangement could result in formal endotrig cyclization product 370. \({ }^{125}\) Alternatively, by application of Jeffery's conditions, \({ }^{130}\) endocyclization to intermediate 369, which after B-hydride elimination provides macrocycle 370 of desired ring size, should be possible.


Scheme 49 Consideration of the endo-Selective Heck Reaction
Instead of diene 370, formation of unexpected 373 via a palladium catalyzed carbo-oxygenation was observed. \({ }^{113}\) Our initially proposed mechanism, outlined in Scheme 50, was based on findings of Tong \({ }^{131}\) and Lautens, \({ }^{132}\) who independently reported palladium catalyzed carbo-halogenations (Scheme 51). We assumed that this unprecedented reaction takes place along a Heck-like path. Oxidative addition of the vinyl halide to a \(\mathrm{Pd}(0)\) catalyst should give \(\sigma\)-alkenyl palladium(II) species 371, which proceeds in syn-addition to the exo-methylene bond along an exo-trig reaction trajectory, resulting in \(\sigma\)-alkylpalladium(II) species 372. Unable to perform 8 -hydride elimination we suggested a C-OAc reductive elimination - according to the C-I reductive elimination proposed for the literature known carbo-iodination - to form the observed product 373.



Scheme 50 Initially Proposed Mechanism for the Carbo-Oxygenation
Upon discussion of this reaction mechanism with one of the reviewers of our publication in Organic Letters \({ }^{113}\) we reasoned, that the carbo-oxygenation might take place via a different mechanism. In fact, Lautens and Tong only observed the carbo-iodination reaction by the use of exceptionally bulky and electron rich phosphine ligands (Q-phos and dppf), as outlined in Scheme 51.

Lautens' Carbo-lodination


Tong's Carbo-lodination


a) \(\mathrm{L}=\mathrm{dppf}, 30 \mathrm{~mol} \%, 84 \%\) b) \(L=P(t B u)_{3}, 30 \mathrm{~mol} \%\), trace c) \(L=\) none, \(0 \%\)
dppf

Scheme 51 Literature Known Carbo-Iodinations

Furthermore, \(\mathrm{Pd}(\mathrm{OAc})_{2}\) was used as precatalyst in the reaction from 376 to 377 and no formation of a similar carbo-oxygenation product was observed or reported. As Jeffery-Heck conditions are ligand-less and not at all bulky, we were prompted to propose another mechanism. Hence, the path starting with acetoxy-palladation of the exo-methylene group, followed by syn-addition of the resulting \(\sigma\)-alkylpalladium(II) species to the vinyl-bromide and 8 -bromide elimination (Section 7.2. and 7.3.), was elaborated. \({ }^{113}\) If this mechanism is the case, it is quite surprising that all attempts to functionalize the exo-methylene double bond on the cyclobutane ring by \(\mathrm{Pd}(\mathrm{II})\)-catalyzed reactions, similar to the Wacker reaction (Section 7.3.), \({ }^{133}\) did not result in any related cyclization product. Yet, both proposed mechanisms are speculative and will be investigated along with experiments to generalize this methodology in due course.

\section*{9. Conclusion and Outlook}

An evolutionary approach towards the total synthesis of bielschowskysin has been described. A variety of different complex building blocks were synthesized along feasible and scalable routes starting from the chiral pool.

Initial attempts to generate the complex carbon skeleton according to a biomimetic transannular \([2+2]\)-photocycloaddition had to be abandoned due to incompatibility of the building blocks. The synthetic strategy was altered in a way, to first form the cyclobutane-moiety with an appropriate appendage and to later close the oxygen-bridged nine membered macrocycle. In this second generation approach, fragment coupling between a western allene-building block and an eastern tetrahydrofuran by aldol addition was effortless. Problems arose when the crucial intramolecular [2+2]-photocycloaddition between a butenolide and an allene was tackled.

By redesign of the eastern fragment and replacement of the phenyl containing protecting groups by trialkylsilyl groups to remove all dispensable chromophores, we hoped to improve the key cycloaddition. As a matter of fact, after fragment coupling the hypothesis was proven, as the [2+2]photocycloaddition regio- and stereoselectively delivered the desired bicyclo[3.2.0]heptane core with remarkable \(67 \%\) yield. Unfortunately, the exo-methylene appendage at the newly formed cyclobutane ring turned out to be exceptionally sluggish towards functionalization, which should prove troublesome in later macrocyclization attempts. Cutting-edge transition metal catalyzed cyclizations as well as RCM conditions to close the macrocycle in the northern part of the molecule remained unrewarded. Our strategy to first form the spirofused furan ring and to close the macrocycle in the southern part of the molecule seems to be a plausible alternative and will be enhanced in due course.

As initial attempts of a Heck-macrocyclization led to promising results, we hypothesized to improve the outcome of the reaction by reducing the ligand sphere at the palladium catalyst. Thus, Jeffery's conditions were tested, which reproducibly resulted in the unexpected formation of a tricyclo[8.3.0.0 \(0^{2,8}\) ]tridecane carbon macrocycle by an unprecedented palladium catalyzed carbo-oxygenation.

Though the ambitious and adventurous goal to complete a total synthesis could not be reached so far, the presented synthetic efforts led to the most advanced intermediates toward bielschowskysin reported so far. Moreover, for the first time serious attempts to form the unprecedented tricyclo[9.3.0.0 \(0^{2,10}\) ]tetradecane carbon core of the target molecule with suitable substitution pattern
have been undertaken utilizing various strategies. Observation of a novel palladium catalyzed carbooxygenation reaction by application of Jeffery's Heck-reaction conditions led to a pleasant outcome of this thesis.

The venture to access the desired tricyclo[9.3.0.0 \({ }^{2,10}\) ]tetradecane ring system and to complete the first total synthesis of bielschowskysin (1) is still ongoing. Thus, a first reasonable ring enlargement strategy has already been proposed (Section 7.3.) and will be conducted in due course. Furthermore, studies to generalize the observed carbo-oxygenation are pending and will be part of our future research.

\section*{10. List of Abbreviations}

Ac
acac
Ac-CoA
ADD
ADP
aq.
ATP
Bu
CAN
cat.
CoA
Cp
CSA
cy
DBU
DCC
DDQ
DHP
DIBALH
DIC
DMAPP
DMAP
DMDO
DMP
DMS
DMSO
dppf
DXP
EDCI
Et
FPP
GGPP
\(\mathrm{Gl}_{50}\)
G3P
HMPA
HWE
i
IBX
\(I_{50}\)
Im
IPP
KHMDS
LDA
LiHMDS
mCPBA
Me
MEP
Mes
M. H.
acyl
acetylacetone
acetyl-coenzyme A
1,1'-(azodicarbonyl)dipiperidine
adenosine diphosphate
aqueous
adenosine triphosphate
butyl
cerium(IV) ammonium nitrate
catalytic
coenzyme A
cyclopentadienyl
camphorsulfonic acid
cyclohexane
1,8-diazabicyclo[5.4.0]undec-7-ene
\(N, N^{\prime}\)-dicyclohexylcarbodiimide
2,3-dichloro-5,6-dicyano-para-benzoquinone
dihydropyranyl
diisobutylaluminium hydride
\(N, N^{\prime}\)-diisopropylcarbodiimide
dimethylallyl pyrophosphate
4-dimethylaminopyridine
dimethyldioxirane
Dess-Martin-periodinane
dimethylsulfide
dimethylsulfoxide
1,1'-bis(diphenylphosphino)ferrocene
1-deoxyxylulose-5-phosphate
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
ethyl
farnesyl pyrophosphate
geranylgeranyl pyrophosphate
half maximal inhibition of cell proliferation
glyceraldehyde-3-phosphate
hexamethylphosphoramide
Horner-Wadsworth-Emmons
iso
2-iodoxybenzoic acid
half maximal inhibitory concentration
imidazole
isopentyl pyrophosphate
potassium hexamethyldisilazide
lithium diisopropylamide
lithium hexamethyldisilazide
meta-chloroperbenzoic acid
methyl
2C-methyl-D-erythritol-4-phosphate
mesitylene
Martin Himmelbauer
\begin{tabular}{|c|c|}
\hline MNBA & 2-methyl-6-nitrobenzoic anhydride \\
\hline MOM & methoxymethyl \\
\hline Ms & mesyl (methanesulfonyl) \\
\hline MVA & mevalonic acid \\
\hline NADPH & dihydronicotinamide adenine dinucleotide phosphate \\
\hline nbd & norbornadiene (bicyclo[2.2.1]hepta-2,5-dien) \\
\hline NBS & N -bromosuccinimide \\
\hline NMP & \(N\)-methyl-2-pyrrolidone \\
\hline NMPE & pseudoephedrine \\
\hline \(p\) & para \\
\hline PDC & pyridinium dichromate \\
\hline Ph & phenyl \\
\hline PMB & para-methoxybenzyl \\
\hline PP & pyrophosphate \\
\hline Pr & propyl \\
\hline PPTS & pyridinium para-toluenesulfonate \\
\hline \(p\) TSA & para-toluenesulfonic acid \\
\hline py & pyridine \\
\hline Q-phos quant. & 1,2,3,4,5-Pentaphenyl-1'-(di-tert-butylphosphino)ferrocene quantitative \\
\hline R & rest \\
\hline RCM & ring closing metathesis \\
\hline \((R, R)\)-NMPE & (1R,2R)-(-)-pseudoephedrinepropionamide \\
\hline rt & room temperature \\
\hline rearr. & Rearrangement \\
\hline SEM & 2-(Trimethylsilyl)ethoxymethyl \\
\hline SET & single electron transfer \\
\hline \(t\) & tert \\
\hline TBAF & tetrabutylammonium fluoride \\
\hline TBDPS & tert-butyldiphenylsilyl \\
\hline TBS & tert-butyldimethylsilyl \\
\hline TBSal & tert-butyl salicimine \\
\hline TEMPO & 2,2,6,6-tetramethylpiperidinyloxyl \\
\hline TES & triethylsilyl \\
\hline Tf & triflyl (trifluoromethanesulfonyl) \\
\hline TFA & trifluoroacetic acid \\
\hline THF & tetrahydrofuran \\
\hline THP & tetrahydropyranyl \\
\hline TIPS & triisopropylsilyl \\
\hline TMS & trimethylsilyl \\
\hline TPP & thiamine pyrophosphate \\
\hline WHO & World Health Organization \\
\hline Z & benzyloxycarbonyl \\
\hline
\end{tabular}

\section*{11.} References
\({ }^{1}\) Breitmeier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones. Wiley-VCH Verlag GmbH \& Co, Weinheim, 2006.
\({ }^{2}\) Ruzicka, L. Proc. Chem. Soc. 1959, 341.
\({ }^{3}\) (a) Bloch, K. Steroids 1992, 57, 378; (b)Horbach, S.; Sahm, H.; Welle, R. FEMS Microbiol. Lett. 1993, 115, 135.
\({ }^{4}\) Rohmer, M.; Seemann, M.; Horbach, S.; Bringer-Meyer, S.; Sahm, H. J. Am. Chem. Soc. 1996, 118, 2564.
\({ }^{5}\) (a) Tomonobu, T.; Takeshi, S.; Editors-in-Chief: Mander, L.; Liu, H.-W. Comprehensive Natural Products II: 1.17 - Diterpenes. Elsevier, Amsterdam, 2010; (b) Editors-in-Chief: Cane, D. E.; Barton, Sir D. Comprehensive Natural Product Chemistry. 2. Isoprenoids including carotenoids and steroids. Elsevier, Amsterdam, 1999.
\({ }^{6}\) Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 25, 298 and reference cited herein.
\({ }^{7}\) Li, Y.; Pattenden, G. Nat. Prod. Rep. 2011, 28, 1269 and reference cited herein.
\({ }^{8}\) Rodríguez, A. D.; Shi, J.-G.; Huang, S. D. J. Org. Chem. 1998, 63, 4425.
\({ }^{9}\) Bray, C. D.; Pattenden, G. Tetrahedron Lett. 2006, 47, 3937.
\({ }^{10}\) Paulson, S. E.; Liu, D.-L.; Orzechowska, G. E.; Campos, L. M.; Houk, K. N. J. Org. Chem. 2006, 71, 6403.
\({ }^{11}\) Roethle, P. A.; Hernandez, P. T.; Trauner, D. Org. Lett. 2006, 25, 5901.
\({ }^{12}\) Li, Y.; Pattenden, G.; Rogers, J. Tetrahedron Lett. 2010, 51, 1280.
\({ }^{13}\) (a) Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17; (b) Woodward, R. B.; Hoffmann, R. Angew. Chem. Int. Ed. 1969, 8, 781.
\({ }^{14}\) Sánchez, J. A.; Aguilar, C., Dorado, D.; Manrique, N. BMC Evolutionary Biology C 7-122 2007, 7, 1.
\({ }^{15}\) (a) Dauben, W. G.; Beasley, G. H.; Broadhurst, M. D.; Muller, B.; Peppard, D. J.; Pesnelle, P.; Suter, C. J. Am. Chem. Soc. 1974, 96, 4724; (b) Dauben, W. G.; Beasley, G. H.; Broadhurst, M. D.; Muller, B.; Peppard, D. J.; Pesnelle, P.; Suter, C. J. Am. Chem. Soc. 1975, 97, 4973.
\({ }^{16}\) Corey, E. J.; Wat, E. K. W. J. Am. Chem. Soc. 1967, 89, 2757.
\({ }^{17}\) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.
\({ }^{18}\) Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61.
\({ }^{19}\) Paquette, L. A.; Astles, P. C. J. Org. Chem. 1993, 58, 165.
\({ }^{20}\) Okude, Y.; Hirano, S.; Hiyama, T.; Kimura, K.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.
\({ }^{21}\) Paquette, L. A.; Doherty, A. M.; Rayner, C. M. 1992, 114, 3910.
\({ }^{22}\) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1997, 62, 4313.
\({ }^{23}\) Marshall, J. A.; Van Devender, E. A. J. Org. Chem. 2001, 66, 8037.
\({ }^{24}\) (a) Brown, D. G.; Velthuisen, E. J.; Commerford, J. R., Brisbois, R. G.; Hoye, T. H. J. Org. Chem. 1996, 61, 2540;
(b) Roth, G. J.; Liepold, B.; Müller, S. G.; Bestmann, H. J. Synthesis 2004, 59.
\({ }^{25}\) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1995, 60, 5966.
\({ }^{26}\) Marshall, J. A.; Wolf, M. A. J. Org. Chem. 1996, 61, 3238.
\({ }^{27}\) Donohoe, T. J.; Ironmonger, A.; Kershaw, N. M. Angew. Chem. Int. Ed. 2008, 47, 7314.
\({ }^{28}\) (a) Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham, M. Eur. J. Org. Chem. 2005, 1969; (b) Donohoe, T. J.; Kershaw, M. N.; Orr, A. J.; Wheelhouse, K. M. P.; Fishlock, L. P.; Lacy, A. R.; Bingham, M.; Procopiou, A. R. Tetrahedron 2008, 64, 809; (c) Donohoe, T. J.; Fishlock, L. P.; Lacy, A. R.; Procopiou, A. R. Org. Lett. 2007, 9, 953.
\({ }^{29}\) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535.
\({ }^{30}\) Roethle, P. A.; Trauner D. Org. Lett. 2006, 8, 345.
\({ }^{31}\) Kimbrough, T. J.; Roethle, P. A.; Mayer, P.; Trauner, D. Angew. Chem. Int. Ed. 2010, 49, 2619.
\({ }^{32}\) Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. Tetrahedron 1984, 40, 1371.
\({ }^{33}\) Trost, B. M.; Müller, T. J. J.; Martinez, J. J. Am. Chem. Soc. 1995, 117, 1888.
\({ }^{34}\) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
\({ }^{35}\) Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801.
\({ }^{36}\) Fürstner, A. Chem. Rev. 1999, 99, 991.
\({ }^{37}\) Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 9, 633.
\({ }^{38}\) Achmatowicz, O. Jr.; Bukowski, P.; Szechner, B.; Zwierzkowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973.
\({ }^{39}\) Tang, B.; Bray, C. D.; Pattenden, G. Tetrahedron Lett. 2006, 47, 6401.
\({ }^{40}\) Weitz, E.; Scheffer, A. Ber. Dtsch. Chem. Ges. 1921, 54, 2327.
\({ }^{41}\) Weinstabl, H.; Gaich, T.; Mulzer, J. Org. Lett. 2012, 14, 2834.
\({ }^{42}\) (a) Gaich, T.; Weinstabl, H.; Mulzer, J. Synlett 2009, 1357; (b) Weinstabl, H. PhD-Thesis 2011, University of Vienna, Vienna.
\({ }^{43}\) Rodriguéz, A. D.; Shi, J.-G.; Huang, S. D. J. Org. Chem. 1998, 63, 4425.
\({ }^{44}\) González, M. A.; Ghosh, S.; Rivas, F.; Fischer, D.; Theodorakis, E. A. Tetrahedron Lett. 2004, 45, 5039.
\({ }^{45}\) Wipf, R.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 7132.
\({ }^{46}\) (a) Yang, Z.; Li, Y.; Pattenden, G. Tetrahedron, 2010, 66, 6546; (b) Li, Y.; Pattenden, G. Tetrahedron Lett. 2011, 52, 3315.
\({ }^{47}\) Fleming, I. Molecular Orbitals and Organic Chemical Reactions, John Wiley Sons Ltd, West Sussex, 2009.
\({ }^{48}\) Hehn, J. P. Angew. Chem. Int. Ed., 2011, 50, 1000 and references cited therein.
\({ }^{49}\) Singh, S. B.; Pettit, G. R. J. Org. Chem. 1989, 54, 4105.
\({ }^{50}\) Cava, M. P.; Stern, P.; Wakisaka, K. Tetrahedron 1973, 29, 2245.
\({ }^{51}\) Ninomiya, I.; Takasugi, H.; Naito, T. J. Chem. Soc. Chem. Commun. 1973, 732.
\({ }^{52}\) Ling, R.; Mariano, P. S. J. Org. Chem. 1998, 63, 6072.
\({ }^{53}\) Sugimura, T.; Paquette, L. A. J. Am. Chem. Soc. 1987, 109, 3017.
\({ }^{54}\) Kraus, G. A.; Chen, L. J. Am. Chem. Soc. 1990, 112, 3463.
\({ }^{55}\) Piva, O. J. Org. Chem. 1995, 60, 7879.
\({ }^{56}\) Itagaki, N.; Iwabuchi, Y. Chem. Commun. 2007, 1175.
\({ }^{57}\) Cotterill, I. C.; Jaouhari, R.; Dorman, G.; Roberts, S. M.; Scheinmann, F.; Wakefield, B. J. J. Chem. Soc. Perkin Trans. 1 1989, 1543.
\({ }^{58}\) Molander, G. A.; Jean, D. J. St.; Haas, J. J. Am. Chem. Soc. 2004, 126, 1642.
\({ }^{59}\) Birch, A. J. J. Chem. Soc. 1944, 430.
\({ }^{60}\) Mehta, S; Subrahmanyam, D. J. Chem. Soc. Perkin Trans. 1, 1991, 395.
\({ }^{61}\) Fries, K.; Finck, G. Ber. Dtsch. Chem. Ges. 1908, 41, 4271.
\({ }_{62}^{62}\) Magauer, T.; Martin, H. J.; Mulzer, J. Angew. Chem. Int. Ed. 2009, 48, 6032.
\({ }^{63}\) Ireland, R. E.; Häbich,. D.; Norbeck, D.W. J. Am. Chem. Soc. 1985, 107, 3271.
\({ }^{64}\) Evans, D. A.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127.
\({ }^{65}\) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc., 1988, 110, 3578.
\({ }^{66}\) Wender, P. A.; Ternansy, R. J.; DeLong, M.; Singh, S.; Olivero, A.; Rice, K. Pure Appl. Chem. 1990, 62, 1597.
\({ }^{67}\) Gaich, T.; Mulzer, J. J. Am. Chem. Soc. 2009, 131, 452.
\({ }^{68}\) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
\({ }^{69}\) (a) Paternò, E.; Chieffi, G. Gazz. Chim. Ital. 1909, 39, 341; (b) Büchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76, 4327.
\({ }^{70}\) Bach, T.; Brummerhop, H. 1998, 37, 3400.
\({ }^{71}\) Fleck, M.; Bach, T. Angew. Chem. Int. Ed. 2008, 47, 6189.
\({ }^{72}\) (a) Srinivasan, R.; Hill Carlough, K. J. Am. Chem. Soc. 1967, 89, 4932; (b) Liu, R. S. H.; Hammond, G. S. J. Am. Chem. Soc. 1967, 89, 4932.
\({ }^{73}\) (a) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3; (b) Lipinski, C. A. Drug Discov. Today 2004, 1, 337.
\({ }^{74}\) Corey, E. J.; Cane, D. E.; Libit, L. J. Am. Chem. Soc. 1971, 93, 7016.
\({ }^{75}\) Bach, T.; Spiegel, A. Synlett 2002, 1305.
\({ }^{76}\) Schreiber, S. L.; Santini, C. J. Am. Chem. Soc. 1984, 106, 4038.
\({ }^{77}\) Cope, A. C.; Hardy, E. M. J. Am. Chem. Soc. 1940, 62, 441.
\({ }^{78}\) Richmond, R. E.; Smith III, A. B. J. Am. Chem. Soc. 1983, 105, 575.
\({ }^{79}\) Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625.
\({ }^{80}\) Selig, P.; Bach, T. Angew. Chem. Int. Ed. 2008, 47, 5082.
\({ }^{81}\) De Mayo, P.; Takeshita, H.; Sattar, A. B. M. A. Proc. Chem. Soc. 1962, 119.
\({ }^{82}\) (a) Oppolzer, W.; Godel, T. J. Am. Chem. Soc. 1978, 100, 2583; (b) Oppolzer, W.; Godel, T. Helv. Chim. Acta 1984, 67, 1154.
\({ }^{83}\) Mehta, G.; Murthy, A. N.; Reddy, D. S.; Reddy, A. V. J. Am. Chem. Soc. 1986, 108, 3443.
\({ }^{84}\) Crimmins, M. T.; Pace, M. J.; Nantermet, P. G.; Kim-Meade, A. S.; Thomas, J. B.; Watterson, S. H.; Wagman, A. S. J. Am. Chem. Soc. 2000, 122, 8453.
\({ }^{85}\) Etnoyer, P. J.; Wirshing, H. H.; Sánchez, J. A. PLoS ONE 2010, 5, e10668; doi:10.1371/journal.pone. 0010668.
\({ }^{86}\) Marrero, J.; Rodríguez, A. D.; Baran, P.;Raptis, R. G.; Sánchez, J. A.; Ortega-Barria, E.; Capson, T. L. Org. Lett. 2004, 6, 1661.
\({ }^{87}\) (a) Greenwood, B. M., Bojang, K., Whitty, C. J., Targett, G. A. Lancet 2005, 365,1487; (b) Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y.; Hay, S. I. Nature 2005, 434, 214.
\({ }^{88}\) Doroh, B.; Sulikowski, G. A. Org. Lett. 2006, 8, 903.
\({ }^{89}\) Nahm, S.; Weinreb, S. M. Tetrahedron 1981, 22, 3815.
\({ }^{90}\) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
\({ }^{91}\) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
\({ }^{92}\) (a) Lindgren, B. O.; Nilsson, T. Acta Chim. Scand. 1973, 27, 888; (b) Balkrishna, S. B.; Wayne, E. C. Jr.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.
\({ }^{93}\) Negishi, E.; Kotora, M. Tetrahedron 1997, 53, 6707.
\({ }^{94}\) Miao, R.; Gramani, S. G.; Lear, M. J. Tetrahedron Lett. 2009, 50, 1731.
\({ }^{95}\) Searles, S.; Li, Y.; Nassim, B.; Lopes, M.-T. R.; Tran, P. T.; Crabbé, P. J. Chem. Soc. Perkin Trans. 1 1984, 747.
\({ }^{96}\) Bredt, J. Justus Liebigs Ann. Chem. 1924, 437, 1.
\({ }^{97}\) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew. Chem. Int. Ed. 2011, 50, 5149.
\({ }^{98}\) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521.
\({ }^{99}\) Weinstock, L. M.; Corley, E.; Abramson, N. L.; King, A. O.; Karady, S. Heterocycles 1988, 27, 2627.
\({ }^{100}\) Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Org. Lett. 2012, 14, 2195.
\({ }^{101}\) Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem 2013, 4379.
\({ }^{102}\) Farcet, J.-B. PhD-Thesis 2013, University of Vienna, Vienna.
\({ }^{103}\) Mihelich, E. D.; Eickhoff, D. J. J. Org. Chem. 1983, 48, 4135.
\({ }^{104}\) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
\({ }^{105}\) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226.
\({ }^{106}\) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 1071.
\({ }^{107}\) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B.C. L. J. Chem. Soc. 1946, 39.
\({ }^{108}\) Jana, A.; Mondal, S.; Hossain, F. Md.; Ghosh, S. Tetrahedron Lett. 2012, 53, 6830.
\({ }^{109}\) Meyer, M. E.; Phillips, J. H.; Ferreira, E. M.; Stoltz, B. M. Tetrahedron 2013, in press.
\({ }^{110}\) Ihara, M; Ohnishi, M.; Takano, M. J. Am. Chem. Soc. 1992, 114, 4408.
\({ }^{111}\) Miyaura, N.; Yamada, K.; Suzuki, A Tetrahedron Lett. 1979, 20, 3437.
\({ }^{112}\) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725.
\({ }^{113}\) Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Org. Lett. 2013, 15, 3098.
\({ }^{114}\) Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J.; Mulzer, J. Eur. J. Org. Chem. 2013, August \(21^{\text {st }} 2013\) accepted for publication.
\({ }^{115}\) Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem 2013, August \(21^{\text {st }} 2013\) accepted for publication.
\({ }^{116}\) For a review on palladium-catalyzed cross-coupling reactions in total synthesis see: Nicolaou, K. C.; Bulger,
P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442.
\({ }^{117}\) Diels, O.; Alder, K. Justus Liebeigs Ann. Chem. 1928, 460, 98.
\({ }^{118}\) Wurtz, M. A. Bull. Soc. Chim. Fr. 1872, 17, 436.
\({ }^{119}\) Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
\({ }^{120}\) For a review on metathesis in total synthesis see: Nicolaou, K. C.; Bulger, P. G.; Sarlah, G. Angew. Chem. Int. Ed. 2005, 44, 4490.
\({ }^{121}\) Casey, C. P. J. Chem. Educ. 2006, 83, 192.
\({ }^{122}\) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
\({ }^{123}\) Heck, R. F.; Nolley, J. P. Jr. J. Org. Chem. 1972, 37, 2320.
\({ }^{124}\) For a review on asymmetric intramolecular Heck reactions in total synthesis see: Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
\({ }^{125}\) For a general review on the Heck reaction see: de Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. 1994, 33, 2379.
\({ }^{126}\) Overman, L. E. Pure App., Chem. 1994, 66, 1423.
\({ }^{127}\) Ashfield, L.; Barnard, C. F. J. Org. Process Res. Dev. 2007, 11, 39.
\({ }^{128}\) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
\({ }^{129}\) Rigby, J. H.; Hughes, R. C.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 7834.
\({ }^{130}\) Jeffery, T. Tetrahedron 1996, 52, 10113.
\({ }^{131}\) Liu, H.; Li, C.; Qiu, D.; Tong, X. J. Am. Chem. Soc. 2011, 133, 6187.
\({ }^{132}\) (a) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778; (b) Newman, S. G.; Howell, J. K.; Nicolaus, N.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916.
\({ }^{133}\) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sotoocornola, S. Chem. Rev. 2007, 107, 5318.

\section*{Curriculum Vitae \\ Martin Himmelbauer, MSc}

\section*{Education}

May 2009 - present

2002 - April 2009

2002

1993-2001

PhD in Chemistry expected (Summer 2013), University of Vienna, Supervisor: Univ. Prof. Dr. Johann Mulzer, Focus: natural product synthesis with emphasis on the total synthesis of Bielschowskysin

MSc in Chemistry, University of Vienna, Focus: organic synthesis and spectroscopy Diploma Thesis: "Synthetic Efforts Towards a Synthesis of the Tetracyclic Core of (-)-Lemonomycin" at the Department of Organic Chemistry under the supervision of Univ. Prof. Dr. Johann Mulzer

Military Service at Austrian Guards Division

High school at the BRG 1 Linz (Fadingerstraße), with emphasis on natural science and mathematics

\section*{Relevant Employments}

2008 - present Tutor and lector of graduate and undergraduate students; University of Vienna

2004-2007 Industrial Internship, Division: Process Development and Optimization; Nycomed Austria GmbH; Linz, Austria

\section*{Publications}

2013 "An Approach to the Carbon Backbone of Bielschowskysin, Part 1: the Photocyclization Strategy"
Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J; Mulzer, J. Eur. J. Org. Chem 2013, accepted.

2013

2013
"An Approach to the Carbon Backbone of Bielschowskysin, Part 2: the Non-Photochemical Strategy" Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem 2013, accepted.
"Photochemical and Thermal [2+2]-Cycloaddition to Generate the Bicyclo[3.2.0]heptane Core of Bielschowskysin" Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, 4379.
"A Palladium-Catalyzed Carbo-oxygenation: The Bielschowskysin Case"
Himmelbauer, M.; Farcet, J.-B.; Gagnepain, J; Mulzer, J. Org. Lett., 2013, 15, 3098.
"A Non-Photochemical Approach to the Bicyclo[3.2.0]heptane Core of Bielschowskysin"
Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Org. Lett. 2012, 14, 2195.

\section*{Prizes and Awards}

September \(2012 \quad 2^{\text {nd }}\) best Contribution to all sessions at "Syngenta Workshop for Talented Young Chemists 2012"; Stein, Switzerland

Oral Presentations
May 2011 „Recent Developments Towards the Total Synthesis of Bielschowskysin"; VISOC 2011; Vienna, Austria

January 2011 „Towards a Total Synthesis of Bielschowskysin"; Institute colloquium, Technical University of Graz, Austria

November 2010 „Towards a Total Synthesis of Bielschowskysin"; 40. Naturstofftreffen; Würzburg, Germany

\section*{Poster Presentations}

September 2012

August 2010

March 2009

February 2009

September 2008
"Towards a Total Synthesis of Bielschowskysin"; Syngenta workshop 2012 for talented PhD chemistry students; Stein, Switzerland
"Towards a Total Synthesis of Bielschowskysin"; ICOS-18; Bergen, Norway
"Towards a Synthesis of (-)-Lemonomycin"; Synthesefest 2009; Munich, Germany
"Towards a Synthesis of Lemonomycin"; ESPCI workshop; Paris, France
"Towards the Stereocontrolled Synthesis of the Tetracyclic Core Framework of (-)-Lemonomycin"; EuCheMS 2008; Turin, Italy

Other Skills and Interests
\begin{tabular}{ll} 
Languages & German (native), English (fluent), Italian (basic) \\
IT-skills & \begin{tabular}{l} 
Windows, MS-Office, Linux, TYPO3 webpage, as well as numerous \\
chemistry oriented programs
\end{tabular} \\
Chemical Analysis & NMR, IR, UV-VIS, HPLC
\end{tabular}```


[^0]:    Scheme 13 Biomimetic Enol Ether Formation Proposed by Pattenden

[^1]:    Scheme 20 Total Syntheses of (+)-Rubifolide (174), (+)-Isoepilophodione B (175) and (+)-Intricarene (47)

[^2]:    Scheme 26 Norrish-Yang Cyclization in the Total Synthesis of (-)-Punctaporonin (206)

[^3]:    Scheme 30 Mulzer's Total Synthesis of (-)-Kendomycin (237) Containing a Photo-Fries Rearrangement as Key Step

[^4]:    Scheme 40 Sulikowski's Efforts towards a Total Synthesis of Bielschowskysin (1)

[^5]:    [a] University of Vienna, Institute of Organic Chemistry,
    Währinger Straße 38, 1090 Vienna, Austria Fax: +43-1-4277-9521
    E-mail: johann.mulzer@univie.ac.at
    Homepage: http://mulzer.univie.ac.at/
    Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc. 201300382.

