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Abstract

This thesis studies projective structures on smooth manifolds M, i.e. equivalence classes
of torsion-free affine connections on M, which induce the same unparametrised geodesics.
Questions, that arise naturally in this setting, are concerned with the existence of repre-
sentatives in the projective class, which have special properties. For example, one may
ask if a given projective structure can be represented by a connection coming from a
metric or an Finstein metric. Furthermore, the existence of invariants of the geometric
structure can be studied. In this setting, differential operators, which are intrinsic to the
projective structure, are of particular interest.

We treat these problems in the framework of tractor calculus, which is an invariant
calculus for projective structures. On a manifold endowed with a projective structure,
there is no distinguished connection on the tangent bundle. Nevertheless, there exist
natural vector bundles, called tractor bundles, which can be associated to any projective
structure and they carry an invariant connection, called tractor connection. Therefore,
it is natural to calculate with these bundles.

Furthermore, ideas from the general theory of BGG-sequences are used to approach
questions associated to projective structures. The BGG-sequence provides a sequence
of projectively invariant differential operators, where we are especially interested in the
first operators of sequences coming from certain tractor bundles. If D is a first BGG-
operator, then the equation Do = 0 is called first BGG-equation. For the tractor bundles
we consider, the existence of appropriate solutions of the first BGG-equation is equivalent
to the existence of special representatives in the projective class. In particular, we provide
conditions for the existence of (pseudo-) Riemannian metrics and Einstein metrics and
for Ricci flat connections in the projective class.

As an application, tractor bundles, their connections and solutions of the first BGG-
equation are discussed on the homogeneous model for oriented projective structures,
which is the sphere viewed as a homogeneous space of the special linear group.
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Chapter 1
Introduction

Originally, projective geometry goes back to E. Cartan and T. Thomas, but it has re-
cently attracted much interest. The defining data is a smooth manifold M equipped
with a projective structure, i.e. an equivalence class of torsion-free connections, whose
geodesics, viewed as unparametrised curves, coincide. Traditionally, the connection be-
tween projective geometry and Riemannian geometry is of great interest, but projective
geometry also plays a crucial role in the study of overdetermined systems of partial differ-
ential equations. Furthermore, it provides an important example of a parabolic geometry
as well as for the BGG machinery.

Given a projective structure on a manifold, one may ask for representatives in the
equivalence class that have special properties. There is, for example, the classical prob-
lem of metrisability, which has been addressed by many authors. It is concerned with the
question of whether a given projective structure can be represented by the Levi-Civita
connection of a (pseudo-) Riemannian metric. Due to Mike§ and Sinjukov [15, 16], the
existence of a Levi-Civita connection in the projective class is equivalent to the existence
of a positive definite solution of a certain overdetermined linear partial differential equa-
tion. Similarly, one may ask for Finstein metrics in a given projective class, compare

[12, 7].

Another question that naturally arises is concerned with the existence of invariant
differential operators, i.e. operators which are intrinsic to the projective structure. One
can try to construct first order operators directly, that is, without using any further
theory, and may succeed. But by raising the order, this becomes a rather difficult task.
Nevertheless, the BGG machinery provides us with a general construction for a sequence
(called BGG-sequence) of invariant differential operators, compare [10].

This is actually closely related to the search of special representatives in the projective
class. Indeed, the overdetermined partial differential equation, which we addressed above,
is a special case of a first BGG-equation. This is an equation of the form Do = 0, where
D is an invariant differential operator arising as the first operator in a BGG-sequence.
Hence, the existence of an appropriate solution of a first BGG-equation Do = 0 is
equivalent to the existence of a Levi-Civita connection in the projective class.



1. Introduction

The general theory of BGG-sequences provides a natural subclass of solutions, called
normal solutions. In [7] it is shown, that the existence of a positive definite normal
solution of a first BGG-equation Do = 0 (which is actually the same equation as above)
is equivalent to the existence of an Einstein metric in the projective class.

Most of the results we commented on here, strongly rely on an invariant calculus for
projective geometry, called tractor calculus. Given a projective structure, there is no
distinguished connection on the tangent bundle. Nevertheless, we can associate natural
vector bundles to a projective structure, which are equipped with invariant connections.
These are called tractor bundles and the resulting connections are called tractor connec-
tions.

As a matter of fact, tractor calculus was uniformly developed for all parabolic geome-
tries, see [4]. It can be constructed directly, that is, without using the Cartan connection
(which is a basic ingredient for a parabolic geometry). The Cartan bundle and connection
can however be regained from the tractor bundle and its connection.

This thesis is concerned with explicity calculating certain tractor bundles and their
connections for a given projective geometry. Furthermore, we give formulae for the in-
variant differential operators which arise from the BGG-sequence applied to these tractor
bundles. We provide conditions for the existence of Riemannian metrics, (pseudo-) Rie-
mannian Einstein metrics and Ricci-flat connections in a given projective class. As a final
part, these tractor bundles, their connections and (normal) solutions of the first BGG-
equation are interpreted on the sphere, which is the homogeneous model for oriented
projective structures.

Overview of the text

Chapter 2 is mainly concerned with fixing conventions and notations as well as recalling
basic facts on linear connections. A short introduction to abstract index notation is given,
which will be used extensively throughout the whole text. Besides the general theory
of linear connections on vector bundles, it is discussed how principal connection forms
on the linear frame bundle induce linear connections on the tangent bundle (which are
called affine connections). Furthermore, the homogeneous model of the Cartan geometry
describing affine connections is considered.

In chapter 3 projective structures on smooth manifolds are introduced as equivalence
classes of torsion-free connections that define the same geodesics (as unparametrised
curves). An equivalent definition is presented, which is less geometric, but more useful
in practice. Similarities with terms and results of chapter 2 are pointed out throughout
this chapter, especially when discussing the model spaces for projective structures.

Tractor calculus is developed in chapter 4. We start by defining the cotractor bundle
and its tractor connection. The other tractor bundles are obtained by natural construc-
tions on the cotractor bundle: Dualising gives the tractor bundle with canonically the
dual connection, symmetrizing gives the symmetric power of the (co-) tractor bundle



with canonical induced connection. Furthermore, the curvatures of the obtained tractor
connections are computed. Also, we remark on how the Cartan bundle and connection
can be obtained from the tractor bundle and its connection.

In chapter 5 the main results are presented. Each tractor bundle considered in chapter
4 gives rise to a first, second or third order invariant differential operator, which is the
first operator in a BGG-sequence. These operators are constructed directly, i.e. without
using the theory of BGG-sequences. The resulting first BGG-equations provide condi-
tions for the existence of Ricci-flat connections (Theorem 5.3.1), Riemannian (Einstein)
metrics (Remark 5.3.1) and pseudo-Riemannian Einstein metrics (Theorem 5.3.2) in the
projective class.

Chapter 6 is dedicated to interpreting results from the last chapters on the homoge-
neous model for oriented projective structures, which is the sphere. We will show that
each tractor bundle is trivial and that it carries the trivial connection, i.e. all tractor
connections are trivial. Furthermore, in the case of the homogeneous model, all solution
of the first BGG-equations are normal. Normal solutions, in turn, correspond to elements
in the standard fiber of the tractor bundle considered.






Chapter 2
Preliminaries

2.1 Conventions and Abstract Index Notation

This thesis is founded on general concepts from differential geometry and Lie theory.
Therefore, the notions of smooth manifolds, diffeomorphisms, vector fields, tensor fields,
Lie groups, Lie algebras, etc. are used without further explanation. Moreover, the
theory of vector bundles, principal bundles and associated bundles is presumed. All of
these prerequisites are briefly reviewed in 9, Section 1.2.]. A more detailed presentation
can be found in [14, Chapter 1-4].

The notation is also adopted from [9, Section 1.2.]. Thus, throughout this thesis, M
denotes a smooth manifold of dimension n > 2. Its tangent respectively cotangent bundle
is denoted by T'M respectively T*M. We write X(M) for the space of vector fields on
M and QF(M) for the space of k—forms. If V is a vector space, then by QF(M, V) we
denote the space of k—forms with values in V, by S*V the k—th symmetric power and
by A*V the k—th exterior power of V.

A fiber bundle is denoted by p : Y — M, its fiber over x € M by Y, and the space
of smooth sections of Y by I'(Y). To indicate the type of a given bundle, we write
p:V — M for vector bundles and p : P — M for principal bundles. Given a principal
bundle p: P — M with structure group H and a smooth manifold .S, which is endowed
with a left action H x § — S, the associated bundle to the principal bundle P with
standard fiber S is denoted by P xg S.

We will also make use of abstract index notation. In this notation indices act as
labels to specify the kind of tensor we are working with. In particular, it gives rise to a
coordinate-free way of manipulating tensors. We give a brief introduction here.

A lower index indicates covariance of a given tensor with respect to that index, hence
wj is a 1—form. Similarly an upper index indicates contravariance and thus £ is a vector
field. Combining upper and lower indices, we can form any kind of tensor. For example,
a (%)—tensor field A is written as Aji. Given a vector field € and a 1—form w, their
tensor product £ ® w is a (%)—tensor field. We write Eiwj for (€ ® w)ji, hence we omit



2. Preliminaries

the product sign. A (%)—tensor field A can be viewed as a map associating to each
x € M an endomorphism of T, M. The trace or contraction of A is then given by the
trace of this endomorphism in each point x € M. In abstract index notation the trace
of Aji is indicated by Ai*. There exists a canonical (%)—tensor field 5ji, which, viewed
as an endomorphism, is given by the identity map. Thus 6;% = n.

Indicating a contraction in abstract indices is especially useful for tensors that allow
more than one trace. For example, a tensor of the form Bijk allows two different traces,
which are written as Bkjk and B;;”. Note that taking a trace turns Bijk into a 1—form.
Furthermore, viewing a (1)—tensor field A as a map A : X(M) — X(M) and evaluating
at a point £ € X(M) gives a vector field A(&)*, which in abstract index notation is written
as Ajifj. Hence, the contraction in this case indicates the evaluation of A at &.

Now as an example, consider the curvature R of a linear connection (details on linear
connections and curvature can be found in the next section). The curvature is a map
R : X(M) x X(M) x X(M) — X(M) and we will see in the next section that it is
a (é)—tensor field. Therefore, in abstract index notation it can be written as Rijkg
and using the paragraph above, we obtain (R(&,7)(¢))F = Rijkgﬁinjg“é for vector fields
&,n,¢ € X(M). Also the curvature Rijkg of a linear connection allows two different
traces (note that it is antisymmetric in 4 and j) and Rj, = Rkjkg is exactly the Ricci
curvature.

We introduce notation for the symmetric respectively the antisymmetric part of a
tensor. Parentheses around indices indicate the symmetrization of a given tensor. Thus

1
Wlirwin) = 7 Z Wig(1)io(n) "
" oeG,

Similarly we use square brackets for the antisymmetric part:

1
Wlig-vin] = n! Z Sgn(a)wiau)“'ia(n)'
T 0eB,

In this notation, an n—form is a tensor wj, .., satisfying wi,...;, = wy;;...;,]- Note however,
that indices, which are not inside the brackets or appear on different levels, are not part
of the symmetration respectively antisymmetration. Hence

1
wi' i = §(Wi£§jk +w;i ).

In the case of bundles, there is a similar notation with abstract indices. Denote by
& the trivial bundle over M, by £ the tangent bundle T'M and by &, the cotangent
bundle T* M. Tensor products of these bundles are indicated by iterating this notation.
For example, ®2TM is written as £%. Similarly we write £ respectively £l for
S2(TM) respectively A?(TM).
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In the case a chart is chosen and we are working with explicit indices, we make use
of Einstein summation convention: An index appearing twice as a lower and an upper
index indicates summation over that index. Thus for example coordinate expressions of
the form &|y = Y, £'0; are written as &|y = £°0;.

2.2 Linear Connections

In this section, we recall basic definitions of linear connections on vector bundles. We find
a local representation of a linear connection and define its curvature. When restricting
to the case of linear connections on the tangent bundle, we obtain a decomposition of
the curvature containing a trace-free component. In the final part of this section, we
remark on a construction, which induces linear connections on the tangent bundle from
connection forms on the linear frame bundle. The theory presented in this chapter can
be found in [9, Section 1.3|, [1, Section 3.1] and |2, Chapter 3.2|.

General Theory

A linear connection on a vector bundle YV — M provides a concept of directional derivative
of sections of this bundle in the direction of vector fields.

Definition 2.2.1. A linear connection on a vector bundle V — M is a bilinear operator
V:iX(M) xI'(V) = I'(V), given by (&, s) — Vs, which additionally satisfies
Vfgs = ngS
and
Vefs= (& f)s+ fVes,

for f € C°(M,R).

Thus a linear connection is a bilinear operator, which is tensorial in the first argument
and satisfies a Leibniz rule in the second argument.

On the trivial vector bundle ¥V = M x V for V a vector space, a linear connection is
given by Ves =& -5, for s € I'(V) = C*(M, V) and § € X(M). This linear connection is
called the trivial connection on V.

Remark 2.2.1. 1. A linear connection V on a vector bundle ¥V — M induces linear
connections on its dual bundle as well as on tensor products. We will denote these
induced linear connections by the same symbol.

Let V* — M be the dual bundle of V. Then for o € T'(V*), £ € X(M) and s € T'(V)

(Vea)(s) = € (a(s)) — a(Ves),

defines a linear connection on V*.
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Similarly for V — M and W — M two vector bundles, there is an induced connec-
tion on V® W — M given by

Ve(s®@t) =s®@ Vet + (Ves) @ t,

for s € T(V),t € T(W) and £ € X(M). Of course this can be iterated to tensor
products of finite size. Note that we used the same symbol for the linear connections
on V and W.

2. On every vector bundle V — M there exists a linear connection. In a vector bundle
chart, we can locally pull back the trivial connection and piece these locally defined
connections together by using a partition of unity to obtain a globally defined linear
connection on V.

Now we want to find a local description of a linear connection V. Let p: V — M
be a vector bundle of rank k, hence given a vector bundle atlas (Uy, ¢« ), we have that
p Y (Uy) =2 U, x RF. Consider a local frame {e1,...,e;} for U, and write ¢ = o'e; for
o € T(V) and o' : U, — R smooth. Then for a vector field £ € X(M), on U, we have:

Veo = Veale; = (£ 0')e; + o' Vee,.
Definition 2.2.2. The curvature of a linear connection V on V — M is defined as
R:X(M)x X(M) xT(V) = T(V)

R(&,m)s = VeVyps =V Ves — Vie s

By definition the curvature is skew-symmetric in the first two arguments.

Lemma 2.2.1. The curvature is C*°(M, R)—linear in all three arguments. Thus R is a
section of A2°T*M ® L(V,V).

Proof. We show that it is C*°(M,R)—linear in the first and third argument. By skew
symmetry, the linearity in the second argument follows. Let f : M — R be a smooth
function, then

R(f&;m)s = VyeVns = VyVies = Vipe s

fVeVns =V fVes =V pie i (n-p)es

fVeVys — (- [)Ves + fVyVes) = (fVieqs — (n- [)Ves)
= [R(m)s
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and

R(En)fs = VeVpfs =VyVefs—Vig,fs
= Ve((n-f)s+ fVys) = Vy((§- f)s+ fVes)
—([&n] - f+ fVems)
= & f)s+ M [)Ves+ (& [)Vys+ [VeVys
—m- (& s+ (& [)Vys+ (- [)Ves+ [V, Ves)
—([&ml - f+ [V en)s
= fR(&n)s.

Note that we used - (n- f) —n-(&-f)=1[n] - f. O

Affine Connections

Now consider a linear connection on the tangent bundle TM — M. Sections of this
bundle are simply given by vector fields and thus Definition 2.2.1 yields a bilinear operator
V:X(M)xX(M) — X(M) satisfying the defining equations. Linear connections on the
tangent bundle are called affine connections on M.

The induced connection on T*M as in Remark 2.2.1 is then given by

(Vew)(n) = &+ (w(n) —w(Ven),
for w e T(T*M) = QY(M) and &, € X(M).

In the case of affine connections, the local description can be expressed in terms of
the Christoffel symbols. Consider a chart (U, {x1,...,x,}) for M and vector fields ,n €
X(M). Then locally on U we have £ = £'9; and n = 1/9;. Therefore we obtain

;o j i
Venly = §5750; + €Tk,

for I’fj the Christoffel symbols, which are defined by Vj,0; = I‘fj@k.

Definition 2.2.3. The torsion of a linear connection V on T M is defined as
TorY : X(M) x X(M) — X(M)

Torv(ﬁ, T]) = V{U - an - [67 77}

The torsion is obviously skew-symmetric and it is C*° (M, R)—linear in both arguments:
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Let f be a smooth function M — R, then

Tor¥(f&,m) = Viyen—Vyf&—1[f&m)
fVen— - )&= fVy€ = fl&n+ (- )
fTor¥ (&,m)

and by using the skew-symmetry of Tor", we obtain the result for the second argument.
Thus Tor" is a section of A2T*M @ TM.

Lemma 2.2.2. Two linear connections V and V on T'M have the same torsion if and
only if their difference tensor A(,n) := Ven — Ven is symmetric.

Proof. First of all note that A is indeed a tensor field: It is obviously C*°(M,R)—linear
in the first argument and since

A(&, fn) = Vefn—Vefn
= (& f)in+Ven— (& f)n+ Ven)
= fA( ),

it is also C°°(M,R)—linear in the second argument.

Now the following calculation proves the statement:

Tor¥(&,m) = Tor" (£,7)
Ven = Vy§ = [€n = ﬁ&ﬁ - ﬁnf — &
@nf -V,§ = @577 — Ven
Am,&) = A& n).

O]

Definition 2.2.4. A linear connection V on T'M is called torsion-free, if TorV (£,7) =0
for all vector fields £, € X(M).

Given any linear connection V on T'M, we can always construct a torsion-free connec-
tion by defining V¢n := Ven — %Torv(ﬁ, n). Then

Tor¥(&,m) = Ven— Vi€ — [6,]
= Ven— 5T (€n) — (Vaf = 5Tor¥ (1,6)) — [6.1]

1 1
= TorV(&,n) — §Torv(§, n) + iTorv(n,ﬁ)
— 0,

where we used that TorY is skew-symmetric in the last line.
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We can view an affine connection as an operator acting on tensor fields. Given a tensor
field ¢, then Vt is a tensor field with covariance raised by one. For example, consider a
vector field &, which is a (§)— tensor field. Then V¢ is the (})— tensor field given by
(VE)(n) := V&, for a vector field . Moreover, we can consider V*t = V(Vt), which is
a tensor field with convariance raised by two. Inductively, we obtain that V't is a tensor
field with covariance raised by r.

Lemma 2.2.3. Let V be a torison-free linear connection on T'M, then the curvature has
the form

R(&,m)¢ = (V2O)(&,m) — (V) (n,€),
for &,n,( € X(M).

Proof. Since we are working with a torison-free connection, we have [, 7] = Ven — V&
and thus

(V2O)(&m) — (V2O (0,6) = (VeVpl = V) — (Vi Vel — Vy,£0)
= VeV = VyVe( = Vien€
= R(§n)C

O

From now on all connections V on the tangent bundle are assumed to be torsion-free
and thus Lemma 2.2.3 can be used as the definition of the curvature of V. In order to
decompose R it is easier to working with abstract indices. Therefore, we have to introduce
abstract index notation for linear connections and fix conventions for calculating. We
illustrate this on the example of a (%)— tensor field tji; it works analogously for any
kind of tensor field. Starting with ¢;°, then we have that Vt is a (%)— tensor field and
thus has indices (Vt)kji. This is written as Vit;°. Iterating this notation, we obtain
(V(Vt))e;' = Vi Vit;* and more generally (V't)j,..ix' = Vj, -+ V. 1"

When working with abstract indices, the order of the indices is not important, hence
'wj = w;&'. However, this is not the case for terms containing linear connections. A
linear connection acts on everthing to its right, unless there are brackets. For example,

Villwp = EVwg + wi Vil = (Viwg)& + (Vi wy,.

Now we use abstract index notation to refomulate Lemma 2.2.3. Given vector fields
£i777j7 <£ € %(M), we obtain

Ry £p ¢t = Vi et — €V vick.

We can also omit & and 1’/ and simply write Rijkgge = (V;V; — V,;V,) ¢k
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Lemma 2.2.4. Given an affine connection V with curvature R, jke- Then the curvature
of the induced connection on the cotangent bundle T*M is given by

(ViVj — V;Vi)we = =R, * ..
Proof. We use the following fact: (Vew)(¢) = & - w(¢) — w(Ve(). Thus
(VeViw)(€) = & (Vaw(Q)) = (Vyw)(Ve()
= & (n-w(Q) =& w(Vyl) = (- w(Vel) = w(VyVe())
Using this calculation as well as € - (- w(¢)) — 1+ (€ - w(¢)) = [,7] - w(¢) we obtain
(VeVnw)(€) = (Vi Vew)(€) = (Vig ) (¢) = —w(R(E,1)(C));
which in abstract index notation is given by — R, ;" wiC". O

Definition 2.2.5. Let V be an affine connection with curvature Rijkﬁ. Then we define
Bi; and the projective Schouten tensor P;; by

(n+1)Bij; = —2Ry;;) and (n — 1)Pi; = Rij + Bij,
where R;; = R,.*. is the Ricci curvature.
J ki j

From the definition we immediately see that j3;; is skew symmetric and that 2P;; =
—Bij-
Definition 2.2.6. Let V be an affine connection with curvature R, jkg. Then Weyl tensor
Cijké is defined by the equation

R, = Cij* +20,*P o + Byl

Lemma 2.2.5. The Weyl tensor is totally trace-free, i.e. C’kjkg = Cikke = C’Z-jkk =0.

Proof. There are three possible traces we can form. As R, jkg and f3;; are skew symmetric
in ¢ and j and the defining equation for C;, ; kz is antisymmetrized in 4 and j in the part
containing Py, it suffices to compute the trace in j and /.

Ciile = Ry =207y — Biod
= —Ry— (Pig —nPir) — Bie
= —Ry+(n—1)Py— B
= 0

The Bianchi symmetry R[ijkg} = 0 implies

Ry = =Ry = Ry = Rjs = Rig = (n+1)By. (2.1)
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We use identity (2.1) to compute the trace of the Weyl tensor in ¢:
Cy" = Ry"p —6"Pj — 6;"Piy, — Bijor"
= (n+1)Bij = Pji + Py — nfi
(n+1)Bij — Bij — nBij
= 0
O]

Thus Definition 2.2.6 gives a decomposition of the curvature into trace-free and trace
parts. For later purpose, we prove the following identities which are based on the Bianchi
symmetry R[ = = 0 and the Bianchi identity V[ZR Kom = = 0. Details on these identities
can be found in [13, Chapter 7].

Lemma 2.2.6. Let V be an affine connection with curvature R ;"¢ and consider the
decomposition of R, ké as in Definition 2.2.6. Then we have the followmg identities:

ViBjry =0 and VkC ¢ =2(n = 2)ViPj.

Proof. Starting with the Bianchi identity V[ZRJ Wom = = 0 and taking the trace over j and
£, we obtain:

0 = ViRy', — ViRy', — ViR,
= ViRim — ViRit o — ViRim,

where R;; = Rkikj denotes the Ricci curvature. Therefore, we obtain the following
identity for the Ricci curvature:

ViRim — ViRiyn = VgR (2.2)

ik m*

Now by Definition 2.2.5, we have that (n + 1)8;; = —Rj;;) and thus

= 2((V 'le V‘Rjk) (V‘Rkj VkRij) + (VkRji — Viji))
= Q(VgR ikt VgRZk ;T ViR, Z)
= 0,

where we used (2.2) in the second line and the Bianchi symmetry in the third line.

In order to prove the second statement, consider the decomposition of the curvature
of Definition 2.2.6, apply the connection V and antisymmetrize in the first three indices
to obtain:

1 l l
0= V[iCjk] m T V[iéj Pk]m — V[z‘ék Pj]m
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Here we already used the Bianchi identity and V[;8;; = 0. Now taking the trace over i
and ¢ and using that the Weyl tensor is totally trace free, we get:

ViCit' v = ViChi'y = =2(ViPrm — nV;Ppm + V;Prm — ViPjm — ViPjm + nViPjn)
and since the Weyl tensor is antisymmetric in the first two indices, this gives

ViCit'n = (n—=2)(ViPrm — ViPjm)

Induced Linear Connections

A principal connection form on the linear frame bundle induces a linear connection on
the tangent bundle as well as on any associated bundle. The case of the tangent bundle
is very similar to what is presented in |2, Chapter 2.3|, replacing the orthonormal frame
bundle by the linear frame bundle. Induced linear connections on associated bundles
from arbitrary principal bundles are discussed in [9, Section 1.3.4]. We give a short
description of these constructions.

The linear frame bundle p : P!M — M consists of the fibers P M for z € M, where
PIM is the set of all linear isomorphisms R™ — T,,M. There exists a smooth structure
on P!M, which makes p : P'M — M into a GL(n,R)—principal bundle. The principal
right action is given by composition from the right, hence

r: P'M — P'M

ri(9) =g o4,
for A € GL(n,R) and ¢ € P'M. Furthermore, the fact that we can put a smooth

structure on P'M exactly means that local sections correspond to local frames.

Recall that on the linear frame bundle we have the fundamental vector fields (x €
X(P'M), which are given by (x(u) = L|,_or®PX(u) for X € gl(n,R),u € PLM. A
principal connection form on P'M is a one-form v € Q!(P'M, gl(n, R)) satisfying

v(x)=X for X € gl(n,R) (2.3)

(r)*y = conjy oy for A e GL(n,R) '

The second part of (2.3) should be understood as y(uo A)(T,rd-€) = A71-y(u)(€) - A,

for u € PM,¢ € T,P'M and A € GL(n,R). Now any principal connection form on
P'M induces a linear connection on TM via the notion of horizontal lifts.

If £ € X(M) is a vector field, then the horizontal lift is the unique vector field £ €
X(P'M), satisfying Tp o £P°" = £ o p and 7(€P°") = 0. The linear connection on T'M
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can be obtained by identifying vector fields on M with GL(n,R)—equivariant functions
F: P'M — R", where the equivariancy condition is given by

F(poA)=A"'F(p) VAeGL(n,R).

Denote the set of all equivariant functions by C®(P'M,R™)“LR) 1f 5y € %(M) corre-
sponds to F € C°(P'M,R")GL(R) " then the vector field corresponding to the equiv-
ariant function &¢"r. F . PIM — R” is Ven. Here the dot denotes the directional
derivative.

Thus any principal connection on P'M induces a linear connection on TM. Actually
there is a one-to-one correspondence between the set of linear connections on TM and
the set of principal connection forms on P'M, see [9, Section 1.3.5].

For the case of vector bundles, which are associated bundles to P'M, there is a sim-
ilar construction which induces linear connections on these bundles. Consider V =
P'M X@L(n,r) V, where V' is a vector space. Sections o of this bundle are in bijec-
tive correspondence to smooth maps f : P'M — V, which are GL(n,R)—equivariant,
i.e. which satisfy f(poA) = A~ f(¢) for A € GL(n,R). Here the dot on the right side
of the equation indicates the left action of GL(n,R) on V. For a proof of this fact see
[9, Proposition 1.2.7.].

If a section o corresponds to f € C®(P'M,V)GEMR) then V¢o is the section corre-
sponding to &°T. f . PIM — V| see [9, Proposition 1.3.4.].

Note that the construction of the linear connection on the tangent bundle via a prin-
cipal connection on P'M is actually a special case of the one of associated bundles to
P'M. The associated bundle P'M X aL(n,r) R", where the left action of GL(n,RR) on R"
is given by multiplication from the left, can be identified with the tangent bundle.

2.3 Geodesics

Geodesics of a linear connection on a manifold M provide an analog concept to straight
lines in R™. The defining property of a straight line is the vanishing of its acceleration. In
order to define geodesics we need an interpretation of the second derivative of curves on a
manifold. This is done by the notion of linear connections along curves. In the following
we will only recall basic properties of linear connections along curves and geodesics,
referencing [13, Chapter 4| for more detail.

Definition 2.3.1. Let ¢: I — M be a smooth curve. A vector field along ¢ is a smooth
map & : [ — TM satisfying p o { = ¢, i.e. such that {(t) € T, M. Denote the set of all
vector fields along ¢ by X.(M).

In this sense ¢’ : I — T'M is a vector field along c.

Lemma 2.3.1. Let V be a linear connection on TM and ¢ : I — M a smooth curve.
Then there exists a unique linear operator Vo : X.(M) — X (M), such that for every



2. Preliminaries

vector field £ along ¢ and for every smooth function f : I — R we have

Ve f€= €+ fVet. (2.4)

If furthermore ¢ : J — [ is a reparametrisation, then
Vieogy(co @) =¢"(c 0 ¢) + (¢/)*(Ved) 0 ¢. (2.5)

The linear operator V. is called the linear connection along ¢ induced by V.

Proof. Let tg € R and choose a chart (U, {x1,...,z,}) of M around c(tg). Write 0;
for the vector fields %. Then we have ¢ = ¢/0; and ¢ = (£)'9; on ¢ }(U). Similarly
d = (¢')'9;, where ¢! denote the components of ¢. Define the linear connection on ¢~1(U)
by

(Verb)lerwy = ((€%) + € ()T 0 ). (2.6)

From the definition, it is obvious that locally V. is uniquely determined. In order to
show existence, we cover ¢(I) with charts and on each chart we define V. by formula
(2.6). By uniqueness, these linear connections have to agree on intersections of different
charts and thus we obtain a well-defined operator. Equation (2.6) obviously defines a
linear operator and satisfies (2.4):

Vefe = (f'€8+ f(€") + fE0(c)TE 0 )k
= [0+ F((F) + ()T 0 )0
= flE+ fVuE

Now given a reparametrisation ¢, then by the chain rule we have the following expressions
in coordinates:

(co@) = (¢'((c") 09))d; and (co )" = ((¢)*((c")" 0 §) + ¢"((c") © $))d;.

The coordinate representation (2.6) of a linear connection along ¢ gives (2.5):

V (ogy (€0 0) =¢"((c") 0 ¢)0k
+ (()2((F)" 0 0) + ((7) 0 $)¢/ ((¢) © $)¢'T};(c 0 $)) D%
=¢"((*) 0 §) O
+()2((((F) 0 0) + ((7) 0 $)((c') 0 )T (c 0 $)) %)
=¢"(d 0 ¢) + (¢')*(Ved) 0 ¢, O

Definition 2.3.2. Let V be an affine connection on M. A smooth curve ¢: I — M is
called geodesic for V if V. = 0.
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Working in a chart (U, {z1,...,2,}), the local representation of V¢ in Lemma 2.3.1
shows that a smooth curve ¢: I — M is a geodesic if and only if it satisfies the following
system of second-order ordinary differential equations on its components:

()" (1) + ()Y (B)() (BT (e(t)) = 0. (2.7)

Remark 2.3.1. For every x € M and every & € T, M there exists a unique open
maximal interval I containing 0 and a geodesic ¢ : I — M such that ¢(0) = x and
d(0) = &. This can be deduced from the existence and uniqueness theorem of ODEs,
using the local equation (2.7). For details see [13, Theorem 4.10].

Lemma 2.3.2. Two linear connections V and V on T'M have the same geodesics if and
only if their difference tensor A(§, 1) = Ven— Ven (see Lemma 2.2.2) is skew-symmetric.

Proof. First of all note that A is skew-symmetric if and only if A(£,£) = 0 for all £ €
X(M). If A is skew-symmetric, then obviously A(§,¢&) = —A(&,€) and thus A(E, &) = 0.
On the other hand if A(&,£) = 0, then

for all £, € X(M) and thus A is skew-symmetric.

Now let ¢ : I — M be a geodesic for V and V. Then A(¢,¢’) = 0 and since every
tangent vector occurs as the derivative of some geodesic, we obtain that A is skew-
symmetric. Conversely let A be skew-symmetric and ¢ : I — M a geodesic for V. Then
Ved = A(d,¢) 4+ Ve =0 and thus ¢ is a geodesic for V. We can argue in exactly the
same way to show that every geodesic for Visa geodesic for V. O

Note that the change from a linear connection V to a torsion-free connection V as
stated after Definition 2.2.4 doesn’t change the geodesics: Their difference tensor is
given by A(&,n) = —%Torv(f, 1), which is skew-symmetric.

Lemma 2.3.3. Consider two linear connection V and V on TM. Then we have the
following equivalence:

V =V Tor¥ = TorV and they have the same geodesics.

Proof. (=) is trivial. Conversely, by Lemma 2.2.2, the difference tensor A = V — V is
symmetric and by Lemma 2.3.2 it is skew-symmetric. Thus A =0 and V = V. O

2.4 The Homogeneous Model for Affine Connections

In this section we consider the homogeneous model for linear connections on the tangent
bundle. Recall from section 2.2, that a linear connection on the tangent bundle is equiva-
lent to a principal connection form on the linear frame bundle. We will understand in the
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end of this section, why the space we consider is exactly the homogeneous model. Fur-
thermore, we will find an invariant geometric structure on the considered homogeneous
space. The theory presented in this section can be found in [9, Section 1.3.5].

Consider affine n—space A", which as a set is given by A™ = R"™. An affine motion is
a map of the form v — Av + b for A € GL(n,R) and b € R™. The group of all affine
motions is denoted by Aff(n,R). If we view A™ as the affine hyperplane 21 = 1 in R"*!,
then Aff(n,R) is the subgroup of GL(n + 1,R), which maps this affine hyperplane to
itself. Thus

Aff(n,R) = {(i 2) A GL(n,R),be R"} .

The group of affine motions acts on A™ and this action is transitive. Let v € R™ with
v # 0. Then complete {v} to a basis B = {v,va,...,v,} of R". Let A € GL(n,R) be
the matrix whose columns are the elements of B. Then Ae; = v and thus

10 1y (1
0 A)\e;) \v)°
The isotropy subgroup of the first unit vector of R"*! is given by those elements in

Aff(n,R) with b = 0 and is therefore isomorphic to GL(n,R). Thus we obtain a descrip-
tion of A™ as a homogeneous space: A" = Aff(n,R)/GL(n,R).

The natural projection p : Aff(n,R) — A" is a principal bundle with structure group
GL(n,R). This follows from a general fact of the quotient projection p : G — G/H:
Since p is a surjective submersion, there exist smooth local sections and any such local
section gives rise to a principal bundle chart, see |9, Section 1.2.6].

Now consider the Lie algebra of Aff(n,R). It is given by

a(n,R) = {<)0( g) ,Be€gl(n,R), X GR”}

and therefore as vector spaces we have a(n,R) = R" @ gl(n,R). The restriction of the
adjoint action Ad : Aff(n,R) — GL(a(n,R)) to GL(n,R) is given by the direct sum of
the standard action on R™ and the adjoint action on gl(n,R). Indeed, the adjoint action
of Aff(n,R) is given by matrix conjugation and thus

Ad((é D) <;0( g) = (é Ex) ()Oc g) ((1) A(L) - (AOX AB(,)4—1>'

Furthermore, the splitting of a(n,R) is invariant under the action of GL(n,R).

Recall that on any Lie group G with Lie algebra g, we have the Maurer-Cartan form,
which gives a left-trivialisation of the tangent bundle. The Maurer-Cartan form is the
one-form wM® € QNG, g) defined by wMC(g)(&) = TyA,-1(€), for g € G, ¢ € T,G and
Ag : G — G the left multiplication with g. It has the following properties:
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. wMC(Lx) = X, for Lx the left-invariant vector field generated by X € g,

9. ()\g)*whfc — WMC7

3. (p9)*wMC = Ad(g™1) o wMC, for p9 : G — G the multiplication with g from the
right,
4. WwMC(g) - T,G — g is a linear isomorphism for all g € G and

5. the Maurer-Cartan equation
dwM(&,m) + WM (), WM ()] = 0,

for all {,n € X(M).
See |9, Section 1.2.4] for more details and the proof of these properties.

Furthermore, given a Lie group G and a Lie subgroup H C G, there is the notion of a
Cartan geometry of type (G, H). It consists of an H —principal bundle p : P — M and
a g—valued one-form w € Q(P, g), called Cartan connection. The Cartan connection is
required to satisfy the following properties:

(P")'w=Ad(h V) ow for all h € H
w(Cx(u) =X VXeh (2.8)
w(u) : T, P — g is a linear isomorphism for all u € P.

These are the properties of the Maurer-Cartan form, which can be generalized to a
curved setting. The homogeneous model for a Cartan geometry of type (G, H) is the
homogeneous bundle p : G — G/H endowed with the Maurer-Cartan form w™® €
OY(G,g). See [9, Chapter 1] for the general theory on Cartan geometries.

Now for the group of affine motions, we may split the Maurer-Cartan form w™¢ €
Q' (Aff(n,R), a(n, R)) with respect to the decomposition of a(n, R), hence wM¢ = + 4,
for 6 a one-form with values in R” and +y a one-form with values in gl(n, R). Since wM¢ is
equivariant with respect to the adjoint action of GL(n,R) (Property 3) and the splitting

is invariant under this action, we see that # and ~ are equivariant as well.

We will now identify p : Aff(n, R) — A™ with the linear frame bundle 7 : P1A™ — A™.
Therefore we need a smooth fiber bundle isomorphism, which is compatible with the
principal right action, hence a commutative diagram of the form:

Af(n, R) *—= plan

pl#i

A" ) A"

such that ¢p(Aog) = ¢p(A)og for A € Aff(n,R) and g € GL(n,R). Denote by VAff(n, R
the vertical bundle of the principal bundle p : Aff(n,R) — A". Hence V4 Aff(n,R) :=
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ker(T4p). The vertical bundle is trivialized by the fundamental vector fields, hence for
every £ € V4Aff(n,R), there exists a unique X € gl(n,R), such that £ = (x(A4). Now
the fundamental vector fields for the right multiplication are exactly the left-invariant
vector fields, hence Lx = (x.

Claim 1. The vertical subspace V4Aff(n,R) equals the kernel of §(A) for every A €
Aff(n,R).

Proof. Let £ € V4Aff(n,R), then £ = (x(A) for some X € gl(n,R). By property 1 of the
Maurer-Cartan form, we obtain that

WM(A)(€) = MUA)(Cx(4)) = wMC(A)(Lx (4)) = X € gl(n, R).

Therefore 0(A)(£) = 0 and € lies in the kernel of §(A). By property 4, the map 6(A) has to
be surjective and thus ker(#(A)) has dimension n2. Since p is a surjective submersion, we
have that T4 Aff(n, R)/VaAff(n,R) = T),4)A" and therefore V4 Aff(n, R) has dimension

n? as well. Thus we see that these spaces are isomorphic. O

This also shows, that 8(A) induces an injective linear map
Ty Aff(n,R)/VaAfE(n,R) = T, 4)A" — R",

which has to be an isomorphism, since both spaces have the same dimension. Thus we
can now define the fiber bundle map which induces the identification of Aff(n,R) with
PtA™:

G(A) = 0(A) 1 R" — Ty 4)A™.
Obviously this covers the identity map and by property 3 of the Maurer-Cartan form it is

compatible with the principal right action. Thus we obtain an isomorphism of principal
bundles.

On the linear frame bundle there exists a canonical form 6% € Q' (P! M, R"), called the
soldering form. It is defined by 6%(u)(¢) := v~ (T - £), for u € P'M and ¢ € T,P'M
and satisfies (r9)*0° = g=! 0 #% and 6°(n) = 0 for every n a vertical vector field, i.e. a
vector field with values in the vertical bundle. Now via the morphism ¢ of principal
bundles, the soldering form is pulled back to the R”— component of the Maurer-Cartan
form. Indeed, we have

¢ 0°(A)() = 0°(o(4A ))(TAcb'f) (2.9)
S(A) " (Tyaym - Tad - €)

(A)(Tmrocé £)

= 0(A)(Tar - §)

The one-form ~ gives rise to a principal connection form on P'A™. By properties 1 and
2 of the Maurer-Cartan form, it satisfies the defining properties of a principal connection
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form (see Section 2.2). This connection form induces the canonical linear connection on

A"

We have seen, that the data defining a principal connection form on P! A" (and hence
a linear connection on T'A"™) is given by the principal bundle Aff(n,R) — A™ with the
Maurer-Cartan form. Arguing similarly as before, one can show, that for a smooth
manifold M, any GL(n,R)—principal bundle p : P — M together with a one-form
w € QYP,a(n,R)) satisfying the properties 1, 3 and 4 of the Maurer-Cartan form, is
isomorphic to the linear frame bundle 7 : P'M — M and induces a principal connection
form via the splitting of a(n,R). Such a principal bundle is refered to as an affine
structure. Thus an affine structure induces a principal connection form on P'M and
conversely any principal connection form v on P'M induces an affine structure, namely
the GL(n,R)—principal bundle p : P'M — M with w := 0°+~, where #° is the soldering
form.

Now we can understand, why Aff(n,R) — A™ is considered the homogeneous model for
linear connections. The Cartan geometry of type (Aff(n,R), GL(n,R)) on an n— dimen-
sional manifold M is an affine structure and therefore equivalent to a principal connection
form on P'M (and hence to a linear connection on the tangent bundle). The homoge-
neous model for the Cartan geometry is exactly p : Aff(n,R) — Aff(n,R)/GL(n,R).

Affine motions are maps that preserve the geometric structure of A”. We will see in
the next Lemma, that in order to preserve this structure, for a diffeomorphism it suffices
to preserve the flat connection.

Lemma 2.4.1. The affine motions on R™ are exactly those diffeomorphisms of R™, which
preserve the flat connection.

Proof. Consider an affine transformation f(z) = Az + b for A € GL(n,R) and b € R™.
Then we have to show that f*V = V hence f*V ¢ f*n = f*(Ven) = V=g f*n for smooth
functions &, n : R" — R™. Note that (f*¢)(z) = A71¢(f(z)) and Ven = DE o thus

Ve = VaeopA lonof=D(A oo f)oA oo f
= A7'o(DEof)o(no f)=A"N(Ven)o f = f*(Ven)

Conversely given a diffeomorphisms f : R” — R™, there is a unique lift f : Aff(n,R) —
Aff(n,R) satisfying f*6 = 6, for § the R™—component of the Maurer-Cartan form. This
is due to the fact, that any diffeomorphism on an arbitrary manifold M can be uniquely
lifted to the linear frame bundle such that this lift preserves the soldering form. Indeed,
the lift is given by f(u) = Tr(uy f 0t € Ty(r(uy)yP' M, for u € P'M. Via the identification
¢ : Aff(n,R) — P'A", we obtain a unique lift f : Aff(n,R) — Aff(n,R) and since ¢ pulls

back the soldering form to 6 (see (2.9)), f preserves 6.

Since the flat connection V on R™ is induced by the gl(n, R)—component vy of the
Maurer-Cartan form, we see that f preserves V if and only if f preserves . Thus
starting with a diffeomorphism f on R” that preserves V., the unique lift f preserves the
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Maurer-Cartan form, i.e. f*w = w. By [9, Theorem 1.2.4], any two smooth maps f1, f :
Aff(n,R) — Aff(n,R) with ffw = fiw satisfy fo = G o f1 for a unique G € Aff(n,R).
Using this on f and id, we obtain that f is given by left multiplication with an element
G € Afi(n,R). I G = (} &) and A= (4 §), then

F(X) =p(f(A) =p(GA) =GX +b

and thus f is an affine motion. O

We will now show, that for a diffeomorphism on an arbitrary manifold M, preserv-
ing a torsion-free linear connection is equivalent to preserving the geodesics, viewed as
parametrised curves. Thus rephrasing Lemma 2.4.1, we obtain that a diffeomorphism
f : R — R"™ preserves the geometric structure of A™ if and only if it preserves the
straight lines (hence the geodesics of the flat connection).

Lemma 2.4.2. A diffeomorphism f : M — M preserves a torsion-free connection if and
only if it preserves the geodesics, i.e. f*V =V for V torsion-free < ¢ is a geodesic for
V if and only if f o c is a geodesic for V.

Proof. First of all note that focis a geodesic for V if and only if ¢ is a geodesic for f*V.
This is due to the following equation:

f*(v(foc)’(f o C),) — f*VC/C,.

Thus we can rephrase the statement of the Lemma: f*V =V for V torsion-free < V
and f*V have the same geodesics. Furthermore since V is torsion-free, so is f*V. This
follows from the following equation:

Torf*v(é" 77) = f*TOI'v((f_l)*é7 (f_l)*n)

Thus by Lemma 2.3.3, we obtain the result. O

On the homogeneous space A" = Aff(n,R)/GL(n,R), we have found a geometric
structure, namely the family of straight lines, which is invariant under the action of
Aff(n,R) and the elements of Aff(n,RR) are exactly those diffeomorphisms, which preserve
this structure.



Chapter 3
Projective Structures

3.1 Projective Equivalence

The concept of projective equivalence is motivated by weakening Lemma 2.3.3. This
Lemma states that two affine connections are equal if and only if they have the same
torsion and induce the same geodesics. Geodesics are parametrised curves, thus changing
the parametrisation of a geodesic will in general not lead to another geodesic. Now,
instead of considering parametrised geodesics, we look at the family of unparametrised
curves, which are defined by geodesics. This means that we have to study all affine
connections, which induce the same geodesics, regardless of the parametrisation. Any
two such affine connections are called projectively equivalent. Thus, on the basis of
Lemma 2.3.3, two affine connections are projectively equivalent if and only if they have
the same torsion and induce the same geodesics up to reparametrisation. Furthermore,
we get a similar result to Lemma 2.4.2: a diffeomorphism preserves projective equivalence
if and only if it preserves the geodesics, up to reparametrisation.

In this chapter we give the definition of a projective structure on an arbitrary manifold
M as well as basic properties. This can be found in [9, Section 4.1.5-4.1.6].

As stated after Lemma 2.3.2, changing an affine connection V to a torsion-free con-
nection V doesn’t change the geodesics. When working with projective structures we
thus restrict to torsion-free affine connections.

Definition 3.1.1. Two torsion-free affine connections V and V on M are called projec-
tively equivalent if they have the same geodesics up to reparametrisation.

This defines an equivalence relation on the set of affine connections on M and a choice
of an equivalence class is called a projective structure on M. We indicate a projective
structure on M by (M, [V]). The following Lemma gives an easier approach to Definition
3.1.1:

Lemma 3.1.1. A curve ¢ : I — M is a geodesic of V up to reparametrisation if and
only if Vo = ad, for some smooth function a : I — R.

23
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Proof. A curve c is a geodesic of V up to reparametrisation if there exists a reparametri-
sation ¢ such that co ¢ is a geodesic of V. By (2.5), we have the following equation:

Vieogy (€0 9) = ¢"( 0 9) + (¢')*(Ved) 0 6.
Therefore, if co ¢ is a geodesic for V, we obtain:

/ __L” o
(VC/C)O¢— (¢,)2( Qb)

and hence V. is proportional to ¢.

Conversely, suppose that a smooth curve ¢ satisfies V¢’ = ac’ for a smooth function
a: I — R. We have to show that there exists a reparametrisation ¢ such that co ¢ is a
geodesic for V. Using formula (2.5), we are looking for solutions to

(¢")*(a0d)(c 0 ¢) +¢"(c o) =0

for given ¢ and a. This is a second-order ordinary differential equation and thus by the
existence and uniqueness theorem of ODEs, there exists a unique solution. O

Lemma 3.1.2. [9, Corollary 4.1.6] Consider two manifolds M and M with projective
structures (M, [V]) respectively (M,[V]). Let f : M — M be a local diffeomorphism.
Then f*V is projectively equivalent to V if and only if for every geodesic ¢ : I — M of
V the curve f ocis a geodesic up to reparametrisation for V.

A Tlocal diffeomorphism satisfying this property is called a morphism of projective
structures or a projective (local) diffeomorphism.

Proof. We first show that ¢ is a geodesic up to reparametrisation for f *V if and only if
f ocis a geodesic up to reparametrisation for V. This is established via the equation

f*(@(foc)/(f o C),) — f*@clc/‘

Suppose f*V is projectively equivalent to V and let ¢ : I — M be a geodesic for V.
Then c is a geodesic for f*V up to reparametrisation, hence f oc is a geodesic up to
reparametrisation for V. Conversely if ¢ is a geodesic for V, then foc is a geodesic for V
up to reparametrisation and thus c is a geodesic up to reparametrisation for f *V. This
means that f*V is projectively equivalent to V. O

The following theorem gives an algebraic criterion for projective equivalence, which
will be used as the definition throughout the upcoming chapters.

Theorem 3.1.1. [9, Prop. 4.1.6.] Let V and V be two torsion-free affine connections
on M. Then V and V are projectively equivalent if and only if there exists a one-form
T € QY(M) such that

Ven = Ven + T(n)€ + Y (€)n, (3.1)
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for all vector fields £, € X(M).
To abbreviate notation, we write V=V+T7Tto express property (3.1).

Proof. We prove the statement of the Theorem using Lemma 3.1.1. Suppose that V and
V satisfy property (3.1). Let ¢: I — M be a geodesic for V, then along ¢ we get:

Ved =Vud +T()d +T() = 27()

and thus ¢ is a geodesic up to reparametrisation for V. This shows that V and V have
the same geodesics up to reparametrisation.

Conversely, suppose that V and V have the same geodesics up to reparametrisation.
We claim that there exists a smooth function b(¢) : M — R such that

A(&,€) = b()¢, (3.2)

for every vector field £ € X(M). Consider a geodesic ¢ for V satisfying ¢(0) = = and
¢(0) = &(z). Then Vue = ad, since ¢ is a geodesic up to reparametrisation of V and we
obtain A;(&(x),&(z)) = a(0)d(0) = a(0)¢(z), where a depends smoothly on &(x). Define
b(&(x)) := a(0), then A(£,€) = b(&)E for b(&) : M — R. In the following we will show
that b is a 1—form.

Claim 2. The function b(§) : M — R as defined in (3.2), satisfies

b(t€) = tb(§) and b(E + 1) = b(E) + b(n),

fort € Rand &, € X(M). Furthermore, considered as a function b : X(M) — C*(M,R),
it is C>°(M,R)— linear and hence defines a 1—form.

For ¢t € R we have

b(tE)te = A(te, t€) = t2A(€, €) = th(€)te
and thus b(t£) = tb(§). Similarly it follows, that b is C°°(M,R)— linear.

Since V and V have the same torsion, their difference tensor A&,n) = @517 — Ven
is symmetric, compare Lemma 2.2.2. We use symmetry and bilinearity of A as well as
equation (3.2) to show that b is additive:

bE+mE+n) = AE+n.E+m) (33)
= A(£€) +2A(En) + A(n.n)
= b(§)E+2A(E,n) + b(n)n.

Now manipulating equation (3.3), we obtain:

2A(&,m) = (b +n) = b(§) + (b(§ +n) — b(n))n. (3.4)
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Since A is linear, we can use A(,tn) = tA(£,n) to rewrite equation (3.4) and by assuming
that £ and 7 are linearly independent as well as that ¢t # 0, we get:

b(& + tn) — tb(n) = b(§ + n) — b(n).
Thus letting ¢ — 0 shows that b is additive. This proves the claim.

Continuing with the proof of the Theorem, we use additivity of b in equation (3.4) to
obtain:

2A(&,m) = b(n)€ + b(&)n-
Thus there exists a 1—form T, namely T = %b, such that V=V + Y. O

3.2 Model Spaces for Projective Structures

In this section we discuss model spaces for projective structures. These spaces also act
as basic examples for the theory developed in the upcoming chapters, which is discussed
in chapter 6.

As a model space for projective structures we consider n—dimensional real projective
space. We find two projectively equivalent linear connections on real projective space. It
is however easier to approach the oriented model, which is given by the n—dimensional
sphere S™. The sphere can be viewed as a homogeneous space of G = SL(n + 1,R) and
we find a geometric structure, which is invariant under the action of G. Similarly to
the case of affine structures (see section 2.4), we will see in the following chapters, that
elements of G are exactly the diffeomorphisms which preserve this structure. Indeed, S™
is the homogeneous model for the Cartan geometry, which describes oriented projective
structures. This is why S™ is referred to as the homogeneous model for oriented projective
structures.

The theory of this chapter can be found in [9, Section 1.1.3].

Definition 3.2.1. Real projective space RP" is defined as the space of all lines through
0 in R™L.

Consider the following equivalence relation on C' := R*"™\0: x ~ y if and only if there
exists a t € R such that y = tx . Then real projective space can be equivalently defined
by RP" = C/ ~. The equivalence class of € R"*! is denoted by [z] or [z!: ---: 2"H1],
if we work with the components of x.

The action of R* = R\0 on R"*! given by multiplication, restricts to a free action on
C. Furthermore, the natural projection 7 : C' — RP"™ is a surjective submersion and
the orbits of the action by R* are exactly the fibers of 7. Thus by [14, Lemma 18.3],
7 :C — RP" is a principal bundle with structure group R*.

As a model space for projective structures, we consider RP"™ with the equivalence
class of the connection induced from the flat connection on R™. We will show, that the
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geodesics of RP"™ induced by this connection are exactly the projective lines.

Consider the following chart for real projective space: U; = {[z! : - : 2] . z; # 0}
with diffeomorphisms u; : U; — F; = {x € R""! : z; = 1},
o) :L'i

1 n+1
; IR =(—,...,1,... .
wifa o) = (210

Note that F; is diffeomorphic to R™ and that the inverse map of u; is given by
u;1($1,...71,...7$n+1) = [:[}1 e ::En+1]-

Now on F; we have the flat connection induced by the diffeomorphism F; =2 R". Via u;
we can locally pull back this connection to a flat linear connection on RP™. Geodesics
on F; are given by affine lines. FEvery affine line in F; spans a 2—dimensional linear
subspace of R"*1. Conversely, every 2—dimensional linear subspace defines an affine line
by intersecting with F;. By projecting the 2—dimensional subspace defined by an affine
line to real projective space, we obtain a projective line. Thus the flat connection on R"
induces a linear connection on RP", whose geodesics are exactly the projective lines.

Another linear connection on RP™, which has the projective lines as geodesics, is in-
duced by the Levi-Civita connection on S™. Identifying antipodal points on S™ generates
a free group action of Zs on S™ by isometries. The orbit space of this action is then given
by RP™ and thus p : S — RP" is a two-fold covering. By projecting the great circles,
we obtain the geodesics of the induced linear connection on RP™. A great circle is given
by the intersection of a 2—dimensional linear subspace with the sphere. Identifying a
pair of antipodal points of a great circle with the line through these points, this line lies
in a 2—dimensional linear subspace of R®*!. Thus the projection of a great circle gives
the set of all lines in a 2—dimensional subspace and hence a projective line. Thus the
Levi-Civita connection of S™ induces a linear connection on RP™, whose geodesics are
exactly the projective lines.

We have seen, that the flat connection on R™ and the (non-flat) Levi-Civita connection
on S™, induce projectively equivalent connections on RP™. This is an instance of the
Beltrami-theorem, which states that the Levi-Civita connection of a Riemannian metric
is projectively flat, i.e. projectively equivalent to a flat connection, if and only if the
metric has constant sectional curvature.

Consider the space of rays in R”*!. This can be defined by the equivalence relation
x ~ y if and only if there exists a ¢t > 0 such that y = tx on C' = R**'\0. We identify
the space of rays with S™: Every ray intersects S™ in exactly one point, namely the point
of the ray with length equal to 1. Conversely, every element of S™ certainly defines a ray
in R"™1. As a projective structure we can consider (S™, [V]), where V is the Levi-Civita
connection.

The natural projection 7 : C — S™ is a principal bundle with structure group R*:
Arguing as in the case of real projective space, we see that m is a surjective submersion
and the action of R restricts to a free action on C, such that the orbits of this action
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coincide with the fibers of .

The standard action of G = SL(n,R) on R"*! induces a well-defined action on S™: If
x ~ gy, then there exists a ¢ > 0 such that y = tx. Hence Ay = tAx for A € G and thus
Ay ~ Ax.

The induced action on S™ is transitive. Let £ be a ray in R™*! through 0 and choose
v € R with [v] = £. Complete v to a basis B = {v,v1,...,v,} of R*™! and let A be
the matrix whose columns are exactly the vectors of B. If necessary rescale v, to obtain
that det(A) = 1. Now A € G and Ae; = v. Thus the action of G is transitive.

The stabilizer of the ray through the first basis vector is given by

p- {(det((‘)“)—l j) . A€ GL(n,R) and det(A) > 0,6 € Rn*} |

If a matrix C stabilizes the ray through the first basis vector, it has to have the form

_(a ¢
=5 %)
fora € R, ¢ € R™, A € M,(R) and a > 0. Since C € G and det(C) = adet(A), we

have that adet(4) = 1. Thus A € GL(n,R),a = det(4)~! and a > 0 if and only if
det(A) > 0. Therefore we obtain S™ = G/P.

To find the geometric structure which is invariant under the action of G, we consider the
family of great circles on S™. They are given by intersections of S™ with 2—dimensional
linear subspaces of R"*!. Obviously, G maps 2—dimensional subspaces to 2—dimensional
subspaces and thus restricting to S™ maps great circles to great circles. As remarked
above, we will see in section 4.3, that the converse is also true: every diffeomorphism of
S™ which maps great circles to great circles is given by the action of an element of G.

3.3 Formulae

We can now make use of abstract index notation, as introduced in section 2.1 and re-
formulate the transformation law connected to a projective structure on a manifold. A
projective structure is given by an equivalence class of torsion-free affine connections on
M, where two affine connections V and V are equivalent if there exists a 1—form T such
that

Ven = Ven + Y(E)n + T(n)E,
for n,& € X(M), compare Theorem 3.1.1.

Recall from section 2.1, that 8,7 is the (%)—tensor field, which, viewed as an endo-
morphism, is the identity map. Thus in abstract index notation we have

Vind = Vi + Yol + Y67,
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We can compute the transformation for 1—forms w as well by using (Vew)(n) =
§-w(n) —w(Ven), which expresses the connection on 7*M in terms of the connection on
TM.

(Vew)(n) =

(Ven +T(E)n+T(n)§)
= (Vew)(n) = T()w(n) = T(n)w (&)

Thus in abstract index notation the transformation is given by:

Viwj = Viwj — Tiw]' — Tjwz-.

Now we have established the transformations for sections of the tangent respectively
cotangent bundle. Of course this can be iterated to powers of these bundles which is
stated in the next Lemma.

Lemma 3.3.1. By changing the connection in the projective class from V to V= V+T7T,
the induced connections on @*T'M respectively on ®*T*M transform as

k
@G‘gblmbk — va§b1~~bk + kfragbl“-bk 4 Z ’rcfbl“'bi—lcbﬂrl"'bkdabi7
=1

respectively

k

Valpy by = Vanyy b, — K Lanby ., — § Yo, My -b;_abiy1--by, -
i—1

Combining these, we obtain the following transformation for the induced connection on
(QFT*M) @ (2T M):
Voot = Va7 4 (€= k) Lalpyo,

14 k

§ : C1-+Ci—1dCi41-°Cp § Ci § : c1-C
+ chblbk ! 1t é(;a ' = Tbigbl"'bi_labi_‘_l“'bk ! E‘

i=1 j=1

Proof. We prove the first part of this Lemma using induction on k. The second part is
proved analogously. The third part is obtained by combining these formulae.

Note that the induced connection on @*TM, @*T* M and (RFT*M)®(®‘T M) is given
by iterating the definitions given in Remark 2.2.1.

The case kK = 1 is just the definition of projective equivalence. Suppose that the
formula is true for k — 1 and consider the tensor £%1%-1 @ nP on @FTM. Then we get:

@agblmbka ® nbk _ (@agblmbka)nbk + (gbr“bk—l)@anbk.
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Now using the induction hypothesis we obtain:

@a£b1"'bk;—1 ® nbk —
k—1
:(Va§b1-“bk—1 + (k‘ _ I)Tafbl"'bl"_l + Z Tcgbr“bi—lcbiﬂmbk_l5abi)nbk
1=1

+ (gbl..-bkil)(vanbk + Yanbk + TCknck(sabk)

k
:vafbl‘“bk—l ® nbk + k’rafbl"'bk—l ® ,r]bk + Z Tcgbl---bi,lcbiﬂ---bk,l ® nbk(sabi-
=1

O

In the case of k— forms respectively n—forms, due to skew symmetry, there are simpler
formulae available for the second part of Lemma 3.3.1:

Lemma 3.3.2. Let ny,.., € Q¥(M) be a k—form and vp,..,, € Q*(M) an n—form. If
we change the connection within the projective clags from V to V. = V + T, then we
obtain the following formulae:

Vanoy b, = Vanbyby, — (K +1)Tamp b, + (K + )T a0,

and

val/bl---bn = va”bl---bn — (n + 1)TaVb1---bn-

Proof. To prove the first statement, we are going to work with the definition of the
antisymmetric part of a tensor, see section 2.1. This involves permutations and in order
to make notation more convenient, we replace the index a by b;. Thus we have to show

that
k+1

(K + DY (o, My 1] = TorMobppsy — Z Y, Mosy---bi— 1b1big1-brsr -
=2

Now starting with the left hand side and using the definition, we get:

1
(k—‘rl)’f[blnb?..bk“] = Z Sgn(U>Tbo(1)/rlbo-(2)"'bo'(k+1) (34)

) €611
k+1

1
- QZ Z Sgn(U)TbjnbU(Q)"'ba(k+1)

" j=1 0€G 41,
a(1)=j

In the last equation, we split a permutation ¢ € G into two parts, one containing T
and the other containing 1, by fixing the value of o(1) = j € {1,...,k + 1}. The part
containing 7 is left with a bijective map ¢ : {2,...,4,...,k+1} — {1,...,j — 1,5 +
1,...,k 4+ 1}. Denote the set of all bijective maps {2,...,7,....,k+ 1} = {1,...,5 —
1,74+1,...,k+1} by B.
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Recall that given a permutation o, an inversion is a pair (o(i),0(j)), satisfying j < ¢
and o(j) > o(i). The number of inversions in a permutation is denoted by inv(c) and we
have that sgn(o) = (—l)in"(g). The notion of inversion also makes sense for elements of
B and therefore we get sgn(o) = (—1)7~1(=1)""() since ¢(1) = j adds (j —1) inversions
in 0. Thus (3.4) can be rewritten as

k41 . 1 o
Z(*l)%lﬂrbj k! Z(*1)m(0)77b&(2>“'ba<k+1> (3.5)
Jj=1 GeB

If o(1) = 1, then in fact ¢ is a permutation of {2,...,k + 1}. If o(1) # 1, this is
not true. In this case we relabel the elements of {2,...,7,...,k + 1} to obtain the set
{1,...,7 — 1,4+ 1,...,k + 1}, hence all elements < j are lowered by 1. Note that
this relabeling does not change the number of inversions of an element of B. Thus, an
element of B can be viewed as a bijection {1,...,7 — 1,7+ 1,...,k+1} — {1,...,j —
1,74+ 1,...,k+ 1}. Furthermore, such a bijection is a permutation of k elements and
therefore we can continue with (3.5):

k+1

4 1 .
_1yj-1 - _1\inv(7)
Z( 1) Lo, 0 Z( D, 1y br o 1ybr ey ey (3.6)
j=1 TEG
k+1
_ -1
= Z( 1) Tbjnbl"'bj—lbj+1"'bk+1
Jj=1
k+1
= Tb177b2~~bk+1 - Z Tbj7762'~~bj,1b1bj+1“~bk+17
Jj=2

where we used skew-symmetry of 7 in both lines.

Applying this formula to n—forms, we obtain
@aybl'“bn = vabe--bn - (n + 1)TaVb1~~-bn + (n + 1)T[a7/b1~~~bn]~

The last part of this equation is antisymmetrized in n 4+ 1 indices and thus has to vanish
on an n—dimensional manifold. O

We now compute how the curvatures of projectively equivalent connections are re-
lated.

Lemma 3.3.3. If we change the connection in the equivalence class from V to V = V4T,
the curvature transforms as

Proof. By Definition 2.2.2 we have R(f,n)( = %%C — @W@EC — @[5777](. We now



3. Projective Structures

compute the first part of this expression:

VeVnG = Ve(Vyl +Tm)C+ ()
= VeVl + TV + (€ T0))C + T Ven+ (€T
= VeVl + T(VyQ)E + TVl + T() (Ve + T(E)C + T(O)E)
H(E-TM))C+ T (Ven + T(E)n + Y(m)E) + (€ T(C))n.

By exchanging £ and 7 in the above equation, we obtain the second part in the expression
for R. The third part is given by Vgn]C = Vie ¢+ Y& m)¢ + T(¢)[€,n]. Now using
(Vy0)(€) = (n-Y(C)) — Y(V,() as well as that V is torsion-free, we obtain

R(&n)¢ = R(En)C+ L)Y~ T(ET()n — (VaD)OE+ (VeX) (O
+(§-T(n) —n-T) —T([£n])¢

Again using that V is torsion-free, we rewrite Y([£,n]) = T(Ven) — T(V,€) and obtain
((VeT)(n) = (VaT)(€))S
for the last line of the equation. Rewriting this in index notation we get:
R, ng = RyFCh+0500C06% — 10 Cfo
—CtoRV T+ PRV + PV — CRL T

By removing ¢ and combining each antisymmetrized pair, we obtain the result. O

Recall from section 2.2 that there is a decomposition of the curvature R ;¢ containing
the trace-free Weyl tensor C’ i b This decomposition is given by

Ry*, = Cy¥y 4+ 26,"P e + Bijod,

with P;; and ;; as in Definition 2.2.5. Under change of connection the Weyl tensor is
invariant and the transformations of 3;; and P;; are stated in the next Lemma.

Lemma 3.3.4. If we change the connection in the equivalence class from V to V, then
Cijkg is invariant and f3;; and P;; transform as

Bij = ﬁij + QV[ZTJ] and 151']' = Pij — VZT] + TZT]

Proof. As both 8;; and P;; are defined via the Ricci tensor, we first compute the trans-
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formation of R;; by using Lemma 3.3.3.

~ —

Ry = sz‘kj

= Rij + TiTj(Skk — Tij(Sik — Vszékk + VkT](SZk + VkTZ(SJk — Vszdjk
= Rij + nTiTj — TiTj - nViTj + Vz‘Tj + VJ'TZ' — ViTj

= Rij + (n — 1)Tfrj — nViTj + VjTZ'.

Thus
—(n+1)8; = Riy— Ry
= Rij — Rji — (n + 1)V¢Tj —+ (TL + 1)VjTi
= —(n+1)(Biy + ViT; = V;Ty)
and

(n—1)Py = Ry+ By
Rij+ Bij+ (n—1)YT;Y; — (n—1)V;Y;
= (n=1)(Py = ViT; + TiT)),

which gives the result for 3;; and P;;. From Lemma 3.3.3, we see that the change of
the curvature contains only trace components. Therefore, the trace-free part has to be
invariant. To be on the safe side, we compute:
Cijké = Rijke - 25[ik15j}€ — o
= RyF 450065 — 165 — VT8
SR V% U7 TS Ve ST VAR v o T
—5ik(Pjg — Vsz + TjTg) + 5jk(Pig — VT +1;Yy)
—0¢"(Bij + Vi — V1)
= R;* = 6"Pjo+ 6Py — /By

_ k
= Cy'y-






Chapter 4
Tractor Bundles and Calculus

Tractor calculus is an invariant calculus for projective structures, or more generally, for
any parabolic geometry. It is based on natural vector bundles, called tractor bundles,
which admit a canonical linear connection, called tractor connection. These bundles and
connections can be associated to any parabolic geometry, compare [4].

In this chapter, we explicitely construct certain tractor bundles and their connections
for projective structures on manifolds. Furthermore, we show how the Cartan bundle and
Cartan connection can be regained from the tractor bundle and its connection. In chapter
5, we will then make use of tractor calculus to construct projectively invariant differential
operators, i.e. differential operators which are intrinsic to the projective structure.

4.1 Densities

In the following we want to define the bundle £(w) of densities of projective weight w € R.
This can be constructed by taking a certain power of the volume bundle. Details on the
volume bundle can be found in [14, Section 10|, we give a brief introduction here.

On any (not necessarily oriented) manifold M, there exists a line bundle, called volume
bundle, whose sections can be integrated. It is defined as the associated bundle to the
linear frame bundle P* M — M with standard fiber R, where the left action of GL(n,R)
on R is given by

At =|detA|"t.

We denote this bundle by Vol(M) and its sections are called densities. It follows that
this bundle is trivial, but there is no canonical trivialisation, see [14, Lemma 10.2.]. In the
special case of an oriented manifold, Vol(M) can be identified with A™T*M. Similarly,
for p € R we can define the bundle Vol?(M) by changing the action of GL(n,R) on R
to

A -t =|detA| Pt

Note that the dual bundle to Vol?(M) is Vol ™P(M).

35
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Definition 4.1.1. The bundle £(w) is defined as £(w) = Vol_n%l(M). Sections of this
bundle are called densities of projective weight w.

Note that £(0) is the trivial bundle M x R — M. Given an arbitrary bundle V we
write V(w) for V ® £(w). Thus using the notation introduced in chapter 2.1, we write
Ea(w) for T*M @ E(w) and E%w) for TM ® E(w).

Since £(w) is an associated bundle to the linear frame bundle, by choosing an affine
connection on the manifold M, we obtain an induced connection on £(w), see section
2.2. We will denote the induced connection by the same symbol.

Recall from section 2.2, that any affine connection V on M defines a curvature R, jkg,
which can be decomposed in trace and trace-free components:
Rif*y = Cyiy + 20, Py + Bijoc~. (4.1)

Given an associated bundle to a principal frame bundle, its curvature can be calculated
using the last part of [9, Proposition 1.3.4.]. We now calculate the curvature of the
induced connection on &£(w).

Lemma 4.1.1. Let V be an affine connection on M with curvature R, -kg and decompo-
sition (4.1). Then the curvature of the induced connection on &(w) is given by wfBgp-

Proof. The defining property of the curvature s of the induced connection is
ngnO’ — VnV§O‘ — V[gm](f = Ii(f, 77)0,

for o a section of £(w). By [9, Proposition 1.3.4.] this section corresponds to the equiv-
ariant function X (R(£M°T, nh°T)) o f, where f is the equivariant function corresponding to
o and X is the Lie algebra representation of the associated bundle £(w). By Definition
4.1.1, the representation A of GL(n,R) on R is given by

A(A) = (t — | det(A)|7+1¢).

Thus the Lie algebra representation corresponding to A is given by its derivative. Since
Tidet(B) = tr(B), we obtain that

N(X) = (t

(X0,

for X € gl(n,R) and ¢t € R. Thus we have to take the trace in k and ¢ of Rijkg. Using
Definition 2.2.5, we obtain

Thus the curvature k4 on £(w) is given by wfBqp.
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Induced Connections on Densities

In this section we compute the change of the induced connection on &(w) within a
projective class. For later purpose we also calculate the transformation for products
of the form RT*M ® £(w), R'TM ® £(w) and (RFT*M) @ (2'TM) ® £(w).

Theorem 4.1.1. If we change the connection V to an equivalent connection V=V+T
on M, the induced connection on £(w) transforms via

Voo =V,o0+wY,0.

Proof. This proof uses basic facts on linear connections on the linear frame bundle
P'M — M, which we have partly discussed in section 2.2. We sketch the construc-
tions needed here, again referencing [2, Chapter 2.3.] for more detail.

The linear frame bundle p : PM — M is a GL(n,R)—principal bundle. A principal
connection form on P! M is given by v € Q' (P! M, gl(n,R)) satisfying certain properties,
see Remark 2.2. Any two principal connection forms are related via

n
A =7 + Z v, 0",
k=1

where 6% denotes the soldering form. Here \Ifkij may be interpreted as a function W :
X(M)xX(M) — X(M), where the index k represents the first argument and 7 and j the
endomorphism.

Via the principal connection form we can lift vector fields of M horizontally to P'M.
Two horizontal lifts coming from different connection forms are related via

éhor _ é-hor o CW(&,—):

where (x denotes the fundamental vector field generated by X.

The linear connection on any associated bundle to P'M can be obtained by identifying
section of this bundle with GL(n,R)—equivariant functions. We are interested in the
case of £(w), which is an associated bundle to P!M, see Definition 4.1.1. Sections o
of this bundle are in bijective correspondence to smooth maps f : P'M — R, which
are GL(n,R)—equivariant, i.e. which satisfy f(p o A) = |det(A)|_nL+1f(cp) for A €
GL(n,R). If a section o corresponds to f € C*(P'M,R)“F(R) then Vo is the section
corresponding to the GL(n, R)—equivariant function £"" - f : P1M — R. Now we have
the basic information to prove the Theorem.

Let o be a section of £(w), we want to compute @50 — V¢o. In the projective class
we have the transformation

Ven = Ven + T(€)n + T(n)E,
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so any two connections differ by WU(&,n) = Y(&)n + Y (n)§. Thus, as stated above, the
horizontal lifts of any vector field ¢ differ by —(g(¢ ). Let f : P'M — R be the

GL(n,R)—equivariant function corresponding to o. Then @50 — Veo is the section
corresponding to

éhor . f _ é—hor . f;

which is given by —(g ¢,y - f. So first we have to compute the directional derivative of
the fundamental vector field on equivariant functions.

Claim 3. The directional derivative of the fundamental vector field of a GL(n,R)—
equivariant function f is given by

Carf=-A-f,

where A € gl(n,R) and the second dot denots the Lie algebra action.

This is the infitesimal equivariancy. The fundamental vector field is defined by (4(p) =
%‘#090 -exp(tA), for p € PIM. Then

(Ca-f)le) =Tpf - Ca
= %\t:of(s@ -exp(tA))
- %‘t:OeXp(tA)_l flp) = %’t:oexp(—tzﬁl) flp)
=—A-f(p),

where we used the equivariancy of f in the third line. This proves the claim.

We now continue with the proof of the Theorem. In Lemma 4.1.1 we already computed
the Lie algebra action on R; it is given by

X -t=

tr(X)t
n+1r( )t

for X € gl(n,R). So until now we have found that @50 — V¢o is given by the section,
which corresponds to the equivariant function

tr(W(&—))f-
o ta(w(E,-)f
At this point it is easier to compute with abstract indices. Since ¥(&,n) = Y(£)n+7T(n)E,
we find that _ ' '

\Ifkij =07 + 8,715,

Now the index k corresponds to £ and thus tr(¥(&, —)) is the trace over ¢ and j. This
is given by 0,°Yg + 0x*Ye = (n + 1)Yk. In abstract index notation, we have that
Vo — Vio corresponds to the section given by wYyf, which simply is wYo, again
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using [9, Proposition 1.2.7.]. Thus we obtain
Vo = Vio + wYyo.

O

In order to compute transformations on tensor bundles as stated at the beginning of
the section, we use the transformations proved in Lemma 3.3.1.

Lemma 4.1.2. By changing the connection in the projective class from V to V= V4T,
the induced connections on @*TM ® &(w) respectively on @*T* M ® £(w) transform via

k
Vgl = Vg (w4 R) TP 3 g g b

=1

respectively

A~

k
Va77b1~--bk = Vanby-bk + (w - k)Tanbr--bk - Z Tbinbl“'biﬂabwl-“bk'
=1

Combining these, we obtain the following transformation for the induced connection on
(RFT*M) @ (2TM) ® E(w):

@acblmbkqw@z = Vacbl...bkclmcé + (5 —k+ w)Ta(bl...bkcl”'cf

)4 k

2 : c1Ci—1dciy1Co § G § : c1e-C
+ Tdcblbk 1 1—1ACi+1 K(SCL i TbiCbl"'biflabi+1"-bk 1 L.

=1 j=1

Proof. We use the induced connection on @*T* M ®& (w) on tensors of the form %1% ®q,
hence V4 (€917 @0) = €110 @V 0+ (V£ %) ®0. Then by using the transformations
established in Lemma 3.3.1 and Theorem 4.1.1, we obtain the result. An analogous
argument proves the other statements. O

Lemma 4.1.3. Given a nowhere vanishing section of £(w) with w # 0, then there is a
unique connection in the projective class, for which this section is parallel.

Proof. In order to show existence, let o be a nowhere vanishing section of £ (w) and V a
connection on M. Define V=V +7T with T = —%O'_IVO'. Then

Voo = Veo+wY,o (4.2)
= V.0 — (a_lvaa)a
=0
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Now suppose V and V are two equivalent connections, for which o is parallel. Then
Voo = V40 + wY,0 and thus 0 = wY, 0. Since 0 # 0 and w # 0 by assumption, we
obtain T, = 0 and thus V = V. O

Remark 4.1.1. Since £(w) is a trivial bundle, there always exists a nowhere vanishing
section. A nowhere vanishing section is called a scale and the resulting connection is
called the connection determined by that scale. If V is a connection determined by a
scale o and w # 0, then By, has to vanish. Let £,n € X(M) be two vector fields, then by
Lemma 4.1.1 we have

(VeVy = VyVe = Vie o = wB(&,n)o

and since o is parallel, the left hand side vanishes and therefore B,;, = 0. Thus we always
find a connection in the projective class, such that 5, vanishes.
Lemma 4.1.4. The following statements for an affine connection V on M are equivalent:
1. The Ricci curvature Ry is symmetric
2. Py is symmetric
3. Bab =0
4. V induces a flat connection on £(w)

If a connection is determined by a scale, then it satisfies (1-4) and locally, the converse
is also true.

Proof. Certainly R, is symmetric if and only if 5., = 0, by Definition 2.2.5. Also Py is
symmetric if and only if 8., = 0. The curvature on &£(w) is given by w/f,p and thus V on
E(w) is flat if and only if B, = 0. This established the equivalence of (1)-(4).

Given a connection, which is determined by a scale, then we have seen in Remark
4.1.1, that B, = 0. Conversely, if the induced connection on £(w) is flat, then locally it
admits a nowhere vanishing parallel section. O

4.2 The Cotractor Bundle

In this section we want to define the cotractor bundle as the first jet prolongation of the
density bundle £(1). Therefore, we briefly introduce jet bundles, referencing [14, Section
21| for more details.

The aim of jets is to provide a coordinate-free version of Taylor expansions of smooth
functions defined on manifolds and smooth sections of fiber bundles.

Consider two smooth manifolds M and N as well as a point x € M. Then two smooth
maps f,g: M — N have the same k—jet at z, if f(z) = g(z) and their partial derivatives
at x up to order k in some local chart (or equivalently all local charts) around = and
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f(z) coincide. In this case we write j¥f = jkg. Having the same k—jet at o defines an
equivalence relation and the set of all such equivalence classes is denoted by JF(M, N).
We then define J*(M, N) :=| |,c,, J&(M, N). This set is also called the space of k—jets
of smooth maps from M to N.

There are some natural projections on J*(M, N). Consider 75 : J*(M, N) — M given
by j%f + zand 7 : J¥(M, N) — N given by j¥f + f(z). Combining these projections,
we also obtain 7y x Ty : J¥(M,N) — M x N, j&f s (x, f(z)). Charts on M and N give
rise to charts on J¥(M, N), which make J*(M, N) into a smooth manifold, such that the
considered projections are also smooth. Furthermore, 7y x 7y @ J¥(M, N) — M x N is
a fiber bundle, see [14, Theorem 21.5.].

Given a fiber bundle p : Y — M, we write J*(Y — M) or J*¥(Y) to indicate the
subset of J¥(M,Y), given by all jets of local sections of p. A smooth section o € T'(Y)
induces a smooth section of J¥(Y) by j¥o : M — J*¥(Y),z — jko.

Definition 4.2.1. The cotractor bundle 7™ is defined as the bundle of 1—jets of sections
of £(1), hence T* = J&(1).

Theorem 4.2.1. There is a short exact sequence of vector bundles given by
0=>T"M®EL) =T " —=£E(1)—=0 (4.3)

By choosing a connection V on M, we obtain an isomorphism 7* =y (T*M®E(1))DE(1).

Proof. We have the natural projection p : J'&(1) — £(1) given by jlo — o(x). The
fiberwise kernel of this projection may be identified with T M ® &,(1), by choosing a
connection V and mapping jlo in the kernel to Vo (x). We can use a local description of
Vo(z), to see that this map is well-defined and independent of the choice of connection
Von M.

Recall from section 2.2, that we have a local description of V using a vector bundle atlas
(Ua, ¢a). Locally on U, we can write o = o'e; for {e;} a local frame and o' : U, — R
smooth. Then for a vector field £ € X(M), on U, we obtain:

VgO' = VgO'iei = (f . ai)ei + Uivéﬁi.

So we conclude that Vo(x) only depends on o(x) and its derivatives up to first order,
hence only depends on jlo. Also two connections only differ in the part aiV§ei. If jlois
in the kernel of p, then o(z) = 0, hence this part vanishes. Thus this map is independent
of the choice of connection on M.

This gives a linear isomorphism on the fibers and thus a vector bundle isomorphism
ker(p) = T"M ® £(1).

To prove the second statement, choose a connection V on M and define a map [ :
JIE() = TFM ® E,(1) by jlo — Vo(x). This map of course depends on the choice of
connection, but defines a left inverse map to the inclusion of ker,(p) to JIE(1). Thus
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the sequence splits and we obtain an isomorphism J1E(1) 2y (TiM ® E,(1)) ® E,(1) on
the fibers, which again gives rise to an isomorphism on the vector bundles. O

Remark 4.2.1. To summerize the composition structure (4.3), we write
T*=E&.(1) DE(L), where £,(1) denotes T*M ® £(1) as defined in section 4.1.1. This, of
course, is valid without the choice of a connection.

We now fix a projective structure (M, [V]) and via the isomorphism 7* =y £,(1)®E(1)
we identify elements of 7* with pairs (pg, o).

Corollary 4.2.1. If an element of 7* splits as (14, 0) with respect to V on M, then by
changing the connection within the projective class to V.= V + T, the splitting changes
according to

—

(Has0) = (pa + Yq0,0).

Proof. Under change of connection the isomorphism J'E(1) =g (T*M ® £(1)) @ £(1) is

given by jlo (@U(x), o(z)). Since the connections on £(1) transform via Vo = Vo +
T,o0, we obtain that (Vo(z),0(x)) = (Vo(z) + Teo(z),0(z)) and thus the result. O

We can associate a connection on the cotractor bundle to the given projective class.
Note that the definition of the cotractor bundle was independent of the choice of the
projective class, whereas we will see that projective class is encoded in the tractor con-
nection. In order to give a definition, we have to introduce some notation. Choose a
connection V in the projective class and split 7* with respect to V, as in Theorem 4.2.1.
Then this splitting induces a splitting of &, ® T*. Therefore, if T* =y (& ®E(1)) B E(1),
then & @ T* =y (Eap ® E(L)) & (&, ® (1)), via the map 7, ® (up, o) — (Tapip, Ta0). If
an element of &, ® T* splits as (74, pa) With respect to V, then by changing the con-
nection in the projective class of M to V=V+ T, the splitting changes according to
(Tab + Topas pa)- We can illustrate this fact by the following diagram:

T g &(1) B E(1) ~LUE £ @ T* g Eu(1) B E,(1)
(“va)H(Hb+Tbovg) # (Tab,pa)'_}(Tab‘i’YbPa,pa)

T* %@ 51,(1) &) 5(1)

Ea ® T* g@ gab(l) @ Ea(l)

induces

Definition 4.2.2. Choose a connection V on M in the projective class. Split 7" with
respect to this connection and via this splitting let (up, o) be section of 7*. Define the
tractor connection on 7* by

Vz;* (Mba ‘7) = (va,ub +Pupo, Vo — Na)v

where the splitting on the right hand side is the splitting of &, ® 7" induced by the one
of T*.
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Obviously, this definition depends on the choice of connection. However, the following
Theorem shows, that it is independent of the choice of connection in the projective class.

Therefore, the tractor connection is canonical, associated to the projective structure on
M.

Theorem 4.2.2. The definition of the tractor connection is independent of the choice of
connection in the projective class of M, i.e. if we change V to an equivalent connection
V=V + 7T on M, we obtain the following commutative diagram:

T*

T(E(1) @ £(1)) — > T(Eap(1) & Ea(1))

(Nva)H(NIJ+Tb070) # (Ta,bypa)’_)(Tn.b‘Fpraapa)

[(&(1) ® E(1))

——T(Ea() ® & (1)

a

Proof. For the following calculation we will use Corollary 4.2.1, Lemma 3.3.4, Theorem
4.1.1 and the first part of Lemma 4.1.2 with £k = w = 1 as well as the transformation
laws for 1—forms.

Split 7* with respect to V and via this splitting let (up, o) be an element of 7*. Then
apply the connection V7 and the map (7ap, pa) — (Tab + YpPas Pa) to obtain

(Valub + Pgo + Tb(vaa - ,Ua)> Veo — ,Ua>' (4'4)

On the other hand applying (i, 0) — (i + Tp0, o) first and then the connection VI ",

we obtain (@a(,ub + Yyo) + Paupo, Vo — (g + Y40)). Now we calculate:

(@a(ub + Tho) + Puyo, Vao — (g + Yqo))
= (@aub — Yy Va0 + (@aTb)a + Popo, Voo — g — Y.0)
= (Vatp — Yopg + To(Vao + Yoo) + (Vo Xy — 2T, V)0
+Pwo — (Vo Ty)o + Lo Tyo, Vo + Yoo — g — Ya0)
= (Vo +Papo + Yy (Vao — 1a), Vao — ).

This coincides with (4.4) and therefore the diagram commutes. O

Until now we have defined the cotractor bundle and via the choice of an affine con-
nection on M, we obtained a splitting. Furthermore, to a given projective structure, we
can assign a canonical tractor connection. In this chapter we will define further bundles
by natural constructions on the cotractor bundle, such as for example the endomorphism
bundle. A splitting of the cotractor bundle induces a splitting of a bundle coming from
a natural construction, at least abstractly. By fixing a concrete representation of this
construction, we can make the splitting explicit.

As discussed in chapter 2.2, every connection on a vector bundle possesses a curvature.
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When thinking about the curvature of the tractor connection, we realize, that we have
to understand the endomorphism bundle L(7*,7™*) first, since the curvature is a section
of &y ® L(T*, T*).

Consider a splitting 7* =y &,(1) @ £(1) and let (pq,0) be an element of 7* via the
given splitting. Viewing elements of L(T*,T™*) as matrices, by

b d . .
(Has ) <§Ce i}) = (Ac'pi + 0de, Yo + '),

we define the splitting L(7*,7*) = £ @ & @ £ @ £. Therefore, the curvature of the
Ap’a €ab”

dunt Wab ) with antisymmetric indices a and b.

cotractor connection is of the form: (

If we change V to an equivalent connection V.= V 4+ Y on M, we claim that this
splitting changes according to

—

Cu @)( AL T % ) s
be W e — A’ =TT+ Tep =T '
By the definition of the splittings on L(7*,7*), we have that
. — o — (40 éd
(Ac' i + 0¢e, ho + ') = (pa,0) | 2° > . (4.6)
be 1)
The left side of equation (4.6) yields:
(A pti 4+ 0, Yo + pi€t) = (A’ + Y& )i + (¢e + Yetb)o, i + o). (4.7)
On the other hand the right side of equation (4.6) gives:
— [ 4b éd —~ —~ S . .
(Mcw U) Qgc '(ﬁ — (Acl,ui + AcZTiO- + chUa gllul + Ti£ZU + 0'1/}) (48)

—

= (Al + (@'Ti + he)o, Epi + (Ti€ +1b)o)

and therefore comparing (4.7) and (4.8) immediately gives the result for AL €% and 1.
Moreover, for ¢. we obtain:

¢c = _AciTi + ch + Tc¢
b — AL — EX T+ Yot

Another ingredient we need in order to calculate the curvature of the tractor connec-
tion, is the notion of coupled connections. Given the tractor connection and a splitting,
we already remarked before, that this induces a splitting of £, ® T* and that the tractor
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connection VI : T'(T*) — T'(§, ® T*) is well-defined within the projective class. Now
if we want to apply the connection for a second time, we certainly need to couple the
tractor connection with a connection on &,. This is approached as follows: Choose a
connection V in the projective class, split the cotractor bundle and &, ® T* with this
connection. Choose the tractor connection on 7* and the connection induced by V on
Ea, see Remark 2.2.1. Now again by Remark 2.2.1, we have an induced connection on
£, ®T*. This connection is a map VE®T™ . T(£, @ T*) = T'(£, ® £, ® T*). Eventhough
the connection Vf“®7—* depends on the choice of connection in the projective class of M,
the following expression is independent of the choice of connection:

* * A ¢ !
(V§a®T vZ’ i v§b®7— VZ’ )(Ndao') — (/~L070) < ab d 5 b >
Gabd  Vab

and this is exactly the definition of the curvature. Hence we can choose any connection
in the projective class of M to compute the curvature on T*.

Lemma 4.2.1. Given an affine connection V on M with curvature R ¢, and decompo-
sition of the curvature (4.1). Then the curvature of the tractor connection on 7* is given

by
_Cabed 0
2V Pya 0 ’

Proof. For this calculation we need the curvature of the induced connection on T*"M ®
E(1). Recall from Lemma 2.2.4, that the curvature of the induced connection on 7% M
is given by —R_,? | i.e. for . € T'(T*M) we have

ab c?
(VaVe — ViVa)ie = =Ry a-

Furthermore, by Lemma 4.1.1, the curvature of the induced connection on £(1) is given
by Bap and thus for o € T'(E£(1)):

(VaVy — Vi Va)o = Bapo.

Now consider the induced connection on 7% M ® £(1), which we again denote by V. Then
we have

VoVuco = Va(ucvbd + (Vb,uc)a)
= (Vape)(Vpo) + 11V Vo + (Vo Viiie)o + (Vppe) (Vao)

and therefore

(Vavb - vbva)ﬂca = (Vavb,uc - vbvaﬂc)a + ﬂc(vavba - vaaa) (49)
= (_Rabdc + 6ab5cd)ﬂd0-

This proves, that the curvature of the induced connection on T*M ® £(1) is given by
(_Rabdc + Bab(scd)-
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As remarked before, in order to prove the Lemma, we have to consider coupled con-
nections of the form V§“®T*Vz*. To abbreviate notation, we denote both connections
by V. Given a pair (pq,0), induced by a splitting, with pg a section of T*M ® £(1), we
calculate:

VaVi(ta,0) = Va(Vopa + Peao, Voo — up)
= (Va(Viptd +Poac) + Paa(Vyo — ), Va(Veo — i) — Vippta — Ppao)
= (VaVtia + (VaPpa)o + PpaVao +PogVyo — Poagp,
VaVio = Vs — Vypia — Ppa0)

Therefore, when calculating the curvature, terms, which are symmetric in a and b, can
be ignored. Thus we obtain:

(VaVe = VoVa)(pa,0) = ((VaVe = VsVa)pa + 2V Pyo = Paapy + Prapia,
(Vavb — vaa)a + 2P[ab]‘7)
= ((Babdd® — Rapq + 20[a“Prja) e + 2(V(Pyja)o,
Bapo + QP[ab]U) (4.10)
= (=Cu atte +2(V(sPya)o;0),

where we used the decomposition (4.1) and B0 = —2P4)0 (see Remark after Definition
2.2.5) in (4.10). If the curvature has the form (‘:‘ba’;;d éab:), then we see that A ,°;, =
_Cabed7 Pabd = 2(v[an]d) and gabf = ap = 0. ]

Note, that by naturality of the construction, the curvature has to transform in the
right way, if we change the connection from V to V =V + T in the projective class of
M. Nevertheless, checking this provides a good possibility to verify our calculation.

If we change the connection from V to V = V 4 T, then by (4.5), the curvature on
the cotractor bundle has to transform as

_Cabed 0
QV[an]d—l-CabedTe 0/

On the other hand, under change of connection, the curvature is given by

~Cufa O

2V Py 0
and we have to show, that these two matrices coincide. First of all, note that by Lemma
3.3.4, the Weyl tensor is invariant under change of connection. Thus we only have to
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compute the second components of the matrix.

VaPra = Va(Ppa— VTa+ TpYa) (4.11)
(VaPod — 2T Ppg — TpPog — TaPra)

—(VaVp Y+ 2Y Vi Ya+ LoV Yg + gV Ty)

+(V T Yg — 4T, Ty Yy),

where we used Lemma 3.3.1 in the case k = 2. Therefore, by removing all elements,
which are symmetric in a and b, we obtain:

2@[(1151)](1 = QV[an]d — YoPpa + YpPog + 2TdP[ab} —(VoVy = VpVo) Ty (4.12)
= 2V [Py + (Rap“q — Bavda” — 614 Pyja) e
g QV[an]d "‘ Cabchc,

where we again used Lemma 2.2.4, the decomposition (4.1) of the curvature and g =

Corollary 4.2.2. The tractor connection is flat if and only if C ¢, = 0 for n > 3 or
V[an]d = O fOI‘ n = 2

Proof. If n = 2, then by symmetry considerations, the Weyl tensor vanishes. Therefore,
this case is obvious. If n > 3, then the vanishing of the curvature implies C ¢, = 0.
Conversely, if the Weyl tensor vanishes, then by Lemma 2.2.6, also V[,Pyq = 0. O

Remark 4.2.2. Any diffeomorphism f: M — N, with M and N two smooth manifolds
lifts to a diffeomorphism on the cotractor bundle. Indeed, we have seen in section 2.4, that
any diffeomorphism lifts to the linear frame bundle and thus also lifts to the associated
bundle £(1). Furthermore, any diffeomorphism on £(1) lifts to a diffeomorphism on
J'£(1) and hence to the cotractor bundle. If in addition, the diffeomorphism f : M — N
is a morphism of projective structures, i.e. a diffeomorphism f : (M,[V]) — (N,[V]),
satisfying f*@ is projectively equivalent to V, then it is compatible with the tractor
connection. Therefore, the construction of tractor bundles is functorial.

4.3 The Tractor Bundle

We now continue with constructing natural bundles from the cotractor bundle. In this
section, we consider the dual bundle of the cotractor bundle, called the tractor bundle.
It carries the dual connection to the tractor connection, which we will denote by the
same name. Also, we calculate its curvature. In the second part of this section, we will
see how the tractor bundle and its connection give rise to a Cartan geometry of type
(SL(n,R), P), compare section 3.2.

Definition 4.3.1. The tractor bundle 7T is defined as the dual bundle of the cotractor
bundle.
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Recall from Theorem 4.2.1, that we have a short exact sequence of vector bundles
0—=&&(1)—>T"—=£&1)—0,
which induces a short exact sequence for the dual bundle:
0—=&(-1) =T — &Y -1) =0, (4.13)

with notation as is section 4.1. To summerize this composition structure, we write
T =E&(—1) BE*(—1). Fixing a projective structure (M, [V]) splits the cotractor bundle
T*=Eu(1) @ E(1) and we again denote elements by (u., o) via this splitting. By

<(MCa 0>’ (l;—b )> = :ual/a + 70
we define the splitting 7 = £(—1) & £%(—1).

Lemma 4.3.1. If we change the connection V to an equivalent connection V=V+7Y
in the projective class of M, then the splitting changes according to

()=(r)

Proof. By the definition of the splittings on 7, we have that ((ue,0), (%)) =

—

<(El,\a), (¥")). Working this out we obtain
b _ b b
wpt” + 1o =’ + (T’ + 7)o,

and thus the result. O
The tractor connection on 7 is canonically the dual connection to the tractor con-
nection on 7*. The following theorem computes this connection in terms of splittings.

Note, that as in the case of the cotractor bundle, a splitting of T induces a splitting of
Ea®T.

Theorem 4.3.1. The connection V7 on the tractor bundle dual to V7 is given by
v7 vb _ Vvt + 76,
e \r Vor — Pt )’
where the splitting on the right side is the induced splitting on &, ® T .

Proof. Given the connection on 7* the connection on its dual bundle satisfies the fol-
lowing relation:

(16, 0), Va (7)) + (Valp, o), (7)) = Vallpe, 0), (),
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where we denote all connections by the same symbol. Therefore, we obtain:

((up,0), Va(”;)> = WVapy + (Vo) pp + 7V0 + (Vo7)o
~ (P (Vaip) + Pt + 7V,0 — Tg)
= (Vaub + Téab)ub + (Vo1 — Pabub)a
= {(1,0), (Y700 )

O

It is again clear by construction, that the tractor connection transforms correctly
under change of connection in the projective class of M. However, it can be checked
analogously to Theorem 4.2.2, using Lemma 4.3.1, Theorem 4.1.1 with w = 1, the second
part of Lemma 4.1.2 with kK = w = 1 and Theorem 4.3.1.

Similarly to the case of the cotractor bundle, we calculate the curvature of the tractor
connection on 7. Note, that as in the case of the cotractor bundle, we have to consider
coupled connections and we denote all types of connections by the same symbol. Given
a splitting, the curvature satisfies

d d ¢
(V%= V9 () = (il ) ().

Lemma 4.3.2. Let V be an affine connection on M with curvature R ,¢; and decompo-
sition of curvature (4.1). The curvature of the tractor connection on the tractor bundle

is given by
Cabcd 0
<—2V[an}d 0) '

Proof. Consider splittings of 7 and 7* with elements (uq,0) and (% ). Then the cur-
Aabde gabd )
Dabf Yab

vature on T is of the form ( and satisfies:

d _ c
(s @), (e’ S0 () + (rans 0) (5w, Bty 0)5 (5)) = 0.
Therefore, we obain:

A d Vet o d‘l' c u
<(th U)v ( ¢aabb;yf+i;;r )> = *<(*Cab dte + 2v[an]dO'70)’ ( 7:(])>

and thus

Ay (Vo 1a) + € (Tha) + babr (V1 0) + Yap(T0) = Cop . (v pa) — 2V, Py (7 0),

which gives the result. O

Since the curvature on T only differs by sign from the curvature on 7% it also trans-
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forms correctly under the change of connection in the projective class of M.

Relation to Cartan Geometries

For oriented manifolds M, the tractor bundle gives rise to a Cartan geometry of type
(G, P), with G = SL(n,R) and P the stabilizer of the ray through the first basis vector
in R**!, compare chapter 3.2.

Recall that we have the short exact sequence
0—=>&(-1) =T — &% -1) —0. (4.14)

Thus 7 contains a distinguished line bundle, which is £(—1). Furthermore, the orien-
tation on M induces an orientation on A™T*M and hence on all density bundles. In
particular, the distinguished line bundle £(—1) is oriented. Furthermore, there exists
a distinguished volume form on 7. The following calculation shows, that the highest
exterior power of 7 is trivial:

AT 2 (1) @ A"E(—1) = (A"EY) @ E(—n — 1) L5

= (A"EY) @ (A"&) =R (4.15)
The first isomorphism is due to the fact that highest exterior power of a decomposi-
tion given by an exact sequence is isomorphic to the tensor product of the highest ex-
terior power of the two components. Furthermore, in section 4.1 we mentioned that
the volume bundle is isomorphic to A™E, in the case of oriented manifolds. Hence
E(—n — 1) 2 A"E,, which explains the third isomorphism. This construction fits to-
gether with the induced connection, hence A"*17T is a trivial bundle with an induced
flat connection. Thus there exists a parallel section, which is unique up to multiplication
with a constant. We choose one of these parallel sections and fix the volume form on T,
which is induced by the chosen section.

On R"*! we always work with the standard orientation and volume form. An orien-
tation on an 1—dimensional linear subspace of R"*! is determined by the choice of a
positive and negative oriented ray. We define an orientation on the 1—dimensional linear
subspace, which is generated by the first vector e; of the standard basis, by fixing the
ray through e; as the positive ray.

Consider the adapted frame bundle G for T, i.e. the fiber G, over z € M is given by
the set of all linear isomorphisms ¢ : R®*! — 7., which preserve the volume form and
the line through e; with its orientation. This defines a principal bundle G with structure
group P C SL(n + 1,R). Since the volume forms are preserved, we obtain a subgroup
of SL(n + 1,R) and stabilizing an oriented line is the same as stabilizing a ray. The
principal right action is given by composition from the right.
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Now consider the following map:
é:GxR"™ 5T

(¢, v) = P(v).

Note that for A € P we have ¢() o A, A71v) = (3 o A)(A™1v) = ¢(2p,v) and thus ¢
factors to a well-defined map on the associated bundle G x p R**! — 7. This map covers

the identity on M and is a bijection on each fiber and thus an isomorphism of vector
bundles.

Following [4], we will now prove that the tractor connection induces a Cartan con-
nection on G. Since T = G xp R™"!, we can identify sections of 7 with P—equivariant
functions G — R"*! see [9, Prop. 1.2.7.]. If s € I'(T), then the corresponding equivari-
ant function is given by f : G — R" 1 f(u) = u=!(s(p(w))), for u € G. Furthermore,
the equivariancy condition reads as f(u-g) =g~ ! f(u), foru € G and g € G.

Starting with a point u € G, satisfying p(u) = z, and a tangent vector £ € T;,G, we have
that V;rup.fs(af) € Tz Thus we can consider th(.% element u‘l(V%up.fs(:c))—f-f(u) € R
Given a smooth function g : M — R, we obtain

Vpeos(x) = s(@)(Tup - €) - 9(x) + g() VT, pe5(2).

Furthermore, the equivariant function corresponding to gs is given by (p*g)f and thus
§-((Pg)f(u) = & (prg)(u)f(u) + (p*g)(u)¢ - f(u). This shows, that the element
u_l(Vapfs(x)) — & - f(u) only depends on s(x) and therefore & gives a linear map
w(€) : R — R satisfying the following equation:

uH (Ve pes(@) = & fu) +w(€)(f(w). (4.16)

It can be shown that w(&) is actually an element of sl(n + 1,R), by using the fact that
the volume form on T is preserved by the tractor connection. In addition, we notice
that w(§) is uniquely determined by £ and thus gives a well-defined map w : T,G — g.
Furthermore, from the equation it can be seen, that w considered as a map w : TG — g
is smooth. In order to show that w is a Cartan connection on G, we have to prove that
properties (2.8) are satisfied.

We start by showing that w reproduces fundamental vector fields, hence we have to
show that w({4) = A for all A € g. Recall that the fundamental vector field is defined by
Calu) = %\t:()u -exp(tA) for u € G and A € g. Furthermore, fundamental vector fields
are vertical, hence satisfy Tp- (4 = 0. In Claim 3 we have seen, that (4 - f = —A - f for
equivariant functions f. Therefore

wCa)(f(w) = w NV, s(x) = Ca- flu)
= —Ca- f(u)
= A f(u)
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and since the action of g is effective, we obtain w({4) = A. Note, that this also shows
that w is injective on each vertical subspace.

Secondly, we have to show that w is equivariant with respect to the principal right
action r on G, i.e. (r9)*w = Ad(g~!) ow for all g € G. Since the principal right action
preserves the fibers, hence p o r9 = p, we have that TpoTr9 = Tp. For u € G and
£ € T,G we obtain:

((r")* )@ (f(w) = wlu-g)(Tur?-E)(f(u-9g)) (4.17)
= (u'g)*l(V;pTra.gS(x)) (Tur? - &) - f)(u-9)
= g (Vipes(@) — (Tu(for?) - €)
gt uT (VEpes(a) = & (ford)(u).

By the equivariancy of f and linearity of the action of G, we have that - (f orY) =
E- (g7t f)=g71 (¢ f) and therefore we can continue with equation (4.17):

wu-g)(Tur® - &) (f(u-g)) = g " (! (Vipes(a) = (€ f)u))
= g (W (©(f(w)
= Ad(g™H)(w(@)(@) g™ f(w)
= Ad(g™ ) (@(u)(©))(f(u-g)).

Since the action is effective, we obtain w(u-g)(Tyr9-€) = Ad(g~!)(w(u)(€)) and therefore
(r9)*w = Ad(g7!) o w.

Finally, we have to show that w(u) : T,G — g is a linear isomorphism. Since G and g
have the same dimension, it suffices to show that w(u) is injective. Consider a tangent
vector £ € T,G, € # 0, such that T,p-& # 0. Furthermore, consider the subbundle S C T,
consisting of all pairs with vanishing first slot, in a given splitting and a section s € I'(S).
Then we have s(z) € S, but Vap{s(x) ¢ S;. Given a splitting of T, let s have the

form () in this splitting. Then by Theorem 4.3.1, we obtain

Viwe(2) = (Gil).

which is not an element of §. On the other hand, if s corresponds to the equivariant
function f: G — R"L f(u) = u=!(s(x)), then certainly u(f(u)) € S;. Since u : R**1 —
7T is an isomorphism, we also have u(¢- f(u)) € S;. Thus by equation (4.16), w(u)(§) # 0,
because otherwise, V%Lp,gs(m) would be an element of S;. We already mentioned, that
w(u) is injective on each vertical subspace, which covers the case of Typ- £ = 0.

In fact the converse is also true. By construction, the standard tractor bundle is the
associated bundle to G with respect to the standard action and equation (4.16) gives rise
to a tractor connection, when starting with a Cartan connection.

Any morphism f : (M, [V]) = (N,[V]) of projective structures, lifts to an automor-
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phism of the associated Cartan geometries. Denoting the Cartan geometry associated
to M by (Gar,wpr) and the one associated to N by (Gn,wn), then there exists a prin-
cipal bundle morphism f : G — Gy, satisfying f*wN = wys. We already mentioned
in Remark 4.2.2, that any morphism of projective structures lifts to a diffeomorphism
on the cotractor bundle, which is compatible with the cotractor connection. Since the
tractor bundle is obtain from the cotractor bundle by dualizing, the same is true for
the tractor bundle. Any diffeomorphism of the tractor bundles certainly restricts to a
principal bundle morphism Gj; — Gn and the compatibility with the tractor connections
gives f*wxn = wys by equation (4.16).

This also shows, that the transformations of the homogeneous model are exactly the
automorphisms of the projective structures. Recall from section 3.2, that the action
of G on S™ is an automorphism of projective structures. Now conversely, consider an
automorphism of projective structures f : (5™, [V]) — (8", [V]) with V the Levi-Civita
connection. The Cartan geometry of S™ is given by G — G /P = S™ with the Maurer-
Cartan form. Thus by the above paragraph the automorphism f lifts to an automorphism
of the Cartan geometry (G — G/P,w™) which, by [9, Proposition 1.5.2], is given by
the left multiplication with an element of G.

4.4 Symmetric Powers of Tractor Bundles

In this section we discuss symmetric powers of the tractor bundle and the cotractor
bundle, which are natural constructions on these bundles. Again, the symmetric powers
carry natural connections and we calculate their curvatures.

Symmetric Power of the Cotractor Bundle

We start by inducing a splitting on the symmetric tensor power of the cotractor bundle
from a splitting of the cotractor bundle.

The short exact sequence of Theorem 4.2.1
0—-&&01)—=T"—=&1)—0,

which we summerize by 7% = &,(1) DE(1), induces a composition of the symmetric
power:

SPT™ = Ea)(2) DEL(2) DE(2).

This is due to the following: £y (2) = 52E,(1) — S*T* and £4(2) = & ® £(1) includes
into the quotient S*7*/&4)(2). Furthermore, the quotient of the last map is given by
S28(1) = £(2).

View elements of S>T* as bilinear maps on 7 and choose a connection in the projective
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class of M giving rise to splitting of 7" with elements ('/Td). Then by

(’UJQb Na U) ((lf)’(f{;)) ::Mabyaﬂb+77a’/a7-+77aﬁa7'+07'7~'7

we define the splitting of S2T*. Note that j,p is symmetric.

Lemma 4.4.1. If we change the connection V to an equivalent connection V =V + T
in the projective class of M, then the splitting of S?>7* changes according to

—

(e m o) = (e + 2 e + Yo Yo my+Tyo o).

Proof. This calculation uses Lemma 4.3.1. Consider elements ( ) and (5% ) in 7. Then
we have:

(wee m o) () (%)) = (e m o) (7). (%))
= P+ f]bub(f' — Y0 + f]bﬁb(r e
+6 (1 — L) (T — Leb)
= (e — 200 Te) + 6T Xe) (V)
+(Mp — 6 L) (VOF) + (i — 6 o) (707) + 677

N

Comparing both sides of the equation yields:

6=0, M=m+To and fipc= pipc + 2T N + TpYco. O

The following theorem computes the connection on S?7* induced by the tractor con-
nection in terms of splittings. Note, that again a splitting of S?7* induces a splitting of
Ea @ ST,

Theorem 4.4.1. The induced connection on S?7* is given by
2%
VIT (e m o) = (Vappe + 2P, 1) Vamy +Payo — pta Vao —214)

where the splitting on the right hand side is the induced splitting on &, ® S27*.

Proof. Given the tractor connection on 7 and a bilinear form &, the induced connection
is given by

(Va®)(X,Y) = Vo(®(X,Y)) — (Vo X,Y) — &(X,V,Y), (4.18)

where we denote all connections by the same symbol. Working out each part on the right
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side seperately, we obtain

Va (,ubc M 0) (( VTd), (5; )) = V, (,ubcubﬁc + T + naﬂbr +o77)
= Vaubc(y V%) + ppeVa WO+ Vanb(yb%) + Ny Va7
—i—VaT]b(l/bT) + M Vo'T + Voo (77) + oV, 77

For the second part we use the tractor connection from Theorem 4.3.1:

(e m o) (Va(4), (%) = (e m o) (So2547%0), (%))
= ,ubc(Vayb)Dc + etV + nb(VaVb)i’ + NeTT
—i—anbVaT — nbﬁbPacl/C + 0TV o1 — 0TPgot©

By exchanging ('/Td) and ) in the above expression, we get the third part of the right
side of equation (4.18 Comblnlng all three parts, we obtain:

).
(Va (e m o)((4), (%)) = (Vapse + 2Po@ne Wi
+(Vanp + Papo — ptap)v
+(va77b + Pgyo — Mab)y T+ (vaO' - 277a)T7~—>

b~

which gives the result. O

Again by construction, the tractor connection on S27* transforms correctly under
change of connection in the projective class of M. Nevertheless, it can be checked directly
by using Theorem 4.1.1 and Lemma 4.1.2 in the cases k =2,w =2 and k =1,w = 2.

We now want to calculate the curvature of the induced connection on S?7*. Similarly
to the cases of the cotractor and tractor bundle, we have to consider L(S?T*,S?T*),
as the curvature is a section of & ® L(S?T*,S?T*). Again, we view elements of
L(S?>T*,S8?T*) as matrices and for a splitting of S?7*, we define the induced splitting
by

Aef be Be be Cbc

(e m o) | wef &0 ¢ (4.19)
(bef Pe ™

= (At ppe + Vs + epo B ppe + Emy + pec Cpupe + oy + 7o)

If we change the connection V to an equivalent connection V=V+TonM , then this
splitting changes to

1&]‘\6 geb Cb ’
¢ef //)\e T
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with first column given by

—

Aef" = Acf™ + 20 ( By + T T C",
Vsl = Pes® — 240, + 20 5P + T X pC0 — 4T ( By PIT, — 27 XY 009,
bef = bef — Ve Yo+ Acf LY+ 2T oppy + Y X pm — 27 (£ 0T
— YLXpYC0 + 20 ( By Yy + YL f Y0,

second column by

—

Bebc — Bebc + CbcT&

£l =¢b— 27 B 4 1.0 — 20097, 7,
P = pe + Tem — V&l — YWY + BePTy Yo + T XX, CP

and the third column by

6«; — Crbc7
¢h = ¢" - 2700,
T=7m—C""Ty+ COTY...

This can be shown by working out the following equation:

Aefbc/BEe\bc Cbc
(Mbc b U) wefb é‘eb Cb
¢ef Pe ™

= (Acf®upe + Yef®np + bepo Bepipe + £y + pea C¥ipe + Cmp + 70).

Since the calculation is analogous to the case of the cotractor bundle (see (4.6)), it is
ommited here.

As in the cases of the cotractor and tractor bundle, in order to write down the defining
equation for the curvature, we have to consider coupled connections. We will again denote
all connections by the same symbol. Therefore, the curvature on S?7* satisfies:

Aabede Babe ed Cade
(vavb - vbva) (Uef e U) = (ch Te U) wabefc Eabe” Cab” |
¢abef Pabe Tab

with antisymmetric indices a and b.

Lemma 4.4.2. Let V be an affine connection on M with curvature R ,°; and decompo-
sition of the curvature (4.1). The curvature of the induced connection on S?7* is then
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given by
_Cabce 6fd - C’abdf 0e° 0 0
2(v[an]e)5fc + Q(V[an}f)(S@c _Cabce
0 QV[an]e 0

Proof. The induced curvature R of a bilinear form ® in S?7* on elements X,Y in T
satisfies: R )
(R-3)(X,Y)=—®(R-X,Y) - ®(X,R-Y), (4.20)

where R denotes the curvature on T, see Lemma 4.3.2. Now consider a splitting and let
o = (,ubc i a), X = (Ve),Y = (‘7;) and the curvature on S27* have the form

T

Aabede Babe ed Dade
R= ¢abefc gabec Cabc
¢abef Pabe Tab

Now working out the right side of equation (4.20), the first part yields:

(e o) (R (5)(7)) = (me m o) (s (7))

= )U/Cdcabcf Vf];d + nCCabcf l/f’?:
=2V [ Py sl — 2V Pyl o7

e

By exchanging (VT ) with (’7; ), we obtain the result for the second part of the right side
of equation (4.20). Combining these two parts, we get:
PR -X,Y)+P(X,R-Y) (4.21)
= (Cabce 5fd,ucd + Cabdf e Hed — 2(V[apb]e)5fc770 - Q(V[apb}f)(secnc)l/eﬁf

a Qa

+(TlcC bce - Q(V[apb]e)g)ye% + (7700 bce - Q(V[apb]e)O')ﬁeT.

On the other hand, the left side of equation (4.20) yields:

Aabede BabeCd Dade
R-®= (,ucd Ne U) wabefc Eabe” Cab”
¢abef Pabe Tab

(Aabede;ucd + ¢abefcnc + Qbabefa- BabeCd.ucd =+ gabecnc + PabeT Dade/«Lcd + Cabcnc + 7Tab0-) .
Applying this to (%) with (% ), we obtain:

(R ®)(X,Y) =(Aabes“ticd + Yabesne + babes o)V’
+ (BabeCdﬂcd + gabecnc + pabeU)Ve% + (BabeCndd + fabecnc + pabeo')ﬁeT
+ (Dadech + Cabcnc + 7Tab0-)7-7-
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Now comparing this with equation (4.21) immediately yields that all coefficients of 77
have to vanish and hence Dg? = (up° = map = 0. Continuing with the coefficients

of l/e’7~'7 we obtain BabeCd = ngabec = Cabce and Pabe = _QV[an]e' Finauy? Combining
the coefficients of v¢07 gives Aabede = abce5fd + Cabdfdec,wabefc = —2(VoPye)ds© —
Q(V[apb]f)(gec and @gper = 0. ]

It is again clear by construction, that the curvature transforms correctly under the
change of connection from V to an equivalent connection V =V+T7in the projective
class of M. It can however be checked analogously to the case of the cotractor bundle,
by using equation (4.12) and the fact that the Weyl tensor is invariant.

Symmetric Power of the Tractor Bundle

The symmetric tensor power of the tractor bundle is approached analogously to the
case of the cotractor bundle, compare the last section. Thus we start by inducing a
composition of S?7 from the composition of the tractor bundle.

Using the short exact sequence
0—-&(-1)—=T —=&%-1)—0,
with composition 7 = £(—1) DE*(—1), we obtain a composition of S2T by
S2T = £(—2) BEY(—2) BEW) (—2).

As in the case of the cotractor bundle, we have inclusions S2€(—1) & £(—2) — S%T and
E(—-1) ® E%(—1) = £4(—2) — S?*T/E(—2), where the quotient of the last map is given
by S2(£9(~1)) = £@)(-2).

View elements of S?7 as symmetric bilinear forms on 7* and choose a splitting of 7*
with elements (f4,0). Then by

Tab

( p: )((Nm 0), (fla,)) 1= Tabﬂaﬂb + 0" 11a0 + pfla0 + v0G, (4.22)

we define the splitting of S>7". Note that 7% is symmetric.

Lemma 4.4.3. If we change the connection V to an equivalent connection V=V+7Y
in the projective class of M, then the splitting of S*7 changes according to

/TJ Tab
pa —_ pa _ T[ﬂ'ab
v v —2Yap% + Yo Xpre®

Proof. We will use Corollary 4.2.1 in the following calculation, which gives the transfor-
mation for elements of 7* under the change of connection in the projective class.
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Consider a splitting of 7* with elements (p4,0) and (fiq, ). Then the induced split-
tings on ST satisfy:

ab ~ ~ f-ab — T =
(%0 ) (1, 0), (0, 5)) = (0 ) (1, 0), (i, 5))-
Now calculating the right side of the equation gives:

~ab

(7 ) ((tas ), (71a:6)) = 7 (pta + Ta0) iy + Y46) + " (tta + Ta0)&
v
+0°(fiy + Y300 + DoG
= Fpafis + (FPCy + ) pab + (70T a + 5 fino
+ (7Y Yy + 207 o + D) 06
Comparing this with (4.22), we immediately obtain the result for 7® and p®. Further-
more, we get:
D=v—1PT, Ty — 2(p% — 79070 Yy
= v — 20"y + 7T, Y.

O]

Again we compute the induced connection on S%7 in terms of splittings. Recall that
given a splitting on T, by (4.22) we defined the splitting of S?7. Furthermore, this
induces a splitting of £, ® S%T.

Theorem 4.4.2. The induced connection on S?7 is given by

be cs b bs ¢
2 Fbe Va1?4+p%0a°+p°da
vy T( b ) = (Vapb%»l/&abfTbCPac ),

v Vav—2pPap

where the splitting on the right side is the induced splitting on &, ® S>T.

Proof. Similar to Theorem 4.4.1, given the tractor connection on 7* and a bilinear form
on T*, the induced connection is given by

(Vo®)(X,Y) = Vo(®(X,Y)) — B(VX,Y) — (X, V,Y) (4.23)

and we again denote all connections by the same symbol. Working out the right side of
the equation by using Definition 4.2.2, we obtain:

be

Va(‘;b ) ((/Ldv o), (fid, 5)) - Va(Tab:ua/]b + 01 + p* fla0 + v0G)

14
= (vaTbc)Mbﬂc + 7'bcva/ﬁbﬂc + (Vapb)lub(} + pbva,ubff
+(Vap)iaco + pNVafico + (Vav)oo + vV,o0
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and

P(Vapty + Papo)fic + p°(Vatip + Papo) &

() (Valia o). i) = (V)( Vaba + Paa, Voo ~ pia), (70,))
Pic(Vao — pa) + v(Vao — 1a)0.

If we exchange (pq4,0) and (fig, &) in the last expression, we obtain the third part of right
side of equation (4.23). Thus by combining all three parts, we obtain:

be
va < ;b ) <('U‘da 0)7 (/]'dv &)> = (VGTbC + pcéab + pb(sac):ub,ac
+(Vap® 4+ v8,° — 7°Poc) iy
+(vapc + 6, — TCdPad)/lcU + (vaV - 2pbPab)057

which gives the result. O

By construction, the induced connection on ST transforms correctly under change of
connection in the projective class of M. This can be checked using Lemma 4.1.2 in the
cases k=2, w=—-2and k =1,w = —2 as well as Theorem 4.1 in the case w = —2.

We again calculate the curvature of the induced connection on S%7, which is a section
of Eup) ® L(S*T, S?T). Considering L(S?T, 5*T), we induce a splitting from a splitting
of S2T by

Aede Becd Dcd Tef Aefchef + Becdpe + DCdy
wefc §e° ¢e p° = wechef + & p° + (v . (4'24)
Gef Ne ™ v ¢ef7_6f + nep® + TV

If we change the connection V to an equivalent connection V=V+TonM , then this
splitting changes to
Aede BeCd I/)Zj
N NG I (4.25)
¢e f ﬁ; T
where the first column is given by

o —

Aefcd _ Aefcd + BeCde _ DCdTeTf,
Gef® = hef® + €T+ T X = T X LDD = T p 0B — TyAes,
bef = bey+ T pne + T Xy — 2T XY CC + DY, T,
= 2Y 6 + BT g — 2T thes® + Ta T eAes™,
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the second column by

p—

BeCd — Becd + QTGDCd,
£° = €5+ 2T (¢ — 20X D — Ty B,
To = Ne 4+ 2T em — AT T C? + 2D%T Y e — 2.6 + BT .Yy

and the third column by

Ded = D,
C¢ = ¢ = TaD",
7T =7 —20,¢" + D1, Y.

This can be shown using a similar calculation as in (4.6).

As in the case of S?T*, we have to consider coupled connections to write down the
defining equation for the curvature. We will denote all connections by the same symbol.
Thus in a splitting the curvature is given by:

cd Agpef® Bape®® Dgp? ef
(v(lvb - vaa)(q—Pc ) — ( wabefc Eabe®  Cap® )(C)e )

v ¢abef Nabe Tab v

However, as in the case of S?T*, it can be calculated using the curvature of the tractor
connection on T*.

Lemma 4.4.4. Let V be an affine connection on M with curvature R ;°; and decom-
position of the curvature (4.1). The curvature of the induced connection on S27 is then
given by

Cabce 5fd + Cabde 5fc 0 0
—2(V(oPye)d;° c.,. 0
0 —4V[an]e 0

Proof. This is proved analogously to Lemma 4.4.2. Given a bilinear form ® in S?7 and
elements X,Y in 7%, then the curvature R of the induced connection on S%7 satisfies:

(R-®)(X,Y)=-®(R-X,Y) - ®(X,R-Y), (4.26)
where R denotes the curvature on T*, compare Lemma 4.2.1. Consider a splitting with

ref JOR
¢ = < Pye )7 X = (/,Ld,O'),Y: (,deao-) and

Aabede BabeCd Dade
R = wabefc fabeC CobbC
¢abe f Nabe Tab
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We now calculate the right side of equation (4.26):

~ Tef

(%) (R a0, 0 3) = (0 ) ((~Cus“atte + 2V aPuja0 0, (0,5 )

= (_CabceTed)/j’C/Zd + (_Cabcepe)ﬂc&
+(2(VPye) T frao + (2(V (o Pyep®) 06

By changing (14, 0) to (fig, &), we obtain ®(X, R -Y). Combining these gives:

PR -X,Y)+ DX, R-Y) (4.27)
= ((—=Cu%05" = Copy L5V ) pefia + (2(V (o Pye) 557 — Cp\% p%) e

ab e ab e

H2(V1aPye) 377 = C p9)fiao + (4(V o Py ) p) 05
On the other hand we have:
(R-0)(X,Y) = (Aabes™7 + Bapep® + Dap™v) pcfia (4.28)
+<1/}abefc7—ef + gabecpe + C(zch

+</l/}abefc7-€f + gabecpe + Cach
+(abes T + Napep® + Tapv) oG

cO
cO

)
)it

Now comparing (4.27) and (4.28) as well as changing the sign, we obtain the result. [

By construction, the curvature transforms correctly under change of connection in the
projective class of M. Nevertheless, it can be checked using (4.25) as well as (4.12) and
the fact that the Weyl tensor is invariant.

Remark 4.4.1. An interesting question we want to address here regards the duality be-
tween S2T* and S2T. We have constructed S>7* and S?7T independently of one another,
that is we (seperately) considered these bundles as bilinear forms on 7 respectively on
7*. On the other hand, we we could have worked with S?>7 as the dual bundle of S27*,
just as in the case of the tractor bundle, compare section 4.3. This, of course, involves
the choice of a duality, which in turn determines a splitting. Now in the case of S%7*
and S2T, there are different choices available, as for all constants A, B,C € R we can
define this duality by

be
<(prb ) (e M 0)) = Ayt + Bpp® + Cow. (4.29)
It is not obvious, which of the dualities in (4.29) induces exactly the splitting of ST,
which we obtained by regarding S%7 as the bundle of bilinear forms on 7*. A calculation,
however, shows that that these splittings coincide, if we set A = C =1 and B = 2. Note,
that this also means, that the dual connection to the tractor connection on S?7* is
exactly the connection we obtained in Theorem 4.4.2.

Remark 4.4.2. Finally, we would like to remark on the conventions used in this chapter.



4.4 Symmetric Powers of Tractor Bundles

In section 4.4 we viewed elements of S?T* respectively S27 as bilinear forms on 7T
respectively on 7* and induced a splitting into tripels. This led to conventions for
calculating with these bundles. It is also common, however, to represent symmetric
bilinear forms by symmetric matrices. We briefly introduce this approach.

For a given splitting of 7* and induced splitting of 7, we define the splitting of S>7*
by
b
(7 7) (“ab p“) (” ) = HapP 'V’ + pal*F + palT + 770, (4.30)
Pa O T
Note that even though (17“ %) denotes an element of T, we use its transpose to relate
to usual matrix multiplication. Therefore, instead of working with triples, we can equiv-
alently work with symmetric matrices and either convention certainly leads to the same
results. Similary, we can discuss S?7.






Chapter 5
Invariant Differential Operators

5.1 Motiviation

Given a manifold M and two tensor bundles E' and F' over M, we can use an affine con-
nection V and its curvature to write down differential operators I'(E) — I'(F’). Starting
with a projective structure on M, such a differential operator can be expressed in terms
of any representative in the projective class. If every representative gives rise to the same
operator, i.e. the operator is independent of the chosen representative in the projective
class, then this operator is called projectively invariant. Hence a given differential oper-
ator is projectively invariant, if replacing all derivative and curvature terms by the ones
of a projectively equivalent connection, does not change the operator.

Let us consider examples of a first order differential operator on & (w). Recall from
Lemma 4.1.2, that changing V to an equivalent connection V = V47 gives the following
transformation for n, € I'(&p(w)):

Ve = Vanp + (w - 1)Ta77b — Tpnq- (5-1)

Now considering its antisymmetrization gives

Via) = Viam) +w Yoy (5.2)

and therefore, in the case of w = 0, the first order differential operator I'(&(w)) —
L (Eap)(w)), M = V a1y, is projectively invariant. This result is not too surprising, since
V(a7 is the exterior derivative of the 1—form n,. A more interesting outcome is obtained
by symmetrizing equation (5.1):

N

Vi) = Viam) + (@ = 2)T (). (5.3)

Hence if w = 2, the first order differential operator n, — V ,m) is projectively invariant.
This also shows the importance of densities, as without the additional weighting, the
operator would not be projectively invariant. Thus the notion of densities is essential to
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obtain invariant differential operators.

The general theory of projectively invariant differential operators of first order looks
very similar to examples (5.2) and (5.3). The explicit description of all such operators
(for any parabolic geometry) is due to [17].

The case of second order projectively invariant differential operators is more compli-
cated. For o € I'(£(1)) consider the following example:

V(avb)d + P(ab)U' (5.4)

A calculation shows, that this defines a projectively invariant differential operator. The
additional curvature term of course makes the expression more complicated compared to
(5.3), but is necessary to guarantee the projective invariance. We will come across this
differential operator in section 5.3, where we will also prove projective invariance.

If we want to consider invariant differential operators of higher order, we could try to
generalize (5.4). In particular, this example shows that we need to find curvature terms
to compensate the change of the terms involving derivatives when replacing V by V.
This gets more complicated when raising the order, as in this case more curvature terms
have to be involved. For example, the third order operator

%V(avbvc)a + (V(anC))U + QP(ach)U, (5.5)

for o € T'(£(2)), can be understood as a generalisation of (5.4). Here we already need
two curvature terms to compensate the change of V(,V;Vyo. In section 5.3, we will
prove projective invariance of this operator.

For these reasons, in order to find projectively invariant differential operators, a more
systematic approach is needed. We will present this approach in the following chapters.

5.2 The Kostant Codifferential

In this section we consider the Kostant codifferential on the tractor bundles defined in
chapter 4. We can construct this codifferential by considering a certain action of an
abelian Lie algebra on the tractor bundle in question and extending it to a Lie algebra
homology differential. Even though we do not need this, it should be mentioned, that the
Kostant codifferential arises from a general theory, compare [8, Section 2.5, 2.6, 2.13|.

We will briefly discuss how an action of an abelian Lie algebra extends to a Lie algebra
homology differential. This is then applied to the tractor bundles and the first two maps,
which arise from this construction, are calculated explicitely (in a splitting). They will
be of interest in the next section.

Consider an abelian Lie algebra g, a vector space V' and an action of g on V:

5119®V—>V,
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gRU = g-v.
The action d; can be extended to a Lie algebra homology differential, i.e. a sequence of

maps
do

4 1 1
0<—V<$Q®V<LA29®V<L“-,

satisfying dx o 041 = 0, for £ > 0. This extension is given by

o ANfga vV = A lge v,

k
PN NGOV D> (D) g A AN A ge® (g v), (5.6)

i=1
where the hat denotes omission. We prove that d; o §x11 = 0 for £ > 0 by using the fact
that the action 7 satisfies g1 - (g2 - v) = g2 - (g1 - V).

k
(6 0 k41)(g1 A - A g1 @) = 66D _(=1)’'g1 A AGi A~ A g ® (gi - v))
i=1
= Z (D" g A ANGA NG A A G @ (g5 (gi - v))
1<j<i<k+1
+ Z (D)™ g A NG A NG A A Gey1 @ (g5 (g5 v). (B.T)
1<i<j<k+1

Note that in line (5.7), we have the sign (—1)"/~!. In the case j > 4, the omission
of g; implies that the element g; is located at the (j — 1)th spot, which gives the sign
(1)1, Now, relabeling line (5.7) and using g; - (g; - v) = g; - (g - v), we obtain that
0k 0 dk+1 = 0. This gives rise to homologies Hy (M, V') = ker(dy)/im(dx+1) for k > 0.

Now consider the cotractor bundle 7*, with short exact sequence

0—>=T*M®E(1) —>T* L~ E(1) —0.

This induces the following bundle maps:

T*M & T 22 P @ £(1) —s 7+
The composition of these maps gives

O =io(id®p): T"MQT*— T,

which is called the Kostant codifferential. We prove that fiberwise this is an action of
the abelian Lie algebra 7'M on the vector space T, for x € M. Starting with 7 € T*
and g1, g2 € T M, we have that g1 -7 € T M ® &,(1) and thus its projection onto &,(1)
vanishes. Therefore, we obtain g; - (g2 - 7) = 0, which implies that 9} defines a fiberwise
action. Thus we obtain a fiberwise extention to a Lie algebra homology differential by
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(5.6), which can be put together to obtain bundle maps
O AFT*MT* = AFIT*M o T (5.8)

Note, that these bundle maps induce operators on the space of sections I'(A¥T* M®T*) —
D(A*=1T*M @ T*), which we denote by the same symbol.

We now want to understand what the maps of (5.8) look like in a given splitting.
Starting with a splitting of 7" =y &(1) @ £(1) induced by an affine connection V on
M, we already remarked in section 4.2, that this induces a splitting T"M ® T* =y
Eap(1) @ E(1) and showed how this splitting transforms under change of connection in the
projective class. Similarly, a given splitting of 7* induces a splitting A?T*M @ T* =y
Elap)e(1) ® E g (1) and thus also on AFT*M @ T*, for k > 3. As the first two bundle maps
of (5.8) are especially important in the next section, we compute these in the following

Lemma.

Lemma 5.2.1. Let 7" =y &(1) @ £(1) be a splitting of 7* induced by an affine con-
nection V on M. Then in this splitting the first two bundle maps of (5.8) are given
by

07+ Eap(1) ®EL(1) — E,(1) D E(D)

(/”‘abv Ua) — (Ua7 0)
and
85 Eapje(1) ® Epapy(1) — Eap(1)  Ea(1)
(Mabw Uab) = (20'ab, 0).

The first bundle map 0] transforms correctly under the change of connection in the
projective class, i.e. changing the connection V to V.=V 4 T in the projective class of
M and splitting 7" with respect to V, gives the following commutative diagram:

¢

Ea® T g Ea(1) ® Eall) — T+ g &(1)  E(1)

(Babr0a) = (tab+Tp0a,00) # (T,0) = (T +Top0,0)

*
1

Ea® T =g Ean(1) ® Eu(1) T =g &) e &)

By construction, we have a similar diagram in the case of 95 (and also for 9;;, for k > 3).
Furthermore, the first two homologies are given by Ho(M,T*) = £(1) and H(M,T*) =

E(aby (1)

Proof. We show the first statement on elements of the form p, ® 7, with p, € &, and
7 € T*. Given a splitting of 7* with 7 = (up, ), we obtain p, @ T = (pa s, pao) for the
induced splitting on &, ® T*. Therefore,

01 (pa @ 7) = (i 0 (id @ p))(pattys paT) = i(pac) = (pac,0)
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and we obtain the result. The commutativity of the diagram is obvious.

Analogously, we prove the second statement on elements of the form n,w, ® 7, with
Nawp € Elap); i-€. satisfying nwp = —wamy and 7 € T*. Considering a splitting of 7* with
T = (¢, 0), We obtain:

03 (Mawp @ T) = N0 @ (Wy - T) —wWa @ (M - T) = (N0 — W0, 0) = (2nawyo, 0),

where we used the first part of this Lemma, equation (5.6) and the induced splitting on
AN’T*M @ T*.

Furthermore, we immediately obtain ker(9;) = 7, since 95 = 0, ker(97) = Eu(1),
im(07) = &u(1) and im(95) = (). Thus Ho(M,T*) = T*/E(1) = £(1) and
Hy(M,T) = Eawb(1)/Eay (1) = Eany(1).

O

We now want to define the Kostant codifferential on the tractor bundle 7. Similar to
the case of the cotractor bundle, we first define an action of the abelian Lie algebra T* M
and then extend this action to a differential.

Since we are working with the dual bundle of the cotractor bundle, we can use the
dual action on 7. Thus, the action 07 : T*M ® T — T is given by the equation
<:UJagl l/>+ <gl 'M?V> =0,

for p € T*,v € T and g1 € T*M. Again this action can be extended to a differential via
equation (5.6):
O AT MT - A T*"M e T. (5.9)

Note, that these bundle maps induce operators on the space of sections
TA*T*M @ T) — T(A*'T*M o T),

which we denote by the same symbol.

The maps of (5.9) can be computed in terms of splittings, which is done in the next
Lemma. Note, that given a splitting of 7, we again use induced splittings of T7*M @ T
and A2T*M ® T. By construction, 0; transforms correctly under change of connection
in the projective class.

Lemma 5.2.2. Given a splitting of 7 =y £(—1) @ £°(—1) the first two bundle maps of
(5.9) are given by
OF 1 Ea(—1) @ EX(—-1) = E(-1) @ E%(-1)

() ()

35 Eapy(—1) © Eay°(—1) = Eu(—1) B EX(-1)

and
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I/abc 0
— .
<pab> <_2Vacc>

The first two homologies are given by Ho(M,T) = £%(—1) and H1(M,T) = (E2)o(—1),
where (£2)g(—1) denotes the trace-free part of £2(—1).

Proof. A given splitting of T* =y &.(1) ® £(1) induces T =y £(—1) © £(—1) and
in this splitting consider 7 = (p,0) and ¢ = (Vpb). Furthermore, for g, € £ we have

9a T = (gapte, goo) and g, R = (gal;) ) in the induced splittings on &, ®@ T* respectively
e ® T. The Lemma is proved for elements of the form g, ® 1. Then by definition we
obtain

* b _ *
((10,0), 05 (%)) = —(07(9abtns ga0), (%)) (5.10)
= —{(940,0), (%))
= —gav'o,
which gives the result.
For the second statement consider newy € Eqp), 1.€. Nawp = —Mpw, and in the splitting

already considered, we have n,wp ® 9 = (”;a“jj’b”pc). Again we prove the statement on

elements of the form 7n,wp ® ¥. Thus we have

05(Mawp ®Y) = Na @ (Wp - P) —wa @ (M - V)

= ( 777aWcVCO+Wa7]cVC )
= ( —271(?%1/(’ )
Furthermore, we obtain im(0; ) = &(—1) and thus Hy(M,T) = T/E(—-1) = £4(—1)
Similarly, ker(@l) Ea(—1) @ (E2)o(—1) and im(93) = E,(—1), which gives Hy(M,T) =
(E)o(~1). O

We continue by defining the Kostant codifferential for S?7*. Given a bilinear form
® on T, then for g € T*M, we use the induced action of T*M on S?>T* given by the
equation

(g-®)(v,w)+ ®(g-v,w) + P(v,g-w)=0. (5.11)

This action can again be extended to a differential via equation (5.6):
Op  AFT*M © S?T* — AT M @ S*°T™. (5.12)
Note, that these bundle maps induce operators on the space of sections
D(ART*M ® S?°T*) — T(A*'T* M @ S%77),

which we denote by the same symbol.
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Furthermore, we calculate the first two bundle maps of (5.12) in terms of splittings.
Starting with a splitting of 7" =y &,(1) & £(1), induced by an affine connection V on
M, we have the induced splitting SQT* 2y Eap)(2) O Ea(2) ® £(2), see section 4.4. This
splitting of course induces splittings of T*M ® S?>7* and A?T*M ® S*T*, which are
used in the next Lemma. Of course, all the maps 9} transform correctly under change
of connection in the projective class of M.

Lemma 5.2.3. Given a splitting S?T* 2y ) (2) @ €q(2) & £(2), then the first two
bundle maps of (5.12), in terms of this splitting, are given by

8ik : ga(bc) (2> S3] gab(Q) S ga(2> - 6‘(ab) (2> ® Sa(Q) @ 8(2)

(Habe  Pab a) = (20(as) 0a 0)
and
95 Elap)(cd) (2) © Elap)e(2) B Elap) (2) = Eape)(2) © Eap(2) B Ea(2)
(ftabed  Pave  Tab) = (4Pape) 204 0) .
The first two homologies are given by Ho(M, S*T*) = £(2) and H1(M, S*T*) = &qpe) (2).

b

Proof. Using Definition (5.11) and the given splitting, set ® = (e pp 0),v = (¥)
and w = (Z:) We prove the first statement on elements of the form g, ® ®:

91900 ((£). () = =(me 2o 0) ((Lge): (1))
(e v 0) ((4):(gh))

= (gope + gepp)V"n° + (go0)V°7 + (geo)n°T,

which gives the result.

The prove the second statement, we consider n.wp € &gy, thus satisfying newy =
—weMp. In the given splitting consider ® = (ucd Pe a) and we show the result for
elements of the form n,w, ® ®:

0 (Nawp ® @) = Na @ (W P) —we @ (1 - P)
= (277aw(bpc) NaWbO 0) - (2wa77(bpc) Wa MO 0)
= (4naw@ppe) 2nawpo 0) .

We have im(0}) = Eup)(2) @ &a(2) and thus Ho(M,S*T*) = £(2). Furthermore,
ker(ai() = ga(bc)(2)@g[ab](2) and lm(ag) = lm(T)@g[ab}(Q)a where 7" : g[ab]c(2) — 8a(bc) (2)
is the map given by pae + 4pq(pe)- In order to compute im(7'), we first note that
ker(T') = Eape(2). This follows from the fact that a map which is antisymmetric in a, b
and b, ¢ is antisymmetric in all three indices. In particular, ker(T) C &44).(2) implies
that 7 # 0. Now consider the symmetrization Symm : Ey)(2) — E(ape)(2), which
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is given by wape = Wigpe): Then Symm o T = 0 and therefore, im(7) C ker(Symm).
On the other hand, since T' # 0 and ker(Symm) is an irreducible representation, we
actually have im(7") = ker(Symm). This implies Eq(pe)(2)/im(T") = Eqpey(2), which gives
Hl(Ma SQT*) = g(abc) (2) =

In the last part of this section, we compute the Kostant codifferential on S?7. This is
approached exactly as in the case of S?7*. Thus, the action of T*M is given by (5.11),
where ® now denotes a bilinear map on 7* and v, w elements of 7*. This, in turn, gives
rise to a differential, which we will denote by

of : AFT*M @ S*T — AF1T*M © S2T. (5.13)
Note, that these bundle maps induce operators on the space of sections
D(APT*M @ S?°T) — T(AF1T*M ® S°T),

which we denote by the same symbol.

The first two maps of (5.13) are computed in the next Lemma, using splittings of ST,
T*M @ S*T and A’T*M ® S*T.

Lemma 5.2.4. Given a splitting S>7 ¢ £(—2) @ £(—2) @ £9)(—2), then in this
splitting, the first two maps of (5.13) are given by

07 Ea(—2) @ EX(—2) @ £, (—2) = £(-2) @ £%(—2) & €1 (-2)

7,0¢ 0
pab = _Tdbd
Va —2p,*

and

05 Epat) (—2) ® Ejayy(—2) B Eap) “D(=2) — Ea(—2) B EL(—2) B £,V (-2)

Tade 0
pabc = | — 2TadCd
d
Vab _4pad

The first two homologies are given by Ho(M,S*T) = £ (-2) and Hy(M,S?*T) =
(&gbc))o(—Q), where (Sc(bbc))o(—Q) denotes the trace-free part of &gbc)(—Q).

be
Proof. In the given splitting consider ¢ = (pr ),v = (u,0) and w = (1, 7). We prove
the first statement for elements of the form g:® . for g, € &,. Then by (5.11), we have

Tbc Tbc

0902 ®) ((,0), o)) = = (T ) (9000, (0esm)) = (T ) (1, 9), (90, 0))

v v

= (—g7) e + (=g o + (—2gp0°) 70,
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which gives the result.
The second statement is proved for elements of the form n,w, ® ®, for nywp = —Mpwa-
O (Nawp © @) = 100 © (wp - ) —wa @ (- P) (5.14)
0 0 0
= ( 777awb7—bc ) + (wanbﬂ-bc ) — ( 72nawb7bc ) .
—2nqwpp? 2wa P —dnqwpp?
Contmulng with computlng the homologies, we obtain im(9;) = £(—2)®£%(—2) and thus
Ho(M, S*T) = £(@)(—2). Furthermore, ker(8) = £,(—2)B(E2)o(—2)®(E,%9))o(—2) and
im(0;) = Ea(—2) @ (E9)0(—2). Note, that we obtain (£)o(—2) in the second component

of im(93), since Taa® with skew symmetric lower indices and symmetric upper indices,

is trace free. Therefore, Hy (M, S*T) = (&5’”))0(2). O

5.3 Some First BGG-Operators

In this section we construct projectively invariant differential operators using the tractor
bundles considered in chapter 4. Eventhough these operators are constructed directly,
i.e. without using any additional theory, it should be mentioned, that they actually result
from a general construction. Indeed, they appear as the first operators in a Bernstein-
Gelfand-Gelfand (BGG) sequence. The definition as well as the construction of such
sequences can be found in [10]. For a sketch see [3].

We outline the construction, which will be then discussed in case of each tractor bun-
dle seperately in the following subsections. Working on any tractor bundle, consider
the projections 7, : ker(9;) — Hy(M), for £ > 0. These bundle maps certainly in-
duce tensorial operators on the space of sections, i.e. maps I'(ker(9;)) — I'(Hy(M)),
which are denoted by the same symbol. Note, that these induced maps are projec-
tively invariant. In the case of k£ = 0, we will obtain a projectively invariant differential
operator L : T'(Ho(M)) — T'(ker(9§)), which is a differential splitting of my and sat-
isfies 07 (VL(o)) = 0 for all 0 € I'(Ho(M)). Furthermore, via the following diagram,
the differential operator L gives rise to a projectively invariant differential operator
D :T(Ho(M)) = T'(H{(M)):

I'(ker(95)) I'(ker(07)) (5.15)
D(H(OM) = TH(0D)

Diagram (5.15) can be extended to higher degrees, as its form already suggests. This is
however not necessary for our purposes.

Now a solution of the first BGG-equation is a section o of Hy(M), satisfying D(o) = 0.
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There is an obvious subclass of solutions, namely those, for which VL is actually parallel.
Such solutions are called normal.

Although we can define operators which satisfy diagram (5.15) on every tractor bundle,
the results connected with these operators are different. This is why we treat each case
seperately in the sequel.

Most of the results, we will discuss, are due to |5, 7]. We give the corresponding
reference within the text.

The First BGG-Operator on 7*

From Lemma 5.2.1, we know that ker(93) = 7 and Ho(M,T*) = £(1). Therefore, in a
splitting, the projection mp : I'(7*) — T'(£(1)) is given by projecting onto the right slot.
The next Proposition shows the existence of an invariant differential operator, which
splits this projection.

Proposition 5.3.1. Given a smooth section o of £(1), then there exists a unique section
s of T*, satisfying mo(s) = o and 97(Vs) = 0. Mapping o to s defines a projectively
invariant differential operator L.

Proof. In a given splitting of 7%, let s = (up, 7). Since s satisfies II(s) = o, we have
T = 0. Moreover, using Definition 4.2.2 and Lemma 5.2.1, gives

Valup,0) = (Vapp + Papo, Vo — pg) and 07 (Ve (e, 0)) = (Veo — pg, 0).
Thus, 9f(Vs) = 0 implies up = Vpo. This proves that s = (V40,0) is unique and
certainly o — (V,0,0) defines a smooth differential operator.

We use Corollary 4.2.1 and Theorem 4.1.1, to prove that L is projectively invariant.
Change V to a projectively equivalent connection V = V + T and split 7* with respect
to V. Then in this splitting we have

<

L(o) = (Vo,0) = (Vo + Yy0,0).

On the other hand, the change of splitting transforms (V,0,0) to (Va0 + Y40, 0), which
gives the invariance of L. O

Note, that since 97 (VL(c)) = 0 by Proposition 5.3.1, VL(o) is in fact an element of
ker(97) and can therefore be projected to the quotient.

Definition 5.3.1. Given a section o of £(1), then we define D(o) by projecting VL (o)
to the quotient bundle Hy (M, T*) = E(4)(1) (compare Lemma 5.2.1).

A section o satisfying D(o) = 0, is called a solution of the first BGG-equation, whereas
it is called a normal solution, if it in addition satisfies VL(o) = 0.
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Therefore, in the case of the cotractor bundle, diagram (5.15) has the following form:
I'(T™) I'(Eap(1)) (5.16)
L] WO/ lm
DED) = D Ean (L)

We can give a description of D in terms of a splitting. Choose a splitting of 7*, then in
this splitting L(o) = (V,0,0) and V,L(0) = (V4Vyo + Pypo,0). Projecting this to the
symmetric part of Eg(1), gives

D(o) = V(aVio + Py,

which is exactly the example we considered in section 5.1.

Lemma 5.3.1. A smooth section o of £(1) is a solution of the first BGG-equation if
and only if it is a normal solution, hence

D(oc) =0« VL(o) = 0.

Proof. By Definition, a normal solution is also a solution of the first BGG-equation. On
the other hand, for a smooth section o, we remarked before, that D is given by

D(o) =V (Vo + Pp)o.

Moreover, we showed that V,L(0) = (V4Vyo + Pgpo, 0). Thus we have to show that the
first slot of V,L(0) vanishes, if its symmetric part vanishes. Choose a connection V in
the projective class for which B, = 0 (compare Lemma 4.1.3 and Remark 4.1.1). Then
Pap is symmetric and we have that

(VoVp — VpV4e)o =0,
since Bgp is the curvature of V. Thus V,Vjyo is symmetric and we obtain the result. [

Theorem 5.3.1. |5, Theorem 9| Let o # 0 be a section of £(1) and consider the first
BGG-equation Do = 0. Then we have the following statements:

1. A solution o of the first BGG-equation induces a Ricci flat connection in the pro-
jective class on the open subset U = {x € M : o(x) # 0}.

2. Given a Ricci flat connection in the projective class, we obtain a local solution of
the first BGG-equation.

3. If o is a solution of the first BGG-equation, then U is dense in M.

Proof. 1. Suppose that D(o) = 0, then V(,Vyo + P(gpy0 = 0. As D is projectively
invariant, we may change the connection in the equivalence class of V without
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changing D. Locally on U there exists a unique connection V in the projective
class, such that Vo = 0, compare Lemma 4.1.3. Now for this connection, the
equation D(o) = 0 reduces to P(ab)a = 0, which implies that P(ab) = 0. Hence Py,

Is antisymmetric. Furthermore, by Lemma 4.1.4, ﬂab =0and P ab 18 symmetric,
thus Py, = 0. The second part of Definition 2.2.5 states that (n— 1)Pab = Rap+ Bab
and therefore also Ry, = 0.

2. A Ricci flat connection V implies Py, = 0, by Definition 2.2.5. Therefore, the first
BGG-equation reduces to V(,Vyyo = 0. Also the induced connection on £(1) is flat
and thus admits a local section, which is parallel. This section is a local solution
of the first BGG-equation.

3. Let o be a solution of the first BGG-equation. Then by Lemma 5.3.1, this solution
is normal, hence VL(c) = 0. Furthermore, by Lemma 5.3.1, we have L(o) =
(Vqo,0). We claim that L(o)(x) # 0 for all x € M. The equation VL(o) = 0
locally defines an ordinary differential equation and by the uniqueness of solutions
for a given initial value, assuming L(o)(z) = 0 for some x € M gives L(o) = 0.
This is a contradiction, as L(c) = 0 implies ¢ = 0. Now if o(z) = 0 for some
x € M, then Vo(z) # 0 (otherwise L(o)(xz) = 0). This shows that the zero set of
o is an embedded hypersurface. Taking the complement of the zero set of o, we
obtain an open and dense subset and this is exactly U.

O

The First BGG-Operator on T

On 7 we have that ker(9;) = T and Ho(M,T) = £%(—1), compare Lemma 5.2.2.
Therefore, the projection is a map mg : I'(7) — I'(%(—1)) and in a splitting, it is given
by projecting onto the top slot. Furthermore, we have an analog to Proposition 5.3.1:

Proposition 5.3.2. Given a smooth section v* of £%(—1), then there exists a unique
section s of T, satisfying mo(s) = v* and 0j(Vs) = 0. Mapping v® to s defines a
projectively invariant differential operator L.

Proof. Given a splitting of T, let the section s be given by s = (’7: ) Then from
II(s) = v, we immediately obtain n* = v*. Furthermore, by Theorem 4.3.1 and Lemma

5.2.2 we have
Va(1) = (J70)  and - 97 (Va(1)) = (Codene)-

Now 05 (Vs) = 0 implies 7 = —%Val/“, which proves the uniqueness of s = (_1g,q ).
Certainly,

a

L : l/a — (_%Vvalja)

is a smooth differential operator.
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We prove projective invariance using Lemma 4.3.1 and Lemma 4.1.2 in the case k =
1,w = —1. Consider a change of connection from V to V = V+ 7T in the projective class
of M. In the splitting induced by V, the the map L is given by

L(Va) z (—llgau“) = (—%(Vaul‘lzs—n'ray“))'

n

a

Furthermore, the change of splitting transforms (7 fvaal,a) to (7 1 Valljaifral/a ), which
gives the result. O

Since 07 (VL(v*)) = 0 by Proposition 5.3.2, it can be projected to the homology
Hi(M,T).

Definition 5.3.2. Given a section v® of £%(—1), then we define D(v®) by projecting
VL(v?) to the quotient bundle Hy(M,T) = (£)o(—1), compare Lemma 5.2.2.

A section v* satisfying D(v®) = 0, is called a solution of the first BGG-equation,
whereas it is called a normal solution, if it additionally satisfies VL(v%) = 0.

Therefore, in the case of the tractor bundle (and in a given splitting), diagram (5.15)
vields:

I'(T) L(€a(-1) @ (£)o(-1)) (5.17)
L)| 0 / lwl
DEX=1) oy = T((ED(-1)
We again describe D in terms of a splitting. Theorem 4.3.1 gives
b Var? =1 (Ver©)ds?
VaL(Vb) = Va( —%VCVC ) == ( —iVQVnC(VC—Pibub ) (518)
and projecting onto the trace-free part of £2 implies:
1
D(Wb) = V¥ — ﬁ(vcucwab, (5.19)

which is exactly the trace-free part of V, . Furthermore, we have an equivalent state-
ment to Lemma 5.3.1:

Lemma 5.3.2. A smooth section v* of £%(1) is a solution of the first BGG-equation if
and only if it is a normal solution, hence

D(v*) =0« VL") =0.

Proof. Certainly, a normal solution is a solution of the first BGG-equation. Conversely,
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using equation (5.19), the vanishing of D implies
1
V¥ = =(Ver©)d,b. (5.20)
n

We have to show, that (5.20) forces VL(v*) = 0. First of all, by (5.18), we immediately
obtain that the top slot of VL(v®) vanishes. Thus, we have to show that (5.20) implies
Py’ = —1V,VyP. By Definition 2.2.5, we have that

(n+1)Bw = —2Rqy and (n—1)Pup = Rap + Bap-
Therefore, we first have to calculate the Ricci curvature. Set p = %chc, then we obtain:

R vt = VoVt — VVr°
= Va(pd®) — Vi(pda©)
°Vap — 0a“Vip.

Taking the trace implies Rypb = —(n 4+ 1)V4p. This, in turn, indicates B’ = 2Vap
and (n — 1)Pgv® = —(n+1)Vap +2V,ep = —(n — 1)V,4p. Dividing the last equation by
(n — 1) gives the result:

1
P’ = —Evavbub.

The First BGG-Operator on S*7*

By Lemma 5.2.3, we have ker(9}) = S?T* and Ho(M,S*T*) = £(2), which gives
mo : D(S?T*) — I'(£(2)). In a splitting, this map is given by projecting onto the last
slot. Then analogously to the cases of the cotractor and tractor bundle, there exists a
projectively invariant differential operator, which splits the projection.

Proposition 5.3.3. Given a smooth section o of £(2), then there exists a unique section

s of S2T*, satistying mo(s) = o and 9;(Vs) = 0. Mapping o to s defines a projectively
invariant differential operator L.

The proof of this Proposition requires the following Lemma, which gives the transfor-
mation of V2 under change of connection in the projective class.

Lemma 5.3.3. Changing the connection V to V =V +7 in the projective class of M,
gives the following transformation for sections o of £(w):

VaVio = VoVio + 2(w — 1) T, Viyo + w(VaTp)o + (w? — 2w) T Tho.

Proof. This can be shown using (V20)(€,1) = @g@na—@@wa, for &,m € X(M). Working
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this out by using Theorem 4.1.1 as well as Lemma 4.1.2 | we obtain:

(V2o)(&m) = Ve(Vao +wX(0)0) +wT(€)(Vyo +wT(n)o)
— (Vo +wY(Ven)o + Y (§)Vyo + 20T ()Y (n)o + T (n)Veo)
= (VeVyo = Vygo) + w(VeX(n) = T(Ven))o + (w — 1)T(n)Veo
+Hw = DT(E)Vyo + (W = 20)T(€) T (n)o
= (V20)(&n) + w(VeX)(n)o + (w = (T (E)Vyo + Y(n)Veo)
+(w? = 20)T(6)Y(n)o.

Rewriting this in abstract index notation gives the result. O

Proof of Proposition 5.5.3. In a given splitting, let s = (Mbc M V). Then by II(s) = o,
we immediately obtain ¥ = ¢. Furthermore, Theorem 4.4.1 and Lemma 5.2.3 imply

Vas = (va:ubc + 2Pa(b775) Vany + Papo — prab Vao — Qna)

and
1 (Vs) = (2(V(am) + Pan)o — iap)) Vao —2na 0).

Therefore, from 9;(Vs) = 0 we obtain 1, = 3V,0 and
ttab = VM) + Panyo = 5V (o Viyo + Pap)0.

This shows, that s = (%V(avb)o + Plapyo %Vao a) is unique and that mapping o to
s defines a smooth differential operator.

In order to prove projective invariance of L, we use Lemma 5.3.3. Thus, consider a
change from V to V = V4T in the projective class of M. Then in the splitting induced
by V, the differential operator L is given by:

O /s . .
L(o) = (%V(avb)g + Pap)o %VQU 0') )

Now using Lemma 5.3.3 in the case of w = 2, Lemma 3.3.4 and Lemma 4.1.1, we obtain:

<

L(o) (%V(avb)a +Papyo + T (o Vyyo + T Tpo %Vao + Yoo o). (5.21)

On the other hand, by Lemma 4.4.1, the element (%V(avb)a + Prapyo %Vaa a) exactly
transforms to (5.21), showing the projective invariance. O

By Proposition 5.3.3, 07 (VL(0)) = 0 and therefore, VL(o) can be projected to the
homology Hy(M,S*T*).

Definition 5.3.3. Given a section o of £(2), then we define D(o) by projecting VL(o)
to the quotient bundle Hy (M, S?*T*) = E(4pe)(2), compare Lemma 5.2.3.
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A section o satisfying D(o) = 0, is called a solution of the first BGG-equation, whereas
it is called a normal solution, if it in addition satisfies VL(o) = 0.

This yields the following diagram in the case of S27* in a given splitting:

L(S*T*) L(Ea(be)(2) @ Epan)(2)) (5.22)
L‘ WO/ lm
D(E(2) = T(Eabe) (2))

Moreover, we can describe D in a given splitting. Choose a splitting of S27*, then by
Theorem 4.4.1 we have:

VoL(0) = (5.23)

= (Va(3VVe)0 + Pyo) + P Vo 5VaVio +Pao — 5V (Vo — Papo  0)
= (3VaVVe)o + VaP o + Pap Voo 3ViaVyo +Playjo 0).

Therefore, projecting onto &(gp)(2) implies

D(o) = %V(avbvc)d + V(anC)O' + P(abVC)O' (5.24)
= VYoV + (V(ePbe))o + 2P,V 0.

This is a multiple of the operator considered in [6, Section 3.3].

Theorem 5.3.2. |5, Theorem 11| Let o be a section of £(2). Consider the set U =
{z € M : o(x) # 0} and the unique connection V in the projective class of M satisfying
Vo =0 on U, compare Lemma 4.1.3. Then on U we have the following statements:

L. o is a solution of the first BGG-equation D(0) = 0, if and only if V Py = 0.

2. 0 is a normal solution, i.e. satisfies VL(o) = 0, if and only if V,Pp. = 0. If,
in addition, P, is non-degenerate, then it defines a pseudo-Riemannian Einstein
metric on M and its Levi-Civita connection is exactly V.

Proof. 1. This follows immediately from equation (5.24).
2. Assuming that VL(o) = 0, then in the splitting induced by V, we have

(0VaP ey Prayo 0) =0. (5.25)

Lemma 4.1.4 implies that P, is symmetric, which reduces equation (5.25) to
(aVanc 0 0) = 0. Since o is non-zero, VP has to vanish.

Conversely, VP = 0 and the fact that P is symmetric, immediately imply that
VL(c) = 0. This proves the first part of (2).
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Now if P, is non-degenerate, it can be understood as a pseudo-Riemannian met-
ric, as it satisfies all defining properties of a metric, except for positive definitness.
Furthermore, since V,Py. = 0, the connection V has to be its Levi-Civita connec-
tion, as there exists only one torsion-free connection, which preserves a pseudo-
Riemannian metric. By Definition 2.2.5, we have Ry, = (n — 1)Pg, hence the
Ricci curvature is a multiple of the pseudo-Riemannian metric. Thus, we obtain a
pseudo-Riemannian Einstein metric on M.

O

The First BGG-Operator on S*7T

On ST we have ker(9) = S*T and Ho(M, S*T) = £9)(—2), compare Lemma 5.2.4.
Therefore, my : T'(S?T) — T(£(9)(-2)) is given by projecting onto the first slot in a
splitting. We have the following result:

Proposition 5.3.4. [7, Proposition 3.1] Given a smooth section 7%¢ of £(¢)(—2), then
there exists a unique section s of S27, satisfying mo(s) = 7°¢ and 0§ (Vs) = 0. Mapping
7% to s defines a projectively invariant differential operator L.

In order to prove this Proposition, we need the following Lemma:

Lemma 5.3.4. Let V be an affine connection on M. If we change V to V + 7T in the
projective class of M, then we have the following transformations for 7%¢ € T'(£(®¢)(—2)):

Vo = Vor® + (n4 1)Yar®, (5.26)
VaVut® = V. Vi + 20T Vyr® + (n? = 1)1, 7 (5.27)
+(7”L + 1)(VaTb)Tab.

Proof. Equation (5.26) can be shown using Lemma 4.1.2 in the case k = 2, w = —2.
Similarly, equation (5.27) is an application of this Lemma. Note, however, that calculat-
ing transformations of the form V,V,7°?, uses its third part in the case k = 1, [ = 2 and
w=—2. ]

Proof of Proposition 5.8.4. Suppose that in a splitting of S?7, the smooth section s is
be

given by s = (“pc ) Again, the first slot is already determined by II(s) = 7%, hence
14

pbe = 7% Using Theorem 4.4.2 and Lemma 5.2.4, we obtain

vaTbc +p06ab+pb5ac 0
Vas = [ Vap? + v8,? — 7P, and 07 (Vgs) = —V, b — (n+ 1)pb
Vv —2pPy —2(Vap® +nv — 7%P )
Therefore, 95 (V,s) implies p? = —%HVCLTI’“ and v = %(%ﬂvavb—i—Pab)T“b. This shows,

that s is unique and mapping 7% to s defines a smooth differential operator.
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In order to show that L is projectively invariant, we need Lemma 4.4.3 and Lemma
5.3.4. Consider a change of connection from V to V =V + T in the projective class of
M. Then in the splitting induced by V the differential operator L is given by:

L(") < —iVar

1A VaVy + Poy) e

Using Lemma 5.3.4 as well as Lemma 3.3.4, we obtain

7_bc

—1 Var" = Tt : (5.28)
%(n_g_lv vb + Pab)'rab + 'rL+1T Vb’i' + 7T Tb’]'

() <

On the other hand, by Lemma 4.4.3, changing the splitting transforms L(7%) to (5.28),
which proves projective invariance of L. ]

Since 07 (VL(7%¢)) = 0 by Proposition 5.3.4, VL(7%¢) can be projected to the homology
Hy(M, S?T).

Definition 5.3.4. Given a section 7%¢ of £(9)(—2), then we define D(7%) by projecting
VL(7%) to the quotient bundle Hy(M,S*T) = (& (bc))o(—Q), compare Lemma 5.2.4.

A section 7% satisfying D(7%) = 0, is called a solution of the first BGG-equation,
whereas it is called a normal solution, if it additionally satisfies VL(7%¢) = 0.

In a given splitting, diagram (5.15) is given by

L(S*T) T(E(2) @ (ED)o(—2) @ (£.4)o(~2)) (5.29)
L‘ o / Jj:
LECI(=2)) = T((E8)o(=2))

In analog to the previous sections, we compute D in terms of a splitting. Thus, choose a
splitting of S?7 and calculate V,L(7%) using Theorem 4.4.2. We see that the first slot
of V,L(7%) is given by the trace-free part of V,7%. Therefore, we obtain:

D(r%) = Vo™ — 145 (Var®)da" — A7 (Var®) 8" (5.30)

n+1 (
Remark 5.3.1. For ST there exists an analogous result to Theorem 5.3.1 respectively
Theorem 5.3.2. Non-degenerate solutions of the first BGG-equation (5.30) give rise to
Levi-Civita connections in the projective class, whereas non-degenerate normal solutions
yield Einstein metrics. Compare [7, 11].



Chapter 6
Interpretation on the Homogeneous
Model

In this chapter we discuss the theory developed so far on the model for oriented projective
structures. Recall from chapter 3 that this is given by S™ viewed as the ray projectiviza-
tions of C' = R"*1/{0}. Hence S™ = C/R and the projection 7 : C' — S™ is a surjective
submersion.

6.1 The Cotractor Bundle of the Homogeneous Model
Consider the tangent map T, : T,C — Tr(,)S™ for v € R"*1. Then the kernel of this

map is given by Rv and we obtain a short exact sequence

Ty

0 Rv T,C Tr)S™ —0. (6.1)

Furthermore, since T,C' = R"™!, we have an isomorphism R"*!/Rv & Ty (,)S™, which
we denote by @,.

Lemma 6.1.1. We have the following transformation:
Pa0 = @v o AN,

for A > 0.

Proof. Consider the map Aid : C — C. Then we have w o Aid = 7 and this induces
Ty = Ty(m o Aid) = Th,m o Aid on the tangent bundles, since Aid is a linear function.
Also \id factors to a well-defined function R**!/Rv — R™"™!/Rv and hence we obtain a

83
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commutative diagram:

R+ /Ry M9 R /Ry
J/% P
Tr()S™
and thus the claim. O

Now for v € C define 0 # pu, € A"T*, S™ by

(v)
(&1, &n) = det(v, v1, ..., 0p),

where &; € TW(U)S” and v; € R"! with T,m - v; = & for all i. First of all note that there
is always a lift v; for a given &;, since 7 is a submersion. Furthermore, the definition of
1, 18 independet of the choice of lifts:

Assume that v;, 7; € R"! are two lifts of &. Then T,7(%; — v;) = 0 and thus 9; —v; €
ker(T,m) = Ru. Thus there exists a t € R such that ©; = v; + tv, which gives

det(v,v1,...,v,) = det(v, 01, ..., 0n),

by linearity and the fact that the determinant vanishes if there occur two linearly depen-
dent vectors in the argument.

Lemma 6.1.2. For A > 0 we have the following transformation:

Hxv = /\n+lﬂv~

Proof. Let & € Tr(,)S™ and v; € R™*! such that Th,7-v; = &. Then by the definition we
have iy, (€1, .. .,&,) = det(Av,v1, ..., v,). From above we know that Ty,m = T,mo A~ lid
and thus A~1v; is a lift of & for the map T,7. Thus

xo(&1y--, &) = Adet(v,v1,...,0p) (6.2)
= XNdet(v, A7 oy, .., A y)

An+1ﬂv(€la s agn)

O

Theorem 6.1.1. Sections of the bundle A"T*S™ can be identified with smooth functions
C — R which are homogeneous of degree (—n — 1).

Proof. Let v be a section of this bundle. Then there exists a unique function f: C' — R
such that v(v) = f(v)uy. Since v is an element of S™, we have that v(v) = v(Av) for
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A > 0. Thus

fW = f(A)px (6.3)
FO0A "y,

which gives f(Av) = AL f(v). O

Recall from chapter 4.1, that since S™ is oriented, we can identify n—forms on S™ with
sections of the volume bundle. We can use Theorem 6.1.1 to find a similar identification
of sections of the bundle £(w).

Lemma 6.1.3. Sections of the bundle £(w) can be identified with smooth functions
C — R which are homogeneous of degree w.

Proof. The volume bundle is defined as an associated bundle to the linear frame bun-
dle. Sections of this bundle can be identified with GL(n,R)—equivariant functions
h : PS™ — R, with equivariancy given by h(p o A) = |det(A)|h(p), see chapter 4.1
and |9, Proposition 1.2.7.]. On the level of equivariant functions, the equation which
provides the identification in Theorem 6.1.1, is given by h = (f o m)g, where h corre-
sponds to v, g to pu and 7 is the projection PS™ — S™.

Now if o is a section of the bundle £(w), then it corresponds to an GL(n,R)—equivar-
iant function i : PS™ — R, where in this case the equivariancy condition is h(poA) =
| det(A )\Vﬁlﬁ( ). Define h : — h~"5", then h is an equivariant function of the type
above and thus there exists a unique smooth function f: C — R Wthh is homo§eneous
of degree —n — 1, such that & = (f ow)g. Then the equation h = (f~ At om)g  n+1 gives
an identiﬁcation of h with a homogeneous function of degree w. O

We denote the set of smooth homogeneous functions C' — R of degree w by C*°(C,R),,.
In particular Lemma 6.1.3 shows that sections of the density bundle £(1) correspond to
smooth homogeneous functions of degree 1. We now want to show, that the cotractor
bundle of S™ is a trivial bundle. This can be done by computing the bundle of 1—jets of
E(1). Before we do that, we need some basic facts about homogeneous functions.

Lemma 6.1.4. Let f: C' = R be a homogeneous function of degree w. Then

1. Df : C — R""!* is homogeneous of degree w — 1, hence D f(\z) = \*"L1Df(x) for
all A > 0.

2. Df(z)xr =wf(x).

Proof. 1. D(f(Ax)) = Df(Ax)A, on the other hand D(f(A\x)) = ADf(z) and thus
the claim.
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2. Differentiating the equation f(Az) = A“f(x) with respect to A, we obtain
Df(Ax)r = wA*7!f(z). Using the first part of this Lemma, we get
XTIDf(z)r = wA~Lf(z), which gives the result.

O

Theorem 6.1.2. The cotractor bundle 7* on S™ can be identified with the trivial bundle
Snox RHLE,

Proof. We want to show that J1(£(1) — S™) is isomorphic to S™ x R**1*, A section o of
E(1) can be identified with a homogeneous functions f of degree one and its derivative D f
is homogeneous of degree 0. This means that Df(\z) = Df(z) and thus Df : C' — R
factors to a well-defined function on S™. By Lemma 6.1.4 the value of f at a point z can be
recovered from its derivative. We get a well-defined map J1(E(1) — S") — {z} x R+
on the fibers by jlo + Df(x). This map is injective and since both fibers have the same
dimension, we obtain an isomorphism of vector bundles.

O

Of course Theorem 6.1.2 also identifies sections of the cotractor bundle with
C>(S™, R"1%). Via this identification the jet projection corresponds to the map

p:C®(S™,R"*) — C*°(C,R),

F— (v F(Ryv)(v)).

This map is homogeneous of degree 1, since F' is invariant under multiplication with a
scalar in the first component and linear in the second component. Thus we have the
following diagram for the jet projection:

(T™) <—>C°°(S”,R”+1*) (6.4)
pl lﬁ
T(E(1)) C>(C,R);

Note that until now we have been working with S™ as ray projectivizations in C'. Thus
we considered S™ as a set of equivalence classes, which has no preferred embedding in
R™*1. The choice of a section o : S™ — C defines such an embedding.

We prove that a section o : S™ — C splits the short exact sequence (6.1), for all v € C
in the image of 0. The map T,o : T,,5" — T, (,)C gives the following diagramm

To(a)™

T,8"

0.
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Since id = mo o, we have id = Ty (moo) = Ty(z)m - Tyo for x € S™. This shows, that T,o
is right inverse to T, (,)m and thus induces a splitting

Ta(m)() = Ro(x) ® T,S", (6.5)

for all x € S™.

Furthermore, the choice of a section o gives rise to an affine connection on S™. Consider
a vector field & € X(S™). This defines a vector field along o(S™) C C by setting {(o(z)) :=
Tyo - &(x). Then for £,n € X(S™), we define:

(VE"n)(@) = Ty m((Ven) (o(x))), (6.6)

where f respectively 7) are extensions of 5 respectively 77 to C, i.e. é, n € X(C) satistying
E(o(x)) = &(o(x)) respectively 7(o(z)) = n(o(x)) for all x € S™. We briefly explain why
the restriction of Véﬁ to o(S™) is independet of the choice of extensions: Certainly, the
value of V¢7) along o(S™) only depends on the value of £ on o(S™) and since ¢ is tangential
to o(S™), it is also independet of the choice of 7. Therefore, Véﬁ is a well-defined vector
field along o(S™) and projecting to T'S™ gives a vector field on S™. Furthermore, it can
be verified that (6.6) satisfies the defining properties of a linear connection.

Until now we have seen, that the choice of a section ¢ : S™ — C gives rise to an affine
connection on S™. The section o also defines a section of £(1), which corresponds to the
function f : C — R characterized by v = f(v)o(7(v)), i.e. on o(S™) it is identically 1
and on C' it is homogeneous of degree 1. We will also denote this function by o. One
can verify directly that the connection on £(1) induced by the affine connection on S™
from (6.6) has the property that Vo = 0. (Of course this completely determines the
connection on £(1) and the affine one within its projective class).

Furthermore, one can verify that the splitting of 7* determined by the affine connec-
tion coming from (6.6) is induced by the splitting (6.5).

Recall that in section 3.2, we decided on working with the projective structure induced
by the Levi-Civita connection on S™. Therefore, it is natural to consider the splitting
o, which embeds S™ as the unit sphere in C. In this case, the tangent space T, S" is
identified with {x}* and the splitting (6.5) is orthogonal. Thus, T'r coincides with the
orthogonal projection and the linear connection (6.6) induced by o is exactly the Levi-
Civita connection. We now induce a connection on S™ from the flat connection on R,
which is projectively equivalent to the Levi-Civita connection. This will be useful later,
as it is easier to calculate with the flat connection on R".

Consider coordinates g, 1, ...,z, for R"™! and the affine hyperplane A", given by
xg = 1. Via central projection, we identify the northern hemnisphere of S™ with A™.
Hence we define the function

fi{reS" o >0} - A",
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x1 Tn
1,22

)

($0,...,I‘n)'—>( 7o To

with inverse
LAY {2 e 8™ x> 0},
Y ﬁ

The flat connection on A™ gives a connection on the northern hemnisphere, by pulling
back along f. Furthermore, this connection is projectively equivalent to the Levi-Civita
connection on S™. Geodesics of the Levi-Civita connection on S™ are given by great cir-
cles, hence intersections of S™ with 2—dimensional linear subspaces in R"*!. Via f, such
an intersection is mapped to the intersection of A™ with the same 2—dimensional linear
subspace, hence a straight line. This is a geodesic for the flat connection on A™. Thus we
have seen that the Levi-Civita connection and the pullback of the flat connection on S™
have the same geodesics and thus by Definition 3.1.1, they are projectively equivalent.

We will now prove that the cotractor connection induces the trivial connection via the
identification 7* = S" x R*H1*,

Theorem 6.1.3. The cotractor connection on 7* gives the trivial connection on S™ X
Rn+1*.

Proof. In order to compute the connection induced on S™ x R"*!* via the isomorphism
of Theorem 6.1.2, we consider the following diagram:

F(T*) - COO(Sn, Rn+1*)

vT" i
v

F(T*) - o COO(Sn, Rn+1*)

We want to show that the dashed arrow is given by F ~ DF, for F € C°°(S", R %),
As already remarked above, we will work with the flat connection on S™ induced via the
central projection. Recall from Definition 4.2.2 that the cotractor connection (in abstract
indices) is given by

VI (s 0) = (Vo + Pap0, Voo — 1),

where Py, = 0, since we are working with a flat connection. Starting with an element
F € C®(S™,R""1*) we have a representation in coordinates F = Y, Fydz’. Recall
from diagram (6.4) that o is given by p(F'), where p is the projection
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6.2 Solutions of first BGG-Equations

Restricting to A™ in coordinates gives:
n
o(z) = Fy(z) + Y xiF(x). (6.7)
i=1
Therefore Vo = DFy + Y., 2;DF; + F;dz'. Similary by restricting to A", we obtain
ple) = 3 Fila)da’ (63)

and V= > | DF;(x)dz". Now this is the first slot of the cotractor connection and the
second slot is given by DFy+ Y " | x;DF;. We see that this pair corresponds to DF' via
the identification of Theorem 6.1.2, since replacing F; by DF; in (6.7) and (6.8) exactly
gives the first and second slot of the cotractor connection. O

6.2 Solutions of first BGG-Equations

We continue by interpreting solutions of the first BGG-equation D(o) = 0, for o a smooth
section of £(1). Recall from Lemma 5.3.1, that every solution is a normal solution.
Hence

D(c) =0« VL(o) = 0.

This means, that a solution of the first BGG-equation corresponds to a parallel cotractor.
If L(c) € T(T*) corresponds to F € C°°(S™, R™""1*) via Theorem 6.1.2, then VL(c) =0
is equivalent to DF' = 0 by Theorem 6.1.3. This, in turn, implies that F' is constant,
hence F(z) = A for all z € S and some A € R"*1*, Thus, we have seen that (normal)
solutions correspond to elements in the standard fiber of the cotractor bundle.

Furthermore, we can consider the zero set Z of a normal solution o € I'(£(1)) of the
first BGG-equation. A normal solution o gives rise to a parallel section s € T'(T*) sat-
isfying mo(s) = o, where m is the projection as considered in section 5.3. The parallel
cotractor s corresponds to an element A € R"™*. Considering diagram (6.4), the homo-
geneous function of degree 1, which corresponds to the section o, is A, now interpreted as
a homogeneous function on the space of rays in R"*!. The zero set of this homogeneous
function is exactly the projectivization of the kernel of A (viewed as linear functional).
The kernel of A is an n—dimensional subspace in R"*! (as long as A # 0). Under the
projectivization 7 : C' — R™"! the kernel of )\ is mapped to an (n — 1)—dimensional
sphere, which is the equator of S™. This especially shows that Z is a hypersurface of S™.
In fact, it is a totally geodesic hypersurface, that is, for any vector v which is tangential
to Z, the great circle v in S™ with 4/(0) = v, stays in Z. This is certainly a projectively
invariant property of a hypersurface. Furthermore, it is a very nice feature, as knowing
the tangent space in a point of a totally geodesic hypersurface, already means that we
know the hypersurface locally around this point.



6. Interpretation on the Homogeneous Model

Similar results on the other tractor bundles follow immediately. The tractor bundle
is defined as the dual bundle of the cotractor bundle and carries the dual connection,
hence 7 = S™ x R™"! and the tractor connection is the trivial connection. By Lemma
5.3.2, every solution of the first BGG-equation is normal and therefore corresponds to
an element of R™*1,

In order to compute the zero set Z of a normal solution v* € I'(€%(—1)), we have to
compute the projection 7y : 7 — £%(—1) first. Via the identification 7 = S™ x R"*1, we
see that the bundle £(—1) — T is given by the tautological line bundle. By the short
exact sequence (4.13), the weighted tangent bundle £4(—1) is given by the quotient of 7
by £(—1). Therefore, given v € R™"! in the fiber over x € S™, the projection is given by
mo(v) = v 4+ Rzx. Consider a normal solution v* and its corresponding parallel tractor s,
which, in turn, is equivalent to an element v € R™*!. Via the projection 7, the section
v® corresponds to the function g(x) = v + Rz, for € S™. This function is zero if and
only if x € Ru, hence the zero set of g is given by Rv. Under the projectivization this is
mapped to a pair of antipodal points on the sphere S™.

For the symmetric power of the cotractor bundle, we obtain S?7* = S" x S2Rn+1*
and the tractor connection is trivial. Furthermore, we can see directly from the formulae
for D(o) and VL(0), that every solution is normal: Recall from (5.23) and (5.24) that
these are given by

VaL(0) = (3VaVVe)o + VaPe)o + Py Vo 5V, Vo + Pgo 0)

and
D(o) = %V(avbvc)o + V(anC)O’ + P(abVC)O‘.

Since we are working with a flat connection, we obtain that Py = 0 and B, = 0.
Therefore, V,V} is symmetric, which implies the vanishing of the second component of
VL(o). Also V,V;,V,. is symmetric in all three indices, which shows that D(c) = 0
implies VL(0) = 0. Therefore, we obtain that solutions of the first BGG-equation
correspond to elements of S?R™™1* hence bilinear forms on R"+1.

We can again consider the zero set Z of a normal solution o € I'(£(2)) of the first
BGG-equation. A normal solution o gives rise to a parallel section s € I'(S?7*), which,
in turn, corresponds to a bilinear form b on R"*!. A diagram similar to (6.4) shows that
the homogeneous function of degree 2, to which o corresponds, is given by the quadratic
form g(v) = b(v,v). The zero set Z of o is then given by the projectivization of the zero
set of ¢, which is a quadric. There are a lot of possibilies for the form of Z, but if ¢ is non-
degenerate, it is an embedded hypersurface. We consider some special cases. The case
of a positive definite bilinear form can be eliminated, as in this case, the corresponding
quadratic form does not have a zero set. Considering a quadratic form with Lorentzian
signature, its zero set defines a cone and the projectivization of this cone gives rise to
the union of two (n — 1)-dimensional spheres.

The symmetric power of the tractor bundle satisfies S?7 = S™ x S?R"*! and the
tractor connection is again trivial. As before, we can see from the defining equations,



6.2 Solutions of first BGG-Equations

that a solution of the first BGG-equation is normal. Recall from (5.30), that
D(7%) = Vo — 25(Var%)8." — 15 (Var™)da”. (6.9)
Furthermore, a calculation shows that

va,rbc o %H(veTceysab 1 (ve,rbe)é‘ac

pws
vaL(Tbc) = _%‘HVQVCTZ)C + m(vequ-e'f)dab )
S VA VA VR

n(n+1)

where we already omitted parts containing Pg,. Now if D(7%¢) = 0, then the first
component of V,L(7%) immediately vanishes. We now show, how the vanishing of the
first component implies the vanishes of the other components. We first want to show
V, V.7t = %(Vevfref)éab. Set pb = %HVET’”, then the vanishing of the curvature
Ru°4 (and the resulting vanishing of (84;) imply:
0 = VoVl =V, Vor™ (6.10)
= (Vap")8° + (Vap®)dp? = (Vup?)0a" — (Vip)da”.

Taking the trace over a and ¢, we obtain prd = %(Vepe)gbd and thus
VaVer" = (n+ 1)Vap” = 52V 5p7)da" = 5(VeV77)d0".

This implies the vanishing of the second component. We are left with showing that the
vanishing of (6.9) implies V,V,V.7% = 0. Set p = %VerTef, then again we have:
0 = V,VpVer® =V V, Ve
= (Vap)(sbc — (pr)éac.
Taking the trace over b and ¢ implies 0 = V,p = %VaVbVCTbC.

Therefore, we obtain that solutions correspond to elements of S2R"*!, hence bilinear
forms on R™*1*,
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Abstract (German)

Die vorliegende Arbeit beschéftigt sich mit projektiven Strukturen auf glatten Mannig-
faltigkeiten, d.h. mit Aquivalenzklassen torsionsfreier affiner Konnexionen, die die selben
unparametrisierten Geodéten definieren. In diesem Zusammenhang stellt sich zunédchst
die Frage, ob es in einer gegebenen Aquivalenzklasse Konnexionen gibt, die spezielle Ei-
genschaften haben. Von besonderem Interesse sind z.B. Konnexionen, die von Metriken
oder Einstein Metriken induziert werden. Des Weiteren interessiert man sich fiir Inva-
rianten der geometrischen Struktur, insbesondere fiir invariante Differentialoperatoren,
d.h. Differentialoperatoren, die fiir die projektive Struktur intrinsisch sind.

Wir behandeln diese Fragestellungen mit Hilfe des Traktorkalkiils, einem invarianten
Kalkiil fiir projektive Geometrien. Einer projektiven Struktur konnen natiirliche Vektor-
biindel zugeordnet werden, die eine invariante Konnexion besitzen. Diese Biindel heifien
Traktorbiindel und die zugehorigen Konnexionen Traktorkonnexion. Da es auf einer pro-
jektiven Mannigfaltigkeit keine ausgezeichnete Konnexion auf dem Tangentialbiindel gibt,
ist es natiirlich mit diesen Biindeln zu arbeiten.

Des Weiteren verwenden wir die Theorie der BGG-Sequenzen. Jede BGG-Sequenz
definiert eine Folge von invarianten Differentialoperatoren, wobei insbesondere die ersten
Operatoren dieser Folgen von Interesse sind. Bezeichnet D einen ersten BGG-Operator,
dann heifst die Gleichung Do = 0 erste BGG-Gleichung. Werden die BGG-Sequenzen
auf passende Traktorbiindel angewendet, so ist die Existenz von bestimmten Losungen
der ersten BGG-Gleichung dquivalent zur Existenz von Konnenxionen in der projektiven
Klasse, die spezielle Eigenschaften haben. Insbesondere werden wir daraus Bedingungen
fiir die Existenz von (pseudo-) Riemann’schen Metriken bzw. Riemann’schen Einstein
Metriken und Ricci-flachen Konnenxionen in der projektiven Klasse erhalten.

Als Anwendung werden Traktorbiindel, ihre Konnexionen und Lésungen der ersten
BGG-Gleichung auf dem homogenen Modell fiir orientierte projektive Strukturen disku-
tiert.
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