Lniversitat
wien

MASTERARBEIT

Titel der Masterarbeit

,Managing Responsibilities and Permissions for
Process-Aware Information Systems®

varfasst von

Oleksandr Kyshynevskyi

angestrebter akademischer Grad

Diplom-Ingenieur (DI)

Wien, 2013
Studienkennzahl It. Studeinblatt: A 066 926
Studienrichtung It. Studienblatt: Masterstudium Wirtschaftsinformatik

Betreut von: Univ.-Prof. Dipl.-Math. Dr. Stefanie Rinderle-Ma

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Abstract

Over the last decades business processes and their execution became a central aspect of businesses.
When enacting business processes in large scale organizations, also security concerns are very impor-
tant. Growing businesses engage greater number of participating actors and artifacts in their business
processes. Therefore the issue of flexible management of often complex responsibilities and permissions
becomes very important. In this thesis we elaborate a means to manage business process related secu-
rity policies separately from business processes in a modular way. We analyze the previously developed
SPRINT framework [16] and further develop an editor which is the basis for implementing the three lev-
els described in [16]: task patterns, responsibility bundles, restrictions. Consequently we elaborate two
detailed use cases by means of which the correctness and practical value of the application is evaluated.

Kurzfassung

In den letzten Jahrzehnten haben sich immer mehr Organisation auf die genaue Definition ihre
Geschiftsprozessen und deren Ausfiithrung konzentriert. Daraus resultierend gewinnt in weiterer Folge
auch der Aspekt der Sicherheit bei der Durchfithrung von Geschiftsprozessen an Wichtigkeit. Mod-
erne Geschéftsprozesse werden komplexer, dementsprechend steigt auch die Anzahl von Akteuren und
Artefakten in diesen Prozessen. Aus diesem Grund steht die Frage des flexiblen Management von
Zustindigkeiten und Berechtigungen im Raum. Diese Masterarbeit beschiftigt sich mit der Umsetzung
einer Methode zur modularen Definition und Verwaltung von solchen Zustindigkeiten und Berechti-
gungen, getrennt von den Geschiftsprozessen selbst. Dazu bauen wir auf den SPRINT-Ansatz [16] auf
und realisieren einen Editor zur Umsetzung der drei Hauptaspekte von SPRINT: Task-Abhéngigkeiten,
Zustandigkeiten und Berechtigungen. In weiterer Folge wird die Tauglichkeit der entwickelten Anwen-
dung anhand von zwei detaillierten Use Cases {iberpriift.

Praxiserfahrung

Lebenslauf

07/06 — 08/06

02/07 - 03/07

10/07 — 06/08

03/08 — 04/08

Ausbildung

02/2013

Ab 03/2010

10/2009 — 02/2010

10/06 — 05/07

09/03 — 06/08

Praktikum bei Zaporozhjer Kernkraftwerk,
Energodar (Ukraine)

Assistent des Ingenieur-Programmierers
WWW.Npp.zp.ua

Praktikum bei Zaporozhjer Kernkraftwerk,
Energodar (Ukraine)
Assistent des Ingenieur-Programmierers

Programmierer an der nationalen Universitdt fiir
nukleare Energetik und Industrie

Programmier-Praktikum an der nationalen
Universitét fir nukleare Energetik und Industrie

170-851 Java Standard Edition 6 Programmer
Certified Professional Exam

Magisterstudium Wirtschaftsinformatik an der
Universitidt Wien

Magisterstudium Wirtschaftsinformatik an der
TU Wien

Ausbildung zum technischen Ubersetzer
(Englisch)
Abschlussnote: Sehr Gut

Studium an der nationalen Universitit flir
nukleare Energetik und Industrie
Bachelordiplom als Ingenieur-Systemtechniker
Abschlussnote: Gut

Spezialistdiplom als Ingenieur-Systemtechniker
Abschlussnote: Gut

05/2003 3. Platz beim ukrainischen Wettbewerb fiir
Betriebswirtschaft und Geographie

09/92 — 06/03 Allgemeinbildende Schule, Kalanchack

(Ukraine)
Abschlussnote: Sehr Gut

Auslandsaufenthalte

09/2008 — 08/2009 AU-Pair in Liederbach am Taunus, Deutschland

Kenntnisse und Fihigkeiten

Fremdsprachen: Russisch: 1. Muttersprache
Ukrainisch: 2. Muttersprache
Englisch: flieBend in Wort und Schrift
Deutsch: flieBend in Wort und Schrift
Italienisch: Basiskenntnisse

EDV-Kenntnisse: Java (OCPJP6), Java EE, JavaScript, HTML,
CSS, PHP, MySQL, Linux, MS-Office, C++.

Interessen

Programmierung, Technik, Fremdsprachen, Foto, Sport, Musik, Reisen
Oleksandr Kyshynevskyi

Wien, 09.12.2013

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Acknowledgments I would like to thank my parents Yuriy and Elena Kyshynevskyi and my girl-
friend Tanya for their inspiration and support. I would also like to thank my supervisor Stefanie Rinderle-
Ma, Jiirgen Mangler for his incredible support and guidance throughout this thesis as well as Maria
Leitner for help with correction and the use cases.

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Contents
1 Introduction 6
1.1 Motivation e e e e e e e e e e e e 6
1.2 Contribution e e e e e e e e e 7
1.3 Methodology e 8
1.4 Structure of Thesis e e 8
1.5 Glossaryof Terms e e e e 8
2 Access Control in PAIS/Background 9
2.1 NIST-RBAC e 9
2.2 W-RBAC . . . e e 14
2.3 Administrative RBAC 17
2.4 Visualization of Organizational Models 18
3 Conceptual Design — the SPRINT Approach 20
3.1 Structural Aspect L. e e e e 20
3.2 Operational ASpect e e e 23
3.3 Mapping of Responsibilities 25
3.4 Linear Temporal Logic e 25
4 Implementation/SPRINT-Editor 26
41 UseCases . . . v v v v i o e e e e e 26
4.1.1 Use Case 1A. Reactor Maintenance Stop 27
4.1.2 Use Case 1B. Reactor Contingency Stopo ... 34
4.1.3 Use Case 2A. Bachelor Enrollment Process 37
4.1.4 Use Case 2B. Master Enrollment Process 45
42 Userlnterface e e 48
43 Backend e e e 56
5 Test Cases and Evaluation 61
6 Conclusion and Summary 69

1 Introduction

1.1 Motivation

With ongoing growth and increasing complexity of organizations as well as increasing complexity of
regulatory frameworks business processes get more and more complex involving hundreds or even thou-
sands of actors [17]. There are several major drivers explaining this phenomenon. The first one is the
information technology (IT), which enables businesses and non-commercial organizations to run more
effectively, opening new spheres of activities, unknown before. IT makes it possible to develop new and
sophisticated business models (Google, Facebook, Amazon) thus giving us, the consumers, additional
value.

On the other hand the ubiquitous globaliazation of economies, growing competition in all spheres
of business forces companies to be more cooperative than ever. For example, a virtual enterprise can
be considered as an extreme form of cooperation between two and more (commercial) entities: if one

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

company meets a kind of challenge, which it cannot handle by itself (due to insufficient production ca-
pacities, resources, missing levels in the production chain, know-hows, etc), it can partially be entrusted
with external partner(s). This process does not demand a new legal entity to be created, but conversely
a new expanded business process should be designed. Having achieved their goals such virtual enter-
prises are normally subject to deresolution afterwards, letting its participants seek new possibilities in
the dynamic business world [8].

Organizations can also cooperate in a more permanent way, which also (as in case with virtual enter-
prise) requires that some production stages should be performed by geographically dispersed partners.
Finally, the structure of one organization can be complex enough to include dozens of divisions and
coworkers who share same production inventory and artifacts. One can think about a hospital, where a
surgical ward is getting prepared to perform a long and complex operation, demanding a series of various
analyses and procedures to be made in a pre-stage. This entire process involves a number of actors with
specific roles and rights. The information generated during preparation should flow to the right actors,
restricting access to those, who aren’t meant to get it.

Systems that help with an enactment of business processes, are called Process Aware Information
Systems (PAIS). The enactment of a business process through PAIS typically requires the process to
describe control flow, data flow and users or services, cleared to execute this Business Process (BP). It
can also include some access-sensitive data, which only specific actors or services are allowed to use [16].
This task in PAIS is solved by means of security policies [3], containing access rules and authorization
constraints. This restrictions can be furthermore tightened by context policies [10], determining time,
data or location, from which a BP can be executed.

Till now there were several approaches of managing security policies, each of which having its own
drawbacks or limitations. The main problem is the partitioning of security functions: for example, a
policy may contain access rules and authorization constraints without having context specific rules. In
other case access rules may be integrated in a BP, leading to expanding of this process and making it
less cohesive. In that way, we can see the dispersion of various security aspects over the PAIS instead of
managing and storing them centralized.

The goal of this thesis is to implement a system, which will allow to create, maintain and enhance
security policies in a way, as promoted by Security in PRocess-aware INformation sysTems (SPRINT),
which implies separation of security policies and process logic and representation of policies by means
of responsibilities, permissions and constraints. In a future this could possibly allow to solve the problem
of numerous process-aware information systems, each representing security concepts its own way.

1.2 Contribution

This master thesis contributes to previous works in the field of security management in information

systems. Its main starting point is the paper [16], whose goal is to develop an approach for managing

the security aspects in information systems. Another foundation is OrgViz [12] - previously developed

application for representation of enterprise organizational structure. The main goal of this thesis is to

build a prototype, which helps security engineers to handle the security aspects in business processes.
The following is considered to be the contribution in this work:

e implementation sketch: the concepts from [16] are reviewed and customized in order to be imple-
mented in a web application, that allows security engineers to easily define and maintain security
related rules for business processes;

e three editor components and a backend server. Analysis and sketching lead to a web application
aimed at composing (1) task and (2) responsibility patterns as well as (3) constraint editor. Each

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

of the tree editors yields a pattern, whose structure is defined by the application. These resulting
patterns are stored on the backend server;

e application of the SPRINT [16] for two detailed use cases (reactor maintenance and university
enrollment) in order to test the functionality of the program. As it turned out, contemplating about
how to implement certain constraints led us to a new way of using unary operators in the pattern
rules, which we will see in the section 5.

1.3 Methodology

In order to realize the goals of this thesis, we employed an approach roughly based on the theory of
Action research [2]. We analyzed the input provided by the SPRINT approach, designed an improved
system and evaluated it according two to use-cases. Our concrete steps, mapped to chapters in this thesis
were:

Sect. 2 and 3: Analysis of existing approaches, which regulate security aspects of information
systems.

Sect. 4.1 Elicitation of use cases to later check the appropriateness of the three editors;

Sect. 4.2 and 4.3: Design and implementation of prototype;

Sect. 5: Evaluation on the basis of the prototype and the uses cases.

1.4 Structure of Thesis

In Sect. 2 we discuss some important security models in information systems, which will guide us into
the topic. Sect. 3 gives detailed description of the SPRINT approach, which in turn uses Role Based
Access Control (RBAC) in order to describe the concept of security management in large scale systems.
In Sect. 4 we present the use cases which we will later implement using the target application. This
section also shows some technical aspects about how the SPRINT approach may be utilized in a real-
world application. Sect. 5 checks the suitability of the application by means of carrying over the use
cases from Sect. 4 into the program. Sect 6 wraps up the work and summarizes the possible future steps
toward building robust and reliable framework for managing security aspect in a large scale information
systems.

1.5 Glossary of Terms

access control the set of means aimed at limiting the availability of some resources for unauthorized
persons (also services)..

access restrictions physical or informational barriers which protect resources from unauthorized ac-
cess..

BP Business Process.

business model a description of process of how an enterprise delivers a product or service for con-
sumers..

business process a set of interconnected activities which lead to a creation of product or service..

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

NIST National Institute for Standards and Technology.
RBAC Role Based Access Control.

security policy a set of rules with security requirements for the given system..
SOD Separation of Duties.

SPRINT Security in PRocess-aware INformation sysTems.

workflow may be seen as an instance of business process. Involves data objects and actors which per-
form tasks from BP.

2 Access Control in PAIS/Background

The organizational security has been an issue for quite a while. There were different approaches to
standardize this area of interest in this work we will use concepts of resource-based access control,
developed by National Institute for Standards and Technology (NIST).

2.1 NIST-RBAC

The NIST-RBAC Model stands for National Institute of Standards and Technology Role Based Access
Control. It is a security standard that was developed as an extension of existing RBAC. We first look at
original RBAC, its weaknesses and drawbacks and after that go through improvements made by NIST
(23] [7].

Role based access control is an established approach for authorization in a large-scale systems. It
uses the concept of roles, which was known long before the first computers have appeared, and was
widely spread in the privilege controlling realm. However because of lack of standards, the concept of
roles was implemented in different ways, as various vendors had their own vision of what the role is and
how it should be squeezed into a system.

In its nature the RBAC principle is rather abstract, as it doesn’t rely on a user identity, which is en-
trusted to perform specific actions on the data artifacts or in some system in general. The main concept
here is a role which has specific permissions attached to it. After defining the roles in the enterprise, they
must be assigned to employees. One employee may have one or more roles. A role can imply permis-
sions, skills, responsibility of the coworker. As an enterprise could possibly present enormous structure
with hundreds, thousands or tens of thousands of employees, RBAC is a good way of maintaining secu-
rity prescriptions: if a company hires a new coworker, there just should be an existing role assigned to
him. Furthermore large companies may have partially or entirely overlapping role permissions. RBAC
proposes here a hierarchy approach, which implies that higher standing roles include permissions of their
sub roles.

Role based access control also allows for specification and enforcement of security policies which can
be specifically developed for individual enterprises. If enforced with a particular system, this is result of
configuration of various components of [23]. That makes a great difference to classical discretionary and
mandatory access control systems, with policies embedded into access control model. As RBAC supports
the separation of duty constraints between roles, it makes possible to provide additional mechanisms for
specification and enforcement of policies.

Just because role based access control concept showed its efficiency, it was implemented by many
software companies in their products where access restrictions play significant roles (DBMS, operating

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

has has

User Role Permission

Figure 1: Flat RBAC by [23]

systems and others). But because of missing generally accepted standard, each company tried to define
RBAC features its own way. As a result a set of heterogeneous RBAC models is ensued. That explains
the attempt of NIST to standardize this approach.

It was admitted that the RBAC concept can vary from very simple to considerably complex forms.
That makes a single universal model of RBAC not quite acceptable. An advanced model would contain
a lot of overhead for most use cases. Therefore the NIST model consists of four subsets, each requiring
the previous one to be implemented. Each level brings additional functional features into the model.

Flat RBAC is an initial level of RBAC. The essence of this level is that each user obtains a role.
Each role is assigned to a set of permissions. The user-to-role and permission-to-role assignment can be
many-to-many. Each user can also exercise permissions from multiple roles. Thus flat RBAC embodies
features of traditional group access control.

Hierarchical RBAC takes a step further and introduces the principle of role hierarchies, where higher
role includes permissions of the subordinate role. There are two sub-levels to distinguish between:

e General hierarchical RBAC — supports arbitrary partial order;
e Restricted hierarchical RBAC — support for possible restriction in the role hierarchy tree.

Hierarchy distribution can be inheritance-based (upper roles obtain sub-role permissions) activation-
based (excludes permission inheritance) or mixture of two above. Due to its value this feature is widely
implemented in various products.

Constrained RBAC supports Separation of Duties (SOD), which are used to identify and avoid
conflict of interest policies such as to prevent users from fraudulent actions. SOD should meet static
SOD (user-role assignment) and dynamic SOD (role activation) requirements. This feature widely finds
its application in sophisticated systems involving a great deal of actors.

Symmetric RBAC allows for permission-role review in a way, flat RBAC allows for user-role review.
That means, we get a possibility to determine the roles accommodating given permission. In efficiency
terms it delivers about the same performance, as the flat RBAC.

Fig. 1 shows the first level, which regulates the group-based access to some objects. This model level
is a starting point for the rest three. A great advantage of the flat RBAC is that it supports many-to-many.
Most of the modern systems vary in respect to the number of roles that particular user can obtain. This
number reaches from 16 or 32 up to hundreds and even thousands. Though the NIST model for this level
of RBAC doesn’t regulate the minimum for the roles quantity, this point should be handled by concrete
operational environment.

In Fig. 1 the User concept is context specific and can represent a human being or some software unit,
able to perform actions (e.g. web service). A Role may be the function in an organizational structure or
any other functional bundle. Lastly the Permission concept determines a set of rights to treat objects one
or another way. NIST-RBAC determines only positive permissions as opposite to negative permissions
which forbid actions on some objects. Furthermore concrete system may support sessions. In that way
user obtains specific rights only with begin of new session. During each session a user may explicitly
indicate, which set of permissions is necessary at this moment of time. Linux users are well familiar

10

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

has

User Role Permission

Figure 2: Hierarchical RBAC by [23]

with this mechanism: normally a person logs in as unprivileged user to prevent occasional damage to
the system. Only when special privileges are required, root-session takes place. A significant RBAC
requirement is that multiple roles can be activated simultaneously.

Flat RBAC enables querying to determine which users hold specific roles and vice versa. The same
is true for role-permission relations. Having specified main functionality points, flat RBAC model leaves
some mechanisms for software vendors to consider:

e How should scalability work in the system.

e The actual implementation of revocation/activation. This happens, if a user is subject to removal
from the system or if some if role’s permissions should be shrunk.

e Who should assign roles to users and permissions to roles.

These omissions are made intentionally to let vendors adapt their products for specific market needs and
to let them implement these features in a way that is most appropriate in a given situation.

Hierarchical RBAC model (Fig. 2) differs from flat RBAC only by role hierarchy relation. Role
hierarchy represents the internal order of duties and rights. In the most common cases senior or more
powerful roles are put at the top or hierarchical tree with less extensive roles descending from them. The
principle of arbitrary partial order leads to a two sub levels distinction:

e general hierarchical RBAC with a support for arbitrary partial order;

e Limited hierarchical RBAC with possible restriction for a structure of hierarchy tree, which in turn
can be normal or inverted tree.

The tree structure of a hierarchy is well suited to represent inheritance mechanisms for role permis-
sions. Fig. 3 shows examples of hierarchies with junior-most role (bottom) and without it (top).

Both hierarchies however include senior-most role (DIR). That is considered to be dangerous, as
this role derives too many permissions. Even if a person entrusted with these privileges is considered
to be exceptionally reliable, it may commit a mistake, leading to negative consequences. To make the
entire system less error-prone some procedures may be engaged that limit the permission inheritance.
Similar to object-oriented programming languages, those roles, permissions of which are not inherited,
are named private (just like private instance variables and methods are invisible for other classes and
subclasses in a class inheritance tree).

In regard to hierarchies two interpretations exist to distinguish between: we’re already familiar with
the first one, stating that senior roles inherit permission from junior ones. This interpretation is referred
to as permission-inheritance interpretation. The activation interpretation on the other hand prescribes

11

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Director (DIR)
Project lead 1 (PL1) Project lead 2 (PL2)
Production /\ Quality Production / \ Quality
Engineer 1 Engineer 1 Engineer 2 Engineer 2
(PEI) (QEL) (PE2) (QE2)

(b) A Tree Hierarchy

Director (DIR)

Project lead 1 (PL1) Project lead 2 (PL2)

N
Production Quality Production Quality
Engineer 1 Engineer 1 Engineer 2 Engineer 2
(PE1) (QET) (PE2) \ (QE2)

Ellg{l}?el‘ 1(ED) Engineer 2 (E2)

Engineering Department (ED)

Figure 3: RBAC: Hierarchy Example by [23]

that activation of the senior role does not mean the activation of the junior roles’permissions. In order
junior roles to obtain their permissions, explicit activation is needed. Modern software systems may
apply both methods simultaneously. Another principle which should be mentioned is the Access Control
List approach (ACL). It is widely applied in file systems and for each file system entry defines the list
of processes and users as well as concrete operations, which are allowed to be performed on that entry.
The difference of the ACL from the two above approaches that there is no permission inheritance. In this
respect the ACL may be compared to a so-called “minimal RBAC Model”.

Constrained RBAC adds constraint features to a preceding hierarchical model. The meaning of
constraints is to limit the user-role assignment or to regulate the role-permissions activation during a
session and thus to implement mechanisms for separation of duties. This will prevent user to go beyond
the prescribed permissions. That also eliminates a possibility to consider, a fraud or malicious action
could stay untracked in the system. Least privilege principle finds its application here. In order to
perform some action inside the system, a user gets exactly the minimal amount of authority to fulfill this
action. That reduces potential risks of damage.

We now take a closer look at static and dynamic SOD between mutually exclusive roles that claim
to be another one effective technique. In order to prevent a user from obtaining permissions of two
conflicting roles a static SOD can be activated. That means if a person acting on behalf of a user in the
system and being a member of role R1 wants to perform next step as being member of role R2 this step
will be blocked or allowed only after permissions from R1 are given up and user logs in as a member
of R2 (provided, he has a possibility to do so). Speaking in inheritance tree terms: if roles R1 and R2
are constrained by means of SOD the R1’s higher role inherits this constrain with respect to R2. That

12

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

implies no SOD is applicable between R1 and its higher role because that would deny the core principles
of inheritance. In order not to get away from Linux/Unix theme, SOD may be seen in action when
changing users with su - user2 command in terminal. That allows user (or users) to change the roles
from current rolel to role2 and to obtain different sets of permissions. In order to get back and become
userl again should use su - userl anew.

The dynamic separation of duties is pretty similar to static SOD, but there is one crucial point that
makes difference: dynamic SOD limits the availability of permissions within or across a users session [7].
Assume a user is allowed to act on behalf of normal bank clerk and a clerk supervisor. In a situation when
an action performed by clerk must be submitted for a supervisor approval, this user might want to log in
as a clerk supervisor to make approval without resigning its authority as a normal clerk. At this point a
system will deny access as long as the user keeps the clerk role. Till now there is no actual distinction
to static SOD with one exception dynamic SOD provides more flexibility. But here is where things get
different: the previous example makes it clear that R1 and its higher role belong to the same inheritance
tree. That was not possible in the static separation of duties. So it is perfectly fine to have multiple roles
connected through inheritance until a user undertakes effort to obtain permissions for more than one role
simultaneously.

Though the principle of separation of duties may be implemented by sole use of flat RBAC, the
NIST model requires the possibility to build hierarchical role structures, as this eliminates limitations for
flexibility and functionality.

Symmetric RBAC adds the concept of more complex permissions to the preceding levels of RBAC.
These permissions concern needs for effective reviewing mechanisms in the systems. All this may appear
to be redundant, but modern enterprise may comprise a geographically dispersed entity with several
branches. That means a system administrator should be able to do role-responsibility and user-role
revisions for all enterprise parts regardless of the geographical location. Furthermore, permissions a
specific role is associated with may include objects from different locations. Crucial point here is the
principle of the least privilege.

There are more than enough reasons to review the policies in the enterprise. Firstly the user may leave
the company (fired, suspended, etc.). In this case all its privileges and roles should just be permanently or
temporary taken away. We can often hear news reports about angry employees, who did massive damage
to their company after being fired. That was possible solely because system administrators didn’t cancel
all due permissions. In this case it would be most appropriate to completely remove all the access data
associated with particular user, as when left in the system this data may present potential security risks.
Secondly a user may get promoted, implying wider range of permissions. Here system administrator
should carefully activate additional set of responsibilities.

As it was already mentioned before, starting with RBAC level 1 the interface for reviewing role-
user and role-permissions relations are required. Level 2 of NIST-RBAC claims features to effectively
monitor and manage not only permissions, which were directly assigned to specific role, but also those,
which were inherited from the sub roles. As we proceed to RBAC level 4, there should be a feature to
provide results for two types of requests:

e arequest to return a complete set of objects associated with some permission;

e arequest to return a complete set of the object-operations pairs associated with permission.

Optional feature may also display direct and indirect permission assignment (indirect regards to
permissions obtained through inheritance) and a feature to perform a review on a concrete subsystem.
Being rich and open ended approach, NIST-RBAC doesn’t touch upon some subjects which software
vendors are free to interpret in their own way. The most important of them are:

13

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

e Scalability is an individual parameter for enterprises. Some businesses rely on products with low
scalability indexes (may bear further problems in case of rapid growth), the others prefer more
flexible solutions. Scalability may regard the number of roles, permissions, size of role hierarchy,
limits on user-role assignment and so on. Generally a further scale is adopted: small systems are
extensible up to tens of times, medium up to hundreds and finally large scale systems are capable
of 1000 times extension.

e Authentication mechanisms determine the way users log into system and obtain their privileges,
attached to some role. This should be the part of system architecture and lies beyond access control
model. Negative permissions are also sometimes implemented by vendors and are there to forbid
access. RBAC omits them because this concept might bring some confusion and redundancy. The
concept of normal (or positive) permissions implies that user has no access to those objects, for
which it has no positive permissions.

e The nature of permissions may vary widely and concern for example the granularity of permis-
sions, e.g. fine- vs. coarse-grained (access to single object or a group of objects respectively),
some functional perspectives (commit, check), artifact-related operations (create, delete);

e Discretionary role activation: as NIST-RBAC doesn’t prescribe mechanisms for how and which
roles should be activated in a case, a user has more than one role. Single requirement here is a
possibility to activate all roles simultaneously. Various products act differently in this area: some
allow for activation of default features and let a user afterwards deactivate/activate un/necessary
roles.

e Constraints: as we already have seen, RBAC prescribes two types of constrains (static and dynamic
SOD) which belong to prohibition ones. A further example is obligation constraint, whose name
is self explaining.

e Role revocation represents a feature of high importance. The main advice here is that as soon as
given permissions are no longer needed they should be revoked.

2.2 W-RBAC

W-RBAC stands for Workflow RBAC [26] and introduces mechanisms for role-based access control in
workflow systems. W-RBAC is represented by two models: WO-RBAC and W1-RBAC. The first one
uses the above described permission approach from RBAC along with workflow constituent separated
from each other to make the management of administrations easier. W1-RBAC carries additional fea-
tures, enabling exception handling during the execution process. Let’s take a closer look at both models.

We’re already familiar with the RBAC model, which includes such concepts as User, Role and
Permission. WO-RBAC adds some additional concepts to it, namely case C and Organizational Unit
OU. Consequently the four new relations are coming into play: include, member, head and doer (Fig.
4). As most important permission in our case is a task execution permission, we omit some administrative
ones, such as adding new task, users, constraints, etc.

As one might remember, the NIST-RBAC model introduces protection mechanisms, which prevent
one user from executing discrepant roles at the same time. For example the same user cannot request for
credit and approve this request simultaneously. This user however may request credit in one operational
case (for example bank may credit their own employees) and approve credit request in the other (normal
credit request from non-employee). The key point here is that multiple contradictory roles shouldn’t be
activated for the same user in one session, but may be legally activated in different sessions.

14

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Is—a Imply
Can—Play Hold o

User Role Privilege
3 o
= o
= ::u Do:g
=
Organizational \

- Unit Case

Include

Figure 4: WO-RBAC Meta Model by [26]

The concept of sessions is not that distinguishable in workflow systems, as there are no such dis-
tinct time boundaries. It is also critical here, that one user obtains both roles simultaneously as credit
requester/approver. That is what case concept stands for. From example above we’ve seen that a bank
employee may approve a credit request and may be a requester in different cases. The key point for him
is not to be requester and approver in the same case.

In that way, cases are used to represent instances of business processes for workflow systems. The
ternary relation doer(u, p, ¢) connects three classes in the meta model: the case, the user and finally
permission. This implies, that a particular user obtains certain set of permissions for a certain case.

Next we get to a concept of Organizational units, which by convention serves to represent the hier-
archical structure of the enterprise with its employees and heads of departments. Furthermore there can
be static (such as typical accounting or HR department) and dynamic units (e.g. temporary project with
project team and one or more project lead). But it is important to distinguish between organizational
hierarchy and the roles hierarchy that we know from the NIST-RBAC model. Hence the is-a in RBAC
is different from the power is-a. In RBAC is-a stands for inheritance of responsibilities rather than sub-
ordination. But that is true up to some extent. In some cases it is irresponsible to entrust the highest
roles with all the responsibilities of the subordinate ones. Thus the head of the bank should not have
the responsibilities of the safe manager who is the only one to know the password. The last three new
relations to RBAC model are:

e include (d,d>), di, d, € OU means that organizational unit d; includes organizational unit d5;
e member (u,d), u € U, d € OU represents the belonging of user u to the organizational unit d.
e head (u,d), u € U, d € OU means that user u is in charge of the organizational unit d.

Constraints are represented in WO-RBAC by means of a standard logic program clause C,,. The pred-
icate added to this constraint reflects a state, when constraint is being violated and a situation described
by Cn is invalid L < C,. Constraints may be expressed as follows:

15

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

1+ Ay, ..., A not By, ...,not B;

Here either k or [may equal to zero. The above expression may be also represented as p(t1,t2,...,tn).
The predicate p here may be any of the relations from the WO-RBAC meta model or any recursive relation
to those from meta model. ti may represent either existentially quantified variables or instances of the
concepts from the meta model.

Furthermore, constraints may be static and dynamic. Static constraints are independent of the process
instance execution state and define the relations between the concepts of meta model that should not
happen by means of specifying certain conditions which may lead to such relationships. Static constraints
must be checked after any transaction resulting in adding/removing a tuple, which implies an adding of
a new instance of the meta model class.

Constraint may be referred to as dynamic if there are any doer predicates in the clause. The role
of dynamic constraints is to prevent a user from performing some action. One can distinguish between
following cases:

e Dynamic separation of duties: restricts from performing contradictory activities by the same user.
We’ve seen his type of constraints in NIST-RBAC model. For example:

1+ doer(u,Ty,c),doer (u, T»,¢)

means that one and the same user u is not allowed to perform task 77 and 75 for the case c.

e Binding of duties is opposite to dynamic SOD: if user u has performed some task 77 he must
perform another task 75 for the same case c. The said above may be expressed as following:

1< doer(u,Ty,c),doer (u,Tr,c),not u' = u.

e Inter-case constraints are the ones spreading over multiple cases. One of the useful applications
may be counting the number of times a user has performed certain task as each task execution may
be considered to be a separate case.

e Reciprocal separation of duties prevents form forming coalitions and achieving biased results
across cases. For example, if user u; approved the request for user u;, then user u, cannot ap-
prove any request for u.

1< doer (u;,request,cy),doer (u,approve,cy),
doer (up, request,c;),doer (uy,approve,cy),not ¢y = c;.

So far we discussed the WO-RBAC and the constraints definition. There are cases which require
decisions to override constraints supposed to be less important. This concept is supported by W1-RBAC.
Imagine a situation where a hospital accepts a patient with a serious injury. In this case some for-
mal procedures must be omitted so that the patient gets the treatment he/she needs as fast as possible.
Furthermore some tasks restrictions should be violated in a situation if for example no second surgery
assistant is available for an operation on this patient (the operation must be conducted without second
assistant or a person not qualified as assistant should take his/her place). Of course this kind of situation
must be handled with exceptional responsibility and caution, as by involving employees for the tasks
they’re normally not allowed to perform, the a lack of people to perform their direct tasks might happen.
In such way, if we enable unqualified person (say, nurse) to be a second surgery assistant, a situation is
possible where no nurse will be available to accept a newly delivered patient.

16

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

The described above situation is called dead end (no potential executors for a certain task). There is
also another reason for such cases: normally W-RBAC systems allocate executers for the tasks during
the runtime (i.e. task activation). The process of allocation may be based upon such information as
executor availability and work load. To recover from dead ends some constraints should be overridden.
Let’s consider another example: the policy of the hospital requires the treatment of the patient by the
same doctor, who has examined the patient. But because this doctor D, who has examined patient P two
weeks ago, is unavailable (having vacations in France) the treatment of P (if cannot be postponed till the
necessary doctor is available again) should be relayed onto another doctor Dj.

It is worth to mention that not all the constraints have the same degree of importance. The mentioned
above hospital example constraint may be referred to as binding constraint. The goal of binding con-
straints is to provide reliable, effective and unbiased treatment (in some cases also security). W-RBAC
model allows for assigning the degrees of importance to constraints, i.e. to prioritize them. We will see
how to do that in the next step.

Previously we have defined constraint as

1+ C,
Next we assign a number to each integrity constraint rule
1< G, priority 8.

The higher level number expresses the higher priority of constraint. Usually the positive integers are
used to express the priority. Furthermore we can gather all constraints with the level of i in a bundle C; ,
which gives us the level of compliance of formula.

There should also be defined which constraints may be overridden and which users are allowed
to override them. As we already know that users obtain their permissions through roles, an attribute
override(n) may be specified for every role, which means the certain role is capable of overriding the
constraints up to level of n. The more powerful roles may override constraints of higher levels. In order
to implement the mechanisms to protect some constraints from overriding the priority level i may be
assigned the value enough high, so that no roles are able to override this constraint.

2.3 Administrative RBAC

The Administrative RBAC Model (Fig. 5) may be considered to be an extension of the traditional RBAC
[22]. In this chapter we will discuss ARBAC97 model. There are newer models (like ARBAC99), but
they all follow the same original principle.

ARBAC is represented by three components: URA97 — the user-role assignment, PRA97 stands for
permission-role-assignment, RRA97 — role-role assignment. ARBAC is distinguished from traditional
RBAC by the presence of administrative roles and permission, which are used to manage (administer)
the formal roles and permissions.

Let’s first take a look at the first component of the ARBAC97, the URA97. The two main objectives
of this component are to grant and to deprive the privileges through participation of specific user in some
roles. This mechanism can be also applied for assigning user to groups. Important moment here is
to decentralize the role assignment, in other words to make it appropriate for large-scale systems. For
example in an extensive system each smaller subsystem may have a junior security officer (JSO), whose
authority is limited to administer some bounded set of roles (say, A,B,C). Important here is to secure,
that JSO is only allowed to add users to these roles and to restrict to some extent the circle of users,
which may be assigned to roles A,B or C. So, the main concern of the URA97 is to determine, which
user may be assigned to specific role, who may conduct this assignment and to separate the authority to

17

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

has n n includes
n n n
Role Permission
c
includes
n runs c
1 n .
User Session
c
n
includes
< includes
n n n

Administrative
Permission

Administrative

n n
has

has

Figure 5: Administrative RBAC by [22]

Senior Security Officer (SSO)

R

Department Security Officer (DSO)

N

Project Security Officer 1 (PSOI) Project Security Officer 2 (PSO2)

Figure 6: Administrative Role Hierarchy by [22]

add/remove users to/from the role. In that way the URA97 assumes the existence of administrative role
hierarchy along with existence of normal role hierarchy. Example of such hierarchy may be seen at Fig.
6.

2.4 Visualization of Organizational Models

While this master thesis is using the principles developed and described in [16], it also relies on a notion
of the organization itself, that is similar to WRBAC. the organization is represented by organizational
units (divisions, subdivisions, etc) and people who work there. This part is covered in [12] and imple-
mented through the corresponding web application. We will use it later in order to represent the structure

18

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

has_parent
has_relation m m
User m m Role
m
Organizational Unit
m m
] Entity
<> Relationship
has_parent m many

Figure 7: Meta Model for Structure Representation

of organization for the use cases, described in section 4.1.

The main arguments of the authors of [12] is the importance of a user friendly organizational model,
which allows to navigate through its functional entities, to query the roles and to be able to obtain the
list of employees, who are entrusted with certain set of privileges. As we have already mentioned in
section 2, the concept of role is more universal, as the staff pool is more likely to change over the time:
employees may enter or leave organization, get promoted, etc [1]. The whole situation is likely to get
more complicated with larger organizations, represented by tens of organizational units and thousands
of employees. Without proper ahndling, changes in organizational structure might yield some serious
security breaches [27] [20] [21]. That is why there is strong need for robust but efficient model [15] [13].
Thus having a good model and visualization allows to avoid security problems, by hiding the complexity.

[12] proposes two ways of representing organizational structure - the OrbitFlower and OrbitList
(Fig. 8), both of which are represented by set of nodes and edges, connecting those nodes with each
other [24]. The OrbitList puts the structure hierarchically [9], whereas the OrbitFlower stands for the
network visualization, which in some cases may be more preferable [4]. Both approaches have their
advantages and disadvantages, but the ability to switch from one view to another for the same target
organization makes them very versatile. It is important to notice, that the meta model for both approaches
includes ternary relation between user, role and organizational unit (Fig. 7). This point is crucial, because
such approach allows to makes queries in different ways, thus retrieving much more information from
the model, than it would be possible for traditional hierarchical approach with binary relationships.

We now explore the meta model in Fig. 7 and its semantic in more detail:

e The Role’s entity has_parent binary relation stand for classic hierarchical representation of the
organization’s structure.

e The same holds true for the has_parent many-to-many relation for Organizational Unit.

e The User entity has relation to Organizational Unit and Role entities, which mean a user with
certain role may belong to 1..m organizational units or a user in organizational unit may have 1..m
roles.

e The Organizational Unit entity is comprised by 1..m roles and 1..m users;

e A Role of one particular user may occur in 1..m organizational units.

The concrete users in Fig. 8 are listed separately from Organizational Unit - Role diagram. This is
made for the reason we mentioned above, as the internal staff rotation is subject to frequent changes.

19

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

OrbitFlower OrbitList
2y

f—é Secretary | & Black

R Black

Accountin
g Junior Accountant
R Green S & Green
23 Analyst | 3
ones
X Senior Accountant | e
@ WesBank 8 Moss 8 Moss
8 Red 8 Red
Secretary . 8 sharp 8 Sharp
8 smith 8 smith

Junior Accountant

Figure 8: Example of the Orbit Flower and List

Furthermore, with larger organizations it would be problematic to display all available users, which may
turn the entire diagram to cluttered and unreadable. Instead the interface of this application allows to
filter the list of users in organizational unit or users, entitled with specific role, as the mouse cursor
moves over (or clicks) specific unit or role respectively.

In order to make the distinction between organizational units and roles more clear, different colors are
applied: the blue for the first and purple for the second entities. The thickness of the edges, connecting
organizational units with corresponding roles varies depending on the number of users assigned. Lastly
we point out the difference between representation of nodes in both models:

e OrbitFlower: the size of circles standing for organizational unit/role depends on the number of
users assigned to corresponding entity, whose exact number is specified in the middle of the circle.

e OrbitList uses a bit different way to express this information: instead of adjusting the size of the
node, the color intensity is used there. In order to specify the number of users in the entity, the
user silhouette with number on it is used.

3 Conceptual Design — the SPRINT Approach

We are now discussing the basic approach for managing security aspects, which we rely on throughout
this thesis. Principles from SPRINT will be used in order to implement security aspects in our target
application. This section provides a summary of [16].

3.1 Structural Aspect

As already discussed in the introduction, there are different ways to include security aspects in the process
[251 [5] [18] [14]:

e as a part of a process
e attached to concrete process;

e as a common set of prescriptions, completely decoupled from the process, but from which a pre-
scription for every single step in the BP can be derived (exact understanding of the entire process
is required);

20

Managing Responsibilities and Permissions for Process-Aware Information Systems

N Travel |
Request

is available

Sign travel
request

University
Employee Head of Group Vice Head of Budget Owner Vice Budget Administrative
Group Owner
Fill out travel
request
Employeeis Head Fill out travel
Employee is Head is not request
not Head available
Head is available N
Sign travel
Sign travel Sign travel
o udget owner .
is not available Sign travel
Budget owner request 2

Archive travel

Sign travel
request

request

Archive travel
request

Kyshynevskyi

1) Role: Employee

2) Signature is required

3) Signature date is required

4) Start date is required

5) End date is required

6) Weekday between Monday and Thursday

7) Current date must be 2 weeks before Start date

1) Role: (“Head of group“ v “Vice Head of group®)
2) Signature is required

1) (Role: (“Budget owner“ v “Vice budget owner*)) A
(User # Sign travel request form 1.User))

2) Signature is required”

1) Role: “Administrative Staff*

(a) Inherent Representation

Fill out travel
request

[

Sign travel] [

Sign travel
request H

request B

Organizational Model

Fill out travel
—————————————— has-a-------omooen authorizes:
request

(b) Attached Representation

Security Policies

e An employee has to sign the request before a head or budget owner can
sign the request.

e An employee has to file a request two weeks before the traveling starts.

e A travel req. can only be filed between Mondays and Thursdays
(for accounting reasons).

e A travel request applies only to employees of a specific faculty (e.g., A,B,C)
at University. (Other faculties at University may have different procedures.)

e A travel req. has to be signed by a head of group and a budget owner.

e A travel req. has to be approved by two different persons.

e |f an employee is the head of group, then a vice head has to authorize the
travel request.

e In case a head of group is not available a vice head is authorized to sign the
request.

o |f a budget owner (employee might be budget owner) is not available, then a
vice budget owner is allowed to sign the request.

(c) Separated Representation

Permissions Tasks Security Policies

1) Signature is required

2) Signature date is required

3) Start date is required

4) End date is required

5) Weekday between Monday and Thursday

6) Current date must be 2 weeks before Start date

Archive travel
---has-a----- authorizes-
request

Employee
PaN
Administrative
Head of Group Budget Owner Staff
-has-a
—————— has-a----=---mmmommomne

Figure 9: Travel Request

----{ P3)—autnorizes Sign travel
77777777777777 request 1) Signature is required

(d) Task-based Representation

: Process Modeling and Security Policies by [16]

e as permission set to perform certain action. Each permission is associated with the concrete role
from the organizational hierarchical tree.

Figure 9 demonstrates the above approaches in more detail.

Since in a first approach security aspects are incorporated in the business process directly, thus being
a part of BP, only the last three techniques may be referred to as supporting security policies. This
corresponds to a general opinion that policies should be decoupled from the process and managed/stored

separately.

Being RBAC-aligned SPRINT concentrates on the last approach of four. The main goal here is
for system security to be separated from concrete business models and modeling notations, therefore
SPRINT represent the four main requirements:

21

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

1. Independence of security policies: in this way the BP model and policies may be designed apart
from each other.

2. Maintainability of security policies claims for an ease of typical maintenance operation (change,
delete, create). The ability to reuse policy in multiple business process models is also covered
here.

3. Extendibility of security policies: with respect to dynamic nature of the modern world there
should be no need to know security policy when changing business process model, as well as no
understanding of the business process should be required in maintenance of policies. On the other
hand there should be a mechanism providing warnings in case of violation of security policies.

4. Scalability of PAIS components refers to the ability to manage enlargement of business processes
with respect to security issues. In order to achieve decent scalability the process should be properly
and efficiently designed.

There are several techniques helping to acquire security policies. They vary form process mining to
direct interviewing of the process participants. In the second case employees are just asked to point
out their responsibilities and interaction with other colleagues. The security policy acquisition
results in:

e Process acquisition: represents a structural perspective containing activities, their sequence
and data artifacts generated as result of activity and flowing as input to other activities.

¢ Role acquisition shapes the functional part of the process, in other words associates actors
with their activities.

e Security acquisition imposes security restrictions on the actors in organization.

Having emphasized the importance of separation of process and security aspects, SPRINT also dif-
ferentiates between structural and operational security aspect. Structural aspect of security can also be
referred to as static, as it just determines the set of tasks and data objects and how they relate to each other
in the process model. Structural aspect doesn’t take into consideration any dynamic processes which take
place in the system and actors/services performing this tasks and actions on data objects.

The operational aspect on the other hand defines constrains on tasks and data objects. Constraints
may prescribe for example which actors (human being or service) are authorized to perform certain task
or access data object.

As we can see from the Fig. 10, it integrates both, structural and operational security concepts.
Structural ones are represented by concept of responsibilities, whereas operational impose restrictions
onto these responsibilities.

[16] defines responsibility as a piece of data (or document artifact) to work with or a set of intercon-
nected tasks which logically belong to a certain role. However there is no operational semantic (read,
write, delete) concerned with these data or set of tasks. The main point here is to define concepts, which
can be further assigned to roles and are subject to constraining. As an enterprise may represent a large
hierarchical multilevel structure responsibilities (represented by a set of tasks or data objects) may be
shared by multiple actors which in turn may be located on different levels of hierarchy. Furthermore,
responsibilities are normally interconnected, thus producing responsibility bundles Z.

Constriction principle states that constraints may be defined for a group of tasks to keep an order of
execution. The same is also true for creation of data objects as a result of group of tasks. Further the
group of responsibilities with respective responsibility constraints may be assigned to one or multiple
roles. There are several ways in order to promote reusability. The first one is to assign one responsibility

22

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Organizational Aspect ' Security Aspect

N
m| Permission

ST Operational Aspect
m has

m

-

1
Securityl
Bundle
O 1 has
Entity il =
S Relationship Resgg;lgllglllty m ‘ M Responsibility
o Attribute m
Modified Chen Notation Structural Aspect
m many m| Responsibility
1 one Constraint
¢ choice (O or 1) has

Figure 10: Security Policy Data Model by [16]

to multiple roles in the hierarchy and manage the appurtenant constraints for each role. That is not
considered to be the most effective way. The other option for responsibility reuse is the inheritance of
responsibilities by higher roles from their sub roles in a object-oriented manner with all the ensuing
consequences.

Having made the structural security concepts clear, we get to more practical example. Any organi-
zation has a set of responsibility bundles % = by, ..., b,. Each responsibility bundle has a set of respon-
sibilities r = ry, ..., r, and a set of constraints rc = rcy, ..., rc, associated with it. A responsibility may be
associated with data object (rdata) or task (rtask) and restricted by responsibility constraint. Responsibil-
ity constraints may also be of two kinds: Responsibility Task Pattern Constraint r¢'? and Responsibility
Relation Constraint 7¢". We will have close encounter with responsibilities later in chapter Use Cases
4.1.

As we have already mentioned, there should be a way to impose constraints on the order in which
tasks are performed. That is achieved by rc'”. There are several ways to represent the sequence of
constraints. We take the one, proposed by [19], the Linear Temporal Logic (LTL) expressions [19].

As next, the relation between data responsibilities 7/’“ and responsibility task pattern constraints
rc'? should be formulated. This newly formed constraint is called, as mentioned above, the responsibility
relation constraint. There is also a possibility to bound the occurrence of a specific data responsibilities
for a restricted set of task patterns.

3.2 Operational Aspect

The operational aspect has to do with permissions and their constraints as against responsibilities in the
structural aspect. Separate permissions along with permission constraints are combined in a permis-
sion bundle &. The goal of having permission constraints in the model is to impose restrictions onto
responsibilities in responsibility bundles & from the structural part of the model.

In that way a permission bundle &2 = {p, pc} consists of a permission itself p and a set of permission
constraints pc = pci, ..., pc,. Permission points out which operations are allowed to be performed on se-
curity object. Permission is valid only for the whole responsibility bundle. Next, permissions constraints
restrict the permission, which in our model describe a certain situation, where it should be checked,
whether these or those permission constraints should be applied. As we already have discussed in intro-
duction, there may be different situation in which we should check the various environment conditions:

23

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

ISecurity Policy

I 1
§ecurity Aspect Organizational Aspect
I 1
Structural Aspect Operational Aspect
% LResponsibiIity Bundle L Permission Bundle Organization Structure
5 Responsibility Permission Role
o Data Object Organization Unit
= Task Operation User
3 Responsibility Constraint Permission Constraint
5 Task Pattern Data
Relation Time _
Location

Separation/Binding

Figure 11: Security Policy - Overview and Definition by [16]

geographical location, time periods and so on. That’s why we distinguish between data constraints, time
constraints, location constraints and separation/binding constraints. Here are more precise definitions of
each of them.

Data constraints pc¢ are used to restrict a data responsibility 7% depending on the value of data.

Time constraints pc’ are used to restrict task responsibility #** depending on intended execution
time for that task.

Location constraints pc’ restrict task responsibilities rtask depending on geographical location of
the actor, trying to execute this task or depending on location of the resource on which a task is intended
to be performed.

Separations/binding constraints pc*? specifies the need for assignment of different/same resources.
This type or restriction is only applicable with the responsibility task pattern constraints rc'”.

Depending on situation different kind of constraints may be activated. It is clear that in a situation,
dealing with task execution no data constraints check is applicable.

Till now we have covered the structural and operations aspects, which together form the security
aspect. Security aspect and organizational aspect in their turn comprise a security policy (Fig. 11).

This figure (11) lets us define a security bundle which is .7 = {sy,..., s,} with s; = {Z, Z} de-
fined as a single combination of responsibility and permission bundles. The relation between roles from
organizational aspect and security aspects is defined as follows:

e cach role can be related to 0...n security bundles.
e cach security bundle can be associated with 1...* roles;
o different security bundles can combine one responsibility bundle with different constraints;

e security bundles can complement/override each other;

The concepts of responsibility and security bundles were introduced to reduce a complexity and im-
plement the reuse functionality, as different approaches (like inheritance) may yield different problematic
situations (too much power can be collected in one hands if using inheritance approach, deadly diamond
of death and so on). Thus the one and the same responsibility bundle with different permission, asso-
ciated with different actors from different levels in the hierarchy tree, may be used to control access of
those actors to different resources. In the other case several responsibility bundles could be combined
together to produce new desired virtual bundle without actual creation of the one.

24

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

3.3 Mapping of Responsibilities

Having discussed all the issues above we are now ready to see how the actual mapping of responsibilities
and due to constraining process activities takes place. Normally this mapping is performed by the policy
guardian, who should not necessary have a deep knowledge of responsibility or permission constraints.
During the mapping responsibilities from the responsibility bundle should be associated with appropriate
task (if responsibility is #**) or data (if responsibility is 7%¥¢). At the same time a new mapping pair

m@@¢ or which is defined by appropriate responsibility bundle id and responsibility id is created. The

X,y
whole process lasts till all data and task objects are assigned to appropriate m?? task

or m'™* respectively.
After all the responsibilities have been mapped, one might check if the process structure is consistent
with the responsibility constraints. As these constraints don’t describe the task order or task input/output,
they just define a set of tasks (tasks may occur ad-hoc in this set) with associated data objects. This check
is applicable in two cases: after finishing the mapping for a process or if a mapped process has undergone

a change. This check may yield following errors:

e tasks are met in undefined order (no appropriate rc'? for this order is found);
e known data objects are used or written with unspecified tasks (violation of rc”);

e known tasks are used with unknown data objects (violation of rc”);
The above errors may occur due to following reasons:

e the incorrect mapping was made by policy guardian;
e no additional mapping was undertaken after editing the process;

e Inconsistency of process with responsibilities and responsibility constraints.

The last reason may be solved by contacting the process designer with request to correct the process
if such changes are needed. The process designer could have also unintentionally omitted the needed
security policy. In this case this policy should be adopted and initial process redesigned to include
the missing policy. As against checking for structural process security, which most definitely may be
conducted automatically, the process correction and adoption of new security policies requires the policy
guardian control.

3.4 Linear Temporal Logic

Since this master thesis often uses the Linear Temporal Logic expressions (LTL), we give a brief descrip-
tion of this approach. LTL is an acknowledged notation, which is used to define properties of reactive
systems and is a subclass of Modal Logic [6]. It shows how an expression is described and evaluated
over time. The result may be either true or false. In order to evaluate the expression different sets of
operators (also called “modalities”) are used. Among them are well known logical or (V) and logical
and A. In this thesis we use LTL expressions in order to compose constraints, which represent conditions
necessary to perform certain action or access sensitive data. Moreover, we define our custom operators
which are used in LTL expressions in order to reach a desired level of convinience while working with
security aspects of certain processes.

25

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

4 Implementation/SPRINT-Editor

4.1 Use Cases

Since the bachelor degree of the author was about the computer supported control of nuclear power
plants, in the first Use Case we are going to take a look at one of the core processes which take place in
the nuclear power plant (NPP). As one might already know, modern NPPs represent very complex and
spacious infrastructure with hundreds of workers per each reactor unit. The second business process will
be dealing with bachelor and master enrollment processes. Let’s start with the first example.

But before we begin to work with the target process, we would like to give a short generic description
as to how to decompose process and outline main security aspects. There are different starting points for
the process engineer to work with.

In some cases we don’t have any initial data about enterprise and process. That means that we have
to analyze process ourselves, find out core activities and other security sensitive tasks and data objects.
In order to complete that step, strong domain knowledge is needed. That might also involve interviewing
employees or workers who perform those tasks and work with artifacts. Crucial point here is not to
miss any aspect that might help malicious actors to compromise the system. It is possible that tasks
and data objects which have nothing to do with the company’s core activities (at least directly) may be
exploited by malicious actors. In other cases we might already have verbal or formal (e.g. Business
Process Modelling Notation (BPMN)) description of the target process, with all important steps and data
objects have been taken care of.

In the next four use cases we start with general description of processes. Here are the steps we take
in order to get to formal representation of the security aspects of a process:

e Define roles in the process.
¢ Find tasks and data objects and prioritize them with regard to security concerns.

e Define structural dependencies between tasks (e.g. order), map data objects to task (data objects
may either serve as input for the task or be generated as its output).

e Define which constraints are applicable for task or data object.

e Map groups of tasks and data objects and the attached constraints to roles.

Having performed all above steps we are ready to present the process in a formalized way which can
be used for composing a BPMN diagram and further implementation using the web application we have
developed.

And now back to our use cases. In order to provide some background knowledge about importance
and role of nuclear energy in the modern world we are going to take a look at some facts:

e according to the data of International Atomic Energy Agency (IAEA) ! today (10.07.2013) the
number of power reactors in operations is as high as 434 and varies from 1 (Slovenia) to 100 (the
United States);

e the total net installed capacity is 370 543 megawatts. To make it more understandable, one
megawatt (MW) is enough to power up to 1000 homes. The major producers are the United
States (98560 MW), France (63130 MW) and Japan (44215 MW);

o the total number of nuclear power reactors under construction is 68;

"http://www.iaea.org/pris/

26

http://www.iaea.org/pris/

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

PrEdsurizer A

siean genergtor |

BIID

420,700
r

Figure 12: Layout of the Reactor Coolant System by

o the share of nuclear energy from the gross electricity production varies from just under 2% (1.99
in China) to 74.79% in France and plays one of the key roles in world leading production countries
(see the list item above).

Nuclear energy has many advantages as well as drawbacks. The world knows quite a few atomic
disasters, most recent and damaging being the Chernobyl and Fukushima nuclear accidents. At present
time the world is seeking the way to substitute nuclear energy with safer and cleaner energy sources, but
as of now nuclear energy remains indispensable.

As it was already mentioned, a modern NPP is a gigantic and very complex facility which requires
permanent control and supervision. The simplified scheme of reactor with its coolant system may be
seen on Fig. 12. Our first use case will consider the regular maintenance process which takes place every
three years in the nuclear power unit (the time interval was taken for the VVER-1000 nuclear reactor
— the most common type of reactors in the post-soviet nuclear industry). During this process the core
of nuclear reactor, the turbine and steam generator undergo disassembling, cleaning and maintaining
procedures.

The key part of the reactor unit (RU) maintenance stoppage is the replacement and relocation of the
fuel elements which emit heat by means of fission reaction. The uranium assemblies burn out heteroge-
neously: the most of fuel is burned in the central part of nuclear reactor, whereas the outer assemblies
contain more of unused uranium. The goal of service staff is to locate and replace fuel elements which
are no longer suitable for heat generation, to relocate the array of outer and central fuel elements in order
to reach the desired heat output.

Being potentially dangerous, there is also another participant in these processes, the International
Atomic Energy Agency, which plays supervising and counseling function since 1957. As there are hun-
dreds of people involved in this entire process, we are going to simplify it and define the core functions
which are played by four major actors (Use Cases 1A).

4.1.1 Use Case 1A. Reactor Maintenance Stop

Having broken down the process into stages we get the following description: the VVER-1000 has to
be shut down every 3 years in order to conduct the maintenance procedures. The procedure is initiated

27

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

by the Reactor Unit Chief Operational Officer, who issues the shutdown request and submits it to the
Turbine Unit (TU) Chief Operational Officer (COO), the Nuclear Power Plant Chief Executive Officer
and to the responsible IAEA supervisor. The request which is first approved by NPP CEO and then by the
Turbine Unit COQ is referred to as internal. The request sent to the IAEA is external one. Further actions
are only possible after external and internal request have been approved by corresponding functionaries.
Following deadlines should be met: internal request should be issued and approved not later than 30 days
before the actual reactor unit shutdown is scheduled. IAEA request should be submitted 90 days before
shutdown. The time passed since the last maintenance works should not exceed three years (provided
that there were no emergency shutdowns and fuel element manipulations).
After settling the legal issues following routines are performed:

fission reaction should be extinguished by means of injecting the graphite moderators in the reactor
core. Coolant pump keeps on cooling reactor until the temperature drops from 316°Cto 60°C;

turbine unit shutdown follows after that. Turbine is disconnected from the power grid; reactor lid
1s detached;

fuel elements array is examined;

fuel elements are relocated, the most depreciated fuel assemblies are removed and replaced with
the new ones;

the deprecated fuel assemblies are contained for at least 30 years;
turbine, the coolant pump, steam generators and pipelines are cleaned;
the system is reassembled after the maintenance works;

the system is inspected and it’s containment is checked;

after having performed all checking procedures, startup request should be issued by the reactor
unit COO, which should be again approved by the turbine unit COO, the NPP CEO and IAEA
responsible functionary;

nuclear reactor may be started again.

Once again, the whole procedure is extremely simplified due to enormous complexity and safety
precautions and may not correspond exactly to the real world maintenance sequence.

In order to implement the above business process in our system, we should first define the in the next
step the key tasks and data elements as well as point out the duties among the actors.

Actors:

the reactor unit Chief Operational Officer (RU COO);
the turbine unit Chief Operational Officer (TU COO);
the nuclear power plant Chief Executive Officer (NPP CEO);

the International Atomic Energy Agency responsible supervisor;

Data Objects:

internal reactor unit stoppage request;

28

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

internal reactor unit stoppage clearance/rejection;
e external (IAEA) reactor unit stoppage request;

e external (IAEA) reactor unit stoppage clearance/rejection;
e reactor stoppage log;

e maintenance log;

o fuel assemblies inspection and replacement report;
e internal start request;

e internal start clearance/rejection;

e external start request;

e external start clearance/rejection.

Constraints:

e C1: the NPP CEO, Reactor Unit COO, Turbine Unit COO and IAEA responsible supervisor are
all different persons;

C2: time since the last maintenance should not exceed 3 years;

C3: internal stoppage request should be approved not later than 30 days before actual stoppage;

C4: external stoppage request should be approved not later than 90 days before actual stoppage;

e (C5: disassembling procedure may only begin after coolant liquid drops the temperature from
316°C to 60°C;

In the figure 13 we represent the process using the BPMN:

What we are going to do now is to map the steps from the above business model with the tasks
elements which will go into the editor from implemented application. One important clarification should
be made in this place: as it was already mentioned, we the task elements for editor aren’t the exact
representation of the tasks from the business model in BPMN notation; they rather emphasize actions
from the point of view of security. We will also abbreviate some tasks from the BP model for the sake of
compactness, as we put the task patterns in form of Linear Temporal Logic expressions. Next we put the
task objects in the table 1.

As you can see, the formal representation of the tasks that goes into implemented editor differs from
what we had in the BPMN model. Now we will map the data objects which will be added to the task
patterns in the next step in the table 2:

The verbal description of the use case and the BPMN diagram are showing the roles present in our
situation. But we are still missing users, i.e. actors, which are entitled with that roles. Table 3 puts all
the roles, their brief description and real users appropriately.

Having defined all the crucial points in our first use case, we are ready to start composing constraints
to implement the security aspects. As it was mentioned in the previous sections, the two security aspects
that matter in the PAIS are the structural and the operational. The BPMN diagram in figure 13 depicts the
structural devision of the target organization and also prescribes the order in which tasks are executed
by the carrier of some certain responsibility (or role). What we are about to do now is to compose

29

Kyshynevskyi

Systems

10N

for Process-Aware Informat

1SS10n8

Managing Responsibilities and Perm

!suossad JuaIayIp |l aJe Josiaiadns 2|qisuodsal Y3VI Pue 00D UM BUIGINL ‘00D AUN 0308y ‘03D ddN U

‘uooafel/a0uBIea]D LIEIS [RUIBIX® (11O
{3s9nbal 1IeIS [euIalXd :0T0Q

‘uonafau/eduelesp abeddols un 103983l (VaVI) [eUIIXS 1600
f3s3nba. abeddos J1un Jopeal (vavI) [eusaixa :80Q

0d

‘uonafai/aoueles)d 1iels [euls:

59nba. 11835 [euls:
“y10da1 Juawade|dal pue uoRsadsul SalqUIBSSE [an)
‘6o adueUBIUIRW :

!6o] abeddoys Jopeas |

‘uonafes/eueleap abeddos Jun Jojoea [eusa)
f1sanba. abeddois Jun Joppeal eusa):

:5123r80 Viva

13 609 03 3 69TE Wouy 3mesadwa) ayy sdoup pinbi| JuL[00> Jae UIB3Q AJUO Aew aunpadoid Buliquiassesip :
“abeddoys [enyoe 210429 SAep 06 Uewy J1e] 30U panosdde aq pjnoys 3sanba. abeddos [euss® ©

‘aBeddo3s [enpe 210520 SAep OF Uel Jajel Jou pancidde aq piNoys Jsenbas abeddoss [ewisul

!sieak £ PaROXd 10U PINOUS BOUBLSIUIRL ISe] U} BIUIS DU

:SINIVYLSNOD |
. € umopyni 5
: 193(./30. 2
€ dmuess : H
palai/anoidde : :
dnyess I |l Z umopnys H =
E afoi/onoidde nL wiopad [ML umop anys yafai/anoidde H S
H 3
E
Y 2
2
dnyeys s6eddoys sbeddors o
3

phosdde usag aney sysanbau e um,\m_

T

1 dnyueys
afei/aroldde

1 umopinys
afai/anoidde

03D ddN

10N

Stop. BPMN Representat

1intenance

: Use Case 1A: Reactor Mai

Figure 13

30

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Table 1: Task Objects for Use Case 1A

Task Nr. | Task from the BPMN Model Task that goes into Editor

T1 initiate Reactor Stoppage initStop

T2 request RU Stoppage (from the NPP CEO by means | reqRUStop
of submitting message to another 3 participants)

T3 approve/Reject Shutdown 1 (NPP CEO lane) app-rejSD1

T4 approve/Reject Shutdown 2 (TU COO lane) app-rejSD2

TS5 approve/Reject Shutdown 3 (IAEA lane) app_rejSD3

T6 shut down RU shutRU

T7 shut down TU shutTU

T8 perform RU maintenance maintainRU

79 perform TU maintenance maintainTU

T10 replace and Relocate Fuel Assemblies fixFuel

T11 request RU start reqStart

T12 approve/reject start 1 app-rejStl

T13 approve/reject start 2 app_rejSt2

T14 approve/reject start 3 app-_rejSt3

T15 start up RU startRU

T16 start up TU startTU

Table 2: Data Objects for Use Case 1A

DO Nr. | Data Object from the BPMN Model Task that Goes into Editor
DO1 internal reactor unit stoppage request intReq
DO?2 internal reactor unit stoppage clearance intClr
DO3 external (IAEA) reactor unit stoppage request extReq
DO4 external (IAEA) reactor unit stoppage clearance extClr
DO5 reactor stoppage log stopLog
DO6 maintenance log maintLog
DO7 fuel assemblies inspection and replacement report fuelRep
DOS internal start clearance intStartClr
DO9 external start clearance extStartClr
DO10 | temperature of the liquid in the 1st reactor cooling circuit | cLiquid

the constraints which we will later input in our web application. Once again, the constraints will be
represented in form of LTL expressions (see Section 3.4). It is important to mention that it is preferable
to have a greater number of smaller LTL rules rather than one but long rule. This approach makes it
easier to spot potential rule violation.

First of all we define the responsibility task pattern constraint, which prescribe which tasks are al-
lowed to occur in the given process, the order in which task elements occur is irrelevant. As this pattern
is going to be quite long, we brake it down into several smaller parts and then will combine them together

- ' p
1N Dreactor maintenances> 7'Cq 4-

31

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Table 3: Roles and Persons in Use Case 1A

Role from BPMN | Brief Description Users
Diagram
NPP CEO There is only one physical person entrusted with this | Juergen Mangler
role
RU COO At a given point of time there may be one or more | Alexander Kyshynevskyi
reactor unit chief operational officers on the indus- | Alexander Weber
trial site per reactor unit (depending on the complex-
ity and internal structure). They normally work shift
wise, but depending on situation and current needs
may also cooperate to reach the best outcome
TU COO Same as for RU COO Alexander Kyshynevskyi
Stefanie Rinderle-Ma
IAEA is an employee of external organization. There may | Tanja Sahaidak

be one or more people entrusted with this role

rct][.’1 sinitStop N reqRUStop Napp_re jSD1 Napp_re jSD2 \app_re jSD3

Ip
(Dreactor maintenance» 7'C 1. 1)

rctl".7 5 2 $hutRU A shutTU A maintainRU N fixFuel A maintainTU NreqStart (breactor maintenances rclll_’ 5)

rctll_’3 capp_rejStl Napp_rejSt2 Napp_re jSt3 AstartRU A startTU

tpo. . ID tp tp
rCy 41 7C /\rcL2 /\rcL3

p
(Dreactor maintenance» 7'C 1. 3)

p
(Dreactor maintenances 7€ 1 _4)

Of course we could have squeezed all the tasks in one rule instead of decomposing it into three parts
and then gluing them together in breactor maintenance rct]{’ 4- The case is that to machine, which will parse
those LTL expressions, the number of rules doesn’t play any role. Furthermore, with larger number of
small rules it is easier to spot a failure. However decomposing should also be made wisely without going

to extremes.

The relation between data responsibilities (data objects) may be put as in breacior maintenance» 75 3- Due
to considerable number of data objects we choose to break down the LTL rule into smaller parts just as
we did previously for the task objects.

rch | : intReq N intClr A extReq N extClr

rch 5 : stopLog A maintLog A fuelep N intStartClr A extStartClr

32

.
(breactor maintenance» 7C 2.1)

-
(breactor maintenances 1€ 2,2)

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

N r p
rcy 3 1Cy A rch, A\ rcy 4 (breactor maintenance» VC£_3)

Please note that the last element in the rule breactor maintenance» 7¢5 3 is actually the task pattern breactor maintenances
rc'l"_’ 4~ Constraint Cy states that roles from different swim lanes from the BPMN process model should
be assigned to different physical persons. In order to comply with our basic paper [16] we can refer to
constraints as permissions. To put this in the LTL form we may take the first task from each swim lane
and restrict their execution by means of separation of duty constraint breactor maintenance, Permission 1:

pci : (app-rejSD1 # initStop) A (initStop # app,ejSD2) A (app_rejSD2 # app_re jSD3)

(breactor maintenance s permlSSIOn 1)

In the same time we also know that startup and shutdown are approved by the NPP CEO, who is
one and the same physical person. That is why we complement the previous rule with the following one
Dreactor maintenance» permission 2, which expresses the binding of duties:

pci{’z : (app_rejSD1 = app_rejSt1) (Breactor maintenance, Permission 2)

As a nuclear power plant may have multiple reactor unit COOs per each power reactor and they
work shift wise (or collaborate in some cases), it is important to note, that core maintenance proce-
dures, which are the shutRU, maintainRU and fixFuel are performed by one and the same role carrier
Dreactor maintenance, Permission 3. For instance, if user Alexander Weber was performing the shutdown an

maintenance of reactor unit, there is no way, that the other reactor unit COO Alexander Kyshynevskyi
steps in in the middle of the process and relocates the fuel assemblies.

pc{% : (shutRU = maintainRU) A\ (maintainRU = fixF uel) (Breactor maintenance> permission 3)
The same is true for turbine unit COOs for the core maintenance tasks shut TU, maintainT U bieactor maintenances

permission 4.

pcﬁ : (shutTU = maintainTU) (Breactor maintenance, permission 4)

Finally, the shutdown and startup approval/rejection on behalf of the IAEA responsible functionary

should also be performed by one and the same physical person (e.g. Tanja Sahaidak) breactor maintenances
permission 5.

pc‘}'l_’5 : (app_rejSD3 = app_re jSt3) (Breactor maintenance, Permission 5)

Constraint C,, stating that time since last maintenance should not exceed three years, which means

fOIIOWIHg (breactor maintenance s permlss}on 1)

pch - curr(fixFuel) — prev(fixFuel) < 3years (Dreactor maintenance, permission 1)

33

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

This one requires a bit of explanation. Time constraint pc}, determines the time span, which has
passed since last procedure of relocating and replacing the fuel assemblies. The function curr is repre-
senting the date when the current procedure is scheduled. prev function determines the time when the
previous operation was performed.

Constrains C3 and Cy define the deadlines for reactor shutdown which should be made with regard
to corresponding internal and external clearances (breactor maintenance> Permission 1 and breactor maintenances
permission 1):

pch 2 (shutRU — app_Rej1 > 30days) A (shutRU — app_Rej2 < 30days)

(breactor maintenance» permlSSIOH 1)

pcﬁt : shutRU — appgej3 > 90days (breactor maintenance> permission 1)

Our last constraint for this use case Cs only allows the disassembling routine after the coolant tem-
perature of 60 °C has been reached breactor maintenance, permission 1:

PCEI : cLiquid < 60°C (breactor maintenance, permission 1)

4.1.2 Use Case 1B. Reactor Contingency Stop

In the previous use case we went through the regular power reactor and turbine unit maintenance pro-
cedures, which normally involve four different parties. We also saw that in order to begin the whole
routine, corresponding clearances should be issued by three of four participants. Furthermore different
deadlines should be met for these clearances.

However, being an enormous and extremely complex facility, contingencies and unscheduled sit-
uations are inevitable while operation the NPP. In this kind of cases wasting time and requesting for
shutdown approvals may lead to negative consequences. NPP internal policies provides special instruc-
tions for emergency reactor shutdown and maintenance. Let’s see how they differ from regular routine:

o first of all the number of roles is shortened to two: Reactor Unit Chief Operational Officer and
Turbine Unit Chief Operational Officer;

e there is no need to ask for permission from the NPP CEO and IAEA representative (may seem odd
but if such situations happen at night, for example, the TU and RU COOs may be the only two
of four people in previous example who are actually there). In that way the number of pools and
lanes is shortened to one and two correspondingly;

e the RU COO just lets the TU COO know about the necessity to shut down the turbine unit (no
permission from TU COO is needed here too);

o the number of tasks and data objects is also shrunk, we will see later how. Furthermore some new
responsibilities will be added to the task list.

With that being said, we now go the same way as before and outline the key differences of this use
case (Fig. 14) from use case 1A (Fig. 13).

The process diagram itself looks much more compact than the previous one. Instead of sixteen task
elements we now have only eight, seven of which were taken from previous spacious model. The only

34

Kyshynevskyi

Managing Responsibilities and Permissions for Process-Aware Information Systems

‘J10daJ jJuawaoe|das pue uoiyoadsul salquiasse |an} :50d
!Bo| @oueudjUlRW $0Q
!bo| abeddoss 40303l 1£0Q

+5$103(490 vivd

D 609 01 D ,9TE wouy ainjesadway ay3 sdosp pinbij Juejood uaye uibag Ajuo Aew ainpadoad Buljquassesip :5D
!suostad jualaylp ||e aJe JosiAladns 9|gisuodsal Y3yl pue 00D HUN duIgInL ‘00D NuUN 103083y ‘03D ddN Yl i 1D

‘SINIVYLISNOD |

Nl dn Jeys

[}

NL umop Inys

=)

00D NL

Ny dn ue3s

sa||quiasse [any
93e20|24 pue aoe|dad

oueURUIRW
J030ead wuoad

MY umop Inys

F +0d

ddN

00D asbeddoys
N1 a3 Aynou J030e31 BRI

00D Ny

Figure 14: Use Case 1B: Reactor Contingency Stop. BPMN Representation

35

Managing Responsibilities and Permissions for Process-Aware Information Systems

Table 4: Task Objects for Use Case 1B

Kyshynevskyi

Task Nr. | Task from the BPMN Model Task that goes into Editor
T1 initiate Reactor Stoppage initStop

T6 shut down RU shutRU

T7 shut down TU shutTU

T8 perform RU maintenance maintainRU

T10 replace and Relocate Fuel Assemblies fixFuel

T15 start up RU startRU

T16 start up TU startTU

T17 notify the TU COO notifyTU

Table 5: Data Objects for Use Case 1B

DO Nr. | Data Object from the BPMN Model Task that Goes into Editor

DO5 reactor stoppage log stopLog
DO6 maintenance log maintLog
DO7 fuel assemblies inspection and replacement report fuelRep

DO10 | temperature of the liquid in the 1st reactor cooling circuit | cLiquid

new task element in this case is there for the sake of communication between the two participants (table
4.

According to the table above, the task elements 72, T3, T4, TS5, T9, T11, T12, T13 and T14 are
excluded from the shortened business process. The same is true for data elements too. From the previous
nine data objects we only have four: DOS5, DO6, DO7 and DO10 (table 5).

As we already have almost all elements from the previous case (see Table 4), we can REUSE THEM.
We only have to add the new task 7'17 “notify the TU COO” to the list on the backend. The responsibility
pattern looks following way (reactor contingency stops 7€ 3):

rcgf | 2 initStop AnotifyTU A shutRU N shutTU (Breactor contingency stops rcg’” D

ip
(Dreactor contingency stops I'C 3.2)

rcg‘_’ 5 maintainRU A fixFuel \reqStart A startRU N startTU

p . . ID 'p 'p
rC33 1 1c3 1 Arcy, (Dreactor contingency stops FC3‘3)

The combination of data related responsibilities and previous pattern is shown in rule breactor contingency stops

r.
rcy:

rcy : stopLog A maintLog N fuelRep A cLiquid N rctf 3 (Dreactor contingency stops 7C4)
Again, the rcg’_7 5 18 the task pattern defined in previous step. In order to recap the task pattern just
defines which tasks may occur during the process on the site; the rc) shows which data objects are

36

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

needed or generated during that process. The sequence of the tasks is defined by the BPMN model in the
figure 14

As of now we only have C1 and C5, both of which repeat the constraints from subsection above
with the first one stating that actors in different swimlanes should be different physical persons and that
disassembling of the reactor core should begin as soon as coolant liquid reaches the temperature of 60
°C. As the process structure differs slightly from what we had before, we will put it in appropriate form
for the given use case.

pcy)y - shutTU # initStop (breactor contingency stop» Permission 1)

Next two rules express that reactor unit related tasks should be performed by one user (e.g. Alexander
Weber):

pey s - initStop = notifyTU (Dreactor contingency stop» PErmission 2)

pcilg : (shutRU = maintainRU) A\ (maintainRU = fixFuel) (breactor contingency stop» permission 3)

The last rule expresses the temperature constraint

d
pCh 4 - cLiquid < 60°C (Dreactor contingency stop, PEITISSION 4)

4.1.3 Use Case 2A. Bachelor Enrollment Process

For our next sample process we have chosen the enrollment procedure which is an example from aca-
demic area . The input data may be taken from the official university page®. This enrollment conditions
and terms are taken for the winter semester 2013/14 and may vary for previous or upcoming winter
semesters®. In general there are a few starting points for which applicants undergo different steps during
the enrollment procedure. These are:

o the citizens of European Union (EU) and European Economic Area (EEA) member states;

e the citizens of other states not mentioned in previous list item.

Depending on applicant’s citizenship, the list of documents may include some additional items,
which require to be attested and translated. We also distinguish between bachelor and master studies
applications. For master studies we also check whether an applicant already is an internal student at the
University of Vienna. In the last case the procedure of applying for master studies takes a simplified
form. Having discussed major points we now may plot decision tree diagram 15.

As one can see from the figure above the four arrows define four different situations which are
possible during the enrollment phase. As our goal is to only show the appropriateness of the implemented

2https ://studentpoint.univie.ac.at/vor-dem-studium/bachelor-bakkalaureatsstudien/
?no_cache=1
3http://studentpoint.univie.ac.at/en/application/admission

37

https://studentpoint.univie.ac.at/vor-dem-studium/bachelor-bakkalaureatsstudien/?no_cache=1
https://studentpoint.univie.ac.at/vor-dem-studium/bachelor-bakkalaureatsstudien/?no_cache=1
http://studentpoint.univie.ac.at/en/application/admission

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Already a Student

EU/EEA Applicant
Bachelor

New to University

Non EU/EEA
Applicant

Master

Figure 15: Use Case 2. Decision Diagram

web application for the purposes of handling security aspects in information systems, this particular use
case doesn’t claim to be complete and 100% precise. Therefore we omit some details, for example
those situations with different (mostly prolongated) admission or Student Union fee deadlines for certain
categories of applicants. With that being said we only concentrate our efforts on cases with EU/EEA
applicants who may submit applications for either Bachelor or Master studies.

Let’s now move on to the verbal process definition and description. According to StudentPoint* the
generic process consists of following major steps:

1. potential applicant should pre-register oneself at https://erstanmeldung.univie.ac.
at between the 1st of May and the 5th of September 2013;

2. after that the necessary list of documents should be gathered and prepared for the Admission Office
in the University of Vienna;

3. avisit to University of Vienna admission office between the 17th of June and 5th of September is
necessary to confirm enrollment. During this visit the documents from the step 2 should be handed
in to the admission office clerk;

4. one should activate the student accountathttps://www.univie.ac.at/ZID/unet-aktivierung.

5. The final step which makes the Student Ticket valid is timely payment of the Student fee (in some
cases the Student Union fee). The payment is due on September 5th.

Having performed the above steps, a student of the university may register oneself for preferred
courses.

As we already mentioned, the procedure varies in case if applicant is already a student of the Uni-
versity of Vienna (or was a student some when in the past) and is willing to take another study. The
difference here is that the pre-registration (step 1) can be skipped. During the first step some personal
data should be entered. These are:

e login data:

— the valid e-mail address (all university related e-mails will land here);

4http://studentpoint.univie.ac.at/en/application/admission

38

https://erstanmeldung.univie.ac.at
https://erstanmeldung.univie.ac.at
https://www.univie.ac.at/ZID/unet-aktivierung
http://studentpoint.univie.ac.at/en/application/admission

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

— the desired password;
study data:

— the study program (bachelor, master, PhD, etc);
— data about previous study;

— desired study (e.g. Business Informatics);

personal data:

personal details;

contact details;

statistical data;

as the result of performing pre-registration a student gets his/her matriculation number.

For the sake of compactness we omit the sub items of study and personal data and will just use
“study data” and “personal data” data objects. According to Student Point’ following documents should
be handed in during the visit to the admission office:

a valid passport;

school leaving certificate;

a certificate proving German proficiency level B2/2 or higher; (optional)
social insurance number

if applicable, an official document regarding change of name; (optional)

a passport photography for the student ID.

All these documents will be treated as data objects during modeling and implementation phases.
Here are the constraints applied to task and data elements. We will see those on the BPMN diagram as
annotations:

C1: an applicant and the admission office clerk are different natural persons;
C2: pre-registration should take place between the 1st of May and the 5th of September 2013;

C3: the personal visit to the admission office should take place between June 17th and the 5th of
September 2013;

C4: the student [union] fee should be paid after the submission of personal documents but before
the 5th of September;

C5: the passport photo should not be older than 2 years;
C6: the German proficiency certificate should prove the level of at least B2;
C7: login should be a valid e-mail address;

C8: the password character sequence must contain between eight and sixteen characters and be a
mixture of digits and letters.

39

Kyshynevskyi

Systems

10N

for Process-Aware Informat

1SS10n8

Managing Responsibilities and Perm

Aydeabojoyd podssed :£10Q

aweu jo abueyd buipiebau Juswnoop : 2104
Jagwinu adueunsul [e120s 1110d
91e21J1430 Adusidyold uewdsan :0T0d
9320113490 Buiaes| jooyds :60Q
Jodssed :80Q

ejep |eansness :£0d

s|1e3ap J0RIU0D :90d

s|ieyap |euostad :50Q

Apnis snoiaaid 3noge ejep :$0d
wesboud Apnis :£0Q

piomssed palisap :z0d

ssaJppe |lew-a pijeA :1Qd|

*$19339| pue s361p Jo aunixiw

e 3¢ pue siajoeseyd Jybid 3sed| 38 ulejuod 3shw ddusaNnbas Jajoeseyd piomssed au3 18D
!ssalppe [Iew-3 pl|eA e mm pinoys uiboj :/D

1249 1589] 1€ JO [9A3] 33 9A04d pINoys 33ed113490 Aduaidlosd uewda syl (19D

!s1eaA g ueyj Japjo aqg jou pjnoys ojoyd podssed ay3 :5D

{19qwi=1das Jo Yag syl a1049q

INg SjusWNJ0p |euosJad Jo uolissiwugns ayj Joye pied aq pjnoys 994 [uolun] juapnis syl 4D
{1aqwieidas Jo uig

3yl pue Y3/ T Sunf usamiaq aoe|d 3.3 p|noys a21)J0 UOISSILpe 3y3 03 JSIA |euostad ay)y €D
{19quwia1das Jo Uig au3 pue Aely JO IST ay3 usamiaq aoe|d axe3 pjnoys uoiesysibat-aud gD
‘31doad juatayp a4e 33D D10 Uoissiwpe 3y} pue juedjjdde ue 1D

a2ons

0 aJe sjuswndop

19])SaWas puas

+

mucwE:uow
Jadoud 3sanbau

W_

Sjuswndop
au1 »29Yd

3210 UoISSIWPY

99y [uolun]auspny

Aed juspnis ajeAloe EJNEREY]

junode Ql yspnis

201440 UOISSiwpe
33 03 SjUBWINDOP

a1 puey

aujjuo
J93s1694-a4d

Aisianiun

SjUaWNJ0P JO
3s1| ay3 aJedaud

jued|ddy

11 0d| 0T 04| 604 | _80d c0oa || T0a

0]+
a1e sjPWNdop (e um_ mM_v

10N

Bachelor Enrollment Process. BPMN Representati

Use Case 2A:

Figure 16

40

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Table 6: Roles and Persons in Use Case 2A

Role from BPMN | Brief Description Users

Diagram

Applicant The person who is willing to study at the university | Alexander Kyshynevskyi
Tanja Sahaidak

Admission Office | University employee, responsible for reception and | Alexander Weber

Clerk checking the documents from applicants

Table 7: Task Objects for Use Case 2A

Task Nr. | Task from the BPMN Model Task that goes into Editor
T1 pre-register online preReg

T2 prepare the list of Documents prepDocs

T3 hand in the Documents to the Admission Office handInDocs

T4 activate student Account enableAcct

TS5 pay Student [Union] Fee payFee

T6 check the Documents checkDocs

T7 request Proper Documents reqRightDocs

T8 issue student ID issuelD

T9 send Semester Sticker sendSticker

The table 6 recaps the description of roles and adds the list of real users assigned to each role.

The final BPMN model may be seen in Fig. 16. Now let’s map the artifacts from the BPMN diagram
to the task and data elements in the actual application (Table 7):

Again we sacrifice the overall readability of the task elements in the application for the sake of
compactness. Now we do the same procedure for the data elements in the table 8:

In order to recap the basics: the data and the task objects which were listed in the tables are referred
to as permissions according to the paper [16]. The order in which tasks and data objects appear during the
process execution is regulated by the BPMN diagram in Fig. 15, whereas the following rule deals with
security aspects and only prescribes, which tasks are allowed to occur in the process byachelor enroliment

¥
rcl N

rctlp : preReg N\ prepDocs N\ handInDocs N enableAcct N\ payFee A checkDocs N issuel D N\ sendSticker

'p
(bvachelor enrollments 1€ 1)

The bpachelor enrollment» rctlp is showing the the use case where all necessary documents were sub-
mitted correctly and there was no need to request missing or incorrectly submitted papers. Next rule
bpachelor enrollments rc’zp depicts situation where the admission office clerk is asking to provide correct or
missing papers. Which consists of previously defined bpachelor enroliments rct]p and another one task which
is missing in the first rule.

tp. tp : 1p
rcy trep A reqRight Docs (Dvachelor enrollment» 7 Cy)

Shttps://cs.univie.ac.at/home/news-events/sinfgleview/article/
zulassung-zum—-studium

41

https://cs.univie.ac.at/home/news-events/sinfgleview/article/zulassung-zum-studium
https://cs.univie.ac.at/home/news-events/sinfgleview/article/zulassung-zum-studium

Managing Responsibilities and Permissions for Process-Aware Information Systems

Table 8: Data Objects for Use Case 2A

Kyshynevskyi

DO Nr. | Data Object from the BPMN Model | Task that Goes into Editor
DO1 valid e-mail address eMail

DO2 desired password passwd

DO3 study program studyProgr

DO4 data about previous study prevStud

DO5 personal details persData

DO6 contact details cntctData

DO7 statistical data statData

DO8 passport pass

DO9 school leaving certificate schoolCert

DO10 | German proficiency certificate germanCert (optional)
DO11 | social insurance number socInsNum

DO12 | document regarding change of name | nameChng (optional)
DO13 | passport photography passPhoto

t .
Now we are able to reuse the both rules and present the general rule bp,chelor enrollments rcsp , which
. 3 t
embodies both, the bpachelor enroliments 7€ and the Puachelor enroliments 7¢5. and is applicable for situation
where necessary documents were submitted correctly and for those, requiring documents review.

tp. . 1Ip tp
reyirey \/rc2

(bbachelor

'p
enrollment,> /C3)

As we have quite a few data objects (or data responsibilities according to [16]), we can also split the
big rule into several smaller ones and combine them afterwards. The relation constraint bpachelor enrollments
rc) is listing the data elements regarding pre-registration process:

rcy : eMail \ passwd N studyProgr N\ prevStud N\ persData N\ cntctData A\ statData

(Dvachelor enrollments CZ)

The next rule (bpachelor enrollment> 7¢5) stands for the list of documents submitted during a visit to

admission office:

res : pass A\ schoolCert N\ germanCert A socInsNum A nameChng A passPhoto (byachelor enroliments 7€5)

We have pointed out above, that some of the data objects are optional. These are contained in the
rule bpachelor enrollment> 7C5. The next one (bpachelor enrollment> 7Cy) cOvers cases where no optional documents
are needed, i.e. we exclude some documents such as German proficiency proving document and name

change certificate:

rcg © rey A pass A schoolCert N\ socInsNum A passPhoto

(bvachelor enrollments 1€ g)

And finally we can cover both cases (with need for additional documents and without it) in constraint

bvachelor enrollment» 7 C§1

42

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

req s (rey Areg) V (rey Ares) V (rc Areg A germanCert)V (rcy A reg AnameChng)

(bvachelor enrollments 1'C ;)

The first parentheses in rule bpachelor enrollments 7¢4 are handling case where no optional documents
are needed, the second - where both optional documents should be submitted, the third - where only
German proficiency certificate should be submitted and the last parentheses handling the case where
name change certificate should be handed in. With that being said this final rule covers every possible
situation regarding document lists. Now we combine constraints regarding task and data objects in
pattern bpachelor enrollments rcg:

ro. r p
reg trey Areq (bvachelor enrollment rcgr;)

As you can see the last rule bpachelor enrollment> 7¢g 100ks quite simple, but includes all possible sce-
narios, covering situations with correctly and incorrectly submitted documents and necessities to submit
optional documents. For simple use case we will make one last responsibility pattern assuming that all
submitted documents are correct and there was no need to hand in optional ones (rule byachelor enroliments
rcy):

ro.or p
reg trep A rcg (bvachelor enrollment ”Cg)

In this use case we have shown explicitly that one and the same rule may be put together in many
different ways by means of reusing existing rules and combining together a few smaller rules. However
it is important to avoid the overkill, where the number of rules explodes and becomes difficult to keep
track of.

Now let us move on to permission constraints C1 - C9 which we have outlined for this particular
use case. The C1, as in the cases before, states that participants in the swimlanes are different people.
We won’t deviate from the taken course and will express this constraint by means of separation of duty
(Dachelor enrollment, permission 1);

b . el
pC“i : preReg # checkDocs (bvachelor enrollment> permission 1)
Rules bpachelor enrollment> Permission 2 (Applicant lane) and bpacnelor enroliment> Permission 3 (Admission

office clerk lane are showing that task from one and the same swim lanes are performed by one and the
same person (the optional task reqRight Docs was omitted):

pcs : (preReg = prepDocs) A (prepDocs = handInDocs) A (handInDocs = enableAcct) A (enableAcct = payFee)

(b bachelor enrollment, PET mission 2)

pc‘%b : (checkDocs = issuel D) A (issuel D = sendSticker) (Pbachelor enrollment, permission 3)

C2 and C4 defines the pre-registration and fee deadlines (rules bpachelor enrollment> PermMission 4 and
bbachelor enrollment> PefmiSSiOﬂ 5)

43

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

pch, : control flow, preReg, execute

Dy , permission 4
Pciu - 01.05 till 05.09 (bbachelor enrollment p)

pcé’ : control flow, payFee,execute

(bbachelor enrollment, permission 5)
pcs : before 05.09

Dbachelor enrollment> Permission 6 shows C5, stating that passport photograph should’n be older than two
years

pcg : passPhoto not older than 2 yrs. (bvachelor enrollment> PErmission 6)
The C3 regulates the time frame for documents submission to the admission office (bpachelor enroliments

permission 7):

pc? : control flow, handInDocs, execute

b , permission 7
pch 12 17.06 till 05.09 (Dbachelor enrollment> P)

Constraint C7 stands for checking the valid e-mail addresses. This may be done by simple free
text or through regular expression. The last alternative is more reliable, however it is unknown which
policy enforcement mechanisms will lie behind our application, so we present both variants in rules
Dpachelor enrollment, permission 8 and bpachelor enrollment> PErMission 9:

pcg : eMail conforms to (bvachelor enrollment> Permission 8)

“\w+Q@[a-zA-Z_]+\.[a-zA-Z]{2,3}$

pcg : eMail must be valid and contain @’ and °’ (bvachelor enrollment, Permission 9)

The last constraint C8 prescribes the length and allowed characters in the password byachelor enroliments
permission 10:

pc'i’o : passwd conforms to (bvachelor enrollment> permission 10)

“la-zA-Z]\w{7,15}5%

This regular expression states, that the first character in a password must be a letter (upper or lower
case), followed by at least seven and most fifteen characters, which may be either digits or letters or
underscores. The next rule bpachelor enrollment> permission 11 does the same in free text:

pc’i’l : passwd must begin with a letter, be between 8 and 16 characters long, and contain digits

(bbachelor enrollment> PermiSSiOH 1 1)

44

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

4.1.4 Use Case 2B. Master Enrollment Process

As in the use case with nuclear power plant, we are also going to have the second scenario here too. The
goal of doing so is to show how previously defined elements may be reused. In this use case we will deal
with master enrollment process, which is almost identical to bachelor enrollment except for couple of
aspects.

First of, we describe the situation verbally. There are two possible starting points here: one with
students with bachelor degree from Austrian universities and with Bachelor degree from non-Austrian
universities. Moreover students with non European Union or European Economic Area Bachelor degree
should meet some extra admission requirements.

In the first case students from Austrian university should just fill the application form and mail it to
admission office. All other students should take following steps:

1. pre-registration online (same procedure as in Use Case 2A);
2. submit required documents to admission office;

3. in case of admission personally visit admission office to receive student ID. Student should present
his (her) passport of another official ID, passport photograph and notification of admission;

4. pay tuition fee;

5. activate student account.

We have omitted the deadlines here. Even though the actual deadlines for master enrollment differ
(enrollment period is extended up to 30th of November) implementation principles remain the same as
in Use Case 2A. The personal data in pre-registration step is the same as in corresponding step of Use
Case 2A. The list of documents from submitted in step 2 should contain following items:

o filled application form;

e previous bachelor diploma;

e transcripts for bachelor diploma;

e copy of passport;

e special certificate of special qualification for university studies (optional);

e certificate proving German proficiency level B2/2.

With regard to Use Case 2A we are able to reuse tasks 71, 72, T3, T4, T5, T8, T9. There are a
couple of new ones coming into play, so the full list of tasks may be seen in Table 9.

The table of roles and persons remains the same (Table 6 from Use Case 2A), so there is no need to
duplicate it here.

As for data objects we are able to reuse some objects from previous use case: DO1-DO7, DO10,
DO13 (see Table 8). The complete list of data object for actual use case is represented in Table 10

The BPMN diagram of the process may be seen in Fig. 17.

As our goal here is just to show the reusal possibilities of the application, we will not blow out the
rule description here one more time and will just present the final patterns.

45

Kyshynevskyi

Systems

10N

for Process-Aware Informat

1SS10n8

Managing Responsibilities and Perm

UOISSIWpe JO uoljedly3ou :810d
Sa1pn3s AJISJaAIUN 104 uoledlylenb epads /104
sydiuosuely :910d

ewoldip Jojpyoeg :S10A

wo.y uonedidde :$10Q

ydesbojoyd Jodssed :£10Q
93221413492 Aduapiyold uewaas 0100
uodssed :80Q

ejep |eo3snels :£0d

s|1e3ap 30 3U0D :90d

s|ieyap |euostad :50Q

Apnis snoinaud jnoge eiep :+0Q
weuboud Apnis :£0Q

piomssed padisap :z0d

ssalppe [lew-a plleA 1104

'SJ9339| pue s)BIp Jo ainxiw

e 9q pue suaeleyd ybid 1ses| 38 uIRIUOod ISNW 3duUaNbas uadeleyd plomssed syl :8D
!ssalppe [lew-d pljeA e ag pjnoys uiboj /D

74 1se3]| 1e Jo [9A3] 33 2A04d pINoys 23ed141a0 Aduaidijo.d Uuewlas) ay3 19D

!sueaA g ueyj J4ap|o 3qg jou pjnoys ojoyd podssed ay3 :GD

119quialdas JO Yis ayj a40jaq

INg sjuawndop |euos.ad Jo uoissiwqgns ay3 Jaye pied ag pjnoys 234 [uolun] Juspnis ayl 4D
!Jaquwiaydas Jo uig

39U} pue Y1/ T aun(usamiaq aoe|d @) e} p|noys a1J0 UOISSIWP. Y3 03 JISIA |euostad ay3 €D
{19qwi21das Jo Yis ay3 pue Ael Jo 3ST ay3 usamiaq ade|d axe3 pinoys uonelisibal-aid :zd
{9|doad JuaJayip aJe MI3|D D140 uoISSiwpe 3y} pue juedidde ue : 1D

8T Od
N g
. w
1S uoissiwpe @
d dI Juspn3s anssl J0 uoneayRou)
19]S9WDS JUSS B e esi Wu
3
[e]
o
o]
AUIODOE 59y [uolun]uapnay =51
VENTES ! 1440 UOISSIWpe
Sienne s 33 0) SUBUIN30P tel— 13\ 1y Buedaud soysi-aud
: ayy puey ! !
>
o
°
S
[)
>

uonedidde
puas

Ajsianiun

Master Enrollment Process. BPMN Representation

: Use Case 2B

Figure 17

46

Managing Responsibilities and Permissions for Process-Aware Information Systems

Kyshynevskyi

Table 9: Task Objects for Use Case 2A

Task Nr. | Task from the BPMN Model Task that goes into Editor
T1 pre-register online preReg
T2 prepare the list of Documents prepDocs
T3 hand in the Documents to the Admission Office handInDocs
T4 activate student Account enableAcct
TS5 pay Student [Union] Fee payFee
T8 issue student ID issuelD
79 send Semester Sticker sendSticker
T10 send application sendApp
T11 visit admission office visitAO
T12 issue and send notification of admission issueNoA
Table 10: Data Objects for Use Case 2A
DO Nr. | Data Object from the BPMN Model Task that Goes into Editor
DO1 valid e-mail address eMail
DO2 desired password passwd
DO3 study program studyProgr
DO4 data about previous study prevStud
DO5 personal details persData
DO6 contact details cntctData
DO7 statistical data statData
DOS passport pass
DO10 | German proficiency certificate germanCert (optional)
DO13 | passport photography passPhoto
DO14 | application form appForm
DO15 | bachelor diploma bachDipl
DO16 | tanscripts transcr
DO17 | special qualifications for university studies | specQual
DO18 | notification of admission admNotif

rctlp : preReg N\ prepDocs N\ handInDocs N enableAcct N\ payFee A issuel D N\ sendSticker N\ sendApp N\ visitAO N issueNoA

'p
(bmaster enrollment 7€ 1)

The bmaster enrollments rc’ll7 relation constraint is listing the tasks which must occur in the process. As
for the data objects we have quite a lot of those to cram them into one relation constraint, so we split it
into two smaller (bmaster enrollments 75 | aNd Dmaster enroliment> 7C5 ») ones and after combine that combine in
one final rule by ager enrollments 7 C£~3-

rch 1 : eMail \ passwd A studyProgr N\ prevStud N\ persData N cntctData N statData

47

(bmaster enrollments FCS‘ 1)

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

rch 5 : germanCert N\ passPhoto N appForm A bachDipl Atranscr A\ specQual N admNotif

(Dmaster enrollments VCS_Q)

rooLr r
rCy3 1 1Cy NTCyp (Dmaster enrollments rC£_3)

All constraints from use case 2A are valid here, so there is no need to put them here again. We
will only adjust separation constraint C1 slightly as it depends on the newly introduces data objects
(bmaster enrollment> permission 1, bmagier enroliment, permission 2 and bmageer enroliment» PErmission 3).

b . -
pcy :issueNoA # preReg (Pmaster enrollment> permission 1)

This constraint shows that actors from different swimlanes are different natural persons.

pcs : (preReg = prepDocs) A (prepDocs = handInDocs) A (handInDocs = visitAO) A (visitAO = payFee) A (payFee =

(bmaster enrollment, permission 2)

Dmaster enrollment> permission 2 reflects the binding constraint for the applicant swimlane, whereas
bmaster enrollment, permission 3 does the same for admission office clerk swimlane.

pcib : (issueNoA = issuel D) A (issuel D = sendSticker) (Pmaster enrollment PeErmission 3)

4.2 User Interface

The target application is implemented as web application and follows its main principles: the client is
accessing the functionality through a web browser by means of reading/saving rules from/on the backend
server. We have chosen this architecture in order to make the handling more easy and comfortable for
end user, who in our case just needs the web browser in order to begin working with the target program.
So far the functionality of the program is optimized for the gecko based web browsers, the most popular
of which is the Firefox. In order to reach the best results it is advised to update the Firefox to the newest
version, which is 23 for the Linux environment as of today (23.10.2013) 6. Because of the architecture
we have chosen, there is no need to install any development kits or other programs for the end user: the
functionality can be accessed from any machine, connected to the Internet. The same is also true for
the implementation phase we were going through: by means of git, the version and content management
software, the source code can be easily accessed, modified and maintained from anywhere.

As the main programming language the JavaScript (JS) was chosen. This choice was made because
all modern mainstream web browsers support JavaScript. Next idea behind this choice is that JS and its
library JQuery are perfectly suited to support operation with the Document Object Model (also known
as DOM) of the HTML document, which allows for quick search of elements of specific type, set their
representation attributes, delete, clone, insert new ones, etc. Moreover, with JS the processing of the
DOM takes place on the client machine. That is much quicker than server sided processing, requiring
sending HTTP request and receiving responses each time, when the DOM needs to be changed. And
finally JS is event-based programming language, which provides a wide range of possibilities to work

6https ://www.mozilla.org/en-US/firefox/central/

48

https://www.mozilla.org/en-US/firefox/central/

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

% - 0O Task Pattern Editor - Mozilla Firefox
| i} Task Pattern Editor | 5|

(S univie.ac.at

anAnb

export | import
Task Elements

= =
o

Figure 18: Initial look of the editor

with events, generated by user while clicking, rolling over, dragging, calling the context menu, etc. on
one of the DOM elements. With JS we are able to fine tune the behavior for each element.

According to exposee three editors should be implemented, whose goal is to guide and to support
users in managing the security aspects:

e the Task Pattern Editor will describe which tasks may be used for certain process;

o the Responsibility Editor the data elements will be defined which are allowed to be used or are
generated during the process execution (the process definition will be taken from Task Pattern
Editor);

e the goal of the Constraints Editor is to impose constraints for data and task elements and for
patterns which are the composition of data or task elements (both data and task elements are taken
from previous two editors).

It should be noted that all these components are reusing one common part, which is the rule editor
(see Fig. 19), which is instantiated in each of the above editors and customized in order to meet the
requirements of each particular case. Furthermore, the implementation of the above editors follows
principles described in [16]. That means that the editors are there to support certain steps from the paper,
which have to do with managing security policies. In the use case sections above we have given the
detailed description of how exactly security policies are defined all the way from verbal description of
the business process, through the BPMN model down to the linear temporal logic rules, which play one
of the core roles in achieving our goal.

We have already mentioned the goal is to implement the three editors which guide the user through
the process of management of security policies. All three editors are using one common part, namely the

49

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

FormulaEditor

DataTable +FormulaEditor(in formulaDiv, in binay, in unary, in brackets)
+createObject(in value, in context)
+updateElement(in prevValue, in newValue, in context)

+DataTable(in elementsDiv, in FormulaDiv) +placeHint(in message)
+addNode(in element) +removeHint()
+startDrag(in target) +dehigh()

+exportFormula(in param)
+importFormula(in param)

Figure 19: Class Diagram and Interaction between Main Classes

the rule editor (can be seen in the Fig. 18), which is slightly modified in order to comply with the needs
from each step.

As the result we gave detailed description of the programmatic part, responsible for representation of
the organizational structure with roles and users. Being parts of one superior SPRINT project, our target
application and application, described above may be merged in the future works to operate in the bundle,
thus contributing to creation of one robust system.

In order to recap the material and make it more clear let’s go through all relevant security aspects
once again:

Relevant Security Aspects
e organization - is an entire body whose security aspects we are taking care of;

e organizational unit - a part of organization, defined by its functions (e.g. accounting, marketing,
research and development, etc.);

e responsibilities - abstract concept, which includes certain privileges and rights to perform some
tasks or to work with artifacts (e.g. documents, equipment, hardware, etc.);

e role - another abstract concept which is entrusted with some set of responsibilities;

e user - a person (in some cases can also be a software unit, like web service) who obtains respon-
sibilities by means of roles. One user may have from one to many roles, as well as role may be
carried by more than one user.

As it was specified above, we have deconstructed the process of managing security policies into
three steps, each of which has corresponding sub application. The core of each sub application is the rule
editor, which in every case is fine tuned to meet specific requirements and is comprised by the JavaScript
class 7. Next important part is the table of elements, which are used to compose the rule. The table of
elements is also represented by the JS class, which is responsible for loading the list of elements from
backend server and converting them from XML to HTML format. The interaction of these two main
classes may be seen at Fig. 19. The connecting line between two classes is not there to show the relation
or multiplicity in terms of UML. Instead it just points out, that as soon as user has chosen the element
from the table and has started to drag it onto editor area, the object which goes into formula is created by
the FormulaEditor class. This object pops up on the screen as new formula operand when user releases
the mouse button. Here is a brief description of the functions in DataTable class.

"The source code may be found at http: //sumatra.pri.univie.ac.at/~demo/sprint/

50

http://sumatra.pri.univie.ac.at/~demo/sprint/

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

e DataTable (elementsDiv, formulaDiv) - is the class constructor, responsible for load-
ing the corresponding set of elements from the backend server and representing them in a tabular
form. The two parameters are representing the names of the <div> elements where the elements
table go.

e addNode (element) step by step adds elements to the DOM structure of the HTML document.
The parameter is a String value which will display the name of the element in the list.

e startDrag (target) - triggers visualization process as user starts to drag element from the
table in order to insert it into the formula above.

Here is what FormulaEditor class functions do:

e FormulaEditor (formulaDiv, binary, unary, brackets) -classconstructor, which
sets up the part of the HTML document representing the LTL rule. Parameters are representing the
name of the <div> element which will hold the editor area, the last three are standing for sets of
binary and unary operators as well as for possible brackets.

e createObject (value, context) creates new object to insert into the formula as user
starts to drag the element from the table in the lower portion of the HTML document.

e updateElement (prevValue, newValue, context) - if user changes the name of the
element in the table of elements, this function updates the name of the element in the formula
above.

e placeHint (message) - may be tuned to display pop-up hints when user hovers over some
specific type of elements in the formula.

e removeHint () - removes pop-up hints if there are any.
e dehigh () - removes highlighting from elements in the formula.

e exportFormula (param) - is responsible for converting the formula into XML and exporting
it onto backend server.

e importFormula (param) -isused in the second editor in order to import previously composed
task patterns into the editor. The patterns are converted back from XML into HTML.

As we have already mentioned, application is based on JS event model and supports large number
of different events. The most relevant ones are listed in the table 11. For the sake of providing better
understanding of the event model, we briefly go through the basics. All elements on the web page
are objects of hierarchical document object model (DOM), with the topmost element being Document.
Events in JS are following from uppermost hierarchy object to the target one. Having reached the target,
event is propagated back all the way up to Document. By means of JS we may tune each element to react
specifically on certain type of events. Thus we suppress the calling of standard context menu on the web
page, when user is performing right clicks on data/task objects, substituting it for context specific user-
defined menu. There are two important aspects to take into consideration while working with JS events,
namely the event capturing and event bubbling. The event capturing is the method to intercept event as
it is traveling through the levels of hierarchy to the target object. Event bubbling stands for capturing
event after it has reached the target object and is on its way to the uppermost object, the Document.
Understanding and utilizing these principles plays key role in our application.

In order to create the new editor, four documents are needed:

51

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

Table 11: Events Supported by Editor

Element Supported Events

document ready - event listener, which initializes necessary variables
classes right after document is loaded in a browser

"#export" click handles mouse click on the button. Exports the document
onto backend server

".draghandle" mouseDown is a starting point of dragging a new element onto

the formula portion of the HTML document

"span.binary"

click toggles binary operator

".dataElement", contextmenu suppresses the browser default context menu

".taskElement" and displays dynamic user-defined context menu

".brackets" contextmenu displays context menu for brackets
mouseenter highlights the matching bracket for the one being
hovered over

".unary" click toggles the unary operator

1
2
3
4
5

[c<BEN o)

10
11
12

e main.js - this document is responsible for initialization of the two JS classes, which are contained
in the next two files. Important point are the parameters, which are passed to the constructors of
the classes, as they define the behavior of the future class instances.

e formula_editorjs - is file with editor class definition. This part is responsible for composing the

LTL expression and manipulations with elements, which are already in the editor portion of the
HTML document;

data_table.js - is the file, responsible for loading the list of objects from the backend server and
presenting them in necessary form. The loaded objects serve as building blocks for LTL rules,
composed in the editor area of the document;

e formula_editor_parserjs - is the file, containing small function, which parses the LTL rule after it

has been manipulated. The main goal of the function in this file is to spot and delete empty binary
operands, thus making the LTL expression well formed;

index.html - is the HTML document, which embeds the functionality of the JS classes. Besides
the upper *.js files index.html should also include the script tag for loading the JQuery library.
index.html is presented in the Listing 1;

<!doctype html>
<html>
<head>

<title>Task Pattern Editor</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5/jquery.min. js"></

script>

<script type="text/javascript" sre="JS/formula_editor.js"></script>
<script type="text/javascript" sre="JS/data_table. js"></script>

<script type="text/javascript" src="JS/formula_editor_parser.js"></script>
<script type="text/javascript" sre="JS/main.js"></script>

</head>

<body>

52

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

13 <div id="formel"></div>

14 <diwv>

15 <button id='export’>export</button>

16 </div>

17 <div id="elements">

18 <table id="elementsTable" border="1">

19 <thead>

20 <tr>

21 <th>Task Elements</th>

22 </tr>

23 </thead>

24 <tbody>

25 <tr>

26 <!--Task Elements—-->

27 <td id="taskList">

28 <ul class="elementsList">

29 <1li>

30 le7;</
span>

31 <input class="taskName" placeholder="input name here ..."/>

32 </1li>

33

34 </td>

35 </tr>

36 </tbody>

37 </table>

38 </div>

39 </body>

40 </html>

Listing 1: The index.html File

Regarding the markup of the index.html file, there should be two <div> areas where the editor and
the list of elements will be loaded. Depending on the situation and needs the elements <div> should be
marked up correspondingly. Thus, for example, in the first editor in our web application only the list of
task elements should be loaded, which is arranged as HTML table with only one column. In the second
case we have to load the list of data objects and the list of task patterns. Here the table with two columns
has to be set up. The names of these two <diwv>-tags are going to be passed as arguments to JS class
constructors along with some other arguments which we are about to look at in Listing 2.

53

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

1 var formulaArea = ’#formel’;

2 var listArea = '#elementsList’;

3

4 var binary = {

5 ‘and’: 'A7,

6 "or’: "V

7 }i

8 var unary = {

9 "diamond’: 'o’,

10 "box’: 'O’

11 }i

12

13 var brackets = {

14 "round’: [’ (7,) "1,

15 "tag’: [F < '," 1 "]

16 }i

17

18 myeditor = new FormulaEditor (formulaArea, binary, unary, brackets);
19 mytable = new DataTable (listArea, formulaArea);

Listing 2: Instantiation of the Editor and Table Classes

This piece of code is taken from the file main.js. This file handles editor adjustments, creation of
class instances and assigning them to class reference variables. Lines 1 and 2 initialize two variables
with string values, representing the HTML <div> tag IDs for the LTL rule area and the elements list
area correspondingly. The lines 4 - 16 are defining the operators which the future editor will support
for its elements. Thus 2 shows the code snippet from the first editor, which is meant to support the two
logical operators and two binary ones. Furthermore, in order to define the operation precedence, the
set of brackets is supported too. Here we omit the semantical meaning behind all those operators and
brackets, as our goal now is to only explain how the editor should be set up.

After having covered the basic aspects of the editor functionality, it is clear, that this approach al-
lows for very flexible and fast creation and tunning of new editors with needed specification. Thus, for
example, the list of operators and brackets may be changed in a blink of an eye. If there is no need for
some type of operators (e.g. no unaries are needed), the new class instance may be created by calling
constructor with unary parameter set to null. We followed this way in the constraint editor (Editor 3),
where we had no unary operators and only one binary, which was the comma for enumeration.

In order to recap the material, let’s repeat the steps, which lead to creation of the editor once again:

1. create the HTML document (e.g index.html);

2. embed the JavaScript files main.js, formula_editorjs, data_table.js, formula_editor_parser.js into
the HTML <head> portion of document jscript;, tag;

3. embed the JQuery library into <head> of the HTML. We recommend to use JQuery v1.5, as the
functions in different versions of JQuery may behave differently;

4. create two <div> elements in the HTML document for editor and element areas and give them
unique IDs;

5. depending on needs mark up the list <div> in the web document so that it contains the necessary
number of columns. The code inside column can be seen in the Listing 1;

6. set up the main.js file to support certain set of binary, unary and bracket operators.

54

http://ajax.googleapis.com/ajax/libs/jquery/1.5/jquery.min.js

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

In order to make editor function properly some adjustments should be made in the formula_editorjs
file as well. This file uses the names of the columns in the elements <div>, which carries semantic
meaning, as we distinguish between the types of elements that we load from the backend server. In the
Table 11 we present the exact description of functions and events supported by the web application.

Another one feature which was implemented but is not used as of now, is the ability to select multiple
elements. That may be achieved by means of holding the ctrl key and clicking first and then last
element of the group. As a result, elements will be highlighted with their border glowing light green.

We would also like to say couple words about the format of LTL rules. In order to present them in the
browser window we use elements, which carry no semantical meaning for the page markup and
are used only for the purpose of formatting. These elements get different class names and are
are ordered hierarchically. Such format makes it easier to convert HTML object to XML. The following
two listings are comparing the HTML and converted XML format (Listings 3 and 4).

It should be noted, that the top level node’s name hard coded for each editor and carries semantic role.
In that way the top level node in the Listing 4 is named “responsibility”. The further conversion happens
as follows: function parses the HTML code recursively, paying attention to the number of classes. If
HTML node only has one class name attached, that class name becomes the name of XML node. If
further class name is provided, it becomes the value of the fype attribute. So far the HTML nodes in the
code represent maximum two classes. The further introduction of class names will require the revision
of the conversion function.

1 <div id="formel">
2
3
4 extReqg<
/span>
5
6
7
8
9 <span class="dataElement" data-content="intClearance" data-url="
undefined">intClearance
10
11
12
intReg
13
14
15
16
17 </div>
Listing 3: LTL rule in HTML format
1 <responsibility>
2 <binary type="and">
3 <binaryoperand>
4 <dataelement>a</dataelement>
5 </binaryoperand>
6 <binaryoperand>
7 <binary type="and">
8 <binaryoperand>
9 <dataelement>b</dataelement>
10 </binaryoperand>
11 <binaryoperand>
12 <dataelement>c</dataelement>

55

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

13 </binaryoperand>
14 </binary>
15 </binaryoperand>

16 </binary>
17 </responsibility>

Listing 4: LTL rule in XML format

4.3 Backend

At the beginning of the Implementation section we mentioned that our application relies on a client-
server architecture. In our case we decided that client and server communicate via REST. In order
to provide some understanding in this field, we give a short description of REST. REST follows the
principles of World Wide Web where any existing resource may be accesses by means of unique ID -
the Uniform Resource Identifier (URI). The key principle of REST is also a resource [11]. The goal of
this architectural approach is to simplify access to those resources. It is important to note that REST
is not bound to some specific programming language, platform or even protocol (though most actively
used one is HTTP). Instead that is just a set of prescriptions of how resources should be accessed and
manipulated. Each programming language implements the principles of REST in its own way. Further
important point is the statelessness of REST. That means, every request should also carry full information
about the object resource. To put it other way server is not aware of any prior requests from the client.
For example client is requesting the list of customers from the server in first request and then wants to
obtain and modify information regarding most active customer in further requests. In order to do that
second and further client requests should also carry information (ID, URI, etc) about the customer whose
attributes are being accessed and modified. There are four main types of requests in REST:

e GET - is used to obtain the representation of specific resource;
e PUT - replaces the existing representation of resource or creates new resource;
e POST - creates new resource with given representation;

e DELETE - deletes resource.

Having explained briefly the principles of REST we give the description of the backend server for
our application. All necessary data data is hosted on the university server®. It is loaded by the JS
application in every editor depending on current needs. The root directory of server is shown in Fig.
20. The subdirectories contain XML files with editor-related data. Here is the brief description of the
subdirectories content:

e tasks directory contains the list of task elements, which are used in the first editor for composing
task patterns. The task patterns are also stored in this directory and are available under http:
//sumatra.pri.univie.ac.at/~demo/sprint/backend/tasks/patterns;

e data-elements stores the the list of data elements added to the task patterns, composed using
first editor;

e bundles will hold xml files with constraints, defined in third editor. The structure of this xml is
somewhat more complex than in previous two cases;

8http://sumatra.pri.univie.ac.at/~demo/sprint/backend/

56

http://sumatra.pri.univie.ac.at/~demo/sprint/backend/tasks/patterns
http://sumatra.pri.univie.ac.at/~demo/sprint/backend/tasks/patterns
http://sumatra.pri.univie.ac.at/~demo/sprint/backend/

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

[@ - o Index of/~demo/sprint/bar.kend-ﬂozilla Firefox
| "} Index of /~demo/sprint/backend d ar |
& = univie.ac.at @ B-coo@| L £y = . @

Index of /~demo/sprint/backend

Name Last modified Size Description

¥ Parent Directory

(£ bundles/ 18-Mar-2013 17:19
[C)data-elements/ 02-May-2013 16:54
[mapping/ 18-Mar-2013 17:25
(23 organization/ 18-Mar-2013 17:24
[tasks/ 19-Aug-2013 18:16

Apache/2.2.22 (Ubuntu) Server at sumatra.pri.univie.ac.at Port 80

® zotero ‘@ ConsoleML

Figure 20: Root Directory of the Backend Server

Table 12: Request Supported by the Server

Resource Supported Requests
/tasks GET
/tasks/{id} GET
/data—-elements GET
/data-elements/{id} GET
/tasks/patterns POST
/bundles/permission/ POST

e organization subdirectory will contain data about structure organization, its subdivisions,
roles and users;

e mapping will represent data about mapping of roles to organizational units, roles to users and
users to organizational units as was seen from the paper [12]. That information will be completed
by mapping of constraints to roles (responsibilities).

The table 12 shows which types of REST requests are supported by the backend

In order to load the necessary data into browser window, the dedicated JS function retrieves informa-
tion from server by means of sending GET-requests to server. The data from backend server is processed
and converted to appropriate format. As we have already mentioned, the implementation of REST varies
from one programming language to another. In the code snippet in Listing 5 we use the function of the
JavaScript JQuery library. There is also JS native way to send requests, but it is a tiny bit more complex.
It is important to notice that during the POST request we just send the pattern which should be added to
the list of existing patterns. The rest is being handled by the server-side PHP code, which calculates the
number of existing patterns and generates appropriate ID for the newly sent pattern.

S (" #export’) .click (function () {
2 var exp = myeditor.exportFormula ($ (formulaArea)) ;

57

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

exportedF = expl[0].innerHTML;
S.ajax ({
url: 'http://sumatra.wst.univie.ac.at/ demo/sprint/backend/tasks/patterns’,
type: 'POST’,
data: {
xml: exportedF

— O 0 00 NN W

—_ =

Listing 5: POST-Request from JS code

For security and test purposes we chose to update existing patterns or deleting them manually on
the server. With that being said, we move on to data format representation for each concrete editor. As
editor-related data is stored in form of XML, we chose the RELAX NG schema language to describe the
data structure. The following two listings (Listing 6 and 7) show the structure for the first editor.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tasks>
3 <task endpoint="a">
4 <label>aliasA</label>
5 <label>aa</label>
6 </task>
7 <task endpoint="b">
8 <label>aliasB</label>
9 <label>bb</label>
10 </task>
11 </tasks>
Listing 6: Tasks XML representation
1 <element name="tasks" xmlns="http://relaxng.org/ns/structure/1.0">
2 <zeroOrMore>
3 <element name="task">
4 <attribute name="endpoint">
5 <text/>
6 </attribute>
7 <oneOrMore>
8 <element name="label">
9 <text/>
10 </element>
11 </oneOrMore>
12 </element>
13 </zeroOrMore>
14 </element>

Listing 7: Tasks RELAX NG Schema

As one might see, each task in the list has an attribute “endpoint”, which is unique and from one to
many labels. As the list of tasks is loaded in the first editor, each task is represented by its first label.

The task pattern XML example and its RELAX NG schema, representing simple pattern 7 psimple Task Patterns
rc'Pshowed in the next two listings (Listing 8 and 9)

rc’? an (Ob) (¢ PSimple Task Pattern> rc'P)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <patterns>

58

Managing Responsibilities and Permissions for Process-Aware Information Systems

[e IR B SRV, IF SN OS]

11
12
13
14
15
16
17

[e <IN e SR S S R

0 L W L L W WD DN NN = === = = = = =
AN A WD, OOVOITAANNPDE WD~ OOV A WD~ OO

<pattern id="0">
<binary type="and">
<binaryoperand>
<dataelement>initiateStop</dataelement>
</binaryoperand>
<binaryoperand>
<brackets type="round">
<unary type="diamond">
<dataelement>reqRUStop</dataelement>
</unary>
</brackets>
</binaryoperand>
</binary>
</pattern>
</patterns>

Listing 8: Tasks Pattern XML representation

<element name="patterns" xmlns="http://relaxng.org/ns/structure/1.0">

<choice>
<element name="taskelement">
<text/>
</element>
<element name="unary">
<attribute name="type">
<ref name="taskelement"/>
</attribute>
</element>
<element name="brackets">
<attribute name="type">
<text/>
</attribute>
<choice>
<ref name="taskelement"/>
<ref name="unary"/>
<ref name="brackets"/>
<element name="binary">
<attribute name="type">
<text/>
</attribute>
<element name="binaryoperand">
<choice>
<ref name="taskelement"/>
<ref name="unary"/>
<ref name="brackets"/>
<ref name="binary"/>
</choice>
</element>
<ref name="binaryoperand"/>
</element>
</choice>
</element>
</choice>
</element>

Listing 9: Tasks Pattern RELAX NG representation

Kyshynevskyi

As we see from Listing 9 the scheme for this case contains a lot of <choice> and <ref> tags,
some of which refer to their parent element (are recursive). It is hard to predict the constraints of binary

59

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

expression, which may only contain two simple task elements or other binary expressions, which may

itself contain further complex expressions.
In the next editor window one can compose the responsibility patterns, which include one or more
task patterns from first editor and one or more data elements. Listings 10 and 11 are demonstrating XML

snippets and RELAX NG schema.

1 <responsibility>

2 <binary type="and">

3 <binaryoperand>

4 <taskpattern>http://sumatra.pri.univie.ac.at/ demo/sprint/backend/tasks/
patterns/3</taskpattern>

5 </binaryoperand>

6 <binaryoperand>

7 <dataelement>dataA</dataelement>

8 </binaryoperand>

9 </binary>

0 </responsibility>

Listing 10: Responsibility Pattern XML representation

1 <element name="responsibility" xmlns="http://relaxng.org/ns/structure/1.0">
2 <element name="binary">

3 <attribute name="type">

4 <text/>

5 </attribute>

6 <element name="binaryoperand">

7 <choice>

8 <element name="taskpattern">
9 <text/>

10 </element>

11 <element name="dataelement">
12 <text/>

13 </element>

14 <ref name="binary"/>

15 </choice>

16 </element>

17 <ref name="binaryoperand"/>

18 </element>

19 </element>

Listing 11: Responsibility Pattern RELAX NG representation

As you can see from XML listing, the task pattern element just holds the reference to existing task

pattern on backend server.
In the constraints editor we make the pattern consisting of either data and task elements or only data

or only task elements. Therefore the resulting XML structure may vary depending on target pattern.
Listing 12 is demonstrating the mixed case with both types of elements.

1 <constraintspattern>
2 <category>

3 Control Flow

4 </category>

5 <operation>

6 execute

7 </operation>

8 <constraints>

9 <dependencies>
0 <dependency>
1 <binary>

60

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

o Mozilla Firefox

| (7} http://sumatra...lements/intReq | 57 |

univie.ac.at ~@ B~ G JL @ & - 6

This XML file does not appear to have any style infl:ﬁmation associated with it. The document tree is shown below.

<de id="intReq" type="string"/>

zotero ® ConsoleML

Figure 21: Backend Controller in Action

12 <binaryoperand>

13 <element>

14 http://sumatra.pri.univie.ac.at/ demo/sprint/backend/data-elements/
intReq

15 </element>

16 </binaryoperand>

17 <binaryoperand>

18 <element>

19 http://sumatra.pri.univie.ac.at/ demo/sprint/backend/tasks/al

20 </element>

21 </binaryoperand>

22 </binary>

23 </dependency>

24 </dependencies>

25 <constraint id="pcO" type="time">

26 noon

27 </constraint>

28 <constraint id="pcl" type="location">

29 Lab A

30 </constraint>

31 </constraints>

32 </constraintspattern>

Listing 12: Constraints Pattern XML representation

as you see, the nodes, holding task and data elements are in fact the URLSs referring to corresponding
task/data on the server. Entering the URL in the browser window will display the element. That is
achieved by means of using URL parser on the backend server, which is parsing the URL and generates
response like in Fig. 21.

5 Test Cases and Evaluation

In the use cases we are going to show, how the use cases from section 4.1 are implemented using the
editors we have created in the master thesis. We start with the first two use cases (1A and 1B) dealing

61

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

| 7 orbitFlower [E2]

&= | @ sumatra.pri.univie.ac.at/-demo/orgviz/organisation_reactor.flower.html ~ @| [B~ Google a & ﬁ 2 - 8§

j OrbitFIower)

mctor

Turbine

& Alexander Kyshynevskyi
& Alexander Weber

8 Juergen Mangler

8 Stefanie Rinderle-Ma

8 Tatjana Sahadak

9zIsal 0] bedp

Powerplant

IAEA

Supervisor

COO

x zotero @ ConsoleML

Figure 22: Orbit Flower Diagram of the NPP

@ - o OrbitList - Morzilla Firefox

| orbitist [E3
@ @ sumatra.pri.univie.ac.at/~demo/orgviz/organisation_reactor.list.htm ~@| B~ coogle Q. @ Q - Q
| OrbitList]
Q o
Powerplant /i CEO o .
5 A & 8 Alexander Kyshynevskyi
[Reactor [y p=r o
. © B Alexander Weber
[(S Supervisor | o R
® L
TNER, ol N Juergen Mangler
8 Stefanie Rinderle-Ma
8 Tatjana Sahadak
® zotero ‘@ ConsoleML

Figure 23: Orbit List Diagram of the NPP

with normal and unscheduled power reactor maintenance procedures. First of, we set up the application
responsible for graphical representation of the organizational structure. That is achieved by writing
appropriate XML files, which are visualized by the graphical interface (Fig. 22).

As can be seen from Fig. 22, it demonstrates all organizational units, their hierarchy (arches from
Power plant to Reactor and Turbine), as well as roles and users. Another one representational approach
is demonstrated at Fig. 23.

62

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

® - o Task Pattern Editor - Mozilla Firefox

| {3 Task Pattern Editor % |] Responsibility Bundle Editor % [{7} Constraints Editor %o

(g univie.ac.at - 8- Q J_/L @ & . 9
initStop | A | reqRUStop | A | app_rejSD1 | A |app_rejSD2 | A |app_rejSD3 | A | shutRU | A |shutTU | A maintainRU | A | maintainTU | A | fixFuel| A | reqStart| A | app_rejStl| A | app_rejSt2 A | app_rejSt3 | A/ startRU A
startTU

export | |_import |

Task Elements

initstop
reqRUStop
app_rejsD1
app_rejsD2
app_rejsD3
shutRU
shutty

maintainRU

FixFuel
reqStart
app_rejst1
app_rejst2
app_rejst3
startRU

startTu

o
o
]
o
]
o
o
]
1 maintainTu
]
o
o
]
o
]
o

x zotero ‘® ConsoleML

: . tp
Figure 24: Use Case 1. Task Pattern breactor maintenance» 7€ 4

® - o Responsibility Bundle Editor - Mozilla Firefox
| 3 Task Pattern Editor 8 | (I Responsibility Bundle Editor % |£2} Constraints Editer ® |5
univie.ac.at ~@| B~ Q J_/L @ R Y

[initStop | A [reqRUStop | [app_rejSD1] A [app_rejSD2| A [app_rejSD3| A [shutRU] a [shutTU| A [maintainRU] A [maintainTU| A [fixFuel | o [regStart] A (app_rejSt1 | A (app_rejst2 | a (app_rejSt3 | a [startRU] a
[startTU] [intReg| n[intCIr | A {extReq | A [extClr| a[stopLog|a[maintLog| A [fuelRep | A[intStartClr [A extStartClr | a [cLiquid |

| import || Export |
Data Elements Task Patterns
1 intReq 1 [initStop | A [reqRUStop | A [app_rejSD1 | A (app rejSDZ | n|app_rejSD3 | a [shutRU | A [shutTU| A [maintainRU | A (maintainTU| a [fixFuel | A [reqStart| a (app_rejSti | a [app_:

1 lintcir
1 extReg

1 extclr

1 stopLog
1 maintLog
1 fuelRep
1 lintStartclr
1 extStartClr
1 [cLiquid

1 email

1 passwd

1 'studyProgr
t prevstud
1 persData

1 cnkctData =

E zotero ® ConsoleML

Figure 25: Use Case 1. Responsibility Pattern

The task pattern constraints from Editor 1 look as in Fig. 24.

The order of tasks doesn’t play any role here. It only states, which tasks are allowed for the process.
Please notice, that the task pattern constraint is not broken into three peaces as it was described in the
document above. We omit that for the sake of compactness, but it can be easily made in the editor too.
The task pattern is composed by means of dragging appropriate tasks onto upper formula area. Having
made that user must export the pattern onto backend server by means of clicking the ”Export” button.
After that we are ready to compose the responsibility pattern including data elements and previously
defined task pattern. The procedure is pretty much the same as for previous pattern (Fig. 25). We chose
not to collapse the task pattern for this editor, as it would make the situation less understandable.

Constraints implementation is achieved by tweaking the JS classes for the third editor a tiny bit. That
can be done with little effort. We will set it up as we go through constraints. The first constraint C; may

63

Managing Responsibilities and Permissions for Process-Aware Information Systems

@ - o Constraints Editor -

|3 Task Pattern Editor

Mozilla Firefox

® U ERespon%bility Bundle Editor % h Constraints Editor ® H an \

univie.ac.at,

Kyshynevskyi

Adlfdre-e

app_rejsD1 |, (initstop |, app_rejsD2 |, (app_rejsD3

Figure 26: Use Case 1. Constraint C;

Constraints Data Elements Task Elements
lermissicn) 1 intReq 1 initstop
Cathegory Control flow 1 iintClearance 1 reqrustop
Operations | execute - | 1 extreq 1 |app_rejsD1
I) 1 extclearance 1 [app_reisoz
Time 1 stoplog % app_reisD3
Location. 1 [maintLog 1 shutRy
Separation/Binding ‘Separation | i 1 shutTu

— 1 intstartclr maintainRU
it restriction 1 extStartcir 1] maintainTU
T email T fixFuel
1 [passwd 1 reqstart
1 studyprogr 1 app_reist1
1 prevstud % lapp_reist2
1 |persDota % lapp_reist3
1 [cntctData 1 startRU
1 statData 1 startTu
1 pass 1 notifyTU
1 'schoolcert 1 preReg
1 prepDocs

<category>
co Low

ac.at/~demo/sprint/backend/tasks/a3

ac.at/~demo/sprint/backend /tasks/pl

ac.at/~demo/sprint/backend/tasks/

ie.ac.at/~demo/sprint/backend/tasks/a5 ||~

zotero ® ConsoleML

be seen in Fig. 26. The user just needs to drag necessary elements over to the formula area and then click

the toggable button “Separation/Binding” till it gets appropriate label.

We should also notice, that the main part in the editor is in the <div> element with XML code in the
right portion of the viewport. This piece of code holds all aspects of constraint being worked on. Listing
13 shows how C; is represented in that format.

http://sumatra.pri.univie.ac.at/ demo/sprint/backend/tasks/a3

http://sumatra.pri.univie.ac.at/ "demo/sprint/backend/tasks/al

1 <category>

2 Control Flow

3 </category>

4 <operation>

5 execute

6 </operation>

7 <constraints>

8 <dependencies>

9 <dependency>

10 <binary>

11 <binaryoperand>

12 <binary>

13 <binaryoperand>

14 <binary>

15 <binaryoperand>
16 <element>

17

18 </element>

19 </binaryoperand>
20 <binaryoperand>
21 <element>

22

23 </element>

24 </binaryoperand>
25 </binary>

26 </binaryoperand>

27 <binaryoperand>

28 <element>

29

http://sumatra.pri.univie.ac.at/ demo/sprint/backend/tasks/a4

64

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

® - o Constraints Editor - Mozilla Firefox

| L3 Task Pattern Editor % | T Responsibility Bundle Editor % | " Constraints Editor %X [=R]
univie.ac.at, + @| B~ jsarray length q I @ # . B
prev| fixFuel | - curr| fixFuel
Constraints Data Elements Task Elements

(permission) 1 lintReq T initStop

Cathegory Control flow T intclr T reqRUStop

Operations [execute = | 1 extReg T app_rejsD1

Bermiasion Control) 1 extclr 1 app_rejso2

Time 1 'stopLog 1 app_rejsp3

Location. 1 maintLog 1 shutky

Separation/Binding | sinding | i [fucihep i Ty xc. at r~temos spr nt/ackend rtaske/ k10
1 intStartcir 1) maintainRU

Data restriction 1 extStartclr # maintainTU < Toineryaperands
1 cLiquid T fixFuel e o earr s
l (emait ll (reqstart s .ac. 3t /~demal sprint/backend tasks/ 10
T passwd & app_rejst1
1 studyProor 1 app_reist2
1 prevstud 9] app_reist3
1 persData 1] startRU
1 [cntctData 1) startTu
1 statbata 1 notifyTu
m ™

zotero ® ConsoleML

Figure 27: Use Case 1. Constraint C

30 </element>

31 </binaryoperand>

32 </binary>

33 </binaryoperand>

34 <binaryoperand>

35 <element>

36 http://sumatra.pri.univie.ac.at/ demo/sprint/backend/tasks/ab
37 </element>

38 </binaryoperand>

39 </binary>

40 </dependency>

41 </dependencies>

42 <constraint id="pcO0" type="separationBinding">
43 separation

44 </constraint>

45 </constraints>

Listing 13: XML Constraint Representation

From this listing we can see that the elements are put together as operands of binary operator. We

have got to know this format in previous section. Furthermore each element is represented by its URL
rather than by the label which user can see in the formula area. Separation constraint is stored at the tail
of the code.

We do the same in order to express, that shutdown and startup approvals/rejections from the side of
IAEA should be issued by one and the same person (in our case Tanja Sahaidak). The only difference
is that we impose binding constraint onto app_rejSD1 and app_rejSt1 tasks. Having showed these
examples there is no need to demonstrate screen shots for each and every separation/binding constraint,
as the process gets really straightforward.

In order to implement C; in the editor, there should be corresponding functions which return the data
of last and current fuel manipulation procedures. These functions may be presented as unary operators
in our case. That means all we have to do is to add the key-value pairs in the list of unary operators (Fig
27).

Constraint C3 may be expressed in a few steps. We use here the same approach of subtracting time
stamps as above (Fig. 28).

65

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

® - o Constraints Editor - Mozilla Firefox

| L3 Task Pattern Editor % | T Responsibility Bundle Editor % | " Constraints Editor % [
univie.ac.at, + @| B~ jsarray length q I @ LR
curr [shutRU| — curr [app_rejSD1
Constraints Data Elements Task Elements
{permizsicn) 1 intReg 1 initStop
Cathegory Control flow T intclr T reqRUStop
Operations [execute = | 1 extReg T app_rejsD1
Formizeion oo | [extar 1 app_rejso2
Time >=30days 1 stoplog 1 lapp_rejsD3
Location 1 |maintLog 1 shutRy
N 1 FuelRe, 1 shuTu
Separation/Binding | sinding | 2 _ac.at/~demos sprint/backend/tasks/ b
1 inkStartcir maintainRU
Data restriction
‘ 1 |extStartClr 1 maintainTU
1 cliquid 1 fixFuel
l (emait ll (reqstart .ac.at/~demay spr int /backend tasks/h3
T passwd & app_rejst1
1 studyProgr 1 lapp_rejst2
1 [prevstud 1 (app_rejst3
1 |persData 1 startRU
1 |cntctData 1 [startTu
1 statData 1 notifyTU
T i (ooon v
® zotero ‘® ConsoleML
@ - o0 Constraints Editor - Mozilla Firefox
| £} Task Pattern Editor % |] Responsibility Bundle Editor & | ("] Constraints Editor % [p|
univie.ac.at, « @| |B v jsarraylength Q J_/L @ LR
[criquid &
Constraints Data Elements Task Elements
. <category>
fermission) 1 intReq 1 initstop Control Pl
Cathegory Control flow 1 intalr 1 rearUstop
Operations [exeaute - | 1 [extReq % lapp_rejsD1
= o extar 1 lapp_rejsD2
Time 1 |stoplog 1 lapp_rejsD3
Location i (maintioa B (chtr .c.at/~demay spr int /backend /data-aLen
Separation/Binding l [fueirep Ml shuty
N . 1 intstartcir 1 maintainRu
atarestriction <=
£0 degrees Cebivs 1 extstartclr T maintainTu
1 cliquid 1 fixFuel
1 eMail 1 reqstart | new |[export || import |
1 passwd 1 (app_rejst1
1 studyProgr 1 lapp_rejst2
1 [prevstud 1 lapp_rejst3
1 [persData 1 startRy
1 |ntctData 1 startTu
1 statData 1 notifyTu 5
= zotero ® ConsoleML

Figure 29: Use Case 1. Constraint Cs

In order to save place in the document, we won’t place the screen shots for the second part of con-
straint C3 and (4, as they are implemented identically to what we just did.

For Cs we use other input field in the editor, which corresponds to data-related content (Fig. 29).

In use case 2B, with contingency reactor shutdown, we are performing same steps as in scheduled
shutdown use case, so there is no need to demonstrate that visually.

We act in the same manner for the bachelor and master enrollment use cases (use case 2A and 2B).
First of we represent the organizational structure of the university (Fig. 30 and 31).

Then we compose the task pattern relation constraint (Fig. 32) for the case where all needed docu-
ments were handed in correctly.

The relation responsibility constraint is a bit bulky as we have quite a few data elements (Fig. 33)

As one can see, the task from previous use case are still present in the editor. Constraints Cp,C3 and
C, are time related and are all implemented in the same way, so we just place one screen shot here (Fig.
34).

66

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

| 73 Task Pattern Editor % |] Responsibili Bundle Editor % | £} Constraints Editor % | orbitFlower % | 7 orbitFlower LG

&= | @ sumatra.pri.univie.ac.at/-demo/orgviz/organisation_studentmanagement. flower.html ~ @| |B~ jsarray length a & ﬁ R

j OrbitFIower)

o
-
QJ .
Admission Ofgce & B Alexander Kyshynevskyi
T
_ © & Alexander Weber
Applicants B
v R Tatjana Sahadak
- . N
.Unlver3|ty o
Admission Office Clerk
Applicant
x zotero ‘® ConsolemML

Figure 30: Use Case 2. Orbit Flower Diagram of the University

I @ - 0 oOrbitList - Mozilla Firefox

| Task Pattern Editor % | [Responsibility Bundle Editor % |} Constraints Editor % | JorbitFlower % 3 orbitList * (5]
~ €| [B~ Google a -

@ @ sumatra.pri.univie.ac.at/~demo/orgviz/organisation_studentmanagement.list.html

_(OrbitList |

td

Q

University [cgi (2N Applicant 5 R Al .
Q exander Kyshynevskyi

Admission Office Z’i 1 &Admission Office Clerk | -

. © B Alexander Weber

Applicants o
i R Tatjana Sahadak
®

% zotero ® ConsoleML

Figure 31: Use Case 2. Orbit List Diagram of the University

Constraint Cs is simply a data restriction imposed onto data object (Fig. 35). In a real life there is no
easy method to check the compliance with the requirement. So this restriction is rather symbolic.

Cg is about German proficiency level and is similar to Cs. As for the last two constraints, we have
represented them as regular expressions which in a real life may be parsed by the workflow engine. We
only give one screen shot here as implementation of them in the editor is identical (Fig 36). The C;
and Cg are data object constraints as well and are implemented in the same way by putting the regular
expression patterns in the Data restriction” field.

At the end we briefly represent task pattern (Fig. 37) and responsibility bundle (Fig. 38) for the use

67

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

® - o Task Pattern Editor - Mozilla Firefox

| i Task pattern Editor ® \[[] Responsibility Bundle Editor % H[: } Constraints Editor ® u } orbitFlower ® u orbitList ® \IEI
& | ® sumatra.pri.univie.ac.at/~demo/sprint/editors/Editor vy + @| [B~ coogle a ﬁ * - 9

preReg A prepDocs A handInDocs A | enableAcct A payFee|A | checkDocs | A pickUpID | A | sendSticker

| export | import |

| Task Elements
initStop

reqRUStop b
app_rejsD1
app_rejsD2
app_rejsD3
shutRU
shutTu

- zotero ® ConsoleML

e e e

Figure 32: Use Case 2. Task Pattern Relation Constraint

"® o Responsibility Bundle Editor - Mozlla Firefox

Responsibility Bundle Editor % \[} Constraints Editor ® H } OrbitFlower ® \IEI

or2, w7~ @| [B~ Google Q@@*‘ - 8

][} Task Pattern Editor RI[

@ sumatra.pri.univie.ac.at/~d

[preReg| A (prepDocs | A (handInDocs | A [enableAcct | A (payFee] a (checkDocs | (pickUpID | A [sendSticker | A (eMail) a (passwd] A [studyProgr) A
[prevstud | A [persData | A[cntctData | A [statData] A [pass] A [schoolCert | A [germanCert | A [socInsNum | A [nameChng | A [passPhoto |

| Import || Export® |

Data Elements Task Patterns
0 intReq 1 [initStop | A [reqRUStop | A [app_rejSD1 | A [app_rejSD2 | A | app_rejSD3 | A [shutRU | A [shutTU | A [maintainRU | A [mair
& lintclr @ [preReg | a [prepDocs | A | handInDocs | A | enableAcct | A [payFee | A | checkDocs | A | pickUpID | A | sendSticker |
I extReq =
; ‘ zotero @ CnnsnleMl

Figure 33: Use Case 2. Responsibility Relation Constraint

® - o Constraints Editor - Mozilla Firefox Iy
][I Task Pattern Editor ® u sponsibility Bundle Editor % uf } Constraints Editor ® U } orbitFlower ® u orbitList ® \l\{.‘—‘l
@ pri.univie.ac.at/~d Editor 3, ~@| B~ coogle Q) @ @ ER Y
preReg
Constraints Data Elements Task Elements <category>
- ; i Control Flow
e) 1 intReq 1 initStop </category>
Cathegory Control flow 1 intClr 0 reqRUStop <operation>
execute
Operations | execute ;| i extReq 1 app_rejsp1 </operation>
<constraints>
fermission Comtrott) ||l extclr 1 app_rejsp2 <dependencies>
: zroll <dependency>
Time from 01.05 ill 05.09 1 stopLog 0 app_reisd3 <elenent>
- hEtp: //Sumatra. pri.univie. ac.at/~demo/ Sprint/backend/ tasks/ a1
. R T FfuelRey f shuttu </dependency>
Separation/Binding| ginding | " dependenciess e tine"
—— i intstartCir @ maintainRU 2“’“;{“;’;&‘?; g;ﬂﬂgtypﬁ time”s
Data restriction rom 01.05 till 05.
1 extstartclr 0 maintainTu </eonstraint>
— - </constraints> -
® zotero ® ConsoleML

Figure 34: Use Case 2. Time Constraint C»

68

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

[@ - o Constraints Editor - Mozilla Firefox

| L3 Task Pattern Editor % | 5 Responsibility Bundle Editor % | (" Constraints Editor %® | orbitFlower % | orbitList ® 5|
univie.ac.at ~@| 8- [CYRRTAN ~ R 3
[passPhoto |
Constraints Data Elements Task Elements <category>
- Control Flow
1 intReq 1 initstop <fcategory>
Cathegory Control flow 1 intclr @ reqrustop ”PE':UD'“
execute
Operations | execute 1 extReq @ app_rejsD1 </operation=
<constraints>
T extclr 0 |app_rejsD2 <dependencies>
<dependency>
1 stopLog T app_rejsp3 <Ei:2r::(y
NEtp: £/SumGatra. pri. univie. ac. at/~demo/ Sprint/backend/data-elerk
Location 1 maintLog 0 shutRU e
<fdependency>
Separation/Binding Bl (fuclrep] hurmy fdependencies>
 intstartclr 1 maintainRU <t?ﬂ5§;am§hmipm" type-"data”>
icti not older than 2 yrs.
Data restriction [not older than 2yrs. 1 extStartclr [@ |maintainTu <fconstraint>
<fconstraints>
1 cLiquid 0 FfixFuel -
= zotero ‘® ConsoleML
@ - o Constraints Editor - Mozilla Firefox
| £} Task Pattern Editor % | £ Responsibility Bundle Editor % | ("] Constraints Editor % | orbitFlower % | {7 orbitList ® =5 |
univie.ac.at, ~@ 8- Q) J_/L @ TR 3
[eMail |
Constraints Data Elements Task Elements <categorys
Permizsion Control Flow
{permizzion) 1 intReq 1 initstop eregory
Cathegory Control flow 1 intclr @ reqRustop operations
Operations | execute 1 extReq 1 app_rejsd1 <foperation>
<constraints>
ssio © T extclr 0 app_rejsb2 <dependencies>
<dependency>
1 stopLog T app_rejsD3 Peysinie
http: //sumatra. pri.univie. ac.at/~demo/sprint/backend/data-elent
Location 1 maintLog 0 shutRU ety
<fdependency>
separation/Binding 8 lueinen | suiTt Coependencies”
1 intstartclr & maintainRU <S°T;Eﬁ;:(zl?:”§ﬂz" ;P;’{'?S;’
icti = wdla-zA-2_1+2\. [a-zA-21 2,
Datarestriction [w+@lazaz i\ a2a 2235 | || exestartcie 0 |maintainTu <feonstraint>
<fconstraintss
T cLiquid 0 fixFuel =
® zotero ‘® ConsoleML

Figure 36: Use Case 2. Data Constraint C7

case 2B, omitting the constraints as they are almost identical to what we have done in the use case 2A.

6 Conclusion and Summary

In this thesis we were working on design and development of the system aimed at supporting manage-
ment processes of security policies of information systems. Those systems tend to grow in scale and get
more complex over the time. As systems expand and grow, more and more actors, tasks and artifacts are
involved in the business processes, which makes the security aspects hard to handle.

First we have analyzed the existing approaches, mainly how to define and representing small bundles
of activities and related data (documents), called responsibilities. These bundles, in relation to permis-
sions and roles are the basis for monitoring the design and execution of processes.

We then desribed the design and implementation of a system that allows for agile and flexible man-
agement of responsibilities in information systems. The underlying system supports composing task and
responsibility patterns (which are combination of tasks and data elements). It also supports restriction
for single elements (i.e. permissions) or patterns of elements (i.e. responsibility bundles). It should
be noticed that the implemented system only handles the security aspects, whereas the organizational

69

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

sendApp| A | preReg| A [prepDocs | A handinDocs | A [issueNoA| A [visitAO | A [issueID| A [enableAcct| A [payFee | A [sendSticker

export | | import

Task Elements

initSkop
reqRUSEOp
app_rejsD1
app_rejsb2
app_rejsD3
ShutRU
shutTy
maintainRU
maintainTU
FixFuel
reqStart
app_rejst1

T

t

t

T

T

T

t

t

]

]

T

T

1 [app_rejst2
T app_rejst3
t [startRu

t [startTu

& notifyTu

T preReg

1 [prepDocs

t handinDocs
T lenableAcct
¥ payFee

T checkDocs

1 reqrightDocs
[pickupiD

]

sendsticker

1 fendapp
1 visitAo
 issueNoA

 issueid

Figure 37: Use Case 2B: Task Pattern

[sendApp| A [preReg| A [prepDocs| A [handInDocs| A (issueNoA| A [visitAO| a [issuelD) a [enableAcct | [payFee| A [sendSticker | n [eMail| a [passwd | (studyProgr] a (prevStud | a (persData A [cntctData |
A[statData | A [pass| A [GermanCert | A [passPhoto | A [appForm | A [bachDipl | A |transcr | A |specQual | A |admNotif]

Import | | Export’
Data Elements Task Patterns
intReq @ [initStop) A [reqRUStop) o [app rejSD1] A [app rejSD2) A [app rejSD3] A [shutRU] A [shutTU) A [maintainRU) 4 |maintainTU) A | fixFuel) o | reqStart) A app_rejStL) A [app,

= o [preReg | (prepDocs & handInDocs | A [enableAcct] h [payFee] A [checkDocs| A [pickUpID | 4 [sendSticker | i
o [sendApp | o preReg] A [prepDocs | A | handInDocs] A [issueNoA| A [visitAO | A [issuelD) A [enableAcct | a | payFee) A [sendSticker|

extReq
extclr
stopLog
maintLog
fuelRep
inkStartClr
extStartClr
cLiquid
eMail
passwd
studyProgr
prevstud
persData
cntctbata
statData
pass
schoolCert
germanCert
socinsNum
nameChng
passPhoto
appForm
bachDipl
transcr
specQual
admNotif

By

Figure 38: Use Case 2. Responsibility Pattern

70

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

part is taken care of by OrgViz ?, implemented in the Workflow Systems and Technology Group at the
University of Vienna.

In order to evaluate the business process and implement security aspects, a couple of use cases
were presented. In those use cases we looked at how structural as well as security information about
enterprise can be extracted from textual description of the BP. That allows us to get the list of roles users
and constraints. Finally the use cases were implemented using the OrgViz and the editor presented in
this thesis.

At its current state the editor only allows to model the responsibilities and constraints in an orga-
nization, the future work may include combining the editor with the OrgViz by means of another user
interface. Furthermore, connecting it to the workflow engine may provide further possibilities to directly
monitor security aspects of the execution of BP instance. It will be also very important to develop a
robust and reliable methodologies for security analysts who will be responsible for keeping the system
running. In our cases we had to extract all constraints from a verbal description of the processes, separate
data objects and tasks. For big and complex processes it is crucial to understand their scope and to be
able not to miss critical constraints.

References

[1] I. Aedo, P. Diaz, and D. Sanz. An RBAC model-based approach to specify the access policies of web-based
emergency information systems. International Journal of Intelligent Control and Systems, 11(4), 2006.

[2] C. P. Argyris. R. & Smith, DM (1985) Action science: Concepts, Methods and Skills for Research and
Intervention. San Francisco: Jossey-Bass.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization constraints in work-
flow management systems. ACM Transactions on Information and System Security (TISSEC), 2(1):65-104,
1999.

[4] M. Burch, F. Bott, F. Beck, and S. Diehl. Cartesian vs. radial-a comparative evaluation of two visualization
tools. In Advances in Visual Computing, page 151-160. Springer, 2008.

[5] E. J. Coyne. Role engineering. In Proceedings of the first ACM Workshop on Role-based access control,
page 4, 1996.

[6] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics (B), 995:1072, 1990.

[7] D. F Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM Transactions on Information and System Security (TISSEC), 4(3):224-274,
2001.

[8] P. Herrmann and G. Herrmann. Security requirement analysis of business processes. Electronic Commerce
Research, 6(3-4):305-335, 2006.

[9] L. Hong, F. Meng, and J. Cai. Research on layout algorithms for better data visualization. In Proc. of the 2nd
Symposium Int’l Computer Science and Computational Technology (ISCSCT 09). Academy Publisher, page
369-372, 2009.

[10] P. C. Hung and K. Karlapalem. A secure workflow model. In Proceedings of the Australasian information
security workshop conference on ACSW frontiers 2003-Volume 21, page 33—41, 2003.

[11] M. Jakl. Representational state transfer.

[12] S. Kriglstein, J. Mangler, and S. Rinderle-Ma. Who is who: On visualizing organizational models in collabo-
rative systems. In Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom),
2012 8th International Conference on, page 279-288, 2012.

[13] S. KTriglstein and G. Wallner. Human centered design in practice: A case study with the ontology visualization
tool knoocks. In Computer Vision, Imaging and Computer Graphics. Theory and Applications, page 123-141.
Springer, 2013.

9University of Vienna, http://sumatra.pri.univie.ac.at/~demo/orgviz/

71

http://sumatra.pri.univie.ac.at/~demo/orgviz/

Managing Responsibilities and Permissions for Process-Aware Information Systems Kyshynevskyi

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Kuhlmann, D. Shohat, and G. Schimpf. Role mining-revealing business roles for security administration
using data mining technology. In Proceedings of the eighth ACM symposium on Access control models and
technologies, page 179-186, 2003.

0. Kulyk, R. Kosara, J. Urquiza, and I. Wassink. Human-centered aspects. In Human-Centered Visualization
Environments, page 13-75. Springer, 2007.

M. Leitner, J. Mangler, and S. Rinderle-Ma. SPRINT-Responsibilities: design and development of security
policies in process-aware information systems. Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), 2(4):4-26, 2011.

D. A. Nadler and M. L. Tushman. A model for diagnosing organizational behavior. Organizational Dynamics,
9(2):35-51, 1980.

G. Neumann and M. Strembeck. A scenario-driven role engineering process for functional RBAC roles. In
Proceedings of the seventh ACM symposium on Access control models and technologies, page 33-42, 2002.

M. Pesic and W. M. van der Aalst. A declarative approach for flexible business processes management. In
Business Process Management Workshops, page 169-180, 2006.

S. Rinderle and M. Reichert. A formal framework for adaptive access control models. In Journal on data
semantics IX, page 82—112. Springer, 2007.

S. Rinderle-Ma and M. Leitner. On evolving organizational models without losing control on authorization
constraints in web service orchestrations. In Commerce and Enterprise Computing (CEC), 2010 IEEE 12th
Conference on, page 128—135, 2010.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based administration of roles.
ACM Transactions on Information and System Security, 2(1):105-135, Feb. 1999.

R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control: towards a unified
standard. In ACM workshop on Role-based access control, volume 2000, 2000.

B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Visual
Languages, 1996. Proceedings., IEEE Symposium on, page 336-343, 1996.

W. M. van der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen, A. K. Alves de Medeiros, M. Song, and
H. M. W. Verbeek. Business process mining: An industrial application. Information Systems, 32(5):713-732,
2007.

J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC—A workflow security model incorporating controlled
overriding of constraints. International Journal of Cooperative Information Systems, 12(04):455-485, 2003.
B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing flexibility and security in adaptive process
management systems. In On the Move to Meaningful Internet Systems 2005: CooplS, DOA, and ODBASE,
page 59-76. Springer, 2005.

72

	Introduction
	Motivation
	Contribution
	Methodology
	Structure of Thesis
	Glossary of Terms

	Access Control in PAIS/Background
	NIST-RBAC
	W-RBAC
	Administrative RBAC
	Visualization of Organizational Models

	Conceptual Design – the SPRINT Approach
	Structural Aspect
	Operational Aspect
	Mapping of Responsibilities
	Linear Temporal Logic

	Implementation/SPRINT-Editor
	Use Cases
	Use Case 1A. Reactor Maintenance Stop
	Use Case 1B. Reactor Contingency Stop
	Use Case 2A. Bachelor Enrollment Process
	Use Case 2B. Master Enrollment Process

	User Interface
	Backend

	Test Cases and Evaluation
	Conclusion and Summary

