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Abstract

The thesis at hand has the goal of presenting and extending modern methods of
applied, mathematical time-frequency analysis. To this end, we investigate two
different types of flexible time-frequency representations, their properties and effi-
cient implementation. Our approach builds on the underlying concepts of frames
to construct stable and invertible systems of time-frequency atoms.

Firstly, we recall some fundamental mathematical theory that is required for
the presentation of our results. This is followed by a section that develops efficient
methods for computation and inversion of discrete Gabor transforms on arbitrary,
nonseparable lattices. We start from an elegant, unique representation of two
dimensional lattices by means of three intuitively meaningful parameters. From
this representation, we can easily determine the number of all possible lattices,
or those of a particular cardinality, for a given signal length. Furthermore, it
allows the straightforward description of any lattice as either a union of rectangular
lattices or a geometric transformation of a single rectangular lattice. This in turn
enables the use of preexisting, optimized algorithms designed for rectangularly
sampled Gabor transforms for computations on arbitrary lattices.

In the second part, we develop a theory of nonstationary Gabor transforms.
These nonstationary systems admit the variation of both the window function and
the sampling density along either the time or the frequency axis. We investigate
the structure of this type of system and their associated frame operators. Among
other results, we determine sufficient and necessary conditions for a nonstationary
Gabor system to form a frame and therefore allow for stable reconstruction from
the frame coefficients. A discrete variant of nonstationary Gabor systems can be
used for discrete signals and numerical implementation. We describe in detail
both iterative and direct approaches at efficient reconstruction as well as several
exemplary implementations of time- or frequency-adaptive systems.

The presented techniques are available as MATLAB toolbox, supplied with
the thesis, or in case of Gabor systems on arbitrary lattices, as part of the open
source time-frequency toolbox LTFAT for MATLAB/octave.
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Zusammenfassung

Die vorliegende Dissertation hat die Darlegung und Erweiterung moderner Me-
thoden zur angewandten, mathematischen Zeit-Frequenz Analyse zum Ziel. Zu
diesem Zweck betrachten wir, aufbauend auf Grundlagen der Frametheorie, zwei
unterschiedliche Ansätze für flexible Zeit-Frequenz Darstellungen, sowie deren Ei-
genschaften und effiziente Implementierung.

Zunächst widmen wir uns der Aufarbeitung der notwendigen, zugrundeliegen-
den mathematischen Theorie, gefolgt von der Entwicklung effizienter Verfahren zur
Berechnung und Invertierung von diskreten Gabortransformationen auf allgemei-
nen, nichtseparablen Gittern. Wir beginnen dabei mit einer eleganten, eindeutigen
Darstellung zweidimensionaler Gitter durch drei leicht verständliche Parameter.
Ausgehend von dieser Darstellung können wir nicht nur die Anzahl der möglichen
Gitter, oder derer mit einer bestimmten Kardinalität, für eine bestimmte Signal-
länge bestimmen, sondern auch jedes nichtseparable Gitter leicht als Vereinigung
rechteckiger Gitter oder geometrische Transformation eines Solchen beschreiben.
Dies wiederum ermöglicht die Verwendung existierender, optimierter Algorithmen
für Gabortransformationen auf Rechtecksgittern für die Berechnung auf beliebigen
Gittern.

Im zweiten Teil der Dissertationsschrift entwickeln wir eine Theorie nichtstatio-
närer Gabortransformationen. Diese nichtstationären Systeme erlauben die Verän-
derung der Fensterfunktion und Abtastdichte entlang der Zeit- oder Frequenzachse.
Wir untersuchen die Struktur solcher Systeme und der zugehörigen Frameopera-
toren. Unter Anderem betrachten wir hinreichende und notwendige Kriterien, so
dass ein nichtstationäres Gaborsystem ein Frame ist und damit stabile Rekon-
struktion aus den Framekoeffizienten erlaubt. Eine diskrete Variante des Konzepts
nichtstationärer Gaborsysteme erlaubt uns die numerische Implementierung. Wir
beschreiben sowohl iterative, als auch direkte Methoden zur effizienten Rekonstruk-
tion und einige Beispielimplementierungen zeit- bzw. frequenzadaptiver Systeme
im Detail.

Die vorgestellten Verfahren sind verfügbar als MATLAB Toolbox, welche der
Dissertation beiliegt, bzw. als Teil der frei erhältlichen LTFAT Zeit-Frequenz Tool-
box für MATLAB/octave.

xi
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Chapter 1

Introduction

1.1 Motivation

In the last decades, time-frequency transforms have become increasingly important
both in abstract harmonic analysis and digital signal processing. In the form of,
e.g. audio and image compression, which often employ time-frequency techniques
in some form, they have become an invisible part of our everyday life. What once
was a small area in the field of harmonic analysis, introduced by the work of D.
Gabor [78], has grown into a vast field of research, populated by theoretical and
applied mathematicians, engineers and other researchers. Our understanding of
the intrinsic properties of standard tools such as short-time Fourier (or Gabor)
transforms and Wavelet transforms has improved vastly, as compared to 20 years
ago, with a number of books, e.g. [115], [47], [84], covering the most well-established
results. Yet much remains to be investigated.

Both Gabor and Wavelet transforms possess a large amount of structure, giving
rise to a deep, yet accessible mathematical theory. Sometimes though, especially
in applications, this structure might be considered as a drawback and a less rigid
framework is desired, be it purely in terms of the employed sampling strategy or the
underlying representation itself. The purpose of this thesis is to investigate some
interesting recent approaches to overcome the rigidity, illustrate their usefulness
with some selected implementations and finally provide a comprehensive MATLAB
toolbox for experiments and applications, based on the presented results.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Notation

N, N0 the natural numbers without, respectively with, 0

ZL shorthand for Z/LZ

f(·) Continuous function

f [·] Discrete function / vector

Ff = f̂ Fourier transform of f (continuous/discrete)

F−1f = qf Inverse Fourier transform of f (continuous/discrete)

Φ, ϕsub General system of functions / frame and its elements

Ψ, ψsub A dual frame of Φ

Φ̃, ϕ̃sub Canonical dual frame of Φ

Φ̊, ϕ̊sub Canonical tight frame associated to Φ

CΦ = C Analysis operator associated with Φ

DΦ = D Synthesis operator associated with Φ

SΦ = S Frame operator associated with Φ

Tsub Translation operator

Msub Modulation operator

G(g, a, b), gn,m (Regular, separable) Gabor system

G(g, a, b, s), gn,m nonseparable Gabor system

G(g,Λ), gλ Gabor system on the lattice Λ

G(g,b), gn,m (Time-side) nonstationary Gabor system
qG(g, a), gn,m (Frequency-side) nonstationary Gabor system

‖ · ‖op Operator norm

µ(M) (Lebesgue-)measure of the set M

χM characteristic function of the set M

sgn(t) sign of t ∈ R, equals 1 for t > 0, −1 for t < 0 and 0 for t = 0

mod(k, l) modulo operation with respect to l ∈ Z, applied to k ∈ Z
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1.2 Topics and Structure

The work at hand considers two somewhat separate main themes, the first being
the theory and efficient implementation of Gabor systems on arbitrary lattices,
foremost in a finite, discrete setting. The second theme concerns the theory and
implementation of adaptive time-frequency representations and will focus on non-
stationary Gabor systems in particular. These are a generalization of Gabor sys-
tems that allow for varying windows and sampling sets along time or frequency
while retaining important properties like FFT-based (Fast Fourier Transform) im-
plementation and a well-structured frame operator.

Both parts can again be divided into two sections. The first section builds
the continuous theory, where basic properties are recalled and more intricate ones
proven and discussed, while the second one provides the discrete theory accompa-
nied by implementations and/or applications.

Most of the material presented in this thesis is compiled from the following
publications or manuscripts the thesis author has authored or co-authored:

• L. Toth, M. Hampejs, N. Holighaus, and C. Wiesmeyr, “On the subgroups
of the group Zm × Zn,” Preprint, submitted, arXiv: 1211.1797

• N. Holighaus, “Structure of nonstationary Gabor frames and their dual sys-
tems,” Preprint, submitted, arXiv: 1306:5037

• P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus, and G. A. Velasco, “The-
ory, implementation and applications of nonstationary Gabor Frames,” J.
Comput. Appl. Math., vol. 236, no. 6, pp. 1481-1496, 2011

• T. Necciari, P. Balazs, N. Holighaus, and P. Søndergaard, “The ERBlet trans-
form: An auditory-based time-frequency representation with perfect recon-
struction,” Proceedings of the 38th International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2013), 2013

• G. A. Velasco, N. Holighaus, M. Dörfler, and T. Grill, “Constructing an in-
vertible constant-Q transform with nonstationary Gabor frames,” Proceed-
ings of DAFX11, Paris, 2011

• N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill, “A framework for
invertible, real-time constant-Q transforms,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, pp. 775-785, April 2013

• N. Holighaus, C. Wiesmeyr and P.L. Søndergaard, “Efficient Algorithms for
the Discrete Gabor Transform on a nonseparable lattice,” to appear in IEEE
Transactions on Signal Processing, 2013



4 CHAPTER 1. INTRODUCTION

The text is structured as follows.

1.2.1 Preliminaries

In this section, we recall important mathematical foundations frequently used in
the course of this text. Also some of the notational conventions are clarified.
Among those concepts are Banach and Hilbert spaces, in particular Lp and ℓp-
spaces, but also the Wiener space W (L∞, ℓ1,Rd). Furthermore bounded operators,
Neumann series expansions and important results from continuous and discrete
Fourier analysis are reviewed.

Frames and Gabor systems form the backbone concepts of this thesis and thus
the related theory is shortly discussed. After defining frames and Bessel sequences,
we introduce the related operators and the concept of dual and tight frames. Sub-
sequently, we define short-time Fourier transforms and Gabor systems, followed by
recalling their most striking properties. Among them are the Walnut and Janssen
representations, Ron and Shen’s duality principle and the painless case result by
Daubechies, Grossmann and Meyer. We close with brief sections on discrete Gabor
systems and general Wavelet systems.

1.2.2 Gabor systems on lattices

In this chapter, we investigate Gabor systems on arbitrary lattices. We begin
by introducing the concept of lattices and its relevance for flexibly sampled Gabor
transforms, finding that most of the properties of regularly sampled Gabor systems
are retained in some form, as long as the sampling set forms a group. We discuss
different methods to express a lattice and the corresponding Gabor system through
one or more rectangular sampling sets, thereby reducing questions about systems
on general lattices to the classical case. Our main tools here are multiwindow
Gabor systems and the theory of metaplectic operators.

In the next section, we discuss properties of the subgroups of the group ZM ×
ZN , where M and N are arbitrary positive integers. Simple formulae for the total
number of subgroups and the number of subgroups of a given order are deduced.
The cyclic subgroups and subgroups of a given exponent are also considered.

We proceed by discussing discrete, finite Gabor analysis on arbitrary group
lattices. We survey existing methods for reducing discrete, finite Gabor trans-
forms on general lattices to the product lattice case, which is well-studied. The
first is based on multiwindow Gabor schemes, while the alternative methods use
metaplectic operators to transform Gabor systems on general lattices to a prod-
uct lattice setting. An improvement of previous results on the latter method is
presented. The fact that all finite lattices can be described by a class of lower
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triangular matrices is used to construct an algorithm that shows improved perfor-
mance over previous methods in many cases. Comparisons are made with respect
to the computational complexity, and the running time of optimized implementa-
tions in the C programming language. The new algorithms have the lowest known
computational complexity for nonseparable lattices and the implementations are
freely available for download. By summarizing general background information on
the state of the art, this chapter can also be seen as a research survey, sharing
with the readers experience in the numerical work in Gabor analysis.

1.2.3 Nonstationary Gabor theory

This and the subsequent chapters form the main body of the thesis. Nonstationary
Gabor systems are a recent generalization of classical Gabor systems, allowing for
adaptive time-frequency representations. This chapter begins by introducing the
basic definitions and properties of such systems.

Signal analysis with classical Gabor frames leads to a fixed time-frequency res-
olution over the whole time-frequency plane. To overcome the limitations imposed
by this rigidity, we propose an extension of Gabor theory that leads to the con-
struction of frames with time-frequency resolution changing over time or frequency.
We describe the construction of the resulting nonstationary Gabor frames and give
the explicit formula for the canonical dual frame for a particular case, the painless
case.

Subsequently, we investigate the structural properties of dual systems for non-
stationary Gabor frames. In particular, we prove that some inverse nonstationary
Gabor frame operators admit a Walnut-like representation, i.e. the operator act-
ing on a function can be described by weighted translates of that function. This is
of particular interest, when the original frame operator is not a simple multiplica-
tion operator. In this case, which only occurs when compactly supported window
functions are used, the canonical dual frame partially inherits the structure of the
original frame, with differences that we describe in detail. Moreover, we determine
a necessary and sufficient condition for a pair of nonstationary Gabor frames to
form dual frames, valid under mild restrictions. This condition is then applied in a
simple setup, to prove the existence of dual pairs of nonstationary Gabor systems
with coarser frequency sampling than allowed by previous results. A discussion of
the results, restricted to the classical case of regular Gabor systems, precedes the
statement of the general results. Here, we also explore a connection to recent work
of Christensen, Kim and Kim on Gabor frames with compactly supported window
function.
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1.2.4 Nonstationary Gabor: Implementation

This chapter begins by introducing finite-dimensional nonstationary Gabor frames.
Since most results on the continuous case can easily be derived for this case by
slightly modifying the original proof, only the most important results are repeated.
A method for implementing the above-mentioned transforms with perfect recon-
struction is provided.

We continue to elaborate on several implementations of nonstationary Gabor
frames and their application in audio signal processing, in particular a method for
automatic adaptation to transients and an algorithm for an invertible constant-Q
transform. First, we discuss the construction of a flexible class of nonstationary
Gabor frames that can be used in a time-adaptation scheme and how to use this
construction for adaptation based on an onset sequence.

A longer section discusses the nonstationary Gabor based constant-Q transform
(CQ-NSGT) and a framework for its real-time implementation, e.g. for audio pro-
cessing tasks. Audio signal processing frequently requires time-frequency represen-
tations and in many applications, a nonlinear spacing of frequency bands is prefer-
able. This chapter introduces a framework for efficient implementation of invertible
signal transforms allowing for nonuniform frequency resolution. Nonuniformity in
frequency is achieved by applying nonstationary Gabor frames with adaptivity in
the frequency domain. The realization of a perfectly invertible constant-Q trans-
form is described in detail. To achieve real-time processing, independent of signal
length, slicewise processing of the full input signal is proposed and referred to as
sliCQ transform.

By applying frame theory and FFT-based processing, the presented approach
overcomes computational inefficiency and lack of invertibility of classical constant-
Q transform implementations. Numerical simulations evaluate the efficiency of the
proposed algorithm and the method’s applicability is illustrated by experiments
on real-life audio signals.

Finally, we present some extensions of the framework just introduced. The effi-
ciency of iterative reconstruction and analysis schemes is discussed at the example
of a so-called ERBlet transform. This transform is, like the constant-Q nonstation-
ary Gabor transform, an instance of the more general framework of nonstationary
Gabor filterbanks. The ERBlet transform is based on the auditory ERB scale,
a frequency scale adapted to human auditory perception, and thus well-suited
for analysis and audio processing using perceptual considerations. The chapter is
closed with a discussion of nonstationary Gabor frames constructed from a warp-
ing of the time- or frequency axis. We introduce a method to construct tight,
adapted time-frequency frames from simple partitions of unity.
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1.2.5 Appendix - The toolboxes

The algorithms and methods provided in this thesis have been compiled into a
freely available MATLAB toolbox, respectively worked into the established MAT-

LAB/octave toolbox LTFAT (Large Time-Frequency Analysis Toolbox). Since
a central part of this thesis project was the implementation of the research con-
ducted throughout, the documentation of the provided code is included in the text.
For the code itself, we refer the reader to the respective toolbox webpages nsg.

sourceforge.net and ltfat.sourceforge.net.

nsg.sourceforge.net
nsg.sourceforge.net
ltfat.sourceforge.net
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Chapter 2

Preliminaries

Before we explore the new results presented in this thesis, we recall a number of
basic definitions and mathematical concepts that will be used repeatedly during
the following chapters. Firstly, we introduce the relevant function space concepts
and some important results from Fourier analysis. What follows are sections on
basic frame and Gabor theory, along with a very brief description of Wavelet
transforms. More detailed results on the subjects touched upon can be found in
standard works on functional analysis [42], Fourier analysis [81], [104] and [75],
frame theory [33] or time-frequency and Wavelet analysis [84], [47] and [116].

2.1 Basics

The function spaces we consider are usually Banach spaces B, i.e. complete normed
vector spaces, or even Hilbert spaces H, additionally equipped with an inner prod-
uct 〈·, ·〉H. In particular, Lp-spaces over Rd, d ∈ N, are of special importance.

ForX ⊆ Rd, we denote by µ(X) the usual Lebesgue measure ofX. If µ(X) = 0,
then we refer to X as a null set. The essential infimum of a function f : Rd 7→ R
is defined as

ess inf f = sup{x ∈ R : µ({t ∈ Rd : f(t) < x}) = 0}

if {x ∈ R : µ({t ∈ Rd : f(t) < x}) = 0} is non-empty and −∞ otherwise,
whereas its essential supremum is

ess sup f = inf{x ∈ R : µ({t ∈ Rd : f(t) > x}) = 0}

if {x ∈ R : µ({t ∈ Rd : f(t) > x}) = 0} is non-empty and ∞ otherwise.
The essential support or simply support supp(f) of f : Rd 7→ C is the smallest

subset of Rd, such that f(t) = 0 almost everywhere, i.e. except for null sets, on

9
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Rd \ supp(f) or, formally

supp(f) =
⋂

X⊆Rd

f(t)=0 a.e. on Rd\X

X.

For simplicity, we use the notation f1 ≡ f2 if f1 = f2 almost everywhere and
f1 ≃ f2 if there are constants C1, C2 > 0 such that C1f2 ≤ f1 ≤ C2f2 almost
everywhere.

Also, we denote by χX the characteristic function on the set X, i.e.

χX(t) =

{
1, for t ∈ X
0, else,

and define f |X := fχX , the restriction of f to the set X.

Definition 1. Let p ∈ N, then Lp(Rd) is defined as the Banach space of functions
f : Rd 7→ C, such that ∫

Rd

|f(t)|p dt <∞

and equipped with the norm

‖f‖p := ‖f‖Lp(Rd) :=

(∫

Rd

|f(t)|p dt
)1/p

.

For p =∞, L∞(Rd) is the Banach space of essentially bounded functions, i.e.

ess sup |f | <∞

and equipped with the norm

‖f‖∞ := ‖f‖L∞(Rd) := ess sup |f |.

The spaces L1(Rd) and L2(Rd) are often referred to as the spaces of integrable
functions and square-integrable functions, respectively. Furthermore, L2(Rd) is a
Hilbert space with the inner product

〈f1, f2〉L2(Rd) =

∫

Rd

f1(t)f2(t) dt, for all f1, f2 ∈ L2(Rd).

Note that f1f2 ∈ L1(Rd) by Cauchy-Schwarz’ inequality

‖f1f2‖1 ≤ ‖f1‖2‖f2‖2. (2.1)
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The open L2(Rd)-ball around t with radius δ is given by

Bδ(t) := {x ∈ Rd : ‖x− t‖2 < δ}.

From now on, we will omit the subscript for norm and inner product associated
to L2(Rd).

At some point, we will use another important function space.

Definition 2. The Wiener space W (L∞, ℓ1,Rd) is the space of functions f ∈
L∞(Rd) such that

‖f‖W (L∞,ℓ1,Rd) :=
∑

k∈Zd

ess sup
t∈[0,1]d

|f(t+ k)| <∞. (2.2)

A whole theory of so-called Wiener amalgam spaces exists, generalizing the
Wiener space and considering normed function spaces combining notions of global
and local function behavior, see e.g. [62], [76], [93]. The Wiener space is particularly
useful when working with sampling and periodization operators.

Each continuous Lp-space has a sequence space counterpart defined in an anal-
ogous fashion.

Definition 3. Let p ∈ N, then ℓp(Zd) is defined as vector space of functions
f : Zd 7→ C, such that ∑

l∈Zd

|f [l]|p <∞

and equipped with the norm

‖f‖p := ‖f‖ℓp(Zd) :=

(∑

l∈Zd

|f [l]|p
)1/p

.

For p =∞, ℓ∞(Zd) is the vector space of bounded sequences, i.e.

sup
l∈Zd

|f [l]| <∞

and equipped with the norm

‖f‖∞ := ‖f‖ℓ∞(Zd) := sup
l∈Zd

|f [l]|.

Where no confusion is possible, we use the same notation for Lp- and ℓp-norms,
as well as the L2 and ℓ2 inner products. Alternatively, we might use the subscript
ℓ2 for norm and inner product in ℓ2(Zd).
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The support of a vector f : Zd 7→ C is defined as the set of non-zero values of
f , defined as supp(f) = {l ∈ Zd : f [l] 6= 0}.

Finite dimensional vector spaces CL and RL are always considered circular,
i.e. modulo L, and whenever ℓp-norms or the ℓ2 inner product are used in that
context, they are considered to be evaluated on a single period of length L. For
convenience, we may switch back and forth between indexing a finite dimensional
vector by 0, . . . , L− 1 and −⌊L/2⌋, . . . , ⌈L/2⌉ − 1.

In subsequent chapters we consider linear operators between normed function
spaces, i.e. operators of the form O : V 7→ W such that, for all f1, f2 ∈ V and
C ∈ R, O(f1 + f2) = O(f1) + O(f2) and O(λf1) = λO(f1) hold. The operator
norm of O is defined by

‖O‖op = sup{‖O(f)‖W : f ∈ V, ‖f‖V ≤ 1}.

Whenever the operator norm is finite, e.g. ‖O‖op = B, then we say that O is
bounded above. If there exist 0 < A ≤ B <∞ such that

A‖f‖V ≤ ‖O(f)‖W ≤ B‖f‖V , for all f ∈ V, (2.3)

then we say that O is bounded. Moreover, if (2.3) holds, O has a bounded inverse
O−1 : W 7→ V .

If O is a bounded, linear operator on V , i.e. W equals V , and there is a
C ∈ R \ {0} such that the Neumann series

C

∞∑

j=0

(I− CO)j (2.4)

converges, then the series limit equals the inverse operator O−1.

2.1.1 Fourier analysis

For an integrable function f ∈ L1(Rd), we denote its Fourier transform by

Ff(ξ) = f̂(ξ) =

∫

Rd

f(t) e−2πi〈ξ,t〉 dt. (2.5)

By the Riemann-Lebesgue lemma, f̂ ∈ C0(Rd), i.e. f̂ is continuous and vanishing
at infinity. Indeed, f̂ is even uniformly continuous. If f̂ is also in L1(Rd), then the
inverse Fourier transform is given by

F−1f̂(t) =
q

f̂(t) =

∫

Rd

f̂(ξ) e2πi〈t,ξ〉 dξ (2.6)
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and qf̂ = f .
Let f1, f2 ∈ L1(Rd), then the convolution of f1 and f2, defined by

f1 ∗ f2(t) =
∫

Rd

f1(x)f2(t− x) dx, (2.7)

is an element of L1(Rd). Moreover, the convolution theorem

f̂1 ∗ f2 = f̂1f̂2 (2.8)

holds.
A more symmetric theory is obtained by extending the Fourier transform to

L2(Rd) employing a standard density argument. In this setting, we obtain

‖f‖ = ‖f̂‖, for all f ∈ L2(Rd), (2.9)

Plancherel’s theorem, showing that F is a unitary operator on L2(Rd) and conse-
quently Parseval’s formula

〈f1, f2〉 = 〈f̂1, f̂2〉, for all f1, f2 ∈ L2(Rd), (2.10)

holds. Note that, through (2.8) and (2.10), the convolution definition can be
extended to L2(Rd).

Let us recall some of the fundamental properties of Fourier transforms on
L2(Rd). Define continuous translation and modulation operators by

Txf = f(· − x) and Mωf = e2πi〈ω,·〉f, (2.11)

for x, ω ∈ Rd. Both of these operators are easily seen to be linear and unitary. For
f ∈ L2(Rd), we have

T̂xf = M−xf̂ and M̂ωf = Tωf̂ .

Moreover,

f̂(−·) = f̂(−·), f̂ = qf

and, for s ∈ R+,
D̂sf = Ds−1 f̂ ,

with the dilation operator Dsf = s−d/2f(·/s).
Once we consider sampling and Fourier transforms, periodization problems

and Poisson’s summation formula appear naturally. In its basic form, it reads as
follows.



14 CHAPTER 2. PRELIMINARIES

Proposition 1. Let f ∈ L1(Rd) be such that |f(t)| ≤ C(1 + |t|)−d−ǫ and |f̂(ξ)| ≤
C(1 + |ξ|)−d−ǫ, for some C, ǫ > 0. For all t ∈ Rd,

∑

l∈Zd

f(t+ l) =
∑

l∈Zd

f̂(l)e2πi〈l,t〉 (2.12)

holds pointwise and both sums converge absolutely.

If absolute convergence and pointwise validity are not necessary, weaker condi-
tions on f, f̂ are sufficient for (2.12) to hold. The equality above can be shown to
hold almost everywhere for f ∈ L2(R) [22] with norm convergence. With Poisson’s
summation formula, we transition from Fourier transforms to Fourier series.

The Fourier series of a periodic function f ∈ L1(Td), with the d-dimensional
torus Td = (R/Z)d, at position t ∈ Td is given by

∑

l∈Zd

cf [l]e
2πi〈l,t〉, (2.13)

with the Fourier coefficients

cf [l] =

∫

Td

f(t)e−2πi〈t,l〉 dt. (2.14)

While the Fourier coefficients are well-defined (f is integrable), convergence of
the Fourier series is a complicated matter, see e.g. [81], [104] and [75]. How-
ever, if (2.13) converges as a function in t, then its limit equals f almost every-
where. Again, the mapping from a periodic function to its Fourier coefficients
(and backwards) can be extended to a unitary mapping from L2(Td) to ℓ2(Zd)
(from ℓ2(Zd) to L2(Td)). A Fourier transform for sequences can be defined in
the same manner by switching signs in the exponentials appearing in (2.13) and
(2.14). If the reference is clear, we will denote the Fourier transform of a periodic
function f1 and a sequence f2 as f̂1 with f̂1[l] = cf1[l] if f1 ∈ L1(Td) and f̂2 with
f̂2(t) =

∑
l∈Zd f2[l]e

−2πi〈l,t〉 if f2 ∈ ℓ1(Zd), respectively. Inverse Fourier transforms
are denoted as qf1 and qf2, if well-defined.

Finite dimensional vector spaces CL,RL, have their own concept of a discrete
Fourier transform (DFT) that shares most of the basic properties of continuous
Fourier transforms, such as Parseval’s formula (possibly up to a normalization
factor), duality of translation and modulation operators and their behavior un-
der involution, complex conjugation and convolution. Discrete translation and
modulation operators are given by

Tnf [l] = f [l − n] and Mkf [l] = f [l]e2πikl/L,

for n, k ∈ ZL. Note that vector indices are considered circularly, i.e. modulo L,
unless noted otherwise.
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Definition 4. The unitary discrete Fourier transform of f ∈ CL is a unitary
mapping from CL into itself, given by

f̂ [l] := DFTL(f)[l] = L−1/2
L−1∑

j=0

f [j]e−2πijl/L. (2.15)

The inverse mapping is given by

q

f̂ [l] := IDFTL(f̂)[l] = L−1/2

L−1∑

j=0

f̂ [j]e2πijl/L. (2.16)

The circular convolution f1 ∗ f2 if f1, f2 ∈ CL is defined by

(f1 ∗ f2)[l] =
L−1∑

j=0

f1[j]f2[l − j]

and equals }f̂1f̂2. The discrete Fourier transform can be easily generalized to mul-
tidimensional vectors, but the extension is actually equivalent to applying subse-
quent one dimensional DFTs to each dimension of the vector. Therefore, all the
usual properties are trivially inherited.

2.2 Frames

Frame theory attempts to describe stable, potentially redundant spanning sets. As
such, frames are a generalization of Riesz and orthonormal bases equipped with a
notion of decomposing functions into a linear combination of building blocks, the
frame elements. Introduced more than 60 years ago by Duffin and Schaeffer [57],
the rise of frames in time-frequency analysis and signal processing began with the
work of Daubechies, Grossmann and Meyer [48], a scientific contribution that we
will stumble upon repeatedly during the course of this thesis. A good resource
on the established results in general frame theory and for some special cases are
Christensen’s books [31, 33] or [28]. In a Hilbert space H, frames are defined as
follows.

Definition 5. Let Λ be a countable index set. Then the sequence Φ = (ϕλ)λ∈Λ of
functions ϕλ ∈ H is called a frame if there exist positive constants A and B such
that

A‖f‖2H ≤
∑

λ∈Λ

|〈f, ϕλ〉H|2 ≤ B‖f‖2H ∀f ∈ H, (2.17)

i.e.
∑

λ∈Λ |〈f, ϕλ〉H|2 ≃ ‖f‖2H. The constants A and B are called lower and upper
frame bound, respectively. If A = B, then Φ is a tight frame. The sequence Φ is
a Bessel sequence, if at least the upper bound in (2.17) is satisfied.
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In the course of this thesis, the Hilbert spaces H in question will usually be
L2(R), L2(Rd) or CL and CL1 × . . .×CLk for some k ∈ N. A number of important
operators are associated to a frame.

Definition 6. Let Φ = (ϕλ)λ∈Λ be a frame or Bessel sequence in H. Then the
analysis operator CΦ : H 7→ ℓ2(Λ) is defined by

CΦ(f)[λ] = 〈f, ϕλ〉H, for all f ∈ H, λ ∈ Λ. (2.18)

The synthesis or reconstruction operator DΦ : ℓ2(Λ) 7→ H is defined by

DΦc =
∑

λ∈Λ

c[λ]ϕλ, for all c ∈ ℓ2(Λ). (2.19)

Both CΦ and DΦ are bounded above with ‖CΦ‖ ≤
√
B, ‖DΦ‖ ≤

√
B. If Φ is a

frame, their composition SΦ := DΦCΦ is a bounded operator from H into itself,
given by

SΦf =
∑

λ∈Λ

〈f, ϕλ〉Hϕλ, for all f ∈ H, (2.20)

where the sum converges unconditionally. If the attribution to a certain frame is
clear, we will omit the subscripts and write S, D and C for the respective operator.

If Φ is a frame, it can easily be verified that C equals the adjoint D∗ of D, i.e.
S = C∗C = DD∗. Moreover, S is self-adjoint, positive and invertible, with the
optimal upper and lower frame bounds given by B0 = ‖S‖op and A−1

0 = ‖S−1‖op,
respectively.

Any frame admits, possibly non-unique, dual frames Ψ = (ψλ)λ∈Λ with ψλ ∈ H,
such that any function f ∈ H can be perfectly reconstructed from the frame
analysis. Explicitly DΨCΦ = I = DΦCΨ, where I is the identity operator on H. A
particular dual frame is given by applying the inverse frame operator to the frame
elements: ϕ̃λ := S−1

Φ ϕλ.

Corollary 1. Let Φ be a frame with frame bounds A,B. Then Φ̃ = (ϕ̃λ)λ∈Λ, with
ϕ̃λ := S−1

Φ ϕλ, is a frame with frame bounds B−1, A−1 and the following equalities
hold.

f =
∑

λ∈Λ

〈f, ϕ̃λ〉ϕλ =
∑

λ∈Λ

〈f, ϕλ〉ϕ̃λ, for all f ∈ H, (2.21)

where both sums converge unconditionally. We call Φ̃ the canonical dual frame
associated with Φ.
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Since S is bounded, self-adjoint and positive, the operator S−1/2 is also well-
defined, giving rise to the canonical tight frame Φ̊ = (ϕ̊λ)λ∈Λ, with ϕ̊λ := S−1/2ϕλ.
The canonical tight frame is a tight frame with frame bound 1, i.e.

f =
∑

λ∈Λ

〈f, ϕ̊λ〉ϕ̊λ,

for all f ∈ H, with unconditional convergence of the sum.
For any frame, the inverse frame operator admits a Neumann series represen-

tation [57]. Let 0 < A ≤ B <∞ be the optimal frame bounds, then

S−1 = 2/(A+B)
∞∑

j=0

(I− 2S/(A+B))j , (2.22)

where I denotes the identity operator. The normalization factor 2/(A+B) yields
‖I − 2S/(A + B)‖op ≤ B−A

B+A
< 1 and the fastest convergence among all possible

choices [82], [110], [100].

2.3 The short-time Fourier transform and Gabor

systems

The classical time-frequency analysis tool is the short-time Fourier transform
(STFT). For a more detailed introduction to short-time Fourier transforms and
Gabor analysis, see [71] or [84].

Definition 7. The short-time Fourier transform of a signal f ∈ L2(Rd) with
respect to the non-zero window function g ∈ L2(R) is defined as

Vgf (x, ω) =
∫

R
f(t) g(t− x)e−2πi〈ω,t〉 dt = 〈f,MωTxg〉 . (2.23)

The STFT of f with respect to g is a function in L2(R2d) and defined pointwise.
From the orthogonality relations, also called Moyal’s formula,

〈Vg1f1,Vg2f2〉 = 〈f1, f2〉〈g1, g2〉, for all f1, f2, g1, g2 ∈ L2(Rd), (2.24)

we can deduce ‖Vgf‖ = ‖f‖‖g‖. In particular, the STFT is unitary whenever
‖g‖ = 1. It is also invertible.

Corollary 2. Let g, h ∈ L2(Rd) and 〈g, h〉 6= 0, then for all f ∈ L2(Rd),

f = 〈h, g〉−1

∫

Rd

∫

Rd

Vgf(x, ω)MωTxh dω dx, (2.25)

where the vector valued integral is to be understood in the weak sense.



18 CHAPTER 2. PRELIMINARIES

A sampled short-time Fourier transform is also referred to as Gabor transform.
More explicitly, let g ∈ L2(Rd) be a window function and a, b ∈ R+, then the
corresponding (separable) Gabor system [78] is defined as

G(g, a, b) = {MbmTang : m,n ∈ Zd}. (2.26)

If the reference to a Gabor system is clear, we will use the notation gn,m =
MbmTang.

If a Gabor system forms a frame or Bessel sequence, we call it Gabor frame
or Gabor Bessel sequence. A Gabor system can only be a frame if ab ≤ 1 and
is a Riesz basis if and only if it is a frame and ab = 1. Frames are of particular
interest in the investigation of Gabor systems not only because they allow for more
flexibility in the decomposition of functions, but also because no “well-localized”
Gabor Riesz basis exists. This result is known as the Balian-Low theorem. We
mainly consider Gabor systems that constitute at least a Bessel sequence, if not a
frame.

Theorem 1 (Balian (1981) [12] and Low (1985) [114]). If G(g, a, b) constitutes a
Riesz basis for L2(R), then

∫

R
t2|g(t)|2 dt

∫

R
ξ2|ĝ(ξ)|2 dξ =∞.

In other words, if g generates a Gabor basis, then it maximizes Heisenberg’s un-
certainty principle.

Variations on the Balian-Low theorem exist, e.g. [84, Thm 8.4.1], each of them
amounting to the same problem: In order to have a stable analysis/synthesis
system of Gabor type, generated by a well-localized prototype function (window),
redundancy is necessary. The frame (or Bessel) coefficients of the Gabor system
G(g, a, b) correspond to samples of the short-time Fourier transform

CG(g,a,b)(f)[n,m] = 〈f,MmbTnag〉 = Vgf(na,mb), for all f ∈ L2(Rd).

The synthesis operator on the other hand constructs a function as linear combi-
nation of time-frequency shifted copies of a single prototype function

DG(g,a,b)(c) =
∑

n,m∈Zd

c[n,m]MmbTnag, for all c ∈ ℓ2(Z2d).

A central property of Gabor frames G(g, a, b) is the fact that dual Gabor frames
of the form G(h, a, b) with h ∈ L2(Rd) and the same constants a, b ∈ R+ exist. In
particular, the canonical dual frame of G(g, a, b) is generated from the canonical
dual window g̃ = S−1g and given by G(g̃, a, b).
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Besides this fact, Gabor systems possess many structural properties that are
not inherent to more general Bessel sequences, among them two very useful rep-
resentations of the Gabor frame operator. Their proofs can be found e.g. in
Gröchenig’s book [84].

Proposition 2 (Walnut (1992) [165]). Let G(g, a, b) and G(h, a, b), with g, h ∈
L2(R) and a, b ∈ R+, be Gabor systems. If either

(i) g, h ∈ W (L∞, ℓ1,Rd), or

(ii) G(g, a, b) and G(h, a, b) are Bessel sequences,

then the associated frame-type operator (or mixed frame operator) Sg,h := Sg,h,a,b :=
DG(h,a,b)CG(g,a,b) admits a Walnut representation of the form

Sg,hf = b−d
∑

n,k∈Zd

Tna (hTkb−1g)Tkb−1f, for all f ∈ L2(R). (2.27)

Setting h = g yields the Walnut representation for the frame operator.

The proof in [84] only needs minor modifications to also be valid in the Bessel
case.

Theorem 2 (Janssen (1995) [98]). Let G(g, a, b) and G(h, a, b), with g, h ∈ L2(R)
and a, b ∈ R+, be Gabor systems such that

∑

m,n∈Zd

|〈h,Mm/aTn/bg〉| <∞.

Then the frame-type operator Sg,h = DG(h,a,b)CG(g,a,b) admits a Janssen represen-
tation:

Sg,hf = (ab)−d
∑

m,n∈Zd

〈h,Mm/aTn/ag〉Mm/aTn/bf. (2.28)

Setting h = g yields the Janssen representation for the frame operator.

In words, Walnut’s representation writes the frame operator as a linear com-
bination of weighted translates, with weight functions b−d

∑
n,k∈Zd Tna (hTkb−1g),

while Janssen’s representation is in terms of time-frequency translates on the ad-
joint lattice, see Chapter 3, with scalar weights 〈h,Mm/aTn/ag〉.

The Walnut representation is closely related to duality conditions for Gabor
systems [99], i.e. two Gabor Bessel sequences G(g, a, b) and G(h, a, b) form dual
frames if and only if

b−d
∑

n∈Zd

Tna (hg) ≡ 1 (2.29)
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and
b−d

∑

n,k∈Zd

Tna (hTkb−1g) ≡ 0, for all k ∈ Zd \ {0}. (2.30)

In Chapter 4 we will discuss a generalization of Walnut’s representation to
nonstationary Gabor systems and some of its implications on the structure of such
systems.

A simple sufficient condition for a Gabor system to form a frame exists if the so-
called painless case conditions, first introduced in by Daubechies, Grossmann and
Meyer [48], are met. The painless case describes Gabor systems with compactly
supported generator, i.e. supp(g) ⊆ [c, d] for some c, d ∈ R with c < d and dense
frequency sampling b ≤ (d− c)−1. We only give the result for the one dimensional
case.

Proposition 3 (Daubechies, Grossmann, Meyer (1986)). Let g ∈ L2(R) such that
supp(g) ⊆ [c, d] for some c, d ∈ R with c < d and b ≤ (d− c)−1. The Gabor system
G(g, a, b) is a frame with frame bounds 0 < A ≤ B <∞ if and only if

A ≤ b−1
∑

n∈Z

|Tnag(t)|2 ≤ B, for a.e. t ∈ [0, a). (2.31)

In this setting, a quick glance at the Walnut representation shows that the
frame operator is diagonal and the canonical dual window is obtained by point-
wise division of g by the inner term of (2.31). In fact, all computations simplify
tremendously in this setting, to the point that most uses of Gabor systems in
application restrict themselves to this case.

The “right” function spaces for time-frequency analysis are the so-called mod-
ulation spaces Mp,q

w that can be defined as the tempered distributions f such that
their STFT with regards to a window g in the Schwartz space of rapidly decaying
functions is in the weighted space Lp,q

w , i.e.

∫

Rd

(∫

Rd

|Vgf(x, ω)|pw(x, ω)p dx
)q/p

dω <∞.

A particularly useful space among them is M1 := M1,1
1 , also called Feichtinger’s

algebra [61]. Choosing a function from M1 as prototype for a Gabor system,
one can avoid many of the usual technicalities involved in handling Gabor frames
and show additional properties that are not valid for general window functions in
L2(Rd). It contains e.g. the Schwartz functions and any compactly supported and
continuously differentiable function. Modulation spaces have been introduced by
Feichtinger [63], for more information see [84, Ch 11].

In Chapter 3 we treat Gabor systems on lattices. In that context, we will use
multiwindow Gabor systems, a simple generalization of Gabor systems [174, 176].
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They are essentially a union of finitely many Gabor systems G(g1, a, b), . . . ,G(gk, a, b)
with the same translation and modulation parameters a, b. They retain most of
the structure of Gabor systems, e.g. the Walnut and Janssen representations of
the frame operator.

2.3.1 Discrete Gabor analysis

In the finite discrete case, we take the Hilbert space H to be CL or a product of
such spaces. For a good introduction to Gabor analysis in this setting, see [150].
We shall restrict the lattice parameters a and b to factors of L such that the
numbers N = L

a
and M = L

b
are integers.

Thus, a discrete Gabor system is a finite sequence of functions of the form

G(g, a, b) = {MbmTang : n = 0, . . . , N − 1;m = 0, . . . ,M − 1} ,

which is a collection of M · N vectors in CL. Obviously, to fulfill the frame con-
ditions (2.17), we need at least M · N ≥ L. A multidimensional discrete Gabor
system is defined analogously.

With the notation gn,m = MbmTang, the discrete Gabor transform of f ∈ CL

with respect to the Gabor system G(g, a, b) is given by

c[n,m] = 〈f, gn,m〉 =
L−1∑

l=0

f [l]g[l − na]e−2πiml/M =
√
Lf̂Tnag[mb] (2.32)

and the corresponding discrete Gabor synthesis is

f̃ [l] =

N−1∑

n=0

M−1∑

m=0

c[n,m]gn,m[l] =
√
L

N−1∑

n=0

(c[n, ·]Tnag)
∨ [l], (2.33)

where (c[n, ·]Tnag)
∨ is a sequence in CM with cyclic indexing. If a = b = 1,

Equations (2.32) and (2.33), the latter equipped with the normalization factor
(L‖g‖2)−1 are also referred to as the discrete short-time Fourier transform and
inverse discrete short-time Fourier transform, provided g denotes the same function
in (2.32) and (2.33). In this case, they provide perfect reconstruction for all f ∈ CL.

The theory of discrete Gabor frames is mostly analogous to the continuous the-
ory presented above with the usual modifications. The painless case construction,
Walnut and Janssen representations etc. can be deduced for the discrete case in
much the same way, but with the simplification that function spaces do not play
a role anymore. There are situations where the discreteness and the fact that dis-
crete systems are treated periodically, present some additional problems, e.g. in
the case of nonseparable Gabor schemes, see Chapter 3.
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2.4 Wavelet systems

While we will not work with Wavelet systems directly, they are both an important
tool for time-frequency, or rather time-scale, analysis and a particular case of a
frequency-side nonstationary Gabor system, see Chapter 4. Therefore, we briefly
sketch the one-dimensional continuous wavelet transform. More information can
be found, e.g. in the standard works on Wavelets [47] and [116].

Let ϕ ∈ L2(R) with zero average. The wavelet transform of f ∈ L2(R) with
respect to ϕ is defined as

Wϕf(u, s) =

∫

R
s−1/2f(t)ϕ

(
t− u
s

)
dt = 〈f,TuDsϕ〉, u ∈ R, s ∈ R+. (2.34)

The formula above can also be expressed as a convolution
(
f ∗Dsϕ(−·)

)
(u),

showing that the Wavelet coefficients are the coefficients corresponding to some
linear filterbank.

The collection of atoms

W(ϕ) := {ϕu,s = TuDsϕ}u∈R,s∈R+ , (2.35)

is called a (continuous) Wavelet system.
If ϕ is localized around tc, then ϕu,s is centered at stc+u, with center frequency

ξc/s, where ξc is the center frequency of ϕ̂.
A Wavelet ϕ is called admissible with admissibility constant C < ∞, if it

satisfies ∫

R
ξ−1|ϕ̂(ξ)|2 dξ = C. (2.36)

For any admissible Wavelet ϕ ∈ L2(R), all f ∈ L2(R) can be reconstructed
from their respective Wavelet coefficients. Explicitly,

f = C−1

∫

R+

∫

R
s−2〈f,TuDsϕ〉TuDsϕ du ds. (2.37)

There are two standard discretization schemes for Wavelet transforms. Let
a, b ∈ R+ with a > 1, then the dilation-first discretization uses the atoms

θn,m = ϕnb,am = ϕ

(
t− nb
am

)
, for m,n ∈ Z,

while translation-first discretization uses the atoms

φn,m = ϕ

(
t

am
− nb

)
= ϕamnb,am = DamTnbϕ, for m,n ∈ Z.
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The second discretization scheme seems more suited to the structure of Wavelet
transforms, but the first scheme has the benefit of constituting a shift invariant
system. It should be noted that, in the continuous case, most traditionally used
Wavelets are constructed on the Fourier side, one reason being the ease with which
the admissibility condition can be verified.

Compared to Gabor frames, the results on Wavelet frames and their imple-
mentation are relatively scarce. It is well known that the canonical dual frame to
a Wavelet frame is in general not a Wavelet frame, but duality conditions similar
to (2.29) and (2.30) exist [41], as well as a painless case result [48]. These results
usually put conditions on the Fourier transform of the involved Wavelet, making
use of Parseval’s formula and the duality of translation and modulation under the
Fourier transform, i.e.

〈f,TuDaϕ〉 = 〈f̂ , T̂uDaϕ〉 = 〈f̂ ,M−uDa−1ϕ̂〉.

We will also use this correspondence to express sampled Wavelet systems as non-
stationary Gabor systems. This is interesting as well for obtaining a discretized
Wavelet transform for signals in CL that resembles a continuous Wavelet trans-
form more than the classical dyadic discrete Wavelet transform (DWT) based on
a multiresolution analysis.

Handling Wavelet transforms on CL is a more delicate matter than discretiz-
ing Gabor transforms, since the dilation operator is not always well-defined on
CL. Even if it is, it amounts to a structured permutation, which is not particu-
larly useful from a time-frequency analysis point of view. We propose a possible
workaround for these problems in Section 5.4.
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Chapter 3

Gabor systems on arbitrary lattices

In Section 2.3, we introduced Gabor systems and Gabor frames on a rectangular
sampling set, i.e. the Gabor coefficients were taken to be samples of the STFT on
sets of the form aZd × bZd. Alternatively, these coefficients can be interpreted as
the inner products with time-frequency atoms centered at positions (an, bm)n,m∈Zd .
Now one might be interested in Gabor systems on more general sampling sets which
might be better suited for commonly used window functions, see Figure 3.1.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 3.1: An atom with circular (Gaussian) time-frequency concentration yields a
better covering of the time-frequency plane for a non-rectangular sampling.
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3.1 Gabor systems on lattices

Gabor systems on arbitrary sampling sets give up a large amount of structure and
while the subject has received attention [64], [72], [151], [152], [29], [83], most re-
sults amount to density conditions. On the other hand, Gabor systems on discrete
subgroups, also called lattices [84] allow for a good amount of flexibility while being
rich in structure and, considering the uniform time-frequency concentration of the
Gabor atoms, also encompassing the most sensible sampling sets for Gabor anal-
ysis. In particular, it has recently been conjectured that for a standard Gaussian
window the best sampling strategy is a regular hexagonal pattern [5].

As a lattice over R2d we consider every subgroup G ≤ R2d. The group G can
also be written as ΛZ2d with a positive, real-valued, invertible 2d×2d matrix Λ and
is called (fully) separable if Λ can be chosen as a diagonal matrix, time-frequency
separable if

Λ =

(
A 0
0 B

)
, with A,B ∈ Rd×d,

dimensionally separable if Λ can be chosen such that

Λ[l, j] = 0 for all l, j = 0, . . . , 2d− 1 with (l − j)mod d 6= 0,

and fully nonseparable otherwise. We will use the notation Λ synonymous for
the 2d × 2d matrix Λ and the lattice ΛZ2d and refer to Λ as nonseparable if it is
not fully separable. Continuous Gabor systems on lattices have been considered,
e.g. in [68], [70], [160], [17] and [84, Ch 9.4]. While our focus is on establishing
state of the art techniques for the computation of Gabor systems over CL, we will
review the essential continuous (and multidimensional) theory. Unless otherwise
noted, the material in this review section can be found in [84]. We will denote
by GL2d(R) and SL2d(R) the invertible matrices and matrices with determinant 1
over R2d, respectively.

For ease of notation, we will denote by π(λ) = Mλ2Tλ1 the time-frequency
shift by λ ∈ R2d. The Gabor system on ΛZ2d with respect to the window function
g ∈ L2(Rd) is the collection of functions

G(g,Λ) := {gλ = π(λ)g : λ ∈ Λ}. (3.1)

An important connection is the one between a lattice Λ and its so-called adjoint
lattice Λ◦.

Definition 8. Let Λ be a lattice. The adjoint lattice Λ◦ of Λ is the set of points
λ◦ ∈ R2d such that

π(λ◦)π(λ) = π(λ)π(λ◦), for all λ ∈ Λ. (3.2)
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For a fully separable lattice Λ, the adjoint lattice is given by the diagonal matrix
Λ◦ with Λ◦[l, l] = 1/Λ[l+d, l+d] and Λ◦[l+d, l+d] = 1/Λ[l, l] for l = 0, . . . , d−1.
Generally, see [70], the adjoint lattice can be obtained as

Λ◦ =

(
0 I
−I 0

)
Λ−T ,

where Λ−T denotes the inverse of the transpose ΛT of Λ.
The adjoint lattice plays an important role in the generalized versions of both

the Ron-Shen duality principle and Janssen’s representation, each proven in [73].
The Ron-Shen duality principle implies that the frame property of G(g,Λ) is equiv-
alent to G(g,Λ◦) being a Riesz basis for its closed span, while

Sg,h,Λf = | det(Λ)|−d
∑

λ∈Λ◦

〈h, π(λ)g〉π(λ)f, for all f ∈ L2(Rd) (3.3)

is the general form of Janssen’s representation. There are multiple ways to
express Gabor systems on general lattices as transformations of Gabor systems
on a rectangular sampling set and/or in a single dimension. We will see that all
dimensionally separable Gabor systems can be expressed as fully separable Gabor
system and, provided that the window function g is a d-dimensional tensor product,
i.e. g(t) = g1(t1)⊗. . .⊗gd(td) handled with one-dimensional techniques. See [34] for
more information on the correspondence between one- and multidimensional Gabor
systems. On the other hand, no significant results on time-frequency separable
lattices seem to exist.

We present two simple approaches to establish a separable to nonseparable cor-
respondence, namely the multiwindow technique and the correspondence via the
metaplectic representation.

The multiwindow method has been proposed by Zibulski and Zeevi [176]
and Feichtinger et al. [70]. Let Λ be a lattice. G(g,Λ) can be written as a separable
multiwindow Gabor system if there is a finite number of elements λ1, . . . , λk ∈ Λ
and a separable lattice Λ̃, such that, with λ0 = 0

Λ =

k⋃

j=0

λj + Λ̃. (3.4)

In this case,

G(g,Λ) =
k⋃

j=0

G(π(λj)g, Λ̃) (3.5)

holds up to phase factors.
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Consequently, the frame operator of G(g,Λ) is given as the sum of the frame
operators Sπ(λj )g,Λ̃

and as such possesses a Walnut-representation and other struc-
tural properties inherited from separable Gabor systems. As for the question when
a lattice can be decomposed in this way, to the best of our knowledge there has
not been any exhaustive study. For the one dimensional case however, there exists
a quite simple sufficient condition with a constructive proof.

Lemma 1. Let Λ be a lattice. If lower triagonal L ∈ GL2(R) and integer valued
P ∈ SL2(R) exist such that Λ = LP and

L =

(
a 0
s b

)
,

with s/b ∈ Q, then there exist λ0 = 0 and λ1, . . . , λk ∈ Λ, k ∈ N0 and a separable
lattice Λ̃, such that

Λ =

k⋃

j=0

λj + Λ̃.

Proof. If s = 0, then Λ is separable and there is nothing to show. Otherwise note
that P is integer-valued and | det(P )| = 1, thus applying P to Z2 can be thought
of a permutation, i.e. PZ2 = Z2. There are unique p ∈ Z and q ∈ N that are
coprime and satisfy s/b = p/q. Consequently, with

Λ̃ =

(
qa 0
0 b

)
,

we have the equality

Λ =

q−1⋃

j=0

j(a, s)T + Λ̃,

concluding the proof.

The same idea can be applied using a UP factorization with U upper triag-
onal and P ∈ SL2d(R) integer valued, potentially increasing the class of lattices
allowing for such a decomposition. Moreover, Lemma 1 can easily be generalized
to dimensionally separable lattices, if applied to the submatrices

(
Λ[l, l] Λ[l, l + d]

Λ[l + d, l] Λ[l + d, l + d]

)
, for all l = 0, . . . , d− 1.

Note that the expression of one dimensional, nonseparable Gabor systems
through separable Gabor schemes is also considered in the work of Bastiaans and
van Leest, e.g. [14, 160]. However, they assume that the lattice can be written in
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the form Λ = UL, where U is a diagonal real-valued matrix and L is an integer
matrix in Hermite normal form. Consider the lattice

Λ =

(
1 0√
2 1

)

to see that this is not always possible.

Metaplectic transformations can also be used to provide a connection be-
tween separable and nonseparable Gabor systems. The continuous theory of meta-
plectic representation is well summarized in [84, Ch 9.4]. Loosely speaking, there
is a subgroup of SL2d(R), called symplectic matrices, such that their action on a
vector in R2d is, in a geometric sense, translated to the time-frequency plane by a
unitary operator on L2(Rd). More explicitly, a matrix M ∈ GL2d(R) is symplectic
if and only if

M =

(
A B
C D

)
, for some A,B,C,D ∈ Rd×d, (3.6)

with AC∗ = A∗C, BD∗ = B∗D and A∗D−C∗B = I, implying | det(M)| = 1. The
set of symplectic matrices forms a group under composition, denoted by Spd(R).

If M is symplectic, then there exists a unitary operator µM : L2(Rd) 7→
L2(Rd), such that, with (x̃, ω̃)T =M−1(x, ω)T ,

Vgf(x̃, ω̃) = eπi(〈x,ω〉−〈x̃,ω̃〉)VµM gµMf(x, ω), for all f, g ∈ L2(Rd). (3.7)

In words, the short-time Fourier transform of f with respect to g evaluated at
λ ∈ R2d equals the short-time Fourier transform of µMf with respect to µMg
evaluated at Mλ. We call µM the metaplectic operator corresponding to M . This
motivates the following definition.

Definition 9. A lattice Λ ≤ R2d is called symplectic, if there are c ∈ R \ {0} and
M ∈ Spd(R), such that

Λ = cMZ2d. (3.8)

It is easy to show that, provided G(g, c, c) and G(h, c, c) are Bessel sequences,
and Λ = cMZ2d is a symplectic lattice, the following holds.

Sg,h,c,c = µ−1
M SµMg,µMh,Λ µM .

This in turn implies that G(µMg,Λ) is a frame with frame bounds A,B if and
only if G(g, c, c) is. Therefore all the properties and structure of the separable case
(Janssen’s representation, Ron-Shen duality principle, etc.) immediately carry
over in some sense, we even obtain a Walnut representation of some sort. If µM
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and µ−1
M are known, both analysis and synthesis on the nonseparable lattice can

be performed via the separable lattice.
However, if a lattice is given in a specific form ΛZ2d and Λ is not a scalar

multiple of a symplectic matrix, determining whether Λ specifies a symplectic
lattice is a nontrivial task and equivalent to the existence of an integer valued
matrix P ∈ SL2d(R) such that Λ = cMP with c and M as in Definition 9.

On the other hand, the case d = 1 is somewhat simpler again. It is easy to see
that the conditions on symplectic matrices (3.6) reduce to det(M) = 1 and that
any nonsingular Λ ∈ GL2(R) can be decomposed as cM with c 6= 0, | det(M)| = 1.
Consequently, every lattice over R2 is symplectic and can be deformed into a
separable lattice using symplectic transformations.

The question remains how to determine the metaplectic operator associated to
a symplectic matrix M . There are certain elementary symplectic matrices, where
the corresponding operator is explicitly known. These are the standard symplectic
form (

0 I
−I 0

)
,

corresponding to the Fourier transform, the unitary dilations
(
A 0
0 A−1

)
,

with A invertible, associated with DA−1f = |det(A)|d/2f(A·) and the skew (or
shear) matrices (

I 0
C I

)
,

associated with the chirp multiplication RCf(t) = f(·) exp(πitTCt). Kaiblinger
and Neuhauser have shown [103, Thm 2] that the metaplectic operator associated
to every symplectic matrix can be decomposed into a combination of elementary
metaplectic operators. Their decomposition requires 2 Fourier transforms, 3 chirp
multiplications and a dilation. For d = 1, a simpler procedure is possible if Λ = LP
as in Lemma 1.

Lemma 2. Let Λ be a lattice. Λ is a symplectic lattice if lower triagonal L ∈
GL2(R) and integer valued P ∈ SL2(R) exist such that Λ = LP and

L =

(
a 0
s b

)
.

Proof. To prove the lemma, confirm PZ2 = Z2 and either L̃ = (ab)−1/2L or
L̃ ( 1 0

0 −1 ) is symplectic.
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In the case d = 1, we will discuss multiwindow and metaplectic methods for
“rectifying” lattices in more detail for the discrete, finite case, where several prob-
lems are introduced due to the circular nature of ZL. This is done in Section 3.3,
where we also mention some simple extensions to the multidimensional case of
signals in CL1 × . . . × CLk . Before that, the next section discusses some general
properties of lattices over ZL1 × ZL2 .

3.2 On the subgroups of ZL1 × ZL2
This section contains partial results from joint work with Mario Hampejs, László
Tóth and Christoph Wiesmeyr, available as preprint [154].

Let ZL1 be the group of residue classes modulo L1 and consider the direct
product G = ZL1 × ZL2 , where L1 and L2 are arbitrary positive integers. We aim
to discuss properties of the subgroups of G and to derive simple formulae for the
number of certain types of subgroups of G, including the total number s(L1, L2)
of its subgroups and the number sk(L1, L2) of its subgroups of order k, where
k | L1L2.

Subgroups of Z×Z (sublattices of the two dimensional integer lattice) and as-
sociated counting functions were considered by several authors in pure and applied
mathematics. It is known, for example, that the number of subgroups of index1 n
in Z×Z is σ(n), the sum of the (positive) divisors of n. See, e.g., [80], [179], [3, item
A001615]. Although features of the subgroups of G are not only interesting by their
own but also have applications, one of them the description of Gabor lattices, it
seems that a synthesis on subgroups of G can not be found in the literature.

In the case L = L1 = L2 the subgroups of ZL × ZL play an important role in
discrete, finite time-frequency analysis. As discussed in Section 2.3, time-frequency
analysis attempts to investigate function behavior via a phase space representation
given by the short-time Fourier transform [84]. The phase space corresponding to
discrete, finite functions (or vectors) belonging to CL is exactly ZL×ZL. Concerned
with the question of reconstruction from samples of short-time Fourier transforms,
it has been found that when sampling on lattices, i.e. subgroups of ZL × ZL, the
associated analysis and reconstruction operators are particularly rich in structure,
which, in turn, can be exploited for efficient implementation, cf. [105], [158], [150]
and references therein. It is of particular interest to find subgroups in a certain
range of cardinality, therefore a complete characterization of these groups helps
choosing the best one for the desired application.

It is known that for every finite Abelian group the problem of counting all

1The number of cosets of the subgroup contained in the group.
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subgroups and the subgroups of a given order reduces to p-groups, which follows
from the properties of the subgroup lattice of the group (see R. Schmidt [139],
M. Suzuki [153]). In particular, for G = ZL1 × ZL2 this can be formulated as
follows. Assume that gcd(L1, L2) > 1. Then G is an Abelian group of rank two,
since G is isomorphic to Zu × Zv, where u = lcm(L1, L2), v = gcd(L1, L2). Let
u = pα1

1 · · · pαr
r and v = pβ1

1 · · · pβr
r be the prime power factorizations of u and v,

respectively, where αj ≥ βj ≥ 0 (1 ≤ j ≤ r). Then

s(L1, L2) =

r∏

j=1

s(p
αj

j , p
βj

j ), (3.9)

and

sk(L1, L2) =
r∏

j=1

skj(p
αj

j , p
βj

j ), (3.10)

where k = k1 · · · kr and kj = p
γj
j with some exponents 0 ≤ γj ≤ αj+βj (1 ≤ j ≤ r).

Now consider the p-group Zpα ×Zpβ , where α ≥ β ≥ 0. This is of rank two for
α ≥ β ≥ 1. One has the simple explicit formulae:

s(pα, pβ) =
(α− β + 1)pβ+2 − (α− β − 1)pβ+1 − (α+ β + 3)p+ (α + β + 1)

(p− 1)2
,

(3.11)

spγ (p
α, pβ) =





pγ+1−1
p−1

, γ ≤ β ≤ α,
pβ+1−1
p−1

, β ≤ γ ≤ α,
pα+β−γ+1−1

p−1
, β ≤ α ≤ γ ≤ α + β.

(3.12)

Formula (3.11) was derived by G. Călugăreanu [45, Sect. 4] and recently by
J. Petrillo [126, Prop. 2] using Goursat’s lemma for groups. M. Tărnăuceanu [157,
Prop. 2.9], [156, Th. 3.3] deduced (3.11) and (3.12) by a method based on properties
of certain attached matrices.

Therefore, s(L1, L2) and sk(L1, L2) can be computed using (3.9), (3.11) and
(3.10), (3.12), respectively. We deduce other formulae for s(L1, L2) and sk(L1, L2)
(Theorems 3 and 4), which generalize (3.11) and (3.12), and put them in more
compact forms. These are consequences of a simple representation of the subgroups
of G = ZL1 × ZL2 , given in Theorem 3. This representation might be known, but
we could not locate it in the literature.

Our approach is elementary, using only simple group-theoretic and number-
theoretic arguments. The proofs are given in Section 3.2.2.

Throughout this section we use the notation σ(n) for the sum of the positive
divisors of n.
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3.2.1 Results

The subgroups of ZL1 × ZL2 can be identified and visualized in the plane with
sublattices of the lattice ZL1 ×ZL2 . Every two dimensional sublattice is generated
by two basis vectors. For example, the Figure shows the subgroup of Z12 × Z12

having the basis vectors (1, 2)T and (0, 6)T .

11 . . . . . . . . . . . .
10 . . • . . • . . • . . •
9 . . . . . . . . . . . .
8 . • . . • . . • . . • .
7 . . . . . . . . . . . .
6 •b . . • . . • . . • . .
5 . . . . . . . . . . . .
4 . . • . . • . . • . . •
3 . . . . . . . . . . . .
2 .s • . . • . . • . . • .
1 . . . . . . . . . . . .
0 • .a . • . . • . . • . .

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3.2: Geometric representation of a lattice.

This suggests the following representation of the subgroups:

Theorem 3. For every L1, L2 ∈ N let

IL1,L2 := {(a, b, t) ∈ N2 × N0 : a | L1, b | L2, 0 ≤ t ≤ gcd(L1/a, b)− 1} (3.13)

and for (a, b, t) ∈ IL1,L2 define

Ha,b,t := {(ia, jb+ itb/ gcd(L1/a, b)) : 0 ≤ i ≤ L1/a−1, 0 ≤ j ≤ L2/b−1}. (3.14)

Then Ha,b,t is a subgroup of order L1L2

ab
of ZL1×ZL2 and the map (a, b, t) 7→ Ha,b,t

is a bijection between the set IL1,L2 and the set of subgroups of ZL1 × ZL2.

Note that for the subgroup Ha,b,t the basis vectors mentioned above are (a, s)T

and (0, b)T , where

s =
tb

gcd(L1/a, b)
. (3.15)

This notation for s will be used also in the rest of the section. Note also that
in the case a 6= L1, b 6= L2 the area of the parallelogram spanned by the basis
vectors is ab, exactly the index of Ha,b,t.

We say that a subgroup H = Ha,b,t is a subproduct of ZL1×ZL2 if H = H1×H2,
where H1 and H2 are subgroups of ZL1 and ZL2 , respectively.
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Theorem 4. i) The exponent2 of the subgroup Ha,b,t is given by

expHa,b,t =
L1L2

gcd(L2a, L1s, L1b)
. (3.16)

ii) The subgroup Ha,b,t is cyclic if and only if gcd(L1/a, L2/b, L1s/ab) = 1.
iii) The subgroup Ha,b,t is a subproduct if and only if t = 0 and Ha,b,0 = ZL1/a×

ZL2/b. Here Ha,b,0 is cyclic if and only if gcd(L1/a, L2/b) = 1.

According to Theorem 3, the number s(L1, L2) of subgroups of ZL1 × ZL2 can
be obtained by counting the elements of the set IL1,L2 .

Corollary 3. For every L1, L2 ∈ N, s(L1, L2) is given by

s(L1, L2) =
∑

a|L1,b|L2

gcd(a, b). (3.17)

Formula (3.17) is a special case of a formula representing the number of all
subgroups of a class of groups formed as cyclic extensions of cyclic groups, deduced
by W. C. Calhoun [27] and having a laborious proof. Note that formula (3.17) is
given, without proof, in [3, item A054584].

Corollary 4. For every k, L1, L2 ∈ N such that k | L1L2,

sk(L1, L2) =
∑

a|L1,b|L2

L2a/b=k

gcd(a, b). (3.18)

For the case L = L1 = L2 relevant in time-frequency analysis, this amounts to
the next Corollary.

Corollary 5. For every k, L ∈ N such that k | L2, the following hold

expHa,b,t =
L

gcd(a, b, s)
, (3.19)

where Ha,b,t is cyclic if and only if gcd(a, b, s) = ab/L, while Ha,b,0 is cyclic if and
only if gcd(a, b) = ab/L. Furthermore,

s(L) = s(L, L) =
∑

a,b|L

gcd(a, b) and sk(L) = sk(L, L) =
∑

a,b|L
La/b=k

gcd(a, b). (3.20)

2The least common multiple of the order of the group elements.
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3.2.2 Proofs

Proof. (for Theorem 3) Let H be a subgroup of G = ZL1 × ZL2 . Consider the
natural projection π1 : G→ ZL1 given by π1(x, y) = x. Then π1(H) is a subgroup
of ZL1 and there is a unique divisor a of L1 such that π1(H) = 〈a〉 := {ia : 0 ≤
i ≤ L1/a− 1}. Let s ≥ 0 be minimal such that (a, s) ∈ H .

Furthermore, consider the natural inclusion ι2 : ZL2 → G given by ι2(y) =
(0, y). Then ι−1

2 (H) is a subgroup of ZL2 and there exists a unique divisor b of L2

such that ι−1
2 (H) = 〈b〉.

We show that H = {(ia, jb + is) : i, j ∈ Z}. Indeed, for every i, j ∈ Z,
(ia, jb + is) = i(a, s) + j(0, b) ∈ H . On the other hand, for every (u, v) ∈ H
one has u ∈ π1(H) and hence there is i ∈ Z such that u = ia. We obtain
(0, v − is) = (u, v) − i(a, s) ∈ H , v − is ∈ ι−1

2 (H) and there is j ∈ Z with
v − is = jb.

Here a necessary condition is that (0, sL1/a) ∈ H (obtained for i = L1/a,
j = 0), that is b | sL1/a, equivalent to b/ gcd(L1/a, b) | s. Clearly, if this is
verified, then for the above representation of H it is enough to take the values
0 ≤ i ≤ L1/a− 1 and 0 ≤ j ≤ L2/b− 1.

Also, dividing s by b we have s = bq + r with 0 ≤ r < b and (a, r) = (a, s) −
q(0, b) ∈ H , showing that s < b, by its minimality. Hence s = tb/ gcd(L1/a, b)
with 0 ≤ t ≤ gcd(L1/a, b)− 1. Thus we obtain the given representation.

Conversely, every (a, b, t) ∈ IL1,L2 generates a subgroupHa,b,t of order L1L2/(ab)
of ZL1 × ZL2 and the proof is complete.

Proof. (for Theorem 4) The subgroup Ha,b,t is generated by (a, s) and (0, b). Hence
the exponent of Ha,b,t is the least common multiple of the orders of these two ele-
ments. The order of (0, b) is L2/b. To compute the order of (a, s) note that L2 | rs if
and only if L2/ gcd(L2, s) | r. Thus the order of (a, s) is lcm(L1/a, L2/ gcd(L2, s)).
We deduce that the exponent of Ha,b,t is

expHa,b,t = lcm

(
L1

a
,

L2

gcd(L2, s)
,
L2

b

)
= lcm

(
L1L2

L2a
,

L1L2

L2 gcd(L2, s)
,
L1L2

L1b

)

=
L1L2

gcd(L2a, L2L1, L1s, L1b)
=

L1L2

gcd(L2a, L1s, L1b)
.

ii) Now Ha,b,t is cyclic if and only if its exponent equals its order, that is
L1L2

gcd(L2a,L1s,L1b)
= L1L2

ab
, equivalent to gcd(L1/a, L2/b, L1s/ab) = 1.

iii) Follows at once from Theorem 3.

Proof. (for Corollary 3) By its definition, the number of elements of the set IL1,L2

is ∑

a|L1,b|L2

∑

0≤t≤gcd(L1/a,b)−1

1 =
∑

a|L1,b|L2

gcd(L1/a, b) =
∑

a|L1,b|L2

gcd(a, b),
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representing s(L1, L2). This is formula (3.17).

Proof. (for Corollary 4) According to Theorem 3,

sk(L1, L2) =
∑

a|L1,b|L2

L1L2/ab=k

gcd(L1/a, b),

giving (3.18).

Remark 1. For any finite groups A and B a subgroup C of A×B is cyclic if and
only if ι−1

1 (C) and ι−1
2 (C) have coprime orders, where ι1 and ι2 are the natural

inclusions ( [18, Th 4.2]). In the case A = ZL1, B = ZL2 and C = Ha,b,t one has
#ι−1

1 (C) = gcd(L1/a, L1s/ab) and #ι−1
2 (C) = L2/b and the characterization of the

cyclic subgroups Ha,b,t given in Theorem 4(ii) can be obtained also in this way. It
turns out that regarding the sublattice, Ha,b,t is cyclic if and only if the numbers of
points on the horizontal and vertical axes, respectively, are relatively prime. Note
that in the case L = L1 = L2 the above condition reads L gcd(a, b, s) = ab. Thus
it is necessary that L | ab. The subgroup on the Figure is not cyclic.

Remark 2. Every subgroup G of Z×Z has the representation G = {(ia, jb+ is) :
i, j ∈ Z}, where 0 ≤ a, 0 ≤ s ≤ b are unique integers. This follows like in the
proof of Theorem 3. Furthermore, in the case a, b ≥ 1, s < b the index of G is ab
and one obtains at once that the number of subgroups G having index n (n ∈ N)
is
∑

ab=n

∑
0≤s≤b−1 1 =

∑
ab=n b = σ(n).

3.3 Discrete Gabor systems on lattices and their

implementation

This section contains results from joint work with Peter L. Søndergaard and
Christoph Wiesmeyr, available as preprint [169].

Over the past 20 years the Gabor transform has become a very valuable and
widely used tool in signal processing. The finite, discrete short-time Fourier trans-
form (STFT) for a given signal f of length L is computed by testing f against
shifted and modulated copies of a window function g

Vgf [x, ω] =
L−1∑

l=0

f [l]g[l − x]e−2πiωl/L.

The Gabor transform is a sampled version of the STFT and both provide the
possibility to extract temporal frequency information from the signal. The space
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spanned by the two variables x, ω is called the time-frequency plane; more precise
information can be found in Section 3.3.1. A family of translations and modula-
tions of a window function is called Gabor family or Gabor system.

In the discrete setting efficient algorithms exist almost exclusively for sampling
on separable or rectangular lattices [145], the most important ones discovered
quickly after finding the Fast Fourier transform algorithm [43]. The two approaches
that are most commonly used are the overlap-add algorithm (OLA), [88, 148] and
the weighted overlap-add algorithm [129,138]. Both of these algorithms require that
the impulse response of the window is supported on a set considerably smaller than
the signal length. Even though this is a slight abuse of terminology, in the finite
setting it seems sensible to call such windows FIR, i.e. Finite Impulse Response.
Fast, but less well known algorithms without this requirement have also been
found [13, 147].

It is a natural question how to generalize existing algorithms for the Gabor
transform and its inverse to the case of nonseparable lattices. In the early years
of this century there has been a series of papers and investigations on this subject
[14–17,159] and more by the same authors, also collected in [158]. Earlier studies
focus on the computation of dual Gabor windows on nonseparable lattices, using
iterative methods [69] or harnessing the block structure of Gabor analysis and
frame operators directly and reducing nonseparable sampling sets to a union of
product lattices [70, 130]. Another contribution came some years later further
investigating the discrete theory of metaplectic operators [66]. In this paper we
present approaches from these works and propose an improved algorithm, which
allows for more efficient computation.

There are two fundamentally different ways of realizing computations that we
will investigate and improve upon. The first one uses a decomposition of a non-
separable lattice into the union of cosets of a sparser separable lattice similar
to [70,158,161,176]. This will allow to write the Gabor family as a union of Gabor
families on this sparse lattice with different windows. We call such a system mul-
tiwindow Gabor family, since it shares much of the structure from standard Gabor
systems [173]. The details can be found in Section 3.3.2, see also Section 3.1 for
the continuous case.

The second method under consideration uses the fact that any lattice can be
written as the image of a rectangular lattice under an invertible lattice transform.
For a special subset of these transforms, so called metaplectic operators on the
signal space exist that allow to reduce all the computations for Gabor systems on
nonseparable lattices to Gabor systems on rectangular lattices. It turns out that
in the one dimensional setting the transformation to the separable case is always
possible [66,103]. This method has first been described for the continuous case, see
Section 3.1 for a short summary or [84] for a more comprehensive study, before it
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was translated into the finite discrete setting, where it takes more effort to obtain
the results due to number theoretic considerations. The algorithms presented and
improved in Section 3.3.2 are based on the results in [66].

In higher dimensions the class of lattices that can be reduced to a rectangular
sampling strategy is expected to be a strict subset of all lattices. While the class of
lattice transforms that admit a metaplectic operator, called symplectic matrices,
can be determined explicitly it is not easy to see whether a given lattice can be
transformed to rectangular shape using this class of matrices. In contrast to the
difficulties with generalizing the metaplectic approach to higher dimensions, the
multiwindow decomposition can be extended directly. However, the description of
the multidimensional case is beyond the scope of this contribution.

After introducing the necessary basic concepts in Section 3.3.1, we mainly
present the different approaches in Section 3.3.2. Section 3.3.3 describes the im-
plementation of the different algorithms and compares their computational com-
plexity and running time.

3.3.1 Preliminaries

Discrete Gabor frames on subgroups of the TF-plane. We recall some
basics from Gabor analysis, frame theory and the theory of metaplectic operators
on CL. A Gabor system in CL is a set of functions of the form

G(g,Λ) := {MωTxg : λ = (x, ω)T ∈ Λ ⊆ Z2
L}. (3.21)

Thus, a Gabor system is a set of time-frequency shifts of a fixed function g. For
some given x and ω we use the notation of a time-frequency shift operator

π(x, ω) = π(λ) = MωTx.

The Gabor coefficients of some f ∈ CL, with respect to G(g,Λ) are given by
samples of the short-time Fourier transform

Vgf [x, ω] = 〈f,MωTxg〉 =
L−1∑

l=0

f [l]g[l − x]e−2πiωl/L, (x, ω)T ∈ Λ. (3.22)

It is important to know if the signal f can be reconstructed from its transform
coefficients {cx,ω = Vgf [x, ω]}(x,ω)T∈Λ, i.e. when the Gabor system G(g,Λ) forms a
frame. It turns out that this is equivalent to the invertibility of the so-called frame
operator S = Sg,Λ defined as

Sg,Λf =
∑

(x,ω)T∈Λ

〈f, π(x, ω)g〉π(x, ω)g. (3.23)
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By inversion of this operator we can give an explicit inversion formula

f =
∑

(x,ω)T∈Λ

cx,ωS
−1π(x, ω)g.

The family {S−1π(x, ω)g}(x,ω)T∈Λ is called the (canonical) dual Gabor system. If
Λ is a subgroup of the phase space, then we know from standard Gabor theory
that the dual system is a Gabor system itself, given by G(S−1g,Λ) , see e.g. [84].
In the following we only consider this structured case and denote that by Λ ≤ Z2

L.
It is easy to see that for any matrix A ∈ Z2×2

L the set AZ2
L forms a subgroup of

the time-frequency plane. The following corollary shows that the converse is also
true. Furthermore, it suggests a normal form that allows us to establish a one to
one relation between lattices and generating matrices. Further implications of this
statement can be found in the previous Section 3.2 or [154].

Corollary 6. For every Λ ≤ Z2
L there exist unique a, b|L, 0 ≤ s < b and s ∈

ab
gcd(ab,L)

Z, such that

Λ = AZ2
L =

(
a 0
s b

)
Z2
L. (3.24)

Proof. Follows directly from Theorem 3.

With a, b, s as in (3.24), we define

G(g, a, b, s) := G(g,Λ) = {gn,k := Msn+bkTang : (n, k) ∈ ZL/a × ZL/b}

for Λ = AZ2
L, omitting s if it equals zero. Recall the notation M = L/b for

the number of frequency channels, as introduced in Section 2.3.1. Analogous to
Section 3.1, lattices with s = 0 are called separable, rectangular or product lattices,
since they can be written as the direct product of two subgroups of ZL. If s 6= 0,
we call a lattice nonseparable. It is easy to see that the unique lower triangular
form can be rewritten into an upper triangular matrix.

Proposition 4. Given a subgroup Z2
L in normal form, i.e. given a, b and s. Then

the following representations are equivalent

(
a 0
s b

)
· Z2

L =

(
ã s̃

0 b̃

)
· Z2

L, (3.25)

where b̃ = gcd(b, s), ã = ab/ gcd(b, s). If furthermore we use Bézout’s identity to
represent k1s + k2b = gcd(b, s), then s̃ = k1a.
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Proof. By computation one can verify that
(
a 0
s b

)
·
(
b/ gcd(b, s) k1
−s/ gcd(b, s) k2

)
=

(
ã s̃

0 b̃

)
.

The second matrix has determinant 1 and therefore is invertible. The assertion
follows, because Q · Z2

L = Z2
L for any invertible matrix over Z2

L.

In some cases we will switch to another description of a subgroup as it comes
up more natural in some settings. Instead of the shear parameter s, one can also
use the shear relative to b, given by

λ =
s

b
=
λ1
λ2
, with λ1 =

s

gcd(b, s)
, λ2 =

b

gcd(b, s)
. (3.26)

This easily explains how to convert s into λ1 and λ2 and vice versa. A visualization
can be found in Figure 3.3. Unlike in the case of separable lattices, there is no
immediate natural way of indexing the Gabor coefficients. However, it seems
sensible to index by the position in time and counting the sampling points in
frequency from the lowest nonnegative frequency upwards. Therefore we will fix

c [m,n] =
L−1∑

l=0

f [l]g[l − an+ 1]e−2πil(m+w[n])/M , (3.27)

for the rest of this chapter, where the additional offset w is given by w[n] =
mod(nλ1, λ2)/λ2. This format is also implemented in the open source MAT-

LAB / Octave Toolbox LTFAT [2], used for the experiments in Section 3.3.3.

Metaplectics. A metaplectic operator, loosely speaking, is the signal domain
counterpart to a symplectic transform of the lattice on phase space. A compre-
hensive treatment of these operators in the finite discrete setting can be found
in [103]. We will be focusing on the one dimensional setting, for which the op-
erators are described in detail in [66]. In this section we will formulate some
results that will prove to be important in subsequent sections. We start by the
factorization of a lattice generator into elementary matrices, which we will denote
by

F =

(
0 −1
1 0

)
, Sc =

(
1 0
c 1

)
, Da =

(
a 0
0 a−1

)
, (3.28)

where c ∈ ZL and a ∈ ZL invertible.

Proposition 5 (Feichtinger et al. (2008) [66]). Let A = ( a b
c d ) ∈ Z2

L with det(A) =
1, then there exists m ∈ Z such that a0 = a+mb is invertible in ZL. Let c0 = c+md,
then

A = Sc0a
−1
0
Da0F

−1S−a−1
0 bFS−m.
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(a) λ1/λ2 = 0 (b) λ1/λ2 = 1/2

(c) λ1/λ2 = 1/3 (d) λ1/λ2 = 2/3

Figure 3.3: The figure shows the placement of the Gabor atoms for four different lattice
types in the time-frequency plane. The displayed Gabor system has parameters a = 6,
M = 6 and L = 36. The lattice (a) is called rectangular or separable and the lattice (b)
is known as the quincunx lattice.
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The proof is based on Weil’s decomposition of arbitrary symplectic matrices
into a composition of elementary symplectic matrices as in (3.28).

Lemma 3. For the above defined matrices we define the corresponding metaplectic
operators as follows

F 7→ UF = F ,
Sc 7→ USc =

(
f [·] 7→ f [·] exp(πic ·2 (L+ 1)/L)

)
,

Da 7→ UDa =
(
f [·] 7→ f [a−1·]

)
.

With these transformations the following hold for all λ ∈ Z2
L

UFπ(λ) = φF (λ)π(Fλ)UF

UScπ(λ) = φSc(λ)π(Scλ)USc

UDaπ(λ) = φDa(λ)π(Daλ)UDa ,

where φF , φSc and φDa are phase factors.

Proof. Some simple calculations are sufficient to establish the result:

UFπ(λ)f = FMωTxf = TωM−xf̂

= e−2πixω/LM−xTωf̂ = e−2πixω/Lπ(Fλ)UFf,

UScπ(λ)f = MωTxe
πic(·+x)2(L+1)/Lf

= eπicx
2(L+1)/LMω+cxTxUScf

= eπicx
2(L+1)/Lπ(Scλ)UScf

and

UDaπ(λ)f = Ma−1ωf(a · −x) = Ma−1ωf
(
a−1(· − ax)

)

= Ma−1ωTaxUDaf = π(Daλ)UDaf.

The combination of the two results above immediately yields the following
theorem.

Theorem 5. For any matrix A ∈ Z2
L with det(A) = 1, there exists a metaplectic

operator UA, such that for all λ ∈ Z2
L

UAπ(λ) = φA(λ)π(Aλ)UA. (3.29)
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3.3.2 Computation on nonseparable lattices

Nonseparable lattices in Z2
L can be interpreted in a variety of ways. Several

different approaches relate Gabor expansions on general lattices to one or sev-
eral equivalent expansions on separable (or rectangular) lattices. From an al-
gorithmic viewpoint, these are of particular interest, since a wealth of research
[6,8,13,129,150,173] has investigated efficient algorithms for analysis and synthe-
sis using Gabor dictionaries on separable lattices. Each of the three approaches
described in this section yields a simple relation between arbitrary given Gabor
systems and Gabor systems on separable sampling sets that can be harnessed for
efficient analysis and synthesis.

Correspondence via multiwindow Gabor. We will decompose a given lattice
into a union of λ2 cosets of a sparser separable lattice, which will allow us to use
multiwindow methods [175–178] for the computation. Using multiwindow methods
for computation of Gabor transforms on nonseparable lattices has been proposed
in [70, 176] and implementation has been discussed in [158, 161]. However, the
latter only briefly mention the computation of dual Gabor windows, not discussing
efficient implementation in detail.

Proposition 6. Given the lattice Λ in normal form specified by the parameters
a, b and s, then

Λ = ∪λ2−1
m=0

(
(ma,mod(ms, b))T + Λ̃

)
, (3.30)

where λ2 = b/ gcd(b, s) and Λ̃ is the separable lattice generated by (λ2a, 0)
T and

(0, b).

Proof. Let the matrix generating Λ be denoted by A and let us define Mx =
{sx+ bω : ω ∈ ZL}, for 0 ≤ x < L/a. We note here, that Mx is the second
coordinate of the set A · (x,ZL)

T . Furthermore, 0 ∈ Mx if and only if x is a
multiple of λ2. To see that, we first note that λ1 and λ2 are relatively prime. Then
the following equation has a solution if and only if x is a multiple of λ2

sx+ bω = b

(
λ1
λ2
x+ ω

)
= 0.

This yields

Mx =Mx+λ2 , for x ∈ ZL/a

Mx = mod(sx, b) +M0
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This observation yields the following decomposition of the original lattice

Λ =

L/a−1⋃

x=0

{ax} ×Mx

=

λ2−1⋃

m=0


(am,mod(sm, b)) +

L/(aλ2)−1⋃

j=0

{ajλ2} ×M0


 ,

which finishes the proof by observing

Λ̃ =

L/(aλ2)−1⋃

j=0

{ajλ2} ×M0.

We can now describe a Gabor system G(g,Λ), with Λ in the form (3.24), and
the related operators completely in terms of a union of Gabor systems G(gm, Λ̃)
on the separable lattice Λ̃.

Proposition 7. Let G(g,Λ), G(gm, Λ̃), with Λ, Λ̃ as in Proposition 6 and g ∈ CL,
gm = Mmod(ms,b)Tmag, for 0 ≤ m < λ2, be Gabor systems, then

Sg,Λf =

λ2−1∑

m=0

Sgm,Λ̃f. (3.31)

Moreover, the Gabor transform can be computed using the identity

〈f,Mkb+mod(ms,b)Tnag〉 = e−
2πiñãmod(ms,b)

L 〈f,MkbTñãgm〉, (3.32)

where ñ = ⌊n/λ2⌋ and m = n− ñ.
Proof. Analogous to Lemma 3, we find that

Mkb+mod(ms,b)Tnag = MkbMmod(ms,b)TñãTmag

= e
2πiñãmod(ms,b)

L MkbTñãMmod(ms,b)Tmag

= e
2πiñãmod(ms,b)

L MkbTñãgm,

yielding (3.32). Using kb + mod(ms, b) = kb + mod(ns, b) = (k − ⌊ns/b⌋)b + ns,
since mod(ñs, b) = 0 allows to derive (3.31) by the identity

L/a−1∑

n=0

L/b−1∑

k=0

〈f,Mns+kbTnag〉Mns+kbTnag

=

λ2−1∑

m=0

L/ã−1∑

ñ=0

L/b−1∑

k=0

〈f,MkbTñãgm〉MkbTñãgm.
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Correspondence via Smith normal form. In this and the following section,
we aim to describe an arbitrary lattice as separable lattice under a symplectic
deformation, i.e. we will determine a symplectic matrix P , such that Λ = P Λ̃
for a general lattice Λ and a separable lattice Λ̃. This problem is equivalent
to decomposing the lattice generator matrix A ∈ Z2×2

L into A = PDV , with a
diagonal matrix D, a determinant 1 matrix V and a symplectic matrix P . We
observed earlier that any determinant 1 matrix in Z2×2

L is symplectic. Thus, this
decomposition is accomplished by applying Smith’s algorithm for matrices in Z2×2

to determine the Smith normal form D̃ of A and transformation matrices P̃ , Ṽ ,
followed by considering the entries of D̃, P̃ , Ṽ modulo L to find D,P, V .

The following proposition by Feichtinger et al. was originally published in [66],
where the proof is also presented. The procedure of computing Gabor transforms
and dual windows using the methods in this section have been proposed therein,
but their implementation was not discussed in detail.

Proposition 8 (Feichtinger et al. (2008)). Let Λ = AZ2
L be a lattice and A =

P̃ D̃Ṽ the Smith decomposition of A. Then

Λ = P Λ̃, (3.33)

where P = mod(P̃ , L), D = mod(D̃, L) and Λ̃ = DZ2
L.

Using Proposition 5 and Lemma 3 one obtains the operator UP corresponding
to the symplectic matrix P and this leads to the final computational procedure
described in the following corollary.

Corollary 7. Let the notation be as in the previous proposition. Then one finds
for the symplectic matrix P and the corresponding metaplectic operator UP by
setting g̃ = U−1

P g
Sg,Λ = UPSg̃,Λ̃U

−1
P . (3.34)

Furthermore, the Gabor coefficients can be computed using the identity

〈f, π (z) g〉 = φP (z)〈U−1
P f, π

(
P−1z

)
g̃〉, for all z = (x, ω)T ∈ Λ. (3.35)

Correspondence via shearing. As detailed in the previous section, the Weil
decomposition and Smith normal form can be used to show that any lattice in
Z2
L can be written as a separable lattice, deformed by 6 elementary symplectic

matrices. This number can be reduced to 4 or less as shown in the following
theorem, which we will prove at the end of this section. Reducing computations
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on nonseparable lattices to the product lattice case via a shear operation has
been proposed earlier [158, 161], however the authors were able to describe only a
subset of all lattices over Z2

L as shears of rectangular lattices. In [158] the author
speculates that it might be possible to describe every lattice as the image of a
product lattice under a horizontal and a vertical shear. In this section, we prove
that this is indeed possible.

The proper definition of discrete, finite chirps, necessary to perform time-
frequency shearing, has been a matter of some discussion, see e.g. [30]. While the
naive linear chirp exp(2πist2/L) is still used by Bastiaans and van Leest [158,161],
a more appropriate definition, see Lemma 3, has been proposed by Kaiblinger
[66, 102], constituting a second degree character [166].

Theorem 6. let A ∈ Z2×2
L . There exist s0, s1 ∈ ZL and V ∈ Z2×2

L with | det(V )| =
1, such that

A = Us0,s1DV, (3.36)

where D ∈ Z2×2
L is diagonal and

Us0,s1 = S−s1F
−1Ss0F. (3.37)

We can now rewrite Gabor transforms on nonseparable lattices in the vein of
Proposition 7 using the metaplectic operator associated to Us0,s1. Subsequently,
we denote by Us0,s1 the metaplectic operator associated with Us0,s1.

Proposition 9. Let Λ = AZ2
L be a lattice, D,Us0,s1 as in the previous theorem

and Λ̃ = DZ2
L. Furthermore, let g ∈ CL and g̃ = U−1

s0,s1g. Then

Sg,Λf = Us0,s1Sg̃,Λ̃U
−1
s0,s1

f (3.38)

and
〈f,MωTxg〉 = φUs0,s1

(z)〈U−1
s0,s1

f,Mω−s1(x−s0ω)Tx−s0ωg̃〉, (3.39)

for all z = (x, ω)T . Moreover,

φUs0,s1
(z) = exp

(
πi(s0ω

2 − s1(x− s0ω)2)(L+ 1)/L
)
. (3.40)

Proof. Everything but the explicit form of the phase factor φUs0,s1
is a direct con-

sequence of Lemma 3 and Theorem 6, note

Us0,s1 = S−s1F
−1Ss0F =

(
1 −s0
−s1 s0s1 + 1

)
.

To complete the proof, set y = (x−s0ω) and determine the phase factor explicitly:

US−s1
F−1USs0

FMωTxf

= exp
(
πis0ω

2(L+ 1)/L
)
US−s1

F−1TωMs0ω−xUSs0
Ff

= exp
(
πis0ω

2(L+ 1)/L
)
US−s1

MωTyF−1USs0
Ff

= exp
(
πi(s0ω

2 − s1y2)(L+ 1)/L
)
Mω−s1yTyUS−s1

F−1USs0
Ff,
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where we used Lemma 3 and exp(2πim(L + 1)/L) = exp(2πim/L) for all m ∈
Z.

For Proposition 9 to be valid, it remains to prove Theorem 6, establishing the
representation of A through Us0,s1.

Proof of Theorem 6. By Proposition 6 we can assume without loss of generality
that A is in lattice normal form, i.e.

A =

(
a 0
s b

)
.

To prove Equation (3.36), we rewrite U−1
s0,s1

A = DV with a diagonal matrix D
and a unitary matrix V . It can be seen that

U−1
s0,s1 =

(
s0s1 + 1 s0

s1 1

)
=

(
1 s0
0 1

)(
1 0
s1 1

)
.

Now, using Proposition 4 in the step from (3.41) to (3.42) below, we can write

U−1
s0,s1

A =

(
1 s0
0 1

)(
1 0
s1 1

)(
a 0
s b

)

=

(
1 s0
0 1

)(
a 0

s1a + s b

)
(3.41)

=

(
1 s0
0 1

)(
ab
X

ak1
0 X

)(
k2 −k1

(s1a+ s)/X b/X

)
(3.42)

=

(
ab
X

s0X + ak1
0 X

)(
k2 −k1

(s1a + s)/X b/X

)
. (3.43)

Here X = gcd(s1a+s, b) and k1, k2 stem from Bézout’s identity when representing
gcd(s1a+s, b) = k1(s1a+s)+k2b. It is important to note that the second matrix in
the last line has determinant one. This shows that the lattice Us0,s1A is separable
if and only if D̃ =

(
ab/X s0X+ak1
0 X

)
is equivalent to a diagonal matrix, i.e.

mod(s0X + ak1, ab/X) = 0. (3.44)

We will now deduce numbers s0 and s1 satisfying our needs from the prime fac-
tor decomposition of the involved quantities. Therefore we represent L =

∏J
j=1 p

nj

j

for a fixed set of prime numbers. Since a and b are divisors of L we find their prime
factor decompositions to have exponents {αj}Jj=1 and {βj}Jj=1, where αj, βj ≤ nj.
The shearing parameter has the decomposition s = l

∏J
j=1 p

σj

j , where gcd(l, L) = 1.
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We choose

s1 =

J∏

j=1

p
µj

j , where µj =

{
1 for αj = σj ,

0 else.
(3.45)

With this choice of s1 we investigate

X = gcd(s1a+ s, b) =
J∏

j=1

gcd(s1a + s, p
βj

j ).

To do so, we have to individually treat three cases:

1. αj < σj : Since s1 and pj are coprime we find gcd(s1a+ s, p
βj

j ) = p
min(αj ,βj)
j .

2. αj > σj : gcd(s1a+ s, p
βj

j ) = p
min(σj ,βj)
j , and min(σj , βj) < αj

3. αj = σj : Use Eq. (3.45) to determine that gcd(s1a+ s, p
βj

j ) = p
min(αj ,βj)
j

The above arguments show that with the choice of s1, we find that X =
∏J

j=1 p
γj
j ,

where γj ≤ αj .
Now we turn to the choice of s0. We first decompose k1 = l

∏J
j=1 p

κj

j , where l
and L are coprime. Let us explain how to choose the shear via the positive part
of a vector

s0 =

(
J∏

j=1

p
(βj−γj−κj)+
j − l

)
J∏

j=1

p
αj+κj−γj
j ,where (x+)j = max(xj , 0).

A straightforward calculation shows then that

s0X + ak1 =

J∏

j=1

p
(βj−γj−κj)++αj+κj

j ,

and we furthermore see that

(βj − γj − κj)+ + αj + κj ≥ βj + αj − γj.

This proofs that (3.44) is satisfied, completing the proof.

Remark 3. It is easy to see that X in the proof above satisfies gcd(a, b) = kX for
some k ∈ N0 and therefore ab/X is a multiple of X. Thus, the diagonal matrix
constructed above is in fact the Smith normal form of A.
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Further optimization. In this section we will first determine which signal lengths
are feasible for some given choice of a,M and λ1, λ2. This restriction holds for all
the presented methods equally and is essential to know in computations.

Particularly when using the shear method described in the previous paragraphs
it is interesting to know for which signal lengths one of the two shears s0 and
s1, preferably the frequency side shear s0, can be chosen to be zero. This saves
additional computation time.

Proposition 10. Given the parameters λ = λ1/λ2, a and M . Then the min-
imal signal length, for which these parameters are feasible is given by Lmin =
λ2 lcm(a,M). All the feasible signal lengths are multiples of this.

Proof. For the parameters in combination with a given signal length L to form a
lattice we require the following conditions

a|L, M |L,
L

a
λ ∈ Z,

L

M
λ ∈ Z,

where the first conditions immediately yield lcm(a,M)|L. From the other two
conditions we can derive

aλ2/ gcd(a, λ1)|L and Mλ2/ gcd(M,λ1)|L.

Therefore, the signal length has to be a multiple of

Lmin = lcm

(
aλ2

gcd(a, λ1)
,

Mλ2
gcd(M,λ1)

, a,M

)
.

We proceed to show that

lcm

(
aλ2

gcd(a, λ1)
, a

)
= λ2a. (3.46)

For this purpose we look at the prime factor decomposition of the involved quan-
tities, where we denote by αj, γj, δj the exponents of the prime number pj of a, λ1
and λ2 respectively. Then we find, since λ1 and λ2 are coprime, that the exponent
of pj of lcm(aλ2/ gcd(a, λ1), a) is given by

max(αj −min(αj , γj) + δj, αj) = αj + δj,
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proving (3.46). The proof that lcm(Mλ2/ gcd(M,λ1),M) = λ2M is completely
analogous. Combine these to find

lcm

(
aλ2

gcd(a, λ1)
,

Mλ2
gcd(M,λ1)

, a,M

)
= lcm(λ2a, λ2M)

= λ2 lcm(a,M).

Now we shall investigate, which multiples of the just derived minimal signal
length allow for computation without the frequency shear. To do so, it is instruc-
tive to compute the set of factors l, for which L = lLmin needs only the time shear.
We will introduce here some important constants related to the time shift a, the
frequency shift b, the number of channels M = L/b and the number of time shifts
N = L/a. We define c, d, p, q ∈ N by

c = gcd (a,M) , d = gcd (b, N) , (3.47)

p =
a

c
=
b

d
, q =

M

c
=
N

d
. (3.48)

With these numbers, the redundancy of a Gabor system can be written as L/ (ab) =
q/p, where q/p is an irreducible fraction. It holds that L = cdpq. Some of the
introduced notation will be important in the next section.

Proposition 11. Given λ, a and M . Let the prime factor decomposition of c =
gcd(a,M) be given by

c =
J∏

j=1

p
γj
j

for some set of prime factors and corresponding exponents. Let

c1 =

J∏

j=1

p
σj

j , σj =

{
γj if gcd(λ2, pj) = 1,

0 else,

then the frequency shear can be chosen to be 0 if the signal length satisfies

L = nLmin

c

c1
, (3.49)

for some n ∈ N. In words, c1 are factors of c that are relatively prime to λ2

Proof. With the standard notation we easily see that the time shear is sufficient
if and only if (s+ kb)/a ∈ Z for some k ∈ {0, . . . ,M − 1}. Rewriting this leads to

L = l̃
Maλ2
λ1 + kλ2

= l
Maλ2

gcd(λ1 + kλ2,Maλ2)
,
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for some l ∈ Z. However, these signal lengths might not be compatible with the
feasibility condition from Proposition 10. Therefore we compute the ratio

L

Lmin

= l
gcd(M, a)

gcd(λ1 + kλ2,Maλ2)
.

Since this fraction should be an integer number, we have to choose

l = n
gcd(λ1 + kλ2,Maλ2)

gcd(M, a, λ1 + kλ2,Maλ2)
,

for some n ∈ N. Therefore, we can compute

L = nLmin

gcd(M, a)

gcd(M, a, λ1 + kλ2)
. (3.50)

With the notation introduced above we are now interested in computing

max
k∈N

(gcd(c, λ1 + kλ2)). (3.51)

Firstly, we rewrite

gcd(c, λ1 + kλ2) =

J∏

j=1

gcd(p
γj
j , λ1 + kλ2).

Now we will individually investigate the factors in the product above.

Case 1. gcd(pj, λ2) = 1, in which case we can find numbers k1,j, k2,j, such that

λ1 + k1,jλ2 = k2,jp
γj
j .

Furthermore, the full set of coefficients of λ2, for which the above equation can be
satisfied is given by Kj =

{
k1,j +mp

γj
j : m ∈ Z

}
. Therefore, for any k ∈ Kj we

find
gcd(p

γj
j , λ1 + kλ2) = p

γj
j .

Case 2. gcd(pj, λ2) 6= 1, which implies directly that λ2 is a multiple of pj. In
this case we have to argue that λ1 + kλ2 can never be a multiple of pj. Indeed,
any linear combination k1,jλ2 + k2,jpj is a multiple of pj and therefore not equal
to λ1, which is assumed to be relatively prime to λ2. Consequently, for any choice
of k ∈ Z

gcd(p
γj
j , λ1 + kλ2) = 1.
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For all the indices j in case 1, it is easy to see that the intersection of the
corresponding sets Kj is not empty. This is an immediate consequence from the
fact that powers of two different prime numbers have no common divisors. Using
the notation introduced above, we can conclude that there exists some k ∈ Z, such
that

gcd(c, λ1 + λ2) = c1.

The last argument needed is to show that k ∈ {0, . . . ,M − 1}. By construction
s+ kb = k̃a, for some k̃ ∈ Z. Therefore, for any m ∈ Z

s+

(
k +m

L

b

)
b =

(
k̃ +m

L

a

)
a,

and for an appropriate choice of m, the expression in brackets on the left hand
side will equal some number in the desired range.

Remark 4. There are possibly other feasible signal lengths than those determined
by (3.49). The full set of feasible lengths is determined by

{
nLmin

gcd(M, a)

gcd(M, a, λ1 + kλ2)
: n ∈ N, k ∈ {0, . . . ,M − 1}

}
.

This can be easily seen from (3.50) in the proof above. For simplicity we only
construct the minimal factor, that Lmin has to be multiplied with, as stated in
(3.51).

Remark 5. Looking at (3.49) we see that, if we are given a certain redundancy
(3.48) q/p and a lattice type λ1/λ2 and require a low value of Lminc/d, we must
choose c such that it is relatively prime to λ2. As an example, consider a common
choice of a = 32, M = 64 and λ1/λ2 = 1/2 (the quincunx lattice). In this case
c = gcd(a,M) = 32 which is the worst possible case, as it is a power of λ2 = 2
giving a value of Lminc/d = 128 · 32 = 4096. If we instead choose a = 27, M = 54
(which is the same redundancy) we get Lminc/d = 108 · 1 = 108. This illustrates
that it is possible to work efficiently with the quincunx lattice by not choosing the
rectangular lattice parameters to be powers of 2.

Extension to higher dimensions

It is well known [34, 67, 125] that multidimensional Gabor transforms and dual
windows can be computed using algorithms designed for the 1D case, if both the
Gabor window and the lattice used can be written as a tensor product. That is,
we assume that with l = (l1, . . . , ld)

T ∈ CL1 × . . .× CLd,

g[l] = g1[l1]⊗ . . .⊗ gD[ld]
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and
Λ = Λ1 × . . .× Λd = A1Z2

L1
× . . .× AdZ2

Ld

for some Aj ∈ Z2
Lj
× Z2

Lj
for j = 1, . . . , d, where d denotes the dimension.

Equivalently, we can say that Λ can be described by a block matrix

A =

(
D E
F G

)
, (3.52)

with diagonal blocks D,E, F,G ∈ Zn×n. In this case, the multidimensional trans-
form and dual window can be computed by subsequently applying the algorithms
presented in the previous sections in every dimension. A matrix describing the
lower dimensional lattice corresponding to dimension j is simply given by

Aj =

(
Dj,j Ej,j

Fj,j Gj,j

)

and can be transformed into lattice normal form (3.24), allowing straightforward
application of the presented algorithms.

However, we are not aware of a constructive method to determine whether a
lattice, given by an arbitrary matrix, can be described by a banded matrix of the
form (3.52).

3.3.3 Implementation and timing

In this section we discuss the implementation and speed of the proposed algorithms.

Methodology for computing the computational complexity. To compute
the discrete Fourier transform, the familiar FFT algorithm is used. When comput-
ing the flop (floating point operation) count of the algorithm, we will assume that
a complex FFT of length M can be computed using 4M log2M flops. A review
of flop counts for FFT algorithms is presented in [101]. When computing the flop
count, we assume that both the window and signal are complex valued.

At this point it is important to recall the notation of c, d, p, q introduced in
(3.47) and (3.48). The cost of performing the computation of a DGT with a full
length window on a rectangular lattice using the algorithm first reported in [147]
is given by

8Lq + 4L log2 d+ 4MN log2 d+ 4MN log2 (M) (3.53)

= L (8q + 4 log2 d) + 4MN (log2 L/p) (3.54)

where the first terms in (3.53) come from the multiplication of the matrices in the
factorization, the two middle terms come from creating the factorization of the
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signal and inverting the factorization of the coefficients, and the last term comes
from the final application of FFTs. The terms can be collected as in (3.54), where
the first term grows as the length of the signal L, and the second terms grows as
the total number of coefficients MN . In the following, we refer to this as the full
window algorithm.

If the window is an FIR window supported on an index set with width Lg

which is much smaller than the length of the signal L, the weighted-overlap-add
algorithm, first reported in [129], can be used instead. It has a computational
complexity of

8L
Lg

a
+ 4NM log2M. (3.55)

In the following, we refer to this as the FIR window algorithm.
A third approach to computing a DGT is a hybrid approach, where a DGT

using an FIR window can be computing using a full window algorithm on blocks
of the input signal. The blocks are then combined using the classical overlap-add
(OLA) algorithm, cf. [88, 148].

The OLA algorithm works by partitioning a system of length L into blocks
of length Lb such that L = LbNb, where Nb is the number of blocks. The block
length must be longer than the support of the window, Lb > Lg. To perform the
computation we take a block of the input signal of length Lb and zero-extend it to
length Lx = Lb +Lg, and compute the convolution with the extended signal using
the similarly extended window. Because of the zero-extension of the window and
signal, the computed coefficients will not be affected by the periodic boundary con-
ditions, and it is therefore possible to overlay and add the computed convolutions
of length Lx together to form the complete convolution of length L.

Equations (3.54) and (3.55) are used to express the efficiency of the algorithms
for the DGT on nonseparable lattices.

Implementation of the shear algorithm

The shear algorithm proposed in Proposition 9 computes the DGT on a nonsep-
arable lattice using a DGT on a separable lattice with some suitable pre- and
postprocessing steps. The computational complexity of the pre- and postprocess-
ing steps is significant compared to the separable DGT, so we wish to minimize
the cost of these steps. An implementation of the shear algorithm is presented
as Algorithm 1. Note that we assume the existence of several underlying rou-
tines: an implementation dgt of the separable Gabor transform, the periodic
chirp pchirp(L,s)= exp(πis ·2 (L+ 1)/L) and shearfind, a program that deter-
mines the shear parameters s0, s1 and the correct separable lattice to do the DGT
on, following the constructive proof of Theorem 6.
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Algorithm 1 The shear algorithm: c = dgtns(f, g, a,M, λ)

1: [s0, s1, br] = shearfind(L, a,M, λ)
2: if s1 6= 0 then
3: p← pchirp(L, s1)
4: g(·)← p(·)g(·)
5: f(·)← p(·)f(·)
6: end if
7: if s0 = 0 then
8: cr ← dgt(f, g, a,M)
9: C1 ← s1a(L+ 1) (mod 2N)

10: for k = 0→ N − 1 do
11: E ← eπi(C1k2 (mod 2N))/N

12: for m = 0→M − 1 do
13: c(

⌊
−s1ka+mb (mod L)

b

⌋
, k)← Ecr(m, k)

14: end for
15: end for
16: else
17: ar ← ab

br
, Mr ← L

br
, Nr ← L

ar
18: C1 ← ar

a
, C2 ← −s0br/a

19: C3 ← as1(L+ 1), C4 ← C2br(L+ 1)
20: C5 ← 2C1br, C6 ← (s0s1 + 1)br
21: p← pchirp(L,−s0)
22: g(·)← p(·)fft(g(·))/L
23: f(·)← p(·)fft(f(·))
24: cr ← dgt(f, g, br, Nr)
25: for k = 0→ Nr − 1 do
26: for m = 0→Mr − 1 do
27: sq1 ← C1k + C2m (mod 2N)

28: E ← eπi(C3s2q1−m(C4m+C5k) (mod 2N))/N

29: m̃← C1k + C2m (mod N)

30: k̃ ←
⌊
−s1ark+C6m (mod L)

b

⌋

31: c(k̃, m̃)← Ecr(−k (mod Nr), m)
32: end for
33: end for
34: end if
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A simple trick is to notice that when a frequency-side shear is needed, the DFT
of the signal f and the window g are multiplied by a chirp on the frequency side,
f̃ = U−1

s0,s1
f and g̃ = U−1

s0,s1
g. The total cost of this is 4 FFTs and two pointwise

multiplications. However, instead of transforming the chirped signal and window
back to the time domain, we can compute the nonseparable DGT directly in the
frequency domain using the well-known commutation relation of the DFT and the
translation and modulation operators:

〈f,MmTng〉 = e−πimn/L 〈Ff,M−nTmFg〉 . (3.56)

This trick saves the two inverse FFTs at the expense of the multiplication of the
coefficients by a complex exponential and reshuffling. As we already need these
operations to realize (3.39) and (3.40), they can be combined with no additional
computational complexity.

The overlap-add algorithm can be used in conjunction with the shear algorithm
in the following case: we wish to compute the DGT with an FIR window for a
nonseparable lattice using the shear algorithm. Because of the frequency-side
shearing, the window is converted from an FIR window into a full length window,
making it impossible to perform real-time or block-wise processing. However, if
the shear algorithm is used inside an OLA algorithm, this is no longer a concern,
as the shearing will only convert the window into a window of length Lg + Lb,
restoring the ability to perform block-wise processing.

In total, the shear-OLA algorithm for the DGT is calculated in three steps
using the three algorithms:

1. Split the input signal into blocks using the overlap-add algorithm

2. Apply the shears to the blocks of the input signal as in the shear algorithm

3. Use the full-window rectangular lattice DGT on the sheared signal blocks.

The downside of the shear-OLA algorithm is that the total length of the DGTs
is longer than the original DGT by

ρ =
Lg + Lb

Lb
, (3.57)

where Lb is the block length. Therefore, a trade-off between the block length and
the window length must be found, so that the block length is long enough for
(3.57) to be close to one, but at the same time small enough to not impose a too
long processing delay.
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Dual and tight windows

The shear method in Proposition 9 can also be used to compute the canonical dual
and canonical tight windows, using the factorization of the frame operator given
in (3.38). The complete algorithm for the canonical dual window is shown in Algo-
rithm 2, and uses the same trick as the Gabor transform algorithm to compute the
canonical dual when a frequency side shear is needed: do it in the Fourier domain
without transforming back. Again, we assume the existence of an implementation
gabdual for the computation of Gabor dual windows on separable lattices.

Algorithm 2 Dual window via shearing: g̃ = gabdualns(g, a,M, λ)

1: [s0, s1, br] = shearfind(L, a,M, λ)
2: if s1 6= 0 then
3: p← pchirp(L, s1)
4: g(·)← p(·)g(·)
5: end if
6: b← L

M
, Mr ← L

br
, ar ← ab

br
7: if s0 = 0 then
8: gd ← gabdual(g, ar,Mr)
9: else

10: p0 ← pchirp(L,−s0)
11: g(·)← p0(·)fft(g)(·)
12: gd ← L · gabdual(g, L/Mr, L/ar)
13: gd ← ifft(p0(·)gd(·))
14: end if

To compute the canonical dual and tight windows on a separable lattice, the
matrices are first factorized as in [147, 150] and then the factorized matrices are
transformed as in [100].

Analysis of the computational complexity

The flop counts of the various algorithms used for computing the DGT on a non-
separable lattice is listed in Table 3.1. The additional parameters used are defined
as follows. For the multiwindow algorithms we define

cmw = gcd(amw,M), dmw = gcd(b, Nmw),

pmw = Nmw/dmw, qmw =M/cmw,
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Table 3.1: Flop counts for different ways of computing the DGT on a nonseparable
lattice. First column lists the algorithm, second column the flop count for the particular
algorithm. Listed from the top, the algorithms are: The multiwindow algorithm using
the full window rectangular lattice algorithm, the multiwindow algorithm using the FIR
window rectangular lattice algorithm, the Smith normal form algorithm using the full
window rectangular lattice algorithm, the shear algorithm when no frequency shear is
needed, the shear algorithm including the frequency shear and finally the overlap-add
versions of the shear algorithms. The term Lg denotes the length of the window used so
Lg/a is the overlapping factor of the window.

Alg.: Flop count

Multi-window

FIR. 8L
Lg

a + 4NM log2 M

Full. Lλ2 (8qmw + 4 log2 dmw)
+MN (4 log2 L/pmw + 6)

SNF L (8q + 4 log2 dsm + 8 log2 L+ 18)
+MN (4 log2 L/p + 6)

Shear alg.
No freq. shear L (8q + 4 log2 d+ 6ktime)

+MN (4 log2 L/p + 6ktime)

Freq. shear L (8q + 4 log2 Lcsh + 6 + 6ktime)
+MN (4 log2 L/p + 6)

Shear OLA
No freq. shear ρL (8q + 4 log2 ρdshola + 6ktime)

+ρMN (4 log2 ρLb/p + 6ktime)

Freq. shear ρL (8q + 4 log2 ρLcshola + 6ktime + 6)
+ρMN (4 log2 ρLb/p + 6)

where amw = aλ2 and Nmw = N/λ2. For the shear and shear OLA algorithms we
define

csh =
cash
a
, dsh =

dM

Msh
,

cshola =
cashola
a

, dshola =
dM

Mshola
,

ktime =

{
1 if a time shear is used,

0 otherwise,

where ash,Msh and ashola,Mshola are the parameters of the rectangular lattice the
problem is reduced to in the respective algorithm.
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Based on the computational complexity presented in the table, any of the
algorithms may for some specific problem setup be the fastest, except for the
Smith-normal form algorithm which is always slower than the shear algorithm:

• The multiwindow algorithm for FIR windows is the fastest for very short
windows.

• The multiwindow-OLA algorithm is the fastest for simple lattices (λ2 small)
and medium length windows.

• The shear-OLA algorithm is the fastest for more complex lattices (λ2 large)
and medium length windows.

• The multiwindow algorithm is the fastest for simple lattices (λ2 small) and
very long windows.

• The shear algorithm is the fastest for more complex lattices (λ2 large) and
very long windows.

Numerical experiments

Implementations of the algorithms described in this paper can be found in the
Large Time Frequency Analysis Toolbox (LTFAT), cf. [145], [2]. An appropriate
algorithm will be automatically invoked when calling the dgt or dgtreal func-
tions. The implementations are done in both the Matlab / Octave scripting
language and in C. All tests were performed on an Intel i7 CPU operating at 3.6
GHz.

As the speed of the algorithms depends on a large number of parameters a, M ,
L, Lg, c, d, s0, s1 and similar parameters relating to the multiwindow and shear
transforms, we cannot provide an exhaustive illustration of the running times.
Instead we will present some figures that illustrates the crossover point of when
the the shear algorithm becomes faster than the multiwindow algorithm as the
lattice complexity λ2 increases. The behavior of the algorithms as the window
length Lg increases is completely determined by the algorithms for the rectangular
lattice, so we refer to [147] for illustrations.

The experiments shown in Figure 3.4 illustrate how the computational com-
plexity of the running time of the algorithm depends on the lattice complexity λ2:
The complexity of the shear algorithm is independent of λ2, while the complexity
of the multiwindow algorithm grows linearly.

The bumps in the curves for the multiwindow algorithm are due to variations in
qmw: The multiwindow algorithm transforms the problem into λ2 different DGTs
that should be computed on a lattice with redundancy q/(pλ2). The number qmw
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Figure 3.4: Computation of the DGT for nonseparable lattices with increasing lattice
complexities, λ2. The length is kept fixed at L = lcm(a,M) · 2520 which is the minimal
legal transform length for all the tested lattices. (left) Accurate flop counts and (right)
the actual running time. The Gabor system parameters are a = 32, M = 64 (p/q = 1/2)
(1st row), a = 40, M = 60 (p/q = 2/3) (2nd row) and a = 60, M = 80 (p/q = 3/4) (3rd
row).
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is the nominator of this written as an irreducible fraction, and depending on pλ2
it may be smaller than q.

The bumps in the curves for the shear algorithm are caused by whether or not
a frequency side shear is required for that particular lattice configuration, and to a
lesser extent whether a time-side shear is needed. As the multiwindow algorithm
is faster for simple lattices, there is a cross-over point where the shear algorithm
becomes faster, but the cross-over point depends strongly on the exact lattice
configuration. Just considering the flop counts would predict that the cross-over
happens for a smaller value of λ2 that what is really the case. This is due to the fact
that there are more complicated indexing operations and memory reshuffling for
the shear algorithm than for the multiwindow algorithm, and this is not properly
reflected in the flop count.

The cross-over point where one algorithm is faster than the other is highly
dependent on the interplay between the algorithm and the computer architecture.
Experience from the ATLAS [168], FFTW [77] and SPIRAL [50] projects shows
that in order to have the highest performance, it is necessary to select the algorithm
for a given problem size based on previous tests done on the very same machine.
Performing such an optimization is beyond the scope of this our study, and we
therefore cannot make statements about how to choose the most efficient cross-
over points.
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Chapter 4

Theory of nonstationary Gabor

systems

This chapter compiles results presented in the manuscript [91] and joint work with
P. Balazs, M. Dörfler, F. Jaillet and G.A. Velasco, published in [10].

In this chapter, we investigate the properties of adaptive time-frequency sys-
tems that generalize classical Gabor systems. Although some of the presented
results apply in a more general setting, the focus is on time-frequency systems
with compactly supported generators.

Redundant short-time Fourier methods, also known as Gabor analysis [71] and
previous chapters, are widely used in signal processing applications. The basic
idea is the analysis of a signal f by consideration of the projections 〈f, gx,ω〉 of f
onto time-frequency atoms gx,ω. The gx,ω are obtained by translation of a unique
prototype function over time and frequency: gx,ω(t) = g(t− x)e2πiωt. Recall that,
for g ∈ L2(R) and a, b ∈ R+, the corresponding Gabor system [78, 84] G(g, a, b) is
the set of functions

gm,n(t) = MmbTnag(t) = g(t− na)e2πimbt, ∀ m,n ∈ Z. (4.1)

The prototype function g is also called window or generator function. This classical
construction leads to a signal decomposition with fixed time-frequency resolution
over the whole time-frequency plane.

Of particular interest are systems that allow for stable, perfect reconstruction
of any function f ∈ L2(R) from the system coefficients, given by inner products
with the system elements. Such systems are generally called frames [31, 57] or,
when they are of the form G(g, a, b), Gabor frames. For any frame, there exists
a possibly non-unique dual frame that enables the aforementioned perfect recon-
struction. Gabor frames G(g, a, b) possess the nice property that, due to their
highly structured nature, the existence of a dual frame with the same structure,

63
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G(h, a, b) for some h ∈ L2(R), is guaranteed. This inheritance of structure from
the original frame by a dual frame does not hold for more general frames and is
one of the reasons why Gabor frames are so convenient to work with. One such
dual frame is the canonical dual, obtained by applying the inverse frame operator,
cf. Section 2 for details, to the frame elements.

One of the early and most prevalent results in the field is the theory of painless
nonorthogonal expansions [48], where the authors determine a simple necessary
and sufficient condition for Gabor frames G(g, a, b) with compactly supported gen-
erator and dense frequency sampling, i.e. small frequency step b, to constitute a
frame. Then the frame operator is diagonal and thus easily inverted and the canon-
ical dual generator g̃ has the same support as g. This setting is often referred to
as the painless case, see also Section 2.3.

In applications, frames generated from compactly supported window functions
are of particular interest, because they allow for the most efficient computation of
the frame coefficients and reconstruction. Compact support of the frame generators
is also crucial for real-time implementation. Thus, the investigation of such frames
beyond the painless case is an active field, see e.g. [24, 32, 37, 39, 108] and [35, 36].
In the latter two articles, Christensen, Kim and Kim prove that for any Gabor
frame with supp(g) ⊆ [1, 1], a = 1 and b ∈]1/2, 1[, there exists a dual Gabor frame
generated by a window supported on some compact set dependent only on the
magnitude of b, cf. [36, Theorem 2.1, Lemma 3.2]. In fact, they show in [35] that
the support condition in [36] can be further improved, for a large class of window
functions g. This is also reflected in our own results in Section 4.3, although we
recover only a special case of the results in [35]. The results in this manuscript are
somewhat complementary to those of Christensen, Kim and Kim. To allow for a
comparison, we recall some results from [36] in Section 4.3.

More results on the support of dual Gabor frames are due to Gröchenig and
Stöckler [85, Theorem 9]. They prove the existence of dual frames with compactly
supported, piecewise continuous generator for G(g, a, b) with g a totally positive
function of finite type. While the class of functions treated by Gröchenig and
Stöckler is quite different from the compactly supported functions in this contri-
bution, the support size of the dual generator grows proportionally to the quotient
ab

1−ab
in both cases.

The restriction of Gabor systems to a fixed resolution is often undesirable in
processing signals with variable time-frequency characteristics. Alternative de-
compositions have been introduced to overcome this deficit, e.g. the wavelet
transform [47], the constant-Q transform (CQT) [25] or decompositions using
filterbanks [23], in particular based on perceptive frequency scales [86]. Adap-
tation over time is considered in approaches such as modulated lapped trans-
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forms [117], adapted local trigonometric transforms [167] or (time-varying) wavelet
packets [131].

Most of the cited work achieves flexible tilings of the time-frequency plane, but
efficient reconstruction from signal-adaptive, overcomplete time-frequency trans-
forms is rarely addressed. One exception is a recent approach in [171], which is
in fact a special case of the more general model considered in this chapter. The
wealth of existing approaches to fast adaptive transforms underlines the need for
flexibility arising from many applications. On the other hand, the introduction of
flexibility in a transform that is based on accurate mathematical modeling causes
technical complications that are not always easy to overcome.

We introduce a class of efficient adaptive time-frequency transforms, that allow
for perfect invertibility under some easily verified conditions. As a straightforward
generalization of Gabor transforms, they will be referred to as nonstationary Gabor
transforms (NSGT). While classical Gabor systems are constructed from regular
translations and modulations, Nonstationary Gabor (NSG) systems are generated
by a countable set of window functions and modulations thereof, allowing for adap-
tivity of the analysis windows and the sampling points. Explicitly, we associate a
sequence of pairs G(g,b) := (gn, bn)n∈Z, gn ∈ L2(R) and bn ∈ R+, with the set of
functions

gm,n(t) = Mmbngn(t) = gn(t)e
2πimbnt, for all m,n ∈ Z. (4.2)

If G(g,b) constitutes a frame, we call it a nonstationary Gabor frame. Note that
a nonstationary Gabor system with bn = b and gn = Tnag for all n ∈ Z with
g ∈ L2(R) and a, b ∈ R+ is a Gabor system.

Nonstationary Gabor frames combine the adaptivity of local Fourier bases [7,
117] with the flexibility of redundant systems to provide a powerful framework
for time-frequency representations. Much like Gabor frames give rise to Wilson
bases [20, 21, 49, 65], local Fourier bases can be constructed from NSG frames,
although the more intricate properties of their relationship have yet to be investi-
gated.

As a special case relevant for applications, we introduce a generalized notion of
painless nonorthogonal expansions [48]. The central feature of painless expansions
is the diagonality of the frame operator associated with the proposed analysis
system, i.e. the frame operator is a simple multiplication operator. This idea is
used here to yield painless nonstationary Gabor frames and will allow for both
mathematical accuracy in the sense of perfect reconstruction (the frame operator
is invertible) and numerical feasibility by means of an FFT-based implementation.
The construction of painless nonstationary Gabor frames relies on three intuitively
accessible properties of the windows and time-frequency shift parameters used.

1. The signal f of interest is localized at time- (or frequency-)positions n by
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means of multiplication with a compactly supported (or bandlimited) window
function gn.

2. The Fourier transform is applied on the localized pieces f · gn. The resulting
spectra are sampled densely enough in order to perfectly reconstruct f · gn
from these samples.

3. Adjacent windows overlap to avoid loss of information. At the same time,
unnecessary overlap is undesirable. In other words, we assume that 0 < A ≤∑

n∈Z |gn(t)|2 ≤ B <∞, a.e., for some positive A and B.

We will show that these requirements lead to invertibility of the frame operator
and therefore to perfect reconstruction. Moreover, the frame operator is diagonal
and its inversion is straightforward. Further, the canonical dual frame has the
same structure as the original one. Because of these pleasant consequences follow-
ing from the three above-mentioned requirements, the frames satisfying all of them
will be called painless nonstationary Gabor frames and we refer to this situation as
the painless case. Under application of a Fourier transform to the signal of inter-
est, our approach leads to adaptivity in either time or frequency. The concept of
this chapter relies on ideas introduced in [95], and presented at [96]. First, we give
all formal proofs and provide the link to frame theory. The possibility to repre-
sent other analysis/synthesis systems with this approach is established. Numerical
issues are investigated and several applications are presented in the following Chap-
ter 5. Besides the applications presented therein, the painless construction is being
used in realizing various time- or frequency-adaptive transforms [111,112,122,171].

In the second part of this chapter, we investigate the properties of more general
NSG systems. For more results on nonstationary Gabor frames beyond the painless
case, we refer to [55], [56].

Note that, in contrast to regular Gabor frames, the existence of a dual frame
with the same structure, i.e. comprised of window functions hn and modulation
parameters bn, is not guaranteed for general NSG frames. Indeed, one of the
central results in this chapter details the structure of the canonical dual system
under certain restrictions. These restrictions, concerning the support and overlap
of the window functions gn and the modulation parameters bn, guarantee compact
support for the elements of the canonical dual frame and a certain modulation and
phase shift structure, detailed in Section 4.4. This structure can be deduced from
that of the inverse frame operator, which is in turn determined using the Walnut
representation of the NSG frame operator and the Neumann series representation
of its inverse.

Further, we obtain a duality condition, necessary and sufficient for pairs of non-
stationary Gabor systems G(g,b) and G(h,b) to constitute dual frames, requiring
only mild restrictions on the modulation parameters bn. For a fixed NSG frame
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G(g,b), these equations might not be solvable, i.e. a dual system of the form
G(h,b) may not even exist. We determine a simple, yet somewhat restrictive,
condition on G(g,b), such that the duality conditions are solvable.

The frame and Bessel properties of generalized shift-invariant system (GSI)
have been extensively studied by Hernández, Labate and Weiss [89], as well as Ron
and Shen [137]. We refer to GSI systems as frequency-side NSG systems since they
are equivalent to NSG systems via an application of the Fourier transform. As such,
the results in [89,137] can be rewritten to give Bessel and frame duality conditions
for nonstationary Gabor systems that are equivalent to our duality result, but for
different technical conditions. Indeed the Dual Gramian, heavily used in [137], can
be considered equivalent to the Walnut-like representations presented in Section
4.2 of this work. Nonetheless, we feel that our approach is sufficiently different
from the techniques and restrictions applied in [89,137] to be interesting in its own
right. Our results also apply to the classical Gabor case by choosing bn = b and
gn = Tnag to describe the support of the canonical dual window g̃ in the setting
considered in [36] and [35], complementing the results therein. By restricting the
duality conditions for NSG systems in that way, we recover the famous duality
conditions for Gabor systems [99, 133, 136] and a simple special case of a result
in [35].

In this and subsequent chapters, we are mainly interested in Gabor and non-
stationary Gabor systems that at least constitute a Bessel sequence. We associate
g and b with the sequences (gn)n and (bn)n, respectively.

4.1 Construction of nonstationary Gabor frames

4.1.1 Resolution changing over time

As opposed to standard Gabor analysis, where time translation is used to gener-
ate atoms, the setting of nonstationary Gabor frames allows for changing, hence
adaptive, windows in different time positions. Then, for each time position, we
build atoms by regular frequency modulation.

Definition 10. Let g := (gn)n∈Z be a sequence of window functions in L2(R)
and b := (bn)n∈Z, with bn ∈ R+ for all n, a sequence of frequency sampling steps,
then the associated nonstationary Gabor (NSG) system is the collection G(g,b) :=
{gn,m}n,m∈Z of time-frequency atoms

gn,m(t) = gn(t)e
2πimbnt = Mmbngn(t).

Implicitly, we assume that the functions gn are well-localized and centered
around time-points an. This is similar to the standard Gabor scheme, however



68 CHAPTER 4. NONSTATIONARY GABOR THEORY

with the possibility to vary the window gn for each position an. Thus, sampling of
the time-frequency plane is done on a grid which is irregular over time, but regular
over frequency at each temporal position.

Figure 4.1 shows an example of such a sampling grid. Note that some results
exist in Gabor theory for semi-regular sampling grids, see e.g. Chapter 3 or [29].
Our study uses a more general setting, as the sampling grid is in general not
a subgroup of the time-frequency plane and, more importantly, the window can
evolve over time. To get a first idea of the effect of nonstationary Gabor frames,
the reader may take a look at Figure 4.2 and Figure 4.3, which show regular
Gabor transforms and a nonstationary Gabor transform of the same signal. Note
that the NSGT in Figure 4.3 was adapted to transients and the components are
well-resolved.
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Figure 4.1: Example of a sampling grid of the time-frequency plane when building a
decomposition with time-frequency resolution evolving over time

In the current situation, the analysis coefficients may be written as

cn,m = c[n,m] = 〈f,Mmbngn〉 = ̂(f · gn)(mbn), m, n ∈ Z.

Remark 6. If we set gn(t) = g(t− na) for a fixed time-constant a and bn = b for
all n, we obtain the case of classical painless nonorthogonal expansions for regular
Gabor systems introduced in [48].

4.1.2 Resolution changing over frequency

An analog construction in the frequency domain leads to irregular sampling over
frequency, together with windows featuring adaptive bandwidth. Then, sampling
is regular over time. An example of the sampling grid in such a case is given in
Figure 4.4.
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Figure 4.2: Glockenspiel (Example 1). Gabor representations with short window (11.6
ms), resp. long window (185.8 ms).
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Figure 4.3: Glockenspiel (Example 1). Regular Gabor representation with a Hann win-
dow of 58 ms length and a nonstationary Gabor representation using Hann windows of
varying length.
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Definition 11. Let g := (gm)m∈Z be a sequence of window functions in L2(R)
and a := (am)m∈Z, with am ∈ R+ for all m, a sequence of time sampling steps,
then the associated (frequency side) nonstationary Gabor system is the collection
qG(g, a) := {gn,m}n,m∈Z of time-frequency atoms

gn,m(t) = F−1 (M−namgm) (t) = Tnam|gm(t). (4.3)

Therefore ĝn,m(ξ) = gm(ξ) · e−2πinamξ and the analysis coefficients may be writ-
ten as

cn,m = c[n,m] = 〈f, gn,m〉 = 〈f̂ ,F(Tnam|gm)〉 = F−1
(
f̂ · gm

)
(nam).

Hence, the situation is completely analogue to the one described in the previous
section, up to a Fourier transform.
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Figure 4.4: Example of a sampling grid of the time-frequency plane when building a
decomposition with time-frequency resolution changing over frequency

In practice we will choose each function gm as a well localized band-pass func-
tion with center frequency bn.

Link between nonstationary Gabor frames, wavelet frames
and filterbanks:

To obtain wavelet frames, see Section 2.4, the wavelet transform in (2.35) is sam-
pled at sampling points (bn, am). A typical discretization scheme [115] is (nb0, am0 ).
Then, the frame elements are ϕm,n(t) = Tnb0Dam0

ϕ(t). Comparing this expression
to (4.3) and setting gm = Dam0

ϕ and using a regular translation step b0, we see
that a wavelet frame with this discretization scheme corresponds to a nonstation-
ary Gabor transform.
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Another possibility for sampling the continuous wavelet transform [47] uses
(nb0a

m
0 , a

m
0 ). The resulting systems are often referred to as affine systems. Again,

we obtain a correspondence to nonstationary Gabor frames by setting gm = Dam0
ϕ

and translation step b0 · am0 on scale m.

Beyond the setting of wavelets, any filterbank [115], even with non-constant
down-sampling factors Dm, can be written as a nonstationary Gabor frame, so
long as the transfer functions are known explicitly. A filterbank is a set of time-
invariant, linear filters hm, i.e. Fourier multipliers. The response of a filterbank
for the signal f and sampling period T0 is given (in the continuous case) by

cn,m = (f ∗ hm) (nDmT0) =

∫

R

f(t)hm (nDmT0 − t) dt = 〈f, gn,m〉 ,

where gn,m(t) = hm (nDmT0 − t). Setting gm = hm(−·) and choosing am = DmT0
this construction is realized with nonstationary Gabor frames using (4.3). If the
filters are band-limited and the down-sampling factors are small enough, then
the conditions for the painless case are met, see Theorem 7 in the next section.
Consequently, the corresponding reconstruction procedure can be applied.

4.1.3 Painless nonstationary Gabor frames - Invertibility
and Reconstruction

In this central section we give the precise conditions under which painless non-
stationary Gabor frames are constructed. The first two basic conditions, namely
compactly supported windows and sufficiently dense frequency sampling points,
lead to diagonality of the associated frame operator S, defined as in Section 2.2.
Analogous to the discrete (matrix) case, we say that an operator is diagonal if it
is a multiplication operator and non-diagonal otherwise. The third condition, the
controlled overlap of adjacent windows, then leads to boundedness and invertibil-
ity of S. The following theorem generalizes the results given for the classical case
of painless nonorthogonal expansions [48, 84].

Theorem 7. For every n ∈ Z, let the function gn ∈ L2(R) be compactly supported
with supp(gn) ⊆ [cn, dn] and let bn be chosen such that dn − cn ≤ b−1

n . The frame
operator

S : f 7→
∑

n,m

〈f, gn,m〉gn,m

of the system

gn,m(t) = gn(t) e
2πimbnt, m ∈ Z and n ∈ Z,



72 CHAPTER 4. NONSTATIONARY GABOR THEORY

is given by a multiplication operator of the form

Sf =

(∑

n

b−1
n |gn|2

)
f, almost everywhere. (4.4)

Proof. Note that,

〈Sf, f〉 =
∑

n

∑

m

∣∣
∫

R
f(t) gn(t) e

−2πimbntdt
∣∣2

=
∑

n

∑

m

∣∣
∫ dn

cn

f(t) gn(t) e
−2πimbntdt

∣∣2,

due to the compact support property of the windows gn. Let In = [cn, cn + b−1
n ]

for all n and χI denote the characteristic function of the interval I. Taking into
account the compact support of gn again, it is obvious that

f gn = χIn

∑

k

Tkb−1
n
(fgn),

with the b−1
n -periodic function

∑
k Tkb−1

n
(f gn). Hence, with Wn,m(t) = e−2πimbnt,

∣∣
∫ dn

cn

f(t) gn(t)Wn,m(t) dt
∣∣2 =

∣∣
∫

In

f(t) gn(t)Wn,m(t) dt
∣∣2,

=
∣∣〈f gn,Wn,m〉L2(In)

∣∣2

and applying Parseval’s identity to the sum over m yields

〈Sf, f〉 =
∑

n

∑

m

|〈f gn,Wn,m〉L2(In)|2

=
∑

n

b−1
n ‖f gn‖2 =

〈∑

n

b−1
n |gn|2f, f

〉
.

Provided G(g,b) is a frame with bn = b for all n ∈ Z, in particular if it is a
regular Gabor frame, then it can easily be shown that the frame operator SG(g,b)

commutes with modulations of the form Mmb, with m ∈ Z, and thus the canonical
dual frame is of the form G(g̃,b). This also holds for systems with non-diagonal
frame operator. Under the label Fourier-like systems, NSG systems with uniform
modulation parameter and their frame properties have recently been treated in [38].

The setup described in Theorem 7 is usually referred to as the painless case
and G(g,b) is called a painless system. While in general, the inversion of S can be
numerically unfeasible, in the special case described in Theorem 7, the invertibility
of the frame operator is easy to check and inversion is a simple multiplication.
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Corollary 8. Under the conditions given in Theorem 7, the system of functions
gn,m forms a frame for L2(R) if and only if

∑
n b

−1
n |gn(t)|2 ≃ 1. In this case, the

canonical dual frame elements are given by:

g̃n,m(t) =
gn(t)∑

k b
−1
k |gk(t)|2

e2πimbnt, (4.5)

and the associated canonical tight frame elements can be calculated as:

g̊n,m(t) =
gn(t)√∑

k b
−1
k |gk(t)|2

e2πimbnt.

Remark 7. The optimal lower and upper frame bounds are explicitly given by
A0 = ess inf

∑
n b

−1
n |gn(t)|2 and B0 = ess sup

∑
n b

−1
n |gn(t)|2.

We next state the results of Theorem 7 and Corollary 8 in the Fourier domain.
This is the basis for adaptation over frequency.

Corollary 9. For every m ∈ Z, let the function |gm be band-limited to supp(gm) =
[cm, dm] and let am be chosen such that dm − cm ≤ a−1

m . Then the frame operator
of the system

gn,m(t) = |gm(t− nam) , m ∈ Z, n ∈ Z

is given by a convolution operator of the form

〈Sf, f〉 = 〈F−1
(∑

m

a−1
m |gm|2

)
∗ f, f〉 (4.6)

for f ∈ L2(R). Hence, the system of functions gn,m forms a frame of L2(R) if and
only if

∑
m a

−1
m |gm(ξ)|2 ≃ 1. The elements of the canonical dual frame are given

by

g̃n,m(t) = TnamF−1

(
gm∑

k a
−1
k |gk|2

)
(t) (4.7)

and the canonical tight frame is given by

g̊n,m(t) = TnamF−1


 gm√∑

k a
−1
k |gk|2


 (t). (4.8)

Proof. We deduce the form of the frame operator in the current setting from the
proof of Theorem 7 by setting

〈Sf, f〉 = 〈Ŝf, f̂〉 =
∑

n,m

|〈f̂ , ĝn,m〉|2

and the rest of the corollary is equivalent to Corollary 1.
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Remark 8. As mentioned in Section 4.1.2, the NSGT is linked to wavelet frames.
In the painless case it is possible to construct a dual sequence which has the same
structure. Consequently, Corollary 9 is a generalization of the painless wavelet
construction in [48]. For non-painless wavelet frames it is sometimes also possible
to construct a dual sequence which has the same structure, see e.g. [58,59], where
alternative duals are constructed.

4.2 Walnut and Walnut-like representations

Both regular and nonstationary Gabor frame-type operators admit a so-called
Walnut representation, i.e. a representation purely in terms of translates of the
frame generators and the function to which the operator is applied. The Walnut
representation for nonstationary Gabor frames has only recently been rigorously
proven for systems constructed from window functions in the Wiener space [55],
recall Definition 2. Here, we also use a variant for Bessel sequences. For the proof,
we refer the interested reader to [55], since the Bessel case only requires minor
modifications.

Proposition 12 (Dörfler, Matusiak (2011) [55]). Let G(g,b) and G(h,b) be non-
stationary Gabor systems with bn ∈ R+ and gn ∈ L2(R), for all n ∈ Z. If either

(i) gn, hn ∈ W (L∞, ℓ1,R) for all n ∈ Z, or

(ii) G(g,b) and G(h,b) are Bessel sequences,

then the associated frame-type operator Sg,h,b := DG(h,b)CG(g,b) admits a Walnut
representation of the form

Sg,h,bf =
∑

n,k∈Z

b−1
n hnTkb−1

n
gnTkb−1

n
f, for all f ∈ L2(R). (4.9)

Substituting bn by b and gn by Tnag for all n ∈ Z yields the Walnut representation
of Gabor frame-type operators (Proposition 2). Setting h = g yields the Walnut
representation for the frame operator.

The Walnut representation shows that the frame operator maps a function
f ∈ L2(R) onto a sum of weighted, translated copies of itself, where the weight
functions are given by ωn,k := b−1

n gnT−kb−1
n
gn, for all n, k ∈ Z and the correspond-

ing translates are T−kb−1
n

.
The painless case result, Theorem 7 can alternatively be derived from the

Walnut representation easily: If supp(gn) ⊆ [cn, dn] and b−1
n ≥ dn − cn, then

ωn,k = b−1
n gnT−kb−1

n
gn ≡ 0 for all k 6= 0 and thus S is diagonal. Furthermore,

boundedness of the sum in (4.4) is a necessary condition for any NSG system to
constitute a Bessel sequence.
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Proposition 13. Let G(g,b) and G(h,b) be nonstationary Gabor Bessel sequences
with bn ∈ R+ and gn ∈ L2(R), for all n ∈ Z. Let B be a joint Bessel bound of
G(g,b) and G(h,b). Then

∑

n∈Z

b−1
n |hnTτgn| ≤ B a.e. (4.10)

In particular
∑

n∈Z b
−1
n |gn|2 ≤ B almost everywhere.

Proof. To prove
∑

n∈Z b
−1
n |gn|2 ≤ B, we retrace the steps of a proof by Chui and

Shi [40] for Wavelet frames. By the Bessel property of G(g,b) and Plancherel’s
theorem for Fourier series,

B‖f‖2 ≥
∑

n,k∈Z

|〈f, gn,k〉|2 =
∑

n,k∈Z

∣∣∣∣∣

∫ b−1
n

0

∑

l∈Z

Tlb−1
n
f(t)Tlb−1

n
gn(t)e

−2πikbnt dt

∣∣∣∣∣

2

=
∑

n∈Z

b−1
n

∫ b−1
n

0

∣∣∣∣∣
∑

l∈Z

Tlb−1
n
f(t)Tlb−1

n
gn(t)

∣∣∣∣∣

2

dt.

Observe b−1
n -periodicity of the integrand. For all 0 < N ∈ Z, we can choose some

ǫ > 0, such that for all t0 ∈ R and f =
√
2ǫ

−1
χ[t0−ǫ,t0+ǫ]

N∑

n=−N

1

bn

∫ t0+b−1
n /2

t0−b−1
n /2

∣∣∣∣∣
∑

l∈Z

Tlb−1
n
f(t)Tlb−1

n
gn(t)

∣∣∣∣∣

2

dt

=
N∑

n=−N

1

2ǫbn

∫ t0+ǫ

t0−ǫ

|gn(t)|2 dt ≤ B‖f‖ = B

holds. Subsequently taking limits over ǫ and N proves
∑

n∈Z b
−1
n |gn|2 ≤ B almost

everywhere.
The general case follows by Cauchy-Schwarz’ inequality:

∑

n∈Z

b−1
n |hnTτgn| ≤

(∑

n

b−1
n |hn|2

∑

l

b−1
l |gl|2

)1/2
≤ B, (4.11)

for all τ ∈ R.

The Walnut representation is a very handy tool, describing the action of NSG
frame operators in an intuitive way. We would like to use a slightly more general
definition, though.
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Definition 12. Let Λ be a countable index set, X a dense subspace of L2(R) and
W : L2(R)→ L2(R) a bounded linear operator. If sequences (ωλ)λ∈Λ and (aλ)λ∈Λ
of bounded functions ωλ ∈ L∞(R) and scalars aλ ∈ R exist such that

Wf =
∑

λ∈Λ

ωλTaλf, for all f ∈ X (4.12)

and the sum on the right-hand side is unconditionally convergent, then we say that
W has a Walnut-like representation with weights ωλ and translation constants aλ.

Operators of this form have been introduced before, see e.g. [9], albeit not
under that name, in the context of multi-window Gabor frames in amalgam spaces.
The authors show that the operators with Walnut-like representation, such that
the L∞-norms of the weights ωλ are summable in a weighted ℓ1-sense, form a
Banach ∗-algebra and that their inverse, if it exists, is an operator with Walnut-
like representation. In that context, the results we give in Theorems 9 and 10
can be seen as a particular case of a larger theory investigating in the structure
of the inverse of certain operators. While the results in [9], see also the references
therein, are asymptotic in nature, by restricting to a very special case we obtain
the form of the inverse operator more explicitly. For regular Gabor systems, the
Walnut representation has been shown to be absolutely convergent by Janssen [99].
For more general NSG systems, we discuss an alternate Walnut-like representation
of the nonstationary Gabor frame operator and its unconditional convergence in
Section 4.4.1.

Under weak additional assumptions, we can show that in fact, the weights
corresponding to a fixed translate of f in (4.12) are bounded by the operator norm
of W.

Lemma 4. Let W : L2(R) 7→ L2(R) be a bounded linear operator with Walnut-like
representation. If ‖W‖op = C <∞ and for all c, d ∈ R with c < d, {aλ : ωλ |[c,d] 6=
0}λ∈Λ is free of accumulation points, then

∣∣∣
∑

λ∈Λ
aλ=aλ0

ωλ

∣∣∣ ≤ C a.e., (4.13)

for all λ0 ∈ Λ.

Proof. Without loss of generality, assume

∑

λ∈Λ
aλ=aλ0

ωλ ≥ C0 > C a.e. on M with µ(M) > 0.
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Then for all δ > 0, there exists l ∈ Z, such that µ(M ∩Bδ(2lδ)) > 0. Furthermore,
since {aλ : ωλ |[c,d] 6= 0}λ∈Λ has no accumulation points for all c < d, we can
choose a pair δ > 0, l ∈ Z such that

{aλ : ωλ |Bδ(2lδ) 6= 0}λ∈Λ ∩B2δ(aλ0) = {aλ0}

and furthermore µ(Ml) > 0, with Ml =M ∩Bδ(2lδ). Take f = χMl−aλ0
. If f ∈ X,

then ∣∣∣Wf |Bδ0
(2lδ0)

∣∣∣ ≥ C0|Taλ0
f | ⇒ ‖Wf‖ ≥ C0‖f‖,

contradicting ‖W‖op = C < C0. If f /∈ X, construct a sequence (fn ∈ X)n∈N
converging to f . For such a sequence, some n0 ∈ N exists, such that ‖Wfn‖ >
C‖fn‖, for all n ≥ n0.

Remark 9. If on the other hand, W : L2(R) 7→ L2(R) is linear and Wf can
be written in the form (4.12) for all f in a dense subspace of L2(R), then W is
guaranteed to be a bounded linear operator if

∑
λ∈Λ ‖ωλ‖∞ <∞.

4.3 Results in the regular case

In this section, we recall a result of Christensen, Kim and Kim [36] and state the
results of the following Section 4.4 in a simplified form for regular Gabor frames.
Thus, this section demonstrates the application of our results to a classical setting
and eases the reader into the technicalities necessary for the description of the
general case. The results discussed herein are special cases of and follow directly
from the results presented in Section 4.4.

We start by fixing some notation. For the rest of this section, we assume g, as
used in the Gabor system G(g, a, b), to be compactly supported with supp(g) =
[c, d]. Let

In,0 = [c, d] + na,

I+n,k = [c− (k − 1)a+ kb−1, d] + na,

I−n,k = [c, d+ (k − 1)a− kb−1] + na,

(4.14)

for all n ∈ Z, k ∈ N.
These sets will be helpful in describing both the support of the weight functions

of the Walnut-like representation of S−1, as well as the support of the canonical
dual window S−1g in the case that G(g, a, b) constitutes a frame. The conditions
placed on G(g, a, b) in Theorems 8 and 9 will be seen to imply I±n,k+1 ⊆ I±n,k ⊆ In,0
and I+n,1 ∩ I−n,1 = ∅ for all n ∈ Z, k ∈ N.

The following theorem combines two results in [36], rewritten in our notation:
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Theorem 8 (Christensen, Kim, Kim). Let g ∈ L2(R) supported on [−1, 1] and
b ∈]1/2, 1[. Assume that G(g, 1, b) is a frame and set K := ⌊ b

1−b
⌋, then

(i) [36, Th 2.1] there exists a dual window h ∈ L2(R) with supp h ⊆ [−K,K].

(ii) [36, Lem 3.2] If g is bounded, K > 1 and G(h, 1, b), with h ∈ L2(R) supported
on [−K,K], is a dual frame, then h is essentially supported on a subset of

I0,0 ∪
K⋃

k=1

(
I−−k,k ∪ I+k,k

)
.

The main tool used in [36] is the duality condition for Gabor Bessel sequences
G(g, a, b) and G(h, a, b) to form dual frames [99, 133, 136]

b−1
∑

n∈Z

TnahTkb−1+nag =

{
1 a.e. for k = 0,

0 a.e. else.
(4.15)

In Section 4.4.1, we will discuss the existence of a similar duality condition for
nonstationary Gabor systems G(g,b) and G(h,b).

Our following result is a restriction of Theorem 10 to Gabor systems, showing
that the canonical dual window of G(g,b) satisfies the properties attributed to h
in Theorem 8 (i) and (ii). The conditions on g, a and b, while written differently
as a preparation for Theorem 10, are equivalent to those in Theorem 8. We
note that, by restricting g to be a continuous, compactly supported function with
finitely many zeros inside its support, Christensen, Kim and Kim show that the
frame property of G(g, 1, b) is equivalent to the existence of a continuous function
h ∈ L2(R), with support contained in [−K,K] such that g, h satisfy the duality
relations above. Our result investigates the structure of the inverse frame operator
and derives properties of the canonical dual frame, but we do not attempt to
characterize the frame property.

Theorem 9. Let g ∈ L2(R) with supp(g) ⊆ [c, d] and d > c. Furthermore, let

a ∈ [d−c
2
, d− c[, b ∈]0, 1

a
[ and K = ⌊ (d−c−a)b

1−ab
⌋. If G(g, a, b) is a frame, the following

hold.

(i) The inverse frame operator S−1 has a Walnut-like representation of the form

S−1f =

K∑

k=0

ωkT−kb−1f, (4.16)

with supp(ωk) ⊆
⋃

n∈Z I
−
n,k and supp(ω−k) ⊆

⋃
n∈Z I

+
n,k for all k ∈ N.
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Frame operator structure
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Inverse frame operator structure
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Figure 4.5: Section of a Gabor frame operator and its inverse in the setting of Theorem
9 (schematic illustration). Left : The weights correspond to side-diagonal entries of a
matrix, with ω0 (the main diagonal) and ω±1 located on side-diagonal ±b−1. Grey
diagonal lines indicate non-zero entries in the side-diagonals/weights and we see that
at most 3 entries in each row are non-zero. Dashed lines indicate the support of the
translates of g. Right : The inverse frame operator additionally possesses a regularly
spaced set of weights ωk, located on the side-diagonals kb−1. Their non-zero entries
are constrained by the support of the respective translates of g, indicated by horizontal
and vertical lines. The parameter choice leads to shrinking support for weights located
further from the main diagonal.

(ii) The canonical dual window g̃ = S−1g ∈ L2(R) satisfies

supp(g̃) ⊆ I0,0 ∪
K⋃

k=1

(
I−−k,k ∪ I+k,k

)
. (4.17)

Borrowing intuition from the discrete case, the inverse frame operator S−1 can,
according to Theorem 9 (i), informally be interpreted as an infinitesimal matrix,
supported only on the main diagonal and a discrete set of side-diagonals which in
turn are non-zero only on specific intervals. For an illustration, see Figure 4.5.

We see that Theorems 8 and 9 are complementary and shed light on the same
problem from somewhat different points of view.

Example 1. Assume that G(g, 7
6
, 3
5
), with g ∈ L2(R) continuous, supp(g) = [−1, 1]

and g(t) > 0 for all t ∈]−1, 1[, constitutes a frame. The frame operator of G(g, 7
6
, 3
5
)

can be written as

S−1f =
1∑

k=−1

ωkT−kb−1f,
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with the essential supports of ω1 and ω−1 contained in
⋃

n∈Z

[
−1 + 7n

6
, 1 + 7n−10

6

]

and
⋃

n∈Z

[
−1 + 7n+10

6
, 1 + 7n

6

]
, respectively. Consequently,

supp(S−1g) ⊆
[
−13

6
,−11

6

]
∪ [−1, 1] ∪

[
11

6
,
13

6

]
,

since I+n,k = I−n,k = ∅, for all k > 1.

This example raises the question when ωk ≡ 0 for |k| > 1 can be guaranteed, i.e.
the weights associated with S−1 are supported on the same set as those associated
with S. An answer is given in the following Corollary.

Corollary 10. Let G(g, a, b) as in Theorem 9, with b ∈]0, 2
d−c+a

[, then

Sf =

1∑

k=−1

ωkT−kb−1f,

and

S−1f =

1∑

k=−1

ω̃kT−kb−1f,

and ω1 ≡ 0 and ω̃1 ≡ 0 outside
⋃

n∈Z I
−
n,1, ω−1 ≡ 0 and ω̃−1 ≡ 0 outside

⋃
n∈Z I

+
n,1.

Proof. To obtain the statement for S−1, apply Theorem 9(i) and simply check
that I+n,k = I−n,k = ∅, for all k > 1. For S, the statement follows by applying the
conditions of Theorem 9 to the Walnut representation (4.9).

Under the conditions above, it is reasonable to assume that it is possible to
find a dual window with support in [c, d]. As can be shown by applying the duality
condition (4.15), this is true in many cases.

Corollary 11. Let G(g, a, b) with g ∈ L2(R) and supp(g) ⊆ [c, d] be a Gabor
Bessel sequence as in Theorem 9 with b ∈]0, 2

d−c+a
[.

(a) Let G(h, a, b) a Gabor Bessel sequence with h ∈ L2(R), supp(h) ⊆ [c, d].
G(g, a, b) and G(h, a, b) are dual frames if and only if the following hold:

– For almost every t ∈ [c, c+ a[:

(hg) (t) +T−a (hg) (t) = b. (a.i - Gabor)

– For almost every t ∈ I−0,1:

(hT−b−1g) (t) = 0. (a.ii - Gabor)
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– For almost every t ∈ I+0,1:
(hTb−1g) (t) = 0. (a.iii - Gabor)

(b) A Bessel sequence G(h, a, b) with h ∈ L2(R) and supp(h) ⊆ [c, d] exists, such
that the pair G(g, a, b), G(h, a, b) satisfy (a), if and only if there is some
A > 0 such that the following hold:

|g(t)| ≥ A or |T−ag(t)| ≥ A for a.e. t ∈ [c, c+ a[, (b.i - Gabor)

|T−ag| ≥ A a.e. on supp(T−b−1g) ∩ I−0,1 (b.ii - Gabor)

and
|Tag| ≥ A a.e. on supp(Tb−1g) ∩ I+0,1. (b.iii - Gabor)

Note that any real, continuous g with 0 < g(t) < 1 for all t ∈ (c, d) satisfies
Corollary 11(b) for all a < d−c. Furthermore, under the assumptions 0 < g(t) < 1
for all t ∈ (c, d) any h ∈ L2(R) with supp(h) ⊆ [c, d], satisfying Corollary 11(a)
must have its essential support contained in [d − b−1, c + b−1]. The result above,
the restriction of Corollary 15 to the regular Gabor case, is little more than a
reduction of the duality condition (4.15) to systems G(g, a, b) with supp(g) ⊆ [c, d]
and b ∈]0, 2

d−c+a
[. We see that pairs of dual frames with small support can be

found if the painless case conditions are almost fulfilled.
A more general result, improving the support condition in Theorem 8, can be

found in [35]. It cannot, however, easily be generalized to nonstationary Gabor
frames.

4.4 Results for nonstationary Gabor frames

We now generalize the notation used in Section 4.3 to the nonstationary setting
and state our results in the general case. Since the modulation parameters bn need
not be equal anymore, we will work with

B+
n,k :=

k−1∑

j=0

b−1
n+j and

B−
n,k :=

k−1∑

j=0

b−1
n−j, ∀ n ∈ Z, k ∈ N.

(4.18)

Then, for the nonstationary Gabor system G(g,b), with supp(gn) = [cn, dn] for all
n ∈ Z, we set

In,0 = [cn, dn],

I+n,k = [cn−k+1 +B−
n,k, dn],

I−n,k = [cn, dn+k−1 −B+
n,k]

(4.19)
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Frame operator structure
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Inverse frame operator structure
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Figure 4.6: Section of a NSG frame operator and its inverse in the setting of Theorem
10 (schematic illustration). Left : The weights correspond to side-diagonal entries of
a matrix, with ω0 the main diagonal and ωn,±1 located on side-diagonal ±b−1

n . Grey
diagonal lines indicate non-zero entries in the side-diagonals/weights and we see that
at most 3 entries in each row are non-zero. Dashed lines indicate the support of the
individual window functions. Right : The inverse frame operator additionally possesses
an irregularly spaced set of weights ωn,k and ωn,−k located on the side-diagonals B+

n,k and

−B−
n,k, respectively. That is, they are dependent on the non-uniform frequency steps bn.

Their non-zero entries are constrained by the support of the respective windows, indicated
by horizontal and vertical lines. The parameter choice leads to shrinking support for
weights located further from the main diagonal.

for n, k as before. Note that for gn = Tnag and bn = b for all n ∈ Z, these sets
coincide with those in the previous section.

As before, the notational conventions above will be helpful in describing the
structure inherent to the Walnut-like representation of inverse nonstationary Ga-
bor frame operators. The conditions on G(g,b) in Theorem 10 below imply
I±n,k+1 ⊆ I±n,k ⊆ In,0 and I+n,1 ∩ I−n,1 = ∅ for all n ∈ Z, k ∈ N. Some intuition
can be gained from likening the NSG frame operator and its inverse to a sparse,
infinitesimal matrix with a structured set on non-zero side-diagonals that are in
turn non-zero only on specific intervals. For an illustration, see Figure 4.6.

The following theorem details the structure of the inverse frame operator and
the canonical dual frame (g̃m,n)m,n:

Theorem 10. Let G(g,b) be a nonstationary Gabor frame with gn ∈ L2(R),
supp(gn) = [cn, dn], cn < dn and bn ∈] 1

dn−cn
,∞[ for all n ∈ Z. If ǫ > 0 exists

such that dn−1 ≤ cn+1 and b−1
n ≥ max{dn−cn

2
, cn+1−cn, dn−dn−1}+ǫ for all n ∈ Z,

then the inverse frame operator S−1
g,b = S−1 has a Walnut-like representation of the

form
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(i)

S−1f = ω0f +
∑

n∈Z

∑

k∈N

(
ωn,kT−B+

n,k
f + ωn,−kTB−

n,k
f
)
, (4.20)

for all f ∈ L2(R). Furthermore, supp(ωn,k) ⊆ I−n,k and supp(ωn,−k) ⊆ I+n,k
for all n ∈ Z, k ∈ N.

(ii) For any fixed n ∈ N the elements {g̃m,n = S−1gm,n}m∈Z of the canonical dual
frame satisfy

supp(g̃m,n) ⊆ In,0 ∪
⋃

k∈N

(
I−n−k,k ∪ I+n+k,k

)
. (4.21)

(iii) The elements g̃m,n, m 6= 0 of the canonical dual frame can be derived from
g̃0,n by

g̃m,n = Mmbn

(
g̃0,n|I(0)n

+
∑

k∈N

g̃0,n|I−n−k,k
exp(2πimbnB

+
n−k,k)

+ g̃0,n|I+
n+k,k

exp(−2πimbnB−
n+k,k)

)
, (4.22)

where Mx denotes modulation by x.

(iv) For each n ∈ Z, there exists kn ∈ N such that I±n,k = ∅ for all k ≥ kn.
Furthermore, if a constant C <∞ exists, such that maxn(dn−cn−b−1

n ) ≤ C,
then I±n,k = ∅ for all n ∈ Z and k ≥ C/ǫ.

Loosely speaking, the above theorem can be read as follows: Whenever a non-
stationary Gabor system, comprised of compactly supported window functions
with moderate overlap and sufficiently small modulation parameters, constitutes
a frame, then

(i) The inverse frame operator possesses a Walnut-like representation with com-
pactly supported off-diagonal weight functions.

(ii) Each element of the canonical dual frame is supported on a finite, disjoint
union of compact intervals.

(iii) The canonical dual frame of G(g,b) is “almost” a nonstationary Gabor system
with the same modulation parameters. Some phase shifts may occur, though.

(iv) For fixed n ∈ Z only finitely many of the intervals I±n,k are non-empty. If
the window sizes behave nicely, there is a uniform bound on the number of
non-empty sets, valid for all n ∈ Z.
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It is imminent from Theorem 10(ii) and (iii), that we can only guarantee the
canonical dual system to be a NSG system with the same modulation parameters, if
either I±n,k = ∅ for all n, k or bn = b for all n ∈ Z. Other constructions that provide
a canonical dual system with the same NSG structure are possible, but require
some care in the choice of both window functions and parameters, see the example
below. Intuitive constructions such as the choice of a uniform undersampling
factor, i.e. b−1

n = α(dn − cn) for some α < 1, do not leave the structure of the
original system intact.

Example 2. Let G(g,b) be a NSG frame satisfying the conditions of Theorem 10.
Let furthermore {nj}j∈Z ⊆ Z with nj < nj+1 such that

(i) b−1
nj
≥ dnj

− cnj
, for all j ∈ Z and

(ii) bn = bk for all n, k ∈ [nj + 1, nj+1 − 1], j ∈ Z.

Then it is easy to see that I+nj ,1
= ∅, I−nj ,1

= ∅ and the phase factors in Equation
(4.22) equal 1, whenever I+n+k,k, respectively I−n−k,k, is non-empty. Consequently,
the canonical dual frame is of the form G(g̃,b) for some sequence of functions
g̃ = (g̃n)n∈Z.

To recover Theorem 9 from Theorem 10, combine (i) and (iv); note that B±
n,k =

kb−1 for all n, k, take ωk =
∑

n ωn,k for k 6= 0.
Before we prove Theorem 10, we collect some preliminary results about NSG

systems G(g,b) satisfying the conditions of the theorem. First, dn−1 ≤ cn+1 guar-
antees that, except possibly at endpoints, at most two adjacent windows gn and
gn+1 overlap. Moreover, b−1

n < dn − cn combined with b−1
n > cn+1 − cn yields

cn+1 < cn + b−1
n < dn and analogous, cn < dn − b−1

n < dn−1, implying that gn, gn+1

and gn, gn−1 overlap on a nontrivial interval. If b−1
n ≥ dn − cn, then cn ≤ dn−1 is

still a necessary condition for completeness of G(g,b). Further, bn < 2
dn−cn

yields
[cn, dn] ∩ ([cn, dn] + kb−1

n ) = ∅ for |k| ≥ 2.
By Corollary 12, we have gnTkb−1

n
gn ≡ 0 for |k| > 1. The support of products of

shifted weights Tτωn,k will play a substantial role in proving Theorem 10. Indeed,
they are the motivation behind the definition of the intervals I±n,k. Since a better
understanding of their relations in the setting of Theorem 10 is crucial, we precede
the proof with a lemma discussing these relations. The results are used, or at least
considered, several times during the course of the proof of Theorem 10.

Lemma 5. Under the conditions of Theorem 10, the following hold for all n,m ∈
Z, k, j ∈ N:

(a) I−n,k+1 = I−n,1 ∩ (I−n+1,k − b−1
n ), with |I−n,k+1| < min{|I−n,k|, |I−n+1,k|}. Analogous:

I+n,k+1 = I+n,1 ∩ (I+n−1,k + b−1
n ), with |I+n,k+1| < min{|I+n,k|, |I+n−1,k|}.
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(b) I±n,k+1 ( I±n,k.

(c) For n 6= m, I+n,k ∩ I+m,j = ∅. Analogous: I−n,k ∩ I−m,j = ∅.

(d) Whenever I−n,k ∩ I+m,j 6= ∅, it follows that m ∈ {n − 1, n − 2}. Furthermore

I−n,k ∩ I+n−2,j 6= ∅ implies cn = dn−2.

(e) For m 6= n, I−n,k + b−1
n ∩ I+m,j = ∅ and I−n,k ∩ I+m,j − b−1

m = ∅.

(f) The following are equivalent:

(i) I−n−2,1 + b−1
n−2 ∩ I−n,1 6= ∅,

(ii) I+n−2,1 ∩ I+n,1 − b−1
n 6= ∅,

(iii) cn = dn−2.

Proof. (a) The conditions on b imply cn > cn+1− b−1
n and dn+k+1 < dn+k+ b

−1
n+k+1,

proving the statement about the size of I+n,k+1. Further, by the same argument,
I−n,1 ∩ (I−n+1,k − b−1

n ) = [cn, dn − b−1
n ] ∩ [cn+1 − b−1

n , dn+k+1 −B+
n,k+1] = [cn, dn+k+1 −

B+
n,k+1] = I−n,k+1 = I−n,k ∩ (I−n+1,k − b−1

n ). The proof for I+n,k+1 is analogue.

(b) Follows from (a).
(c) By (a), it is sufficient to show that I+n,1 ∩ I+m,1 = ∅ and I−n,1 ∩ I−m,1 = ∅ for

n 6= m. Since the conditions on b guarantee dn − b−1
n < dn−1 ≤ cn+1 < cn + b−1

n ,
(c) is immediate.

(d) Assume m < n− 1 or m > n, then it is easy to see that I−n,1 ∩ I+m,1 = {cn}
if m = n − 2, cn = dn−2 and otherwise I−n,1 ∩ I+m,1 = ∅. For m = n we get
I−n,1 ∩ I+m,1 = ∅ by the conditions on b. The second part immediately follows from
(b) with I−n,1 + b−1

n = I+n,1, the third part is analogue.

(e) and (f) follow from (b),(c), resp. (c),(d), together with I−n,1+b
−1
n = I+n,1.

Lemma 5(f) and the second part of (d) are concerned with the case that cn =
dn−2 for some n ∈ Z. When we determine the Walnut-like representation of the
inverse NSG frame operator in the following proof, the non-empty intersection
between I−n,k and I+n−2,j leads to weights that are non-zero on a single point. The
total number of such point weights is countable, hence their essential support is
empty. Consequently the action of the corresponding operator equals that of the
zero operator 0 : f 7→ 0. Thus, we will only point out those weights at the
appropriate position in the proof, afterwards ignoring them entirely. However,
when considering discrete NSG systems, these “point weights” influence the action
of the corresponding operator and must be considered, somewhat complicating
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the argument. For more information regarding that case, see Remark 11 after the
proof.

With Lemma 5 in place, we can now proceed to the proof of Theorem 10.

Proof of Theorem 10. (i): If b−1
n ≥ dn−cn for all n ∈ Z, then the frame operator S

is diagonal and there is nothing to prove, cf. [10, Theorem 1] for more information.
Otherwise, we make use of both the Neumann series (2.22) representation of S−1

and the Walnut representation of S. Since we assume G(g,b) to be a frame with
frame bounds A,B, the Neumann series converges to the inverse frame operator
and each of its elements defines a bounded, linear operator. The proof can roughly
be structured into two parts. First, we use an induction argument to show that
each element Nj, j ∈ N0 with N := I − 2S/(A + B), of the Neumann sum

2
A+B

∑∞
j=0N

j possesses a Walnut-like representation of the form

Njf = ωj,0f +
∑

n∈Z

j∑

k=1

(
ωj,n,kT−B+

n,k
f + ωj,n,−kTB−

n,k
f
)
, (4.23)

for all f ∈ L2(R), with supp(ωj,n,k) ⊆ I−n,k and supp(ωj,n,−k) ⊆ I+n,k for all
j ∈ N0, k ∈ N. Since S−1 = 2

A+B

∑
j∈N0

Nj, this establishes (a), except for
the convergence of the desired ordering of the involved sums. The second part
discusses this convergence of the sum of Walnut-like representations to the desired
Walnut-like representation of S−1.

Similar to Equation (4.23) above, symmetric terms corresponding to ωj,n,k for
positive, respectively negative, k will appear throughout the proof. Both terms
are generally handled in the same manner. Consequently, while we always provide
both terms, studying one of the two closely should be sufficient to understand the
argument of the proof. Since the identity operator I has a Walnut-like represen-
tation If = ω0,0f with ω0,0 ≡ 1, we can invoke the conditions on G(g,b) to see
that

N0f = f and N1f = ω1,0f +
∑

n∈Z

(
ω1,n,1T−B+

n,1
f + ω1,n,−1TB−

n,1
f
)

for all f ∈ L2(R) , with supp(ω1,n,1) ⊆ I−n,1 and supp(ω1,n,−1) ⊆ I+n,1. This proves
(4.23) for j ∈ {0, 1}.

For the induction step, we show that (4.23) for j implies (4.23) for j+1 for all
j ∈ N. We define for j ≥ 1

N
j
Df = ωj,0f +

∑

n∈Z

j−1∑

k=1

(
ωj,n,kT−B+

n,k
f + ωj,n,−kTB−

n,k
f
)
,
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and
N

j
Rf =

∑

n∈Z

(
ωj,n,jT−B+

n,j
f + ωj,n,−jTB−

n,j
f
)
.

This allows us to write Nj as the sum of Nj
D and N

j
R and consequently

Nj+1 = NjN1 = N
j
DN

1 +N
j
RN

1. (4.24)

Note that the only assumptions made on the form of Nj is the support of the
weights, allowing us to use the induction assumption to show that N

j
DN

1 has a
Walnut-like representation of the form

N
j
DN

1f = ηj,0f +
∑

n∈Z

j∑

k=1

(
ηj,n,kT−B+

n,k
f + ηj,n,−kTB−

n,k
f
)
, (4.25)

for all f ∈ L2(R), with supp(ηj,n,k) ⊆ I−n,k and supp(ηj,n,−k) ⊆ I+n,k for all k ∈
{1, . . . , j}.

On the other hand, for all f ∈ L2(R), Nj
RN

1f can be written as

N
j
RN

1f =
∑

n∈Z

(
ωj,n,jT−B+

n,j
N1f + ωj,n,−jTB−

n,j
N1f

)
.

By Lemma 5 and for all n ∈ Z, k = j:

supp(ωj,n,kT−B+
n,j
ω1,0) ⊆ I−n,j,

supp(ωj,n,kT−B+
n,j
ω1,ñ,l) ⊆





I−n,j l = −1, ñ = n+ k + l,

I−n,j+1 l = 1, ñ = n+ k,

∅ else.

an analogous for k = −j. In the final case above, we already include the situation
where supp(ωj,n,k) ⊆ I−n,k and supp(ω1,ñ,l) ⊆ I±ñ,1 such that I−n,k and I±ñ,1 intersect
at a single point, confer the introductory remark preceeding the proof.

Order the appearing weights by the corresponding translate of f and take their
sum to find that Nj

RN
1f can be written as

N
j
RN

1f = ω̃j+1,0f +
∑

n∈Z

j+1∑

k=j−1

(
ω̃j+1,0,kT−B+

n,k
f + ˜ωj+1,0,−kTB−

n,k
f
)

(4.26)

for all f ∈ L2(R), with supp(ω̃j+1,n,k) ⊆ I−n,k and supp( ˜ωj+1,n,−k) ⊆ I+n,k for k ∈
{j− 1, j, j+1}. Considering Equations (4.25) and (4.26), we conclude that (4.23)
holds for j + 1, completing the induction argument.
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We combine the results so far, arriving, for all f ∈ L2(R), at

S−1f =
2

A +B

∑

j∈N0

Njf

=
2

A+B

(∑

j∈N0

ωj,0f +
∑

n∈Z

∑

k∈N

(
ωj,n,kT−B+

n,k
f + ωj,n,−kTB−

n,k
f
))

. (4.27)

Recall that ‖N1‖op ≤ C, with C = B−A
B+A

< 1, where A and B are the optimal frame
bounds for G(g,b). To conclude the proof, we want to interchange the sum over
j with the sums over n and k. To achieve that, we show absolute convergence in
operator norm. Observe that, by dn ≤ cn+2 we see that

∑
n∈Z ‖f |[cn,dn] ‖ ≤ 2‖f‖

for all f ∈ L2(R) and, checking the support of ωj,n,k, we have

ωj,n,kT−B+
n,k
f = ωj,n,kT−B+

n,k
(f |[cn+k−1,dn+k−1]), for k > 0

and
ωj,n,kTB−

n,−k
f = ωj,n,kTB−

n,−k
(f |[cn+k+1,dn+k+1]), for k < 0.

By Lemma 4, we have |ωj,0|, |ωj,n,k| ≤ Cj and consequently
∥∥∥∥
∑

j∈N0

|ωj,0|f +
∑

n∈Z

∑

k∈N

(
|ωj,n,k|T−B+

n,k
f + |ωj,n,−k|TB−

n,k
f
)∥∥∥∥

≤
∥∥∥∥
∑

j∈N0

Cj |f |+
∑

n∈Z

j∑

k=1

Cjfn,k

∥∥∥∥, (∗)

where

fn,k = |ωj,n,k|T−B+
n,k

∣∣f |[cn+k−1,dn+k−1]

∣∣+ |ωj,n,−k|TB−
n,k

∣∣f |[cn−k+1,dn−k+1]

∣∣ .
In the next step, we separate the first term in the sum over j and for the remaining
terms, interchange the sums over j with that over n. We also reorder the sums
over j and k by the appearing restrictions of f .

(∗) =

∥∥∥∥∥∥
1

1− C |f |+
∑

n∈Z

∑

k∈N

fn,k
∑

j≥|k|

Cj

∥∥∥∥∥∥

=

∥∥∥∥∥
1

1− C |f |+
1

1− C
∑

n∈Z

∑

k∈N

Ckfn,k

∥∥∥∥∥

≤ 1

1− C ‖f‖+
2

1− C
∑

n∈Z

∑

k∈N

Ck
∥∥f |[cn,dn]

∥∥

≤ 1

1− C ‖f‖+
4

1− C ‖f‖
∑

k∈N

Ck =
3C + 1

(1− C)2 ‖f‖ .
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Hence, we can interchange the sums in (4.27) and find

S−1f =
2

A+B

(
ω0f +

∑

n∈Z

∑

k∈N

(
ωn,kT−B+

n,k
f + ωn,−kTB−

n,k
f
))

, (4.28)

with ω0 =
∑

j ωj,0, ωn,k =
∑

j ωj,n,k and ‖ω0‖∞ ≤ 1
1−C

, ‖ωn,k‖∞ ≤ C|k|

1−C
for all

n ∈ Z, k ∈ Z \ {0}. This concludes the proof of (i).
(ii): To determine the support of g̃m,n, we use (i) and collect the weights ωñ,k

such that
supp(TB+

n,k
ωñ,k) ∩ [cn, dn] 6= ∅ for k > 0,

respectively
supp(T−B−

n,−k
ωñ,k) ∩ [cn, dn] 6= ∅ for k < 0.

By checking the support properties, these can be found to be exactly the weights

ωn−k+1,k, ωn+k−1,−k, for all n ∈ Z, k ∈ N and

ωn−k,k, ωn+k,−k, for all n ∈ Z, k ∈ N.

Consequently,

g̃m,n = ω0gm,n +
∑

k∈N

(
ωn−k+1,kT−B+

n−k+1,k
gm,n + ωn−k,kT−B+

n−k,k
gm,n

+ωn+k−1,−kTB−
n+k−1,k

gm,n + ωn+k,−kTB−
n+k,k

gm,n

) (4.29)

holds and

supp(g̃m,n) = In,0
⋃

k∈N

(
I−n−k+1,k ∪ I−n−k,k ∪ I+n+k−1,k ∪ I+n+k,k

)
.

Complete the proof of (ii) by noting that I±n,k+1 ⊆ I±n,k and I±n,1 ⊆ In,0, where we
applied Lemma 5.

(iii): We know that gm,n = Mmbngn and e2πimbnt is a b−1
n -periodic function.

Furthermore, B−
n+k,k+1 = B−

n+k,k+b
−1
n and analogous for B+

n−k,k+1. Apply Equation
(4.29) to g0,n = gn and gm,n = gne

2πimbn· to confirm (iii).
(iv): Fix n ∈ Z and k−n ∈ N0 the smallest integer, such that dn−cn−b−1

n ≤ k−n ǫ.
Since cm + b−1

m ≥ cm+1 + ǫ, for all m ≤ n, we see that I−
n,k̃

= ∅ for all k̃ ≥ k−n .

Analogous, there exists k+n ∈ N0, such that I+
n,k̃

= ∅ for all k̃ ≥ k+n . Define

kn := max{k+n , k−n }, then I±
n,k̃

= ∅ for all k̃ ≥ kn. This proves the first part. To

prove the second part note that |I+n,1| = |I−n,1| ≤ C follows from dn − cn − b−1
n ≤ C

for all n ∈ Z. As before, |I±n,k+1| ≤ |I±n,k| − ǫ, concluding the proof.
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Remark 10. Altogether, Theorem 10 tells us that, in the described case, the canon-
ical dual frame of G(g,b) is not too different in structure from G(g,b) itself. From
Theorem 10(iii) in particular, we see that a choice of constant bn leads, as expected,
to a canonical dual that is also a nonstationary Gabor frame. In cases where bn
varies in a systematic way, e.g. as powers of 2, {S−1gn,m}n,m∈Z can be interpreted
as a nonstationary Gabor frame such that the functions S−1gn,m for fixed n ∈ Z
are constructed from few prototypes by regular modulation with some step b̃n only
dependent on n.

Remark 11. [Discrete NSG systems] Above, we have disregarded certain weights
supported on isolated points, because isolated points are null sets in L2(R). This
is not anymore true in ℓ2(Z) or CL with the usual point measure. Hence, these
cases are worth some consideration. By considerations similar to those in the
proof above, additional weights ρ±n,k,l may appear for n ∈ Z, k ∈ N, l ∈ N0. All of

them are supported on a single point, more explicitly supp(ρ+n,k,l) = dn − B+
n−k+1,k

with corresponding translation operator T−B+
n−k+1,k−B+

n+2,l+1
and supp(ρ−n,k,l) = dn+

B−
n+k+1,k with corresponding translation operator TB−

n+k+1,k+B−
n,l+1

.

However, also in the discrete setting, “smooth” window functions are preferred
for their better time-frequency concentration. Therefore, assuming gn to be zero at
the endpoints of its support is a weak restriction.

With this caveat and the usual considerations in mind, the proof of Theorem
10 above can be directly applied to NSG systems in ℓ2(Z).

Remark 12 (Frames for CL). For finite, discrete nonstationary Gabor transforms,
Theorem 10 applies with essentially the obvious adjustments. Albeit, the circular
nature of this setting introduces potential complications.

To ensure that (iii) still holds, we must guarantee that the intervals I
(0)
n , I+n−k,k,

I−n+l,l are disjoint. Assume the number of windows gn to be N . Then if the
nonstationary Gabor system in question satisfies gn(cn)gn−2(cn) = 0 for all n ∈
{0, . . . , N − 1}, it is sufficient that

∑N−1
n=0 b

−1
n ≥ L+maxn |I+n,1|.

Fast computation of the inverse frame operator can be implemented e.g. via a
structured Gaussian elimination algorithm.

As in the regular Gabor case, it is reasonable to ask whether the weights of
the inverse frame operator are supported on the same set as those of the original
frame operator.

Corollary 12. Let G(g,b) be as in Theorem 10, with bn ∈
]
0, bn−1

bn−1(dn−cn−1)−1

[
for

all n ∈ Z, then

Sf = ω0f +
∑

n∈Z

(
ωn,1T−B+

n,1
f + ωn,−1TB−

n,1
f
)
,
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and
S−1f = ω̃0f +

∑

n∈Z

(
ω̃n,1T−B+

n,1
f + ω̃n,−1TB−

n,1
f
)
.

Furthermore ωn,1 and ω̃n,1 are supported on a subset of I−n,1, while ωn,−1 and ω̃n,−1

are supported on a subset of I+n,1.

Proof. Apply Theorem 10(i) and simply check that I+n,k = I−n,k = ∅, for all n ∈
Z, k > 1 to show the statement for S−1. For S, apply the Walnut representation
(4.9) and check the conditions of Theorem 10.

So far, we have investigated the structure of inverse NSG frame operators and
the canonical dual frames of NSG systems. We have seen that only few particular
choices of G(g,b) yield a canonical dual frame of the form G(g̃,b). Yet, this does
not exclude the existence of a dual system G(h,b) per se. To further illuminate
this problem, we will, under mild restrictions to the involved systems, deduce a
necessary and sufficient condition for two NSG systems G(g,b) and G(h,b) to
constitute dual frames. As an illustrative example, we will apply the result in the
setting of Corollary 12.

4.4.1 Towards a duality condition

The Walnut representation (4.9) is an efficient way to describe the action of a
NSG frame-type operator. However, to determine duality of two NSG systems, it
is beneficial to rearrange the summations ordered by the appearing translate of f .
More precisely, define for any sequence b = (bn)n with bn ∈ R+ the countable set
Eb by

Eb = {τ ∈ R : ∃ (m,n) ∈ Z2 s.t. τ = mb−1
n }. (4.30)

Furthermore, to prevent pathologies, we introduce the following notion of “nice”
nonstationary Gabor systems.

Definition 13. We call a nonstationary Gabor system G(g,b) well-behaved, if
either of the following holds:

(i) Eb is free of accumulation points.

(ii) For all n ∈ Z, gn is compactly supported on some interval [cn, dn] and On :=
{l ∈ Z : cl < dn and dl > cn} is finite.

The flexibility gained by the way a NSG system is defined allows the con-
struction of a multitude of pathological cases that are generally not interesting for
practical purposes. Note that the functions gn and hn are usually desired to be well
concentrated in time and frequency. Further, they should be evenly distributed
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over time. Consequently, only finitely many compactly supported windows over-
lapping is a rather weak restriction. On the other hand {b−1

n : n ∈ Z} being
δ-separated, i.e. either b−1

n = b−1
l or |b−1

n − b−1
l | ≥ δ for all n, l ∈ Z is enough to

guarantee Eb being free of accumulation points.
We can now formulate an alternative version of the Walnut representation (4.9),

valid on a dense subspace of L2(R).

Corollary 13. Let G(g,b) and G(h,b) be well-behaved nonstationary Gabor Bessel
sequences with bn ∈ R+ and gn, hn ∈ L2(R), for all n ∈ Z. Then, for all f ∈ L2(R)
with compact support,

Sg,h,bf =
∑

τ∈Eb

ωτTτf, (4.31)

with
ω0 =

∑

n∈Z

b−1
n hngn and ωτ =

∑

(m,n)∈Z2

mb−1
n =τ

b−1
n hnTτgn for τ 6= 0. (4.32)

Moreover, the sum in (4.31) is absolutely convergent. Consequently, the extension
to L2(R) of the bounded, linear operator defined by the right-hand side of (4.31)
equals Sg,h,b.

Proof. By Proposition 13,
∑

n∈Z b
−1
n |hnTτgn| ≤ B almost everywhere, for any

τ ∈ R. Now let I be any finite interval such that supp(f) + supp(f) ⊆ I. If
G(g,b), G(h,b) are well-behaved in the sense of Definition 13(i), then Eb ∩ I is a
finite set and

∣∣∣
∑

τ∈Eb

∑

(n,k)∈Z2

τ=kb−1
n

b−1
n (hnTτgn)Tτf

∣∣∣

≤
∑

τ∈Eb∩I

∑

(n,k)∈Z2

τ=kb−1
n

b−1
n |hnTτgn||Tτf |

≤ B
∑

τ∈Eb∩I

|Tτf | <∞ a.e. on I, (4.33)

with absolute convergence. If on the other hand, G(g,b), G(h,b) are well-behaved
in the sense of Definition 13(ii), then the sum over Eb is locally finite. Thus, by
the Walnut representation (4.9) of Sg,h,b:

∑

τ∈Eb

ωτTτf =
∑

n,k∈Z

b−1
n (hnTkb−1

n
gn)Tkb−1

n
f = Sg,h,bf, ∀ f ∈ L2(R). (4.34)

Since
∑

τ∈Eb
ωτTτ = Sg,h,b on a dense subspace of L2(R), the extension of∑

τ∈Eb
ωτTτ to L2(R) equals Sg,h,b.
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For well behaved systems it is easy to see that ω0 ≡ 1 and ωτ ≡ 0 for τ 6= 0 is
a sufficient condition for Sg,h,bf = f and thus for G(g,b) and G(h,b) to be dual
frames. The following result shows that it is necessary as well.

Theorem 11. Let G(g,b), G(h,b) be well-behaved nonstationary Gabor Bessel
sequences with gn, hn ∈ L2(R), bn ∈ R+. Then

∑

n∈Z

b−1
n hngn ≡ 1 and

∑

(m,n)∈Z2

mb−1
n =τ

b−1
n hnTτgn ≡ 0 for τ 6= 0 (4.35)

is equivalent to duality in the sense that

f =
∑

m,n∈Z

〈f, gm,n〉hm,n for all f ∈ L2(R). (4.36)

Proof. Assume Equation (4.35) holds. Since G(g,b), G(h,b) are well-behaved, the
alternate Walnut representation (4.31) of Sg,h,b can be evoked. We see that for all
compactly supported f ,

∑

m,n∈Z

〈f, gm,n〉hm,n = Sg,h,bf

=
∑

τ∈Eb

ωτTτf

= ω0T0f = f.

Therefore, Equation (4.36) holds for all compactly supported f ∈ L2(R) and by
density for all f ∈ L2(R), proving the first inference. We prove the converse infer-
ence by contradiction, assuming (4.35) to be violated, then provide a counterex-
ample to (4.36). Let G(g,b), G(h,b) be well-behaved in the sense of Definition
13(i), i.e. if ωτ 6= 0 for some τ ∈ R \ {0}, we can choose δ > 0 and l ∈ Z, such
that Eb ∩B2δ(τ) = {τ} and ωτ |Bδ(2lδ) 6= 0. Let f = χBδ(2lδ)−τ , then

0 ≡ f |Bδ(2lδ) 6= Sg,h,bf |Bδ(2lδ)= ωτ |Bδ(2lδ),

proving that ωτ ≡ 0 for all τ ∈ R\{0} is necessary. But then ω0 6= 1 contradicting
(4.36) can easily be seen. If instead G(g,b), G(h,b) are well-behaved in the sense
of Definition 13(ii), note that

Eb,n = {τ ∈ R : ∃ m ∈ Z, l ∈ On s.t. τ = mb−1
l } (4.37)

is free of accumulation points and apply the reasoning above.
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Note that duality of a pair of Bessel sequences as in (4.36) implies the frame
property for both involved Bessel sequences.

Corollary 14. Let G(g,b) be a well-behaved nonstationary Gabor Bessel sequence
with gn ∈ L2(R), bn ∈ R+. Then G(g,b) is a normalized tight frame, i.e. a frame
with bounds A = B = 1, if and only if

∑

n∈Z

b−1
n |gn|2 ≡ 1 and

∑

(m,n)∈Z2

mb−1
n =τ

b−1
n gnTτgn ≡ 0 for τ 6= 0. (4.38)

Remark 13. In the context of GSI systems (generalized shift-invariant systems),
equivalent to NSG systems via the application of a Fourier transform, the results
presented in Theorem 11 and Corollary 14 above can be found in [89, Thm 9.1,Thm
2.1] and [137, Prop 3.44, Cor 1.16], proven under different technical conditions.
However, they have not previously been connected to nonstationary Gabor systems
and we provide herein very simple proofs, relying only on elementary mathematical
concepts.

Remark 14. For systems with uniform b, i.e. bn = b, the duality conditions
above reduce to the well-known conditions for Gabor frames [133, 136] or more
generally, shift-invariant frames [99]. In both classical cases, the canonical dual
frame inherits the structure of the original frame and thus the duality conditions
are guaranteed to have a solution. This is not true for NSG systems in general.
Indeed, we expect that for many choices of a NSG frame G(g,b), there is no system
G(h,b) satisfying (4.35).

Remark 15. The restriction to well-behaved NSG systems in Theorem 11 prevents
us from recovering the equivalence of the duality conditions to the frame property
for Wavelet systems, proven by Chui and Shi in [41]. However, the restriction to
well-behaved systems allows for a straightforward proof, once all the ingredients
are in place. Also note that duality of Wavelet systems is equivalent to the duality
of certain quasi-affine systems, as introduced by Ron and Shen [134,135,137]. In
contrast to Wavelet systems, quasi-affine systems are well-behaved NSG systems,
and therefore satisfy the restrictions of Theorem 11.

Given a specific setup of g and b, the duality conditions above may prove
useful to determine the existence of a dual system that shares the modulation
parameters b. This is particularly interesting from an algorithmic point of view,
since analysis and synthesis can be realized efficiently for NSG systems, but not
for general frames. Here, we consider the setting of Corollary 12 and show that
dual pairs of NSG frames with compactly supported generators exist. We obtain
the following result.
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Corollary 15. Let G(g,b) be a nonstationary Gabor Bessel sequence as in Theo-
rem 10 with gn ∈ L2(R), bn ∈]0, bn−1

bn−1(dn−cn−1)−1
[ and cn ≤ dn−1 for all n ∈ Z.

(a) Let G(hn, bn) a nonstationary Gabor Bessel sequence with hn ∈ L2(R),
supp(hn) ⊆ [cn, dn]. G(g,b) and G(h,b) are dual frames if and only if the
following hold for all n ∈ Z:

– For almost every t ∈ [cn, cn+1[:

b−1
n (hngn) (t) + b−1

n−1 (hn−1gn−1) (t) = 1. (a.i)

– For almost every t ∈ I−n,1:
(
hnT−b−1

n
gn
)
(t) = 0. (a.ii)

– For almost every t ∈ I+n,1:
(
hnTb−1

n
gn
)
(t) = 0. (a.iii)

(b) A Bessel sequence G(h,b) with hn ∈ L2(R) and supp(hn) ⊆ [cn, dn] for all
n ∈ Z exists, such that the pair G(g,b), G(h,b) satisfy (a), if and only if
there is some A > 0 such that the following hold for all n ∈ Z:

b−1/2
n |gn(t)| ≥ A or b

−1/2
n−1 |gn−1(t)| ≥ A for a.e. t ∈ [cn, cn+1[, (b.i)

b
−1/2
n−1 |gn−1| ≥ A a.e. on supp(T−b−1

n
gn) ∩ I−n,1 (b.ii)

and
b
−1/2
n+1 |gn+1| ≥ A a.e. on supp(Tb−1

n
gn) ∩ I+n,1. (b.iii)

Proof. The systems G(g,b) and G(h,b) are well-behaved in the sense of Definition
13(ii). Thus they form a pair of dual nonstationary Gabor frames if and only if
Equation (4.35) is satisfied. Invoking the support conditions on the systems, we
get

b−1
n hngn + b−1

n−1hn−1gn−1 = 1 a.e. on [cn, cn+1[,

hnT−b−1
n
gn = 0 a.e. on I+n,1

and
hnTb−1

n
gn = 0 a.e. on I−n,1,

for all n ∈ Z, concluding the proof of (a). We first prove that (b.i) to (b.iii)
are sufficient by constructing a dual Bessel sequence G(h,b) satisfying the sup-
port constraints. Let for all n ∈ Z, J0

n be the largest open subset of [cn, cn+1[

such that b−1/2
n |gn| ≥ A almost everywhere on J0

n and J1
n = [cn+1, dn] \ J0

n+1.
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Furthermore let us denote, for all n ∈ Z, J−
n = I−n,1 ∩ supp(T−b−1

n
gn) and J+

n =
I+n−1,1 ∩ supp(Tb−1

n−1
gn−1). Then

hn :=

{
bn/gn, on (J0

n ∪ J1
n) \ (J+

n ∪ J−
n ) ,

0, else ,

is well-defined almost everywhere for all n ∈ Z. With this choice, it is easy to
see that the conditions (a.i) to (a.iii) are satisfied. Furthermore, hn(t) < 2

√
bn/A

almost everywhere. Thus hn ∈ L∞(R) and is compactly supported, in particular
hn ∈ L2(R) ∩W (L∞, ℓ1). We see that

∑
n b

−1
n |hn|2 ≤ 2/A2. Invoke the Walnut

representation and apply the proof of Proposition 13 to see that G(h,b) is a Bessel
sequence.

For the converse, we assume either of (b.i) to (b.iii) to be violated. Note
that hn is uniquely determined almost everywhere on J−

n+1 ∪ J+
n−1. If (b.ii) or

(b.iii) is violated, we can for every ǫ > 0 find n ∈ Z, such that b−1/2
n |gn| < ǫ and

consequently b
−1/2
n |hn| > ǫ−1 almost everywhere on a subset M ⊆ J−

n+1 ∪ J+
n−1

of positive measure. Therefore,
∑

n b
−1
n |hn|2 > ǫ−2 on a set of positive measure,

contradicting the Bessel condition by Proposition 13. If on the other hand (b.i)
is violated, then we can for every ǫ > 0 find n ∈ Z, such that b−1/2

n |gn| < ǫ and
b
−1/2
n−1 |gn−1| < ǫ almost everywhere on a subset M ⊆ [cn, cn+1[ of positive measure.

Assume (a.i) to be satisfied, i.e.

1 = |b−1
n hngn + b−1

n−1hn−1gn−1| ≤ ǫ
(
b−1/2
n |hn|+ b

−1/2
n−1 |hn−1|

)
a.e. on M.

Then, almost everywhere on M , either b−1/2
n |hn| > 1/2ǫ or b−1/2

n−1 |hn−1| > 1/2ǫ,
contradicting the Bessel condition by Proposition 13.

Remark 16. The proof shows that, given gn, gn−1, gn+1, hn is uniquely determined
on I−n,1∪]dn−1, cn+1[∪I+n,1, except for a zero set. Therefore, as Christensen, Kim
and Kim have observed in the regular case [35], the equation system (4.4.1) to
(4.4.1) is not solvable in general, if I−n,1 ∩ I+n−1,1 6= ∅ and supp(hn) ⊆ supp(gn),
for all n ∈ Z. In the classical Gabor case, because bn = b for all n ∈ Z, an
appropriate increase of the size of supp(hn) does the trick. We expect that this
can be generalized to NSG systems with uniform b. In the general case however,
non-uniformity of bn significantly complicates matters and further work is required
to determine the solvability of (4.4.1) to (4.4.1) even without support constraints
on the hn, i.e. whether any NSG system G(h,b), dual to G(g,b), can exist.

To recover Corollary 11, replace gn by Tnag and bn by b and observe the a-
periodicity of Gabor systems. Note that b < b

b(d−c+a)−1
is equivalent to b < 2

d−c+a
.
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4.5 Conclusion and perspectives

Our approach enables the construction of frames with flexible evolution of time-
frequency resolution over time or frequency. The resulting frames are well suited for
applications as they can be implemented using fast algorithms, at a computational
cost close to standard Gabor frames.

We presented several results on the structure of nonstationary Gabor systems
with low redundancy in time and moderate redundancy in frequency, demonstrat-
ing that such systems, if invertible, possess an inverse frame operator with a dis-
tinct structure not too different from that of the original frame operator. While
the canonical dual frame will be of nonstationary Gabor type only if the modula-
tion parameters bn are chosen uniformly, we have given a simple condition on the
existence of a dual nonstationary Gabor frame satisfying the exact same support
conditions. Furthermore, such a frame can be constructed by solving a simple set
of equations. Reduction of our results to the case of classical Gabor systems shows
that the canonical dual frame satisfies a special support condition, for which Chris-
tensen, Kim and Kim have recently shown the existence of a dual frame satisfying
it. Under stronger restrictions on the redundancy of the Gabor system, we showed
that this support condition can be improved to coincide with the original support.

Further, we have generalized the duality conditions for Gabor systems to the
setting of well-behaved NSG systems, providing a tool for investigating the exis-
tence of dual pairs of nonstationary Gabor systems.

Future work includes the investigation of the inverse frame operator for more
general NSG systems, allowing for higher overlap and/or coarser frequency sam-
pling, although numerical experiments have shown that low redundancy systems
with high overlap possess a highly non-sparse inverse frame operator. Moreover,
harnessing the results in this manuscript to provide fast implementations for the
inversion of certain discrete nonstationary Gabor frames, extending the flexibility
of such systems in applications is planned.
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Chapter 5

Discrete, finite nonstationary Gabor

systems and their implementation

This section compiles results from joint work with M. Dörfler, T. Grill and G.A.
Velasco [164], [92], implementation examples from joint work with P. Balazs, M.
Dörfler, F. Jaillet and G.A. Velasco [10], partial results from joint work with
T.Necciari, P.Balazs and P.L. Søndergaard [122] and preliminary results from un-
published joint work with C. Wiesmeyr.

In the sense of reproducible research, [163], the algorithms and scripts to re-
produce the results in this chapter are available at the respective webpages

• http://univie.ac.at/nonstatgab/ and

• http://www.kfs.oeaw.ac.at/ICASSP2013_ERBlets.

Please note that the latter requires the free Large Time Frequency Analysis Tool-
box (LTFAT) [2, 145, 146] and Auditory Modeling Toolbox (AMToolbox) [1] for
MATLAB/octave.

5.1 Discrete, finite frames

For the practical implementation, the theory of frames (see Section 2.2 for a brief
introduction or [33] for a more comprehensive treatment) may be developed in
a finite discrete setting using the Hilbert space CL. In this section, we shortly
introduce frames for CL, i.e. vector spaces of finite, discrete signals, understood
as functions f, g on CL. The general framework is mostly analogous to the L2(R)
setting, save for the fact that the involved operators can now be considered as
matrices. Since we consider time-frequency frames only, we introduce frames over
CL with a two parameter index set. Consider a collection of atoms Φ = {ϕn,m ∈
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CL} with (n,m) ∈ ΛN × ΛM for finite index sets ΛN ,ΛM with cardinality N
and M , respectively. For simplicity, we will assume ΛN = {0, . . . , N − 1} and
ΛM = {0, . . . ,M − 1}. In this setup, the subscripts n,m allude to the position
of ϕn,m in time and frequency. For now, we restrict to uniform index sets, while
subsequent sections will allow one index set to depend on the position in the other,
ΛMn may depend on n ∈ ΛN .

Let P = NM be the number of frame elements. Then the analysis operator
CΦ is a P × L matrix, containing the complex conjugate of the frame elements in
its rows. Canonically, the rows are in “frequency first” ordering, i.e.

CΦ[m+ nM, l] = ϕn,m[l].

The synthesis operator equals the adjoint (conjugate transpose) DΦ = C∗
Φ of the

analysis operator and is given by

DΦ[l, m+ nM ] = ϕn,m[l].

Consequently, the frame operator S = DΦCΦ is a L× L matrix acting on f ∈ CL

by
Sf =

∑

n,m

〈f, ϕn,m〉ϕn,m. (5.1)

If the linear operator S is invertible on CL, then the set of functions
{ϕn,m}(n,m)∈ΛN×ΛM

, is a frame1. In this case, we may define a dual frame by

ϕ̃n,m = S−1ϕn,m (5.2)

and reconstruction from the coefficients cn,m = 〈f, ϕn,m〉 is straightforward:

f = S−1Sf =
∑

n,m

〈f, ϕn,m〉S−1ϕn,m =
∑

n,m

cn,mϕ̃n,m

= SS−1f =
∑

n,m

〈f,S−1ϕn,m〉ϕn,m =
∑

n,m

〈f, ϕ̃n,m〉ϕn,m.

Note that an overcomplete frame (L < P ) admits an infinite number of dual
frames. The particular dual frame obtained via the application of the inverse frame
operator to the frame elements is called the canonical dual frame, see Section 2.2.
The optimal frame bounds of Φ are given by

A0 = inf
f∈CL

‖CΦf‖2
‖f‖2 and B0 = sup

f∈CL

‖CΦf‖2
‖f‖2 .

1Note that, if {ϕn,m, (n,m) ∈ ΛN × ΛM} is an orthonormal basis, then S is the identity
operator.
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Also recall discrete Gabor frames (Section 2.3), for which the elements gn,m
are obtained from a single window g by time- and frequency-shifts along a lattice.
Fixing a time-shift parameter a and a frequency-shift parameter b, with L/a, L/b ∈
N, we call the collection of atoms G(g, a, b) = {gn,m = MkbTnag}(n,m)∈ΛN×ΛM

, with
ΛN×ΛM = ZL/a×ZL/b, a Gabor system. If G is a frame, it is called a Gabor frame.
For Gabor frames, the frame coefficients are given by samples of the short-time
Fourier transform of f with respect to the window g:

cn,m = c[n,m] = 〈f, gn,m〉 = 〈f,MkbTnag〉

=
L−1∑

l=0

f [l]g[l − na]e−2πil·kb/L. (5.3)

In a general setting, the inversion of the operator S poses a problem in numerical
realization of frame analysis. However, for Gabor frames, it was shown in [48], that
under certain conditions, usually fulfilled in practical applications, S is diagonal,
and a dual frame can be calculated easily, see also Section 4.1.3. This situation
of painless nonorthogonal expansions can also be formulated for (nonstationary)
Gabor frames over CL as discussed in the following section. Generally, NSG frames
with small frame bound ratio B0/A0 can be inverted efficiently using iterative
methods, see Section 5.5.1.

5.2 Discrete nonstationary Gabor transforms

Since the development of the painless case is largely straightforward from simple
matrix multiplication, we only state the result. Translating the remaining results
from the previous chapter requires only the usual changes and minor modifica-
tion. The periodic structure of signals on CL might sometimes lead to additional
restrictions and heavy notation, see Remark 12. Since the principal idea remains
the same as over R, we omit these results. From here on we use the notation
Λk := {0, . . . , k − 1} for k ∈ N.

Definition 14. Let {gn}n∈ΛN
be a set of functions in CL and {Mn}n∈ΛN

a set of
integers associated with the set of real values {bn = L

Mn
}n∈ΛN

, then the associated
discrete, nonstationary Gabor system G(g,b) is given by

gn,m[l] = Mbngn[l] = gn[l]e
2πimbnl

L ,

for n = 0, . . . , N − 1, m = 0, . . . ,Mn − 1 and all l = 0, . . . L − 1. The integer
Mn denotes the number of equidistant frequency positions considered at the n-th
temporal position.
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Note that in practice, gn,m[l] will have zero-values for most l, allowing for

efficient FFT-implementation: since Mn = L
bn

, we have gn,m[l] = gn[l] · e
2πiml
Mn and

the nonstationary Gabor coefficients are given by an FFT of length Mn for each
gn. More explicitly, the samples c[n,m] = (fgn)

∧ [mbn] are obtained by taking
the zero-extending fgn to a multiple of Mn samples and computing the Fourier
transform of the vector

⌈L/Mn⌉−1∑

k=0

fgn[·+ kMn] ∈ CMn .

This application of Poisson’s summation formula is sometimes referred to as peri-
odization trick.

Consequently, we compute NSG analysis coefficients via the simple and efficient
Algorithm 3. For convenience, we use the notation

c := {cn}n∈ΛN
:= {{cn,m}m∈ΛMn

}n∈ΛN

to refer to the full set of coefficients and coefficients at one time position, respec-
tively. By abuse of notation, we indicate by c ∈ CN×Mn that c is an irregular array
with N rows, the n-th row possessing Mn entries.

Algorithm 3 NSG analysis: c = NSGTL(f, g,b)

1: Initialize f, gn for all n ∈ ΛN

2: for n ∈ ΛN do
3: cn ←

√
Mn · FFTMn(fgn)

4: end for

Here (I)FFTN denotes a (inverse) Fast Fourier transform of length N , includ-
ing the necessary zero-padding preprocessing to convert the input vector to the
correct length N .

The remaining problem is to ascertain that G(g,b) is a frame and to compute
the dual frame. The following proposition is a discrete, frequency side version of an
equivalent result for NSG systems in L2(R) and achieves both, using the painless
case conditions: Let In denote the minimal closed interval such that supp(gn) ⊆ In
and Ln = |In| its length. Then we call the nonstationary Gabor system G(g,b) a
painless system if and only if

bn ≤ L/Ln or equivalently Mn ≥ Ln, for all n ∈ ΛN . (5.4)

Proposition 14. Let G(g,b) an NSG system satisfying (5.4). This system is a
frame if and only if

0 <
∑

n∈ΛN

Mn|gn[l]|2 <∞, for all l = 0, . . . , L− 1 (5.5)
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and the windows generating the canonical dual frame G(g̃,b) are given by

g̃n[l] =
gn[l]∑

k∈ΛN
Mk|gk[l]|2

. (5.6)

Proof. Denote by In an interval of length Ln, containing the support of gn. By
assumption

0 <
∑

n∈ΛN

Mn|gn[l]|2 <∞, for all l = 0, . . . , L− 1

and Mn ≥ Ln = |In|. Note that the frame operator (5.1) can be written as follows

Sf [l] =
∑

n∈ΛN

Mn−1∑

m=0

〈f,Mmbngn〉Mmbngn[l]

=
∑

n∈ΛN

√
Mn

Mn−1∑

m=0

FFTMn(fgn)[m]gn[l]e
−2πimbn/L

=
∑

n∈ΛN

MnIFFTMn(FFTMn(fgn))[l]gn[l], (5.7)

for all f ∈ CL. Furthermore, with χIn the characteristic function of the interval
In,

fgn = χIn

bn−1∑

k=0

TkMn(fgn)

= χInIFFTMn(FFTMn(fgn))

and, obviously, gn = χIngn. Inserting into (5.7) yields

Sf [l] =
∑

n∈ΛN

Mn(fgn)[l]gn[l]

= f [l]
∑

n∈ΛN

Mn|gn|2[l]. (5.8)

With the sum bounded above and below, the inverse frame operator can be written
as

S−1f [l] = f [l]

(∑

n∈ΛN

Mn|gn|2[l]
)−1

, for all f ∈ CL. (5.9)

Since the elements of the canonical dual frame are given by (5.2), this completes
the proof.
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Remark 17. The maximum and minimum of the sum in (5.5) give the upper and
lower frame bound B0, A0, respectively.

The analysis algorithm above is complemented by Algorithm 4, an equally
simple synthesis algorithm that synthesizes a signal f̃ from a set of coefficients c.

Algorithm 4 NSG synthesis: f̃ = iNSGTL(c, g̃,b)

1: Initialize cn,m, g̃m for all m ∈ ΛMn, n ∈ ΛN

2: for n ∈ ΛN do
3: fn ←M

−1/2
n · IFFTMn(cn)

4: end for
5: f̃ ←∑

n∈ΛN
fng̃n

Remark 18. The algorithms in this section can also be applied for Mn < Ln.
However, in this case, applying (I)FFTMn

may require periodization or periodic
extension, respectively, to convert the input to length Mn or the output to length
Ln.

It is quite easy to see that, if G(g,b) and G(g,b) form a pair of dual NSG
frames, then iNSGTL(c, g̃,b) applied to c = NSGTL(f, g,b) reconstructs any
f ∈ CL perfectly. For a detailed proof, see Proposition 15 in the following section.

Another way to determine the finite, discrete painless case condition is the
Walnut representation for the NSG frame operator over CL. Let P =

∑N−1
n=0 Mn

be the number of elements of G(g,b). Then D ∈ CL×P and C ∈ CP×L.

Corollary 16. The frame operator S = D · C of the NSG system G(g,b) is an
L× L matrix with entries:

Sl,k =
∑

n∈N(l−k)

Mn gn[l] gn[k]

where Np = {n ∈ ΛN : p = 0modMn} for p ∈ [−L+ 1, L− 1]. Therefore, if
appropriate support conditions are met, S is a diagonal matrix.

Proof. Recall the definition of the frame operator (5.1):

Sf [l] =
∑

n∈ΛN

∑

m∈ΛMn

〈f, gn,m〉gn,m[l]

=
∑

n∈ΛN

∑

m∈ΛMn

L−1∑

k=0

f [k]gn[k]gn[l] exp(2πi(l − k)m/Mn)

=
∑

n∈ΛN

L−1∑

k=0

f [k]gn[k]gn[l]
∑

m∈ΛMn

exp(2πi(l − k)m/Mn),
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where the sum over m equals Mn if l − kmodMn = 0 and 0 otherwise. Conse-
quently, defining Nl−k = {n ∈ ΛN | l − kmodMn = 0}, the entries of S can be
written as

Sl,k =
∑

n∈N(l−k)

Mn gn[l] gn[k].

Assume Ln < Mn, with Ln the size of the support of gn as above, for all n ∈ ΛN .
Then Sl,k = 0 for all k 6= l and S is diagonal.

If bn is not chosen to be a divisor L, the modulations exp(2πim · /Mn) produce
a jump on the circular border of CL. For prototype functions gn supported on that
border, the modulation then introduces “discontinuities”, negatively affecting the
frequency decay properties of gn,m. However, restricting to bn | L severely limits the
flexibility of choosing Mn. We can navigate around the continuity issue by using
a phaselocked implementation of of the transform. Phaselocking is a technique
frequently used in signal processing, where the modulations are considered relative
to the window position instead of the signal.

More explicitly, assume the support of gn to be smaller than L and centered at
the sample an. Then instead of the frame elements in Definition 14, we use

gn,m[l] = gn[l] exp(2πi(l − an)ΛL,an
m/Mn), (5.10)

where the notation (l)ΛL,an
indicates that l is considered circularly on the interval

ΛL,an := [−⌊L/2⌋+an, ⌈L/2⌉+an−1]. This modification guarantees that the mod-
ulation does not introduce “jumps” to gn,m. Phaselocked systems come, however,
with the drawback of a slightly more complicated frame operator representation.

Corollary 17. Let G(g,b) be a phaselocked NSG system as in Equation (5.10).
Furthermore, define xn,l,k by

xn,l,k =





l − k, if l, k ∈ ΛL,an

l − k − L, if − ⌊L/2⌋+ an < 0, k ∈ ΛL,an, l /∈ ΛL,an

or − ⌊L/2⌋+ an ≥ 0, k /∈ ΛL,an, l ∈ ΛL,an

L+ l − k, if − ⌊L/2⌋+ an ≥ 0, k ∈ ΛL,an, l /∈ ΛL,an

or − ⌊L/2⌋+ an < 0, k /∈ ΛL,an, l ∈ ΛL,an.

The frame operator S = D ·C of the NSG system G(g,b) is an L×L matrix with
entries:

Sl,k =
∑

n∈Nxn,l,k

Mn gn[l] gn[k]

where Nxn,l,k
= {n ∈ ΛN : xn,l,k = 0modMn} for all xn,l,k. Therefore, if

appropriate support conditions are met, S is a diagonal matrix.

Proof. Analogue to Corollary 16.
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5.2.1 Numerical complexity

Assuming that the windows gn have support of length Ln, let M = maxn {Mn} be
the maximum FFT-length. We consider the painless case where Ln ≤ Mn ≤ M .
The number of operations is

1. Windowing: Ln operations for the n-th window.

2. FFT: O (Mn · log (Mn)) for the n-th window.

Then the number of operations for the discrete NSGT is

O
(

N−1∑

n=0

Mn · log (Mn) + Ln

)
= O (N · (M log (M) +M))

= O (N · (M log (M)))

Similar to the regular Gabor case, the number of windows N will usually depend
linearly on the signal length L while the maximum FFT-length M is assumed to
be independent of L. In that case, the discrete NSGT is a linear cost algorithm.

For the construction of the dual windows in the painless case, the computation
involves multiplication of the window functions by the inverse of the diagonal ma-
trix S and results in O(2∑N−1

n=0 Ln) = O(N ·M) operations. Lastly, the inverse
NSGT has numerical complexity O (N · (M log (M))), as in the NSGT, since it
entails computing the IFFT of each coefficient vector, multiplying with the corre-
sponding dual windows and evaluating the sum.

5.2.2 Frequency-adaptive nonstationary Gabor frames

The original motivation for the introduction of NSGT was the desire to adapt both
window size and sampling density in time, cf. [10,95], in order to accurately resolve
transient signal components. Here, we apply the same idea in frequency, i.e. adapt
both the bandwidth and sampling density in frequency. From an algorithmic point
of view, we apply a nonstationary Gabor system to the Fourier transform of the
input signal.

The windows are constructed directly in the frequency domain by taking real-
valued filters gm centered at frequency ωm (in samples). The inverse Fourier trans-
forms |gm := F−1gm are the time-reverse impulse responses of the corresponding
(frequency-adaptive) filters. Therefore, we let |gm, m ∈ ΛM , denote the mem-
bers of a finite collection of band-limited windows, well-localized in time, whose
Fourier transforms gm = F|gm are centered around possibly irregularly (or, e.g.
geometrically) spaced frequency points ωm.
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Then, analogous to (5.4) before, we select frequency dependent time-shift pa-
rameters (hop-sizes) am as follows: if the support (the interval where the vector
is nonzero) of gm is contained in an interval of length Lm, then am is chosen such
that

am ≤
L

Lm

and Nm = L/am ∈ N, for all m ∈ ΛM . (5.11)

In other words, the time-sampling points have to be chosen dense enough to
guarantee (5.11). If we denote by gn,m the modulation of gm by −nam, i.e.
gn,m = M−namgm, then we obtain the frame members ϕn,m by setting

ϕn,m = gn,m := F−1(M−namgm) = Tnam|gm,

where m ∈ ΛM and n = ΛNm . The system qG(g, a) := {gn,m = Tnam|gm}n,m is a
painless frequency-side nonstationary Gabor system (or NSG filterbank) for CL,
as described in the previous section. We also define g := {gm ∈ CL}m∈ΛM

and
a := {am}m∈ΛM

. By Parseval’s formula, we see that the frame coefficients can be
written as

cn,m = 〈f, gn,m〉 = 〈f̂ ,M−namgm〉. (5.12)

For convenience, we use the notation c := {cm}m∈ΛM
:= {{cn,m}n∈ΛNm

}m∈ΛM
to

refer to the full set of coefficients and channel coefficients, respectively. By abuse of
notation, we indicate by c ∈ CNm×M that c is an irregular array with M columns,
the m-th column possessing Nm entries. The NSG coefficients can be computed
using the following algorithm.

Algorithm 5 Frequency side NSG analysis: c = NSGTFL(f, g, a)

1: Initialize f, gm for all m ∈ ΛM

2: f ← FFTL(f)
3: for m ∈ ΛM do
4: cm ←

√
Nm · IFFTNm(fgm)

5: end for

The analysis algorithm above is complemented by Algorithm 6, an equally
simple synthesis algorithm that synthesizes a signal f̃ from a set of coefficients c.

Remark 19. Similar to the previous section, the algorithms proposed in this sec-
tion can also be applied for am > L

Lm
. However, in this case, applying (I)FFTNm

may require periodization or periodic extension, respectively, to convert the input
to length Nm or the output to length Lm.

If qG(g, a) and qG(g̃, a) are a pair of dual frames, then we can reconstruct a
function perfectly from its NSG analysis coefficients.
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Algorithm 6 Frequency side NSG synthesis: f̃ = iNSGTFL(c, g̃, a)

1: Initialize cn,m, g̃m for all n ∈ ΛNm, m ∈ ΛM

2: for m ∈ ΛM do
3: fm ← N

−1/2
m · FFTNm(cm)

4: end for
5: f̃ ←∑

m∈ΛM
fmg̃m

6: f̃ ← IFFTL(f̃)

Proposition 15. Let qG(g, a) = {gn,m = Tnam|gm}n,m and qG(g̃, a) = {g̃n,m =

Tnam
|g̃m}n,m be a pair of dual frames. If c is the output of NSGTFL(f, g, a)

(Algorithm 5), then the output f̃ of iNSGTFL(c, g̃, a) (Algorithm 6) equals f , i.e.

f̃ = f, for all f ∈ CL. (5.13)

Proof. By Algorithm 5, we have

cn,m = cm[n]

=
√
Nm

1√
Nm

Nm−1∑

k=0

am−1∑

l=0

(f̂ gm)[k + lNm]e
2πinkam/L

=

Nm−1∑

k=0

am−1∑

l=0

(f̂Mnamgm)[k + lNm]. (5.14)

Since Nm ≥ Lm, only one element of the inner sum above is non-zero, for each
k ∈ {0, . . . , Nm − 1}. It follows that

cn,m = 〈f̂ ,M−namgm〉. (5.15)

Inserting into Algorithm 6 yields, for all l ∈ {0, . . . , L− 1},

ˆ̃
f [l] =

∑

m∈ΛM

Nm−1∑

n=0

cn,me
−2πinlam/Lg̃m[l]

=
∑

m∈ΛM

Nm−1∑

n=0

〈f̂ ,M−namgm〉M−nam g̃m[l],

the discrete frame synthesis formula. By assumption, qG(g, a) and qG(g̃, a) are dual
NSG frames and thus

ˆ̃f [l] = f̂ [l], for all j ∈ {0, . . . , L− 1}.

Applying the inverse discrete Fourier transform completes the proof.
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Since the DFT is a unitary operator on CL, it is easy to see that the painless case
conditions (Proposition 14) apply to frequency side nonstationary Gabor systems
with bandlimited filters in an analogue fashion.

In Section 5.4, we construct a constant-Q NSG system satisfying (5.11) and
(5.5).

Remark 20. Note that NSG frames can be equivalently used to design general
nonuniform filter banks [109,121] in a similar manner.

5.3 Time-side systems

Technical framework: The simulations presented in this section were done in
MATLAB R2009b on a 3 Gigahertz Intel Core 2 Duo machine with 2 GB RAM.

5.3.1 Automatic adaptation to transients

In real-life applications, NSGT has the potential to represent local signal character-
istics, e.g. transient sound events, in a more appropriate way than predetermined,
regular transform schemes. Since the appropriateness of a representation depends
on the specific application, any adaptation procedure must be designed specifi-
cally. For the implementation itself, however, two observations generally remain
true: First, the general nonstationary framework needs to be restricted to a well
defined set of choices. Second, some measure is needed to determine the most
suitable of the possible choices. For example, in the case of a sparsity measure,
the most sparse representation will be chosen. To show that good results are
achieved even when using quite simple adaptation methods, we describe a proce-
dure suitable for signals consisting mainly of transient and sinusoidal components.
The adaptation measure proposed is based on onset detection, i.e. estimating
where transients occur in the signal. The transform setting is what we call scale

frames: the analysis procedure uses a single window prototype and a countable
set of dilations thereof.

For evaluation, the representation quality is measured by comparison of the
number of representation coefficients leading to certain root mean square (RMS)
reconstruction errors, for both NSGT and regular Gabor transforms. The results
are especially convincing for sparse music signals with high energy transient compo-
nents. Other possible adaptation methods might be based e.g. on time-frequency
concentration, sparsity or entropy measures [171], [97], [112].

Scale frames: In the following paragraphs, we propose a family of nonstation-
ary Gabor frames that allows for exponential changes in time-frequency resolution
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along time positions. To avoid heavy notation and since the formalism necessary
for the discrete, finite case could obscure the principal idea, we describe the con-
tinuous case construction. Suitable standard sampling then yields discrete, finite
frames with equivalent characteristics.

The basic idea is to build a sequence of windows gn from a single, continuous
window prototype g with support on an interval of length 1 in such a way that the
resulting gn satisfy Proposition 14. The window sequence will be unambiguously
determined by a sequence of scales. Once this scale sequence is known, it is a simple
task to choose modulation parameters bn satisfying the necessary conditions.

As a scale sequence, we allow any integer-valued sequence {sn}n∈Z such that
|sn − sn−1| ∈ {0, 1}, where the latter restriction is set in order to avoid sudden
changes of window length. Then, gn is, up to translation, given by a dilation of
the prototype g:

D2sn (g)(t) =
√
2−sng(2−snt).

This implies that a change of scale from one time step to the next corresponds to
the use of a window either half or twice as long. More precisely, for every time step
n, set s = min{sn−1, sn} and fix an overlap of 2/3 · 2s, if sn 6= sn−1 and 1/3 · 2s, if
sn = sn−1. Explicitly,

gn = TnD2sn (g),

with recursively defined time shift operators Tn given by

T0 = T0, Tn =

{
T2s5/6Tn−1, if sn 6= sn−1

T2s+1/3Tn−1, else.

Defining the time shifts in this manner, we achieve exactly the desired overlap as
illustrated in Figure 5.1.

By construction, each gn has non-zero overlap with its neighbors gn−1 and gn+1

and at any point on the real line, at most two windows are non-zero. After perform-
ing a preliminary transient detection step, as explained before, the construction of
the adapted frame reduces to the determination of a scale sequence.

In the subsequent figures and experiments we used the Hann window as pro-
totype, but other window choices are possible. The described concept can easily
be generalized by admitting other overlap factors and scaling ratios than the ones
specified above. The parameters have to be chosen with some care, though. Oth-
erwise the resulting frames might be badly conditioned, with a big or even infinite
condition number B

A
, caused by accumulation points for the time shifts or gaps

between windows.

Frame construction from a sequence of onsets: In this paragraph, we as-
sume that the signals of interest are mainly comprised of transient and sinusoidal
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Figure 5.1: Illustration of scale frame overlaps and time shifts.

components, an assumption met, e.g. by piano music. The instant a piano key is
hit corresponds to a percussive, transient sound event, directly followed by har-
monic components, concentrated in frequency. An intuitive adaptation to signals
of this type would use high time resolution at the positions of transients. This
corresponds to applying minimal scale at the transients and steadily increasing
the scale with the distance from the closest transient. The transients’ positions
can be determined, e.g. by so-called onset detection procedures [52] which, if used
carefully, work to a high degree of accuracy. Once the transient positions are
known, the construction of a corresponding scale frame yields good nonstationary
representations for sufficiently sparse signals.

Application of onset-based scale frames: We applied the procedure proposed
above to various signals, mainly piano music. For this presentation, we selected
three examples, all of them sampled at 44.1 kHz and consisting of a single channel.
Some more examples and corresponding results as well as the source sound files
can be found on the associated webpage http://univie.ac.at/nonstatgab/.

• Example 1: The widely used Glockenspiel signal shown in Figure 4.3, Chap-
ter 4.

• Example 2: An excerpt from a solo jazz piano piece performed by Herbie
Hancock, characterized by its calmness and varied rhythmical pattern, re-
sulting in irregularly spaced low-energy transients. See Figure 5.2.

• Example 3: A short excerpt of György Ligeti’s piano concert. With highly
percussive onsets in the piano and Glockenspiel voices and some orchestral
background, this is the most polyphonic of our examples. See Figure 5.3.

http://univie.ac.at/nonstatgab/
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For comparison, the plots in Figures 4.3, 5.2 and 5.3 also show standard Gabor
coefficients with comparable (average) window overlap. A Hann window of 2560
samples length was chosen for the computation of regular Gabor transforms. The
comparison shows that for the three signals, the NSGT features a better concen-
tration of transient energy than a regular Gabor transform, while keeping, or even
improving, frequency resolution.

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Hancock − dB scaled Gabor transform

4 5 6 7 8
0

500

1000

1500

2000

2500

3000

4 5 6 7 8
0

500

1000

1500

2000

2500

3000
Hancock − dB scaled NSGT

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Figure 5.2: Hancock (Example 2). Regular and nonstationary Gabor representations.
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Figure 5.3: Ligeti (Example 3). Regular and nonstationary Gabor representations.
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Efficiency in sparse reconstruction: The onset detection procedure and a
subsequent scale frame analysis were applied, along with a regular Gabor decom-
position, to the Glockenspiel and Ligeti signals. As a test of the representations’
sparsity, the signals were synthesized from their corresponding coefficients, mod-
ified by hard thresholding followed by reconstruction using the canonical dual
frame. Then the numbers of largest magnitude coefficients needed for a certain
relative root mean square (RMS) reconstruction error for each representation were
compared. The RMS difference of a vector f and its reconstruction frec is given
by

RMS(f, frec) =

√∑L−1
k=0 |f [l]− frec[l]|2∑L−1

k=0 |f [l]|2
.

All transforms are of redundancy about 5
3
. The results for NSGT and different

regular Gabor transform schemes are listed in Figure 5.4. On the Glockenspiel
signal the NSGT method performs vastly better than the ordinary Gabor trans-
form. For Ligeti, the differences are not as significant, but still the NSGT-based
procedure shows better overall results.
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Figure 5.4: RMS error in sparse representations of Example 1 and Example 3. Parameters
(in parentheses) are hop size and window length in the regular case (GT) or shortest
window length and number of scales for the nonstationary case (NSGT). The values are
estimated to be the optimal numbers of coefficients necessary to achieve reconstruction
with less than the respective error.

Further experiments and a more exhaustive discussion of the parameters used in
the experiments, can be found on the webpage http://univie.ac.at/nonstatgab/.
Along them, examples of regular and nonstationary reconstructions from a spec-
ified amount of coefficients can be found, so the reader might get a subjective

http://univie.ac.at/nonstatgab/
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impression of perceptive reconstruction quality. In conclusion, the experiments
show that for real music signals, NSGT can provide a sparser representation than
regular Gabor transforms, admitting reasonable reconstruction error.

5.4 Frequency-side systems

5.4.1 A framework for invertible, real-time constant-Q trans-
forms

Analysis, synthesis and processing of sound is commonly based on the represen-
tation of audio signals by means of time-frequency dictionaries. The short-time
Fourier transform (STFT), also referred to as Gabor transform, is a widely used
tool due to its straightforward interpretation and FFT-based implementation,
which ensure efficiency and invertibility [53, 118]. STFT features a uniform time
and frequency resolution and a linear spacing of the time frequency bins.

In contrast, the constant-Q transform (CQT), originally introduced in [172] and
in music processing by J. Brown [26], provides a frequency resolution that depends
on geometrically spaced center frequencies of the analysis windows. In particular,
the Q-factor, i.e. the ratio of center frequency to bandwidth of each window, is
constant over all frequency bins; the constant Q-factor leads to a finer frequency
resolution in low frequencies, whereas time resolution improves with increasing
frequency. This principle makes the constant-Q transform well-suited for audio
data, since it better reflects the resolution of the human auditory system than
the linear frequency-spacing provided by the FFT, cf. [144] and references therein.
Furthermore, musical characteristics such as overtone structures remain invariant
under frequency shifts in a constant-Q transform, which is a natural feature from
a perception point of view. In speech and music processing, perception-based
considerations are important, which is one of the reasons why CQTs, due to their
previously discussed properties, are often desirable in these fields. An example of
a CQ-transform, obtained with our algorithm, is shown in Figure 5.5.

The principal idea of CQT is reminiscent of wavelet transforms, compare [142].
Since they are based on iterated filter banks, these methods are computationally
too expensive for long, real-life signals, when high Q-factors, such as 12-96 bins
per octave, are required. As opposed to wavelet transforms, the original CQT is
not invertible and does not rely on any concept of (orthonormal) bases. On the
other hand, the number of bins (frequency channels) per octave is much higher
in the CQT than most traditional wavelet techniques would allow for. Partly
due to this requirement, the computational efficiency of the original transform as
well as its improved versions, cf. [25], may often be insufficient. Moreover, the
lack of invertibility of existing CQTs has become an important issue: for some
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desired applications, such as extraction and modification, e.g. transposition, of
distinct parts of the signal, the unbiased reconstruction from analysis coefficients
is crucial. Approximate methods for reconstruction from constant-Q coefficients
have been proposed before, in particular for signals which are sparse in the fre-
quency domain [44] and by octave-wise processing in [141]. In [141], Klapuri and
Schörkhuber presented a computation of the CQT that shows improved efficiency
and flexibility compared to the method proposed in [25], among others. How-
ever, the approximate inversion introduced in [141] still gives an RMS error of
around 10−3. The lack of perfect invertibility prevents the convenient modifica-
tion of CQT-coefficients with subsequent resynthesis required in complex music
processing tasks such as masking or transposition.

In the present contribution, we are interested in inversion in the sense of perfect
reconstruction; to this end, we investigate a new approach to constant-Q signal
processing. The presented framework has the following core properties:

1. Relying on concepts from frame theory, [118], we suggest the implementation
of a constant-Q transform using the nonstationary Gabor transform (NSGT),
which guarantees perfect invertibility. This perfectly invertible constant-Q
transform is subsequently called constant-Q nonstationary Gabor transform
(CQ-NSGT).

2. We introduce a preprocessing step by slicing the signal to pieces of (usually
uniform) finite length. Together with FFT-based methods, this allows for
bounded delay and results in linear processing time. Thus, our algorithm
lends itself to real-time processing and the resulting transform is referred to
as sliced constant-Q transform (sliCQ).

NSGTs, introduced in [10, 95], generalize the classical sampled short-time Fourier
transform or Gabor transform [71,118]. They allow for fast, FFT-based implemen-
tation of both analysis and reconstruction under mild conditions on the analysis
windows. The CQ-NSGT was first presented in [164]; the frequency-resolution of
the proposed CQ-NSGT is indistinguishable from that of the CQT, cf. Figure 5.5
for an example.

The main drawback of the CQ-NSGT is the inherent necessity to obtain a
Fourier transform of the entire signal prior to actual processing. This problem pro-
hibits real-time implementation and is overcome by a slicing step, which preserves
the perfect reconstruction property. However, blocking effects and time-aliasing
may be observed if the coefficients are modified in applications such as de-noising
or transposition and time-shift of certain signal components. While slicing the
signal naturally introduces a trade-off between delay and finest possible frequency
resolution, the parameters can be chosen to suppress blocking artifacts and to leave
the constant-Q coefficient structure intact.



116 CHAPTER 5. NONSTATIONARY GABOR: IMPLEMENTATION

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Kafziel − dB−scaled Regular Gabor Transform Spectrogram

 

 

0 2 4 6 8 10 12
   50

  200

  800

 3200

12800
22050

−50

−40

−30

−20

−10

0

time (seconds)

fr
eq

ue
nc

y 
(H

z)

Kafziel − dB−scaled CQ−NSGT Spectrogram

 

 

0 2 4 6 8 10 12
   50

  200

  800

 3200

12800
22050

−50

−40

−30

−20

−10

0

Figure 5.5: Time-frequency representations on a logarithmically scaled frequency axis:
STFT spectrogram (top) and constant-Q NSGT spectrogram (bottom).

5.4.2 The CQ-NSGT parameters: Windows and lattices

The parameters of the NSGT can be designed as to implement various frequency-
adaptive transforms. Here, we focus on the parameters leading to an NSGT with
constant-Q frequency resolution, suitable for the analysis and processing of music
signals, as discussed in the paragraphs above. In constant-Q analysis, the functions
gm are considered to be filters with support of length Lm ≤ L centered at frequency
ωm (in samples), such that for the bins corresponding to a certain frequency range,
the respective center frequencies and lengths have (approximately) the same ratio.
Using these filters, the CQ-NSGT coefficients cn,m are obtained via Algorithm 5,
where m indexes the frequency bins, and n ∈ ΛNm .

As detailed in [164], the construction of the filters for the CQ-NSGT depends
on the following parameters: minimum and maximum frequencies ξmin and ξmax

(in Hz), respectively, the sampling rate ξs, and the number of bins per octave B.
Setting: For the frame elements in the transform, we consider functions gm ∈
CL, m = 1, . . . ,M . Their center frequencies ξm satisfy ξm = ξmin2

m−1
B , similar

to the classical CQT in [26], for m = 1, . . . ,M , where M is an integer such that
ξmax ≤ ξM < ξs/2, the Nyquist frequency. Here ξmin and ξmax are the desired
minimum and maximum frequencies, respectively. Note that the correspondence
between ξm and ωm below is the conversion ratio from Hz to samples, as detailed
in the next paragraphs. In this case, we take M = ⌈B log2(ξmax/ξmin) + 1⌉, where
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Table 5.1: Center frequency and bandwidth values

m ξm Ωm

0 0 2ξmin

1, . . . ,M ξmin2
m−1
B ξm/Q

M + 1 ξs/2 ξs − 2ξM

M + 2, . . . , 2M + 1 ξs − ξ2M+2−m ξ2M+2−m/Q

⌈t⌉ is the smallest integer greater than or equal to t. While in the CQT no 0-
frequency is present, the NSGT provides all necessary freedom to use additional
center frequencies. Since the signals of interest are real-valued, we put filters at
center frequencies beyond the Nyquist frequency in a symmetric manner. This
results in the following values for the center frequencies, also summarized in Table
5.1:

ξm =





0, m = 0

ξmin2
m−1
B , m = 1, . . . ,M

ξs/2, m =M + 1

ξs − ξ2M+2−m, m =M + 2, . . . , 2M + 1.

The corresponding bandwidth Ωm of gm is set to be Ωm = ξm+1 − ξm−1, for
m = 2, . . . ,M −1. This leads to a constant Q-factor Q = ξm/Ωm = (2

1
B −2−

1
B )−1,

while Ω1 and ΩM are taken to be ξ1/Q and ξM/Q, respectively. Since the signals are
real-valued, additional filters are considered, which are positioned in a symmetric
manner with respect to the Nyquist frequency. Moreover, to ensure that the union
of filter supports cover the entire frequency axis, filters with center frequencies
corresponding to the zero frequency and the Nyquist frequency are included. The
values for Ωm over all frequency bins are given below and summarized in Table
5.1:

Ωm =





2ξmin, m = 0

ξ2, m = 1, 2M + 1

ξm/Q, m = 2, . . . ,M − 1

(ξs − 2ξM−1)/2, m =M,M + 2

ξs − 2ξM , m =M + 1

ξ2M+2−m/Q, m =M + 3, . . . , 2M.

With these center frequencies and bandwidths, the filters gm are set to be
gm[l] = H((lξs/L − ξm)/Ωm), for m = 1, . . . ,M,M + 2, . . . , 2M + 1 and l =
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0, . . . , L−1, where H is some continuous function centered at 0, positive inside and
zero outside
] − 1/2, 1/2[, i.e. each gm is a sampled version of a translated and dilated H .
A standard choice would be setting H = 0.5 + 0.5 cos(2πt), the Hann window.
Meanwhile, g0 and gM+1 are taken to be plateau functions, i.e. continuous, com-
pactly supported functions that are constant 1 on some interval, centered at the
zero and the Nyquist frequencies respectively. Thus, each filter gm is centered at
ωm = ξmL/ξs and has support Lm = ΩmL/ξs.

Letting am ≤ ξs
Ωm

, we define gn,m by their Fourier transform ĝn,m = M−namgm,
n = 0, . . . , ⌊Nm⌋−1. Figure 5.6 illustrates the time-frequency sampling grid of the
set-up, where the center frequencies are geometrically spaced and sampling points
regularly spaced.

b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

ξ

t

ξm−1

ξm

ξm+1

am
︷ ︸︸ ︷

Figure 5.6: Exemplary sampling grid of the time-frequency plane for a constant-Q non-
stationary Gabor system.

With the aforementioned parameters, we compute the phaselocked CQ-NSGT
coefficients as

cn,m =

L−1∑

l=0

f̂ [l]gm[l]e
2πi(l−ωm)·nam/L.

This phaselock convention, while slightly different from the definition (5.12) above,
does not affect the frame property, yet implementation is more straightforward.

It is easy to see that the support conditions on ĝm imply that the sum σ =∑2M+1
m=0 Nm

∣∣ĝm
∣∣2 is finite and bounded away from 0. Consequently, this choice of

qG(g, a) satisfies the conditions of Proposition 14 for any sequence a with Nm ≥ Lm

for all m ∈ ΛM = {0, . . . , 2M +1}, allowing us to apply Proposition 15. Note that
while am might be rational, Nm must be integer-valued. Consequently, perfect
reconstruction of the signal is obtained from the coefficients cn,m by applying Al-
gorithm 6 with a dual frame, e.g. the canonical dual given by (5.6).
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Figure 5.7: Glockenspiel (Example 1). Regular Gabor, constant-Q nonstationary Gabor
and constant-Q representations of the signal. The transform parameters were B = 48
and ξmin = 200 Hz.

Note that we consider the bandwidth to be the support of the window in
frequency. This makes sense in the considered painless case. Very often, see
e.g. [141], the bandwidth is taken as the width between the points where the filter
response drops to half of the maximum, i.e. the −3dB -bandwidth. This definition
would also make sense in a non-compactly supported case. For the chosen filters,
Hann windows, the Q-factor considering the −3dB -bandwidth is just double of
the one considered above.

We see in Figure 5.7 the standard Gabor transform spectrogram and the
constant-Q NSGT spectrogram of the Glockenspiel signal, the latter being very
similar to the CQT spectrogram obtained from the original algorithm [26], but
with the additional property that the signal can be perfectly reconstructed from
the coefficients. Figures 5.8 and 5.9 compare the standard Gabor transform spec-
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Figure 5.8: Bach’s Little Fugue (Example 4). Regular and constant-Q nonstationary
Gabor representations of the signal. The transform parameters were B = 48 and ξmin =
75 Hz.
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Figure 5.9: Violin and piano duet (Example 5). Regular and constant-Q nonstationary
Gabor representations of the signal. The transform parameters were B = 48 and ξmin =
50 Hz.

trogram and the constant-Q NSGT spectrogram of two additional test signals,
both sampled at 44.1 kHz:

• Example 4: A recording of Bach’s Little Fugue in G Minor, BWV578 per-
formed by Christopher Herrick on a pipe organ. Low frequency noise and
the characteristic structure of pipe organ notes are resolved very well by a
CQT. See Figure 5.8.



5.4. FREQUENCY-SIDE SYSTEMS 121

0

1

2N

N

M

Figure 5.10: Tukey windows used in the slicing process. Note that the chosen amount of
zero-padding leads to a half-overlap situation.

• Example 5: An excerpt from a duet between violin and piano. Written
by John Zorn and performed by Sylvie Courvoisier and Mark Feldman, the
sample is made up of three short segments: A frantic sequence of violin and
piano notes, a slow violin melody with piano backing and an inharmonic part
with chirp component. See Figure 5.9.

5.4.3 Real-time processing and the sliCQ

The CQ-NSGT implementation introduced in the previous sections a priori relies
on a Fourier transform of the entire signal. This contradicts the idea of real-
time applications, which require bounded delay in processing incoming samples
and linear over-all complexity. These requirements can be satisfied by applying
the CQ-NSGT in a blockwise manner, i.e. to (fixed length) slices of the input
signal. However, the slicing process involves two important challenges: First, the
windows hm used for cutting the signal must be smooth and zero-padding has
to be applied to suppress time aliasing and blocking artifacts when coefficient-
modification occurs. Second, the coefficients issued from the blockwise transform
should be equivalent to the CQ-coefficients obtained from a full-length CQ-NSGT.
This can be achieved to high precision by careful choice of both the slicing windows
hm and the analysis windows gm used in the CQ-NSGT.

Structure of the sliCQ transform

We now summarize the individual steps of the sliCQ algorithm and introduce the
involved parameters.

I) Sliced constant-Q NSGT analysis:

1. Cut the signal f ∈ CL into overlapping slices f j of length 2N by mul-
tiplication with uniform translates of a slicing window h0, centered at
0.
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s0

s1

c0 c2 c4 · · · c0

c1 c3 · · · cL/N

Figure 5.11: Structure of the sliCQ coefficients - schematic illustration

2. For each f j, obtain coefficients cj ∈ C2N/am×|ΛM |, by applying
NSGTF2N (f, g, a) (Algorithm 5).

3. Due to the overlap of the slicing windows, cf. Figure 5.10, each time
index is related to two consecutive slices. For visualization and process-
ing, the slice coefficients cj are re-arranged into a 2-layer array s, with
s := {sk}k∈{0,1} ∈ C2×Nm×|ΛM |, cf. Figure 5.11.

II) Sliced constant-Q NSGT synthesis:

1. Retrieve cj by partitioning s.

2. Compute the dual frame qG(g̃, a) for qG(g, a) and, for all j, f̃ j =
iNSGTF2N (c

j, g̃, a) (Algorithm 6).

3. Recover f by (windowed) overlap-add.

Note that Lmust be a multiple of 2N ; this is achieved by zero-padding, if necessary.
By construction, the positions (n,m) of the coefficients in sk reflect their time-
frequency position with respect to the full-length signal, for k = 0, 1.

Computation of a sliced constant-Q NSGT

The sliced constant-Q NSGT (sliCQ) coefficients of f with respect to h0 and qG(g, a)
and slice length 2N are obtained according to Algorithm 7.

Note that in this and the following algorithm, negative indices are used in
a circular sense, with respect to the maximum admissible index, e.g. f [−l] :=
f [L − l] or sk−n,m := skNm−n,m. As the CQ-NSGT analysis before, Algorithm 7 is
complemented by a synthesis algorithm with similar structure, Algorithm 8, that
synthesizes a signal f̃ from a 2-layer coefficient array s.

The following proposition states that f is perfectly recovered from its sliCQ
coefficients by applying Algorithm 8.
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Algorithm 7 sliCQ analysis: s = sliCQL,N(f, h0, g, a)

1: Initialize f, h0, gm for all m ∈ ΛM

2: m← 0
3: for m = 0, . . . L/N − 1 do
4: for j = 0, . . . 2N − 1 do
5: f j [l]← fTjNh0[l + (j − 1)N ]
6: end for
7: cj ← NSGTF2N(f, g, a)
8: l ← (jmod2)
9: for m ∈ ΛM , n

s = 0, . . . , 2N/am − 1 do
10: skns+(j−1)N/am,m ← cjns,m

11: end for
12: end for

Proposition 16. Let qG(g, a) and qG(g̃, a) be dual NSG systems for C2N . Further
let h0, h̃0 ∈ CL satisfy

L/N−1∑

j=0

TjN

(
h0h̃0

)
≡ 1. (5.16)

If s is the output of sliCQL,N(f, h0, g, a) (Algorithm 7), then the output f̃ of

isliCQL,N(s, h̃0, g̃, a) (Algorithm 8) equals f , i.e., f̃ = f .

Proof. According to Proposition 15, f̃ j, the output of iNSGTF in Step 9 of

Algorithm 8 satisfies to f j[l] = (f ·TjNh0)[l+(j−1)N ]. Since
∑

j TjN

(
h0h̃0

)
≡ 1

holds,

f̃ =
∑

j

(f ·TjNh0)TjN h̃0 = f ·
∑

j

TjN

(
h0h̃0

)
= f

follows.

The relation between CQ-NSGT and sliCQ

To maintain perfect reconstruction in the final overlap-add step in Algorithm 8,
we assume

hj = TjNh0, with
L/N−1∑

j=0

hj ≡ 1, (5.17)

and use a dual window h̃0 satisfying (5.16) in the synthesis process.
Another obvious option for the design of the slicing windows is to require∑

j h
2
j ≡ 1, which would allow for using the same windows in the final overlap-add
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Algorithm 8 sliCQ synthesis: f̃ = isliCQL,N(s, h̃0, g̃, a)

1: Initialize s, h̃0, g̃m for all m ∈ ΛM

2: m← 0
3: f̃ ← 0L

4: for m = 0, . . . L/N − 1 do
5: k ← (jmod2)
6: for m ∈ ΛM , n

s = 0, . . . , 2N/am − 1 do
7: cjns,m ← skns+(j−1)N/am,m

8: end for
9: f̃ j ← iNSGTF2N (c

j, g̃, a)
10: for j = 0, . . . 2N − 1 do
11: f̃ [l + (j − 1)N ]←

f̃ [l + (j − 1)N ] + f̃ j[l]h̃0[l −N ]
12: end for
13: end for

step. However, if we want to approximate the true CQ-coefficients as obtained
from a full-length transform, (5.17) is the more favorable condition.

In our implementation, slicing of the signal is accomplished by a uniform par-
tition of unity constructed from a Tukey window h0 with essential length N and
transition areas of length M , for some N,M ∈ N with M < N (usually M ≪ N).
The slicing windows are symmetrically zero-padded to length 2N , reducing time
aliasing significantly. The uniform partition condition (5.17) leads to close ap-
proximation of the full-length CQ-NSGT by sliCQ. This correspondence between
the sliCQ and the corresponding full-length CQ-NSGT is made explicit in the
following proposition.

Proposition 17. Let qG(gL, a) be a nonstationary Gabor system for CL. Further,
let h0 ∈ CL be such that (5.17) holds and define gm ∈ C2N , for all m ∈ ΛM by

gm[l] = gLm[lL/(2N)].

For f ∈ CL, denote by c ∈ CNm×|ΛM | the CQ-NSGT coefficients of f with respect
to qG(gL, a) and by s ∈ C2×Nm×|ΛM | the sliCQ coefficients of f with respect to h0
and qG(g, a). Then

|s0n,m + s1n,m − cn,m|
≤ ‖f‖

(
‖(1− h0 − h1)Tnsam

|gLm‖

+ ‖(h0 + h1)

L
2N

−1∑

k=1

Tnsam+2kN
|gLm‖
)

(5.18)
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for n = jN/am + ns, with j = 0, . . . , L/N − 1 and ns = 0, . . . , N/am − 1.

Proof. Since gm is obtained by sampling gLm with sampling period L/2N , the (in-
verse) Fourier transform |gm of gm is given by periodization of gLm as follows:

|gm[l] =

L
2N

−1∑

k=0

|gLm[l + k · 2N ]. (5.19)

Recall from (5.12) that the CQ-NSGT coefficients of f with respect to G(gL, a)

are given by cn,m = 〈f,Tnam
|gLm〉, while the CQ-NSGT coefficients cj of f j are, for

j = 0, . . . , L/N − 1, ns = 0, . . . , 2N
am
− 1 and m ∈ ΛM

cjns,m = 〈f̂ j, gns,m〉 = 〈f̂ j,M−nsamgm〉
= 〈f j,Tnsam|gm〉

=

〈
f, hm

L
2N

−1∑

k=0

Tnsam+(j−1+2k)N
|gLm

〉
, (5.20)

where the final inner product is taken over CL. Observe that every n = 0, . . . , Nm−
1 can be written as n = j N

am
+ ns with ns from 0, . . . , N

am
− 1 and thus

s0n,m + s1n,m = cjns+N/am,m + cj+1
ns,m

=

〈
f, (hj + hj+1)

L
2N

−1∑

k=0

Tnsam+(j+2k)N
|gLm

〉

=
〈
f,Tnsam+jN

|gLm

〉
+R[n]

=
〈
f,Tam( jN

am
+ns)
|gLm

〉
+R[n]

= cn,m +R[n]. (5.21)

Here,

R[n] =
〈
f, (hj + hj+1 − 1)Tnsam+jN

|gLm

〉

+

〈
f, (hj + hj+1)

L
2N

−1∑

k=1

Tnsam+(j+2k)N
|gLm

〉
. (5.22)

Hence s0n,m + s1n,m − cn,m = R[n]. The result follows from Cauchy-Schwartz’ in-
equality, applied to the case j = 0, observing independence from j.
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Remark 21. In practice, |gLm is chosen such that the translates Tnam
|gLm are essen-

tially concentrated in

IN,M =

[
−N −M

2
, N +

N −M
2

]
,

i.e. ‖Tnam
|gLmχR\IN,M

‖ ≪ ‖Tnam
|gLm‖, for all n = 0, . . . , N/am − 1. Therefore,

the value of (5.18) is negligibly small. Numerical evaluation of the approximation
quality is given in Section 5.4.4.

As a consequence of the previous proposition, we define the sliCQ spectrogram
as |s0 + s1|2 and propose to simultaneously treat s0n,m and s1n,m, corresponding to
the same time-frequency position, when processing the coefficients.

5.4.4 Numerical analysis and simulations

In this section we treat the computational complexity of CQ-NSGT and sliCQ
and how they compare to one another. We show that despite superlinear com-
plexity, CQ-NSGT outperforms state-of-the-art implementations of the classical
constant-Q transform. Since sliCQ is a linear cost algorithm, it further improves
the efficiency of the CQ-NSGT for sufficiently long signals. Section 5.4.4 pro-
vides experimental results confirming the good approximation of CQ-NSGT by
the corresponding sliCQ coefficients, cf. Proposition 17.

The NSG Toolbox (for MATLAB) and CQ-NSG Toolbox (for Python) used
in this section are available at http://www.univie.ac.at/nonstatgab/slicq,
alongside extended experimental results complementing those presented in Section
5.4.5.

Computational complexity:

We assume the number of filters |ΛM | in the CQ-NSGT to be independent of the
signal length L and Proposition 14 to hold, in particular Nm ≥ Lm. The support
size Lm of each filter gm depends on L. Hence, the number of operations for
Algorithm 5 is as follows:

O
(
L log (L)︸ ︷︷ ︸

FFTL

+
∑

m∈ΛM

Nm log (Nm)︸ ︷︷ ︸
IFFTNm

+ Lm︸︷︷︸
f ·gm

)
.

With Lm and Nm bounded by L, this can be simplified to O(L log(L)).
The computation of the dual frame involves inversion of the multiplication

operator S and applying the resulting operator S−1 to each filter. This results in

http://www.univie.ac.at/nonstatgab/slicq
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O(2∑m∈ΛM
Lm) = O(L) operations, where the support of the gm was taken into

account.
Complexity of Algorithm 6 can be derived to be O(L log(L)), analogous to

Algorithm 5.

For sliCQL,N (Algorithm 7), we assume the slice length 2N to be independent
of L, resulting in a computational complexity of

O
(
L/N︸︷︷︸
#slices

·
(
2N log (2N)︸ ︷︷ ︸

NSGTF2N

+ 2N︸︷︷︸
f ·TmNh0

))
= O(L).

Both the dual frame and h̃0 can be precomputed independent of L, whilst Algo-
rithm 8 is of complexity O(L), analogous to Algorithm 7.

Efficiency of CQ-NSGT:

Technical framework: The simulations presented in this section were performed
in MATLAB R2009b on a 3 Gigahertz Intel Core 2 Duo machine with 2 GB RAM.
The constant-Q transforms were computed using the code published with [141],
available for free download at http://www.elec.qmul.ac.uk/people/anssik/

cqt/. The constant-Q nonstationary Gabor transform (CQ-NSGT) algorithms
are available at http://univie.ac.at/nonstatgab/.

The computation time of the nonstationary Gabor transform was found to be
better than a recent fast CQT implementation [141], as seen in Figure 5.12. The
two plots show mean values for computation time in seconds and the corresponding
variance over 50 iterations, with varying window lengths and number of frequency
bins, respectively. The outlier, drawn in gray, in Figure 5.12 (left) at the prime
number 600569 illustrates dependence of the current CQ-NSGT implementation
on the signal length’s prime factor structure, analogous to FFT.

Efficiency of sliCQ:

The following computation time experiments were performed in the same frame-
work as before but using MATLAB R2011a.

Figure 5.13(left) reproduces and extends some of the results shown in Fig-
ure 5.12; it shows, for both the constant-Q implementation provided in [141] and
CQ-NSGT, mean computation duration and variance for analysis followed by re-
construction, against signal length. The plot also illustrates the dependence of
CQ-NSGT on the prime factor decomposition of the signal length L.

Figure 5.13(right) illustrates the performance of sliCQ compared to the constant-
Q and CQ-NSGT algorithms shown in Figure 5.13(left). Linearity of the sliCQ

http://www.elec.qmul.ac.uk/people/anssik/cqt/
http://www.elec.qmul.ac.uk/people/anssik/cqt/
http://univie.ac.at/nonstatgab/
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Figure 5.12: Comparison of computation time of CQT (top curves) and NSGT (bottom
curves). The figure on the left shows the computation times for signals of various lengths
with the number of bins per octave fixed at B = 48, while the figure on the right shows
the computation times for the Glockenspiel signal, varying the number of bins per octave.
In both figures, the solid lines represent the mean time (in seconds) and the dashed or
dotted lines signify the mean time with corresponding variance. The lower left curve also
shows gray solid lines indicating an outlier. The minimum frequency for all cases ξmin

was chosen at 50 Hz.
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Figure 5.13: (left) Computation time versus signal length of the CQ transform (dark
gray) and CQ-NSGT. For the CQ-NSGT we show separate graphs including (light gray),
respectively neglecting prime signal lengths (black). Graphs show the mean performance
(solid) and variance (dashed) over 50 iterations. (right) Computation time versus signal
length of the CQ transform (dotted gray), CQ-NSGT (dashed gray) and various sliCQ
transforms. The sliCQ transforms were taken with slice lengths 4096 (solid gray), 16384
(dotted black), 32768 (dashed black) and 65536 (solid black) samples.

algorithm becomes evident, with deviations occurring due to unfavorable FFT
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Figure 5.14: SliCQ coefficient approximation error against the minimal admissible band-
width for Set 1 (top) and Set 2 (bottom). All transforms use Blackman-Harris windows
in the CQ-NSGT step. Solid and dashed lines represent long (1/4 slice length) and short
(1/128 slice length) transition areas respectively, while colors correspond to the slice
length: 4096 (light gray), 16384 (dark gray) and 65536 samples (black).

lengths 2N/am in (i)NSGTF2N . Performance improvements for increasing slice
length can be attributed to the advanced nature of MATLAB’s internal FFT al-
gorithm, as compared to the current implementation of the sliCQ framework.

The performance of the involved algorithms does not depend on signal con-
tent. Consequently, random signals were used in the performance experiments,
although we implicitly assumed the signals to be sampled at 44.1 kHz. All the
results represent transforms with 48 bins per octave, minimum frequency 50 Hz
and maximum frequency 22 kHz, in Section 5.4.5 a maximum frequency of 20 kHz
is used instead. Results for other parameter values do not differ drastically and
are omitted.

Approximation properties

To verify the approximate equivalence of the sliCQ coefficients to those of a full-
length CQ-NSGT and thus to a constant-Q transform, we computed the norm
difference between s0+s1 and c as in Proposition 17, for two sets of fundamentally
different signals. Set 1 contains 50 random, complex-valued signals of 220 samples
length, while Set 2 consists of 90 music samples of the same length, sampled at
44.1 kHz each, covering pop, rock, jazz and classical genres. The signals of the
second set are well-structured and often well-concentrated in the time-frequency
plane, characteristics that the first set lacks completely.

For discretization reasons as well as to achieve good concentration of |gLm in
Proposition 17, sliCQ implementations must impose a lower bound on the length
of gm. Approximation results for various lower bounds on the filter length are
summarized in Figure 5.14, showing the mean approximation quality over the
whole set.
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Figure 5.15: Coefficient approximation error (5.18) for all signals from Set 2 and slice
and transition length of 65536, resp. 16384 samples. Line style indicates the minimal
bandwidth: 8 (dotted), 16 (dashed) and 32 (solid) samples.

All errors are given in signal-to-noise ratio, scaled in dB:

20 log10
‖c‖

‖c− (s0 + s1)‖
Figure 5.14 shows that, independent of other parameters, a minimal filter length

smaller than 8 samples leads to a representation that is visibly different from, while
values above 16 samples yield coefficients that are largely equivalent to those of
a constant-Q transform. We can see that the slice length itself has rather small
influence on the results, while the interplay of slicing window shape, specified
by the ratio of transition area length to slice length, and minimal filter length
is illustrated nicely; remarkably, this ratio influences the approximation quality
mainly for moderately well localized filters. This is in correspondence with the
characterization given in (5.18): the circular overspill, given by the second term of
the right hand side in (5.18), depends on the shape and support of the sum of two
adjacent slicing windows, in particular for moderately well localized filters. If the
windows are very well localized, the overspill is small independent of the particular
shape of the slicing area. On the other hand, very badly localized windows make
the distinct influence of the slicing windows negligible. Finally, a comparison of
the top and bottom graphs in Figure 5.14 shows that the approximation quality is
largely independent of the signal class. For Set 1 the variance is generally negligible
(< 0.1 dB) and was omitted. Despite some outliers in Set 2, we have found the
approximation quality to depend on the minimal filter length in a stable way,
cf. Figure 5.15. These outliers can be attributed to signals particularly sparse
(smaller error) or dense (larger error) in low frequency regions, where |gLm is least
concentrated.

5.4.5 Experiments on applications

Our experiments show applications of the CQ-NSGT and sliCQ in musical
contexts, where the property of a logarithmic frequency scale renders the method
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Figure 5.16: Note extraction from the Glockenspiel signal by masking. The CQ-NSGT
coefficients of the Glockenspiel signal were weighted with the mask shown on top. The
remaining signal and extracted component are depicted in the middle and bottom re-
spectively. The transform parameters were B = 24 and ξmin = 50 Hz.

often superior to the traditional STFT. Sound examples for the first two experi-
ments can be found at http://univie.ac.at/nonstatgab/cqt/, while those for
the final experiment are provided at http://univie.ac.at/nonstatgab/slicq/.

Masking

In the masking experiment, we show that the perfect reconstruction property of
CQ-NSGT can be used to cut out components from a signal by directly modifying
the time-frequency coefficients. The advantage of considerably higher spectral res-
olution at low frequencies (with a chosen application-specific temporal resolution
at higher frequencies) compared to the STFT, makes the CQ-NSGT a very pow-
erful, novel tool for masking or isolating time-frequency components of musical
signals. Our example shows in Figure 5.16 a mask for extracting – or inversely,
suppressing – a note from the Glockenspiel signal depicted in Figure 5.7. The
mask was created as a gray-scale bitmap using an ordinary image manipulation
program and then resampled in order to conform to the irregular time-frequency

http://univie.ac.at/nonstatgab/cqt/
http://univie.ac.at/nonstatgab/slicq/
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Figure 5.17: Piano chord signal and upwards transposition by 5 semitones, corresponding
to a circular shift of the inner bins by 20. The transform parameters were B = 48 and
ξmin = 100 Hz.

grid of the CQ-NSGT. Figure 5.16 shows the masked spectrogram, along with the
spectrograms of the synthesized, processed signal and remainder.

Transposition

An interesting property of continuous constant-Q decompositions is the fact the
transposition of a harmonic structure, like a note including overtones, corresponds
to a simple translation of the logarithmically scaled spectrum. Approximately,
this is also the case for the finite, discrete CQ-NSGT. In this experiment, we
transposed a piano chord simply by shifting the inner frequency bins accordingly.
By inner frequency bins, we refer to all bins with constant Q-factor. This excludes
the 0-frequency and Nyquist frequency bins, as well as their direct neighbors. The
onset portion of the signal has been damped, since inharmonic components, such
as transients, produce audible artifacts when handled in this way. In Figure 5.17,
we show spectrograms of the original and modified chords, shifted by 20 bins. This
corresponds to a upwards transposition by 5 semitones.

Transposing a component

The previous experiments show how the CQ-NSGT can be applied in the process-
ing of signals taking advantage of the logarithmic frequency scaling and the perfect
reconstruction property. In particular, the transposition of a harmonic structure
amounted to just a translation of the spectrum along frequency bins, while the
masking of the CQ-NSGT coefficients allowed for the extraction or suppression
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Figure 5.18: Masks for extracting a transient (left) and sinusoidal component (right) of
the Glockenspiel signal. The gray level plot describes the amplitude of the mask, with
black and white representing 1 and 0, respectively.

of a component of the signal. In the following experiment, we show that the two
procedures can be combined to modify a portion of a signal.

The sound files for this and other transposition experiments are available at
http://www.univie.ac.at/nonstatgab/slicq. A script for the Python toolbox
that executes the experiment, is available on the same page.

Figure 5.18 shows masks for isolating a transient part and the corresponding
sinusoidal part of a Glockenspiel signal, created using an ordinary image manipu-
lation program. Therein, the layers paradigm has been used to be able to quickly
switch on and off the masks in order to accurately adapt them to the CQ-NSGT
representation of the audio. An “inverse mask” is also constructed for the remain-
der part of the signal, essentially decomposing the signal into transient, sinusoidal
and background portions. The masks have been drawn in the logarithmic domain,
to be able to handle the dynamics of the audio. They are linearly scaled in dB
units, so that 0 in the mask corresponds to 10−5 (−100 dB) and 1 corresponds to
1 (0 dB).

While keeping the transient part, the isolated sinusoidal component of the
signal is transposed upward by 2 semitones, corresponding to 8 frequency bins.
The transient, the remainder, and the modified sinusoidal coefficients are then
added and the inverse transform is applied to obtain the resulting processed signal.
For ease of use, this process is done with a rectangular representation of the slices,
obtained by choosing Nm constant for all frequency bands which corresponds to a
sinc-interpolation of the coefficients.

Figure 5.19 compares the CQ-NSGT spectrograms of the original and the modi-
fied signal, while Figure 5.20 shows the results for the same experiment using sliCQ
transforms with different slice lengths. Note that the plots show the spectrogram
of the synthesized signal, not the time-frequency coefficients before synthesis. Fur-

http://www.univie.ac.at/nonstatgab/slicq
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Figure 5.19: CQ-NSGT spectrograms showing an excerpt of the Glockenspiel signal
before (left) and after transposition of a component (right).
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Figure 5.20: sliCQ spectrograms showing an excerpt of the Glockenspiel signal after
transposition of a component. The left plot was done with a slice length of 50000 and a
transition area of 20000 samples, the right plot with a slice length of 5000 and a transition
area of 2000 samples.

ther, the exact same mask was used for CQ-NSGT and sliCQ transpositions.

5.5 Extensions and further implementations

5.5.1 An auditory-based transform and iterative reconstruc-
tion

The peripheral auditory system can be modeled in a first approximation as a bank
of bandpass filters whose bandwidth corresponds to the spectral resolution of the
ear. Many psychoacoustical studies have focused on the characterization of these
“auditory filters”(see [120] for a review). The filters are commonly described by
their equivalent rectangular bandwidth (ERB). The ERB (in Hz) of the auditory
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filter centered at frequency F (in Hz) is [79]

ERB(F ) = 24.7 +
F

9.265
. (5.23)

Eq. (5.23) indicates that the auditory frequency resolution as described by the
ERB is approximately constant-Q only at high frequencies (> 2 kHz). For the full
range of audible frequencies (.02–20 kHz) the ERBs range from 27 Hz to 2.2 kHz.
Using ERB units, the range of audible frequencies can be discretized as a bank of
39 adjacent filters whose ERB number is [79]

ERBnum(F ) = 9.265 ln

(
1 +

F

228.8455

)
(5.24)

and, reciprocally, F = u(EF ) = 228.8455
(
e(EF /9.265) − 1

)
. Eq. (5.24) corresponds

to the ERB scale used to plot psychoacoustical data on a perceptual frequency axis.
The partition of the frequency axis into filters leads to a partition of the time axis
into time windows whose widths correspond to the temporal resolution at a certain
frequency. In [162] the windows’ shape was estimated using Gaussian stimuli with
various spectro-temporal shapes. The results indicated that the spectral width
of one window corresponds to one ERB and the temporal width approximately
corresponds to four periods of the carrier frequency, e.g., 4 ms at 1 kHz. Overall,
the data in [162] suggests that the auditory system performs a TF analysis using its
own “internal” windows that are well approximated by Gaussians with frequency
dependent spectro-temporal resolution.

Auditory-based TF representations
To date, two general approaches exist to achieve a perceptually motivated TF
representation of an audio signal. The first approach includes models of auditory
processing like in [113, 119]. Such models attempt to replicate the various stages
of auditory processing and are useful to improve our knowledge about the audi-
tory system. However, they feature many parameters, they are computationally
demanding and not invertible. Approximately invertible models were proposed in,
e.g., [74, 128] as integrated audio coders. Consequently, the signal representation
is not easily accessible. Overall, auditory models do not constitute TF analysis-
synthesis tools. The second approach includes TF transforms tuned to mimic the
auditory TF resolution (see Sec. 5.5.1). Wavelet and constant-Q transforms are
used [4,127,164] in this context, but they mismatch the auditory spectral resolution
at low frequencies. Further developments include a bilinear transform [124], lin-
ear [90,149] and nonlinear gammatone filterbanks [94], and auditory-based nonuni-
form filterbanks [19,46]. They approximate the auditory TF resolution nicely but
fail at providing perfect reconstruction.
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Analysis and dual windows: ERBlets

The ERBlet transform consists of filters gm, m = 0, . . . ,M , that are Gaussian
windows constructed in the frequency domain according to

gm[l] = Ω
− 1

2
m e−π[ l−ξm

Ωm
]
2

(5.25)

where l ∈ Z is the discrete frequency variable, ξ is the center frequency (in Hz),
and Ω is a shape factor that controls the effective support (bandwidth) of g (in
Hz). Let fmin and fmax denote the minimum and maximum analysis frequencies,
respectively. Their corresponding ERB numbers are (Eq. (5.24)) E0 and EM .
Linearly distributing M + 1 filters from E0 to EM with a density of V filters per
ERB leads to Em = E0 +m/V with M = V (EM −E0). Then ξm = u(Em) and

Ωm = ERB(ξm). The factor Ω
− 1

2
m in Eq. (5.25) ensures that all filters have the

same energy. Although Gaussians are not compactly-supported windows, they
decay very fast. Thus, by truncating the filters so that supp(gm) = ⌈4Ωm⌉, the
filters are close to zero at the borders. Finally, am and V can be chosen such that
the frame operator associated with the ERBlets is invertible, see Section 5.2.2.

Implementation

The ERBlet algorithms and scripts are available at http://www.kfs.oeaw.ac.at/
ICASSP2013_ERBlets. This address is referred to below as the “webpage”. The
algorithms are also available in the NSG Toolbox.

To process the positive and negative frequencies the M +1 filters are mirrored
to the negative frequency domain (note that if fmin and fmax are set at the 0
and Nyquist frequencies, respectively, then only M − 1 filters are mirrored). The
ERBlet transform is determined by the two parameters am and V that provide
control over the resolution and redundancy of the transform, red =

∑M
m=−M a−1

m .
The number of time samples in each channel is given by Nm = ⌈Nm⌉. Choosing am
such that Nm ≥ supp(gm) results in a painless system (see Sec. 5.2.2). Otherwise
Ŝ is not diagonal and iterative algorithms are required for efficient inversion. To
do so, we note that Ŝ

qG(g,a) := FS qG(g,a)F−1 = SG(g,a) and use the equality
∑

n,m

cn,m}g̃n,m =
∑

n,m

cn,mS
−1
qG(g,a)

gn,m = F−1S−1
G(g,a)

∑

n,m

cn,mgn,m (5.26)

to solve the linear system
Sx =

∑

n,m

cn,m }gn,m (5.27)

with an adapted conjugate gradients (CG) algorithm [82,155], where the right-hand
sum in Eq. (5.27) is computed by NSIGTFL (Algorithm 6). If qG(g, a) is a frame,

http://www.kfs.oeaw.ac.at/ICASSP2013_ERBlets
http://www.kfs.oeaw.ac.at/ICASSP2013_ERBlets
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then so is G(g, a) and Ŝ is self-adjoint, leading to convergence of CG to the desired
solution. The convergence speed depends on the condition number κ(Ŝ) (i.e.,
the frame bound ratio B/A [155]) and can be improved with a preconditioning
step [11]. If the ĝm decay fast enough then Ŝ is diagonal dominant and the matrix

D(Ŝ)
−1

m,l =

{
(
∑
Nm|ĝm|2)−1

[m], if m = l

0, else
(5.28)

is an efficient preconditioner. Because CG works for self-adjoint matrices only and
applying D(Ŝ)

−1
to Ŝ does not result in a self-adjoint matrix, we use

D(Ŝ)
−1/2

ŜD(Ŝ)
−1/2

instead. Since applying Ŝ to a signal f is equivalent to performing analysis fol-
lowed by synthesis with the time-side NSG system G(g, a), we can use NSGTL

(Algorithm 3) and NSIGTL (Algorithm 4) to solve Eq. (5.27), requiring only
one additional FFTL for initialization and one IFFTL to obtain the result after
convergence2. The preconditioner in Eq. (5.28) is realized by point-wise multipli-
cation. Thus, one CG step involves one application of NSGTL and NSIGTL and
L scalar multiplications for the preconditioning, see Algorithm 9. As experimental
results in Sec. 5.5.1 show, only a few iterations are necessary for CG to converge
to the correct solution up to numerical precision.

Although we have not conducted any experiments on iterative analysis so far,
the same scheme can be used by relying on the selfadjointness of S, S−1, giving

〈f,}g̃n,m〉 = 〈f̂ , Ŝ−1gn,m〉 = 〈Ŝ−1f̂ , gn,m〉.
A preconditioned iterative analysis algorithm is given as Algorithm 10.

Results and discussion
Two experiments were conducted to evaluate the performance of the ERBlet trans-
form. In Exp. 1 we tested the convergence of iterative reconstruction for several
NSG ERBlet systems yielding different redundancies (see Tab. 5.2). In Exp. 2 we
compared the ERBlet to two other auditory-based approaches in terms of signal
representation, reconstruction error, and redundancy. The audio material con-
sisted of a 5-sec musical excerpt from the band Manowar (song “Heart of Steel”,
studio version) in mono format, sampled at 44.1 kHz, 16 bits/sample. All analy-
ses were performed for Fmin = 0 and Fmax = 22.05 kHz. Complementary results,
colored figures, and simulation codes are available on the webpage.

2The first FFTL can be substituted by involution, using (F (NSIGTFL(c,g, a))) [·] =
NSIGTL(c,g, a)[−·]. If the FFT implementation used is not unitary, an additional normal-
ization might be necessary.
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Algorithm 9 Iterative synthesis: f̃ = NSIGTFit
L(c, g, a, λ)

1: Initialize x0 = 0, k = 0
2: r0 ← NSIGTFL(c,g,a)
3: r0 ← FFTL(r0)

4: h0, p0 ← D(Ŝ)
−1

r0
5: repeat

6: qk = NSIGTL(NSGTL(p0,g,a),g,a)

7: αk ← 〈rk,hk〉
〈pk,qk〉

8: xk+1 ← xk + αkpk
9: rk+1 ← rk + αkqk

10: hk+1 ← D(Ŝ)
−1

rk+1

11: βk ← 〈rk+1,hk+1〉
〈rk,hk〉

12: pk+1 ← hk+1 + βkpk
13: k ← k + 1
14: until rk ≤ λ
15: f̃ ← IFFTL(xk)

Algorithm 10 Iterative analysis: c = NSGTFit
L(f, g, a, λ)

1: Initialize x0 = 0, k = 0
2: b← FFTL(f)
3: r0 ← b

4: h0, p0 ← D(Ŝ)
−1

r0
5: repeat

6: qk = NSIGTL(NSGTL(p0,g,a),g,a)

7: αk ← 〈rk,hk〉
〈pk,qk〉

8: xk+1 ← xk + αkpk
9: rk+1 ← rk + αkqk

10: hk+1 ← D(Ŝ)
−1

rk+1

11: βk ← 〈rk+1,hk+1〉
〈rk,hk〉

12: pk+1 ← hk+1 + βkpk
13: k ← k + 1
14: until rk ≤ λ
15: xk ← IFFTL(xk)
16: c← NSGTFL(xk,g,a)
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Table 5.2: Parameters, redundancies and frame bound ratios of the NSG ERBlet systems
used in Exp. 1.

qG(g,a) case V M Nm red B/A

ERBlet1 painless 1 43 ⌈4Ωm⌉ 4.00 1.44

ERBlet2 painless 3 129 ⌈4Ωm⌉ 12.00 1.07

ERBlet3 CG 1 43 ⌈32Ωm

9 ⌉ 3.53 1.44

ERBlet4 CG 1 43 ⌈8Ωm

3 ⌉ 2.64 1.44

ERBlet5 CG 1 43 ⌈2Ωm⌉ 1.98 1.52

ERBlet6 CG 1 43 ⌈4Ωm

3 ⌉ 1.32 2.56

ERBlet7 CG 1 43 ⌈12Ωm

11 ⌉ 1.08 5.88
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Figure 5.21: Convergence of the iterative reconstruction with (filled markers) and without
diagonal preconditioning (empty markers) for various ERBlet configurations indicated in
Tab. 5.2.

The results of Exp. 1 are depicted in Fig. 5.21 as a convergence plot. It can
be seen that preconditioning had a considerable effect for the systems ERBlet3
to ERBlet5. Iterative synthesis for ERBlet6 and ERBlet7, not shown in the plot,
converged in 21 and 45 iterations, respectively. Preconditioning had no effect in
these cases. Noteworthy, the number of iterations does not depend on the signal
length but only on the condition number.

In Exp. 2 we considered the system “ERBlet2” in Tab. 5.2, the NSG constant-Q
transform in [164], and the linear gammatone filterbank in [90]. The constant-Q
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transform used 24 filters per octave distributed between 50 Hz and 22.05 kHz (212
filters in total) and Q = 9 (≈ F/ERB(F ) for F > 2 kHz). These parameters for
the constant-Q were chosen so that both the constant-Q and ERBlet transforms
have approximately the same number of filters in the frequency range 2–20 kHz
(84) and the same redundancy over the whole TF plane (12). The gammatone
filterbank used 3 filters per ERB (128 filters in total). Signal representations are
depicted in Fig. 5.22. Fig. 5.22a shows that the ERBlet captured both harmonic
(voice vibrato) and transient (drums) parts in the broadband, rich background
generated by drums and distorted guitars. Fig. 5.22b shows that ERBlet and
constant-Q representations are very similar above 500 Hz but differ below. Below
500 Hz the ERBlet has a better time resolution while the constant-Q transform has
a better spectral resolution. This is due to the fact that the constant-Q transform
features a larger number of filters at low than at high frequencies. Consequently,
the constant-Q transform required 212 filters to achieve the same (visual) high-
frequency resolution as the ERBlet with 129 filters. Both the ERBlet and constant-
Q transforms led to perfect reconstruction (relative errors < 10−15). Fig. 5.22c
shows that ERBlet and gammatone representations are very similar over the whole
TF plane. Since gammatone filters are auditory filter models per se, this result
indicates that the ERBlet approximates well the auditory TF resolution. While the
ERBlet achieved perfect reconstruction, the gammatone filterbank led to a relative
reconstruction error of about 10−3. Note however, that this error was perceptually
irrelevant (as indicated by informal listening). Because the gammatone system
in [90] features no downsampling option, its redundancy was 128 compared to 12
for the ERBlet.

Overall, the proposed method provides a linear, auditory-based, and perfectly
invertible TF transform that can be easily integrated in audio analysis-synthesis
systems. An advantage of the current implementation is that resolution and re-
dundancy are adaptable without affecting the reconstruction error. While the
ERBlet achieves a perceptually motivated TF analysis comparable to that of lin-
ear gammatone filterbanks [90, 149], it allows perfect reconstruction even with a
density of 1 filter per ERB (see Tab. 5.2). In comparison, a gammatone imple-
mentation designed to achieve near-perfect reconstruction (relative error = 10−7)
in [149] requires a minimum density of 2.4 filters per ERB. Although our approach
cannot substitute for physiologically plausible auditory models like [119], it could
be useful to auditory modeling approaches in which a density of 1 filter per ERB
is often desired [74].

To account for the level dependency of the auditory filters’ bandwidth and the
compressive response of the cochlea [120], an approximately invertible nonlinear
gammatone filterbank was proposed in [94]. To further improve the match between
the auditory and the transform resolutions while retaining the perfect reconstruc-
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Figure 5.22: TF representations (squared moduli, in dB) for (top left) ERBlet, (top
right) constant-Q transform, and (bottom) gammatone filterbank (restricted to the rel-
evant frequency band 0–4000 Hz).

tion property of the ERBlet, future works include: inclusion of compression and
use of windows with Gaussian shapes on the ERB scale (i.e., using a warping
function mapping the linear frequency axis to the ERB scale), see also the next
section.

5.5.2 Warped tight frames

In this section we provide a method for the construction of tight nonstationary
Gabor frames. In applications of frame theory, the frame elements are most of-
ten constructed from a number of explicitly known prototype functions and some
transformation rule, e.g. translation and modulation for Gabor frames. The orig-
inal prototype functions are designed to fulfill a number of useful properties such
as time-frequency localization, fast decay or having a certain shape. In time-
frequency analysis, bump functions with a distinct global maximum and good de-
cay around the maximum are the canonical choice. Tight or well-conditioned frame
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constructions are very important, because they guarantee that the dual frame ele-
ments will not deviate too much from the nice properties of their originally chosen
counterparts.

For Gabor systems, it is reasonably simple to construct explicit tight frames
starting from a uniform partition of unity obtained from a compactly supported
function. More explicitly, let γ ∈ Cc(R) be a continuous, compactly supported
function such that ∑

n∈Z

Tnaγ ≡ C, (5.29)

for some a, C ∈ R+. For simplicity, assume supp(γ) = [−1/2, 1/2]. Then G(g, a, b),
with g(t) =

√
γ(t) forms a tight frame (for L2(R)) for any b < 1. This follows

immediately from the painless nonorthogonal expansions result, see [48] or Chapter
4.

If L̃ ∈ aN with L̃ > 1, then any regular sampling3 g[l] = g(lD) with L :=
L̃/D ∈ Z, a/D ∈ N and l = −⌊L/2⌋, . . . , ⌈L/2⌉ − 1 gives rise to a tight painless
Gabor frame G(g, a, b) in CL, for any b−1 ≥ ⌊D−1⌋. That is, G(g, a, b) satisfies the
discrete painless case conditions (Proposition 14) with constant frame operator
diagonal.

We will now extend this construction to adapted frames by sampling the con-
tinuous partition of unity not regularly, but according to some warping function.

Tight frames via warping

A warping function is a continuous, increasing function w : J 7→ I, where I, J
are finite intervals in R and [−L/2, L/2[, respectively. We allow for three different
cases:

(i) J = [−L/2, L/2[ and w(−L/2) = ka, w(L/2) = ja for some k, j ∈ Z,
[−1/2, 1/2[⊆ [ka, ja[,

(ii) J = [0, A[ and w(0) = 0, w(A) = ja+ 1/2 for some j ∈ N and

(iii) J = [A,B[ and w(A) = −1/2 and w(B) = ja+ 1/2 for some j ∈ N,

where A,B > 0
In case (i), we would consider the interval [ka, ja[ circularly to construct a set

of circular warped windows spanning the whole interval [−L/2, L/2[, while the
warping function will be mirrored in a point symmetric way for the cases (ii) and
(iii). In those cases, it is assumed that j ≥ ⌊a−1⌋. Some examples of warping
functions can be seen in Figure 5.23.

3By an abuse of notation, we will refer to the sampling g ∈ CL of the continuous function
g ∈ Cc(R) using the same notation g.
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Figure 5.23: Some warping functions

We obtain the warped windows gn ∈ C([−L/2, L/2[) as follows:
Case (i):

gn(t) = (Tnag +T(n+(j−k)ag)(w(t)), for n = k, . . . , 0

and
gn(t) = (Tnag +T(n−(j−k)ag)(w(t)), for n = 1, . . . , j − 1.

Case (ii):

gn(t) = (Tnag)(sgn(t)w(|t|)), for n = −j, . . . , j and gj+1(t) =

√√√√C −
j−1∑

n=−j

|gn(t)|2.

Case (iii):

gn(t) = (T(n−1)ag)(w(t)), for n = 1, . . . , j, gn(t) = g−n(−t) for n = −j, . . . ,−1 and

g0, gj+1 with supp(g0) ⊆ [−c, c] and supp(g0) ⊆ [−L/2,−c] ∪ [c, L/2[ for some
c ∈ [A,B[ satisfying

|g0(t)|2 + |gj(t)|2 = C −
j−1∑

n=−j

|gn(t)|2.
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The constant C in the equations above corresponds to the constant in Equation
(5.29). Figure 5.24 shows the effect of a logarithmic warping function.

-8 -4 0 4 8
0

0.5

1

0 2 4 6 8 10
0

0.5

1

Figure 5.24: A set of regular translates (left) and their logarithmically warped counter-
parts (right).

By construction, every regular sampling of the functions gn constructed above
yields a set of finite, discrete function, each supported on a strict subset of
−⌊L/2⌋, . . . , ⌈L/2⌉− 1 and with the property that their squared magnitudes have
constant sum. Without loss of generality, we can assume D = 1, i.e. we obtain
gn ∈ CL with gn[l] := gn(l). Fixing some Mn ∈ N with Mn ≥ Ln for Ln the length
of the smallest closed interval In containing the support of gn, we obtain a painless,
tight NSG frame G(g,b), where bn = L/Mn, after normalizing by M−1

n .
These constructions can be used for tight frequency-side NSG frames on varying

frequency scales, e.g. the CQ and ERB scales presented in this chapter, but
also for time-side adaptation by controlling the derivative of the warping function
dependent on signal features.

5.6 Summary and Conclusion

In this section, we discussed discrete NSG systems and some exemplary implemen-
tation alongside possible applications. One difficulty when using our approach is
to adapt the time-frequency resolution to the evolution of the signal characteris-
tics. If prior knowledge is available, this can be done by hand. We introduced a
time-side adaptation scheme based on onset detection that was shown to improve
sparsity in some cases. A different approach will involve the investigation of spar-
sity criteria as proposed in [97]. Time-side systems can be of particular interest
for applications where the frequency characteristics of the signal are known to
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evolve significantly with time. Order analysis [143], in which the signal analyzed
is produced by a rotating machine having changing rotating speed, is an example
of such an application.

We have introduced a framework for real-time implementation of an invertible
constant-Q transform based on frame theory. The proposed framework allows for
straight-forward generalization to other non-linear frequency scales, such as mel- or
Bark scale, cp. [86], [60] or ERB scale, see Section 5.5. While real-time processing is
possible by means of a preprocessing step, we investigated the possible occurrence
of time-aliasing. We provided a numerical evaluation of computation time and
quality of approximation of the true NSGT coefficients.

In analogy to the classical phase vocoder, phase issues have to be addressed, if
CQ-transformed coefficients are processed, cp. [106, 107, 132]. While preliminary
experiments using the proposed framework for real-life signals were presented,
undesired phasing effects, mainly due to the contribution of a signal component
to several adjacent filters, will be investigated in detail in future work. This issue
is discussed for unsliced constant-Q transforms in [140].

We have shown that modern implementations of classical algorithms provide
efficient methods for iterative analysis or reconstruction for well-conditioned non-
stationary Gabor frames with non-diagonal frame operator. Well-conditioned non-
painless frames can easily be constructed by subsampling a painless, tight NSG
frame, obtained from a warped set of uniform translates, as discussed in Section
5.5.

Future work will lead to adaptability in both time and frequency leading to
quilted frames as introduced in [54], e.g. by applying the introduced slicing tech-
nique, allowing for different slice lengths and varying NSG systems on each slice.
Furthermore, the idea of warped frames is currently under closer investigation,
along with the development of a corresponding continuous theory.
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Appendix A

The toolboxes

An important goal of the thesis project presented in the previous chapters was the
creation of a computational toolbox for experimental and application oriented work
with adaptive time-frequency representations. The tools for nonstationary Gabor
transforms are collected in the NSG Toolbox, available at nsg.sourceforge.net
and containing routines for direct, as well as iterative, analysis and synthesis, cre-
ation of specific nonstationary Gabor dictionaries, setup of frame-related operators
and plotting. These are accompanied by some wrapper routines that simplify the
use of the different transform types and a few basic demos that introduce the
syntax and usage of the Toolbox. The documentation is written to comply with
mat2doc (mat2doc.sourceforge.net) standards and reproduced below.

The methods for nonseparable Gabor systems have been incorporated into the
Large Time-Frequency Analysis Toolbox (LTFAT [2]). Note that the nonseparable
functionality in LTFAT extends preexisting code and the author of this thesis was
involved only in implementing the additional functionality for nonseparable Gabor
systems. The documentation of the files in question is reproduced below, with the
kind permission of LTFAT main author Peter L. Søndergaard.

A.1 NSGToolbox - Startup

A.1.1

NSGT_STARTUP - Set paths for using NSGToolbox

Usage

nsgt_startup()

Description This script file adds NSGToolbox folders to the MATLAB path.

149
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A.2 NSGToolbox - Core routines

A.2.1 Forward transforms

NSGT - Nonstationary Gabor transform

Usage

[c,Ls] = nsgt(f,g,shift,M)

[c,Ls] = nsgt(f,g,shift)

c = nsgt(...)

Input parameters

f The signal to be analyzed (For multichannel signals,
input should be a matrix which each column storing
a channel of the signal).

g Cell array of frequency side analysis windows

shift Vector of time shifts

M Number of frequency channels (optional). If M is
constant, the output is converted to a matrix

Output parameters

c Transform coefficients (matrix or cell array)

Ls Original signal length (in samples)

Description Given the cell array g of windows, the time shift vector shift, and
channel numbers M, nsgt computes the corresponding nonstationary Gabor trans-
form of f. Let P (n) =

∑n
l=1 shift(l), then the output c = nsgt(f,g,shift,M) is

a cell array with

c{n}(m) =
Ls−1∑

l=0

f [l]g{n}[l − P (n)]e−2πi(l−P (n))m/M(n),

where m runs from 0 to M(n)-1.
If multichannel input is used, the same nonstationary Gabor system is applied

to each channel and each entry of c will be a 2D array with c{n}(:,CH) being the
entries corresponding to time position n, signal channel CH.
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If M is scalar or uniform, then c is converted into a regular array.
The choice of phase-locked coefficients (by inserting (l-P(n)) in the complex

exponential) prevents border artifacts for combinations of window functions g{n}
that do not have full support and M(n) that do not divide Ls.

References: [10]

NSGT_REAL - Nonstationary Gabor transform for real sig-
nals

Usage

[c,Ls] = nsgt_real(f,g,shift,M)

[c,Ls] = nsgt_real(f,g,shift)

c = nsgt_real(...)

Input parameters

f A real-valued signal to be analyzed (For multichannel
signals, input should be a matrix which each column
storing a channel of the signal).

g Cell array of frequency side analysis windows

shift Vector of time shifts

M Number of frequency channels (optional). If M is
constant, the output is converted to a matrix

Output parameters

c Transform coefficients (matrix or cell array)

Ls Original signal length (in samples)

Description Given the cell array g of windows, the time shift vector shift, and
channel numbers M, nsgt_real computes the corresponding nonstationary Ga-
bor transform of f, computing only the positive frequency samples. Let P (n) =∑n

l=1 shift(l), then the output c = nsgt_real(f,g,shift,M) is a cell array with

c{n}(m) =

Ls−1∑

l=0

f [l]g{n}[l − P (n)]e−2πi(l−P (n))m/M(n),

where m runs from 0 to floor( M(n)/2 ).
For more details, see nsgt.
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NSGTF - Nonstationary Gabor filterbank

Usage

[c,Ls] = nsgtf(f,g,shift,M)

[c,Ls] = nsgtf(f,g,shift)

c = nsgtf(...)

Input parameters

f The signal to be analyzed (For multichannel signals,
input should be a matrix which each column storing
a channel of the signal).

g Cell array of analysis filters

shift Vector of frequency shifts

M Number of time channels (optional). If M is constant,
the output is converted to a matrix

Output parameters

c Transform coefficients (matrix or cell array)

Ls Original signal length (in samples)

Description Given the cell array g of windows, the time shift vector shift, and
channel numbers M, nsgtf computes the corresponding nonstationary Gabor filter-
bank of f. Let P (n) =

∑n
l=1 shift(l), then the output c = nsgtf(f,g,shift,M)

is a cell array with

c{n}(m) =

Ls−1∑

l=0

f̂ [l]g{n}[l − P (n)]e−2πi(l−P (n))m/M(n),

where m runs from 0 to M(n)-1.
If multichannel input is used, the same nonstationary Gabor system is applied

to each channel and each entry of c will be a 2D array with c{n}(:,CH) being the
entries corresponding to frequency channel n, signal channel CH.

If M is scalar or uniform, then c is converted into a regular array.
The choice of phase-locked coefficients (by inserting (l-P(n)) in the complex

exponential) prevents border artifacts for combinations of window functions g{n}
that do not have full support and M(n) that do not divide Ls.

References: [10], [164]
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NSGTF_REAL - Nonstationary Gabor filterbank for real
signals

Usage

[c,Ls] = nsgtf_real(f,g,shift,M)

[c,Ls] = nsgtf_real(f,g,shift)

c = nsgtf_real(...)

Input parameters

f A real-valued signal to be analyzed (For multichannel
signals, input should be a matrix which each column
storing a channel of the signal).

g Cell array of analysis filters

shift Vector of frequency shifts

M Number of time channels (optional). If M is constant,
the output is converted to a matrix

Output parameters

c Transform coefficients (matrix or cell array)

Ls Original signal length (in samples)

Description Given the cell array g of windows, the time shift vector shift,
and channel numbers M, nsgtf_real computes the corresponding nonstation-
ary Gabor filterbank of f, using only the filters with at least partially supported
on the positive frequencies. Let P (n) =

∑n
l=1 shift(l), then the output c =

nsgtf_real(f,g,shift,M) is a cell array with

c{n}(m) =

Ls−1∑

l=0

f̂ [l]g{n}[l − P (n)]e−2πi(l−P (n))m/M(n),

where m runs from 0 to M(n)-1 and n from 1 to N, where g{N} is the final filter
at least partially supported on the positive frequencies. All filters in g, shift that
are completely supported on the negative frequencies are ignored.

For more details, see nsgtf.



154 APPENDIX A. THE TOOLBOXES

A.2.2 Inverse transforms

NSIGT - Nonstationary Gabor synthesis

Usage

fr = nsigt(c,g,shift,Ls)

fr = nsigt(c,g,shift)

Input parameters

c Cell array of nonstationary Gabor coefficients

g Cell array of synthesis windows

shift Vector of time shifts

Ls Length of the analyzed signal

Output parameters

fr Synthesized signal (Channels are stored in the columns)

Description Given the cell array c of nonstationary Gabor coefficients, a set of
windows g and time shifts shift, this function computes the corresponding non-
stationary Gabor synthesis. Let N=numel(g) and P (n) =

∑n
l=1 shift(l), then the

synthesis formula reads:

fr[l] =

N−1∑

n=0

∑

m

c{n}(m)g{n}[l− P (n)]e2πi(l−P (n))m/M(n),

for l = 0, · · · , Ls − 1. In practice, the synthesis formula is realized by ifft and
overlap-add.

If a nonstationary Gabor frame was used to produce the coefficients and g is a
corresponding dual frame, this function should perfectly reconstruct the originally
analyzed signal to numerical precision.

Multichannel output will save each channel in a column of fr.
References: [10]

NSIGT_REAL - Nonstationary Gabor synthesis for real sig-
nals

Usage

fr = nsigt_real(c,g,shift,M,Ls)
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Input parameters

c Cell array of nonstationary Gabor coefficients

g Cell array of synthesis windows

shift Vector of time shifts

M Number of frequency channels (vector/scalar)

Ls Length of the analyzed signal

Output parameters

fr Synthesized real-valued signal (Channels are stored
in the columns)

Description Given the cell array c of nonstationary Gabor coefficients, a set of
windows g and time shifts shift, this function computes the corresponding real-
valued nonstationary Gabor synthesis. Let N=numel(g) and P (n) =

∑n
l=1 shift(l),

then the complex valued synthesis formula reads:

fr[l] =

N−1∑

n=0

∑

m

c{n}(m)g{n}[l − P (n)]e2πi(l−P (n))m/M(n),

for l = 0, · · · , Ls − 1. In practice, the synthesis formula is realized by ifft and
overlap-add. In the real valued case, ifftreal provides the missing frequency
content normally given by the coefficients c{n}(m) for m ≥ ⌊M(n)/2⌋.

If a nonstationary Gabor frame was used to produce the coefficients and g is a
corresponding dual frame, this function should perfectly reconstruct the originally
analyzed signal to numerical precision.

Note that nsigt_real requires the input parameter M to guarantee that the
vectors used in the overlap-add process are of the correct length.

Multichannel output will save each channel in a column of fr.
References: [10]

NSIGTF - Nonstationary Gabor filterbank synthesis

Usage

fr = nsigtf(c,g,shift,Ls)

fr = nsigtf(c,g,shift)
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Input parameters

c Cell array of nonstationary Gabor coefficients

g Cell array of synthesis filters

shift Vector of frequency shifts

Ls Length of the analyzed signal

Output parameters

fr Synthesized real-valued signal (Channels are stored
in the columns)

Description Given the cell array c of nonstationary Gabor filterbank coeffi-
cients, a set of filters g and frequency shifts shift, this function computes the
corresponding nonstationary Gabor filterbank synthesis. Let N=numel(g) and
P (n) =

∑n
l=1 shift(l), then the synthesis formula reads:

FFT(fr)[l] =
N−1∑

n=0

∑

m

c{n}(m)g{n}[l− P (n)]e−2πi(l−P (n))m/M(n),

for l = 0, · · · , Ls − 1. The final reconstruction step then is fr = ifft(fr). In
practice, the synthesis formula is realized by fft, followed by ifft and overlap-
add.

If a nonstationary Gabor frame was used to produce the coefficients and g is a
corresponding dual frame, this function should perfectly reconstruct the originally
analyzed signal to numerical precision.

Multichannel output will save each channel in a column of fr.
References: [10], [164]

NSIGTF_REAL - Nonstationary Gabor filterbank synthesis
for real signals

Usage

fr = nsigtf_real(c,g,shift,M,Ls)
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Input parameters

c Cell array of nonstationary Gabor coefficients

g Cell array of synthesis filters

shift Vector of frequency shifts

M Number of time channels (vector/scalar)

Ls Length of the analyzed signal

Output parameters

fr Synthesized real-valued signal (Channels are stored
in the columns)

Description Given the cell array c of nonstationary Gabor filterbank coeffi-
cients, a set of filters g and frequency shifts shift, this function computes the
corresponding nonstationary Gabor filterbank synthesis for real valued signals.

Note that, due to the structure of the coefficient array in the real valued setting,
all entries g{n} with N > length(c) will be ignored and assumed to be fully
supported on the negative frequencies.

Let P (n) =
∑n

l=1 shift(l), then the synthesis formula reads:

frtemp[l] =
N−1∑

n=0

∑

m

c{n}(m)g{n}[l− P (n)]e−2πi(l−P (n))m/M(n),

for l = 0, · · · , Ls − 1. In practice, the synthesis formula is realized by fft and
overlap-add. To synthesize the negative frequencies, frtemp is truncated to length
⌊Ls/2⌋+ 1. Afterwards ifftreal implicitly computes the hermite symmetric ex-
tension and computes the inverse Fourier transform, i.e. fr = ifftreal(frtemp).

If a nonstationary Gabor frame was used to produce the coefficients and g is a
corresponding dual frame, this function should perfectly reconstruct the originally
analyzed signal to numerical precision.

Multichannel output will save each channel in a column of fr.
References: [10], [164]

A.2.3 Painless reconstruction

NSDUAL - Canonical dual NSG frame (for painless systems)

Usage

gd = nsdual(g,shift,M)
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Input parameters

g Cell array of window functions/filters

shift Vector of time/frequency shifts

M Number of frequency channels (vector/scalar)

Output parameters

gd Dual window functions

Description Given a nonstationary Gabor frame specified by the windows/filters
g, shift parameters shift, and channel numbers M, nsdual computes the canonical
dual frame windows/filters gd by inverting the diagonal of the frame operator and
applying the inverse to g. More explicitly,

gd{n} = g{n}∑
lM(l)|g{l}|2

If g, shift, M specify a painless frame, i.e. |supp(g{n})| ≤ M(n) ∀ n and

∑

n

M(n)|g{n}|2 ≃ 1,

the computation will result in the canonical dual frame. If g, shift, M specify a
frame, but the first condition is violated, the result can be interpreted as a first
approximation of the corresponding canonical dual frame.

Note, the time shifts corresponding to the dual window sequence is the same
as the original shift sequence and as such already given.

If g, shift, M is a painless frame, the output can be used for perfect reconstruc-
tion of a signal using the inverse nonstationary Gabor transform nsigt, nsigtf.

References: [10]

NSTIGHT - Canonical tight NSG frame (for painless sys-
tems)

Usage

gt = nstight(g,shift,M)
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Input parameters

g Cell array of window functions/filters

shift Vector of time/frequency shifts

M Number of frequency channels (vector/scalar)

Output parameters

gt Tight window functions

Description Given a nonstationary Gabor frame specified by the windows/filters
g, shift parameters shift, and channel numbers M, nstight computes the canonical
tight frame windows/filters gt by inverting the diagonal of the frame operator and
applying the square root to the inverse to g. More explicitly,

gt{n} = g{n}√∑
lM(l)|g{l}|2

.

If g, shift, M specified a painless frame, i.e. |supp(g{n})| ≤M(n) ∀ n and

∑

n

M(n)|g{n}|2 ≃ 1,

the computation will result in a tight nonstationary Gabor frame. If g, shift, M
specify a frame, but the first condition is violated, the result can be interpreted as
a first approximation of the corresponding canonical tight frame.

Note, the time shifts corresponding to the tight window sequence is the same
as the original shift sequence and as such already given.

If g, shift, M is a painless frame, the output can be used for analysis and perfect
reconstruction of a signal using the nonstationary Gabor algorithms nsgt, nsgtf,
nsigt, nsigtf.

References: [10]

A.3 NSGToolbox - Dictionary generators

A.3.1 Nonstationary Gabor transform dictionaries

NSGSCLWIN - Scale-frame dictionary generator

Usage

[g,shift,M] = nsgsclwin(positions,short,max_win,Ls)
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Input parameters

positions A vector specifying time positions around which short-
est windows are desired

short Shortest admissible window length (in samples)

max_win Maximum number of different window sizes

Ls Length of the signal to be analyzed (in samples)

Output parameters

g Cell array of window functions

shift Vector of time shifts

M Vector of window lengths

Description Create nonstationary Gabor frame from a sequence of positions,
e.g. an onset sequence. This routine builds scale-type frames with fixed scale
parameter Q = 2 and overlap parameters O1 = 2/3, O2 = 1/3. Currently, Hann
windows of varying length are used as prototype.

The routine places short windows on the points specified by the sequence, while
the space between 2 points is spanned by a sequence of that smoothly expand to
longer lengths and then shrink back to a short length. We call those short sequences
short->long->short building blocks.

The final window sequence is obtained by concatenating the sequence of build-
ing blocks.

Notes:

For the parameters Q, O_1 and O_2 as specified above being valid, the input
parameter short must be a multiple of 6, or non integer shifts might occur.

The first value of positions should always be 1 to cover the complete time axis.
A valid position sequence can be obtained, e.g. from onsetdet.

References: [10]

A.3.2 Nonstationary Gabor filterbank dictionaries

NSGCQWIN - Constant-Q/Variable-Q dictionary generator

Usage
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[g,shift,M] = nsgcqwin(fmin,fmax,bins,sr,Ls,varargin)

[g,shift,M] = nsgcqwin(fmin,fmax,bins,sr,Ls)

Input parameters

fmin Minimum frequency (in Hz)

fmax Maximum frequency (in Hz)

bins Vector consisting of the number of bins per octave

sr Sampling rate (in Hz)

Ls Length of signal (in samples)

varargin Optional input pairs (see table below)

Output parameters

g Cell array of constant-Q/variable-Q filters

shift Vector of shifts between the center frequencies

M Vector of lengths of the window functions

Description Create a nonstationary Gabor filterbank with constant or varying
Q-factor and relevant frequency range from fmin to fmax. To allow for perfect
reconstruction, the frequencies outside that range will be captured by 2 additional
filters placed on the zero and Nyquist frequencies, respectively.

The Q-factor (quality factor) is the ratio of center frequency to bandwidth
cent_freq/bandwidth.

To create a constant-Q filterbank with a fixed number of bins per octave, use
a scalar parameter bins. The default parameters serve to set up a filter sequence
with approximately 1/2 overlap and only approximately constant Q-factor (up to
1 sample deviation). The optional switch fractional can be set to 1 to allow for
fractional sampling and exact constant Q-factor.

Alternatively, a vector bins can be supplied. In this case, successive octaves
can have different numbers of filters regularly spaced on a logarithmic scale, e.g.
bins(1) filters will be placed between fmin and 2*fmin, bins(2) filters between
2*fmin and 4*fmin and so on.

For more details on the construction of the constant-Q nonstationary Gabor
filterbank, please check the reference.

Optional input arguments arguments can be supplied like this:
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nsgcqwin(fmin,fmax,bins,sr,Ls,’min_win’,min_win)

The arguments must be character strings followed by an argument:

’min_win’,min_win Minimum admissible window length (in sam-
ples)

’Qvar’,Qvar Bandwidth variation factor

’bwfac’,bwfac Channel numbers M are rounded to multiples of this

’fractional’,fractional Allow fractional shifts and bandwidths

’winfun’,winfun String containing the desired window function name

References: [164], [92]

NSGWVLTWIN - Wavelet dictionary generator

Usage

[g,shift,M,fb] = nsgwvltwin(fmin,bw,bins,sr,Ls,winfun)

[g,shift,M,fb] = nsgwvltwin(fmin,bw,bins,sr,Ls)

[g,shift,M] = nsgwvltwin(...)

Input parameters

fmin Desired minimum center frequency (in Hz)

bw Desired bandwidth in the first frequency band (in Hz)

bins Desired number of bins per octave

sr Sampling rate (in Hz)

Ls Signal length

winfun String containing the window function name, see winfuns

Output parameters

g Cell array of Wavelet filters

shift Vector of frequency shifts

M Number of time channels

fb Frame bounds of the resulting system
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Description Given the parameter set fmin, bw, bins, sr and Ls, this function
constructs a painless system of bandlimited Wavelets spanning the range of fre-
quencies from fmin to 2k/binsfmin with k such that the dilation centered at this fre-
quency will be completely contained in the positive frequencies, but the Wavelet at
2k+1/binsfmin would not be. The number of scales per octave is determined by the
input parameter bins, while the Wavelet corresponding to the largest (time-)scale
will is constructed to have a bandwidth of bw Hz. The low and high frequencies
will be spanned by a plateau-like filter each to ensure the frame property.

If you are not familiar with Wavelet systems, please use wvlttrans instead.
References: [10]

NSGERBWIN - ERBlet dictionary generator

Usage

[g,shift,M]=nsgerbwin(bins,sr,Ls,varargin)

[g,shift,M]=nsgerbwin(bins,sr,Ls)

Input parameters

bins Desired bins per ERB

sr Sampling rate of f (in Hz)

Ls Signal length

varargin Optional input pairs (see table below)

Output parameters

g Cell array of ERBlet filters

shift Vector of frequency shifts

M Number of time channels

Description Create a nonstationary Gabor filterbank composed of filters regu-
larly spaced on the ERB frequency scale and having constant Equivalent Rectan-
gular Bandwidth.

The conversion formula of Hz to ERB number is given by

ERBnum(x) = 9.2645 sgn(x) log(1 + 0.00437|x|).
The Equivalent Rectangular Bandwidth at frequency x is
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ERB(x) = 24.7(1 + 0.00437x).

The filters are chosen symmetrically around the zero frequency and finally a sym-
metric filter is placed on the Nyquist frequency.

The result can serve as input parameters for nsgtf to obtain the ERBlet anal-
ysis coefficients or nsigtf to synthesize from coefficients, as well as their counter-
parts for real-valued signals.

Optional input arguments arguments can be supplied like this:

nsgerbwin(bins,sr,Ls,’Qvar’,Qvar)

The arguments must be character strings followed by an argument:

’Qvar’,Qvar Bandwidth variation factor

’bwfac’,bwfac Channel numbers M are rounded to multiples of this

’winfun’,winfun String containing the desired window function name

References: [10], [122]

A.4 NSGToolbox - Operator matrices

A.4.1 Operator matrices

NSGFRMMAT - Sparse nonstationary Gabor frame operator
matrix

Usage

S = nsgfrmmat(g,shift,M,Ls)

S = nsgfrmmat(g,shift,M)

S = nsgfrmmat(g,shift)

Input parameters

g Cell array of window functions

shift Vector of shifts between the center frequencies

M Vector of lengths of the window functions

Ls Signal length (optional)

steps Maximum number of side-diagonals to compute (op-
tional)
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Output parameters

S Sparse frame operator matrix

Description Creates the frame operator matrix of size Ls × Ls associated to
the nonstationary Gabor system g, shift, M in sparse matrix format.

From the Walnut representation of the nonstationary Gabor frame operator S
we can deduce that the discrete nonstationary Gabor frame operator is represented
by a sparse matrix.

Let N = numel(shift) and Kl = {n ∈ [0, N − 1] : l = 0modM(n)}, then

S(k, j) =
∑

n∈Kk−j

M(n)g{n}[k] ∗ conj(g{n}[j]).

This representation is used together with the size (support) of the windows g to
compute only the relevant entries of S are computed.

The optional parameter steps can be used to compute approximations of the
frame operator with only a certain number of side-diagonals.

References: [10], [91]

NSGANAMAT - Nonstationary Gabor analysis operator ma-
trix

Usage

G = nsganamat(g,shift,M,Ls,phaselock)

G = nsganamat(g,shift,M,Ls)

G = nsganamat(g,shift,M)

G = nsganamat(g,shift)

G = nsganamat(g,shift,M,phaselock)

G = nsganamat(g,shift,phaselock)

Input parameters

g Cell array of analysis windows

shift Vector of time shifts

M Number of frequency channels (optional)

Ls Transform length

phaselock This optional 0/1 switch specifies the phaselock con-
vention: 0 (non-phaselocked), 1 (phaselocked, default)
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Output parameters

G Frame analysis operator corresponding to the input
arguments

Description Computes the frame analysis matrix corresponding the nonstation-
ary Gabor system specified by g, shift and M. The rows of the frame analysis matrix
contain the complex conjugate of the frame elements in modulation first order, i.e.
let P (n) =

∑n
l=1 shift(l)

Kn =

n−1∑

l=0

M(l)

and let m run from 0 to M(n)− 1. Then

G(Kn +m, cdot) = g{n}(· − P (n− 1)) ∗ e−2πim(·−P (n−1))/M(n)

The conjugate transpose of G equals the synthesis operator corresponding to g,
shift and M. Consequently, c = Gf and fr = conj(G)T c.

The formulas above use the phaselocked definition of a nonstationary Gabor
frame also realized by nsgt, nsigt. Alternatively, non-phaselocked frame elements
can be used. Note however, that this might result in border discontinuities if
L/M(n) is not integer.

Note: While this routine can be used to gain some insight into the structure of
frame-related operators, it is not suited for use with transform lengths over a few
thousand samples.

References: [33], [10]

A.5 NSGToolbox - Iterative algorithms

A.5.1 Iterative analysis

NSGAITER - Iterative nonstationary Gabor analysis

Usage

[c,Ls,res,Nit]=nsgaiter(f,g,shift,M,varargin)

[c,Ls,res,Nit]=nsgaiter(f,g,shift,M)

[c,Ls,res]=nsgaiter(...)

[c,Ls]=nsgaiter(...)

c=nsgaiter(...)
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Input parameters

f Input signal

g Cell array of window functions

shift Vector of shifts between the window positions

M Number of frequency channels

varargin Optional input pairs (see table below)

Output parameters

c Transform coefficients

Ls Input signal length

res Vector of relative residuals

Nit Number of iterations

Description Given a function f and nonstationary Gabor frame specified by
g, shift and M, this routine approximates the frame coefficients associated to the
canonical dual frame.

The approximated coefficients are obtained by first applying the inverse frame
operator to f iteratively using the conjugate gradients method, followed by com-
puting the analysis coefficients of S−1f with respect to g, shift and M with nsgt,
followed. The following equivalence is used:

c{n}(m) = 〈f,S−1gn,m〉 = 〈S−1f, gn,m〉
The conjugate gradients algorithm uses the frame operator, or rather its efficient
realization by applying nsgt and nsigt consecutively.

Convergence speed of the conjugate gradients algorithm depends on the con-
dition number of the frame operator, which can be improved by preconditioning.
Currently, only a diagonal preconditioner using the inverse of the frame operator
diagonal is implemented.

Note: The algorithm only converges if g, shift and M form a frame.
Optional input arguments arguments can be supplied like this:

nsgaiter(f,g,shift,M,’tol’,tol)

The arguments must be character strings followed by an argument:
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’tol’,tol Error tolerance

’Mit’,Mit Maximum number of iterations

’prec’,prec Preconditioning switch

References: [122], [82]

NSGAITERF - Iterative nonstationary Gabor filterbank anal-
ysis

Usage

[c,Ls,res,Nit]=nsgaiterf(f,g,shift,M,varargin)

[c,Ls,res,Nit]=nsgaiterf(f,g,shift,M)

[c,Ls,res]=nsgaiterf(...)

[c,Ls]=nsgaiterf(...)

c=nsgaiterf(...)

Input parameters

f Input signal

g Cell array of filters

shift Vector of shifts between the center frequencies

M Number of time steps

varargin Optional input pairs (see table below)

Output parameters

c Filterbank coefficients

Ls Input signal length

res Vector of relative residuals

Nit Number of iterations
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Description Given a function f and nonstationary Gabor filterbank frame spec-
ified by g, shift and M, this routine approximates the frame coefficients associated
to the canonical dual frame.

The approximated coefficients are obtained by first applying the inverse frame
operator to f iteratively using the conjugate gradients method, followed by com-
puting the analysis coefficients of S−1f with respect to g, shift and M with nsgtf,
followed. The following equivalence is used:

c{n}(m) = 〈f,S−1gn,m〉 = 〈S−1f, gn,m〉
The conjugate gradients algorithm uses the frame operator, or rather its efficient
realization by applying nsgtf and nsigtf consecutively.

Convergence speed of the conjugate gradients algorithm depends on the con-
dition number of the frame operator, which can be improved by preconditioning.
Currently, only a diagonal preconditioner using the inverse of the frame operator
diagonal is implemented.

Note: The algorithm only converges if g, shift and M form a frame.
Optional input arguments arguments can be supplied like this:

nsgaiterf(f,g,shift,M,’tol’,tol)

The arguments must be character strings followed by an argument:

’tol’,tol Error tolerance

’Mit’,Mit Maximum number of iterations

’prec’,prec Preconditioning switch

References: [122], [82]

A.5.2 Iterative synthesis

NSGSITER - Iterative nonstationary Gabor synthesis

Usage

[fr,res,Nit]=nsgsiter(c,g,shift,M,Ls,varargin)

[fr,res,Nit]=nsgsiter(c,g,shift,M,varargin)

[fr,res,Nit]=nsgsiter(c,g,shift,M,Ls)

[fr,res,Nit]=nsgsiter(c,g,shift,M)

[fr,res]=nsgsiter(...)

fr=nsgsiter(...)
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Input parameters

c Nonstationary Gabor coefficients

g Cell array of window functions

shift Vector of shifts between the window positions

M Number of frequency channels

Ls Original signal length

varargin Optional input pairs (see table below)

Output parameters

fr Synthesized output signal

res Vector of relative residuals

Nit Number of iterations

Description Given coefficients c and nonstationary Gabor frame specified by
g, shift and M, this routine approximates the synthesis formula associated to the
canonical dual frame.

The synthesized signal fr is obtained by first synthesizing with respect to g,
shift and M using nsigt followed by iteratively applying the inverse frame operator
to the result using the conjugate gradients method. The following equivalence is
used:

fr =

N−1∑

n=0

M(n)−1∑

m=0

c{n}(m)S−1gn,m = S−1




N−1∑

n=0

M(n)−1∑

m=0

c{n}(m)gn,m


 ,

where N=numel(shift). The conjugate gradients algorithm uses the frame oper-
ator, or rather its efficient realization by applying nsgt and nsigt consecutively.

Convergence speed of the conjugate gradients algorithm depends on the con-
dition number of the frame operator, which can be improved by preconditioning.
Currently, only a diagonal preconditioner using the inverse of the frame operator
diagonal is implemented.

Note: The algorithm only converges if g, shift and M form a frame.
Optional input arguments arguments can be supplied like this:

nsgsiter(c,g,shift,M,’tol’,tol)
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The arguments must be character strings followed by an argument:

’tol’,tol Error tolerance

’Mit’,Mit Maximum number of iterations

’prec’,prec Preconditioning switch

References: [122], [82]

NSGSITERF - Iterative nonstationary Gabor filterbank syn-
thesis

Usage

[fr,res,Nit]=nsgsiterf(c,g,shift,M,Ls,varargin)

[fr,res,Nit]=nsgsiterf(c,g,shift,M,varargin)

[fr,res,Nit]=nsgsiterf(c,g,shift,M,Ls)

[fr,res,Nit]=nsgsiterf(c,g,shift,M)

[fr,res]=nsgsiterf(...)

fr=nsgsiterf(...)

Input parameters

c Nonstationary Gabor coefficients

g Cell array of filters

shift Vector of shifts between the center frequencies

M Number of time steps

Ls Original signal length

varargin Optional input pairs (see table below)

Output parameters

fr Synthesized output signal

res Vector of relative residuals

Nit Number of iterations
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Description Given coefficients c and nonstationary Gabor frame specified by
g, shift and M, this routine approximates the synthesis formula associated to the
canonical dual frame.

The synthesized signal fr is obtained by first synthesizing with respect to g, shift
and M using nsigtf followed by iteratively applying the inverse frame operator
to the result using the conjugate gradients method. The following equivalence is
used:

fr =

N−1∑

n=0

M(n)−1∑

m=0

c{n}(m)S−1gn,m = S−1




N−1∑

n=0

M(n)−1∑

m=0

c{n}(m)gn,m


 ,

where N=numel(shift). The conjugate gradients algorithm uses the frame opera-
tor, or rather its efficient realization by applying nsgtf and nsigtf consecutively.

Convergence speed of the conjugate gradients algorithm depends on the con-
dition number of the frame operator, which can be improved by preconditioning.
Currently, only a diagonal preconditioner using the inverse of the frame operator
diagonal is implemented.

Note: The algorithm only converges if g, shift and M form a frame.
Optional input arguments arguments can be supplied like this:

nsgsiter(c,g,shift,M,’tol’,tol)

The arguments must be character strings followed by an argument:

’tol’,tol Error tolerance

’Mit’,Mit Maximum number of iterations

’prec’,prec Preconditioning switch

References: [122], [82]

A.6 NSGToolbox - Wrapper functions for specific

transforms

A.6.1 Onset-based transform

ONSETNSGT - Onset-based nonstationary Gabor transform

Usage
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[c,g,shift,M,Ls] = onsetnsgt(f,thre,short,max_win,win_length)

[c,g,shift,M,Ls] = onsetnsgt(f,thre,short,max_win)

[c,g,shift,M,Ls] = onsetnsgt(f,thre,short)

[c,g,shift,M,Ls] = onsetnsgt(f,thre)

c = onsetnsgt(...)

Input parameters

f The signal to be analyzed (single channel only)

thre Peak-picking threshold

short Shortest allowed window length

max_win Maximum number of different windows used

win_length Window length for the onset STFT analysis

Output parameters

c Cell array of transform coefficients

g Cell array of analysis windows

shift Vector of time shifts

M Number of frequency channels

Ls Original signal length

Description This is a wrapper function for the scaleframe nonstationary Gabor
transforms with onset detection based adaptation. Given a signal f, this wrapper
computes the spectral flux onset detection function based on a regular discrete
Gabor transform with redundancy 16 using a Hann window of length win_length.
A simple peakpicking algorithm determines the significant maxima in the spectral
flux function. Those are assumed to be the onsets in f.

From this onset sequence, a scaleframe nonstationary Gabor system will be
constructed and the corresponding analysis performed by nsgt_real.

Note: The current wrapper only supports the threshold parameter thre of the
onset detection algorithm. To obtain optimal results, the remaining parameters
need to be fine tuned as well. An experienced user should use onsetdet, nsgsclwin
and nsgt_real on separately instead. Also see the Onset How-To included in the
toolbox.

References: [10], [51]
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INVONSETNSGT - Onset-based nonstationary Gabor syn-
thesis

Usage

fr = invonsetnsgt(c,g,shift,M,Ls)

fr = invonsetnsgt(c,g,shift,M)

Input parameters

c Cell array of transform coefficients

g Cell array of analysis windows

shift Vector of time shifts

M Number of time channels

Ls Original signal length

Output parameters

fr Reconstructed signal

Description This is a wrapper function for the inverse scaleframe nonstationary
Gabor transform with onset detection based adaptation. It basically just forwards
the input to nsdual and nsigt_real.

For more information see onsetnsgt.
References: [10]

A.6.2 Wavelet transform

WVLTTRANS - Wavelet frame transform

Usage

[c,g,shift,M,Ls,fb,tgtfl] = wvlttrans(f,fmin,sr,bins,bw,tgtfl)

[c,g,shift,M,Ls,fb,tgtfl] = wvlttrans(f,fmin,sr,bins,bw)

[c,g,shift,M,Ls,fb,tgtfl] = wvlttrans(f,fmin,sr,bins)

[c,g,shift,M,Ls,fb,tgtfl] = wvlttrans(f,fmin,sr)

[c,g,shift,M,Ls,fb,tgtfl] = wvlttrans(f,fmin)

[c,g,shift,M,Ls,fb] = wvlttrans(...)
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[c,g,shift,M,Ls] = wvlttrans(...)

[c,g,shift,M] = wvlttrans(...)

c = wvlttrans(...)

Input parameters

f Input signal

fmin Desired minimum center frequency (in Hz)

sr Sampling rate of f (in Hz)

bins Desired number of bins per octave

bw Desired bandwidth in the first frequency band (in Hz)

winfun String containing the desired window function name

Output parameters

c Cell array of Wavelet coefficients

g Cell array of Fourier transforms of the analysis Wavelets

shift Vector of frequency shifts

M Number of time steps

Ls Original signal length

fb Frame bounds (vector)

tgtfl Tightflag (1 if frame is tight)

Description This is a wrapper function for the painless Wavelet transform via
nonstationary Gabor filterbank. Given a signal f and minimum frequency fmin, a
tight system with 4 scales per octave is constructed using logarithmically sampled
Hann windows with 3/4 overlap. The additional parameters sr, bins, bw and
winfun can be specified to individually construct different Wavelet systems.

To construct systems with specific overlap factors (n − 1)/n, choose bw =
2n/(2bins) − 2−n/(2bins).

In addition to the Wavelet coefficients c, also the analysis system g, shift, M
can be returned, as can the length Ls of the input signal f, the frame bounds of the
system g, shift, M and a flag indicating if a tight frame was used. These param-
eters are necessary to perform reconstruction with the inverse Wavelet transform
wrapper invwvlttrans.

References: [10]
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INVWVLTTRANS - Wavelet frame synthesis

Usage

fr = invwvlttrans(c,g,shift,M,tgtfl,fb,Ls)

fr = invwvlttrans(c,g,shift,M,tgtfl,fb)

fr = invwvlttrans(c,g,shift,M,tgtfl,Ls)

fr = invwvlttrans(c,g,shift,M,tgtfl)

fr = invwvlttrans(c,g,shift,M,Ls)

fr = invwvlttrans(c,g,shift,M)

Input parameters

c Cell array of Wavelet coefficients

g Cell array of Fourier transforms of the analysis Wavelets

shift Vector of frequency shifts

M Number of time steps

Ls Original signal length

fb Frame bounds (vector)

tgtfl Tightflag (1 if frame is tight)

Output parameters

fr Reconstructed signal

Description This is a wrapper function for the inverse painless Wavelet trans-
form via nonstationary Gabor filterbank. Given the cell array c and the painless
Wavelet frame g, shift, M, the corresponding dual frame is computed and the
corresponding inverse Wavelet transform is performed.

If the original signal length Ls is specified, the synthesized signal will be trun-
cated to length Ls. If the parameters tgtfl and fb are given, the system g, shift,
M is assumed to be a tight frame and synthesis is performed using the original
system.

References: [10]
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A.6.3 SliCQ transform

SLICQ - Sliced constant-Q/variable-Q transform

Usage

[c,g,shift,M,Ls,sl_len,tr_area]

= slicq(f,fmin,fmax,bins,sl_len,tr_area,sr,M,min_win,Qvar)

= slicq(f,fmin,fmax,bins,sl_len,tr_area,sr,M,min_win)

= slicq(f,fmin,fmax,bins,sl_len,tr_area,sr,M)

= slicq(f,fmin,fmax,bins,sl_len,tr_area,sr)

= slicq(f,fmin,fmax,bins,sl_len,tr_area)

= slicq(f,fmin,fmax,bins,sl_len)

= slicq(f,fmin,fmax,bins)

= slicq(f,fmin,fmax)

= slicq(f,fmin)

c = slicq(...)

Input parameters

f Input signal

fmin Desired minimum frequency (in Hz)

fmax Desired maximum frequency (in Hz)

bins Bins per octave (constant or vector (for VQ))

sl_len Desired slice length (in samples)

tr_area Transition area length (in samples, ≤ sl_len/2)

sr Sampling rate (in Hz)

M Desired number of time steps per slice, if set to 0, a
channel vector will be computed (M must be a mul-
tiple of 4 or will be set to 4 ∗ ceil(M/4))

min_win Minimum filter bandwidth (default 16 samples)

Qvar Factor varying the bandwidth. Qvar = X leads to a
Q-factor of Q/X
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Output parameters

c Cell array of coefficients

g Cell array of analysis filters

shift Vector of frequency shifts of filters

M Number of time steps per slice (vector or constant)

Ls Original signal length

sl_len Slice length

tr_area Transition area length

Description This is a wrapper function for the sliced constant-Q nonstationary
Gabor transform of the signal f. The signal is smoothly sliced into half-overlap
segments of length sl_len weighted by a Tukey window with transition areas of
length tr_area and total length of sl_len/2 + tr_area.

Subsequently, a constant-Q nonstationary Gabor transform with essential fre-
quency range fmin to fmax and bins bins per octave will be applied to each segment
using nsgcqwin with modified Blackman-Harris windows and nsgtf.

The additional parameters are an optional fixed number of time steps M per
slice in each frequency channel and a bandwidth variation factor Qvar. Setting
the minimum support min_win of the filters used helps in preserving shape and
localization of low frequency filters, but may lead to a varying Q-factor in that
frequency range.

See the help of nsgcqwin for more information on the constant-Q nonstationary
Gabor transform.

References: [164], [92]

ISLICQ - Sliced constant-Q/variable-Q synthesis

Usage

[fr,gd] = islicq(c,g,shift,M,Ls,sl_len,tr_area)

fr = islicq(c,g,shift,M,Ls,sl_len,tr_area)
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Input parameters

c Cell array of coefficients

g Cell array of analysis filters

shift Vector of frequency shifts of filters

M Number of time steps (vector/scalar)

Ls Original signal length

sl_len Slice length

tr_area Transition area length

Output parameters

fr Reconstructed signal

gd Cell array of synthesis windows

Description This is a wrapper function for the inverse sliced constant-Q non-
stationary Gabor transform. Given an array of coefficients c corresponding to a
sliced nonstationary Gabor system g, shift, M with slice length sl_len, this func-
tion computes the corresponding synthesis operation.

That is, nsdual is used to compute the canonical dual frame of the system
g, shift, M if possible. Afterwards, a sliced signal is synthesized using this dual
system and the function nsigtf. Finally the synthesized signal is unsliced by the
helper function unslicing.

If the output of slicq is used as input for this function, and the system g, shift,
M used is a painless frame, then the originally analyzed function is reconstructed
perfectly.

See the help of nsgcqwin for more information on the constant-Q nonstationary
Gabor transform.

References: [164], [92]

A.7 NSGToolbox - Plotting tools

A.7.1 Nonstationary Gabor spectrogram

PLOTNSGT - Plot nonstationary Gabor coefficients

Usage
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plotnsgt(c,shift,sr,varargin)

plotnsgt(c,shift,sr)

plotnsgt(c,shift)

Input parameters

c Array of coefficients.

shift Vector of time shifts

sr Sampling rate in Hz (default 1 Hz)

varargin Optional input parameters (see table below)

Description Given a coefficient array c and the time shift vector shift, this
function plots the dB-scaled nonstationary Gabor spectrogram corresponding to c.
To capture the correct position of the coefficients in the time frequency plane, the
columns of the spectrogram (coefficients corresponding to the same time position)
are stretched accordingly.

If additionally, the sampling rate sr is provided, time and frequency axes will
be labeled properly.

If the coefficients were obtained using nsgt_real, the realsig switch should be
used, otherwise only half the desired frequency range will be displayed. The shown
frequency range can be controlled with the cutout parameter (default: 2) and the
dynamic range of the spectrogram can be adjusted with dynrange.

Optional input arguments arguments can be supplied like this:

plotnsgt(c,shift,sr,’dynrange’,dynrange)

The arguments must be character strings followed by an argument:

’dynrange’,dynrange Colorscale dynamic range in dB (default 60
dB)

’cutout’,cutout Desired part of the spectrogram, e.g. choice of ’2’
shows frequencies up to Nyquist (’X’ shows the ’num-
ber_of_bins/X’ lowest frequency bins)

’realsig’,realsig Input coefficients are taken from a representation for
real-valued signals
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PLOTNSGTF - Plot nonstationary Gabor filterbank coeffi-
cients

Usage

plotnsgtf(c,shift,sr,fmin,fmax,bins,cutout,dynrange)

plotnsgtf(c,shift,sr,fmin,fmax,bins,cutout)

plotnsgtf(c,shift,sr,fmin,fmax,bins)

plotnsgtf(c,shift,sr,cutout,dynrange)

plotnsgtf(c,shift,sr,cutout)

plotnsgtf(c,shift,sr)

plotnsgtf(c,shift)

plotnsgtf(c)

Input parameters

c Array of coefficients.

shift Vector of frequency shifts

sr signal sample rate in Hz (default 1 Hz)

fmin Minimum frequency used in the transform

fmax Maximum frequency used in the transform

bins Bins per octave (in constant or vector form)

cutout Desired part of the spectrogram, e.g. choice of 2

shows frequencies up to Nyquist (X shows the
number_of_bins/X lowest frequency bins)

dynrange Colorscale dynamic range in dB (default 60 dB)

Description Given a coefficient array c and the frequency shift vector shift, this
function plots the dB-scaled nonstationary Gabor filterbank spectrogram corre-
sponding to c. The vector shift and sampling rate sr are used to determine the
correct time axis labels. The frequency axis is by default labeled by bin number.

For constant-Q nonstationary Gabor filterbanks, labeling with the actual center
frequencies is supported, requiring the filterbank parameters fmin, fmax and bins
as additional input.

The shown frequency range can be controlled with the cutout parameter (de-
fault: 2) and the dynamic range of the spectrogram can be adjusted with dynrange.
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A.7.2 Dictionary plotting

PLOT_WINS - Plot nonstationary Gabor windows/filters

Usage

plot_wins(g,shift)

plot_wins(g,shift,normalize)

Input parameters

g Cell array of windows/filters

shift Vector of time/frequency shifts

normalize Re-normalize the windows to have approximately uni-
form height

Description This helper function plots the distribution of the windows/filters
of a nonstationary Gabor system/filterbank along the time/frequency axis. The
shape of the windows/filters is determined from the cell array g and their position
on the respective axis from the position vector shift.

A.7.3 Advanced spectrograms

PLOTSLICQ - PLOTNSGTF wrapper for sliced transforms
(sliCQ)

Usage

plotslicq(c,shift,sr,fmin,fmax,bins,cutout,dynrange)

plotslicq(c,shift,sr,fmin,fmax,bins,cutout)

plotslicq(c,shift,sr,fmin,fmax,bins)

plotslicq(c,shift,sr,cutout,dynrange)

plotslicq(c,shift,sr,cutout)

plotslicq(c,shift,sr)

plotslicq(c,shift)

Input parameters

c Array of coefficients.

shift Vector of frequency shifts of windows
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sr signal sample rate in Hz (default 1 Hz)

fmin Minimum frequency used in the transform

fmax Maximum frequency used in the transform

bins Bins per octave (in constant or vector form)

cutout Desired part of the spectrogram, e.g. choice of 2

shows frequencies up to Nyquist (X shows the
number_of_bins/X lowest frequency bins)

dynrange Colorscale dynamic range in dB (default 60 dB)

Description This is a wrapper function for plotnsgtf that rearranges the co-
efficients of a sliced nonstationary Gabor filterbank, in particular those of a sliced
constant-Q nonstationary Gabor filterbank, to resemble a full length transform.

For an explanation of the parameters, please refer to the help of plotnsgtf.
References: [92]

A.8 NSGToolbox - Window functions

A.8.1 Window function generator

WINFUNS - Window function generator

Usage

g = winfuns(name,x)

g = winfuns(name,N,L)

g = winfuns(name,N)

Input parameters

name String containing the window name

x Vector of sampling positions

N Window support (in samples)

L Output length (in samples)
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Output parameters

g Output window

Description This function serves to compute a variety of standard and some
more exotic window functions. Most of the functions used are detailed and dis-
cussed in classical papers (see references below), but several are included for special
purposes in the toolbox only.

Given a character string name containing the name of the desired window
function, the function offers 2 modes of operation. If the second input parameter
is a vector x of sampling values, then the specified function is evaluated at the
given points. If a window length N and optionally a signal length L are supplied, a
symmetric, whole-point centered window with a support of N samples is produced
and, given L, zero-extended to length L.

The following windows are available:

’hann’ von Hann window. Forms a PU. The Hann window
has a mainlobe with of 8/N, a PSL of -31.5 dB and
decay rate of 18 dB/Octave.

’cos’ Cosine window. This is the square root of the Han-
ning window. The cosine window has a mainlobe
width of 6/N, a PSL of -22.3 dB and decay rate of 12
dB/Octave.

’rec’ Rectangular window. The rectangular window has a
mainlobe width of 4/N, a PSL of -13.3 dB and decay
rate of 6 dB/Octave. Forms a PU. Alias: ’square’

’tri’ Triangular window.

’hamming’ Hamming window. Forms a PU that sums to 1.08
instead of 1.0 as usual. The Hamming window has a
mainlobe width of 8/N, a PSL of -42.7 dB and decay
rate of 6 dB/Octave.

’blackman’ Blackman window. The Blackman window has a
mainlobe width of 12/N, a PSL of -58.1 dB and decay
rate of 18 dB/Octave.

’blackharr’ Blackman-Harris window. The Blackman-Harris win-
dow has a mainlobe width of 16/N, a PSL of -92.04
dB and decay rate of 6 dB/Octave.
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’modblackharr’ Modified Blackman-Harris window. This slightly
modified version of the Blackman-Harris window has
a mainlobe width of 16/N, a PSL of -90.24 dB and
decay rate of 18 dB/Octave.

’nuttall’ Nuttall window. The Nuttall window has a mainlobe
width of 16/N, a PSL of -93.32 dB and decay rate of
18 dB/Octave.

’nuttall10’ 2-term Nuttall window with 1 continuous derivative.
Alias: ’hann’.

’nuttall01’ 2-term Nuttall window with 0 continuous derivatives.
Alias: ’hamming’.

’nuttall20’ 3-term Nuttall window with 3 continuous derivatives.
The window has a mainlobe width of 12/N, a PSL of
-46.74 dB and decay rate of 30 dB/Octave.

’nuttall11’ 3-term Nuttall window with 1 continuous derivative.
The window has a mainlobe width of 12/N, a PSL of
-64.19 dB and decay rate of 18 dB/Octave.

’nuttall02’ 3-term Nuttall window with 0 continuous derivatives.
The window has a mainlobe width of 12/N, a PSL of
-71.48 dB and decay rate of 6 dB/Octave.

’nuttall30’ 4-term Nuttall window with 5 continuous derivatives.
The window has a mainlobe width of 16/N, a PSL of
-60.95 dB and decay rate of 42 dB/Octave.

’nuttall21’ 4-term Nuttall window with 3 continuous derivatives.
The window has a mainlobe width of 16/N, a PSL of
-82.60 dB and decay rate of 30 dB/Octave.

’nuttall12’ 4-term Nuttall window with 1 continuous derivatives.
Alias: ’nuttall’.

’nuttall03’ 4-term Nuttall window with 0 continuous derivatives.
The window has a mainlobe width of 16/N, a PSL of
-98.17 dB and decay rate of 6 dB/Octave.

’gauss’ Truncated, stretched Gaussian: exp(-18*x^2) restricted
to the interval ]-.5,.5[.
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’wp2inp’ Warped Wavelet uncertainty equalizer (see WP 2 of
the EU funded project UnlocX). This function is in-
cluded as a test function for the Wavelet transform
implementation and serves no other purpose in this
toolbox.

References: [87], [123], [170]

A.9 NSGToolbox - Helper functions

A.9.1 Helper functions for the Onset-based transform

ONSETDET - Onset detection wrapper

Usage

[pos,V0]

= onsetdet(f,win_length,thre,range,multi,shift,showplot)

= onsetdet(f,win_length,thre,range,multi,shift)

= onsetdet(f,win_length,thre,range,multi)

= onsetdet(f,win_length,thre,range)

= onsetdet(f,win_length,thre)

= onsetdet(f,win_length)

pos = onsetdet(...)

Input parameters

f Signal to be analyzed (single channel only)

win_length Window length for the STFT analysis (in samples)

thre Peak-picking threshold

range Area of interest for the choice of local maxima

multi Area of interest multiplication factor for the peak-
picking

shift Readjustment of the peaks (in shift∗win_length/16)

showplot Plot the results (0/1)
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Output parameters

pos Onset sequence

V0 Regular discrete Gabor transform of f

Description This routine produces a sequence of onsets using a straightforward
realization of a spectral flux based onset detection process as described, e.g. by
Dixon (see reference).

The spectral flux onset detection function is computed with a 16 times redun-
dant Gabor transform using a Hann window, implemented in specflux.

Local maxima of the onset detection function are chosen as onset if larger than
the local mean by at least the threshold parameter thre. This choice is performed
by peakpick, a simple peakpicking algorithm.

A time slice is considered a local maximum if its spectral flux value is larger
than those of the surrounding slices on an area of + − range. The local mean is
computed as the mean value of the spectral flux function on an area corresponding
to −multi ∗ range to +range of the current position.

References: [10], [51]

SPECFLUX - Spectral flux onset detection function

Usage

[SF,V0] = specflux(f,win_length,tgap)

SF = specflux(f,win_length,tgap)

Input parameters

f Input signal

win_length Desired window length for the STFT

tgap Time step for the STFT

Output parameters

SF Spectral flux of f

V0 STFT coefficients of f
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Description This is a helper function for onsetdet and not meant to be used
individually.

Computes the spectral flux onset-detection function of f with a Hann window
of length win_length. The STFT is taken with time shift parameter tgap and
win_length frequency channels.

Externals: COMP_DGT_FB (LTFAT routine, included in NSGToolbox V0.1.0
and higher)

References: [51]

PEAKPICK - Peakpicking routine

Usage

peaks = peakpick(SF,thre,range,multi)

Input parameters

SF Onset detection function

thre Threshold value

range Relevance area for local maximum

multi Asymmetric extension factor for relevance area

Output parameters

peaks Significant maxima of SF

Description This is a helper function for onsetdet and not meant to be used
individually.

For an onset detection function SF, the routine picks only those local maxima
that are larger than the local mean over an area of the form

by more than the threshold given by thre.
References: [52]

A.9.2 Helper functions for the sliCQ wrapper

SLICING - Cut a signal into uniform slices with half-overlap

Usage

f_sliced = slicing(f,sl_len,tr_area,Ls)

f_sliced = slicing(f,sl_len,tr_area)
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Input parameters

f Signal to be sliced

sl_len Slice length (in samples, must be even)

tr_area Length of each transition area (in samples, optional,
default is ceil(sl_len/16))

Ls Length of f (optional)

Output parameters

f_sliced Matrix containing the slices of f as columns

sl_len Possibly corrected slice length (in samples, even)

tr_area Possibly corrected transition area length (in samples,
even)

Description This function cuts a signal into compactly supported pieces of
length sl_len using a uniform partition of unity composed of Tukey windows with
plateau area sl_len/2 − tr_area and transition areas of length tr_area. The
resulting signal slices are stored in the columns of the output.

References: [92]

UNSLICING - Reconstruct full signal from uniform half-
overlap slices

Usage

fr = unslicing(f_sliced,sl_len,tr_area,slices)

Input parameters

f_sliced Matrix containing signal slices as columns

sl_len Slice length (in samples)

tr_area “Length of each transition area (in samples, optional,
default is ceil(sl_len/16))

slices Number of slices in f_sliced (optional)
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Output parameters

fr Signal resulting from the overlap-add procedure

Description This function performs a windowed overlap-add procedure on the
columns of the input matrix f_sliced. The signal is assumed to have been cut
with a Tukey window of plateau length sl_len/2 − tr_area and transition areas
of length tr_area. The window used for the overlap-add process will be a smooth
dual window to this Tukey window in the sense that unaltered input created by
the routine slicing will recreate the original input signal.

References: [92]

A.10 NSGToolbox - Examples

A.10.1 Nonstationary Gabor examples

DEMO_NSGT - Onset Detection type Nonstationary Gabor
transform usage demo

This script sets up a nonstationary Gabor frame with the specified parameters,
computes windows and corresponding canonical dual windows and a test signal,
and plots the windows and the energy of the coefficients.
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Figure A.1: Onset detection results: This figure shows a regular spectrogram with marked
onsets and the spectral flux function with marked onsets.
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Figure A.2: (left) windows + dual windows: This figure shows the window functions
used and the corresponding canonical dual windows. (right) spectrogram (absolute value
of coefficients in dB): This figure shows a (color coded) image of the nsgt coefficient
modulus.

Output

Relative error of reconstruction (should be close to zero.):

3.294496e-16

DEMO_NSGTF - Nonstationary Gabor filterbank usage demo

This script sets up different nonstationary Gabor filterbank frames with the spec-
ified parameters, computes filters and corresponding canonical dual filters as well
as the transform and reconstruction of a test signal, and plots the filters and the
energy of the coefficients.
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Figure A.3: (left) filters + dual filters (constant-Q): This figure shows the filter functions
used in the constant-Q filterbank and the corresponding canonical dual filters. (right)
filters + dual filters (ERBlet): This figure shows the filter functions used in the ERBlet
filterbank and the corresponding canonical dual filters.
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Figure A.4: filters + dual filters (Wavelet): This figure shows the filter functions used in
the Wavelet filterbank and the corresponding canonical dual filters.
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Figure A.5: constant-Q spectrogram (absolute value of coefficients in dB): This figure
shows a (color coded) image of the constant-Q coefficient modulus.
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Figure A.6: (left) ERBlet spectrogram and (right) Wavelet spectrogram (absolute value
of coefficients in dB): This figure shows a (color coded) image of the coefficient modulus.

Output

Relative error of constant-Q reconstruction:

6.435922e-16

Relative error of ERBlet reconstruction:

5.597245e-16

Relative error of Wavelet reconstruction:

5.137871e-16

DEMO_SLICQ - Sliced constant-Q usage/comparison demo

This script sets up nonstationary Gabor filterbank frames with the specified pa-
rameters, computes filters and corresponding canonical dual filters as well as the
transform and reconstruction of a test signal, and compares the respective analy-
sis/synthesis filters and spectrograms.
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Figure A.7: filters + dual filters (left - constant-Q, right - sliCQ): This figure shows
the filter functions used in the constant-Q and sliCQ filterbanks and the corresponding
canonical dual filters.
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Figure A.8: constant-Q/sliCQ spectrogram (absolute value of coefficients in dB): This
figure shows (color coded) images of the constant-Q and sliced constant-Q coefficient
modulus.

Output

Relative error of constant-Q reconstruction:

7.646168e-16

Relative error of sliCQ reconstruction:

3.246836e-16
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A.11 Nonseparable Gabor systems in LTFAT

A.11.1 Gabor systems

DGT - Discrete Gabor transform

Usage

c=dgt(f,g,a,M);

c=dgt(f,g,a,M,L);

c=dgt(f,g,a,M,’lt’,lt);

[c,Ls]=dgt(...);

Input parameters

f Input data.

g Window function.

a Length of time shift.

M Number of channels.

L Length of transform to do.

lt Lattice type (for nonseparable lattices).

Output parameters

c M ×N array of coefficients.

Ls Length of input signal.

Description dgt(f,g,a,M) computes the Gabor coefficients (also known as a
windowed Fourier transform) of the input signal f with respect to the window g
and parameters a and M. The output is a vector/matrix in a rectangular layout.

The length of the transform will be the smallest multiple of a and M that is
larger than the signal. f will be zero-extended to the length of the transform. If
f is a matrix, the transformation is applied to each column. The length of the
transform done can be obtained by L=size(c,2)*a;

The window g may be a vector of numerical values, a text string or a cell array.
See the help of gabwin for more details.
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dgt(f,g,a,M,L) computes the Gabor coefficients as above, but does a trans-
form of length L. f will be cut or zero-extended to length L before the transform
is done.

[c,Ls]=dgt(f,g,a,M) or [c,Ls]=dgt(f,g,a,M,L) additionally returns the
length of the input signal f. This is handy for reconstruction:

[c,Ls]=dgt(f,g,a,M);

fr=idgt(c,gd,a,Ls);

will reconstruct the signal f no matter what the length of f is, provided that
gd is a dual window of g.

[c,Ls,g]=dgt(...) additionally outputs the window used in the transform.
This is useful if the window was generated from a description in a string or cell
array.

The Discrete Gabor Transform is defined as follows: Consider a window g and
a one-dimensional signal f of length L and define N = L/a. The output from
c=dgt(f,g,a,M) is then given by:

c (m+ 1, n+ 1) =

L−1∑

l=0

f(l + 1)g(l− an+ 1)e−2πilm/M

where m = 0, . . . ,M − 1 and n = 0, . . . , N − 1 and l− an is computed modulo L.

Nonseparable lattices: dgt(f,g,a,M,’lt’,lt) computes the DGT for a non-
separable lattice given by the time-shift a, number of channels M and lattice type
lt. Please see the help of matrix2latticetype for a precise description of the param-
eter lt.

The nonseparable discrete Gabor transform is defined as follows: Consider a
window g and a one-dimensional signal f of length L and define N = L/a. The
output from c=dgt(f,g,a,M,L,lt) is then given by:

c (m+ 1, n+ 1) =
L−1∑

l=0

f(l + 1)g(l− an+ 1)e−2πil(m+w(n))/M

where m = 0, . . . ,M − 1 and n = 0, . . . , N − 1 and l − an are computed modulo
L. The additional offset w is given by w(n) = mod(n · lt1, lt2)/lt2 in the formula
above.

Additional parameters: dgt takes the following flags at the end of the line of
input arguments:

’freqinv’ Compute a DGT using a frequency-invariant phase.
This is the default convention described above.
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’timeinv’ Compute a DGT using a time-invariant phase. This
convention is typically used in filter bank algorithms.

Examples: In the following example we create a Hermite function, which is a
complex-valued function with a circular spectrogram, and visualize the coefficients
using both imagesc and plotdgt:

a=10;

M=40;

L=a*M;

h=pherm(L,4); % 4th order hermite function.

c=dgt(h,’gauss’,a,M);

% Simple plot: The squared modulus of the coefficients on

% a linear scale

figure(1);

imagesc(abs(c).^2);

% Better plot: zero-frequency is displayed in the middle,

% and the coefficients are show on a logarithmic scale.

figure(2);

plotdgt(c,a,’dynrange’,50);
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References: [71], [84]

IDGT - Inverse discrete Gabor transform

Usage

f=idgt(c,g,a);

f=idgt(c,g,a,Ls);

f=idgt(c,g,a,Ls,lt);
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Input parameters

c Array of coefficients.

g Window function.

a Length of time shift.

Ls Length of signal.

lt Lattice type (for non-separable lattices)

Output parameters

f Signal.

Description idgt(c,g,a) computes the Gabor expansion of the input coeffi-
cients c with respect to the window g and time shift a. The number of channels
is deduced from the size of the coefficients c.

idgt(c,g,a,Ls) does as above but cuts or extends f to length Ls.
[f,g]=idgt(...) additionally outputs the window used in the transform.

This is useful if the window was generated from a description in a string or cell
array.

For perfect reconstruction, the window used must be a dual window of the one
used to generate the coefficients.

The window g may be a vector of numerical values, a text string or a cell array.
See the help of gabwin for more details.

If g is a row vector, then the output will also be a row vector. If c is 3-
dimensional, then idgt will return a matrix consisting of one column vector for
each of the TF-planes in c.

Assume that f=idgt(c,g,a,L) for an array c of sizeM×N . Then the following
holds for k = 0, . . . , L− 1:

f(l + 1) =

N−1∑

n=0

M−1∑

m=0

c(m+ 1, n+ 1)e2πiml/Mg(l − an + 1)

Non-separable lattices: idgt(c,g,a,’lt’,lt) computes the Gabor expan-
sion of the input coefficients c with respect to the window g, time shift a and
lattice type lt. Please see the help of matrix2latticetype for a precise description
of the parameter lt.

Assume that f=dgt(c,g,a,L,lt) for an array c of size M × N . Then the
following holds for k = 0, . . . , L− 1:
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f(l + 1) =

N−1∑

n=0

M−1∑

m=0

c(m+ 1, n+ 1)e2πiml/Mg(l− an+ 1)

Additional parameters: idgt takes the following flags at the end of the line
of input arguments:

’freqinv’ Compute an IDGT using a frequency-invariant phase.
This is the default convention described above.

’timeinv’ Compute an IDGT using a time-invariant phase. This
convention is typically used in filter bank algorithms.

Examples: The following example demostrates the basic pricinples for getting
perfect reconstruction (short version):

f=greasy; % test signal

a=32; % time shift

M=64; % frequency shift

ga={’blackman’,128}; % analysis window

[c,Ls]=dgt(f,ga,a,M); % analysis

% ... do interesting stuff to c at this point ...

r=idgt(c,{’dual’,ga},a,Ls); % synthesis

norm(f-r) % test

This code produces the following output :

ans =

6.3564e-15

The following example does the same as the previous one, with an explicit
construction of the analysis and synthesis windows:

f=greasy; % test signal

a=32; % time shift

M=64; % frequency shift

Ls=length(f); % signal length

% Length of transform to do
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L=dgtlength(Ls,a,M);

% Analysis and synthesis window

ga=firwin(’blackman’,128);

gs=gabdual(ga,a,M,L);

c=dgt(f,ga,a,M); % analysis

% ... do interesting stuff to c at this point ...

r=idgt(c,gs,a,Ls); % synthesis

norm(f-r) % test

This code produces the following output :

ans =

6.3404e-15

DGTLENGTH - DGT length from signal

Usage

L=dgtlength(Ls,a,M);

L=dgtlength(Ls,a,M,lt);

Description dgtlength(Ls,a,M) returns the length of a Gabor system that is
long enough to expand a signal of length Ls. Please see the help on dgt for an
explanation of the parameters a and M.

If the returned length is longer than the signal length, the signal will be zero-
padded by dgt.

A valid transform length must be divisable by both a and M. This means that
the minumal admissable transform length is

Lsmallest = lcm(a,M);

and all valid transform lengths are multipla of Lsmallest

Nonseparable lattices: dgtlength(Ls,a,M,lt) does as above for a nonsepa-
rable lattice with lattice-type lt. For non-separable lattices, there is the additinal
requirement on the transform length, that the structure of the lattice must be
periodic. This gives a minimal transform length of

Lsmallest = lcm(a,M)*lt(2);
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A.11.2 Reconstructing windows

GABDUAL - Canonical dual window of Gabor frame

Usage

gd=gabdual(g,a,M);

gd=gabdual(g,a,M,L);

gd=gabdual(g,a,M,’lt’,lt);

Input parameters

g Gabor window.

a Length of time shift.

M Number of channels.

L Length of window. (optional)

lt Lattice type (for non-separable lattices).

Output parameters

gd Canonical dual window.

Description gabdual(g,a,M) computes the canonical dual window of the dis-
crete Gabor frame with window g and parameters a, M.

The window g may be a vector of numerical values, a text string or a cell array.
See the help of gabwin for more details.

If the length of g is equal to M, then the input window is assumed to be an FIR
window. In this case, the canonical dual window also has length of M. Otherwise
the smallest possible transform length is chosen as the window length.

gabdual(g,a,M,L) returns a window that is the dual window for a system of
length L. Unless the dual window is a FIR window, the dual window will have
length L.

gabdual(g,a,M,’lt’,lt) does the same for a non-separable lattice specified
by lt. Please see the help of matrix2latticetype for a precise description of the
parameter lt.

If a > M then the dual window of the Gabor Riesz sequence with window g
and parameters a and M will be calculated.
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Examples: The following example shows the canonical dual window of the Gaus-
sian window:

a=20;

M=30;

L=300;

g=pgauss(L,a*M/L);

gd=gabdual(g,a,M);

% Simple plot in the time-domain

figure(1);

plot(gd);

% Frequency domain

figure(2);

magresp(gd,’dynrange’,100);
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GABTIGHT - Canonical tight window of Gabor frame

Usage

gt=gabtight(a,M,L);

gt=gabtight(g,a,M);

gt=gabtight(g,a,M,L);

gd=gabtight(g,a,M,’lt’,lt);

Input parameters

g Gabor window.

a Length of time shift.

M Number of modulations.
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L Length of window. (optional)

lt Lattice type (for non-separable lattices).

Output parameters

gt Canonical tight window, column vector.

Description gabtight(a,M,L) computes a nice tight window of length L for a
lattice with parameters a, M. The window is not an FIR window, meaning that it
will only generate a tight system if the system length is equal to L.

gabtight(g,a,M) computes the canonical tight window of the Gabor frame
with window g and parameters a, M.

The window g may be a vector of numerical values, a text string or a cell array.
See the help of gabwin for more details.

If the length of g is equal to M, then the input window is assumed to be a FIR
window. In this case, the canonical dual window also has length of M. Otherwise
the smallest possible transform length is chosen as the window length.

gabtight(g,a,M,L) returns a window that is tight for a system of length L.
Unless the input window g is a FIR window, the returned tight window will have
length L.

gabtight(g,a,M,’lt’,lt) does the same for a non-separable lattice specified
by lt. Please see the help of matrix2latticetype for a precise description of the
parameter lt.

If a > M then an orthonormal window of the Gabor Riesz sequence with
window g and parameters a and M will be calculated.

Examples: The following example shows the canonical tight window of the
Gaussian window. This is calculated by default by gabtight if no window is spec-
ified:

a=20;

M=30;

L=300;

gt=gabtight(a,M,L);

% Simple plot in the time-domain

figure(1);

plot(gt);

% Frequency domain
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figure(2);

magresp(gt,’dynrange’,100);
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A.11.3 Support for nonseparable lattices

MATRIX2LATTICETYPE - Convert matrix form to stan-
dard lattice description

Usage

[a,M,lt] = matrix2latticetype(L,V);

Description [a,M,lt]=matrix2latticetype(L,V) converts a 2×2 integer ma-
trix description into the standard description of a lattice using the a, M and lt.
The conversion is only valid for the specified transform length L.

The lattice type lt is a 1 × 2 vector [lt1, lt2] denoting an irreducible fraction
lt1/lt2. This fraction describes the distance in frequency (counted in frequency
channels) that each coefficient is offset when moving in time by the time-shift of a.
Some examples: lt=[0 1] defines a square lattice, lt=[1 2] defines the quinqunx
(almost hexagonal) lattice, lt=[1 3] describes a lattice with a 1/3 frequency offset
for each time shift and so forth.

An example:

[a,M,lt] = matrix2latticetype(120,[10 0; 5 10])

This code produces the following output :

a =

10

M =

12

lt =

1 2
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Coefficient layout: The following code generates plots which show the coeffi-
cient layout and enumeration of the first 4 lattices in the time-frequecy plane:

a=6;

M=6;

L=36;

b=L/M;

N=L/a;

cw=3;

ftz=12;

[x,y]=meshgrid(a*(0:N-1),b*(0:M-1));

lt1=[0 1 1 2];

lt2=[1 2 3 3];

for fignum=1:4

subplot(2,2,fignum);

z=y;

if lt2(fignum)>0

z=z+mod(lt1(fignum)*x/lt2(fignum),b);

end;

for ii=1:M*N

text(x(ii)-cw/4,z(ii),sprintf(’%2.0i’,ii),’Fontsize’,ftz);

rectangle(’Curvature’,[1 1], ’Position’, . . .
[x(ii)-cw/2,z(ii)-cw/2,cw,cw]);

end;

axis([-cw L -cw L]);

axis(’square’);

title(sprintf(’lt=[%i %i]’,lt1(fignum),lt2(fignum)), . . .
’Fontsize’,ftz);

end;
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LATTICETYPE2MATRIX - Convert lattice description to
matrix form

Usage

V=latticetype2matrix(L,a,M,lt);

Description V=latticetype2matrix(L,a,M,lt) converts a standard descrip-
tion of a lattice using the a, M and lt parameters into a 2 × 2 integer matrix
description. The conversion is only valid for the specified transform length L.

The output will be in lower triangular Hemite normal form.
For more information, see http://en.wikipedia.org/wiki/Hermite_normal_

form.
An example:

V = latticetype2matrix(120,10,12,[1 2])

This code produces the following output :

V =

10 0

5 10

SHEARFIND - Shears for transformation of a general lattice
to separable

Usage

http://en.wikipedia.org/wiki/Hermite_normal_form
http://en.wikipedia.org/wiki/Hermite_normal_form
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[s0,s1,br] = shearfind(L,a,M,lt);

Description [s0,s1,br]=shearfind(L,a,M,lt) computes three numbers, the
first two represent a frequency and time shear respectively. With the returned
choices of s0 and s1 one can transform an initial lattice given by a, M and lt into
a separable (rectangular) lattice given by

ar =
aL

brM
, Mr =

L

br
.

If s0 is non-zero, the transformation from general to separable lattice requires a
frequency-side shear. Similarly, if s1 is non-zero, a time-side shear is required.
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