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Abstract

This thesis studies projective structures on smooth manifolds M , i.e. equivalence classes
of torsion-free a�ne connections onM , which induce the same unparametrised geodesics.
Questions, that arise naturally in this setting, are concerned with the existence of repre-
sentatives in the projective class, which have special properties. For example, one may
ask if a given projective structure can be represented by a connection coming from a
metric or an Einstein metric. Furthermore, the existence of invariants of the geometric
structure can be studied. In this setting, di�erential operators, which are intrinsic to the
projective structure, are of particular interest.

We treat these problems in the framework of tractor calculus, which is an invariant
calculus for projective structures. On a manifold endowed with a projective structure,
there is no distinguished connection on the tangent bundle. Nevertheless, there exist
natural vector bundles, called tractor bundles, which can be associated to any projective
structure and they carry an invariant connection, called tractor connection. Therefore,
it is natural to calculate with these bundles.

Furthermore, ideas from the general theory of BGG-sequences are used to approach
questions associated to projective structures. The BGG-sequence provides a sequence
of projectively invariant di�erential operators, where we are especially interested in the
�rst operators of sequences coming from certain tractor bundles. If D is a �rst BGG-
operator, then the equation Dσ = 0 is called �rst BGG-equation. For the tractor bundles
we consider, the existence of appropriate solutions of the �rst BGG-equation is equivalent
to the existence of special representatives in the projective class. In particular, we provide
conditions for the existence of (pseudo-) Riemannian metrics and Einstein metrics and
for Ricci �at connections in the projective class.

As an application, tractor bundles, their connections and solutions of the �rst BGG-
equation are discussed on the homogeneous model for oriented projective structures,
which is the sphere viewed as a homogeneous space of the special linear group.
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Chapter 1

Introduction

Originally, projective geometry goes back to E. Cartan and T. Thomas, but it has re-
cently attracted much interest. The de�ning data is a smooth manifold M equipped
with a projective structure, i.e. an equivalence class of torsion-free connections, whose
geodesics, viewed as unparametrised curves, coincide. Traditionally, the connection be-
tween projective geometry and Riemannian geometry is of great interest, but projective
geometry also plays a crucial role in the study of overdetermined systems of partial di�er-
ential equations. Furthermore, it provides an important example of a parabolic geometry
as well as for the BGG machinery.

Given a projective structure on a manifold, one may ask for representatives in the
equivalence class that have special properties. There is, for example, the classical prob-
lem of metrisability, which has been addressed by many authors. It is concerned with the
question of whether a given projective structure can be represented by the Levi-Civita
connection of a (pseudo-) Riemannian metric. Due to Mike² and Sinjukov [15, 16], the
existence of a Levi-Civita connection in the projective class is equivalent to the existence
of a positive de�nite solution of a certain overdetermined linear partial di�erential equa-
tion. Similarly, one may ask for Einstein metrics in a given projective class, compare
[12, 7].

Another question that naturally arises is concerned with the existence of invariant
di�erential operators, i.e. operators which are intrinsic to the projective structure. One
can try to construct �rst order operators directly, that is, without using any further
theory, and may succeed. But by raising the order, this becomes a rather di�cult task.
Nevertheless, the BGG machinery provides us with a general construction for a sequence
(called BGG-sequence) of invariant di�erential operators, compare [10].

This is actually closely related to the search of special representatives in the projective
class. Indeed, the overdetermined partial di�erential equation, which we addressed above,
is a special case of a �rst BGG-equation. This is an equation of the form Dσ = 0, where
D is an invariant di�erential operator arising as the �rst operator in a BGG-sequence.
Hence, the existence of an appropriate solution of a �rst BGG-equation Dσ = 0 is
equivalent to the existence of a Levi-Civita connection in the projective class.
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2 1. Introduction

The general theory of BGG-sequences provides a natural subclass of solutions, called
normal solutions. In [7] it is shown, that the existence of a positive de�nite normal
solution of a �rst BGG-equation Dσ = 0 (which is actually the same equation as above)
is equivalent to the existence of an Einstein metric in the projective class.

Most of the results we commented on here, strongly rely on an invariant calculus for
projective geometry, called tractor calculus. Given a projective structure, there is no
distinguished connection on the tangent bundle. Nevertheless, we can associate natural
vector bundles to a projective structure, which are equipped with invariant connections.
These are called tractor bundles and the resulting connections are called tractor connec-
tions.

As a matter of fact, tractor calculus was uniformly developed for all parabolic geome-
tries, see [4]. It can be constructed directly, that is, without using the Cartan connection
(which is a basic ingredient for a parabolic geometry). The Cartan bundle and connection
can however be regained from the tractor bundle and its connection.

This thesis is concerned with explicity calculating certain tractor bundles and their
connections for a given projective geometry. Furthermore, we give formulae for the in-
variant di�erential operators which arise from the BGG-sequence applied to these tractor
bundles. We provide conditions for the existence of Riemannian metrics, (pseudo-) Rie-
mannian Einstein metrics and Ricci-�at connections in a given projective class. As a �nal
part, these tractor bundles, their connections and (normal) solutions of the �rst BGG-
equation are interpreted on the sphere, which is the homogeneous model for oriented
projective structures.

Overview of the text

Chapter 2 is mainly concerned with �xing conventions and notations as well as recalling
basic facts on linear connections. A short introduction to abstract index notation is given,
which will be used extensively throughout the whole text. Besides the general theory
of linear connections on vector bundles, it is discussed how principal connection forms
on the linear frame bundle induce linear connections on the tangent bundle (which are
called a�ne connections). Furthermore, the homogeneous model of the Cartan geometry
describing a�ne connections is considered.

In chapter 3 projective structures on smooth manifolds are introduced as equivalence
classes of torsion-free connections that de�ne the same geodesics (as unparametrised
curves). An equivalent de�nition is presented, which is less geometric, but more useful
in practice. Similarities with terms and results of chapter 2 are pointed out throughout
this chapter, especially when discussing the model spaces for projective structures.

Tractor calculus is developed in chapter 4. We start by de�ning the cotractor bundle
and its tractor connection. The other tractor bundles are obtained by natural construc-
tions on the cotractor bundle: Dualising gives the tractor bundle with canonically the
dual connection, symmetrizing gives the symmetric power of the (co-) tractor bundle



3

with canonical induced connection. Furthermore, the curvatures of the obtained tractor
connections are computed. Also, we remark on how the Cartan bundle and connection
can be obtained from the tractor bundle and its connection.

In chapter 5 the main results are presented. Each tractor bundle considered in chapter
4 gives rise to a �rst, second or third order invariant di�erential operator, which is the
�rst operator in a BGG-sequence. These operators are constructed directly, i.e. without
using the theory of BGG-sequences. The resulting �rst BGG-equations provide condi-
tions for the existence of Ricci-�at connections (Theorem 5.3.1), Riemannian (Einstein)
metrics (Remark 5.3.1) and pseudo-Riemannian Einstein metrics (Theorem 5.3.2) in the
projective class.

Chapter 6 is dedicated to interpreting results from the last chapters on the homoge-
neous model for oriented projective structures, which is the sphere. We will show that
each tractor bundle is trivial and that it carries the trivial connection, i.e. all tractor
connections are trivial. Furthermore, in the case of the homogeneous model, all solution
of the �rst BGG-equations are normal. Normal solutions, in turn, correspond to elements
in the standard �ber of the tractor bundle considered.





Chapter 2

Preliminaries

2.1 Conventions and Abstract Index Notation

This thesis is founded on general concepts from di�erential geometry and Lie theory.
Therefore, the notions of smooth manifolds, di�eomorphisms, vector �elds, tensor �elds,
Lie groups, Lie algebras, etc. are used without further explanation. Moreover, the
theory of vector bundles, principal bundles and associated bundles is presumed. All of
these prerequisites are brie�y reviewed in [9, Section 1.2.]. A more detailed presentation
can be found in [14, Chapter 1-4].

The notation is also adopted from [9, Section 1.2.]. Thus, throughout this thesis, M
denotes a smooth manifold of dimension n ≥ 2. Its tangent respectively cotangent bundle
is denoted by TM respectively T ∗M . We write X(M) for the space of vector �elds on
M and Ωk(M) for the space of k−forms. If V is a vector space, then by Ωk(M,V ) we
denote the space of k−forms with values in V , by SkV the k−th symmetric power and
by ΛkV the k−th exterior power of V .

A �ber bundle is denoted by p : Y → M , its �ber over x ∈ M by Yx and the space
of smooth sections of Y by Γ(Y ). To indicate the type of a given bundle, we write
p : V → M for vector bundles and p : P → M for principal bundles. Given a principal
bundle p : P →M with structure group H and a smooth manifold S, which is endowed
with a left action H × S → S, the associated bundle to the principal bundle P with
standard �ber S is denoted by P ×H S.

We will also make use of abstract index notation. In this notation indices act as
labels to specify the kind of tensor we are working with. In particular, it gives rise to a
coordinate-free way of manipulating tensors. We give a brief introduction here.

A lower index indicates covariance of a given tensor with respect to that index, hence
ωj is a 1−form. Similarly an upper index indicates contravariance and thus ξi is a vector
�eld. Combining upper and lower indices, we can form any kind of tensor. For example,
a
(

1
1

)
−tensor �eld A is written as Aj i. Given a vector �eld ξ and a 1−form ω, their

tensor product ξ ⊗ ω is a
(

1
1

)
−tensor �eld. We write ξiωj for (ξ ⊗ ω)j

i, hence we omit

5



6 2. Preliminaries

the product sign. A
(

1
1

)
−tensor �eld A can be viewed as a map associating to each

x ∈ M an endomorphism of TxM . The trace or contraction of A is then given by the
trace of this endomorphism in each point x ∈ M . In abstract index notation the trace
of Aj i is indicated by Akk. There exists a canonical

(
1
1

)
−tensor �eld δj i, which, viewed

as an endomorphism, is given by the identity map. Thus δkk = n.

Indicating a contraction in abstract indices is especially useful for tensors that allow
more than one trace. For example, a tensor of the form Bij

k allows two di�erent traces,
which are written as Bkjk and Bikk. Note that taking a trace turns Bijk into a 1−form.
Furthermore, viewing a

(
1
1

)
−tensor �eld A as a map A : X(M)→ X(M) and evaluating

at a point ξ ∈ X(M) gives a vector �eld A(ξ)i, which in abstract index notation is written
as Aj iξj . Hence, the contraction in this case indicates the evaluation of A at ξ.

Now as an example, consider the curvature R of a linear connection (details on linear
connections and curvature can be found in the next section). The curvature is a map
R : X(M) × X(M) × X(M) → X(M) and we will see in the next section that it is
a
(

1
3

)
−tensor �eld. Therefore, in abstract index notation it can be written as R k

ij `

and using the paragraph above, we obtain (R(ξ, η)(ζ))k = R k
ij `ξ

iηjζ` for vector �elds
ξ, η, ζ ∈ X(M). Also the curvature R k

ij ` of a linear connection allows two di�erent
traces (note that it is antisymmetric in i and j) and Rj` = R k

kj ` is exactly the Ricci
curvature.

We introduce notation for the symmetric respectively the antisymmetric part of a
tensor. Parentheses around indices indicate the symmetrization of a given tensor. Thus

ω(i1···in) =
1

n!

∑
σ∈Sn

ωiσ(1)···iσ(n) .

Similarly we use square brackets for the antisymmetric part:

ω[i1···in] =
1

n!

∑
σ∈Sn

sgn(σ)ωiσ(1)···iσ(n) .

In this notation, an n−form is a tensor ωi1···in satisfying ωi1···in = ω[i1···in]. Note however,
that indices, which are not inside the brackets or appear on di�erent levels, are not part
of the symmetration respectively antisymmetration. Hence

ω(i
`ξj)k =

1

2
(ωi

`ξjk + ωj
`ξik).

In the case of bundles, there is a similar notation with abstract indices. Denote by
E the trivial bundle over M , by Ea the tangent bundle TM and by Ea the cotangent
bundle T ∗M . Tensor products of these bundles are indicated by iterating this notation.
For example, ⊗2TM is written as Eab. Similarly we write E(ab) respectively E [ab] for
S2(TM) respectively Λ2(TM).



2.2 Linear Connections 7

In the case a chart is chosen and we are working with explicit indices, we make use
of Einstein summation convention: An index appearing twice as a lower and an upper
index indicates summation over that index. Thus for example coordinate expressions of
the form ξ|U =

∑
i ξ
i∂i are written as ξ|U = ξi∂i.

2.2 Linear Connections

In this section, we recall basic de�nitions of linear connections on vector bundles. We �nd
a local representation of a linear connection and de�ne its curvature. When restricting
to the case of linear connections on the tangent bundle, we obtain a decomposition of
the curvature containing a trace-free component. In the �nal part of this section, we
remark on a construction, which induces linear connections on the tangent bundle from
connection forms on the linear frame bundle. The theory presented in this chapter can
be found in [9, Section 1.3], [1, Section 3.1] and [2, Chapter 3.2].

General Theory

A linear connection on a vector bundle V →M provides a concept of directional derivative
of sections of this bundle in the direction of vector �elds.

De�nition 2.2.1. A linear connection on a vector bundle V →M is a bilinear operator
∇ : X(M)× Γ(V)→ Γ(V), given by (ξ, s) 7→ ∇ξs, which additionally satis�es

∇fξs = f∇ξs

and
∇ξfs = (ξ · f)s+ f∇ξs,

for f ∈ C∞(M,R).

Thus a linear connection is a bilinear operator, which is tensorial in the �rst argument
and satis�es a Leibniz rule in the second argument.

On the trivial vector bundle V = M × V for V a vector space, a linear connection is
given by ∇ξs = ξ · s, for s ∈ Γ(V) = C∞(M,V ) and ξ ∈ X(M). This linear connection is
called the trivial connection on V.

Remark 2.2.1. 1. A linear connection ∇ on a vector bundle V → M induces linear
connections on its dual bundle as well as on tensor products. We will denote these
induced linear connections by the same symbol.

Let V∗ →M be the dual bundle of V. Then for σ ∈ Γ(V∗), ξ ∈ X(M) and s ∈ Γ(V)

(∇ξσ)(s) = ξ · (σ(s))− σ(∇ξs),

de�nes a linear connection on V∗.
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Similarly for V →M and W →M two vector bundles, there is an induced connec-
tion on V ⊗W →M given by

∇ξ(s⊗ t) = s⊗∇ξt+ (∇ξs)⊗ t,

for s ∈ Γ(V), t ∈ Γ(W) and ξ ∈ X(M). Of course this can be iterated to tensor
products of �nite size. Note that we used the same symbol for the linear connections
on V and W.

2. On every vector bundle V →M there exists a linear connection. In a vector bundle
chart, we can locally pull back the trivial connection and piece these locally de�ned
connections together by using a partition of unity to obtain a globally de�ned linear
connection on V.

Now we want to �nd a local description of a linear connection ∇. Let p : V → M
be a vector bundle of rank k, hence given a vector bundle atlas (Uα, φα), we have that
p−1(Uα) ∼= Uα × Rk. Consider a local frame {e1, . . . , ek} for Uα and write σ = σiei for
σ ∈ Γ(V) and σi : Uα → R smooth. Then for a vector �eld ξ ∈ X(M), on Uα we have:

∇ξσ = ∇ξσiei = (ξ · σi)ei + σi∇ξei.

De�nition 2.2.2. The curvature of a linear connection ∇ on V →M is de�ned as

R : X(M)× X(M)× Γ(V)→ Γ(V)

R(ξ, η)s = ∇ξ∇ηs−∇η∇ξs−∇[ξ,η]s

By de�nition the curvature is skew-symmetric in the �rst two arguments.

Lemma 2.2.1. The curvature is C∞(M,R)−linear in all three arguments. Thus R is a
section of Λ2T ∗M ⊗ L(V,V).

Proof. We show that it is C∞(M,R)−linear in the �rst and third argument. By skew
symmetry, the linearity in the second argument follows. Let f : M → R be a smooth
function, then

R(fξ, η)s = ∇fξ∇ηs−∇η∇fξs−∇[fξ,η]s

= f∇ξ∇ηs−∇ηf∇ξs−∇f [ξ,η]−(η·f)ξs

= f∇ξ∇ηs− ((η · f)∇ξs+ f∇η∇ξs)− (f∇[ξ,η]s− (η · f)∇ξs)
= fR(ξ, η)s
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and

R(ξ, η)fs = ∇ξ∇ηfs−∇η∇ξfs−∇[ξ,η]fs

= ∇ξ((η · f)s+ f∇ηs)−∇η((ξ · f)s+ f∇ξs)
−([ξ, η] · f + f∇[ξ,η]s)

= ξ · (η · f)s+ (η · f)∇ξs+ (ξ · f)∇ηs+ f∇ξ∇ηs
−(η · (ξ · f)s+ (ξ · f)∇ηs+ (η · f)∇ξs+ f∇η∇ξs)
−([ξ, η] · f + f∇[ξ,η])s

= fR(ξ, η)s.

Note that we used ξ · (η · f)− η · (ξ · f) = [ξ, η] · f .

A�ne Connections

Now consider a linear connection on the tangent bundle TM → M . Sections of this
bundle are simply given by vector �elds and thus De�nition 2.2.1 yields a bilinear operator
∇ : X(M)×X(M)→ X(M) satisfying the de�ning equations. Linear connections on the
tangent bundle are called a�ne connections on M .

The induced connection on T ∗M as in Remark 2.2.1 is then given by

(∇ξω)(η) = ξ · (ω(η))− ω(∇ξη),

for ω ∈ Γ(T ∗M) = Ω1(M) and ξ, η ∈ X(M).

In the case of a�ne connections, the local description can be expressed in terms of
the Christo�el symbols. Consider a chart (U, {x1, . . . , xn}) for M and vector �elds ξ, η ∈
X(M). Then locally on U we have ξ = ξi∂i and η = ηj∂j . Therefore we obtain

∇ξη|U = ξi
∂ηj

∂xi
∂j + ηjξiΓkij∂k,

for Γkij the Christo�el symbols, which are de�ned by ∇∂i∂j = Γkij∂k.

De�nition 2.2.3. The torsion of a linear connection ∇ on TM is de�ned as

Tor∇ : X(M)× X(M)→ X(M)

Tor∇(ξ, η) = ∇ξη −∇ηξ − [ξ, η].

The torsion is obviously skew-symmetric and it is C∞(M,R)−linear in both arguments:
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Let f be a smooth function M → R, then

Tor∇(fξ, η) = ∇fξη −∇ηfξ − [fξ, η]

= f∇ξη − (η · f)ξ − f∇ηξ − f [ξ, η] + (η · f)ξ

= fTor∇(ξ, η)

and by using the skew-symmetry of Tor∇, we obtain the result for the second argument.
Thus Tor∇ is a section of Λ2T ∗M ⊗ TM .

Lemma 2.2.2. Two linear connections ∇ and ∇̂ on TM have the same torsion if and
only if their di�erence tensor A(ξ, η) := ∇̂ξη −∇ξη is symmetric.

Proof. First of all note that A is indeed a tensor �eld: It is obviously C∞(M,R)−linear
in the �rst argument and since

A(ξ, fη) = ∇̂ξfη −∇ξfη
= (ξ · f)η + ∇̂ξη − ((ξ · f)η +∇ξη)

= fA(ξ, η),

it is also C∞(M,R)−linear in the second argument.

Now the following calculation proves the statement:

Tor∇(ξ, η) = Tor∇̂(ξ, η)

∇ξη −∇ηξ − [ξ, η] = ∇̂ξη − ∇̂ηξ − [ξ, η]

∇̂ηξ −∇ηξ = ∇̂ξη −∇ξη
A(η, ξ) = A(ξ, η).

De�nition 2.2.4. A linear connection ∇ on TM is called torsion-free, if Tor∇(ξ, η) = 0
for all vector �elds ξ, η ∈ X(M).

Given any linear connection ∇ on TM , we can always construct a torsion-free connec-
tion by de�ning ∇̂ξη := ∇ξη − 1

2Tor
∇(ξ, η). Then

Tor∇̂(ξ, η) = ∇̂ξη − ∇̂ηξ − [ξ, η]

= ∇ξη −
1

2
Tor∇(ξ, η)− (∇ηξ −

1

2
Tor∇(η, ξ))− [ξ, η]

= Tor∇(ξ, η)− 1

2
Tor∇(ξ, η) +

1

2
Tor∇(η, ξ)

= 0,

where we used that Tor∇ is skew-symmetric in the last line.
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We can view an a�ne connection as an operator acting on tensor �elds. Given a tensor
�eld t, then ∇t is a tensor �eld with covariance raised by one. For example, consider a
vector �eld ξ, which is a

(
1
0

)
− tensor �eld. Then ∇ξ is the

(
1
1

)
− tensor �eld given by

(∇ξ)(η) := ∇ηξ, for a vector �eld η. Moreover, we can consider ∇2t = ∇(∇t), which is
a tensor �eld with convariance raised by two. Inductively, we obtain that ∇rt is a tensor
�eld with covariance raised by r.

Lemma 2.2.3. Let ∇ be a torison-free linear connection on TM , then the curvature has
the form

R(ξ, η)ζ = (∇2ζ)(ξ, η)− (∇2ζ)(η, ξ),

for ξ, η, ζ ∈ X(M).

Proof. Since we are working with a torison-free connection, we have [ξ, η] = ∇ξη −∇ηξ
and thus

(∇2ζ)(ξ, η)− (∇2ζ)(η, ξ) = (∇ξ∇ηζ −∇∇ξηζ)− (∇η∇ξζ −∇∇ηξζ)

= ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ

= R(ξ, η)ζ

From now on all connections ∇ on the tangent bundle are assumed to be torsion-free
and thus Lemma 2.2.3 can be used as the de�nition of the curvature of ∇. In order to
decompose R it is easier to working with abstract indices. Therefore, we have to introduce
abstract index notation for linear connections and �x conventions for calculating. We
illustrate this on the example of a

(
1
1

)
− tensor �eld tj

i; it works analogously for any
kind of tensor �eld. Starting with tj i, then we have that ∇t is a

(
1
2

)
− tensor �eld and

thus has indices (∇t)kji. This is written as ∇ktj i. Iterating this notation, we obtain
(∇(∇t))k`ji = ∇k∇`tj i and more generally (∇rt)j1···jrk

i = ∇j1 · · · ∇jr tki.

When working with abstract indices, the order of the indices is not important, hence
ξiωj = ωjξ

i. However, this is not the case for terms containing linear connections. A
linear connection acts on everthing to its right, unless there are brackets. For example,

∇iξjωk = ξj∇iωk + ωk∇iξj = (∇iωk)ξj + (∇iξj)ωk.

Now we use abstract index notation to refomulate Lemma 2.2.3. Given vector �elds
ξi, ηj , ζ` ∈ X(M), we obtain

R k
ij `ξ

iηjζ` = ξiηj∇i∇jζk − ξiηj∇j∇iζk.

We can also omit ξi and ηj and simply write R k
ij `ζ

` = (∇i∇j −∇j∇i)ζk.



12 2. Preliminaries

Lemma 2.2.4. Given an a�ne connection ∇ with curvature R k
ij `. Then the curvature

of the induced connection on the cotangent bundle T ∗M is given by

(∇i∇j −∇j∇i)ω` = −R k
ij `ωk.

Proof. We use the following fact: (∇ξω)(ζ) = ξ · ω(ζ)− ω(∇ξζ). Thus

(∇ξ∇ηω)(ζ) = ξ · (∇ηω(ζ))− (∇ηω)(∇ξζ)

= ξ · (η · ω(ζ))− ξ · ω(∇ηζ)− (η · ω(∇ξζ)− ω(∇η∇ξζ))

Using this calculation as well as ξ · (η · ω(ζ))− η · (ξ · ω(ζ)) = [ξ, η] · ω(ζ) we obtain

(∇ξ∇ηω)(ζ)− (∇η∇ξω)(ζ)− (∇[ξ,η]ω)(ζ) = −ω(R(ξ, η)(ζ)),

which in abstract index notation is given by −R k
ij `ωkζ

`.

De�nition 2.2.5. Let ∇ be an a�ne connection with curvature R k
ij `. Then we de�ne

βij and the projective Schouten tensor Pij by

(n+ 1)βij = −2R[ij] and (n− 1)Pij = Rij + βij ,

where Rij = R k
ki j is the Ricci curvature.

From the de�nition we immediately see that βij is skew symmetric and that 2P[ij] =
−βij .

De�nition 2.2.6. Let ∇ be an a�ne connection with curvature R k
ij `. Then Weyl tensor

C k
ij ` is de�ned by the equation

R k
ij ` = C k

ij ` + 2δ[i
kPj]` + βijδ`

k.

Lemma 2.2.5. The Weyl tensor is totally trace-free, i.e. C k
kj ` = C k

ik ` = C k
ij k = 0.

Proof. There are three possible traces we can form. As R k
ij ` and βij are skew symmetric

in i and j and the de�ning equation for C k
ij ` is antisymmetrized in i and j in the part

containing Pj`, it su�ces to compute the trace in j and `.

C j
ij ` = R j

ij ` − 2δ[i
jPj]` − βijδ`j

= −Ri` − (Pi` − nPi`)− βi`
= −Ri` + (n− 1)Pi` − βi`
= 0

The Bianchi symmetry R k
[ij `] = 0 implies

R k
ij k = −R k

jk i −R k
ki j = Rji −Rij = (n+ 1)βij . (2.1)
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We use identity (2.1) to compute the trace of the Weyl tensor in `:

C k
ij k = R k

ij k − δikPjk − δjkPik − βijδkk

= (n+ 1)βij − Pji + Pij − nβij
= (n+ 1)βij − βij − nβij
= 0

Thus De�nition 2.2.6 gives a decomposition of the curvature into trace-free and trace
parts. For later purpose, we prove the following identities, which are based on the Bianchi
symmetry R k

[ij `] = 0 and the Bianchi identity ∇ R `
[i jk] m = 0. Details on these identities

can be found in [13, Chapter 7].

Lemma 2.2.6. Let ∇ be an a�ne connection with curvature R k
ij ` and consider the

decomposition of R k
ij ` as in De�nition 2.2.6. Then we have the following identities:

∇[iβjk] = 0 and ∇kC k
ij ` = 2(n− 2)∇[iPj]`.

Proof. Starting with the Bianchi identity ∇ R `
[i jk] m = 0 and taking the trace over j and

`, we obtain:

0 = ∇iR `
`k m −∇`R `

ik m −∇kR `
`i m

= ∇iRkm −∇`Rik`m −∇kRim,

where Rij = Rki
k
j denotes the Ricci curvature. Therefore, we obtain the following

identity for the Ricci curvature:

∇iRkm −∇kRim = ∇`R `
ik m. (2.2)

Now by De�nition 2.2.5, we have that (n+ 1)βij = −R[ij] and thus

(n+ 1)∇[iβjk] = −2∇[iRjk]

= 2((∇jRik −∇iRjk) + (∇iRkj −∇kRij) + (∇kRji −∇jRki))
= 2(∇`R `

ji k +∇`R `
ik j +∇`R `

kj i)

= 0,

where we used (2.2) in the second line and the Bianchi symmetry in the third line.

In order to prove the second statement, consider the decomposition of the curvature
of De�nition 2.2.6, apply the connection ∇ and antisymmetrize in the �rst three indices
to obtain:

0 = ∇ C `
[i jk] m +∇[iδj

`Pk]m −∇[iδk
`Pj]m.
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Here we already used the Bianchi identity and ∇[iβjk] = 0. Now taking the trace over i
and ` and using that the Weyl tensor is totally trace free, we get:

∇iC i
jk m −∇iC i

kj m = −2(∇jPkm − n∇jPkm +∇jPkm −∇kPjm −∇kPjm + n∇kPjm)

and since the Weyl tensor is antisymmetric in the �rst two indices, this gives

∇iC i
jk m = (n− 2)(∇jPkm −∇kPjm)

= 2(n− 2)∇[jPk]m.

Induced Linear Connections

A principal connection form on the linear frame bundle induces a linear connection on
the tangent bundle as well as on any associated bundle. The case of the tangent bundle
is very similar to what is presented in [2, Chapter 2.3], replacing the orthonormal frame
bundle by the linear frame bundle. Induced linear connections on associated bundles
from arbitrary principal bundles are discussed in [9, Section 1.3.4]. We give a short
description of these constructions.

The linear frame bundle p : P 1M → M consists of the �bers P 1
xM for x ∈ M , where

P 1
xM is the set of all linear isomorphisms Rn → TxM . There exists a smooth structure

on P 1
xM , which makes p : P 1M → M into a GL(n,R)−principal bundle. The principal

right action is given by composition from the right, hence

rA : P 1M → P 1M

rA(φ) = φ ◦A,

for A ∈ GL(n,R) and φ ∈ P 1M . Furthermore, the fact that we can put a smooth
structure on P 1M exactly means that local sections correspond to local frames.

Recall that on the linear frame bundle we have the fundamental vector �elds ζX ∈
X(P 1M), which are given by ζX(u) = d

dt |t=0r
exp tX(u) for X ∈ gl(n,R), u ∈ P 1M . A

principal connection form on P 1M is a one-form γ ∈ Ω1(P 1M, gl(n,R)) satisfying

γ(ζX) = X for X ∈ gl(n,R)

(rA)∗γ = conjA ◦ γ for A ∈ GL(n,R)
(2.3)

The second part of (2.3) should be understood as γ(u◦A)(Tur
A ·ξ) = A−1 ·γ(u)(ξ) ·A,

for u ∈ P 1M, ξ ∈ TuP 1M and A ∈ GL(n,R). Now any principal connection form on
P 1M induces a linear connection on TM via the notion of horizontal lifts.

If ξ ∈ X(M) is a vector �eld, then the horizontal lift is the unique vector �eld ξhor ∈
X(P 1M), satisfying Tp ◦ ξhor = ξ ◦ p and γ(ξhor) = 0. The linear connection on TM
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can be obtained by identifying vector �elds on M with GL(n,R)−equivariant functions
F : P 1M → Rn, where the equivariancy condition is given by

F (ϕ ◦A) = A−1F (ϕ) ∀A ∈ GL(n,R).

Denote the set of all equivariant functions by C∞(P 1M,Rn)GL(n,R). If η ∈ X(M) corre-
sponds to F ∈ C∞(P 1M,Rn)GL(n,R), then the vector �eld corresponding to the equiv-
ariant function ξhor · F : P 1M → Rn is ∇ξη. Here the dot denotes the directional
derivative.

Thus any principal connection on P 1M induces a linear connection on TM . Actually
there is a one-to-one correspondence between the set of linear connections on TM and
the set of principal connection forms on P 1M , see [9, Section 1.3.5].

For the case of vector bundles, which are associated bundles to P 1M , there is a sim-
ilar construction which induces linear connections on these bundles. Consider V =
P 1M ×GL(n,R) V , where V is a vector space. Sections σ of this bundle are in bijec-
tive correspondence to smooth maps f : P 1M → V , which are GL(n,R)−equivariant,
i.e. which satisfy f(ϕ ◦A) = A−1 · f(ϕ) for A ∈ GL(n,R). Here the dot on the right side
of the equation indicates the left action of GL(n,R) on V . For a proof of this fact see
[9, Proposition 1.2.7.].

If a section σ corresponds to f ∈ C∞(P 1M,V )GL(n,R), then ∇ξσ is the section corre-
sponding to ξhor · f : P 1M → V , see [9, Proposition 1.3.4.].

Note that the construction of the linear connection on the tangent bundle via a prin-
cipal connection on P 1M is actually a special case of the one of associated bundles to
P 1M . The associated bundle P 1M ×GL(n,R) Rn, where the left action of GL(n,R) on Rn
is given by multiplication from the left, can be identi�ed with the tangent bundle.

2.3 Geodesics

Geodesics of a linear connection on a manifold M provide an analog concept to straight
lines in Rn. The de�ning property of a straight line is the vanishing of its acceleration. In
order to de�ne geodesics we need an interpretation of the second derivative of curves on a
manifold. This is done by the notion of linear connections along curves. In the following
we will only recall basic properties of linear connections along curves and geodesics,
referencing [13, Chapter 4] for more detail.

De�nition 2.3.1. Let c : I →M be a smooth curve. A vector �eld along c is a smooth
map ξ : I → TM satisfying p ◦ ξ = c, i.e. such that ξ(t) ∈ Tc(t)M . Denote the set of all
vector �elds along c by Xc(M).

In this sense c′ : I → TM is a vector �eld along c.

Lemma 2.3.1. Let ∇ be a linear connection on TM and c : I → M a smooth curve.
Then there exists a unique linear operator ∇c′ : Xc(M) → Xc(M), such that for every
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vector �eld ξ along c and for every smooth function f : I → R we have

∇c′fξ = f ′ξ + f∇c′ξ. (2.4)

If furthermore φ : J → I is a reparametrisation, then

∇(c◦φ)′(c ◦ φ)′ = φ′′(c′ ◦ φ) + (φ′)2(∇c′c′) ◦ φ. (2.5)

The linear operator ∇c′ is called the linear connection along c induced by ∇.

Proof. Let t0 ∈ R and choose a chart (U, {x1, . . . , xn}) of M around c(t0). Write ∂i
for the vector �elds ∂

∂xi
. Then we have ξ = ξi∂i and ξ′ = (ξi)′∂i on c−1(U). Similarly

c′ = (ci)′∂i, where ci denote the components of c. De�ne the linear connection on c−1(U)
by

(∇c′ξ)|c−1(U) = ((ξk)′ + ξj(ci)′Γkij ◦ c)∂k. (2.6)

From the de�nition, it is obvious that locally ∇c′ is uniquely determined. In order to
show existence, we cover c(I) with charts and on each chart we de�ne ∇c′ by formula
(2.6). By uniqueness, these linear connections have to agree on intersections of di�erent
charts and thus we obtain a well-de�ned operator. Equation (2.6) obviously de�nes a
linear operator and satis�es (2.4):

∇c′fξ = (f ′ξk + f(ξk)′ + fξj(ci)′Γkij ◦ c)∂k
= f ′ξk∂k + f((ξk)′ + ξj(ci)′Γkij ◦ c)∂k
= f ′ξ + f∇c′ξ.

Now given a reparametrisation φ, then by the chain rule we have the following expressions
in coordinates:

(c ◦ φ)′ = (φ′((ci)′ ◦ φ))∂i and (c ◦ φ)′′ = ((φ′)2((ci)′′ ◦ φ) + φ′′((ci)′ ◦ φ))∂i.

The coordinate representation (2.6) of a linear connection along c gives (2.5):

∇(c◦φ)′(c ◦ φ)′ =φ′′((ck)′ ◦ φ)∂k

+ ((φ′)2((ck)′′ ◦ φ) + ((cj)′ ◦ φ)φ′((ci)′ ◦ φ)φ′Γkij(c ◦ φ))∂k

=φ′′((ck)′ ◦ φ)∂k

+ (φ′)2((((ck)′′ ◦ φ) + ((cj)′ ◦ φ)((ci)′ ◦ φ)Γkij(c ◦ φ))∂k)

=φ′′(c′ ◦ φ) + (φ′)2(∇c′c′) ◦ φ.

De�nition 2.3.2. Let ∇ be an a�ne connection on M . A smooth curve c : I → M is
called geodesic for ∇ if ∇c′c′ = 0.
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Working in a chart (U, {x1, . . . , xn}), the local representation of ∇c′c′ in Lemma 2.3.1
shows that a smooth curve c : I →M is a geodesic if and only if it satis�es the following
system of second-order ordinary di�erential equations on its components:

(ck)′′(t) + (ci)′(t)(cj)′(t)Γkij(c(t)) = 0. (2.7)

Remark 2.3.1. For every x ∈ M and every ξx ∈ TxM there exists a unique open
maximal interval I containing 0 and a geodesic c : I → M such that c(0) = x and
c′(0) = ξx. This can be deduced from the existence and uniqueness theorem of ODEs,
using the local equation (2.7). For details see [13, Theorem 4.10].

Lemma 2.3.2. Two linear connections ∇̂ and ∇ on TM have the same geodesics if and
only if their di�erence tensor A(ξ, η) = ∇̂ξη−∇ξη (see Lemma 2.2.2) is skew-symmetric.

Proof. First of all note that A is skew-symmetric if and only if A(ξ, ξ) = 0 for all ξ ∈
X(M). If A is skew-symmetric, then obviously A(ξ, ξ) = −A(ξ, ξ) and thus A(ξ, ξ) = 0.
On the other hand if A(ξ, ξ) = 0, then

0 = A(ξ + η, ξ + η) = A(ξ, ξ) +A(ξ, η) +A(η, ξ) +A(η, η) = A(ξ, η) +A(η, ξ),

for all ξ, η ∈ X(M) and thus A is skew-symmetric.

Now let c : I → M be a geodesic for ∇ and ∇̂. Then A(c′, c′) = 0 and since every
tangent vector occurs as the derivative of some geodesic, we obtain that A is skew-
symmetric. Conversely let A be skew-symmetric and c : I →M a geodesic for ∇. Then
∇̂c′c′ = A(c′, c′) +∇c′c′ = 0 and thus c is a geodesic for ∇̂. We can argue in exactly the
same way to show that every geodesic for ∇̂ is a geodesic for ∇.

Note that the change from a linear connection ∇ to a torsion-free connection ∇̂ as
stated after De�nition 2.2.4 doesn't change the geodesics: Their di�erence tensor is
given by A(ξ, η) = −1

2Tor
∇(ξ, η), which is skew-symmetric.

Lemma 2.3.3. Consider two linear connection ∇ and ∇̂ on TM . Then we have the
following equivalence:

∇̂ = ∇ ⇔ Tor∇ = Tor∇̂ and they have the same geodesics.

Proof. (⇒) is trivial. Conversely, by Lemma 2.2.2, the di�erence tensor A = ∇̂ − ∇ is
symmetric and by Lemma 2.3.2 it is skew-symmetric. Thus A = 0 and ∇̂ = ∇.

2.4 The Homogeneous Model for A�ne Connections

In this section we consider the homogeneous model for linear connections on the tangent
bundle. Recall from section 2.2, that a linear connection on the tangent bundle is equiva-
lent to a principal connection form on the linear frame bundle. We will understand in the
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end of this section, why the space we consider is exactly the homogeneous model. Fur-
thermore, we will �nd an invariant geometric structure on the considered homogeneous
space. The theory presented in this section can be found in [9, Section 1.3.5].

Consider a�ne n−space An, which as a set is given by An = Rn. An a�ne motion is
a map of the form v 7→ Av + b for A ∈ GL(n,R) and b ∈ Rn. The group of all a�ne
motions is denoted by A�(n,R). If we view An as the a�ne hyperplane x1 = 1 in Rn+1,
then A�(n,R) is the subgroup of GL(n + 1,R), which maps this a�ne hyperplane to
itself. Thus

A�(n,R) =

{(
1 0
b A

)
, A ∈ GL(n,R), b ∈ Rn

}
.

The group of a�ne motions acts on An and this action is transitive. Let v ∈ Rn with
v 6= 0. Then complete {v} to a basis B = {v, v2, . . . , vn} of Rn. Let A ∈ GL(n,R) be
the matrix whose columns are the elements of B. Then Ae1 = v and thus(

1 0
0 A

)(
1
e1

)
=

(
1
v

)
.

The isotropy subgroup of the �rst unit vector of Rn+1 is given by those elements in
A�(n,R) with b = 0 and is therefore isomorphic to GL(n,R). Thus we obtain a descrip-
tion of An as a homogeneous space: An = A�(n,R)/GL(n,R).

The natural projection p : A�(n,R) → An is a principal bundle with structure group
GL(n,R). This follows from a general fact of the quotient projection p : G → G/H:
Since p is a surjective submersion, there exist smooth local sections and any such local
section gives rise to a principal bundle chart, see [9, Section 1.2.6].

Now consider the Lie algebra of A�(n,R). It is given by

a(n,R) =

{(
0 0
X B

)
, B ∈ gl(n,R), X ∈ Rn

}
and therefore as vector spaces we have a(n,R) ∼= Rn ⊕ gl(n,R). The restriction of the
adjoint action Ad : A�(n,R) → GL(a(n,R)) to GL(n,R) is given by the direct sum of
the standard action on Rn and the adjoint action on gl(n,R). Indeed, the adjoint action
of A�(n,R) is given by matrix conjugation and thus

Ad
((1 0

0 A

))( 0 0
X B

)
=

(
1 0
0 A

)(
0 0
X B

)(
1 0
0 A−1

)
=

(
0 0
AX ABA−1

)
.

Furthermore, the splitting of a(n,R) is invariant under the action of GL(n,R).

Recall that on any Lie group G with Lie algebra g, we have the Maurer-Cartan form,
which gives a left-trivialisation of the tangent bundle. The Maurer-Cartan form is the
one-form ωMC ∈ Ω1(G, g) de�ned by ωMC(g)(ξ) = Tgλg−1(ξ), for g ∈ G, ξ ∈ TgG and
λg : G→ G the left multiplication with g. It has the following properties:
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1. ωMC(LX) = X, for LX the left-invariant vector �eld generated by X ∈ g,

2. (λg)
∗ωMC = ωMC ,

3. (ρg)∗ωMC = Ad(g−1) ◦ ωMC , for ρg : G → G the multiplication with g from the
right,

4. ωMC(g) : TgG→ g is a linear isomorphism for all g ∈ G and

5. the Maurer-Cartan equation

dωMC(ξ, η) + [ωMC(ξ), ωMC(η)] = 0,

for all ξ, η ∈ X(M).

See [9, Section 1.2.4] for more details and the proof of these properties.

Furthermore, given a Lie group G and a Lie subgroup H ⊂ G, there is the notion of a
Cartan geometry of type (G,H). It consists of an H−principal bundle p : P → M and
a g−valued one-form ω ∈ Ω1(P, g), called Cartan connection. The Cartan connection is
required to satisfy the following properties:

(ρh)∗ω = Ad(h−1) ◦ ω for all h ∈ H
ω(ζX(u)) = X ∀X ∈ h

ω(u) : TuP → g is a linear isomorphism for all u ∈ P.
(2.8)

These are the properties of the Maurer-Cartan form, which can be generalized to a
curved setting. The homogeneous model for a Cartan geometry of type (G,H) is the
homogeneous bundle p : G → G/H endowed with the Maurer-Cartan form ωMC ∈
Ω1(G, g). See [9, Chapter 1] for the general theory on Cartan geometries.

Now for the group of a�ne motions, we may split the Maurer-Cartan form ωMC ∈
Ω1(A�(n,R), a(n,R)) with respect to the decomposition of a(n,R), hence ωMC = θ+ γ,
for θ a one-form with values in Rn and γ a one-form with values in gl(n,R). Since ωMC is
equivariant with respect to the adjoint action of GL(n,R) (Property 3) and the splitting
is invariant under this action, we see that θ and γ are equivariant as well.

We will now identify p : A�(n,R)→ An with the linear frame bundle π : P 1An → An.
Therefore we need a smooth �ber bundle isomorphism, which is compatible with the
principal right action, hence a commutative diagram of the form:

A�(n,R)

#

φ //

p

��

P 1An

π

��
An

id

// An

,

such that φ(A ◦ g) = φ(A) ◦ g for A ∈ A�(n,R) and g ∈ GL(n,R). Denote by VA�(n,R)
the vertical bundle of the principal bundle p : A�(n,R) → An. Hence VAA�(n,R) :=
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ker(TAp). The vertical bundle is trivialized by the fundamental vector �elds, hence for
every ξ ∈ VAA�(n,R), there exists a unique X ∈ gl(n,R), such that ξ = ζX(A). Now
the fundamental vector �elds for the right multiplication are exactly the left-invariant
vector �elds, hence LX = ζX .

Claim 1. The vertical subspace VAA�(n,R) equals the kernel of θ(A) for every A ∈
A�(n,R).

Proof. Let ξ ∈ VAA�(n,R), then ξ = ζX(A) for some X ∈ gl(n,R). By property 1 of the
Maurer-Cartan form, we obtain that

ωMC(A)(ξ) = ωMC(A)(ζX(A)) = ωMC(A)(LX(A)) = X ∈ gl(n,R).

Therefore θ(A)(ξ) = 0 and ξ lies in the kernel of θ(A). By property 4, the map θ(A) has to
be surjective and thus ker(θ(A)) has dimension n2. Since p is a surjective submersion, we
have that TAA�(n,R)/VAA�(n,R) ∼= Tp(A)A

n and therefore VAA�(n,R) has dimension
n2 as well. Thus we see that these spaces are isomorphic.

This also shows, that θ(A) induces an injective linear map

TAA�(n,R)/VAA�(n,R) ∼= Tp(A)A
n → Rn,

which has to be an isomorphism, since both spaces have the same dimension. Thus we
can now de�ne the �ber bundle map which induces the identi�cation of A�(n,R) with
P 1An:

φ(A) = θ(A)−1 : Rn → Tp(A)A
n.

Obviously this covers the identity map and by property 3 of the Maurer-Cartan form it is
compatible with the principal right action. Thus we obtain an isomorphism of principal
bundles.

On the linear frame bundle there exists a canonical form θs ∈ Ω1(P 1M,Rn), called the
soldering form. It is de�ned by θs(u)(ξ) := u−1(Tuπ · ξ), for u ∈ P 1M and ξ ∈ TuP 1M
and satis�es (rg)∗θs = g−1 ◦ θs and θs(η) = 0 for every η a vertical vector �eld, i.e. a
vector �eld with values in the vertical bundle. Now via the morphism φ of principal
bundles, the soldering form is pulled back to the Rn− component of the Maurer-Cartan
form. Indeed, we have

φ∗θs(A)(ξ) = θs(φ(A))(TAφ · ξ) (2.9)

= φ(A)−1(Tφ(A)π · TAφ · ξ)
= θ(A)(TAπ ◦ φ · ξ)
= θ(A)(TAπ · ξ)

The one-form γ gives rise to a principal connection form on P 1An. By properties 1 and
2 of the Maurer-Cartan form, it satis�es the de�ning properties of a principal connection
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form (see Section 2.2). This connection form induces the canonical linear connection on
An.

We have seen, that the data de�ning a principal connection form on P 1An (and hence
a linear connection on TAn) is given by the principal bundle A�(n,R) → An with the
Maurer-Cartan form. Arguing similarly as before, one can show, that for a smooth
manifold M , any GL(n,R)−principal bundle p : P → M together with a one-form
ω ∈ Ω1(P, a(n,R)) satisfying the properties 1, 3 and 4 of the Maurer-Cartan form, is
isomorphic to the linear frame bundle π : P 1M →M and induces a principal connection
form via the splitting of a(n,R). Such a principal bundle is refered to as an a�ne
structure. Thus an a�ne structure induces a principal connection form on P 1M and
conversely any principal connection form γ on P 1M induces an a�ne structure, namely
the GL(n,R)−principal bundle p : P 1M →M with ω := θs+γ, where θs is the soldering
form.

Now we can understand, why A�(n,R)→ An is considered the homogeneous model for
linear connections. The Cartan geometry of type (A�(n,R), GL(n,R)) on an n− dimen-
sional manifoldM is an a�ne structure and therefore equivalent to a principal connection
form on P 1M (and hence to a linear connection on the tangent bundle). The homoge-
neous model for the Cartan geometry is exactly p : A�(n,R)→ A�(n,R)/GL(n,R).

A�ne motions are maps that preserve the geometric structure of An. We will see in
the next Lemma, that in order to preserve this structure, for a di�eomorphism it su�ces
to preserve the �at connection.

Lemma 2.4.1. The a�ne motions on Rn are exactly those di�eomorphisms of Rn, which
preserve the �at connection.

Proof. Consider an a�ne transformation f(x) = Ax + b for A ∈ GL(n,R) and b ∈ Rn.
Then we have to show that f∗∇ = ∇ hence f∗∇f∗ξf∗η = f∗(∇ξη) = ∇f∗ξf∗η for smooth
functions ξ, η : Rn → Rn. Note that (f∗ξ)(x) = A−1ξ(f(x)) and ∇ξη = Dξ ◦ η thus

∇f∗ξf∗η = ∇A−1◦ξ◦fA
−1 ◦ η ◦ f = D(A−1 ◦ ξ ◦ f) ◦A−1 ◦ η ◦ f

= A−1 ◦ (Dξ ◦ f) ◦ (η ◦ f) = A−1(∇ξη) ◦ f = f∗(∇ξη)

Conversely given a di�eomorphisms f : Rn → Rn, there is a unique lift f̃ : A�(n,R) →
A�(n,R) satisfying f∗θ = θ, for θ the Rn−component of the Maurer-Cartan form. This
is due to the fact, that any di�eomorphism on an arbitrary manifold M can be uniquely
lifted to the linear frame bundle such that this lift preserves the soldering form. Indeed,
the lift is given by f̃(u) = Tπ(u)f ◦u ∈ Tf(π(u))P

1M, for u ∈ P 1M . Via the identi�cation
φ : A�(n,R)→ P 1An, we obtain a unique lift f̃ : A�(n,R)→ A�(n,R) and since φ pulls
back the soldering form to θ (see (2.9)), f̃ preserves θ.

Since the �at connection ∇ on Rn is induced by the gl(n,R)−component γ of the
Maurer-Cartan form, we see that f preserves ∇ if and only if f̃ preserves γ. Thus
starting with a di�eomorphism f on Rn that preserves ∇, the unique lift f̃ preserves the
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Maurer-Cartan form, i.e. f̃∗ω = ω. By [9, Theorem 1.2.4], any two smooth maps f1, f2 :
A�(n,R) → A�(n,R) with f∗1ω = f∗2ω satisfy f2 = G ◦ f1 for a unique G ∈ A�(n,R).
Using this on f̃ and id, we obtain that f̃ is given by left multiplication with an element
G ∈ A�(n,R). If G =

(
1 0
b G̃

)
and A =

(
1 0
X Ã

)
, then

f(X) = p(f̃(A)) = p(GA) = G̃X + b

and thus f is an a�ne motion.

We will now show, that for a di�eomorphism on an arbitrary manifold M , preserv-
ing a torsion-free linear connection is equivalent to preserving the geodesics, viewed as
parametrised curves. Thus rephrasing Lemma 2.4.1, we obtain that a di�eomorphism
f : Rn → Rn preserves the geometric structure of An if and only if it preserves the
straight lines (hence the geodesics of the �at connection).

Lemma 2.4.2. A di�eomorphism f : M →M preserves a torsion-free connection if and
only if it preserves the geodesics, i.e. f∗∇ = ∇ for ∇ torsion-free ⇔ c is a geodesic for
∇ if and only if f ◦ c is a geodesic for ∇.

Proof. First of all note that f ◦ c is a geodesic for ∇ if and only if c is a geodesic for f∗∇.
This is due to the following equation:

f∗(∇(f◦c)′(f ◦ c)′) = f∗∇c′c′.

Thus we can rephrase the statement of the Lemma: f∗∇ = ∇ for ∇ torsion-free ⇔ ∇
and f∗∇ have the same geodesics. Furthermore since ∇ is torsion-free, so is f∗∇. This
follows from the following equation:

Torf
∗∇(ξ, η) = f∗Tor∇((f−1)∗ξ, (f−1)∗η).

Thus by Lemma 2.3.3, we obtain the result.

On the homogeneous space An = A�(n,R)/GL(n,R), we have found a geometric
structure, namely the family of straight lines, which is invariant under the action of
A�(n,R) and the elements of A�(n,R) are exactly those di�eomorphisms, which preserve
this structure.



Chapter 3

Projective Structures

3.1 Projective Equivalence

The concept of projective equivalence is motivated by weakening Lemma 2.3.3. This
Lemma states that two a�ne connections are equal if and only if they have the same
torsion and induce the same geodesics. Geodesics are parametrised curves, thus changing
the parametrisation of a geodesic will in general not lead to another geodesic. Now,
instead of considering parametrised geodesics, we look at the family of unparametrised
curves, which are de�ned by geodesics. This means that we have to study all a�ne
connections, which induce the same geodesics, regardless of the parametrisation. Any
two such a�ne connections are called projectively equivalent. Thus, on the basis of
Lemma 2.3.3, two a�ne connections are projectively equivalent if and only if they have
the same torsion and induce the same geodesics up to reparametrisation. Furthermore,
we get a similar result to Lemma 2.4.2: a di�eomorphism preserves projective equivalence
if and only if it preserves the geodesics, up to reparametrisation.

In this chapter we give the de�nition of a projective structure on an arbitrary manifold
M as well as basic properties. This can be found in [9, Section 4.1.5-4.1.6].

As stated after Lemma 2.3.2, changing an a�ne connection ∇ to a torsion-free con-
nection ∇̂ doesn't change the geodesics. When working with projective structures we
thus restrict to torsion-free a�ne connections.

De�nition 3.1.1. Two torsion-free a�ne connections ∇ and ∇̂ on M are called projec-
tively equivalent if they have the same geodesics up to reparametrisation.

This de�nes an equivalence relation on the set of a�ne connections onM and a choice
of an equivalence class is called a projective structure on M . We indicate a projective
structure onM by (M, [∇]). The following Lemma gives an easier approach to De�nition
3.1.1:

Lemma 3.1.1. A curve c : I → M is a geodesic of ∇ up to reparametrisation if and
only if ∇c′c′ = ac′, for some smooth function a : I → R.

23
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Proof. A curve c is a geodesic of ∇ up to reparametrisation if there exists a reparametri-
sation φ such that c ◦ φ is a geodesic of ∇. By (2.5), we have the following equation:

∇(c◦φ)′(c ◦ φ)′ = φ′′(c′ ◦ φ) + (φ′)2(∇c′c′) ◦ φ.

Therefore, if c ◦ φ is a geodesic for ∇, we obtain:

(∇c′c′) ◦ φ = − φ′′

(φ′)2
(c′ ◦ φ)

and hence ∇c′c′ is proportional to c′.

Conversely, suppose that a smooth curve c satis�es ∇c′c′ = ac′ for a smooth function
a : I → R. We have to show that there exists a reparametrisation φ such that c ◦ φ is a
geodesic for ∇. Using formula (2.5), we are looking for solutions to

(φ′)2(a ◦ φ)(c′ ◦ φ) + φ′′(c′ ◦ φ) = 0,

for given c and a. This is a second-order ordinary di�erential equation and thus by the
existence and uniqueness theorem of ODEs, there exists a unique solution.

Lemma 3.1.2. [9, Corollary 4.1.6] Consider two manifolds M and M̃ with projective
structures (M, [∇]) respectively (M̃, [∇̃]). Let f : M → M̃ be a local di�eomorphism.
Then f∗∇̃ is projectively equivalent to ∇ if and only if for every geodesic c : I → M of
∇ the curve f ◦ c is a geodesic up to reparametrisation for ∇̃.

A local di�eomorphism satisfying this property is called a morphism of projective
structures or a projective (local) di�eomorphism.

Proof. We �rst show that c is a geodesic up to reparametrisation for f∗∇̃ if and only if
f ◦ c is a geodesic up to reparametrisation for ∇̃. This is established via the equation

f∗(∇̃(f◦c)′(f ◦ c)′) = f∗∇̃c′c′.

Suppose f∗∇̃ is projectively equivalent to ∇ and let c : I → M be a geodesic for ∇.
Then c is a geodesic for f∗∇̃ up to reparametrisation, hence f ◦ c is a geodesic up to
reparametrisation for ∇̃. Conversely if c is a geodesic for ∇, then f ◦c is a geodesic for ∇̃
up to reparametrisation and thus c is a geodesic up to reparametrisation for f∗∇̃. This
means that f∗∇̃ is projectively equivalent to ∇.

The following theorem gives an algebraic criterion for projective equivalence, which
will be used as the de�nition throughout the upcoming chapters.

Theorem 3.1.1. [9, Prop. 4.1.6.] Let ∇ and ∇̂ be two torsion-free a�ne connections
on M . Then ∇ and ∇̂ are projectively equivalent if and only if there exists a one-form
Υ ∈ Ω1(M) such that

∇̂ξη = ∇ξη + Υ(η)ξ + Υ(ξ)η, (3.1)
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for all vector �elds ξ, η ∈ X(M).

To abbreviate notation, we write ∇̂ = ∇+ Υ to express property (3.1).

Proof. We prove the statement of the Theorem using Lemma 3.1.1. Suppose that ∇ and
∇̂ satisfy property (3.1). Let c : I →M be a geodesic for ∇, then along c we get:

∇̂c′c′ = ∇c′c′ + Υ(c′)c′ + c′Υ(c′) = 2Υ(c′)c′

and thus c is a geodesic up to reparametrisation for ∇̂. This shows that ∇̂ and ∇ have
the same geodesics up to reparametrisation.

Conversely, suppose that ∇̂ and ∇ have the same geodesics up to reparametrisation.
We claim that there exists a smooth function b(ξ) : M → R such that

A(ξ, ξ) = b(ξ)ξ, (3.2)

for every vector �eld ξ ∈ X(M). Consider a geodesic c for ∇ satisfying c(0) = x and
c′(0) = ξ(x). Then ∇̂c′c′ = ac′, since c is a geodesic up to reparametrisation of ∇̂ and we
obtain Ax(ξ(x), ξ(x)) = a(0)c′(0) = a(0)ξ(x), where a depends smoothly on ξ(x). De�ne
b(ξ(x)) := a(0), then A(ξ, ξ) = b(ξ)ξ for b(ξ) : M → R. In the following we will show
that b is a 1−form.

Claim 2. The function b(ξ) : M → R as de�ned in (3.2), satis�es

b(tξ) = tb(ξ) and b(ξ + η) = b(ξ) + b(η),

for t ∈ R and ξ, η ∈ X(M). Furthermore, considered as a function b : X(M)→ C∞(M,R),
it is C∞(M,R)− linear and hence de�nes a 1−form.

For t ∈ R we have

b(tξ)tξ = A(tξ, tξ) = t2A(ξ, ξ) = tb(ξ)tξ

and thus b(tξ) = tb(ξ). Similarly it follows, that b is C∞(M,R)− linear.

Since ∇ and ∇̂ have the same torsion, their di�erence tensor A(ξ, η) = ∇̂ξη − ∇ξη
is symmetric, compare Lemma 2.2.2. We use symmetry and bilinearity of A as well as
equation (3.2) to show that b is additive:

b(ξ + η)(ξ + η) = A(ξ + η, ξ + η) (3.3)

= A(ξ, ξ) + 2A(ξ, η) +A(η, η)

= b(ξ)ξ + 2A(ξ, η) + b(η)η.

Now manipulating equation (3.3), we obtain:

2A(ξ, η) = (b(ξ + η)− b(ξ))ξ + (b(ξ + η)− b(η))η. (3.4)
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Since A is linear, we can use A(ξ, tη) = tA(ξ, η) to rewrite equation (3.4) and by assuming
that ξ and η are linearly independent as well as that t 6= 0, we get:

b(ξ + tη)− tb(η) = b(ξ + η)− b(η).

Thus letting t→ 0 shows that b is additive. This proves the claim.

Continuing with the proof of the Theorem, we use additivity of b in equation (3.4) to
obtain:

2A(ξ, η) = b(η)ξ + b(ξ)η.

Thus there exists a 1−form Υ, namely Υ = 1
2b, such that ∇̂ = ∇+ Υ.

3.2 Model Spaces for Projective Structures

In this section we discuss model spaces for projective structures. These spaces also act
as basic examples for the theory developed in the upcoming chapters, which is discussed
in chapter 6.

As a model space for projective structures we consider n−dimensional real projective
space. We �nd two projectively equivalent linear connections on real projective space. It
is however easier to approach the oriented model, which is given by the n−dimensional
sphere Sn. The sphere can be viewed as a homogeneous space of G = SL(n+ 1,R) and
we �nd a geometric structure, which is invariant under the action of G. Similarly to
the case of a�ne structures (see section 2.4), we will see in the following chapters, that
elements of G are exactly the di�eomorphisms which preserve this structure. Indeed, Sn

is the homogeneous model for the Cartan geometry, which describes oriented projective
structures. This is why Sn is referred to as the homogeneous model for oriented projective
structures.

The theory of this chapter can be found in [9, Section 1.1.3].

De�nition 3.2.1. Real projective space RPn is de�ned as the space of all lines through
0 in Rn+1.

Consider the following equivalence relation on C := Rn+1\0: x ∼ y if and only if there
exists a t ∈ R such that y = tx . Then real projective space can be equivalently de�ned
by RPn = C/ ∼. The equivalence class of x ∈ Rn+1 is denoted by [x] or [x1 : · · · : xn+1],
if we work with the components of x.

The action of R∗ = R\0 on Rn+1 given by multiplication, restricts to a free action on
C. Furthermore, the natural projection π : C → RPn is a surjective submersion and
the orbits of the action by R∗ are exactly the �bers of π. Thus by [14, Lemma 18.3],
π : C → RPn is a principal bundle with structure group R∗.

As a model space for projective structures, we consider RPn with the equivalence
class of the connection induced from the �at connection on Rn. We will show, that the
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geodesics of RPn induced by this connection are exactly the projective lines.

Consider the following chart for real projective space: Ui = {[x1 : · · · : xn+1] : xi 6= 0}
with di�eomorphisms ui : Ui → Fi = {x ∈ Rn+1 : xi = 1},

ui([x
1 : · · · : xn+1]) = (

x1

xi
, . . . , 1, . . . ,

xn
xi

).

Note that Fi is di�eomorphic to Rn and that the inverse map of ui is given by

u−1
i (x1, . . . , 1, . . . , xn+1) = [x1 : · · · : xn+1].

Now on Fi we have the �at connection induced by the di�eomorphism Fi ∼= Rn. Via ui
we can locally pull back this connection to a �at linear connection on RPn. Geodesics
on Fi are given by a�ne lines. Every a�ne line in Fi spans a 2−dimensional linear
subspace of Rn+1. Conversely, every 2−dimensional linear subspace de�nes an a�ne line
by intersecting with Fi. By projecting the 2−dimensional subspace de�ned by an a�ne
line to real projective space, we obtain a projective line. Thus the �at connection on Rn
induces a linear connection on RPn, whose geodesics are exactly the projective lines.

Another linear connection on RPn, which has the projective lines as geodesics, is in-
duced by the Levi-Civita connection on Sn. Identifying antipodal points on Sn generates
a free group action of Z2 on Sn by isometries. The orbit space of this action is then given
by RPn and thus p : Sn → RPn is a two-fold covering. By projecting the great circles,
we obtain the geodesics of the induced linear connection on RPn. A great circle is given
by the intersection of a 2−dimensional linear subspace with the sphere. Identifying a
pair of antipodal points of a great circle with the line through these points, this line lies
in a 2−dimensional linear subspace of Rn+1. Thus the projection of a great circle gives
the set of all lines in a 2−dimensional subspace and hence a projective line. Thus the
Levi-Civita connection of Sn induces a linear connection on RPn, whose geodesics are
exactly the projective lines.

We have seen, that the �at connection on Rn and the (non-�at) Levi-Civita connection
on Sn, induce projectively equivalent connections on RPn. This is an instance of the
Beltrami-theorem, which states that the Levi-Civita connection of a Riemannian metric
is projectively �at, i.e. projectively equivalent to a �at connection, if and only if the
metric has constant sectional curvature.

Consider the space of rays in Rn+1. This can be de�ned by the equivalence relation
x ∼ y if and only if there exists a t > 0 such that y = tx on C = Rn+1\0. We identify
the space of rays with Sn: Every ray intersects Sn in exactly one point, namely the point
of the ray with length equal to 1. Conversely, every element of Sn certainly de�nes a ray
in Rn+1. As a projective structure we can consider (Sn, [∇]), where ∇ is the Levi-Civita
connection.

The natural projection π : C → Sn is a principal bundle with structure group R+:
Arguing as in the case of real projective space, we see that π is a surjective submersion
and the action of R+ restricts to a free action on C, such that the orbits of this action
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coincide with the �bers of π.

The standard action of G = SL(n,R) on Rn+1 induces a well-de�ned action on Sn: If
x ∼ y, then there exists a t > 0 such that y = tx. Hence Ay = tAx for A ∈ G and thus
Ay ∼ Ax.

The induced action on Sn is transitive. Let ` be a ray in Rn+1 through 0 and choose
v ∈ Rn+1 with [v] = `. Complete v to a basis B = {v, v1, . . . , vn} of Rn+1 and let A be
the matrix whose columns are exactly the vectors of B. If necessary rescale vn to obtain
that det(A) = 1. Now A ∈ G and Ae1 = v. Thus the action of G is transitive.

The stabilizer of the ray through the �rst basis vector is given by

P =

{(
det(A)−1 φ

0 A

)
: A ∈ GL(n,R) and det(A) > 0, φ ∈ Rn∗

}
.

If a matrix C stabilizes the ray through the �rst basis vector, it has to have the form

C =

(
a φ
0 A

)
,

for a ∈ R, φ ∈ Rn∗, A ∈ Mn(R) and a > 0. Since C ∈ G and det(C) = adet(A), we
have that adet(A) = 1. Thus A ∈ GL(n,R), a = det(A)−1 and a > 0 if and only if
det(A) > 0. Therefore we obtain Sn = G/P .

To �nd the geometric structure which is invariant under the action ofG, we consider the
family of great circles on Sn. They are given by intersections of Sn with 2−dimensional
linear subspaces of Rn+1. Obviously, G maps 2−dimensional subspaces to 2−dimensional
subspaces and thus restricting to Sn maps great circles to great circles. As remarked
above, we will see in section 4.3, that the converse is also true: every di�eomorphism of
Sn, which maps great circles to great circles is given by the action of an element of G.

3.3 Formulae

We can now make use of abstract index notation, as introduced in section 2.1 and re-
formulate the transformation law connected to a projective structure on a manifold. A
projective structure is given by an equivalence class of torsion-free a�ne connections on
M , where two a�ne connections ∇ and ∇̂ are equivalent if there exists a 1−form Υ such
that

∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ,

for η, ξ ∈ X(M), compare Theorem 3.1.1.

Recall from section 2.1, that δij is the
(

1
1

)
−tensor �eld, which, viewed as an endo-

morphism, is the identity map. Thus in abstract index notation we have

∇̂iηj = ∇iηj + Υiη
j + Υkη

kδi
j .
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We can compute the transformation for 1−forms ω as well by using (∇ξω)(η) =
ξ ·ω(η)−ω(∇ξη), which expresses the connection on T ∗M in terms of the connection on
TM .

(∇̂ξω)(η) = ξ · ω(η)− ω(∇̂ξη)

= ξ · ω(η)− ω(∇ξη + Υ(ξ)η + Υ(η)ξ)

= (∇ξω)(η)−Υ(ξ)ω(η)−Υ(η)ω(ξ).

Thus in abstract index notation the transformation is given by:

∇̂iωj = ∇iωj −Υiωj −Υjωi.

Now we have established the transformations for sections of the tangent respectively
cotangent bundle. Of course this can be iterated to powers of these bundles which is
stated in the next Lemma.

Lemma 3.3.1. By changing the connection in the projective class from ∇ to ∇̂ = ∇+Υ,
the induced connections on ⊗kTM respectively on ⊗kT ∗M transform as

∇̂aξb1···bk = ∇aξb1···bk + kΥaξ
b1···bk +

k∑
i=1

Υcξ
b1···bi−1cbi+1···bkδa

bi ,

respectively

∇̂aηb1···bk = ∇aηb1···bk − kΥaηb1···bk −
k∑
i=1

Υbiηb1···bi−1abi+1···bk .

Combining these, we obtain the following transformation for the induced connection on
(⊗kT ∗M)⊗ (⊗`TM):

∇̂aζb1···bk
c1···c` = ∇aζb1···bk

c1···c` + (`− k)Υaζb1···bk
c1···c`

+
∑̀
i=1

Υdζb1···bk
c1···ci−1dci+1···c`δa

ci −
k∑
j=1

Υbiζb1···bi−1abi+1···bk
c1···c` .

Proof. We prove the �rst part of this Lemma using induction on k. The second part is
proved analogously. The third part is obtained by combining these formulae.

Note that the induced connection on ⊗kTM,⊗kT ∗M and (⊗kT ∗M)⊗(⊗`TM) is given
by iterating the de�nitions given in Remark 2.2.1.

The case k = 1 is just the de�nition of projective equivalence. Suppose that the
formula is true for k− 1 and consider the tensor ξb1···bk−1 ⊗ ηbk on ⊗kTM . Then we get:

∇̂aξb1···bk−1 ⊗ ηbk = (∇̂aξb1···bk−1)ηbk + (ξb1···bk−1)∇̂aηbk .
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Now using the induction hypothesis we obtain:

∇̂aξb1···bk−1 ⊗ ηbk =

=(∇aξb1···bk−1 + (k − 1)Υaξ
b1···bk−1 +

k−1∑
i=1

Υcξ
b1···bi−1cbi+1···bk−1δa

bi)ηbk

+ (ξb1···bk−1)(∇aηbk + Υaη
bk + Υckη

ckδa
bk)

=∇aξb1···bk−1 ⊗ ηbk + kΥaξ
b1···bk−1 ⊗ ηbk +

k∑
i=1

Υcξ
b1···bi−1cbi+1···bk−1 ⊗ ηbkδabi .

In the case of k− forms respectively n−forms, due to skew symmetry, there are simpler
formulae available for the second part of Lemma 3.3.1:

Lemma 3.3.2. Let ηb1···bk ∈ Ωk(M) be a k−form and νb1···bn ∈ Ωn(M) an n−form. If
we change the connection within the projective class from ∇ to ∇̂ = ∇ + Υ, then we
obtain the following formulae:

∇̂aηb1···bk = ∇aηb1···bk − (k + 1)Υaηb1···bk + (k + 1)Υ[aηb1...bk]

and
∇̂aνb1···bn = ∇aνb1···bn − (n+ 1)Υaνb1···bn .

Proof. To prove the �rst statement, we are going to work with the de�nition of the
antisymmetric part of a tensor, see section 2.1. This involves permutations and in order
to make notation more convenient, we replace the index a by b1. Thus we have to show
that

(k + 1)Υ[b1ηb2···bk+1] = Υb1ηb2···bk+1
−
k+1∑
i=2

Υbiηb2···bi−1b1bi+1···bk+1
.

Now starting with the left hand side and using the de�nition, we get:

(k + 1)Υ[b1ηb2···bk+1] =
1

k!

∑
σ∈Sk+1

sgn(σ)Υbσ(1)ηbσ(2)···bσ(k+1)
(3.4)

=
1

k!

k+1∑
j=1

∑
σ∈Sk+1,
σ(1)=j

sgn(σ)Υbjηbσ(2)···bσ(k+1)

In the last equation, we split a permutation σ ∈ Sk+1 into two parts, one containing Υ
and the other containing η, by �xing the value of σ(1) = j ∈ {1, . . . , k + 1}. The part
containing η is left with a bijective map σ̃ : {2, . . . , j, . . . , k + 1} → {1, . . . , j − 1, j +
1, . . . , k + 1}. Denote the set of all bijective maps {2, . . . , j, . . . , k + 1} → {1, . . . , j −
1, j + 1, . . . , k + 1} by B.
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Recall that given a permutation σ, an inversion is a pair (σ(i), σ(j)), satisfying j < i
and σ(j) > σ(i). The number of inversions in a permutation is denoted by inv(σ) and we
have that sgn(σ) = (−1)inv(σ). The notion of inversion also makes sense for elements of
B and therefore we get sgn(σ) = (−1)j−1(−1)inv(σ̃), since σ(1) = j adds (j−1) inversions
in σ. Thus (3.4) can be rewritten as

k+1∑
j=1

(−1)j−1Υbj

1

k!

∑
σ̃∈B

(−1)inv(σ̃)ηbσ̃(2)···bσ̃(k+1)
(3.5)

If σ(1) = 1, then in fact σ̃ is a permutation of {2, . . . , k + 1}. If σ(1) 6= 1, this is
not true. In this case we relabel the elements of {2, . . . , j, . . . , k + 1} to obtain the set
{1, . . . , j − 1, j + 1, . . . , k + 1}, hence all elements ≤ j are lowered by 1. Note that
this relabeling does not change the number of inversions of an element of B. Thus, an
element of B can be viewed as a bijection {1, . . . , j − 1, j + 1, . . . , k + 1} → {1, . . . , j −
1, j + 1, . . . , k + 1}. Furthermore, such a bijection is a permutation of k elements and
therefore we can continue with (3.5):

k+1∑
j=1

(−1)j−1Υbj

1

k!

∑
τ∈Sk

(−1)inv(τ)ηbτ(1)···bτ(j−1)bτ(j+1)···bτ(k+1)
(3.6)

=

k+1∑
j=1

(−1)j−1Υbjηb1···bj−1bj+1···bk+1

= Υb1ηb2···bk+1
−
k+1∑
j=2

Υbjηb2···bj−1b1bj+1···bk+1
,

where we used skew-symmetry of η in both lines.

Applying this formula to n−forms, we obtain

∇̂aνb1···bn = ∇aνb1···bn − (n+ 1)Υaνb1···bn + (n+ 1)Υ[aνb1···bn].

The last part of this equation is antisymmetrized in n+ 1 indices and thus has to vanish
on an n−dimensional manifold.

We now compute how the curvatures of projectively equivalent connections are re-
lated.

Lemma 3.3.3. If we change the connection in the equivalence class from∇ to ∇̂ = ∇+Υ,
the curvature transforms as

R̂ k
ij ` = R k

ij ` + 2Υ`Υ[jδi]
k + 2δ[j

k∇i]Υ` + 2δ`
k∇[iΥj].

Proof. By De�nition 2.2.2 we have R̂(ξ, η)ζ = ∇̂ξ∇̂ηζ − ∇̂η∇̂ξζ − ∇̂[ξ,η]ζ. We now
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compute the �rst part of this expression:

∇̂ξ∇̂ηζ = ∇̂ξ(∇ηζ + Υ(η)ζ + Υ(ζ)η)

= ∇̂ξ∇ηζ + Υ(η)∇̂ξζ + (ξ ·Υ(η))ζ + Υ(ζ)∇̂ξη + (ξ ·Υ(ζ))η

= ∇ξ∇ηζ + Υ(∇ηζ)ξ + Υ(ξ)∇ηζ + Υ(η)(∇ξζ + Υ(ξ)ζ + Υ(ζ)ξ)

+(ξ ·Υ(η))ζ + Υ(ζ)(∇ξη + Υ(ξ)η + Υ(η)ξ) + (ξ ·Υ(ζ))η.

By exchanging ξ and η in the above equation, we obtain the second part in the expression
for R̂. The third part is given by ∇̂[ξ,η]ζ = ∇[ξ,η]ζ + Υ([ξ, η])ζ + Υ(ζ)[ξ, η]. Now using
(∇ηΥ)(ζ) = (η ·Υ(ζ))−Υ(∇ηζ) as well as that ∇ is torsion-free, we obtain

R̂(ξ, η)ζ = R(ξ, η)ζ + Υ(η)Υ(ζ)ξ −Υ(ξ)Υ(ζ)η − (∇ηΥ)(ζ)ξ + (∇ξΥ)(ζ)η

+ (ξ ·Υ(η)− η ·Υ(ξ)−Υ([ξ, η]))ζ

Again using that ∇ is torsion-free, we rewrite Υ([ξ, η]) = Υ(∇ξη)−Υ(∇ηξ) and obtain

((∇ξΥ)(η)− (∇ηΥ)(ξ))ζ

for the last line of the equation. Rewriting this in index notation we get:

R̂ k
ij `ζ

` = R k
ij `ζ

` + ΥjΥ`ζ
`δi

k −ΥiΥ`ζ
`δj

k

−ζ`δik∇jΥ` + ζ`δj
k∇iΥ` + ζk∇iΥj − ζk∇jΥi.

By removing ζ and combining each antisymmetrized pair, we obtain the result.

Recall from section 2.2 that there is a decomposition of the curvature R k
ij ` containing

the trace-free Weyl tensor C k
ij ` . This decomposition is given by

R k
ij ` = C k

ij ` + 2δ[i
kPj]` + βijδ`

k,

with Pij and βij as in De�nition 2.2.5. Under change of connection the Weyl tensor is
invariant and the transformations of βij and Pij are stated in the next Lemma.

Lemma 3.3.4. If we change the connection in the equivalence class from ∇ to ∇̂, then
Cij

k
` is invariant and βij and Pij transform as

β̂ij = βij + 2∇[iΥj] and P̂ij = Pij −∇iΥj + ΥiΥj .

Proof. As both βij and Pij are de�ned via the Ricci tensor, we �rst compute the trans-
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formation of Rij by using Lemma 3.3.3.

R̂ij = R̂ k
ki j

= Rij + ΥiΥjδk
k −ΥkΥjδi

k −∇iΥjδk
k +∇kΥjδi

k +∇kΥiδj
k −∇iΥkδj

k

= Rij + nΥiΥj −ΥiΥj − n∇iΥj +∇iΥj +∇jΥi −∇iΥj

= Rij + (n− 1)ΥiΥj − n∇iΥj +∇jΥi.

Thus

− (n+ 1)β̂ij = R̂ij − R̂ji
= Rij −Rji − (n+ 1)∇iΥj + (n+ 1)∇jΥi

= −(n+ 1)(βij +∇iΥj −∇jΥi)

and

(n− 1)P̂ij = R̂ij + β̂ij

= Rij + βij + (n− 1)ΥiΥj − (n− 1)∇iΥj

= (n− 1)(Pij −∇iΥj + ΥiΥj),

which gives the result for βij and Pij . From Lemma 3.3.3, we see that the change of
the curvature contains only trace components. Therefore, the trace-free part has to be
invariant. To be on the safe side, we compute:

Ĉ k
ij ` = R̂ k

ij ` − 2δ[i
kP̂j]` − β̂ijδ`k

= R k
ij ` + ΥjΥ`δi

k −ΥiΥ`δj
k −∇jΥ`δi

k

+∇iΥ`δj
k +∇iΥjδ`

k −∇jΥiδ`
k

−δik(Pj` −∇jΥ` + ΥjΥ`) + δj
k(Pi` −∇iΥ` + ΥiΥ`)

−δ`k(βij +∇iΥj −∇jΥi)

= R k
ij ` − δikPj` + δj

kPi` − δ`kβij
= C k

ij ` .





Chapter 4

Tractor Bundles and Calculus

Tractor calculus is an invariant calculus for projective structures, or more generally, for
any parabolic geometry. It is based on natural vector bundles, called tractor bundles,
which admit a canonical linear connection, called tractor connection. These bundles and
connections can be associated to any parabolic geometry, compare [4].

In this chapter, we explicitely construct certain tractor bundles and their connections
for projective structures on manifolds. Furthermore, we show how the Cartan bundle and
Cartan connection can be regained from the tractor bundle and its connection. In chapter
5, we will then make use of tractor calculus to construct projectively invariant di�erential
operators, i.e. di�erential operators which are intrinsic to the projective structure.

4.1 Densities

In the following we want to de�ne the bundle E(ω) of densities of projective weight ω ∈ R.
This can be constructed by taking a certain power of the volume bundle. Details on the
volume bundle can be found in [14, Section 10], we give a brief introduction here.

On any (not necessarily oriented) manifoldM , there exists a line bundle, called volume
bundle, whose sections can be integrated. It is de�ned as the associated bundle to the
linear frame bundle P 1M →M with standard �ber R, where the left action of GL(n,R)
on R is given by

A · t = |detA|−1t.

We denote this bundle by Vol(M) and its sections are called densities. It follows that
this bundle is trivial, but there is no canonical trivialisation, see [14, Lemma 10.2.]. In the
special case of an oriented manifold, Vol(M) can be identi�ed with ΛnT ∗M . Similarly,
for p ∈ R we can de�ne the bundle Volp(M) by changing the action of GL(n,R) on R
to

A · t = |detA|−pt.

Note that the dual bundle to Volp(M) is Vol−p(M).

35
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De�nition 4.1.1. The bundle E(ω) is de�ned as E(ω) = Vol−
ω
n+1 (M). Sections of this

bundle are called densities of projective weight ω.

Note that E(0) is the trivial bundle M × R → M . Given an arbitrary bundle V we
write V(ω) for V ⊗ E(ω). Thus using the notation introduced in chapter 2.1, we write
Ea(ω) for T ∗M ⊗ E(ω) and Ea(ω) for TM ⊗ E(ω).

Since E(ω) is an associated bundle to the linear frame bundle, by choosing an a�ne
connection on the manifold M , we obtain an induced connection on E(ω), see section
2.2. We will denote the induced connection by the same symbol.

Recall from section 2.2, that any a�ne connection ∇ on M de�nes a curvature R k
ij `,

which can be decomposed in trace and trace-free components:

R k
ij ` = C k

ij ` + 2δ[i
kPj]` + βijδ`

k. (4.1)

Given an associated bundle to a principal frame bundle, its curvature can be calculated
using the last part of [9, Proposition 1.3.4.]. We now calculate the curvature of the
induced connection on E(ω).

Lemma 4.1.1. Let ∇ be an a�ne connection on M with curvature R k
ij ` and decompo-

sition (4.1). Then the curvature of the induced connection on E(ω) is given by ωβab.

Proof. The de�ning property of the curvature κ of the induced connection is

∇ξ∇ησ −∇η∇ξσ −∇[ξ,η]σ = κ(ξ, η)σ,

for σ a section of E(ω). By [9, Proposition 1.3.4.] this section corresponds to the equiv-
ariant function λ′(R(ξhor, ηhor))◦f , where f is the equivariant function corresponding to
σ and λ′ is the Lie algebra representation of the associated bundle E(ω). By De�nition
4.1.1, the representation λ of GL(n,R) on R is given by

λ(A) = (t 7→ |det(A)|
ω
n+1 t).

Thus the Lie algebra representation corresponding to λ is given by its derivative. Since
TIdet(B) = tr(B), we obtain that

λ′(X) = (t 7→ ω

n+ 1
tr(X)t),

for X ∈ gl(n,R) and t ∈ R. Thus we have to take the trace in k and ` of Rijk`. Using
De�nition 2.2.5, we obtain

R k
ij k = (n+ 1)βij .

Thus the curvature κab on E(ω) is given by ωβab.
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Induced Connections on Densities

In this section we compute the change of the induced connection on E(ω) within a
projective class. For later purpose we also calculate the transformation for products
of the form ⊗kT ∗M ⊗ E(ω), ⊗`TM ⊗ E(ω) and (⊗kT ∗M)⊗ (⊗`TM)⊗ E(ω).

Theorem 4.1.1. If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ
on M , the induced connection on E(ω) transforms via

∇̂aσ = ∇aσ + ωΥaσ.

Proof. This proof uses basic facts on linear connections on the linear frame bundle
P 1M → M , which we have partly discussed in section 2.2. We sketch the construc-
tions needed here, again referencing [2, Chapter 2.3.] for more detail.

The linear frame bundle p : P 1M → M is a GL(n,R)−principal bundle. A principal
connection form on P 1M is given by γ ∈ Ω1(P 1M, gl(n,R)) satisfying certain properties,
see Remark 2.2. Any two principal connection forms are related via

γ̂ji = γji +
n∑
k=1

Ψ j
ki θ

k,

where θk denotes the soldering form. Here Ψ j
ki may be interpreted as a function Ψ :

X(M)×X(M)→ X(M), where the index k represents the �rst argument and i and j the
endomorphism.

Via the principal connection form we can lift vector �elds of M horizontally to P 1M .
Two horizontal lifts coming from di�erent connection forms are related via

ξ̂hor = ξhor − ζΨ(ξ,−),

where ζX denotes the fundamental vector �eld generated by X.

The linear connection on any associated bundle to P 1M can be obtained by identifying
section of this bundle with GL(n,R)−equivariant functions. We are interested in the
case of E(ω), which is an associated bundle to P 1M , see De�nition 4.1.1. Sections σ
of this bundle are in bijective correspondence to smooth maps f : P 1M → R, which
are GL(n,R)−equivariant, i.e. which satisfy f(ϕ ◦ A) = | det(A)|−

ω
n+1 f(ϕ) for A ∈

GL(n,R). If a section σ corresponds to f ∈ C∞(P 1M,R)GL(n,R), then ∇ξσ is the section
corresponding to the GL(n,R)−equivariant function ξhor · f : P 1M → R. Now we have
the basic information to prove the Theorem.

Let σ be a section of E(ω), we want to compute ∇̂ξσ − ∇ξσ. In the projective class
we have the transformation

∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ,
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so any two connections di�er by Ψ(ξ, η) = Υ(ξ)η + Υ(η)ξ. Thus, as stated above, the
horizontal lifts of any vector �eld ξ di�er by −ζΨ(ξ,−). Let f : P 1M → R be the
GL(n,R)−equivariant function corresponding to σ. Then ∇̂ξσ − ∇ξσ is the section
corresponding to

ξ̂hor · f − ξhor · f,

which is given by −ζΨ(ξ,−) · f . So �rst we have to compute the directional derivative of
the fundamental vector �eld on equivariant functions.

Claim 3. The directional derivative of the fundamental vector �eld of a GL(n,R)−
equivariant function f is given by

ζA · f = −A · f,

where A ∈ gl(n,R) and the second dot denots the Lie algebra action.

This is the in�tesimal equivariancy. The fundamental vector �eld is de�ned by ζA(ϕ) =
d
dt |t=0ϕ · exp(tA), for ϕ ∈ P 1M . Then

(ζA · f)(ϕ) = Tϕf · ζA

=
d

dt
|t=0f(ϕ · exp(tA))

=
d

dt
|t=0exp(tA)−1 · f(ϕ) =

d

dt
|t=0exp(−tA) · f(ϕ)

= −A · f(ϕ),

where we used the equivariancy of f in the third line. This proves the claim.

We now continue with the proof of the Theorem. In Lemma 4.1.1 we already computed
the Lie algebra action on R; it is given by

X · t =
ω

n+ 1
tr(X)t,

for X ∈ gl(n,R). So until now we have found that ∇̂ξσ − ∇ξσ is given by the section,
which corresponds to the equivariant function

ω

n+ 1
tr(Ψ(ξ,−))f.

At this point it is easier to compute with abstract indices. Since Ψ(ξ, η) = Υ(ξ)η+Υ(η)ξ,
we �nd that

Ψ j
ki = δi

jΥk + δk
jΥi.

Now the index k corresponds to ξ and thus tr(Ψ(ξ,−)) is the trace over i and j. This
is given by δa

aΥk + δk
aΥa = (n + 1)Υk. In abstract index notation, we have that

∇̂kσ − ∇kσ corresponds to the section given by ωΥkf , which simply is ωΥkσ, again
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using [9, Proposition 1.2.7.]. Thus we obtain

∇̂kσ = ∇kσ + ωΥkσ.

In order to compute transformations on tensor bundles as stated at the beginning of
the section, we use the transformations proved in Lemma 3.3.1.

Lemma 4.1.2. By changing the connection in the projective class from ∇ to ∇̂ = ∇+Υ,
the induced connections on ⊗kTM ⊗E(ω) respectively on ⊗kT ∗M ⊗E(ω) transform via

∇̂aξb1···bk = ∇aξb1···bk + (ω + k)Υaξ
b1···bk +

k∑
i=1

Υcξ
b1···bi−1cbi+1···bkδa

bi ,

respectively

∇̂aηb1···bk = ∇aηb1···bk + (ω − k)Υaηb1···bk −
k∑
i=1

Υbiηb1···bi−1abi+1···bk .

Combining these, we obtain the following transformation for the induced connection on
(⊗kT ∗M)⊗ (⊗`TM)⊗ E(ω):

∇̂aζb1···bk
c1···c` = ∇aζb1···bk

c1···c` + (`− k + ω)Υaζb1···bk
c1···c`

+
∑̀
i=1

Υdζb1···bk
c1···ci−1dci+1···c`δa

ci −
k∑
j=1

Υbiζb1···bi−1abi+1···bk
c1···c` .

Proof. We use the induced connection on ⊗kT ∗M⊗E(ω) on tensors of the form ξb1···bk⊗σ,
hence∇a(ξb1···bk⊗σ) = ξb1···bk⊗∇aσ+(∇aξb1···bk)⊗σ. Then by using the transformations
established in Lemma 3.3.1 and Theorem 4.1.1, we obtain the result. An analogous
argument proves the other statements.

Lemma 4.1.3. Given a nowhere vanishing section of E(ω) with ω 6= 0, then there is a
unique connection in the projective class, for which this section is parallel.

Proof. In order to show existence, let σ be a nowhere vanishing section of E(ω) and ∇ a
connection on M . De�ne ∇̂ = ∇+ Υ with Υ = − 1

ωσ
−1∇σ. Then

∇̂aσ = ∇aσ + ωΥaσ (4.2)

= ∇aσ − (σ−1∇aσ)σ

= 0
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Now suppose ∇ and ∇̂ are two equivalent connections, for which σ is parallel. Then
∇̂aσ = ∇aσ + ωΥaσ and thus 0 = ωΥaσ. Since σ 6= 0 and ω 6= 0 by assumption, we
obtain Υa = 0 and thus ∇̂ = ∇.

Remark 4.1.1. Since E(ω) is a trivial bundle, there always exists a nowhere vanishing
section. A nowhere vanishing section is called a scale and the resulting connection is
called the connection determined by that scale. If ∇ is a connection determined by a
scale σ and ω 6= 0, then βab has to vanish. Let ξ, η ∈ X(M) be two vector �elds, then by
Lemma 4.1.1 we have

(∇ξ∇η −∇η∇ξ −∇[ξ,η])σ = ωβ(ξ, η)σ

and since σ is parallel, the left hand side vanishes and therefore βab = 0. Thus we always
�nd a connection in the projective class, such that βab vanishes.

Lemma 4.1.4. The following statements for an a�ne connection ∇ onM are equivalent:

1. The Ricci curvature Rab is symmetric

2. Pab is symmetric

3. βab = 0

4. ∇ induces a �at connection on E(ω)

If a connection is determined by a scale, then it satis�es (1-4) and locally, the converse
is also true.

Proof. Certainly Rab is symmetric if and only if βab = 0, by De�nition 2.2.5. Also Pab is
symmetric if and only if βab = 0. The curvature on E(ω) is given by ωβab and thus ∇ on
E(ω) is �at if and only if βab = 0. This established the equivalence of (1)-(4).

Given a connection, which is determined by a scale, then we have seen in Remark
4.1.1, that βab = 0. Conversely, if the induced connection on E(ω) is �at, then locally it
admits a nowhere vanishing parallel section.

4.2 The Cotractor Bundle

In this section we want to de�ne the cotractor bundle as the �rst jet prolongation of the
density bundle E(1). Therefore, we brie�y introduce jet bundles, referencing [14, Section
21] for more details.

The aim of jets is to provide a coordinate-free version of Taylor expansions of smooth
functions de�ned on manifolds and smooth sections of �ber bundles.

Consider two smooth manifoldsM and N as well as a point x ∈M . Then two smooth
maps f, g : M → N have the same k−jet at x, if f(x) = g(x) and their partial derivatives
at x up to order k in some local chart (or equivalently all local charts) around x and
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f(x) coincide. In this case we write jkxf = jkxg. Having the same k−jet at x de�nes an
equivalence relation and the set of all such equivalence classes is denoted by Jkx (M,N).
We then de�ne Jk(M,N) :=

⊔
x∈M Jkx (M,N). This set is also called the space of k−jets

of smooth maps from M to N .

There are some natural projections on Jk(M,N). Consider πM : Jk(M,N)→M given
by jkxf 7→ x and πN : Jk(M,N)→ N given by jkxf 7→ f(x). Combining these projections,
we also obtain πM×πN : Jk(M,N)→M×N, jkxf 7→ (x, f(x)). Charts onM and N give
rise to charts on Jk(M,N), which make Jk(M,N) into a smooth manifold, such that the
considered projections are also smooth. Furthermore, πM × πN : Jk(M,N)→M ×N is
a �ber bundle, see [14, Theorem 21.5.].

Given a �ber bundle p : Y → M , we write Jk(Y → M) or Jk(Y ) to indicate the
subset of Jk(M,Y ), given by all jets of local sections of p. A smooth section σ ∈ Γ(Y )
induces a smooth section of Jk(Y ) by jkσ : M → Jk(Y ), x 7→ jkxσ.

De�nition 4.2.1. The cotractor bundle T ∗ is de�ned as the bundle of 1−jets of sections
of E(1), hence T ∗ = J1E(1).

Theorem 4.2.1. There is a short exact sequence of vector bundles given by

0→ T ∗M ⊗ E(1)→ T ∗ → E(1)→ 0 (4.3)

By choosing a connection∇ onM , we obtain an isomorphism T ∗ ∼=∇ (T ∗M⊗E(1))⊕E(1).

Proof. We have the natural projection p : J1E(1) → E(1) given by j1
xσ 7→ σ(x). The

�berwise kernel of this projection may be identi�ed with T ∗xM ⊗ Ex(1), by choosing a
connection ∇ and mapping j1

xσ in the kernel to ∇σ(x). We can use a local description of
∇σ(x), to see that this map is well-de�ned and independent of the choice of connection
∇ on M .

Recall from section 2.2, that we have a local description of∇ using a vector bundle atlas
(Uα, φα). Locally on Uα we can write σ = σiei for {ei} a local frame and σi : Uα → R
smooth. Then for a vector �eld ξ ∈ X(M), on Uα we obtain:

∇ξσ = ∇ξσiei = (ξ · σi)ei + σi∇ξei.

So we conclude that ∇σ(x) only depends on σ(x) and its derivatives up to �rst order,
hence only depends on j1

xσ. Also two connections only di�er in the part σi∇ξei. If j1
xσ is

in the kernel of p, then σ(x) = 0, hence this part vanishes. Thus this map is independent
of the choice of connection on M .

This gives a linear isomorphism on the �bers and thus a vector bundle isomorphism
ker(p) ∼= T ∗M ⊗ E(1).

To prove the second statement, choose a connection ∇ on M and de�ne a map l :
J1
xE(1)→ T ∗xM ⊗ Ex(1) by j1

xσ 7→ ∇σ(x). This map of course depends on the choice of
connection, but de�nes a left inverse map to the inclusion of kerx(p) to J1

xE(1). Thus
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the sequence splits and we obtain an isomorphism J1
xE(1) ∼=∇ (T ∗xM ⊗Ex(1))⊕Ex(1) on

the �bers, which again gives rise to an isomorphism on the vector bundles.

Remark 4.2.1. To summerize the composition structure (4.3), we write
T ∗ = Ea(1) +

��E(1), where Ea(1) denotes T ∗M ⊗E(1) as de�ned in section 4.1.1. This, of
course, is valid without the choice of a connection.

We now �x a projective structure (M, [∇]) and via the isomorphism T ∗ ∼=∇ Ea(1)⊕E(1)
we identify elements of T ∗ with pairs (µa, σ).

Corollary 4.2.1. If an element of T ∗ splits as (µa, σ) with respect to ∇ on M , then by
changing the connection within the projective class to ∇̂ = ∇+ Υ, the splitting changes
according to

(̂µa, σ) = (µa + Υaσ, σ).

Proof. Under change of connection the isomorphism J1E(1) ∼=∇̂ (T ∗M ⊗ E(1))⊕ E(1) is
given by j1

xσ 7→ (∇̂σ(x), σ(x)). Since the connections on E(1) transform via ∇̂σ = ∇σ+
Υaσ, we obtain that (∇̂σ(x), σ(x)) = (∇σ(x) + Υaσ(x), σ(x)) and thus the result.

We can associate a connection on the cotractor bundle to the given projective class.
Note that the de�nition of the cotractor bundle was independent of the choice of the
projective class, whereas we will see that projective class is encoded in the tractor con-
nection. In order to give a de�nition, we have to introduce some notation. Choose a
connection ∇ in the projective class and split T ∗ with respect to ∇, as in Theorem 4.2.1.
Then this splitting induces a splitting of Ea⊗T ∗. Therefore, if T ∗ ∼=∇ (Eb⊗E(1))⊕E(1),
then Ea ⊗ T ∗ ∼=∇ (Eab ⊗ E(1)) ⊕ (Ea ⊗ E(1)), via the map τa ⊗ (µb, σ) 7→ (τaµb, τaσ). If
an element of Ea ⊗ T ∗ splits as (τab, ρa) with respect to ∇, then by changing the con-
nection in the projective class of M to ∇̂ = ∇ + Υ, the splitting changes according to
(τab + Υbρa, ρa). We can illustrate this fact by the following diagram:

T ∗ ∼=∇ Eb(1)⊕ E(1)

#

induces ///o/o/o/o/o/o

(µb,σ) 7→(µb+Υbσ,σ)

��

Ea ⊗ T ∗ ∼=∇ Eab(1)⊕ Ea(1)

(τab,ρa)7→(τab+Υbρa,ρa)

��
T ∗ ∼=∇̂ Eb(1)⊕ E(1)

induces

///o/o/o/o/o/o Ea ⊗ T ∗ ∼=∇̂ Eab(1)⊕ Ea(1)

De�nition 4.2.2. Choose a connection ∇ on M in the projective class. Split T ∗ with
respect to this connection and via this splitting let (µb, σ) be section of T ∗. De�ne the
tractor connection on T ∗ by

∇T ∗a (µb, σ) := (∇aµb + Pabσ,∇aσ − µa),

where the splitting on the right hand side is the splitting of Ea ⊗ T ∗ induced by the one
of T ∗.
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Obviously, this de�nition depends on the choice of connection. However, the following
Theorem shows, that it is independent of the choice of connection in the projective class.
Therefore, the tractor connection is canonical, associated to the projective structure on
M .

Theorem 4.2.2. The de�nition of the tractor connection is independent of the choice of
connection in the projective class of M , i.e. if we change ∇ to an equivalent connection
∇̂ = ∇+ Υ on M , we obtain the following commutative diagram:

Γ(Eb(1)⊕ E(1))

#

∇T ∗a //

(µb,σ)7→(µb+Υbσ,σ)

��

Γ(Eab(1)⊕ Ea(1))

(τab,ρa)7→(τab+Υbρa,ρa)

��
Γ(Eb(1)⊕ E(1))

∇̂T ∗a
// Γ(Eab(1)⊕ Ea(1))

Proof. For the following calculation we will use Corollary 4.2.1, Lemma 3.3.4, Theorem
4.1.1 and the �rst part of Lemma 4.1.2 with k = ω = 1 as well as the transformation
laws for 1−forms.

Split T ∗ with respect to ∇ and via this splitting let (µb, σ) be an element of T ∗. Then
apply the connection ∇T ∗a and the map (τab, ρa) 7→ (τab + Υbρa, ρa) to obtain

(∇aµb + Pabσ + Υb(∇aσ − µa),∇aσ − µa). (4.4)

On the other hand applying (µb, σ) 7→ (µb + Υbσ, σ) �rst and then the connection ∇̂T ∗a ,
we obtain (∇̂a(µb + Υbσ) + P̂abσ, ∇̂aσ − (µa + Υaσ)). Now we calculate:

(∇̂a(µb + Υbσ) + P̂abσ, ∇̂aσ − (µa + Υaσ))

= (∇̂aµb −Υb∇̂aσ + (∇̂aΥb)σ + P̂abσ, ∇̂aσ − µa −Υaσ)

= (∇aµb −Υbµa + Υb(∇aσ + Υaσ) + (∇aΥb − 2ΥaΥb)σ

+Pabσ − (∇aΥb)σ + ΥaΥbσ,∇aσ + Υaσ − µa −Υaσ)

= (∇aµb + Pabσ + Υb(∇aσ − µa),∇aσ − µa).

This coincides with (4.4) and therefore the diagram commutes.

Until now we have de�ned the cotractor bundle and via the choice of an a�ne con-
nection on M , we obtained a splitting. Furthermore, to a given projective structure, we
can assign a canonical tractor connection. In this chapter we will de�ne further bundles
by natural constructions on the cotractor bundle, such as for example the endomorphism
bundle. A splitting of the cotractor bundle induces a splitting of a bundle coming from
a natural construction, at least abstractly. By �xing a concrete representation of this
construction, we can make the splitting explicit.

As discussed in chapter 2.2, every connection on a vector bundle possesses a curvature.
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When thinking about the curvature of the tractor connection, we realize, that we have
to understand the endomorphism bundle L(T ∗, T ∗) �rst, since the curvature is a section
of E[ab] ⊗ L(T ∗, T ∗).

Consider a splitting T ∗ ∼=∇ Ea(1) ⊕ E(1) and let (µa, σ) be an element of T ∗ via the
given splitting. Viewing elements of L(T ∗, T ∗) as matrices, by

(µa, σ)

(
Ac

b ξd

φe ψ

)
:= (Ac

iµi + σφc, ψσ + µiξ
i),

we de�ne the splitting L(T ∗, T ∗) = Eba ⊕ Ec ⊕ Ed ⊕ E . Therefore, the curvature of the
cotractor connection is of the form:

(A c
ab d ξab

e

φabf ψab

)
with antisymmetric indices a and b.

If we change ∇ to an equivalent connection ∇̂ = ∇ + Υ on M , we claim that this
splitting changes according to

̂(
Ac

b ξd

φe ψ

)
=

(
Ac

b + Υcξ
b ξd

φe −AeiΥi − ξjΥjΥe + Υeψ ψ −Υiξ
i

)
. (4.5)

By the de�nition of the splittings on L(T ∗, T ∗), we have that

̂(Ac
iµi + σφc, ψσ + µiξi) = (̂µa, σ)

(
Âc

b ξ̂d

φ̂e ψ̂

)
. (4.6)

The left side of equation (4.6) yields:

̂(Ac
iµi + σφc, ψσ + µiξi) = ((Ac

i + Υcξ
i)µi + (φc + Υcψ)σ, µiξ

i + ψσ). (4.7)

On the other hand the right side of equation (4.6) gives:

(̂µa, σ)

(
Âc

b ξ̂d

φ̂e ψ̂

)
= (Âc

iµi + Âc
iΥiσ + φ̂cσ, ξ̂

iµi + Υiξ̂
iσ + σψ̂) (4.8)

= (Âc
iµi + (Âc

iΥi + φ̂c)σ, ξ̂
iµi + (Υiξ̂

i + ψ̂)σ)

and therefore comparing (4.7) and (4.8) immediately gives the result for Âcb, ξ̂d and ψ̂.
Moreover, for φ̂c we obtain:

φ̂c = −ÂciΥi + φc + Υcψ

= φc −AciΥi − ξiΥiΥc + Υcψ.

Another ingredient we need in order to calculate the curvature of the tractor connec-
tion, is the notion of coupled connections. Given the tractor connection and a splitting,
we already remarked before, that this induces a splitting of Ea⊗T ∗ and that the tractor
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connection ∇T ∗a : Γ(T ∗) → Γ(Ea ⊗ T ∗) is well-de�ned within the projective class. Now
if we want to apply the connection for a second time, we certainly need to couple the
tractor connection with a connection on Ea. This is approached as follows: Choose a
connection ∇ in the projective class, split the cotractor bundle and Ea ⊗ T ∗ with this
connection. Choose the tractor connection on T ∗ and the connection induced by ∇ on
Ea, see Remark 2.2.1. Now again by Remark 2.2.1, we have an induced connection on
Ea⊗T ∗. This connection is a map ∇Ea⊗T ∗c : Γ(Ea⊗T ∗)→ Γ(Ec⊗Ea⊗T ∗). Eventhough
the connection ∇Ea⊗T ∗c depends on the choice of connection in the projective class of M ,
the following expression is independent of the choice of connection:

(∇Ea⊗T ∗a ∇T ∗b −∇
Eb⊗T ∗
b ∇T ∗a )(µd, σ) = (µc, σ)

(
A c
ab d ξab

f

φabd ψab

)
and this is exactly the de�nition of the curvature. Hence we can choose any connection
in the projective class of M to compute the curvature on T ∗.

Lemma 4.2.1. Given an a�ne connection ∇ on M with curvature R c
ab d and decompo-

sition of the curvature (4.1). Then the curvature of the tractor connection on T ∗ is given
by (

−C e
ab d 0

2∇[aPb]d 0

)
.

Proof. For this calculation we need the curvature of the induced connection on T ∗M ⊗
E(1). Recall from Lemma 2.2.4, that the curvature of the induced connection on T ∗M
is given by −R d

ab c, i.e. for µc ∈ Γ(T ∗M) we have

(∇a∇b −∇b∇a)µc = −R d
ab cµd.

Furthermore, by Lemma 4.1.1, the curvature of the induced connection on E(1) is given
by βab and thus for σ ∈ Γ(E(1)):

(∇a∇b −∇b∇a)σ = βabσ.

Now consider the induced connection on T ∗M⊗E(1), which we again denote by ∇. Then
we have

∇a∇bµcσ = ∇a(µc∇bσ + (∇bµc)σ)

= (∇aµc)(∇bσ) + µc∇a∇bσ + (∇a∇bµc)σ + (∇bµc)(∇aσ)

and therefore

(∇a∇b −∇b∇a)µcσ = (∇a∇bµc −∇b∇aµc)σ + µc(∇a∇bσ −∇b∇aσ) (4.9)

= (−R d
ab c + βabδc

d)µdσ.

This proves, that the curvature of the induced connection on T ∗M ⊗ E(1) is given by
(−R d

ab c + βabδc
d).
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As remarked before, in order to prove the Lemma, we have to consider coupled con-
nections of the form ∇Ea⊗T ∗a ∇T ∗b . To abbreviate notation, we denote both connections
by ∇. Given a pair (µd, σ), induced by a splitting, with µd a section of T ∗M ⊗ E(1), we
calculate:

∇a∇b(µd, σ) = ∇a(∇bµd + Pbdσ,∇bσ − µb)
= (∇a(∇bµd + Pbdσ) + Pad(∇bσ − µb),∇a(∇bσ − µb)−∇bµa − Pbaσ)

= (∇a∇bµd + (∇aPbd)σ + Pbd∇aσ + Pad∇bσ − Padµb,

∇a∇bσ −∇aµb −∇bµa − Pbaσ)

Therefore, when calculating the curvature, terms, which are symmetric in a and b, can
be ignored. Thus we obtain:

(∇a∇b −∇b∇a)(µd, σ) = ((∇a∇b −∇b∇a)µd + 2∇[aPb]σ − Padµb + Pbdµa,

(∇a∇b −∇b∇a)σ + 2P[ab]σ)

= ((βabδd
e −R e

ab d + 2δ[a
ePb]d)µe + 2(∇[aPb]d)σ,

βabσ + 2P[ab]σ) (4.10)

= (−C e
ab dµe + 2(∇[aPb]d)σ, 0),

where we used the decomposition (4.1) and βabσ = −2P[ab]σ (see Remark after De�nition

2.2.5) in (4.10). If the curvature has the form
(
A e
ab d ξab

f

φabd ψab

)
, then we see that A e

ab d =

−C e
ab d , φabd = 2(∇[aPb]d) and ξab

f = ψab = 0.

Note, that by naturality of the construction, the curvature has to transform in the
right way, if we change the connection from ∇ to ∇̂ = ∇ + Υ in the projective class of
M . Nevertheless, checking this provides a good possibility to verify our calculation.

If we change the connection from ∇ to ∇̂ = ∇ + Υ, then by (4.5), the curvature on
the cotractor bundle has to transform as(

−C e
ab d 0

2∇[aPb]d + C e
ab dΥe 0

)
.

On the other hand, under change of connection, the curvature is given by(
−Ĉ e

ab d 0

2∇̂[aP̂b]d 0

)

and we have to show, that these two matrices coincide. First of all, note that by Lemma
3.3.4, the Weyl tensor is invariant under change of connection. Thus we only have to
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compute the second components of the matrix.

∇̂aP̂bd = ∇̂a(Pbd −∇bΥd + ΥbΥd) (4.11)

= (∇aPbd − 2ΥaPbd −ΥbPad −ΥdPba)

−(∇a∇bΥd + 2Υa∇bΥd + Υb∇aΥd + Υd∇bΥa)

+(∇aΥbΥd − 4ΥaΥbΥd),

where we used Lemma 3.3.1 in the case k = 2. Therefore, by removing all elements,
which are symmetric in a and b, we obtain:

2∇̂[aP̂b]d = 2∇[aPb]d −ΥaPbd + ΥbPad + 2ΥdP[ab] − (∇a∇b −∇b∇a)Υd (4.12)

= 2∇[aPb]d + (Rab
c
d − βabδdc − δ[a

cPb]d)Υc

= 2∇[aPb]d + C c
ab dΥc,

where we again used Lemma 2.2.4, the decomposition (4.1) of the curvature and βab =
−2P[ab].

Corollary 4.2.2. The tractor connection is �at if and only if C c
ab d = 0 for n ≥ 3 or

∇[aPb]d = 0 for n = 2.

Proof. If n = 2, then by symmetry considerations, the Weyl tensor vanishes. Therefore,
this case is obvious. If n ≥ 3, then the vanishing of the curvature implies C c

ab d = 0.
Conversely, if the Weyl tensor vanishes, then by Lemma 2.2.6, also ∇[aPb]d = 0.

Remark 4.2.2. Any di�eomorphism f : M → N , with M and N two smooth manifolds
lifts to a di�eomorphism on the cotractor bundle. Indeed, we have seen in section 2.4, that
any di�eomorphism lifts to the linear frame bundle and thus also lifts to the associated
bundle E(1). Furthermore, any di�eomorphism on E(1) lifts to a di�eomorphism on
J1E(1) and hence to the cotractor bundle. If in addition, the di�eomorphism f : M → N
is a morphism of projective structures, i.e. a di�eomorphism f : (M, [∇]) → (N, [∇̃]),
satisfying f∗∇̃ is projectively equivalent to ∇, then it is compatible with the tractor
connection. Therefore, the construction of tractor bundles is functorial.

4.3 The Tractor Bundle

We now continue with constructing natural bundles from the cotractor bundle. In this
section, we consider the dual bundle of the cotractor bundle, called the tractor bundle.
It carries the dual connection to the tractor connection, which we will denote by the
same name. Also, we calculate its curvature. In the second part of this section, we will
see how the tractor bundle and its connection give rise to a Cartan geometry of type
(SL(n,R), P ), compare section 3.2.

De�nition 4.3.1. The tractor bundle T is de�ned as the dual bundle of the cotractor
bundle.
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Recall from Theorem 4.2.1, that we have a short exact sequence of vector bundles

0→ Ea(1)→ T ∗ → E(1)→ 0,

which induces a short exact sequence for the dual bundle:

0→ E(−1)→ T → Ea(−1)→ 0, (4.13)

with notation as is section 4.1. To summerize this composition structure, we write
T = E(−1) +

��Ea(−1). Fixing a projective structure (M, [∇]) splits the cotractor bundle
T ∗ = Ea(1)⊕ E(1) and we again denote elements by (µc, σ) via this splitting. By

〈(µc, σ),
(
νb
τ

)
〉 := µaν

a + τσ

we de�ne the splitting T = E(−1)⊕ Ea(−1).

Lemma 4.3.1. If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ
in the projective class of M , then the splitting changes according to(̂

νb

τ

)
=

(
νb

τ −Υbν
b

)
.

Proof. By the de�nition of the splittings on T , we have that 〈(µa, σ),
(
νb
τ

)
〉 =

〈(̂µa, σ),
(̂
νb
τ

)
〉. Working this out we obtain

µbν
b + τσ = µbν̂

b + (Υbν̂
b + τ̂)σ,

and thus the result.

The tractor connection on T is canonically the dual connection to the tractor con-
nection on T ∗. The following theorem computes this connection in terms of splittings.
Note, that as in the case of the cotractor bundle, a splitting of T induces a splitting of
Ea ⊗ T .

Theorem 4.3.1. The connection ∇T on the tractor bundle dual to ∇T ∗ is given by

∇Ta
(
νb

τ

)
=

(
∇aνb + τδa

b

∇aτ − Pabν
b

)
,

where the splitting on the right side is the induced splitting on Ea ⊗ T .

Proof. Given the connection on T ∗ the connection on its dual bundle satis�es the fol-
lowing relation:

〈(µb, σ),∇a
(
νc
τ

)
〉+ 〈∇a(µb, σ),

(
νc
τ

)
〉 = ∇a〈(µb, σ),

(
νc
τ

)
〉,
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where we denote all connections by the same symbol. Therefore, we obtain:

〈(µb, σ),∇a
(
νc
τ

)
〉 = νb∇aµb + (∇aνb)µb + τ∇aσ + (∇aτ)σ

−(νb(∇aµb) + Pabν
bσ + τ∇aσ − τµa)

= (∇aνb + τδa
b)µb + (∇aτ − Pabν

b)σ

= 〈(µb, σ),
( ∇aνc+τδac
∇aτ−Pacνc

)
〉.

It is again clear by construction, that the tractor connection transforms correctly
under change of connection in the projective class of M . However, it can be checked
analogously to Theorem 4.2.2, using Lemma 4.3.1, Theorem 4.1.1 with ω = 1, the second
part of Lemma 4.1.2 with k = ω = 1 and Theorem 4.3.1.

Similarly to the case of the cotractor bundle, we calculate the curvature of the tractor
connection on T . Note, that as in the case of the cotractor bundle, we have to consider
coupled connections and we denote all types of connections by the same symbol. Given
a splitting, the curvature satis�es

(∇a∇b −∇b∇a)
(
νd
τ

)
=
(A d

ab e ξab
d

φabf ψab

)(
νc
τ

)
.

Lemma 4.3.2. Let ∇ be an a�ne connection on M with curvature R c
ab d and decompo-

sition of curvature (4.1). The curvature of the tractor connection on the tractor bundle
is given by (

C c
ab d 0

−2∇[aPb]d 0

)
.

Proof. Consider splittings of T and T ∗ with elements (µd, σ) and
(
νc
τ

)
. Then the cur-

vature on T is of the form
(A d

ab e ξab
d

φabf ψab

)
and satis�es:

〈(µh, σ),
(A d

ab e ξab
d

φabf ψab

)(
νg
τ

)
〉+ 〈(µh, σ)

( −C c
ab d 0

2∇[aPb]d 0

)
,
(
νg
τ

)
〉 = 0.

Therefore, we obain:

〈(µh, σ),
(A d

ab eν
e+ξab

dτ

φabfν
f+ψabτ

)
〉 = −〈(−C c

ab dµc + 2∇[aPb]dσ, 0),
(
νg
τ

)
〉

and thus

A d
ab e(ν

eµd) + ξab
d(τµd) + φabf (νfσ) + ψab(τσ) = C d

ab e (νeµd)− 2∇[aPb]f (νfσ),

which gives the result.

Since the curvature on T only di�ers by sign from the curvature on T ∗, it also trans-
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forms correctly under the change of connection in the projective class of M .

Relation to Cartan Geometries

For oriented manifolds M , the tractor bundle gives rise to a Cartan geometry of type
(G,P ), with G = SL(n,R) and P the stabilizer of the ray through the �rst basis vector
in Rn+1, compare chapter 3.2.

Recall that we have the short exact sequence

0→ E(−1)→ T → Ea(−1)→ 0. (4.14)

Thus T contains a distinguished line bundle, which is E(−1). Furthermore, the orien-
tation on M induces an orientation on ΛnT ∗M and hence on all density bundles. In
particular, the distinguished line bundle E(−1) is oriented. Furthermore, there exists
a distinguished volume form on T . The following calculation shows, that the highest
exterior power of T is trivial:

Λn+1T ∼= E(−1)⊗ ΛnEa(−1) ∼= (ΛnEa)⊗ E(−n− 1)
∼= (ΛnEa)⊗ (ΛnEa) ∼= R

(4.15)

The �rst isomorphism is due to the fact that highest exterior power of a decomposi-
tion given by an exact sequence is isomorphic to the tensor product of the highest ex-
terior power of the two components. Furthermore, in section 4.1 we mentioned that
the volume bundle is isomorphic to ΛnEa in the case of oriented manifolds. Hence
E(−n − 1) ∼= ΛnEa, which explains the third isomorphism. This construction �ts to-
gether with the induced connection, hence Λn+1T is a trivial bundle with an induced
�at connection. Thus there exists a parallel section, which is unique up to multiplication
with a constant. We choose one of these parallel sections and �x the volume form on T ,
which is induced by the chosen section.

On Rn+1 we always work with the standard orientation and volume form. An orien-
tation on an 1−dimensional linear subspace of Rn+1 is determined by the choice of a
positive and negative oriented ray. We de�ne an orientation on the 1−dimensional linear
subspace, which is generated by the �rst vector e1 of the standard basis, by �xing the
ray through e1 as the positive ray.

Consider the adapted frame bundle G for T , i.e. the �ber Gx over x ∈ M is given by
the set of all linear isomorphisms ϕ : Rn+1 → Tx, which preserve the volume form and
the line through e1 with its orientation. This de�nes a principal bundle G with structure
group P ⊂ SL(n + 1,R). Since the volume forms are preserved, we obtain a subgroup
of SL(n + 1,R) and stabilizing an oriented line is the same as stabilizing a ray. The
principal right action is given by composition from the right.
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Now consider the following map:

φ : G × Rn+1 → T

(ψ, v) 7→ ψ(v).

Note that for A ∈ P we have φ(ψ ◦ A,A−1v) = (ψ ◦ A)(A−1v) = φ(ψ, v) and thus φ
factors to a well-de�ned map on the associated bundle G×P Rn+1 → T . This map covers
the identity on M and is a bijection on each �ber and thus an isomorphism of vector
bundles.

Following [4], we will now prove that the tractor connection induces a Cartan con-
nection on G. Since T = G ×P Rn+1, we can identify sections of T with P−equivariant
functions G → Rn+1, see [9, Prop. 1.2.7.]. If s ∈ Γ(T ), then the corresponding equivari-
ant function is given by f : G → Rn+1, f(u) = u−1(s(p(u))), for u ∈ G. Furthermore,
the equivariancy condition reads as f(u · g) = g−1 · f(u), for u ∈ G and g ∈ G.

Starting with a point u ∈ G, satisfying p(u) = x, and a tangent vector ξ ∈ TuG, we have
that∇TTup·ξs(x) ∈ Tx. Thus we can consider the element u−1(∇TTup·ξs(x))−ξ·f(u) ∈ Rn+1.
Given a smooth function g : M → R, we obtain

∇TTup·ξgs(x) = s(x)(Tup · ξ) · g(x) + g(x)∇TTup·ξs(x).

Furthermore, the equivariant function corresponding to gs is given by (p∗g)f and thus
ξ · ((p∗g)f(u)) = ξ · (p∗g)(u)f(u) + (p∗g)(u)ξ · f(u). This shows, that the element
u−1(∇TTup·ξs(x)) − ξ · f(u) only depends on s(x) and therefore ξ gives a linear map
ω(ξ) : Rn+1 → Rn+1, satisfying the following equation:

u−1(∇TTup·ξs(x)) = ξ · f(u) + ω(ξ)(f(u)). (4.16)

It can be shown that ω(ξ) is actually an element of sl(n + 1,R), by using the fact that
the volume form on T is preserved by the tractor connection. In addition, we notice
that ω(ξ) is uniquely determined by ξ and thus gives a well-de�ned map ω : TuG → g.
Furthermore, from the equation it can be seen, that ω considered as a map ω : TG → g
is smooth. In order to show that ω is a Cartan connection on G, we have to prove that
properties (2.8) are satis�ed.

We start by showing that ω reproduces fundamental vector �elds, hence we have to
show that ω(ζA) = A for all A ∈ g. Recall that the fundamental vector �eld is de�ned by
ζA(u) = d

dt |t=0u · exp(tA) for u ∈ G and A ∈ g. Furthermore, fundamental vector �elds
are vertical, hence satisfy Tp · ζA = 0. In Claim 3 we have seen, that ζA · f = −A · f for
equivariant functions f . Therefore

ω(ζA)(f(u)) = u−1(∇TTp·ζAs(x))− ζA · f(u)

= −ζA · f(u)

= A · f(u)
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and since the action of g is e�ective, we obtain ω(ζA) = A. Note, that this also shows
that ω is injective on each vertical subspace.

Secondly, we have to show that ω is equivariant with respect to the principal right
action r on G, i.e. (rg)∗ω = Ad(g−1) ◦ ω for all g ∈ G. Since the principal right action
preserves the �bers, hence p ◦ rg = p, we have that Tp ◦ Trg = Tp. For u ∈ G and
ξ ∈ TuG we obtain:

((rg)∗ω)(u)(ξ)(f(u)) = ω(u · g)(Tur
g · ξ)(f(u · g)) (4.17)

= (u · g)−1(∇TTp·Trg ·ξs(x))− ((Tur
g · ξ) · f)(u · g)

= g−1 · u−1(∇TTp·ξs(x))− (Tu(f ◦ rg) · ξ)
= g−1 · u−1(∇TTp·ξs(x))− ξ · (f ◦ rg)(u).

By the equivariancy of f and linearity of the action of G, we have that ξ · (f ◦ rg) =
ξ · (g−1 · f) = g−1 · (ξ · f) and therefore we can continue with equation (4.17):

ω(u · g)(Tur
g · ξ)(f(u · g)) = g−1 · (u−1(∇TTp·ξs(x))− (ξ · f)(u))

= g−1 · (ω(u)(ξ)(f(u)))

= Ad(g−1)(ω(u)(ξ))(g−1 · f(u))

= Ad(g−1)(ω(u)(ξ))(f(u · g)).

Since the action is e�ective, we obtain ω(u ·g)(Tur
g ·ξ) = Ad(g−1)(ω(u)(ξ)) and therefore

(rg)∗ω = Ad(g−1) ◦ ω.

Finally, we have to show that ω(u) : TuG → g is a linear isomorphism. Since G and g
have the same dimension, it su�ces to show that ω(u) is injective. Consider a tangent
vector ξ ∈ TuG, ξ 6= 0, such that Tup ·ξ 6= 0. Furthermore, consider the subbundle S ⊂ T ,
consisting of all pairs with vanishing �rst slot, in a given splitting and a section s ∈ Γ(S).
Then we have s(x) ∈ Sx, but ∇TTup·ξs(x) /∈ Sx. Given a splitting of T , let s have the
form

(
0
τ

)
in this splitting. Then by Theorem 4.3.1, we obtain

∇TTup·ξ
(

0
τ

)
=
( Tup·ξτ
∇Tup·ξτ

)
,

which is not an element of S. On the other hand, if s corresponds to the equivariant
function f : G → Rn+1, f(u) = u−1(s(x)), then certainly u(f(u)) ∈ Sx. Since u : Rn+1 →
T is an isomorphism, we also have u(ξ ·f(u)) ∈ Sx. Thus by equation (4.16), ω(u)(ξ) 6= 0,
because otherwise, ∇TTup·ξs(x) would be an element of Sx. We already mentioned, that
ω(u) is injective on each vertical subspace, which covers the case of Tup · ξ = 0.

In fact the converse is also true. By construction, the standard tractor bundle is the
associated bundle to G with respect to the standard action and equation (4.16) gives rise
to a tractor connection, when starting with a Cartan connection.

Any morphism f : (M, [∇]) → (N, [∇̃]) of projective structures, lifts to an automor-
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phism of the associated Cartan geometries. Denoting the Cartan geometry associated
to M by (GM , ωM ) and the one associated to N by (GN , ωN ), then there exists a prin-
cipal bundle morphism f̃ : GM → GN , satisfying f̃∗ωN = ωM . We already mentioned
in Remark 4.2.2, that any morphism of projective structures lifts to a di�eomorphism
on the cotractor bundle, which is compatible with the cotractor connection. Since the
tractor bundle is obtain from the cotractor bundle by dualizing, the same is true for
the tractor bundle. Any di�eomorphism of the tractor bundles certainly restricts to a
principal bundle morphism GM → GN and the compatibility with the tractor connections
gives f̃∗ωN = ωM by equation (4.16).

This also shows, that the transformations of the homogeneous model are exactly the
automorphisms of the projective structures. Recall from section 3.2, that the action
of G on Sn is an automorphism of projective structures. Now conversely, consider an
automorphism of projective structures f : (Sn, [∇]) → (Sn, [∇]) with ∇ the Levi-Civita
connection. The Cartan geometry of Sn is given by G → G/P ∼= Sn with the Maurer-
Cartan form. Thus by the above paragraph the automorphism f lifts to an automorphism
of the Cartan geometry (G → G/P, ωMC) which, by [9, Proposition 1.5.2], is given by
the left multiplication with an element of G.

4.4 Symmetric Powers of Tractor Bundles

In this section we discuss symmetric powers of the tractor bundle and the cotractor
bundle, which are natural constructions on these bundles. Again, the symmetric powers
carry natural connections and we calculate their curvatures.

Symmetric Power of the Cotractor Bundle

We start by inducing a splitting on the symmetric tensor power of the cotractor bundle
from a splitting of the cotractor bundle.

The short exact sequence of Theorem 4.2.1

0→ Ea(1)→ T ∗ → E(1)→ 0,

which we summerize by T ∗ = Ea(1) +
��E(1), induces a composition of the symmetric

power:
S2T ∗ = E(ab)(2) +

��Ea(2) +
��E(2).

This is due to the following: E(ab)(2) = S2Ea(1) ↪→ S2T ∗ and Ea(2) = Ea ⊗ E(1) includes
into the quotient S2T ∗/E(ab)(2). Furthermore, the quotient of the last map is given by
S2E(1) ∼= E(2).

View elements of S2T ∗ as bilinear maps on T and choose a connection in the projective
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class of M giving rise to splitting of T with elements
(
νd
τ

)
. Then by(

µab ηa σ
) ((

νd
τ

)
,
(
ν̃e
τ̃

))
:= µabν

aν̃b + ηaν
aτ̃ + ηaν̃

aτ + στ τ̃ ,

we de�ne the splitting of S2T ∗. Note that µab is symmetric.

Lemma 4.4.1. If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ
in the projective class of M , then the splitting of S2T ∗ changes according to

̂(
µbc ηb σ

)
=
(
µbc + 2Υ(bηc) + ΥbΥcσ ηb + Υbσ σ

)
.

Proof. This calculation uses Lemma 4.3.1. Consider elements
(
νd
τ

)
and

(
ν̃d
τ̃

)
in T . Then

we have:(
µbc ηb σ

) ((
νd
τ

)
,
(
ν̃d
τ̃

))
= ̂(

µbc ηb σ
)((̂

νd
τ

)
,
(̂
ν̃d
τ̃

))
= µ̂bcν

bν̃c + η̂bν
b(τ̃ −Υcν̃

c) + η̂bν̃
b(τ −Υcν

c)

+σ̂(τ −Υcν
c)(τ̃ −Υcν̃

c)

= (µ̂bc − 2η̂(bΥc) + σ̂ΥbΥc)(ν
bν̃c)

+(η̂b − σ̂Υb)(ν
bτ̃) + (η̂b − σ̂Υb)(ν̃

bτ) + σ̂τ τ̃ .

Comparing both sides of the equation yields:

σ̂ = σ, η̂b = ηb + Υbσ and µ̂bc = µbc + 2Υ(bηc) + ΥbΥcσ.

The following theorem computes the connection on S2T ∗ induced by the tractor con-
nection in terms of splittings. Note, that again a splitting of S2T ∗ induces a splitting of
Ea ⊗ S2T ∗.

Theorem 4.4.1. The induced connection on S2T ∗ is given by

∇S2T ∗
a

(
µbc ηb σ

)
=
(
∇aµbc + 2Pa(bηc) ∇aηb + Pabσ − µab ∇aσ − 2ηa

)
,

where the splitting on the right hand side is the induced splitting on Ea ⊗ S2T ∗.

Proof. Given the tractor connection on T and a bilinear form Φ, the induced connection
is given by

(∇aΦ)(X,Y ) = ∇a(Φ(X,Y ))− Φ(∇aX,Y )− Φ(X,∇aY ), (4.18)

where we denote all connections by the same symbol. Working out each part on the right
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side seperately, we obtain

∇a
(
µbc ηb σ

) ((
νd
τ

)
,
(
ν̃d
τ̃

))
= ∇a(µbcνbν̃c + ηbν

bτ̃ + ηaν̃
bτ + στ τ̃)

= ∇aµbc(νbν̃c) + µbc∇aνbν̃c +∇aηb(νbτ̃) + ηb∇aνbτ̃
+∇aηb(ν̃bτ) + ηb∇aν̃bτ +∇aσ(τ τ̃) + σ∇aτ τ̃ .

For the second part we use the tractor connection from Theorem 4.3.1:(
µbc ηb σ

) (
∇a
(
νd
τ

)
,
(
ν̃d
τ̃

))
=

(
µbc ηb σ

) ((∇aνd+τδa
d

∇aτ−Pacνc

)
,
(
ν̃d
τ̃

))
= µbc(∇aνb)ν̃c + µacτ ν̃

c + ηb(∇aνb)τ̃ + ηaτ τ̃

+ηbν̃
b∇aτ − ηbν̃bPacνc + στ̃∇aτ − στ̃Pacν

c

By exchanging
(
νd
τ

)
and

(
ν̃d
τ̃

)
in the above expression, we get the third part of the right

side of equation (4.18). Combining all three parts, we obtain:

(∇a
(
µbc ηb σ

)
)
((

νd
τ

)
,
(
ν̃d
τ̃

))
= (∇aµbc + 2Pa(bηc))ν

bν̃c

+(∇aηb + Pabσ − µab)νbτ̃
+(∇aηb + Pabσ − µab)ν̃bτ + (∇aσ − 2ηa)τ τ̃ ,

which gives the result.

Again by construction, the tractor connection on S2T ∗ transforms correctly under
change of connection in the projective class ofM . Nevertheless, it can be checked directly
by using Theorem 4.1.1 and Lemma 4.1.2 in the cases k = 2, ω = 2 and k = 1, ω = 2.

We now want to calculate the curvature of the induced connection on S2T ∗. Similarly
to the cases of the cotractor and tractor bundle, we have to consider L(S2T ∗, S2T ∗),
as the curvature is a section of E[ab] ⊗ L(S2T ∗, S2T ∗). Again, we view elements of
L(S2T ∗, S2T ∗) as matrices and for a splitting of S2T ∗, we de�ne the induced splitting
by

(
µbc ηb σ

)Aef bc Be
bc Cbc

ψef
b ξe

b ζb

φef ρe π

 (4.19)

:=
(
Aef

bcµbc + ψef
bηb + φefσ Be

bcµbc + ξe
bηb + ρeσ Cbcµbc + ζbηb + πσ

)
.

If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ on M , then this
splitting changes to Âef bc B̂e

bc Ĉbc

ψ̂ef
b ξ̂e

b ζ̂b

φ̂ef ρ̂e π̂

 ,
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with �rst column given by

Âef
bc = Aef

bc + 2Υ(eBf)
bc + ΥeΥfC

bc,

ψ̂ef
b = ψef

b − 2Aef
(bc)Υc + 2Υ(eξf)

b + ΥeΥfζ
b − 4Υ(eBf)

(bc)Υc − 2ΥeΥfΥcC
(bc),

φ̂ef = φef − ψef bΥb +Aef
cbΥbΥc + 2Υ(eρf) + ΥeΥfπ − 2Υ(eξf)

bΥb

−ΥeΥfΥbζ
b + 2Υ(eBf)

cbΥcΥb + ΥeΥfΥcΥbC
cb,

second column by

B̂e
bc = Be

bc + CbcΥe,

ξ̂e
b = ξe

b − 2ΥcBe
(bc) + Υeζ

b − 2C(bc)ΥeΥc,

ρ̂e = ρe + Υeπ −Υbξe
b − ζbΥbΥe +Be

cbΥbΥc + ΥcΥeΥbC
cb

and the third column by

Ĉbc = Cbc,

ζ̂b = ζb − 2ΥcC
(bc),

π̂ = π − ζbΥb + CcbΥbΥc.

This can be shown by working out the following equation:

̂(
µbc ηb σ

) ̂Aef bc Be
bc Cbc

ψef
b ξe

b ζb

φef ρe π


= ̂(

Aef
bcµbc + ψef

bηb + φefσ Be
bcµbc + ξe

bηb + ρeσ Cbcµbc + ζbηb + πσ
)
.

Since the calculation is analogous to the case of the cotractor bundle (see (4.6)), it is
ommited here.

As in the cases of the cotractor and tractor bundle, in order to write down the de�ning
equation for the curvature, we have to consider coupled connections. We will again denote
all connections by the same symbol. Therefore, the curvature on S2T ∗ satis�es:

(
∇a∇b −∇b∇a

) (
µef ηe σ

)
=
(
µcd ηc σ

)Aabef cd Babe
cd Cab

cd

ψabef
c ξabe

c ζab
c

φabef ρabe πab

 ,

with antisymmetric indices a and b.

Lemma 4.4.2. Let ∇ be an a�ne connection on M with curvature R c
ab d and decompo-

sition of the curvature (4.1). The curvature of the induced connection on S2T ∗ is then
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given by  −C c
ab eδf

d − C d
ab f δe

c 0 0

2(∇[aPb]e)δf
c + 2(∇[aPb]f )δe

c −C c
ab e 0

0 2∇[aPb]e 0

 .

Proof. The induced curvature R of a bilinear form Φ in S2T ∗ on elements X,Y in T
satis�es:

(R · Φ)(X,Y ) = −Φ(R̂ ·X,Y )− Φ(X, R̂ · Y ), (4.20)

where R̂ denotes the curvature on T , see Lemma 4.3.2. Now consider a splitting and let
Φ =

(
µbc ηb σ

)
, X =

(
νe
τ

)
, Y =

(
ν̃e
τ̃

)
and the curvature on S2T ∗ have the form

R =

Aabef cd Babe
cd Dab

cd

ψabef
c ξabe

c ζab
c

φabef ρabe πab

 .

Now working out the right side of equation (4.20), the �rst part yields:(
µbc ηb σ

) (
R̂ ·
(
νe
τ

)
,
(
ν̃e
τ̃

))
=

(
µbc ηb σ

) (( C e
ab f ν

f

−2∇[aPb]fν
f

)
,
(
ν̃e
τ̃

))
= µcdC

c
ab f ν

f ν̃d + ηcC
c

ab f ν
f τ̃

−2ηcν̃
c∇[aPb]fν

f − 2∇[aPb]fν
fστ̃ .

By exchanging
(
νe
τ

)
with

(
ν̃e
τ̃

)
, we obtain the result for the second part of the right side

of equation (4.20). Combining these two parts, we get:

Φ(R̂ ·X,Y ) + Φ(X, R̂ · Y ) (4.21)

= (C c
ab eδf

dµcd + C d
ab f δe

cµcd − 2(∇[aPb]e)δf
cηc − 2(∇[aPb]f )δe

cηc)ν
eν̃f

+(ηcC
c

ab e − 2(∇[aPb]e)σ)νeτ̃ + (ηcC
c

ab e − 2(∇[aPb]e)σ)ν̃eτ.

On the other hand, the left side of equation (4.20) yields:

R · Φ =
(
µcd ηc σ

)Aabef cd Babe
cd Dab

cd

ψabef
c ξabe

c ζab
c

φabef ρabe πab

 =

(
Aabef

cdµcd + ψabef
cηc + φabefσ Babe

cdµcd + ξabe
cηc + ρabeσ Dab

cdµcd + ζab
cηc + πabσ

)
.

Applying this to
(
νe
τ

)
with

(
ν̃e
τ̃

)
, we obtain:

(R · Φ)(X,Y ) =(Aabef
cdµcd + ψabef

cηc + φabefσ)νeν̃f

+ (Babe
cdµcd + ξabe

cηc + ρabeσ)νeτ̃ + (Babe
cdµcd + ξabe

cηc + ρabeσ)ν̃eτ

+ (Dab
cdµcd + ζab

cηc + πabσ)τ τ̃
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Now comparing this with equation (4.21) immediately yields that all coe�cients of τ τ̃
have to vanish and hence Dab

cd = ζab
c = πab = 0. Continuing with the coe�cients

of νeτ̃ , we obtain Babe
cd = 0, ξabe

c = C c
ab e and ρabe = −2∇[aPb]e. Finally, combining

the coe�cients of νeν̃f gives Aabef cd = C c
ab eδf

d + C d
ab f δe

c, ψabef
c = −2(∇[aPb]e)δf

c −
2(∇[aPb]f )δe

c and φabef = 0.

It is again clear by construction, that the curvature transforms correctly under the
change of connection from ∇ to an equivalent connection ∇̂ = ∇ + Υ in the projective
class of M . It can however be checked analogously to the case of the cotractor bundle,
by using equation (4.12) and the fact that the Weyl tensor is invariant.

Symmetric Power of the Tractor Bundle

The symmetric tensor power of the tractor bundle is approached analogously to the
case of the cotractor bundle, compare the last section. Thus we start by inducing a
composition of S2T from the composition of the tractor bundle.

Using the short exact sequence

0→ E(−1)→ T → Ea(−1)→ 0,

with composition T = E(−1) +
��Ea(−1), we obtain a composition of S2T by

S2T = E(−2) +
��Ea(−2) +

��E(ab)(−2).

As in the case of the cotractor bundle, we have inclusions S2E(−1) ∼= E(−2) ↪→ S2T and
E(−1) ⊗ Ea(−1) = Ea(−2) ↪→ S2T /E(−2), where the quotient of the last map is given
by S2(Ea(−1)) = E(ab)(−2).

View elements of S2T as symmetric bilinear forms on T ∗ and choose a splitting of T ∗
with elements (µa, σ). Then by( τab

ρa
ν

)
((µa, σ), (µ̃a, σ̃)) := τabµaµ̃b + ρaµaσ̃ + ρaµ̃aσ + νσσ̃, (4.22)

we de�ne the splitting of S2T . Note that τab is symmetric.

Lemma 4.4.3. If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ
in the projective class of M , then the splitting of S2T changes according to̂τabρa

ν

 =

 τab

ρa −Υbτ
ab

ν − 2Υaρ
a + ΥaΥbτ

ab

 .

Proof. We will use Corollary 4.2.1 in the following calculation, which gives the transfor-
mation for elements of T ∗ under the change of connection in the projective class.
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Consider a splitting of T ∗ with elements (µa, σ) and (µ̃a, σ̃). Then the induced split-
tings on S2T satisfy:( τab

ρa
ν

)
((µa, σ), (µ̃a, σ̃)) =

( τ̂ab
ρ̂a

ν̂

)
((̂µa, σ), (̂µ̃a, σ̃)).

Now calculating the right side of the equation gives:( τ̂ab
ρ̂a

ν̂

)
((̂µa, σ), (̂µ̃a, σ̃)) = τ̂ab(µa + Υaσ)(µ̃b + Υbσ̃) + ρ̂a(µa + Υaσ)σ̃

+ρ̂b(µ̃b + Υbσ̃)σ + ν̂σσ̃

= τ̂abµaµ̃b + (τ̂abΥb + ρ̂a)µaσ̃ + (τ̂abΥa + ρ̂b)µ̃bσ

+(τ̂abΥaΥb + 2ρ̂aΥa + ν̂)σσ̃.

Comparing this with (4.22), we immediately obtain the result for τ̂ab and ρ̂a. Further-
more, we get:

ν̂ = ν − τabΥaΥb − 2(ρa − τabΥb)Υa

= ν − 2ρaΥa + τabΥaΥb.

Again we compute the induced connection on S2T in terms of splittings. Recall that
given a splitting on T , by (4.22) we de�ned the splitting of S2T . Furthermore, this
induces a splitting of Ea ⊗ S2T .

Theorem 4.4.2. The induced connection on S2T is given by

∇S2T
a

(
τbc

ρb
ν

)
=
(∇aτbc+ρcδab+ρbδac
∇aρb+νδab−τbcPac
∇aν−2ρbPab

)
,

where the splitting on the right side is the induced splitting on Ea ⊗ S2T .

Proof. Similar to Theorem 4.4.1, given the tractor connection on T ∗ and a bilinear form
on T ∗, the induced connection is given by

(∇aΦ)(X,Y ) = ∇a(Φ(X,Y ))− Φ(∇aX,Y )− Φ(X,∇aY ) (4.23)

and we again denote all connections by the same symbol. Working out the right side of
the equation by using De�nition 4.2.2, we obtain:

∇a
(
τbc

ρb
ν

)(
(µd, σ), (µ̃d, σ̃)

)
= ∇a(τabµaµ̃b + ρaµaσ̃ + ρaµ̃aσ + νσσ̃)

= (∇aτ bc)µbµ̃c + τ bc∇aµbµ̃c + (∇aρb)µbσ̃ + ρb∇aµbσ̃
+(∇aρc)µ̃cσ + ρc∇aµ̃cσ + (∇aν)σσ̃ + ν∇aσσ̃
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and (
τbc

ρb
ν

)(
∇a(µd, σ), (µ̃d, σ̃)

)
=

(
τbc

ρb
ν

)(
(∇aµd + Padσ,∇aσ − µa), (µ̃d, σ̃)

)
= τ bc(∇aµb + Pabσ)µ̃c + ρb(∇aµb + Pabσ)σ̃

ρcµ̃c(∇aσ − µa) + ν(∇aσ − µa)σ̃.

If we exchange (µd, σ) and (µ̃d, σ̃) in the last expression, we obtain the third part of right
side of equation (4.23). Thus by combining all three parts, we obtain:

∇a
(
τbc

ρb
ν

)(
(µd, σ), (µ̃d, σ̃)

)
= (∇aτ bc + ρcδa

b + ρbδa
c)µbµ̃c

+(∇aρb + νδa
b − τ bcPac)µbσ̃

+(∇aρc + νδa
c − τ cdPad)µ̃cσ + (∇aν − 2ρbPab)σσ̃,

which gives the result.

By construction, the induced connection on S2T transforms correctly under change of
connection in the projective class of M . This can be checked using Lemma 4.1.2 in the
cases k = 2, ω = −2 and k = 1, ω = −2 as well as Theorem 4.1 in the case ω = −2.

We again calculate the curvature of the induced connection on S2T , which is a section
of E[ab]⊗L(S2T , S2T ). Considering L(S2T , S2T ), we induce a splitting from a splitting
of S2T byAef cd Be

cd Dcd

ψef
c ξe

c ζc

φef ηe π

τ efρe
ν

 :=

Aef cdτ ef +Be
cdρe +Dcdν

ψef
cτ ef + ξe

cρe + ζcν
φefτ

ef + ηeρ
e + πν

 . (4.24)

If we change the connection ∇ to an equivalent connection ∇̂ = ∇+ Υ on M , then this
splitting changes to Âef cd B̂e

cd D̂cd

ψ̂ef
c ξ̂e

c ζ̂c

φ̂ef η̂e π̂

 , (4.25)

where the �rst column is given by

Âef
cd = Aef

cd +Be
cdΥf −DcdΥeΥf ,

ψ̂ef
c = ψef

c + ξe
cΥf + ΥeΥfζ

c −ΥeΥfΥbD
cb −ΥfΥdBe

cd −ΥdAef
cd,

φ̂ef = φef + Υfηe + ΥeΥfπ − 2ΥcΥeΥfζ
c +DbcΥbΥcΥeΥf ,

− 2ΥcΥfξe
c +Be

cdΥcΥdΥf − 2Υcψef
c + ΥdΥcAef

cd,
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the second column by

B̂e
cd = Be

cd + 2ΥeD
cd,

ξ̂e
c = ξe

c + 2Υeζ
c − 2ΥbΥeD

cb −ΥdBe
cd,

η̂e = ηe + 2Υeπ − 4ΥbΥeζ
b + 2DbcΥbΥcΥe − 2Υcξe

c +Be
cdΥcΥd

and the third column by

D̂cd = Dcd,

ζ̂c = ζc −ΥdD
cd,

π̂ = π − 2Υbζ
b +DbcΥbΥc.

This can be shown using a similar calculation as in (4.6).

As in the case of S2T ∗, we have to consider coupled connections to write down the
de�ning equation for the curvature. We will denote all connections by the same symbol.
Thus in a splitting the curvature is given by:

(∇a∇b −∇b∇a)
(
τcd
ρc
ν

)
=
(Aabef cd Babecd Dabcd
ψabef

c ξabe
c ζab

c

φabef ηabe πab

)(
τef
ρe
ν

)
.

However, as in the case of S2T ∗, it can be calculated using the curvature of the tractor
connection on T ∗.

Lemma 4.4.4. Let ∇ be an a�ne connection on M with curvature R c
ab d and decom-

position of the curvature (4.1). The curvature of the induced connection on S2T is then
given by C c

ab eδf
d + C d

ab eδf
c 0 0

−2(∇[aPb]e)δf
c C c

ab e 0

0 −4∇[aPb]e 0

 .

Proof. This is proved analogously to Lemma 4.4.2. Given a bilinear form Φ in S2T and
elements X,Y in T ∗, then the curvature R of the induced connection on S2T satis�es:

(R · Φ)(X,Y ) = −Φ(R̂ ·X,Y )− Φ(X, R̂ · Y ), (4.26)

where R̂ denotes the curvature on T ∗, compare Lemma 4.2.1. Consider a splitting with
Φ =

(
τef
ρe
ν

)
, X = (µd, σ), Y = (µ̃d, σ̃) and

R =

Aabef cd Babe
cd Dab

cd

ψabef
c ξabe

c ζab
c

φabef ηabe πab

 .
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We now calculate the right side of equation (4.26):(
τef
ρe
ν

)(
R̂ · (µd, σ), (µ̃d, σ̃)

)
=

(
τef
ρe
ν

)(
(−C e

ab dµe + 2∇[aPb]dσ, 0), (µ̃d, σ̃)
)

= (−C c
ab eτ

ed)µcµ̃d + (−C c
ab eρ

e)µcσ̃

+(2(∇[aPb]e)τ
ed)µ̃dσ + (2(∇[aPb]eρ

e)σσ̃.

By changing (µd, σ) to (µ̃d, σ̃), we obtain Φ(X, R̂ · Y ). Combining these gives:

Φ(R̂ ·X,Y ) + Φ(X, R̂ · Y ) (4.27)

= ((−C c
ab eδf

d − C d
ab eδf

c)τ ef )µcµ̃d + (2(∇[aPb]e)δf
cτ ef − C c

ab eρ
e)µcσ̃

+(2(∇[aPb]e)δf
dτ ef − C d

ab eρ
e)µ̃dσ + (4(∇[aPb]e)ρ

e)σσ̃.

On the other hand we have:

(R · Φ)(X,Y ) = (Aabef
cdτ ef +Babe

cdρe +Dab
cdν)µcµ̃d (4.28)

+(ψabef
cτ ef + ξabe

cρe + ζab
cν)µcσ̃

+(ψabef
cτ ef + ξabe

cρe + ζab
cν)µ̃cσ

+(φabefτ
ef + ηabeρ

e + πabν)σσ̃.

Now comparing (4.27) and (4.28) as well as changing the sign, we obtain the result.

By construction, the curvature transforms correctly under change of connection in the
projective class of M . Nevertheless, it can be checked using (4.25) as well as (4.12) and
the fact that the Weyl tensor is invariant.

Remark 4.4.1. An interesting question we want to address here regards the duality be-
tween S2T ∗ and S2T . We have constructed S2T ∗ and S2T independently of one another,
that is we (seperately) considered these bundles as bilinear forms on T respectively on
T ∗. On the other hand, we we could have worked with S2T as the dual bundle of S2T ∗,
just as in the case of the tractor bundle, compare section 4.3. This, of course, involves
the choice of a duality, which in turn determines a splitting. Now in the case of S2T ∗
and S2T , there are di�erent choices available, as for all constants A,B,C ∈ R we can
de�ne this duality by

〈
(
τbc

ρb
ν

)
,
(
µbc ηb σ

)
〉 := Aµbcτ

bc +Bηbρ
b + Cσν. (4.29)

It is not obvious, which of the dualities in (4.29) induces exactly the splitting of S2T ,
which we obtained by regarding S2T as the bundle of bilinear forms on T ∗. A calculation,
however, shows that that these splittings coincide, if we set A = C = 1 and B = 2. Note,
that this also means, that the dual connection to the tractor connection on S2T ∗ is
exactly the connection we obtained in Theorem 4.4.2.

Remark 4.4.2. Finally, we would like to remark on the conventions used in this chapter.
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In section 4.4 we viewed elements of S2T ∗ respectively S2T as bilinear forms on T
respectively on T ∗ and induced a splitting into tripels. This led to conventions for
calculating with these bundles. It is also common, however, to represent symmetric
bilinear forms by symmetric matrices. We brie�y introduce this approach.

For a given splitting of T ∗ and induced splitting of T , we de�ne the splitting of S2T ∗
by (

ν̃a τ̃
)(µab ρa

ρa σ

)(
νb

τ

)
:= µabν̃

aνb + ρaν
aτ̃ + ρaν̃

aτ + τ τ̃σ. (4.30)

Note that even though
(
ν̃a τ̃

)
denotes an element of T , we use its transpose to relate

to usual matrix multiplication. Therefore, instead of working with triples, we can equiv-
alently work with symmetric matrices and either convention certainly leads to the same
results. Similary, we can discuss S2T .





Chapter 5

Invariant Di�erential Operators

5.1 Motiviation

Given a manifold M and two tensor bundles E and F over M , we can use an a�ne con-
nection ∇ and its curvature to write down di�erential operators Γ(E)→ Γ(F ). Starting
with a projective structure on M , such a di�erential operator can be expressed in terms
of any representative in the projective class. If every representative gives rise to the same
operator, i.e. the operator is independent of the chosen representative in the projective
class, then this operator is called projectively invariant. Hence a given di�erential oper-
ator is projectively invariant, if replacing all derivative and curvature terms by the ones
of a projectively equivalent connection, does not change the operator.

Let us consider examples of a �rst order di�erential operator on Eb(ω). Recall from
Lemma 4.1.2, that changing ∇ to an equivalent connection ∇̂ = ∇+Υ gives the following
transformation for ηb ∈ Γ(Eb(ω)):

∇̂aηb = ∇aηb + (ω − 1)Υaηb −Υbηa. (5.1)

Now considering its antisymmetrization gives

∇̂[aηb] = ∇[aηb] + ωΥ[aηb] (5.2)

and therefore, in the case of ω = 0, the �rst order di�erential operator Γ(Eb(ω)) →
Γ(E[ab](ω)), ηb 7→ ∇[aηb], is projectively invariant. This result is not too surprising, since
∇[aηb] is the exterior derivative of the 1−form ηb. A more interesting outcome is obtained
by symmetrizing equation (5.1):

∇̂(aηb) = ∇(aηb) + (ω − 2)Υ(aηb). (5.3)

Hence if ω = 2, the �rst order di�erential operator ηb 7→ ∇(aηb) is projectively invariant.
This also shows the importance of densities, as without the additional weighting, the
operator would not be projectively invariant. Thus the notion of densities is essential to

65
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obtain invariant di�erential operators.

The general theory of projectively invariant di�erential operators of �rst order looks
very similar to examples (5.2) and (5.3). The explicit description of all such operators
(for any parabolic geometry) is due to [17].

The case of second order projectively invariant di�erential operators is more compli-
cated. For σ ∈ Γ(E(1)) consider the following example:

∇(a∇b)σ + P(ab)σ. (5.4)

A calculation shows, that this de�nes a projectively invariant di�erential operator. The
additional curvature term of course makes the expression more complicated compared to
(5.3), but is necessary to guarantee the projective invariance. We will come across this
di�erential operator in section 5.3, where we will also prove projective invariance.

If we want to consider invariant di�erential operators of higher order, we could try to
generalize (5.4). In particular, this example shows that we need to �nd curvature terms
to compensate the change of the terms involving derivatives when replacing ∇ by ∇̂.
This gets more complicated when raising the order, as in this case more curvature terms
have to be involved. For example, the third order operator

1
2∇(a∇b∇c)σ + (∇(aPbc))σ + 2P(ab∇c)σ, (5.5)

for σ ∈ Γ(E(2)), can be understood as a generalisation of (5.4). Here we already need
two curvature terms to compensate the change of ∇(a∇b∇c)σ. In section 5.3, we will
prove projective invariance of this operator.

For these reasons, in order to �nd projectively invariant di�erential operators, a more
systematic approach is needed. We will present this approach in the following chapters.

5.2 The Kostant Codi�erential

In this section we consider the Kostant codi�erential on the tractor bundles de�ned in
chapter 4. We can construct this codi�erential by considering a certain action of an
abelian Lie algebra on the tractor bundle in question and extending it to a Lie algebra
homology di�erential. Even though we do not need this, it should be mentioned, that the
Kostant codi�erential arises from a general theory, compare [8, Section 2.5, 2.6, 2.13].

We will brie�y discuss how an action of an abelian Lie algebra extends to a Lie algebra
homology di�erential. This is then applied to the tractor bundles and the �rst two maps,
which arise from this construction, are calculated explicitely (in a splitting). They will
be of interest in the next section.

Consider an abelian Lie algebra g, a vector space V and an action of g on V :

δ1 : g⊗ V → V,
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g ⊗ v 7→ g · v.

The action δ1 can be extended to a Lie algebra homology di�erential, i.e. a sequence of
maps

0 V
δ0oo g⊗ Vδ1oo Λ2g⊗ V

δ2oo · · ·δ3oo ,

satisfying δk ◦ δk+1 = 0, for k ≥ 0. This extension is given by

δk : Λkg⊗ V → Λk−1g⊗ V,

g1 ∧ . . . ∧ gk ⊗ v 7→
k∑
i=1

(−1)ig1 ∧ . . . ∧ ĝi ∧ . . . ∧ gk ⊗ (gi · v), (5.6)

where the hat denotes omission. We prove that δk ◦ δk+1 = 0 for k ≥ 0 by using the fact
that the action δ1 satis�es g1 · (g2 · v) = g2 · (g1 · v).

(δk ◦ δk+1)(g1 ∧ . . . ∧ gk+1 ⊗ v) = δk(

k∑
i=1

(−1)ig1 ∧ . . . ∧ ĝi ∧ . . . ∧ gk ⊗ (gi · v))

=
∑

1≤j<i≤k+1

(−1)i+jg1 ∧ . . . ∧ ĝj ∧ . . . ∧ ĝi ∧ . . . ∧ gk+1 ⊗ (gj · (gi · v))

+
∑

1≤i<j≤k+1

(−1)i+j−1g1 ∧ . . . ∧ ĝi ∧ . . . ∧ ĝj ∧ . . . ∧ gk+1 ⊗ (gj · (gi · v)). (5.7)

Note that in line (5.7), we have the sign (−1)i+j−1. In the case j > i, the omission
of gi implies that the element gj is located at the (j − 1)th spot, which gives the sign
(−1)i+j−1. Now, relabeling line (5.7) and using gi · (gj · v) = gj · (gi · v), we obtain that
δk ◦ δk+1 = 0. This gives rise to homologies Hk(M,V ) = ker(δk)/im(δk+1) for k ≥ 0.

Now consider the cotractor bundle T ∗, with short exact sequence

0 // T ∗M ⊗ E(1)
i // T ∗

p // E(1) // 0 .

This induces the following bundle maps:

T ∗M ⊗ T ∗
id⊗p // T ∗M ⊗ E(1)

i // T ∗ .

The composition of these maps gives

∂∗1 := i ◦ (id⊗ p) : T ∗M ⊗ T ∗ → T ∗,

which is called the Kostant codi�erential. We prove that �berwise this is an action of
the abelian Lie algebra T ∗xM on the vector space T ∗x , for x ∈ M . Starting with τ ∈ T ∗x
and g1, g2 ∈ T ∗xM , we have that g1 · τ ∈ T ∗xM ⊗ Ex(1) and thus its projection onto Ex(1)
vanishes. Therefore, we obtain g1 · (g2 · τ) = 0, which implies that ∂∗1 de�nes a �berwise
action. Thus we obtain a �berwise extention to a Lie algebra homology di�erential by
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(5.6), which can be put together to obtain bundle maps

∂∗k : ΛkT ∗M ⊗ T ∗ → Λk−1T ∗M ⊗ T ∗. (5.8)

Note, that these bundle maps induce operators on the space of sections Γ(ΛkT ∗M⊗T ∗)→
Γ(Λk−1T ∗M ⊗ T ∗), which we denote by the same symbol.

We now want to understand what the maps of (5.8) look like in a given splitting.
Starting with a splitting of T ∗ ∼=∇ Eb(1) ⊕ E(1) induced by an a�ne connection ∇ on
M , we already remarked in section 4.2, that this induces a splitting T ∗M ⊗ T ∗ ∼=∇
Eab(1)⊕E(1) and showed how this splitting transforms under change of connection in the
projective class. Similarly, a given splitting of T ∗ induces a splitting Λ2T ∗M ⊗ T ∗ ∼=∇
E[ab]c(1)⊕E[ab](1) and thus also on ΛkT ∗M ⊗T ∗, for k ≥ 3. As the �rst two bundle maps
of (5.8) are especially important in the next section, we compute these in the following
Lemma.

Lemma 5.2.1. Let T ∗ ∼=∇ Eb(1) ⊕ E(1) be a splitting of T ∗ induced by an a�ne con-
nection ∇ on M . Then in this splitting the �rst two bundle maps of (5.8) are given
by

∂∗1 : Eab(1)⊕ Ea(1)→ Ea(1)⊕ E(1)

(µab, σa) 7→ (σa, 0)

and
∂∗2 : E[ab]c(1)⊕ E[ab](1)→ Eab(1)⊕ Ea(1)

(µabc, σab) 7→ (2σab, 0).

The �rst bundle map ∂∗1 transforms correctly under the change of connection in the
projective class, i.e. changing the connection ∇ to ∇̂ = ∇+ Υ in the projective class of
M and splitting T ∗ with respect to ∇̂, gives the following commutative diagram:

Ea ⊗ T ∗ ∼=∇ Eab(1)⊕ Ea(1)

#

∂∗1 //

(µab,σa)7→(µab+Υbσa,σa)

��

T ∗ ∼=∇ Eb(1)⊕ E(1)

(τb,ρ)7→(τb+Υbρ,ρ)

��
Ea ⊗ T ∗ ∼=∇̂ Eab(1)⊕ Ea(1)

∂∗1

// T ∗ ∼=∇̂ Eb(1)⊕ E(1)

By construction, we have a similar diagram in the case of ∂∗2 (and also for ∂∗k , for k ≥ 3).
Furthermore, the �rst two homologies are given by H0(M, T ∗) = E(1) and H1(M, T ∗) =
E(ab)(1).

Proof. We show the �rst statement on elements of the form ρa ⊗ τ, with ρa ∈ Ea and
τ ∈ T ∗. Given a splitting of T ∗ with τ = (µb, σ), we obtain ρa ⊗ τ = (ρaµb, ρaσ) for the
induced splitting on Ea ⊗ T ∗. Therefore,

∂∗1(ρa ⊗ τ) = (i ◦ (id⊗ p))(ρaµb, ρaσ) = i(ρaσ) = (ρaσ, 0)
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and we obtain the result. The commutativity of the diagram is obvious.

Analogously, we prove the second statement on elements of the form ηaωb ⊗ τ , with
ηaωb ∈ E[ab], i.e. satisfying ηaωb = −ωaηb and τ ∈ T ∗. Considering a splitting of T ∗ with
τ = (µc, σ), we obtain:

∂∗2(ηaωb ⊗ τ) = ηa ⊗ (ωb · τ)− ωa ⊗ (ηb · τ) = (ηaωbσ − ωaηbσ, 0) = (2ηaωbσ, 0),

where we used the �rst part of this Lemma, equation (5.6) and the induced splitting on
Λ2T ∗M ⊗ T ∗.

Furthermore, we immediately obtain ker(∂∗0) = T ∗, since ∂∗0 = 0, ker(∂∗1) = Eab(1),
im(∂∗1) = Ea(1) and im(∂∗2) = E[ab](1). Thus H0(M, T ∗) = T ∗/Ea(1) ∼= E(1) and
H1(M, T ∗) = Eab(1)/E[ab](1) ∼= E(ab)(1).

We now want to de�ne the Kostant codi�erential on the tractor bundle T . Similar to
the case of the cotractor bundle, we �rst de�ne an action of the abelian Lie algebra T ∗M
and then extend this action to a di�erential.

Since we are working with the dual bundle of the cotractor bundle, we can use the
dual action on T . Thus, the action ∂∗1 : T ∗M ⊗ T → T is given by the equation

〈µ, g1 · ν〉+ 〈g1 · µ, ν〉 = 0,

for µ ∈ T ∗, ν ∈ T and g1 ∈ T ∗M . Again this action can be extended to a di�erential via
equation (5.6):

∂∗k : ΛkT ∗M ⊗ T → Λk−1T ∗M ⊗ T . (5.9)

Note, that these bundle maps induce operators on the space of sections

Γ(ΛkT ∗M ⊗ T )→ Γ(Λk−1T ∗M ⊗ T ),

which we denote by the same symbol.

The maps of (5.9) can be computed in terms of splittings, which is done in the next
Lemma. Note, that given a splitting of T , we again use induced splittings of T ∗M ⊗ T
and Λ2T ∗M ⊗ T . By construction, ∂∗k transforms correctly under change of connection
in the projective class.

Lemma 5.2.2. Given a splitting of T ∼=∇ E(−1)⊕ Eb(−1) the �rst two bundle maps of
(5.9) are given by

∂∗1 : Ea(−1)⊕ Eba(−1)→ E(−1)⊕ Eb(−1)(
νa
b

ρa

)
7→
(

0
−νaa

)
and

∂∗2 : E[ab](−1)⊕ E[ab]
c(−1)→ Ea(−1)⊕ Eba(−1)
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(
νab

c

ρab

)
7→
(

0
−2νac

c

)
.

The �rst two homologies are given by H0(M, T ) = Ea(−1) and H1(M, T ) = (Eba)0(−1),
where (Eba)0(−1) denotes the trace-free part of Eba(−1).

Proof. A given splitting of T ∗ ∼=∇ Ec(1) ⊕ E(1) induces T ∼=∇ E(−1) ⊕ Eb(−1) and
in this splitting consider τ = (µc, σ) and ψ =

(
νb
ρ

)
. Furthermore, for ga ∈ Ea we have

ga⊗τ = (gaµc, gaσ) and ga⊗ψ =
(
gaνb
gaρ

)
in the induced splittings on Ea⊗T ∗ respectively

Ea ⊗ T . The Lemma is proved for elements of the form ga ⊗ ψ. Then by de�nition we
obtain

〈(µb, σ), ∂∗1(
(
gaνb
gaρ

)
)〉 = −〈∂∗1(gaµb, gaσ),

(
νb
ρ

)
〉 (5.10)

= −〈(gaσ, 0),
(
νb
ρ

)
〉

= −gaνaσ,

which gives the result.

For the second statement consider ηaωb ∈ E[ab], i.e. ηaωb = −ηbωa and in the splitting
already considered, we have ηaωb ⊗ ψ =

(
ηaωbν

c

ηaωbρ

)
. Again we prove the statement on

elements of the form ηaωb ⊗ ψ. Thus we have

∂∗2(ηaωb ⊗ ψ) = ηa ⊗ (ωb · ψ)− ωa ⊗ (ηb · ψ)

=
(

0
−ηaωcνc+ωaηcνc

)
=

(
0

−2ηaωcνc
)
.

Furthermore, we obtain im(∂∗1) = E(−1) and thus H0(M, T ) = T /E(−1) ∼= Ea(−1).
Similarly, ker(∂∗1) = Ea(−1)⊕ (Eba)0(−1) and im(∂∗2) = Ea(−1), which gives H1(M, T ) ∼=
(Eba)0(−1).

We continue by de�ning the Kostant codi�erential for S2T ∗. Given a bilinear form
Φ on T , then for g ∈ T ∗M , we use the induced action of T ∗M on S2T ∗ given by the
equation

(g · Φ)(v, w) + Φ(g · v, w) + Φ(v, g · w) = 0. (5.11)

This action can again be extended to a di�erential via equation (5.6):

∂∗k : ΛkT ∗M ⊗ S2T ∗ → Λk−1T ∗M ⊗ S2T ∗. (5.12)

Note, that these bundle maps induce operators on the space of sections

Γ(ΛkT ∗M ⊗ S2T ∗)→ Γ(Λk−1T ∗M ⊗ S2T ∗),

which we denote by the same symbol.
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Furthermore, we calculate the �rst two bundle maps of (5.12) in terms of splittings.
Starting with a splitting of T ∗ ∼=∇ Ea(1) ⊕ E(1), induced by an a�ne connection ∇ on
M , we have the induced splitting S2T ∗ ∼=∇ E(ab)(2)⊕ Ea(2)⊕ E(2), see section 4.4. This
splitting of course induces splittings of T ∗M ⊗ S2T ∗ and Λ2T ∗M ⊗ S2T ∗, which are
used in the next Lemma. Of course, all the maps ∂∗k transform correctly under change
of connection in the projective class of M .

Lemma 5.2.3. Given a splitting S2T ∗ ∼=∇ E(ab)(2) ⊕ Ea(2) ⊕ E(2), then the �rst two
bundle maps of (5.12), in terms of this splitting, are given by

∂∗1 : Ea(bc)(2)⊕ Eab(2)⊕ Ea(2)→ E(ab)(2)⊕ Ea(2)⊕ E(2)(
µabc ρab σa

)
7→
(
2ρ(ab) σa 0

)
and

∂∗2 : E[ab](cd)(2)⊕ E[ab]c(2)⊕ E[ab](2)→ Ea(bc)(2)⊕ Eab(2)⊕ Ea(2)(
µabcd ρabc σab

)
7→
(
4ρa(bc) 2σab 0

)
.

The �rst two homologies are given byH0(M,S2T ∗) = E(2) andH1(M,S2T ∗) = E(abc)(2).

Proof. Using De�nition (5.11) and the given splitting, set Φ =
(
µbc ρb σ

)
, v =

(
νb
τ

)
and w =

(
ηc
π

)
. We prove the �rst statement on elements of the form ga ⊗ Φ:

∂∗1(ga ⊗ Φ)
((

νb
τ

)
,
(
ηc
π

))
= −

(
µbc ρb σ

) (( 0
−gbνb

)
,
(
ηc
π

))
−
(
µbc ρb σ

) ((
νb
τ

)
,
(

0
−gcηc

))
= (gbρc + gcρb)ν

bηc + (gbσ)νbπ + (gcσ)ηcτ,

which gives the result.

The prove the second statement, we consider ηaωb ∈ E[ab], thus satisfying ηaωb =

−ωaηb. In the given splitting consider Φ =
(
µcd ρc σ

)
and we show the result for

elements of the form ηaωb ⊗ Φ:

∂∗2(ηaωb ⊗ Φ) = ηa ⊗ (ωb · Φ)− ωa ⊗ (ηb · Φ)

=
(
2ηaω(bρc) ηaωbσ 0

)
−
(
2ωaη(bρc) ωaηbσ 0

)
=

(
4ηaω(bρc) 2ηaωbσ 0

)
.

We have im(∂∗1) = E(ab)(2) ⊕ Ea(2) and thus H0(M,S2T ∗) ∼= E(2). Furthermore,
ker(∂∗1) = Ea(bc)(2)⊕E[ab](2) and im(∂∗2) = im(T )⊕E[ab](2), where T : E[ab]c(2)→ Ea(bc)(2)
is the map given by ρabc 7→ 4ρa(bc). In order to compute im(T ), we �rst note that
ker(T ) = E[abc](2). This follows from the fact that a map which is antisymmetric in a, b
and b, c is antisymmetric in all three indices. In particular, ker(T ) ( E[ab]c(2) implies
that T 6= 0. Now consider the symmetrization Symm : Ea(bc)(2) → E(abc)(2), which
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is given by ωabc 7→ ω(abc). Then Symm ◦ T = 0 and therefore, im(T ) ⊆ ker(Symm).
On the other hand, since T 6= 0 and ker(Symm) is an irreducible representation, we
actually have im(T ) = ker(Symm). This implies Ea(bc)(2)/im(T ) = E(abc)(2), which gives
H1(M,S2T ∗) ∼= E(abc)(2).

In the last part of this section, we compute the Kostant codi�erential on S2T . This is
approached exactly as in the case of S2T ∗. Thus, the action of T ∗M is given by (5.11),
where Φ now denotes a bilinear map on T ∗ and v, w elements of T ∗. This, in turn, gives
rise to a di�erential, which we will denote by

∂∗k : ΛkT ∗M ⊗ S2T → Λk−1T ∗M ⊗ S2T . (5.13)

Note, that these bundle maps induce operators on the space of sections

Γ(ΛkT ∗M ⊗ S2T )→ Γ(Λk−1T ∗M ⊗ S2T ),

which we denote by the same symbol.

The �rst two maps of (5.13) are computed in the next Lemma, using splittings of S2T ,
T ∗M ⊗ S2T and Λ2T ∗M ⊗ S2T .

Lemma 5.2.4. Given a splitting S2T ∼=∇ E(−2) ⊕ Eb(−2) ⊕ E(bc)(−2), then in this
splitting, the �rst two maps of (5.13) are given by

∂∗1 : Ea(−2)⊕ Eba(−2)⊕ Ea(bc)(−2)→ E(−2)⊕ Eb(−2)⊕ E(bc)(−2)τabcρa
b

νa

 7→
 0
−τdbd
−2ρa

a


and

∂∗2 : E[ab](−2)⊕ E[ab]
c(−2)⊕ E[ab]

(cd)(−2)→ Ea(−2)⊕ Eca(−2)⊕ Ea(cd)(−2)τabcdρab
c

νab

 7→
 0
−2τad

cd

−4ρad
d

 .

The �rst two homologies are given by H0(M,S2T ) = E(ab)(−2) and H1(M,S2T ) =

(E(bc)
a )0(−2), where (E(bc)

a )0(−2) denotes the trace-free part of E(bc)
a (−2).

Proof. In the given splitting consider Φ =
(
τbc

ρb
ν

)
, v = (µb, σ) and w = (ηc, π). We prove

the �rst statement for elements of the form ga⊗Φ, for ga ∈ Ea. Then by (5.11), we have

∂∗1(ga ⊗ Φ)
(

(µb, σ), (ηc, π)
)

= −
(
τbc

ρb
ν

)(
(gaσ, 0), (ηc, π)

)
−
(
τbc

ρb
ν

)(
(µb, σ), (gaπ, 0)

)
= (−gcτ bc)µbπ + (−gbτ bc)ηcσ + (−2gbρ

b)πσ,
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which gives the result.

The second statement is proved for elements of the form ηaωb ⊗Φ, for ηaωb = −ηbωa.

∂∗2(ηaωb ⊗ Φ) = ηa ⊗ (ωb · Φ)− ωa ⊗ (ηb · Φ) (5.14)

=
( 0
−ηaωbτbc
−2ηaωbρ

b

)
+
( 0
ωaηbτ

bc

2ωaηbρ
b

)
=
( 0
−2ηaωbτ

bc

−4ηaωbρ
b

)
.

Continuing with computing the homologies, we obtain im(∂∗1) = E(−2)⊕Eb(−2) and thus
H0(M,S2T ) = E(ab)(−2). Furthermore, ker(∂∗1) = Ea(−2)⊕(Eba)0(−2)⊕(Ea(bc))0(−2) and
im(∂∗2) = Ea(−2)⊕ (Eca)0(−2). Note, that we obtain (Eca)0(−2) in the second component
of im(∂∗2), since τadcd with skew symmetric lower indices and symmetric upper indices,
is trace free. Therefore, H1(M,S2T ) = (E(bc)

a )0(2).

5.3 Some First BGG-Operators

In this section we construct projectively invariant di�erential operators using the tractor
bundles considered in chapter 4. Eventhough these operators are constructed directly,
i.e. without using any additional theory, it should be mentioned, that they actually result
from a general construction. Indeed, they appear as the �rst operators in a Bernstein-
Gelfand-Gelfand (BGG) sequence. The de�nition as well as the construction of such
sequences can be found in [10]. For a sketch see [3].

We outline the construction, which will be then discussed in case of each tractor bun-
dle seperately in the following subsections. Working on any tractor bundle, consider
the projections πk : ker(∂∗k) → Hk(M), for k ≥ 0. These bundle maps certainly in-
duce tensorial operators on the space of sections, i.e. maps Γ(ker(∂∗k)) → Γ(Hk(M)),
which are denoted by the same symbol. Note, that these induced maps are projec-
tively invariant. In the case of k = 0, we will obtain a projectively invariant di�erential
operator L : Γ(H0(M)) → Γ(ker(∂∗0)), which is a di�erential splitting of π0 and sat-
is�es ∂∗1(∇L(σ)) = 0 for all σ ∈ Γ(H0(M)). Furthermore, via the following diagram,
the di�erential operator L gives rise to a projectively invariant di�erential operator
D : Γ(H0(M))→ Γ(H1(M)):

Γ(ker(∂∗0))

L

OO

π0

��

Γ(ker(∂∗1))

π1

��
Γ(H0(M))

D
//

∇L

77oooooooooooooooo
Γ(H1(M))

(5.15)

Diagram (5.15) can be extended to higher degrees, as its form already suggests. This is
however not necessary for our purposes.

Now a solution of the �rst BGG-equation is a section σ of H0(M), satisfying D(σ) = 0.
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There is an obvious subclass of solutions, namely those, for which ∇L is actually parallel.
Such solutions are called normal.

Although we can de�ne operators which satisfy diagram (5.15) on every tractor bundle,
the results connected with these operators are di�erent. This is why we treat each case
seperately in the sequel.

Most of the results, we will discuss, are due to [5, 7]. We give the corresponding
reference within the text.

The First BGG-Operator on T ∗

From Lemma 5.2.1, we know that ker(∂∗0) = T ∗ and H0(M, T ∗) = E(1). Therefore, in a
splitting, the projection π0 : Γ(T ∗)→ Γ(E(1)) is given by projecting onto the right slot.
The next Proposition shows the existence of an invariant di�erential operator, which
splits this projection.

Proposition 5.3.1. Given a smooth section σ of E(1), then there exists a unique section
s of T ∗, satisfying π0(s) = σ and ∂∗1(∇s) = 0. Mapping σ to s de�nes a projectively
invariant di�erential operator L.

Proof. In a given splitting of T ∗, let s = (µb, τ). Since s satis�es Π(s) = σ, we have
τ = σ. Moreover, using De�nition 4.2.2 and Lemma 5.2.1, gives

∇a(µb, σ) = (∇aµb + Pabσ,∇aσ − µa) and ∂∗1(∇a(µb, σ)) = (∇aσ − µa, 0).

Thus, ∂∗1(∇s) = 0 implies µb = ∇bσ. This proves that s = (∇aσ, σ) is unique and
certainly σ 7→ (∇aσ, σ) de�nes a smooth di�erential operator.

We use Corollary 4.2.1 and Theorem 4.1.1, to prove that L is projectively invariant.
Change ∇ to a projectively equivalent connection ∇̂ = ∇+ Υ and split T ∗ with respect
to ∇̂. Then in this splitting we have

L(σ)
∇̂
= (∇̂σ, σ) = (∇aσ + Υaσ, σ).

On the other hand, the change of splitting transforms (∇aσ, σ) to (∇aσ+ Υaσ, σ), which
gives the invariance of L.

Note, that since ∂∗1(∇L(σ)) = 0 by Proposition 5.3.1, ∇L(σ) is in fact an element of
ker(∂∗1) and can therefore be projected to the quotient.

De�nition 5.3.1. Given a section σ of E(1), then we de�ne D(σ) by projecting ∇L(σ)
to the quotient bundle H1(M, T ∗) = E(ab)(1) (compare Lemma 5.2.1).

A section σ satisfying D(σ) = 0, is called a solution of the �rst BGG-equation, whereas
it is called a normal solution, if it in addition satis�es ∇L(σ) = 0.
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Therefore, in the case of the cotractor bundle, diagram (5.15) has the following form:

Γ(T ∗)

L

OO

π0

��

Γ(Eab(1))

π1

��
Γ(E(1))

D
//

∇L

88qqqqqqqqqqqqqqqq
Γ(E(ab)(1))

(5.16)

We can give a description of D in terms of a splitting. Choose a splitting of T ∗, then in
this splitting L(σ) = (∇aσ, σ) and ∇aL(σ) = (∇a∇bσ + Pabσ, 0). Projecting this to the
symmetric part of Eab(1), gives

D(σ) = ∇(a∇b)σ + P(ab)σ,

which is exactly the example we considered in section 5.1.

Lemma 5.3.1. A smooth section σ of E(1) is a solution of the �rst BGG-equation if
and only if it is a normal solution, hence

D(σ) = 0⇔ ∇L(σ) = 0.

Proof. By De�nition, a normal solution is also a solution of the �rst BGG-equation. On
the other hand, for a smooth section σ, we remarked before, that D is given by

D(σ) = ∇(a∇b)σ + P(ab)σ.

Moreover, we showed that ∇aL(σ) = (∇a∇bσ+ Pabσ, 0). Thus we have to show that the
�rst slot of ∇aL(σ) vanishes, if its symmetric part vanishes. Choose a connection ∇ in
the projective class for which βab = 0 (compare Lemma 4.1.3 and Remark 4.1.1). Then
Pab is symmetric and we have that

(∇a∇b −∇b∇a)σ = 0,

since βab is the curvature of ∇. Thus ∇a∇bσ is symmetric and we obtain the result.

Theorem 5.3.1. [5, Theorem 9] Let σ 6≡ 0 be a section of E(1) and consider the �rst
BGG-equation Dσ = 0. Then we have the following statements:

1. A solution σ of the �rst BGG-equation induces a Ricci �at connection in the pro-
jective class on the open subset U = {x ∈M : σ(x) 6= 0}.

2. Given a Ricci �at connection in the projective class, we obtain a local solution of
the �rst BGG-equation.

3. If σ is a solution of the �rst BGG-equation, then U is dense in M .

Proof. 1. Suppose that D(σ) = 0, then ∇(a∇b)σ + P(ab)σ = 0. As D is projectively
invariant, we may change the connection in the equivalence class of ∇ without
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changing D. Locally on U there exists a unique connection ∇̂ in the projective
class, such that ∇̂σ = 0, compare Lemma 4.1.3. Now for this connection, the
equation D(σ) = 0 reduces to P̂(ab)σ = 0, which implies that P̂(ab) = 0. Hence P̂ab

is antisymmetric. Furthermore, by Lemma 4.1.4, β̂ab = 0 and P̂ab is symmetric,
thus P̂ab = 0. The second part of De�nition 2.2.5 states that (n−1)P̂ab = R̂ab+ β̂ab
and therefore also R̂ab = 0.

2. A Ricci �at connection ∇ implies Pab = 0, by De�nition 2.2.5. Therefore, the �rst
BGG-equation reduces to ∇(a∇b)σ = 0. Also the induced connection on E(1) is �at
and thus admits a local section, which is parallel. This section is a local solution
of the �rst BGG-equation.

3. Let σ be a solution of the �rst BGG-equation. Then by Lemma 5.3.1, this solution
is normal, hence ∇L(σ) = 0. Furthermore, by Lemma 5.3.1, we have L(σ) =
(∇aσ, σ). We claim that L(σ)(x) 6= 0 for all x ∈ M . The equation ∇L(σ) = 0
locally de�nes an ordinary di�erential equation and by the uniqueness of solutions
for a given initial value, assuming L(σ)(x) = 0 for some x ∈ M gives L(σ) ≡ 0.
This is a contradiction, as L(σ) ≡ 0 implies σ ≡ 0. Now if σ(x) = 0 for some
x ∈ M , then ∇σ(x) 6= 0 (otherwise L(σ)(x) = 0). This shows that the zero set of
σ is an embedded hypersurface. Taking the complement of the zero set of σ, we
obtain an open and dense subset and this is exactly U .

The First BGG-Operator on T

On T we have that ker(∂∗0) = T and H0(M, T ) = Ea(−1), compare Lemma 5.2.2.
Therefore, the projection is a map π0 : Γ(T )→ Γ(Ea(−1)) and in a splitting, it is given
by projecting onto the top slot. Furthermore, we have an analog to Proposition 5.3.1:

Proposition 5.3.2. Given a smooth section νa of Ea(−1), then there exists a unique
section s of T , satisfying π0(s) = νa and ∂∗1(∇s) = 0. Mapping νa to s de�nes a
projectively invariant di�erential operator L.

Proof. Given a splitting of T , let the section s be given by s =
(
ηa
τ

)
. Then from

Π(s) = νa, we immediately obtain ηa = νa. Furthermore, by Theorem 4.3.1 and Lemma
5.2.2 we have

∇a
(
ηb
τ

)
=
( ∇aηb+τδab
∇aτ−Pabν

b

)
and ∂∗1

(
∇a
(
ηb
τ

))
=
(

0
−∇aνa−nτ

)
.

Now ∂∗1(∇s) = 0 implies τ = − 1
n∇aν

a, which proves the uniqueness of s =
( νa

− 1
n
∇aνa

)
.

Certainly,
L : νa 7→

( νa

− 1
n
∇aνa

)
is a smooth di�erential operator.
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We prove projective invariance using Lemma 4.3.1 and Lemma 4.1.2 in the case k =
1, ω = −1. Consider a change of connection from ∇ to ∇̂ = ∇+ Υ in the projective class
of M . In the splitting induced by ∇̂, the the map L is given by

L(νa)
∇̂
=
( νa

− 1
n
∇̂aνa

)
=
( νa

− 1
n

(∇aνa+nΥaνa)

)
.

Furthermore, the change of splitting transforms
( νa

− 1
n
∇aνa

)
to
( νa

− 1
n
∇aνa−Υaνa

)
, which

gives the result.

Since ∂∗1(∇L(νa)) = 0 by Proposition 5.3.2, it can be projected to the homology
H1(M, T ).

De�nition 5.3.2. Given a section νa of Ea(−1), then we de�ne D(νa) by projecting
∇L(νa) to the quotient bundle H1(M, T ) = (Eba)0(−1), compare Lemma 5.2.2.

A section νa satisfying D(νa) = 0, is called a solution of the �rst BGG-equation,
whereas it is called a normal solution, if it additionally satis�es ∇L(νa) = 0.

Therefore, in the case of the tractor bundle (and in a given splitting), diagram (5.15)
yields:

Γ(T )

L

OO

π0

��

Γ(Ea(−1)⊕ (Eba)0(−1))

π1

��
Γ(Ea(−1))

D
//

∇L

66llllllllllllllllllll
Γ((Eba)0(−1))

(5.17)

We again describe D in terms of a splitting. Theorem 4.3.1 gives

∇aL(νb) = ∇a
( νb

− 1
n
∇cνc

)
=
( ∇aνb− 1

n
(∇cνc)δab

− 1
n
∇a∇cνc−Pabν

b

)
(5.18)

and projecting onto the trace-free part of Eba implies:

D(νb) = ∇aνb −
1

n
(∇cνc)δab, (5.19)

which is exactly the trace-free part of ∇aνb. Furthermore, we have an equivalent state-
ment to Lemma 5.3.1:

Lemma 5.3.2. A smooth section νa of Ea(1) is a solution of the �rst BGG-equation if
and only if it is a normal solution, hence

D(νa) = 0⇔ ∇L(νa) = 0.

Proof. Certainly, a normal solution is a solution of the �rst BGG-equation. Conversely,
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using equation (5.19), the vanishing of D implies

∇aνb =
1

n
(∇cνc)δab. (5.20)

We have to show, that (5.20) forces ∇L(νa) = 0. First of all, by (5.18), we immediately
obtain that the top slot of ∇L(νa) vanishes. Thus, we have to show that (5.20) implies
Pabν

b = − 1
n∇a∇bν

b. By De�nition 2.2.5, we have that

(n+ 1)βab = −2R[ab] and (n− 1)Pab = Rab + βab.

Therefore, we �rst have to calculate the Ricci curvature. Set ρ = 1
n∇cν

c, then we obtain:

R c
ab dν

d = ∇a∇bνc −∇b∇aνc

= ∇a(ρδbc)−∇b(ρδac)
= δb

c∇aρ− δac∇bρ.

Taking the trace implies Rabνb = −(n + 1)∇aρ. This, in turn, indicates βabνb = 2∇aρ
and (n− 1)Pabν

b = −(n+ 1)∇aρ+ 2∇aρ = −(n− 1)∇aρ. Dividing the last equation by
(n− 1) gives the result:

Pabν
b = − 1

n
∇a∇bνb.

The First BGG-Operator on S2T ∗

By Lemma 5.2.3, we have ker(∂∗0) = S2T ∗ and H0(M,S2T ∗) = E(2), which gives
π0 : Γ(S2T ∗) → Γ(E(2)). In a splitting, this map is given by projecting onto the last
slot. Then analogously to the cases of the cotractor and tractor bundle, there exists a
projectively invariant di�erential operator, which splits the projection.

Proposition 5.3.3. Given a smooth section σ of E(2), then there exists a unique section
s of S2T ∗, satisfying π0(s) = σ and ∂∗1(∇s) = 0. Mapping σ to s de�nes a projectively
invariant di�erential operator L.

The proof of this Proposition requires the following Lemma, which gives the transfor-
mation of ∇2 under change of connection in the projective class.

Lemma 5.3.3. Changing the connection ∇ to ∇̂ = ∇+ Υ in the projective class of M ,
gives the following transformation for sections σ of E(ω):

∇̂a∇̂bσ = ∇a∇bσ + 2(ω − 1)Υ(a∇b)σ + ω(∇aΥb)σ + (ω2 − 2ω)ΥaΥbσ.

Proof. This can be shown using (∇̂2σ)(ξ, η) = ∇̂ξ∇̂ησ−∇̂∇̂ξησ, for ξ, η ∈ X(M). Working
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this out by using Theorem 4.1.1 as well as Lemma 4.1.2 , we obtain:

(∇̂2σ)(ξ, η) = ∇ξ(∇ησ + ωΥ(η)σ) + ωΥ(ξ)(∇ησ + ωΥ(η)σ)

−(∇∇ξησ + ωΥ(∇ξη)σ + Υ(ξ)∇ησ + 2ωΥ(ξ)Υ(η)σ + Υ(η)∇ξσ)

= (∇ξ∇ησ −∇∇ξησ) + ω(∇ξΥ(η)−Υ(∇ξη))σ + (ω − 1)Υ(η)∇ξσ
+(ω − 1)Υ(ξ)∇ησ + (ω2 − 2ω)Υ(ξ)Υ(η)σ

= (∇2σ)(ξ, η) + ω(∇ξΥ)(η)σ + (ω − 1)(Υ(ξ)∇ησ + Υ(η)∇ξσ)

+(ω2 − 2ω)Υ(ξ)Υ(η)σ.

Rewriting this in abstract index notation gives the result.

Proof of Proposition 5.3.3. In a given splitting, let s =
(
µbc ηb ν

)
. Then by Π(s) = σ,

we immediately obtain ν = σ. Furthermore, Theorem 4.4.1 and Lemma 5.2.3 imply

∇as =
(
∇aµbc + 2Pa(bηc) ∇aηb + Pabσ − µab ∇aσ − 2ηa

)
and

∂∗1(∇s) =
(
2(∇(aηb) + P(ab)σ − µ(ab)) ∇aσ − 2ηa 0

)
.

Therefore, from ∂∗1(∇s) = 0 we obtain ηa = 1
2∇aσ and

µab = ∇(aηb) + P(ab)σ = 1
2∇(a∇b)σ + P(ab)σ.

This shows, that s =
(

1
2∇(a∇b)σ + P(ab)σ

1
2∇aσ σ

)
is unique and that mapping σ to

s de�nes a smooth di�erential operator.

In order to prove projective invariance of L, we use Lemma 5.3.3. Thus, consider a
change from ∇ to ∇̂ = ∇+ Υ in the projective class of M . Then in the splitting induced
by ∇̂, the di�erential operator L is given by:

L(σ)
∇̂
=
(

1
2∇̂(a∇̂b)σ + P̂(ab)σ

1
2∇̂aσ σ

)
.

Now using Lemma 5.3.3 in the case of ω = 2, Lemma 3.3.4 and Lemma 4.1.1, we obtain:

L(σ)
∇̂
=
(

1
2∇(a∇b)σ + P(ab)σ + Υ(a∇b)σ + ΥaΥbσ

1
2∇aσ + Υaσ σ

)
. (5.21)

On the other hand, by Lemma 4.4.1, the element
(

1
2∇(a∇b)σ + P(ab)σ

1
2∇aσ σ

)
exactly

transforms to (5.21), showing the projective invariance.

By Proposition 5.3.3, ∂∗1(∇L(σ)) = 0 and therefore, ∇L(σ) can be projected to the
homology H1(M,S2T ∗).

De�nition 5.3.3. Given a section σ of E(2), then we de�ne D(σ) by projecting ∇L(σ)
to the quotient bundle H1(M,S2T ∗) = E(abc)(2), compare Lemma 5.2.3.
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A section σ satisfying D(σ) = 0, is called a solution of the �rst BGG-equation, whereas
it is called a normal solution, if it in addition satis�es ∇L(σ) = 0.

This yields the following diagram in the case of S2T ∗ in a given splitting:

Γ(S2T ∗)

L

OO

π0

��

Γ(Ea(bc)(2)⊕ E[ab](2))

π1

��
Γ(E(2))

D
//

∇L

66mmmmmmmmmmmmmmmmmmm
Γ(E(abc)(2))

(5.22)

Moreover, we can describe D in a given splitting. Choose a splitting of S2T ∗, then by
Theorem 4.4.1 we have:

∇aL(σ) = (5.23)

=
(
∇a(1

2∇(b∇c)σ + P(bc)σ) + Pa(b∇c)σ 1
2∇a∇bσ + Pabσ − 1

2∇(a∇b)σ − P(ab)σ 0
)

=
(

1
2∇a∇(b∇c)σ +∇aP(bc)σ + Pa(b∇c)σ 1

2∇[a∇b]σ + P[ab]σ 0
)
.

Therefore, projecting onto E(abc)(2) implies

D(σ) = 1
2∇(a∇b∇c)σ +∇(aPbc)σ + P(ab∇c)σ (5.24)

= 1
2∇(a∇b∇c)σ + (∇(aPbc))σ + 2P(ab∇c)σ.

This is a multiple of the operator considered in [6, Section 3.3].

Theorem 5.3.2. [5, Theorem 11] Let σ be a section of E(2). Consider the set U =
{x ∈M : σ(x) 6= 0} and the unique connection ∇ in the projective class of M satisfying
∇σ = 0 on U , compare Lemma 4.1.3. Then on U we have the following statements:

1. σ is a solution of the �rst BGG-equation D(σ) = 0, if and only if ∇(aPbc) = 0.

2. σ is a normal solution, i.e. satis�es ∇L(σ) = 0, if and only if ∇aPbc = 0. If,
in addition, Pab is non-degenerate, then it de�nes a pseudo-Riemannian Einstein
metric on M and its Levi-Civita connection is exactly ∇.

Proof. 1. This follows immediately from equation (5.24).

2. Assuming that ∇L(σ) = 0, then in the splitting induced by ∇, we have(
σ∇aP(bc) P[ab]σ 0

)
= 0. (5.25)

Lemma 4.1.4 implies that Pab is symmetric, which reduces equation (5.25) to(
σ∇aPbc 0 0

)
= 0. Since σ is non-zero, ∇aPbc has to vanish.

Conversely, ∇aPbc = 0 and the fact that Pab is symmetric, immediately imply that
∇L(σ) = 0. This proves the �rst part of (2).
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Now if Pab is non-degenerate, it can be understood as a pseudo-Riemannian met-
ric, as it satis�es all de�ning properties of a metric, except for positive de�nitness.
Furthermore, since ∇aPbc = 0, the connection ∇ has to be its Levi-Civita connec-
tion, as there exists only one torsion-free connection, which preserves a pseudo-
Riemannian metric. By De�nition 2.2.5, we have Rab = (n − 1)Pab, hence the
Ricci curvature is a multiple of the pseudo-Riemannian metric. Thus, we obtain a
pseudo-Riemannian Einstein metric on M .

The First BGG-Operator on S2T

On S2T we have ker(∂∗0) = S2T and H0(M,S2T ) = E(bc)(−2), compare Lemma 5.2.4.
Therefore, π0 : Γ(S2T ) → Γ(E(bc)(−2)) is given by projecting onto the �rst slot in a
splitting. We have the following result:

Proposition 5.3.4. [7, Proposition 3.1] Given a smooth section τ bc of E(bc)(−2), then
there exists a unique section s of S2T , satisfying π0(s) = τ bc and ∂∗1(∇s) = 0. Mapping
τ bc to s de�nes a projectively invariant di�erential operator L.

In order to prove this Proposition, we need the following Lemma:

Lemma 5.3.4. Let ∇ be an a�ne connection on M . If we change ∇ to ∇̂ + Υ in the
projective class of M , then we have the following transformations for τ bc ∈ Γ(E(bc)(−2)):

∇̂aτ bc = ∇aτab + (n+ 1)Υaτ
ab, (5.26)

∇̂a∇̂bτab = ∇a∇b + 2nΥa∇bτab + (n2 − 1)ΥaΥbτ
ab (5.27)

+(n+ 1)(∇aΥb)τ
ab.

Proof. Equation (5.26) can be shown using Lemma 4.1.2 in the case k = 2, ω = −2.
Similarly, equation (5.27) is an application of this Lemma. Note, however, that calculat-
ing transformations of the form ∇̂a∇bτ cd, uses its third part in the case k = 1, l = 2 and
ω = −2.

Proof of Proposition 5.3.4. Suppose that in a splitting of S2T , the smooth section s is

given by s =
( µbc
ρc
ν

)
. Again, the �rst slot is already determined by Π(s) = τ bc, hence

µbc = τ bc. Using Theorem 4.4.2 and Lemma 5.2.4, we obtain

∇as =

∇aτ bc + ρcδa
b + ρbδa

c

∇aρb + νδa
b − τ bcPac

∇aν − 2ρbPab

 and ∂∗1(∇as) =

 0
−∇aτ ba − (n+ 1)ρb

−2(∇aρa + nν − τabPab)

 .

Therefore, ∂∗1(∇as) implies ρb = − 1
n+1∇aτ

ba and ν = 1
n( 1

n+1∇a∇b+Pab)τ
ab. This shows,

that s is unique and mapping τ bc to s de�nes a smooth di�erential operator.
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In order to show that L is projectively invariant, we need Lemma 4.4.3 and Lemma
5.3.4. Consider a change of connection from ∇ to ∇̂ = ∇ + Υ in the projective class of
M . Then in the splitting induced by ∇̂ the di�erential operator L is given by:

L(τ bc)
∇̂
=

 τ bc

− 1
n+1∇̂aτ

ba

1
n( 1

n+1∇̂a∇̂b + P̂ab)τ
ab

 .

Using Lemma 5.3.4 as well as Lemma 3.3.4, we obtain

L(τ bc)
∇̂
=

 τ bc

− 1
n+1∇aτ

ba −Υaτ
ab

1
n( 1

n+1∇a∇b + Pab)τ
ab + 2

n+1Υa∇bτab + ΥaΥbτ
ab

 . (5.28)

On the other hand, by Lemma 4.4.3, changing the splitting transforms L(τ bc) to (5.28),
which proves projective invariance of L.

Since ∂∗1(∇L(τ bc)) = 0 by Proposition 5.3.4, ∇L(τ bc) can be projected to the homology
H1(M,S2T ).

De�nition 5.3.4. Given a section τ bc of E(bc)(−2), then we de�ne D(τ bc) by projecting
∇L(τ bc) to the quotient bundle H1(M,S2T ) = (E(bc)

a )0(−2), compare Lemma 5.2.4.

A section τ bc satisfying D(τ bc) = 0, is called a solution of the �rst BGG-equation,
whereas it is called a normal solution, if it additionally satis�es ∇L(τ bc) = 0.

In a given splitting, diagram (5.15) is given by

Γ(S2T )

L

OO

π0

��

Γ(E(2)⊕ (Eba)0(−2)⊕ (Ea(bc))0(−2))

π1

��

Γ(E(bc)(−2))
D

//

∇L

44jjjjjjjjjjjjjjjjjjjjjjjj

Γ((E(bc)
a )0(−2))

(5.29)

In analog to the previous sections, we compute D in terms of a splitting. Thus, choose a
splitting of S2T and calculate ∇aL(τ bc) using Theorem 4.4.2. We see that the �rst slot
of ∇aL(τ bc) is given by the trace-free part of ∇aτ bc. Therefore, we obtain:

D(τ bc) = ∇aτ bc − 1
n+1(∇dτdc)δab − 1

n+1(∇dτdb)δac. (5.30)

Remark 5.3.1. For S2T there exists an analogous result to Theorem 5.3.1 respectively
Theorem 5.3.2. Non-degenerate solutions of the �rst BGG-equation (5.30) give rise to
Levi-Civita connections in the projective class, whereas non-degenerate normal solutions
yield Einstein metrics. Compare [7, 11].



Chapter 6

Interpretation on the Homogeneous
Model

In this chapter we discuss the theory developed so far on the model for oriented projective
structures. Recall from chapter 3 that this is given by Sn viewed as the ray projectiviza-
tions of C = Rn+1/{0}. Hence Sn = C/R+ and the projection π : C → Sn is a surjective
submersion.

6.1 The Cotractor Bundle of the Homogeneous Model

Consider the tangent map Tvπ : TvC → Tπ(v)S
n for v ∈ Rn+1. Then the kernel of this

map is given by Rv and we obtain a short exact sequence

0 // Rv // TvC
Tvπ // Tπ(v)S

n // 0. (6.1)

Furthermore, since TvC = Rn+1, we have an isomorphism Rn+1/Rv ∼= Tπ(v)S
n, which

we denote by ϕv.

Lemma 6.1.1. We have the following transformation:

ϕλv = ϕv ◦ λ−1id,

for λ > 0.

Proof. Consider the map λid : C → C. Then we have π ◦ λid = π and this induces
Tvπ = Tv(π ◦ λid) = Tλvπ ◦ λid on the tangent bundles, since λid is a linear function.
Also λid factors to a well-de�ned function Rn+1/Rv → Rn+1/Rv and hence we obtain a

83
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commutative diagram:

Rn+1/Rv

ϕv

��

λid // Rn+1/Rv

ϕλvxxqqqqqqqqqq

Tπ(v)S
n

and thus the claim.

Now for v ∈ C de�ne 0 6= µv ∈ ΛnT ∗π(v)S
n by

µv(ξ1, . . . , ξn) = det(v, v1, . . . , vn),

where ξi ∈ Tπ(v)S
n and vi ∈ Rn+1 with Tvπ · vi = ξi for all i. First of all note that there

is always a lift vi for a given ξi, since π is a submersion. Furthermore, the de�nition of
µv is independet of the choice of lifts:

Assume that vi, ṽi ∈ Rn+1 are two lifts of ξi. Then Tvπ(ṽi− vi) = 0 and thus ṽi− vi ∈
ker(Tvπ) = Rv. Thus there exists a t ∈ R such that ṽi = vi + tv, which gives

det(v, v1, . . . , vn) = det(v, ṽ1, . . . , ṽn),

by linearity and the fact that the determinant vanishes if there occur two linearly depen-
dent vectors in the argument.

Lemma 6.1.2. For λ > 0 we have the following transformation:

µλv = λn+1µv.

Proof. Let ξi ∈ Tπ(v)S
n and vi ∈ Rn+1 such that Tλvπ ·vi = ξi. Then by the de�nition we

have µλv(ξ1, . . . , ξn) = det(λv, v1, . . . , vn). From above we know that Tλvπ = Tvπ ◦λ−1id
and thus λ−1vi is a lift of ξi for the map Tvπ. Thus

µλv(ξ1, . . . , ξn) = λ det(v, v1, . . . , vn) (6.2)

= λn+1 det(v, λ−1v1, . . . , λ
−1vn)

= λn+1µv(ξ1, . . . , ξn).

Theorem 6.1.1. Sections of the bundle ΛnT ∗Sn can be identi�ed with smooth functions
C → R which are homogeneous of degree (−n− 1).

Proof. Let ν be a section of this bundle. Then there exists a unique function f : C → R
such that ν(v) = f(v)µv. Since v is an element of Sn, we have that ν(v) = ν(λv) for
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λ > 0. Thus

f(v)µv = f(λv)µλv (6.3)

= f(λv)λn+1µv,

which gives f(λv) = λ−n−1f(v).

Recall from chapter 4.1, that since Sn is oriented, we can identify n−forms on Sn with
sections of the volume bundle. We can use Theorem 6.1.1 to �nd a similar identi�cation
of sections of the bundle E(ω).

Lemma 6.1.3. Sections of the bundle E(ω) can be identi�ed with smooth functions
C → R which are homogeneous of degree ω.

Proof. The volume bundle is de�ned as an associated bundle to the linear frame bun-
dle. Sections of this bundle can be identi�ed with GL(n,R)−equivariant functions
h : PSn → R, with equivariancy given by h(ϕ ◦ A) = | det(A)|h(ϕ), see chapter 4.1
and [9, Proposition 1.2.7.]. On the level of equivariant functions, the equation which
provides the identi�cation in Theorem 6.1.1, is given by h = (f ◦ π)g, where h corre-
sponds to ν, g to µ and π is the projection PSn → Sn.

Now if σ is a section of the bundle E(ω), then it corresponds to an GL(n,R)−equivar-
iant function h̃ : PSn → R, where in this case the equivariancy condition is h̃(ϕ ◦ A) =

|det(A)|−
ω
n+1 h̃(ϕ). De�ne h := h̃−

n+1
ω , then h is an equivariant function of the type

above and thus there exists a unique smooth function f : C → R which is homogeneous
of degree −n− 1, such that h = (f ◦π)g. Then the equation h̃ = (f−

ω
n+1 ◦π)g−

ω
n+1 gives

an identi�cation of h̃ with a homogeneous function of degree ω.

We denote the set of smooth homogeneous functions C → R of degree ω by C∞(C,R)ω.
In particular Lemma 6.1.3 shows that sections of the density bundle E(1) correspond to
smooth homogeneous functions of degree 1. We now want to show, that the cotractor
bundle of Sn is a trivial bundle. This can be done by computing the bundle of 1−jets of
E(1). Before we do that, we need some basic facts about homogeneous functions.

Lemma 6.1.4. Let f : C → R be a homogeneous function of degree ω. Then

1. Df : C → Rn+1∗ is homogeneous of degree ω − 1, hence Df(λx) = λω−1Df(x) for
all λ > 0.

2. Df(x)x = ωf(x).

Proof. 1. D(f(λx)) = Df(λx)λ, on the other hand D(f(λx)) = λωDf(x) and thus
the claim.
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2. Di�erentiating the equation f(λx) = λωf(x) with respect to λ, we obtain
Df(λx)x = ωλω−1f(x). Using the �rst part of this Lemma, we get
λω−1Df(x)x = ωλω−1f(x), which gives the result.

Theorem 6.1.2. The cotractor bundle T ∗ on Sn can be identi�ed with the trivial bundle
Sn × Rn+1∗.

Proof. We want to show that J1(E(1)→ Sn) is isomorphic to Sn×Rn+1∗. A section σ of
E(1) can be identi�ed with a homogeneous functions f of degree one and its derivativeDf
is homogeneous of degree 0. This means thatDf(λx) = Df(x) and thusDf : C → Rn+1∗

factors to a well-de�ned function on Sn. By Lemma 6.1.4 the value of f at a point x can be
recovered from its derivative. We get a well-de�ned map J1

x(E(1)→ Sn)→ {x}×Rn+1∗

on the �bers by j1
xσ 7→ Df(x). This map is injective and since both �bers have the same

dimension, we obtain an isomorphism of vector bundles.

Of course Theorem 6.1.2 also identi�es sections of the cotractor bundle with
C∞(Sn,Rn+1∗). Via this identi�cation the jet projection corresponds to the map

p̃ : C∞(Sn,Rn+1∗)→ C∞(C,R)1

F 7→ (v 7→ F (R+v)(v)).

This map is homogeneous of degree 1, since F is invariant under multiplication with a
scalar in the �rst component and linear in the second component. Thus we have the
following diagram for the jet projection:

Γ(T ∗) oo //

p

��

C∞(Sn,Rn+1∗)

p̃

��
Γ(E(1)) oo // C∞(C,R)1

(6.4)

Note that until now we have been working with Sn as ray projectivizations in C. Thus
we considered Sn as a set of equivalence classes, which has no preferred embedding in
Rn+1. The choice of a section σ : Sn → C de�nes such an embedding.

We prove that a section σ : Sn → C splits the short exact sequence (6.1), for all v ∈ C
in the image of σ. The map Txσ : TxS

n → Tσ(x)C gives the following diagramm

0 // Rσ(x) // Tσ(x)C

Tσ(x)π
,,
TxS

n

Txσ
ll // 0 .
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Since id = π ◦ σ, we have id = Tx(π ◦ σ) = Tσ(x)π ·Txσ for x ∈ Sn. This shows, that Txσ
is right inverse to Tσ(x)π and thus induces a splitting

Tσ(x)C = Rσ(x)⊕ TxSn, (6.5)

for all x ∈ Sn.

Furthermore, the choice of a section σ gives rise to an a�ne connection on Sn. Consider
a vector �eld ξ ∈ X(Sn). This de�nes a vector �eld along σ(Sn) ⊆ C by setting ξ̃(σ(x)) :=
Txσ · ξ(x). Then for ξ, η ∈ X(Sn), we de�ne:

(∇Snξ η)(x) := Tσ(x)π((∇ξ̂η̂)(σ(x))), (6.6)

where ξ̂ respectively η̂ are extensions of ξ̃ respectively η̃ to C, i.e. ξ̂, η̂ ∈ X(C) satisfying
ξ̂(σ(x)) = ξ̃(σ(x)) respectively η̂(σ(x)) = η̃(σ(x)) for all x ∈ Sn. We brie�y explain why
the restriction of ∇ξ̂η̂ to σ(Sn) is independet of the choice of extensions: Certainly, the

value of∇ξ̂η̂ along σ(Sn) only depends on the value of ξ̂ on σ(Sn) and since ξ̂ is tangential
to σ(Sn), it is also independet of the choice of η̂. Therefore, ∇ξ̂η̂ is a well-de�ned vector
�eld along σ(Sn) and projecting to TSn gives a vector �eld on Sn. Furthermore, it can
be veri�ed that (6.6) satis�es the de�ning properties of a linear connection.

Until now we have seen, that the choice of a section σ : Sn → C gives rise to an a�ne
connection on Sn. The section σ also de�nes a section of E(1), which corresponds to the
function f : C → R characterized by v = f(v)σ(π(v)), i.e. on σ(Sn) it is identically 1
and on C it is homogeneous of degree 1. We will also denote this function by σ. One
can verify directly that the connection on E(1) induced by the a�ne connection on Sn

from (6.6) has the property that ∇σ = 0. (Of course this completely determines the
connection on E(1) and the a�ne one within its projective class).

Furthermore, one can verify that the splitting of T ∗ determined by the a�ne connec-
tion coming from (6.6) is induced by the splitting (6.5).

Recall that in section 3.2, we decided on working with the projective structure induced
by the Levi-Civita connection on Sn. Therefore, it is natural to consider the splitting
σ, which embeds Sn as the unit sphere in C. In this case, the tangent space TxSn is
identi�ed with {x}⊥ and the splitting (6.5) is orthogonal. Thus, Tπ coincides with the
orthogonal projection and the linear connection (6.6) induced by σ is exactly the Levi-
Civita connection. We now induce a connection on Sn from the �at connection on Rn,
which is projectively equivalent to the Levi-Civita connection. This will be useful later,
as it is easier to calculate with the �at connection on Rn.

Consider coordinates x0, x1, . . . , xn for Rn+1 and the a�ne hyperplane An, given by
x0 = 1. Via central projection, we identify the northern hemnisphere of Sn with An.
Hence we de�ne the function

f : {x ∈ Sn : x0 > 0} → An,
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(x0, . . . , xn) 7→ (1,
x1

x0
, . . . ,

xn
x0

)

with inverse
f−1 : An → {x ∈ Sn : x0 > 0},

y 7→ y
||y|| .

The �at connection on An gives a connection on the northern hemnisphere, by pulling
back along f . Furthermore, this connection is projectively equivalent to the Levi-Civita
connection on Sn. Geodesics of the Levi-Civita connection on Sn are given by great cir-
cles, hence intersections of Sn with 2−dimensional linear subspaces in Rn+1. Via f , such
an intersection is mapped to the intersection of An with the same 2−dimensional linear
subspace, hence a straight line. This is a geodesic for the �at connection on An. Thus we
have seen that the Levi-Civita connection and the pullback of the �at connection on Sn

have the same geodesics and thus by De�nition 3.1.1, they are projectively equivalent.

We will now prove that the cotractor connection induces the trivial connection via the
identi�cation T ∗ ∼= Sn × Rn+1∗.

Theorem 6.1.3. The cotractor connection on T ∗ gives the trivial connection on Sn ×
Rn+1∗.

Proof. In order to compute the connection induced on Sn × Rn+1∗ via the isomorphism
of Theorem 6.1.2, we consider the following diagram:

Γ(T ∗) oo //

∇T ∗

��

C∞(Sn,Rn+1∗)

��
Γ(T ∗) oo // C∞(Sn,Rn+1∗)

We want to show that the dashed arrow is given by F 7→ DF , for F ∈ C∞(Sn,Rn+1∗).
As already remarked above, we will work with the �at connection on Sn induced via the
central projection. Recall from De�nition 4.2.2 that the cotractor connection (in abstract
indices) is given by

∇T ∗a (µb, σ) = (∇aµb + Pabσ,∇aσ − µa),

where Pab = 0, since we are working with a �at connection. Starting with an element
F ∈ C∞(Sn,Rn+1∗) we have a representation in coordinates F =

∑n
i=0 Fidx

i. Recall
from diagram (6.4) that σ is given by p̃(F ), where p̃ is the projection

p̃ : C∞(Sn,Rn+1∗)→ C∞(Sn,R)

F 7→ (x 7→ F (x)(x)).
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Restricting to An in coordinates gives:

σ(x) = F0(x) +

n∑
i=1

xiFi(x). (6.7)

Therefore ∇σ = DF0 +
∑n

i=1 xiDFi + Fidx
i. Similary by restricting to An, we obtain

µ(x) =
n∑
i=1

Fi(x)dxi (6.8)

and ∇µ =
∑n

i=1DFi(x)dxi. Now this is the �rst slot of the cotractor connection and the
second slot is given by DF0 +

∑n
i=1 xiDFi. We see that this pair corresponds to DF via

the identi�cation of Theorem 6.1.2, since replacing Fi by DFi in (6.7) and (6.8) exactly
gives the �rst and second slot of the cotractor connection.

6.2 Solutions of �rst BGG-Equations

We continue by interpreting solutions of the �rst BGG-equationD(σ) = 0, for σ a smooth
section of E(1). Recall from Lemma 5.3.1, that every solution is a normal solution.
Hence

D(σ) = 0⇔ ∇L(σ) = 0.

This means, that a solution of the �rst BGG-equation corresponds to a parallel cotractor.
If L(σ) ∈ Γ(T ∗) corresponds to F ∈ C∞(Sn,Rn+1∗) via Theorem 6.1.2, then ∇L(σ) = 0
is equivalent to DF = 0 by Theorem 6.1.3. This, in turn, implies that F is constant,
hence F (x) = λ for all x ∈ Sn and some λ ∈ Rn+1∗. Thus, we have seen that (normal)
solutions correspond to elements in the standard �ber of the cotractor bundle.

Furthermore, we can consider the zero set Z of a normal solution σ ∈ Γ(E(1)) of the
�rst BGG-equation. A normal solution σ gives rise to a parallel section s ∈ Γ(T ∗) sat-
isfying π0(s) = σ, where π0 is the projection as considered in section 5.3. The parallel
cotractor s corresponds to an element λ ∈ Rn+1∗. Considering diagram (6.4), the homo-
geneous function of degree 1, which corresponds to the section σ, is λ, now interpreted as
a homogeneous function on the space of rays in Rn+1. The zero set of this homogeneous
function is exactly the projectivization of the kernel of λ (viewed as linear functional).
The kernel of λ is an n−dimensional subspace in Rn+1 (as long as λ 6= 0). Under the
projectivization π : C → Rn+1, the kernel of λ is mapped to an (n − 1)−dimensional
sphere, which is the equator of Sn. This especially shows that Z is a hypersurface of Sn.
In fact, it is a totally geodesic hypersurface, that is, for any vector v which is tangential
to Z, the great circle γ in Sn with γ′(0) = v, stays in Z. This is certainly a projectively
invariant property of a hypersurface. Furthermore, it is a very nice feature, as knowing
the tangent space in a point of a totally geodesic hypersurface, already means that we
know the hypersurface locally around this point.
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Similar results on the other tractor bundles follow immediately. The tractor bundle
is de�ned as the dual bundle of the cotractor bundle and carries the dual connection,
hence T = Sn × Rn+1 and the tractor connection is the trivial connection. By Lemma
5.3.2, every solution of the �rst BGG-equation is normal and therefore corresponds to
an element of Rn+1.

In order to compute the zero set Z of a normal solution νa ∈ Γ(Ea(−1)), we have to
compute the projection π0 : T → Ea(−1) �rst. Via the identi�cation T = Sn×Rn+1, we
see that the bundle E(−1) ↪→ T is given by the tautological line bundle. By the short
exact sequence (4.13), the weighted tangent bundle Ea(−1) is given by the quotient of T
by E(−1). Therefore, given v ∈ Rn+1 in the �ber over x ∈ Sn, the projection is given by
π0(v) = v + Rx. Consider a normal solution νa and its corresponding parallel tractor s,
which, in turn, is equivalent to an element v ∈ Rn+1. Via the projection π0, the section
νa corresponds to the function g(x) = v + Rx, for x ∈ Sn. This function is zero if and
only if x ∈ Rv, hence the zero set of g is given by Rv. Under the projectivization this is
mapped to a pair of antipodal points on the sphere Sn.

For the symmetric power of the cotractor bundle, we obtain S2T ∗ = Sn × S2Rn+1∗

and the tractor connection is trivial. Furthermore, we can see directly from the formulae
for D(σ) and ∇L(σ), that every solution is normal: Recall from (5.23) and (5.24) that
these are given by

∇aL(σ) =
(

1
2∇a∇(b∇c)σ +∇aP(bc)σ + Pa(b∇c)σ 1

2∇[a∇b]σ + P[ab]σ 0
)

and
D(σ) = 1

2∇(a∇b∇c)σ +∇(aPbc)σ + P(ab∇c)σ.

Since we are working with a �at connection, we obtain that Pab = 0 and βab = 0.
Therefore, ∇a∇b is symmetric, which implies the vanishing of the second component of
∇L(σ). Also ∇a∇b∇c is symmetric in all three indices, which shows that D(σ) = 0
implies ∇L(σ) = 0. Therefore, we obtain that solutions of the �rst BGG-equation
correspond to elements of S2Rn+1∗, hence bilinear forms on Rn+1.

We can again consider the zero set Z of a normal solution σ ∈ Γ(E(2)) of the �rst
BGG-equation. A normal solution σ gives rise to a parallel section s ∈ Γ(S2T ∗), which,
in turn, corresponds to a bilinear form b on Rn+1. A diagram similar to (6.4) shows that
the homogeneous function of degree 2, to which σ corresponds, is given by the quadratic
form q(v) = b(v, v). The zero set Z of σ is then given by the projectivization of the zero
set of q, which is a quadric. There are a lot of possibilies for the form of Z, but if q is non-
degenerate, it is an embedded hypersurface. We consider some special cases. The case
of a positive de�nite bilinear form can be eliminated, as in this case, the corresponding
quadratic form does not have a zero set. Considering a quadratic form with Lorentzian
signature, its zero set de�nes a cone and the projectivization of this cone gives rise to
the union of two (n− 1)-dimensional spheres.

The symmetric power of the tractor bundle satis�es S2T = Sn × S2Rn+1 and the
tractor connection is again trivial. As before, we can see from the de�ning equations,



6.2 Solutions of �rst BGG-Equations 91

that a solution of the �rst BGG-equation is normal. Recall from (5.30), that

D(τ bc) = ∇aτ bc − 1
n+1(∇dτdc)δab − 1

n+1(∇dτdb)δac. (6.9)

Furthermore, a calculation shows that

∇aL(τ bc) =

∇aτ
bc − 1

n+1(∇eτ ce)δab − 1
n+1(∇eτ be)δac

− 1
n+1∇a∇cτ

bc + 1
n(n+1)(∇e∇fτ ef )δa

b

1
n(n+1)∇a∇b∇cτ

bc

 ,

where we already omitted parts containing Pab. Now if D(τ bc) = 0, then the �rst
component of ∇aL(τ bc) immediately vanishes. We now show, how the vanishing of the
�rst component implies the vanishes of the other components. We �rst want to show
∇a∇cτ bc = 1

n(∇e∇fτ ef )δa
b. Set ρb = 1

n+1∇eτ
be, then the vanishing of the curvature

Rab
c
d (and the resulting vanishing of βab) imply:

0 = ∇a∇bτ cd −∇b∇aτ cd (6.10)

= (∇aρd)δbc + (∇aρc)δbd − (∇bρd)δac − (∇bρc)δad.

Taking the trace over a and c, we obtain ∇bρd = 1
n(∇eρe)δbd and thus

∇a∇eτ be = (n+ 1)∇aρb = n+1
n (∇fρf )δa

b = 1
n(∇e∇fτ ef )δa

b.

This implies the vanishing of the second component. We are left with showing that the
vanishing of (6.9) implies ∇a∇b∇cτ bc = 0. Set ρ = 1

n∇e∇fτ
ef , then again we have:

0 = ∇a∇b∇eτ ce −∇b∇a∇eτ ce

= (∇aρ)δb
c − (∇bρ)δa

c.

Taking the trace over b and c implies 0 = ∇aρ = 1
n∇a∇b∇cτ

bc.

Therefore, we obtain that solutions correspond to elements of S2Rn+1, hence bilinear
forms on Rn+1∗.
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Abstract (German)

Die vorliegende Arbeit beschäftigt sich mit projektiven Strukturen auf glatten Mannig-
faltigkeiten, d.h. mit Äquivalenzklassen torsionsfreier a�ner Konnexionen, die die selben
unparametrisierten Geodäten de�nieren. In diesem Zusammenhang stellt sich zunächst
die Frage, ob es in einer gegebenen Äquivalenzklasse Konnexionen gibt, die spezielle Ei-
genschaften haben. Von besonderem Interesse sind z.B. Konnexionen, die von Metriken
oder Einstein Metriken induziert werden. Des Weiteren interessiert man sich für Inva-
rianten der geometrischen Struktur, insbesondere für invariante Di�erentialoperatoren,
d.h. Di�erentialoperatoren, die für die projektive Struktur intrinsisch sind.

Wir behandeln diese Fragestellungen mit Hilfe des Traktorkalküls, einem invarianten
Kalkül für projektive Geometrien. Einer projektiven Struktur können natürliche Vektor-
bündel zugeordnet werden, die eine invariante Konnexion besitzen. Diese Bündel heiÿen
Traktorbündel und die zugehörigen Konnexionen Traktorkonnexion. Da es auf einer pro-
jektiven Mannigfaltigkeit keine ausgezeichnete Konnexion auf dem Tangentialbündel gibt,
ist es natürlich mit diesen Bündeln zu arbeiten.

Des Weiteren verwenden wir die Theorie der BGG-Sequenzen. Jede BGG-Sequenz
de�niert eine Folge von invarianten Di�erentialoperatoren, wobei insbesondere die ersten
Operatoren dieser Folgen von Interesse sind. Bezeichnet D einen ersten BGG-Operator,
dann heiÿt die Gleichung Dσ = 0 erste BGG-Gleichung. Werden die BGG-Sequenzen
auf passende Traktorbündel angewendet, so ist die Existenz von bestimmten Lösungen
der ersten BGG-Gleichung äquivalent zur Existenz von Konnenxionen in der projektiven
Klasse, die spezielle Eigenschaften haben. Insbesondere werden wir daraus Bedingungen
für die Existenz von (pseudo-) Riemann'schen Metriken bzw. Riemann'schen Einstein
Metriken und Ricci-�achen Konnenxionen in der projektiven Klasse erhalten.

Als Anwendung werden Traktorbündel, ihre Konnexionen und Lösungen der ersten
BGG-Gleichung auf dem homogenen Modell für orientierte projektive Strukturen disku-
tiert.
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