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ABSTRACT

Ein Warehouse Location Problem wird mit dem Konzept von Wardrop Gleich-
gewichten optimiert, die durch den Algorithmus von Frank-Wolfe für konvexe Op-
timierung bestimmt werden. Die Anwendung ist ein Katastrophenhilfe-Modell,
wobei es sich bei den Standorten, die optimiert werden sollen, um Verteilungszen-
tren handelt, die Hilfsgüter für eine bestimmte Gegend anbieten. Die Verteilung
der Menschen zwischen den DCs (Verteilungszentren) erreicht seine optimale Lö-
sung im Wardrop Gleichgewicht, wobei die Zielfunktion eine gewichtete Summe
der Reisekosten und des nicht abdeckbaren Bedarfs (aufgrund der beschränkten
Kapazitäten der DCs) bildet. Um die Pareto-optimalen Lösungen für die beiden
Zielfunktionen, die für die Hilfsorganisationen relevant sind, DC-Kosten und Nach-
fragedeckung, zu finden, wird vollständige Enumeration verwendet. Dies ruft alle
möglichen Kombinationen der Standorte auf. Das Modell wird mit einem Daten-
satz ländlicher Gemeinden in Senegal getestet.

Schlagwörter
Katastrophenhilfe, Facility Location Problem, Wardrop Gleichgewicht, Minimum
Cost Multi-Commodity Flow Problem, Algorithmus von Frank-Wolfe
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ABSTRACT

A Warehouse Location Problem is optimized using the concept of Wardrop Equi-
libria which are determined by the Frank-Wolfe Algorithm for convex optimization.
The application is a disaster relief model where the facilities to be optimized, are
the distribution centers, offering relief supplies for a certain area. The distribution
of people among the DCs (Distribution centers) finds its optimum in the Wardrop
Equilibrium where the objective function is the weighted sum of the traveling cost
and non-coverable demand due to the restricted capacity of the DCs. To find the
Pareto optimal solutions for the two objectives relevant for the relief organizations,
DC cost and demand coverage, complete enumeration is used, calling up all vari-
ants of facility locations. The model is tested using a dataset of rural communities
in Senegal.

Keywords
disaster relief, facility location problem, Wardrop Equilibrium, minimum cost
multi-commodity flow problem, Frank-Wolfe Algorithm
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1 Introduction

When it comes to emergency relief during or after disasters such as natural catas-
trophes, for humanitarian organizations the question arises how to set up emer-
gency facilities with relief supplies in the population areas, where the people are
located, in the most efficient way. Rather than delivering all goods directly to
the people, which is not feasible in most cases, goods are shipped to facilities
which should lie as close as possible to their housings so that the maximal number
of people is able to reach those facilities and is provided there with the needed
supplies [19]. Furthermore, since humanitarian organizations are mostly provided
with a limited budget, the overall cost containing establishment and maintenance
of such DCs (=Distribution centers), both depending on the size and respectively,
the capacity, should be held as small as possible. The organizations’ decision on
the location set-ups depends on the modelling of how the people will distribute
over the DCs. The decision of the people to leave their villages in order to visit a
DC depends on the distance they would need to pass as well as on their chances
to be provided with relief supplies. As most of the people in those villages can’t
travel by anything else than by feet, their willingness to traverse many kilometres
will fall monotonously with rising distance. Besides, if too many people go the
same DC, the capacity will be exceeded and the demand of the people will not be
covered in full but they will only get a specific percentage of their demand depen-
dent on the amount of people traveling to this facility. In this case, the capacity
is split up equally between all incoming people. This can also be interpreted in
a probabilistic way by assuming that every person gets relief goods only with a
certain percentage. Rising the capacities higher than a given threshold is no so-
lution at all because such centers are mostly set up provisionally and therefore,
endangered to be plundered at night. Cost rise when there is a need for people
taking care of the centers overnight. Before the establishment of those DCs, it’s
not possible to know how people will spread over the area and therefore also, how
to distribute the supplies from the supplier’s side. It is assumed that the relief
goods are homogeneous and everyone has the same need of the same amount of
goods. The whole system is considered as a flow network where the villages repre-
sent the population nodes and certain ones out of those are set also to DC nodes.
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The arcs between population and DC nodes make for the road sections and pro-
vide the distances. The demand for relief goods is the number of people within a
population node. Feasible routes are those between the villages and the DCs with
no limits on their capacities. The problem consists of two stages. First, within the
set of all DC set-up possibilities, one combination is chosen in each iteration. After
the facility location is set, one can calculate the distribution of the people leaving
their villages. The Wardrop Equilibrium is the state of the people’s distribution
where the selfish optimum is achieved for every participant by selecting a route
which minimizes a weighted sum of traveling cost and uncovered demand. This is
a steady state which levels out after a short transition phase where people adapt
their behaviour. This flow equilibrium is calculated using the Frank-Wolfe Algo-
rithm which is an iterative algorithm for constrained convex optimization using
first order derivatives for linear approximation. After modelling the people’s distri-
bution, it’s on the humanitarian organizations to decide which location possibility
to choose. This problem is a bi-objective one. In each iteration step for the current
DC establishment combination, the cost for the DCs form the first objective and
total uncovered demand the second. The decision whether to choose higher cost
or to cover more demand lies in the hand of the humanitarian organizations. Out
of all possible DC combinations, the set of Pareto optimal solutions is picked out
such that the organizations can choose according to their capabilities.

2 Related Literature

This work is referring to an already existing disaster relief model by Tricoire et
al. (2011) [19]. The basic model used in this paper assumes that the people in
the village walk to the closest DC which is opened and are provided there with
the available capacity of relief supplies which are split up equally between all the
demand flow entering the DC. The model is denoted as the Nearest center model
(NC). It is assumed that all people within a village will walk to the closest DC if
the distance is less or equal to 6km and only 50% of the people will leave if the
distance is more than 6km but not more than 15km. Above the distance-threshold
of 15km, nobody will leave his home. The problem was treated as a linear 2-stage
problem with recourse, considering fixed set-ups under stochastic demand. Monte
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Carlo simulation was used to find the uncertain provided fraction of uncovered
demand under fixed cost.
An overview of stochastic and deterministic approaches on the facility location
problem are presented by Owen and Daskin (1998) [15]. A focus on one of the most
popular models among facility location, the covering problem, is given in Farahani
et al. (2010) [8]. A model that maximizes the amount of demand covered within
the acceptable distance by locating a given fixed number of new facilities rather
than covering all demand by minimizing the number of locations is the maximum
coverage problem representing a better model when it comes to disaster relief and
limits on expenditure. New variations of the maximum coverage facility location
problem are given by Bhattacharya and Nandy (2011) [4]. As the behaviour of
people facing emergency situations is more complex and rather selfish, the model
should adapt to this. Introduced by Wardrop in 1952 [20], Beckmann et al. were
the first to mathematically formalize Wardrop’s 1st principle in 1956 [3]. The
Wardrop Equilibria network model used in this thesis is based on the recent work
done by Correa and Stier-Moses (2010) [6]. A game theoretical approach to the
self-interested behaviour of Wardrop Equilibria is given by Sangwan (2007) [17].
The relation to the Nash Equilibrium is described by Altman et al. (2005) [1].
Statements to improve the convergence of Wardrop Equilibria with the help of
sampling methods are done by Fischer et al. (2006) [9].

3 Wardrop Equilibria

From studies of behavioural assumptions of transportation and telecommunication
networks, one knows that travellers or packets choose instinctively routes which
they perceive as being the shortest under given traffic conditions. This results in
a situation where no traveller can reduce his journey time by choosing an other
route since he’s already chosen the most effective. Such a situation within a traffic
pattern is therefore a static one, known as a User- or Wardrop Equilibrium. The
Wardrop Equilibrium is a steady state coming after an unsteady phase where trav-
ellers adjust their route choice until no improvement is possible and a situation
with stable route cost and flows is reached [6].
There are two principles stated by Wardrop formalizing the notion of an equilib-
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rium and introducing the alternative behaviour of the minimization of the total
travel cost (cf.[20]):

1. The journey times in all routes actually used are equal and less than those
which would be experienced by a single vehicle on any unused route.

2. At equilibrium the average journey time is minimum.

Ad 1: Each user tries to non-cooperatively minimize his cost and traffic flows.
Flows referring to such pattern are known as “User Equilibria” flows, since each
user chooses that route that is best for him. An user-optimized equilibrium is
reached when no user may lower his traveling time (resp. cost) through unilateral
action [6].
Ad 2: Usually, the socially-optimal pattern of route choice differs from the pat-
tern that occurs when each individual traveller acts according to his or her own
self-interest. Therefore, Wardrop articulated another principle. The 2nd princi-
ple implies cooperation of the users. Everyone aims to minimize the total travel
time (resp. cost) for the whole system. Traffic flows which satisfy Wardrops 2nd
principle are called “system optimal”, such an equilibrium is known as System
Equilibrium (SE) [6].
By talking about Wardrop Equilibria (WE), one refers to Wardrop’s 1st principle.
One can say, a state is a Wardrop Equilibrium, if all routes being used have the
same cost for each member whereas the cost that would occur on all paths which
are not used by the members are higher or equal.

3.1 The Basic Model

The model was taken from Correa and Stier-Moses (cf.[6]). A traffic assignment
problem is considered with origin- destination (OD) pairs and their demand on
a given network with a road geometry. G=(N,A) represents a directed network
where N is the set of all population nodes given and A the set of arcs connecting
them. The set of commodities C ⊆ N × N is represented by OD pairs. For
each OD pair k, an amount dk of flow demand (which represents the amount of
people) has to be routed from the origin to the destination. The individual routing
decision of one person has no impact on the routing decision of the others within
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the same population node, hence, the demand is arbitrarily divisible. Let Rk be
the set of feasible routes connecting each OD pair k in G, and let R be the union
of all connections, R=

⋃
k Rk. For every arc a, the non-negative vector f=(fa)a∈A

describes the amount of traffic passing through it. It is known as the link flow.
Besides, let ta : R≥0 ∪ {∞} 7→ R≥0 ∪ {∞} be the non-negative, non-decreasing
and continuous travel cost function which maps each link flow fa on arc a to the
cost (e.g. cost in forms of travel time or effort) needed to traverse this arc. One
denotes a non-negative vector h=(hr)r∈R as route flow, if this vector meets the
demand for each OD pair,

∑
r∈Rk hr = dk. This is the range of possible routes for

each OD pair within the graph. Every route flow determines the quantity of traffic
for each arc a of the set of arcs, which is the link flow, fa =

∑
r|a∈r hr, ∀a ∈ A. For

a link flow f, travel cost along a route r is given by cr(f) :=
∑

a∈r ta(fa). The set
of feasible flows (f,h) is denoted as X and its projection on the set of link flows is
denoted as Xf . Due to the flow conservation constraint holding for each OD pair,
saying that, unless it’s not the origin or destination node, the inflow within every
node has to equal the outflow of this node, it’s easy to see that Xf is a polytope.
Since Wardrop’s first principle states that all flows travel along shortest paths, a
route flow h is called Wardrop Equilibrium if and if only for all OD pairs k ∈ C,

cr(h) = min
q∈Rk

cq(h),

holds ∀r ∈ Rk, such that hr > 0. The route flow h is that one giving the minimal
cost within the set of route flows of an OD pair. Note the convention that cr(h) :=

cr(f(h)) where f(h) is the link flow determined through route r. One considers the
minimal cost multi-commodity flow problem with a separable objective function

min
f
{
∑
a∈A

∫ fa

0

ta(z)dz | f ∈ Xf}.

According to the proof of Beckmann et al. [3] such minimum always exists. Since
the objective function of the problem is the integral of a non-decreasing function,
the objective is convex, and since Xf is a convex set, the problem is a convex one.
Furthermore, the domain of the problem is a bounded polyhedron and therefore a
compact set (according to Heine-Borel, since Xf is a closed and bounded subset of
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Rn). Because the objective is a continuous and real function on a compact set and
thus, the range of the function is again compact, there always exist an minimum
and maximum according to the Weierstrass Theorem [16]. Since the problem is
a convex one, as mentioned above, the existence of a global minimum for the
given objective is assured. Applying the Karush-Kuhn-Tucker Conditions yields
cr(h) <= cq(h) for all commodities k ∈ C and all routes r, q ∈ Rk such that hr > 0

(cf.[1]). This is equivalent to the definition of a Wardrop Equilibrium. If h and h’
are both Wardrop Equilibria, the cost for them are equal, cr(h) = cr(h

′) [3]. This
is due to the fact that there exists only a global minimum and no local ones. The
route flow as well as the link flow are not necessarily unique. If the cost function
ta is strictly increasing, the link flow f is unique, but still, there can be different
decompositions of the route flow h which lead to the same traffic quantities. If the
cost function is just non-decreasing, f is not unique but the cost vector (ta(fa))a∈A

of potentially different equilibria is unique. A computational solution of Wardrop
Equilibria is possible using the multi-commodity minimal-cost formulation with
separable objective function.

4 The Frank-Wolfe Algorithm

The Frank-Wolfe Algorithm [10] is one of the most widely used algorithms when it
comes to routing problems in areas of traffic and telecommunication, thus, models
with flow assignment problems on OD-pairs. It’s a traditional algorithm for the
computation of equilibria and very popular since it’s rather simple and the memory
requirement is modest [2]. This is due to the fact that it deals at any iteration
only with a single path between each OD pair [13]. The algorithm was invented
initially for quadratic optimization, but it’s also applicable for all kinds of convex
problems. For the usage of the algorithm, one considers the convex optimization
problem

{minω(f) | f ∈ X ⊂ Rn
≥0}

where ω defines a convex and continuously differentiable function and X⊂ Rn
≥0

the convex set of feasible points. By the continuity of ω and since X is bounded
from below, there exists a solution for this problem, the solution is unique, if ω
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is strictly convex. For the computation of Wardrop Equilibria, one can apply the
Frank-Wolfe Algorithm to the multi-commodity minimal-cost problem formula-
tion mentioned in the chapter above since the necessary conditions are given (cf.
[6],[13]). The algorithm is an iterative descent method, it starts with an initial
value f 0 ∈ X and generates a sequence of feasible points f t ∈ X, whereby f t+1 is
generated out the previous point f t in order to find a feasible descent direction
[2], [12]. The idea behind the algorithm is the replacement of the convex function
ω(f) in each step t through the linear approximation going through the current
search point f t

ω(f) ∼= ω(f t) +5ω(f t)(f − f t)

where the righthand-side linearization gives -due to convexity- an affine minorant
to the lefthand-side objective [2].
Minimizing the objective function with respect to f corresponds to minimizing the
linearization with respect to f :

min
f∈X
{ω(f t) +5ω(f t)(f − f t)} = min

f∈X
ω(f t) + min

f∈X
5ω(f t)f −min

f∈X
5ω(f t)f t.

Since ω(f t) and 5ω(f t)f t don’t depend on f , they can be ignored for the mini-
mization:

ω(f t) + min
f∈X
5ω(f t)f −5ω(f t)f t.

One determines the solution of the problem

st := argmin
s∈X
5ω(f t)s

where the search point st is defined as st := f ∈ X and the search direction in step
t is given through st − f t.
Due to the usage of the first order derivative, the algorithm is also known as the
Conditional Gradient [12]. Far from the optimal solution the algorithm performs
very well but it tends to slow and poor convergence around the optimum. In the
near surrounding of the optimal solution, it tends to zig-zag behaviour [18]. The
reason for this is that the algorithm is more attracted to constraint corners than to
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the actual descent direction of the objective function once it’s close to the solution
in order to avoid infeasibility [13]. Modification of the step-size is used to improve
the performance. In the line search approach the objective is minimized along the
line segment between the current solution f t and the search point st to find the
optimal convex combination of them. Analytically, this means one searches for the
weight ξ ∈ [0, 1] such that

ξt := arg min
ξ∈[0,1]

ω((1− ξ)f t + ξst)

which produces the next search point

f t+1 := (1− ξ)f t + ξst

(cf. [2]). The objective value is decreasing significantly in each step when using
line search. Clarkson [5] showed that also the following variant of the Frank-Wolfe
Algorithm ensures certain convergence bounds: Instead of performing line search
to find the best ξ, in each iteration t, a fixed step-size is used, ξt = 2

t+2
. This

stepsize is converging to zero as t goes to infinity, this means that after a certain
number of iterations, far more weight will be put on the previous flow rather than
on the new search point. This saves the expenses of calculating the function value
in each step because only the derivatives need to be calculated. In conclusion, this
leads to the following algorithm (Frank-Wolfe 1956 [10]): Let f 0 ∈X and ξ ∈ [0,1]
be arbitrarily chosen initial values.

• Set t=1.

• Compute st := argmins∈X5ω(f t)s.

• Set ξt := 2
t+2

.

• Set f t+1 := (1− ξ)f t + ξst.

• If the termination condition is not met yet, set t:=t+1.

(cf. [12]).
The iterates of the previous algorithm satisfy ω(f t) ≤ ω(f ∗) + O(1

t
) where f ∗
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defines an optimal solution of the algorithm [5][12]. The same holds also for the
sub-problem solved with the linear search method [12]. This is relatively slow
compared to other algorithms. The Frank-Wolfe Algorithm is especially useful
when the number of variables is very large, like in the disaster model discussed in
this work, as such problems require rather small effort per iteration than a fast
convergence rate in terms of iterations [5].
The algorithm stops after a certain precision condition is achieved. Since a convex
problem is treated, upper and lower bounds of the problem’s objective value can
be determined and used as a termination criterion. Convexity of the function ω

implies that ω(f) ≥ ω(f t) +5ω(f t)(f − f t) for all f, f t ∈ X. Assuming that st

is the optimal search point at iteration step t and ω(f ∗) the optimal solution, one
gets

ω(f t) +5ω(f t)(st − f t) ≤ ω(f t) +5ω(f t)(f ∗ − f t) ≤ ω(f ∗) ≤ ω(f t+1),

where the first inequality results from the fact that st − f t is the optimal search
direction at step t but f t − f ∗ is not necessarily optimal as a search direction in
step t. The second inequality follows from the convexity of ω and the third from
the optimality of ω(f ∗) [12].
Thus, in each iteration t, LBDt := ω(f t) +5ω(f t)(st− f t) denotes a lower bound
and UBDt := ω(f t+1) denotes an upper bound to the optimal solution. While
in each iteration step, the optimal value is descending and therefore, UBDt is
decreasing towards ω(f ∗), the sequence LBDt approaches ω(f ∗) from below. The
sequence of lower bounds is not necessarily monotonically growing and also the
sequence of upper bounds is not necessarily monotonically falling. Nevertheless,
there exists always an interval [LBDt, UBDt] which contains the optimal value.
Therefore, making UBDt−LBDt

LBDt
> 0 smaller than a certain value ε > 0 can be used

as a termination criterion for the algorithm [12].
A smarter version of a termination criterion can be obtained by considering the
best found upper (resp. lower) bound so far instead of the upper (resp. lower)
bound in each iteration step. This guarantees monotonicity, the gap between the
best lower bound so far and the best upper bound so far is iteratively shrinking
until they are sufficiently close to each other and, as a result, sufficiently close to
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the optimal solution contained in the interval. This means, the value

UBD − LBD
LBD

with UBD ≤ UBDt, UBDt−1, ..., UBD1 and LBD ≥ LBDt, LBDt−1, ...LBD1,
defined as the relative gap at iteration t, is decreasing. As above, the algorithm
can be stopped when the relative gap is smaller than a certain threshold ε > 0

[14],[2], [12].
In contrast to the termination criterion which uses the current upper and lower
bounds, the sequence of relative gaps considering the so far best upper and lower
bounds is converging in a monotonically decreasing way. Therefore, one can also
approximate after how many steps the algorithm starts converging rather slowly
and doesn’t make any significant steps any more.

5 The Disaster Relief Model

5.1 Problem Formulation

A complete graph (V ∪{t}, A) is considered where V={1, ..., n} denotes the set of
villages with a certain given population, t is the depot which is definitely given in
advance, and A are the arcs representing the potential roads between the villages
as well as between villages and depot. The set of commodities can be defined as
C = {(k, t) | k ∈ V }, thus, every village k represents an origin and the depot
is always representing the destination. The demand dk denotes the number of
inhabitants of each village k in V. After the decision in which village nodes to set
up DCs has been made, they are brought together in the set D={1, ...,m}, which
is a subset of the set of villages V. The routes are going from a village k to a DC
j, and from there, one can determine the ask for demand. The node t only serves
as an artificial dummy node with the purpose of extending the graph by arcs to
which the total incoming flows in each DC can be assigned. Therefore, the set
of routes for each OD pair k is given by Rk = {(k, j, t) | j ∈ D}. The set of all
routes is given by R = {R1, ...., Rn}, assuming n to be the number of villages, and
therefore also the number of OD-pairs in G. A route r ∈ R is uniquely defined
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Figure 1: Expample of 4 OD-pairs with 3 DCs

through the pair (k,j). There are two kinds of flow within the network representing
fa: f(k,j) or shortly, fkj, represents the flow between a village k and a DC j. f(j,t)
, shortly fj, represents the flow from a DC j pseudo-ingoing into the depot. The
amount fkj is therefore the number of people who decided to travel from village
k to DC j and fj the call for supplies within DC j, thus, the number of incoming
people. The route flow can be defined as h = (hkj)k∈V,j∈D since every route r is
uniquely defined through the pair (k,j), which is the arc going through village k
to DC j. As every route is well-defined, the demand constraint can be written
as

∑
j∈D hkj = dk ∀k ∈ V . Every link flow fkj is uniquely determined through a

route flow hkj, it holds fkj = hkj because the entire route flow hkj is only passing
through one link. For fj, the flow conservation constraint has to hold, this means,
the inflow into a DC j has to be equal to the link outflow, which is only flowing
through one link (j,t). Therefore, the sum of all routes visiting DC j has to be
equal to the link flow fj, which yields fj =

∑
k∈C hkj =

∑
k∈C fkj. Hence, there is

a bijective relation between route flows and link flows. Therefore, everything can
be expressed in terms of link flows. From the view point of the people, there are
two quantities which need to be optimized.
The first one is distance, where the cost function could be assumed as journey cost
which could be traveling time or effort needed. It is assumed to be independent
from the amount of flow fkj: tkj(fkj) = φ(akj), where akj represents the distance
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between village k and DC j . Since φ is independent of the flow, it is constant
regarding to flow and thus, a continuous and non-decreasing function. Besides,
since travel cost should be reasonable, it’s a non-negative function. It makes sense
to define φ as a constant value α > 0 in order to have a linear function regarding to
distance. Instead of maximizing the covered demand as the second factor, the cost
of uncovered demand for the people is considered in order to express the overall
objective as a sum of traveling cost and cost for uncovered demand which has to
be minimized. Furthermore, since uncovered demand can either be zero or positive
and rising with higher flow of people, everything can be expressed through non-
negative and non-decreasing cost with respect to the flow. There are three factors
influencing the uncovered demand, fj denotes the number of incoming persons
into a DC, b is the requirement of relief goods for each person, which is given
in advance, and δj stands for the capacity of a DC, also given in advance. Let
ψ(fj, b, δj) be the function of uncovered demand. Then, one gets

ψ(fj, b, δj) =

{
0 fj ≥ δj

b

b− δj
fj

else.

If the number of incoming people is not exceeding the needed capacity per person,
the uncovered demand is zero, whereas if more people arrive at a DC than capacity
is available, the uncovered demand for each person at this DC is the difference
between requirement and capacity per person. This function is not a convex one,
but it’s at least non-decreasing. One can therefore assume a cost function tj(fj) =

pψ(fj, b, δj) with p > 0 denoting a constant price. It’s easy to see, that this cost
function is fulfilling the needed requirements of being non-negative, continuous
and non-decreasing. The range of the function is constantly zero until the point
δj
b
. From this point on, the uncovered demand is growing continuously with rising

incoming demand. In conclusion, the total cost function for the flow on a route k
is given by

ckj(f) = φ(akj) + pψ(fj, b, δj).

Both terms are non-negative, non-decreasing and continuous and therefore, also
the sum of them is non-negative, non-decreasing and continuous and consequently,
fulfilling the assumptions needed in order to get a Wardrop Equilibrium. Since X

12



is the set of feasible flows (f,h), its projection Xf on the set of feasible link flows
f = ((fkj), (fj))k∈V,j∈D is given by the demand constraints for all commodities
k ∈ C. Due to the flow conservation constraint, fj results from fkj, and a feasible
link flow is already fully given through (fkj) satisfying its demand constraint. The
demand constraints are linear and each forms a simplex

S(dk) = {(fk1, ...., fkm) |
∑
j∈D

fkj = dk, fkj ≥ 0, j ∈ D}

where each DC denotes one corner point. Therefore, Xf is a product of n enlarged
simplices of the length dk for each k:

Xf =
∏
k∈V

Sdk .

Interpreting Wardrop’s First Principle, due to the fact that for each commodity
k, the routes in Rk are uniquely defined through (j,k), f is a Wardrop Equilibrium
if and if only

ckj(f) = min
j′
ckj′(f)

holds for all pairs (k,j) with fkj > 0. This means that if there exists a flow
which is bigger than zero on a route k → j → t as well as on another route
k → j′ → t, the reduced cost for the route with the shorter path compensate for
the higher uncovered demand on this route. The minimum-cost multi-commodity
flow problem is given by

min
f
{
∑
k,j

∫ fkj

0

φ(akj)dz +
∑
j

∫ fj

0

pψ(z, b, δj)dz | f ∈ Xf}.

Since the first integrand of the two combined integrals is independent from the
flow fkj, one gets ∫ fkj

0

φ(akj)dz = φ(akj)fkj
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for the first term. This is linear and thus, also convex. If z < δj
b
, then the integrand

ψ(z, b, δj) is zero. Hence, one gets∫ fj

0

pψ(z, b, δj)dz = p

∫ fj

δj
b

(b− δj
z

)+dz = p[b(fj −
δj
b

)+ − δj(
∫ fj

δj
b

dz

z
)+]

= p[b(fj −
δj
b

)+ − δj(log(z)|fjδj
b

)+] = p[b(fj −
δj
b

)+ − δj(log(fj)− log(
δj
b

))+]

for all j∈D. In the case fj <
δj
b
, the integral is zero. This is a convex function

due to the fact that for one thing, pb(fj − δj
b

)+ is a linear function with regard to
fj, and for another thing, since log(fj) is a concave function, −log(fj) is convex.
Because δj is positive and log(

δj
b

) is just a constant factor, −δj(log(fj)− log(
δj
b

))+

is convex with regard to fj. This means, both parts of the integrated uncovered
demand are convex and the sum of two convex function is again convex. Besides,
it is also known that for a function f which is non-decreasing (which holds for
both factors, as mentioned above, and also for the sum of them), the integral∫
f(x)dx is convex. The feasible set is a product of simplices and therefore a con-

vex polyhedron. Thus, this is a convex optimization problem. Since the function
is also continuously differentiable and the decision variables in f are non-negative,
the needed prerequisites are fulfilled and one can apply the Frank-Wolfe Algorithm.

Another consideration which has to be taken into account is that the model by now
omits the possibility that some persons don’t visit any DC since at equilibrium,
the cost for not visiting a DC is always higher than the utility. In order to enable
this option, the network needs to be extended with a further DC node, hence, the
set of DC nodes is extended to D∪{z} where z is a dummy node. It represents the
possibility of staying at home. Since every DC yields for every person a benefit
of b at full covered demand, which means for the system a benefit of pb for each
peron and each DC, the cost of uncovered demand by a visit of the dummy DC are
tzt := pb per person. On the other hand, no travel cost arise, i.e., tkz = 0 ∀k ∈ V .
In total, this yields ckz := pb. People, whose travel costs exceed the gain from the
supply by the most suitable DC, will choose the dummy DC.
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5.2 Application Of The Frank-Wolfe Algorithm

Considering the assumptions which had been made in advance, assuming the num-
ber of opened DC is m and z := m + 1 denotes the dummy DC, one gets the
problem

minω(f) := min
f
{α

n∑
k=1

m+1∑
j=1

akjfkj + p

m+1∑
j=1

[b(fj −
δj
b

)+ − δj(log(fj)− log(
δj
b

))+]}

such that
n∑
k=1

fkj = fj ∀j = 1, ...,m+ 1

m+1∑
j=1

fkj = dk ∀k = 1, ..., n.

As fj results from
∑n

k=1 fkj, everything can be expressed in terms of fkj. Thus, the
only constraint needed for the Frank-Wolfe Algorithm is the demand constraint for
all k=1,..,n. (fkj)k=1,..,n;j=1,...,m+1 is the n×(m+1)-matrix describing the number
of people going from village k to DC j. The column vector k of this matrix
fk = (fk1, ..., fkm+1)

′ is an element of

S
(dk)
m+1 = {(x1, ...., xm+1) ∈ Rm+1 | x1 + ...+ xm+1 = dk, xj ≥ 0, j = 1, ..,m+ 1}

where Sdkm+1 represents a standard simplex in Rm+1 enlarged by the factor dk
(cf. model in [11]). Therefore, the feasible set Xf of the problem is a Cartesian
product Sd1m+1 × ... × Sdnm+1 of enlarged simplices, which is a polyhedron. In the
case where the feasible set Xf would be only a simplex, it is easy to see that
st := argmins∈Xf 5ω>(f t)s, is attaining its optimum at a corner point of the
simplex (which is the extremal point of a simplex) in each iteration. The problem
considered in this work is slightly more complicated since Xf is a product of
simplices. Still, finding the optimal st in each iteration is not difficult at all:
Under the conditions given above, the problem is of the form

st := argmin{
n∑
k=1

m+1∑
j=1

∂ω(f t)

∂fkj
skj | s = (skj) ∈ Sd1m+1 × ...× Sdnm+1}
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in each iteration step t. The search point s is also a matrix of dimension n×(m+1).
Since the gradient is only dependent on fj and independent of fkj, one can split
this problem for each k [6], [11]. It decomposes into n partial problems of the form

stk = argmin{
m+1∑
j=1

∂ω(f t)

∂fkj
skj | sk = (sk1, ..., skm+1)

′ ∈ Sdkm+1} k = 1, ..., n

where the column vector sk denotes the transposed k-th row vector of the matrix
s. The solution of each of these problems k=1,...,n is attained at a corner point of
the enlarged simplex Sdkm+1, denoting one of the DCs. After calculating the partial
derivatives, one gets n problems of the form

stk = argmin{α
m+1∑
j=1

akjskj+p
m+1∑
j=1

(b− δj∑n
k=1 fkj

)+skj | sk = (sk1, ..., skm+1)
′ ∈ Sdkm+1}.

A capacity of zero is assumed for the dummy DC. The solution of the k-th problem
is attained at a corner point of the simplex Sdkm+1, which means, the solution for the
matrix st is of the form (st1, ..., s

t
n)′ = (d1ej∗(1), ..., dnej∗(n))

′ where j∗(k) is the index
of the optimal corner point of the k-th problem and ej denotes the j-th unit vector
in Rm+1. Thus, in every iteration step, for each search direction sk, one has to test
all of the m+1 corner points, in order to find the steepest descent direction (cf.[11]).
As a starting value for the flows within each simplex, the center fk. = 1

m+1

∑m+1
j=1 dkej

= 1
m+1

dk(1, ..., 1)′ is chosen for each k.
For the initial increment ξ = 1, this yields the adapted Frank-Wolfe Algorithm
version:

• For t=1:tmax{

– For k=1:n{

∗ Find the optimal corner point sk = dkej∗(k) within the simplex Sdkm+1

such that

j∗(k) = argmin
j
{αakjdk + p(b− δj

fj
)+dk};

– }
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– Set s = (s1, ..., sn)

– Set f = (1− ξ)f + ξs for ξ = 2
t+2

– Set
∑n

k=1 fkj = fj for j=1,...,m+1

• }

After a certain number of iterations tmax, depending on how much exactness is
aimed, the flow matrix f won’t change significantly any more. The resulting f is
(close to) the Wardrop Equilibrium of the distribution of people over the DCs.

5.3 Optimization Of The Warehouse Locations

By now, it was only explained how the determine the people’s distribution for a
fixed combination of DC establishments. Optimality in this context refers to the
two competing objectives taken into account by the humanitarian organizations,
cost and uncovered demand. The cost implies the overall cost for set-up and
maintenance of the DCs. Since a DC having higher capacity requires higher effort
of set-up as well as possibly more people working, the cost rises monotonously. It
is assumed that the cost is growing linearly with a positive constant η > 0. Thus,

Φ1(f,D) = η
∑
j∈D

δj

is the first objective. Obviously, this objective is not dependent of the flow distri-
bution. The second objective consists of all that demand of the people which stay
at home, which is all the inflow in the dummy DC times the constant per-capita
need for relief goods b>0, plus all the uncovered demand within all DCs where
demand for goods exceeds capacity. Hence,

Φ2(f,D) =
∑

j∈D∪{z}

(bfj − δj)+

is the second objective with δz = 0.
Complete enumeration is used to cover all 2n − 1 possibilities of facility location
combinations assuming that in every village there is either a DC established or
not. Since the option of not opening any DC makes no sense at all, it can be
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ignored. For each possibility, the Wardrop Equilibrium is determined. Out of
the resulting f, the values for the objectives Φ1(f,D) and Φ2(f,D) are calculated.
As the problem is bi-criterial, there exists not only one optimal solution but all
non-dominated solutions are "optimal". A solution is dominated, if there exists
another solution for which (i) cost is lower or equal, (ii) uncovered demand is
lower or equal, and (iii) either cost is strictly lower or uncovered demand is strictly
lower. The set of solutions which are not dominated is called Pareto set. Within
this Pareto set, one can either choose lower cost at the expense of higher uncovered
demand or conversely, cover more demand by having higher cost. The decision to
choose one Warehouse Location solution out of the Pareto set is left open to the
organizations so they can adapt it to their financial capabilities and to the degree
of urgency.

6 Computational Experiments

6.1 Test Instances

The data provided is from the region of Thiès which is located in western Senegal.
This region is split into 32 "communautés rurales" and each of them consists of
a certain number of villages [19]. As the transportation of goods to DCs is not
considered in this work and the depot is only used as a dummy node, its location
is not specified. The instance Mbayene, consisting of 11 villages, is used to provide
some insight information in terms of parameters and convergence, which is then
applied to the other instances.
The Nearest center (NC) model used in Tricoire et al. [19] assumes that the people
from one village walk to the closest DC which is opened, where supply is split up
equally between all the people entering. It is assumed that 100% of the population
within a village will walk to the closest DC if the distance is less than 6km. Only
50% of the population within a village will walk if the distance is 6km or more
but less than 15km and if the distance is more than 15km, nobody will walk. The
number of people who are not leaving their homes flows into the uncovered demand.
In order to get some information about the quality of the model in this work, it
is compared with the NC model which is also solved using complete enumeration
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instead of Branch&Cut, which was used in Tricoire et. al [19]. Since the Wardrop
Equilibria (WE) model assumes more flexibility, one can expect better results in
terms of uncovered demand.
In Fig.2 (Fig10,Fig.11), red crosses (+) represent the Pareto front of the WE
model and green crosses (×) the front of the NC model. Blue crosses (×) denote
the evaluation of the NC model under the assumption that the WE model holds.

Figure 2: Comparison of the Pareto fronts of the WE model and the NC model
(red/green) and their facility location solutions in uncovered demand (red/blue)
on the region of Mbayene with 11 nodes

6.2 Parameter Settings

Parameters used for the model are adapted to the assumptions about the people’s
willingness to leave their villages made in [19]. Opening cost for a DC is assumed
to be independent of the location but dependent of the capacity of the DC where
one unit of capacity has a price of 20 cost units. This price weight does not have
any impact on the model as long as price is assumed to depend linearly on capacity.
For simplicity reasons, the need for relief supply b is assumed to be 1. Just as
in the NC model, the capacity of a DC is assumed to be linearly dependent of
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the number of inhabitants of the village in which the DC is located and is set
to 3 times demand, thus, δj = 3dj holds for all DCs j which are opened. The
parameters α and p are the weights representing the people’s willingness whether
to invest their energy to visit a DC or not. Since the dummy DC, which stands
for staying at home, has a travel cost of αakz = 0, the cost for uncovered demand,
pb=p, should be adapted in such a way, that following conditions (resulting out
of the assumptions on people’s willingness to leave made in the NC model) hold:

600α + p(1− x) ≤ p even if 0 < x <
1

2

1500α + p(1− y) ≤ p if
1

2
< y ≤ 1,

where the distance is given in units of 10m and x (resp. y) is the fraction of
covered demand for a distance of 6km (resp. 15km). The first inequality yields
that if there is a DC within a distance of 6km, it will be visited even if demand
is covered for less than 50%. The second inequality yields that a DC within a
distance of 15km will be visited, if more than 50% of the demand is covered. Out
of those two inequalities, one gets

p

α
≥ max{600

x
,
1500

y
}.

p
α
≥ 2400 results by assuming that the people are indifferent between x=1

4
and

6km.
Setting α=0.58 and p=1400, one gets that a person would traverse a distance of
6km if this person can expect that at least 25% of his demand is covered. In
order to undertake a distance of 15km, at least 58% of the demand needs to be
covered. The willingness to walk 20km is only present if the person can expect that
his demand is covered to at least 83%. From distances of 21.14km and upwards,
nobody will leave. If a person can only expect 10% of his demand to be covered,
he or she wouldn’t accept a distance higher than 2.41km.
As shown in Fig.2, the model using Wardrop Equilibria provides more efficient, but
not apparently better solutions than the NC model for uncovered demand if the
cost is low and thus, the number of opened DCs is rather small. This is due to the
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fact that capacities are limited, which means, in the WE model almost all people
in surroundings of a 6km-radius will leave their homes, even if the ratio of covered
demand is very small. Everbody will leave his home in the NC model within this
radius. Within surroundings between 6 and 15km, a rather small number will leave
their homes in the WE model. This compensates for the uncovered demand in the
NC model, where 50% will go within this radius and the supply has to be split
over more persons in the case where there is too few supply. Solutions with unused
capacity are not optimal for the lower cost section of the NC model (except for
the solution with a cost of 8760, where 9.7% of the total capacity remains unused,
which is slightly above the WE solution). When some supply is still left, even
if there are few DCs but only 50% leave their homes in the NC model, the WE
model covers the remaining supply and gives therefore far more optimal solutions.
Comparing the optimal facility locations for the solutions with lower cost under
the assumption that the WE model holds yields the same amount of uncovered
demand (further explanations in section 6.3). At a cost of 39 060, 103 units of
capacity remain unused for the NC model and the Pareto curve is not linear any
more. Between 40 000 and 80 000, the gap in uncovered demand between the
models is high. At a cost of around 45 000, the WE model has an optimal solution
for which the uncovered demand is around 500 units (which corresponds to 500
persons) below the optimal solution from the NC model (evaluated with the WE
model), which has even even higher cost. Opening all or almost all DCs leads to
solutions which are only optimal for the WE model. Since everyone is provided
with supply at a DC in his own town or at one in the near surroundings, there
remains a lot of unused capacity in the NC model.

6.2.1 Comparison of traveling Cost

In Fig.3, 3 different weights on distance, corresponding to traveling cost, are com-
pared. Thick blue crosses represent the chosen parameter α=0.58. Green crosses
stand for α=0.1. This leads to optimal solutions of equal quality for a budget lower
than 45 000. Between a cost of 50 000 and 70 000 α=0.1 gives better solutions in
terms of uncovered demand since there is a lower weight on the factor distance and
thus, people are willing to traverse higher distances even if the fraction of supply
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they will get is very small. In this case, there is a willingness to pass a distance
of 20km even if one can only get 14% of the needed supply. Though the optimal
solutions are significantly better, putting such a low weight on the factor distance
is not realistic at all. Red crosses represent α=2. This leads to very high traveling
cost and as a result, people are willing to leave their villages only if there is a DC
relatively close to them. A distance of 6km in this case would only be traversed if
demand is covered to 86%. From 7km upwards, nobody will go, even if demand
could be covered in full and thus, a lot of supply remains unused. Again, for people
in need, this is not realistic.

Figure 3: Comparison of the Price Factors for the traveling Cost, where blue
denotes α=0.58, red α=2 and green α=0.1

6.2.2 Comparison of Price Weights

In Fig.4, 3 different weights on the perceived price for uncovered demand are
compared. Thick red crosses correspond to the chosen parameter p=1400, light
blue crosses stand for p=3000. The high weight p=3000 has very similar relation
to the chosen parameter p=1400 as in Fig.3, the chosen parameter α=0.58 to the
lower traveling cost α=0.1 by keeping the price weight unchanged. This is due
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to the fact that putting higher weights on uncovered demand leads to the same
effect as putting lower weights to traveling cost, people are willing to traverse
higher distances even if the supply they can expect is not high. In comparison,
at weights of p=1400 and α=0.1, people would pass 6km if their received supply
will be more than 4% of their actual need. With the parameter combination
p=3000 and α=0.58, they would pass for a supply higher than 11.4% of their
need. For the chosen price weights it would need 25% for a willingness to traverse
6km. This approach is leading to good solutions but it’s also not very realistic.
Pink crosses represent p=100. This means that the cost for the dummy DC are
very low (ckz=100) and thus, the willingness to leave one’s village is almost non-
existent. The highest distance people would traverse is 1.72km. They would pass
this distance only if their demand is covered to more than 99.6%. Therefore, people
would go only to a DC which is opened in their own village, which is leading to a
linear Pareto front, the more capacity is provided, the higher the cost is and the
higher the uncovered demand is. If people have the privilege to have a DC in their
village, their getting their needed supply and if not, they’re not leaving. Since the
capacity of the DCs is set to 3 times the number of inhabitants at a village, a lot of
supply capacity remains unused. Again, this approach is not making much sense
for people in need.
traveling cost and Price weights could also be analyzed jointly by considering the
ratio p

α
, as both parameters depend on each other.

6.2.3 Comparison of DC Capacities

In Fig.5, one can find a comparison of 4 possibilities of DC capacities, where all
of them are dependent of the number of inhabitants of a DC. Dark blue crosses
represent the chosen model with capacities of 3 times the demand of a DC, red
crosses stand for capacities of 4 times the demand and yellow ones for 6 times the
demand. The relation is obvious: the more the capacity is raised, the lower the
uncovered demand will be, leading to a higher willingness of people to leave their
own villages in order to get supply. In this way, if the capacity is set too high, a lot
of it remains unused which is not optimal for the relief organizations with limited
budgets. For a factor of 4 or 6, one gets optimal solutions with totally covered
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Figure 4: Comparison of the price weights for uncovered demand with the price
factor p=100 in pink, p=1400 in red, and p=3000 in light blue

demand and very high cost compared to optimal solutions for full coverage with a
factor 3, where an expenditure of almost 110 000 can be saved in comparison to the
factor 6 and an expenditure of 60 000 for the factor 4. Besides, it makes more sense
to set up more DCs with lower capacities than few larger ones since more people
can be reached and splitting up relief supplies is more useful than providing some
people full supply and some nothing. An additional issue, though it is not captured
by the model, is that DCs shouldn’t be too large since they’re endangered to be
plundered over night. As for reasonable budgets, all 3 possibilities lead to almost
the same Pareto front, setting up DCs with capacities of 3 times the demand is
optimal within this set of choices. Now, the question arises if the capacity can
be set to less than 3 times the demand. Light blue crosses denote capacities of 2
times the demand within a village. Fig.5 shows that this leads to worse solutions
for a cost between 40 000-60 000, yielding uncovered demand which is higher with
a difference of almost 200 units in the worst case (which corresponds to the full
demand of 200 people). Hence, capacities of 3 times the demand are optimal
within the given data set.
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Figure 5: Comparison of DC Capacities, all linearly dependent of the number
of village inhabitants with the factors: 2=light blue, 3= dark blue, 4=red and
6=yellow

6.2.4 Comparison of Relief Supply Needs

In Fig.6, 3 different amounts of relief need are tested. Besides the chosen amount
of b=1 per person, which is denoted by blue crosses, the double amount (b=2,
marked by green crosses) and half of the amount (b=1

2
, marked by red crosses)

were trialled. If people would need twice as much as in the chosen model (b=2), the
willingness to leave would rise. Considering the same investment cost as for b=1,
a higher amount of demand would remain uncovered, leading to a Pareto curve
which is moved in parallel to the actual curve with a difference in covered demand
of almost 2400 units at the same cost (corresponding to the uncovered need of
1200 persons if b=2). Lowering the need to b=1

2
leads to a decrease in uncovered

demand for 1200 units for low cost, which corresponds to a linear relation, but for
an average budget (which means an average number of DC set-ups), the relation
is not linear any more since the difference in uncovered demand between b=1 and
b=1

2
gets smaller. This is due to the fact that there is supply capacity which

remains unused by setting up an average number of DCs. From a budget of 40
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Figure 6: Comparison of Different Needs of Relief Supplies with b=1 in blue, b=2
in green and b=0.5 in red

000 and upwards, this difference in uncovered demand is not significant any more.

6.3 Comparison of Facility Locations

As the optimization needs to be done in terms of facility locations, one has to
compare the optimal locations of both models. In order to get a fair comparison
in uncovered demand, both location solutions need to be compared with one model.
Since the WE model allows more flexibility in terms of distribution, the comparison
is assumed under the fact that the WE model holds. Thus, the optimal facility
location solutions from the NC model are evaluated based on the WE model. In
order to get an approximation about the improvement of facility locations with the
WE model, the solutions for 20 fixed budget constraints are compared. The lowest
uncovered demand is evaluated for both models for a solution the cost of which is
smaller or equal to the given budget constraint. Next, the optimal location from
the NC model is evaluated based on the WE model. Afterwards, the best solution
for uncovered demand is compared with the uncovered demand in the optimal
location solution which was chosen by the WE model considering the same budget
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constraint. In many cases the models provide the same solutions but in some
cases, the WE model yields solutions with significantly lower uncovered demand,
as one can see in Fig.7. The green lines stand for the NC model and the red
ones for the WE model’s solutions. The first 10 budget constraints were chosen
equidistant with budget steps of 10 000 in a budget interval of 10 000-100 000. 10
more budget constraints were added between 20 000 and 80 000 as the optimal
solutions differ apparently in this interval (see Fig.2). The budget constraints get
even more crowded within the subinterval 30 000-60 000, as the optimal solutions
differ most within this interval. For a budget constraint of 52 000, the uncovered
demand is almost 390 units less than for the solution chosen with the NC model.
This is an improvement of more than 71.68% relative to the NC model. Between
70 000- 80 000, the improvement is almost 100% relative to the NC solutions. The
approximation yields an average improvement of 37.78% for each location with
regard to the NC model. This are on average more than 122 units of uncovered
demand for each location which corresponds to 122 persons which are absolutely
unprovided.

Figure 7: Comparison of the chosen facility locations of the WE and NC model
for different budget constraints
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6.4 Convergence Analysis

Since the Frank-Wolfe Algorithm is converging relatively slowly in the near sur-
roundings of the optimum [18], a termination criterion has to be determined which
provides sufficiently good solutions for a moderate time level. In order to get
an impression about the performance of the maximum-iteration constraints of
50,75,100,150 and 200 iterations, the relative gap between the best lower bound
so far, which is the so far highest optimal linear approximation, and the lowest
objective value which was found, which is the best upper bound so far, is de-
termined. Furthermore, the relative gap between the current lower bound and
the current upper bound is evaluated, and also the relative maximal change of the
flow components between the last two steps, since at equilibrium, the flow is static.
Conversely, the maximal change within all flow components was tested as a stop-
ping criterion by setting it smaller than ε=1 and ε=0.1, and evaluating the number
of iterations needed. For both of them, a comparison to the 100-iterations termi-
nation constraint model in terms of uncovered demand for the chosen locations
was done. The CPU time was evaluated for all models and the tested instance was
again Mbayene with 11 villages.

Table 1: Component with maximal change within last 2 steps of fixed # of itera-
tions, considering the average over all solutions, the maximum, the time and the
change rate relative to total demand

iterations avg MAX max MAX CPU time rate avg rate max
50 2.610 10.605 11,80min 0.44% 0.11%
75 1.847 8.850 17.73min 0.37% 0.08%
100 1.340 6.750 28.80min 0.28% 0.06%
150 0.947 4.098 37.60min 0.17% 0.04%
200 0.731 2.881 56.06min 0.12% 0.03%

After 50 iterations, the maximal difference between two components of the flow
matrix in the last two iteration steps is on average 2.6 units of flow for all possible
solutions and 10.6 for the worst solution. The calculation of the Equilibrium for
one solution takes only some seconds, the calculation of the Pareto front for all
2047 possibilities takes 11.8min. For 75 iterations, the overall program runs in
17.7min and the maximal difference in flow between two iterations amounts to
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Table 2: Improvement of the average maximum component failure of last 2 steps
of all solutions

iterations steps Improvement
50-100 48.65%
100-150 29.30%
150-200 22.89%

Table 3: Average relative gap between UBD and LBD relative to LBD

iterations current step LBD/UBD best LBD/UBD so far
50 0.6717439% 0.5007494 %
75 0.3398941% 0.2305570%
100 0.2078946% 0.1325446%
150 0.1111295% 0.0613630%
200 0.0677436% 0.0356486%

1.85 on average and 8.85 in the maximum. After 100 iterations, the maximal dif-
ference between two components for the last two steps averages to 1.3 and is 8.85
in maximum, while the CPU time rises to 28.8min. The improvement of the max-
imal difference from 50 to 100 iterations amounts to 48.65%. The difference for
the last two steps after 150 iterations is 0.95 on average and maximal 4.1, which
is an improvement of 29.3% to the maximal difference after 100 iterations at a
CPU time of 37.6min. Hence, the difference between the flow components didn’t
change very much within the last 50 iterations. For 200 iterations, the program
takes already 56.1min. The maximal maximum difference is 2.9 and the average
maximum difference is 0.7 for all possibilities, which results in an improvement
of 22.9% between 150 and 200 iterations. It’s likely that the solution is already
not far away from the equilibrium but considerably more iterations (and far more
time) would be needed to get static flows. But there is still the possibility that
for some iterations, the flows are barely changing and get more dynamic again
later. This is also due to the fact that the stepsize is lowering the component
change more and more. Therefore, more analytical convergence tests were done:
The relative gap between the best found upper and lower bound so far as well as
the relative gap between the current lower bound and the current upper bound
were evaluated for t=50,75,100,150 and 200. Both of them should converge but
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Table 4: Minimal # of iterations needed for a fixed maximal component change
between 2 iterations

max. diff. avg# iterations max# iterations min# iterations CPU time
ε=1 104 346 9 25.7min
ε=0.1 992 3429 19 8.15h

the second one not necessarily monotonically. As one can see in Table 3, the rela-
tive gap for the current bounds is 0.67% after 50 iterations, falling by 0.33% after
the next 25 iterations and by another 0.13% from 75 till 100 iterations, which is
a decrease of 0.46% from 50 to 100. In the next 50 iterations from 100 to 150,
the decrease is getting much weaker, falling by only 0.10%, and there is almost
no observable change (0.04%) for the next 50 iterations from 150 to 200. Setting
this gap lower than 0.2% as a termination criterion would be another possibility
to get similar results as the ones in this work, but this could lead to very high
CPU times for other instances, especially for larger ones, which is not realizable
in practice. The same holds for the relative gap between the best upper bound so
far and the best lower bound so far by setting it lower than the threshold 0.1%,
but this gap provides monotonically convergence towards zero and is therefore
more useful when the question of the number of iterations needed for significant
changes arises. In Table 3, one can see that within the first 25 steps from 50 to
75, the gap is more than halved, it falls from 0.50% to 0.23% and after the next
25 iterations, again almost halved, to 0.13%. This means, from 50 to 100 steps,
the gap has decreased by 0.37%. Within the next 50 steps from 100 to 150, there
is a decrease by only 0.07%, and for 150 to 200 steps, no significant improvement
can be achieved (0.03%). As all results show that the highest fluctuations happen
within the first 100 steps (and the CPU time is acceptable), this number is used as
a termination criterion for all results of the instance Mbayene, the other instances
were also tested with t=200 (section 6.5).
The question of the impact of this chosen criterion on the Pareto optimal solutions
for facility locations arises. Therefore, the 100 steps constraint was tested against
the termination criterion of running the program until the maximum change be-
tween two components is smaller than ε = 1 and ε = 0.1, respectively. For ε = 1,
an average number of 104 iterations is needed but there is a large difference be-
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Table 5: Comparison of Pareto optimal locations in uncovered demand for criteria
t=100 and ε=1

solution index improvement f. t=100 abs. difference iterations for ε=1
280 0.12% 0.45871 208
265 -0.01% 0.03952 229
776 -0.03% 0.03952 229
281 -0.03% 0.04184 229
1728 0.02% 0.0202 339
1544 -5.03% 3.492548 10
1234 -12.06% 6.123063 256
1732 -17.65% 4.492567 288
1800 18.20% 1.5615563 10
1305 98.72% 5.9480507 10
1535 98.49% 2.7387757 11
2047 98.49% 2.510544 11
266 -0.01% 0.03952 229
193 -34.91% 1.8028273 344
1085 97.96% 3.1800855 13
1760 -65.63% 5.5192721 10
1307 98.72% 5.0983292 10
1437 98.86% 4.4674715 10
1439 98.72% 3.9653671 10
1503 98.49% 3.0126533 11
AVG. 0.33% 0.026649937

tween the different solutions. The maximum number of iterations needed is 346
but there are also solutions which need only 9 iterations to meet this condition.
The CPU time for this criterion is 25.7min, hence, almost the same as for the fixed
iteration number criterion t=100. ε = 0.1 requires 991.6 iterations on average with
a maximum of 3429 iterations but there are also solutions with only 19 iterations
needed. The CPU time gets very long, the program needs more than 8 hours for
this rather small instance.
The comparison of both models against t=100 is given in Table 5 and Table 6. The
coloured lines denote the solutions which appear as Pareto optimal solutions in only
one of the models. The darker ones were only chosen by the epsilon-constraints
while the brighter ones were only chosen by the 100-iterations constraint. The
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Table 6: Comparison of Pareto optimal locations in uncovered demand for criteria
t=100 and ε=0.1

solution index improvement f. t=100 abs. difference iterations f. ε=0.1
280 0.15% 0.59793 2050
265 -0.01% 0.04892 2291
776 -0.03% 0.04892 2291
281 -0.04% 0.05181 2291
1728 0.02% 0.02212 2093
1544 -1.11% 0.800683 22
1234 -13.03% 6.561148 1426
1732 -19.87% 4.963439 2957
1800 4.85% 0.357993 22
1305 94.30% 1.2783542 23
1535 94.18% 0.6809202 23
2047 94.18% 0.6241769 23
266 -0.01% 0.04892 2291
1085 91.56% 0.7174066 28
1307 94.18% 1.0700175 23
1437 94.82% 0.9426988 23
1439 94.18% 0.8322358 23
1503 94.18% 0.7490122 23
AVG. 0.35% 0.00996420

fixed iteration criterion gives on average solutions for which the uncovered de-
mand is 0.33% less than by using ε = 1. The performance of t=100 is far better
for solutions which stop after 10 or 11 iterations with the other constraint. Here,
the already mentioned problem arises that after the algorithm already got almost
stationary (the stepsize is also an affecting factor), larger changes happen later
which are not captured by the constraint. Those solutions which get even worse in
terms of uncovered demand by rising the number of iterations, emerge when people
decide to go to the dummy DC rather than to another one in the equilibrium since
it’s the optimal solution for them but not for the system.
Although ε = 0.1 is far more precise than ε = 1, it also leads to solutions providing
on average 0.35% more uncovered demand relative to t=100. 2 out of the 3 Pareto
optimal locations which are only captured by the ε-criteria disappear by tightening
the criterion from 1 to 0.1. The absolute difference for both comparisons to t=100
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Figure 8: Comparison of the optimal solutions for the termination criteria t=100
in red and t=200 in green

Figure 9: Comparison of the optimal solutions for termination criteria t=100 in
red, ε = 0.1 in blue and ε = 1 in green
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is on average smaller than 0.03 and for ε = 0.1, in maximum less than 7. Since
this termination constraint is, due to the high CPU time, not realizable and since
it’s not providing a large difference in the Pareto optimal solutions, using a fixed
iteration size makes most sense.

6.5 Further Results

The program has an overall computation time of order O(2nn2), which leads to
a growth in time of about 2 + 4

n
+ 2

n2 when the number of villages rises from n
to n+1. From the empirical results one gets the same solution by comparing the
growth in CPU times.
The program is solved with Scilab 5.4.1. and run on a 1.66 GHz GENUINE
Intel(R) CPU. The model was tested for instances of 8-16 nodes. Bigger instances
would exceed a limit of 2 days on this processor, a faster one may manage also
an instance with 17 nodes within this limit. All instances with 8-15 nodes were
tested for a number of t=100 and t=200 iterations to see if there is a significant
difference within the Pareto optimal locations. Some instances may require more
steps to get so close to the equilibrium that the flow distribution doesn’t make any
significant steps that have an impact on the optimality of the facility locations.
As the required CPU time is doubled by changing from 100 iteration steps to 200,
testing for more than t=200 is inefficient in time.
Table 7 provides the solutions for both termination conditions, including also the
relative gap for the solutions. It is obvious that the relative gap is not shrinking
significantly between t=100 and t=200 for any of those instances. The relative gap
provides only information about the convergence towards the equilibrium but it’s
not a reliable indicator of the changes within the Pareto set. The solution with the
highest difference in the relative gap is the instance Thienaba with 9 nodes, with
a change of 0.37% between t=100 and t=200. Nonetheless, the location positions
for this instance differ for only 15 out of 148 solutions in t=200. For the instance
Sandira with 14 nodes, the relative gap changes for only 0.13%, while out of those
623 solutions for t=100 only 578 remain the same for t=200. For Koul with 15
villages, the relative gap changes by 0.18%, and out of those 1175 Pareto optimal
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Table 7: Problem size, Pareto front size, CPU effort and convergence level for
Senegal instances

Region #nodes iterations front size CPU time average gap
Ndiakhene 8 100 58 2.7min 0.2843145%

200 58 5.4min 0.0896376%
Cherif Lo 9 100 129 7.6min 0.2664942%

200 131 9.0min 0.0808580%
Thienaba 9 100 145 9.4min 0.5729961%

200 148 19.8min 0.1991609%
Notto Gouye Diama 10 100 169 10.1min 0.3051723%

200 168 19.8min 0.0803099%
Ndiene Shirak 10 100 87 16.8min 0.2588612%

200 87 25.7min 0.0701270%
Mbayene 11 100 79 28.8min 0.1325446%

200 81 56.1min 0.0356486%
Malicounda Wolof 11 100 141 32.3min 0.1138617%

200 141 58.6min 0.0143713%
Pekesse 11 100 328 26.7min 0.2838319%

200 329 62.4min 0.0949108%
Thiadiaye 12 100 654 54.8min 0.3180985%

200 653 1.74h 0.1043530%
Thilmanka 12 100 355 1.23h 0.2017322%

200 348 4.70h 0.0680869%
Tiba Ndiaye 13 100 591 2.99h 0.1295353%

200 586 5.27h 0.0882761%
Mont Roland 14 100 1215 5.82h 0.4360950%

200 1192 14.52h 0.1293622%
Sandira 14 100 623 3.60h 0.1902916%

200 633 10.96h 0.0542638%
Koul 15 100 1175 11.37h 0.2772559%

200 1136 23.88h 0.0930075%
Meouane 16 100 1761 26.30h 0.2269415 %

200 >2d
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Figure 10: Comparison of the Pareto fronts for the instance Sandira with 14
villages, the WE model with t=100 in red, t=200 in light pink, the NC front
in green + evaluation of the NC-optimal locations with the WE model in blue

solutions, there are only 794 which are the same for t=200. The Pareto front
has the same appearance for t=100 and t=200 (see Sandira in Fig.10 and Koul
in Fig.11), but several solutions are replaced by others. Thus, a larger number
of villages requires more iterations in order to get better results. The instance
Meouane with 16 nodes was not tested for 200 iterations because more than 2
days would be needed using the same processor, pushing the time limit up too
far. Nonetheless, even results for t=100, which differ a lot from t=200, as in the
instance of Koul, are still far better than the solutions that one gets with the
Nearest center model [19]. This model provides only 202 Pareto optimal solutions.
Out of these 202, only 128 are the same for t=100, and 123 for t=200. A scenario
for the instance of Koul using 100 iterations, showing the gain in uncovered demand
when using the NC model instead of the WE model, is given in the next chapter.
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Figure 11: Comparison of the Pareto fronts for the instance Koul with 15 villages
with t=100 in red, t=200 in light pink, the NC front in green + evaluation of the
the NC-optimal locations with the WE model in blue

6.6 Practical Application

It’s up to the humanitarian organizations to decide which selection of locations is
actually chosen. The model can be used as a Decision Support System helping
the Decision Maker to exclude suboptimal solutions. Calculating the Pareto front
is the most challenging part within this process. The overall planning shouldn’t
require much more than one day. As soon as the Pareto front is evaluated, all
other decisions can be done very fast. Adding further constraints, such as budget
constraints or constraints depending on the region, requires only few seconds, since
the evaluation of the Wardrop Equilibrium for one particular solution requires also
only few seconds. Also solutions providing too much uncovered demand can be
excluded. The final decision is always scenario-dependent and should be done by
people and not by the Decision Support System (cf.[19]).
In order to present such a simulated scenario, a closer look on the instance of Koul
(consisting of 15 villages) focusing on those solutions where the uncovered demand
between the WE and NC model differs most, is instructive (see Fig.11).
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Figure 12: Flow distribution of an optimal solution of the WE model with a cost
of 99660 and an uncovered demand of 503 considering a budget limit of 100 000

Figure 13: Flow distribution for the solution above with an uncovered demand of
2705, evaluated with the NC model
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Figure 14: Optimal solution of the NC model for the same budget limit

Figure 15:
Optimal solution of the NC model for the same budget limit, with the same budget
and an uncovered demand of 1369, evaluated with WE model
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It is assumed that the humanitarian organization has a budget limit of 100 000.
The Pareto front of the WE model provides a solution with a cost of c1 =99660
and uncovered demand of the amount c2=503 with 4 opened DCs. The precise
distribution can be seen in Fig.12. Evaluating this DC set-up with the NC model
(by assuming that the NC model holds) leads to a rise of uncovered demand to
2705, which is 5.4 times the uncovered demand in the WE model (see Fig.13). In
the largest DC in Khandam, a capacity of 2202 remains unused. This solution is
not efficient any more if one assumes that the NC model holds.
Assuming now that the Decision Support System uses the other model to find
the optimal solution under the same budget constraint, one gets a solution with
6 opened DCs (see Fig.14). This solution has 1522.5 units of uncovered demand.
In order to compare this solution with the previously chosen one with 4 DCs,
which was evaluated under the assumption that the WE model holds, one has to
evaluate also this one with the WE model. As it can be seen in Fig.15, nobody
leaves Mbeuleukhe in this solution, and furthermore, 2

3
of the capacity in Risso

remains unused. The uncovered demand amounts to 1369 in total. Compared to
the previously chosen solution with c2=503, this yields a rise of more than 63% in
uncovered demand.

7 Conclusions and Future Work

A deterministic bi-objective model for disaster relief facility location planning has
been introduced as well as a solution technique consisting of 2 levels, the con-
struction of a solution and the calculation of its quality under the assumption
that people will adapt their behaviour such that a Wardrop Equilibrium results.
For the computation of the Wardrop Equilibrium, the Frank-Wolfe algorithm is
used. Complete enumeration is used for determining Pareto optimal solutions
on the upper level. This is only possible for small communities with at most
16-17 villages. For larger instances, an approximation to the Pareto front could
be found by a heuristic, such as the Non-Sorting Genetic Algorithm 2 (NSGA2)
for multi-objective optimization (cf.[7]). In such a metaheuristic framework, one
might increase the number of iterations for the Frank-Wolfe Algorithm to get closer
to the equilibrium, as the change in the Pareto set was quite high for all larger
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instances used in this work. Increasing the iteration number to twice or more as
much as used in this work is not overshooting since the NSGA2 is running in poly-
nomial time with a computational complexity of O(2n2). Future research should
be directed towards solving instances with a larger number of villages using this
approach.
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8 Appendix
1. Wardrop Equilibria code for the instance Mbayene

t imer ( ) ; // s t a r t count ing time
demand=[363
281
108
154
199
235
200
369
108
146
2 2 3 ] ; //demands with in v i l l a g e s
d i s t ance =[0 3262 2194 3261 2603 2971 3995 2637 2921 2580 2993

3262 0 2324 3895 3986 3618 733 2767 4281 1396 269
2194 2324 0 1571 1662 1294 3057 443 1957 1642 2055
3261 3895 1571 0 657 290 4628 1129 952 3213 3626
2603 3986 1662 657 0 368 4718 1219 318 3304 3717
2971 3618 1294 290 368 0 4351 851 663 2936 3349
3995 733 3057 4628 4718 4351 0 3500 5013 2129 1002
2637 2767 443 1129 1219 851 3500 0 1514 2085 2498
2921 4281 1957 952 318 663 5013 1514 0 3599 4012
2580 1396 1642 3213 3304 2936 2129 2085 3599 0 1127
2993 269 2055 3626 3717 3349 1002 2498 4012 1127 0 ] ;

n=length (demand ) ; //number o f v i l l a g e s
alpha =0.58; // mu l t i p l i c a t i o n f a c t o r o f c o s t s per d i s t ance
p=1400; // p r i c e o f uncovered demand
b=1; //need per person
eta =20; // f i x c o s t f o r the opening o f a DC per 1 uni t o f capac i ty
u=ones (2 ,1 )∗1000000 ; // vector o f Pareto optimal s o l u t i o n s
u=[u ; 0 ] ; //added index row to i d e n t i f y Pareto optimal l o c a t i o n s
cap=ze ro s (n , 1 ) ; // set−up o f capac i ty vector
f o r k=1:n // c a p a c i t i e s o f p o s s i b l e DCs in a l l v i l l a g e s
cap (k)=3∗demand(k ) ;
end
open=ze ro s (2^n−1,n ) ; // i n i t i a l i z a t i o n o f i nd i c a t o r vec tor o f a l l o f DC set−ups per s o l u t i on
open (1 , n)=1;
w=n ;
f o r i =1:2^n−2 // set−up o f binary vector which i s 1 i f there i s a DC in the v i l l a g e
i f open ( i ,w: n)==ones (n−w) then
open ( i +1,w−1)=1;
open ( i +1,w: n)=ze ro s (n−w) ;
w=w−1;
e l s e
open ( i +1,w: n)=open ( i ,w: n ) ;
f o r v=n:−1:w+1
i f ( open ( i , v)==0)then
open ( i +1,v)=1;
open ( i +1,v+1:n)=ze ro s (n−v−1);
break
end
end
end
end
GAP=zero s (2^n−1 ,1); // i n i t i a l i z a t i o n o f r e l a t i v e gap f o r a l l s o l u t i o n s
f o r i =1:2^n−1
m=nnz ( open ( i , : ) ) ; //amount o f opened DCs
z=ze ro s (n , n ) ; // i n i t i a l i z a t i o n o f i nd i c a t o r matrix o f DC set−up p o s s i b i l i t i e s
f o r k=1:n // i nd i c a t o r matrix where d iagona l value=1, i f DC i s opened , e l s e =0
i f ( open ( i , k)>0) then
z (k , k )=1;
end
end
distanceDC=z∗ d i s t ance ; // l e av e s only the e n t r i e s o f d i s t anc e s to opened DCs , o the r s=0
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de l t a=z∗cap ; // c a p a c i t i e s f o r DCs which are open are >0, a l l o the r s =0
t e s t=ones (n , 1 ) ; // t e s t i n g vector
f o r k=n:−1:1
i f ( distanceDC (k , : ) ∗ t e s t==0) // t e s t i ng , i f the column of d i s t anc e s i s one l ead ing to a DC
distanceDC (k , : ) = [ ] ; // i f the column conta ins only zero−en t r i e s , they are erased
end
end
distanceDC=[distanceDC ; ze ro s ( 1 : n ) ] ; // expanding d i s t ance matrix with dummy DC with d i s t ance 0
f o r k=n:−1:1
i f ( d e l t a (k)==0) // i f v i l l a g e i s not an opened DC . . .
d e l t a (k )= [ ] ; / / . . . the entry o f the capac i ty vector i s e rased
end
end
de l t a=delta ’ ;
f=ze ro s (m+1,n ) ; // set−up o f a FLOW−matrix
g=ze ro s (m+1,n ) ; // set−up o f the matrix o f search d i r e c t i o n s
f low=ze ro s (m+1 ,1) ; // set−up o f incoming f l ows in to each DC
xi =1; // i n i t i a l i z a t i o n o f increment
f o r k=1:n
corne rpo in t=ze ro s (m+1,m+1); // setup o f a m∗m simplex f o r each v i l l a g e
f o r j =1:m+1
corne rpo in t ( j , j )=demand(k ) ; // s implex i s an extended with the length o f the demand va lues
end
f o r j =1:m+1
f ( j , k )=(1/(m+1))∗sum( corne rpo in t ( : , j ) ) ;
// f o r each k , the s t a r t i n g f low value i s chosen to be the median point with in each simplex k

end
end
f o r j =1:m+1 // i n i t i a l i z a t i o n o f t o t a l f l ows with in each DC
flow ( j )=sum( f ( j , : ) ) ;
end
f1=ze ro s (m+1,n ) ;
LBD=−1000000; // i n i t i a l i z a t i o n o f lower bound
UBD=10000000; // i n i t i a l i z a t i o n o f upper bound
f o r t =1:100 // t=100 or t=200 , number o f i t e r a t i o n s
f1=f ; // d e f i n i n g the prev ious f low
f low1=f low ; // d e f i n i n g the prev ious incoming f low in to each open DC
xi=2∗x i /( x i +2); // determinat ion o f increment per i t e r a t i o n
uncovered=ze ro s (m+1 ,1); // set−up o f the vector o f uncovered demand
uncovered (m+1,1)=b ; //demand per person i s complete ly uncovered at dummy DC
fo r j =1:m
i f ( ( b∗ f low ( j ,1)− de l t a (1 , j )) >0);
// i f demand i s covered with in a DC, the entry o f uncovered remains zero
uncovered ( j ,1)=b−de l t a (1 , j )/ f low ( j , 1 ) ;
// f o r each DC, the amount o f uncovered demand with resp . to the prev ious f l ows i s cons ide red
end
end
f o r k=1:n
// determinat ion o f search d i r e c t i o n ( vector to co rne rpo in t ) with optimal value with in each simplex k
minval =100000000; // s t a r t i n g value f o r search o f the optimal descent ( very l a r g e number )
co rne rpo in t=ze ro s (m+1,m+1); // value o f prev ious co rne rpo in t s i s ove rwr i t t en with ze ro s
f o r j =1:m+1
corne rpo in t ( j , j )=demand(k ) ; // f o r each simplex k , the co rne rpo in t have the value o f demand k
end
f o r j =1:m+1
descent=alpha∗distanceDC ( : , k ) ’∗ co rne rpo in t ( : , j )
+p∗uncovered ( : , 1 ) ’∗ co rne rpo in t ( : , j ) ; // descent=grad i ent ∗ search d i r e c t i o n f o r each corne rpo in t
i f ( descent<minval )
// t e s t i ng , i f co rne rpo in t i s b e t t e r than prev ious one ( the f i r s t i s always be t t e r than 100000000)
minval=descent ; // i f the value f o r descent i s b e t t e r than minval , i t i s s e t to the new minimal value
g ( : , k)=corne rpo in t ( : , j ) ; // the co rne rpo in t with the minimal value becomes the new search d i r e c t i o n
end
end
f ( : , k)=(1−x i )∗ f ( : , k)+x i ∗g ( : , k ) ;
// f l ows are determined as a l i n e a r combination o f the prev ious f low and the search d i r e c t i o n
end
f o r j =1:m+1 // f low va lues within each DC are updated
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f low ( j )=sum( f ( j , : ) ) ;
end
LBD1=0;
f o r k=1:n
f o r j =1:m+1
LBD1=LBD1+alpha∗distanceDC ( j , k )∗ f 1 ( j , k ) ;
end
end
f o r j =1:m
i f ( ( b∗ f low1 ( j ,1)− de l t a (1 , j )) >0);
LBD1=LBD1+p∗b∗ f low1 ( j ,1)−p∗ de l t a (1 , j )
−p∗ de l t a (1 , j )∗ l og ( f low1 ( j ,1))+p∗ de l t a (1 , j )∗ l og ( de l t a (1 , j )/b ) ;
end
end
d i s tg rad =0;
f o r j =1:m
d i s tg rad=d i s tg rad+distanceDC ( j , : ) ∗ g ( j , : ) ’ ;
end
d i s tg rad2 =0;
f o r j =1:m
d i s tg rad2=di s tg rad2+distanceDC ( j , : ) ∗ f 1 ( j , : ) ’ ;
end
LBD1=LBD1+p∗b∗sum( f low1 (m+1 ,:))−( alpha∗ d i s tg rad2+p∗sum( uncovered ’∗ f 1 ) )
+(alpha∗ d i s t g rad+p∗sum( uncovered ’∗ g ) ) ; // determinat ion o f cur rent lower bound
UBD1=0;
f o r k=1:n
f o r j =1:m+1
UBD1=UBD1+alpha∗distanceDC ( j , k )∗ f ( j , k ) ;
end
end
f o r j =1:m
i f ( ( b∗ f low ( j ,1)− de l t a (1 , j )) >0);
UBD1=UBD1+p∗b∗ f low ( j ,1)−p∗ de l t a (1 , j )−p∗ de l t a (1 , j )∗ l og ( f low ( j , 1 ) )
+p∗ de l t a (1 , j )∗ l og ( de l t a (1 , j )/b ) ;
end
end
UBD1=UBD1+p∗b∗sum( f low (m+1 , : ) ) ; // determinat ion o f cur rent upper bound
i f (UBD1<UBD) // determinat ion o f the so f a r best upper bound
UBD=UBD1;
end
i f (LBD1>LBD) // determinat ion o f the so f a r best lower bound
LBD=LBD1;
end
end //end o f main loop f o r t
GAP( i )=(UBD−LBD)/LBD; // determinat ion o f the r e l a t i v e gap
c1=eta∗sum( de l t a ) ; // o v e r a l l c o s t s f o r DC set−ups
c2=0; // i n i t i a l i z a t i o n s o f uncovered demand
f o r j =1:m
i f (b∗ f low ( j )>de l t a ( j ) )
c2=c2+(b∗ f low ( j )−de l t a ( j ) ) ;
// determinat ion o f a l l people who get only a part o f t h e i r demand at a DC
end
end
c2=c2+b∗ f low (m+1);
// adding o f the uncovered demand o f people who didn ’ t l eave t h e i r homes
//=ov e r a l l uncovered demand
x=length (u ( 1 , : ) ) ; // cur rent amount o f Pareto optimal s o l u t i o n s
i f ( ( c1==u(1 ,1)& c2<=u ( 2 , 1 ) ) | ( c1<u (1 , 1 ) ) ) then
u=[ [ c1 ; c2 ; i ] , u ] ;
//put cur rent s o l u t i on on f i r s t p lace i f i t s f i r s t ob j e c t i v e i s b e t t e r and i t ’ s not dominated

e l s e i f ( c1>u (1 , x ) & c2<u(2 , x ) ) then
u=[u , [ c1 ; c2 ; i ] ] ;
//put cur rent s o l u t i on on l a s t p lace i f i t s f i r s t ob j e c t i v e i s worse than a l l but i t ’ s not dominated
e l s e
f o r l =2:x
i f ( ( c1==u(1 , l ) & c2<=u(2 , l ) ) | ( c1<u (1 , l ) & c2<u(2 , l −1))) then
u=[u ( : , 1 : l −1) , [ c1 ; c2 ; i ] , u ( : , l : x ) ] ;

47



// i f s o l u t i o n i s not dominated , put i t in the r i gh t order within the Pareto set ,
// i f better , break loop
break
end
end
end
x=length (u ( 1 , : ) ) ; // output new amount o f Pareto optimal s o l u t i o n s
f o r y=x:−1:1 // d e l e t e a l l dominated s o l u t i o n s
i f ( c1<u (1 , y)& c2<=u(2 , y ) ) then
u ( : , y )= [ ] ;
e l s e i f ( c1==u(1 , y ) & c2<u(2 , y ) ) then
u ( : , y )= [ ] ;
end
end
end //end loop f o r i DCs
cputime=timer ( ) // determine CPU time
u
plot2d (u ( 1 , : ) , u ( 2 , : ) , s t y l e =−1); // p lo t Pareto f r on t
xgr id ( i =4); //add gr id
x t i t l e ( ’ Pareto Front o f DC Setups ’ , ’ Cost ’ , ’ Uncovered Demand ’ ) ; //add l a b e l s
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2. Code of the NC model for the instance Mbayene
t imer ( ) ; // s t a r t count ing time
demand=[363
281
108
154
199
235
200
369
108
146
2 2 3 ] ; //demands with in v i l l a g e s
d i s t ance =[0 3262 2194 3261 2603 2971 3995 2637 2921 2580 2993

3262 0 2324 3895 3986 3618 733 2767 4281 1396 269
2194 2324 0 1571 1662 1294 3057 443 1957 1642 2055
3261 3895 1571 0 657 290 4628 1129 952 3213 3626
2603 3986 1662 657 0 368 4718 1219 318 3304 3717
2971 3618 1294 290 368 0 4351 851 663 2936 3349
3995 733 3057 4628 4718 4351 0 3500 5013 2129 1002
2637 2767 443 1129 1219 851 3500 0 1514 2085 2498
2921 4281 1957 952 318 663 5013 1514 0 3599 4012
2580 1396 1642 3213 3304 2936 2129 2085 3599 0 1127
2993 269 2055 3626 3717 3349 1002 2498 4012 1127 0 ] ;

n=length (demand ) ; //number o f v i l l a g e s
b=1; //need per person
eta =20; // f i x c o s t f o r the opening o f a DC per 1 uni t o f capac i ty
u=ones (2 ,1)∗100000000 ; // vector o f Pareto optimal s o l u t i o n s
u=[u ; 0 ] //added index row to i d e n t i f y Pareto optimal l o c a t i o n s
cap=ze ro s (n , 1 ) ; // set−up o f capac i ty vector
f o r k=1:n // c a p a c i t i e s o f p o s s i b l e DCs in a l l v i l l a g e s
cap (k)=3∗demand(k ) ;
end
open=ze ro s (2^n−1,n ) ; // i n i t i a l i z a t i o n o f i nd i c a t o r vector o f a l l o f DC set−ups per s o l u t i on
open (1 , n)=1;
w=n ;
f o r i =1:2^n−2 // set−up o f binary vector which i s 1 i f the re i s a DC in the v i l l a g e
i f open ( i ,w: n)==ones (n−w) then
open ( i +1,w−1)=1;
open ( i +1,w: n)=ze ro s (n−w) ;
w=w−1;
e l s e
open ( i +1,w: n)=open ( i ,w: n ) ;
f o r v=n:−1:w+1
i f ( open ( i , v)==0)then
open ( i +1,v)=1;
open ( i +1,v+1:n)=ze ro s (n−v−1);
break
end
end
end
end
f o r i =1:2^n−1
m=nnz ( open ( i , : ) ) ; //amount o f opened DCs
z=ze ro s (n , n ) ; // i n i t i a l i z a t i o n o f i nd i c a t o r matrix o f DC set−up p o s s i b i l i t i e s
f o r k=1:n // i nd i c a t o r matrix where d iagona l value=1, i f DC i s opened , e l s e =0
i f ( open ( i , k)>0) then
z (k , k )=1;
end
end
distanceDC=z∗ d i s tance ; // l e av e s only the e n t r i e s o f d i s t anc e s to opened DCs , o the r s=0
de l t a=z∗cap ; // c a p a c i t i e s f o r DC which are open are >0, a l l o the r s =0
t e s t=ones (n , 1 ) ; // t e s t i n g vector
f o r k=n:−1:1
i f ( distanceDC (k , : ) ∗ t e s t==0) // t e s t i ng , i f the column of d i s t anc e s i s one l ead ing to a DC
distanceDC (k , : ) = [ ] ; // i f the column conta ins only zero−en t r i e s , they are erased
end
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end
f o r k=n:−1:1
i f ( d e l t a (k)==0) // i f v i l l a g e i s not an opened DC . . .
d e l t a (k )= [ ] ; / / . . . the entry o f the capac i ty vector i s e rased
end
end
a=ze ro s (3 , n ) ;
//matrix with d i s t anc e s to chosen DCs in 1 s t entry . . .
/ / . . . demand o f people who are w i l l i n g to l eave in 2nd ( or a l l s tay ) and i nd i c e s o f DC in 3rd row
indexDC=0; // i n i t i a l i z a t i o n o f index showing from which v i l l a g e to go to which DC
fo r k=1:n
minval =100000000;
// i n i t i a l i z a t i o n o f ob j e c t i v e d i s tance , which has to be minimized , with very l a r g e value
f o r j =1:m
i f ( distanceDC ( j , k)<minval ) then
minval=distanceDC ( j , k ) ;
// the minval i s chosen as the sma l l e s t d i s t ance from a l l opened DCs to v i l l a g e k in each i t e r a t i o n k

indexDC=j ; // the index o f the chosen DC i s saved
end
end
i f ( minval <=600)then
a (1 , k)=minval∗demand(k , 1 ) ;

// i f the d i s t ance to the nea r e s t DC i s sma l l e r than 6km, a l l people f a c e t h i s d i s t ance
a (2 , k)=demand(k , 1 ) ; // a l l o f the people w i l l go , the demand f o r goods i s a f u l l one
a (3 , k)=indexDC ; // in the 3 rd row , the index o f the nea re s t DC i s saved
e l s e i f ( minval >600)&(minval <=1500)then
a (1 , k)=minval∗demand(k , 1 ) / 2 ; // i f the d i s t ance to the nea r e s t DC i s between 6 and 15km . . .
/ / . . . i t i s assumed that only ha l f o f the people w i l l l e ave t h e i r homes
a (2 , k)=demand(k , 1 ) / 2 ; // only ha l f o f the populat ion w i l l l e ave to v i s i t a DC, thus . . . .
/ / . . . only ha l f o f the people f a c e the capac i ty
a (3 , k)=indexDC ; // the index o f the chosen DC i s saved
e l s e
a (2 , k)=demand(k , 1 ) ;
// i f the d i s t ance i s b igge r than 15km, nobody w i l l go , thus . . . .

/ / . . . the index remains 0 , the d i s t ance too , not f u l f i l l e d demand i s saved
end
end
uncovered=ze ro s (1 ,m+1); // i n i t i a l i z a t i o n o f vec tor o f uncovered demand
demandinDC=zero s (1 ,m) ; // a l l the people coming to one DC
fo r j =1:m
f o r k=1:n
i f ( a (3 , k)==j )
demandinDC(1 , j )=demandinDC(1 , j )+a (2 , k ) ;
// a l l people coming to t h i s DC j ( with same index j in 3 rd row of a ) are added to the demand in DC j

end
end
end
f o r j =1:m
i f (b∗demandinDC(1 , j )>de l t a ( j ) ) then

uncovered (1 , j )=b∗demandinDC(1 , j )−de l t a ( j , 1 ) ;
// the uncovered demand within a DC r e s u l t s from the gap between need o f people and capac i ty
e l s e
uncovered (1 , j )=0;
// i f demand f o r goods doesn ’ t exceed the capacity , the uncovered demand i s zero

end
end
f o r k=1:n
// in the m+1 row , the uncovered demand o f people who don ’ t l eave f o r a DC i s saved (dummy DC)
i f a (3 , k)==0 then
uncovered (1 ,m+1)=uncovered (1 ,m+1)+b∗a (2 , k ) ;
// i f the d i s t ance i s >15km ( index==0), a l l people t imes t h e i r need f o r goods are added to the dummy DC
e l s e i f ( a (2 , k)==demand(k , 1 ) / 2 ) then
uncovered (1 ,m+1)=uncovered (1 ,m+1)+b∗a (2 , k ) ;
// i f only ha l f o f the people don ’ t l eave t h e i r homes . . .

/ / . . . the other h a l f t imes t h e i r need i s added to the dummy DC
end

end
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c1=eta∗sum( de l t a ) ; // o v e r a l l c o s t s f o r DC set−ups
c2=sum( uncovered ( 1 , : ) ) ; // determinat ion o f o v e r a l l uncovered demand
x=length (u ( 1 , : ) ) ; // cur rent amount o f Pareto optimal s o l u t i o n s
i f ( ( c1==u(1 ,1)& c2<=u ( 2 , 1 ) ) | ( c1<u (1 , 1 ) ) ) then
u=[ [ c1 ; c2 ; i ] , u ] ;
//put cur rent s o l u t i on on f i r s t p lace i f i t s f i r s t ob j e c t i v e i s b e t t e r and i t ’ s not dominated

e l s e i f ( c1>u (1 , x ) & c2<u(2 , x ) ) then
u=[u , [ c1 ; c2 ; i ] ] ;
//put cur rent s o l u t i on on l a s t p lace i f i t s f i r s t ob j e c t i v e i s worse than a l l but i t ’ s not dominated
e l s e
f o r l =2:x
i f ( ( c1==u(1 , l ) & c2<=u(2 , l ) ) | ( c1<u (1 , l ) & c2<u(2 , l −1))) then
u=[u ( : , 1 : l −1) , [ c1 ; c2 ; i ] , u ( : , l : x ) ] ;
// i f s o l u t i o n not dominated , put i t in the r i gh t order within the Pareto set , i f better , break loop

break
end
end
end
x=length (u ( 1 , : ) ) ; // output new amount o f Pareto optimal s o l u t i o n s
f o r y=x:−1:1 // d e l e t e a l l dominated s o l u t i on
i f ( c1<u (1 , y)& c2<=u(2 , y ) ) then
u ( : , y )= [ ] ;
e l s e i f ( c1==u(1 , y ) & c2<u(2 , y ) ) then
u ( : , y )= [ ] ;
end
end
end
cputime=timer ( ) ; // determine CPU time
plot2d (u ( 1 , : ) , u ( 2 , : ) , s t y l e =−2); // p lo t Pareto f r on t
xgr id ( i =4); //add gr id
x t i t l e ( ’ Pareto Front o f DC Setups ’ , ’ Cost ’ , ’ Uncovered Demand ’ ) ; //add l a b e l s
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